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This thesig is concerned with the development of a
method for calculating spin wave energies in ferromagne-
ts and antiferromagnets within the local exchange appro-—
ximation. For a ferromagnetic metal the approach of
Callaway and Wang (CW) is formulated in a new way which
leads to an explicit formula for the spin wave stiffness
constant D . It is found that the formula for D given
by CW is incomplete since it neglects a term arising from
local field effects. An explicit formula for the trans-
verse dynamical susceptibility is obtained within the
approximation of neglecting local field effects. It is
shovm that CW's method may be adopted to antiferromagne-
ts and an equation for the spin wave energies is obtained
for a general band structure. This is evaluated explic-
itly for the Hubbard model in the long wave length limit
and the result agree with previous work by Skoloff. It
is also shovm how to calculate the dynemical susceptibi-

lity in the antiferromagnetic case.
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CAARPTER T

GENERAL INTRODUCTION

I.IQuantum Theories of NMagnetism

Historically, Heisenberg(l))was the first to look
for quantum mechanical origins of spontanéous magnetizat-
ion - the phenomenon of ferromagnetism. The theory, which
came to be known as the Heisenberg ferromagnetic theory,
assumes electrons in a metal to be localised on atomic
sites. They, in addition to having kinetic, potential
and Coulomb repulsion energies, contribute an exchange
energy term to the overall Hamiltonian of the system. The
spins of electrons from each internal iacomplete atomic
shell, i.e. 3d shell in the iron group transition elements
or 4f shell in the rare earths, are coupled together into
a resultant spin moment Sj’ which is localised at an ion
situated at the lattice site j. The Heisenberg theory
reduces the theory of a ferromagnet to that of a system of
spin operators S4= ( S?, S?, S? ) of magnitude S , bel-
onging to each lattice point j of a crystal lattice.

The Heisenberg Model
To bring home the notion of how the exchange brings
about spin alignment, thus giving rise to magnetism, we

first consider the simplest case of two—atom molecule.
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For two nuclel &% wnositions a and b snd Hwo 2lectrons an
I and 2, the two energies Ea and Ep - Ea is the zntipara-
11lel singlet energy and Ep the trinlet energy belongin

to the parallel orientation - were found as follows :

_ N 2
E = 2E- (C+3J)/(1T +8%)

_ -y 2
Ep- 2E + ( C - 7 )/ (I - 5%)

where EO is the energy of the isolated atom.

C = Sl\yac")lg']‘-ybca)'zv 4747, |, is Coulomb Integrsl

»* s '
J— - 5 K‘)GLO) &Va (2) ‘-{/b('o Li)b CQ)VJ-’J: OUJ;_ , is exchange Integral

S — S\{)O) Ll) (1 d']", , the non-orbthogonality Iantegral

V = eQ e N e | >
o PN a2 Pm n@.
The energy difference between Hthe two spin alignments is
AE = B E
= 2(7-cg )/O S

g Q_.J , 1if S is small.

So an important conclusion is that, for a spontaneous or
stable ferromagnetic svate to persist, J> 0. Waen J(O ,
it gives antiferromagnetism.

In the Heisenbverg model, az well zs in the itinerant
picture to be discusced later, the exchange interaction

is the sole source of spoataneous magnetism ia mevals.



Working in the spin space only, vhich is adeguate

dealing with megnetic phenomena, the effective spin

Hamiltonian is written as

-2 Jyou-
L#Y

J , knovn as the Exchange Integral, is equal in

13
case S=% to the difference in enerzy between the

ite J

(=X}
6]

iguration in which the spins on site i an

artiparallel and that in which they are varallel

-

is a function of the distance lRi - Rﬁl' This is
model ©

(1)

the
conf-
are
and Jij

knowm

as the Heisenberg and is in fact obtained by generalising

the two-atom case to many atoms. It ié rotatioﬁally sSy-

mmetric in the spin space.

o = . . 2 .
It is worth mentioning here thet Dirac” too in 1929,

in course of developing the vector model of the atom,

arrived at the conclusion that the Coulomb inbteraction

of electrons, together with the reauirements imposed oy

the Pauli exclusion principle, gives rise %o a peculiar

quantum mechanical interaction - the exchange. However

the notion that exchange causes spontaneous magnetism in

solids is due to Heisenberg.

Exchange interactions are of more than one kind.

The type of exchange we have referred to above is called

the 'direct exchange'. Other kinds of exchanges viz.

Rudermann-Kittel-Kasuya-Yosida and superexchange are

knowa too. TIn the latter cases Jij will have to be



anorenriately rodetfined if the czame Fors of Hawllionian
is To pe retained.

The localised Helzsenterg model was used by Bloch in
the first theory of spin waves, as is descrived in chap-
ter 2. Our principal interest is with the ferromagnetic
and antiferromagnetic metals where the itinerant electron

model is more appropriate.
The Itinerant Electron Model

In this model the electrons do not stay long enouvsgh
at one atomic site for Si to e defined as in the local-
ised picture. Thus the Hamiltonian (I.I) is no longer
acceptable. Electrons are now represented by the so-

called Bloch waves LI)CE,I’) which are of the form

WR,r) = eigl'rug(\f)

waere uk(r) has the periodicity of the latiice. Taese

wave functlons satisty

HYR.r) =ERIY(R,P)  @2)

The wave vectors are labelled by k . If the one slectron

Hamiltoniaﬁ H is derived using the H-F approximation, the

potential energy includes. Coulomb and exchange terns.

The latter corresponds to a non-local interaction.
However, the simplest itinerant modél vas developed

by Stoner3 as a combination of the idea of energy bhands

in metals, replacement of the interaction by a molecular
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statistics for the electrons. toner assumed phenomeno-—
logically that exchange interactions led to a splitting
of the energy bends of the two spins b;‘]' an amount QRBG/Q
wheret; is the relative magnetisation, kB is the Boltz-
mann constant, and E{ is the exchenge parameter.

There are two distinct microsconic approaches to
the itinerant model. Both of these avoid the difficulty
that use of the H-F apnroximation together with inter-
actiouns of firite range leads to an exchange interaction
waich is non-locsl. The first p roach, duve %o Hubbard4;
starts with a many body Familtonian, but with a screened
Coulomb interaction so thst electrons interact oﬁly on
the same atomic site. The second approach, initially
developed by Slater, introduces an effective exchsage
and correlstion terms directly into the one eleciron
equations. h

To illustrate the Tfirst approach we may consider a
metal such as ¥i with a nearly filled d-band. A reason-
ahle picture5 of the tor of the d-bend in it is that of
three indevendent tight-binding bands formed from xy,

Yz and zx orbitals with Bloch functions

1
LVmR = NQZexP(Eg.R)Qm(V—R) (1.3)
=

M = 192,%



In the Z-F approximation, with correlation negliccied,

there appears an exchange integral which is of the form

N ﬁ Do) Y2 Vg 1)
Y8 Yy ) di Ll e

where V(rI - r2) 1s the Coulcmb interaction. This must
be screened, and so it is sidered to be acting only
within a unit cell. On substituting (I.3) into (I.4),
the exchange integral is found to be independent of g'
and k', and is given by the intra-atomic Coulomb inte-—

gral

9, 2
Linm =g5l¢m<ﬁ)l(§%)l¢m@)l Lrddy s

for m = n, and by the Hund's rule exchange integral

Lon =((pmeeo(€)e,@06)  wo
x 31, 45,

for m £#n .

For nickel I__ = ev and I o 0.8 ev . But
mm ~ 22 ¢ Ymn

Imm , which represents the interaction enexrgy of two

electrons — or tvwo holes ir +he nearly-filled band case

such as Nickel's - on the same atom, must certainly he

modified dve to correlation effects. Tnls point was

stressed by Wohlfarths. Van Vleck'é7method'to estim-
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te I is Lo consider the change in energy when Lwo

atoms change their configurations as follows :

s + 9% —= al% 4 4%

Trom atomic spectroscopic data, this formula gives
Imm$=$8 ev, which is very smaller than the value 22 ev

- . - oS . .
calculated from the ean (I.5) . Uott™ a=n ierrlngg,
arguing that S electrons can follow the d-holes in the

meval, suggested the change of configuratior as

10 8

a9s + a% —> at9, 48g2

S

which gives Imm2$ 2 ev . For the lower value the scre-
ening must be assumed to be very good, and for the
higher value 8 ev the vice versa. Thus; allowing for

S screening, the integral Imm should be ieplaced by an
interaction paraméter I, having a valve within'the

range of 3 - 7 ev. This replacement done, tThe d-holes

within a sub-band obey the Hamiltonian

H zggcg)ngm -[— Izcrliq-ﬂii, (1.7)
RO

4

where i is the site index. This is the Hubbard
Hamiltonian within the first approach.

' The interaction parameter I is cruvcially important
in predicting spontaneous magnetism as it enters the

criterion of ferro- or antiferromagnetism vig the



suscevtiblility Tormuls

:)C_CCV) _ X ()

The critveria are

IXS(O) > 1 —> fefromagnetism

I:X.?Cﬂ/) > 1 —> antiferromagnetism

But so far we have ignored the correlation effect in
estimating I . If Imm is small compared with the band-
width, this non inclusion is justified since there is
little correlation and two holes can and do often occu-—
py the same site. But for I large, the d-band is corr-
elated and we have to go beyond HF. ILIu’-:)baJ."c'Jl[‘L and

5

Kanamori proposed theories which included correlstion
effects on I. Kanawmorl showed that the ground state
properties of the hamiltonian (I.7) may be treated within
thé HF approximation if I is replaced by an effective

1nﬁeract;on Ieff’

| 1

Ieﬂ = I(HIG),

G o~1 Ng_l de e
2);

and the hzmiltonian of the eqn (I.7) is modified as

L L



?4G§is the density of statez per atom for holes and ig

b

measured from the bottom of the hole band,‘EF being the
hole Fermi energy. For Nickel Kanamori finds I .. == % ev
which is less then the band width and depends more on

the band structure.

The Hund's rule exchange integral is probably not
important in Ni owing to fairly streng corrvelation. For
Fe and . Co this contribution must be significant.

The counnection of this approach with the Stoner
theory is found s follows : wunder the HF approximation
the hamiltonian of (I.7) will be replaced hy its diagonal

part ( g = 0 ) giving the total energy es

E = %G_Eg@)ﬂgf + I;‘-i}ﬂ 412y, (1.10)

v:\,rher'e n_a_ — z’g‘ QR(T' .

