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ABSTRACT. We consider a Boltzmann model introduced by Bertin, Drod @megoire as a
binary interaction model of the Vicsek alignment interasti This model considers particles
lying on the circle. Pairs of particles interact by tryingreach their mid-point (on the circle)
up to some noise. We study the equilibria of this Boltzmanmdeh@nd we rigorously show
the existence of a pitchfork bifurcation when a parameteasueng the inverse of the noise
intensity crosses a critical threshold. The analysis id@dover rigorously when there are only
finitely many non-zero Fourier modes of the noise distriloutiln this case, we can show that the
critical exponent of the bifurcation is exactly2. In the case of an infinite number of non-zero
Fourier modes, a similar behavior can be formally obtaihetiks to a method relying on integer
partitions first proposed by Ben-Na and Krapivsky.
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1. INTRODUCTION

This paper is concerned with the study of some interactioohaweisms between large col-
lections of agents subject to social interaction. Spedificare consider a Boltzmann model
introduced in [9] as a binary interaction counterpart of Wesek alignment interaction [42].
The goal of the present work is to study the equilibria of Bidtzmann model and to rigorously
show that this model exhibits pitchfork bifurcations (oceed order phase transitions).

Systems of self-propelled particles interacting througgal alignment have triggered con-
siderable literature since the seminal work of Vicsek andgthors [42]. Indeed, this sim-
ple model exhibits all the universal features of collectsystems observed in nature and in
particular, the emergence of symmetry-breaking phasesitrans from disorder to globally
aligned phases. We refer for instance to [1, 16, 22, 23, 3Ppf@2he study of these phase
transitions. A recent review on this ever-growing literatgan be found in [43]. The over-
whelming majority of references rely on Individual-Based déts (IBM) or particle models
[5, 15, 16, 17, 20, 21, 33, 35, 36, 37], mostly with applicasido animal collective behavior
from bacterias to mammals [2, 19, 31]. When the number of agetomes very large, kinetic
models [6, 10, 11, 28, 34, 38] or hydrodynamic models [3, 4210 26, 24, 29, 39, 40, 41] are
more efficient and have received an increasing attentionaiterature.

The present work is concerned with a kinetic, Boltzmann-fikedel which has been pro-
posed as a kinetic version of the Vicsek particle model irf[8,0]. This model shows strong
similarity with a model proposed by Ben-ha and Krapivsky in [7]. A zero-noise version
of this model has been studied in [25]; it is shown that gexadli, Dirac deltas are the stable
equilibria of this model. Here, we study the noisy versionha$ model and show that peaked
equilibria (i.e. noisy versions of the Dirac deltas) emeardesn the noise intensity becomes
smaller than a critical value, and that, at the same timdptmiequilibria become unstable.
Our rigorous proof is limited to the case where the noise Hasta number of Fourier coeffi-
cients, leaving the case of generic noises open. Howevae $ormal results can be found by
adapting the method of integer partitions by BerifNand Krapivsky [7].

The main concern of this paper is the following Boltzmann ¢igua
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Here, i1, = Arg{lf“ﬂ} is the argument (modulr) of the midpoint on the smallest arc

izl+ei12‘
on the unit circle betweeef™ ande’*, i, = Arg{%}. The quantity2| sin(zs — Z12)|
e e

is the euclidean distance R? betweenr; andx,. As usual in kinetic theory, the collision rate
between two particles is a functighof this distance. The unknowfiis a probability density
on the circleS' ~ R/(27Z), giving e.g. the distribution of directions in a fish school, and
is a given probability density modeling the noise in the miodée first term at the right-hand
side (the gain term) expresses the rate at which particlgsirgcthe velocityr; as a result of
collisions of two particles of velocities, andz;,. The post-collision velocity; of particlel is
distributed around the “mid-point” (in the sense abai/g)of the two pre-collisional velocities
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FIGURE 1. The jump process in the BDG model

x} andz), according to the probability distribution The loss term (the second term) is found
in a similar way reversing the roles of the pre- and postisiolhal velocities. In our casé is
just a constant (to mimic “Maxwellian molecules” in gas dgmes) or if one takes a collision
rate proportional to the relative velocities of the padichs usual in kinetic theorg(x) is
proportional tar. A space-dependent version of this equation was first faatedlby E. Bertin,
M. Droz and G. Gegoire in [9] as a model for swarm dynamics inspired by theated Vicsek
model [42] (see also e.g. [8, 10]). Here, we consider onlydisgéribution of velocities, so
there are no spatial derivatives in our equation. We alsoaddnclude a “self-diffusion” term,
similar to the one in (2 ) below. Thus, the model we considevigles a clean and clear setting
in which to investigate the competing effects of the alliggmhmechanism and the strength of
the noise which facilitates our rigorous investigationha tritical penomena associated to this
competition.

A rigorous derivation of equation (1) as a limit &s— oo of an N-particle system was car-
ried out in [13, 14], where a genealopagation of chaosesult is obtained fopair interaction
driven N-particle systemsThese are defined as Markov jump processes iV dnld product
spaceT? = (S')¥, where jumps almost surely only involve two coordinatese jumps are
triggered by a Poisson clock with rate proportionaMpand the outcome of a jump is indepen-
dent of the clock. A jump involves first a choice of a pgirk) from the setl < j < k < N,
and then a transition — 2/, independent ofy, k):

L= (L1, 0oy Ty ooy Ty ooy TN) = (1,0, Ty oy Ty oy o) = 2
The jump process behind equation (1) is defined inXhdimensional torus, represented by
coordinates;; € [—m, w[. The jumps take a pair;, z) to

(;L*;7Q;;€) = (i’]k —Q—Xj,fjk —|—Xk) mod 21 X 27’(’,

whereX; and X, are independent and equally distributed angles (see Figufef course this
is not well defined on the set; = —xy, but that is a set of measure zero, and at least if the
distribution ofz; has a density, this case may be neglected.

