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Abstract. 

The successful development of consolidated bioprocessing requires microorganisms capable 

of degrading lignocellulosic biomass and fermenting the resulting sugars. Commercial 

cellulases and hemicellulases are currently being used to access these sugars, adding to the 

cost of producing useful products from lignocellulose. This study reports the enrichment of 

thermophilic, miscanthus degrading bacterial cultures from a municipal composting facility. 

The detected and isolated bacteria were characterized by 16S rRNA gene sequence analysis 

and were mostly Chitinophagaceae family, Meiothermus spp. and Geobacillus spp. Other 

isolated species included Cohnella spp., Brevibacillus sp., Chelatococcus spp., 

Thermobacillus spp., Thermoanaerobacterium spp., Thermobispora bispora, Bacillus spp., 

Staphylococcus sp. and Micrococcus sp.   

After enrichment, the mixed population was able to degrade greater than 50% of an ammonium 

hydroxide pre-treated Miscanthus x giganteus sample (1 g) over a six week incubation period 

at 55oC, with a reduction in the amounts of all components, including acid soluble and acid 

insoluble lignin. The glycoside hydrolases and other enzymes identified in the culture 

supernatants included endo-1,4-β-glucanase A, glucoamylase, xylan 1,4-β-xylosidase, xylose 

isomerase, xylulokinase, superoxide dismutase, transaldolase, Mn-catalase, Δ-1-pyrroline-5-

carboxylate dehydrogenase and endo-β-N-acetylglucoseaminidase H. The HPLC analysis 

showed that fermentation products formate and lactate were present in the culture supernatant.  

Expression of an endoglycoside hydrolase (Csac_0137 from Caldicellulosiruptor 

saccharolyticus) gene in Geobacillus thermoglucosidasius strains, NCIMB 11955 and DL33, 

improved their β-glucosidase specific activity on cellobiose, and improved glycoside 

hydrolase activities of recombinant DL33 strain when grown on pre-treated M. x giganteus. 

Co-culturing of either transformed or wild-type NCIMB 11955 and DL33 with some of the 

isolated strains improved their glycoside hydrolase activity and growth on pretreated M. x 

giganteus.  
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1. Introduction. 

1.1 Lignocellulosic biofuel as a promising alternative form of energy. 

The world demand for fossil fuels is increasing and this has raised great concern over the 

effects of increased greenhouse gas emissions. This means that one of the most pressing issues 

for the 21st century is the need for renewable, carbon neutral and sustainable raw materials and 

energy for industry and society (Foster et al., 2010a). There is a worldwide search for 

renewable forms of energy that are environmentally clean and economically efficient 

(Kotchoni and Gachomo, 2008; Shao et al., 2010). Biofuel technology is now considered to be 

a promising interim (NSF. 2008), and possibly long term technology to replace fossil fuels 

with liquid fuels produced from renewable sources such as cellulosic biomass (Somerville et 

al., 2010).  

Among various technical options, the fermentation of biomass hydrolysates is a favoured 

approach, but there has been slow progress in this area due to lack of microorganisms that are 

capable of metabolising all the sugars present in the hydrolysates and conversion into useful 

products (Cripps et al., 2009). Work has been done on engineering of microorganisms for 

production of biobutanol and biodiesel, but their productivity is low and the microorganisms 

being used have low tolerance to the solvent products (Sakuragi et al., 2011). Sakuragi et al. 

(2011) suggested that current scientific studies should be focused on engineering of 

microorganisms for the degradation of cellulosic biomass and the production of biofuels such 

as biobutanol, biodiesel and bioethanol at high efficiency and low cost. 

1.1.1 Fermentable biomass materials. 

The classes of fermentable biomass materials include sugar-based (sugarcane, sugar beet, etc), 

starch-based (sweet potato, potato, wheat, corn, etc) and wood/grass-based (waste wood, grass, 

rice straw, wastepaper, etc) feedstocks. Wood or grass based biomass raw materials can be 

stably secured because they have no utility as food and may, indeed, be available as wastes 

from food production (eg. straw, bagasse, corn-stover) (Limayem and Ricke, 2012). However, 

unlike sugar-based biomass, wood and grass-based biomass requires pretreatment to remove 

lignin which presents a barrier to enzyme access, and enzymatic saccharification before being 

fermented to produce biofuel, both of which increase the production costs (de Vos, 2006).  
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1.1.2 Pros and cons of lignocellulosic energy. 

The price of biofuel must be competitive with that of gasoline if this alternative fuel is to 

become viable for use in transportation. Through the process of photosynthesis, plants have 

used solar energy to fix CO2 into carbohydrates, making the combustion of biofuels derived 

from plant biomass a potentially carbon neutral process (Bassam, 1998). Sugar and starch-

based biomass materials have been the most commonly used for the production of bioethanol 

until now. However, there are large amounts of lignocellulosic plant residues arising from 

either food grain production, such as corn stover and wheat straw, or forestry. Indeed, use of 

woody biomass for energy is considered a benefit in assisting the US Forest Service to manage 

excess wood residues which would otherwise increase fire risks (Somerville et al., 2010). It 

has been estimated that, in the USA, with efficient use of these residues there may be no need 

for expansion of land use for production of cellulosic biomass, which has recently been a 

controversial issue (Somerville et al., 2010).  

However, removal of all of the crop residues can also cause problems due to loss of soil carbon 

and erosion, resulting in requirements for additional input of fertilizers to replace lost minerals, 

which can contribute to environmental contamination (Lal, 2005) and increase biofuel 

production costs arising from energy input and use of pesticides (Zhu and Zhuang, 2012). 

Recovery of stover after the grain harvest requires extra labour and transport to take the stover 

to the refineries (Biomass Conversion EPA 2007), with a beneficial effect on employment 

opportunities. However, this also pushes up lignocellulosic biofuel production costs 

(Sokhansanj et al., 2002).  

Even with increased production capacity, the reliance of biofuel production on food crops is 

bound to cause conflicts in seasonal supply and demand, potentially causing unacceptable 

increases in food prices (Hill, 2007). Therefore, in the long term, the biofuel industry must 

move towards the use of crop residues and purpose grown non-food crops. It has also been 

thought that use of bioethanol may cause health problems. Research results have indicated that 

when compared to 100% gasoline, converting from gasoline to E85 (85% ethanol fuel, 15% 

gasoline), may cause health problems leading to a 9% and 4% increase in ozone-related 

mortality, hospitalisation and asthma, in Los Angeles and the US as a whole, respectively 

(Jacobson, 2007). 
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Use of bioethanol can lead to formation of aldehydes (formaldehyde and acetaldehyde). 

Aldehydes are partially oxygenated organic compounds containing a carbonyl group (Kumar 

et al., 2011). They are produced by combustion of hydrocarbons or due to partial oxidation of 

the un-burnt hydrocarbon fuels (Raine et al., 1997). A functional group of an aldehyde consists 

of a carbon atom bounded to a hydrogen and double-bonded to an oxygen atom (O=CH) 

(Kumar et al., 2011).  

Aldehyde vapours can affect humans by causing irritation of eyes, throat, nose, asthma and 

can also affect pulmonary function (Kumar et al., 2011; Dahlgren et al., 2013). Formaldehyde 

is a known skin irritant, sensitizer and has been classified as a class 1 human carcinogen 

(Dahlgren et al., 2013). It is associated with development of nasopharyngeal cancers and has 

been reported to contribute to cancer related deaths (Winebrake et al., 2001). 

Formaldehyde can form ozone by photochemical oxidation, contributing to environmental 

ozone formation (Degobert and Marshall, 1995). Kumar et al. (2011) indicated that when 

compared to neat petrol, a 10% v/v ethanol/petrol blend increased the emission of 

formaldehyde by approximately 25%, while emission of acetaldehyde increased by 

approximately 180% (ERDC, 1998). Another study carried out in Brazil reported that 

acetaldehyde was the main aldehyde emitted by light vehicles because they largely used 

ethanol (Pinto et al., 2014). It was also observed during the same study that the burning of B3-

diesel (3% biodiesel and 97% diesel) increased the emissions of carbonyl compounds, such as 

acetaldehyde, and also contributed to ozone formation. 

1.1.3 Worldwide biofuel production. 

By 2010, worldwide biofuel production reached approximately 105 billion litres, up 17% from 

2009 (http://www.worldwatch.org/biofuels-make-comeback-despite-tough-economy). The 

biofuels, mostly ethanol and biodiesel, provided 2.7% of the world’s fuels for road transport 

(Fig. 1.1). Brazil and the United States of America (USA) produced 90% of the 86 billion litres 

of the worldwide ethanol produced in 2010, while 53% of biodiesel was produced by the 

European Union (http://www.worldwatch.org/biofuels-make-comeback-despite-tough-

economy). By 2011, biofuels were blended at the national level by 31 countries and 29 states 

or provinces (http://www.worldwatch.org/biofuels-make-comeback-despite-tough-economy).  

In 2012, the USA was reported to be using 114 million metric tonnes of corn to produce 50.41 

million litres of ethanol (http://ethanolrfa.org/page/-

http://www.worldwatch.org/biofuels-make-comeback-despite-tough-economy
http://www.worldwatch.org/biofuels-make-comeback-despite-tough-economy
http://www.worldwatch.org/biofuels-make-comeback-despite-tough-economy
http://ethanolrfa.org/page/-/PDFs/RFA%202013%20Ethanol%20Industry%20Outlook.pdf?nocdn=1
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/PDFs/RFA%202013%20Ethanol%20Industry%20Outlook.pdf?nocdn=1). However, corn is 

also a food crop and competition for the same resource for food and fuel can cause economic 

tensions. Starch–based ethanol is also reported to give a low reduction in greenhouse gases 

compared to fossil fuels (Maki et al., 2009). The aim of the National Biofuel Action Plan, 

based on the Energy Independence and Security Act 2007 (EISA) and Food and conservation 

Act of 2008 (FCEA), is to reduce or replace fossil fuel by production of 136.3 million litres of 

renewable fuels by 2022 (Affuso and Duzy, 2013).  

The increase in biofuel production would raise the production of corn by 122.89%, and could 

result into nitrogen loss of 20% (Affuso and Duzy, 2013). Land use to grow corn for ethanol 

production will raise nitrogen losses associated with fertilization. Less productive lands would 

require large amounts of fertilizer especially nitrogen fertilization, to produce corn (Affuso 

and Duzy, 2013). During rainfall the nitrogen and other nutrients are mobilised and contribute 

to eutrophication in larger water bodies (Affuso nd Duzy, 2013). This could bring about direct 

or indirect changes in land use, with a potential negative impact on the environment, possibly 

increasing carbon emissions due to release of carbon stored in soils (Dumortier et al., 2011). 

 

 
 

Figure 1.1 Bioethanol and biodiesel production in the world.  

Biofuels Platform, Geographic distribution of bioethanol and biodiesel production in the world in 2008. Source: 

Ren 21, Renewables status report, 2006 and 2010 by Nieves Lopez Izquierdo. 

http://www.grida.no/graphicslib/detail/global-production-of-biofuels_4d36. Accessed on 05/01/2015. 

http://ethanolrfa.org/page/-/PDFs/RFA%202013%20Ethanol%20Industry%20Outlook.pdf?nocdn=1
http://www.grida.no/graphicslib/detail/global-production-of-biofuels_4d36
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Global annual production of biofuel shows continued growth and has been forecasted to 

exceed 90 billion litres in 2014, with global ethanol output 2.7% higher than that of 2013 

(http://www.biofuelsjournal.com/info/bf_articles.html?ID=139867). Both ethanol and 

biodiesel production show steadly increasing trends (Fig. 1.2), with the demand for ethanol 

being higher than that for diesel. Brazil and the United States of America are the two largest 

producers of ethanol, with the European Union gradually increasing its production (Fig. 1.2), 

while Africa is emerging as another contributor to ethanol production, according to Global 

Renewable Fuels Alliance (GRFA) and F.O. Licht reports 

(http://www.biofuelsjournal.com/info/bf_articles.html?ID=139867).  

 

  

Figure 1.2 World biofuel production trends.  

Trends in the production of biofuel in the world. Source: FAPRI, U.S. and world Agricultural Oultlook, 2008. 

(http://www.grida.no/graphicslib/detail/world-biofuels-production-trends_d3ec) by Riccardo Pravettoni, 

UNEP/GRID-Arendal. Accessed on 05/01/2015. 

http://www.biofuelsjournal.com/info/bf_articles.html?ID=139867
http://www.biofuelsjournal.com/info/bf_articles.html?ID=139867
http://www.grida.no/graphicslib/detail/world-biofuels-production-trends_d3ec
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1.2 Lignocellulosic biomass. 

Green energy from second generation bioenergy crops offers an alternative solution to first 

generation, starch or sugar-based biofuels. Second generation bioenergy involves the use of 

fast growing plants, such as trees and energy grasses, that are produced and used in CO2 neutral 

conditions (Bassam, 1998). Lignocellulose is the most abundant raw material on earth, 

comprising about 50% of the world biomass (Claassen et al., 1999). The annual production of 

lignocellulosic biomass is estimated at 1x1010 MT worldwide and is considered to be the only 

feasible and sustainable resource for renewable energy and other important products (Sanchez 

and Cardona, 2008).  

Agriculture and forestry can serve as sources of lignocellulose biomass. The lignocellulose 

can be broken down by enzymes to produce sugars that can be fermented to produce ethanol. 

Lignocellulose biomass has been documented as capable of producing between 110 to 300 

liters of ethanol from 1 ton of raw biomass, depending on the source, according to Oak Ridge 

National Laboratory (2006) and other researchers (Mabee et al., 2006; Sims et al., 2010). The 

quantity of potential European environmentally-compatible biomass has recently been 

assessed by the European Environment Agency, showing the possibility to increase by nearly 

35% by the end of 2030 without harming biodiversity, soil and water resources (Zuber et al., 

2013).  

1.2.1 Structure of lignocellulose. 

1.2.1.1 Plant cell wall. 

Plant biomass is mostly composed of cell walls, which are polysaccharide and protein rich 

macromolecular structures that present at the plant cell surface (Caffall and Mohnen, 2009). 

Photosynthetically fixed carbon is stored in the plant cell walls, which are a resource in carbon 

recycling (Lee et al., 2011).  

Plant cell walls contribute extensively to the strength and structural integrity of the plant, as 

well as other cellular activities such as warding off pathogens, allowing water to be transported 

throughout the plant by allowing it to adhere to the walls of the cells that form the xylem 

vessels as the water moves along, cell-to-cell adhesion, growth and differentiation because of 

their ability to stretch and allow cell expansion to a certain extent during cell growth (Foster 

et al., 2010a; Foster et al., 2010b; Lee et al., 2011). Components of plant cell walls are also 
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exploited in many human activities and are used as food because they are the major component 

of plant derived foods (e.g. green vegetables, fruits, carrots, sweet potatoes, etc.), food 

additives, industrial enzymology, fibres, textiles, paper, pulp products, lumber, fine chemicals, 

adhesives, polymers for implantation devices, drug delivery, neutraceuticals, pharmaceuticals 

and biofuels (Lee et al., 2011).  

1.2.1.2 Cell wall structure and composition. 

The primary cell wall is the first to be laid down and is composed predominantly of the energy 

rich polymers, cellulose, various hemicelluloses, and pectin (Lacayo et al., 2013). Some cells 

differentiate and form secondary walls, which have reduced levels of pectin, increased 

amounts of cellulose and hemicellulose, and are often rigidified by impregnation of 

heterogenous polyphenolic lignins (Foster et al., 2010a; Gilbert, 2010; Lee et al., 2011) 

(Figures. 1.3A and B). Extractives, mostly phenols and sterols containing aromatic compounds 

(Villaverde et al., 2009), are also present in the lignocellulosic materials, but are of lower 

molecular weight than cellulose, hemicelluloses and lignin, and are only present in small 

quantities. Softwoods and hardwoods contain 1-5% and 2-8% of extractives, respectively, 

while wheat has been reported to have a high percentage of extractives in the range 21-31%, 

(Thomas, 1977).  

The two types of wood, softwoods and hardwoods, can be distinguished by the wavenumber 

values of the carbonyl stretching vibration and one of the ring-breathing modes of lignin, and 

the fibrous structure of the cut pieces (Barker and Owen, 1999). Softwoods contain 

glucomannan (copolymer of glucose and mannose), as the main hemicellulose, with 

galactoglucomannan and glucomannan (depending on the galactose content) as the two major 

types (Vărnai et al., 2010). The main hemicellulose in hardwoods is xylan whose main 

components are xylose and 4-o-methylglucuronic acid (Pinto et al., 2005).  

Gymnosperms or conifers are plants that bear seeds which are not enclosed in the ovary of the 

flower and they belong to the softwoods group of plants. Members of the hardwoods are plants 

that bear enclosed seeds and they are called angiosperms. The lignin of the softwoods is 

composed mainly of coniferyl alcohol derivatives [Fig. 1.7A (ii)] with a small amount of 

coumaryl alcohol [Fig. 1.7A (i)], while the hardwoods have lignin composed of coniferyl and 

sinapyl alcohols [Fig. 1.7A (iii)], and low amounts of coumaryl alcohols (Barker and Owen, 

1999). 
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Figure 1.3 Plant cell wall structure and composition.  

(A) Plant cell wall structure, reproduced from (Achyuthan et al., 2010) (B) Schematic outline of the major cell 

wall polymers in relation to Charophycean Green Algae and the major extant groups of land plants. Tapering 

boxes indicate that polymers are present at relatively reduced levels. Question marks indicate where little is known 

outside the groups that have been examined. MLG, mixed-linkage glucan; XGA, xylogalacturonan; HRGPs, 

hydroxyproline-rich glycoproteins. Reproduced from (Lee et al., 2011). 

1.2.1.2.1 Cellulose. 

Cellulose is made up of glucose molecules linked by β-1,4 glycosidic bonds, forming long 

polymeric chains (Fig. 1.4). The cellulose chains are joined together by hydrogen bonds, and 

form bundles of cellulose which are substantially crystalline (Gilbert, 2010). The bundles of 

linear chains of cellulose are longitudinally arranged in the cell wall. The cellulose content 

varies between grass species; miscanthus has the highest content among the grass groups 

presented in Table 1.1. 
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Figure 1.4 Schematic illustration of the cellulose chain.  

Source: Fengel and Wegner, (1989). 

 

Table 1.1 Cellulose, hemicellulose and lignin content of C4 grasses and wood. 

Cellulose, hemicellulose and lignin content of various C4 energy grasses and wood presented as percentage of dry 

weight biomass. Modified from (van der Weijde et al., 2013). 

 

Lignocellulosic 

feedstock 

Cellulose Hemicellulose Lignin References 

Maize (stover) ~27–40% ~25–34% ~9–15% 

(Jung and Bernardo, 2012; Lorenz et al., 

2009; Lorenzana et al., 2010; Templeton et 

al., 2009; Wolfrum et al., 2009) 

Switchgrass ~28–37% ~25–34% ~9–13% (Sladden et al., 1991; Vogel et al., 2011) 

Sorghum 

(stover) 
~21–45% ~11–28% ~9–20% 

(Murray et al., 2008; Rooney et al., 2007; 

Shiringani et al., 2010; Stefaniak et al., 

2012) 

Sugarcane 

(bagasse) 
~35–45% ~25–32% ~16–25% (Canilha et al., 2011; Masarin et al., 2011) 

Miscanthus ~28–49% ~24–32% ~15–28% 
(Hodgson et al., 2010; Zhang et al., 2012a; 

Zhang et al., 2012b) 

Wheat straw ~31-41% ~24-30% ~8-14%  

(Thomas, 1977) 

 

Softwoods ~40-44% ~25-29% ~25-31% 

Hardwoods ~43-47% ~25-35% ~16-24% 
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1.2.1.2.2 Hemicellulose. 

Hemicelluloses differ from cellulose in having different monosaccharide units including 

pentoses, branched polymer chains and lacking crystallinity. Sugar monomers in 

hemicellulose include xylose, mannose, galactose, rhamnose and arabinose (Fig. 1.5). Xylan 

represents the most abundant hemicellulosic polysaccharide (Fig.1.3B) and is primarily 

composed of xylose, arabinose, and glucuronic acid (Fengel and Wegner, 1989). The backbone 

sugars of all hemicellulosic polysaccharides are β-linked, and are decorated with a variety of 

sugars and acetyl groups, giving the hemicellulosic polysaccharides a non-crystalline form 

(Gilbert, 2010). 

 

 

 

Figure 1.5 Schematic illustration of sugar units of hemicellulose.  

Adapted from Fengel and Wegner, (1989).  
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1.2.1.2.3 Pectin. 

Pectin is composed of three major forms of polysaccharide: homogalacturonan, 

rhamnogalacturonan I, and rhamnogalacturonan II (Mohnen, 2008). The backbone of 

homogalacturonan is made up of polygalacturonic acid molecules. The backbone of 

rhamnogalacturonan I is composed of an alternating disaccharide, [(α-1,4)-D-GalA (α-1,2)-

L-Rha]n, with extensive decorations at the O-4 of the rhamnose (Rha) residues (Mohnen, 

2008). Rhamnogalacturonan II consists of 13 different sugars and over 20 different linkages 

and is more complex than the other two pectic polysaccharides (O'Neill et al., 2004), (Fig. 1.6). 

 

 

Figure 1.6 Representative structures of specific regions of the pectic polysaccharide.  

(a) homogalacturonan (b) rhamnogalacturonan II, and (c) rhamnogalacturonan I. Abreviations: GalA-galacturonic 

Acid; Rha-Rhamnose; Araf, Arabinofuranoside; Ac; aceric acid; Ace-Acetyl ester; Api-Apiose; Me-Methyl; Fuc-

Fucose; Gal-galactose; Glc-glucuronic acid; Kdo-3-deoxy-D-manno-octulosonic acid; Xyl-Xylose; Dha-3-deoxy-

D-lyxoheptulosaric acid. Source: (O'Neill et al., 2004). 
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1.2.1.2.4 Lignin. 

Lignin is a complex racemic, three-dimensional aromatic heteropolymer mainly formed from 

three hydroxycinnamyl alcohol monomers, p-coumarylM1H, coniferylM1G, and sinapylM1S 

alcohols (Fig. 1.7A), which, respectively, produce p-hydroxyphenyl H, guaiacyl G, and 

syringyl S phenylpropanoid units in the lignin (Barker and Owen, 1999; Martinez et al., 2005; 

Masai et al., 2007). These monolignols differ in their degree of methoxylation, consisting of 

dimethoxylated, monoxylated or non-methoxylated phenylpropanoid units (Martinez et al., 

2005), and are joined by different types of linkage, some of which are more resistant to 

chemical degradation (Boerjan et al., 2003). Lignin is the second most abundant terrestrial 

biopolymer, after cellulose, accounting for close to 30% of the organic carbon in the biosphere 

(Boerjan et al., 2003). It is especially high in the secondary cell walls of plants where it fills 

the spaces between the cellulose, hemicellulose and pectin components, making the cell wall 

rigid and hydrophobic, resulting in lignocellulose resistance to degradation (Bandounas et al., 

2011; Perez et al., 2002).  

It is a crosslinked large molecular structure (Fig. 1.7B) that encrusts the sugar based polymers 

and provides strengthening (Jones et al., 2001; Kumar et al., 2008; Rubin, 2008) and 

waterproofing (Myerly et al., 1981). It protects plants against pathogens (Boerjan et al., 2003; 

Kumar et al., 2008; Rubin, 2008). It also serves as a disposal mechanism for hydrogen peroxide 

(H2O2), a metabolic by-product generated during aerobic respiration (Giorgio et al., 2007). In 

the presence of H2O2 the lignin side chains of non-phenolic lignin units undergo single electron 

oxidation, forming free-radicals (Coelho-Moreira et al., 2013) with the asssociated degradation 

of H2O2. 
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Figure 1.7 Lignin structure.  

(A) The three monomeric precursors of lignin (i) p-coumaryl M1H, (ii) coniferyl M1G, and (iii) sinapyl M1S 

alcohols which respectively produce p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units in lignin, (B) 

Structure of lignin, typical of a soft wood. Source: (Barker and Owen, 1999). 

1.3 Miscanthus x giganteus.  

Miscanthus x giganteus, also known as elephant grass or Giant Chinese Silver Grass is a C4 

perennial rhizomatous grass (Murnen et al., 2007). Like any other C4 plant, M. x giganteus has 

high light, water, and nitrogen use efficiency. C4 plants do not require a lot of tillage; in 

addition their perennial root system adds carbon to the soil and prevents soil erosion. Perennial 

grasses, such as miscanthus, mobilize mineral nutrients from the stem and leaves to the roots 

at the end of the growing season (Somerville et al., 2010). Winter is the best time for harvest 

because there would be low rates of removal of minerals from the field (Dohleman et al., 

2009).  

Miscanthus grows rapidly and can grow to a height of over 12 feet (Murnen et al., 2007) in 

favourable regions, (Fig. 1.8). It can easily be grown in poor-quality soil and does not require 

a lot of inputs such as herbicides, nitrogen and water for cultivation (Murnen et al., 2007; Vrije 

et al., 2009); it also retains high growth efficiency even in cooler climates (Murnen et al., 

2007). It has been reported to have relatively high yields in England at 52oN, where a peak 

biomass of 30 dry tons/hectare/year (T/ha/year) and harvestable biomass of 20 T/ha/year was 

recorded as the highest for a cool temperate climate (Beale and Long, 1995). Yields of 8 to 15 

ton dry weight per ha have also been reported in Western European regions (Vrije et al., 2009). 

Its yields tend to be higher than that of switch grass (Panicum vergatum), though it is more 

expensive to establish than switch grass (Murnen et al., 2007). 
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M. x giganteus attracted attention and has been studied widely because of its potential for 

future energy supply either as fuel for electricity generation or for conversion to ethanol. It is 

considered as a good source of lignocellulosic biomass in Northern America and Europe. Like 

hardwoods, M. x giganteus has higher cellulose content than most crop residues, making it a 

suitable source of glucose which can be converted into ethanol (Murnen et al., 2007; Ververis 

et al., 2004). M. x giganteus lacks seeding and can therefore not cause problems as an invasive 

species. 

 

 

Figure 1.8 Miscanthus x giganteus field.  

M. x giganteus in Illinois. Source: (Somerville et al., 2010). 

1.4 Pretreatment of biomass material. 

The efficient conversion of plant biomass to biofuels has a major limitation due to the 

recalcitrant nature of the plant cell wall. The first step in the methods currently used for 

processing lignocellulosic biomass into biofuel is preatment (Fig. 1.9). The preatment step 

involves some form of physico-chemical preatment and brings about the liberation of the 

cellulose/hemicellulose molecules from the lignin so as to enable subsequent enzymatic break 

down into simple sugars which can easily be fermented to ethanol by yeasts or bacteria (Lynd 

et al., 2008).  
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Figure 1.9 Pretreatment of cellulosic biomass and ethanol production.  

Process currently being used for producing ethanol from cellulosic biomass. Modified from Energy Efficiency 

and Renewable Energy (EERE). (Courtesy of the U.S. Department of Energy-

http://www1.eere.energy.gov/bioenergy/pdfs/Archive/abcs_biofuels.html).  

1.4.1 Pretreatment technologies. 

Pretreatment technologies include grinding, acid hydrolysis, steam explosion, ammonia fiber 

expansion (AFEX), alkaline wet oxidation, ammonia recycle percolation (ARP), and ozone 

preatment (ozonolysis). No single method is best for all types of feedstock.  

 Grinding- leads to degradation of the crystalline structure of lignocellulose  

 Steam explosion- a physico-chemical preatment in which biomass is subjected to high-

pressure saturated steam, followed by rapid depressurisation (Sawada and Nakamura, 

2001).  

 Alkaline wet oxidation- water, sodium carbonate, and pressure interact with biomass 

by breaking ester bonds that cross-link hemicellulose with other components 

(Taherzadeh and Karimi, 2008). 

 Ozone- acts primarily by degrading lignin, via attack and cleavage of aromatic ring 

structures.  

 Acid hydrolysis- concentrated or dilute mineral acids penetrate biomass by breaking 

down hemicellulose into monomeric sugars (at high acid concentration) and removing 

part of the lignin (Taherzadeh and Karimi, 2008). However, the monomers further react 
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under acidic conditions producing furfurals which can inhibit the subsequent 

fermentation process. To be economic, the use of strong acids requires acid recovery 

so most studies focus on using weak acids that hydrolyse hemicellulose but leave the 

cellulose intact.  

 AFEX- one of the advanced pretreatment processes currently being developed for 

biomass pretreatment. It is a physico-chemical preatment in which pre-wetted 

lignocellulosic material is treated with liquid anhydrous ammonia at moderate to high 

temperature and pressure, then pressure is rapidly released, explosively disrupting the 

lignocellulose fibres and the linkages between lignin and hemicelluloses, resulting in 

release of sugar polymers (Balan et al., 2009). AFEX brings about lignin 

depolymerisation during fibre expansion and allows much greater enzyme access to the 

carbohydrates (Zheng et al., 2009), but does not extensively solubilise the lignin.  

 ARP- brings about greater delignification, does not require expensive facilities and 

works at high temperatures (Kumar et al., 2009). The left over ammonia is recyclable 

due to its volatility (Dale and Moreira, 1982), and residual ammonia can be used by the 

microorganisms that are involved in fermentation (Balan et al., 2009). 

AFEX is carried out with liquid ammonia, while ARP is carried out with aqueous ammonia 

(10-15%), (Kumar et al., 2009). The resulting lignin can be recovered and burnt as a fuel in 

the refinery, leading to a net reduction in greenhouse gas emissions (Balan et al., 2009). 

Solubilisation of lignin during ARP is advantageous for consolidated bioprocessing (CBP), 

also known as direct microbial conversion (DMC), in which cellulase production, enzymatic 

hydrolysis and ethanol fermentation are done in a single process stage (Fig. 1.10). Lignin 

solubilisation will reduce the amount of material passing through the fermentation process 

resulting in reduced enzyme sequestration, because there will be less lignin to prevent the 

enzymes from binding with their substrates, though there may be a reduction in its fuel value. 

AFEX and ARP preatment methods have been found to be effective for pre-treating grasses 

such as miscanthus (Yang and Wyman, 2008). As well as modifying the lignin, they can reduce 

the crystallinity in the cellulose with limited hydrolysis of hemicellulose and cellulose (Balan 

et al., 2009) . 
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1.4.2 Consolidated bioprocessing (CBP). 

In the current methods for utilization of lignocellulosic biomass, preatment is followed by 

enzymatic hydrolysis with commercial cellulases (and other enzymes if required). This may 

involve separate or simultaneous saccharification and fermentation, the latter combining both 

hydrolysis and fermentation processes in a single-step process (Fig. 1.10) (Ado et al., 2009). 

However, the need to purchase cellulase adds cost to the process and it might be more cost 

effective if the fermenting organism also produced the cellulase and any other enzymes that 

might be required for complete carbohydrate fermentation. This underlies the concept of CBP, 

which is a simplified process of converting feedstock to product (Taherzadeh and Karimi, 

2007).  

 

 

 

 

 

 

 

 

 

Figure 1.10 Consolidated bioprocessing process.  

The (hemi)cellulase production, enzymatic hydrolysis and fermentation are combined in one process stage. Picture 

provided by Courtesy of TMO Renewables. Modified from EERE. (Courtesy of the U.S. Department of Energy-

http://www1.eere.energy.gov/bioenergy/pdfs/Archive/abcs_biofuels.html). 

The CBP process involves engineering of a single microorganism or a consortium of mixed-

culture microbes (Taherzadeh and Karimi, 2007). These produce enzymes capable of 

degrading the carbohydrates in lignocellulose and ferment the resulting sugars into ethanol and 

other useful products. This process is expected to cut down on the costly addition of enzymes 

as used in separate or simultaneous saccharification and fermentation processes (Balan et al., 

2009). Researchers have strongly promoted this approach, but there is no evidence in the 
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literature to show that it can be effective using a real feedstock (Lynd et al., 2005; Schuster 

and Chinn, 2013; Zhang et al., 2007). It is also not clear whether the increased energy demand 

of the implied high solids fermentation process outweighs the benefits.  

Various organisms already combine multiple functions, but no organism or compatible 

combinations of microorganisms are available that produce cellulase and other enzymes at the 

required high yields and concentrations (Hamelinck et al., 2005; Olson et al., 2012; 

Taherzadeh and Karimi, 2007; van Zyl et al., 2007; Xu et al., 2009).  

1.5 (Hemi)cellulose degrading enzymes. 

1.5.1 Cellulases. 

Cellulosic biomass is the most abundant substrate for the economical and environmentally 

sustainable production of fuels, solvents and other building blocks (Mazzoli, 2012). Cellulose 

is highly recalcitrant to biodegradation, and requires a mixture of enzymes known collectively 

as cellulase for complete hydrolysis (Mazzoli, 2012; Olson et al., 2012). The costs of 

pretreatment and production of cellulases and ancillary enzymes are still the most difficult 

hurdles to overcome for commercial cellulosic biofuel production (Mohanram and Gode, 

2013). 

A classic cellulase enzyme system is made up of three types of enzymes, and these work 

synergistically during the hydrolysis of cellulose to glucose (Deswal et al., 2011; Himmel et 

al., 1999; Kuhad et al., 2011; Kuhad et al., 1997). The three enzymes are endoglucanase (EC 

3.2.1.4), exoglucanase (EC 3.2.1.91) and β-glucosidase (EC 3.2.1.21) (Kuhad et al., 2011). 

Endoglucanases are involved in the random hydrolysis of the intramolecular β-1,4-glucosidic 

bonds of amorphous regions of cellulose chains resulting in production of new chain ends 

(Zhang et al., 2006). The exoglucanases (cellobiohydrolases) attack the cellulose chain ends 

to produce cellobiose, the repeating unit of cellulose, or glucose, while β-glucosidase 

hydrolyses cellobiose to glucose (Zhang et al., 2006) (Fig. 1.11). Crystalline cellulose is 

degraded from the chain ends by a combination of exoglucanases and β-glucosidase. 

Use of commercial cellulases in biofuel production adds significant cost (Brunecky et al., 

2011) so a lot of effort is going into efforts to reduce their cost, both in terms of cellulase 

production and also in improved catalytic turnover. 
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Figure 1.11 Cellulose degradation.  

The action of endoglucanse, exoglucanase and β-glucosidase results in deconstruction of cellulose. Source: 

(Wright et al., 1988). 

1.5.2 Hemicellulases. 

The successful deconstruction and modification of hemicellulose requires a complex mixture 

of enzymes collectively called hemicellulases (Karboune et al., 2009). Enzyme degradation of 

hemicellulases involves mild conditions and does not result in the formation of toxic products 

such as those formed when acid hydrolysis is used (Juturu and Wu, 2013).  

The post translational modifications of hemicellulases result into production of many types of 

enzymes, enabling them to deconstruct the heterogeneous hemicellulose structure (Juturu and 

Wu, 2013). Because of the structural complexity of hemicellulose these enzymes act 

synergistically to achieve full hemicellulose hydrolysis (Juturu and Wu, 2013; Karboune et al., 

2009). They include endoxylanase (endo-1,4-β-xylanase, E.C.3.2.1.8), β-xylosidase (xylan-

1,4-β-xylosidase, E.C.3.2.1.37), arabinase (endo α-L-arabinase, E.C.3.2.1.99), α-

arabinofuranosidase (α-L-arabinofuranosidase, E.C.3.2.1.55), feruloyl xylan esterase 

(E.C.3.2.1.73), α-glucuronidase (α-glucosiduronase, E.C.3.2.1.139) and acetyl xylan esterase 

(E.C.3.2.1.1.72) (Juturu and Wu, 2013). Endoglucanases can also degrade hemicellulose 

(Karboune et al., 2009). Cellulases and hemicellulases act synergistically to achieve complete 

hydrolysis of the cellulose and hemicellulose components of the lignocellulosic biomass (Gao 

et al., 2011).  

1.6 Glycoside hydrolases and carbohydrate binding modules. 

Glycoside hydrolases are the most diverse group of enzymes used by microbes to degrade 

biomass (Murphy et al., 2011; Rigden, 2005). They are produced by a range of bacteria and 

fungi (McCartney et al., 2004), and they often contain multiple structurally and functionally 
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diverse modules on the same polypeptide chain (Bayer et al., 1998; Davies and Henrissat, 

1995; Gilkes et al., 1991; Henrissat, 1997). Glycoside hydrolases typically hydrolyse the 

glycosidic bond between two or more carbohydrates or between a carbohydrate and a non-

carbohydrate moiety (Henrissat and Davies, 2000). The cellulases have two independent 

globular modules (Arai et al., 2003): a catalytic domain, responsible for the hydrolysis reaction 

itself, and a cellulose-binding module, without catalytic activity but promoting the adsorption 

of the enzyme on to the substrate (Davies and Henrissat, 1995; Henrissat and Davies, 2000).  

There is a wide stereochemical variation among carbohydrates, which is paralleled by a large 

multiplicity of enzymes involved in their metabolism (Henrissat, 1991; Henrissat and Bairoch, 

1996). The process of hydrolysis is related to energy metabolism and storage, selective 

hydrolysis of the glycosidic bonds is therefore very important for energy uptake (Davies and 

Henrissat, 1995).  

1.6.1 Classification of glycoside hydrolases. 

Glycoside hydrolases are found in the three major kingdoms of life (archaea, eubacteria and 

eukaryotes) (Henrissat, 1991). These enzymes, together with their non-catalytic carbohydrate-

binding modules (CBMs), have been grouped into sequence-based families based on the amino 

acid sequences of their catalytic domains, which directly determines  structural, functional and 

mechanistic features of these enzymes, on the continuously updated Carbohydrate-Active 

EnZymes (CAZy) database (Cantarel et al., 2009; Lombard et al., 2014; 

http://www.cazy.org/Glycoside-Hydrolases.html). 

The International Union of Biochemistry (IUB) Enzyme Nomenclature (1984) is based on the 

type of reaction that the enzymes catalyse and on their substrate specificity and has been used 

to classify glycoside hydrolases by a numerical classification (Henrissat, 1991). Under this 

classification glycoside hydrolases are denoted as “EC 3.2.1.x”, the first three digits indicate 

enzymes that hydrolyse o-glycosyl linkages whereas the last number indicates the substrate 

and sometimes indicates the molecular mechanism (Henrissat, 1991). EC represents Enzyme 

Commission number.  

The CAZy classification is based on similarities in amino acid sequence and structure 

(Henrissat, 1991; Henrissat and Bairoch, 1993; Henrissat and Bairoch, 1996). This 

classification differs significantly from that of the IUB nomenclature and was designed to 

integrate both structural and mechanistic features of the enzymes (Henrissat and Davies, 2000). 

http://www.cazy.org/Glycoside-Hydrolases.html


37 

 

There is a direct relationship between sequence and folding similarities (Chothia and Lesk, 

1986). Members of one GH family most likely share the same folding characteristics, thereby 

enabling homology modeling, if the three-dimensional structure of one is known (Henrissat, 

1991).  

However, enzymes with different substrate specificities are sometimes found in the same 

family, an indication for an evolutionary divergence to acquire new specificities, as observed 

in families 1, 13 and 16 (Davies and Henrissat, 1995). On the other hand enzymes that 

hydrolyse the same substrate are sometimes found in different families. Cellulases are a good 

example, they are found in 11 different families (Davies and Henrissat, 1995). Current reports 

indicate that there are 133 glycoside hydrolase families that have been classified 

(http://www.cazy.org/Glycoside-Hydrolases.html, 08/09/2014). 

The glycoside hydrolases thought to have a common ancestry are classified into a clan. 

Members of a clan are recognized by significant similarities in tertiary structure together with 

the conservation of catalytic residues and catalytic mechanism (Henrissat and Bairoch, 1996). 

The relationship between some glycoside hydrolases families which can be grouped into clans 

have been revealed by the growing number of three dimensional structures solved for 

glycoside hydrolases and/or improved sequence comparison strategies (Henrissat and Bairoch, 

1996). 

1.6.2 Mechanisms of action of glycoside hydrolases.     

Enzymatic hydrolysis of glycosidic bonds follows general acid catalysis that needs two critical 

residues: a proton donor and a nucleophile/base (Sinnott, 1990). There are two major 

mechanisms for glycoside hydrolases, leading to overall retention or inversion of the 

stereochemistry at the cleavage point (Sinnott, 1990), as shown in Fig.1.12. The position of 

the proton donor is within hydrogen bonding distance of the glycosidic oxygen (Davies and 

Henrissat, 1995). The type of mechanism followed appears to be conserved within each family 

(Gebler et al., 1992). However, the glycoside hydrolase family 97 (GH97) includes both 

retaining and inverting glycoside hydrolases, suspected to have resulted from the hopping of 

the functional group during evolution (Kitamura et al., 2008; Okuyama et al., 2009).  

A detailed primary-structure analysis of glycoside hydrolases gives information about the 

location of the potential active-site residues on the basis of identification of appropriate 

invariant amino acids (Henrissat, 1990; Henrissat et al., 1989; Zvelebil and Sternberg, 1988). 

http://www.cazy.org/Glycoside-Hydrolases.html
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The first glycoside hydrolases to have their three dimensional structures (3D) located were the 

lysozymes in which the two catalytic amino acids were identified as aspartate and glutamate 

residues (Blake et al., 1965; Matthews and Remingto, 1974). In a subset of the α-mannosidase 

family GH92 the usual general acid glutamic acid is replaced by glutamine (Tiels et al., 2012). 

One of the mechanisms has been found to use NAD as a cofactor. The glycoside hydrolases 

of family 4 (Rajan et al., 2004) and 109 use a mechanism that requires a NAD cofactor 

(Sulzenbacher et al., 2010). The NAD remains tightly bound throughout catalysis and the 

mechanism involves anionic transition states with elimination and redox steps (Rajan et al., 

2004). It has been shown that other residues may sometimes be involved in glycosidic bond 

cleavage (Davies and Henrissat, 1995). The sialidases and trans-sialidases, which are members 

of glycoside hydrolase families 33 and 34, utilise a tyrosine as a catalytic nucleophile; a neutral 

nucleophile, which gets activated by an adjacent base residue (Amaya et al., 2004; Watson et 

al., 2003; Watts et al., 2003). Typical examples include viral neuraminidase and bacterial 

sialidase, in which the transition state is thought to be stabilised with the help of a tyrosine 

(Burmeister et al., 1993; Crennell et al., 1993).  

Glycoside hydrolase families 18, 20, 25, 56, 84, and 85 hydrolyse substrates containing an N-

acetyl (acetamido) or N-glycolyl group at the carbon 2-position. This group of enzymes has no 

catalytic nucleophile, their catalytic mechanism uses the 2-acetamido group as an 

intramolecular nucleophile (Davies and Henrissat, 1995). Through neighbouring group 

participation, the 2-acetamido group can lead to formation of an oxazoline (oxazolinium ion) 

intermediate (Knapp et al., 1996; Terwisscha Van Scheltinga et al., 1995; Vocadlo and 

Withers, 2005). Some GH families are also able to employ novel mechanisms other than the 

typical carboxylate base/nucleophile. These include substrate assisted mechanisms, proton 

transferring networks, utilization of non-carboxylate residues and utilization of an exogenous 

base/nucleophile (Vuong and Wilson, 2010). 

Glycoside hydrolases have also developed mechanisms to lower the energy barrier of the 

hydrolysis reaction by distorting their substrate into a sofa or half-chair conformation (Kuroki 

et al., 1993; Strynadka and James, 1991). Protonation of the glycosidic bond is accompanied 

by a substantial lengthening of this bond (Tanaka et al., 1994). 
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Figure 1.12 The two major mechanisms for glycoside hydrolases.  

The mechanisms were proposed by Koshland (1953). (a) The retaining mechanism, which involves the 

protonation of glycosidic oxygen by the acid catalyst (AH) and departure of the aglycon assisted by the 

nucleophile base (B-). The formed glycoside enzyme gets hydrolyzed by a water molecule and results into a 

product with the same stereochemistry as the substrate. (b) The inverting mechanism, in which the glycosidic 

oxygen gets protonated. A water molecule that is activated by the base residue (B-) attacks at the anomeric carbon 

as the aglycon departs. The resulting product has an opposite stereochemistry to the substrate. Copied from 

(Davies and Henrissat, 1995).  

1.6.3 Active-site topologies. 

The overall topologies of the active sites of glycoside hydrolases fall into three general classes. 

These three topologies are built on the same fold, with the same catalytic residues (Davies and 

Henrissat, 1995). 

The first class of topology is called the pocket crater (Fig. 1.14A), in which the saccharide 

non-reducing end from cellobiose or cellodextrin is recognized, and is encountered in 

monosaccharidases such as β-galactosidase, β-glucosidase, sialidase and neuraminidase, and 

in exopolysaccharidases such as glucoamylase and β-amylase (Davies and Henrissat, 1995; 

Langston et al., 2006). The substrates for these exopolysaccharidases have a large number of 

available chain ends, such as granules, whose radial structure exposes all the non-reducing 

chain ends at the surface. Fibrous substrates such as cellulose have no free chain ends and are 

not efficiently broken down by these enzymes (Davies and Henrissat, 1995). 
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The cleft or groove is the second class of topology. The active site in this class is an open 

structure (Fig. 1.14B) which allows a random binding of several sugar units in polymeric 

substrates. It is commonly found in endo-acting polysaccharidases such as lysozymes, 

endocellulases, chitinases, α-amylases, xylanases, β-1,3(4)-glucanases and β-1,3-glucanases 

(Davies and Henrissat, 1995; Langston et al., 2006). 

The third class of topology is called the tunnel, which is formed when part of the cleft or groove 

gets covered by long loops formed when the groove protein evolves. This class has been found 

in cellobiohydrolases (Davies and Henrissat, 1995; Kurasin and Vaeljamaee, 2011; Liu et al., 

2011; Teeri, 1997; Vocadlo and Davies, 2008). The tunnel formed makes it possible for the 

polysaccharide chain to be threaded through it (Rouvinen et al., 1990). Members of the 

glycoside hydrolase families 5 (Zheng and Ding, 2013), 6 and 7 (Davies and Henrissat, 1995) 

have been reported to display this characteristic. Fig. 1.13 shows the loops that cause the 

catalytic centers of cellobiohydrolases to lie within enclosed tunnels, and these are also 

represented in Fig. 1.14C. This class creates suitable conditions for processivity because the 

enzymes are allowed to release the product while remaining firmly attached to the 

polysaccharide chain. The direction of the enzyme motion along the polysaccharide chain is 

specific and depends on the retaining or inverting mechanisms (Davies and Henrissat, 1995). 

 

 

Figure 1.13 The main fold of the catalytic domain in glycosyl hydrolases families 6 and 7.  

The folds are represented by ribbons. The cyan and the red colours represent the β strands and α helices, 

respectively. The figure was produced by using the program MOLSCRIPT (Kraulis, 1991). Copied from (Davies 

and Henrissat, 1995).  
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Figure 1.14 The three types of active site topologies found in glycoside hydrolases.  

(A) The pocket (glucoamylase from A. awamori). (B) The cleft (endoglucanase E2 from T. fusca). (C) The tunnel 

(cellobiohydrolase II from T. reesei). The areas shaded in red are the proposed catalytic residues. (Molecular 

surface diagrams were prepared using the MOLVIEWER program by M Hartshorn). Source: (Davies and 

Henrissat, 1995). 

1.6.4 Carbohydrate binding molecules (CBMs). 

The enzymatic degradation of crystalline cellulose is initiated by the action of non-hydrolytic 

components (Shoseyov et al., 2006). Glycoside hydrolases that degrade cell walls are generally 

modular enzymes containing domains outside the catalytic domains (Davies and Henrissat, 

1995; Henrissat and Davies, 2000). The catalytic and non-catalytic components of the 

glycoside hydrolases are joined via linker sequences (Bolam et al., 2004; Ohmiya et al., 1997). 

Most of the non-catalytic modules bind to specific carbohydrates and are defined as 

carbohydrate-binding modules (CBMs) (Bolam et al., 2004). The CBMs are rather ubiquitous 

but were first discovered associated with cellulose degrading enzymes (Michel et al., 2009). 

The activity of glycoside hydrolase against plant composite structures is enhanced by CBMs, 

which increase the concentration of the enzyme on the surface of the mostly insoluble 

polysaccharide substrates (Bolam et al., 1998; Gill et al., 1999; Karita et al., 1996), or supply 

the catalytic module with an amorphous cellulose (Zhizhuang et al., 2001). The CBMs are also 

able to locate the detached cellulose chains and direct single cellulose chains into the active 
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site of an adjacent hydrolysing module to enable their hydrolysis (Gal et al., 1997; Irwin et al., 

1998).  

CBMs are thought to bring about the non-hydrolytic disruption of the cellulose fibres and 

provide the catalytic domains with cellulose that can easily be degraded (Din et al., 1991; 

Tormo et al., 1996). It is believed that the binding of the CBMs to the substrate helps to alter 

the non-covalent structure of the cellulose and disrupt the crystalline structures, creating a 

more easily degradable substrate (McCartney et al., 2004; Rigden, 2005). The cellulase CBMs 

fall into two groups, one group having an affinity for crystalline cellulose and the other group 

having an affinity for amorphous cellulose (Arai et al., 2003). 

CBMs mediate binding of cellulolytic enzymes or whole organisms to the cellulosic substrate 

by either serving as targeting agents for the catalytic modules of free cellulases (Boraston et 

al., 2004; Tomme et al., 1995) or by acting as a separate targeting module as part of the non-

catalytic scaffoldin subunit of the cellulosome (Bayer et al., 1998). The scaffoldin has been 

found to have numerous cohesion modules which bind selectively to a complementary 

dockerin modular component of the individual cellulosomal enzymes (Petkun et al., 2010). 

The CBMs have been grouped into families based on sequence similarities (Bolam et al., 

2004). Currently there are 69 CBMs families (http://www.cazy.org/Carbohydrate-Binding-

Modules.html, 09/08/2014). Some of the CBM families, such as families 1 and 2, contain 

modules of invariant substrate specificity while others contain modules that bind to a range of 

different polysaccharides (Michel et al., 2009). Family CBM6 for example, contains not only 

modules of diverse specificity, but also has variations in its substrate binding site locations 

with respect to its 3D structure (Henshaw et al., 2004) as revealed by numerous studies 

(Boraston et al., 2003; Czjzek et al., 2001; Henshaw et al., 2004; Pires et al., 2004). CBMs 

which bind to individual polysaccharide chains always display the same substrate specificity 

as their attached catalytic domain (Boraston et al., 2004). 

1.7 Ligninases. 

Liginases are very important in the degradation of lignocellulosic biomass. Lignin degradation 

is necessary for successful biomass deconstruction. Lignin is very recalcitrant; degradation 

requires an oxidative process through activities of ligninolytic enzymes (Praveen et al., 2011). 

Additionally lignin undergoes structural modifications during physico-chemical lignocellulose 

http://www.cazy.org/Carbohydrate-Binding-Modules.html
http://www.cazy.org/Carbohydrate-Binding-Modules.html
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processing, complicating biocatalytic lignin degradation (Crawford, 1981; Emmel et al., 

2003). 

Chemical methods such as aqueous ammonia preatment, acid hydrolysis and steam explosion 

are being used for removal of lignin (Brodeur et al., 2011). Most of the lignin depolymerisation 

processes require large amounts of energy (Ward and Singh, 2002) and are therefore not 

efficient. Most of these processes occur under severe conditions and are environmentally harsh 

(Ward and Singh, 2002). Enzymes could be a better alternative for lignin depolymerisation. 

Biocatalytic processes generally take place under mild conditions which require low amounts 

of energy and are more environmentally friendly (Perez et al., 2002; Rahman et al., 2013; Sun 

and Cheng, 2002).  

Bacterial and fungal ligninolytic enzymes include lignin peroxidases (LiP) (EC 1.11.1.4), 

manganese peroxidases (MnP) (EC 1.11.1.3), laccase (Lcc) (EC 1.10.3.2) (Chen et al., 2011; 

Praveen et al., 2011; Rahman et al., 2013), and versatile peroxidases secreted by white rot 

fungi (Arantes and Milagres, 2007; Hatakka, 1994; Kirk and Farrell, 1987; Shary et al., 2008).  

It has been observed that less of the bacterial ligninolytic potential has been explored 

(Bandounas et al., 2011). Bacterial strains are capable of degrading lignin and lignin related 

model compounds (Bugg et al., 2011). Bacteria such as Sphingomonas sp. (Masai et al., 1999; 

Wenzel et al., 2002), Pseudomonas sp. (Delalibera et al., 2007) and the actinomycetes, 

Rhodococcus sp., Nocardia sp. and Streptomyces sp. (Bugg et al., 2011; Zimmermann, 1990) 

produce lignin degrading enzymes such as laccases, ring cleaving dioxygenases, glutathione 

s-transferases (Allocati et al., 2009; Masai et al., 2003), monooxygenases and phenol oxidases 

(Perestelo et al., 1989). Other bacteria including Bacillus sp., Ochrobacterium sp., and 

Leucobacter sp. were also reported to produce all the three main ligninases, namely lignin 

peroxidase, manganese peroxidase and laccase (Rahman et al., 2013). 

Bandounas et al. (2011) have indicated that bacterial lignases could be better than the fungal 

lignases as they are said to have specific thermostability and mediator dependence (Kumar et 

al., 2008; Masai et al., 2007). It is difficult to commercialize lignin degradation by fungi due 

to problems related to fungal protein expression and genetic modification (Chandra et al., 

2008). Fungi have been reported to show lack of stability in practical treatment under extreme 

environmental and substrate conditions involving oxygen limitation and high pH, extractive 

and lignin concentration (Daniel and Nilsson, 1998).  
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Activities of ligninolytic enzymes are said to be induced in the culture after exhaustion of 

nutrients such as S, N and C, usually after peak growth of the culture as observed in cultures 

of fungi Phanerochaete chrysosporium and Trametes versicolor (Das et al., 1997), and 

bacterium Comamonas sp. B-9 (Chen et al., 2012b), while in some organisms activities can 

also be induced even in medium with sufficient N (Faison and Kirk, 1985; Levin et al., 2002). 

Apart from culture conditions the lignolytic enzymes also depend on the type of producing 

organism (Praveen et al., 2011). 

1.8 Improving microorganisms that are able to utilise the different types of sugars 

found in cellulosic biomass by genetic engineering.  

1.8.1 Metabolic Engineering of microorganisms for lignocellulosic biofuel 

production. 

In order to obtain renewable liquid transportation fuels from cellulosic biomass, it is necessary 

to develop microbes that will ferment all the available sugars, withstand the toxic by-products 

resulting from the preatment process, and will not get inhibited by the fuel being produced 

(Sommer et al., 2004). Thermophiles have been reported to be ideal microbes in this respect 

because many can utilize a range of hexoses and pentoses, and some can produce cellulases 

that function efficiently at high temperatures and at a broader range of pH than cellulases 

produced by mesophiles (Rastogi et al., 2010). The current cost of converting cellulosic 

biomass to sugar monomers which are required for fuel production is still very high, and is 

approximately double the cost of buying corn in the USA (Lynd et al., 2008). 

Development of technologies that reduce the processing costs in biorefineries is necessary and 

can be achieved by reducing cellulase production cost, improving cellulase performance and 

increasing sugar yields (Zhang et al., 2006). Biotechnology can be used to convert 

lignocellulosic materials to meet societal energy challenges, mostly by genetic reprogramming 

of microorganisms (Lynd et al., 2008; Ragauskas et al., 2006). Metabolic engineering or 

extensive reprogramming of the physiology of the producing organisms could greatly 

contribute to the success of lignocellulosic ethanol production (Lovins et al., 2004).  

The fermentation of xylose, a major constituent of hemicellulose (Fig. 1.3 B), is very important 

for the efficient biological conversion of lignocellulose to ethanol (Jeffries et al., 2007). 

Unfortunately, Saccharomyces cerevisiae, the favoured organism for first generation ethanol 
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production, is unable to utilise xylose, so genes for xylose metabolism have been engineered 

into S. cerevisiae (Table 1.2).  

Table 1.2 Engineering of xylose metabolism genes into S. cerevisiae. 

Genes have been engineered into S. cerevisiae to enable it to metabolise xylose. 

 

Enzyme/gene Organism (gene)  Reference 

Xylose reductase (XR) Pichia stipitis (PsXR) (Bengtsson et al., 2009; Watanabe 

et al., 2007) 

Xylitol dehydrogenase 

(XDH) 

Pichia stipitis (PsXDH) (Bengtsson et al., 2009; Watanabe 

et al., 2007) 

L-arabinose isomerase,  B. subtilis (araA), B. lichenformis 

(araA) 

(Becker and Boles, 2003; 

Wiedemann and Boles, 2008)  

L-ribulokinase and L-

ribulose-5-P 4-epimerase 

E.coli (araB and araD), respectively (Wiedemann and Boles, 2008) 

Xylose isomerase (XI),  Thermus thermophilus and Piromyces 

sp. strain E2 (xylA) 

(Kuyper et al., 2003; Walfridsson 

et al., 1996) 

Xylose isomerase (XI),  Piromyces sp. strain E2 (xylA) (Harhangi et al., 2003) 

D-xylose isomerase (XI) Prevotella ruminicola TC2-24 (xylA) (Hector et al., 2013) 

Xylose isomerase (XI) Bacteriodes thetaiotaomicron (xylA) (Smith et al., 2014) 

 

Many other efforts have also been made to metabolically engineer mesophilic bacteria that 

naturally consume both hexose and pentose sugars to redirect the flow of carbon by expressing 

heterologous genes that can form ethanol and other biofuels (Dien et al., 2003; Kim et al., 

2007; Liu et al., 2005; Romero et al., 2007; Talarico et al., 2005; Yanase et al., 2005; Yanase 

et al., 2007; Zhou et al., 2008). A number of strains have been developed that are able to 

produce ethanol from xylose and other sugars, although it is difficult to ascertain their 

industrial potential (Karakashev et al., 2007; van Maris et al., 2006).  
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1.8.2 Thermophiles and ethanol. 

