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Ingolstädter Landstraβe 1, D-85764 Neuherberg, Germany;

3Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, St Mary’s
Hospital, London W2 1NY, UK;

4Imperial College Healthcare NHS Trust, St Mary’s Hospital, London W2 1NY, UK

ABSTRACT

Computer-aided diagnosis of ophthalmic diseases using optical coherence tomography (OCT) relies on the ex-
traction of thickness and size measures from the OCT images, but such defined layers are usually not observed
in emerging OCT applications aimed at ”optical biopsy” such as pulmonology or gastroenterology. Mathemati-
cal methods such as Principal Component Analysis (PCA) or textural analyses including both spatial textural
analysis derived from the two-dimensional discrete Fourier transform (DFT) and statistical texture analysis ob-
tained independently from center-symmetric auto-correlation (CSAC) and spatial grey-level dependency matrices
(SGLDM), as well as, quantitative measurements of the attenuation coefficient have been previously proposed
to overcome this problem. We recently proposed an alternative approach consisting of a region segmentation
according to the intensity variation along the vertical axis and a pure statistical technology for feature quantifi-
cation. OCT images were first segmented in the axial direction in an automated manner according to intensity.
Afterwards, a morphological analysis of the segmented OCT images was employed for quantifying the features
that served for tissue classification. In this study, a PCA processing of the extracted features is accomplished
to combine their discriminative power in a lower number of dimensions. Ready discrimination of gastrointesti-
nal surgical specimens is attained demonstrating that the approach further surpasses the algorithms previously
reported and is feasible for tissue classification in the clinical setting.
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1. INTRODUCTION

The ability of optical coherence tomography (OCT) to accomplish noninvasive cross-sectional imaging in bio-
logical systems1 provides it with enormous potential to be employed for ”optical biopsy” in diverse disciplines
including its traditional use in ophthalmology as well as many other emerging medical applications such as car-
diology, dermatology, and oncology. Its potential in gastroenterology is also poised to be realized in the coming
years, since it could solve the limitations of current clinical management of patients with gastrointestinal diseases
in terms of the small tissue fraction sampled during standard endoscopic examinations.

In hospital histopathology departments there is an immense workload and time pressure. Sampling, sectioning
and staining of tissue specimens are required, and then microscopic evaluation follows to provide diagnostic
information just at one location. Multiple fixed and unfixed tissue specimens are processed and reported on
and lab resources and staff time must be used as economically as possible. Reporting must be completed by
specific deadlines so that results can be discussed in multi-disciplinary meetings and made available to patients
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and clinicians. A computer aided diagnosis (CAD) using OCT would be of enormous benefit since it could even
avoid the need for tissue biopsies. However, this implies that OCT images must be automatically (non visually)
assessed and a quick and reproducible tissue classification approach needs to be developed.

In ophthalmology, this automated classification was accomplished by extracting thickness and size measures
from the OCT images, but defined layers are usually not observed in non-ophthalmic imaging. Consequently,
disease quantification has traditionally relied on a loss of tissue structure that could be measured through textural
analysis in OCT images using smoothness, coarseness, homogeneity, etc.2–6 These analyses can be classified in
terms of the approach employed for the quantification of the features that serve for tissue classification. Some
of them make use of the two-dimensional discrete Fourier transform (DFT),3 since DFT features can detect
texture periodicity and orientation, while others employ more sophisticated approaches such as using spatial
gray-level dependence matrices (SGLDM)2,5 or center-symmetric auto-correlation (CSAC) textural features.4

The combination of these approaches has shown promising results in disease detection but all of them are
subject to the identification of an appropriate region of interest (ROI) for feature quantification. Additionally,
further processing of the combined features using principal components analysis (PCA)7 is required to increase
the discriminative power. In some cases further processing of the scores of the principal components are used as
variables for linear discriminant analysis (LDA),5 and only then is reliable classification achieved.

