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Abstract 

Yttria stabilised zirconia (YSZ) is an important oxide ion conductor with applications in solid 

oxide fuel cells (SOFCs) and oxygen sensing devices. Doping the cubic phase of zirconia (c-

ZrO2) with yttria (Y2O3) is isoelectronic, as two Zr
4+

 ions are replaced by two Y
3+ 

ions, plus a 

charge compensating oxygen vacancy (Ovac). Typical doping concentrations include 3, 8, 10 and 

12mol%.  For these concentrations, and all below 40mol%, no phase with long range order has 

been observed in either X-ray or neutron diffraction experiments. The prediction of local defect 

structure and the interaction between defects is therefore of great interest. This has not been 

possible to date as the number of possible defect topologies is very large and to perform reliable 

total energy calculations for all of them would be prohibitively expensive. Previous theoretical 

studies have only considered a selection of representative structures. In this study, a 

comprehensive search for low energy defect structures using a combined classical modelling and 

density functional theory approach is used to identify the low energy isolated defect structures at 

the dilute limit, 3.2mol%. Through analysis of energetics computed using the best available 

Born-Mayer-Huggins empirical potential model, a point charge model, DFT, and a local strain 

energy estimated in the harmonic approximation, the main chemical and physical descriptors that 

correlate to the low energy DFT structures are discussed. It is found that the empirical potential 

model reproduces a general trend of increasing DFT energetics across a series of locally strain 

relaxed structures, but is unreliable both in predicting some incorrect low energy structures, and 
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in finding some  meta-stable structures to be unstable. A better predictor of low energy defect 

structures is found to be the total electrostatic energy of a simple point charge model calculated 

at the unrelaxed geometries of the defects. In addition, the strain relaxation energy is estimated 

effectively in the harmonic approximation to the imaginary phonon modes of undoped c-ZrO2, 

but is found to be unimportant in determining the low energy defect structures. These results 

allow us to propose a set of easily computed descriptors that can be used to identify the low 

energy YSZ defect structures, negating the combinatorial complexity and number of defect 

structures that need to be considered.  

Introduction 

Yttria stabilised zirconia (YSZ) is an oxide ion conductor at elevated temperatures. The 

(Y2O3)0.1(ZrO2)0.9 composition, conventionally referred to as 10mol% Y2O3, has an ionic 

conductivity of approximately 0.03Scm
-1 

at 1000
o
C

1
. In addition to high anionic conductivity, it 

has other properties that make it an appropriate electrolyte for solid oxide fuel cells (SOFCs). 

These include its mechanical and chemical stability towards other SOFC components including 

nickel (Ni) and lanthanum manganese oxide (LaMnO3), high electronic resistivity, and its 

relative abundance and low cost when compared to other oxide ion conducting materials
2
. YSZ 

is a key component of the SOFC anode where it forms an interface with a catalytic metal and a 

gas phase. The interface region is referred to as the anode triple phase boundary (TPB)
3–8

. There 

is a growing interest in developing predictive models of the physical and chemical properties of 

YSZ and its surfaces in order to model the chemistry occurring at the anode TPB. A detailed 

knowledge of the surface chemistry is, however, currently inhibited by a poor understanding of 
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the distribution of, and local atomistic structure surrounding the Y and Ovac dopants in the bulk 

crystal and at its surfaces
9
.  

ZrO2 exhibits three main crystal structures under standard pressure
10

. At room temperature it 

adopts a monoclinic (m) structure which upon heating undergoes phase transitions to tetragonal 

(t) and cubic (c) phases at 1170
o
C and 2370

o
C respectively. The cubic phase exhibits the highest 

oxide ion (O
2-

) conductivity making it the most technologically useful. Doping with Y2O3 is used 

to stabilise the cubic phase and thereby reduce the temperature at which the t → c phase 

transition occurs. Typical doping concentrations include 3, 8, 10 and 12mol%. The exact location 

of the phase boundary between cubic and tetragonal transition as a function of Y2O3 

concentration is still debated,
11

 however X-ray diffraction data suggests that 8mol% is the 

minimum concentration at which the cubic phase is stable at room temperature
12–14

. At 40mol%, 

the ordered compound Zr3Y4O12 is formed 
15–17

. 

Previous calculations of the phonon spectrum using the generalised gradient approximation 

(GGA) to density functional theory (DFT) report an imaginary mode
18–21

 of frequency i195cm
-1

 

at the X-point of the first Brillouin zone corresponding to the low-temperature instability of the 

cubic phase
20

. The eigenvector of this mode involves displacements of oxygen anions along the 

⟨1 0 0⟩ direction breaking the cubic symmetry which, upon full relaxation of the cell and internal 

coordinates, results in the observed tetragonal phase
22

. Other first principles DFT calculations, 

for some representative defect structures, have suggested that the X-point imaginary phonon is 

stabilised as the Y2O3 concentration is increased from 0 to 10.4 mol%
23

.  

