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ABSTRACT. We consider a Boltzmann model introduced by Bertin, Droz and Gŕegoire as a
binary interaction model of the Vicsek alignment interaction. This model considers particles
lying on the circle. Pairs of particles interact by trying toreach their mid-point (on the circle)
up to some noise. We study the equilibria of this Boltzmann model and we rigorously show
the existence of a pitchfork bifurcation when a parameter measuring the inverse of the noise
intensity crosses a critical threshold. The analysis is carried over rigorously when there are only
finitely many non-zero Fourier modes of the noise distribution. In this case, we can show that the
critical exponent of the bifurcation is exactly1/2. In the case of an infinite number of non-zero
Fourier modes, a similar behavior can be formally obtained thanks to a method relying on integer
partitions first proposed by Ben-Naı̈m and Krapivsky.
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1. INTRODUCTION

This paper is concerned with the study of some interaction mechanisms between large col-
lections of agents subject to social interaction. Specifically, we consider a Boltzmann model
introduced in [9] as a binary interaction counterpart of theVicsek alignment interaction [42].
The goal of the present work is to study the equilibria of thisBoltzmann model and to rigorously
show that this model exhibits pitchfork bifurcations (or second order phase transitions).

Systems of self-propelled particles interacting through local alignment have triggered con-
siderable literature since the seminal work of Vicsek and co-authors [42]. Indeed, this sim-
ple model exhibits all the universal features of collectivesystems observed in nature and in
particular, the emergence of symmetry-breaking phase transitions from disorder to globally
aligned phases. We refer for instance to [1, 16, 22, 23, 30, 32] for the study of these phase
transitions. A recent review on this ever-growing literature can be found in [43]. The over-
whelming majority of references rely on Individual-Based Models (IBM) or particle models
[5, 15, 16, 17, 20, 21, 33, 35, 36, 37], mostly with applications to animal collective behavior
from bacterias to mammals [2, 19, 31]. When the number of agents becomes very large, kinetic
models [6, 10, 11, 28, 34, 38] or hydrodynamic models [3, 4, 10, 27, 26, 24, 29, 39, 40, 41] are
more efficient and have received an increasing attention in the literature.

The present work is concerned with a kinetic, Boltzmann-likemodel which has been pro-
posed as a kinetic version of the Vicsek particle model in [8,9, 10]. This model shows strong
similarity with a model proposed by Ben-Naı̈m and Krapivsky in [7]. A zero-noise version
of this model has been studied in [25]; it is shown that generically, Dirac deltas are the stable
equilibria of this model. Here, we study the noisy version ofthis model and show that peaked
equilibria (i.e. noisy versions of the Dirac deltas) emergewhen the noise intensity becomes
smaller than a critical value, and that, at the same time, uniform equilibria become unstable.
Our rigorous proof is limited to the case where the noise has afinite number of Fourier coeffi-
cients, leaving the case of generic noises open. However, some formal results can be found by
adapting the method of integer partitions by Ben-Naı̈m and Krapivsky [7].

The main concern of this paper is the following Boltzmann equation:

∂tf(t, x1) =

∫ π

−π

∫ π

−π

f(t, x′
1)f(t, x

′
2)g(x1 − x̂′

12) β(| sin(x
′
2 − x̂′

12)|)
dx′

1

2π

dx′
2

2π

−f(t, x1)

∫ π

−π

f(t, x2) β(| sin(x2 − x̂12)|)
dx2

2π
.(1)

Here,x̂12 = Arg{ eix1+eix2

|eix1+eix2 |} is the argument (modulo2π) of the midpoint on the smallest arc

on the unit circle betweeneix1 andeix2 , x̂′
12 = Arg{ eix

′

1+eix
′

2

|eix′1+eix
′

2 |
}. The quantity2| sin(x2 − x̂12)|

is the euclidean distance inR2 betweenx1 andx2. As usual in kinetic theory, the collision rate
between two particles is a functionβ of this distance. The unknownf is a probability density
on the circleS1 ≈ R/(2πZ), giving e.g. the distribution of directions in a fish school, andg
is a given probability density modeling the noise in the model. The first term at the right-hand
side (the gain term) expresses the rate at which particles acquire the velocityx1 as a result of
collisions of two particles of velocitiesx′

1 andx′
2. The post-collision velocityx1 of particle1 is

distributed around the “mid-point” (in the sense above)x̂′
12 of the two pre-collisional velocities
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FIGURE 1. The jump process in the BDG model

x′
1 andx′

2 according to the probability distributiong. The loss term (the second term) is found
in a similar way reversing the roles of the pre- and post-collisional velocities. In our caseβ is
just a constant (to mimic “Maxwellian molecules” in gas dynamics) or if one takes a collision
rate proportional to the relative velocities of the particles as usual in kinetic theory,β(x) is
proportional tox. A space-dependent version of this equation was first formulated by E. Bertin,
M. Droz and G. Gŕegoire in [9] as a model for swarm dynamics inspired by the so-called Vicsek
model [42] (see also e.g. [8, 10]). Here, we consider only thedistribution of velocities, so
there are no spatial derivatives in our equation. We also do not include a “self-diffusion” term,
similar to the one in (2 ) below. Thus, the model we consider provides a clean and clear setting
in which to investigate the competing effects of the allignment mechanism and the strength of
the noise which facilitates our rigorous investigation of the critical penomena associated to this
competition.

A rigorous derivation of equation (1) as a limit asN → ∞ of anN -particle system was car-
ried out in [13, 14], where a generalpropagation of chaosresult is obtained forpair interaction
drivenN -particle systems. These are defined as Markov jump processes in anN -fold product
spaceTN = (S1)N , where jumps almost surely only involve two coordinates. The jumps are
triggered by a Poisson clock with rate proportional toN , and the outcome of a jump is indepen-
dent of the clock. A jump involves first a choice of a pair(j, k) from the set1 ≤ j < k ≤ N ,
and then a transitionx 7→ x′, independent of(j, k):

x = (x1, ...., xj , ..., xk, ...., xN ) 7→ (x1, ...., x
′
j , ..., x

′
k, ...., xN ) = x′ .

The jump process behind equation (1) is defined in theN -dimensional torus, represented by
coordinatesxj ∈ [−π, π[ . The jumps take a pair(xj, xk) to

(x′
j, x

′
k) = (x̂jk +Xj, x̂jk +Xk) mod 2π × 2π ,

whereXj andXk are independent and equally distributed angles (see Figure1). Of course this
is not well defined on the setxj = −xk, but that is a set of measure zero, and at least if the
distribution ofxj has a density, this case may be neglected.