Alternative approaches to the aforementioned mathematical methods employ quantitative measurements of
the attenuation coefficient, (µt), describing the decay of detected light intensity with depth.8,9 These are based
on variations of the measured backscattering between normal and tumor tissues and even at various stages of
tumor genesis.8 These differences, however, can be obscured by system artifacts preventing reliable diagnostics.8

We recently proposed a two-step methodology to overcome these limitations.10 OCT images were first seg-
mented in the axial direction in an automated manner according to intensity, though avoiding the uncertainty
regarding the identification of the most appropriate ROI for image parameter extraction. Afterwards, a mor-
phological analysis of the segmented images was employed for feature quantification. In this study it will be
demonstrated that this approach surpasses textural algorithms, provides independency from system artifacts
and no further improvement is achieved with a posterior PCA processing of the extracted features, since they
reliably serve on their own for gastrointestinal tissue classification in the clinical setting.

2. MATERIALS AND METHODS

2.1 OCT imaging of gastrointestinal surgical specimens

A commercial swept-source (SS) OCT system OCS1300SS (Thorlabs Incorporated, Newton, New Jersey) was
employed to image freshly-excised specimens of gastrointestinal tissues. This data was collected at St Marys
Hospital, Paddington, London from February to September 2010 and it included patients undergoing elective
gastrointestinal surgery, who where able to provide written informed consent. Specimens were collected from
theaters in warm normal saline (0.9% sodium chloride) as soon as they were excised and immediately taken to
the histology lab. There, they were gently rinsed exposing the mucosa and any lesions. In order to stabilise
them for imaging and working of sites of interest, specimens were pinned onto corkboards. Specimens from
gastrointestinal surgery were generally quite large and much thicker than the penetration depth of the OCT
beam. Therefore, they did not require any special mounting and were imaged directly on the corkboard. After
imaging was complete (within 30 minutes of resection), tissues were fixed with 10% formalin and returned to
pathology for routine histological processing. A total of 35 sites that were 3x3 mm in size were imaged. Nine
of them corresponded to tumor sites (belonging to 7 different patients), while the remaining images included
stomach (20 sites from 9 patients), and oesophagus (6 sites from 6 patients). A 3D volume data set (C-scan) was
obtained per imaged site. The OCT software always generated data to a fixed depth of 3 mm, regardless of the
on-screen depth set by the user, which was for viewing purposes only. Consequently, the other two dimensions
were fixed to 3 mm length to obtain a cube-shaped C-scan. The lateral resolution was set to 512 pixels which
implies that each C-scan consists of 512 transverse OCT images (B-scans). As the axial resolution of the system
was also fixed at 512 pixels, the resulting OCT images contains 512 axial scans (A-scans) each.
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Figure 1. Flow diagram of OCT image-processing stages and alternatives.

2.2 Image classification using morphological features-fed principal component analysis

Matlab 7.9.0.529 (R2009b) was utilized off-line for image processing. The first step in processing consisted of a
region segmentation of every OCT image according to the intensity variation along the vertical direction employ-
ing the k-means method.11 The employment of such a segmentation strategy avoids the necessity of previously
known information about the tissue structure as in12 and, therefore, makes the approach more extensible for
tissue classification in other medical applications. To study the intensity distribution of each segmented region,
the first four statistical moments (mean, standard deviation, skewness and kurtosis) of the intensity values per
region were computed, and a fifth feature was created from the relative area of the segmented region with respect
to the total area of the B-scan. Accordingly the total number of extracted features from the OCT images for
tissue classification was five times the number of segmented regions. Finally, a kNN classification13 was applied
to the extracted features to understand the relationship between the image parameters, and to form predictions
for newly acquired data.

For analysis of tissue discrimination performance all data were randomly divided into three nonoverlapping
sets. Two of these sets were employed as a training set for the kNN classifier and the other was employed
as validation set to compute accuracy, sensitivity, specificity, negative predictive value (NPV) and positive
predictive value (PPV). These measures were obtained based on the ability to discriminate a given tissue type in
this validation set from all other categories evaluated. This procedure was repeated three times for all possible
permutations of training and test sets and reported measures were the averages of these three executions. This
threefold cross validation procedure was replicated for a varying number of segmented regions, to study the
dependence of the tissue discrimination capability of the approach on the number of segmented regions chosen.
Furthermore, an additional PCA processing of the extracted features as in5 is included in this study, and its
provided increase in discriminative power is estimated through a cross-validation procedure as described for
the raw extracted morphological features. A schematic of the whole image enhancement and interpretation is
depicted in Figure 1 and a more detailed description of the image correction process that comprises reflection
artifact removal and surface detection and alignment, and the employment of the kNN classifier to understand
the relationship between the image parameters can be found in the previous paper.10