Doping the cubic phase with Y2O3 is isoelectronic as two Zr
4+

 ions are replaced by two Y
3+ 

ions, plus an oxygen vacancy (Ovac) to maintain charge neutrality. In Kröger-Vink notation this 

is: 
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𝑌2𝑂3
𝑍𝑟𝑂2
→  2𝑌𝑍𝑟

′ + 𝑉𝑜
.. + 3𝑂𝑜

𝑋 

 

Where 𝑌𝑍𝑟
′  indicates a yttrium ion on a zirconium lattice site with a negative charge, 𝑉𝑜

.. 

indicates a vacancy on an oxygen lattice site with +2 charge, and 3𝑂𝑜
𝑋 indicates lattice oxygen 

ions. 

Because the Ovac facilitates the conduction of O
2-

 ions in the lattice, the conductivity depends 

on the Y2O3 concentration. For low concentrations the conductivity rises rapidly with the number 

of defects and reaches a maximum at 8mol%
24

. It has been argued that inter-defect interactions 

reduce the conductivity at higher concentrations because of the increased electrostatic interaction 

between dopant cations and vacancies
1,2

. 

The local atomistic structure and distribution of the dopants in YSZ has therefore been the 

topic of much theoretical and experimental research. Based on diffuse neutron scattering it has 

been reported that Ovacs preferentially associate in pairs along ⟨1 1 1⟩ directions at dopant 

concentrations between 10 and 24 mol% without forming a phase with long range order
15,25,26

. 

Theoretical evidence for the short range ordering of vacancies in ⟨1 1 1⟩ directions has also been 

provided by DFT calculations
16,17,23,27

. In addition the electron paramagnetic resonance (EPR) 

spectrum of YSZ contains a prominent trigonal (T centre) peak in samples that have been 

chemically reduced or exposed to ionizing radiation
28–31

. This peak has been assigned to a 

vacancy-vacancy pair lying in a ⟨1 1 1⟩ direction neighbouring a Ti
3+

 impurity
27,32,33

. 

The O-coordination of metal ions within YSZ has also been studied. Early work suggested that 

a so called nearest neighbour (NN) type defect structure, with the Ovac in the first coordination 

shell of Y
3+

, is prevalent on the basis of neutron diffraction, X-ray absorption spectroscopy 
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(EXAFS) and a simple point charge model of the ionic interactions
34–37

. In this model, Ovacs and 

Y
3+

 ions have effective charges, relative to the lattice ions, of +2 and -1 respectively so that their 

effective interaction is attractive. Structures with the Ovac in the first O-coordination sphere of 

yttrium will therefore have the lowest energies
34–37

. More recent work supports an alternative 

next nearest neighbour (NNN) model of defect structures, where the Ovac is found in the first O-

coordination sphere of Zr
4+

 and the second O-coordination sphere of Y
3+

 (examples of these 

structures are depicted in Figures 4 and 8).  EXAFS
38–40 

and solid state 
89

Y-MAS-NMR
41

 

experiments, DFT total energy calculations
42

 and thermodynamics based on cluster expansion
43

, 

have established that, in general, Y
3+

 ions prefer 8-fold O-coordination while Zr
4+ 

ions have 7-

fold O-coordination. This tendency is also apparent in the low temperature monoclinic ground 

state of zirconia
42

.  The 
89

Y-MAS-NMR data is particularly clear, as the observation of an 

intense 8-fold O-coordination 
89

Y peak establishes that the Ovac avoids the first coordination shell 

of Y
3+

 up to concentrations of around 12.5 mol%. This observation is inconsistent with the 

simple point charge model of the ionic interactions. 

Many possible defect arrangements and orientations are consistent with the preference for Zr
4+

 

to have 7-fold and Y
3+ 

to have 8-fold O-coordination.  X-ray and neutron diffraction show that 

the defect structure of YSZ is highly disordered with multiple distinct defect clusters
26

, but  the 

low contrast in the X-ray and neutron scattering powers of Zr
4+

 and Y
3+

 ions give little 

information on the  relative positions of the Y
3+

 and Ovac species or the local geometry of the 

dopant structures
15

.
 

