
Reinforcement Learning for Nash Equilibrium Generation

(Extended Abstract)
David Cittern

Imperial College London, UK
david.cittern10@imperial.ac.uk

Abbas Edalat
Imperial College London, UK
a.edalat@imperial.ac.uk

ABSTRACT
We propose a new conceptual multi-agent framework which, given a
game with an undesirable Nash equilibrium, will almost surely gen-
erate a new Nash equilibrium at some predetermined, more desirable
pure action profile. The agent(s) targeted for reinforcement learn
independently according to a standard model-free algorithm, using
internally-generated states corresponding to high-level preference
rankings over outcomes. We focus in particular on the case in which
the additional reward can be considered as resulting from an internal
(re-)appraisal, such that the new equilibrium is stable independent
of the continued application of the procedure.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artificial Intelli-
gence—Multiagent systems

General Terms
Algorithms, Design, Experimentation, Theory

Keywords
Single and multi-agent learning techniques, Computational architec-
tures for learning, Reward structures for learning

1. INTRODUCTION
One of the biggest challenges in game theory and multi agent sys-

tems is the problem of how independent and self-interested agents
who do not communicate can be guided towards stable behaviour
at some particular action profile that has been deemed desirable.
Recently, reinforcement learning frameworks such as Intrinsically
Motivated Reinforcement Learning (IMRL) have begun to distin-
guish between extrinsic reward (tied to task-related, extrinsic mo-
tivation) and intrinsic reward (generated according to fulfilment of
agent-specific goals), with emotion a potential appraisal mechanism
driving intrinsic reward generation [4]. Emotion-based intrinsic
reward is supported by neuroscientific evidence suggesting that the
orbitofrontal cortex and amygdala (circuits central to emotional pro-
cessing) play a key role in the computation of reward predictions
and errors, which are then projected to midbrain dopamine neurons
for use in model-free reward prediction error signalling [3, p.361].
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We propose a new conceptual framework in which an external
agent can be considered as being able to influence the intrinsic
reward generation (appraisal) process of agents partaking in a game,
resulting in the emergence of a predetermined new, strict Nash
Equilibrium (NE) in pure actions with probability 1. In contrast to
[2] (which determines the minimum amount of additional reward
required to induce cooperative behaviour in a Prisoner’s Dilemma
game played by stateless Q-learning agents), we consider agents
that learn over a dynamic, internally generated state representation
corresponding to a high-level preference ranking over outcomes.
Although we don’t consider the specifics of the appraisal/reappraisal
mechanism here, our results provide motivation for implementations
based on these principles.

2. FRAMEWORK
We consider the game in Fig. 1 with a set of 2 agents A =
{α1, α2}, where the action set for agent α1 is B1 = {β11, β12},
and for agent α2 is B2 = {β21, β22}. The initial payoff matrices
are U and V for α1 and α2 respectively. We assume that this game
has an initial NE in pure actions at NEinitial = (β12, β22), i.e.
that U22 ≥ U12 and V22 ≥ V21. Our goal is to generate a new, strict
NE in pure actions at NEtarget = (β11, β21). Either one or both
of the agents αi ∈ R ⊆ A will take the role of “reinforced” agents,
and any remaining agent αj ∈ A \R will be a “reactive” agent.

We now introduce a source of additional reward, which is consid-
ered here as resulting from an internal (re-)appraisal mechanism (e.g.
a process of self-reflection or self-therapy within a human agent,
perhaps triggered by a particular environmental signal). From this
point onwards, we refer to the source of additional reward simply as
the “external agent”, who does not partake in the game themself but
deterministically exerts an influence over the reinforced agents. We
assume that the reactive and reinforced agents do not communicate
with each other, but the reinforced agent(s) are free to communicate
with the external agent.

2.1 Reactive Agents
We assume that reactive agents are unaware of any change to the

structure of the game being played and that they therefore continue
to play according to their initial, static payoff matrix. Reactive
agents maximise their expected payoff based on a probability distri-
bution over the last t moves that the other agents have chosen. In
this study we concentrate on the simple case of this iterated strategy
for which t = 1, i.e. a best response to last move iterated strategy.

2.2 Reinforced Agents
The reinforced agents (either one or both of the agents) must

change the value that they place on individual outcomes in order for a
new pure action NE to emerge. Each reinforced agent therefore plays
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Figure 1: Initial game with a NE in pure actions at (β12, β22)

a dynamic game in which its payoff matrix changes according to a
payoff reinforcement rule. For U, V ∈ R+2×2 we define U ≡ V iff
Umn < Um′n′ ⇔ Vmn < Vm′n′ and Umn = Um′n′ ⇔ Vmn =
Vm′n′ . A complete set of equivalence classes for ≡ is contained in
N+

4

2×2, where N+
4 = {1, 2, 3, 4}, and for convenience we use this

representation. Let M ∈ R+2×2 be the current payoff matrix for
αi ∈ R (the “M-state”). We introduce the canonical representation
of M under ≡ by [M ] := M/≡ ∈ E ⊂ N+

4

2×2 which we call the
“Q-state”, whereE = {X ∈ N+

4

2×2 | minmn(Xmn) = 1, ∀m,n :
(Xmn = 1 or ∃ m′, n′ : Xm′n′ = Xmn − 1)}. The Q-state [M ]
is thus a dense ranking over αi’s payoff matrix M , and the current
state for αi is given by the (M-state, Q-state) tuple (M, [M ]).

