
UNIVERSITY OF LONDON 
IMPERIAL COLLEGE OF SCIENCE & TECHNOLOGY 

DEPARTMENT OF MANAGEMENT SCIENCE 

METHODS FOR INTEGER PROGRAMMING 

by 

MARY NICOLAS TRYPIA 

A thesis submitted for 
the Degree of Doctor of Philosophy 
and the Diploma of Imperial College 

March 1975 



2 

ABSTRACT 

This thesis presents three new methods for the solution of 

the 0 - 1 linear programming problem. The method presented 

in Chapter 3 is the most promising and it is based on transform-

ing the solution of an n-variable m-constraint problem into a 

sequence of solutions to k (1 k m) n-variable 2-constraint 

problems which are easier to solve. 

The two other methods are tree search algorithms and mainly 

base their tests on the logical structure of the problem to be 

solved. The first one is a non-binary tree search while the 

other is a binary tree search. 

A review of Integer Programming algorithms is also made. 



3 

AC KNOWLEGME NT S 

The author of this thesis wishes to thank Dr. N. Christofides 

for his help and encouragement during this research, and also 

Professor S. Eilon Head of the Department of Management 
N 

Science, Imperial College. 



4 

CONTENTS 

Abstract 	 2 

Acknowledgements 	 3 

CHAPTER 1 

Introduction 

1.1. 	The Integer Programming problem 	 9 

1.2. 	Some types of Integer Programming problems 	11 

1. 3. 	Uses of 0 - 1 variables in modelling 	 17 

1.4. 	Contribution of this thesis 	 23 

CHAPTER 2 

Review of Integer Programming Methods 

2.1. 	Introduction 	 26 

2.2. 	Cutting plane methods 	 28 

2.2.1. Generating a cut 	 29 

2.2.2. Gomory's fractional algorithm 	 31 

2.2.3. Gomory's all-integer algorithm 	 32 

2.2.4. Cuts with different values of h 	 33 

2.2.5. Deep cuts 	 34 

2.2.6. Intersection cuts 	 35 

2.3. 	Enumerative methods 	 38 

2.3.1. The branch & bound approach 	 38 

2.4. 	Implicit enumeration 	 45 

2.4.1. Balas' additive algorithm 	 48 



5 

2.4.2. Glover's multiphase dual algorithm 	 50 

2.4.3. Balas' filter method 	 55 

2.4.4. Geoff rion's algorithm with a surrogate constraint 	59 

2.4.5. The approach of Lemke & Spielberg 	 61 

2.4.6. The "pseudo-Boolean" approach of Hammer &Rudenau 	63 

. 2.4.7. The Hammer & Nguyen approach 	 64 

2.5. 	Transformation of an Integer Programming problem in 

bounded variables to a knapsack problem in bounded 

variables 	 72 

CHAPTER 3 

A Sequential Approach to the 0 - 1 Linear Programming Problem 

3.1. 	Introduction 	 76 

3.2.1. The Method 	 80 

3.2.2. An iteration 	 82 

3.2.3. The solution of a problem Pi(u) 	 83 

3.2.4. The generation of the feasible solutions to the k 

constraints 	 87 

3.3. 	Description of the basic algorithm 	 93 

3.4. 	Improvements to the basic algorithm 	 95 

3.5.1. An example 	 98 

3.5.2. Problem P1  (u) 
	

99 

3.5.3. Problem P2(u) 
	

104 

3.5.4. The iterations 	 106 



CHAPTER 4 

Computational aspects of the Sequential Approach of Chapter 3  

4.1. 	Introduction 	 112 

4.2. 	Storage requirements 	 112 

4.3. 	Choice of the k constraints 	 115 

4.3.1. Value of k 	 115 

4.3.2. Choice of k constraints 	 117 

4.4. 	Ways of limiting the size of the solution tree 	120 

4.4.1. Ordering of the variables 	 121 

4.4.2. Use of LP and cutting planes 	 125 

4.5. 	Computational results 	 125 

CHAPTER 5 

Two Tree Search Algorithms using the Logical Structure of 

the Problem  

5.1. 	Introduction 	 129 

5.2. 	Reduced sets 	 129 

5.2.1. Definitions 	 129 

5.2.2. Calculation of the reduced sets 	 130 

5.2.3. An example 	 131 

5.2.4. Uses of reduced sets in the sequential approach of 

Chapter 3 	 131 

5.3. 	A NON-BINARY TREE SEARCH METHOD 	133 

5.3.1. Introduction 	 133 

r 



5. 3. 2. The algorithm 	 136 

5. 3. 3. An example 	 137 

5.3.4. Improvements to the above algorithm 	 140 

5. 3. 5. Computational aspects and results 	 141 

5.4. 	A BINARY TREE SEARCH METHOD 	 143 

5.4.1. Finding an initial feasible solution 	 143 

5.4.2. Finding the optimal solution 	 146 

5. 4. 3. The algorithm 	 - 147 

5. 4. 4. An example 	I 	 148 

5. 4. 5. Computational results 	 150 

CHAPTER 
Conclusions 
	

154 

REFERENCE S 
	

156 

APPENDIX I  

The flow chart of the method presented in Chapter 3 
	

166 

APPENDIX II 

The flow chart of the non-binary tree search method presented 

in Chapter 5 (section 5.3. ) 
	

168 

APPENDIX In  

The flow chart of the binary tree search method presented in 

Chapter 5 (section 5.4.) 
	

170 



8 

CHAPTER 1 

INTRODUCTION 



9 

1.1. The Integer-Programming problem  

In many real problems that can be formulated as Linear 

Programming (LP) problems the presence of non-integer values 

for some or all of the variables is physically meaningless. If, 

for example, variables represent people, machines, factories, 

e. t. c. these must obviously be in integers. In an LP problem 

the restriction of integrality for some variables leads to a. new 

type of problem krown as Integer Programming (IP). IP problems 

are in general much harder to solve than LP's and no known 

algorithm can solve efficiently general IP's with more than a few 

tens of variables as opposed to problems with tens of thousands 

of variables which can be solved quite routinely, as LP's. 

If all the variables of the problem have to take integer values 

we have the case of All-Integer Programming; if only some of the 

variables need be integers, the others being permitted to take any 

non-negative continuous value we have the case of Mixed-Integer 

Programming. This thesis is concerned exclusively with All-

Integer Programming problems and the general term Integer 

Programming is used to imply the all-integer case. 

A typical IP problem has the form: 

(i) min z = 
J = 1 

n 
(ii) subject to: 

) 

) 

a 	= b. i 	1, • • . , m 	) 
j 	1 

) 

) 
	Pt 



- 10- 

x! 	0 	 )  
j = 1, 	, n 	) 

(iv) x! integer 	
) 

The only difference of problem P' from an. LP problem is the 

existence of constraints of type (iv). 

A more general type of IP problem which is more often 

encountered than P' is the 0 - 1 linear programming problem: 

n 
min z = E c.x. 

j 1  J ) 

) 

	

subject to:a..x. b. 	i = 1, •••, 	) 	P 
j 	1 1) 	1 	

) 
x. E 	, 	= 1 , •••, 	) 

Obviously, it is possible to transform problem P' into P by 

replacing the variables x! of P' by x! = 7 2rx. where s is 
f --7: 	J r  

chosen so that it does not limit the range of x!. 

Many problems arise in practice which have the form of P 

directly. These are problems where "yes or no" decisions have 

to be made, and where one value of a binary variable represents 

a yes and the other a no. 

The emphasis in this thesis is on the 0 - 1 linear programming 

problem P and three new methods are proposed for the solution of 

problem P. 



1. 2. Some types of IP's  

It has already been mentioned that no good* algorithm is known 

for the solution of a general IP as defined by problem P'. Indeed 

it has been shown by Karp [49} that the IP problem is combina-

torially equivalent to a whole class of other well known (and 

difficult) Operational Research problems, in the sense that if a 

good algorithm is found for one:, that algorithm can be used to 

solve all other problems in the class. This class of problems 

contains most of the unsolved combinatorial Operational Research 

problems and therefore it is now believed (without proof) that no 

good algorithm for general IP's can exist [491 . However, some 

IP's with special structure can be solved quite easily and the best 

known of these types of problems will be briefly described. 

(i) IP's whose LP solution is integer  

There exist problems which are naturally integer in the sense 

that they can be solved by ordinary LP and still give integer values 

for the variables even if the integrality requirements on the n 

Here we use "good" in the sense initially used by Edmonds [771 . 

An algorithm which solves an n-variable problem in 0(nk) compu-

tations for any (constant) value of k is "good". If the number of 

computaticins is more than polynomially dependent on n then the 

algorithm is "not good". 



- 12 - 

variables are ignored. This is the case for problems having a 

totally unimodular matrix A = [ail ] and the data for b = 

is integer. (A square, integer matrix T is called unimodular 

if Pet T I = 1. An integer matrix A is totally unimodular if 

every square, nonsingular submatrix of A is unimodular). A 

typical example of this class is the transportation problem. 

However, the LP solution to P' can be integer even if the 

matrix A is not totally unimodular. E.g. the matrix: 

A = 

1 111  

1100 

1010 

1001 

is not totally unimodular but the LP solution to P' is integer if b 

is a non-negative integer vector. This is true for a 0 - 1 matrix 

A that is balanced [481 . 

Balanced Matrices: A hypergraph H = Oct) consists of a finite 

set X of n elements called the vertices, together with a family 

= 	i(E ./ EI) of m non-empty subsets of X called the edges; if in 

addition we assume U E = X, this permits us to define the 
iEI 

hypergraph H by ( E i/iEI). 

A hypergraph H is said to be balanced if every odd cycle 

(x1, E1, x2, E 2' 	, E 2p+1, x1) has an edge E i which contains 

at least three vertices x.. A 0 - 1 matrix is said to be balanced if 
J 

it is the incidence matrix of a balanced hypergraph. 



- 13 - 

Thus, when the matrix A is balanced and b is a non-negative 

integer vector, then the LP solution to P' is integer. Fcr example, 

consider the hypergraph defined by: X = {x1, x2, x3, x4} and 

_g tE 1  = {1, 2, 3} 
	

E 2  = {1, 2, 4} , E 3  = 12, 3. 	, 

E4 = 11' 3' 4.1  
 - -- -  - / 	

• 

, 
/ // "".

..  

	

, 	\ 	

▪ 

- . 
\ , . 

	

\ 	 . \ 

i / 	\ 	. 	 , \ , 	1 	 \ 	 , 
E4 / 	 N 	

■ '' 4. I 
\ 1 

( 	 '\/ ■ 
(, 
	 i 	„ 

I 	 / 	A 
I 	I 	 / 	

I
I 	 ‘ 

I 	 I 	
1 

rt El 1 
1, 	I 	1 A 

I 	 \ 	 A 	 / 	 I / 	 / 
E21 	 \■ 	,N 	 / 	1 	/ 

\ 	 1 	. 
/1 	/ 1. 

