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INTRODUCTION 
The detection of tissue surfaces during endoscopic 
surgery has the potential to allow patient-specific 
pre-operative images to be used for surgical guidance. 
The most commonly attempted methods include 
stereoscopy, SLAM, shape from shading/motion, 
time-of-flight, and structured lighting (SL) [1, 2, 3, 4, 
5]. Of these, SL and time-of-flight have the advantage 
of not being dependent on tissue texture. Endoscopic 
implementations of SL are difficult due to requirements 
for high light levels and unambiguous feature detection, 
although there have been some recent reports in the 
literature [6, 7, 8].  

In previous work, we have demonstrated a SL 
system that uses a supercontinuum fibre laser together 
with an optical fibre probe (diameter 1.9 mm) to create 
an array of spots that are each at a unique wavelength 
(~5 nm bandwidth). This approach has many 
advantages, including the high brightness of the pattern, 
detection by a standard endoscope camera, low 
sensitivity to tissue pigmentation, small diameter and 
flexibility. A beam chopper switches rapidly between 
SL and white light modes, providing video rate display 
for the surgeons. A central part of the process to 
reconstruct the tissue surface using this system is the 
identification of the coloured spots. Previously, 
extended H-maxima and RGB-wavelength conversion 
were used to estimate the spot centres and identify them. 
In this paper we present a faster, more accurate and 
robust method to detect centroids as well as boundaries 
of different projected multispectral laser spots and to 
achieve the unique identification of each. The other 
stages in the reconstruction procedure (calibration, 
triangulation and reconstruction) as well as a description 
of the hardware used are described in previous 
publications [6, 7]. 

MATERIALS AND METHODS 

A schematic of the algorithm is displayed in Fig. 1. The 
RGB images collected by the camera are firstly 
converted into images in HSV space to separate 
intensity and hue information for the following steps. 
Thresholding is used to suppress background noise and 
generate a convex hull that encloses the spot pattern, 
and then a binary image created by a lower threshold is 
combined with the convex hull, generating a mask 
representing the region of interest (ROI). The intensity 

and hue maps are filtered by Wiener and Gaussian 
filters, to suppress noise and enhance the intensity peaks 
of the spot centres respectively, followed by histogram 
equalization. Regional maxima of the intensity map are 
then calculated, using the extended H-maxima 
transform, which correspond to the bright central areas 
of each spot. These are treated as initial seeds for the 
region growing procedure. The criteria for this are 
established using ranges defined by the mean and 
variance of all pixel intensity and hue values in each 
seed. The grown result is evaluated by average spot size 
and similarity of hue value in order to merge small spots 
that are in contact. Spots identified as too small or large 
are improved by further region growing using ‘tighter’ 
or ‘looser’ growth criteria. Finally, morphological 
transforms such as image opening and closing are used 
to refine the shapes and boundaries of grown spots. 

	
Fig.	1: (a) General 3D reconstruction procedure. (b) Example 
of spot detection using region growing.	
 

After detection each spot is identified using an 
algorithm that incorporates both colour and spatial 
information in the pattern. A Delaunay triangulation is 
performed on a reference image where all spots have 
been detected. The normalised RGB values of the 
vertices of each triangle are then recorded. For a 
particular test image a spot of interest will be a node for 
several surrounding triangles. To identify each spot in 
other images the spot with the highest number of 
matching neighbours is chosen. This procedure is done 
by matching triangles based on the similarity of their 
interior angles (within a defined threshold) and the 



Euclidian distance between their nodes’ RGB values. 

RESULTS 

Seven SL images from a calibration object and ex vivo 
porcine tissue (three from a white plane, two from liver, 
one from kidney and one from heart) were tested using 
the spot detection method. The result is compared with 
manually-identified spots, evaluated by visual 
inspection and quantified in terms of sensitivity and 
precision. The results are shown in Fig. 2 and Table 1. 

  

 
Fig. 2: Images of detected centroids and spot boundaries 
overlaid on RGB images of calibration and porcine tissue 
surfaces. (a) White plane. (b) Liver. (c) Heart. (d) Kidney. 
Table 1: Spot detection results for seven images. Sensitivity 
indicates the fraction of spots correctly detected; Precision is 
the fraction of correct detections in all detected spots.	

Sensitivity Precision Surface 
0.9417  0.9912  White Plane image 1 
0.9667  1.0000  White Plane image 2 
0.9508  0.9831  White Plane image 3 
0.7672 0.9674 Liver image 1 
0.7500  0.9355  Liver image 2 
0.7297  0.9529  Heart 
0.6102  0.8675  Kidney 
 

The results shown in the above table indicate high 
sensitivity and precision for images of the white plane. 
However, sensitivity is lower for soft tissue. This is 
mainly caused by strong absorption at the blue end of 
the spectrum due to haemoglobin. Given that global 
parameters are adopted in the local maxima searching 
procedure, some blue spots are missing. For darker 
spots whose intensities are similar to those of the 
background, boundaries detected by region growing are 
also inaccurate. Furthermore, large distortions on some 
parts of tissue surface also result in severe spot shape 
deformation, introducing more detection error. 

Figure 3 shows the results of the spot identification 
algorithm between test and reference images in a 
calibration dataset. The performance of the algorithm 
was evaluated by analysing the number of correctly 
identified spots, or true positives (TP), and incorrectly 
detected spots, or false positives (FP). The probability 
that a spot was labelled was calculated using 
(PL=[TP+FP]/TP) along with the probability that each 
labelled spot was labelled correctly (PC/L=TP/[TP+FP]). 
High PL (89.8%) and PC/L (98.6%) values were 
obtained. Robustness was tested by removing spots at 

random and repeating the matching. As spots are 
removed PL decreases but PC/L remains stable close to 
100%. 

  
Fig. 3: Spot identification. (a) Reference showing numbered 
spots and triangulation. (b) Test image with matched triangles.	

DISCUSSION 

Initial results from a multispectral spot detection 
algorithm have been presented, indicating ability to 
detect spot boundaries. Spot identification using colour 
and spatial information has also been demonstrated that 
is robust to occlusions or spots with low visibility. The 
results also show that our system can be potentially used 
in lesion detection and aid rigid and flexible endoscopy 
if adapted to ‘front-viewing’ systems. 

Future work will involve evaluation of the 
robustness of these algorithms in the presence of 
varying tissue type and morphology. Besides, this 
boundary detection method introduces a possibility for 
denser 3D reconstruction and adaption with near 
infrared cameras. Hardware modifications are also 
planned to alter the distribution of wavelengths of the 
spots and record high dynamic range images using 
different camera exposure times. Real-time computation 
would also allow a rapid reconstruction of the surface. 
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