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Abstract: Acute Myeloid Leukaemia is characterized by marked inter- and intra-patient heterogeneity, the
identification of which is critical for the design of personalized treatments. Heterogeneity of leukaemic cells is
determined by mutations which ultimately affect the cell cycle. We have developed and validated a biologically-
relevant, mathematical model of the cell cycle based on unique cell cycle signatures, defined by duration of cell
cycle phases and cyclin profiles as determined by flow cytometry, for 3 leukaemia cell lines. The model was
discretised for the different phases in their respective progress variables (cyclins and DNA), resulting in a set of
time-dependent ordinary differential equations. Cell cycle phase distribution and cyclin concentration profiles
were validated against population chase experiments. Heterogeneity was simulated in culture by combining the
3 cell lines in a blinded experimental set-up. Based on individual kinetics, the model was capable of identifying
and quantifying cellular heterogeneity. When supplying the initial conditions only, the model predicted future
cell population dynamics and estimated the previous heterogeneous composition of cells. Identification of hetero-
geneous leukaemia clones at diagnosis and post-treatment using such a mathematical platform has the potential
to predict multiple future outcomes in response to induction and consolidation chemotherapy as well as relapse
kinetics.
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Introduction

Leukaemia heterogeneity develops as a result of compound genetic and micro-environmental modifications and is
reflected by increased cell proliferation, block of differentiation pathways and reduction of apoptotic signals [1, 2].
Cooperative effects of several mutations, as well as their order of appearance, result in cell sub-populations that
acquire unique traits [3, 4]. The resulting disease- and patient-specific heterogeneity is one of the main sources
of variation in treatment response [1, 5]. In Acute Myeloid Leukaemia (AML), current gold-standard treatment
depends on the use of cell cycle specific (CCS) chemotherapy. Delivery of truly personalized chemotherapy
remains a challenge since most patients relapse due to clonal resistance or the emergence of more aggressive
leukaemic sub-clones as a result of the initial chemotherapy used to treat the disease [5, 6].

We have previously shown that assessment of proliferation kinetics and cell cycle times in AML may provide
optimized chemotherapy protocols in order to improve tumour cell kill yet minimize toxicity for the patient
[7, 8]. Defining the changes that occur in the cell cycle is central to these optimized treatment protocols since
many chemotherapeutic drugs are cell cycle phase-specific and heterogeneity of patient responses may be broadly
defined in terms of cell cycle phase distributions and timings [9]. The four phases of the cell cycle (G1, S, G2 and
M) are governed by the periodic fluctuation in the concentration of cyclins (Figure 1), a set of proteins that bind
to cyclin-dependent kinases (CDKs), which are present in non-limiting concentrations [10]. Given favourable
conditions, cells exit G0 and enter G1 in response to increasing cyclin D concentration. Cyclin E is produced
during G1 and peaks at the transition to S phase, when it binds primarily to CDK-2, activating DNA duplication
mechanisms. G2 starts when DNA synthesis is complete, and is reflected by increased cyclin B concentration, a
protein that accumulates as G2 tasks are completed [11]. Once cyclin B threshold concentration is reached, it binds
to CDK-1 resulting in the transition to mitosis (M). AML patients can have discrepant phase durations [9] and
characteristically overexpressed/unscheduled cyclin patterns [12, 13]. Together, cyclin fluctuation patterns and
cell cycle times can serve as a unique signature to define patient-specific disease characteristics mathematically,
which is essential to the design of personalized treatments.

Prior work has modelled cell cycle phase compartments using ordinary differential equations [14]; these mod-
els quantify changes in cell number in each phase as a function of time and capture macroscopic responses of
cell populations. A more detailed analysis of the system requires a description of the cell cycle phase distribution
and experimental validation of the intra-phase kinetics. A first approach could be to consider the system from
the point of view of a single cell as it moves within and between phases as a function of time (discrete cells,
continuous phase progression); however, this definition would be computationally expensive, unnecessary and
experimentally infeasible given the need to obtain data for and model millions of cells [15]. A more efficient and
tangible approach is to observe the passage of cells in time at a specific point within the phase through a population
function (continuous cells, continuous phase progression). Such a model is dependent on time, but also on a state
variable that distributes each phase into a continuum of populations, known as a population balance model (PBM)
[16]. Solving PBMs explicitly is practically impossible in most cases; the complex task of state variable space
discretisation is often required. PBMs are relevant to the cell cycle in that they enable tracking of the movement
of cells inside each phase through the increase in the state variable and interpret the transition between phases as
the summation of exiting populations from different parts of the phase. Typically, PBMs of the cell cycle consist
of three stages, namely an aggregated G0/G1 phase, S phase and an aggregated G2/M phase [17]. Traditionally,
properties such as cell age, size or volume have been used as state variables. Age-based PBMs cannot be directly
validated as age is not a biological property; it can be used as a mathematical artefact theoretically correlating
phase coordinate to phase time; however, perturbations in the transition state cannot be explained by time alone
[18]. Size- and volume- based PBMs have perhaps more relevant qualitative biologically-meaningful state vari-
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ables; high variability in the experimental data renders validation of these models extremely difficult requiring the
estimation of the necessary parameters [19]. Finally, whereas DNA content is a very good state variable choice
for S phase, where it is synthesized and can be measured, it bears no relevance to the progress of cells in other
phases. Consequently, traditional PBM models cannot inform experiments with regards to the expected state vari-
able level (since it is either a “virtual” state variable or very difficult to measure); only models that specifically
predict cellular properties (for a single cell) explicitly quantify these levels, but at the expense of macroscopic
growth [20, 21]. Hence, there is a need for cell cycle PBMs that can be seamlessly validated experimentally and
for explicit models of cell cycle checkpoints which can incorporate growth kinetic behaviour.

