
Learning Efficient Logical Robot Strategies Involving Composable Objects

Andrew Cropper and Stephen H. Muggleton
Imperial College London

United Kingdom
{a.cropper13,s.muggleton}@imperial.ac.uk

Abstract
Most logic-based machine learning algorithms rely
on an Occamist bias where textual complexity of
hypotheses is minimised. Within Inductive Logic
Programming (ILP), this approach fails to distin-
guish between the efficiencies of hypothesised pro-
grams, such as quick sort (O(n log n)) and bub-
ble sort (O(n2)). This paper addresses this is-
sue by considering techniques to minimise both the
textual complexity and resource complexity of hy-
pothesised robot strategies. We develop a general
framework for the problem of minimising resource
complexity and show that on two robot strategy
problems, 1) Postman 2) Sorter (recursively sort
letters for delivery), the theoretical resource com-
plexities of optimal strategies vary depending on
whether objects can be composed within a strat-
egy. The approach considered is an extension of
Meta-Interpretive Learning (MIL), a recently de-
veloped paradigm in ILP which supports predicate
invention and the learning of recursive logic pro-
grams. We introduce a new MIL implementation,
MetagolO, and prove its convergence, with in-
creasing numbers of randomly chosen examples to
optimal strategies of this kind. Our experiments
show that MetagolO learns theoretically optimal
robot sorting strategies, which is in agreement with
the theoretical predictions showing a clear diver-
gence in resource requirements as the number of
objects grows. To the authors’ knowledge this pa-
per is the first demonstration of a learning algo-
rithm able to learn optimal resource complexity
robot strategies and algorithms for sorting lists.

1 Introduction
Commercial robots exist which carry out tasks such as vacu-
uming a cluttered room [Geringer et al., 2012] or delivering
packages [Felder et al., 2003]. However, consider teaching a
robot postman to both collect and deliver letters. In the initial
state letters are to be collected; in the final state letters have
been delivered to their intended destinations (Figure 1). In
Section 3 we show that allowing the postman to form com-
posite objects by placing letters in a postbag reduces the re-

source complexity of the problem from O(n + d) to O(nd),
where n is the number of letters and d is the space size.
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Figure 1: Postman initial/final state examples alongside Pro-
log representations for a route on a hill. In the initial states
letters are to be collected; in the final states letters are at their
intended destinations.

However, most logic-based machine learning algorithms
rely on an Occamist bias where textual complexity of hy-
potheses is minimised. Within Inductive Logic Programming
[Muggleton et al., 2011] (ILP), this approach fails to dis-
tinguish between the efficiencies of hypothesised programs,
such as quick sort (O(n log n)) and bubble sort (O(n2))1.
For example, Figure 2 shows two strategies from our experi-
ments (Section 5.2) for the postman problem, where strategy
(a) was learned by MetagolD[Muggleton et al., 2015], an ex-
isting ILP system and strategy (b) was learned by MetagolO,
a new ILP system introduced in Section 4. Although the
strategies are equal in textual complexity they differ in their
resource complexity2 because MetagolO minimises both the
textual complexity and resource complexity of hypotheses,
learning a strategy involving composite objects (i.e. using a

1We demonstrate that MetagolO succeeds in learning quick sort
in the experiments described in Section 5.3.

2O(nd) vs O(n + d) respectively where n, d are the number of
letters and places for delivery.



postbag), whereas MetagolD only minimises the textual com-
plexity of hypotheses. Clearly, reducing the complexity of
such problems and learning efficient strategies for them is of
considerable value in similar real-world applications. In Sec-
tion 5 we show how strategy optimisation can be used to learn
classic efficient sorting algorithms as robot strategies.

postman(A,B):- postman2(A,C), postman(C,B).
postman(A,B):- postman2(A,C), go to bottom(C,B).
postman2(A,B):- postman1(A,C), go to bottom(C,B).
postman1(A,B):- find next sender(A,C), take letter(C,B).
postman1(A,B):- find next recipient(A,C), give letter(C,B).