9 2
I:rﬁ oty ::4'- Iefo E‘Q; ni,) — ('n?—rzD ]
= Co‘flS& Ie&f Q’g

where .g = <—Q4‘—Q.1) is the relative mag’f_eblzatlon,

n the total numbg% of electrons. Thus 1t is established
that the expression (I.I0) is equivalent to the energy
expression of the Stoner model

lege 22
E = => g~ FETS g

R 7

There is now a splitting of band into 4 and |, spin bands.
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The energy of ezch snin rand is given Ty
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The exchange splitting is

AR = n‘Ieﬁc (I.13)
N ,

The original expression for the spin splitting in
the Stoner model,AE Q,QGT' , can be compared with
(I.13), ice. QR 6(; = rlIefg'g: (I.14)

The eqn (I.I4) defines & in terms of the Ieff and thus

connects the Stoner model with the present Hubbard

I+
Vi
Hy
Q
>
-p
Q
>
(—.
[4)]
o)
|_I
B

approaéh.

The other approach is known as the local exchange
approximation in which ﬁhe‘non—local exchange potential
is replaced by an averaged local potential. The first
approximation was introduced by SlaterIO who bpased it
on the theory of free electron gas. The exchange pot-
ential in a paramagnetic gas of density P is given in

the HF approximation by

’\/xaas—-BFC IR )( (1.15)
where F(Y) :_;i 1;’? [n_l 11——_—‘:—:,—/—} (1.15)

Electrons occuny states within a sphere centered on
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k= 0 and of radius kF for each snpin. In the [F theory
the density of state, which depends inversely on dE/dK,
Vanishes on the Fermi Surface. This is because the HF
“heory neglects electron correlation. This is avoided by
Considering an averaged local exchange potential. Because
of this local exchange potential, band structure will be
more important in determining the nature of magnetism of
the metal. Kohn and Sham's work actuvally showed that
there exists a local potentialxﬁ;ﬂﬂ‘which leads to the
exact particle and spin densities when these are calcula-
ted by summing amplitudes over occupied states. Treating
P as the local charge density and replacing F(y) by its
average value over all occupied states, %, the potential

is

i |
Vieo = AR NCIE (1.17)

Kohn and ShamII

, following Gaspeflz, applied the yariat—
lonal method to an inhomogeneous system of interacting

electrons and obtained

Q .
\/X, KSG :'"é'\/;e (1.18)

In fact the current practice is to use an exchange pot-

ential \40(0_-_—_ X Vxgo

known as the X« method
where X 1is treatad as a parameter which is allowed %o
vary between I and £%.

In calculating one electron Bloch wave functions in



this approcch, one considers a single elsciron hemiltbonisn

of the form

(I.19)
\/;cc, é—) +\4(f)-0-—' n H5_0.(:
The 4th and 5th terms are defined by
Vic,a = % [?Xc¢ M chi]
' (I.20)
Ve =% EXCT - 'VXCJ,—] '

-Here\&camay be taken in the ¥R form\&dg.or as a more com-

Plicated function of charge 2nd spin density which may

include additional correlation effects(von Barth and

Hedin13). In this ap?roach self—-consistent solutions

of ferro and antiferromagnetic type of metals are possible.
The relation between Stoner theory and the spin

density functional formalism has been discussed by

14

Gunnarsson
In both the localised and itinerant models, a ferro-

magnetic system 1s composed of one lattice; but for anti-

ferromagnetism an interpenetrating 2-sublattice picture

must be assumed.

I.2 Spin Waves

The notion of a spin wave was first introduced by

Bloch15 on the basis of the Heisenberg hamiltonian.
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Fielg-theoretic methods were employed by Holgtein and

Primakoff16 and an improved treatment along this line

was carried out by DysonI7

, which enhanced the import-
ance of spih wave phenomenon in the study of low temp-
erature thermodYnamic properties. The essence of'the
method lies in describing the low-lying energy levels
of a system of a large number of strongly intefaoting
spin moments in terms of a collective mode, whose gquanta
are known as spin waves Or magnons. Nevertheless, it.
should be noted that spin waves are not the consequen-
”éés of the particular microsconic model considered,
‘rather phenomenologically too they were conjectured by
Landau and Lifshitz and also by Herring and Kittel.
First we discuss spin waves in the Helsenberg model.
The isotropic exchange hamiltonian of (I.I) re-
ceives quantig;tion direction by an external anplied

magnetic fieldA say in the Z-direction. A Zeeman Term

is therefore added and the hamilitonian takes the form

H=-gt$fs's; —%.Jajii&z (1.21)
j 7y |

The ground state ilei>v with all the spins aligned
+

along the Z-direction, and with the property of SJ

operator acting upon it that
Sjloy =0
o prmaamnnd
J

The total spin in the ICD'iS NS = E Si and the state
L
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H !O> :Eolo>

where the eigenvaluve is
' 2
Eo'—"ﬁéBNSE——ZSJ;J (1.22)
L#]

An excited state, which is an exact eigenstate of
the hamiltonian (I.2I) and in which the Z-compounent of
the total spin has NS-I as the eigenvalue i.e. with one
spin reversed, is constructed by superposing states with
one reversed spin localised at a definite lattice site.

Such a state is

H/>""\IQSS o)) (I.23)
where SC{/-'Z LSL i.e. the PFourier transform of SL

The energy elgenvaluD of this state is

E, = +9%3 +28 LT — J(p]
L‘l’/ (Ri-R))

where J (9) —2_ J—LJ <" In +his state there
L#J

is said to propagate a spin wave having wave vector q

t

with the energy

Eq = 34e3f + 25 Tt0) - Ty ]

the excitation energy being
FICDGV = 25[3‘(0)—3'(‘3/)] (I.24)

For cubic crystals, with the condition that agqdl{ I,
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o o= 2JSan2

Q

D is the so-called stiffness constant.

But it is not the unique property of the Helsenbe-
re model which is responsible for spin waves. Hérring
and KittelI8 used a phenomenological approach which
concentrated attention on the study of nonuniformity of
magnetisation in ferromagnetics. By considering the
production of a variation of mégnetic moment with posi-
tion, which is effected by a weak, spatially varying
external field, they found that the energy change %E

Per unit volume of the crystal involved with the non-

uniformity of the magnetisation M(r), is

E)E', /\E ( )QJ/M% (I.25)

XY,z

where A is the Bloch-wall stiffness. ‘A can only be
determined theoretically by quantum mechenical methods.
And macroscopioally, the spins in a small region exper-—
ience a torque which press them to align parallel to
an average of magnetisatidn in the neighbouring regions,
thereby causing the spin density to precess gyroscdpi—
cally. The normal modes are spin waveg, whose quanta

are the magnoans. For small g, the frequency of prece—

SRSy = 9‘A )‘7/ (1.26)

l-@
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o ig the magnetvisation per uvnli volwne,

The phenomenon of spin waves within_band model was
first dealt with by Slaterlg who obtained an expression
Tor the spin wave energy for a half-filled band only.
And Herringzo, IzuyamaZI,and Edwards22 derived express-—
ion for s?in wave energy for a more general case. The
final breakthrough was however achieved by izuyama, Kim
and Kub023. They were able to show, using Hubbard type
hamiltonian and within RPA, that there are split off
spin wave states below the Stoner continuum of 3?ngle
particle excitations. The operator 5(1/ ==—§7I—\]ZRCB+<:E¢CLQT
in the limit g 0 generates the spin waves which exist
for q.( Upox below the Stoner continuum. This point is
explained in detail in the next chapter.

Quantitatively the spin wave energy few = Dq2 is
measurable. And expressions for D under various appro-
Ximate and exact schemes have been derived and compared
with the measured values. In this thesis D will remain

the topic of central concern and so a separate chapter

is devoted to it.
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CHAPTHER IX

SPIN WAVE ENERGY OF FERROMAGNETS

Spin wave energles are obtained by looking at the
poles of the susceptibility function, which is express-
ible in the form of retzrded Green's Function. And the
imaginary part of the suSCeptibilityvis also involved
in magnetic scattering of neutrons. Therefore a brief
account of the method of Green's Function and susceptib-
1lity 1is given in this chapter. But before that, a
variational approach, which in our case is equivalent
to'RPA at T = 0, gives an expression for D within the

RPA and for the one as well as the many band case.

D within the RPA
Considering the wave function

N —ZERC,@% RT|('_)> | (2.1)

IEi} being the QF ground state and EE denoting the

sum over k such that € <€ € € ., and mini-
F* 2 SR+ q/> 54

mising

{Y|HI|Y) —T919),

where 8 = 60-{-%&)9

Eo 16 e 3rounoL stale energyy.
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ain the sacular equasion

Se[€pug-cg+a-to] =1 zg (2.2)

The replacement of I by Iopp Was shown by Lowde and
Windsor24 to successfully explain the neutron scatter-
ing data on nickel which is an itinerant ferromagnet.

Solving (2.2) we get

52 = ! (2.3

with €O satisfying

1 = Ieﬁz | (2.0

R R_’_q, _€R+A—*":160

I;;f :'J_Z% 1 (2.5)

or

Eqn (2.5) has a2 continuum of roots which corresponds to
the Stoner continuum of éingle particle excitations; and
there will be a possible .spli't off state below it. When
N—y O¢ , the RHS of (2.5) goes to an integral which

tends to a finite limit )x. as (U approaches the cont-
inuum from below. Thus there will be a split off state
for Ie§§>J§\' s and >\ denends on 4. It is illustrated

below A O r W

STRoNG WEAK

<9

Y

Vmax
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oy a <.qmax there are spin ﬁaves as gplit off
states from the stoner continuum and when q —>0, fk-> I.
By expanding the RHS of (2.4) an expression for D for a

cubic crystal and within one band is obtained as

D = 1 Z ng?“*'nmv%
3(n,—Ny)2 2. R

2
_ %Z “—'%]ve_,g] (2.6)

n , n

K4 are the ground state occupation numbers.

kJ
In principle the procedure can be extended to the

many band case by summing eqn (2.I) over the bands.

But to get to a managable form, Wakoh,Edwards and Wohl-

farth25 assumed exchange splitting in all the bands to

be the same and used Green's theorem. The expression

for D turned out to be

D= 3(02 — ) 5| MG M0G0
€cp
=), Mo de 2.1

M@ = 325@\?&6;«& ds

and A\ the band index. This RPA expression for D comp-

where

ared well with the experimental value for Nickel. But

for Co and Fe it remains unsuccessful. The same RPA
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formula of (2.6) is cbtained from the suscentibility

formula of Kubo, which we will discuss later.