Bacteria that grow optimally at temperatures above 55oC are called thermophiles. These have 

been reported to be ideal microbes for improved production of bioethanol and other more 

advanced biofuels. Thermophilic bacteria such as Clostridium thermocellum, 

Thermoanaerobacter thermosaccharolyticum, T. thermohydrosulfuricus, T. ethanolicus, T. 

brockii, T. saccharolyticum and Geobacillus spp., have been evaluated for biofuel production 

and have been found to have a number of advantages over mesophilic bacteria (Cripps et al., 

2009; Shaw et al., 2008; Sommer et al., 2004). Thermophilic bacteria are capable of producing 

robust enzymes suitable for use in industrial processes (Bhalla et al., 2013a; Ng et al., 1981; 

Rhee et al., 2000; Wiegel, 1980).  

i. Many thermophiles readily utilize pentoses, glucose, and other complex carbohydrates, 

and therefore have a high potential for producing ethanol from lignocellulose. 

ii. A number of thermophiles express cellulase systems. 

iii. They generally display high maximum specific growth rates (µmax) and have high 

maintenance energies resulting in low cell yields and conversely high substrate 

conversion to product. 

iv. High temperatures result in an increased vapour pressure of ethanol, facilitating ethanol 

removal and recovery.  

v. Substrates are more soluble at high temperatures, allowing increased concentrations of 

carbohydrate to be used during the process. 

vi. Many glycolytic thermophiles are able to use polymeric or short oligomeric 

carbohydrates. 

vii. Oxygen is less soluble at high temperatures, thus facilitating the maintenance of 

anaerobic conditions required for the fermentation process. 

viii. High temperatures reduce the risk of contamination by non-thermophiles during the 

process. 

ix. There is no requirement for cooling during fermentation with thermophiles. 

An earlier study (Rastogi et al., 2010) indicated that bacteria belonging to the genera 

Geobacillus, Thermobacillus, Cohnella and Thermus are capable of degrading amorphous 

cellulose, carboxymethylcellulose (CMC), or ponderosa pine saw dust. Previous studies have 
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reported isolation of cellulose-degrading bacteria from compost systems (Lu et al., 2005; 

Mayende et al., 2006; Ng et al., 2009), soils (Abdel-Fattah et al., 2007; Lee et al., 2008), 

wastewaters (Tai et al., 2004), and from deep biosphere of gold mines (Rastogi et al., 2009). 

Cellulase enzymes from these bacteria can probably withstand extreme conditions such as 

temperature and toxic inhibitors (Rastogi et al., 2010). Efforts to produce ethanol from 

thermophiles have been hampered due to limited biochemical knowledge, limited genetic 

tools, poorly understood host transformation systems and scarcity of sequence data for these 

microorganisms.  

1.8.3 Geobacillus spp. as potential ethanologens. 

Bacteria are a more promising group of microorganisms for the successful development of 

CBP because filamentous fungi are not able to ferment sugars (Fonseca et al., 2008; Nofsinger 

and Bothast, 1981; Zhang et al., 2014). Geobacillus spp. are a promising group of 

microorganisms for development of a successful CBP for producing biofuel at a low cost 

(Cripps et al., 2009).  

Some Geobacillus spp., including G. thermoglucosidasius are facultative anaerobes (Nazina 

et al., 2001). Members of this genus are capable of growth between 40 and 70oC and can 

ferment both hexose and pentose sugars and oligomers to generate lactate, formate, acetate and 

ethanol as fermentation products (Cripps et al., 2009). G. thermoglucosidasius has a rapid 

growth rate and is metabolically versatile using a range of carbohydrates as feedstocks. It can 

easily be genetically engineered due to the availability of genetic tools, including shuttle 

vectors, gene deletion strategies and reporter genes, as well as genome sequences. It has been 

engineered to produce ethanol as a major fermentation product (Cripps et al., 2009), but the 

engineered strain is unable to degrade the polymeric carbohydrates in lignocellulose materials 

to release the sugars.  

Like other Bacillus spp, previously reported (Robson and Chambliss, 1984), G. 

thermoglucosidasius lacks a complete cellulase system, but may have endoglucanase or 

CMCase activity which does not hydrolyze crystalline cellulose. Successful engineering of G. 

thermoglucosidasius could create a strain which can both hydrolyze cellulose and ferment the 

resulting products to produce ethanol as the main product. 

The importance of “Bacillus stearothermophilus” in the canned food industry, and relative 

ease of working with aerobic and facultative anaerobic thermophiles, means that Geobacillus 
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spp. have been extensively studied at a biochemical level and also in large scale fermentation 

for the production of thermophilic enzymes. Their fermentative metabolism was summarised 

by (Payton and Hartley, 1985). Furthermore, many strains are genetically transformable and 

plasmid shuttle vectors have been developed and improved upon over recent years, including 

tools for gene knockouts and reporter genes. Although relatively late in the scheme of things, 

a number of genome sequences for Geobacillus spp. have recently appeared in the literature.  

G. thermoglucosidasius strains are able to withstand moderate concentrations of ethanol 

(Taylor et al., 2009) and, with the aid of developing genetic tools and extensive background 

fermentation experience with this species (Hartley and Shama, 1987; Payton and Hartley, 

1985; Sanmartin et al., 1994), G. thermoglucosidasius is being developed into an industrial 

microorganism for development of consolidated bioprocessing, by improving its secretion of 

the glycosyl hydrolases. TMO Renewables have engineered a novel ethanol production 

pathway in G. thermoglucosidasius NCIMB 11955, with parallel work done at Imperial 

College on strain DL33. Their fermentative carbon flux has been diverted from a mixed acid 

pathway (Fig. 1.15), by elimination of the lactate dehydrogenase and pyruvate formate lyase 

pathways by knocking out the ldh and pflB genes, respectively, and upregulating the 

expression of pyruvate dehydrogenase resulting in ethanol production in excess of 90% of the 

theoretical yield (Cripps et al., 2009).  
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Figure 1.15 Major metabolic pathways associated with ethanol production in Geobacillus spp.  

The first step involves conversion of glucose to pyruvate which subsequently gets converted to lactate by Lactate 

dehydrogenase (LDH), or to formate and acetyl CoA by Pyruvate-formate lyase (PFL). Acetaldehyde 

dehydrogenase (AcDH) and Alcohol dehydrogenase (ADH) converts acetyl CoA to ethanol or acetate by 

transacetylase and Acetate Kinase (AK). Pyruvate Dehydrogenase (PDH), is primarily an aerobic enzyme 

producing Acetyl CoA but has been shown to be active under anaerobic conditions. The abreviations PTA and 

TCA cycle stand for phosphotransace-tylase and tricarboxylic acid cycle, respectively. Source: (Cripps et al., 

2009). 

1.9 Cocultures. 

The degradation of plant biomass in the natural environment is achieved by complex microbial 

communinities that employ hydrolytic and oxidative enzymes to deconstruct polysaccharides 

and lignin (D'Haeseleer et al., 2013; Li et al., 2011). A more comprehensive view of 

lignocellulose depolymerisation may be provided by studying lignocellulose deconstruction 

by microbial communities, rather than isolates, and new microbial groups and degradation 

mechanisims may also be uncovered (D'Haeseleer et al., 2013). The complex microbial 

communities may be simplified and the roles of the specific populations within the community 

may also be identified by the enrichment cultures established with defined substrates and at 

constant temperatures (D'Haeseleer et al., 2013). 

Research on improvement of microbial and enzymatic processes on lignocellulosic biomass 

degradation is important for success in sustainable green biotechnology (Wongwilaiwalin et 
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al., 2010). Research on microbial consortia can help scientists to understand the complex 

interactions involved in lignocellulose degradation in nature. This information could inform 

studies on the biotechnological application of biomass degradation in composting, anaerobic 

digestion, enzymatic biomass saccharification and the direct microbial conversion of cellulosic 

biomass to products without the addition of saccharolytic enzymes (Lynd et al., 2005).The 

biomass degradation capability depends on the functional and structural stabilities of microbial 

consortia (Wongwilaiwalin et al., 2010).  

Mixed microbial cultures have been developed during previous studies in an attempt to 

increase the production of biomass, fuels and enzymes for the digestion of cellulose (Haruta 

et al., 2002; Kato et al., 2004; Rattanachomsri et al., 2009). Successful cellulose utilization 

and hemicellulose hydrolysis can be achieved by a coculture of compatible organisms (Ng et 

al., 1981). Cocultures between cellulolytic and pentose utilizing microbes are common in 

nature and could provide better hydrolysis (Lynd et al., 2002), and yield higher amounts of 

products such as ethanol from cellulose than pure cultures (Svetlitchnyi et al., 2013).  

Lignocellulose-utilising bacteria naturally exist in symbiotic relationships with one another, 

which contribute to the successful recycling of carbon in the environment (Zhang et al., 2014). 

Cellulose degradation by mixed microbial cultures has been demonstrated by symbiosis 

between cellulolytic and non-cellulolytic micoorganisms in previous studies (Pohlschroeder et 

al., 1994; Veal and Lynch, 1984). Use of cocultures or complex microbial communities can 

prevent problems of feeback regulation and metabolic repression (Delatorre and Campillo, 

1984; Haruta et al., 2002; Soundar and Chandra, 1987). Cocultures of two thermophilic 

Clostridium strains, CS-3-2 and CS-4-4, on cornstalk showed synergism of glycoside 

hydrolase secretomes by producing much greater enzyme activities than the pure cultures or 

an artificial mixture of samples (Zhang et al., 2014).  

A thermophilic lignocellulose degrading mixed microbial community from bagasse compost 

comprising of Bacilli, uncultured bacteria, an aerobic/facultative anaerobic Rhodocycloceae, 

Clostridium and Thermoanaerobacterium genera showed efficient degradation activity on 

bagasse, cornstover, rice straw and industrial eucalyptus sludge (Wongwilaiwalin et al., 2010). 

This mixed microbial group had lignocellulolytic activities such as endo-glucanase, xylanase 

and β-glucanase in the culture supernatant. 



51 

 

Clostridium thermocellum forms successful cocultures with saccharolytic organisms. It 

formed stable cocultures with the saccharolytic ethanol producing Thermoanaerobacter 

ethanolyticus due to beneficial syntrophic relations, resulting into production of higher 

amounts of ethanol than the pure cultures (Cann et al., 2001). Coculture of organic acid-

deficient engineered strains of both C. thermocellum and Thermoanaerobacterium 

saccharolyticum resulted into high ethanol production from cellulose (Argyros et al., 2011). 

Cocultures of Caldicellulosiruptor DIB 087C and Thermoanaerobacter DIB 097X were also 

able to convert cellulose to higher ethanol concentrations than their monocultutures 

(Svetlitchnyi et al., 2013).  

However, low production of ethanol from cocultures of Caldicellulosiruptor saccharolyticus 

DSM 8903 and Thermoanaerobacter mathranii subsp. mathranii DSM 11426 were also 

reported (Svetlitchnyi et al., 2013). These studies on cocultures of Caldicellulosiruptor strains 

with new Thermoanaerobacter strains showed that specific strain combinations are important 

to achieve high ethanol production for development of CBP (Svetlitchnyi et al., 2013). 

1.10 Molecular phylogeny. 

Research has shown that phylogenetic relationships of bacteria and all life-forms can be 

determined by comparing a stable part of the genetic code, which has a common function in 

all of the organisms under study (Woese, 1987; Woese et al., 1985). Over time, functionally 

neutral mutations will arise in the gene under study, such that the differences in sequence can 

be used as a measure of evolutionary divergence. Because function needs to be maintained the 

extent of mutation is limited so the size to be studied needs to be sufficient to allow this 

discrimination, but not too large to be cumbersome.  

The 16S rRNA gene is the sequence which is most commonly used for taxonomic purposes 

for bacteria (Clarridge, 2004). Differences in sequence of the 16S rRNA gene marks the 

evolutionary distance and relatedness of organisms (Harmsen and Karch, 2004; Pace, 1997; 

Thorne et al., 1998), with the same species having at least 97% sequence identity over the 

whole gene. In this study 16S rRNA gene sequencing was used to identify bacterial strains 

isolated from compost to genus and probable species level. 
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1.11 Aim of project. 

The main aim of this project was to enrich a thermophilic mixed culture capable of degrading 

ammonium hydroxide pretreated M. x giganteus in order to identify the enzymes, their genes 

and associated organisms involved in the process. This would act as a guide to important 

functions necessary for miscanthus degradation and hence the proteins that would need to be 

expressed from a recombinant Geobacillus sp. in order to convert it into a suitable CBP 

organism.  

Specific objectives.  

 Optimise pretreatment of Miscanthus x giganteus using alkaline treatment 

 Determine the carbohydrates present in miscanthus after pretreatment 

 Evaluate existing cellulolytic strains of Geobacillus spp.  

 Use the pretreated miscanthus as a substrate to isolate thermophilic bacteria which can 

degrade the complex oligomers and polymers present in the pre-treated material  

 Characterise lignocellulosic mixed cultures for enzymes that are responsible for producing 

enzymes that can hydrolyse the pretreated miscanthus 

 Identify the bacteria detected or isolated from the mixed culture through analysis of their 

16S RNA gene analysis 

 Transfer genes encoding the enzymes identified (or similar genes from characterised 

strains) into ethanologenic Geobacillus thermoglucosidasius to create new recombinant 

strains with improved cellulolytic activities 

 Evaluate the recombinant strains 
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2. Materials and methods. 

2.1 Bacterial strains and Plasmids used in this study. 

Table 2.1 Bacterial strains and plasmids used in this project.  

 
Strain Genotype/Description                              Source/ Reference 

Bacteria 

E. coli 

E. coli JM109 

 

 

 

 

Thermophilic bacteria 

WL3, WL6, WL14 and WL16 

 

 

 

 

TR1A strains-1 to 13, 17 

 

 

 

 

Other bacteria 

TR1A strains- 14 and 16 

 

 

 

Geobacillus thermoglucosidasius 

DL33 

NCIMB 11955 

 

 

 

endA1 glnV44 thi-1 relA1 gyrA96          Sigma 

recA1mcrB+ Δ(lac-proAB) e14-  

[F' traD36 proAB+ lacIq lacZΔM15] 

 hsdR17(rK
-mK

+) 

 

 

 

Novel thermophilic isolates from             previuos study                                      

West London Composting Company,  

Middlesex.                                                 

 

 

Novel thermophilic isolates from             this study 

West London Composting Company,  

Middlesex.                                                 

 

 

 

Novel isolates from                                  this study 

West London Composting Company,  

Middlesex.                                                 

 

 

TMO Renewables Ltd                              Originally isolated by 

                                                                  Simon Baker from compost                                          

                                                                  at Wisley(RHS)               

          

Plasmids 

pJET1.2/blunt 

 

 

 

 

 

pUCG4.8 1.1 

 

Cloning vector. Containing bla (ApR)-                 Fermentas 

ß-lactamase gene conferring resistance 

 to ampicillin , and eco47IR - Lethal gene  

eco47IR enables positive selection of the 

recombinants 

 

Cloning vector containing cellobiose promoter     University of Bath 
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2.2 Sample Collection. 

Miscanthus x giganteus was collected on April 4, 2010 and April 11, 2011, from Silwood Park, 

Ascot, UK, from a plot on the campus grounds (Fig. 2.1A), and from Rothamsted, respectively. 

It was harvested using branch/tree pruners, packaged in black plastic bags and transported to 

the lab (Fig. 2.1B). The stems were cleaned by removing the leaves and leafstalks and left for 

air drying in a large well aerated room for about two months. Then it was put in an air tight 

room for storage (Fig. 2.1C). 

2.2.1 Preparation and pretreatment of M. x giganteus. 

The dried miscanthus biomass was cut for grinding (Fig. 2.1D) and milled using a Retsch® 

Heavy-Duty Cutting Mill SM2000 followed by sieving (Fig. 2.1E) through mesh No. 20 (850 

µm), No. 80 (180 µm), the sieves were stack on a sieving shaker in order, starting at the bottom: 

a solid catch pan, 80- mesh sieve, then 20-mesh sieve. To treat miscanthus a 1:20 ratio 

biomass:10% (wt/wt) NH4OH mixture was prepared in Ace pressure tubes (from Sigma-

Aldrich) as shown in Fig. 2.1F, and pretreated in an oven (from Pickstone Ovens, Thetford, 

England) for 14 h at temperature ranges from 60-200oC (Fig. 2.1G). After cooling to room 

temperature, the pretreated miscanthus biomass was washed with distilled water and the water 

was drained out using a suction pump. The biomass was washed until the pH of the filtrate 

was about 7, and then dried at room temperature (Figures 2.1H and I). 
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Figure 2.1 Pretreatment of M. x giganteus.  

Flow diagram showing M. x giganteus in a field at Silwood Park (A), and the activities involved in the preparation 

of the miscanthus biomass; collection (B), cleaning and drying (C), cutting (D), grinding (E), soaking in 10% 

(wt/wt) NH4OH (F), pretreatment at 120oC in an oven from Pickstone Ovens, Thetford, England (G), washing 

using distilled water until when the filtrate pH was about 7 (H) and drying at room temperature (I). 

2.2.2 Composition analysis of untreated and pretreated M. x giganteus. 

2.2.2.1 Extractives content. 

Extractives were removed from the untreated biomass prior to composition analysis to prevent 

their possible interference with subsequent processes (Selig et al., 2008). Extractives are non-

structural materials in biomass. The water soluble extractives include inorganic material, non-

structural sugars and nitrogenous materials etc, while the ethanol soluble extractives include 

chlorophyll, waxes or other minor components (Sluiter et al., 2005). The inorganic material in 

the water soluble material may be from the biomass or any soluble material in the soil or 

fertilizer associated with the biomass (Sluiter et al., 2005).  
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The removal of extractives was carried out according to the National Renewable Energy 

Laboratory-Laboratory Analytical Procedure (NREL-LAP) (Sluiter et al., 2005). The M. x 

giganteus biomass was subjected to a two step extraction, first with distilled water, then with 

95% EtOH. Extractives were recorded on a dry weight basis as weight percentage of the 

biomass. 

2.2.2.2 Determination of structural carbohydrates, acid-insoluble and acid-

soluble lignin in pretreated and untreated M. x giganteus biomass. 

The pretreated and untreated miscanthus samples were analysed for their carbohydrate profile 

and lignin content by using the NREL-LAP method as outlined by Sluiter et al., (2008). The 

biomass pre-treated at 60oC, 80oC, 100oC, 120oC, 140oC, 160oC, 180oC and 200oC and 

untreated miscanthus biomass samples were used for the assay.  

For each untreated and pre-treated sample, 0.30 + 0.01 g (oven dry weight) was hydrolysed 

with 3.00 + 0.01 ml (or 4.92 + 0.01 g) of 72% sulphuric acid in an Ace pressure tube (from 

Sigma-Aldrich). The samples were mixed for 1 min or until they were thoroughly mixed by 

using a Teflon stirring rod, followed by incubation at 30oC for 1 h. The samples were stirred 

using the stir rod, every 5 to 10 min without removal from the water bath, to ensure even acid 

to particle contact and uniform hydrolysis.  

After the incubation period, the samples were removed from the water bath and diluted with 

84.00 + 0.04 ml deionised water using an automatic burette, to a final 4% sulphuric acid 

concentration. The Teflon caps were securely tightened before mixing the samples by inverting 

the tube several times to eliminate phase separation between high and low concentration acid 

layers.  

A set of sugar recovery standards (SRS) [D-(+)glucose, D-(+)xylose, -L(+)arabinose, and D-

(+)mannose was prepared at 0.1, 1, 2, and 4 mg/ml. The SRS were taken through the dilute 

(4%) acid hydrolysis step and used to correct for losses due to destruction of sugars during this 

step. The samples and the SRS were autoclaved at 121oC for 1 h.  

The samples were then slowly cooled at room temperature, filtered under vacuum and divided 

into acid soluble and acid insoluble residue using previously weighed filter crucibles and 

Buchner flasks. The acid insoluble lignin (AIL) was retained on the crucibles as part of the 

insoluble residue. The acid insoluble residue was further dried overnight at 105oC in a 
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convection oven, allowed to cool in a desiccator, and weighed. The acid insoluble residue was 

further ashed in a muffle furnace at 575oC for 48 h. The ash was weighed, and the weight of 

the acid insoluble lignin was determined by subtracting the weight of ash from the weight of 

the acid insoluble residue. The acid soluble lignin in the filtrate was measured using a Light-

wave II WPA UV-spectrophotometer at 240 nm, blanking with deionised water. The sample 

was diluted when necessary to bring the absorbance into the range of 0.7-1.0. The amount of 

acid soluble lignin was determined by using the following formula as described by Sluiter et 

al,. (2008):  

 

                                  % ASL = UVabs x Volume filtrate x Dilution x 100 

                                                 ε x ODW sample x Pathlength 

Where: 

UVabs = average UV-Vis absorbance for the sample at specified wavelength 

Pathlength = pathlength of UV-Vis cell in cm 

Volume hydrolysis liquor = volume of filtrate  

Dilution = Volume sample + Volume dilution solvent 

                                 Volume sample  

ε = absorptivity constant of biomass at specific wavelength in L/g cm [table of values for 

different biomass types is provided in the protocol by Sluiter et al., (2008)]. 

The carbohydrates in the hydrolysis filtrate were neutralised with calcium carbonate to pH 5-

6, and then centrifuged twice at 13 000 rpm to remove any small particulates from the aqueous 

phase. The amount of sugar was determined using an Agilent Technologies 1200 Series HPLC, 

equipped with a refractive index detector and a Bio-Rad Aminex HPX-87P carbohydrate 

analysis column (Hercules, CA, USA) with HPLC grade water as a mobile phase at the flow 

rate of 0.6 ml/min and a column temperature of 55-65oC. Each set of samples was run on the 

HPLC with standards of glucose, xylose, mannose, and arabinose at 0.1, 1, 2, and 4 mg/ml.  

2.2.3 Enzyme saccharification. 

The enzymatic saccharification was carried out according to the NREL-LAP (Selig et al., 

2008) for pretreated and untreated miscanthus biomass. Samples were pretreated at the same 

temperatures as in part 2.2.2.2. In labelled sterilin tubes, for each sample, an equivalent of 100 

mg of biomass on a 105oC oven dry weight (ODW) basis was mixed with 55 µl of 0.1 M 

sodium citrate buffer (pH 4.8), 30 µl of tetracycline (10 mg/ml in 70% ethanol), 40 µl of 
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cyclohexamide (10 mg/ml) (to prevent potential microbial growth), and distilled water to bring 

the volume to 10 ml. To each mixture, 118 µl of enzyme [1:1 blend of cellulase from 

Trichoderma reesei and β-glucosidase (Novozyme 188) from Sigma] was added. The enzyme 

loading was according to the specifications outlined by Mosier et al., 2005. 

The samples were incubated in a New Brunswick Scientific Innova 4330 incubator shaker at 

50oC with shaking at 200 rpm for 7 days. The 7 day incubation period in this procedure allows 

determination of the maximum extent of digestability due to enzymatic saccharification of 

cellulose from the native or pretreated lignocellulosic biomass (Selig et al., 2008). After 7 days 

of incubation, the enzymatic hydrolysis samples were centrifuged for 10 min at 10 000 rpm 

(x2), using a 5424 Eppendorf centrifuge. 1 ml of each supernatant was transferred into labelled 

HPLC vials. The soluble glucose and xylose, and enzyme derived glucose and xylose were 

measured using HPLC as described in part 2.2.2.2 above. Each set of samples was run on the 

HPLC with glucose and xylose standards of 0.1, 1, 2, and 4 mg/ml. Glucose and xylose yields 

were expressed as amount of sugar (g)/g of the original ODW of miscanthus biomass and the 

correction for hydration (water incorporated upon hydrolysis of cellulose to glucose and xylose 

monomers) was applied (Selig et al., 2008). 

2.3 Phosphoric acid swollen cellulose. 

Regenerated amorphous cellulose was prepared with help fom Dr. Bartosiak-Jentys, by adding 

approximately 0.2 g of microcrystalline cellulose (FMC PH-105) to a 50 ml centrifuge tube, 

and 0.6 ml distilled water was added to wet the cellulose powder to form a suspended slurry. 

Ten ml of ice-cold 86.2% H3PO4 was slowly added to the slurry with vigorous stirring so that 

the final phosphoric acid concentration was ca. 83.2%. Before the last 2 ml of the phosphoric 

acid was added, the cellulose was mixed evenly. The cellulose mixture turned transparent 

within several min, and was left for an h on ice with occasional stirring.  

Approximately 40 ml of ice-cold water was added at approximately 10 ml per addition with 

vigorous stirring between additions, resulting in a white cloudy precipitate. The precipitated 

cellulose was centrifuged at 5 000 x g and 4oC for 20 min. The pellet was suspended by adding 

ice-cold water then centrifuged four times, to remove the supernatant containing phosphoric 

acid. Approximately 0.5 ml of 2 M Na2CO3 was added to neutralize the residual phosphoric 

acid, and then, 45 ml of ice-cold distilled water was used to suspend the cellulose pellet. After 

centrifugation, the pellet was suspended in distilled water and centrifuged twice or until pH 5-
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7. The regenerated (homogeneous) cellulose can be kept at 4oC for a long time by adding a 

small amount of sodium azide. The carbohydrate concentration of regenerated amorphous 

cellulose was calibrated by the phenol-H2SO4 method.  

2.4 Routine maintenance and growth of bacterial strains. 

2.4.1 Sterilisation. 

All media, instruments and containers were sterilised by autoclaving at 121ºC/103 Pa for 20 

min. Heat labile solutions were filter sterilised through Acrodisc 0.2 μm filters (Gelman 

Sciences, Northampton, UK). Loops and glass spreaders were sterilised by ethanol and flame. 

2.4.2 Antibiotics. 

Strains that contained plasmids were maintained on media containing the appropriate selective 

antibiotic. Stock antibiotic solutions were stored at –20ºC. Kanamycin and ampicillin (Sigma, 

Dorset, UK) stock concentrations were 12 mg/ml and 50 or 100 mg/ml, respectively. In 

Geobacillus, a concentration of 12 μg/ml kanamycin was required for plasmids coding for 

kanamycin resistance. In E. coli, a concentration of 50 or 100 μg/ml ampicillin was required 

for plasmids coding for ampicillin resistance. Antibiotics were prepared in autoclaved distilled 

water and stored at -20°C, for usage as required. 

2.4.3 Luria-Bertani (LB) Medium. 

LB broth contained 10 g/L bacto-tryptone; 5 g/L bacto-yeast extract; 5 g/L NaCl. The pH was 

adjusted to pH 7 with 5 M NaOH prior to autoclaving. For solid media 16 g/L bacto-agar was 

added. 

2.4.4 2TY medium. 

The 2TY broth was prepared by dissolving 16 g/L Bacto-tryptone, 10 g/L yeast extract and 5 

g/L sodium chloride. The pH was adjusted to 7 using 5 M NaOH. To prepare agar plates, 15 g 

of bacto-agar was added. The medium was autoclaved. 

2.4.5 TGP aerobic growth medium. 

The first part was made by mixing, Bacto tryptone 17.0 g/L, Soy Peptone 3.0 g/L, NaCl 5.0 

g/L, KH2PO4 2.5 g/L, and made up to 90% final volume. The resulting solution was corrected 



60 

 

to pH 7.0 with 3M NaOH then autoclaved for sterilization. The second part was made up to 

10% final volume, by mixing Sodium Pyruvate 4.0 g/L, Glycerol 4.0 ml/L. The second part 

was filtered to sterilize and added to the first part.  

Bacto-agar (16 g/L ) was added to the first part before autoclaving for solid medium. 

2.4.6 Modified Ammonium salts medium (ASM). 

A litre of modified ammonium salts medium (ASM) contained 0.8 g K2HPO4; 0.2 g KH2PO4; 

0.2 g MgSO4.7H2O; 0.2 g NaCl; 0.1 g NaNO3; 0.01 g CaCO3; 1 g yeast extract; and 0.15 g 

(NH)2SO4. The pH was adjusted to 7 using H2SO4.  

Solid medium was prepared by adding 15 g of agar. The medium was autoclaved. 

2.4.7 Rastogi isolation medium (RIM). 

A litre of RIM contained 0.1 g Nitrilotriacetic Acid, 1 ml FeCl3 solution (0.03%), 0.05 g 

CaCl2.2H2O, 0.1 g MgSO47H2O, 0.01 g NaCl, 0.01 g KCl, 0.3 g NH4Cl, 1.8 g of 85% H3PO4, 

0.005 g Methionine, 0.05 g Bacto-yeast extract, 0.01 g Casamino Acids, and 1 ml Nitsche’s 

TE solution. One litre of Nitsche’s TE Solution contained 2.2 g MnSO4, 0.5 g ZnSO4, 0.5 g 

H3BO3, 0.016 g CuSO4, 0.025 g Na2MoO4, and 0.046 g CoCl2.6H2O. The pH was adjusted to 

7 using 5 M NaOH. Solid medium was prepared by adding 15 g of agar. The medium was 

autoclaved.  

To prepare buffered RIM medium, Bis-Tris (8.36 g), Hepes (9.532 g) and Pipes (12.09 g) were 

added to a liter of RIM medium before autoclaving.  

2.4.8 Actinomycetes isolation medium. 

One liter of actinomycetes isolation medium contained glycerol (or starch), 10 g; casein 

(vitamin-free), 0.3 g; KNO3, 2 g; NaCl, 2 g; K2HPO4, 2 g; MgSO4.7H2O, 0.05 g; CaCO3, 0.02 

g; FeSO4.7H2O, 0.01 g; Bacto Agar, 18 g; distilled water 1 liter; pH7 (Kuester and Williams, 

1964). The medium was autoclaved. The medium was amended with 0.3g/L of filter sterilized 

streptomycine sulphate. 
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2.5 Frozen glycerol stocks. 

2.5.1 Preparation of 50% (v/v) glycerol. 

The 50% v/v glycerol was prepared by mixing 25 ml of sterile 99.5% glycerol and 25 ml sterile 

water. 

2.5.2 Preparation and storage of stocks. 

Stocks were prepared by mixing 300 µl of sterile 50% (v/v) glycerol and 700 µl of the fresh 

culture and immediately stored in a -80oC freezer. 

2.5.3 Reviving of thermophilic bacterial strains from stock cultures stored at -

80oC. 

A loopful of frozen stock culture was inoculated into 10 ml of pre-warmed 2TY in 50 ml falcon 

tubes. The inoculated culture was well mixed; 100 μl was immediately sampled and spread on 

pre-warmed 2TY agar plates with a spreader. The remaining culture was incubated at 55oC 

with shaking at 250 rpm. Further samples were taken from the broth cultures after every h for 

5 h and plated as above. The inoculated plates were incubated at 55oC overnight and the 

remaining broth culture left to continue growing overnight at 55oC with shaking at 250 rpm. 

Further 2TY plates were inoculated using the overnight broth cultures and incubated like the 

other plates. Bacterial population was recorded as colony forming units per 100 µl (CFU/100 

µl). 

2.5.4. Screening for possible factors that could be reviving cells from stock 

cultures after storing at -80oC. 

A loopful of WL14 stock culture was inoculated in pre-warmed 10 ml of 2TY medium in four 

50 ml falcon tubes. Each inoculated culture was well mixed and the four inoculated tubes were 

then incubated at 55oC with shaking at 250 rpm for 1, 2, 3 and 4 h. After the incubation period 

the culture was used to inoculate a pre-warmed 2TY plate by spreading 100 µl of the culture. 

The remaining culture from each tube was filtered through a sterile 0.2 µm filter. A 100 µl 

sample of each filtrate was spread on a pre-warmed 2TY plate to confirm that no cells had 

passed through the filter (control). Each of the remaining filtrate was inoculated with another 

loopful of WL14 -80oC stock culture. The inoculated filtrate was well mixed, and then 100 µl 
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was sampled and spread on a 2TY plate. The remaining culture was incubated at 55oC with 

shaking at 250 rpm for 1 h. After incubation, 100 µl of each culture was inoculated on separate 

plates. All plates were incubated overnight at 55oC. Colony counts (CFU/100 µl culture) from 

the plates were recorded. 

2.6 Preparation of working stocks. 

For thermophilic bacteria, a loopful of frozen glycerol stock was inoculated in pre-warmed 10 

ml of 2TY medium in 50 ml falcon tubes. The inoculated tubes were incubated for 1 h or 

overnight (approximately 16 h) at 55oC with shaking at 250 rpm. On pre-warmed 2TY plates, 

(pre-warmed medium plates to avoid temperature shock during revival of the thermophilic 

strains), 100 µl of the overnight culture was inoculated by spreading using sterile plastic 

disposable spreaders (it has been found that Geobacillus spores can survive in ethanol). The 

plates were incubated overnight in the 50-60oC incubator. Plates of working cultures were 

stored at -4oC and were discarded after 2 weeks. 

2.6.1 Preparation of overnight cultures. 

Overnight cultures for thermophilic bacterial strains were inoculated from working culture 

agar plates and grown aerobically using 10 ml of media in a 50 ml falcon tube with shaking at 

250 rpm in the Innova®44 Incubator Series, for approximately 16 h. Overnight cultures were 

grown at 55ºC in 2TY.  

2.7 Microbiological Methods. 

2.7.1 Isolation of cellulolytic strains. 

The first set of thermophilic bacterial strains used for this study was isolated during a previous 

study by Prof. Leak’s research group from wood compost collected from West London 

Composting, Uxbridge, Middlesex, and are referred to as West London (WL) strains. The 

temperature in the compost heap from where they were isolated was 60-70oC. Compost (500 

g) was collected in a plastic bag and sealed tightly.  

In the lab, 25 g of compost was suspended in 250 ml of saline solution and incubated at 55oC 

for 5 h. The samples were serially diluted with saline and 100 μl aliquots plated on 

carboxymethylcellulose (CMC) sodium salt (ASM + 0.5% CMC + 0.005% YE) agar and 

incubated at 55oC. After 3 days, single colonies were picked and plated on fresh CMC agar 
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plates and incubated at 55oC. The experiments for growth of WL strains on pretreated M. x 

giganteus were carried out by inoculating 0.5 ml overnight culture of the strain into 1% 

pretreated M. x giganteus in unbuffered RIM.  

The second set of thermophilic bacterial strains was isolated from domestic compost collected 

from West London Composting, Uxbridge, Middlesex, and were referred to as TR1A strains. 

The temperature in the compost heaps (Fig. 2.2) is normally between 52-78oC, while that of 

the sampled compost heaps was kept at 60oC for 2 days before sampling. The compost samples 

were carried in sealed plastic bags. Inoculations were set up by adding 1 g compost in (i) 100 

ml RIM + 1 g pre-treated M. x giganteus (1% w/v) (ii) 100 ml RIM + 1 g untreated M. x 

giganteus, in 200 ml inoculation bottles for isolations. Two pretreated experiments were set 

up, (TR1A and TR2A) and a control each for the pretreated M. x giganteus and the untreated 

M. x giganteus without inoculation. For the untreated experiments, two experiments were set 

up (UT1A and UT2A). The inoculation bottles were incubated at 55oC with shaking at 250 

rpm.  

 

 

Figure 2.2 A domestic compost heap at the sampling site.  

The compost samples were collected from West London Composting, Uxbridge, Middlesex. 

2.7.1.1 Isolation of microbial colonies from the TR1A subcultures. 

The TR1A culture was used for isolation of the new thermophilic strains, based on this 

culture’s good growth on pretreated M. x giganteus in RIM. The TR1A was subcultured about 

every 6 weeks, TR1A subcultures 6 and 8 were used for isolation of individual colonies. 

Isolation was carried out on agar plates of swollen cellulose medium, 2TY, fine powder of 
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pretreated M. x giganteus in RIM, fine powder of untreated M. x giganteus in RIM, agar 

medium containing xylose, cellobiose, and glucose (0.5% w/v of each), and medium for 

isolating actinomycetes (Kuester and Williams, 1964; Pine and Watson, 1959).  

One ml TR1A subculture (mixture of liquid portion and the solid particles of the pretreated M. 

x giganteus) were serially diluted in 9 ml of sterile 0.85% autoclaved saline water. The 0.85% 

saline water was prewarmed at 55oC for 20 min before being used for the serial dilutions. Then 

0.1 ml of the serial dilutions 10-3, 10-4 and 10-5 were inoculated on agar plates for each medium 

and spread with an L-shaped disposable loop. The plates for actionomycetes were prepared in 

duplicate.The plates were incubated at 55oC, one set of the plates for actinomycetes isolation 

was incubated at 26oC. All the plates incubated at 55oC were covered in aluminium foil to 

prevent drying up of the medium during the incubation. The 2TY, xylan, cellobiose and 

glucose plates were incubated overnight, while the swollen cellulose plates were incubated for 

3 days. The isolation plates of the fine powder of M. x giganteus in RIM and those on the 

actinomycetes isolation medium were incubated for 1 week.   

The developed colonies were purified by streaking each colony on an individual plate of fresh 

medium same as that used for the initial isolation. The purification was done several times to 

obtain pure colonies. 

2.7.1.2 Monitoring microbial growth for M. x giganteus cultures by total cell 

protein. 

Due to the presence of particulate material in the flasks, microbial growth was monitored by 

assaying for an increase in total cell protein of the cultures. The assay was carried out as 

outlined by Ishida et al., 1997, with modifications, by mixing 0.5 ml of the culture with 0.5 ml 

of 1 N NaOH. After incubation for 10 min at 95oC, the mixture was well mixed and cooled at 

room temperature and allowed to settle. A clean tube was used to mix 0.5 ml of the clarified 

part of the sample with 0.1ml of 6 N HCL. The protein content was measured by the Bradford 

Protein Assay (Bio-Rad) following manufacturers protocols, or by using the biuret method if 

the medium contained buffers. 

2.7.2 Determination of growth rates of WL strains on 2TY medium. 

For each strain 50 ml of pre-warmed 2TY medium in a 500 ml flask was inoculated with 0.5 

ml of an overnight pre-culture in the same medium, which had been inoculated from a freshly 
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grown colony. The flasks were incubated aerobically at 55oC with shaking at 250 rpm. The 

OD600 nm was recorded over a period of 9 h. The growth curves were plotted and the growth 

rates were determined from the plot of natural log OD readings against time. The gradient of 

the linear part of the graph was used to record growth rate. 

2.8 Centrifugation. 

Centrifugations of volumes up to 1.5 ml were carried out using a bench top MSE Micro 

Centaur centrifuge (MSE scientific instruments, UK) at room temperature and 13 000 x g. 

Large scale centrifugations (2 to 50 ml) were performed using an Eppendorf 5810-R centrifuge 

at 4 000 x g. 

2.9 Optical density analysis. 

Optical density was measured on a Bio-TEK Synergy HT spectrophotometer or a Jasco V-530 

UV/Vis spectrophotometer and the data analysed in the spectral manager programme. Optical 

density was read at 600 nm wavelength and was used as an indication of culture biomass. 

Samples were appropriately diluted with sterile water to obtain an absorbance reading between 

0 and 0.7. All OD600 nm readings were blanked against fresh media to obtain an accurate 

representation of absorbance due to cell content. 

2.10 HPLC analysis. 

High performance liquid chromatography (HPLC) was carried out to analyse the supernatant 

from TR1A subcultures for residual sugars, organic acids, butanol and ethanol. TR1A 

subculture (1.5 ml) was centrifuged at 10 000 x g for 10 min and the supernatant was 

transferred to a glass HPLC vial sealed with a septum and cap. Ten µl of sample was injected 

into the system and allowed to pass through the column over a 25 minute run time. Glucose, 

xylose, pyruvate, formate, lactate, acetate, succinate, 2-butanol and ethanol were used as 

standards, all at a concentration of 10 mM-50 mM.  

The HPLC system (Jasco UK, Great Dunmow, UK) had a PU2080 plus pump, AS-2051 plus 

intelligent sampler, a UV-2075 plus UV/Vis spectrophotometer (set at 210 nm), a RI-2031 

plus refractive index (RI) detector and a column thermostat jetstream plus oven which was 

maintained at 35°C. The pump used for separation was an Aminex HPX87H ion exclusion 

column (300 x 7.8mm) (BioRad, Hemel Hempstead, UK). Ten mM sulphuric acid at a flow 
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rate of 0.6 ml/min was used as the mobile phase. The data was relayed by detectors through 

an LCnetII ADC adaptor to the Chrompass data acquisition software which made 

chromatogram visualisation and automatic peak area integration possible. 

2.11 Protein methods and enzyme assay protocols. 

2.11.1 Preparation of 0.1% Congo red. 

The 0.1% Congo red solution was prepared by dissolving 0.5 g of Congo red powder (Sigma) 

into 500 ml of distilled water. 

2.11.2 Checking for cellulase activity on salts medium containing CMC, cellobiose 

and avicel. 

Agar plates were prepared as follows: 1. ASM (control), 2. ASM + 0.5% CMC medium, 3. 

ASM + 0.5% avicel (a type of microcrystalline cellulose which has been purified and partially 

depolymerised) medium, and 4. ASM + 0.5% cellobiose medium. 

Bacterial strains were inoculated on the plates containing different carbon sources and on the 

control plate. The plates were incubated in a 55oC incubator for 24 h, then flooded with Congo 

red solution (0.1%) and left to stand at room temperature for 1 h. The Congo red was poured 

off and the plates were subsequently flooded with 1 M NaCl. After 5 min this was poured off 

and then flooding with 1 M NaCl (this step was repeated three times). 

2.12 Determination of enzyme specific activity. 

2.12.1 Reagents.  

2.12.1.1 Preparation of 3,5-dinitrosalicylic acid (DNS) solution. 

The DNS solution was prepared by dissolving 16 g of Sodium Hydroxide pellets in 50 ml of 

dH2O and allowed to cool. In a separate beaker on a magnetic stirring platform, into 800 ml 

dH2O at 35 (± 2) ˚C, 10 g 3,5-Dinitrosalicylic acid was added, 300 g of Potassium Sodium (+) 

– tartarate was gradually added until all solids dissolved. The NaOH solution was slowly 

added. The solution was made up to 1 L.  

The aim was to get as pale a yellow solution as possible. This makes the DNS solution more 

sensitive to very low concentrations of reducing sugar. If the solution is orange it still works 
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but will be unable to detect low sugar concentrations. The solution can be stored at ambient 

temperature for up to 10 weeks. 

2.12.1.2 Preparation of 2.5% w/v Carboxymethyl Cellulose (CMC). 

CMC was dissolved in a 2.5% w/v solution in dH2O. Citrate buffer and Acetate buffer (pH 

4.8) in place of distilled water are both compatible with the assay. The water was heated to 

80˚C prior to adding CMC and then incubated the solution in the 55˚C orbital shaker until all 

CMC had dissolved. 

2.12.1.3 Avicel or xylan. 

Avicel or xylan (0.01 g) was added to the assay tube and added 0.1 ml of water. 

2.12.1.4 Lactose solution. 

Lactose monohydrate (0.12 g) was dissolved in distilled water and made up to 1 L. 

2.12.2 Enzyme assay. 

The assay mixture for detecting enzyme activity was modified from Miller et al., (1960), and 

contained 100 µl of 2.5% CMC in distilled water, (or the avicel/the xylan and distilled water 

mixture preparations) and 100 µl of culture supernatant. A control for each substrate was 

prepared with no enzyme (100 µl dH2O instead of culture supernatant was added) and incubate 

in the same way. 

CMC assays can be incubated in a static oven. Avicel and xylan assays must be shaken at 250 

rpm during incubation in order to keep the avicel or xylan in suspension. The reaction mixtures 

were incubated at 55oC for 1 h.  

Glucose standards of 0, 0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 1, 2, 4, 6, 8, 10 mM glucose were prepared.  

Fresh DNS-Lactose Reaction Stop solution was prepared each time the assay was performed 

by mixing 3:1 DNS Solution:Lactose Solution. Each assay required 400 µl of the DNS-Lactose 

solution. 

Standards: To a clean microcentrifuge tube 100 µl dH2O and 100 µl of sugar standard were 

added. To this mixture 400 µl of DNS-Lactose Reaction Stop solution was added. 
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Samples and controls: To a clean microcentrifuge tube 200 µl of the incubated sample and 400 

µl of DNS-Lactose Reaction Stop solution were added immediately after incubation. 

The tubes (samples, controls and standards) were incubated in the heating block for 20 min, 

ensuring the temperature was above 90˚C at all times. 

The samples were allowed to cool and, in triplicate, 150 µl was pipetted into a 96 well plate. 

The plate was read at 540 nm. The standard curve was used to work out the amount of reducing 

sugar liberated from each sample. 

The time of incubation, the µM of sugar released and the protein concentration in the cellulase 

sample measured by BioRad DC assay (or Biuret protein assay for supernatants from cultures 

grown in buffered RIM medium) were used to work out the µmoles sugar released /min/mg 

protein.  

2.13 Protein concentration by filtration. 

The protein in the culture supernatants of strains was concentrated using a bench top 

accuSpinTM Micro centrifuge (Fisher Scientific) at 10 000 x g for 15 minutes using a 3 000 

MWCO PES Vivaspin centrifugal membrane separator from Sartoriuos Stedim Biotech. 

2.14 Protein assay.  

The Bio-Rad DC protein assay method based on the Bradford method (Bradford, 1976) was 

used to determine protein concentrations as specified by the manufacturer’s instructions. A 

standard curve was prepared using lysozyme from chicken egg-white (Sigma) at 

concentrations 0, 0.2, 0.4, 0.6, 0.8, 1 and 1.5 mg/ml which was used for calculating the 

experimental protein concentrations.  

For protein concentration analysis for supernatants from cultures grown in buffered RIM 

medium Biuret reagent test method modified from (Guobing et al., 2001) was used for 

determining protein concentration. The Biuret reagent consisted of 2.25 g sodium potassium 

tartrate, 0.75 g copper sulfate x 5H2O, and 1.25 g potassium iodide. All these were dissolved 

in order in 100 ml 0.2 M NaOH (0.8 g/100 ml) and the volume brought to 250 ml with distilled 

water. The solution should not be used if black precipitate forms. 
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2. 15 SDS PAGE. 

2.15.1 Preparation of gels. 

The 12% resolving gel (5 ml) was prepared by first mixing 1.9 ml H2O, 1.3 ml Tris-HCl (1.5 

M, pH8.8), and 0.05 ml SDS (10%), and then adding 1.7 ml 30% acrylamide mix (ProtoGelTM), 

0.05 ml 10% ammonium persulfate and 0.002 ml TEMED (Fisher Scientific) in that order. The 

mixture was promptly pipetted into the assembled gel plates evenly from side to side up to 

about 1 cm from the marked edge of the gel comb. The gel was immediately covered by a thin 

layer of isobutanol to even the surface, and allowed to dry (5-30 min). The isobutanol was 

poured off from the resolving gel and the surface was blotted dry using paper roll.  

The stacking gel (2 ml) was then prepared by mixing 1.4 ml H2O, 0.25 ml Tris-HCl (1.5 M, 

pH 6.8) and 0.02 ml SDS (10%), and then adding 0.33 ml 30% acrylamide mix, 0.02 ml 10% 

ammonium persulphate and 0.002 ml TEMED in that order. The mixed components of the 

stacking gel were promptly pipette into the assembled gel plates on top of the resolving gel 

evenly from side to side. The plates were filled with stacking gel such that it overflew upon 

addition of the comb. The comb was inserted between the gel plates carefully to avoid bubbles 

from persisting. The stacking gel was allowed to solidify (5-30 min). 

2.15.2 Preparation of coomassie blue stain. 

A litre of coomassie blue staining solution contained 50% (v/v) ethanol, 10% (v/v) acetic acid 

and 0.2% coomassie blue. 

2.15.3 Coomassie blue destainer. 

Coomassie blue destainer contained 10% (v/v) acetic acid and 30% (v/v) ethanol. 

2.15.4 Running buffer. 

A litre of 10x running buffer contained 30 g Tris-base, 144 g glycine and 10 g SDS. No SDS 

was added for running buffer to be used for native PAGE gels. 

2.15.5 Running SDS PAGE gels. 

The samples were prepared by adding 12 µl loading buffer [2.5 ml 1M Tris-HCl (pH 6.8 at 

25°C), 1 g SDS, 6 µg bromophenol blue, 5 ml glycerol + 100 µl 1M DTT per 10 ml] to 28 μl 
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of the sample to a 1.5 ml centrifuge tubes. To another 1.5 ml centrifuge tube, 7 μl of unstained 

protein molecular weight marker (from Fermentas) was added. The tubes were boiled at 100oC 

for 10 min. The samples and protein marker were loaded into separate wells of an SDS-PAGE 

gel and electrophoresis was run at 120v power supply from a BioRad power tank by using 

BioRad Gel Electrophoresis tanks (BioRad, UK).  

The gel was stained with coomassie blue staining solution overnight and destained using 

coomassie blue destainer. The bands were viewed on a short wave UV transilluminator, and 

photographed on a UV transilluminator BioDoc-it system with an attached analogue thermal 

printer. Mixtures for PAGE gels for analysing enzyme activity contained 0.05% CMC and 

were stained as described in section 2.16.2. 

2.16 Preparation of native PAGE gels. 

The 12% resolving gel (15 ml) was prepared by first mixing 5.05 ml H2O, [0.05% CMC or 

xylan (depending on the enzyme activity to be analysed) was added to the water and dissolved 

or well mixed by incubating at 55oC, and then cooled], and 3.8 ml Tris-HCl (1.5 M, pH 8.8), 

and then adding 6 ml 30% acrylamide mix (ProtoGelTM), 0.15 ml 10% ammonium persulfate 

and 0.006 ml TEMED (Fisher Scientific) in that order. The mixture was promptly pipetted into 

the assembled gel plates evenly from side to side up to about 1 cm from the marked edge of 

the gel comb. The gels were immediately covered by a thin layer of isobutanol to even the 

surface, and allowed to dry (5-30 min). The isobutanol was poured off from the resolving gel 

and the surface was blotted dry using paper roll.  

The stacking gel (5 ml) was then prepared by mixing 3.45 ml H2O, 0.63 ml Tris-HCl (1.5 M, 

pH 6.8), and then adding 0.83 ml 30% acrylamide mix, 0.05 ml 10% ammonium persulphate 

and 0.005 ml TEMED in that order. The mixed components of the stacking gel were promptly 

pipetted into the assembled gel plates on top of each resolving gel as described in section 

2.15.1 and was allowed to solidify (5-30 min). 

2.16.1 Sample preparation and loading. 

The harvested cultures were centrifuged at 4 000 x g at 20oC for 20 minutes in an Eppendorf 

5810-R. The collected supernatant (0.5 ml) was concentrated by centrifuging in a bench top 

accuSpinTM Micro centrifuge (Fisher Scientific) at 10 000 x g for 15 minutes using a 3 000 

MWCO PES vivaspin centrifugal membrane separator from Sartoriuos stedim biotech. The 
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samples were prepared by adding 12 µl loading buffer [2.5ml 1M Tris-HCl (pH 6.8 at 25°C), 

6 µg bromophenol blue, 5 ml glycerol + 100 µl 1M DTT per 10 ml] to 28 μl of the sample to 

a 1.5 ml centrifuge tubes. The samples were loaded into separate wells of duplicate native gels. 

Electrophoresis was run in a cold room (4oC) at 70 v until all the dye moved out of the gel. 

2.16.2 Staining of native PAGE gels. 

One of the gels was stained with coomassie blue staining solution overnight and destained 

using coomassie blue destainer. The second gel was first soaked in 2.5% v/v Triton X-100 on 

a shaker at room temperature for 1 h. Then it was washed with Milli Q water, and incubated 

in 50 mM citrate buffer pH 5.5 for 1 h at room temperature. The buffer was drained out and 

the gel was stained with 0.1% Congo red stain for 15 min at room temperature. The gel was 

destained with 1 M NaCl until the clear bands were clearly visible, usually between 1 and 2 h, 

or sometimes in less than 1 h. The bands were viewed on a short wave UV transilluminator, 

and photographed on a UV transilluminator BioDoc-it system with an attached analogue 

thermal printer or viewed under light and photographed using a digital camera. 

2.17 Mass spectrometry analysis. 

2.17.1 In gel digestion of proteins.  

2.17.1.1 Excision of bands/spots. 

The gel picture was highlighted on the approximate area to be excised for each slice and the 

eppendorf tubes were carefully labelled. The gel was placed onto a rigorously cleaned glass 

plate for cutting. Round N0. 22 scapel blades were used for excising the band as they allowed 

a rocking motion as opposed to a slicing motion, decreasing the chance of ripping the gel. The 

excised gel band was sliced into about 1 mm cubes and placed into a fresh Eppendorf tube. 

The cut gel pieces were collected with the help of a 20 µl pipette tip. A fresh scapel blade, 

Eppendorf and tip were used for every band, and each band was cut on a clean region of the 

glass. 
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2.17.1.2 Preparation for reduction carboxymethylation. 

The gel was prepared either by using the ProteaseMAX™ Surfactant, Trypsin Enhancer 

(Promega), following the instructions provided by the manufacturer, or by following the 

method outlined below. 

2.17.1.3 Gel Preparation/removal of gel stain. 

Ambic (50 mM), pH 8.4 (50 ml) was prepared by dissolving 0.198 g ultra-pure ambic in 40 

ml ddH2O, the pH was adjusted to pH 8.4 with 20% ammonia (diluted 1:1 with ddH2O), then 

topped up to 50 ml. 

To the gel pieces, 200 µl 50 mM Ambic pH 4.8 followed by 200 µl of MeCN was added and 

incubated at room temperature for 5 min. The tube was well mixed to disperse the 

concentration of stain from the bottom of the eppendorf. The supernatant was carefully 

removed using a 200 µl pipette. These 3 steps were repeated until no colour remained in the 

gel pieces. The pieces were dried by washing twice with 200 µl MeCN. The tube was warmed 

at 56oC to help drying. Then the MeCN was carefully removed using a 200 µl pipette. 

2.17.1.4 Reduction/carboxymethylation. 

The gel pieces were swelled in 10 mM dithiothreitol (DTT) dissolved in 50 mM ambic pH 8.4 

(10 mM DTT: 15.42 mg in 10 ml of ambic pH 8.4). Enough DTT solution was added to 

completely cover gel pieces (~200 µl). The tube was incubated at 56°C for 30 min. The DTT 

solution was removed and the gel pieces were washed briefly (10-15 secs) with MeCN (~200 

µl). The MeCN was removed using a 200 µl pipette.  

The pieces were re-swelled in ~200 µl of 55 mM (102.3 mg in 10 ml ambic pH 8.4) iodoacetic 

acid dissolved in 50 mM ambic pH 8.4 (stored in the dark), and incubated at room temp in the 

dark for 30 min. The iodoacetic acid solution was removed and the gel pieces were washed 

with 500 µl of 50 mM ambic pH 8.4 for 15 min. Then ambic solution was removed and the 

gel pieces were shrunk with 200 µl MeCN for 5 min. The gel pieces were dried by washing 

twice with 200 µl MeCN and warmed at 56°C to help drying. The MeCN was carefully 

removed using a 200 µl pipette. 
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2.17.1.5 Tryptic digestion. 

Sequencing grade modified trypsin (Promega cat V5111) 20 µg (kept in freezer) was used for 

tryptic digestion. Each vial was reconstituted with 20 µl of the acidic trypsin buffer provided 

(1 µg/µl). The reconstituted trypsin was aliquoted in 5 µl (in 0.5 ml tubes) and frozen. To make 

a working solution of trypsin, 5 µl was diluted with 195 µl of 50 mM ambic pH 8.4 (25 ng/µl). 

The gel pieces were re-swelled in 20 µl of working solution (0.5 µg trypsin) and incubated at 

RT for 15 min. Further ambic was added to cover the gel pieces, if necessary (~20-50 µl). The 

gel pieces were then incubated at 37°C overnight in a water bath. 

2.17.1.6 Elution of peptides from the gel pieces. 

Preparation. 

The preparation of the 0.1% Trifluoroacetic acid (TFA) (50 ml) was carried out by mixing 20 

ml ddH2O + 50 µl 100% TFA, then topped up to 50 ml with ddH2O.  