(a) Inefficient strategy learned by MetagolD

postman(A,B):- postman2(A,C), postman2(C,B).
postman2(A,B):- postman1(A,C), postman2(C,B).
postman1(A,B):- find next sender(A,C), bag letter(C,B).
postman2(A,B):- postman1(A,C), go to bottom(C,B).
postman1(A,B):- find next recipient(A,C), give letter(C,B).

(b) Efficient strategy learned by MetagolO

Figure 2: Prolog recursive postman strategies learned by
MetagolD (a) and MetagolO (b) with resource complexities
O(nd) and O(n + d) respectively. Predicates postmani are
invented and are local to their respective strategy.

Action Cost
find next sender 1
take letter 1
go to bottom 1
find next recipient 5
give letter 1
go to bottom 5
find next sender 3
take letter 1
go to bottom 3
find next recipient 1
give letter 1
go to bottom 1
Total 24

(a)

Action Cost
find next sender 1
bag letter 1
find next sender 2
bag letter 1
find next recipient 2
give letter 1
go to bottom 5
find next recipient 1
give letter 1
go to bottom 1
Total 16

(b)

Table 1: Traces of inefficient (a) and efficient (b) strategies
shown in Figure 2 for example 1 in Figure 1.

This paper extends the recently developed Meta-
Interpretive Learning (MIL) framework [Lin et al., 2014;
Muggleton et al., 2014b]. MIL differs from most state-of-
the-art ILP approaches by supporting the use of predicate
invention for problem decomposition and the learning of
recursive programs. MIL has [Muggleton et al., 2015] been
shown to be capable of learning a simple robot strategy for
building a stable wall from a small set of initial/final state
pairs. The learning of such a strategy differs from traditional
AI planning techniques which involve the generation of a
plan as a sequence of actions transforming a particular initial
state of the world to a particular final state. By contrast,

a strategy can be viewed as a (potentially infinite) set of
plans. Once learned, such a strategy can be applied without
invoking a search through a space of plans. MIL is extended
in this paper towards finding programs which have low
resource complexity. That is, use of resources (eg number of
moves, power dissipation etc) is near minimal for the learned
strategy over the entire class of initial states.

2 Related work
In AI, planning traditionally involves deriving a sequence of
actions to achieve a specific goal from an initial situation
[Russell and Norvig, 2010]. The majority of research into
AI planning has focused on developing efficient planners, i.e.
systems which efficiently learn a plan to accomplish a goal.
However, we are often interested in plans that are optimal
with respect to an objective function by which the quality
of a plan is measured. A common objective function is the
length of the plan, i.e. the number of time steps to achieve the
goal [Xing et al., 2006]. Plan length alone is only one crite-
rion to be optimised [Eiter et al., 2003]. If executing actions
is costly, we may desire a plan which minimises the overall
cost of the actions, e.g. to minimise the use of limited re-
sources such energy capacity. The Answer Set Programming
literature has already addressed learning optimal plans by in-
corporating action costs into the learning [Eiter et al., 2003;
Yang et al., 2014].

In contrast to these approaches, this paper investigates the
construction of strategies which consist of a program con-
taining conditional execution and recursion representing a
(sometimes infinite) set of plans. Various machine learning
approaches support the construction of strategies, including
the SOAR architecture [Laird, 2008], reinforcement learning
[Sutton and Barto, 1998], learning from traces [Lau et al.,
2003], learning by demonstration [Argall et al., 2009], learn-
ing by imitation [Hayes and Demiris, 1994], policy abstrac-
tion [Pineau et al., 2002]. and action learning within ILP
[Moyle and Muggleton, 1997; Otero, 2005].