An interesting feature of this process is that, although propagation of chaos holds, as required
for the derivation of equation (1), this equation has strongly peaked solutions, which implies
certain dependence between two particles distributed according to the densityf . We will expand
on this statement below, where the formal calculations in going from anN -particle system to
the kinetic equation are repeated.
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The main new results in this paper concern equation (1). First, it is easy to see that the uniform
density,f(x) = 1/2π is a stationary equilibrium, and that the (linearized) stability of this
equilibrium depends on the first momentγ1 of the noise distributiong. The momentγ1 indicates
how peakedg is (the largerγ1, the more strongly peakedg is). Second, in the Maxwellian
case, we explicitly construct non-uniform stationary solutions when the noise distributiong
has a finite number of non-zero Fourier coefficients. We rigorously prove the existence of a
pitchfork bifurcation (or second-order phase transition)whenγ1 crosses a critical valueγc =
π/4. For γ1 ≤ γc, the uniform stationary distributions is stable. Forγ1 > γc and close to it,
there exists another class of equilibria which are stable while the uniform stationary distribution
becomes unstable. Additionally, we can prove that the associated critical exponent is1/2 when
considering the first moment of the stationary solution as anorder parameter. This trnasition
and critcal exponent had been predicted in [9, 10], and our proof bears out their conclusions.

An equation very similar to (1) is studied by Ben-Naim and Krapivsky in [7] as a model for
rod alignment:

∂

∂t
f(x, v) = D

∂2

∂x2
f(x, t) +

∫ π

−π

f(x+ y/2, t)f(x− y/2, t)
dy

2π
− f(x, t) .(2)

While in equation (1) all particles remain fixed between the pair interactions, the model of Ben-
Naim and Krapivsky assumes that each particle follows a Brownian motion between the jumps.
On the other hand, contrary to equation (1), the jumps in equation (2) imply perfect alignment.
More considerations about this model will be found in Section 3, and in particular in Section 6,
where the analysis in [7] is studied in more detail. Their analysis also uses the Fourier series
expansion of the stationary solution, and semi explicit expressions for the Fourier coefficients
are obtained by expanding these coefficients as a power series of the first coefficient,a1. We
adapt their method to our case, and at the same time we try to clarify some technical points of
the method. The result is formal in the sense that we do not prove convergence of any of the
series appearing in the work, but it does provide new insights in the behavior of the model.

The layout of the paper is as follows. In Section 2, we review the simple case where the
model is posed on the real line (instead of the circle). In this case, an explicit formula for
the equilibria can be found in Fourier-transformed variables. Going back to the model posed
on the circle in Section 3, we show that the Fourier coefficients of the distribution function
satisfy a fully-coupled nonlinear dynamical system. The linearization of this system about an
isotropic equilibrium is studied in Section 4. We show that the isotropic equilibrium is unstable
for noise intensities below a certain threshold and that theinstability only appears in the first
Fourier coefficient, suggesting that the first Fourier mode acts as an order parameter for this
symmetry-breaking phase transition. In Section 5, we rigorously prove the emergence of the
phase transition and determine the critical exponent in thecase where the noise probability has
only finitely many non-zero Fourier modes. Indeed, in such a circumstance, any equilibrium
solution has also finitely many non-zero Fourier coefficients, and finding such an equilibium
can be rigorously accomplished using the Implicit FunctionTheorem. We also show that the
critical exponent of the phase transition is equal to1/2. It is interesting to contrast this result
with that of [23] where all critical exponents between1/4 and1 were found for the Vicsek
dynamics. Removing the assumption of finitely many modes, only formal calculations can
be performed at present. The work of Ben-Naı̈m and Krapivsky [7] suggests that the critical
exponent1/2 persists. In Section 6, we relate their integer partition method to our approach.
Finally, conclusions and perspectives are drawn in Section7.
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2. THE MODEL ON THE REAL LINE

In order to get a preliminary sense of the behavior of the model, it is useful to investigate the
more simple case wherex ∈ R. In this case, the Boltzmann equation is given by:

∂tf(t, x1) =

∫ ∞

−∞

∫ ∞

−∞
f(t, x′

1)f(t, x
′
2)g(x1 − x̂′

12) β(|x
′
2 − x̂′

12|) dx
′
1 dx

′
2

−f(t, x1)

∫ ∞

−∞
f(t, x2) β(|x2 − x̂12|) dx2 .

where now,̂x12 = (x1 + x2)/2 andx2 − x̂12 = (x2 − x1)/2. This corresponds to pair interac-
tions given by

(xj, xk) 7→

(

xj + xk

2
+X1,

xj + xk

2
+X2

)

(3)

whereX1 andX2 are two independent, identically distributed random variables. The process
is then similar to models considered in models of trade [18] and is interesting in the present
context mostly because it permits rather explicit calculations. A very similar model was also
obtained [7] as a limit of nearly aligned rods. Another related model that takes into acocunt
spatial heterogeneities is investigated in interesting recent work [12].

By a simple change of variablesx′
2 = x′

1 + y, and using the fact that we look forf being a
probability distribution, the Boltzmann equation in the Maxwellian case simplifies to:

∂tf(t, x) =

∫ +∞

−∞

∫ +∞

−∞
f(t, x′)f(t, x′ + y)g(x− x′ −

y

2
) dxdy − f(t, x) .

We note that this can be written equivalently as

∂tf = (2(f ∗ f)(2·)) ∗ g − f .

(Here, for any functionh on the line,2h(2·) denotes the function rescaled function taking the
value2h(2x) at x. If h is the probability density of a random variableX, then2h(2·) is the
probability density ofX/2.) Therefore, equilibria are solutions of the fixed-point equation:

f = (2(f ∗ f)(2·)) ∗ g ,(4)

which expresses that the distribution ofx1+x2

2
+X whenx1 andx2 are i.i.d. with densityf and

X is a random variable of densityg must be equal tof itself.

Theorem 1. We suppose thatg ∈ P2 ∩ L1(R) ∩ C0(R) whereP2 is the space of probability
measures ofR with bounded second moments. Additionally, we suppose thatg has zero mean.
The solutions inP2 ∩ L1(R) of (4) are given by translations by an arbitrary real number of a
probabilityf ∈ P2 ∩ L1(R) whose Fourier transform̂f(ξ) has the expression:

f̂(ξ) =
∞
∏

j=0

ĝ(ξ/2j)2
j

.

Proof. We define

ĝn(ξ) =
n−1
∏

j=0

ĝ(ξ/2j)2
j

.



