
Isotopic geochemistry of phosphatic hardgrounds in the Monterey Formation

 Geological Society of America Bulletin, v. 1XX, no. XX/XX 1

Diagenesis of phosphatic hardgrounds in the Monterey Formation: 

A perspective from bulk and clumped isotope geochemistry

Harold J. Bradbury1,†, Veerle Vandeginste1, and Cédric M. John1,§

1Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK

ABSTRACT

Understanding the authigenesis of carbon-
ate fl uorapatite through isotopic geochem-
istry can yield important information on 
fundamental geologic processes occurring on 
continental margins around the world. This is 
particularly true for phosphatic hardgrounds, 
which are often found in regions of upwell-
ing, but of which questions remain about 
the initial formation and subsequent diagen-
esis. Here, we apply standard isotopes (δ13C, 
δ18O) alongside the novel clumped isotope 
(Δ47) used in this study for the fi rst time to 
reconstruct the temperature of formation of 
carbonate ions within the lattice of sedimen-
tary carbonate fl uorapatite. We investigated 
phosphatic hardgrounds of Miocene age 
(12.7–10.8 Ma) sampled at El Capitan State 
Beach in the Monterey Formation. The range 
of isotopic signatures observed is between 
+1.5‰ and +8.0‰ for δ13C relative to the 
Vienna  Peedee belemnite (VPDB) standard 
and –9.5‰ and –6.0‰ VPDB for δ18O, and val-
ues range between 0.599‰ and 0.615‰ for Δ47. 
The enriched δ13C and depleted δ18O signa-
tures are suggestive of recrystallization within 
the methanogenic zone. Clumped isotope geo-
chemistry further constrains this transforma-
tion as having taken place at a temperature 
of 61–66 °C ± 5 °C, in line with previous esti-
mates for maximum burial of the Monterey 
Formation based on the silica phase transi-
tion. The calculated δ18O for the connate 
fl uid shows an expected range for seawater 
composition for the Miocene, suggesting only 
minor contribution of silica-derived oxygen 
to the δ18O of carbonate fl uorapatite. The 
combined conventional and clumped isotope 
data set also points out that methanogenesis 
took place deeper within the sediment in the 
middle  Miocene than at present day within 

the Santa Barbara Basin. This study fur-
thers our understanding of phosphogenesis 
and potential links to burial processes in the 
Monterey Formation, and it shows for the 
fi rst time that the clumped isotope paleother-
mometer could be used to under stand funda-
mental geochemical processes in authigenic 
sedimentary phosphates.

INTRODUCTION

Authigenesis, or the formation of minerals in 

situ, can potentially record critical geochemi-

cal information that helps to unravel funda-

mental geological processes taking place at the 

sediment-water interface and/or within the pore 

network of sediments. An important authigenic 

mineral within sediments is carbonate fl uor-

apatite, an economical phosphatic ore deposit 

used in the production of fertilizers (Leather, 

1994) and sometimes associated with petroleum 

source rocks (Isaacs and Petersen, 1987). There 

is a strong scientifi c interest in the formation of 

carbonate fl uorapatite because it is intimately 

linked to biological processes, the evolution 

of the ocean, and associated biological pro-

ductivity and its feedback on the carbon cycle 

and climate (Föllmi, 1996; Cook and Shergold, 

2005). Carbonate fl uorapatite, also known as 

sedimentary francolite, contains up to 6 wt% 

(weight percent) of carbonate ions substitut-

ing the phosphate ions within the lattice of the 

mineral (McClellan, 1980). By analyzing the 

stable isotopic ratios of both carbon and oxygen 

within the carbonate ions of carbonate fl uorapa-

tite, one can gain information on the formation 

history and potential diagenesis of phosphates 

(Shemesh  et al., 1983, 1988; Kastner et al., 

1990; Leather, 1994).

The goal of this study is to investigate the 

formation and isotopic composition of phos-

phatic hardgrounds containing carbonate 

fl uor apa tite deposited in the Monterey Forma-

tion of California (John et al., 2002). We used 

conventional stable isotopic analysis (δ13C and 

δ18O), and for the fi rst time the novel clumped 

isotope paleothermometer Δ47 (Eiler, 2007) to 

determine the formation temperature of carbon-

ate fl uorapatite. A central question to this paper 

is whether the δ13C and δ18O values of the dif-

ferent carbonate fl uorapatites within individual 

hardgrounds of the Monterey Formation record 

a range of seawater compositions refl ecting 

deposition over a prolonged period, or diage-

netic processes during burial. If the isotopic 

composition of carbonate fl uorapatite is reset 

during burial, will individual nodules within 

hardgrounds record a single diagenetic event, or 

several? How does the stable isotopic composi-

tion of hardgrounds in the Santa Barbara Basin 

compare to other basins along the Californian 

coast? These questions are broadly relevant to 

paleoclimate studies in general as the accumu-

lations of phosphatic deposits on continental 

margins offer a potential archive with which to 

study the link between biological productivity 

and climate. Conversely, if carbonate fl uorapa-

tites within the Monterey Formation were to 

reset during burial, they would provide a win-

dow into diagenetic processes occurring in the 

subsurface of a major petroleum source rock. 

Initial study on the conventional isotopic signa-

ture of discrete nodules of carbonate fl uor apa-

tite at four different locations along the Cali-

fornian coast (Lions Head Beach, Mussel  Rock 

Beach, Gaviota Beach, and Naples Beach) by 

Leather (1994) seemed to suggest that the δ13C 

and δ18O of the associated carbonate content 

in carbonate fl uorapatite recorded diagenetic 

alteration.

