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ABSTRACT 

This thesis describes research into toppling failure 

of rock slopes, carried out using both physical and numerical 

methods of investigation. 	Chapter 1 introduces the subject 

and reviews previous work in this area. 	Chapter 2 reports 

investigations into the mode of failure of a real slope 

using base friction models. 	Chapters 3, 4 and 5 are devoted 

to toppling analysis by means of simple physical models 

(base friction and tilting frame), limiting equilibrium, 

and numerical modelling (dynamic relaxation) respectively. 

A summary of the conclusions is given in Chapter 6. 
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CHAPTER ONE 

INTRODUCTION 

1.1 General 

Now, it is a fact well known by everybody concerned 

with rock engineering that the stability of slopes in rock is 

controlled primarily by the planes of weakness or structural 

discontinuities - namely joints, faults, bedding planes etc. - 

within it. 	This is a natural outcome of the fact that the 

strength of the discontinuities is much less than that of the 

intact rock. 	Apart from the orientation, inclination, fre- 

quency, continuity and surface characteristics of these 

features, presence of groundwater pressure influences the 

behaviour of the slope as a major factor. 	Seismic accele- 

ration forces due to blasting, rock mass strength, slope geo-

metry, stresses and deformations in the slope, climatic 

conditions and time could be cited as the other points that 

should be taken into consideration when a detailed analysis 

is to be done
1
. 

In order to avoid loss of life, money and time a 

rational design of slopes is essential with a balance between 

economics on one side and safety on the other. 	However this 

is not an easy task because of the complex and variable nature 

of the rock; so, every effort should be made with the avail- 

able tools at hand. 	In this context, the close collaboration 

between geologist and engineer must be emphasized. 	Many 

people on various occasions put stress to the utmost need and 
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importance of the geologist's contribution for a sound and 

healthy understanding of the media2 '
3 
 . 

1.2 Methods of Slope Stability Analysis 

Slopes in rock can be analysed with three different 

techniques4. 	These are: 

a, Empirical and observational approach 

b. Limit equilibrium approach 

c. Stress analysis approach 

The empirical method makes use of previous experience together 

with the study of models and the performance of the prototype 

itself. 	The limit equilibrium method is based on the strength 

characteristics of the rock mass, specifically those of the 

discontinuities, and normally utilizes the Coulomb-Navier 

failure criterion. 	The third method, i.e. the stress analysis 

approach, involves the study of the deformation and strength 

characteristics of the rock mass. 

a. Physical models may yield important information regarding 

the behaviour of a prototype provided simulitude laws are 

observed, but this is very difficult to achieve because it is 

seldom possible to vary each of the parameters independently. 

Despite its limitations physical models have been used 

extensively by investigators. 	Barton, s5  sophisticated two- 

dimensional model where the strength and behaviour of rough 

joints were reproduced, and Heuze' and Goodman's
6  interesting 

three-dimensional model where water was introduced to promote 
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motion of blocks are examples of gravity loaded models. 	To 

investigate the behaviour of rock slopes in sedimentary rock 

structure StaceyI built up both two and three dimensional 

models which were loaded in a centrifuge. 	Although it is 

difficult to produce reliable quantitative results, physical 

models remain very valuable for the conduct of kinematic 

studies. 	In this context the base friction technique has 

been used extensively by various researchers
7
'
8
'
9
'
10 

despite 

its qualitative nature. 	This method is discussed in Chapter 

Two in detail and the tests conducted are reported in Chapters 

Two and Three. 	Obviously it is preferable to replace the 

physical models with numerical solutions which fulfill the 

same purpose but are not subject to some of the limitations 

inherent in the former. 	In such an attempt_ St. John
11 

tried 

to simulate the Barton's5  two-dimensional slope model by using 

the finite element technique but could not get satisfactory 

results for various reasons. 

b. The limit equilibrium method of analysis simply works out 

the balance of disturbing and resisting forces against sliding 

on a pre-defined surface. 	Since the method produces a definite 

answer in the form of factor of safety it has found an exten-

sive use in rock mechanics, having been used for many years to 

evaluate the stability of soil slopes. 	For ease of operation 

and speed of application calculations have been reduced to a 

graphical or tabular presentation. 	In this connection 

attention is drawn to a set of slope charts for circular and 

plane failures designed by Hoek & Bray
12. 	Although this 

technique is very efficient in estimating the stability of 
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excavated slopes it requires the failure mode to be known 

or to be guessed with reasonable certainty in order to define 

a slip surface upon which the limiting conditions will be 

examined. 	Jennings
13 

considered the case of a plane failure 

on a stepped surface taking into account the continuity of 

joints and thus tried to obtain a better representation of 

the behaviour of the rock mass in nature. 	But the assumption 

that rock behaves in a rigid-perfectly plastic manner (non-

deformable block) is the shortcoming of this method because 

the progressive nature of failure which is a complex phenomenon 

is not taken into account. 	For analysis of three-dimensional 

cases Londe and his co-workers14,15, and John
16 have used the 

stereographic projection as a powerful tool in such a way that 

the frictional and cohesive strength of the discontinuities 

and all forces including water pressure could be taken into 

account. 	As an alternative to graphical techniques, the 

analytical models (vectors) as discussed by Wittke
17 

and 

Goodman & Taylor
18 appeared to be advantageous in their ability 

to handle the rotational and toppling modes of block failures 

in addition to sliding modes. 	As a final remark about this 

method of analysis one should bear in mind that the reliability 

of the technique depends on how reliable and representative 

the input data are and the assumptions made. 

c. Design methods based on stress analysis have been advancing 

rapidly recently with the newly developing numerical tech- 

niques and increasing computer capacities. 	The necessity 

for an exceptionally high level of experimental skill and the 

amount of time required to carry out a complete analysis made 
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the photoelastic method of stress analysis19 '
20 
 unattractive, 

especially with the emergence of powerful Finite Element
21 

and Finite Difference
22 

techniques as alternatives. 	The 

only advantage of the photoelastic technique was its applic-

ability to three-dimensional problems, and this has been 

diminishing because of extension of the capability of 

numerical techniques from two to three dimensional cases 
 

The attempts made by Mahtab & Goodman23,.St. John24, and 

Stacey' in using the Finite Element method to analyse three-

dimensional jointed rock slopes althoueh not fully satisfactory 

have shown the versatility of numerical techniques. 	A 

relatively new method of stress analysis, namely the Boundary 

Integral Equation method, has been receiving an increasing 

amount of attention recently for analysing the stress distri- 

bution around underground excavations
25
'
26
. 
	This technique 

offers certain definite advantages such as considerable 

reductions in computer storage and time, and data preparation 

when compared with the finite element method. 	To the author's 

knowledge, the method has not been adopted yet for slope 

stability analysis. 	While Goodman and Taylor
18 

have noted 

the difficulties in the finite difference method in matching 

the boundaries and treating the variation in material proper-

ties, Cundall
27 

has demonstrated the versatility of the 

technique when large scale movements in blocky rock systems 

are to be modelled: such movements cannot be analysed by the 

finite element method. 	On the other hand, St. John
11 

supports 

the finite element method saying " 	 any material behaviour 

may be simulated providing it can be adequately defined". 
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In this respect he points out that the method is capable of 

treating arbitrary boundary conditions, any initial stress 

conditions, inhomogeneity, and also inelastic and non-linear 

behaviour. 

Some of the methods available for the analysis of 

jointed rock masses and their capabilities and limitations 

have been summarised by Staceyi  in the form of a table which 

is reproduced as Table 1.1 here. 

1.3 Slope Failure Mechanisms 

An understanding of the way in which rock masses 

move in slopes is of considerable importance in slope design, 

and is a necessary prerequisite for carrying out a proper 

limiting equilibrium analysis, and also for deciding the 

precautionary steps which should be taken to avoid instability. 

Knill36, Hutchinson
37, and Coates

38, to name only a few, have 

classified the slope failures according to the mechanics of 

failure. 	Hutchinson
37 made the most comprehensive classifi- 

cation under the title of "Geomorphological Classification of 

Mass Movements on Slopes". 	He considered three main groups 

of behaviour: Creep, Frozen Ground Phenomena and Landslides, 

and subdivided them further as seen in Table 1.2. 	Knill's
36 

classification follows more or less the same path with three 

main categories: a) Rock Falls b) Rock Slides c) Creep. 

He described the rock falls as the sliding or rolling down of 

loose rocks developed on the slope, weathering being the 

primary cause of loosening. 	Toppling failures were included 

in this category. 	Rock slides have been further sub-classified 



• 
Table 1.1- Summary of numerical methods of analysis for jointed rock masses (After Stacey

1
). 

Reference Urief noscriptIon or method 

. 

Capabilities 
Aomori., 

• 
Non- 

hwaog,nous 
material 

Arbitr“ry 
pounllry 
snapos 

-bin- 
continult 

los 
Lorgo 

Defamations  

Tarasova
28 Ela..tic nuthod In L.hich cquival- 

eat al titan nodoll 	for the :oak 
WASS OM calculated 

• 
No No Yea No Dealt with alternating :lard and soft layers i.e. onirotrodic 

system 	 . 

. 
--- 

Pinto29 
A5 above, but equivalunt moduli 
.izo calculated to 3 dimensions 

No No Yes ' No As above, but deals with orthortropic material as well 
. 

Zienkiewicz, Cheung 

and Stagg 

finite elLnent opptoach, in- 
corvaoting hninoLlopic 

Yrs You • YO3 

properties properties 

No ror analysis or stratified material 

' 	 • 	
. 

211  

Duncan and Goodman 
A%  ohne°, but incorporating 
equivalent ottholroplo 
properties 

Yes 

• 

Yon Yea No For analysis of block Jointed eatorlel with or without sortor 
mulurlolo on Joints 	. 

, 

Zienkiewicz, 

Valliappan & King
32 

Iterative finite element 
.1i4.10..ch 

Yea Yea No No "No-tonsion" iterative approach redistributes sry tensile strosres 
which ore cell:alai...I assuming Ilnuarly elastic 0%s...illus. Suitable 
for oxtonnivoly fracturod rock but does not actually handle dis-
continuities as separate entities 

Zienkiewicz, 	Best, 

Dul1age and Stagg 

Iterative Finn.° element 
aporoleh to handle one or two 
nuts of itiocootinuiLias 

You Yea Yea No IteeStivo "nu-lonuloo" uppruovh redistributes otreciwa, fur appli-
cation to the cnres or cinqlo or dty.ble laminarity, An altornsliso 
approach to double laminarity is to anuirm singlo laminarity 
different oirrurent orientation to alternating elenonto 

Malina
34 1 tore Uwe finito eleoont 

scprauch to hv,dlo one or morn 
nets of discentinuitins 

Yes Yoo Yes No Hendion pre-existing disccotinuities us veli as the formation of 
new frocturrs. Intact matsrial and discontinuity strungths aro 
roprosonted by Mohr onvrlopos. 

Goodman 	Taylor , 

and Brekke
35 

Itsrstivo finita element 
aparasch Incarperating special 
"Joint" 	°In-rents 

. 

Yos Yes YO3 Yoe Dircontinuititrs nro modrIled individually by olellents with rens-
ified force-displacement relationships, ollcsine large deformations 
Zionkluoicz ct al 	(33) dcssrice sinilzr Llemer.ts basad Co acre::-  
strain rclationnhips 

Cundal1
27 	•  Iterative owptooch b,n.ed on 

farce-displacement rolationchips 
No Yap Yee Yo0 Collnpsn of stractorns modolled with ease. Intact rock is occulted 

to be rigid, and "rock blocks" are rowelled indlvidantly 

Stacey
1 

Itorativo tthltu Lamont 
.Peraoch to nsaalo coo or 
rova sets of aiscontincit- 
loo 

Yes Yos Yes No Handlus pre-existing discontinuities, ollcLing tonsian across 
Joints in away cases, and corrects for tonsilo sporting o: coo ;clot 
eat acsra!atod with choar failuro on another sat 
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Table 1.2- Geomorphological classification of mass movements on slopes 

(After Hutchinson37). 

. 	Shallow, predominantly seasonal creep; Mantle creep 

(a) Soil creep 

• CREEP 	(b) Talus creep 

. Deep-seated continuous creep; Mass creep 

3. Progressive creep 

4. Freeze-thaw movements 

(a) Cambering and valley bulging 

FROZEN GROUND 	(b) Solifluction sheets & lobes 

PHENOMENA 	(c) Stone streams 

(d) Rock glaciers- 

5. Translational slides 

(a) Rock slides; block glides 

(b) Slab, or flake slides 

(c) Detritus, or debris slides 

(d) Mudflows 

(i) Climatic mudflows 

(ii) Volcanic mudflows,or lahars 

(e) Bog flows; bog bursts 

(f) Flow failures . 

LANDSLIDES 	 (i) Loess flows 

(ii) Flow slides 

6. Rotational slips 

(a) Single rotational slips 

(b) Multiple rotational slips 

• (i) In stiff, fissured clays 

(ii) In soft, extra-sensitive 

clays; clay flows 

(c) Successive, or stepped rotational slips 

7. Falls 

(a) Stone and boulder falls 

(b) Rock and soil falls 

8. Sub-aqueous slides 

' (a) Flow slides 

(b) Under-consolidated clay slides 
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into uniplanar or multiplanar translational slides, rotational 

slides or a combination of both translational and rotational 

slides. 	Translational slides are said to occur along 

geological planes of weakness such as bedding planes, joints, 

faults, etc.. when the shear resistance along the plane(s) 

is exceeded. 	Slopes cut in intensely and randomly jointed 

hard rock may fail by rotation of mass on a more or less 

circular arc which is typical of soil slopes. 	Creep is the 

time-dependent deformation that most rock types exhibit. 

Coates
38, apart from rock fall, rotational and plane shears, 

introduces "block flow" replacing creep (see Fig. 1.1). 

He visualises this method of failure as being a general break-

down of the rock mass as a consequence of crushing at the points 

of highest stress in the brittle rock blocks comprising the 

mass. 	Piteau
39 considers creep as a form of block flow 

failure. 	Richards
40 recognises six basic types of slope 

ROCK FALL ADTATILWAL -  syrAe 

PLAJAC SHEAR (dl !stock nov 

Figure 1.1- Classification of types of slope failure(After Coates
38
). 
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failure in rock masses which are shown diagrammatically in 

Fig. 1.2. 	Toppling is taken into account as a separate 

mode of failure in this classification. 	Ravelling failure 

of Richards should correspond to block flow failure of Coates. 

Jennings13 p Piteau39, and Goodman & Bray
41 

have 

gone further splitting the specific modes of failure into 

sub-classes. 	Jennings proposed four separate modes of 

failure involving planes or combinations of planes and put 

forward mathematical theories for each case for the stability 

analysis. 	They are: 

a. Plane failure mode. 

b. The conjugate joint zone failure mode involving failure 

on three mean planes. 

c. The conjugate joint block failure mode. 

d. Three dimensional wedge failure. 

Piteau39, considering the significant failure types postulated 

by Jennings13, grouped the modes of failure on preferred 

planes of weakness as follows: 

a. Line failure modes (Fig. 1.3). 

(i) Plane, failure mode. 

(ii) Stepped joint failure mode. 

b. Conjugate planes - failure modes (Fig. 1.4). 

(i) Conjugate planes - zone failure mode. 

(ii) Conjugate planes - block failure mode. 

c. Wedge failure mode. 

In a recent paper, Goodman & Bray
41 gave several kinds of 
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1). Circular failure 
	

2). Non-circular failure 

3). Plane failure 
	 4). Wedge failure 

• 

5). Toppling failure 
	

6). 	Ravelling failure 

40 
Figure 1.2- Mechanisms of slope failure (After Richards ). 



26 

-J 

'"'Intact gaps between joints 

joint set 

	dr  
/WO WA.' 	q?,//A 

" 

i) plane failure mode 

ii) stepped joint failure mode 

Figure 1.3- Line failure modes (After Piteau
39

). 
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Tension cracks 

Zo 

1r-I.~-'r-"~r-bo-4rl-~~~~ --.l. · --· 
c· ", H , 

_~_!:._-~oint se~L 
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Figure 1.4- Conjugate plane.s-failure modes (After Piteuu39): 



28 

failure mechanisms involving overturning of columns. 	They 

classified them as: 

a. Flexural toppling 

B. Block toppling 

c. Block-flexure toppling 

which are shown in Figure 1.5. 	They also indicated the 

possibility of induced toppling and named it as "secondary 

toppling". 	Figure 1.6 shows several examples of such 

secondary toppling modes. 

Consequently, it can be said that practically all 

the modes of failure in rock slopes are structurally controlled 

unless the rock is intensely and irregularly jointed whence 

it behaves like an isotropic soil. 	Failure through intact 

rock material alone is hardly possible as pointed out by 

Terzaghl
42 

 . 

1.4 Previous Work on Toppling 

Although toppling has long been observed in the field 

as a deformational mechanism, surprisingly it is only recently 

considered to be a fundamental mode of failure in jointed rock 

slopes. 	The idea first originated from Bray43  in 1969, and 

has been flourishing around himself since. 	However John
44 

reports that the overturning failure of rock slopes was first 

analysed by himself in 1964 for a highway project, it cannot 

be considered as a major effort but an isolated work. 	Bray's 

theoretical findings soon have been backed by physical and 

numerical model studies of Barton
5, Ashby

45, Muller & Hofmann
46 
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a) SLIDE HEAD TOPPLING b) SLIDE BASE TOPPLING 
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c)SLIDE TOE TOPPLING 

 

Figure 1.6- Secondary toppling modes: a) slide head toppling; b) slide base toppling; 
c) slide toe toppling; d) tension crack toppling 

(After Goodman & Bray41). 
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and Cundall
22 respectively.  Ashby's remarkable work, in 

this context, laid down the foundation for further analyses. 

Soon after the model test confirmation of toppling as a 

failure mechanism field examples of toppling failures were 

.. - reported by de Freitas & Watters47  'indicating its existence 

in nature as well. 	The following is the list of authors 

with their contributions in evaluation of toppling in chrono- 

logical order. 	They are going to be referred throughout 

he thesis when necessary. 

BRAY43 (1969): Put forward the concept of toppling as a 

behavioural mode for jointed rock slopes with a theoretical 

basis. 

JOHN
44(1970): Stressed the need of a check for overturning 

Failure, particularly in steep slopes, apart from the primary 

shear failures. 	Noted the joint spacing as a governing 

factor in this mechanism. 	Introduced an arbitrary criterion 

for the stability limit against overturning of individual rock 

elements defining an overturning wedge at the base of the 

element and assumed that stable conditions exist as long as 

the resultant (weight or weight and hydrostatic thrust) is 

within this wedge. 	With a simple graph showed the effect of 

the slope angle and hydrostatic thrust for plane conditions, 

based on the criterion put forward. 	Made an attempt to ana- 

lyse the overturning failure in three dimensions using refe-

rence hemisphere. 

MULLER & HOFMANN48  (1970): Reported "overturning of the top 

of the slope with subsequent rock falls" as the first of three 
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main successive stages of deformation and failure during the 

excavation of regularly jointed rock slope models built to 

investigate the complicated kinematics and varying failure 

behaviour of rock masses. 	Noted the significance of 

regular jointing with high continuity in determining this 

mode of behaviour. 	Also, emphasized the necessity to under- 

stand the possible kinematics of the various zones and their 

combined action in endangering the rock mass of the slope in 

addition to investigating the system of joints in the 

critical zone. 

BARTON
5 (Jan. 1971): Conducted a series of two-dimensional 

jointed slope model tests on a tilting frame reproducing the 

strength and behaviour of rough joints by the creation of 

sets of tensile fractures in a weak brittle material. 

Observed several toppling failures beside translational shear 

and translational shear with tensile opening. 	Noted the 

importance of the relative orientation of the primary and 

secondary joints with respect to the gravity field in im- 

plementing the mode of failure. 	Reported that for toppling 

shear failure to occur either a higher frictional resistance 

on the joint set dipping into the slope (sliding set) than 

on the near vertical (overhanging) set potentially involved 

in toppling shear or an angle of dip for the sliding set low 

enough to preclude shear failure on this set has to exist. 

Pointed out the role played by the frictional resistance in 

controlling the post-vertical angle required for relative 

shear to initiate. 	Described toppling a totally self 

inhibiting mechanism for dilatant joints considering the 
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necessity of relative shear across the sub-vertical joint 

set for its initiation and therefore ruled out the possibility 

of deep seated loosening of the jointed rock mass to yield a 

toppling failure in conventional open pit slopes of 30°  to 

600, and consequently restricted this type of failures to 

steep benches where blast damage could render suitable joint 

configurations prone to toppling failure. 

CUNDALL22  (Feb. 1971); Produced computer drawn diagrams of 

the spectacular progressive toppling mechanism in idealized 

block models using a finite difference approach where realistic 

friction laws have been incorporated allowing unlimited block 

movement. 	In support of Barton'  s5  findings, demonstrated 

that the mechanism of toppling was governed by relative shear 

along sub-vertical joints which in turn was controlled by 

the friction coefficient of shearing surfaces. 

HOEK & BOYD48 (July 1971): Discussed the basic mechanisms 

of sliding and toppling of a discrete block. 	Using the base 

friction modelling technique demonstrated the importance of 

toppling as a mode of failure and showed that the final con-

figuration could easily be confused with one of the more 

familiar sliding modes. 

ASHBY
45 (1971): Undertook an extensive modelling work (mainly 

tilting frame tests) in an attempt to understand and define 

the toppling phenomenon manipulating the frictional charac-

teristics of columns and the thru-going discontinuity, and 

the number of columns essentially. 	Remarked the following 

points from his observations: 
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a. Toppling must be considered in conjunction with sliding 

displacement at the toe. 

b. The stability (of the model) is controlled dominantly 

by the frictional characteristics of the throughgoing 

discontinuity at the toe, the geometrical relationship 

of the columnar joints, and only to a slight extent by 

the frictional characteristics of the column surfaces. 

c. Reduction in factor of safety of a predicted sliding 

could be as much as 70% due to toppling. 

d. The least stable high angle joint (toppling set) orien-

tation is 65°. 

e. Tension crack displacement at the crest occurs prior to 

toe displacement. 

f. While base friction models (plaster blocks) give less 

stable configurations, numerical models (Cundall's 

Dynamic Relaxation) yield slightly more stable confi- 

gurations as compared to tilting frame tests. 	Also, 

delineated three zones of behaviour from his experiments, 

such as: 

i. a region of sliding - generally restricted to 

the toe block along the incline 

ii. a region of toppling columns and blocks with 

step failure by sliding when the dip of low angle 

discontinuities exceeds the friction angle of 

blocks 

an approximately triangular slab region in which 

no movement occurs. 



35 

ST. JOHN71  (Jan. 1972): Made an attempt to simulate Ashby's 

toppling block model with a simple finite element idealization. 

However obtained the typical block rotation that occurs, 

failed to get toppling induced partings between blocks 

because of the inherent limitation (of infinitesimal strain) 

of the finite element technique. 

WATTERS
49 

(1972): While investigating the stability of 

elopes in Scottish Highlands confirmed the existence of 

toppling in nature too. 	Discussed the approaches to isolate 

toppling and toppling/sliding modes of failure from those of 

translational shear from field observations. 	Concluded that 

slopes designed to satisfy a translational shear mechanism, 

and judged as "safe" may well fail if a toppling or toppling/ 

sliding mechanism can develop. 

DE FREITAS & WATTERS
47 (1973): Described three field examples 

of toppling which came from contrasting structural settings, 

each involving a different scale of mass movement; so, 

indicated that this mode of failure requires neither 

unusual geological conditions, nor unusual geological 

materials in order to develop, but the reverse seems to be 

true. 	Pointed out that toppling failures could develop in 

a variety of rock types such as sandstones, shales, granulites, 

and schists. 	Noted, also, the sensitivity of toppling failure 

to the lateral restraints provided by the margins of the 

moving mass. 

STACEY (19/3): Observed toppling, although not deep seated, 

in his two dimensional small scale models which were subjected 
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to large centrifugal accelerations in a centrifuge to simulate 

gravitational loading, even though the bedding planes forming 

the continuous columns were dipping into the slope with an 

	

inclination of only 33o to the horizontal. 	Reported the 

occurrence of toppling exclusively for the ratio of joint 

spacing to bedding plane spacing of 1 but not of 1.87, 2.76 

and 3.74 cases underlining the effect of block geometry upon 

the mode of failure. 

GOODMAN8 (1973): Noted the following points after a simple 

two-dimensional kinematic model study in an attempt to 

demonstrate the importance of detailed geological observations 

on the modes of behaviour (under varying initial stress 

conditions): 

a. The toe region has great importance in a rock slope 

	

with a potentially toppling joint set. 	Toe flexure 

takes place when horizontal stresses are significant. 

b. An analysis of toppling must take into account the 

overturning moment on individual columns, the resis-

tance through overturning of the toe portion of the 

slope, and the flexural strength of the overturning 

material. 

c. Toppling of vertical columns does not compromise the 

overall stability of a steep rock slope; it is a 

local failure condition restricted to the vicinity of 

the slope itself. 

19  HOEK & BRAY - (1974): Though briefly, touched on toppling 

as a mode of failure beside failure by sliding and warned 
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the design engineers against its increasing danger with 

steepening discontinuity angle and slope angle. 	Also, 

recommended reinforcement by rockbolts or cables tying tall 

slender rock columns together to form wider blocks to prevent 

toppling. 	The importance of identification and anchorage of 

the "keystone" which prevents the front face of the slope 

from moving was emphasized too. 

GEOROGIANNOPOULOS50 (Sept. 1974): Tried to find a way to 

judge about toppling mode of failure relying entirely on 

models (tilt frame and base friction). 	Come up with the 

conclusion that the outward rotation of the slope upper 

surface (exactly opposite to that of circular failure) seems 

to be the best judgement about the toppling mode of failure. 

Proposed a crude rule, as well, to judge about the depth of 

disturbance. 

BAYNES
51 (June 1975): Compared the theoretical model postu-

lated (by himself) using the previously published model 

studies with the detailed field evidence. 	Indicated that 

the field evidence tends to support the various hypothesis 

proposed. 	On the basis of this field evidence, however 

limited, formulated some very crude design guidelines for 

toppling failures. 

GOODMAN & BRAY
41 (1976): Discussed toppling in its wide 

spectrum indicating that it may occur in slopes cut quite a 

variety of rocks, under various circumstances, and in different 

ways with very serious consequences if overlooked. 	Examined 

a limit equilibrium analysis for the special case of block 
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toppling on a stepped base producing the required support 

force at the toe of the slope to achieve a specified factor 

of safety. 

1.5 Scope of the Thesis 

When this study was undertaken, very little was 

known about toppling failure in the form of quantitative 

analysis. 	Therefore it was proposed to develop a design 

criterion so that the practising engineer would be provided 

with simple design charts or graphs to solve his problem 

safely and easily. 	For this purpose the author has chosen 

to examine situations of steadily increasing complexity in 

an effort to understand this mode of behaviour in depth. 

Also, the tools used to explore toppling were from simple 

to complex in nature, starting with base friction models 

and ending with dynamic relaxation computer simulation 

respectively. 	But everything has not gone as planned and 

the aim of the research could not be reached. 	The author 

was unfortunate enough firstly, having been restricted in 

time and secondly, receiving no encouragement in tackling 

such a vast and complex topic which deserves more time and 

much more effort. 	However, the author has undoubtedly made 

some useful contributions to the subject such as testing and 

modifying a Dynamic Relaxation Block Program to handle dif-

ferently shaped blocks, limit equilibrium analysis of multiple 

block systems, testing and evaluation of base friction model 

tests in appreciation of toppling problems and finally en-

lightening of the mode of a real slope failure from the field 
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using base friction technique. 

1.6 Conclusions 

While designing slopes in rock toppling should 

be given important consideration beside conventional sliding, 

especially when columnar or layered structures are in question 

because, now, it is a world-wide known fact that it (toppling) 

can involve large volumes of rock mass with serious defor- 

mations far distant from the slope face. 	However, although 

a great deal of research has been going on for some time 

receiving an increasing attention every day, the present level 

of knowledge offers very little to the practising slope 

engineer in the way of quantifiable parameters on which to 

base a slope design when faced with the problem of toppling. 