Herein, we have developed a mathematical model of the cell cycle using PBM that captures kinetics at both
levels: micro (intracellular protein concentration) and macro (cell growth). The model is then used to predict
heterogeneous proliferation kinetics, such as the ones presented by three leukemic cell lines (K-562, MEC-1,
MOLT-4) with very disparate origins (AML, CLL and ALL respectively), given a reduced set of experimental
parameters.

Results

Development of a multi-stage PBM based on cyclin concentration

The model is composed of 3 compartments according to DNA content: G (DNA content of 1), S (increasing DNA
content 1-2) and M (DNA content of 2), similar to other models available [17, 18]. The novelty resides in the fact
that cyclin E and cyclin B are used as state variables (defined as CE and CB in the model) for G0/G1 and G2/M
respectively, as these are the phases where their concentration actively increases linked to phase progression.
DNA content (defined as DNA in the model) is used as in previous models [19] for the representation of progress
in S phase. Each of the three phases is modelled by a PBM equation (Equations 1–3; refer to Table S2 for variable
definitions), and these equations are linked by the transfer of cells from phase to phase (Figure 1) [22, 23].

∂G(CE , t)
∂ t

+
∂
(
G(CE , t) · dCE

dt

)
∂CE

=−rG→S (CE) ·G(CE , t) (1)

∂S (DNA, t)
∂ t

+
∂
(
S (DNA, t) · dDNA

dt

)
∂DNA

= 0 (2)

∂M (CB, t)
∂ t

+
∂
(
M (CB, t) · dCB

dt

)
∂CB

=−rM→G (CB) ·M (CB, t) (3)

G(CE , t) represents the number of cells in G0/G1 at time t that have a cyclin content CE ; similarly, S(DNA, t)

and M(CB, t) represent the number of cells in S and G2/M that have a DNA content DNA and a cyclin B content
CB respectively at time t. rM→G (CB) and rG→S (CE) represent the transition rates from G2/M to G0/G1 and
from G0/G1 to S respectively (both dependent on the particular phase state variable). Biologically, growth rates
account for the speed at which the accumulation or production of cyclin/DNA occurs in a cell in the relevant
phases. Mathematically, growth rates represent how quickly cells progress through the phase. Phase durations
(TG, TS and TM) are defined as the average time a cell spends in a phase. Cyclin minima represent the baseline
expression at the start of the phase (CE,min and CB,min for G0/G1 and G2/M) while cyclin thresholds (CE, thr and
CE, thr) account for the average cyclin level at which cells move to the next phase. A constant cyclin E production
rate (rG) is used for G1 (Eq. 4) [24]. DNA production (rS) is approximated as a lineal function (Eq. 5) based
on normalized results [25]. Constant cyclin B production (rM) occurs during G2 with a concentration plateau at
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transition [26]; since transition occurs rapidly, we assume a constant cyclin B production throughout G2 (Eq. 6).

rG =
dCE

dt
=

CE, thr−CE,min

TG
(G0/G1) (4)

rS =
dDNA

dt
=

2−1
TS

(S) (5)

rM =
dCB

dt
=

CB, thr−CB,min

TM
(G2/M) (6)

A cell in G0/G1 or G2/M can either move to the next phase or move to the next cyclin level. Biologically, the
higher the cyclin concentration and the more likely it is for the cell to transition. Mathematically, the transition
probability (Γ(CE) and Γ(CB)) accounts for the likelihood of a cell at a particular position in the phase moving to
the next phase, which is explicitly calculated as the ratio between transition happening (rG→S or rM→G) and all of
transition and growth happening (rG→S + rG or rM→G + rM).

ΓG(CE) =
rG→S (CE)

rG→S (CE)+ rG
(7)

ΓM(CB) =
rM→G (CB)

rM→G (CB)+ rM
(8)

A recent study of different transition rate functions in cell cycle PBMs has indicated that the particular function
used had little impact on the ability of the model to fit the experimental data [27]. We assumed a normal cumulative
distribution function for the transition probabilities Γ(CE) and Γ(CB) (see Section 1 in SI).

The boundary conditions address the discontinuities between phases, where cells from a different phase enter
a new phase. Since cells transitioning to S or to G0/G1 arrive with different cyclin concentrations from G0/G1
(Eq 9) or G2/M (Eq 10) respectively, the total number of cells is calculated by taking the integral of the transition
term over all cyclin levels. For G0/G1, incoming cells are doubled to account for cell division; for S phase, all the
cells with a doubled DNA content are considered to transition to the start of G2 (Eq 11):

rG ·G(CE = CE,min, t) = 2
∫ CB,max

CB,min

rM→G (CB) ·M (CB, t) dCB (9)

rS ·S (DNA = 1, t) =
∫ CE,max

CE,min

rG→S (CE) ·G(CE , t) dCE (10)

rM ·M (CB = CB,min, t) = rS ·S (DNA = 2, t) (11)

Two assumptions were made: (i) the G0/G1 phase is aggregated: leukaemic cell lines are highly proliferative and
therefore only a small percentage of cells with DNA content 1 will actually be quiescent (Figure 2) and, (ii) the
G2/M phase is aggregated: the duration of the M phase is short enough compared to that of G2, such that it does
not affect significantly the overall cell cycle progress [28].