When dopant Ovacs and cations are introduced onto the ideal fluorite lattice sites of c-ZrO2 

without relaxation of the local geometry, the trend in the DFT formation energies is described 

well by a simple point charge model, and NN type defect structures are favoured
17,23

. Upon 
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relaxation of the atomic positions within DFT, however, the NNN type defect structures are 

favoured at low defect concentrations. For the 6.7 and 10.4mol% concentrations significant 

relaxations occur as the Ovac undergoes barrier-less migrations (reconstructions) away from its 

starting location on the ideal c-ZrO2 lattice
44

 (an example is pictured in Figure 8). This instability 

of Ovac geometries upon relaxation in DFT calculations is inconsistent with the point charge 

model and is also not reproduced faithfully by more sophisticated force-fields involving short 

range repulsions, Van der Waals forces, and ionic polarisation that have been fitted carefully to 

diffuse neutron scattering data
44–46

. The atomic positions and orientation of NNN type defects at 

low dopant concentrations appear to be governed by a combination of electrostatics and many-

body strain elastic terms that have yet to be reduced to an analytic form
17,44

. For high dopant 

concentrations (>17mol%) and for the ordered compound Zr3Y4O12 (40 mol%), the relative 

importance of these effects have been established
16,17

, however at the low dopant concentrations 

of 6.7 and 10.4mol%, which are more relevant to oxide ion conductivity, the relative importance 

of these interactions is not clear, and it is not been possible to link the instability of structures to 

simple energetic or geometric parameters
44

.
 

In the absence of long range order at low dopant concentrations, identifying low energy defect 

topologies reliably is impossible without computing the total energy of every possible defect 

structure, a process that is infeasible with current implementations DFT. In the current work, we 

evaluate a set of easily computed descriptors that correlate to the final relaxed DFT energies of 

isolated defects modelled within bulk c-ZrO2, at the dilute limit of 3.2mol%. By studying the 

dilute limit we negate defect-defect interactions and the combinatorial complexity of higher 

dopant concentrations. At this concentration it is also possible to compute the energies of a 

complete set of symmetry inequivalent  3.2 mol% YSZ structures using both an empirical force 
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field
10,46–48

 and DFT. We initially evaluate the ability of the Born-Mayer-Huggins (BMH) 

empirical force field to reproduce the trend in DFT energetics. It is found that the BMH 

empirical potential model reproduces a general trend of increasing DFT energetics across a series 

of locally strain relaxed structures, but is unreliable both in predicting some incorrect low energy 

structures, and in finding some  meta-stable structures to be unstable. We also examine the use of 

electrostatic interactions, computed using formal charges in a point charge model, and the local 

strain energy estimated in the harmonic approximation, to predict trends in DFT energetics. We 

show that the relative formation energies of the relaxed DFT defect structures are correlated to a 

simple electrostatic energy and a strain contribution using a method similar to that used to 

describe clustering and relaxation in metallic alloys
49

. This allows us to provide reliable 

descriptors that correlate to the low energy DFT structures at the dilute limit. Finally, we 

evaluate why the best available BMH empirical force field is unreliable.  

 

Computational Details 

 DFT calculations are performed within the plane-wave pseudopotential formalism as 

implemented in the CASTEP code
50

. Empirical force field calculations are based on an energy 

expression of the Born-Mayer-Huggins form as implemented in the GULP code
51

.  

DFT calculations were performed using the Perdew-Burke-Ernzerhof (PBE) GGA exchange-

correlation (XC) functional
52

. Atomic cores were replaced with ultrasoft pseudopotentials 

(USPs)
53

 for which a kinetic energy cut off in the plane-wave expansion of 500eV converged the 

energy of the c-ZrO2  phase to 0.3 meV per formula unit. Phonon calculations were performed 

using density functional perturbation theory
54

 (DFPT) and norm-conserving pseudopotentials 

(NCPs)
55,56

 with an energy cut off of 800eV.  Brillouin zone sampling was performed using a 3 x 
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3 x 3 Monkhorst-Pack (MP) grid
57

 in both the 2x2x2 supercell of c-ZrO2 and the primitive 

bixbyite cell of Y2O3. The self-consistent field (SCF) iterations were considered converged when 

the energy changed by less than 5x10
-9 

eV per cell for total energy calculations and 1x10
-10

eV 

per cell for phonon calculations. Structural optimization was performed using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm without symmetry constraints, with an atomic force 

convergence tolerance of 0.05eV/Å
-1

. All defect structure calculations were performed at the 

zero-pressure PBE-DFT lattice constants of the parent materials to best model isolated defects at 

the dilute limit.  These values are 10.22Å for the 2x2x2 supercell of c-ZrO2 and 10.65Å for the 

conventional cell of Y2O3. We also compute the bulk-modulus of the materials through fitting 

the Birch-Murnaghan equation of state to a set of cohesive energy - unit cell volume curves. We 

obtain a bulk modulus of 234 GPa for c-ZrO2 and a bulk modulus of 144 GPa for Y2O3. Both our 

lattice constants and bulk moduli are in excellent agreement with previous all electron linearised 

augmented plane-wave (LAPW) GGA-DFT calculations
58,59

. The PBE functional was used in the 

current study as it has been shown to successfully describe the parent compounds c-ZrO2, and 

Y2O3 in previous studies, and as a functional without empirical parameters, provides a consistent 

method for predicting defect energies
58,59

. 