An interesting feature of this process is that, althougipagation of chaos holds, as required
for the derivation of equation (1), this equation has sthpmgaked solutions, which implies
certain dependence between two particles distributed-dicapto the density’. We will expand
on this statement below, where the formal calculations inggérom an/N-particle system to
the kinetic equation are repeated.
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The main new results in this paper concern equation (1)t, Rirs easy to see that the uniform
density, f(z) = 1/27 is a stationary equilibrium, and that the (linearized) Bitgbof this
equilibrium depends on the first momentof the noise distributiong. The momenty; indicates
how peaked; is (the largery,, the more strongly peakeglis). Second, in the Maxwellian
case, we explicitly construct non-uniform stationary siolus when the noise distribution
has a finite number of non-zero Fourier coefficients. We adgsely prove the existence of a
pitchfork bifurcation (or second-order phase transitiatien~; crosses a critical valug. =
/4. Forv; < 7., the uniform stationary distributions is stable. Fgr> ~. and close to it,
there exists another class of equilibria which are stabliéaie uniform stationary distribution
becomes unstable. Additionally, we can prove that the &stsatcritical exponent is/2 when
considering the first moment of the stationary solution asraer parameter. This trnasition
and critcal exponent had been predicted in [9, 10], and cawfdyears out their conclusions.

An equation very similar to (1) is studied by Ben-Naim and Kvaky in [7] as a model for
rod alignment:

0 02

(2) a (I,U> = D@f(m,t)+/7rf<x+y/27t)f(x—y/2,t);l—i—f(ﬁ,t).

While in equation (1) all particles remain fixed between thie ipéeractions, the model of Ben-
Naim and Krapivsky assumes that each particle follows a Bramvmotion between the jumps.
On the other hand, contrary to equation (1), the jumps inBoué2) imply perfect alignment.
More considerations about this model will be found in Set8pand in particular in Section 6,
where the analysis in [7] is studied in more detail. Theirlgsia also uses the Fourier series
expansion of the stationary solution, and semi explicitregpions for the Fourier coefficients
are obtained by expanding these coefficients as a powess#ribe first coefficienta;. We
adapt their method to our case, and at the same time we tratilyckcome technical points of
the method. The result is formal in the sense that we do neeptonvergence of any of the
series appearing in the work, but it does provide new insighthe behavior of the model.

The layout of the paper is as follows. In Section 2, we revibes $imple case where the
model is posed on the real line (instead of the circle). Is ttase, an explicit formula for
the equilibria can be found in Fourier-transformed vaeablGoing back to the model posed
on the circle in Section 3, we show that the Fourier coefftsieaf the distribution function
satisfy a fully-coupled nonlinear dynamical system. Timedrization of this system about an
isotropic equilibrium is studied in Section 4. We show tlne isotropic equilibrium is unstable
for noise intensities below a certain threshold and thairitk&bility only appears in the first
Fourier coefficient, suggesting that the first Fourier mocks as an order parameter for this
symmetry-breaking phase transition. In Section 5, we dgsly prove the emergence of the
phase transition and determine the critical exponent ic#ise where the noise probability has
only finitely many non-zero Fourier modes. Indeed, in suclir@umstance, any equilibrium
solution has also finitely many non-zero Fourier coeffi@eind finding such an equilibium
can be rigorously accomplished using the Implicit Funcildreorem. We also show that the
critical exponent of the phase transition is equal t@. It is interesting to contrast this result
with that of [23] where all critical exponents betweef and 1 were found for the Vicsek
dynamics. Removing the assumption of finitely many modesy @imal calculations can
be performed at present. The work of Ben#Naand Krapivsky [7] suggests that the critical
exponentl /2 persists. In Section 6, we relate their integer partitiorthoé to our approach.
Finally, conclusions and perspectives are drawn in Segtion
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2. THE MODEL ON THE REAL LINE

In order to get a preliminary sense of the behavior of the mdtde useful to investigate the
more simple case wherec R. In this case, the Boltzmann equation is given by:

fa) = [ [ peatse ot 8 500 ~ ity dof
f(t,ZL'l) /Oo f(t,ﬁ(]g) 6<|I’2 — i’12|) dlEQ .

where now; s = (1 + 22)/2 andxy — 712 = (22 — x1)/2. This corresponds to pair interac-
tions given by

Ti+x T;+x
(3) (), 2) = (ka+X1, j2 k+X2)

where X; and X, are two independent, identically distributed random \#es. The process
is then similar to models considered in models of trade [1R] & interesting in the present
context mostly because it permits rather explicit calcolet. A very similar model was also
obtained [7] as a limit of nearly aligned rods. Another retatmodel that takes into acocunt
spatial heterogeneities is investigated in interesticgmework [12].

By a simple change of variable$ = =} + y, and using the fact that we look fgrbeing a
probability distribution, the Boltzmann equation in the Maetlian case simplifies to:

+o00 +o00
/ / / y
asta) = [ [ s vgte - of - D dudy - it.0),
We note that this can be written equivalently as

Of = Q(f = f)(2))xg—f.
(Here, for any functiork. on the line,2h(2-) denotes the function rescaled function taking the

value2h(2z) atz. If h is the probability density of a random variablg then2h(2.) is the
probability density ofX'/2.) Therefore, equilibria are solutions of the fixed-pointiation:

(4) f=Q@f*f)2))*g,
which expresses that the distribution®£*2 + X whenz, andz, are i.i.d. with densityf and
X is a random variable of densitymust be equal tg itself.