Quoting from Goodman & Bray
41
: "Suffice it to say that our 

understanding and appreciation 	of this behavioural mode is 

but in its infancy". 
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CHAPTER TWO 

BACK ANALYSIS OF A FAILURE TO FIND OUT THE 

FAILURE MECHANISM 

2.1 Introduction 

This chapter summarises the work done to explain 

the 1967 failure of the Old Delabole Slate Quarry. 	Most 

of the information and data needed for this investigation 

has been collected from the Field Reports of groups of Rock 

Mechanics M.Sc. students (Imperial College). 	Though none 

of these groups has directly been involved in the 1967 failure, 

many of them made back analysis of it to get some strength 

parameters to assess the stability of their own region neigh- 

bouring the failure area. 	Postulations put forward regarding 

the mode of failure remain unproven so far. 	As an attempt, 

the author has thought the base friction technique to be 

helpful in identifying the real mechanism. 

2.2 Old Delabole Slate Quarry 

2,2.1 - Introduction - 

The Old Delabole Slate Quarry is situated 2 miles 

south of Tintagel, Cornwall, as an elliptical excavation 500 

feet deep. 	"All the rock in the Quarry is highly metamorphosed, 

good cleavage characterising the whole"1. 	Mainly two types 

of slate occur, differing slightly on a lithological basis. 

They are of Upper Devonian age and named as blue-grey and 

green-grey slates. 	In the western face of the Quarry a third 
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type, "Silver grey Woolgarden", is observed as this part of 

the Quarry was down thrown by a major fault. 

Cleavage is a well defined feature throughout the 

Quarry with a dip of 20°  - 30°, and a dip direction of 245°  - 

260°. 	Spacing is in millimetric scale. 	Cleavage surfaces 

are fairly smooth and closed generally. 	Bedding planes 

possess the same dip angle as cleavage, therefore they are 

obscured almost completely. 	The rock does not split along 

bedding, so this feature can be regarded as insignificant. 

The measurements taken all around the pit reveal 

that serval joint sets exist throughout the Quarry, most of 

them being steeper than 70°, in particular on the western side. 

There is a considerable scatter in their orientations as shown 

in Figure 2.1. 	Wedge joints (wrinkles) and the joints forming 

the bench faces (shorters) are the characteristic features on 

the east and west side of the Quarry respectively. 	Roughness 

and undulations along the strike of joint surfaces exist in 

general, "Especially those at right angles to the cleavage 

planes exhibit very wavy surfaces on all scales"1. 	There has 

not been a systematic and detailed investigation of the con-

tinuity and frequency of joint sets, but it is considered that 

most of them may be accepted as continuous planes as related 

to the slope height. 

The area is traversed by families of parallel faults 

mostly and random faults occasionally. 	In general, they are 

steep and some are associated with joint sets. 	Richards
2 

mentions about the low angle faults as having anisotropic 

characteristics ranging from 2
o 

to 40°, depending on the 
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Figure 2.1- Polar stereonet of joints with pole-count contours 

(Compiled by G.Hocking) 
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direction. 	Since these faults carry gouge and have thick- 

nesses up to 1 meter, they may become critical from the 

stability point of view. 

Though groundwater is one of the most important 

factors influencing the stability of rock slopes; it is the 

least known in Delabole Quarry. 	Estimation of the present 

phreatic surface from the face seepages is difficult because 

their levels vary considerably over a short horizontal dis-

tance, and there is not sufficient borehole information. 

Slate is defined as the most impermeable intact rock
3
, so it 

is evident that the flow patterns are dependent on discon- 

tinuities acting as channels for water flow. 	This fact should 

be the explanation for differential face seepage. 	Neverthe- 

less, an average groundwater level at elevation of about 425 

feet, supported by the observations on east and west side of 

the pit, will not be too wrong. 	Daily rainfall records dating 

back some 50 years reveal that the total annual amount varies 

between 35 inches and 55 inches (Figure 2.2). 	It is under- 

stood that one or two days per annum are likely to receive up 

to 1.75 inches. 

2.2.2 -Strength Properties- 

The strength characteristics of Delabole Slate has 

been,studied extensively by Richards
2. 	A brief summary is 

given below. 

A. Intact Material  

(i) Available failure theories do not describe the aniso- 

tropic behaviour of this slate accurately. 	Therefore, 
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empirical curves are fitted. 

(ii) Minimum strength is observed when the angle between the 

maximum principal stress and the normal to the plane of 

anisotropy (i.e. the cleavage planes) is 45°, is con-

trary to Jaeger's "Single Plane of Weakness Theory", 

which predicts this angle to be 60°. 

(iii) Uniaxial compressive strength ranges from 22 to 185 

MN/m2. 

(iv) Shear strength parameters vary considerably for diffe-

rent sample orientations and for different methods of 

analysis. 

B. Discontinuities  

Direct shear tests on either polished or parted 

cleavage surfaces gave the following results: 

(i) The average peak value of dry friction angle is about 

30°. 	Contrary to general observations, the residual 

friction angle is greater with a value of 33°. 

(ii) Water acts as a lubricant and reduces the friction 

angle down to 20°. 

(iii) Apparent cohesion intercept of 0.20 MN/m2  is obtained 

when extrapolation is done. 

(iv) The effect of the sliding direction relative to clea-

vage planes is insignificant. 

(v) The effect of the sliding direction relative to surface 

roughness features is found to be very important. 

For example, an increase of 45
o  in friction angle has 

been observed when the shearing direction was normal 

to the surface ridges of a joint (for low normal loads). 
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(vi) Effect of lithology is very little. 

(vii) Surface staining, due to weathering, increases the 

friction angle irrespective of its degree. 

C. Fault Gouge  

(I) Dry fault gouge can have a friction angle as high as 32°  

indicating no deleterrous weathering effects on the 

material. 	However, another sample gives a friction 

angle of 17°. 

(ii) Natural gouge material is relatively insensitive to water 

with a drop of 6.5°  in friction angle when tested wet. 

2.2.3 -1967 Failure- 

On March 4th, 1967, a large scale fall occurred on 

the western wall of the Quarry. 	It involved a large volume 

of material which covered the main haulage road to the pit 

bottom (see Figure 2.3). 	The failure zone extends from the 

third bench at the top (level 575 ft.) down to the 350 ft. 

level. 	It seemed to be a plane failure consisting of two 

slide surfaces. 	The upper one is steeper and dips with an 

angle of approximately 70°  - 75
o down to the level 425 ft. 

The lower surface has an inclination of about 40°  - 45
o as 

determined with rough survey techniques. 	Figures 2.4 and 

2.5 show the slope profiles drawn using the field measurements 

and the aerial photography topographic map respectively. 

The following observations are of interest to note: 

1. Slope crest constitutes a moving zone with large 

and small (open) tension cracks. 	The large tension crack 

lies at the top along Bench 1 (617.3') with two smaller ones 
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Figure 2.3- Photograph of 197 failure. 
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close to the rear wall. 	Bench 2, at a lower position, also 

accommodates a small tension crack as shown in Figure 2.6. 

2. Upper failure surface is planar and well-defined. 

It can be considered as an inclined tension crack. 	There is 

speculation about this surface to be a fault plane. 

3. Intersection between upper and lower surfaces 

is not well-defined. 	Indications are such that a fault passes 

along this intersection but its orientation is not known 

exactly. 	Further considerations will be given to this point 

later on. 

4. The lower surface is pretty rough and irregular 

as compared to the upper one. 	It has a stepped appearance. 

Though the weathering and the seepage should have changed its 

original character since 1967, it is not very difficult to 

appreciate the difference between these two surfaces. 

5. Scree of the failed material lies at the bottom 

of the pit. 	It is interesting to note that the rock is highly 

disintegrated. 	A boulder, for example, can hardly be seen. 

Again weathering should have played a role in this matter, 

but this is not supposed to be the whole answer. 

2,2.3.1 - Structural geology - 

Restricted access to the area limited the infor-

mation needed to evaluate the structural geology and the 

stability. 	However, the investigations made at the adjoining 

parts of the fall revealed that the features in the Quarry west 

face generally fell into well defined sets, which either followed 

the cleavage or dipped nearly vertically. 	The following are 

of importance: 
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1. Joints: Almost all of the joints appeared to be dipping 

at angles greater than 70°. 	The most important joint set 

striking nearly parallel to the slope face (i.e. dip direction 

of 100°  - 105°) has an inclination of 70°  to 90°. 	It has 

been observed that this set is highly persistent in extent and 

is associated with a series of parallel faults. 	Indeed, this 

is the set mentioned as "shorters" previously, and will be 

called "Joint Set A" from now on. 	The second steep joint 

set, in a sense, is a mirror image of the first one dipping 

into the 'slope with an angle of 85°. 	This set is also found 

to be associated with another set of faults, and will be called 

"Joint Set B". 	The third joint set of interest lies flat 

showing quite a variation both in inclination and orientation 

(30°  - 65°  and 90°  - 130°  being the dip and dip direction 

respectively). 	It is observed that this third set "Joint 

Set C", is scarce, isolated and not continuous. 

2. Cleavage: Cleavage maintains its general trend, but a 

reduction in the dip angle has been observed. 	Towards the 

upper part of the north of the fall 10°  of inclination was 

measured. 	This anomaly can be explained with the occurrence 

of Woolgarden rock which has been described as having an un-

reliable cleavage by Leese and Setchell
1
. 

3. Faults: Two groups of faults are identified - thrust 

faults on cleavage, or transgressing it at a low angle, and 

a more obvious group at right angles to these at dips from 90°  

to 70°, dip direction 90°  to 120°. 	The latter is associated 

with shorters and has a frequency of about 6 meters at the 

failure area. 	The traces of this group can be followed at 
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the south wall of the pit. 	All the faults carry gouge 

material. 

2.2.3.2 - Lithology 

A lithological boundary between grey slates found at 

the bottom of the pit and green slates at pit rim level has 

been traced in the area to the north of the fall at approxi-

mately 420 feet elevation dipping at an angle of approximately 

45°  to the east and has probably been produced by faulting. 

A distinct difference in rock mass behaviour was observed 

between these two rock types although Richards
2 found slight 

variation on shear strength for different lithology. 	In the 

upper part of the slopes of the western wall, the green slates 

graduating to Woolgarden beds appear to be much looser, blocks 

are separated very frequently by open joints and along the 

cleavage. 	At the bottom of the slope the grey slates graduate 

to black phyllites which are obviously more massive. 	They have 

closed or tight joints in the main and are much more competent. 

2.2.3.3 - Groundwater conditions - 

Seepage mostly occurs at elevation 425 feet, but 

some water also issues at 475 feet. 	Though no correlation 

exists with the neighbouring faces, east side of the pit con-

forms to 425 feet elevation yielding a lower bound of water 

table (well water level records exist at the Quarry but are 

too far distant from the site to warrant extrapolation of data). 

Reference to rainfall records show that there was no 

marked or unusual rainfall during January or February, the 

months preceding the failure, but it should be kept in mind 
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that the fall took place at the end of the rainy period. 

2.2.3.4 - Tension crack monitoring and previous failures - 

Existence of the tension cracks at the crest is 

reported to be 1943 predated
4 and the records show that they 

have been monitored since 1948. 	This indicates that the area 

is unstable over a considerable period of time and a progress- 

ive failure is underway. 	Measurements currently being 

carried out imply that a complex failure mechanism with block 

rotations is occurring. 	Analysis of relative moments suggest 

that the rock mass near the slope face is moving towards the 

pit and the wedge of rock between the tension cracks is tilt-

ing in the opposite direction with some subsidence (peg move-

ments of set 2 of Bench 1 in Figure 2.6). 

Reference to photographs in the Quarry Museum show 

that failures have been occurring along the western wall at 

least since 1890. 	It is understood that failures similar to 

1967 fall have occurred three times indicating they were con-

trolled to an important extent by the structure of the area. 

The failure mechanisms that might be involved will be dealt 

with in detail in the next part. 

2.3 Analysis 

2.3.1 - Introduction - 

Failed slopes are a very valuable source of infor- 

mation to assess the stability of critical ones. 	Strength 

parameters, cohesion (c) and friction angle (), can easily 

be obtained through a process of back analysis. 	However, 
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for these parameters to be of any practical value the real 

failure mechanism must be defined. 	Since there is not strong 

evidence in the 1967 fall in favour of one or another failure 

mechanism, all the possibilities will be considered, and 

checked either analytically or experimentally, or in both ways 

against the field observations, disregarding the improbable 

ones. 	In dealing with many uncertainties related to discon- 

tinuities the Base Friction technique is thought to be helpful. 

2.3.2 - Modes of Failure - 

In postulating a mechanism, post-failure geometry 

should be accounted for. 	There was no doubt about the upper 

face. 	It was either a "shorter" or a fault behaving as an 

inclined tension crack. 	On the other hand, the lower face 

appeared to be extremely difficult to interpret. 	In the 

light of the site investigation carried out, the following 

failure mechanisms were considered: 

(a) Shear failure through intact material. 

(b) Undercutting due to weathering. 

(c) Sliding in one way or another. 

(d) Toppling. 

(a) When the stresses in the rock mass due to its 

own weight were compared with the strength of the rock it was 

realised that any major shearing through intact material was 

strictly impossible. 	Even the lowest strength recorded by 

Richards
2 (20 MN/m

2  i ) is several times the stresses computed 

(2 MN/m2). 

(b) It was proposed
4 that an undefined fault (may 

be the probable so-called "Lithology fault" mentioned earlier) 
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could create an environment for undercutting through weather- 

ing of the gouge. 	Thus, the wedge formed at the top would 

push the lower portion outwards and the shear strength along 

a sort of composite surface of shorters and cleavages would 

be mobilized as shown in Figure 2.7 below: 

Fault or open joint A 

The base friction technique has been employed to check the 

validity of this postulate. 	Tests with different fault orien- 

tations did not appear to be reproducing the real mechanism 

as will be discussed later on. 

(c) Lack of any major throughgoing discontinuity 

comparable with the lower slide surface and its stepped 

character led the analysis to the same assumption again - 

formation of a composite failure surface. 	In fact such a 

stepped surface was observed at a location along the western 

wall in a smaller scale reinforcing the assumption. 	Thus, 

the analytical approach illustrated in Figure 2.8(a) has been 

attempted. 	The following assumptions were made: 
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- vertical tension crack appearing on the slope face 

with c = 0 0 = 0°  

- 40°  of angle stepped lower surface formed by 

cleavage planes, inclined into the slope with 

an apparent dip angle of 6°  (i = 40+6 = 46°) 

and joints (shorters) dipping towards the pit 

an angle of 80°  

- friction angle of 20o  (due to water lubrication) 

and apparent cohesion of 30 kbf/in2  along lower 

surface; so, effective angle of friction, 

(P e, of 66°  (0e  = 0 + i = 20 + 46 = 66°) 

slope angle of 70°  

The following equations given by Hoek and Bray3 for 

plane failure yielded Figure 2.8(b): Factor of safety versus 

depth of water in tension crack for zero and 30 Zbf/in2  co- 

hesion values. 

cA + (W.CosiP - U -
P'

Tan0 
) 

+ V.Cosi) 

where, 

A = (H-Z).Cosect 

U = z yw.Zw(H-Z).CosecIP 

2 
V = yw.Zw  

W 	
r = 	yH2  L(1-Z/H)

2CoOp(CouPp.TantPf-l)] 

As shown in Figure 2.8(b) the slope is stable for a half filled 

tension crack even for c = 0, and obviously stability increases 

with cohesion, that is, for the slope to be unstable two thirds 

F 
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of the tension crack must be full of water when c = 30 kbf/in
2 
 . 

Although, as previously mentioned, there was no record of 

unusual rainfall before the fall, the possibility of high 

water level cannot be disregarded completely because the 

blockage of drainage channels with impermeable materials can 

produce effective heads above water table. 

(d) Being a steep slope in vertically jointed rock, 

consideration was given to a toppling mode of failure. 	The 

following evidence was found supporting the involvement of 

such a mechanism. 

(0 The existence of a toppling joint set (associated 

with a series of faults as mentioned earlier), though 

not as frequent and consistent as shorters, well 

enough to produce toppling. 

(ii) The stepped failure surface which is a characteristic 

feature of toppling 
	
. 

(iii) The analysis of the measurements currently being carried 

out on tension cracks indicates that a complex mode of 

block movements is progressively underway which is 

most likely produced by toppling -wedging interaction 

as simply illustrated in Figure 2.9. 

Large Tension crack 

Crushing 

Pit 

Figure 2.9- Monitored slope crest movements. 
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2.3.3 - Laboratory Work - 

In order to verify the possible failure mechanisms 

put forward in Section 2.3.2 and hence to discover the real 

slope behaviour, a series of tests have been performed on 

base friction frame. 	While doing this, the effect of geo- 

metrical variations of parameters on rock mass behaviour has 

also been investigated. 	At the end, an attempt was made to 

simulate the groundwater conditions on a rather simple model. 

The features and their geometrical characteristics 

are listed below. 	The features are also illustrated in 

Figure 2.10. 	Undefined parameters such as Joint A spacing 

or slope angle, and small scale parameters like cleavage 

spacing were varied to examine their effect upon the slope 

behaviour. 

Feature Dip Angle 	Spacing (mm) 

  

Joint A 

Joint B 

Joint C 

Cleavage 

(apparent) 

70°  

8 0*  -5 

50°  

3o, 	foo,  1750 

10, 

20, 

40 

10, 

25, 

25, 

20, 

33, 

50 

40 

40, 50, 66 

Fault 
	00,  soo,  45o, cool 

90°, 45°, 70°  

Slope Angle: 50°, 60°, 65°, 70°, 75° 
 

Scale: 1/200 

5, 10 (thickness) 

The bar (-) indicates the feature dipping into the slope. 
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(b) 

Figure 2.10- Features modelled:(a)joints and cleavage,(b)faults. 

2.3.3.1 - Base friction technique (Theory, Apparatus, Material) 

The base friction technique has been described else-

where
9'10 and has been used by many investigators

10
'
11,12

. 

It simply works on the principle of simulation of gravitational 

loading by frictional forces. 	Being a two dimensional and 

horizontally constructed modelling technique it is very easy, 

quick and economic to operate, and a variety of model materials 

from deformable mixture to rigid blocks to simulate different 

behaviours can be used. 	On the other hand, its qualitative 
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nature coming from the difficulty of fulfilling the laws of 

similitude limits its exploitation. 	However, as a step 

towards its quantitative usage, in a recent work Bray
13 

has 

analytically demonstrated that in general, velocities in the 

base friction model correspond to acceleration in the real 

situation. 	A suggestion from the same author seems very 

promising. 	He recommends developing a computer program to 

simulate the base friction technique, so that one can vary any 

parameter including joint characteristics. 

Tests have been conducted on the large frame designed 

by Whyte10. 	An attempt has been made to produce a low fric- 

tion angle material, at least as low as 30°  to be equivalent 

to the dry friction angle of slate. 	In this respect mica and 

ballotini were tried, but satisfactory results could not be 

obtained. 	Mica flakes laid down and decreased the friction 

between the material and sandpaper rather than the cut joints. 

Ballotini helped to bring down the friction angle to 37°  when 

used in large proportions (36 - 37% by weight), but in this 

case the material became very brittle. 	Eventually the 

following mixture was found to be optimum; 

Material 	% by Weight  

Flour 	 51 

Sand 	 12 

Vegetable Oil 	 13 

Ballotini 	 24 

This mixture gave a friction angle of (f) = 40 - 41°, and com-

pacted density of 1.33 gr/cm3. 
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2.3.3.2 - Method adopted - 

After compaction and consolidation of the slab, the 

following sequential procedure was adopted to lessen the 

likelihood of "healing" the discontinuities. 

(i) The slope geometry and the discontinuities are marked 

to scale faintly. 

(ii) The slope geometry is cut. 

(iii) Each set of discontinuities is cut in sequence, 

either starting from top or from bottom. 	Continuous 

sets are to be cut before cross joints, if any. 

(iv) The excess material around the slope boundary removed. 

Note: To simulate the field conditions a bit better signifi- 

cance may be given to the order of cutting the joints, that 

is, the tight discontinuity set should be cut first and the 

rather open set last. 

Photographs were taken to keep a record of movements 

and a timing procedure was implemented when the behaviour of 

two slopes was to be compared closely. 	When a model turned 

out to be stable, the configuration of the slope was changed 

by sharpening the slope angle and/or inserting an additional 

discontinuity set to make full use of the model. 

The validity of the failure mechanisms postulated 

in Section 2.3.2 is checked against the post-failure slope 

geometry and behaviour in the field, namely: 

(i) Post-failure slope profile. 

(ii) Formation of tension cracks at the crest. 

(iii) Block movements at the top corresponding to tension 
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crack monitoring information. 

A. Simple Sliding as the Mode of Failure (Plate 2.1)  

The following assumptions are made: 

(i) Slope is dry. 

(ii) There exists three continuous discontinuities: 

Joint A: dips into the pit with an angle of 

70°  to match the upper failure face 

Joint C: dips into the pit with an angle of 

40°  to match the lower surface 

Cleavage: dips into the slope with an apparent 

angle of 15°  

(iii) (I) = 30°, c = 0 for both joint sets. 

(iv) Slope angle is 60°. 

To overcome the limitation imposed by the model 

material having a friction angle of approximately 40°, reference 

was made to the Factor of Safety equation for plane failure, 

dry slope case given by Hoek and Bray
3 (page 141). 

where 

F = cottP
P 
 .Tanq) (c = 0) 

* 	= dip of the failure plane P 
(11  = angle of friction on failure plane 

For an increase of 10°  in friction angle when accompanied by 

the same amount of increase in the dip of the failure plane, 

the Factor of Safety did not change considerably. 	Therefore, 

joint set C is modelled having a 50°  dip angle. 
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A fairly simple sliding took place along joint C 

as shown in photograph (b), but contrary to the general ten-

dency, it occurred along an undaylighted discontinuity passing 

close to the toe. 	Crushing of the sharp-pointed tip of the 

large wedge produced by the slope face and joints A and C 

occurred and being very near to slope face facilitated this 

movement. 	Thus, quite a large volume of rock mass was in- 

volved in the slide. 	Joints A at the top acted as inclined 

tension cracks at the beginning of the slide. 	Since the joint 

sets intersected at an acute angle, jacking of columns and 

blocks by the driving of wedges was observed throughout the 

test, along the main sliding surface in particular (photograph 

b). 	Columns at the top parted along cleavages while passing 

the intersection point (shown by arrow) as shown in photographs 

c and d. 	Removal of the failed material produced sliding 

of the remaining triangular body at the top and the joint C 

along which the slide took place became the new slope face 

(photographs e and f). 

It is obvious that none of the field post-failure 

observations have been reproduced. 	Even the slope profile 

could not be attained. 	Nevertheless, in another test with 

continuity arrangements, the post-failure profile was obtained 

but nothing more than this. 	Another model lacking the cleavage 

planes failed in a similar manner to the one pictured in Plate 

I, indicating that the cleavage is not an active agent in the 

mechanism, its function being limited to producing smaller 

blocks. 
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PLATE 2.1- Simple sliding as the mode of failure. 
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B. Undercutting, Through the Weathering of Fault Gouge, As  

the Mode of Failure (Plate 2.11)  

In this test, joint set C is removed from the system 

while a fault is introduced. 	The fault is inclined at 45°  

to the horizontal dipping into the slope and is represented 

by two parallel cuts being 10 mm apart throughout the rock 

mass. 	To represent the fault gouge the compacted strip of 

material between the cuts is replaced with a loose one. 

Neither joint set A nor cleavage planes, having dip angles 

of 70°  and 3°  respectively, cut across the fault but are 

continuous on both sides. 	Above the fault, joint set A 

(or another fault set) has a spacing of 5 cm, cleavage has 2 cm. 

Below the fault both features are 1 cm apart spaced to facili- 

tate the forma tion of a composite failure surface. 	The slope 

angle is 70°  (photograph a). 

Fault gouge was excavated in stages. 	No movement 

was observed when a distance equivalent to the above fault 

spacing of joint A was removed (photograph b). 	Then, full 

spacing was excavated (photograph c) which ended up with slid- 

ing of a full column of joint A to fill the gap. 	Pressure 

exerted by this column was not high enough to produce a "pop-

out" underneath, combining closely spaced joint and cleavage 

planes (photograph d). 	Even the joints C placed an echelon 

along a 40°  plane (photograph e) did not help very much because 

all of the rock bridges could not be fractured to mobilise 

sliding, but separation along joint A took place as a result 

of compression (photograph f). 	No better picture has been 

obtained for the case where two joint A columns were undermined. 
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a 

b 	 e 

c 	 f 

PLATE 2.11- Undercutting(through the weathering of fault gouge) 

as the mode of failure. 



75 

As a result it became clear that none of the post-

failure conditions, even the slope profile, was obtainable 

with this failure mechanism. 

C. Toppling as the Mode of Failure (Plate 2.111)  

Again a dry slope is considered. 	Joint set C is 

not present in the system while set B is included with an 

inclination of 85°  dipping into the slope. 	Joint A and 

cleavage are still predominant features having 70°  and 30  

dip angles respectively. 	Slope angle is 60°  (see photograph 

a). 

Plate 2.111 shows a typical model of the several 

similar ones where toppling occurred, together with sliding. 

A close examination of the upper half of the slope (photograph 

b) indicates that both rotation and sliding of joint B columns 

are taking place. 	Sliding dominates mainly at the top through 

wedging of diamond shaped blocks, especially along the joint A, 

shown by an arrow which becomes the boundary of disturbance. 

On the other hand, toppling is predominant in the lower part 

and the rock mass starts to dilate here. 	As a result of 

these movements two tension cracks are produced at the crest 

along joints B. 	An important feature to be noted is that the 

wedging of the sliding block at the top marked "X" coincides 

with the tension crack monitoring data from the field and the 

assumptions made earlier. 	Dilation of the rock mass associated 

with toppling of joint B columns continues, but, due to the 

overturning resistance of the toe of the slope, it is very slow 

(photograph c). 	To facilitate further rotation, cleavage 
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b 

PLATE 2.111- Toppling as the mode of failure. 
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planes at the toe open up first (photograph d), then a stepped 

pattern involving cleavages and joints B develops (photograph 

e). 	From now on the toppling accelerates and ends up with 

complete collapse of the slope face (photograph f). 	The 

repeating nature of the mechanism can be seen in photographs 

d, e and f where the movements (rotation and sliding) at the 

top of the next column (of joint A) are readily observable. 

As a result of this test it became clear that almost 

all the post-failure conditions were reproduceable with a 

toppling mechanism. 	Tension cracks, and block movements at 

the crest were produced. 	The slope profile with a stepped 

lower surface was also produced. 	But the volume of rock mass 

involved in the failure was larger and the toppling extended 

down to the toe giving rise to a longer stepped surface. 

This discrepancy might be attributed to the imposition of the 

steel frame at the bottom as a discontinuity. 	However the 

test conducted removing this effect revealed that the steel 

frame had no influence at all and the stepped pattern started 

nearly from the toe again as shown in Plate 2.IV. 	Even the 

further division of 5 cm thick joint A columns into 1 cm ones 

to facilitate the formation of a stepped surface in an upper 

position did not help because of wedge action. 	On the other 

hand, the stepped surface was formed in proper position in 

the following cases: 

a. Repetition of failure after the first one (Plate 2.V) 

The broken material from the first column failure 

provided lateral support preventing the toppling mechanism 

from extending to the toe of the second column. 	Actually, 



PLATE 2.IV- Toppling model without the intluence of steel truffle at the bottom of the slope. 



PLATE 2.V- Formation of the stepped failure 

repetition of failure. 

surface in the proper position due to 

a 

7 9 
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the slope geometry altered and the top of the failed material 

acted as a new pit bottom. 	In this respect it is true to 

say that stepped pattern again started from the toe. 	Never- 

theless it became clear that there had been a resistance to 

further extension of toppling in the field. 	The source of 

this resistance should be the more competent and sound nature 

of the grey slates forming the lower part of the pit. 

b. Termination of toppling set joint B at the middle of the 

slope due to presence of a discontinuity (Plate 2.VI) 

The earlier mentioned probable, so called, "Litho-

logy" fault could be a boundary for joint B set and might stop 

the failure spreading to the bottom. 	The test shown in Plate 

2.VI has confirmed this idea. 	A stepped surface formed well 

above the toe involving closely spaced cleavage planes and 

shorters (joint A) as shown by an arrow in photograph d. 

2.3.4 - Influence of Certain Geometrical Parameters on the 

Stability of the Slope - 

Several tests have been conducted to investigate the 

influence of the following parameters on the behaviour of the 

slope. 

(i) Cleavage spacing 

(ii) Cleavage inclination 

(iii) Joint set A spacing 

(iv) Joint set B spacing 

(v) Fault inclination 

(vi) Slope angle 
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Plate 2.VI- Formation of the stepped failure surface in the proper position 

due to termination of toppling set in the middle of the slope. 