/ 	 \ 	 V .  
1 	/ 	 \ 	 A 

	

1 	 . 1 	\ I 	 \ 	. \ 	//1 
% 	 \ i 	 \ 	 / 

■ 
■ ' 

	

,N.." 	N 	/ 	/ 	3  
,.. 	t \ 	 - ..... 	■ 	 ,,/ 

• • • 	 . 	
\ 	 / .... \ 	 • 	..... 	 '' 

•.. 	 ... 	... .. 	 • 	 L '.... , ' 

■ , 

	

	 %.„ 
, s  

It can be observed that every odd cycle of this hypergraph (e. g. 

the odd cycle xl , E 1, x2, E2, x4, E 4, x1) contains an edge E 

consisting of three vertices. Thus, its incidence matrix 

1 1 1 0 

1 1 o 4 
A= 0 4 1 4 

1 o 4 
is balanced as the hypergraph is balanced. 



- 14 - 

However, the matrix A in general is neither totally unimodula'r 

nor balanced. Nevertheless, for certain other 0 - 1 matrices the 

property that all basic feasible solutions are integer remains true. 

This is the case for perfect matrices [50] . Again, this result 

. stems from Graph theory. 

Perfect matrices. Let G denote a finite undirected graph without 

self-loops and multiple parallel edges. Let a (G) denote the maxi-

mum cardinality of an independent* vertex set of G and 0(G) denote 

the minimal number of cliques** which cover G. The graph G is 

called perfect if a (G') = 0(G') for every vertex-induced subgraph 

GI of G. The matrix A is perfect if and only if it is the clique 

matrix of a perfect graph. For example, consider the graph 

of Figure 1: 

An independent vertex set of G is a set whose no two vertices 

are connected by an edge. 

** A clique is defined as that set of vertices every two of which are 

connected by an edge. 



- 15 - 

It can be observed that this graph is perfect and thus its clique 

matrix A 1 2 3 4 5 6 
1 1 
2 1 1 

3 1 1 
4 1 1 

A 5 1 1 

6 1 
7 1 1 
8 1 1 

is perfect. 

Clique matrices from graphs like the "triangulated graphs", the 

"rigid circuit graphs" are perfect. 



-16- 

(ii) "Matching problems" 

A class of IP problems whose LP solution is not necessarily 

integer but which, nevertheless, can be solved exactly using a 

polynomially bounded algorithm is that of matching problems [41]. 

The IP problem P' is called a matching problem whenever 

m  
>  I a..I -4- 2 holds for all j = 1, 	 1) , n and all a.., b. are 1 
= 1 	11  

integers. 

The class of matching problems includes the transportation 

type problems but, in addition, includes problems for which omit-

ting the integer restriction (iv) results in an LP whose optimum 

solution is not necessarily all integer. 

However, when b is a unit vector and A is the incidence matrix of 

a graph G, all vertices of the associated convex polyhedron have 
(ce›&...NX \n e4,1)) 

the values/either 1 or a  or 0. (When the graph is bipartite, its 

incidence matrix is totally unimodular and hence there are no 

vertices of value 1. ) 

The matching problem is of interest as it can occur as a sub-

problem in problems appearing in practice e.g. in the graph 

traversal problem [701 , set covering problem [51] , travelling 

salesman problem [711 . 

(iii) Set-covering problems 

A very well known IP problem having a special structure is the 

set covering problem [51], [631 ,[64] 	, [66j , which has the following 

form: 



-17- 

n 
min z =c.x. 

j42- 1 3  

s. t. 

) 

) 
i =1, ••• m ) 	(P") 

) 
j = 1/ • • • , n 	) 

Problem P" has a natural tendency towards integrality as very 

often its LP solution is all-integer. 

The set covering problem has many applications e.g. airline 

crew scheduling [581 [591 [13 , information retrieval [521 dis-

connecting paths in a graph [53] , truck deliveries [541 political 

districting [55] [56] colouring problems [571 , designing optimal 

switching in circuits [60] , [611 . 

1.3. Uses of 0 - 1 variables in modelling  

Binary variables can be used to model a variety of complex 

situations such as non-linearities and non-convexities. A few 

examples of this usage are the following: 

The fixed charge problem [62],[67],[68], [6. 

In this type of problem a binary variable plays the role of a 

"valve" for releasing (or not releasing) a fixed cost. Here, a 

variable that involves a fixed charge d. is expressed as x. + d.y. 
J 	 J 	J 

where y. {0, 11 and x.
J 
 0. If x.

J 
 = 0 ---). y. = 0 and if 

xj> 0 —0y. = 1. This is ensured by introducing the constraint: 

x
J  
. -.11/Iyi  where M is an upper bound on x.

J
. For example if the 

production on a machine j has two cost components, a setup cost 



- 18 - 

d.
J 
 and a variable cost per unit c. , the total cost of produc- 

tion on machine j is 

	

	
J 

c.
J
x.

J 
 + d.y., and x. is related to 

y 
 . by: 

J J  
x. 	

3T 
M . i.e. 	

J 
e. the total cost is 0 if xi = 0 and d. + c.x. if x.> 0. 

J  
A particular problem of this type is the fixed cost transporta-

tion problem [62] which is a transportation problem in which a 

fixed charge arises for every route used. 

In addition, the plant location problem [67] , [68] , [61 is 

of this type. Suppose that there exist m possible locations, with 

location i admitting a plant of capacity ai  and requiring a fixed 

investment di  and there are n customers the jth one demanding b. 

units of a particular commodity. Let the cost per unit of supply-

ing customer j from plant i be c. . Then the problem is: 

m n 
min > (Z c..x.. + d.y.) 

i =1 j  = 1  13 1) 	1 1 
m 

s. t. 	l7 lx.. = b. 	j =.1, 	, n 
=  

xi4  aiyi  i = 1, ..., m 
j=1 

xij  0 yie{0, 1} all i and j 

Non-convex feasible region 

When the feasible region of a continuous problem is not convex 

binary variables are used to represent the non-convex set as a 

union of convex sets to indicate which convex set is currently active 



19y2 	-15 

- 19y3 	-15 

Y1 + Y2 + Y3 
	1 

xi, x2  a,  0 

Y2, Y3C--{0, 

-19- 

For example, if the feasible region has the shaded form: 

the three disjoint convex sets can be expressed as follows: 

+ X2 
	 e 8 

xl 	7371 
	 10 

	

x2 + 7y1 
	 10 

When yi  = 1 the solution is in region C, when y2  = 1 the solution 

is in region B and when y3  = 1 the solution is in region A. 



- 20 - 

Piecewise linear approximation of nonlinear functions 

Consider the problem of approximating ,a non-linear function 

as shown [72] : 

We have to know in which portion of the function we are and for 

this reason 4 binary variables yl , y2 , y3 , y4  are introduced with 

the constraints: 

yl. + Y2 + y3 + Y4 
211  

21k 

5 
ak k=1'  

• y1  

• Yk - 1 + Yk 

• y4 
= 1 

k= 2, ... , 4 

yi , y2 , y3, y4  E {0, 	, 	k  0 	k = 1, 	, 5 

where ..)1k  represent' the weights attached to the points Pk  and no 



-21- 

more than twos k 
(of the formk' 	k + 1) are positive. 

The above constraints ensure that whichever yk  is equal to 1 

the .71t s associated to 13' s which lie outside the range of the 

section corresponding to yk  = 1, must be zero. For example, if 

y2 =1,  y1 =  y3 = y4  = 0 and )2  -41, x3 41 all other ,\ = 0. 

Capital budgeting [781 

Consider a firm which is faced with the problem of selecting 

some projects out of a total of n since it cannot undertake all n 

projects due to budget limitations. Say that cj  is the present value 

of project j and a. j  is the amount of investment required by project 

j in time period 	... m,  and b. is the capital available in 

time period i. Then, the problem of maximizing the total present 

value subject to the budget constraints can be written as: 

n 
max 	c.x. 

j 1 
n 

s. t. ,E a..x. b. 

xiE {0, 1} 

= 1, •••1 

j = 1, • • • , n 

where x. = 1 if project j is selected, x. = 0 otherwise. 

Problems of this type have a special structure since c j  , a.., 

b. 0 and this can be exploited accordingly for their solution. 

Scheduling jobs on machines [73],[74],[75] ,[7(1. 

Consider the problem of scheduling n jobs, i = 1, 	, n on 

machines, k = 1, 	, m. Let each job require exactly one 



- 22 - 

operation on each machine and assume that the operations on each 

job must be done in a specified order. Let rijk  be defined as 

follows: 

rijk  = 1 if the jth operation of job i requires machine k 

rijk 0 otherwise 

Let the processing time of job i on machine k be tik and let Xik 

denote the starting time of job i on machine k. To ensure that no 

two jobs are processed on the same machine at the same time, 

the following constraints are introduced: 

xrk - x 	tsk - Myrsk 

xsk - xrk •••• trk - (1 - yrsk)  M 

YrskE fo' 

for all pairs of jobs r and s and all machines k and where M is 

arbitrarily large; vrsk = 1 if job r precedes job s on machine k 

and vrsk = 0 otherwise. 

Another set of constraints is required for each job i to ensure 

that its operations are done in the specified order: 

m 	 m 

k  7 i r jk (xik + tik  ) k 	r. . + 1, k x. 	j = 1, • • • , m - 1 

m 
where k  Tr..  xik  denotes the starting time of the jth operation of ijk 

job i. 

There are many possible objective functions that can be used 



- 23 - 

for the above problem. A common one is to minimize the sum 

of the starting time of the last operation of each job: 

n m  
min 	> r x. I imk i=1 k = 1 

1..4.  Contribution of this thesis  

The subject of this thesis is the 0 - 1 linear programming 

problem and three new methods are presented for the solution 

of this problem. 

The method of Chapter 3 is the most significant of the 

three and it is a new approach to Integer Programming. It is 

a departure from the "traditional" approaches to this problem 

as it is neither in the vein of cutting plane algorithms nor in 

the vein of branch and bound methods. Nevertheless, concepts 

arising from the cutting plane approach can be easily incor-

porated in this method and further reduce the computing times. 

The computational aspects of the method are presented in Chapter 

4 and its performance is demonstrated to be exceptionally good 

especially for dense problems having "small" coefficients. Its 

effectiveness in solving randomly generated problems (unstruc-

tured) of 100 variables is noteworthy. 