The supernatant (ambic containing hydrophilic peptides) was removed from the gel pieces, 

and placed in a clean, labelled Eppendorf by using a 200 µl pipette tip carefully to reduce the 

chance of accidentally drawing up pieces of gel. About 50 µl of 0.1% TFA was added to the 

gel pieces (to halt the digestion) and incubated at 37°C for 10 min. Two volumes (~100µl) 

MeCN were added and incubated at 37°C for 15 min. The supernatant was removed and pooled 

with the hydrophilic peptides in the previous supernatant. The steps involving the addition of 

the 0.1% TFA and MeCN were repeated once.  

The pooled supernatant for each sample was frozen on dry ice for 5 min. When drying the 

sample the tubes were covered with perforated lids prepared by cutting off the lid from the top 

of a clean Eppendorf and punching 8-10 holes in it using a clean hypodermic needle.  

The volume was reduced to 10-30 µl using a SpeedVac vacuum centrifuge (~90-120 min), 

with regular checking as some samples evaporated faster and dried. The perforated lid was 

replaced with a non-perforated lid for each Eppendorf tube, and the samples were stored at -

20°C. If the sample dried up, 30 µl of 0.1% TFA was added to the bottom of the tube and kept 

in the fridge for 30 min before the sample was stored at -20oC. 
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2.17.1.7 Determination of the enzyme sequence. 

The digested eluted protein was given to a facility in Biochemistry Department for sample 

analysis by LC-mass spectrometry, where the sample was run initially on MALDI MS/MS 

(and nanoLC MS/MS if required). The derived partial peptide sequences were searched against 

protein databases. 

2.18 Molecular biology methods. 

2.18.1 Agarose gel preparation. 

Agarose gels (0.7% w/v) were used to separate PCR products. Appropriate amounts of agarose 

were weighed and dissolved in 1x TAE (made by diluting 50x TAE buffer of composition 242 

g Tris Base, 57.1 ml Glacial acetic acid and 100 ml of 0.5 M EDTA, pH 8, 50-fold) by heating 

in a microwave oven (850 watts) until all the agarose had dissolved. The solution was then 

cooled at room temperature to about 40oC and 5 µl of SYBR safe was added per 100 ml gel. 

The gel was poured into a mould and allowed to solidify. DNA samples were mixed with 10x 

gel loading buffer and loaded onto the gel alongside 5 μl Bioline hyperladder molecular 

marker. DNA fragments were visualised on a short wave UV transilluminator, and 

photographed on a UV transilluminator BioDoc-it system with an attached analogue thermal 

printer. 

2.18.2 Isolation of Genomic DNA. 

The SV genomic DNA purification system (from Promega) was used to isolate genomic DNA 

following the protocol provided by the manufacturer. 

2.18.2.1 DNA extraction from compost sample cultures. 

The DNA from compost cultures growing on 1% pretreated miscanthus + RIM, was extracted. 

Two methods were used for isolating DNA.  

1. The first method used for extracting DNA followed a modified procedure from Yang et al., 

(2007) and required purification of the extracted DNA before analysis. The method was carried 

out following the steps below. 
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(a) Sample treatment 

The compost cultures were centrifuged for 20 min at 4 000 x g at 25oC. The supernatant was 

discarded, and approximately 1 g of compost culture pellet (x3) was weighed into 10 ml 

centrifuge tubes. For each 1 g, 4 ml phosphate-buffer (0.12 mol l-1, pH 8) was added to wash 

the pellet. The tube was shaken for 5 min on an orbital shaker at room temperature at 150 rpm. 

The contents were then centrifuged at 4 000 x g for 10 min at 4oC. Washing of the pellet was 

done only once. 

(b) DNA extraction 

To lyse the cells in the washed compost culture samples, three washed samples (approximately 

1 g each) were mixed with 1.5 ml extraction buffer (0.1 mol l-1 Tris-Cl, 0.1 mol l-1 EDTA, 0.1 

mol l-1 , 0.1 mol l-1 sodium phosphate,1.5 mol l-1 NaCl, 1% cetyltrimethylammonium bromide, 

pH 8) and 10 µl Proteinase K solution. This mixture was shaken at 37°C on an orbital shaker 

for 30 min at 225 rpm. After shaking, 200 µl of 10% SDS was added into the tubes which were 

then incubated at 65°C in a water bath for 1 h with agitation at 15 to 20 min intervals. The 

tubes were then centrifuged at 4 000 x g for 5 min at room temperature and the upper layers 

transferred to fresh tubes. Extraction buffer (0.5 ml) and 50 µl of 10% SDS were added to the 

residue in the primary tubes to wash the pellets and were mixed using a spinmix (Gallenkamp) 

for 30 seconds. The mixture was incubated in a 65°C water bath for 10 min, and then 

centrifuged at 4 000 x g for 5 min at room temperature. The pellets were treated once again.  

The upper layers were mixed with 1x volume of chloroform/isoamyl alcohol (24:1) by shaking 

gently by hand. The aqueous layers were transferred to clean tubes after centrifugation at 4 

000 x g for 5 min and the contents precipitated with 0.6 volumes of isopropanol for 1 h. The 

crude DNA pellets were washed twice with 0.7 ml ice-cold 70% ethanol and dried under 

vacuum after centrifugation at 16 000 x g for 5 min at 4°C. The crude DNA was dissolved in 

600 µl TE buffer (10mM of Tris-HCL pH 7.5 and 1 mM of EDTA) and stored at -20°C for 

future use.  

(c) DNA Purification 

The crude DNA was precipitated by adding 0.5 volume of 50% (w/v) PEG 8 000 and 0.1 

volume of 5 mol l-1 NaCl. The samples were mixed by inverting gently and incubated for more 

than 1 h or overnight at 4°C. The precipitated DNA was added into a spin-bind DNA 
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purification cartridge (in which the DNA binds to a microporous membrane in the presence of 

chaotropic salts buffer) and the cartridge centrifuged for 1 min at 12 000 x g at 4°C. The 

cartridge was washed twice with 0.7 ml ice-cold 70% ethanol then the DNA eluted from the 

air dried cartridge with 200 µl hot TE buffer (65oC). Ten µl RNase A (10 mg ml-1) was added 

and incubated at 37oC for at least 2 h. The DNA was stored at -20oC for future use. 

2. The second method for DNA isolation was carried out by using the Zymo Research (ZR) 

Soil Microbe DNA MiniPrep kit by following the instructions as described by the 

manufacturer. This product was better than the procedure described above, as it is suitable for 

isolating DNA for a range of microorganisms including bacteria, algae, protozoa and fungi. 

The whole procedure could be done within minutes and the resulting DNA is pure and ready 

to use for analysis.  

2.18.3 DNA fragment purification. 

After separating the DNA, the band of interest was excised from the agarose gel under ultra 

violet (UV) light (making sure that the DNA was not exposed to UV light for too long to avoid 

DNA damage). The DNA was extracted from the gel and purified by using a Qiagen gel 

extraction kit following the microcentrifuge method instructions given by the manufacturer. 

The purified DNA was stored in a freezer at -20oC. 

2.18.4 DNA Quantification. 

DNA quantification was carried out by measuring the absorbance of samples at 260/280 nm. 

This was done by adding 2 µl of DNA sample to 18 µl of distilled water and loaded into a 384 

UV/Vis multiwell plate (Corning). The absorbance was read at 260 nm and 280 nm on a 

Synergy HT multi-detection microplate reader.  

2.18.5 Polymerase Chain Reaction (PCR). 

The sequences of primers used for PCR are displayed in the table 2.2. Sterile 0.5 ml PCR tubes 

(Scientific Specialities Inc) were used to carry out PCR reactions for 16S rRNA gene for 

bacteria (primers 27F and 1492R), and actinomycetes (primers F243 and R513GC), using a 

thermal cycler (Eppendorf mastercycle gradient) and a total volume of 50 μl (made up of 

neutral water (nH2O), 10 µl of HF buffer, 1 µl of 10 mM dNTPs, 1 µl of forward primer (10 
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pmol/µl), 1 µl of reverse primer (10 pmol/µl), 5 µl of template, 1.5 µl of DMSO (3%) and 0.5 

µl Phusion hot start DNA polymerase (2 U/µl).  

For analytical and routine PCR, Taq based Biomix red solution (Bioline) was used. When the 

amplified DNA was to be used for cloning, Expand hi-fidelity polymerase was used (Roche-

diagnostics), which contains a Taq polymerase with a proof-reading enzyme. PCR reactions 

were carried out with an initial denaturation for 2 min at 94oC followed by 35 cycles of 

denaturation at 94oC for 30 s, annealing at 52oC (or at temperature 5oC less than the melting 

temperature of the primers) for 1 min, extension at 72oC for 2 min and a final extension at 

72oC for 5 min. Samples were then held at 20oC until processing.  

The reaction mixture for amplifying protein sequences for routine 50 µl reaction Taq PCR 

consisted of 10x Taq reaction buffer (5 µl), 10 mM dNTPs (1 µl), 10 µM forward primer (1 

µl), 10 µM reverse primer (1 µl), variable template DNA volume, Taq DNA polymerase (0.25 

µl) and nuclease-free water was added to make up to 50 µl. The cycling conditions for Taq 

PCR were carried out with an initial denaturation for 30 s at 95oC followed by 30 cycles of 

denaturation at 95oC (15-30 s), annealing at 45-68oC (15-60 s) and 68oC (1 min), final 

extension at 68oC for 5 min. The reaction was held at 4-10oC.  

2.18.6 DNA Ligation. 

The Fermentas CloneJET (pJET1.2/blunt) vector was used for molecular cloning of the 16S 

rDNA PCR products. DNA fragments were ligated using T4 DNA Ligase (Promega, 

Southampton, UK). The molar ratio of plasmid to insert was typically 3:1 for cohesive end 

ligation. The ligation reaction mixture contained plasmid /insert mix, 10 µl of 2x buffer, 1 µl 

of T4 DNA ligase, and made up to a volume of 20 µl with nuclease free water. The ligation 

mixture was incubated overnight at 4oC. 

2.18.7 Preparation of chemically competent E. coli cells. 

Chemically competent E. coli cells were made using the method described by (Chung et al., 

1989). E. coli strains were grown in 20 ml LB broth to an OD600 nm = 0.4. Cells were harvested 

by centrifugation at 10 000 x g for 10 min at 4°C and resuspended in 2 ml ice cold 

transformation and storage solution (TSS) [LB broth with 10% (wt/vol) polyethylene glycol 

(PEG, molecular weight 3 350 or 8 000), 5% (vol/vol) dimethylsulfoxide DMSO, and 50 mM 
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Mg2+ (MgSO4 or MgCl2), at a final pH of 6.5]. Aliquots (50 μl ) of chemically competent cells 

were transferred to 1.5ml microcentrifuge tubes and stored at -80°C. 

2.18.7.1 Transformation.  

To carry out transformation, 50 µl of E.coli (JM109) competent cells (from Invitrogen or 

promega) were thawed on ice for 10 min. Keeping the ligation mixture on ice, 2 µl of the 

ligation mixture was added slowly, well mixed using the pipette tip, and incubated on ice for 

another 20 min. The cells were then heat shocked at 42oC for 90 s using a heating block then 

the mixture returned to ice for 2 min. Subsequently 700 µl of 2TY was added to the mixture 

and the cells incubated at 37oC with shaking at 250 rpm for 1 h. The culture was spun at 800 

x g for 1 min. About 550 µl of the supernatant was removed and discarded. The cells were 

gently mixed in the remaining supernatant by pipetting up and down; 200 µl was plated on an 

LB + Ampicillin plate which had been pre-warmed at 37oC for 20 min. The plates were then 

incubated overnight at 37oC.  
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Table 2.2 Sequences of primers used for PCR.  

The oligonucleotide primers for amplification were from Invitrogen, pJET1.2 forward and pJET1.2 reverse were 

from Fermentas.  

 

Primer Sequence (5’           3’) 

27F 

1492R 

pJET1.2 forward 

pJET 1.2 reverse 

F243 

R513GC 

ENDO-H_F 

ENDO-H-R 

Endo F1 

Endo R1 

Endo F2 

Endo R2 

Csac0137FWD 

Csac0137RVR 

GAGAGTTTGATCCTGGCTCAG 

GGTTACCTTGTTACGACTT 

CGACTCACTATAGGGAGAGCGGC 

AAGAACATCGATTTTCCATGGCAG 

GGATGAGCCCGCGGCCTA 

CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGGGCGGCCGCGGCTGCTGGCACGTA 

CATCCCGTTGGGAGACCATC 

CGGCACCTTCGTACTGGACT 

ATGTTCACTCCGGTTCGCAG 

CCGACGCCCCTACGGCGTCC 

CACTCCGGTTCGCAGAAGGG 

CTACGGCGTCCGGACCGCCT 

GTTATTGTTGCCTATAGGAGTGAATGACACATCTGCTGCAAGGCCTTTTTTTGAAGACGATTTTAAG 

aatttcacacaggaaacagctatgacatgattacgaattcGAGCTCGCAAAAAAACGCCCCTTTCGGGGCGCGActaaaatctcatca

aaagct 

 

2.18.8 Preparation of electrocompetent Geobacillus strains. 

The Geobacillus cells were grown at 55°C overnight on pre-warmed TGP agar plates. One 

colony from the overnight plate was inoculated into 50 ml of pre-warmed TGP medium. The 

culture was incubated at 55°C. The culture OD600 nm was monitored to approximately 1.4. The 

culture was cooled on ice for 10 minutes and the cells were harvested by centrifugation for 20 

min at 9 000 x g at 4°C. 

The pellet of the cells was re-suspended in 20 ml of ice cold, sterile, electroporation buffer 

(0.5 M sorbitol, 0.5 M mannitol and 10% v/v glycerol) and centrifuged at 9 000 x g for 20 min 

at 4oC to pellet the cells. The washing step was repeated with 1x10 ml and 2x5 ml ice cold 

electroporation buffer, and centrifuged at 9 000 x g for 20 min. After the final wash the pellets 

were put on ice. Each pellet was re-suspended in 875 µl ice cold electroporation buffer. The 
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competent cells were divided into 60 µl aliquots in pre-chilled 1.5 ml microtubes and stored at 

-80oC. 

2.18.8.1 Electroporation of electrocompetent Geobacillus strains. 

One 60 µl aliquot of electrocompetent cells from the -80oC was thawed on ice and mixed with 

1 µl of plasmid DNA, gently by using the pipette tip. The mixture was transferred to a 1 mm 

gapped ice cold electroporation cuvette (Yorkshire Biosciences, York, UK) and incubated on 

ice for 5 minutes. This was followed by a single exponential pulse (10 µF, 2500 V and 600Ώ) 

applied using the Xcell gene pulser (Bio-Rad, Hemel Hempstead, UK). 

Part of the 1 ml pre-warmed (52°C) TGP broth was added to the cuvette and mixed gently by 

pipetting up and down then transferred the electroporation mixture to the rest of the pre-

warmed TGP. The cells were incubated at 52°C and 250 rpm shaking for 1 h. After 1 h 

incubation the suspension was centrifuged at 8 000 rpm for 2 min. About 700 µl of the 

supernatant was pipetted out. The remaining supernatant was mixed with the pellet and the 

mixture was plated out on pre-warmed TGP agar plates containing the appropriate selective 

antibiotic. 

2.18.9 Colony PCR. 

The colony PCR reaction mixture for each reaction contained H2O (8 µl), primer (10 µM/µl) 

pJET1.2 F(5’-CGACTCACTATAGGGAGAGCGGC-3’), (1 µl), primer (10 µM/µl) pJET1.2 

R(5’-AAGAACATCGATTTTCCATGGCAG-3’), (1 µl), (from Fermentas) and 10 µl of 

Biomix Red (2x). Samples from the selected transformed colonies from cloning were 

introduced by touching the colony with a pipette tip and mixing with the reaction mixture in 

separate PCR tubes. A PCR was run using Taq based Biomix red solution conditions, using an 

annealing temperature of 52oC, for 30 cycles. The colony PCR products were then analysed 

on a 0.7% agarose gel. 

2.18.10 Isolation of plasmid DNA.  

The selected transformants were grown by transferring a portion of each colony into pre-

warmed 10 ml LB + medium containing appropriate antibiotic and incubating overnight at 

37oC or 55oC, for E.coli and Geobacillus strains, respectively, with shaking at 250 rpm. 

Plasmids were extracted from the cells using QIA prep spin Miniprep kits (from Qiagen) using 
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the microcentrifuge method as specified in the manufacturer’s protocol. The samples were run 

on a 0.7% agarose gel. 

2.18.11 Plasmid digestion. 

The following digestion mixture was prepared for each isolated plasmid: 8 µl plasmid; 1 µl of 

10x Buffer H; 0.5 µl of appropriate restriction enzyme (restriction enzymes were obtained 

from New England Biolabs (Hertfordshire, UK) or Promega (Southampton, UK). Digests were 

performed for 4 h or overnight at appropriate temperature, using the supplied buffers and 0.5 

µl of 3% bovine serum albumin (BSA) when required. After incubation, the products were 

analysed on a 0.7% agarose gel.  

2.18.12 Preparing DNA for sequencing. 

Samples of plasmid were diluted to give 100 ng in a final volume of 15 µl, of nH2O + 1.5 µl 

of sequencing primers (10 µM/µl) pJET1.2 F(5’-CGACTCACTATAGGGAGAGCGGC-3’) 

/(10 µM/µl) pJET1.2 R(5’-AAGAACATCGATTTTCCATGGCAG-3’). Two reactions were 

set up for each transformant, one with a forward primer and another one with reverse primer. 

The reaction mixtures were sent for DNA sequencing to Eurofins Genomics. 
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3. Pretreatment of M. x giganteus.  

The recalcitrance of lignocellulosic biomass to enzyme deconstruction is considered to be the 

major obstacle to production of sustainable energy and other important chemicals. The 

biomass has to be pretreated to overcome the recalcitrance caused by the presence of lignin 

which embeds the sugar polymers, preventing their access to the degrading enzymes. Grass 

pretreatment has been reported to improve sugar yields to more than 90% theoretical yield 

(Brodeur et al., 2011).  

The M. x giganteus was pretreated by soaking in aqueous ammonia (10% w/w). Alkaline 

pretreatment is gentle on biomass. Brodeur et al., (2011) indicated that alkaline pretreatment 

causes deconstruction of ester and glycosdic side chains causing alteration to the lignin 

structure, partial decrystallization and swelling of cellulose, as well as partial dissolution of 

hemicellulose (McIntosh and Vancov, 2010; Sills and Gossett, 2011). The composistional 

analysis of the pretreated M. x giaganteus was carried out to assess the effectiveness of 

pretreating the biomass by SAA method and to check its suitability for use in consolidated 

bioprocessing. 

Figure 3.1 shows M. x giganteus preteated by soaking in 10% (w/w) aqueous ammonia (SAA) 

for 14 h. The samples pretreated at temperatures over the range 100oC to 200oC were compared 

with the untreated (UT) M. x giganteus.  

 

 

Figure 3.1 Pretreated and untreated M. x giganteus.  

Dried, milled and sieved (through mesh No. 20 (850 µm) and No. 80 (180 µm) using a sieving shaker). The sieves 

were stack in the following order, starting at the bottom: a solid catch pan, 80- mesh sieve, and then 20-mesh 

sieve. The milled M. x giganteus was placed in the 20-mesh sieve. The covered sieve stack was secured in the 

sieve shaker and shaken for 15 min. The milled M. x gianteus that remained in the 80-mesh sieve was pretreated 

by SAA at 100oC, 120oC, 140oC, 160oC, 180oC and 200oC for 14 h, washed to neutrality and then dried. 
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The colour intensity of the pretreated material increased with increase in pretreatment 

temperature, an indication that the biomass might have been getting charred at high 

temperatures.  

3.1 Compositional analysis of pretreated and untreated M. x giganteus. 

The composition of pretreated and untreated M. x giganteus was analysed using standard 

NREL protocols (Sluiter et al., 2008) in order to determine the effectiveness of the alkaline 

pretreatment process. 

 

 

Figure 3.2 Chemical composition of untreated and pretreated M. x giganteus biomass.  

The extractives were removed from the untreated M. x giganteus. Mass loss due to pretreatment and removal of 

extractives (recorded as “mass loss pretreatment”) was used to adjust the composition values. The pretreatment 

was done at 60oC, 80oC, 100oC, 120oC, 140oC, 160oC, 180oC and 200oC. This data was produced with help from 

Dr. Bartosiak-Jentys.  

The mass loss in the untreated samples is due to removal of extractives from the biomass prior 

to compositional analysis. The extractives in M. x giganteus are mostly aromatic compounds 

which contain simple phenols and sterols (Villaverde et al., 2009). They are water soluble and 

ethanol soluble non-structural materials in the biomass (Sluiter et al., 2008). Mass loss due to 

pretreatment increased with increasing pretreatment temperature; compositional analysis 

suggested that, up to 100oC, this was primarily due to lignin removal, whereas at higher 

temperatures increasing amounts of xylose (hemicellulose) was lost. The glucose values seem 
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to be consistently in the range of 42-47% (Fig. 3.2), suggesting that the bulk of the cellulose 

remained intact throughout this treatment.  

3.2 Enzymatic saccharification of the pretreated and untreated M. x giganteus 

biomass. 

The effectiveness of the SAA pretreatment process was analysed by carrying out enzymatic 

saccharification of the untreated and pretreated M. x giganteus biomass. Saccharification of 

the pretreated M. x giganteus was carried out by using the procedure described in the NREL-

LAP (Selig et al., 2008). This procedure allows determination of the maximum extent of 

digestability due to enzymatic saccharification of cellulose from the native or pretreated 

lignocellulosic biomass (Selig et al., 2008). The amounts of glucose and xylose released per 

gram of biomass were compared. 

 

 

 

 
Figure 3.3 Saccharification of pretreated and untreated M. x giganteus biomass.  

The graph shows the amount of glucose and xylose released per gram biomass after saccharification. Biomass had 

been pretreated by SAA for 14 h at temperatures ranging from 60-200oC. Each sample contained an equivalent of 

100 mg of oven (105oC) dry weight biomass mixed with 55 µl of 0.1 M sodium citrate buffer (pH 4.8), 40 and 30 

µl of cyclohexamide (10 mg/ml) and tetracycline (10 mg/ml in 70% ethanol), respectively, and 118 µl of 1:1 

enzyme blend of β-glucosidase (Novozyme 188) and cellulase from Trichoderma reesei from Sigma. The samples 

were incubated for 7 days in a New Brunswick Scientific Innova 4330 incubator shaker at 50oC with shaking at 

200 rpm. The enzyme hydrolysed samples were centrifuged for 10 min at 10 000 rpm (x2), using a 5424 Eppendorf 

centrifuge. Each sample was saccharified and analysed in triplicate by HPLC. This data was produced with help 

from Dr. Bartosiak-Jentys. 

The results clearly showed that SAA pretreated M. x giganteus biomass was more susceptible 

to saccharification than untreated biomass. The untreated samples gave less than 0.05 g/g 

biomass each of both glucose and xylose after saccharification, while the pretreated samples 
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gave glucose and xylose levels of more than 0.35 and 0.15 g/g biomass, respectively, for 

biomass pretreated at 120oC (Fig. 3.3). Saccharification efficiency appeared to be optimum 

with biomass pretreated at around 120oC, with a gradual drop in monomeric carbohydrate 

release at increasing temperatures above this value.  

3.3 Discussion. 

Compositional comparison of pretreated and untreated M. x giganteus indicated that the 

alkaline pretreatment method used was good for subsequent use in consolidated bioprocessing, 

because there was very little loss of glucose and xylose, suggesting that the xylan and cellulose 

remained largely intact. The amounts of glucose and xylose ranged from 42–48% and 12-22%, 

respectively, for the untreated and pretreated M. x giganteus samples (pretreated at temperature 

range from 60-200oC). 

The subsequent test of saccharification clearly indicates that the pretreatment procedure used 

was effective in opening up the structure of the miscanthus particles because more glucose and 

xylose was released from the pretreated M. x giganteus than from the untreated M. x giganteus. 

These initial results showed that the optimum temperature for a 14 h pretreatment of the M. x 

giganteus samples combined with subsequent saccharification was 120oC. The gradual 

decrease in the sugars released from M. x giganteus pretreated at temperatures above 120oC 

could be due to the released monomers being degraded at increased temperatures (using the 

fixed time pretreatment) and affecting enzymatic hydrolysis or the polymers being modified 

making them more difficult to degrade.  

A 14 h pretreatment was chosen because this could conveniently be done overnight and it is 

probable that shorter pretreatments would have different temperature optima. Clearly this 

would not be ideal for an industrial process, where shorter times and higher temperatures are 

typical. However, the prime purpose of this study was to create a feedstock which was useful 

for evaluating consolidated bioprocessing, ie one in which the carbohydrates remained largely 

in polymeric form but which was more accessible to enzymes than the starting material. Based 

on these findings, the M. x giganteus biomass used in this project was pretreated by SAA at 

120oC. 
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4. Preliminary studies of the WL isolates. 

4.1 Introduction. 

The WL strains 3, 6 14 and 16 were isolated from wood compost from West London Compost 

Company by members of the Leak lab during a previous study. The work with the WL strains 

was carried out to characterise these strains by 16S rRNA gene sequence analysis and 

individual strains for their ability to degrade cellulose, avicel, xylan and pretreated M. x 

giganteus to characterise the enzymes that appear to be active in degrading these carbon 

sources. The enzymes were characterised as extracellular enzymes induced during degradation 

of carbon substrates. They were purified from 1 dimensional native-PAGE gels and sufficient 

sequence information was determined by LC-mass spectrometry (LC-MS) to allow PCR 

amplification of a fragment of the gene. The relevant genes would then be cloned and 

expressed in G. thermoglucosidasius (DL33 and NCIMB 11955) and transformed G. 

thermoglucosidasius ultimately examined for growth on pretreated M. x giganteus. 

4.2. Standardisation of the revival procedure for WL strains from stock cultures 

stored at -80oC. 

The WL strains used in this study had been isolated from high intensity compost heaps at West 

London Composting on ASM + 0.5% CMC. Initially it was not easy to revive them from 

glycerol stock cultures stored in the -80oC freezer, with few, and frequently no colonies 

appearing on 2TY agar plates when spread directly with samples taken from frozen stocks. A 

study was carried out to standardize a reliable revival procedure for these strains, in which 

cells were incubated in 2TY liquid medium for a short time before spreading on plates (Table 

4.1). 
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Table 4.1 Time course of cell revival from stock cultures stored at -80oC.  

The stock cultures were inoculated into 2TY liquid media before spreading on pre-warmed 2TY agar plates. The 

number of colonies reported represents CFU/100 µl of culture. TNTC stands for too numerous to count, while 

“mat” represents plates where colonies formed a mat on the agar surface. 

 

 

The results of this experiment showed that after 2 h incubation in liquid media, the number of 

colonies revived on 2TY agar plates dramatically increased, for all WL strains. The numbers 

of colonies obtained, and the calculated growth rates in 2TY liquid media (Fig. 4.1) indicated 

that this was unlikely to be due to growth alone. 

4.2.1 Screening for possible factors that could be reviving cells from stock 

cultures stored at -80oC. 

Recognising that the rapid increase in colony numbers observed in Table 4.1 could not be 

derived from growth alone it was considered that either cells could individually be revived 

from some form of dormancy, or that a small number of growing cells could be producing a 

soluble “factor” that revived the other cells. To test for the latter possibility a study was carried 

out to look for evidence of cells releasing growth inducing factors into the medium. WL14 was 

selected for this study due to its rapid revival.  

A culture of WL14 was inoculated and sampled from time 1 to 4 h incubation. After incubation 

100 µl of each culture was inoculated on prewarmed 2TY plates. Each culture was then filtered 

using a 0.2 µm filter disc and 100 µl of the filtrate spread on a prewarmed 2TY plate (control). 

The filtrate containing the possible revival factor was then inoculated with a loopful of WL14 

stock culture from -80oC, and 100 µl was inoculated on a prewarmed 2TY plate. Each culture 

was incubated at 55oC for 1 h. After the 1 h incubation 100 µl of each culture was plated on 

seperate prewarmed 2TY plates.  
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All the plates were incubated at 55oC overnight. The developed colonies were counted and 

recorded in table 4.2. 

 

Table 4.2 Screening for possible soluble factors produced in liquid media which can revive cells previously stored 

at -80oC.  

Cultures of WL14 were incubated in 10 ml of 2TY liquid media at 55oC with shaking at 250 rpm for: A: 1 h; B: 

2 h; C: 3 h; D: 4 h. For each incubation: 1 represents number of colonies growing on 2TYplates after spreading 

100µl from the liquid 2TY culture after each incubation period; 2 is the control experiment, in which uninoculated 

filtrate was spread on 2TY plates; 3 represents growth from filtrate inoculated with WL14 stock culture from -

80oC sampled before incubation of the inoculated filtrate; and 4 represents growth after incubating the inoculated 

filtrate for 1h at 55oC with shaking at 250 rpm. TNTC stands for too numerous to count, while mat represents 

plates where colonies covered the agar surface. 

 

 
 

After the initial incubation, all the experiments (A, B, C, and D) gave more than 300 colonies 

(TNTC/mat). There were no colonies on the plates spread with uninoculated filtrate, or the 

plates which were inoculated with samples taken immediately after inoculating the filtrate 

(Table 4.2 experiments 2 and 3, respectively), suggesting that, if a soluble “revival” factor was 

being produced it was not acting instantaneously. All the plates for experiment 4 gave large 

numbers of colonies.  

4.2.2 Determination of the time at which cells of the WL14 strain start reviving 

from stock cultures stored at -80oC.  

An experiment was carried out to determine the time taken for cells of WL14 to begin to revive 

to a culturable state from stock cultures stored at -80oC when incubated at 55oC with shaking 

at 250 rpm. A loopful of WL14 stock culture from -80oC was inoculated into 10 ml of pre-

warmed 2TY medium in a 50 ml falcon tube which was incubated at 55oC with shaking at 250 

rpm. An initial sample of 100 µl was taken immediately from the inoculated tube after mixing 

well but before incubation, and subsequent samples taken at 15 min intervals thereafter. They 

were spread on pre-warmed 2TY plates which were incubated overnight at 55oC.  
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After incubating the plates overnight no colonies were observed on the plate inoculated with a 

sample taken before incubation, while the plates spread with samples taken after 15 and 30 

min incubation had 7 colonies and 100 colonies, respectively, and the plates spread after 45 

min and 1 h had more than 300 colonies (TNTC). The results showed that for WL14, 

incubation of cells for about 15 to 30 min at 55oC with shaking at 250 rpm was sufficient to 

obtain successful revival of cells from stock cultures stored at -80oC, but that revival (as 

opposed to growth) appeared to continue for at least an hour.  

A further experiment was set up to check for the possible production of a “revival” factor by 

strain WL14. A culture of WL14 was inoculated and sampled at time 0 and after 1 h incubation 

as previously described. The culture was then filtered as described above, 100 µl of the filtrate 

spread on a prewarmed 2TY plate (control). The filtrate containing the possible revival factor 

was then inoculated with a loopful of WL14 stock culture from -80oC, and the revival time 

analysed by sampling at 0, 15, 30, 45 and 60 min. as described above. 

No colonies were observed on the plates inoculated before the first incubation, with the 

uninoculated filtrate, or with the inoculated filtrate before incubation. After the second 

incubation, the plates spread after 15 min and 30 min had 1 and 77 colonies, respectively, 

while those spread after incubation for 45 min and 1 h had more than 300 colonies (TNTC). 

The low rate of revival after 15min reinforces the earlier suggestion that the revival of cultures 

in 2TY liquid medium is not due to transmission of an extracellular revival factor.  

4.3 Growth profiles. 

4.3.1 Determination of growth rates of strains WL3, WL6, WL14 and WL16 on 

2TY medium. 

The growth rates of the WL strains 3, 6, 14 and 16 on 2TY medium were determined for future 

reference. For this, 0.5 ml of a 2TY overnight culture of each WL strain grown from a freshly 

grown colony were inoculated into 50 ml of pre-warmed 2TY medium in separate 250 ml 

flasks. The cultures were grown at 55oC with shaking at 250 rpm. Optical density readings 

were recorded over a period of 9 h (Fig. 4.1).  
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Figure 4.1 Growth curves of WL strains on 2TY medium.  

(A) WL3, (B) WL6, (C) WL14 and (D) WL16. Three samples were taken at each time point for OD measurements 

at 600 nm. 

From the slopes of graphs 4.1A-D the growth rates were calculated as 1.21 h-1 (WL3), 1.48 h-

1 (WL6), 1.58 h-1 (WL14) and 1.34 h-1 (WL16). 

y = 1.2111x - 4.9442

R² = 0.9391

-6

-4

-2

0

2

4

0 2 4 6 8 10

L
N

 O
p

ti
ca

l 
D

en
si

ty
Time (Hours) A

y = 1.4804x - 4.6221

R² = 0.997

-8

-6

-4

-2

0

2

4

0 2 4 6 8 10

L
N

 O
p

ti
ca

l 
D

en
n
si

ty

Time (hours) B

y = 1.584x - 5.4483

R² = 0.9879

-6

-4

-2

0

2

4

0 2 4 6 8 10

L
N

 O
p

ti
ca

l 
D

en
si

ty

Time (hours) C

y = 1.3402x - 4.6972

R² = 0.9965

-6

-4

-2

0

2

4

0 2 4 6 8 10

L
N

 O
p

ti
ca

l 
D

en
si

ty

Time (hours) D



91 

 

4.3.2 Growth tests for the production of cellulases by WL strains. 

The WL strains were tested for cellulase production by growing on plates containing ASM + 

0.1% YE + 0.5% CMC, ASM + 0.1% YE + 0.5% cellobiose, ASM + 0.1% YE + 0.5% avicel, 

and on ASM +0.1% YE (control), and staining the plates with Congo red (Figures. 4.2 and 

4.3). The presence of halos around the colonies after staining indicates zones of substrate 

clearance.  

 

 

Figure 4.2 Congo red screen for cellulase activity in 24 h old WL strains cultures.  

The cultures were screened for cellulase activity after growth on A: ASM + 0.1% YE, (control) B: ASM + 0.1% 

YE + 0.5% avicel, C: ASM + 0.1% YE + 0.5% cellobiose and D: ASM + 0.1% YE + 0.5% CMC. The inoculation 

was carried out by touching an overnight culture grown on 2TY with an inoculating loop and then spotting on the 

plates containing specific substrates. The order of the spotted strains from the top right quarter of the plate 

following the clockwise direction was WL3, WL6, WL14 and WL16. The plates were incubated for 24 h at 55oC 

before being flooded with Congo red, and then rinsed with 1 M NaCl to show the zones of clearance around the 

colonies. 



92 

 

 

Figure 4.3 Congo red screen for cellulase activity in 8 d old WL strains cultures.  

WL strains were growing on A: ASM + 0.1% YE, (control) B: ASM + 0.1% YE + 0.5% avicel, C: ASM + 0.1% 

YE + 0.5% cellobiose and D: ASM + 0.1% YE + 0.5% CMC. The inoculation procedure and the order of strains 

on the plates were as indicated in Fig. 4.2. After 8 days incubation at 55oC, plates showed zones of clearance after 

being stained with Congo red stain and then rinsed with 1 M NaCl.  

Bacterial colonies developed on all the plates. All four WL strains showed some activity 

against avicel, cellobiose and CMC, with most of the strains showing the largest zone of 

clearance on CMC and the smallest on avicel. There were no halos evident around the colonies 

on the control plates (ASM alone, Figures. 4.2A and 4.3A), consistent with the reaction with 

Congo red being specific for carbohydrates. Halos were evident on ASM + 0.1% YE avicel 

after 8 days incubation, though they are barely visible in Fig. 4.3B due to the opaqueness of 

avicel.  

4.4 Growth of WL3, WL6, WL14 and WL16 in liquid medium on CMC, avicel 

and xylan in modified ASM. 

The growth of the WL strains in liquid medium on CMC, avicel and xylan as substrates was 

assessed by growing the strains on 0.5% of the substrate + 0.1% YE + ASM. The strains were 

also grown on ASM + 0.1% YE (control for the experiments).  
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Figure 4.4 Growth profiles of WL strains on avicel, CMC and xylan.  

WL3, WL6, WL14 and WL16 after growth on (A) ASM + 0.1% yeast extract (YE), (B) ASM + 0.5% CMC + 

0.1% YE, (C) ASM + 0.1% YE + 0.5% xylan, (D) ASM + 0.1% YE + 0.5% avicel (by total protein concentration), 

and (E) ASM + 0.1% YE (by total protein concentration). The cultures were incubated for 8 days. Optical density 

was measured at 600 nm. Growth on avicel and ASM control for avicel was determined by measuring the total 

suspended protein concentration by Bio-Rad protein assay using the method of Bradford  (Bradford, 1976) 

following the manufacturers protocols. 

 

The WL strains did not show any significant growth on ASM (Fig. 4.4A) and growth on CMC 

did not seem to be greater than on ASM alone (Fig. 4.4B). Later on growth increased, but it is 

not clear whether the cells were growing or the increased OD was due to evaporation. All four 

WL strains showed good growth on xylan (Fig. 4.4C) while none of the strains showed any 

significant growth on avicel (Fig. 4.4D). Different results for the cultures on CMC and avicel 

might have been obtained by increasing the period of growth.  

4.5 Enzyme assays. 

4.5.1 Determination of glycoside hydrolase activity. 

Cellulase assays were carried out on the secreted protein (after removing the cells by 

centrifugation) from cultures of strains WL3, WL6, WL14 and WL16 grown on ASM + 0.1% 

(YE) + 0.5% CMC, ASM + 0.1% YE + 0.5% xylan, ASM + 0.1% YE + 0.5% avicel and ASM 

+ 0.1% YE (Fig. 4.5), grown for 8 days at 55oC with shaking at 250 rpm.  

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2 4 6 8 10P
ro

te
in

 c
o

n
ce

n
tr

at
io

n
 (

m
g
/m

l)

Time (Days)

WL3

WL6

WL14

WL16

E



95 

 

 

 

 
 

Figure 4.5 Cellulase, xylanase and avicelase specific activity of WL strains.  

Enzyme specific activity was assessed in the culture supernatants of WL3, WL6, WL14 and WL16 growing on 

(A) ASM + 0.1% YE + 0.5% CMC (B) ASM + 0.1% YE + 0.5% xylan (C) ASM + 0.1% YE + 0.5% avicel, 

respectively, and (D) cellulase specific activity of the control (ASM + 0.1% YE). The supernatant from each 

culture was assayed for protein concentration and avicelase cellulase, or xylanase specific activity for the cultures 

grown on avicel, CMC, and on xylan, respectively. The protein concentration was determined by the method of 

Bradford (Bradford, 1976). Enzyme activity was measured by the DNS (3,5-dinitrosalicylic acid) method (Miller 

et al. 1960). The enzyme specific activity was determined by dividing the enzyme activity by the protein 

concentration. The samples were analysed 3 times. 
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WL3 showed no cellulase activity after growth with CMC throughout the experiment (Fig. 

4.5A), while WL6 and WL16 started showing activity from the sixth day, and by day 8, had a 

CMCase specific activity of 0.94 and 0.67 µmoles/min/mg, respectively. WL14 showed higher 

CMCase activity than the other WL strains throughout this experiment, reaching a specific 

activity of 1.68 µmoles/min/mg on day 8. Except for WL3, all the WL strains showed a 

CMCase specific activity that increased from day 6, despite showing no evidence of growth 

(Fig. 4.4B). 

Xylanase specific activity measurements were also recorded from day 1 (Fig. 4.5B). After day 

5 all four WL strains showed xylanase activity, with WL3 having the lowest. WL6, WL14 and 

WL16 showed a trend of increasing xylanase specific activity from day 5. For WL3 activity 

increased after day 6.  

In experiment (C) of Fig. 4.5, some avicelase enzyme activity was evident with all four strains 

by day 1. By day 2, the enzyme activity for WL3 and WL6 started decreasing, while that of 

WL14 and WL16 started decreasing after day 5 and 3, respectively, marking their highest 

avicelase specific activity of 0.82 and 0.60 µmoles/min/mg, respectively. By day 8 avicelase 

specific activity for all the four strains was close to 0 µmoles/min/mg. 

Experiment (D) (Fig. 4.5) was used as a control, to check cellulase (avicelase or CMCase) 

activity in modified ASM medium without addition of an extra carbon source. Cellulase 

activity was recorded from day 1 of incubation. None of the WL strains showed any significant 

cellulase activity, until day 6, when WL6 and WL14 showed a slight increase, but dropped by 

day 7.  

4.5.2 SDS PAGE and native PAGE gel analysis. 

SDS PAGE gels (12%) were run to look for extracellular proteins produced by the WL strains 

during growth on avicel. The cultures on the carbon sources were left to grow on for 18 days. 

Samples used for protein analysis on gels were from day 8 and day 18 after growth on avicel. 

The resulting SDS-PAGE gels did not show good activity after staining with Congo red (results 

not shown). Therefore native-PAGE gels were run instead, and the enzyme activity was much 

better than the activity on the SDS-PAGE gels (Fig. 4.6). 
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Figure 4.6 Native CMC PAGE gels of protein from the cultures of WL strains. 

The cultures were grown on 0.5% avicel + 0.1% YE + ASM, and stained with Coomassie brilliant blue (gels A 

and C) and Congo red (gels B and D). The native PAGE gels contained 0.05% CMC (from Sigma). For gel B 

only, lanes, 2, 4, 6 and 8, were loaded with supernatant from WL3, WL6, WL14 and WL16, respectively, and 

their controls in lanes 1, 3, 5 and 7, respectively. The samples loaded in lanes 1, 3, 5 and 7 of gels A, C and D 

were supernatants from WL3, WL6, WL14 and WL16 cultures, respectively, while lanes 2, 4, 6 and 8 were loaded 

with supernatant from their controls, respectively. Gels A and B were loaded with supernatant from the 8 day old 

cultures, while gels C and D were loaded with supernatants from the 18 day old cultures. For each sample, 28 µl 

was mixed with 12 µl of loading buffer for native gels. The protein concentration was standardized to 

approximately 0.5 mg/ml for all samples. The single arrow on each gel point to the set of clear bands on the Congo 

red stained zymograms and the corresponding set of bands on the Coomassie brilliant blue stained gels. 

Fig 4.6B and D show that cellulase activity was constitutive in strains WL6, 14 and 16. 

However the enzyme activity of the supernatant from the avicel cultures was higher than that 

of the supernatant from their controls as strains’ cultures clear bands in the Congo red stained 

gels were in most cases larger than the clear bands of the control (Fig. 4.6B and D).  

Two sets of 2 bands labelled T in Figures 4.6A and 4.6C, lanes 4 and 6, are visible in the lanes 

loaded with supernatant from controls of WL6 and WL14 8 day old cultures, respectively, 

(Fig. 4.6A), and similar bands were observed in the 18 day old controls of the same strains 

(Fig. 4.6C). However, no cellulase activity was evident in the locations of these protein bands. 

Mass spectrometric analysis of bands excised from the gels identified these as aconitate 

hydratase from Geobacillus kaustophilus (the closest strain being HTA426). It was not clear 

why the proteins in the two bands were inhibited from being secreted by the WL6 and WL14 

cultures grown on avicel. 



98 

 

All the clear areas in gel D (Fig. 4.6) were analysed by mass spectrometry. The enzymes xylan-

1,4-β-xylosidase from Geobacillus sp. (closest strain being stearothermophilus) was detected. 

Other identified enzymes from the same clear bands included NAD-dependent aldehyde 

dehydrogenase from Geobacillus sp. (closest strain being kaustophilus HTA426) and Δ-1-

pyrroline-5-carboxylate dehydrogenase from Geobacillus spp. (closest strains being 

kaustophillus HTA426, Y412MC52 and WCH70). The faint clear bands visible just above the 

larger clear bands in lanes 6 and 8 of gel B were both identified as oligoendopeptidases from 

Geobacillus spp. (closest strains being Y412MC52, WCH70 and kaustophillus HTA426).  

4.6 Growth of WL3, WL6, WL14 and WL16 on pretreated and untreated M. x 

giganteus in unbuffered RIM. 

WL3, WL6, WL4 and WL16 were inoculated into media containing either 1% (w/v) untreated 

M. x giganteus in RIM, 1% (w/v) pretreated M. x giganteus in RIM or RIM alone. Because of 

the presence of suspended solids, growth was followed by measuring the protein concentration 

in the media (Fig. 4.7). 

The results showed that none of the WL strains used was able to grow in RIM alone, which is 

unsurprising given the low carbon content of this medium. However, there was apparent 

growth on both pretreated and untreated M. x giganteus, with growth on untreated M. x 

giganteus apparently greater than that on pretreated M. x giganteus. Growth of all strains on 

untreated M. x giganteus showed a similar profile, increasing over the first 2 or 3 days but then 

apparently declining. This could reflect growth on easily available carbohydrate or other 

carbon sources, which may have been washed out of the treated M. x giganteus during 

preatment. There is some evidence that growth on pre-treated miscanthus might have been 

starting after a few days incubation.  

The highest total protein concentration recorded during the 5 days growing period on 

pretreated M. x giganteus was 0.22, 0.52, 0.36, and 0.22 mg/ml, while on untreated M. x 

giganteus the highest values recorded were 0.66, 0.53, 0.54 and 0.55 mg/ml for WL3, WL6, 

WL14 and WL16, respectively. No physical degradation of pretreated or untreated M. x 

giganteus was visible in any of the cultures even when the cultures were left to grow on for 

more than 6 weeks.  
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Figure 4.7 Growth of WL strains on 1% pretreated and untreated M. x giganteus in unbeffered RIM. 

(A) WL3, (B) WL6, (C) WL14, and (D) WL16. The strains were grown on 1% pretreated M. x giganteus in RIM, 

1% untreated M. x giganteus in RIM and RIM alone, measured by protein determination in the culture supernatant 

after settling of larger particles as outlined by Ishida et al., 1997, using the Bradford assay (BioRad). The cultures 

were started with 0.5% inoculum from an overnight 2TY culture and incubated at 55oC with shaking at 250 rpm 

for 5 days.  
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4.6.1 Determination of enzyme activity of WL14 after growth on pretreated M. x 

giganteus. 

WL14 showed some evidence of growth on the pre-treated M. x giganteus based on the 

increase in protein concentration and was, therefore, used to assess for secretion of glycoside 

hydrolases. The supernatant used for the analysis was from 3 day old cultures at which point 

the culture had the highest suspended protein concentration (Fig. 4.7C). The results showed 

that there was a low level (less than 0.2 µmoles/min/mg) avicelase and CMCase activity 

present in the supernatant, while xylanase activity was high (Fig. 4.8). 

 

 

Figure 4.8 Avicelase, CMCase and xylanase specific activity in WL14 culture broth after growth on pretreated 

M. x giganteus in unbuffered RIM.  

The supernatants analysed were taken from a 3 day old culture and the control. The cells were removed by 

centrifugation at 4 000 x g at 20oC for 20 minutes in an Eppendorf 5810-R. The collected supernatant (0.5 ml) 

was concentrated to approximately 0.1 ml by centrifuging in a bench top accuSpinTM Micro centrifuge (Fisher 

Scientific) at 10 000 x g for 15 minutes using a 3 000 MWCO PES vivaspin centrifugal membrane separator from 

Sartorious stedim biotech. The protein concentration was determined by the Bradford method. The DNS (3,5-

dinitrosalicylic acid) method (Miller et al., 1960) was used to measure the enzyme activity. 

4.7 Identifying the WL strains based on their 16S rRNA gene sequences. 

4.7.1 PCR amplification of 16S rRNA gene sequences. 

Optimisation was carried out using chromosomal DNA from strains WL14 and WL16 (Fig. 

4.9) to find the right annealing temperature for successful 16S rRNA gene amplification of the 

WL strains. 
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Experiment 1 

 

 

Experiment 2 

 

Figure 4.9 PCR optimisation experiments using WL14 and WL16 strains.  

Chromosomal DNA was isolated from overnight cultures grown on 2TY, using the EZNA Bacterial DNA kit 

(Omega Bio-Tek). An annealing temperature range of 46.9 to 58.8oC was used for experiment 1 and 58.2 to 69.9oC 

for experiment 2, with annealing temperature increasing from samples 1 to 8. Products were analysed on a 0.7% 

agarose gel. The PCR reaction mixture contained 1 µl DNA, 1 µl of primer 27F (10 pmol/µl), 1 µl of primer 

1492R (10 pmol/µl), 7 µl neutral water (nH2O) and 10 µl Biomix Red (2x) (Bioline). The temperature for each 

specific lane was 46.9, 48.2, 49.8, 51.6, 53.5, 55.5, 57.2, and 58.8oC for lanes 1 to 8, respectively, in experiment 

1, and 58.2, 59.9, 61.7, 63.6, 65.6, 67.3, 68.8, and 69.9oC, respectively, for lanes 1 to 8 in experiment 2. 

It was clear that products were obtained at all annealing temperatures, although the amounts 

decreased at higher temperatures. The median temperature of experiment 1 was about 52oC, 
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and was chosen as the annealing temperature for 16S rRNA gene amplification for all WL 

strains.  

4.7.2 Phusion polymerase chain reaction. 

To improve the fidelity of the PCR products, Phusion polymerase was used because it has the 

ability to proof read and correct errors in DNA synthesis. The concentration of the isolated 

DNA of WL3, WL6, WL14 and WL16 was 9.5 ng/µl, 6.75 ng/µl, 7.5 ng/µl and 5 ng/µl, 

respectively. These concentrations were used to estimate the amount of template DNA to be 

used for the Phusion PCR for each strain. The 16S rRNA gene PCR products for the WL strains 

are shown in Fig. 4.10A and B. 

 

 

Figure 4.10 Products from PCR amplification of the 16S rRNA gene from WL strains.  

For WL3, WL6 and WL14 the Phusion PCR mixture contained 30 µl of nH2O, 10 µl of HF buffer, 1 µl of 10 mM 

dNTPs, 1 µl of primer 27F (10 pmol/µl), 1 µl of primer 1492R (10 pmol/µl), 5 µl of template, 1.5 µl of DMSO 

(3%) and 0.5 µl of Phusion hot start DNA polymerase (2 U/µl). For WL16 the concentration of the template was 

adjusted by adding 27 μl nH2O to 8 μl of template. The Phusion PCR products were analysed by 0.7% agarose 

gel electrophoresis, and the results were as shown in (A) WL3 and WL6, (B) WL14 and WL16. 

The WL3, WL6, WL14 and WL16 DNA Phusion PCR products were purified using a Qiagen 

gel extraction kit; the concentration of WL3, WL6 and WL14 products was 140 ng/μl, and that 

of WL16 was 120 ng/μl.  

The Fermentas CloneJET (pJET1.2/blunt) vector was used for molecular cloning of the 16S 

rRNA gene PCR products from the WL strains. The PCR product concentration was used to 
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calculate the required volume to be used for the reaction to give a 3:1 molar ratio of plasmid 

to insert.  

The pJET1.2/blunt vector is best for high efficiency cloning of PCR products generated with 

any polymerase that produces blunt ended products, such as Phusion. The PCR products were 

ligated directly into the vector, which contains a gene encoding a lethal restriction enzyme that 

gets disrupted by ligation of the DNA insert into the cloning site. Therefore only bacterial cells 

with recombinant plasmids are able to form colonies on the LB + Ampicillin medium plates. 

The cloning products were used to transform E.coli (JM109) competent cells. The 16S rRNA 

gene pJET recombinants of WL3, WL6, WL14, and WL16 gave transformation efficiencies of 

3.0 x 104, 6.0 x 105, 5.0 x 103 and 1.25 x 105 CFU/µgDNA, respectively.  

4.7.3 Colony PCR. 

Colony PCR was carried out in order to confirm whether the transformants contained an insert 

of the correct size in the pJET1.2 cloning site.  

 

 

Figure 4.11 Products from colony PCR of JM109 pJET1.2 transformants believed to contain 16S rRNA genes.  

The PCR was run using an annealing temperature of 52oC, for 30 cycles. The PCR reaction mixture for each 

reaction contained H2O (8 µl), Primer (10 pmol/µl) pJET1.2 F (1 µl), Primer (10 pmol/µl) pJET1.2 R (1 µl) and 

10 µl of Biomix Red (2x). The selected transformant colony was touched with a pipette tip and introduced into 

the PCR reaction mixture. The PCR products were analysed on a 0.7% agarose gel. The results were as presented 

in (A) WL3 and WL6, and (B) WL14 and WL16. 

 



104 

 

Products of the expected size were obtained for clones derived from all four WL strains (Fig. 

4.11A and B). 

4.7.4 Plasmid isolation and digestion. 

To isolate the plasmids, the selected transformants were grown by inoculating from single 

colonies of cells into prewarmed 10 ml LB + ampicillin medium and incubating overnight at 

37oC with shaking at 250 rpm. Plasmids were extracted from the cells using the QIA prep spin 

Miniprep kit. To confirm that an insert of the expected size had been cloned into the vector, it 

was digested with Bgl II restriction enzyme (New England Biolabs, Hertfordshire, UK).  

 

 

Figure 4.12 Bgl II digestion of recombinant pJET1.2 believed to contain 16S rRNA gene inserts from WL strains.  

The reaction mixtures for plasmid contained 1 µl DNA 1 µl 10x Buffer H, 0.2 µl BSA 50x (15 µl BSA + 15 µl 

neutral water), 7.3 µl (nH2O), and 0.5 µl Bgl II except for WL14 which contained 4 µl DNA and 4.3 µl water. 

The digestion mixtures were incubated at 37oC overnight and analysed on a 0.7% agarose gel. The obtained results 

were as shown in (A) WL3 and WL6, and (B) WL14 and WL16. 

For most plasmids, a product of approximately 1.5kb, consistent with the size of the 16S rRNA 

gene PCR product previously amplified, was observed (Fig. 4.12). This suggests that the 

cloning had been successful for most of the transformants analysed. However, sample 4 of 

WL3 and sample 3 of WL6 were not fully digested.  

4.7.5 Sequencing and analysis of the plasmid inserts. 

Samples of plasmid from 2 each of the WL3, WL6, and WL16 16S rRNA gene transformants 

and the sole WL14 representative were diluted to give 1.2 µg in a final volume of 15 µl of 
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nH2O + 1.5 µl of sequencing primer (10 µM/µl) pJET1.2 F(5’-

CGACTCACTATAGGGAGAGCGGC-3’) /(10 µM/µl) pJET1.2 R(5’-

AAGAACATCGATTTTCCATGGCAG-3’), (from Fermentas) and sent for DNA sequencing 

to Eurofins Genomics.  

Analysis of the sequences obtained confirmed that they corresponded to 16S rRNA genes. A 

simple BLAST (N) was carried out, which confirmed that all of the strains were closely related 

to Geobacillus spp., and the information was used to construct a phylogenetic tree. The three 

isolates, WL3, WL6 and WL16 appeared to be closely related, and showed 99% 16S rRNA 

gene sequence identity to many Geobacillus spp., the closest to them all being Geobacillus sp. 

GHH01, while the 16S rRNA gene of WL14 also showed 99% identity to that of many 

Geobacillus spp.with G. thermoleovorans strain BGSC 96A1 as the closest strain (Fig. 4.13). 

WL3, WL6 and WL16 strains showed 99% identity of their 16S rRNA gene with that of 

Geobacillus sp. C56-T3, which is a Geobacillus thermoglucosidasius (Fig. 4.13). The most 

closely related enzymes to those detected in section 4.5.2 were all from Geobacillus spp., 

consistent with these 16S rRNA gene analysis results. 
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Figure 4.13 Un-rooted phylogenetic tree based on 16S rRNA gene sequences amplified from the WL strains and 

their closest relatives.  

The WL strains are highlighted with red branches and blue labels. The trees shows where the WL strains sit. The 

out group is represented by Heliorestis baculata, Heliobacterium modesticaldum lcei, Clostridium acetobutylicum 

strain S512 and Clostridium sp. W52. The tree was constructed by estimation of the Maximum Likely-hood 

Phylogenies by using PhyML 3.0 as described by Guindon et al. (2010). The numbers on the nodes represent the 

comparisons of bootstrap and aLRT SH-like supports for the branches, while the number of changes per nucleotide 

is indicated by the scale. The higher the signal the higher is the agreement. Values with frequency above 0.5 are 

displayed on the tree. 

4.8 Discussion. 

The ability to revive strains of Geobacillus spp. previously stored at -80oC by streaking onto 

agar plates is highly variable, and this problem was particularly prevalent with the WL strains. 

As a result of the studies carried out here a simple protocol has been devised that improves 

colony numbers obtained on agar plates, considerably. Although Geobacillus spp. grow 

rapidly under aerobic conditions it is clear that the rate of revival far exceeded the growth rate 

and that the revival process must be occurring at the level of individual cells.  

A study of the effects of adding filtered media from revived cultures to freshly inoculated cells 

should have revealed evidence for any soluble “revival factors”. However, in a study with 

WL14 the time course of revival in the filtered media was not significantly different from that 

in fresh media, suggesting that soluble “revival factors” were not involved. Therefore, the rapid 
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increase in cell counts observed by incubation in liquid media must reflect processes occurring 

within individual cells.  