Theorem 1. We suppose that € P, N L*(R) N C°(R) whereP; is the space of probability
measures oR with bounded second moments. Additionally, we suppose thas zero mean.
The solutions iP, N L}(R) of (4) are given by translations by an arbitrary real numbéro

probability f € P, N L'(R) whose Fourier transfornf(g) has the expression:

=[Tate/2)”

Proof. We define

i
L

gn(§) a2y

.
Il
=)
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We note thay, is the Fourier transform af,, which satisfies the recursion far> 1:

andgy = g. Now, by recursiong,, is a probability density. Indeed, supposing that; is a
probability density, we obtaig, as the convolution of three probability densities. Now, we
write, uniformly on any compact set far §(&) = 1 — 27,¢% + 0(£?), wherey, = [, g(z) 2* dz

is the second moment gf Then, uniformly for§ in any bounded interval and € N, we get:

n—1

g, = 3 2'Iog (1= ule/2) + ol(e/2))

=0
1 n—1

= —5’7252 > 27 +0(¢%).
=0

Lettingn — oo, we get
lim log g, (§) = =726 + O(£?),
uniformly for £ in any compact set dR. Hence, this defineg..(¢) as a continuous function

of £ which by Levi’s continuity theorem, is the Fourier transfoof a probability measure,..
Now, takingn — oo in (5), we get

which expresseg,, as the convolution of a continuous functigimith a measuré2g..(2-)) *
(2950(2+)). Therefore,g., is a continuous function and consequently an element!¢R).
Finally, by a simple change of variables, (6) is nothing bgt &) with f = ¢... Thereforeg,,
is a solution of (4).

Remark 2. The equilibrium distributiony,, has a second moment that is twice thayofig-
ure 2 shows the solution to equation (4) in the case where = 11;_; 1, wherel_; ;) is
the indicator function of the intervdl-1, 1]. Wheng is a centered Gaussian, thghis also a
Gaussian with twice its variance. Indeed, since the convarutif two centered Gaussians is a
centered Gaussian whose variance is the sum of the variaritles factors, it follows from (5)
that eachy,, is Gaussian, and then the limiting variance can be read offf(6).

Remark 3. A model where the pair interacts more weakly can be obtaine@acing Equa-
tion (3) with

(xj,zp) = (Az;+ (1= Nzp+ X5, (1= Nz; + Az + Xo) .
One can then proceed in the same way by taking the Fourierftvamsto get

~ ~

f& = FOOI =),

and as in the case of = 1/2 obtain a solution

. >k . N
f© = TIT]a(va - et
k=0 j=0
In this case the variance ¢fcan be expressed in terms of the variance aé

Varlf] = Varlg]

20(1-))
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FIGURE 2. A solution f to equation (4) (the blue, thick curve) witj{z) =
%1[_17” (red, thick curve) compared with the Gaussian function i same
variance (the thin curve).

Now, we are going to apply the same method to the original inpakeed on the circle. But
we will see that the difficulties are considerably bigger.

3. FOURIER SERIES EXPANSION OF THE MODEL ON THE CIRCLE

Now, we are back to model (1) posed on the circle. We first r&rtteat, by the change of
variablesr, = | +vy, y €| — m, 7|, we havet|, = 2| +y/2, =, — &}, = y/2, so that the model
can be written:

aftee) = [ [ (e snge -~ 3)
dz’ dy

) it +) ) B oo 2L,
where either3 is constant (in fact, we také = 1) independent of the velocities of the inter-
acting pair, corresponding to Maxwellian molecules in gasainics, or elsé = |sin(y/2)],
corrsponding to hard-sphere collisions in gas dynamicsoele refer to these two choices
for 5 as the Maxwellian case and the hard-sphere case, respective

Multiplying with a test functiong, integrating over|—=, 7], and performing a change of
variables gives the following weak form of the equation,

d dx
| oo g
dx dy dz

= [ [ 50500 40080 6l 4y +2) - o) oL
)

8
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Note that formally the system conserves mass:
/ f(z,t) dr = Constant

We may therefore require thgtx, t) dx is a probability, i.e. take this constant equal to unity.
This means that our equation describes the evolution ofribtegbility density for the velocities.
Since the equation is non-linear, multiplyirfigby a constant has an effect, but since the non-
linearity is homogeneous of degree 2, the effect can be hedanto the time scale (and for the
same reason there is no loss of generality is settirg1 in the Maxwellian case).

Because all functions are periodic, it is natural to consideewrite the system in terms of
the Fourier series. Introducing

flz) = Z ape’™* ar = /_7; f(x)e_ikxg—i.

k=—00

Ve = (277-)_1 /TF g(z)e_ikzdg:, F(u) _ (2%)_1 /—7r B(y)eiuyd%

—Tr

we have the following:

Proposition 4. Suppose thag is even and let(¢) be the Fourier coefficients of a solution of
Eq. (7) which is an even probability density. Then,= 1 anda, for k # 0 satisfya_, = ay
and solve the following system:

%ak(t) — (27%T(k/2) — T(0) — T(k) ) an(t) +

e

-1

> (ul(n = k/2) = T(n)) an(t)ar-—n(t) +
(9) Y @ul(n—k/2) =T(n) = T(n = k)) an(t)an-x(t)

The function*(«), which is to be evaluated only on half-integer points, is

_ 1 when u=0
T(u) = sin(mu) _ [ g when ueZ\ {0}
™ 2(—1)*
% when u=1/7+1/2

(10)

in the Maxwellian case, whef(1) = 1; and

_ 2/(m(1 — 4u?)) when u € Z
I(u) 2—4UZH1(72W) _J 1n when v = +1/2 ,
_ _1\e _1\¢_
T —4mu % when v =/¢+1/2,0#0,—1

in the hard-sphere case, whélfy) = | sin(y/2)|.