Computed phonon frequencies are sensitive to numerical approximations
60

 and therefore 

rigorous numerical tolerances were used in those calculations. Electron densities and 

pseudopotential augmentation charges were represented on an FFT grid one and a half times 

finer than that used to represent the Kohn-Sham orbitals in total energy calculations and two and 

a half times finer in phonon calculations. The implementation restriction to NCPs for phonon 

calculations potentially introduces some additional pseudopotential error.  Comparison with the 

USPs yields an increase in the computed lattice constant of c-ZrO2 of just 0.2%, and a small 
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change in the computed phonon frequencies, with a consequent error in calculated harmonic 

relaxation energies (plotted in Figure 5) of approximately 0.4meV.  

   A Born-Mayer-Huggins (BMH) polarisable shell model based on formal ionic charges has 

been used by several authors to model defects in zirconia
10,44–46,48

. The form of the potential and 

the parameters are shown in equation 1 and Tables 1 & 2. The Zr-O interaction parameters were 

determined by Dwivedi and Cormack
46

 by fitting a potential to the experimental lattice and 

dielectric constants of t-ZrO2
46

. Those for Y-O and O-O were determined by Lewis and 

Catlow
47

. In addition to t-ZrO2, the Zr-O potentials have been shown to accurately reproduce the 

experimental lattice constants of stabilised c-ZrO2, but not those of m-ZrO2 which is unstable 

with respect to an orthorhombic phase
10

. The Y-O potential accurately reproduces the 

experimental lattice constants of bixbyite Y2O3
10

. Calculations of YSZ defects using these 

potentials reproduce the fact that NNN type structures are more stable than NN type
10,48

.  

𝜑𝑟 = 
𝑞𝑎𝑞𝑏

𝑟
+ 𝐴𝑒𝑥𝑝(−𝑟/𝜌)  −  

𝐵

𝑟6
                                                                                   -equation 1     

Table 1: YSZ Born-Mayer-Huggins potential parameters.                                                                                       

Short Range Interactions 

Interaction A / eV ρ / Å B / eVÅ
6 

Cut off / Å 

Zr
4+

....O
2- 

985.87 0.3760 0.0 10 

 

O
2-

....O
2-

 22764.00 0.1490 27.88 12 

 

Y
3+

....O
2-

 1345.10 0.3491 0.0 10 

 

Table 2: Polarisable shell model parameters. 

Shell Model 
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Species γ / e k / eVÅ
-2 

O
2-

 -2.077 27.290 

Zr
4+

 1.35 169.617 

 

In what follows we distinguish between “unrelaxed” structures, where all ions and vacancies 

reside on the ideal fluorite sites of c-ZrO2, and “relaxed” structures in which the internal 

coordinates of the cell have been optimised.  The structures are further split into two categories:  

 Short-range, where the Ovac resides in the first O-coordination sphere of Y
3+ 

(The so 

called, NN structures).  

 Long-range, where the Ovac resides in the first O-coordination sphere of Zr
4+

 and 

second or greater O-coordination sphere of Y
3+

 (The so called NNN, NNNN or greater 

structures) 

 The defect formation energy (∆Ef) is calculated relative to the formation energy per formula 

unit of c-ZrO2 (𝐸𝑍𝑟𝑂2) and that of the 40 atom cell of bixbyite Y2O3 (𝐸𝑌2𝑂3) as: 

∆𝐸𝑓 =
1

𝑛1
(𝐸𝑑𝑒𝑓𝑒𝑐𝑡 − 𝑛𝑂𝐸𝑍𝑟𝑂2 − 𝑛1𝐸𝑌2𝑂3)                                                                -equation 2 

Where Edefect is the total energy of the supercell, n0 the number of ZrO2 formula units, and n1 is 

the number of Y2O3 substitutions in the supercell. 

The DFT formation energy of an unrelaxed Y2O3 defect cluster was converged with respect to 

dopant concentration. YSZ was modelled at 14.3, 6.7, 3.2, and 1.6mol% by introducing a 

symmetry equivalent Y2O3 defect cluster into 16, 32, 64 and 128 atom supercells of the 

conventional c-ZrO2 cell respectively. Table 3 shows the formation energy of the defect cluster 

at different dopant concentrations. At 3.2 mol% the formation energy converges to 10 meV, 
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showing that this is the dilute limit and the point at which defect-defect interactions become 

negligible.  