Green's Fuﬁction, Susceptiblity

and Neutron Scattering

The causal Green's Functions (henceforth to be
called GF), which are used to determine the energy spe-—
Ctrum in the quantum field theory approach within the

perturbation approximation, are defined as

G (t.t) — —%F—l- <T{Ait) B(t’)}> CRY

where the ordering operator T is understood to act as
T{A®) B(t’)} = Ot - A BE)
| + Y)@(t—t)BC%’)A({)

where _ + I for A,B boson operators
I for A,B fermion operators

7
and EB(%F-{_) is the wellknovn step function,

oR-¢) _ T o T (2.9)

0 y 1f otherwise

To evaluate the causal GFs one must go via the ima-
ginary time GF,

G(0) = —'—é(T[A(T) B©)] ) (2.10)

where A("() — él?/ﬁA C’.—Ht/h

H = HO+ HI , where HI is treated as a werturbation.

with a hamiltonian

G,('C) can be written as a continuous product of imagi-

nary time GFs involving Ho only.
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G@ =~ {Texe (e )A) B
0

<T{€XP(“£‘(;ICZ,) OL'C//B > (2.11)

<><> Tr’ e—B o

and @) é;'Zf é; '?icg .

The Fourier Traansform of G("C) is

~H 6

) 1 10, T
C-'er'\“)———fz 3 6'8! ™ G‘L(—C> P wr).:g% (2.12)
+

where

Sy

and therefore C R
(_C —L&)a? .
GPQI’(_ ) < Glen.), (2.13)
Q.:—*OC
— 0L LT X

But these C;(:Copbsare not analytic and for aspplicetion
in magnetism and other fields, the socalled retarded and
advanced GFs are intrcduced. They are analytic in the
upper and lower energy half-plane. To describe propag-

ation of electrons , retarded GFs were employed by Hub-

o)
bard“6. A fuller review of this technigue is given by
Zubarev27; that of the causal GFs are done by Martin

29

. 28 . .2 . . o
and Schwinger and Baym and Mermin®~’. The retarded (+)
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and the advenced (-) GFs are defined by

Laws BeSY
=—Y+ 0 {i (t_.{:’)} <EA(‘£)QB@’)]’1> (2.14)

where AG:) LH{/*1 A e LHt/ h and B(—t/) are two

operators and

AB -~ BAl} Tor bosons

[ 2] =
Q AB + BA

/
and e{:ﬁ(‘f:-— t)} is the step function. The thermal

{xy =[x} /T iet]

<<AG:) > BG{)>> being a function of £ - t', its

Fourier Trensform can be defined as

for fermions

average 1is

+ ot

<<A’B>>z = S Kawr s B e dr 7

~

Of these, <3:/\9 E5:$>:§) is analytic in the complex upper
half-plane of w0, Imw>0; and <<A,B>>;) in the

lower half-plane, Lnum(o 27. It can also be showvn that

Gr(wu) = <<A; B>>—;°0n. Wy >0
(2.15)
G»CCDn.) <<A B>>‘w 2n {0

28
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i.e. the caugal GIF re derivapnle from the retarded snd

ul
oM
"
0]

advanced GFs; and the analytic continuvation of the cau-
sal GFs determines the retarded and advenced GIs.

But the solution of these Green's Functions and of
their Fourier Transforms, by setting up their eguation
of motion and decoupling them by cutting after two terms,
is more important for us. We therefore give here a Dbrier

sketch of that.

By noting at 1 ?AG:)
v novine st ThTOAS) - A, W]

we obtain by differentiating retarded and advanced GFs

2 KAWw;B(E )>>

= =5 -){[4®) 5 BC%)],?>
+<<[_A(%)9 Hs BC&)>>“‘ (2.17)

and the second term has also zn equation of motion
with a higher order Green's Function on the right hand

side,

W2 ([aw, ] ; Bc’é}}i
= -ot-t)([[At)s 1T BC@],2>
T KICA®L M, H ] s BE) DT )

The decounling can be carried out at the second term in
(2.I7) by linearising , as for example in the case of‘)ﬁ
within the RPA. Or, still higher order terms can bhe re-

tained and other ingenious ways may be employed.
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The other important point =z2bout these GFs is thet the
discontinuity across the real axis is related to the

correlation function <A(«&) B(o)> by the socalled

spectral theorem,

oC
A@®)BOO)> = 1 ;
< ) ‘- Q«Enz.) . (((A, B)%H‘E—'«A B>> LD
et
\lw : 1+n gbhow e e

(2.19)

*
and <<A 5 B>>w—le ::<<B s A >>¢o+(°.£,

The dynamic susceptibility, i.e. the response func-
tiorn of an oscillating magnetic field, involves the Fo-

. . ) . Y 2
urier Transform of Green's Functions discussed above 3.

7,
The interaction energy of the spin density£;C£(Y{) of a

metal and the oscillating Wagnetlc field

ch ~-i¢9. v+co£)eee Lcc

éﬁ'&BchSSC )eLCq/Nwﬁ) &fdr’ LC.C
v

And the response of a point r of the spin density at

(2.20)

TBs 00 =t Re[KS i gD HLe & ‘|
W+ig

(.9 B)

~ R [Z«Srs“‘*% S(‘°">>> e

% HO‘ELB‘Q*B) I’+wﬂ gt

(2.21)

1
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The summation is over %e@inwccal lattice vecsors and

S (q/ w) (g r40t)
) & Ay dt (2.22)

We have
SB(B*"},C&) = XB“(@‘*O_IGGL/,(‘U)H(X (2.23)

whence the dynamical susceptibility is

2
Ko erae) =L pemceo) e

Ao-l-i&

This ig the Kubo formula. As mentioned earlier, the
transverse susceptibility tensor :X_,‘.gcj_l,w) has singular-
ities which give the spectrum of single particle exci-
tations as well as the spin wave energy.

The susceptibilltj

L = S<<s 95 ¢l 9 &

E >0

is solved by the previously shown technigue of eguation

of motion of Green's Punction. Of the commutator
EECR+ R’P9H+H j

in the equation, the first part is evaluated exactly,

, which appears

but the [CR+W.LC RY 9 HI] is carried out within
RPA which linearises the equation. Replaecing number op-

erators by the the thermally average occupation nos fk’
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N
v”»Cﬁﬁd is espressed by the folloving

X@,w) = I (pw)

1 (2.25)
1 - ST

(o) = > _ J8r —Sesaw

R €R+¥) —€R)+A ~hw+ie

where-

(2.26)

By equating the denominator of (2.25) to zero, ean (2.4)
at T = 0 is obtained, which will give the single particle
excitation spectrum and the spin wave pole including the
expression for D derived previously. Thisg indicates how

an expression for D can be worked out by looking at the

pole of jﬁ

The imaginary part is also importent, since it en-
ters into the cross—section of inelastic magnetic scatt-
ering of neutron523’ 24. The differential cross-secti-
on is 9

Reln —(

2Q%0

e¥ \ g AN o
te >? az@(%ocer%%)pqce/,w) (2.27)

where X is the wave vector of the incident neutrous,
k' that of the scattered neutrons, with k' =k +g9 ,
q being the unit vector g/q .
1 .29 1420 cc (3
b =LHm — SR RYm ana M. (%)

is the correlation function which is equal to
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2
) E; CU Q)) whernr the scattering is princi-

pally due to spin magnetisation.

S(‘V w) :—— gcl.wS /g té<¢2§?’f£r’t)g(r)> (2.28)

o

_ 1, it |

= ﬁB Jit ew<g Cy,t) S@(—fi_/)> (2.29)
—oC

The susceptihility function is involved in the express-

ion for ESuEFVJU) via the following equation

B T .
S (,w) :“—'%‘-—Qi..@_(ﬂ w) T US55 S, "G‘_’)>>w (2.30)

57nwn

~1
_h (ﬁ @?RU \/ :
= l—e (ﬁ/cv w) (2.31)

¢ F
Symm derotes the symmetric part of the function.

Thus it needs hardly any more emphasising the key
role of the Green's Functions in the study of magnetism

and magnetic response
Exact Formulia Tor D : Edverds-—PFisher Formalism

Exact formulas for D, starting from first princip-

les, were attempted by Abrikosov and Dzialoshinsky3o by
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i - . i 31 .
extending to fTerronsgnetism Silin's”” work in the para-
magnetic case within TLandau theory. But it was rejected

9

onn grounds of nonrigorousness, 3s discussed by Herring” .

Also, using the fact that S;‘o> is an exact

eigenstate representing a spin wave of wave vector g

in both the Heisenberg and the itinerant model, EdwardsBza’b
obtained an exact formula for D for a strong ferrémagnet
only. He used the first terms of an expansion in powers
of q , the only condition being that the inverse life.
time of the spin wzve will go to zero faster than q .
as q —> 0; the spin wave is then well defined and for
very small values of g , the theory is exact. Still the
restricted validity for strong ferromagnets only led to
the search for a more general formula. Edwards and Fis-

her33 derived such a formuls by generalising Ma34 et.al's

work.

For a system having rotational symmetry in the spin
space, and if spin-orbit and dipole—dipole interactions
are ignored, the hamiltonian can be shovm to commute
with the total spin step down operator Ei; ; Because,
if |W> ig an eigenstate, sc will be S_c; l LP} with
the same total S but S? less by onre; energy eigenvalue

remaing wvnchanged

[ H,S ]lw) = HS |¢) —SoHIw)
= EgI¥y —SEIW)
=0

(2.32)
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YI© — { =7
or [ H,S8, ]

This property is exhibited by any 1sotrop1c ferro-
netisation
magnet alorg with the condition that the totalpis alig-
ned arbitrarily. In the ground state, however, an inf-
initesimally small magnetic field gives a preferred
direction of magnetisation vector, so that we can assume
almost all the spins are up.

We now set up the equation of motion for the gene-

ralised susceptibility,

X&) = Sd+<<s ® , g >> oot

are the Fourier components of spin density defined

2

S
b

e

R P C
=> e "G =2 Cp gy (2.33)

N
!
|

The equation of motion for the Green's Function 1is

2 <<S':1§b 55,0
= 2{[SqSa]y HglTMss,y W

where -Eq/:]_—._:,l = ._c‘/ 9 Hj (2.35)
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o
b=

Jq is &lso tnierpreted =s gpin—-current componenrt in
1.
U

the g-direction.

The cowrmutator in the first term is well knovm,

[: ~q ° ;?:] - 355;?

