
SPIN WAVES IN ITINERANT ELECTRON MAGNETS 

A Thesis 

presented for the degree of Master of 

Philosophy of the University of London 

Md. Azizur Rahman 

Department of Mathematics 

Imperial College 

London SW7 



ABSTRACT 

This thesis is concerned with the development of a 

method for calculating spin wave energies in ferromagne-

ts and antiferromagnets within the local exchange appro-

ximation. For a ferromagnetic metal the approach of 

Callaway and Wang (CW) is formulated in a new way which 

leads to an explicit formula for the spin wave stiffness 

constant D . It is found that the formula for D given 

by CW is incomplete since it neglects a term arising from 

local field effects. An explicit formula for the trans-

verse dynamical susceptibility is obtained within the 

approximation of neglecting local field effects. It is 

shown that CW's method may be adopted to antiferromagne- 

is and an equation for the spin wave energies is obtained 

for a general band structure. This is evaluated explic-

itly for the Hubbard model in the long wave length limit 

and the result agree with previous work by Skoloff. It 

is also shown how to calculate the dynamical susceptibi-

lity in the antiferromagnetic case. 
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CHAPTER 

GENERAL INTRODUCTION 

I.IQuantum Theories of Magnetism 

Historically, Heisenberg(I))  was the first to look 

for quantum mechanical origins of spontaneous magnetizat-

ion - the phenomenon of ferromagnetism. The theory, which 

came to be known as the Heisenberg ferromagnetic theory, 

assumes electrons in a metal to be localised on atomic 

sites. They, in addition to having kinetic, potential 

and Coulomb repulsion energies, contribute an exchange 

energy term to the overall Hamiltonian of the system. The 

spins of electrons from each internal incomplete atomic 

shell, i.e. 3d shell in the iron group transition elements 

or 4f shell in the rare earths, are coupled together into 

a resultant spin moment Sj, which is localised at an ion 

situated at the lattice site j. The Heisenberg theory 

' reduces the theory of a ferromagnet to that of a system of 

spin operators Sj 	( s), Sy, SZ ) of magnitude S , bel- 

onging to each lattice point j of a crystal lattice. 

The Heisenberg Model 

To bring home the notion of how the exchange brings 

about spin alignment, thus giving rise to magnetism, we 

first consider the simplest case of two-atom molecule. 



For L4:o nui. i ei at -oos=tioo..- a :,:__3_ b 	elec tron:1 at 

I and 2, the two energies Ea and Ep - Ea is the antipara-

llel singlet energy and E
P 

the triplet energy belonging 

to the parallel orientation - were found as follows : 

Eā 2E0+ ( C + J )/(I + S2) 

E p = 2E o+ ( C - J) /(I - S2) 

where Eo is the energy of the isolated atom. 

C -- . I VeS1) 11 I yb C13 )2 y ctri, en; , is Coulomb Integral 

* c'l 	er 
I04, 7 Ca) b 1) ~b Ca)~%°t-~—aa , is exchange Integral 

4S = yA C?) Wb(1) , the non-orthogonality Integral 

V 	rab 	1 b9 	r~ 
The energy difference between the two spin alignments is 

..- ~. 

 

DE = Ec, E P 
Ccs2)/C1 Š4) T_   

D' ~, 	if S is small. 

So an important conclusion is that, for a spontaneous or 

stable ferromagnetic state to persist, J> 0. When J(0 , 

it gives antiferromagnetism. 

In the Heisenberg model, as well as in the itinerant 

picture to be discussed later, the exchange interaction 

is the sole source of spontaneous magnetism in metals. 
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Wo-,'king in tie s_~7 n. s race onl y, which is adequate for 

dealing with magnetic phenomena, the effective spin 

Hamiltonian is written as 

Z ~,1 
Ji j 	known as the Exchange Integral, is equal in the 

case S=25- to the difference in energy between the conf-

iguration. in which the spins on site i. and site j are 

antiparallel and that in which they are parallel; and Ji i 

is a function of the distance 1Ri - R . . This is known 
model 

as the HeisenbergAand is in fact obtained by generalising 

the two-atom case to many atoms. It is rotationally sy-

mmetric in the spin space. 

It is worth mentioning here that Dirac - too in 1929, 

in course of developing the vector model of the atom, 

arrived at the conclusion that the Coulomb interaction 

of electrons, together with the regiirements imposed by 

the Pauli' exclusion principle, gives rise to a peculiar 

quantum mechanical interaction - the exchange. However 

the notion that exchange causes spontaneous magnetism in 

solids is due to Heisenberg. 

Exchange interactions are of more than One kind. 

The type of exchange we have referred to above is called 

the 'direct exchange'. Other kinds of exchanges viz. 

Rudermann-Kittel-Kasuya-Yosida 	and superexchange are 

known too. In the latter cases Jij will have to be 

U L ' 5 .S J 
( I ) 



— !1. — 

ap ro'; iate1 yT )..- defined if t2lo Adie for of Hal.liitoian 

is to be retained. 

The localised Heisenberg model was used by Bloch in 

the first theory of spin waves, as is described in chap-

ter 2. Our principal interest is with the ferromagnetic 

and antiferromagaetic metals where the itinerant electron 

model is more appropriate. 

The Itinerant Electron Model 

In this model the electrons do not stay long enough 

at one atomic site for Si to be defined as in the local-

ised picture. Thus the Hamiltonian (I.I) is no longer 

acceptable. Electrons are now represented by the so—

called Bloch waves yes,)'') which are of the form 
le.~r 

yo_g,r)  _ e u_Ror) 
where uk(r) has the periodicity of the lattice. These 

wave functions satisfy 

I-14)03,r) =E(13)YCE5r) 

The wave vectors are labelled by k . If the one electron 

Hamiltonian H is derived using the H—F approximation, the 

potential energy includes. Coulomb and exchange terms. 

The latter corresponds to a non—local interaction. 

However, the simplest itinerant model was developed 

by Stoner3 as a combination of the idea of energy bands 

in metals, replacement of the interaction by a molecular. 



5 - 

field,  an 	i finite 	 e ;° ~ ~. ,- ; rr' the 	Foie '1 	i r 
 cL for _ _lze ~. _ t,~ r ~~__ e 	 u 7:. of 	t._L'Li_1—Dirac cLC.' 

statistics for the electrons. Stoner assumed phenomeno-

logically that exchange interactions led to a splitting 

of the energy bands of the two spins by an amount 21 ~e~ 
There C is the relative magnetisation, kB is the Boltz-

mann constant, and 8" is the exchange parameter. 

There are two distinct  microscopic approaches to 

the itinerant model. Both of these avoid the difficulty 

that use of the H-F approximation together with inter-

actions of finite range leads to an exchange interaction 

which is non-local. The first approach, due to Hubbard4, 

starts with a many body Namiltonian, but with a screened 

Coulomb interaction so that electrons interact only on 

the same atomic site. The second approach, initially 

developed by Slater, introduces an effective exchange 

and correlation terms directly into the one electron 

equations. 

To illustrate the first approach we may consider a 

metal such as Ni with a nearly filled d-band. A reason-

able picture) of the top of the d-band in it is that of 

three independent tight-binding bands formed from xy, 

yz and zx orbitals with Bloch functions 

ti 

Yra  = N 	e%pEiR• RV ( 	1Z) 	(.z.3) 
R 

in = 19 2,' 
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In the _T-i' approVlmatiOrl, ith co.crelau0il ;_1eg Feted, 

there appears an exchange integral which is of the form 

Niff Tra* (13 Yrik,(rp..) Vo3 —r ) 

x Y) Y ,C?;) ctl ° 	(I.4) 

where V(r1 -r2) is the Coulomb interaction. This must 

be screened, and so it is considered to be acting only 

within a unit cell. On substituting (I.3) into (I.4), 

the exchange integral is found to be independent of k 

and k', and is given by the intra-atomic Coulomb inte-

gral 

Imm =SS ~ Oinci--0 1 (I-3, ~ ) An022) (
2
2)1 d3rg 	(z.5) 

for m = n, and by the Hund's rule exchange integral 

11. rŌiZ  = 95Cì)0r92a)( Ora(r) (gel ) 	(I.6) 

x a3n 
 r~ 

for m / n . 

For nickel I N 22 ev and Imn 	0.8 ev . But mrn  
Imm , which represents the interaction energy of two 

electrons - or tv.o holes it the nearly-filled band case 

such as Nickel's - on the same atom, must certainly be 

modified due to correlation effects. This point was 

stressed by Wohlfarth5. Van Vleck's method to estim- 
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J e T  is to cons id= the chane in energy 7ihen o 

atoms change their configurations as follows 

d9S + d9S --3 dTOS + d8S 

From atomic spectroscopic data, this formula gives 

I 	ev, which is very smaller than the value 22 ev mm 

calculated from the eon (1.5) . Mo tt8 and Herring9, 

arguing that S electrons can follow the d-holes in the 

metal, suggested the change of configuration as 

d9S + d9S --~ dl + d8 S2 

which gives Imm 2 ev . For the lower value the scre-

ening must be assumed,to be very good, and for the 

higher value 8 ev the vice versa. Thus, allowing for 

S screening, the integral Ir1m should be replaced by an 

interaction parameter I, having a value within the 

range of 3 — 7 ev. This replacement done, the d-holes 

within a sub-band obey the Hamiltonian 

H 	+ rittn-4 
Ra- 

where i is the site index. This is the Hubbard 4 

(I.7) 

Hamiltonian within the first approach. 

The interaction parameter I is crucially important 

in predicting spontaneous magnetism as it enters the 

criterion of fe rr.-o- or antif erromagneti sm via the 



susceptibility formula 

8 

DCCT) 

The criteria are  

I) 
r

O) 
4 

 > I ~ ferromagnetism 

1,xxcti) > 1 --> antiferromagnetism 

But so far we have ignored the correlation effect in 

estimating I . If Imm is small compared with the band-

width, this non inclusion is justified since there is 

little correlation and two holes can and do often occu-

py the same site. But for I large, the d-band is corr-

elated and we have to go beyond HF. Hubbard' and 

Kanamori5 proposed theories which included correlation 

effects on I. Kanamori showed that the ground state 

properties of the hamiltonian (I.7) may be treated within 

the HF approximation if I is replaced by an effective 

interaction Ieff' 

(I.8) 

and the hs.miltonian of the eqn (I.7) is modified as 

1 Ieff 
— IC1+ 1G) 

i ( NCE) de 
2 E 

N g 	 ~+Ieff 
n~T}elt y (I.9) 



\ ( i s the de's i tJ of state` Der atom for _io1es and is 
1 

measured from the bottom of the hole band, 'EF being the 

hole Fermi energy. For Nickel Kanamori finds Ief f 	ev 

which is less than the band width and depends more on 

the band structure. 

The Hund's rule exchange integral is probably not 

important in Ni owing to fairly strong correlation. For 

Fe and•Go this contribution must be significant. 