3. RESULTS AND DISCUSSION

The extracted metrics initially proposed for distinguishing upper gastrointestinal pathologies, i.e. through mor-
phological analysis of the segmented OCT images, are shown graphically for each tissue type in Figure 2. As
anticipated by alternative approaches employing quantitative measurements of the attenuation coefficient,8,9

region segmentation highlights the steeper decrease of the region mean intensity from tumor. This implies that
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Figure 2. Morphological metric values (mean±SEM) for the three different tissue types: tumor, stomach and oesophagus.

tumor mean intensity is higher than stomach mean intensity for superficial regions while the opposite situation
is encountered for deep regions in the axial direction. Oesophagus appears to be mostly brighter (higher mean
intensities) in all regions. However, other metrics such as the standard deviation or skewness seem to be more
suitable for distinguishing the different pathologies since they provide, as depicted in Fig. 2, larger statistical
differences. Still, these differences look insufficient to individually provide reliable sensitivity and specificity
for identifying tumor from stomach and oesophagus and the employment of further analysis as PCA or linear
discriminant analysis (LDA)5 to combine their discriminative power in a lower number of dimensions seems
necessary. The validity of this assumption for PCA is demonstrated in Figure 3, which graphically depicts an
evaluation of the principal components as classifiers showing much greater statistical differences than in the
initial image classification features depicted in Fig. 2.

Figure 4 qualitatively compares the performance of the proposed approach, i.e. subsequent PCA of the
morphological features, as a function of the number of segmented regions chosen. A tendency to group is
observed in the scatter plots when the first three components are maintained that, as depicted in Fig. 3, contain
most of the variance present in the initial image parameters. This indicates the ability of the approach to coarsely
differentiate diagnostic categories. The degree of clustering within the same tissue type and the separation among
types seem to increase as the number of segmented regions increases but this qualitative assumption needs to be
confirmed using specificity and sensitivity values, i.e. through the employment of the kNN classifier to predict
unknown new data and to establish a comparison with the prediction without PCA. Sensitivity and specificity
values are compared with those obtained directly using morphological image parameters as classifiers. Since the
overlap among these categories is also noticeable, a value of k = 1 was selected because larger values of k reduced
the effect of noise on the classification, but also made boundaries between classes less distinct.6

The result of this performance evaluation is summarized in Table 1 and confirms that using more than 2
segmented regions does not provide a further improvement in the accuracy. In addition, it would imply an
increase in the computational load because five features are extracted per segmented region. In fact for six
regions, tissue identification capabilities start to decrease dramatically, presumably due to the noisy results of
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Figure 3. Metric values (mean±SEM) when principal component analysis was applied to potential image classification
features and images were divided into a different number of segmented regions, for the three different tissue types: tumor,
stomach and oesophagus.
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Figure 4. Grouped scatter plots for the distinct gastrointestinal tissues depending on the number of segmented regions.

Table 1. K -nearest neighbour classification results for varying number of segmented regions.

