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Abstract

A growing awareness of the prominent role the environment plays in multi-agent systems has led to gradual

acceptance of its importance by the multi-agent system community in general. Within this line of research,

we propose a new class of games, called Multi-Games. A Multi-game is one in which a given number of

players play a fixed finite number of basic games simultaneously. The basic games in a multi-game can be

regarded as different environments for the players, and, in particular, we submit that multi-games can be used

to model investment in multiple national and continental markets within a global economy. Furthermore, when

the players’ weights for different games in the multi-game are classed as private information or as types with

given conditional probability distributions, we obtain a particular class of Bayesian games.

The main contribution of this thesis is to illustrate how, for the class of so-called completely pure regular multi-

games with finite sets of types, the Nash equilibria of the basic games can be used to compute a Bayesian Nash

equilibrium in multi-games, with complexity independent of the number of types. Following the presentation

of the main results, the thesis presents two algorithms that allow us to establish whether we have a Bayesian

Nash equilibrium which can be determined with lower computational complexity.
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Chapter 1

Introduction

In the opening chapter of this thesis, we briefly talk about game theory, multi-agent sys-

tems and then introduce a new class of games, called multi-games, in which a given

number of players play a fixed finite number of basic games simultaneously. We then

expand on these in the following chapters and explain game theory in more detail as well

as discuss in more depth the multi-games. We will then explain the motivation and back-

ground to the work, before discussing the contribution of this research respectively. In

Section 1.5, we discuss related work. In the last section of this chapter, we provide a

guide to the thesis.

1.1 Game Theory

Game theory is the academic study of conflict and cooperation between two or more independent,

self-interested and rational players (agents). Rational players aim towards very specific goals when

making any choice. Players may be groups or individuals or a combination of these.

Game theory furnishes a framework for communication between players and a formulation and anal-

ysis of their strategies [TS01, OR94]. In other words, game theory refers to the study of decision-

making between people when decisions are reliant upon each other. This forms part of a highly

academic sector within applied mathematics, even though the term might sound somewhat playful.

1



2 Chapter 1. Introduction

Game theory allows us to effectively analyse, create, plan, and gain insight into situations in which a

strategy might be used [Per12, MSZ13]. Game theory is the most comprehensive interaction theory

to date [Sho08].

In 1838, Antoine Cournot conducted one of the earliest formal game-theoretic analyses. Game theory

was originally introduced to model the behaviour of rational agents whereby players make inde-

pendent decisions in order to maximise their utility or payoff in an economy [NM44]. Further en-

hancements to the field were undertaken in 1950 by John Nash, who demonstrated that finite games

always have an equilibrium point, at which all players can choose actions that are best for them given

their opponents’ choices [Nas50]. Since 1950, game theory has been applied in economic theories,

sociology, psychology, philosophy, biology, military applications, politics and networks [MSZ13].

Recently, game theory has become a common and pervasive occurrence in computer science. Artifi-

cial intelligence, e-commerce, and networking are just a few computer science fields in which game

theory has become an inherent component. Game theory also applies to the internet, which requires

the development of systems that encompass more than one entity and are associated with specific

information and interests.

“Game theory is a sort of umbrella or ‘unified field’ theory for the rational side of social science,

where ‘social’ is interpreted broadly, to include human as well as non-human players (computers,

animals, plants).”(Yisrael Aumann 1987)

The algorithmic game theory has emerged as a result of the integration of the computational approach

with game theoretical models [NRTV07]. The algorithmic game theory and multi-agent systems are

both important research areas in Artificial Intelligence.

1.2 Multi-Agent System and Multi-Games

A multi-agent system is formed of a number of independent entities known as agents, that engage in

mutual interaction in order to pursue individual interests (Competition), achieve a common objective

(Collaboration) and negotiate with each other [SL09].

Traditional artificial intelligence has been concerned with developing models of particular facets of
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individual agents; by contrast, multi-agent system addresses the interplay among different agents

which exhibit several characteristics, including autonomy of action (Autonomous), response to phe-

nomena in their surrounding environment (Reactive), own initiative as catalyst for action (Proactive),

and interaction with other agents (Social) [Woo09, WJ95].

Multi-agent systems research employs many techniques to model and investigate different facets of

agents, for example classical logic, non-monotonic logic reasoning and even machine learning. Re-

cently, multi-agent systems research has been aided by the tools and techniques of game theory,

particularly when applied to problems such as negotiations [Woo09]. Indeed, due to the solid math-

ematical basis of game theory, in modelling interactions among self interested agents, it has been a

predominant theoretical tool in use for analysis of multi-agent systems [Woo09].

Because of the interactive relationship between the agents in a multi-agent system, the actions of one

agent may have repercussions for the others as well. Game theory can be applied to model this in-

terplay and it has been used as a very popular technique in multi-agent systems. Due to the general

acceptance that most agents in multi-agent systems are self interested, there has been a great increase

in interest in the application of game theory and its models to multi-agent systems, particularly when

involving self-interested agents or players. Game theoretic work initially entered the multi-agent sys-

tem’s literature as a result of Jeffrey Rosenchein and colleagues’ work [PW02]. Although multi-agent

systems comprise the greater part of game-theoretic work, the scope of multi-agent systems is sig-

nificantly broad, incorporating non-game-theoretic subjects like models of software engineering and

logical reasoning regarding the perspectives and goals of other agents, sharing of tasks, argumenta-

tion, distributed sensing, and coordination between multiple agents [EL10, LS08, Woo09, SL09].

A growing awareness of the prominent role the environment plays in multi-agent systems has led to

gradual acceptance of its importance by the multi-agent system community in general [WHHS09].

Suppose a multi-agent system in which agents interact together simultaneously within many environ-

ments. A concept is needed to act as a model, which can be applied to this multi-agent system as a

representation of the players or agents interacting together simultaneously in many different environ-

ments.

For the purpose of this research, we introduce a new class of games, called multi-games which can
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be used to model economic, human or technological behaviour, where each agent can allocate its

resources in varying proportions to play in a number of different environments simultaneously, each

representing a basic game in its own right. Each agent can have the same set of strategies for the

different basic games. The payoff for each agent in a multi-game is assumed to be the convex linear

combination of payoffs obtained for the basic games, weighted by the proportions allocated to them (A

convex combination is defined as a linear combination θ1x1+· · ·+θNxN of the vectors x1, x2, . . . , xN

where θi ∈ [0, 1],
∑N

i=1 θi = 1).

In the multi-games, each basic game is the environment in which the agents, or players interact in.

In particular, we submit that multi-games can be used to model investment in multiple national and

continental markets within a global economy, where agents have to interact in different environments

at the same time, though it can also be applied to any multi-agent system where a number of agents

are interacting simultaneously within a number of environments.

In other words, the purpose of using this model is to add a new dimension to the description of a range

of situations, achieved through the employment of game theoretic models. This is done by linearly

combining the payoff matrices of various games and linking them through the use of a type for each

agent, which represents the amount of investment that an agent is willing to commit in that particular

game.

Next, we provide an example of multi-games in the case of investment in a global economy with

different national or continental markets.

Example 1.1. (Battle in Smart phones Market)

Consider two multinational smart-phone producer companies which can invest in the national econom-

ies of the US, EU and China as the world’s largest market for smart-phones with different cost of

investment, advertising, rates of profit, labour value, interest rates, etc. Suppose that they need to

decide in what ratio to divide their funds for investment in the three regions and, in addition, whether

to enter into a particular venture or not. We thus have three games, G1 for US, G2 for EU and G3 for

China, one for each national economy, each with two players and two strategies for entering (E) and

not entering (E ′). Let uij denote the payoff function for player i in Gj (with i = 1, 2 and j = 1, 2, 3).
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Suppose that the first player invests θ11, θ12 and θ13 = 1 − θ11 − θ12 fractions of its funds in US,

EU and China respectively, and assume that θ21, θ22 and θ23 = 1 − θ21 − θ22 are the corresponding

fractions for the second player, see Figure 1.1.

North America Market

θ13

Europe Market

θ12

China Market

θ11

(a) Fractions for Producer 1, θ11 + θ12 + θ13 = 1

North America Market

θ23

Europe Market

θ22

China Market

θ21

(b) Fractions for Producer 2, θ21 + θ22 + θ23 = 1

Figure 1.1: Illustration of an example of the fractions of two multinational companies’ funds in US, EU and China.

Thus, the payoff to the first player for the strategy profiles (X1, Y1) in G1, (X2, Y2) in G2 and (X3, Y3)

in G3, with Xj, Yj ∈ {E,E ′} for j = 1, 2, 3, would be

θ11u11(X1, Y1) + θ12u12(X2, Y2) + θ13u13(X3, Y3),

whereas the payoff for the second player for the same strategy profile would be

θ21u21(X1, Y1) + θ22u22(X2, Y2) + θ23u23(X3, Y3).

1.3 Motivation and Background

The structure of a multi-game is based on a model named double game. In 2010, Edalat introduced

a new game framework called double game, which combines a standard dilemma and a social game.

Consequently, research has been done by Ounsley on the double game utilising the concept of Nash

equilibrium and by Ghoroghi on an application of the double game [Oun10, Gho10].

The idea of multi-games originated following research for an application of double games and we

generalised the idea of a double game to multi-games following the unpublished paper [EGS12]. In
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this research, we generalised definitions of double game and proved some new theorems. We then

present two algorithms for both double and multi games that allow us to establish whether we have a

Bayesian Nash equilibrium which can be determined with lower computational complexity. The al-

gorithm for multi-games determines this with a lower computational complexity which is polynomial

in M for a given N . Multi-games are more realistic in real-world socio-economic contexts and the

study of multi-games may exhibit interesting results in comparison to double games.

Furthermore the idea of changing types in a multi-game seemed more appealing. Therefore, we

pursued this line of research into how changes in the types affect and induce changes in the Nash

equilibrium set for multi-games. Changes in types might result from changes in information, prefer-

ences, or might result from errors in identifying the types of the other player. A player might receive

new information and s/he might then reconsider the type s/he had originally chosen. Obviously a

change affecting the types of one player might produce a new game with a new Nash equilibrium.

On the other hand, in order to be considered useful in predicting its economic behaviour, an equi-

librium strategy for players must lend itself to effective computation. The main problem is that the

computational complexity of obtaining the Nash equilibrium becomes greater with the increase in the

number of features. This means that the players cannot derive any advantages even with the identi-

fication of equilibrium. Such an equilibrium strategy for players can only be useful for determining

or predicting economic behaviour if it can be efficiently computed. Clearly, if the computation of a

Nash equilibrium is unfeasible because of its high complexity, then its existence, despite having theo-

retical significance, has no value in practice. It is thus useful to have models in game theory for which

the computation of a Nash equilibrium can be more efficiently done than in general. Therefore, we

pursued this line of research attempting to reduce the computational complexity in order to establish

whether we have a Bayesian Nash equilibrium which can be determined.

1.4 Contributions of The Thesis

• This research introduces multi-games as a new form of game. In multi-games, a given number

of players divide up their resources according to different weights over a given number of

games, which are then played out simultaneously. All players play at the same time but each
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can use the same set of strategies for the games. Players use a particular assortment of weights,

one for each of the games. Combined, these signify the percentage of the players’ investment in

each of the games. The convex combination of the payoff a player acquires in the games, along

with the assigned weights, makes up a player’s total payoff. Each of the games can be thought

of as being an alternate environment for the players. It is our suggestion that investments in

various continental and national markets in a worldwide economy can be represented using

multi-games.

• A class of Bayesian games is achieved when the players’ weights for certain multi-games in-

volve private information or types that have certain conditional probability distributions. We

show that for the class of so-called completely pure regular multi-games and with finite sets of

types, the Nash equilibria of the basic games can be used to compute a Bayesian Nash equilib-

rium in multi-games with complexity independent of the number of types. We developed two

algorithms in order to establish whether we have a Bayesian Nash equilibrium which can be

determined with lower computational complexity.

1.5 Related Work

Our construction of the multi-games is a novel approach in the game theory field. At first glance, an

N-player multi-game may seem similar to poly-matrix games [Yan68], but is dissimilar in structure.

This is discussed further in Section 3.2. Also, we show that the double game, as an instance of multi-

games, provides a generalisation of the altruistic extension in [CKKS11] which can be considered as

a double game with the first game identified as the original game and the second game as a symmetric

altruistic game in Chapter 5.

Hypergame theory which can be thought of as a linked set of games [BD79], is used to reason on

two or more perspectives of a competitive situation. Both enemy capability and possible intent can

be recorded in a parsimonious notation called the Hypergame Normal Form. Hypergame theory

abandons the assumption of perfect knowledge where one player can perceive options for himself.

Thus each player makes a rational decision according to its own perception of the game. Therefore
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in a Hypergame it may seem as if two games are played, these are each player’s subjective game both

leading to actions in the real game which gives payoffs [Van00, VL02].

Drama theory, developed by [How71, Bry03] follows in the path of hypergames in allowing the dif-

fering perceptions by each player. It also allows players to change their preferences during the game.

This can be used to simulate responses during the course of a game which results in change following

change until the game is over or certain actions become necessary. A drama unfolds through episodes

in which characters interact. An episode goes through phases of scene-setting, build-up, climax and

decision. Finally comes the action that sets up the next episode. This has been used for defence,

political and commercial relations since the early 90s.

Another similar field is concurrent games, which are a form of game semantics [AM99]. This was

designed to overcome the problems in sequential forms of game semantics for linear logic. Game

semantics is used to model interactions between a system and its environment, so one player in the

game represents the system as a proponent and the other the environment as the opponent. This

sequential format however has very limitative consequences. Abramsky created a new form called

concurrent games which allowed the players to act “in a distributed, asynchronous fashion”, taking

notice of each other only when they choose to. These games no longer follow the normal format of

logical games.

Playing simultaneous games to test different strategies is also related to ideas in evolutionary game

theory. Nash doctoral dissertation contains a seminal idea that equilibrium of a game can be under-

stood either as the rational behaviour of a fixed group of individuals, or as the not necessarily rational,

but average behaviour of a population of individuals. John Maynard Smith revived the idea in a bi-

ological setting where the players are competing species that possess different strategies [Smi82].

Each individual in a habitat competes in interspecies scenarios which can be thought of as two player

games. This comes from an assumption that all members of the same species are irrational and can be

generalised as one player [You11]. In each game however there are different payoffs for each player

depending on the opponent species and the variation within each species which leads to evolution.

This links evolutionary game theory to two player games with varying payoffs as a large popula-

tion of individuals who are recurrently and uniformly randomly matched in pairs, play a finite and
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symmetric two-player game.

1.6 A Guide to the Chapters

In the next chapter, we will talk about the fundamentals of game theory. In chapter 3, we will introduce

a formal definition of the multi-game in addition to some examples of multi-games.

In chapter 4, for convenience and ease of presentation, we restrict ourselves to the class of N-player

double game in which each player has the same set of strategies in the two basic games. We later

define the class of pure regular double game, in which for pairs of extreme types there are 2N pure

Nash equilibrium in which the strategy of each player only depends on its own type. Similarly, for a

double game with ℓi types for each player i ∈ I = {1, . . . , N}, we define the notion of a completely

pure regular double game where there are ℓ1 × · · · × ℓi × · · · × ℓN pure Nash equilibrium for all

possible pairs of types of N players in which the strategy of each player only depends on its own

type. We then derive an algorithm for establishing that a double game is completely pure regular with

complexity independent of the number of the types and actions. We also show that a pure Bayesian

equilibrium for a completely pure regular double game can be obtained directly from this algorithm,

thus reducing the complexity of computation.

Chapter 5 will present an example where we apply this framework to obtain a double game extension

of the Prisoner’s Dilemma in order to model pro-social behaviour. In this double game of Prisoner’s

Dilemma, the first game is the classical Prisoner’s Dilemma and the second game captures the social

or moral gain for cooperation for each player. Furthermore, we consider the double game for the

Prisoner’s Dilemma where the social (altruistic) coefficient of each player forms a finite discrete set

of incomplete information or types thus giving rise to a Bayesian game.

In chapter 6, we introduce N-player multi-games with M games and define the class of pure regular

multi-game and a completely pure regular multi-game. We then present an algorithm that allows

us establish whether we have a Bayesian Nash equilibrium which can be determined with lower

computational complexity.

Chapter 7 will introduce the computer program which has been developed on the basis of the proposed
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algorithms and we will discuss the results of analysing these algorithms for a various number of types,

players and games.

In Chapter 8, we will discuss some attempts to compare various strategies in a round-robin tour-

nament of the double game for Prisoner’s Dilemma, in which the players can change their social

coefficients incrementally from one round to the next. In the last chapter, chapter 9, we will conclude

the discussion and highlight future works.



Chapter 2

Background

In this chapter, we briefly talk about the fundamentals of game theory besides some ex-

amples to clarify them. The end of this chapter contains a short overview of Robinson-

Goforth topology of 2× 2 Games.

2.1 Game Theory Definitions

Within the decision theory, a game refers to a strategic interaction [OR94] and so game theory is “the

formal study of decision-making where several players must make choices that potentially affect the

interests of the other players” [TS01]. Game theory contains a number of important key words:

• Utility; Under utility theory, the participants’ decisions or predilections influence the values

assigned to certain results. It has been proposed by Von Neumann and Morgenster [NM44] that

the results can be given substitute numbers in order to ensure that a rational individual making

a decision will consistently be able to choose the optimal expected utility.

• Rationality; The idea is that each agent is rational under game theory. The objective of each

agent is to achieve the optimal expected value of his/her payoff [NM44].

In terms of player i’s payoff, we are referring to one of the two following situations:

11
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• Nature and every other player have selected their strategies and the game has finished. Utility

for player i is then received; or

• Player i’s expected utility, obtained by her/him as a function of the strategies s/he and the other

players selected.

Overall, games can be categorised as shown in Figure 2.1:

Game Taxonomy

Cooperative games or
Non-cooperative games

Extensive form games or
Strategic form games

Complete information games or
Incomplete information games

Figure 2.1: Illustration of important game categories.

Coalitional or cooperative, this type of game forms payoffs that are achievable for potential teams if

they choose to work together. Games are examined in terms of the relationships between participants

under cooperative game theory. On the other hand, Non-cooperative game theory selects payoffs

based on the evaluation of strategic choices regarding the sequence of participants’ decisions and

actions. Under the non-cooperative game theory, two fundamental approaches are utilised: extensive

form game, and strategic form or normal form game.

Extensive form games can be illustrated through game trees. Figure 2.2 represents an example of an

extensive game with two players. Each player has an action set comprised of two actions. Player 1

can choose z or u and player 2 can select between v or w.

Player1

(a, b)

v

(c, d)

w

z

(e, f)

v

(g, h)

w

u

Player2

Information Set

Figure 2.2: Illustration of a game tree.
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Definition 2.1. [NGNP09] (Extensive Form Game). An extensive form game G is defined as a tuple

⟨I, (Ai)i∈I ,H, P, (ui)i∈I⟩, where I = {1, 2, . . . , N} is a finite set of players; A1, A2, . . . , AN are

the action sets of player i ∈ I , respectively; H is the set of all terminal nodes (terminal histories).

P : t → I where t /∈ H is a mapping that associates node t to player i and ui : H → R as a function

of the terminal node reached, called the utility functions (payoff functions).

An information set illustrates every possible move that could have been made during the game up to

a given node, based on what that player has seen.

Definition 2.2. [NGNP09] (Strategic Form Game). A strategic form game or normal (static) form

game G is defined as a tuple ⟨I, (Si)i∈I , (ui)i∈I⟩, where I = {1, 2, . . . , N} is a finite set of players;

S1, S2, . . . , SN are the strategy sets of the players i ∈ I , respectively; and ui : S1×S2×· · ·×SN → R

are mappings called the utility functions.

Figure 2.3 represents an example of 2× 2 game, The four outcomes for each table are represented by

the four cells of the matrix. Player one controls the choice between z and u, and player 2, between v

and w. The players choices then determine the outcome of the game. The corresponding cell to the

choices contains each player’s payoff, represented by two numbers, for players 1 and 2 respectively.

Player 2

v w

Player 1
z (3, 6) (0, 7)

u (0, 4) (3, 5)

Figure 2.3: Payoff matrix: standard notation for the strategic form.

All games can be categorised as follows:

• Complete information games; A game can be thought of as a complete information game when

each player has the same level of knowledge (or more) as the players who have already acted

in each move.

• Incomplete information games. When the player has less knowledge that those who have al-

ready acted, it is considered to be incomplete information.

The following two game types fall under the category of complete information games:
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• Perfect information: Here, the players know everything that has happened previously in the

game (i.e. all other players’ actions). All the players also hold full payoff knowledge of their

own and other players’ payoffs.

• Imperfect information: Here, players do not know everything, but some things that have hap-

pened previously in the game, and they do not know of every action taken previously by the

other players. However, all players know every payoff that could be achieved.

As many factors are influenced by the relationship between players’ planned actions and expectations,

we usually use the word “strategy” (which can be thought of as a function or mapping) instead of

“action”. In the case of strategy we refer to pure strategy in order to distinguish them from mixed

strategies, which are randomizations over pure strategies. Given a player i with Si as the set of pure

strategies, a mixed strategy σi for player i is a probability distribution over Si. That is, σi : Si → [0, 1]

assigns to each pure strategy si ∈ Si, a probability σi(si) such that
∑

si∈Si
σi(si) = 1. The probability

of a pure strategy profile (combination) (s1, . . . , sN) is σ(s1, . . . , sN) =
∏

i∈I σi(si) [NGNP09].