The connection of this approach with the Stoner 

theory is found as follows : under the HF approximation 

the hāmiltoni an of (I.7) will be replaced by its diagonal 

part ( q = 0 ) giving the total energy as 

 

E re.ff a 7) 
12 Cr a- 	- 	N " -49 (I.I0) 

where 

    

1,21-c 	_ LE' 	 014741 11 Y2-4 N 	 N 
Co-asit-- 1 eS  r2 2- 

4N ~ . 

where 

that the expression (I.I0) is equivalent to the energy 

expression of the Stoner model IenJf 	
2. 

1\1* 

 

(I.II) 

= 01+--la.:0 is 
n the total number of electrons. Thus it is established 

the relative magnetization, 

There is now a splitting of band into ' and ,~, spin bands. 
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The energy of each spin band is given 

Ci (R)=-62 
Ro- 

eng ~ f̀in 
T--  y~ 

1, N 	tz a- 
= (~2) 	i'Z _ eSS Q- 

0-_ ± 2 for t or spin. 

The exchange splitting is 

= rdesic 
N 

(I.13) 

The original expression for the spin splitting in 

the Stoner model, Q, = 9_,R
B
Qr , can be compared with 

(I.13), i.e. 	°.L aat 	1"2.Ieff "g 	(I.14) 
The eqn (I.I4) defines 0 in terms of the Ieff and thus 

connects the Stoner model with the present Hubbard 

approach. 

The other approach is known as the local exchange 

approximation in which the non-local exchange potential 

is replaced by an averaged local potential. The first 

approximation was introduced by Slater1° who based it 

on the theory of free electron gas. The exchange pot-

ential in a paramagnetic gas of density P is given in 

(I.I2) 

the HF approximation by 

0. 
It seV =-8F(— )  g   

F(Y) = I ± 1=2 tn. 1 where 

Electrons occupy states within a sphere centered on 



k = 0 and of radius kF for each spin. In the HF theory 

the density of state, which depends inversely on dE/dK, 

vanishes on the Fermi Surface. This is because the HF 

theory neglects electron correlation. This is avoided by 

considering an averaged local exchange potential. Because 

of this local exchange potential, band structure will be 

-more important in determining the nature of magnetism of 

the metal. Kohn and Sham's work actually showed that 

there exists a local potential V (.P) which leads to the 

exact particle and spin densities when these are calcula- 

. ted by summing amplitudes over occupied states. Treating 

e as the local charge density and replacing F(y) by its 

average value over all occupied states, 3, the potential 

is 1 
xsa- r— 6 EN. ecol (I.17) 

Kohn and SramII, following Gasper12, applied the variat-

ional method to an inhomogeneous system of interacting 

electrons and obtained 

VX,I4SG — 5 vxS (1.18) 

In fact the current practice is to use an exchange pot- 

ential 	xaQ-= ocVxs0-  

known as the Xo( method 

where O( is treated as a parameter which is allowed to 

vary between I and 3. 

In calculating one electron Bloch wave functions in 
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this  ap roa.c l one 	n_si 	; 1c 	° 	hE'. p 	~ 0,-- 	CG~ a _ C~@~ ~ a 5 ..t_ ~l_e electron .__ .m11tG11i di? 

of the form 

H
T. 

(I.19 ) 

Vcc, 01) 	(r)07 r_2—+ f 
The 4th and 5th terms are defined by 

Vxc , a = 2 ~Vxc t 	+ Vxc 11 
(I.20) 

Vf 2 Vxcr " 	Vxcy-1 

• Here'ca.may be taken in the xp( f orm VXdff' or as a more com-

plicated function of charge and spin density which may 

include additional correlation effects(von Barth and 

Hedin~3). In this approach self-consistent solutions 

of ferro and antiferromagnetic type of metals are possible. 

The relation between Stoner theory and the spin 

density functional formalism has been discussed by 

G nnarsson14. 

In both the localised and itinerant models, a ferro-

magnetic system is composed of one lattice; but for anti-

ferromagnetism an interpenetrating 2-sublattice picture 

must be assumed. 

I.2 Spin Waves 

The notiōn of a spin wave was first introduced by 

Bloch?5 on the basis of the Heisenberg hamiltonian. 
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Field-theoretic methods were embloyed by Holstein and 

Primakoff16 and'an improved treatment along this line 

was carried out by Dyson~7, which enhanced the import-

ance of spin wave phenomenon in the study of low temp-

erature thermodynamic properties. The essence of the 

method lies in describing the low-lying energy levels 

of a system of a large number of strongly interacting 

. spin moments in terms of a collective mode, whose quanta 

are known as spin waves or magnons. Nevertheless, it 

should be noted that spin waves are not the consequen-

ces of the particular microscopic model considered, 

rather phenomenologically too they were conjectured by 

Landau and Lifshitz and also by Herring and Kittel. 

First we discuss spin waves in the. Heisenberg model. 

The isotropic exchange hamiltonian of (I.I) re-

ceives quantisation direction by an external applied 
35, 

magnetic field say in the Z-direction. A Zeeman term 

is therefore added and the hamiltonian takes the form Z 
H = -Uqq ‘ >sJ —>  j 5J. 	(I.21) 

J 	Ly J 

The ground state is Jd>. with all the spins aligned 

along the Z-direction, and with the property of S~ 

operator acting upon it that 

Īo _ o 
The total spin in the 10> is NS = and the state 

L 
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satisfies 

H1o> =Ealo> 
where the eigenvalue is 

=-~ 4BNS — s S~' o 	 J LTJ 
An excited state, which is an exact eigenstate of 

the hamiltonian (I.21) and in which the Z-component of 

the total spin has NS-I as the eigenvalue i.e. with one 

spin reversed, is constructed by superposing states with 

one reversed spin localised at a definite lattice site. 

Such a state is 

1 ;> 	5 iC . 	(1.23) 

=~ where Sch .e 	5 L 	i.e  . the Fourier transform of St 
c. 

The energy eigenvalue of this state is 

Ei Eo--g -B _I_2 C,TCo.) — Jzco] 

where Sc~)~LJ 	In this state there 
LX 3 

is said to propagate a spin wave having wave vector q 

with the energy 

= 5 137-ji +2,5r_Tcco —3-ccy)] 

the excitation energy being 

telw = 2 SL co — 3CG./y] 
	

(I.24) 

For cubic crystals, with the condition that aq«« I, 

(I.22) 
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1 L'✓0 
= 2J SaGg2 

= Dq2 

D is the so-called stiffness constant. 

But it is not the unique property of the Heisenbe-

rg model which is responsible for spin waves. Herring 

and Kittel18 used a phenomenological approach which 

concentrated attention on the study of nonuniformity of 

magnetisation in ferromagnetics. By considering the 

production of a variation of magnetic moment with posi-

tion, which is effected by a weak, spatially varying 

external field, they found that the energy change S~,' 

per unit volume of the crystal involved with the non-

uniformity of the magnetisation M(r) , is 

S  	)91M21 	(1.25) 
x,Y z 

where A is the Bloch-wall stiffness. Ā̀ can only be 

determined theoretically by quantum mechanical methods. 

And macroscopically, the spins in a small.region exper-

ience a torque which press them to align parallel to 

an average of magnetisation in the neighbouring regions, 

thereby causing the spin density to precess gyroscopi-

cally. The normal modes are spin waves, whose quanta 

are the magnons. For small q, the frequency of prece-

ssion  
= C 	C 	~i M 1 ra~.c ~l  

(I.26) 
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is the '.na etisati o'o per u i l volume. 

The phenomenon of spin waves within band model was 

first dealt with by Slater~9 who obtained an expression 

for the spin wave energy for a half-filled band only. 

And Herring20, Izuyesma21,and Edwards22 derived express-

ion for spin. wave energy for a more general case. The 

final breakthrough was however achieved by Izuyama, Kim 

and Kubo23. They were able to show, using Hubbard type 

hamiltonian and within RPA, that there are split off 

spin wave states below the Stoner continuum of single 
-t 

particle excitations. The operator SCrC cyyC~T 

in the limit q-~ 0 generates the spin waves which exist 

for q 4 gmax below the Stoner continuum. This point is 
explained in detail in the next chapter. 

Quantitatively the spin wave energy tco= Dq2 is 

measurable. And expressions for D under various appro-

ximate and exact schemes have been derived and compared 

with the measured values. In this thesis D will remain 

the topic of central concern and so a separate chapter 

is devoted to it. 
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CHAPTER Iī 

SPIN WAVE ENERGY OF FERROMAGNETS 

Spin wave energies are obtained by looking at the 

poles of the susceptibility function, which is express-

ible in the form of retarded Green's Function. And the 

imaginary part of the susceptibility is also involved 

in magnetic scattering of neutrons. Therefore a brief 

account of the method of Green's Function and susceptib-

ility is given in this chapter. But before that, a 

variational approach, which in our case is equivalent 

to'RPA at T = 0, gives an expression for D within the 

RPA and for the one as well as the many band case. 

D within the RPA 

Considering the wave function 

'> =2..9 c R.+9/4,CR 0> - it 
10> being the HF ground state and 21,* denoting the 
sum over k such that E < 	 mini- 

9 	 >€nõ 
 

mising 

where 

</(jcfr> 
_E<(>, 

= E0 +i mm,  
£o '16 t4. ro2tnc- 	e crer3y 

(2.1) 



(2.2) 
N 
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ie obtair the secular equation 

J f2 

 

E.k.+.9,--ek +L1—*C.)j 

The replacement of I by Ieff was shown by Lowde and 

Windsor24  to successfully explain the neutron scatter-

ing data on nickel which is an itinerant ferromagnet. 

Solving (2.2) we get 

(2.3) 

with CO? satisfying 

legs 1 

 

(2.4) 

  

 

cv  —c 	--too 

or 
—1 

Teff - N 

  

1 

  

    

(2.5) 

   

R+9/  — R + Q —Slop 

Eqn (2.5) has a continuum of roots which corresponds to 

the Stoner continuum of single particle excitations; and 

there will be a possible split off state below it. When 

N 	OG , the RHS of (2.5) goes to an integral which 

tends to a finite limit ). as CO approaches the cont-

inuum from below. Thus there will be a split off state 

for LE> ;; and ) depends on q. It is illustrated 
below 
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For a -max there are spin waves as split off 

states from the stoner continuum and when q 	fk  --9 I. 

By expanding the RHS of (2.4) an expression for D for a 

cubic crystal and within one band is obtained as D-  1  
(ri— rL ) 2 

taRt±r21-34"Vtk 
 
24 

fi RT ' 	0eR 	(2.6) 
I 

nkt 
, nkyare the ground state occupation numbers. 

In principle the procedure can be extended to the 

many band case by summing eqn (2.I) over the bands. 

But to get to a managable form, Wakoh,Edwards and Wohi- 

farth25  assumed exchange splitting in all the bands to 

be the same and used Green's theorem. The expression 

for D turned out to be 

D 	 r 
LMCEj.t) 	M C€4,)-1 

3 (r1 	r24) 

where 

E7T  
1 

McE) de 
E 
sy 

.M(E) _ 	lVs  137.. s>„),„   

(2.7) 

and X  the band index. This RPA expression for D comp-

ared well with the experimental value for Nickel. But 

for Co and Fe it remains unsuccessful. The same RPA 
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for_:Lula of (2.6) is obtained from the susce-nti Jility 

formula of Kubo, which we will discuss later. 

