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Abstract

Guided waves are now well established for some applications in the non-destructive evaluation

of structures and offer potential for deployment in a vast array of other cases. For their

development it is important to have reliable and accurate information about the modes that

propagate for particular waveguide structures. Essential information that informs choices of mode

transducer, operating frequencies and interpretation of signals, amongst other issues, is provided

by the dispersion curves of different modes within various combinations of geometries and materials.

In this paper a spectral collocation method is successfully used to handle the more compli-

cated and realistic waveguide problems that are required in non-destructive evaluation; many

pitfalls and limitations found in root-finding routines based on the partial wave method are

overcome by using this approach. The general cases presented cover anisotropic homogeneous

perfectly elastic materials in flat and cylindrical geometry. Non-destructive evaluation applications

include complex waveguide structures, such as single or multi-layered fibre composites, lined,

bonded and buried structures. For this reason, arbitrarily multi-layered systems with both solid

and fluid layers are also addressed as well as the implementation of interface models of imperfect

boundary conditions between layers.
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I. INTRODUCTION

The reliable and accurate calculation of dispersion curves plays an important role in the

development of techniques for Non-Destructive Evaluation (NDE) since they allow one to

rapidly identify and understand which propagating modes to utilise. The calculation of

dispersion curves for waveguides of regular geometry (flat, cylindrical) is now classical and

has been established by many authors. For example, with specific relevance to the present

authors, the software package DISPERSE [1] and [2], developed by members of the NDE

group at Imperial College London and utilised widely by both industrial and academic

groups, has been a powerful tool for plotting dispersion curves in various cases such as free

plates, with and without damping, fluid loaded plates, cylinders amongst others. It is also

possible to select anisotropic materials although, as is typical, for guided wave modelling

capabilities in general, the program is limited in its scope; for instance, when dealing with

cylindrical geometries, the material must be either isotropic or transversely isotropic. Given

the well-established nature of the field we begin with a short review of the area to set our

work in context.

Analytical methods of solution for the simplest problems, such as that of an elastic

plate in vacuum, have been known since times dating back to Lord Rayleigh. Some of these,

as well as a copious bibliography, are to be found in texts such as [3], [4], [5] or [6]. Some

exact solutions for isotropic media and a few standard geometries are available in textbooks

or papers such as Mindlin [7] or Pao [8] and references therein. Most of the general cases

for anisotropic materials in flat geometry, although widely-studied, can be found in three

papers: Solie and Auld [9] studied the Christoffel equation for modes propagating at various

angles in a plate of copper with cubic symmetry. Nayfeh and Chimenti [10] studied a free

plate with orthorhombic symmetry and, by means of a rotation, of monoclinic symmetry

as well. A more general account of anisotropic plates by the previous authors can be found

in [11]. Later, Li and Thompson [12] studied in more detail materials with orthorhombic

symmetry and presented various dispersion curves for a variety of orthorhombic materials

at different angles of propagation; we use these later to validate our results. In NDE it

is essential to treat wave propagation in cylinders and rods as applications such as pipe

inspection are commonplace. The isotropic case has been extensively studied by Onoe et
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al. [13], Mindlin and Pao [14], Zemanek [15], Pao [8], or more recently Towfighi et al. [16]

amongst others.

Multi-layered systems have also been extensively studied by assembling the individ-

ual solutions, via interface conditions, into matrix relationships from which a dispersion

relation for the whole system emerges. Two exemplars of matrix methods for guided

waves in multi-layered waveguides, taken from a rich literature over many years, are the

Transfer and Global Matrix methods, described in [17]; some extensions to flat multi-layered

anisotropic systems are in [18] and [19]. These approaches have all been based on the

representation of the fields in layers by partial waves; they create system matrices with

root-finding methods producing dispersion curves. The development of robust root-finding

methods is itself a significant challenge [17]. More recently, other authors [16], [20], [21],

[22] or [23] have used different methods, which will be briefly described in the paragraphs

below, to handle multi-layered systems, mainly in cylindrical geometry. Partial-wave

root-finding becomes cumbersome if robust solutions for general anisotropy are desired,

so commonly the implementation has been restricted to isotropic, transversely isotropic,

orthorhombic and monoclinic materials, [9], [10] and [12]. The upshot is that, to the best

of our knowledge, there is no robust, versatile and general method available for the full

anisotropic system, a situation we aim to remedy.

Three important challenges with root-finding methods emerge [17]: firstly, it is pos-

sible that root-finding routines fail to find a mode and simply skip it, jumping onto the

next one, thus missing one solution. In particular, this phenomenon was observed for the

general purpose root-finding routine used by the authors based on looking for minima of

the dispersion relation determinant and then using a two dimensional bisecant method, a

more detailed description can be found in [2]. This is normally solved by changing and

adjusting the convergence parameters of the routine to make a finer search, but the authors

are not aware of any successful approach to completely avoid missing roots. Secondly,

we have the so-called ”large fd” problem; this arises from the existence in the dispersion

relation of real positive and negative exponential factors which, when being too large and

too small respectively, render the matrix numerically ill-conditioned. This was cured by the

use of the Global Matrix Method as described in [17], and by other methods such as the

3



Delta Operator method [24], the Stiffness method [25], and the Impedance method [26],

although in all cases this has involved an increase in complexity of the formulation. Finally,

a third issue emerges: the matrix becomes singular, yielding a spurious solution, when the

wavenumber of the wave in the plate is equal to any of the bulk wavenumbers of the layers

of the system. Routines can be programmed to discard such solutions straightaway, but it

is troublesome to eliminate these spurious solutions when genuine modes are nearby.

An alternative, philosophically closer approach to that we advocate, is the Semi An-

alytical Finite Element (SAFE) method popularised by Gavric’s [27] work to compute

dispersion curves in a free rail. This approach allows for more geometrical flexibility than

root-finding and has been successfully used in various waveguide contexts: Leaky waves

travelling along arbitrary cross sectional waveguides surrounded by an infinite medium [28],

torsional waves propagating along arbitrary cross sectional waveguides immersed in perfect

fluid [29], trapped waves propagating along a welded joint between plates [30], guided

waves in viscoelastic media with rectangular, arbitrary cross-sections [31] and axisymmetric

cross-section [32].

For modelling waveguides of constant cross-section with SAFE, and limiting to flat

or cylindrical geometries, one takes a one-dimensional mesh across the thickness of the

system, see [32] for instance; the spectral method also uses a grid of points across the

thickness but as a global interpolant rather than a local one. The SAFE method requires

the use of Hamilton’s Principle and finite elements to generate an eigenvalue equation,

one advantage of spectral collocation vis-a-vis SAFE is the relative ease of coding and

construction of the eigenvalue problem with only matrix methods required.