Relational Markov Decision Processes [van Otterlo and
Wiering, 2012] provide a general setting for reinforcement
learning. Strategies can be viewed as a deterministic spe-
cial case of Markov Decision Processes (MDPs) [Puterman,
2014]. Unlike most work in learning MDPs, MIL involves
generation of readable programs by way of problem decom-
position using predicate invention and the learning of recur-
sive definitions. This has allowed it to be used in this paper
for the classic programming optimisation task of finding op-
timal solutions for sorting lists (see Section 5.3). While re-
inforcement learning addresses heuristic policy optimisation
it does not generally provide provable convergent means for
finding optimal programs.

Strategy learning can also be classified as a form of in-
ductive programming [Gulwani et al., 2015], in which func-
tional and logic programs are learned from example presenta-
tions of input/output pairs. In this case, MIL is unusual in its
use of predicate invention for learning recursive definitions.
Problem decomposition has been found to be valuable for re-
usability of sub-programs [Lin et al., 2014], which has also
been explored previously in a heuristic form in Genetic Pro-



gramming [Koza and Rice, 1994].
Our experiments involve robot strategies where objects are

composed by robots storing objects in containers, thus in-
creasing carrying efficiency. The idea of composition of ob-
jects appears in both the planning [Cambon et al., 2004] and
Natural Language literature. For instance, [Eugenio, 1991]
describes the action place a plank between two ladders to cre-
ate a simple scaffold.

3 Theoretical framework
3.1 Meta-Interpretive Learning
MIL [Muggleton et al., 2014b; 2015] is a form of ILP based
on an adapted Prolog meta-interpreter. Whereas a standard
Prolog meta-interpreter attempts to prove a goal by repeatedly
fetching first-order clauses whose heads unify with a given
goal, a MIL learner attempts to prove a set of goals by repeat-
edly fetching higher-order metarules (Table 2) whose heads
unify with a given goal. The resulting meta-substitutions are
saved in an abduction store, and can be re-used in later proofs.
Following the proof of a set of goals, a hypothesis is formed
by applying the meta-substitutions onto their corresponding
metarules, allowing for a form of ILP which supports predi-
cate invention and the learning of recursive theories.

3.2 Resource complexity
In this section we outline a framework for describing the re-
source complexity of robot strategies. Resource complex-
ity can be vewied as a generalisation of the notion of time-
complexity of algorithms, in which time can be viewed as a
particular resource. In robot strategies energy consumption
and consumption of materials such as solder, glue, or bricks
might also be considered as resources.

General formal framework Let O represent an enumer-
able set of objects in the world. Objects are separated into
two disjoint sets O0 (primitive objects) and O1 (composite
objects) where O = O0 ∪O1. Composite objects are defined
in terms of primitives and other composite objects. Let P rep-
resent an enumerable set of places in the world. Let S repre-
sent an enumerable set of situations where each situation is a
pair 〈p, o〉 referring to the place p ∈ P where the object o ∈ O
can be found. In any situation, an object is paired with only
one place. Let A represent an enumerable set of actions. Each
action a in A is a function where a : S → S. Action names
are separated into two disjoint sets A0 (primitive actions) and
A1 (composite actions) where A = A0 ∪ A1. Composite ac-
tions are defined in terms of primitives and other composite
actions. We assume a resource function r : A × S → N
which defines the resources consumed by carrying out action
a ∈ A in situation s ∈ S.

Example 1 Robot Postman (composable). In the Postman
example (Section 1) we have O0 = {letter1, letter2, post-
man, postbag}, O1 = {postbag containing letter1, . . .}, P
= {place1, place2, place3, . . .}, S = {<place1,postman>,
. . .}, A0 = {move up, move down, . . .}, A1 = {go to bottom,
go to top, . . .}. For simplicity we assume the resource func-
tion gives r(a, s) = 1 in all cases in which a ∈ A0.

Generalised meta-interpreter
prove([], P rog, Prog).
prove([Atom|As], P rog1, P rog2) : −
metarule(Name,MetaSub, (Atom :- Body), Order),
Order,
abduce(metasub(Name,MetaSub), P rog1, P rog3),
prove(Body, Prog3, P rog4),
prove(As, Prog4, P rog2).

