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Abstract 

Experimental measurements of the phase equilibria of (CO2 + butylbenzene) and (CO2 + 

butylcyclohexane) have been made with an analytical apparatus at temperatures of (323.15, 

373.15 and 423.15) K at pressures from 2 MPa to the mixture critical pressure.  These are the 

first results to be published for (CO2 + butylcyclohexane), while for (CO2 + butylbenzene) they 

are the first at pressures above 6 MPa. To model the data, we use the Peng-Robinson equation 

of state with Wong-Sandler mixing rules incorporating the NRTL equation. The model 

describes the measured bubble point curves very well at all temperatures, except close to the 

mixture critical points at high pressures. The dew point curves are described well only at the 

lowest temperature; otherwise, deviations increase in the approach to the mixture critical point. 
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1. Introduction 

The injection of carbon dioxide into hydrocarbon-bearing reservoir formations is of 

interest in the fields of carbon storage and, especially, enhanced oil recovery (EOR). Two 

benefits of these processes are obvious: mitigate the effects of greenhouse gas emissions, and 

prolonging the productive lifespan of the oil fields. From a fundamental scientific point of view, 

CO2-EOR works on a very straightforward principle, namely, that given the right physical 

conditions, CO2 will mix with the oil forming a low-viscosity, low-interfacial-tension fluid that 

can be more easily displaced [1]. Additionally, CO2 has the capability of invading flooding 

zones not previously flooded by water, as well as releasing and reducing trapped oil [2]. In 

terms of industrial practice, slim tube experiments are widely used to determine the conditions 

at which miscible displacement can be achieved. The term ‘minimum miscibility pressure’ is 

used to describe the lowest pressure at which full miscibility is achieved [3]. In addition to such 

experiments, modelling and optimization of CO2-EOR processes is of great value and, to 

achieve these objectives, fluid properties, especially phase behavior, of (CO2 + hydrocarbon) 

mixtures are required. 

Thermodynamic models for the phase behavior of complex mixtures are typically built-up 

by optimization of binary interaction parameters against experimental phase-equilibrium data 

for the binary sub-systems. Such experimental data are available for many binary mixtures of 

CO2 with normal alkanes, branched alkanes, cycloalkanes or aromatics. However, fewer data 

are available for mixtures of CO2 with more complex molecules such as alkyl-substituted 

cycloalkanes and alkyl-substituted aromatic molecules. In order to help address these gaps in 

the literature, the present work focuses on the phase behavior of (CO2 + butylbenzene) and 

(CO2 + butylcyclohexane). Measurements have been made with an analytical apparatus on 

three isotherms at temperatures of (323.15, 373.15 and 423.15) K and at pressures ranging from 

2 MPa to the mixture critical point. The experimental results have been modeled with the Peng-

Robinson equation of state (EoS) [4] coupled with the Wong-Sandler mixing rules [5] 

incorporating the NRTL solution model [6]. 

2. Experimental Section 

2.1. Chemicals 

The chemical used are detailed in Table 1. No purification was carried out in the course of 

this work. 
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2.2. Experimental setup and procedure 

The circulation-type analytical apparatus shown in Fig. 1, and described previously in 

detail [7], was used in this work. The vapor and liquid phases present in the equilibrium cell 

were recirculated by means of a dual-channel magnetically-coupled pump through lines fitted 

with Rolsi Evolution IV sampling valves that permitted small samples of both phases to be 

withdrawn and transferred to an on-line gas chromatograph (GC) for analysis. The apparatus 

also included a fluid injection system and temperature and pressure measuring systems. It was 

installed within a thermostatic air bath where the temperature was controlled with a stability of 

±0.03 K or better. 

The temperature was measured with a platinum resistance thermometer (PRT) inserted into 

a thermowell in the wall of the equilibrium vessel. This was calibrated by comparison in a 

constant temperature bath with a standard PRT that had itself been calibrated of ITS-90. The 

overall standard uncertainty of the temperature was estimated to be 0.05 K, including the 

uncertainty of the temperature sensor itself, calibration uncertainties and the effects of 

temperature fluctuations in the oven. The pressure was measured by means of a pressure 

transducer that was calibrated against a high-pressure pneumatic controller/calibrator at 

pressures up to 50 MPa. The overall standard uncertainty was estimated to be 0.04 % of reading. 

