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SUMMARY 

A study has been made of the pressure fluctuations on a stationary 

and oscillating square section cylinder. Among the measurements taken 

are - mean and fluctuating pressures, chordwise and spanwise lift 

correlations, the phase angle between the fluctuating lift and cylinder's 

displacement, vortex shedding frequency, vortex convection velocity, 

spectra of fluctuating pressures and the variation in the phase angle 

at the shedding frequency around a section of the cylinder. Also 

investigated are the effects of end plates on the stationary model 

mean pressures. To compliment these measurements, a film of the vortex 

shedding phenomenon was made using smoke as the flow indicator. Of 

particular interest are the changes in the flow during wake synchronisation 

or lock-in. Under this condition, it is shown that the sectional mean 

drag is always lower than the stationary cylinder value and that, due 

largely to a decrease in amplitude modulation, there is an increase 

in RMS pressure fluctuations. The spanwise correlation is shown to be 

,D greatly increased especially around 	
U 	

7.8 (the reduced 
-FN  

windspeed at which the lift pressure fluctuations are maximum) where 

the correlation is practically unity over the whole span. Both the 

measured values of 	- CPb 	(the non-dimensional 
7 5 

verticity shed by each shear layer into the wake per cycle of vortex 

shedding) and the values of  	obtained using a potential 
Tr U„, d 

vortex wake drag formula are shown to indicate that the lock-in value 

of non-dimensional vortex strength is less than the stationary cylinder 

value. An important result, as far as flow-induced vibration is 

concerned, is the variation in the lift phase angle () . The 

measured values of 4) 	are shown to indicate trends that are consistent 

with the observations of previous workers on square section cylinders 

undergoing flow-induced lateral oscillations. 

The potential flow model of vortex-induced fluctuating pressures 
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proposed by McGregor (1957) is improved to include the effects of the 

wake vortex street and applied to an oscillating as well as a stationary 

circular cylinder. For the stationary cylinder, it is shown that the 

improved model can predict reasonable values of vortex strength. The 

model is also shown to be useful in studying the fluctuating pressures 

and, particularly for the oscillating model,the harmonic content of 

velocity fluctuations. 

With a different choice of forcing function, it is shown that the 

lift oscillator model proposed by Hartlen & Currie (1970) can be used 

to model the fluctuating lift on a forced square section cylinder. 
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CHAPTER I 

INTRODUCTION 

1.1 THE PROBLEM 

Despite more than one hundred years of systematic study there is still 

no doubt that we do not fully understand the problem of fluid flow past a 

long obstacle of bluff cross-section. A very important feature of such flow 

is the instability of the two shear layers separating from the body and the 

subsequent non-linear interaction of these shear layers to form vortices 

that are shed alternately from each side of the body. This shedding of 

vortices is approximately periodic and it causes the generation on the 

obstacle of periodic forces which can, under suitable conditions of damping 

etc., cause structural oscillations. Thus apart from adding to fundamental 

knowledge a study of the phenomenon of vortex shedding has many useful 

engineering applications. 

Although the motion of fluid around a bluff obstacle is governed by the 

Navier Stokes equations, a full analytic solution of the equations are 

unknown. Because of the enormous amount of computer time and space required 

a numerical solution of the equations for cases of engineering importance is 

still out of reach of modern day computers. Our basic understanding of the 

flow and the predictions of important flow characteristics, like fluid 

dynamics loadings, must therfore come mainly from wind-tunnel experiments. 

This is why wind-tunnel investigations, such as the one presented in this thesis 

are necessary. 

1.2 ENGINLLAING APPLICATIONS. 

Modern design techniques often result in structure and buildings which are 

light in weight, tall and have low mechanical damping. These structures 

invariably have a bluff cross-section and are therefore susceptible to vortex 
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induced oscillation. The designers of stuctures like chimney stacks, piles, 

electric power transmission lines, tall buildings, suspension bridges etc. 

must therefore take into consideration the possibility of vortex-induced 

structural oscillations. Structural oscillations, even when they are not by 

themselves immediately catastrophic, can lead to fatigue failure. 

n is not only the possibility .of failure due to oscillations that worry 

designers. There are applications,such as in the missile and radio-telescope 

fields for example, where minor movements make systems inoperative without 

actually destroying them. Even when oscillation does not occur, the 

periodicity introduced into the flow by vortex shedding can create problems 

by, for example, producing undesirable aerodynamic noise or by, as in heat 

exchanger tubes (see Wilkinson (1974)), downgrading the performance of pumps 

located downstream of the vortex source. 

The above examples show that the phenomenon of vortex shedding is of 

interest to engineers of various disciplines. Most of the past research 

work on bluff body flows (particularly those on oscillating bluff bodies) 

were stimulated primarily by the needs of engineers rather than the need for 

a basic understanding of the flow. Although the title of this thesis suggests 

only force measurements, considerable attention is also given to the basic 

flow mechanisms involved. 

1.3 A BRIEF REVIEW OF PREVIOUS WORK 

1.3.1 Before 1940  

Stronhal, 1878, and Rayleigh, 1896, started the quantitative study of 

periodic flow past bluff bodies. They investigated the aeolian tones 

generated by the relative motion of a wire (or circular cylinder) and the 

air. Their findings as reported in Bishop & Hassan (1964A) are: 

1) The frequency, fs  , of the aeolian tone varies with the diameter, d , 

and with the speed, U of the relative motion such that 

= 	-1)• or 
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(The dimensionless group -f''sd is now known as Strouhal number) 
Uto 

2) When the speed is such that the aeolian tone coincides with one of the 

natural frequencies of the wire, which is supported so as to be capable 

of performing free vibration, the sound is greatly reinforced. 

3) It is not essential that the wire should vibrate for a fluctuating force 

to be applied to it by the flowing fluid. 

4) Vibrations of the wire are performed in a plane perpendicular to the 

.direction of the wind. 

5) The production of these vibrations is doubtless connected with the 

instability of vortex sheets. 

According to Birkhoff & Zarantonello (1957), it was Benard who in 1908 

first correlated the aeolian tones of Strouhal and Reyleigh with a wake 

vortex street. 

In 1911 - 1912 Karman and later Karman & Rubach investigated the stability 

of an infinite vortex street. They found, see Rosenhead (1953), that if all 

the vortices were given a two-dimensional disturbance according to a 

stated general law, first order analysis showed instability unless the 

spacing ratio was 0.281 . The above works of Karman, Karman & Rubach and 

subsequent works concerning the stability of idealised vortex streets are 

reviewed by Rosenhead (1953). Rosenhead stresses in his review that Karman 

conclusions regarding stability apply only to disturbances of the kind 

specified and not to the more general types of disturbance which probably 

occur in normal experimental conditions. 

Early attempts to determine the fluctuating lift on bluff bodies are 

reviewed by Bishop & Hassan (1964A). Only three of the investigations 

(Thom 1931, Schwabe 1935 and Ruedy 1935) reviewed took place before 1940. 

Probably due to the lack of suitable instrumentation none of these three 

attempts involved direct measurements of either surface pressure or total 

force. Thom (1931) suspended his circular cylinder as a pendulum free to 
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swing across the stream. He then estimated the fluctuating lift from the semi-

angular amplitude of the cylinder's swing during vortex-excited oscillation. 

Schwabe is said, see Wilkinson (1974), to have calcalated pressures from the 

velocity field obtained by time lapse photography. Ruedy (1935) assumed that 

a true Karman vortex street existed in the wake of his circular cylinder and 

estimated the fluctuating lift by considering momentum balance far downstream 

of the cylinder. Ruedy's results are certainly incorrect because he did not 

consider the rate of change of the momentum of that part of the wake where 

the vortices are formed. It is interesting to note that Ruedy's investigation 

was conducted to solve the engineering problem of vibration of power lines 

in a steady wind. 

The failure of the Tacoma Narrow bridge in 1940 demonstrated that despite 

the practical significance of the above works of Thom and Ruedy, most 

engineers and designers of long flexible structures were not giving enough 

consideration to dynamic wind loading. Karman who was involved in the 

post-mortem is said, see Davenport (1975), to have written: 

" I hadn't reckoned on the depth.and long standing of the prejudices of 

the bridge designers. Their thinking was still largely influenced by 

consideration of'static forces' like weight and pressures which create 

no motion instead of "dynamic forces" which produces motion or cVanles 

motion. Bridges had been observed to oscillate in the wind before, but 

nobody had thought such motion is important. Bridge failures were 

usually blamed on other things." 

The above extract sums up the attitude adopted, before 1940, by most 

engineers and designers of structures to dynamic wind loadings such as those 

due to vortex shedding. 

1.3.2 After 1940  

The need to predict the dynamic wind loading on structures stimulated an 

extensive amount of research into bluff body flows. No attempt will be made 

to discuss references in chronological order, instead the major findings that 
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are relevant to vortex induced vibrations will be discussed. The interested 

reader-is referred to the works of Bisphop & Hassan (1964 A & B), Markovin 

(1964), Berger & Mlle (1972) and Nair & Maull (1971) for references., 

Other sources of references are the proceedings of international conferences 

See for example Naudascher (1974) and Eaton (1977). 

1.3.2.1 Characteristics of the body-wake interaction during resonant vibrations  

The characteristics of the body-wake interaction presented in this section 

are collected from the works of various workers on bluff bodies undergoing 

either forced or vortex-induced resonant vibrations. All the characteristics 

are dependent on after-body shape, and experimental conditions such as 

frequency ratio yr , amplitude to diameter ratio AiD , and in some 

Ts 
 

cases Reynolds number. (fN  is the frequency of body oscillation, fs. is 

the natural vortex shedding frequency that would occur if the body were 

stationary). 

a) Synchronisation or "Lock-in"  

Vibrations of an elastic cylinder due to the periodic force resulting from 

vortex shedding do not occur at one particular flow velocity. Instead vibration 

starts when the frequency of vortex shedding is near the natural frequency of 

the cylinder and continues over a range of windspeed called the "synchronisation" 

or "lock-in" range. In the "lock-in" range vortices are shed at the body 

oscillation frequency in violation of the strouhal relationship 

S 	scl = constant. 

References and further discussion on the "lock-in" phenomenon can be found 

in Berger & Wille (1972). 

b) Hysterisis  

The characteriStic properties of the cylinder-wake interaction (i.e. 

extent of "lock-in" range, cylinder amplitude, fluid forces etc.) can be 

different depending on whether windspeed or 	CIO 	is increasing or 
ts 

decreasing. 

It appears that whether or not hysterisis is observed depends on whether 
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oscillation is forced or vortex-induced. Lightly-damped, spring-mounted 

cylinders undergoing vortex-induced vibrations have been reported by 

various workers, see for example Feng (1968) and Landl (1975), to display 

hysterisis effects. Hysterisis is rarely reported in forced oscillation 

experiments except on a circular cylinder as in Bishop & Hassan (1964B). 

c) Phase Angle variation in the "lock-in" range  

All investigators have reported that within the "lock-in" range very 

large variations exist in the phase angle between the fluctuating lift and 

displacetent. Some workers like Bishop & Hassan (1964B) have pointed out 

that the phase angle changes in a manner comparable with the response of a 

simple. oscillator. 

Typical values of the phase angle observed on various bluff body shapes can 

be found in the works of Protos et al (1968), Nakamura & Mizota (1975) and 

Feng (1968) . All except Peng used externally forced bluff cylinders. 

The phase angle between lift and displacement is very important because it 

shows whether or not energy can be transferred from the fluid. to the body to 

promote instability. 

d) Force Amplification at "lock-in" 

In addition to the above phase angle changes within "lock-in" , large 

variations in the amplitudes of the total fluctuating lift and drag forces 

have been reported. The nature of the fluid force variations is best shown by 

experiments on externally forced cylinders. For constant amplitude of forcing 

it has been shown by workers like Bishop & Hassan (1964B) and Protos et al 

(1968) that within the "lock-in" range, the amplitudes of the fluctuating 

lift and drag forces increase and decrease in a manner comparable with the 

response of a non-linear oscillator. Generally the maximum total dynamic 

force measured at "lock-in" on an oscillating body has been found to be larger 

than that on the stationary body at the same Reynolds number. 

It must however be pointed out that total dynamic force amplification 

does not necessarily imply amplifications of the sectional dynamic, forces. 
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Experiments (see Berger & Wille (1972) tor references) have shown that body 

oscillations align the axes of the wake vortices parallel to the axis of the 

cylinder. The alignment of the wake vortices greatly increases the spanswise 

correlation of the dynamic forces. It is therefore possible that the increased 

total dynamic forces measured on some. bluff bodies during resonant vibration 

are due solely to increased spanwise correlations. It is in particular even 

possible that the increases in total dynamic forces reported by some workers 

at "lock-in" are accompanied by decreases in sectional dynamic forces. 

Some workers like Tanida et al (1973) have reported that within the "lock-

in" range, the mean drag force can have a response pattern similar to those 

of the dynamic forces. 

4?) Frequency demultiplication or frequency division  

This is the phenomenon whereby wake synchronisation or "lock-in" is 

produced when the wake is forced at hormonics and subharmonics of the natural 

shedding frequency fs  . Wake synchronisation is reported by Bishop & Hassan 

(1964B) at a forcing frequency f 	fs/3  fs/2 t  fs  , 2fs. and 3fs  

.and by Stansby (1976) at f 	fs  2fs  4nd 3fs  . Other references 

concerning this phenomenon can be found in Berger & Wille (1972). 

1.3,2.2 The wake as a non-linear oscillator. 

The characteristics of the body wake interaction discussed in the preceeding 

section led Bishop & Hassan (1964B) to suggest that the wake behaves like a 

non-linear self-excited fluid oscillator. Hartlen & Currie (1970) took this 

suggestion further by showing that when the fluid oscillator is modelled with 

the Van der Pol equation, the predicted and observed characteristics of 

fluctuating lift on a circular cylinder are in good qualitative agreement. 

Other workers like Landl (1975) and Skop & Griffin (1973) have modelled 

fluctuating lift forces on oscillating circular cylinders with different 

versions of the Van der Pol equation that are more complicated than the basic 

equation of Hartlen & Currie. The difficulty in this field is in relating 

the parameters of a proposed oscillator to the physical characteristics of 
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the flow. The dependence of the fluctuating lift characteristics on body 

shape also makes it unlikely that a single non-linear oscillator, which can 

generate the lift characteristics on all bluff body shapes, can be found. 

Nevertheless modelling vortex-induced vibration by a non-linear oscillator is 

still very attractive because the analytical alternative is the formidable 

task of solving the full Wavier-Stokes equation for separated flow around an 
• 

oscillating boundary. 

1.3.2.3 After-body effects. 

It was reported in sections 1.3.2.1 and 1.3.2.2 that for a bluff body 

undergoing resonant vibration the characteristics of the body-wake interaction 

dynamic forces, lift phase angles etc) are dependent on body shape. 

The most important part of the body is that part downstream of the flow-

separation lines called the afterbody. Workers like Parkinson et al (1968) 

and Parkinson (1972) have pointed out that the aeroelastic behaviour of bluff 

cylinders is dominated by the shape of their afterbodies. Consideration of 

afterbody effects makes it incorrect to generalise results obtained from a 

particular bluff body. The investigator is thus compelled, in the absence of 

a unifying bluff-body theory, to determine the aerodynamic and aeroelastic 

characteristics of each bluff body shape from separate experiments. 

Rectangular cylinders having various side ratios provide a vivid demonstration 

of afterbody effects. Fig 1.1A , which has been taken from Parkinson (1972), 

summarises the results of several workers. The mean drag coefficient , CD  , 

is seen to be very sensitive to changes in the side ratio, d/h , (where d 

is section depth and h is section width normal to the wind direction) 

particularly when d/h is close to a critical value of 0.62 for which 

C
D is maximum. Experiments, see for example Fig 1.1B , have shown that the 

. variation of CD with d/h is due solely to variation in the base pressure, 

Cpb , which according to Bearman & Trueman (1971)is in turn due to variation 

in the distance, tf , between the back face of the model and the position of 

the fully formed vortex, In an earlier work, which can also be viewed as 
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a subtle demonstration of afterbody effects, Bearman (1965) has already shown 

using splitter plates that an inverse relationship exists between the- base 

suction, -Cpb  , and the distance if  . The interested reader is referred to 

Bearman & Trueman (1971) where a more detailed discussion of the variation 

of CD 
 with d/h is presented. 

From the discussion of Bearman & Trueman (1971) on afterbody effects on 

stationary rectangular cylinders, one can make some deductions about afterbody 

effects under dynamic conditions. If d/h4C 0.62 the afterbody is such that 

oscillation can cause the vortex formation region length , if , and base pressure 

Cpb 
to assume values that are either higher or lower or equal to the 

-stationary cylinder values. For 0.62 Z., d/h< 2.5 oscillation will either 

increase. 1, and Cpb 
(either by causing flow reattachment or by causing the 

flow to readjust to give less shear layer curvature) or cause them to stay the 

same. For 012> 2.5 flow reattachment has occured, oscillation would again 

cause 1f 
and C

pb 
to behave as in the case (IA< 0.62 . (However the 

higher values of Cpb 
and strouhal number S for the sections with 

.d/h> 2.5 easily distinguish them under dynamic conditions from the sections 

with d/h-= 0.62 .) Thus under dynamic conditions the behaviour of if  and 

Cpb .  will again be dependent on the afterbody. The works of Wilkinson (1974) 

and Davies (1975) confirm this view. Davies (1975) investigated bluff 

cylinders of three different cross-sectional shapes including a flat plate 

for which he reported that synchronised oscillation caused large reductions 

in if  and Cpb  . By contrast Wilkinson (1974) reported that for a square 

section cylinder (d/h = 1 ) , undergoing synchronised oscillation Cpb 

when compared to the stationary cylinder value, was either increased or 

unaltered but never decreased. Now the base pressure will, by determining 

the total amount of vorticity shed by the body into the wake, also determine 

the strength of the wake vortices. It therefore follows that the afterbody 

will affect the aerodynamic and aeroelastic characteristics of an oscillating 

bluff body - particularly those characteristics (like aerodynamic forces, lift 
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phase angles etc.) that result from vortex shedding. This view is supported 

by the measurements of Nakamura & Mizota (1975) on rectangular cylinders with 

d/h of 1.0 , 2.0 and 4.0 - See Figs 1.2 and 1.3 . 

1.4 PREVIOUS 710R.T: ON SQUARE::SECTION CYLINDERS  

The present dissertation is on the aerodynamic and aeroe4lastic character-

istics of square-section cylinders in a uniform approach flow. It is known, 

however, that natural wind is highly turbulent. If wind tunnel results are to 

be used to predict wind effects on engineering structures, it is important to 

know how the interactions between the wind and the structure are affected by 

turbulence. It is for this reason that the effects of turbulence are considered 

briefly, in this review. 

1.4.1 Stationary square-section cylinders  

1.4.1.1 Variation of C
D 

, C
L 

C
pb 

and S with incidence o( 

U.0 

 

Cpb = 
average mean pressure on face C 

S 	f d where f
s is the frequency of vortex shedding. 

13 

Sketch (1.1)  

F
L . steady sectional lift force. 

F
D = steady sectional drag force. 

n . 	 F D C 	Ft- 	- - 
L 	teu!ct 

 

Many workers including Cowdrey & Lawes (1959), Vickery (1966), Pocha (1971) 
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and Lee (1974) have measured the variations of CD , CL 
, Cpb 

and S with ok 

The works of Vickery and Lee, particularly thelatter, also include force 

measurements in turbulent flow. Fig 1.4 taken from Lee shows the important 

features of the variations of CD ' CL ' Cpb 
and S with 04, 

Perhaps the most interesting feature of Fig 1.4 is the sharp minimum in 

both CL  and CD  at a critical 0( , henceforth denoted by C(crit , which 

for a smooth flow has a value of 13.5°  . Flow visualisation (see for 

example MUlhearn (1973), Pocha (1971) and Laneville et al (1975)) has shown 

that C(crit corresponds very closely to the incidence at which flow first 

reattaches steadily to corner B/C - see sketch (1.1) . With increasing 

free stream turbulence intensity, Fig 1.4 shows that cKetit  becomes smaller 

suggesting, as confirmed by the flow visualisations of Mulhearn (1973) and 

Laneville et al (1975), that turbulence causes earlier flow reattachment. For 

a given rectangular cylinder in smooth flow, it is known (see for example 

Laneville (1975)) that increasing the depth of the section parallel to the 

wind direction decreases the value of 
C(
crit ° This has lead investigators 

like Parkinson (1971) and Laneville et al (1975) to suggest that turbulence 

makes a section behave like a longer section in smooth flow. 

The overall behaviour of C
D , CL , Cpb and S will now be discussed. 

0 	0 < c<crit 

From flow visualisation Pocha (1971) reported that the vortex formation 

region length increases with increasing incidence. This, according to the 

works of Bearman (1965) and Bearman & Trueman (1971) already discussed in 

section 1.3 , should increase C
pb and decrease CD  . The same mechanism is 

suggested by Lee (1974) for the minimum value of CD  at ci -%crit 
The increase in the magnitude of 

'CI, with increasing O( has been 

attributed to the increase shear layers asymmetry observed by many workers 

including Pocha (1971) . AS o< increases the lower shear layer (see sketch 

(1.1)) moves nearer to side B than the upper one does to side B . Side B 
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therefore experiences a higher suction than side D so that there is a net 

downward side force which increases with oC. The maximum in ICLI at 

c( 
 = 4crit is attributed, see Lee (1974), to the maximum in the length of 

the separation bubble caused by flow reattachment at corner B/C . 

Lee (1974) suggests that the increase in the strouhal Number , S , is due 

to decreases in wake width' with increases in cI . He argues that the minimum 

value of C
D 

at 
0(crit 

is associated with a minimum wake width and hence with 

a minimum longitudinal vortex spacing if a constant ratio of vortex spacing to 

wake width is maintained. This, he further suggests, leads to an increase in 

the frequency of vortex shedding frequency and an increase in S 

Fig. 1.4 confirms the observation by Vickery (1966) that the influence of 

turbulende is most marked at low angles of incidence. In the present range of 

01( Lee (1974) explains the decreases in CD  and -Cpb  (negative base pressure) 

with increase in free stream turbulence intensity in terms of a thickening of 

the shear layers and their subsequent deflection by the ends of the prism which 

causes weaker vortices to form further downstream of the body'thus reducing 

'-Cpb and CD . 

Measurements of. the mean pressure distribution around a section by Lee 

(1974) are presented in Fig 1.5 . They show that, for 0( 0 and 50  , 

increase in the level of free stream turbulence intensity leads to more 

complete pressure recovery towards the rear of the side faces. This supports 

the remark by Mulhearn (1973) that even at low angles of incidence where flow 

reattachment does not occur, turbulence brings the separated shear layers closer 

to the body. 

The lowering of the value of o(crit  by increased free stream turbulence 

intensity has already been discussed. 

r t < ("( < 5 

The lower shear layer reattaches to the side face B of sketch (1.1) 

and finally separates from corner B/C . As c'e, increases the reattachment 
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position on the side face B moves near corner A/B (see for example Mulhearn 

(1973)) thus decreasing both the size of the separation bubble and the net 

suction on that face (see Ent].  (1971)). The negative CL  thus falls. 

Another effect of increasing ck is to cause the shear layers from either 

side of the body to diverge and thus decrease S . In the present range of 

alk 	-Cpb and CD 
are shown, see Fig 1.4 , to increase with X. These 

increases are usually attributed, see for example Lee (1974), to corresponding 

decreases in the vortex formation region length, if  , shown, for example, in 

the flow visualisation of Pocha (1971) . 

Fig. 1.4 shows the influence of turbulence in the present range of cX to 

be small and not to follow an obvious consistent trend. For 01, close to 

C
`crit , Mulhearn (1973) has shown that turbulence moves the position of flow 

reattachment nearer corner A/B thus decreasing the length of the separation 

bubble on face B 	This, according to Lee (1974),  is the reason why turbulence 

decreases the magnitude of CL  when 13.5 4. o  4: 	25° . 

1.4.1.2 Fluctuating Lift and Drag forces  

A. Flow at 0°  incidence  

(i) The distribution of fluctuating pressure  

Vickery (1966), Chaplin & Shaw (1971), Pocha (1971), Lee (1974) and 

Wilkinson (1974) have measured the sectional distribution of surface 

fluctuating pressures. The works of Vickery (1966) and Lee (1974), 

particular the latter, include pressure measurements in turbulent flow. 

Fig 1.6A shows the smooth flow results of these workers in a range of Reynolds 

number 104  to 1.76 x 105  . The scatter is seen to be very large. 

Examination of the fluctuating pressure at the centre of the side face, see 

Fig 1.6]3, shows that it does not follow a consistent trend with Reynolds 

number. Since all the measurements are said to have been made in nominally 

smooth flows, the spread of results may therefore be due, at least in part, 

to instrumentation problems thus showing that fluctuating pressures are 

difficult to measure. 
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The sectional RMS lift coefficient, CLrms , measured by the above 

workers range, with the exception of that of Chaplin & Shaw, between 1.2 

and 1.4 . Chaplin & Shaw reported that their CLrms 
increased from 0.90 

to 1.2 (without any correction for blockage)with increasing Reynolds number 

Re , over the range 5.15 x 103<: Re 4:1.3 x 104 . When the free stream 

velocity is corrected for blockage, this gives CLrms  ranging from 0.739 

to 0.985 which is much lower than those of other workers. It is worth 

noting that Chaplin & Shaw used a model which has an aspect ratio of only 

2.95 and produced a blockage ratio of 11.1% and that their results are 

likely to be greatly influenced by the tunnel wall boundary layer; 

The sectional ITS- drag coefficient,- an is much less than CLrms 

Vickery. (1966), Pocha (1971) and Lee (1974) have reported CLrms of 0.17 , 

0.175 and 0.23 respectively in smooth flow. 

(ii) Epanwise correlation of fluctuating pressure. 

Measurements of spanwise correlations in smooth flow by Vickery (1966), 

Pocha (1971), Lee (1974) and Wilkinson (1974) are presented in Fig 1.7. 411 

the measurements, except those of Wilkinson (1974), indicate, as reported in 

Vickery (1966), a smooth flow spanwise correlation length of 5.6 body 

diameters. 

Wilkinson (1974) reported a spanwise correlation length of 2.5 body 

diameters in his smooth, flow. Although his experimental set-up (blockage 

free stream turbulence, aspect ratio, end conditions etc) appears comparable 

with those of other workers, he still suggested that his low value of 

correlation may be due to these same factors. It is however interesting to 

note that for circular cylinders measurements, see for example Novak & 

Tanaka (1975), indicate a smooth flow spanwise correlation length of 3.5 

diameters at subcritical Reynolds number. ,Generally one expects bluff 

cylinders with fixed flow separation lines (like the square-section cylinder) 

to produce straighter wake vortex filaments and hence have higher spanwise 

correlations than circular cylinders for which the flow separation positions 
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are free to oscillate. 

(iii) Effects of turbulence. 

It has been reported in section 1.4.1.1 that for small angles of incidence 

° 4 	4  O'L.it) the base pressure, Cpb  , increases with increasing free 

stream turbulence intensity. Vickery (1966) has observed that the reduction 

in the oscillating lift and the change in base pressure are closely related. 

This notion is also supported by the measurements of Lee (1974), see Fig 1.8, 

where an approxiMately inverse relation between C
pb and 

CLzms  for flow 

at 00 incidence, is seen. Thus C
Lrms decreases with increasing free 

stream turbulence intensity - a behaviour similar to those of -C
pb and C

D 

already discussed in section 1.4.1.1 . Typically Vickery (1966) reported a 

50g decrease in 
CLrms with a turbulence intensity of 10% in the free 

stream. 

The measurements of Lee (1974) indicate that spanwise correlation measured 

along the centerline of a side face is very little affected by free stream 

turbulence when the intensity of the turbulence is less than 8% . With a 

free stream turbulence intensity of 125 , Lee's (1974) measurements indicate 

a marked reduction in the spanwise correlation length. Vickery (1966) has 

also reported that a free stream turbulence intensity of 10% reduced the 

spanwise correlation length, X , from the smooth flow value of 5.6 

diameters to only 3.3 diameters. In view of these results, the already 

discussed low value of A (i.e. 2.5 diameters) reported by Wilkinson (1974) 

is all the more surprising as the turbulence intensity in his nominally smooth 

free stream is reported to be only 1.5%. 

The  existing measurements, see for example Vickery (1966) and Lee (1974) 

indicate that the fluctuating drag coefficient is little affected by free 

stream turbulence when the intensity is not higher than 12%. 
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B. Flow at an angle to the cylinder 

Comparison of Figs 1.4 and 1.8 

shows that the trends in the 	
()co 

 

sectional fluctuating force 

coefficients Cxrals  and 

Yrms (see sketch 1.2 for 

notation) are identical to the 	 sketch (1.2)  

trend in -Cpb 	The overall level of the surface pressure fluctuations 

around a section (see Fig 1.9) , particularly in the separated flow region, 

also follow the trend in -Cpb  . Thus at ok .crit where -Cpb  is 

minimum, surface pressure fluctuations are also minimum so that Cxrms  

and C
irm  'S 

 are minimum. 

The effects of free stream turbulence is shown in Fig 1.8 . Cxnns  is 

seen to be little affected by turbulence. Cyrnis  , with the exception of the 

results for Grid A4 which produces free stream turbulence of intensity 12.5% 

and L% of 0.94 - see Lee (1974) , follows broadly the qualitative trend 

in -C
pb . It is interesting to note that on face A where flow is always 

attached, the level of pressure fluctuations, see Fig 1.9, increases with 

increasing free stream turbulence intensity. 

1.4.1.3 The effects of turbulence length scale  

Laneville et al (1975) have demonstrated that turbulence need only be 

present along the front stagnation streamline to produce the major effects 

of free stream turbulence on the flow around rectangular cylinders. They argued 

that because the effects of free-stream turbulence cannot be produced simply 

by increasing Reynolds number, the mechanism responsible for the observed 

effects is the modifications to the turbulence structure of the shear layers 

rather than earlier transition. Furthermore they suggested that the distortion 

of the turbulence (by themean flow field) as it approaches the stagnation 

region of the cylinder is a very important feature of the turbulence 

mechanism as it determines the amount of turbulence actually fed into the 
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separated shear layers. Now measurements, see for example Bearman (1972), 

have shown that the distortion of turbulence approaching the stagnation region 

of a two-dimensional bluff body depends on the scale, 	x  , of the turbulence 

relative to the body diameter D . For Ly
I) 

 >>. 1 Bearman (1972) reported 

that along the mean stagnation streamline the turbulence fluctuation, 0.2)); 

attenuates like the mean flow whereas if

I) 	
1 the turbulence is 

distorted by the mean flow field and ( 	)2  will amplify because of vortex 

stretching. One therefore expects, from these works, that the influence of 

turbulence on the square section cylinder will depend on the scale as well as 

the intensity of the turbulence. 

Surprisingly Laneville et al (1975)'reported that, for 	Ly 	5, 
.D • 

they detected little turbulence scale effect in their measurements of C
D 
. 

In direct contrast Mclaren et al (1969)and Lee (1975/1976) reported that CD  

is sensitive to Ly. , particularly for LY around unity. Mclaren 
D 

et al reported that at incidence, 0( )400  , CD  has a distinct maximum when Lx/ 
/D 

is in the range 1.2 to 1.6 and that for large LV 	CD appears to D 

level off rather than decrease continuously - see Fig 1.10 . They also reported 

that when e4 is 
450 
 , all the C

D results, regardless of the free stream 

turbulence intensity, collapse onto one curve similar in shape to the curves 

for e( . 0 with maximum C
D 

occuring when 1 )  is approximately equal to 

1.4 and. CD  again tending to become constant at large values of Lx4)  

Lee (1975/1976) made measurements at c( = 00  only and reported that they 

broadly subttantiate the trends outlined by Mclaren et al for the variation of 

C
D 

with 1-11;, Lee reported that C
D and -Cpb show a distinct maximum at L.Nyi • 

of approximately unity, followed -by a munimum at Lypofbetween 1.5 and 

2.0 and that , for high values of Lx4), both CD  and -Cpb tends to a 

constant value greater than that at low values. The results of Mclaren et al 

and C
pb 
 measurements by Lee are presented in Fig 1.10 

Mclaren et al and Lee did not provide any explanation for the maximum 

they observed in CD  when 	1..)
/  
	is around unity. Examination of the 
I) 
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report by Lee shows that his results for 
Lx14: 

 1.5 where obtained using  

cylinders with aspect ratios of 9.27 and 10 whereas those for 

Lx
/ 

> 1.5 were obtained using  cylinders with aspect ratios of 24.4 

and 30 . The sharp maximum and minimum reported by Lee at L„/II of around 
) 

unity - (see Fig  1.10C) occur at the position of transition from low aspect 

ratio cylinders to high aspect ratio ones. It is known, see for example 

DSU (1971), that for square section cylinders, CD  is sensitive to changes 

in aspect ratio particularly when aspect ratio is low (below 30 )and when 

as in Lee (1975/1976) no end plates are used. Other factors that may have 

influenced Lee's results are the changes in blockage and the variations in 

the distance between the turbulence grid and the model;  The work of Mclaren 

et al similarly suffer from aspect ratio and blockage variations as they used 

cylinders with five different diameters and aspect ratios. 

The situation,- therefore, is still generally very confusing. Further work 

is needed in this field to identify more clearly the effects of turbulence 

scale. 

1.4.2 Oscillating  square-section cylinders  

We are concerned in this section with transverse oscillations perpendicular 

to the free stream direction. Self-excited oscillations of this type can be 

caused either by the periodic shedding  of vortices (vortex-induced oscillations) 

or by the steady lift and drag  forces following  an initial transverse 

disturbance motion (transverse galloping). Parkinson (1971) has remarked 

that "an observer of an oscillating  cylinder susceptible to both vortex- 

induced and galloping  oscillations would be unable to determine which form 

was present unless the amplitude y  was appreciable greater than the 

transverse cylinder' dimension h ." Thus small amplitude self-excited 

transverse oscillations of a square section cylinder are difficult to classify 

when they occur at NA, of around unity. It is for this reason that 

both transverse galloping  and vortex-induced oscillations are reviewed here. 

1.4.2.1 Galloping: Oscillations 

Consider a stationary square section cylinder in a free stream of 
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velocity Q, at 0°  incidence. 
Impressing a downward motion 

with velocity j on the cylinder 

induces a relative wind, ti RED ' 
f ) 
• at An incidence are 

 l. 
Tr_ ran  ( 9/Uk  

to the cylinder. The steady 

UREL 

 

sketch (1.3)  

sectional lift and drag forces FL  and FD  respectively will have a resultant 

,• FY  , in the direction of the motion. Let us assume that at every instant 

during the motion, the aerodynamic forces (FD  and FL  ) on the cylinder are 

the same as those on a stationary body at the instantaneous angle of incidence 

0( 
.o(rel 

(this is the quasi-steady assumption). Then the resultant 

force , -FY  , in the direction of motion can be expressed as 

Cf.( 
••■■•■ 
enema. _ sec  oc 	+ CD tan,  G()-- 	-(1.2) 

We're CL  and CD 
are defined as in equation (1.1) and are obtained from 

measurements on the stationary cylinder at the instantaneous incidence 0(= v( • 
red 

Fig 1.11 shows that in smooth flow, the excitation, CFy  , is positive 

(i.e. in the direction of the disturbance velocity) and increases with co( 

when C) 4 014 	13°• CFY  will therefore promote instability by 
ti 

assisting the initial small transverse disturbance motion. 

If the cylinder of sketch (1.3) is elastically mounted transverse oscillations 

called transverse galloping can occur when CFy  is large enough to overcome 

the structural damping. This oscillation will grow in amplitude until a 

limit set by either the flow or the structural damping is reached. Since the 

excitation, -F
Y , 

increases with windspeedi  U00 , the steady state 

oscillation amplitude will also increase with Uco so that oscillation 

.amplitudes many times the cylinder diameter, d , can occur. These are the 

main features of transverse galloping. 

Transverse galloping of a'square section cylinder has been investigated 
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experimentally and theoretically by many workers including Parkinson & 

Brooks (1961), and Parkinson & Smith (1962, 1964). Theoretically the 

structure is idealised as an elastic cylinder with both linear spring and 

damping forces. The curve of the excitation, COY  , versus o( , see Fig 1.11, 

is next approximated by a polynomial in 0/,
W 
 for tan

1(d) over the 
oo 

relevant range of 0( . The resulting equation is then solved for motion 

characteristics such as steady-state amplitude and build-up time. 

The above theory is called the quasi-steady theory because of the quasi-

steady assumption employed in the derivation of the excitation CFy  . It has 

been reported, see for example Parkinson & Smith (1964), that the theory 

predicts instability for all values of Lico greater than a critical value 

defined as 

Vo 	2 	 (1.3) 

where A = 	011CO3 	( A is positive for a square section cylinder 

do( 	ck'-'° 

damping parameter , 

• = dimensionless mass parameter . 

Thus when structural damping is negligible, the quasi-steady theory predicts 

instability on a square section cylinder at all values of wind speed 	IL, 0. 

Contrary to theoretical prediction self-excited oscillations have never been 

observed on elastic square section cylinders when 	is below unity sir  
tN 

even when the damping parameter, p, , is made so small that instability 
should, according to the quasi-steady theory, occur - see Otsuki et al (1974) 

It has been reported, see for example Parkinson & Brooks (1961) and 

Parkinson & Smith (1962,1964), that the quasi-steady theory predicts accurate 

values of steady-state amplitude and build up time when 	 s,../r. 
tsi  -f 	

2.0. 
• 

Otsuki et al (1974) and Nakamura & Mizota (1975) have also reported that the 

measured aerodynamic force at the body's frequency on forced square section 

see Fig 1.12) 
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cylinders are in good agreement with the quasi-steady predictions when 

cs/ > 2,0 . Nakamura & Mizota (1975) also measured the phase angle, 4), 
4;4 

between the force and the displacement and reported that it tends to the 

quasi-steady theoretical values at large values of 	cs% . 

At !S!rr of around unity, the agreement between the theory and experiment 

is poor. This is usually attributed, see for example Parkinson & Smith 

(1964), to the dominance of the vortex shedding effect. 

Effects of turbulence an Galloping  

It has been reported, see for example Laneville et al (1975) that the 

quasi-steady theory is still valid for rectangular cylinders in turbulent flow. 

To determine the effects of turbulence-on galloping one therefore only has to 

examine how the CFY 
versus c( curve is affected by the turbulence. In 

other words one only need to examine how C
L 

and CD 
(or infact the mean 

pressure distribution) on the stationary cylinder changes with turbulence. 

This has already been considered in section (1.4.1.1). 

Fig 1.11 shows the variation of Cry with 0( in turbulent flow calculated 

by the author from Lee (1974) values of CL and CD . It is seen that: 

a) Turbulence reduces the range of 0( for which CI Cf:/ 	is positive 
do( 

(i.e. range of instability) 

b) The maximum value of Cry ,.Crytax , occurs at a lower value of incidence 

in turbulent flow 

c) 
CFYmax 

in turbulent flow is less than the value in smooth flow. 

Thus for a square-section cylinder, turbulence will not only reduce the 

range of incidence for which transverse galloping can occur, the steady-state 

amplitude of oscillation at a given windspeed, t)03 , will also be reduced. 

This is confirmed by the measurements of Novak reported in Parkinson (1971). 

The redaction of galloping amplitude by turbulence was so marked that 

Parkinson.(1971) suggested that a sufficient intensity of turbulence would 

suppress galloping. 

It is, perhaps, interesting to note that the incidence,'lc& , for which 
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COY has a maximum value of CFy ax  corresponds very closely to the 0( at 

which flow reattachment first occur - this c( has been denoted by o( 	in crit 

section (1.4.1.1). Thus the reduction of galloping  amplitude by turbulence 

is due to the way in which turbulence causes earlier flow reattachment. 

1.4.2.2 Vortex-dominated cross-wind oscillations  

We are concerned in this section with cross-wind oscillations of square- 

section cylinders in the frequency range 0.5 4. cy 	4. 2.0 . In this 
fN 

range of fsi/ 	the oscillating  square section cylinder is still likely to 

experience fluctuating  pressures caused by the aerodynamic lift and drag  

forces as a result of the cyclic variation in the instantaneous angle of 

incidence although the magnitude of such excitations may be different from 

the prediction of the quasi-steady theory of section 1.4.2.1 . Thus the 

aerodynamic and aeroelastic characteristics observed on square section cylinders 

oscillating  in the present range of 	f5/r  cannot be attributed solely to 

vortex shedding. It is for this reason that the term 'vortex-dominated' 

rather than 'vortex-induced' is used in the heading. of this section. 

We have remarked in the prebeeding  section that self-excited cross-wind 

oscillations have never been observed on spring-mounted square section 

sylinders at 	below unity. A full investigation of the square 
cg 

section cylinder in the range 0.5 4 f5,, 4. 2.0 therefore requires 
4f4  

external forcing. This is the method of experimentation in the three works 

(Wilkinson (1974), Otsuki et al (1974) and Nakamura & Mizota (1975)) so far 

published. All three publications only became available during  the course of 

the present investigation. 

Otsuki et al (1974) and Nakamura & Mizota (1975) measured 1-01(t) which is 

the component of the total force L () -- V (t) 
(See footnote 1.1 for definition) at the body's frequency and the phase 

angle , 	between Lyvi(t) 	and the cylinder's displacement. 

Wilkinson (1974) measured mean  and fluctuating  surface pressures around 

a section, lift phase angle C , and correlations - particularly,spanwise 
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ones. He complimented these measurements with a smoke flow visualisation of 

. the vortex shedding phenomenon. The range and scope of his measurements are 

similar to those presented in this dissertation. 

Before assessing Wilkinson results it must be pointed out that he mounted 

his pressure transducer outside the wind tunnel. His pressure tappings were 

therefore connected to the transducer by very long plastic tubing which he 

himself showed , see Fig 1.12, to suffer from resonance effects and phase 

distortion in his declared frequency range of interest of around 50Hz . 

Quite apart from the distortion produced by the long length of tubing, cyclic 

distortion (i.e. 'flappings') of the long tubings during model oscillation is 

bound to create spurious pressure signals particularly at high values of f;44, 
its  

Thus Mikinson's measurements of dynamic pressures and phase angles, 

particularly during model oscillations, can at best indicate only broad 

qualitative trends. 

The main findings of the three workers are discussed below. 

A. Effects of oscillation on vortex shedding frequency 

The results of Otsuki et al (1974) indicate that oscillation at amplitude 

to diameter ratios, A/D , of 0.013 and 0.033 do not affect vortex 

shedding frequency (i.e. vortices are shed at. the frequency, fs  , that would 

exist if body were stationary). For A/D of 0.067 , 0.1 and 0.133 he 

reported wake synchronisation or 'lock-in' when 
	is around 

Footnote (1.1)  

LW is the total fluctuating lift on the oscillating cylinder. 