All players are assumed to be rational and therefore they choose the strategies which are desirable for

them, with respect to what the other players do. Thus, each player’s predicted strategy must be that

player’s best response to the predicted strategies of the other players.

Definition 2.3. [Ras06](Best response) The best response for player i ∈ I = {1, 2, . . . , N} in a

normal form game G to the strategies s−i chosen by the other players is strategy si ∈ BRi(s−i) if

there exists another strategy s′i of player i such that

BRi(s−i) = {si ∈ Si|ui(si, s−i) ≥ ui(s
′
i, s−i) ∀s′i ∈ Si} = argmaxsi∈Si

ui(si, s−i)

for each si ∈ Si. BRi(s−i) is a set and BRi : S−i → Si.

A strategy is dominated if it is not the best response strategy whatever the strategy choice of the

opposition. Predictions are easy when there are dominant strategies. A dominant strategy for a

player is one that produces the highest payoff of any strategy available for every possible action by

the other players [HV95]. Now we present some definitions regarding dominance in game theory.

Definitions 2.4 to 2.7 are taken from [Ras06].
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Definition 2.4. Strategy si dominates another possible strategy s′i of player i if ui(si, s−i) ≥ ui(s
′
i, s−i),

∀ s−i ∈ S−i and ui(si, s
′
−i) > ui(s

′
i, s

′
−i) for some s′−i ∈ S−i.

Definition 2.5. (Dominant strategy) Strategy si is dominant if si dominates another possible strategy

s′i of player i, ∀s′i ̸= si.

Definition 2.6. Strategy si strictly dominates another possible strategy s′i of player i if ui(si, s−i) >

ui(s
′
i, s−i), ∀ s−i ∈ S−i.

Definition 2.7. (Strictly dominant strategy) Strategy si is strictly dominant if si strictly dominates

another possible strategy s′i of player i, ∀s′i ̸= si.

Dominant strategies do not always exist, and then we can turn to notions of equilibrium. Nash equilib-

rium appears when the only criteria is that every decision made by a player is the best response to the

other players’ best response strategies. The notion of Nash equilibrium has become the key concept

in game theory since John Nash’s celebrated proof of the existence of a mixed Nash equilibrium for

all finite games in 1950 [Nas50]. In the following sections, we discuss the notion of Nash equilibrium

in pure strategies and mixed strategies.

2.2 Nash Equilibrium in Pure Strategies

Definition 2.8. [NGNP09] Consider G = ⟨I, (Si)i∈I , (ui)i∈I⟩, a strategic form game, where I =

{1, 2, . . . , N} is a finite set of players. The strategy profile (vector) s = (s1, s2, . . . , sN) can be

recognised as a pure strategy Nash equilibrium of G if

ui(si, s−i) ≥ ui(s
′
i, s−i)

for all s′i ∈ Si and for all players i. In other words, pure strategy profile s = (s1, s2, . . . , sN) is a

Nash equilibrium if each si is a best response to s−i.

Definition 2.9. [Ras06] (ϵ-Nash). Fix ϵ > 0. A strategy profile s = (s1, . . . , sN) is an ϵ-Nash

equilibrium if, for all players i and for all strategies s′i ̸= si, ui(si, s−i) ≥ ui(s
′
i, s−i)− ϵ.
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2.3 Nash Equilibrium in Mixed Strategies

A strategic form game, may not involve a Nash equilibrium but instead requires that players choose

pure strategies with given probabilities. It also requires that players act rationally. Mixed strategy is a

probability distribution over pure strategies.

Definition 2.10. [NGNP09] Let G = ⟨I, (Si)i∈I , (ui)i∈I⟩, be strategic form game with finite set

of strategies of each player i ∈ I where I = {1, 2 , . . . , N}. Given a player i with Si as the set

of pure strategies, a mixed strategy σi for player i is a probability distribution over Si, σi : Si →

[0, 1] and ui(σ1, . . . , σN) =
∑

(s1,...,sN )∈S σ(s1, . . . , sN)ui(s1, . . . , sN). A mixed strategy profile σ =

(σ1, . . . , σN) is a Nash equilibrium if ∀i ∈ I ,

ui(σi, σ−i) ≥ ui(σ
′
i, σ−i)

for all σ′
i ∈ M(Si) where M(Si) is the set of possible mixed strategies available to player i.

Theorem 2.1. [Nas50](Nash’s Theorem) Let G = ⟨I, (Si)i∈I , (ui)i∈I⟩ be a finite strategic form game

where I = {1, 2 , . . . , N} is finite and Si is finite for each player i. Then G has at least one mixed

strategy Nash equilibrium.

2.4 Bayesian Game

Private information for each player refers to confidential data that is not known by any other mem-

ber [NGNP09]. The player’s private information is what defines the type of the player. Each player

can be of several types where a type is to be thought of as a full description of the player’s beliefs.

This can include beliefs regarding game information (the ‘state of nature’), beliefs held regarding the

’state of nature’ viewpoints of the other players, and so on. In 1968, John Harsanyi [Har68] proposed

Bayesian form games to represent incomplete information games. Harsanyi suggested that a method

for solving games with incomplete information is by transforming it into a game with imperfect infor-

mation, in which a probability distribution for each unknown value, referred to as a type, is provided.

The Harsanyi’s transformation essentially entails the following stages:
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• Within the strategic decision scenario, all asymmetric information should be represented in

terms of the way in which profiles of actions influence utility payoffs.

• Transform the above model on the realisation of random variables where the ex-ante probability

distribution before the vector of types is chosen is common knowledge among all the players.

Aumann [Aum76] defined: “A fact is common knowledge among the players if every player

knows it and every player knows that every player knows it, and so on”.

Definition 2.11. [FT91] (Bayesian game) A Bayesian form game G is defined as a tuple G = ⟨I,Θ, S,

p, u⟩, I = {1, 2, . . . , N} and Θ = ×i∈IΘi, where Θi is the type space (the set of types) of player i.

S = ×i∈ISi where Si is the set of available strategies to player i. S is called “states of the world” .

p : Θ → [0, 1] and pi is a (discrete) probability function specifying i’s belief about the type of other

players given his own type. u = (u1, . . . , un), where ui : S × Θ → R is the utility function (payoff

utility) for player i.

Bayesian Nash equilibrium is also the basis of games with incomplete information as shown by

Harsanyi in 1960’s [Har95]. A Bayesian Nash equilibrium is a Nash equilibrium in a Bayesian normal

form game [AH02].

Definition 2.12. [FT91] A Bayesian Nash equilibrium in a game G of incomplete information with

a finite number of types θi for each player i ∈ I , a prior distribution p, and pure strategy spaces Si is

the Nash equilibrium of the “expanded game” in which each player i’s space of pure strategies is the

set SΘi
i of strategy maps from Θi to Si i.e. si(.) : Θi → Si. A pure strategy for player i is a function

si(.) : Θi → Si that specifies a pure action si(θi), which is what i will choose when his type is θi.

Given a strategy profile s(.) and an s′i(.) ∈ SΘi
i , let (s′i(.), s−i(.)) denote the profile where player i

plays s′i(.) and the other players follow s(.), and let

(
s′i(θi), s−i(θ−i)

)
=

(
s1(θ1), . . . , si−1(θi−1), s

′
i(θi), si+1(θi+1), . . . , sN(θN)

)
denote the value of this profile at θ = (θi, θ−i). Then, strategy profile s(.) is a pure Bayesian equilib-
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rium of G if and only if, for all i ∈ I and all θi ∈ Θi such that p(θi) > 0,

si(.) ∈ argmax
s′i(.)∈S

Θi
i

∑
θi

∑
θ−i

p(θi, θ−i)ui

(
s′i(θi), s−i(θ−i), (θi, θ−i)

)
or

si(θi) ∈ argmaxs′i∈Si

∑
θ−i

p(θ−i|θi)ui

(
s′i, s−i(θ−i), (θi, θ−i)

)
(2.1)

for all s′i ∈ Si. Given p(θ1, . . . , θN), Bayes rule can be used to measure conditional distribution

p(θ−i|θi), referring to player i’s belief regarding the other players’ type distribution.

pi(θ−i|θi) =
p(θ−i, θi)

p(θi)
=

p(θ−i, θi)∑
θ−i∈Θ−i

p(θ−i, θi)
.

Note that actions and strategies in the Bayesian game context are used in different ways. A strategy

for a player i is defined as a mapping from Θi to Si where a strategy si of a player i specifies a pure

action for each type of player i. The notation si(.) refers to the pure action of player i corresponding

to an arbitrary type from his type set.

There is also a definition for mixed Nash equilibrium in Bayesian games, which holds for the general

case of continuous type θi for player i ∈ I where I = {1, 2 , . . . , N} is finite.

Definition 2.13. [OR94] In a game G of incomplete information with a finite number of types θi for

each player i ∈ I , and pure strategy spaces Si, we denote the set of mixed strategies over the strategy

set σ by M(Si). A mixed strategy is a function σi : Θi → M(Si) that specifies a lottery σi(θi)

for each of i’s possible types θi ∈ Θi. A strategy profile σ ∈ M(Si) is a mixed strategy Bayesian

equilibrium of G if and only if, for all i ∈ I and all θi ∈ Θi, such that p(θi) > 0,

σi(θi) ∈ argmaxσ′
i∈M(Si)

∑
θ−i

p(θ−i|θi)ui

(
σ′
i, σ−i(θ−i), (θi, θ−i)

)

for all σ′
θi
∈ M(Si).

Theorem 2.2. Every finite game of incomplete information possesses at least one Bayesian Nash

equilibrium [JR06].
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Every finite Bayesian game of incomplete information admits a mixed Bayesian Nash equilibrium.

We provide three examples of an incomplete information game, followed by the identification of the

games’ Bayesian Nash equilibria and mixed strategy Bayesian Nash equilibria.

Example 2.1. Consider a game with two players. Each player has a strategy set with two actions.

Player 1 knows that player 2 has two possible types (the world has two possible states).



I = {1, 2},

S1 = {z, u},

S2 = {v, w},

Θ1 = {θ11},

Θ2 = {θ12, θ22},

p(θ12|θ11) = 0.7, p(θ22|θ11) = 0.3, p(θ11|θ12) = p(θ11|θ22) = 1.

(ui)i∈I are given in Figure 2.4.

Player 2

v w

Player 1
z (3, 5) (0, 4)

u (0, 7) (3, 6)
(a) θ12

Player 2

v w

Player 1
z (3, 6) (0, 7)

u (0, 4) (3, 5)
(b) θ22

Figure 2.4: A variant of a game in which player 1 knows that player 2 has two possible types, and player 1 has only one type.

Now we use the Nash equilibrium concept in an expanded game, where each of player 2’s different

types has a different strategy. Playing v is a dominant strategy for type θ12 of player 2 and playing w is a

dominant strategy for type θ22 of player 2. Player 1’s expected utility by playing z is 0.7×3+0.3×0 =

2.1 and by playing u is 0.7×0+0.3×3 = 0.9, thus the Bayesian Nash equilibrium is pure strategies:

(
θ11
↓
z ,

θ12
↓
v

θ22
↓
w)
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Example 2.2. Here, we assume that each player has two possible types.



Θ1 = {θ11, θ21},

Θ2 = {θ12, θ22},

p(θ12|θ11) = 0.5, p(θ22|θ11) = 0.5, p(θ12|θ21) = 0.5, p(θ22|θ21) = 0.5,

p(θ11|θ12) = 2
3
, p(θ21|θ12) = 1

3
, p(θ11|θ22) = 2

3
, p(θ21|θ22) = 1

3
.

(ui)i∈I={1,2} are given in Figure 2.5.

Player 2

v w

Player 1
z (1, 2) (0, 1)

u (0, 0) (1, 1)
(a) θ11, θ

1
2

Player 2

v w

Player 1
z (1, 0) (0, 1)

u (0, 1) (1, 0)
(b) θ11, θ

2
2

Player 2

v w

Player 1
z (0, 2) (1, 1)

u (1, 0) (0, 1)
(c) θ21, θ

1
2

Player 2

v w

Player 1
z (0, 0) (1, 1)

u (1, 1) (0, 0)
(d) θ21, θ

2
2

Figure 2.5: A variant of a game in which each player is unsure of the other player’s preferences.

Here, Bayesian Nash equilibria are pure strategies:(zz, vw), (zu, vw), (uz, wv) and (uu,wv). Fig-

ure 2.6 shows the expected payoffs for types θ11 and θ12 of player 1, and for types θ21 and θ22 of player

2.

Player 2

vv vw wv ww

Player 1

zz (2
3
, 1) (1

2
, 3
2
) (1

2
, 1
2
) (1

3
, 1)

zu (1, 5
6
) (1

2
, 1) (1

2
, 2
3
) (0, 5

6
)

uz (0, 2
3
) (1

2
, 1
2
) (1

2
, 5
6
) (1, 2

3
)

uu (1
3
, 1
2
) (1

2
, 0) (1

2
, 1) (2

3
, 1
2
)

Figure 2.6: Illustration of expected payoffs.

Example 2.3. We present an example of a Bayesian game, and then obtain its possible mixed strategy
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Bayesian Nash equilibria. Consider a game with two players. Here, with probability θ12 = 1
3

nature

decides payoff matrix as given in Figure 2.7 (a), and with probability θ22 = 2
3

nature selects payoff

matrix as given in Figure 2.7 (b). Player 1 knows the choice of nature but player 2 does not. In

Figure 2.7, the probabilities of playing each strategy are shown i.e. q is the probability player 2 plays

v and p is the probability player 1 plays z with payoff matrix (a) and p′ is the probability player 1

plays z with payoff matrix (b)1.

Player 2

q (1− q)

v w

Player 1
p z (1, 1) (0, 0)

1− p u (0, 0) (0, 0)

(a) First payoff matrix - θ12 = 1
3

Player 2

q (1− q)

v w

Player 1
p′ z (0, 0) (0, 0)

1− p′ u (0, 0) (2, 2)

(b) Second payoff matrix - θ22 = 2
3

Figure 2.7: Payoff matrix representation for an example of mixed strategy Bayesian Nash equilibrium.

Player 1 would play z for the first payoff matrix if 1q + 0(1− q) > 0, the results can be summarized

as:

{
q > 0 =⇒ p = 1 (2.2)

q = 0 =⇒ p ∈ [0, 1] (2.3)

and for the second payoff matrix, player 1 would play u if 2(1− q) > 0;

{
q < 1 =⇒ p′ = 0 (2.4)

q = 1 =⇒ p′ ∈ [0, 1]. (2.5)

Player 2 would play v if:

1

3
[1p+ 0(1− p)] +

2

3
[0p′ + 0(1− p′)] >

1

3
[0p+ 0(1− p)] +

2

3
[0p′ + 2(1− p′)] =⇒ p > 4(1− p′).

1The idea of this example has been borrowed from Guillermo Ordoñez, Notes on Bayesian Games, ECON 201B -
Game Theory, UCLA, February 1, 2006.
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Assessing player 2’s best response, the results can be summarized as:


p = 4(1− p′) =⇒ q ∈ [0, 1] (2.6)

p > 4(1− p′) =⇒ q = 1 (2.7)

p < 4(1− p′) =⇒ q = 0. (2.8)

We have three cases:

• q = 0, then from 2.3 and 2.4 we have p ∈ [0, 1] and p′ = 0.

From 2.8 when p′ = 0, then p < 4 which always holds that q = 0. Therefore, there are many

Bayesian Nash equilibria in which player 2 chooses w and if the first payoff matrix occurs,

player 1 chooses pz+(1− p)u, where p ∈ [0, 1], and if the second payoff matrix occurs, player

1 chooses u.

• q = 1, then from 2.5 and 2.2 we have p′ ∈ [0, 1] and p = 1.

From 2.7 when p = 1, then p′ should be p′ > 3
4

that q = 1. Then for q = 1, p′ ∈ (3
4
, 1] and

p = 1, there are many Bayesian Nash equilibria in which player 2 chooses v and also player 1

chooses z if the first payoff matrix occurs and p′z + (1 − p′)u, where p′ ∈ (3
4
, 1] if the second

payoff matrix occurs.

• q ∈ (0, 1), then from 2.2 and 2.4 we have p′ = 0 and p = 1.

From 2.6, it should be the case that p = 4(1− p′), but it is impossible for p = 4(1− p′) to hold

when both p′ = 0 and p = 1. Thus this case is not a Bayesian Nash equilibrium.

2.5 Iterated Game

In reality, one discord scenario results in a consequent discord scenario. This differs from the one-

shot scenarios that occur in the game context. Therefore, it is important that an individual considers

the difference between the game context and reality when considering using game theory in reality.

Therefore, individuals must bear the consequences that decisions have on further discord scenarios

that occur later down the line rather than only taking into account the payoffs that will be received

directly after a decision has been taken. This consideration represents the repeated game. According
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to Taylor [Tay87], repeated games are a type of game in which the stage game (basic game) takes

place over a number of rounds.

Repeated games are also known as iterated games. All of these terms refer to an extensive form game,

in which there are multiple recurrences of a stage game. In repeated games with an identical group

of players, the players’ behaviour is significantly different to players’ behaviour in one-shot games.

There are two kinds of repeated games, as follows:

• Finitely repeated games, in which all players are aware of the quantity of repetitions that will

be carried out.

• Infinitely repeated games, in which the game has no known stopping point. Here, the players

behave in a way that lends itself to a never-ending game, or a game that only ceases with a

certain level of probability.

Incomplete information can be presented in repeated games, as was first illustrated by Aumann and

Maschler [Sor96]. When the game is repeated with only partial information known to all of the

players, this indicates an incomplete information repeated game. In games, it is presumed that payoff

functions and all potential strategies are known to all players. However, every potential strategy that

could be followed is not fully known to each player in reality. Additionally, since players are not aware

of certain related elements, there is no way for players to know in advance what payoff will be given

if any particular action is carried out by the players. Repeated games with incomplete information

pose a potential problem for the player, since s/he might share her/his own private information in the

process of maximising its payoffs.

Nash standard existence can be used when a game is either played once or is going to be repeated

finitely, as well as when there are a finite number of types and actions. For the infinitely repeated

game with a limit of average payoff, there is a proof of existence of Nash equilibrium with lack of

information on one side [SST02].

One of the most famous experiments for the repeated game was conducted by Axelrod [Axe84].

Axelrod studied the results of two computer-based Prisoner’s Dilemma tournaments. Researchers

in a wide range of fields submitted strategies, which were then placed in a round-robin competition
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to determine the best strategy. Ultimately, a Tit-for-Tat strategy, introduced by Anatol Rapoport

achieved the best score. According to this strategy, the player first cooperates and then matches the

other player’s move.

As this research concerns the most famous game, the Prisoner’s Dilemma, the next section will contain

further explanation about this game.

2.6 Prisoner’s Dilemma

The Prisoner’s Dilemma is a fundamental problem of game theory that attempts to mathematically

analyse the behaviour of individuals in a strategic situation, in which the success of each individual

does not depend entirely on one’s choice, but on the opponent’s as well [Axe84]. Essentially, it is

an abstract formulation of some common situations in which what is best for each person individu-

ally leads to mutual defection, whereas everyone would have been better off with mutual coopera-

tion [Axe84]. It has provided a tool for experimental studies in various disciplines such as economics,

social psychology, evolutionary biology and fields that are involved with the modelling of social pro-

cesses, such as behaviour in decision making [Axe84, AH81].

Each of the players competing in the Prisoner’s Dilemma has the choice to cooperate (C) or defect

(D) and the payoff values gained by the combination of the aforementioned actions are T,R, P and

S. Prisoner’s Dilemma is a non-zero-sum game where one player’s gain (or loss) does not necessarily

result in the other players’ loss (or gain). The payoff matrix of the Prisoner’s Dilemma is presented

in Figure 2.8.

Player 2

C D

Player 1
C (R,R) (S, T )

D (T, S) (P, P )

Figure 2.8: Payoff matrix representation for Prisoner’s Dilemma.

The values of T,R, P and S satisfy the following two inequalities:

T > R > P > S and R >
(T + S)

2
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The first equation specifies the order of the payoffs and defines the dilemma, since the best a player

can do is get T (i.e. the temptation to defect payoff when the other player cooperates), the worst a

player can do is get S (i.e. the sucker’s payoff for cooperating while the other player defects), and,

in ordering the other two outcomes, R (i.e. the reward payoff for mutual cooperation), is assumed to

be better than P (i.e. the punishment payoff for mutual defection). The second equation ensures that,

in the repeated game, the players cannot get out of the dilemma by taking turns in exploiting each

other. This means that an even chance of exploiting and being exploited is not as good an outcome

for a player as mutual cooperation. Therefore, it is assumed that R is greater than the average of T

and S [Axe84]. Finally, a special case of the Prisoner’s Dilemma occurs when the apparent advantage

of defecting over cooperating is not dependent on the opponent’s choice, and the disadvantage of the

opponent defecting over cooperating is not dependent on one’s choice, as can be illustrated in the

following equations [Axe84]:

T + S = P +R

The Prisoner’s Dilemma is considered a standard method for modelling social dilemmas [Ost07,

Shu70] and has also been used to model conditional altruistic cooperation, which has also been tested

by real monetary payoffs [Gin09]. In the 1980’s, Axelrod organised two international round-robin

tournaments in which strategies for the repeated Prisoner’s Dilemma competed with each other-

[Axe80a, Axe80b]. In the competition, Tit-for-Tat, i.e., cooperate on the first move and then re-

ciprocate the opponent’s last move, proved to be robust and became the overall winner of the tourna-

ments [Axe80a, Axe80b]. Axelrod then promoted Tit-for-Tat, and the four associated characteristics

of (i) be nice, (ii) reciprocate, (iii) don’t be envious, (iv) don’t be too clever, as the way reciprocal

altruism has evolved [Axe84].