A BOLTZMANN MODEL FOR ROD ALIGNMENT AND SCHOOLING FISH 9

Proof. Taking¢(z) = e~*= in (8), we get (witha, = a,(t)) for k # 0

d ~ g dr dy dz
et _ imax m(:r+y —ik(z+y/24+2) _ —ikx\ 27 I U~
2 o zzmjm/ | [ 9(2)B() (e i) 2

— Zzaman/ / / B z (m+n—k)z+(n—k/2)y—kz) _

i(m+nfk)x+ny))

dx dy dz
o1 27 21

2 z (n— z i(n dy dz
— Zaknan/ / 2)B(y K/2y=k2) _ gitw)) oo

which leads to

%ak(zﬁ) - Zak n(t)an(t) (mT(n = k/2) = T(n))

(11) = Z ai(t)a;(t) (wI'((G —14)/2) =T'()) -

Using thaty_, = ~, anda_;, = a;, we get (9).

Remark 5. Eq. (9) for the Maxwellian case can be simplified and gives:

Salt) = (2u00/2) — D arlt) +
k-1
> wl(n = k/2)an(t)ar—n(t) +
> 29 (n — k/2)an(t)an—i(t)

Remark 6. For comparison, we note that the Fourier coefficients of sohg# to equation (2)
satisfy

d o
Zar(t) = —(1+ Dk )ar(t) + Z L((i = j)/2)a;(t)ai(t) ,

i+j=k

with I" as in equation (10) (s€l@]). The only essential difference with equation (11) is that th
diffusion term manifests itself as a multipli€%? of a;, (and moreover that (11) includes the
possibility of non-Maxwellian interactions).

4. THE LINEARIZED EQUATION

Itis easy to verify thaff () = 1 is a solution, which correspondsdg = 1, a, = 0, (k # 0).
If fis a solution, then any translation ¢fi.e. x — f(z + s)) is also a solution. Expressed in
terms of the Fourier coefficients, this means thatif) .z is a solution, then so i§.e™*) 2.
To investigate the stability of the uniform density, fétr, t) = 14+cF(x,t), and let(t), k €
Z be the Fourier coefficients df(z, t). Thenb, = 0, and fork # 0,
d

() = bu(t) 2T (k/2) = T(0) = T(k)) .
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Hence the linearized stability may be determined by anatyzeparately the sign of Rg
where

(12) A = (2I'(k/2) = T'(0) = T'(k)).

Indeed, if Re\, < 0, Vk € Z, the system is stable, and it is unstable otherwise. Note\tha 0
and)\, € R, Vk € Z in our case.

Remark 7. The uniform density is also stationary for the mode[#h where its stability is
analyzed in very much the same way, giving an explicit exjpregs/olving the only parameter
in the model, the diffusion coefficiebt

We assume thatis even. In both the Maxwellian and hard-sphere case, wethave

Theorem 8. We have\, < 0, Vk € Z, |k| > 2, meaning that the linearized stability depends
only onthe signoh; = A_4:

the system is stable= X; <0

Proof. In the Maxwellian case, we have

4 sin (k”) 1

oT(k/2) — T(0) — (k) = TT

It is easily seen that the right-hand side is negative whkep 2. Hence it is only); that may
become positive, and therefore the condition for stabaftthe uniform solution is that; < 7.
In the hard-sphere case, we find that1/2) — I'(0) — I'(1) = 2/(37), and that fork > 1,

4 (2k* — 4sin (%) k® + k? + sin () k)
2T'(k/2) = T(0) =T = - 2 2
(k/2) = T(0) — T (k) RO

Becausd' is an even function, it is enough to consider 2, and in that case the numerator is
larger than

4 (2k4 — 4sin (%) k* + k? + sin (%) k> > 4(2k* —4K° + K> — k)

> 4k —k) >0

and hence we may deduce thgt < 0 for |k| > 1 also in this case. [fy, changes sign the
calculation is more complicated, but the result is the sats:only the first Fourier modes of
the solutionf that may cause instability of the uniform stationary states

For concreteness, we now consider a family of distributigys defined as the periodization
of %p(%), wherep is a given even probability density d

oy) = 20 > (U,

j=—00

Then
" e~ iky — 27Tj dy = —itky A
() = 2 Z = | e ™ply)dy = p(7k).

T 27T
]—foo
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An example isp(z) = #e*lﬂﬂ which givesj(tk) = e~ (™®*/2, Whenr is small, the noise
is small, and when is large, the noise is also very large, apdconverges to the uniform
distribution whenr — oo. Therefore;y;(7) is a continuous function of with ~,(0) = 1 and
7 (1) = 0asT — oco. Then\; = A\(7) < 0 for 7 large and\; > 0 for 7 small. This shows
that the system is linearly stable for large values ahd unstable for small ones.