Green's Function, Susceptiblity 

and Neutron Scattering 

The causal Green's Functions (henceforth to be 

called GP), which are used to determine the energy spe-

ctrum in the quantum field theory approach within the 

perturbation approximation, are defined as 

G,C±,±')=--abt. (TfACt) BCC) 

where the ordering operator T is understood to act as 

TA(t)B(-0.1 =GC-')ACt)BC) 
-v ®( +.)BC-6AC- ) 

	

where yy _ + I 	for A,B boson operators 

	

- I 	for A,B fermion operators 

i 
and eC. — L i is the wellknown step function, 

8a! 41

J 

= I , if t'> t 

 0 	, if otherwise 

(2.8) 

(2.9) 

To evaluate the causal GFs one must go via the ima- 

ginary time GF, 	O 

GCT) 	<TLA(T' B(o) 
	

(2.10) 

where Adz) _ ~~/ 	H Zl 	with a hamiltonian 

H = H0+ HI , where HI is treated as a perturbation. 

C;(-C)  can be written as a continuous product of imagi-

nary time GFs involving Ho only. 
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KT ex{:D(- 
tES 

 N 
i 
(-6ct? )A(T) B 

0 O 

<e j cz')  H
I C-6 d--C//h> 

(2.II) 

where 

0<> Tric_e-5H0x 

/  

o t" . 
The Fourier Transform of—i(TC) is 

GI (0)0 	1 ~ ~ kwr2.Z ~-+ 	Tr2  
L3L (z) , trī (3-~ 

s 

(2.13) 

oC <-z <oC 

But these ( Cdr-.)s are not analytic and for application 

in magnetism and other fields, the socalled retarded and 

advanced GFs are introduced. They are analytic in the 

upper and lower energy half-plane. To describe propag-

ation of electrons , retarded GFs were employed by Hub-

bard26. A fuller review of this technique is given by 

Zubarev27; that of the causal GFs are done by Martin 

and Schwinger28 and Baym and Mermir29. The retarded (+) 

and 

and therefore 	GC 

Pe rc. 	-0L 	G C rz) 
tl,--cc 

2. I2 ) 
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and the advanced (-) GFs are defined by 

■f 
<<ACE)3 BC-0 

=-1/t, 9 {:± ( 

where A 
('h} e 

e 	
H t/- 

(LA&3I1> (Z.z4) 

and Bet ) are two 

operators and 

	

AB - BA 	for bosons 

EA
' 
B]

n _ 

	

,C 
AB + BA 	for fermions 

and ett(-t- .0 	is the step function. The thermal 

average is 	_ N <X ) -Tr e X Tr ~~H 

<ilket)../BC-C.)>> being a function of t - t', its 

Fourier Transform can be defined as 

<KA B 

	

	
a 	± Iwt ,> 	_ 	 (2.15) ~w 	ACt) g B(o) e dt 
-a 

Of these, <(A' Br/ w is analytic in the complex upper 
half-plane of t.° , Im io> 0 ; and 4«A , B» , 	in the 

lower half-plane, Im WK0 27. It can also be shown that 

GCwh.) - KA; B + 	Lū O  

(can.) (KA 
; 

B >>-  ton. <O tCci~ 9 

(2.16) 
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i.e. the causal GFs are derivable from the retarded and 

advanced GFs; and the analytic continuation of the cau-

sal GFs determines the retarded and advanced GFs. 

But the solution of these Green's Functions and of 

their Fourier Transforms, by setting up their equation 

of motion and decoupling them by cutting after two terms, 

is more important for us. We therefore give here a brief 

sketch of that. 

By noting that Lt.- /Kt) 
EACt) 9 Hi 

we obtain by differentiating retarded and advanced GFs 

6~at RC-E).;BCt4 
= —  s —e)<CACt) 9 BC-e)7,.2) 

<<Cq«) g 9 gCt;>>t (2.17) 

and the second term has also an equation of motion 

with a higher order Green's Function on the right hand 

side, 

<< [A et)1 141 g B CE-5Y± 

 

<([[A Ct), H 	; BC-0VI (2.18) 

The decouiling can be carried out at the second term in 

(2.17) by linearising , as for example in the case of, 

within the RPA. Or, still higher order terms can be re-

tained and other ingenious ways may be employed. 
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The other ii?iportant point about these Gigs is that the 

discontinuity across the real axis is related to the 

correlation function 

spectral theorem, 

KAOE) B(o)> 

<ACE) BC0)> by the socalled 

and 
* 	 (2.19) 

<ll\ A 
	\\ 	

° 

The dynamic susceptibility, i.e. the response func-

tion of an oscillating magnetic field, involves the Fo-

urier Transform of Green's Functions discussed above23. 

The interaction energy of the spin den_sitySa('') of a 
metal and the oscillating magnetic field 

is 

2 0 -cB Ncx scx(ri) ic
Gy..r 1+ cot') 

V 
(2.20 ) 

And the response of a point r of the spin density at 

a time t is 	 -~~~ 

8,5002,t) 
	ra C \  

E<p(r21)9SāW)) Hae e--6 
w +LE. 

[__ ,<KSACI3+9_/) ; Socc—c1»>. 

-11g9/ 	r col at 
r't a 

(2.2I) 

-C9
'La)

2 R
e 



The sur_nation is over recir,rocs.l lattice vectors and 

CC 

OC 

Cr) Cv.r+W~) 
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(2.22) 

We have 

a0 +G1/,9/,W9i4a (2.23) 

whence the dynamical susceptibility is 

(R.-"VA/.6),) 	 90 	(2.24 )~  ~  
V 

This is the Kubo formula. As mentioned earlier, the 

transverse susceptibility tensor x. &V,w) has singular- 
+- 

 

ities which give the spectrum of single particle exci-

tations as well as the spin wave energy. 

The susceptibility 
oC 

cC 

is solved by the previously shown technique of equation. 

of motion 

5C 
of Green's Function. Of the commutator 

9 Ho+ HI I 
, which appears 

in the equation, the first part is evaluated exactly, 

but the Cc+ cb., k+q1y T y I- J is carried out within 

RPA which linearises the equation. Replacing number op-

erators by the the thermally average occupation nos f,, 



on is 
°L 

cr. 
_ 

( Y \ ' `° ^ ^ 	p(1' 

   6poco—cl/cf,c1/0)  M (et/ 	(2.27 )
• 
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where 

ezpre saed by the follev/ing  

Xcct,w) 	E _ct4  

1 — 	Fccv,c0) 
N 

— cR -4-cf/4/ RcY.,w) 

(2.25) 

(2.26) 

By equating the denominator of (2.25) to zero, eqn (2.4) 

at T = 0 is obtained, which will give the single particle 

excitation spectrum and the spin wave pole including the 

expression for D derived previously. This indicates how 

an expression for D can be worked out by looking at the 

pole of X 

The imaginary part is also important, since it en-

ters into the cross-section of inelastic magnetic scatt-

ering of neutrons~3' 24. The differential cross-secti- 

where k is the wave vector of the incident neutrons, 

k' that of the scattered neutrons, with k' = k + a , 

q being the unit vector q/q . 

t W — fj k/f2l 	 `~i R /fY 	and .M. 4w,W) 
is the correlation function_ which is equal to 
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rt 	CX C~ 

l 	J 	
(CY Co) 5 

	
when the scattering is princi- 

pally due to spin magnetisation. 

	

S
OCP 	i.s°c o 

	

(cilco) = 	 a± e Zo(02+Flit) sgr.)2 v v -cc 
(2.28) 

Cc 
1 ( 	 Sk—V> 

-cc 
(2.29) 

The susceptibility function_ is involved in the express-

ion for sa%,,C,0) via the following equation 

_ ~ ~i W 1-"~Īj~' 
C=' 	) 1 ~ ~~ (a12 ) 9 Sc3

(-~) c-0 

-~,  (~ 	
_ 

1 	S5,1-,1112w V 	 Cw w (0) 	(2.31) = cj,
(3 ' ie))94 	o(0 

Symm denotes the symmetric part of the function. 

Thus it reeds hardly any more emphasising the key 

role of the Green's Functions in the study of magnetism 

and magnetic response. 

Exact Formula for D : Edwards-Fisher Formalism 

Exact formulas for D, starting from first princip-

les, were attempted by Abrikosov and Dzialoshinsky30 by 

S ( ^ LA)) = C1 Grim). 	%C 
(2.30) 
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extending to erroT:: gze t  ism Cili_ T s3 work  u' the para.-  

magnetic case within Landau theory. But it was rejected 

on grounds of nonrigorousness, as discussed by Herring9  . 

Also, using the fact that So  10> is an exact 

eigenstate representing a spin wave of wave vector y, 

in both the Heisenberg and the itinerant model, Edwards
32a,b  

obtained an exact formula for D for z. strong ferromagnet 

only. He used the first terms of an expansion in powers 

of q , the only condition being that the inverse life. 

time of the spin wave will go to zero faster than q , 

as q - * 0; the spin wave is then well defined and for 

very small values of q , the theory is exact. Still the 

restricted validity for strong ferromagnets only led to 

the search for a more general formula. Edwards and Fis-

her33  derived such a formula by generalising Ma34 et.al's 

work. 

For a system having rotational symmetry in the spin 

space, and if spin-orbit and dipole-dipole interactions 

are ignored, the hamiltoniarn can be shown to cōmmute 

with the total spin step down operator Sa  . Because, 

if I tv> is an eigenstate, so will be So  I (ij, 	with 

the same total S but S7  less by one; energy eigenvalue 

remains unchanged. 

E.1-1 ,50 ]l t-V>  -- 1-1S-010 —501-11Y>  
= EsoI _ S0Et 
=0 (2.32) 



S _ e -' Sr) r 
C ( 2.33) 
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or 	
"9S0 J = 

This property is exhibited by any isotropic ferro- 
m.aind+satiom 

magnet along with the condition that the totalAis alig- 

ned arbitrarily. In the ground state, however, an inf-

initesimally small magnetic field gives a preferred 

direction of magnetisation vector, so that we can assume 

almost all the spins are up. 

We now set up the equation of motion for the gene-

ralised susceptibility, 

xCV9w1-  SšÇ s Ct 
+ 
S are the Fourier components of spin density defined 

Cl  

by 

The equation of motion for the Green's Function is 

<s_+95-t) 9 Swii 
 9 S-9 > +tCY<Q:-+92(t) S-Cy = SOO 	 i ( 2 .34) 

(2.35) where 
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J+ 	t 
_q 	is also tc2terp~°c~~ek as 	spin-current co~?,;,o~~e~.~_~t in 

the a-direction. 

The commutator in the first term is well known, 

t 
CSry 9c~ = 2 So a 

~ 	~ , 
(2.34) is now multiplied by eiv~'t and integrated to 

give the Fourier Transform which gives 

Wx = .<so> +twxi (2.36) 

where 0 
= e <Ka. (-1) 	>> (2.37) 

This Xlr too has an equation of motion involving on 

the right hand side Green's Functions of higher order 

i.e. 

cL) i = SCS 9 51/j i +t1R/DcJ (2.38) 

where 

(2.39) 

J « 

Combining (2.36) and (2.38) we find 

(2.40) 
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In arrivi g at the exact expression fo- D from this 

equation, a fundamental assumption is made that for small 

q the spin wave is the only low-lying mode near the 

ground state; i.e for small q and w , the suscepti-

bility is dominated by the spin wave pole at W = Dq2. 