Algorithmic game theory focusses on algorithmic features of games such as computational complex-

ity. In the next section, we will briefly discuss computational complexity in game theory.
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2.7 Complexity

Instead of restricting analysis to abridged abstractions, game theory enables the detailed modelling

of actual settings. This is all the more important as assessing the feasibility of a solution concept is

vital. Game theory can be defined as strategic decision-making analysis. In the context of a game, a

strategy represents a detailed plan outlining all the steps and moves needed to play the game. In the

case of a game in normal form, one fundamental problem of algorithmic game theory is the finding

of a Nash equilibrium. According to Nash’s result [Nas50, Nas51], at least one Nash equilibrium

is exhibited by each strategic game. The Nash equilibrium is useful in formulating a game strategy

and planning every possible move. One of game theory’s complexities is the result of all potential

moves. The more strategies that are possibly employed, the greater the computational complexity

will be in obtaining the Nash equilibrium, and therefore the number of strategies can be considered

as an indicator of complexity. Lemke and Howson [LH64] formulated a now well-known algorithm

for the calculation of a Nash equilibrium in two player non-zero sum games which revealed that the

complexity is no more than exponential. The computational complexity is unidentified not only in the

general case of two player non-zero sum games, but also in the case of symmetric two player games

and the pure strategy Bayesian Nash equilibria [NGNP09].

There are two main categories of computational complexity, namely, those associated with a polynomial-

time algorithm and those characterised by NP-hardness. However, since Nash’s theorem specifies

that the equilibrium of each game is may be mixed, it is impossible to implement the notion of

NP-hardness to every scenario. It has become clear in a number of papers that computation of a

Nash equilibrium or even an approximate ϵ-Nash equilibrium is in general a computationally hard

problem [DGP06, EY10]. It has been proved that finding a Nash equilibrium is complete for the

complexity class PPAD (Polynomial Parity Arguments on Directed graphs) [DGP06]. In the case of

Bayesian games, it is proven that determining whether a pure strategy Bayesian Nash equilibrium

exists is NP-complete [CS08]. To the best of our knowledge there is not a considerable number of

research articles on computational complexity in obtaining the Nash equilibrium in the games with

incomplete information.
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Recalling the idea of changing types within multi-games, changing payoffs and then the Nash equi-

librium of a game has also been considered in [RG05]. A summary of their work is as follows:

Robinson-Goforth Topology of 2× 2 Games

Robinson and Goforth introduced a classification of the 2×2 games with a topological structure [RG05].

They showed that 2×2 games can be transformed by swaps in adjoining payoff ranks. They presented

a numbering system to recognize and prioritize 144 strict ordinal games. Rapoport and Guyer [RG78]

were the first to note that, with respect to 2 × 2 games, there are 576 ways to arrange two sequences

of four distinct numbers in a bi-matrix (A bi-matrix is a matrix showing payoffs for both players in a

single cell). We let  R S

T P


be a matrix payoff to determine a 2 × 2 game. Rank ordering of the four payoff values R, S, T , P

determine the characteristics of the game. Figure 2.9 shows that each 2 × 2 game is characterized

by the ranking of the payoffs S, R, T and P with R = 1, P = 0. The ranking ordering partitions

the (S, T ) plane, which displays 12 symmetrical 2 × 2 games. Considering that we have assumed

the values of R and P to be 1 and 0 respectively, the diagram shows which game we would have

considering varying values of T and S to create regions of different inequalities. For example, where

S < 0 and T > 1, we get T > R > P > S which corresponds to the top left region and the Prisoner’s

Dilemma game. Not all regions have been named [Hau02].

Here, we present an example of transformation according to Robinson and Goforth’s classification.

Figure 2.10 shows a transformation of Prisoner’s Dilemma to Alibi Game2. Let the payoff most

preferred by player 2 be designated with ordinal 4 in the first game. If the payoff 3 becomes more and

more attractive to player 2, it will eventually be preferred to the outcome with ordinal 4. When this

switch in preference occurs, the effect on the payoff matrix is to exchange the positions of the 3 and

4 in the matrix for player 2. Therefore, we have a new game.

Caveat: In this research, we use the word “payoff” to mean expected payoff and actual payoff, even

2Alibi game was introduced by Robinson and Goforth in 2004 as an asymmetric variant of the classic Prisoner’s
Dilemma.
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S

T

1

1

0

0

7 : Harmony8 : Stag Hunt

6

5

2 : Chicken1 : Prisoner′sDilemma 3 : Leader

4 : Battle of Sexes

12 : Deadlock119

10

Figure 2.9: Partitioning the (S, T ) plane, which displays 12 symmetrical 2× 2 games.

Player 2

C D

Pl
ay

er
1 C (3, 3) (1, 4)

D (4, 1) (2, 2)
(a) Prisoner’s Dilemma

Player 2

C D
Pl

ay
er

1 C (3, 4) (1, 3)

D (4, 1) (2, 2)
(b) Alibi Game

Figure 2.10: Exchanges the ordinal values for the two payoffs for player 2.

though the two definitions vary. Also we focus principally on non-cooperative strategic form games

with incomplete information, which involve only a finite number of rational players, and which give

each player only a finite number of actions to choose from.
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Multi-Games

In this chapter, we define the multi-games. We will then discuss the difference between

a poly-matrix game and a multi-game, before going on to illustrate some examples of

multi-games in the case of double games.

3.1 Formal Definition of Multi-Games

A multi-game is defined as follows. Consider M finite N -player games Gj∈J where J = {1, 2, ...,M}

with the strategy set Sij and payoff matrix uij for player i ∈ I where I = {1, 2, ..., N} is finite, in

the game Gj . Assume that each player i is equipped with a set of M weights θij with
∑M

j=1 θij = 1.

We define the multi-games N-player game G with M basic games Gj as the finite strategy game with

players i ∈ I each having the strategy set
∏

j∈J Sij and payoff

ui

(∏
j∈J

sij

)
=

∑
j∈J

θijuij(sij)

for strategy profile sij ∈ Sij and possibly incomplete information (types) θij for j ∈ J . We say the

multi-game is uniform if for each player i, the set Sij is independent of the game Gj , i.e., we can write

Sij = Si, and sij = sij′ for j, j′ ∈ J . We assume that the values 0 and 1 will always be included in

the set of possible types for each player, which we call the extreme types. Consider that the number

of games can be different for the players, so players assign the weight 0 to some of the games.

29
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Here, we explain the case of the multi-game with two players and M games by using matrices of

payoffs. Assume that the strategy set for player i consists of actions si ∈ Si and we denote the

weights for players 1 and 2 respectively by θ1j and θ2j , with j ∈ J where J = {1, 2, ...,M}. If the

payoff matrix for the basic game Gj is given as in Figure 3.1, then the payoff matrix for the multi-game

G will be given as in Figure 3.2.

Player 2

s21 s22

Player 1
s11 (a1j, a2j) (b1j, b2j)

s12 (c1j, c2j) (d1j, d2j)

Figure 3.1: Payoff matrix of the basic games.

s21 s22

s11
∑M

j=1 θ1ja1j ,
∑M

j=1 θ2ja2j
∑M

j=1 θ1jb1j ,
∑M

j=1 θ2jb2j

s12
∑M

j=1 θ1jc1j ,
∑M

j=1 θ2jc2j
∑M

j=1 θ1jd1j ,
∑M

j=1 θ2jd2j

Figure 3.2: Payoff matrix for the multi-game.

If θ1j = 1, this means that the first player invests totally in the game Gj whereas when θ1j = 0, the

first player does not invest anything in the game Gj . Similarly for the second player with weight θ2j .

At first glance, an N-player multi-game may seem similar to poly-matrix games, therefore, in the next

section we briefly explain about poly-matrix games.

3.2 Poly-Matrix Games

A poly-matrix game [Yan68] is an N-player non-zero sum, non-cooperative game, where the utility

of each player is the sum of utilities influenced by her/his interactions with each of the N − 1 other

players. In this game, each player plays a 2-player game with each other player, and her/his strategies

are the same in each of these games; the utilities are then added.

The number of players is N ≥ 2, each player i ∈ I = {1, ..., N} has a finite set of pure strategies

Si = {s1i , ..., s
ti
i } where |Si| = ti. For player i and each other player m, if player i chooses pure
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strategy ski and player m ∈ I,m ̸= i chooses pure strategy slm, according to [How72, ABH06], it

is possible to assign a partial payoff aimi ̸=m(s
k
i , s

l
m) for player i. If (s1, ..., sN) is the vector of pure

strategies chosen by players 1, ..., N , for any pure strategies (s1, ..., sN), the total payoff for player

i ∈ I is

Ai(s1, ..., sN) =
∑
i ̸=m

aim(ski , s
l
m).

Let ti × tm matrix Aim = (aklim) denote the matrix of partial payoffs to player i resulting from the

choices of pure strategies made by her/him and player m. Therefore, player i’s payoff with respect

to player m’s decisions does not depend on any other players’ strategies. In a poly-matrix game each

player i attempts to maximize her/his own total payoff by choosing a mixed strategy vector Xi over

her/his set of pure strategies such that (Xi)
T = (x1

i , ..., x
ti
i ). If X = (X1, ..., XN) is a set of mixed

strategies for the N players, then the expected payoff to player i is

Ei(X) = (Xi)
T
∑
m̸=i

AimXm =
∑
m̸=i

ti∑
k=1

tm∑
l=1

αkl
imx

k
i x

l
m.

According to [ABH06], the mixed strategies X∗ = (X∗
1 , ..., X

∗
i , ..., X

∗
N) can be recognised as a Nash

equilibrium of the poly-matrix game if and only if for any other N-tuple X = (X∗
1 , ..., X

∗
i−1, Xi, X

∗
i+1,

..., X∗
N),

(X∗
i )

T
∑
m̸=i

AimX
∗
m ≥ (Xi)

T
∑
m̸=i

AimX
∗
m, for i ∈ N.

A poly-matrix game has at least one Nash equilibrium [Nas50]. The equilibria of a poly-matrix

was studied by Yanovskaya [Yan68] and the problem of computing an equilibrium for a poly-matrix

game has been considered by Howson [How72], Quintas [Qui89] and Eaves [Cur73]. Howson and

Rosenthal [HR74] showed the equivalence of a Bayesian Nash equilibrium of 2-player games with

incomplete information and a Nash equilibrium of N-player poly-matrix games. Now, we provide a

simple example of a poly-matrix game.
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Example 3.1. Consider a game with three players. Each player has a strategy set with two actions.



I = {1, 2}

S1 = {z, u}

S2 = {v, w}

S3 = {x, y}

Figures 3.3(a), (b) and (c) are payoff matrices for each pair of players. (ui)i∈I are given in Fig-

ure 3.3(d).

Player 2

v w

Pl
ay

er
1

z (4,2) (0,3)

u (3,5) (2,4)
(a)

Player 3

x y

Pl
ay

er
1

z (4,2) (2,1)

u (3,1) (2,3)
(b)

Player 3

x y

Pl
ay

er
2

v (2,4) (2,1)

w (1,1) (3,2)
(c)

Player 2, Player 3

vx vy wx wy

Pl
ay

er
1

z (8,4,6) (6,4,2) (4,4,3) (2,6,3)
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Figure 3.3: Payoff matrices representation for an example of poly-matrix game.

(1
2
, 1
2
)(1, 0)(0, 1) is a mixed strategy Nash equilibrium of the poly-matrix game.

In an N-player multi-game, the payoff for player i ∈ I = {1, 2, ..., N}, relative to the decision of

player m ∈ I , m ̸= i is dependent on other players’ choices. While in a poly-matrix game, the partial

payoff to player i, when player i chooses her/his strategy in connection with player m’s decision is not

correlated with any choice of strategies made by the other players.
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3.3 Some Applications of Multi-Games

Here, we explain some applications of multi-games through the use of some examples. In Chapter 5,

we will apply the framework of multi-games to obtain a double game extension of the Prisoner’s

Dilemma in order to model pro-social behaviour. We will then discuss its Bayesian Nash equilibrium.

Now we present an example of a multi-game through applying transactional analysis.

Example 3.2. (Transactional analysis)

Assume that we aim to develop a model of irrational social conflict between two hostile groups in

psychological but not material war against each other. We combine ideas from transactional analysis

(a model of human interaction) using a double game in which each player is characterized by a moral

type that measures the moral consciousness of the player.

In “irrational” social conflicts, two rival groups fight each other not for any material gain but for

purely psychological reasons based on the antagonistic identities of the two groups. The question is:

How can we model such psychological war in the double game?

Sigmund Freud has established theories on human personality. Freud’s theories on modelling the

structure of personality have helped to develop what is called transactional analysis, a popularization

of classical psychoanalysis by the American psychologist Eric Berne, who maintained Freud’s notion

of personality [Ber96].

Berne describes the social interactions between people and the way they enter social games without

even being aware of this complicated process. Berne defines games as a process of interconnected

transactions that lead to a specific result for both parties in the game. Transactional analysis is funda-

mentally defined as a method of studying interaction amongst individuals.

Berne introduced three ego states. Ego states represent recurring sequences of individual human

behaviour, emotions, and cognition. The ego states are Parent, Adult and Child as described in the

following:

• Parent: Berne stated that the maximum amount of retention of events in a child’s mind is that
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of the parent because parents are the most vital people in a child’s life, hence the first ego state

is referred to as the parent.

• Child: As compared to parents, children record the sentiments or the feelings associated with

the events in their mind.

• Adult: It is known as the last ego stage. When a child is about one year old, s/he begins to

display signs of adult behaviour. For instance, s/he thinks that s/he can hold a cup of tea in

her/his hand. This behaviour develops in the child so that s/he can learn to differentiate be-

tween the child and parent’s behaviour. Berne intrinsically defines adult’s behaviour as filtering

information or data based on past experience.

Transactional analysis, as a theory, is associated with personality and explains the psychological

structure of individuals and how personality is formed in individuals. Transactional analysis is also a

communication theory, which can be used for examining different types of behaviour between indi-

viduals. Transactional analysis can be used to explain the growth of maturity in a child because the

first signs of age development in a child begin from childhood.

Interactions occurring between two or more people involve a variety of stimuli and responses that

form the core of the person’s behaviour. Figure 3.4 provides sample transactions between the parent,

adult, or child of one person and the parent, adult, or child of another (represented by P , A and C

respectively).

Now we define a game with two players and consider all payoffs that could result for one of the

players, in a conflict where each player takes one of the defined ego states.

Let pXX′
i be the payoff value gained by player i when s/he plays with ego state X and the other player

plays with ego state X ′, (X,X ′ ∈ {A,C, P}). The payoff matrix is given in Figure 3.5.

In the full transactional model, each player has a choice of nine types of transactions correspond-

ing to the nine pairs of ego states the two players can adopt. In order to simplify the illustration

and explanation of this example, the parent ego state has been disregarded among the nine pairs of

transactions.
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Parent to Parent (PP ) Shall we stop mutual condemnation for a while?

Parent to Adult (PA) Let me tell you how bad mutual condemnation is.

Parent to Child (PC) Never condemn others.

Adult to Parent (AP ) What shall I do to stop mutual condemnation?

Adult to Adult (AA) Let’s stop mutual condemnation

Adult to Child (AC) You are condemning me.

Child to Parent (CP ) Please don’t condemn me.

Child to Adult (CA) Why do you condemn me?

Child to Child (CC) You condemn me so I condemn you.

Figure 3.4: Some examples of transactions.

Player 2

A C P

Player 1

A (pAA
1 , pAA

2 ) (pAC
1 , pAC

2 ) (pAP
1 , pAP

2 )

C (pCA
1 , pCA

2 ) (pCC
1 , pCC

2 ) (pCP
1 , pCP

2 )

P (pPA
1 , pPA

2 ) (pPC
1 , pPC

2 ) (pPP
1 , pPP

2 )

Figure 3.5: Payoff matrix when players play with their particular ego states.

We assume that the strategy taken by each of the players comes from a pair of ego states; one belong-

ing to the player, and the other to the opponent. For instance, parents to parents PP ; means when

a player chooses this strategy, s/he uses her/his parent ego state and addresses it to the opponent’s

parent ego state. Similarly, for child to adult CA, a player chooses a child ego state and addresses it

to the opponent’s adult ego state.

It is assumed that the first game consisting of actions AA and CC is a Prisoner’s Dilemma, with AA

corresponding to “cooperation” and CC to “defection”. The consequence of this assumption in the

model is a symmetric series of payoff values for the payoff matrix. Figure 3.6 shows a self-evaluated

game in which strategies consist of four transactions belonging to the combinations of adult and child

ego states as well as their related summarized payoff values.

It is assumed that the values in each row and each column of the payoff matrix is either monotonically
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Player 2

AA AC CA CC

Player 1

AA (a, a) (f, e) (h, g) (c, b)

AC (e, f ) (l, l) (s, r) (u, t)

CA (g, h) (r, s) (v, v) (z, y)

CC (b, c) (t, u) (y, z) (d, d)

Figure 3.6: Payoff matrix due when the player strategy taken results from a pair of ego states.

increasing or monotonically decreasing as required by the conditions of the Prisoner’s Dilemma.

c < d < a < b c < h < f < a u < s < l < e z < v < r < g d < y < t < b

a < e < g < b f < l < r < t h < s < v < y c < u < z < d

Another step towards simplifying the problem at this stage is through a reduction of the variety of

payoff parameters. This is achieved by replacing some payoff parameters with a linear combination

of the others without losing their monotonic order. By applying the following assignments only four

parameters remain;

e = r = l =
(a+ b)

2
g = t = b f = a h =

(a+ c)

2
v = s =

(a+ d)

2

u =
(c+ d)

2
y =

(b+ d)

2
z = d

Therefore, the matrix payoff would resemble Figure 3.7.

Player 2

AA AC CA CC

Player 1

AA (a, a) (a, a+b
2

) (a+c
2
, b) (c, b)

AC (a+b
2
, a) (a+b

2
, a+b

2
) (a+d

2
, a+b

2
) ( c+d

2
, b)

CA (b, a+c
2

) (a+b
2
, a+d

2
) (a+d

2
, a+d

2
) (d, b+d

2
)

CC (b, c) (b, c+d
2

) ( b+d
2
, d) (d, d)

Figure 3.7: Payoff matrix of the basic game for the example of transactional analysis.

It is desirable to enrich the payoff model through the addition of another consideration regarding the
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source of payoff values after the two players have taken a strategy. So far it has been considered that

in essence only the players themselves can give payoff values to the result of strategies, taken by both

themselves and their opponents. The role of a ‘third party’ in this evaluation has been disregarded.

At this stage, it is intended to involve a third party’s role in the evaluation. The players’ values have

an effect on their decision making. Their values, beliefs and attitudes are developed throughout the

course of their lives, family and friends. Specifically social expectations and the experiences they

have had can all contribute to how they make a decision. Here, we introduce a game called society-

evaluated that represents social judgement or expectations.

In general, members of society are assumed to regard strategies taken from an adult oriented ego state

as being more constructive than from a child ego state. Under this assumption, we consider a moral

game, in which the highest moral payoff value is given for strategies with the most number of adult

ego state elements in a player’s strategy. Figure 3.8 accommodates these payoffs for the moral game

with m as a positive value. In assigning moral payoffs in conjunction with the properties of the first

matrix, it has been assumed that c < d < a < m < b.

Player 2

AA AC CA CC

Player 1

AA (m,m) (m
2
,m) (−m

2
,m) (−m,m)

AC (m, m
2

) (m
2
, m

2
) (−m

2
, m

2
) (−m, m

2
)

CA (m, −m
2

) (m
2
, −m

2
) (−m

2
, −m

2
) (−m, −m

2
)

CC (m,−m) (m
2
,−m) (−m

2
,−m) (−m,−m)

Figure 3.8: Payoff matrix of the moral game for the example of transactional analysis.

The last task is to combine the payoff values of the first game and the second game. This is an instance

of the double game in which each player is characterized by her/his type for each game. The payoff

values of the double game are given in Figure 3.9.

A player may choose to value social judgement over self evaluation; thus behaving in a way that will

encourage society to have admiration or approval for the player. However, a player may also decide

that her/his personal beliefs and values are more important than social expectations, resulting in the

player acting on personal expectations.
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Player 2

AA AC CA CC
Pl

ay
er

1

AA

(
(1− θ1)a+ θ1m,

(1− θ2)a+ θ2m
)

(
(1− θ1)a+ θ1

m

2
,

(1− θ2)
a+ b

2
+ θ2m

)
(
(1− θ1)

a+ c

2
− θ1

m

2
,

(1− θ2)b− θ2m
)

(
(1− θ1)c− θ1m,

(1− θ2)b+ θ2m
)

AC

(
(1− θ1)

a+ b

2
+ θ1m,

(1− θ2)a+ θ2
m

2

)
(
(1− θ1)

a+ b

2
+ θ1

m

2
,

(1− θ2)
a+ b

2
+ θ2

m

2

)
(
(1− θ1)

a+ d

2
− θ1

m

2
,

(1− θ2)
a+ b

2
+ θ2

m

2

)
(
(1− θ1)

c+ d

2
− θ1m,

(1− θ2)b+ θ2
m

2

)

AC

(
(1− θ1)b+ θ1m,

(1− θ2)
a+ c

2
− θ2

m

2

)
(
(1− θ1)

a+ b

2
+ θ1

m

2
,

(1− θ2)
a+ d

2
− θ2

m

2

)
(
(1− θ1)

a+ d

2
− θ1

m

2
,

(1− θ2)
a+ d

2
− θ2

m

2

)
(
(1− θ1)d− θ1m,

(1− θ2)
b+ d

2
− θ2

m

2

)

CC

(
(1− θ1)b+ θ1m,

(1− θ2)c− θ2m
)

(
(1− θ1)b+ θ1

m

2
,

(1− θ2)
c+ d

2
− θ2m

)
(
(1− θ1)

b+ d

2
− θ1

m

2
,

(1− θ2)d− θ2m
)

(
(1− θ1)d− θ1m,

(1− θ2)d− θ2m
)

Figure 3.9: Payoff matrix of the double game for the example of transactional analysis.