5. AN EXPLICIT EXAMPLE WITH BIFURCATION

The calculation here is restricted to the Maxwellian casd v@e only look for even solutions,
expressed as a Fourier cosine series. Hence we wish to solve

k—1
ap = 2%D(k/2)ar+ v > T(n—k/2)anan +
n=1
(13) 2 Z L(n—k/2)ana,—k

n=k+1

for £ > 1. Note thaty, is a factor for all terms in the right hand side, implying tag only has
finitely many terms in the Fourier series, only the corresjiog terms are nonzero ifi

We will conisderg as a member of a parameterized faimily of noise distribstignso that
changing the parameter corresponds to changing the dtrehgte noise. The Fourier coeffi-
cents ofg, will depend on\. In the first model we consider below (based on th&Fkgrnel),
71 (\) is monotone — even linear — iy and we may therefore regakdas a function ofy,. That
is, we may take the first Fourrier coefficent as the parametethfs family of noise distribu-
tions. As~, is varied, the other Fourier coefficent vary along with it &2k the shape of the
distribution consistent with our chosen one parameterlfami

So, here we make the following assumption on the noise bligion:

Assumption 9. We assume that = g¢,, is a family of noise distributions with a finite number
of non-zero Fourier coefficients: for someé < oo,

N
Gy, () =14 27 cosz + QZ%(%) coskx, Vx €|—m, 7.
k=2

with C? functionsy; € [0, 1] — x(71) € [—1, 1] and with~, such that

Y2(71) > 0.

Note thaty is a probability measure as soongs 0. We can now state the following

Theorem 10. Consider a one-parameter family of noise functignssatisfying Hypothesis 9.
Then:

(i) The uniform distribution, with Fourier coefficients = 1,a, = 0 (k > 1) is stationary.
It is stable fory, < 7/4 and unstable for; > /4.

(i) Inaninterval} < v < V4. there is another invariant solution to the dynamic prob-
lem, with Fourier coefficients, = 1,

ap = /20 L O((yy — 7/4)32), . a, =0 (k> N).

my2(m/4)
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(iiiy This solution is linearly stable with a leading eigenvale,) = 1 — £(y; — 7/4) +
O((m — m/4)*?).

Before proving this theorem, we give a few comments. One iptedito think that the same
result would hold for any noise distribution, at least pd®d its Fourier coefficients decay
sufficiently fast, but to prove that rigorously requires aditional estimate showing that, ...
does not converge to/4 when the number of coefficients increases.

We illustrate the theorem by showing numerical calculatiosing the family of noise distri-
butions obtained as a convex combination of &Fkgrnel and of the uniform distribution.

For such a noise distribution, we haye= A\(NV —k)/N for 1 < k < N. Therefore, this family
can be put in the framework of Hypothesis 9 if we likko v, by A = %%. In the numerical
simulations, we us&’ = 9. Fig. 3 shows the Fourier coefficiemf as a function of the param-
eterv;. This figure exhibits a typical pitchfork bifurcation patte The order parameter is
identically zero as long ag, is less than the critical valug,. = 7/4 and the associated uni-
form equilibrium is stable. Whefy, becomes larger than the critical valyg a second branch
of non-uniform equilibria starts. This branch is stable ivtihe branch of uniform equilibria
becomes unstable. In fact the non-uniform equilibria foem@ntinuum, because the system
is rotationally invariant, and therefore, jfis a non-isotropic equilibrium, then anf(ei%x)
with 6y €]0, 2| is another equilibrium. This feature is represented by diest branch in the
diagram. In physical terms, the system exhibits a symmategking second-order phase tran-
sition asy; crossesy;.. From the point (ii) of the theorem, it appears that the @aitexponent

is 1/2, i.e. the order parameter behaves like~ (v, — v1.)"/? when~, 2 ~,.. Fig. 4 shows
the noise functiory and the corresponding stationary solutipwhen~; = 7/4 + 0.1.

0.6
0.3
i on
32 32
-0.3
-0.6

FIGURE 3. The stationary solution; plotted as a function of;,. The noise
function is a parameterized Fejkernel of order 9.

Proof of Theorem 10. The first statement, (i), is an immediate consequence ofrihlysis of
the linearized system in Section 4.
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4

3

2\

1

o z z 3z

0 4 2 4 4

FIGURE 4. The parameterized Fgjkernel of order 9 with, = 7/4+0.1 (red),
and the corresponding solutigiiz) (blue)

To prove (ii) and (iii) we first note that in the Maxwellian &% (n — k/2) = 0 whenk is
even and different from@n. Therefore, ifk # 0 is even, there is only one non-zero term in the
right hand side (13) and we get:

ar = Ykag®, Vk#0, keven

We now concentrate on the casekaddd. First, after a minor reformulation,

N
ar = 2nI(1/2)ar + 271I(3/2)azar + 27 Z I'(n—1/2)anan_1,
n=3
N
as = 231'(3/2)as + 2v3I(1/2)asar + 2v31'(5/2)asar + 23 Z I'(n—3/2)ana,-3
n=>5
(k—1)/2
ar =2 L(k/2)ag + 2% T (1 — k/2)ag_1a1 + 29 Z L(n—k/2)apar_n+
n=2
N
+ 2701+ k/2)ag1a1 + 2% Z L(n—k/2)ana,—k
n=~k+2

Becauseé is odd, eithern orn — k is even. So all terms contain a factor of the farpn,, where
pisodd and; > 2is even. Above we have separated all terms that contain@rfactWe write
q in factorized form as

g =w(q)2™? = 2w(q)n(q)
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with w(q) containing all odd factors af. With this notation,

_ 2 _ 2 22 _
Qg = anw(q)zm(q)fl - '7/q'7/(,‘;(q)2m(q)flaw(q)QM(Lz)*2 -

m(q)—1
_ o om(@) __ - 2n(q)
(14) =Yq H Vew(g)2m@—i Cw(q) 2%%75 ’
j=1

If a; # 0, we may writea, = a,a, for all p odd (this obviously holds also fgr = 1, with
a; = 1), and then

(15) azcllp _ ’?q’y;n(q) ag(q) dffszi)&p .

