Logic Programming in Assumption-Based Argumentation Revisited — Semantics
and Graphical Representation

Claudia Schulz and Francesca Toni
{claudia.schulz, ft} @imperial.ac.uk
Department of Computing
Imperial College London
London SW7 2AZ, UK

Abstract

Logic Programming and Argumentation Theory have been
existing side by side as two separate, yet related, techniques
in the field of Knowledge Representation and Reasoning for
many years. When Assumption-Based Argumentation (ABA)
was first introduced in the nineties, the authors showed how
a logic program can be encoded in an ABA framework and
proved that the stable semantics of a logic program corre-
sponds to the stable extension semantics of the ABA frame-
work encoding this logic program. We revisit this initial work
by proving that the 3-valued stable semantics of a logic pro-
gram coincides with the complete semantics of the encod-
ing ABA framework, and that the L-stable semantics of this
logic program coincides with the semi-stable semantics of
the encoding ABA framework. Furthermore, we show how
to graphically represent the structure of a logic program en-
coded in an ABA framework and that not only logic program-
ming and ABA semantics but also Abstract Argumentation
semantics can be easily applied to a logic program using these
graphical representations.

1 Introduction

Logic Programming (LP) is a frequently used technique for
the representation of reasoning problems in terms of a logic
program consisting of rules which are made of atoms and
default elements called negation-as-failure (NAF) literals,
which are assumed to be true as long as their complemen-
tary atom cannot be proven to hold. A variety of seman-
tics have been defined for logic programs yielding differ-
ent solutions to a given problem, e.g. the stable (Gelfond
and Lifschitz 1988), 3-valued stable (Przymusinski 1989),
3-valued L-stable (Eiter, Leone, and Sacca 1997), and well-
founded (Van Gelder, Ross, and Schlipf 1991) model se-
mantics. Most of them are defined as sets of atoms form-
ing a fixpoint of a function which alters the original logic
program (see (Baral and Gelfond 1994) for an overview).
Assumption-Based Argumentation (ABA) (Bondarenko et
al. 1997; Dung, Kowalski, and Toni 2009; Toni 2014) is
another technique for representing reasoning problems, but
in terms of an ABA framework consisting of rules which
are made of atoms and default elements called assumptions,
where for each assumption a contrary literal is defined. Even

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

though the representation of knowledge in ABA resembles
logic programs, the semantics of an ABA framework are de-
termined in a completely different way, namely as sets of
assumptions called extensions, which are able to “defend”
themselves against all contrary evidence. Recently, a new
method for determining the complete semantics of an ABA
framework has been introduced, where all assumptions are
assigned one of the labels IN, OUT, or UNDEC according to
labelling rules, thus splitting the assumptions into accept-
able (IN), non-acceptable (OUT), and neutral (UNDEC) ones
(Schulz and Toni 2014a). This method was proven equiva-
lent to the notion of complete extension semantics, where
the assumptions labelled IN coincide with the extensions.

In early work on ABA (Bondarenko et al. 1997), the au-
thors demonstrate how to encode a logic program in an ABA
framework in such a way that, for example, the stable mod-
els of the logic program correspond to the stable extensions
of the encoding ABA framework. This correspondence has
recently proven useful to explain stable models in argumen-
tative terms (Schulz and Toni 2013; 2014b). Inspired by the
usefulness of these correspondence results, we show that
the 3-valued stable models of a logic program correspond
to the complete labellings and extensions of the encoding
ABA framework. Furthermore, we investigate the relation
of the 3-valued L-stable semantics of a logic program with
ABA semantics. By defining a labelling version of the semi-
stable extension semantics in ABA (Caminada et al. 2013),
we prove that the 3-valued L-stable models of a logic pro-
gram correspond to the semi-stable labellings and extensions
of the encoding ABA framework. These results do not only
improve the understanding of the relationship between LP
and ABA, but can also be useful in applications such as ex-
planations of LP semantics (Schulz and Toni 2014b).

Based on our correspondence results, we also demon-
strate how the semantics of a logic program can be eas-
ily displayed in a graphical representation of the ABA la-
belling semantics. Consequently, our correspondence re-
sults do not only provide novices and experts in LP with
a different way of thinking about the 3-valued (L-) sta-
ble model semantics (namely in argumentative terms), but
also with a graphical representation thereof. In addition,
we show how such an ABA graph can be used to ap-
ply Abstract Argumentation (AA) semantics (Dung 1995;
Caminada and Gabbay 2009) to a logic program, which is

particularly interesting for the semi-stable AA semantics as
it differs from the 3-valued L-stable model semantics for
logic programs (Caminada, S4, and Alcantara 2013), as op-
posed to the semi-stable ABA semantics which (we prove)
corresponds to the 3-valued L-stable model semantics for
logic programs.