Particularly for q = 0 , only the first term in (2.40) 

is left which is the spin wave pole for q = 0 . It sa- 

tisfies the important sum rule, 
oC 

x(G,,w) _ a<s> C0 + AV) 
co ` D12-  
	+ OCw~ 

2.<s 5. 	2<s} D72 
 ) 

aS  

Therefore, from (2.40) and (2.42) we get 

w w 

+-62- L;m Lim. x 
co-ja fi ~a 

 

 

(2.43) 

(2.43) is an exact formula f oy D valid for any metall-

ic and nonmetallic ferromagnet, or for any non-ferromag-

netic material in a static magnetic field in which the 

S
I r i)(_ 	.k < S 

0C 

is therefore written as 

(2.41) 

(2.42) 
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app].°opriate limiting condition is C.„) 	c)L 
WL = 9 • ~ {--( , the Larmor frequency33. In fact, the 

spin wave pole is contained by x , which can easily 

be seen from (2.40); but the limit in eqn (2.43) is 

finite because the residue 	<p 3:9/10N 
	

, tends to 
zero as q 	. 

However, D in the above form is not of much help 

in application to real systems. CX:f in the limit is 

to be brought into a calculable form. Also, by working 

within different models 
Lim 

3c (c) was evaluated and 

the D value thus obtained has been compared with previ-

ous formulations by other authors. For a gas with short 

range interactions, it was shown 35 that 

Lira 	(9/,w) = y Co,w) 

where 	 (O W) is the "irreducible" part of 	
T 

consisting of all irreducible diagrams contributing to 

To this extent, the above formula is a generalisation 

of Ma et. al's 34 . More support to this formalism 

comes from the fact that the intensity of neutron scat- 

tering is always proportional to l 	in the long 

wavelength limit, which result was stressed by Marshal 

and Murrey 36 for the Heisenberg model and observed in 

metals by Stringfellow37. Also Fisher35 showed in det-

ail in his thesis how the exact formula (2.43) can for 

a Heisenberg model reproduce the first correction to the 

(2.44) 
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magnor energy under Dyson-Born 

bic lattice; and the spin wave 

a139 , Boyd and Callao. ay40 , who 

des of two magnons. 

For a general system with 

,pproxi4aci ont in a cu-

life time of Akheiser et 

used scattering amplitu- 

a hamiltonian 

D becomes 

+V(r)+! 
24 L 

(2.45 ) 

+ l—ira  
2 i w-o ( 2 .46 ) 

In arriving at the above, it is to be noted that 

E 11 _ Q 	 L 	r.--j1 	j1 

and I~im
~0 S

CO, W) = «3) 9 s >> w 	O 	o W 

In the one band itinerant electron model, with the 

hamiltonian 

	

H 	 )12 	+ 

	

Act-

and s 	C "WTC ~ cUT c~ — Cack-9) —ECB
))CR-`_?l R 4, 

this formula of D is the generalisation of Edwards' for-

mula for a strong ferromagnet, 
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Dg 	 

	

7 	11,- al, 

+1-ern>-(9/.~7ecq ( .vE.0.9 

(2.47) 

1.11. 13' 9 R4CR c.0 
But in practice itinerant ferromagnetic metals, for 

example Ni, Fe and Co, are many band cases. 	( (o,c.0 

can also be expressed in terms of Bloch wave functions 

and energies belonging to different bands and the value 

of D can be calculated. This may be done using the 

HF approximation as follows : 

%IliUm_ 	 ' +I`/)S 

P.5.] 
J  
<sal P,41 0,>QnCs)a.L(') (2.48) 

Here the band index n refers to 4, spin and the band in-

dex 1 tot spin. Hence 

J.-.105)(.1-(c'c°) 
/ 

1, -4<Jo7 ;TO! l > at 
woc 	

.J 	
IW 

KrL1 

 

._. 

 

~5 L>12 "<<a±CR ',E) c1-2-61'4) g iCIWrfq d-+ tyl. 	 ~ 
Z nL 

OC 

(2.49 ) 
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-r 
eru:s involving <,01:ri,azi7 a/0-11  \ 	with 

n' L n or l' L  1 vanish. We know that in the the HF approxi-

mation 

ck,.t) 	j.Eto3)-EA atoz) 
and also 

<<41(R) az  0z) .
9 atz C2) Gurp2) 

= 	< [4:4,rf ) evt.C.)  9 4 C GLaCI3 ) > 

Also 

_. - '// < (041  t-a  - 4t» 
_ -% CNn ) _ N.LCD 1 

° cc (En-03) 

 

—EC)/t -E  (tot df 
-aC 

ER)-C() 9 

if there is no sing- 

ularity. 
CO 

Therefore 54*.IPLAO cif 
-cc 

Ni1P)  INTzCO  

E 3) — Ey: ) 

+19-D-- 

can be replaced by 

tii91 - 41F))(11z/2-1>1 
gnt x Nick)_ y) 

E4R)-- 413) 

in the HF approximation . Then 

(2.50) 
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!- re 1 k /l c > represents ī,s t, ]e spcL i{,/1 pay.t Of the wave 

function. 

The formula (2.50) is reduced to a form suitable 

for numerical computation by using the 'f-sums rule : 

D =  1 	.7  N~CZ)v Cn,01_,_,,) ri.a 

. +2> Nriciz)._ 1\1-e0 ) 

rue. r~ EI-2E) — E~c~e) 1\t1145±4-1 it 1 

	

_2> 	 N2C.t 1-11e0.?) I  

	

2 	tz 	n. (2.51) 

Actual computation has been carried out by Callaway and 

Wang41 for Nickel and closer agreement with experiment-

ally determined value was found. 

The formula (2.47) has been adopted with success 

in ordered binary alloy cases42. However, recently 

Callaway and Wang43 developed a perturbation approach 

to find the suscēptibility C(, ctif) using the local exch-
ange approximation within which they also computed band 

wave functions and energies for Ni, Fe etc. Although 

they derived xa°V W) for a ferromagnetic system, 

the method is in fact general and is applicable to an 

antiferromagnetic or ordered binary alloy case. 

Callaway and Wang41 derived a formula for D in the 

ferromagnetic case, which is identical with eqn. (2.50). 

However their derivation is in error and we shall show 

below that there is an additional term in D. In calcu- 
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calculating e n. (2.50) 	used she hF approxih: tion 

and they neglected a vertex correction in the spin current 

-spin current response function. When this response is 

calculated in RPA, thus including a vertex correction, 

the additional term is obtained. 

The CW Formulation 

The method of Callaway and Wang, henceforth to be 

called CW's, starts with the hamiltonian for a single 

Bloch. electron 

~ H 	4 +VCr) I ~o — ~~ 	xc,v- 

where  V00") represents the Coulomb potential due to 

the ions and the average distribution of band electrons; 

and -V. C r) is the exchange-correlation potential 

for an electron of spin p' . This may be written as 

H=- (2.52) 

where 

V(r) = v Cr) — 1-, E_vxc t -t- Vxc4,-] 

Vor) =  LVx, 4, — vxc T J 
The last term in (2.52) is the spin-dependent part of 

the potential in the local exchange approximation; and 

Ti is the unit vector in the direction of spin alignment 

and is assumed to be in the Z-direction. Using the Xa 
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nc hod 
~ 1 

VCr) = 5a~ 
	

P—P~ 

O4 is the variable parameter. Under the impact of a time-

dependent transverse rotating magnetic field  

= B pcos[cys.r-ap-t] +Ys;ri[ws•r _wt Olt!  

where q/S = er/ a k'5 	, 9/ is confined to the first 

Brillouin Zone and Ks is a reciprocal lattice vector; 

the interaction harniltonian is 

H 	B 
9 	-c l) -itsvs. r -cot) e1 

_ --3 BBo ~ 	Q`_ 	e 	~+ J 
(2.53) 

The perturbed wave function, which is found by using the 

standard time-dependent perturbation procedure, is found 

to be 

Yri0_ ,Y)3+) 
	

( ,r) ..~g~ Bo~t2lt! 

/ 	19/5. r 	-t [Jt 
(OT I e - -0: I tiR) 

°ilk 21 +co + 7-2 

	

/ 	.4.e.qM e :--' -0:1- I rig> 

	

L T 	c.° , Li - W + 141 
/ 

i t2;? - tn 13) - EA) 
(12x,4..) being the unperturbed wave function belonging 

to Ho. These are used to construct the transverse ?nag- 

~Q~c!!'~,1 ~ (2.54) 
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~is3tio_Z 

Ni-(P.,-0.ILII> .NktoyV,r,430;(1),102.,n-t)  
~-R 

M. --t- Cr,+) = M x(n,-E)  
After some algebra we get 

MC± 1I )B0 	Tie 	It 12> 
tn k 

[N() -- 	CS+2/)] 4 	 -;cot 

   

(2.55 ) 
W1 i2, 2 k+9/ -+- 

and a similar one for 1\4 0-,0 . In arriving at (2.55),  

use is made of the orthogonal property of the Bloch fun- 
-4.

9!I 	~5 ~► c 	 ~ j 	= o coons, i.e. 1. 	~, ~ \ 

(Airless 9/ = -F- 9/g 	and 

also the fact that since the spin direction is included 

in the band index, the terms in + which involve either 

C-f- or Cr-twice vanisb . 
Writing the position-dependent terms of (2.55) in 

terms of a Fourier series i.e. 

Li),( -1C sr) 0-± 	C g.+T , r) 

exp E-± (9/4-1.:;),.rj 

with  

C. = (N Q)<1 2~G±expCt 	
i 

J 
e- 

(2.56) 

(2.57 ) 

where-C/ is the volume of a unit cell and N the number 
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Of atO uic cells in the cry s t'.:',_ volume, we can write (2.50) 

as 

M +(r,-o 
(a) 

~S+
EX Q[t.cWs .r _tot)] 	(2.58) 

in which 

y.Co) C9/ ,co)  N"nC12.)—Nt(13-F ) 

Ln~ tJn_ _. _ + /4W+L~ 

X<v2..k10-texp(—L fs.r)io t2+gii>giz+$C~expCiVs•r.)1rig) (2.59) 

a 
CR1,w) is the nonself-consistent susceptibility and 3S -r - 

was obtained in this form by Callaway and Wang. It re- 

veals the importantAtha.t if an external field is applied 

with some definite vector, the induced magnetisation has 

components with wave vectors which can differ from that 

of the applied field by a reciprocal lattice vector. 