Starting with the empty system under vacuum and controlled at the desired temperature, a 

selected amount of hydrocarbon was first charged into the cell using one of the high-pressure 

syringe pumps. Next, a selected amount of CO2 was injected into the vessel from a second 

syringe pump that was fitted with a cooling jacket and filled from a dip-tube cylinder of 

liquefied CO2. The magnetic circulation pump along with the stirrer inside the vessel were 

operated to accelerate the process of equilibration. The attainment of equilibrium state was 

judged first from the approach of the pressure to a steady value and then validated by checking 

the reproducibility of the vapor and liquid sample compositions. In the present experiments, 

equilibrium was achieved following approximately two hours of circulation and agitation. 

Once equilibrium was reached, several small samples of each phase, typically between (1 and 

10) µmol, were taken and transferred to the GC for analysis. Pressure changes during such a 

sequence of sampling and analysis were negligible. Following a set of composition 

measurements at a particular pressure, a further quantity of CO2 was injected into the vessel 

and equilibrium was re-established at the next higher pressure. If necessary, some fluid was 

discharged from the vessel prior to further injections of CO2 to ensure that the liquid level 

remained between the inlet ports of the liquid- and vapor-recirculation loops. Isothermal 

measurements were continued until the mixture critical point was reached, and the whole 
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procedure was repeated for other isotherms. 

 

2.3. Gas Chromatography 

For the (CO2 + butylbenzene) system, a HP-INNOWAX capillary column (length 30 m, 

o.d. 0.32 mm, 0.25 μm film thickness) was used while, for (CO2 + butylcyclohexane), a DB-1 

capillary column (length 30 m, o.d. 0.32 mm, 1.5 μm film thickness) was employed. A thermal 

conductivity detector (TCD) was used for all components. To facilitate calibration, a four-port 

sampling valve (model ED2CI4UW1, Vici AG International) with a 1.0 μL internal sample 

loop was connected in series with the sampling valves. This valve was used to inject the 

individual pure components, or diluted solutions of each pure component, in sequence. The 

sampling valve with a temperature sensor and connected in the filling configuration with a 

pressure transducer; thus the thermodynamic state of the samples used for calibration could be 

known. In the case of CO2, the calibration loop was filled by injecting from one of the syringe 

pumps and the amount was varied by changing the filling pressure. In the case of the two 

hydrocarbon components, the sampling loop was filled at ambient pressure and the amount was 

varied by using gravimetrically prepared dilutions in hexane. In each case, the amount of 

substance injected was computed from the density and composition of the calibration sample 

assuming a loop volume of exactly 1.0 μL. For CO2, the equation of state of Span and Wagner 

[8] was used while, for dilutions of butylbenzene in hexane, a density correlation based on the 

measurement of Rice and Teja [9] was used. Since there were no literature values for the density 

of (hexane + butylcyclohexane) mixtures, measurements were made with a vibrating tube 

densimeter (DMA 5000, Anton Paar) calibrated with air and ultrapure water. The measured 

densities are given in the supplementary data [10]. The calibration results, relating the 

chromatographic peak area to the amount of substance injected, are plotted in Figs S.1 and S.2 

in the supplementary data [10]. In fact, the calibration loop volume was not known accurately 

but this term cancels out when the chromatographic response factors are applied to determine 

the composition of a mixture. For (CO2 + butylbenzene), the gas-chromatograph operating 

temperatures during both calibration and sample analysis were as follows: oven, 423 K; inlet, 

473 K; TCD, 523 K. For (CO2 + butylcyclohexane), the corresponding temperatures were: oven, 

473 K; inlet, 483 K; TCD, 523 K. In the measurements, at least five samples of each phase with 

good composition reproducibility were taken and used to form an average. In many cases, this 

sequence of sampling and analysis was repeated with different sample sizes, realized by 

varying the opening times of the sampling valves. The compositions obtained in this way were 

found to be independent of the sample size within the calibrated range of the TCD. The 
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uncertainty of the composition analysis is attributed mainly to the repeatability of the 

measurements because the uncertainty arising from the GC calibration was much smaller. The 

standard deviations for both the vapor- and liquid-phase compositions are reported together 

with the measured values. 