6 ERIC CARLEN(1), MARIA C. CARVALHO (2), PIERRE DEGOND(3) AND BERNT WENNBERG(4,5)

We note that̂gn is the Fourier transform ofgn which satisfies the recursion forn ≥ 1:

gn = g ∗ (2gn−1(2·)) ∗ (2gn−1(2·)).(5)

andg0 = g. Now, by recursion,gn is a probability density. Indeed, supposing thatgn−1 is a
probability density, we obtaingn as the convolution of three probability densities. Now, we
write, uniformly on any compact set forξ: ĝ(ξ) = 1− 1

2
γ2ξ

2+ o(ξ2), whereγ2 =
∫

R
g(x) x2 dx

is the second moment ofg. Then, uniformly forξ in any bounded interval andn ∈ N, we get:

log ĝn =
n−1
∑

j=0

2j log

(

1−
1

2
γ2(ξ/2

j)2 + o((ξ/2j)2)

)

= −
1

2
γ2ξ

2

n−1
∑

j=0

2−j +O(ξ2) .

Lettingn → ∞, we get
lim
n→∞

log ĝn(ξ) = −γ2ξ
2 +O(ξ2) ,

uniformly for ξ in any compact set ofR. Hence, this defineŝg∞(ξ) as a continuous function
of ξ which by Levi’s continuity theorem, is the Fourier transform of a probability measureg∞.
Now, takingn → ∞ in (5), we get

g∞ = g ∗ (2g∞(2·)) ∗ (2g∞(2·)).(6)

which expressesg∞ as the convolution of a continuous functiong with a measure(2g∞(2·)) ∗
(2g∞(2·)). Therefore,g∞ is a continuous function and consequently an element ofL1(R).
Finally, by a simple change of variables, (6) is nothing but Eq. (4) withf = g∞. Therefore,g∞
is a solution of (4).

Remark 2. The equilibrium distributiong∞ has a second moment that is twice that ofg. Fig-
ure 2 shows the solution to equation (4) in the case whereg(x) = 1

2
1[−1,1], where1[−1,1] is

the indicator function of the interval[−1, 1]. Wheng is a centered Gaussian, thenf is also a
Gaussian with twice its variance. Indeed, since the convolution of two centered Gaussians is a
centered Gaussian whose variance is the sum of the variances of the factors, it follows from (5)
that eachgn is Gaussian, and then the limiting variance can be read off from (6).

Remark 3. A model where the pair interacts more weakly can be obtained by replacing Equa-
tion (3) with

(xj, xk) 7→ (λxj + (1− λ)xk +X1, (1− λ)xj + λxk +X2) .

One can then proceed in the same way by taking the Fourier transform to get

f̂(ξ) = f̂(λξ)f̂((1− λ)ξ)ĝ(ξ) ,

and as in the case ofλ = 1/2 obtain a solution

f̂(ξ) =
∞
∏

k=0

k
∏

j=0

ĝ
(

λj(1− λ)k−jξ
)(kj) .

In this case the variance off can be expressed in terms of the variance ofg as

Var[f ] =
1

2λ(1− λ)
Var[g]
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FIGURE 2. A solutionf to equation (4) (the blue, thick curve) withg(x) =
1
2
1[−1,1] (red, thick curve) compared with the Gaussian function withthe same

variance (the thin curve).

Now, we are going to apply the same method to the original model posed on the circle. But
we will see that the difficulties are considerably bigger.

3. FOURIER SERIES EXPANSION OF THE MODEL ON THE CIRCLE

Now, we are back to model (1) posed on the circle. We first remark that, by the change of
variablesx′

2 = x′
1+ y, y ∈]−π, π], we havêx′

12 = x′
1+ y/2, x′

2− x̂′
12 = y/2, so that the model

can be written:

∂tf(t, x) =

∫ π

−π

∫ π

−π

(

f(t, x′)f(t, x′ + y)g(x− x′ −
y

2
)

−f(t, x)f(t, x+ y)

)

β̃(y)
dx′

2π

dy

2π
,(7)

where either̃β is constant (in fact, we takẽβ = 1) independent of the velocities of the inter-
acting pair, corresponding to Maxwellian molecules in gas dynamics, or elsẽβ = | sin(y/2)|,
corrsponding to hard-sphere collisions in gas dynamics. Below, we refer to these two choices
for β̃ as the Maxwellian case and the hard-sphere case, respectively.

Multiplying with a test functionφ, integrating over[−π, π], and performing a change of
variables gives the following weak form of the equation,

d

dt

∫

S1

f(t, x)φ(x)
dx

2π

=

∫ π

−π

∫ π

−π

∫ π

−π

f(t, x)f(t, x+ y)g(z)β̃(y) (φ(x+ y/2 + z)− φ(x))
dx

2π

dy

2π

dz

2π
.

(8)
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Note that formally the system conserves mass:
∫ π

−π

f(x, t) dx = Constant.

We may therefore require thatf(x, t) dx is a probability, i.e. take this constant equal to unity.
This means that our equation describes the evolution of the probability density for the velocities.
Since the equation is non-linear, multiplyingf by a constant has an effect, but since the non-
linearity is homogeneous of degree 2, the effect can be absorbed into the time scale (and for the
same reason there is no loss of generality is settingβ̃ = 1 in the Maxwellian case).

Because all functions are periodic, it is natural to considerto rewrite the system in terms of
the Fourier series. Introducing

f(x) =
∞
∑

k=−∞
ake

ikx ak =

∫ π

−π

f(x)e−ikx dx

2π
.

γk = (2π)−1

∫ π

−π

g(z)e−ikzdx, Γ(u) = (2π)−1

∫ π

−π

β̃(y)eiuydy,

we have the following:

Proposition 4. Suppose thatg is even and letak(t) be the Fourier coefficients of a solution of
Eq. (7) which is an even probability density. Then,a0 = 1 andak for k 6= 0 satisfya−k = ak
and solve the following system:

d

dt
ak(t) = ( 2γkΓ(k/2)− Γ(0)− Γ(k) ) ak(t) +

k−1
∑

n=1

(γkΓ(n− k/2)− Γ(n)) an(t)ak−n(t) +

∞
∑

n=k+1

(2γkΓ(n− k/2)− Γ(n)− Γ(n− k)) an(t)an−k(t)(9)

The functionΓ(u), which is to be evaluated only on half-integer points, is

Γ(u) =
sin(πu)

πu
=







1 when u = 0
0 when u ∈ Z \ {0}
2(−1)ℓ

π(2ℓ+1)
when u = ℓ+ 1/2

(10)

in the Maxwellian case, wheñβ(1) ≡ 1; and

Γ(u) =
2− 4u sin(πu)