V(t) is the total fluctuating lift on the cylinder during oscillation in 

still air. 

Lm(t) is the component of L(t) V(t) at the frequency of oscillation 

C 	— 	IL n1(01 	1 1.(n (01 is the amplitude of Lm(t) . 

leUcOdt 
"d" and "1" are cylinders diameter and span respectively. 
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unity with the lock-in range increasing with increasing A/D . His measurements 

outside the lock-in range indicate that vortex shedding frequency is either 

less than or equal to the stationary cylinder value, Ts  , depanding on whether 

fs/es 	is less or greater than unity - see Fig 1.13 . is  

Wilkinson (1974) reported that at the high 	extremity of the 'lock- 
Ta 

in' range, lock-in was intermittent with the amount of time spent in the 

lock-in position increasing with decreasing 	. He also reported 

that for large values of A/D (his maximum value of A/D was 0.134 ) 

there appeared to be no lower limit to the lock-in region and that there was 

no sign of any appreciable energy at the strouhal frequency. 

B. Hysterisis  

Wilkinson reported that tests conducted to detect hysterisis indicated that 

there was none. The other two workers did not report hysterisis. 

C. Phase angle variation in the lock-in range  

The measurements of the three workers indicate that within the lock-in 

range, the phase angle, (1 , between the fluctuating lift and displacement 

rises very sharply with increasing 	Is/r 	. The approximate values 
T4 

of 	reported by each worker at the lower (i.e. low fs,/, 	) and the 
/to  

upper (i.e. high fsi, 	) extremes of the lock-in range are respectively 

-80°  and 110°  - Otsuki et al (1974) see Fig 1.14B, -165°  and 150°  - 

Wilkinson (1974) see Fig 1.16A, and -120°  and 60°  - Nakamura & Eizota 

(1975) see Fig 1.3A . The three works are best compared by examining the 

values of and A/D at which 	becomes zero. These zero 
,tm  

. crossings are plotted in Fig 1.15 4. 

0 
Now when 041. 	180 , the oscillating cylinder experiences an 

exciting force in phase with the velocity (i.e. negative damping). When 

the cylinder is spring-mounted, this negative damping will input energy into 

the system so that the oscillation amplitude increases either until this energy 

inpuZ; per cycle is balanced by the energy dissipated per cycle by structural 

damping or, when structural damping forces are very small, until the phase 
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angle, 	becomes 0°  or 180°  ,so that the flow itself cuts off the 

excitation energy. A small damping force can be the result of either small 

damping parameter or small amplitude of oscillation. The zero crossing in 

forced oscillation experiments therefore indicate both the steady state 

oscillation amplitude and the corresponding value of 	14 	or windspeed 
To 

that a lightly-damped spring-mounted cylinder will experience when undergoing 

small amplitude self-excited lateral oscillations. This view is confirmed by 

the work: of Nakamura & Eizota (1975)-where values of A/D and 	fs//, measured 
TN 

on three different spring-mounted rectangular cylinders (including a square 

section cylinder) undergoing self-excited oscillations are shown, see 

Fig 1.2A ,to be in good agreement mith.the values deduced from the zero 

crossings in forced oscillation experiments. 

Returning to Fig 1.15 the 41 values of Otsuki et al (1974) and Nakamura & 

Mizota (1975) indicate that the spring-mounted square section cylinder will 

experience self-excited oscillation at 	414 	above unity with the steady- 

state amplitude of lateral oscillations increasing with increasing windspeed 

or 	f1/4 	(note that 	W 	1 	fvf 	where S is the 
114 	-Fd 

stationary cylinder strouhal number). In direct contrast Wilkinson 

values indicate self-excited oscillation with amplitude that decreases 

sharply with increasing windspeed. Wilkinson's results are odd because all 

known observations of steadystate self-excited oscillation amplitude on spring 

mounted square section cylinders, see for example Parkinson & Smith (1966), 

support the trend indicated by the measurements of Otsuki et al and Nakamura 

& Mizota. 

After- comparing his square section cylinder 4) values with those measured 

on an oscillating circular cylinder by Hassan in 1962, see Fig 1.16B, 

-Wilkinson remarked that the difference between the two results are "mainly the 

result of differences in amplitude ratio and are more or less independent of 

body shape". In other words at same values of A/D and fotir 	, 4) 15 
values on a forced circular cylinder should be identical to those on a forced 



38 

square section cylinder. This is most unlikely. We have already remarked in 

the preceeding paragraph that the phase angle, 4) , determines the mode of 

energy transfer between the flow and the oscillating cylinder. Ekperiments, 

see for example Feng (1969), have shown that the lightly damped spring-mounted 

circular cylinder will undergo vortex-induced oscillations only within a 

DISCa7TE range of 

	(undergo 

 starting approximately from 	f5ip 	=1.0. ft.t4  • 

In direct contrast the lightly damped spring-mounted square section cylinder 

will undergo, see the preceeding paragraph, self-excited oscillation at ALL 

never been found to be less than unity) with the amplitude of oscillation 

increasing with increasing 

of energy transfer between the flow and the body is different for the two 

cylinders, (ID values obtained on a forced square section cylinder at given 

values of A/D and 	44 	will therefore generally be different from 

those obtained on a forced circular cylinder under identical conditions. This 

casts further. suspicion on the accuracy of Wilkinson's measurements 

D. Force Amplification at lock-in  

(i) Mean drag forces. 	ilkinson (1974) compared the mean drag coefficient 

(:11(0 	during oscillation with that of the stationary cylinder, 

CDO - see. Fig 1.17A , Except at 	fv, 	of around 1.2 where Cb (c) 
tN 	 /CDO 

is approximately unity, oscillation is shown to decrease the mean 

drag throughout the lock-in range. Wilkinson attributed the drop in 

the mean drag to a rise in base pressure. 

Wilkinson also reported that his flow visualisation indicated 

that at lock-in, the vortex formation region length was decreased 

below the stationary cylinder value. This, from work on oscillating 

cylinders, see for example Davies (1975), and on stationary cylinders, 

see for example Bearman (1965), leads one to expect increases in the 

mean drag and base suction. Surprisingly Wilkinson measurements, 

see Fig 1.17A and the preceeding paragraph,indicated decreases in mean 

values of csi/ 
fjCnr 	fri 

above a critical value ( r 	 i ( (Cs/ 
	

has 

. . These results show that the mode 
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drag and base siAchort, 

(ii) Spanwise correlation  

Only Wilkinson measured spanwise correlation. His results indicate 

that oscillation produces very large increases in the spanwiSe 

correlation length particularly at lock-in - see Fig 1.18 . He 

reported that maximum spanwise correlation occured at 	fiv 	of 
TS 

about 0.85 to 0.90 . He expressed the maximum correlation length ) 

at lock-in approximately by: 

X/D = 2, 50 + 2 5 o A/D  
where A is the amplitude of oscillation and D is the diameter of 

the cylinder. 

(iii) Sectional fluctuating lift coefficient, CLrms 

Measurements by Wilkinson (1974) indicate that at lock-in, oscillation 

greatly increases CLrms - see Fig 1.19 . He reported that CL
rm
s 

was maximum, in the lock-in range, at 	44/ 	of about 0.90 . 

TS 
He compared this maximum value of CLrms  with that on a stationary 

cylinder and reported, see Fig 1.19B , lift amplifications of 1.45 

1.92 and '2.2 for A/D of 0.022 , 0.067 and 0.134 respectively. 

Otsuki et al (1974) and?Nakamura & Mizota (1975) measured the 

coefficient, Cia  , of the amplitude of the total force Lm(t) where 

Lm(t) is the component of L(t) - V(t) at the body's frequency 

(see footnote 1.1 for definition). Experimental peasurements, see 

for example Fig 1.17B , suggest that V(t) is much less than L(t) 

even when .A/D is as'high as 0.134 and $1,6, 	is around unity. 
T4 

Now for a stationary square section cylinder in a smooth stream at 

0°  incidence Vickery (1966) has reported that 95% of the total 

energy of the fluctuating lift is contained in a 2% band width 

centered on the strouhal frequency. It is known that at lock-in 

lateral oscillation makes vortex shedding frequency even more regular 

(i.e. more nearly periodic) than on the stationary body so'that 



EP(f=0) 
centre of the side face is very large at high values of oscillation frequency 

Wilkinson measurements, see Fig 1.17B , show that the magnification, 

4(f .0 
( see Footnote 1.2), of the fluctuating pressure at the 
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almost all the fluctuating lift energy will be contained in a 

narrow band width centered on the common frequency of oscillation 

and vortex shedding. Furthermore the measurements of Wilkinson already 

discussed indicate excellent spanwise correlation at lock-in. The 

CLm 
values of Otsuki et al and Nakamura & Mizota will therefore 

correspond very closely to the amplitude of the sectional lift 

coefficient (i.e. CLm = CLrms x,!2) particularly when AID is 

large. The result of Otsuki et al therefore indicate, see Fig 1.14A 

a maximum 
CLrms 

of 1.06 at A/D of 0.133 and 'F.Vp . 0.92. 
-11,1 

Those of Nakamura & Mizota indicate, see Fig 1.2B , a maximum CL
rm
s 

of 1.50 at A/D = 0.15 and 
	

CV. 	. 0.9 . As the 
14- t4 

stationary cylinder value of 
CLrms 

has been reported in section 

1.4.1.2 to range between 1.2 and 1.4 , the two works indicate 

that when A/D 4 0.15 , the maximum value of 
CLrms 

at lock-in is 

approximately equal to the stationary cylinder value. This does not 

agree with the measurements of Wilkinson, see Fig 1.19B , where 

amplifications of over 220% is reported at lock-in in the same 

range of A/D . 

E. Magnification of surface dynamic pressures at high values of -PO's  

Eyc, 
presented measurements of the virtual mass pressures (see Footnote (1,2)) 

show that for 	f 	1.2 the magnification, even after virtual mass 
Its 

pressures have been substracted, increases with increasing 4',/, 	so 

FOOTNOTE (1.2)  

a) CP(4-0 	RMS pressure coefficient on the oscillating model 

divided by RMS pressure coefficient on the stationary 

model. 

B) Virtual mass pressure - The dynamic pressure on the model during oscillation• 
in still air 

For example his results for A/D = 0.134 for which he also 
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that at of about 1.8 ,the value of the magnification less the 
+5 

contribution of the virtual mass pressures is already more than the maximum 

magnification in the lock-in range. Wilkinson suggested that this may be due 

to a first harmonic locking range. Even then his results are still rather 

unusual because his measurements of mean drag amplification, see Fig 1.17A , 

indicate large reductions at high values of 	ft4,/, 	. Usually one /.1.5  

expects large drag reductions to indicate reduced vortex activities so that 

at large values of HA"- 	one expects Wilkinson's values of 	(c -T)  

to tend to his virtual mass pressure values, as the total force measurements 

of Nakamura & P,sizota (1975) indicate, rather than diverge even more from them 

as Wilkinson's measurements of Fig 1.17B show. 

1.5 PURPOSES AND SCOPE OF PRESENT INVESTIGATION  

The present investigation is aimed primarily at improving our understanding 

of the body-wake interaction that takes place during vortex-induced and 

forcod vibrations. There is also generally insufficient data on the fluctuating 

surface pressures experienced by bluff bodies - particularly stationary and 

oscillating non-circular bluff bodies. The secondary aim of this investigation 

is therefore to add to existing sparse fluctuating surface pressure data. 

In the present. investigation, the characteristics of surface fluctuating 

pressures (particularly those contributing to fluctuating lift) have been 

examined on a stationary and oscillating square section cylinder. Observations 

on the oscillating cylinder were conducted at forcing frequencies at and 

around resonance. Other flow characteristics observed include surface mean 

pressures, pressure correlations, vortex longitudinal spacings and the phase 
Lift 

angle between the fluctuating and the displacement of the oscillating 

'cylinder. Finally a smoke visualisation of the vortex shedding phenomenon 

was conducted to complement the above observations and to provide more insight 

into the complex body-wake interaction that takes during body oscillation. 
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CHAPTER 2  

EXPERIMENTAL APPARATUS  

2.1 WIND TUNNEL  

All experiments were performed in the 3' x 3' wind tunnel of the 

Department of Aeronautics, Imperial College of Science and Technology, 

London. The wind tunnel is a low speed, low turbulence closed-return 

type. Details of the wind tunnel can be found in the work of Clements & 

Unwin (1973) where it is reported that the turbulence level in the tunnel 

working section is less than 0.04% . 

2.2' THE OSCILLATING MECHANISM  

Mounted underneath the floor of the tunnel working section is the 

oscillating mechanism. This device is capable of producing simple 

harmonic oscillations at a continuously variable frequency and peak-to-peak 

amplitude up to a maximum value of 40Hz and 30mm respectively. The 

detailed design is due to Mr. Gasson of the Department of Aeronautics, 

Imperial College, London. The operating principles are outlined in Davies 

(1975). 

Body amplitude and frequency were detected with a D.0 Linear 

Variable Differential Transformer (24V, Voltage Electro Mechanisms , 

type 500 DC) mounted on one arm of the oscillating mechanism. This 

produced a voltage output of 5V for 12.5mm displacement and the output 

signal was fed to a Muirhead Wave Analyser (Model K-134-A) for body 

displacement frequency measurement. 

2.3 THE PRESSURE TRANSDUCERS  

Two capacitive pressure transducers were used. The majority of the 

fluctuating pressure measurements on the stationary model were conducted 

with the B & K 	microphone. A 	Setra Pressure Transducer which 

was more sensitive and aliftost drift-free was used for measurements of 

mean and fluctuating pressures, correlations and lift phase angles on the 
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oscillating models. Details of the transducers and the associated 

mounting systems are summarised below. 

B & K ." Condenser Microphone Type 4136  

This was used in a resonant circuit consisting of a Disa Oscillator 

51 E32 and a Disa Reactance Converter type 51E01 . The same circuitry 

was used earlier by Packrell (1973) and the operating principle and 

description of the system can be found in his Ph.D Thesis. The 

sensitivity of the system was adjustable. Under the present experimental 

conditions the most appropiate. value of sensitivity was found to be 

7.5 millivolts/pm of water gauge pressure. 

Setra Low Range Pressure Transducer Model 237  

The setra systems transducer has built-in electronics and only 

requires external D.C. excitation voltage in the range 15 to 30 volts 

The excitation voltage was kept at the nominal value of 24 volts throughout 

the experiments. The sensitivity was found to be 35.4 Millivolt/mm of 

water gauge pressure. 

The Mountings for the Pressure Transducers'  

The setra pressure transducer as supplied by the manufacturer is 

sketched in Fig. (2.1A) . For the purpose of the experiment, which is 

surface pressure measurement, the mounting technique described below was 

employed. 

A cap terminating in a short tube of bore 0.078" was fitted above 

the diaphragm. The cap which rested on an '0' ring placed on the 

transducer's mounting flange, was held in place by a nut - See Fig. 

(2.1B) . The '0' ring seals the diaphragm from the external air so 

that pressure can only be applied to the diaphragm either through the tube 

on the cap or through the equalisation tube. When the cap is properly 

tightened the clearance between the transducer's diaphragm and the inside 

of the cap is as small as 0.03" . more details of the transducer and 

cap system are provided in Figs. (2.1A) and(2.1B). 
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The setra transducer/cap system was clamped firmly to the inside of 

the model by two insulating holders. The first holder grips the transducer's 

cap unit very firmly while the second gently supports the tail of the 

transducer. Details of the holders are given in Fig. (2.10). 

The above cap and nut principle was also used to mount the 

B & K 	microphone inside the model. Due to the small size of the 

B & K microphone, only one insulating holder was required to fix the 

microphone/cap unit to the inside of the model. 

2.4 THE MODELS  

2.4.1 General Details 

Four 2-inch square section cylinders with sharp edges were 

tested. All spanned the 3' x 3' low speed wind tunnel horizontally at 

mid-height. During the experiments three of the models to be referred to 

as the oscillating models, were subjected to oscillations. The remaining 

model, was kept stationary throughout. Important details about the models 

are outlined below. 

2.4.2 The Stationary Yodel. 

This model was mounted on turntables located on the side walls of 

the wind tunnel as sketched in Fig. (2.2) . It has two types of pressure 

tapping labelled type (A) and type (B) 	More details about the model 

and pressure tappings are provided below. 

Type (A) Pressure tappings  

They were manufactured from brass tubing of external diameter 5/64" 

and were used exclusively for mean pressure measurements. Narrow-bore 

plastic tubing runhihg through the model connected these pressure tappings 

to two inclined Alcohol Multitube manometers. 

Forty type (A) pressure tappings are provided on the stationary 

model. The locations of these tappings are given in Fig. (2.3). 

1=ODT=Ec:22111Eillaa 
Nine type (B) pressure tappings are positioned on one of the side 
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faces of the stationary model as indicated in Fig. (2.4). The tappings 

are provided by brass tubing of internal and external diameters of 

1/16" and 3/32" respectively.. During pressure measurement each 

tapping was connected in turn to the Pressure transducer inside the 

model by plastic tubings of internal diameter 3/32" . From consideration 

of frequency response (see Chapter 3 for more details) the total length 

of brass and plastic tubing between the surface of the model (where 

fluctuating pressure is to be measured) and the transducer's, 'diaphragm was 

kept below 3" . 

End Plates  

Five sets of sharp-edged end plates with rounded corners were tested 

'on the stationary model. The end plates of each set were located 

seventeen model diameters (34") apart. ore details including the 

dimensions of the end plates are provided in Fig. (2.5). 

2.4.3 The Oscillating Yodels  

These rigid models were mounted externally. on the arms of the 

oscillating mechanism through two circular slots, each of diameter 6.5", 

on the side walls of the wind tunnel. (To obtain the circular slots, the 

turntable's, see Fig. (2.2) used to mount the stationary model on the wind 

tunnel side walls were simply removed). The mounting procedure of the 

models is sketched in Fig (2.6). Each oscillating model carried a set 

of end plates of the type labelled No.2 in Fig. (2.5). 

More details about each model are provided below. 

Oscillating Model 1  

This model was used first for mean pressure measurement during 

body oscillations and later for flow visualisation. Eight of the type (A) 

pressure tappings described in section 2.4.2 were positioned along the 

span on the centerline of the model's back face as indidated in Fig. (2.7), 

Oscillating Model 2  

Eight type (B) pressure tappings were distributed around the 

mid-section of the model as indicated in Fig. (2.7) . These tappings 
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were used for fluctuating and mean pressure measurements. Tapping details 

are given in Section 2.4.2. 

Oscillating Model 3  

This model was built primarily for pressure correlation measurements. 

Type (B) pressure tappings were distributed on this model as indicated 

in Fig. (2.7). 

2.5 MAGNETIC TAPE RECORDING  

The fluctuating signals related to wake velocities, model surface 

pressures and body displacements were recorded on an Ampex FR 1300 

analogue tape recorder. These recorded signals were later digitised on 

the Imperial College Aeronautics Department Data Logging Systeip. A 

description of the analogue tape recorder and the associated data 

logging system can be found in Davies (1975) and Bradshaw (1972). 

2.6 OTHH ELECTRONIC EQUIPMENT  

These were standard instruments normally employed in turbulence 

research. A hot-wire probe with a 5-micron platinum wire as sensor 

was used with a Disa DO1 Anemometer to detect vortex shedding. Other 

instruments used in the experiments are listed below. 

Voltmeters Disa 55 D35 R.M.S. voltmeters, Disa 55 D30 Digital D.C. 

Voltmeters, Datron R.M.S. Voltmeter Model 1030a , Solatron 

digital voltmeters. 

Filters Rockland Dual Filter Model 452-01 , Kemo Dual Variable Filter 

Type VIII'/1 

Oscilloscope Tecktronix Type 549 Storage Oscilloscope. 

Sum ana Difference Units Disa Test Sum & diff. (PHI Module); Op. Amps. 

(PEI Analogue Module 16). 

Amplifiers Fixed Gain Amplifier ; Data Amplifier (PHI Analogue modules 

19 and 17 respectively) 

Power Supply Units 30V Power Supply, Startronic Ltd. Model 119.6 . 

Footnote P.H.I. - Patchable Hybrid Instrumentation 
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Ep  
z 	z _ 

With the definition 
P 	p 

written as 

Pz 
j Ica 
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CHAPTER 3  

EXPERI1.7.'yTT.A.L TECHNIQUES AND DATA T.MUCTION  

3.1 WIND TUNNEL CALIBRATION  

Below is a sketch of the contraction and working section of the wind 

tunnel. O is the desired mean pressure coefficient on the model. With 

the notation in the sketch 

P 	e U.,2 	 (3. I) 

MODE L 

1:12. 
x 

P. 	? k - 	' 1 - I. P2 -  
euz — ( 3 . 2 ) 

Pz - 
- - -(3.3) 

where 130  and 12 	are the static and the dynamic pressures at co 

the location of the center section of the model in the empty wind 

Pm -P 	p 

tunnel. 

P2 and P
1 

are static pressures at the begining and the end of 

the wind tunnel contraction respectively. 

P
m - mean pressure at the surface of the model. 

With the tunnel empty a pitot-static tube was located at the position to 



48 

be occupied by the model center section. Variation of (P, - P1) and 

- 	) with 	H1 

	

e -co 	were observed. In the Reynolds number range of 

interest,i'1  was found to be constant at 1.006 (see 
2ig (3.1)). K1 

2, 
varied with 	i e  (. 

„
40 	but was found to be never higher than 0.02 i see 

Table (3.1) 

Betz nanometer 

reading in mm of 	K
1 

8.08 

11.40 

19,12 

20.70 

51.65 

57.85 
71.90 

0,020 

0.018 

0.011 • 

0.011 

0.010 

0.011 

0.015 

 

  

FOR X LESS THAN 5 131 
	

0 

TABLE (3.1), 

3.2 PRESSURE TRAS1JC-22,S - CALIBRATION PHOC:DURE. 

3.2.1 • Effect of tube length on the tra=hicers'freouencv response. 

It is known that any connecting tubing or cavity above the diaphragm will 

degrade the frequency response of a diaphragm pressure transducer. The 

connecting tubing and cavity have their own frequency response characteristics 

so that the joint response of the transducer/tubing or volume may be radically 

different from the.  flat frequency response of the transducer on its own. 

Analytical treatmet of this problem can be found in textbooks such as 

Docbelin (1%-.6). 

Doeblin.(1.5(6) treats the transducer/tubing system as a second order 

mechanical system. He presents the equivalent natural frequency and damping 
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parameter of the system as 	see footnote (3.1)J 

6,,  .. ,1 `r F7e 	C, 	_ ---(3.4) 
L p_ 
\ A 	

+ 

-1-RANSDUCER'S7  
Dior 1-i 	11 

- (3.5) 

CONNECTiNIC 
TUeft4 Ci 

, 

where 

V = Volume of the cavity labelled 1 

Vt  = Internal volume of tubing of length L 

dt  . Internal diameter of tubing 

C = Velocity of sound 

Ni OD .. 1.  
S F C 

Thus if the ±.esonant frequency fiT  is to be removed far above the maximum 

frequency of interest, 	L must be made small° To minimise damping and the 

attendant attenuation it is necessary to make d
t 

as large as possible.. 

FOOTIOT: (3.1) Equations (3.4) and (3.5) hold only when the tube volume, 

V
T 

becomes a significant Dart of the total volume of the system -. see 

Doebelin (1966) 	401 . 

In the experiments V was 0.006128 cub. in., dt  was 3/32" so that 

for a Uubing of length 3" 	V
t
/V . 3.38 . Equations (3.4) and (3.5) then 

suggests 	0.003 	and I: 	803 117 . 
IN 
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The effect of the connecting, tubing was measured experimentally by observing 

the dynamic response of the transducer with various lengths of tubing attached 

to the end. A B & r: pistonphone type • 4220 gave a constant amplitude pressure 

signal with frequency , f , variable in the range 12 < f< 600 cps . 

Typical transducer/connecting tubing response curves are shown in Fig (3.2). 

Fig (3.2) shows that when the tube length , L , is less than 3" , the ' 

microphone response is flat up to at least 300 HZ and that resonance 

occur far above 500 HZ • This flat response suggests that the phase shift 

between the pressure source and the transducer is negligible. It is 

interesting to note that when L = 5.i" equation (3.4) predicts a resonant 

frequency of about 460 HZ which is, see Fig (3.2) , in good agreement with 

the experimentally observed trendo 

No means of producing a constant amplitude pressure signal at frequencies 

below 12 HZ was available. There was therefore no direct way of determining 

whether or not the pressure transducers used in the experiments suffer from 

sensitivity changes at low frequencies. From private communication with 

the manufacturers, it was learnt that the. static sensitivity of the B & IC 

1' Type 4136 microphone was 0.25 dB (3) higher than the dynamic 

sensitivity and that the transformation from the static to the dynamic 

sensitivity factor occurs between 0.5 and 5 HZ . The I" Setra pressure 

transducer is not expected to suffer significantly from sensitivity changes 

at low frequencies as measurements of fluctuating- pressures at such 

frequencies display no features that are attributable to sensitivity variation. 

For fluctuating pressure measurement the total length of tubing between 

the pressure source and the transducer's diaphragm was kept below 2.75" . 

A low pass filter was then employed to give a sharp cut-off at a frequency 

of 300 H2 which was by far higher than both the vortex shedding frequency 

f s  , ard the body oscillation frequency , 17
ri  
_ • On the stationary model f

s 

was alays below 46 HZ except on one occasion when, in order to 

investigate the f:ffoo to of. Reynolds number, f 	was increased up to 91 HZ. 
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On the oscillating model f
s 

and f
N 

varied between 3 and 25 HZ . 

3.2.2 Static  Calibration of Pressure Transducer  

The static calibration of the transducer (with the mounting system and 

connecting tubing in place) was conducted by comparing its response to pressure 

with that of a Betz manometer. The static pressure difference 1cross the 

wind tunnel contraction (labelled P2 - 1 in section 3.1) was used for the 

calibration. 

	

Fig (.3) shows the results obtained with the 	Setra pressure 

transducer over a period of six months. That the points all lie on a straight 

line indicates the stability of the transducer's static sensitivity to changes 

in environmental conditions. Typically the static sensitivity of the 

transducer calculated from the best fit straight line (least square method) 

was found to be 35.4 millivolt/mm which is in good agreement with the value 

of 35 millivolt/mm specified by the manufacturers. 

A similar procedure was used to determine the static sensitivity of the 

B & K -;.-" microphone system of section 2.3 . Great care was however 

required as the system suffers severely from output voltame drift. The 

static sensitivity of the B & K microphone system depended on the 

adjustments of the Disa Oscillator and the Reactance Converter (see section 

2.3). The most appropriate value of the static sensitivity was found to be 

7.6 millivolt/mm . This value was also found to be stable to environmental 

conditions - see Fig (3.4) . 

3.3 :=XILLUATia:q 07 ' 	L7D FLUCTUATING P=STP, 

3.3.1 l'ean Pressre 

In agreement with Fackrell (1973) , the B & K:" microphone system described 

in section 2.3 was found to suffer severely from output voltage drift. 

This system was therefore unsuitable for measuring. mean pressure° 

The -In Setra pressure transducer was in contrast found to be drift-free 

after a warm ue period of'abOut six hours. To measure m,ean pressure on the 
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models, the reference side of the transducer was connected to the wind 

tunnel static pressure tapping at the end of the contraction (this tapping 

is labelled P1  in section 3.1), By using the transducer's static s..,nsit:;vi..ty 

changes in the transducer's mean voltage output due to the flow were 

converted to the differential pressures labelled r a P, in section 3.1 . 

Equation (5.3) was then used to calculate the mean pressure coefficient C 
P. 

3.3.2 Fluctuatinr-7 Pressure 

The 	component of output voltage of each transducer was converted to 

H.M.S. pressure P rms by using the transducer's static sensitivity - see 

Footnotcs(3.2). The I.P.S. pressure coefficient 	wass 

then determined by non-dimensionalising with the dynamic head - 

Yeasuxements ofC 

	

	
on the oscillating model were found 

PRmS 

to require special care. The procedure adopted is described in the section 

below. 

FOOTNOTS (3.2) 	This in effect, means that all the Rir.,9 pressure coefficients 

measured with the B & K :LI' microphone system are 	too low. (It was 

reported under section 3.2.1 that the manufacturers of the B & K 	micro- 

phone expect the static sensitivity to be about 0.25 dB (3,:-) higher than 

the dYnamic sensitivity). This applies only to the stationary model 

measurements as the B & K system was not used in body oscillation 

experiments. 
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3.3.2.1 Determination of 	CPrms on the oscillatin ~ model, 

When a long  flexible tube was attached to the equalisation tube of the 

2' Setra pressure transducer, it was found that cyclic distortions of the 

flexible tube with model oscillation affected the transducers 	voltage 

output. After some investigation it was found that it was necessary to seal 

off the equalisation tube when RMS pressure is to be measured during. model 

oscillation. Pressure measurements to be presented later confirm that sealing 

off the equalisation tube does not affect the transducers dynamic response. 

Mean pressure coefficient C 
	cannot however be measured with the equalisation 

tube sealed because as equation (3.3)  demonstrates every C 	is measured 

relative to the static pressure , P1  , at the end of the wind tunnel contraction 

(i.e. with the equalisation tube connected by plastic tubing  to tapping  P1). 

3.4  PRT-3SSURT] 	 1..71,7J:?_ET.TITrMS  

The correlation coefficients of two signals, P1  and P2  is defined as 

P̀  Pia 	
____ 	Pi P2 	 (3.6) 

IrMS PUMS 

r 
As reported by Pex  ndergast (1958)  equation (3.6) 

 can be written as: 

       

       

P12, ..•-■••• 
+ P2.) — 	P  - p  ) 
PIrms ' P2rnls 

 

- - (3.7) 

       

Patchable Hybrid Instrumentation (PHI)  module see section 2.6 , provided 

P1 + P2  ' a- rx.1 P1  - P2 
. The squaring  and averaging facilities on two 

Lisa 55-i35 f'MS voltmeters then gave simultaneous values of (P1 
4. P2)

2 

9 
and (P1 - P2)  . .These were then combined with r rii c. and pz r 61 s 
as in equation (3.7) to obtain 	P 	. 	2' 'e'rs pressure transducers Np i ,z 	. 	z 	0 _t,..,,, 

were used in all pressure correlation measurements. 
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3.5 sT-' .A_rf 0 777:11:717:TS  

3.5.1 sillaiDN.,r3.Y. MODEL 7,T1 ATM71.:TS  

A description of this model and its pressure tappings has been given in 

section 2.4.2. 

3.5.1.1 General 'Details of the ExPeriments 
r 

ReynAds Number Ranre: 1.0 x 104 Re 41.2 x 10)  

45
o  

Incidence 73ange; 0°  4 c( 4 

End Conditions: Five sets of end plates described in section 2.4.2 were 

tested on the model, 

The particular Reynolds Number, incidence and end-plates used in eac* 

experiment are indicated where necessary on the appropriate graph of results, 

3.5.1.2 Brief description of the ExnerimPnts. 

a) ':,leasurement of Mean pressure coefficients, C 

Mean pressure coefficients , C , were measured around. the mid-section p  

of the model and along the span on the centerline of the bash face (face c) 

using an inclined alcohol multi-tube manometer. 

Detailed distribution of C 
A 

around the mid-section of the 

model was obtained by makinr,  

observations under identical 

conditions at incidences C4 = 	and ( 	90 )
o 

and Presenting '61:E' 

results under a single incidence o( 	0 . (This was necessary because 

there are fewer mean pressure tappings on faces 72 & B than on faces A & C). 

b) Fluctpatin7 Pr(ssure  T:easurement  

All - measurements of pressure fluctuations on this model were 

made with the B & K Ott  microphone system described in section 2.3 . The 

microphone was connected in turn to each of the Type (3) pressure tapping 

described in section 2.4.2 . All type (B) pressure tappings on this model 

U CO 

 

are positioned on face B . For each tapping, setting the model at incidences 
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of 	, ( 	90)°  , ( 0( 	180)°  and ( c‹, .4- 270)°  gave the 

fluctuating pressures on faces B 	C, I) and A respectively. 

c) Sheddinp7  -1rf. c1uencyl,7easurement  

Vortex shedding was detected both with the pressure transducer 

system and with a hot-wire suitably located. downstream of the model outside 

the ,;a1:.e. The shedding frequency was either counted on a storage Oscilloscope 

or obtained digitally from spectral analysis (see sections 2.5 and 3.6.1) 

of the tape-recorded vortex shedding signal0  

d) ,:leasuremont of the longitudinal spacing of the vortex street 

IZEIE RUNGE 
MtcgDP8o0E 	

llot wire 

 

U (0 

 

   

   

The surface pressure signal from the tapping at the center of the 

top side face was used as reference. A hot-wire was transversed streamwise 

in the same spanwise plane as that containing the reference pressure 

transducer. At each streamssise location, X , of the hot-wire simultaneous 

tape recording of the hot-wire and pressure signals were made. Subsequent 

digital analysis of the recorded signals (see sections 2.5 and 3.6 ) 

then yielded the phase difference, 4)(f
5
), between the hot-wire and the 

LO  

microphone signals. The average longitudinal vortex spacing was determined 

. from the change in X required to produce a 360°  degree change in 	(f) ' s 

e) Other nformation obtained from Spectral Analysis 

(i) Spectral distribution of fluctuating pressures at various 

location around the mid-section of the model. 

(ii) Variation of phase angle at the shedding frequency around 

the mid-section of the model. (A fixed hot-wire located 

down-stream of the model outside the wake produced the reference 

signal). 
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3.5.2 03OILLATIKC  , 	t•; , t TS 

These models have been described in section 2.43 . 

3.5.2.1 General 1;etails of the  Fixneriments 

Reynolds Number Range: 4 x 103  < Re 41. 	1.2 x 105 

Incidence 	ok 	00  only 

Amplitude to dismeter ratiosl A/D . 0,05 , 0.1 and 0.25. 

Reduced Windspeed Range f 3.0 < 	. 	15.00 

r 
-c 6 .„ 

was varied either by varying 	Lkc 	or 1)1,  varyinc- 
Ct 

End Conditions : 	No. 2 sees .of end plates (see section 2.4-2 for details) 

were used throughout. 

The rarticular condition prevailing.in each experiment is indicated in 

the appropiate graph of results. 

3.5.2.2 list  of Oscillating T:todel Experim,mts 

a) Ifeasurement of mean -uressure coefficients, 	p  

p were measured either with a :Betz manometer or with the 

Setra pressure transducer. 

b) Fluctuating Pressure ressarement 

The 	Setra pressure transdacer was used • 

c) Shedding Frecuencv ITeasurements  

Performed as in section 3.5.1.2 (c). 

c) Yeasurement of longitudinal, vortex street snacinp: 

Performed as in section 3.5.1.2 (d). At lock-in the displacement 

signal was sometimes used as the reference signal. 

e) Prec,sare Corrplation 7.easurements 

Obtained with two -1" Setra pressure transducer as described in 

section 3.4, 

f) fluctuatir,,,  Lift anc; 

Obtain,,d digitally from simultaneous tape recording of the fluctuating 

lift and displacement signals (see section 2.5 and 3.6 for 

relevant diFital instrumentation and references). 
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g) Flow Vivalisation 

See Chapter 5 for details. 

3.6 DATA R77UCTION 

3.6.1 TILL:2J  Analis: Spectral T.T.easuremehts 

Analogue recordings of unsteady pressures and velocities (see section 2.5) 

were digitised on the Imperial College Aeronautics Department Data-Logging 

System. The resulting computer-compatible digital magnetic tapes were processed. 

on the Imperial College CDC 6400 computer using either the 'Powspec' or 

'Cophase' described in Davies (1974) and (1975). The 'Powspec' computes 

the power spectral density for a single channel of input data. The 'Cophase' 

computes the complex cross-spectral density function for two simultaneous 

input channels. The output of'Cophase' include the power spectral density of 

each channel of input data, coherence and phase angle. Detailed discussion 

of the Spectral Analysis Programs, Powspec and Cophase, are provided by 

Davies (1974) and (1975). 

3.6.2 3locka7e Correction  

Stationary Y,odel  

The blockage correction method proposed by Yaskell (1963) was used. 

The appropiate equations are: 

• . Kz  IA ___ 1 .1_ 
 K
C  

1  (Y - - - 

i 	
-- 

,2- 	2 
. 	1 - Cp 	___ 	CD 	- 	Lk 	K   .. - 	, 

Cpc 	U2  - V=„7, 
The suffix C refers to corrected quantities 

- mean pressure coefficient ,p 

-
D 

- mean drag coefficient 

S/C - blockage ratio 

3.8) 

- (3.9) 

2 • 
= 1 - C

pb where Cpb is the base-pressure coefficient. 

From measured values of
D 

and C
pb 

and known values of 	I 



1.0)0 

Angle of Incidence 0° 

Maskell correction 

factor, K/ 2 

250  

1.102 
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was calculated from equation (3.8) using  the expression : 

K
2- 	. 1 	K 	CD s/c , it_cp 	— (1 + K.7-)] 	4- K 2' 

(3.10) 

 

:aqua tion (3.9) was then used to correct the measured values of 

C and CD . 
p , Cpb  a  

The velocity, 	Lia, 	/ used to formulate the fluctuating  pressure 

coefficient 	C 	= 	Ir r;-+`' 	and the Stronhal number S = .1. C( 
P, EBI 	 ‘: '-40 • 4 	 Ueo 

was corrected for blockage using  equation (3.9) 
1 

Table (3.2) gives the values of the correction ratio, 	K./ Z 
/ 	K 

obtained at ea h. angle of incidence. 	V‘,/,,z 	 vas found c to be 
Nc  

, that 

independent of Reynolds number. 

Oscillating  body 

No blockage correction method has been proposed for oscillating  bluff bodies 

Daring  body oscillation the values of C 	and C
pb 
 were observed to 

vary continuously with amplitude to diameter ratio A/D and reduced windspeed 

Uco 
of Cpb became so high at low values of 	

fr..1 d 	
, see Fig. 7.3 , that 

K
c 

could no longer be determined from equation (3.10) because the quantity 

C1  /(C 	+ K2  ):12 — 14- Kz 
	

became negative. Thus rather 

than use a dubious correction method, it was decided not to correct the data 

for the oscillating  body. 

As  a result of flow reattachment to the side faces the values 



C 
	A 

D 

I 
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3.6.3 Calculation of the RMS sectional lift coefficient on the side face  

of the square section cylinder. 	
PR. 

 

aid -E3   Consider a section of 	a rt 

U 
paper. The instantaneous 

fluctuating side force FB  

on face B is given by: 

FB  == (P, Et, 4- Pz  811  4-  P3 £t3 + 
	 - - - PcSt a)Sy 

where P1 , 
P
2 
	 P

n 
are the instantaneous values of the 

fluctuating pressures on elements St 

St, 

small depth 	into into the 

st 	respectively. 

F2" { 	P2, SeZ t F Se23 - 2. 
- Prt eta, 

+ z e Pz 	Etz  + 2 e P3  8k, 8t3  + 2 P, t 	8t,„ 
yz  

This can be written as 

1,J 

• = n j 	Pi Pi 64 S 
r-

tj 	_ _ _ _ _ _ 	_ 	(3.11) 
J.' 
J =1  

choosing 	RI  =. 	= 443 - - 	

- 

- = Eta  = St 

F z  = 
z 	a  1,7 7 -p  

J= 1  
From the definition of pressure correlation coefficient 

PI 11 	Rp12 x Pans  x Parrns  
is the correlation coefficient of the fluctuating pressures 

Equation (3.12) then becomes 

- - - - ( 3 . 1 2 ) 

where Rp12 

P1 Wid 132 
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2. 
= 	8z Sij  . • ft rni s  ro S - - .(3.13) 

In this investigation the side BC of the 2-inch square section 

cylinder was divided into eight equal parts so that 	gt 

Because the fluctuating pressures on face 3 are 1600 out of phase with 

those on face D , the sectional TEs lift coefficient, C 	y  was 
Lrms 

estimated from the expression 

C r s =2 

 

 

euoa ) 

  

3.14) 
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CHAPTER 14  

4.0 T.7ATI 731ATICAL 110DELS OF VORTE"..-INIffOTIL LIFT FORCES  

4.1 INTRODUCTION  

It is impossible to solve analytically the full Navier-Stokes equations 

for unsteady separated flow around a bluff body. The complexity and the 

large amounts of computer time required has so far limited numerical solutions 

of the equations to low Reynolds Number. For cases of Engineering importance 

it is therefore necessary to abandon the full Wavier--Stokes equations and 

resort to simpler flow models. 

Two basic types of models will be discussed in this chapter. The first, 

the potential flow model, represents the real wake vortex system by potential 

vortices Two potential flow models will be discussed. The second basic 

model, the Lift-Oscillator model, has its origin in 3qectrical Enr,dneering 

and is based on the notion that the fluctuating lift due.  to vortex shedding 

may be considered. to be generated by a non-linear oscillator in the wake. 

The models are incomplete in the sense that they require experimentally - 

determined inputs 

It must be remembered that models are crude, two-dimensional approximations 

of the complicated three-dimensional real flow situation. The models 

cannot therefore be expected to predict all the observed characteristics of 

the unsteady lift in flow around bluff bodies. 

4.2 PO=TIAL FLO' MODELS  

4.2.1 MO= I. The von Karman-tvre wake  model. 

This assumes that an ideal von Karmen vortex street is formed in the wake 

of a bluff body. The usual assumptions made in vortex drag calculation apply 

here. They are listed in Milne-Thomson (1963) as : 

(i) The wake vortices can be represented by point vortices . 

(ii) The origin being taken in the midst of the regular portion of the 

wake, the complex potential will be nearly the same as that for an 

infinite vortex street. 
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(iii) If we surround the cylinder by a contour which advances with the 

same velocity as the wake and whose dimensions are large compared 

with the cylinder and distances between successive vortices and the 

rows, the motion on the boundaries of the contour will be steady. 

(iv) That the formation of the vortices is truly periodic. 

The cylinder in sketch (4.1) moves with velocity U along the x-axis. 

The vortices which are shed from the body at a frequency f form a vortex 

street which advances along the x-avis with velocity V shown in rilne- 

Thomson (1968) to be 	V 
-
--
- 	

jr-b 	The large contour 
Ct 

ASCD moves with the wake velocity \/ so that the x-directed velocity of 

the cylinder relative both to the contour and to the wake is U — 

given by f,a 

C, 

0 

Q. 

0 	0 	0 	0 	0 
- - - 

A 
	 D, 

SETCH (4.1) 

At the end of one cycle of shedding, the cylinder has riioved forward along 

the x-axis by a distance 'a' . Two more vortices are now included in the 

contour whose new boundary is A1B1C1D1 - see sketch (4.1). The picture in 

ABC1D1  which is common to contours ABOD and A1B1C1D1  is the same. 