The number of joint A columns failed at the slope surface is 

taken as the criterion of comparison for most of the cases. 

Two sets of analysis has been made: 

(a) Single variations: only one parameter changed each time. 

(b) Double variations: two parameters change at a time but 

one of them has been proven to be uninfluential from the 

"single variation" analysis. 	So, the number of variables 

is reduced to one practically. 

Owing to limited time, each parameter was varied 

two times usually for a set of constants. 	However, the same 

parameter is checked within the same test and also for another 
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set of constants. 

The necessary information is given adjacent to the 

graphs which are self-explanatory. 	Nevertheless in summary 

the results are: 	(Figures 2.11, 2.12, 2.13, and 2.14). 

(i) Cleavage spacing and inclination do not affect the 

volume of rock involved in the failure. 

(ii) As the slope angle or fault inclination increases, 

so does the number of failing joint A columns. 

(iii) An increase in joint A spacing or in joint B spacing 

decreases the number of failing joint A columns, the 

latter only slightly. 

(iv) Stepped surface angle increases with increasing clea-

vage inclination and/or slope angle. 

2.3.5 - Groundwater Simulation - 

An attempt has been made to simulate the groundwater 

conditions, on a single column model for simplicity. 	Artifi- 

cial cork was employed to manipulate the friction angle, 4), 

and assess the effect of material density, if any. 	The cork 

was in the form of a 1 inch thick sheet having a density of 

0.3 gr/cm3  less than the quarter of that of the deformable 

mixture (1.33 gr/cm3). 	The friction angle between cut sur- 

faces was found to be 42°  - 44°, nearly the same as for the 

deformable material. 	Dry lubricant P.T.F.E. brought down the 

(1) to 29°  - 30°, equal to the dry friction angle of slate when 

sprayed on one of the contact surfaces only, and to 18°  - 20°  

equal to the wet friction angle of slate, when sprayed on both 

of the contact surfaces. 
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As important as the lubrication effect, water has 

an uplift effect in the slope reducing the factor of safety. 

An attempt was made to simulate this effect by rotating the 

model (within its horizontal plane) by an appropriate angle 

to the direction of the moving belt, in such a way that the 

resultant of the weight and water (force) vectors coincides 

with the direction of belt movement. 

The model which produced single column failures was 

chosen for this analysis and only this single column (e.g. 

joint A) was considered throughout the tests. 	It was assumed 

that water pressure acts along joint A alone with a water 

pressure distribution as shown in Figure 2.15. 	Half and 

fully saturated slopes were examined by rotating the model 

12° and 47.5o respectively. 	The effect of uplift force was 

studied on both models constructed from the deformable mixture 

and cork, whereas the effect of water lubrication was investi- 

gated with cork model only. 	To be able to compare the models 

more precisely, timing was adopted and photographs were taken 

at regular time intervals. 

The following is a summary of the observations made: 

1. Failure occurs more quickly in the mixture model while 

the cork model is more liable to toppling (plate 2.VII). 

2. The introduction of water uplift forces, in the case of 

half saturated slope, speeded up the failure for both 

types of model materials, and increased the amount of 

toppling for cork at the same time. Even a completely 

different picture was obtained for the fully saturated 

slope case where the "hangover" of column occurred 
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Figure 2.15- Groundwater simulation for sin le column:(a)Half satu- . 
rated slope,(11)Fally saturated slope. 
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(plate 2.VII). 

3. Reduction in friction angle (I) due to water lubrication 

increased the speed of movements (plates 2.VIII and 2.IX). 

4. The greater (I), the more predominant the toppling 

(plates 2.VIII and 2.IX). 

Cork has some advantages and disadvantages as com-

pared to the deformable mixture. 

Advantages are: 

1. Friction angle can be controlled throughout the model 

and lower values can be attained. 

2. No healing and sticking of the joints which might give 

misleading observations. 

3. It does not erode. 	This is a good point, especially at 

the top of the slope. 	Since there is no distortion of 

the material, the movements (subsidence e.g.) can be 

followed realistically. 

4. Repetition of any test is easy and unchangeable (consis-

tent) once the model is cut. 

5. Ground water conditions 

a. reduction in (I) 

b. uplift force 

can be simulated easily and practically. 

6. Any configuration can be prepared easily. 

7. Blocks can be numbered and traced during the test. 

8. Material properties and composition do not change test 

to test. 

Disadvantages are: 



1 Minute 	3 Minutes 	(3 Minutes 

Note: All are dry slopes(no rotation) 

PLATE 2.VIII- Cork sheet models with different friction angles. 
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1. No failure through intact material can be exercised. 

This is the main disadvantage because this type of 

failure should be under consideration every time. 

2. It is not dense, therefore difficulties arise during the 

experiment. 	Namely, blocks or columns do spring like 

movements from time to time. 	That is to say, consistent 

and steady movements are difficult to get because of the 

nature of the material itself (cork) and the sandpaper. 

Sudden motions, jerks could well change the pattern of 

displacements. 

3. It is difficult to cut it. 	Smooth surfaces are not easy 

to obtain. 

2.4 Discussion of Results and Conclusions 

2.4.1 - Discussion of Results - 

As a whole, the Old Delabole Slate Quarry presents 

rather a complex structure with several joint sets, various 

faults and a ubiquitous feature of cleavage. 	The Western 

wall of the pit exhibits an even more complicated structure 

with changing rock mass properties associated with lithological 

variations. 	When this complexity is added to the inadequacy 

of field information, regarding the continuity, frequency and 

strength characteristics of discontinuities, groundwater flow 

pattern, the dimensions of the problem grow due to numerous 

assumptions that can be made. 	•On the other hand, restricted 

time, and limitations imposed by the base friction technique 

prevented some aspects of the problem being investigated in 

depth and judgement had to be made in such cases. 	For example, 
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if the strength and deformational properties of intact rock 

were correctly scaled, undercutting might have produced a 

failure similar to the real one, or, if it were possible to 

simulate the groundwater effects realistically in the sliding 

mode of failure, tension cracks would most probably open up 

at the crest. 	But, the author doubts the monitored block 

movements at the crest would occur which is supposed to be 

a phenomenon unique to toppling and sliding joint sets existing 

together. 	If the simulation of momentum were exact, the 

failed material would be more disintegrated, especially in 

toppling failure, because of falling columns. 	It is the 

author's opinion that the scree in the field is well broken, 

mainly due to occurrence of soft and loose Woolgarden rock, 

but the toppling mechanism should contribute to disintegration. 

Analytical sliding analysis revealed that the failure 

in this mode was only possible with high water levels in ten-

sion crack which cannot be ruled out completely in spite of 

the average rainfall recorded during the months preceding 

the failure, because the occurrence of impermeable barriers 

to water flow increasing the effective head is a likelihood. 

However, even the sufficient water pressure was attained, as 

pointed out earlier, it is hardly expected of this mechanism 

to produce block rotation at the crest. 

Contrary to other mechanisms, the toppling mode of 

failure was found to be independent of water pressure to take 

place. 	Actually, it was not a pure toppling but a combination 

of toppling and sliding helping each other. 	This mechanism 

appeared to be reproducing the field conditions with its 
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progressive and repeating character and more important than 

these with its post-failure geometry. 	In the light of the 

results of the site investigation, the essential feature for 

this type of failure to occur was determined to be the "toppling 

set", whether it is the joint set B or a group of faults 

associated with it. 	The "sliding set", whether being the 

joint set A or the associated faults, affected toppling in 

three ways: first, by producing very active wedges forcing 

the joint B columns to topple, second, by confining the 

extension of toppling (through accommodation of wedge slidings 

along), and thirdly, by taking part in the formation of the 

stress release path (stepped surface) which was an important 

phenomenon in the mechanism because the overturning resistance 

of the toe has been relieved. 	The preliminary function of 

the cleavage was bound to be taking part in the formation of 

stepped surface together with joint set A. 	(Contribution of 

isolated joints C could also be expected). 

Finally, the author wants to make a comment on his 

observations which is rather open to argument in many ways. 

In several tests, particularly in multiple column failure 

models, it has been observed that a series of parallel tension 

cracks formed (along joints B - toppling set) at the slope 

crest before the collapse (see plate 2.111 photograph b, and 

plate 2.V photographs c and e). 	It was thought that this could 

be connected with the toppling failure. 	Therefore, it is 

deduced that the occurrence of a series of parallel tension 

cracks at a slope crest in the field can be taken as an indi- 

cation of'a toppling mechanism. 	Actually, this is the case 
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in the 1967 failure area where a couple of parallel cracks do 

occur at the slope crest, as shown in Figure 2.6. 

2.4.2 - Conclusions - 

From the investigation made the following conclusions 

can be drawn: 

(1) It is most likely that the 1967 failure was produced 

by a complex mechanism of toppling and sliding inter-

action, the toppling being the dominant behaviour. 

Sliding was in the form of driving wedges and was 

confined to the upper part of the slope mostly. 

(ii) This mechanism appeared to have a progressive and 

repeating character. 

(iii) The features and their roles in the failure process 

are, in the order of importance, as follows: 

- Toppling set: Joint set B (or associated faults): 

produced the potential toppling columns. 

- Sliding set: Joint set AC or associated faults): 

helped toppling in many ways, as discussed in the 

previous section. 

- Cleavage: took part in the formation of the lower 

failure surface with joint set A. 

- (Lithology) fault (if any): stopped toppling to 

extend down to the toe. 

- Joint C's (isolated): helped the development of 

the lower failure surface. 

(iv) Presence of water which acted as a lubricant as well 

as uplift agent, speeded up the failure. 
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(v) The extent and frequency of joint set B and the frequency 

of joint set A have influenced the size of the failure, 

while the cleavage frequency was neutral. 

(vi) Occurrence of parallel tension cracks at the slope crest 

could be related to involvement of the toppling mechanism. 
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CHAPTER THREE 

PHYSICAL MODEL TESTS 

3.1 General 

Simple physical modelling techniques, namely base 

friction and tilting frame, have been chosen to start with in 

understanding the basic mechanics of toppling failure. 	Base 

friction models, in particular, were thought to be very useful 

to study the kinematics of the rock mass forming the slope. 

The response of the models to varying parameters would be 

noted both qualitatively and quantitatively (whenever possible) 

to establish some empirical design criteria. For this purpose 

over 50 base friction tests were run. 	Tilting frame tests 

were not as extensive as originally planned because of incon-

sistent frictional characteristics of the block surfaces. 

Therefore, only very basic tests were conducted for comparison 

purposes. 

3.2 Base Friction Models 

This technique has been explained in Chapter Two 

(Section 2.3.3), together with the theory, the apparatus and 

material used, and the method adopted. 	Since nothing has 

been altered they will not be repeated here with the exception 

of the friction angle of the model material (loose mixture of 

flour, fine sand, vegetable oil and ballotini) which is 40 - 41 

degrees. 	Timing was done for comparison purposes, and 

pictures were taken regularly for documentation and comparison. 
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Every effort was made to be precise in preparation and exe- 

cution of the tests. 	Much attention was focussed on gather- 

ing information that would lead to a quantitative assessment 

of toppling failure. 	For this reason some of the tests 

were repeated two or even three times. 	As the behaviour of 

the slopes was not predictable, a detailed test programme 

was not made beforehand, but the "plan as you test" method 

was adopted instead. 

3,2.1 - Description of Test Parameters - 

The following parameters were varied independently 

to examine their influence on the mode of behaviour: 

- Slope angle (60°, 65°, no, 80°) 

- Slope height (12", 15", 18", 21", 24") 

- Joint dip (70°, 80°) 

- Number of columns (various) 

Figure 3.1 illustrates the parameters together with the other 

terms that have been used throughout this chapter. 

Slopes containing only one joint set, which dips 

into the slope to promote toppling, were constructed to begin 

with, and for the sake of simplicity the joint spacing of one 

inch was kept constant for all models unless the effective 

slope height was to be increased; then the slab was cut into 

0.75" or 0.5" thick columns. 	A second joint set crossing 

the main one perpendicularly in a staggered manner to form 

blocks of 1" x 2" was included in the models at a later stage. 

The consistency and repeatability characteristics of the base 

friction technique have been under heavy investigation for 

most of the tests to see to what extent the test yields re- 
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Figure 3.1- Test parameters 

liable information. 	Therefore, two identical models were con- 

structed symmetrically on each side of the base friction 

table and tested simultaneously as long as both models could 

be accommodated. 	The effect of boundaries are important in 

any physical modelling technique, and this was given much 

consideration as will be seen in the following pages. 

To be able to evaluate and compare the test results 

the "critical crack path" with its developing time and incli- 

nation was closely monitored. 	The critical crack path can 

be defined as the irregular line(s) of fractures forming in 

the middle of the slope and extending mostly from the toe to 

the bottom of a tension crack. 	The position of tension cracks 

were also noted whenever possible. 
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3.2.2 - Tests Performed - 

Because of limited space some of the tests will 

not be illustrated here, but they are all summarised in Tables 

3.1 and 3.2. 	Table 3.1 lists the experiments in the order 

in which they were conducted, and Table 3.2 presents them in 

a form arranged to indicate the ultimate slope behaviour. 

Since the photographs are self-explanatory, detailed explana-

tions will be avoided, but some comments will be made in the 

following descriptions. 

MODEL 1 (R & L)  - See Plate 3-I 

The two slopes, one on the left (LS) and the other 

on the right (RS), were made with a 60°  slope angle, 12 in. 

slope height, and a joint set with a spacing of 1 in. and a 

dip of 80°. 	As after 3 minutes of running time there was no 

sign of any instability, a vertical cut was made at the toe 

of the right slope right down to the steel frame, as in Plate 

3-I(b). 	This operation altered the slope geometry in favour 

of instability, and the rotation of columns produced a toppling 

failure. 	The toe cut affected the slope behaviour because, 

a. slope height was increased by 25%, 

b. slope angle was increased, becoming 30
o 

at the critical toe region, thus giving rise to the formation 

of long, slender blocks which were liable to topple easily. 

c. Restraint at the toe was released. 

The first critical crack path with an inclination of 32.5°  

was followed by others as the columns bent forward, all merging 

at the toe. 



Table 3.1 	Base Friction Tests. 

MODEL 
NO. 

SLOPE 
ANGLE 

SLOPE 
HEIGHT 

JOINT 
DIP 

CR.C. 
PATH 

DEV. 	T. 

CR.C. 
PATH 
INCL. 

REMARKS 

1(R) 60°  12" 80°  10 m. 32.5°  First 	stable. 	Toe 	cut vertically .4- S. 

Height became 	15". 	Then failed. 

1(L) 60°  12" 80°  11 	m. 30°  Quicker because of fresh sand paper. 	Re- 

straint removed by cutting toe vertically. 

2(R) 80°  15" 80°  2 m. 21.5°  No restraint at the beginning. 	Failure 

path is 	curved. 

2(L) 80°  12" 80°  2 m. 28°  Restraint at the beginning. 	Quick fai- 

lure as 	compared to 1(L). 

3(R) 60°  12" 80°  - , Slope stands on the model material. 	Toe 

block removed. 	Still 	stable. 

3(L) 60°  12" 80°  6 m. 28°  - 29°  Slope stands on 	steel 	frame. 	Backward 

rotation at 	the upper part of 	slope 	face. 

4(R) 60°  12" 80°  - Similar 	to 	3(L). 	No 	instability. 

4(L) 60°  12" 80°  10 m. 25.5°  Similar to 3(R). 	First 	stable. 	Strip 

of 	tin placed horizontally + failure. 

5(R) 60°  15" 80°  13 	m. 21°  Restraint 	at 	the beginning -► stable. 

Toe cut vertically + unstable. 



Table 3.1 (continued) 

MODEL 
NO. 

SLOPE 
ANGLE 

SLOPE 
HEIGHT 

JOINT 
DIP 

CR.C. 
PATH 
DEV. 	T. 

CR.C. 
PATH 
INCL. 

REMARKS 

5(L) 60°  15" 80°  15 	m. 32° _ 34o Restraint at start 4 stable. 	Hor. 	dis- 

continuity cut at bottom 4  failure. 

6(R) 60°  12" 70°  30.5 	m. 31.5°  Slab unconsolidated. 	Toe blocks re- 

moved 	to 	initiate failure. 

6(L) 60°  12" 700 34.5 	in 40°  Consolidation forgotten. 	Failure 	ini- 

tiated after toe blocks 	removed. 

7(R) 600  15" 70°  11.5 	m. 31°  Triangular toe block removed. 

7(L) 60°  15" 70°  12.5 	m. 34.5°  Triangular toe block removed. 	Dilation 

of rock mass and backward rotation. 

8(R) 60°  18" 70°  17 	m. 36°  Backward rotation. 	Very similar to 8(L). 

8(L) 60°  18" 70°  18.5 	m. 37.5°  Backward rotation. 	Very 	similar to 8(R). 

9(R) 60°  21" 70°  21 m. 33.5°  

9(L) 60°  21" 70°  25 m. 37.5°  

10(R) 60°  24" 70°  42 m. 41°  Buckling of columns into "S" shape. 

Three types of intact failure observed. 

ll(R) 70°  24" 70°  1 	m. 34.5° 



Table 3.1 (continued) 

MODEL SLOPE SLOPE JOINT JOINT 
NO. ANGLE HEIGHT DIP SPAC. 

CR. C. 	CR. C. 
PATH 	PATH 

DEV. T. 	INCL. 
REMARKS 

12(R) 70°  24" 70°  1" 1 

13(R) 60°  24" 70°  1" 2 

14(L) 70°  12" 80°  1" 2 

15(L) 80°  12" 80°  1 II 3-4 

2'(L) 80°  12" 80°  1" 
 2 

2 t
1 
 (L) 80°  15" 80°  1" 2 

4'(L) 60°  12" 80°  1" 40 

2R(L) 80°  12" 80°  1" 2 

5 7 (L)y 60°  111" 80° III 22 

1411(L) 70°  111" 80° 211 
4 2 

ing. Fold structure developed. 

m. 	27.5° 	Limit equilibrium case? 

m. 	30° 	Stepped crack pattern. 

m. 	23° 	Stable .*. Horizontal cut made 

(27.51.34.5°) at bottom. 

m. 	28.5°(U) 	Upper path control toppling. 

2] .5°(L) 

m. 	33.50 	Backward rotation due to toe 

support. "S" configuration. 

m. 	33.513  

m. 	250 
	

Irregular crack pattern. 

m. 	38°  

m. 	22° 	Critical path passed above toe on 

contrary to 2(L). 

m. 	27° 	Toe block fails by tensile bend- 



Table 3.1 	(continued) 

MODEL 
NO. 

SLOPE 
ANGLE 

SLOPE 
HEIGHT 

JOINT 
DIP 

JOINT 
SPAC. 

CR.C. 
PATH 
DEV. 	T. 

CR.C. 
PATH 
INCL. 

REMARKS 

11'(L) 
or 

12'(L) 

10 ' (L) 

1Ol(L) 

111(L) 
Or 
12i(L) 

11 	(L) 
or. 
12R(L) 

4"(L) 

4"1(L) 

42(L) 

70°  

60°  

65°  

70°  

70°  

60°  

65°  

70°  

12" 

12" 

12" 

12" 

12" 

12" 

12" 

12" 

70° 

70°  

70°  

70°  

70° 

80°  

80°  

80°  

it I 

it, 

1"x2" 

1"x2" 

1"x2" 

3 m. 

<1 m. 

m. 

- 

- 

14 m 

33o 

33.5°  

38°  

- 

- 

Critical path didn't pass 	through toe. 

Fracturing at slope face. 

Stable slope. 	Continued from previous 

test -* joints 	not 	recut. 

Stable slope. 	Limiting equilibrium. 

Joints recut. 

Critical path passed through toe. 

Backward rotation. 

Critical path passed below toe. 	Curved 

slope profile at the end. 

Stable 	slope. 

Local displacement at crest. 	Limiting 

equilibrium? 

Instability confined to slope face and 

crest. 



Table 3.1 	(continued) 

MODEL 
NO. 

SLOPE 
ANGLE 

CR.C. 	CR.O. SLOPE 	JOINT 	JOINT PATH 	PATH 	REMARKS HEIGHT 	DIP 	SPAC. DEV. 	T. 	INCL. 

14"(L) 

11"(L) 
or 
12"(L) 

II 
111  (L) 
or 
12"1(L) 

II 

11
S 
 (L) 

or" 
12S(L)' 

1151(L) 
or" 
12S1(L) 

1152(L) 

or 
12"S2(L) 

14D(L) 

70°  

70°  

65°  

70°  

70°  

70° 

70°  

12" 

18" 

18" 

18" 

111" 

911 

12" 

No 	1"x2" 	Block columns formed. 

70° 	i Ivo), 	2.5 m. 	- 	Cross 

	

2 	 joints opened up in a stepped 

manner. 	Toe region stable. 

70° 	1"x 3" 	- 	- 	No signs 	of instability. 4 

70° 	i"xl" 	i m. 	- 	A quick failure. 	Instability extends 
2 

to toe. 	Model on steel frame. 

70° 	i"x2" 	1.5 m. 	Opening up and closing down of joints 

conttnuously. 

70° 	tt 	3 II 	 4 	m. 

80° 	1" 	5 m. 	26° 	Sawtooth pattern joint delayed rotation. 

Note: (R) 
(L) 

Stands 
Stands 

for 
for 

the model constructed on the right hand side of the Base Friction Table. 
the model on the 	left. 

Subscript R indicates repetition. 
Single prime (') indicates boundary-effect-free model. 
Double prime (") indicates cross jointed model. 



REMARKS 
SLOPE 

BEHAVIOUR 

Restraint at the toe 

Restraint at the toe 

Slope on model material 

Slope on steel frame 

Slope on steel frame 	S 

Slope on model material 	S 

Strip of tin at slope bottom 	U 

Very long run 	 L.E. 

1" x 2" blocks, staggered 

Unconsolidated slab, on steel 	L.E. 
frame 

Toe blocks removed, long run 	L.E. 

A vertical cut of 3" at toe 

A vertical cut of 3" at toe 

Restraint at the toe 

Horizontal cut at the bottom 

Restraint at the bottom 

Horizontal cut to release re- 
straint 

Joint spacing = i" 

Horizontal cut at the bottom 

Triangular toe block removed 

Table 3.2 	Base Friction Test Results. 

MODEL 
NO. 

SLOPE 
ANGLE 

HEIGHT/ 
J. 	SPACING 

JOINT 
DIP 

CR.C. 
PATH 
DEV. 	T. 

CR.C.  PATH 
INCL. 

l(R) 

1(L) 

3(R) 

3(L) 

4(R) 

4(L) 

4(L) 

4 ' (L) 

4"(L) 

6(R) 

6(L) 

1 	(R) 

1 	(L) 

5(R) 

5(R) 

5(L) 

5(L) 

5'(L) 

5'(L) 

7(R) 

60°  

It 

tt 

tt 

Vt 

It 

12 

It 

rt 

It 

15 

tl 

It 

It 

80°  

u 

u 

u 

" 

70°  

80°  

11 

11 

70°  

6 m. 

- 

- 

10 m. 

40 m. 

- 

	

30.5 	m. 

	

34.5 	m. 

7 m. 

	

1 	m. 

	

9 	m. 

16 m. 

	

11.5 	m. 

280-290  

- 

- 

25.5°  

27.5°  

- 

31.5°  

40°  

32.5°  

30°  

320_340 

23°  

31°  



Table 3.2 (continued) 

C C. 	CR.C. . MODEL SLOPE HEIGHT/ JOINT CR. 	 SLOPE PATH 	PATH 	REMARKS NO. 	ANGLE J. SPACING 	 BEHAVIOUR DIP 	DEV. T. 	INCL. 

o 
7(L) 	60° 	15 	70 	12.5 m. 	34.5° 	Triangular toe block removed 	U 

5(R) 	u 	18 	80° 	4  m. 	21° 	A vertical cut of 3" at toe 	U 

8(R) 	11 	" 	70° 	17 m. 	36° 	Slope on steel frame 	 U 

8(L) 	11 	II 	11 	18.5 m. 	37.5° 	Slope on steel frame 	 U 

9(R) 	II 	21 	70° 	21 m. 	33.5° 	Slope on steel frame 	 U 

9(L) 	" 	11 	It 	25 m. 	37.5° 	Slope on steel frame 	 U 

10(R) 	11 	24 	42 m. 	41° 	Slope surface = 10" + 22 columns 	L.E. 

101(L) 	IT 	" 	" 	- 	- 	Joints not re-cut, short run (5 m) 	S 

13(R) 	II 	11 	It 	2 m. 	33.5° 	Slope on steel frame. 	Slope surf. 	U 
= 8" 4- 20 columns 

11 
65° 	12 	800 	- 	- 	Local displacements at crest, 	L.E. 4

1
(L) 

18 m run 
I 

10
1 
 (L) 	11 	24 	70° 	- 	- 	20 minutes of run 	 S 

111(L) 	11 	11 	" 	
••■•■ 	

10 minutes of run 	 S 
M.., 

42(L) 	70° 	12 	80° 	14 m. 	- 	Slope on model material 	U 

14(L) 	" 	" 	II 	2 m. 	25° 	Slope on steel frame 	 U 

14"(L) 	" 	" 	11 	1-2 m. 	- 	Slope on steel frame 	 U 

14D(L) 	11 	" 	ur 	5 m. 	26° 	Sawtooth pattern joint 	U 

11"S2 (L) 	" 	70° 	4 m. 	- 	Slope on steel frame 	 U 

14I1(L) 	11 	15 	80° 	2 m. 	
28.° 

Slope on model material 	U 21.5 

11
S1

(L) 	 70° 	1.5 m. 	Slope on steel frame 



Table 3.2 	(continued) 

MODEL 
NO. 

SLOPE 
ANGLE 

HEIGHT/ 
J. 	SPACING 

JOINT 
DIP 

CR.C. 
PATH 
DEV. 	T. 

CR.C. 
 PATH 

INCL. 
REMARKS 

SLOPE 
BEHAVIOUR 

11(R) 
0 

70 24 70°  1 	m. 34.5°  Slope 	surface = 10" 4- 17 	columns U 

12(R) n 11 1 	m. 33.5°  Slope on steel 	frame, 	22 	columns U 

11'(L) " " 
3 
Z 	M. 33°  B.E.F.M., 	Critical 	path 	didn't 

pass 	through toe 
U 

11
1
R  (L) II t, n < 	1 m. 33.5°  B.E.F.M., 	Critical 	path passed 

through toe U 

11R(0 
" II  I, i 	tn. 38°  Critical path passed through toe 

(slope 	on 	St. 	Frame) 
U 

11"(L) 
t1 II II  2.5 	m. - B.E.F.M. 	Toe 	region stays 	intact U 

lq(L) " i 	m. - Slope on 	steel 	frame, 	toe unstable - 	U 

2(L) 80°  12 80°  2 	m. 28°  Slope on model material ÷ re- 
straint 	at 	toe 

U 

15(L) " II " 2-3 m. 38°  Slope on steel frame U 

2'(L) " II " 3 m. 22°  B.E.F.M., 	Critical 	path 	didn't 
pass 	through toe U 

2'(L) " 11 n 2 m. 30°  B.E.F.M., 	Critical 	path passed 
through toe 

U 

2(R) 11 15 " 2 m. 21.5°  Slope on steel frame; 	Vertical 
cut of 	3" 	at 	toe 

2'(L) It H /I 2 m. 27°  B.E.F.M. 

Abbreviations: 
	

S = Stable slope 
U = Unstable slope 

L.E. = Slope in Limit Equilibrium 
B.E.F.M. = Boundary Effect Free Model 





r. 



113 

The left slope (LS) also remained stable until a 

vertical toe cut was made. 	Eventually it failed like the 

RS with a critical crack path inclination of 30°. The quicker 

path development in this slope could be attributed to the 

fresh sandpaper on this side of the belt. 	Nevertheless, 

photograph (f) demonstrates the consistency of the tests 

conducted on either side of the base friction table. 

MODEL 2 (R & L) - See Plate 3-11 

Same as model No. 1, except for the slope angle 

which was 80°. 	At the start, the right slope had a verti- 

cal toe cut while the restraint at the toe of the left slope 

was still present in order to make the test similar to the 

second stage of model 1 (photograph (b)). 	Both slopes failed 

quickly. 	The presence of restraint could not save the left 

slope from failure in this case due to the steep slope angle. 