2 Background

Logic Programming

A logic program P is a set of clauses of the form a <+
A1,y Ay NOE Quyi1,y - .., NOE Gy, (Myn > 0), where
a and all a; are atoms and not a1, ...,Nn0t G4y, are
negation-as-failure (NAF) literals. A literal is an atom or
a NAF literal. —.[denotes the complement of a literal [,
i.e. if [is an atom a then —.I = not a, and if [is a
NAF literal not a then —.I = a. For a set of literals S,
-.8 = {~.1 |l € S}. HBp denotes the Herbrand Base
of P and Litp = HBp U —.HBp is the set of all liter-
als. Clauses containing variables are used as shorthand nota-
tion for all their ground instances. All LP concepts reviewed
in the following can be found in (Przymusinski 1991b;
Eiter, Leone, and Sacca 1997).

A 3-valued interpretation of alogic program P is a pair

(T,F),where T, F CHBpand T N F = 0.

Atoms in T are considered TRUE, atoms in F FALSE. All
other atoms inif = HBp\ (7T UF) are UNDEFINED. A NAF
literal not a is TRUE iff a is FALSE, not a is FALSE iff a is
TRUE, and not a is UNDEFINED iff a is UNDEFINED.

The truth value of | € Litp with respect to (T, F) is
denoted val(l), where:

e val(l) =T,if | is TRUE;
e val(l) = F,if | is FALSE;
e val(l) = U, if | is UNDEFINED.

The truth values are ordered by 7" > U > F'. The partial

reduct % of P with respect to a 3-valued interpretation

(T, F) is obtained by replacing each NAF literal in every
clause of P by its truth value. Based on this, the semantics
of a logic program is defined as follows:

e A 3-valued interpretation (7,F) satisfies a clause
4 4 A1y .oy O, N0t Qg1 -« oy NOE Gy if val(a) >
min{val(ai),...,val(not amin)}

(T, F) satisfies a < ifval(a) =T.

e A 3-valued interpretation (7, F) of P is a 3-valued model

of P if (T, F) satisfies every clause in P.

e A 3-valued model (T, F) of P is a 3-valued stable model

of P if it is the minimal 3-valued model of ﬁ

e A 3-valued stable model (7,F) of P is a 3-valued L-
stable model (Least-undefined) of P if I/ is minimal (w.r.t.
set inclusion) among all 3-valued stable models of P.

Example 1. Let P; be the following logic program:

k< notp; p< notk; r < notr; r < notr,notk.
Py has three 3-valued stable models: (73 = {p}, F1 =
{k}). (T2 = {k}, 72 = {p}). (Ts = 0. 75 = 0). The
first two are the 3-valued L-stable models of P;.

Assumption-Based Argumentation

An Assumption-Based Argumentation (ABA) framework
(Bondarenko et al. 1997; Dung, Kowalski, and Toni 2009)
isatuple (L, R, A, ~), where:

e (£, R) is a deductive system, with £ a language and R a
set of inference rules! of the form sg < s1,...,5, (n >
0) with sq, ..., s, € L;

e A C L is anon-empty set of assumptions;

e " is a total mapping from A into £ defining the contrary
of assumptions, where @ denotes the contrary of « € A.

An argument AP F s for conclusion s € L supported by
a set of assumption-premises AP C A is a finite tree, where
every node holds a sentence in £ or the sentence 7 (where
7 ¢ L stands for “true”), such that:

e the root node holds s;
e for every node N

— if N is a leaf then N holds either an assumption or 7;

— if N is not a leaf and N holds the sentence %, then
there is an inference rule ¢ty < t1,...,t,, € R and
either m = 0 and the only child node of N holds 7
or m > 0 and N has m children holding ¢4, ..., %,,;

e AP is the set of all assumptions held by leaf nodes.

We call a set of assumptions AP C A an argument-
supporting set iff there exists an argument AP F s for some
s € L. Let Asms, Asms; C Aand o € A.

o Asms attacks o iff there exists an argument AP + @&
such that AP C Asms. Asms attacks Asmsy iff Asms
attacks some v € Asmsy.

o Asmst = {a € A| Asms attacks o} consists of all
assumptions that Asms attacks.

o Asms defends o iff Asms attacks all sets of assumptions
attacking a.

o Asms is a complete assumption extension of (L, R, A, ~)
iff Asms consists of all assumptions it defends and Asms
does not attack itself.

e Asms is a semi-stable assumption extension of
(L, R, A, ") iff it is a complete assumption exten-
sion of (£, R, A,) and Asms U Asms™ is maximal
(w.r.t. set inclusion) among all complete assumption
extensions of (£, R,.A, ~) (Caminada et al. 2013).