The two other methods presented in Chapter 5 are tree-search 

algorithms with their search method based on the logical struc-

ture of the problem to be solved. The main deviation 



- 24 - 

of these methods from other related schemes is in the branching 

process and in the way that a partial solution is fathomed. 

The computational results of these methods are not as good 

as those of the Chapter 3 method but nevertheless they can be 

promising especially if stronger bounds are introduced. 



- 25 - 

CHAPTER 2 

REVIEW OF INTEGER PROGRAMMING METHODS 



- 26 - 

2.1. Introduction  

Unlike Linear Programming, Integer Programming has no 

general method comparable to the Simplex to offer. Unfortunately, 

so far, no IP method has been capable of solving problems of an 

arbitrary nature of modest size in a reasonable amount of time, 

even if certain methods have been very successful in solving large 

problems of a special structure [41]. A basic feature of the IP 

methods is that they do not behave uniformly over all classes of 

problems, i. e. a method can be better for a certain class of prob-

lems than it is for others. 

IP methods fall into two main categories: 

1. Cutting plane methods 

2. Enumerative methods 

The approach of the first category was historically the first 

that was proposed for solving general IP problems and the found-

ations were laid by Gomory in 1958 [18] . 

The second category of enumerative methods is represented 

by a very large number of algorithms. These algorithms come 

under the headings of "branch and bound", "tree search", and 

"implicit enumeration;' with implicit enumeration being the name 

often given to a class of "branch and bound" algorithms designed 

specifically for the case where the variables are binary. 



- 27 - 

Other types of methods are the "Group theoretic approach" 

and the "knapsack type approach". The former solves an LP 

problem over its corner polyhedron while the latter transforms 

the IP problem of more than one constraints into a knapsack 

problem of one constraint. 

It is widely felt that a combination of the cutting plane approach 

with the branch and bound approach might lead to better algorithms 

for Integer Programming. 

The methods to be reviewed here are some of the "corner-

stones" of Integer Programming as these have laid the foundations 

of further developments in the field, e.g. (18) , 116) , [1) , [3) 

Also, a description is made, of some of the tools to be used 

in the new methods presented in Chapters 3, 4, 5. The emphasis 

is on implicit enumeration algorithms as these are closer to our 

subject matter, the 0 - 1 linear programming problem. Here, 

some preliminary tree-search concepts, used later in the methods 

of Chapter 5, are explained. 

Apart from the cutting-plane, branch and bound, implicit 

enumeration algorithms, a review is also made of the knapsack 

transformation of an IP problem, since this is loosely related to 

the method given later on in Chapter 3. 



- 28 - 

2.2. CUTTING PLANE METHODS  

These methods use LP iteratively and at each iteration 

derived constraint(s) are added which "cut off" part of the 

convex set so that the current solution is eliminated but no 

integer solution is excluded. These derived constraints are 

' called cuts. The objective, here, is to reduce the convex 

set by adding cuts without eliminating any point of the convex 

integer hull so that in due course an optimal extreme point of the 

reduced convex set coincides with an optimal extreme point 

of the integer convex hull. Understandably, the crux of the 

problem is to generate efficient cuts that reduce the convex 

set appreciably each time a cut is added, so that in a finite, 

hopefully small, number of iterations an optimal integer solu-

tion is found. An even better approach on these lines would 

be the "efficient" generation of facets of the integer convex 

hull in the region of the LP optimum. These facets cannot 

unfortunately be generated efficiently but they would result in 

the strongest possible cutting planes. 

Usually, these methods are dual in the sense that the first 

feasible integer solution found is also optimal. This can be a 

disadvantage in practice as one might wish only a feasible 

solution, not being prepared to pay for the cost of finding the 

optimal solution. Computational experience with cutting plane 



- 29 - 

algorithms has been confined to small problems [11 and the 

behaviour of the early algorithms has been somewhat erratic. 

An exception has been the work of Martin [12] [13} who has 

had outstanding success in solving large problems of a special 

structure, which have natural tendency towards integrality i.e. 

their LP optimums have a large part of their basic variables 

at an integer value. (Problems related to networks, the travel-

ing salesman problem, set covering problems are of this 

category). Martin's experience has been on crew scheduling 

problems and he reports outstanding computational times [13] . 

We now come to the description of how to derive the "fund-

amental cut". 

2.2.1. Generating a cut 

Consider the IP problem: 

max C X 

S. t. Ax = b 	) F 

x 	0, integer ) 

where c is an n-component row vector, b is an m-component 

column vector and A is an m x n matrix. 

Suppose that problem F, without any integer constraints has 

the LP representation: 

xB.  = yio  >  yi.x. i = 0, 1, 	, m 	(1) 
1 j ER 



- 30 - 

where R is the set of the non-basic variables so that the basic 

solution determined by (1) is x, = y
" 

 i = 0, 1, • • • m and 

x. = 0 j GR. Multiplying (1) by h 0 yields: 

hxB. + 	hy;.x. = hyio 	(2) 
j eR 

Let [a] denote the integer part of a and f its fractional part 

so that a = [a] f, where 04 f <1. The requirement x 	0 

implies that 

[h] xa  + x. 	hy.0  1 j ER 	13 	1 (3) 

Moreove; since x is required to be integer the left hand side of 

(3) must be an integer and it should not exceed the integer part 

of the right hand -side of (3). This implies that: 

[hi x + 	[hy.1 xj  B i jeR 
L 

[hYio] (4) 

Eliminating xB  between (1) and (4) we have: 

( 	- [hyl. J.] ) xj. 	[- y. - [hYi01 	(5) 
eR 

Relation (5) is the fundamental cut [15 ] and by using it in various 

ways a number of cuts and cutting plane algorithms can be developed. 

In the sections that follow some of the most characteristic cut-

ting plane approaches are described. 



- 31 - 

2.2. 2. Gomory's fractional algorithm [181 

When h = 1 in equation (5) we have the cut of the fractional 

algorithm. Thus, letting h = 1, (5) becomes: 

Z
R  (Yii 	[Yij] ) xj 	Yio brio] 	(6) 

j e  — 

and introducing yij  = [ yij] + fij  we obtain: 

j e 
Z 

R 
 f..x. 	f. 
 3  

Or 	S = -f. + Z f..x. s 
j rc, j' E 

Moreover, s must be integer since from equation (1) we can write: 

xB. -(-fio j e fi.xJ) 	Yiol 	. E R - 	[yid x.), ER   

and the quantity ( [yiol - Z y..] x.) is integer. If fio> 0, 11 j ER 
(8) is violated by the basic solution determined from (1) and so the 

relation (8) can be used to exclude the current basic solution. 

Also, (8) does not exclude any feasible integer solution since it is 

implied by the necessity of integrality. Thus, the basic algorithm 

can be stated as follows: 

Step. 1 Solve problem F by LP (using the dual simplex technique) 

Go to step 2. 

Step 2 If the solution is integer; it is optimal. If not, go to step 3. 

Step 3 Choose a row r with f ro>0 and add to the bottom of the LP 

(7) 

(8) 



- 32 - 

tableau the constraint (8) with i = r. 	Reoptimize using 

the dual simplex technique. Go to step 2. 

A basic weakness of the above algorithm is that after a few 

initial iterations massive degeneracy can occur. This phenom-

enon frequently arises in medium and large-scale problems and 

sometimes even small-scale problems have require thousands of 

iterations to achieve convergence 1171 

Another weakness of the method is that it is subject to round- 

off errors, while it is essential to recognise integers. Failing to 

recognise an integer could cause unnecessary iterations, invalid 

cuts and even loss of an optimal solution. Conversely, the 

improper identification of an integer could cause false termination. 

2. 2. 3. Gomory's all-integer algorithm [15 1 

This method assumes that all initial coefficients are integers 

and keeps all the coefficients integer throughout the pivoting 

operations. The starting point of the method is a dual feasible 

solution. A cut is generated in such a way so to keep the pivot 

element equal to -1 and ensure the integrality of the tableau. By 

using (5) as a cut there exists an h, 0 < h < 1 so that the current 

basic solution is eliminated and the pivot element is -1. Selecting 

any primal infeasible row, say the rth, and rewriting (5) as an 

equality with 0 < h < 1 we obtain: 



- 33 - 

[ hYro = i [hy .1 x. + s, s 0, integer 
jR 

(9), 

It can be shown [11] that, in order 

1. to retain an integral tableau 

2. to retain dual feasibility 

3. to have the largest decrease in the objective function, the 

value of h should be: 

M. 
h -.5- min 	J - h*< 1 

jERr  Yrj 

where Rr = jy rj<0,  jER } , k is the pivot colunin, yok  = min y oj  , .ER  
i 	r 

and 	 - M. = 	-237  j- 	If h*-1 any h <1 for which h -4  min M.  suffices 
l 	Yok 	 i E nrYri 

to satisfy the conditions 1 and 2 above. 

In the all-integer algorithm only one cut can be added at a time 

while in the fractional algorithm there exists the possibility of add- 

ing many cuts simultaneously. 

2.2.4. Cuts with different values of h [18},  

For any integer h, the fundamental cut (5) can be written as: 

R 
(hf.. - [hf..1 	) x. e 	1 

	

hf.0 	1 - hf.0 	(10) j  

It can be noted that when h = 1, [hf. 	= 0 and (10) specializes to 

(7). Sometimes, when h> 1 (10) can yield stronger cuts than (7). 

We could optimize the value of h after specifying a certain criterion, 



- 34 - 

for example we could maximize (hfio - !hfio! )and thus use the • 

best integer value of h. Also, additional cuts of the form (5) can 

be generated from integer linear combinations of source rows. 

Finally, it may be possible to obtain stronger cuts when the 

value of h is non-integer [19] 

2. 2.5. Deep cuts [20] 

Consider the Gomory fractional cut given by 
j 	

f..x. 	f. . lo e R 

If this cut is not satisfied as an equality by any xe S, where S is 

the set of feasible integer solutions, then the Gomory cut can be 

made deeper in the sense that there exists a t >fix) such that the 

cut: 

f..x. 	t 
jeR 1-1 

is still valid, i. e. it does not exclude any feasible integer solution. 

The deepest possible cut, then, corresponds to the smallest value 

of t for which the equality > f..x. = t is satisfied by some xE S. 
jeR 

Thus, 

t= min E f..x. xeS 
jeR 

'However, to solve problem (11) is difficult, so a relaxation on the 

solution space can be introduced to make the proposal practical. 



- 35 - 

2.2.6. Intersection cuts 	[211 , (221 , [23] 

One can develop cuts which can exclude a current solution but 

no integer solution and are based on geometric properties. 

Let S represent the set of feasible integer solutions and T represent 

the set: 

x/ x = yo  -Z
"  

yix„ xi 	j ER } 	(12) 
j ER 

where y.
J 
 = (ylj 	, Ynj) and x = (xi ,... , x n).  