The increase in the Y-momentum, J , of the control volume is then the 
y 

difference in Y-momentum enclosed by contours A
1  B1 	and D

1
C
1
CD - which 

— 

can be shown in this case to be zero. 

When half a cycle of shedding is considered the situation is different, 



It/2, 

0 	0 

0 	1  o 	0 

1.1[7: 
voRTEX 

0 

B 

1 

X 
0 0 
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The new contour 	is shown in sketch (i.2) 

1 
J 
D 

SIJtTCII (4.2) 

Let 	3-
n 6 61n1 	If D C C 1  

	

and 	
4 	

be the Y momenta of the . \I 	 .1) 

fluid inside rectangles ABB
1
A
1 

and DCC
1
D
1 

respectively. It is shown by 

auedy (1935) that 

	

6.3y 	-Sy A B Bs  — 	.c.cciD( 	-t 
	r 

- 
	4.2.1) 

The time interval At for half a cycle of shedding is 

- - — — 	 -(4.2.2) 
2 (U —V) • 

ts TY -= 	Q Cu v) 	_ - 	-(4.2.3) 

[..
712he actual signs of 

	

A Ty 	and FY  depends on the sign of the 

	

vortex , Vt 	(i.e. depends on whether the \4 vortex appears above or below 

the x-axis in sketch (4.2)7 • 

Ruedy (1935) equates Fy  to the instantaneous lift on the bluff body. 



L (t) 

0 

0 	0 	0 	0 

64 

Prom consideration of rate of change of momentum in a control. volume 

bounded by .EJ3CD in sketch (4.3), the instantaneous lift L(t) on the bluff 

body is given by : 

C 	 B 

t.) 

D 

;317;17CH (4.3) 

-L (-0 	..r.--. -) P :Ix -1-  Q .1 \I (Udij- V dx) + 	ElY dx tdq ----(4.2.4) 
J C 	 C 	 dt 

it„ 	 ti, 	 s 
I 	.1 	If L,(,) 	L2(0 	[( 

In the limit as Si  approaches infinity : 

(L) = 0. 

Lz(t) is the flow of momentum out of AD and CD . This is the 

expression represented by equation (4.2.3). When, as in Ruedy (1935), L2(t) 

is taken as the instantaneous lift, L(t) , the assumption is that L
3
(t) is 

zero. Tais is incorrect because the continuous formation and discharge of 

vortices from the near wake region of the body ensures that L3 I (0 does not 

vanish. 

iecently Chen (1972) using essentially the above principle (equating 

L3(t) ia equation (4.2.4) to zero and therefore neglecting Y-momentum 

changes in the near wake region of the body) reported a value for 

.1 
	v ' 	.Tie claims "that the curve of the calculated 

fluctuating-  lift coefficient plotted over the Reynolds number practically 

goes just through the points of maximum values merit,_ d." He concluded "th:lt 
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the ideal vortex street model is adequate not only for the determination of 

the steady drag force as done by Karman, but also for the calculation of the 

fluctuating lift force as well." 

The validity of equation (4.2.3) is strengthened. by the argument: that 

the circulation, 	tG 	, in a formation region which includes the body 

must change by 
	

ro 	• each time a vortex of strength 	c, 	is shed. 

From consideration of symmetry it is seen that the only possibility is for r 
to oscillate between t 	. Taking into account the convection 

velocity, 	V 	, of the vortices then gives a lift force oscillating 

t- 	 ri 
between ± 0  '0  (, 	as in equation (4.2.3) . However ± 

in this argument is the lift force on a- formation region that includes the 

body. 	extract the lift force on the body itself from ± 	v) 

one requires an understanding of the flow in the vortex formation region close 

to the body. 

Finally let as consider the example of a very thin flat plate quoted in 

Delvins 6: Burton (1976). A very thin flat plate held perpendicular to a 

free stream produces a regular vortex street which has a measureable 

circulation, 1' 	, and a measureable convection velocity, 	U 	. By 

equation (4.2.3) the lift force on the very thin flat plate should be comparable 

to the lift force on say a circular cylinder. But because the plate has no 

projected. area on which pressures can act, the lift force on the plate must 

by negligibly small even though its vortex street may be comparable to that 

of a circular cylinder. 	therefore conclude that it is extremely 

difficult, if not impossible, to directly relate the transverse momentum of 

the vortex street to the fluid forces on the tripping cylinder because of the 

uncertainty in the magnitude of the transverse momentum of the flow in the 

near wako 

4.2.2 YCTAM II : Potenti I Plow Yodel of Flow arcylnd an oscillating 

circular clinder. 



OTHER WAKE 
VORTICES 

ASSUMED TO 

BE 	AT 

INFINITY WITH 

WET CIRCULATION 
OF 	- 1;1  

 

   

  

0 
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4.2.2.1 Derivation of 40  

In this section the potential flow model used by 1.cGregor (1957) is 

extended to include both the effects of the wake vortex street and of 

cylinder oscillations. 

/ 

A Sin kit 

SKETCH (4.4) 

The circular cylinder of sketch (4.4) is produced by a uniform flow 

and a doublet at the origin. The circulation in the vortex formation region 

of the cylinder is assumed to be concentrated at position B . The bound 

vortex 	at the origin 0 is the image of all the shed vortices 

that have drifted to infinity (strictly infinity in this case means 

> Co  ). 

The arguments of Davies (1975) will now be used to determine rg  

SKETCH (4.5) 
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Allow 	r 	to represent the net circulation produced in the starting-up 
St 

of the flow i.e. before the steady state production of alternating vortices 

of strength t c: 	. If 	1-1S 	is positive, the first full vortex 

should be negative and thus + 1-7 	completes a cycle. Proceeding from the 
0 

right of sketch (4.5), at the end of the first half cycle the net circulation 

in the wal:e (i.e. at X > CD ) is Nt. —ro) 	so that 	Ps 	is  - (14- ro). 

At the end of the first complete cycle the wake has net circulation i-ilst  

so that ri) 	is 	- rst 	. Thus 	r B 	oscillates between (r, — qt) 

and -(-rst) 	. Since the vortex shedding process is symmetrical, we 

have: 
	

(- rst) 
	

or 	(St 

rf; 	therefore oscillate between 	- where Ird 
2 	

is the 

magnitude of the circulation of a fully formed vortex. In this simple 

analysis 	will be approximated by : 

rol.  sin. Ft  
	 (4.3.5a) 

Following YlcGregor (1957) the wake vortex at B and its image at A 

will be ascribed a harmonically varying circulation so that 

	

r 	= 	51n p 
	

(4. 2. 5b) 

The complex potential, CO , of a circular cylinder moving with velocity V 

along the positive direction of the y-axis is: 

	

— t V ci
s 

_ 	 (4.2.6) 

In equation (4.2.6) the origin is at the center of the moving cylinder. 

For an oscillating cylinder with motion described by equation (4.2.7), 

	

‘-j 	= A 	wt 	
— (4.2.7) 

	

A w C 	wt.  
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substituting for 	in equation (4.2.6) gives 

— (1, A (1) Go s bot 
	

(4.2.8) 

From eouations (4.2.5) to (4.2.3) the complex potential function, ¶ij (Z) , of 

the combined system in sketch (4.4) is 

(z) 	 (11-D 	(1, AWCOS 	+ 0 3 1 

211 

7 .- fA  4_ 1 
7 — 74i  

(14-.  2. (i) 

The origin in equation (4.2.9) is fixed at the displaced center of the 

oscillating cylinder at the time t considered so that although the wake 

vortex at 33 in sketch (4.4) is fixed in space, its coordinates and those 

of its image at A relative to the displaced center of the oscillating 

cylinder are given at time t when the amplitude of oscillation, A , is 

small by 

Co 	A sin wt 	
- 	(4.2.10) 

LA)co 	• 	co  

In equation (4.2.9) 	, which is the representative distance of all the 

wake vortices that are downstream of the formation region, is taken as 

	

= 	 -- - (4.2.11) 

where X,, means very large X . 

`12 ,stitutirc.-  ''rr 7- 	:2' , 6  and Z in equation (4.2.9) and noting that 

	

.L., ,...,_ 	.
- CI 	, 	.s 

(J10 	
(I)  f i p 	 gives: \ ,-:) 	= 	 and if c_- :.,1c, 	t ,i_ tj 

(X 
7/, 0 

4-  ti2  

Z 

Q. 9 	Cos wt 
f tjz 

„ 	A sIn _ 7., 	2  A 
tic 4" 0.11Sintt1- 	

I 
 

Co  Ck. / 



(4.2.13) 
dt 
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4.2.2.2 Pressure equation referred to the moving axes  

From the unsteady Bernoulli's equation for incompressible flow we have: 

According to Yilne-Thomson (1968) the rate of change of 	at at a fixed 

point as measured by an observer in a frame of reference moving with velocity 

vector V.  is : 

0q) ( 4 .2 14) 

In this particular example the motion of the cylinder,is given by : 

0 .1 	= A to C, OS wt 

The pressure equation referred to the moving axes therefore becomes 

20 	1- I 
a. 

 
2 `Q 1- A uu cos tit Ts  — 

where 	is is the velocity potential given by equation (4.2.12) 

0- is the velocity determined from the velocity potential 

[fi x  and p are velocity and pressure respectively at infinity. 

is the fluid density 

with 

2- 	( 

1r 	— 	(UL. "1-  Le ) 	t 	 f 0 a 

0 CF 

Oti 

P + P 

(4.2.16) 

Using; equation (4.2.16) in equation (4.2.15) and taking time averages 

gives : 



2 I u.  

U,2„; 
2 	 2" 

.?V 	+ VI  —  
U;(; 

2 
u :)  

2 	2. 
+ (11  

• UcO  

- 2. V t  vi  

U 

- (4.2.20a) 

4 .2.20b) 

(4.2.20c) 

C P  z  

C F3  
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TT 	= 
z 

L i— V t ((.2 .17) 

[ 	 1..) 

P  
e 
on 

It can be seen from equations (4.2.17) and (4.2.18) that the evaluation of 

and 	requires knowledce of the values of (4) 	Lt. and V 

the oscillating, cylinder. These auantities can be obtained from 

equations (4.2.12) by using the equations 

4.2.19) 

With the definitions 

Equation (4.2.18) becomes 

C

• 

C 	
C

PI 	-T, 	
-- -(4.2.21) 

SYIC7'ONI7ATIO7 OR 'LOCK-IN 1  CASE 

"hen the frequency of body oscillation, 0) , is synchronized to the 

vortex shedding frequency, t5',)  we have 

Wt 	t 	

- 

( 4 .2.22) 
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where 4? is the phase angle between the circulation I and the 

displacement 

Cp 	and Cp can be evaluated from equations (4.2.20) and (4.2.21) by 

firt evaluating ib(1)1 U and V using equations (4.2.12) and (4.2.19) 
QT.  ) 

The result after all terms of higher order than unity in A (except for the 

terms of order A2 that are required in latter analysis where ro  = Uo :IT 

have been neglected are as follows. 

zz 
A Lo COS Ze 	A w 	541 (I) 
1", 	 2-rr 

- 2 A u)  Sin.  Ze Cos u)t - 2 A vi' 9 sin Lot 

Uz  

Co  

CP, U., 

z 
A
z

w  Cos 2eCos 2Lot 	- A w la   6,, Sin Owe + Or) 
ZTT u0t 

?ro  cos(Lut±,t) 	(%), tavt--7Y f 	Lot)  
Tr uoz, 	 - co 	/ 

- (Ck.viri (y co2-4- Acjs;n. Lu t.) 
xcoz _  G.Z Co  

uot 4.2.23) 

CP  (364 cos t) [64  0- cos 20) - 	 Alw4  5.t.n2.20 + 652  
2 	 2 

2. 2, 
• -I- 66 A 	.65  A w sin Ze 5;11 Ck 

2 

C?  _ - 20- C's 2°) Aw crl 2 0 Cos t,ut + (1- co0e) as St;,(wt-1-(1),) a 	 U to 	 U.0  

- 2 66 gs A cos (I).  sLy-L (Lut 4-  (I; ) — B 5 B 6  A sL'Ai wt
U.2c, 	 Li! 
135  cos (Lot f 24) 	t g5  AD) sin 2e Stil(Zwt f 4),) 

212;„ 	 U,20 
2 	2 	' 2 -1 r 	n 	I- + A gs gt, Sin (3wr. -I- (Pi ) 	A  iA)  Sin geuos 4tAn 

■ 2 ul, 
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z U., Sul ?et + B3  cos (I) 	A2w 2 c0s 2 20 4- B2'2  
2 	 2 

-F 832  A2  
2 

E2  w Co S 20 (P. 

(4.2. z 5) 

= Sz
z  
 COS (21-ut + a 43) - A«  Cc s 2 0 ga  g (AA (2(4 -1-  40 • —,.. 

2 61 	 U,,b  

+ 62 63 A  [Si, (3.t t co_ 
St44 4.61 Cos wt 

	
2 

+ 2 st'm 20  BO cos (2Lot f 4) _ 263  62  A Cos (P SE;v1 (Lot t 4) 
Ua, 	 (J0, 

- 	A w
2. 

Cos 2e Cos 2(,ot 
2 ti,„ 

B1  { = 	x(3cL2  _ c(2,-  - 2x co)  
2az (ct4  + Co - 2% co ) 

(ce —  cot 
C0 (44 + Cd - 2x, co) 

_ 	C 	(3a,– Col  – x.co)x. 
Tra2 	+ co – 2 x co 

r cc: _  
11 	+ co – 2 x cOa 

.11•1•11. A w 
U., 

kit 

t,, 2(9 st„,„ (Lot + 4),) 

83 2  6) 

a5 = ro 9  
471 

2x Co  + Co 	30. 
coz  f 0.Z  – 2xco 

66  a2  Ca 

 

(c02 	ct z  - 2 x coy 
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4.2.2.3 Yodel Predictions  

A. Stationary Cylinder  
r 

A.(i) Prediction of 	"Prn,15  

' For a stationary cylinder A = 0 . Noting that la 4, . 
equation (4.2.22), and considering only the fundamental (i.e. pt ) 

, see 

component, 
CPFuNi 

to (4.2.25) give : 

, of pressure fluctuations, equations (4.2.23) 

Cp Fun! 

I 	 I 
c 	 C = CP, 	Pz 	p3 

p ro Co5 t 2tani  (94) 4-  [ctvi 	co) 
r U2  

tco 
1  1
(  Li Co 2  	_ 	(14,1, 27) 

Coz - a co 	'4  

+ 	2,  ( - cos 20) 	g s 
Uco 

2 	gz  S L■vt 28 S 	p 
U00  

The Quantity ---- can be expressed as 
if U., 

2 -05  

7 (40  
- - -(4.2.28) 

where f = vortex shedding frequency. 

S = strouhal Number. 

By substituting for B2  and B5  in equation (4.2.27), the fluctuating 

pressure, CPFUN 	, at a given position 9 on the stationary cylinder is 

seen to be dependent on the parameters
[Ja 	

and Co . The 
 

non-dimensional vortex strength, 	f: 	, will now be estimated 
ZIT llo ci 

following a method due to Roshko (1954a). Roshko (1954A) has shown that the 



r: 

r, 
TT 

E 1<  U,b2.  
2, 

which Oar. be expressed as 

-(4.2.29) 

IA 2. 30) 
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rate of shedding of circulatipn from the body, H , can be related 

to the rate at which circulation passes downstream as discrete vortices by : 

r -- 
where t< 	I."- im  and Cpb  is the mean base pressure coefficient. 

S = strouhal number 

the fraction of the vorticity of the shear layers that is 

present in the discrete vortices of the wake. 

To calculate C 	Roshko (1954A) assumed that : 

a) the vortex spacing ratio, h/1 , has the Yarman theoretical value of 

0.981 

b) the lateral spacing h of the vortex street is equal to d' where 

d' , the distance between the free streamlines (or vortex streets) 

when parallel, is obtained from the free-streamline theory presented 

in Roshko (1954B) 

He then expreSsed equation (4.2.29) as 

-11—W3)1Usti 
	E 	 (4.2.31) 

where (A, is the induced velocity of the vortex street. 

is the distance between consecutive vortices in a row. 

From the assamution that h./1 = 0.281 we have 

rol  • 	= 2 127. Luu - 	(4.2.32) 

Fkbs-;ituting this value in equation (4.2,31) gives 
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Uzo 
	, 	( 	.1777K 2 

	
- 	(4.2.33) 

With h/1 = 0.281 the Kaman drag formula can be written as 

d/ CD 
 

, 
(4.2.34) 

2 
--t 5 	— 2. 2 5 (2,- ) 

LL, 	 u6 

Using equations (4.2.33) and 4.2.34) Roshko plotted. CD  t 	as a 

function of K with e appearing as a parameter - see Fig 4.1 . On the 

same graph Roshko also plotted the variation of CD  ki iu  with Y where 

C0  	was calculated from his Tree-streamline theory, see Roshko 

(1954B) 	When K is known (from measurement of CPh for example), E 

can be determined from the intersection of the curves C d/ 
/1 	

and (D(V.  

Bloor & Gerrard (1966) have reported that although Roshko's assumptions 

that 11/1 . 0.281 and h = d' are incorrect (see. Footnote 4.1), iloshko's 

(-2 	 method still yield values of 	that are in excellent agreement 
Ua.-, a 

with their experimental measurements. The values of 17 	calculated 
n' ft„ a 

by Roshko's (1954A) method using Hoshbo's (1954A) and Bloor & Gerrard (1966) 

(2.110UD a p 	2n (1,p,s 	exl  
values of K will be denoted by  	and 	 respectively. 

than --K----- 
( Z111.4 a p, 

value of vortex strength at 10 diameters downstream of the cylinder. In 

the present analysis 	I7, 	is assumed to be initial strength of a 
2T1 i)c, Ct 

fully formed. vortex. As it is known that the strength of a vortex diminishes 

with downstream disbanoe, the intitial strength of the fully formed vortex 

FOOflIOTE  4,1 Bloor- & Gerrard (1966) reported that h/1 was 0.14 at 10 

diameters downstream and they also suggested that d' /h was 2.4 

Bloor & Gerrard (1966) have shown, see Fig 4.4, that 	r 	is less 

and also that ( ro 	agrees with their measured 
2 -n 
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will be higher than the value measured at 10 diameters downstream. It is 

for this reason that 	 
a•Ct, 	

will be represented by 
a 

----) in the 
Ti floc 	 211 U,o  

present analysis. 

Fig 8 of Gerrard (1965) suggests that Roshko's (195411) value of K at 

McGregor's (1957) Reynolds number of 4.3 x 104  is 1.46 . Using this value 

of K is Fig 4.1 gives 	= 0.454 which when substituted into equation 

(4.2.30) gives ---T! 	of 0.83 when, as in Keefe (1961) for example, the 
i.. it 11,, a. 

strouhal number , S , at Re of 4.3 x 104 is taken as 0.185 . The length 

is assumed to be vortex formation region length. At his Reynolds Number of 

4.3 x 104  , McGregor (1957) suggested. that Co  was 2a where "a"' is 

cylinder radius. This value of Co  is'in good agreement with the measurement 

of Bloor,& Gerrard (1966) and will also be used in the present calculation. 

• With Co = 2a , and 	Flo 	0.83 the predictions of HMS 
Z Ti l),)01 

pressure coefficients at the fundamental frequency by the present model and 

that of McGregor are compared in Fig 4.2 with the experimental measurements 

of McGregor (1957) and Gerrard (1961). The predictions of the present model 

are seen to agree better with experimental measurements than those of 

McGregor. 

Generally the predictions of the potential flow models are seen, see Fig 4.2., 

to be better at the front, 90° 	6 4. 180°  , of the cylinder. Good 

agreement between model predictions and experimental measurements is not 

expected at the back of the cylinder because in the potential flow model flow 

is always attached whereas there is separation in the real flow, 

A(ii) Prediction of  the non-dimen:sionalised vortex streneth,  

When CpFutl and Co are known, the potential flow model can 

predict  	. On the cylinder at 	e = -1;/ 
2 	

the predictions of 
Ill),,oct  

A 	Pruo) 	by equation (4.2.27) of the present model are 

presented in Fig 4.3 together with the predictions of McGregor's (1957) model. 

For example at a Reynolds number of 1.45 x 10' the measurements of 

Roshko (-:954A) on a circular cylinder suggests that 	Co  is 2.26a. . It 



Col.3 001.4 
(CP r 

GEKRARD fd,:GREt=70R 
Olb I) 	(11'.31) 

0.15 

Prediction of rof Uc, 
1 

From From 
i Col.3 C01.4 

0.306 

0.142 

present model 

From 
Co1.4 

0.075 

0.254 1.501 0.820 0.260 

Reynolds 
number 

1.5x104 

4.3x104 
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has already been reported that at McGregor's (1957) Reynolds number of 

A 
4.3 x 10.  , an appropiate value of Ca  is 2a . Using the above values • 

i 
of Co  and the values of 	Cepur4  on the cylinder at 0 = IT/ 	observed 

2, 

by McGregor (1957) and Gerrard (1961), the predicted values of 	ro  
il'Uci 

were obtained from Fig 4.3 and tabulated in Table 4.1 . 

TABLE 4.1 

The predictions of 	rci) 	by the potential flow models are compared 
(,)d 

with values obtained by the other workers in Fig 4.4. The present model is 

seen to- predict values of Po 	that are compatible with the measurement 
Ti d 

of Bloor & Gerrard (1966) and also in good agreement with the values of 

, 	calculated by the already described Roshko (1954A) method 
d 	 ri 

particularly when McGregor's value' of 	r . r.a 0  712 	M is used. 	cGregor'S 

model on the other hand predicts values of  F.) 	that are much too 

small. 

Fig. 4.3 also shows that even when  	is constants  changes in Co  

can still produce increases in 	Ctr)N 	.(The real flow situation is, 

of course, more complicated as 	11/'" , will generally be a function of Co) 
rif vt,ci 

According to the potential flow model it is even possible for a decrease in 

d 	to produce an increase in 	Cp r4 	if it is accompanied 

by a sufficiently large increase in Co  . The potential flow model thus shows 

that unless the formation region length, Co  , is known to be unchanged, 

changes in fluctuating pressures cannot be attributed solely to changes in 
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r° 	 the non-dimensional vortex strength, 	• 
11-  Uco d 

B. Cylinder Oscillating in still air 

It is now more convenient to work with fluctuating pressure 

p 	cp  • v, 
, 	2 
2 

to (4.2.26) by 	and then equating c and Uw to zero gives: 

- e A' 0 (I 	2 cos 	- - 	- (4.2.35) 
=Ua= 

2.  e A (,0a. s 	es 	wt 	e 41,07- 	2. cos 2e) cos 2.1,)L 

- - 4.2.30 

Considering only the fundamental (i.e. wt) component of P gives 

(pFuo) 
r,, u..0 

	=-- 	 eAuun 	e 	_ - 

- 

- — -(4.2.37) 

Equation (4.2.37) indicates that for a cylinder performing simple harmonic 

oscillation in still air, the components of the fluctuating lift at the 

oscillation frequency are everywhere in phase with the cylinders displacement. 

C. Circular Cylinder Oscillating at lock-in a uniform flow with circulation 

as in sketch (4.4)  

For this case 	(3t = 	0, 	- see equation (4.2.22). For 

small amplitudes of oscillation, the fundamental (i.e. wt) component of the 

coefficient of fluctuating pressure on the oscillating cylinder is given by 

equations (4.2.23) to (4.2.26) as: 

. Multiplying both sides of equations (4.2.23) 
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Cp 	= 	(P'' 	t 	( CP Fur4)A -4-)")r  
iCtL,5 

+ 	rcos 	( +, A 	wt)  _ tkvi. ( 
77c, 

	

x - co 	 7 
TI Dot 

	

t 	Co 	
A  s.;1.,Q) 	tavi, 	`J Co  ci

)cd 	 coce 	xe; - ct2 C 

	

— 2 A u.)  Gin. 20 Cos wt 	 — cos 20)  ALA) girl a cos wt 
(.).6 u. 

_ 2  BG  B$   A Cos (1), c 	(wt f (1),) 	5-  Bb  A la LOC 

U2 	 U2 
c 

62  g3  A sLvt. wt 
Uz  

A(A) S 	y_6 C S (A) t 
Up° 

2 62  63 	A cos I). 	(wt 	(1).) 

A i 
where 	CP Fin,.1 A-0 	is the fundamental component of CP experienced by 

the stationary cylinder with r 	°and Co  having the same values as on 
Te, "-a- ,.. 

the oscillating model. 	(t.-Pru61)k L.- 0 	
is defined by equation (4.2.27) , 

(PM-I) 

	

	
is wt - component of the fluctuating pressure experienced 

-U reo=0 / , 
by model during oscillation in still air. 	CFth,j) 	is 

defined by equation (4.2.37), 

At lock-in the potential flow model shows, see equations (4.2.23) to 

(4.2.26), that in addition to terms at the common angular frequency of body 

oscillation and vortex shedding, W , the fluctuating pressure on the 

oscillating model,FOsc ' also contain terms in 21.0 , 3LO 	etc. 

Furthermore equation (4.2.38) shows that Pose 
 cannot be obtained simply by 

adding vectorially the fluctuating pressures 	(P)A-,o and (P 
r= U.-r- 

where 	(1)1)4,.0  is the fluctuating pressure on the stationary model and 

CP '} P 	is the fluctuating pressure on the model during vibration is 
o 

61. 2. 30 



P i  ( 0 1 -Y) 
sketch (4.5) 
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still air. 

An important implication of equation (4.2.38) is that even when 	 
upta 

are unaffected by model oscillation, the fluctuating pressure on the 

oscillating model can still be larger than that on the stationary cylinder 

/n'1 
even after inertia pressure, v ) 	, has been taken into account. ro =U.0 =-0 

Thus , even after inertia affects have been considered, amplification of 

surface fluctuating pressures during model oscillation cannot always be 

attributed solely to changes in non-dimensionalised vortex strength,  °  g U.a 
and the formation region length Co  . 

and Co  

D. Off-locked flow case. 

To demonstrate the usefulness of the potential flow model consideration 

will be given to the instantaneous velocities at two fixed points, P and 

P' located on either side of the cylinder having co-ordinates ( 0 , Y ) 

and ( 0 , -Y )' see sketch (4.5), relative to the MEAN position of the center 

of the oscillating cylinder. 
	 P(o,i)  

To further simplify the analysis it 

will be assumed that
.13 

= C0  

(i.e. that the wake vortex at B in 

sketch (4.4) also oscillates with the 

circular cylinder). 

Equation (4.2.10) then becomes 

ZB  = Co  1 

= a/c a 

Uob 

- - - 	2, 39) 

Substituting these values of EA  and Z.B  in equation (4.2.9) and 

differentiating (1) with respect to x gives: 

4 = 	Via _  2 u. ct!x / 
+ 	2  oi-1  ti x 	A w cos wt 

CJx 	 x2 + 42 x2. 4_ V. 	X 4  f ti l  
- 

—  rol  S 'WI" PL 	Y 	4- 	
9c.2 

y 
	

.TT 	Li 4  f' (X-  C0)2 	132CoI+ (X CD-Cti)Z 	2 ( 24 X.1) 
,... 

4. 2- 4-0) 
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The co-ordinates of P relative to the displaced center of the oscillating 

cylinder is 

x = 0 

y  z__ y _ A si.n. wt 
- 	-(4.2.41) 

	

s)(1) 	
— 	P4)) 

Now 	
X 	UX 

where 	(:1) 	, it 	and 	(al 11 	Li 
•CFX/ 	

with overbar 

Substituting equ4tion (4.2.41) into equation (4.2.40) and then separating 

the resulting u' into its frequency components we have, after terms of 

higher order than A2  have been neglected, that: 

(ELI 	 7=  2 U., all  A s cut + F s 	(K, t  ,11,0  

— 3 Ue, 	A2- st'ivt 2wt 	f r: A K 2  Cos (P-LV)t 
\O- 	LET 	 >0+. 2.1-1- 2) 

AK2Cos (pfw)t- 	A2K 
4 	

3 
11 

  

_ A2 K3  2(p+- 2w)t 
SIT 	 _) 

wiltrz = 	 co  

Y 2  f 	 12C:-  f Ci.4 	2 

c,  
K 	

/ 

2 
V.  1-  col 	(\(

2  f ck;ly. 	212  c  

\iN2.  3 a/c:3 4.  

(12_ 	c:)3 	(\(2  f  c>c7,_)2 	
2 y 3  

denoting time mean. 

Replacing Y in equation (4.2.42) with -Y gives the velocity u' at 
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the fixed point F' - see sketch'(4.5). 

The predicted phase differences of the frequency components of u' at 

the fixed points P and P' are presented in Table 4.2. 

1800  out of phase terms 
	In phase terms 

wt , (),t 	( 	- 2i)t 
	

20t , ( 	- (I) t, ( + Lei) t 

and ( 	+ 24t 

TABLE 4.2 

The predicted phase relationships Of Table 4.2 are in agreement with the 

hotwire measurements of Davies (1975) (see his Fig 54, 55, 56 and 57) in the 

wake of an oscillating flat plate. Thus in addition to predicting terms with 

frequencies (0 	, (.0 	etc which are observed in practice, 

the potential flow model also predict accurately the phase difference between 

the fluctuating velocities at two fixed points on either side of the 

oscillating cylinder. 

'4.2.2.4 Possible improvements to  the potential flow model 

a) Include the effects of the separated shear layers prior to their 

:nil-up- to form vortices. 

b) Include flow separation in the description of the mean flow field 

around the cylinder 

c) In the calculations Co  was assumed constant. This is, strictly, 

not true because the induced velocity of the rest of the field on 

the wake vortex at B , see sketch (4.4), is not zero. There should 

therefore be a contribation to Cp due to the velocity of the vortex 

at. B. 

4.2.2.5 Conclusion 

The potential flow model appears to be a very useful tool for studying 
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the fluctuating pressures on a bluff body. It shows that the fluctuating 

pressures are dependent on vortex strength, formation region length and 

local velocities. However the present model is very far from "correct" as a 

thorough understanding of both the vortex. formation region and the vortex 

shedding process are required before one can correctly model vortex 

shedding potentially or otherwise. 

4.3 THE LIT-OSCILLATOR YODEL OF VORTI7-INDUCED  VIBRATION. 

4.3.1  Introduction 

This is not an attempt to model the flow around bluff bodies. The 

underlying idea of the model is that the fluctuating lift on bluff bodies may 

be considered to arise from the action of something akin to an oscillator in 

the separated flow. The problem is then reduced to finding the equation of 

an oscillator which can generate the important characteristics of the lift 

on bluff bodies undergoing either forced or vortex-induced synchronised 

oscillation. 

Of the large number of possible oscillator equations that can be used to 

describe lift characteristics the basic equation used by investigators, so 

far, is the Van der Pol equation. This equation was first used to model 

vortex-induced. vibration by Hartlen & Currie (1970). What follows is an 

investigation into how well the Van der Pol oscillator as used by Hartlen 

Currie predicts the lift characteristics of a square section cylinder in 

forced oscillation. 

4.3.2 Equation for lift coefficient 	C-4 

Using the dimensionless variables defined as 

r 

LL) 

tit)tl  
_ 	-(4.3.1) -  

( 
yfa d 	j 
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Hartlen & Currie (1970) proposed the following  equation for C
L
: 

I- 
	

Wo CL 	1.)% 	CL 
	- (4.3.2) 

The only criteria used to formulate equation (4.3.2) are: 

(a) The damping- term must be such that the oscillator is self-excited 

and self-limited. This is to account for the presence of a finite 

fluctuating  lift coefficient, CL0  , on a stationary bluff body. 

A stationary kody corresponds in equation (4.3.2) to the case >sr. 

(b) The frequency, Wo  , of the free oscillation occurring  in equation 

(4.3.2) is chosen to obey the strouhal relation 

S W/D  

(c) Finally the choice of the forcing  function is arbitrary: This 

implies that a forcing  function that is proportional to acceleration 

or displacement could equally well have been used in equation (4.3.2). 

It is important to note that other non-linear oscillators satisfying the 

preceeding  criteria (a) to (c) could as well have been used_to define CL  . 

The advantage of the Van der Pol Oscillator is that its solution is readily 

available 
	see for example Stoker (1950), 

The solution of equation (4.3.2) depends on the three unknown parameters 

c( 	y , and b4  . 

Self-Excited Oscillation (Fluctuating  Lift on a Stationary body)  

For self-excited oscillations the forcing  :term [D4  X r  

(4.3.2) is zero. 

Introducing  new parameters defined as: 

t I 	tA), 

CLI 	= 	GL 

Equation (4.3.2) with b 	= 0 - 	becomes 

in equation 

(4.3.3) 

3 ( 	 -t 1 	 I (14-.?). Li-) 
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The solution of equation (4.3.4)-, depends on the single parameter c‹: and 

is discussed in Stoker (1950). For small 	, i.e. 	04. c.„<" 1.0 , the 

steady state free oscillation given by the solution of equation (4.3.2) is 

nearly simple harmonic - and can be approximated, see for example Stoker 

(1950), by:.  

C L 	----- 	2 cos t, - - 	 - 	(4.3.5) 

Substituting for CL1  and t1  using equation (4.3.3) we have: 

C L  -(4.3.6) 

The amplitude of the lift coefficient, 
	C Lt., 	on the stationary 

body is therefore given by 

C oo 
 

(.4  d.  37 
- (4.3.7) 

The fact that the fluctuating lifts observed experimentally on stationary 

bluff bodies are approximately simple harmonic there4lore restricts the 

choice of d. in equation (4.3.7) to small values much less than unity. 

Cylinder  forced  externally 

With the Eartlen & Currie (1970) definition that 

X r  X Cos W I 

5 

  

equation (4.3.2) becomes 

CL  - 
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Van der Pol suggests a general solution for equation (4.3.9) of the form: 

	

b, 	 bz  COS 	__ 	— - - (4.3.1o) 

in which b1 
and b

2 
are slowly varying functions of time. That b1 and 

b
2 

are slowly varying functions of time is interpreted in Stoker (1950) as 

meaning that the 	 small of first and second order 

respectively in d.. 

Substituting equation (4.3.10) in (4.3.9) and neglecting terms of higher 

order than unity in e4 , we have after separately equating coefficients of 

terms containing sin tot and costOt that: 	2. 

IA)  - 2 b2 	
b 	Luz 	tY 	

L

P- b?  -. 	 B I 	0 = 
DJ  UL) 

b, 	b 

2. 
b 	b, 1-  bz  

( 4 .3.12) 

3( w7-  

Terms involving frequency 5LOT have been neglected . 

Synchronised or "lock-in" oscillation 

This is the condition where the free oscillations of frequency W, are 

completely supressed by the forced oscillations of frequency U) . The 

solution of equation (4.3.9) therefore contains only the frequency component 

tip . This conditiOn is expressed as: 

-- 0 
Equation (4.3.11) then becomes 

• 

0 	
7
1 - 	12 

b 1 /01  z 
- (4.3.13) 
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from equation (4.3.13) we have 
2 2. -1Z 

of 
2 
[ 0-1- , ?-110 

z 
2 	2. 

U.) o  — 

ti _ 	3. 15) 

The particular solution of equation (4.3.9) given by equations (4.3.13) 

to (4.3.15) represents the "lock-in" phenomenon where the natural vortex 

c ID shedding frequency given by the Strouhal relation D = '0 	is 

completely suppressed or 'captured' by the body oscillation frequency, f 

For the synchronised or 'lock-in' case, the stability of equations (4.3.13) 

and (4.3.14) can be investigated by replacing b1  and b2  in equation 

(4.3.11) by 	bl  d- 	and 	b?  4- SI) respectively. .hen 

b1 	b2 
 = 0 is substituted in the resulting equation, the stability conditions 

can be expressed as in Van der Pol (1927) as: 

(4.3.16) 

/ 
a, [I- 	 3b.)-  1 + 	> 0 4.3.17) 

Equations (4.3.16) and (4.3.17) are discussed by Van der Pol (1927). 

They determine the extent of the synchronised or lock-in zone where only 

oscillations of the forcing angular frequency UJ are present in the solution 

of equation (4.3.9). For moderately strop; forcing, it is demonstrated in 

Fig. 2 of Van der Pol (1927) that the extent of the lock-in zone is defined 

solely by equation (4.3.16) as: 

2. 

b 
	

(4.3.18) 
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Substituting  equation (4.3.18) into equation (4.3.14) and assuming  that: 

- 
2 = 	LO 

 
((,00 - LA.)) 

and
16 

04, 	— (.052  

gives 

L00 	t 	LO 	bOo 	.1 
,F-27 	 ci, 

or that 	bu 2 G, 
4z at 

4.3.19) 

A R) is the bandwidth, AL c)  of the lock-in zone. 

0 
Thus from the experimental value of ALO we have another equation, 

equation (4.3.19), for determining  the unknown parameters CK, y , and b 

4.3.3 Yodel Predictions  

Calculation of Parameters 	, Y 
The mode]. parameters B,v,. andY will be determined from experiments on a 

square section cylinder oscillating  with amplitude to diameter ratio, A/D , 

of 0.1 . The following  observations can be made from the experiments: 

a) Measurements show that at lock-in, the pressure distributions on side 

faces B & D of sketch (4.6) are, for A/D = 0.1 , scaled versions 

of the pressure distribution on the same faces with model stationary. 

This is demonstrated in Fig. 4.5 . At lock7in the lift coefficient on 

the oscillating  model with 	
p/  HoLE.I/s 

A/D = 0.1 can therefore 	

(.).n 
be assumed proportional 

to the fluctuating  pressure 

on the center of the side 

face B marked 1/B in 	 sketch (4.6) 

sketch (4.6). The 

fluctuating  pressure at hole 1/B will therefore be used in the model 

instead of the fluctuating  lift. 

4' 
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b) The lock-in range for A/D = 0.1 was observed to lie between reduced 

windspeed , 	of 7.0 and 9.0 

c) In most of the experiments -IL was kept constant while the 

frequency of body oscillation f was varied. Since Lk, constant 

means a constant natural vortex shedding frequency fp  , the angular 

frequency 1.0 	used to non-dimensionalise t in equation (4.3.1) 

will be replaced by Wo  in this analysis. 

The preceeding observations can be expressed as: 

Ci c, 
	 x 012 

	
1 0 2 
	

(4.3.20a) 

coefficient 
Since the rms value of the measured uncorrected fluctuating pressure Dt 

- A 
hole 1/13 on a stationary model was 0.72 . 

b) At lock-in5  7.0 4:1 	9.0 
fd 

So that 	7.0 x 0.134 	fv, 4 9.0 x 0.134 
and 

, l  00 	2 4 
10  

( Li— 3 . "20 b) 

To arrive at equation (4.3.22b).the uncorrected Strouhal number, 'Cod 
1.),0 

of 0.134 measured on a stationary square section cylinder has been used. 

LO 	is the band-width of the lock-in zone. 

c) 	0)0 	. 1.0 , 	Lc) = 	I 
co 

2- 2_ 
At resonance GJ = 1.0 , 	= Wo 	 

1,0 

/ 2 	2, 2 b 	 Wo  ot.1  [ 

(4.3.20c) 

= 0 , equation (4-3.14) then becomes 

(4.3.21) 

To obtain a. third equation for the three.  unknown parameters B , of and 

, the maximum fluctuating pressure coefficient measured in the lock-in 

range at hole 1/B for A/D = 0.1 will be substituted arbitrarily for b 

in equation (4.3.21). That is: 

ExPERIMENT 5 A/ = 0'l 

b , 
Lu= H.:GEL 
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It must however be pointed out that in the experiment, the maximum 

fluctuating  pressure was observed at ft) = 	T 	= 0.957 rather than at 

= £ = 1.0 	See Fig. 4.7 

With the measured values CLo 
. 1.02 and bmax = 1.37 and AGJ = 0.24 

equations (4.37) , (4.3.19) and (4.3.21) give: 

°C. 0.15 	B = 0.17 , and Y = 0.20 	• 

Calculation of the predicted amnlitude and phase  at lock-in 

With the definition b1  = b coS 4) 	and b2  = b Stirs +01 	equation (4.3.10) 

becomes 

- -(4.3.92) 

where O = tan
-1 

(b2/b1) is the phase an
gle between the fluctuating  

in 
D lift output, CI 	 D , and the forcing  function, 	LO, Sin COL 	. The 

interpretation of kyt  is discussed in section 4.3.4 
The solution of equation (4.3.13) gives: 

Ct. 

	

z7- 	fi2  

b 	
A, Bwp  

zz+- 	R.) 

_ 	(4.3.23) 

So that = tan 	(A1/F1) 

where 	A, 	— 6/ ) 
With the definition 	= 	b/  2 

/ 
cl. 	1 	) a 	7  — )j  ( u] 

By taking  a value for t&) in the lock-in range, 	was determined using  

equation (4.3.15). With E known U was obtained by solving  equation 

(4.3.25 numerically. 'i1  
1
(1 - 9) was nes=t dote:_ lined. so that the phase 

(4.3.24) 

(4.3.25) 

, equation (4.3.14) can be written as 



- (.3.26) Xr  
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angle (2 	can be calculated froth eauation (4.3.24). Determination of b1 

and b
2 

using equation (4.3.23) fixed the phase angle in the riEht quadrant. 

The model predictions are compared with experimental measurements on a 

square section cylinder in Fig 4.6 - where it is assumed that 	4> = 4D 

Since i in Fig 4.6 is the phase angle between the fluctuating. lift and 

the cylinder's dispLacement, equating 0 to 	/1.1 means that the forcing 

function is proportional to the cylinders displaCement. Vuther discussion 

about the internretation of 	is presented below. 

4.3.4 Determination of the lift phase am-Ele v  from 

t has been defined in equation (4.3.22) as the phase angle by which 

the fliktuating lift leads the forcing function. Usually one is interested 

in the phase angle, el) , between the fluctuating lift and the cylinder's 

displacement. To determine 	from from 	
4 
 , one must first specify the 

phase relationship between the forcing function and .the displacement. 

Hartlen& Currie (1970) overcame this situation by assuming arbitrarily that 

the forcing function is proportional to the velocity. A rather more 

general approach is to redifine the cylinders displacement %r  as : 

C 

so that the forcing function 	 i,uc  Sirt k,(rC 	leads the cylinders 

displacement by the phase angle 0 . 	is then given by: 

( 4 .3.27) 

, the unknown phase angle by which the forcing function leads the 

• displace!Eent, can now be chosen so that the predicted agrees as best as 

possible with experimental measurements. 

 

For example when e the forcing function is 
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in phase with the velocity. This is the case considered by Eartlen Currie 

(1970) and is indicated by 	- curve 1 
	

gig 4.6  . 

When D = 0 , 6 = Q 	, the forcing function is in phase with the 

displacement. This is the case presented in Fig 4.6 as 1) -curve 2 . 