 

3. Results and Discussion 

3.1. Experimental results 

The experimental data, comprising pressure, temperature, liquid- and vapor-phase 

compositions and their standard deviations are listed in Table 2 for the (CO2 + butylbenzene) 

system and in Table 3 for the (CO2 + butylcyclohexane) system. The data are also plotted in 

Figs 2 and 3. As mentioned in the introduction, very limited phase-equilibrium data have been 

reported previously for the mixtures studied in this work. For the (CO2 + butylbenzene) binary, 

Zarah et al. [11] reported bubble-point data at temperatures of (310.15, 323.15, 348.15 and 

373.15) K, while Tiffin et al. [12] reported bubble points at T = (273.15 and 293.15) K. 

Additionally, Gironi and Lavecchia [13] report the solubility of CO2 in butylbenzene at 

p = 0.1 MPa and T = (283 to 303) K. All these data relate to pressures below 6 MPa, no dew 

points were reported and only the results of Zarah et al. [11] overlap the temperature range of 

the present work. As shown in Fig. 2, the data of Zarah et al. [11] are in good agreement with 

our results at pressures up to about 4 MPa but, at higher pressures, they tend to fall below our 

measurements. In other words, data of Zarah et al. imply a slightly larger solubility of CO2 in 

the liquid phase at given temperature and pressure. These workers used a synthetic method in 

which it was assumed that the vapor phase was pure CO2; however, it is not possible to identify 

definitively the source of the discrepancy between their data and our results. For the (CO2 + 

butylcyclohexane) binary, no data were identified in the literature. 

 

3.2. Modelling results 

To model the phase behavior of the systems studied, the Peng-Robinson equation of state 

(EoS) together with the Wong-Sandler mixing rules has been used. The required properties for 

the pure compounds, namely, critical temperature, critical pressure and acentric factor, are 

listed in Table 4. For CO2, the values are taken from REFPROP 9.0. [14]  The critical 

temperatures and pressures for butylbenzene and butylcyclohexane were taken from NIST 

Chemistry WebBook, [15] while the acentric factors were calculated from the vapor pressure 
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correlation provided in the same source.  

The Wong-Sandler mixing rules energy and co-volume parameters, am and bm, of the 

mixture are given by [5]: 
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where ai and bi are the energy and co-volume parameters of pure component i, 

ln( 2 1) / 2C = − , and EA∞  is the excess Helmholtz energy of the mixture at infinite pressure, 

which is approximated by the excess Gibbs function at low pressures. In this work, we use the 

NRTL solution model [6]: 
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with 

  ( )expij ij ijG α τ= − . (5) 

Here, ijτ  and jiτ  are interaction parameters and ijα  is the non-randomness parameter 

which, in this work, it is taken to be 0.3. In this work, the parameters kij, ijτ   and jiτ   were 

represented as linear functions of inverse temperature as follows:  

  12 (1000K / )k A B T= + , (6) 

  12 (1000K / )C D Tτ = + , (7) 

  21 (1000K / )E F Tτ = + . (8) 

Thus, for each system studied, a total of six binary parameters (A to F) were regressed 

simultaneously against the experimental data on all isotherms studied. The objective function 

to be minimized was based on the pressure as follow: 
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Here, exp
ip  and cal

ip  are the experimental and calculated pressure at the ith state point, and N is 

the number of experimental data points. The calculated pressure and vapor phase composition 

are listed in Table 2 and 3 for (CO2 + butylbenzene) and (CO2 + butylcyclohexane), respectively, 

and the calculated results are also plotted in Figs 2 and 3.  

The regressed parameters are given in Table 5 for the two mixtures, while the calculated 

average absolute relative deviations of pressure, Δp, and vapor-phase mole fraction, Δy, for each 

isotherm are summarized in Tables 6. For (CO2 + butylbenzene), the Δp are below 1.0% for all 

the three isotherms, while for the (CO2 + butylcyclohexane) binary system, slightly larger 

deviations up to 1.7 % are found. In terms of the vapor-phase composition, Δy increases with 

increasing temperature and, for both mixtures, the largest deviations occur as the mixture 

critical points are approached. 

4. Conclusions 

With our analytical apparatus, phase equilibira of CO2 + butylbenzene and CO2 + 

butylcyclohexane mixtures were measured at temperature 323.15 K, 373.15 and 423.15 K, and 

at pressure up to 21 MPa. For the CO2 + butylbenzene system, our measurement are compared 

with the literature values, while for the CO2 + butylcyclohexane system, no literature data is 

reported. The measured data are correlated using PR EoS with Wong-Sandler mixing rules. The 

model performs quite well at low pressures, at high pressures close to the mixture critical points, 

the model performs slightly worse, especially in terms of dew points calculation. 