(2.34) is now multiplied by I ana integrated to

give the Fourier Transform which gives

Tox = .‘Z.(SCZ) +hy Xy

(2.36)

where

:Sé“’ KT 55 et (2.37)

Thas '><I too has an equation of motion involving on

the right hand side Green's Fuanctions of higher order
l.e.

fhox, =0Ty, Sl +hyXs (2.39)

where

(%8
oy X5 =S<< J‘C%) H] sq/))e e (2.33)
-y

Combining (2.36) and (2.38) we find
. 2 ’f —
26 > 1./r3. .5
X = X + 3 <[_ > (2.40)
e co i_ IRy v |
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In errivirg at the exact exoression Tor D from fthis
equation, a fundamental assumption is made that for small
a the spin wave is the ounly low-lying mode near the
ground state; i.e for small q and w , the suscepti-
bility is dominated by the spin wave pole at €J = Dq2.
Particularly for g = O , orly the first term in (2.40)

ig left which is the spin wave pole for g =0 . It sa-

tisfies the important sum rule,
o¢
S:[rnixolw = ""<5>
v
:)C igs therefore written as

2

2
)(ccvco) 9_<S>C1 AY ) +0O@) (2.4T)

w - Dd/
_KE> H(DDT
heo (few)2’

AsS w —> 9D
Yo -7 O

Therefore, from (2.40) and (2.42) we get

(2.42)

—D°1/2 — m([;rws D

Q<S _h% 2| :im Lim D(:)_ (2.23)

wH0o cv—>0

(2.43) is an exect formula for D wvalid for any metall-
ic snd nonmetallic ferromagnet, or for any non-ferromag—

netic meterial in a static magnetic field in which the
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. 2pprovriate limiting conditvion is () —> o, ,
W = 8/&BH , the Larmor frequency>S. In fact, the
spin wave pole is contained by 'J(J" which can ezsily
be seen from (2.40); but the limit in eqn (2.43) is
finite because the residue KO‘I-E_/IONQ' , tends tlo
zero as q —=>0

However, D in the a2bove form is not of nmuch help
in application to real systems. D(J.im.the limit is'
to be brought into a calculable form. Also, by working
within different models %:}izgo SCJ.(‘?_/,CO) vas evaluated and
the D value thus ohtained ﬁ%s been compsred with previ-
ous formulations by other authors. For a ges with short

range interactions, it was shown 35 that

/

Lim y (9.0 = cow) o1
‘%)-3'0 J J

/ » 0 3
where DQJ.(O:CU) is the "irreduvcible" part of \)Q_J- .
consisting of all irreducible diagrams contributing to
To this extent, the above formula is a generalisation
of Ma et. al's 34 . More support to this formalism
comes from the fact that the intensity of neutron scat-
tering is always proportional to <:SF?> in the long
wavelength limit, which result was stressed by Msrshal
and Murrey 36 for the Heisenberg mocdel and observed in
metals by Stringfellow37. Also Fisher35 showed in det-

2il in his thesis how the exact formula (2.43) can for

a Helsenberg model reproduce the first correction to the
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-~

B, S .
megnoii energy uvnder Dyson-Born approximat ion-Y in a cu~

bic lattice; and the spin wave life time of Akheiser et
a139, Boyd and Callaway4o, who used scattering amplitu-

des of two magnons.

For a genersal system with a hamiltonian

2

H‘Z(“"“ +V(r L))+ - (2.45)

L?‘—J \T‘ Pl

D becomes
l’).
:[) = — ‘ngtgé :X; ’CO) (2.46)
“T"‘% -
In arriving at the above, it is to be noted that
2
[s,.H ] =0 S V@) S
g2 ' - 9HI:. ¢ ‘#j‘
and L:Lm :X_J_CO,CL)) <<d ) ¢ J— >>co

In the one band itinerant electron model, with the

-Y:)"

hamiltonian

H = Z E-CB)D‘BG” ZCQ "'QI’?CQHCQ:L—-QQ,CS‘Z&

QI,Rﬂ,q/
and S 'Z R-42CRy, ﬁC{/j' Z_@;(RJV) F_CE))CQ«% RY
this formula of D is the neaera11s@tloh of Edwards' for-

mula for a strong ferromagnet,
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Q /
Dy < S L@fe@ne,

nT—er, g, 0‘

+Li rg.z(q_/.vé@ (@ vEwd)

<<CRT 'QJ"C’C Ry R¢>w

But in practice itinerant ferromagnetic metals, for

(2.47)

example Ni, Fe and Co, are many band cases. Lléi;noks.@,w)
can also be expressed in terms of Bloch wave functions
and energies belonging to different bands and the value
of D can be calculated. This may ve done using the

HF approximation as follows :

—

hisTy

Lin gy e [65 s ]
L3P S
“ZZQQ“[PS\RQ“CR)QLC)  (2.48)

Here the band 1ndex n refers tod spin ard the band in-

dex 1 to4 spin. Hence

]_ m_j)(J(o w) ot

LTy

=> Kraj PS(R&>] <<a.(a&)a_1_6u;) dee)a cg)>>cve
Rnl

(2.49)
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. . i - N .
Otlicy terws involving <%:GLQ/QQ{5 Cbaaqlig> viiGh
n' £n or 1' £ 1 vanish. We know that in the HF approxi-
mation
LE‘ CR)t 4

O, TR B = 4 o (R)

ay (R,2) = SERYEA a, ()
ard slso

K& @a® ;@ a0
= ‘% <E£rfg)%@:) 9 af;,CEJa.ncg)‘_] >

= —E/R <<‘Jn.a*a_ CL—ZC!»&)>
==Y [NS®) _ Ny

Also . oc * _ 2y \ B 2
_L/JRS SEL® ~EYEL -4
-QC
1
ER)-£®) |,
if there is no sing-
ularity.

Therefore S{gédﬁﬁa > dt can be replaced by

N, () — N,(R)
E(R) — E(R)

_ ¥ E
D—~ =t QZKR%IPWQ’N

h-T - n_l, — Rﬂl ¥ N N£
Engm ~BSR)

in the HF approximation . Then

(2.50)
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function.
The formula (2.50) is reduced to a form suitable

for numerical computation by using the 'f-sum' rule :

n_zuq En(m - Ey(R) !{ng]s;_‘g@l

—9<— N LR)D —N(R) 2
% E:ch)-ezc!s) Kng\:%_\eg)\ (2.51)

Actual computation has been carried out by Callaway and
41

Wang'™ for Nickel and closer agreement with experiment-
ally deterinined value was found.
The formula (2.47) has been zdopted with success

in ordered binary alloy cases42. However, recently

23

Cellaway and Wang developed a2 perturbation approzch
to find the susceptibility X (%) vsing the local exch-
enge 2pproximation within which they also computed bénd
wave functions and energies for Ni, Fe etc. Although
they derived X(?,w) for a ferromagretic system,
the method is in fact general and is applicable to an
antiferromagnetic or ordered binzry alloy case.

41 derived a formula for D in the

Callaway and Wang
ferromagnetic case, which is ideaticsl with eqn. (2.50).
However their derivation is in error and we shall show

below that there is ar additional term in D. In célcu—
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\

calculatiﬁg egin. (2.50) we used the HP approximation

and they neglected a vertex correction in the spin current
—-spin current response function. When this response is
celculated in RPA, thus including a vertex correction,

the additional term is obtained.

The CW Formulation

The method of Callaway and Wang, henceforth to be
called CW's, starts with the hamilitonian for a single

Bloch electron 5
Ho = -E " ) -V
o 9 m o~ XC,T

where %C_Y_") represents the Coulomb potential due to
the ions and the average distribution of band electrons;
and \j;c E#f) is the exchange-correlatiorn potential

2

for an electron of spin ¢- . This may be written as

2
HO = dh V + V(P )—\/'(T‘)O"n (2.52)

where

\A<r>=\écr> 5T Ven + Vaey ]
V(") Q [chAf — Vier |

The last term in (2.52) is the spin-dependent part of
the potential in the local exchange approximation; and
n is the unit vector in the direction of spin alignment

and is assumed to be in the Z-direction. Using the X
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metihod

V() = 3"“‘3( )‘-’(e )

XX is the variable parameter. Under the impszct of a time-

dependent transverse rotating magnetic field

B_L B {XCos[% r-cwot ] +\(Sm[% P —wt]}

where Z? = Y 4+ Ke , Y 1is confined to the first

~n|t|

Brillouin Zone &and KS is a reciprocal latiice vector;

the interaction hamiltonien is

F4I :;%28£¥3E§L'C?

The perturbed wave function, which is found by using the
standard time-dependent perturbation procedure, is found

to be

(9] 25 gyt

—;‘ ( Wn g 261/ +C«;/+ n

/

(Eq/(e- ‘Tlnk>e )L&(‘Y’r) ,  (2.54)
“ng,ty/ =@ +in

£ g g = ESRI- E,(%)

q} (Q.Y ﬁ) being the ufperturb d wave function belonging

to HO. These are used to construct the transverse mag-



/ ,
M+(rp) = Q.%.%ZN BYIR AT FR.1)
R

M) =M () +£1M,.00,0)

After some algebra we get

Mateo) ~0%S Sl ey

€
® LN CR) — N (R+9) P
L ~ Ty $R.r)a; A APLE

RR, 0 R+Y + @ +iN
and a similer one for bd(!}t) . In arriving at (2.55)

(2.55)

use is made of the or*hOﬁonal nroperty of Tthe Bloch fun-
ctions, i. <?_ol,‘ —0‘ ]Vl'Q> o,

Unlese C_i_/: g"_f‘_i/‘s and
also the fact that since the gein direction is included
in the band index, the terms in M+ which involve either

U+ or g twice vanish,
Writing the position-dependent terms of (2.55) in

terms of a Fourier series 1.e.
b4
kP.“)_(E'P) G-i- H)E(R"”q/,'f‘)
= E Cjexpl* 1(¥+&) PJ (2.56)

with . _ (NQ><D_ k\(}"_‘. e)LPf_-H% 7':“ 2-?+CV> (2.57)

where_gl. is the volume of a vnit cell and N +the number
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the crysizl volume, we can write (2.59)

as

M (rt) = Bz Js+exP[tC%- P_wt)]  (2.58)

in which

2
def—q/ ) _—(3%s) § NL(R) — Ny (R+9)

X<ﬂ8\0;e"PC-z‘."=’5'l”)l‘l-’@*‘i’><58+‘iﬂﬂrex?0@-w|QB} (2.59)

JKJSOW“D 1s the nongelf-consistent susceptibility and

wag obtained in this form by Callaway and ¥Wang. It re-
Poin_'t

veals the immnortantpthat if an external field is applied

with some definite vector, the induced magnetisation has

components with wave vectorsg which can differ from thayv

of the =2pplied field by a reciprocal 1attice‘vector.