Example 2. Consider the ABA framework ABA; with:

L4 [’ = {k7pa Ta"{aﬂ-ap}

e R={k+ mp+ KT+ p; 7+ pK}

e A={n,mp} R=kT=pp=r

In this framework {7} (and any superset thereof) attacks x,
{k} (and any superset thereof) attacks 7, and {p} (and any
superset) attacks p. ABA; has three complete assumption

extensions: Asms; = {k}, Asmsy = {7}, Asmsz = 0.
Then,

!'Using the same notation < for clauses in a logic program and
rules in ABA will facilitate the presentation of our results.

o Asms] = {7}, Asms; U Asms| = {k,7};
o Asmsy = {k}, Asmsy U Asms] = {k,7};
o Asmsi =), Asmsz U Asmsd = (.

Thus, both Asms; and Asmsy are semi-stable assumption
extensions of ABA;.

Inspired by the labelling approach for AA semantics
(Dung 1995; Caminada and Gabbay 2009), a labelling ver-
sion of the complete semantics was recently introduced for
ABA and was proven equivalent to the complete assumption
extension semantics (Schulz and Toni 2014a), where the as-
sumptions labelled IN coincide with the extensions.

An assumption labelling of (L, R, A, ~) is a total func-
tion LabAsm : A — {IN, OUT, UNDEC}.

IN(LabAsm) = {a € A | LabAsm(a) = IN} con-
sists of all assumptions labelled IN. oUT(LabAsm) and
UNDEC(LabAsm) are the sets of all assumptions labelled
OUT and UNDEC, respectively.

LabAsm is a complete assumption labelling of
(L, R, A, ") iff for each assumption @ € A it holds
that:

e if LabAsm(«) = IN then each set of assumptions attack-
ing « contains some 3 such that LabAsm(f) = OUT;

o if LabAsm(a) = OUT then there exists a set of assump-
tions AP attacking « such that AP C IN(LabAsm);

e if LabAsm(a) = UNDEC then each set of assumptions
attacking « contains some [such that LabAsm(f) # IN,
and there exists a set of assumptions A P attacking « such
that AP N ouT(LabAsm) = {).

Example 3. ABA; has three complete assumption la-
bellings, coinciding with the three assumption extensions
given in Example 2:

e IN(LabAsmy) = {k}, ouT(LabAsm,) = {r},
UNDEC(LabAsm,) = {p};

e IN(LabAsmy) = {r}, ouT(LabAsms) = {k},
UNDEC(LabAsms) = {p};

o IN(LabAsms) =0, ouT(LabAsms) = 0,
UNDEC(LabAsms) = {k, 7, p}.

3 Logic Programming encoded in ABA

Even though the semantics of a logic program and of an
ABA framework are determined in completely different
ways, they share structural features. Both represent knowl-
edge in terms of if-then statements comprising defeasible el-
ements, i.e. elements which are true by default as long as no
contrary information can be proven to hold: NAF literals in
logic programs and assumptions in ABA frameworks. Every
assumption « has a contrary @ = z, where x could also be
the contrary of other assumptions. A NAF literal not a has
a complement a, but in contrast to contraries in ABA, a is
the complement of only one NAF literal (namely of not a).
Therefore, a logic program can be seen as a special instance
of an ABA framework which means that every logic pro-
gram can be encoded in an ABA framework.

Definition 1 ((Bondarenko et al. 1997)). Let P be a logic
program with Herbrand Base HBp. The corresponding ABA
Sframework of P is (L, R, A, ~) where

o ,C:Litp;
e R="P;
e A= ﬁ.IHBp;

e forall nota € A: not a = a.

Example 4. The corresponding ABA framework of P;
(Example 1), called ABAp,, is equivalent to ABA;
(Examples 2,3), where not k substitutes x, not p sub-
stitutes 7, and not r substitutes p. Thus, the se-
mantics of ABAp, and ABA; correspond, for ex-
ample the complete assumption labellings of ABAp,
are IN(LabAsmi) = {not k}, ouUT(LabAsm;) =
{not p}, UNDEC(LabAsmy) = {not r} etc.

3-Valued Stable Models vs. Complete Labellings

We now show that the 3-valued stable models of a logic pro-
gram correspond to the complete assumption labellings of
the corresponding ABA framework.