Inserting these expressions in the equatiorufare get, after dividing through hy;, and using
F(aj) _ sin(ﬂa:)’

T

4 4 .
0= (_71 - 1) - ’71CL2+’V1RQ EFQ(’yl)aZvaSvaSa"')v
s 3

where R is a sum of terms of the form (15) with > 3 andq > 2, i.e. monomials ina, and
a,,p = 3,5,7... of degree at least two. Similarly the equation égbbecomes

4 4 5 ..
0= —vy3as — <—V3 + 1) as + v3R3 = F3(m, aq, as, as, ...) ,
T 3

where againk; is a sum of monomials of order at least two. And the remainopgaéons are
of the form

0= (2F(k‘/2)’7k — 1) ap + ’}%Rk = Fk('yl,ag,dg, as, ) ,

with R, as before. We have replaced &l by v; owing to the parametrization of, by ~;.
As written here, the functions), depend only on one coefficient;. Here we also note that
v = 0 implies thata, = 0, and hence restricting the analysis to noise functions otly
finitely many non-zero coefficients, the system of equatidns= 0);—235,.. is reduced to a
system of polynomial equations for the unknowas as, . . . , ay ), with a right-hand side being
a function of~;.

We observe that at the critical value of the parameter= 7/4, the right-hand side as a
function of+; vanishes. Hence, the polynomial system has no degree zeratel is solved
bya, = a3 = a3 = ... = a, = 0. The implicit function theorem then implies that for a
sufficiently small interval around; = 7 /4, there is a solutioms (1), as(71), .., as(y1) if the
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Jacobian
oF,  OF OF,
das das t Odan
OF: OF: OF:
8}.‘—']\] 8}.‘—'1\] 6I.?N
a(lz 663 a&]\]
G G "G N G
R ——@$+1y+%%%.“ %%%
YN %IZ;V YN %I;;V . 2(ynsindmN/2) — 1) + 7w %?ﬁ
is invertible aty, = §,a; = a3 = ... = ay = 0. Because all thév, are polynomials of degree
greater than two, we find that at the critical point
1
—3 0 0
4 4
0 0 . 2(ynsSindTN/2) — 1)
Moreover, since, as seen before, fgs are sums of monomials ifus, as, . . ., ay) of degree

at least two, and thanks to the assumption thét; ) is C*, we have:

(%) -
871 71:%,(@:&3:“.:&]\720 x
OF,
<5i> =0 k=3,5..,N.
4! mn=%,a2=a3=...=any=0

The implicit function theorem then implies that sufficigntieary = = /4, the polynomial
system can be solved, and that the solutiengs, as, ..., ay are differentiable functions of;,
with

a2 Fy
K SN
dy : dm :

an Fy

where all derivatives in the right hand side are to be evatliat the critical point. Computing
the inverse of the Jacobian, we find easily thigtr /4) = 12/7, and with a little more effort
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thatay(rr/4) = 2 and then thai) (7 (4) = 0 for k > 3. Hence

4mys+3m2?

=2 (-2 v0 (-3
) = s (n-§) 0 ((% - %)2) >

(1) :(’)(<71—£)2> , k=579, ..

The Fourier coefficients,, ...., ay Of a stationary solution may now be computed directly
from ay(y1), as(11), ..., an(71) usinga, = a;a, and Eq. (14). Because = ,a? and~, > 0,
and because we expect all coefficiemts..., ay to be real, onlyy; > /4 yields an admissible
solution. All coefficients are continuous functions~qf and therefore whem, — 7/4 is suffi-
ciently small, the Fourier cosine series with these coeffits is non-negative. Interestingly the
behavior ofa, near the critical point is completely independent of theeottoefficients of the
noise function than.

The uniform distribution, witha, = 0, £ = 1,2,3.... is always a stationary solution, and
the linearized analysis from Section 4 showed that thistgwius stable fory; < x/4 and
unstable fory; > w/4. The analysis in this section shows that in an intewal < v <
Ymaz there is a new invariant solution defined by the coefficientsy ), ...., ay(y1) defined
as above. It now remains to prove that this new solution isdlity stable. Setting(¢) =
(a1(t), as(t), ...,an(t))", we may write Eq. (9) as

%a(t) =Q( s a(t)) —a(l),

where@(v; : a) is a vector whosé:-th element is given by the right hand side of Eq. (13).
To prove linear stability of the stationary distributioca&y; ) computed from above amounts to
proving that the eigenvalues of the Jacobian matrix

N

%Q(% ra(m)) = (%Qk(% : 3(71»)

J,k=1

all lie inside the unit circle. The characteristic polynaifris

p(71, A) = det (%Q(% ra(y)) — AI) _

Aty =7/d,a; =...=ay =0, 8%@(71 : a(y1)) is a diagonal matrix whose diagonal entries
are the coefficients, + 1 as determined by (12). They are explicitly given here by:
4 4
1, 0, ——— 0, ——75,.....
) ) 37_(_/2737 ) 571_/2757

They all lie inside the unit circle except the first one. Theg eontinuous functions of,
Therefore, ag, is moved around the critical valug/4 by a small amount, they all stay within
the unit circle, except perhpas the first one, which are gwrggudy now. We note that = 1

is a simple eigenvalue at this point:

™
—,1)=0.
p<47 )
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We will now again use the implicit function theorem to showattthere is a function(v;) such
that\(7/4) = 1, p(y1, A(11)) = 0, and

4 OA n=" =1 Om n=71=1

This implies that fory; > 7/4, sufficiently small,|A(v1)] < 1, and thata(y,) is a stable
(hyperbolic) fixed point for the system in Eq. (9) in the MaX\es case and withV non-zero
noise coefficients.