But there is a change in the local exchange poten-

tial because of the rotation of n to n' by the applied 

magnetic field. This must be incorporated in the susce-

ptibility of (2.59) by an iteration procedure to get the 

self-consistent suscetibility. The change in the exchan- 

ge potential is 

L \ ( r) = V (r) [(r. C n'-'z )7 

=vfcc)(M+0:_ +N! T;)/2.Mo 	(2.60 ) 

This is written in the Fourier-expanded form as 
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L~V(r,±) _ 9~B 
upo 
	(-°Y 1 i  

+3 
where 

(2.62) 

When this change is included, the self-consistent susc-

eptibility is give_: by the equation 

	

Co) C9i,c0.)rsts +5 . 	C~,:.3) ^~ C q/,w) 
	 ragt +_ L 	E j 	5 +- 	r~ S -t- 

whose solution in the matrix form is x(W..!) =  
—
~~~o 

1
~  

The spin wave energies are found by looking at the 

pole of (2.64) i.e.  from the equation 

def I -- ,x(o) ] ^ 0 (2.65) 

(2.63) 

(2.64) 
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With this definiti 

- 42 - 

CHAPTER III 

A New Formulation of the Local Exchange Method 

for Calculating the Spin Wave Stiffness Constant 

and Dynamic. Susceptibility 

44 
We made a departure from CW by writing the self-

consistency(refer to the one in CW above) in the form 

of an integral equation, instead of an infinite deter-

minant. We note that in a transverse mode of wave vector 

a the local magnetisation Mo(r) precesses about the 
equilibrium Z-dire ction with a small cone angle mq(r). 

We therefore dei in. e M} (r , t) as 

Lc\ Cr) VCr) 

This shows that th 

turbing transverse 

We follow the prev 

Curbed wave functi 

them to construct 

-1-10M!--cot.) 
2 Mgr)rn (r)e 

on, A (r) of eqn. (2.60) becomes 

p(qi. r 	c .r_cvt~ 
e G`+ 

e local exchange fieldV(r)has a per-

component of amplitudev (r) (r) L'- -

ious procedure in obtaining the per-

on with the perturbation .AV, (r ) and use .AV, 
M (r,t). This leads to the self-con- 

(3.Z ) 

Cr ) 	(3.2 ) 
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4 
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sis acne e ) .tīo 

NriC g) — NtC g+w) 
E Cs) 	+ ,)+ c0+tip 

= e racv(LO 

cot 
~C ,r)o+`r  (K+6)e 

(3. 3 ) 

and a similar one for M (r, t) . Making the spin indices 

explicit the equation becomes 

.11 
_9113 <f. K+2s, n . V (P) h^ T 1 t2 T> S 	J 

iq-.r 

E (g) 	R+c1) 411w 
Cr) (3 4) 

is the spatial Part of the electron 

wave function, n the band index. We solve for those 

values of ()for which (3.4) has a non-trivial solution 

mq(r) / 0 . We shall first take up the case of a f err-

o magnet of cubic symmetry. The equation (3.4) could 

also be derived starting from. TT as well. 

The Stiffness Constant D 

In this section we shall first carry out the nece-

ssary algebra to arrive at an expression for D within 

the OW approach. 

NTRIS i 1,C .--°,1) 

Y1413'1'0 or aka). 
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i;e 
. 	

't note --._-at 

and 

\\Cr) — L C UT 
e w, r~H — H ) 

(3.5) 

= 	
_►~•rHy~ + ~~`w.—" 1-44.1 (3.6) 

.r also ei.^~ilar~_~i for t2- ` 4,-44). We assume r in the 

direction. The eqn. (3.4) is not solvable in its pres-

ent- form ; we therefore multiply both sides of it with 

V(04) and integrate over space. We get 

/ 	 y 

x Nti^(13) — i\%.y(e ) 
Fri(tR) — Ftp.-rsi) ..`ici 

<rit 121 	v0_1)le4, 
y 	(3.7) 

Using erns. (3.5) and (3.6) we ca,_Z write 

k  ~ `•~ y1)14  +» 

 \ i 'll 14R_ 4'>LE c13) _ Ft.49.421-  
fi 

 
(9' 1  g  e Gr.rpx.+Px -192.11 ki,S+W> (3.8) 

S+n.ce [_i9/.14 PI a Ce. 5 ~.r~J 
tcr e — r ē' Wr 

Px± x 
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L7) 

replacement and picking up the first part of eqn. (3.8) , 

ri.Z 

t~ r 
<+I - ̀ V(r)rrz Cr) \11T> 

X N~ R)_T,,C3+') 

we get from (.3.7) 

En ) _Et2+ar)+D~~ A 	y _ 

r 	 I x LEO) ) —E Cs+c)~{12Tg~e~~ r &All> 
By adding wad subtracting D  in the energy numerator, 

the term not involving D is : 
k+9/ e \AO" 112-a,02) I illk> 

ta.!Z 	 _ 
.X E.Nr2~,: k) -- ~T~_~ =) J ten' T ~ ~ ie.4 .hi1> 

0)E. B Vor) a C)! 
	°1. 

	 Tel R+ ')I NtlR+10 ob 

(3.9) 	ms ;72, M.A. ct,"swze me 1.4 am 
5  1 i gAa— ¶ rz 

This term cancels the RHS of (3.7) . The term_ involving 

D and of 0(q2) is : 

Key kivonh. 	 N11Ts) — Ne9C.0 

“rlit e 44> 

1 Vs CO 
Y 

$ D 	n( _ -~Q
4,
C

13
)J 

closure relation as above and 1%..t) _ t0-t4-- 

=-A-9 D 4[04.— mz (3.10) 

using the 



{ g/LBt ,̀ 

• 

NQ (g) e.4.R e- ē'~'-+px eye 

nt 
( 3.13 ) 
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9 1 13 Dqj E 	1\1 4/7 
s1n)pli yinV ~~~ e r i=_el i~l_d •" ., _rr_1 ..e e--pand 1,~ 	

`e'.'• 

r) = 1 +9/n-1Cr) 
The zeroth order contribution of ma is . 

8'LE3 tcfr> 
4 rn en ~Z 

(3.11) 

-ri•h 2,,9r.r 
_1\14( 	I 	+ e 	1R4,11+cii> 

Noting that total momentum for 4 and a, spins in 

equilibrium is zero, the above is further simplified to 

give . 

=-1. 8%$C ( N $L) 41' t`ii ri+ 

e.p, 
1 g ~g = — 	— t ,j N , 14,, Ny = N 
°, Ara 

and a term : 	t. r 	eT132(rItR>  
7.4t rz-Tsiti 

2.171 

N (~) 	(2 v) 	-11.-/ _i~.r 
x "0- 4•''' Ive~ — — —<h,,R e Px + (e - (e~'~{~~ 

R) - P ~02.4T) 	/al. 

Ney R) <2yg I-t9/1 .4 E>

J 

(3.12) 
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The co':itri' ir;ion from the 1st order term in ci of m q 

S 
B( } <4,1_z_ IV)raia)jnT1z> 

Ln 
X [1\104,01) - Ni3,0_01<n- 441 et P-4,S) (3.14) 

All the q2—order terms have now been calculated. It 

is by equating the coefficients that we get the express-

ion for D as follows : 

.%  
Dq21

0Nt —N.r) 

9t8 	N ±-e>  Kt4S1 
9_ 

Q I
rlirlz>1 1114a) 4

-PS ) 

E c~Z ) 	R ) - ELI  
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L Th -Firs two terms rie] just eqn. (2.50) a-,2 ;:e non:, 

have a third term involving the function rI(r) . This 

term was missed by Callaway and Wang in their incorrect 

derivation of D . However, this m1(r) cannot be obta-

ined exactly but it satisfies an integral equation which 

we can deal with by en iteration process. The integral 

equation is obtained by starti-ng from eon. (3.4), and by 

putting mq(r) = I + m1(r)q viz. 

19,r 
6 <2.4+ci  e- ̀ 0+n2i(r)cUCr) ritg 

	

Lai N C 	(g-}w) x ~n .g)-N e,~ 	~ Co,r) ( Oz+ ,r) 
E(1?)_ E'(R-~9i+-$c0 

	

r_r 	e4/ 'cfrr 
-- L- o `1' L

cr) ..9/ ri11.r)e M e) 
We proceed as before : 

_ de9/1 r
( — H) 

C 1-14 
-a .`') 	 ) 	L., 4 9 

; r 	;cit.r ;Tyr) 
t 	- 	- \.• x x 9J-a 

Therefore, 

/ 

Zir'ro 	 T 
i.r 	i~/r +1t,W 24,s+̀  1( P +f'xe 

rn4 ( r) a,•) I D-4,19.  
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Tst o?'c r terms in q1= t'nis cx=es3ion axe . 

<L4, 13 	) I ritg> Et ricg 	E,e4c8 
-4:4<ty Fx1111. 13.> 

Therefore, equating coefficients of q on both sides we 

get 

(2)1a.; > 
x ~~Tz ~)-Nz.41?)] yyliT ,r)(11,cyg'r) 

<4R1Pdri 	 p t1 __ 1\4. ) 
trl z 	 E C') - 	(R) 

4 
X w R, ') 	(R,r) irz - Qy -- 

(3.16) 

(3.16) is the desired integral equation for m1(r) . 

Equivalence of our Expression for D 

to that of EF's Exact Formula. within 

the RPr? 

We commented earlier that in arriving at the formu-

la (3.15) f cr D the spin current - spin current response 

function x3C°J,W, was calculated in t'ie h F approximation 

and thus the vertex term vas missed. But in the random 

phase approximation it should appear. The message of the 

local exchange approximation is that an electron of spin Q' 
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moves i_ a local po':;`.n.l a='_ -\/xc o-  in 	state Ū. 

the system_. We may regard the ground state of the syst-

em as the HF ground state of the many-body hamiltonian 

H = 7 
 L°L 

+ VQCr`) + 	`drjcp.)Scr  xoSCr-x;  ) 

2`2r6-2.+\QCr )1 - SCOe 2)e(r)cLr  ( 3.17 ) 

where Pi  and ri  are the momentumand position of elec-

tron i and 

va  c a , ; (et v4 — PyVy)/(e4 _ e.k) 
CCS') = Cv — UT)/Ce _ e,) 

Cr') -- f Cr) TTCt3 
(3.18) 

Considered from this point of view, OW calculation of 

DC(w, o) corresponds to the time-dependent HF approxim- 
ation which is ecp..iva.lent to the random phase approximation. 

This fact is also revealed if Li?? 	(3,W) is calculated 
c1,„0  w d 

in the RPA whence a correction term in the formula for 

D , in addition to those found. in the HF approximation, 

appears. It is _proved below that this correction is the 

same as the vertex term in our formula for D , e. n (3.15) . 

We have now to use the hamiltonian (3.17) . Writing 

-rt  .i be . 1 _c, and. J cv  in the seco 1d quantised form and carry- 

ing out some algebra, we arrive at 
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'co) 
i = 

>  
~eyREp+ W/)112T>> 

< Eztcv 3 e 4,03) a ti 	> 
E Cp.) -- (g) T co 

e212./ 

x 
NO) 

_ 1\1-
rI1

C) x 
T <K3--t Z '(6) y - nT 

1fi 
4 

Cr')y'riT 'r)4),,/.1-.).TC ) ,( F~`)  `ey 	4- 
 

E Ce.) .- E. Cg) + ► o 
3.19) 

ID the limit q-3 0, CO > 0, the first term reduces to 

›-j 1<t4A I IT--;--.,,-HrLtR)12 	- N6, &)  
Zrik 	 F.:4g) — rt-..z.p&) 

which is exactly what we found before. The remaining 