Probably the most important difference between these methods is the convergence

rate of the spatial representation or discretisation, which impacts on the results’ accuracy

and speed of computation. The convergence rate of the Spectral Collocation Method

(SCM) [33] is O(N−m) for every m, where N is the number of grid points (or nodes) and

m is a constant, provided the solution is sufficiently differentiable, whereas that of SAFE

and other finite element methods is only O(N−m) for some m which depends on the order

of approximation and smoothness of the function. This has serious consequences in terms
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of accuracy versus matrix size and this comes to the fore when multi-layered media are

considered as eigenvalue problems remain manageable in scale. This is a consequence of

the SCM using a global interpolant whilst the finite element method uses local interpolants

such as piecewise polynomials; accuracy up to eleven decimal digits is commonplace using

the SCM. We refer the reader to [34, 35] and references therein for details about the relative

advantages of spectral versus finite element methods.

Finally, a Weighted Residuals Method has been used by Towfighi et al., [16], later

improved by Vasudeva et al. [20], to look at annular wave propagation in anisotropic

homogeneous multi-layered cylinders. The method consists of expanding the unknowns

in a series of some basis functions. The residual function is calculated, and by equating

to zero the suitably defined “inner product” of the residual function with the “weight or

test functions” a system of algebraic functions is obtained that yield the coefficients of the

expansion. This is akin to the Galerkin method for solving differential equations and can

become cumbersome as one moves to more generality in anisotropy.

Given the importance of dispersion curves in this field it is unsurprising that there

has been all this prior activity. However, as noted above, there is certainly scope to

develop a robust, versatile and general purpose capability that allows for any kind of

anisotropic homogeneous, or inhomogeneous, material in any desired orientation of the

crystal axes in flat as well as cylindrical, geometry. This is particularly attractive in terms

of overcoming the complexities and limitations of the partial-waves root-finding (PWRF)

methods summarised above. In so doing, one would want to develop a methodology, that

can be implemented to run automatically, for the complete solution without the need for

any intermediate intervention from the modeller. The approach we take is the Spectral

Collocation Method (SCM), a well-established approach used for the numerical solutions of

differential equations. The SCM has already shown great promise when used to calculate

guided wave properties for some simple elastic waveguides [22], as we will discuss shortly;

our contribution here is to go much farther to develop and validate its use for general

anisotropy in arbitrarily multi-layered waveguides, in both flat and cylindrical geometries.

In Section II we give a brief outline of the main characteristics and advantages of
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SCM as well as a review of the previous work done in this direction. Section III presents

various cases used to validate our results and for which we can explore numerical issues

of accuracy and convergence. In Section IV we cover new cases and comment upon the

relevant physics and further extensions. All the physical properties used in computations

are summarized in the appendix.

II. SPECTRAL COLLOCATION METHOD (SCM)

As this is the method we employ it is necessary to briefly explain the spectral collocation

scheme and its advantages. Spectral schemes are often used for differential equations but,

instead of solving a differential equation directly they use a spectral approximation for the

solution that satisfies the differential equation and boundary conditions. If the problem

is recast in the form of an eigenvalue problem, differentiation matrices approximate the

derivative operators with spectral accuracy so there is a concise matrix eigenvalue problem

that is solved for both the eigenvalues and eigenvectors. There is an extensive literature

on spectral methods mainly from the point of view of solving partial differential equations

where it is often the method of choice [36], [33], [34] and [35].

Although this method is well-established and has been successfully used for solving a

wide range of differential equations, there has been little activity aimed at using it for

dispersion curves in the field of waveguides. [22] introduced it as a potential method, and

explored some simple cases, and motivated by this initial success, several papers have ap-

peared illustrating the use of the spectral method for specific classes of waveguide problems:

Karpfinger et al.,[21], have successfully used this method to handle multi-layered cylindrical

systems with isotropic materials and later [37] extended this to porous elastic media

and to geophysical applications involving boreholes [38]. Yu et al., [23], used the spectral

method, combined with root finding routines, for multi-layered isotropic cylinders with axial

propagation and weak and perfect interfaces. Finally, Zharnikov et al., [39], plot the dis-

persion curves of a waveguide of inhomogeneous anisotropic material using this methodology.

As we shall demonstrate, spectral schemes are easy to formulate and code, much

more so than root finding routines, and following an entirely algebraic approach they
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are both robust and reliable. Also, if we are just interested in the lowest M modes,

say M = O(10), they are much faster than root finding routines [22], especially for

complicated problems, such as multi-layered or anisotropic materials. However, the most

advantageous aspect of the SCM is that it can be deployed to model general anisotropy, and

simultaneously avoid, without any special or conditional treatments, all of the challenges

cited above: the SCM approach is guaranteed not to miss any of the modes, it is immune to

instabilities from large values of fd, and it does not deliver spurious solutions at the bulk

wavenumbers of the constituent materials. We will illustrate these capabilities later with

suitable examples. Finally, see Boyd [35], spectral accuracy is anticipated for the first half

of the eigenvalues found. A more detailed discussion on the advantages of SCM over root

finding routines, with a special emphasis on elastic waveguides, is in [22].

For definiteness we consider a planar waveguide as shown in Figure 1; cylindrical

cases are analogous with a change in coordinate system. Assuming a harmonic wave

propagating along the {z} axis, the equations of motion for a linear elastic anisotropic

homogeneous medium are:

∇iKcKL∇sym
Lj uj = −ρ ω2 ui (1)

where we use the summation convention over the indices and cKL is the medium’s stiffness

matrix in reduced index notation, [4] , uj are the components of the displacement vector

field

uj = Uj(y) ei(kz−ωt) ; j = x, y, z (2)

and the differential operators are of first order in the coordinate derivatives; one finds their

explicit expressions in [4]. In the following sections we will be concerned with structures

in vacuum so we take traction-free boundary conditions which require the vanishing of the

following three components of the stress tensor field defined below, Tij.

Taking the faces of the plate to be located at y = ±h, see Figure 1, we summarize

the boundary conditions (BCs) as:

Tyy|y=±h = Tyx|y=±h = Tyz|y=±h = 0. (3)

The expression of the stress tensor field in terms of the strain tensor field reads:
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FIG. 1: Geometry and axes for flat waveguide: {X,Y,Z} are the crystal axes which can rotate

about the fixed spatial axes {x,y,z} according to the choice of orientation of the material within

the waveguide. In the flat case the {z} axis is the phase direction of the propagating waves (normal

to the plane of the wavefront), and in the cylindrical case it is the axis of the cylinder. For the

cylindrical case, {x} and {y} should be replaced by {θ} and {r} respectively.