Number of
segmented
regions

Sensitivity Specificity PPV NPV Accuracy

1 99.5%:
99.8%:100%

99.0%:
98.7%:98.8%

97.3%:
99.4%:86.4%

99.8%:
99.7%:100%

99.2%:
99.4%:98.9%

2 99.9%:
100%:100%

99.8%:
99.7%:100%

99.6%:
99.6%:99.6%

99.9%:
100%:100%

99.9%:
99.9%:100%

3 99.9%:
100%:100%

99.8%:
99.8%:100%

99.5%:
99.9%:98.6%

100%:
100%:100%

99.9%:
100%:100%

4 99.9%:
100%:100%

99.8%:
99.9%:99.9%

99.5%:
99.9%:98.1%

100%:
100%:100%

99.9%:
100%:99.9%

5 99.9%:
100%:100%

99.7%:
100%:99.7%

99.9%
100%:96.0%

100%:
100%:100%

99.8%:
100%:99.7%

6 95.5%:
89.1%:99.6%

78.1%:
83.4%:78.2%

53.0%:
91.7%:26.1%

97.9%:
78.8%:100%

77.2%:
87.2%:79.7%

the segmentation process. Classification measures are provided per diagnostic category from all others, i.e. an
accuracy of 99.2%:99.4%:98.9% indicates that accuracy in tumour, stomach and oesophagus identification are
99.2%, 99.4% and 98.9%, respectively. Table 2 therefore compares the sensitivity and specificity values attained
with two segmented regions with previous approaches proposed for tissue classification using OCT. Obtained
classification measures reinforce the significant improvement attained using morphological features as compared
to textural. PCA post-processing of the extracted features is required to achieve reliable classification for the
clinical setting when textural approaches are followed. In spite of the larger statistical differences attained with
the PCA processing of the extracted morphological features, their further processing with the KNN classifier
already provides reliable tissue categorization in clinical settings and slightly further enhancement is attained by
the intermediate PCA stage. The further PCA processing of the extracted features aids in reducing the variable
dimensions, i.e. it reduces the spatial complexity for in vivo classifications but it is not compulsory as compared
to textural to increase the discriminative power and provide trustworthy tissue classification.



Table 2. Quantitative comparison between morphological and textural approaches for feature quantification of OCT images
in the classification of gastrointestinal tissues.

Feature
extraction
approach

Sensitivity Specificity PPV NPV Accuracy

Morphological
(2 regions)

99.9%:
100%:100%

99.8%:
99.7%:100%

99.6%:
99.6%:99.6%

99.9%:
100%:100%

99.9%:
99.9%:100%

Morphological
(2 regions) +

PCA

100%:
99.9%:100%

99.8%:
100%:98.9%

99.51%:
100%:86.9%

100%:
99.9%:100%

99.9%:
100%:98.9%

DFT + SGLM 91.1%:
83.2%:100%

69.3%:
85.6%:61.1%

50.1%:
92.2%:16.4%

95.8%:
71.2%:100%

74.9%:
84.0%:63.9%

DFT + SGLM
+ PCA

96.1%:
93.9%:100%

85.6%:
92.2%:70.5%

69.7%:
96.1%:20.6%

98.5%:
88.0%:100%

88.3%:
93.3%:72.6%

DFT + CSAC 96.2%:
78.9%:99.9%

50.9%:
83.8%:53.0%

40.6%:
90.9%:14.0%

97.6%:
65.8%:100%

62.5%
80.5%:56.3%

DFT + CSAC
+PCA

95.9%:
93.8%:99.9%

86.0%:
91.3%:69.9%

70.27%:
95.7%:20.3%

98.4%:
87.7%:100%

88.6%:
93.0%:72.1%

4. CONCLUSIONS

A principal component analysis to increase the discriminative power of a previously reported two-step method-
ology for extracting features from OCT images that serve for tissue classification is proposed in this study. OCT
images were first segmented in the axial direction in an automated manner according to intensity, avoiding un-
certainty in the identification of the most appropriate region of interest for feature computation. Afterwards, a
morphological analysis of the segmented OCT images was employed for feature quantification. Sensitivity and
specificity values were obtained in a cross validation procedure to eliminate the dependance on the employed
data sets and demonstrate that the approach surpasses previous alternatives and reliably provides gastrointesti-
nal tissue classification in a clinical setting. A subsequent principal component analysis of the morphological
image parameters was utilized to combine the discriminative power of the morphological image parameters in
a lower number of dimensions, though simultaneously enhancing the accuracy and the time performance of the
approach in the classification stage. However, sensitivity and specificity enhancement were not as relevant as in
other alternatives methodologies found in the literature, i.e. textural features, though confirming the enhanced
behaviour attained using morphological features as compared to textural. Additionally, the blind region segmen-
tation process avoids the necessity of previously known information about the tissue structure for determining
the most appropriate region of interest for image feature quantification. Accordingly the extendability of the ap-
proach for future tissue classification in other OCT applications is in this way greatly enhanced. For this reason,
we are currently imaging further gastrointestinal tissues to confirm that the deviations that are investigated as
disease marker are greater than interpatient variation, as well as tissue specimens from urological operations to
demonstrate the validity of the approach in another medical application.
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