Here, we extend the initial work on the iso-

topic signature of the phosphates within the 

Monterey Formation by (1) investigating the 

isotopic signature of phosphatic hardgrounds in 

addition to the data existing for individual nod-

ules, thus allowing comparison between the two 

types of phosphatic occurrences, (2) providing 

an enhanced data set of δ13C and δ18O that helps 

to constrain the distribution of processes affect-

ing phosphates during burial within different 

basins along the California margin, and (3) com-

bining the bulk stable isotopes with multiply 
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substituted isotopologues (clumped isotopes) 

to constrain the temperature of phosphate dia-

genesis. The overall results of our study demon-

strate the usefulness of measuring conventional 

and clumped isotopes on sedimentary carbonate 

fl uorapatite, opening up the possibility of fur-

ther clumped isotope investigation of authigenic 

phosphates along continental margins.

GEOLOGICAL SETTING

Monterey Formation

The Monterey Formation in California has 

been the subject of a wide range of sedimentol-

ogy, paleoclimate, and diagenetic studies, and 

it is located in multiple basins along the coast 

of California (Fig. 1). The basins are fi lled with 

similar types of Miocene deposits also found 

in multiple sites around the Pacifi c Rim mar-

gin (Bramlette, 1946; Isaacs, 1980). Samples 

from this study come from the El Capitan State 

Beach, located within the Ventura–Santa Bar-

bara Basin (Figs. 1 and 2). To the north of Santa 

Barbara Basin lies Santa Maria Basin, and to the 

south lies the Los Angeles Basin (Fig. 1).

The Monterey Formation was originally 

deposited at midbathyal marine depth on the 

continental margin off the coast of California 

(Isaacs, 2001). It consists of a lower calcareous-

siliceous member, a middle carbonaceous marl 

member, and an upper clayey-siliceous member 

(John et al., 2002). The studied interval is located 

within the carbonaceous marl member and 

includes several phosphatic hardgrounds. The 

Santa Barbara and Santa Maria Basins have been 

extensively studied (Pisciotto, 1978; Leather, 

1994; Isaacs, 2001; John et al., 2002; Föllmi 

et al., 2005; Loyd et al., 2012). Total organic car-

bon content of the middle member of the Mon-

terey Formation at El Capitan State beach varies 

between 1.2 and 23.2 wt%, with the sedimenta-

tion rate varying between 75 m/m.y. in a gray 

marl unit with no phosphate, to 3 m/m.y. in the 

condensed phosphatic beds (John et al., 2002).

The Monterey Formation is of broad sig-

nifi cance because it contains evidence for the 

most recent switch between greenhouse and 

icehouse conditions (Vincent and Berger, 1985; 

Flower and Kennett, 1993). Study of marine 

sediments has led to the “Monterey hypothesis,” 

which suggests that increased upwelling during 

the Miocene caused a rise in productivity and 

the formation of organic-rich sediments and 

the associated drawdown of carbon during the 

middle Miocene (Vincent and Berger, 1985). 

However, it has also been suggested that the 

formation of organic-rich sediments and asso-

ciated condensed phosphatic intervals postdate 

the Miocene cooling phase (John et al., 2002; 

Föllmi et al., 2005).

Phosphogenesis

Carbonate fl uorapatite generally forms dur-

ing authigenesis in regions of upwelling and 

associated high biological productivity (Bur-

nett, 1990), but it has also been shown to form 

as microscopic inclusions (Berner et al., 1993; 

Kim et al., 1999; Baturin, 2003) in nonupwell-

ing environments such as the eastern Austra-

lian continental margin (O’Brien and Heggie, 

1988), Long Island Sound, and the Mississippi 

Delta (Ruttenberg and Berner, 1993). The key 

to carbonate fl uorapatite precipitation in coastal 

upwelling regions such as California is the high 

fl ux of preserved organic matter to the seafl oor, 

as the phosphorous content of organic matter is 

released during microbially mediated decom-

position (Reimers and Suess, 1983; Loyd et al., 

2012) and combines with dissolved inorganic 

phosphate from the upwelling waters (Reimers 

et al., 1992; Föllmi, 1996). Phosphate release 

from iron oxides and hydroxides using redox 

pumping can also create high phosphate con-

centrations in pore water (Van Cappellen and 

Berner, 1988; Schuffert et al., 1998). Since 

carbonate fl uorapatite forms in the upper part 

of the sediment, near the sediment-water inter-

face, a prerequisite for its precipitation is a high 

concentration in dissolved phosphate content of 

the pore water (Boström et al., 1988). Other fac-

tors that affect the formation of apatite include 

pH, alkalinity, and pore-water constituents such 

as Ca2+, Mg2+, and F– (Glenn et al., 1988; Van 

Cappellen and Berner, 1991). The fi rst stage of 

carbonate fl uorapatite precipitation is an amor-

phous precursor (amorphous calcium phos-

phate), which is then transformed to stable apa-

tite with the addition of fl uorine from seawater 

(Van Cappellen and Berner, 1991; Krajewski 

et al., 1994; Arning et al., 2009).

In the Monterey Formation, reworking or win-

nowing of sediment by bottom-water currents or 

gravity fl ows after carbonate fl uorapatite precipi-

tation has been suggested to physically concen-

trate the phosphate particles into layers (Burnett, 

1977; Glenn and Arthur, 1988; Schuffert et al., 

1998; John et al., 2002; Föllmi et al., 2005; 

Arning  et al., 2009). The phosphatic hardgrounds 

investigated in this study are considered to epito-

mize this dynamic mode of formation and show 

evidence of multiple stages of winnowing under 

current-swept conditions that concentrated coarse 

nodules into decimeter-thick layers of phosphatic 

material on the seafl oor (Garrison et al., 1987, 

1990, 1994; Garrison and Kastner, 1990; Föllmi 

et al., 1991; John et al., 2002).