π − 4πu2
=







2/(π(1− 4u2)) when u ∈ Z

1/π when u = ±1/2
2(−1)ℓℓ+(−1)ℓ−1

2πℓ2+2πℓ
when u = ℓ+ 1/2, ℓ 6= 0,−1

,

in the hard-sphere case, wheñβ(y) = | sin(y/2)|.
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Proof. Takingφ(x) = e−ikz in (8), we get (withak = ak(t)) for k 6= 0

d

dt
ak =

∑

n

∑

m

aman

∫ π

−π

∫ π

−π

∫ π

−π

eimxein(x+y)g(z)β̃(y)
(

e−ik(x+y/2+z) − e−ikx
) dx

2π

dy

2π

dz

2π

=
∑

n

∑

m

aman

∫ π

−π

∫ π

−π

∫ π

−π

g(z)β̃(y)
(

ei((m+n−k)x+(n−k/2)y−kz)−

ei(m+n−k)x+ny)
) dx

2π

dy

2π

dz

2π

=
∑

n

ak−nan

∫ π

−π

∫ π

−π

g(z)β̃(y)
(

ei((n−k/2)y−kz) − ei(ny)
) dy

2π

dz

2π

which leads to
d

dt
ak(t) =

∑

n

ak−n(t)an(t) (γkΓ(n− k/2)− Γ(n))

=
∑

i+j=k

ai(t)aj(t) (γkΓ((j − i)/2)− Γ(j)) .(11)

Using thatγ−k = γk anda−k = ak, we get (9).

Remark 5. Eq. (9) for the Maxwellian case can be simplified and gives:

d

dt
ak(t) = ( 2γkΓ(k/2)− 1 ) ak(t) +

k−1
∑

n=1

γkΓ(n− k/2)an(t)ak−n(t) +

∞
∑

n=k+1

2γkΓ(n− k/2)an(t)an−k(t)

Remark 6. For comparison, we note that the Fourier coefficients of solutions to equation (2)
satisfy

d

dt
ak(t) = −(1 +Dk2)ak(t) +

∑

i+j=k

Γ((i− j)/2)aj(t)ai(t) ,

with Γ as in equation (10) (see[7]). The only essential difference with equation (11) is that the
diffusion term manifests itself as a multiplierDk2 of ak (and moreover that (11) includes the
possibility of non-Maxwellian interactions).

4. THE LINEARIZED EQUATION

It is easy to verify thatf(x) ≡ 1 is a solution, which corresponds toa0 = 1, ak = 0, (k 6= 0).
If f is a solution, then any translation off , i.e. x 7→ f(x + s)) is also a solution. Expressed in
terms of the Fourier coefficients, this means that if(ak)k∈Z is a solution, then so is(akeiks)k∈Z.

To investigate the stability of the uniform density, letf(x, t) = 1+εF (x, t), and letbk(t), k ∈
Z be the Fourier coefficients ofF (x, t). Thenb0 = 0, and fork 6= 0,

d

dt
bk(t) = bk(t) (2γkΓ(k/2)− Γ(0)− Γ(k)) .
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Hence the linearized stability may be determined by analyzing separately the sign of Reλk

where

(12) λk = (2γkΓ(k/2)− Γ(0)− Γ(k)).

Indeed, if Reλk ≤ 0, ∀k ∈ Z, the system is stable, and it is unstable otherwise. Note that λ0 = 0
andλk ∈ R, ∀k ∈ Z in our case.

Remark 7. The uniform density is also stationary for the model in[7], where its stability is
analyzed in very much the same way, giving an explicit expression involving the only parameter
in the model, the diffusion coefficientD.

We assume thatg is even. In both the Maxwellian and hard-sphere case, we havethe:

Theorem 8. We haveλk ≤ 0, ∀k ∈ Z, |k| ≥ 2, meaning that the linearized stability depends
only on the sign ofλ1 = λ−1:

the system is stable⇐⇒ λ1 ≤ 0

Proof. In the Maxwellian case, we have

2Γ(k/2)− Γ(0)− Γ(k) =
4 sin

(

kπ
2

)

kπ
− 1.

It is easily seen that the right-hand side is negative when|k| ≥ 2. Hence it is onlyλ1 that may
become positive, and therefore the condition for stabilityof the uniform solution is thatγ1 ≤ π

4
.

In the hard-sphere case, we find that2Γ(1/2)− Γ(0)− Γ(1) = 2/(3π), and that fork > 1,

2Γ(k/2)− Γ(0)− Γ(k) = −
4
(

2k4 − 4 sin
(

kπ
2

)

k3 + k2 + sin
(

kπ
2

)

k
)

(k2 − 1) (4k2 − 1) π

BecauseΓ is an even function, it is enough to considerk ≥ 2, and in that case the numerator is
larger than

4

(

2k4 − 4 sin

(

kπ

2

)

k3 + k2 + sin

(

kπ

2

)

k

)

≥ 4
(

2k4 − 4k3 + k2 − k
)

≥ 4(k2 − k) > 0

and hence we may deduce thatλk < 0 for |k| > 1 also in this case. Ifγk changes sign the
calculation is more complicated, but the result is the same:it is only the first Fourier modes of
the solutionf that may cause instability of the uniform stationary states.

For concreteness, we now consider a family of distributionsg(y) defined as the periodization
of 1

τ
ρ( y

τ
), whereρ is a given even probability density onR:

gτ (y) = 2π
∞
∑

j=−∞

1

τ
ρ(
y − 2πj

τ
).

Then

γk(τ) =

∫ π

−π

e−iky2π
∞
∑

j=−∞

1

τ
ρ(
y − 2πj

τ
)
dy

2π
=

∫ ∞

−∞
e−iτkyρ(y) dy = ρ̂(τk) .
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An example isρ(x) = 1√
2π
e−x2/2 which givesρ̂(τk) = e−(τk)2/2. Whenτ is small, the noise

is small, and whenτ is large, the noise is also very large, andgτ converges to the uniform
distribution whenτ → ∞. Therefore,γ1(τ) is a continuous function ofτ with γ1(0) = 1 and
γ1(τ) → 0 asτ → ∞. Thenλ1 = λ1(τ) ≤ 0 for τ large andλ1 > 0 for τ small. This shows
that the system is linearly stable for large values ofτ and unstable for small ones.

5. AN EXPLICIT EXAMPLE WITH BIFURCATION

The calculation here is restricted to the Maxwellian case, and we only look for even solutions,
expressed as a Fourier cosine series. Hence we wish to solve

ak = 2γkΓ(k/2)ak + γk

k−1
∑

n=1

Γ(n− k/2)anak−n +

2γk

∞
∑

n=k+1

Γ(n− k/2)anan−k(13)

for k ≥ 1. Note thatγk is a factor for all terms in the right hand side, implying thatif g only has
finitely many terms in the Fourier series, only the corresponding terms are nonzero inf .