If the values of types a, b, c, d and m were known, then Nash equilibrium would present the best

strategies for both players, for given values of θ1 and θ2. In other words, different types lead to

different Nash equilibria for the two players. Figure 3.10 shows the different regions of θ1 and θ2

where different pure Nash equilibria appear for assumed values a = 0, b = −1, c = 1, d = −1
2

and

m = 1
2

(shown in different colours).

θ2

θ1

(AA,CA)

(AA,AC)

(CA,CC), (CC,CA)

(CA,AA)

10

1

2
3

2
3

Figure 3.10: Variation of Nash equilibrium in the different regions of θ1 and θ2 for the example of transactional analysis.

Now, we present an example that uses gamification in a double game.
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Example 3.3. (Gamification)

Recent developments in e-commerce have focused on gamification and the impact this can have on

human’s behaviour. Gamification can be defined as the integration of motivational games or game-like

activities into the corporate domain. The effectiveness of the approach has been subject to extensive

debate amongst theorists and business owners. Gamification has been incorporated into various as-

pects of business structure, including HR, skills training, health and safety, customer engagement and

research and development [Wer14]. Gamification is used to manipulate end-user behaviour by pro-

viding them with extrinsic and intrinsic rewards. Motivation that is prompted by a desire for tangible

rewards is defined as extrinsic whereas motivation that is prompted by an inherent passion or interest

is defined as intrinsic.

We can use the idea of multi-games in the gamified systems with two games, where one game is a

serious game and another game is an entertainment game [AD14]. Here we present a simple example

of the double game with gamification in the context of Group Project Assessment in which challenges,

points and levels can all create rewards which a player may or may not find appealing to strive towards.

In [Pit00] suggested the application of game theory into a common-practice method of assessment

within academic environments - group projects. In a typical group project, a team of two students or

more, are given a task to be carried out jointly. The task could be a range of group activities such

as carrying out experiments or making presentations. The arrangements of these groups could be

random, self selected or, more commonly, selected so that the groups are of equal ability and contain

a range of students with varying capability. Generally, the students can either be given the same mark,

or obtain marks based on their own relative contribution. These however introduce some problems

such as lack of cooperation, time wasting, and marking difficulties.

In a group with a bright student, it would seem logical that the highest achieving student did all or

most of the work. This way both the low achieving students in the group would get a good mark,

and the bright student would also ensure the work was not affected by the others. This discourages

cooperation and team work within students. To battle this, many academics introduce marks for either

teamwork or relative contribution. There are however few ways of knowing if the group worked as a

team. Asking them could lead to students pretending they worked as a team. Marks for relative effort
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may also result in players being shunned out of the group in order to maximise contribution or lying

about contribution, both of which go against the purpose of a group project.

In the serious game, we introduce a group project where groups of three students have to write a report

over six weeks on the assigned topic. Each group consists of a bright, average and poor student, who

are all trying to get the largest payoff possible (best grades). The final overall mark for the six week

project is given to each student as their final grade for the project.

We assume that if a bright student puts in a good effort, he will gain a marks for the overall project

and b marks if he puts in a weak effort. For the average student, we assume a
2

and b
2

for good and weak

effort respectively. However, we assume in the case of the poor student that a good effort, meaning

he takes responsibility for a large part of the project, will negatively affect the quality of the work as

the others could have done it better, therefore resulting in −a
4

. However, if he puts in a weak effort, he

will not affect the quality of the work, contributing 0 marks to the project. In order to ensure that no

player scores a negative mark in the project, we assume a, b ≥ 0 and a ≤ 6b. Therefore, the matrix

payoff would resemble Figure 3.11. The Nash equilibrium for this game is achieved when both the

bright student and average student choose the good effort strategy and the poor student chooses the

weak effort strategy.

Average student

Good effort Weak effort Good effort Weak effort

B
ri

gh
ts

tu
de

nt

Good effort ( 5a
4
, 5a

4
, 5a

4
) ( 3a+2b

4
, 3a+2b

4
, 3a+2b

4
)

Good effort Poorstudent

Weak effort ( 4b+a
4

, 4b+a
4

, 4b+a
4

) ( 6b−a
4

, 6b−a
4

, 6b−a
4

)

Good effort ( 6a
4
, 6a

4
, 6a

4
) ( 4a+2b

4
, 4a+2b

4
, 4a+2b

4
)

Weak effort
Weak effort ( 4b+2a

4
, 4b+2a

4
, 4b+2a

4
) ( 6b

4
, 6b

4
, 6b

4
)

Figure 3.11: Payoff matrix representation for serious game.

For our second game, we look to gamification. Challenges are the most integral feature of a gamified

group project as tasks are assigned to each player and rewards offered if they are successful. This

increases motivation as students perceive each challenge as a further step towards completion of the

task. Point systems are also important as points are awarded based on the quality of the completed

task. To ensure that a gamified group project is effective, it must offer rewards that appeal to the

students, as different players will be motivated by different factors. A gamified group project must
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also consider the social aspect of participation by providing leader-boards to monitor progress and

facilitate an increased level of commitment and competition. The success of each student depends on

the quality of her/his decisions. The majority of individuals require recognition or acknowledgement

for their achievements and they can achieve this by performing well or being committed in a series of

tasks. If their effort is recognised, their level of motivation will naturally increase.

Similar to Example 3.3 we can say that a gamified group project can be considered to be a double game

comprised of a group project task and a designed gamification. Similarly to how social judgement

and expectations influenced a player’s decisions in the moral judgement game, students will make

decisions based on how s/he regards the teacher’s approval. In this example, it is a sense of personal

achievement, teacher recognition, glory or self-satisfaction that can affect a player’s decision-making

approach.

For our entertainment game, we propose that the teacher takes a test every week for the six weeks of

the project on the topic of the project and records the hours each student attends after school sessions

to complete the group project. This data is then turned into a rank for a leader-board containing every

student in the group. The top half of the class are put in the ‘ positive’ category and the lower half in

the ‘negative’ category. This would act as motivation for the players to attend more sessions and work

on the project more in order to receive both recognition and praise as well as a sense of achievement

in beating others.

Here, we give values to the self-satisfaction given to students based on whether they fall in the positive

or negative category based on their rank which takes into account their test results and after class

attendance. It is assumed that if a player chooses the good effort strategy, s/he is guaranteed to be

in the positive category and if s/he chooses a weak strategy, s/he is guaranteed to be in the negative

category. For a bright student, if s/he falls in the positive category because s/he chose the good effort

strategy, s/he will have a m
2

payoff value when the poor student is also in that category, as s/he is

expecting themselves to do better and will not have a large payoff. If s/he falls into the negative

category by choosing the weak effort strategy s/he will have a −m payoff value because s/he will

be dissatisfied by the result when the poor student has done better, and s/he has performed below

expectations. The same applies to the average student in this case, with the same payoff values.
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Furthermore, for both the average and bright students, if they are the only student in their group with

the good effort strategy, their payoff will be m as they will have the satisfaction of being the only

student form the group in the positive category. For the poor student, her/his payoff will be m when

s/he has chosen the good effort strategy regardless of the other students and 0 if s/he has chosen the

weak effort strategy. Figure 3.12 accommodates these payoffs for the entertainment game with m as

a positive value.

Average student

Good effort Weak effort Good effort Weak effort

B
ri

gh
ts

tu
de

nt Good effort (m
2
, m

2
,m) (m

2
,−m,m)

Good effort Poorstudent

Weak effort (−m, m
2
,m) (−m,−m,m)

Good effort (m,m, 0) (m, −m
2
, 0)

Weak effort
Weak effort (−m,m, 0) (−m, −m

2
, 0)

Figure 3.12: Payoff matrix representation for entertainment game.

Here, a player may choose to regard highly the sense of achievement, reward or competition that

comes with gamification, rather than not give much importance to them. If the rewarding aspects of

gamification offered in a game appeal to them, they may choose to pursue the task further than they

would if they did not care for the rewards or status. In the double game, a player may choose to

change her/his type so that s/he finds the competitiveness of a leader-board ranking effort to be an

exciting prospect, and therefore makes decisions to put in more effort than s/he initially had. A player

may also choose to regard the initial serious game more highly because of her/his personal interest in

the mark obtained for it. The payoff values of the double game are given in Figure 3.13 for assumed

values a = 4, b = 2 and m = 2.

Average student

Good Weak Good Weak

B
ri

gh
ts

tu
de

nt

Good (5− 4θ1, 5− 4θ2, 5− 3θ3) (4− 3θ1, 4− 6θ2, 4− 2θ3) G
ood

Poorstudent

Weak (3− 5θ1, 3− 2θ2, 3− θ3) (2− 4θ1, 2− 2θ2, 2)

Good (6− 4θ1, 6− 4θ1, 6− 6θ3) (5− 3θ1, 5− 6θ2, 5− 5θ3) W
eak

Weak (4− 6θ1, 4− 2θ2, 4− 4θ3) (3− 5θ1, 3− 4θ2, 3− 3θ3)

Figure 3.13: Payoff matrix representation for the double game in the gamification example where a = 4, b = 2 and m = 2.
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Different types lead to different Nash equilibria for the two players. Figure 3.14 shows the pure Nash

equilibria for the gamification example where types θ1, θ2 and θ3 have values of 0, 1, and 1
2
. On the

figure, the Nash equilibria for different values of θ1, θ2 and θ3 are shown. For example, a value of 1

for θ1, 1
2

for θ2 and 0 for θ3 correspond to GGW . This means that players one and two should have a

good effort strategy and player three should have a weak effort strategy.

GGG

GGG

GGG
GGG

GGG

GGG
GGW

GGW

GGW

GGG

GGG

GGW

GGG

GGG

GGW
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GGG

GGW
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GGG
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GGG

GGG
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GGG

θ3 = 1

θ3 = 1
2

θ3 = 0

θ2 = 0

θ2 = 1
2

θ2 = 1 θ1 = 1

θ1 = 1
2

θ1 = 0

θ2

θ3

θ1

Figure 3.14: The pure regular strategies for the types with assumed values for Example 3.3.

Now if the types are all private information and can each take only a finite number of values between

0 and 1, then the double game is reduced to a Bayesian game with a finite set of types for the three

players and we can look for a Bayesian Nash equilibrium.



Chapter 4

Double Games with N Players

In this chapter, we introduce the N-player double game, in which each player has the

same set of strategies in two basic games. We later define the class of pure regular double

game in which for pairs of extreme types there are 2N pure Nash equilibrium in which

the strategy of each player only depends on its own type. Similarly, we define the notion

of a completely pure regular double game where there are pure Nash equilibrium for all

possible pairs of types for the N players, and in which the strategy of each player only

depends on its own type. We then derive a test for establishing that a double game is

completely pure regular with computational complexity independent of the number of

types and actions. We also show that a pure Bayesian equilibrium for a completely pure

regular double game can be obtained directly from this test, thus reducing the complexity

of the computation.

We suppose that the multi-game is uniform with M = 2. We now have two basic games G1 and G2

and N players. For finite sets of types, we assume that the weights θij for each player i ∈ I and each

game j ∈ J are selected from finite discrete sets I = {1, 2, . . . , N} and J = {1, 2}, which would

denote the types of each player i for a given game j. As M = 2, we can use only θi instead of θij

(θ11 = θ1, θ12 = 1− θ1, θ21 = θ2 and θ22 = 1− θ2). When these values represent private information,

we have a Bayesian game.

44
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4.1 Coherent Pairs of Nash Equilibrium

In the finite discrete case, the finite set of types for each player is given by a set of increasing values,

say θki (1 ≤ k ≤ ℓi) where ℓi is the number of types for player i ∈ I = {1, 2, . . . , N}, and each

type is restricted to its unit interval. We assume that in the discrete case, we always have 0 and 1 as

types for each player, i.e., θ1i = 0 and θℓii = 1, which we call the extreme types. We put θ−i := 0 and

θ+i := 1. Let G(θ1,...,θN ) denote double game G with the types taking the specific values θ1, . . . , θN . In

addition, in the discrete case, we let Gk1k2···kN denote double game G with the types θk11 , θk22 , . . . , θkNN

selected for the N players respectively. We refer to a Nash equilibrium for G(θ1,...,θN ) as a local Nash

equilibrium for double game G. In the continuous case, let Gθ1θ2···θN denote double game G with the

types θ1, θ2, . . . , θN selected for the N players respectively.

Assume that there is a uniform N-player double game G with basic games G1 and G2. Given a player

i ∈ I = {1, 2, . . . , N}, we denote as usual the strategy set of the opponent of i by S−i. Also we let

Θ = {(θ1, . . . , θN)|θi ∈ Θi}, where Θi is the set of types of player i. Given a player i, we denote the

set of types for players other than player i by Θ−i. Given players i and m where m ̸= i and m ∈ I ,

let Θe
−(i,m) be the set of extreme types for players other than player i and player m.

Definition 4.1. A double game G has a coherent set of pure Nash equilibria with a player i ∈

I = {1, . . . , N} having a given type θi = θ∗i if there is an action s ∈ Si for which there ex-

ist s
ep
p ∈ Sp, for all p ̸= i, p ∈ I and all ep ∈ {+,−} such that the 2N−1 strategy profiles

(se11 , . . . , s
ei−1

i−1 , s, s
ei+1

i+1 , . . . , s
eN
N ), are pure Nash equilibria for G with type θi = θ∗i for player i and

with extreme types (θe11 , . . . , θ
ei−1

i−1 , θ
ei+1

i+1 , . . . , θ
eN
N ) ∈ Θ−i for the other players.

Assume that double game G has a coherent set of pure Nash equilibria (se11 , . . . , s
ei−1

i−1 , s, s
ei+1

i+1 , . . . , s
eN
N )

with a player i ∈ I = {1, . . . , N} having a given type θi = θ∗i where s ∈ Si and s
ep
p ∈ Sp, p ̸= i, p ∈ I

and ep ∈ {+,−}. We take any θm ∈ {θ−m, θ+m}, where m ̸= i,m ∈ I and fix the extreme types

of the other players. The pair of profiles (se11 , . . . , s
ei−1

i−1 , s, s
ei+1

i+1 , . . . , s
em−1

m−1 , s
−
m, s

em+1

m+1 , . . . , s
eN
N ), (se11 ,

. . . , s
ei−1

i−1 , s, s
ei+1

i+1 , . . . , s
em−1

m−1 , s
+
m, s

em+1

m+1 , . . . , s
eN
N ) where s−m, s

+
m ∈ Sm, is called the coherent pair of

pure Nash equilibrium for game G with player i having a given type θi = θ∗i and player m having type

θm.
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For example, consider a double game G with three players. Assume that there are actions s1 ∈ S1 and

s−2 , s
+
2 ∈ S2 and s−3 ∈ S3. Suppose G has a coherent pair of Nash equilibria

(
(s1, s

−
2 , s

−
3 ), (s1, s

+
2 , s

−
3 )
)

when we fix the extreme type θ−3 for player 3 and we fix type θ1 = θ∗1 for player 1. Figure 4.1 shows

the coherent pair of Nash equilibria
(
(s1, s

−
2 , s

−
3 ), (s1, s

+
2 , s

−
3 )
)

for G.

θ2

θ3

θ1

θ1 = θ∗1

(s1, s
+
2 , s−3 )

(s1, s
−
2 , s−3 )

Figure 4.1: Illustration of a coherent pair in a double game with three players.

The following example shows a double game G which has a coherent pair
(
(z, v), (z, w)

)
of pure

Nash equilibrium, with the first player having a given type θ1. This example shows that if one player

has more than two actions, then for the different parameter value of θ2, we may not have a pure Nash

equilibrium. Alternatively we may have a pure Nash equilibrium which, in the first player’s action, is

not equal to the first action of the coherent pair of pure Nash equilibrium for G where the first player

has a given type θ1. Therefore, when considering the double game, we restrict ourselves to having

only two actions for each player.

Example 4.1. Consider a double game G. We present an example for the case that each player has a

strategy set: S1 = {z, u} and S2 = {v, w, y}, with the payoff matrices of two basic games given in

Figure 4.2. The pair of profiles
(
(z, v), (z, y)

)
is a coherent pair of pure Nash equilibrium for G with

player 1 having type θ1 = 0 and player 2 having extreme types θ2 = 0 and θ2 = 1.

Player 2

v w y

Player 1
z (3, 2) (2, 2) (2, 1)

u (2, 1) (3, 2) (1, 3)
(a) Game 1

Player 2

v w y

Player 1
z (3, 1) (2, 2) (2, 3)
u (2, 6) (3, 4) (1, 1)

(b) Game 2

Figure 4.2: Payoff matrices representation for Example 4.1 (1).
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The payoff matrix of double game G for θ1 = 0 and θ2 =
1
4

is given in Figure 4.3 and strategy profile

(u,w) is a pure Nash equilibrium that is not coherent with strategy profiles (z, v) and (z, y).

Player 2

v w y

Player 1
z (3, 7

4
) (2, 8

4
) (2, 6

4
)

u (2, 9
4
) (3, 10

4
) (1, 10

4
)

Figure 4.3: Payoff matrix of the double game in Example 4.1 (1).

Now we assume the payoff matrices of two basic games are given in Figure 4.4. Strategy profiles

(z, v) and (z, y) are a coherent pair, with player 1 having type θ1 = 0 and player 2 having extreme

types θ2 = 0 and θ2 = 1.

Player 2

v w y

Player 1
z (3, 2) (2, 2) (2, 1)

u (2, 1) (3, 1) (1, 3)
(a) Game 1

Player 2

v w y

Player 1
z (3, 1) (2, 2) (2, 3)
u (2, 6) (3, 4) (1, 1)

(b) Game 2

Figure 4.4: Payoff matrices representation for Example 4.1 (2).

The payoff matrix of G for θ1 = 0 and θ2 =
1
4

is given in Figure 4.5 and G fails to have the pure Nash

equilibrium.

Player 2

v w y

Player 1
z (3, 7

4
) (2, 8

4
) (2, 6

4
)

u (2, 9
4
) (3, 7

4
) (1, 10

4
)

Figure 4.5: Payoff matrix of the double game in Example 4.1 (2).

Therefore, for the purpose of this research, we restrict ourselves to having only two actions for each

player in the case of a double game.

The following lemma and proof are by Abbas Edalat.
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Lemma 4.1. If the double game with two players has a coherent pair
(
(z, v), (z, w)

)
of pure Nash

equilibrium with the first player having type θ1 = θ∗1, then there exists an integer S with 1 ≤ S ≤ ℓ2

such that Gk1k2 has (z, v) as a pure Nash equilibrium for 1 ≤ k2 < S and has (z, w) as a pure Nash

equilibrium for S < k2 ≤ ℓ2.

Proof. Consider a double game G. Each player has a strategy set with two actions: S1 = {z, u} and

S2 = {v, w}, with the payoff matrices of two basic games given in Figure 4.6.

Player 2

v w

Player 1
z (a1, a2) (b1, b2)

u (c1, c2) (d1, d2)
(a) Game 1

Player 2

v w

Player 1
z (e1, e2) (f1, f2)

u (g1, g2) (h1, h2)
(b) Game 2

Figure 4.6: Payoff matrix representation for Lemma 4.1.

The payoff matrix for G is given in Figure 4.7.

v w

z (1− θ1)a1 + θ1e1, (1− θ2)a2 + θ2e2 (1− θ1)b1 + θ1f1, (1− θ2)b2 + θ2f2

u (1− θ1)c1 + θ1g1, (1− θ2)c2 + θ2g2 (1− θ1)d1 + θ1h1, (1− θ2)d2 + θ2h2

Figure 4.7: Payoff matrix representation of the double game for Lemma 4.1.

Suppose that for θ2 = 0 and θ2 = 1 and for a given θ1 = θ∗1 we obtain the pair of coherent Nash

equilibria (z, v) and (z, w) thus;

{
u2(z, v; θ

∗
1, 0) ≥ u2(z, w; θ

∗
1, 0), (4.1)

u2(z, w; θ
∗
1, 1) ≥ u2(z, v; θ

∗
1, 1). (4.2)

Using Figure 4.7 and Equations 4.1 and 4.2, we have

{
(1− θ2)a2 + θ2e2 ≥ (1− θ2)b2 + θ2f2, (4.3)

(1− θ2)b2 + θ2f2 ≥ (1− θ2)a2 + θ2e2. (4.4)
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By rearranging the above inequalities, we can see

{
θ2(b2 + e2 − a2 − f2) + a2 − b2 ≥ 0,

θ2(b2 + e2 − a2 − f2) + a2 − b2 ≤ 0.

We let

Lθ2 = θ2(b2 + e2 − a2 − f2) + a2 − b2.