The right slope failed with a critical crack path angle 

(c.c.p.a.) of 21.5°  as compared to 28°  for the left slope, 

the former being more disturbed as a consequence of the toe 

cut. 

MODELS 3 and 4 (R & L) - See Plate 3-III 

Slopes, one resting on the steel frame and the other 

resting on the model material, were constructed to see the 

influence of base material in terms of its frictional charac- 

teristics and stiffness properties. 	To be able to compare 

with Model 1, as far as the toe restraint and the general 

slope behaviour are concerned, the same slope geometry (slope 

height = 12", slope angle = 60°, joint dip = 80°) was cut. 
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PLATE 3.11- Base Friction Model No.2. 
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Model 3 was repeated as Model 4, changing the position of 

the slopes. 	Slopes resting on the model material, i.e. 

3(R) and 4(L), remained stable agreeing with each other, and 

also indicating the stability of the 60°  slope whether toe 

restraint is present or not, when compared to Model 1. 	On 

the other hand, slopes resting on the steel frame did not 

agree with each other; while 3(L) was developing a critical cr. 

path in 6 minutes. 	4(R) remained stable although the tri- 

angular toe block was displaced and the columns shown by 

arrows were slightly rotated. 	This discrepancy might come 

from the quality of sandpaper again, in other words, fresh 

sandpaper could have caused a higher simulated gravitational 

loading for the slopes constructed on the left hand side of 

the frame. 

As slope 3(R) did not respond to the removal of the 

toe block it was cut through at an inclination of 28°, which 

happened to be the c.c.p.a. for 3(L), to initiate failure. 

Slope 4(L), although slowly, also failed after the horizontal 

cut at the bottom of the slope was replaced with a strip of 

tin, most likely due to the reduction in friction angle along 

the horizontal discontinuity. 	But, slope 4(R) was not quite 

responsive to the artifical critical crack path cut similar 

to the one formed in slope 4(L). 

MODEL 5 (R & L)  - See Plate 3-1V 

This test demonstrates how the toe blocks control 

the mechanical behaviour of a toppling slope. 	As the 60°  

slopes (15" high) showed no sign of instability a horizontal 
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PLATE 3.111- Base Friction Models No.3 and 4. 
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cut was made at the bottom of both slopes to remove the re- 

straint, and thus promote toppling. 	After a while the right 

slope was cut vertically at the toe because it was felt that 

the stability would be maintained in spite of the horizontal 

cut. 	The left slope was left untouched. 	First, the right 

slope failed, and, soon after, the left one followed it. 

Although both slopes were unstable at the end they failed 

differently forming completely different fracture patterns. 

As illustrated by photograph (f) the fracture pattern in the 

right slope was a radiating type, all paths joining at the 

toe (thus heavily crushing this zone), the last one being 

parallel to the slope face. 	The fractures in the left slope 

developed parallel to the first critical crack path, the last 

one crossing the slope face. 	The simple reason for the dif- 

ferent fracture patterns was the different restraints shown 

by the toe blocks, depending on their geomtry. 	The vertical 

cut in the right slope produced long and slender toe block(s) 

which failed easily through tensile bending offering little 

resistance to rotation. 	So, a fold structure developed. 

On the other hand, the toe block(s) of the left slope opposed 

toppling action considerably, and because of their geometry 

preferred sliding and slow rotation rather than flexural 

yielding. 	From the comparison of critical crack path angles 

(21°  for RS against 32°  - 34°  of left) one might deduce that 

the degree of resistance shown by the toe block(s) also deter-

mined the extent of the disturbance in the rock mass. 

MODEL 6 (R & L) - See Plate 3-V 

Unfortunately, this model was not properly consoli- 
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PLATE 3.1V- Base Friction Model No.5. 
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dated; however, it was an interesting test to demonstrate 

the support provided by the toe block(s) .against rotation. 

Both slopes, resting on the steel frame, were a copy of 

3(L) or 4(R) with the exception of joint dip which was 70°  

in this test. 	A run of 30 minutes did not make any con- 

siderable change in slope configurations, but the mobili-

sation of shear strength along the joints was recognizable 

from the displacements along the slope face. 	Even the lying 

down of the little triangular block at the toe did not suffice 

to bring about failure, but the block next to it seemed to 

be the key one, and as this block was taken away toppling was 

initiated with the formation of a critical crack path within 

a minute in the right slope, and within a couple of minutes 

in the left slope. 

MODELS 8 and 9 (R & L) - See Plate 3-VI 

To investigate the influence of slope height on the 

behaviour of a rock slope traversed by a toppling joint set, 

'Models 8 and 9 were built having slope heights of 18" and 21" 

respectively. 	The other dimensions were identical: slope 

angle = 60°, joint dip = 70°, joint spacing = 1". 	Contrary 

to expectations it took longer for the higher slope to fail. 

To find out whether this outcome was coincidental Test No. 10 

which will not be described here, was carried out with a slope 

height of 24". 	Surprisingly enough it needed even more time 

(42 minutes) to develop a critical crack path as the sign of in-

stability, thus confirming the reliability of Models 8 and 9. 

The reason for this behaviour was sought, and eventually it 
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PLATE 3.V- Base Friction Model No.6. 
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was found that the number of columns comprising the slope 

bottom was increasing with height because the slope surface 

was being kept constant (10") for all models. 	Consequently, 

it was thought that with the increasing number of columns at 

the lower part of the slope, the overall flexural strength 

of the columns was also increasing, thus producing a greater 

resistance to rotation. 	This phenomenon was further investi- 

gated with model 13 where the number of columns at the bottom 

was brought down to 20 from 22 (of Model 10), and the failure 

started to take place in 2 minutes incredibly. 	On the other 

hand, comparison of Models 9(R) and 13 supports the general 

trend that as the slopes get higher, the more unstable they 

become. 	Increasing the slope height from 21" to 24" dropped 

the failure initiation time from 21 minutes to 2 minutes 

(slope angle = 60°, joint dip = 70°  for both models). 	Al- 

though there seems to be a contradiction between this and 

previous findings regarding the slope height versus stability, 

there is not, in fact, because this time the numbers of columns 

constituting the bottom of the slopes were equal (20 columns). 

The test results covering Models 6, 7, 8, 9 and 10 

are presented graphically in Figure 3.2. 	Table 3.3 also 

summarizes the results of the tests carried out to examine the 

slope height variation. 	From these, together with the test 

photographs one can draw the following conclusions: 

a. Tests were conformable with each other, but right slopes 

of every model failed earlier, while the critical crack 

path angles for left slopes were greater. 

b. Quite a resemblance was found between right and left slope 
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Figure 3.2- Effect of slope height on critical crack path parameters. 
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MODEL 
NO. 

SLOPE 
ANGLE 

JOINT 
DIP 

SLOPE 
HEIGHT 

CR. CRACK PATH DEV. 
TIME 	(min) 

CR. CRACK PATH 
INC. REMARKS 

R. 	SLOPE 	L. SLOPE R. 	SLOPE L. 	SLOPE 

6 60°  70°  12" 30 34 31.5°  40°  Consolidation of model 

	

forgotten. 	Triangular 

	

adjacent 	toe blocks 
removed. 

7 60°  70°  15" 11.5 13 31°  34.5°  Triangular toe blocks 
removed. 

8 60°  70°  18" 17 18.5 36°  37.5°  

9 60°  70°  21" 22 25 33.5°  38.5°  

10 60°  70°  24" 40 - 41°  - Only right slope built. 

Table 3.3 	Slope Height Variations. 
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PLATE 3.VI- Base Friction Models No.8 and 9. 
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behaviour. 	Almost the same sort of critical crack 

path developed in both slopes. 	A depression formed 

in both slope surfaces. 	The slope face rotated upward 

in both of them. 

Another interesting failure, which was observed in 

Models 8 and 9 especially, was the formation of "kink bands" 

described by Hammett1 as the zone of rotating block columns. 

Although he related this phenomenon specifically to under-

ground openings, this seems to be unjustified for the simple 

reason that each whole column may not always rotate in one 

piece especially when the slope is made up of long, slender 

and/or low flexural strength columns, but instead they break 

into pieces forming isolated zones of columns which rotate 

almost independently instead. 

MODELS 11 and 12 (R) - See Plate 3-VII 

Models 11 and 12 were designed to study the variation 

of slope angle and the number of columns forming the base of 

the slope. 	Both models had a slope angle of 70°, a joint dip 

of 70°  and a height of 24", the only difference being the 

number of columns at the base which was 17 for Model 11 and 

22 for Model 12. 	Both slopes cracked after a minute to form 

the critical crack paths at about the same inclination. 

Similar movements took place in both slopes, such as the for-

mation of a wedge in the middle and consequent crushing of the 

toe region, dilation of the mass and bulging of the slope 

face, and a seemingly backward rotation of columns at the 

slope face due to toe support. 



MODEL 11 

u(2 thin.) 

b(3 min.) 
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a'(2 min.) 

b'(3 min.) 

PLATE 3.VII- Base Friction Models 

No. 11 and 12. 

c(4 min.) 
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Contrary to earlier observations, the number of 

columns appeared to have no effect in these tests. 	This 

could be explained with the increasing slope angle. 	It may 

be assumed that when a slope is steeper than a critical 

inclination (60°  seems to be quite a probable value) the 

other parameters, such as number of columns for instance, 

count for little. 	As a matter of fact, comparison of Models 

12 and 10, both having the same number of columns (22), 

reveals the significance of slope angle variation: An incre-

ment of 10°  (from 60°  to 70°) in slope angle reduced the 

critical crack path development time drastically from 42 

minutes to 1 minute only. 

MODEL 2'(L)  - See Plate 3-VIII 

To investigate the influence of boundaries some of 

the previous slopes were reconstructed so as to lessen the 

boundary effects. 	Model 2'(L) was built as a boundary-effect- 

free counterpart of Model 2(L). 	The distance from the pit 

bottom to the steel frame boundary was equal to the slope 

height, while the slope surface was extended to three times 

the slope height. 	In this test too, it took 2 minutes for 

the first line of cracks to appear within the slope, but it 

was a little flatter. 	As far as the kinematics of the rock 

mass was concerned, both slopes appeared to be quite in agree-

ment as seen in the photographs, the only exception being the 

location of the critical crack path which passed above the 

toe in Model 2'(L). 
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PLATE 3.VIII- Base Friction Model No.2'. 
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1 
MODEL 2

1
(L) - See Plate 3-IX 

This model exhibits the adverse effects of deepening 

a slope. 	Increasing the slope height from 12" (Model 2'(L)) 

to 15" (this model) increased the extent of disturbance be- 

hind the crest drastically. 	As one may gather from the 

photographs the disturbance in this model extended more than 

twice the height of the slope, whereas in the previous model 

it was equal to the slope height. 	However, in another test 

1 
repeating the Model 2 (L) the critical crack path passed 

through the toe and the disturbance at the top was equal to 

twice the slope height. 	Fresh sandpaper might also be con- 

sidered as the cause of the discrepancy. 

The following aspects of the model behaviour should 

also be noted: 

a. -the easy and quick yielding of the toe block(s), first 

by tensile fracturing at the bottom, then by rotation 

owing to its columnar character produced by steep slope 

inclination, 

b. -formation of a series of tension cracks at the top, 

starting from the back and proceeding towards the crest. 

MODELS 11 and 11' - See Plate 3-X 

To study the boundary effects further Test 11' was 

run duplicating Model 11. 	To be able to accommodate the 

model on the table as boundary-effect-free the slope height 

and the joint spacing were halved. 	Thus, the ratio of slope 

height to joint spacing remained constant. 	Normally, one 

would have thought that the reduction in scale should have 
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PLATE 3.IX- Base Friction Model No.2I - 
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involved the third dimension, namely the thickness of the 

slab, for a better adjustment of column flexural strength. 

But this was not practicable in this instance. 

As can be seen in the photographs both slopes failed 

within a minute forming the critical crack paths of almost 

equal inclination. 	The general trend of movements was 

identical, Model 11 being a bit quicker probably because of 

the less used sandpaper on left hand side again. 	Obviously, 

the important disagreement between these two tests was the 

striking of the critical crack path above the toe point in 

Model 11t . 	The occurrence of the same thing in Model 2 (L), 

if not a coincidence, leads one to the conclusion that the 

boundary-effect-free slopes, which are presumably more repre-

sentative of real ones, yield not at the toe but above it. 

This is probably because of the support provided by the 

material surrounding the toe to make this zone firmer and 

stronger in boundary-effect-free models. 

MODEL 11 - See Plate 3-XI 

As the reproduction of Model 11 this test displays 

a very good example of repeatability as far as the base 

friction modelling technique is concerned. 	The critical 

crack path formation time and inclination, mass behaviour, 

and even the location of tension cracks were reproduced in 

this test. 	The only discrepancy was the route of the criti- 

cal crack path in the toe region. 	As happened in Model 2R(L) 

when conducted as the duplicate of 2 (L), this duplication too 

let the critical crack path pass through the toe point, dis- 
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PLATE 3.X- Base Friction Models No. 

r 
11 and 11 . 
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PLATE 3.XI- Base Friction Model No.11R. 





134 

agreeing with the original model. 	The peculiarity common 

to both duplicate models was the depth below the pit bottom 

which was halved as compared to the originals. 	One wonders 

whether this difference in model geometry could lead to such 

a seemingly consistent anomaly. 

MODELS 11" and 11 - See Plate 3-XII 

To investigate the role played by cross joints on 

the mode of behaviour, tests 11" and 11" were run, the former 

being boundary-effect-free to be able to compare with Model 

11' or 11'. the latter was to be compared with Model 11. 

Staggered cross joints were implemented at regular intervals 

of 2" to form a brick pattern. 	So, the slopes were made up 

of 2" x 1" blocks. 

Failure was initiated in these models with the open- 

ing up of cross joints in a stepped manner. 	As the rotation 

of blocks in a columnar fashion continued, edge contacts 

turned to point contacts producing corner crushing and tensile 

fractures. 	Staggering disappeared with rotation and conti- 

nuous surfaces, though very rough, were formed to accommodate 

sliding. 	In the beginning the toe region remained intact, 

but instability spread down progressively. 	However, the new- 

ly formed columns of blocks having a greater thickness stabi-

lized the slope extensively unless they were undermined at 

the toe. 

As far as the boundary-effect-free models were con-

cerned, failure initiation took longer in the cross-jointed 

slope. 	But, Model lls, in this respect, was in agreement 
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PLATE 3.XIII- Base Friction Models No.11 and 115. 
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with its continuous column counterpart (Model 11 or 12) dis-

playing the signs of instability soon after the start. 

This observation pronounces the significance of boundary 

effects for cross-jointed models as opposed to the continuous 

column ones. 	A feature common to both cross-jointed slopes 

was that a considerably lower volume of the rock mass was 

involved and disturbed in the failure. 	The prevention of 

stress concentrations due to the presence of cross joints 

which ease the rotation might be the reason why instability 

is confined to a region which does not extend far behind the 

crest. 

” 
Model 11 together with 11S1 

and 11
S2 indicated that 

the reduction in slope height was followed by an increase in 

failure initiation time thus giving rise to a more stable 

slope as opposed to the continuous column slopes discussed 

earlier. 

MODELS 14 and 14D - See Plate 3-XIII 

To understand to what extent and in what way the 

joint roughness could affect the toppling mechanism Model 14D 

was built having a saw-tooth pattern joint which passed through 

the crest. 	Although the inter-columnar shear was inhibited 

along this particular joint, failure took place in a manner 

very similar to Model 14. 	Even the critical crack path 

inclination was nearly the same. 	The main influence exerted 

by the joint roughness was the retarding of failure because 

the teeth could not be sheared and the columns on both sides 

of the saw-tooth joint acted as a single one thus altering 
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the geometry (width doubled) in favour of stability. 	On the 

other hand, the flexural strengths of these two particular 

columns were weakened at peak points where the effective 

joint spacing contracts. 	As a matter of fact the first 

crack appeared in such a critical location as shown by an 

arrow in photograph (b') of Plate 3-XIII. 	Naturally enough 

the path followed a course offering the least resistance to 

rotation and in this respect it involved a part of the saw-

tooth joint. 

3.3 Tilting Frame Tests 

Tilting frame is a simple two-dimensional modelling 

technique designed and used first by Barton
2
. 	Then Ashby

3 

made extensive use of it in exploring the toppling mode of 

failure. 	Gerogiannopoulos
4 

and Soto
5 also found this tech- 

nique helpful in dealing with jointed rock slopes. 	Soto, 

in particular, studied the technique itself while comparing 

it with the base friction method, and pinpointed its short-

comings with some recommendations as to how to overcome them. 

To describe it briefly, the tilting frame is made 

up of a pivoted incline driven by a motor to rotate in a 

vertical plane up to 40°  to the horizontal. 	The motor is 

reversible and provided with a microswitch stop to ensure that 

the frame returns to the horizontal before the test starts. 

The incline rotates with a speed of approximately 8.33°/min. 

To complete the frame a perspex back is attached to the incline 

to support the model which is composed of discrete blocks 

usually cast from plaster. 

In the beginning, bearing in mind the successful 
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work done by Ashby3, it , t was planned to undertake a very de- 

tailed study with the tilting frame. 	It would cover Ashby's 

and Soto's suggestions as well as the new ideas such as adapt-

ing the deformable mixture of base friction to the tilting 

frame. 	Therefore, cubic (one inch)and rhombohedral blocks 

(45o, 60°, 75°) were cast from plaster besides the continuous 

columns. 	As the preliminary tests revealed that intolerably 

inconsistent friction coefficients existed between the dif-

ferent surfaces of the blocks, the plans to carry out further 

investigation were abandoned. 	No attempts were made to im= 

prove the conditions because of limited time. 	Figure 3.3 

shows the distribution of the friction angle (4)) of a single 

plaster block (1 inch cube) tested on the plaster incline by 

simple sliding. 	As illustrated, tests made at different 

locations on the same face, and different faces (of the same 

block) on the same location gave by no means tolerable results. 

Even the repetition (same location, same face) yielded diffe- 

rent 4) values. 	Inconsistent values were further obtained 

regarding the presence of contact with the perspex back. 

The main source of the discrepancy should come from the wearing 

down of small scale asperities as the test goes on. 	Figure 

3.3(b) confirms this clearly. 	All of the five faces yielded 

decreasing friction angles with changing locations to A, B, 

and C consecutively for the case of contact with the perspex 

back. 	Surprisingly enough, the value of 36°  given by Ashby3  

was only attained once, although the plaster/water ratio 

(60/40) of the blocks was the same. 
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3.3.1 Single Column Tests 

Using the tilting frame the author wanted to veri-

fy the single block criterion of toppling put forward by 

,Ashby3 and reproduced unexceptionally in every piece of work 

concerned with toppling. 	As it is now known to everybody, 

this criterion defines the toppling with the position of the 

weight vector, which passes through the centre of gravity of 

the body, in relation to the base of the block resting on an 

inclined surface. 	Figure 3.4 illustrates the agreement 

between the theoretical consideration (solid line) and the 

tilting frame test results of continuous columns (broken line 

with dots). 	The third curve, i.e. the broken line, represents 

the test results of columns made up of 1 inch cubical blocks 

placed one on another. 	As compared to Ashby's criterion, 

the continuous columns appeared to be more unstable when they 

were short (failed one degree of inclination earlier); but 

as the columns got taller the difference disappeared. 	This 

was probably due to the increasing sensitivity of tall columns 

to toppling. 	The critical tilting angle for columns made up 

of blocks was roughly 1°  less than the theoretical prediction 

for almost all a/b ratios. 	Therefore, this case represents 

the least stable of all three. 	The conformity observed 

between continuous and block columns was confined to small 

heights. 	As the number of blocks composing the column 

increased,the stability decreased implying the adverse effect 

the joints have on the behaviour by reducing the flexural 

stiffness. 
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3.3.2 Multiple Column Tests 

The influence of the interface between two adjacent 

columns was examined before doing a series of multiple column 

tests with columns of equal and different heights. 	Figure 

3.5 simply shows the contribution of neighbouring columns 

to stability which may be in any of three ways: 

a. Inter-columnar friction which should be overcome to 

facilitate rotation. 

b. Friction between the toe of the column and the base 

which opposes the expansion necessary for rotation, 

though it may be insignificant. 

c. The deterrent action of the neighbouring column if it 

is shorter than the one under consideration, and if it 

is located on the down side of the slope. 

3.3.2.1 - Columns of equal height - 

Two, three and four column cases for heights of 2" 

to 9" inclusive were studied. 	These tests were made for the 

following purposes: 

a. To find out to what extent the inter-columnar and base 

frictions are controlling the toppling. 

b. To verify the analytical approach, and to compare with 

the computer results which are the subjects of the fourth 

and fifth Chapters respectively. 	Although they were 

simple, a considerable amount of attention was paid to 

the tests because of the importance attached to the 

second aim in particular. 	The effect of the friction 

at the base was checked using a strip of tin (friction 
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angle = 	= 170 	190).  

When the number of columns increased the critical 

tilting angle also increased as shown in Figure 3.6. 	This 

increase in stability should be associated with the inter-

columnar friction because the resistance provided by the base-

toe interaction was insignificant, as illustrated by the broken & 

dotted curve in Figure 3.6. 	The critical tilting angles 

for the tin and plaster base materials, regarding the double 

column case, were quite close. 

Qualitatively speaking, in tests on double columns 

it was found that short columns toppled suddenly; as they got 

taller the contact area increased and the interface sliding 

became more evident and lasted longer. 	Regarding the triple 

and quadruple columns: Toppling of all columns usually did 

not take place simultaneously, but either one by one or in 

groups in short intervals depending on the nature of the con-

tact between the columns. 

To investigate the effect of the nature of the con-

tact between the column faces further tests were conducted 

with 3" height blocks (double). 	Tests were conducted to see 

if the results would be affected by 

a. initially placing the blocks on the plane so that they 

were only gently touching 

b. initially pushing the blocks hard together 

c. initially allowing a slight separation between the 

columns (as might occur with out-of-square surfaces) 

d. using blocks with slightly differing heights. 
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The following results were observed: 

1. When the blocks were pushed hard together almost no change 

in critical tilting angle was observed (0.5°  increase 

sometimes). 	But, while the "gently touching" columns 

separated before toppling, the "pushed hard" ones toppled 

Suddenly because incipient sliding was avoided in this 

way. 

2. Changing the column positions yielded almost no change 

in toppling behaviour. 

3. Quite a variation was observed in inter-block friction 

angle, which was determined by simple sliding, changing 

from 8°  - 9°  to 36.5°  as incipient and full sliding 

inclinations respectively. 

3,3.2.2 	Differential height columns - 

Obviously, the models made up of gradually increas-

ing and then decreasing height columns would give the con- 

tours of a real slope when tilted. 	Ashby3 and Soto
5 have 

constructed their slopes in this manner, the incline represent- 

ing a through-going discontinuity in the rock mass. 	They 

dealt primarily with the slopes of stacks of blocks rather 

than the slopes of continuous columns. 	To obtain some in- 

sight into the behaviour of slopes of columnar structure, 

models composed of up to 18 columns were tested. 	Formation 

of the first tension crack was considered as the sign of 

instability, and the corresponding tilt angles were plotted 

against the number of columns in Figure 3.7. 

Plate 3-XIV illustrates one of the tests (9 column 
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model). 	It shows the formation of a tension crack between 

the sixth and seventh columns as a result of rotation of 

a series of columns (2nd to 6th), the first block having been 

forced to slide, at the inclination of 16°  (photograph (b)). 

Photograph (c) shows the stable configuration at the incli-

nation of 30°  posing the following questions: Why was the 

stability maintained even at such a high inclination which 

should have let the 7th and 8th columns topple? What kept 

back the overhanging columns from collapse? 	The answers 

might be the following: 

a. The rotated columns could not slide down because they 

were standing on their edges with an increased friction 

due to ploughing action. 

b. The rotated columns could not carry on rotation because 

of (0 obstruction of expansion (in form of sliding) at 

the base in both ways, (ii) increasing resistance to 

interface sliding, which would facilitate toppling, 

primarily due to increased normal force being produced 

by leaning action of the columns. 

c. Though there was a tendency, columns 7 and 8 could not 

topple because neither forward nor backward sliding at 

the base was allowed owing to the obstruction provided 

by columns 6 and 9. 	When the inclination reached 32°  

all columns started to slide on their edges (photograph 

(d)). 

Test results indicated that with the increasing 

number of columns the instability increased. 	This phenomenon 

should be associated with the highest column because as the 
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PLATE 3.XIV- Tilting Frame Multiple Column Model. 



a(start,e = OJ ) c(e = 30 ) 

b(8 = 16'') d(e = 32') 
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number of columns increased the height of the tallest column 

increased. 	That is why the curve representing test results 

shows a profile parallel to that of the highest column. 

This result is in agreement with Ashby's3  findings, although 

there were two basic differences in the models. 	Ashby's 

model was physically half of the author's and was made up of 

blocks rather than continuous columns. 	While the lower curve 

(of highest columns) might be considered the lower limit of 

instability, the upper one, representing the average height 

of the columns for the particular model, could be designated 

to serve as the upper limit of instability. 

Two other interesting aspects of the tests were the 

location of first tension cracks, and the differing stability 

conditions for even and odd numbers of columns 	For quite a 

number of models, the number of columns ranging from 8 to 17 

(excluding 16), the first tension crack formed at the same 

location with regard to the stable part at the back, that is, 

the instability, in the form of rotation spreading backwards, 

stopped mostly when the 3" height column was reached. 	The 

position of the curves for odd and even number of column models 

indicated that latter models were slightly more stable than 

the former. 	It is arguable whether the repetition of the 

highest column in the middle of the even-column models has 

any stabilizing effect. 

3.4 Discussions and Conclusions 

Discussions and conclusions for this chapter, con-

cerning the base friction tests especially, will have to be 
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in the form of verbal interpretation of observations rather 

than numerical expression of experiments. 	That is why only 

one graphical output could be extracted from several dozens 

of base friction tests as against three graphs obtained from 

a limited number of tilting frame tests. 	This distinction 

stems from the nature of the techniques themselves. 

3.4.1 Base Friction Tests 

Although most of the discussions and comments were 

already made while describing the tests, it would be useful 

to reiterate some of them in giving the overall picture. 

As far as the continuous column tests were concerned 

the following conclusions could be cited: 

a. The flexural strength of the columns together 

with the degree of restraint against rotation shown by the 

blocks at the toe seemed to be the dominant factors controlling 

toppling failure. 	Tensile fracturing of intact material 

allowed the columns to rotate. 	On many occasions, removal 

of the restraint at the toe gave rise to instability; but 

toppling might not be prevented altogether if the slope was 

steep enough, only retarding action could happen then. 

b. Fractures first appeared in the middle of the 

slope mostly, and developed to a critical crack path spreading 

up and down quickly. 	Second and third paths followed the 

first one as the rotation proceeded, the pattern of which was 

controlled by the resistance of the toe blocks against toppling 

depending upon their body geometry. 

c. The frictional characteristics of the base on 
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which the slope stands appeared to be affecting the slope 

behaviour. 	But, inconsistent results prevent further 

interpretation. 

d. Although the modelling technique and material, 

and the joint structure were different from those adapted 

by Ashby3  it was found that the slopes behaved similarly. 

Three zones of behaviour cited by Ashby have more or less 

been observed throughout the tests. 	They were: 

(i) A region of sliding along the slope face. 

(ii) A region of toppling columns. 

(iii) An approximately triangular stable region. 

e. Increase in slope height, unexpectedly, worked 

in favour of stability, most likely due to the increasing 

number of columns at the bottom of the slope. 	This outcome 

was in contradiction to Ashby's findings as well as the 

tilting frame results of the author himself. 

f. The stability of the slopes was found to be 

very sensitive to slope angle variation regardless of the 

number of columns constituting the base of the slope. 

g. The slopes constructed to eliminate the boundary 

effect have not shown a remarkable difference in behaviour. 

Some of them took longer to fail while the others did not. 

Few of them had a flatter critical crack path inclination, 

giving rise to a large volume of rock mass disturbance. 

The most useful aspect of the boundary-effect- free 

models was the observation of the formation of tension cracks. 

The first tension cracks formed well behind the crest, and 
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were followed by the others (towards the crest) associated 

with developing critical crack paths. 	As toppling proceeded 

present tension cracks closed down and the new ones developed 

nearby; this time it was a backward procedure. 

As regard to the cross-jointed models the following 

could be concluded: 

a. Cross joints, producing short columns with higher bending 

tensile strength, gave rise to more stable slopes. 