Figure 3: Prolog code for generalised meta-interpreter

We now give a resource complexity bound for the Postman.

Theorem 1 (Postman composable object bound) Let n be
the cardinality of O0 and d be the cardinality of P in the Post-
man problem and a be a composite action which minimises
r(a) for a ∈ A1. In this case r(a) is O(d+ n).
Proof. The optimal strategy involves the postman using the
postbag to hold all n objects. This involves at most d steps
for traversal and n object pick-ups. The postman then needs
to deliver each object to its destination, which again involves
at most d steps for traversal and n object placements. Thus
the overall time is bounded by 2(n+ d), which is O(n+ d).

Suppose in the above that the postman is disabled from com-
posing objects by adding them to the postbag. In this case the
resource complexity for the task is different.
Theorem 2 (Postman non-composable object bound.) Let
n, d and a be as in Theorem 1, but objects are limited to O0.
In this case r(a) is O(nd).
Proof. The optimal strategy involves the postman repeat-
edly finding and picking up an object and then moving to
its destination and placing it there. This involves at most 2d
steps for finding and carrying the object plus one pick-up and
placement. Thus for all n objects this involves a resource of
n(2d+ 2) which is O(nd).

The difference in the complexities demonstrated in Theorem
1 and 2 show that differences in optimal strategy solutions
can exist with assumptions associated with composability of
objects. In the experiments described in Section 5 we show
that such differences are evident in the output of solutions
generated by MetagolO.

4 Implementation
This section describes MetagolO, a variant of MetagolD
[Muggleton et al., 2015], an implementation of the MIL
framework which learns programs within the Datalog sub-
set H2

2 , where Hi
j consists of definite Datalog logic programs

with predicates of adicity at most i and at most j literals in
the body of each clause.

4.1 MetagolO
Figure 3 shows the implementation of MetagolO

3 as a gen-
eralised meta-interpreter, similar in form to a standard Pro-
log meta-interpreter. The metarule set (Table 2) is defined
separately, with each metarule having an associated name

3Full code for MetagolO together with all materials for the ex-
periments is available at http://ilp.doc.ic.ac.uk/metagolO.



(Name), quantification (MetaSub), form (Atom:-Body)
and Herbrand ordering constraint (Order). Owing to the
Turing-expressivity of H2

2 it is necessary [Muggleton et al.,
2015] to constrain (Order) the application of the metarules
to guarantee termination of the hypothesised program. The
termination guarantees are based on these constraints being
consistent with a total ordering over the Herbrand base of
the hypothesised program. Thus the constraints ensure that
the head of each clause is proved on the basis of instances
of body atoms lower in the ordering over the Herbrand base.
Since the ordering is not infinitely descending, this guaran-
tees termination of the meta-interpreter.

Name Metarule Order
Base P (x, y)← Q(x, y) P � Q
Chain P (x, y)← Q(x, z), R(z, y) P � Q,P � R
TailRec P (x, y)← Q(x, z), P (z, y) P � Q,

x � z � y

Table 2: Metarules with associated Herbrand ordering con-
straints where� is a pre-defined ordering over symbols in the
signature. The uppercase letters P , Q, and R denote existen-
tially quantified higher-order variables. The lowercase letters
x, y, and z denote universally quantified first-order variables.

4.2 Iterative descent
The key difference between MetagolO and MetagolD is the
search procedure. MetagolD uses iterative deepening to en-
sure that the first hypothesis returned contains the minimal
number of clauses. The search starts at depth 1. At depth
i the search returns a consistent hypothesis with at most i
clauses if one exists. Otherwise it continues to depth i + 1.
MetagolD minimises the textual complexity of the hypothesis
rather than resource complexity, which we now define.

Definition 1 (Resource complexity) Assume the training ex-
amples E consist of positive examples E+ and negative ex-
amples E−. Furthermore a hypotheses H ∈ H is a robot
strategy chosen from the hypothesis space. The resource com-
plexity of hypothesis H on example set E+ is

r(H,E+) =
∑

e∈E+

r(H(e))

where r(H(e)) is the sum of resource costs of primitive ac-
tions in applying the strategy H to example e.