Tij = cijkl Skl (4)

Where cijkl is the fourth-rank stiffness tensor, which relates to cKL as described in [4]. And

the strain tensor field, Sij, in terms of the displacement vector field, uj:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
→ SK = ∇sym

Kj uj : (5)

we have a set of three equations of motion and an additional six equations for the boundary

conditions. To utilise SCM we discretise and substitute the derivatives by Differentiation

Matrices (DMs). Since we have a bounded interval, the appropriate choice is to use Cheby-

shev DMs, based on a non-uniform Chebyshev grid of N points, these are N ×N matrices;

the generation of DMs is covered in [33], [34]. The m-th derivative with respect to y is

approximated by the corresponding m-th order Chebyshev DM:

∂(m)

∂y(m)
=⇒ D(m) := [DMCheb]

(m)
N×N (6)

The elastic stiffness tensor does not undergo any modification; its entries multiply the ma-

trices in the differential operators following the usual multiplication rule for tensors. From

(1) we have three coupled equations, one for each component of the displacement. These

are discretised with each displacement component given at the grid points and represented
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by a vector Uj. Each of (1) becomes represented in matrix form as, for instance, for the x

component of displacement:

AN×N(cKL; ikI,D(1),D(2)) Ux + BN×N Uy + CN×N Uz = −ρ ω2 Ux. (7)

A similar matrix representation emerges for each of the other components of the displace-

ment vector field. The prefactors AN×N ,BN×N ,CN×N are N ×N matrices that are formed

of a linear combination of the DMs up to second degree and the identity matrix with the

elastic stiffness constants, cKL, as its coefficients.

This is a matrix system where the unknowns are the vectors Uj and the coefficients

are the matrices AN×N ,BN×N .... It becomes clearer when we rearrange this system as
A B C

D E F

G H I


3N×3N


Ux

Uy

Uz


3N×1

= ω2


−ρ I 0 0

0 −ρ I 0

0 0 −ρ I




Ux

Uy

Uz

 (8)

Or more concisely:

L(k) U = ω2 M U (9)

Where U is the vector of vectors : U = [Ux,Uy,Uz]
T . Before proceeding we must include

the boundary conditions; the six equations (3) are discretised and rearranged, as in [22] or

[33], so

S(k) :=


TA TB TC

TD TE TF

TG TH TI




Ux

Uy

Uz

 =


0

0

0

 (10)

Then, we return to (8) and replace the 1, N, (N + 1), 2N, (2N + 1) and 3N rows of the L

matrix with those of the S matrix of (10). These rows correspond, for each component of

the displacement vector field, to the grid points y = ±h, that is, rows 1 and N go with Ux

evaluated at y = h and y = −h respectively, rows N + 1 and 2N go with Uy evaluated

at y = h and y = −h and so on. Similarly, we replace the same rows of the matrix M on

the right hand side with rows filled with zeroes. The resultant system then has both the

governing equation and boundary conditions incorporated in a consistent manner and this is

then a standard generalised eigenvalue problem ideally suited for coding; we used MATLAB

(version R2012b) and the eigenvalue routine eig which, given a value of k, provides the
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angular frequencies, ω, of the first N modes. As an added bonus the eigenvectors U contain

the mode shapes.

Multiple layers follow this methodology and we assemble as many systems, using (8),

as the number of layers in the system, and then compose the boundary conditions. The

boundary conditions are still given by equations (3), but for layers we also impose continuity

at the interfaces for the displacement fields as well as for the three components of the stress

tensor field.

As a specific example consider a system of n layers of triclinic material, the equation

analogous to (9) is:
L1 0 . . . 0

o L2 . . . 0
...

...
. . .

...

0 0 . . . Ln


3nN×3nN


U1

U2

...

Un


3nN×1

= ω2


M1 0 . . . 0

o M2 . . . 0
...

...
. . .

...

0 0 . . . Mn


3nN×3nN


U1

U2

...

Un


3nN×1

(11)

Each of the labelled matrices: Li, Mi and Ui (where i = 1..N indicates the block matrices,

vectors for the displacements etc in each layer i) has the single layer form shown in equation

(9).

Having arranged the boundary conditions for a single layer in matrix form in equa-

tions (10), for the external boundary conditions we proceed in a similar fashion to that

outlined for a single layer. For the upper layer we have its corresponding boundary

condition matrix S1 whose 1, (N + 1) and (2N + 1) rows give the three components of the

stress tensor field at the upper external boundary (3). These three rows replace the first

three rows 1, N and (N + 1) of the multilayer system matrix (11). One follows an analogous

procedure for the bottom external boundary: take the N, 2N and 3N rows of the bottom

layer boundary condition matrix Sn and replace the ((3n− 1)N), ((3n− 1)N + 1) and 3nN

of the multilayer system matrix (11) with them.

We also impose continuity conditions across the internal interfaces. For an interface,

say first interface between layers 1 and 2, the continuity conditions for the stress tensor
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field are:

(Tyy)(1) − (Tyy)(2)|y=1st = 0

(Tyx)(1) − (Tyx)(2)|y=1st = 0

(Tyz)(1) − (Tyz)(2)|y=1st = 0 (12)

Where y = 1st means evaluation at the first interface. The continuity conditions in a perfect

interface for the displacement fields are:

(ux)(1) − (ux)(2)|y=1st = 0

(uy)(1) − (uy)(2)|y=1st = 0

(uz)(1) − (uz)(2)|y=1st = 0 (13)

This gives a total of six equations for each interface. Therefore for a system of n layers, we

have n − 1 interfaces and 6n − 6 interface equations, plus 6 boundary condition equations

make a total of 6n equations that must replace the appropriate rows in the system matrix

(11).

We now specialise to a concrete example including interface conditions: Lamb modes

in a flat plate with the axes configuration of Figure 1. Lamb modes decouple from SH

modes so, for this example, there are only two displacement fields, uy and uz, and the

associated stress tensor field components Tyy and Tyz. The matrix incorporating the

interface and boundary lines is shown in Figure 2 which is easily extended to more general

cases.

The construction of the matrix is absolutely key to the method and so we describe

it in detail. In Figure 2, the superscripts a,b,c and d make reference to the different

elements of the matrix expression for the given j-th layer Lj which forms the blocks of the

whole system matrix in (11). Each of these layer matrices is a 2N by 2N (3N by 3N in the

general case) non-diagonal matrix, and is, in turn, composed of four different sub-blocks.

The a and b sub-blocks incorporate the equation of motion for the Uy component: the a sub-

block acts upon the Uy, whereas the b sub-block acts upon the Uz. The c and d sub-blocks

incorporate the equation of motion for the Uz component: the c sub-block acts upon the

Uy, whereas the d sub-block acts upon the Uz. The placing of the boundary conditions in
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matrix expressions in general using the Spectral Method is also explained and discussed in

detail in [33]. To make this layered structure of the Matrix more apparent, we have enclosed

in boxes of different colours (green for the first layer (top), brown for the second and

purple for the n-th layer (bottom)) the blocks of the matrix corresponding to different layers.

In Figure 2, the first two rows of the system matrix are replaced by the 1-st rows of

the tensor components Tyy and Tyz evaluated at the top of the first layer (the top boundary

of the system), labelled with a 1. An analogous substitution is made in the last two rows

for the n − th layer. But now we take the bottom N -th row of the matrices since the

stress tensor field components are being evaluated at the bottom of the layer (the bottom

boundary of the system). The boundary conditions are thus accounted for, and in Figure 2

these are framed in red boxes.