Therefore, a lower volume of rock mass was involved and 

disturbed in the failure. 

b. The toes of the slopes were less active regarding the 

failure initiation and propagation. 	On the other hand, 

the crest was the most active part of the slopes. 

c. Failure was not as severe as for the columnar slopes 

because formation of block columns helped stabilization. 

Generally speaking: All the slopes having 70°  or 

more slope angle failed very quickly. 	60°, even 65°, slopes 

appeared to be in a limiting equilibrium condition; some of 

which did not fail at all, while the others were failing under 

favourable conditions such as restraintless toe, low friction 

angle base material, etc., and/or after a long lasting test. 

John6 suggests toppling analysis for slopes over 60°  incli- 

nation, supporting the author's findings. 	But, a great 

proportion of Soto's5  slopes failed between 45°  - 60°, dis-

agreeing with the author's results. 

0 
Critical crack path inclination hardly exceeded 41, in 

other words, the friction angle of the modelling material was 

the boundary of minimum disturbance. 	It was never less than 
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20°  (roughly half of the friction angle), but mostly between 

25°  and 35°, agreeing with Soto's results (20°  - 34.5°). 

3.4.2 - Tilting Frame Tests - 

Since the discussions have been made at appropriate 

sections, the test results will merely be summarised here. 

a. Intolerably inconsistent results regarding the friction 

angle of a single plaster block were noted. 	It was 

pointed out that the most likely agent for this inconsis-

tency was the small scale asperities on the surfaces. 

In the light of this explanation, two alternatives were 

thought to be applicable to minimize the effect of 

friction angle variation. 	They are: 

(i) Blocks should not be used more than once, so, 

what might be called "peak" friction angle 

happens to be operative for all models. 

(ii) The first couple of tests should be disregarded 

for the friction angle to reduce to its "resi-

dual" value, that is, the "valid" models have to 

be constructed from the blocks whose small scale 

roughness has disappeared. 

b. Ashby's theoretical consideration for the toppling of 

a single block was experimentally confirmed. 

c. Existence of an adjacent column increased the critical 

tilting angle, and the more the number of columns the 

more stable the configuration became (same height columns). 

d. Though quite a variation was observed in inter-columnar 

friction angle (4) of for both "pushed hard" and "gently 



156 

toughing" blocks, the critical tilting angle did not 

change significantly indicating that (I) has little effect 

on toppling (excluding large scale joint roughness)., 

Ashby came to the same conclusion after his tests. 



157 

REFERENCES 

1. HAMMETT, R.D. 	A study of the behaviour of discontinuous 

rock masses. 	Ph.D. Thesis, James Cook Univ. of N. 

Queensland, Australia, 1975. 

2. BARTON, N.R. 	A model study of the behaviour of steep 

excavated slopes. 	Ph.D. Thesis, Univ. of London, (Im- 

perial College), 1971. 

3. ASHBY, J. 	Sliding and toppling modes of failure in 

models and jointed rock slopes. 	M.Sc. Thesis, Univ. 

of London (Imperial College), 1971. 

4. GEROGIANNOPOULOS, N. 	The use of surface displacement 

monitoring in slopes to predict failure mode and location 

of failure surface. 	M.Sc. Thesis, Univ. of London 

(Imperial College), 1974, 37p. 

5. SOTO, C.A. 	A comparative study of slope modelling tech- 

niques for fractured ground. 	M.Sc. Thesis, Univ. of 

London (Imperial College), 1974. 

6. JOHN, K.W. 	Three-dimensional stability analyses of 

slopes in jointed rock. 	Proc. Symp. on Open Pit Mine 

Planning, Johannesburg, 1970. 



158 

CHAPTER FOUR 

LIMITING EQUILIBRIUM APPROACH 

4.1 General 

The basic mechanism of toppling (together with 

sliding) for the case of a single block was discussed by 

Ashby1 and Hoek and Bray2 as mentioned in the preceding 

chapter. 	Figure 4.1 illustrates the way in which toppling 

is affected by the geometry of the block. 	However, this is 

a very trivial situation and in an actual rock slope consist-

ing of a large number of blocks of irregular shape, toppling 

such as that shown in Figure 4.1 seldom occurs. 	In fact, 

failure by toppling is a complex mechanism which involves 

both sliding and rotation of the blocks as well as block 

separation, wedge action, and interlocking as observed in 

base friction tests in Chapters two and three. 	No satis- 

factory analytical techniques, that could be regarded as a 

design tool, for dealing with this complex situation have yet 

been developed. 	In this connection, Cundall
3 continues to 

improve his Dynamic Relaxation Method of computer simulation. 

The author, also has made an attempt to take the single block 

toppling criterion one step further by examining the limiting 

conditions for multiple blocks. 	In this context, the mechanis- 

tic behaviour of systems comprising two, three and four adjacent 

blocks were studied. 	In all cases the blocks were of equal 

height. 	Bray4 used the limiting equilibrium method on his 

theoretical models of slopes with simple geological structure 
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Figure 4.1- Toppling and sliding criteria for a single block on an 

inclined plane:(a)block in limiting orientation for toppling; 

(b)superposed criteria for sliding and toppling 
5 

(After Goodman & Bray). 



"Nik= Base angle of friction 

0= Interface angle of friction 

1-1= tan0 

c= tanT 
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to determine the factor of safety for toppling. 	One of 

these models, the toppling of blocks on a stepped base, will 

be discussed at the end of this chapter. 

4.2 Toppling of Two Adjacent Blocks 

Consider two adjacent blocks of weights W1  and W2 

resting on a plane surface which is inclined at an angle of 

e to the horizontal. 	The blocks are acted upon by gravity 

only and hence the weights W
1 

and W2 
act vertically downwards 

as shown in Figure 4.2. 	While the T components of the weights 

tend to cause the blocks to topple about the pivot points A 

and B, the N components oppose it. 	Since toppling necessitates 

Figure 4.2- Forces acting on two adjacent blocks for toppling mechanism. 
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sliding movement together with rotation, the forces associated 

with it (sliding) should be taken into consideration. 	In 

this respect, the shear strength along the interface and at 

corner A must be mobilised assuming the blocks remain in 

contact along their common face, and corner B does not move. 

If S is the resultant of the force distribution normal to the 

interface acting at point C, 0 for limiting conditions can be 

found by resolving the forces on block 1 normal to and paral-

lel to the base plane (equations (1) and (2)), and by taking 

the moments of forces about pivot points A and B (equations 

(3 ) and ( 4)): 

R1 = N1 + ps 	 (1) 

S = CR1  - TI 	 (2) 

I TI  - 121  Ni  + QS - bpS = 0 	 (3) 

(4)  

From (1) and (2) 
	

S = 	N + p5) - T1  

S 
-  

1 	T 1 
1 - pc (5)  

Using (4) and (5) in (3), 

a 	b 	a 	b 	bli(cNi  - T1) 
-.r N

1 
+ -i T2  - -2- N

2 
- 	 - 0 	(6) 7 T1  - z 	 1 - pc 

Substituting 
	T

1  = W1  SinO, T2 = W2Sine 

N1  = WiCose, N2  = W2Cos0 

-a- T - b N 
2 2 	

-2 - QS = 0 . 

. and rearranging equation (6) gives: 
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14(141+W2)(1-pc) + 2w1  pc 
tan 0 = 

	

	  
a(W1+W2

)(1-pc) + 2W
1 
 bp 

which reduces to equation (8) when W2  = W1  =W 

b 
tan 8 -  	 (8) 

all-pc) + by 

and further to (9) if c = P 

(7) 

tan e = 

 

(9) 
a(1-P

2) + by 

Rearranging equation (8) into, 

 

 

b 

  

tan e - 

   

   

 

a - p(ac-b) 

  

and substituting c = 	gives 

tan e = a for limiting equilibrium. This indicates that when 

the friction angle at the base is equal to the critical in-

clination for the toppling of single block (ecr.) which is 

determined by the block geometry, the interface friction no 

longer operates and the blocks topple as if they were single. 

Obviously, this value is the lowest possible inclination for 

the block geometry in consideration. 	Figure 4.3, where the 

relationship between 8 and 4) for various values of 4) is plotted, 

shows the diminishing influence of 4  as IP approaches ecr.' 
Although the tilting frame test results for single and double 

block cases were quite close, this cannot be explained by the 

above mechanism because it occurred for all sizes of blocks. 

The results obtained from tilting frame tests were 
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less stable as compared to the limiting equilibrium solutions. 

The reasons for this was looked for, and the following 

alternatives were considered: 

(i) the mobilised friction angle in the experi-

ment is smaller than the one used in limiting 

equilibrium calculations, or 

(ii) the assumptions regarding the mode of behaviour 

of blocks for limiting equilibrium analysis 

are wrong. 

The friction angle along the contact surface of the 

columns (0 was determined by simple sliding to use in equation 

(8). 	Complete sliding took place between 29 and 35 degrees, 

but prior to this short slips at inclinations ranging from 

0 	.. u
o 

to 22o were present. The calculations based on the latter 

(a friction angle of 20°) rather than the full sliding of 

35°, gave reasonably close 0 values to the test results as 

shown in Figure 4.4 (broken line). 

So far, the limiting equilibrium analysis was based 

on the assumption that only the lower block would slide down 

during the toppling while the upper one was pivoted on its 

lower corner. 	It was obvious that the blocks would behave 

in a mode rendering the least resistance to failure. 	There- 

fore, the other possible mode of behaviours had to be taken 

into account as one of them might be more unstable approaching 

the tilting frame test results. 	The possible other modes are: 

1. The upper block slides upward while rotation 

is taking place; thus the shear strength at corner B should 

be mobilised. 	This case is just the reverse of the previous 
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Figure 4.4- Variation of tilting angle for toppling (for limiting 

equilibrium)with respect to friction angles. 
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consideration as illustrated in Figure 4.5(a). 	The limiting 

conditions are now given by the following equation: 

tan 0 - 
b[(W

1
+W

2
)(1+pc) + 2W

2
pc] 	

(10) 
a(il1+W2)(1+11c) - 2W2bp 

2. Both of the blocks slide, the lower one down-

wards, the upper one upwards as shown in Figure 4.5(b). 

There are two different solutions in this case: 

(a) When the equations giving the S forces for each 

block are equalized: 

Wic(l+pc) - W2c(1-pc) 
tan 0 - 	  

W1( l+pc) 	W 2 (1-p c ) 

The peculiarity with equation (11) is that it does 

not involve any of the block dimensions. 	Therefore it cannot 

be regarded as a correct solution. 

(b) From either of the moment equilibrium equations: 

Then the solution is either equation (7) or equation (10) 

depending on the source of S used in the moment equation; 

i.e., the solution is equation (7) when S is derived from Block 

1, and equation (10) when S from Block 2 is used. 	Since 

this mode of behaviour did not bring anything new it was not 

considered further. 	On the other hand, the former possible 

mode seemed to merit further consideration. 	In this context, 

this mode of behaviour was compared with the first consideration 

for a range of a/b ratios. 	Graphs relating 0 and i for ¢ = 

200  and 350  were drawn. 	Figure 4.6 shows one of these graphs 



(a) 

167 

(b) 

(c) 

Figure 4.5- Other modes of failure for two adjacent blocks. 
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ratios of 2, 4, 5, 6, 

The calculations for 

made using the actual 

weights of blocks tested on the tilting frame for comparison 

purposes. 	For the other ratios, the weights were assumed 

to be the same. 	The failure takes place with the forward 

sliding mode for both .4) values as shown in Figure 4.6. 	But 

as the a/b ratio increases the backward sliding mode assumes 

control after certain IP values. 	For example, for a/b = 9 

the backward sliding mode becomes operative when IP is greater 

than 25.3°  and 32.6°  for 4) s of 35°  and 20°  respectively as 

illustrated in Figure 4.7. 	As the columns get taller, what 

might be called the boundary friction angle at the base 

(4)b
) separating the two modes of behaviour decreases, thus the 

possibility of backward sliding increases. 	A similar effect 

was observed when the inter-columnar friction angle 0) in-

creased as shown in Figure 4.8. 

3. The third possibility, Figure 4.5(c), is that 

the two blocks adhere to one another without slip and rotate 

as a single unit about A. 	Then the single block criterion 

applies: tang = 2b/a. 	Since the width, b, of the toppling 

unit is doubled this case represents the most stable of all. 

4. A further case presents itself due to the prac- 

tical impossibility of making the blocks identical. 	If 

(a/b)1  > (a/b)2, then when tan° = (b/a)1  block 1 rotates, 

while block 2 is stable. 	Though in a way exaggerated, tilting 

frame test results of the previous chapter (Figure 3.5) con-

firm this. 

for a/b = 	3, the others being for the 

7, 8, 	9, 10, 15, 20, 	30, 	40 	and 	50. 

the ratios 	of up to 9 	(inclusive) 	were 
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Forward sliding mode 

Figure 4.7- Tilting angle variation for two sets of analyses of the 

double block system and the friction angles. 
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In the beginning it was assumed that the blocks 

remain in contact along their common face with a resultant 

force of S. 	Since the nature of this force (compressive or 

tensile) depends on other variables, it should be analysed for 

the different modes of behaviour. 

(i) For the case of forward sliding: 

From (5) 	S - W1  (tanIP.Cose-Sine) 	
(12) 

1 - tanIP.tancl) 

when, 

4) > 0 and 1 > tanIP.tan(!) 

(0 + IP < 7/2) 

or 	v. S = +ve 

11) < 0 and 1 < tan1P.taTO (COMPRESSIVE) 

 

(0 + IP > 7/2) 

 

Allows for sliding; therefore should be disregarded. 

IP > 0 and 1 < tan1P.tan(1) 

____ 	or 	( (I) + IP > w/2) 

 

S = -ye 

IP < 0  and 1 > tan1P.tar0 

 

(TENSILE) 

( 4) + 4) < Tr/2) 

Allows for sliding; therefore should be disregarded. 

{IP = 6} -* s = o 

Consequently, for the blocks to be in touch with each other, 

that is for the S to be compressive, the sum of friction angles 

along the interface (q)) and at the base (10 must be less than 
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90°  in addition to the main condition that V must be greater 

than 0 to preclude sliding failure. 	If the frictional 

characteristics of the surfaces (base and interface) are the 

same (V = 4), then the friction angle must not be more than 

45°. 

When the friction angle at the base is equal to the 

critical inclination the blocks are said to be meta-stable, 

being on the threshold of sliding and toppling failure to- 

gether without any interaction. 	Therefore, the blocks behave 

independently. 	This phenomenon is merely the expression of 

the earlier finding obtained in another way. 

(ii) For the case of backward sliding: 

W
2 	
(sine + tanV.Cos0) 

S - 

	

	 (13) 
1 + tanV.tan4) 

The equation (13) gives a positive S always indicating the 

presence of interaction between the blocks for all values of 

V, 4) and 0 when the backward sliding mode is operative. 

4.3 Triple and Quadruple Block Analysis 

As the number of adjacent columns increases so does 

the number of possible modes of behaviour. 	Figure 4.9 shows 

the likely modes for triple and quadruple block systems. 	To 

find out the mode giving the least stable conditions all cases 

should be subjected to limiting equilibrium analysis one by 

one. 	But, because of limited time, four of the five possible 

modes for triple blocks, and only one of the seven possible 

modes for quadruple blocks were examined. 
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(a)  

(b)  

Figure 4.9- Possible modes of failure for (a)triple block 

system, (b)quadruple block system. 



c. 

b(3pc+1) 
tan() -  	(16) 

a(pc+1) - 2bp 
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4.3.1 - Triple Block Analysis - 

The analysis was merely the extension of double 

block case to triple block. 	The equations for limiting 

conditions are given below, assuming W3  = W2  = Wi  =W . 

a. 
b 

tan° -  	(14) 
all-pc) + by 

 

tan() - 
3b(1-P2c2) + 4bpc 

 

b. 
3a(1-P 2c2) 	4bp2c 

(15) 
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d. 

Two different solutions are 

available in this case. 

(i) From the equality of S forces: 

 

 

pc2(2+3pc) - c 

 

(17) tan() - 

  

  

 

pc,(2 -pc) + 3 

  

(ii) From either of the moment equations for block 1 or 2: 

The solution is equation (15) when S derived from 

block 1 is used in any of the moment equations for block 1 

or 2. 

The solution is equation (16) when S derived from 

block 2 is used in any of the moment equations for block 1 or 

2. 

Since the equations (8) and (14) are the same, it 

becomes: 



177 

So, mode (a) represents the least stable of all because it 

reduces to two block behaviour. 	This is confirmed in Figure 

4.10 where the critical inclination at the base (8) is plotted 

against the friction angle along the contact surfaces (4) = 11)) 

for the a/b ratios of 3,5, and 7. 	As also could be seen in 

Figure 4.10, case (c) happens to be the most unlikely mechanism 

of toppling. 

4.3.2 - Quadruple Block Analysis - 

Only the following case was analysed because of 

limited time against the lengthy equations to be solved. 

Assuming W4  = W3  = W2  = Wi  =14', 

r 2 bi.c (2c-1)p3 - 7c2p2 + (3c+l)p + 4] 
tan() - 	  

2[a(1-2pc+p2c2) + 2bp(1-pc)](2+pc) - 4bp(1-pc) 2  

(18) 

reduces to (19) when c = P 

b{u
4
[(2p-3)(11+1) - 4] + [(311+4)(P-1) +8]} 

tan° - (10-1)(p-1){2[a(p+1)(p-1) - 2b1-1](112+2) + 41)11(14-1)(u-1)} 

(19) 
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4.4 Multiple Block Analysis 

Bray's4 approach for a series of monolithic columns 

comprising the slope comes nearer to a real case. 	For the 

following analysis he assumes a fully drained slope made up 

of rigid columns which neither fracture nor deform. 	Sliding  

on its own is still a mode of failure for part of the slope 

as shown in Figure 4.11 below. 

TENSION CRACK 

Figure 4.11- Toppling on a Stepped Base (After Bray4). 

The location of the tension crack which separates 

the stable zone from the moving part is determined by the 

single block criterion for toppling. 	Therefore, 
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for the block above the tension crack yX  < ACota and, 

for the block below the tension crack yxx > ACota.  

Limiting conditions for a typical column can be 

analysed considering the forces acting on the nth. block as 

in Figure 4.12. 

P
n- Figure 4.12- Forces acting 

on the nth. block. 

Then, the force Pn  to cause toppling is given by equation 

(20) by taking moments about 0. 

P n  .Z  n  - p .An = Pn-1
.Zn-1 + Wn

Cosa.An 	
- Wn.Sina.Yn/2 

Pn-1.Zn-1 + Wn/2(An.Cosa-Yn
.Sina) 

Pn 
= 	 - P

n 
Zn 	 - PAn 

And, the force Pn 
to cause sliding can be obtained resolving 

the forces parallel to Rn  and Sn. 

R
n 

= Wn.Cosa + p(Pn-Pn-1
) 

S
n 

= Wn
.Sina + (Pn-Pn-1) 

For slip Sn  = Rn.p 

(20) 
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W
n
.Sina + (Pn-Pn-1) = p.wn

.Cosa + p
2
(Pn-Pn-1) 

wn(p.Cosa-Sind) 
Pn = Pn-1 + 	P

n 1 - p2 

Consequently, if P
n 

< 
P ry 

	

n 	
P
n 

= P r n 
11 

	

if P
n 

< P
n 	

P
n 

= P
n 

Block slides 

Block topples 

The analysis is carried out to find the friction 

coefficient, p, required for limiting equilibrium. 	For this 

purpose one should iterate p until the end conditions are 

satisfied, i.e. until Pn = 0 for the block neighbouring tension 

crack. 	Then, the factor of safety for toppling can be defined 

as: 

p available in the field 
F . S. - 

p required for limiting eq. 

The reader is referred to Goodman and Bray(5), and 

Hoek and Bray
(6) 

for the details of the analysis and the 

examples. 	A simple computer program written by the author 

to find p for limiting equilibrium is given in Appendix A. 

4.5 Conclusions 

Although few results of practical use were obtained, 

the findings regarding the behaviour of double and triple 

blocks are of interest. 	In both cases, toppling was accom- 

panied by forward sliding of the lower block(s), this being 

the least stable mode by reducing to single and double block 

behaviour. 	However, a tendency towards the backward sliding 

mode was seen as the columns got taller as far as the double 

(21) 
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block case was concerned. 	A similar effect happens when 

intercolumnar friction angle (0 increases. 	Considering 

the interaction between the blocks, the sum of the friction 

angles (cI)+0 should be less than 90°  for the contact to be 

maintained i.e. for S to be compressive. 

The limiting equilibrium analysis gave more stable 

configurations as compared to the tilting frame test results, 

probably due to the experimental conditions in the latter 

such as the vibrations created by the motor, inaccurate block 

dimensions, varying frictional characteristics, etc. 

Although Bray's4 analysis is very versatile offering 

a factor of safety for toppling failure, it needs to be im-

proved to take the groundwater conditions and the joint 

characteristics into account, and perhaps most important of 

all it should be able to handle slopes composed of blocks 

rather than monolithic columns. 
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CHAPTER FIVE 

DYNAMIC RELAXATION METHOD 

5.1 General 

It would be unwise not to make use of a numerical 

technique at such a time when they are abundant. 	The 

Dynamic Relaxation method (D.R.) was thought to be the best 

approach available because Cundall1 had shown its versatility 

with his spectacular computer drawings, and there was a 

"package" program ready to run written by Hocking2; but it 

needed to be tested against the established toppling criterion 

and to be modified to handle different size blocks. 

Thus, as the mode of failure was automatically 

selected, the field configurations would be better modelled 

as compared to the limiting equilibrium approach which requires 

an estimate of the failure mode if not known. 	Also, the 

individual study of the effects of variation of various para-

meters on the failure mode would be possible which otherwise 

would be extremely difficult or impossible with physical 

modelling techniques. 

5.2 Basic Principles 

The Dynamic Relaxation Method was first introduced 

by Otter3 and his co-workers as a new numerical technique to 

solve the finite difference formulations of the equations of 

elasticity. 	It was originally designed to model an isotropic 

elastic continuum; but, later on, Cundalli  adopted the idea 
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and developed a computer program for treating discontinuous 

rock problems. 

Cundall's program was capable of simulating progressive, 

large scale movements in blocky rock systems, the interaction 

between blocks being governed by realistic friction laws and 

simple stiffness parameters. 	The underlying assumption of 

the whole program was that all the blocks were perfectly rigid 

and that all deformations were completely controlled by block 

sliding and rotation movements. 	Thus the program was only 

suitable for the analysis of problems in which substantial 

block movements were likely to occur. 	The elastic deformation 

within each block was assumed to be negligible when compared 

with mechanistically controlled block movements. 	An additional 

assumption was that when blocks (any parallelogram shape) 

interact along a common face the response could be modelled 

through the corner contact points only. 

The analysis sequence began with an out of balance 

force acting at the centroid of each block, and from this an 

acceleration was calculated using the momentum equation: 

Force = Mass x Acceleration 

This acceleration was then integrated with respect to a given 

time step, firstly to calculate the velocity of each block, 

and then its position at the end of the time step. 	The new 

geometrical arrangement of all the blocks was then used to 

compute the overlap of each block corner with its neighbours 

(in case of no overlap the existence of a gap between blocks 

was recognised), and the forces acting at each corner were 
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calculated according to the normal stiffness and the proposed 

shear force-displacement relationship. 	These contact forces 

were then algebraically summed to act at the block centroid 

and the calculations were repeated for a number of iterative 

cycles. 

The equations governing the response of each block 

centroid were: 

a = 17-1.4- 

V
n+1 

= V
n 

+ a.At 

s1.0.1 	S
n 

+ V
n+1

.At 

	

, 

+Ul = 14  

I- 

iin 	= iln  + ii.At  

u 
n+1 = un + iln+l'At 

	

(I) 

 

Those governing the interaction of each block corner were: 

F 
n 

= kn.6 

F
s 
 = k

s
.6 

(I) and (II) were linked by the following equations.  

F = EFn 
+ EFs + Applied Forces 

M = EF
n
.r + EFs.r + Applied Moments 

where: 

M = Moment acting on the block 

a = acceleration 

F = accumulative force acting at the block centroid 

(has X and Y components) 

m = block mass 

= angular acceleration for the block 
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I = moment of inertia 

V
n+1 

= new block velocity (has X and Y components) 

V
n = 

previous block velocity (has X and Y components) 

n+1 = new angular velocity 

n = previous angular velocity 

S
n+1 

= new block position (has X and Y components) 

S
n 

= previous block position (has X and Y components) 

un+1 
= new block orientation 

u
n 

= previous block orientation 

Fn 
= contact force due to normal overlap 

Fs 
= contact force due to shear overlap 

kn = stiffness of normal overlap 

ks = stiffness of shear overlap 

n 
= normal overlap 

S
s 

= shear overlap 

r = moment arm (moments taken about the block centroid) 

The calculation steps outlined above could be summa-

rised as in Figure 5.1. 

Hocking2  made some improvements in Cundall's program 

and brought it into the form of a "package". 	This version of 

the program, which will be the subject of the next section, 

was extensively tested and used, eventually modified (for 

handling blocks of unequal height) by the author. 	Gero- 

giannopoulos
4 also modified Cundall's program for handling 

triangular blocks. 	Recently, Hocking5  tried to simulate 

the crushing of the blocks besides the progressive large 

scale movements incorporating a finite element program with 

the D.R.. 
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POSITION OF BLOCKI 

CX(I), CY(I), ANT(I) 

FORCES DUE TO CORNER-FACE 

INTERACTION ARE CALCULATED 

stable 

time 

increment 

(dt) 

FORCES AND MOMENTS ACTING 

ON BLOCK I ARE UPDATED 

FXX(I) = FXX(I) HOR 

NEW BLOCK VELOCITIES 

VXN(I) = VXN(I) FXX(I).dtimass 

NEW POSITION OF BLOCK I 

CX(I) = CX(I) 	VNX(I).dt 

Figure 5.1- Main iteration cycle. 



-- TYPICAL BLOCK 

—2____>DIP A 

(in degrees) 

V 
DIP B (in degrees) 
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5.2.1 - Details of the Program - 

Hocking's program is restricted to blocks all of 

the same parallelogram shape and dimensions. 	They are de- 

fined by the orientations and the spacings of the disconti- 

nuities read into the program as dips and spacings. 	DIPA 

has a westerly dip direction (assuming a two dimensional 
• 

configuration) and DIPB has an easterly dip direction as 

shown in Figure 5.2. 

Figure 5.2- Intersecting discontinuities forming parallelogram shaped 

blocks. 

The position of all of the block centroids is to be 

generated in subroutine GEN. 	Subroutine CONSOL is for the 

consolidation of the blocks before simulating a mining ex- 

traction. 	In order to assess the block interactions a record 

of each block's nearest neighbours must be kept and updated. 

This is done with subroutine NEIGHB at regular cycle intervals 

depending on the type of problem and the amount of block 
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movements expected each cycle. 	Each block has a maximum 

of eight neighbouring blocks as compared to six neighbours 

in Cundall's program. 

Other features included in the program are: 

i. a restart option so that the analysis can be con-

tinued from the end of the last cycle of the 

previous run, 

ii. print edits, and 

iii. block position and velocity vector plots at regular 

intervals. 

5.2.2 - Important Input Parameters - 

The accuracy of the solutions produced depends on 

whether the following input parameters are well optimized. 

i. the time step for each iteration 

ii. the stiffness across and along each discontinuity 

iii. the amount of damping to be applied to each block 

interaction. 

Although it is desirable to use as large a time step  

as possible for each iteration in order to keep the computer 

costs to a minimum, it cannot be arbitrarily large because 

rapid changes in the geometry of the block system would not 

be modelled accurately. 	The limit comes from the fact that, 

being a dynamic system, each block must oscillate in a stable 

manner, and Cundall has shown that for translatory motion 

this condition is satisfied if, 

At < 2 7-/—  -ti ( 1 ) 
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and for angular motion if, 

At < 21/711 
K
r 

where: At = time step 

m = block mass 

I = moment of inertia 

K = block translation stiffness 

K 	g = block angular stiffness (- change in torque)  change in angle r  

K and K
r 

are the apparent stiffnesses that a block feels when 

it is in contact with other blocks. 	The stable time step 

is, then, the lowest value of At obtained from the equations 

(1) and (2) for all of the blocks. 