To find the hypothesis with minimal resource complexity,
we employ a search procedure named iterative descent, which
works as follows: starting at iteration 1, the search returns a
hypothesis H1 with the minimal number of clauses if one ex-
ists. Importantly, on iteration 1 we do not enforce a maximum
resource bound. Because the hypothesis space is exponential
in the length of the solution [Muggleton et al., 2015], the hy-
pothesis H1 is the most tractable to learn. The hypothesis
H1 gives us an upper bound on the resource complexity from
which to descend. At iteration i > 1, we search for a hy-
pothesis Hi with the minimal number of clauses but we also
enforce a maximum resource bound set to r(Hi−1, E

+)− 1.

This ensures that any returned hypothesis Hi has a lower re-
source complexity than any hypothesis Hj , where j < i. If a
hypothesis Hi exists, the search continues at i + 1, until we
converge on the optimal hypothesis.

4.3 Convergence

MetagolO finds an optimal hypothesis for the training exam-
ples as follows: MetagolO(E

+,H) = argminH∈Hr(H,E+).
The following result demonstrates convergence of MetagolO
to the optimal strategy given sufficiently large numbers of ex-
amples.

Theorem 3 (Convergence to optimal hypothesis) Assume
E consists of m examples randomly and independently drawn
from instance distribution D. Without loss of generality con-
sider the hypothesis space consists of two hypotheses H1, H2

where H1 has resource complexity O(f1(n, d)) and H2 has
resource complexity O(f2(n, d)) and f1(n, d) < f2(n, d) for
all n, d > c where c is a positive integer and n, d are two
natural number parameters of the examples 4 In the limit
MetagolO will return H1 in preference to H2.
Sketch Proof. Assume false. However, since f1(n, d) >
f2(n, d) for n, d > c, with sufficiently large m there will
exist an example e d such that r(H2(e)) > r(H1(e)) where
r(H2(e)) > r(H2(e

′)) for all other e′ in E+ and r(H1(e)) >
r(H1(e

′)) for all other e′ in E+. In this case r(H1, E+) <
r(H2, E+) and MetagolO returns H1, which has the mini-
mum resource complexity. This contradicts the assumption
and completes the proof.

5 Experiments

We now describe experiments in which we use MetagolO to
learn robot strategies involving composite objects in two sce-
narios: Postman and Sorter. The experimental goals are (1)
to support Theorems 1 and 2, i.e. show that resource com-
plexities of optimal strategies vary depending on whether ob-
jects can be composed within a strategy, and (2) show that
MetagolO can learn such resource optimal strategies.

5.1 Materials

We use a similar problem representation for both experiments
where there is humanoid robot in a one-dimensional space5.
The world state is a list of Prolog facts. The robot performs
actions that change the state. Actions are defined as dyadic
predicates and are either primitive or composite. Composite
actions are defined in terms of primitive ones. We compare
strategies learned with MetagolO to strategies learned with
MetagolD [Muggleton et al., 2015], an existing ILP system.
In both experiments, we provide the same background knowl-
edge and metarules to both systems.

4For the Postman f1, f2 are sum and product and n, d are as in
Theorems 1 and 2. For the Sorter problem n is list length, d = 0,
f1(x) = x2 and f2 = xlog2x.

5This is for simplicity and the learner can handle any n-
dimensional space.



5.2 Learning robot postman strategies
Materials
We learn strategies for the postman example introduced in
Section 1 where the goal is to learn a strategy to collect and
deliver letters. The primitive actions are as follows: move up,
move down, take letter, bag letter, give letter. All primitive
actions have a cost of 1. The robot can take and carry a sin-
gle letter from a sender using the action take letter. Alter-
natively, the robot can take a letter from a sender and place
it in the postbag using the action bag letter to form a com-
posite object consisting of the postbag and the letter. The
composite actions are as follows: go to bottom, go to top,
find next sender, find next recipient. The cost of a composite
action is dynamic and is based on its constituent actions. For
example, the composite action go to top recursively calls the
primitive action move up until the postman is at the top.