35°N
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Figure 1. Location of El Capitan State Beach and the locations sampled by Leather (1994). 
Monterey Formation distribution is modifi ed from Isaacs (2001).

 as doi:10.1130/B31160.1Geological Society of America Bulletin, published online on 30 April 2015



Isotopic geochemistry of phosphatic hardgrounds in the Monterey Formation

 Geological Society of America Bulletin, v. 1XX, no. XX/XX 3

MATERIALS AND METHODS

Materials

The samples were collected at El Capitan 

State Beach in the middle member of the Mon-

terey Formation (John et al., 2002; Fig. 2). In 

total, eight samples were taken from fi ve differ-

ent stratigraphic horizons in a condensed sec-

tion of phosphate-rich beds located between 128 

and 129 m in the section. The age of the sample 

was bracketed by nannofossil biostratigraphic 

markers between 12.69 Ma to 10.82 Ma, with 

hand sample 137 being the oldest stratigraphic 

horizon, and 142B being the youngest (John 

et al., 2002). It is assumed that each hardground 

represents a signifi cant hiatus. Within each 

sample, two main types of phosphatic nodules 

exist, the D-phosphate and F-phosphate (Fig. 3), 

fi rst described by Garrison and Kastner (1990). 

F-phosphates are friable and typically are light 
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Figure 2. Simplified sedimentary log 
showing the position of the samples 
within phosphatic hardgrounds, modi-
fi ed from John et al. (2002).
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in color; they are interpreted to represent in situ 

precipitation of carbonate fl uorapatite during 

early diagenesis at the sediment-water inter-

face. D-phosphates are dense, well-lithifi ed 

nodules or hardgrounds with a dark color or 

dark external coatings; they are interpreted to 

represent multiple stages of phosphogenesis 

and sediment reworking (Garrison and Kastner, 

1990). The phosphatic layers vary in composi-

tion, with some layers containing small phos-

phatized particles, whereas others are more 

homogeneous and less friable. The layers and 

laminae are generally D-phosphates, although 

often lighter in color than those described by 

Garrison and Kastner (1990). There are also 

white nodules (F-phosphates), which appear to 

be pure phosphate. F-phosphates nodules are 

often contained between the darker layers or 

above the layers of D-phosphate. In places, the 

F-phosphate nodules appear within the darker 

D-phosphates. There are some bone fragments 

within the specimens, which are up to several 

centimeters in size and can be recognized by 

their columnar internal structure and light-gray 

to white rims. These range in color between 

dark brown to a lighter brown. The phosphatic 

pebbles are darker in color than the D-phos-

phates, and they are rounded, with a darker rim 

around the outside.

Methods

Sample Preparation
Each hand sample was drilled for multiple ali-

quots so as to sample the gray, more-condensed 

phosphate layers (D-phosphates), the smaller 

white phosphate nodules (F-phosphates), and 

pebbles or bones where present. To prepare 

the carbonate fl uorapatite sample powders 

for iso topic analysis, we followed procedures 

described in Zazzo et al. (2004), Leather (1994), 

and Fox and Fisher (2001). These approaches 

have previously been shown to successfully 

remove sedimentary calcium carbonates while 

preserving the carbonate ions bound within the 

carbonate fl uorapatite. Aliquots of 0.5–1 mg of 

powdered carbonate fl uorapatite were treated 

with 3% sodium hypochlorite solution for 4 h 

at 20 °C to remove organic matter (Zazzo et al., 

2004). The powders were then centrifuged for 5 

min at 4000 rpm, after which the solution was 

discarded, and the powders were rinsed and cen-

trifuged with distilled water three times before 

being treated with 0.1 M acetic acid–ammo-

nium acetate buffer solution (pH 4.75) for 20 h 

at 20 °C to remove authigenic carbonates such 

as calcite and dolomite cements (Bocherens 

et al., 1996). The samples were then centrifuged 

for an additional 5 min at 4000 rpm, rinsed in 

distilled water fi ve times (centrifuging between 

each rinse), and left to dry for 12–24 h at 50 °C.

X-Ray Diffraction
X-ray diffraction (XRD) analyses were 

performed at the Natural History Museum of 

London in order to check for the purity of the 

carbonate fl uorapatite phase and the effective-

ness of the cleaning method. Aliquots of 250–

500 mg of carbonate fl uorapatite treated with 

the chemical method described in the previous 

paragraph were analyzed on a Philips PW 1830 

diffractometer system using CuKα radiation at 

40 kV and 20 mA. The XRD system was fi t-

ted with a PW 1820 goniometer. The powders 

were scanned over a sampling range of 2.5–70° 

2θ with a step size of 0.02° 2θ and an integration 

time of 2 s per step.

Bulk Isotope Analysis (δ13C and δ18O) 
of Phosphates

All stable isotope measurements were per-

formed in the Qatar Stable Isotope Laboratory at 

Imperial College London. For conventional iso-

topes, aliquots of 220 µg (±40 µg) of treated car-

bonate fl uorapatite were analyzed using a Kiel 

IV device attached to a Thermo MAT 253 mass 

spectrometer equipped with a dual inlet sys-

tem. The Kiel device was run at 70 °C, and the 

samples were reacted for 45 min to liberate CO2. 

Previous studies on apatite used a reaction time 

of 1–5 h at 50 °C or lower temperature (McCrea, 

1950; Banerjee et al., 1986; Koch et al., 1990; 

Leather, 1994; Zazzo et al., 2004), but carbon-

ate fl uorapatite had not been analyzed on a Kiel 

device before, although hydroxi-apatite from 

bone samples was measured on a Kiel device 

at 72 °C for an unreported reaction time (Fox 

and Fisher, 2001). To check that the short, 70 °C 

reaction was not introducing any analytical 

biases, a sample was analyzed using the manual 

vacuum line for 5 h at 50 °C and compared to 

the same sample run at 70 °C on the Kiel device. 

Both results came within one standard deviation 

of each other, suggesting that the 70 °C reaction 

on the Kiel device is a valid approach.

All conventional stable isotope values are 

expressed using the standard per mil notation 

and reported against the Vienna Peedee belem-

nite standard (VPDB). Replicate analyses of 

carbonate standards show a reproducibility of 

0.05‰ (1σ) for δ13C and 0.11‰ (1σ) for δ18O, 

and triplicate analyses of carbonate fl uorapa-

tite samples show a sample reproducibility of 

0.11‰ (1σ) for δ13C and 0.27‰ (1σ) for δ18O. 