We will conisderg as a member of a parameterized faimily of noise distributions gλ so that
changing the parameter corresponds to changing the strength of the noise. The Fourier coeffi-
cents ofgλ will depend onλ. In the first model we consider below (based on the Fejér kernel),
γ1(λ) is monotone – even linear – inλ, and we may therefore regardλ as a function ofγ1. That
is, we may take the first Fourrier coefficent as the parameter for this family of noise distribu-
tions. Asγ1 is varied, the other Fourier coefficent vary along with it to keep the shape of the
distribution consistent with our chosen one parameter family.

So, here we make the following assumption on the noise distribution:

Assumption 9. We assume thatg = gγ1 is a family of noise distributions with a finite number
of non-zero Fourier coefficients: for someN < ∞,

gγ1(x) = 1 + 2γ1 cos x+ 2
N
∑

k=2

γk(γ1) cos kx, ∀x ∈]− π, π].

with C2 functionsγ1 ∈ [0, 1] 7→ γk(γ1) ∈ [−1, 1] and withγ2 such that

γ2(γ1) > 0.

Note thatg is a probability measure as soon asg ≥ 0. We can now state the following

Theorem 10. Consider a one-parameter family of noise functionsgγ1 satisfying Hypothesis 9.
Then:

(i) The uniform distribution, with Fourier coefficientsa0 = 1, ak = 0 (k ≥ 1) is stationary.
It is stable forγ1 < π/4 and unstable forγ1 > π/4.

(ii) In an interval π
4
< γ1 < γmax there is another invariant solution to the dynamic prob-

lem, with Fourier coefficientsa0 = 1,

a1 =
√

12(γ1−π/4)
πγ2(π/4)

+O((γ1 − π/4)3/2), ...., ak = 0 (k > N) .
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(iii) This solution is linearly stable with a leading eigenvalueλ(γ1) = 1 − 8
π
(γ1 − π/4) +

O((γ1 − π/4)3/2).

Before proving this theorem, we give a few comments. One is tempted to think that the same
result would hold for any noise distribution, at least provided its Fourier coefficients decay
sufficiently fast, but to prove that rigorously requires an additional estimate showing thatγmax

does not converge toπ/4 when the number of coefficients increases.
We illustrate the theorem by showing numerical calculations using the family of noise distri-

butions obtained as a convex combination of a Fejér kernel and of the uniform distribution.

gλ(x) =(1− λ) + λ
1

N

(

sin(Nx/2)

x/2

)2

.

For such a noise distribution, we haveγk = λ(N−k)/N for 1 ≤ k < N . Therefore, this family
can be put in the framework of Hypothesis 9 if we linkλ to γ1 by λ = N

N−1
γ1. In the numerical

simulations, we useN = 9. Fig. 3 shows the Fourier coefficienta1 as a function of the param-
eterγ1. This figure exhibits a typical pitchfork bifurcation pattern. The order parametera1 is
identically zero as long asγ1 is less than the critical valueγ1c = π/4 and the associated uni-
form equilibrium is stable. Whenγ1 becomes larger than the critical valueγ1c a second branch
of non-uniform equilibria starts. This branch is stable while the branch of uniform equilibria
becomes unstable. In fact the non-uniform equilibria formsa continuum, because the system
is rotationally invariant, and therefore, iff is a non-isotropic equilibrium, then anyf(eiθ0x)
with θ0 ∈]0, 2π[ is another equilibrium. This feature is represented by the lower branch in the
diagram. In physical terms, the system exhibits a symmetry-breaking second-order phase tran-
sition asγ1 crossesγ1c. From the point (ii) of the theorem, it appears that the critical exponent

is 1/2, i.e. the order parameter behaves likea1 ∼ (γ1 − γ1c)
1/2 whenγ1

≥
→ γ1c. Fig. 4 shows

the noise functiong and the corresponding stationary solutionf whenγ1 = π/4 + 0.1.

7Π
32

Π

4
9Π
32

-0.6

-0.3

0.3

0.6

FIGURE 3. The stationary solution̄a1 plotted as a function ofγ1. The noise
function is a parameterized Fejér kernel of order 9.

Proof of Theorem 10.The first statement, (i), is an immediate consequence of the analysis of
the linearized system in Section 4.



A BOLTZMANN MODEL FOR ROD ALIGNMENT AND SCHOOLING FISH 13

0 Π

4
Π

2
3Π
4

Π

1

2

3

4

FIGURE 4. The parameterized Fejér kernel of order 9 withγ1 = π/4+0.1 (red),
and the corresponding solutionf(x) (blue)

To prove (ii) and (iii) we first note that in the Maxwellian case,Γ(n − k/2) = 0 whenk is
even and different from2n. Therefore, ifk 6= 0 is even, there is only one non-zero term in the
right hand side (13) and we get:

ak = γkak/2
2 , ∀k 6= 0, k even.

We now concentrate on the case ofk odd. First, after a minor reformulation,

a1 = 2γ1Γ(1/2)a1 + 2γ1Γ(3/2)a2a1 + 2γ1

N
∑

n=3

Γ(n− 1/2)anan−1 ,

a3 = 2γ3Γ(3/2)a3 + 2γ3Γ(1/2)a2a1 + 2γ3Γ(5/2)a4a1 + 2γ3

N
∑

n=5

Γ(n− 3/2)anan−3

...

ak = 2γkΓ(k/2)ak + 2γkΓ(1− k/2)ak−1a1 + 2γk

(k−1)/2
∑

n=2

Γ(n− k/2)anak−n+

+ 2γkΓ(1 + k/2)ak+1a1 + 2γk

N
∑

n=k+2

Γ(n− k/2)anan−k

Becausek is odd, eithern orn−k is even. So all terms contain a factor of the formapaq, where
p is odd andq ≥ 2 is even. Above we have separated all terms that contain a factor a1. We write
q in factorized form as

q = ω(q)2m(q) ≡ 2ω(q)η(q)
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with ω(q) containing all odd factors ofq. With this notation,

aq = γqa
2
ω(q)2m(q)−1 = γqγ

2
ω(q)2m(q)−1a

22

ω(q)2m(q)−2 = ...