Given the complexity of the equations (partial differential and integral terms), discretisation of the state vari-
able space is required. Phase domains start at CE,min (G0/G1), 1 (S) and CB,min (G2/M), and are truncated at
CE,max (G0/G1), 2 (S) and CB,max (G2/M). Compartments are subdivided into ni bins ∀ i ∈ {E; D; B}; each of
the bins representing a range of state variable levels which correlates to the bin number according to the following
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equations:

νE = nE/(CE,max−CE,min) (12)

νD = nD/(DNAmax−DNAmin) = nD/(2−1) = nD (13)

νB = nB/(CB,max−CB,min) (14)

Each bin corresponds to state variable levels that span: 1/νE (G0/G1 phase), 1/νD (S phase) , and 1/νB (G2/M
phase). The state variable levels for each bin become:

CE,e = (e−0.5)/νE +CE,min ∀e ∈ {1, . . . , nE} (15)

DNAd = (d−0.5)/νD +1 ∀d ∈ {1, . . . , nD} (16)

CB,b = (b−0.5)/νB +CB,min ∀b ∈ {1, . . . , nB} (17)

In the discrete form, Equations 7 and 8 become ΓG,e =ΓG (CE,e) and ΓM,b =ΓM
(
CB,b

)
. The model now considers

ni subpopulations ∀ i∈ {E; D; B} corresponding to each state variable level in the compartment (Figure 1), which
are defined as a vector of length ni. Following discretisation of cyclins and DNA via a fully stable upwind scheme
[29, 30], the model equations are simplified into ni ODEs per compartment as follows:

dGe

dt
=(Ge−1(t)−Ge(t)) ·νE · rG−Ge(t) ·νE · rG→S,e ∀e ∈ {2, . . . , nE} (18)

dSd

dt
=Sd−1(t) · rS ·νD−Sd(t) · rS ·νD ∀d ∈ {2, . . . , nD} (19)

dMb

dt
=Mb−1(t) · rM ·νB−Mb(t) ·νB ·

(
rM + rM→G,b

)
∀b ∈ {2, . . . , nB} (20)

The discretised counterpart of ∂
(
G(CE , t) · dCE

dt

)
/∂CE (Eq 1) is (Ge−1(t)−Ge(t)) ·νE · rG (Eq 18); the transition

term rG→S (CE) ·G(CE , t) corresponds to:Ge(t) ·νE ·rG→S,e in the discretised form; change with time is converted
from ∂G(CE , t)/∂ t to dGe/dt. In addition, the boundary conditions become:

dG1

dt
= 2 ·

nB

∑
b=1

Mb ·νB · rM→G,b−G1(t) ·νE · (rG + rG→S,1) (21)

dS1

dt
=

nE

∑
e=1

Ge ·νE · rG→S,e−S1(t) ·νD · rS (22)

dM1

dt
= SnD ·νD · rS−M1(t) ·νB · (rM + ·rM→G,1) (23)

Experimental validation of the PBM

EdU is a thymidine analogue that can be incorporated in the DNA of cells during S phase [9]. Cells undergoing
DNA duplication are effectively labelled but not G0/G1 or G2/M cells, resulting in two separate populations that
can later be tracked by flow-cytometry. This provides a suitable method to generate cell cycle “movies” from
which cell cycle times can be extracted. EdU exposure does not significantly affect cell proliferation so long as
the uptake is short and in low concentrations [31]. Regardless, only information from the unlabelled population
was utilized. Subsequent phase deconvolution can be performed by DNA staining and the concentration of cyclins
E and B is monitored by simultaneous antibody staining.
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The experimental system is composed of thousands of cells, each characterized by a fluorescence intensity
per channel. Global phase behaviour is obtained by normalizing the geometric mean fluorescence of individual
cells [32]. A similar approach can be used in the case of the discretised model, except the system is composed
of groups of cells with similar characteristics instead of single cells. The equivalence between the data analysis
procedure used to aggregate flow-cytometric data and the mathematical procedure to combine the simulation data
of each of the bins (refer to Figure S5 in SM for more details) is as follows:

Geometric meanexp =

(Ncells

∏
i=1

fi

)1/Ncells

(24)

Geometric meanPBM =

(Nbins

∏
j=1

C
Ncells, j
j

)1/Ncells, tot

(25)

where Ncells, tot =
Nbins

∑
j=1

Ncells, j (26)

where i indicates the cell index and j the bin index; fi and f j are the normalized fluorescence of a cell and of a bin,
respectively. Because Eq 24 and 25 are adapted formulas for each of the systems to calculate a common variable,
the resulting values are equivalent and thus comparable (Figure S5).

The transition probability function chosen implies that cells statistically never reach the maximum cyclin value
in the model. It is assumed that a maximum probability of 99.99% can be achieved. Therefore, the maximum
value of cyclin is theoretically obtained as the cyclin value at which 99.99% of the cells would have transitioned,
which is equivalent to solving ΓG (CE,max) = 0.9999 and ΓM (CB,max) = 0.9999. A conservation analysis (detailed
next) confirms this doesn’t result in significant cell loss while providing enough flexibility for “outlier” cyclin
expression events to take place (Figure S1). By setting the duplication factor to one, cell numbers in the model are
constant over time; the numerical solutions are tested to fulfil this property at two different levels: total cell number
and final phase bins (GnE (t) and MnB ). For the total cell number, the maximum loss recorded was 1.2·10−5% in
G phase and 2·10−6% in M phase (K-562). The gPROMS solver used was DASOLV with ε = 1·10−5; the cell
loss is within the error of the numerical solver therefore it can be assumed to be zero. The test for the final phase
bins lead to even smaller cell losses (·10−37%). The model was additionally tested for cell conservation based on
the number of discretisation intervals allowed. The duplication factor was again set to 1 and the model was run
for 5 different scenarios with nE , nDNA and nB set to decreasing numbers, for a total of 1000h. The results in
terms of total cells remaining after 1000h compared to initial cell number (represented as Total %) and percentage
of cells in G0/G1 and G2/M phases exiting at the last bin are presented in Figure S1A. Discretisation intervals
must be reduced to very few to push the model into conservation issues. However, since we are relying on bin
numbers for averaged cyclin expression, it is still important to keep a wide distribution for a good resolution in
cyclin expression (otherwise situations like Figure S1B can occur).