part prolongs into 	infii to series of continuously 

multiplied terms. But, the m1-iltvoiving term in our 

formula,  too, gets into an i rfinii,e series if we try the 

iteration process. It is shown below that both the ser-

ies are equal term by term, which establishes the desired. 

equivalence. The first such terii from the present RPA 

series i.s 
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in. 

<&1, -11 - 1 a 4- R>Kni-4.1(1 Fr '' 1 24-ni.1,10 
Zr.). / 

Cr) ( g,r) ( i C',r) Yagi,E)yili. ,2-1 2T 	nT  
X [t$)_N c&)]ENe'4,CSI)— 144(R)]  

[Ec  T) -- E R)1 [Ç '_c rc) T 
(3.20) 

Also vs-of ) 4 	. And from the integral 

eqn. (3.16) for m1(r) , by replacing m1 with 

1 
X %B x n < . RI P I tisk 11418) —Ne (8) 4 

Mc) 21   Tcg.,r)(0,r.) trok 	fit 

the 	L 	~ as the first iteration, an. integrating    by parts we have 

a term 

SE-)t-172. eli 
;;- 

\ [Nc)_Nei )][rrT ) _N4')] (e,b _ 
[EcE{ ,2481) E4(-61  

R 	(~
r$
, ~Z ,r) t ) cdr 

Noting that Mohr)- g (3(e,--e4) , (3.2I) is exactly 

the same as (3.20) , and our proof is thus achieved. 

f 
(3.21) 
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. ~. i a-i 1 5 ? I ' or 
	F. 	iT 

Paramagnetic Limit. 

In this section we have sF_oi that D-->0 as NTAy-->-O 

in the very weak ferromagnetic or paramagnetic limit; as 

should be. 

From 	the expression for P it ec;n . (3.15) we 

first we first deal with the first two terms viz. 

11. 

Ekip 
N_ 	N a no.-~-~ K t I h_„ kit N0.0 Ne z) 

From the f-sum rule 

g) 
. al 

17)-1-P3))0( 
Cg)(1  

and also 

(<R2(1 1 }j ~nCg) 

(t ei_ri _ Encl.?) —Eit?) 
(3.22) 

~3cER ) 
7) Kt 	 (3.23) 

— h2 	
'?) , assuming cubic symmetry. 

Thus, assuming cubic symmetry, 

[ 	12> Kt1Lfleß)L 
_ M Crf 

(3.24) 
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Also not; r~.g that 

Lim NRC.) _NQCR+50 	dNaCR) 
L = i2. 	 - 
W " En 1e) — E LC.+9/) ~ oi. E !~)r) 
72ErC) = -4(12131PI and (3.25) 

the first 

t9-  

()C1\14,-1\14,) 

two terms of D reduces to 

\ 
Eir-PnVIEnClg) 

Kt/ RIPi 

l  

r N co _ NAC ) 

Ce-T n) 	Erci: t?) -Ee g) 

Kn. RI Psi 2.g %1\111.(g ) —KR cg) 

t..(;21) 	E ,V) - E t g) 

1 	~  [EN R) + Erf R)(d _ CS) 
i 	 iEn03) 

2 
+ L \ (0/  121(vigif)gieS>r -Kr)-131 131zg>1 

Ccu) 	(Nri( — Ne C ) 
EncR) — EL(.) S9 

3.26) 

The right hand side is obtained by adding and subtracting 

the diagonal matrix ( 1 = n ) element. 

'V2 	CE) 

= VI CNe)vEkt2)1 __vcr t2)VNnCR) 

= 4ON CYZ)vFip3) -- QE (R)j cLNfl ) 
cLEcs) 

Now 
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a nC~?) since 	R N C) 	N 	 R L=CR ) , N. being a fc,nction 

of energy only. 

This reduces our expression for D to 

Çv.CN,S )vE) 
9. 

1113 	± r7-19. N.1<riRt FS-1.2.8>j —Ko.R 1E1 elg>r 

 

 

x N, ) -NLC~ .) 
'Ek R) -EpS) (3.27) 

In the very weak ferromagnetic or paramagnetic limit, 

NT - Ny - 0 and also the exchange splitting .AE --> 0. 

The bands of and spins have the same energy. In this 

limit the matrix elements cancel, since there are twice 

as many matrix elements of P as of PS which connects 

only T with j, spins and the numerical values will be 

equal. We are then left with 

 (Na)'VE,*.g) 

- 	
(Nrg)VF_IICg)) 

as,z 1\11,03) vEt,c1) (3.28) 

The normal derivative of energy vanishes on the surface 

of the Brillouin Zone and thus the integral of (3.28) is 

zero. 

Thus D 	0 as Nt - PT,y 4- 0 , even when the 

vertex correction is neglected. 
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he Dynamic Susce ',tibility of a 1' = oina Fact 

An explicit formula forJC(W,(& within the OW appr-

oach and with local field terms neglected is derived in 

the following way. The interaction hamiltonian is 

)e)2 :6-1.. 
i(`;i.r_ —cx)t) (9/.r —co 	e~l i 

=--- 	e 	I 
4 

MCr,-E)  

1 3  C )e~' • 
_w )M°Cx)I 

o9 o _  

where 
Mo 

. r
V 

Mā r)ct.r 

When we include the effect of induced magnetisation viz. 

V 

interaction hamiltonian is 

-\4Cr) 
	

w.r-cyt) 

-~-- k.c 	;121-11 
(3.30) 

Using the expression for perturbed wave function as 

ived in eqn. (2.54) 

(3.29) 

der- 

46ō')C t Gr + _Q-+1/obi ~() the effective 

B N (RWC.R ,r,-0 0- 4/ CR,)--,-E) 
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= —(3 ti35I-Bc>: 	4-21D + X 4(..612,(0 v „) 

2 	e n. 	 Ma  

1\14./- _NeCp+T) _;c01.* 

e Ti()(J) C +w ) 
T ~y 

Therefore, 

DCS.c.ti5CAO MC`) 

Mo 

= -- 9 'E8f4S-JAA.i.ci/ IL1 + D(.4`.12,w) y Cf) Ic-124-1  n4,12 

Ln.R 	
Mo 	9 1E- es 

X 
Ni4g) _Ne4,ck+10 2, 2,12 
	 e 	•(R,r)yo( 1?,r) 
E (,-) E C- ')+t co 4-112. n-T 	y 

Multiplying by VT (ō) and integrating 

(3.31) 

SlicpVfCr)ctr - - 

CR) 	(12+9)) 	 2. 

1 

Kt.1,k-tqi 	> Kn. 4. K. 1 el 'cll.; 

 

 

(3.32) E CR) _~~ -i& 4132 



2 	icu.r  
—M0C95).2<.e.klYrYle 1114-><t)-1, gle 7\r Cr)14 42/). 

~w _r 
LR R 

£ C 3) — E CR"Fli) -t- c + 132. hT 

–58– 

wherice 

3(C'v,cu) 
t- -- 

SM(r)v 	+ 3 	Ke4,k+T( 	12>1 
2 r~R 
k Nh~~)_.NQ$ rz -vv)•  

ECg)__E CM2-t-`U)-.-k o44  nT 	- 

(3.33) is our desired formula for XC9J,w.) 
t- 

(3.33) 
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CHAPTER IV 

Spin Wave Energy of 

. Antiferromagnetism 

In chapter I the Heisenberg hamiltonian defined by 

eqn. (I.I) produces ferromagnetism if J is positive. 

However, in antiferromagnetism the same hamiltonian may 

be retained with a fundamental redefinition of J i.e 

J < 0 . As a consequence, from semiclassical or mean 

field arguments, the single lattice of the magnetic crys-

tal is then to be conceived as composed of two interpene-

trating sublattices, A and B, having magnetisation dire-

ctions converse to each other. J = 1J1 will now be the 

exchange interaction between the nearest neighbours, which 

will be on different sublattices; and the hamiltonian 

becomes, in the momentum space representation, 

"- N~S5^a ,Sa _k 
	 (4.2) 

IcvSt 
5cv —_ et 	 (4.2) 

LEA,B 
Anderson45 and Kubo46 were the first to propose a linear 

theory for antiferromagnetism, but the problem was with 

the ground state. With the hamiltonian (4.1), an exact 
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st?.-,;e is available only for a linear o Le__cyi_I-

ensional chain magnet, as discussed by des Cloizeaux. add 

Pearson47. The ground state in this model is a non-dege-

nerate singlet state which has the total spin operator 

S = Si - 0 
However, the ground state of the linear theory of 

Anderson is not the ground state of the isotropic antif-

erromagnet. Rather, an infinitesimal anisotropy field 

must be introduced into the hamiltonian (4.I) which will 

stabilise the sublattice magnetisation direction and pr-

event the theory from collapsing because of a divergence 

in the amplitude of the spin wave creation operators. 

However, the linear theory, whose ground state is not 

that of the classical one, is valid for a real 3-dimen-

sional antiferromagnet48. 

The method of setting up equation of motion for 

the susceptibility function, with this hamiltonian and 

within the linear theory, can be applied here. It was 

done in good detail by Fisher35, who also worked beyond 

the linear theory. But the work does not help the linear 

theory, rather strengthens confidence in the green func-

tion method. This fact reasonably prompts us to extend 

the EF method, which was employed in ferromagnetism, to 

antiferromagnetism. Real antiferromagnets,.like Chromi-

um etc, are band models; and, therefore, the itinerant 

antiferromagnetism would receive our consideration now. 
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In thi _ o el , t':le most general ground state is the 

spin density wave state in which the spin density oscill-

ates with a wave vector Q,which may or may not be comm-

ensurate with the lattice. First, considering the simple 

one band case, an interpenetrating sublattice structure 

is proposed. Essentially this was first proposed by 

Slater 49 and revised and refined by Matsubara'' an_d des 

Cloizeaux51; and the incommensurate spin density wave was 

discussed by Overhauser52 and Fedders and Martin53. Des 

Cloizeaux's model involved the notion of pairing of the 

same-spin electrons, while Fedders and Martin introduced 

the notion of coupling between opposite spin electrons. 

We shall be dealing with the two-sublattice scheme appr-

opriate to the commensurate case. 

The T io-Sntlattice Scheme 

Assuming that the original crystal lattice is the 

sum of two interpenetrating sublattices, A ane B, we can 

define Bloch wave functions 1+1A(~ .), if i302,) of a tight 

binding form on each sublattice separately. But now the 

symmetry of the magnetic lattice is reduced, and so we 

are to reorganise our calculations in terms of a reduced 

Brillouin Zone, which is half the original and reduced 

along the direction of Q. Then WZ)and 4) () are 

related to the re-oresentation of bands in a paramagnet 
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b,; 
LeM =-4-0/Ack) yec.)) 

yck+Q) =71r_j_4 (ykko_ifo)) 