Table 3: Convergence of defect formation energies with respect to dopant concentration. 

Dopant concentration of Y2O3 / mol% 14.3 6.7 3.2 1.6 

DFT formation energy of unrelaxed Y2O3 defect / eV 4.77 5.58 5.42 5.43 

 

A model of 3.2mol% YSZ is created by introducing one Y2O3 unit into a 96 atom 2x2x2 

supercell of the conventional c-ZrO2 cell. In this supercell, the high symmetry points of the first 

Brillouin zone of c-ZrO2 X, W and L fold back onto Γ. This facilitates analysis of the imaginary 

phonon modes at the X-point of c-ZrO2 in terms of intra-cell atomic displacements. There are 

63488 possible defect structures when introducing two substitutional Y
3+

 ions and one Ovac onto 

the ideal fluorite sites of the 2x2x2 c-ZrO2 supercell. Taking into account all translational and 

space-group symmetries this can be reduced to 28 symmetrically inequivalent structures
61

. 

Correlations between data sets were analysed using regression analysis. Correlations are 

described by the coefficient of determination (R
2
), which is the square of the Pearson correlation 

coefficient. The coefficient of determination has a value between 0 and 1 where 0 is no 

correlation and 1 is a perfect correlation.  

Born-Mayer-Huggins and Point Charge Models as Predictors of DFT Relaxation Energies 

The internal coordinates of the 28 symmetry inequivalent defect structures were fully relaxed 

using both the Born-Mayer-Huggins polarizable shell model, and DFT energy expressions.   In 

Figure 1 the resulting relative defect formation energies are compared by plotting against a 

structure number that increases with increasing DFT defect formation energy. The model 

energies correlate poorly with the DFT energies, yielding an R
2
 of 0.35. 
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Figure 1: Defect formation energy relative to that of the lowest energy DFT structure for the 28 

symmetry inequivalent structures calculated using the empirical BMH potential (red) and DFT 

(blue). The correlation between the two sets is low (R
2
 = 0.35), indicating that the empirical 

potential reproduces DFT energy differences poorly.  

The potential is unreliable in two respects. It fails to predict the same minimum energy defect 

structure as predicted by DFT, and predicts many structures to be significantly higher or lower in 

energy than their DFT equivalents. It also predicts many meta-stable structures to be unstable 

with respect to local reconstructions. These differences will be analysed in terms of the local 

geometries and the barriers to Ovac migration in the section titled: Analysis of Born-Mayer-

Huggins Potential Model below. 

The potential and DFT calculations do agree in predicting long-range NNN structures to be the 

lowest energy structures. The defect formation energy of the lowest energy structure computed 

by DFT (Figure 4) is -1.55 eV.  In this structure the Y
3+

 - Ovac   – Y
3+

 defect cluster has an 

equilateral triangle topology, which is a common feature of all low energy structures.  

Although much simpler than the Born-Mayer-Huggins potential, we also investigated an ionic 

model based on formal point charges with unrelaxed structures. Figure 2 shows the comparison 
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between it and the DFT formation energies of the equivalent relaxed structures. There are two 

disjoint clusters of points within the scatter plot, which correspond exactly to the subsets of 

short-range and long-range defect geometries. All short range structures have rather high DFT 

formation energies and there is essentially no correlation between the point charge model and 

DFT. For these, the point charge model gives unphysically low formation energies. For long 

range structures, however, the point charge model correlates strongly to the DFT formation 

energies with an R
2 

value of 0.75. We conclude that while the simple point charge model of 

unrelaxed geometries does not provide reliable total or relative energies for the defects it does 

provide a reliable predictor of the low energy defect arrangements.  

 

 

 

 

 

 

 

Figure 2: Electrostatic formation energies of the unrelaxed structures plotted against DFT 

formation energies of the relaxed structures. Blue points show the energetics of long-range 

structures, red points show the energetics of short-range structures. 

Distortion along Imaginary Phonon Modes as a Predictor of DFT Relaxation Energetics 

It is plausible that variation in structural relaxation around defects of different geometries is 

partly responsible for the variation in ordering energies. We investigate the relaxation energetics 

of our 28 DFT relaxed structures using a quantitative model of ab initio force constants based on 
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the unstable phonon mode of perfect, stoichiometric c-ZrO2. As can be seen in Figure 3, c-ZrO2 

possesses two imaginary phonon modes at the X and W-point of the first Brillouin zone. The 

phonon frequencies at the X and W-points are calculated to be i217cm
-1

 and i65cm
-1

 

respectively. The computed imaginary frequency at the X-point is similar to that reported in 

previous calculations using LDA and PBE functionals with projector augmented wave (PAW) 

and NCP pseudopotentials
18–20,23

. The frequency of the phonon at the W-point is more sensitive 

to numerical approximations, and for instance, varies from i18 cm
-1

 to i65 cm
-1 

as the FFT grid 

scale is increased from x1.5 to x2.5. This frequency was reported as approximately 40 cm
-1 

in 

previous PAW-PBE calculations using the Quantum ESPRESSO code
20

.  