The .Tood agreement between the measured 	and and (4) - curve 2 of -Rg 4.6 

demonstrates that Harlen & Currie's choice of forcing function, which they 

showed to be suitable for modelling on oscillating circular cylinders, 

  

is not suitable for modelling ( on oscillating square section cylinders. 

  

The difference between the 4) values of square and circular cylinders may 

be due to the difference in afterbody shapes. 

4.3.5 The Limits 	bi 	0 and 

Since 1).) = 	, the limits IA.)-÷ 0 and ())---- 65  may be viewed 

0 
respectively as the case of periodic vortex shedding on a stationary body 

and the case of a body oscillating in still air. 

One is no longer within the range of synchronisation or 'lock-int  and 

the previous solution given by equations (4.3.13) and (4.3.14) no longer apply. 

The general solution of equation (4.3.9) now consists of two frequencies f 

and fo and is given by Van der Pol (1927) as: 

CL  f 6 yt  S I a (it) `C 4- - (4 • 3.30) 

  

is the amplitude of the harmonic oscillation having the frequency, 

f
o 

, of the free oscillations. 

b,
rt 	

is the amplitude of the harmonic oscillation at the forcing frequency 

f. 

From the equation (4.3.30) we have 

	

-1_ 	Z 

C 4 	
I ( [.)_ 	+ 	b vi.  _ _  

a 	
2 	CI: 	a; 2  



_ 2 p-1-6  )2  =0 

— 2 bi) 

/1 
c.K Lb: lof 	- 

- 
b 	

2 	
too 

2. 2 ( 	ft 
— 

\ac. 

- 	(4.3.32) 

07. 
 

\2- 
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By substituting.  equation (4.3e30) in equation. (4.3.9) and retaining only 

terms having the frequencies Clio  and LA) , it follows, after terms containing 

4),  and 41)  have been eliminated from the resulting equations, that: 
1 	2 

The parameters Z. , CL1 , and B are still as they have been defined. 

When 	kf 	0 equation (4.3.32) becomes 

0 (4.3.3 4 ) 

By substituting the value of bf  from equation (4.3.34) into equation 

(4.3.33) we have 

a -I-  (AI  W0 ( I - (4.3.35) 

Consider the limit bh 	
0 

From equation (4.3.35)- 	2
2 	

°O 

From 	equation (4.3.34)1:4' 

	

-77 	 
Qj 

SO that.in equation (4.3.31) 

(If 
The fluctuating lift, CI,  , predicted by equation (4.3.2) has amplitude 

tending to the free oscillation amplitude a0  , and is dominated by the 

component having the free oscillation frequency Lip  as pj tends to either 

zero or infinity. This is shown diagramati 	i cally in .ig 3 of Van der Pal 

( 192 7 ) 
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4.3.6 Discussion of model predictions 

Lock-in Range. 

Fig 4.6 shows that within the 'lock-in' range, the predictions of CT  

by the lift oscillator model of Hartlen & Currie (1970) are in good 

qualitative agreement with experimental measurements on a square section 

cylinder. Good qualitative agreement was obtained, see Fig 4.6, between 

the predicted and the measured 4) by assuming that the forcing function is 

proportional to the cylinder's displacement, D1  (i.e. a in equation 

(4.3.27) is equated to zero). When the forcing function is assumed to be 

proportional to the cylinder's velocity as in Hartlen & Currie (1970) ,the 

predicted phase angle 4) is shown as 4) -curve 2 in Fig 4.6 . Thus 

within the lock-in range, the lift characteristics on a square section 

cylinder are better predicted with a forcing function that is proportional to 

the cylinder's displacement. 

It is interesting to note that in Fig 4.6 the predicted maximum CL  is 

at 	0.978 ( 12s = 7.63) instead of at resonance, 7. 	= 1.0 
• 1-6 

as one may at first expect. This shift in the position of maximum CL  

away from resonance towards slightly lower values of 7  (or higher) 
fd 

was also observed experimentally on the square section cylinder'as shown in 

Fig 4.6 . 

The general features.of Fig 4.6 are such that one cannot help but speculate 

about the possibilities of obtaining even better agreement between model and 

experiment by a different selection of the parameters B , 0; and NI' of 

equation (4.3.9) together with a suitable choice of e in equation (4.3.27) 

It is therefore concluded that in the lock-in range, the Van der Pol 

oscillator of Hartlen & Currie (1970) is capable of representing the lift 

characteristics of a square section cylinder in forced oscillation° 

.Limits 4. 	 0 and 	00fo  

i'ccording to the lift oscillator model the lift amplitude should tend , to 

the stationary cylinder value, Q  , and should be dominated  y the 
0 
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stationary cylinder shedding freqUency fo 
as -r/r tends to either zero or 

i11171-11ity—As.CAtende to zero (i.e. Lc, 	00  ) the experimental 
.0 	 -FA 

characteristics of the fluctuating lift on a square section cylinder is seen 

at small amplitude of oscillation, see Fig 4.7 , to behave as predicted by 

the model. However as   o 	(i.e. IL- 	0) experimental 

observations show that the body frequency f dominates and that the lift 

amplitude tends to the value that would exist when the cylinder is oscillating 

in still air. The Van der Pol oscillator of equation (4.3.9) cannot 

Predict the characteristics of the lift aaci square section cylinder in the 

or 

 

	 0 . 

 

4.3.7 Concludin,,  Remarks  

Other forms of the Van der Pol eauation have been used by Lan.dl (1975) and 

Skop & Griffin (1973) 	"ssentially these investigators added extra terms to 

the basic Harti.en & Currie equation in order to obtain good agreement between 

model and experimental measurement for the special case of a circular cylinder 

oscillating in the lock-in range. However the lift characteristics of bluff 

bodies depend. on the nature of their afterbodies. Thus an oscillator which 

has been modelled specifically for a circular cylinder may not give good 

Predictions of the lift characteristics for other bluff body shapes. It 

is for this reason that Ahe equations of Mandl. (1975) and Shop & Griffin 

(1973) are not considered here. 

Finally it is acknowledged that for a given set of experimental results, 

it is possible to find an oscillator which may predict lift characteristics 

better than equation (4.3.9). The problem is whether the parameters of such 

an oscillator can be lined with the characteristics of the flow field. 

Unless the parameters can be linked to the physics of the flow, it may be 

. very difficult to apply an oscillator equation developed specifically for a 

particular test flow case to other flow situations. It is therefore suggested 

that the "correctness" of an oscillator equation should be judged not only 
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from how well it simulates a special test case but also from how well the 

parameters of the equation can be linked to the physics of the flow. 
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CHAPTER 5  

5. FLOW VISUALISATION OF THE VORTEX' SHEDDING PH TMENON 

5.1 INTRODUCTION  

To - complement measurements of pressures, lift phase angles, 

velocities etc., a film of the vortex shedding phenomenon WEB made. Flow 

visualisation was by a single stream of smoke introduced upstream of the 

model along the position of the stationary model stagnation streamline. 

The tunnel wind-speed was adjusted to produce a vortex shedding frequency 

, of 3.33 cps on the stationary model. (This value of _Ps  was 

chosen from consideration of the stability of the smoke stream). The 

films were taken at 32 frames/sec to give approximately 10 frames of 

pictures per vortex shedding cycle. By projecting theZrames of the film 

one at a time, a study of the flow around the body during the process of 

vortex formation was conducted. The result of this study is presented in 

this chapter. 

A detailed study of the entrainment process was not made because 

there was no way of discerning, in the near wake, the smoke particles from 

the opposing shear layers. Nevertheless the flow visualisation study is 

still very useful because one can observe the effects of body oscillation 

on vortex shedding and near wake flow configuration 

5.2 STATIONARY BODY ( CS . 3.38 , 	fr4 = 0 )  

5.2.1 Vortex sheddin, and flow configuration around the model. 

The shear layers appear to swing generally towards the side where 

a vortex is forming ( i.e. swing direction appears to be upwards when 

a vortex.  is forming in the upper shear layer and vice versa). The shear 

layers swing so vigorously that although there is no steady reattachment, 

the lower shear layer in Fig. (5.1) appears to touch the trailing corner, 

D , due to the induced field of the vortex forming in the upper shear 

layer. Similarly the formation of a vortex in the lower shear layer brinEs 
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the upper shear layer very close to the trailing corner C . It is as if 

a growing vortex pulls across the opposing shear layer. Thus the 

mechanism of vortex shedding appears to be that proposed by Gerrard -(1966) 

where a fully grown vortex is said to draw the opposing shear layer across 

the wake to effect shedding. The flow patterns predicted by the 

numerical models of Abernathy & Kronauer (1962) and Clements (1973) 

also suggest a similar interaction between a fully grown vortex and the 

opposing shear layer. 

The region between the shear layers and the side faces have traces 

of smoke indicating the secondary flows which exist on the side faces. 

ThiS has also been shown by Mulhearn (1973). 

The vortices are formed so close to the body that smoke sweeps 

continuously over the back face of he mode. Thus there is no 'dead-air' 

behind the model. 

5.2.2 Wake flow configuration.  

Fig. (5.7) shows the wake flow pattern. The smoke is so diffused 

that for nearly all the time one cannot discern distinct vortices. The 

wake, however, Still looks 'snaky' or wavy suggesting the presence of a 

turbulent vortex street. 

5.3 SYNCHRONISD OSCILLATIONS ( fN = f5  = 3.3e, 	A/D 	. 0.25 )  

5.3.1 Vortex shedding and flow configuration around the model. 

The observed flow pattern is sketched in Fig. (5.2) at every one-

eight of a cycle interval as the body moves.  from the extreme top to the 

bottom extremity of its motion. 

Fic". 5.2 (a) 	t = 0 .  A vortex, VI  , can be seen forming in the 

loWer shear layer. The upper shear layer on the other hand appears to be 

attached to the back face near the trailing corner C 

FiR.  5.2 (b) , t = T/8'. The vortex Vf has grown bigger. A new 

vortex Vz,  is now forming in the upper shear layer. 
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Fig. 5.2 (c) 	t  = T/4.  The body has now reached the centerline position 

The lower sheer layer seems to have reattached to the side face DA at 

'the position S 	Vortex 	looks fully grown and seems to be 'pushed' 

downstream by the growing vortex Vz 

Figs. 5.2 (d) &  ( 1_,  t = 3T/8 andTLa 	As the body moves from 

the centerline position to the extreme bottom position, vortex V drifts 

further downstream while vortex V2 grows. The reattachment position 5 

of Fig. 5.2 (c) moves nearer to the trailing corner, T)., until at the 

position in Fig. 5.2 (e) the flow appears to reattach to the back face 

very near corner I) . The growing vortex Yz will be shed somewhere 

around the centerline position as the body moves upward. 

' Although it is difficult to discern the exact instant of vortex 

shedding, it is apparent that the bottom vortex Vi  is shed somewhere 

between positions (b) and (d) of Fig. 5.2 . Generally a vortex is 

shed from a shear layer when the body is around the centerline position 

and is moving towards the shear layer in question. 

.Because of the growing vortices VI  and Vz  in Figs. 5.2 (a) and 

(e) the shear layers appear to swing in the direction of the body's 

motion' as the body starts to move away from the extremities of the motion . 

In contrast for a circular cylinder, Griffin & Ramberg (1974) reports 

that as the cylinder moves downward the shear layers appear to move 

upward while as the cylinder begins its upward motion, the shear layers 

appear to move downwards. The relevance of this observation to vortex 

induced vibrations is discussed in section 5.6.2.2 . 

5.3.2 Wake flow  configuration. 

Fig. 5.3 shows the wake flow pattern. In contrast to the 

stationary.  .cylinder wake of Fig. 5.7 where no distinct vortex is visible, 

about four vortices can now be discerned in the wake. The vortices 

appear to arrange themselves in the wake on a single straight line and 

they are joined together by shear layer bridges labelled S1  and S2 
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in Fig 5.2 (e) . Because of the very small lateral. separation between 

the vortices the apparent vortex spacing ratios appear to tend to zero. 

5.4 	.0 q/  = 2.0 	A/D 	0.25  

5.4.1  Vortex shedding and flow configuration  around the model. 

The observed floW pattern is sketched in Fig. 5.3 at every one-

sixth of a cycle interval as the body moves from the extreme top to the 

bottom extremity of its motion. 

Fig.  5.3 (a) 	t = 0. The fully formed vortex vortex V; appears to be 

drawing across the shear layer joining the lower vortex U to the body. 

The flow has reattached to the upper side face. 

5.3 (1) 	t = T/6. A vortex V3  is now forming in the lower shear 

la't'er. A large separation bubble has formed on the upper side face BC . 

Fig. 5.3 (c) 	t = T/3.  The bubble on face BC has grown bigger and has 

moved nearer corner C . The reverse flow due to the bubble gives the 

impression that a vortex is forming on the side face. The lower shear 

layer has reattached to side face DA. The vortex 	has has grown bigger 

and has displaced vortex VI  further downstream. 

Fig.  5.3 (d)  L  t  = T/2. The fully grown vortex V-3 has displaced 

vortex V downstream. The upper shear layer no longer looks attached to 

the upper side face. The lower shear layer is on the other hand still 

attached to the lower side face. 

The overall impression created is that vortices axe shed at each- - 

extremity of the motion at the body frequency. f
M 
 , from the shear 

layer nearer the extremity. The vortices seem to form at the back face 

of the model. 

In Pigs. 5.3 (a) and (d) the vortices VI  and V? can be seen inter- 

. acting with the shear layers opposite to them. This leads to the 

suggestion that vortices are shed by interaction of the opposing shear 

layers just as for the cases 	fry 	. 0 (stationary) and 
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1"r4/4, 	1.0 already discussed. Wilkinson (1974) suggests that a 
ts 

vortex is shed not by interaction of the opposing shear layers but 

"by reason of its shear layer being drawn into the side face of the 

cylinder". This point is discussed in .section 5.6.2.2 . 

5.4.2 Wake flow configuration. 

Fig. 5.9 shows the wake flow pattern. Unlike the case 

,-- 1.0 (Fig.5.S) the vortices are 'packed' close to the back face. 
is 

The shear layer bridges between consecutive vortices marked Si  and S7 

in Fig. 5.2 (e) seems to have been rotated in Fig. 5.3(d) and Fig. 5.9 

almost through 90°  . Thus the few vortices visible in the wake appear 

to have a spacing ratio of about unity. As the smoke probe is fixed, the 

movement of the stagnation line as the body oscillates may have caused the 

smokelessness of the vortex centers in Fig. 5.9. 

L44 
its  = 0.5 , A/B . 0.25 (QUASI-STEADY OSCILLATIONS?)  

5.5.1 Vortex shedding and flow confiuration around the model. 

The flow pattern observed during half a cycle of the body motion is 

sketched in Fig. 5.4 . 

As the body moves downwards, the lower shear layer first reattaches 

to the side face roughly at t 
	

T/6 - see Fig. 5.4 (c) . For the 

remainder of the downward journey, the lower shear layer continues to 

remain close to the side face. For 	T 	T 	the body moves 

upwards and the shear layers' position for a given t = I 	can be 

obtained by lateral inversion of the sketch for 	t = T — 	in 

Fig. 5.4 . In general, therefore, the shear layer seem to reattach on the 

side of the body towards which the motion is directed. This may be due 

largely to the effects of changing incidence. 

Although the vortices are no longer shed at the body's frequency 

they still seem to form close to the back face of the model. 

5.5 
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5.5.2 7ia3ie flow corifi=llon. 

Fig. 5.10 shows the wake flow pattern and as in the stationary body's 

case the near wake appears wavy.. It is impossible, due to the diffusion 

of the smoke, to discern distinct vortices. 

5.6 DISCUSSIO7 0? FLOW VISUALISATION. RCSULTS  

5.6.1 Preliminary Considerations. 

Before starting a detailed discussion of the flow visualisation 

results, some of the factors which can, for an oscillating body, affect 

the position of the shear layers relative to the body are first considered 

Some of these factors are: 

(a) The effects of oscillating the flow separation positions. 

(b) The effects of changing incidence. 

(c) The effects of the fluctuating pressures due to the acceleration of 

the body i.e. "virtual mass" pressures. 

5.6.1.1 The effects of oscillating the flow separation positions. 

It is not clear if the oscillation of the flow separation points 

will cause the shear layers to.lie asymmetrical relative to the body. 

It is pointed out by Davies (1975) that this effect can, by modifying 

flow separation velocity cause a modification of the vorticity shed by 

the body into the wake. This modification of the shed'vorticity may in 

turn alter the equilibrium position of a fully grown vortex. Thus 

oscillating the flow separation points may cause the flow pattern around 

the body particularly in the vortex formation region to depart from that 

around a stationary body. 

Wilkinson (1974) discusses another effect of oscillating the flow 

r 
separation paints. He suggests that peturbing the shear layer separation 

position can, according to the work of Rosenhead in 1932, cause premature 

roll-up of the shear layers. For the moment however the main interest is 

in those - factors which can cause 'quantifyable' asymmetry in the config-

uration of the shear layers. The effects of oscillating the separation 
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positions on vortex formation will not be pursued further here but 

further discussion can be found in the works of Davies (1975) and 

• Wilkinson (1974). 

5.6.1.2 The effects of changing incidence. 

For a body performing 

siMple harmonic motion normal 

to a free stream Ue as in the sketch, 

the instantaneous angle of incidence, 0 , of the free stream relative 

to the body is given by: 
( A 	0 	 

E) 	V1 
U 

The peak incidence Gm A x  IS: 	
• 

Or-411)( = tArCi  (NI-00) 	tari:t  ( 

Oct 	Us! 
The values ofMAK  Ore listed in table 5.1 

(Jto eMAK 	IN DT70.iiTTS 

i4 .1) A/D ---- 0.10 A/D = 0.25 

2.0 4.2 8.51 • 20.51 

1.0 7.41  4.85 11.95 

0.5 15 2.40 5.98  

TABLE 5.1 

If it is assumed that the flow has had sufficient time to adjust 

to the changing incidence, the changes in the flow pattern would be 

similar to those on a body performing galloping oscillations. The 

resulting flow pattern would be as Sketched in Fig. 5.5 for 8m AK
sufficient to cause flow reattachment. As the body pulled out from the 

extreminties of the motion, the shear layers would swing against the 

direction of the.  body's motion - see Fig. 5.5. 

Flow patterns similar to those in Fig. 5.5 have been observed by 

Parkinson (1971) around a galloping square section cylinder. In 

galloping instability, fs,, is usually so large that the flow has time 

r4 
to adjust to the changing incidence so that the problem can be analysed 
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quasi-statically. It is very unlikely that the quasi-steady analysis 

will be applicable without some modifications in the present case where 

fo  and fs  are of the same order of magnitude. However it is to be 
expected that the changing incidence which causes the shear layers to be 

asymmetrical at high fs will still cause asymmetry in the shear 
to 

layers configuration at low -154, . That the quasi-steady analysis may 

not hold. at low cc,/ is meant to imply that.the magnitude of the shear 

layer asymmetry and the induced fluid dynamic forces may be different 

from that.predicted by the quasi-steady theory alone. 

5.6.1.3 The effects of the fluctuatinp pressures due tc  body acceleration  

('virtual mass' pressures)  

An oscillating body will experience fluctuating pressures due to 

the acceleration imparted to the fluid surrounding the body. 

Very crudely as the body oscillates, the surrounding fluid may 

be considered to perform simple harmonic motion and so exert a reaction 

on the body equal but opposite to the force it experiences due to the body. 

Thus on the upper side face of an oscillating square section cylinder, 

the acceleration pressures would be minimum when the body is fully up, 

zero when the body is at the centerline and maximum when the body is 

fully down. The pressures on the lower side face would be exactly out of 

phase with those on the upper side face. 

In separated flow the effects of the above acceleration pressures 

on shear layers configuration would be as sketched in Fig. 5.6 . As 

the body moves downwards the shear layers would swing upwards while as 

the body moves upwards the shear layers would. s::ing downwards. 

Although some acceleration pressures can be expected on an 

oscillating body at all 	, they are likely to be important (or 
vs  

even dominant ) at high cgt 	Under dynamic conditions the acceleration 

or Inertia effect of this section should by introducing a phase lag in 

the shear layer response, cause the shear layers configuration to depart 
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from that produced by purely changing the incidence as discussed in 

section 5.6.1.2 . 
4 

5.6.2 General Discussion. 

The flow visualisation was conducted primarily to determine the 

effects of body oscillations on 

a) The flow pattern around the body. 

b) The vortex formation process. 

c) The wake flow configuration. 

The observations are important as they help in providing a physical 

explanation for some of the pressure measurement results to be presented 

in latter chapters. For the moment this section will be restricted in 

scope as much as possible to just a discussion of the observed flow 

configurations. In latter chapters the relevance of these flow configurations 

to the measured pressures will be discussed. 

5.6.2.1 The flow pattern around the body. 

a) OscillatintIrodel; A/D 	0.25 ; ft4/cc = 2.0 	1.0 and 0.r. 

In Figs. 5.2 to 5.4 comparison of the shear layer configurations 

at the extremities of the motion with corresponding parts of Fig. 5.6 

suggests strong acceleration or 'virtual mass' effects. For the case 

fVe_ = 2.0 - Fig. 5.3, this is to be expected because it was 
Ts  

pointed out in section 5.6.1.3 that acceleration effects are likely to be 

important at high values of 	. For the case 
ts 

= 1.0 , Fig. 5.2 , this result may not be due to acceleration 
ts  

effects alone because the growing vortices V, and Vi of Fig. 5.2 (a) 

and (e) may have 'pulled across' their opposing shear layers. The case 

= 0.5 , Fig. 5.4 , is surprising because acceleration or inertia • 

effects were expected to be small at such low values of 

As the body passes the centerline position on its way down, the 

lower shear layer in Figs. 5.2. and 5.4 tend to reattach to the side 

face. This from the discussion of section 5.6.1.2 and Fig. 5.5.(c) 
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suggests that the body may be responding to the instantaneous flow incidence. 

For 	i4,4 = 1.0 - (Fig. 5.2) and 	CoA . 0.5 (Fig. 5.4) Table 5.1 • ,ks 	 Co
A 

shows that the instantaneous angles of incidence for A/D = 0.25 

are approximately 12°  and 60  respectively as the body passes the 

centerline of the motion. Since for a stationary square section cylinder 

flow reattachment first occurs at an incidence of 13.5°  , the results 

suggest that under dynamic conditions reattachment may occur eaxlier. 

The case 	= 2.0 is more complex for Fig. 5.3 (c) suggests 
is 

the possibility of simultaneous reattachment in the upper and lower shear 

layers as the body passes the centerline of the motion. 

Generally it seems that both the acceleration and changing 

incidence effects contribute to the observed flow configuration. It is 

difficult to separate the individual effects because one must also consider 

the natural tendency (even when body oscillations are absent) of the 

shear layers to move in the direction of a growing vortex. Furthermore 

on a stationary body, Li( = 0 , there may be intermittent reattachment 

in the shear layers. It is therefore possible, particularly for the 

case 	Crqi/r  = 0.5 , that random reattachment of the shear layers may 

already be affecting the observed flow configuration. 

b) 	its 	0 , Stationary Model. No steady reattachment was observed. 

It was pointed out in section 5.2.1 that the shear layers appear to swing 

towards the direction of a growing vortex. These swings create the 

impression that the shear layers are flapping about the body. 

5.6.2.2 Vortex Formation Process. 

Formation region length. 

For the cases ft4k = 0 , 1.0 and 0.5 the vortices form so 
rs 

close to the back face of the model that fluid can be seen sweeping 

continuously across the back face. For the flow case 114//r. = 2.0 , 
5 

the vortices form even closer to the model - one has the impression that 

the vortices are actually shed from the back face of the model. 
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So far in this chapter, the changes in the magnitudes of the 

formation region length due to body oscillations have not been quantified. 

Instead the vortices have been said to form close to the back face of the 

model. This is not meant to imply that under all circumstances body 

oscillations do not affect the size-of the formation region. In the 

case 	"CNA = 2.0 the vortices seemed to be shed from the back face 
5 

of the model suggesting a marked reduction of the formation region length 

from the stationary cylinder value. 

Davies (1975) has shown that synchronised oscillations, //f 	
1.0, 

produces marked reductions in the formation region lengths of a flat plate 

and a D-shaped cylinder. For a circular cylinder in the Reynolds number 

range 120 4. Re G.. 350 Griffin (1971) has shown that synchronised oscillations 

can, in some cases, reduce the size of the formation region to as little 

as 50g of the stationary cylinder value. In contrast for a square 

section cylinder it seems that the vortices, in the stationary body 

cae, already form close to the model and synchronised oscillations do 

not produce marked reductions in the formation region length. 

Mechanism and Phase Angle of Vortex Shedding. 

For all the flow cases visualised, the shear layers, see Pig.5.1 

to 5.4 , seem to interact in a manner suggesting that the mechanism of 

vortex shedding is that suggested by Gerrard (1966). According to 

Gerrard a vortex grows until it is strong enough to draw the opposing 

shear layer across the wake in order to effect shedding. 

f/ 
= 2.0 . 

Vortex shedding for the case 	fiya. 	2.0 is further discussed in 
ts 

the recent work by Wilkinson (1974). Wilkinson describeb this flow case 

as the side vortex regime. The following extracts from Wilkinson sets 

out his views on the mechanism of vortex shedding. 

a) "The most striking aspect of the process was the manner in 

which each vortex was shed. This was a direct result of the 
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supplying shear layer being drawn onto the side face of the 

cylinder, thus cutting off the supply of vorticity to the 

forming eddy and forcing it to be shed. This happened.as the 

body passed through the extreme position of the motion on the 

side of the shear layer in question." 

b) "The shed vortices were stronger during the side vortex regime 

because whilst one eddy was forming on the rear face prior to 

being shed, the other shear layer had all its vorticity 

entrained in the side forming vortex,and thus there is no 

annihilation of vorticity on the rear face by entrainment of 

opposite signed vorticity. The shedding in this regime was 

a consequence of the shear layer supplying the next vortex 

being pulled onto the side face." 

The preSent results agree with Wilkinson's only to the extent that 

to 
the shear layers reattach

A
the side faces and that a vortex is shed from a 

shear layer when the body passes through the extreme position of the 

motion on the side of the shear; layer in question. Pig. 5.3 (a) and (d) 

definitely show that there'is some interaction between a formed vortex and 

the opposing shear layer. It is true that the large 'bubble in Fig. 5.3 (c) 

give the impression that the vortices start their growth on the side faces 

but'that does not preclude the interaction of the shear layers as in 

Fig. 5.3 (a) and (d) at the instant of vortex shedding. It appears that 

the mechanism of vortex shedding, at least for = 2.0 , is still 
Ts  

the same as for a stationary body i.e. interaction of the shear layers 

leading to cancellation of vorticity. It is of course possible that as 

Tulip  
ts 

may then be more as a result of single shear layer instability. 

Contrary to the views of Wilkinson, no evidence from flow 

visualisation suggests that the vortices are stronger at 	iry = 2.0 

than at 	fr4,/, 	1.0 . . Measurements both by Wilkinson and the author 

, the shear layers may interact less and 'shedding' 
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show that the base pressure is higher (less negative) at CNIA. = 2.0 
• Ts  

than at 	1!//0  . 1.0 . This means that at 	Crib. = 2.0 1  less 
t5 	 ts 

vorticity per second is shed into the wake than at 	fN/ 	1.0 . 
/1:( 

Plow visualisation reveals that vortices are shed in the two flow cases 

at the body frequency, 	a.1 . One therefore expects non-dimensional 

vortex strength, 	at 	fJ/, := 2.0 to be considerably less than 
is 

at t14, = 1.0 because a lesser vorticity producing vortices at twice 

the frequency suggests more than 50% reduction in vortex strength. 

ftkir 
its = 1.0 	It was reported in section 5.3.1 that a vortex is 

shed from a shear layer when the body is around the centerline on its way 

to the extremity of the motion on the side of the shear layer in question. 

As a result of the shedding the shear layers appear to swing downwards 

• when the body commences its downwards journey and upwards as the body 

commences its upwards journey. 

In contrast to the above observations, for a circulaX cylinder 

externally vibrated at .,-_. 0.85 and A/D — 0.25 ( 'A' is half 
ts  

amplitude and not peak-to-peak amplitude). Griffin & Ramberg (1974) 

reported from flow visualisation that: 

a) A vortex is shed from a shear layer as the body passes the 

centerline of the motion on its way FROM the extremity of the 

motion on the side of the shear layer in question (exactly 

1800  out of phase with present observations on a square section 

cylinder). 

As the cylinder moves downwards the shear layers appear to 

move upwards and vice versa (also 180°  out of phase with the 

shear layer motion reported here for a square section cylinder) 

Now it is generally accepted that the shed vortices are responsible 

for most of the fluctuating forces observed on long bluff cylinders. 

Bearing in mind that phase angle can be critically dependent on 	fr://17  
Ts 

the above observation implies that for a square section cylinder oscillating 
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at approximately fly, = 1.0 .and A/D = 0.25 , the phase angle 
5  

between lift and displacement may differ by as much as 180
o 

from 

corresponding value on a circular cylinder. Furthermore for a bluff 

cylinder in a uniform crossflow, whether or not an imposed transient 

oscillation is.damped out by the vortices depends on the resulting phase 

angle between the lift and displacement. The flow visualisation result 

therefore suggests that significant differences exist between the 

suscePtibilities of a circular cylinder and a square cylinder to vortex 

induced vibrations. 

5.6.2.3 The WeTh:e Flow Configuration, 

Figs. 5.7 to 5.10 show the wake flow pattern at a Reynolds Number 

of 5200 both for the stationary model and for the model oscillating at 

= 1.0 , 2.0 and 0.5 . The amplitude to diameter ratio, A/D , 
f5 

is 0.25 in all cases of body oscillation. Comparison of Fig. 5.7 , 5.8 

and 5.9 show that oscillation at 	
f 

= 1.0 and 2.0 improves the 
s  i 

clarity of the wake vortices. However the diffusion of the separated 

shear layers and the rapid dissipation of the vortices with downstream 

distance suggests that the vortices in Fig. 5.7 to 5.9 contain 

turbulent fluid. 

Wilkinson (1974) injected smoke into the flow at seventeen 

discrete points along the span of a square section cylinder and photographed 

the resulting flow pattern. For the stationary cylinder he 

the smoke was dispersed evenly along the span in a very short distance of 

about one diameter downstream of the body. By contrast he reported that 

for 	= 0.95 to 2.0 the smoke does not disperse fully along the 

span until a. distance of about 3 to 4 diameters downstream of the 

cylinder. Although he conducted his flow visualisation at a Heynolds 

Number of 1.31 x 104  , he went on to suggest that the vortices in the 

r 
cases 	y . 1.0 and 2.0 are formed from laminar fluid. The 

implification of this suggestion is that body oscillation has extended the 

reported that 
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stable regime of vortex shedding froM an upper Reynolds Number limit of 

150 (see Roshko (1953)) to a Reynolds Number of 1.31 x 104  . 

Griffin & Votaw (1972) among others have reported that synchronised body 

oscillations can extend the stable regime of vortex shedding from a 

circular cylinder to a Reynolds NuMber of 350 . Nowhere in the 

literature has the stable regime of vortex shedding been reported to 

extend beyond 400 . It seems odd that laminar vortices can be shed, as 

reported by Wilkinson, from a square section at a Reynolds Number of 

1,31 	104 . 

That the wake vortices are cidaror in Figs. 5.8 and 5.9 than in 

Fig. 5.7 at best suggest that turbulence levels are lower in the shear 

layers at fry = 1.0 and 2.0 than at 	 14,/ . 0 	(this may be due to 
S 

the greatly reduced spanwise flows at 	ft4/ = 1.0 and 2.0 reported 
is 

by Wilkinson) . The diffusion of the separated shear layers and the 

rapid dissipation of the vortices with downstream distance are evidence 

that even at Reynolds Number as low as 5200 , the vortices at f% . 1.0 
is 

and 2.0 contain turbulent fluid. 

5..7 CONCLUSIONS 

5.7.1 Flow Configuration around the body. 

Observations of the flow configuration around the body suggest 

that at 	ftv 	= 2.0 , 1.0 and 0.5 both acceleration ("virtual mass") 
s  

and changing incidence (galloping?) forces affect the position of the 

shear layers relative to the body. The periodic r2atachment of the shear 

layers to the side faces which are most noticeable at 	fry, = 1.0 and 
fs 

2.0 are probably caused mainly by a nonlinear combination of the two 

effects. 

•5.7.2 Vortex Formation Process 

a) Oscillations at Fty= 	, 1.0 and 0.5 do not appear to affect 
1-5 

the mechanism of vortex shedding . It seems, in all the flow cases 

visualised, that vortices are shed by interaction between the opposing 
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shear layers. This supports the vortex shedding mechanism proposed by 

Gerrard (1966). 

b) It was reported by Griffin (1971) that body oscillations at eNi/f, 
ts 

markedly reduced the vortex-  formation region length from the stationary 

cylinder value. Davies (1975) similarly reported that body oscillations 

at approximately. 	/ = 1.0 produced large reductions in the vortex 

formation region lengths of a flat plate and a.  B-shaped cylinder. 

By contrast the present results indicate that for a stationary square 

section cylinder, the vortices are already forming so close to the body 

that body oscillation at 	1.0 does not spectacularly change the 
Jrr, 

vortex formation region length from the stationary cylinder value. 

c) Yor 	ft.4/c  = 1.0 the observed vortex shedding phenomenon on a 
15 

square section cylinder is compared with the observations of Griffin & 

Ramberg (1974) on a vibrating circular cylinder. It appears that the 

phase angle between fluctuating lift and displacement could differ by as 

much as 180°  for the two bodies. This suggests that the responses to 

vortex shedding of the cylinders are significantly different when both 

are spring mounted under identical conditions of damping, fry , etc. 

This is because the vortices which tend to promote instability in one 

case will tend to damp out instability in the other. 

5.7.3 Wake Plow Pattern  

a) At 	fw/ = 1.0 the few wake vortices visible appear collinear - 

f t.,/ 
suggesting a very small spacing ratio. By contrast at 	= 2.0 the 

is 

spacing ratio appears very close to unity. 

At Isiy, = 0.5 the wake structure looks very much like that of a 

stationary body. 10 distinct Vortices could be discerned in the wake. 

b) The vortices in the wake were observed to be more distinct at 

ft4/ = 1.0 and 2.0 than at 	14 	= 0 (stationary model) and 0.5. 
/c 

5 
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CHAPTER 6  

6. ST1TIONARY CYLIN= TraJLTs J' NT) 7  -CUSS:DN.  
AY 

6.1 N',-)TATTON  

  

    

  

HOLE 'Z/G 

Sketch  (6.1)  

Cp 	- mean pressure coefficient, 

61. - angle of incidence 

and C 	- these are the average mean pressure 

coefficients on faces A , B , C and D respectively -see 

sketch (6.1) 

Cpb 	
- the averae valde of CP  on the base. This is the same as 7  'PC 

(COsk — the value of C at the center of face C 	This will sometimes 

be called the base pressure. 

C
L 

and C1-)  are the sectional lift and drag coefficients. 

Of the thirty mean pressure tappings distributed around the mid-section of 

the model as in Fig. 2.3, only three are positioned on each of the side faces 

B and ]) . Detailed measurements of C on the faces B and D were there- 
p 

fore obtained at each ok by rotating the model through 900  . This rotation 

changes the configuration of the end plates relative to the wind direction 

from the one shown in sketch (6.2A) to that in sketch (6.2B). To minimise 

confusion all the results presented on faces B and D of the plots of 

Cp distribution, see Fig 6.2 to 6.6 , are for the end configuration shown 

in sketch (6.2r) . The results presented on faces A and C of Fig 

6.2 to 6.8 correspond to the end configuration shown in sketch (6.2A) , 
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c< 	e 	where 0° 4. 9 
	

45
o 

Sketch  (6.2:0 

    

    

04, = ( 0 	90)°  
0 

where 0 el, 45°  

Sketch (_6:2B) 

6.2 F 	MTIY.AL- TO T. CYITN2M,ft ( 	= 0°1 

6.2.1 ]lean pressure distribution includincr the effoo , of end plates 2 

IleLnolds number. 

The mean pressure distribution was measured at several values of 2eynolds 

number, Re  , in the range 4 x 10
4 	

R 	12 x 104  . At each value e 
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of Re 
, the model was tested with and without one of the five sets of end 

plates referred to simply as NO.1 , NO.2 , NO.3 , NO.4 . and NO.5 end 

plates. Some of the interesting points observed are 

Point  1. The effect of end plates on the C 	at mid-section is small. 

For example the average value of Cpb observed with the five sets of end 

plates is -1.43 as compared to the value of -1.40 observed without 

end plates - see Fig 6.14. . When end plates are used, the C 	distribution 

was also found to be unchanged, within the accuracy of measurement, when 

the model was rotated through. 90
o thus changing the end configuration 

from that in sketch (6.2A) to that in sketch (6.2B). It can however be 

seen in Fig 6.10 that the -Cpb 
(and hence ' ) measured with end plates 

are consistently higher than those measured without using end plates. 

This indicates that the effects of end plates, even though small, are 

genuine. 

Al; Re 
= 4.74 x 104 the observed Cpb 

of -1.43 , see Fig 6.15 , is 

in good agreement both with the EDSU (1971) value of -1.42 and the value 

of -1.39 reported by Bearman 3:. Trueman (1971) at 2 x 104- 	Re 	
7 x 10  

By contrast the present value of Cpb 
is surprisingly lower (i.e. more . 

negative) than the values of -1.27 and -1.26 measured respectively by 

Pocha (1971) at Re  = 9 x 104  and Lee (1974) at Re  = 1.75 x 105  even 

though Cpb 
was observed in the present study, see Fig 6.10, to decrease 

with increasing Re  . This could be due to the influence of aspect ratio. 

Bearman & Trueman, Pocha and Lee tested, without using end plates, 

cylinders of aspect ratios 17.0 , 8.7 and 9.3 respectively. In

t 

 the 

present work the aspect ratio is 18.0 and 17.0 respectively witout 

and with end plates (the end plates are fitted 17 diameters apart). It 

is reported in NDSU (1971) that C
D (and therefore -Cpb 

) decreases with 

decreasing aspect ratio particularly when the aspect ratio is lower than 

20. 

The above results show. that care must be taken to isolate the effects 
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of aspect ratio in experiments, like those of Lee (1975/1976) and 

McLaren et al (1969), where aspect ratios are varied over a wide ransz'e." 

For example Lee (1975/1976)tested, without using end plates, square 

cylinders with aspect ratios of 9.27 , 10 , 24.4 and 30 . The results 

of this section show that even without considering other factors (libe 

changes in blocka;:e, and the variations in the distance between the turbulence 

grid and the model), the changes in -Cpb 
, see Fig 1.100, that were 

attributed by.Lee to the influence of turbulent length scale, 

could be accounted for by changes in aspect ratio. Clearly the conclusions 

arrived at in Lee (1975/1976) and. other similar works, should be 

re-examined. 

Point' 2. The C 	on the base (i.e. face C), contrary to FMSIT (1971),is 

not uniform but, in agreement with Dearman & Trueman. (1971), is a 

minimum at the centre tapping and a maximum at approximately 0.1 diameters 

from each edge of the base - see Fig 6.2 and 6.11 	The measurements of 

Pocha (1971) and Lee (1974) also indicate minimum base pressure at the 

centre tapping. 

Non-uniformity of base pressure is consistent with flow visualisation 

which shows, see Chapter 5 , that the flow sweeps continuously 

over the base. 

Point 3. As Re  increases in the range 4 x 104  . R 4. 1.2 x 105 

and -Cr.p can be seen in 	6.10 to rise. This is in agreement with 

Dearman & Trueman (1971) who reported that sharp edged rectangular cylinders 

with side ratios d/h (d is section width normal to the stream) in the 

range 0.5 to 1.0 are not free from Reynolds number effects. The present 

results do not agree with EDSU (1971) where force coefficients are 

reported to be independent of Reynolds number when 104 	R
e 
 G. 106 

Since the free stream turbulence intensity is less than 0.045 the 

Reynolds number effects reported here could be caused by the upstream 

move -2ent of the transition in the separated.shear layers. Earlier 
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transition could, by causing increased shear layers' entrainment, increase 

and CD  . At higher Reynolds number transition could occur just 

downstream of the separation points so that.further increases in Re 

would have little effect on CD 
and -Cpb 

. This could explain why CD 

and -0pb 
(Fig 6.10) level off at" high Reynolds number. 

Point A. Yeasurements of the spanwise distribution of base pressure with 

and -without end plates show, see Fig 6.9 , that over at least the mid 

cf the span, the base pressure, measured along the center-line of the 

base, is within 3', of the value at mid-span . The values of spanwise 

base pressure can be seen in Fig 6.9 to be always slightly higher without 

than with end plates. This supports the remark made under point 1 that 

the effects of end plates are genuine. 

6.2.2 The  effects of the end clearance holes. 

As reported in section 2.4.3 and Fig 2.6, the models that were oscillated 

were mounted externally on the arms of the oscillating mechanism through two 

circular slots (or clearance holes), each of diameter 6.5", on the wind 

tunnel's side walls. The large clearance holes allow the models to move 

freely Curing oscillation. Although each model mounted through the clearance 

holes was fitted with the NO.2 set of end plates to reduce spanwise flow, it 

was still thought worthwhile to investigate the effects of the clearance holes 

on the pressure measurements. 

Fig 6.12 shows that the values of 	(Cp)mr;  measured, when Re 
is below 

4 x 104 , on the model mounted with the clearance holes merge smoothly with 

those observed at higher R
e 

on models that are fitted with end plates but 

are mounted without the clearance holes. This shows that the clearance holes 

do not affect mean pressure measurement at center-span when Re 
is below 

4 x 1o4  

By comparing the two results presented for the NO.2 end. plates it can be 

seen in Fig 6.9 that when R
e 

is as high as 4.74 x 104  , the end clearance 

holes reduce the extent of the span over whicl-,  the 1)Ee pres;3ure 'is uniform 
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from approximately the mid 	of the span to the mid 40;,:, 	Most of the 

tests on the models mounted through the clearance holes was conducted at Re  

of about 1.1 x 104 . LIeasurements at R
e 

= 1.1 x 104 show, see chapter 7 

Fig 7.1 , that the base pressure is uniform over at least the mid 8or of the 

span. 

6.3 FL O'.7 AT 	TO THE CYLINDER 

6.3.1 Mean pressure distribution includinc,  the effects of end plates. 

The pressure distribution around the mid-section was measured at 

Re = 4.74 x 10
4  with the model set at 10 angles of incidence namely 

5°  , 10°  , 13.5°  , 15°  , 20°  , 25° 
	

30°  , 35°  , 40°  and 45° 
	

In addition 

measurements were also made at several other values of R
e 

in the range 

2.3 x 104 4 Re 4 10.54 x 1011 	when 	c;( = 13.5° 
	

Some of the results 

obtained are presented in Fig 6.3 to 6.8. 