The first set of interface conditions corresponding to the first interface of the system

linking layers 1 and 2 is framed inside orange boxes in Figure 2. These make a total

of four equations: two for the displacement vector field and two for the stress tensor

field. Let us begin with the continuity of Tyy at the interface: we will replace the

(N + 1)-th row of the system with this continuity condition as shown in Figure 2. Note

that this condition comprises two parts: the first refers to the bottom of layer 1, so

we take the bottom row, N -th, of the matrix expression for the stress tensor field Tyy

in layer 1. The second refers to the top of layer 2 so we take the top row, 1-st, of

the matrix expression of Tyy in layer 2. One should not forget the relative sign between

them. We make an analogous substitution for Tyz and replace the (2N)-th row of the system.

The second set of interface conditions are the continuity conditions for the displace-

ment vector field. The system matrix is acting upon the components of the vector field

within each layer (recall the column vector to the right of the matrix in (11)), so wherever

we see a Uj(y)(N) it must be understood that it is the corresponding row of the identity

matrix we are dealing with, in this case it would be the bottom row. For Uy there are again

two parts: the first refers to the bottom of layer 1, so we take the bottom N -th row of

the identity matrix which means we are taking Uy evaluated at the bottom of the layer 1.

The second refers to the top of layer 2 so we must take the first row of the identity matrix
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FIG. 2: Collocation scheme for the n-layer system matrix. The scheme shown here corresponds

to a case where only two displacement fields enter the equations, such as Lamb modes. Only the

first, second, and last layers are shown in detail. Analogous blocks model the rest of the layers.

which means we are taking Uy evaluated at the top of layer 2, with this we have finished the

substitutions on the (2N + 1)-th row of the system. A similar procedure will account for

the Uz component. One then deals with the remaining interfaces in an analogous fashion.

In Figure 2 are some indications for the second and (n− 1)-th interfaces.

A common example of interest is that of an inviscid fluid layer in between solid

layers, for example the important situation of a fluid filled pipe falls into this category.

Whether in flat or cylindrical geometry, this requires a modification of the scheme described
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so far as the fluid does not support shear: we retain the displacement fields for the adjacent

solid layers, thus allowing us to handle any kinds of material and orientation of the crystal

within the solid layers, but we use a longitudinal (compressional) potential for the fluid

layer. Perfect fluids can be modelled as isotropic solids with the shear stiffness constant

µ equal to zero, see [2] and references therein. Failure to do so leads to an error in the

fluid-solid boundary conditions giving spurious modes and the distortion of the correct

modes in the vicinity of the bulk wavenumber of the fluid.

Cylindrical cases are completely analogous with cylindrical coordinates replacing Cartesians.

We study all the wave families present in cylindrical geometry: Torsional, Longitudinal and

Flexural modes. The ansatz used in the early literature [3] for Flexural modes in terms of

sines and cosines is not appropriate for more general anisotropic materials such as Triclinic

since these terms cannot be taken out as common factors. Therefore, to handle the full

range of materials, we use the general form

uj = Uj(r) e
i(kz+nθ−ωt) ; j = r, θ, z (14)

Finally, often a spring interface condition is used when interfaces with finite stiffness need

to be modelled, for example when a sufficiently thin adhesive bond can be approximated by

a compliant boundary or simply when an imperfect contact condition must be accounted for

(sliding boundaries or partially-contacting boundaries for example). These require a slight

modification of the internal interface conditions based on the spring model developed by

Rokhlin and Wang [40], we refer the reader to their paper for details of the derivation. In

their model it is only the continuity conditions for the displacement fields that are modified,

so, instead of having equations (13) we have (recalling that the upper layer is labelled with

(1) and the lower with (2)):[
(Tyy)(1)
Kn

−
(

(uy)(1) − (uy)(2)

)]
|y=1st = 0[

(Tyx)(1)
Kt

−
(

(ux)(1) − (ux)(2)

)]
|y=1st = 0[

(Tyz)(1)
Kt

−
(

(uz)(1) − (uz)(2)

)]
|y=1st = 0 (15)

where Kn and Kt are the normal and transverse stiffness coefficients, which according to

the definition in [40], have dimensions of N/m3. It is straightforward to account for this
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modification; we only need to modify the corresponding rows of the system matrix.

Spring models are useful in practise since, when this representation is valid, it re-

places a very thin layer by spring interface conditions thereby reducing the size of the

matrix system. For example, two steel plates bonded by a thin EPOXY adhesive layer can

be represented as a two layer system with a spring model instead of having a three layer

system with perfect internal interface conditions; such an approximation is only valid for

very thin interface layers.

III. COMPARING WITH EXISTING RESULTS

We validate the scheme by choosing exemplar cases of dispersion curves from the

literature that illustrate important points, we use a root-finding algorithm to provide

comparisons to compare with SCM. We address flat plates first, then torsional and

longitudinal modes in cylinders, then the more complex case of flexural modes in cylinders.

In section IV we then move on to calculate dispersion curves for cases not studied before.

The axis configuration for the cases with plane geometry is as follows: we take the

axes x and z to lie within the plane of the plate, see Figure 1, and the axis y along the

thickness of the plate; wherever this is not the case we will state it explicitly. The propa-

gation direction will invariably be along the z axis unless otherwise stated. For different

configurations we rotate the crystal axes whilst preserving the propagation direction.

A. Free Anisotropic and Homogeneous Plate

We begin by finding the modes for the single-layer flat plate in vacuum: In principal

orientation configuration, Lamb (in-plane) modes and SH (out-of-plane) modes are found.

We also present dispersion curves for configurations with arbitrary orientation of the crystal

axes where modes are coupled. Following (2), we assume the form of the displacement field

is the following:

uj = Uj(y) ei(kz−ωt) ; j = x, y, z (16)
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For an isotropic plate, SH modes are not coupled to the Lamb modes. This splitting of

modes also occurs in certain cases for anisotropic materials as shown in Table I. This table

is constructed using the software Maple (version 17), for the axes configuration shown

in Figure 1. The transformations refer to the crystal axes rotating about the spatial {y} axis.

Similar tables can be built for the other two possible configurations ({x} or {z} axis

perpendicular to the plane of the plate) with analogous results. For more general rotations,

e.g. two consecutive rotations different from 90 degrees about different axes, SH and Lamb

modes are then coupled and each of these cases must be studied separately.

Crystal Transformation

Isotropic Lamb and SH modes decouple for any angle.

Cubic Lamb and SH modes decouple for 0 and 90 degrees.

Hexagonal Lamb and SH modes decouple for 0 and 90 degrees.

Tetragonal 6 Lamb and SH modes decouple for 0 and 90 degrees.

Tetragonal 7 Lamb and SH modes decouple only for 90 degrees.

Trigonal 6 Lamb and SH modes decouple only for 0 degrees.

Trigonal 7 No modes decouple unless one chooses the axes orien-

tation in which Trigonal 7 takes the form of Trigonal

6. See paragraph below (3.73) in volume 1 of [41].

Orthogonal 9 Lamb and SH modes decouple for 0 and 90 degrees.

Monoclinic 13 No modes decouple.

Triclinic 21 No modes decouple.

TABLE I: Conditions for decoupling mode families in the different classes of anisotropic crystals.