 

Figure 3: The computed phonon dispersion 

curves of c-ZrO2 showing the imaginary 

frequency modes in the region of the X and 

W-points highlighted in red and blue. 

 

 

 

 

 

The eigenvector of the X-point phonon corresponds to oxygen anions moving in the ⟨1 0 0⟩ 

direction with alternate ions along the ⟨0 1 0⟩ direction moving in antiphase (Figure 4). The 

minimum energy configuration along this mode is 2 eV / supercell lower in energy than c-ZrO2.  

In Figure 4 this displacement is compared with the relaxation observed in the lowest energy 
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defect structure. The visible similarity strongly suggests that atomic displacement along this 

phonon eigenvector is responsible for relaxing the local strain induced by the dopant and 

vacancy.  

 

 

 

 

 

 

 

 

 

Figure 4: Left: relaxation of the oxygen anions pure along the imaginary X-point phonon mode 

in the 2x2x2 supercell. Right: The relaxation pattern of the oxygen anions observed in the lowest 

energy defect structure. Note: the similarity of the relaxation patterns. 

Relaxing the ideal bulk crystal along the imaginary W-point phonon eigenvector leads to 

displacement of the oxygen anions along a ⟨2 1 0⟩ direction. The relaxation energy of the anions 

along the W-point phonon is negligible compared to relaxation along the X-point phonon, 

typically 10 meV / supercell. 

In Figure 5 the harmonic relaxation energy of the bulk X-point phonon is plotted against the 

formation energies of the relaxed structures computed using DFT. For each defect structure, i, 

the atomic displacements of relaxation are projected onto the bulk X-point phonon eigenvector to 

obtain an amplitude 𝛼𝑖. The harmonic relaxation energy, in eV/cell, is then defined as: 

  = Zr site   = O site   = O
vac

 site = Y site   
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𝛥𝐸𝑥 =
1

2
𝑎2𝛼𝑖

2𝜆𝑥                                                                                                        -equation 3 

where a is the lattice constant of the unit cell, and λx is the eigenvalue of the phonon mode. 

 

 

 

 

 

 

 

Figure 5: Relationship between the DFT formation energies of the relaxed structures and 

harmonic relaxation along imaginary X-point phonon modes. Blue points show the energetics of 

long-range structures, red points show the energetics of short-range structures. 

For low energy structures and all long-range structures, the elastic relaxation energy along 

imaginary phonon modes is weakly correlated to the DFT energy of formation. Although the 

relaxation energy along the imaginary phonon modes is significant, it does not discriminate 

effectively between different structures. The correlation between the final relaxed DFT energies 

and the harmonic relaxation energy is poor with an R
2
 value of 0.38. However the relative 

stability of high energy, short-range structures is more strongly correlated to the harmonic 

relaxation energy, with an R
2
 of 0.62.  

 

Relative Importance of Electrostatic and Relaxation Energies 

The formation of 3.2mol% YSZ isolated defect structures can be usefully viewed as a two-step 

process: firstly, the isolated Y2O3 unit is placed within the unrelaxed c-ZrO2 structure and 
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secondly, the structure is allowed to relax. The relaxation is well described as a motion along the 

unstable X-point phonon mode with the unstable W-point mode making a negligible 

contribution. This suggests that relative defect formation energies can be predicted using an 

artificial synthesis model consisting of the unrelaxed electrostatic formation energies of the point 

charge model, and the harmonic relaxation along imaginary phonons, that is;
62

  

 

∆𝐸𝑓𝑌𝑆𝑍(𝑖, 𝑅) ≈ 𝐴∆𝐸𝑒𝑙𝑒𝑐(𝑖, 𝑅) + 𝐵∆𝐸𝑠𝑡𝑟𝑎𝑖𝑛(𝛼, 𝑅) + 𝐶                                        -equation 4  

 

A, B and C are fitted constants and given below in Table 4, Eelec is the electrostatic formation 

energy of an unrelaxed defect structure in configuration i, and Estrain is the energy change from 

atomic relaxation along X-point imaginary phonons.  

Through the synthesis model, the relative importance of electrostatics and imaginary phonons 

in determining the final energetic ordering of the relaxed DFT defect structures can be assessed. 