and a Wannier representation of 4 'S are 

(4.3) 

(4.4) 

Vs) 
E A only 

L~ B only 
(4.5) 

We restrict ourselves to the single band Hubbard type 

hamiltonian 

H 	--1-I2n4.+11L4, 
~Q- 	 L 

where I is the interaction energy between two electrons 

on the same Wannier site. Under our A and B sublattice 

scheme it is rewritten as 

H ~E, C r1 A R a- -,- ri r3 R--t~C4,B % 	A k~ a 1Scr) 
+ 	t G e 

R0' 	 nt 	(4.7) 
Le A, 

where E oz) and ECoo are expressed as 

Ei(g) =-1-CE03-1-g) -Fats)) 
E 03) --i-Cecki-s)-eog)) 

(4.8) 

The vector Q is important. As we mentioned earlier, 

because of reduced symmetry, the Brillouin Zone is divi-

ded into two zones, each containing the same number of 

states. If k lies in the first Brillouin Zone, then 

k + Q , where, as pointed out earlier, Q is one of the 

(4.6 ) 
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mane tic reciprocal lattice vectors, is a vector in the 

new second Brillouin Zone modulo a vector in the parama-

gnetic reciprocal lattice. The vector Q has the prop-

erty that ē .RJ can be I on sublattice A and -I on 

sublattice B. 

In the antiferromagnetic state, the single band 

breaks up into two bands for each spin, one with greater 

charge density on sublattice A than on sublattice B, 

and one with more charge density on sublattice B than on 

sublattice A . For the opposite spin, the sublattices 

are interchanged. Also, one band of each spin will lie 

lower in energy than the other and, therefore, will tend 

to contain more electrons than the other band of the same 

spin. In crystals of inversion symmetry, corresponding 

bands of opposite spins are degenerate. By carrying out 

the necessary algebra, we will see it clearly 

Essentially, the method is to set up the equation 

of motion for the one electron Green Function which app-

ears in the susceptibility function. But for the 2-sub-

lattice structure, it will have a matrix form defined by 

GC~,~~ 	C 	9 C + (4.9) 
of (3 	~ _ 	3120  

where CoA, (3) = ( , A) , ck B. , 031 A.) C014 3, t3,are the ele-

ments of the matrix. The equation of motion can be wri- 
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-1 
41_0 

(A) — 	n. 6,y 
N 	(4.I0) 

Clearly (4.1_0) is in non-diagonal form. A canonical tr-

ansformation of the original Bloch wave functions defined 

over the sublattices, which will generate quasi-particle 

wave functions in the form of linear combinations, will 

achieve this goal. Defining the quasi-particle creation 

operators for t spin byc 1T and c..R t , with the corresp-

onding energies by E1(k), E2(k), the transformation will 

be 

TVT = 
a \\ 

w—E9_Cg)) 
and TT+ = T+T = I, the unitarity condition. The standa-

rd procedure of diagonalisation gives 

E ~Cg) -- 
with - -R 0}Z ECK) , and 9_5 <y1AT t2A4 . 
is involved in the transforming matrix T such that 

-1- 	—T 
Akit 	t c051012_ siq 0 g \ C-FA kt 

BRA` , 	\-siakoR ce5LIGK) C IZT 
4 

(4.13) 

E.(&) + ~ s'-÷ Cs ) (4.12) 
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(digit) 
ā T 

9 d-1 g,T I 

corresponding energies EI(k), E2(k) are defined by 

T 
cBPy 

(4.15) 

up using eqns. (4.3) and (4.4) viz. 

Sink(-1 -.0k) 	Cc, SQC ,_6)0 

(4.17) 
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/ 1 /w-E ) 

. ° 
r + 

Similarly, for the down spin case, cLR14 ,d4,j, and the 

(4.14) 

2C ~ = Etc g) T V 9f'-f ec ED 
with 2.5 _= <rir34 _ r y 	; but for the antiferroraag- 

netic structure 	644.> = <11124> 

which shows that 34,— 54, = 3 	, and hence 

E2(k)t = E2(101, i.e. spin-degenerate. 

The linear combination giving the quasi-particle 

creation operators can be rewritten in a different set 

( 4 .16 ) 

This corresponds to Sokoloff's54 transformation 

difference being the phase 4 . Actually,C6s1Q 

is determined from the condition 

L āt ~a~.o- = E C~)c~k~o- 

, the only 

or Sin Bii 

(4.18) 

in the HF approximation. 	, pes- 	denote band and spin_ 



(4.19) 

we 

(4.20 ) 
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index. 

The energy gap is 2(C) +9) , whence the 

minimum energy gap value is 	. But in the absence 

of the antiferromagnetic ordering, 
9 

goes to zero. The 

eqn. from which 9 is to be calculated selfconsistently 

is obtained as follows. By using the transfor=tion 

matrix we can express rlAt and 12A4, in teres of the quasi-

particle  occupation numbers. Thus 

— A 4) 
_< —rb.> 
_ 5___ Ca smlz (N Ri T -- N ka 

12. 
and therefore from the relation 

2-9 _ I <  A ~, — y> N 
R= 

fs4 f o-, 1\11Z02.0--  are the occupation numbers chosen so that 

the energy at T = 0, or the free energy at T / 0 is 

minimum. In our case of simple antiferromagnet, however, 

the occupation numbers are independent of spin, and hence 

the spin indices can be dropped henceforth. 

Since we are interested in the excited spin wave 

spectrum, we shall not discuss some no less important 

points viz. choosing the appropriate Fermi Surface to 

minimise energy, predicting the criterion for antiferro-

magnetism etc. 

derive 
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Susceptibility  and Spin   aves 

Proceeding along the Green Function approach, Fisher35  
introducing an ad hoc matrix form for the susceptibility 

function whicwe shall get to very shortly, arrived at an 

exact formula for the spin wave velocity C 

But Sokoloff, too, worked in RPA and employed the Green 

Function scheme. Unfortunately Fisher's result for C, 

when simplified within HF, differed from Sokoloff's, which 

led Fisher to comment that his is the more general formula 

and Sokoloff's work suffered from being restricted to a 

subspace. We shall briefly point out the steps of both 

the works. 

We start with the reduced susceptibility 

sc; v)c,  (4.2I) 

where (AC, )}1 04, A.) (I, 6.), 03, h) 	($,$) The operat- 

ors 
S i:  , 

	 are expressed in terms of Bloch crea- 

tion and destruction operators i.e. 

SA 	R+9/cAkt 
V  k 

 -  
=yCA -q/4 CALzy 

ST := (saq,+s sw) commutes with 	when q = 0. 

At this stagewe can say that, if the Fermi level lies in 

the gap, so that the spin waves are the only low-lying 

modes, then because of the above commutation relation, 

we may assume that+̀I!A will contain two sein wave 

poles. Once again, by canonical transformation J(CY.,w) 
+- 

(4.22) 
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can be C'ia,go=aaL iseG_ so that the two spin grade branches 

are separated in the diagonal elements. Denoting by 

the similarity transformation, 

(4.23) 

Or, 

fD P 

= c'`3 e9/ QYLo 	
(4.24) 

0 	-4 -I- c 

assuming that 

w5C(1,) = Ccv + OCc9) , r1 = 	-1-411.0 
with cfW4 1 	. Eqn. (4.24) is Fisher's ad hoc assump- 

tion . In order to avoid the singularity of the transf-

ormation, a weak anisotropy field is required which will 

introduce a term ---A(S7A- s ) into the hamiltonian and 
stabilise the system against rotations of the total spin. 

However, for h infinitesimal the assumption of (,JS linear 
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q is still valid. Then, because of the oppositely  

directed spins on sublattices A and B , poles will 

occur at 4- 	. Now the straightforward extension of the 

EF method in ferromagnetism is to set up the equation 

of motion for :)(LOW,w.) and then compare, which gives 

ccv.co) c3-2,Ect, +Cci + b.) 97. 

(4.25) 

a, b, d are given by 

O~ - Jfl2 

 

with 

Jim- a,B 	 (4.26) 1-0->0 cv-->o 

a _

_ 

 

w,iā2
9/ a C t — BLl 

~9~~ CFA Q- 

 ) 

 

~ ō Ca, -- °`'a 3+ 	

(4 .27) 

 a A A 	 (4.28) 

= ‹[F,c-T5 	+0;_xusHIP,G-34) 

a?') = (4,A) , (A ,13) 	, A) , C ,B 	(4.29) 

The eigenvalue of the matrix (4.25) will give the expre-

ssion for C which is 

C =  c2.°L.°1- 	All. = 	rim> 
11- 

(4.30) 

This is an exact formula due to EF formalism. Fisher 

worked out a, d in the HF approximation (page 73 of ref. 

_Q 
pt, -E- Ca- b)9/9-  

0 

0 	--1 
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Sokoloff started off with 

X(c.v.,c0) = 
/ww 	x 

cv .c0+451 ctpf-a 

(4.31) 

which is equivalent to Fisher's matrix form within a 

similarity transformation. Sokoloff carried out his al-

gebra in the random phase approximation and arrived at a 

result for C which was different from Fisher's. It app-

ears to us that the disagreement is probably because 

Fisher evaluated the Green's Function in (4.29) using 

the HF approximation instead of the full RPA. We belie-

ve his nr?satz (4.24) is correct. 

CW Approach Applied to 

Antif erroniagnetism 

The extension. of CW approach to antiferromagnetism 

confirms Sokoloff's result. We carry it out in the fol-

lowing way. We first formulate the problem for a general 

band structure and then specialise to the Hubbard model. 

The crucial argument is about the precessional cone 

angle mq(r), which was assumed to be constant within ea-

ch unit cell for the ferromagnetic case when local field 