The only obvious differences between conditions in liquid and solid media are that the cells 

would be completely submerged in liquid media and the efficiency of aeration might be higher 

due to the shaking of the cultures during incubation. However, the underlying processes were 

not investigated further. The newly isolated strains from compost, described in subsequent 

chapters, were successfully revived following the procedure described in this section. 

The growth rates of the WL strains on 2TY were all high, and better than that of Escherichia 

coli, on 2TY medium, which has been reported to be around 0.8/h (Gombert and Kilikian, 

1997). This includes WL3, which was the slowest among the four WL strains that were used. 

It is worth noting that, under these growth conditions, exponential growth could be maintained 

over an extended period. 

All of the WL strains examined were able to produce clear zones on plates containing avicel, 

cellobiose and CMC, using the Congo red indicator for detection of β-glucans (Teather and 

Wood, 1982), an indication that these WL strains were able to produce cellulase and either 

take up cellobiose or produce an extracellular β-glucosidase activity. The halos on the ASM + 

CMC plate were larger than those on the ASM + cellobiose or avicel plate for all the tested 

WL strains after the 24 h incubation. These findings are supported by the results of an earlier 

study, in which thermophilic bacteria were reported to have a higher CMC degradation rate 

than that of xylan, cellobiose and avicel (Ibrahim and El-diwany, 2007). However, after 8 day 

incubation the cellobiose clear zones were the largest, almost the whole plate was cleared of 

cellobiose (Fig. 4.3C). There is also a possibility that CMCase could have been degrading the 

cellobiose, while the diffusion of cellobiose to the cells could have also contributed to the size 

of the clear zones. 

The WL strains were able to grow on different carbon substrates, giving the best growth on 

xylan and the least growth on avicel. The similar growth observed in the cultures on CMC + 

modified ASM + 0.1% YE and that on ASM + 0.1% YE (control) showed that the strains were 

not able to use CMC for growth, but instead used the easily available yeast extract in the 

medium. Apart from WL3, all the WL strains had cellulase activity, which was at least partially 

constitutive. WL14 had the highest activity recording a value of 1.68 µmoles/min/mg protein 

for CMCase specific activity (Fig. 4.5A). This value is lower than that of wild type and mutants 
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of Pseudomonas fluorescens, where WT, CRRmt4 and CRRmt24 CMCase specific activity was 

6.77, 5.92 and 6.88 IU/mg protein, respectively (Bakare et al., 2005).  

All four strains appeared to show avicelase activity, although the time course of expression 

was atypical. The strains were able to secrete avicelase which is able to hydrolyse the avicel 

to cellobiose (Kim & Kim, 1995). The avicelase activities reached by these strains during this 

experiment were higher than the 0.17 IU/mg reported for a Bacillus sp., though this activity 

was reported to have been consistent over several weeks (Kim & Kim, 1995). The low 

activities in the 0.1%YE + ASM control medium, together with the zymograms gave an 

indication that these strains have a constitutive cellulase activity. 

Native-PAGE gels analysis of supernatants from cultures grown for an extended period (8 and 

18 days) showed a number of bands some of which appeared only in the avicel cultures and 

not in the controls, and vice versa. All the strains, except for WL3, showed two bands on the 

Coomassie brilliant blue stained gel in the locations corresponding to the locations of the clear 

bands on the zymogram. Although the lower band was not evident in the samples from the 

WL3 cultures, the position of the ubiquitous upper band seemed to coincide more accurately 

with the cellulase activity on the zymogram (Fig 4.6C and D). As these bands were also present 

in the controls this demonstrates that activity must be at least partially constitutive.  

However, results from the mass spectrometry analysis showed that no cellulase was detected 

in the clear bands. Two enzymes were detected in the sample from the clear bands in the 

corresponding location on the Congo red CMC gel (Fig. 4.6D) by mass spectrometry as xylan-

1,4-β-xylosidase from Geobacillus sp. (closest strain being stearothemophilus), Δ-1-pyrroline-

5-carboxylate dehydrogenase from Geobacillus kaustophillus (closest strain being HTA426), 

and other dehydrogenases. This may be an indication that some enzymes might have activity 

on other substrates other than their known substrates, or some proteins could have more than 

one function (moonlighting proteins). It has been demonstrated in a previous study that 

dehydrogenase enzymes [cellobiodehydrogenases (CDHs)] can act synergistically with 

polysaccharide monooxygenases (PMOs) in cellulose hydrolysis (Wilson, 2012). This could 

be an indication that the detected dehydrogenase enzymes may participate in similar reactions. 

The CMCase activity detected on the CMC native-PAGE gels was also consistent with 

evidence from the CMC plates (Figures 4.2D and 4.3D) and the CMCase specific activities for 

WL14 (Fig. 4.5A), obtained during this study, in which WL14 showed higher CMCase activity 
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than WL3, WL6 and WL16. These results indicate that WL14 could be a good source of endo-

glucanases.  

Growth of WL strains on untreated and treated M. x giganteus biomass indicated that all four 

WL strains were able to grow slowly on both the pretreated and untreated miscanthus. Better 

growth on the untreated biomass was probably based on soluble material which leached out, 

which would not be present in the pretreated material. WL14 gave the best growth on 

pretreated miscanthus, showing high xylanase activity and lower avicelase and CMase activity 

(Fig. 4.8). However, none of the WL strains degraded pretreated M. x giganteus extensively, 

suggesting that growth was probably due to degradation of xylan oligomers generated during 

pretreatment.  

Phylogenetic analysis based on the 16S rRNA gene sequence showed that all the four WL 

strains were associated with the genus Geobacillus, with WL3, 6 and 16 being closely related 

to Geobacillus sp. GHH01, while WL14 was closely related to G. thermoleovorans strain 

BGSC 96A1 (Fig. 4.13). 
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5. New microbial isolations from domestic compost using pretreated M. x 

giganteus as carbon source. 

5.1 Introduction. 

The degradation of lignocellulose in natural environments is mostly achieved by the action of 

mixed microbial communities (Perez et al., 2002). These mixed microbial communities 

produce enzymes which degrade the plant biomass (Eichorst et al., 2013). The hydrolysis of 

plant biomass by microbial enzymes is very important for carbon recycling as well as 

production of biofuels and other important products used in industrial processes. The microbial 

enzymes need to overcome the plant cell wall recalcitrance for successful degradation of 

lignocellulosic biomass, which is a key process to the successful development of consolidated 

bioprocessing. 

Microorganisms capable of carrying out fermentation at high temperatures are potentially very 

useful for the economical production of biofuels. Fermentation at high temperatures will not 

require expensive cooling processes, and the cost of recovering the produced ethanol will be 

greatly reduced (Balakumar and Arasaratnam, 2012). Micro-organisms capable of growing at 

very high temperatures have high growth and metabolic rates (Skinner and Leathers, 2004). 

Thermophilic microorganisms and thermostable enzymes are better for lignocellulosic 

biomass conversion because enzymatic hydrolysis processes carried out at low temperatures 

are said to require high dosages of enzymes which still result in low enzymatic hydrolysis rate, 

with only low sugar yields which are often partially hydrolysed (Bhalla et al., 2013a). The 

problem of contamination during the fermentation process is also greatly reduced at high 

temperatures. 

The characterisation of thermophilic glycoside hydrolases (and their genes), and other 

enzymes involved in the degradation of pre-treated M. x giganteus was a primary objective of 

this project. Domestic compost collected from West London Composting Company was used 

as inoculum to provide a natural mixed microbial community of thermophilic/thermotolerant 

microorganisms specialised in the degradation of plant biomass. Pretreated M. x giganteus, a 

promising renewable source of plant biomass for production of chemicals or fuels, was used 

as the only carbon source in the growth medium. 
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5.2 Growth of compost cultures on pretreated M. x giganteus. 

5.2.1 Monitoring growth of cultures. 

Cultures were started by using inoculum from domestic compost from West London Compost 

Company as described in chapter 2. These domestic compost samples mostly contained garden 

compost, which was mostly grass and garden plants. It was hoped that the thermophilic 

bacterial population present in these compost samples were adapted to degradation of grass 

substrates and would therefore be able to grow on M. x giganteus. These isolations were done 

using M. x giganteus (1% w/v) in Rastogi Isolation Medium (RIM), as a primary carbon 

substrate to find consortia of organisms that were able to degrade it.  

Two aerobic cultures were set up initially, namely, TR1A and TR2A (TR refers to treated 

Miscanthus x giganteus as the only carbon source in the growth medium, and culture 1A and 

culture 2A as labels for the two starting cultures) and a control which was not inoculated, but 

contained 1 g of pretreated M. x giganteus, all in unbuffered Rastogi isolation medium (RIM). 

Another set of two aerobic cultures were set up the same way as TR1A and TR2A, except that 

untreated M. x giganteus was used in place of the pretreated M. x giganteus. These cultures 

were called UT1A and UT2A (UT refers to untreated M. x giganteus, and 1A and 2A were 

culture labels). A control (without inoculation) was also set up for the untreated cultures. 

The inoculated cultures and controls were incubated for one week at 55oC with shaking at 250 

rpm, then each culture was subcultured into fresh 1 g pretreated M. x giganteus in unbuffered 

RIM. The UT1A and UT2A cultures were also subcultured into 1g untreated M. x giganteus 

in unbuffered RIM. Controls were set up for the pretreated and untreated M. x giganteus 

without addition of inoculum. Growth of the cultures was monitored by recording the 

suspended protein concentration over a period of 17 days (Fig. 5.2A and B), as an indirect 

measure of growth, as described by (Ishida et al., 1997), as measurements of cell density were 

likely to be inaccurate due to the presence of suspended solids and microbial growth directly 

on the solid biomass (which was allowed to settle before taking samples for protein 

measurement). After six weeks of incubation the remaining miscanthus and cells were 

centrifuged, the pellets were put into small weighing boats and dried as shown in Fig. 5.2C-i 

and ii. 
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Both TR1A and TR2A initial subcultures grew, but TR1A subculture 1 grew better (Figures 

5.1A and B, and 5.2 A) and degraded more pretreated M. x giganteus than TR2A subculture 1 

(Fig. 5.2C-i and ii).  

 

 

Figure 5.1 Two week old initial subcultures started by using inoculum from the original TR1A and TR2A cultures.  

The subcultures, TR1A (A) and TR2A (B), were grown on 1% pretreated M. x giganteus in RIM at 55oC with 

shaking at 250 rpm. The control (C) was not inoculated but incubated in the same medium under the same 

conditions.  

Neither UT1A nor UT2A subcultures grew on untreated M. x giganteus, as shown by figure 

5.2B. Both UT1A and UT2A cultures looked clear just like the control for pretreated M. x 

giganteus (Fig. 5.2C-i). Thus, UT1A and UT2A subcultures appeared to be unable to degrade 

untreated M. x giganteus over the incubation period (Fig. 5.2C-i and ii). However, the 

untretreated miscanthus cultures gave a high initial protein concentration, presumably arising 

from the miscanthus itself. Although the untreated miscanthus subcultures did not show any 

increase in protein concentration it is possible that cells may have been growing on the released 

protein components, giving no net increase in protein concentration (Fig. 5.2B). 

Culture TR1A was selected and used for further subcultures, as it showed better growth 

(Figures 5.1A and B, and 5.2A) and degradation of the pretreated M. x giganteus than TR2A 

(Fig. 5.2C). Only pretreated M. x giganteus was used for the subsequent experiments. 
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Figure 5.2 Comparison of growth of the intial TR1A and TR2A subcultures on pretreated and untretreated M. x 

giganteus.  

(A) Comparison of growth of the TR1A and TR2A first compost subcultures shown in Fig. 5.1. grown on 1% w/v 

pretreated M. x giganteus in unbuffered Rastogi isolation medium (RIM) and the control. (B) UT1A and UT2A 

grown on 1% w/v untreated M. x giganteus and the control in unbuffered RIM. (C) Remaining pellets of the 

cultures of TR1A, TR2A, UT1A and UT2A and their controls on pretreated (TR) and untreated (UT) M. x 

giganteus in unbuffered RIM after six weeks of incubation at 55oC with shaking at 250 rpm. The cultures were 

centrifuged in 50 ml eppendorf tubes at 4 000 x g at 20oC for 20 min using an Eppendorf 5810-R; after 

centrifugation the pellet from each culture was collected on weighing boats as shown in (C-i). The pellets after 

drying are shown in (C-ii).  
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5.2.2 Microbial growth on varying amounts of pretreated M. x giganteus. 

Initial isolations were done using 1% (w/v) miscanthus. Because of concerns that the isolates 

may be growing solely on the more easily accessible hemicellulose fraction, an experiment 

was set up to investigate growth on different amounts of miscanthus. This was done by setting 

up TR1A subculture 2 using inoculum from the TR1A subculture 1. 

 

 

Figure 5.3 Comparing growth of TR1A mixed culture on varying amounts of pretreated M. x giganteus.  

Prepared from the first subculture by taking 0.5 ml of the TR1A subculture 1 (taken after 2 weeks) and 

subculturing into each of 0.2%, 0.4% and 0.8% pretreated miscanthus + unbuffered RIM. Microbial growth was 

monitored by measuring the suspended protein concentration. The plotted results are the averages of two 

subcultures for each amount of miscanthus. 

The results in Fig. 5.3 showed that microbial growth rate was higher with a higher content of 

pretreated miscanthus than with lower amounts. Also, the 0.8% pretreated miscanthus gave 

the suspended protein concentration slightly higher than that of 0.4% pretreated miscanthus on 

most of the days during the incubation period. The 0.2% miscanthus subculture gave the lowest 

suspended protein concentration throughout the incubation period.  

These results could be an indication that the microbes were growing on the easily accessible 

components of the pretreated miscanthus whose amounts could increase with more 

miscanthus. However, it could also be the case that the microbial community were able to 

degrade more pretreated miscanthus with increase in miscanthus concentration as the 

degrading enzymes were presented with more substrate when supplied with more pretreated 

miscanthus. Therefore, 1% w/v concentration of pretreated miscanthus in RIM was chosen and 

used throughout this study. 
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5.2.3 Growth in buffered RIM. 

The Rastogi isolation medium (RIM) was buffered for subsequent experiments as cultures in 

buffered RIM (Fig. 5.4 ) were found to grow to higher cell densities than in unbuffered medium 

(Fig. 5.2A). The TR1A culture was repeatedly subcultured five times, with six week 

intervening growth cycles, to obtain a stable microbial community capable of consistently 

degrading pretreated M. x giganteus. Three subcultures of this stable community incubated 

under the same conditions for about 2 weeks (Fig. 5.4A), 6 weeks (Fig. 5.4B) and 8 weeks 

(Fig. 5.4C) were used to monitor growth of the mixed microbial community by analysing the 

cell protein accumulating in the liquid fraction of the culture.  

Growth of the TR1A subcultures improved with the addition of the buffers to the RIM. The 

unbuffered TR1A subculture in Fig. 5.2A gave suspended protein concentration below 1mg/ml 

after a two week incubation period, whereas the buffered subculture in Fig. 5.4 A gave a 

protein concentration of 1 mg/ml or more from day 2 onwards. The growth of cultures could 

be reproduced after storage at -80oC in either glycerol or without glycerol. Reproduction of 

cultures from non-glycerol stocks from -80oC could be an indication that some members of the 

mixed microbial group in the TR1A culture were spore formers.  
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Figure 5.4 Growth of TR1A subcultures 6, 7 and 8.  

The TR1A subcultures 6 (A), 7 (B) and 8 (C) were grown on pretreated miscanthus in buffered RIM. Growth of 

the subcultures was monitored for about 2 weeks in (A), 6 weeks in (B) and about 8 weeks in (C). Growth was 

monitored by measuring suspended protein concentration according to the method described by Ishida et al., 

(1997). The error bars represent analytical standard deviation. 
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5.2.4 The effect of increased aeration on growth of the TR1A subculture 6. 

The apparent growth rate and final cell density was much higher when TR1A subcultures were 

incubated with shaking in 250 or 500 ml conical-flasks stoppered with cotton wool (Fig. 5.5), 

as the cultures were more vigorously aerated due to the shape of the flasks. Shake flasks had 

not been used previously due to evaporation of the culture liquid over the long incubation 

periods. 

 

 

Figure 5.5 The effect of increased aeration on the growth of TR1A subculture 6.  

The TR1A subculture 6 and the control were grown in a flask stoppered with cotton wool shaken under the same 

conditions as the previous experiments. The error bars refer to standard deviation of three analytical replicates. 

Provision of improved aeration in the flask clearly favoured growth of the aerobic members of 

the community, which were subsequently shown to dominate the culture, at least in terms of 

variety of strains (Figures 6.1 and 6.2). However, the Duran incubation bottles were still 

preferred for the experiments in this study because evaporation of the culture liquid was 

minimised. Some of the investigations required long periods of incubation and cultures 

incubated in flasks dried out before the biomass biodegradation was complete. While this could 

have been compensated by addition of water to the cultures, this would have confused the 

sequential growth rate measurements. Furthermore, despite the presence of air, a lower rate of 

aeration could potentially favour mixed aerobic and anaerobic communities. 

5.2.5 Microbial degradation of the pretreated M. x giganteus by the enriched 

culture. 

An investigation was carried out to find out which part of the TR1A culture contained the 

microorganisms involved in the degradation of the pretreated M. x giganteus. The effect of 
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storing the TR1A culture without glycerol at -80oC on the ability of the microbial community 

to degrade the pretreated miscanthus was also assessed. Fig. 5.6 shows the centrifuged TR1A 

subcultures after 8 weeks of incubation. The culture in Fig. 5.6A was started by using inoculum 

from an ongoing TR1A subculture 6 with inclusion of some undegraded pretreated M. x 

giganteus solids in the inoculum; B was started using a non-glycerol -80oC stock of TR1A 

subculture 6 which also included undegraded pretreated M. x giganteus solids in the inoculum, 

while the liquid fraction only of the ongoing TR1A subculture 6 was used to start culture C. 

Fig 5.6D-i and D-ii shows dried pellets of B1 and 2, respectively. All these cultures were 

grown for approximately 8 weeks.  

The pellets of residual solids from the inoculated cultures were much smaller than in the 

controls. The remaining pellets from the cultures (Fig. 5.6A-C, tubes labelled 1) show that the 

pretreated M. x giganteus was extensively degraded compared to the controls (Fig. 5.6A-C, 

tubes labelled 2). Also, the remaining pellets from the cultures (Fig. 5.6D-i) looked much finer 

than the pellets from the controls (Fig. 5.6D-ii).  
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Figure 5.6 Growth of TR1A subculture using different sources of inoculum.  

(A) Using inoculum from an ongoing subculture 6 with inclusion of the undegraded particles of pretreated M. x 

giganteus in the inoculum, (B) using stock culture of TR1A subculture 6 stored without glycerol at -80oC, with 

inclusion of the undegraded particles of pretreated M. x giganteus as inoculum, (C) using only the liquid fraction 

of the ongoing TR1A subculture 6 as inoculum. The tubes labelled 1 are from inoculated cultures, those labelled 

2 are from the uninoculated controls. The experimental and control cultures were incubated at 55oC with shaking 

at 250 rpm and grown for about 8 weeks. The remaining contents of both the control and the inoculated cultures 

were centrifuged at 20oC for 20 min in 50 ml centrifuge tubes at 4 000 x g in an Eppendorf 5810-R and dried. Fig. 

5.6D-i and D-ii shows the dried pellets for TR1A subculture, and the control, respectively, of Fig. 5.6B.  

5.2.6 Production of pigments during growth of TR1A subcultures. 

After about two weeks of growth the TR1A cultures always gained a reddish pigmentation 

which increased with incubation time (Fig. 5.7A–C). After centrifugation of the liquid fraction 

of the cultures, the pellet from the TR1A culture looked reddish, while that of the control had 

the colour of pretreated miscanthus (Fig. 5.8A and B). The pigmentation was also observed in 

the dried sample pellets of the TR1A subcultures, but not in the pellets from the controls (Fig. 

5.6D-i and D-ii). The red colouration could have resulting from pigments formed by some of 

the microbes (eg. Miothermus spp. [Yarger et al., 2006], B. thermoruber and B. lichenformis 

detected during this study [Figures 6.5 and 6.6, respectively]).  
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Figure 5.7 Pigmentation in TR1A cultures.  

Two week (A), 1 month (B), and two month and three week old (C), TR1A subculture 4.  

 

 

 

Figure 5.8 Colour of the pellets from TR1A subculture and control.  

The pellets from subculture 4 (A) and the control (B) were prepared by centrifuging 0.5 ml of the liquid fraction 

of the subculture. 

5.2.7 Degradation of pretreated miscanthus in TR1A subcultures. 

Fig. 5.9 shows the weights of the pellets recovered by centrifuging both the remaining solids 

and liquid fractions of TR1A subcultures 6, 7 and 8, and their controls after 6 weeks of 

incubation. Each subculture was grown for six weeks before being used as inoculum for the 

next subculture. The oven dry weights of the harvested pellets are shown in Fig. 5.9. The 

results confirm that degradation of pretreated M. x giganteus had occurred in all of the cultures, 

with just over 50% of the pretreated M. x giganteus being degraded in the TR1A subcultures 
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over a six week period of incubation (ignoring the contribution of the microbial cells to this 

dry weight). 

 

 

Figure 5.9 Weight of the remaining pellets from TR1A subculture 6, 7, 8, and their controls.  

The subcultutres were grown on 1 g pretreated M. x giganteus in RIM at 55oC with shaking at 250 rpm for six 

weeks. The recorded results are oven dry weights of the samples. The error bars represent standard deviation of 

three analytical replicates. 

5.3 Compositional analysis of lignocellulose residues from the TR1A subcultures. 

Although some of the original miscanthus had clearly been degraded, it was not clear whether 

all fractions were being degraded equally or whether some components were being 

preferentially utilised. Compositional analysis was carried out on the remaining pretreated 

miscanthus after 6 weeks growth of TR1A subculture 6 to examine the change in carbohydrate 

and lignin content due to microbial degradation. The compositional analysis of the TR1A 

subculture 6 pellet obtained after 6 weeks growth was carried out using the NREL-LAP 

method as outlined by Sluiter et al., (2008). The resulting composition was compared with the 

composition of the undegraded pretreated miscanthus from the 6 week control to determine 

the carbohydrates that had been degraded. 

Over 50% of the mass of pretreated M. x giganteus was degraded in the TR1A subculture 6 

during the 6 week incubation period (Fig. 5.10). This was made up of close to 56 % of the 

glucose, just over 50 % of xylose and 47 % of the arabinose. No mannose was detected in the 
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undegraded miscanthus pellet, an indication that mannose was easily degraded. These results 

indicate that the mixed microbial community in the TR1A subcultures was using all four types 

of carbohydrates present in the pretreated M. x giganteus with only marginal selectivity for 

glucose.  

 

 

Figure 5.10 Relative compositional analysis of residues from the TR1A subculture 6 and control.  

The subculture and control were grown for six weeks and were represented as the proportion of the residual dry 

weight.  

Fig. 5.10 also shows that some of both the Acid Soluble Lignin (ASL) and the Acid Insoluble 

Lignin (AIL) appeared to have been degraded in the TR1A subculture 6 during the incubation 

period. Most of the ASL was degraded, while just below 50 % of the AIL had degraded during 

the 6 week incubation period. This suggests that some ligninase activity must have been 

present in the TR1A subculture.  
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Microorganisms have been reported to produce ligninolytic enzymes. Bacterial species such 

as Bacillus sp. LD003, Pandoraea norimbergensis LD001 and Pseudomonas sp. LD002 have 

been reported to produce ligninolytic enzymes, with Bacillus sp. LD003 as the best ligninolytic 

enzyme producing group (Bandounas et al., 2011). In another study, another Bacillus sp., 

SHC1, was reported to produce higher manganese peroxidase and lignin peroxidase than 

Ochrobacterium sp. SHC2 and Leucobacter sp. SHC3 (Rahman et al., 2013).  

It was observed during a previous study that expression of ligninolytic enzymes is triggered 

by limitation of nitrogen and carbon (Dosoretz and Grethlein, 1991), and also due to exposure 

of cultures to atmospheric oxygen (Dosoretz et al., 1990). The latter leads to accumulation of 

reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide (H2O2), as 

by-products of aerobic respiration in the culture (Belinky et al., 2003). The lignin-degrading 

peroxidases and the Fenton-type chemistry that degrades lignin non-enzymatically may be 

supported by the produced H2O2 (Sweeney and Xu, 2012). 

Superoxide dismutase enzymes protect cells from toxicity due to presence of ROS by 

catalysing the dismutation of superoxide anion radicals to oxygen and hydrogen (Belinky et 

al., 2003). The enzyme superoxide dismutase was detected in the supernatants from the TR1A 

subcultures (Table 5.1), an indication that ROS were present in the cultures. The TR1A 

subcultures were grown under aerobic conditions, with pretreated M. x giganteus as the only 

carbon source, which was not easily accessible. Exposing the cultures to atmospheric oxygen 

during transfers could have resulted into formation of superoxides (Bar-Lev and Kirk, 1981; 

Dosoretz et al., 1990; Leisola et al., 1984).  

The presence of superoxides could have triggered the mixed microbial community to express 

ligninolytic enzymes such as lignin peroxidases. In the presence of hydrogen peroxide the 

peroxidases catalyse the reactions that lead to lignin degradation (Passardi et al., 2007a; 

Passardi et al., 2007b). These reactions involve the oxidation of the lignin side chains of non-

phenolic lignin units due to removal of one electron in the presence of H2O2, due to generation 

of reactive radicals. This results in the breaking of the C-C and ether linkages, as well as the 

aromatic rings in the lignin (Coelho-Moreira et al., 2013). This could possibly explain the 

partial degradation of lignin observed in Fig. 5.10. The general reaction is given below as 

illustrated by Coelho-Moreira et al., (2013). 

1,2-bis(3,4-dimethoxyphenyl)propane-1,3-diol + H2O2             3,4-dimethoxybenzaldehyde + 

1-(3,4-dimethoxyphenyl)ethane-1,2-diol + H2O 
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5.4 HPLC analysis of the TR1A subculture supernatants. 

It was observed that when the TR1A subculture inoculation bottles were opened, an aroma 

similar to that of sweet fermentation products was detectable. An attempt was therefore made 

to analyse these supernatants for the production of alcohols and other fermentation products. 

Supernatant samples were collected from the TR1A subculture 8 after two weeks and six 

weeks of incubation, and also from the six week control. These, as well as the RIM medium 

were analysed by HPLC (Figures 5.11 and 5.12).  

Products with the same retention times as pyruvate (9.6 min) and lactate (12.8 min) were 

detected by UV analysis in the supernatants of TR1A subcultures (Fig. 5.11A and B). Both 

increased in concentration with time of incubation, as observed by comparison of the two week 

(Fig. 5.11A) and six week culture results (Fig. 5.11B). Smaller peaks were also detected at 

about the same retention times in the control supernatant and the RIM medium, an indication 

that the observed peaks could be mixed with other components from the RIM medium. 

Formate, with a retention time of 14 min, was detected in the supernatant from the six week 

old culture (Fig. 11B).  

No monomeric carbohydrates were detected, indicating that they were being used directly by 

the microbial community immediately upon release, or that the cells may have been consuming 

oligomeric carbohydrates directly. A previous study reported a similar finding; it was observed 

that after growing Anaerocellum thermophilum DSM 6725 on crystalline cellulose or on xylan, 

glucose and cellobiose, or xylose and xylobiose, respectively, accumulated in the culture 

medium, but did not accumulate in the culture medium during growth on plant biomass.(Yang 

et al., 2009) Similar observations were made during another study in which the produced 

sugars were immediately converted to hydrogen during bacterial fermentation (Lo et al., 2011). 

However, it has also been suggested that the reduction in the reducing sugars could be due to 

the oxidation of cleaved oligosaccharides to their lactones (Turbe-Doan et al., 2013), or the 

oxidation of glucose to non-fermentable glucuronic acid (Cannella et al., 2012). 

Peaks detected by UV at 6.9, 16.2 and 18.6 minutes in both 2 and 6 week samples (Fig. 5.11A 

and B), and a peak at 16.9 minutes in the 6 week sample (Fig. 5.11B), were not present in the 

control or the medium, so must represent metabolites produced by the culture. However, they 

could not be identified with any of the standards used. The first three metabolites also increased 

in concentration with increasing incubation time as shown in Fig. 5.11A and B.  
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The presence of lactate in the TR1A culture could have resulted from oxygen limitation, which 

is probable because the cultures were grown under thermophilic conditions. Detection of 

lactate and formate in the supernatant from the TR1A subcultures indicates that fermentation 

of glucose occurred in the TR1A subcultures. Lactate and formate are fermentation products 

of Geobacillus spp. (Cripps et al., 2009). Despite the cultures being aerated, some of the 

organisms that were detected in the microbial communities in TR1A subcultures turned out to 

be obligate or facultative anaerobes and hence, capable of fermentation, reducing the amount 

free sugars in the culture. These include Thermoanaerobacterium saccharolyticum (Shaw et 

al., 2008), Brevibacillus thermoruber, and Geobacillus thermoglucosidasius strains (Bihari et 

al., 2010; Cripps et al., 2009).  

There is a possibility that any produced ethanol could have been evaporating as these cultures 

were grown at 55oC. This could have resulted into too low an alcohol concentration remaining 

in the cultures to be detected by the RI (which is a relatively insensitive detection technique), 

(Fig. 5.12). Analysis of the gaseous phase by headspace GC analysis has been used in a 

previous study (Wei et al., 2013), and could probably have detected traces of alcohol and any 

light volatiles that were produced in the TR1A subcultures.  
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Figure 5.11 HPLC chromatograms with UV detection analysing supernatant from TR1A subculture 8. 

HPLC chromatograms of supernatant from TR1A subculture 8 with UV detection using an Aminex HPX87H ion 

exchange column (300 x 7.8 mm) of TR1A subcultures supernatants after (A) two weeks, (B) six weeks 

incubation, (C) control supernatant after six weeks incubation, and (D) RIM medium alone. The TR1A subculture 

and the control were incubated at 55oC with shaking at 250 rpm. The peaks at 9.6 min and 12.8 min in A and B, 

and 14 minutes in B have retention times which correspond to pyruvate (Pyr), lactate (Lac) and formate (For), 

respectively. Smaller peaks were detected at these retention times in the control (C) and the medium (D). Peaks 

detected at 6.9, 16.2 and 18.6 min in both A and B, and the peak at 16.9 min in B could not be identified using 

any of the standards. The peaks under discussion are labelled with their identified products or retention times and 

the smaller ones are highlighted with arrows in A and B. The rest of the peaks in A and B were probably 

components from the RIM medium. 
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Figure 5.12 HPLC chromatograms with RI detection analysing supernatant from TR1A subculture 8.  

The same samples as in Fig. 5.11 were used. Similar peaks were detected in experimental samples, A and B, as 

well as in the control (C) and the medium (D).  
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5.5 Enzyme assay of the culture fluid. 

5.5.1 Determination of glycoside hydrolase activity. 

Assays were carried out to screen for enzyme activities that could be responsible for the 

observed degradation of the pretreated M. x giganteus in the TR1A subcultures. The liquid 

fraction was collected after two and six weeks incubation from TR1A subcultures 6, 7 and 8, 

to represent early, middle and late stage TR1A subcultures. The detected enzyme activities for 

each substrate are recorded in Fig. 5.13. 

The specific activity (which is presumably an aggregate of all enzymes with that activity) of 

avicelase and CMCase increased with both time of incubation (Fig. 5.13A and B) and further 

subculturing (Fig. 5.13A-C). The avicelase activity for the early and middle subcultures was 

0.01 and 0.04 U/mg respectively, for the second week, and 0.02 and 0.08 U/mg respectively, 

for the sixth week, which, in the case of the early stage cultures, was only slightly higher than 

the background activity (control). One unit (IU) of enzyme activity is defined as the amount 

of enzyme that released 1µmole of sugar per minute from xylan, CMC, or avicel. The CMCase 

specific activity for the early and middle stage subcultures was 0.04 and 0.15 U/mg 

respectively, for the second week, and was 0.1 and 0.27 U/mg, respectively, at the sixth week.  

The avicelase and CMCase activities from the late stage subculture were significantly higher 

than in the previous stages, after both 2 and 6 weeks (0.83 and 0.7 U/mg, respectively, for 

avicelase, and 2.09 and 2.00 U/mg, respectively, for CMCase) (Fig. 5.13C) and, unlike the 

previous cultures, did not increase from 2 to 6 weeks. The increased enzyme activities 

observed in the late stage TR1A subculture was consistent with the faster growth in this culture 

than the middle stage subculture as shown in Fig. 5.4. However, this was not true for the early 

stage subculture as it recorded faster growth than the middle stage subculture. This was 

possible as the early stage TR1A subculture might have consisted many other microorganisms 

which were not directly involved in the degradation of the pretreated M. x giganteus. 
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Figure 5.13 Specific enzyme activities in the TR1A subcultures 6, 7 and 8.  

Specific enzyme activities of early stage subculture (TR1A subculture 6) (A), middle stage subculture (TR1A 

subculture 7) (B), and late stage subculture (TR1A subculture 8) (C). The culture fluids from the three different 

stages of the TR1A subcultures were sampled after two weeks and six weeks of incubation and assayed for 

avicelase, CMCase and xylanase activity. The harvested cultures were centrifuged at 4 000 x g at 20oC for 20 min 

in an Eppendorf 5810-R. The collected supernatant (0.5 ml) was concentrated by centrifuging in a bench top 

accuSpinTM Micro centrifuge (Fisher Scientific) at 10 000 x g for 15 min using a 3 000 MWCO PES vivaspin 

centrifugal membrane separator from Sartoriuos stedim biotech. The total protein concentration was determined 

by using the Biuret reagent. The DNS (3,5-dinitrosalicylic acid) method (Miller et al., 1960) was used to measure 

the enzyme activity. The number on the top of each bar records the actual specific activity for the assay performed. 
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The xylanase specific activity also increased with subculturing, but the measured activity 

within each subculture was slightly higher at the second week than by the sixth (Fig. 5.13A-

C). The xylanase specific activity for the early subcultures was 1.07 and 0.81 U/mg, for weeks 

two and six respectively, 2.79 and 2.35 U/mg, for weeks two and six respectively, for the 

middle subcultures, and 4.63 and 4.41 U/mg for weeks two and six respectively, for the late 

stage subcultures.  

These observations suggest that the initial microbial community in TR1A was growing 

primarily on hemicelluose derived xylose sugars. At longer incubation times with the early 

and middle stage subcultures it is clear that some cellulose was starting to be degraded (or at 

least expression of the relevant enzymes is induced). However, by sub-culture 8 it looks like 

the culture has been enriched for cellulose degraders and that this activity is induced (or may 

be constitutive) much earlier in the incubation (Fig. 5.13A-C).  

5.5.2 PAGE gel analysis and zymograms. 

It is probable that the activities detected in the culture fluids of TR1A are the cumulative 

activities of a number of enzymes. In order to identify the origins of at least the major activities 

the proteins concentrated from the culture fluids were also run on native poly-acrylamide gels 

so that the enzymes could be separated and activities identified. A CMC substrate (0.05%) was 

added to the gel preparation mixture. Two gels were run for each protein sample; one was 

stained with Congo red stain to detect enzyme activity on the zymogram and identify the 

location of the bands showing enzyme activity. The second gel was stained with Coomassie 

brilliant blue stain and used to establish the relative abundance of the proteins that showed 

activity on the zymogram. The Coomassie-stained gel and the Congo red gel were 

subsequently used for excising the relevant protein bands for identification.  

5.5.2.1 Zymogram analysis of glycoside hydrolase activity in TR1A initial 

cultures and subcultures 1, 6, 7 and 8. 

 Culture fluids were collected from the initial TR1A culture and TR1A subculture 1 at different 

ages and analysed on CMC-PAGE zymograms for glycoside hydrolase activity. Supernatants 

from the initial TR2A culture and subculture 1 were also analysed in the same way for the 

presence of any cellulolytic enzyme activity (Fig. 5.14).  
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CMCase activity was detected in the initial cultures of TR1A and TR2A (Fig. 5.14B). All of 

the samples from TR1A subculture 1 (Fig. 5.14D lane TR1A1, and F lanes 2TR1A1, 3TR1A1, 

6TR1A1 and 2.5TR1A1) showed clear zones, indicating the presence of CMC degrading 

glycoside hydrolases. Protein bands showing activity on the zymograms were excised from 

the Congo red and Coomassie Brilliant blue gels and analysed by mass spectometry for partial 

protein sequence. The protein sequences from the mass spectrometry analysis were specific 

for the proteins from the identified microorganisms. No sequence was obtained from gels B 

and D bands labelled 1 and 2, however bands labelled 3 in gels B and D were identified from 

their partial protein sequence as xylan 1,4-β-xylosidase from Thermobacillus composti (closest 

strain being KWC4), and glucoamylase from Aspergillus niger, respectively. Bacterial spp. 

with 99% 16S rRNA gene sequence identity to that of Thermobacillus composti KWC4 were 

detected by 16S rRNA gene amplification from the DNA isolated from TR1A subculture 6 

pellet (Fig. 6.1A). Aspergillus niger would not have been identified by a 16S rRNA screen as 

amplification of the 18S rRNA gene would have required universal eukaryotic primers. 

The observed CMCase activity in the initial TR2A culture (Fig. 5.14B, lane TR2A0) did not 

persist in TR2A subculture 1. The lanes which contained samples from TR2A subculture 1 

(Fig. 5.14D lane TR2A1 and F lanes 2TR2A1 and 6TR2A1) did not show much activity in 

comparison with those from TR1A subculture 1 (Fig. 5.14D lane TR1A1 and F lanes 2TR1A1, 

3TR1A1, 6TR1A1 and 2.5TR1A1). A low activity from TR2A subculture 1 was observed in 

lane 6TR2A1 of Fig. 5.14F, but this was not as strong as activities detected in TR1A subculture 

1. This may explain the marginal degradation of pretreated M. x giganteus by the microbial 

community in TR2A subculture 1 (Fig. 5.2C-i and ii), relative to TR1A. 

The results also showed that different enzymes were predominant in the culture at different 

sampling stages, shown by the different positions of the zones of clearing when analysing 

samples from different stages of the cultures (Fig. 5.14B, D and F). Samples from two week 

old cultures of TR1A subculture 1 and TR1A subculture 6, 7 and 8, (Fig. 5.14F, lane 2TR1A1, 

Fig. 5.15B lane 2TR1A6, Fig. 5.16B lane 2TR1A7 and Fig.5.17D, lane 2TR1A8 CR, 

respectively) showed different clearing zones on the zymograms, while lane 3TR1A1 of Fig. 

5.14F and lane 6TR1A6 of Fig. 5.15B gave a similar pattern of clear zones for samples 

collected at three weeks and at six weeks. This indicates that the expression profile of different 

subcultures was changing during the sub-culturing stages, but similar profiles were obtained 

at different sampling times during any single stage.  
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Figure 5.14 Native CMC PAGE gel (12%) of TR1A and TR2A cultures.  

Coomassie brilliant blue stained 12% native PAGE gels of initial TR1A and TR2A cultures on pretreated M. x 

giganteus (A, C and E) and Congo red stained native PAGE zymograms of liquid samples from initial TR1A and 

TR2A cultures (B), TR1A and TR2A first subcultures (D and F), for analysis of CMCase activity at different ages 

of the culture. About 0.05% CMC (from Sigma) was added to the native gel preparation mixture. Samples from 

5 day old initial cultures of TR1A and TR2A were analysed on gels A and B, lanes TR1A0 and TR2A0 for TR1A 

and TR2A, respectively. TR1A and TR2A suculture 1 were analysed on gels C to F. Two week old first 

subcultures of TR1A and TR2A were analysed on gels C and D, TR1A subculture 1 is in lane TR1A1, TR2A 

subculture 1 is in lane TR2A1, and the control is lane CTL. In gels E and F, TR1A two week old subculture 1 is 

in lane 2TR1A1, three week old culture in lane 3TR1A1, TR2A two week old subculture 1 in lane 2TR2A1, TR1A 

six week old subculture 1 in lane 6TR1A1, TR2A six week old subculture 1 in lane 6TR2A1 and two and half 

week old TR1A subculture 1 in lane 2.5TR1A1.  

Mass spectrometry of band 1 (Fig. 5.15B) revealed that it contained multiple enzymes, 

including xylan 1,4-β-xylosidase from Geobacillus spp. (closest strains being G11MC16 and 

Y412MC52), and xylose isomerase from Bacillus subtilis and Thermobispora bispora (closest 

strains being ATCC 19993 / DSM 43833 / CBS 139.67 / JCM 10125). The more discrete bands 

labelled 2 to 4 were identified as β-xylosidase from Geobacillus stearothermophilus and 

Paenibacillus sp. (closest strain being DG-22), glucoamylase from Aspergillus niger, and 
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xylan 1,4-β-xylosidase from Thermobacillus composti (closest strain being KWC4), 

respectively. These and other enzymes identified from these bands are also shown in Table 

5.1. All these bacterial genera have been reported to have CMCase activity (Rastogi et al., 

2010), T. bispora DSM 43833 (formerly known as Microbispora bispora) was also reported 

to degrade cellulose (Waldron et al., 1986). 

 

 
Figure 5.15 TR1A subculture 6 supernatant assayed for CMCase activity. 

The samples were prepared as described in Fig. 5.13. (A) Coomassie brilliant blue stained 12% CMC-PAGE gel 

of two week old TR1A subculture 6 (lane 2TR1A6), six week old TR1A subculture 6 (lane 6TR1A6). (B) 

zymogram on 12% CMC-PAGE gel with the same samples as those loaded in 2TR1A6 and 6TR1A6 in (A). The 

arrows labelled 1 to 4 in (B) show clear zones due to CMCase activity on the CMC zymogram after staining with 

Congo red.  

Endo-β-N-acetylglucosaminidase H from Streptomyces plicatus was detected in all three 

bands in gel B (Fig. 5.16). Other enzymes detected in band 1 were xylanase/ β-xylosidase and 

xylan 1,4-β-xylosidase from Geobacillus sterothermophilus and Geobacillus sp. (closest strain 

being Y412MC52), respectively.  
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Figure 5.16 Native PAGE gel (12%) and zymogram for CMCase activity of supernatants of TR1A subculture 7  

(A) CMC-PAGE gel Coomassie brilliant blue stained and (B) CMC-PAGE zymogram of two week old culture in 

lane 2TR1A7 and six week old culture in lane 6TR1A7, and the control in lane CTL. The bands labelled 1 to 3 

are clear regions resulting from CMCase activity of the bands at these locations.  

TR1A subculture 8 gave zymogram profiles which were different from those of the other TR1A 

subcultures, consistent with the dramatic increase in exoglucanase activity observed. Samples 

analysed on gels C and D (Fig. 5.17) were from a two week old TR1A subculture 8, while the 

rest of the gels in Fig. 5.17 were of samples from six week old cultures. The supernatant from 

the six week old TR1A was also analysed on 0.05% xylan-native PAGE gel (Fig. 5.17G and 

H) to compare enzyme activity with that on CMC. All the zymograms had a similar pattern of 

clear zones, whether analysed on CMC or xylan containing gels, again consistent with the 

similar activities observed in 2 week and 6 week samples. It could be that selection pressure 

has resulted in strains which constitutively produce enzymes involved in the degradation of 

both CMC and xylan, which are therefore present in cultures growing on any carbon source. 

Alternatively, some of the enzymes may be capable of degrading both CMC and xylan. Similar 

observations have been reported by other researchers (Todero Ritter et al., 2013).  

Almost the same pattern of cleared zones was produced in gels B, D, F and H in Fig. 5.17. 

Most of the identified glycoside hydrolases given in Table 5.1 were β-xylosidases, these could 

have also been involved in the degradation of CMC to produce the clear zones observed on the 

CMC containing zymograms (Figures 5.14B, D and F, 5.15B, 5.16B, 5.17B, D and F). 

The bands labelled 1 to 4 in Fig. 5.17B were identified by mass spectrometry. Band 1 contained 

transaldolase from Meiothermus silvanus (closest strain being DSM 9946). Band 2 contained 

2TR1A7      6TR1A7      CTL                    2TR1A7      6TR1A7      

CTL 
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a manganese containing catalase from Thermus thermophilus or Thermus aquaticus (closest 

strain being Y51MC23), xylose isomerase from Geobacillus sp. (Y412MC52 as closest strain), 

and glyceraldehyde-3-phosphate dehydrogenase from Meiothermus silvanus (closest strain 

being DSM 9946) and Meiothermus ruber (closest strain being DSM 1279). Enzymes detected 

in band 3 were xylan 1,4-β-xylosidase from Geobacillus sp. (Y412MC52 as closest strain), β-

xylosidase from Geobacillus stearothermophilus, and endo-1,4-β-glucanase A (also called 

glucanase A or cellulase A) from Thermobispora bispora (closest strain being DSM 43833). 

Superoxide dismutase from Meiothermus silvanus (closest strain being DSM9946) was 

detected in both bands 3 and 4. Thermobispora bispora (closest strain being DSM 43833) and 

Meiothermus spp. were detected in the DNA isolated from TR1A subcultures 6 and 8 (Fig. 

6.1A). 

 

 

Figure 5.17 Native CMC and xylan PAGE gels (12%) of supernatant from TR1A subculture 8.  

Native CMC-PAGE gel (12%) containing Coomassie brilliant blue stained gels and zymograms of TR1A 

subculture 8 samples from a six week old culture (A and B, loaded in lanes 6TR1A8 C and 6TR1A8 CR, for 

Coomassie brilliant blue and Congo red stained gels, respectively), and from a two week old culture (C and D, 

loaded in lanes 2TR1A8 C and 2TR1A8 CR, for Coomassie brilliant blue and Congo red stained gels, 

respectively). The supernatant from the six week old TR1A subculture 8 was loaded on native CMC-PAGE gel 

(E and F, loaded in lanes 6TR1A8 CC and 6TR1A8 CRC, for Coomassie brilliant blue and Congo red stained 

gels, respectively), and on native xylan-PAGE gel (G and H, loaded in lanes 6TR1A8 CX and 6TR1A8 CRX, for 

Coomassie brilliant blue and Congo red stained gels, respectively) to compare glycosidase activity on CMC and 

xylan. The CMC and xylan gels were prepared by adding 0.05% CMC or Beechwood xylan, respectively. The 

0.05% CMC or xylan substrate was added to the gel preparations of both the Congo red and Coomassie brilliant 

blue stained gels. The bands labelled 1 to 4 in gel B and bands in gel A, were analysed by mass spectrometry for 

identification of the relevant proteins.  
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5.5.2.2 Identification of the enzymes detected in the supernatants of TR1A 

subcultures. 

The protein bands which showed enzyme activity through visible clear zones and other bands 

of interest were cut out from both Coomassie stained gels and the zymograms. The cut-out 

bands were prepared by using the Trypsin Ingel Digest method before being sent for protein 

identification by mass spectrometry. The identified enzymes including the more closely related 

producing microorganisms are given in Table 5.1. The table also shows the enzyme producing 

microorganisms that were detected in the pellet DNA or from the isolated microbial colonies 

from the TR1A subcultures, as well as the gels and the subculture stage at which the enzymes 

were detected. The list of the detected peptides of the identified enzymes and the locations of 

the peptides in the enzyme sequence is given in the appendix. Same enzymes produced by 

different microorganisms are shown to have different molecular weight (Table 5.1). It is 

possible for different organisms to produce same enzymes but the produced enzymes can be 

of different molecular weight (Semenova et al., 2009).  
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Table 5.1 Identification of the enzymes detected in the supernatant of TR1A subcultures 6, 7 and 8.  

D means that the producing microorganism was detected in the TR1A subculture pellet DNA or isolated as an 

individual microorganism from the TR1A subcultures. ND means that the enzyme producing microorganism was 

not detected. The provided molecular weight of the predicted enzymes was obtained from data base. 
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Fig. 5.15 

TR1A 

SUBCULTURE 6 

   

B 

Xylan 1,4-β-

xylosidase  

Geobacillus sp. 

G11MC16  

80 Geobacillus spp. 

isolated 

B 

Xylan 1,4-β-

xylosidase  

Geobacillus sp. 

Y412MC52  

80 

Geobacillus spp. 

isolated 

B 

β-xylosidase Geobacillus 

stearothermophilus 

80 D 

B 

β-xylosidase Paenibacillus sp. DG-

22 

79 Some 

Cohnella/Paenibacill

us spp. isolated 

B Glucoamylase 

(glucan 1,4-α-

glucosidase glaA) 

Aspergillus niger 68 ND 

B Xylan 1,4-β-

xylosidase 

Thermobacillus 

composti KWC4  

38 D 

A Acid-α amylase Aspergillus niger 55 ND 

A Xylulokinase Thermobacillus 

composti KWC4 

54 D 

A Xylulokinase  Paenibacillus 

curdlanolyticus YK9 

54 Some 

Cohnella/Paenibacill

us spp. isolated 

A Xylulose kinase  Bacillus subtilis 55 D 

B Xylose isomerase Thermobispora bispora 

(strain 

DSM 43833) 

43  

D 

A Superoxide 

dismutase 

Meiothermus silvanus 

DSM 9946 

23 D 

A β-xylosidase Paenibacillus sp. DG-

22 

79 Some 

Cohnella/Paenibacill

us spp. isolated 

A Superoxide 

dismutase  

Paenibacillus sp. oral 

taxon 786 

str. D14  

 

22 Some 

Cohnella/Paenibacillu

s spp. isolated 

A Superoxide 

dismutase [Mn]  

 

Geobacillus 

kaustophilus HTA426 / 

Geobacillus 

thermoleovorans]  

 

23 Geobacillus spp. 

isolated 

B Xylose isomerase  Bacillus subtilis 50 Bacillus spp. isolated 

A Xylose isomerase Geobacillus sp. 

Y412MC52 

50 Geobacillus spp. 

isolated 

A Xylan 1,4-β-

xylosidase  

Geobacillus sp. 

(strainC56-T3) 

 

80 Geobacillus spp. 

isolated 
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Fig. 5.16 

TR1A 

SUBCULTURE 7  

   

B Endo-β-N-

Acetylglucosaminid

ase H (Mannosyl-

glycoprotein endo-

β-Ngi)  

Streptomyces plicatus 33 ND 

B Xylanase Geobacillus 

stearothermophilus 

70 D 

B β-xylosidase Geobacillus 

stearothermophilus 

80 D 

B Xylan 1,4-β-

xylosidase 

Geobacillus sp. 

Y412MC52 

80 Geobacillus spp. 

isolated 

A Enolase or 2-

phosphoglycerate 

dehydrogenase or 2-

phospho-D-glycerate 

hydro-lyase   

Meiothermus silvanus 

DSM 9946  

45 D 

A 4-α-

glucanotransferase  

Thermoproteus 

neutrophilus V24 Sta  

55 ND 

A ∆-1-pyrroline-5-

carboxylate 

dehydrogenase  

Geobacillus 

thermodenitrificans 

NG80-2 

57 Geobacillus spp. 

isolated 

A Xylose isomerase Geobacillus 

thermodenitrificans 

NG80-2] 

51 Geobacillus spp. 

isolated 

A Xylose isomerase Bacillus sp. NRRL B-

14911  

49 Bacillus spp. isolated 

A Enolase (2-

phosphoglycerate 

dehydratase)  

[Bacillus halodurans C-

125/ Geobacillus sp. 

Y4.1MC1 

46 Bacillus spp. isolated 

A ∆-1-pyrroline-5-

carboxylate 

dehydrogenase 

Geobacillus sp. 

Y412MC52 

57 Geobacillus spp. 

isolated 

A 

Xylan 1,4-β-

xylosidase 

Geobacillus 

thermodenitrificans 

NG80-2] 

62 Geobacillus spp. 

isolated 

A Xylan 1,4-β-

xylosidase  

Bacillus cellulosilyticus 

DSM2522 

62 Bacillus spp. isolated 

A Xylose isomerase Geobacillus 

kaustophilus HTA426 

50 Geobacillus spp. 

isolated 

A Aldehyde 

dehydrogenase 

(NAD(+)) 

Micromonospora 

aurantiaca 

ATCC27029 

54 ND 

A Aldehyde 

dehydrogenase 

(NAD(+)) 

Rhodomicrobium 

vannielii ATCC 17100 

55 ND 
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A Aldehyde 

dehydrogenase 

Streptomyces 

clavuligerus ATCC 

27064 

55 ND 

A Enolase  Staphylococcus xylosus 47 Staphylococcus sp. 

isolated 

A Dihydrolipomamide 

dehydrogenase 

component of 

pyruvate 

dehydrogenase E3 

Staphylococcus 

carnosus subsp. 

Carnosus TM300 

49 Staphylococcus sp. 

isolated 

A Superoxide 

dismutase 

Meiothermus silvanus 

DSM 9946 

 

23 D 

A β-xylosidase/α-L-

arabinfuranosidase, 

Cellvibrio japonicus 

Ueda107 

38 ND 

A α-N-

arabinofuranosidase  

 Clostridium 

papyrosolvens DSM 

2782  

37 ND 

A Transaldolase  Paenibacillus sp. oral 

taxon 786 str. D14  

24 Some 

Cohnella/Paenibacillu

s spp. isolated 

A Xylose isomerase  Bacillus licheniformis 

ATCC 14580 

50 D 

A Enolase  Meiothermus silvanus 

DSM 9946 

45 D 

 

Fig. 5.17 

TR1A 

SUBCULTURE 8 

   

B Transaldolase  Meiothermus silvanus 

DSM 9946 

23 D 

B Mn catalase 

(manganese 

containing catalase) 

Thermus 

thermophiles/Thermus 

aquaticus 

33 Themus groups 

detected 

B Xylose isomerase Geobacillus sp. 

Y412MC52 

50 Geobacillus spp. 

isolated 

B Glyceraldehyde-3-

phosphate 

dehydrogenase 

Meiothermus silvanus 

DSM 9946 

36 Meiothermus spp. 

detected 

A NAD-dependent 

aldehyde 

dehydrogenase  

Geobacillus 

kaustophilus HTA426  

56 Geobacillus spp. 

isolated 

A Glyceraldehyde-3-

phosphate 

dehydrogenase 

Meiothermus ruber 

DSM 1279 

 

36 Meiothermus spp. 

detected 

B Xylan 1,4-β-

xylosidase  

Geobacillus sp. 

Y412MC52 

80 Geobacillus spp. 

isolated 

B β-xylosidase Geobacillus 

stearothermophilus 

80 D 

B Endo-1,4-β-

glucanase A 

Thermobispora bispora 

DSM 43833 

47  D 
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B Superoxide 

dismutase 

Meiothermus silvanus 

DSM 9946 

23 D 

A Catalase  Geobacillus sp. 

Y4.1MC1 

55 Geobacillus spp. 

isolated 

A Xylose isomerase  

 

Bacillus subtilis  

 

13 Bacillus spp. isolated 

A Xylose isomerase Geobacillus 

kaustophilus HTA426 

50 Geobacillus spp. 

isolated 

A Xylose isomerase  

 

Geobacillus sp. 

Y412MC52 

 

50 Geobacillus spp. 

isolated 

A Transaldolase  

 

Paenibacillus sp. JDR-

2  

23 Some 

Cohnella/Paenibacill

us spp. detected 

A Xylose isomerase Thermoanaerobacteriu

m thermosulfurigenes 

and 

Thermoanaerobacteriu

m 

thermosaccharolyticum 

DSM571 

50  Thermoanaerobacteri

um spp. detected 

 

5.5.2.2.1 Identified enzymes and their importance in the degradation of 

lignocellulosic biomass. 

5.5.2.2.1.1Glucoamylase. 

The glucoamylase produced by Aspergillus niger was detected in the initial cultures and first 

subcutures of TR1A and TR2A (Fig. 5.14B and D) and in the supernatant from TR1A 

subculture 6 (Table 5.1). This was the same microorganism from which glucoamylase general 

acid was first identified as Glu179 through site mutagenesis (Sierks et al., 1990). It was not 

clear how Aspergillus niger could have existed in a culture incubated at 55oC as it has not been 

reported to grow at temperatures above 45oC. Glucoamylase belongs to the glycoside 

hydrolase family 15, which comprises of enzymes glucoamylase (EC 3.2.1.3), alpha-

glucosidase (EC 3.2.1.20) and glucodextranase (EC 3.2.1.70) (Bairoch, 1999). Glucoamylases 

catalyse the degradation of α-1,4-glycosidic bond (Al-Turki et al., 2008), to remove β-D-

glucose from the reducing ends of starch (such as amylose and amylopectin) as well as oligo 

or polysaccharides (Sakaguchi et al., 1992). These enzymes are also capable of degrading α-
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1,6, α-1,3 and α-1,2 bonds, at lower levels (Al-Turki et al., 2008). They follow the inverting 

mechanism during the hydrolysis reactions (Weil et al., 1954).  

Glucoamylases are highly used in industrial processes involved in fermentation, food, textiles 

and paper production processes (Quang et al., 2002). They are also important in the starch 

hydrolysis for alcohol production, as well as the making of high glucose corn syrup (Quang et 

al., 2002). The glucoamylases are produced commercially from Bacillus spp. and Aspergillus 

spp., (Al-Turki et al., 2008). They representing 25-33% of the world enzyme market and are 

in the second position after proteases (Quang et al., 2002). 

