
Shadow Symbolic Execution for
Better Testing of Evolving Software∗

Cristian Cadar
Department of Computing

Imperial College London, UK
c.cadar@imperial.ac.uk

Hristina Palikareva
Department of Computing

Imperial College London, UK
h.palikareva@imperial.ac.uk

ABSTRACT
In this idea paper, we propose a novel way for improving
the testing of program changes via symbolic execution. At a
high-level, our technique runs two different program versions
in the same symbolic execution instance, with the old version
effectively shadowing the new one. In this way, the technique
can exploit precise dynamic value information to effectively
drive execution toward the behaviour that has changed from
one version to the next. We discuss the main challenges and
opportunities of this approach in terms of pruning and pri-
oritising path exploration, mapping elements across versions,
and sharing common symbolic state between versions.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Reliability;
D.2.5 [Testing and Debugging]: Symbolic execution

General Terms
Reliability, Verification

Keywords
Patch testing, longitudinal program analysis

1. INTRODUCTION
Software evolves on a continuous basis—developers fix

bugs, improve existing code, and implement new features.
Unfortunately, often many of these changes themselves give
rise to a significant amount of program bugs: new code is
by definition little tested in the field, and often introduces
bugs that affect both old and new functionality [10,18]. Even
relatively simple, self-contained patches which are meant to
fix specific bugs often introduce new errors [10,28].

∗This research is generously supported by EPSRC through
an Early-Career Fellowship and grant EP/J00636X/1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2768-8/14/05 ...$15.00.

Software testing and analysis have seen tremendous prog-
ress in the last few years, with many open-source and com-
mercial bug-finding tools readily available [5, 6, 8, 26]. While
these tools generally focus on whole-program testing, recent
work has started to look more closely at incremental or longi-
tudinal analysis [1–3,9, 15–25,27] where the effort is focused
on recently changed code.

One of the techniques which has already shown promise in
the context of longitudinal testing is symbolic execution [4,
14], a technique which can systematically explore paths in
a program. For example, research on different flavours of
directed symbolic execution [1–3, 16–18, 21, 22, 24, 27] has
considered the problem of generating program inputs that
execute recently modified code (“the patch”).

At a high-level, these techniques symbolically run only
the new program version, taking into account information
obtained statically by analysing the differences between the
old and the new version. For example, KATCH [18] uses
a simple textual differencing algorithm to find out what
statements have been added or changed, while DiSE [22]
employs static program slicing to determine the statements
affected by the patch. While this can lead to significant
savings, static analysis of the program differences is often
imprecise, and can miss important pruning and prioritisation
opportunities, particularly those which exploit dynamic value
information. Furthermore, most of the techniques proposed
so far have focused on the problem of reaching the patch;
while this is key to the success of longitudinal testing, deciding
what paths and what inputs to check once the patch is reached
is equally challenging and can have an important influence
on the quality of patch testing [2, 22].

As we show in this paper, precise runtime information
about the execution of both versions could provide impor-
tant opportunities for pruning large parts of the program
space and for identifying divergent behaviour, potentially
improving significantly the scalability of existing longitudi-
nal symbolic execution approaches. To obtain such runtime
information, we execute both versions in the same symbolic
execution instance, with the old version effectively “shad-
owing” the new one. Therefore, the key research question
addressed in this paper is the following:

Can we run two different program versions in the same sym-
bolic execution instance in order to effectively drive execution
toward the behaviour that has changed from one version to
the other?

In the remainder of the paper, we elaborate on this idea,
and discuss the main challenges and opportunities of this ap-
proach in terms of pruning and prioritising path exploration,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

ICSE Companion’14, May 31 – June 7, 2014, Hyderabad, India
ACM 978-1-4503-2768-8/14/05
http://dx.doi.org/10.1145/2591062.2591104

432

if (x > 14)
foo(x);

else
bar(x);

−→
if (x > 10)

foo(x);
else

bar(x);

Figure 1: Simple example. The if statement is the
only change between the two versions.

mapping elements across versions, and sharing common sym-
bolic state between versions.