The line Lθ2 as a linear function of θ2 divides the space of pure Nash equilibrium for G with player i

having a given type θ1 = θ∗1 into two regions. One region of pure Nash equilibrium (z, v) and another

region of pure Nash equilibrium (z, w) which satisfy Inequalities 4.3 and 4.4. Figure 4.8 shows the

line Lθ2 .

θ2

payoff

Lθ2

10

b2 − a2

f2 − e2

(z, w)(z, v)

Figure 4.8: Division of the space of pure Nash equilibrium for type θ∗1 into two regions by the line Lθ2 as a linear function of θ2.

Hence there exists an integer S with 1 ≤ S ≤ ℓ2 such that Gk1k2 has (z, v) as a pure Nash equilibrium

for 1 ≤ k2 < S and has (z, w) as a pure Nash equilibrium for S < k2 ≤ ℓ2.

We call S given in Lemma 4.1, the type changing point.

The following example shows a double game with two players, such that the first basic game fails to

have a pure Nash equilibrium and the second basic game has two pure Nash equilibria.

Example 4.2. In this example, each player has a strategy set with two actions: S1 = {z, u} and

S2 = {v, w}, with the payoff matrices of two basic games given in Figure 4.9. The first basic game

is similar to a Matching Pennies game that has no pure Nash equilibrium but it has a unique mixed

Nash equilibrium.
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Player 2

v w

Player 1
z (1, 0) (0, 1)

u (0, 1) (1, 0)
(a) Game 1

Player 2

v w

Player 1
z (3, 1) (3, 0.5)

u (3, 0.5) (3, 1)
(b) Game 2

Figure 4.9: Payoff matrices representation for Example 4.2.

v w

z (1− θ1) + 3θ1, 0 + θ2 0 + 3θ1, (1− θ2) + 0.5θ2

u 0 + 3θ1, (1− θ2) + 0.5θ2 (1− θ1) + 3θ1, 0 + θ2

Figure 4.10: Payoff matrix representation of the double game in Example 4.2.

The payoff matrix of double game G is given in Figure 4.10.

We observe there are pure Nash equilibria for certain values of θ1 and θ2 for G. For example, the

profile (z, v) is a pure Nash equilibrium if θ1 ≤ 1 and θ2 ≥ 2
3
. Figure 4.11 shows the different regions

of θ1 and θ2 where different pure Nash equilibria appear. Uncoloured zones represent the regions

where there is no pure Nash equilibrium.

θ2

θ1

10

1

2
3

(z, v), (u,w)

(z, w), (u, v)

No pure Nash equilibrium

Figure 4.11: Illustration of Nash equilibrium in the different regions of θ1 and θ2 for Example 4.2.

Next, we examine how information about the set of local pure Nash equilibrium for a double game

with various types of N players, can be used to deduce the Bayesian Nash equilibrium for the double

game.
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4.2 Pure Regular Double Game

We consider a double game to be pure regular if it has a set of 2N pairs of pure Nash equilibrium for

all extreme types, for which the strategy of each player only depends on its own type. Here is the

exact definition.

Definition 4.2. A double game with a finite set of types for each player i ∈ I = {1, . . . , N}, is pure

regular if there are actions si ∈ Si for i ∈ I such that the strategy profiles (s1, . . . , si, . . . , sN) are

pure Nash equilibria for the double game with player i having extreme types θeii , ei ∈ {−,+}.

Figure 4.12 shows pure regularity in a double game G with three players while each player has a

strategy set: S1 = {v, x}, S2 = {z, w} and S3 = {u, y}. Here, there are eight pure strategy

profiles (v, u, z), (v, u, w), (v, y, z), (v, y, w), (x, u, z), (x, u, w), (x, y, z), (x, y, w) for G with each

player utilising its extreme types.

θ2

θ3

θ1

(x,y,w)

(v,y,w)

(x,y,z)

(v,y,z)

(x,u,w)

(v,u,w)

(x,u,z)

(v,u,z)

Figure 4.12: Illustration of eight pure regular Nash equilibria in a double game with three players.

For a double game with a finite set of types for each player, we can go further, as follows.

4.3 Complete Pure Regular Double Game

Definition 4.3. We say a double game with a finite set of types for each player i ∈ I = {1, . . . , N}

given by θki (1 ≤ k ≤ ℓi) is completely pure regular if there are pure strategies sk ∈ Si for (1 ≤

k ≤ ℓi) such that the strategy profiles (sk1 , . . . , ski , . . . , skN ) are pure Nash equilibria for the game

Gk1···ki···kN for (1 ≤ ki ≤ ℓi).
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It is clear that a completely pure regular double game is pure regular and thus our terminology is

consistent. Let si(.) : Θi → Si be a function that specifies a pure strategy si(θi) for player i ∈ I =

{1, . . . , N} where Θi is set of types for player i and θi ∈ Θi. We will prove that for a completely pure

regular double game, the strategy profile
(
s1(.), s2(.), . . . , sN(.)

)
is a pure Bayesian strategy profile,

in which each player i ∈ I = {1, . . . , N} takes strategy si(.) where si(.) refers to the pure strategy of

player i corresponding to a type from Θi.

Theorem 4.1. If the double game is completely pure regular, then for all prior distributions p, such

that p(θi) > 0 for all θi ∈ Θi, ∀i ∈ I for the N players’ types, the Bayesian pure strategy profile(
s1(.), s2(.), . . . , sN(.)

)
is a pure Bayesian Nash equilibrium.

Proof. Since the finite types θi for each player i are considered to be private information and can each

take only a finite number of values between 0 and 1, the double game is reduced to a Bayesian game

with a finite set of types for the N players. Let the double game G be a Bayesian game with a finite

number of types for each player i ∈ I = {1, . . . , N}, and si(.) : Θi → Si. Based on the assumption

that G is completely pure regular, thus;

si(θi) ∈ argmaxs′i∈Si
ui

(
s′i, s−i(θ−i), (θi, θ−i)

)
(4.5)

for all s′i ∈ Si. Since
∑

θ−i
p(θ−i|θi) = 1, we can rewrite 4.5 as follows;

si(θi) ∈ argmaxs′i∈Si
ui

(
s′i, s−i(θ−i), (θi, θ−i)

)
.
∑
θ−i

p(θ−i|θi). (4.6)

We know that utility ui

(
s′i, s−i(θ−i), (θi, θ−i)

)
in a multi-game is independent of θ−i, therefore, we

have;

si(θi) ∈ argmaxs′i∈Si

∑
θ−i

p(θ−i|θi)ui

(
s′i, s−i(θ−i), (θi, θ−i)

)
. (4.7)

for all s′i ∈ Si. Recall Definition 2.12, the strategy profile si(.) in 4.7 is a pure Bayesian equilibrium

for game G for all i ∈ I and all θi ∈ Θi such that p(θi) > 0. Therefore, the Bayesian pure strategy

profile
(
s1(.), . . . , si(.), . . . , sN(.)

)
is a pure Bayesian Nash equilibrium.
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4.4 Separatrix Hyperplane

In an N-player double game, we introduce a function pim : Θe
−(i,m) × Θi 7−→ Θm where i,m ∈ I =

{1, 2, . . . , N} and i ̸= m. This function has two arguments. The first one is the set of extreme types

for players other than player i and player m and all of their types are fixed at their extreme types,

while the second argument is the set of types for player i. The function pim returns the type changing

point for player m given in Lemma 4.1.

If pim does not depend on either of its two arguments, then there is a separatrix hyperplane θm = θS
m

such that θm = θS
m is always independent of θi ∈ Θi and θ ∈ Θe

−(i,m). The hyperplane θm = θS
m is

called a constant type changing hyperplane. The point of intersection of the constant type changing

hyperplanes is called the partition point P ∈ Q = [0, 1]N . Figure 4.13 shows constant type changing

hyperplanes and some partition points in a 3-player double game G while each player has a strategy

set with two actions: {u, v}.
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vuu

vuu
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vuv

vuu

vuv

vuv

vuv

uuu

uuv

uuv
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uuu
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uuv

vuu
vuu

vuu
vvu vuu

vuu

vuu

vvu
uvu

uuu

uuu

uuu

uvu

uuu

uuu

uuu

θ2 = θS
2

θ1 = θS
1

θ3 = θS
3

θ2

θ3

θ1

(a)

Partition point

θ2 = θS
2

θ1 = θS
1

θ3 = θS
3

Partition point

θ2

θ3

θ1

(b)

Figure 4.13: Illustration of the type changing hyperplanes and partition points in a 3-player double game.

Theorem 4.2. An N-player double game is completely pure regular if and only if for all types θki

(1 ≤ k ≤ ℓi) for each player i ∈ I = {1, 2, . . . , N}, the value of the type changing point pim of each

player m ∈ I , m ̸= i, is constant.
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Proof. (⇒) Now we assume that the double game is completely pure regular. Fix m ∈ I =

{1, 2, . . . , N}; take any extreme types of m, θm ∈ {θ−m, θ+m}. Also for any player i ∈ I , where

i ̸= m, we take θi ∈ {θ−i , θ+i }. Let si(.) : Θi → Si where Θi is a set of types for player i and θi ∈ Θi

such that
(
s1(θ1), . . . , sN(θN)

)
is a pure Nash equilibrium. Recall Section 4.4 that Θe

−(i,m) is a set

of extreme types for players other than player i and player m and all of their types are fixed at the

their extreme types. As the double game is completely pure regular, pim : Θe
−(i,m) × Θi 7−→ Θm is

constant, otherwise sm(θm) depends on θi or θe−(i,m), which contradicts the complete pure regularity

for the double game. Therefore, the value of type changing point pim for each player m, is constant

for all types θki (1 ≤ k ≤ ℓi) of each player i. ∀m ∀i ̸= m

pim
(
θ−(i,m), θi

)
= θS

m

(⇐) Now we assume that ∀m ∀i ̸= m, pim
(
θ−(i,m), θi

)
= θS

m. Thus pim is constant and the strategies

of each player m ∈ I only depends on its own type; therefore, the double game is completely pure

regular.

Corollary 4.1. The double game is completely pure regular if and only if there is a partition point

P ∈ Q = [0, 1]N such that the sub-hypercubes generated by P using hyperplanes through P parallel

to the coordinate planes partition Q into regions of constant Nash equilibrium.

In a double game, the constant type changing hyperplanes partition the space of pure Nash equilibrium

into several blocks of pure Nash equilibrium for each player i ∈ I = {1, . . . , N} for the given type

θi. We let qi denote the number of blocks containing constant Nash equilibrium for player i for each

θi. For each player i, as we restrict ourselves to a uniform double game with only two actions for

each player then we have qi ≤ 2, thus
∏N

i=1 qi ≤ 2N . Figure 4.14 shows an example of the number of

blocks containing constant Nash equilibrium in a double game G with two players.

In an N -player double game, for each player i ∈ I = {1, 2, . . . , N}, there exists two N-1 player

games at the extreme types θ−i and θ+i that are called opposite faces for player i.

Corollary 4.2. A 2-player double game is completely pure regular if and only if the partition point of

each face is the same as the partition point of its opposite face.
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0

1

θ2

θ10 1

Constant type
changing hyperplane

q2 = 1

q1 = 2

Figure 4.14: An example of the number of blocks containing constant Nash equilibrium in a double game G with two players.

If the partition points at two opposite faces are the same, we call them matched partition points.

Theorem 4.3. In any N -player double game with finite sets of types, if all 2- player sub-games are

completely pure regular then any k-dimensional sub-game, (2 ≤ k ≤ N ) is completely pure regular.

Proof. Assume all 2-player sub-games are completely pure regular. Consider a k-dimensional sub-

game with k players. Let B ⊂ I = {1, 2, . . . , N}, |B| = k. Take m ∈ B; take any extreme type

of m, θm ∈ {θ−m, θ+m}. Also for any player i ∈ B, where i ̸= m, we take θi ∈ {θ−i , θ+i }. Recall

Section 4.4 that Θe
−(i,m) is the set of extreme types of players other than player i and player m. Using

Corollary 4.2, there are matched partition points for each 2-player game. Thus have ∀m ∀i ̸= m ∀x ∈

Θe
−(i,m)

pim(x, θ
+
i ) = pim(x, θ

−
i ) = θS

m. (4.8)

Let A ⊆ I = {1, . . . , N}. Let Θe
−A be the set of extreme types of players other than subset A,

If θ ∈ Θe
−A then |θ| = N − |A|.

Let

θt : Θ
e
−A := {θt : θ | θ ∈ Θe

−A}

where θt : θ is the concatenation of θt and the list θ. Then

if θ ∈ θt : Θ
e
−A then |θ| = N − |A|+ 1.
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Since θ−t : Θe
−(i,m,t) ⊂ Θe

−(i,m) and θ+t : Θe
−(i,m,t) ⊂ Θe

−(i,m), and by Equation 4.8, then

∀m, i, t ∈ B , t ̸= i ̸= m, , t ̸= m,∀y ∈ θ+t : Θe
−(i,m,t) ,∀z ∈ θ−t : Θe

−(i,m,t),

pim(y, θ
+
i ) = pim(z, θ

+
i ) = θS

m,

pim(y, θ
−
i ) = pim(z, θ

−
i ) = θS

m,

which shows in each k- dimensional sub-game, the value of the type changing point of each player is

constant. Therefore, any k−dimensional sub-game, (2 ≤ k ≤ N ) is completely pure regular.

Consider a completely pure regular double game G with three players, where each player has a strategy

set with two actions: {s, u}. Figure 4.15 (a) shows the completely pure regular 2-player sub-game

and matched partition points where

p23(θ
+
1 , θ

+
2 ) = p23(θ

+
1 , θ

−
2 ) = θS

3

Therefore, type changing point p23(θ+1 , θ
+
2 ) is matched with type changing point p23(θ−1 , θ

+
2 )

(
Figure-

4.15 (b)
)

and also type changing point p23(θ−1 , θ
+
2 ) is matched with type changing point p23(θ−1 , θ

−
2 )(

Figure 4.15 (c)
)
. Figure 4.15 (d) shows that the partition point of a 2-player sub-game matches with

the partition point of its opposite 2-player. Similarly, we can prove that the value of the type changing

point of each player is constant. Therefore, 3−dimensional sub-game is completely pure regular.

Corollary 4.3. An N-player double game is completely pure regular, if and only if, for each player

i ∈ I = {1, 2, . . . , N}, the two N-1 player games at the extreme types θ−i and θ+i are completely pure

regular with the matched partition points.

Figure 4.16 (a) represents a double game G with three players while each player has a strategy set

with two actions: {u, v}. The double game is completely pure regular and constant type changing

hyperplanes partition the space of pure Nash equilibrium into 8 blocks of pure Nash equilibrium with

constant pure Nash equilibrium in each. Figure 4.16 (b) represents an example of a double game G
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Figure 4.15: The opposite faces and matched partition points in a 3-player double game.

with two unmatched partition points on the two opposite faces in a double game G for three players.

Now we present an efficient algorithm for the double game in order to establish whether we have

a Bayesian Nash equilibrium that can be determined with lower computational complexity. We can

determine if a double game with finite types for the N players is completely pure regular by using

Algorithm 1. The basic idea is a recursive check to see if the opposite faces for each player i ∈

I = {1, . . . , N} are pure regular and if the partition point of each face are matched with the partition

points of its opposite face. At the lowest recursion level, we have a double game with two players and

we test whether the double game is pure regular and if the partition points of each face are matched

with the partition point of its opposite face. Thus, we can only check each 2-player game.
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Figure 4.16: Illustration of the blocks of pure Nash equilibrium with constant pure Nash equilibrium (a) and the unmatched partition points (b), in a
double game G for three players.

Algorithm 1: Algorithm to test for the property of being complete pure regular in GN with N players

Input: An N-player double game GN .
Output: GN is completely pure regular or not.

1 CPR(G): G is completely pure regular.
2 PR(G): The opposite faces for players are pure regular in G.
3 M(G): In G, the partition point of each face matches with the partition

point of its opposite face.
4 begin
5 G := GN

6 if CPR(G) = PR(G) ∧M(G).
7 PR(G) =

∧
t∈[G]

e∈{+,−}
PR(Gθet

−t). Check recursively

8 M(G) =
∧

t∈[G]
e∈{+,−}

M(Gθet
−t). Check recursively

9 then
10 GN is Completely Pure Regular
11 else
12 GN is not Completely Pure Regular
13 end

Corollary 4.4. Given any double game with a finite number of types for N players, we can decide if

it is completely pure regular, in which case a Bayesian pure Nash equilibrium is obtained O
(
2N

)
.

Proof. The number of k-dimensional hypercubes on the boundary of an N -cube is 2N−k
(
N
k

)
. In

the double game, for a 2-player game, we have k = 2 and so the number of 2-player games is
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1
2!
.N(N − 1)2N−2. Thus, for Algorithm 1, the computational complexity is O

(
2N

)
.

Therefore, for the class of completely pure regular double games, the Nash equilibria of the basic

games can be used to compute a Bayesian Nash equilibrium of the double game with respect to the

number of players.



Chapter 5

An Application: A Double Game for

Prisoner’s Dilemma

In this chapter, we explain a double game extension of the Prisoner’s Dilemma to model

pro-social behaviour. In this double game for Prisoner’s dilemma, the first game is the

classical Prisoner’s dilemma and the second game captures the social or moral gain for

cooperation for each player. We furthermore consider the double game for the Prisoner’s

dilemma where the social (altruistic) coefficient of each player forms a finite discrete set

of incomplete information or types, thus giving rise to a Bayesian game. We prove that

this double game is in fact pure regular and determine its Bayesian equilibrium when it is

completely pure regular.

Game theory has been an important tool for addressing problems regarding the origins of conventions,

fairness, and pro-social behaviour in general. In an overwhelming number of situations, people do not

seem to behave in their self-interest, but rather behave pro-socially, contrary to what classical game

theory suggests (that people always act in their own self-interest).

We now review the concept of pro-social behaviour and moral gain in Prisoner’s Dilemma. Recall

Section 2.6, the Prisoner’s Dilemma is considered a standard method for modelling social dilemmas

and has also been used to model conditional altruistic cooperation, which has also been tested by

real monetary payoffs. However, when confronted with the choice to cooperate or defect, human

60
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beings not only consider their material score, but also the social and moral payoffs of any decision

they make. This means that the material payoffs presented in the Prisoner’s Dilemma cannot provide

a complete picture of the decision making process human beings follow. In fact, according to some

researchers, human social evolution has a moral direction which has extended our moral campus

in the course of thousands of years of increasing communication and complexity in human social

organisation [Wri01, Wri10]. Moreover, there are individual and temporal variations in pro-social

attitudes of human beings with some making decisions more based on self-interest than others. A

more adequate model of human behaviour should take into account these aspects of social evolution

as well. The same applies to economic decisions by corporations or governments, in which actions

taken can have significant social and environmental implications, which are not incorporated in the

material gains they produce. In [She94], it was proposed that a coefficient of morality be introduced

to the Prisoner’s Dilemma and the payoff values of the players be accordingly changed. The so-called

altruistic extension of any finite strategic game was defined in [CKKS11], which endows each player

with an altruistic level in the unit interval which provides the weight of the pro-social attitude of the

player. This modification aims to reflect real-life situations and dilemmas more accurately by taking

into account both material and moral/social gains. Thus, for each player, the payoff is a weighted,

linear combination of the payoffs for the Prisoner’s Dilemma and the social game. In essence, it is a

convex combination of the payoffs occurring from both material and social dilemmas.

We show that the double game, as an instance of multi-games, provides a generalisation of the altru-

istic extension in [CKKS11] which can be considered as a double game with the first game identified

as the original game and the second game as a symmetric altruistic game. In a general double game,

the social or altruistic game is allowed to be non-symmetric, which means that in general the altruistic

payoffs for the different players may be different even for the same strategy profile.

5.1 The Social Game

The social game encourages cooperation and discourages defection, as cooperating is usually con-

sidered to be the ethical and moral choice to make when interacting with others in social dilemmas.

This can be done in different ways corresponding to different types of payoff matrices. Here, we will
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restrict to the case that the social game encourages cooperation and discourages defection for each

player, independently of the action chosen by the other player.

We present the normal form and the mathematical formulation of the social game as follows. Assume

that the competing participants in the social game are player 1 and player 2. Each of them has the

choice to select between “C” and “D ”. When they have both made their choice, the payoffs assigned

to them are calculated according to Figure 5.1, where M1, M2 and M
′
1, M ′

2 satisfy:

M1 > M ′
1, M2 > M ′

2.

When M1 = M2 and M ′
1 = M ′

2, we will have a symmetric social game and our framework reduces

to the altruistic extension in [CKKS11].

Player 2

C D

Player 1
C (M1,M2) (M1,M

′
2)

D (M ′
1,M2) (M ′

1,M
′
2)

Figure 5.1: Payoff matrix representation of Social game.

Thus, in the social game we treat in this chapter, the players are individually and independently

rewarded for cooperating and punished for defecting. This can be interpreted in the following way.

Cooperation by an individual, independent of the action of the opponent, is socially rewarded by

inducing a good conscience, whereas defection is punished by creating a guilty one. The values

of M1, M2 and M
′
1, M

′
2 are assumed to be socially determined to correspond to the average moral

norm in the given society and are considered to have evolved in the course of increasing complexity,

communication and moral growth in human history.