Theorem 1. Let P be a logic program, (L, R, A,) the
corresponding ABA framework of P, and LabAsm an as-
sumption labelling of (L, R, A,). If LabAsm is a com-
plete assumption labelling of (L, R, A, 7), then (T, F) with
T = —.oUuT(LabAsm) and F = —.IN(LabAsm) is a 3-
valued stable model of P, where U = —.UNDEC(LabAsm).

Proof. Let I-3,p denote modus ponens, where NAF literals
are treated like atoms.

e By Theorem 2 in (Schulz and Toni 2014a): IN(LabAsm)
is a complete assumption extension.

e By Theorem 5.9 in (Bondarenko et al. 1997): P U
IN(LabAsm) is a complete scenario of P as defined by
(Dung 1991).

e By Corollary 4.16(1) in (Brogi et al. 1992): E =
P U IN(LabAsm) U {-mnota|a € HBp,P U
IN(LabAsm) bprp a} is a stationary expansion of P as
defined by (Przymusinski 1991a).

e By Theorem 3.1 in (Przymusinski 1991a): M =
{a| E Fpyp a} U {notal|E Fpp nota} is a partial
stable model of P as defined in (Przymusinski 1991b).

e {a|E Fp a}isequivalentto {a|PUIN(LabAsm) Fyrp
a} and {not a | E tFpp not a} to {not a | P U
IN(LabAsm) bpyp not a}. Thus, M = {a | P U
IN(LabAsm) Farp a} U IN(LabAsm).

e By Proposition 3.2 in (Przymusinski 1991b): M =
(T,F) with T = {a | P UIN(LabAsm) Fpyp a} and
F = —.IN(LabAsm) is a 3-valued stable model of P.

e By definition of ABA arguments and complete as-
sumption labellings: 7 = {a | AP F a, AP C
IN(LabAsm)} = -{not a | AP F a, AP C
IN(LabAsm)} = —.0UT(LabAsm)

e By definition of 3-valued model: U = HBp \ (T
F) =HBp \ (—.0UT(LabAsm) U —.IN(LabAsm))
—.A\ —.(ouT(LabAsm) U IN(LabAsm)) (by Def. 1
= —.UNDEC(LabAsm)

C

[j\-/

Theorem 2. Let P be a logic program, (L,R,A, ") the
corresponding ABA framework of P, and (T,F) a 3-
valued interpretation of P. If (T,F) is a 3-valued sta-
ble model of P then LabAsm with IN(LabAsm) = —.F,
OUT(LabAsm) = —.T, and UNDEC(LabAsm) = ~U is a
complete assumption labelling of (L, R, A, 7).

Proof. Let I-3;p denote modus ponens, where NAF literals
are treated like atoms.

e By definition of 3-valued stable model: M = T U —-.F
is a partial stable model of P as defined in (Przymusinski
1991b).

e By Theorem 3.1 in (Przymusinski 1991a) £ = P U
{nota|nota € M} U{-nota|a € M} is a stationary
expansion of P.

e By Corollary 4.16(ii) in (Brogi et al. 1992): P U (E N
—.HBp) is a complete scenario of P.

e By Theorem 5.9 in (Bondarenko et al. 1997): EN—-."HBp
is a complete assumption extension.

o This can be simplified to {nota|nota € M} is a complete
assumption extension, and further to —.F is a complete
assumption extension.

e By Theorem 2 in (Schulz and Toni 2014a):
IN(LabAsm) = ~.F

e By Theorem 2 in (Schulz and Toni 2014a):
out(LabAsm) = {nota| AP + a,AP C —.F} =
{nota|PU-.F bpypa} ={nota|P U {notb|notb e
M} bypal={notalaeT}=~-T

e By Theorem 2 in (Schulz and Toni 2014a):
UNDEC(LabAsm) = A \ (IN(LabAsm) U
ouT(LabAsm)) = = HBp \ (- F U ~.T)=-U O

From Theorems 1 and 2 and Theorem 2 in (Schulz and
Toni 2014a) it follows directly that the 3-valued stable mod-
els of a logic program and the complete assumption exten-
sions of the corresponding ABA framework coincide, too.

Example 5. There is a direct correspondence between
(T1,F1) and LabAsmy, (T2, F2) and LabAsms, and
(T3, F3) and LabAsmg of Py and ABAp, (Examples 1,3).

This correspondence between LP and ABA semantics has
significant impact. Firstly, it can be useful for approaches
like (Schulz and Toni 2013; 2014b) where ABA is used to
explain answer sets of an extended logic program (logic pro-
grams with both NAF and strong negation) and which rely
on the correspondence of the answer set semantics in LP
and the stable semantics in ABA. Secondly, novices in LP
have the possibility to view LP from a different perspective,
namely an argumentative one, and thereby gain a better un-
derstanding of it. Even for LP experts, thinking about the
semantics of a logic program in terms of ABA semantics
can provide useful insight, especially because assumption
labellings can be easily represented in a graph (Section 4),
making the LP semantics graphically accessible through the
corresponding ABA framework.