Method
To generate training examples we select a random integer d
from the interval [0, 50] representing the number of places6.
We select a random integer n from the interval [1, d] repre-
senting the number of letters. For each letter we select ran-
dom integers i and j from the interval [1, d] representing the
letter’s start and end positions. To generate testing examples
we repeat the same procedure as above but with a fixed num-
ber of letters n, as to measure the resource complexity as n
grows. We use 5 training and 5 testing examples. We average
resource complexities of learned strategies over 10 trials.

Results
Figure 4 shows that the strategies learned with MetagolO are
in agreement with the theoretical composable tighter bounds
demonstrated in Section 3. By contrast, the strategies learned
with MetagolD are in agreement with the theoretical non-
composable tighter bounds. Figure 2 shows two recursive
strategies learned by MetagolD (a) and MetagolO (b) respec-
tively, able to handle any number of places, any number of let-
ters, and different start/end positions for the letters. Although
both strategies are equal in textual complexity, they differ in
their resource complexity. The strategy learned by MetagolO
(b) is more efficient than the one learned by MetagolD (a)
because it uses composite objects, i.e. the action bag letter,
whereas (b) does not. Table 1 illustrates this difference. The
explanation for this is that MetagolD simply had no reason to
prefer the more efficient hypothesis, it just happened to find
the less efficient hypothesis first.

We also ran experiments (omitted for brevity) where we
removed the ability to form composite objects, i.e. the
action bag letter. In this scenario, the strategies learned
with MetagolO are in agreement with the theoretical non-
composable tighter bounds.

5.3 Learning robot sorting strategies
Materials
In this experiment, we investigate recursive sorting algo-
rithms learned as recursive robot strategies. In the initial state
there is an unsorted list; in the final state there is a sorted list.

650 is an arbitrary limit, and the learner handles any finite limit.
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Figure 4: Mean resource complexity of learned postman
strategies with varying numbers of letters for 50 places.

The robot can traverse the list moving sideways. The leftmost
element represents the smallest element in the sorted list. We
provide the learner with the actions to perform robot transla-
tions of the quick sort and bubble sort algorithms. We pro-
vide four composite actions: compare adjacent, split, com-
bine, go to start. The action compare compares two adjacent
elements and swaps them if the one to the right is smaller
than the one to the left. The action split allows the robot to
move through the list comparing each element with the el-
ement in the robot’s left hand (the pivot). If an element is
less than or equal to the pivot, then the item is placed in a
left bag; otherwise it is placed in a right bag. Both bags are
stacks. The action combine empties the right bag, drops the
pivot, and empties the left bag. We also provide two primi-
tive actions: decrement end, pick up left. The decrement end
action decrements a counter in the state representing the posi-
tion of the last element of the list. The composite actions call
other primitive actions that are unknown to the learner, e.g.
move left, move right. The full list of such actions is omitted
for brevity. All of the primitive actions have an action cost
of 0, except the action compare holding which has an action
cost of 1. Thus, the optimal strategy is the one that minimises
element comparisons.

Method
To generate training examples we select a random integer n
from the interval [2, 50] representing the length of the list.
We use Prolog’s randseq/3 predicate to generate a list of n
unique random integers from the interval [1, 100] represent-
ing the input list, with this list sorted representing the output
list. To generate testing examples we repeat the same proce-
dure as above but with a fixed list length n as to measure the
resource complexity as n grows. We use 5 training and 5 test-
ing examples. We average resource complexities of learned
strategies over 10 trials.