The standard reproducibility is lower than typi-

cally expected for the Kiel device, and this is 

thought to be due to the longer reaction time, 

inducing a higher probability of minor leaks 

on the vial during measurement (a known issue 

with Kiel devices). In view of the differences 

that are observed in the isotopic signature of 

different phosphatic phases, this error is not 

signifi cant. Sample reproducibility is typically 

lower than standard reproducibility due to inho-

mogeneity of samples. The sample run values 

were corrected based on the standard values of 

an internal standard (Imperial Carrara Marble). 

In addition, corrections for the temperature-

specific  acid fractionation of the associated 

carbonate in carbonate fl uorapatite were done 

following Passey et al. (2007).

Clumped Isotope Analysis (Δ47) of Phosphates
Previous work on clumped isotopes in phos-

phates has focused on applications to bioapa-

tite in vertebrae (Eagle et al., 2010) and tooth 

enamels of sauropods dinosaurs (Eagle et al., 

2011). The Eagle et al. (2010) study did a 

thorough  testing of the effects of their cleaning 

procedure on modern rhinoceros teeth, using 

different reaction times between the powdered 

bioapatite sample and a 3% H2O2 solution. The 

results showed no adverse effect on clumped 

isotope measurement (results fell within 1 stan-

dard deviation of the expected temperature of 

37 °C). The samples in the Eagle et al. (2010) 

study were also washed with 0.1 M acetic acid 

and buffered to pH 2.8 or pH 4.6, which proved 

suffi cient at removing diagenetic carbonates 

and also did not impact the clumped isotope 

composition of the teeth. Finally, reasonable 

growth temperatures for phosphates were 

obtained in the Eagle et al. (2010) paper when 

applying calibrations originally derived for cal-

cite, suggesting a universal calibration exists 

for clumped isotopes.

Although our study is the fi rst of its kind to 

focus on sedimentary phosphate, our sample 

preparation protocols are similar to those of 

Eagle et al. (2010), with similar pH and acetic 

acid concentrations, and thus we can be con-

fi dent that the carbonate fl uorapatite has not 

been impacted by the cleaning procedure and is 

yielding reasonable temperature estimates. An 

aliquot of 150 mg of carbonate fl uorapatite was 

used for each replicate analysis. The aliquots 

were reacted at 90 °C with 105% phosphoric 

acid in a reaction vessel that was evacuated for 

30 min on a manual vacuum line, and typically 

Figure 3. Photograph of sample 142B.
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reached pressures of 10–1 to 10–2 mbar before the 

acid digestion was started. At 90 °C, carbonate 

fl uorapatite was reacted for 20 min in the con-

tinuously stirred reaction vessel. The reactant 

CO2 was cleaned using a procedure analogous 

to that of Dennis and Schrag (2010) and fur-

ther described for the laboratory at Imperial 

College in Dale et al. (2014). Briefl y, the CO2 

liberated by the phosphoric acid reaction was 

continuously trapped, water was separated from 

the gas using a dry-ice ethanol–cooled glass 

trap, and the CO2 gas was then passively passed 

through a glass trap fi lled with silver wool and 

another trap densely packed with Poropak Q 

(fi lled length: 13 cm, inner diameter: ~8 mm) 

held at –35 °C. The purifi ed CO2 gas was after-

ward transferred to one of two mass spectrom-

eters for analysis (mass spectrometer “Pinta” 

and “Nina”; Table DR11). Mass spectrometric 

analyses were performed on a MAT 253 and 

followed the procedures described by Hunting-

ton et al. (2009) and Dennis et al. (2011). The 

sample gas was measured against an Oztech ref-

erence standard (δ13C = –3.63‰ VPDB, δ18O = 

–15.79‰ VPDB). Heated gases (1000 °C), 

water-equilibrated gases (25 °C), and two car-

bonate standards (Carrara Marble and ETH3) 

were measured regularly to transfer the mea-

sured values into the absolute reference frame 

(Dennis et al., 2011; Table DR1 [see footnote 

1]). Sample measurements were rejected based 

on elevated 48 and 49 signals, and each sample 

was analyzed until at least 2–3 replicates were 

deemed uncontaminated (Table DR1 [see foot-

note 1]). The Δ47 values were linearity-corrected 

using heated gas data (Huntington et al., 2009) 

and corrected for isotope fractionation during 

phosphoric acid digestion using the correction 

of 0.069‰ for phosphate (based on Guo et al., 

2009). The Δ47 values are reported in the abso-

lute reference frame of Dennis et al. (2011), and 

the equation of Passey and Henkes (2012) was 

used to calculate the temperature of formation 

of the carbonate fl uorapatite.

RESULTS

XRD Results

The XRD spectra of three samples of the 

D-phosphate (representing all three stratigraphic 

horizons sampled) contain almost pure carbon-

ate fl uorapatite (Fig. 4); this has been compared 

to the XRD analysis of synthetic carbonate 

fl uorapatite produced by Regnier et al. (1994). 

In all three samples, there is a trace amount of 

quartz, and in samples 137 and 142A, there are 

traces of both zeolite and opal-CT. Figure 4 

shows the low relative abundances of the other 

minerals within the samples. There are no traces 

of calcite or dolomite, implying that the carbon-

ate associated with carbonate fl uorapatite is the 

only possible source for CO2 during orthophos-

phoric acid digestion.

Using the equations derived by Schuffert 

et al. (1990), which relate the spacing of the 

004 and 410 XRD refl ections to the associated 

carbonate content of the carbonate fl uorapatite, 

the weight percentage of carbonate within the 

carbonate fl uorapatite was calculated as 4.8% 

(±0.3%) for samples 137 and 142A and 4.3% 

(±0.3%) for sample 141A.