To compute the forces from the block corner-side 

interaction a finite stiffness must be assigned for both normal 

and shear responses. 	If the interactions are made too stiff 

the stable time step becomes very small (as the equations 1 

and 2 suggest), and a very large number of iterations need 

to be run to define block movements. 	If, on the other hand, 

the stiffness of the discontinuity is too low, unrealistically 

large overlaps can develop which may influence the deformation 

mechanism. 	Therefore, a balance is needed between the two 

extremes. 

In order to make the program quick and simple it 

is assumed that the normal stiffness of a joint plays very 

little part in the failure processes of rock mass brought about 

by joint shearing or tensile separation stemming from the fact 

that the normal stiffness of many joints is often far higher 

(2) 
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than the shear stiffness. 	So, the normal force between two 

blocks is assumed to be proportional to the linear overlap 

between them. 	The shear spring stiffness, however, may have 

a greater physical significance since it affects the form of 

the non-linear shear load-deformation behaviour as will be 

discussed in the next section. 	For the solutions described 

in this thesis, the normal and shear spring stiffnesses were 

assumed to be equal. 

To obtain statically determinate solutions some 

form of energy dissipation mechanism is needed, otherwise 

the blocks will continually vibrate and never come to an 

equilibrium position. 	This can be accomplished by mathe- 

matically connecting viscous dashpots in parallel with both 

the shear and normal stiffness of each contact point as des-

cribed by Cundall
6
. 	The way in which the viscous damping 

is applied is shown diagrammatically in Figure 5.3. 

Figure 5.3- Manner of application of viscous damping (After Cundall6). 
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The damping constant of the dashpot is expressed as a fraction 

of the critical damping, i.e. the dead beat response of the 

mass-spring system, which is given by: 

A = 2VITITii 	where: m = mass 

k = stiffness 

The shear dashpot is removed if the contact point begins to 

slide (inelastically) since the energy dissipated by friction 

is an adequate form of damping by itself. 

5.2.3 - Normal and Shear Load-Deformation Response - 

The normal load-deformation response is fundamentally 

elastic in compression with a zero tensile strength characte-

ristics as shown diagrammatically in Figure 5.4(a). 

The shear behaviour can be readily modified depend- 

ing on the nature of the problem to be solved. 	The present - 

program correctly models an elastic-plastic relationship 

(Figure 5.4(b), and needs only a small modification to model 

a peak-residual type relationship (Figure 5.4(c)). 

5.3 Tests with D.R. Block Program 
• 

Initially it was thought and hoped that Hocking's 

program was ready to use, but the trial runs revealed the 

need for some corrections. 	Most important of all, an error 

in the logic of the program in connection with the selection 

of the neighbouring blocks had to be corrected because wrong 

neighbours were being assigned due to an overriding zero. 

The removal of the shear dashpot when the contact point in- 
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Zero tensile strength 
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Figure 5.4- Constitutive relations: (a)normal load-deformation response, 

(b)elastic-plastic shear response,(c)brittle shear response 

(After Hocking2). 
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elastically slides was missed as well as initialising the 

velocities. 	These, together with other minor things, were 

all completed. 	Appendix B gives the complete listing of 

the program which is in working order. 

Determination of the optimum values of the input 

parameters time-step, stiffness and damping factor was given 

very careful consideration. 	In this connection total kinetic 

energy of each block during the course of failure was cal-

culated to monitor the time step and the damping factor as 

7 suggested by Hocking . Contradictory results were initially 

obtained. 	Eventually 0.0001 as the time step and 0.5 as 

the damping factor was found to be optimum and they were 

retained throughout the analysis. 	Cundall"6  used 0.00009 

and 0.6 for the time step and the damping factor respectively 

in generating his famous toppling columns of blocks. 	A 

stiffness of 2 x 10
6 N/m per unit column height was found to 

be feasible for the interactions to yield realistic block 

movements in conjunction with the chosen time step (0.0001). 

SI units were used throughout the analysis. 

During the initial stage of the analysis the aim 

was,to obtain results as close as possible to the established 

single block criterion for toppling. 	For this purpose, 

various ways and means such as "preconsolidated" start, 

application of shear reaction, and tilting (i. from a hori-

zontal position, ii. from a stable inclination) were tried 

to obtain the best possible solution, i.e. to approach to a 

more stable configuration because the toppling of the single 

block was taking place below the critical angle postulated 
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by the limiting equilibrium analysis. 	But none of these 

means worked in favour of stability, contrary to the expec- 

tations. 	Even the process of tilting from a horizontal 

position (like the tilting frame tests of Chapter 3) gave 

rise to a very unstable situation as shown in Figure 5.5. 

This was most likely due to continuous tilting, and therefore 

the method of "tilting in very small increments at every 10 

or 20 cycles" was adopted. 	This method, as will be seen in 

the following pages, proved to be successful. 

Before going ahead with the test results it should 

be noted that the check on a freely rotating column indicated 

that almost the same rotational displacement occurs within 

the same time for real and computer simulated block. 	The 

linear displacement (sliding) has already been checked and 

found to be perfectly in agreement with the real case by 

Hocking7. 

5.3.1 - Single Block Tests - 

Tests were conducted with the block having height 

to width ratio of 3. 	The critical tilting angle (6cr.) for 

this geometry, for limiting equilibrium, is 18.43°. 	The first 

tests were carried out for a fixed inclination; later on, 

for better solutions, the method of progressively tilting 

from a stable inclination was adopted. 	Unless specified, 

the time step (DT) was 0.0001 and damping factor (FAC) was 

0.5 for all the cases reported below. 	Figure 5.6 shows a 

typical arrangement for a single block test. 



197 

 

TOPPLING ANALYSIS 8 A/8=3 FI:20 O. YETA=0.0 D. 07:1E-4 $14:6E.G 
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TOPPLING ANALYSIS 8 A/B=3 FI:20 O. TETR:0.0 D. DI:IE-4 SNt6E46 
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Figure 5.5- Tilting from horizontal to topple a single block. 
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TOPPLING ANALYSIS e A/9.3 FI:20 D. TE7A:O.G D. OT=IE-4 5N=91.6 

BLOCK PLOT 	 NUMBER OF PR09LEm UNITS PER INCH = 100.00 	CYCLE NUMBER = 200 

TOPPLING ANALYSIS 9 A/9:3 FI:20 C. TETA=0.0 D. DY=IE-4 5N.T.6E.6 

BLOCK PLOT 	 NUMBER OF PP BLEM u 	PER INCH = 100.00 	CYCLE NUMBER 2 400 

Tilting stops 

9 = 17°  

Figure 5.5- Continued. 
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eLocK PLOT NUMBER OF PROBLEM UNITS PER INCH = 100.00 	CYCLE NUMBER : 1000 
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I 

Figure 5.5- Continued. 

TOPPLING ANALYSIS 8 A/8=3 F1=20 D. TETA=0.0 D. OT=1E-4 SN:6E•6 

BLOCK PLOT 	NUMBER OF P 	PER INCH = 100.00 	CYCLE NUMBER = SOU 

TOPPLING ANALYSIS 8 A/8:3 F1=20 D. TEl 	D. 01=1E-4 SN=6E4,6 
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Figure 5.6- Typical single block geometry. 

A. 	Fixed-Inclination 

at 	800 

" 	1100 

0 	= 	17°  

0 	= 	17.5°  

Stabilized 

0 = 	18°  " 2200 

0 	= 	18° 	(FAC=1) 11 " 1100 

e 	= 	18.1° " 3200 

18.15° " 4900 

0 	= 	18.2°  Failed 

As 	the results indicate, the number of iterations needed to 

attain "a stable configuration increased with increasing 

inclination (e). 	Figure 5.7 illustrates the transient 

oscillations for 0 = 18.10°  and 0 = 18.15°. 	What was re- 
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Figure 5.7- Oscillations leading

•  to stability for 

single block system. 
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markable was that, the amplitude and the period of the first 

oscillation with 0 = 18.15°  was almost twice that with 

6 = 18.10°  showing how the system is sensitive to small 

changes in 0. 	A similar phenomenon was observed for the 

damping factors of 1.0 and 0.5. 	Stabilization time was 

halved by doubling the damping factor as shown in Figure 5.8. 

B. Tilting From a Stable Inclination  

Tilting was started from two different stable in-

clinations: 18.00°  and 18.15°. 

i. Tilting from 18°: The following steps were pursued: 

a. Consolidation for 2500 cycles at 18°. 

b. Tilting in very small increments at every 10 

cycles (0.1°/1000 cycles). 

c. Sufficient number of iterations until failure 

or stabilization. 

6 = 18°  .4- 18.2°  Stabilized at 6700 (CX) and 6000 (CY) cycles 

0 = 18° -* 18.3° It " 11000 " " 9200 " tl 

6 = 18°  -* 18.4°  Failed (rotation gained momentum after cycle 

8000). 

ii. Tilting from 18.15°: Same steps were followed but the 

consolidation took 5500 cycles. 

0 = 18.15° .4-  18.3°  Stabilized at 12100 (CX) and 10600 (CY) cycles 

0 = 18.15° 	18.4°  Failed (rotation gained momentum after cycle 

10700). 

As can be seen, with the method of tilting from a stable in-

clination 0cr. (= 18.43°) was approached as closely as 18.3° 
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Figure 5.8- Effect of damping factor(FAC) for single block system. 
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(possibly 18.35°!). 	The inclination at which the tilting 

starts did not change the ultimate stable angle. 	The 

results, including the 18.15°  obtained from the fixed-incli-

nation test, should be considered very satisfactory. 

5.3.2 - Double Block Tests - 

Most of the tests were performed with the blocks 

of height to width ratio (R) 3, but the ratios of 5, 7 and 

10 were also tried to investigate the influence of the column 

slenderness on the mode of behaviour. 	The friction angle 

assigned for the contact surfaces was 20°. 	The following 

is the summary of the test results for the ratio of 3. 	The 

geometry is shown in Figure 5.9. 

Figure 5.9- Double block arrangement. 
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A. Fixed-Inclination  

6 = 18.3° 	Stabilized 

6 = 18.4°  -4- Failed 

B. Tilting From a Stable Inclination 

Three different 	inclinations were tried to get 	the best results. 

The numbers above the arrows indicate the frequency of 

iterations 	for 	tilting 	(0.10/1000 cycles 	for 	10, 	0.1°/2000 

cycles 	for 	20). 

i.  Tilting from 18.30: 

10 0  
0 	= 	18.3° 	--4- 18.5°  failed 

6 	= 	18.3° 
	10 

-4-  18.4°  failed 

6 	= 	18.3° 
	20  

.4-  18.4°  failed 

ii.  Tilting from 18.2°: 

0 	= 	18.2° 
	10  

18.3°  failed 

6 	= 	18.2°  - 	
20 

-4-  18.3°  stabilized 

iii.  Tilting from 18°: 

0 = 18° 
 10 

18.3o failed 

0 = 18-
n  10 

18.2°  stabilized 

Contrary to the single block behaviour, the tilting 

method did not increase the stable inclination in the double 

block system. 	Even the fixed-inclination stable angle 

(18.3°) was hardly attained by tilting. 	On the other hand, 

the fixed-inclination stable angle increased from 18.15°  to 

18.3°  due to the presence of an adjacent column. 	The same 

"tilting-stable-angles" (18.3°) for the single and double 
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block systems implied the lack of any contact between the 

columns in the latter. 	Indeed this was the situation. 

Figure 5.10 shows how the blocks behaved independently when 

tilting was applied. 	The reason(s) for this peculiar 

behaviour was sought. 

a. was it because of a micro crack between the blocks, or 

b. was it a specific failure mode? 

The first possibility was checked through magnification in 

the Quick-Look Machine of Interactive Graphics System 

(Imperial College Computer Centre). 	A micro crack eventually 

was dibcovered between the adjacent blocks. 	To close this 

gap the following procedure was applied. 

i. Consolidation of the system at a stable inclination. 

ii. Fixing the lower block and reducing the friction 

angle at the base for the upper block to slide 

down and make a full contact with the fixed one. 

iii. The usual consolidation, tilting, and iteration 

process. 

However, the closing of the gap did not alter the independent 

block behaviour as can be seen in Figure 5.11. 

Comparison of all the tilted and fixed models led 

to the conclusion that the tilting itself was the real cause 

of the independent block behaviour because none of the fixed 

models ever failed independently. 	Therefore, to avoid any 

wrong impression and decision about the behaviour of a model, 

it is concluded that progressive tilting should not be used. 

On the other hand, it seems unjustified to jump to such a 

general conclusion from the observation of double block models 
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Figure 5.10- Tilting from a stable inclination for double block system. 
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Figure 5.10- Continued. 
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Figure 5.10— Continued. 



Tilting ends 
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Figure 5.11- Independent block behaviour in spite of ensuring full 

contact between blocks 1 and 2.' 
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TCP.DNAL. TWO BLOCK CASE R/B=3 F!:200. TETA=180. 01=1E-4 SN:6E•6 

BLOCK PLOT 	NUMBER OF PROBLF.  UNITS PER INCH 	100.00 	CYCLE NUMBER = 10000 

Figure 5.11- Continudd. 
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which apparently is a highly sensitive configuration for 

this method (D.R.). 

As stated earlier, models with blocks of various 

Rs were to be tested to investigate the mode of behaviour. 

The movements of the block corners were monitored using 

shear and normal forces developed. 	Quite an agreement was 

seen with the limiting equilibrium results. 	For all ratios 

(R = 3, 5, 10) the lower block slid downward first and con- 

tinued to slide for a while with the rotation. 	In the later 

stages of failure it was found that the upper block slid 

uphill. 	As R became greater the backward sliding started 

to take place at earlier stages of the failure. 	This is 

illustrated in Figure 5.12 which shows the 3", 5", and 10" 

height blocks after 4500 cycles when the backward sliding 

was initiated. 

While the 3, 5 and 10 inch height blocks were be-

having consistently without any sign of numerical distortion, 

the 7" height model acted unusually with a sudden blow out 

at cycle 677 as shown in Figure 5.13. 	There was nothing odd 

as far as the input parameters and operational procedure were 

concerned. 	As a matter of fact the program gave stable 

solutions up to the 677 th. cycle. 	One wonders whether a 

particular statement in the program triggers off such a 

violent response when very specific conditions are met. 

This would have been checked by carrying out all the calcu-

lations manually for the 677 th. cycle if the author had 

enough time. 
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TOPANAL. IMO BLOCK CASE RP5.3 /WOO. ILIA:111.400Tz1E-4 5Nz6E.6 

BLOCK not 	AMBER OF Pitmen toms PER INCH z 100.00 CYCLE NUMBER z 4500 

10P.ANAL. IWO BLOCK CASE A/Oz5 F1:200. imm.sool=u-4 
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BLOCK PLOT 	NUMBER OF y1. 	15 PER INCH z 40.00 	CYCLE NUMBER z 4500 

• 

Figure 5.12- Initiation of backward sliding(of block 2) for 

different ratios,R. 
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Figure 5.13- Anamolous behaviour of the 711  height blocks. 
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The following observations were also made regarding 

the double block behaviour: 

1. A reduction of 6 times in the stiffness (SN) caused the 

stable system to fail. 

SN = 6 x 106 

SN = 1 x 106 

N/m 	stable 

N/m unstable 

e = 18.3°  

DT = 0.0001 

FAC = 0.5 

2. It was thought by doing the opposite, i.e. increasing 

the stiffness, the reverse effect would be obtained. 

But this did not, in fact, happen. 	When the stiffness 

was doubled, the already unstable system failed faster. 

0 = 18.4°  
SN = 6 x 106 N/m .4- cycle 7000. same DT = 0.0001 

3. Halving the time step (DT) increased the number of 

iterations more than twice for the same displacement. 

DT = 0.0001 	cycle 2500,._,
almost 	0 = 18.4°  

same 	SN = 12 x 106 N/m 
DT = 0.00005 	cycle 6000 disp. 	FAC = 0.5 

4. Variation of damping factor (FAC) gave inconsistent results. 

FAC = 0.5 
	

slowest 
	

0 = 18.4°  

FAC = 0.6 
	

fastest 	fl 
	

DT = 0.0001 

FAC = 0.7 
	

in between 
	SN = 6 x 106 N/m 

5.3.3 - Triple and Quadruple Block Tests - 

Having obtained satisfactorily accurate solutions 

for the toppling failure of single and double block models, 

SN = 12 x 106  N/m Ycycle 2500 	disp. FAC = 0.5 
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the triple and quadruple block tests were conducted. 	This 

was mainly to examine the failure modes, needed for a reliable 

limiting equilibrium analysis. 	As the following test results 

will indicate there was not a definite pattern of movements 

for the whole failure process. 	But it became possible to 

get an idea about the general character of the failure mode 

from the overall block movements recorded at regular intervals. 

None of the models in this series were ever subjected to 

progressive tilting. 	The already established values were 

assigned for the important input parameters, such as DT = 

0.0001, FAC = 0.5, SN = 2 x 106 N/m per unit block height. 

5.3.3.1 - Triple block tests - 
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i. 	a/b = 3 	Blocks (1) and (2) always slid forward. 

0 = 25° 	Block (3) first slid forward then stopped 

= 	= 26° 	
sliding and finally started to slide 

backward. 

a/b = 3 

= 35°  

= 20°  

* = 40°  

Block (1) started sliding forward at 

cycle 400. 

Block (3) slid backward starting at 

cycle 600. 

Backward sliding at cycle 1500 took 

place for block (2). 

This test is illustrated in Figure 5.14. 

iii. a/b = 5 
	

First, block (1) slid forward, then 

0 = 15° 
	

(1) and (2) forward, (3) backward, 

= W = 20° 
	finally (1) forward, (3) backward. 

iv. a/b = 5 	Block (1) slid forward always. 

0 = 15° 	Block (2) slid backward mostly. 

= 	= 30° 	Block (3) slid backward mostly. 

To sum up, Blocks (1) and (3) happened to be more active than 

block (2) because they were less restrained. 	Block (1) 

always slid forward. 	Block (3) preferred backward sliding 

mostly but occasional downhill slips occurred when ti) was high. 

Block (2), when moved, seemed to be more affected by the 

frictional resistance at the base (4)) in the same way as 

Block (3). 



TOP. ANAL.THREE CLOCK CASE Fue-3 F1=200. YETA:3S0. OT=IE-4 SN:5*6 

BLOCK PLOT 	NUr.bER CF PkObLEM UNITS PER INCH = 65.00 	CYCLE NUMBER = 400 

TOP. ANAL.THREE BLCCK CASE A/B=3 F1=200. TETA=3S0. OT=1E-4 SN=6C4 

BLOCK PLOT 	NUMBER OF PROBLEM UNITS PER INCH = 65.00 	CYCLE NUMBER = 600 

..,■•■•■•• 

Figure 5.14- Toppling of triple block system. 
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BLOCK PLOT NUMBER OF PROULEM uNIT5 PER INCH : 65.00 	CYCLE NUMBER - 1000 

TOP. ANAL.THREE BLOCK CASE A/3:3 FI:200. TE1A:350. OT:JE-4 SN:6E•6 
ti 

TOP. ANPL.THREE BLOCA CASE A/8=3 FI:200. TETA:350. OT:1E-4 5N:6E.6 

BLOCK PLOT 	NUMBER OF PROBLEM. UNITS PER INCH 	65.00 	CYCLE NUMBER : 1500 

Figure 5.14- Continued. 
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5.3.3.2 - Quadruple Block Tests - 

The observations are tabulated to show how the block move-

ments vary at different stages of the failure process. 
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1. a/b = 5, 6 = 20°, 	= 	= 30°  

CYCLE NO. 	BLOCK (1) 	BLOCK (2) 	BLOCK (3) 	BLOCK (4)  

	

400 	- 	F.S. 	- 	F.S. 

	

500 	F.S. 	- 	- 	- 

	

600 	- 	F.S. 	- 	B.S. 

	

700 	F.S. 	F.S. 	B.S. 	F.S. 

	

800 	F.S. 	- 	- 	- 

	

900 	- 	F.S. 	- 	B.S. 

	

1000 	- 	- 	B.S. 	B.S. 

	

1100 	F.S. 	- 	- 	B.S. 

	

1200 	F.S. 	F.S. 	F.S. 	B.S. 

	

1300 	F.S. 	F.S. 	B.S. 	B.S. 

	

1400 	F.S. 	- 	- 	B.S. 

	

1500 	F.S. 	- 	- 	B.S. 

	

1600 	F.S. 	B.S. 	B.S. 	B.S. 

	

1700 	F.S. 	- 	B.S. 	B.S. 

	

1800 	F.S. 	B.S. 	- 	B.S. 

	

1900 	F.S. 	- 	B.S. 	B.S. 

	

2000 	F.S. 	- 	? 

	

2100 	F.S. 	F.S. 	B.S. 	B.S. 

	

2200 	F.S. 	B.S. 	B.S. 	- 

2300-2500 	F.S. 	- 	- 	- 

T 	F.S. = 18 	N.S. = 12 	N.S. = 12 	B.S. = 13 
0 

N.S. = 4 	F.S. = 7 	B.S. = 8 	N.S. = 7 

A 	B.S. = 3 	F.S. = 1 	F.S. = 2 
L 

	

Note:  F.S. 	Stands for "Forward Sliding" 

	

B.S. 	Stands for "Backward Sliding" 
N.S. and (-) Stands for "No Sliding" 

No record available 

Table 5.1 History of block movements for quadruple-block 
model (1). 
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ii. 	a/b = 5, 0 = 18.5°, (I) = 40 0, 	= 20°  

This test is illustrated in Figure 5.15. 

CYCLE NO. BLOCK 	(1) BLOCK 	(2) BLOCK 	(3) BLOCK 	(4) 

400 F.S. - F.S. 

500 F.S. F.S. - 

600 F.S. - F.S. 

700 - - F.S. 

800 F.S. F.S. F.S. B.S. 

900 F.S. F.S. F.S. 

1000 F.S. F.S. - B.S. 

1100 F.S. F.S. - F.S. 

1200 F.S. F.S. - B.S. 

1300 F.S. F.S. - B.S. 

1400 F.S. F.S. F.S. B.S. 

1500 F.S. F.S. F.S. B.S. 

1600 F.S. F.S. - B.S. 

1700 F.S. F.S. - B.S. 

1800 F.S. F.S. B.S. B.S. 

1900 F.S. - - B.S. 

2000 F.S. F.S. B.S. B.S. 

2100 F.S. F.S. B.S. B.S. 

2200 F.S. - - B.S. 

2300 F.S. F.S. B.S. B.S. 

2400 F.S. B.S. B.S. ? 

2500 F.S. F.S. - B.S. 

2600 F.S. B.S. - 

2700 F.S. B.S. - 

2800-3000 F.S. - - 

T F.S. 	= 26 F.S. 	= 16 N.S. 	= 15 B.S. 	= 15 
0 N.S. 	= 1 N.S. 	= 8 F.S. 	= 7 N.S. 	= 10 

A B.S. 	= 3 B.S. 	= 5 F.S. 	= 1 
L 

Table 	5.2 History of block movements for quadruple-block 
• model (ii). 
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TOP. ANAL. FOUR BLOCK CASE A/B=5 F1:400. P5I=200. TETA=18.500i=1E-4 SN=10E.05 

BLOCK PLOT 	NUMBER OF PROBLEM UNITS PER INCH = 40.00 	CYCLE NUMBER = 1000 

TOP. Pin. FOUR BLOCK CASE A/B=5 	PSI=200. TETA=18.500T=1E-4 SN=10E.6 

BLOCK PLOT 	NUMBER OF PROBLEM UNITS PER INCH = 40.00 	CYCLE NUMBER = 1500 

Figure 5.15- Failure of quadruple block system. 
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TOP. ANAL. FOUR BLOCK CASE R/B:S FI:400. PSI:200. TETA:18.5COTsIE-4 SN=10E•6 

BLOCK PLOT 	NUMBER OF PROBLEM UNITS PER INCH = 40.00 	CYCLE NUMBER = 2000 

TOP. ANAL. FOUR BLOCK CCSE A/BsS FI:400. PSI:203. TSTA=18.5001:1E-4 S4:1OE•6 

BLOCK PLOT 	 NUMBER OF FROWN UNITS PER INCH s 40.00 	CYCLE NUMBER 	3003 

Figure 5.15- Continued, 
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iii. a/b = 7, 	0 = 10.5°, (1) = 	= 20°  

CYCLE NO. 	BLOCK (1) 	BLOCK (2) 	BLOCK (3) 	BLOCK (4)  

	

300 	F.S. 

	

700 	F.S. 

	

900 	F.S. 

	

1000 	F.S. 	F.S. 	- 	B.S. 

	

1100 	F.S. 

	

1200 	F.S. 	B.S. 	- 	B.S. 

	

1300 	F.S. 

	

1400 	- 	- 	B.S. 	B.S. 

	

1500 	F.S. 	- 	- 	B.S. 

	

1600 	- 	F.S. 	F.S. 

	

1700 	- 	- 	F.S. 

1800-1900 	- 	F.S. 	B.S. 	B.S. 

	

2000 	F.S. 	B.S. 	B.S. 	B.S. 

	

2100 	F.S. 	F.S. 

	

2900 	F.S. 	F.S. 	B.S. 

	

2300 	F.S. 	- 	- 	F.S. 

	

2400 	F.S. 	F.S. 	- 	B.S. 

	

2500 	F.S. 	F.S. 	F.S. 

	

2600 	F.S. 	B.S. 	B.S. 	B.S. 

	

2700 	F.S. 	- 	B.S. 	B.S. 

	

2800 	- 	F.S. 	B.S. 	B.S. 

	

2900 	F.S. 	- 	- 	B.S. 

	

3000 	F.S. 	F.S. 	B.S. 	B.S. 

T 	F.S. = 18 	N.S. = 11 	N.S. = 12 	B.S. = 13 
0 

N.S. = 6 	F.S. = 10 	B.S. = 9 	N.S. = 10 

A 	B.S. = 3 	F.S. = 3 	F.S. = 1 
L 

Table 5.3 History of block movements for quadruple-block 
model (iii). 
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iv. 	a/b 	= 

CYCLE NO. 

7, 	8 	= 33°, 	4 	= 	= 40°  

	

BLOCK (1) 	BLOCK 	(2) BLOCK (3) 	BLOCK 	(4) 

300 

400 

- 

- 

- 

B.S. 

B.S. 	B.S. 

- 	- 

500 B.S. 

600 F.S. 

700 F.S. F.S. B.S. 

800 

900 F.S. B.S. B.S. 

1100 F.S. B.S. 

1200 F.S. B.S. 

1500-1600 F.S. 

1800 F.S.

•2000 	F.S. 

2400-2800 F.S. 

T F.S. 	= 15 	N.S. 	= 	13 N.S. = 	16 	N.S. 	= 13 
0 

N.S. 	= 3 	B.S. 	= 	3 B.S. = 	2 	B.S. 	= 4 

A F.S. 	= 	1 
L 

Table 	5.4 History of block movements for quadruple-block 
model (iv). 
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v. a/b = 10, e = 11.5°, 	= 	= 30°  

CYCLE NO. 	BLOCK (1) 	BLOCK (2) 	BLOCK (3) 	BLOCK (4)  

700 	- 	F.S. 	- 	- 

1100 	- 	B.S. 	- 	- 

1200 	F.S. 	B.S. 	- 	- 

1300 ' 	F.S. 	F.S. 	- 	- 

1400 	F.S. 	- 	- 	B.S. 

1500 	- 	- 	F.S. 	B.S. 

1600 	- 	B.S. 	- 	B.S. 

1700 	F.S. 	- 	B.S. 	B.S. 

1800 	- 	B.S. 	F.S. 	- 

1900 	F.S. 	F.S. 	- 	B.S. 

2000 	F.S. 	B.S. 	- 	B.S. 

2100 	F.S. 	- 	B.S. 	B.S. 

2200 	F.S. 	B.S. 	F.S. 	B.S. 

2300 	- 	B.S. 	B.S. 	B.S. 

2400 	F.S. 	B.S. 	- 	- 

2500 	F.S. 	B.S. 	- 	B.S. 

2600 	F.S. 	F.S. 	B.S. 	B.S. 

2700 	- 	- 	B.S. 	B.S. 

2800 	F.S. 	B.S. 	- 	B.S. 

2900 	F.S. 	- 	- 	B.S. 

3000 	- 	B.S. 	- 	B.S. 

3100 	F.S. 	B.S. 	- 	B.S. 

T 	F.S. = 14 	B.S. = 12 	N.S. = 14 	B.S. = 16 
0 

N.S. = 8 	N.S. = 6 	B.S. = 5 	R.S. = 6 

A 	F.S. = 4 	F.S. = 3 
L 

Table 5.5 History of block movements for quadruple-block 
model (v). 