L-Stable Models vs. Semi-Stable Labellings

Inspired by the definition of semi-stable argument labelling
in AA which is a complete argument labelling (Caminada

and Gabbay 2009) with a minimal set of undecided argu-
ments, we now define a labelling version of the semi-stable
semantics in ABA as complete assumption labelling with a
minimal set of undecided assumptions. We prove correspon-
dence of this new semi-stable assumption labelling with the
semi-stable assumption extension semantics in ABA as well
as with the 3-valued L-stable model semantics in LP. These
results extend the correspondence of LP and ABA seman-
tics, and its impact explained in the previous paragraph.

Definition 2. Let (£, R, A, ~) be an ABA framework and
let LabAsm be an assumption labelling. LabAsm is a
semi-stable assumption labelling of (L, R, A, ~) iff it is
a complete assumption labelling of (£, R, A, ") where
UNDEC(LabAsm) is minimal (w.r.t. set inclusion) among
all complete assumption labellings of (£, R, A, 7).

The following theorems prove the correspondence be-
tween semi-stable assumption labellings and semi-stable as-
sumption extensions of an ABA framework.

Theorem 3. Let (L, R, A,~) be an ABA framework,
LabAsm an assumption labelling, and Asms C A a
set of assumptions. LabAsm is a semi-stable assumption
labelling of (L, R, A,”) iff Asms = IN(LabAsm) is
a semi-stable assumption extension of (L,R,A,) with
Asmst = ouT(LabAsm) and A\ (Asms U Asms™) =
UNDEC(LabAsm).

Proof. By Theorem 2 in (Schulz and Toni 2014a) and since
maximising Asms U Asms™ is equivalent to minimising
A\ Asms U AsmsT. O

Example 6. ABAp, has two semi-stable assumption la-
bellings, LabAsm; and LabAsms, which correspond to the
two semi-stable assumption extensions Asms; and Asmsg
(Examples 2,3).

We now show that the 3-valued L-stable models of a
logic program correspond to the semi-stable assumption la-
bellings of the corresponding ABA framework.

Theorem 4. Let P be a logic program, (L, R, A, ~) the cor-
responding ABA framework of P, and LabAsm an assump-
tion labelling of (L, R, A, ~). If LabAsm is a semi-stable
assumption labelling of (L, R, A,) then (T, F) with T =
—.0UT(LabAsm) and F = —.IN(LabAsm) is a 3-valued
L-stable model of P, where Y = —.UNDEC(LabAsm).

Proof By Theorem 1 and since minimising
UNDEC(LabAsm) is equivalent to minimising
—.UNDEC(LabAsm). O

Theorem 5. Let P be a logic program, (L, R, A,) the
corresponding ABA framework of P, and (T,F) a 3-
valued interpretation of P. If (T, F) is a 3-valued L-stable
model of P then LabAsm with IN(LabAsm) = -.F,
oUT(LabAsm) = —.T, and UNDEC(LabAsm) = —.U is
a semi-stable assumption labelling of (L, R, A, 7).

Proof. By Theorem 2 and since minimising { is equivalent
to minimising —.U4. O

From Theorems 3 to 5 it follows directly that the 3-
valued L-stable models of a logic program also correspond
to the semi-stable assumption extensions of the correspond-
ing ABA framework.

Example 7. The two 3-valued L-stable models of P,
(T1, F1) and (T3, F2), correspond to the two semi-stable
assumption labellings and extensions of ABAp, (Exam-
ples 1,6).

4 Graphical representation of assumption
labellings

In this section, we show how to represent an ABA frame-
work graphically, which has not been done in the ABA liter-
ature before, and how to display its complete labellings. This
is particularly interesting when using ABA to encode a logic
program, as the correspondence of LP and ABA semantics
proven in previous sections implies that the semantics of a
logic program can be represented graphically in argumenta-
tive terms. Since the semantics of an ABA framework are
based on attacking sets of assumption, an ABA framework
can be represented as a graph with sets of assumptions as
nodes, and edges between them indicating attacks. Figure 1
illustrates all sets of assumptions and attacks between them
of ABAp, and indicates the labels of assumptions accord-
ing to the three complete assumption labellings of ABAp,.
However, the large number of sets of assumptions and at-
tacks makes this graph rather complicated and unclear.