effects are neglected. The situation is altered in the 

antiferromagnetic case, mq  now having different values 

on the two sublattices. It is now defined as 

r 	Ct) 	139/ ea r 
	

(4.32) 
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.,o that its vaThe is 

A cv —i- Bev 	on A sublattice 

q.& A j — 139/ 	on B sublattice 

Invoking equation (3.4) and inserting the new expression 

for mq(r), the corresponding fundamental equation for 

an antiferromagnet is obtained. 
r 

 
4R+e 9j. 

 V 	> 

(4.33) 

x NoTC€.) _ Nr,P yC z+9i) 
E) _ E24 kJ-W) --t- -,w 

1*  

_ MoCr) Oct,
+ Bcvd62.r ) 

Multiplying this eqn. with Vf(r) and Vf(12)e
-iQ.r two 

equations are obtained i.e. 

tZ+~ j i yr. '~` {Acy '` J~BI< - -1 	olr) tr1 s>  trig 	 w.r 	;.r 

	

1- B~ x -3 B~ 44,k+91 e -V/s.Cr)e 	tZT ►2> 

hT 
) 

— N:4( 
+90 

x414kVC:)e; 
w.r 

I Qy~  ~ 

t  ) — E,Q CR L -1"-k ° RT 	.l~ — ASS 11 /4400-:) s.Cr) 

Aelix-N3 (2 ē4(r) I t2+> 
eng  

-- 	 iW.r t3~x-9'~{a~P-v I+IIB- vs er) 	at 
en ti 

X 	C ) _rTP (~}w) ~nr 	y 	4 	+1/> Eis.)-EQics+~)+tw 
{Bcv 	VS(r) dr 

and 

(4.34) 

(4.35) 

(4.36) 
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From ` 35) and `4. 3'6) , by e i -•ilatiz-SJ, 1'.O and L , a matrix , 	q 
will be obtained, whose determinant put equal to zero will 

yield the spin wave energy and hence the spin wave velo-

city. The matrix's determinant is 

~fCt)MOCr)dr+ACw.90 	A(`V,`P+ B =0 
(4.37) 

ACA+61.w_) Cr.) H J fF+AeI t-a,ci~,~) 
where  

- - / 	+ 	t1 ~> \h-TZ I Yr)Z;c1-12-A4-1/}  

ck) — F C +T +tiW 	
(4.38) 

with CCV,9,) = A CQj,c2) 

So far the work has been carried out for a general 

band structure. We now specialise to the case of the 

Hubbard model where there are two bands in the antiferr-

omagnetic situation. The l,n are just summed over I and 

2 so that 

/dew>w_) 
a 	l 

J 
93 —E,(8)443  

44,1y-1,1 
v Cr) . i 1.19 IT, C.)— No,Ck+/)  

1 

(4.39) 

  

 

R 

 

and also 

-~g 

on A sublattice 

on B sublattice 
( 4.40) 
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ecs.0 e toe Fermi level is asssu__,ed to be in the gap, 

 ~4 ~ .N~C~~ = 	Using the relation tang = 82°3)  ~ 

we find 	4 	 ^c~ ee ~ ~ E(-1-) =8(K) —9sec® E —~1 9 	(4.41) 
Putting in all these simplifications, 

/V0./. , c) =49Es1(o .-~~ 

x 

C3)-ECk+w) 
tw 	 + ~t cv 

A(0,010) 492easok _ _?,5411- 
N" 

using the self-consi- 

stency equation for 3 . Also 	S\40-)1q0Cr)cir - 
SS s 
.N 

which checks that there is a solution co 	O, for Ir.::: 0, 

as should be the case. Proceeding in the same way 

ACofr,w-1-Q) AeV : ) 

% (c +cos aDR,cu) 
x r 	 

L 1()} E).ch+:0+-Ke. ECF-.E1 Ciz4-'V)+.:2  

1  
E' IZ)-Eilz*V 

and 
AC`ii ,~i+~~ 

= 43 coziCap+w-tes)[ 	 
R. 

We note that tcj =C cv and 

1 

E1 01) - Cg- c )) - jco 
1 

r 

ne/A/+6) is of order q. 

Also, because the zeroth order term in the first diagonal 

element is zero, but non-zero in the other diagonal one, 

we retain q2-terms in the Ist diagonal and constant terms 

in the second diagonal element. Although it is possible 
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f, 	I 	+ s , 	~ r 
to 	1CtŪ further l,~).G1' °_ E• 	~_~; by B~_O[„Br-~ o_.i~ ~,ZZ~ 1C3.-i;10n of  

the matrix, we would refrain from that, and instead will 

show that Sokoloff's matrix, whose determinant solves for 

C , is the same as that obtained here. 

If we start from equation (19) of Sokoloff's paper54 

and write it in matrix form, it becomes 

i°„ — 9 	TG° \ /, 91-) 	Gr3C pcw) ~vPI) 

 

   

(4.42) 

    

I G1 651 	 CT)\St 	C: 133C12)./ 	G 31 CT.) 4a3C~ 

The matrix 

(rG 1 _ 1 14, 

whose determinant set 

equal to zero will give the expression for C is the same 

as our matrix which was obtained by eliminating Ao and 

B . 
q 

To show the equivalence, we worked through as 
0 	0 

follows : We wrote out the expressions forG tt~ G a3 0 
and G, 3 from Sokoloff's equations (2Ia.),(2Ib) and (2Ic); 

and made the phase adjustment by replacing e by 7C __Q 
in them. Also we wrote out in full the expressions for 

ACR://) , ACgi -451 ) and Ac ,V+6J from our equations (4.38) 

as shown earlier. By comparing these two set of expre- 

ssions, we found that  
(w,60 •- -Se N- Gi s 3 ; A Ccof _voi-0) = -gO N G,1 



e 

N. ( iG _ 1 

0 
I GI 

(4.43) 
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an Q 
rs 	P 

- Sd i\r ,  ,3 _ -- 	tv 603i 

whereby we get that 

/ 
/E t3 .Cr) MoCt)c4r + ACw,`v) 	AC Tf ) 

	 ■ 

 

~ fCr) M A:Y=1r -i-A 0!-2 A,t?) 

This shows the complete equivalence of our results with 

those of Sokoloff, and confirms the equivalence of our 

approach to RPA. Expanding for small q andW , follow-

ing Sokoloff, 

Got tC`k) = 2 CCg) D 
3Cw) ti I -~ eLD( c! ici G ) 

GIs CT) 43 3D 

I Y ( L)SJ 	C f\t,z t -- N,g) 	(4-45) 

and 	K 
D ~! - (L03-1-(N t21 - A ZT.. x 	( 4.46 ) 

 N  

49CT;7eEe-Cg) -COsoR\q,, zEC13) 

The spin wave velocity C 

D 	
is given by 

t 

C = - ac2g)~I D 19 

  

(4.47) 

     

(4.44) 

where 
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The Dynamic 	Susceptibility in the New Formulation_ 

Following the procedure as in the previous chapter 

on ferromagnetism, a general matrix form for $ c4)) is 

also obtained for an antiferromagnet. In this case the 

applied external magnetic field is 

B = Bo 	ILCck,r-43-0 	coVr" 
(4.48) 

and 

	

M Cti) = B0 {)Cal/-,c.inC40 . ell cil w) 	('-cQ ) 
 24 )x— L J- X5,...' 	+ L y ic 

+x y , 616 w ) pz.r-cot);12 It1 

4- 10 )41÷.§1,$1,) _ Ly41/. +6l; )4)) 1 ~hc CT- ,w) 

+yy 	e 

~.C`~~a--Wt)_ it( 
= Bo Cw,~w.3~ 	~~zl 

9-+ + So xCcl,÷~ ,w wie 	e 
+- (4.49) 
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Al s 

where 

-e eSS = 
Mo( 	0-EB 

4611 — 	iQ'•-  
V 	ō 1-1-aCrJ ©L r- 

( 4 .50) 

With these, 

I 2 
B B a— 

+B 46 
4 	JJ 

-9" s Btor 4-11 .c' 

_ g ! V4.C) (N+o:+ h.c) 

1̀ ( Fiat9 
(4. 5 I) 

h.c means the hermitian conjugate. When we include the 

Zeeman term, the perturbing hamiltonien becomes 
e 	 ; C .r_wt) 
I = — 9 a3a L1 + c)1/ ē Ire 

9- i Tic) ( 9~r~ 

-~' [ç+c!CJ) Vc. -)e- 
] 

ff- e 

el Flo ( 

-t- I .0 I e121{I (4.5 2) 

Similar to ferromagnetic case, 

  

emiz, 	i cih 	rzlti 
T>  

NL j k+q,) 

 

    

Eng.)— ELyiZ-9)4ca.:0. 
e 

i W y( r C-+Q/,r) (4.53) 
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and also 

t 	o .{.- 	e 
(Mai 

-FUEVXCci-i÷a,ctr,63)Ccl'ir—co-L)Mo(r.) 
Mal 

Hence 

(4.54) 

x(ct',cif,w) ē 

—(9zB)
T. 

.r Mai ) 	 Cw+~ a,rv)  MoC~')  
1 Mo 	t- 	

j N61 
Le t, -fil[ '1 + 	  

x ēw.r I ri k) x "h 4C k) -- 44.0zfT) 

t ~~)- E(13'~ .) + 'jcc+i 

  

)(e 	ck,r (4.55) 

Multiplying (4.55) by14Ct 	and integrating we get 

M0(t)VQS :-.)41--

g ~g 	 ; C~fj.~ 

~, .Z- 
~~e4+~ sCz) e 	i g> I 

j() N~ +~v) 
X  tl — -Y(  

Fe t+w0f w + "2. 

—; (.1)+6A- le4, k+ey> 
f 

I Ma 	X N r1Sii3)- NQl.ia+w) 

— 	f3).Z._. !_014-1./( 
k 

ICT,?+€ )  

~ — 11. ><Mtg Vi(r)  `
q,+A). P 2y}c> 

let us say. (4.56) 
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Afld 
	

i=!g by (") a!1c in1,eJ-rating ;:e get 

DC.?!:4V).) 8/43 
°1. 

{Pkgi- cp! yr. )e 114-12-' 1afrk>Kr2-r&jvs.CrJj~'~ytfv) 
en3

k NTg)_ m¢ k+z) 

    

E41.0 — ~ 4 WAG) 4Q 

.S' Ma0a)VsCr) d r 	9_ 
+g 4 {¢4 	v}C--7)=-11'1 4- p>C 

¢,. 	X ti)_ N,e46R+41) Ma 
13)- EQ f1+4.04- .4L 

T3)  

 

	 k+9(.s(r) e :24-'4) r koz>4 1 vioe T.1-14gfv> 
en.k 	X Ni•F )— NeyC►Z+v) 

    

1M01 

let us say. (4.57) 

Using our previous notations, (4.56) and (4.57) can be 

written as 

M T)vCr)dr+9-8 AO/ +Q,w+a)IC1,),w s  +-. 

+ 5 e A C611.11 +61)aCw+-,qa — ICCQ+a) 

:: B A (Gli tLi,w))c+ ''w+
S maCt)y ) cir  

-1-213a  ACw,w) 	+C~,+ ,wI = 
IC`141 

(4.58) 
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In the r .trix fo ^rn the -near of equations (4.58) can be 

written as 

+ACw_-+-61,q'+) 	nCw, fQ) \'XC 2,w) 	~Cvv_+&) 
2 

A(9 ~~) 	-f-ACC,) Wcij+g,920) 343 IC̀ ,cpsi 

--Se 2 	1/1, -)VCC) ctr 

 

(4.59) 

If we start with an external field Bj a e 

will arrive at a similar equation 

we 

 

D(Cw,q,+,cl)) , 	(IC`U+f )\ 

X (9/÷6, 	4-9) 	(9/.211,1f)/ 

(4.60) 

Combining (4.59) and (4.60) we get the general equation 

for the )(~,"_ 	matrix for an antiferromagnet 

f>% + A(w+Q,w+61) AC%,w+a)  	% _ _fr) 

ACcif€ ,cv) + ACT,T) f x (w+s,cy w) C+ a+4 ' ,,o 

_2 
I(A, w+sz) ICA!+s,w+Q) 

(4.6I) 

  

    

IC9/,w) 	ICii {-€,`v) 

The solution of the matrix equation (4.6I) will give the 

transverse susceptibility J(+_ for an antiferromagnet 

when local field corrections are neglected. 
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This resit, when combined viith a hand calctlat_on, 

could be used as the basis for a numerical calculation 

of ..X4 43.) for a real antiferromagnetic metal such as 

Mn. It would be of considerable interest to compare 

such a calculation, which would not involve any adjusta- 

ble parameters, with the calculations of Young and Cade56  

using a many-band Hubbard hamiltonian approach. 
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