Conventional Stable Isotope Results

Both the δ13C and δ18O values of carbonate 

fl uorapatite vary over a wide range of values and 

across stratigraphic horizons (Fig. 5). Samples 

141 and 141A both contain lower values of δ13C 

and δ18O when compared to samples 137 and 

142A and 142B. The range of δ13C values in 

samples 137, 142A, and 142B is from 4.9‰ to 

7.7‰, and the range in δ18O values is between 

–9.3‰ and –6.3‰. However, the range in δ13C 

for samples 141 and 141A is 1.3‰–5.2‰ and 

the δ18O range is between –7.5‰ and –6.3‰. 

There is no clear trend observed in the isotopic 

composition of the different phases of the phos-

phate, i.e., between D-phosphate, F-phosphate, 

and phosphatic layers (Fig. 6).

Clumped Isotope Results

The Δ47 results for three samples from dif-

ferent hardgrounds gave values of 0.599‰ ± 

0.011‰ for sample 137, 0.613‰ ± 0.012‰ for 

sample 142A, and 0.615‰ ± 0.012‰ for sam-

ple 142B. Clumped isotope measurements were 

challenging, with failure rates of 50% (Table 

DR1, showing the replicates with contamina-

tion parameters suggesting a clean sample [see 

footnote 1]). The reproducibility of replicates 

with no traces of contaminant was very good, 

however, with 1 standard error of 0.01‰. The 

resulting temperatures for cleaned aliquots were 

61 °C ± 5 °C for samples 142A and 142B and 

66 °C ± 5 °C for sample 137. As shown in Fig-

ure 7, these are all within 1 standard deviation of 

each other, which suggests that the temperature 

of (re)equilibration of carbonate fl uorapatite for 

these three horizons was similar.

DISCUSSION

Carbonate Content of 
Carbonate Fluorapatite

Carbonate fl uorapatite is known to gradually 

recrystallize with increasing depth, as shown by 

McArthur (1985), Glenn et al. (1988), Shemesh 

(1990), and Föllmi et al. (2005). The relation-

ship of increasing crystallinity and decreasing 

carbonate content with increasing depth of burial 

could lead to isotopic exchange and alteration of 

the δ18Ophosphate. As the phosphate content of the 

carbonate fl uorapatite is generally accepted to 

1GSA Data Repository item 2015165, containing 
all sample results (part A) and reference frame mate-
rial for both mass spectrometers (part B), is available 
at http:// www .geosociety .org /pubs /ft2015 .htm or by 
request to editing@ geosociety .org.

Figure 4. X-ray diffraction (XRD) profi le of sample 137 showing the minerals with their 
asso ciated peaks of highest intensity. CFA—Carbonate-fl uorapatite.
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be more refractory than the substituted associ-

ated carbonate measured here (Schoeninger and 

DeNiro, 1982; Shemesh et al., 1988; Iacumin 

et al., 1996), the associated carbonate ion is 

likely to also be altered during burial recrystal-

lization. The carbonate content of the carbonate 

fl uorapatite in this study, determined from the 

XRD results of the samples, is between 4.3 and 

4.8 wt% (±0.6%), which suggests a decrease 

in the substitution of CO3
2– within the mineral 

lattice due to a burial depth of around 1 km, if 

compared to the data of Gulbrandsen (1970) and 

Claypool et al. (1978) presented by McArthur 

(1985), who concluded that the carbonate con-

tent of carbonate fl uorapatite starts at 5 wt% and 

decreases by around 0.3 wt% per km of burial. 

This estimate of 1 km of burial is of course 

dependent on a number of assumptions, notably 

on the initial content of carbonate ions within 

carbonate fl uorapatite, and it relies on the heat 

fl ux in the Santa Barbara Basin being similar to 

the study of McArthur (1985). However, based 

on isotopic data, Shemesh (1990) concluded 

that the Monterey Formation experienced a 

wide range of diagenetic conditions that vary 

spatially, i.e., different subbasins or outcrops 

could have experienced very different condi-

tions. Thus, the 1 km burial for the El Capitan 

Basin section is plausible, and this spatial varia-

tion in maximum burial across basins could lead 

to signifi cant variation in the isotopic signatures 

being observed at different locations within the 

Monterey Formation.

Isotopic Composition of the Carbonate 
Fluorapatite at El Capitan State Beach

The Miocene seawater curve is well defi ned 

by studies of the isotopic composition of benthic 

foraminifera: The value of δ13C in the Miocene 

ranges between –1‰ and +1.5‰, and spe-

cifi cally between +0‰ to 1‰ (Woodruff and 

Savin, 1991) for the studied interval (12.7–10.8 

Ma). Carbon isotopes are, however, heavily 

impacted by local fl uxes between the organic 

and sedimentary carbon reservoirs, and Flower 

and Kennett (1993) reported benthic foraminif-

eral δ13C values between –0.5‰ and –2.5‰ at 

the Naples Beach section, less than a kilometer 

away from our study area. Previous work has 

shown that carbonate fl uorapatite precipitates 

in isotopic equilibrium with the dissolved inor-

ganic pool (DIC) of the pore water, and thus that 

carbonate fl uorapatite δ13C will be representa-

tive of pore-water (or marine) values (Glenn 

et al., 1988). The positive δ13C values (+1.5‰ 

to +8‰) and the negative δ18O values (–9.5‰ 

to –6‰) we measured in the associated carbon-

ate in the carbonate fl uorapatite of hardgrounds 

thus suggest that the isotopic signature observed 

results from diagenetic alteration. The δ18O of 

minerals refl ects both the isotopic composi-

tion of the parent fl uid and the temperature of 

formation or the temperature in which isotopic 

reequilibration was reached during diagen-

esis (Zazzo et al., 2004). A higher temperature 

causes a greater depletion in δ18O. Hence, the 

depleted δ18O of the associated carbonate of the 

carbonate fl uorapatite (–9.5‰ and –6‰) sug-

gests diagenetic reequilibration of the carbonate 

fl uorapatite, since the measured values are much 

lower than the δ18O signature of benthic forami-

nif era at Naples Beach (Santa Barbara Basin) 

in the Miocene, i.e., –0.5‰ to 2‰ (Flower and 

Figure 5. Plot showing δ18O vs. δ13C of carbonate fl uorapatite samples in the studied strati-
graphic horizons. The error bars represent ±1σ (the standard deviation) of the homogeneity 
of the samples; VPDB—Vienna Peedee belemnite.