To obtain (16) we write%@(yl - a(y1)) — M in more detail. Explicitly for 5 non-zero
coefficientsy,, this matrix is equal to:

(16) =

8
T

_daom Ay 2a3 _ %) (@ _ @) (Laa _ Laa) 4asm
3r T A 2 ( sr 3n) N 2\ B — 7)) 2 o — T m O
2(11’}/2 - 0 0 0
dasys X dayys da;vs  4asys 4y A\ 4aq7vs3 _4dayys
s S T s 3 5% s
0 2@2’}/4 0 - 0
_40475 dazs dagys _40175 45 Y
T m T 3T BT

Substitutingy; with =/4 + 7 and with 1 + x we find, retaining only the lowest order terms in
each coefficient and only coefficients of order one or lessandy.,

_ At 127
K 35 3 Br 0 0
2&1’72 —1 0 0 0
48773 4a173 4 4wy 4877
772 m _ﬁ 57T 77-(2
0 U 0 1 0
487y  _days 4%
0 0 = w3 B g

In this expressiory, = vx(m/4). It is easy to see that this matrix has essentially the same
form for any number of non-zero coefficients, a five-diagonal matrix where the diagonal
elements except the first one are of ord¥il ) and all other elements a@(y + 7'/2) (because

a; ~ a)® = O(r1/2)). Hence, expanding the determinant, we find, after some atatipn,
that

m 2_
p(7+ 71+ = Cnlu+ gvga%) +O(u® + 7°?)
2
= On(pu+ 302) + o> +7%7)

8
= COn(p+—7)+ O(u* + 7/2)
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whereC'y is the product of the diagonal elements from row three anovbeAnd we conclude,
as stated in eq. (16) that
Jp ,0p
—— /= = -8
)\ /™
when evaluated at the critical poit = 7/4, A = 1. Again we note that this is independent of
the Fourier coefficients of the noise function.

6. THE METHOD OF PARTITIONS OF INTEGERS BBEN-NAIM AND KRAPIVSKY

In this section we adapt a method of Ben-Naim and Krapivskyt¢7ihe construction of
invariant densities for our equation in the Maxwellian caske no longer require Hypothesis 9,
but on the other hand, we shall not control the convergeni#inite sums, and our conclusions
are therefore formal. Nonetheless, as in [7], the methodligees another view of the phase
transition studied here.

With ~, defined as above adt«) = sin(wu)/(7wu), we let

Vit i—J
Cij = ) ,
! 1 = 27;,;T (%) ( 2 )

which is defined fot, j € Z. Clearly
Gi,j = Gj,ia Gi,j = Gfi,ij and Gj,j = ”}/2]' .

Also
a7 Gi;=0 when (i—j)#0 iseven
whereas forj — i odd, G, ; satisfies

Vit 2
Gijl < —
71— Ayl /(wli + ]) wli = )

Because we only look for even solutions,= a_;, equation (9) may now be written

k-1 00
(18) ar = Z Gk,jdak,jaj + 2 Z Gk+j7,jak+jaj .
j=1 i=1

It follows from (17) and (18) that wheh is a power of two, one can express in terms of
a; = a_;. Hence withk = 2™,
aom = Yom (agm-1)? |
and iterating gives
m—1 )
(19) agm = || (rom—i)* a?" .
j=0
One might hope that it is possible to expressrya, as, if not a polynomial ir;, at least as

a power series in;. The strategy in [7] provides such an expression,aritself is considered
anorder parameteand denotedi: for k > 2,

(20) a = Y praRFT
n=0
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where the the coefficients, ,, are a sum of various products 6f ; computed using a gener-
alized integer partition ok as a sum ok + n terms of+1 andn terms of—1. The formula
corresponding to (20) in [7] is written with instead of/k| in the exponent ofz, and this leads
to the erroneous formula (15) in their paper. We will now @e correct replacement of their
formula (15) adapted to our case.

6.1. The recursion formula. Here we look for an invariant densitff whose Fourier coeffi-
cients,a;, (k > 2) are given by a power series i of the form (20), using, of coursé,= |k|.
Foray, there is such a representation,

1 if n=0
(21) pl,n:(sn,():{o if TL#O

but we will also use a different representation in whigly = 0. Combining the two expressions
gives the equation

00
R = Zpl,anJrzn )

n=0
from which the value of? can be determined. Clearlz = 0 is a solution, corresponding to
the uniform distributionf = (27)~".

Lemma 11. For each positive integek, let {p;,,} be a sequence of numbers such that the
power series >, pr.,2" 2" has radius of convergence at least one. Far < R < 1, define

a_p(R) = ag(R) = > ppnRF".
n=0

Then theu, (R) satisfy (18) for allR and all & > 1 if and only if the number$py. .} for &k > 1
andn > 0 satisfy

k—1 n n n—j
(22) Pron =Y GrejiPheiiPin—t +2 Y > GrojmiDhsjuPin—(+0) -

j=1 =0 j=1 £=0

Note that forn = 0 the second sum is zero.