But there is s change in the local exchange poten-
tial because of the rotztion of n +o n' by the applied
magnetic field. This must be incorporated in the susce-
ptibility of (2.59) by an iteration procedure to get the
self-consistent susceptibility. The change in the exchen-

ge potential is

AV = @[T (=1 )]
=) (Mioz+Mai)/2M, (2.60)

This is written in the Fouriler-expanded Torin as
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AV(T’ 't) 98 BOZ}\\‘,JX (9,00) (W .r_ct)

Js+—- g€ ~ (2.61)
4 is C.
where .
2 -Ki).r
. 330‘ 3 —J‘)‘—- 3
Ny (Z4x J dr (2.62)
t) (8'25) ) P% Vse @%

When this change is included, the self-consistent susc-

.L'l

eptibility is given by the equation

(o)
q/’ o .
Z m_is_:__w) 5{3 +Z>\JCJ)C sj_’:d)] =:>(“Es‘i’_;c_‘-’) o (2.63)

v,hose solution in the matrix form 1is :)CQ{_{’LQ_): (2.64)

\ ___>\ x(a)

The spin wave energies are found by looking at the

pole of (2.54) i.e. from the eguation

det [ 1—>x] =0 (2.65)



A New Formulation of the Local Exchange Method
for Calculating the Spin Wave Stiffness Constant

and Dynamic Susceptibility

We made a departure from CW by writing the self-
consistency(refer to the one in CW abhove) in the form
of an integral equation, instead of an infinite deter-
minant. We note that in 2 transverse mode of wave vector
q the local magnetisation Mo(z) precesées about the
equilibrivm Z-direction with a small cone angle mq(z).
We therefore define M+(£,t)as

+1(Ze-0b)
Mi(fgf) ]\/‘W)m(r) C (3.1)

With this definition, AV

5

t) @
Avry syt JATTim®

This shows that the local exchange field Vi(Phas a per-
¥ W@ r_ct)
turbing transverse component of amplltudeW/(f)"kfr e

(¥)of ean. (2.60) becomes

We follow the previous procedure in obtaining the per-

turbed wave funection with the pertvrbatlon.zﬁﬁéﬁf)and use

them to construct M+(£,t). This leads to the self-con-
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tnkR
* —wwt
E (R) _E(R+P)+hd+in
h ya ‘
[N
= e” mq/(f)Mon) (3.3)

and a similar one for M_(E,t) . Ilaking the spin indices

explicit the equation becomes

ey . "%-E
~8éBZ<3E+%¢ e” TV eym,(m]nre)
f_n_g
R — H ~+ \‘ *
% NQ¢(—) I\u’gifcg Y) Wh (g};)i&j&#ﬁ/,!’)
ECR) — & CR+g)+hew 1
G2 B = M pymgfr) (3.4)

Lvnoggm) or‘n__jgcr ig the spatial part of the electron

—~19.p
e

wave function, n the band index. We solve for those
values of & for which (3.4) hasg a non-trivial solution
mq(g) # 0 . We shall first teke up the case of a ferr-
omagnet of cubic svmunetry. The equation (3.4) could

also be derived starting from M as well.
The Stiffness Constant D

In this section we shall first carry out the nece-
ssary algevra to arrive at an expression for D within

the CW approach.
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Vf(r> :%‘—(H/’\” Hq,) (3.5)

_Q.Li"{Ha\ — Hy)
= (H@.Iﬁhr— é‘%rHQ + [él%rg HJ 5 (3.6)

and

1 7.1 .
also similarly foirr @~ <E*HHO' We assume g in the X-

direction. The eqn. (3.4) is not solvable in its pres-—
ent form ; we therefore muliiply both sides of it with
Vg(f) and integrate over gpace. We get
190
-9%s -EUJ«&*-‘I\e V(2 m, (0 nak)
Y
n R

(R ) - '
X N )—NL»CE 'T) <ma\é“\§c(t>luz+?>

Engg) — EMC.'_Z-@) +hoo j M ( )dt
= \V G‘) (rIMpL)alr
e\ Wy (3.7)

Using egns. (3.5) and (3.6) we can write

-+ A9 ~LYI
+J§%<MB e Ththe lBJ/RWO, (3.8)
‘ /A ¢ 19y p?
Since [e"‘“,H,;]- ::):8. ,%]
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“
et res T T oAy o i T ey -, - ,_-{"“ [ P S Y
I tle long wave lengvil Jimiv, |i) = v'/ , Faxing Tois

replacement and picking up the first part of eqn. (3.8),

~we get from (3.7)
9 ‘ca Z{ewﬁfle“ AL \nak >

tnk % wag) _.Np_i,(g‘*'cl’)
E (g) _EC&+3’)+D“?2

x[£,58) ECM/)]{m& )

By adding and subtracsing I}? in the energy numerator,

the term not involving D is :

< v
~e Z(Q Re3| 1y mym D) LEY:3%

Lnr G
[N (R~ Ny (R+%) [{ O-TR\@- W%’“""}

= “%ﬁj\ﬁ@mw@ ZH’Q%‘“: Ny &)

2
= Zwu(nw)ll\l @+%) | o7
R

:S\é(r} m_CVG;) M,,(;:)cir (3.9) MSa'znj the closwee Relotion
Z.ln%(n&\ =

Tae term involving

This term cancels the RHS of (3.7).

D and of O(qz) is

Y4e D2 N oy RV (DlarR
_EB‘DWL<LH |t Ry

Ln R

NQ%E) - Ng¢(g)
En%@ — Eg_gg)

X {nrt|24R> !
8

’é |
28 DGV ‘-:Z_'\] (Q) ZNQ¢CB)] , using the :

closure relztion as albove and \/&O") %CH,‘. H#)
_J_g%g)gv [N¢-— M¢I (3.10)
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"3’3131361/2[?\),\ — N y'_I

o edimplifying the remaining bt2rm ve expsnd I;‘.q ass

mc‘pp) =1 +%/n’14(r’) ¢ (3.11)

The zeroth order contribution of m is

8/&8 'hci/Z<P.¢, R+°f/le‘ - ‘Q¢R>

9L .
%N (B) Ne(R490] ook [ B + = R o)

—1%r

19t 4 S N ekl 42 R T ety
T2 4m R
) e g,
N (B )@W[‘S—%E?WPA%@}
e—@

Noting that toctal momeantum for 4 and ) spins in

equilibrium is zero, the above is further simplified %o

give :
Z—L.S_EQJF\C! D4R Ry | 4R
9 4m /QZRNM'<'?\CVI >
"ZNEQQ)@&EM‘WH“’@}
er
S 19583320 NpeN,=N (5.32)
2, 4m
and a term ¢
1 Y Q2 N/ ‘?"D “InaR
4 e LS B e

(3.1I3)
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The contritution from the Ist order term in ¢ of mq

is

sfce(fﬂ/ )Z{z& V(@) M2 |nar
X E\I (R) N%Ck)j@ﬁlp |2, “} (3.14)

A1l the qg—order terms have now heen cslculated. It
is by equating the coefficients that we get the exXpress-—

ion for D as follows :

Q

Q{% AR (s B \M*2>l N8N 2

enk E (g) EZ(R)

+25 5" R [EIm ()R x
tnk
XN CR) NZ(E)JQMUPT 12¢B>

N:T—Nil Eng E (&) Eg CR)

s EDIEEE -4

— RV, () (e )l nak CQ)-—— Nz‘bcg)
! Z<% \ ot > E CR) 524(@)

by X<ﬁ+£l%[eﬁ>}

(3.I5)
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The Tirst ftwo terms yislc just ego. (2

o Tt

\J1

) =mnd ve nov
have a third term involving the function mI(E) . This
term was missed by Callaway and Wang in their incorrect
derivation of D . However, this mI(g) cannot be obta-
ined exactly but it satisfies an integral equation which
we can deal with by an iteration process. The integral
equation is ohtained ty starting from ean. (3.4), and by

putting m (r) I +m (r)q viz.

—-3éaz<ﬂ¢ R+q/‘ e ‘(1 +m(r )ﬂ}\g@)ln,r@
tnRk NQ(R) Ng (R+%)
E (R) 1‘.* CQ+?/_)+‘kw %-"

(R,Y) LlJ (R+%,r)

“M () 49 m, C"‘)e M (?)

We proceed as before

el%r\@(ﬁ)
—1 197
7.¢" (Hy~Hy) 5
9.0 .y 9.
=3-( "Hp = Hye )+éj[”¢se ]
4

Therefore,

A g+ci/|,g;?'r\é(f)(4+m,Cr)Cy)|n¢g>
1<€ R+9| X ¥+ m (@9)IneR M E B ég;,q_,ﬂ
LB | B 2
Q. Qm
«(4+my(0)9) | D—@B>
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Therefore, equating coefficients of q on both sides we

TR 7 EECE, (&)
3
Xy Ry, (Rr)

= () M, (¥ (3.16)

(3.I6) is the desired integral eguation Tor mI(g) .

Faquivalence of our Bxpression

=

or D
to that of EF's Exact Formula within

the RPA

We commented earlier thet in arriving st the formu-~
la (3.I5) for D the spin current — spin current response
function )QI(?,Qi) wzg calculcted in the HF gpproximation
and tThus the vertex term was missed. But in the random
phase approximation i shonld anpear. The message of the

leocal exchange annroximabtion iz that arz electron of spin



moves 1n & local poﬁential\/gc g- 1n the ground stase of

the system. We may regard the ground state of the syst-

en as the HF ground state of the many-body hamiltonian

H :Z[ P +}§Sdrj(’r)g(rm Yolr-¥%)

L#)

=S [,__ LY ] +j§@)€¢<f)%@)dr (3.17)

"L
where Ei and r, are the momentum and position of elec-

Ve = (BVh =8 V) /(8,-8)
.fr(r) ~(V~V V)/CP w) (3.18)
C(® = yia)g,@

tron 1 and

Congsidered from this point of view, CW caiculavion of
:X:CQICUD corregponds to the time-dependent HF approxirn-

etion which is equivalsnt to the random phase approximation.