Figure 6. Plot showing the δ18O vs. δ13C of the different types of phosphate sampled. Gray 
nodules and layers are D-phosphates, and the white nodules are F-phosphates. The error 
bars represent ±1σ (the standard deviation) of the homogeneity of the samples; VPDB—
Vienna  Peedee belemnite.
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Kennett, 1993; Leather, 1994; Lear et al., 2000). 

Using the formula from Kim and O’Neil (1997), 

and the clumped isotope–derived temperatures 

(average of 63 °C), the calculated formation 

water δ18O is ~1‰ relative to Vienna standard 

mean ocean water (VSMOW; Table DR1, range 

of calculated water of –1‰ to +2‰ SMOW 

[see footnote 1]). This implies very little contri-

bution of oxygen exchanged from the diatomite 

and opal-CT of the Upper Monterey Formation, 

as these would drive the δ18O of connate waters 

to higher values (Behl and Garrison, 1994). We 

conclude that the carbonate fl uorapatite within 

phosphatic hardgrounds recrystallized in an 

open system surrounded by largely marine pore 

water, although we cannot exclude the possible 

contribution of minor amounts of silica-derived 

waters to the pore system.

The δ13C of associated carbonate in carbonate 

fl uorapatite has been analyzed at many locations 

around the world and generally shows negative 

values (Kolodny and Kaplan, 1970; McArthur 

et al., 1986; Shemesh et al., 1988). Recent work 

by Loyd et al. (2012) on carbonate concretions 

in the Monterey Formation, however, shows 

positive to highly positive δ13C values. Enriched 

δ13C values are interpreted to result from recrys-

tallization within a zone of fermentation (Cur-

tis et al., 1977; Hudson, 1977; McArthur et al., 

1980; Loyd et al., 2012), where methanogen-

esis occurs. During the formation of methane, 

the lighter 12C is preferentially included in the 

methane due to kinetic isotopic fractionation. 

Methane derived from thermal methanogenesis 

has average values of –49‰ (Vinogradov and 

Galimov, 1970), and bacterial methane has an 

average composition of –75‰ (Claypool et al., 

1973). The enriched δ13C at El Capitan State 

Beach suggests that the carbonate fl uorapatite 

recrystallized within the zone of methanogen-

esis, at the same time as carbonate concretions 

(Fig. 8). This zone extends from between 2 and 

100 m to around 1 km of burial (Nissenbaum 

and Kaplan, 1972; Curtis et al., 1977; Hennessy 

and Knauth, 1985), depending on the thermal 

gradient and protolith composition. The data are 

thus consistent in suggesting that the carbonate 

fl uorapatite reached a maximum diagenetic zone 

of the lower bacterial methanogenesis zone. In 

this lower part of the zone, the depleted CO2 

formed by the thermocatalytic decarboxylation 

of organic matter reduces the δ13C of the CO2, 

and hence the HCO3
–, which is recorded by asso-

ciated carbonate, relative to the maximum that 

would be expected in the methanogenic zone.

No correlation is apparent between δ13C or 

δ18O and the type of phosphate that was mea-

sured (i.e., nodule, bone, or layers; Fig. 6). How-

ever, stable isotopes clearly show that although 

marine water was the main connate fl uid, the 

carbonate fl uorapatite was also reequilibrated 

during diagenesis because the variation in δ13C 

and δ18O between hardgrounds is too great to 

be related solely to initial differences in iso-

topic signature during the 2 m.y. of hardground 

deposition (John et al., 2002; Fig. 5). A com-

plication in interpreting the data is that recrys-

tallization would affect all the different phases 

of phosphate at the same time, but with variable 

effects depending on the initial isotopic compo-

sition of the nodules, the rock-water ratio within 

individual hardgrounds (a function of porosity 

and permeability of each hardground), the burial 

temperature reached at the time of recrystalliza-

tion, and the density of the individual carbonate 

fl uorapatite crystals. This explains why indi-

vidual hardgrounds, although only separated 

by a few meters of stratigraphy, plot in distinct 

fi elds in δ18O versus δ13C plots (Fig. 5). Samples 

137 and 142 (A and B) generally show a less-

depleted δ18O signature correlated with a more-

enriched δ13C signature than samples 141 and 

141A. Interestingly, samples 137 and 142 (A 

and B) are the highest and lowest hardground 

recovered in the stratigraphy, respectively, sug-

gesting some lithologic control on the pattern 

observed. There may have been more active 

methanogenesis to deplete the pore water in 12C 

for samples 141 and 141A, which in turn may 

have been related to a greater availability of 

organic matter surrounding these hardgrounds 

during recrystallization. However, it could also 

have been related to a low fl uid fl ow through 

the beds located in the center of the phosphatic 

hardgrounds interval, which would reduce the 

infl ux of isotopically depleted carbon dioxide 

from the decarboxylation zone below. A fi nal 

possibility is that each hardground records the 

isotopic signature of the pore water at the stage 

and temperature when recrystallization stopped. 

However, we discard this option on the grounds 

that previous work shows that the recrystalliza-

tion of carbonate fl uorapatite occurs throughout 

burial, with recrystallization continuing to much 

greater depths than found within this study 

(McArthur, 1985), and that the clumped isotope 

temperatures measured in our study are within 

error of each other.