5.5.2.2.1.2 Xylan 1,4-β-xylosidases/β-xylosidases. 

The xylan 1,4-β-xylosidases/ β-xylosidases were the most abundant group of enzymes in the 

TR1A subcultures (mostly produced by Geobacillus spp. Paenibacillus spp. and Bacillus 

spp.), and were isolated from all the three stages of TR1A subcultures (Table 5.1). These 

enzymes were detected 7 times, 5 times and 2 times, in the supernatants from TR1A 

subcultures 6, 7 and 8, repsectively. The xylan 1,4-β-xylosidase (code EC 3.2.1.37) belongs to 

the glycoside hydrolase family 43. This enzyme is also known as xylobiase, β-xylosidase, exo-

1,4-β-xylosidase, β-D-xylopyranosidase, exo-1,4-β-D-xylosidase, or 1,4-β-D-

xylanxylohydrolase, and has a system name called 4-β-D-xylanxylohydrolase (Chinchetru et 

al., 1989). The xylan 1,4-β-xylosidase catalyses the hydrolysis reaction involving the 

successive removal of D-xylans from the non-reducing termini by degradation of the (1->4)-

β-D-xylans. β-xylosidase hydrolyses glycosidic bonds of 1,4-β-xylooligosaccharides, as well 

as exhibiting alpha-l-arabinofuranosidase activity on 4-nitrophenyl α-l-arabinoside (Rojas et 

al., 2005).  

The β-xylosidases work synergistically with endoxylanases during hydrolysis of glucuroxylan 

as well as with α-L-arabinofuranosidase and endoxylanase during arabinoxylan hydrolysis 

(Semenova et al., 2009). The β-xylosidases have been reported to increase efficiency of 

degradation of lignocellulosic materials (maize cobs) when they were added to enzymatic 

preparation of Celloviridine G20X without its own β-xylosidase (Semenova et al., 2009).  

It was also observed that degradation of xylan more than doubled when β-xylosidase and β-l-

arabinofuranosidase were added to purified xylanases (Tuncer and Ball, 2003a). This could 

partly be the reason for the successful degradation of pretreated M. x giganteus observed in the 

TR1A subcultures, as both the β-xylosidase/α-l-arabinofuranosidase and xylanase, as well as 
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α-N-arabinofuranosidase enzymes were detected in the TR1A subculture 7 supernatant (Table 

5.1). The deconstruction of hemicellulosic polysaccharides requires an optimized mixture of 

enzymes to be produced by microorganisms. 

5.5.2.2.1.3 Xylanase. 

Xylanase (code EC 3.2.1.8) is involved in the production of xylose. It breaks down the β-1,4-

backbone of the complex polysaccharide xylan in the plant cell wall to release short xylans 

(Collins et al., 2005). The xylanase was detected in the supernatant from the TR1A subculture 

7 (Table 5.1), with Geobacillus stearothermophilus identified as the producing microoganism. 

The xylanase mainly belongs to glycoside hydrolase families 10 and 11. Other families 

including 5, 7, 8 and 43 have also been identified with xylanases but they have not been 

extensively studied (Collins et al., 2005). Xylanase has been reported to be produced by 

bacteria, algae, fungi, protozoa, gastropods and anthropods (Prade, 1996). The xylanase 

enzymes were first reported in 1955 by Whistler and Masak, and were called pentosases. Their 

official name is endo-1,4-β-xylanase, but they are also called xylanase, endoxylanase, 1,4-β-

D-xylan-xylanohydrolase, endo1,4-β-D-xylanase, β-1,4-xylanase and β-xylanase (Collins et 

al., 2005).  

5.5.2.2.1.4 Endo-β -N-Acetylglucosaminidase H. 

The enzyme endo- β -N-acetylglucosaminidase H is also called Endo H. It was detected in the 

supernatant from TR1A subculture 7 (Table 5.1). It is an endoglycosidase secreted by 

Streptomyces plicatus (Tarentin.Al et al., 1974). The Endo H enzyme is involved in the 

hydrolysis of the β -1,4-glycosidic link of the N,N-diacetylchitobiose core of the high-mannose 

and hybrid asparagine linked oligosaccharides (GlcNAc-β(1,4)-GlcNAc) (Rao et al., 1999).  

The Endo H belongs to the glycosyl hydrolase family 18, and it follows the retention of 

configuration mechanism during the hydrolysis process (Rao et al., 1999). This enzyme is 

widely used for the characterization and functional analysis of oligosaccharides and 

glycoproteins (Maley et al., 1989; Oneill, 1996; Tarentino and Plummer Jr, 1994).  

5.5.2.2.1.5 Endo-1,4-β-glucanase A. 

The endo-1,4-β-glucanase A, also simply called glucanase A, belongs to glycoside hydrolase 

family 6 and is denoted by the code EC 3.2.1.4. Glucanase A was detected in the supernatant 

from TR1A subculture 8 during this study (Table 5.1). The enzyme glucanase A is involved 
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in the hydrolysis of β-1,4-glycosidic bonds in cellulose, cereal β-D-glucans and lichenin by 

following the inversion of anomeric configuration mechanism (Damude et al., 1996). The 

microorganism Thermobispora bispora (closest strain being DSM 43833) was identified as 

the producing microorganism by mass spectrometry analysis, and was detected in the pellet 

DNA from the early and late TR1A subcultures (Table 5.1, and Figures. 6.1-A, and 6.2A and 

B).  

5.5.2.2.1.6 Xylose isomerase. 

The production of biofuel from the hemicellulose fraction of plant biomass will become 

economical and a realistic enterprise if the rates of conversion of pentoses and hexoses are 

high. This depends on the successful conversion of all the available sugars in the 

lignocellulosic biomass into biofuel (Brat et al., 2009). The xylose isomerase enzyme (code 

XI EC 5.3.1.5) catalyses the interconversion of D-xylose to D-ribulose, as well as the 

isomerization of D-ribose to D-ribulose, and D-glucose to D-fructose. Xylose isomerase is an 

intracellular enzyme and its presence could be due to cell lysis. However, it has also been 

reported to be secreted as an extracellular enzyme by an alkalophilic-thermophilic Bacillus sp. 

(Chauthaiwale and Rao, 1994). The results in Table 5.1 show that xylose isomerase was the 

second most abundant enzyme detected in the TR1A subcultures 6, 7 and 8, after the xylan 

1,4-β-xylosidase/β-xylosidase group. This enzyme was produced mostly by the Firmicutes, 

especially the Geobacillus spp. This shows that the xylose isomerase enzyme was very 

important for the survival of the mixed microbial community in the TR1A subcultures due to 

successful xylose metabolism. 

Wild-type Saccharomyces cerevisiae has been reported to be capable of metabolising xylulose 

slowly, but is unable to metabolise xylose (Kuyper et al., 2004). Bruinenberg et al., (1983) 

recommended that metabolic engineering for yeasts for xylose utilization should be based on 

the cloning of the xylose isomerase. A lot of studies have been carried to try and introduce the 

xylose isomerase into S. cerevisiae (Amore et al., 1989; Brat et al., 2009; Moes et al., 1996; 

Sarthy et al., 1987; Walfridsson et al., 1995). Xylose isomerase was expressed from the rumen 

bacterium Prevotella ruminicola T C2-24 into S. cerevisiae CEN (Hector et al., 2013). The 

transformed S. cerevisiae CEN was observed to ferment D-xylose leading to high ethanol 

yields, confirming the need for xylose isomerase for successful fermentation of xylose by S. 

cerevisiae.  
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5.5.2.2.1.7 Transaldolase. 

Transaldolases produced by Paenibacillus spp. and Meiothermus silvanus DSM 9946 were 

detected in the supernatant from TR1A subcultures 7 and 8 (Table 5.1). Transaldolase is an 

important enzyme in the pentose phosphate pathway and in the ribulose monophosphate cycle 

of formaldehyde fixation (Levering and Dijkhuizen, 1986; Sprenger et al., 1995). It is involved 

in the xylose metabolism by catalysing the production of fructose-6-phosphate which later 

enters into the glycolytic cycle and gets degraded into ethanol. Microorganisms that do not 

produce transaldolase have been reported to be unable to grow on xylose (Levering and 

Dijkhuizen, 1986). 

5.5.2.2.1.8 Superoxide dismutase and catalase.  

Superoxide dismutase produced by Meiothermus spp, Geobacillus spp. and Paenibacillus spp. 

was detected in all the three TR1A subculture stages, three times, once and twice from the 

TR1A subcultures 6, 7 and 8, respectively (Table 5.1). Meiothermus spp. and Geobacillus spp. 

were detected to be some of the most abundant groups of microorganism in the TR1A 

subcultures (figures 6.1 and 6.2), consistent with the abundance of the superoxide dismutase in 

the TR1A subcultures.  

Catalases produced by Thermus thermophilus or Thermus aquaticus (closest strain being 

Y51MC23) and Geobacillus sp. (Y4.1MC1 identified as the closest strain) were also detected 

in the supernatant from the TR1A subculture 8. Superoxide dismutase breaks down superoxide 

into oxygen and hydrogen peroxide (Bannister et al., 1987; Zelko et al., 2002) to protect the 

cells from oxidants, the hydrogen peroxide subsequently gets converted to water and oxygen 

by catalase (Chelikani et al., 2004; Zámocký and Koller, 1999). 

5.5.2.2.1.9 Acid α-amylase.  

An acid α-amylase, also called 1,4-α-D-glucan glucanohydrolase (code EC 3.2.1.1), from A. 

niger was detected in the TR1A subculture 6 (Table 5.1). This enzyme is involved in the 

endohydrolysis of (1->4)-α-D-glucosidic linkages in polysaccharides which contain three or 

more (1->4)-α-linked D-glucose units (Boel et al., 1990). 
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5.5.2.2.1.10 Other enzymes. 

Other enzymes detected in the supernatants from the TR1A subcultures which may not be 

involved directly in the deconstruction of lignocellulosic biomass included enolase, 

glyceraldehyde 3-phosphate dehydrogenase, aldehyde dehydrogenase, ∆-1-pyrroline-5-

carboxylate dehydrogenase and dihydrolipomamide dehydrogenase (Table 5.1). Aldehyde 

dehydrogenase might be involved in the detoxification activities by removing aldehydes and 

alcohols from the culture (Kwok and Weiner, 2005).  

Xylulokinase was also detected in the supernatant from the TR1A subcultures. The metabolism 

of xylose depends on its conversion to xylulose-5-phosphate, which is produced by action of 

xylose isomerase followed by xylulokinase (code EC 2.7.1.17). The xylose isomerase converts 

xylose to xylulose which subsequently gets phosphorylated to xylulose-5-phosphate by the 

action of xylulokinase. The xylulose-5-phosphate then enters the glycolysis pathway through 

the nonoxidative pentose phosphate pathway (Jin et al., 2002), and gets degraded into ethanol. 

However, all these are intracellular enzymes and may naturally be abundant in the cells. 

5.6 Discussion. 

A mixed microbial community was successfully developed from the compost inoculum by 

enrichment culture using pretreated M. x giganteus. Microbial consortia obtained by 

enrichment techniques are close to those functioning in natural environments (Nichols et al., 

2008), and may have the ability to utilize raw lignocellulosic biomass synergistically as in 

nature (Feng et al., 2011).  

The microbial consortium obtained during this study was able to grow on pretreated M. x 

giganteus. The fluctuations observed in the growth of the mixed microbial cultures (Fig. 5.2 

A and B) could be due to the influence of dissolved organic matter, as well as the influence of 

the interactions between the mixed microbial community members and the pretreated M. x 

giganteus substrate on microbial growth (Bomber et al., 1989; Grzebyk et al., 1994). The 

fluctuations in microbial growth could also be due to substances secreted into the culture 

medium by members of the mixed microbial group as observed during a previous study 

(Sakami et al., 1999).  

The mixed TR1A microbial consortium degraded over half of the pretreated miscanthus during 

a six week incubation period. It was observed that the pretreated M. x giganteus was never 
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completely degraded even when the cultures were left to grow on for more than six weeks. 

Feng et al., (2011) also observed that there was no further degradation after filter paper was 

degraded to a certain extent by a microbial consortium.  

The microorganisms in the mixed culture appeared to depend on the pretreated miscanthus as 

a carbon source, as those cultures in higher pretreated miscanthus biomass content showed 

more growth indicated by higher protein concentration than those cultured in lower pretreated 

miscanthus amount. Microbial growth was also better in buffered medium as the pH was 

maintained around 7 throughout the incubation period. The pH always dropped to below 6 in 

unbuffered medium, resulting into restricted growth of the microbial community. 

Compositional analysis results show that the microorganisms in the mixed culture were able 

to use all the sugar components in the pretreated M. x giganteus, and were also able to degrade 

part of the lignin. The results showed that more of the ASL was degraded, whereas less than 

50% of AIL was degraded. This shows that the mixed microbial community in the TR1A 

subcultures is very important, because lignin degradation is the key to successful 

deconstruction of the lignocellulosic biomass for successful development of consolidated 

bioprocessing. 

Fermentation products such as formate and lactate were detected in the TR1A subcultures. 

However, no alcohol was detected in the TR1A subculture supernatant despite the detection 

of the fermenting groups of microorganisms (Fig. 6.1A and B) and products (Fig. 5.11). Other 

techniques such as head space GC analysis (Wei et al., 2013) or analysis by nuclear magnetic 

resonance (NMR) (Kim et al., 2013) could be used for analysis to detect the ethanol, as its 

concentration in the supernatant could be too low to be detected by HPLC analysis. Increasing 

the number of standards could also help to identify the unidentified products detected by HPLC 

in the supernatant from the TR1A subculture. 

There was good enzyme activity detected in the supernatant from the TR1A subcultures (Fig. 

5.13). The subculture 6 maximum CMCase and xylanase (0.1 and 1.0 U/mg, respectively) 

activities were lower than the CMCase and xylanase (0.24 and 1.71 U/mg, respectively) 

recorded in a previous study for the supernatant from a lignocellulose degrading consortia 

(Wongwilaiwalin et al., 2010). However, the observed CMCase activity for subcultures 7 and 

8 (0.27 and 2.09 U/mg, respectively), and xylanase activities for the same subcultures (2.79 
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and 4.63 U/mg, respectively) were much higher than that recorded by Wongwilaiwalin et al., 

(2010).  

The detected amounts of xylanase, CMCase and avicelase in the supernatant from the TR1A 

subcultures increased with number of subcultures carried out. This finding was also supported 

by the isolation of the endoglycoside hydrolase groups Endo-β-N-Acetylglucosaminidase H 

and Endo-1,4-β-glucanase A from the middle and late TR1A subcultures 7 and 8, 

respectively.This shows that the more stable microbial communities were capable of producing 

enzymes directly involved in the deconstruction of the crystalline cellulose.  

The results in table 5.1 show that the mixed microbial community in the TR1A subcultures 

produced different enzymes and at different times, so as to achieve the observed deconstruction 

of the lignocellulose biomass. Proteins associated with the degradation of biomass are often 

observed in the bacterial extracelluar fractions, with saccharification of pretreated switchgrass 

by supernatants from enrichment cultures reported to be successful (Gladden et al., 2011). The 

detection of enzymes, such as superoxide dismutase and Mn-containing catalase involved in 

reactions with reactive oxygen species in the TR1A subcultures supernatant is an indication of 

oxidative deconstruction of lignocellulosic biomass as suggested by D'Haeseleer et al., (2013). 

The results showed that there are various microbes that form symbiotic relationships and 

successfully produce the enzymes that work to co-catalyse the deconstruction of 

lignocellulosic biomass. The degradation of lignocellulosic biomass has been reported to be 

complex (Takasuka et al., 2013), involving synergism and other metabolic relationships among 

microorganisms in nature (Haruta et al., 2002). This synergism can not be reconstituted by 

simple mixtures of known organisms (Feng et al., 2011). 

The detection of Endo-β-N-Acetylglucosaminidase H in the TR1A subculture could be the 

reason for the complete degradation of the mannose component of the pretreated M. x 

giganteus during the six week incubation of the TR1A subculture 6. Reports from a previous 

study suggest that this enzyme could have been involved in the degradation of cellulosic 

biomass during growth of an insect associated Streptomyces (Takasuka et al., 2013). Efforts to 

amplify Endo H or Endo-1,4-β-glucanase A from the TR1A subcultures during this study were 

unsuccessful. Low level of endoglucanase activity recovered from a switchgrass adapted 

community were also observed during a previous study (D'Haeseleer et al., 2013). 
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The abundance of the Geobacillus spp. from the liquid fraction of the TR1A subcultures is 

very important because this group of microorganisms secrete enzymes which easily diffuse 

through the whole culture and are more effective in the degradation of the plant biomass. The 

successful degradation of lignocellulosic biomass depends on availability of enzymes in their 

surrounding environment. The Geobacillus spp. were producers of most of the enzymes 

detected in the TR1A subcultures. A number of enzymes from Thermus spp. were detected in 

the supernatant of TR1A subcultures, mostly from TR1A subcultures 7 and 8 (Table 5.1). 

There could have been more proteins from the Thermus spp. in the suspended and fibre 

attached fractions as observed in a previous study (D'Haeseleer et al., 2013). Proteins from 

Paenibacillus spp. were found to be present in the supernatant, similar to the observations 

made by D'Haeseleer et al., (2013) in a study involving a thermophilic bacterium consortium 

adapted to deconstruct switchgrass. 

The identified set of enzymes shown in Table 5.1 gives information about the many enzymes 

a natural mixed microbial community produces to achieve degradation of the plant biomass. 

These enzymes work synergistically to achieve the deconstruction of the lignocellulosic 

biomass and provide the right forms of sugars to be used by the microbial community. The 

similar pattern of cleared regions observed on CMC and xylan native gels could be due to 

synergistic associations between cellulases and xylanases as reported in previous studies 

(Beukes et al., 2008; Gao et al., 2011). It has been observed that a lot of xyloglucan hydrolases 

have minor endoglucanase activity, while many endoglucanases have minor xyloglucan-

hydrolyzing activity (Karboune et al., 2009; Vlasenko et al., 2010). The same pattern of cleared 

zones for supernatants from the two week or the six week old TR1A subculture 8 showed the 

stability of the consortia in this subculture.  

The results in Table 5.1 showed that the three subcultures had different profiles. This is not 

surprising as the enrichment process results in the selective adjustment of the structure of the 

community supporting only those microorganisms which adapt to the new environment (Feng 

et al., 2011; Gladden et al., 2012). It is not easy to assign roles to individual microbial groups 

in microbial communities that deconstruct biomass (Hess et al., 2011). Their microbial 

proportions are dynamically altered by changes in the substrate composition and temperature 

(Wei et al., 2012). Fluctuations in the relative ratios of the abundant populations in the switch 

grass adapted enrichment have been reported by Gladden et al., (2011). These fluctuations 
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could also result in differences in relative enzyme activity, and the detected enzymes 

(D'Haeseleer et al., 2013). 

The TR1A mixed microbial culture produced high levels of xylanases during all the three 

subcultures, an observation which was also reported by D’Haeseleer et al., (2013), and another 

previous study on a bacterial consortium that was adapted to swicthgrass deconstruction under 

thermophilic conditions in liquid culture (Gladden et al., 2011). This may be an indication that 

degradation of the hemicellulose component of the pretreated M. x giganteus was the main 

enzyme activity in the TR1A subcultures, an observation that was also made on the switchgrass 

adapted community (D'Haeseleer et al., 2013).  

A number of intracellular enzymes, such as transaldolase, xylose isomerase, superoxide 

dismutase and Mn-catalase were detected in the supernatant. It has been suggested that these 

detections may result from cell lysis during the incubation period (D'Haeseleer et al., 2013) . 

A similar observation was made by D’Haeseleer et al., (2013), where enzymes normally 

considered to be cytoplasmic enzymes were detected in the supernatant. However, other 

studies have reported the presence of an extracellular xylose isomerase in Streptomyces sp. 

(strain NCL 82-5-1) (Pawar and Deshmukh, 1994), a thermophilic Bacillus sp. (NCIM 59) 

(Chauthaiwale and Rao, 1994), and Clostridium obsidiansis after growth on pretreated 

switchgrass as discussed by D'Haeseleer et al., (2013).  

Superoxide dismutase and Mn-catalase are normally involved in the cellular detoxification by 

degrading oxygen radicals, but have been reported to be present in the supernatant of 

Thermobifida fusca grown on lignin (Adav et al., 2010). It is proposed that oxygen radicals 

produced in the extracellular medium by the microbes may be involved in the degradation of 

lignin (D'Haeseleer et al., 2013). Enzymes known to be directly involved in lignin degradation 

were not detected in the TR1A subcultures’ supernatants, this could be due to lack of 

knowledge of lignin deconstruction by bacteria as suggested by Bugg et al., (2011). 

These results could be an indication that the way forward to a successful consolidated 

bioprocessing might be the involvement of the mixed microbial communities capable of 

deconstructing pretreated plant biomass in the culture of fermenting microbes. The mixed 

microbial community would be the source of the enzymes required to degrade the pretreated 

plant biomass to provide the right forms of sugars for the fermenting microbes to use for 

biofuel production.  
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6. Identification of bacteria present in the TR1A culture by 16S rRNA gene 

analysis.  

6.1 Introduction. 

Sequencing of the 16S rRNA gene has been used to study bacterial phylogeny and taxonomy 

(Patel, 2001). The 16S rRNA gene sequence is present in almost all bacteria and has not 

changed over time (Janda and Abbott, 2007; Woese et al., 1990). It is 1 500 bp and keeps 

enough information required in the study of evolution and classification of living things (Woo 

et al., 2008). It is a better method for classifying organisms than using variations in phenotypic 

characteristic (Woo et al., 2008), for identification of poorly described, rarely isolated, or 

phenotypically aberrant strains (Jill and Clarridge, 2004). This study was carried out to study 

the composition of the microbial communities in the TR1A culture. 

6.2 Isolation of bacteria present in the TR1A culture.  

DNA was isolated from pellets from the early stage (TR1A subculture 6) and the late stage 

(TR1A subculture 8) subcultures still growing over 1 year from the start of the initial culture. 

Pellets included both freely suspended and surface-attached bacteria bound to the solid 

particles in the flasks. Additionally, individual colonies were obtained by spreading samples 

from the flasks on plates of agar medium containing cellobiose, xylose and glucose (0.5% wt/v 

of each), phosphoric acid swollen cellulose, 2TY, as well as RIM with a fine powder of M. x 

giganteus (1% w/v), and actinomycetes isolation medium.  

The inoculated plates were incubated aerobically at 55oC as described in the materials and 

methods. The colonies which developed after incubation were subcultured several times until 

pure isolates were obtained. Colonies were selected based on their morphological differences 

and, after purification, were grown individually in 2TY liquid medium for 24 h at 55oC with 

shaking at 250 rpm, for DNA isolation. Fourteen and 12 independent colonies were selected 

from TR1A subcultures 6 and 8, respectively. The 16S rRNA genes were amplified and 

prepared for sequencing.  

Amplification of 16S rDNA directly from the cultures should give a relatively unbiased view 

of the microbial populations, while colony isolation provided pure cultures for subsequent 

study but was potentially biased as a method for examining the population, by the need to 

culture the strains on a laboratory medium and due to the fact that the plates were incubated 
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aerobically. The focus for growth of colonies was to isolate a range of Geobacillus spp. which 

might be more catabolically versatile in consolidated bioprocessing than the TMO Renewables 

strain (Cripps et al., 2009) or which could supply catabolic genes which were directly 

transferable to the TMO strain. Geobacillus spp. are mostly planktonic, therefore, the liquid 

fraction of the cultures was used for isolations. The aim was to isolate Geobacillus spp. that 

secrete important free enzymes into the culture as these secreted enzymes were believed to be 

more effective in degrading lignocellulose than those that attach to the lignocellulose particles 

(Jorgensen et al., 2005). 

16S rRNA genes present in the isolated DNA were PCR amplified using universal eubacterial 

primers and cloned into E. coli as described in the methods section. As the samples taken 

directly from the liquid culture contained mixed PCR products, represented by 67 and 37 PCR 

products prepared from subcultures 6 and 8, respectively, individual E coli clones were 

processed for DNA sequencing, in order to obtain a profile of the most abundant strains in the 

culture. The sequencing results were analysed using the BLAST algorithm via the National 

Centre for Biotechnology Information (NCBI) website and the results were then used to 

identify the most probable genus and species of bacteria present in the original culture. A 

similar analysis was done using colonies isolated on plates, except in this case only a single 

clone of each PCR fragment was sequenced.  

6.3 Identification of the bacteria present in the TR1A culture by 16S rRNA gene 

analysis. 

The identified species from the pellet DNA and the isolated colony 16S rRNA analysis were 

then used to develop phylogenetic trees using PhyML 3.0 (Guindon et al., 2010). The results 

are illustrated in Fig. 6.1A for the direct culture 16S rDNA identifications and Fig. 6.1B for 

the isolated colonies.  
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Figure 6.1 Un-rooted phylogenetic trees of microorganisms detected in the TR1A subcultures.  

Un-rooted phylogenetic trees based on 16S rRNA gene sequences amplified from microorganisms detected in the 

TR1A subculture DNA isolated directly from culture pellets (A), and individual bacteria isolated from liquid 

sample from the culture (B) and their closest relatives. The trees are showing where the different isolates sit. In 

most cases only one of the members of the detected genera was selected and used for constructing the tree, and 

are highlighted in bold green in (A) and purple in (B). The trees were constructed by estimation of the Maximum 

Likely-hood Phylogenies by using PhyML 3.0 as described by Guindon et al. (2010). The number of changes per 

nucleotide is indicated by the scale, while the numbers on the nodes represent the comparisons of bootstrap and 

aLRT SH-like supports for the branches. The higher the signal the higher is the agreement. Only values with 

frequency above 0.5 were displayed. 

B 
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Figure 6.2 Pie charts showing the approximate abundance (%) of the microbial species identified in the TR1A 

subcultures 6 and 8.  

The microbial species were identified by 16S rRNA gene analysis of DNA isolated directly from culture pellets 

from the mixed TR1A subcultures 6 and 8. Abundance was estimated from the number of times that a sequence 

appeared in a population of 67 and 37 clones of PCR amplified 16S rRNA genes, for the TR1A subcultures 6 and 

8, respectively. The DNA isolated from TR1A subcultures 6 and 8 represented the microbial population from the 

early and the late TR1A enrichment subcultures, respectively. The closest species to which the clones were 

identified are shown in the brackets. 
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6.3.1 Identification of microorganisms from 16S rRNA gene analysis of total 

DNA isolated from the TR1A subcultures. 

The phylogenetic tree in Fig. 6.1 A represent the range of microorganisms that were detected 

in the total DNA isolated from the TR1A subcultures. 

6.3.1.1. Identification of the Bacteroidetes microorganisms. 

The Chitinophagaceae family is a member of the Bacteroidetes phylum. TR1A_36, TR1A_41 

and TR1A_56 (Fig. 6.1A) were distinct members of this family, which is poorly delineated at 

the sub-family level, which were present in the selected subcultures. Based on the 16S rRNA 

analysis, all the microoganisms in this group had 99% identity with previously identified 

Chitinophagaceae 16S rRNA gene sequences. They were the largest group of the early stage 

subculture microorganisms detected in the pellet DNA (Fig. 6.2A), and were second largest in 

the groups of microorganisms detected in the pellet DNA from the late stage subculture (Fig. 

6.2B). However, comparison of the detected groups in the pellet DNA from the late stage 

subcultre may not be real due to the smaller number of sequences (37) analysed compared to 

the number of sequences (67) analysed during the early stage subculture. 

The abundance of Chitinophagaceae in the TR1A subcultures 6 and 8 indicates that they must 

be one of the most important groups responsible for the degradation of the pretreated M. x 

giganteus in the TR1A culture. Bacteroidetes have been reported to produce high levels of 

glycoside hydrolases (Gladden et al., 2011), belonging to GH10, which include β-1,4-xylanase 

and β-1,3-xylanase (http://www.cazy.org/GH10_bacteria.html). They are also among the three 

major groups that were identified during a similar study carried out by Eichorst et al., (2013), 

in which a similar inoculum sourced from compost, mostly consisting of plant biomass, was 

used. 

6.3.1.2 Identification of the Thermus microorganisms. 

Meiothermus spp. were also an abundant group of microorganisms that were detected in the 

TR1A subcultures 6 and 8, represented by TR1A_48, TR1A_168, TR1A_186 and TR1A_217 

(Fig. 6.1A). This genus belongs to the Thermaceae family, which includes the closely related 

Meiothermus spp. and Thermus spp., which can grow at extremely high temperatures. Based 

on the 16Sr RNA gene analysis results, most of the Meiothermus isolates in TR1A had 100% 

http://www.cazy.org/GH10_bacteria.html
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identity with Meiothermus sp. Pnk-1, while the rest had 99% identity with Meiothermus 

silvanus or other Meiothermus spp.  

The Meiothermus spp. were the second largest group of bacteria identified from the TR1A 

subculture 6, and were the largest group in TR1A subculture 8 (Fig. 6.2A and B). Some of the 

characteristics of this group may be associated with some of the observations made during 

enrichment of the TR1A culture. Bacterium S119 has 94% identity to Meiothermus silvanus 

based on the 16S rRNA gene analysis and produces a pink carotenoid pigment called 

Deinoxanthin, while other Meiothermus spp. produce yellow, or red or orange pigments 

(Yarger et al., 2006). Production of these pigments and the evident abundance of this genus in 

TR1A subcultures could be associated with the development of a reddish pigmentation 

observed in the TR1A subcultures (Figures 5.7 and 5.8A).  

Superoxide dismutase from a Meiothermus silvanus DSM 9946, Mn-catalase, enolase, 2-

phosphoglycerate dehydrogenase, transaldolase and glyceraldehyde 3-phosphate 

dehydrogenase from Thermus bacteria were also detected in polypeptide analysis of the TR1A 

subculture (Table 5.1).  

The Deinococcales form a closely associated lineage to the Thermaceae and Deinococcus spp. 

and are also extremophiles. Deinococcus geothermalis and Deinococcus murrayi were isolated 

during a study of hot springs in Portugal and Italy (Makarova et al., 2001). These bacteria are 

said to be highly resistant to harsh environmental conditions, such as extremes of heat, and 

cold. Deinococcus radiodurans, the toughest bacterium known to man, according to the 

Guiness Book of World Records, is resistant to hydrogen peroxide, and can survive exposures 

to ionizing and ultraviolet radiation (Brim et al., 2000; White et al., 1999). Some Deinococcus 

spp. can transform nuclear waste and can survive in a vacuum (Deinos means strange or 

unusual in Greek). Its resistance to harsh conditions and chronic radiation is attributed to its 

efficient DNA repair capabilities (Cox and Battista, 2005; Englander et al., 2004; Makarova 

et al., 2001).  

Thermus spp. (Thermus caldophilus) have been reported to encode endocellulases (Kim et al., 

2006), and other Thermus spp. have been shown to degrade cellulose, CMC or ponderosa pine 

saw dust (Rastogi et al., 2010), an indication that Meiothermus spp. could have been directly 

involved in the degradation of the pretreated M. x giganteus particles in the TR1A culture. The 

hardiness of this group of organisms could also provide an explanation for the survival of the 
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microbial community in the TR1A subcultures and their successful resuscitation from -80oC 

stock cultures stored without glycerol.  

6.3.1.3 Other microorganisms detected at less than 10% of the microbial 

population in TR1A subcultures 6 and 8. 

Other bacteria identified in the TR1A culture were each present at less than 10% of the 

microbial population (Fig. 6.2). Most of them are known to be very important for degradation 

of lignocellulosic biomass. These included the Chelatococcus spp. represented by TR1A_121, 

TR1A_216 and TR1A_179 (Fig. 6.1A), which were detected both in the early stage and late 

stage TR1A subcultures (Fig. 6.2A and B). Chelatococcus spp. were recently shown to 

hydrolyse cellulose and hemicellulose components of corn stover and switchgrass during a 

thermophilic high-solids fermentation of these bioenergy feedstocks (Reddy et al., 2011).  

Thermobacillus spp. are represented in Fig. 6.1A by TR1A_167, which were 99% identical to 

Thermobacillus composti KWC4. T. composti KWC4 produces xylulokinase and xylan 1, 4-

β-xylosidase, with both of these enzymes being detected in the supernatant from TR1A 

subculture 6 (Table 5.1). Thermobacillus spp. are known to be capable of carrying out 

thermophilic plant cell wall degradation (Rastogi et al., 2010). The 16S rRNA gene of isolate 

TR1A_75 detected from the pellet DNA was only 88% identical to Thermobacillus spp., 

Paenibacillus spp. and the uncultured Geobacillus sp. clone ASC125.  

Other microorganisms detected at less than 10% of the population included 

Thermoanaerobacterium spp. represented in Fig. 6.1A by TR1A_17 and TR1A_81, which 

were only detected in the late stage subcultures (Fig. 6.2B). These bacteria are obligate 

anaerobes and could be surviving as spores during transfers, germinating only when the zones 

in the biomass became anaerobic. Thermoanaerobacterium spp. have been reported to be spore 

formers (Lee et al., 1993), T. aotearoense was observed to form oval terminal spores (Liu et 

al., 1996), another Thermoanaerobacterium, T. calidifontis is a spore forming anerobic 

bacterium and has been reported to degrade hemicellulose (Shang et al., 2013). The 

Thermoanaerobacterium spp. are capable of saccharifying cellulose, they have been used in 

thermophilic cocultures during ethanolic fermentation processes (Jiang et al., 2013).  

Thermobispora bispora DSM 43833 is a strictly thermophilic actinomycete, and has been 

previously isolated from decaying manure and other types of manure (Liolios et al., 2010). 
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This species was detected in both the early stage and late stage of TR1A subcultures, both at 

less than 10% of the population (Fig. 6.2A and B), represented by TR1A_72 (Fig. 6.1A). The 

TR1A_72 16S rRNA gene sequence had 99% identity with that from Thermobispora bispora 

DSM 43833. Thermobispora bispora DSM 43833 produces a wide range of glycoside 

hydrolases, including endoglucanase A (cellulase A or endo-1,4-β-glucanase A or β-1,4-

endoglucan hydrolase) (http://www.cazy.org/GH6.html). This enzyme was detected in the 

TR1A subculture 8 supernatant (Table 5.1), with Thermobispora bispora DSM 43833 as the 

closest producing bacterium strain, and could be one of the enzymes responsible for the 

observed degradation of pretreated M. x giganteus in the TR1A subcultures (Figures 5.2C and 

5.6). Thermobispora bispora DSM 43833 was also identified as one of the producers of the 

xylose isomerase enzyme in the TR1A subculture 6 (Table 5.1). 

6.3.2 Identification of microorganisms from 16Sr RNA gene analysis of the 

isolated microbial colonies from the TR1A subcultures. 

Most of the isolated colonies belonged to the Firmicutes phylum, while only one group 

belonged to the Actinobacteria phylum. The phylogenetic tree of colonies isolated from the 

TR1A subcultures, based on 16S rRNA gene analysis is shown in Fig. 6.1B. 

6.3.2.1 The Firmicutes.  

6.3.2.1.1 Geobacillus spp.  

The bacteria isolated solely from the liquid phase of the cultures were mostly Geobacillus spp. 

and are represented in Fig. 6.1B by TR1A_1, TR1A_2, TR1A_3, TR1A_5, TR1A_9 and 

TR1A_15. Enzymes detected in the TR1A subcultures produced by Geobacillus spp. included 

enolases, superoxide dismutase, aldehyde dehydrogenase, catalase, ∆-1-pyrroline-5-

carboxylate dehydrogenase, xylanases (xylan 1,4-β-xylosidases, β-xylosidases, 1,4-β-D-xylan 

xylohydrolase) and xylose isomerases (Table 5.1). It is probable that Geobacillus spp. 

contributed to degradation of the the hemicellulose xylan component of the pretreated M. x 

giganteus in the TR1A culture.  

Of the 14 colonies isolated from the early TR1A subculture 6, 12 isolates were Geobacillus 

spp. Representatives of the genus decreased in the late subcultures, with only 2 of the 12 

isolated colonies being Geobacillus spp. Interestingly, one of the colonies isolated from the 

TR1A subculture 8 (Fig. 6.3A) had 99% identity to Geobacillus thermoglucosidasius C56-

http://www.cazy.org/GH6.html
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YS93 and Geobacillus stearothermophilus strain BGSC W9A32, based on the 16S rRNA gene 

analysis results. This might be an indication that the mixed community of microorganisms in 

the TR1A culture could be cocultured with the TMO engineered high ethanol yielding 

Geobacillus strain (Cripps et al., 2009) for the development of consolidated bioprocessing. 

To look for potentially useful enzyme activity, the isolated Geobacillus strains were grown on 

avicel, cellobiose, CMC and xylan carbon sources in modified ASM, with a control for each 

colony on modified ASM without any carbon source. After 3 days of incubation at 55oC, the 

plates were stained with Congo red. No clear zones were observed around any of the colonies 

on the control plates, while a few of the colonies on avicel plates had tiny cleared zones in the 

area where the colonies developed (e.g. colonies 2 and 3 on avicel plates in Fig. 6.3C, column 

2). The colonies on the control plates could have been growing on the 0.1 g yeast extract added 

to the modified ASM medium. The CMC plates also only showed clear zones in the locations 

were the colonies developed (Fig. 6.3C, column 4), while all of the colonies on the cellobiose 

plates showed clear zones around the colonies (Fig.6.3C, column 3). Surprisingly, the xylan 

plates only showed clear zones in the locations where the colonies developed (results not 

shown). Previous studies have shown that Geobaacillus spp. secrete few soluble glycoside 

hydrolases, while most of these enzymes are present in form of multiple enzyme complexes 

attached to their cell walls (Shulami et al., 2011). This could be the reason why these bacteria 

were unable to degrade the carbohydrates away from their colonies. This observation was also 

reported by another study in which Geobacillus spp. did not show activity on CMC plates but 

in the liquid medium cultures (Stathopoulou et al., 2012).  

Results for 8 of the isolated Geobacillus strains from the early subcultures, (TR1A subculture 

6) are shown in Fig. 6.3C. The Geobacillus strains isolated from the late subcultures, (TR1A 

subculture 8) gave similar results (Fig. 6.3 D, colonies labelled D1 to D4) as the strains from 

the TR1A subculture 6.  
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Figure 6.3 Geobacillus strains isolated from TR1A subcultures.  

(A) Colony of Geobacillus strain TR1A_15 growth on a 2TY agar plate at 55oC for 24 h, (B) a Gram stain slide 

of the colony in A, at x1000 magnification, (C) Colonies 1 to 8 from the early subcuture (TR1A subculture 6), 

and (D) D1 to D4 from the late subculture (TR1A subculture 8), grown on modified ASM [(control), column 1], 

avicel + modified ASM (column 2), cellobiose + modified ASM (column 3) and CMC + modified ASM (column 

4) agar plates incubated for 3 days at 55oC. Four isolates were inoculated on each plate. The plates were stained 

with Congo red stain to check for clear zones around the colonies. 

6.3.2.1.2 The Cohnella spp. 

The Cohnella spp. were another Firmucutes group isolated from both the early stage (1 colony) 

and late stage (3 colonies) subcultures. The colonies looked almost star shaped on 2TY plates 

after a 24 h incubation at 55oC (Fig. 6.4). There were no halos around the colonies after growth 

on avicel, cellobiose, CMC and xylan plates, with only small clear regions visible on 

cellobiose, CMC and xylan plates where the colonies developed (results not shown). They are 

also reported to have glycoside hydrolases as cellulosomes attached to their cell walls 

(Waeonukul et al., 2009). 

The Cohnella spp. are represented by TR1A_12 in Fig. 6.1B. This strain was 99% identical to 

Cohnella sp. IB-P192 and Paenibacillus sp. R-6507 based on the 16S rRNA gene analysis 

comparison. Members of the Cohnella and Paenibacillus genera have been reported to be 

capable of producing cellulase, xylanase, β-glucanase and mannanase, and are actively 

involved in cellulolytic and hemicellulolytic activities during composting (Eida et al., 2012) . 
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Cohnella spp. have been shown to grow on switchgrass (Reddy et al., 2011). Some species, 

such as Cohnella fontinalis, are said to be xylanolytic (Rastogi et al., 2010). Enzymes 

characterised in the TR1A culture as being produced by Paenibacillus spp. included β-

xylosidase, xylulokinase, transaldolase and superoxide dismutase (Table 5.1), and an 

extracellular solute-binding protein family 1 produced by Paenibacillus sp. (closest strain 

being JDR-2) was also detected in the TR1A subculture supernatant. 

 

 

Figure 6.4 Colonies of TR1A_12 on 2TY.  

Colonies of isolate TR1A_12 on 2TY plate after 24 h incubation at 55oC. 

6.3.2.1.3 The Brevibacillus spp. 

The Brevibacillus thermoruber was isolated from both the early stage (1 colony) and late stage 

(4 colonies) subcultures. This group is represented by TR1A_13 in Fig. 6.1B, which showed 

99% identity to Brevibacillus thermoruber based on 16S rRNA gene sequence comparison. 

This is another member of the Firmicutes group reported to produce thermo stable cellulose 

degrading enzymes (Liang et al., 2009; Rastogi et al., 2009). 

B. thermoruber can live under harsh conditions and very high temperatures. This group has 

previously been isolated from a hot spring (Wang et al., 2012). Brevibacillus spp. are 

endospore formers, and they have also been reported to tolerate high concentrations of ethanol 

(Thomas, 2006), and have successfully been used in experiments involving fermentation 

processes (Bihari et al., 2010). Brevibacillus spp. have also been reported to have 

carboxylmethylcellulase activity (Rastogi et al., 2009). 

 The isolated B. thermoruber formed the largest colonies with a light pink pigmentation on 

nutrient plates containing avicel, and showed a tint of the pink pigmentation on 
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carboxymethylcellulose and xylan plates after a 24 h incubation period at 55oC (Fig. 6.5, 

pictures C to E). This microbial group could, therefore, also be contributing to the reddish 

pigmentation observed in the TR1A culture (Figures 5.6 to 5.8). No halos were visible around 

the colonies except in the zone where the colonies had grown on avicel, cellobiose, CMC and 

xylan plates after staining with Congo red (results not shown). Another study reported that 

colonies of cellulolytic Cytophaga spp. did not show any clearing zones (Schlegel, 1986).  

Many Bacillus spp. have been observed to have cellulosomes attached to their cell walls 

(Bagudo et al., 2014), and may not produce enough soluble glycoside hydrolases to degrade 

the carbohydrates in the areas away from where the colony developed. The isolated 

Brevibacillus strain was rod shaped and Gram positive, but it was also observed that a 24 h old 

colony was more reactive to Gram staining than an older colony (1 week) after growth on 

modified ammonium salts medium (ASM) plus 2% avicel (Fig. 6.5A and B).  

 

 

Figure 6.5 B. thermoruber TR1A_13 grown on carbon sources.  

A colony of Brevibacillus thermoruber isolated from TR1A subculture 8 after 24 h growth at 55oC on modified 

ammonium salts medium (ASM) plus 2% avicel (C), carboxymethylcellulose (D), xylan (E), and cellobiose (F) 

agar plates. Pictures in A and B show the Gram stain results of a 1 day old and 1 week old B. thermoruber colony, 

respectively, after growth on 2% avicel and modified ASM agar plate at 55oC, (magnification-x1000).  
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6.3.2.1.4 Bacillus aerius or Bacillus lichenformis sp. 

The 16S rRNA gene of isolate TR1A_17 had 99% identity with that of Bacillus aerius RGS230 

and Bacillus licheniformis 9945A (Fig. 6.1B). As these two “species” have 98-99% identity 

with each other (Shivaji et al., 2006) there is clearly a classification anomaly that need 

resolving. The B. lichenformis 9945A genome has been fully sequenced (Rachinger et al., 

2013) and found to encode a wide range of glycoside hydrolases (Table 6.1).  

The Bacillus lichenformis group was not isolated from early stage subcultures, suggesting that 

its abundance was low, but possibly increased as the miscanthus became more extensively 

degraded with further subculturing and population enrichment. The isolated B. lichenformis 

strain was seen to produce a reddish pigment on some of the plates when grown on medium 

containing cellobiose or xylan as the only carbon source (Fig. 6.6C and D, respectively), 

making it another organism which may have contributed to the pigmentation observed in the 

TR1A culture (Figures 5.6 to 5.8).  

After 24 h growth on 2TY at 55oC, mucoidal colonies of the isolated B. lichenformis strain 

appeared on the plate (Fig. 6.6A), possibly due to production of levan as previously observed 

in another study (Ghaly et al., 2007). The Gram stain revealed rod shaped Gram positive cells 

(Fig.6.6B). The isolated B. lichenformis strain formed flat spreading lichen-like colonies on 

avicel, cellobiose, CMC or xylan plates (Fig. 6.6C to J). This strain was able to grow on avicel, 

cellobiose, CMC or xylan plates when incubated at 26oC or 37oC. The strain was only able to 

grow at 55oC on 2TY plates and on avicel plates, forming larger colonies on the later, with 

light pink pigmentation, than the colonies formed on the avicel plate incubated at 37oC after 

24 h incubation (Fig.6.6I and J). B. lichenformis spp. form spores (Reuter et al., 2011). 

When grown on 2% avicel or CMC, this strain had halos surrounding the colony as shown in 

Fig. 6.6G, K, and L, after staining with Congo red stain, and on xylan (Fig. 6.6E) even without 

staining with the Congo red stain (Fig. 6.6H).  

The colony on the cellobiose plate did not produce a halo except for the zone where the colony 

had developed (Fig. 6.6F). The presence of the halos around the colony showed that this B. 

lichenformis strain could secrete glycoside hydrolases, including an exo-glucanase which 

degraded the carbohydrates in the surrounding area. The enzyme xylose isomerase produced 

by B. lichenformis was detected in the supernatant from the TR1A subculture 7 (Table 5.1). 
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Figure 6.6 B. lichenformis grown on carbon sources.  

(A) Colonies of the isolated Bacillus lichenformis after 24 h growth on 2TY at 55oC; (B) a slide of Gram stained 

cells of a colony from (A), magnification-x1000; (C and F) a colony of the isolate after 3 days growth at 37oC in 

modified ASM plus 2% cellobiose; (D and H) as C and F but with xylan; (G) with CMC; (E) 3 day old colony on 

xylan at 26oC. Colonies on plates E, F, G, K and L were stained with Congo red. (I) Three day old colony of 

TR1A_17 after incubation at 37oC on 2% avicel in modified ASM; (J) colony of TR1A_17 after 24 h incubation 

at 55oC on 2% avicel in modified ASM; (L and K, respectively) the colonies in I and J after staining with Congo 

red. 
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Table 6.1 Glycoside Hydrolases and other important enzymes for lignocelluloses degradation coded for in the 

Bacillus lichenformis 9945A genome.  

The genome was sequenced by (Rachinger et al., 2013). Information was sourced from NCBI. 

___________________________________________________________________________________ 

Locus_Tag Enzyme         
___________________________________________________________________________________ 

BaLi_c02790  GH     

BaLi_c02080  GH YbbD (GH3) 

BaLi_c01720 putative GH lipoprotein   

BaLi_c02790 GH     

BaLi_c03540 6-phospho-β-glucosidase LicH 

BaLi_c03570 putative GH 

BaLi_c03580 putative GH 

BaLi_c04670 β-galactosidase 

BaLi_c05180 putative GH/deacetylase YcsF 

BaLi_c05970 endo-1,4-β-xylanase XynA (GH11) 

BaLi_c07060   putative phage GH family protein 

BaLi_c07530 oligo-1,4-1,6-α-glucosidase 

BaLi_c08230       exported mannan endo-1,4-β-mannosidase GmuG" (GH26) 

BaLi_c09670 glycoside hydrolase family protein GH43 (β-D-xylosidase) 

BaLi_c09680 β-1,4-xylosidase XynB (GH430 

BaLi_c12190       putative endoglucanase YhfE (cellulase M) 

BaLi_c12680 α-D-galactoside galactohydrolase MelA GH4 

BaLi_c13740 glycoside hydrolase family protein (GH8) 

BaLi_c14320 arabinan-endo 1,5-α-L-arabinase (GH43) 

BaLi_c15160 putative glucanase YesU 

BaLi_c15230 β-galacturonidase YesZ 

BaLi_c19140 endoglucanase EglA (GH9) 

BaLi_c19150 endoglucanase CelA (GH48) 

BaLi_c19160 putative endoglucanase CelB (GH5) 

BaLi_c19170 putative glycoside hydrolase CelD (GH5)  

BaLi_c21530 endo-1,4-β-glucanase 

BaLi_c23550 extracellular endoglucanase precursor 
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Table 6.1 continued. Glycoside Hydrolases and other important enzymes for lignocelluloses degradation coded 

for in the Bacillus lichenformis 9945A genome sequenced by (Rachinger et al., 2013). Information was sourced 

from NCBI. 

___________________________________________________________________________________ 

Locus_Tag Enzyme         
___________________________________________________________________________________ 

BaLi_c26460 mannoside-phospho-β-d-glucosidase GmuD 

BaLi_c27670 superoxide dismutase 

BaLi_c28580 β-glucosidase (GH1) 

BaLi_c29190 xylan β-1,4-xylosidase (GH43) 

BaLi_c29200 putative H+-xyloside symporter XynP 

BaLi_c31020 α-L-arabinofuranosidase AbfA 

BaLi_c31100 arabinan endo-1,5-α-L-arabinosidase AbnA" 

BaLi_c31110 putative endo-1,4-β-glucanase (cellulase M) 

BaLi_c33850 glycoside hydrolase family protein (GH12) 

BaLi_c35760 glycoside hydrolase family protein 

BaLi_c36060 putative glycoside hydrolase family protein 

BaLi_c36070 putative glycoside hydrolase family protein (GH11) 

BaLi_c36230 putative xylose isomerase 

BaLi_c36430 glucuronoxylanase XynC (GH30) 

BaLi_c36440 arabinoxylan arabinofuranohydrolase XynD (GH43) 

BaLi_c38330 β-N-acetylglucosaminidase LytD 

BaLi_c40600 xylose isomerase XylA 

BaLi_c40950 6-phospho-β-glucosidase LicH (GH4) 

BaLi_c42060 phospho-β-glucosidase BglH 

BaLi_c42100 endo-1,5-β-L-arabinosidase YxiA (β-xylosidase) GH43 

BaLi_c42670 arabinogalactan endo-1,4-β-galactosidase GanB" 

BaLi_c42680 β-galactosidase GanA 

 

 

6.3.2.1.4.1 Growth and enzyme activity of Bacillus lichenformis TR1A_17 on 1% 

pretreated M. x giganteus in RIM. 

B. lichenformis TR1A_17 had previously shown good degradation results on avicel, CMC and 

xylan plates (Fig. 6.6).  
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In an attempt to grow this strain on 1% pretreated M. x giganteus in RIM it was observed that 

cultures grew better when started by using inoculum from a colony from an avicel plate grown 

overnight at 55oC. The culture did not start from overnight colonies started by using inoculum 

from cellobiose or xylan plates, and only started weakly when the inoculum was from a CMC 

overnight plate (Fig. 6.7A). 

B. lichenformis TR1A_17 was the only isolate from TR1A able to grow well on 1% pretreated 

M. x giganteus in RIM as an individual culture at 55oC (Fig. 6.7B) based on the suspended 

protein concentration recorded during the first 5 days of incubation (Fig. 6.7C). The 

supernatant from the 2 week old culture showed high β-glucosidase and xylanase activity (Fig. 

6.7D, and F lane TR1A_17), close to that observed in the lane containing the TR1A subculture 

8 supernatant (Fig. 5.17H), but no CMCase activity was detected on the CMC zymogram 

(results not shown), and only a low activity was detected in the supernatant (Fig. 6.7D). 

However, by the sixth week of incubation, no visible degradation of the pretreated miscanthus 

particles was evident with the B. lichenformis TR1A_17 culture, although the particles in the 

TR1A_17 culture (Fig. 6.7B-1) appeared much finer and paler than the particles in the control 

(Fig. 6.7B-2).  
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Figure 6.7 Enzyme activity of B. lichenformis after growth on 1% pretreated M. x giganteus in RIM.  

Overnight cultures of B. lichenformis TR1A_17 grown on 1% pretreated M. x giganteus in RIM (A). Different 

starter cultures of TR1A_17 in A were set up by using overnight colonies grown on 2TY plates at 55oC using 

inoculum from 24 h old cultures from a plate containing avicel grown at 55oC, and from plates containing 

cellobiose, CMC or xylan after growth at 37oC. The avicel start culture in A was used to start the TR1A_17 culture 

in B-1, grown on 1% pretreated M. x giganteus in RIM. The control contained 1% pretreated M. x giganteus and 

the same medium, but was not inoculated (B-2). The culture was incubated at 55oC with shaking at 250 rpm. 

Growth was monitored by measuring the suspended protein concentration (Ishida et al., 1997), and recorded as 

shown in (C). Enzyme specific activity of the supernatant from a 2 week old culture measured by the DNS (3,5-

dinitrosalicylic acid) method according to the protocol described by Miller et al., (1960) is recorded in D. Xylanase 

activity was also analysed on 12% native PAGE gel containing 0.05% xylan from beechwood (Sigma), (E and F). 

Supernatant from B. lichenformis TR1A_17 was loaded in lane TR1A_17, and the control was loaded in lane 

CTL. The supernatant was prepared as described in Fig. 5.13. 
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6.3.2.2 Staphylococcus warneri. 

TR1A_16 was another member of the Firmicutes phylum that was only isolated from the late 

stage subcultures. The isolated strain had 100% identity with Staphylococcus warneri SG1 

based on the 16S rRNA gene sequence analysis (Fig. 6.1B). This bacterium was isolated on 

the actinomycetes plate that was incubated at 26oC for actinomycetes isolation. It developed 

light yellow colonies on 2TY agar plates (Fig. 6.8A) and on avicel plus modified ASM agar 

plates. Initally, after 24-48 h incubation, the colonies were white/grey looking, then they 

became yellow, and later became granulated or rough on top with a brown base by 2 weeks of 

incubation (Fig. 6.8A-C).  

The strain grew better at 26oC than at 37oC, and did not grow at 55oC, on 2TY agar and 2% 

avicel plus modified ASM. It has cocci shaped Gram positive cells (Fig. 6.8D). A halo was 

visible around the colony on the avicel plate after staining with Congo red (Fig. 6.8E), an 

indication that it was able to secrete enzymes capable of degrading avicel. It is a skin 

saprophyte and could have been a possible contaminant in the TR1A subcultures. However, it 

was able to grow in a coculture with TR1A_13 on 1% pretreated M. x giganteus in RIM at 

26oC, with visible degradation of pretreated M. x giganteus particles in the remaining pellet 

after 6 week incubation (Fig. 6.8F). 

The genome of this microbial strain codes for a number of important glycoside hydrolases, 

some of them are shown in Table 6.2. Staphylococcus warneri SG1 produces a β- N-

acetylglucosaminidase enzyme which is related to another endoglycosidase enzyme (Endo-β- 

N-acetylglucosaminidase H (produced by Streptomyces plicatus) that was detected in the 

TR1A subculture 7 supernatant (Table 5.1). β- N-acetylglucosaminidase has been reported to 

have β-glucosidase activities (Ferrara et al., 2014). Enzymes detected in the supernatant from 

TR1A subculture 7 as produced by Staphylococcus spp. were enolase and dihydrolipomamide 

dehydrogenase component of pyruvate dehydrogenase E3 (Table 5.1), indicating that 

Staphylococcus spp. could have been present in the TR1A subcultures growing at 55oC. 
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Figure 6.8 The isolated Staphylococcus sp. strain TR1A_16.  

The isolated Staphylococcus sp. grown on 2TY agar plate at 26oC after 72 h (A), base of a 2 week incubation plate 

grown on actinomycetes isolation medium (B), top of the colony marked with a star in B (C), a Gram stained slide 

from a colony on plate in A, at x1000 magnification (D), clear zone around a colony grown on 2% avicel in 

modified ASM at 26o C for 3 days, after staining with Congo red stain (E). Remaining pellet of pretreated M. x 

giganteus from a coculture of S. warneri strain TR1A_16 and B. thermoruber strain TR1A_13 after 6 week 

incubation on 1% pretreated M. x giganteus in RIM at 26oC (F). 
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Table 6.2 Glycoside hydrolases coded for in the Staphylococcus warneri SG1 genome. Information was obtained 

from NCBI. 

 ___________________________________________________________________________________ 

Locus_Tag Glycoside hydrolase         
____________________________________________________________________________________ 

A284_01425 6-phospho-β-glucosidase (GH1) 

A284_01840 gluconokinase 

A284_02020 gluconokinase 

A284_02140 endo-1,4-β-glucanase (cellulose M) 

A284_03015 putative N-acetylmuramoyl-L-alanine amidase (β- N-acetylglucosaminidase) 

A284_03535 6-phospho-β-galactosidase  

A284_04925 N-acetylmuramoyl-L-alanine amidase (β- N-acetylglucosaminidase) 

A284_05055 putative aminopeptidase (cellulose M) 

A284_06180 α-D-1,4-glucosidase 

A284_10980 α-glucosidase 

A284_11475 β-D-glucuronidase (GH2) 

A284_11490 Glucuronate isomerase 

 

6.3.3 The Actinobacteria phylum. 

This group was also only isolated from the late stage TR1A subculture 8. The group is 

represented by TR1A_14 in Fig. 6.1B, and is shown branching out from the the Firmicutes 

isolates. The TR1A_14 has 99% identity with Micrococcus luteus strain BPB1 based on the 

16Sr RNA gene analysis results.  