T does not require the basic variables to be either non-negative or 

integer, so that Sc T. Geometrically, T is an n-dimensional cone 

with apex at x =y0  and edges given by the extreme rays 

r. = y
0 
 - 0.y. 	0, jeR 	(13) 
 J J' 

These n extreme rays are linearly independent and therefore have 

a unique intersection point at yo. Now, if we consider a closed 

and bounded convex set C in n-space containing yo  in its interior 

(yoe C -Cb, where Cb  is the boundary of C) it can be shown that 

there exists a unique e
J 	J  , 	°. > 0 for each jeR, such that: 

y  goy. 	po
j  e Cb o 	j 

The points. (see Fig. 1) where the rays of the cone meet the 
PJ 

boundary of the convex set, determine the hyperplane: dox = do 



- 36 - 

Fig. 	1  

This 	a 
because  

intersection point (.3s yo with the hyperplane,kand we can 
pi 

assume that d°yo  >d°o. If we partition T into T1 and T2 as 

follows: 

unique 
`i a u e"-  

4,2 (..)0() kat“--11) 

T1  = T fl {x/d0x>d°0  

T2 = T n {x/ex d° 

then yoeTi. T1CT3  = T (1 {x/ex-- d°0} and T3 has extreme 

points 	 joints I EP, yo} (1D°  = fp°./ GR} ) and each of these extreme 

points belongs to C. Thus T3c.C. The only elements of T3  that 

are in Cb are the elements of P°. 

if (C - cdn S 

constraint: 

Thus T1 	- Cb. So, 

= p then Tin S = 9' so that ST2. Thus, the 

d°xG do 	(14) 

excludes y°  but no integer points. 

The cut (14) is an intersection cut. The problem is to find a 



- 37 - 

suitable convex set C so that: 

(i) yoe C - Cb  

(C - Cb) fl s = p 

and for computational reasons C should be chosen such that the 

coefficients (d°, do) can be easily found. 

Balas [21] proposed as convex set C the hypersphere circum-

scribing the unit hypercube which contains the LP optimum and 

has integer vertices. The cut is then generated by the intersected 

points of the half-lines originating at the LP optimum with the 

hypersphere. There have been many proposals recently for 

choosing a convex set C. e.g. [26] , [27] , [22] , [ 28] , 

[29] , [23] . 

While this approach of the intersection cut is very appealing 

theoretically, it can present many computational problems as n 

intersection points with the boundary of the convex set have to be 

found. Convex sets that give good cuts present computational 

problems and vice-versa. Burdet & Breu in [25] report 

unsatisfactory experimental results on intersection cuts. 

A common feature of the cutting plane approaches is that they 

can be very effective in the initial iterations while in the subse-

quent iterations they are slow. This discrepancy of performance, 

if used intelligently in combination with other IP approaches, can be 

advantageously exploited. 



- 38 - 

2.3. ENUMERATIVE METHODS  

This category includes the branch and bound type of algorithms 

and the implicit enumeration type. The latter is specifically 

applied to the 0 - 1 linear programming problem. These two 

types are very similar in nature; both use a tree structure to 

represent the solution process and a backtracking procedure to 

examine if any undeveloped branches need further investigation. 

The methods under the heading of branch and bound tend to base 

their fathoming tests on the associated LP problems while implicit 

enumeration approaches primarily base their tests on the logical 

implicatio-ns of the constraints. However, there are algorithms 

which incorporate both approaches. 

All methods employ heuristic rules of a kind that we shall 

describe. . 

2.3.1. THE BRANCH AND BOUND APPROACH [32) , [ 33] , 

[34] , [35] , [36] , [37] 

The pioneering work in the field was that of Land & Doig [16] , 

which was modified by Dakin [30] . Usually, the branch and 

bound algorithms can be also applied to the mixed integer program-

ming problem. Here we shall examine its application to the all 

integer programming problem. 



- 39 - 

Consider the IP problem: 

max cx 

s. t. Ax = b 
	

F 

x 	0, integer 

The traditional branch and bound algorithms solve a series of LP 

problems derived from F and which differ in their solution domain. 

Each node of the tree corresponds to a certain LP problem with 

its respective solution space. A node is said to be fathomed when 

any further exploration from that node is not necessary. A node 

that is not fathomed is called live. 

A node has to be chosen among the live ones so that this node 

becomes the next one to consider-for fathoming or separation. In 

the latter case, the solution space corresponding to the chosen 

node is pakitioned by: 

1) Selecting a variable x. which has a fractional value in the 

LP optimal solution corresponding to that node, 

x.=[x +f 0<f<1, 
J 

and 2) applying the dichotomy: 

so that two nodes are created. 

The variable x. is then called the separation variable. In the case 

where the node is fathomed one either backtracks until a live node 



- 40 - 

is encountered or one chooses a new live node to branch from 

by other considerations; the course of action depends on the 

specific algorithm. The enumeration is complete when there 

are no live nodes left. The whole procedure involves the calcu-

lation of bounds on the objective function in order to accelerate 

the process and curtail enumeration. 

A basic branch and bound algorithm is as follows: 

Let a lower bound to the optimal value of the objective function be zet. 

Step 1 Solve the LP version of problem F without any integrality 

requirements. If all the variables take integer values, this 

is the optimal solution of F. If not, go to step 2. 

Step 2 Choose a variable which has a non-integer value. Employ 

the dichotomy (15) and add the two resulting LP problems 

to the list of unsolved problems (live nodes). Go to step 3. 

Step 3 Choose an unsolved problem from the list and go to step 4. 

If there is no problem in the list, then the process term-

inates. The best feasible integer solution found so far, if 

any, is the optimal. Otherwise the problem has no feasible 

solution. 

Step 4 Solve the chosen problem as an LP. If it has no feasible 

solution or if the resulting optimal value of the objective 

function z is less than or equal to z°  then the node is 

fathomed. Go to step 3. Otherwise go to step 5. 



- 41 - 

Step 5 If the optimal solution to the LP problem satisfies the • 

integrality requirements, record it and let its optimal 

value replace the value z°, go to step 3. Otherwise, go 

to step 2. 

The different branch and bound algorithms mainly differ in 

a. The bounds that they employ to facilitate the fathoming 

process of Step 4. (In the above description only the LP 

solution is used for bounding). 

b. How one selects the separation variable in step 2, 

c. and how one chooses the live node on which to branch 

a. Calculating bounds 

' An idea that had found widespread application is that of penalties, 

[32] , [33] , [34] , [35] . The values of the penalties are extracted 

from the optimal LP tableau and express the amount by which the 

value of the objective function is decreased if a certain constraint 

(15) is imposed. Penalties can be found for every basic variable and 

for each constraint of the form (15), so that each variable has a 

"down-penalty" and an "up-penalty". 

Consider the variable xB. = [ yio + fio . If the constraint xB 4- [ y. 

is introduced the corresponding decrease in the value of the 
. 0yok objective function after the first dual simplex iteration is: f1 
Yik 



- 42 - 

Thus, we say that di  is a down-penalty: 

d. = min [ fi°Y-ij  °i   , y> 0 1 
Y  jGR 

where R is the set of the non-basic variables; di  is a lower bound 

on the decrease of the value of the objective function if the separ- 

ation variable is xa. Similarly an up-penalty corresponding to 
, 

the constraint xB. -4  y. J + 1 is: io 

YOj . - 1) 	, y..< 0 } u. = min [ (f . 	 y.. 

Since, either xa or xB. [ y. 	+ 1 must be imposed, {- io 

p. = min (u., d. 

is a lower bound on the decrease of the objective function when the 

separation is based on xrt  

Another bound can be derived by taking into account the 

integrality requirement on the non-basic variables. For example, 

some non-basic variable must become positive and therefore not 

less than one. Thus, a simple valid bound which does not depend 

on the partitioning row, can be: 

p = min y . eR  of 

■ 
b. The choice of the separation variable  

Several rules have been proposed to select the separation 



- 43 - 

variable and one that has been widely adopted is to select that 

variable xB with the greatest "up-penalty" or "down penalty" [301. 
k 

The associated bounds of the two descendant problems that are put 

in the list are then: 

z +- 
uk 

z + dk 
where z is the value of the objective function of the parent node 

problem. 

c. Choice of a node to consider next  

There are basically two strategies for choosing the node to 

consider next. The first, which is the one most often used, is the 

"depth-first" approach where one branches on the most recently 

created problem. This approach facilitates the computing process 

as no searching of the list of problems (which await solving) is 

necessary, if one puts the newest problem on the top of the list, 

and "push down" the problems already in the list. So, each time 

that step 3 has to be performed the "top" problem is examined. 

The aim of this strategy is, obviously, to find an integer feasible 

solution quickly. This policy has the advantage that a minimum of 

computer storage is required, since the "top" problem in the push-

down stack can always be generated from the current state of the 

search without explicitly storing the whole stack. 

In, the other approach: "Branch from lowest bound" one selects 



- 44 - 

that problem for consideration which has the lowest bound associated 

with it. The advantage of this policy is that the total number of 

branching operations is at a minimum. 

, z 

I 



- 45 - 

2.4. IMPLICIT ENUMERATION  

Implicit enumeration algorithms apply to the all-integer prob-

lem and specifically to the 0 - 1 linear programming problem: 

min z = 

s. t. 

n 
c.x. 

j 	1 

n 
a..x. 

j = 1 

x.e {0, 1} 

b. 
1  

i = 

j = 1, • • • , n 

m 

) 
) 
) 
) 
) 
) 
) 

A "partial solution" S is defined as an assignment of binary values 

to a subset Ns  of variables, Nt N where Nis the set {1, 	, n . 

The variables of the set (N - Ns) are called "free". A partial solu-

jtion is augmented by fixing a variable x., GN - Ns, at the value 1 

or 0.. A completion of a partial solution is the solution resulting 

from fixing all free variables each of them at either 1 or 0. 

A partial solution S is fathomed when one of the following condi-

tions is true 

S has no feasible completion. 

The best feasible completion of S has a value z, which is 

worse than the value of the incumbent z°  (best feasible 

solution already found). i.e. z z°  since problem P is 

being minimized. 

(iii) S has a feasible completion whose value z is better than the 

currently known value z°. In this case, 	is replaced by z, 



- 46 - 

and the currently best solution is updated. 

If a partial solution cannot be fathomed, it is augmented by 

setting one of the free variables to either 1 or 0. 

The whole procedure can be viewed as a solution tree where 

each node corresponds to a partial solution S and the arcs indicate 

how a solution was obtained from a previous partial solution. A 

basic feature of the algorithms which come under the heading 

implicit enumeration is the use of the backtrack procedure. 