Diagenetic Grade

The enriched δ13C signal combined with the 

depleted δ18O signal suggest that the samples 

measured from El Capitan State Beach were 

fully recrystallized within the methanogenic 

zone. In modern ocean sediments, the methano-

genic zone extends to around 250 m below the 

seafl oor (Sivan et al., 2007), but the data col-

lected from the study of the multiply substi-

tuted isotopologues suggest that the temperature 

of recrystallization was around 57 °C, which 

suggests a deeper burial and possibly a higher 

geothermal gradient as was demonstrated for 

the nearby Santa Maria Basin (45–60 °C/km; 

Williams et al., 1995). Previous work in the 

North Sea has shown that there are thermophilic 

Figure 7. Plot showing the stratigraphic height of the samples vs. the temperature of 
equilibrium calculated from the average Δ47 for each stratigraphic horizon from three re-
peated analyses. The error bars represent ±1σ (the standard deviation) of the calculated 
temperature.
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methanogens capable of producing methane 

within a temperature range from 17 °C to 62 °C, 

with an optimum temperature at 60 °C (Nilsen 

and Torsvik, 1996), which supports work in the 

Santa Clara Avenue oil fi eld in the Monterey 

Formation and other locations showing bacterial 

methanogenesis occurring up to temperatures of 

80 °C (Carothers and Kharaka, 1980; Morad, 

1998; Orphan et al., 2000). This, combined with 

the high organic matter content, as documented 

by John et al. (2002), suggests that the metha-

nogenic zone may have extended to greater 

depth in the Miocene in this region than in cur-

rent sediments. Rock-Eval analysis showed a 

signal consistent with type II kerogen (marine 

origin; John et al. 2002), which can start pro-

ducing oil at temperatures around 80 °C, often 

with closely coupled biogeochemical cycling 

of carbon and sulfur by thermophilic microbes 

(Orphan et al., 2000; Head et al., 2003; Bernd-

meyer et al., 2012).

Previous work undertaken by Isaacs (1982) 

and Keller and Isaacs (1985) proposed the use 

of silica phase transitions as a geothermometer. 

This suggested that within the Santa Barbara 

Basin in the Monterey Formation, and for rock 

composed of 30%–80% biogenic or diagenetic 

silica not dissimilar to the hardgrounds inves-

tigated here, the phase transition from opal-A 

to opal-CT and then to quartz occurred at two 

distinct temperature ranges of 43–49 °C and 

65–85 °C. The XRD spectrum produced in this 

study when combined with the clumped isotope 

temperature fi ts well within these two ranges, 

as the opal peak is narrower and well defi ned, 

pointing to opal-CT rather than quartz (Jones 

and Segnit, 1971; Elzea et al., 1994). This sug-

gests that the two geothermometers, clumped 

isotopes and opal phase transitions, can be used 

to classify the maximum temperature that the 

formation reached during diagenesis (in this 

case, 61–66 °C, concurrent with the silica ther-

mometer estimate of >43 °C and <85 °C).

Comparison of the Isotopic Composition of 
El Capitan State Beach with Other Areas 
in the Monterey Formation

Leather (1994) sampled four different loca-

tions in two basins in the Monterey Forma-

tion, and our data set approximately doubles 

the available data for this region. This offers an 

opportunity to study regional trends in carbonate 

fl uorapatite diagenesis. The data from Leather 

(1994) signifi cantly differ from ours (Fig. 9), so 

we assessed the possibility of experimental bias. 

It has only recently been shown that the frac-

tionation factor of associated carbonate is not 

the same as the fractionation factor of calcite 

(Passey et al., 2007), which was previously used 

(Kolodny and Kaplan, 1970). However, analy-

sis of the two differing fractionation factors at 

the temperature measured shows a variation of 

around 0.01‰, which is one order of magnitude 

less than the reproducibility of triplicate sam-

ples analyzed. Furthermore, a direct comparison 

of the method used in Leather (1994) versus the 

70 °C reaction on a Kiel device yielded no dif-

ferences (see Methods). This suggests that the 

observed differences in the samples are real, 

rather than bias linked to the method.

The phosphates studied by Leather (1994) 

were not found within hardgrounds, but were 

small nodules or laminae of phosphate found 

within phosphatic calcareous mudstones sam-

pled over a much wider stratigraphic range com-

pared to the focus on discrete hardground layers 

within this study. Phosphates in hardgrounds are 

probably more susceptible to diagenetic trans-

formations, as was demonstrated for organic 

biomarkers preserved within the Monterey 

Formation by Berndmeyer et al. (2012). The 

hardground-hosted carbonate fl uorapatite may 

thus more faithfully refl ect the diagenetic con-

ditions reached by the sediments. Moreover 

the samples studied by Leather (1994) have a 

purity of only 50%–95% carbonate fl uorapa-

tite, although it seems unlikely that this would 

have impacted the range in δ13C and δ18O 

observed here.

The results from Leather (1994) clearly show 

that there are three separate groups of isotopic 

compositions within the carbonate fl uorapatite 

(Fig. 9). The δ13C and δ18O values measured 

within the Santa Barbara Basin contain all 

three separate clusters: The average value of the 

phosphates measured at El Capitan State Beach 

is 4.1‰ for δ13C and 7.4‰ for δ18O. The asso-

ciated carbonates measured at Naples Beach 

show a trend of enrichment in δ13C compared 

to depletion in δ18O, with a range of values 

between –2.6‰ and 3.8‰ for δ13C and between 

–4.1‰ and 0.1‰ for δ18O. The δ13C and δ18O 

values of the associated carbonate of the carbon-

ate fl uorapatite at Gaviota Beach are clustered 

around –5.9‰ and –3.5‰, respectively.

It is likely that the three different isotopic 

signatures in different sample locations within 

the Santa Barbara Basin (Fig. 9) refl ect different 

diagenetic zones in which partial reequilibra-

tion of the isotopic signature of the carbonate 

fl uorapatite occurred, thus masking the early 

formation signature as observed at El Capitan 

State Beach. The Naples Beach data show a 

trend of enrichment in δ13C compared to deple-

tion in δ18O. This suggests that the sampled area 

Figure 8. Zones of diagenesis and modeled δ13C of the pore water in a marine environment. 
Diagenetic zones are modifi ed from Curtis et al. (1977) and Tourtelot (1979). The δ13C pro-
fi le is modifi ed from Claypool and Kaplan (1974) and Hennessy and Knauth (1985).
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was at the top of the methanogenic zone, with 

the increasing depth (decreasing δ18O) leading 

to enrichment in δ13C. However, the samples 

from Gaviota Beach show a negative δ13C trend, 

combined with negative δ18O. This suggests that 

these samples were formed deeper, at increased 

temperature of burial when compared to Naples 

Beach to the east (Fig. 8). The Santa Barbara 

Basin shows a progressive increase in diagenetic 

grade from east to west, as shown by the study 

of silica phase changes (Isaacs, 1980, 1983). 