Thig fazct is also revesled if TLim chq>ls calcula
CTE

. \ . WwFO . - -

in the RPA whence a correchticn fterm iix the Tormula Ifcr

D, in addition to those found in the HF approximation,

appears. It is proved below that this correction is the

same as the vertex fterm im our formula for D , eqn (3.I5).
We rave now to use the hamiltonisn (3.I7). Writing

A, T T - 3 -1 = 2

shie J'_cv and ) Y in the second quantised form snd carry-

ing out scme algebra, we arrive atb
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;(3.0)

Z@w\ (28 +h9) |k
tnR

(LB uage])

E”(E\) “E,,,CR) +hed

" Z(Sgon) e 435 (V’ CR/,TJ LIJ,(R )y Cn,l‘))

2-/ /Q

E C (&) —E,C8) ¥heo

CB) N,M\CQ\) XFT-<<J_L{/5 %ff@.l) a;l’,roa,)% (3.

vhich is exactly what we Tound before. Tae remalning
part prolongs into @ infizite series of continuously
multiplied verms. But, the mI—involving term in our
formwla, too, gets intc an irfinite series il we try the
iteratior. process. It is shown below that both the ser-
ies are equal term by term, which establishes the desired
equivalence. The firs+t such tern frowm the present RPA

series is



ZZ(@,R\ ‘n¢R><n_ n| M,R}

nR y{r’ M ,
o« [N a) N CR)][NQ’CR/)—-N 1 CRY]
[Ecn) E(R)]‘_E LRO_p CR)

(3.20)

Also '\/}(f) :%(€¢—@1)§(§) . And from the integral

eqn. (3.I6) for my(xr), by replacing mI with

1% % n N, €&

as the first iteration,and integrating by partswe have

a term

)y SAIRRAEARI

XBcQ),Necm]L@ /(R — Ny (&Y (6-¢
[ECR)_E(R)_[[%gi'() E“C&)__f

1)

({(s )ty (R r)% €3 )(F/(R,T)Ll) CR)d.r' (3.21)

Noting that MOC*)— B(P ) , (3.2I) is exactly

the same as (3.20), and our proof is thus achieved.
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Paramagnetic Limit.

In this section we have showir that D->0 as Nﬁ‘—NJ/—}o
in the very wezk ferromnsgnetic or paramagnetic limit, as
should be.

From the exnression for D 1in ecn. (3.I5) we

first we first deal with the first two terms vis.
_,_2

Iq ﬁ{& é{ﬁi —EZE:I<£'R\ h.l{>{P{CK) &JCR)

ECR _E,{8).
From the f-sum rule
N _1 N (R
:%erEB);;TCR) ‘“éZl@“’*P'K“NNn"@ (3.22)
Py =/
nR R (in ER-ELL
and also
)
m-&&) KX
=1 g (R
#‘Q
OR (3.23)

1
= ‘}'\Qv B c&) , assuming cubic symmetry.

Thus,assuning cuvic symanetry,

2.

105 BV kel

m b |'hr h x Ny @®— Ne(® (3.20)
‘E;@;t%ﬁ) >
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Also noting that

170 E(R) —E,(R+¥) JLELR

md g (3.25)
RE £8 =%<“Blf|ng>,
the first two terms of D reduces to
L { [N CR)VQEI (R)
TON n-5 s
1 Kol Plegy| NE® N
CeZn) ECRY ~ELR)
- 2,
B3 e |
tait) E'-g_R) —E R
_———-JF‘Q 1 T FEcIN.R) 2 1N ()
— 1 . ( ,
(NN o 1;\9.[_ ESRONGR) +|vE®R) ol.E‘:;_CB)]
! ’ 3 p 12}
tia> [21(e|pie)] Korl Bl
&Catt) % NSLR)Y — Np(R) o
E(R) —E,(R) 3.2

The right hand side is obtained by adding and subtracting
the diagonal matrix ( 1 = n ) element.

Nows

TER)N,R)
= 7. (N, (R TE(R) ) VB BTN

2
< PN (R)
= Y(INERIVELR) ~|vER)| 'ICR)




: : r,(R) o :
since Ve N C@) :GLN“C“ Z.E(R) , i being a function
2T IR Rw |

of energy only.

This reduces our expression for D *to

! {v. (N RIVELR)
nR

+a> [2Knr|PS |2 —Kog | Bler) |
HE L NR) —IN(R)

- (3.27)
E&B) ~-ELR)

In the very weak ferromagnetic or paramagnetic limit,
N¢ - Np >0 and also the exchange splitting ASE - 0.
The bands of and spins have the same energy. In this
1imit the matrix elements cancel, since there are twice
as many matrix elements of P as of PS which connects
onlyq with | spins and the numerical values will be

equal. We are then left with

> V(N 7D
n
~ 3
=> SoLRv(NrEB)VEncg))
- n
=5 Sagg N (R 7E,(R) (3.28)
n.

The normal derivative of energy vanishes on the surface
of the Brillouin Zone and thus the integral of {3.28) is
Zero.

Thus D >0 as Ny - I = 0, even vhen the

vertex correction 1s neglected.
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The Dynamic Suscentibility of a Ferromagnetd

An explicit forimula for)C (ﬁl_,w) within the CW appr-
oach and with local field terms neglected is derived in

the following way. The interaction hamiltonian is

I [I faswed lEl/ZB-B_L 0 ¢
IW‘ o.)f: .U qf P_ODE qle ll
‘éBB I ( ) P . )

—
— ——

A}

and also }vl Cr;t
- ) W(y.pr —wt) )
-_—.é_ B,X(LYDe Mo / M,  (3.29)

+& o3

where MO :VSMOCI)OLT,
When we include the effect of induced magnetisaﬁion viz.

A\g({) = V}C‘B_‘)Cﬂﬂ. g +M —O'+)/2.M£§_‘),the effective

interaction hamiltonian is

el |
H 5' _ StBB {L‘l x(@ w) V}C )‘]G‘ 1 (- T‘.-CO‘E)
M, 9%&s

+
+“°} -2 (3.30)

Using the expression for perturbed wave function as der-

ived in eqn. (2.54)°

| Mne) .-::—-——-ZN(Q)(.IJ (R p)gs y, (R
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[1+><+ = )vCr)e 1249

— (3'&5) B Z<2J, R+

tnR

. N,CRY _N,(R+9) —wt,
A na td e Lycn r)y(m‘v,z:) (3.31)

By~ DRy

Therefore,

X LY ) Mo M (z)

= _(3'&5)226'&51_,_0“][‘1 X E U, cav,w) ;;(T)] ‘n p>

inR

CR) (R+9) 9,
Y.Pﬁi? -—Iqu -~ _) | T3 (RQP)HJ(Q+QII“)

R) _
EDC;) Ee(f’f?)#awm na

Multiplying by\@({) and integrating

(3,w)

{jmgrh@mar +

%
NGB N, [B+1) r
g, R e 3
3t§ ER)-E C@y@‘rtwaful( "'-—*‘Y{\:/rr(t) ‘n¢¢>l
na 2y )
2nR-

2 19, DT
= {9%) > {4zl nary(ore|e SR RD

tnR

CR) .
Np3™” -N (R ?)
EnC,rB) - Eé@*‘l’) +he-+n

(3.32)
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whence

— 2 /3 -1%.
Mt Sl e brls o)t B )

X @) - ECO —ERev)+hw +in
+- —

g )VCT)cbr +9é’,5§ KZJ,MQ}‘VG‘)@‘ -(mﬂQ}]

X i‘hf B)_Np§R+2)
Enc*g)_ Eggg-r—‘_f_)) +heo+in

(3.33) is our desired formula for Y (9,w)
+ -

(3.33)
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CHAPTER IV

Spin Wave Energy of

. Antiferromagnetism

In chapter I the Heisenberg hamiltonian defined by
eqn. (I.I) produces ferromagnetism if J dis positive.
However, in antiferromagnetism the same hamiltonian may
be retained with a fundamental redefinition of J 1.e
J £ 0 . As a consequence, from semiclassical or mean
field argumenfs, the single lattice of the magnetic crys-
tal is then to be conceived as composed of two interpene-
trating sublattices, A and B, having magnetisation dire-
ctions converse to each other. J = lJl will now be the
exchange interaction between the nearest neighbours, which
will be on different sublattices; and the hamiltonian

becomes, in the momentum space representation,

1
H "“N'Z,JSAR’SB & @D

.8
SA’BW - LeAeB ot e

, -
Anderson45 and. Kﬁubo‘6 were the first to propose a linear
theory for antiferromagretism, but the problem was with

the ground state. With the hamiltonian (4.1I), an exact
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ar one--dim—

V]

xround state is avalliable oaly for a lin
ensional chain ragunet, as discussed by des Cloigeaux aind
Pearson47. The ground state in this model 1s a non-dege-
nerate singlet state which has +the total spin operator
S =>35; =0

i

However, the ground state of the linear theory of
Anderson is not the ground state of the isotropic antif-
erromagnet. Rather, an infinitesimal anisotropy field
must be introduced into the hamiltonian (4.I) which will
stabilise the sublattice magnetisation direction and pr-
event the theory from collapsing because of a divergence
in the amplitude of the spin wave creation operators.
However, the linear theory, whose ground state is not
that of the classical one, is wvalid for a real 3-dimen-
sional antiferromagnet48.