5.2 The Double Game Extension of the Prisoner’s Dilemma

Although the payoffs for the social game are determined by the social context of the game, there is

still individual variation in pro-social behaviour of the players. We assume each player has a social
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coefficient taking values between 0 and 1, which reflects how pro-social they are in practice in each

round of the game. In our particular social game, the social coefficient of a player signifies how

much the player cares about the morality or the social aspect of their action. The payoffs of the

double game for each player are then the weighted sum or convex combination of the payoffs of the

Prisoner’s Dilemma (Figure 2.8) and social game (Figure 5.1) using the player’s social coefficient as

represented in Figure 5.2, where θ1 and θ2 (with 0 ≤ θ1, θ2 ≤ 1) are the social coefficients of players

1 and 2, respectively. Note that the two players can still play the standard version of the Prisoner’s

Dilemma by selecting their social coefficients to be equal to 0, in which case the double game reduces

to the Prisoner’s Dilemma.

C D

C (1 - θ1)R + θ1M1, (1 - θ2)R + θ2M2 (1 - θ1)S + θ1M1, (1 - θ2)T + θ2S

D (1 - θ1)T + θ1S, (1 - θ2)S + θ2M2 (1 - θ1)P + θ1S, (1 - θ2)P + θ2S

Figure 5.2: Payoff matrix representation of the double game in Prisoner’s Dilemma example.

In addition to the inequalities satisfied in the payoffs for Prisoner’s Dilemma and social game, we stip-

ulate the two new inequalities below that connect the payoff values from both the Prisoner’s Dilemma

and the social game:

M1, M2 >
(R + P )

2
,

T > R > M1 ≥ M2 > P > S or T > R > M2 ≥ M1 > P > S.

First, we argue that M1 and M2 should be less than T , but greater than P . The former should hold,

otherwise if M1 and M2 are equal to or greater than T , then, there is no dilemma as to what the best

strategy is (one should select the highest possible social coefficient and always choose “C ” in order

to achieve the highest available payoff), and the social game loses its meaning. On the other hand, the

latter should hold, because, if M1 and M2 are equal to or less than P , then, cooperation is discouraged,

since one would have no incentive to select a high social coefficient and choose “C ”. In addition, M1

and M2 should be strictly less than R, as we would like to encourage cooperation in the social game

by assigning it a payoff value that is somewhat less than the payoff value obtained through mutual

cooperation in the Prisoner’s Dilemma. This, we believe, reflects more accurately real-life situations,
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as, in general, the decisions based on moral incentives do not bring high material benefits. Finally,

we assume that M1 and M2 should be greater than the average of R and P , so that the dilemma of

whether to cooperate or defect becomes more intense.

Then, we argue that M ′
1 and M

′
2 should be equal to S, so as to discourage defection with a high social

coefficient, which would be self-contradictory, and, to punish, in a sense, defection, since M ′
1 and M

′
2

are the payoff values for defection in the social game, which, by its definition, should not give a high

value to defection.

The selection of the social coefficient reveals, in part, the strategy that one will follow in a given

game. To illustrate this with an example, note that the choice of social coefficient equal to 1 implies

cooperation, since defection would give a payoff of 0, and, similarly, the choice of social coefficient

equal to 0 most probably implies defection, since cooperation in that case would give a payoff of

0, unless it is mutual, in which case it would be beneficial. On the other hand, selecting a social

coefficient between 0 and 1 leaves room for more complex and sophisticated strategies. Finally, as

we will see later on in Chapter 8, in the implementation of the double game, certain restrictions are

imposed on how much a player can increase or decrease the social coefficient in a single round. This

is done, since, in general, humans do not change their moral values radically in a short amount of

time.

5.3 Double Game with Complete Information

If we assume that the players know each other’s social coefficients prior to every game, the double

game becomes a game with complete information and all payoffs are known to both players. In this

section we focus on the analysis of Nash equilibrium in this type of double game. It is well known

that the Nash equilibrium for the Prisoner’s Dilemma is mutual defection, represented by (D,D).

However, from the perspective of the social game, the best response of any player is to cooperate, as

this always leads to a better score as compared to defecting. As a result, if the players make their

decisions with no concern for their opponents’ behaviour, it leads to a Nash equilibrium of mutual

cooperation, represented by (C,C). However, this simplicity cannot be incorporated in the double
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game, due to the inclusion of the social coefficient, which alters the reward for all outcomes.

In accordance with the equilibrium, we must find out how the social coefficients of the two players

alter the potential payoffs for four possible outcomes of the game. The payoffs for each possible

outcome change along with the variation in the social coefficients θ1 and θ2 of players 1 and 2,

respectively, as shown in Figure 5.7. At this stage, we consider the payoff equations for player 1. We

note that, by symmetry, a similar analysis can be conducted for player 2. Furthermore, without loss

of generality, we assume the equality M
′
1 = M

′
2 = S, since the social game punishes defection.

For θ1 let us label the three crossing points of the payoff equations as θ1 = a1 for u1(D,D) =

u1(C,D), θ1 = b1 for u1(D,C) = u1(C,C) and θ1 = c1 for u1(D,C) = u1(C,D). By equating the

equations for each payoff, we find the values of the crossing points (similarly for θ2) to be:

a1 =
P − S

M1 + P − 2S
, a2 =

P − S

M2 + P − 2S
,

b1 =
T −R

T − S +M1 −R
, b2 =

T −R

T − S +M2 −R
,

c1 =
T − S

M1 + T − 2S
, c2 =

T − S

M2 + T − 2S
.

We have the three following cases:


a1 < b1 < c1, a2 < b2 < c2 if P − S < T −R,

b1 < a1 < c1, b2 < a2 < c2 if P − S > T −R,

a1 = b1 < c1, a2 = b2 < c2 if P − S = T −R.

We can obtain the Nash equilibrium points for M1,M2 > R and M1,M2 < R and M1 = M2 = R;

note that for all values of θ1 and θ2 that are greater than b1 or b2, the equilibria are equal. To illustrate

the method, we will compute below the Nash equilibrium for the two generic cases of a1 < b1, a2 <

b2 and b1 < a1, b2 < a2 when T > R > M1 > M2 > P > M ′
1 = M ′

2 = S. We used ideas of

Ounsley [Oun10] to write the two next sections.
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5.3.1 Case: a1 < b1 and a2 < b2

Figure 5.3 shows the variation in the payoffs resulting from each outcome of the double game with

different values of θ1. We can describe the order of preference for all values of θ1 lying between 0 and

1 by using the values of a1, b1 and c1 and the functions shown in Figure 5.6, and then we can obtain

the equilibria for different social coefficients.

D,C

C,C

D,D

C,D

P

S

R

T

S

M1

T

0 b1a1 c1

a1 < b1 < c1

Figure 5.3: Change of payoffs T > R > M1 > M2 > P > M ′
1 = M ′

2 = S.

Figure 5.4 shows the preference ordering of player 1 for the variation of θ1.

Type θ1 Preference ordering of player 1

0 ≤ θ1 < a1 (D,C) > (C,C) > (D,D) > (C,D)

θ1 = a1 (D,D) = (C,D)

a1 < θ1 < b1 (D,C) > (C,C) > (C,D) > (D,D)

θ1 = b1 (D,C) = (C,C)

b1 < θ1 < c1 (C,C) > (D,C) > (C,D) > (D,D)

θ1 = c1 (D,C) = (C,D)

c1 < θ1 ≤ 1 (C,C) > (C,D) > (D,C) > (D,D)

Figure 5.4: Preference ordering of player 1 for the variation of θ1.

Since the double game is a symmetric game, the same inequalities also exist for player 2, with the

social coefficient for player 2 being θ2 instead of θ1, and each outcome being replaced with its mirror

point. Figure 5.5 shows the preference ordering of player 1 for the variation of θ2. For instance while

(D,C) is shown to be the most preferable for player 1 in Figure 5.3, (C,D) would take its place for

player 2. The pair (θ1, θ2) is a point of unit square [0, 1]× [0, 1].
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Type θ2 Preference ordering of player 2

0 ≤ θ2 < a1 (C,D) > (C,C) > (D,D) > (D,C)

θ2 = a1 (D,D) = (D,C)

a1 < θ2 < b1 (C,D) > (C,C) > (D,C) > (D,D)

θ2 = b1 (C,D) = (C,C)

b1 < θ2 < c1 (C,C) > (C,D) > (D,C) > (D,D)

θ2 = c1 (C,D) = (D,C)

c1 < θ2 ≤ 1 (C,C) > (D,C) > (C,D) > (D,D)

Figure 5.5: Preference ordering of player 2 for the variation of θ2.

The equilibria for different social coefficients in the case of a1 < b1 are given in Figure 5.6 for the

generic sub-rectangles.

a2

0

b2

1

0 a1 b1 1

(D,C)

(D,C)

(D,D)

(D,C)

(C,D), (D,C)

(C,D)

(C,C)

(C,D)

(C,D)

Figure 5.6: The set of Nash equilibria for each of the 9 generic regions (a1 < b1, a2 < b2).

The equilibria for different social coefficients in the case of a1 < b1 are given are presented in Fig-

ure 5.7, which includes the boundary points of these 9 regions. Note that on any boundary point of

2 or 4 generic regions, the set of equilibria is precisely the union of equilibria in the neighbouring

generic regions.

5.3.2 Case: b1 < a1 and b2 < a2

Figure 5.8 (a) illustrates the change in payoffs resulting from each outcome of the double game with

different values of θ1 in the case of b1 < a1. Figure 5.8 (b) provides the set of equilibria for each of
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b2 < θ2 ≤ 1 (D,C) (D,C) (D,C) (C,C), (D,C) (C,C)

θ2 = b2 (D,C) (C,D), (D,C) (C,D), (D,C) (C,C), (C,D), (D,C) (C,C), (C,D)

a2 < θ2 < b2 (D,C) (C,D), (D,C) (C,D), (D,C) (C,D), (D,C) (C,D)

θ2 = a2 (D,D), (D,C) (D,D), (D,C), (C,D) (C,D), (D,C) (C,D), (D,C) (C,D)

0 ≤ θ2 < a2 (D,D) (D,D), (C,D) (C,D) (C,D) (C,D)

0 ≤ θ1 < a1 θ1 = a1 a1 < θ1 < b1 θ1 = b1 b1 < θ1 ≤ 1

Figure 5.7: Nash equilibria for different social coefficients for a1 < b1 and a2 < b2.

the 9 generic regions.

D,C

C,C

D,D

C,DP

S

R

T

S

M1

T

0 a1b1 c1 1

b1 < a1 < c1

(a)

a2

0

b2

1

0 a1 b1 1

(D,C)

(D,D)

(D,D)

(C,C)

(C,C), (D,D)

(D,D)

(C,C)

(C,C)

(C,D)

(b)

Figure 5.8: (a) Change of payoffs (The variation of payoffs (T > R > M1 > M2 > P > M ′
1 = M ′

2 = S)). (b) The set of Nash equilibria for each
of the 9 generic regions (b1 < a1, b2 < a2).

Figure 5.9 presents the equilibria for all possible social coefficients.

a2 < θ2 ≤ 1 (D,C) (D,C) (C,C) (C,C) (C,C)

θ2 = a2 (D,C) (D,C), (D,D), (C,C) (D,D), (C,C) (D,D), (C,C) (C,C)

b2 < θ2 < a2 (D,D) (D,D), (C,C) (D,D), (C,C) (D,D), (C,C) (C,C)

θ2 = b2 (D,D) (D,D), (C,C) (D,D), (C,C) (C,D), (D,D), (C,C) (C,D)

0 ≤ θ2 < b2 (D,D) (D,D) (D,D) (C,D) (C,D)

0 ≤ θ1 < b1 θ1 = b1 b1 < θ1 < a1 θ1 = a1 a1 < θ1 ≤ 1

Figure 5.9: Nash equilibria for different social coefficients for b1 < a1 and b2 < a2.

Now we consider the double game for the Prisoner’s Dilemma where the social (altruistic) coefficient

of each player forms a finite discrete set of incomplete information or types thus giving rise to a

Bayesian game.
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5.4 Double Game with Incomplete Information

We now assume that the players do not know each other’s social coefficients prior to any game, which

means that they do not know the full values of the payoff matrix. Thus, the game has two-sided

incomplete information. We assume that the social coefficient of each player has a finite number of

possible values and that the probability distribution of the social coefficient is common knowledge

between the two players. We also assume that, at the start of the game, each player is aware of

the value of its own social coefficient (private information) or type, but not the value of the social

coefficient of the opponent. In that way, each player can rely on a probabilistic inference to predict the

opponent’s actions. From Figures 5.7 and 5.9, we see immediately that for extreme types θ1, θ2 = 0, 1,

we have the pure Nash Equilibrium (D,D), (C,D), (D,C) and (C,C) and it follows immediately

that in both cases of a1 < b1, a2 < b2, and b1 < a1, b2 < a2, we have pure regular games.

We present two specific examples with finite sets of types for two players. Assume that

T > R > M > P > M ′ = S and a1 < b1, a2 < b2

Example 5.1. We choose the four discrete values, or types,

θ11 = 0, θ21 = a1, θ
3
1 = b1, θ

4
1 = 1,

θ12 = 0, θ22 = a2, θ
3
2 = b2, θ

4
2 = 1.

Note that θ21, θ
2
2, θ

3
1, θ

3
2 give the values at the boundaries of the three generic regions in the unit

square with each other. Figure 5.10 gives the set of Nash equilibria for all possible pairs (θm1 , θ
n
2 )

(0 ≤ m,n ≤ 4).

θ42 (D,C) (D,C) (C,C), (D,C) (C,C)

θ32 (D,C) (C,D), (D,C) (C,D), (D,C), (C,C) (C,C), (C,D)

θ22 (D,D), (D,C) (D,D), (D,C), (C,D) (C,D), (D,C) (C,D)

θ12 (D,D) (D,D), (C,D) (C,D) (C,D)

θ11 θ21 θ31 θ41

Figure 5.10: Nash equilibria for different social coefficients for a1 < b1 and a2 < b2 with four types per player.



70 Chapter 5. An Application: A Double Game for Prisoner’s Dilemma

From this figure, we see that for pairs of types where there is a choice of pure Nash Equilibrium, we

can choose a pure Nash Equilibrium such that we obtain Figure 5.11.

θ42 (D,C) (D,C) (C,C) (C,C)

θ32 (D,C) (D,C) (C,C) (C,C)

θ22 (D,D) (D,D) (C,D) (C,D)

θ12 (D,D) (D,D) (C,D) (C,D)

θ11 θ21 θ31 θ41

Figure 5.11: Nash equilibria chosen for different social coefficients from Figure 5.10.

From Figure 5.11, we see that the double game is completely pure regular with (DDCC,DDCC) as

a pure Bayesian Nash Equilibrium.

Example 5.2. We take 5 discrete values, or types for each player as follows,

θ11 = 0, θ21 = a1, θ
3
1 =

a1 + b1
2

, θ41 = b1, θ
5
1 = 1,

θ12 = 0, θ22 = a2, θ
3
2 =

a2 + b2
2

, θ42 = b2, θ
5
2 = 1.

Figure 5.12 gives the set of Nash equilibria for all possible pairs (θi1, θ
j
2) (0 ≤ i, j ≤ 5).

θ52 (D,C) (D,C) (D,C) (C,C), (D,C) (C,C)

θ42 (D,C) (C,D), (D,C) (C,D), (D,C) (C,D), (D,C), (C,C) (C,C), (C,D)

θ32 (D,C) (C,D), (D,C) (C,D), (D,C) (C,D), (D,C) (C,D)

θ22 (D,D), (D,C) (D,D), (D,C), (C,D) (C,D), (D,C) (C,D), (D,C) (C,D)

θ12 (D,D) (D,D), (C,D) (C,D) (C,D) (C,D)

θ11 θ21 θ31 θ41 θ51

Figure 5.12: Nash equilibria for different social coefficients for a1 < b1, a2 < b2 with five types per player.

From this figure, we can see that the double game is not completely pure regular.
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Multi-Games with N Players

In this chapter, we extend the concept of multi-games to consider games with N players

and M games. Each player has the same set of strategies in the M basic games. We

later define the class of pure regular multi-game where, for pairs of extreme types there

are pure Nash equilibria in which the strategy of each player only depends on its own

type. Similarly, we define the notion of a completely pure regular multi-game where

there are pure Nash equilibria for all possible pairs of types for the N players, in which

the strategy of each player only depends on its own type. We then go on to derive a test

for establishing whether multi-games are completely pure regular and show that a pure

Bayesian equilibrium for a completely pure regular multi-game can be obtained directly

from this test, thus reducing the complexity of computation.

We suppose our multi-game with M basic games is uniform. For each type of player i ∈ I =

{1, . . . , N}, there are M points θi1, θi2, . . . , θiM in the Euclidean space, RM . In other words, for all

j ∈ J = {1, . . . ,M} and a player i, we have a set of all possible types Θi = {(θi1, θi2, . . . , θiM) :

θij ≥ 0,
∑M

j=1 θij = 1}. Each type θ̄i = (θi1, θi2, . . . , θiM) for player i is equipped with a set of M

weights θij with
∑M

j=1 θij = 1. The standard (M − 1)-simplex is the subset of RM given by

∆M−1
θij

= {(θi1, θi2, . . . , θiM) ∈ RM |
M∑
j=1

θij = 1 ∧ θij ≥ 0 ∀j}.

71
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The simplex ∆M−1
θij

lies in the affine hyperplane H of dimension M -1 that is called the extreme face

for player i ∈ I = {1, . . . , N}, where j ∈ J = {1, . . . ,M}. Figure 6.1 shows the hyperplane H of

dimension 2 for the set Θ2 for player 2 where M = 3.

θ23

θ21

θ22

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

H

Figure 6.1: Illustration of a simplex of Θ2 in a multi-game with three games.

In the finite discrete case, the finite set of types for each player is given by a set of types, say θ̄ki =

(θki1, θ
k
i2, . . . , θ

k
iM), k = {1, . . . ,M, . . . , ℓi} where ℓi is the number of types for player i ∈ I =

{1, . . . , N} and M is the number of games, and each type is restricted to its unit interval. For every

game j ∈ J = {1, . . . ,M}, each player has an extreme type consisting of one component with value

1 and the rest with value 0;

θjin = δjn =

{
1, j = n,

0, j ̸= n.

We let game G(θ1,...,θi,...,θN ) where θ̄i = (θi1, θi2, . . . , θiM), denote the multi-game G with the types

taking the specific types θ1, . . . , θi, . . . , θN . In the discrete case, additionally we let game Gk1k2···kN

denote the multi-game G with types θk11 , θk22 , . . . , θkNN selected for N players respectively. We refer

to a Nash equilibrium for game G(θ1,...,θN ) as a local Nash equilibrium for the multi-game G. In the

continuous case, we let game Gθ1θ2···θN denote the multi-game G with types θ1, θ2, . . . , θN selected for

the N players respectively.

Assume that we have a uniform N-player multi-game G with basic games G1 to GM . Given a player

i ∈ I = {1, . . . , N}, we denote, as usual, the strategy set of the opponent of i by S−i. We denote the

set of types for players other than player i by Θ−i.



6.1. Pure Regular Multi-Games 73

Next, we explain how information about the set of local pure Nash equilibria for multi-games with M

games for various types of N players, can be used to deduce the Bayesian Nash equilibrium for the

multi-games.

6.1 Pure Regular Multi-Games

We say a multi-game is pure regular if it has a set of MN pure Nash equilibria for all players for

their extreme types, and that the strategy of each player i ∈ I = {1, . . . , N} only depends on its own

extreme type, which we re-label as sij ∈ Si where j ∈ J = {1, . . . ,M} is the game for the extreme

type.

Definition 6.1. We say a multi-game with a finite set of types for each player i ∈ I = {1, . . . , N}, is

pure regular if there are actions siji ∈ Si for i ∈ I and ji ∈ J = {1, . . . ,M} such that the strategy

profiles (s1j1 , . . . , siji , . . . , sNjN ) are pure Nash equilibria for the multi-game with player i having

extreme types θjii with respect to game ji.

In other words, we can think of pure regularity as an M.N tuple of actions (s11, . . . , s1M ; s21, . . . , s2M ;

. . . ; si1, . . . , siM ; . . . ; sN1, . . . , sNM) in which within each block (si1, . . . , siM) for a player i ∈ I =

{1, . . . , N} there is a strategy corresponding to a particular game ji ∈ J = {1, . . . ,M}. If we choose

one strategy from each block then we have a strategy profile that is a pure Nash equilibrium for the

multi-game with player i having extreme types θjii with respect to game ji.

Figure 6.2 shows a pure regular multi-game G with three players and three games, each player has a

strategy set: S1 = {s11, s12, s13}, S2 = {s21, s22, s23} and S3 = {s31, s32, s33}. We suppose that G

has a set of MN = 33 = 27 pure Nash equilibrium with three players having extreme types, for which

the strategy of each player only depends on its own type. We say that the 33 = 27 strategy profiles

induce pure regularity.

Figure 6.3 shows simplices for a pure regular multi-game G with two players and three games, each

player has a strategy set: S1 = {s11, s12, s13} and S2 = {s21, s22, s23}. We set the same colours for

the same Nash equilibria.
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s13
s21

s33

s13
s21

s32

s13
s21

s31

s13
s22

s33

s13
s22

s32

s13
s22

s31

s13
s23

s33

s13
s23

s32

s13
s23

s31

s 13
s 21

s 33
s 12

s 21
s 33

s 11
s 21

s 33

s 13
s 22

s 33
s 12

s 22
s 33

s 11
s 22

s 33

s 13
s 23

s 33
s 12

s 23
s 33

s 11
s 23

s 33

θ33 = 1

θ32 = 1

θ31 = 1

θ11 = 1

θ12 = 1

θ13 = 1 θ21 = 1

θ22 = 1

θ23 = 1

Figure 6.2: The pure regular strategies for all extreme types within a pure regular multi-game of three games and three players.