Some of-  the interesting points about the results are: 

Point Al At small values of GC , particularly • X . 5°  (Fig 6.3), there 

is some scatter in the Cp  observed on faces B , C and D . This is 

mainly due to measurement difficulties. Despite the use of long small bore 

plastic tubings, difficulties were experienced in damping out the fluctuating 

component of surface pressure. From time to time the surface pressures in 

the separated flow region of the model were seen on the multitube manometers 

to surge in unison. 

Point A2 On face A , the stagnation position (i.e. position at which 

C = 1.0) can be seen to move from the centre of the face to the leading 

edge A/B as p( increases from 0
o 

to 45
o 
. Other workers , see for 

example PoCha (1971), have also reported. similar findings. 

Point A3 At 0( = 5
o
, 10° and 13.5°  (Figs 6.3 and 6.4) there is, 

towards the rear of face B , a pressure recovery that is most marked at 

• - = 13.5° and least marked at c> = 10o 	The pies—tre recovery 

indisates, see Pocha (1971), the passage of the separated shear layer close 
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to the trailing edge B/C - see sketch 6.1 . 

As d; increases from 13.50 to 45
o it can be seen in Fig 6.4 to 

6.8 that the position of maximum Cp  on face B moves from the trailing 

to the leading edge of the face. It was reported in section 1.4.1.1 that 

for smooth flow, the shear layer first reattaches steadily to corner B/C 

when 	0 	is approximately 13.5 . It is a widely held view, see for 

example Pocha (1971) and Roberston (1976), that this reattachment occurs in 

the region of maximum C 	o Thus the movement of the position of maximum 

Cp  'indicates that as c< increases beyond 13.50 , the reattachment position 

on face B moves nearer edge A/D thus decreasing the rise of the separation 

bubble on that face. This upstream movement of the reattachment position as 

0( increases from 13.50  to 450  can be seen in Fig 6.13 to produce large 

reductions in the average suction, -F, on the reattachment face. 

Point A4 Model set at 	- 90  , where 00 	e 4 45°  so that the  
end plates are as in sketch (6.2A) 

Although C was measured on all faces, only the results Shown on faces 

and C of Fig 6.2 to 6.8 correspond to the present situation. 

The Cp  on the rear faces C and D were observed to be more negative 

with than without end plates particularly at high values of 01, 	(see 

the results presented on face C of Figs 6.3(b) , 6.4 , 6.6 , 6.7(b) and 

. 6.8) . This point is also demonstrated in Fig 6.14 where Cpb 
is plotted 

against 	0( 	0 These results demonstrate the effectiveness of end plates. 

In addition, at each ck 	, the Ce  observed at each tapping was, within 

the accuracy of measurement, the same regardless of the end plates used - 

see face C of. Figs 6.2 to 6.8 and also the Cpb  versus 	curve presented 

in Fig 6.14. This shows that under the present condition (i.e. 	= 0° 
0 	 o, where 	0 4 0 	45 ), the smallest pair of end plates, the 11O.1 

end plates is sufficient, 
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Point A5 Lodel and end-plates rotated throuiTh 	so that  the end 

plates are as in sketch (c.-i.2B) 	i.e. (X. (90 -1- 0°  

where 0° 4- 0 4- 450] 

As reported in section 6.1 , because of the distribution of the pressure 

tappings, a detailed distribution of C on faces B and D could only be 

obtained by rotating the model through 90°  . Although C was measured on 

all faces after the 90°  rotation , only the results for faces B and D 

are sham in Fig 6.2 to 6.8 . 

When 0 is between 13.50 and 45
0 the values of C on the rear 

faces C and D were found to be very sensitive to the type of end plates 

used. For example it can be seen on Face D of Figs 6.4 , 6.6 , 6.7(b) 

and 6.ti , that the Cp is  measured with the NO.1 end plates are much 

higher (less negative) than those measured without using end plates particularly 

at a = 45o (Fig 6.8) - see also the C
PD 

versus o curve presented in 

Fig 6.14 . By contrast it can be seen in the same Figures that the Cp/5  

measure& on face D with the NO.3 end plates are more negative than those 

measured with the NO.2 end. plateS which are in turn more negative than 

those measured without end plates. The results for the NO.1 end. plates 

indicate that end plates will have negative effects (i.e. decrease base 

suction) if they are not vide enough. 

Although not shown in Fig 6.4 to 6.8 , it was also found that the C 

distributions observed, when 	v■ = (90 	)° , with the N0,3 end 

plates were, within the accuracy of measurement, the same as those measured 

when, as already reported under point A4 , all end plates are set at d a, 

This shows that the IT0.3 end plates are large enough when 	+ (90 i))°' 

This is the reason why the curves of C distribution have been drawn tiroupla p 

the points for the NO.3 end plates on face B of Pip- 6.2 to 6.8 

p 
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Point 116 It was reported in section- 6.2 than an increase in Reynolds 

number could cause earlier transition. Earlier transition could, at low 

angles of incidence, cause earlier reattactment, To find out whether higher 

Reynolds number causes earlier reattachment, the C
P 
 distribution on the 

reattachment face was measured at several values of Reynolds number, Re 
, 

in the range 4.27 x 104  4: Re  4:, 10.54 x 104  when 	yK = 13.5°  . [It 

has already been reported in section 1.4.1.1 that in smooth flow, steady 

flow reattachment first occurs at lo& = 13.5° ] . The results obtained 

at Re ,... 4.27 x 10
4 

and 10.54 x 104 are presented. in Fig 6.11.B. 

There is an overall trend towards higher values of C
P 
 as R

e 
increases 

such that the pressure recovery towards the rear of face B becomes less 

marked at higher values of Re  - see Fig 6.11B . It can be seen in Fig 6.11B 

that the increase in Re  does not make the pressure recovery begin nearer 

to the upstream edge A/B . This suggests that in the small range of Re  

investigated, an increase in Re  does not cause earlier reattachment. 

6.3.2 Variation of 
CPA

CD 	CL with 00( . 
PA ' PB ' PC ' 	D ' D 

CD 	= 	-1)13 CrD 	 - En) c °s 0( 	(6.1) 

CL 	= C CP 6 — Pp) cosy f C Crc  — etl) Sin oc 

See section 6.1 for notations. 

Fig 6.13 shows the values of C-
PA ' 	'PC and 

6 	that were 
PB  

estimated from the plots of C distribution. The values of CD 
and C

L 

that were estimated from Fig 6.13 using equation (6.1) are presented in 

Figs 6.16 and 6.17 . 

In the range 0
0
4 ch 	13.5o -C

PB 
can be seen in Fig 6.13 to be 

greater than -CED  . This has already been attributed in section 1.4.1.1 

to asymetry in the shear layers configuration. The shear layer separating 

from edge A/B is closer to side. face B than the opposing shear layer is 

to side face D . This is why ' 	decreases, see Fig 6.17, as ok increases 
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from 0
o  to 

 13.50 • 

Beyond a = 13.5°  OpB  can be seen in Fig 6.13 to rise sharply with 

increasingc(.Thisbehaviourof.C-,1-1) is responsible for the rise in C  

(Pig 6.17) as 	0( increases from 13.5°  to 450  . The rise in 
CPB 

is, 

see sections 1.4.1.1 and 6.3.1 , due to the movement of the reattachment 

position from the trailing to the leading edge of face B as o: increases 

from 13.5
0  to 45

0  

CD and'jpb 
 can be seen in Figs 6.15 and 6.16 to follow broadly the 

same trend. However unlike -Cpb.  which is maximum at 	0
o 	

CD  is 

maximum at ok . 450 . This is because CD was calculated using the 

cylinder diameter, d ,'rather than the frontal width, d(siri 0( 	cos 0( ), 

as reference length. The fall in CD 
and -C

pb 
(Figs 6415 and 6.16) as 0( 

increases from 0°  to 13.5°  has already been attributed in section 1.4.1.1 

to increases in the vortex formation region length if  . The increase of 

CD 
and -Cpb 

as ck increases from 13.5o to 45o has also been attributed 

in section 1.4.1.1 to decreases in if  . The changes in l, as d increases 
1. 

from 0°  to 45°  can be seen in the flow visualisation of Pocha (1971). 

The present values of 013.13  , CD  and CD  are compared in Figs 6.15 to 

6.17 with those Parkinson & Brooks (1961), EDSIT(1971), Pocha (1971) and 

Lee (1974). The author has corrected the results of Parkinson & Brooks 

(1961) for wind tunnel blockage effects using Yaskell (1963). Lee's (1974) 

results, which were originally corrected for blockage effects by the method of 

Allen & V;ncenti, were also recorrected by Maskell (1963). The present 

values of 
CD  -and -C 	are, see Fig 6.15 and 6.16 , generally higher, 

Pb  

particularly at large 	, than those reported by these other workers. 

For example at et; = 45o , the present value of CD is 2.42 compared to 

the valubs of 2.21 and 2.18 reported respectively by EDSU(1971) and 

Lee (1974). This is thought to be because the present results were obtained 

using suitable end plates. 

The effects of end plates on 	and 7,-, P̀ 
	are shown in. Fig 6.14 . A 
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discusoicn of the effects of end plates can be found under points A4 and 

A5 of section 6.3.1 . 

6.4 FLUCI7ATI1TG P SJFP /.1EASURTI,71, TT 

The - r'O 	distributions that were measured at ok 00 , 100 , 13.50 

150 and 45o without using end. plates are presented. in Fig 6.18 to 6.21 

along with those of Vickery (1966), Pasha (1971),'Lee (1974) and Wilkinson 

(1974). To conform with the present results, the author has corrected the 

results of Lee and Wilkinson for blockage using LTaskell's (1963). Although 

some measurements were made, see Figs 6.22 and 6.23 , using end plates, 

the effects of end plates on Cprals  were not investigated. 

The distribution of Cptill 	at various values of c& will now be 

discussed. 

A.  

On faces A and C , the present results can be seen to be in good 

quantative agreement with those of Lee (1974). On each of these faces, Cprms  
A 

falls with distance from the edges to a minimum at the centre - see Fig 6.19. 

A similar trend was also observed. by Pocha (1971) and. Wilkinson (1974). 

- The position of minimum Opims  on face A corresponds to the stagnation 

position. 

There is some discrepancy between the present results and those of Lee 

(1974) around the center of the side faces B and ID . Lee's results, see 

Figs 1.9 and 6.19 , indicate a very large drop in Cp 	close to the center 

of the side faces. By contrast the present results and those of other workers 

indicate, see Fig 6.19 , only a small variation of Cprens  . Both the 

present and Lee's results, particalarilLee'syindicate that the variation of 

mean pressures on the side faces are small - see Fig 6.2 4 The C Prms 

results Df Lee (1974) therefore may be suspect because experience, see for 

example Pocha (1971), has shown that large variations in Cpral, are usually 

accom7;anied by large  non-uniformity in mean pressures. 
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Generally the present values of Cprwis  are lower than those of Vickery 

(1966) and Focha (1971) but higher than those of Wilkinson (1974) - see 

Wig 6.19 . The average values of Cprm5  in the separated flow region (faces 

B , C and D) are also much higher than on the front-face A where flow is 

attached. 

Fii2: 6.23 shams the effects of Reynolds number, Re 
, on 	\!:PriyAfeand 

(Cpws 
Ed(c
which are respectively the fluctuating pressures at the centers of . 

rmItc.   the side and back faces of the model. 	(CP 	increases with Re  up to 

R
e 

of ab ut 6 x 104  and then remains practically constant. This is 

similar to the behaviour of CD  and -Cpb 
presented in Fig 6.10 . By 

contrast 	(Cprryl)gi 	is , see Fig 6.23 , unaffected by Re  . The values 

of Cprol 	on all of the base and on the parts of the side faces that are 

very close to the trailing corners behave like 
	

(C-Prn-4 as Re  

increases. 

It can be seen in Fig 6.23 that the Cpms  measured with the P' 

Setra pressure transducer are generally slightly higher than those measured 

with the B & K ;,1' microphone. This is as it should be. Because of changes 

in dynamic sensitivity factors at low frequencies, the B & K 	microphone is 

expected, see section 3.3.2 	to yield values of Cpms  that are 35'' too 

Tow. 

The results for the .1:0.2 end plates in Fig 6.23 also show that 

mounting the model through end clearance holes as in Fig 2.6 (also see 

section 2.4.3) does not affect Cprols  at center-span when Reynolds number 

is low. 

B. 	rl. . 10°  , 13.50  , 150  and 450  

The results obtained are presented in Figs 6.20 and 6.21 . Only two 

workers, Pocha (1971) and Lee (1974) are known to have publised measurements 

of Cprm, .distribution on a square section cylinder at incidence. Because 

of the different values of of investigated comparison between these works 

and the present one is only possible at cx. = 15 	and 45 	The 
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agreement between the present results and those of Lee (1974) can be seen, 

at 0( . 15
o 

and 45
o , to be generally good on face D and very good on 

. faces A , B , and C - see Fig 6.21, Pocha (1971) results are generally 

slightly higher than the present ones but the trends indicated by the two 

sets of results are, see Fig 6.21 , the same. 

Some interesting aspects of the Cprm5  distribution are: 

Point (a)  On face A , the position of minimum Cprms  can be seen in 

Figs 6.2C and 6.21 to move from the center of the face to the leading 

edge. A/B as 	cA increases from 0
o 

to 45
o 
. This movement corresponds 

to the movement of the stagnation position from the center of face A to 

the leading edge as o( increases from 0
o 

to 45 
	- see point A2 of 

section 6.3.1 . 

Point (b)  At 	q = 13.5°  and 15°  the Cpms  distribution on face B 

has a minimum near the trailing edge B/C - see Pig 6.20 and 6.21 . This 

minimum is well defined at 	04 . 15°  and is located, see Fig 6.21, at 

approximately 0.3 diameter from edge B/C . At oi; = 45° the position 

of this minimum is, see Fig 6.21, at Ale leading edge of face B . 

Pocha (1971) has reported for a square section cylinder that the position. 

of the above minimum is the same as the flow reattachment position. The 

position of maximum mean pressure, C , on face B has also been linked 

when 13.5° 	4. c)( 4 	45
o to the flow reattachment position - see under 

point A3 of section 6.31 . One thus expects the position of maximum C p 

to coincide with that of minimum Cprms  . By comparing Figs 6.20 and 6.21 

respectively to Figs 6.4 and 6.5 it can be seen that at 	(A = 13.5
0 

and 15
o 

particularly 	d; . 15°  , that the position of minimum Carron 

on face B is•upst 6am that of maximum C . It would thus seem that flow 
P 

reattachMent occur upstream of the position of maximum mean pressure - at 

least when 	d. is close to 13.5°  

Point (c)  It was expected, as in Pocha (1971) and section 1.4.1.2B, that the 

behaviour of (Cprm5 )si/c,  and •(Cprs)v.,  (see Footnotes (6.1) for definition) 
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as oc increases will be similar to that of-Cpt  . Surprisingly (Cermduc  

is maximum, see Fig 6.22, somewhere around 	0( . o 
unlie -Cpb  which, 

see Fig 6.15, is maximum at of = 09 . Furthermore in the range 15°4 cA 4. 45°  

( "Pr in ) Fic  remains practically constant whereas -CI510 
 increases with (A, 

The present results also show, see Fig 6.22, that (Cku,$)8/6  (see 

Footnotes (6.1) for definition) is maximum around. 	0: = 5-  instead of at 

= 00 as indicated by the results of Pocha (1971). This is in accordance 

with Rockwell (1976) who measured pressures at two tappings on face B and 

reported that Cprals  is maximum at each tapping when cis = 5°  

6.5 CORRYLATION OF FLUCTUATING PRESSURES 

6.5.1 Snanwise Correlation  

Measurements of spanwise correlation at e( = 0°  are presented in 

Fig 6.24 . As in Vickery (1966) the present results can be seen, particularly 

at large spanwise separation, to lie within a broad band. 

As the separation increases from 0 to 4(1 the correlation decreases 

rapidly from 1.0 to 0.5 - see Fig 6.24 . Beyond a separation of 4d 

the correlation falls steadily to zero at a separation of 11.5 d . In 

. direct contrast Wilkinson (1974) measurements indicate, see Fig 6.24, that 

the correlation decreases very rapidly from 1.0 at zero 'separation to 0.5 

at a separation of only 2.14 and then falls to 0 at a separation of only 

7 d . The present results agree very closely, see Fig 6.24, with those of 

Vickery (1966), Pocha (1971) and Lee (1974). The spanwise correlation length 

indicated by the present results is 5.6 diameters. 

6.5.2 Chordwise Correlation at 	= 0°  

Some measurements of chordwise correlation on a side face at center-span 

Footnotes (6.1) As in Fig 6.22 CPm5 at the centers of faces B , C and 

D are denoted respectively by (Cprms)8i 	(Cpms  )8/c.  and (C 	) prms ob 
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with 	C( - 0°  are presented in Pig 6.25 . The correlation is seen to be 

higher than 0.92 over the mid 75% of the side face. Because of the high 

chordwise correlation there is practically no difference between the 

sectional. 1113 lift coefficients, Corms  , of 1.21 and 1.23 estimated 

respectively with and without consideration of chordwise correlation. These 

values of Cvms  are close to the results of other workers. The values of 

Lrms measured by Vickery (1966), Pocha (1971), Lee (1974) and 

Wilkinson (1974) have already been reported, see section 1.4.1.2, to lie 

between 1.2 and 1.4 . 

6.6 SPECTRAL MEASUICIT.17TT  

6.6.1 Shecidinr,  Freauencv Measurement 

6.6.1.1 Description of Spectra  

[JO 

 

  

  

Microphone Position 	
Hot,vire Position 

1/12 d from edge A/B 	
(x,y) = (3.5 d, -3d) 

Sketch .(6.3)  

A selection of the power spectra of pressure•and velocity fluctuations, 

that were computed as described in section 3.6.1.1, is presented in Figs 6.28 

and '6.29 . Measurements were made at selected values of 	0( in the range 

0 Z 	450  . The positions of the pressure transducer and hot-wire 

are •indicated in sketch (6.3). All tests were conducted at a Reynolds number 

of 4.74 x 104  . 
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As expected there is on each plot shown in Figs 6.28 and 6.29 , a 

dominant peak centered on the vortex shedding frequency, fs  . This peak can 

be seen to be fairly broad-band - an indication. that the shedding frequency 

in fact varies around f
s 
. Due to mains and electronic noise, there are 

also sharp line-like peaks at 50 cycles and its harmonics. At 	0( 	= 00  

5o and 10
o small peaks can also be discerned at 2fs 

and 3fs 

Surprisingly there are, at 0( = 5o and 
1
00 , broad-band peaks centered 

at approximately f,./2  in both the spectra of velocity and pressure - see 

in particular the plots of Figs 6.28 and 6.29 that correspond to Cis = 10°. 

These low frequency peaks could be caused by oscillation of the vortex 

formation position. At 	ok = 40°  and 45°  there are also very broad-band 

peaks at approximately fs/4  in the spectra of pressure but not in those of 

velocity - see Figs 6.28. 

6.6.1.2 Variation of Strouhal Number, S , with 0(  

S 

Because the Reynolds number is fixed, the movement of the dominant peaks 

in Figs 6.28 and 6.29 indicate the variation of S with c; 	. Thus 

S can be seen in Fig 6.28 , despite the small scale, to be maximum and 

minimum at 	0( = 13.5°  and 45°  respectively. 

The Strouhal number calculated from spectral analysis (i.e. from the 

frequency of the dominant spectral peaks) are presented in Pig 6.26 

together with the S obtained by peak-count' on a storage oscilloscope. 

Also shown in Fig 6.26 are the results of Bearman & Trueman (1971), Pocha 

(1971) and Lee (1974) together with the values of S estimated from the 

spectral plots in the unpublished work of Rockwell (1976). Bearman & Trueman 

(1971) measured f
s 

using a wave analyser whereas Pocha (1971) obtained f 

by 'peak-count' on an oscilloscope. Lee (1974) did not state how he determined 

S. 

Despite the scatter Fig 6.27 indicate that at 	= 0°  there is a trend 

tcvarus lower values of S for higher values of Reynolds number. For tThis 
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reason comparison between the present values of S and those of other workers 

will be limited only to qualitative trends. 

All measurements indicate, see Fig 6.26, that S is maximum when 0( 

is approximately 13.5
o 

and that for 13.5
o 	

0( 4; 45 	S decreases 

with increasing 0( . Discrepancies exist when c( isbetween 0°  and 

13.5° 	The measurements of Lee and Pocha and the values of S obtained in 

the present study by 'peak-count' indicate that S increase with increasing 

when 0 	< 13.5°  . [This suggests that Lee's results were obtained by 

'peak-count' g, The S obtained in the present study by spectral analysis 

decreases slightly at first with increasing of when 0 4.  o( 4.  10° 

before rising very sharply to a maximum at 	0( = 13.5° - see Fig 6.26. 

Reckwell' (1976) S (also obtained from spectral analysis) also decreases 

slightly with increasing 	d when 0( is between 0
o 

and 8
o 
 before 

rising sharply to a maximum at d, 	13.5 . 

Consideration will now be given to two reasons why when 0( is between 

0
o 

and 13.5
o 

, the trend indicated by the 'peak-count' values of S could 

be different from that of the spectral analysis. Firstly the 'peak-count' 

results could be inaccurate partly because a significant amount of energy is 

present, see 	c4  . 5°  and 10°  of Pigs 6.28 and 6.29 , at other 

frequencies apart from f
s 

and also because of the variation in the 

shedding frequency shown by the spectral broadening around fs  . Variation 

of shedding frequency will particularly affect the 'peak-count' results 

because only about 20 cycles (or even less) of the vortex shedding signal-

are usually averaged at a time when fs  is counted on oscilloscope. By 

contrast the present spectral analysis method involved the processing of over 

7000 cycles of the vortex shedding signal. Secondly, and perhaps more 

important, the 'peak-count' results indicate the average shedding frequency 

whereas the spectral analysis results indicate the dominant shedding frequency 

Even neglecting inaccuracies in measurement, the dominant vortex shedding 

frequency, f , could be different from the average vortex shedding.  frequency if, 
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as spectral analysis suggests, the spectral peak is not symmetrical about f$ 

6.6.2 The s ectral distribution of sectional fluctuatinf~ _pressures  

6.6.2.1 Description of Spectra 

The digital analysis required for the determination of spectra has been 

outlined in section 3.6.1 . 

Lt 	= 0o the spectra of fluctuating pressure were measured around 

the mid-section of the model at the seven positions shown in Fig 6.31 . 

The resulting spectral plots are presented in Fig 6.30 (a) to (g) . On 

each plot fs , 2fs 
and 3f

s 
correspond to Frequency (log) 1.65 , 1.95 

and 2.13 respectively. fs  denotes the vortex shedding frequency. 

At' the center of the front face (Hole 8/A) , the pressure fluctuations 

are so small that the pressure spectrum (Fig 6.30 (a)) is dominated by 

line-like peaks at 50 cycles and its harmonics. These peaks are caused 

by mains hums and electronic noise. The vortex shedding activities can 

still however be discerned in the background of Fig 6.30 (a) in the form of 

a broad-band peak at 2fs  . 

Fig 6.30 (c) to (e) show that on the side face (Holes 6/B , 8/B 

and 6/B ) most of the pressure energy is centered on the shedding frequency 

f
s-, and that there is also a small amount of energy at 2f . The same 

is also true on the parts of the front and back_ faces, particularly the 

former, that are near the corners - see Fig 6.30 (a) and (0 . 

There are, surprisingly, fairly prominent spectral peaks at 3f, on 

the side and back faces near to the trailing corners - see Fig 6.30 (e). 

and (c) . This .phenomenon has not been previously reported in the 

literature. 

The pressure spectrum at the center of the back face (Fig 6.30 (g)) 

has a dominant peak at 2f
s and no.peak at f . There is a large amount 

of energy at the low frequency end of the spectram which is due to the 

pressure fluctuations caused by turbulence in the wake. 

6.6.2.2 7-1timnt5on of the mean square Pressure in the spectral peaks 

.Due to normalisation, the total area under each spectral plot is unity. 
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The power centered on a peak frequency f , was estimated from the product 

of P
1 

and A f where P
I 

and 	,Af
p 

are respectively the power at 

f and the bandwidth of the half-power points 
D 

The results obtained in this way are presented in Fig 6.31 . Fig 6.31 

shows very clearly the redistribution of spectral energy on the side face. 

For example near the trailing edge of the side face (Hole 6/D) the 

percentage of the total pressure energy at fs  , 2f, , and 3f., are 66.95 

6.9%. and 3.9. respectively. By contrast at the center of the side face 

(Hole 8/B) the percentage of energy at f and 2f are 82.2% and 

1.6, respectively and there is no discernable peak at ifs 
. This 

redistribution of spectral energy is largely responsible for the reduction 

observed, see Fig 6.25 , in the chordwise correlation of pressure fluctuations 

at large separations. Previous workers, see for example Wilkinson (1974), 

have attributed. reductions in "chordwisepressure fluctuations to both 

turbulence and to differences in phase angles at the vortex shedding frequency. 

Fig 6.31 shows, as reported earlier, that the spectral peaks at 3f5  are 

prominent only near the trailing corners - Holes 6/D and 6/C . 

6.6.3 Variation of the phase angle at the sheddir.L frequency around the  

mid-section  

The measurement procedure is.described in section 3.5.1.2 (e) . The 

measured phase angles are presented in Fig 6.32 . 

It can be seen in Fig 6.32 that the phase differences measured over 

the mid 835 of the top and bottom side faces Ore respectively only 139°  

and 14.7° 
	

This shows that changes in phase angle do not contribute much 

to the decreases shown, see FiE 6.25, in the chordwise pressure correlation 

at large separations. Two points that are situated one diameter apart on 

the Upper and lower side faces can be seen in Fig 6.32 to have a phase 

difference of 180°  . By contrast points 6 and 3 that are located one 

diaiAeter apart on the front and back faces respectively can be seen to have 

Only a phase difference of 6.5
o 
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On the whole the phase angle around the section does not vary in any 

consistent way with downstream distance. For example on the side faces the 

phase angle increases, see Fig 6.32, with downstream distance. By contrast 

around the lower corners A/D and D/C of Fig 6.32 the phase angle can 

be seen to decrease with increasing downstream distance. 

Chaplin (1970) has reported from measurement of correlation time delay 

that the phase angle on the side face of a square section decreases with 

increasing downstream distance. He suggested that this can be explained in 

terms of velocity fluctuations in the shear layers passing downstream at 

the flow separation velocity 	h U 00 	. According to this hypothesis 

the phase angle near the leading edge of the side face should lead that near 

the trailing edge by about 29°  . This hypothesis is not borne out by the 

present results. On the side faces, the phase angle near the leading edge 

can be seen in Fig 6.32 to lag that near the trailing edge by approximately 

14
o . The present results thus suggest an influence (produced by the 

forming vortex?) that is convected. upstream. 

6.6.4 Longitudinal vortex spacing a/d  

The measurement procedure has been described in section 3.5.1.2 , 

The results obtained at 	& = 0°  , 10°  , 13.5°, 20°  and 45°  are 

presented in Fig 6.33 together with the results of Chaplin (1970) at 

0( = 0°  , 15°  , 30
o 

and 45o . The locations of the reference microphone 

and the moving hot-wire are also indicated in Fig 6.33 . 

Some of the interesting points are: 

1) The values of a/d measured at 	0( = 0o with the wake hot-wire at 

vertical heights (Y./d) of 3.0 , 3.7 and 5.0 are practically 

the same - see Fig 6.33 (a) . This is in contrast to Simmons (1974A) 

who reported that on a D -shaped body, a/d is dependent on Y/d when 

Y/d is between 0.5 and 3.0 . Simmons used two hot-wires that were 

mounted together a fixed distance apart in a holder that was transversed 

in the flow. In the present study the phase angle of a single moving 
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hot-wire was, see section 3.5.1.2 , compared to that of a fixed 

microphone that was connected to the side face of the model. 

Observations at R . 104 and 4.74 x 10' can also be seen to 

yield the same value of a/d at 	d. = 0°. 

2) Despite the difference in experiMental methods the a/d of 6.58 and 

6.88 that were measured at 
	

ch. - 0 and 45
o respectively are, see 

Fig 6.33 (a) , close to the values of 6.54 and 7.26 reported by the 

Chaplin (1970) . Chaplin used two hot-wires, one fixed and the other 

traversed up and downstream. 

3) In the present study a/d appears to be inversely proportional to the 

Strouhal number S . This is demonstrated in Fig 6.33 (b) where the 

product of S and a/d is shown at each 0( to be practically 

constant at 0.85 when the Um  used to form S is uncorrected for 

wit:a tunnel blockage effects. When S is corrected for blockage effects 

S.(a/d) is, see Fig 6.33 (b) , practically constant at 0.81 . 

S.(a/d) is the convection velocity of.the vortices, 

6.7 CLICULATION OF  	C 	AND b/a FROM THE MEASURED VALUES OF TILL, 

CD  , S , Cpb  AND a/d 

1111.d 
	— the non-dimensional strength.of_eabh vortex'in'the wake. 

b 	-- lateral spacing between the rows of vortices . 

vortex spacing ratio , 

E the circulation defect ratio i.e. the fraction of the 

vorticity in the shear layers that is present in the discrete 

vortices of the wake. 

The circulationdischarged into the wake per second by each shear V 

laYer can be shown, see for example Roshko (1954A) to be: 

bja 

- — (6.2) 

where 	Us 	is the separation velocity. 
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Measurements, see for example Page & Johansen (1927) and Simmons (1974B) 

have shown that Us  is related to the free stream velocity, Um  

and the base pressure coefficient, Cpb , 
by:. 

• 

P 
- -(6.3) 

From equations (6.2) and (6.3) the non-dimensional vorticity, 	k v  
that is shed by each shear layer per cycle of vortex shedding is: 

 

I — Cpb  

  

it 

E 	 ( t — cps  
MLA/ Z i S / 

(6.5) 

When the wake of a bluff body is idealized as a double row of 

staggered point potential vortices, the associated drag can be expressed, 

see for example Bearman Trueman (1971), in the form: 

where 
US  

Uw 
I - .5 — -(6.7) 

The non-dimensional strength of each potential vortex in the vortex 

street is (see Milne-Thomson (1965) 

2 Us  a coat 	 - 
Tr tto ci 

Fig 6.34 shows the values of CD.S obtained from equation (6.6) against 

b/a using the values of 	e 	S yd  Um 
Fig 6.33 (b) 

indicated by 

The predictions of b/a (and hence 	ro 	, b/d and 
1 Uo0d 

) were 

ro 
U.z 
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obtained from Fig 6.34 by using the Measured values of CD , S and a/d. 

When CD 
and S were corrected for wind. tunnel blockage effects, CD.S 

was so small at o( = 10°  that no value of b/a could be obtained from 

the corresponding 	P. = 0.19 curve of Fig 6.34 . It was therefore 
LLD 

decided to use uncorrected values or Cpb CD 
and S and obtain values 

Us  
of b/a from the corresponding curve (i.e. 	. 0015) in Fig 6.34. U. 
The results obtained in this way are presented in Fig 6.35 . 

Fig 6.35 shows that: 

(i) The predicted values of the circulatioindefeet ratio , G 	, are 

0.54 when 0 	0( 	10
o 
 acid 0.59 when 13.5°  i. d\ „Z.z. 	45o 

These values of e ere within the range 0.403 	6. 4 0.66 said, 

see Berger & Wille (1972), to have been observed on bluff bodies by various 

workers. The predicted values of b/a (and hence 	
-rr 
ro 	

and b/d) 

thus seem reasonable. 

rol  
(ii) The curves of -Cpb (Fig 6.15) and 	Tr zci Fig 6.35) follow 

U 
the same trend except that -Cpb is maximum at 	= 0°  whereas • 

is maximum at 	= 45
o • It was reported in Chapter 1 

TT-Uoc, d 
that the overall level of surface fluctuating pressures, Cpms  , around 

a section, particularly in the separated flow region, fellow the trend in 

-Cpb when 	pc is in the range. 0 4 cA < 45° Within this range of g 

changes in -Cpb (and hence CD ) have been attributed, see Chapter 1 , to 

opposite changes in the vortex formation region length If  . The predicted 

Tr U 	
thus support the notion that decreases in i

f are 
a, d 

accompanied by increases in 	
11 	

' -Cpb ' CD  and C s and 
) d  

vice versa, 

(iii) As tv( increases from 0°  to 10°  the predicted lateral spacing 

of-the vortex street, b/d (Fig 6.35) , increases whereas the measured 

drag coefficient, C
D  (Fig 6.16) , decreases. Beyond 

	= 13.5° 

b/d (Pig 6.35) remains virtually constant whilst CD  (Fig 6.16) increases 

with Dc 0 Assuming that the wake width is proportional to b/d , these 
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results suggest that changes in C
D 

are not accompanied by corresponding 

changes in wake width. This does not agree with Lee (1974). Lee suggested 

that as 	0( increases from 0°  to 13.5° 	decreases in CD  are . 

accompanied by decreases in wake width which in turn produce increases S 

It has already been demonstrated in section 6.6.1.2 that because the 

waveform of the vortex shedding signal is complex, S would incorrectly 

appear to increase as 	04 increases from 0°  to 10°  if the 'peak-count' 

method is used to determine the shedding frequency, 

Griffin & Ramberg (1975) have also reported that for a vibrating 

circular cylinder CD  , calculated from the vortex street drag formula, 

increases as b/d decreases. 

6.8 ITOTOGRAPH8 OF PRESSURE TRANSDUCER SIGNALS AT 0°  INCIDENCE  

The photographs of the simultaneous signals of surface pressure 

fluctuations indicated by two pressure transducers placed along the 

center-line of the side faces are presented in Fig 6.36 . The cross-

correlation coefficient, RP12 l between the two pressure signals are 

indicated underneath each picture together with the values of f
s 

and R
e 

Some points to note in Fig 6.36 are: 

(1) 	The amplitudes of pressure fluctuations are highly modulated. This 

can be seen in Fig 6.36 (a) , (c) and (d) where the horizontal or 

time scales are compressed to emphasize the amplitude modulations. 

Previous workers on stationary circular and square cylinders have 

reported similar findings. This phenomenon could be caused by 

variations in the strength of the vortices, 

(ii) 	The shedding frequency at a given vrindspeed is not constant. This 

is demonstrated in the upper trace of Fig 6.36 (b) where there are 

slightly more shedding cycles to the left than to the right of the 

center-line. The broadening of the spectral peaks at fs  has already 

been attributed, see section 6.6.1.1, to variations in shedding 
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frequency. 

(iii) The correlation between the upper and lower traces of Fig 6.36 (a) 

can be seen to be excellent but there is, see Fig 6.36 (b), a phase 

shift of 1800 	As an indication of the very high degree of correlation 

the amplitude modulation can be seen in Fig 6.36 (a) to occur 

simultaneously in both the upper and lower traces. Measurement also 

indicate that 
R_Y12 

 is -- 0.97 . 

Fig. 6.36 (b) support the earlier finding, see section 6.6.3, that 

two points located one diameter apart on the upper and lower side face 

have a phase difference of 1800  . 

(iv) When the pressure transducers are separated on the top side face by 

a spanwise distance of 2.5 diameters, the correlation is, see Fig 

6.36 (c) , still good although occasionally the amplitude modulations 

do not appear simultaneously in both pressure traces. The phase angle 

(not shown) between the two pressure signals was observed to vary. 

At a spanwise separation of 9.5 diameters the pressure can be seen 

in Fig 6.36 (d) to be poorly correlated. The amplitude modulations are 

no longer correlated. The phase difference between the two pressure 

signals is random. For example the phase difference can be seen to 

change from approximately 180°  at one instant (Fig 6.36 (e)) to 0°  

at another instant (Fig 6.36 (0) . 

The above results are consistent with measurement of spanwise 

correlation of fluctuating pressures, R(p,z) , shown in Fig 6.24 . 

The variation in phase angle reported above is largely responsible for 

the scatter observed, see Fig 6.24 , in the data of R(P 
Z) 
 when the 

spanwise separation is large. 

6.9 FURTHER DISCUSSION 

TEE FLOW AROUND  THE CYLINDER 

Bearman & Trueman (1971) investigated the flow around rectangular 
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cylinders with values of d/h (where d is section depth and h is 

section width normal to the wind direction) ranging from 0:2 to 1.205_. They 

explained the decreased base suction (and hence decreased drag) which they 

measured for higher values of d/h , when d/h > 0.6 , by suggesting 

that the vortices are forced to form further downstream because of the 

influence of the trailing corners. For the section with d/h = 0.62 , they 

demonstrated that increasing the incidence from 0°  produced the same 

effect as increasing d/h - i.e. decrease base suction. They argued that 

this is to be expected because flow visualisation shows, when d/h = 0.6, 

that the shear layers pass close to the trailing corners as the vortices 

form very close to the base. Therefore, the trailing edge corner (when 

the model is set at incidence) and the downstream corners (when 0( = 0 

and d/h increases beyond 0.62 ) would produce the same effect - in this 

case force vortices to form further downstream. For a square section cylinder 

(d/h . 1.0 ) at 	pc = 0
o 

, flow visualisation, see for example chapter 5 

and Pocha (1971), showsthat the vortices form close to the base with the 

separated shear layers passing close to the trailing corners. It is 

therefore to be expected that setting the section at incidence will produce 

the same effects (on C
D and -Cpb 

) as increasing d/h when 	04. = 0 

provided flow does not reattach (see fOotnotes (6.2)). By comparing the 

present results (Figs 6.15 and 6.16 ) to Figs 1.1A-  and 1.1B it can be 

seen that this is the case. It thus appears that for a square section 

cylinder, it is the trailing corner that forces the vortices to form further 

downstream (as observed by for example Pocha (1971) when 904, increases 

from 0° to 13.5 thereby decreasing C
D 

and 
'jpb • 

Footnotes (6.2) 	In smooth flow, flow reattachment occur on rectangular 

cylinders that are set at 0( = 0°  when d/h > 2.5 , see Parkinson 

(1971), and on square section cylinders when 	CX 	13.5°  . 
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Up to reattachment (see footnotes (6.2)) the S versus 	of curve of 

the square section cylinder, Fig (6.26), can be seen to similar to the S 

versus d/h , Fig (1.1A), curve of rectangular cylinders. In both fig ares 

S decreases before reattachment and rises very sharply at reattachment. 

This farther suggests that the same mechanism, the influence of the trailing 

corners, governs the flow in both cases. Some workers, see for example , 

Pocha (1971) and Lee (1974), have reported (incorrectly - see section 6.6.1.2) 
0 	 0 

 that S increases steadily with 	0( when 0 4, ck 	13.5 	thus 

masking, at least to some extent, the flow mechanism involved. A factor 

that could contribute to the initial decrease in S as 0( increases 

from 0°  is , see Dearman & Trueman (1971), increased diffusion. The 

shear layers could be more diffused and thicker at small c( because the 

distance from the separation points to the position of vortex formation is 

(see Focha (1971)) longer at small Oc 	( C 	Z  13.5°  ) than at 0(,. = 0°  

Another factor that could contribute to this initial decrease in S is the 

divergence of the shear layers. As 0( increases from 0
o 

the frontal 

width , d(cos c( 	4. sin cj, 	) , (see sketch 6.4) , increases. Thus if 

there is to be no flow reattachment, the shear layers would diverge if they 

are to completely clear the corners of the body. 

 

Sin ot, f COS a() 

 

Sketch (6.i)  
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, 
When 	0( = 450  flow visualisation, see for example Pocha (1971), 

show that the vortices forma very close to the trailing corner D/C . Thus 

it is to be expected that as 	c( decreases from 45 , the trailing corner 

would interfere with the shear layer and so force vortices to form further 

downstream thereby decreasing -Cpb.  and C . Results obtained on a square 

section cylinder when 13.5
o 	

ck 4: 45o appear to demonstrate this 

effect, Beyond 	Oc = 13.5° -C
pb 

and C
D 

can be seen in Figs 6.15 and 

6.16 to decrease with increasing ok. 

After flow reattachment ( 	> 13.5°) the frontal width , 

d(cosck = sin go4 ) , is also the lateral distance between the shear layers 

at 3eparation 	
o 

. Thus as 	0( increases from 13.5 d(cos 	sin 0( ) 

also increases causing the shear layers to diverge . This could cause the 

decrease in S , see Fig 6.26 , as 	C( increases from 13.5
o 

to 45o  
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CHALKEi_l_ 

OSCILLATING MODEL : RESULTS AND DISCUSSION. 

7.1 POWER SPECTRA OF PRESSURE AND VELOCITY FLUCTUATIONS. 

7.1.1 amdlEollof Power Spectra. 

Power spectra of pressure end velocity fluctuations were computed 

digitally (as described in sections 2.5 and 3.6 ) for. AID = 0.05 

0.10 and 0.25 with 4.2_ 	ranging from 3.0 to 15.0 . A selection 
d 

of the results obtained is presented in Pigs 7.40 to 7.43 • 

In the following discussion, fN  and fs  denote respectively the 

body oscillation frequency and the natural vortex shedding frequency. 

The uncorrected Strouhal number, S or d  is taken as 0.134 so 
U00 

that 	T5/ 44 	= 0.134 6) 	. Thus resonance (i.e. 

fN 	s 
) occurs at 	

0.13 * 	
or 7.46 . This resonant value 

 
of 	 

ft 4C1 	
will be denoted by (II) 

R 
As in the stationary model flow easel  the spectra measured during model 

oscillation have sharp line-like peaks at 50 cyles ( Frequency (log),z1.70) 

and its harmonics. These peaks are caused by mains and electronic noise. 

The characteristics of the spectra measured at the different values 

of A/D will now be described. 

ALP . 0.0 and 0.10 

The spectra measured at A/D = 0.05 and 0.10 can be classed into 

U., 
two regimes of 7-77 	namely the 'lock-in' regime and the TN  a 
'off-lock' regime. In the lock-in regime vortices are shed at the body's 

frequency so that the spectral plots are dominated by peaks at fN  and 

its harmonics - see Fig 7.40(f) to (i) and Fig 7.41(c) & (d) . 

These harmonics are, at A/D = 0.10 particularly prominent in the spectra 

c,  of velocity fluctuations at 	of about 7.8 , see Fig 7.41 
fid Um 

(d) which, see sections 7.3 and 7.4 , is the value of  
-FNd 

at which lift pressure fluctuations and spanwise correlations are maximum. 
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Compared to both the body displacement pressure spectrum (Fig 7.40(a)) 

and the line-like peaks at 50 (voles, the dominant peaks in the spectra 

are, see rig 7.40(f) to (1) and Fig 7.41(0) 	(d) broad band. This 

shows that there is still some variation in vortex shedding frequency during 

'lock-in'. 