2. SHADOW SYMBOLIC EXECUTION
If one changes the branch if (x > 14) to if (x > 10) in

a program as in Figure 1, which values should we pick for the
input x in order to effectively test the change? Values x = 0

and x = 20 may seem appropriate as they exercise both sides
of the branch. However, on a closer inspection, these values
are useless for the purpose of testing the patch as they would
make both program versions behave identically, taking the
then side of the branch when x = 20 and the else side when
x = 0. Instead, one should pick a value from the set {11,

12, 13, 14}, as these are the values that actually exercise
the change, making the old version take the else side of the
branch, and the new version the opposite then side.

An effective analysis would determine that when testing
this patch, one does not have to run the else side of the
branch at all, because for all values of x ≤ 10 the new ver-
sion executes identically to the old version. This completely
prunes the call to function bar and the subsequent analysis
of the paths in bar, which may bring significant savings,
especially if bar performs an expensive computation encoun-
tering multiple branch conditions dependent on the input.
Furthermore, when testing the then side of the branch, only
values 11, 12, 13 and 14 need to be considered, because
the other values do not introduce any changes in the be-
haviour of the two versions. Drawing these conclusions using
only a static analysis of program differences is in general not
possible, due to the inherent imprecision of static analysis.

Instead, we propose the concept of shadow symbolic exe-
cution, in which the two versions of the program are run in
the same symbolic execution instance, with the old version
effectively shadowing the new one. Running the old version
in the background can effectively play the role of an oracle
that informs the analysis as to what paths and input values
need to be tracked in order to effectively test the changes
introduced in the new version.

We see several benefits arising from such a form of longi-
tudinal symbolic execution:

(1) A significant reduction in the number of explored paths,
resulting from the ability to determine that the two versions
would behave identically on some paths.

(2) The ability to prioritise divergences between versions
by determining the exact condition/values on which the
execution of the two versions diverges. Restricting execution
on some paths to a reduced range of values can further prune
paths which are incompatible with the reduced value range.

(3) The generation of simpler constraints (and thus faster
constraint solving, which is often the bottleneck), by restrict-
ing execution on some paths to a reduced value range.

Dynamic symbolic execution (DSE). Before discus-
sing shadow symbolic execution in more detail, we first pro-
vide some background information on DSE. In DSE, program
inputs are treated as symbolic rather than concrete values,

if (x > 0) { ... }
...
if (x > 10)

assert(false);

−→
if (x > 6) { ... }
...
if (x > 8)

assert(false);

Figure 2: Two changes in branch conditions.

and classes of program paths with the same branching be-
haviour are encoded as sets of constraints over those symbolic
variables. At any point on a path, the symbolic state main-
tains the current program location, a symbolic store mapping
program variables to expressions computed over the sym-
bolic input, and a path condition characterising the inputs
that exercise the path. The path condition takes the form
of a conjunction of constraints obtained from the symbolic
branch conditions encountered along the path. For example,
when symbolic execution reaches the if statement in the
new version in Figure 1, it first checks whether the current
path condition allows execution to proceed on both sides of
the branch, and if so, it forks execution to follow both paths:
on the then side it adds the constraint x > 10 to the path
condition, while on the else side the constraint x ≤ 10.

Multiple changes and four-way forking. In the sim-
ple example in Figure 1 where a single conditional if state-
ment was modified, we were able to completely cut off the
else side of the branch along which the two versions be-
haved identically. In a nutshell, this was because we only
considered the symmetric difference of the behaviours of
the two versions. In practice, the situation becomes more
complicated when the patch modifies multiple locations, e.g.
two or more branch conditions that make use of a certain
symbolic variable. Sometimes even a single change in the
code poses extra challenges, e.g. a modified assignment to a
variable followed by several branch conditions that make use
of that variable. In those cases, the approach of completely
pruning branches might become overly aggressive and result
in bugs being missed, as we demonstrate below.