= γq

m(q)−1
∏

j=1

γ2j

ω(q)2m(q)−ja
2m(q)

ω(q) ≡ γ̃qa
2η(q)
ω(q) .(14)

If a1 6= 0, we may writeap = a1ãp for all p odd (this obviously holds also forp = 1, with
ã1 = 1), and then

aqap
a1

= γ̃qγ
−η(q)
2 a

η(q)
2 ã

2η(q)
ω(q) ãp .(15)

Inserting these expressions in the equation fora1 we get, after dividing through bya1, and using
Γ(x) = sin(πx)

πx
,

0 =

(

4

π
γ1 − 1

)

−
4

3π
γ1a2 + γ1R2 ≡ F2(γ1, a2, ã3, ã5, ...) ,

whereR2 is a sum of terms of the form (15) withp ≥ 3 andq ≥ 2, i.e. monomials ina2 and
ãp, p = 3, 5, 7... of degree at least two. Similarly the equation fora3 becomes

0 =
4

π
γ3a2 −

(

4

3π
γ3 + 1

)

ã3 + γ3R3 ≡ F3(γ1, a2, ã3, ã5, ...) ,

where againR3 is a sum of monomials of order at least two. And the remaining equations are
of the form

0 = (2Γ(k/2)γk − 1) ãk + γkRk ≡ Fk(γ1, a2, ã3, ã5, ...) ,

with Rk as before. We have replaced allγk by γ1 owing to the parametrization ofγk by γ1.
As written here, the functionsFk depend only on one coefficient,γ1. Here we also note that
γk = 0 implies thatãk = 0, and hence restricting the analysis to noise functions withonly
finitely many non-zero coefficients, the system of equations(Fk = 0)k=2,3,5,... is reduced to a
system of polynomial equations for the unknowns(a2, ã3, . . . , ãN), with a right-hand side being
a function ofγ1.

We observe that at the critical value of the parameter,γ1 = π/4, the right-hand side as a
function ofγ1 vanishes. Hence, the polynomial system has no degree zero term and is solved
by a2 = ã3 = ã3 = ... = ãn = 0. The implicit function theorem then implies that for a
sufficiently small interval aroundγ1 = π/4, there is a solutiona2(γ1), ã3(γ1), ..., ã3(γ1) if the
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Jacobian

J =















∂F2

∂a2

∂F2

∂ã3
... ∂F2

∂ãN

∂F3

∂a2

∂F3

∂ã3
... ∂F3

∂ãN
...

...
...

∂FN

∂a2

∂FN

∂ã3
... ∂FN

∂ãN















=















−4γ1
3π

+ γ1
∂R2

∂a2
γ1

∂R2

∂ã3
... γ1

∂R2

∂ãN

4γ3
π

+ γ3
∂R3

∂a2
−
(

4γ3
3π

+ 1
)

+ γ3
∂R3

∂ã3
... γ3

∂R3

∂ãN
...

...
...

γN
∂RN

∂a2
γN

∂RN

∂ã3
... 2(γNsinc(πN/2)− 1) + γN

∂RN

∂ãN















is invertible atγ1 = π
4
, a2 = ã3 = ... = ãN = 0. Because all theRk are polynomials of degree

greater than two, we find that at the critical point

J =













−1
3

0 ... 0

4γ3
π

−
(

4γ3
3π

+ 1
)

... 0
...

...
...

0 0 ... 2(γNsinc(πN/2)− 1)













Moreover, since, as seen before, theRk’s are sums of monomials in(a2, ã3, . . . , ãN) of degree
at least two, and thanks to the assumption thatγk(γ1) is C1, we have:

(

∂F2

∂γ1

)

γ1=
π
4
,a2=ã3=...=ãN=0

=
4

π
(

∂Fk

∂γ1

)

γ1=
π
4
,a2=ã3=...=ãN=0

= 0 k = 3, 5, ..., N .

The implicit function theorem then implies that sufficiently nearγ = π/4, the polynomial
system can be solved, and that the solutionsa2, ã3, ã5, ..., ãN are differentiable functions ofγ1,
with

d

dγ1









a2
ã3
...
ãN









= J−1 d

dγ1









F2

F3
...

FN









,

where all derivatives in the right hand side are to be evaluated at the critical point. Computing
the inverse of the Jacobian, we find easily thata′2(π/4) = 12/π, and with a little more effort
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that ã′3(π/4) =
144γ3

4πγ3+3π2 , and then that̃a′k(π(4) = 0 for k > 3. Hence

a2(γ1) =
12

π

(

γ1 −
π

4

)

+O

(

(

γ1 −
π

4

)2
)

,

ã3(γ1) =
144γ3

4πγ3 + 3π2

(

γ1 −
π

4

)

+O

(

(

γ1 −
π

4

)2
)

,

ãk(γ1) = O

(

(

γ1 −
π

4

)2
)

, k = 5, 7, 9, ...

The Fourier coefficientsa1, ...., aN of a stationary solution may now be computed directly
from a2(γ1), ã3(γ1), ..., ãN (γ1) usingap = a1ãp and Eq. (14). Becausea2 = γ2a

2
1 andγ2 > 0,

and because we expect all coefficientsa1, ..., aN to be real, onlyγ1 ≥ π/4 yields an admissible
solution. All coefficients are continuous functions ofγ1, and therefore whenγ1 − π/4 is suffi-
ciently small, the Fourier cosine series with these coefficients is non-negative. Interestingly the
behavior ofa2 near the critical point is completely independent of the other coefficients of the
noise function thanγ2.

The uniform distribution, withak = 0, k = 1, 2, 3.... is always a stationary solution, and
the linearized analysis from Section 4 showed that this solution is stable forγ1 < π/4 and
unstable forγ1 > π/4. The analysis in this section shows that in an intervalπ/4 < γ1 <
γmax there is a new invariant solution defined by the coefficientsā1(γ1), ...., āN (γ1) defined
as above. It now remains to prove that this new solution is linearly stable. Settinga(t) =
(a1(t), a2(t), ..., aN (t))

tr, we may write Eq. (9) as

d

dt
a(t) =Q(γ1 : a(t))− a(t) ,

whereQ(γ1 : a) is a vector whosek-th element is given by the right hand side of Eq. (13).
To prove linear stability of the stationary distributionsā(γ1) computed from above amounts to
proving that the eigenvalues of the Jacobian matrix

∂

∂a
Q(γ1 : ā(γ1)) =

(

∂

∂aj
Qk(γ1 : ā(γ1))

)N

j,k=1

all lie inside the unit circle. The characteristic polynomial is

p(γ1, λ) = det

(

∂

∂a
Q(γ1 : ā(γ1))− λI

)

.

At γ1 = π/4, a1 = ... = aN = 0, ∂
∂a
Q(γ1 : ā(γ1)) is a diagonal matrix whose diagonal entries

are the coefficientsλk + 1 as determined by (12). They are explicitly given here by:

1, 0, −
4

3π/2
γ3, 0,

4

5π/2
γ5, .....