In the off-lock regimes, the spectra of pressure and velocity fluctuations 

have peaks at two basic frequencies namely the body frequency, fN  ,and 

another frequency, f , which is close to fs 	
U, particularly when  

co 	
frA d  

is far above (  ,Li ao 	. There are also peaks in the spectra at 
Tmci )R 

combinations and harmonics of these basic frequencies particularly the 

difference, 	fN 	fso 	and the sum fN  + fso  • The complexity 

of the spectra can be seen in Fig 7.40 (c) 	(d) , (e) , (j)  , (k) and 

(1) and also in Fig 7.41 (a) 	(b) (e) and (f) . Davies (1975) has 

also observed similar peaks in the spectra of velocity fluctuations 

measured downstream of three oscillating cylinders namely a D-shaped 

cylinder, a flat plate and a triangular cylinder. It is interesting to 

note that the results of workers like Otsuki et al (1974) and Protos et 

al (1968), who measured total fluctuating lift, indicate peaks only at 

f
N 

And fso  • This is because some of the frequency components of 

pressure fluctuations will be in phase across the wake and so cannot 

contribute to total fluctuating lift. 

The potential flow model presented in Chapter 4, also predicts peaks 

at fId  , fso ' fN fso ' fly fso , in the off-locked flow ease. This 

model also predicts across-the-wake phase relations between the frequency 

components of velocity fluctuations that agree with those measured by 

Davies (1975) . 

AL) 	0.25. 

Power spectra of pressure and velocity fluctuations at AID = 0.25 are 

presented in Fig 7.42 and 7.43 respectively. 

When U' 	is between 5.37 and 7.18 , there is a very pronounced 
d 
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peak in each spectral plot at IN  - see plots (a) to (o) of Fig 7.42  

and 7.43 . This peak is surrounded by very small peaks which are 

partieularly noticeable in the spectra of velocity fluctuations at 

Uce -F--- . 5.70 and 6.50 - see plots (a) and (b) of Pig 7.43. 
tKid 

These small peaks were not present at A/D . 0.05 and 0.10 . 

Betwcon 	of 7.1S a Um .nd 9.0 the dominant peak is again at 7.7- 1  
cl 

f but there is a prominent low frequency peak in the spectra - see plots 

(c) to (f) of Figs 7.42 and 7.43 . This low frequency peak may not 

be the difference freouency, 	f 	fN , because there is no other so 

distinct peak near fH  that can be taken as fso  . Furthermore flow 

visualisation at 

	

	e.:;  7.5 shows, see Chapter 5 , that vortices 
frsi d 

are shed at the body frequency fH  

At 	10.00 and 12.67 there is, apart from the dominant 
f d 

peak at fH  a peak just below 2f (see Fig 7.42 (g) and (h) ) which, 

judging from the flow visualisation of Chapter 5, is caused by vortex 

shedding. However unlike the previously described A/D . 0.05 and 0.10 

flow cases, ther appears to be no prominent peaks at fso  fH  9 and 

f f N so  
Um 

7.1.2 Variation of the shedding frequency, fso  , with Trci. 

For A/D s. 0.05 and 0.10 , the variations of f 	with 
so 	

fiqd 
are presented in Fig 7.39 e Also shown on the same figure are the 

Um  variations of fs/fil  with 	then S 0.134 and 0.130 . 

Um 	
toai 	

Um Moen  	is much higher than the resonant windepeed (-- 

f
so 

 A11 cen be seen in fig 7.39 to be equal to fs/fg if is S= 0.130 0 

This would seem to suggest that S should be more nearly 0.130 instead 

of the value of 0.134 chosen. Some difficulty was experienced in 

choosing S because some of the tests were conducted by keeping fH  

constant and varying 	S has been shown in Chapter 6 to 

be weakly dependent on Um 	(i.e. Reynolds number). 
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At A/D . 0.10 , fsoII can be seen to be lower than 
fs/fN 

at low 

Uco 
values of 	 This finding is in agreement with those of 

Nc't 

Otsuki et al (1974)  0 The lock-in regime (the range of  	in 

which f
so
/f
N 

= 1.0 ) can be seem in Fig 7.39 to be wider at 

A/D m 0.10 ,  where look-in starts and ends approximately at U'  

fiqd 

of 7.0 and 8.8 respectively,then at A/D . 0.05 where the boundaries 

Lte 
of the lock-in are given by - of 7.0 and 8.0 	An increase of 

-ftqd 
the lock-in zone with cylinders amplitude is consistent with the findings 

of previous workers on various bluff body shapes like square section 

cylinders (see for example Otsuki et al (1974)), circular cylinders (see 

for example Koopman (1967)), and triangular cylinders (see for example 

Prates et al (1968)). 

7.2 MEAN PRESSURE  MEASURENIZTS 

7.2.1 Apzmismnaltribution  of base pressure 

Measurements of the opanwise distribution of base pressure are presented 

in Figs 7.1 A & B . The oscillating model measurements were made at 

A/D = 0.10 and three values of 	 c° 	namely 4.34 , 7.0 and 17.9 
tq d 

that corresponds respectively to Reynolds number, Re  of 1.11 x 1041  

1.86 x 104  and 4.74 x 104 	The stationary model measurements were 

made at R
e 

= 1.09 x 104  and 4.74 x 104 . 

Some of the interesting points indicated by Figs 7.1 A and B are : 

(a) When R
e 

is fixed, both the shape of the spanwise base pressure 

distribution and the extent of the span over which the base pressure 

is uniform are unaffected by oscillation. This is shown by curves 

eD and 
	

of Fig 7.1 A and the two curves in Fig 7.1 B . 

(b) The extent of the central span over which the base pressure, CPB  

is uniform is higher at lower values of Re  . For example CPB  

can be seen in Figs 7.1 A and B to be uniform over approximately 

the mid 80% and 40% of the span respectively at Re  . 1.09 x 104 
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and 4.74 x 104 . The decrease in the spanwise uniforslity of b-

pressure at high Re  is caused, at least in part, by the clearance 

holes on the wind tunnel aide wells. (As reported in section.2.4.3 9 

the models that were oscillated were mounted externally through 

circular slots, or clearance holes, on the wind tunnel side walls ). 

Results obtained on the stationary model at lie  . 4.74 x 104 

indicate, see section 6.2.2, that these clearance holes reduce the 

extent of the span over which the base pressure is uniform. 

(c) The results obtained at Be 1.09 x 104 , 1011 x 104 and 1.86 x 104 

(i.e. Pig 7.1A) are particularly interesting beoause the tests 

values of vindspeed and body oscillation frequency, f/i  , were 

chosen such that wake synchronisation occurred either around 

f . 8.6 (i.e. R ti 1.1 x 104 ) or around fN 14.9 (i.e. 

Re 	1.9 x 104 ) . Since it was reported under point (a) above 

that oscillation did not alter the extent of the span over which 

the base pressure is uniform, the results of Fig 7.1A, particularly 

curves 
	& 0 indicate that the base pressure is uniform 

over most of the span during lock-in. 

7.2.2 Measurements of mean ressure at centre-s an. 
U4• 

7.2.2.1 Variation of base pressure with 17 

Fie 7.2 shows the variation of 	(C)vc 	• , the base pressure 

coefficient at the centre tapping with 	 .0 	at A/D . 0.10 and 0 

(A/D . 0 indicates that model is stationary). 

During an experiment both A/D and fN were held constant whilst 

increase of base suction with , U'shown by the stationary model 

the tunnel windspeed, U o , was changed to vary 	 . Increases 

in ils_ therefore corresponds to increases in Reynolds number. The 
is1,1 d 

	 ft,td 

d 
results of Fig 7.2 demonstrates an influence of Re  . This influence 

of R
C haa already been discussed in section 6.2.1 . 
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For A/D m 0.10 , Fig 7.2 shows that with increasing t ,) 

the base suction, 	
— CC P }plc

IN 
, rises very rapidly from 0.42 

tle 
at 	-7- 

If  
--)- ze = .6. 	to a local maximum of 1.58 at 	= 7.3 

U TN  d 
(this maximum value of — (C0 	

i4 
0-A:  is, see Fig 7.2, just under the 

stationary cylinder value) and then falls equally rapidly to a local 

minimum of 1.28 at 

	

	iLL m 8.43 before rising steadily towards 

.Cr4ci 

the stationary cylinder value. Thus for an oscillating square section 

cylinder, __ (CF)2,c  , is always less than the stationary cylinder 

value and maximum base suction occurs during lock-in when 

-CH d 
. The measurements of 

pointing downstream, indicate a similar trend. By contrast the results 

of Davies (1975) for a flat plate and D-shaped cylinder indicate, 

during lock-in, that -- (Cp6 is far higher than the stationary 

cylinder value and also that -- (:0)_ 	is maximum when JL. 	is 
sk 

above ( 	) 	. The face presented to the flow (i.e. the forebody) 

t4d 

of each of the above cylinders is flat. The dissimilarity in the 

behaviour of base suction therefore demonstrate the influence of the 

afterbody. 

7.2.2.2 The distribution of mean ressure around the  mid-section. 

Figs 7.3 A, B, and C show the distributions of Cp around the 

mid-section at A/D . 0.10 and 	__ 	5.3 , 7.53 7.90  , 8.46 

fNd 

and 11.91 . The stationary model results presented in Figs 7.3 A , 

B and C are respectively for 	== 	5.3 , 7.53 and 11.91 
f d 

The results for A/D r  0.25 and 	_ILL ee 6.51 7.03 , 7.18 
fN d 

7.54 , 7.81 and 8.51 are presented in Fig 7.4 together with the 

corresponding stationary cylinder results. The values of the sectional 

drag coefficient, CD  and the average mean pressure coefficient on 

the base, Cpb  ,are indicated on each figure. 

is below the resonant value 	W  
(f,i  d )(z 

Davies (1975) on an oscillating triangular cylinder with vertex 
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For A/D . 0.10 (Figs 7.3 A, B and C ) the shape of the base pressure 

distribution is not very much changed by oscillation. Thin means that 

changes in 	(C) 	(the base pressure at the centre tapping) 

indicate corresponding changes in -Cpb  and hence CD  . Thus Fig 7.2 

indicates that during lock-in CD- at A/D = 0.10 has a maximum value, 

which is less than the stationary cylinder value, at 	 = 7.3 

and a minimum value at _UL_ . 8.43 . This agrees qualitatively with 
ft4 d 

the results of Wilkinson (1974) who measured CD  on a square section 

cylinder oscillating at A/D of 0.022 to 0.134 	Wilkinsodsresults 

indicate that with decreasing 	1/0 	CD  decreases from 
TIT 	 (.10 approximately the stationary cylinder value at a very high value of 

I4C1  

	

LLD 	to a local minimum at 	,a'a 8.70 (i.e.fs . 0.85 ) and 
fr4d 

then rises until a maximum value equal to the stationary cylinder value 

is attained at (40 . 6.72 and then falls off. 
fad 

For A/D n 0.25 Fig 7.4 dhows that CD is again less than the 

stationary cylinder when 	Ua 	is at and around resonance. 
fl401 

Results for 

	

	. 6,51 , 7.03 and 7.18 can be seen in Fig 7.4 
d 

to indicate practically the same values of mean pressures Whereas those 

for U' 	= 7.54 , 7.81 and 8.51 indicate that the suctions on the 
jN d 

a  and back faces decrease with increasing U 	. This is unlike the 
N fd 

A/D . 0.10 flow case for which base pressures are highly sensitive to 

Ua, 	throughout lock-in (see Fig 7.2) and for thich, in 
-Foci 

addition, there are well-defined maximum and minimum in the base suction 

at j-L- 	of. 7.3 and 8.43 respectively. c, 
It is interesting to use Figs 7.3 and 7.4 to deduce the behaviour 

Cpb 	 — Cpb  of  	during look-in. As shown in chapter 6 , 	 
27-5 	 2115 

is equal to the non-dimensional vorticity that is shed by each shear 

layer per cycle of vortex shedding. The variation of I - CPb  

5 
with

f 61 	
could thus give some information about the likely trend in 

/4  
, the non-dimensional strength of each vortex in the 

Tr U4 a 
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IC pb  
wake. Values of  	calculated from the lock-in base 

au S 
pressure distributions at AID m 0.10 and 0.25 are compared with 

the stationary cylinder values in Table 1 where it can 'be seen that 

—  the oscillating model values of are less than the 
?t 5 

stationary cylinder values. Assuming that the value of the circulation 

For 	CPI'VI defect ratio, during wake synchronisation 
Tt 1)0 	2 11 5 

is, as indicated by the results of Davies (1975) for a D -shaped 

cylinder, very close to the stationary cylinder value, Table 1 suggests 

that the value of the non-dimensional vortex strength during wake 

synchronisation is less than the stationary cylinder value. 

It is interesting to compare the mean pressure distribution observed 

on the oscillating,  suare section cylinder during lock-in with that on 

a stationary cylinder placed normal to a turbulent free stream. Compared 

to the stationary cylinder smooth flow case, it can be seen in Fig 7.3B 

that, at A/D . 0.10 and 11' 	. 7.53 , 7.90 and 8.46 , the side 
CI 

face suction is more pronounced around the centre but less pronounced 

towards the rear so that the lower base suction on the oscillating 

model is accompanied by a more marked pressure recovery towards the 

rear of the side face. A similar effect is demonstrated more markedly 

LL0  at A/D . 0.25 and 	 . 6.51 ,- 7.03 7.18 7.54 , 7.81 and 
Csd 

8.51 by Fig 7.4 . A similar finding was also reported by Wilkinson 

(1974) for a square section cylinder undergoing synchronised oscillation 

at AID . 0.134 . The above is similar to the finding of Lee (1974) 

whose measurements on a stationary square section cylinder at 00  

incidence indicate that free stream turbulence increase the suction 

around the centre of the side faces whilst decreasing the suction both 

at the rear of the side faces and on the base. Now previous workers, 

see for example MUlhearn (1973), have reported that free stream turbulence 

brings the separated shear layers closer to the stationary square section 

cylinder when the angle of incidence is small. The above similarity in 
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mean pressure distribution therefore suggests that in the mean, the 

shear layers are closer to the body daring lock-in than when the model 

is stationery. 

The above result suggests a way of explaining the overall behaviour 

of CD 	^pb and - 	during lock-in. It was reported in chapter 6 that 
1/4' 

for the stationary square section cylinder, the shear layers pass very 

close to the trailing edge corners - so close that when the section is 

put at incidence, the influence of the trailing edge corners on the 

shear layers force vortices to form further downstream thus decreasing 

-C , and CD * Thus when the shear layers on the oscillating model 

come closer to the body during lock-in as suggested by the mean pressure 

distribution, the shear layers would, assuming that there is no steady 

flow reattachment, be deflected by the trailing edge corners. This 

deflection would decrease the base suction (and hence the drag) by 

increasing the base cavity volume and/or by increasing the distance to 

vortex formation. The values attained by -Cpb and CD during lock-

in would thus be generally less than the stationary cylinder values. 

According to the above discussion, the mean flow pattern would be 

as in sketch (7.1) 

STATIOHAVf MODE!- 	 0ScILLATiNG MODEL 

(* NIGHER 	DP, ACt ) 
	

(LONER DRC1G) 

Sketch (7.11. 
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7.3 FLUCTUATING PRESSURE LIEASUREMEIITS. 

7.3.1 Notations. 

( C prom )s  - the RMS pressure coefficient on the stationary model. 

(Cp rrns  )0  - the RMS pressure coefficient produced by the air in 

the tubing connecting the model surface to the 

transducer's diaphragm. 

( Cp,m5 )v  and (Lprms 	are the RMS pressure coefficients on 

the model during oscillation in still ( Uoo . 0) 

and flowing fluid respectively. 

Cisms  and CD r y-ns - denote the sectional values of RES lift and 

drag coefficients respectively. The subscripts f, 

s, a and v have the same meanings as for CPr als 

above. For example ( CLrms4 indicate the sectional 

RMS lift coefficient on the model during oscillation 

in flowing fluid. 

7.3.2 Correction of RMS ressures for the acceleration effects produced 

Ilyth2221umn of air in the t4lina22022IingInftjTodel  surface 

to the transducer's diaphEREE. 

= A sin wit 
. 	A 

d oc D 

A — AMCH TUDE . 

Sketch (7.2) 

Because it' was not possible to mount the pressure transducer flush 
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with the model surface, fluctuating pressure will be generated within 

the pressure tube connecting the model surface to the transducer 

diaphragm due to the acceleration of the model. Assuming that the air 

column within the pressure tube oscillates with the model as a solid 

body, the fluctuating pressure, Pa  ; generated at the transducer's 

diaphragm by the acceleration of the air column within the pressure tube 

is given, see sketch (7.2), by : 

QCJ h 

where y is the acceleration of the model and h is the vertical 

height of the air column - see sketch (7.2). 

2 
Per 	g Asin u)Nt 	= - A a)14  sin WNt 

so that 

- 0, Ai 	S WNt - — 

The lift flUctuations produced by Pa  is thus in phase with the 

cylinder's displacement. 

E4ressed as a pressure coefficient 

(:Prwl 	" (Prms)  
, 	„ • a-,  . 	h A /f ci\2  

c Uo4, 	 • 	D 

Denoting the pressure measured by the transducer by Pf  , 

7.4) 

where (p 	is the pressure generated on the model surface by 

the flow. The arrows in equation (7.4) indicate that the quantities 

are vectors in the phase plane (i.e. they have magnitude as well as 
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• phase angles). 

Pa 
will therefore generally affect the magnitude as well as the 

phase angle (ib of 	(0c 	Both the rms values of P and the 

phase angle e) will thus generally require correction. 

The pressure spectra presented in Figs 7.40 to 7.43 show that 

Pf  is generally a multi-frequency force especially when the wake 

frequency is not synchronised or 'locked' to the body frequency. Thus 

to determine 	CP 	and 

  

G 
(the subscript o indicates 

  

corrected quantities) from measurements of Pf  and 
	

in flowing 

fluid one must also measure the component of Pf  at the body frequency, 

fN , and the phase angle between this component and the body's 

displacement. This is obviously very time-consuming especially when, 

as in the present work, numerous measurements of Pf  and 4) are 

involved. 

When the model is oscillating in still air ( Ut4 = 0 ) most of 

the power of Pf  is concentrated at fN  when A/D is small. Pf  has 

also the same phase relationship with the cylinder's displacement as 

Pa . 	(Pc) 	can thus be obtained by subotracting Pa from Pf  

algebraically. Typically Pa  is about 40% of Pf  (see Fig 7.21) 

so that the correction involved is large. These corrections were not 

applied to the results obtained at A/D . 0.05 and 0.10 because both 

r 	and 	(CPrelS) Nif are plotted on the same graph and it e") 
was not thought prudent to correct the RMS pressure coefficients 

measured during oscillation in still air, i.e. 	without 

correcting the ones measured during oscillation in flowing fluid - i.e Pr r 

fNd 

(CPrros) 	is large. From 

measurements of 	C 0 \ .frelS/f 	
and (1? on the side faces during lock- 

Consider the flow cases A/D = 0.05 and 0.10 . The correction to 

.:Prols)4 	is significant only at low values of 

(values below lock.,-in) where 
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in, it was estimated that the correction to 	Cp",s4 and drp is 

very smell (about 2) . Therefore 4 will require correction 2121y. 

(cPrm5).c 
	will require 

below lock-in). 

is a 

substantial fraction of 	
(C Pr rS).c 	 f at all values of  V%  i in the 

'NC 
range of measurement i.e. 	Ue 	4" 	12.0 . The corrections to — -,. fmd 

and 4) will therefore be generally appreciable. 

was assumed to be 

concentrated at fN 	This assumption is, judging from the spectra of 

pressure fluctuations (see Fig 7.42), quite reasonable. 

7.3.3 Fluctuating pressure measurements: results and some discussion. 

7.3.3.1 Variation of 	(C pr,!S}! 	st_ tach tappin around the mid-section 

Measurements of fluctuating pressures at the centre section of the 

model at A/D 

in the range 

7.5 to 7.22 . 

0 (stationary model), 0.05 9 0.10 and 0.25 and 	 
Lt, 	 d 

4.0 4 TT 	I 2 o 	are presented in Pigs 
u 

Measurements at A/D = 0 and 0.10 were made at sixteen 

tappings distributed around the mid-section whilst those at 

A/D e 0.05 and 0.25 were made principally at one tapping positioned 

at the centre of the top side face. The values of 	(c 15)v 	, the 

RMS pressure coefficient on the model during oscillation in still air, 

are indicated on each figure. 

.4 Consider first the behaviour of 	(Cprwat low values 

Pries 
Lie 	D 	'r 	\ 	i 	\ of 	(i.e.  	c'b, 4, 5.5) . 	(L 	) and 	(Cp,ms) 

 N 	I m Id 	--' 	.1 iv 

are generally, fairly close to each other and follow the same trend -

see Figs 7.5 to 7.22. The higher the value of A/D , the closer the 

values of 	((.1),,!),, and 	((prro)v - compare Figs 7.5, 7.20 and 7.21. 
I 

This behaviour of 	(:0r ro' 	demonstrates that inertia effects are 4 

in the off-locked flow cases whereas 

correction only at low values of 	UD. (i.e. 
frit d 

The situation at A/D = 0.25 is different. 

Estimates of the corrected values of 	(C- 	
(c c), r 

and d), are indicated respectively in Figs 7.21 and 7.44 . To obtain 

these estimates all the power of 



154 

significant at low values of 	
U4 	. 
Td 

There are, however, departures
N  
 from the above general trend. There 

is, on the back face - see Figs 7.12 to 7.15 , a small peak in 	 n1),  (Cpe  -I- 
W 	 .5 

at 	 ^- 5.1 but for lower values of  	( Uw  1.: 4.5 ) 
IN d 	-' 	 f,i  d tsId 

''..,p rn,$)r 	is close to and follows the trend in 	Cprim)v 	. 
4- 	UP 

There is also a peak at 	+NJ a 	= 4.7 in the 	CCprryis4 

measured at tappings 2/D (Fig 7.8) and 6/D (Fig 7.7) which are the 

tappings on the side face next to the trailing corner. For tapping.  

2/D (this is the tapping nearest the trailing corner), this peak is, 

see Fig 7.8, even more pronounced than the peak near resonance. It is 

as it there are two flow natural frequencies: one near fli  me fis  and 

the other near 2fN 
. f

s 
. 

	

Consider next the behaviour of 	(:prtio T in the range 

6.2 4 	Um 	4 8.8 when A/D . 0.10 . The lock-in range, ,-.... 	To  d 	.v 

which for AID = 0.10 lies between 
-F
Um 	

of 7.0 and 8.75 , is 
N 
d 

included in this range. There is a peak in 	(CortVi5 )4. at a value of r  

Uco 	 I 	Uo  that will be denoted by 	. At each tapping around 
-Ft:4 d 	 fi,i  d 	max 

the mid-section, the value of 

	

d )oicoc 	
is at 1  fN'  (C pr mac 

see Figs 7.5 to 7.19 , higher than the stationary cylinder value, K)rnIs)5. 
)  U.,  

On the side faces, 	is, at i , 	about (C  Pr ni 5).F 	 tri CI )rilax 5  tr 	\ 
130% of 	`'f/cy)105  except at the tapping nearest the trailing corner 

(Fig 7.8) where 	(C Fr 0,!), attains a level as high as 150% of (C 	) 
t 	

Pr VAS $ . 

Away from 
( fUNCI )tmax 	' 	(CFrnis). 	

falls to two minima at 

Um ,, -- ^,:t 8.75 and 6.2 which are most marked at the tappings on 
ft,i d 

the side faces - see Figs 7.5 to 7.12 . The above variations in((prnis)(, 
t 

are similar to that of — (cp ) uc  (Fig 7.2), the base suction at the 

centre tapping, except that -- (C p) 8/c  has a peak at ,1L- = 7.30 
tfq 

1.4, and only one local minimum at -_-_ ::,,■:,, 84i-- Bee Fig 7.2. 
-Ft,i d  

The above measurements suggest that during lock-in, maximum sectional 
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/ f' 

	

	 Uco 	,,, 

r  m S) Ill 0 x , flAd 
RMS lift coefficient, tut 	occurs at 	ee..., 	7.8 

(i.e. above resonance) whereas maximum sectional RMS drag coefficient, 

(C-DralS rn co: , occurs between I
(J,  of about 7.1 and .7.3 
N A 

(below resonance). At A/D . 0.10 , maximum sectional mean drag 

73., (CD)mco, , occurs, see section 7.2, at U.,  el coefficient, 
U d 

The position of 	(Cp)r,ax  therefore soemsto agree closely withthat 

of 	ECDrres),„-", 	but is different from that of Cl_reee reex„ 

Wilkinson (1974) has also reported that 	ereas)i,,ax  and (Cr, 
e,cox 

 

do not occur at the same value of 	
U. 	

. Wilkinson did not 

appeared to occur at the value of 

 

for which the sectional 

 

mean drag is minimum. 

Except at A/D = 0.25 , 	(:2,p lAr. 	approaches 	(CPrree)s 

assymptotically at high values of 	Um ( 112 	> 	8.75). 
d 	d 

At A/D 0.25 	(C Prms)f 	falls rapidly with 	O. 	up to 
fNd 

the maximum value of 	Ue) 	investigated - see rig 7.21 and 7.22 
"Pf4d 

(CPrrielS) 

at A/D '2 0.05 , 0.10 and 0.25 are compared with the stationary 

cylinder value in Fig 7.22 	These results show, see Pig 7.22 , that 

at a given value of 	 , generally does 
-F 	

pr rY:5)f 
N  

not follow any consistent trend with A/D except in the range 

7.1 4, te  	4. 8.3 where 	(CProls), 	increases with A/D 0 It 
d 

can also be seen in Fig 7.22 that during lock-in 	(C1),,-4c  has a 

maximum at approximately 	Ule 	m 7.8 regardless of the value 
"t\I d 

of A/D . This maximum value of 	(Cprois) is not very sensitive to 

A/D - see curve 0 of Fig 7.32 . 

7.3.3.2 The distribution of 	Prry154 around the mid-section.  

The distributions 	(prni) around the mid-section at 

A/D = 0.10 and 	4.8 . 6.25 7.0 7.5 7.8 8.75 and 
fhid 

12.0 are presented in Figs 7.24 to 7.30 . For comparison purposes, 

CN d 
report measurements of drag RMS pressures but he reported that 

Measurements of at the centre of the side face 
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the stationary model results (A/D . 0) are presented in Fig 7.23 . 

All values of 	(cProe), 	are taken from Fig 7.5 to 7.19 . 

There is not much change in the 	C prros  distribution on the 

front and back faces during oscillation. On each of these faces, (Cpc,11 5\,4 

generally falls with distance from the edges to a minimum at the centre - 

a trend similar to that on the stationary model. During lock-in,(cir4f  

rises markedly at the edges thus making the minimum at the centres of 

more pronounced - see Figs 7.26 to 7.28 . 

.-I preee)f 	on the side faces differ at 

. At high values of 
-1'14  d 

6.75) , particularly during lock-in, oscillation 

(!:pre).f 	but the shape of the distribution 

is close to that on the stationary model - compare Figs 7.26 to 7.29 

0  with 7.23 . By contrast for low values of 	U. 	, see 

rtjcp, 	 '2' 4.8 (rig 7.24) and 	 25 (Fig 7.25) 	(-;;TroS)r  
TN 0 	 ft,i CI 	7 

rises very sharply towards the trailing edge of the side face thus 

changing the shape of the distribution totally from that on the 

stationary model. 

The distributions of 	@prol ) 	on the side face at 5 

= 7.85 and A/D . 0 0.10 and 0.25 are presented in Pig 7.31. 
TN al 

For the stationary cylinder (A/D = 0) , it can be seen that the shape 

of the distribution in Fig 7.31 differs slightly from the one in Pig 

7.23 . This is because more data points are available for Fig 7.31 0 

The results for A/D = 0.10 again demonstrate that synchronised 

oscillation at this amplitude changes the level but not the shape of the 

(Cprtils).r. 	distribution. By contrast the results for AID = 0.25 

indicate that synchronised oscillation at .bigh amplitude changes both 

the level and the shape of the distribution. 

the side and back faces 

The distribution of 

high and low values of 

changes the level of 
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7.3.3.3 Comparison  between  the present results snd  

Only Wilkinson (1974) is known to have published measurements of 

surface rims pressures on an oscillating square section cylinder. His 

Values of (Cprrn ) are generally very much higher than the present 

ones. This can be seen by comparing the present variation of 

(C  at the centre of the side face, Fig 7.22 Wilkinson with that of Wilkinso(:)-C  

1.17B) . To illustrate this further, the peak values of (cpr,Is) //(Cpr4 

during lock-in are plotted in Pig 7.32 together with the values of 

F4T 	
6 
 and 	(cPr4v  A:Frm:,--)5  attained at 

f 	4.5 . At lock-in the present peak values of 
ig(' 

(C  P rw.).c )( P r 
Wilkinson - compare curves () and (5) of Pig 7.32 . For example at 

A/D . 0.10 the present results (curve 0 of Fig 7.32 ) indicate a 

peak value of 1,35 whereas Wilkinson results (Curve C2) of Fig 7.32) 

indicate a peak value of 2.2 . The discrepancy between the values of 

(f"Eorro5) 	prrrisis 	is even larger at 	" 	. 4.5 . For 
f d 

example Wilkinson result (Curve Oof Fig 7.32) indicate a value of 2.3 

at A/D = 0.10 whereas the present results (Curve 4 of Pig 7.32) 

indicate only 0.96 . It is to be noted that Wilkinson reported a 

(PridS) 	of 0.65 which is comparable with the present value 

of 0.71 . It is thus fair to compare the two results in this way. 

Another point of disagreement between the present results and 

Wilkinsonrs is the following : Wilkinson's results show, see Fig 1.17B, 

U., 

are very much lower than those of 

that (CProlf)c is always higher than and that 

ce- prrn1;)i. increases with A/D in the range of his experiment (his 

measurements were made between  	of about 3.8 and 14.9 and 
ft.4 a 

his maximum value of A/D was 0.134 ) . The present results 

(Fig 7.22) show that 	cUprols)r  generally does not follow a 

Uoo consistent trend with A/D except in the narrow range 7.1 	4 8.3 r 	, 

where 	increases with A/D . Furthermore it was observed • 
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in the present study that 	(Cprrvi4 	can, under certain circumstances, 

fall to a value as low as 3 (Cprm.5)s 	particularly at around 

f d 
	6.15 - see for example Fig 7.5 . 

Wilkinson's work has already been reviewed in section 1.4.2.2. It 

was noted in this review that he used such a long length of tubing 

between the pressure tappings and the transducer that his dynamic 

calibration indicated, see Fig 1.12, resonance and phase shift in his 

frequency range of interest. It was also remarked that 'flappings' of 

the tubing during oscillation will create spurious pressure signals 

U- 
particularly at high values of fillfs  (i.e. low values of r 	 ) . 

Because of these sources of inaccuracy it was concluded in the review 

that Wilkinson results can at best indicate only broad qualitative trends 

The interested reader is referred to section 1.4.2.2 where a more detailed 

discussion of Valkinson work is presented. 

7.4 CORRELATION OF FLUCTUATING PRESSURES. 

7.4.1 Spanwise Correlation, R p,z  

Measurements of R(p,z) were made along the centreline of the top 

side face at A/D . 0.05 , 0.10 and 0.25 and 5.0 4 	 '° 	CL 12.0 . 

The results obtained at spanwise separations, Z , of 2.5 , 6.0 , 9.5 

and 13.25 body diameters are presented in Figs 7.33 and 7.34 . The 

spanwise distribution of R(p,,)  indicated by these figures at several 

values of 	are presented in Pigs 7.35 and 7.36 

It can be seen in Figs 7.33 and 7.34 that at A/D = 0.10 R(ptz) 
is, at high values of 	

U. 	
higher at f . 8.6 cps than at 

114d 
fx  = 13.9 cps . This means that under the present tent condition, 

R(p,z) is lower at higher values of 112 	This may not however be a 

genuine Reynolds number effect because it was reported in section 7.2 

that the spanwise uniformity of mean base pressure is less at higher 

values of R
e . This behaviour was attributed, at least in part, to the 

U. 
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existence of clearance holes on the wind tunnel side walls. 

The results of Pigs 7.33 and 7.34 indicate that the values of B(p 9z)  

are higher during  oscillation than when the model is stationary. These 

figures also show that R(plz) generally increases with A/D within 

the range of 	, 	 investigated. 
Two 

The behaviour of R(p,z)  at A/D . 0.05 and 0.10 is, during  

lock-in, broadly similar to that of 	(Cel  • 
,r4f. 	Take for 

example the flow case AID = 0.10 for which lock-in starts and ends at 

0  approximately  	of 7.0 and 8.75 respectively. As 
N d 	 •Nd 

increases from about 6.2 ,R(p,z)  rises very rapidly, particularly at 

large spanwise separations, to a broad maximum centered at approximately 

d = 7.B 	see Figs 7.33 and 7.34 • This maximum value of 
fN  

1V,z)  is very close to unity even when the spanwise separation Z , 

is as large as 13.25 body diameters - see Fig  7.34 . R(p,z)  

maintains this maximum value up to about
' 	

. 8.3 and then 
Nu 

falls very rapidly as 	increases to about 8.75 which is the 
1■1 

end of the lock-in range. This is similar to the behaviour of the 

(c plevA 

except that the peak in 	(Cheme),
t 	

at 	 .. 	„ne 7.8 is  
 T d 

sharper. The measurements of Wilkinson (1974) also indicate that during  

lock-in, the position of maximum R(p,z)  agrees closely with that of 

(Prevls)_f. 	- where 	(Cpc.yis)f  

centre of the side face. 

The plots of R(p,z)  against spanwise separation, Z , again show, 

see Pig  7.35 and 7.36, that R(plz)  on the oscillating  model is higher 

than that on the stationary model. Curves 	of Figs 7.35 (A/D . 0.10) 

and 7.36 (A/D = 0.25) also further demonstrate the excellent spanwise 

correlation that exists within lock-in range - especially in the 

central part of the range where lift RMS pressures are maximum. 

measured at the centre of the side face, see Fig  7.5 , 

maximum is measured at the 
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7.4.2 Chordwise Correlation  iholudinc estimates of the seek values of 

sectional linS lift coefficient durinn. lock-in. 

Measurements of chordwise correlation at A/D . 0.10 and 

7.85 are compared in Fig 7.37 with the stationary cylinder 
41;Jd 

results. Other values of chordwise correlations measured at 

A/D . 0.10 and 0.25 are presented in Table 4 . 

The results indicate that oscillation generally decreases chordwise 

correlation. This is demonstrated in Fig 7.37 where the fall in chord-

wise correlation towards the trailing edge of the aide face can be seen 

to be more marked during lock-in than when the model is stationary. 

Table 4 also show that there is generally a decrease in chordwiso 

correlation at A/D = 0.10 and 0.25 especially near the trailing edges 

of the side faces - see in particular cases 0 and 	of Table 4 • 

The sectional lift coefficient, 
	

(CL r rns),/ 	, was calculated 

at A/D = 0.10 and 	U4 	= 7.85 by using the distributions 

PrmA and the chordwise correlation presented in Figs 7.31 

1J04
and 7.37 respectively. The value of 	(C 	calculated without 

taking chordwise correlation into consideration was found to be 5% 

higher than the value obtained by the method of section 3.6.3 which 

takes chordwise correlation into account. This flat rate value of 05% 

was used to estimate. the values of 	LrrYI.S.1f 	at A/D = 0.05 

and 0.25 when 	7.85 (the few measurements made, see 

whereas it was 

&r4 on the 

side face during lock-in is, as suggested by the results obtained at 

A/D . 0.10 , similar to that on the stationary model. The values of 

(C  1_04 obtained at 	7.85 are called the peak 
11\1d 

of 

fe d 
Table 4 indicate that there is little difference between the chordwise 

correlations at A/D . 0.10 and 0.25 when 	
f
--2L is about 7.85). 

I roi5).c For A/D . 0.25 , 	(C 	was calculated from the 

distribution of 	(Cpri,441  presented in Fig 7.31 

assumed, at A/D . 0.05 , that the distribution of 
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values (or the maximum value) because this is the value of 	 fN d 
at which the lift RMS surface pressures are maximum during lock-in. The 

obtained in the present study are 1.51, 

fM and 1.95 at A/D = 0.05 , 0.10 and 0.25 respectively whereas 

the stationary cylinder value of 	(CLrms) 	is 1.33 . These values 

of 	erree),c are not corrected for wind tunnel blockage effects. 

They are however corrected for the acceleration effects of the column 

of air in the tubing connecting the model surface to the transducer's 

diaphragm. The corrections applied to 	(C erns)are 2.6% , 

2.9% and 3% at A/D . 0.05 , 0.10 and 0.25 respectively. 

The above peak values of sectional 

	

(CLrrek 	are compared in 

Fig 7.38 with those of Wilkinson (1974) and the values estimated from 

the total force measurements of Otsuki et al (1974) and Nakamura & 

Mizota (1975). For all workers except Wilkinson (1974), the ordinate 

of Fig 7.38 is 	L r 41. 	(CL r 5)v 	which is the 

difference when 	is substracted vectorially (i.e. 

phase angles taken into account) from 	rmS)c 	• in 

Wilkinson's case, 	L r 11S)./ 
	has been plotted because his 

measurement indicate that 	(CI-roS)v 	is very much smaller than 

(.LeAlS) 	 L 	 r m 	is plotted 

because as reported in section 1.4.2.2 , both Nakamura & Mizota (1975) 

and Otsuki et al (1974) measured Lm(t)  which is the component of the 

total force L(t) - V(t) at the body's frequency where L(t) and 

V(t) denote the total fluctuating lift on the square section cylinder 

when oscillated respectively in flowing fluid and still air. Since the 

present results and Wilkinson's (1974) indicate very high spanwise 

correlation during lock-in particularly at high values of A/D , the 

peak value of the average RMS lift coefficients calculated from the 

results of Otsuki et al (1974) and Nakamura & Mizota (1975) will be very 

peak values of 	(CL.R1E) 

close to the peak sectional 	Cl_free 
	particularly at high values 
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of A/D . Thus if agreement between the measurements is good, the 

results of Otsuki et al and Nakamura & Mizota should approach the present 

results and Wilkinson's at high values of A/D . The present results 

can be seen in Fig 7.38 to indicate this trend. By contrast the results 

of Otsuki et al and Nakamura 6: Mizota can be seen in. Fig 7.38 to 

diverge away from those of Wilkinson at high values of A/D . Thus the 

present values of 	(CLr oit) 	appear to be.in good agreement with 

those of Otsuki at al and Nakamura & Mizota by contrast to Wilkinson's 

values which appear to be much too high. 

7.5 THE PHASE ANGLE 	BETWEEN THE FLUCTUATING LIFT AND CYLINDER'S 

DISPLACEMENT 

7.5.1 Present Results. 

The phase angle, C 	by which the lift fluctuation, measured at 

the centre of the side face, leads cylinder's displacement was computed 

digitally (as described in section 3.6.1) at A/D . 0.05 , 0.10 and 

0.25. The resulting variations of CP with  	are presented 
Clq d 

in Fig 7.44 • 

)1P. 
1) = 0 can also be seen to occur above resonance at value of 

u, 	'that increases with A/D 	For example (  Um  is 
d (i) =0 	 fH d  

(see Pig- 7.44) 7.93 , 8.43 and 10.13 at A/D of 0.05 0.10 and 

0.25 respectively. Beyond 

up to a maximum value of between 45°  and 60°  and then 
NC1 4: O  

N 
decreases. For A/D . 0.05 and 0.10 , this maximum value of 4) 

occurs very close to the end of the lock-in range. Below (  UP  
frs4d4= -̂0 

falls very sharply to a minimm value of between -98°  and 

-105° .0 Again for A/D . 0.05 and 0.10 , the position of this minimum 

is very close to the low 	end of the look-in range. Below 
TN Cf 

For each value of A/D very large variation can be observed, see 

Fig 7.44 , in O just above the resonance windapeed, ( 110 

O rises very sharply with 
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the position of this minimum, 4) rises rapidly with decreasing r  
fl  

when A/D = 0.05 and 0.10 whereas for A/D . 0.25, O  remains 

virtually constant at this minimum value over a range of windspeed before 
U. increasing very rapidly with decreasing vc . . 

Generally it is interesting to note that (I) does not follow a 

consistent trend with A/D except in the range 7.13 <  Ue  4 8.6 
fiqd 

where 4) decreases with increasing A/D . 

The large variations in 4) during lock-in indicate that the flow 

configuration is highly sensitive to 	(A 	. In particular 
o t 

the behaviour of 4) indicate that the vortices, which are largely 

responsible for the fluctuating lift on the cylinder, are being shed at 

Ue 

„et 
different stages during the cylinder's motion for different values of -F — 

It is interesting to compare the present results with the flow 

visualisation results presented in Chapter 5 . It was reported in chapter 

5 that for A/D = 0.25 and fs/fN 	1.0 , vortices are shed from the 

lower shear layer when the body is moving downwards and is around the 

centreline of its motion. The phase angle measurement indicate, see 

Pig 7.44 , that () is approximately -90°  when A/D = 0.25 and 

fs/fil  ee 1.0 (note fs/fu  . 0.134 	 ) 	i.e. that the lift is 
.FN 

maximum as the body passes the centreline on its downwards journey. 

These results suggest the oscillating square section cylinder 

experiences maximum fluctuating lift during lock-in when a vortex shed 

from the lower shear layer. (One could also have deduced this from the 

notion that a shed vortex induces an equal but opposite circulation on 

the body). Thus generally during lock-in, a negative 4) appears to 

suggest that vortices are shed from a shear layer when the body is 

moving towards the shear layer in question whereas a positive 

suggests the reverse. 
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7.5.2 Com arison between the present values of 	and those of 

T.ESY1 . workers. 

Only three workers ( Wilkinson (1974), Otsuki et al (1974) and 

Nakamura & Mizota (19750 are known to have published measurements 

of 01) on square section cylinders oscillating at and around 

resonance. These works have been reviewed in section 1.4.2.2 . The 

results of Wilkinson will be considered first because the range and 

scope of his measurements are similar to the present ones. 

WILK1NSONLIZ111. 

As in the present study, Wilkinson measured the phase angle, 

by which the lift fluctuation measured at the centre of the tap side 

face leads the cylinder's displacement. He reported that below 

fN/fs = 0.8 (i.e. above f 
	 x 9.33) d) is about 120°  and 
N d 	LLD 

that above fll/fs  . 0.9 (i.e. below 7-7- Z. 8.29) 4, 	is about 
TNa 

-120°  . In other words there is a large change in 4) during lock-in 

Wilkinson also reported that his results at small values of A/D 

indicate that as U°° is increased from about 8.29 to 
4:0 cl 

9.33 , 4 	decreases from -120°  through -180° to -240°  (or 120°) 

whilst his high A/D results indicate that 43 increases from -120° 

through 0o to 120o . He also reported that increasing A/D increases 

that the value of 	
T d 	

at which 4) . 0 
iq 

decreases very rapidly with increasing A/D . 