U U U
{not k}«——{not p} {not r}

{not k,not r}3=3{not p,@

A

{not k, now

Figure 1: Attacks between all sets of assumption in ABAp,
along with the three complete assumption labellings (see Ex-
ample 3), indicated by the three differently coloured letters
above the singleton sets, where “U” is shorthand for UNDEC.

@ not p}

For this reason, we prove that considering all sets of
assumptions is equivalent to examining only argument-
supporting sets of assumptions of an ABA framework when
determining complete assumption labellings. This means
that it is also sufficient to display only argument-supporting
sets of assumptions in a graph, resulting in a clearer graphi-
cal representation.

Definition 3. Let (£, R, A,) be an ABA framework and
let Asms C A. Asmsgets = {AP | AP C Asms,ds €
L s.t. AP I s} is the set of all argument-supporting subsets
of Asms.

Note that all assumptions in Asms occur as singleton sets
in Asmsgets, i.e. for every a € Asms: {a} € Asmsgets
since for any assumption «, {a} F « is an argument.

Example 8. Given A = {not k,not p,not r} in ABAp,,
Asets = {{not k}, {not p}, {not r}, {not k,not r}} is the
set of all argument-supporting subsets of 4.

Definition 4. Let (£, R, A,) be an ABA framework and
let LabAsm be an assumption labelling. LabAsm is a com-
plete assumption labelling w.r.t. argument-supporting sets of
(L, R, A, ") iff for each assumption o € A it holds that:

o if LabAsm(a) = IN then each set of assump-
tions in Ag.s attacking « contains some [such that
LabAsm(B) = OUT;

o if LabAsm(a) = OUT then there exists a set of as-
sumptions AP € Ay attacking « such that AP C
IN(LabAsm);

e if LabAsm(«) = UNDEC then each set of assump-
tions in Ag.s attacking « contains some [such that
LabAsm(B) # IN, and there exists a set of assump-
tions AP € Ageqs attacking « such that AP N
oUT(LabAsm) = ().

Lemma 6. Let (L, R, A,) be an ABA framework and let
LabAsm be an assumption labelling. LabAsm is a com-
plete assumption labelling of (L, R, A,) iff LabAsm is
a complete assumption labelling w.r.t. argument-supporting

sets of (L, R, A, 7).

Proof (Sketch). Based on the ideas that (1) if an argument-
supporting set of assumptions attacks an assumption then
all its supersets also attack this assumption and (2) if a set
of assumptions attacks an assumption then there exists an
argument-supporting set of assumptions attacking this as-
sumption (see Appendix for the full proof). O

It follows from Lemma 6 that an ABA framework can be
represented equivalently as a graph of all sets of assump-
tions or as a graph of only argument-supporting sets of as-
sumptions. Figure 2 illustrates the graph of only argument-
supporting sets of assumptions and their attacks in ABAp,
and indicates the three complete assumption labellings
(equivalently the three complete assumption labellings w.r.t.
argument-supporting sets of ABAp,). This graph is consid-
erably clearer than the graph containing all sets of assump-
tions in Figure 1. Since ABAp, encodes P, the graph in
Figure 2 in fact represents the logic program ABAp,. Fur-
thermore, as complete assumption labellings correspond to
3-valued stable models, the labellings shown in Figure 2 rep-
resent the 3-valued stable models of P; in terms of the truth
values of the NAF literals in the program. This graphical rep-
resentation of a logic program can be useful for both novices
and experts to better understand a program’s structure, in
particular with respect to the dependencies between literals.

Sets of Assumptions

Sets of assumptions play an important role in the semantics
of an ABA framework. Thus, another labelling idea for ABA
is to assign labels to whole sets of assumptions rather than
to single assumptions. Due to the results from Lemma 6, we
only consider argument-supporting sets of assumptions for
this new labelling approach.

U U U
{not k}«——{not p} {no@
{not k,@

Figure 2: Attacks between argument-supporting sets of as-
sumption in ABAp, along with the three complete assump-
tion labellings (see Example 3).

Definition 5. Let (£, R, A, ~) be an ABA framework. An
assumption-set labelling is a total function LabAsmSet :
Agets — {IN,OUT, UNDEC}.

IN(LabAsmSet) consists of all sets of assumptions la-
belled IN, OUT(LabAsmSet) of all sets labelled OUT, and
UNDEC(LabAsmSet) of all sets labelled UNDEC.

We define the label of a set of assumptions in a complete
assumption-set labelling based on the labels with respect to a
complete assumption labelling of the assumptions contained
in this set. Let the labels of an assumption labelling be or-
dered by IN > UNDEC > OUT.