We first focus on materials with Orthorhombic symmetry which have nine different

constants in the stiffness matrix: c11, c12, c13, c22, c23, c33, c44, c55 and c66 (in reduced

index notation, see [4] for details). These materials have been extensively studied by Li

and Thompson [12] and Nayfeh and Chimenti [10] and provide a challenging test for our

methodology. In addition, we have compared our results to those given by PWRF methods

always finding excellent agreement.
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Figure 3 compares the results obtained by the SCM with those obtained by PWRF

for the case of Lamb modes in a single plate in vacuum. The plate is Orthorhombic

(more details may be found in the appendix for this and the forthcoming figures) and the

crystal axes are rotated such that the crystal {Z} axis aligns with the {z} of the plate (the

propagation direction), while the crystal {X} axis aligns with the {y} axis of the plate

(normal to the plate).

As can be seen in Figure 3 all the modes were found, and the SCM’s solutions (red

circles) lie very close to corresponding locations on the lines plotted by the general purpose

PWRF routines used by the authors. As a point of note, the PWRF routine did not find

the fundamental extensional mode (the mode crossing the phase velocity axis of the plot at

1.5 m/ms). Although it is easily found by performing a finer search using PWRF the SCM

did not miss it. This illustrates the important capability of the SCM to find all modes

automatically without missing any.

The configuration of Figure 3, with the crystal axes aligned with the spatial axes,

implies, according to Table I, that the Lamb and SH modes decouple; for clarity and brevity

we only show the Lamb modes which is the more complicated case. The SH modes are easy

to compute, and compare, and equally satisfactory results are found.

Figure 4 shows the result obtained with the SCM for a reproduction of the Figure

14 from Li and Thompson’s paper [12] displaying modes in an Orthorhombic plate in

vacuum. The crystal axes configuration is as follows: the Z axis is perpendicular to the

plane of the plate and with the propagation direction at 30 degrees with respect to the X

axis. As a result of this rotation the stiffness matrix which enters the equations of motion

has Monoclinic symmetry, so we can regard this case either as a rotated Orthorhombic

example, or as an example of a Monoclinic material. This case is of particular importance

because it constitutes a necessary step before studying the most general problem of Triclinic

media which must contain Monoclinic materials as one of the limiting cases. The dispersion

curves obtained by the SCM are identical to those shown in the paper. Since we can regard

this configuration as that of a Monoclinic material, its properties apply and according to
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FIG. 3: Free Plate Orthorhombic Lamb Modes: SCM (circles) vs. PWRF (solid lines). Geometry

and spatial axes configuration as in Figure 1. The crystal axes have been rotated to match the

configuration followed by the PWRF model: propagation along the {z} axis and the {x} axis

perpendicular to the plane of the plate. The SH family of modes in this case are uncoupled from

the Lamb modes, and have not been included in the plot, although they may be obtained with

similar accuracy.

Table I, Lamb and SH modes are coupled. Further rotating the crystal about an axis

different from the {Z} axis will result in a stiffness matrix of a Triclinic Material. We can

therefore generalize our methodology to Triclinic materials, which is a generality that has

not been treatable with other methods.

Figure 5 shows the coupled modes computed by the SCM in a flat free Triclinic

plate and the axes orientation is as described in Figure 1: propagation along the {Z} axis

and {Y} axis perpendicular to the plane of the plate, in this case the crystal axes and

spatial axes are aligned. The physical parameters used are given in the appendix.

This is an important, and to the best of our knowledge, new result: It is the most
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FIG. 4: Reproduction with the SCM of the results of Figure 14 in the paper by Li and Thompson

[12]. This is for an orthorhombic free plate, the {Z} axis of the crystal is perpendicular to the

plate and the propagation direction is at 30 degrees with respect to the {X} axis. More details

about the parameters may be found in the appendix. In the graph, the {y} axis is a normalized

adimensional frequency and the {x} axis is a normalized adimensional wavenumber.

general material symmetry we can have with 21 different constants in the stiffness matrix

and therefore, we can also make use of the Triclinic algorithm to solve problems of simpler

symmetry (orthorhombic for instance) but with completely arbitrary orientations.

B. Free Anisotropic and Homogeneous Cylinder: Torsional and Longitudinal

Modes

In cylindrical geometry the axes configuration is the conventional one: taking the axis of

the cylinder along the {z} axis. The form of the solution is as follows:

uj = Uj(r) e
i(kz−ωt) ; j = r, θ, z (17)

We will focus first on the Longitudinal modes, these are analogous to the Lamb modes in

flat geometry. When possible, PWRF routines will be used to test the results given by
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FIG. 5: Coupled modes in Triclinic free Plate obtained by the SCM with the spatial axes’ orienta-

tion shown in Figure 1. The crystal axes coincide with the spatial axes. The graph displays again

normalized adimensional frequency and wavenumber in the {y} and {x} axis respectively.

the SCM, however, their capabilities are more limited in cylindrical geometry than in flat

geometry. When PWRF cannot provide us with a reliable solution and there is no available

data in the literature, we can use the dispersion curves of flat plates to investigate our

results’ accuracy in cylindrical geometry. This is possible because we may take the thin

plate limit by making h/r � 1, where h stands for thickness and r for internal radius of the

cylinder, and expect to obtain the same dispersion curves of a plate with similar physical

properties. In this limit, the Torsional and Longitudinal modes look like the SH and Lamb

modes of a flat plate respectively. Note that, this limit is valid as long as the wavelength

of the guided wave remains small compared to the radius of the cylinder and therefore the

effects of the curvature (inverse of the radius) can be neglected. An exhaustive study of

this and other limiting cases and its ranges of validity lies out of the scope of this paper but

the interested reader can find a full account of them and the latest developments regarding

thin shell approximations and related topics are addressed in detail in recent books by

Kaplunov et al. [42] and more recently by Wang et al. [43]. However, for our validating
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purposes, the conventional thin plate limit is sufficient to test the good performance of the

codes as will be seen in the next sections.

The solutions for the isotropic cylinder were easily solved by the SCM and upon

comparison with available data from the literature and PWRF perfect agreement was

found between both sets of dispersion curves; for brevity these are not shown here and we

move on to the results for more complicated problems that cannot be solved by PWRF. To

demonstrate the generality of our approach Figure 6 displays dispersion curves of a Triclinic

cylinder in the Thin Plate Limit (circles) and those of the corresponding flat Triclinic plate

(solid lines). This example is, to the best of our knowledge, also new and also provides

a consistency check for the flat plate since both solutions show excellent agreement as

expected. The axes configuration is as follows: propagation along the principal crystal axis

{Z}; crystal axes are aligned with spatial axes {r}, {θ} and {z}.

C. Free Anisotropic and Homogeneous Cylinder: Flexural Modes

Continuing the study of cylindrical geometries we move on to Flexural modes. The

solutions for isotropic materials were successfully reproduced by the SCM so we focus on

materials with triclinic symmetry due to their importance. Our SCM results displayed the

typical behaviour of flexural modes: the higher the value of the harmonic order n is, the

higher the cut-off frequency of the first mode. The curves were smooth and the pattern was

similar to the flexural modes for isotropic materials encountered in the literature [14] and

[15].