Proof. Takek > 0. Substituting (20) into equation (18) gives
0o k—1 oo oo
Zpk’an-i—Qn _ Z Z Z Rk+2(€+m) Gk—j,j Ph_jit Dim
n=1 j=1 £=0 m=0

(23) +2) N N O RERUYEG, Dkt Do -

j=1 £=0 m=0

Equating coefficients of like powers &f, we obtain (22). Conversely, if (22) is satisfied for all
k > 2, then (23) is also satisfied far> 2. O

As the proof of the lemma show, if we could find numbgys such that (22) is satisfied for
all £ > 1, then we would construct a family, parameterizedRyyof solutions (not necessarily
positive) of the invariant measure equation.

This, of course, is more than we expect to find, and so the lemost be supplemented by
two things: (1) A construction of the numbess,,. (2) A mechanism for selecting a particular
value ofR.
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Following [7], we present a recursive construction of thenbersp, ,,, and a consistent
argument for determining.

6.2. The recursion formula. We need some known values of thg, to start the recursive
construction. First, notice that wheéns a power of two, there is only one non-zero term in the
right-hand side of (22), and a simple recursion gives

m—1
(24) pomn = | (en-s)* no,

=0
which is consistent with (19).

On the other hand, equation (22) is inconsistent with (2d4jleéd, fork = 1, the first sum
in (22) is zero because the range of summation is empty. Tdren £ 0 also the second sum
is zero, sop; o = 0. This can be seen already in (23), because there, in thehagtit side, the
smallest power of? that is present i®' 20—~ with j = 1 andm = ¢ = 0, i.e. R®. However,
the coefficient ofR?* is a multiple ofp, o, sop;; = 0 as well. Hence the first non-vanishing
coefficient fora, is p; ».

This discrepancy is the source of the criterion for selgcéiparticular value oR that yields
an invariant density.

To start the recursive determination of the coefficientsg tloat whem = 0, the range in the
second sum in (22) is empty. Thus, we have

k—1

Pro = Z Gr—j,jPr—j,0Pj,0 -

j=1

Since as noted aboyg , = 1 andpsy = 72, p3 iS determined and then, recursively, s@jig
for all .
Next, we considepy, ,, for £ = 1. Specializing (22) td: = 1, we obtain
n n—j
Pin =2 Y GrijjDrse Pa(iv) -
j=1 ¢=0
The first two terms in this sequence are

P12 = 2G3_2P3,0P20;
and
P13 = 2(Go1p2,0 P12 + Gs_2p3.1 P2,0) -
Here we have useg o = p11 = p21 = 0, the latter being true because of (24), which reduces
to po., = Y20,,0 Whenk = 2. All terms in the expression fgr, » have been determined above.
To computep; 3, we needp; ;. However,
2 1
P31 = Z Z Gr—jiPh—jePii—t + 2G4 _1DaoP1o -

j=1 ¢=0
Sincep, o is known, we haves ; and hence, ;. So far, we have determined the values of alll
piy forall k+n < 4, and then some. From here it is not hard to see that the valaisod the
pi,n are determined. For a discussion of this in terms of integetitppns, see [7]. Though all
of the coefficients are determined, it does not seem to be@eimatter to estimate the size of
the coefficients in a manner that is useful for proving thayttlo define power series with even
a positive radius of convergence.
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6.3. The consistency condition.At this stage, we have the coefficiepis, for all £ > 1 and
all n > 0. The equations (22) are satisfied for al> 1, by construction, but not, as we have
pointed out, fork = 1 by the coefficients given in (21), which correspondst@R) = R for all
-1<R<1.

Nonetheless, assuming convergence, we have from (19Rtkat,. Using the coefficients
derived above, we have

al(R) - Zpl,nR1+2n 5
0

and the first non-vanishing term in the power series on the iforn = 2, so thatu; (R) ~ R®
atkR = 0.
Therefore, any value aR giving an invariant measure must satisfy

R = CL1<R) y

wherea, (R) is the function defined by the power series derived above. dDfse, there is
always the solutior? = 0. However, there may be other solutions. In [7], the functipfR) is
approximately computed numerically and plotted. For npaeameters such th&t = a,(R)
has a non-zero solution, they find a non-trivial invarianemsee. However, rigorous analysis of
this construction, and especially analysis of stabilityha invariant measures so constructed,
seems difficult, and this has motivated our different treattmWhile less general in its scope,
due to Hypothesis 9, it does permit rigorous analysis.

7. CONCLUSION

In this paper, we have studied a Boltzmann model intendedtage a binary interaction de-
scription of alignment dynamics which appears in swarmimglets such as the Vicsek model.
In this model, pairs of particles lying on the circle interhg trying to reach their mid-point up
to some noise. We have studied the equilibria of this Boltamrandel and, in the case where
the noise probability has only a finite number of non-zerorferoefficients, rigorously shown
the existence of a pitchfork bifurcation as a function ofreése intensity. Such a transition had
been predicted, with the correct critical exponent, in [@]. In the case of an infinite number
of non-zero Fourier modes, we have adapted a method projpysBdn-Nam and Krapivsky
to show (at least formally) that a similar behavior can beawt#d. In the future, we expect
to be able to show the rigorous convergence of the infiniteesenvolved in the Ben-Nan
and Krapivsky argument, and therefore, to give a solid nmattieal ground also to this case.
Extensions of the model to higher dimensional spheres @r attanifolds is also envisionned.
Finally, the non-isotropic equilibria found beyond thetical threshold will allow us to develop
non-trivial Self-Organized Hydrodynamics, as done eriti¢he case of the Vicsek mean-field
dynamics [8, 9, 10].
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