The only point of agreement between the present results and Wilkinson's 

is that there is a large change in 	4  during lock-in. The present 

results (Fig 7.44) indicate that the direction of the change in 	dib 

as 	increases is through 0o regardless of the value of A/D. 
TN" 

In addition the present values of cl) generally do not follow a 

consistent trend with A/D except between 	 of 7.12 and 8.6 
f d (U 

 where 4) decreases with increasing A/D . The values of 	 
d 

cl) in any particular situation and accordingly his results indicate 

I -Fu4 	:1 	(I) = 0 5  

= 0 
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were also found in the present study to increase with increasing A/D 

An examination of the measurement technique used by Wilkinson reveals 

why his results are likely to be highly inaccurate. Wilkinson 

'assumed that all the power of the fluctuating pressure, measured at 

the centre of the side face, is concentrated at the body frequency 

fN all through the range 6.2 .4:-1221.- 4 12.4 where his 	dr, 

measurements are made. He then measured the normalised cross-correlation, 

e 	, between the fluctuating pressure and the acceleration of the 

body and went on to calculate C7 from the relationship e 	Co, d) . 

Wilkinson assumption does not hold in practice because the 'lock-in' 

range is much narrower than the range 6.2   4 12.4 even 

at his maximum value of A/D , A/D . 0.134 • The spectra of fluctuating 

pressure will, as reported in 7,1 , have power at fN ,fso , fefS0 

f - f
so 

etc when , 	 is outside the lock-in range. Even 
tod 

during lock-in, the spectral peak centered on fN is, because of the 

variation in vortex shedding frequency, comparatively broad-band, see 

Fig 7.40 for which AID = 0.1.0 , thus indicating that the power is 

distributed around f
N instead of being concentrated at f

N as 

assumed by Wilkinson. Other major sources of error in Wilkinson's 

case are the substantial amount of turbulence in the free stream and 

the fact that he, as reported in section 1.4.2.2 , connected the 

pressure transducer to the model surface with pressure tubing that 

was so long that it suffered from resonance and phase lag in his 

frequency range of interest. One therefore cannot put much trust in 

Wilkinson's results. 

B. OTSUKI ET AL (197 AND 	& MIALLL12111. 

As reported in section 1.4.2.2 Otsuki et al (1974) and Nakamura & 

Mizota (1975) measured the phase angle U 	between L
m(t) and the rr!

cylinder's displacement where Lm(t) is the component of the total 

force L(t) v(t) at the body's frequency. L(t) and V(t) denote 
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the total fluctuating lift on the body during oscillation in flowing 

and still fluid respectively. Since dp is the phase angle between 

L(t) and the cylinder's displacement, 	will generally be 

different from 4) particularly at low values of  	(or high 
ra 

values of fN/fs ) where V(t) can be large. Because Otsuki et al 

and Nakamura & Mizota did not report values of V(t) , dp was 

deduce from their values of 
	

by using the values of V(t) 

estimated from the still-air results of the present study. The resulting 

values of C) are compared with the present ones in Fig 7.45 A & B. 

It is interesting to note however that 	at the 

00  
lock-in value of 	

L) 	
where dp,  = 0 — i.e. at ( 	) 	• 

f d iq 	0 
This is because measurements indicate that V(t) is in phase with the 

oylinders displacement and also that L(t) is greater than V(t) . 

L440  The zero crossings (i.e. the values of A/D and 	at which 
fN 

CI) . 0 ) of Otsuki et al and Nakamura & Mizota can 

thus be compared directly both with the present results and Wilkinson 

(1974). This comparison is made in Fig 7.46. 

Starting with Fig 7.46, it was argued in section 1.4.2.2 that the 

zero crossings measured on a cylinder undergoing forced oscillation 

should indicate the steady state value of A/D that will be attained 

at a given value of 	
co 	

(or fs/fN) by the undamped t4 c1 
spring-mounted cylinder when undergoing self-excited oscillation. Any 

plausible values of A/D and 
fs/fN that are obtained from zero 

crossings in forced oscillation experiments should then at least indicate 

the same trend as the steady-state values measured on the lightly-

damped, or preferably undamped, cylinder during free oscillation. This 

is the reason why the free oscillation results of Otsuki et al (1974) 

and Nakamura & Mizota (1975) are also presented in Fig 7.46. From 

the above arguments Fig 7.46 demonstrate that the zero crossings 
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obtained from the present results are plausible because they follow 

very closely the trends indicated by the free and the forced oscillation 

results of Otsuki et al (1974) and Nakamura & Mizota (1975) 

'Wilkinson's (1974)  results can be seen in Fig 7.46 to follow a totally 

different trend and are, as already noted, therefore highly suspect. 

tico 
The above discussion is for 	the value of -F 

tNd 
at which 	4) = 	. 0 . At other values of L6 	, it 

Un.  can be seen in Fig 7.45 A, where 4) is plotted against
i 	

at against
. 

A/D . 0.05 and 0.10 , that the present results are very similar to 

those of Nakamura & Mizota (1975) but the results of the latter appear 

Uw shifted to the right on the - 	axis. This shift is less when 
Nd 

is plotted against fsifii  (i.e. S x 	) , see Fig 7.45B, 
Irwo 

because Nakamura & Mizota reported S to be 0.125 whereas in the 

present study S is taken as 0.134 . When Nakamura & Mizota's value 

of S is assumed to be 0.118 (i.e. assuming an error of 6% in S 

which is possible when, as in the present situation, fs  and U00 

are fairly low), their results can be brought even closer to the 

present results - see Fig 7.45B. The shift between the two sets of 

results presented in Fig 7.45 A & B may thus be caused, at least in 

part, by difficulties in measuring S . It must also be noted that 

Nakamura & Mizota values of 4) indicate the phase angle by which 

the total fluctuating lift leads the cylinder's displacement 

whereas the present values indicate the phase angle by which the 

fluctuating lift at the centre of the side face leads the cylinder's 

displacement. There will generally be a chordwise (see for example 

section 6.6.3) and spanwise variation of phase angle, the latter being 

most likely to occur when the spanwise correlation is not unity over 

the whole span. The value of 4) obtained from total force 

measurement may thus differ from the one obtained from one-point 

surface fluctuating pressure especially away.from the central portion 



168 

of the lock-in range. Strictly therefore comparison between the values 

obtained from total force measurement and the ones obtained 

from one-point surface pressure measurement should be limited to 

qualitative trends. In this respect the agreement between the present 

results and those of Nakamwm & Mizota is, see Figs 7.45 A & B 

excellent. 

By comparing Fig 7.44 to Fig 1.14B it can also be seen that there is 

good qualitative agreement between the present values of d) and 

those of Otsuki et al (1974) who like Nakamura & Eizota above obtained 

phase angle from total lift force measurement. 

7.6 MEASUREMENT OF LONGITUDINAL VORTEX SPACING AND CALCULATION OF  

NON-DIMENSIONAL VORTEX STRENGTH. 

The longitudinal vortex spacing, a/d , (and hence vortex convection 

velocity, 	S.a/d ) was measured digitally, as described in Chapter 

3, by computing the phase angle 
	t ( -Fs) 
	

at the vortex shedding 

frequency between the signal; ofa reference pressure transducer 

connected to the top side face of the model and that of a single hot-

wire traversed up and downstream in the wake. The average value of 

a/d (and hence 	S. a/d or
U 	

) calculated from the slope 

of the best fit straight line to the plot of 	OR) 	against 

the downstream displacement,  	of the hot-wire is presented 

c  in Table 2 6  Fig 7.47 shows the variations of 	U 	with x/d 

where Ucis calculated from the change in 	th) 	during 

a step change of typically one cylinder diameter in x/d . 

There is a large amount of scatter in the data for the variation 

f --L.. 
U 	with x/d (Fig 7.47) particularly at A/D = 0.10 . 
4 

This scatter may be caused more by inaccuracies in measuring the 

„ reduced windspeed, 	U 	
, rather than by inaccuracies in 

Cmd 
measuring 	4)0)( ). • . For example at 	

Cl 	
7.91 and 

fN  

of 
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A/D . 0.10 , where the scatter in Pig 7.47 seems most pronounced, the 

coherence at the vortex shedding frequency between the hot-wire and 

the pressure transducer signals varied between 0.985 and 0.998 

(i.e. practically unity) in the range of measurement. Under this 

condition, the digital analysis Should, see for example Davies (1975) 

produce very reliable estimates of 	ci)u) ( Cs) 	On the other 

hand ko() 	was found to be very sensitive to 
ft,1 

especially at low values of A/D . For example at a downstream 

distance of 12.0 diameters, a change of 750  was observed in d) Cs) 

when U 	was increased from 7.21 to 7.91 at A/D . 0.10 . 
ud . Thus an error of 1% in U 	at A/D = 0.10 could produce a 

7.70  error in 	4, (f 	leading to about 15% error in the 

instantaneous values of a/d and , 
 Ur 
T 	. Because of the large amount 

of scatter in the data for A/D . 0.10 , see Fig 7.47, not much 

confidence can be placed on the values of 	
UC

obtained at this 

amplitude. It was therefore decided not to calculate other 

characteristics of the vortex street in the A/D . 0.10 flow case. 

Concentrating therefore on the results for A/D . 0.25 , it can be 

seen in Table 2 that during lock-in, the average value of the 

longitudinal vortex spacing, a/d ctecreases from the stationary 

cylinder value when the body frequency fN  is increased above the 
i 

natural vortex shedding frequency f . The trend in 0A
s  
, see 

Table 2 , reversed when 	is is decreased below fs  . As a result of 

this behaviour, the vortex convection velocity, JUL_ 	( or S. a/d), 

can be seen in Table 2 and Pig 7.47 to maintain the stationary 

cylinder value. Similar findings have also been reported for circular 

cylinders by workers like Griffin & Votaw (1972). 

For A/D . 0.25 , calculation of vortex spacing ratio, b/a , was 

made during lock-in, by using the measured values of CD  (Fig 7.4) 

and -- 	(Table 2) in the potential vortex wake drag formula of 
Uon 
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equation (6.6) - (see section 6.7). These values of b/a were then 

used, as described in section 6.7, to calculate the non-dimensional 

vortex strength ( r° 	the circulation defect ratio (e), 
TT d 

and the lateral vortex spacing (b/d). The results are presented in 

Table 3. 

Before discussing Table 3, it is useful to comment on how well the 

trends predicted by the potential vortex wake drag formula compare with 

real flow situation. Comparison can only be made for the circular 

cylinder because this is the bluff-body shape for which there is 

sufficient data. As previously reported the measurements of Griffin 

& Votaw (1972) indicate during lock-in that the vortex convection 

Uc.  velocity,  	maintains the stationary cylinder value. The mean 
Um  

drag measurements of Tanida et al (1974) show that CD  is higher 

during lock-in than when the model is stationary. Thus at resonance 

the product CD.S will be higher for the oscillating circular cylinder 

than for the stationary one. This, according to the potential wake 

drag formula, means that relative to the stationary cylinder values, 

the vortex spacing ratio (b/a) and the lateral vortex spacing 

(b/d) are decreased whereas the non-dimensional vortex strength, 	° 
Uco d 

is increased. These theoretical predictions are in agreement with the 

flow visualisations of Koopman (1967) and Griffin & Votaw (1972) 

where wake synchronisation is shown to decrease b/d . Griffin & 

Ramberg (1975) also reported that they observed in their earlier work 

(Griffin & Ramberg (1974), where a mathematical model for the vortex 

street was matched with the RMS and wean velocity profiles measured 

behind an oscillating circular cylinder ) that, during lock-in,  r*  
-r( U , d 

and b/d were respectively increased and decreased from the stationary 

cylinder values. These results suggest that the potential vortex 

wake drag formula is capable of indicating the correct trends., 

Returning to Table 3 it can be seen that the predicted values of 
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fic non-dimensional vortex strength, 	are lower during lock-in 
llod 

than when the model is stationary. As reported in section 7.2.2.2 , 

the measured values of the non-dimensional circulation shed by each 

2,7 S 
Table 1 , also lower during lock-in than when the model is stationary 

;- in fact it can be seen in Table 3 that 1- CPS follows the same 
2.T1 S 

trend as 	. This adds credibility to the trend 
nUa. d ro  indicated by the predicted values of 

ct 
The above finding is interesting because it suggests, contrary to 

Wilkinson (1974), that the increase reported, see section 7.3, in 

sectional RMS pressures during look-in is not caused by increased vortex 

strength. To account for his unusually high values of (Cp,,,5)4  during 

lock-in Wilkinson suggested that the non-dimensional strength of the 

vortices are higher than the stationary cylinder values even though 

his mean pressure measurements indicate the opposite. 

7.7 PRESSURE AND DISPLACE :T TRANSDUCER SIGNALS DURING BODY OSCILLATION 

The photographs of the simultaneous outputs of pressure and displacement 

transducers during body oscillation at A/D = 0.10 and 0.25 are 

presented in Pigs 7.48 and 7.49 respectively. To complement these 

photographs pen-recordings of the waveform of the pressure transducer 

output at A/D 0.0 (stationary model) and 0.10 are presented in 

Figs 7.50 and 7.51 . 

Some points of interest are: 

(1) 	The amplitudes of pressure fluctuations are less modulated 

during wake synchronisation, or 'look-in', than when the body is 

stationary. Comparing the pressure transducer output during 

lock-in' (see the lower traces of Figs 7.48, 7.49(b), and 7.49(d)) 

to the output when the model is stationary (see Figs 6.36 (a), 

(o) and (d)) illustrates this point. 

shear layer per cycle of vortex shedding, 
I — Cpb 

 , is, see 
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(ii) Outside the synchronisation range, the waveform of the pressure 

fluctuation can be seen in Figs 7.51 (b), (d) and (e) to be 

very complex. It is particularly interesting to note the existence 

of beats in Fig 7.51 (d) at ___C-J1° 	. 9.0 where the vortex 
1'0 

shedding frequency, fso  , is slightly higher than the body 

frequency, fN  . These findings are consistent with spectral 

analysis which shows, see section 7.1, that there are generally 

peaks at fN fso  fN fso  „ fso  - fN  etc when 	 
f d iq 

is outside the lock-in range. 

(iii) There is a variation in vortex shedding frequency during 
.  lock-in even when 	(or windspeed) is mintained at 

practically the resonant value. Counting the shedding frequencies 

in the lower traces of Figs 7.48 (a) (A/D = 0.10) and Fig 7. tfq (b) 

(A/D . 0.25)demonstrates this. This finding is consistent 

with spectral analysis which shows during lock-in, see section 

7.1, that the spectral peaks at 	are less highly tuned than 

the line-like 50HZ p ak. These results are surprising 

because it was thought that synchronised oscillation would force 

vortices to shed precisely at the body frequency. 

(iv) Fig 7.48(C) explains why the spanwise correlation can be so 

„ high during lock-in. This figure shows that at U 	7.78 

and A/D = 0.10 , there is no phase difference between the signals 

of the two pressure transducers placed 9.5 body diameters 

apart along the centreline of the top side face. Thus even 

though the shedding frequency may vary (see point (iii) above) 

it appears that vortices are shed simultaneously all along the 

span. 

By contrast to the above finding it can be seen in Fig 7.50 

that at 	(4° 	= 9.0 and A/D m 0.10 , there is a 
fN d 

variation in beat frequency on each trace and in addition the 
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beating does not always occur simultaneously in the outputs of 

the two pressure transducers (the transducers are placed 9.5 

body diameters apart on the centreline of the top side face). 

This indicates that there is some variation in shedding frequency 

at each section and also that vortices are not always shed 

simultaneously along the span. This explains why the spanwise 

correlation falls as indicated in Figs 7.33 and 7.34 when 

is above the lock-in values. 

The phase angles, )01) 	, indicated by the photographs agree 

closely with the results obtained, see Fig 7.44, from digital 

analysis. For example Figs 7.49 (a), (c) and (e) indicate that 

at A/D = 0.25 , 4) is approximately -108°  , -90°  and 0
o 

. at 	U 	_= 6.14 , 7.52 and 10.0 respectively (Note that fN d 
the pressure trace is not inverted in Fig 7.49 (e)). These values 

of 4) are close to the measured values of -98°  1-90°  and 

-5°  - see A/D . 0.25 Fig 7.44 • 

(vi) 	The pen-recorder traces of Fig 7.51 illustrate the behaviour 

of the lift RMS pressures at A/D . 0.10 . The windspeed and 

the amplification are the same for each trace in Fig 7.51 . Thus 

the relative amplitudes of the traces indicate the relative 

values of (7Prnis)i • The variation of 	pr  '5) at 

the centre of the side face (where the traces in Fig 7.51 are 

0

d  
1/  

recorded) with r ' 	is presented in Pig 7.5 . 
TN  

Figs 7.51 (b) and (d) demonstrate why the RMS lift fluctuations 

on the model oscillating at A/D = 0.10 are, at 
U 	

. 6.26 

and 9.0 , lower than the stationary cylinder value. It can be 

seen in these figures that the amplitudes of the lift fluctuations 

are, during oscillation, more highly modulated, particularly at 

t/6 
. 6.26 , than when the model is stationary - Compare 

(v ) 

N d 
Figs 7.51 (b) and (d) to Fig 7.51 (a). 
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By comparing traces (c) and (a) of Fig 7.51 it can be seen that 

the value of (C 	is high during lock-in because there 

is less modulation in the pressure signal. It is particularly 

interesting to observe that the overall level of the pressure 

signal at 	 . 7.81 (Fig 7.51 (c)) (where the lift (:pr.,1) 5 

is, as reported in section 7.3, maximum during lock-in)is not 

higher than the peak level attained from time to time, see Fig 

7.51 (a), on the stationary model. Thus synchronised oscillations 

increases the lift 	-sprn,.5) by regularising the level of the 

amplitude of pressure fluctuations to approximately the peak 

level that occurs on the stationary model. 

The above results explain why the maximum value attained by 

the lift (.N.4 during lock-in tends, as shown by curve (3) 

of Fig 7.32, to level off at high values of A/D . For assuming 

that the contribution of inertia and other non-vortex-induced 

effects are small, the maximum value attained by the lift 

during lock-in would level off at high values of A/D because 

once an initial value of A/D has made the lift RIB pressure 

signal fairly regular, further increases in A/D would produce 

little increase in 	(:0rois) 

The results of this section are also compatible with those of 

4. 

section 7.6 which indicate that the lock-in values of non- 

dimensional vortex strength,  	are not higher than 
• TilLod 

the stationary cylinder value. The results presented in section 

6.8 indicate that in the stationary model case, vortices are 

not usually shed simultaneously along the span. There will, at 

a given instant, be spanwise flow across a section if a vortex 

is fully formed at this section whilst the vortices of adjacent 

sections are not yet fully formed. This spanwise flow will 

decrease the amplitude of fluctuating pressure (at the section 
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with the fully formed Vortex) below the level that would occur 

when the vortices of this section and those of adjacent sections 

ro 
are formed simultaneously. Thus even when  	has the 

ci 

same constant value all along the span, the amplitude of the 

stationary model surface fluctuating lift pressure signal will 

be modulated with peak amplitude occuring at a section when 

vortices of this section and those of adjacent sections are shed 

simultaneously. Now for lock-in oscillation at A/D = 0.10 

.)  and 4U 	= 7.8 , vortices are, as reported under point (iv) 
1  

of this section, shed simultaneously all along the span. The 

amplitude of surface fluctuating pressure will be less modulated 

andmay, neglecting other effects (like inertia for example) 

and assuming that both the vortex formation region length and Tru.d  

are little affected by oscillation, have a level that is close 

to the peak value observed on the stationary model. Thus the 

ift.40c1 

is slightly lower than the stationary cylinder value. 

Keefe (1961) reported a substantial increase in the RMS lift 

coefficient of a stationary cylinder when two circular disks are 

placed in close proximity on either side of the transducer. He reported 

that when this increase occured, the amplitude of the fluctuating lift 

signal had less modulation and that there was no noticeable increase 

in the RMS drag coefficient. He then went on to suggest that the 

proximity of the disks made the flow between them more two dimensional 

so that the lift is accordingly well correlated spanwise between the 

disks in contrast to the limited spanwise correlation in the absence 

of the disks. Keefe's observations and suggestion appear to fit 

exactly with what happens on the oscillating square section cylinder 

during wake synchronisation. For the square section cylinder the lift 

lock-in RMS pressure coefficient can be higher than the stationary 

cylinder value even when the lock-in value of 
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O 	
„ 

S pressure is maximum during lock-in at the  	where, as 
CF4d 

reported in section 7.4 , the lift is well correlated over the whole 

span. Where this maximum occur, the lift amplitude modulation is, as 

reported under points (i) and (vi) of this section, less. Maximum 

lift fluctuation on the oscillating square section cylinder is, as 

reported in section 7.3 , also not accompanied by maximum drag 

fluctuation. Thus it appears that for the square section cylinder, 

the primary effect of synchronised oscillation is to correlate the 

lift along the span thus making the flow more two-dimensional. 

7.8 FURTHER DISCUSSION  

7.8.1 The flow around the square section cylinder during wake 

synchronisation or 'lock-in' 

To explain the overall behaviour of -Cm  and CD  during lock-in, 

it was suggested in section 7.2 that oscillation brings the shear layers 

cloSer to the body thus causing them to be deflected by the trailing 

edge corners. If this is the flow mechanism that operates, the values 

attained by -C
pb and CD during lock-in should be very sensitive to 

the 'effective' position of the trailing edge corners. The position 

of the trailing edge corners varies during body oscillation but it 

seems reasonable to, assume that it is the position (of the corners) 

at the time vortices are fully formed and are about to be shed that 

will be crucial. For example if the body is away from the centreline 

around the time a vortex is about the shed, one would expect the 

trailing corners to interfere with one of the shear layers and so force 

vortices to shed further downstream thus lowering -C
pb and CD • 

The further away the body is from the centreline, the bigger the 

interference and the smaller should be the values of -C
pb and CD  . 

Thus from knowledge of the position of the body at the time vortices 

are shed, one should be able to deduce the trend in -C
pb and CD • 



o ) / l'Icl 	 fwd 
(where 	. - 90 	and then decrease to a minimum at 

	

U„ 	 6 	U, 
. 8.4 (where 4) . 0 ) . From  	of 8.4 to 

U.0 	!ici  

	

4'0 	 C 

8.75 t  -Cpb  should again increase with  	because 4O 
-Fd 	 . 

increases from 0o . The base pressure measured during lock-in can 

body passes the centreline. From the arguments of the proceeding 

paragraph, the further away the body is from the centreline at the 

time of vortex shedding, the smaller should be the value of -Cpt  

Thus one would, from the changes in 4) , expect -Cpb to increase 

from its value at 	UaD 	7.0 to a maximum at Urd,-  -4,-; 7.2 
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The relationship between the phase angle, 43 , and the position of 

the body when vortices are about to be shed was discussed ±n section 

7.5 where it was argued that the fluctuating lift is maximum when a 

vortex is shed from the lower shear layer. Assuming this is the 

case, one can dAtermine the position of the body when vortices are 

about to be shed from the values of 	presented in Fig 7.44 . 

Putting the arguments together: one should, during lock-in, be able 

to deduce the trend in -Cpb (and hence CD ) as  	changes 

from the variation of 	with 	 with 
1N d 

Consider then the situation at A/D . 0.10 . 

see Fig 7.39 , between  	of 7.0 and 
fiqd 

in d? (Fig 7.44) rises from -97°  at Um 
 

(lb N d  
and 50o at 

	

	= 7.2 , 8.4 and 8.75 respectively. From 
fisid 

the arguments, see section 7.5, that fluctuating lift is maximum when 

a vortex is shed from the lower layer, 4)  . 0 or 180o indicate 

that vortices are shed when the body is at the extreme ends of its 

travel whereas ( 	a ± 900  indicate that vortices are shed as the 

The lock-in range lies .? 

8.75 . During lock-

. 7.0 to _
900 oo 

be seen in Fig 7.2 to follow exactly this trend. This appears to 

suggest that the basis of the argument is correct and that it is the 

position of the trailing edge corners at the time vortices are shed 

that determine the base suction and drag during lock-in. 
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o 
in the range 5.614: ,c tl i 4 7.18 where 	(I) , see Fig 7.44 , is 

N, 
, constant at -98

o . As 	 - increases from 7.18 to 8.51 , d) 
f j N 

(Fig 7.44) rises to -90°  at 	" 	,-- 7.4 and thence to -470  -F d 	"s- 
U„, 	

N 
at 

	

	= 8.51 . The mean pressure measurement (Fig 7.4) 
cw  cl 

U/a, 
suggest that -Cpb 

decreases continuously with increasing --- 
d
- 

co  
W, > when  	7.18 instead of rising first to a maximum at 
-I 	' 

	 Nd  = 7.4 ohere 4) . -90o before decreasing. Thus the 
t„ 

behaviour of -Cpb between 	(10 	of 7.18 and 7.40 
CN d 

apparently seem to contradict the ideas of the preceeding paragraph. 

This contradiction may however not be real because the contribution 

of other factors (like inertia and changing incidence effects for 
to 

example),
A 
 RMS lift are likely to be appreciable when A/D is as high 

as 0.25 . So that the resultant value of II) may differ, at 

least a little, from - 90°  when the contribution of the vortices to 

RMS lift has a phase angle of -90°  . In other words it is possible 

that at A/D = 0.25, 	may have a value of say -98° when the 

vortices are shed as the body, passes through the centreline. When 

this is the case-Cpb would be maximum when (lo . -98°  and 

decrease as 	moves away from -98°  - a trend similar to one 

actually observed. 

It thus seems, at least when A/D is small, that the afterbody of 

the oscillating square section cylinder behaves, during lock-in, like 

trailing edge spoilers. Bearman & Trueman (1971) have demonstrated 

that -Cpb decreases when small spoilers are attached, normal to the 

section, at the trailing edge corners of a stationary rectangular 

cylinder with d/h . 0.62 ( d is section depth and h is section 

width normal to the wind direction). Theiil measurements show that 

At A/D . 0.25 , the behaviour of -Cpb 
during lock-in also 

follows broadly the trend expected from the above line of reasoning. 

The measured values of -Cpb can be seen In Fig 7.4 to be constant 
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the higher the spoilers the smaller the value of -Cpb 	For the 

oscillating square section cylinder, the trailing edge corners appear 

to behave like the spoilers. The farther away the trailing corners 

are, at the time of vortex shedding, from their mean positions the 

smaller -the value -C
pb appears to take. 

7.8.2 Application of the results obtained durin  forced vibration to  

the problem of flow-induced vibration. 

Consider the cylinder as a rigid body of mass T.1 , oscillating on 

spring of stiffness K in opposition to a damping force of 

coefficient C . 

The equation of motion is: 

= 	(t) - - 	 - - 

	

L(t) is the periodic fluid forcing given by 	Lo  Sin (uNt + 4) 

where 4) is the phase angle between the fluctuating lift and the 

cylinder's displacement 
	

A sin wNt 

Writing L(t) in terms of components that are parallel to the 

cylinder displacement 	and velocity 	gives 

L C-c} 

	

Lo  Cos u 	 LoSIA•1 41  
A 	-) 	A but4 

- 

Equation (7.1) can then be written as 

( C - Ca) (sj 4- CIS- Ka ) tj =  0 - 	- - (7.3) 

where Ca  L o st114)  

A (A-)N 

Lo 

 
K„ 

1- 0  cos 

A 
- (7.4) 

can be written as 

L 0 	Q LL d 	(C,,,„„)0  
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where d and L are the cylinder diameter and span respectively. 

(61.rm5) 	is the average RMS lift coefficient, 

Ca 
can then be written as 

• 2 	_I / 	2 	\ 

C a  
\ (A ) e 	L 

r  ,y, 5)A \I  Sin op 	 \ 		rz 	) (7.5) 

From equation (7.3) the undamped natural frequency of the combined 

system, LU0  , is 	K 	instead of the value 	that 
N.4 	 NA 

exists in the absence of aerodynamic forcing. 

Consider first the component Ka  tj 	of the exciting force. 

Usually the exciting force is, see Sachs (1972), considerably smaller 

than the inertia or stiffness forces. Walshe (1972) also remarked that 

the fact that wind-excited oscillation of structures, are usually 

observed to take place at a frequency close to a natural frequency 

indates that K a  is small compared to K . Thus any oscillation 

resulting from the component, KO , of the exciting force will usually 

be small and insignificant. 

Consider next the component 	y 	of the exciting force. 

Consider the following cases: (c - Ca) > o and (C - ca) 0 

When 	(C - Ca) 	0 in equation (7.3), any transient 

oscillation will be damped out. The case Ca  4, 0 is particularly 

interesting because it indicates that instability cannot exist no 

matter how small the structural damping C is made. From equation 

(7.4) Ca  L 0 means that 1800  < 	4'. 360°  or -180°Z.: 6) < 000 
 

Applying this finding to the oscillating square section cylinder, it 

can be seen in Fig 7.44 that 1) lies between 0°  and -180°  when 
U.0 < U.) 

c t,4 d 	 d )p, 	
or 

fs/fN 4: 1.0 . The phase angle 
Shat 

measurement (Fig 7.44) therefore indicateAsignificant self-excited 

lateral oscillation of a spring-mounted square section cylinder cannot 

occur when f3/ 	is below unity. This finding is, as reported in 
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sections 1.4.2.1 and 1.4.2.2, consistent with experimental observations 

When (C, - Ca) < 0 oscillation will grow in amplitude until, barring 

structural failure, a steady state amplitude is reached where 

C -- C a 	= C) . When C . 0 (no structural damping), steady 

state amplitude will be reached when Ca  = 0 . From equation 7.4 

Ca 
. 0 means O . 0°  or 180°  , For the oscillating square 

section cylinder O (Fig 7.44) is always less than 180°  . Thus at 

a given value of , the steady state amplitude, A  
N cl 	 D cb.-0 

that would occur on the undamped square section cylinder during self-

excited oscillation is given by the value of A/D at which d) = Q. 

The values of (D ).., 0  ,deduced from the present values of 	(I) 

are shown in Fig 7.46 to be in good qualitative agreement with steady 

state amplitude measured by Otsuki et al (1974) and Nakamura & Nizota 

(1975) during self-excited oscillation.. A discussion of Fig 7.46 has 

already been presented in section 7.5.2 . 

When 	C — Ca  4: 0 and C 7 0 (i.e. there is structural 

damping), steady state amplitude will be attained when C- Ca,  - 0 

(I)  i.e. 	C --..:: - Ca  = 	
Lo  Sin 	. Thus measurements of Cl 	and 
Awe  

1,o during forced oscillation can give the steady state amplitude that 

will occur on the spring-mounted model during self-excited oscillation 

when the damping parameter, C , is specified. An interesting point 

worth noticing in Fig 7.44 is this: it can be seen that for values 
LL 

of A/D that are very close the value at the  	where dP 
fmcl 

(arid hence C
a
) equals zero, 	

) =0 

(and hence Ca 
) increases from 

zero as A/D decreases from ( D 	 .. Since a positive 
D 4)  

value of Ca is required to balance the damping force, this shows, 

at least for small damping, that the amplitude of damped free 

oscillation will be less than the undamped one. This is consistent 

with experimental observations of workers like Parkinson & Brooks 

(1961) who reported that structural damping decreases the stesBy state 
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amplitude of self-excited oscillation. It is interesting to note that 

if in every situation 	increases with A/D as reported by 

Wilkinson (1974), the unclamped self-excited oscillation amplitude will 

be less than the damped one - i.e. damping sill increase rather than 

decrease the amplitude of self-excited oscillation. This behaviour 

is, of course, unrealistic, 

Consider the situation in which fN and A/D are fixed while U. 

is varied to obtain the variations in d) and (:pwc) f  presented 

in Figs 7.44 and 7.22 respectively. Take in particular the case 

A/D . 0.10 . The behaviour of 	(Fig 7.44) at. A/D = 0.10 and 

(C-Prms)c  
U.  

(Fig 7.22 or 7.5) suggests that Ca (see equation (7.5)) 

rises very sharply from 0 at  	= 8.4 where 0 . 0 to 
f d 

a maximum at 	r,;,/ 8.7 where 	is maximum. Beyond 

because of the influence, see equation (7.5) of the ( 	term 

a 

as shown in sketch (7.3). 

Sketch (7.3) 

Uc, 
CI4 d 
8.7 the very sharp initial fall in 4) (Fig 7.44) 

ftt  cl 
suggest that Ca at first falls before rising at high values of 

in the expression for C 	Thus the resulting trend in C will be a 

U00 \i2)' 	"isN 

f d 



0.10 

Sots.1111,10E Sketch (7.4)  
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If during self-excited oscillation, the damping parameter of the 

system is say C , where C is , as shown in sketch (7.3), less than 

(Ccc ) 1CI X 
, the steady state amplitude of self-excited oscillation 

will be less than A/D m 0.10 when C 	Ca 
and greater than 

A/D m 0:10 where C < Ca 
. The resulting response pattern can 

therefore be similar to the one presented in sketch (7.4). A response 

pattern of the type shown 

in sketch (7.4) is consistent with the stability diagram presented by 

Scruton, .see for example Scruton & Rogers (1971), for a square section 

cylinder. 

The discussion of this section demonstrates that the characteristics 

of the body-wake interaction observed on a square section cylinder 

during self-excited oscillation can be deduced from results obtained 

in forced vibration experiments. Forced-vibration experiments can 

in addition, indicate the aero-elastic behaviour of the cylinder when 

there is no structural damping - something that is impossible to 

obtain from free-oscillation experiments. 
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CHAPTER 8 

8.0 CONCLUSIONS  

8.1 FLOW VISUALISATION 

a) For the stationary model at 0°  incidence, vortices are seen to 

form very close to the back face. No change was discerned in the 

vortex formation region length during synchronised oscillation. 

b) For all the flow cases visualised (i.e. yrs  = 0 , 0.5 1.0 and 

2.0 ) the opposing shear layers are seen to interact in a manner 

that suggests that the vortex shedding mechanism is similar to the one 

proposed by Gerrard (1966) 
01405  = 1.0 and 2.0 than 

c) The wake vortices were seen more distinctlyie fN/fs  . 0 (model 

stationary) and fN/fs  = 0.50 . The wake vortices seen at flifts  s 1.0 

appear collinear whereas those seen at fillfs  = 2.0 appear packed 

close together with a spacing ratio of about unity. 

d) Observations of the near-wake flow configuration at flifts  . 2.0 , 

1.0 and 0.5 suggest that both inertia and changing incidence effects 

affect the position of the shear layers relative to the body. For 

f
N/fo = 1.0 and 0.5 , flow reattachment was seen to occur earlier 

than indicated by quasi-steady considerations. 

8.2 MATHEMATICAL MODELS OF VORTEX-INDUCED LIFT FORCES 

a) Consideration was given to the Von Karman-type potential flow wake 

model proposed-first by Ruedy (1935) where the fluctuating lift 

experienced by the body is equated to the rate of flow of Y-momentum 

out of a large control volume surrounding the body. It is noted that 

this is incorrect because no consideration is given to the rate of 

change of momentum in the vortex formation region of the body. 

b) The potential flow model proposed by McGregor (1957) is improved 

by including a bound vortex to represent the effect of the wake vortex 



185 

street. This improved model is applied to both the stationary and 

oscillating body flow cases. For the stationary model, the improved 

model appears to predict reasonable values of non-dimensional vortex 

strength,  	when realistic values of surface fluctuating 

pressures and vortex formation region length (Co) are used. 

With realistic values of 	r 	and Co , the sectional fluctuating TfUco d 
pressures predicted by the improved model are better than McGregor's 

(1957). 

During body oscillation, the present potential flow model is shown 

to be useful for studying both the surface fluctuating pressures and 

the harmonic contents of velocity fluctuations. 

c) The Van der Pol oscillator model proposed by Hartlen & Currie (1970) 

has been used to model the lift characteristics of a forced square 

section cylinder. When the parameters of the oscillator are selected 

carefully, it is shown that the model can predict good lock-in values 

of fluctuating lift. The predicted lock-in values of lift phase angle 

was made to agree fairly well with the square section cylinder values 

by assuming that the forcing function of the oscillator is proportional 

to the cylinder's displacement, (Hartlen & Currie (1970) assumed 

that the forcing function is proportional to cylinder's velocity). 

8.3 STATIONARY MODEL : RESULTS AND DISCUSSION  

a) Even though the aspect ratio of the square section cylinder is as 

high as 18.0 , the base suction -C
pb (and hence the sectional drag 

coefficient, CD  ) was found to change, particularly at high angles of 

incidence, when end plates were fitted. End plates were found to have 

a detrimental effect (i.e. decrease base suction) if they were not 

wide enough laterally. By contrast large end plates were found, at 

high angles of incidence, to produce up to 12% increase in base 

suction. With large end plates, the values of -C
pb observed at high 
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angles of incidence were found to be higher than previously reported 

values. 

b). EVen without end plates, the values of -Cpb  and CD 	observed 

in the present study are higher than those reported by Pocha (1971) 

and Lee (1974) who used cylinders of smaller aspect ratios. This, it 

was noted, indicates the need to isolate the influence of aspect ratio 

in experiments such as those of Lee (1975/1976) and Mclaren et al (1969) 

where aspect ratio is varied over a wide range. 

c) For flow normal to the cylinder and Reynolds number in the range 

2 x 104 4 Re < 12 x 104 , an influence of Reynolds number was detected 

on -Cpb , CD and the fluctuating pressure coefficients measured on 

the back face and around the trailing corners of the side faces. 

d) The sectional distributions of silrface fluctuating pressure coeff-

icients measured at several angles of. incidence are generally - in good 

agreement with Lee's (1974), higher than Wilkinson's (1974) and lower 

than both Vickery's (1966) and Pocha's (1971). 

e) At 0°  incidence, the spanwise correlation length of fluctuating 

lift was found to be 5.6 body diameters. This result is in agreement 

with Vickery'(1966), Pocha (1971), Lee (1974) but not Wilkinson (1974). 

At 0°  incidence, the sectional RMS lift coefficients estimated 

with and without consideration of chordwise correlation are 1.21 

and 1.23 respectively. These values are within the range of results 

observed by previous workers. 

f) The strouhal number, S , was calculated both from spectral 

analysis (i.e. the dominant shedding frequency) and from 'peak-count' 

(i.e. the average shedding frequency) on a storage oscilloscope. 

The spectral analysis results indicate that S decreases with increasing 

e4 up to o.  ti 10°  and then rises very sharply to a maximum at 

e( = 13.5
0 
 . By contrast the 'peak-count' results appear to 

suggest, as reported by Pocha (1971) and Lee (1974), that as 	0‹ 
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increases from 0°  , S increases steadily to a maximum at 	0/, = 13.5 . 

Measurement of the longitudinal vortex spacing, a/d , indicates 

that the convection velocity, S 	, does not vary with incidence 

Using the measured values of .0D ' S Cpb 
and a/d in the potential 

vortex street wake drag formula, .  	E. 	b/a and b/d 
TT U., d 

were calculated, The calculated values of  	follow the  
Ux,  

qualitative trend in -Cpb 
as o( increases from 0

o 
to 45

o 
• 

The calculated values of b/d increase as 	d increases from 0°  

to 10°  but remain virtually constant beyond 	e4 . 13.5°  . It is 

noted that the calculated trend in b/d and the above observation that 

S .(measured from spectral analysis) decreases as C( increases 

from 0°  do not support the notion (see for example Lee (1974)) that 

decreases in CD as 0( increases from 0°  are accompanied by 

decreases in wake width which in turn produce increases in S . 

g) At 	. 0°  , the spectra of surface fluctuating pressures 

were measured at several locations around the mid -section.of the 

cylinder. The results indicate the usual dominant peaks at fs  (on 

the side faces.and the parts of the front and back faces that are 

near the corners) and, at the centre of the back face, at 2fs  . 

Fairly prominent peaks were also observed at ifs  on the side and 

back faces near to the trailing corners - a phenomenon apparently 

unreported in the literature. 

The phase angles at fa  were measured at several positions 

around the mid7section for 	CA ag 00  . Over the mid 83% of the 

side face, only a phase difference of approximately 14°  was observed 

with the phase angle at the leading edge lafi n that near the 

trailing edge. This finding, it was noted, is contrary to the notion 

see for example Chaplin (1971), that the variation of phase angle on 

the side face is caused by a disturbance that is convected downstream  

at the flow separation velocity. 
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h) It is shown that the amplitudes of the signals of lift 

fluctuating pressures are randomly modulated. For two positions 

that sire many cylinder diameters apart along the centreline of the 

side face, it is shown that the amplitude modulation is poorly correlated 

It was also noted that there is a variation in shedding frequency and 

that vortices are not usually shed simultaneously along the whole span. 

i) Following the work of Bearman & Trueman (1971),the variations of 

CD -Cpb and S with f0 	were explained from consideration of 

the influence of the aftei'body. 

8.4 OSCILLATING YODEL : RESULTS AND DISCUSSION  

a) It is shown - that at A/D . 0.10 and 0.25 , CD and 	
are 

always less than the stationary cylinder values and also that during 

wake synchronisation at A/D = 9.10 , -Cpb (and hence CD ) has a 

resonant response pattern broadly similar to that of a non-linear 

oscillator but with maximum -0
pb 

occuring below the resonant windspeed 

The overall trend in -Cpb during lock-in is explained from 

consideration of the influence of the trailing edge corners. 

Urd, b) For low values of  	, the fluctuating pressure 
d 

coefficient, 	P (C 	, tends to the value attained during 

oscillation in still air whereas for high values of  1.4° 	 (Cpr  Ac  

t4 C1  

tends towards the stationary cylinder value. During lock-in, (CI:yr/A 

generally has a resonant response pattern similar to that of a non-

linear oscillator with the lift pressure fluctuation attaining a 

maximum above the resonant windspeed whilst the drag pressure 

fluctuation, by contrast, generally attains a maximum below resonance 

at a value of 	
d 	

that is very close to that of maximum 

mean base suction. These maximum values of (C Pr ms)f are higher than 

the corresponding stationary cylinder values. 

c) When no correction is applied for wind tunnel blockage effects, 
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the maximum values attained by the sectional RMS lift coefficients 

(i.e. 	'(;_rnl;) 	) are estimated to be 1.51 , 1.65 and 1.95 at 

A/D = 0.05 , 0.10 and 0.25 respectively compared to the stationary 

cylinder value of 1.33 . It is shown that these maximum values of 

(CLr are compatible with the total HMS lift coefficients n12,4 

measured by Otsuki et al (1974) and Nakamura & Mizota (1975) . 

d) For A/D = 0.25 the vortex convection velocity (i.e. 5. 0. ) /d 

was, during lock-in, found to maintain the stationary cylinder value. 
- C 

Both the measurement of .  2 
	

(the non-dimensional 
71 5

eb 
 

vorticity shed by each shear layer into the wake per cycle of vortex 

shedding) and the calculation  	(using the potential vortex 
TfUco d 

wake drag formula) suggest that the lock-in values of non-dimensional 

vortex strength are less than the stationary cylinder value. 

e) The spanwise correlation of lift fluctuations, R (P,Z) is 

improved during oscillation especially at lock-in. For A/D = 0.05 

and 0.10 , the lock-in value of R(P z) has a resonant response 

pattern with maximum R(pz)  f:Iccuring at about 	= 7.8 which 
iH d 

is also the  	at which the lock-in values of RMS lift 
i4d 

pressure fluctuations are maximum. This maximum value of R, 	is kl3  Z) 

shown to be practically unity over the whole span. 