They all lie inside the unit circle except the first one. They are continuous functions ofγ1
Therefore, asγ1 is moved around the critical valueπ/4 by a small amount, they all stay within
the unit circle, except perhpas the first one, which are goingto study now. We note that,λ = 1
is a simple eigenvalue at this point:

p(
π

4
, 1) = 0 .
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We will now again use the implicit function theorem to show that there is a functionλ(γ1) such
thatλ(π/4) = 1, p(γ1, λ(γ1)) = 0, and

λ′(
π

4
) = −

(

∂p(γ1, λ)

∂λ

)−1

γ1=
π
4
,λ=1

(

∂p(γ1, λ)

∂γ1

)

γ1=
π
4
,λ=1

= −
8

π
(16)

This implies that forγ1 > π/4, sufficiently small,|λ(γ1)| < 1, and thatā(γ1) is a stable
(hyperbolic) fixed point for the system in Eq. (9) in the Maxwellian case and withN non-zero
noise coefficientsγk.

To obtain (16) we write∂
∂a
Q(γ1 : ā(γ1)) − λI in more detail. Explicitly for 5 non-zero

coefficientsγk, this matrix is equal to:
































−
4a2γ1
3π +

4γ1
π − λ 2

(

2a3
5π − 2a1

3π

)

γ1 2
(

2a2
5π − 2a4

7π

)

γ1 2
(

2a5
9π − 2a3

7π

)

γ1
4a4γ1
9π

2a1γ2 −λ 0 0 0

4a2γ3
π +

4a4γ3
5π

4a1γ3
π −

4a5γ3
7π −

4γ3
3π − λ

4a1γ3
5π −

4a2γ3
7π

0 2a2γ4 0 −λ 0

−
4a4γ5
3π

4a3γ5
π

4a2γ5
π −

4a1γ5
3π

4γ5
5π − λ

































Substitutingγ1 with π/4 + τ andλ with 1 + µ we find, retaining only the lowest order terms in
each coefficient and only coefficients of order one or less inτ andµ,



































−µ −4a1τ
3π − a1

3
12τ
5π 0 0

2a1γ̄2 −1 0 0 0

48τ γ̄3
π2

4a1γ̄3
π −

4γ̄3
3π − 1

4a1γ̄3
5π −

48τ γ̄3
7π2

0
24τ γ̄4
π 0 −1 0

0 0
48τ γ̄5
π2 −

4a1γ̄5
3π

4γ̄5
5π − 1 .



































In this expression̄γk = γk(π/4). It is easy to see that this matrix has essentially the same
form for any number of non-zero coefficientsγk, a five-diagonal matrix where the diagonal
elements except the first one are of orderO(1) and all other elements areO(µ+ τ 1/2) (because
ā1 ∼ ā

1/2
2 = O(τ 1/2)). Hence, expanding the determinant, we find, after some computation,

that

p(
π

4
+ τ, 1 + µ) = CN(µ+

2

3
γ̄2a

2
1) +O(µ2 + τ 3/2)

= CN(µ+
2

3
a2) +O(µ2 + τ 3/2)

= CN(µ+
8

π
τ) +O(µ2 + τ 3/2)
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whereCN is the product of the diagonal elements from row three and below. And we conclude,
as stated in eq. (16) that

−
∂p

∂γ1
/
∂p

∂λ
= −8/π ,

when evaluated at the critical pointγ1 = π/4, λ = 1. Again we note that this is independent of
the Fourier coefficients of the noise function.

6. THE METHOD OF PARTITIONS OF INTEGERS BYBEN-NAIM AND KRAPIVSKY

In this section we adapt a method of Ben-Naim and Krapivsky [7]to the construction of
invariant densities for our equation in the Maxwellian case. We no longer require Hypothesis 9,
but on the other hand, we shall not control the convergence ofinfinite sums, and our conclusions
are therefore formal. Nonetheless, as in [7], the method provides another view of the phase
transition studied here.

With γk defined as above andΓ(u) = sin(πu)/(πu), we let

Gi,j =
γi+j

1− 2γi+jΓ
(

i+j
2

)Γ

(

i− j

2

)

,

which is defined fori, j ∈ Z. Clearly

Gi,j = Gj,i, Gi,j = G−i,−j, and Gj,j = γ2j .

Also

(17) Gi,j = 0 when (i− j) 6= 0 is even,

whereas forj − i odd,Gi,j satisfies

|Gi,j| ≤
|γi+j|

1− 4|γi+j|/(π|i+ j|)

2

π|i− j|
.

Because we only look for even solutions,aj = a−j, equation (9) may now be written

ak =
k−1
∑

j=1

Gk−j,jak−jaj + 2
∞
∑

j=1

Gk+j,−jak+jaj .(18)

It follows from (17) and (18) that whenk is a power of two, one can expressak in terms of
a1 = a−1. Hence withk = 2m,

a2m = γ2m (a2m−1)2 ,

and iterating gives

(19) a2m =
m−1
∏

j=0

(γ2m−j)2
j

a2
m

1 .

One might hope that it is possible to expresseveryak as, if not a polynomial ina1, at least as
a power series ina1. The strategy in [7] provides such an expression, anda1 itself is considered
anorder parameterand denotedR: for k ≥ 2,

ak =
∞
∑

n=0

pk,nR
|k|+2n ,(20)
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where the the coefficientspk,n are a sum of various products ofGi,j computed using a gener-
alized integer partition ofk as a sum ofk + n terms of+1 andn terms of−1. The formula
corresponding to (20) in [7] is written withk instead of|k| in the exponent ofR, and this leads
to the erroneous formula (15) in their paper. We will now derive a correct replacement of their
formula (15) adapted to our case.

6.1. The recursion formula. Here we look for an invariant densityf whose Fourier coeffi-
cients,ak (k ≥ 2) are given by a power series inR of the form (20), using, of course,k = |k|.
Fora1, there is such a representation,

(21) p1,n = δn,0 =

{

1 if n = 0
0 if n 6= 0

but we will also use a different representation in whichp1,0 = 0. Combining the two expressions
gives the equation

R =
∞
∑

n=0

p1,nR
1+2n ,

from which the value ofR can be determined. Clearly,R = 0 is a solution, corresponding to
the uniform distributionf = (2π)−1.

Lemma 11. For each positive integerk, let {pk,n} be a sequence of numbers such that the
power series

∑∞
n=0 pk,nz

k+2n has radius of convergence at least one. For−1 < R < 1, define

a−k(R) = ak(R) =
∞
∑

n=0

pk,nR
k+2n .