We say that a reinforced agent αi plays a “reinforced game”,
which is defined by the state transition system and transition rules
given in Fig. 2. The state transition system is a 4-tuple, defined fully
by the state space, αi’s initial state (M0,

[
M0
]
), reinforcement set

ηi and reinforcement parameter ri > 1. The initial state consists
of αi’s initial payoff matrix M0 (αi’s initial M-state) along with
its equivalence

[
M0
]

(αi’s initial Q-state). The reinforcement set
ηi is the set of outcomes that will trigger reinforcements in αi’s
payoff matrix M . A multiplicative reinforcement of magnitude
ri > 1 will be applied to Mpq following every occurrence of an
action-combination outcome (β1p, β2q) ∈ ηi, resulting in M ′ as in
Fig. 2 (ii). Whilst it would be possible to consider other types of re-
inforcements (e.g. an additive rule or convergent series), we employ
a multiplicative factor as the simplest case and note that it has the
desirable property of inducing proportional payoff increments.

Reinforced agents use a model-free Q-learning algorithm, which
has a biological basis in the brain’s dopaminergic reward system
and allows us to capture an anticipation of future reward for de-
viating from the initial NE for different types of agents with dif-
fering discount factors. Q : E × Bi → R gives a Q value for
each action of the reinforced agent αi associated with a particu-
lar Q-state, and is initialised under the assumption that the oppos-
ing agent will play NEinitial (i.e. Q0([M ] , βij) = [M ]iq for
NEinitial = (βip, βkq)). Following the choice of action βij ∈
Bi in the current Q-state [M ], we use the conventional single-
agent update rule Q([M ] , βij) ← Q([M ] , βij) + `(D(M,βij) +
δi maxβiq Q(s, βiq)−Q([M ] , βij)) where s ∈ {[M ] , [M ′]} (ac-
cording to Fig. 2), and 0 ≤ δi < 1 is αi’s discount factor. The
learning rate is 0 < `([M ] , βij) = (n([M ] , βij))

−1 ≤ 1 where
n([M ] , βij) equals the number of times action βij has been chosen
in Q-state [M ]. Whilst convergence would occur more quickly for a
stateless framework, the focus here is on dynamic, internally gener-
ated state representations, for which we consider the simplest case
consisting of a high-level preference ranking over outcomes.

The reward αi receives for choosing action βij in state (M, [M ])
is D(M,βij), which is either a reinforced or non-reinforced pay-
off. In particular, if action-combination outcome (βij , βpq) ∈ ηi
has just occurred then D(M,βij) = riMjq . Alternatively, if
(βij , βpq) /∈ ηi has just occurred then D(M,βij) = Mjq . We
employ a simple softmax action selection rule P (βij | [M ]) =

k
Q([M ],βij)

i /
∑
jk
Q([M ],βij)

i with exploration parameter ki > 1

(
R+2×2 × E,

(
M0,

[
M0
])
, ηi, ri

)
(i)

(M, [M ])
(β1p,β2q)−→ (M, [M ]) if (β1p, β2q) /∈ ηi

(M, [M ])
(β1p,β2q)−→ (M ′, [M ′]) if (β1p, β2q) ∈ ηi

with M ′mn =

{
ri Mmn if m = p and n = q

Mmn otherwise

(ii)

Figure 2: (i) State transition system describing the reinforced
game for agent αi (ii) Transition rules. Description in text.

for αi, such that reinforced agents choose their actions according to
a path-dependent, non-stationary stochastic process.

2.3 Convergence
In the full paper [1] we prove the following convergence crite-

ria and provide simulatory results based on a child-parent game,
along with extended criteria and proofs for n-agents. For reac-
tive agent α1 and reinforced agent α2, the convergence criterion
is U11 > U21 and η = {NEtarget} ∪ ζ with ζ ⊆ {(β12, β21)},
i.e. the target NE outcome must be reinforced, and the deviation
from the initial NE by α2 can optionally also additionally be re-
inforced. If U11 < U21 then by definition a new NE cannot be
generated at NEtarget = (β11, β21), since α1’s payoff matrix does
not change. If U11 = U21 then the dynamics will depend on how
α1 discriminates between outcomes with equal payoffs, although
any new NE generated at NEtarget will not be a strict NE. As an
example, single agent reinforcement will lead both agents to a new
universally-preferred coordinated NE in the battle of the sexes game.

For some games the above condition does not hold on the initial
payoff matrix (e.g. the Prisoner’s Dilemma and Snowdrift games,
where the desirable new NE is at the coordinated cooperation out-
come). For such games we can instead reinforce both agents in order
to almost surely guarantee the emergence of the new desirable NE,
where agents α1 and α2 have states (U, [U ]), (V, [V ]) ∈ R+2×2 ×
E respectively. Assume again that we start with the game in Fig. 1
with an initial NE in pure actions at (β12, β22), then the convergence
criterion for the generation of a new strict NE in pure actions at
(β11, β21) is η1 = {NEtarget} ∪ ζ1 with ζ1 ⊆ {(β11, β22)} and
η2 = {NEtarget} ∪ ζ2 with ζ2 ⊆ {(β12, β21)}, i.e. the target NE
outcome must be reinforced for both agents, and the independent
deviation from the initial NE by each individual agent can optionally
also additionally be reinforced for that respective agent.
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