 

Nomenclature  

a  energy parameter in equation of state 

A  Helmholtz function 

AAD  average absolute deviation 

b   co-volume parameter in equation of state 

C   mixing rule parameter 

G  Gibbs function, NRTL solution model interaction parameter 

i  component i, data point i 

k  interaction parameter 

N   number of data points 
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n  mole amount 

p   pressure 

R   universal gas constant 

S  objective function 

T   temperature  

x  molar fraction in the liquid phase 

y   molar fraction in the vapor phase  

 

Greek letters 

α     nonrandomness parameter 

Δ  absolute average relative deviation 
τ   NRTL solution model interaction parameter 

 

Subscripts 

i, j  component i, j and data point i 

m       mixture 

∞  infinite pressure 

 

Superscripts 

E  excess function 

cal  calculated value 

exp  experimental value 
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Table 1. Description of chemical samples. 

 

Chemical name 
 

CAS number Source Specified mole fraction Purity 

Carbon dioxide 124-38-9 BOC 0.9995 

Butylbenzene 104-51-8 Sigma-Aldrich 0.99 

Butylcyclohexane 1678-93-9 Sigma-Aldrich 0.99 

 

 

 

 

http://www.sigmaaldrich.com/catalog/search?term=104-51-8&interface=CAS%20No.&lang=en&region=NO&focus=product
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Table 2. Experimental liquid composition x1 and vapor composition y1 for [CO2 (1) + 

butylbenzene (2)] at temperatures T and pressures p together with associated standard 

uncertainties u(x1) and u(y1). Calculated value pcal and y1
cal are also given. a 

 

T (K) p (MPa) x1 u(x1) y1 u(y1) pcal (MPa) y1
cal 

323.15 2.120 0.1563 0.0013 0.99240 0.00012 2.092 0.99934 

323.15 4.533 0.3317 0.0024 0.99680 0.00005 4.539 0.99928 

323.15 6.315 0.4718 0.0021 0.99648 0.00013 6.350 0.99893 

323.15 7.533 0.5716 0.0019 0.99652 0.00019 7.436 0.99853 

323.15 8.386 0.6755 0.0041 0.99559 0.00017 8.333 0.99801 

323.15 8.995 0.7710 0.0023 0.99337 0.00017 8.969 0.99743 

323.15 9.554 0.8975 0.0017 0.98903 0.00021 9.635 0.99594 

323.15 9.658 0.9327 0.0015 0.98533 0.00011 9.763 0.99501 

        

373.15 2.124 0.1034 0.0021 0.98963 0.00013 2.123 0.99451 

373.15 5.330 0.2478 0.0025 0.99294 0.00017 5.412 0.99561 

373.15 8.484 0.3843 0.0016 0.98958 0.00032 8.720 0.99415 

373.15 11.567 0.5107 0.0018 0.98470 0.00017 11.693 0.99125 

373.15 15.543 0.6973 0.0018 0.96993 0.00045 15.459 0.98454 

373.15 16.287 0.7411 0.0026 0.96185 0.00027 16.197 0.98254 

373.15 17.359 0.8260 0.0021 0.92973 0.00035 17.339 0.97778 

        

423.15 2.186 0.0830 0.0012 0.96453 0.00014 2.166 0.97363 

423.15 5.780 0.2088 0.0027 0.97652 0.00049 5.740 0.98309 

423.15 9.384 0.3256 0.0041 0.97697 0.00042 9.344 0.98195 

423.15 13.576 0.4618 0.0018 0.96304 0.00110 13.607 0.97609 

423.15 16.258 0.5486 0.0011 0.95816 0.00059 16.170 0.97032 

423.15 19.120 0.6534 0.0013 0.94306 0.00105 18.928 0.96171 

423.15 20.988 0.7559 0.0012 0.90423 0.00051 21.015 0.95251 

423.15 21.420 0.8269 0.0026 0.86804 0.00104 21.548 0.94605 
 
  a  Standard uncertainties are u(T) = 0.05 K and u(p) = 0.0004p. 
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Table 3. Experimental liquid composition x1 and vapor composition y1 for [CO2 (1) + 

butylcyclohexane (2)] at temperatures T and pressures p together with associated standard 

uncertainties u(x1) and u(y1). Calculated value pcal and y1
cal are also given. a 

 