In order to verify our methodology for the Flexural modes we used the previously

studied cases both in flat and cylindrical geometry. This verification proceeds in two

steps. Firstly, in the Thin Plate Limit we confirm that the Flexural modes, regardless of

the harmonic order n chosen, agree with those of a plate of the same properties. This

independence of the dispersion curves with respect to the harmonic order n in the Thin

Plate Limit reflects the fact that in a flat plate there is no angular dependence whatsoever

and, although our equations for the flexural modes depend on the harmonic order parameter

n, upon taking the Thin Plate Limit our results should show complete independence of
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FIG. 6: Coupled modes in Triclinic Cylinder in Thin Plate Limit (circles) vs. Triclinic Plate (solid

lines). The spatial axes’ orientation is shown in Figure 1. The crystal axes coincide with the spatial

axes. The graph displays normalized adimensional frequency and wavenumber in the {y} and {x}

axis respectively. Both solutions were computed by the SCM.

it and this is what we encountered. Secondly, we corroborate that the family of flexural

modes n = 0 agrees with the Torsional and Longitudinal modes of an identical cylinder

without restricting ourselves to the Thin Plate Limit.

Figure 7 shows the dispersion curves for the family n = 3 of Flexural modes of a

free Triclinic cylinder in the Thin Plate Limit (circles) compared to the results in a free

plate of similar properties and equal thickness, 5 mm (solid lines). All the details may

be found in the appendix at the end of this article. The axes’ configuration is with wave

propagation along the principal axis {Z}. Crystal axes are aligned with spatial axes {r},

{θ} and {z}. Note that the axes in the plate must match those in the cylinder for the

comparison to be meaningful. The plate configuration is the same as that used for Figure 5.

The results for the n = 3 Flexural modes in the cylinder agree perfectly with the dispersion

curves of a flat plate of similar characteristics.
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FIG. 7: Free Triclinic Cylinder: Thin Plate Limit Flexural Modes n = 3 (circles) vs. Plate Coupled

Lamb and SH Modes (solid lines). The spatial axes’ orientation is shown in Figure 1. The crystal

axes coincide with the spatial axes. The graph displays normalized adimensional frequency and

wavenumber in the {y} and {x} axis respectively. Both solutions were computed by the SCM.

We continue verifying that the n = 0 family of Flexural modes agrees with the

Longitudinal and Torsional modes of a similar cylinder. These modes are now coupled

since we are dealing with a Triclinic material. The results are plotted in figure 8. Note

that the cylinder is no longer in the Thin Plate Limit but has internal radius r = 100 mm

and wall thickness h = 100 mm. The axes configuration is again with wave propagation

along the principal axis {Z} and crystal axes aligned with spatial axes {r}, {θ} and

{z}. Agreement between both solutions is again excellent. Having thus verified the code

we can be confident that the results for different configurations and materials will be correct.

Notably we can treat solid rods using this methodology by choosing a very small in-

ner radius v 10−12, however, for the sake of brevity, we do not present the results of their

verifications here.
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FIG. 8: Free Triclinic Cylinder: Flexural Modes n = 0 (circles) vs. Coupled Longitudinal and

Torsional Modes (solid lines). The spatial axes’ orientation is shown in Figure 1. The crystal

axes coincide with the spatial axes. The graph displays normalized adimensional frequency and

wavenumber in the {y} and {x} axis respectively. Both solutions were computed by the SCM.

D. Convergence of Results

An important feature of SCM is that the first half of the N eigenvalues found are highly

accurate, see for example [35] and [22]. In both references it is shown that roughly the first

N/2 of the eigenmodes found should be regarded as reliable and accurate, the rest may be

discarded.

In Table II we assess the accuracy of the SCM for the case previously shown in Fig-

ure 3 by comparing the numerical values from the first 5 eigenmodes with those obtained

by PWRF. The SCM was run with N = 70.

Due to the large amount of results presented it is not possible to give an account of
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Mode Freq.-Thick. PWRF S. M.(N = 70) Relative Error (R.E)

(MHz-mm) Vph (m/ms) Vph (m/ms) 10−3 %

1st 0.61227 0.87418 0.87419 1.14391

2nd 0.92790 1.32481 1.32483 1.50963

3rd 1.16137 1.65818 1.65818 0

4th 1.20336 1.71814 1.71813 0.58203

5th 1.67359 2.38950 2.38951 0.41849

TABLE II: Relative error between the results given by the SCM and PWRF for the case previously

shown in Figure 3. The values correspond to the first 5 eigenvalues.

their accuracy for each one, but whenever they were compared to PWRF very good

agreement was found for the first N/2 eigenvalues and Table II is typical. Nevertheless,

we discuss some features of accuracy and convergence in more detail. We distinguish

between two cases: first, problems, such as SH waves in a plate, with analytical solution

and eigenvalues known exactly, and second, problems whose dispersion relation has (or not)

been found analytically and whose numerical solution is an irrational number. Lamb waves

belong to the second category, we know the solution analytically but the numerical values

have a non-integral part which renders them a bad reference for numerical comparisons as

it is unclear whether the root finder or the SCM is more accurate, indeed arguably SCM

provides the reference value.

With problems of the first category, one can pursue accuracy and convergence stud-

ies by changing the number of grid points N and comparing the results with the exact

solution. This was done for SH modes in an isotropic plate, where the solutions are integers

in the appropriate scale, and excellent agreement was found within the first half of the

eigenvalues. Generally, the accuracy decreases as we move to higher eigenvalues, but there

can be exceptions, that is, the third eigenvalue might be less accurate than the fourth.

This is in complete agreement with the results shown in the literature [35] and [33]. The

convergence towards the exact solution is also very good, with accuracy of up to 11 digits.

As we increase N the number of non-changing digits increases up to 11 which then, upon

reaching a certain value of N , stay unchanged no matter how much we further increase N .
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In problems of the second category we do not have an exact reference to compare

our numerical results with, an integer for example. Therefore, the most sensible way to

proceed is to study the self-convergence by increasing N and monitoring how the solution

changes. This has been done for Lamb modes in a plate and the agreement with the PWRF

methods was very high (as can be seen in Table II). We could also confirm that the number

of unchanging digits increases up to 11 digits as we increase N up to a certain value. From

this N value upwards these self-convergent digits stay the same. Again, and taking as

reference the values given by PWRF routines, the rule by which the higher the eigenvalue

is, the lower the accuracy, holds in general, although, not strictly.

We conclude that as a “rule of thumb” the accuracy of the first half of eigenvalues

can be safely relied upon and that the results given by the SCM are self-convergent up

to a very high number of digits. The accuracy of the results, when compared to the

solution given by PWRF methods, is also very good. We note that the self-convergence

of the results worsens as we handle more complicated problems, multi-layered cases for

instance, where the number of self-convergent digits sometimes decreases to as low as 6;

this notwithstanding, the accuracy is still far within the margins of acceptance.

IV. RESULTS FOR SINGLE AND MULTILAYER SYSTEMS

Now we present further results obtained choosing examples that cover cases that were

previously inaccessible.