This isolate grew better at 26oC than at 37oC. It produced yellow colonies on 2TY agar plates 

(Fig. 6.9A). It was not able to grow at 55oC, and could be a contaminat on the plate cultures 

as it is also a skin saprophyte. The isolate was Gram positive with cocci shaped cells (Fig. 

6.9B). Microorganisms in this genus have been reported to produce an insoluble yellow 

pigment on most solid media (Kocur et al., 1972).  

They do not form spores, but have a tendency to go into dormance during harsh conditions, 

from which they easily get resuscitated in liquid medium (Kaprelyantst and Kell, 1993). They 

are able to emerge from dormancy because their genome encodes for the Rpf gene 
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(Resuscitation Promoting Factor) (Young et al., 2010). Therefore, M. luteus strain TR1A_14 

could have been present in the TR1A subculture in the dormancy state, and was able to be 

isolated at 26oC as this is close to the optimum growth temperature (28oC) for actinomycetes 

(Kokare et al., 2004).  

Micrococcus spp. can tolerate and use highly toxic carbon compounds, and are a very 

important microbial group for bioremediation activities in the environment (Sandrin and 

Maier, 2003). Micrococcus luteus has been reported to be capable of deconstructing various 

types of celluloses by producing endogenous and exogenous cellulases (Sarkar and Varma, 

1988). The isolated strain was able to grow on avicel, with a small halo visible around a three 

day old colony after staining with Congo red (Fig. 6.9C). 

 

 

Figure 6.9 The isolated Micrococcus sp. strain TR1A_14.  

(A)The isolated Micrococcus sp. strain TR1A_14 grown on 2TY at 26oC after 3 days incubation. (B) A Gram 

stain slide of the culture on plate in (A), magnification–x1000. (C) A colony of the isolated Micrococcus sp. grown 

on a 2% avicel in modified ASM agar plate at 26oC for 3 days, after staining with Congo red. 
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6.4 Discussion. 

The results show a representation of the microorganisms in the TR1A culture. These results 

are similar in some way, but also different from the findings of other researchers who carried 

out a study using plant compost as an inoculum to study the community dynamics of cellulose 

degrading microbial communities (Eichorst et al., 2013). The same microbial phyla reported 

by Eichorst et al., (2013) were also found to be the dominant microbial groups present in the 

TR1A culture mixed microbial population.  

However, in addition to the Firmicutes, Bacteroidetes and the Thermus, reported by Eichorst 

et al., (2013), members of the Actinomycetes were also found to be present. The microbial 

groups representing the Actinomycetes were Thermobispora bispora detected in the DNA 

isolated from the TR1A subcultures’ pellets, and the Micrococcus luteus strain TR1A_14 

isolated as an individual microorganism from the liquid fraction of the TR1A subcultures. The 

Bacteroidetes and Thermus spp. were the main groups present in the mixed microbial 

community with Thermus spp. making up the second largest component of the early stage and 

largest component of the late stage subcultures (Fig. 6.2A and B). The TR1A mixed microbial 

composition changed with the number of subcultures, in contrast to observations in a previous 

study in which the microbial composition was constant over 2 years (Haruta et al., 2002).  

Identification of the mixed microbial community in the TR1A culture from the DNA isolated 

from the culture pellet as well as isolating the individual colonies from the culture gave a better 

representation of the mixed microbial community composition of the TR1A culture. The 

microorganisms isolated as individual colonies were all Fermicutes except one group which 

represented the Actinobacteria phylum. The fermicutes included Geobacillus spp., Cohnella 

or Paenibacillus spp., Brevibacillus spp., Bacillus spp. and Staphylococcus sp. Micrococcus 

sp. was the only isolated colony which represented the Actinobacteria phylum. The isolated 

colonies from the liquid fraction of the subcultures were mostly Geobacillus spp. 

The microorganisms detected in the culture pellet DNA were different from those isolated 

from the liquid fraction of the culture. The isolate TR1A_75 was detected in the DNA pellet, 

and had 88% identity with some of the groups such as Paenibacillus, and Geobacillus spp., 

isolated from the liquid fraction. Using only a liquid sample might have excluded or reduced 

the population of organisms attached to the pretreated M. x giganteus particles in the inoculum, 
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potentially including the main lignocellulose degraders as reported by another study (Edwards 

et al., 2007).  

It was observed during previous studies that cultivable microbial groups isolated from the 

planktonic fraction were frequently not detected in the adherent fractions and vice versa (Koike 

et al., 2003; Larue et al., 2005; Morrison et al., 2009). Microorganisms directly involved in the 

degradation of lignocellulosic biomass have a tendency to adhere to the biomass (Edwards et 

al., 2007). This might be part of the reason for the difference observed in the microbial 

community composition detected in the pellet DNA and those isolated from the liquid fraction 

of the TR1A subcultures. 

It is possible that some of the microbes in the TR1A mixed microbial group might aid in the 

fermenting processes in the cocultures as some of the members have been reported to be able 

to carry out fermentation. Examples include Thermoanaerobacterium spp. (Jiang et al., 2013), 

Brevibacillus thermoruber, (Bihari et al., 2010), and Geobacillus thermoglucosidasius strains 

(Cripps et al., 2009), all of these microbial groups were detected in the TR1A subcultures. Co-

existence of both aerobic and anaerobic bacteria in mixed microbial communities has been 

reported (Haruta et al., 2002). No fungal colonies were isolated, presumably due to the high 

incubation temperature at which the TR1A culture was grown, an observation that was also 

reported by Haruta et al. (2002).  
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7. Expression of Csac_0137, an endoglucanase enzyme encoding gene from 

Caldicellulosiruptor saccharolyticus, in Geobacillus thermoglucosidasius 

strains, NCIMB 11955 and DL33. 

7.1 Introduction. 

Some Geobacillus species, such as Geobacillus sp. R7 (Zambare et al., 2011) and Geobacillus 

sp. T1 (Assareh et al., 2012) have been shown to express extracellular endo/exoglucanases. 

The genome of Geobacillus sp. strain WSUCF1 has been reported to contain 13 open reading 

frames for xylan degrading enzymes and another 3 open reading frames for cellulases (Bhalla 

et al., 2013b). However, the ability of these Geobacillus spp. to degrade lignocellulosic 

biomass has not been assessed under industrial conditions.  

Creation of a strain that can both degrade and ferment pre-treated lignocellulose into ethanol 

would only be possible through successful metabolic engineering of Geobacillus species 

(Argyros et al., 2011), by introducing into Geobacillus strains cellulases capable of degrading 

cellulosic biomass. The purpose of carrying out this study was to improve the ability of two 

Geobacillus thermoglucosidasius strains, NCIMB 11955 and DL33, to degrade lignocellulosic 

biomass. 

Metabolic engineering of two strains of G. thermoglucosidasius NCIMB 11955 and G. 

thermoglucosidasius DL33 has been carried out to improve their glycoside hydrolase activity 

on lignocellulosic materials. This was carried out by introducing a glycoside hydrolase family 

5 endoglucanase gene, Csac_0137, from an extremely thermophilic gram positive anaerobe 

called Caldicellulosiruptor saccharolyticus (van de Werken et al., 2008). The formed mutants 

were characterised by growing on a mixture of cellobiose and CMC, pretreated M. x giganteus, 

or cellobiose alone used as a sole carbon source.  

7.2 Construction of plasmid pUCG4.81.1 and insertion of Csac_0137 into plasmid 

pUCG4.81.1. 

The construction of the plasmid pUCG4.81.1 and insertion of the gene Csac_0137 (39 KDa) 

into this plasmid was carried out by Dr. Bartosiak-Jentys and Ali Hussain, based at Bath 

University. The primers Csac0137FWD and Csac0137RVR, containing a 5' 40 bp region of 

homology to the xylanase signal peptide and vector system, respectively, were used to amplify 
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Csac_0137 gene. A previously assembled construct pUCG4.81.1.PheB was digested with StuI 

and SacI, and the 4 845 bp vector fragment was purified. The amplified Csac0137 gene and 

vector fragment were both added to a 15 µl Gibson Assembly reaction (Gibson et al., 2009), 

and transformed into E. coli JM109 cells. 

 

 

Figure 7.1 Plasmid pUCG4.81.1.  

Shuttle vector containing Csac0137 gene from C. saccharolyticus cloned downstream of the β-glucosidase 

promoter. 

7.3 Growth of wild-type strains G. thermoglucosidasius strains NCIMB 11955 

and G. thermoglucosidasius DL33 on xylan and other carbon sources. 

G. thermoglucosidasius NCIMB 11955 and G. thermoglucosidasius DL33 were grown on 

avicel, CMC and xylan to assess their ability to degrade these carbon sources. Neither strain 

was able to grow on avicel or on CMC (results not shown), but both were able to grow on 

xylan (Fig. 7.2).  

Thus, both strains were good candidates for expressing the glycoside hydrolase gene for 

development of consolidated bioprocessing (CBP), because both strains showed the ability to 

degrade xylan. This is an advantage because degradation of the hemicelluloses could assist the 

cellulolytic degrading enzymes by providing access to the cellulose microfibrils that are 
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embedded in the lignocellulose biomass (VanFossen et al., 2011). Therefore, both strains were 

used for expressing the Csac_0137 glycoside hydrolase gene.  

Both G. thermoglucosidasius NCIMB 11955 and G. thermoglucosidasius DL33 were not able 

to grow on avicel or CMC. Like other Bacillus spp., previously reported (Robson and 

Chambliss, 1984), Geobacillus spp. typically lack a complete cellulase system, but may 

express endoglucanase or CMCase activity which does not hydrolyze crystalline cellulose. For 

microorganisms to be efficient in their cellulolytic activities, they need to produce one or more 

from the three microcrystalline degrading enzyme classes for successful deconstruction of the 

cellulose into glucose (VanFossen et al., 2011). However, some Bacillus endoglucanases (Aa 

et al., 1994) have shown detectable activity on microcrystalline cellulose (Kim and Kim,. 

1995), but their ability to degrade real lignocellulosic biomass under industrial conditions has 

not been assessed.  

 

 

Figure 7.2 Growth of G. thermoglucosidasius NCIMB 11955 and G. thermoglucosidasius DL33 on 2% xylan in 

modified ASM.  

The cultures were grown at 55oC with shaking for 24 h. Growth was monitored by measuring optical density at 

600 nm. The error bars represent standard deviation of three analytical replicates. 
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7.4 Transformation of G. thermoglucosidasius NCIMB 11955 and G. 

thermoglucosidasius DL33 with Csac_0137. 

The provided plasmid pUCG4.81.1 containing a Csac_0137 gene was first transformed into E. 

coli JM109 electrocompetent cells by heat shock to propagate the plasmid. Selection was 

carried out on 2TY plates containing 100 µg/ml ampicillin. Digestion of the plasmid 

pUCG4.81.1Csac0137 extracted from the transformed E. coli cells using SacI and StuI gave 

the products shown in Fig. 7.3 lane 2.  

The plasmid pUCG4.81.1 (200 ng/µl) containing the Csac_0137 gene was then used to 

transform G. thermoglucosidasius NCIMB 11955 and G. thermoglucosidasius DL33, 

following the protocol described by (Cripps et al., 2009) modified by the use of 2TY medium. 

Transformants were selected on 2TY plates containing 12 µg/ml kanamycin. Both strains were 

successfully transformed, with the numbers of kanamycin resistance colonies giving 

transformation efficiencies of 7.0 x 104 CFU/µg DNA and 2.2 x 105 CFU/µg DNA, for G. 

thermoglucosidasius NCIMB 11955 and G. thermoglucosidasius DL33, respectively.  

Digestion of the extracted plasmids gave the expected products for G. thermoglucosidasius 

DL33 and G. thermoglucosidasius NCIMB 11955 as shown in Fig.7.3 lanes 3 and 4, 

respectively. 

 

 

Figure 7.3 Digested plasmids of pUCG4.81.1Csac0137 and G. thermoglucosidasius strains, NCIMB 11955 and 

DL33.  

Digested plasmids of pUCG4.81.1Csac0137 (lane 2), G. thermoglucosidasius DL33 (lane 3), and G. 

thermoglucosidasius NCIMB 11955 (lane 4). Lane 1 is the New England Biolabs 10kb DNA ladder. 
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7.5 Growth of transformed and wild G. thermoglucosidasius NCIMB 11955 and 

G. thermoglucosidasius DL33 on 0.2% CMC and 0.1% cellobiose in modified 

ASM. 

The transformed and wild strains of G. thermoglucosidasius NCIMB 11955 and G. 

thermoglucosidasius DL33 were grown on 0.2% CMC and 0.1% cellobiose in modified ASM. 

The 0.1% cellobiose was added to induce the expression of the inserted Csac_0137 

endoglucanase in the transformed strains. The results of 24 h cultures of the transformed and 

wild-type strains of both NCIMB 11955 and DL33 showed that all the strains grew to about 

OD 0.6 measured at 600 nm (Fig. 7.4).  

 

 

Figure 7.4 Growth of transformed and wild strains of G. thermoglucosidasius, NCIMB 11955 and DL33 on 0.2% 

CMC and 0.1% cellobiose in modified ASM.  

The cultures were incubated at 55oC with shaking at 250 rpm for 24 h. The error bars represent standard deviation 

of three biological replicates. 

7.5.1 Assessment of the CMCase specific activity of transformed and wild G. 

thermoglucosidasius NCIMB 11955 and G. thermoglucosidasius DL33 after 

growth on 0.2% CMC and 0.1% cellobiose in modified ASM. 

The supernatants of the cultures and the control used in section 7.5 were assessed for CMCase 

specific activity. It was observed (Fig. 7.5) that the CMCase activity was almost the same for 

the transformed and wild-type strains of both G. thermoglucosidasius NCIMB 11955 and G. 
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thermoglucosidasius DL33, although it differed between the two wild-type strains. This 

suggests that the recombinant Csac_0137 gene was not being expressed at any significant 

level, in either strain, after growing on 0.2% CMC and 0.1% cellobiose in modified ASM. 

Interestingly, both the transformed and wild G. thermoglucosidasius DL33 strains showed a 

higher CMCase specific activity of about 0.16 µmoles/min/mg, than the transformed and the 

wild strains of G. thermoglucosidasius NCIMB 11955, each of which had a CMCase specific 

activity of about 0.04 µmoles/min/mg (Fig. 7.5).  

 

 

Figure 7.5 CMCase specific activity of transformed and wild-type strains of G. thermoglucosidasius NCIMB 

11955 and DL33 after growth on 0.2% CMC and 0.1% cellobiose in modified ASM.  

The cultures were incubated at 55oC with shaking at 250 rpm. The cultures were centrifuged at 4 000 x g at 20oC 

for 20 minutes in an Eppendorf 5810-R. The collected supernatant was concentrated by centrifuging 0.5 ml in a 

bench top accuSpinTM Micro centrifuge (Fisher Scientific) at 10 000 x g for 15 min using a 3 000 MWCO PES 

vivaspin centrifugal membrane separator from Sartoriuos stedim biotech. The DNS (3,5-dinitrosalicylic acid) 

method (Miller et al., 1960) was used to measure the enzyme activity. The error bars represent the standard 

deviation of three biological replicates. 

The supernatants from the same cultures of the transformed and wild-type strains were 

analysed on 12% native PAGE zymograms containing 0.05% CMC. No significant activity 

was observed as there were no convincing clear zones produced on the zymograms after 

staining with Congo red stain. There were very faint clear zones observed in the supernatant 

from the transformed DL33 replicates, three zones in one of the replicates (results not shown, 

the bands were too faint to show on a picture).  

Protein bands were visible on the native PAGE gel stained with Coomassie brilliant blue stain, 

but no clear differences were identified between the protein banding pattern of the transformed 
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and wild-type strains for both G. thermoglucosidasius NCIMB 11955 and G. 

thermoglucosidasius DL33. 

These results showed that there was no significant expression of the Csac_0137 by the 

transformed strains after growth on cellobiose + CMC. It was not clear why the inserted 

Csac_0137 was not well expressed. Possibly, the cellobiose promoter was too weak for proper 

expression of the inserted endoglucanase, or it could be that the Csac_0137 gene product has 

poor endoglucanase activity, or that it might have very low substrate specificity for CMC, as 

observed for another endoglucanase, EglA (Bauer et al., 1999) .  

7.6 Growth of transformed and wild-type G. thermoglucosidasius NCIMB 11955 

and G. thermoglucosidasius DL33 on 2% cellobiose. 

The growth of transformed and wild-type G. thermoglucosidasius NCIMB 11955 and G. 

thermoglucosidasius DL33 strains on cellobiose were compared.  

The results showed that both the transformed and wild-type strains of G. thermoglucosidasius 

NCIMB 11955 and DL33 were able to grow on cellobiose, whereas no growth was observed 

in the control (Fig. 7.6). However, the transformed strains grew better than the wild-type 

strains for both G. thermoglucosidasius NCIMB 11955 and G. thermoglucosidasius DL33 

(Fig. 7.6). Growth of the wild-type strains on cellobiose validated the use of the cellobiose 

promoter for heterologous gene expression. 
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Figure 7.6 Growth of transformed and wild-type strains of G. thermoglucosidasius NCIMB 11955 and DL33 on 

2% cellobiose in modified ASM.  

The cultures and the control (uninoculated medium) were incubated at 55oC with shaking at 250 rpm for 4 days. 

Growth was monitored by measuring absorbance at 600 nm. The error bars represent standard deviation of three 

analytical replicates. 

7.6.1 Assessment of β-glucosidase activity of transformed and wild G. 

thermoglucosidasius NCIMB 11955 and G. thermoglucosidasius DL33 after 

growth on 2% cellobiose. 

As both transformed strains of G. thermoglucosidasius NCIMB 11955 and DL33 grew better 

than their respective wild-types on cellobiose it was suspected that the recombinant Csac_0137 

endoglucanase could have improved the degradation of cellobiose in the culture. It was 

observed in a previous study that the endoglucanase, EglA, produced by Pyrococcus furiosus 

was able to degrade the β-1,4-glycosidic linkages in cellobiose (Bauer et al., 1999), so it was 

possible that the Csac_0137 endoglucanase was doing the same.  

Improved β-glucosidase affinity to cellobiose, in the presence of endogucanase and β-

glucosidase enzymes has been reported by a previous study (Lee et al,. 2012). The supernatant 

from the cultures was assessed for β-glucosidase activity. β-glucosidase secretion into the 

growth medium by Bacillus spp. has been reported by previous researchers (Lee et al,. 2002; 

Rehman et al,. 2009; Zhou et al,. 2012; Tiwari et al,. 2013; Bagudo et al,. 2014). Trichoderma 

reesi has also been reported to secrete low quantities of β-glucosidase in the medium 

(Nakazawa et al,. 2011;), while another study has also used the culture supernatant to measure 

β-glucosidase activity (Chang et al., 2012).  
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However, the native β-glucosidase is not expected to be secreted into the medium as it does 

not have a secretion signal and the cells have a cellobiose transporter. Any β-glucosidase 

activity in the medium could therefore be either due to cell lysis or the secreted Csac_0137 

endoglucanase. The culture supernatant from the cellobiose cultures of the transformed and 

wild-type strains of G. thermoglucosidasius NCIMB 11955 and DL33 was therefore used to 

assess the β-glucosidase activity of the cultures’ supernatant.  

The transformed strains of G. thermoglucosidasius NCIMB 11955 and DL33 showed more β-

glucosidase specific activity than their respective wild-types (Fig. 7.7), consistent with the 

better growth (Fig. 7.6). As transformed and wild-type strains of G. thermoglucosidasius 

NCIMB 11955 and DL33 were cultured under the same conditions it was probable that the 

extent of cell lysis would be similar for wild-type and recombinant strains. Thus, the higher β-

glucosidase activity probably reflects the activity of Csac_0137 endoglucanase.  

 

 

Figure 7.7 β-glucosidase specific activity of transformed and wild-type strains of G. thermoglucosidasius NCIMB 

11955 and DL33.  

The supernatant from the 4 day old cultures after incubation at 55oC with shaking at 250 rpm was used for the 

assay. The supernatant preparation and CMCase activity analysis were carried out as described in Fig.7.5. The 

supernatant protein concentration was determined using the Bradford method. DNS (3,5-dinitrosalicylic acid) was 

used to measure the enzyme activity following the protocol described by Miller et al., (1960). The error bars 

represent standard deviation of three analytical replicates for each experiment. 
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7.7 Growth of transformed and the wild G. thermoglucosidasius NCIMB 11955 

and G. thermoglucosidasius DL33 on pretreated M. x giganteus. 

The transformed and wild-type strains of G. thermoglucosidasius NCIMB 11955 and G. 

thermoglucosidasius DL33 were grown on 1% pretreated M. x giganteus in RIM to assess their 

ability to grow on real lignocellulosic biomass. The pretreated M. x giganteus was used as a 

complex carbon source to assess whether expression of the cloned endoglucanase by the 

transformed G. thermoglucosidasius NCIMB 11955 and G. thermoglucosidasius DL33 had an 

evident benefit. It has been observed during previous studies that cellulase production by 

microorganisms depends on the nature of the carbon source as different fermentable sugars 

have shown to either induce or inhibit cellulase production by different species (Sangrila et al., 

2013; VanFossen et al., 2011). 

No growth was observed during the first 12 days of incubation, after which the transformed 

strains of both G. thermoglucosidasius NCIMB 11955 and G. thermoglucosidasius DL33 

showed a slight increase in growth (Fig. 7.8). Transformed and wild G. thermoglucosidasius 

NCIMB 11955 strains and transformed G. thermoglucosidasius DL33 strains showed an 

increase in growth by day 16, with suspended protein concentrations of 0.31, 0.12, and 0.96 

mg/ml, respectively, recorded on day 24. The transformed DL33 strain had the highest 

suspended protein concentration.  

 

 

Figure 7.8 Growth of transformed and wild-type strains of G. thermoglucosidasius NCIMB 11955 and G. 

thermoglucosidasius DL33 on 1% pretreated M. x giganteus in RIM.  

The cultures were incubated at 55oC with shaking at 250 rpm. Growth was monitored by measuring the suspended 

cell protein concentration according to the method described by Ishida et al., (1997).  
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7.7.1 Assessment of the avicelase and CMCase specific activity of transformed 

and wild G. thermoglucosidasius NCIMB 11955 and G. thermoglucosidasius DL33 

after growth on 1% pretreated M. x giganteus in RIM. 

The supernatants from 24 day old cultures used in section 7.7 were analysed for avicelase and 

CMCase activity. After 24 days, a significant difference between the growth of wild-type and 

recombinant DL33 had been observed. Generally, similar avicelase (less than 0.002 

µmoles/min/mg) and CMCase (less than 0.01 µmoles/min/mg) specific activity was recorded 

for transformed G. thermoglucosidasius NCIMB 11955, wild-type G. thermoglucosidasius 

NCIMB 11955 and wild-type G. thermoglucosidasius DL33 strains (Fig. 7.9). However, 

transformed G. thermoglucosidasius DL33 had the highest avicelase and CMCase specific 

activity of 0.008 and 0.03 µmoles/min/mg, respectively (Fig. 7.9). This high activity was 

consistent with the growth for G. thermoglucosidasius DL33 on 1% pretreated M. x giganteus 

in RIM recorded on day 24 as shown in Fig. 7.8. 

The observed CMCase specific activity was much lower than that detected in the supernatant 

from the transformed and wild-type G. thermoglucosidasius DL33 cultures grown on 0.2% 

CMC + 0.1% cellobiose (Fig. 7.5), which is not surprising because pretreated miscanthus is 

partly crystalline and also surrounded by hemicellulose making it more difficult to degrade. 

The results suggested that transformed DL33 had more avicelase and CMase activity when 

grown on the pretreated M. x giganteus than its wild-type strain, resulting into higher growth 

than the wild-type as observed in Fig. 7.8, because more sugars were made available due to 

the increased avicelase and CMCase enzyme activities.  

The supernatant from the same 24 day old cultures for both the transformed and the wild strains 

was analysed on 0.2% CMC native PAGE gels, but no activity was observed, as no clear 

regions were seen on the gels after staining with Congo red (results not shown). This showed 

that the inserted Csac_0137 endoglucanase was not expressed very well by the constructs 

under these conditions  

The recorded avicelase and CMCase specific activity (Fig.7.9) for transformed G. 

thermoglucosidasius DL33 after growth on 1% pretreated M. x giganteus was comparable to 

that of the mixed culture of TR1A subculture 6 for the supernatant from a 2 week old culture 

(section 5.5.1, Fig. 5. 13). However, the CMCase activity of the 2 week old culture supernatant 

from the TR1A subcultures was detectable on CMC native gels (section 5.5.2.1, Figures 5.14-
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5.17), while that of transformed G. thermoglucosidasius DL33 supernatant from 3 week old 

cultures was not.  

 

  

Figure 7.9 Assessment of avicelase and CMCase specific activity of transformed and wild-type G. 

thermoglucosidasius strains of NCIMB 11955 and DL33 and the control.  

The supernatant was from 24 days old cultures, after incubation at 55oC with shaking at 250 rpm. The supernatant 

preparation and enzyme activity analysis was carried out as described in Fig. 7.5. The protein concentration of the 

supernatant was determined by the Biuret method. The error bars represent three analytical replicates. 

7.7.2 Assessment of the xylanase specific activity of transformed and wild-type G. 

thermoglucosidasius NCIMB 11955 and DL33 after growth on 1% pretreated M. 

x giganteus in RIM. 

Synergistic effects between endoglucanase and xylanase were observed during a previous 

study in which hydrolysis of corn cobs and simple sugar yield were greater with the combined 

action of endoglucanase and xylanase enzymes than with separate enzymes (Dobrev and 

Zhekova, 2012). This suggests that expression of Csac_0137 may increase the degradation of 

the hemicellulose component of lignocellulosic biomass during growth on pretreated M. x 

giganteus. With this in mind, the xylanase specific activity of the same supernatants as those 

used in section 7.7.1 was compared.  
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The detected xylanase specific activity (Fig. 7.10A) was consistent with growth, as well as the 

avicelase and CMCase specific activity results (Figures 7.8, and 7.9, respectively). The results 

indicated that the xylanase specific activity of transformed G. thermoglucosidasius DL33 was 

higher than the rest of the strains (Fig. 7.10A). 

The xylanase activity of the supernatant from these same samples was also assessed on 12% 

native PAGE gel containing 0.05% xylan from beechwood (Sigma). The supernatant from 6 

week old TR1A subculture 8 from the study reported in section 5.5 of chapter 5 was also run 

on the same gel and used to compare with the xylanase activity of the transformed and wild-

type strains (Fig. 7.10B and C).  

Two clear bands (very faint) were evident (see arrow) in the lane corresponding to transformed 

G. thermoglucosidasius DL33 (Fig. 5.10C, lane TDL33), but were not present in the lane 

loaded with supernatant from wild-type strain of G. thermoglucosidasius DL33, (Fig. 7.10C, 

lane WDL33). Efforts to identify the enzymes giving the 2 extra bands arising from 

transformed G. thermoglucosidasius DL33 by mass spectrometry were not successful, 

probably due to low concentration of enzyme recovered.  

The transformed and wild-type G. thermoglucosidasius NCIMB 11955 showed much smaller 

clear zones than those of transformed or wild-type G. thermoglucosidasius DL33 (Fig. 7.10C), 

consistent with the activities detected by the DNS method (Fig. 7.10A), showing that the 

xylanase activity of transformed G. thermoglucosidasius DL33 was higher than its wild-type 

strain or the transformed and wild-type strains of G. thermoglucosidasius NCIMB 11955.  
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Figure 7.10 Xylanase activity of transformed and wild-type G. thermoglucosidasius strains of NCIMB 11955 and 

DL33.  

Assessment of xylanase specific activity of the same supernatant samples from 24 day old cultures of transformed 

and wild-type G. thermoglucosidasius strains of NCIMB 11955 and DL33, and the control. The cultures were 

incubated at 55oC with shaking at 250 rpm. Preparation of the supernatant and enzyme activity analysis was 

carried out as described in Fig. 7.5. The protein concentration of the supernatant was determined by the Biuret 

method. The DNS (3,5-dinitrosalicylic acid) method (Miller et al., 1960) was used to measure the enzyme activity 

for the results recorded in A. The same samples were analysed on 12% native PAGE gels containing 0.05% xylan 

from beechwood (Sigma), and stained with Coomassie brilliant blue (B) and Congo red (C). The samples loaded 

in the lanes in both B and C were supernatants from 6 week old TR1A subculture 8 (lane 6TR1A8), transformed 

G. thermoglucosidasius DL33 (lane TDL33), wild-type DL33 (lane WDL33), transformed G. 

thermoglucosidasius NCIMB 11955 (lane T11955) and wild-type G. thermoglucosidasius NCIMB 11955 (lane 

W11955), respectively.  
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7.8 Discussion. 

Wild-type strains of G. thermoglucosidasius NCIMB 11955 and DL33 were able to grow on 

xylan (Fig. 7.2), with G. thermoglucosidasius DL33 showing better growth than G. 

thermoglucosidasius NCIMB 11955, but neither of these strains grew on avicel or CMC.  

Transformation of the two wild-type strains with a plasmid containing the Csac_0137 

endoglucanase gene under the control of the cellobiose promoter was successful. However, 

expression of the Csac_0137 endoglucanase was not evident from enzyme activities in the 

supernatant from 24 h cultures on 0.2% CMC and 0.1% cellobiose in modified ASM. Indeed, 

the CMCase activity of the wild-type strains was actually slightly higher than the transformed 

strains for both G. thermoglucosidasius strains NCIMB 11955 and DL33 (Fig. 7.5). Although 

this endoglucanase might not be particularly active on CMC, it has subsequently been shown 

(Bartosiak-Jentys – unpublished) that the cellobiose promoter is not as strong as expected, so 

expression levels of heterologous genes using this promoter might generally be low.  

However, the observed CMCase activity of transformed and wild strains of DL33 (~0.18 

U/mg) was close to the CMCase activity (0.24 IU/mg) of the supernatant from a lignocellulose 

degrading consortia (Wongwilaiwalin et al., 2010). The avicelase, CMCase and xylanase 

activities (< 0.1, ~0.03, and ~0.8 U/mg, respectively) of transformed G. thermoglucosidasius 

strain DL33 after growth on 1% pretreated M. x giganteus were much lower than the TR1A 

subculture 8 activities recorded in Fig. 5.13C. 

Both the transformed and wild strains of G. thermoglucosidasius NCIMB 11955 and DL33 

were able to grow on 2% cellobiose, showing that the strategy of using the cellobiose promoter 

was rational. G. kaustophilus and G. thermoleovorans also have genes that encode for β-

glucosidase (Goh et al., 2014), which supports the argument that Geobacillus spp. are 

advantageous for engineering of better lignocellulose degrading strains, because they naturally 

produce β-glucosidase. 

Interestingly, the specific β-glucosidase activity of the transformed strains after growth on 2% 

cellobiose was better than that of the wild-type strains in both examples studied. Although this 

could be associated with increased cell lysis in the cultures, there is a possibility that the 

heterologous, secreted Csac-0137 endoglucanase could contribute to the increased degradation 

of the cellobiose due to the ability of endoglucanases to degrade β-1,4-glycosidic bonds in 

cellobiose (Bauer et al., 1999). DNA or RNA levels in the supernatants from the cultures of 
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the transformed and wild-type strains could be analysed to provide evidence for, or rule out 

cell lysis. 

When tested on 1% pretreated M. x giganteus transformed G. thermoglucosidasius DL33 grew 

better than all of the strains by day 24. Analysis of the supernatants from these cultures showed 

that the transformed G. thermoglucosidasius DL33 had the highest avicelase, CMCase and 

xylanase specific activities. These results suggest that Csac_0137 endoglucanase improved G. 

thermoglucosidasius DL33 xylanase activity during growth on pretreated M. x giganteus. This 

may be an indication that Csac_0137 endoglucanase and xylanase have a synergistic 

relationship in their activity.  

Synergistic activity of lignocellulose degrading enzymes, such as endoglucanases, β-

glucosidases, xylanases and β-xylosidases is required for complete deconstruction of complex 

lignocellulosic biomass (de Vries and Visser, 2001). It has been observed during previous 

studies that cellulases and xylanases act synergistically (Kumar and Wyman, 2009; Robison, 

1984; Sanchez, 2009; Selig et al., 2008). Degradation of hemicellulose may involve synergistic 

actions among hemicellulases themselves or between hemicellulases and cellulases (Banerjee 

et al., 2010; Couturier et al., 2011; Fortes Gottschalk et al., 2010; Gao et al., 2011; Kumar et 

al., 2008). 

The activity on CMC native PAGE gel was negative, while the xylanase native gel showed 

extra enzyme activity for the supernatant from the transformed G. thermoglucosidasius DL33 

strain, visible as two faint clear zones. However, it was not possible to identify this protein by 

mass spectrometry due to the low protein recovery. Use of other ligno/cellulosic materials 

could improve the cellulase activity of the inserted Csac_0137 endoglucanase.  

Despite the superior growth and enzyme activities, there was no visible degradation of the 

pretreated miscanthus by the transformed G. thermoglucosidasius DL33 strain at the end of 24 

d incubation. Reducing the amount of miscanthus may produce more obvious reductions in 

biomass. However, it is probable that enzyme activities beyond the natural xylanase and 

recombinant Csac_0137 are needed to breakdown miscanthus, and the transformed strain of 

G. thermoglucosidasius DL33 may degrade lignocellulose more effectively in cocultures with 

other microorganisms. 
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8. Cocultures of transformed and wild-type strains of Geobacillus 

thermoglucosidasius NCIMB 11955 and DL33, and strains isolated from the 

TR1A mixed culture, on pretreated M. x giganteus. 

8.1 Introduction. 

The main focus of current research in cellulosic bioethanol is to overcome the recalcitrance of 

cellulosic feedstock to bioconversion. Cocultures are a promising solution to biomass 

hydrolysis and complete conversion of sugars for development of an economically feasible 

CBP (Svetlitchnyi et al., 2013). Cellulose hydrolysing microbial consortia have been reported 

to be stable (Harish et al., 2010) and resulted into improved cellulose utilisation (Argyros et 

al., 2011; Baskaran et al., 1995; Ljungdahl et al., 1981; Wiegel and Ljungdahl, 1981). 

However, these cocultures have not been developed to the industrial level. 

Cocultivation of the transformed and wild-type strains of G. thermoglucosidasius NCIMB 

11955 and G. thermoglucosidasius DL33 and strains isolated from compost during this study 

(chapter 6) was carried out to assess the ability of the resulting cocultures to secrete 

lignocellulolytic degrading enzymes and grow on pretreated M. x giganteus.  

8.2 Co-cultivation of G. thermoglucosidasius NCIMB 11955 and DL33 strains 

with Brevibacillus thermoruber sp. strain TR1A_13, on 1% pretreated M. x 

giganteus. 

Chapter 7 showed that the individual cultures of transformed and wild-type strains of G. 

thermoglucosidasius NCIMB 11955 and DL33 did not grow very well on pretreated M. x 

giganteus as they probably did not secrete all of the necessary glycosyl hydrolases. Cocultures 

of these strains with bacteria isolated from the TR1A subcultures were established to look for 

improved ability to degrade pretreated M. x giganteus.  

Cocultures of transformed G. thermoglucosidasius NCIMB 11955 and DL33 did not grow on 

1% pretreated M. x giganteus in RIM even after 2 weeks of incubation. Various cocultures 

were set up involving the bacterial strains isolated from the TR1A subcultutures with the 

transformed and wild-type strains of G. thermoglucosidasius DL33 and NCIMB 11955 and 

grown on 1% pretreated M. x giganteus in RIM. The coculture involving transformed strains 

of G. thermoglucosidasius NCIMB 11955 and DL33 with the isolate B. themoruber strain 
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TR1A_13 grew better than those with other strains. This coculture was subcultured into fresh 

medium, and was still able to grow well, with visible degaration of the pretreated miscanthus 

biomass particles. This coculture was therefore selected and used to compare growth, enzyme 

activity and degradation of the pretreated M. x giganteus by cocultures involving the 

transformed or wild-type strains of G. thermoglucosidasius DL33 and 11955. 

B. thermoruber strains have been reported to produce thermostable cellulose hydrolysing 

enzymes (Liang et al., 2009; Rastogi et al., 2009). It was isolated from both the early and late 

subcultures of TR1A discussed in chapters 5 and 6. This suggests that it was a stable and 

fundamental member of the mixed microbial community that was responsible for the breaking 

down of the pretreated miscanthus in the TR1A subcultures. The isolate B. themoruber strain 

TR1A_13 also showed good growth on avicel, CMC and xylan (Fig. 6.5), but did not grow on 

pretreated M. x giganteus as an individual culture at 55oC.  

After an initial reduction in suspended protein concentration at the start of the incubation 

period (Fig. 8.1), the coculture of the transformed strains and the B. thermoruber strain 

TR1A_13 started growing by day 6 and initially gave a higher suspended protein concentration 

than cocultures of the wild-type strains and B. thermoruber strain TR1A_13. However, growth 

of the later increased between days 9 and 15 getting to similar protein concentrations as the 

recombinant coculture by day 18. The protein concentration in the recombinant and wild-type 

cocultures declined by day 21. 

The individual culture of B. thermoruber sp. strain TR1A_13 started growing after day 9, but 

gave a lower suspended protein concentration (less than 2.5 mg/ml) than the transformed and 

wild-type cocultures throughout the incubation period (Fig. 8.1). Thus, cocultures of G 

thermoglucosidasius and TR1A_13 appeared to outperform TR1A_13 on its own and 

cocultures with the recombinant strains appeared to be superior to the wild-types.  

In the TR1A subcultures degradation of pretreated M. x giganteus was always visible when 

cultures were grown for more than 2 weeks (chapter 5). The G. thermoglucosidasius cocultures 

were therefore left to grow for 6 weeks before assessing the degradation of miscanthus. 

Although the remaining pellet harvested at day 42 from the transformed and wild-type strains 

cocultures appeared partially degraded and finer than that of the individual culture of B. 

thermoruber sp. TR1A_13 or the control (results not shown), this was less than that previously 

observed in the TR1A subcultures. 
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Figure 8.1 Growth of transformed or wild-type cocultures on pretreated M. x giganteus.  

Cocultures of transformed or wild-type strains of G. thermoglucosidasius NCIMB 11955 and G. 

thermoglucosidasius DL33 and B. thermoruber Strain TR1A_13, and the individual culture of B. thermoruber 

strain TR1A_13 on 1% pretreated M. x giganteus in RIM. The control was not inoculated. The cultures were 

incubated at 55oC with shaking at 250 rpm for 21 days. Growth was monitored by measuring the suspended cell 

protein concentration according to the protocol described by Ishida et al., (1997).  

8.2.1 Assessment of the avicelase, β-glucosidase, CMCase and xylanase activity of 

cocultures of the transformed and wild-type G. thermoglucosidasius NCIMB 

11955 and DL33 with B. thermoruber TR1A_13, and the individual culture of B. 

thermoruber TR1A_13, after growth on 1% pretreated M. x giganteus in RIM. 

The supernatants from the cultures used in section 8.2 were analysed for avicelase, β-

glucosidase, CMCase and xylanase activity after 2 weeks of incubation. This revealed that 

there was more β-glucosidase and CMCase activity in the supernatant from the cocultures of 

the transformed strains than from the cocultures involving the wild-type strains for the 2 week 

old cultures (Fig. 8.2). Avicelase activity was the same for both cocultures, while the xylanase 

activity was higher in the wild-type coculture than the transformed coculture (Fig. 8.2). The 

supernatant from the individual culture of B. thermoruber TR1A_13 had higher β-glucosidase 

specific activity than its cocultures with the transformed and wild strains of G. 

thermoglucosidasius (Fig.8.2).  
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Figure 8.2 Assessment of the avicelase, β-glucosidase, CMCase and xylanase activity of the cocultures.  

The analysed supernatant was from the cocultures of the transformed and wild-type strains of G. 

thermoglucosidasius NCIMB 11955 and DL33 with B. thermoruber TR1A_13, and of the individual culture of 

B. thermoruber TR1A_13 after growth on 1% pretreated M. x giganteus in RIM. The supernatants used for 

analysis were collected from 2 week old cultures. The DNS (3,5-dinitrosalicylic acid) method according to the 

protocol described by Miller et al., (1960) was used to assess the enzyme specific activity, after preparing and 

concentrating the supernatant as described in Fig.7.5 of section 7.5.1. The protein concentration was determined 

by the Biuret method. 

8.2.1.1 Analysis of the CMCase and xylanase activity of the supernatant from the 

cocultures of transformed and wild G. thermoglucosidasius NCIMB 11955 and 

DL33, with B. thermoruber TR1A_13 on native PAGE gel. 

The supernatants from the cultures used in section 8.2.1 were analysed for CMCase and 

xylanase activity on 12% native PAGE gel containing 0.05% CMC and xylan, respectively. 

The supernatant from a 2 week old culture of TR1A subculture 8 was also run on the same 

gels for comparison (Fig. 8.3A, B and C lane 2TR1A8). The supernatant from the individual 

culture of B. thermoruber TR1A_13 was also analysed on the gels (Fig. 8.3A, B and C lane 

TR1A13). 

The cocultures containing both the transformed and wild-type strains of G. 

thermoglucosidasius NCIMB 11955 and DL33 and B. thermoruber TR1A_13 showed clear 

zones on the xylan native gel, with the former showing extra bands indicated by the arrows in 

Fig. 8.3B, lane Trans Co. The fastest migrating protein which gave a clear zone indicated by 

the arrow (Fig. 8.3B, lane Trans Co) could be the Csac_0137 gene product, which has a 

predicted molecular weight of 39 KDa, and has also been reported to be better expressed on 

xylan (VanFossen et al., 2011). There were no clear zones produced by the supernatant from 
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the individual B. thermoruber TR1A_13 or the control (Fig. 8.3B, lanes TR1A13 and CTL, 

respectively).  

Only the supernatant from the TR1A subculture 8 showed a clear zone on the CMC native 

PAGE gel (Fig. 8.3C, lane 2TR1A8). However, there were 4 faint clear bands in the upper 

regions of the CMC native PAGE gel, in about the same location as the upper clear zones 

observed on the xylan native PAGE gel in B, lanes Trans Co and Wild Co, for the supernatant 

from the transformed and wild-type cocultures (results not shown because the bands were too 

fant and might not show on picture). 

 

 

Figure 8.3 CMCase and xylanase native PAGE gels of the cocultures.  

Coomassie brilliant blue stained 12% CMCase and xylanase native PAGE gels of the cocultures (A) and Congo 

red stained 12% native PAGE zymograms (B) for supernatants from cultures of TR1A subculture 8 (lane 

2TR1A8), cocultures of the transformed (lane Trans Co) and wild (lane Wild Co) strains of G. 

thermoglucosidasius NCIMB 11955 and DL33, and B. thermoruber TR1A_13. Supernatant from an individual 

culture of B. thermoruber TR1A_13 (lane TR1A13) and a control (lane CTL) were also analysed. Supernatants 

from the same samples as those loaded in gel A were loaded in the corresponding lanes of gels B and C. The 

arrows in (Fig. 8.3B, lane Trans Co) show zones of clearing produced only by the supernatant from the coculture 

of the transformed strains of G. thermoglucosidasius NCIMB 11955 and DL33, and B. thermoruber TR1A_13, 

but not present in the lane containing the supernatant from the cocultures of wild-type strains of G. 

thermoglucosidasius NCIMB 11955 and DL33, and B. thermoruber TR1A_13 (Fig. 8.3B lane Wild Co). Gels A 

and B contained 0.05% xylan from beechwood (Sigma). The gel in C is a 12% native PAGE gel containing 0.05% 

CMC (Sigma). All the supernatants were prepared and concentrated as described in Fig. 7.5. 
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8.3. Assessment of growth and enzyme activity of the cocultures of transformed 

and wild-type G. thermoglucosidasius NCIMB 11955 or DL33 with B. 

lichenformis TR1A_17. 

The results of section 6.3.2 show that B. lichenformis TR1A_17 could grow on pretreated M. 

x giganteus (Fig. 6.7B and C), producing high β-glucosidase and xylanase activities (Fig. 6.7D 

and F, lane TR1A_17). This isolate was therefore tested in another set of coculture 

combinations with the transformed and wild-type strains of G. thermoglucosidasius, to see 

whether expression of even a low level of recombinant Csac_0137 endoglucanase would 

improve growth on pretreated M. x giganteus. Separate cocultures of the transformed and wild 

strains of G. thermoglucosidasius NCIMB 11955 or DL33 and B. lichenformis TR1A_17 were 

set up, and growth, CMCase and xylanase activity compared after growth on 1% pretreated M. 

x giganteus in RIM.  

All the cocultures showed good growth and all had a reddish pigmentation, except the 

coculture of transformed G. thermoglucosidasius NCIMB 11955 and B. lichenformis 

TR1A_17 which did not show much of this pigmentation. The reddish pigmentation of the 

transformed G. thermoglucosidasius DL33 and B. lichenformis TR1A_17 coculture was 

greater than that of its wild-type coculture, which in turn showed more pigmentation than that 

of the wild-type NCIMB 11955 and B. lichenformis TR1A_17 coculture (results not shown).  

None of the four cocultures showed any CMCase activity on CMC zymograms (results not 

shown). All 4 cocultures showed xylanase activity on the xylan native PAGE gel (Fig. 8.4, gel 

B). The coculture of transformed G. thermoglucosidasius DL33 and B. lichenformis TR1A_17 

produced the largest low molecular weight clearing zone (Fig. 8.4, gel B, lane T33co), 

followed closely by that of the coculture of wild-type G. thermoglucosidasius DL33 and B. 

lichenformis TR1A_17 (Fig. 8.4, gel B, lane W33co).  

The extra xylanase activity in the coculture of transformed strain of G. thermoglucosidasius 

DL33 and B. lichenformis TR1A_17 was suspected to be due to the secreted Csac_0137 

endoglucanase into the culture because of the small size of the protein, which is about 39 KDa 

(van de Werken et al., 2008; VanFossen et al., 2011), due to the the extra band in Fig. 8.4A, 

lane T33co (see arrow). The supernatant from the coculture of the wild-type strain of G. 

thermoglucosidasius NCIMB 11955 and B. lichenformis TR1A_17 showed 2 clear zones on 

the zymogram, 1 upper and 1 lower clear zone (Fig. 8.4, gel B, lane W11955co). This could 
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be an indication that the insertion of the Csac_0137 gene into G. thermoglucosidasius NCIMB 

11955 actually affected its xylanase production, which could also be the reason for the low 

pigmentation observed in its coculture than that of its wild-type strain coculture with B. 

lichenformis TR1A_17. 

 

 

Figure 8.4 Xylanase activity of the cocultures.  

Xylanase analysis of the supernatant from 3 day old cocultures of transformed G. thermoglucosidasius DL33 and 

B. lichenformis TR1A_17 (lane T33co), wild G. thermoglucosidasius DL33 and B. lichenformis TR1A_17 (lane 

W33co), transformed G. thermoglucosidasius NCIMB 11955 and B. lichenformis TR1A_17 (lane T11955co), and 

wild G. thermoglucosidasius NCIMB 11955 and B. lichenformis TR1A_17 (lane W11955co), analysed for 

xylanase activity on 12% native PAGE gels containing 0.05% xylan from beechwood (Sigma), stained with 

Coomassie brilliant blue stain (A), and Congo red stain (B). The cultures were grown on 1% pretreated M. x 

giganteus in RIM. The supernatant was prepared and analysed as described in Fig. 7.5. 

8.4 Discussion. 

The coculture of the recombinant G. thermoglucosidasius NCIMB 11955 and DL33 with B. 

thermoruber TR1A_13 grew better than the cocultures of their wild-type strains on pretreated 

M. x giganteus (Fig. 8.1) and both of these cocultures grew better than the individual cultures 

of any of the organisms (Fig. 7.8 of section 7.7 in chapter 7), and (Fig. 8.1). 

More extensive degradation of pretreated miscanthus was observed with both the recombinant 

and the wild-type cocultures G. thermoglucosidasius NCIMB 11955 and DL33 with B. 

thermoruber TR1A_13, than with the individual culture of B. thermoruber TR1A_13. 

However, this was less than that observed in the TR1A subcultures (chapter 5). Involvement 

of more organisms which were able to support each other’s growth symbiotically during 
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growth on pretreated M. x giganteus could have improved enzyme production by the 

participating microoganisms, allowing improved synergistic action of the enzymes during 

degradation of the pretreated miscanthus. 

The cocultures involving the recombinant strains showed more β-glucosidase and CMCase 

specific activity than the wild-type cocultures (Fig. 8.2). However, the β-glucosidase activity 

of the individual culture of B. thermoruber sp. strain TR1A_13 was higher than that of its 

cocultures (Fig. 8.2). The xylanase activity of the individual culture of B. thermoruber sp. 

strain TR1A_13 was similarly low for both liquid (Fig.8.2) and native PAGE gel analysis (Fig. 

8.3B, lane TR1A13). The CMCase was low for both the liquid analysis (Fig.8.2) and the native 

PAGE gel analysis (Fig. 8.3C). This shows that the endoglucanase Csac_0137 improved the 

β-glucosidase and xylanase activity of G. thermoglucosidasius NCIMB 11955 and DL33. The 

natural β-glucosidase expression of B. thermoruber TR1A_13 was affected during coculturing 

with the transformed or wild-type strains of G. thermoglucosidasius NCIMB 11955 and DL33 

on pretreated miscanthus. 

The coculture of transformed G. thermoglucosidasius DL33 and B. lichenformis sp. strain 

TR1A_17 grew best on pretreated M. x giganteus and produced better xylanase activity on the 

xylan zymograms than its wild coculture and both the recombinant and wild cocultures of G. 

thermoglucosidasius NCIMB 11955 (Fig. 8.4B). It was suspected that the extra xylanase 

activity in Fig. 8.4B, lane T33co was due to the secretion of the Csac_0137 endoglucanase 

which could have been part of the extra band pointed by an arrow in Fig. 8.4A, lane T33co, 

which unfortunately was not successfully identified during this study. However, insertion of 

Csac_0137 in G. thermoglucosidasius NCIMB 11955 seems to have affected the expression 

of the native xylanase by this bacterium. 
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9. General discussion and future work. 

Pretreatment of M. x giganteus. 

Given that the aim of this study was to evaluate thermophilic bacteria, with a particular focus 

on Geobacillus spp., for their ability to carry out consolidated bioprocessing it was important 

to use a biomass pretreatment method which left most of the polymeric carbohydrate intact. A 

suitable substrate and correct pretreatment methods are required for efficient saccharification 

(Chundawat et al., 2011), as different enzymes are said to degrade cellulosic materials to 

different extents (Coughlan, 1985). A suitable pretreatment method should result in opening 

up of the M. x giganteus structure of the lignocellulose, to make it more accessible to enzymes 

(Taherzadeh and Karimi, 2007; Yang and Wyman, 2008).  

Acid pretreatment involves the use of high or low acid concentrations (Venkatesh and Pradeep, 

2013). High acid concentration pretreatment results into complete degradation of cellulose and 

hemicellulose, but not lignin (Sun and Cheng, 2002). However, to be economical, this requires 

recycling of the acid. Low acid concentrations do not require recycling to be economic, but 

the process requires temperatures above 160oC, leading to high energy costs (Gonzalez et al., 

1986). Acidic pretreatment requires specialized vessels to withstand corrosion, especially at 

high temperatures (Venkatesh and Pradeep, 2013). The hemicelluloses get hydrolysed during 

weak acid pretreatment, increasing accessibility for enzymes to digest the cellulose (Kim et 

al., 2005), but lignin is not degraded (Venkatesh and Pradeep, 2013). Pretreatment of 

lignocellulosic biomass using low acid concentration also causes hydrolysis of pentose and 

hexose sugars leading to formation of products such as furfural and hydroxymethyl furfural, 

which are undesirable because microbial fermentation can be inhibited in their presence (Liu 

and Song, 2009).  

The miscanthus biomass used for this study was pretreated by soaking in aqueous ammonia 

(SAA). Grasses such as miscanthus are susceptible to alkaline preatment methods, which is 

advantageous for integration with a CBP because the treatment is gentle (Taherzadeh and 

Karimi, 2007) and does not require any hi-tech machinery (Yang and Wyman, 2008). Alkaline 

treatment methods are carried out at normal temperatures (Venkatesh and Pradeep, 2013), and 

allow removal of lignin (Chang and Holtzapple, 2000; Kim and Lee, 2005), as well as acetyl 

groups and uronic acid from the hemicellulose (Chang and Holtzapple, 2000).  
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The SAA method results into breakage of the ester linkages between hemicellulose groups, 

increasing accessibility of the enzymes to the cellulose and the hemicellulose components and 

is able to retain high amounts of the xylan and glucan components (Dobrev and Zhekova, 

2012; Kim and Lee, 2005; Murashima et al., 2003; Nunes et al., 2011). The compositional 

analysis and the saccharification results from this study showed that the pretreatment method 

(SAA) used for the miscanthus biomass was suitable for evaluating CBP as the polymeric 

sugars remained intact after the pretreatment process and were more accessible than the 

untreated material to enzyme degradation.  

Preliminary studies of the WL isolates. 

Preliminary studies were carried out to evaluate four thermophilic cellulolytic bacterial strains 

(WL strains) isolated on modified ASM + 0.5% CMC from wood compost previously obtained 

from a composting company in West London. During preliminary studies on the WL strains a 

procedure for reviving thermophilic bacteria from stock cultures stored at -80oC was 

developed. Initially these thermophilic WL strains could not be revived by streaking the stock 

cultures directly on agar plates, but could be revived by aerobic pre-incubation in 2TY medium 

for at least 1 h at 55oC. For WL14, 15 to 30 min incubation at 55oC with shaking at 250 rpm 

was sufficient time for the cells to revive.  

Research on Mycobacterium tuberculosis [the bacterium that causes tuberculosis (TB)] 

showed that this bacterium produced a set of proteins called resuscitation promoting factors 

(RPF) encoded in the genome (Cohen-Gonsaud et al., 2005), which enabled co-ordinated 

revival of populations of cells from dormancy, similar to those in M. luteus (Young et al., 

2010). However, an experiment carried out to check for presence of growth/revival factors in 

the filtrate from the revived culture media of the WL strains did not provide evidence for such 

factors, suggesting that these cells were reviving independently. Further experiments could be 

carried out to test if growth was on the secreted material by filling holes in the 2TY agar plates 

with the filtrate from the cultures and inoculating the stock culture from the -80oC around the 

hole. The growth of the culture could then be compared with that of the control containing 

fresh 2TY medium filled in the holes in place of the filtrate from the cultures. 

Members of the Geobacillus spp. form endospores (Zeigler, 2014). The 16S rRNA gene 

analysis results showed that all four WL strains were Geobacillus spp. and could therefore 

have existed as spores in the stock cultures, needing time, sufficient nutrients and optimum 
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conditions to fully germinate into vegetative cells. Bacillus subtilis and related bacteria 

undergo sporulation in response to nutrient deprivation (Errington, 2003; Piggot and Hilbert, 

2004; Stragier and Losick, 1996). The formed spores are durable and help the bacteria to 

survive harsh conditions (Hirano et al., 1991). During germination the spore requires sufficient 

hydration for successful breakdown of the cortex and removal of the spore coats (Segev et al., 

2013). The pre-incubation of the WL cells in liquid medium during this study could have 

provided the cells with better hydration than on the agar plates. 

Spore germination is said to be influenced by cell wall muropeptides, acids and sugars (Segev 

et al., 2013) which act as signaling molecules that bind to the spore membrane and signal to 

the spore to activate revival into a vegetative cell (Shah et al., 2008; Squeglia et al., 2011). The 

spore age and the incubation temperature, are said to influence the efficiency of germination 

(Segev et al., 2013). Further investigation of the underlying molecular processes involved in 

the successful revival of the WL strains might explain why incubation in the liquid medium 

favoured resuscitation, where as direct streaking of the stock cultures on the agar plates did 

not. This procedure was successfully used for reviving the -80oC stock cultures of a second set 

of thermophilic bacterial strains isolated from domestic compost during this study.  

The WL strains showed good growth on rich medium (2TY), with WL14 having the highest 

rate, while WL3 had the lowest rate. All four strains showed enzyme activity on avicel, 

cellobiose and CMC plates. The CMC plates showed largest clear zones around the bacterial 

colonies for the plates incubated for 24 h; after 8 day incubation the cellobiose plate showed 

the largest clear zones. However, the size of the clear zone on the plates not only reflects the 

amount of enzyme diffusing through the medium, but also the ease of substrate diffusion 

through the medium to the cells. This may be the case with cellobiose as β-glucosidase is 

commonly an intracellular enzyme and cellobiose is an easily diffusible small molecule. 