Because transitions are modelled according to a normal cumulative distribution, the probability of transition
in the last bins of G and M (GnE and MnB ) is very high (we have assumed 99.99%). When converted via Eq 7
and 8, the resulting transition rates (rG→S,e and rM→G,b) become very high as compared to the growth rates (rG

and rM). Therefore, the cell number that is lost through the passage to the next (nonexistent) bin through growth
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processes is minimal, satisfying the conservation requirements:

lim
nE→∞

−GnE (t) · rG ·νnE = 0 (27)

lim
nB→∞

−MnB(t) · rM ·νnB = 0 (28)

In order to calculate cyclin thresholds, EdU−C+
B at time 0 was considered to contain cells in late G2/M phase.

CB, thr and CE, thr were set to the value at the peak, occuring when G% and M% are minimum, respectively (therefore
the cells remaining are towards the end of the phase and have a cyclin content closer to the threshold). For G%,
it occurs after at least TG− texposure hours, while for M% it is recorded at the very beginning (after TM− texposure,
which is usually close to zero because TM tends to be in the range of EdU exposure durations). The minimum
cyclin values were set as the minimum values reached in the phase of interest throughout the experiment.

Regarding the intra-phase model initialization, two situations were encountered: even or biased cell distribu-
tion. Even phase distributions occur when cell populations are continuously coming in from the previous phase
and leaving to the next phase. At steady-state, the percentage of cells (with respect to the total cells in a phase)
found in a bin is proportional to the complementary probability of cells transitioning from that bin (given constant
intra-phase growth). A more detailed derivation can be found in Section 2 of SM.

Ge

∑
nE
e′=1 Ge′

=
∏

e
e′=1 (1−ΓG,e′)

∑
nE
e′=1 ∏

e′
e′′=1 (1−ΓG,e′′)

∀e ∈ {1, . . . , nE} (29)

Sd

∑
nD
d′=1 Sd′

=
1

nD
∀d ∈ {1, . . . , nD} (30)

Mb

∑
nB
b′=1 Mb′

=
∏

b
b′=1 (1−ΓM,b′)

∑
nB
b′=1 ∏

b′
b′′=1 (1−ΓM,b′′)

∀b ∈ {1, . . . , nB} (31)

Even phase distributions are used for the initial cell cycle distribution in every phase when modelling the total
population. Biased phase distributions correspond to the situation when no cells are entering a phase but cells in
the phase keep progressing and exiting to the next phase, accumulating towards the end of the phase (until the
phase is depleted completely). As a result of EdU exposure, the EdU− population consists of G0/G1 and G2/M
cells only. Specifically, G2/M cells includes only those cells that were not in S phase at the start of EdU exposure.
This means the EdU− G2/M subpopulation is composed of cells that have been in the phase at least for the duration
of the exposure, and have progressed through the phase. Therefore, the G2/M phase of the EdU− population at
time 0 can be modelled as a biased phase distribution. To capture this behaviour, the model was initialized for the
duration of the EdU exposure and cell entrance to G2/M is blocked, resulting in the new boundary condition:

dM1/dt =−M1(t) · rM ·νB−M1(t) · rM→G,1 ·νB (32)

The resulting G0/G1 and G2/M intra-phase distribution at the end of the simulation of the exposure is used to
initialize the model with the experimental data at time 0.

The model at this point included 283 variables and 400 parameters (measured and derived, see Section 6
in SM). Global sensitivity analysis (GSA) identifies the parameters that have an impact on model output, by
observing the change in the outputs when parameter values are varied [33]. It assesses which experimental values
critically need to be determined with experimental accuracy, and which others can be estimated or kept at their
nominal values for model validity. Three groups of significant parameters were identified (Figure 3, see Materials
and Methods for details): (i) CB,min , CB, thr , CE,min and CE, thr for cyclin E & B concentrations; (ii) TG, TS and TM
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for cell cycle phase kinetics; and (iii) Gini, Sini and Mini (the percentage of total cells in G1 , S and G2/M at time
zero) for the cell cycle distribution. Groups (i) and (ii) were important throughout the culture, although phase times
(ii) were more significant in their respective phases when a majority of cells were exiting that phase, or in their
subsequent phases, when a majority of cells were entering the phase. However, group (iii) was only significant in
the first few hours. Only in one of the cell lines (MEC-1) was phase kinetics affected by cyclin threshold/minimum
values (maximum observed sensitivity index value for CE, thr was 0.35). Conversely, cyclin concentration was only
affected by cell cycle times during the initial hours. Finally, since σE and σB were not identified as significant
parameters, they were both fixed at 20% of the difference CE, thr−CE,min and CB, thr−CB,min. In summary, an
accurate determination of the cell cycle times (TG, TS and TM) for phase kinetics and cyclin thresholds and minima
(CB,min, CB, thr, CE,min and CE, thr) for cyclin expression is essential to fully characterize the model.

The cell cycle times (TG, TS and TM) were obtained by following the entrance/exit times of the EdU− pop-
ulation (± 2h) to and from each phase for the first cycle. The initial EdU− cell cycle distribution was used to
initialize and run the model. The agreement between the model and the experiments was remarkably good for
all three phases in each cell line (Figure 3), with the model prediction falling within the 95% confidence region
for most time points. For the geometric mean of cyclin concentration, the trends and magnitudes were captured;
although the experimental data were inherently noisy (due to the need for normalization steps against isotypes or
other phases, which increased the number of sources for data uncertainty, and the absence of replicates), a reason-
able fit was achieved. In the particular case of cyclin B concentration profile in K-562, the DNA deconvolution
of the initial S-phase cell cycle distribution places a fraction of the cells that were in the left-most section of the
second DNA peak at the right-most part of S phase. Indeed, this caused a fraction of the S-phase population to
enter G2/M at 2-4h, completely shadowing the high cyclin B concentration of the remaining G2/M population at
that time (Figure 4A). If corrected for no cells at the end of S phase initially, the model matched the experimental
data (Figure 4B) in all but one point as determined by the residual sum of squares (Figure 4C). Cell numbers
analysed in this region are significantly lower since cells keep exiting the phase resulting in experimental data
becoming less robust thus explaining the mismatch observed at 6h.