Here too, the flank blocks (1) and (4) almost always 

slid downhill and uphill respectively, the former being more 

pronounced. 	Block (2) was mostly stationary, otherwise 

tended to slide forward except when the ratio R was high 
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when it preferred uphill sliding. 	Block (3) was even less 

active in respect of sliding and almost always remained 

fixed, otherwise it slid backwards. 

5.3.4 - Blocks of Unequal Size - 

Having obtained satisfactory solutions for the 

'models of equal height blocks, the scope of the D.R. program 

was extended to handle unequal height block systems. 

Although, at first, it appeared to be quite an easy job to 

modify the program, it was, in fact, the opposite. 	The part 

connected with selection and updating of the neighbours 

needed substantial changes, and therefore to save time, 

information regarding the neighbours for each block was fed 

into the program in the form of data. 	Appendix B gives 

a listing of the modified version of the program. 

Two different models were constructed: one with 

a plane base, and the other with a stepped base. 	The former 

was a replica of the physical model reported in Chapter 3. 

The latter was to compare with Bray's8  limiting equilibrium 

solution. 

5.3.4.1 - Plane Base Model - 

The geometry of the model was that of the 9-column 

tilting frame model described in Chapter 3 (page 147). 	The 

failure of the computer model took place in a very similar way 

to that of the physical model as shown in Figure 5.16. 

The first block (1" height) slid forward having been pushed 

down by a set of toppling columns. 	A couple of blocks at 
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TOP. ANAL. MULTI BLOCK A/B:0IF. F1=300. TETA:25 O. OT=IE-4 SN_2E•6 

BLOCK PLOT NUMBER OF PROBLEM UNITS PER INCH 	65.00 	CYCLE NUMBER 	0 

 

TOP. PNPL. MULTI SLITLK 	F:=30 O. TETA:2::. O. 01=1E-4 SN=2E.6 

BLOCK PLOT 	NUMBER OF PROBLEM UNITS PER INCH = 65.00 	CYCLE NUMBER = 600 

Figure 5.16- Plane base multiple block model. 



TOP. Rpm. MULTI BLOCK R/B=DIF. FI=30 D. TETR=25 O. OT:1E-4 5N=2E•6 

BLOCK PLOT 	 NUMBER OF PROBLEM UNITS PER INCH = 65.00 . 	CYCLE NUMBER = 1000 

TOP. RNAL. MULTI BLCCK 4/13=01F. Fi=30 G. TETR=25 D. 01=1E-4 5N=2E•6 

BLCCK PLOT 	 NUMBER OF P,.OBLEM LNITs PER INCH = 65.00 	CYCLE NUMBER = 2000 

Figure 5.16- Continued. ' 
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the back stood still, helping the formation of a tension 

crack. 	The reader's attention is drawn to the similarity 

between the photograph (b) of plate 3.XIV (page 150) and 

the drawing for cycle 2000 of Figure 5.16 (the 3" height block 

at the back toppled in the computer model owing to the 25°  

inclination of the base plane to the horizontal (0) as 

compared to 16°  in the physical model). 

5.3.4.2 - Stepped Base Model - 

Bray's8  analysis for the geometry illustrated in 

Appendix A gives a friction angle of 41.14°  for limiting 

conditions. 	The same geometry was reproduced as the com- 

puter model and the friction angles of 38, 40, 42, 44 and 

46 degrees were tried. 	The models with 4) equals 38°, 40°  

and 42°  failed. 	Obviously, the number of iterations to 

define the block movements increased with increasing 4). 

Models with the friction angle of 44°  and 46°, first showed 

the sign of instability with a slight opening between the 

5th and 6th columns, but this should have been due to con- 

solidation since they remained stable. 	More important than 

the agreement in friction angle was the remarkable similarity 

in behaviour between the limiting equilibrium analysis and 

the Dynamic Relaxation Method. 	As illustrated in Figure 

5.17, block 1 slid down, blocks 2, 3, 4 and 5 toppled, 6, 7 

and 8 remained stable exactly as in the limiting equilibrium 

analysis. 	The tension crack formed at the location as pre- 

dicted by the L.E. method. 	The similarity between the 

Figure 4.12 of Chapter 4 and the drawing for cycle 13000 of 

Figure 5.17 demonstrates this visually. 	Such a comprehensive 



BLOCK PLOT CYCLE NUMBER = 2000 NuiBER CF PROBLEM UNITS PER INCH = 1.80 

TOP. ANN.. STEPPED 2na F1=38 D. TETA=21.8 D. DT-1E-4 	SN=2E.7 

TOP. ANAL. STEPPEO BASE FI=38 D. TETRF21.8 O. DT=IE-4 	5N=2E47 

BLOCK PLOT 	NUMBER OF PROBLEM UNITS PER INCH = 1.80 	CYCLE NUMBER = 0 

Figure 5.17- Stepped base multiple block model,. 
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NUMBER OF PROBLEM UNITS PER INCH = 1.80 	CYCLE NUMBER = 4000 BLOCK PLOT 

TOP. ANAL. STEPPED BASE FI=33 D. TETA=21.8 D. OT=IE-4 	SN:2E0 

• 
TDP. Runt— STEPPED BAH F/.133 O. TETA=21.8 O. DT=1E-4 	SN=2E.7 

BLOCK PLOT 	NUMBER OF PROBLEM UNITS PER INCH 	1.80 	CYCLE NUMBER = 6000 
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Figure 5,17- Continued. 



1CP. mini— STEPPED BP5E.  F1=313 O. TETA:21.6 D. Di=1E-4 	SN:2E0 

HUMBER OF PROBLEM UNITS PER INCH = 1.80 	CYCLE NUMBER r 13000 BLOC.< PLOT 

TOP. ANPIL. SIEPPEO BASE F1=38 D. IETA:21.8 O. DT:1E-4 	SH=2E.7 

BLOCK PLOT 	NUMBER OF PROBLEM UNITS PER INCH = 1.80 	CYCLE NUMBER = 9000 
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Figure 5.17— Concinued. 
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agreement obviously increases the credibility of both tech-

niques. 

5.4 Conclusions 

From the tests conducted the following conclusions 

emerged: 

'1. The D.R. program accurately simulated toppling as well 

as sliding. 

2. Single and double block tests, agreeing with the L.E. 

solutions, gave satisfactory results. 	However, the 

use of progressive tilting as an experimental procedure 

to obtain better solutions was found to produce con-

flicting results. 

3. The investigation for failure modes of triple and quad-

ruple block systems yielded the fact that there was not 

a unique pattern of movement for the whole failure 

process but various modes at different stages. 

4. The models of multiple blocks with unequal heights failed 

agreeing with the physical (tilting frame) and theore-

tical (L.E.) models. 

Despite its shortcomings (perfectly rigid blocks 

only) and the difficulties involved in reaching acceptable 

solutions (high inertia forces, the brevity of stable time 

step), the D.R. method proved to be applicable for the 

analysis of toppling failure in a blocky rock system where 

mechanistically controlled movements play the dominant part 

in failure process. 
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CHAPTER SIX 

SUMMARY OF CONCLUSIONS 

In dealing with slopes, Rock Mechanics has long 

been influenced by the principles of Soil Mechanics. 

,Therefore, "sliding" has been considered until recently 

the basic mode of behaviour for rock slopes. 

However, recent theoretical developments, supported by 

physical and numerical model studies and by field obser-

vations have led to increased interest in toppling as a 

mode of failure in rock slopes. 	Although the present 

level of knowledge for this mode of behaviour is in no way 

adequate for design purposes. practising slope engineers 

should be aware of its dangers especially when steep slopes 

are to be cut in columnar structures formed by subvertical 

joint sets. 

Despite their qualitative character, base friction 

models were found to be producing useful information in 

various ways. 	It was shown that in the 1967 failure at 

Old Delabole slate quarry (Cornwall) toppling was the pre-

dominant mechanism, models being constructed, initially on 

a trial-and-error basis, to attempt to match the post-failure 

features observed in the field. 

The physical model tests in the exploration of 

toppling gave results consistent with the previous investigators 

in most areas. 	Base friction models of continuous columns 

and cross-jointed columns, and tilting frame models of con- 
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tinuous columns were constructed and tested. 	The base 

friction test results for the continuous column models 

revealed that the flexural strength of the columns together 

with the degree of restraint shown by the toe block(s) were 

the dominant factors controlling toppling failure. 	More 

stable slopes were obtained with increasing slope height 

due to the accompanying increase in the number of columns 

comprising the base of the slope. 	On the contrary, the 

stability of the slope appeared to be very sensitive to the 

variation in slope angle, regardless of the number of columns 

constituting the base of the slope. 	The cross-jointed slopes 

were found to be more stable than the continuous column slopes. 

They failed less severely with less disturbance at the toe. 

Taking all the base friction tests into account, the slopes 

having 600-65o slope angle seemed to be in limiting conditions. 

The slopes of 70°  ore more all failed quickly. 

The accuracy expected from the tilting frame tests 

was not attained, mainly due to the use of plaster blocks. 

The wearing off of small scale asperities on the surfaces 

caused unacceptable variations in the friction angle. 

Inaccurate block dimensions hindering full surface to surface 

contact, was another source of distortion, observed particular-

ly in the case of multiple blocks of equal height. 

The analysis of limiting conditions for the toppling 

of multiple column systems revealed that rotation was generally 

accompanied by forward sliding of the lower block(s). 	But 

the likelihood of backward sliding was found to increase 
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with increasing column height. and with increasing inter- 

columnar friction angle in the double block case. 	When 

compared to the tilting frame models, the limit equilibrium 

approach was found to be giving more stable solutions. 

The Dynamic Relaxation Block Program, producing 

solutions for both equal and unequal height block systems 

in agreement with the physical and theoretical models, 

proved to be capable of handling the overturning mode of 

failure satisfactorily. 	Its versatility, obviously, will 

be doubled when it is used in conjunction with a Finite 

Element program to simulate the block cracking. 

This research has been directed towards the study 

and improvement of available techniques for toppling analysis 

rather than developing a method for design. 	In the light 

of all the findings the following remarks can be made. 

a. Base friction models can safely be used for 

a preliminary investigation. 	Complex structures can be 

modelled with ease. 	For more reliable results boundary 

effects should be eliminated. 	Flexural strength of the 

columns, being an important parameter, can be adjusted 

(by the degree of compaction, the percentage of constituent 

materials, or the thickness of the slab) for a better 

representation of the field situation. 

b. In tilting frame tests, careful consideration 

must be given to the type of block. 	If possible plaster 

blocks should not be used, but perspex or steel instead for 

consistent frictional properties. 	This method also suffers 
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from the imposition of a compulsory incline which may not 

have a counterpart in the field. 

c. Limit equilibrium analysis is probably the most 

practical of all because it gives a factor of safety at the 

end. 	But this method is restricted to simple structures 

on account of the need for, the failure mode to be known. 

d. The Dynamic Relaxation technique is superior 

to limit equilibrium in view of its ability to model progressive 

failure and complex joint structures. 	However, this method 

requires certain amount of experience to optimize a number 

of input parameters such as time step, joint stiffness and 

damping factor for a realistic result. 	Although, at the 

present, this technique is a research tool rather than a 

design tool it is very promising for the future. 
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APPENDIX A 

L.E. PROGRAM FOR STEPPED BASE MODEL 

PROGRAM CAL(INPUT,OUTPUT,TAPE5= INPUT,TAPE6 = OUTPUT) 

PARAMETERS- 	Y = HEIGHT OF THE COLUMNS 

W = WEIGHT OF THE COLUMNS 

P = INTERBLOCK FORCE 

Z = DISTANCE FROM BASE TO APPLICATION OF P 

AL = INCLINATION OF THE BASETO THE HORIZONTAL 

DX = THICKNESS OF COLUMNS 

G = DENSITY 

DIMENSION Y(8),W(8),F(8),Z(8),zB(8) 

AL = 21.8 

PI = 3.141592654 

G = 1, 

DX = 1. 
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TI = 1.5 

TD = 0.4 

BI = 0.5 

NMID = 4 

MAX = 8 

RMU1 = 0. 

WRITE(6,300)ALIG,DX,TI,TD,BIOMID,MAX 

300 FORMAT(*AL = *,F5.2,5X,*G = *,F5.2, 5X,*DX = *,F5.2,5X,*TI = *,F5.2,5X,*TD 

C = *,F5.2,5X,*BI = *,F5.2,5X,*NMID = *,I3,5X,*MAX 

N = 2 
Y(1) = 1. 
AL = AL*PI/180. 
COAL = 1./TAN(AL) 
TCF = DX*COAL 

20 Y(N) = 

N = N+1 

IF(N.GT.NMID)GO TO 10 

GO TO 20 

10 Y(N) = 

N = N.+1 

IF(N.GT.MAX)G0 TO 30 

GO TO 10 

30 N = NMID 

60 IF(Y(N).GT.TCF)G0 TO 40 

I = 

GO TO 50 

40 N 
IF(N.LE.MAX)C0 TO 60 

WRITE(6,100) 

100 FORMAT(* NO TENSION CRACK IS FORMED *) 

50 CONTINUE 

-CONTINUE STATEMENT IS NOT DO TERMINATOR 

M= NIMD-1 
DO 15 N = 1,14 

Z(N). = Y(N) 

W(N) = G*Y(N)*DX 

15 CONTINUE 

DO 25 N = NMID,I 

Z(N) = Y(N) 	TD 

W(N) = G*Y(N)*DX 

25 CONTINUE 
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ZB(1) = O. 

DO 35 N = 2,NMID 

ZB(N) = Y(N) - TI 

35 CONTINUE 

L.= NMID + 1 

DO 45 N = LtI 

ZB(N) = Y(N) 

45 CONTINUE 

PNM1 = O. 

RMU = 0.8 

- NAME - RMU SAME AS STANDART FUNCTION AND REMOVES FUNCTION FROM USE 

DELTA = 0.1 

160 CONTINUE 

-CONTINUE STATEMENT IS NOT DO TERMINATOR 

WRITE(6,800)RMU 

800 FORMAT(' 	 RNU = *,F8.6.* 	 

WRITE(6,600) 

600 FORMAT(* BLOCK NO.*,10X,*P-TOP,*,15X,*P-SIL.*,_5X,*PNM1*/*• 	 

C-*,10X,* 	*115X* 	*215X,*----*) 

N = 1 

90 	PNT = (PNM1*ZB(N)-1-(W(N)/2.)*(DX*COS(AL)-Y(N)*SIN(AL)))/(Z(N)-RMU*DX) 

PNS = PNM1 	(W(N)*(RMU*COS(AL)-SIN(AL)))/(1.-RMU*RMU) 

IF(PNS.LT.PNT)GO TO 70 

p(N)=PNT 

GO TO 80 

70 P(N) = PNS 

80 CONTINUE 

- CONTINUE STATEMENT IS NOT DO TERMINATOR 

IF(P(N).LE.0.)G0 TO 170 

PNM1 = P(N) 

WRITE(6,700)N,PNT,PNS,PNM1 

700 FORMAT(4X,13,9X,E14.6,7X2E14.6,6X,E14.6) 

N = N+1 

IF(N.LE.I)G0 TO 90 

WRITE(6,400) 

400 FORMAT(* BLOCK NO.*I1OWY*,16WW*$18WP*,19WZ*,16X,*ZB*/*---- 

C 	*t9X3* *214X,*- *316X,* *,17X,* *,14X2* 	*) 

DO 55 N = 1,I 

55 WRITE(6,500)N2Y(N),W(N),P(N),Z(N),ZB(N) 

500 FORMAT(4X,I3,EX,E14.6,3X,E14.6,5X,E14.6,6V14.6,4X,E14.6) 

_THU = RMU 
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APN = ABS(P(I)) 

IF(APN.GT.0.00001)G0 TO 110 

WRITE(6,200)RMU 

200 FORMAT(* COEFFICIENT OF FRICTION = *,E15.6/1X,* 

C---*) 

GO TO 120 

110 CONTINUE 

IF(P(I).GT.0.)G0 TO 130 

—CONTINUE STATEMENT IS NOT DO TERMINATOR 

170 RMU = RMITI-DELTA 

GO TO 140 

130 CONTINUE 

IF(RMU.EQ,RMU1)DELTA= DELTA/10. 

—CONTINUE STATEMENT IS NOT DO TERMINATOR 

—IS FLOATING POINT EQUALITY TO BE EXPECTED 

RMU1 RMU 

RMU = RMU—DELTA 

140 CONTINUE 

—CONTINUE STATEMENT IS NOT DO TERMINATOR 

IF(RMUeLE,0.)G0 TO 150 

IF(RHU.GE.16)GO TO 150 

PNM1 = O. 

GO TO 160 

150 DELTA = DELTA/10. 

RMU = TMU 

PNM1 = O. 

GO TO 160 

120 STOP 

END 
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APPENDIX B 

D.R. PROGRAM FOR DIFFERENT HEIGHT BLOCKS 

Notes: 

1. The program is run in three steps: 

a- creation of the program library 

b- updating 

c- feeding the input data 

2. The neighbours of each block should be fed into the program in the form 

of data. 

3. The plotting routines are for the Imperial Coll ge display system. 

List of Variables:  

NRREST = 0 —Start run (=2 —Restart run) 

A- spacings of westerly dipping discontinuities 

B- spacing of easterly dipping discontinuities 

DIPA- dip of westerly dipping discontinuities(degrees) 

DIPB- dip of easterly dipping discontinuities(degrees) 

NROV- number of rows of block 

NBASE- number of base blocks for generating block assemblage 

DT- time step(based on equivalent block stiffness) 

FAC- damping factor 

NCYLE- no. of cycles for the run(for restart run 	accumulative total) 

IPRINT- the regular cycle interval at which printer output is required 

ITR- iteration number 

IWHEN- similar to IPRINT but for plotter output 

IZCYC = 0 --->no zero cycle plot is generated 

IZCYC = 1---4.zero cycle plot is generated 

NWREST = 0 —>no restart tape is written 

NWREST = 1---,restart tape is written after program has run for a required 

number of cycles 

SCAL- block geometry scaling for plotting 

SCALT- not used 

VECL- length of maximum velocity vector in inches for plotting 

XORIG-:x position of origin for plotting 

YORIG- y position of origin for ploting 

NEIB- interval at which neighbour blocks are updated - this is automatically 

done at the commencement of a restart 
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SN- normal stiffness (= shear stiffness) 

RSD- residual friction angle (degrees) 

DMU- peak friction angle (degrees) 

RHO- material density 

GRAY- gravitational acceleration (vertical) 

NREM- number of blocks removed 

BMASS- mass of block 

BMOI- moment of inertia 

NON- total number of blocks 

FXX- force in x direction acting on block 

FYY- force in y direction acting on block 

SMM- moment acting on block 

OVLN- normal overlap of corner 

OVLS- shear overlap of corner 

SF- shear force acting on corner 

VXN- velocity in x direction of block 

VYN- velocity in y direction of block 

AVN- angular velocity of block 

CX- x coordinate of block centroid 

CY- y coordinate of block centroid 

ANT- angle of major axis with x axis(c.c.w—>+ ve) 
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*COMDECK GENALL 

COMMON/GENALL/CX(100),CY(100),ANT(100),A(100),AA(100),BB(100), 

C 	ANN(100),BNN(100),BMASS(100), BMOI(100),FF(100),B, 

C 
	

DIPA,DIPB,RHO,NBASE,NROW,HH,NON,SNIGRAV,RAT10,SCAL, 

C 
	

PI,SCALT,ITR,IZCYC,TITLE (20),IAXIS(100) 

*COMDECK MAIN 

COMMON/MAIN/FXX(100),FYY(10),SMM(100),OVLN(100,12)0VLS(100,12), 

SF(100,12),VXN(100),VYN(1O0),AVN(1O0),FPCYC(10O), 

SMPCYC(100) 

*COMDECK CNEIGH 

COMMON/CNEIGH/NEIGH(100,8),N(4,3)NREMOV(30),NREM 

*COMDECK CCOOR 

COMMON/CCOOR/DMOVE(100),WEIGHT(100),BETA1(100),BETA2(100),X0RIG, 

C 	Y.ORIG,IFIXED,IFIX(50) 

*DECK MAINL 

PROGRAM TEST (INPUT = 1002,OUTPUT,TAPE5 = INPUT,TAPE6 = 1002,TAPE62, 

*TAPE4 = 1002) 

*CALL GENALL 

*CALL MAIN 

(*CALL CNEIGH 

*CALL CCOOR 

DIMENSION GEN(1236),AMAI(4400),CNE(843),CC1(453),REMOV(7) 

EQUIVALENCE (CX,GEN),(FXX,AMAI),(NEIGH,CNE),(DMOVE,CC1) 

DATA DEGREE,PI/0.017453292519943,3.1415926358979/ 

READ(5,198)(TITLE(I),I = 1,8) 

ITR = 0 

198 FORMAT(8A10) 

READ(5,700)DUM,RREST 

700 	FORMAT(A5,F10.0) 

NRREST = RREST 

IF(NRREST.NE.2)G0 TO 703 

READ(4)(GEN(I),I = 1,1236),(AMAI(I),I = 1,4400),(CNE(I),I = 1,843), 

"*(CC1(I),I = 1,453) 

703 	CONTINUE 

WRITE(6,197)(TITLE(I),I- = 1,8) 

197 	FORMAT(1H,8A10) 

WRITE(6,399) 

399 	FORMAT( * CARD 	FIELD 1 	FIELD 2 	FIELD. 3 

*FIELD4 	FIELD 5 	FIELD 6 	FIELD 7*,//) 

WRITE(6,701)DUM,RREST 

701 	FORMAT(1H2A59E15.6) 

READ(5,100)NC,HEIGHT,B,DIPA,DIPB,ANROW,ANBASE 

NROW = ANROW 
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NBASE = ANBASE 

WRITE(6,101)NC,HEIGHT,B,DIPA,DIPB,ANROW2ANBASE 

READ(5,100)NCATIFAC,CYCLES,PRINT,WHEN,ZCYCLE,WREST 

NWREST = WREST 

NCYCLE = CYCLES 

IWHEN = WHEN 

IZCYC = ZCYCLE 

IPRINT = PRINT 

WRITE(6,101)NC,DT,FAC,CYCLES,PRINT,WHENIZCYCL,WREST. 

READ(5,100)NC,SCAL,SCALT,VECLIXORIG,YORIG,ANEIB 

NEIB = ANEIB 

WRITE(6,101)NC,SCAL,SCALT,VECL,XORIG,YORIG,ANEIB 

READ(5,100)NC,SN,RSD,DMU,RHO,GRAV 

100 	FORMAT(15,7F10.0) 

WRITE(6,101)NC,SN,RSD,DMU,RHO'GRAV 

101 	FORMAT(11-1215,7E15.6/) 

READ(5,100)NC,(REMOV(I),I = 1,7) 

WRITE(6,101)NC,(REMOV(I),I = 1,7) 

NREM = REMOV(1) 

DC 713 I = 2,7 

713 	NREMOV(I-1) = REMOV(I) 

IF(NREM.LE.6)G0 TO 714 

J = 6 

DO 711 IIJ = 1,10 

READ(5,100)NC,(REMOV(I),I = 1,7) 

WRITE(6,101)NC,(REMOV(I),I = 1,7) 

IF(NC.EQ.99)G0 TO 714 

DO 711 IJ = 1,7 

= J + 1 

711 	NREMOV(J) = REMOV(IJ) 

• 714 	CONTINUE 

TPCON = 1 

CALL PL(IPCON) 

RSD = TAN(RSD*PI/180.) 

DMU = TAN(DMU*PI/180.) 

NTILT = 0 

VV = 0.01 

PII=PI*2. 

RATIO = O. 

DIPA = DIPA*PI/180. 

DIPB = DIPB*PI/180. 
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DELTA = DIPA 

A(1) = HEIGHT 

FF(1) = A(1)/SIN(DIPA-FDIPB) 

DO 228 I =.2,9 

A(I) = A(1) 

FF(I) = FF(1) 

	

228 	CONTINUE 

MID = 12 

NON = 16 

DO 222 I = 10,NON 

IF (I.GT.MID) GO . TO. 333 

A(I) = (I-1)+1. 

GO TO 444 

	

333 	A(I) = A(I-1)-0.9 

	

444 	FF(I) = A(I)/SIN(DIPA-FDIPB) 

	

222 	CONTINUE 

HH = B/ SIN (DIPA DIPB) 

ST = SN 

DISMAX x .01 
IF (NRREST.EQ.2)G0 TO 501 

CALL COORDS 

	

501 	DO 189 I = 1,NON 

WEIGHT( I) = BMASS (I)*GRAV 

	

189 	CONTINUE 

DO 1401 1=1 ,NON 

READ(5,1402) (NEIGH(I,L) ,L =1,8) 

	

1402 	FORMAT ( 8110) 

	

1401 	CONTINUE 

IF(NRREST.EQ.2)GO TO 502 

CALL CONSOL 

	

502 	CONTINUE 

IF(NRREST.EQ.2)GO TO 500 
DO 206 I = 1,NON 

FXX(I) = 0. 

FYY (I) = 0. 

SMM(I) = 0. 

VXN(I) = 0. 

VYN(I) = 0. 

AVN(I) = 0. 

DO 206 J = 1,12 

L 
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OVLN(I,J) = 0. 

OVLS (I, J) = 0. 

206 	SF(I,J) = 0. 

500 	ITR = ITR + 1 

DO 44 I = 1,NON 

FXX(I) = 0. 

FYY(I) = 0. 

SM(I) = 0. 

44 CONTINUE 

DO 68 I = 1,NON 

DAMPN = (FAC*2.*SQRI(SN*BMASS (I) ) ) /DT 

DAMPS = (FAC*2.*SQRT( ST*BMASS (I) ) ) /DT 

IF(NREM.EQ.0)GO TO 256 

DO 156 J = 1,NREM 

IF(NREMOV(J) .EQ.I)G0 TO 68 

156 	CONTINUE 

256 	CONTINUE 

K= 1 

ANTI = ANT(I) 

SI = SIN(ANTI1) 

CO = COS (ANTII) 

IF(IAXIS(I).EQ.1)G0 TO 40 

ANTIC = DIPA + DIPB ± ANTI 

SS = SIN(ANTIC) 

CC = COS(ANTIC) 

ANTII = DIPA + DIPB +ANTI - PI/2. 

SOI = SIN(ANTII) 

COI = COS(ANTII) 

GO TO 41 

40 ANTIC = ANTI + PI - DIPA DIPB 

SS = SIN(ANTIC) 

CC = COS(ANTIC) 

ANTII = ANTI + PI/2. - DIPA - DIPB 

SOI = SIN(ANTII) 

COI = COS (ANTII) 

41 CONTINUE 

UAA = AA(I)*CO 

VAA = AA(I)*SI 

UBB = BB(I)*CC 
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VBB = BB(I)*SS 

DO 65 IL = 1, 4 

LL = 2*IL 

GO TO (1,2,3,4)IL 

1 XX = CX (I) + UAA UBB 

YY = CY(I) VAA VBB 

GO TO 52 

2 XX = CX (I) UAA - UBB 

YY = CY(I) VAA - VBB 

GO TO 52 

3 _XX = CX (I) UAA - UBB 

YY = CY(I) - VAA - VBB 

GO TO 52 

4 XX = CX (I) - UAA UBB 

YY = CY(I) - VAA VBB 

52 J = NEIGH(I,LL - 1) 

GO TO 60 

54 J = NEIGH(I,LL + 1) 

GO TO 60 

55 J = NEIGH(I,1) 

GO TO 60 

53 J = NEIGH(I,LL) 

60 CONTINUE 

LTOUCH = 1 

L = K 

IF (J. EQ.0) GO TO 66 

KONTER = 0 

KONYEJ = 0 

KHECKS = 0 

XD = XX - CX(J) 

YD = YY - CY(J) 

ALPHAJ = ANT ( J) 

SSI = SIN (ALPHAJ) 

CCO = cos (ALPHAJ) 

IF(IAXIS (J).EQ.1)GO TO 69 

ALPHA' = DIPA DIPB ALPHAJ PI/2. 