The method of setting up equation of motion for
the susceptibility function, with this hamiltonian and
within the linear theory, can be applied here. It was

35

done'ih good detail by Fisher--, who slso worked beyond
the linear theory. But the work does not help the linear
theory, rather strengthens confidence in the green func-
tion method. This fact reasonably prompts us to extend
the EF method, which was employed in ferromagnetism, to
antiferromagnetism. Real antiferromagnets, like Chromi-

um etc, are band models; and, therefore, the itinerant

antiferromagnetism would receive our consideration now.
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In this model, the most general ground state is the
spin dernsity wave state in which the spin density oscill-
ates with a wave vector Q,which may or may not be conm-
ensuvrate with the lattice. First, counsidering the simple
one band case, an interpenetrating sublattice structure

is proposed. Essentially this was first proposed by

49

. . 50 .
and revised and refined by Iatsubara”™ &nd des

51

Cloizeaux”~; and the incommensurate spin density wave was

. 2 .
discussed by OverhauserS‘ and Fedders and Mart1n53. Des

Slater

Cloizeaux's model involved the notion of pairing of the
same-gspin electrons, while Fedders and Martin introduced
the notion of coupling between opnosite spin electrons.
We shall be dealing with the two-sublattice scheme appr-

opriate tc the commensurate case.
The Two-Suklattice Scheme

Assuming that the original crystal lattice is vhe
sum of two interpenetrating sublattices, A and B, we can
define Bloch wave functions P (R, Ya(R) of a tight
binding form on each sublattice separately. But now the
symmetry of the magnetic lattice is reduced, and so we
are to reorganise our calculations in terms of a reduced
Brillouin Zone, which is half the original and reduced
along the direction of Q. Then and are

g Q ) (RYyand Y (R)

related to the revresentation of bands in a paramagnet



N
Iahtd
Q(}/

W(R) _—.}—Q_(wAcE) +pR) (4.3)
Y(R+Q) :%(VACE) _ Lchg)) (4.4)

. : )
and a Wannier represeantation of HL*S are

LPACE) _._.1__ EK-QL LE A only
H)Bdg) JI_\T_ZLE Q)Cr‘s?i) L€ B only -
We restrict ourselves to the single band Hubbard type
.hamiltonian
H .-_%_Ecsmw +[Zninn (4.6)
L

where I 1is the interaction energy betvween two electrons
on the same Wannier site. Under our A and B sublattice

scheme it is rewritten as

+ +
H =3 & (Nago +Ngp0) ~ELCrraCart 87 5%7)

€A, B
where 81(@) and 82CE) are expressed as

£R =1 (ER+Q) + ECR))
€0 =S (ECara)-€®)

The vector Q is important. As we mentioned earlier,

(4.8)

because of reduced symmetry, the Brillouin Zone is divi-
ded into two zones, each containing the same number of
states. If k lies in the first Brillouin Zone, then

k + Q , where, as pointed out earlier, Q is one of the
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magnetic reciprocal lattice vectvors, is 2 Vector'in The

new second Brillouin Zone modulo a vector in the parama-
gnetic rec%procal lattice. The vector Q has the prop-
X R;

1.
erty thet e can be I on sublattice A and -I on

sublattice B.

In the antiferromagnetic state, the single band
breaks up into two bands for each spin, one with greater
charge density on sublattice A fhan on sublattice B,
and one with more charge density on svblattice B than on
sublattice A . For the opposite spin, the sublattices
are interchanged. Also, one band of each spin will lie
lower in energy than the other and, therefore, will tend
to contain more electrons than the other band of the éame
spin. In crystals of inversion symmetiry, corresvonding
bands of opposite s»ins are degernerate. By cerrying out
the necessary algebra, we will see it clearly

Essentially, the method is to se* up the equation
of motion for the one electron Green Function which app-
ears in the susceptibility function. But for the 2-sub-

lattice structure, it will have a matrix form defined by

<" +
G'oaB(g’w) :<<Co< Qo 3 Cl350>>w (4.9)

vhere (o(, B) = (4, A) , CA, B),CB, A) amcL(B, B)are the ele-

ments of the matrix. The equation of motion can be wri-



~1

—
—

W=E&)-Thyy £LR)
N 2

E2CR) w-ER)-Iney
_ \AJ__1 | N (4.10)
Clearly (4.I0) is in non-diagonal form. A canonical tr-
angformation of the original Bloch wsve functioné defined
over the sublattices, which will generate quasi-particle
wave functions in the form of linear combinations, will
achieve this goal. Defining the quasi-particle creation
operators for A spin bycigfpandcigaf , with the corresp-
onding energies by El(g), E2(§), the transformation will
be
+ w—E (R) O
TNT = (4.11)
o w-ELR)

and TT" = T'T = I, the uniterity condition. The standa-

rd procedure of diagonalisation gives
1 5
Ep(R) =& R) g% £&R) (4.12)
: I |
with +tam Or = EQCE‘) , and 9.3 :-1-\-I-<QA&-D.A4,> .

is imvolved in the transforming matrix T such that

2 +
+ : ¢
ARt Cagn\ [esier  Singor [T
4 :;F .\ - (4.13)
_‘.
oLEQ'i‘ CBF_U‘ ._g.'néQg Ce’g%_@g. CpRre
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s L + 1 O
<< O’-gﬁ“ A Rq4 >> /&J—El(g) ( )
= 4.14
d 3\ o Ryt K 1
gﬂ‘!‘ Ra | f ‘i -‘r‘g_@) |

Similarly, for the down spin case,ol- d and the
Sy, K2y

corresponding energies EI(E)’ E9(1_«:) are defined by

+ +
d +
( +§w _ (CPE\V
d—ga.»b CaRy

Ea(R) =ER) F\[Fewr)

with :_I_ j ; but for the antiferromnag-
9‘3 N<af34,‘ -EM> ’ ’

, (4.15)

netic structure <V2A,¢> =<h3‘]’> ' (4.16)
which shows that ggp = 34, = 8 , and hence
‘E;(‘i{_),r = E%(l_«:)&, i.e. spin-degenerate.

The linear combination giving the quasi-particle
creatlion operators can be rewritten in a different set
up using eqns. (4.3) and (4.4) viz. +

C{E{ " ost(Z -9 R)  —smi(Z -r) Rt
+ = (4.17)
d.Qa? s;néc,%_ag) Cos g_@> 8'1 »

—

fo—
A

—

This corresponds to Sokoloff's54 transformation , the only
difference being the phase g . Actually,Cbsé‘Qg o Su'n.li@s
is determined from the condition

i'%éafta-.n.)c}' = E)\(O%)Gf-_p_x)\a- (4.18)

in the HF approximation. >\, o~ denote band and spin
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index.

The energy gap is Q.CEQCB) +3) , whence the
minimum energy gap value is 23 . But in the 2bsence
of the antiferrdmagnetic ordering, 3 goes to zero. The
eqn. from which 3 igs to be calculated selfconsistently
is obtained as follows. By using the transforration
metrix we can express ?1A¢amd uﬁd,in sermws of the guasi-

particle occupation nuabers. Thus

(nar = Nay)
= <D'A1~ - n15¢>
:ZCOS‘C’&(NQM “”3%) (4.19)
and therefore fl—rgom the relation
_ 1
QLE’ -_iif‘<:r1A4\—-.{lAj;> 2 we

derive

:[ Pqn4g~ -fQEer
= — (4.
R ‘ZLN% \]&303) e - (4.20)

rqgjo3 ﬁIRQo~ are the occupation numbers chosen so that
the energy at T = 0, or the free energy at T £ 0 is
minimum. In our case of simple antiferromagnet, however,
the occupation numbers are independent of spin, and hence
the spin indices can be dropped henceforth.

Since we are interested in the excited spin wave
spectrum, we shall not discuss some no less important
points viz. choosing the appropriate Fermi Surface to
minimise energy, predicting the criterion for antiferro-

magnetism etec.
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Proceeding =2long the Green Function approach, Flcher35

introducing en ad hoc matrix form for the susceptibility
function whichwe shall get to very shortly, arrived at an
exact formula for the spin wave velocity C .
But Sokoloff, too, worked in RPA and employed the Green
Function scheme. Unfortunately Fisher's result for C,
vhen simplified within HF, differed from Sokoloff's, which
led Fisher to commenf that his is the more general formulsa
and Sokoloff's work suffered from being regstricted to a
subsbace. We shall briefly point out the steps of both

he works.

We starlt with the reduced susceptibility

x(% w) << ; S‘c;y>>w (4.21)

where (/% >)J CA-,A_),(A-, B), C_B, A) aund. (B,BJ The operat-

ors are expressed in terms of Bloch crea-

-‘1/'&» Sq»

tiox and destruction operators i.e.
SACV -ZCA R+ AR

SA - = Z CA&—% Capy
Sq—/ =_1___ (SA 9 +S By ) commutes with whenn q = O.
V2

At this stagewe can say that, if the Fermi level lies in

(4.22)

the gap, so that the spin waves are the only low-lying
modes, then because of the ahove commutation relstion,
we may assume that :ngfa will contain two srin vave

poles. Once 2gain, by canonical transformation )(C%Lao
+.—
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can bhe diagonalised so that ths two spin vave branches
are separated in the diagonal elements. Deno®ing by

the similarity transformation,
X (2.9)
= PXP"

—1
= [c,o_cosc‘?_)] O
Aan (4.23)
—1
O ~Jeo + s €]
Or,
—i- —
SA—_ + Skef
. PPl
Se-v Sy
_af1vgs O
= ey 1AM (4.24)
o A+

assuming that

OJSC“!) :Cq/ +OC7/Q),AY)_:AI’LO +AY)_1‘7/
withcyb)<(1 . Eqn. (4.24) is Fisher's ad hoc assump-—
tion . In order to avoid the singularity of the traansf-
ormation, a weak anigotropy field is recuired which will
introduce a term —T\(5§~ Si) into the hamiltonian and
stabilise the gystem against rotations of the fotal spin.

However, for h infinitesimal the assumption of (Jg¢ linear



H-

i g is svill valid. Thern, because of Tthe cppositely

directed spins on sublattices A and B , poles will

occur at *Wg . DNow the straightforward extension of the

EF method in ferromegnetism 1is to set up the equation

of motion for X.(¥,w) end then compare, which gives

x(q_{’w) - &:Q,(Q.. +COL+b) (?/Q —
o < ou +(d—B)F

—1 1
Tw 7 WK~ Nayy

o) —1

a, b, d are given by

= lim Lim a/AB

w>0 q/

b = lim¢ q,‘_‘;%? 2(%%a—%ap)
d = Llm -E(M~1 A +2a,A_B+0«_/BB)

w>>s q]—>09_q/9- AA

(4.25)

(4.26)
(4.27)

(4.28)

with Ay = <D:S”C“I/° H] :S_”‘l]> +<<EZ—‘{PH]5[H’ 5_’}1]>/\Q,

() = (4,4),(4.B),(R.4), (B,B)

(4.29)

The eigenvalue of the matrix (4.25) will give the expre-

ggsion for C whkich is

(:: = ]aZOLCl
{pp—nag)

This is an exszct formula due to EF formalism. Fisher

y AN, = <D-Af— n‘AJf>

(4.30)

worked out a, d in the HF approximation (page 73 of ref.
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35) Sokelctf gtarted off with
\Xq/a_sf Ky @+a
D{C‘?/ a;) — - YV+<
AN —' (4.31)
DCQ/+§4/ oc."?_/_"’g P+

which is equivalent to Fisher's matrix form within a
similarity transformeation. Sokoloff carried out his al-
gebra in the randon phase approximation and arrived at &
result for C which was different from Fisher's. It app-
ears to us that the disagreement is probably because
Fisher evaluated tre Green's Function in (4.29) using
the HF approximation instead of the full RPA. We belie-

ve his ansatz (4.24) is corvect.

CW Approach Applied to

Antiferromegnetism

The extension of CW approach to antiferromagnetism
confirms Sokoloff's result. We carry it out in the fol-
lowing way. We first formulate the problem for a genersl
band structure and then specialise to the Hubbard model.