T (K) p (MPa) x1 u(x1) y1 u(y1) pcal (MPa) y1
cal 

323.15 2.351 0.1505 0.0010 0.99561 0.00006 2.289 0.99920 

323.15 5.024 0.3387 0.0014 0.99864 0.00002 5.074 0.99906 

323.15 7.253 0.5105 0.0021 0.99710 0.00003 7.209 0.99846 

323.15 8.604 0.6400 0.0033 0.99541 0.00006 8.422 0.99780 

323.15 9.208 0.7307 0.0034 0.99087 0.00017 9.095 0.99724 

323.15 9.506 0.8109 0.0022 0.98593 0.00008 9.597 0.99657 

323.15 9.741 0.9441 0.0008 0.97506 0.00023 9.883 0.99391 

        

373.15 2.413 0.1085 0.0003 0.99021 0.00006 2.405 0.99422 

373.15 4.957 0.2227 0.0003 0.99354 0.00005 5.129 0.99527 

373.15 7.517 0.3289 0.0016 0.99102 0.00012 7.744 0.99448 

373.15 10.292 0.4452 0.0020 0.98683 0.00006 10.513 0.99248 

373.15 12.561 0.5431 0.0031 0.98238 0.00026 12.657 0.99010 

373.15 15.178 0.6631 0.0041 0.97118 0.00014 15.034 0.98640 

373.15 17.107 0.7930 0.0027 0.94049 0.00017 17.358 0.98099 

        

423.15 2.339 0.0849 0.0003 0.96923 0.00027 2.265 0.97270 

423.15 5.994 0.2131 0.0006 0.97940 0.00008 5.968 0.98265 

423.15 8.784 0.3066 0.0006 0.98034 0.00031 8.843 0.98223 

423.15 12.285 0.4173 0.0008 0.97256 0.00049 12.252 0.97876 

423.15 15.383 0.5178 0.0012 0.96004 0.00035 15.184 0.97373 

423.15 18.103 0.6134 0.0007 0.94813 0.00037 17.745 0.96761 

423.15 20.208 0.7155 0.0009 0.91374 0.00025 20.184 0.96030 
   
  a  Standard uncertainties are u(T) = 0.05 K and u(p) = 0.0004p. 
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Table 4. Critical temperature Tc, critical pressure pc and acentric factor ω for the pure 

compounds [14, 15]. 

 
Compound Tc (K) pc (MPa) ω  
CO2  304.13  7.3773 0.22394 
butylbenzene 660.48 2.887 0.39267 
butylcyclohexane 653.10 2.560 0.37042 

 

 

 

Table 5. Regressed model parameters for [CO2 (1) + butylbenzene (2)] and [CO2 (1) + 

butylcyclohexane (2)]. 

System A B C D E F 
CO2 (1) + butylbenzene (2) 0.8927 -0.0704 0.5852 0.8010 -1.7196 0.4358 
CO2 (1) + butylcyclohexane (2) 0.9715 -0.0811 0.4578 0.9621 -2.1422 0.6686 
 
 
 
 
Table 6. Calculated absolute average relative deviations of pressure (Δp) and vapor-phase 

mole fraction (Δy) for [CO2 (1) + butylbenzene (2)] and [CO2 (1) + butylcyclohexane (2)].a 

System T (K) Δp Δy 
CO2 (1) + butylbenzene (2) 323.15 0.8 % 0.0046 

373.15 1.0 % 0.0146 
423.15 0.6 % 0.0239 

CO2 (1) + butylcyclohexane (2) 323.15 1.4 % 0.0062 
373.15 1.7 % 0.0112 
423.15 1.1 % 0.0135 

a  
exp cal

exp
1 i i

p
i i

p p
N p

−
∆ = ∑ , exp cal1

y i i
i

y y
N

∆ = −∑  
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Fig. 1. Schematic diagram of the experimental setup 
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Fig. 2. pxy diagram for (CO2 + butylbenzene). This work: ■, T = 323.15 K; ●, T = 373.15 K; 
▲, T = 423.15 K. Zarah et al. [11]: □, T = 323.15 K; ○,T = 373.15 K. ———, calculated 
bubble and dew point curves.  
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Fig. 3. pxy diagram for (CO2 + butylcyclohexane). This work: ■, T = 323.15 K; ●, T = 373.15 
K; ▲, T = 423.15 K; ———, calculated bubble and dew point curves.  
 