Figure 2 illustrates a scenario where the new version chan-
ges two symbolic branch conditions. Let us first notice that
the new version introduces an assertion failure for two extra
values of x, namely 9 and 10, and hence contains a regres-
sion. Applying the line of reasoning from before, however,
we would deduce that the then side of the first if statement
does not introduce any new behaviour (x > 0 subsumes x >

6) and we would discard it as redundant, while on the else
side of the branch we would narrow the set of interesting
values for x to the ones in the interval (0,6]. While this
correctly tests the new behaviour introduced by the change
in the first branch, pruning the then side at this point would
prevent us from testing the change in the second branch,
where the regression failure would have occurred.

To address these challenges, we propose a more agile frame-
work that explores the entire branch product but prioritises
branches exposing differing behaviour. Figure 3 illustrates
the general case: whenever we reach a modified branch con-
dition (modified either directly or via a dependency), instead
of forking execution into two paths—one adding the condi-
tion new and the other ¬new (as in standard DSE), or one
adding the condition new ∧ ¬old and the other ¬new∧old
(as when we adopted the symmetric-difference approach)—we
fork into four. While leaving the new version on the foregro-
und and adhering to its control flow, we let both its then

and else sides further divide the input space into two: the

433

if (old)
doThen();

else
doElse();

−→
if (new)

doThen();
else

doElse();

if (old −→ new)

¬new new

doElse()

diff

doElse()

same

doThen()

diff

doThen()

same

old ¬old ¬old old

Figure 3: Four-way fork: prioritising branches di-
verging in control flow (the ones shaded in grey).

same subbranches model those paths where the new version
mimics the old version (e.g. both versions follow the then

side), while the diff subbranches model those paths where
the new version diverges (e.g. the new version follows the
then side, while the old version the else side). We note that
in practice it is rarely the case that all four subbranches are
feasible. In fact, in certain cases we are able to determine,
during symbolic execution, that syntactic changes do not
introduce a semantic difference (i.e. they are a refactoring),
and in this case both diff subbranches become infeasible. A
contrived illustrative example is depicted in Figure 4.

While the four-way fork strategy might lead in the worst
case to an exponential increase in the number of paths to
explore, it allows us to effectively prioritise divergent be-
haviour. Our search would first schedule the cases in which
the two versions diverge at this branch point, after which
it will explore the cases in which the two versions behave
identically, to test subsequent changes.

Finally, note that conditionals are the only points in the
program where divergences manifest, although other program
statements, in particular assignments, need to be processed
so that the symbolic stores (mapping program variables to
expressions over the symbolic input) of both versions are
maintained throughout execution.

We remark that in certain cases it is possible to determine
statically whether symmetric difference suffices or whether a
four-way fork is necessary. For example, using static analysis
of the control and data dependencies of the program, we can
compute the forward slices of the changes and treat the ones
with non-intersecting forward slices as independent.

In general, the patch type—e.g. whether its modified loca-
tions are interacting [3], or whether its effects are localised to
a certain part of the code—can have a big impact on shadow
symbolic execution, and one of the aspects that needs to be
evaluated is the prevalence in practice of various patch types.

Mapping program elements across versions. So far,
we have assumed that the analysis can easily determine what
and how parts of the code have changed. However, mapping
program elements across versions [13]—undecidable in the
general case—can have a big influence on our technique, both
in terms of effectiveness and memory consumption.

For ease of exposition, let us first focus on patches that
change the code of a single method. There are three types of
changes: construct modifications (e.g. changing if (x > 1)

x = x + 1; y = y + 2;
if (x + y > 10) { ... }
else { ... }

−→ x = x + 2; y = y + 1;
if (x + y > 10) { ... }
else { ... }

Figure 4: An opportunity to detect a refactoring.

if (x == 0)
if (y == 0)

{ ... }
−→ if (*p == 0)

{ ... }

Figure 5: Example of challenges in static matching.

to if (x > 2)), additions (e.g. adding an extra assignment or
if statement), and deletions. Without loss of generality, we
propose to model all changes as modifications of existing con-
structs by adding dummy statements at appropriate points
in the program [23]. For example, if the new version adds the
assignment x = 4, then we can add a corresponding dummy
statement x = x in the old version. Similarly, if the new ver-
sion removes the check if (x > 4), we can add the dummy
check if (true) in the new version. The process can be fur-
ther generalised to the interprocedural case by inlining func-
tions, and unrolling recursive functions up to a certain depth.