During oscillation, a reduction was generally observed in the 

chordwise correlation of fluctuating pressures especially near the 

trailing edges of the side faces. 

f) During lock-in, variations of up to 160°  were observed in 4) 

(in the present work (31 is the phase angle by which the fluctuating 

lift pressure at the centre of the side face leads the cylinder's 

displacement). Results at A/D - 0.05 , 0.10 and 0.25 indicate 

that 	(the value of Y° 	at which C) 	0 ) 
° 	 +w d 

increases with A/D . This, it was noted, indicates that the steady-

state amplitude attained by an undamped spring-mounted cylinder during 



190 

free oscillation increases with , 	- a trend compatible 
d 

with the free oscillation results of previous workers. The present 

values of c) are also shown to _suggest, as observed experimentally by 

previous workers, firstly that the square section cylinder cannot 

undergo significant self-excited oscillation when  	is below 
N 
d 

resonance and secondly that structural damping will reduce the 

amplitude of self-excited oscillation. 

It is shown that the present values of C> are in good qualitative 

agreement with the values deduced from the total force measurements of 

Otsuki et al (1974) and Nakamura & Mizota (1975) - particularly the 

former (the (j)  values of those other workers indicate the phase 

angle by which the total fluctuating lift leads the cylinder's 

displacement). 

g) The present values of 	(prons) 	and CI) are compared with 

those of Wilkinson (1974) - the only other worker known to have 

conducted such measurements on forced square section cylinders. The 

lack of agreement between the; two investigations is attributed, at 

least in part, to instrumentation problems on Wilkinson's part. 

Wilkinson's (1974) results are also shown to be incompatible 

firstly with the total force measurements of Otsuki et al (1974) and 

Nakamura & Mizota (1975) and secondly with experimental observations 

on square section cylinders undergoing self-excited oscillation. 

h) Outside the lock-in range, the waveform of the lift pressure 

fluctuation is, in agreement with spectral analysis, shown to be 

complex with beats occuring when the vortex shedding frequency is 

slightly higher than the body oscillation frequency. Using these 

beats, it is shown that there is a spanwise as well as timewise 

variation in vortex shedding frequency. 

During lock-in, the amplitude of the signal of surface lift pressure 

fluctuation is shown to be less modulated. At 	. 7.3 
-FN  d 
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Ucci  (the lock-in value of  	at which both the lift fluctuating 
-P1,4 d 

pressure and spanwise correlation are maximum), it is shown firstly 

that vortices are shed simultaneously all along the span and secondly 

that the amplitude of the lift pressure fluctuation is approximately 

constant at the peak level that occurs on the stationary model. From 

these findings and from the trends indicated both by the measured 

pressures and the calculated values of 	rO 	, it is 
T1 d 

suggested that the primary effect of synchronised oscillation is to 

correlate the lift along the span thus making the flow mare two 

dimensional. 

i) By combining the measured values of dp and Cpb  with flow 

visualisation results, it was deduced that there is an inverse relation 

between the base suction and the lateral displacement of the 

oscillating body away from the centreline at the time a vortex is about 

to be shed. This finding is likened to the effect of trailing edge 

spoilers on the base suction of certain stationary rectangular cylinders. 



192 

REFERENCES  

Abernathy, F.H. and 	1962 	"The formation of vortex streets", 

Kronauer, R.E. 	J. Fluid Mech., j  , 1 - 20 . 
Bearman, 	 1965 	"Investigation of the flow behind a 

two-dimensional model with a blunt 

trailing edge fitted with splitter 

plates ", 

• J. Fluid Mech., 21 , 241 - 255 • 

Bearman, P.W. 	 1972 	"Some measurements of the distortion 

of turbulence approaching a two-

dimensional bluff body", 

J. Fluid Mech., 	, 451 - 467 . 
Bearman, P.W. and 	1971 	"An Investigation of the Flow around 

Trueman, D.M. 	Rectangular Cylinders ", 

I.C. Aero Report 71 - 15 June 1971 

Belvins, R.D. and 	1976 	"Fluid-Forces Induced by vortex 

Burton, T.E. 	shedding," 

Trans. ASME, J. Fluids Engineering 

, Series 1 No. 1 , 19 - 26 . 

Berger, E. and 	1972 	"Periodic Flow Phenomena" 

Wille, R. 	Ann. Rev. Fluid Mech., 4 , 313 - 340. 

Birkhoff, G. and 	1957 	"Jets, Wakes and Cavities" 

Zarantanello, E.H. 	Academic Press, Pate 280 . 

Bishop, R.E.D. and 	1964A "The lift and drag forces on a 

Hassan, A.Y. 	circular cylinder in a flowing fluid", 

Proc. Roy. Soc. Lond. A, 2 	, 32 - 50. 

Bishop, R.E.D. and 	1964B "The lift and drag forces on a circular 

Hassan, A.Y. 	cylinder oscillating in a flowing fluid" 

Proc. Roy. Soc. Lond. A, 2f7 , 51 - 75. 



193 

Bloor, M.S. and 	1966 "Measurements on turbulent vortices 

Gerrard, J.H. 	in a cylinder wake", 

Proc. Roy. Soc. Lend. A, 294 , 319 - 3420 

Bradshaw, P. 	1972 	"The Imperial College Aero Dept. 

digital magtape data-logging system': 

I.C. Aero TN 72 - 101 , 

Chaplin, J.R. 	1970 	"Flow Induced Forces and Wake Dynamics 

of Cylindrical Bodies", 

Ph. D Thesis, Dept. of Civil Engineering 

University of Bristol, England. 

Chaplin, J.R. and 	1971 "Flow-induced dynamic pressures on 

Shaw, T.L. 	square section cylinders", 

Proc. I.A.H.R. Congress, Paris 1971 . 

Chen, Y.N. 	1972 	"Fluctuating Lift Forces of the Karman 

Vortex Streets on Single Circular 

Cylinders and in Tube Bundles. 

Part 2 - Lift Forces on Single Cylinders", 

Trans. ASIS, J. Engineering for Industry 

, Series B , 613 - 622 

Clements, R.R. 	1973 	"An inviscid model of two-dimensional 

vortex shedding", 

J. Fluid.. Mech., j  , 321 - 336 
Clements, M.P.M. and 	1973 	"Calibration of the 3'x 3' low speed 

Unwin, G.P. 	wind tunnel of Imperial College", 

Dept. of Aeronautics, 3rd Year Report, 

June 1973 . 

Cowdrey, C.F. and 	1959 	"Force measurements on square and 

Lawes, J.A. 	dodecagonial sectional cylinders at 

high Reynolds numbers", 

NPL Aero Rep. 351 . 



194 

Davenport, A.G. 	1975 	"Perspectives on the full-scale 

measurements of wind effects ", 

J. Industrial Aerodynamics, 1 , 23 - 54, 

Davies, M.E. 	1974 	"Spectral Analysis Programs Powspec 

and Cophase ", 

I.C. Acre TN 74 - 103, Imperial 

College Aeronautics Department. 

Davies, M.E. 	1975 	"Wakes of oscillating bluff bodies" 

Ph. D Thesis, Dept. of Aeronautics, 

Imperial College, London University. 

Doebelin, E.O. 	1966 	"Measurement Systems : Application 

and design ", 

McGraw-Hill Book Company, Page 401 . 

Eaton, K.J. 	1977 	"Proceedings of the Fourth 

International Conference on Wind 

Effects on Buildings and Structures" 

Cambridge University Press. 

Engineering Sciences 	1971 	Data Sheet 71016 

Data Unit 

Fackrell, J.E. 	1973 	"The Aerodynamics of an Isolated wheel 

Rotating in contact with the ground ", 

Ph. D Thesis, Dept of Aeronautics, 

Imperial College, London University. 

Fags, A, and 	1927 	"On the flow of air behind an inclined 

Johansen, F.C. 	flat plate of infinite span", 

R&M 1104 . 



195 

Fens., C.C. 	1968 • "The measurement of vortex induced 

effects in flow past stationary and 

oscillating circular and D-section 

cylinders", 

M.A.So. Thesis, Univ. of British 

Columbia, Dept. of Mech. Eng. October. 

"An experimental investigation of 

the oscillating lift and drag of a 

circular cylinder shedding turbulent.  

vortices", 

J.Fluid Mech., 11 , 244 - 456 . 

"A disturbance-sensitive Reynolds 

number range of the flow past a 

circular cylinder", 

J. Fluid Mech., 22 , 167 - 196 

"The mechanics of the formation region 

of vortices behind bluff bodies", 

F. Fluid Mech., 21 , 401 - 413 . 
"The Unsteady Wake of an Oscillating 

Cylinder at Low Reynolds Number", 

Trans. ASME, J. Appl. Mech., la, 729- 738 
"The vortex-street wakes of vibrating 

cylinders ", 

J. Fluid Mech., 66 , 553 - 576 . 

"On vortex strength and drag in bluff- 

Vamberg, S.E. 	body wakes", 

J. Fluid Mech., 	, 721 - 728 . 

Gerrard, J.H. 1961 

Gerrard, J.H. 1965 

Gerrard, J.H. 1966 

Griffin, O.I. 1971 

Griffin, O.M. and 1974 

Ramberg, S.E. 

Griffin, O.M. and 1975 



196 

Griffin, O.M. and 	1972 	"The vortex street in the wake of a 

Votaw, C.W. 	vibrating cylinder", 

J. Fluid Mech., a , 31 - 48 . 

Hartlen, R.T. and 	1970 	"Lift-oscillator model of vortex- 

Currie, I.G. 	 induced vibration", 

Proc. of the American Soc. of Civil 

Engrs., Jnl. of the Engineering 

Mechanics Division, 2.6.  , 577 - 591. 

Keefe, R.T. 	1961 	"An investigation of the fluctuating 

forces acting on a stationary circular 

cylinder in a subsonic stream and of 

the associated sound field", 

UTIA Report No. 76 . 

Koopman, G.H. 	1967 	"The vortex wakes of vibrating 

cylinders at low Reynolds numbers", 

J. Fluid Mech., 28 , 501 - 512 

Landl, R. 	1975 	"A mathematical model for vortex- 

excited vibrating of bluff bodies", 

Journal of Sound and Vibrations, .42, 

219 - 234 . 

Laneville, A. 	1975 	"An explanation of some effects of 

Gartshore, I.S. and 	turbulence on bluff bodies", 

Parkinson, G.V. 	Int. Conf. Wind Effects on Buildings 

& Structures, Heathrow, London. 

Lee, B.E. 	1974 	"The surface pressure field experienced 

by a two-dimensional square prism", 

C;E.R.L. Note No RD/L/N/17/74 • 



197 

Lee, B.E. 

IV:air, W.A. and 

Mann, D.J. 

1975/1976 "Some effects of turbulence scale 

on the mean forces on a bluff body" 

Journal of Industrial Aerodynamics, 

1 	361 -'370 . 

1971 	"Bluff bodies and vortex shedding a 

report on Earomech 17 tt 

J. Fluid Mech., .4.5.  , 209 - 224 • 

Maskell, B.C. 	1963 	"A theory of the blockage effects on 

bluff bodies and stalled wings in a 

closed wind tunnel", 

A.R.C. R and M No 3400 . 

McGregor, D.E. 	1957 	"An Experimental Investigation of the 

Oscillating Pressures on a Circular 

Cylinder in a Fluid Stream", 

UTIA Technical Note No. 14 • 

Mclaren, F.G. 	1969 	"Effect of Free Stream Turbulence on 

Sherratt, A.F.C. and 	the Drag Coefficient of Bluff Sharp- 

Morton, A.S. 	edged Cylinders 

Nature, la , 908 - 909 . 
Milne-Thomson, L.M. 	1968 	"Theoretical Hydrodynamics", 

5th ed., MacMillan, 

Morkovin, M.V. 	1964 	"Flow around a circular cylinder. A 

kaleidescope of challenging fluid 

phenomena ", 

Symposium on Fully Separate flows, 

American Soc. Mech. Engrs. 



198 

Mulhearn, P.J. 

Naudascher, E. 

1973• 	"Stagnation and Reattachment Lines 

on a Cylinder of Square Cross-section 

in Smooth and Turbulent Flows", 

Nature Physical Science, 241 , 165 - 167 . 

1975 	"Unsteady lifts and wakes of oscillating 

rectangular prisms", 

Journal of the Eng. Mech. Division, 

ASCE, NO EM6, Proc. Pater 11813 , 

855 - 871 . 

1974 	"Flow-induced structural vibrations", 

Proc. of the LUTAMAAHR Symposium 

Karlsruhe (Germany) 1972 

Published by: Springer-Verlag. 

1975 	"Pressure correlations on a 

vibrating cylinder", 

Int. Conf. Wind Effects on Buildings 

and Structures, Heathrow,London 

Nakamura, Y. and 

Mizota, T: 

Novak, M. and 

Tanaka, H 

Otsuki, Y., 	 1974 	"A note on the aeroelastic instability 

Washizu, K, 	of a prismatic bar with square 

Tomizawa, H and 	 section". 

Ohya, A. 	 Journal of Sound and Vibration, 

, 233 - 248. 
Parkinson, C.V. 	1971 	"Wind-induced instability of 

structures", 

Phil. Trans. Roy. Soc. London A , 

20,  395 - 409 . 



199 

Parkinson, G.V. 	1972 	"Mathematical models of flow- 

induced vibrations of bluff bodies" 

• Proc. of IUTAM. IAHR Symp, on Flow-

induced structural vibrations, 

Karlsruhe, Germany. 

Parkinson, G.V. and 	1961 	"On the Aeroelastic Instability of 

Brooks, N.P.H. 	Bluff Cylinders", 

Trans. ASME, J. Appl. Mech., 28 , 

252 - 258 

Parkinson, G.V., 	1968 	"Mechanisms of vortex-excited 

Weng, C.C. and 	oscillation of bluff cylinders", 

Ferguson, N. 	Proc. Symp. on wind effects on 

buildings and structures, 

Loughborough, England. 

Parkinson, G.V. and 	1962 	"An Aeroelastic Oscillator with Two 

Smith, J.D. 	Stable Limit Cycles", 

Trans. ASME, J. Appl. Mech., 21 , 

444 - 445 . 

Parkinson, G.V. and 	1964 	"The square prism as an eeroelastic 

Smith, J.D. 	non-linear oscillator", 

Quart. Journ. Mech. and Applied 

Math. Vol 17 , 225 - 239 . 

Pocha, J.J. 	1971 	"On unsteady flow past cylinders of 

square cross-section", 

Ph. D. Thesis, Dept. of Aeronautics 

Queen Mary College, London University. 

Prendergast, V. 	1958 	"Measurements of two-point 

correlations of the surface pressure 

on a circular cylinder", 

UTIA Technical Note 23 . 



200 

Protos, A. 

Goldschmidt, V.W. and 	1968 	"Hydroelastic forces on bluff 

Toebes, G.H. 	cylinders", 

Trans. A.S.N.E., J. of Basic Engineering 

Paper No. 68 -FE-12, 378 - 386, September 

Robertson, J.M. 	1975 	"Pressure field at reattachment of 

separated flows", 

Paper No. IV-26-1 , Second U.S. 

National Conference on Wind Engineering 

Research, Colorado State University 

Fort Collins, Colorado. 

Rockwell, D.O. 	1976 	"Organized fluctuations due to flow 

pasta square cross section cylinder", 

Unpublished report, 

Institute of Hydromechanics, University 

of Karlsruhe, Karlsruhe, West Germany. 

Rosenhead, L. 	1953 	"Vortex systems in Wakes", 

Advances in Applied Mechanics III 

Academic Press. 

Roshko, A, 	1953 	"On the development of turbulent 

wakes from vortex streets", 

N.A.C.A. Tech. Note 2913, 

Washington D.C. 

Roshko, A. 	1954A "On the Drag and Shedding 

Frequency of Two-Dimensional Bluff 

Bodies", 

NACA TN 3169. 

Roshko, A. 	1954B "A New Hodograph for Free-Streamline 

Theory", 

NACA TN 3168 . 



201 

Ruedy, R. 1935 

Sachs, P. 1972 

Scruton, C. and 1971 

Rogers, E.W.E. 

Simmons, J.E.L. 1974A 

Simmons, J.E.L. 1974B 

Stansby, P.K. 

Stoker, J.J. 

"Vibration of power lines in a 

steady wind", 

Canadian Journ. of Research, 13, 82 - 92 , 

"Wind Forces in Engineering", 

Pergamon Press, P. 135 . 

"Steady and unsteady wind loading 

of buildings and structures", 

Phil. Trans. Roy. Soc. London A, za 
353 - 383 . 

"Phase-angle measurements between 

hot-wire signals in the turbulent 

wake of a two-dimensional bluff body", 

J. Fluid Mech., §4 , 599 - 609 . 

"The relationship between the base 

pressure on a bluff body and the 

velocity at separation", 

The Aeronautical Journal., Vol 78, 

330 - 331 . 

1973 	"A model for the vortex-excited 

resonant response of bluff cylinders", 

J. of Sound and Vibration, 27 , 225- 233. 

1976 	"The locking-on of vortex shedding 

due to the cross-stream vibration of 

circular cylinders in uniform and 

shear flows", 

J. Fluid Mech., .7.1 , 641 - 665. 
1950 	"Non-linear Vibrations", 

Interscience Publishers. 

Shop, R.A. and 

Griffin, 0.1% 



202 

Tanida, Y. 	1973 . "Stability of a circular cylinder 

Okajima, A. and 	oscillating in uniform flow or in a 

Watanabe, Y. 	wake", 

J. Fluid Mech., 61 , 769 - 784 . 

Thom, A• 	1931 	"Experiments on cylinders oscillating 

in a stream of water", 

Phil. Mag (7), 12 , 490 - 503 . 

Van der Pal, B. 	1927 	"Forced Oscillations in a System with 

Non-linear Resistance", 

Phil. Mag (7), 2 , 65 - 80 . 
Vickery, B.J. 	1966 	"Fluctuating lift and drag on a long 

cylinder of square cross-section in 

a smooth and in a turbulent stream" 

J. Fluid Mech., 12 481 - 494 • 

Walshe, D.E.J. 	1972 	"Wind-excited oscillations of 

structures", 

Her Majesty's Stationery Office, 

London. 

Wilkinson, B,H. 	1974 	"On the vortex-induced loading on 

long bluff cylinders ", 

Ph. D. Thesis, Faculty of Engineering, 

University of Bristol, Bristol, England 



203 

Uoi, (( 	--- 	C pb) 
cis, d 2 Ti 5 

05CILLATINCI MODEL STPITIoNARY 	MODEL 

A/D  =0.10 S=0.134. 5= 0.130 

'7.53 2.91 	• 2.98 3.07 

7,  q0 2. q0  2.. 4C3 3.07 

Z• 1-1.6 3' 0 4 2. 9S 3.07 

CALCIAVIED 
FRom 

FCC, 	(b). 

Uco 
(0 	- 	CPI) 

all S 

-FNI CI  
oScILLATINCi  MODEL 5T1rriONIFIV1 	MODEL 

A/D =0.25 B = 0434 ST-- 0.130 

6.51 2.57 3.04 3.18 

7.03 2. 78  3. 09 3./B 

7.16  2. S4 3.09 3.18 

7. 54 2. 87 3.09 3.18 

7.`b1 2. 83  3. oq 3.18 

8 .5I 2. 67 3.09 3.1$ 

CALCULATED 
FRONS 

F 1 G. 7. 

T AB LE  I• 	THE 	BEHAVIOUR OF 	- Cpb  

DuRING 	LOCK-- INC , 

Cha.131..-es 



2 04 

A mPLVTUDE 
To 

iNiimETER 
Rirrlo 

/VD 

REDUCE) 

WINDsPEED 

U., 

_r  
" 

EoNI-ruDiNin 
VORTEX sPAciNc, 

Gv , 
I OM 

CoNvEcT ioN 
VELOCITY 

tic 	= S. a 

-Fs  

U., 	d C,,,d 

0.10 1.21 1.01+ 6. SZ 0.95`
1 

 
0.10 1•55 0.99 1.38 0. 1)8 	1,017 

0.10 -1.q1 0.91+ 7. 6 4 0 ' 97 j 

0.Z5 1. 	19 1. 011- 6. 1-1-5 0, 90 

0. 25 7.63 0, 6)S 6.87 O. qo 
0.90 

0. 2.5 7.19 0.96 64 65 0.92 

o 1.54. 6.71  0. Sq 

TAEUE 2 	MEASUREMENTS 	OF LoNIGITuPINI 

V0RTE% 	SfrICINI6 7 Cyd y DURING WAKE 

S\INGFIRONISATION 

efR,r 	to 	C flakier 



205 

fN A UO3  M E6 SUR ED 

CD' s 

b 
a/cf 

OR 

( _I-.. __-)L\ 
1 

Vd 

ro  i_c Pb g 
Cs D  fl\lci a T r Uo d 21T 5 

\ s 	u.) 

0 7.54 0. 3(4 0, 07/1- 6. 7q 0.50 I . 90 3.09 0.61 

1.15 0.25 6.51 0.343 0.069 5.86 0.41 ILI-  2.61  0.68  

1.06 0.25 7.03 0.317 0.073 6.33 0.46 1. 78 3.78 0.64 

1.014- 0.25 7. f5 0.311 0.075 6. 1+6 0.48 I.79 2. 8q- o•63 

o. c)9 0.25 754 o, 28ti- o. 080 6 . 79 0,54 '16 2.87  0.61  

0, c)(7 0.2  '7.81 0. 26 i 0.085 7.03 0.60 I. 71 2•83 0.60 

0.85 0.25 B-51 0.207 0.106 '1.66 0.81 1. 52 2.67 0.57 

, 	
-1 _ 	 - 	1- cpb  2us 	orb  (rrU,d 	 2-r  	 )

d 	Td1, 
 

CP6 WERE 06TriiNED PROM riG. 

/ 
kf

0. 
m d) 

b/ct 	w AS 	CAt_CuLATEI) ri2014 	THE 	EQUAT 

j-L.  (1- 	tiq {c0+42(Trb) 
u 	 u. 	 (P-e -2)d colli (.1"9] a 	Us 	a 

IfigLE 3 	P REDICTIoNS 	OF 	THE 	VORTEX STREET 

DRAG 	FOR MUGA DURING IAMICE SYNCHRMISTITION 

OR 	ocK - 	 0.90 
U, 

'to 	Gila+ 6, t 	77. 

C D 
	AND 

AT 

CD  



Zoo 

xz.  

2 

Y 

X, 

CASE 	I 	I 	X/ 	:-... 	x, 	7:0.25 
D 	D 

A/D  uc., R P12, fr,, d 

0 - 1  • 02 

0.10 5.2o 0.77 

0. 10 6.16 0.82 

0.10 7.11+ 0.96  

0.10 7.22 0.96 

n.10 7.55 1.00  

0.10 6.17 0.97 

0.10 13.02 0.98 

CASE 3 	IL -05 xi-5-- --0 	5 5 	jp, 	, 	"12  
A6 .pucl 

RPIZ 

0 - O•S9 

0.10 7. g5 1.03 

0.26 7.17 1. 02, 

0. 	6 7.17 1.01  

CASE 2; 	x2, 	=_. 	Xi 	=0.125 
D 	D 

A, 
/.1) 

uca 
RPia P d N 

o 

o. lo 

0.10 

o.to 

0.10 

0.10 

4.71 

6.22 

7. 8z 

$ • 72 

if. 	94 

D.93 

- o. 24 

0. 63 

0. 70 

0.68  

0.78  

CASE 11- 	)4-0.125 ) xi), 	-. 0.5 

A/D 
Lion R PI2 4' d 

o 0.'13 

0.10 '7.85 0.72 

0.26 7.17 0.S2 

0.26 7, s5 0.79 

TABLE 14 MEASUREMENTS 	or  ClIORDWISE 	CoRgn_ri -HON 

   



Zorl 

fN 
xy  

 

  

uc, 

  

   

 

,2 

 

 

CASE 5:) )._SL = X2 = 0.5 D 	D  

A/ D 
Uco 

R Pi2 
CNId 

o _ - 0.96 

o•to 4.7/ -o.89 

o.lo 6 , 21 -o, 32 

0.10 ri..bo -0.99 

0.10 g,72 - 0.93 

0.10 9.30 -0.86 

0.10 11114 - 	0 '91  

TR6LE 4 (CoNTO 	ME1-15uREMENIS 	of 	CHoRb'iJS1` 

CoRRE LATiorq. 



25 

Co 

and 
20 

-Cpb 

IS 

A 

o X Present results 

&. • Nakaguchi, Hashimoto & Muto (1967) 

o Fage & Johansen (1927) 

0.2 	0.4 	0.6 	08 	1.0 	1.2 
d/h 

0•5 

0.4 

Q3 

0.1 

2 0Z 

II \ 
I \ 

clei  v 
ii-cyREL 

r-"".11 

TY- I 
, . 

I 
i 

` \ \ 
r---,--ji- 

if' 

I
I 
I —...„__ 

-1----- 

ii 

S 

\ . 

\11--*---- -... ..-. 

N. I 
•■•-....11  j 

li  

2 	 4 
--b- 

ric4.1.111 	Effects of rectangular section afterbody length 
	

FRovi 1filivc1NiSo1 (1912 

Figure 7.15 Drag coefficient and base 
pressure coefficient Measurements on 

rectangular sections, Re = 2 x 104  — 7 x 104  
FROM BEARMiN 	TRIJEMANI (ictit) 

3 

2 

1 



0.3 
2M60/(Ph2&1 1.36 
0 Free osc .. 
x Forced osc··, 

0.2 

.. '. 0.1 

I.) 

o 
2 4 6 8 10 12 

0.21 12~6~/(ph2&) 2.22 1 IO~ t'! . 

o Free osc, 

r:: J v J 
x Forced osc. 

0.1 
,~ I .', 

/6, 

O~ t~ I 
'2' 5 10 15 20 25 '. 

0.10. 2 I 
2M60/(ph &) 1.61 
o Fret" OSC, 
x Forced OSC, 

·0.05 

'" 
0 

2 5 10 15 20 

V 

F1C1. 1,2. A ,-Steady-Stato Amplituda Vorsus Roduced Wind Velocity In Free OscUlation 
Experiment: (41) Mod611:1; (.~) Model 1:2; (e) Model 1:4 

2.0 1--+----/ 

1.O·I---i/' ~) \ 

n 
• 0.150 
o 0.100 
x 0.050 
A 0.025 

1.gL1 -1~-L~----~L-----r---~ n 
o 0.1000 

0.5 -

~ 
.C) 

0 
0.50 

0.25 

o ---.... 
3 5 10 15 

V 

o 0.0';)0 
lC 0.0500 

----i • 0.0250 
I A 0.0125 

20 25 

q 

• 0.06 
o 0.04 
" 0.02 
A 0.01 

30 

l\). 
() 
'-.D 

Ff4.f.2 6 -Amplitude of Frequency Response Componont of Unsteady Uft Force 
Coefficient Versus Reduced Wind Velocity: (a) Model 1:1; (b) Model 1:2; (e) Model 
1:4 ' 

[v -= Uae , (') = A/. - ,I~ ID F( GS. J.2 A ~ 6 ARE R EPRo})UCED FROM tJAK A i\\ UR~ 
tND 

~ M1IDTA (iQ·,.,5)] 



180"1 ,cU:: I • 0;150 I 
'0 r - 0 0.100 

'120'~~"~'------+------r----~ x 0.050 
60.025 

A~ 

-60 
(0) 

-120 I w I I \ . 
~ 120 I I I I 

.L--+--:----r-illil~ 

(b) ~ g:6~~g 
~~+---t--~ x 0.0500 

-120 • 0.0250 
", A 0.0125. 

-180' 20 25 30 3 5 10 ~5 

V 

F 14.1. ~ A -Phase Angle of Frequency Response Component of Unsteady Lift Force 
Coefficient Versus Reduced Wind Velocity: (a) Model 1:1; (b) Model 1:2; (e) Model 
1:4 

[ALL 
X 

F(ejURES l< E P'?OD UCEv 

MtioTA ('C)1S) ] 
~ R Orvl NAkAMURIl 

180 

120 

60 
t:lO 
(l) 

't:I 0 oj 
-60 -& 

(c) 

-120 

-180 
3 5 10 15 20 

V 
r'G. 1·3 A -Continued . 

<PL . 
- 16o~eg Modell: 1 

l20 

1't. 

Vcr ~ ~ 
-l 

60 

o 

: -60 

~. 
-120 

:~ 
-180 

o -20 

:0 

.~r--

--- - -

40 60 

0 

80 

11 

.0.06 
o O.Ol. 
x 0.02 
6 0.01 

25 30 

0 

n 
• 0.150 
o 0.100 

-- ~ 

100 v 
F (~; ,. '3 B -Phase Angle Plot at High Reduced Wind Velocities 

N 

o 



SO 55 60 • 45 40 20 	25 	30 	30 
ANGLE OF 1wCI0ENCE.Ct° 

VARIATION OF MEAN LIFT COEFFICIENT WITH FLOW DIRECTION 

43 
IS 	IE 	IS 	H 	IS 

ANGLE OF mCio(PCE.a• 

VARIATION OF iTsatain. MOSIER TIM FLOP OMECTION 

ALL CICIURES 11  QE REprzopucep 	cRom LEE ( 1 1-11+)• • 

Ulci0101 FLOP 
G.AiD A2 

GA IS AI 
CAW Al 

0 PICIOTH FLOW 	1 YICIERY 

• TuPpuLEKCE FLOP 117µI1 

• BEARPAP min ssoon■ FLOP 

a roao, oni)smOOTH FLOP 

0 
• 0 

• • 

-1.0 
0 S 	10 	15 

F tC9 .1'4 g 

SAP 
• 

* • 

40 45 20 	2S 	30 	35 

ANGLE OF 1NCIDENCEa• 

VARIATION OF BASE PRESSURE COEFFICIENT WITH FLOW DIRECTION  

55 	. 60 S 10 IS 

FiG.1.4 C 

-03 

.0.4 
0 

13 

.13 

•I.2 

-1.0
'  

• • • V 

	 GRID A3 

GRID A4 

UNIFORM FLOW 

• ■•••—• GRID Al 

•••••••••••••• ESDU DATA ITEM 71016 
SMOOTH FLOW 

a POCHA 11971) 
SMOOTH FLOW 

• VICKERY (1966) SMOOTH FLOW 
O 10% TURBULENT FLOW 

O 
• 

• 

4, 

........ 

NN...  

- ••• 

\ 

........ . . 	..... 
__,L4•••■•-•—•  

23 

2.4 

2.2 

2.0 

j Lr 

1.6 

1.4 

1.2 

1 0 

I:I EDSU DATA ITEM 71016 

60 

SMOOTH 
FLOW O POCHA (1971) 

1 	1 . 	1 	I 	1 	. 	I 	I 	I 	1 	I  
S 	IS 	IS 	20 	25 	30 	35 	40 	40 	SO 

ANGLE OF INCIDENCE.a• 

.F I C4  1 i I . 14"' A 	VARIATION OF MEAN DRAG COEFFICIENT WITH FLOW DIRECTION  

seg PIG.1.5 	PcA 17WOPER TIES 

of  Gg1b...(4ENERATED TuRBULENCE 

■•• 

ar  

UNIFORM FLOW • 

GRID Al 

GRID Al 

GRID A3 

•••••—• — GRID A4 

a 

0 

D AG 04 

0.2 

0 

1  -0,2 

-0.4 

-0.6 

-0.0 

UNIFORM FLOW 

GRID At 

	 GRID A2 

	 GRID Al 

GRID A4 

1 ESDU DATA ITEM 71016 
SMOOTH 

POCHA (1971) 	
FLOW 

0 

I  



- 

_ (A = 0 
. 
• 

• 

UNIFORM FLOW 
Al 
Al 
A) 
A4 

SMOOTH 
DATA ITEM 71016 	FLOW 

(1911)    SMOOTH FLOM 

---- GRID 
	 GRID 

GRID 
.....- - GRID 
--•••-•- MU 

n 	POCHA 

- 

- 

IIIIIII1 

• 

Tr.., 	..../ 
---,/ 

..•••• ... 
II 

// 

/ o 
o 

III 

.........-- -.............. --s. 

N. 	N. 
N. 

o %....... 	../". o 
......,......!..... 

- LI 
-___ 

 .-■-D- 
_--9------ _ 	________-■7:  ....--..- 

IIIIIII,111 
-..... 

1.0 

0.0 

04 

0.4 

0.2 

a_ 0 

- 0.2 

'•• 0.4 

-0.6 

-0.1 

-1.0 

-1.1 

-1.4 

-1.6 

-1.8 
-3.0 

Upstream Bar Mesh 

	

Grid 	(u2) " 	LI 	L2 	L, 

	

/43 	
distance 	size 	size 

number 	U 	(m) 	(m) 	D 	(m) 	(mm) 	(m) 
Uniform 	0.5 flow 

	

Al 	4 	0063 	0.160 

	

.4 	 0.97 	6.9 	508 	0.31 

	

A2 	 65 	
. 

1-14 	69 	88-9 	0-51 

	

A3 	8.0 	
0072 	0.188  
0-0 	0.120 073 	3-65 	50.8 	0-31 0 4  96 	

0.155 

	

A4 	12-5 	 0.94 	3.65 	88.9 	0.51 
04 

. Properties of grid-generated turbulence 

23 13 24 1 2 3 4 5 6 7 6 9 10 II 12 13 14 15 16 I? II It 20 21 
FACE A 
	 FACE B 	 FACE C 	 FACE 

TAPPING NUMBERS 

-2.0 

- 

Ci = 5 
0 

FLOW 
AI 
Al 
Al 
A4 

(1971) SMOOTH FLOW 

UNIFORM 
--- CRIO 

' GRID 
GRID 

-.... - GRID 
a 	POCHA 

- 

- 

- 

t. .. 

. 

. 

1•1 .- 1 t 1 

a 	b  
........ 

i 

a 

1 

/ 
/ 

' 

III 

...- 

- 

------- 
-----s"s  

--.- .-..... 
,...,..• ..13---tfr'  

....../ 
a 

1 1 1 

......... 

1 1 	1 I 	1 	1 	1 	1 

...-4.___ ......_...... 

I 	1  _ 14 S 16 17 IS 19 20 21 
FACED . 

- 

- 
- 

oc = 	12.5 0 

FLOW 
AI 
Al 
A3 

UNIFORM 

GRID 

---  CHID 
	 GRID 

.--•-- •-••-•-• GRID A4 
- 

13 	POCNA (1/71)5M00TH FLOW 

/'.----  
- o 0 0 	9 	p 0 

a 	
0 	0 

/ 
. 	. 

, 
_ 	. .., . ...... 

r it 11 Ili t 	i1ltl1 tt11111111 

22 23 14 1 2 3 4 S 6 ? 1 9 10 II 12 13 14 15 16 17 16 19 20 21 
FACE A 
	 FACE 11 	 FACE C 	 FACE 

TAPPING NUMBER 

1 .0 

0.1 

0.6 

0.4 

0.2 

0 

Qs 0,1 
U 

-0.4 

-0.4 

-0.1 

-1.0 

-1.2 

-1.6 

-1.8 

-2.0 

t o 

0.0 

0.6 

0.4 

0.2 

0 

- Si 

-0.4 

-0.6 

-0.0 

-1.0 

-1.2 

-IA 

7 
FACE A 

5 6 7 I 9 10 II 12 13 
FACE B 	 FACE C 

TAPPING NUMBERS 

FIG, 1.5 MEAN PRESSURE DISTRIBUTION ON A SQUINF.  
tpROD UCED FROM LEE (i9 1701 

S ECTION CYLINDER AT INCIDENCE d. 



on a stationary square section cylinder in smooth flow at 0°  incidence Fig. 1.6 a Distribution of CpRms 
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Maximum allowable length of brass and plastic tubing between 
model surface and microphone diaphragm is 2~'" 

CO-ORDINATES OF' TYPE B PRESSURE TAPPINGS ON THE 
STATIONARY MODEL AXES ARE AS DEFINED IN FIG.3 

HOLE NO. X, Y & Z HOLE NO. X, y'& Z 
CO-ORDINATES CO-ORDINATES 

1 ( 5'" 1 II 2~tf) 6 ( 2". , 1" 2i") "6' , 6 , 
2 (~. 1 " 2!") 1 (- -t" , 1 II , 2mv) 

6' , 

3 (.1.Jr '1" 6' , 2~t1) 8 ( 0 1", 2~J') 

4 ( .1. 
- 6 ' 

1" , 2i") 9 ( .1" 
' 3 1" , ~., 26 

5 ( 3" 
-'"6 ' 1", 2-!") 

Z POSITIVE IS TOWARDS THE INSTRUMENTS t END OF THE 
MODEL. 
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Fig. 2·5 Details of end plates 
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TUNNEL SIDE WALLS 
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Fig. 2.6 Oscillating model mounting procedure 
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1 *  
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-1" -1" 
_3" 4.1, •  3" 
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NATE  
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NATE 

4 0 

1 1" 1" 1" 1" 
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Fig. 2.7 Location of pressure tappings on the oscillating models 
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OSCILLATING MODEL 1  

ALL TAPPINGS ARE POSITIONED SPANWISE ALONG THE CENTRELINE OF 
FACE (Y = 0, X = 1" FOR ALL TAPPINGS) 

HOLE NO. 1 	2 	3 	4 	5 	6 

Z CO-ORDINATES 	16" 	8" 	0 	-4" 	-12" 	-14" • 

Z = 0 CORRESPONDS TO THE MODEL CENTER SECTION 

OSCILLATING MODEL 2 

ALL TAPPINGS ARE POSITIONED AROUND THE MODEL CENTER SECTION 
(Z = 0) 

Y - CO-ORDI-
NATE 

5 " 	 25 " 
1" 	1" 	32 

 
-b" 	-1" 	-1u, 	0 	32 

OSCILLATING MODEL-  3 	
• 

A) THIRTEEN PRESSURE TAPPINGS ARE POSITIONED AROUND THE MID-
SECTION OF THE MODEL (Z = 0) AS BELOW 

B) THIRTEEN ADDITIONAL PRESSURE TAPPINGS ARE POSITIONED SPANWISE 
ON THE CENTERLINE OF SIDE-FACE B (X = 0, Y = 1") 

HOLE NO. 	1 
	

2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13 

Z CO-ORDI-
NATES 

H 15u 12-im  10" 6" 2" 0 	-6,,  -9H  -112" _14"  -161" 

HOLE 3 IN ® IS TEE SAME.AS HOLE 7 IN 0) 

Z POSITIVE IS TOWARDS THE INSTRUMENTS' END OF THE MODEL. 
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(PT  — Poo= 2p Uot) IN CM --v.- 

( ALL PRESSURES WERE MEASURED WITH AN INCLINED ALCOHOL 
MULTI-TUBE MANOMETER ) 

Fig.3-1 Wind tunnel calibration 
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RMS PRESSURE COEFFICIENT AT THE 
FUNDAMENTAL FREQUENCY 

EXPERIMENTAL MEASUREMENT OF A  
McGREGOR (1957) Re 	4.3 x 10.1.  

EXPERIMENTAL MEASUREMENT OF 
GERRARD (1961) Re  = 4.3 x 104  
McGREGOR (1957) THEORETICAL 
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Fig. 4.2 Comparison of theoretical and experimental values of CP FUN  for a stationary circular cylinder 
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CIPF UN )9 11 — RMS PRESSURE COEFFICIENT AT THE FUNDAMENTAL 
FREQUENCY AT A= Tv2  

2 it 2 

3-0 

1 2.0 

81 Ls) 

cola  

— NON-DIMENSIONAL VORTEX STRENGTH (d=2a)' 
Uood 

ro 1-1  / Fig. 4.3 Potential flow model-variation of 	) kCPFUN -rt e= 
with c° Twood 	 -a- 

ro 

X XX X Mc GREGOR (1957) MODEL 
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lc 
REYNOLDS NUMBER 

Fig. 4.4 Non-dimensional vortex strength as a function of 
Reynolds number 

o 	BLOOR & GERRARD (1967) measurement x/d = 10.0 

It 	 X/d = 6.0 

Curve 1 ROSHKO'S (1954A) method using his observation of 

Curve 2 ROSHKO'S (1954A) method using Bloor & Gerrard (1967) value of K 

McGREGOR'S (1957) model using his value of (CpFuN)e = 1.51 

x 	McGREGOR'S (1957) model using Gerrard (1961) value of C — PF UN )8 = 
2 

• Present model using McGregor's (1957) value of (CPFuN)e4 

Present model using Gerrard (1961) value of 	(CPFuN) 8= 2. 

Curves 1 and 2 are taken from Bloor & Gerrard (1967). 
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SNAKING AND DIFFUSING BAND OF SMOKE 

N 

fs  = 3.38 c.p.s. 

Fig. 5.9 Wake of a stationary square section 
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Fig. 5.2 Effects of oscillation on flow configuration 
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Fig. 5.3 Effects of body oscillation on flow configuration 
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Fig. 5.4 Effects of oscillation on flow configuration 
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Fig. 5.5 Expected effects of instantaneous incidence 
on shear layers configuration 
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Fig. 5.6 Expected effects of body acceleration on shear 
layers configuration 
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FLOW AROUND A STATIONARY SQUARE SECTION 

CYLINDER . Re= 5. 2 A 103  

FIG, 5 •7 
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FLOW AROUND AN OSCILLATING SQUARE 

SECTION CYLINDER . Re= 5.2 x 103;  AID  = o.25 
foA, :.1.0 

FIG. 5,8 
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FLOW AROUND AN OSCILLATING SQUARE 

SECTION CYLINDER. Re= 5.2 x 103. 
	A41  = 0.25  

f t,2f5  

FIG. 5.9 
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FLOW AROUND AN OSCILLATING SQUARE 

SECT ION CYLINDER ; Re= 5.2 x 10
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cp,1 -4:- 0 , 5 f 

FIG. 5.10 
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Fig. 6.1 Notation for Figs. 6.2 to 6.8 
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THE SPECTRA or LIFT PRESSURE FLUCTUATIONS 

MEASURED AT THE CENTRE OF THE TOP SIDE FACE 	OF 

SQUARE SECTION CYLINDER OSCILLATING PERPENDICULAR 

To A UNIFORM FREE STREAM. 
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