GSA revealed that the most significant parameters for phase kinetics were the cell cycle times. Furthermore,
the analysis showed that initial cell cycle distribution values were not necessary for longer analyses (over 5h). We
hypothesized that co-culture conditions would have an effect on individual kinetics. A preliminary K-562/MEC-1
co-culture experiment was carried out at 3 set ratios: 10%, 50% and 90% MEC-1. MEC-1 kinetics was clearly
slower, so its time parameters were readjusted to fit the experimental data in one of the cultures (50%), and the new
model results were validated against the 10% and 90% experiments (Figures 5 and S2). Observe how the relative
RSS is higher towards the end of the culture (Figure 5C), especially in the 90% and 10% MEC-1 co-cultures, and
much lower in all other time points.

Forward and backward heterogeneous cell population dynamics can be predicted using
the PBM

Nine different co-culture mixtures of the cell lines were prepared by operator 1 (Table E1). Operator 2, blinded to
the nature of the samples, performed the analysis at time 0 and determined the initial percent of each cell type in
order to run the model. Subsequently, the rest of the samples were analyzed, after which all the data was gathered
and compared to model simulations. In the last three tests, the model was also evaluated for its backwards predic-
tion capability. A pre-run plot of model predictions (see Table S4 for details on model parameters used) was used
to estimate the evolution of cell line contents (Figure 6A) together with the total cell number. The experimental
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trends for the total cell kinetics in the last three tests (T7-T9) were correctly predicted (Figure 6B). Later points
were over-estimated; the reason for this is two-fold: (i) nutrient depletion and metabolite accumulation can have
a negative effect on growth which the model does not currently incorporate; and (ii) MOLT-4 and MEC-1 have
maximum recommended densities of 1.5-2M cells/mL while K-562 cannot grow at such high cell densities: T9,
with a higher content of MEC-1 and MOLT-4, was correctly predicted, while for T7 and T8 (which have a major-
ity of K-562 cells) the model overestimates the last 2-3 points where the cell density was over 1-1.2M cells/mL.
The model accurately predicted the evolution of all cell populations for the duration of the second part of the
experiment (0-30h, Figure 6C). Additionally, the contents of the original mixture (at -48h) were found correctly
in 2 out of the 3 cases (Figures 6A and 6D).

Unknown heterogeneous leukaemic populations can be deconvoluted using the PBM plat-
form

A second strategy was implemented where operator 2 pre-ran the model assigning each initial percent to each of
the cell lines (resulting in 6 different possible scenarios per blind experiment, Figure S3). The whole experimental
panel was then revealed (unassigned to specific cell lines) and compared to the model output of each scenario in
terms of Euclidian distance in a ternary plot: the lower the distance (relative to the other 5 scenario), the likelier
to be a good match. The ranking of the scenarios likeliness given by the model for each mixture is shown in
Figure 7. In mixtures T1, T2, T3 and T7, the model’s highest ranking candidate matched the true experimental
content, while in a further 3 mixtures (T6, T8 and T9) the actual content was found in one of the top 3 candidates.
Overall, the correct solution, as a sum of the Euclidian distances in all 9 tests, scored lowest. Only in two cases
(T4 and T5) did the model fail to identify the actual mixture as a real candidate, partly because other scenarios had
extremely close values (within the experimental error margins). Of note, cells were co-cultured in non-standard
conditions (cell densities and cell culture media used), challenging the ability of the PBM to work under uncertain
conditions. Finally, the cell cycle times of the three cell lines used were relatively close; primary leukaemic cells
may have more disparate populations, with variation of days [9]. In this case, the differences would be largely
sufficient for the model to identify and quantify heterogeneous cell populations based on cell cycle kinetics.

Discussion

A PBM of the cell cycle based on cyclin concentration and DNA content was developed and utilized to decon-
volute leukaemia population kinetics. GSA established which model parameters were critically required (and
which did not need to be identified) so that they were obtained experimentally for three leukaemic cell lines by
following a synchronous cell population over time, after which the model was run and compared against the actual
cell cycle distribution and cyclin concentration. The agreement between the model and the experimental data was
excellent, for micro (intracellular growth) as well as macro (population growth) kinetics, with most predictions
falling within the 95% experimental confidence area. Additionally, residual sum of squares identified the time
points where the model deviated from the experiments. The most sensitive regions included the last hours in
culture (over 20h), where cells experience exposure to significant concentration gradients in terms of nutrient de-
pletion and metabolite accumulation (Figure 5C); and regions where the number of cells analysed is not sufficient
to provide an accurate representation of the phenomena occurring in culture (Figure 4C). Next, the model was
successfully used for two different strategies in the context of co-culture kinetics: (i) the prediction of backward
and forward culture evolution given known cell line-specific cell cycle kinetics and initial conditions and (ii) the
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identification of cell type and content given an unknown experimental panel.
Clonal heterogeneity of AML and competitive outgrowth of more “fit” clones in a “Darwinian” model renders

the successful treatment of this disease particularly challenging [34]. It is currently unclear which factors within a
subclone or in the microenvironment make certain clones out-compete others and how this dynamic can be altered
by chemotherapy schedule [9, 34, 35]. Recently, it has been proposed that tumour-specific cell-autonomous and
non-cell-autonomous factors (e.g. cytokines) can alter growth kinetics and properties of tumours and that these
qualities may be targeted to manipulate tumour growth [36]. Although there are many other properties relevant to
leukaemia and the treatment of leukaemia, most if not all of these factors ultimately affect the cell cycle. Hence,
this work describes a model of the cell cycle that can be combined or upgraded to capture additional phenomena
such as differentiation (affecting traditional chemotherapy, but also affected by novel agents targeting specific
types of haematopoietic cells) or environmental cues (metabolism, cytokines, contact inhibition etc). The key
is capturing the most important phenomena at a sufficient level of detail in order to maintain the fidelity and
relevance to the biological system. Defining which are the additional phenomena that are key in response to
chemotherapy is definitely a critical step. Pharmacokinetics / pharmacodynamic (PK/PD) models capture body
processes that are relevant to the drug distribution and transport to the bone marrow, as well as its effect, for
example. Our model may be able to capture clonal heterogeneity which, combined with PK/PD, may lead to
improved and more effective therapies.