The algorithm described above can be implemented stat-
ically or dynamically. While the static approach is likely
simpler to implement, performing the matching dynamically
can once again provide better results (i.e. more path pruning
opportunities). As an illustrative example, consider the case
in which we try to map the two versions shown in Figure 5.
While it may be infeasible to determine statically whether
p points to x or y, this information is readily available at
runtime. The decision can have an important impact in
practice. Suppose that p points to x, but the algorithm in-
correctly matches if (y == 0) to if (*p == 0). Then, we
would incorrectly decide that at the first branch point there
is a change in behaviour (and prune/prioritise accordingly),
while in fact the two versions behave identically here.

Reaching the patch. While our approach is primarily
concerned with what paths and inputs to check once the
patch is reached, patch reachability—undecidable in the
general case—is likely to remain a significant challenge. One
option is to bypass this problem altogether, by focusing
on testing program components (e.g. individual functions)
in isolation [22]. For system-level testing, however, patch
reachability is essentially a prerequisite for shadow symbolic
execution, and existing techniques (based on a combination
of search heuristics and static analysis) are a good starting
point. However, more precise runtime information might help
here too. For example, implementing a weakest precondition
analysis that takes into account the values with which we
would like to reach a certain branch condition (e.g. x ∈ {11,

12, 13, 14} for the patch in Figure 1) is likely to lead to
additional paths being pruned.

Efficiently sharing state. As in other instances when
different software variants or versions are run together [7,
11,12,19,25], shadow symbolic execution can substantially
increase memory consumption. As a result, it is important
to maximise sharing between the symbolic states, and in
particular the symbolic stores, of the two versions. Since the
patch typically affects a relatively small number of memory
locations, everything else can be easily shared. Furthermore,
it is possible to share those parts of symbolic expressions
that are identical between versions.

434

3. RELATED WORK
As discussed in the introduction, most prior work on longi-

tudinal symbolic execution [1, 3, 16–18,22,24,27] used search
heuristics and static analysis to identify and exercise those
statements that are affected by the patch. Shadow symbolic
execution aims to advance the state of the art by focusing on
exactly those paths and input values that trigger a different
behaviour in the two versions.

Differential symbolic execution [21] is a general framework
that can reason about program differences, but its reliance
on summaries raises significant scalability issues. Partition-
based verification (PRV) [2] uses random testing and concolic
execution to infer differential partitions, i.e. input partitions
that propagate the same differential state to the output. PRV
separately runs both program versions using concolic execu-
tion, and uses static and dynamic slicing to infer differential
partitions. In contrast to PRV, by running the two versions in
a synchronised fashion, shadow symbolic execution does not
need to re-execute potentially expensive path prefixes and
can provide opportunities to prune and prioritise paths early
in the execution, as well as to simplify constraints. However,
it does not take into account the effect of the differential
state on the output.

Overall, while shadow symbolic execution certainly offers
new trade-offs and opportunities, it is unlikely to subsume
any of the techniques cited above. Testing evolving software
is a difficult undecidable problem, which is unlikely to be
tamed by any single technique.

The mechanism through which shadow symbolic execution
determines the input ranges that trigger a different behaviour
in the two versions is to run both program versions in the
same symbolic execution instance. Running multiple versions
in parallel has been employed in several other contexts, in-
cluding online validation [19,25], model checking [7], product
line testing [12], and software updating [11]. While some
of the mechanisms developed in these contexts will likely
prove useful here, longitudinal symbolic execution introduces
specific challenges and opportunities in terms of path explo-
ration, state sharing and constraint solving.