The pioneering work in the field of implicit enumeration was 

done by Balas [1] . Other work in this area is [ 2] [ 3] 	[ 4] / 

151 , [61 , [7] , [8] , and many more. 

These algorithms can mainly be distinguished by their method 

of fathoming a partial solution, and by their method of augmenting 

a partial solution. The general framework of these algorithms is 

as follows [ 	: 

The notational convention adopted is: if j is an element of S 

this implies x, = 1 and if -jCS this implies x. = 0. Hence,if n = 5 

and S = I 3, 4, -2 1 then x3  = 1, x4  = 1, x2  = 0 and x1, x5  are free. 

The underline of an element of S denotes that the partial solution 

which is identical to S up to the underlined element but with that 

element replaced by its complement, has been fathomed. E.g. 

S'= [3, 4, 2 denotes that S = (3, 4, -21 has been fathomed. 



- 47 - 

The simplified procedure 

Initially S = fa or any other partial solution without any under-

lines. The general procedure then,is: 

Step 1 Attempt to fathom S. 

If the attempt is successful go to step 3. 

If not go to step 2. 

Step 2 (Augmentation) Augment S by adding on the right j or -j 

where x. is any free variable. Go to step 1. 

Step 3 (i) If all completions of S are infeasible go to step 4 

(ii) If the best feasible completion of S is better than the 

incumbent solution store it as the new incumbent and 

go to step 4. 

If no feasible completion of S is better than the incum-

bent go to step 4. 

Step 4 (Backtracking) Locate the rightmost element of S which is 

not underlined. If none exists terminate, the optimum 

value z* is equal to the current zo. Otherwise, replace 

the element by its underlined complement and delete all 

elements to the right. Go to step 1. 

The procedure just described applies the depth-first approach. 

As it was mentioned earlier, the algorithms differ mainly in their 

application of steps 1 and 2. The tools that these algorithms use to 

accelerate the fathoming process can be classified into three main 



- 48 - 

categories: 

a. Logical analysis of the structure of the problem. 

b. Use of a surrogate constraint. 

c. Use of LP. 

The main limitation of the algorithms under category (a) is 

that they tend to apply their logical tests to only one constraint at 

a time, so that the joint implications of several constraints are 

lost. A remedy to this shortcoming is the introduction of the 

surrogate constraint which can capture more of the joint impli-

cations of the set of constraints. 

The most efficient algorithms under the heading of implicit enum-

eration use a combination of (a), (b), and (c) and of t hose, 

Geoffrion's [42] where LP is used throughout the process of 

the algorithm, seems to be the most efficient. Balas, in his 

filter method [43 uses LP at the beginning of the algorithm, to 

create a surrogate constraint which, however, is "loose" and is 

not adapted to the new information generated during the process 

of the algorithm. 

We come now to the description of some of the most represen-

tative methods of the field of implicit enumeration. 

2. 4.  1. Balas method [1] as formulated by Geoffrion [2] 

Consider problem P in matrix form' 



- 49 - 

min cx 

s.t. Ax 	b 	) P 
) 

xiE10, 11 ) 

The fathoming of a partial solution S applies the tests (1) and (ii) 

as shown below. Define the set of variables Ts: 

OTs  = j free: cxs  + c. < z°  and a1.j>  for some i such that ys. < 0) 

where xs is the completion of S when all free variables take the 

value 0, z°  is the current value of the incumbent, and ys  = Axs  - b. 

(obviously, if there exist some yis< 0, the solution xs  is not feasible 

to problem P. ) 

(1) 
	

If TS  = 9' then there cannot be a feasible completion of S 

that is better than the incumbent since no free variable can 

take the value 1 and contribute to feasibility without leading 

to a higher value than z°. 

(ii) 	If 3TS + 	max [ 0, aij  j< 0 for some i such that y. < 0 

then there is no way to select free variables so to eliminate 

infeasibility. 

The augmentation stage of this algorithm proceeds as follows: 

Select that j, j Ts  which creates the least amount of total infeasi-

bility in the next xs  i.e. select that j which makes 

rn 
:nth ys a1j Y, 	. 0 1 1 	, 

an algebraic maximum. 



- 50 - 

Once a solution is fathomed the algorithm backtracks. 

Improvements on the above algorithm  . 

Many improvements can be applied to the above algorithm and 

some of them are as follows: 

In step 2 (section 2.4.1.) only one variable is added in S at a time. 

In general, a partial solution S can be augmented by a collection of 

elements rather than by one element. This obviously does not 

exclude any feasible completions of S that are better than the 

incumbent [ 2 ] . 

The infeasibility measure used in step 2 for augmenting S is only one 

of many alternatives. For example, one could measure infeasibility 

by the most infeasible constraint or by the number of infeasible 

constraints 2]. 

Glover & Zionts [4 ] proposed an improvement for the test 

(ii) of Balas, which is the following: 

If there exists a constraint i such that ys< 0 and I ys. --ci  -4- 	cx i   1 a..+ 

for all jells  (aid > 0) then there are no feasible completions of S 

that will improve on the best solution already found. 

2.4.2. The "multiphase-dual" algorithm of Glover [31 

Consider problem P in matrix form as in 2.4.1. 

The basic feature of the method is the use of a surrogate 

constraint or s-constraint which is defined as a non-negative 

linear combination of the constraints of P, and which has the form: 

ax bo 



where a is an n-component row vector and bo a scalar, and 

a = wA ' bo = wb where w is an lx m row vector ww 	w ) 1' 2 " 
such that w 	0 and w.> 0 for at least one i, 	m. It may be 

noted that each of the constraints of P is a special case of the 

s-constraint, obtained by assigning a weight of 1 to the indicated 

constraint and by assigning all other constraints a weight of 0. 

The function of the surrogate constraint is to serve as a substitute 

for some of the original pi-6131m constraints in guiding the progress 

of the algorithm. 

Consider the one-constraint problem: 

min cx 

s. t. ax 	bo 	) P" 

I

)  
x. E o, 1) 

P" is a relaxation of the original problem P. If the optimal solu- 

tion of P" is feasible to P, then it is the optimal solution of P. 

Given two s-constraints derived from the same problem P, 

the first is "stronger" if the optimal solution to P" obtained with 

that constraint yields a greater value for cx than the optimal 

solution to P" obtained with the second constraint. 

The aim, of course, is 

1. 	to find a strong s-constraint 

2. 	to find solutions of P" that are also feasible to P. 



- 52 - 

Before illustrating the method of deriving a strong s-constraint, 

we have to describe how one can obtain a good approximate solu-

tion to P", something that will be used in deriving a strong 

s-constraint. 

Consider problem P". In any optimal haastienat solution to 

P" and in any optimal integer solution to P", the following is true: 

	

Oif c.
3 	

and 	a. -'- 0 	> 	Ox
3  
. = 

3  
if c. < 0 	and 	a. > 0 	> 	x. = 1 

	

3 	 3 	 3 
Thus, problem P" can be reduced to a smaller size problem where 

 > 0, by making the substitution for each j , 
3 3 	 a 	

J for 

those j for which C., a. < 0. An auxiliary indexing of the variables 
( 

	

	 J 	3 
can now be defined such that: 

c. 	c. 
„ 

	

p < q if 	 -r- a3 a, 

	

 
jP 	 jcl 

Further, let r be the least integer (1 r n) for which 

a. b Then, an optimal '1 solution to P” is 

	

p r 3p 	° 

given by: 

	

x. = 1 	if 	p < r 

	

x. = 0 	if 	p> r 

(bo - a.
- 
 ) 

and x. = 	p> r p  a. 
3r ir 



- 53 - 

of course, if r does not exist (i.e. Z ak< bo) then P" has no 
n 

feasible solution. 

An approximation to the optimal integer solution of P" is given 

by: 

Begin with q = r - 1 and then decrease q by steps of 1, removing 

each a. from E a. which allows the sum of the remaining terms 
jq 	p r 3 p 

to equal or exceed b0. Then set: 

= 0 if p >r or if a. was removed from the summation, 

x. = 1 otherwise. 
Jp  

Creation of the best surrogate constraint  

Let x denote a feasible solution to P" where P" is defined 

relative to a given surrogate constraint . Then / may be divided 

into two component constraints F and G (i. e. = F + G) where F 

is a linear combination of those constraints of problem P that are 

satisfied by x and G is a linear combination of those constraints of 

P that are unsatified by x where the weight given to each constraint 

composing F and G is the same weight as the constraint had in the 

surrogate constraint. . Further let f denote the amount by which x 

oversatisfies F and g denote the amount by which x undersatisfies G. 

(Obviously f g since is satisfied by 17). 

The constraint F + kG will be satisfied by x for 0 < k —f and 

will fail to be satisfied by x when k = 1  + E where s is a small 

positive number. In 13 E. is taken as a = 0. 1. Using the above, 

the strongest surrogate constraint is then derived as follows: 



- 54 - 

A "stopping rule" is established to limit the number of s-constraints 
• 

that will be produced as candidates for the selected strongest s-

constraint. Say that this number is X. 

Step 1  Create an s-constraint by assigning each constraint of P 

a positive weight, say unity. Go to step 2. 

Step 2 Find a good approximate solution to P" (as described 

above) where P" is defined relative to the current 

s-constraint. If P" has no feasible solution neither does 

P and the process terminates. If P" has a feasible solu-

tion X, go to step 3. 

Step 3 If this step has not been visited before, go to step 4. If 

x< x, where x denotes the value of the feasible solution 

of P" obtained relative to the previous s-constraint go to 

step 6. If x> x go to step 4. 

Step 4 	If x is feasible to P or if the current s-constraint is the 

Ath generated go to step 7. If not, go to step 5. 

Step 5 Identify the components F and G of the current s-constraint. 

Replace the s-constraint F + G by the new s-constraint 

F + (g + E )G, which is now designated current. Go to step 2. 

Step 6 The previous s-constraint is the selected s-constraint. Go 

to step 8. 

Step 7 The current s-constraint is the selected s-constraint. 

Step 8 End 



- 55 - 

Different tests of a logical nature are employed by the 

algorithm to determine either that no feasible completion of a 

partial solution exists or that some of the problem variables not 

already assigned a specific value must be set equal to a given 

Value. Also a test is employed to determine whether a cons-

traint of P is locally non-binding, that is whether the constraint 

can be discarded while investigating the current partial solution 

without eliminating any optimal solution of P. Additionally, the 

objective function is treated as a constraint. 

2.4.3. Balas' filter algorithm or accelerated additive algorithm [43] 

In this algorithm, Balas has used the concept of a surrogate 

constraint together with the notions used in his additive algorithm. 