This agrees with the data from Shemesh (1990), 

showing that samples from Gaviota Beach had 

a high crystallinity index due to deeper burial. 

Hence, the regional diagenetic gradient of the 

Monterey Formation can explain the higher 

diagenetic grade of the El Capitan State Beach 

section compared to the Naples Beach section, 

as it is located to the west. However, our oxy-

gen isotopic data also show that this diagenetic 

gradient does not completely control the δ18O of 

phosphatic nodules.

The δ13C and δ18O values measured in the 

Santa Maria Basin show less difference between 

different sections. The Lions Head Beach data 

are clustered around –5.5‰ and –5.2‰ for δ13C 

and δ18O, and the Mussel Rock Beach data are 

clustered around –4.5‰ and –4.1‰ for δ13C and 

δ18O. The isotopic signatures of both of these 

sites are similar to the Gaviota Beach samples. 

It has been suggested that these locations within 

the Santa Maria Basin were deeply buried  with 

a high geothermal gradient (Pisciotto, 1978; 

Leather, 1994), which would support the fact 

that the carbonate fl uorapatite samples from this 

location have reached the zone of de car boxy la-

tion, located between 1 and 2 km depth (Fig. 6). 

This would have led to the depleted δ13C signa-

tures observed in the Santa Maria Basin. Zaback 

and Pratt (1992) concluded that the Santa Maria 

Basin was sediment starved, which can lead to 

an upward migration of the diagenetic zones, 

including the decarboxylation zone. One puz-

zling observation is that in the carbonate fl uor-

apatite of the sections at Gaviota , Mussel Rock, 

and Lions Head Beach, all located westward 

of El Capitan State Beach and probably more 

deeply buried, the δ18O is more positive than the 

one measured in our study, but the δ13C is more 

negative. Hence, there is an apparent contradic-

tion between what the δ18O indicates (cooler 

temperature of precipitation than at El Capitan 

State Beach), and the known regional burial his-

tory. As mentioned already, it is possible that 

the diagenetic pathway taken by phosphatic 

hardground is very different than the pathway 

taken by the carbonate fl uorapatite nodules 

measured in the Leather (1994) study, thus 

explaining the apparent contradiction. However, 

it is also possible that an important factor that 

controls the δ18O of carbonate fl uorapatite at 

greater burial is the effect of silica diagenesis 

impacting pore-water chemistry. The sections 

at Gaviota Beach and Mussel Rocks were more 

deeply buried and lie within the quartz zone. We 

suspect that with increasing burial at these west-

ward locations, silica-derived waters with more 

positive δ18O values liberated during diagenesis 

were being supplied to the sediment, thus push-

ing the carbonate fl uorapatite δ18O to more posi-

tive values during recrystallization (Behl, 1992).

CONCLUSION

For the fi rst time, we applied the clumped 

isotope paleothermometer to sedimentary car-

bonate fl uorapatite, and comparisons with pre-

vious work on silica phase transitions within 

the Santa Barbara Basin validate the use of this 

novel geochemical approach to reconstructing 

the thermal and diagenetic history of this type 

of material. This study also confi rms that the 

stable isotopic composition of the phosphatic 

hardgrounds within the Monterey Formation 

refl ects a late diagenetic, rather than authigenic, 

history of the carbonate fl uorapatite. The dif-

ferent occurrences of carbonate fl uorapatite 

investigated all show signatures recording 

diagenetic recrystallization, and, hence, little 

information linked to the relative ages of the 

different phases is retained. All carbonate fl uor-

apatite recrystallized within the methanogenic 

zone, which is shown by the enriched δ13C and 

the elevated temperature of recrystallization 

documented through the use of clumped iso-

topes. However, the middle Miocene methano-

genic zone is proposed to have extended to a 

greater depth than currently within the Santa 

Barbara Basin, probably due to the high sedi-

mentary organic content linked to high pro-

ductivity in this upwelling region. The distinct 

isotopic signatures observed between different 

hardgrounds suggest that specifi c conditions, 

such as density of the carbonate fl uorapatite, 

initial stable isotopic composition of the phos-

phate, and rock-water ratio, all impacted the 

stable isotopic signature of the carbonate fl uor-

apa tite during recrystallization. In addition, we 

suggest that for deeply buried locations west-

ward of El Capitan State Beach, the silica-bond 

water expelled during silica recrystallization 

drove the δ18O of connate waters to more posi-

tive values. We conclude that the investigation 

of phosphatic hardgrounds and phosphatic 

nodules does not directly yield information 

on paleoceanographic signatures, for instance 

refl ecting the middle Miocene cooling event, 

but rather that carbonate fl uorapatite will faith-

fully record burial temperatures and diagenetic 

processes. The novel use of clumped isotopes to 

measure a recrystallization temperature of the 

carbonate fl uorapatite thus adds valuable con-

straints to the depth and temperature at which 

diagenetic transformations occurred, and this 

approach can be used on sedimentary phos-

phates occurring in other continental margins.

Figure 9. Plot showing δ18O vs. δ13C of different sampled locations within the Monterey For-
mation. Naples Beach and Gaviota Beach are both located in the Santa Barbara Basin (SB), 
whereas Lions Head Beach and Mussel Rock Beach are located in the Santa Maria Basin 
(SM). The (L) stands for data collected by Leather (1994). The error bars represent ±1σ (the 
standard deviation) of the homogeneity of the samples; VPDB—Vienna Peedee belemnite. 
Gray nodules and layers are D-phosphates, and the white nodules are F-phosphates.
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