Then theak(R) satisfy (18) for allR and allk ≥ 1 if and only if the numbers{pk,n} for k ≥ 1
andn ≥ 0 satisfy

(22) pk,n =
k−1
∑

j=1

n
∑

ℓ=0

Gk−j,jpk−j,ℓpj,n−ℓ + 2
n

∑

j=1

n−j
∑

ℓ=0

Gk+j,−jpk+j,ℓpj,n−(j+ℓ) .

Note that forn = 0 the second sum is zero.

Proof. Takek ≥ 0. Substituting (20) into equation (18) gives
∞
∑

n=1

pk,nR
k+2n =

k−1
∑

j=1

∞
∑

ℓ=0

∞
∑

m=0

Rk+2(ℓ+m)Gk−j,j pk−j,ℓ pj,m

+ 2
∞
∑

j=1

∞
∑

ℓ=0

∞
∑

m=0

Rk+2(j+ℓ+m)Gk+j,−j pk+j,ℓ pj,m .(23)

Equating coefficients of like powers ofR, we obtain (22). Conversely, if (22) is satisfied for all
k ≥ 2, then (23) is also satisfied fork ≥ 2. �

As the proof of the lemma show, if we could find numberspk,n such that (22) is satisfied for
all k ≥ 1, then we would construct a family, parameterized byR, of solutions (not necessarily
positive) of the invariant measure equation.

This, of course, is more than we expect to find, and so the lemmamust be supplemented by
two things: (1) A construction of the numberspk,n. (2) A mechanism for selecting a particular
value ofR.
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Following [7], we present a recursive construction of the numberspk,n, and a consistent
argument for determiningR.

6.2. The recursion formula. We need some known values of thepk,n to start the recursive
construction. First, notice that whenk is a power of two, there is only one non-zero term in the
right-hand side of (22), and a simple recursion gives

(24) p2m,n =
m−1
∏

j=0

(γ2m−j)2
j

δn,0 ,

which is consistent with (19).
On the other hand, equation (22) is inconsistent with (21). Indeed, fork = 1, the first sum

in (22) is zero because the range of summation is empty. Then for n = 0 also the second sum
is zero, so,p1,0 = 0. This can be seen already in (23), because there, in the righthand side, the
smallest power ofR that is present isR1+2(j−m−ℓ) with j = 1 andm = ℓ = 0, i.e.R3. However,
the coefficient ofR3 is a multiple ofp1,0, sop1,1 = 0 as well. Hence the first non-vanishing
coefficient fora1 is p1,2.

This discrepancy is the source of the criterion for selecting a particular value ofR that yields
an invariant density.

To start the recursive determination of the coefficients, note that whenn = 0, the range in the
second sum in (22) is empty. Thus, we have

pk,0 =
k−1
∑

j=1

Gk−j,jpk−j,0pj,0 .

Since as noted abovep1,0 = 1 andp2,0 = γ2, p3,0 is determined and then, recursively, so ispk,0
for all k.

Next, we considerpk,n for k = 1. Specializing (22) tok = 1, we obtain

p1,n = 2
n

∑

j=1

n−j
∑

ℓ=0

G1+j,−j p1+j,ℓ pn−(j+ℓ) .

The first two terms in this sequence are

p1,2 = 2G3,−2 p3,0 p2,0 ,

and
p1,3 = 2 (G2,−1p2,0 p1,2 +G3,−2p3,1 p2,0) .

Here we have usedp1,0 = p1,1 = p2,1 = 0, the latter being true because of (24), which reduces
to p2,n = γ2δn,0 whenk = 2. All terms in the expression forp1,2 have been determined above.
To computep1,3, we needp3,1. However,

p3,1 =
2

∑

j=1

1
∑

ℓ=0

Gk−j,jpk−j,ℓpj,1−ℓ + 2G4,−1p4,0p1,0 .

Sincep4,0 is known, we havep3,1 and hencep1,3. So far, we have determined the values of all
pk,n for all k+n ≤ 4, and then some. From here it is not hard to see that the values of all of the
pk,n are determined. For a discussion of this in terms of integer partitions, see [7]. Though all
of the coefficients are determined, it does not seem to be a simple matter to estimate the size of
the coefficients in a manner that is useful for proving that they do define power series with even
a positive radius of convergence.
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6.3. The consistency condition.At this stage, we have the coefficientspk,n for all k ≥ 1 and
all n ≥ 0. The equations (22) are satisfied for allk ≥ 1, by construction, but not, as we have
pointed out, fork = 1 by the coefficients given in (21), which corresponds toa1(R) = R for all
−1 < R < 1.

Nonetheless, assuming convergence, we have from (19) thatR = a1. Using the coefficients
derived above, we have

a1(R) =
∞
∑

0

p1,nR
1+2n ,

and the first non-vanishing term in the power series on the right is forn = 2, so thata1(R) ∼ R5

atR = 0.
Therefore, any value ofR giving an invariant measure must satisfy

R = a1(R) ,

wherea1(R) is the function defined by the power series derived above. Of course, there is
always the solutionR = 0. However, there may be other solutions. In [7], the functiona1(R) is
approximately computed numerically and plotted. For noiseparameters such thatR = a1(R)
has a non-zero solution, they find a non-trivial invariant measure. However, rigorous analysis of
this construction, and especially analysis of stability ofthe invariant measures so constructed,
seems difficult, and this has motivated our different treatment. While less general in its scope,
due to Hypothesis 9, it does permit rigorous analysis.

7. CONCLUSION

In this paper, we have studied a Boltzmann model intended to provide a binary interaction de-
scription of alignment dynamics which appears in swarming models such as the Vicsek model.
In this model, pairs of particles lying on the circle interact by trying to reach their mid-point up
to some noise. We have studied the equilibria of this Boltzmann model and, in the case where
the noise probability has only a finite number of non-zero Fourier coefficients, rigorously shown
the existence of a pitchfork bifurcation as a function of thenoise intensity. Such a transition had
been predicted, with the correct critical exponent, in [9, 10]. In the case of an infinite number
of non-zero Fourier modes, we have adapted a method proposedby Ben-Näım and Krapivsky
to show (at least formally) that a similar behavior can be obtained. In the future, we expect
to be able to show the rigorous convergence of the infinite series involved in the Ben-Naı̈m
and Krapivsky argument, and therefore, to give a solid mathematical ground also to this case.
Extensions of the model to higher dimensional spheres or other manifolds is also envisionned.
Finally, the non-isotropic equilibria found beyond the critical threshold will allow us to develop
non-trivial Self-Organized Hydrodynamics, as done earlier in the case of the Vicsek mean-field
dynamics [8, 9, 10].
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