The ability to assess both backward and forward evolution of cell clonal content using the PBM model pre-
sented herein provides a quantitative tool for the estimation of population dynamics and the study of leukaemia
progression in both treated and untreated patients [6, 37, 38]. This tool also has the potential to evaluate clonal
models of leukaemogenesis [4, 6, 39] in order to better understand the pathogenesis of disease. In the context
of CCS drug dosage and scheduling, the PBM could give a narrower window of action than what is currently
used in treatment regimens, thereby limiting drug toxicity yet improving efficacy [8, 7]. Drugs, such as small
molecule inhibitors, currently being tested that specifically target leukaemia sub-clones (e.g. those expressing
FLT3-ITD, [40]) could be dosed and scheduled to optimize cell kill during therapy according to anticipated sub-
clonal composition. Ultimately, balancing CCS chemotherapy with more advanced gene-targeted treatments will
require detailed knowledge of sub-population evolution, kinetics and dynamics during treatment calculated and
manipulated using computational methods such as those presented herein for designer therapies. The availability
of individual clone sensitivities to each drug (EC50) and the use of accurate models simulating drug distribu-
tion in the human body will be key for simulating cell death by chemotherapy. The PBM’s high resolution in
describing intra-phase events allows incorporating cell death not only in a phase-specific, but also in a phase
coordinate-specific manner (data not shown).

Genome-based methods are currently employed in order to define mutational heterogeneity in AML subclones,
thereby identifying evolution of disease throughout treatment [6]. In order to optimize treatments in AML, we
pursued a complementary strategy of clonal identification by using cell cycle kinetics to effectively represent
heterogeneity. Cells may acquire proliferative mutations that modify cell cycle times through bypassing of cell
cycle controls; overexpression of p21 enables cells with DNA damage to continue to the next phase prematurely
[41], while mutations in Cdc20 delay the timing of cyclin B degradation, and pRb or E2F mutations promote early
entry into S phase by premature increase in the concentration of cyclin E [42]. A plethora of sub-populations, each
with specific cell cycle signatures arises; the PBM can estimate cell cycle evolution for each of them and capture
overall behaviour. Since cell cycle duration has been shown to correlate with prognosis in response to treatment
[43], an a priori classification of sub-populations according to slow/intermediate/fast cell cycle kinetics may be
initially developed. A more sophisticated extrapolation for patient cell populations is currently being studied by
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the use of steady state parameters [44], rather than the dynamic counterparts (used here), which could potentially
be measured in the diagnostic bone marrow or peripheral blood sample at disease presentation. Technology now
exists wherein patient AML mutations and subclones are identified routinely [45]. Put together with cell cycle
data (which could be done at diagnosis and throughout treatment if needed by assessment of S-Phase or cyclin
expression by flow cytometry), PK/PD combined models are being developed to optimise chemotherapy dose and
schedule according to anticipated clonal output [8, 44]. With this method, there is the potential to tailor treatments
by manipulating leukaemic heterogeneity and instilling long-term control of tumor growth, limiting expansion of
more pathogenic clones [36, 46].

Heterogeneous cyclin production patterns originate as a result of cell cycle mutations (e.g., cyclins D1 and
E1, KIP1, INK4B and INK4A, CDK4, Rb [11]), making them leukaemia-specific. Predicting the intensity and
timing of cyclin concentration increase can become critical in defining the optimal dose and schedule of current
as well as novel treatment strategies [8, 47]. Due to their critical role in the control of cell cycle progression,
cyclin-blockade strategies arrest proliferation, without the risk of additional mutagenesis inherent in traditional
chemotherapeutics. Specific cell cycle drug targets, such as cyclin D and CDK1-cyclin B complexes [48, 49],
may be identified and tracked using the PBM platform developed herein and used to identify the best dose and
schedule pre-clinically, expediting drug development trajectories.

The development of detailed models of the cell cycle that are experimentally validated is critical in the imple-
mentation of more advanced pharmacokinetic/pharmacodynamic models [50, 51]. Additionally, linking a small
subset of measurable variables to unique characteristics of the individual is necessary for the development of per-
sonalized treatment. The PBM we have developed paves the way in connecting both. Ultimately, the application
of such a tool could inform not only optimal timing and type of personalized treatment for improved outcomes,
but also provide a platform for pre-clinical assessment of novel targeted therapies for leukemia and other cancers.

Materials and methods

Computational tools

The computational tools used for carrying out the simulations in this manuscript are detailed below, as well as the
sensitivity analysis methods. The model was implemented on gPROMS ModelBuilder 3.5.3 and simulated on a
64-bit Windows with an Intel Core 2 Quad CPU 2.67 GHz and 4GB RAM. GSA was performed on MATLAB for
the discretised model by connecting gPROMS through gO:MATLAB. Sobol’s method [52] was used, screening
the influence of 24 parameters with 20,000 intervals each on the G1-S-G2/M phase percents, cyclin expression, %
cell loss, transition rates and total cell number. The inputs were varied ± 40%, built onto a matrix in MATLAB®

and a call was sent sequentially via gO:MATLAB® for every set of parameter values. The outputs at 0h, 1h, 2h,
5h, 10h, 15 and 20h for each parameter were recorded and the sensitivity indexes were subsequently calculated on
GUI-HDMR [53] MATLAB package. The analysis was made on the model including the reinitialization period
for EdU exposure (biased phase distribution).