However, β-glucosidase has also been found to be secreted by some bacteria (Kajikawa and 

Masaki, 1999; Lo et al., 2009).  

When grown on avicel, CMC and xylan as primary carbon sources in modified ASM liquid 

cultures, the WL strains did not show much growth on avicel or CMC over an 8 day incubation 

period; however, good growth was observed on xylan for all four strains. WL3 had the lowestst 

CMCase activity while WL14 had the highest. Bacillus spp. have been reported to produce 

high amounts of xylanases (Akhavan Sepahy et al., 2011; Schneider et al., 2000; Sushil et al., 

2012), including thermophilic xylanases by Geobacillus thermoleoevorans (Sunna et al., 
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1997). Another study reported production of thermophilic xylanase and arabinofuranosidase 

by Geobacillus spp. isolated from hot springs (Canakci et al., 2007).  

A number of studies have also reported production of endoglucanases by Geobacillus spp. (Ng 

et al., 2009; Rastogi et al., 2010; Stathopoulou et al., 2012). However, reports of Geobacillus 

spp. producing good exoglucanase activity are very rare. Therefore, the WL strains were grown 

on avicel to assess their ability to degrade this substrate. All the four strains had avicelase 

activities. They were all shown to have some constitutive cellulase activity as low cellulase 

activities were detected in the control medium without carbon sources by the activity on the 

CMC native PAGE gels. The cells in the control were probably growing on the yeast extract 

in the medium. 

Mass spectrometric analysis of samples taken from the clear bands on the Congo red native 

CMC PAGE gel revealed only one glycoside hydrolase present in the supernatant from both 

the control and the experiment culture, namely xylan-1,4-β-xylosidase from Geobacillus sp. 

(closest strain being Y412MC52). The other enzymes identified associated with the clear 

bands were NAD-dependent aldehyde dehydrogenase (MW 55.87 KDa) from Geobacillus sp. 

(closest strain being G.kaustophilus HTA426), Δ-1-pyrroline-5-carboxylate dehydrogenase 

(MW 56.55, 56.63 and 56.57 KDa) from Geobacillus spp. (closest strains being G.kaustophilus 

HTA426, Y412MC52 and WCH70). All these enzyme fragments were identified in samples 

taken from the zones of clearing for both the control and experiment supernatants, and showed 

a total ion confidence interval (C.I.) of 100%. (A confidence interval level closer to 100% is 

an indication that the identification of the protein is more likely to be correct).  

These results indicated that no classical cellulases were detectable in the bands from the clear 

zones on the native CMC PAGE gel. Therefore the enzyme activities observed on the native 

CMC PAGE gels could be due to the activity of the xylosidase as the other enzymes were not 

typical glycoside hydrolases. However, it is also possible that the CMC active enzyme was not 

detected in the mass spectrometric assay due to poor recovery, proteolysis or fragmentation. 

Δ-1-Pyrroline-5-carboxylate dehydrogenase together with proline dehydrogenase PutB have 

been reported to catabolize L-proline to L-glutamate, allowing Bacillus subtilis to use L-

proline as a sole source of carbon (Moses et al., 2012). Interestingly, Δ-1-pyrroline-5-

carboxylate dehydrogenase and NAD-dependent aldehyde dehydrogenase from Geobacillus 

spp., glyceraldehyde-3-phosphate dehydrogenase from Meiothermus spp. and aldehyde 

dehydrogenases from Micromonospora sp., Rhodomycrobium sp. and Streptomyces sp. were 
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also detected in the supernatant from the TR1A subcultures. While this might reflect some 

involvement in glycoside hydrolysis this may simply reflect a degree of cell lysis and detection 

of intracellular proteins of similar gel mobility. 

Slow growth was recorded for all the WL strains both on untreated and pretreated M. x 

giganteus, with no extensive degradation of miscanthus particles observed in any of the 

cultures. Growth on untreated miscanthus biomass could possibly be associated to the presence 

of the materials that could have leached out during the preatment process, while the growth on 

the pretreated miscanthus biomass could have been due to the presence of xylan oligomers 

resulting from the preatment process. Growth of WL14 on pretreated M. x giganteus was better 

than that of the other three WL strains, consistent with its higher xylanase activity. All four 

WL strains had high 16S rDNA sequence identities to Geobacillus spp. The WL 14 strain 

showed interesting results for growth and enzyme activity on polymeric carbon substrates and 

it may be informative to sequence its genome to study the glycoside hydrolases encoded. 

WL14 could also be further investigated in coculture experiments on the degradation of 

pretreated lignocellulose biomass. 

New microbial isolations from domestic compost. 

Consortia of thermophilic bacteria capable of degrading pretreated lignocellulosic biomass (M. 

x giganteus) were successfully enriched from domestic compost from the same composting 

company in West London where the WL strains were isolated. The strains were isolated on 

pretreated M. x giganteus in RIM and were called TR1A strains. The TR1A mixed microbial 

culture showed better growth on pretreated M. x giaganteus in buffered RIM than in unbuffered 

medium, and were able to degrade about 50% of the pretreated miscanthus biomass solid 

particles in 6 weeks, but could not degrade the untreated M. x giganteus. Compositional 

analysis results showed that the microbes in the mixed culture were able to use all the sugar 

components and were also able to degrade part of the lignin.  

A stable mixed microbial community capable of degrading pretreated M. x giganteus was 

developed from the TR1A culture. Growth in the culture slightly dropped from about 0.6 

mg/ml total cell protein in the first TR1A subculture to about 0.3 to 0.4 mg/ml total cell protein 

in the sixth TR1A subculture. The drop in growth could be due to dying off of microbial groups 

that could not use pretreated miscanthus biomass for growth. The stability of the mixed 

microbial community was shown by its ability to degrade pretreated M. x giganteus particles 



204 

 

in the subcultures, as the subcultures 6, 7 and 8 degraded about 50% of the pretreated 

miscanthus biomass. Stability of the degradation ability of the microbial community was also 

observed in a previous study (Haruta et al., 2002). Interestingly, the degradation ability was 

also tolerant to freezing at -80oC, an observation also made in other studies (Haruta et al., 2002; 

Lv et al., 2008; Wongwilaiwalin et al., 2010).  

The avicelase, CMCase and xylanase activity detected in the supernatant of the TR1A 

subcultures increased with subculturing (Fig. 5.13). Increase in enzyme activity was also 

confirmed by the greater CMCase activity detected on the CMC native PAGE gels for the 

supernatant from TR1A subculture 8 than that detected from the earlier subcultures (Figures 

5.14 -5.17). These observations indicated that increasing the incubation period of the cultures 

on pretreated M. x giganteus allowed degradation of the pretreated miscanthus biomass 

particles. Longer incubation periods could also have created conditions that promoted 

secretion of enzymes involved in ligninolytic hydrolysis, an observation that was also reported 

during an earlier study (Chen et al., 2012a).  

HPLC results showed that fermentation products (formate and lactate) were present in the 

supernatant from the TR1A mixed subculture 8. The unidentified products detected in the 

TR1A culture supernatant might give important information about the processes in this culture. 

Increasing the number of standards for HPLC analysis of the supernatant from the TR1A 

subcultures needs to be considered for future investigation to identify these unkown products.  

Lack of detection of sugars in the TR1A mixed culture supernatant by HPLC shows that the 

degrading microorganisms were utilizing all the produced sugars for their own growth. A 

previous study reported a low concentration of glucose, less than 3 mg/ml, present in the mixed 

microbial culture (Haruta et al., 2002). Future work on the TR1A mixed culture should include 

studies on balancing the amount of pretreated miscanthus biomass to be used to allow 

detectable levels of sugars to remain in the culture that could be available for fermentation or 

production of other important products.  

High ethanol concentration have been detected in supernatants from other mixed microbial 

cultures (Haruta et al., 2002), in contrast to the observations of this study, where no ethanol 

was detected. Use of other alcohol detection methods such as analysis of the gaseous phase by 

headspace GC analysis (Wei et al., 2013) or NMR (Kim et al., 2013) should be considered to 

analyse the amount of ethanol produced by the TR1A mixed culture grown on pretreated M. x 
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giganteus. Alcohol detection could also be improved by analysing samples taken at various 

stages of the subculture from as early as 5 day old cultures as reported by Haruta et al. (2002). 

It was clear that many enzymes were involved in the degradation of the pretreated M. x 

giganteus biomass in the TR1A subcultures. Avicelase, CMCase and xylanase activities were 

detected in the supernatant from the mixed TR1A subcultures both by DNS method as well as 

on native PAGE gels containing CMC or xylan carbon substrates. A similar pattern of clear 

bands was observed on CMC and xylan containing native PAGE gels, therefore same enzyme 

groups could have been degrading cellulose as well as xylan in the TR1A subcultures.  

Previous studies have reported degradation of hemicellulose by endoglucanases (Karboune et 

al., 2009). Cellulases are known to work synergistically with hemicellulases to achieve 

degradation of lignocellulosic biomass to sugars (Damude et al., 1996; Gao et al., 2011; Sizova 

et al., 2011). This could suggest that both enzyme groups could be present in the same clear 

band, as observed during this study, because more than one enzyme was detected in some of 

the bands. Other researchers have also reported that these lignocellulose degrading enzymes 

work better in groups than as individual enzymes (Himmel et al., 2007; Rojas et al., 2005; 

Tuncer and Ball, 2003a; Tuncer and Ball, 2003b).  

The enzyme activities detected in the medium and on the gels were confirmed by the many 

different enzymes that were detected by mass spectrometry from the supernatant from the 

mixed microbial TR1A subcultures after growth on pretreated M. x giganteus. The results also 

showed that enzymes were produced at different times in the culture as different and 

sometimes same patterns of cleared zones were obtained from analyzing samples collected at 

different ages of the culture on native CMC PAGE gels. The xylan degrading enzymes were 

the largest group of the enzymes detected in the TR1A mixed microbial subcultures’ 

supernatant by mass spectrometry, followed by the xylose isomerase, which is mostly an 

intracellular enzyme, but has also been reported to be secreted by a thermophilic Bacillus sp. 

(Chauthaiwale and Rao, 1994). Future work could also consider testing the TR1A culture 

supernatant for the presence of DNA or RNA to check if cells had lysed to release intracellular 

enzymes into the culture. 

The enzymes identified by mass spectrometry showed a xylanase dominated group in the 

TR1A subculture 6 shifting to more xylose isomerase, as well as appearance of α-N-

arabinofuranosidase and transaldolase in the TR1A subcultures 7 and 8, and endoglucanase A 
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in TR1A subculture 8. This could mean that the mixed microbial group in the late TR1A 

subcultures most likely consisted some of the cellulolytic bacteria which could purely depend 

on cellulose as a carbon source.  

There is also a possibility that some of the cellulases could have been present as cellulosomes 

attached to the microbial cell walls and hence were not detected in the supernatant. Future 

studies on the TR1A mixed culture should look at the isolation of the cellulosomes by using 

methods for analyzing cellulosomes attached to the bacterial cell surfaces (Anderson et al., 

2011), and also isolating the cellulosomes secreted in the culture by analyzing the suspended 

and attached fractions of the culture supernatant (Bayer et al., 1998). This will give more 

information on the glycoside hydrolases involved in the degradation of the pretreated M. x 

giganteus in the TR1A mixed microbial culture.  

Future investigations could also consider testing the ability of the supernatant from the TR1A 

subcultures to saccharify different types of pretreated biomass and at elevated temperatures of 

up to 80oC to check if the secreted enzymes could be used for the development of enzyme 

mixtures suitable for biorefinery processes. The supernatant from the TR1A subcultures could 

also be tested for ligninase activity to check for the ability of the secreted enzymes to degrade 

lignin. 

Identification of bacteria isolated from the TR1A mixed microbial culture by 16S 

rRNA gene analysis. 

The bacteria detected in the TR1A mixed culture isolated from the culture pellet DNA 

belonged to Firmicutes, Bacteroidetes, Actinomycetes and the Thermus, while those isolated 

as individual colonies from the liquid fraction belonged to Actinomycetes and Firmicutes. The 

microbial groups identified to be present in the TR1A mixed culture have been reported to 

produce glycoside hydrolases, as discussed in chapter 6. The individually isolated Firmicutes 

were mostly Geobacillus spp., consistent with the observation that this bacterial group was 

identified as the major producer of the enzymes detected in the TR1A mixed culture 

supernatant (Table 5.1).  

The bacteria identified in the culture pellet DNA and those from the liquid fraction of the 

culture were different. Unless there is complete understanding of all the requirements of the 

mixed microbial community, it is not easy to isolated all the microbes present in the mixed 
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microbial culture, as earlier suggested by other researchers (Lee et al., 1996; Ward et al., 1998). 

The isolation and identification of the microbes in the TR1A mixed microbial culture needs to 

continue to give a complete composition of the microbial population. There is also a possibility 

that more groups could be detected in the pellet DNA if specific primers for other microbial 

groups such as fungi, actinomycetes and archaebacteria, could be used, as well as changing 

the conditions of PCR for amplification of the specific conserved sequences for each microbial 

group. 

The B. lichenformis sp. strain TR1A_17 was the only isolate from the TR1A subcultures that 

was able to grow on pretreated M. x giganteus at 55oC, and showed detectable β-glucosidase, 

xylanase activities, as well as low levels of avicelase and CMCase activities in the supernatant 

and agar plates with CMC, avicel, and xylan carbon sources. The best CMCase and xylanase 

activity was observed on the B. lichenformis strain TR1A_17 CMC and xylan plates incubated 

at 37oC. This strain only grew at 55oC on avicel and 2TY agar plates, but showed better 

avicelase activity on the avicel plate incubated at 55oC than that incubated at 37oC. However, 

xylanase activity was also detectable in the supernatant from the pretreated M. x giganteus 

culture at 55oC on the native PAGE gel containing xylan, but no CMCase activity was detected 

on the CMC native PAGE gels. All these cultures were grown at pH7.  

In a previous study another strain, B. lichenformis JK7, was found to record high activities of 

endoglucanase, followed by β-glucosidase, with xylanase recording the lowest activity, at 

optimum temperatures of 70oC for the endoglucanase and 50oC for both β-glucosidase and 

xylanase after growth on CMC and xylan (Seo et al., 2013). It has been reported to produce 

cellulases at temperature ranges of 50 to 55oC and pH6.5 to 7 after growth on CMC and filter 

paper (Acharya and Chaudhary, 2012). An endoglucanase produced at an optimum 

temperature of 55oC at pH6.1 was isolated from its culture in another study (Dhillon et al., 

1985). These observations show that B. lichenformis spp. are capable of producing 

thermostable endoglucanases, as well as xylanases, depending on the carbon substrate. 

B. lichenformis encodes a number of glycoside hydrolases in its genome (Table 6.1) and would 

be expected to degrade the pretreated M. x giganteus to greater extents, but there was no much 

physical degradation of the pretreated M. x giganteus particles observed in the culture. This 

observation seems to highlight the importance of cocultures, to help balance the conditions in 

the culture for better growth by the participating microorganisms through their symbiotic 

relations; this could result into secretion of sufficient levels of enzymes to promote synergistic 
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activities to achieve degradation of the lignocellulosic biomass to make the fermentable sugars 

available. 

Expression of Csac_0137, an endoglucanase enzyme encoding gene from 

Caldicellulosiruptor saccharolyticus in Geobacillus thermoglucosidasius strains, 

NCIMB 11955 and DL33. 

The wild-type strain of G. thermoglucosidasius DL33 grew better than the wild-type strain of 

G. thermoglucosidasius NCIM 11955 on xylan, but both wild-type strains were not able to 

grow on avicel or CMC. These two wild-type strains were successfully transformed with a 

Csac_0137 endoglucanase gene from C. saccharolyticus contained in a plasmid under the 

control of a cellobiose promoter. The inserted endoglucanase gene did not seem to improve 

the CMCase activities of the transformed strains after growth on 0.2% CMC + 0.1% cellobiose. 

However, both transformed strains were able to grow on 2% cellobiose. The transformed 

strains of G. thermoglucosidasius DL33 and NCIMB 11955 recorded more β-glucosidase 

activity than the wild-type strains, an indication that the secreted Csac_0137 could have 

contributed to the cellobiose degradation activities in the cultures of the transformed strains.  

The transformed G. thermoglucosidasius DL33 strain recorded the highest growth and enzyme 

specific activities (avicelase, CMCase and xylanase) after growth on pretreated M. x giganteus. 

Enzyme activity analysis on native CMC PAGE gels showed no activity for all the strains, but 

the xylanase was positive on the xylan native PAGE gels, with transformed G. 

thermoglucosidasius DL33 showing more activity. This could be due to synergistic 

interactions between the endoglucanase and xylanase as earlier observed by Dobrev and 

Zhekova (2012). There was no visible degradation of the pretreated M. x giganteus particles 

in the cultures for all the strains. However, the improved growth and enzyme activities 

recorded by transformed G. thermoglucosidasius DL33 looked interesting, and could make 

this strain useful in cocultures with other microorganisms for better degradation of pretreated 

miscanthus biomass for CBP development.  
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Co-cultivation of transformed and wild-type strains of Geobacillus 

thermoglucosidasius NCIMB 11955 and DL33, and strains isolated from the TR1A 

mixed culture, on pretreated M. x giganteus. 

Various cocultures were set up, involving the bacterial strains isolated from the TR1A 

subcultures with the transformed or wild-type strains of G. thermoglucosidasius DL33 and 

NCIMB 11955 and grown on pretreated M. x giganteus. The cocultures involving the 

transformed G. thermoglucosidasius strains of DL33 and NCIMB 11955 and B. thermoruber 

strain TR1A_13 grew better on pretreated M. x giganteus, and showed improved β-glucosidase  

and CMCase activity compared to the wild cocultures or the individual cultures for these 

microorganisms. However, there was more degradation of the pretreated M. x giganteus 

particles visible in both the wild-type strains and the transformed strains cocultures, but the 

extent of degradation was less than that observed in the TR1A subcultures.  

The findings of this study suggest that it is not easy for one microorganism, either isolated or 

created through engineering to produce all the enzymes required to degrade lignocellulosic 

materials. Thermophilic microbes have also been reported to produce enzyme yields which are 

too low for use at industrial level compared to mesophilic microbes (Bhalla et al., 2013a). 

Development of microbial consortia of similar composition to natural mixed microbial 

communities seems to be necessary for the release of the correct enzymes in the right amounts 

to achieve degradation of ligocellulosic biomass to release the sugars. Mixed culture systems 

are advantageous in overcoming the feedback regulation and metabolite repression in pure 

culture fermentation (Delatorre and Campillo, 1984; Lu et al., 2005; Lv et al., 2008; Soundar 

and Chandra, 1987). A previous study has also shown that natural microbial communities are 

effective for cellulose degradation (Lv et al., 2008). 

The results from this study indicated that most of the isolated colonies from the TR1A 

subcultures were Gebacillus spp., therefore, members of this mixed microbial community were 

able to grow in the same culture with the Geobacillus spp. The enzymes identified in the TR1A 

culture (Table 5.1) at each sampling time showed that the Geobacillus spp. produced a variety 

of enzymes in the TR1A subculture. It might be possible to develop a coculture of various 

Geobacillus strains isolated from this mixed culture that could successfully grow on pretreated 

M. x giganteus and capable of degrading miscanthus.  
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Appendix.  

Peptides detected by mass spectrometry and their most closely related protein sequences. 

 

The samples were prepared by the in-gel trypsin digest method or by following the method 

described in the ProteaseMAX™ Surfactant, Trypsin Enhancer from Promega. Determination 

of the enzyme sequence information of the isolated protein bands was by LC-mass 

spectrometry (MALDI and LC-MS/MS) and the derived partial peptide sequences were 

searched against protein databases. The position of the detected peptides are highlighted in the 

most closely related protein sequence.  

TR1A subculture 6 (From Fig. 5.15, Table 5.1). 

 
Xylan 1,4-β-xylosidase [Geobacillus sp. G11MC16] (MW 80145.5) Gel B, band 1 TR1A subculture 6 

 

Detected Peptides 

 

VGALIVDVPAGE 

EGICLFPDGGWK 

SGGLDLELARPPR 

AGDLTFTIYSPVK 

AFFGFEGTDPYTSMR 

SNELIEKEWLSDDQK 

SYYGNTQLLEHEGKPIWVVNEGEYR 

Location of peptides in the protein sequence 

MIMPNNLFFNAHHSPVGAFSSFTLGFPGKSGGLDLELARPPRQNVFIGVESLHESGLYHVLPFWETSGE

DESKRYDIENPDPNPQKPNILIPFAKEEIQREFHVATDTWKAGDLTFTIYSPVKAVPDPETADEEELKLA

LVPAVIVEMKIDNTNGTRARRAFFGFEGTDPYTSMRRIDETCPQLRGVGQGRIVGIVSKDEDVRSALHF

SMEDILTAQLEENWTFGLGKVGALIVDVPAGEKKTYQFAVCFYRGGYVTAGMDTSYFYTRFFNNIEEV

GLYALEKAEVLKEQSFRSNELIEKEWLSDDQKFMMAHAIRSYYGNTQLLEHEGKPIWVVNEGEYRMM

NTFDLTVDQLFFELKMNPWTVKNVLDLYVERYSYEDGVRFPGEETEYPGGISFTHDMGVANTFLRPHH

SSYELYGLSGCFSHMTHEQLVNWVLCAAVYIEQTKDWAWRDKRLAILEQCLESMVRRDHPDPEKRN

GIMGLDSTRTMGGAEITTYDSLDVSLGQARNNLYLAGKCWAAYVALEKLFHDVGKEELAALAGEQA

EKCAATIVSYVTDDGYIPAVMGEGNDSKIIPAIEGLVFPYFTNCHEALNKDGRFGEYIQALNAHLRYVL

REGICLFPDGGWKISSTSNNSWLSKIYLCQFIARHLLGWEWDEQGKRADAAHVAWLTHPTLSIWSWSD

QIIAGEIKASKYYPRGVTSILWLEEGE 

 

 

Xylan 1,4-β-xylosidase [Geobacillus sp. Y412MC52] (MW 79815.5) Gel B, band 1 TR1A subculture 6 

 

Detected Peptides 

IDDTCPQLR 

NVLDFYVER 

VGALIVDVPAGEK 

ILGWEWDEQGK 

SGGLDLELARPPR 

AFFGFEGTDPYTSMR 
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Location of peptides in the protein sequence 

 

MPTNVFFNAHHSPVGAFASFTLGFPGKSGGLDLELARPPRQNVFIGVESPHEPGLYHILPFAETAGEDES

KRYDIENPDPNPQKPNILIPFAKERIEREFRVATDTWKAGDLTLTIYSPVKAVPDPETASEEELKLALVPA

VIVEMTIDNTNGTRTRRAFFGFEGTDPYTSMRRIDDTCPQLRGVGQGRILSIVSKDEGVRSALHFSMEDI

LTATLEENWTFGLGKVGALIVDVPAGEKKTYQFAVCFYRGGYVTAGMDASYFYTRFFHNIEEVGLYA

LEQAEVLKEQAFCSNELIEKEWLSDDQKFMMAHAIRSYYGNTQLLEHEGKPIWVVNEGEYRMMNTFD

LTVDQLFFELKMNPWTVKNVLDFYVERYSYEDRVRFPGDGTEYPGGISFTHDMGVANTFSRPHYSSYE

LYGISGCFSHMTHEQLVNWVLCAAVYIEQTKDWAWRDRRFTILEQCLESMVRRDHPDPEKRNGVMG

LDSTRTMGGAEITTYDSLDVSLGQARNNLYLAGKCWAAYVALEKLFRDVGKEELAVLAGKQAEKCA

ATIVSHVTEDGYIPAVMGEGNDSKIIPAIEGLVFPYFTNCHEALKEDGRFGDYIRALRQHLQYVLREGIC

LFPDGGWKISSTSNNSWLSKIYLCQFIARRILGWEWDEQGKRADAAHVAWLTHPTLSIWSWSDQIIAGE

ISGSKYYPRGVTSILWLEEGE 

 

 

β-xylosidase [Geobacillus stearothermophilus (MW 79848.5) Gel B, band 2 TR1A subculture 6 

 

Detected Peptides 

QHLQYVLR 

IDDTCPQLR 

NVLDFYVER 

RIDDTCPQLR 

ILGWEWDEQGK 

EGICLFPDGGWK 

SGGLDLELARPPR 

ILGWEWDEQGKR 

AFFGFEGTDPYTSMR 

SNELIEKEWLSDDQK 

SYYGNTQLLEHEGKPIWVVNEGEYR 

Location of peptides in the protein sequence 

MATNLFFNAHHSPVGAFASFTLGFPGKSGGLDLELARPPRQNVFIGVESPHEPGLYHILPFAETAGEDES

KRYDIENPDPNPQKPNILIPFAKERIEREFRVATDTWKAGDLTLTIYSPVKAVPDPETASEEELKLALVPA

VIVEMTIDNTNGTRTRRAFFGFEGTDPYTSMRRIDDTCPQLRGVGQGRILGIASKDEGVRSALHFSMEDI

LTATLEENWTFGLGKVGALIADVPAGEKKTYQFAVCFYRGGCVTAGMDASYFYTRFFHNIEEVGLYA

LEQAEVLKEQAFRSNELIEKEWLSDDQKFMMAHAIRSYYGNTQLLEHEGKPIWVVNEGEYRMMNTFD

LTVDQLFFELKMNPWTVKNVLDFYVERYSYEDRVRFPGDETEYPGGISFTHDMGVANTFSRPHYSSYE

LYGISGCFSHMTHEQLVNWVLCAAVYIEQTKDWAWRDRRLTILEQCLESMVRRDHPDPEKRNGVMG

LDSTRTMGGAEITTYDSLDVSLGQARNNLYLAGKCWAAYVALEKLFRDVGKEELAALAREQAEKCA

ATIVSHVTEDGYIPAVMGEGNDSKIIPAIEGLVFPYFTNCHEALREDGRFGDYIRALRQHLQYVLREGIC

LFPDGGWKISSTSNNSWLSKIYLCQFIARRILGWEWDEQGKRADAAHVAWLTHPTLSIWSWSDQIIAGE

ISGSKYYPRGVTSILWLEEGE 

 

 

β-xylosidase OS=Paenibacillus sp. DG-22 GN=xylA 

PE=4 SV= (MW 78660.8) Gel B, band 2 TR1A subculture 6 

 

Detected Peptides 

 

YSYTDTVR 

NIEAVAEYAAER 

FVICFYR 39 - Carboxymethyl (C)[4] 

NGVMGLDSSR 

ILGLPWDEK 

QNVYIGLER 

GVTSILWLEE 

TWAAYVAMEK 

IYLCQFIAR - Carboxymethyl (C)[4] 
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TWAAYVAMEK 

RILGLPWDEK 

ISSTSDNSWLSK 

NIEAVAEYAAER 

EGVCLFPDGGWK - Carboxymethyl (C)[4] 

LDDTSSLAGVGQGR 

LGTDAWTAGDLTFK 

RLDDTSSLAGVGQGR 

SALHFSMEDILTEK 

YDIENPDPNPDKPR 

GGIVTAGLDTSYYYTR 

EALVPAVLAELIVDNTR 

RYDIENPDPNPDKPR 

 IIPAIEGLIFPYVTGCR - Carboxymethyl(C)[16] 

MMNTFDLTVDQLFFELK 

TMGGAEITTYDSLDVSLGQAR 

CADTIVSHVQEDGTIPAVIGEGNNSK - Carboxymethyl (C)[1] [2] 

TADEEELREALVPAVLAELIVDNTR 

SYYGSTQLLELDGEPFWVVNEGEYR 

Location of peptides in the protein sequence 

MGRNDFFNAHHSPIGAFASFTLGFPGPGGGFDLELGRSPKQNVYIGLEREDGSSYDTLPFYESQEEDESK

RYDIENPDPNPDKPRLLHAWPKSQVKRDFRLGTDAWTAGDLTFKIYTQVRSVPDPKTADEEELREALV

PAVLAELIVDNTRSSRKRRAFFGFRGADPYSAMRRLDDTSSLAGVGQGRSIAIATDDKRVRSALHFSME

DILTEKLTENWTFGLGTVGALIADAEPGEKAVYRFVICFYRGGIVTAGLDTSYYYTRYFRNIEAVAEYA

AERFDALKASAERANGLLENGRLSEDQKFMMAHAIRSYYGSTQLLELDGEPFWVVNEGEYRMMNTF

DLTVDQLFFELKFNPWTVRNELDMFVKRYSYTDTVRFPGDETEYPGGISFTHDMGVANVLSRPGYSAY

ERYGLDGCFSHMTHEQLVNWVLCAAAYVERTGDRAWLEANLTVLESCLESMLNRDHPDPAQRNGV

MGLDSSRTMGGAEITTYDSLDVSLGQARNNIYLTGKTWAAYVAMEKLFKETGCGELAEVAGLQAQR

CADTIVSHVQEDGTIPAVIGEGNNSKIIPAIEGLIFPYVTGCREALDADGRFGAYIRALDRHFREVLREGV

CLFPDGGWKISSTSDNSWLSKIYLCQFIARRILGLPWDEKGARADAAHVKWLTHEELSVWSWSDQIIA

GEITGSKYYPRGVTSILWLEE 

 

Glucoamylase OS=Aspergillus niger (glucan 1,4-α-glucosidase glaA- )(MW 68266.6) TR1A subculture 6 

Gel B, band 3. 

Detected Peptides 

QGSLEVTDVSLDFFK 

DLTWSYAALLTANNR 

IESDDSVEWESDPNR 

SIYTLNDGLSDSEAVAVGR 

ALYSDAATGTYSSSSSTYSSIVDAVK 

Location of peptides in the protein sequence 

MSFRSLLALSGLVCTGLANVISKRATLDSWLSNEATVARTAILNNIGADGAWVSGADSGIVVASPSTDN

PDYFYTWTRDSGLVLKTLVDLFRNGDTSLLSTIENYISAQAIVQGISNPSGDLSSGAGLGEPKFNVDETA

YTGSWGRPQRDGPALRATAMIGFRQWLLDNGYTSTATDIVWPLVRNDLSYVAQYWNQTGYDLWEE

VNGSSFFTIAVQHRALVEGSAFATAVGSSCSWCDSQAPEILCYLQSFWTGSFILANFDSSRSGKDANTLL

GSIHTFDPEAACDDSTFQPCSPRALANHKEVVDSFRSIYTLNDGLSDSEAVAVGRYPEDTYYNGNPWFL

CTLAAAEQLYDALYQWDKQGSLEVTDVSLDFFKALYSDAATGTYSSSSSTYSSIVDAVKTFADGFVSI

VETHAASNGSMSEQYDKSDGEQLSARDLTWSYAALLTANNRRNSVVPASWGETSASSVPGTCAATSA

IGTYSSVTVTSWPSIVATGGTTTTATPTGSGSVTSTSKTTATASKTSTSTSSTSCTTPTAVAVTFDLTATT

TYGENIYLVGSISQLGDWETSDGIALSADKYTSGDPLWYVTVTLPAGESFEYKFIRIESDDSVEWESDPN

REYTVPQACGTSTATVTDTWR 
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Acid α-amylase OS=Aspergillus niger PE=1 SV=1. (MW 52902.1). Gel A 

Detected Peptides 

SLSDALHAR 

TQSIYFLLTDR 

Location of peptides in the protein sequence 

MRLSTSSLFLSVSLLGKLALGLSAAEWRTQSIYFLLTDRFGRTDNSTTATCDTGDQIYCGGSWQGIINHL

DYIQGMGFTAIWISPITEQLPQDTADGEAYHGYWQQKIYDVNSNFGTADDLKSLSDALHARGMYLMV

DVVPNHMGYAGNGNDVDYSVFDPFDSSSYFHPYCLITDWDNLTMVQDCWEGDTIVSLPDLNTTETAV

RTIWYDWVADLVSNYSVDGLRIDSVLEVEPDFFPGYQEAAGVYCVGEVDNGNPALDCPYQKVLDGVL

NYPIYWQLLYAFESSSGSISNLYNMIKSVASDCSDPTLLGNFIENHDNPRFASYTSDYSQAKNVLSYIFLS

DGIPIVYAGEEQHYSGGKVPYNREATWLSGYDTSAELYTWIATTNAIRKLAISADSAYITYANDAFYTD

SNTIAMRKGTSGSQVITVLSNKGSSGSSYTLTLSGSGYTSGTKLIEAYTCTSVTVDSSGDIPVPMASGLPR

VLLPASVVDSSSLCGGSGRLYVE 

 

 

Xylulokinase OS=Thermobacillus composti KWC4 

GN=ThecoDRAFT_0903 PE=3 SV=1, also by Paenibacillus curdlanolyticus YK9 

GN=PaecuDRAFT_1616 PE=3 SV=1 (MW 53694) 

Xylulokinase OS=Paenibacillus curdlanolyticus YK9 

GN=PaecuDRAFT_1616 PE=3 SV=1 (MW 53703.2) 

 

Xylulose kinase OS=Bacillus subtilis GN=xylB PE=3 

SV=2 (MW 55382.2). Gel A 

 

Detected Peptide 

VHFFNHGK 

Location of peptide in the protein sequence 

MSCVIGIDLGTSAVKALLVDRDGKVRAEASRNYPLFHEHTGWSEQRPEDWVEGTIGALRELISTSGVRP

DEVEGISFSGQMHGLVLLDEANRPVRNAILWNDTRTTAECREIERVLGPDLLGIARNPALEGFTLPKIL

WVKRHEPDVFAKAKRFLLPKDYVRYRLTGEIHMDYSDAAGTLLLDVAGKKWSTEILAAFDLPASFCPP

LVESHDHVGGVLPEVADQTGLAAGTKVFAGGADNACGAIGAGILSEGLTMCSIGTSGVILTYEQNRDT

DYAGKVHFFNHGKADNFYAMGVTLAAGYSLSWFKQTFAPNESFADFLRGVGDIKPGSGGLLFTPYLV

GERTPHADAVIRASFIGADGSHTRDHFARAVMEGITFSLNESMAIFREAGKPAGRVISIGGGAQNPVWL

QMQADIFGATVVALENEQGPGLGAAMLAAYGCGWFDSLDACAAKFVKHAASYDPNPEAVETYRGLF

DIYREIYTQTRGLNQALAAYRG 

 

 

Xylose isomerase OS=Thermobispora bispora (strain 

ATCC 19993 / DSM 43833 / CBS 139.67 / JCM 10125 / (MW 42842.5). Gel A 

 

Detected Peptides 

DPFGDATR 

APLDPVETVHR 

FAIEPKPNEPR 

ADPEVQEALAAAR 

Location of peptides in the protein sequence 

MYTPTPEDRFSFGLWTVGWQARDPFGDATRAPLDPVETVHRLAELGAYGVTFHDDDLLAVEPDRTKA

IERFKKALSETGLKVPMATTNLFTHPIFKDGAFTSNDRDVRRYALRKVMRNLDLAAELGAKTYVCWG
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GREGAESDAAKDVRAALDRYKEALDILCQYVIDKGYDIRFAIEPKPNEPRGDILLPTIGHALAFINELEH

PERVGLNPEVGHEQMAGLNFVHGIAQALWHGKLFHIDLNGQHGPRYDQDLIFGHGDLISAFFLVDLLE

HGGYDGPRHFDYKPMRTEDKEDVWESAAANMRMYLILKEKSKAFRADPEVQEALAAARVPDLSQPT

LAEGETIDDLLNEEFDPDAAAERGYHYTRLNQLAMEHLLGVRG 

 

 

superoxide dismutase [Meiothermus silvanus DSM 

9946] (MW 22966.6). Gel A 

 

Detected Peptides 

INEVPEDIR 

FGSGWAWLVK 

RINEVPEDIR 

Location of peptides in the protein sequence 

MAYPFKVPERPYAADALEPHIDTKTMEVHYQGHHVAYVNNLNAALEKHPELHSWELEDLLRRINEVP

EDIRTAVRNNGGGHHNHTLFWDILTPGGAKEPTGKLAEAINATFGSFDEFKKQLTQAGVTRFGSGWA

WLVKDKAGKLKIYSTANQDSPLMEGDTPLLGIDVWEHAYYLKYQNRRPEYLAAIWNVINWDKVAER

F 

 

 

β-xylosidase [Paenibacillus sp. DG-22 (MW 78660.8). Gel A 

 

Detected Peptides 

YSYTDTVR 

NIEAVAEYAAER 

YDIENPDPNPDKPR 

RYDIENPDPNPDKPR 

Location of peptides in the protein sequence 

MGRNDFFNAHHSPIGAFASFTLGFPGPGGGFDLELGRSPKQNVYIGLEREDGSSYDTLPFYESQEEDESK

RYDIENPDPNPDKPRLLHAWPKSQVKRDFRLGTDAWTAGDLTFKIYTQVRSVPDPKTADEEELREALV

PAVLAELIVDNTRSSRKRRAFFGFRGADPYSAMRRLDDTSSLAGVGQGRSIAIATDDKRVRSALHFSME

DILTEKLTENWTFGLGTVGALIADAEPGEKAVYRFVICFYRGGIVTAGLDTSYYYTRYFRNIEAVAEYA

AERFDALKASAERANGLLENGRLSEDQKFMMAHAIRSYYGSTQLLELDGEPFWVVNEGEYRMMNTF

DLTVDQLFFELKFNPWTVRNELDMFVKRYSYTDTVRFPGDETEYPGGISFTHDMGVANVLSRPGYSAY

ERYGLDGCFSHMTHEQLVNWVLCAAAYVERTGDRAWLEANLTVLESCLESMLNRDHPDPAQRNGV

MGLDSSRTMGGAEITTYDSLDVSLGQARNNIYLTGKTWAAYVAMEKLFKETGCGELAEVAGLQAQR

CADTIVSHVQEDGTIPAVIGEGNNSKIIPAIEGLIFPYVTGCREALDADGRFGAYIRALDRHFREVLREGV

CLFPDGGWKISSTSDNSWLSKIYLCQFIARRILGLPWDEKGARADAAHVKWLTHEELSVWSWSDQIIA

GEITGSKYYPRGVTSILWLEE 

 

 

superoxide dismutase [Paenibacillus sp. oral taxon 786 

str. D14 (MW 22486.3). Gel A 

 

Detected Peptide 

SVEELISNLDAVPESIR 
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Location of peptide in the protein sequence 

MAHELPALPYPANALEPYIDEQTMIIHHDRHHNTYLTNLNAALESAPELQSKSVEELISNLDAVPESIRT

AVRNNGGGHANHSLFWKVIGPGGGGAPTGAVAAAIDSDLGGFDKFKEEFTKAATTRFGSGWAWLVV

GKDGKLAVTSTPNQDSPLFEGLTPILGLDVWEHAYYLKYQNKRPDYIAAFWNIINWDEVNRRYEAAK

K 

 

 

Superoxide dismutase [Mn] Geobacillus kaustophilus HTA426] (MW 22944.4) or by [Geobacillus 

thermoleovorans] (MW 22915.4). Gel A 

 

Detected Peptide 

FGSFTAFKDEFSK 

Location of peptide in the protein sequence 

MPFELPALPYPYDALEPHIDKETMNIHHTKHHNTYVTNLNAALEGHPDLQNKSLEELLSNLEALPESIR

TAVRNNGGGHANHSLFWTILSPNGGGEPTGELAEAINKKFGSFTAFKDEFSKAAAGRFGSGWAWLVV

NNGELEITSTPNQDSPIMEGKTPILGLDVWEHAYYLKYQNRRPEYIAAFWNIVNWDEVAKRYSEAKAK 

 

 

xylose isomerase [Bacillus subtilis] (MW 50220.8). Gel B 

 

Detected Peptide 

ELGAENYVFWGGR 

Location of peptide in the protein sequence 

MAQSHSSSINYFGSANKVVYEGKDSTNPLAFKYYNPQEVIGGKTLKEHLRFSIAYWHTFTADGTDVFG

AATMQRPWDHYKGMDLAKMRVEAAFEMFEKLDAPFFAFHDRDIAPEGSTLKETNQNLDMIMGMIKD

YMRNSGVKLLWNTANMFTNPRFVHGAATSCNADVFAYAAAQVKKGLETAKELGAENYVFWGGREG

YETLLNTDLKFELDNLARFMHMAVDYAKEIGYTGQFLIEPKPKEPTTHQYDTDAATTIAFLKQYGLDN

HFKLNLEANHATLAGHTFEHELRMARVHGLLGSVDANQGHPLLGWDTDEFPTDLYSTTLAMYEILQN

GGLGSGGLNFDAKVRRSSFEPDDLIYAHIAGMDAFARGLKVAHKLIEDRVFEDVIQHRYRSFTEGIGLEI

IEGRANFHTLEQYALNHKSIKNESGRQEKLKAILNQYILEV 

 

 

xylose isomerase [Geobacillus sp. Y412MC52] (50474.2). Gel A 

 

Detected Peptides 

VFEQFIEER 

AYFPNIGTIPYEGPESR 

Location of peptides in the protein sequence 

MAYFPNIGTIPYEGPESRNPLAFKFYNPEEKVGDKTMEEHLRFSVAYWHTFTGDGSDPFGVGNMIRPW

DKYSGMDLAKARVEAAFELFEKLNVPFFCFHDVDIAPEGETLSETYKNLDEIVDMIEEYMKTSKTKLL

WNTANLFSHPRFVHGAATSCNADVFAYAAAKVKKGLEIAKRLGAENYVFWGGREGYETLLNTDMKL

ELDNLARFLHMAVDYAKEIGFDGQFLIEPKPKEPTKHQYDFDVATALAFLQTYGLKDHFKFNIEANHA

TLAGHTFEHELRVARIHGMLGSVDANQGDTLLGWDTDEFPTDLYATTLAMYEILQNGGLGRGGLNFD

AKVRRGSFEPEDLFYAHIAGMDSFAIGLKVAHRLLEDRVFEQFIEERYKSYTEGIGREIVEGTADFKKLE

EYALQLGEIRNASGRLERLKTLLNQYLLEVSVPSVSRS 
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Xylan 1,4-β-xylosidase Geobacillus sp. (strainC56-T3). Gel A 

 

Detected Peptides 

VGALIVDVPAGEK 

ILGWEWDEQGK 

AGDLTFTIYSPVK 

Location of peptides in the protein sequence 

MPTNVFFNAHHSPVGAFASFTLGFPGKSGGLDLELARPPRQNVFIGVESPHEPGLYHILPFAETAGEDES

KRYDIENPDPNPQKPNILIPFAKEEIKREFCVATDTWKAGDLTFTIYSPVKAVPDPETAAEEELKLALVP

AVIVEMTIDNTNGTRTRRAFFGFEGTDPYTSMRRIDDTCPQLRGVGQGRILGIVSKDEGVRSALHFSME

DILTATLEENWTFGLGKVGALIVDVPAGEKKTYQFAVCFYRGGYVTAGMDASYFYTRFFHNIEEVGLY

ALEQAEVLKEQAFRSNELIEKEWLSDDQKFMMAHAIRSYYGNTQLLEHEGKPIWVVNEGEYRMMNTF

DLTVDQLFFELKMNPWTVKNVLDFYVERYSYEDRVRFPGDETEYPGGISFTHDMGVANTFSRPHYSSY

ELYGISGCFSHMTHEQLVNWVLCAAVYIEQTKDWAWRDRRLTILEQCLESMVRRDHPDPEKRNGVM

GLDSTRTMGGAEITTYDSLDVSLGQARNNLYLAGKCWAAYVALEKLFRDVGKEELAALAREQAEKC

AATIVSHVTEDGYIPAVMGEGNDSKIIPAIEGLVFPYFTNCHEALREDGRFGDYIRALRQHLQYVLREGI

CLFPDGGWKISSTSNNSWLSKIYLCQFIARRILGWEWDEQGKRADAAHVAWLTHPTLSIWSWSDQIIA

GEISGSKYYPRGVTSILWLEEGE 
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TR1A subculture 7 (Fig. 5.16, Table 5.1). 
 

RecName: Full=Endo-β-N-acetylglucosaminidase H; 

AltName: Full=Mannosyl-glycoprotein endo-β-N from Streptomyces plicatus (Band 1 of TR1A subculture 

7) (MW 33031.6). Gel B 

 

Detected Peptides 

ELYGSEAVRTP 

ANMPDKIISLYNIGPAASR 

AQLSPAAVEIGRTSR 

Location of peptides in the protein sequence 

MFTPVRRRVRTAALALSAAAALVLGSTAASGASATPSPAPAPAPAPVKQGPTSVAYVEVNNNSMLNV

GKYTLADGGGNAFDVAVIFAANINYDTGTKTAYLHFNENVQRVLDNAVTQIRPLQQQGIKVLLSVLG

NHQGAGFANFPSQQAASAFAKQLSDAVAKYGLDGVDFDDEYAEYGNNGTAQPNDSSFVHLVTALRA

NMPDKIISLYNIGPAASRLSYGGVDVSDKFDYAWNPYYGTWQVPGIALPKAQLSPAAVEIGRTSRSTVA

DLARRTVDEGYGVYLTYNLDGGDRTADVSAFTRELYGSEAVRTP 

 

 

Xylanase/ β-xylosidase/ 1,4-β-D-xylan xylohydrolase/ Xylan 1, (β-xylosidase gene) [Geobacillus 

stearothermophilus. Gel B band 1 of TR1A subculture 7 (MW 70551.9) 

 

Detected Peptides 

YSYEDR 

VGALIVDVPAGEK 

AGDLTFTIYSPVK 

Location of peptides in the protein sequence 

MPTNLFFNAHHSPVGAFASFTLGFPGKSGGLDLELARPPRQNVLIGVESLHESGLYHVLPFLETAEEDES

KRYDIENPDPNPQKPNILIPFAKEEIQREFHVATDTWKAGDLTFTIYSPVKAVPNPETADEEELKLALVP

AVIVEMTIDNTNGTRARRAFFGFEGTDPYTSMRRIDDTCPQLRGVGQGRILSIVSKDEGVRSALHFSME

DILTAQLEENWTFGLGKVGALIVDVPAGEKKTYQFAVCFYRGGYVTAGMDASYFYTRFFQNIEEVGL

YALEQAEVLKEQSFRSNKLIEKEWLSDDQTFMMAHAIRSYYGNTQLLEHEGKPIWVVNEGEYRMMNT

FDLTVDQLFFELKLNPWTVKNVLDLYVERYSYEDRVRFPGEETEYPSGISFTHDMGVANTFSRPHYSSY

ELYGISGCFSHMTHEQLVNWVLCAAVYIEQTKDWAWRDKRLAILEQCLESMVRRDHPDPEQRNGVM

GLDSTRTMGGAEITTYDSLDVSLGQARNNLYLAGKCWAAYVALEKLFRDVGKEELAALAGEQAEKC

AATIVSHVTDDGYIPAIMGEGNDSKIIPAIEGLVFPYFTNCHEALDENGRFGAYIQALRNHLQYVLREGI

CLFPDGGWKISSTSNNSWLSKIYLCQFIARHILGWEWDEQGKRADAAHVAWLTHPTLSIWSWSDQIIA

GEITGSKYYPRGVTSILWLEEGE 

 

 

β-xylosidase [Geobacillus stearothermophilus (MW 79848.5). Gel B band 1 TR1A subculture 7 

 

Detected Peptides 

QHLQYVLR 

IDDTCPQLR 

NVLDFYVER 

IYLCQFIAR 

ILGWEWDEQGK 

EGICLFPDGGWK 

SGGLDLELARPPR 

ILGWEWDEQGKR 

AFFGFEGTDPYTSMR 
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SNELIEKEWLSDDQK 

Location of peptides in the protein sequence 

MATNLFFNAHHSPVGAFASFTLGFPGKSGGLDLELARPPRQNVFIGVESPHEPGLYHILPFAETAGEDES

KRYDIENPDPNPQKPNILIPFAKERIEREFRVATDTWKAGDLTLTIYSPVKAVPDPETASEEELKLALVPA

VIVEMTIDNTNGTRTRRAFFGFEGTDPYTSMRRIDDTCPQLRGVGQGRILGIASKDEGVRSALHFSMEDI

LTATLEENWTFGLGKVGALIADVPAGEKKTYQFAVCFYRGGCVTAGMDASYFYTRFFHNIEEVGLYA

LEQAEVLKEQAFRSNELIEKEWLSDDQKFMMAHAIRSYYGNTQLLEHEGKPIWVVNEGEYRMMNTFD

LTVDQLFFELKMNPWTVKNVLDFYVERYSYEDRVRFPGDETEYPGGISFTHDMGVANTFSRPHYSSYE

LYGISGCFSHMTHEQLVNWVLCAAVYIEQTKDWAWRDRRLTILEQCLESMVRRDHPDPEKRNGVMG

LDSTRTMGGAEITTYDSLDVSLGQARNNLYLAGKCWAAYVALEKLFRDVGKEELAALAREQAEKCA

ATIVSHVTEDGYIPAVMGEGNDSKIIPAIEGLVFPYFTNCHEALREDGRFGDYIRALRQHLQYVLREGIC

LFPDGGWKISSTSNNSWLSKIYLCQFIARRILGWEWDEQGKRADAAHVAWLTHPTLSIWSWSDQIIAGE

ISGSKYYPRGVTSILWLEEGE 

 

 

Xylan 1,4-β-xylosidase [Geobacillus sp. Y412MC52] (MW 79815.5). Gel B band 1 of TR1A subculture 7. 