Figures 6 and 7 show the synthesis model energy plotted against the DFT formation energies of 

the relaxed long-range and short-range structures respectively. For long-range structures, almost 

all of the variation is accounted for by the electrostatic interaction of the defects. The coefficient 

of determination does not increase significantly when accounting for the X-phonon strain energy 

on top of the ionic energy (from 0.75 to 0.79). In contrast, the variation in short-range structures 

is described well by a combination of point charge electrostatics and relaxation along imaginary 

phonon modes. The coefficient of determination increases from 0.62, with pure relaxation along 

imaginary X-point phonon modes, to 0.79 when taking into account electrostatics. To 

incorporate the two subcategories of structures into a single model, an understanding of a further 
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destabilising force for short-range structures needs to be established. We do not currently have 

such an understanding. 

 

 

 

 

 

 

 

Figure 6: Long-range defect formation energies predicted by the synthesis model plotted against 

DFT formation energies of the relaxed long-range structures. The majority of the variation in the 

DFT energies is accounted for by electrostatic interactions. 

 

 

 

 

 

 

 

Figure 7: Short-range defect formation energies predicted by the synthesis model plotted against 

DFT formation energies of the relaxed short-range structures. The majority of the variation in the 

DFT energies is accounted for by relaxation along X-point imaginary phonon modes. 

Table 4: Fitted constants for the synthesis models presented in Figures 6 and 7. 
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Fitted Constant A (dimensionless) B (dimensionless) C / eV 

Long-range 0.14 0.34 2.89 

Short-range 0.13 0.44 3.97 

 

Analysis of Born-Mayer-Huggins Potential Model 

As discussed in the introduction, the empirical potential model and DFT have been shown to 

predict the instability of many defect structures at 6.7 and 10.4mol%. Unstable structures 

undergo barrier-less reconstructions of the Ovacs, where reconstructions predicted by DFT are 

often not predicted by the potential and vice versa
44

.  

The final atomic positions of the relaxed structures are mapped back onto their unrelaxed 

geometries by identifying the ideal fluorite O and Zr sites closest to the location of the relaxed 

Zr, O, Y, and Ovac sites. It was found that for the potential model, seven structures were unstable 

and underwent barrier-less reconstructions of the Ovac away from its initial position on the ideal 

crystal lattice.  In contrast, DFT predicted one unstable structure with a flat energy surface with 

respect to Ovac reconstruction (pictured in Figure 8). Using DFT and a linear synchronous transit 

(LST) and quadratic synchronous transit (QST) maximisation transition state (TS) search, the 

energy barrier to reconstruction for the structure in Figure 8 was computed as 10meV. This is 

small enough that thermally-activated reconstruction would be nearly instantaneous even at room 

temperature. 
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Figure 8: Ovac reconstruction observed upon strain relaxation in DFT Left: unrelaxed NN defect 

structure with two 7-fold O-coordinated Y
3+

 ions. Right: final strain relaxed NNN structure. The 

Ovac can be seem migrating between two metal tetrahedral sites. The energy barrier to 

reconstruction is calculated as 10meV using a DFT LST/QST TS search.  

Through reconstructions, the majority of unstable structures predicted by the empirical potential 

relax under DFT to a geometry that can easily be mapped back to one of the 28 unrelaxed 

symmetry inequivalent structures. An example, with reference to Figure 1, is structure 16, which 

reconstructs to become similar to structure 1. These structures have different unrelaxed 

geometries, and are meta-stable upon relaxation with DFT. The exception to this is structure 6. 

When relaxed, structure 6 takes on an intermediate geometry that cannot easily be mapped back 

onto one of the unrelaxed structures, with the Ovac residing between two ideal O
2- 

sublattice sites. 

Structure 6 is the lowest energy structure predicted by the potential model. When the 

  = Zr site   = O site   = O
vac

 site = Y site   
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intermediate geometry is relaxed in DFT, the Ovac spontaneously relaxes back to its original 

starting position on the O
2- 

sublattice. 

The instability of structures within the potential model can be understood by considering anion 

migration pathways. Five of the unstable structures have an Ovac location such that a single Ovac 

migration leads to the Y
3+ 

- Ovac - Y
3+

 cluster taking on an NNN defect structure in equilateral 

triangle geometry. It must be the case that DFT predicts a barrier to Ovac migration while the 

potential does not. To estimate the DFT energy barriers to Ovac migration, LST/QST - TS 

searches were performed on two structures that the potential predicts as unstable. Both structures 

are meta-stable in DFT, but can reconstruct to a more stable NNN structure through the single 

migration of an Ovac. One structure starts as a short-range NN structure (structure 6), while the 

second starts as a long-range NNNN structure (structure 16). The energies of the transition states 

between structures 6 and 4, and structures 16 and 1 are calculated and presented in Table 5. 