4. CONCLUSION
We have argued that shadow symbolic execution—where

the two versions of the program are run in the same symbolic
execution instance, with the old version shadowing the new
one—could significantly improve patch testing, by focusing
on exactly those paths and input values that trigger the be-
havioural differences introduced by a software patch. While
this approach provides important opportunities, it comes
with equally significant challenges, which are waiting to be
explored in future work: effectively prioritising behavioural
differences for various types of patches, enhancing static anal-
ysis with runtime value information, efficiently sharing state
between the two versions and effectively mapping program
elements across versions, as well as exploring applications
of this technique to other related domains such as test suite
augmentation, fault localisation, code summarisation, refac-
toring, and automatic patch generation.

5. REFERENCES
[1] D. Babić, L. Martignoni, S. McCamant, and D. Song.

Statically-directed dynamic automated test generation.
In ISSTA’11.

[2] M. Böhme, B. C. d. S. Oliveira, and A. Roychoudhury.
Partition-based regression verification. In ICSE’13.

[3] M. Böhme, B. C. d. S. Oliveira, and A. Roychoudhury.
Regression tests to expose change interaction errors. In
ESEC/FSE’13.

[4] C. Cadar and K. Sen. Symbolic execution for software
testing: three decades later. CACM, 56(2):82–90, 2013.

[5] E. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. In TACAS’04.

[6] Coverity software. http://www.coverity.com.

[7] M. d’Amorim, S. Lauterburg, and D. Marinov. Delta
execution for efficient state-space exploration of
object-oriented programs. In ISSTA’07.

[8] Fortify software. http://www.fortify.com.

[9] B. Godlin and O. Strichman. Regression verification. In
DAC’09.

[10] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su. Has the
bug really been fixed? In ICSE’10.

[11] P. Hosek and C. Cadar. Safe software updates via
multi-version execution. In ICSE’13.

[12] C. H. P. Kim, S. Khurshid, and D. Batory. Shared
execution for efficiently testing product lines. In
ISSRE’12.

[13] M. Kim and D. Notkin. Program element matching for
multi-version program analyses. In MSR’06.

[14] J. C. King. Symbolic execution and program testing.
CACM, 19(7):385–394, 1976.

[15] S. K. Lahiri, K. L. McMillan, R. Sharma, and
C. Hawblitzel. Differential assertion checking. In
ESEC/FSE’13.

[16] K.-K. Ma, Y. P. Khoo, J. S. Foster, and M. Hicks.
Directed symbolic execution. In SAS’11.

[17] P. D. Marinescu and C. Cadar. High-coverage symbolic
patch testing. In SPIN’12.

[18] P. D. Marinescu and C. Cadar. KATCH: High-coverage
testing of software patches. In ESEC/FSE’13.

[19] M. Maurer and D. Brumley. TACHYON: Tandem
execution for efficient live patch testing. In USENIX
Security’12.

[20] D. Notkin. Longitudinal program analysis. In
PASTE’02.

[21] S. Person, M. B. Dwyer, S. Elbaum, and C. S.
Pǎsǎreanu. Differential symbolic execution. In FSE’08.

[22] S. Person, G. Yang, N. Rungta, and S. Khurshid.
Directed incremental symbolic execution. In PLDI’11.

[23] R. Santelices, P. K. Chittimalli, T. Apiwattanapong,
A. Orso, and M. J. Harrold. Test-suite augmentation
for evolving software. In ASE’08.

[24] K. Taneja, T. Xie, N. Tillmann, and J. de Halleux.
eXpress: guided path exploration for efficient regression
test generation. In ISSTA’11.

[25] J. Tucek, W. Xiong, and Y. Zhou. Efficient online
validation with delta execution. In ASPLOS’09.

[26] W. Visser, C. S. Pasareanu, and S. Khurshid. Test
input generation with Java PathFinder. In ISSTA’04.

[27] Z. Xu and G. Rothermel. Directed test suite
augmentation. In ASPEC’09.

[28] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and
L. Bairavasundaram. How do fixes become bugs? In
ESEC/FSE’11.

435