Definition 6. Let (L, R,A, ") be an ABA framework
and let LabAsmSet be an assumption-set labelling.
LabAsmSet is a complete assumption-set labelling of
(L, R, A, ") if there exists a complete assumption la-
belling LabAsm of (L, R, A, ") such that VAP € Ages:
LabAsmSet(AP) = min{LabAsm(a)|a € AP}

Following the labelling approach of single assumptions,
we also define a semi-stable version of the assumption-set
labelling.

Definition 7. Let (£,R, A, ") be an ABA framework
and let LabAsmSet be an assumption-set labelling.
LabAsmSet is a semi-stable assumption-set labelling of
(L, R, A,) iff it is a complete assumption-set labelling of
(L, R, A,) where UNDEC(LabAsmSet) is minimal (w.r.t.
set inclusion) among all complete assumption-set labellings
of (L, R, A, ~).

Example 9. ABAp, has three complete assumption-set la-
bellings:

e IN(LabAsmSeti) = {{not k}},
OUT(LabAsmSet;) = {{not p}},
UNDEC(LabAsmSet;) = {{not r}, {not k,not r}};

e IN(LabAsmSets) = {{not p}},

OUT(LabAsmSets) = {{not k}, {not k,not r}},
UNDEC(LabAsmSety) = {{not r}};

e IN(LabAsmSets) = 0, OUT(LabAsmSets) = 0,

UNDEC(LabAsmSets) = {{not k}, {not p}, {not r},
{not k,not r}}.

Since UNDEC(LabAsmSety) is a subset of both
UNDEC(LabAsmSet;) and UNDEC(LabAsmSets), only

LabAsmSet, is a semi-stable assumption-set labelling of
ABAp,.

Since assumption-set labellings are defined on sets of
argument-supporting assumptions, they can be represented
on the same ABA graph as assumption labellings. Figure 3

illustrates the three complete assumption-set labellings of
ABAp, . Comparing this to Figure 2 illustrates why ABAp,
has only one semi-stable assumption-set labelling, but two
semi-stable assumption labellings: The set {not k, not r} is
taken into account for the assumption-set labelling, but not
for the assumption labelling.

U U U
{not k}+—{not p} {nobt\t})
{not!}c,@

Figure 3: The three complete assumption-set labellings of
ABAp, (see Example 9).

Since arguments are deductions from argument-
supporting sets of assumptions, every argument-supporting
set represents at least one argument. Thus, the new
assumption-set labelling basically assigns labels to
arguments. In fact, complete (semi-stable) assumption-
set labellings correspond to complete (respectively
semi-stable) argument labellings in AA (Dung 1995;
Caminada and Gabbay 2009). Detailed results are omitted
for space reasons. However, this implies that a graph of
argument-supporting sets of assumptions can illustrate
both ABA semantics and AA semantics. Since an ABA
framework can encode a logic program this further implies
that the graphical representation of an ABA framework
can be used to display the structure of a logic program
along with its LP semantics as well as with the outcome
of applying AA semantics to this logic program. This
is particularly interesting in the case of the semi-stable
semantics in AA, which does not generally correspond to
the 3-valued L-stable semantics in LP (Caminada, Sa, and
Alcantara 2013).

5 Conclusions

We extended existing work on the correspondence of
logic programming and Assumption-Based Argumentation
(ABA) semantics (Bondarenko et al. 1997) by proving that
the 3-valued stable models of a logic program correspond
to the complete assumption labellings (and thus also to the
complete assumption extensions) of an ABA framework en-
coding this logic program. Furthermore, we defined semi-
stable assumption labellings inspired by the notion of semi-
stable labellings in Abstract Argumentation (AA) (Cami-
nada and Gabbay 2009) and proved that the 3-valued L-
stable models of a logic program correspond to the semi-
stable assumption labellings of the encoding ABA frame-
work. These results are useful for both novices and experts
in logic programming as they provide a different view on
these logic programming semantics in argumentative terms.

Furthermore, we show how the complete and semi-stable
assumption labellings of an ABA framework can be dis-
played on a graph of attacking sets of argument-supporting
assumptions. Thus, the 3-valued (L-)stable models of a logic
program can be easily illustrated in terms of the labelling

graph of the ABA framework encoding this logic program.
These graphs also allow to show the results of applying AA
semantics to the logic program, which is particularly inter-
esting in the case of the semi-stable semantics as it does not
generally correspond to the 3-valued L-stable model seman-
tics of a logic program.

The correspondence results are not only of theoretical
interest. Recently, ABA has been used to explain answer
sets (Gelfond and Lifschitz 1991) of a logic program, based
on the correspondence between the stable semantics of a
logic program and the stable semantics of an ABA frame-
work encoding this logic program (Schulz and Toni 2013;
2014b). The results presented here can therefore inspire sim-
ilar explanation methods for different logic programming se-
mantics.