Consider the corresponding continuous problem to P, Pt and let 

the dual of P' be Gt. Let IT and (NV, V) be a pair of optimal solutions 

to P' and G' respectively, where wi  and vj  are the dual variables 

associated with the ith constraint and the jth upper-bound constraint 

(0 ,5  x. 1) respectively. Now, consider the "filter-problem" D: 

min cx 

s. t. ax 	bo 	(16) ) D 

ix
j
e 0, 11 

where a = w A, bo wb. Let D' be the continuous version of D. 



- 56 - 

It can be noted that constraint (16) is a special case of Glover's 

surrogate constraint. 

The algorithm is a tree-search where more than two branches 

can emanate from a node and it is dual in the sense that the first 

feasible solution to P found is also optimal. In the process, 

feasible solutions to D are generated such that: 

a. The sequence of associated values cx is non-decreasing and 

b. When a certain value cxs  has been reached, then all feasi-

ble solutions to D such that cx <exs  have been explicitly or 

implicitly enumerated. Thus, the first term of the sequence 

that is a feasible solution to P, is also optimal. 

The algorithm aims at finding feasible solutions to problem D 

which are then tested for feasibility to P. Every node of the tree 

corresponds to a partial solution S, which might or might not be a 

feasible solution to D. With every node of the tree (i. e. with every 

partial solution S) there is a value zs' = cxs  associated with it, 

where x
s is an optimal solution to the continuous problem D'. 

(Di is the resulting problem from D' after introducing the values 

of the fixed variables x. e S) to the problem ID'. ) Obviously, if 

xs is integer it is feasible to D. 

An indexing of the variables is used by the algorithm which is as 

follows: we have ji.< j2  (assuming c 0) whenever one of the three 

following situations holds. 



- 57 - 

1. a. > 0 	a. 4  0 
11 	J2 	c. 	c. 

2. a. > 0 	a. > 0, 	< 
Ji 	J2 	a

il 	
a  

J2 

31 	)2 

3. a. -4-,  0 	a. -4- 0 	a. > a. 
31 	32 	31 	J2 

Any indexing that satisfies the above rule is called optimal. 

Selecting the node on which to branch: that node is chosen which 

corresponds to the minimum value of z' . (It is assumed that all, 

values zi together with the corresponding S solutions are stored.) 

(i) If the solution xs  corresponding to zs' is feasible to problem 

D, "it has passed through the filter" i. e. it satisfies a 

necessary condition for feasibility to problem P. If it is 

also feasible to P, it is optimal, if it is not feasible to P, 

but it is integer, xs  is submitted to some tests, derived 

from the original additive algorithm, to examine the possi-

bility of having a feasible solution to P along the current 

branch. If the tests are inconclusive, we branch on the node 

in question in a way to be described later. If the tests show 

that there exists no possibility of having a feasible solution to 

P the present node can be abandoned since none of its descen-

dants can yield a feasible solution to P. 

(ii) If the solution xs corresponding to z' is not feasible to D then 

branching takes place immediately. 



- 58 - 

Branching The descendants of a partial solution S can be found 

as follows:  considerthetf reevariablesx.,j4 S, in their order 

of optimal indexing and then construct the solutions S_t  = S, 

for e = 1, 2, 	, t. i.e. add one free variable at a time in 

the order of optimal indexing of these variables. For each index 

, proceed as follows. 

1st part Compute the new right hand side. 

b' = bo - 	a.x. 
j eSe  

s 
If b' - -G 0 compute z 	= Z c.x. and go to part 2. If 13'o  > 0 o  jESt  
look for an index re N - St such that 

Z a. <b' 	Z a. 
j 	r - 1 	° 	r 	 (17) 
jeN - St 	jEN- Sg  

If such an index r exists, compute the valOR of the objective function 

z' 	: 

z' = Z c.x. + Z 	c. + r  3 3 st j GS 	j eN - S 3 ar 
j— r-1e  

(b' - Z 	a.) 
° jeN - 	3  

•  3• 	r - 1 

and go to part 2. 

If no index r exists for which (17) is satisfied eliminate the solution 



- 59 - 

St from the list and go back to the choice step, i.e. select a 

new node to branch on. 

2nd part If N Se  0 augment by 1 the value of t construct the 

next partial solution St 	S, jt  + 1) and reapply the first 

part of the branching step. 

2.4.4. Geoffrion's algorithm using a surrogate constraint  

Geoffrion (421 uses the schema of the basic backtracking 

algorithm presented in section 2.4. together with a surrogate 

constraint. The surrogate constraint used is the "strongest", 

relative to a partial solution S, and its computation involves the 

use of LP. Here LP is used not once, as it is done by Balas in 

his filter algorithm, but many times during the process of the 

algorithm, namely whenever it is necessary to add a surrogate 

constraint so as to fathom a partial solution. 

Computing strongest surrogate constraints by LP 

Consider problem P (section 2.4.1.) 

Definition The surrogate constraint w1(Ax - b) + (z° - cx) >. 0 

is said [42] to be stronger relative to S than the surrogate 

constraint w2(Ax - b) + (z° - cx) >,,,0 if the maximum of the left 

hand side of the first constraint is less than the maximum of the 

left hand side of the second constraint, where the maximum are 

taken over binary values of the free variables and where w is a 

non-negative m-vector and z°  is the value of the currently best 



- 60 - 

known feasible solution of P. 

Finding a strongest surrogate constraint is, then, the problem 

of minimizing over all w y 0 the expression: 

Z w.( 	a..x. - b.) + z°  - 	c.x. + 
i = 1 	j eS 	 j eS 

+ max { Z ( 	wa.. - c,) /xjG 0,1), jf6S} 	(18) 
jOS i = 1 1  

Now for any w 0 we have: 

max{ > ( 
jstS 1 = 1 ) w1.a1.. - c.) x./x.e{0, 11, jgtS 

J 	J 	J 

= max{ Z 	( 	> 	w.a.. - c.) x./0 4 x. -41, ]OS} = 
jt S 	i=1 

(19) 

= min { Z v. v. 0 and v.iij wa - c., jeAS} i=i   

where (20) follows from the LP dual theorem. 

Using (20) in (18) we have the following LP problem : 

S J J 
(20) 

min > w.b: + z°  - zs  + Z v. 
i=1 1 m  

1 	jOS i 
s. t. 	v. 	> w.a. - c. 	jf4S 

	

J 	1 = 1 1 ij 	J 

O. -.. 	j0 S vJ 
w -.. 0 

where bi1  = E a..x. - b. jes  ij j 	1 
and zs  = 	c.x. 

jeS 



- 61 - 

If the optimal solution to the above problem is not positive then 

the resulting surrogate constraint has no binary solution and 

the current partial solution S is fathomed. If, on the other hand, 

the optimal solution of (LPs), is positive, any optimal w in 

(LPs) yields a strongest surrogate constraint relative to S. If, 

in addition, the dual variables are all integer a feasible solution 

to P is produced. 

2.4.5. The approach of Lemke & Spielberg 16] 

Lemke & Spielberg improved the additive algorithm of Balas 

[ 1) with an eye towards computational efficiency. Consider 

problem P, section 2.4.1. The main additional feature that they 

have introduced concerns the augmentation of a partial solution 

S and is as follows: 

It is advantageous to delimit the set of free variables to a 

smaller subset of preferred variables and Lemke & Spielberg 

(L & S) found that the following preferred set of variables is quite 

effective computationally: for some i such that 

Z s ij1 	1 ax. - b. = ys. <0 the ith constraint can be written as- je   

S 
ea..x. 	-ys. Let D.1  b the set: 1  

pi  = j/j free, a..>01 

The number of elements in D. can be reduced further by a process 



- 62 - 

of "complete reduction" and to this end the coefficients 

a.. (a.. > 0 jES) are ordered in descending order of magnitude. 

E.g. consider 4x2 + 2x4 + x3 - 5x5 	5 which implies x2  1 

and thus the associated D set was reduced by one. 

One may construct one preferred set for each row i, and that 

row is "preferred" which is associated with that set D* having 

the minimum' number of elements. The Balas test is then applied. 

i.e. for each j ED* the following value is computed' 

( y. + aij..) 

whereZ denotes that the sum is over those i for which 1- 
ys + a. 	0. That variable is then selected for augmenting S, 

z 	i7 

which yields the maximal value for t.. 

L & S report "that this (the above) procedure reduces compu-

ting time substantially, sometimes by factors from 3 to 5" [ 61 

Another feature of the L & S algorithm is the focusing on the 

cost constraint (objective function) in order to fix more variables 

at 0 and delimit the set of free variables. The cis are put in 

ascending order, ci  G ci 1. If for some q one has zs  + cq zo 

a 11 free variables x. such that j q are fixed at 0, where 

zs  = 	c.x. and z°  is the value of the best feasible solution to 
jES 

P found so far. 

A test that is employed for fathoming a partial solution is 



- 63 - 

+ 	 + Define G. = 	for i = 1, 2, ... , m + 1, where a.. > 0 i s 	 ii 

and the (m + 1) th constraint is the cost constraint. Compute 

d. y 6. + 	for every i. If any d. 0 backtrack as no augmen- 

tation of S can lead towards feasibility. 

" L & S have also incorporated the above into an algorithm for 

the Mixed Integer Programming case. 

2. 4. 6. The 'Pseudo-Boolean' approach of Hammer & Rudenau [ 5] 

A linear function of binary variables is called here, a pseudo-

Boolean function. Hammer & Rudenau employ a depth-first 

tree-search where all the coefficients of the problem are made 

This implies that 

two "variables" x., x! can correspond to the index j, if for some i, 
J 

a. > 0, and if for some other i a..< 0. The problem P is said to 

be in canonical form if all its coefficients are positive and if for 

every i the a. 's are in descending order. 

In [5 ] the way of fathoming a partial solution S is basically 

the quantity ( 	a÷.. - b!), whereZa÷.. denotes the sum of the 
jcZ S 	1.3 

positive coefficients.. If for some i this quantity is negative the 

branching stops and we backtrack to the last created node. If 

a - b. 0 the branching proceeds and that variable is fixed S  
at 1 which has the biggest coefficient in the system of constraints. 



-64- 

2. 4.7. Hammer & Nguyen approach: "A partial order in the  

solution space of bivalent programs" [ 7 

In this approach, the emphasis is on the structure of the problem. 

"Order relations" are constructed for the variables of the problem 

which can lead to forced values for certain variables, equality or 

non-equality of certain pairs of variables, etc. The results of this 

structure-analysis of the problem are then used in an algorithm 

that will be described later. Consider the system of m inequalities 

in the canonical form: 

a..x. 	b. 	i - 1, 	, m 	(21) =  

where a.. 0 for all i and j, x.E { 0, 1 } 

and 0(..€ {0, 1} 

x.
ij 

 = x. if 0(.. 	1 1.) 
cc.. 