A. Single-Layer Systems

To be as general as possible we look at a problem of circumferential propagation in an

anisotropic cylinder. In equation (18) we show the usual form of the solution assumed for

the case with circumferential propagation.

Circumferential Propagating Modes : uj = Uj(r) e
i(kθ−ωt) ; j = r, θ, z (18)
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FIG. 9: Free Orthorhombic Cylinder with {Z} crystal axis at 45 degrees with the {z} spatial axis:

Longitudinal circumferential propagating modes (solid lines) vs. Plate Lamb modes (circles).

Figure 9 displays the dispersion curves for circumferential propagation in a free cylinder

for the thin plate limit cross-validated against its flat plate analogue. Both materials are

Orthorhombic and, in the cylinder, the crystal axis {Z} is at 45 degrees with the spatial

axis {z} which is aligned with the cylinder axis. Propagation is along the {θ} axis which

is not parallel to the crystal {Θ} axis due to the rotation; from figure 9 both solutions are

seen to coincide and agree very well. This general case is outside the scope of established

PWRF routines, but poses no problem for the SCM.

B. Multilayer Systems

We now progress to multilayer systems. For clarity we present results where the number

of layers is relatively low, but we have also extensively tested the scheme for many layered

systems. The main change is that the time to plot the curves increases with the number

of layers. Due to industrial interest in laminated composites and aggregates of plies made
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of different materials our first example is a system of three layers: isotropic-anisotropic-

isotropic.

We compare the results given by PWRF and the SCM in Figure 10 for the modes

in this free plate three layer system. To be specific, we choose the anisotropic medium to

be a GRE layer, a fibre composite material, and it is sandwiched between two steel layers.

The axes configuration is the same in every layer: propagation along the principal axis {Z}

and {Y} axis perpendicular to the plane of the plate, so in this case the crystal axes and

spatial axes are aligned.

This example is chosen to demonstrate how easily root searching methods such as

the one used by the authors can miss pieces of the dispersion curves; the SCM finds the

missing parts not entirely computed by PWRF. To be fair to PWRF, manual intervention

can identify the missing parts by modifying the algorithm to perform a finer search, but

we leave the lines broken to illustrate the point that SCM finds all solutions automatically

without further intervention.

As noted earlier fluid layers are an important special case and so we close the sec-

tion with an example of a multilayer system with a fluid layer placed between two solid

layers. As explained in section II, lest we obtain spurious modes, the codes must be slightly

modified when a perfect fluid layer is included between solid layers or at the core of the

system (fluid-filled pipe for instance). The modification consists of using displacements

for the spectral scheme of the solid layers and one single potential (longitudinal since we

are dealing with inviscid fluids) for the spectral scheme of the fluid layer. Without loss of

generality, this approach may be used satisfactorily for any isotropic or anisotropic solid

layers. As an aside, the case of viscous fluids and exterior fluids surrounding the system

require a different treatment not within the scope of this paper, but which will be the

subject of future work.

Figure 11 displays the dispersion curves for the water layer sandwiched between two

steel layers (with 5 − 2 − 5 mm thickness). The axes configuration is: propagation along

the principal axis {Z} and {Y} axis perpendicular to the plane of the plate. The dispersion
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FIG. 10: Steel-GRE-Steel (2 − 2 − 2 mm thick) Free Plate System: SCM (circles) vs. PWRF

(solid lines). GRE is a fibre composite whose physical parameters are given in the appendix. The

product frequency-thickness of the graph’s {x} axis refers to the total thickness of the system.

curves display only Lamb modes, the SH modes have not been plotted since water, a perfect

fluid, has no effect on them. Importantly, this figure also shows an example of a spurious

mode found by the PWRF model. The horizontal line at 1.5 m/ms is a spurious solution

at the speed of bulk compression waves in the water. It is not found by the SCM.

Figure 12 displays the mode shapes of the first five modes in this three-layered sys-

tem Steel-Water-Steel: this illustrates another advantage of the SCM, namely, we

simultaneously obtain both the eigenvalues (modes) and eigenvectors (mode shapes). The

mode shapes have the expected behaviour with the normal component of the displacement

field continuous across the perfect fluid-solid interface whereas the tangential, or shear,

component is discontinuous. It is notable that the mode shapes display no numerical noise

or deviation despite the discontinuity.

Table III gives a typical numerical comparison between results obtained by SCM
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FIG. 11: Steel-Water-Steel (5 − 2 − 5 mm thick) Plate System: SCM (circles) vs. PWRF (solid

lines). The axes’ orientation is shown in Figure 1. The horizontal line at 1.5 m/ms is a spurious

solution of the partial waves method. It is not found by the SCM.

and PWRF, and we choose the example shown in Figure 11. The values are at points for

the first 5 eigenmodes and are all well within the desired accuracy margin. Running the

code for N = 110 and computing the relative error between both sets of results shows the

highest relative error between iterations lies below 10−3%. Given the high accuracy of SCM

it is not clear which of the methods should be the reference “gold-standard” computation,

this minor offset between the codes is due to the higher complexity of the problem vis-a-vis

the single layer case. None the less the results sufficiently confirm the good convergence

and reliability of the solution.

We performed similar comparisons in cylindrical geometry again obtaining very good

agreement between the SCM and PWRF. Moreover, we verified again that the SCM did not

compute any spurious mode when a fluid layer is present (a water-filled pipe for instance),

a well-known problem of the PWRF approach [17].
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FIG. 12: Steel-Water-Steel (5−2−5 mm thick) Plate System: Displacement Profiles of the system

in Figure 11. Vertical axes plot the thickness of the system. Horizontal axes are adimensional and

plot the relative amplitude of the field normalized to the maximum value. Profiles obtained with

the SCM.

C. Multilayered Systems vs. Spring Interface

To efficiently handle systems where an interface is modelled with finite stiffness, with very

thin layers or has imperfect contact conditions, a spring interface is a sensible alternative.

SCM codes for perfectly matched multi-layered systems require many more grid points

when extreme cases exist, such as if the thicknesses of the constituent layers differ by

several orders of magnitude (4 or more). We believe that this is caused by the difference,

and subsequent numerical ill conditioning of the matrix, in the system’s matrix entries due

to the extreme difference in the thicknesses of the layers. For these cases the Spring Model
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Mode Freq.-Thick. PWRF S. M.(N = 110) Relative Error

(MHz-mm) Vph (m/ms) Vph (m/ms) 10−3 %

A 0.476536 2.27840 2.27900 26.3340

B 0.602921 2.88347 2.88350 1.0404

C 0.609561 2.91533 2.91522 3.7731

D 0.677135 3.23840 3.23840 0

E 0.686913 3.28530 3.28510 6.0877

TABLE III: Relative error between the results given by the SCM and PWRF for the case of Figure

11. The values correspond to the first 5 eigenvalues.

is preferable.

To cross-validate the Spring Model in the SCM we have run several examples in flat

and cylindrical geometries and compared them to the results given by existing and validated

PWRF routines.