The crucial argument is about the precessional cone
angle mq(z), which was assumed to be constant within ea-
ch unit cell for the ferromagnetic case when local field
effects are neglected. The situvetion is altered in the
antiferromagnetic case, mq now having different values

on the two sublattices. It is now defined as

mq,('l‘) = Ag +Bq,éQ'r (4.32)
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SC That ivs value ig
/\év + qu/ on A sublattice
and. }\q/ _ EBQ/ on B sublattice

Invoking equation (3.4) and inserting the new expression

(4.33)

for mq(z), the corresponding fundamental equation for
an antiferromegnet is obtained.
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= MOCI) @‘V -+ Bavé— - ) (4.34)
Multiplying this ean. with Vf(z) and Vf(g)e—iQ'r two
equations are obtained 1 e.
~3szZ(ﬂ& R+7|e¥ \/Cr)‘mﬂ)
EnR ‘@
. Bcvx-s*qaz LxalEyeld? lw>}x
LnR
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BB —Ey (ReY)+Heo
— A‘I/S Mo ()Y (D) el (4.35)

and
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= By gMocn V() el (4.36)
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Trom (£.35) and (4.35), by eliminating A and Bq, 2 matrix

g

will be obtzined, whose determinant put equal to zero will
yield the spin wave energy and hence the spin wave velo-

city. The metrix's determinant is

_%Lé g\gﬁca;) MdDdre AL A(Q+¢)

(4.37)

AN(T+4.9) %—BS%@:) M)+ AGyte e )

where , - —;?.r

A@T) => Lk ek YDe Ee
Y N, () — N L&)

— (4.38)
Erz%&) - E2§g+‘_ﬂ) +hw

with /\*(‘_f_/,‘_f{/) = A @_J/:?)

So far the work has been carried out for a general
band structure. We now specialise to the case of the
Hubbard model where there are'two bands in the antiferr-
omagnetic situation. The 1l,n are just summed over I and

2 so that

2
Yy Ny CR)- N (R+7)
=S e |VE)et |24R
ACE) -%K* [y leml ELR) -E(R)+he

(4.39)
s 2 Cer)
N E EQJ@?P@@)&*"\M@( N7 (R)- Na(Rt
R E 1( &)— EQ_CE *‘(7/)4."(&3
end also | y
V T) = 9‘9 on A sublettice -
:g;(‘) (4.40)

—-___Ezfj on B sublattice



Becauvge the Fermil level 1s zgsuned to be in the ga
N,CE\)'—‘-" ’ NQ(E> = O . Using the relation 'tam@R

we find

CR)
g

] . = =9 See d
ECR) =E(R) 5953 Ep=F=235T2 (4 4)

Putting in all these simplifications,

2,
NTAL) =49 S Cos1(6,, - %)
R,

ELR) -E(R:9). - EQCR) ECk R+9)
+hed I rull

— 8
N(0.0,0) - -43%%@@ = —-%-I,
- vsing the self- cons:.—-

stency equation for8 Also__ SV GHM CT)J.T‘ g\?\TI

which checks that there is a solutlcm W = O, forc‘/ o,

as should be the case. Proceeding in the same way

N(2,+Q)=AG+4 )
nggca— +G5© )
[-E R -ERey)+ e’ Eo(R)—E, CRW)‘*‘;‘]
: /\(%é a+g) )
= 432&»3 1C9 n+q,+@g) E)~ER ) +He

= Cg)-e:&nm +1=»‘J—J
We note that e =Ce end /\C"Vﬂ’/-f-st_) is of order q.

Also, because the zeroth order term in the first diagonal
element is zero, but non-zero in the other diagonal one,
we retbain qz—terms in the Ist diagonal and constant terms

in the second diagonal element. Although it is possible
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te 2o ioto further elenent by element siwplification of
the matrix, we wouvld refrain from that, and instead will
show thet Sokoloff's matrix, whose determinant solves for

C , is the same as that obtained here.

If we start from equation (I9) of Sokoloff's paper54

and write it in matrix form, it becones

(~] . o 6 C‘R_j
IG, -1  I6i3 L) G52 ) G)u@-'!) G )

1l

(4.42)
Tasy  Toyst/\Ga®@) Gn@) | | G5() 6:0

The matrix
o 1 —
IG“H - 'LGIS
(-]
TGsr a5 -1
s whose determinant set
equal to zero will give the expression for C 1is the samre

as our matrix which was obtained by eliminating Ao and

¢

B
a

To show the equivalence, we worked through as
folloiis : We wrote out the expressioﬁ.s forGom 6033
and(;|3 from Sokoloff's equations (2Ia),(2Ib) and (2Ic);
and made the phase adjustment by replzcing© by%-@
in them. Also we wrote out in full the expressions for
/\C%Ci,) ’ AC‘U*&,‘?ﬂ-Q) and /\Cq_{ ,‘(;4-&) from our equa’c‘ions (4.28)
as shown earlier. By comparing these two set of expre-

sgions, we found Egat

° 2 ©
ACCV'CI/) = “88 Nazs 5/\@+S:@+g):—831\f6114
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4.
N

wd AW+ )= Ay+@) = ~85 NG, = —&F NG51

whereby we get that

% (Y@ 4 A Algurs)

A(&+8,%) L S ) M A2
2 TGz~ 1 1G5,
= _ggdL 3 Gt (4.43)
I o o
IG’IB Iél” -

This shows the complete equivalence of our results with

“those of Sokoloff, and confirms the ecuivalence of our

approach to RPA. Expanding for small ¢ and@ , follow-
ing Sokoloff,

Gt =2 CQ@ D

G35(%) —-*QD@ 59 (4.44)
G12(%) ~ 437100])
S » <QS)'—'Z<N'“ ~ Nga) Cos O (4.45)
and , '
Dy, :(93) 1 ZCNQ, ~ Nga ) (4.46)

X Goe R[g (@, VB) Ea.cg) —Cos0, |9 ~RELR) f']

The spin wave velocity C is glven by

C E1 —1@95 ID] (4.47)
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The Dynamic Susceptibility in the New Formulation

Following the procedure as in the previous chapter
on ferromagnetism, a general matrix form forx_gci’ﬂ)) is
also obtained for an antiferromagnet. In this case the

applied external magnetic field is

-4
aq 2
By = BQ.O E(x— =) ch/m-wi)(**t?)e e J} (4.48)

and

M Crr"{‘) Bo Ex( ,w) K(CV _,Q)) :X-( _,co)
:)cyC;U e ) };C@.r_wt);z[tl

+ Bozxcwa,%) x@;aﬁ,w) +L’_)<.(“’*& 2,0)
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LT —t) _
— Be eIl
- TX v)e LECaz +@) r-G’E( -0 |t
+ Boy (Yt u)e (4.49)
Q‘ .
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where “Big‘ = _l_—

With these,

h.c means the hermitian conjugate.

froe (_e
Q\Hd( gts

+ LxC‘“ 2w (e tg.r LE%@» o4

T e

2|1, Ite

+fnC} znltl

Similar to ferromagnetic case,

g"‘:’{) 2 L R4 @B g ¥
- -C%BDBOZQ- Y GEREE | re,0)
2,

n R =

xe{‘i’!‘ 2t \'11*5

E(g) EQCK+W)+$bLJQ

)

When we include the
Zeenan term, the perturbing hamiltonian becomes

efs el 1Cr-cot)
Hr = _%‘@Qiﬁ+ XD ye) &7

(4.50)

(4.51)

(4.5 2)

(4.53)
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and also
.Pis:{ﬁ)_“__EsgCCwqﬁg qu?*qn)blCt) 14-3
(IEX]
L (v r—ert) Mo (@)
+3B xS A (4.54)
Hence

(2, id. +2,2e) \L(E
= —(te) s ural[1 X204 9‘“" %) Vi )]

Qaé:
bk X e*T‘nH‘l} Ny tl)--NeJ, R+v)
ot 4 EoB- B vhedy
—1
*e WCR r)kVCRHJ ) (4.55)
Multiplying (4.55) by\@Cﬁ)a er and integrating we get
3(@/,61/&»)
W Ma(T)V(*')a!r
0 % 1@+a
+9<E B_Z_Ke R*‘”il/’@:)' S )X" D.MQ}\
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@ +e @) rie, kv
g :X'-&—: _ %w)9é3%¢g+w{%(r)e lthMRl‘gc(l‘)e |&ke >
‘ b1a _en_k NCR) MGCR-FW)
ELR)- Ei( R+ ) +hewan
= -(9%g) Zéeﬂwl & \‘\’&fR><n.¢.RIV(T‘)e (o) rm@
Ln R
—_ ICG(_/:CQ-"Q) ) let us say. (4.56)

1Mo
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And again wmulvtiplying by\g("f) and intesrating we get

KEL 96a5 Lora YO KV DT 0, orkly e T2
[ M| 2tk ngR) meﬁw
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Using our previous notations, (4.56) and (4.57) can be

, let us say. (4.57)

written as

{Mocr)\/ﬁ,t’!.')dr +2e Al1+a ﬂz*é‘)} NIC 2R

, ke NG+ DALY _ T22+9)

(4.58)
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In the natrix form $the mair of equaiions (4.98) can be
written as
AN @) ACLyr@ | [XERY Hyy9)
: 2
9¢
Aasa)  aen@w ) \x@aaw) IeEY)
:5%: SMD@:)\éCw_-)olr (4.59)
| © V).
If we start with an external field B_LO( e we

will arrive at a similar equation

XN +A@Ure)  A@Ye® \ [ XL Y+E0) , [Tveve

— e

Alg+a.a) NAAGY) |\ x (pea g2, It I(ura)
(4.60)

Combining (4.59) and (4.60) we get the gemeral equation

for the‘>(+”_ natrix for an antiferromagnet

N + A8, 3+0) A | [T KR

ANy, 2) N+ AT [\ X Be82eDd X Bedeas)

1(%u+8)  I(¥+¢,4+Q)
= (4.6T)
J&s
Tv9) T(y+g )
The solution of the matrix equation (4.6I) will give the

transverse susceptibility,)(+__for an antiferromagnet

when local field corrections are neglected.
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Thig result, when comblined with & wand calculation,
could be used as the basis for a numerical calculation
of JC+€ﬁAQ9 for a real antiferromagnetic metal such as
Mn. It would be of considerable interest to compare
such a calculation, which would not involve any adjusta-

ble parameters, with the calculations of Young and Cade56

using a many-band Hubbard hamiltonian approach.
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