= 1 - x if 0<.. = 0 
J 

Order relations 

	

An order-relation is of the form x. 13k 	Let R be the set 

of all such order-relations which hold in the system (21) . 

Construction of R: 

j, aii> bi 	)(c)C. 	= OER 

U. 	
cx. 	Oce. 

	

]i, ji,j2  a.. + a,. > b. 	x.1i1 	x.1j2ER 
"1 	1 	31 	32 

If the case I can be applied the process stops because it is forcing 



- 65 - 

a variable, and hence the whole process can be repeated after 

setting that variable to its value. In case II one of the variables 

ji , j2  has to take the value 0. Once R is constructed, the obvious 

conclusicrs that can be drawn from it are the following: 
oC (i) if x. 	-----> x. 

i. e. if « = 1 X. -4  0 ----> X. = 0 

if c. = 0 xy. = 1 -x. = 0 	> x. = 1 
J —  J 	 J 

, CT.  (ii) if xJ  
. - x.  	ox

J  . = < (i.e. if ot= 1 we have x. .. 1-x., x.=0) 
 J 	J 	J 

if e( = 0 1 -x.., x. 1> x. =.-- J 	J_ 	 J a 	 0‹ 	p 
0. i 0 if x . -... x  f2)  and x . .- x ---> x. = 5 3 	k 	J 	k  

e.g. 	 1.g. say 	p = We then have x. x & x. le= 	which - J 

	

obviously 	 «viously leads to x. = = 0 
3 

aP 	 v 
(iv) if x. 	xP  and x k 	x.cx  ----> x. = x J 	k 	 j 	 j 	k  

It can easily be seen that in the first three cases avariable has 

a forced value while in case (iv) the system can be condensed. 

An example as found in [ 7] 

Consider the system: 

+ 

+ 

- 

3x6 
4x6 
3x6 

< 

< 

, 

-1 

-4 

-1 

-6x1  + 8x2  + 6x3 - x4 - 5x5 
-2x1  - 7x2 + 5x3 - 5x4 + 5x5 
-8x1  - x2 + 4x3 + 4x4 + 4x5 

where x.e [0, 1} 	j = 1, ..., 6 

Rewriting the system into the canonical form we have: 



- 66 - 

	

631 + 8x2 + 6x3 + x4 + 5x5 + 3x6 	11 

	

2)71  + 7x2 + 5x3  + 53E + 5x5 + 4.x6 	10 
4 

	

+ 32 + 4x3 + 4x4  + , 4x5  + 3xx6 	11 

The first inequality yields. 

X 2 
3E3 xl 

x2 3E3 
x2 x5 

The second inequality yields: 

x2 L  X5 
x2 x6 

and the third yields: 

x3 
x4 
x5 

Thus R consists of the inequalities 

3E1  
4 R. 

1 	5 
x2 -4  X'3 



- 67 - 

x2 
	x5 

x2 x3 
x2 x4 

x2 	x5 

But if (x. 

x2 . R6  

xP)E R this implies that (x1k  3-  -" x3(. )ER j 
Thus the following set of relations is also included in R: 

x2 
	xl 

x3 
	xl 

X4 	X1  

x5 
	xl  

x3 	• 2 

x5 
	x2 

x3 
	x2 

x4 
	x2 

x5 
	x2 

X6 L  X2 

We see that (x3  z 3-E2R and (x3  If x2)ER which leads to x3 = 0. 

Introducing x3  = 0 in R we get Ri  consisting of the following relations: 



- 68 - 

x2- 4  x6 
x2 --5-• x

1  

	

4 G 
x1 	) 	R1 

5 G xl 

x5- 4  x2 

4  x2 
x5  4  x2 
x6 - x2 

where the-  trivial realtions x1  x3  -4 1 etc. were omitted. The 

relations x1 4  x2 and x2 -4  x4 yield the relation 	4 x4. The 

latter combined with the relation1 	4  imply xl  = 0 1. e. 

- x'1  - 1. 

Intorducing x1 = 1 we get R2 consisting of the following! 

	

x2 4  x5 	) 

	

x2- 4-x4 	) 

	

x2 4  R5 	
) 
) 

	

)72 -4  R6 	) 
X5- -) 2 

) x4 x2 ) 

	

x5 4  x2 	) 
x6 x2 ) 

) 

) 

) 



-69- 

The relations x2 x5 and x5 	yield x2 = x5 and we have 

R3 consisting of the following 

x2 
x2 
x4 
x6 

x4 
x6 
x2 
x2 

R3 

No further conclusion can be drawn from R3. 

Thus returning to the original system, introducing x3  = 0, x1  = 1 

and replacing x5  by x2  we have: 

3x2 - x4 + 3x6 	5 

--2x2 - 5x4 + 4x6 -` -2 

3x2 + 4x4 - 3x6 	7 

Obviously the third inequality is redundant and hence the system 

reduces to 

3x2 + 3 4 + 3x6 	6 

23E2 + 5R4 + 4x6 	5 

For this example which was specially constructed so to be 

favourable to the use of order-relations, we see that the system 

was considerably simplified. 

Relations between triplets of variables can also be used but 

this option requires substantial computing time and the authors 

do not justify their use. 



- 70 - 

Tree search with binary order relations  

The authors have incorporated the binary order-relations into 

a tree-search algorithm for the 0 - 1 problem '13  which uses LP 

and a surrogate constraint. This algorithm has the following 

skeleton: 

Step 1 Construct R. If any conclusions can be drawn from it, 

introduce the results into R until arriving to a new R 

where no conclusion can be drawn. Go to step 2. 

Step 2 Solve the continuous version of P, P'. Let the LP solu- 

tion to P' be (x1)  •.• x' ) of value z (LP). Introduce n  

the objective function as a constraint and enlarge R; if 

this enlargement of R is possible go to step 1, if not go 

to step 3. 

Step 3 Add to P' those inequalities of R which are not satisfied 

by (xi, 	, xnt) and return to step 2. If no such inequality 

of R is violated by (xi, 	xn' ) go to step 4. 

Step 4 Add to P' a surrogate constraint and enlarge R by the 

resulting binary relations. If this is possible return to 

step 1, otherwise go to step 5. 

Step 5 Choose a variable x. and examine separately the subproblems 

where x. = 1 and x. = 0. 

The authors of [7] report that the above algorithm is computa-

tionally efficient. However, they report that the use of order 

relations does not seem to influence substantially the total computing 

time, but reduces the number of iterations". In addition, very few 



- 71 - 

problems of any practical size can succumb to the extraction of . 

order-relations. 



- 72 - 

2.5. Transformation of an IP problem in bounded variables to 

a knapsack problem in bounded variables. 

Any IP problem in bounded variables can be solved as an 

equality constrained knapsack problem in bo,unded variables by 

assigning certain weights w1, . 	wm to the original constraints 

[39] , [40] , [ 11] . It will be shown how two constraints can be 

combined into one without changing the set of feasible solutions. 

Then, by combining the constraints two at a time, it is clear that 

m constraints can be combined into one. 

Consider the two constraints: 

d.x. - b = 0 
j 1 	d  

f.x. - b = 0 
j 1 

and assume that the coefficients d., f. j = 1, 	, n are integers. 
J 	J 

Let 

= max Z d.x. - bd 	0 x. u. integer,j = 1, 	, n 
j = 1 " 	 J 	J 

n 
. -)7 	i = min a 	

j 1 " 
d.x. - bd 	0 x. u. integer, j = 1, 	, n 

= 	 J 	J 

n 
i.e. 	Z d+  u. - b and X = Z d u. - b 

	

j j d 	 d 
+ 

j = 1 
	

j-  1 j 
- where d . d are the positive and negative coefficients respectively. 

Finally, define = max [ a+, 12H 

0 x.
J 	

u. integer, j = 1, 	, n 



- 73 - 

Theorem: 

The integer vector x°, 0 x°  u is a solution to (22) if and only if 

n 
(d. + (xf.) x°. - b 

j 1 	3  
- c‘bf = 0 

	

where ec is any integer satisfying 10(1> 	The proof of this 

theorem can be found in [11]. Unfortunately the weights derived 

in this way are usually very large numbers and consequently this 

hinders the method from being computationally efficient. 

An example 

max z = 2x1  + x2 
s. t. = 5 X1  + X2  + X3  

- X1  + X2 	+ X4 	= 0  
6x1 + 2x2 	+ X5  = 21 

x1, 	, x5  0, integer 

where x1 .4  3, x2  3 x3 5 x4 -4  3 x5 -.4  21 

For the third constraint we have: 

= 6(3) + 2 (3) + 1(21) - 21 = 24 

and a= -21 

." . 	= 24 

Choosing o(= 25 and combining the third and second constraints 

we have: 



- 74 - 

6x1  + 2x2  + x5  + 25 (-x1  + x2  + x4) = 21 

or -19x1  + 27x2 + 25x4 + x5 -F 21 
	

(23) 

For the first constraint we have 7■1-  = 6 a = -5 and 	6 

Weighting (23) by 7 and combining it with the first constraint we 

have: 

-132x1  + 190x2  + x3  + 175x4  + 7x5  = 152 

and making the coefficient of x1 
positive we have the problem: 

max z = 6 - 2xi + x2  

s. t. 132xi + 190x2  + x3  + 175x4  + 7x5  = 548 



- '7 5 - 

CHAPTER 3 

A SEQUENTIAL APPROACH  TO INTEGER 

PROGRAMMING 



- 76 - 

3.1. Introduction  

An IP problem is easier to solve if it is decomposed into 

smaller problems each one having either a few variables and 

all the constraints or all the variables and a few of the constraints 

as the solution of the latter problems is simpler. One could 

either "partition" the original problem "vertically" i.e. create 

problems having the same number of constraints as the original 

problem but each of them having only a subset of the variables of 

the original problem, or one could "partition" the original prob-

lem "horizontally" i.e. create problems of smaller size having 

the same number of variables as the original problem but each 

derived problem having only a subset of the constraints of the 

original problem. The former course of action seems more 

difficult, while the latter, which is followed here, can be very 

attractive. 

This chapter gives a sequential method of minimising a linear 

function of 0 - 1 variables subject to linear constraints. The 

method is based on transforming an n-variable m-constraint prob-

lem into a sequence of n-variable 2-constraint problems which are 

easier to solve. The algorithm has been tested on test problems 

found in the literature and on a set of 80 randomly generated prob-

lems and good results have been obtained. 