Results
Figure 6 shows that the strategies learned with MetagolO are
in agreement with the theoretical average-case expectations



of quick sort7 (O(n log n)). By contrast, the strategies
learned with MetagolD are closer to the average-case expec-
tations of bubble sort (O(n2)). Figure 5 shows the two re-
cursive strategies learned by MetagolD (a) and MetagolO (b)
respectively. MetagolO learns a variant of quick sort, which
uses composite objects, whereas MetagolD learns a variation
of bubble sort, which does not use composite objects.

metasort(A,B):- metasort1(A,C), metasort(C,B).
metasort1(A,B):- comp adjacent(A,C), metasort1(C,B).
metasort1(A,B):- decrement end(A,C), go to start(C,B).
metasort(A,B):- metasort1(A,C), go to start(C,B).

(a) Inefficient strategy learned by MetagolD
metasort(A,B):- metasort1(A,C), metasort(C,B).
metasort1(A,B):- pick up left(A,C), split(C,B).
metasort1(A,B):- combine(A,C), go to start(C,B).
metasort(A,B):- split(A,C), combine(C,B).

(b) Efficient strategy learned by MetagolO

Figure 5: Robot sorting strategies learned by MetagolD (a)
and MetagolO (b) respectively.
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6 Conclusions and further work
To the authors’ knowledge this paper represents the first
demonstration of a learning algorithm which provably opti-
mises the resource complexity of robot strategies. The ap-
proach differs from traditional AI planning techniques which
involve the identification of a sequence of actions to achieve
a single goal from a single initial situation (e.g. moving from
the door to the table). By contrast, a learned strategy is a
program which can be applied to a multiplicity of initial sit-
uations to achieve a multiplicity of corresponding goal situa-
tions (e.g. deliver all the letters to their destinations). Once
learned, such a strategy can be applied without the need for

7Resource complexity proofs are omitted for brevity.

searching a space of plans each time. This paper proves the
existence (Theorems 1 and 2) of particular cases (Postman) in
which classes of learnable strategies have different resource
complexities. A new MIL implementation, MetagolO, is
shown (Theorem 3) to converge with sufficiently large num-
bers of examples to the most efficient strategy. Our experi-
ments demonstrate that the theoretical bounds of Theorem 3
hold in practice. The approach suggests the ability to build
delivery and sorting robots which can learn resource efficient
strategies from examples.

6.1 Further work
A limitation of this paper is the lack of details regarding the
computational requirements of MetagolO to converge on an
optimal solution. We will explore this in future work, includ-
ing exploring methods to optimise the iterative descent search
procedure. For example, instead of decrementing the energy
bound by 1, binary search would be more efficient.

In Section 5 we compared our implementation, MetagolO,
to an existing ILP system, MetagolD. In future work we in-
tend to run comparisons with non-ILP systems. We also want
to test this approach on a broader range of program induction
tasks that include resource optimisation. For instance, in the
learning of proof tactics for theorem proving, game tactics
strategies, and string transformation functions.

The approach taken in this paper can be generalised in sev-
eral ways. For instance, the use of dyadic Datalog programs
could be generalised by using a richer set of metarules. We
also intend to further explore the notion of object composition
and investigate the resource complexity reduction of invent-
ing new objects in the world. For instance, in the postman ex-
ample, we provide a postbag in the background knowledge.
In future work we would like to investigate methods for the
learner to invent such an object.

In this work we have assumed noise-free data. To move be-
yond this assumption we could consider probabilistic variants
such as those investigated in Statistical Relational Learning
[De Raedt et al., 2007; Muggleton et al., 2014a].

We also hope to better characterise the value of recursion
in strategy-learning tasks. In [Broda et al., 2009] the au-
thors consider continuous actions such as move hand until
you touch the table. We aim to investigate continuous actions
in further work.

All actions described in this paper have positive resource
costs. We would like to consider actions with negative costs,
i.e. benefits. For instance, an action which recharges the
robot’s battery, or actions in which the robot collects other
resources, such as glue or bricks, or recruits other robots to
help in a task.

To summarise, we believe that this paper opens exciting
new avenues in a variety of areas in AI for understanding the
value of machine learning efficient strategies.
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