SII = SIN (ALP1LAI) 

COO = COS (ALPHA') 

ALPHII = DIPA DIPB ALPHAJ 

SOJ = SIN (ALPHII) 

COJ = COS (ALPHII) 
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CO TO 70 

69 ALPHAI = ALPHAJ PI/2. - DIPA DIPB 

SII = SIN(ALPHAI) 

'COO = COS(ALPHAI) 

ALPHII = ALPHAJ PI - DIPA - DIPB 

SOJ = SIN(ALPHII) 

COJ = COS(ALPHII) 

70 CONTINUE 

AJJ =-XD*SSI 4. YD*CCO 

TJJ = XD*CCO YD*SSI 

All = XD*C00 YD*SII 

= XD*SII - YD*C00 

ANI = ABS(AII) 

ANJ = ABS(AJJ) 

IF(ANI.GT.ANN(J).0R.ANJ.GT.BNN(J))G0 TO 66 

C WHEN IF STATEMENT CORRECT NO CONTACT EXSTS BETWEEN I AND J 

C FIND WHAT FACE CORNER PENERTRATES BY THE USE OF ANGLES. CORNER ONE 

C HAS ANGLE OF ZERO. 

IF(ALPHAJ.GT.PII)G0 TO 88 

ALP ==ALPHAJ 

GO TO 89 

88 KALP = ALPHAJ/PII 

ALP = ALPHAJ - KALP*PII 

89 ALPP = ALP + BETA1(J) 

IF(ALPP.GT.PII)ALPP = ALPP - PII 

ALP1 = O. 

ALP4 = PI - BETA1(J) - BETA2(J) 

ALP3 = PI 

ALP2 = PI ALP4 

UCC = AA(J)*CCO 

VCC = AA(J)*SSI 

UDD =BB(J)*COJ 

VDD = BB(J)*SOJ 

C FINDS WHICH FACE OF BLOCK J1  THE CORNER PENERTRATES 

KONTER = 1 

KONTEJ =1 

K1 = 0 

K2 = 0 

ICA = 0 

GM = ABS (CCO) 

IF(GM.LE.1E 	5)00 TO 94 

AF1 = SSI/CCO 



253 

	

121 	GM = ABS ( COJ) 

IF(GM.LE.1E - 5)G0 TO 95 

AF2 = SOJ/COJ 

GO TO 86 

	

94 	K1= 1 

GO TO 121 

	

95 	K2 = 1 

	

86 	X0 = XX - CX(I) 

YO = YY - CY(I) 

GM = ABS(X0) 

IF(GM.LE.1.E - 5)X0 = 1.E 	5 

ACTOC = YO/XO 

BCTOC = YD -XD*ACTOC 

KTOUCH = 0 

KFF = 0 

DO 87 KF = 1,4 

GO TO (96,97,98,99)KF 

96 UU= UCC UDD 

VV = VCC VDD 

AF = AF1 

AP1 = 0 

AP2 = ALP4 

KA= Ki 

GO TO 106 

97 UU = UCC - UDD 

VV = VCC - VDD 

AF = AF1 

AP1 = ALP3 

AP2= ALP2 

KA= KI 

GO TO 106 

98 UU = UCC - UDD 

VV = VCC -VDD 

AF = AF2 

AP1 = ALP2 

AP2 = PII 

KA = K2 

GO TO 106 

99 UU = - UCC UDD 

VV = - VCC VDD 

AF = AF2 
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API = ALP4 

AP2 = ALP3 

KA =K2 

106 	IF(KA.EQ.1)G0 TO 126 

BF = VV - UU*AF 

XF = (BCTOC -BF)/(AF - ACTOC) 

YF = BF + XF*AF 

GO TO 127 

126 	XF = UU 

YF = BCTOC XF*ACTOC 

127 	GM = ABS(XF) 

IF(GM.LE.1E - 5) XF = 1E - 5 

AG = ATAN2(YF,XF) 

IF(AG.LT.0.)AG = PII + AG 

AG = AG - ALPP 

IF 	= AG+PII 

IF(AG.LE.AP2.AND.AG.GE.AP1)G0 TO 107 

GO TO 87 

107 IF(KFF.NE.0.)G0 TO 102 

KFF = KF 

XFF = XF 

YFF = YF 

KTOUCH = 1 

GO TO 87 

102 KFO = KF 

XFO = XF 

YFO = YF 

KTOUCH = 2 

GO TO 103 

87 CONTINUE 

IF(KTOUCH.EQ.0)G0 TO 104 

GO TO (56,77,73,72)KFF 

103 XGF = XFF CX(J) - CX(I) 

YGF = YFF CY(J) - CY(I) 

DGF = SQRT(XGF*XGF YGF*YGF) 

XGF = XFO CX(J) - CX(I) 

YGF = YFO CY(J) - CY(I) 

DGO = SQRT(XGF*XGF YGF*YGF) 

IF(DGF.GT.DGO)KFF = KFO 

GO TO (56,77,73,72)KFF 

77 KONTER = -1 
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GO TO 79 

56 CONTINUE 

C CORNER PENERTRATES A FACE PARALLEL TO A MAJOR AXIS (MAJOR FACE) 

79 FFJ = SN*(BNN(J) ANJ) 

OVLNO = OVLN(I,L) 

IF(OVLNO.EQ.O.)OVLNO = ANJ 

DNF = FFJ DAMPN*(OVLNO ANJ) 

DSF = 0. 

C DSF EQUALS ZERO, BECAUSE ONLY NORMAL FORCES ARE INVOLVED IN COMMON 

C BLOCK INTERACTIONS, SINCE THERE IS NO SLIDING PLANE INVOLVED 

OVLSO = OVLS(I,L) 

IF(OVLSO.EQ.O.)OVLSO = TJJ 

SHDJ = TJJ OVLSO 

C SHDJ = DISTANCE OF SHEARING MOTION ALONG A MAJOR FACE 

FSJ = SF(I,L) SHDJ*ST 

NOFSEF = ITR/IPRINT 

NOFSEF = NOFSEF*IPRINT 

IF(NOFSEF.NE.ITR)GO TO 2324 

WRITE(6,2526)ITR,I,FFJ,FSJ 

2526 FORMAT(* CYCLE NO. = *,15,5X,*BLOCK NO.*,12,5X,*NORMAL FORCE = *,1PE16 

C.8.5X2*SHEAR FORCE = *,1PE1668) 

2324 CONTINUE.  

DSF = FSJ SHDJ*DAMPS 

SMAX = FFJ*DMU 

ABF = ABS(FSJ) 

IF(NOFSEF.NE.ITR)GO TO 9512 

IF(SMAX.GT.ABF)GO TO 9293 

NRITE(6,9394) 

9394 FORMAT(100X,* 	SLIDING*) 

9293 CONTINUE 

9512 CONTINUE 

IF(ABF.LE.SMAX)GO TO 719 

FSJ = RSD*FFJ*ABF/FSJ 

DSF = FSJ 

719 CONTINUE 

OVLN(I,L) = ANJ 
OVLS(I,L) = TJJ. 
HOR = ( ONF*SSI)*KONTER DSF*CCO 

VER = (DNF*CCO)*KONTER DSF*SSI 

64 CONTJNUE 

FXX(I) = FXX(I) 	HOR 
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FYY(I) = FYY(I) VER 

FXX(J) = FXX(J) HOR 

FYY(J) = FYY(J) - VER 

SMM(J) = SNM(J) HOR*YD - VER*XD 

SMM(I) = SMM(I) - HOR*Y0 f VER*X0 

SF(I,L) = DSF 

LTOUCH = 2 

GO TO 66 

104 	CONTINUE 

WRITE(6, 201) 

201 	FORMAT(* ERROR IN BLOCK INTERACTION*) 

GO TO 66 

72 KONTEJ = -1 

GO TO 74 

73 	CONTINUE 

C C CORNER PENERTRATES A FACE PARALLEL TO A MINOR AXIS (MINOR FACE) 

74 FFI = SN*(ANN(J) - ANI) 

OVLNO = OVLN(I,L) 

IF(OVLNO.EQ.O.)OVLNO = ANI 

DNF = FFI f DAMPN*(OVLNO - ANI) 

DSF = O. 

OVLSO = OVLS(I,L) 

IF(OVLSO.EQ.0.)OVLSO = TII 

SHDI = TII - OVLSO 

FSI = SF(I,L) 	SHDI*ST 

MINNOS = ITR/IPRINT 

MINNOS = MINNOS*IPRINT 

IF(MINNOS.NE.ITR)GO TO 2728 

WRITE(6,2829)ITR,I,FFI,FSI 

2829 FORMAT(*CYCLE NO. = *,15,5X,*BLOCK NO.*112,5X,*NORMAL FORCE(MIN) = *, 

C1PE16.8,5X,*SHEAR FORCE(MIN) = *,1PE16.8) 

2728 CONTINUE 

DSF = FSI SHDI*DAMPS 

SMAX = FFI*DMU 

ABF = ABS(FSI) 

IF(MINNOS.NE.ITR)G0 TO 7123 

IF(SMAX.GT.ABF)G0 TO 7273 

WRITE(6,8283) 

8283 FORMAT(110X,* 	SLIDING(MIN)*) 

7273 CONTINUE 

7123 CONTINUE 
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IF(ABF.LE.SMAX)G0 TO 720 

FSI = RSD*FFI*ABF/FSI 

DSF = FSI 

720 CONTINUE 

OVLN(I,L) = ANI 

OVLS(I,L) = TII 

HOR = (DNF*COO)*KONTEJ DSF*SII 

VER = (DNF*SII)*KONTEJ f DSF*C00 

GO TO 64 

66 CONTINUE 

IF(LTOUCH.EQ.2)GO TO 67 

SF(I,L) = O. 

OVLN(I,L) = O. 

OVLS(I,L) = O. 

67 	K= K-1- 1 

GO TO (65,54,53,65,54,53,65,54,53,65,55,53,65)K 

65 CONTINUE 

68 CONTINUE 

DO 71 I = 1,NON 

DSST = DT/BMASS(I) 

DOIT = DT/BMOI(I) 

FYY(I) = FYY(I) - WEIGHT(I) 

VXN(I) = VXN(I) FXX(I)*DSST 

VYN(I) = VYN(I).+ FYY(I)*DSST 

AVN(I) = AVN(I) 	SMM(I)*DOIT 

71 CONTINUE 

C THIS SUBROUTINE SETS FIXED BLOCKS VELOCITIES TO ZERO 

DO 10 I= 1,IFIXED 

J = IFIX(I) 

VXN(J) = O. 

VYN(J) = O. 

AVN(J) = O. 

10 CONTINUE 

DO 26 I = 1,NON 

CX(I) = CX(I) VXN(I)*DT 

CY(I) = CY(I) VYN(I)*DT 

ANT(I) = ANT(I) AVN(I)*DT 

26 CONTINUE 

IP = ITR/IPRINT 

IP = IP*IPRINT 

IF(IP.EQ.ITR)CALL PRIN 

IT = ITR/IWHEN 
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IT = IT*IWHEN 

IF(IT.EQ.ITR)CALL BLOCK 

IT = ITR/NEIB 

IT = IT*NEIB 

IF(ITR.NE.NCYCLE)GO TO 500 

IF(NWREST.NE.1)G0 TO 704 

REWIND 4 

WRITE(4) (GEN(I)I = 1,1236),(AMAI(I),I = 1,4400),(CNE(I),I = 1,843), 

*(CC1(I),I = 1,453) 

704 	CONTINUE 

IPCON = 2 

CALL PL(IPCON) 

STOP 

END 

*DECK COORDS 

SUBROUTINE COORDS 

*CALL GENALL 

*CALL CCOOR 

XCC = COS(DIPA)*HH 

YCC = SIN(DIPA)*HH 

C HH IS DISTANCE BETWEEN CENTROIDS OF BLOCKS IN SAME ROW 

DO 111 I = 1,NON 

XFF = COS(DIPA)*FF(I) 

YFF = SIN(DIPB)*FF(I) 

C FF IS DISTANCE BETWEEN CENTROIDS OF BLOCKS IN SAME COLUMN 

DD = HH/2. 

EE = FF(I)/2. 

C DD AND EE ARE HALF LENGHS OF AXES 

IF(EE.GT.DD)GO TO 80 

C IAXIS IS EQUAL TO ONE WHEN THE MAJOR AXIS IS PARALLEL TO DIPA 

C EQUAL TO TWO WHEN PARALLEL TO DIPB 

AA(I) = DD 

ANN(I) = B/2. 

BB(I) = EE 

BNN(I) = A(I)/2. 

ANT(I) = DIPA 

IAXIS (I) = 1 

GO TO 81 

80 AA(I) = EE 
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ANN(I) = A(I)/2. 

BB(I) = DD 

BNN(I) = B/2. 

ANT(I) = PI - DIPB 

IAXIS(I) = 2 

81 CONTINUE 

C AA = HALF LENGTH OF MAJOR AXIS 	BB = HALF LENGTH OF MINOR AXIS 

C ANN = DISTANCE FROM CENTROID TO MINOR FACE 

C BNN = DISTANCE FROM CENTROID TO MAJOR FACE 

C AGG = ANGLE ANTICLOCKWISE POSITIVE BETWEEN X AXIS AND MAJOR AXIS 

C CALCULATE BETA SO THAT CORNER POSITIONS CAN BE FOUND 

PP = BB(I)*(COS(PI - DIPA - DIPB) 

IF(IAXIS(I).EQ.1)GO TO 82 

AG = AA(I) - PP 

AH = AA(I) + PP 

GO TO 83 

82 	AG = AA(I) 4-PP 

AH = AA(I) - PP 

83 CONTINUE 

BETA1(I) = ATAN(BNN(I)/AG) 

BETA2(I) = ATAN(BNN(I)/AH) 

BMASS(I) = HH*A(I)*RHO 

BE = ABS(FF(I)*COS(DIPA +DIPB)) 

BC = (HH - BE)/2. 

BMOI1 = HH*(A(I)**3)/12. 

BMOI2 = 2.*A(I)*((BC**3)/3. 	(BE**3)/36. 	BE*(BC 	BE/3.)*(BC 	BE/3.)/2.) 

BMOI(I) = (BMOI1 BMOI2)*RHO 

111 CONTINUE 

C THIS IS A SIMPLE CASE OF NINE BLOCKS STACKED IN THREE ROW AND THREE 

CALL GEN 

IF(IZCYC.EQ.1)CALL BLOCK 

RETURN 

END 

*DECK NEIGHB 

SUBROUTINE NEIGHB 

*CALL GENALL 

*CALL CNEIGH 

DIMENSION NEIG(30) 

C THIS SUBROUTINE FINDS A MAXIMUM OF EIGHT NEIGHBOURING BLOCKS AND 

C ARRANGES THEM IN AN ANTI -CLOCKWISE ORDER SO THAT EACH CORNER OF 

C THE BLOCK HAS A MAXIMUM OF THREE NEIGHBOURING BLOCKS 
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DO 136 I = 1,NON 

DO 136 J = 1,8 

136 	NEIGH(I,J) = 0 

DO 41 I = 1,NON 

XNN = COS(DIPA)*HH COS(DIPB)*FF(I) 

INN = SIN(DIPA)*HH SIN(DIPB)*FF(I) 

RES = SQRT(XNN*XNN YNN*YNN) 

DIF = 1.1*RES 

IF(NREM.EQ.0)GO TO 235 

DO 135 J = 1.NREM 

IF(NREMOV(J).EQ.I)GO TO 41 

135 	CONTINUE 

235 	CONTINUE 

NEX = 0 

DO 33 L = 1,4 

DO 33 M = 1,3 

N(L,M) = O. 

33 CONTINUE 

DO 32 J = 1,30 

32 NEIG(J) = O. 

XG = CX(I) DIF 

XL = CX(I) - DIF 

YG = CY(I) DIF 

YL = CY(I) DIF 

DO 24 J = 1,NON 

IF(NREM.EQ.0)GO TO 237 

DO 137 IJ = 1,NREM 

IF(NREMOV(IJ).EQ.J)G0 TO 24 

137 	CONTINUE 

237 	CONTINUE 

IF(J.EQ.I)GO TO 24 

IF(CY(J).GT.YG.OR.CY(J).LT.YL)G0 TO 24 

IF(CX(J).GT.XG.OR.CX(J).LT.XL)G0 TO 24 

NEX = NEX 1 

NEIG(NEX) = J 

24 CONTINUE 

SI = SIN(ANT(I)) 

CO = COS(ANT(I)) 

IF(IAXIS(I).EQ.1)GO TO 34 

SS = SIN(DIPA DIPB 1-ANT(I)) 
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CC = COS(DIPA DIPB ANT(I) 

GO TO 38 

34 SS = SIN(ANT(I) + PI - DIPA - DIPB) 

CC = COS(ANT(I) + PI - DIPA - DIPB) 

38 CONTINUE 

UAA = AA(I)*CO 

VAA = AA(I)*SI 

UBB = BB(I)*CC 

VBB = BB(I)*SS 

ANN = ANN(I) 0.9*BNN(I) 

BNN = 1.9*BNN(I) 

DO 25 K= 1,4 

GO TO (1,2,3,4)K 

1 XX = CX(I) UAA-FUBB 

YY = CY(I) VAA -1-VBB 

GO TO 26 

2 XX = CX(I) UAA UBB 

YY = CY(I) VAA - VBB 

GO TO 26 

3 XX = CX(I) - UAA - UBB 

YY = CY(I) - VAA VBB 

GO TO 26 

4 XX = CX(I) - UAA UBB 

YY = CY(I) - VAA VBB 

26 CONTINUE 

MM = 0 

DO 25 J = 1,NEX 

JJ = NEIG(J) 

SSI = SIN(ANT(JJ)) 

COO = COS(ANT(JJ)) 

IF(IAXIS(JJ).EQ.1)GO TO 39 

SII = SIN(DIPA DIPB ANT(JJ) - PI/2.) 

CCO = COS(DIPA DIPB +ANT(JJ) - PI/2.) 

GO TO 40 

39 SII = SIN(ANT(JJ) + PI/2. - DIPA - DIPB) 

CCO = COS(ANT(JJ) + PI/2. - DIPA DIPB) 

40 CONTINUE 

XD = XX- CX(JJ) 

YD = YY CY(JJ) 

AJJ = ABS( - XD*SSI YD*C00) 

All = ABS(XD*CCO YD*SII) 
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IF(AJJ.GE.BBN.OR.AII.GE.AAN)G0 TO 25 
MN= MM+ 1 

N(K,MM) = JJ 
25 CONTINUE 

DO 23 J = 1,3 
DO 23 K= 1,3 
DO 23 L= 1,3 
DO 23 M= 1,3 
Ll = N(1,J) 
L2 = N(2,K) 

L3 = N(3,L) 
L4 = N(4,M) 

IF(L1.EQ.L2.AND.L1.NE.0)G0 TO 27 
42 IF(L2.EQ.L3.AND.L2.NE.0)GO TO 28 
43 IF(L3.EQ.L4.AND.L3.NE.0)GO TO 29 

44 IF(L4.EQ.L1.AND.L4.NE.0)G0 TO 30 
GO TO 23 

27 NEIGH(I,3) = Ll 
GO TO 42 

28 NEIGH(I,5) = L2 
GO TO 43 

29 NEIGH(I,7) = L3 
GO TO 44 

30 NEIGH(I,1) = L4 

23 CONTINUE 
DO 35 M= 1,3 

Li = N(1,14) 
L2 = N(2,14) 
L3 = N(3,14) 
L4 = N(4,M) 

IM1.EQ.NEIGH(I,1).0R.L1.EQ.NEIGH(I2 3)G0 TO 31 
NEIGH(I,2) = Ll 

31 CONTINUE 

IF(L2.EQ.NEIGH(I,3)00R.L2.EQ.NEIGH(I,5)G0 TO 36 

NEIGH(I,4) = L2 

36 CONTINUE 

IF(L3.EQ.NEIGH(I ) 5).0R.L3.EQ.NEICH(I,7)G0 TO 37 

NEIGH(I,6) = L3 

37 CONTINUE 

IF(L4.EQ.NEIGH(I,7).0RQL4.EO.NEIGH(I,1)G0 TO 35 
NEIGH(I,8) = L4 
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35 CONTINUE 

41 	CONTINUE 

RETURN 

END 

*DECK CONSOL 

SUBROTINE CONSOL 

C 	THIS IS A DUMMY CONSOLIDATION SUBROUTINE 

C 	REMEMBER TO INCLUDE COMMON BLOCKS 

RETURN 

END 

*DECK GEN 

SUBROUTINE .GEN 

C THIS IS A DUMMY SUBROUTINE YOU SHOULD DELETE AND INSERT YOUR 

C PARTICULAR BLOCK GENERATION ROUTINE INCLUDING BLOCK FIXING 

C REMEMBER THAT COMMON BLOCKS GENALL AND CCOOR ARE TO BE CALLED. 

NON = 16 

READ(5,10)(CX(I),CY(I),I = 1,NON) 

10 FORMAT(4F20.0) 

IFIXED = 8 

READ(5,20)(IFIX(I),I = 1,IFIXED) 

20 FORMAT(2014) 

RETURN 

END 

*DECK PL 

SUBROUTINE PL(IPCON) 

GO TO (10,20)IPCON 

10 	CALL START (2) 

CALL PEN (1) 

RETURN 

20 	CALL ENPLOT 

RETURN 

END 

*DECK BLOCK 

SUBROUTINE BLOCK 

*CALL GENALL 

*CALL CNEIGH 

*CALL CCOOR 
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C THIS SUBROTINE PLOTS ALL BLOCKS WITH THEIR RESPSCTIVE NUMBER 
C SCAL = NUMBER OF PROBLEM UNITS TO THE INCH AND DEPDNDS ON SIZE OF NUM 

C AND PAPER AI (AO = LARGE Al = MEDIUM A2 = SMALL) 
c************* 
C************* 

CALL TITLES (1 sSCAL) . 

DO 10 I = 19 NON 

IF (NREM. EQ.0 )G0 TO 150 

DO 50 IJ = 1 ,NREM 
IF (NREMOV(IJ) .EQ.I)G0 TO 10 

50 	CONTINUE 	- 

150 CONTINUE 

SI = SIN(ANT(I)) 
CO = COS (ANT(I) ) 

IF(IAXIS (I) •EQ.1)GO TO 20 

SS = SIN (DIPA + DIPB + ANT(I)) 

CC = COS (DIPA +DIPB +ANT(I)) 
GO TO 21 

20 SS = S IN (ANT(I) + PI - DIPA - DIPB) 

CC = COS (ANT(I) + PI - DIPA - DIPB) 

21 CONTINUE 

UAA = AA (I) *CO*SCAL 

VAA = AA ( I ) *S I*S CAL 

UBB = BB ( I)*CC*SCAL 

VBB = BB ( I)*SS*SCAL 
XX = CX(I)*SCAL 

YY = CY (I)*SCAL 

XX1 = XX + UAA + UBB 

YY1 = YY +VAA +VBB 

XX2 = )0C + UAA - UBB 

YY2 = YY +VAA - VBB 

XX3 = XX - UAA UBB 

YY3 = YY - VAA - VBB 

XX4 = XX - UAA + UBB 
YY4 = YY - VAA + VBB 

AAA = I 

CALL PLOT (XXI. YY1 2 3 ) 

CALL PLOT ()DC22 YY2, 2) 

CALL PLOT (XX.31YY3 , 2) 

CALL PLOT (XX4, YY4, 2) 

CALL PLOT (XX1 YY1 22) 
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• H = 0.07 

IF(I.GT.9)GO TO 22 

XC = XX H/2. 

YC = YY 

GO TO 24 

22 IF(I.GT.99)G0 TO 23 • 

XC= XX H 

YC = YY H 

GO TO 24 

23 XC = XX ...1.5*H 

YC = YY 

24 CONTINUE 

CALL NUMBER(XCpYC,HIAAA20.0, 	1) 

DO 26 K= 1,IFIXED 

J = IFIX(K) 

IF(I.EQ.J)G0 TO 27 

26 	CONTINUE 

GO TO 10 

27 	YCA = YC 0.28 

CALL SYMBOL(XC,YCA,H21HF,0.0,1) 

10 CONTINUE 

CALL NEWPAGE 

RETURN 

END 

*DECK PRIN 

SUBROUTINE PRIN 

C 	COMMON PRINT FOR NOMINATED CYCLES 

*CALL GENALL 

*CALL MAIN 

*CALL CNEIGH 

*CALL CCOOR 

WRITE(6,10)ITR 

10 	FORMAT(1H1,*CYCLE NUMBER*,15) 

WRITE(6,20) 

20 	FORMAT(* BLOCK 	X 	Y 	ANG 	V 

*X 	VY 	OMEGA 	*) 

DO 30 I = 1,NON 

WRITE(6,40) IsCX(I),CY(I),ANT(I),VXN(I),VYN(I),AVN(I) 

40 	FORMAT(15,7E15.6) 

30 	CONTINUE 
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RETURN 

END 

*DECK VELOC 

SUBROUTINE VELOC(VECL) 

C PLOTS VELOCITIES AS VECTORS WITH MAXIMUM VELOCITY EQUAL TO VECL INCHE 

*CALL GENALL 

*CALL MAIN 

*CALL CNEIGH 

*CALL CCOOR 

VO = O. 

DO 10 I = 1,NON 

IF(NREM.EQ.0)G0 TO 30 

DO 40 IJ = 1,NREM 

IF(NREMOV(IJ).EQ.I)G0 TO 10 

40 	CONTINUE 

30 	CONTINUE 

VN = SQRT(VXN(I)*VXN(I) VYN(I)*VYN(I)) 

IF(VN.LE.VO)G0 TO 10 

VC =-- VN 

10 CONTINUE 

FG = VECL/VO 

C VECL IS LENGTH OF MAXIMUM VELOCITY IN INCHES 

GG = 1./FG 	. 

CALL TITLES(2,GG) 

DO 20 I = 1,NON 

IF(NREM.EQ.0)G0 TO 50 

DO 60 IJ = 1,NREM 

IF(NREMOV(IJ).EQ.I)G0 TO 20 

60 	CONTINUE 

50 	CONTINUE 

X = CX(I)/SCAL 

Y = CY(I)/SCAL 

VX = VXN(I)*FG 

VY = VYN(I)*FG 

CALL VECTOR(X,Y,VX,VY) 

20 CONTINUE 

CALL NEWPAGE 

RETURN 

END 
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*DECK VECTOR 

SUBROUTINE VECTOR(X,Y,VX,VY) 

*CALL GENALL 

CALL PLOT(X,Y,3) 

X = X + XV 

Y= Y 4- YV 

CALL PLOT(X,Y,2) 

VT = (SQRT(XV*XV + YV*YV))/5. 

GM = ABS(XV) 

IF(GM.LE.1.E - 5)XV = 1.E - 5 

• 

	ABA = ATAN2(YV,XV) 

IF(ABA.LT.O.)ABA = 2.*PI + ABA 

ABA1 = PI + ABA - 0.25 

ABA2= ABA1 + 0.5 

XA = X + VT*(COS(ABA1)) 

YA = Y + VT*(SIN(ABA1)) 

CALL PLOT(XA,YA,2) 

CALL PLOT(X,Y,3) 

XA = X + VT*(COS(ABA2)) 

YA = Y + VT*(SIN(ABA2)) 

CALL PLOT(XA,YA,2) 

RETURN 

END 

*DECK TITLES 

SUBROUTINE TITLES(IPLOT,DIS) 

*CALL GENALL 

*CALL CCOOR 

CALL SYMBOL(0.5,15.0,0.21,TITLE,0.,80) 

GO TO (10,11,12,13,14)IPLOT 

10 CONTINUE 

C THIS IS FOR A BLOCK PLOT 

CALL SYMBOL(0.5,14.25,0.21,10HBLOCK PLOT,0.,10) 

GO TO 15 

11 CONTINUE 

C THIS IS FOR A LINEAR VELOCITY PLOT 

CALL SYMBOL(0.5,11.25,0.21,13HVELOCITY PLOTI0.,13) 

GO TO 15 

12 CONTINUE 

CALL SYMBOL(0.5,11.25,0.21,17HCORNER FORCE PLOT,O.,17) 

GO TO 15 
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13 CONTINUE 

C THIS IS FOR A DISPLACEMENT PLOT 

GO TO 15 

14 CONTINUE 

C THIS IS FOR A STRESS PLOT 

15 CONTINUE 

CALL SYMBOL(5.0,14.25,0.21,34HNUMBER OF PROBLEM UNITS PER INCH = ,0 

*4,04) 

CALL NUMBER(12.4,14.25,0.21,DIS20.,2) 

FL = ITR 

CALL SYMBOL(14.3,14.25,0.21,14HCYCLE NUMBER = $0.,14) 

CALL NUMBER(17.5,14.25,0.21,FLO.,-1) 

CALL PLOT(XORIG,YORIG,-3) 

RETURN 

END 