Figure 13 features both, the solution given by the SCM and that given by a PWRF

routine. For this example we used two steel 1mm thick layers. The spring constants are

Kt = 1012 N/m3 and Kn = 1016 N/m3, these are arbitrary values that have been chosen to

be within the range where variation of the values influences the dispersion curves; that is

to say, they are not approaching either of the limiting cases of a decoupled interface or a

perfectly coupled interface.

As anticipated the SCM solution agrees very well with that provided by the PWRF

routine. We have also investigated limiting cases with very high and very low spring

constants and they reproduce the desired limiting cases of perfectly bonded layers and two

unbonded layers respectively. Similarly, cross-verification for the cylindrical case in the thin

plate limit shows perfect agreement with their corresponding flat analogues.
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FIG. 13: Two 1mm thick Steel layers imperfectly bonded: SCM (circles) vs. PWRF (solid lines).

The physical details of the spring interface can be found in the appendix. The spatial axes’

configuration is shown in Figure 1. The plot features only the Lamb modes in the plate system.

V. DISCUSSION AND CONCLUSIONS

As we have demonstrated, the Spectral Method (SCM) provides a powerful alternative

to partial-wave root-finding routines and the other methods described in our brief review

in section I. We have comprehensively validated and cross-checked this by means of

various comparisons with available literature and papers; we chose the most general and

illustrative cases to present here. Additionally, several cases have also been validated with

the established PWRF code.

The examples studied have highlighted the advantages of the SCM approach as compared

to widely used PWRF routines: SCM overcomes the complexities and implementation

difficulties of arbitrarily orientated axes and type of material encountered by PWRF for-
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mulations. It solves the most general cases of Triclinic materials and arbitrary orientations

of the crystal axes, whether in cylindrical or in flat geometry. A key advantage is that SCM

does not miss any modes, so we can always be sure that the modes which are computed are

all the modes that exist for that given case and frequency/wavenumber range. This removes

the tedious task of searching for candidate missing modes, and removes the uncertainty of

missing modes encountered by the authors when using a general PWRF routine. In section

IV-B we also verified that the SCM does not find any spurious modes in problems where

PWRF routines do.

There is considerable industrial need for studying waves in all kinds of media and

for multilayers, so we have further extended the SCM to more general multilayer systems

than those only involving isotropic media [21] and [23], to include both anisotropic layers

and fluid layers. The accuracy of the results is very high and they present excellent

self-convergence even for more complicated cases with various layers. Very complicated

cases do require some care and convergence should be checked for increasing values of

N . This notwithstanding, the accuracy and self-convergence remain within, more than

acceptable, margins even for the most complicated cases of multi-layered systems of

anisotropic materials.

Without any special treatment SCM do not suffer from the “large-fd” problem in-

herent to many PW based methods, such as the Transfer Matrix method. This has been

confirmed by running a code twice for different N to test the convergence and accuracy

of the first modes. We found that the modes are equally accurate for high values of the

product “fd”. Accuracy and convergence of the results was verified for as high a value as

25 MHz.-mm. in a 5 mm. steel plate and we found no errors or inaccuracies (cf with the

example for a titanium plate cited in [17] where the practical limit for the first two modes

was set at 15 MHz.-mm.). Finally, on top of all the aforementioned advantages, the ease of

coding makes SCM very convenient when compared to other available options for solving

waveguide problems.

Future work will further develop this methodology to handle media with damping

and for leaky systems embedded in fluid or solid media of infinite extension such that waves
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radiate from the waveguide. Also, implementation of the SCM in a working model with

developed algorithms to link the point-by-point results into continuous lines for each mode.

APPENDIX A: NUMERICAL DATA

The physical and geometrical information used for the figures presented in the main text

are given here; in certain cases we have used the same material in multiple figures. The

number of grid points N varies from one example to another, but it is always at least double

the number of modes plotted in the figure. On a practical level we choose N to achieve the

shortest computation time, that is, if we are interested in the first 10 modes, running a code

with N = 100 is unnecessary; a value of N between 25 and 30 has consistently been shown

to be sufficient.

The parameters for the plate of Figure 3 are as follows (with the usual axes orientation):

ρ = 5300 kg/m3 ; h = 5 mm (A1)

h stands for the thickness of the plate. The elastic stiffness matrix is given in GPa:

23.9 10.4 5

24.7 5.2

13.5

6.5

6.6

7.6


(A2)

The parameters for the plate of Figure 4 are (note that the axis configuration is that used

in [12], and detailed in the caption of the figure):

ρ = 8938.4 kg/m3 ; h = 5 mm ; V55 =
√
c55/ρ m/ms (A3)
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The elastic stiffness matrix is given in GPa:

182.1 119.1 111.8

167.7 126.2

174.9

92.1

53.5

67.6


(A4)

The parameters for the plate of Figure 5 are (with the usual axes orientation):

ρ = 8938.4 kg/m3 ; h = 5 mm ; V66 =
√
c66/ρ m/ms (A5)

The elastic stiffness matrix is given in GPa:

207.87 109.06 93.41 16.57 −16.15 −23.18

167.70 136.24 −24.72 11.28 8.68

185.91 8.14 8.21 14.50

100.23 14.50 5.84

35.11 16.57

59.47


(A6)

Parameters for the cylinder of figures 6 and 7 are (with the usual axes orientation):

ρ = 8938.4 kg/m3 ; h = 5 mm; ri = 5 · 103 mm (A7)

r stands for the inner radius. The elastic stiffness matrix is the same as in (A6).

Parameters for Figure 8 are as follows (with the usual axes orientation):

ρ = 8938.4 kg/m3 ; h = 100 mm; ri = 100 mm (A8)

The elastic stiffness matrix is the one given in (A6).

Parameters for the cylinder of Figure 9 are as follows (with the {Z} axis at 45 degrees with

the spatial {z} axis ):

ρ = 5300 kg/m3 ; h = 1 mm; ri = 1 · 103 mm (A9)
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The elastic stiffness matrix is given in (A2).

Parameters for the three-plate system of Figure 10 are as follows (with the usual axes

orientation): For the steel plates we have:

ρ = 7932 kg/m3 ; h = 2 mm; µ = 84.29 GPa; λ = 113.16 GPa (A10)

For the GRE plate we have

ρ = 1605 kg/m3 ; h = 2 mm (A11)

The elastic stiffness matrix of the GRE layer is given in GPa:

11.69 5.85 5.61

11.69 5.61

130.19

3.7

3.7

2.92


(A12)

Parameters for the system of Figure 11 are as follows (with the usual axes orientation). For

the steel plate the thickness is h = 5 mm and the other physical parameters are those given

in (A10). For the water layer we have:

ρ = 1000 kg/m3 ; h = 2 mm; µ = 0 GPa; λ = 2.25 GPa (A13)

The stiffness matrix in rectangular coordinates must be rearranged in a similar fashion to

[16] when dealing with problems in cylindrical coordinates.

The system of Figure 13 is composed of two imperfectly coupled steel layers. The

two steel layers are each 1 mm thick, with properties given in (A10). The spring constants

for the interface are Kt = 1012 N/m3 and Kn = 1016 N/m3.
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