6 Appendix
Proof (of Lemma 6). We prove both directions.

e From left to right: Let LabAsm be a complete assumption
labelling.

— If LabAsm(a)) = IN then each set of assumptions AP
attacking « contains some (3 such that LabAsm(3) =
OUT, in particular every AP € Ajess.

- If LabAsm(a) = OUT then there exists a set
of assumptions AP attacking « such that AP C
IN(LabAsm). Then there exists an argument AP’ - &
attacking « such that AP’ C AP. Therefore, AP’ €
Agers and AP' C IN(LabAsm).

— If LabAsm(«) = UNDEC then each set of assump-
tions AP attacking a contains some [such that
LabAsm(B) # IN, in particular every AP € Agets.
Furthermore there exists a set of assumptions AP; at-
tacking « such that AP, N ouT(LabAsm) = 0.
Then there exists an argument AP| + @ attacking «
such that AP] C AP;. Therefore, AP € Agets and
AP| N out(LabAsm) = 0.

e From right to left: Let LabAsm be a complete assumption
labelling w.r.t. argument-supporting sets.

- If LabAsm(a) = IN then each set of assumptions
AP € A, attacking « contains some 3 such that
LabAsm(f) = OUT. Since every AP’ attacking « is a
superset of some AP € A, attacking a, every such
AP’ contains some (3 such that LabAsm(3) = OUT.

— If LabAsm(a) = OUT then there exists a set of as-
sumptions AP € Ay attacking « such that AP C
IN(LabAsm), satisfying the OUT-condition of a com-
plete assumption labelling.

— If LabAsm(a) = UNDEC then each set of assump-
tions in A, attacking « contains some [such that
LabAsm(B) # IN. Since every AP’ attacking « is a
superset of some AP € A, attacking «, every such
AP’ contains some 3 such that LabAsm(3) # IN. Fur-
thermore there exists a set of assumptions AP} € Ageys
attacking « such that AP; N ouT(LabAsm) = 0, sat-
isfying the UNDEC-condition of a complete assumption
labelling. O

References

Baral, C., and Gelfond, M. 1994. Logic programming and
knowledge representation. The Journal of Logic Program-
ming 1920, Supplement 1(0):73 — 148.

Bondarenko, A.; Dung, P.; Kowalski, R.; and Toni, F. 1997.
An abstract, argumentation-theoretic approach to default
reasoning. Artificial Intelligence.

Brogi, A.; Lamma, E.; Mancarella, P.; and Mello, P. 1992.
Normal logic programs as open positive programs. In JIC-
SLP’92.

Caminada, M., and Gabbay, D. 2009. A logical account of
formal argumentation. Studia Logica.

Caminada, M.; Sa, S.; Alcantara, J.; and Dvorak, W. 2013.
On the difference between assumption-based argumentation
and abstract argumentation. Proceedings of BNAIC’13.

Caminada, M.; S4, S.; and Alcantara, J. 2013. On the equiv-
alence between logic programming semantics and argumen-
tation semantics. In ECSQARU’13.

Dung, P.; Kowalski, R.; and Toni, F. 2009. Assumption-
based argumentation. In Argumentation in Artificial Intelli-
gence. Springer US.

Dung, P. 1991. Negations as hypotheses: An abductive foun-
dation for logic programming. In ICLP’91.

Dung, P. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artificial Intelligence.

Eiter, T.; Leone, N.; and Sacca, D. 1997. On the partial se-
mantics for disjunctive deductive databases. Annals of Math-
ematics and Artificial Intelligence.

Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In ICLP/SLP’88, 1070—
1080.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9(3/4):365-386.

Przymusinski, T. 1989. Every logic program has a natu-

ral stratification and an iterated least fixed point model. In
PODS’89.

Przymusinski, T. 1991a. Semantics of disjunctive logic pro-
grams and deductive databases. In Deductive and Object-
Oriented Databases. Springer Berlin Heidelberg.
Przymusinski, T. 1991b. Stable semantics for disjunctive
programs. New Generation Computing.

Schulz, C., and Toni, F. 2013. Aba-based answer set justifi-
cation. TPLP, On-line Supplement 13(4-5).

Schulz, C., and Toni, F. 2014a. Complete assumption la-
bellings. In COMMA’14.

Schulz, C., and Toni, F. 2014b. Justifying answer sets using
argumentation. TPLP. To appear.

Toni, F. 2014. A tutorial on assumption-based argumenta-
tion. Argument & Computation 5(1):89-117.

Van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The
well-founded semantics for general logic programs. Journal
of the ACM 38(3):619-649.