6.2 Completely Pure Regular Multi-Games

We say a multi-game is completely pure regular if it has a set of pure Nash equilibrium for all types

θki , for which the strategy of each player i ∈ I = {1, . . . , N} only depends on its own type. In other

words, the optimal response of each player only depends on its type. For each player i, there are li

types and each type is a vector with M components.

Definition 6.2. We say a multi-game with a finite set of types for each player i ∈ I = {1, . . . , N}

given by θki (1 ≤ k ≤ ℓi) is completely pure regular if there are pure strategies sk ∈ Si for (1 ≤

k ≤ ℓi) such that the strategy profiles (sk1 , . . . , ski , . . . , skN ) are pure Nash equilibria for the game

Gk1···ki···kN for (1 ≤ ki ≤ ℓi).

It is clear that a completely pure regular multi-game is pure regular and thus our terminology is

consistent.

The following example shows a multi-game G with two players and three games such that G is pure

regular but G is not complete pure regular. Therefore, pure regularity in a multi-game is not a sufficient

condition to guarantee that a multi-game is completely pure regular.
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θ23

θ22

θ21

θ23

θ22

θ21

(s11, s23)

(s11, s22)(s11, s21)

θ̄1 : θ11 = 1

θ̄1 : θ12 = 1

θ̄1 : θ13 = 1

θ23

θ22

θ21

(s12, s23)

(s12, s22)(s12, s21)

(s13, s23)

(s13, s22)(s13, s21)

(a)

θ13

θ12

θ11

(s13, s21)

(s12, s21)(s11, s21)

θ̄2 : θ21 = 1

θ̄2 : θ22 = 1

θ̄2 : θ23 = 1

(s13, s22)

(s12, s22)(s11, s22)

θ13

θ12

θ11

θ13

θ12

θ11

(s13, s23)

(s12, s23)(s11, s23)

(b)

Figure 6.3: The extreme faces in a pure regular multi-game with three games and two players.

Example 6.1. Consider a multi-game G with three games and two players. Each player has a strategy

set: S1 = {s11, s12, s13} and S2 = {s21, s22, s23}, with the payoff matrices of the three basic games

given in Figure 6.4.

Figure 6.5(a) shows the pure Nash equilibria for G with player 1 and player 2 having their extreme

types. As shown in the figure, the strategy of each player only depends on its own extreme type, thus
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Player 2

s21 s22 s23

Pl
ay

er
1 s11 (3, 3) (3, 2) (3, 2)

s12 (2, 3) (2, 2.5) (2, 2)

s13 (2, 3) (2, 2) (2, 1)

(a) Game 1

Player 2

s21 s22 s23

Pl
ay

er
1 s11 (2, 2) (2, 3) (2, 2)

s12 (3, 2) (3, 3) (3, 1)

s13 (2, 2) (2, 3) (2, 1)

(b) Game 2

Player 2

s21 s22 s23

Pl
ay

er
1 s11 (2, 2) (2, 2) (1, 3)

s12 (2, 2) (2, 2) (2, 3)

s13 (3, 2) (3, 1) (3, 3)

(c) Game 3

Figure 6.4: Payoff matrices representation for Example 6.1 (1).

G is pure regular. Figure 6.5(b) shows that for the given set of type θ̄2 = (1
4
, 1
4
, 1
2
) for player 2 and

extreme types for players 1, there are pure Nash equilibria but with different strategies for player 2,

thus G is not complete pure regular.

θ̄2 : θ21 = 1 θ̄2 : θ22 = 1 θ̄2 : θ23 = 1

θ̄1 : θ11 = 1 (s11, s21) (s11, s22) (s11, s23)

θ̄1 : θ12 = 1 (s12, s21) (s12, s22) (s12, s23)

θ̄1 : θ13 = 1 (s13, s21) (s13, s22) (s13, s23)
(a)

θ̄2 : (
1
4
, 1
4
, 1
2
)

θ̄1 : θ11 = 1 (s11, s23)

θ̄1 : θ12 = 1 (s12, s22)

θ̄1 : θ13 = 1 (s13, s21)
(b)

Figure 6.5: Illustration of pure Nash equilibria for a variety of extreme types in Example 6.1 (1).

Figure 6.6 illustrates vector θ̄2 = (1
4
, 1
4
, 1
2
) for extreme types for player 1. The green zone shows a

subset of Θ2 that G, with respect to extreme types for player 1 and this subset, has a Nash equilibrium

for, while player 2’s strategy is s23. Similarly, the blue zone and yellow zone are corresponding to

pure Nash equilibria in which strategies of player 2 are s22 and s21 respectively.

θ̄1 : θ11 = 1

(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

θ̄2

θ22

θ23

θ21

θ̄1 : θ12 = 1

(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

θ̄2

θ22

θ23

θ21

(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

θ̄2

θ22

θ23

θ21

θ̄1 : θ13 = 1

Figure 6.6: Illustration of different zones of pure Nash equilibrium for types of player 2.

Now, assume the payoff matrices of the three basic games are given as in Figure 6.7.

Figure 6.8(a) represents the pure Nash equilibria for G with player 1 and player 2 having extreme



6.2. Completely Pure Regular Multi-Games 77

Player 2

s21 s22 s23

Pl
ay

er
1 s11 (3, 3) (3, 2) (3, 2)

s12 (2, 3) (2, 2) (2, 2)

s13 (2, 3) (2, 2) (2, 2)

(a) Game 1

Player 2

s21 s22 s23

Pl
ay

er
1 s11 (2, 2) (2, 3) (2, 2)

s12 (3, 2) (3, 3) (3, 2)

s13 (2, 2) (2, 3) (2, 2)

(b) Game 2

Player 2

s21 s22 s23

Pl
ay

er
1 s11 (2, 2) (2, 2) (2, 3)

s12 (2, 2) (2, 2) (2, 3)

s13 (3, 2) (3, 2) (3, 3)

(c) Game 3

Figure 6.7: Payoff matrices representation for Example 6.1 (2).

types. The strategy of each player only depends on its own extreme type as shown in the figure, thus

G is pure regular. Figure 6.8(b) shows that for a given set of types θ̄2 = (1
4
, 1
4
, 1
2
) for player 2 and

extreme types for player 1, there are pure Nash equilibria but with similar strategies for player 2, thus

G is complete pure regular for type θ̄2 = (1
4
, 1
4
, 1
2
).

θ̄2 : θ21 = 1 θ̄2 : θ22 = 1 θ̄2 : θ23 = 1

θ̄1 : θ11 = 1 (s11, s21) (s11, s22) (s11, s23)

θ̄1 : θ12 = 1 (s12, s21) (s12, s22) (s12, s23)

θ̄1 : θ13 = 1 (s13, s21) (s13, s22) (s13, s23)
(a)

θ̄2 : (
1
4
, 1
4
, 1
2
)

θ̄1 : θ11 = 1 (s11, s23)

θ̄1 : θ12 = 1 (s12, s23)

θ̄1 : θ13 = 1 (s13, s23)
(b)

Figure 6.8: Illustration of pure Nash equilibria for a variety of extreme types in Example 6.1 (2).

In the following sections, we introduce an algorithm in order to establish whether we have a Bayesian

Nash equilibrium which can be determined with lower computational complexity. With respect to the

number of games M , this algorithm is applicable while the set of types Θi for each player i ∈ I =

{1, . . . , N} is split into at most M disjoint sets. Therefore, for applying the algorithm we restrict

ourselves to having only at most M possible actions for each player to guarantee the set of types Θi

for each player i is split into at most M disjoint sets. The following example represents a multi-game

with two players and three games. One of the players can choose more than three actions (more than

the number of games), which results in the set of types Θ1 for player 1 is split into 4 disjoint sets,

more than the algorithm would be able to use to give a suitable result.

Example 6.2. Consider a multi-game G with three games and two players. Player 1 has the strategy

set S1 = {s11, s12, s13, s14} and player 2 has the strategy set S2 = {s21, s22, s23}, with the payoff

matrices of the three basic games given in Figure 6.9.
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Player 2

s21 s22 s23

Pl
ay

er
1 s11 (3, 2.5) (3, 2) (3, 2)

s12 (1.5, 2.5) (1, 2.3) (2, 2)

s13 (2.5, 3.1) (2, 3) (2, 2)

s14 (2.9, 3.1) (2.5, 3) (2, 2)

(a) Game 1

Player 2

s21 s22 s23

Pl
ay

er
1 s11 (2, 2) (1, 3) (2, 2)

s12 (3.5, 2) (3, 3) (3, 2)

s13 (3, 2) (2, 3) (2, 2)

s14 (3, 2) (2, 3) (2, 2)

(b) Game 2

Player 2

s21 s22 s23

Pl
ay

er
1 s11 (2, 2) (2, 2) (2, 3)

s12 (2, 2) (2, 2) (2, 3)

s13 (3, 2) (3, 2) (3, 3)

s14 (2.5, 2) (2, 2) (2, 3)

(c) Game 3

Figure 6.9: Payoff matrices representation for Example 6.2.

Figure 6.10 (a) shows the pure Nash equilibria for the extreme types of player 1 and player 2. The

strategy of each player only depends on its own extreme type as shown in the figure, thus G is pure

regular. Strategy profile (s14, s21) is a pure Nash equilibrium for G with player 1 and player 2 having

types θ̄1 = (1
2
, 1
2
, 0) and θ̄2 = (1, 0, 0) respectively.

θ̄2 : θ21 = 1 θ̄2 : θ22 = 1 θ̄2 : θ23 = 1

θ̄1 : θ11 = 1 (s11, s21) (s11, s22) (s11, s23)

θ̄1 : θ12 = 1 (s12, s21) (s12, s22) (s12, s23)

θ̄1 : θ13 = 1 (s13, s21) (s13, s22) (s13, s23)
(a)

θ̄2 : θ21 = 1

θ̄1 : θ11 = 1 (s11, s21)

θ̄1 : θ12 = 1 (s12, s21)

θ̄1 : θ13 = 1 (s13, s21)

θ̄1 = (1
2
, 1
2
, 0) (s14, s21)
(b)

Figure 6.10: Illustration of pure Nash equilibria for a variety of extreme types in Example 6.2.

Figure 6.11 shows four different zones of pure Nash equilibrium for G with player 1 and player 2

having type θ1 ∈ Θ1 and θ̄2 = (1, 0, 0) respectively and the set of types Θ1 is split into 4 disjoint sets.

θ12

θ13

θ11

θ̄2 : θ21 = 1

(s13, s21)

(s12, s21)

(s14, s21)
(s11, s21)

Figure 6.11: Illustration of a simplex with four different zones of pure Nash equilibria.
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Theorem 6.1. If a multi-game is completely pure regular, then for all conditional probability distri-

butions for the types of the N players, the Bayesian pure strategy (s1(.), s2(.), . . . , sN(.)), is a pure

Bayesian Nash equilibrium.

Proof. The proof is similar to proof Theorem 4.1.

6.3 Separatrix Hyperplane

In a pure regular multi-game G, assume all extreme types for the players other than player i ∈ I =

{1, . . . , N} are fixed. Let ui(s1j1 , . . . , siji , . . . , sNjN ) = θ̄i.āij1···ji···jN be the utility payoff for player i

with type θ̄i. For a given type θ̄i∈I , strategy profile (s1j1 , . . . , siji , . . . , sNjN ) is a Nash equilibrium if

θ̄i.āij1···ji···jN ≥ θ̄i.āij1···ki···jN , where ji, ki ∈ J = {1, . . . ,M} and ji ̸= ki.

We let;

Pi;j1···ji···jN ;j1···ki···jN (θ̄i) = θ̄i.(āij1···ji···jN − āij1···ki···jN ) ≥ 0,

Si;j1···ji···jN ;j1···ki···jN = {θ̄i|Pi;j1···ji···jN ;j1···ki···jN (θ̄i) = 0}.

The hyperplane Si;j1···ji···jN ;j1···ki···jN is a separatrix hyperplane in G. This separates the space of the

types for player i ∈ I = {1, . . . , N} where ji, ki ∈ J = {1, . . . ,M}, ji ̸= ki, and the extreme types

of the other players are fixed.

Like in a double game a multi-game is completely pure regular if the set of types is partitioned into

polytopes with constant Nash Equilibria. Figure 6.12 shows an example of a simplex of a multi-game

G with four games and two players, Each player has a strategy set: S1 = {s11, s12, s13, , s14} and

S2 = {s21, s22, s23, , s24}, separated by six separatrix hyperplanes while θ̄1 = (1, 0, 0).

The following example shows a multi-game G in which the separatrix hyperplanes do not intersect

each other on the extreme face.

Example 6.3. Consider a multi-game G with three games and two players. Player 1 has the strategy

set S1 = {s11, s12, s13} and player 2 has the strategy set S2 = {s21, s22, s23}, with the payoff matrices
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θ24

θ23

θ22

θ21

(a)

(s11, s21)

(s11, s22)

(s11, s23)

(s11, s24)

θ̄1 : θ11 = 1

S2;13;14

S2;11;14

(b)

Figure 6.12: Illustration of separatrix hyperplanes in a multi-game where M = 4 and N = 2.

of the three basic games given in Figure 6.13.

Player 2

s21 s22 s23

Player 1

s11 (3, 2.5) (3, 2) (3, 2)

s12 (1.5, 2.5) (1, 2.3) (2, 2)

s13 (2.5, 3.1) (2, 3) (2, 2)

(a) Game 1

Player 2

s21 s22 s23

s11 (2, 2) (1, 3) (2, 2)

s12 (3.5, 2) (3, 3) (3, 2)

s13 (3, 2) (2, 3) (2, 2)

(b) Game 2

Player 2

s21 s22 s23

s11 (2, 2) (2, 2) (2, 3)

s12 (2, 2) (2, 2) (2, 3)

s13 (3, 2) (3, 2) (3, 3)

(c) Game 3

Figure 6.13: Payoff matrices representation for three games.

Figure 6.14 shows an extreme face for player 1 separated by three separatrix hyperplanes while player

2 has chosen type θ̄2 = (1, 0, 0). Note the separatrix hyperplanes do not intersect each other on the

extreme face in this particular example.

(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

θ12

θ13

θ11

(a)

θ̄2 : θ21 = 1

θ12

θ13

θ11

(s13, s21)

(s12, s21)(s11, s21)

(b)

Figure 6.14: Illustration of a simplex while the separatrix hyperplanes do not intersect each other on the extreme face.
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Now, we present a test for establishing that a multi-game is completely pure regular.

6.4 Boundary Test

Consider a multi-game G with M games and N players. Let;

si(.) : Θi → Si, i ∈ I = {1, . . . , N},

si : θi 7→ sij if θi ∈ Θij, j ∈ J = {1, . . . ,M},

si(θi) = sij.

where Θi is a set of types for each player i, Θij ⊆ Θi. Let (θ̄1, . . . , θ̄N ) be a set of types for the

N -player multi-game G. For a pure regular G, the boundary test is defined as follows:

• For each type θ̄i, i ∈ I = {1, . . . , N}, we test if there is a constant pure strategy sij such that the

strategy profiles (s1j, . . . , sij, . . . , sNj) where j ∈ J = {1, . . . ,M}, are pure Nash equilibria

for all extreme types for all players other than player i ∈ I with respect to game j ∈ J .

A multi-game G satisfies the boundary test if it is completely pure regular on the boundary i.e. when

all types except for a single player are extreme.

Theorem 6.2. A multi-game G is completely pure regular if, and only if, G is pure regular, and satisfies

the boundary test.

Proof. (⇒) The working assumption is that the multi-game G is completely pure regular. Bearing

in mind Definition 6.1 and Definition 6.2, if we restrict the types to extreme types, then G is pure

regular. As G is completely pure regular, if we restrict the types to boundary types then G satisfies the

boundary test.

(⇐) Let (θ̄1, . . . , θ̄N ) be a set of types for the N -player multi-game G. If the test succeeds then for all

extreme types for the players other than player i ∈ I = {1, . . . , N} and for each type θ̄i∈I ,

Pi;j1···ji···jN ;j1···ki···jN (θ̄i) = θ̄i.(āij1···ji···jN − āij1···ki···jN ) ≥ 0,
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where θ̄i.aij1···ji···jN is the utility payoff for player i with type θ̄i and ji, ki ∈ J = {1, . . . ,M}, ji ̸= ki.

We observe that θ̄i.(āij1···ji···jN − āij1···ki···jN ) ≥ 0 is independent of θ−i. Therefore, each θ̄i is in one of

the disjoint sets Θij . In addition the set of types Θi for each player i is split by separatrix hyperplanes

into at most M disjoint sets

Θi =
M∪
j=1

Θij, Θij ∩Θij′ = ∅, j ̸= j′, j′ ∈ J, i ∈ I.

Let si(.) : Θi → Si, si : θ̄i 7→ siji if θ̄i ∈ Θiji . Based on our assumption, for each type θ̄i∈I ∈ Θiji ,

s(θ̄i) = siji such that;

Pi;j1···ji···jN ;j1···ki···jN (θ̄i) = θ̄i.(āij1···ji···jN − āij1···ki···jN ) ≥ 0.

Therefore, the strategy profile (s1j1 , . . . , siji , . . . , sNjN ) is a Nash equilibrium for G θ̄1···θ̄N such that

siji only depends on player i’s type. Thus G is completely pure regular.

Figure 6.15 represents disjoint sets of types for a multi-game G with three games and two players, at

the boundary types of two players.

By applying Theorem 6.2, Algorithm 2 can be employed to establish whether a multi-game G with

finite types for the N players and M games is completely pure regular.

Algorithm 2: Algorithm to test for the property of being complete pure regular in multi-game G with N
players and M games.

Input: An N-player multi-game G with M games.
Output: Multi-game G is complete pure regular or not.

1 CPR(G): Game G is completely pure regular.
2 PR(G): Game G is pure regular.
3 begin
4 if CPR(G) = PR(G) and the boundary test succeeds.
5 then
6 G is completely pure regular
7 else
8 G is not completely pure regular
9 end
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Figure 6.15: Disjoint sets of types for a multi-game G with three games and two players at boundary types.

Corollary 6.1. Given any multi-game with a finite number of types for N players and M games, we

can decide if it is completely pure regular with computational complexity O
(
NMN−1

)
.

Proof. In a multi-game, the number of extreme faces when considering all combinations of extreme

types is NMN−1. Since Algorithm 2 checks the extreme faces, thus the computational complexity is

O
(
NMN−1

)
.
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For a given number of players, the complexity of this algorithm is polynomial in M , the number

of strategies. For the class of completely pure regular multi-games, the Nash equilibria of the basic

games can be used to compute a Bayesian Nash equilibrium of the multi-games with respect to the

number of players and games. Let M ℓi denotes the number strategies for player i in the expanded

game therefore the number of strategies is M ℓ where ℓ = max1≤i≤N ℓi. If finding Nash equilibrium

is “hard” in terms of the number of strategies, then the classical complexity is O(2M
ℓ
) which is large

even if ℓ and M are small compared to O(NMN−1) which is polynomial in M for a given N .

Figure 6.16 and Figure 6.17 represent the extreme faces of the completely pure regular 3- player

multi-game with three games, each player has a strategy set: S1 = {s11, s12, s13}, S2 = {s21, s22, s23}

and S3 = {s31, s32, s33}. We set the same colours for the same Nash equilibria. Algorithm 2 checks

27 extreme faces for this game.
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Figure 6.16: The extreme faces of the completely pure regular 3- player multi-game with three games (1).
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Figure 6.17: The extreme faces of the completely pure regular 3- player multi-game with three games (2).



Chapter 7

Simulation of Algorithms

A computer program is developed on the basis of the proposed Algorithm 1 and Algo-

rithm 2 in order to establish the existence of a Bayesian Nash equilibrium that can be

determined with lower computational complexity. For validation and verification of the

computer experiments, mathematical models were manually analysed according to the

coded algorithms and methodology. The results sufficiently support the results of the

software. The program was written in C# computer language.

What follows is more information about the computer program.

7.1 C# Implementation of Algorithm 1 and Algorithm 2

The implementation of Algorithm 1 and Algorithm 2 was an important aspect to this research, as

it allowed the theoretical work to be put into perspective and provided an experimental test-bed for

the different results. It was created using C#, while Excel and Matlab were used to test the results

that assisted in the analysis of the algorithms. C# was the natural choice for implementation, due

to its object-oriented characteristics. These helped to increase the level of organization and software

engineering features in the code. The source code consists of two base classes, namely Form and

Controller. The program consists of approximately 2,000 lines of code. The simulation code is

available on https://github.com/alighoroghi/thesis.

86



7.2. Inputs and Outputs 87

7.2 Inputs and Outputs

Here we explain the data that the user has to enter into the system.

1. The number of games can be between two and ten games.

2. The number of players can be between two and ten players.

3. The number of strategies per player can vary for each player but it can be between two and the

number of games being played.

4. For the number of types of players, we assume that every player has a set of extreme types (an

extreme type for each game) plus a user determined number of non-extreme types. The value

of non-extreme types can be randomly generated or chosen by the user.

5. Payoffs can be generated randomly or by the user.

6. The software indicates whether the multi-game is pure regular.

7. The software indicates whether the multi-game is completely pure regular. If yes, it shows the

Bayesian Nash equilibrium.