Leukemia cell lines

Cell lines are lab-adapted populations that give reproducible experimental results and require basic culture meth-
ods for their maintenance. Three leukaemia cell lines were used: K-562 (chronic myeloid leukaemia in blast cri-
sis; has unscheduled cyclin E production and overexpressed cyclin B [54]; MEC-1 (chronic lymphoid leukemia,
which expresses CD19) and MOLT-4 (acute lymphoid leukaemia, has scheduled cyclin E and B [13]). K-562
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(ATCC, MD, USA) was cultured in Isocove Modified Dulbecco’s Medium (IMDM; Invitrogen, CA, USA) with
10% heat inactivated Fetal Bovine Serum (FBS; Invitrogen) and 1% penicillin-streptomycin (P/S; Invitrogen).
MEC-1 (DSMZ, Germany) cells were cultured in IMDM + 20% FBS + 1% P/S for 1 week, and in IMDM + 10%
FBS + 1% P/S thereafter. MOLT-4 (ATCC) cells were cultured in RPMI-1640 (Invitrogen) + 10% FBS + 1% P/S.
All cells lines were used at p<20.

Labelling cells with EdU

In vitro labelling of cells with EdU is necessary to segregate the global population into two approximately syn-
chronous populations for dynamics to be observed. The AF647 5-ethynyl-2’-deoxyuridine (EdU) kit (Invitrogen)
was reconstituted and used according to manufacturer’s instructions. Cells were resuspended in fresh medium and
pre-cultured for 12h in T175 flasks (Corning, NY, USA) at 300,000 cells/mL (K-562), 400,000 cells/mL (MEC-1)
or 350,000 cells/mL (MOLT-4). EdU (10nM) was added (optimal concentration was determined by preliminary
experiments, data not shown) and after 1h (MEC-1) or 2h (K-562, MOLT-4), cells were washed twice and re-
suspended in fresh medium for culture under standard conditions in 6 well-plates (Corning; 4-6mL/well). Two
cultures were exposed with a difference of 11-14 hrs; samples were collected every 2hrs for intervals of up to
14hrs consecutively and the data was merged (overlap in cell cycle distribution values was confirmed at matching
points). An unexposed culture was used as a control.

Co-culture experiments

Co-culture indicates an experimental setup where two or more separate cell lines are physically put together in the
same culture medium. In order to distinguish the populations, specific analysis methods detecting each of them
individually have to be developed. K-562 and MEC-1 cells were mixed at the appropriate ratios and pre-cultured
in IMDM+10%FBS, After 48h, they were resuspended in fresh medium at a density of 0.5 · 106 cells/mL and
cultivated in 6-well plates (Corning), 4mL/well. Triplicate samples of 106 cells were taken at 0h, 5h, 10h, 20h,
25h and 30h. For the blinded experiments, operator 1 prepared unknown mixtures of K-562, MEC-1 and MOLT-4
cell lines (different cell types and ratios), which were pre-cultured for 48h. Samples were taken every 5-10h for
a total of 30h. Triplicate samples were collected and split into two tests: samples to be stained for CD19 and
fixed in para-formaldehyde 4% and samples to be fixed in ethanol for later detection of cyclin B concentration. In
the segmentation of co-cultured samples, the percentage of MEC-1 cells were inferred from the population with
CD19 expression, the MOLT-4 content from the population with high cyclin B concentration (Figure S4); K-562
was the % remaining. For samples where only K-562 and MOLT-4 were present, SSC vs DNA analyses sufficed
to gate each cell type. Note that this was impossible when all three cell lines were together as SSC vs DNA of
MEC-1 overlaps with both K-562 and MOLT-4 (only approximate values of percent of each cell line could be
deduced).

Flow cytometry

Flow cytometry is a technique that allows translating single cell properties (DNA content, protein expression) to
fluorescence intensity by labelling them with antibodies specific to the protein or substances that bind to DNA
strands and fluoresce when exposed to a laser beam of a particular wavelength. The cyclin B IgG1κ antibody kit
(clone GNS-1; BD, NJ, USA) was used according to manufacturer’s instructions. Anti-human cyclin E antibody
(clone HE12), together with the isotype control IgG1 (clone ICIGG1) and the FITC secondary antibody to IgG
were prepared as per manufacturer’s protocol (all three from Abcam, UK). The V450 Ki-67 IgG1κ (clone B56,
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BD) antibody and V450 IgG1κ isotype control (clone MOPC-21, BD) were both diluted 4x. A propidium iodide
(PI; Sigma, MO, USA) solution was prepared by dissolving 10mg/L PI with 100mg/L DNase-free RNase (Sigma)
in phosphate buffered saline (PBS; Invitrogen), as previously described (51). Triplicate samples were collected
regularly for each condition (EdU: every 2h; No EdU: every 6h) and fixed in 70% ethanol at -20°C for a maximum
of 2 days prior to acquisition. Cells were then labelled with antibodies after permeabilisation in the following
order: (i) exposure to EdU reagent, (ii) staining with either cyclin B or E antibodies, and (iii) resuspended in PI.

For CD19 labelling in co-culture experiments, labelled or control antibody was added to each of the three
replicate samples and incubated for 30min at 4°C in the dark, fixed in para-formaldehyde at 4°C, and data was
acquired within 2 days with a Guava flow-cytometer (easyCyte 8HT, Millipore, MA, USA); a Fortessa flow-
cytometer (LSRFortessa, BD) was used for all other data acquisition. FACSDiva software was used during acqui-
sition of data on Fortessa, while easyCyte was used on the Guava; for all samples, 20,000 events were acquired.
Data analysis, gating and geometric mean calculations were performed in FlowJo 8.7 (TreeStar Inc, OR, USA).