 

Detected Peptides 

QHLQYVLR 

IDDTCPQLR 

NVLDFYVER 

IYLCQFIAR 

VGALIVDVPAGEK 

ILGWEWDEQGK 

EGICLFPDGGWK 

SGGLDLELARPPR 

ILGWEWDEQGKR 

AFFGFEGTDPYTSMR 

 

Location of peptides in the protein sequence 

 

MPTNVFFNAHHSPVGAFASFTLGFPGKSGGLDLELARPPRQNVFIGVESPHEPGLYHILPFAETAGEDES

KRYDIENPDPNPQKPNILIPFAKERIEREFRVATDTWKAGDLTLTIYSPVKAVPDPETASEEELKLALVPA

VIVEMTIDNTNGTRTRRAFFGFEGTDPYTSMRRIDDTCPQLRGVGQGRILSIVSKDEGVRSALHFSMEDI

LTATLEENWTFGLGKVGALIVDVPAGEKKTYQFAVCFYRGGYVTAGMDASYFYTRFFHNIEEVGLYA

LEQAEVLKEQAFCSNELIEKEWLSDDQKFMMAHAIRSYYGNTQLLEHEGKPIWVVNEGEYRMMNTFD

LTVDQLFFELKMNPWTVKNVLDFYVERYSYEDRVRFPGDGTEYPGGISFTHDMGVANTFSRPHYSSYE

LYGISGCFSHMTHEQLVNWVLCAAVYIEQTKDWAWRDRRFTILEQCLESMVRRDHPDPEKRNGVMG

LDSTRTMGGAEITTYDSLDVSLGQARNNLYLAGKCWAAYVALEKLFRDVGKEELAVLAGKQAEKCA

ATIVSHVTEDGYIPAVMGEGNDSKIIPAIEGLVFPYFTNCHEALKEDGRFGDYIRALRQHLQYVLREGIC

LFPDGGWKISSTSNNSWLSKIYLCQFIARRILGWEWDEQGKRADAAHVAWLTHPTLSIWSWSDQIIAGE

ISGSKYYPRGVTSILWLEEGE 

 

 

Enolase or 2-phosphoglycerate dehydrogenase or 2-phospho-D-glycerate hydro-lyase [Meiothermus 

silvanus DSM 9946]. Gel A 

Detected Peptides 

IQLVGDDLFVTNPAR 

GYNTNVGDEGGFAPDLK 

Location of peptides in the protein sequence 

MTTIVELKAREVLDSRGNPTVEAEVTLEGGARGSAMVPSGASTGAHEALELRDGGPRYAGKGVLRAV

AAVNERIAPELIGYDALDQAGVDRAMLQLDGTPNKANLGANAILAVSLATARAAANALGLPLYRYLG
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GVQGLTLPVPLMNVINGGKHADNNVDFQEFMLVPAGATSFREALRMGVETFHALKGVLKGRGYNTN

VGDEGGFAPDLKSNVEAVEVLLQAIEKAGYKPGQEISLALDPASTEFYKDGKYRLEAENKTLSSEEMV

AYWESWVGQYPIVSIEDGLAEDDWEAWKMLTERVGHKIQLVGDDLFVTNPARLAEGIEKGVGNAILV

KVNQIGTLSETLEAIALAQRSGYNAVISHRSGETEDTFIADLAVAVNAGQIKTGSASRSDRLAKYNQLL

RIEDELGVGARFLGYGVY 

 

 

4-α-glucanotransferase from Thermoproteus 

neutrophilus V24Sta (MW 54947.8). Gel A 

 

Detected Peptide 

AAEDALPR 

Location of peptide in the protein sequence 

MLRGFGVLLHISSLPGGCLVGDLGPSAYRFADFLSEAEATYWQILPLSHTLPEYDDSPYSAASLLAGNP

ALVSLEKMAQLGLAKRAPPSCPPAERARFAEAWELKRRYLEEAFEGRLGWRDYEEFAARNSWWLEPY

GRYMALREAFGGPWTAWPAWARRPNADLPPRLERRADFYRYVQFHFWLQWEELKRYVNSLGVFIIG

DLPIYPALDSADVWEGQRYFKLAPDGAPLYVSGVPPDYYSPTGQLWGTPVYNWAELRRDRYVWWTR

RLTRLLSIFDYIRLDHFRGYAAYWEVPYGEPTAVRGRWAPGPGEELFRAAEDALPRLIAEDLGFITPDV

VELRYRLGIPGMRVLQFAWDGNPANEHKPHNYERNLVAYTGTHDNNTTLGWWREETTPRSRREALA

YMGGCRGGVSWCFIRLLFSTVADVAVVPMQDALGLGSEARMNKPGTARGNWKWRMAGDPPRAVA

ARLRRLARIYGR 

 

 

1-pyrroline-5-carboxylate dehydrogenase [Geobacillus 

thermodenitrificans NG80-2] (MW 56574). Gel A 

 

Detected Peptides 

AIIVEDVYDQVLNR 

EADADTAEAIDFMEYYGR 

Location of peptides in the protein sequence 

MVQPYKHEPFTDFTVDANRQAFLAALEKVEAELGREYPLIIGGERVMTEDKITSVNPANKAEVIGRVA

KANKELAERAMKTADEAFRTWSRTSPEARADILFRAAAIVRRRKHEFSAWLVKEAGKPWREADADTA

EAIDFMEYYGRQMLKLKDGIPVESRPGETNRFFYIPLGVGVVISPWNFPFAIMAGTTVAALVTGNTVLL

KPASATPVVAYKFAEVLEEAGLPAGVLNYIPGSGAEVGDYLVEHPRTRFISFTGSRDVGIRIYERAAKV

QPGQIWLKRVIAEMGGKDAIVVDKEADLELAAQSIVASAFGFSGQKCSACSRAIIVEDVYDQVLNRVV

ELTKQLNVGDPAEQATFMGPVIDQGAYNKIMEYIEIGKQEGRLMTGGEGDDSKGFFIQPTVFADVDPN

ARIMQEEIFGPVVAFAKARDFDHALEIANNTQYGLTGAVISRNRANLEKARHEFHVGNLYFNRGCTGA

IVGYQPFGGFNMSGTDSKAGGPDYLILHMQAKTVSEMF 

 

 

xylose isomerase [Geobacillus thermodenitrificans 

NG80-2] (MW 50618.2) or Bacillus sp. NRRL B-14911 (MW 49648.5). Gel A 

 

Detected Peptides 

FYNPEEK 

FFHMAVDYAK 

Location of peptides in the protein sequence 

MAYFPNIGKIAYEGPESRNPFAFKFYNPEEKVGGKTMEEHLRFSVAYWHTFTGDGSDPFGVGNMIRPW

DKYSGMDLAKARVEAAFELFEKLNVPFFCFHDVDIAPEGETLSETYKNLDEIVDMIEEYMKTSKTKLL

WNTANLFSHPRFVHGAATSCNADVFAYAAAKVKKGLEIAKRLGAENYVFWGGREGYETLLNTDMKL
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ELDNLARFFHMAVDYAKEIGFDGQFLIEPKPKEPTKHQYDFDVATALAFLQTYGLKDYFKFNIEANHA

TLAGHTFEHELRVARIHGMLGSVDANQGDMLLGWDTDEFPTDLYATTLAMYEILQNGGLGRGGLNFD

AKVRRGSFEPEDLFYAHIAGMDSFAIGLKVAHRLLEDRVFEQFIEERYKSYTEGIGREIVEGTADFHKLE

QYALQLGEIRNTSGRLERLKTLLNQYLLEVSVPSKARL 

 

 

Enolase (2-phosphoglycerate dehydratase) [Bacillus 

halodurans C-125]/ Geobacillus sp. Y4.1MC1 (MW 46318.4). Gel A 

 

Detected Peptides 

ALVPSGASTGEYEAVELR 

SGETEDSTIADIAVATNAGQIK 

Location of peptides in the protein sequence 

MTIITDVYAREVLDSRGNPTVEVEVYLESGAMGRALVPSGASTGEYEAVELRDGGERFLGKGVLKAVE

NVNEVIAPELIGFDALDQIGIDQHMIELDGTENKGKLGANAILGVSMAVARAAANALDLPLYVYLGGF

NAKQLPVPMMNIINGGEHADNNVDIQEFMIMPVGAESFKEALRTGTEIFHSLKKVLKSKGYNTAVGDE

GGFAPNLSSNEEALQTIIEAIEQAGYTPGEQVKLAMDVASSELYNKEDGKYHLSGEGKVLSSEEMVAF

YEELVAKYPIISIEDGLDENDWEGHKMLTDRLGDKVQLVGDDLFVTNTKKLAQGIEQGVGNSILIKVN

QIGTLTETFDAIEMAKRAGYTAVISHRSGETEDSTIADIAVATNAGQIKTGAPSRTDRVAKYNQLLRIED

ELGNLAQYNGLQSFYNLKK 

 

 

∆-1-pyrroline-5-carboxylate dehydrogenase 

from Geobacillus sp. Y412MC52 (MW 56631.9). Gel A 

 

Detected Peptides 

DYPLVIGGER 

HEPLTDFTVEANR 

GFFIQPTVFADVDPNAR 

EADADTAEAIDFMEYYGR 

Location of peptides in the protein sequence 

MVQPYRHEPLTDFTVEANREAFLAALKKVESELGRDYPLVIGGERVMTEDKIISINPANKTEVVGRVAK

ANKELAERAMKTADEAFRTWSRMSPEARADILFRAAAIVRRRKHEFSAWLVKEAGKPWREADADTA

EAIDFMEYYGRQMLKLKDGIPVESRPGETNRFFYIPLGVGVVISPWNFPFAIMAGTTVASLVTGNTVLL

KPASATPVVAYKFVEVLEEAGLPAGVLNYIPGSGAEVGDYLVDHPRTRFISFTGSRDVGIRIYERAAKV

HPGQIWLKRVIAEMGGKDAIVVDKEADLELAAQSIVASAFGFSGQKCSACSRAIVVQDVYDQVLNRV

VELTKQLNVGDPAEQATFMGPVIDQGAYNKIMEYIEIGKQEGRLMTGGEGDDSKGFFIQPTVFADVDP

NARIMQEEIFGPVVAFAKARDFDHALEIANNTEYGLTGAVISRNRANLEKARHEFHVGNLYFNRGCTG

AIVGYQPFGGFNMSGTDSKAGGPDYLILHMQAKTVSEMF 

 

 

xylan 1,4-β-xylosidase (β xylosidase) 

from Geobacillus thermodenitrificans (MW 61879.8). Gel A 

 

Detected Peptides 

YNHAATIAR 

ITEGPHLYK 

IPLGEDIATLK 

FWLIYTDVK 

IDGYYYLLTAEGGTR 

EIVVPDDVEYVYLR 
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Location of peptides in the protein sequence 

MVKIKNPILTGFHPDPSICRAGDDYYIAVSTFEWFPGVRIYHSKDLKNWRLVARPLNRLSQLNMIGNPD

SGGIWAPHLSYSDGKFWLIYTDVKVVEGQWKDGHNYLVTCDTIDGEWSDPIYLNSSGFDPSLFHDEDG

RKYLVNMYWDHRVGHHPFYGIVLQEYSVEQKKLIGEPKIIFKGTDLRITEGPHLYKIDGYYYLLTAEGG

TRYNHAATIARSASLYGPYEVHPENPLITSWPYPRNPLQKAGHASIVHTHTDEWFLVHLTGRPLPREGQ

PLLDHRGYCPLGRETAIQRLEWKDGWPYVVGGNGPSLEIDGPNVEEVPWERDYDEKDDFDGDTLNHH

FQTLRIPLGEDIATLKARPGHLRLYGRESLTSRFTQAFVARRWQHFHFIAETKVAFRPTTIQQSAGLVNY

YNTQNWTTLQLTWHEEKGRILELMACDHLVVEQPLRGREIVVPDDVEYVYLRVNVQMTTYKYSYSF

DGVDWKEIPVTFESYKLSDDYIKSNAAFTGAFVGMHCRDGSGQNNYADFDYFLYKEL 

 

 

Xylan 1,4-β-xylosidase [Bacillus cellulosilyticus DSM 

2522] (MW 61516.2). Gel A 

 

Detected Peptides 

FWLIYTDVK 

WQHFNFTAETK 

IQNPILTGFNPDPSICR 

Location of peptides in the protein sequence 

MAKIQNPILTGFNPDPSICRAGEDYYIAVSTFEWFPGVGIYHSKDLKNWRLVSRPLNRLSQLNMMGNPD

SGGIWAPALSYSDGKFWLIYTDVKVTEGQWKDSHNYLVTCDTIDGEWSEPIYMNSSGFDPSLFHNDDG

KKYFVNMVWDHRVSHHNFYGIVLQEYSVEEKKLIGKKEVIFTGTDIKLTEAPHLYKVNGYYYLLTAEG

GTKYDHQATIARSKDLWGPYEVHPENPLITSFPYPRNPLQKAGHASIVETHTNEWFLVHLTGRPLPKEG

HALLDPRGYCPLGRETAIQRLEWKDDWPYVVGGNQPAAEIEGPAIDEVTWEKDVPEKDDFDGENLNL

HFQTLRIPLGEEIVSLKDKPGHLRIHGRESLTSKFTQAYVARRWQHFNFTAETKVAFQPETFQQAAGLV

NYYNTQNWTALQVTWHEEKGRILDLTTCDNFTFDQPLKGKEIVVPDHTEYVYMRVDVTTNTYRYSYS

FDGNEWVEIDIDFYSYKLSDDYIQGGGFFTGAFVGMQCQDTSGASLPADFDYFVYKEK 

 

 

xylose isomerase [Geobacillus kaustophilus HTA426 (MW 50350.1). Gel A 

 

Detected Peptides 

VEAAFELFEK 

FLHMAVDYAK 

VFEQFIEER 

EGYETLLNTDMK 

LGAENYVFWGGR 

KLEEYALQLGDIR 

EIGFDGQFLIEPKPK 

AYFPNIGTIPYEGPESR 

FVHGAATSCNADVFAYAAAK 

FNIEANHATLAGHTFEHELR 

Location of peptides in the protein sequence 

MAYFPNIGTIPYEGPESRNPLAFKFYNPDEKVGGKTMEEHLRFSVAYWHTFTGDGSDPFGVGNMIRPW

NTYSGMDLAKARVEAAFELFEKLNVPFFCFHDVDIAPEGETLSETYKNLDEIVDMIEEYMKTSKTKLL

WNTANLFSHPRFVHGAATSCNADVFAYAAAKVKKGLEIAKRLGAENYVFWGGREGYETLLNTDMKL

ELDNLARFLHMAVDYAKEIGFDGQFLIEPKPKEPTKHQYDFDVATALAFLQTYGLKDHFKFNIEANHA

TLAGHTFEHELRVARIHGMLGSVDANQGDTLLGWDTDEFPTDLYTTTLAMYEILQNGGLGRGGLNFD

AKVRRGSFEPEDLFYAHIAGMDSFAIGLKVAHRLLEDRVFEQFIEERYKSYTEGIGREIVEGTADFKKLE

EYALQLGDIRNTSGRLERLKTLLNQYLLEVSAPSGSRS 
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Enolase [Paenibacillus sp. JDR-2] (MW 45818.5). Gel A  

 

Detected Peptide 

SGESEDSTIADIAVATNAGQIK 

Location of peptide in the protein sequence 

MSIIVDVYAREVLDSRGNPTVEVEVSLESGGKGRAIVPSGASTGAYEAVELRDGDKGRYLGKGVEKAV

ENVNAIIAPEIIGLDALDQVAIDRKMIELDGTPNKAKLGANAILAVSMAVARAAADALNVSLYTYLGGF

NAKTLPVPMMNIINGGEHADNNIDVQEFMVLPVGAPTFKEALRIGAEIFHNLKSVLKDKGLNTAVGDE

GGFAPNLGSNEEAITTIIAAIELAGYKPGVDVFLGMDVASTEFYKDGKYHLEGEGKSFTSAEFVDLLAS

WVEKYPIITIEDGCSEDDWEGWKLLTDKLGGKVQLVGDDLFVTNTERLSDGIEKGVGNSILVKVNQIG

SLTETFDAIEMAKRAGYTAVISHRSGESEDSTIADIAVATNAGQIKTGAPSRTDRVAKYNQLLRIEDQLG

SVAQYAGKSAFYNLKNFK 

 

 

Enolase [Staphylococcus xylosus] (MW 47086.9). Gel A 

 

Detected Peptide 

VQLVGDDLFVTNTVK 

Location of peptide in the protein sequence 

MPIITDVYAREVLDSRGNPTVEVEVLTESGAFGRALVPSGASTGEHEAVELRDGDKSRYLGKGVTKAV

DNVNEIIAPELIEGEFSVLEQVSIDKMMIQLDGTENKGKLGANAILGVSIAVARAAADLLGQPLYKYLG

GFNGKQLPVPMMNIVNGGSHSDAPIAFQEFMVLPVGAETFKESLRWGAEIFHNLKSILKNRGLETAVG

DEGGFAPKFEGTEDAVETILEAIKAVGLEPGKDVFLGFDCASSEFFEDGVYNYAKFEGENGAKRNAEE

QVDYLEELVNKYPIITIEDGMDENDWDGWKVLTDRIGDKVQLVGDDLFVTNTVKLSEGIEKGIGNSILI

KVNQIGTLTETFDAIEMAQKAGYTAVVSHRSGETEDTTISDIAVATNAGQIKTGSLSRTDRIAKYNQLL

RIEDELYETGKFDGLKSFYNLSK 

 

 

Aldehyde dehydrogenase [Rhodomicrobium vannielii (strain ATCC 17100)]MW 55278.1. Gel A 

 

Detected Peptides 

 

YFASCIR 

NLLVSYSPK 

ETLAADIPLAIDHFR 

IFQEEIFGPVVALTTFK 

Location of peptides in the protein sequence 

MIYAAPGTPGAIVTFKERYDNFIGGEWRSPLGGQYFESVTPITGKPFAQVARSQAEDIELALDAAHAAA

ERWGHTSVAERSLILNRIADRMEQNLEKLAYAESVDNGKPIRETLAADIPLAIDHFRYFASCIRAQEGTL

GQVDEDTVAYHFQEPLGVVGQIIPWNFPILMAAWKLAPALAAGNCVVLKPAEQTPIGILVWAEIIGDLL

PKGVLNIVNGFGLEAGKPLASSPRIAKIAFTGETSTGRLIMQYASQNLIPVTLELGGKSPNIFFDDVAAAD

DEFFDKAIEGFVMFALNQGEVCTCPSRALVQESLRDRFVDRALARVASIKQGNPLDTDTMIGAQASQE

QLHKILSYVNIGLEEGAKCLIGGERAYLGGELDTGFYVRPTVFEGNNSMRIFQEEIFGPVVALTTFKDEA

DALHLANDTVYGLGAGVWTRDGNRAYRFGRGIKAGRVWTNCYHLYPAHAAFGGYKQSGIGRETHH

MMLDHYQQTKNLLVSYSPKALGFF 
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Aldehyde Dehydrogenase  [Micromonospora aurantiaca] (strain ATCC 27029) (MW 54546.3). Gel A. 

 

Detected Peptides 

 

NLLVSYSPK 

VAFTGETTTGR 

ETLAADLPLAIDHFR 

Location of peptides in the protein sequence 

MTRYDAPTHWQSRYDHYIGGEYVKPHGGKYFENPTPVTGQTFCEVARGTAEDVEKALDAAHGAADA

WGRTSVAERSLILNRIADRMQDNLESLAIAETWENGKPVRETLAADLPLAIDHFRYFAGAIRAQEGSLG

ELDDDTVAYHFHEPLGVVGQIIPWNFPILMAVWKLAPALAAGNAVVLKPAEQTPASIHYLLSLIGDLLP

PGVVNVVNGFGVEAGKPLASSPRVAKVAFTGETTTGRLIMQYASENIRPVTLELGGKSPNIFFDDVSAA

SDDFLDKALEGFTMFALNQGEVCTCPSRALIQQGHYADFLAAAVDRTRQITQGHPLDTDTMVGAQAS

NDQLEKILSYLDIGRQEGARVLTGGERADLGGELSGGYYVQPTIFEGDNSMRIFQEEIFGPVVSVTSFAD

LDDAVKIANDTLYGLGAGVWTRDLNTAYRAGRAIQAGRVWTNCYHAYPAHAAFGGYKQSGIGRENH

KMMLEHYQQTKNLLVSYSPKKLGFF 

 

 

Aldehyde dehydrogenase [Streptomyces clavuligerus (strain ATCC 27064)] (MW 55304.8). Gel A. 

 

Detected peptides 

 

NLLVSYSPK 

MMLDHYQQTK 

ETLAADLPLAIDHFR 

Location of peptides in the protein sequence 

MTRFAAPGSEGAIVSYRSRYDHWIGGEYVAPARGEYFENPSPVNGLPFTEIARGTAEDVERALDAAHA

AAPAWGRTAPGERAGVLLRIADRMEAHLTELAVAESWENGKPVRETLAADLPLAIDHFRYFAGSLRA

QEGTLSELDDDTVAYHFHEPLGVVAQIIPWNFPILMASWKLAPALAAGNAVVLKPAEQTPASIHVWLD

LVADLLPDGVLNIVNGFGVEAGKPLASSPRVAKIAFTGETTTGRLIMQYASENIKPVTLELGGKSPNIFF

DDIWAADDELRDKALEGFTMFALNQGEVCTCPSRALIQSGHYREFLEAGVARTELIVPGHPLDTETMIG

AQASHDQLEKILSYLDIGRQEGAKVLTGGERITYDGEMAGGYYVQPTIFEGDNRMRVFQEEIFGPVVA

VTSFSDFDDAIKTANDTLYGLGAGVWTRDISTAYRAGRAIQAGRVWTNCYHAYPAHAAFGGYKQSGI

GREGHRMMLDHYQQTKNLLVSYSPKRLGFF 

 

 

superoxide dismutase [Meiothermus silvanus DSM 

9946] (MW 22966.6). Gel A 

 

Detected Peptides 

INEVPEDIR 

FGSGWAWLVK 

RINEVPEDIR 

Location of peptides in the protein sequence 

MAYPFKVPERPYAADALEPHIDTKTMEVHYQGHHVAYVNNLNAALEKHPELHSWELEDLLRRINEVP

EDIRTAVRNNGGGHHNHTLFWDILTPGGAKEPTGKLAEAINATFGSFDEFKKQLTQAGVTRFGSGWA

WLVKDKAGKLKIYSTANQDSPLMEGDTPLLGIDVWEHAYYLKYQNRRPEYLAAIWNVINWDKVAER

F 
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β-xylosidase/α-L-arabinfuranosidase, putative, gly43F [Cellvibrio japonicus Ueda107 (MW 38086.4). Gel 

A 

 

Detected Peptides 

YYLYFPAR 

YFEGPWMHK 

YFEGPWMHK 

Location of peptides in the protein sequence 

MSTENEVVDYKALAARAISQPLVTHIYTADPSAHVFNGKVYIYPSHDIDAGIPFNDNGDHFGMEDYHV

LRMDSPEGKAEDCGVALHVKDVPWAERQMWAPDAITKDGKYYLYFPARARDGLFKIGVAIGDQPEG

PFVAEPEPIAGSYSIDPAVFGDDDGEFYLYFGGIWGGQLQKYRDNTYSEIHEEPTADQPALGARVARLS

ADMKSFVEASREVVILDEQGQPLLAGDNSRRYFEGPWMHKYQGKYYLSYSTGDTHFLCYATSDNPYG

PFTYQGQILTPVVGWTTHHSICEFEGKWYLFYHDSVLSEGVTHLRSVKVTELHYEADGKIKTIHPYRD 

 

 

α-N-arabinofuranosidase [Clostridium papyrosolvens DSM 2782] (MW 36763.8). Gel A 

 

Detected Peptides 

QMWAPDAAFK 

YFEGPWMHK 

YFEGPWMHK 

Location of peptides in the protein sequence 

MEKIVKQKEPLVEHIYTADPSAHVFEGKIYIYPSHDLDEDIVSNDNGDQYMMEDYHILSLEDLNSPCVD

NGEALHMKDVPWVSKQMWAPDAAFKNNTYYLYFPARDKDGIFRIGVASSSSPAGPFTAQKEPIPGSFSI

DPAVLVDDDNRAYIYFGGLWGGQLEKWQTGSFSPDAEGPDVSAPAIGPRVAELSDDMLTFKEAPEEISI

VDEEGNPILAGDEDRRYFEGPWMHKYNGNYYLSYSTGTTHTIVYAVGNNPKGPFVFKGKILTPVVGW

TTHHSIVQYQDKWYLFYHDSSLSGGRDNKRCVKFTELKYNEDGTIQTIDPYK 

 

 

Transaldolase [Paenibacillus sp. oral taxon 786 str. D14 (MW 24007.9). Gel A 

 

Detected Peptides 

AGATYVSPFLGR 

VHNLDTQIIAASVR 

Location of peptides in the protein sequence 

MKFFVDTANLEDIKKAHKIGVLSGVTTNPSLVAKEGVKFEDRIEEILKAVPDVESVSAEVTPDAVTAEE

MIAQAEELIKINNHDPRITIKLPMTLAGLEATKYLAQKGVKTNVTLIFTVNQALLAARAGATYVSPFLG

RLDDISEDGVQLVSKVAELFRVHNLDTQIIAASVRHPDHVTRVALAGAHIATIPFAVIEQLAKHPLTDQG

LEKFAADWKKSVK 

 

 

xylose isomerase [Bacillus licheniformis ATCC 14580] (MW 50220.8). Gel A 

 

Detected Peptide 
 

ELGAENYVFWGGR 
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Location of peptide in the protein sequence 

MFFRNIGMIEYEGADSENPYAFKYYNPDEFVGGKTMKEHLRFAVAYWHTFDADGKDPFGDGTMFRA

WNRLTHPLDKAKARAEAAFEFFEKLGVPYFCFHDVDIVDEGATLRETFTYLDQMSSFLKEMMETSHV

QLLWNTANMFTHPRYVHGAATSCNADVYAYAAAKVKKGLDIAKELGAENYVFWGGREGYETLLNT

DMKLELENLSSFYRMAVEYAREIGFDGQFLIEPKPKEPTKHQYDFDAATTIAFLETYGLKDHFKLNLEA

NHATLAGHTFEHELRVAALHDMLGSIDANQGDLLLGWDTDEFPTDLYSAVLAMYEILKAGGFKTGGI

NFDAKVRRPSFADEDLFHAHIAGMDTYAVGLKVASRLLEDKALDQVIEERYESYTKGIGLEIKEGRTDL

KKLAAYALENDHIENQSGRQERLKATVNRYLLNALREAPAGKETH 

 

 

Enolase [Meiothermus silvanus DSM 9946] (MW 44933.2). Gel A 

 

Detected Peptides 

IQLVGDDLFVTNPAR 

GYNTNVGDEGGFAPDLK 

Location of peptides in the protein sequence 

MTTIVELKAREVLDSRGNPTVEAEVTLEGGARGSAMVPSGASTGAHEALELRDGGPRYAGKGVLRAV

AAVNERIAPELIGYDALDQAGVDRAMLQLDGTPNKANLGANAILAVSLATARAAANALGLPLYRYLG

GVQGLTLPVPLMNVINGGKHADNNVDFQEFMLVPAGATSFREALRMGVETFHALKGVLKGRGYNTN

VGDEGGFAPDLKSNVEAVEVLLQAIEKAGYKPGQEISLALDPASTEFYKDGKYRLEAENKTLSSEEMV

AYWESWVGQYPIVSIEDGLAEDDWEAWKMLTERVGHKIQLVGDDLFVTNPARLAEGIEKGVGNAILV

KVNQIGTLSETLEAIALAQRSGYNAVISHRSGETEDTFIADLAVAVNAGQIKTGSASRSDRLAKYNQLL

RIEDELGVGARFLGYGVY 
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TR1A subculture 8 (Fig. 5.17, Table 5.1). 

Transaldolase [Meiothermus silvanus DSM 9946]. Gel B band 1 TR1A subculture 8 (MW 23373.3). Gel B 

Detected Peptides 

GLQQFLADWEK 

VFQQLIQHPLTDK 

MDLYLDTAEVSEIR 

Location of peptides in the protein sequence 

MDLYLDTAEVSEIREIASWGVLGGVTTNPSLVAKSGRGFEEVIREISAIVQGPVSAEVTAMEAPAMIAE

GRKLAAIDPNVVVKLPTIVEGLKACKALSAEGIRVNMTLIFSANQALLAAHAGAWCVSPFAGRLDDIS

WDGMDLVAEIAQIFDIHAIGTRVLAASIRHPMHVLQAAKAGAD 

IATMPAKVFQQLIQHPLTDKGLQQFLADWEKSKEKAKQP 

 

 

Mnanganese containing catalase from Thermus aquaticus 

Y51MC23]. Gel B band 2 TR1A subculture 8 (MW 33179.9) 

Detected Peptides 

FMDLGFHR 

LQIELPMPK 

EMIGYLLVR 

YMDLGFHR 

Location of peptides in the protein sequence 

MFLRIDRLQIELPMPKEQDPNAAAAVQALLGGRFGEMSTLMNYMYQSFNFRGKKALKPYYDLIANIAT

EELGHIELVAATINSLLAKNPGKDLEEGVDPVTAPLGFAKDARNAAHFIAGGGNSLVMGAMGEHWHG

EYVFTSGNLILDLLHNFFLEVAARTHKLRVYEMTDNPVAREMIGYLLVRGGVHAAAYGKALETLTGV

EMNKMLPIPRIENSKIPEAKKFMDLGFHRNLYRFSQEDYKDLGLIWAGPSPEDGSEVVVVDGPPAGGPV

FDAGHDAAEFAPEFHPGELYEIAKKLYEKAK 

 

 

xylose isomerase from Geobacillus sp. Y412MC52. Gel B band 2 TR1A subculture 8 (MW 50474.2) 

 

Detected Peptides 

VFEQFIEER 

AYFPNIGTIPYEGPESR 

Location of peptides in the protein sequence 

MAYFPNIGTIPYEGPESRNPLAFKFYNPEEKVGDKTMEEHLRFSVAYWHTFTGDGSDPFGVGNMIRPW

DKYSGMDLAKARVEAAFELFEKLNVPFFCFHDVDIAPEGETLSETYKNLDEIVDMIEEYMKTSKTKLL

WNTANLFSHPRFVHGAATSCNADVFAYAAAKVKKGLEIAKRLGAENYVFWGGREGYETLLNTDMKL

ELDNLARFLHMAVDYAKEIGFDGQFLIEPKPKEPTKHQYDFDVATALAFLQTYGLKDHFKFNIEANHA

TLAGHTFEHELRVARIHGMLGSVDANQGDTLLGWDTDEFPTDLYATTLAMYEILQNGGLGRGGLNFD

AKVRRGSFEPEDLFYAHIAGMDSFAIGLKVAHRLLEDRVFEQFIEERYKSYTEGIGREIVEGTADFKKLE

EYALQLGEIRNASGRLERLKTLLNQYLLEVSVPSVSRS 
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Glyceraldehyde-3-phosphate dehydrogenase 

[Meiothermus silvanus DSM 9946]. Gel B band 2 TR1A subculture 8 (MW 35595.4) 

Detected Peptides 

 

VADLAQYIGK 

GILAYTEEPLVSSDLK 

VVSWYDNEWGYSCR 

GILTTVHAYTASQSLVDAVK 

DPAALPWGEIGADIVIESTGR 

GDPHSSIFSALDTLVIGNMVK 

VYEEKDPAALPWGEIGADIVIESTGR 

Location of peptides in the protein sequence 

MRVAINGFGRIGRQVFRILEERGVEIVGINDLSDNAILAHLFKYDSNYGRFPGTVSYDEQNLVVNGKTIR

VYEEKDPAALPWGEIGADIVIESTGRFTKLEAAEAHLKAGAKKVIISAPGKGDMLTVVMGVNEHMYDP

AKHHVISNASCTTNGLAPVAKVLNDKFGIEKGILTTVHAYTASQSLVDAVKDDPRDARAAAINIVPSET

GAAKAVGLVIPELKGKFTGMAFRVPTSTVSVVDFTAILHREASKEEINAAMKEAAEGPMKGILAYTEEP

LVSSDLKGDPHSSIFSALDTLVIGNMVKVVSWYDNEWGYSCRVADLAQYIGKRL 

 

 

NAD-dependent aldehyde dehydrogenase [Geobacillus 

kaustophilus HTA426] (MW 55870.5). Gel A 

 

Detected Peptides 

DINTAYR 

YFASCIR  Carboxymethyl (C)[5] 

YENFIGGK 

NLLVSYSPK 

ILSYIDIGK 

RYENFIGGK 

VAFTGETTTGR 

QEGAELLIGGER 

MMLDHYQQTK 

AADIELALDAAHAAK 

ETLAADIPLAIDHFR 

ALIHESIYDAFMER 

MIYAQPGQPGALVTFK 

MIYAQPGQPGALVTFK 

IFQEEIFGPVLAVTTFK 

AQEGTISEIDHDTVAYHFK 

ILSYIDIGKQEGAELLIGGER 

QGNPLDTETMIGAQASSEQLEK 

DHDEALSIANETLYGLGAGVWTR 

Location of peptides in the protein sequence 

MIYAQPGQPGALVTFKKRYENFIGGKWVPPVDGEYFENITPITGQPYCEVPRSKAADIELALDAAHAAK

DAWGRTSPAERARLLNKIADRMEENLEMLAVAETWENGKPIRETLAADIPLAIDHFRYFASCIRAQEGT

ISEIDHDTVAYHFKEPLGVVGQIIPWNFPILMAAWKLAPALAAGNCVVLKPAEQTPTSILVLIELIEDLLP

PGVVNIVNGFGLEAGKPLASNPRVAKVAFTGETTTGRLIMQYASQNIVPVTLELGGKSPNIFFADVMDK

DDEFLDKALEGFTMFALNQGEVCTCPSRALIHESIYDAFMERALERVKQIKQGNPLDTETMIGAQASSE

QLEKILSYIDIGKQEGAELLIGGERNMLEGELAGGYYVKPTIFKGHNKMRIFQEEIFGPVLAVTTFKDHD

EALSIANETLYGLGAGVWTRDINTAYRFGRGIQAGRVWTNCYHVYPAHAAFGGYKMSGIGRETHKM

MLDHYQQTKNLLVSYSPKKLGLF 
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Glyceraldehyde-3-phosphate dehydrogenase 

[Meiothermus ruber DSM 1279. Gel A band 2 TR1A subculture 8 (MW 35353.4) 

Detected Peptides 

VADLAQYIGK 

GILAYTEEPLVSSDLK 

VVSWYDNEWGYSCR 

GLLTTVHAYTASQSLVDAVK 

GVEVVGINDLSDNAILAHLFK 

Location of peptides in the protein sequence 

MKIGINGFGRIGRQVFRILQERGVEVVGINDLSDNAILAHLFKYDSNYGRFPGTVSYDEKTITVNGKTIR

VYEEKDPANIPWGEIGADIVIESTGRFTKLEAAEAHLKAGAKKVIISAPGKGDMLTVVMGVNEHMYDP

AKHHVISNASCTTNGLAPVAKVLNDHFGIEKGLLTTVHAYTASQSLVDAVKDDPRDARAAALNIVPSE

TGAAKAVGLVIPELKGKFGGMAFRVPTSTVSVVDFTAILSKEASKEEINAAMKAAAEGPMKGILAYTE

EPLVSSDLKGDPHSSIFSALDTLVVGNLVKVVSWYDNEWGYSCRVADLAQYIGKKL 

 

 

Xylan 1,4-β-xylosidase [Geobacillus sp. Y412MC52]. (MW 79866). Gel B band 3 TR1A subculture 8  

 

Detected Peptides 

QHLQYVLR 

NVLDFYVER 

VGALIVDVPAGEK 

AFFGFEGTDPYTSMR 

LALVPAVIVEMTIDNTNGTR 

LALVPAVIVEMTIDNTNGTR 

TMGGAEITTYDSLDVSLGQAR 

IIPAIEGLVFPYFTNCHEALK 

Location of peptides in the protein sequence 

MPTNVFFNAHHSPVGAFASFTLGFPGKSGGLDLELARPPRQNVFIGVESPHEPGLYHILPFAETAGEDES

KRYDIENPDPNPQKPNILIPFAKERIEREFRVATDTWKAGDLTLTIYSPVKAVPDPETASEEELKLALVPA

VIVEMTIDNTNGTRTRRAFFGFEGTDPYTSMRRIDDTCPQLRGVGQGRILSIVSKDEGVRSALHFSMEDI

LTATLEENWTFGLGKVGALIVDVPAGEKKTYQFAVCFYRGGYVTAGMDASYFYTRFFHNIEEVGLYA

LEQAEVLKEQAFCSNELIEKEWLSDDQKFMMAHAIRSYYGNTQLLEHEGKPIWVVNEGEYRMMNTFD

LTVDQLFFELKMNPWTVKNVLDFYVERYSYEDRVRFPGDGTEYPGGISFTHDMGVANTFSRPHYSSYE

LYGISGCFSHMTHEQLVNWVLCAAVYIEQTKDWAWRDRRFTILEQCLESMVRRDHPDPEKRNGVMG

LDSTRTMGGAEITTYDSLDVSLGQARNNLYLAGKCWAAYVALEKLFRDVGKEELAVLAGKQAEKCA

ATIVSHVTEDGYIPAVMGEGNDSKIIPAIEGLVFPYFTNCHEALKEDGRFGDYIRALRQHLQYVLREGIC

LFPDGGWKISSTSNNSWLSKIYLCQFIARRILGWEWDEQGKRADAAHVAWLTHPTLSIWSWSDQIIAGE

ISGSKYYPRGVTSILWLEEGE 

 

 

β-xylosidase [Geobacillus stearothermophilus] (MW 79850). Gel B band 3 TR1A subculture 8 

Detected Peptides 

QHLQYVLR 

NVLDFYVER 

LTILEQCLESMVR 

AFFGFEGTDPYTSMR 

LALVPAVIVEMTIDNTNGTR 

LALVPAVIVEMTIDNTNGTR 
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TMGGAEITTYDSLDVSLGQAR 

 

Location of peptides in the protein sequence 

MATNLFFNAHHSPVGAFASFTLGFPGKSGGLDLELARPPRQNVFIGVESPHEPGLYHILPFAETAGEDES

KRYDIENPDPNPQKPNILIPFAKERIEREFRVATDTWKAGDLTLTIYSPVKAVPDPETASEEELKLALVPA

VIVEMTIDNTNGTRTRRAFFGFEGTDPYTSMRRIDDTCPQLRGVGQGRILGIASKDEGVRSALHFSMEDI

LTATLEENWTFGLGKVGALIADVPAGEKKTYQFAVCFYRGGCVTAGMDASYFYTRFFHNIEEVGLYA

LEQAEVLKEQAFRSNELIEKEWLSDDQKFMMAHAIRSYYGNTQLLEHEGKPIWVVNEGEYRMMNTFD

LTVDQLFFELKMNPWTVKNVLDFYVERYSYEDRVRFPGDETEYPGGISFTHDMGVANTFSRPHYSSYE

LYGISGCFSHMTHEQLVNWVLCAAVYIEQTKDWAWRDRRLTILEQCLESMVRRDHPDPEKRNGVMG

LDSTRTMGGAEITTYDSLDVSLGQARNNLYLAGKCWAAYVALEKLFRDVGKEELAALAREQAEKCA

ATIVSHVTEDGYIPAVMGEGNDSKIIPAIEGLVFPYFTNCHEALREDGRFGDYIRALRQHLQYVLREGIC

LFPDGGWKISSTSNNSWLSKIYLCQFIARRILGWEWDEQGKRADAAHVAWLTHPTLSIWSWSDQIIAGE

ISGSKYYPRGVTSILWLEEGE 

 

 

RecName: Full=Endoglucanase A; AltName: 

Full=Endo-1,4-β-glucanase A; AltName: 

Full=Cellulase A; from Thermobispora bispora DSM 43833/ Uncultured Bacteroidetes bacterium DNA, 

fosmid clone: JFF029_C06 (MW 46980) 

Gel B band 3 TR1A subculture 8  

Detected Peptides 

AWIDEIAAGLR  

DCGGPSAGGAPNHTAYR  Carboxymethyl (C)[2] [2] 

NGNGPLGSEWCDPPGR Carboxymethyl(C)[11 

Location of peptides in the protein sequence 

MSRIRRFLATALAAATAGVGAIVTAIASAGPAHAYDSPFYVDPQSNAAKWVAANPNDPRTPVIRDRIA

AVPTGRWFANYNPSTVRAEVDAYVGAAAAAGKIPIMVVYAMPNRDCGGPSAGGAPNHTAYRAWIDE

IAAGLRNRPAVIILEPDALPIMTNCMSPSEQAEVQASAVGAGKKFKAASSQAKVYFDAGHDAWVPADE

MASRLRGADIANSADGIALNVSNYRYTSGLISYAKSVLSAIGASHLRAVIDTSRNGNGPLGSEWCDPPG

RATGTWSTTDTGDPAIDAFLWIKPPGEADGCIATPGVFVPDRAYELAMNAAPPTYSPSPTPSTPSPSPSQ

SDPGSPSPSPSQPPAGRACEATYALVNQWPGGFQAEVTVKNTGSSPINGWTVQWTLPSGQSITQLWNG

DLSTSGSNVTVRNVSWNGNVPAGGSTSFGFLGSGTGQLSSSITCSAS 

 

 

superoxide dismutase [Meiothermus silvanus DSM 

9946] (MW 22970). Gel B band 4 TR1A subculture 8 

Detected Peptides 

INEVPEDIR 

FGSGWAWLVK 

RINEVPEDIR 

NNGGGHHNHTLFWDILTPGGAK 

IYSTANQDSPLMEGDTPLLGIDVWEHAYYLK 

IYSTANQDSPLMEGDTPLLGIDVWEHAYYLK 

Location of peptides in the protein sequence 

MAYPFKVPERPYAADALEPHIDTKTMEVHYQGHHVAYVNNLNAALEKHPELHSWELEDLLRRINEVP

EDIRTAVRNNGGGHHNHTLFWDILTPGGAKEPTGKLAEAINATFGSFDEFKKQLTQAGVTRFGSGWA
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WLVKDKAGKLKIYSTANQDSPLMEGDTPLLGIDVWEHAYYLKYQNRRPEYLAAIWNVINWDKVAER

F 

 

 

 

Catalase [Geobacillus sp. Y4.1MC1] (MW 55481.7). Gel A 

 

Detected Peptides 

FSTVAGELGSADTVR 

VGVNHNLLPINRPR 

IAGENPDYHTEDLYNAIEK 

FDNNGGGSVNYEPNSFGGPTEVPEHK 

Location of peptides in the protein sequence 

MADTKKLTTSWGAPVGDNQNSITAGNPGPTLIQDVHLIEKLAHFNRERVPERVVHAKGAGAHGYFEV

TNDMSKYTKAKVFNGVGKRTPVFVRFSTVAGELGSADTVRDPRGFAVKFYTEEGNYDIVGNNTPIFFI

RDAIKFPDFIHTQKRDPRTHLKNPTAMWDFWSLSPESLHQVTYLFGDRGIPLTYRHMNGYGSHTFKWV

NEKGEAVWVKYHFKTNQGVKNMDPELAVKIAGENPDYHTEDLYNAIEKGDYPSWTLYVQIMPLEDA

KTYRFNPFDVTKVWSHKDYPLIEVGRMVLNRNPENYFAEVEQATFSPGNLVPGVEPSPDKMLQARLFA

YADAHRYRVGVNHNLLPINRPRVEVNNYQRDGFMRFDNNGGGSVNYEPNSFGGPTEVPEHKTTPFPV

SGVAESVPYDDDDHYTQAGDLYRLMSEEEKARLVKNIVESLKQVTKEEIKLRQIRHFYKADPDYGRRV

AEGLGLQIPDDVTTNA 

 

 

Xylose isomerase from Bacillus subtilis (MW 13358.4). Gel A 

 

Detected Peptide 

VEAAFEMFEK 

Location of peptide in the protein sequence 

MAQSHSSSVNYFGSVNKVVFEGKASTNPLAFKYYNPQEVIGGKTMKEHLRFSIAYWHTFTADGTDVF

GAATMQRPWDHYKGMDLARARVEAAFEMFEKLDAPFFAFHDRDIAPEGSTLKETNQNLDIIVGMIKD

YMRDSNVKLLWNTANMFTNPRFVHGAATSCNADVFAYAAAQVKKGLETAKELGAENYVFWGGREG

YETLLNTDLKFELDNLARFMHMAVDYAKEIEYTGQFLIEPKPKEPTTHQYDTDAATTIAFLKQYGLDN

HFKLNLEANHATLAGHTFEHELRMARVHGLLGSVDANQGHPLLGWDTDEFPTDLYSTTLAMYEILQN

GGLGSGGLNFDAKVRRSSFEPDDLVYAHIAGMDAFARGLKVAHKLIEDRVFEDVIQHRYRSFTEGIGLE

ITEGRANFHTLEQYALNNKTIKNESGRQERLKPILNQ 

 

 

xylose isomerase [Geobacillus kaustophilus HTA426] (MW 50350.1). Gel A 

 

Detected Peptides 

VEAAFELFEK 

FLHMAVDYAK 

VFEQFIEER 

FLHMAVDYAK 

LGAENYVFWGGR 

EGYETLLNTDMK 

LEEYALQLGDIR 

KLEEYALQLGDIR 

LLWNTANLFSHPR 

EIGFDGQFLIEPKPK 

NLDEIVDMIEEYMK 

AYFPNIGTIPYEGPESR 
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FVHGAATSCNADVFAYAAAK 

FNIEANHATLAGHTFEHELR 

 

Location of peptides in the protein sequence 

MAYFPNIGTIPYEGPESRNPLAFKFYNPDEKVGGKTMEEHLRFSVAYWHTFTGDGSDPFGVGNMIRPW

NTYSGMDLAKARVEAAFELFEKLNVPFFCFHDVDIAPEGETLSETYKNLDEIVDMIEEYMKTSKTKLL

WNTANLFSHPRFVHGAATSCNADVFAYAAAKVKKGLEIAKRLGAENYVFWGGREGYETLLNTDMKL

ELDNLARFLHMAVDYAKEIGFDGQFLIEPKPKEPTKHQYDFDVATALAFLQTYGLKDHFKFNIEANHA

TLAGHTFEHELRVARIHGMLGSVDANQGDTLLGWDTDEFPTDLYTTTLAMYEILQNGGLGRGGLNFD

AKVRRGSFEPEDLFYAHIAGMDSFAIGLKVAHRLLEDRVFEQFIEERYKSYTEGIGREIVEGTADFKKLE

EYALQLGDIRNTSGRLERLKTLLNQYLLEVSAPSGSRS 

 

 

xylose isomerase [Geobacillus sp. Y412MC52] (MW 50474.2). Gel A 

 

Detected Peptides 

FYNPEEK 

VEAAFELFE 

FLHMAVDYAK 

VFEQFIEER 

FLHMAVDYAK 

LGAENYVFWGGR 

EGYETLLNTDMK 

LLWNTANLFSHPR 

EIGFDGQFLIEPKPK 

NLDEIVDMIEEYMK 

AYFPNIGTIPYEGPESR 

FVHGAATSCNADVFAYAAAK 

FNIEANHATLAGHTFEHELR 

Location of peptides in the protein sequence 

MAYFPNIGTIPYEGPESRNPLAFKFYNPEEKVGDKTMEEHLRFSVAYWHTFTGDGSDPFGVGNMIRPW

DKYSGMDLAKARVEAAFELFEKLNVPFFCFHDVDIAPEGETLSETYKNLDEIVDMIEEYMKTSKTKLL

WNTANLFSHPRFVHGAATSCNADVFAYAAAKVKKGLEIAKRLGAENYVFWGGREGYETLLNTDMKL

ELDNLARFLHMAVDYAKEIGFDGQFLIEPKPKEPTKHQYDFDVATALAFLQTYGLKDHFKFNIEANHA

TLAGHTFEHELRVARIHGMLGSVDANQGDTLLGWDTDEFPTDLYATTLAMYEILQNGGLGRGGLNFD

AKVRRGSFEPEDLFYAHIAGMDSFAIGLKVAHRLLEDRVFEQFIEERYKSYTEGIGREIVEGTADFKKLE

EYALQLGEIRNASGRLERLKTLLNQYLLEVSVPSVSRS 

 

 

Transaldolase [Paenibacillus sp. JDR-2] (MW 23281.3). Gel A 

 

Detected peptides 

 

AGATYISPFVGR 

LGLVDGVTTNPSLIAK 

Location of peptides in the protein sequence 

MKFFLDTANVEEIRRIARLGLVDGVTTNPSLIAKEGRDFKEVIQEIAGFIHGPISAEVIGTTSEEMLMEAF

DIADWAPNIVIKLPMTEDGLYATRALSEKGIKTNVTLIFTAAQGLIAAKAGATYISPFVGRLDDIGTDGI

GLIRDLRTILHTYGMHAEIIAASIRHIGHVEQAALAGAHIATIPGALLPSLWKHPLTDAGIAKFLSDWDS

RKPNS 
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Xylose isomerase [Thermoanaerobacterium thermosulfurigenes/ Thermoanaerobacterium 

thermosaccharolyticum (strain ATCC DSM 571](MW 50.312). Gel A 

 

Detected Peptides 

 

FLHMAVDYAK 

EIGFEGQFLIEPKPK 

Location of peptides in the protein sequence 

MNKYFENVSKIKYEGPKSNNPYSFKFYNPEEVIDGKTMEEHLRFSIAYWHTFTADGTDQFGKATMQRP

WNHYTDPMDIAKARVEAAFEFFDKINAPYFCFHDRDIAPEGDTLRETNKNLDTIVAMIKDYLKTSKTK

VLWGTANLFSNPRFVHGASTSCNADVFAYSAAQVKKALEITKELGGENYVFWGGREGYETLLNTDME

FELDNFARFLHMAVDYAKEIGFEGQFLIEPKPKEPTKHQYDFDVANVLAFLRKYDLDKYFKVNIEANH

ATLAFHDFQHELRYARINGVLGSIDANTGDMLLGWDTDQFPTDIRMTTLAMYEVIKMGGFDKGGLNF

DAKVRRASFEPEDLFLGHIAGMDAFAKGFKVAYKLVKDRVFDKFIEERYASYKDGIGADIVSGKADFR

SLEKYALERSQIVNKSGRQELLESILNQYLFAE 
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Table showing permission granted for the figures and tables that have been sourced from literature and used in 

this thesis. 

 

Figure or table Permission 

Figure 1.1 Granted 

Figure 1.2 Granted 

Figure 1.3 Granted 

Figure 1.4 Granted 

Figure 1.5 Granted 

Figure 1.6 Granted 

Figure 1.7 Granted 

Figure 1.8 Granted 

Figures 1.11  Granted 

Figures 1.12  Granted 

Figure 1.13 Granted 

Figure 1.14 Granted 

Figure 1.15 Granted 

Table 1.1 Granted 
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From: Paul Knox [J.P.Knox@leeds.ac.uk] 

Sent: 08 January 2014 11:56 

To: Banda, Agripina 

Subject: RE: permission to use Figure 1 (Schematic Outline of the Occurrence of the Major Cell....) 

from Cell Wall Biology: Perspectives from Cell Wall Imaging (2010) journal. 

Dear Agripina, I am happy for you to use the figure in your PhD thesis. Best regards, Paul 
____________ 
Prof. Paul Knox,  
Centre for Plant Sciences 
Faculty of Biological Sciences 
University of Leeds 
Leeds LS2 9JT 
United Kingdom 
 
Tel: +44-113-3433169 
Fax: +44-113-3433144 
www.plants.leeds.ac.uk 
www.plantcellwalls.net 
From: Banda, Agripina [mailto:a.banda09@imperial.ac.uk]  

Sent: 08 January 2014 11:20 
To: Paul Knox 

Subject: RE: permission to use Figure 1 (Schematic Outline of the Occurrence of the Major Cell....) 

from Cell Wall Biology: Perspectives from Cell Wall Imaging (2010) journal. 
Dear Paul, 
Thank you very much, you gave me permission earlier to use Figure 1 (Schematic Outline of the 
Occurrence of the Major Cell....) from Cell Wall Biology: Perspectives from Cell Wall Imaging (2010) 

journal to use in my transfer report. I still would like to include it in my PhD thesis. I am asking for 

permission to use it in my thesis. 
Kind regards 
Agripina Banda 

 
From: Banda, Agripina 

Sent: 01 June 2011 11:39 
To: 'Paul Knox' 

Subject: RE: Thank you 

Hi, 
Thank you very much. 
Best regards 
Agripina Banda 
From: Paul Knox [mailto:J.P.Knox@leeds.ac.uk]  
Sent: 01 June 2011 09:35 

To: Banda, Agripina 
Subject: RE: permission to use Figure 1 (Schematic Outline of the Occurrence of the Major Cell....) 

from Cell Wall Biology: Perspectives from Cell Wall Imaging (2010) journal. 
Dear Agripina, I am happy for you to use this figure. Best regards, Paul  
____________ 
Prof. Paul Knox,  
Centre for Plant Sciences 
Faculty of Biological Sciences 
University of Leeds 
Leeds LS2 9JT 
United Kingdom 
 
Tel: +44-113-3433169 
Fax: +44-113-3433144 
www.plants.leeds.ac.uk 
www.plantcellwalls.net 
From: Banda, Agripina [mailto:a.banda09@imperial.ac.uk]  

Sent: 30 May 2011 10:41 

 

https://exchange.imperial.ac.uk/owa/redir.aspx?C=a8ZtCkNPBUGHLrQsAtnKvNToHz2EjtEIZwd1wp9X4Ix3QozvuFxSh17qzwBuseBdXqHHMBez6Ks.&URL=mailto%3aJ.P.Knox%40leeds.ac.uk
https://exchange.imperial.ac.uk/owa/redir.aspx?C=a8ZtCkNPBUGHLrQsAtnKvNToHz2EjtEIZwd1wp9X4Ix3QozvuFxSh17qzwBuseBdXqHHMBez6Ks.&URL=http%3a%2f%2fwww.plants.leeds.ac.uk
https://exchange.imperial.ac.uk/owa/redir.aspx?C=a8ZtCkNPBUGHLrQsAtnKvNToHz2EjtEIZwd1wp9X4Ix3QozvuFxSh17qzwBuseBdXqHHMBez6Ks.&URL=http%3a%2f%2fwww.plantcellwalls.net
https://exchange.imperial.ac.uk/owa/redir.aspx?C=a8ZtCkNPBUGHLrQsAtnKvNToHz2EjtEIZwd1wp9X4Ix3QozvuFxSh17qzwBuseBdXqHHMBez6Ks.&URL=mailto%3aa.banda09%40imperial.ac.uk


263 

 



264 

 

 



265 

 

 

    

 

false true true false false false

true 0

javascript:goHome()
javascript:createAccount();
javascript:openHelp();
https://na4.mycontactual.com/SC/sc_chat_entryway.php?queue_id=cccenter01~~queue~~chat~~120&channel_name=Licensee&direct_entry=sc_chat


266 

 

 

 

 

Title: RHAMNOGALACTURONAN II: 
Structure and Function of a 
Borate Cross-Linked Cell Wall 
Pectic Polysaccharide 

Author: Malcolm A. O'Neill, Tadashi Ishii, 
Peter Albersheim, et al 

Publication: Annual Review of Plant Biology 

Publisher: Annual Reviews 

Date: Jun 2, 2004 

Copyright © 2004, Annual Reviews 
 

 

 User ID   

  

 Password   

  

 Enable Auto Login 
 

 

 

Forgot Password/User ID? 

 

If you're a copyright.com 
user, you can login to 
RightsLink using your 
copyright.com credentials. 

Already a RightsLink user or 
want to learn more? 

 

 

 

Permission Not Required 

Material may be republished in a thesis / dissertation without obtaining additional permission from 
Annual Reviews, providing that the author and the original source of publication are fully 
acknowledged. 

    
 

 

   
Copyright © 2014 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement.  
Comments? We would like to hear from you. E-mail us at customercare@copyright.com  

 
 
 

 

 

 

942 -5555 annualreview s 1543-5008 86295 1

54 false false quickprice

4960308 /App/Includes/He /App/QuickPrice.j /App/Includes/Foo 1408295527540

fErTJf1B8EmKsS unknow n unknow n -7074477194932

javascript:forgot();
javascript:openHelp('/Help/CreateAccount/create_account_learnmore.htm');
http://www.copyright.com/
http://www.copyright.com/ccc/do/viewPage?pageCode=i3
mailto:customercare@copyright.com
javascript:metaDataLogin();
javascript:history.back();
javascript:closeWindow();


267 

 

 
 

 

 

 



268 

 

 

 

    

 

 

 

 

Title: Identifying Softwoods and 
Hardwoods by Infrared 
Spectroscopy 

Author: Brady Barker and Noel L. Owen 

Publication: Journal of Chemical Education 

Publisher: American Chemical Society 

Date: Dec 1, 1999 

Copyright © 1999, American Chemical Society 
 

 

 User ID   

  

 Password   

  

 Enable Auto Login 
 

 

 

Forgot Password/User ID? 

 

If you're a copyright.com 
user, you can login to 
RightsLink using your 
copyright.com credentials. 

Already a RightsLink user or 
want to learn more? 

 

 

 

Quick Price Estimate 

Permission for this particular request is granted for print and electronic formats, and 
translations, at no charge. Figures and tables may be modified. Appropriate credit should be 

given. Please print this page for your records and provide a copy to your publisher. Requests 
for up to 4 figures require only this record. Five or more figures will generate a printout of 
additional terms and conditions. Appropriate credit should read: "Reprinted with permission 
from Copyright American Chemical Society." Insert appropriate information in place of the 

capitalized words. 

I would like to...  
  

 

This service provides 
permission for reuse only. If 
you do not have a copy of the 
article you are using, you may 
copy and paste the content 
and reuse according to the 
terms of your agreement. 
Please be advised that 
obtaining the content you 
license is a separate 
transaction not involving 
Rightslink. 

Requestor Type  
 

Portion  
 

Format  
 

Select your currency 
 

Quick Price Click Quick Price 

    

 

   

false true true false false false

true 0

reuse in a Thesis/Dissertation

Author (original w ork)

make a selection

Print

USD - $

12

javascript:forgot();
javascript:openHelp('/Help/CreateAccount/create_account_learnmore.htm');
javascript:goHome()
javascript:createAccount();
javascript:openHelp();
https://na4.mycontactual.com/SC/sc_chat_entryway.php?queue_id=cccenter01~~queue~~chat~~120&channel_name=Licensee&direct_entry=sc_chat
javascript:metaDataLogin();
javascript:openRFPHelp('offerIDValue.106254095.types of use');
javascript:openRFPHelp('requesterType.106254098.requestor_type');
javascript:openRFPHelp('portionUsed.106254100.portion');
javascript:openRFPHelp('Format.106254104.Format');
javascript:quickPrice(document.TheForm.offerName, 'quickprice');
javascript:placeOrder();


269 

 

 

 

To request permission for a type of use not listed, please contact the publisher directly. 

 

   
Copyright © 2014 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement.  
Comments? We would like to hear from you. E-mail us at customercare@copyright.com  

 

Credit Card

113 -5555 acs jceda8 21195 1

54 false false quickprice

aboutyourw ork-s 4928149 /App/Includes/He /App/QuickPrice.j /App/Includes/Foo 1408296467609

WeiS468JKsvJPC unknow n unknow n -4659995475579

javascript:openPubFAQ('contact');
http://www.copyright.com/
http://www.copyright.com/ccc/do/viewPage?pageCode=i3
mailto:customercare@copyright.com


270 

 

 



271 

 



272 

 



273 

 

 

false true true false false true

true 0



274 

 

    

 

 

 

 

Title: Structures and mechanisms of 
glycosyl hydrolases 

Author: Gideon Davies,Bernard Henrissat 

Publication: Structure 

Publisher: Elsevier 

Date: September 1995 

Copyright © 1995 Elsevier Science Ltd. All rights 
reserved. 

 

 

 

  Logged in as: 
 

  Agripina Banda 
  Imperial College London 
 

  Account #: 
  3000736869 
 

 

 

 

  
 

 

 

 
Order Completed 

Thank you very much for your order. 
 
This is a License Agreement between Imperial College London -- Agripina Banda ("You") and Elsevier 
("Elsevier"). The license consists of your order details, the terms and conditions provided by Elsevier, 
and the payment terms and conditions. 

 
Get the printable license. 

License Number 3458690832652 

License date Aug 30, 2014 

Licensed content publisher Elsevier     

Licensed content publication Structure     

Licensed content title Structures and mechanisms of glycosyl hydrolases     

Licensed content author Gideon Davies,Bernard Henrissat     

Licensed content date September 1995     

Licensed content volume 
number 

3     

Licensed content issue 
number 

9     

Number of pages 7     

Type of Use reuse in a thesis/dissertation     

Portion figures/tables/illustrations     

Number of 
figures/tables/illustrations 

3     

Format electronic     

Are you the author of this 
Elsevier article? 

Yes     

Will you be translating? No     

Title of your 
thesis/dissertation  

Thermophilic mixed culture and degradation of Miscanthus x giganteus as a guide to 
strategies for consolidated bioprocessing. 

    

Expected completion date Aug 2014     

Estimated size (number of 
pages) 

75     

Elsevier VAT number GB 494 6272 12     

Permissions price 0.00 GBP     

VAT/Local Sales Tax 0.00 GBP / 0.00 GBP     

Total 0.00 GBP     

70 -5555 ELS 0969-2126 14607 1

54 false false view license

4961271 /App/Includes/He /App/View Licens /App/Includes/Foo 1409389961320

bL1eQkm33VUtdv unknow n unknow n

javascript:paymentTerms();
javascript:printableLicense();
javascript:goHome()
javascript:viewAccount();
javascript:openHelp();
https://na4.mycontactual.com/SC/sc_chat_entryway.php?queue_id=cccenter01~~queue~~chat~~120&channel_name=Licensee&direct_entry=sc_chat
javascript:doLogout();


275 

 

    

 

   
Copyright © 2014 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement.  
Comments? We would like to hear from you. E-mail us at customercare@copyright.com  

 
 
 

 

    

 

 

 

 

Book: Wood Technology: Chemical 

Aspects 

Chapter: Wood: Structure and Chemical 
Composition 

Author: THOMAS R. J. 

Publisher: American Chemical Society 

Date: Jun 1, 1977 

Copyright © 1977, American Chemical Society 
 

 

 User ID   

  

 Password   

  

 Enable Auto Login 
 

 

 

Forgot Password/User ID? 

 

If you're a copyright.com 
user, you can login to 
RightsLink using your 
copyright.com credentials. 

Already a RightsLink user or 
want to learn more? 

 

 

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE 

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because 

no fee is being charged for your order. Please note the following: 

 Permission is granted for your request in both print and electronic formats, and 

translations.  

 If figures and/or tables were requested, they may be adapted or used in part.  

 Please print this page for your records and send a copy of it to your publisher/graduate 

school.  

 Appropriate credit for the requested material should be given as follows: "Reprinted 

(adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright 

(YEAR) American Chemical Society." Insert appropriate information in place of the 

capitalized words.  

  

2014081_140938 f7057e95-b8c4-4

false true true false false false

true 0

http://www.copyright.com/
http://www.copyright.com/ccc/do/viewPage?pageCode=i3
mailto:customercare@copyright.com
javascript:forgot();
javascript:openHelp('/Help/CreateAccount/create_account_learnmore.htm');
javascript:goHome();
javascript:closeWindow();
javascript:goHome()
javascript:createAccount();
javascript:openHelp();
https://na4.mycontactual.com/SC/sc_chat_entryway.php?queue_id=cccenter01~~queue~~chat~~120&channel_name=Licensee&direct_entry=sc_chat
javascript:metaDataLogin();


276 

 

 One-time permission is granted only for the use specified in your request. No additional 

uses are granted (such as derivative works or other editions). For any other uses, please 

submit a new request. 

 

If credit is given to another source for the material you requested, permission must be obtained 

from that source. 

    
 

 

   
Copyright © 2014 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement.  
Comments? We would like to hear from you. E-mail us at customercare@copyright.com  

 
 
 

 

 

 

 

 

 

 

 

 

 

  

113 -5555 acs book 40171 1

54 false false denyredirect

3621 /App/Includes/He /App/SimplePage. /App/Includes/Foo 1408290457534

ZQEeZeLltOIOpoE unknow n unknow n

http://www.copyright.com/
http://www.copyright.com/ccc/do/viewPage?pageCode=i3
mailto:customercare@copyright.com
javascript:history.back();
javascript:closeWindow();