8. For more than one run of the simulation, users determine the number of games, the number of

players and the number of runs.

7.3 Implementation

This software contains two classes; Form and Controller. The Form class provides a graphical

user interface for taking the user inputs and displaying the results, while the Controller class

processes the user’s inputs and computes the results. Figure 7.1 shows a UML diagram for the C#

implementation of the algorithms.

Getting the user inputs:



88 Chapter 7. Simulation of Algorithms

Controller

PlayerStrategiesCounts:Integer[]
Payoffs:Double[]
Weights:Double[]
GameCounts:Integer
PlayerCounts:Integer

ComputeAllNashForExtType()
CheckPR()
TestMultiGameCPR()
TestDoubleGameCPR()
SetInfo()
MultiDimToUnarDim()

Form

PlayerStrategiesCounts:Integer[]
payoffs:Double[]
Weights:Double[]
EachPlayerWeightCounts:Integer

CreateRandomPayoff()
CreateRandomType()
EnterData()
EnterPayoff()
EnterTypes()
CheckPR()
CheckCPR()
ComputeNash()

1
1

Figure 7.1: UML Diagram for the C# implementation of the algorithms.

• At first the user should input the number of games and players on the input tab and click on the

EnterData button to store these values.

• The EnterPayoff function stores each players’ payoffs.

• The EnterTypes function sets the non-extreme types (each player has six types).

Computing the results:

After setting the required values on the form the user should click on the Compute Nash button.

This results in calling up the function ComputeNash in the Form class, which updates the vari-

able values on the Controller class and calls up the ComputeAllNashForExtType. In this

function all Nash equilibria are calculated based on all combinations of player’s types. Then the

Controller class determines if the game is pure regular and stores the result in the ISPure-

Regular variable.

Displaying the results:

• The function CheckPR in the Form class checks the Controller’s conclusion stored in

ISPureRegular and notifies the user of whether the game was pure regular or not.

• The function CheckCPR in the Form class first checks if ISPureRegular is true and in

that case calls up the CheckCPR function in the Controller class, which then determines
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whether the game is completely pure regular. The result is stored in the ISCompletePure-

Regular variable, and based on the result the Form class notifies the user of whether the game

was completely pure regular or not. To avoid the complexity resulting from a large number of

games or players, the inputs are formatted as lists using the function MultiDimToUnarDim.

7.4 Results of Simulations

Algorithm 1 and Algorithm 2 are simulated by generating 10,000 games with random payoffs and

non-extreme types. The number of players, games and strategies were varied. All the computational

experiments where run on a Windows machine with an Intel(R) Core(TM) i7, 2.00GHz CPU and

8GB of RAM.

To evaluate the results, we compute the number of double games or multi-games which have pure

Nash equilibria when all players have extreme types (# of NE-ET). Similarly, we also compute the

number of pure regular games (# of PRs) and completely pure regular games (# of CPRs).

First we discuss the results of the simulation for the double game. Figure 7.2 shows the results

obtained from the simulation. A percentage for (# of NE-ET), (# of PRs) and (# of CPRs) were

calculated for a varying number of types for each player (2 to 30 types) and compared to each other

while the number of players are two, then three, four and five.

Figure 7.2 (a) shows that 70% of the two-player simulated double games had pure Nash equilibrium

when each player chose one of his extreme types. Results also show that 51% of the games were pure

regular, 5% more than the number of games that were completely pure regular. This means that on

average, 73% of games with pure Nash equilibrium for extreme types are pure regular, which also

contributes to 66% of the completely pure regular games. Figure 7.2 (b) shows a 3-player double

game. We can see from the games simulated that only 32% had pure Nash equilibrium for extreme

types, almost half as many as that of a two player double game. Similarly, the percentage of pure

regular games and completely pure regular games also dropped with results showing that only 20%

of games simulated were pure regular and 19%, completely pure regular. Figure 7.2(c) continues this

trend, showing that as the number of players in the double game increases, there is a decrease in the
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number of games with pure Nash equilibrium for extreme types. Only 15% of the 4-player double

games had pure Nash equilibrium for extreme types, while even less were pure regular games 10%

and completely pure regular games 9%. Figure 7.2 (d) also follows the trend of a decline in (# of

NE-ET), (# of PRs) and (# of CPRs) when the number of players increases to five.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0%

20%

40%

60%

80%

100%

The number of non-extreme types

pe
rc

en
ta

ge
,%

(a), N = 2

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0%

20%

40%

60%

80%

100%

The number of non-extreme types

pe
rc

en
ta

ge
,%

(b), N = 3

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0%

20%

40%

60%

80%

100%

The number of non-extreme types

pe
rc

en
ta

ge
,%

(c), N = 4

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0%

20%

40%

60%

80%

100%

The number of non-extreme types

pe
rc

en
ta

ge
,%

(d), N = 5

# of NE-ET # of PRs # of CPRs

Figure 7.2: The simulation results for various numbers of players and types in the double game.

Figure 7.3 shows that about 69% of the two-player double games have pure Nash equilibrium when

the players select their extreme types. The percentage of games that are pure regular is about 51% and

the percentage of games that are completely pure regular is about 45%. Pooling the data according to

the number of players and the number of double games suggests that there is a concerning decrease



7.4. Results of Simulations 91

in (# of NE-ET), (# of PRs) and (# of CPRs) when the number of players increases.
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Figure 7.3: The simulation results for various numbers of players in the double game.

Now, we consider multi-games consisting of three games. Figure 7.4 (a, b) illustrates the percentages

for (# of NE-ET), (# of PRs) and (# of CPRs) that were calculated for the varying number of types

for each player. These were compared to each other while the number of players were two and three.
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Figure 7.4: The simulation results for various numbers of players and types in the 3-game multi-game.

Figure 7.5 shows that about 33% percent of the multi-games with two players and three games have

pure Nash equilibrium when the players utilise their extreme types. The percentage of pure regular
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games is about 14% while the percentage of completely pure regular games is about 5%. The per-

centages for (# of NE-ET), (# of PRs) and (# of CPRs) have dramatically decreased as the number

of players increases.
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Figure 7.5: The simulation results for various numbers of players in the 3-game multi-game.

Figure 7.6 shows the results obtained from the simulation of varying numbers of types for each player,

in the case of a multi-game consisting of four games and 2 players.
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Figure 7.6: The simulation results for various number of types in the multi-game with four games and two players.

Figure 7.7 (a, b) represents the results obtained from the simulation of varying numbers of games

containing two players and three players and two non-extreme types for each player. The results of
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the computer simulation indicate that both Algorithm 1 and Algorithm 2 can perform more efficiently

when the double games and multi games have fewer players, compared to when they have to accom-

modate a larger number. Results show a decline in the number of games with pure Nash equilibrium

for extreme types and consequently pure regular games and completely pure regular games as the

number of players rises. Similarly, as the number of games increase, the algorithms perform less

effectively.
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Figure 7.7: The simulation results for various numbers of games in the multi-game for N = 2 and N = 3 and two non-extreme types for each player.

It is also evident that the number of non-extreme types does not affect the number of games with

pure Nash equilibrium for extreme types, as well as the number of pure regular and completely pure

regular games.



Chapter 8

Iterated Multi-Game

The multi-games become more interesting when we have repeated interactions and the

players come to compete over a number of rounds. In this chapter, we introduce some

attempts to apply repeated double games with incomplete information in order to analyze

the effectiveness of strategies within iterated double games.

We let double game G (the stage game) be played a finite number of times. The following attempts

used the style of a round robin tournament. A round robin tournament involves a group of players

who play each other in turn at a number of rounds of the game. Each new round gives the player a

better insight into her/his opponent and allows them to make decisions on the basis of her/his previous

experience. We assumed that in the repeated double game, players are able to change their type for

each round following repeated interactions in the round robin tournament, and so this model seems

more rational and akin to real life.

8.1 Iterated Double Game for the Transactional Analysis Example

Recall example 3.2, where we discussed the transactional analysis, some strategies were designed for

the iterated double game according to [Gho10]. The structure of the tournament was round-robin,

and, thus, all the strategies in the iterated double game competed against all the other strategies and

against themselves once. It was assumed that each player plays in response to actions that were
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chosen by her/him and the opponent before. The results of the simulation of 13 strategies showed that

the Tit-for-Tat strategy had a higher average expected value of payoffs for variation of θi for player

i ∈ {1, 2} in 200 iterations.

In the Tit-for-Tat strategy, it is assumed that the attractiveness of the action AA is greater than AC,

while AC is more attractive than CA, and CA is more attractive than CC. At stage t = 0, player

i plays AA. From stage t = 1 to t = T , player i looks at the previous actions of both players;

if both actions are the same, player i plays the same action; if the attractiveness of the opponent’s

action is less than player i’s action, s/he plays an action with equal or greater attractiveness than the

other player’s last action; otherwise, s/he repeats the opponent’s last action. For example, if player 1

chose CA and player 2 chose CC in the previous stage, player 1 plays AA, AC, or CA, all with a 1
3

probability. If player 1 chose CC and player 2 chose CA in the previous stage, given that player 2

chose an action with higher attractiveness, player 1 then chooses CA in the current stage (the same as

player 2’s previous action).

8.2 Iterated Double Game with Morality Aspect

Recall the example in Section 5.4, two attempts were made to apply a repeated double game with a

morality aspect.

8.2.1 Iterated Double Game for Altruistic - the First attempt

A computer tournament of the double game was made to operate as a framework, testing the validity

of the theoretical results by comparing the performance of various competing strategies in [EGS12].

The structure of the tournament was a round-robin. Each game between any two strategies consisted

of 200 rounds and the total score of a strategy within a game was the sum of the payoffs acquired

from all the rounds. It was assumed that the numerical values for the payoff values are the following:

T = 5, R = 3, M = 2.5, P = 1, M ′ = 0 and S = 0
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A set of assumptions were made for the tournament:

• Given the aforementioned values for the payoffs, a strategy could score between 0 and 1000 in

a stage game.

• A score of 0 can be obtained through the player either using a strategy that has a social coeffi-

cient equal to 0 and cooperating throughout the entire game, while the opponent only defects,

or a strategy that has a social coefficient equal to 1 and defecting throughout the entire game,

irrespective of what the opponent does.

• On the other hand, a score of 1000 can only be obtained through a strategy that has a social

coefficient equal to 0 and defecting throughout the entire game, while the opponent only coop-

erates.

• A score of 200 can be obtained through two strategies that have social coefficients equal to 0

and mutual defection throughout the entire game.

• A score of 500 can be obtained through a strategy that has a social coefficient equal to 1 and

cooperation throughout the entire game, irrespective of what the opponent does.

• A score of 600 can be obtained through two strategies that have social coefficients equal to 0

and mutual cooperation throughout the entire game.

A significant aspect of the tournament was the selection of a social coefficient according to the

strategy. It was assumed that the social coefficient was part of a discrete set of five distinct values

0, a, a+b
2
, b, 1.

The strategies were allowed to change their social coefficients within the game and adapt them to the

environment they faced. However, since it is difficult to quantify exactly by how much human beings

change their social values, the strategies were allowed to change their social coefficients stepwise,

and, as a result, they could either increase them or decrease them by one value at any round. This

was done to avoid having strategies changing their social coefficients from a value of 0 to that of 1 in

a single round, since, it is believed that, only under extreme and unprecedented circumstances would

such a sudden change occur in one’s social values.
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The strategies participating in the tournament varied in several ways, such as the choice made for the

first round of the game and the initial social coefficient. Some strategies take into account the deci-

sions that the opponent has made up to the point of consideration in the game, some use probabilistic

estimations and even randomness in making their decisions, some have already made up their mind

and follow rules that do not change according to the flow of the game. In essence, a strategy consists

of an algorithm and so it operates according to certain instructions, changes the social coefficient and

provides the decision of whether to cooperate or defect.

The initial social coefficient of a strategy shows its intentions, since a low social coefficient usually

implies proneness to defection, a high social coefficient on the other hand implies cooperation. Vary-

ing initial social coefficients across tournaments means changing initial conditions, and, as a result,

dynamic environments. Certain strategies have complex ways for dealing with their opponents’ ini-

tial behaviour, and, so, what they may infer from it, may, in some cases, pre-determine the rest of the

course of the game. In addition, most strategies have algorithms that modify their social coefficient

in almost every round and adapt to the environment that has been developed from their opponents’

actions. Then, they can respond effectively to both cooperative and defective behaviours and not be

restricted by their choice of initial social coefficient.

As mentioned in the theoretical part of the analysis of the double game in Section 5.4, different kinds

of behaviour are observed when θ1 and θ2 change.

With 0 ≤ θ1 ≤ a and 0 ≤ θ2 ≤ a, the Nash equilibrium is provided by (D,D). For such social

coefficients, we expect to see defective behaviours, as strategies try to recognise their opponents’

intentions and see whether they can get away with defection, or if they will face retaliatory behaviour.

With a < θ1 < b and a < θ2 < b, the Nash equilibria are provided by (C,D) and (D,C). For

such social coefficients, the player who defects first has an advantage and dominates by gaining from

an opponent’s cooperation. However, with the increase of the social coefficient, cooperating can be

beneficial, since a player can gain the reward from the social game. In that way, a lot of strategies

change their behaviour at this stage and employ a cooperative approach to the game.
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With b ≤ θ1 ≤ 1 and b ≤ θ2 ≤ 1, the Nash equilibrium is provided by (C,C). For such social

coefficients, strategies with cooperative behaviour can gain the social rewards and not suffer the social

punishments of the social game.

The following strategies were the main strategies used in [EGS12]:

SEG: SEG is based on two parts; deciding whether to cooperate or defect and altering the social

coefficient based on some pre-defined conditions. For the former, it behaves as the Nash equilibria

indicate, thus, its decision of whether to cooperate or defect depends only on the theoretical work and

the results drawn from it. For the latter, it changes its social coefficient according to the following

conditions:

• If SEG chooses C and its opponent chooses C in the previous round, it does not change its

social coefficient.

• If SEG chooses C and its opponent chooses D in the previous round, it increases its social

coefficient.

• If SEG chooses D and its opponent chooses C in the previous round, it decreases its social

coefficient.

• If SEG chooses D and its opponent chooses D in the previous round, it increases its social

coefficient.

ALLC: This strategy has an initial social coefficient equal to 0; it constantly chooses C and never

changes its social coefficient.

ALLD: This strategy has an initial social coefficient equal to 0; it constantly chooses D and never

changes its social coefficient.

Tit-for-Tat: During the first round, player i ∈ {1, 2} cooperates and randomly chooses a moral

coefficient; during subsequent rounds, if the opponent cooperated in the previous round then player i

will increase her/his moral coefficient, and if her/his opponent defected then s/he will decrease her/his

moral coefficient in the current round.
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Positive-people strategy: During the first round, the player cooperates and randomly chooses a moral

coefficient; during subsequent rounds, if the opponent cooperated in the previous round then s/he will

increase her/his moral coefficient.

Negative-people strategy: During the first round, the player cooperates and randomly chooses a

moral coefficient; during subsequent rounds, if her/his opponent defected then s/he will decrease her

moral coefficient in the current round.

Nonsense-people strategy: During the first round, the player cooperates and randomly chooses a

moral coefficient; during subsequent rounds, regardless of whether the opponent defected or cooper-

ated in the previous round, s/he will not change her/his moral coefficient in the current round.

The results of the tournament showed that the winning strategy was SEG, as its average and cumula-

tive scores were much higher than those of any other participating strategy. Its algorithm is a mixture

of the results of theoretical work and some conditions on how to alter its social coefficient, so as to

adapt to the course of action of any game. It works on the principle of adjusting its social coeffi-

cient based not only on its opponent’s behaviour, but its own as well. If its opponent defected and

it either cooperated or defected in the previous round, it increases its social coefficient to avoid the

disastrous cycles of mutual defection that would be caused by a low social coefficient. It should also

be mentioned that its initial social coefficient was 0, the result of which was that in the first round it

defects.

8.2.2 Iterated Double Game for Altruistic - the Second Attempt

The most recent study about the repeated double game was conducted by Boyd [Boy12] using the

framework of a tournament. The participants in the study included computer science, game theory,

and machine-learning researchers as well as university students of varying educational levels. The

aim of the study was to create a model for recording the effectiveness of strategies within iterated

double games.

In Boyd’s study, participants were offered a type of financial reward in order to encourage them to

be willing to document and share their strategies, as well as to encourage them to create strategies as
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well as they could. The reward offered to participants was in the form of a reasonably large donation

to a popular charity. The amount donated to charity was in line with the amount that would have been

paid in cash.

The game was comprised of 100-200 rounds. The player with the highest-scoring strategy was de-

clared the winning player, as follows:

(
(1− β)× Material score

)
+ (β × Social score)

where β represents the global social coefficient that reflects the social tendency; therefore reflecting

the importance of the social score to overall society. β was set to 1
2

to ensure that players were

motivated by the monetary prize as well by the thought of benefiting others.

In the tournament it was decided to track the players’ materially-motivated scores and socially-

motivated scores as two different scoring groups, rather than tracking the overall score of each player.

The players’ scores in each of these groups were documented in aggregate as each round was played.

Each player’s present state was reflected through his aggregate scores in each of the motivation groups,

along with θ. Because this method retained the significance of the separate scores, thus indicating the

weight of each player’s social and material motivations, this was believed to be a more effective

method for calculating the dual game used in the study. In this tournament, the payoff amounts were

as follows:

T = 5, R = 3,M1 = M2 = 2.5, P = 1,M ′
1 = M ′

2 = S = 0

The tournament also had a number of further restrictions:

• The social coefficient of every participant was represented by a fixed, distinct number from the

set {0, 0.2, 0.4, 0.6, 0.8, 1}.

• Because people rarely alter their ethical beliefs to a great degree in a small time period, the

social coefficient of an agent was only able to rise by 0.2 per round.

• Players were not allowed to try to collaborate immediately following a drop in their social

coefficient after having defected; nor were they allowed to try to defect immediately following

a collaboration which increased their social coefficient.
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Gao [Gao12] used reinforcement learning theory to propose the most effective strategy as the winning

strategy out of almost two-dozen possible strategies.

A Reinforcement Learning Based Strategy for the Double Game Prisoner’s Dilemma

Founded on a reinforcement learning rule, Gao’s strategy [Gao12] is highly appropriate in situations

where the other players in repeated games are not known to the player. This is because there is no

obligation to provide a framework of a player’s environment in Gao’s strategy.

The theory of reinforcement learning stems from the concept that when moves are associated with

desirable outcomes, the likelihood that a player will perform those moves will increase. Similarly,

a move that is associated with unwanted outcomes is less likely to be performed. Reinforcement

learning entails two processes: firstly, the updating of the social coefficient; and secondly, the player

deciding on an action.

Therefore, the social coefficient will initially be updated according to the Prisoner’s Dilemma double

game payoff matrix, along with the previous actions taken by each of the players. Once this has taken

place, reinforcement learning is used to modify the other player’s actions during the stage in which

the player decides on an action.



Chapter 9

Conclusion and Future Work

9.1 Summary

Game theory can be used to analyze as well as predict human behaviour in several strategic situations.

The main contribution of this work is to build appropriate mathematical methods using game theory

to simulate the behaviour of opponents, and to understand its dominant factors in order to build more

realistic models. We address these issues through the introduction of a novel model in game theory

called multi-games. In multi-games, a given number of players divide up their resources according

to different weights for a given number of games, which are then played out simultaneously. All

players play at the same time but each can use the same set of strategies for the games. Players use a

particular assortment of weights, one for each of the games. Combined, these signify the percentage of

the players’ investment in each of the games. The convex combination of the payoff a player acquired

in the games, along with the assigned weights, makes up a player’s total payoff. Within multi-games,

basic games can be thought of as alternative environments for the players. It can be argued that

investments in the global economy (in terms of various markets) can be modelled as multi-games. A

certain class of Bayesian games is achieved when players’ weights for certain multi-games involve

private information or types that have certain conditional probability distributions.

We have shown that for the class of so-called completely pure regular multi-games with finite sets

of types, the Nash equilibria of basic games can be used to compute a Bayesian Nash equilibrium

102
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for multi-games, with complexity independent of the number of the types and actions. Following the

presentation of the main results, this thesis presented two algorithms for the purpose of establishing

whether we have a Bayesian Nash equilibrium that can be determined with lower computational

complexity.

9.2 Future Work

In this section we identify three possible future directions or work.

Although, throughout this work, some of the results have been proved for pure Bayesian Nash equi-

libria, future work leading on from our research will mainly be focused on extending the multi-games

to compute mixed strategy Bayesian Nash equilibrium in N-player multi-games.

Another challenging question is if we can reduce the complexity of computing a Bayesian Nash

equilibrium for a pure regular (but not completely pure regular) multi-game.

Furthermore, we will consider a particular class of the multi-games in which the payoff for player

i ∈ I = {1, ..., N} not only depends on θi but also depends on the other players’ types. This

framework can be used for modelling economic, human or technological behaviour in scenarios where

each player can allocate their resources in varying proportions in order to play in a number of different

environments. However, the payoff for each player is assumed to be the convex linear combination

of payoffs obtained for the basic games, weighted by allocated proportions to their own and other

players’ weights. In other words, the purpose of using this model is to add a new dimension to multi-

games by linearly combining the payoff matrices of various games and linking them through the use

of all players’ types for each player. This then represents the amount of investment that a player is

willing to commit in that particular game when considering their own and other players’ weights.
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