Table 5: DFT calculated energy barriers to Ovac migration.  

Reconstruction 

path 

Forward energy 

barrier to TS / eV 

Reverse energy 

barrier to TS / eV 

Total energy of 

reconstruction / eV 

Structure 6 → 4 0.28 0.45 -0.17 

Structure 16 → 1 0.41 0.92 -0.51 

 

The defect structure starting with NN geometry has a lower energy barrier to Ovac migration 

than the structure in NNNN geometry. The NNNN structure reconstructs to a significantly more 

stable energy minimum. The existence of energy barriers within DFT but not the potential can be 

understood by considering the local strain between O
2-

 ions and the metal sublattice. When an 

Ovac migrates, an O
2- 

ion must pass between two Zr
4+ 

ions. The migration causes a distortion to 
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the metal sublattice as the interatomic distance between the two Zr
4+

 ions increases to 

accommodate the movement. The size of the energy barrier appears to be linked to the distance 

the Zr
4+

 ions have to move from their ideal atomic sites. In the case of the NNNN to NNN 

migration, the interatomic distance of the Zr
4+

 ions increases from 3.98Å to 4.02Å in the TS 

state, before contracting 3.98Å in the final NNN structure. In the case of the NN to NNN 

migration, the interatomic distance increases from 3.97Å to 3.98 Å in the TS state, and increases 

again to 4.0Å in the final NNN structure.  

We conclude that the connectivity between local minima on the potential energy surface is 

poorly reproduced by the potential, suggesting that finite temperature properties and ion 

dynamics in particular are likely to be poorly reproduced by the potential model. 

 

Conclusion 

We have established atomistic geometries for the low energy isolated defect structures in 

3.2mol% YSZ, and compared the accuracy and reliability of empirical potentials, simple 

electrostatics, and strain relaxation effects for predicting the DFT defect formation energies. We 

have proposed relatively easily computed chemical descriptors that can identify likely low 

energy defect structures of YSZ. We find that the best available empirical potential poorly 

recreates the general trend of increasing DFT formation energies across a series of 28 symmetry 

inequivalent structures. It also fails to reliably predict energy barriers associated with Ovac 

reconstruction when compared with DFT. In addition, the connectivity between defect structures 

topologies on the potential energy surface is poorly described.  

Low energy defect structures have NNN type geometries where the Ovac resides in the second 

coordination sphere of a Y
3+

 ion and the first coordination sphere of a Zr
4+

 ion. This topology is 
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optimal when the Y
3+

 - Ovac - Y
3+

 defect cluster has equilateral triangle geometry.  A very good 

predictor of the likely low energy NNN structures, and indeed of all long-range NNNN and 

NNNNN type structures is the total electrostatic energy of a simple point charge model 

calculated at the unrelaxed geometries of the structures. However, the total electrostatic potential 

calculated at the unrelaxed geometries is a poor descriptor of short-range NN structures, where 

the Ovac resides in the first coordination shell of a Y
3+

 ion.  

Local strain relaxation effects make significant contributions to the formation energy and can 

be mapped in terms of relaxation along the imaginary X-point phonons of c-ZrO2. Local strain 

relaxation is only significant in determining the energetic ordering of high energy structures with 

short-range interactions.  All long-range structures exploit relaxation along imaginary phonon 

modes to a similar extent. The results suggest that defects can be characterised by two regimes:  

long-range structures, whose relative energetics correlate to, or can be predicted by point charge 

electrostatics; and short-range structures, whose relative energetics correlate to, or can be 

predicted by a model containing point charge electrostatics plus a harmonic relaxation energy 

along the imaginary X-point phonon modes of c-ZrO2. Establishing an analytical description of a 

destabilising force at short-range will allow both regimes to be incorporated into a single model.  

Associated Content 

Attached with the manuscript are the CASTEP cell files for; c-ZrO2, Y2O3, and the 28 

symmetry inequivalent defect structures at their unrelaxed and DFT relaxed geometries. The files 

are titled:  

 c-ZrO2.cell 

 Y2O3.cell 
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 YSZ_X_unrelaxed.cell 

 YSZ_X_relaxed.cell 

X denotes the number of the structure and is equivalent to the structure number given in Figure 

1. For a detailed description of the cell file format, readers are directed to the CASTEP website
63

. 

Documents containing the energetics of the parent materials and relaxed DFT defect structures 

are included, as well as the dynamical matrix of c-ZrO2. These documents serve as a database for 

which future models can be developed. This material is available free of charge via the internet 

at http://pubs.acs.org. 
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