In order to process this data, several steps have to be performed for every sample: (i) gating out the debris
on the FSC vs SSC; (ii) gating out the doublets on the PI (area) vs PI (width) signal; (iii) deconvoluting the cell
cycle distribution (Dean-Jett-Fox method) resulting in G0/G1, S (split in 4 equal gates at time 0 only) and G2/M
gates; (iv) gating the EdU positive from the EdU negative populations (from control which was unexposed to EdU
but exposed to click reaction cocktail); (v) gating the cyclin positive from the cyclin negative populations (from
isotype control exposed to EdU and reaction cocktail). From this analysis, 4 different populations are identified:
EdU+ C+; EdU+ C−; EdU− C+; EdU− C−, in addition to the ungated total population. For each sample: (i)
the geometric mean of the fluorescence in the C+ population in the phase of interest divided by the geometric
mean of the fluorescence in the total population in the phase where the cyclin expression is minimal gives the
normalised sample expression; (ii) for the isotype samples, the geometric mean of the fluorescence in the phase
of interest divided by the geometric mean of the fluorescence in the total population in the phase where the cyclin
expression is minimal gives the baseline expression of the phase; (iii) finally, the normalized values obtained in
(1) are divided by the baseline values from (2) giving the normalized cyclin expression of the phase of interest for
the sample (Equations 33 and 34).
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Figure 1: The cell cycle. Outer circles represent biological events (succession of phases and phase-specific cell cycle protein
expression); inner “pie” circles summarize model simplifications and the discretisation strategy based on state variable level.
State variables are chosen according to relevance to their phase: cyclin E for G0/G1, DNA for S and cyclin B for G2/M.
Bins in each phase indicate discrete state variable levels: CE(e), DNA(d) and CB(b) correspond to the state variable levels
of bin number e, d and b, while cell numbers in each bin are represented by Ge(t), Sd(t) and Mb(t) in G0/G1, S and G2/M
respectively. Transition rates (rG→S,e for G0/G1 and rM→G,b for G2/M) account for the likelihood of cells moving to the next
phase and growth rates (rG, rS and rM) reflect progress within the phase.
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Figure 2: Evolution of the %Ki-67 positive cells among G0/G1 cells over time (control cells) as determined by flow cy-
tometry. Ki-67 is a protein expressed by cells out of quiescence; G0 cells are thus identified by their lack of Ki-67 expression.
In the experiments performed with EdU, control cultures were monitored for Ki-67 levels to validate the assumption that only
a small percentage of the cells is quiescent at any time. Indeed, Ki-67 was expressed by at least 90% of the cells overall, with
the exception of MEC-1 at time 0h which was found to be 80% (this is believed to be an effect of the washing steps stress and
not an ubiquitous condition).
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Figure 3: Cell cycle phase kinetics. Comparison of experimental results (red dots) to model output (black lines) in cell cycle
phase percent (top 3 panels: G0/G1, S, G2/M phases) or normalized cyclin E & B expression (2 bottom panels) over time.
95% confidence areas are shown according to the standard deviation of G0/G1, S and G2/M (n=2/3). Sensitivity indexes for
the most significant parameters (>0.1) on each output are shown beneath. For K-562, TG is significant in G1 at the time cells
are exiting the phase (5-10h), in S phase at the time they are entering the phase (5-10h), and in G2/M when cells are entering
the phase (15h). Similarly, TS is significant in G1 when cells are entering the phase again (15-20h), in S when cells are exiting
the phase (10-20h) and in G2/M when cells are entering the phase (5-15h). TM is only significant in G2/M throughout and in
the first 2-3h for G1. For MEC-1, TG is significant in G1 and S (to a lesser extent), TS in S and G2/M (in G1 only at 10h); TM
in G2/M only. For MOLT-4, TG is significant after 10h in both G1 and S; TS in S (10h and 15), G1 (45h) and G2/M (0-10h);
TM in G2/M only from 5h. For cyclin E, CE, thr is the most significant parameter, followed by CE,min. The same pattern is seen
for cyclin B, with CB, thr and CB,min (to a lesser extent) appearing significant throughout. Initial conditions (Gini and Sini) only
appear significant in the first few hours (0-3h) in K-562 and MEC-1.
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Figure 4: Recalculation of cyclin B trajectory when accounting for amended initial cell cycle distribution (EdU−). (A)
Entrance of displaced S phase cells at 2-4h into G2/M phase when a small, previously present population of G2/M reaches the
bin where the threshold cyclin B concentration occurs. Effect due to experimental DNA deconvolution errors.
(B) Geometric mean of cyclin B evolution with corrected initial conditions (no cells in the second half of S phase at time zero).
Observe how the match with the model becomes closer.
(C) Residual Sum of Squares (RSS) of the experimental and computational results of (B) over time. All but one data point fall
within the experimental error region (10%).

Figure 5: Live cell density over time. Comparison of experimental results (squares, diamonds, and circles) to modelling
output (dashed lines) for
(A) K-562
(B) MEC-1
(C) Relative residual sum of squares (RSS)
95% confidence regions are shown according to experimental standard deviation (n=3). Simulations performed after adjust-
ment of kinetic parameters in co-culture.
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Figure 6: Forward and backward culture evolution. (A) ternary plot of predicted vs experimental culture evolution: lines
represent model simulation of culture evolution while points denote experimental values
(B) comparison of experimental total cell counts (red dots) vs model output (dashed lines) for T7, T8 and T9
(C) comparison of experimental cell line content (%) to model output given only the initial conditions in 9 different blind tests
(T1-T9) over time
(D) backward prediction of population dynamics in T7, T8 and T9 cultures. E: experimental value; M: model prediction.
Envelopes in (B) and (C) represent 95% confidence areas according to experimental standard deviation, n=3.
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Figure 7: Ranking of scenarios likeliness according to Euclidian distance between experimental data and PBM output.
K/M4/M1 is the right answer in all cases, as correctly guessed by the model. (K: K-562; M4: MOLT-4; M1: MEC-1).

25


	References