Consider the problem P 



- 77 - 

n 
min z = 	lc.x j  

n 

= 

s. t. 	> a..x. 	b. j 

x
J 	

,. et0 	, 
 

) 
) 
) 

	

i = 1, • • • , m 	) P 
) 
) 

c. 	j = 1, 	, n ) 

With every constraint i of the above problem P there is a 

set ..,i  associated with it, whose elements are all the 0 - 1 

vectors that can satisfy this particular constraint i. The inter- 

section of the m sets X i = 1, 	, m is a setZni  = 
1=1, ...,m 

which contains all the feasible solutions to problem P. That ele-

ment of xm  which has the minimum cost is the optimal solution 

to problem P. 

Let an optimum solution X* to problem P exist, and let its value 

be z*. Consider k constraints of problem P where 1 k m. 

Let the intersection set of the k SetS 	be at, and that subset 

of,7Ck  which contains all elements of cost z, z z* beXk. 



x* =.xzn 2in 

Here all common 

• solutions to the k 

constraints of cost<z* 

are contained. 

X
m 

- 78 - 

Obviously ,Cnt 2k. The optimal solution(s) to problem P X , 

is then 

Here all feasible 

solutions to P of 

cost z > z* are 

contained. 

This subset of.Xk  

contains all common 

solutions to the k constraints which are not feasible 

to problem P and have cost > z
*
. 

Of course, neither of the sets Xk, 2.k'  ../T in  is known in advance, 

nor need they be found. The method proposed here implicitly 

enumerates all elements of Xk  (a small number of such elements 

exists as it will be seen later) in increasing order of cost: 
0 1 

z , z , • • • / zP/  • • • z i.e. all common solutions to the k con- 

straints that correspond to the increasing costs z0, z1, ... zP, 

, z* will be implicitly enumerated. At every step p of this 

"path", the solution(s) corresponding to the cost zP  (and which are 

feasible to the k constraints) are tested for feasibility to the 

remaining m - k constraints. If a solution is feasible to these 

m - k constraints this is the optimal solution to the complete problem 



- 79 - 

P, if not, zP  becomes the lower bound of the vatue cf tne objective 

function at the next step (p + 1) and so on, until the optimum z* is 

found, i. e. until we find that element(s) of 	which is a member 

,Nom of %it . 

The method that follows is dual in the sense that the first feas-

ible solution found to P is the optimal one. The method is iterative 

and involves the transformation of an n-variable m-constraint prob-

lem into k(k 4  m) n-variable 2-constraint subproblems in which 

only the right hand sides vary from iteration to iteration. These 

smaller subproblems are ideally suited for solution by dynamic 

programming. During this iterative process a progressively 

increasing lower bound to the optimal value of the objective func-

tion is derived. 

This sequence of bounds is then z0, z1 p p + 1 z z 	z*. / • • • / 	/ ••• / 

At each step of the procedure, the common solutions to the chosen 

k n-variable 2-constraint subproblems are generated by a level by 

level intersection of the individual "solution trees" of the subprob-

lems. An essential feature of the proposed algorithm (and one 

which contributes greatly to its efficiency) is that these individual 

trees are not explicitly found but are represented by the dynamic 

programming tableaux. In this way, solutions which are not com-

mon to the k chosen subproblems are implicitly eliminated early on 

during the "solution tree" intersections. Thus at the pth step com-

mon solutions to the k n-variable 2-constraint subproblems of value 



- 80 - 

zP are found by using zp - 1 as the bound. An iteration then 

involves the checking of these solutions for feasibility to the 

complete problem P. If feasibility is found the optimal answer 

z* has been obtained and z* = zP. Otherwise the trial value of 

the objective function is increased to zP 1  (as given later on) 

and the process repeated by "resolving" the k chosen subprob-

lems and so on. 

3. 2. 1. The Method  

Consider the problem P above where all 	 3 c., b.1  and a3... j  

coefficients are assumed to be integers. A lower bound to the 

optimum value z* could be the corresponding LP optimum z(LP). 

Consider k constraints of problem P(1 k m) and let the 

constraints be renumbered so that the k chosen ones are numbered 

1 to k. Let the following problem Pi  (zP) be associated with 

each constraint i, 1 -= 	k of the original problem P. 

) min w. = > c. g 	 (1) I 	i 	 ) J = 1 	 ) 

s. t. 	
n 

c. 1 . - zp 	 ) 
+ 1 	(2) 	) 	Pi(zP) 

) 

	

i a.. g . -..- b. 	(3) 	) 
j=1 	1 	) 

The solution(s) to problem Pi(zP) will then have a value w` 1 

which is the smallest value greater than the current lower 



- 81 - 

bound zP  of z and which satisfy the ith constraint of problem P. 

As the current lower bound zP  is updated during the process the 

problem P.
1( zP) would have to be solved for different values of 

the right hand side (rhs) of constraint (2) above and this can be 

done most conveniently by solving this problem once by dynamic 

programming for all 0 u U, where U is an upper bound on the 

value of the optimal solution z* to problem P. 

k dynamic programming tableaux would thus be constructed 

each one corresponding to a problem Pi(u), 1 i k, and from 

these tableaux all solutions to the individual problems Pi(u) can 

be generated, (although this is not explicitly required by the 

present method). The dynamic programming tableaux are used 

by the present algorithm to derive all common solutions of value 

zP  (or show that none exist), to the k problems. Pi(zP 1). 

The algorithm proceeds as follows: 

1. At the pth step, generate all common solutions of value zP  to 

the k problems Pi(zP  - 1) and let the set of these solutions be 

XP. 

2. If no such common solutions exist or if none of these is feasible 

to problem P, proceed to the next step and repeat (1) with zP 1  

replaced by zP. 

If a common solution feasible to problem P is found, this is the 

optimal solution of value z* = zP. 



- 82 - 

3. 2. 2. An iteration  

.The step of increasing the value of the objective function from 

zp to zp + 1 and the testing of the solution(s) XP  + 1  for feasibility 

to problem P, will be called an iteration. 

If after p iterations no feasible solution has been found, then 

the value of zP  + 1  of the objective function at the next iteration 

must obviously satisfy: 

zP + 1 max fw.) 
1 k 1  

where w. is the minimum value of the objective function of problem 

(PP.1 z ). 

If all w. are equal then it is possible that some solution(s) 

exists with value equal to wi  and which is feasible for all k con-

straints. If such solutions exist they will be tested for feasibility 

to the initial problem P. The method of finding if such solutions 

exist and if so generating all of them is described in section 3.2.4. 

If not all w. are equal, then obviously no feasible solution to 

all k constraints of value less than A. 	max f w.
1 	

can 
1 `irk 

exist. In this case the rhs of constraint(2) are replaced by A to 

obtain new w. and so on until all w. are the same. Let this common 1 	 1 

value of the w. be wP. 1 



— 83 - 

3.2.3. The solution of a problem Pi(u) 

By transforming the solution of problem P into a sequence of ' 

solutions to the k subproblems Pi(u) it is implicitly assumed that 

the 0-1 programming problem Pi(u) with n-variables and 

2-constraints can in fact be solved quite routinely for many values 

of the right hand sides entries. This is indeed the case and problem 

Pi(u) will be solved by a dynamic programming technique as follows: 

The standard dynamic programming recursive equation for two 

state variables u and v at stage r, is: 

gr(u,v ) = min [cr  § r + gr-1 (u Cr r v- air  gr) 	(4) 

In the present case, u and v are the right hand sides of equations 

(2) and (3) respectively, and all variables gr  r=1 ,...,n can take 

two values: 0 and 1. We can then write for the problem Pi(u): 

gi (u,v) = min [gr -1 (u/v)' cr + gr-1 (u-cr, v-air (5) 

The value gri (u,v) is the minimum value of the objective function wi  

given that only the first r variables can be chosen the remaining 

onesr+1' 	being set to 0. Equation (5) can be written for g 	• • • ' 511  

any 0 u 	U and Vi 	Vi  where U is a known upper bound 
* n 

on the value of z (Z c. could be used if no such bound is available) 
j=1 

V. and V. are upper and lower bounds on the value of the right hand 

side of constraint (3) during the computations. These bounds can 

be set as follows 

Value of V. 1 

If all the coefficients of constraint i, a.., are positive then 



- 84 - 

, 	,, 
V.1  = b1  . and V.1  = 0 . But if some aii  are negative the term 
i 

gr-1 (u - cr, v - air) in equation (5) might have as second argument 

a number that exceeds b.1  e.g. for v=b.1  and air < 0, (v-a. ) >b.. ir 	1 

(i.e.hus V.  	the largest value of the rhs of constraint i can be 

	

, 	. + 17 	a. I] 
[ 2,  j=i 1 	1 	7=1  ij taken as V.1  = min 	a. J  , b

+ 

+ where b.1 	 1j is the right hand side of constraint i and a. a. are the 

positive and negative coefficients of constraint i respectively. 

The first term in equation (6) signifies the maximum value of 

v which is possible (i.e. by the sum of its positive coefficients) while 

the second term signifies the maximum value of v ever required, 

i.e. if all variables which have negative coefficients a. are set 
n 

to 1, (bi  + 	
I a

ij  ) will be the maximum value of v ever j1  

required. 	Whichever of the two terms of equation (6) is the 

minimum, it can be taken as the upper bound of v, Vi. 

Value of V. 1 
11 

If only one problem Pi  had to be solved Vi  could be taken equal 

to 0, if the variables were ordered in such a way so that those 

variables with negative coefficients had the highest indices. 

However, k problems Pi  will be solved here and variables having 

negative coefficients in some constraints might have positive 
11 

coefficients in other constraints and vice-versa. Thus, Vi  is taken 

as: 

V. = max 

Thus, the 

Li  

TIP 

- 

	

a.. 	b 

	

3.3 	' 	i 

tableau 

(7) 

Pi  will be of dimensions 

- 	a.. 3.1 

for the problem 

(6) 



- 85 - 

ie I 
U x V (V = V. +IV. ). The functions gi  (u,v) can be calculated 

iteratively from equation (5) starting with arbitrarily large 

entries in the initial tableau [gio  (u,v)]until the final tableau 

[gi  (u,v)] is calculated. Obviously in order to find a tableau 

r i ig
r (u,vlionly the previous tableauxr_l  (u,v)] needs to be 

stored. It is also obvious that gir  (u,v) = 0 if u,v 0 for any 

r as all cost coefficients c. have been assumed non-negative. 

Once the final tableau [gin  (u,v)]is derived all values of the 

objective function w of problem P.1  for any value of the rhs of 
1  

equation (2) can be read off this tableau directly as 

w. = gi 1 	n 

The DP Tableau  

The DP tableau is constructed as follows: 

(1) Initialize go  (u,v) =00  for all u 0 and v>0 and 

go  (0,v) = 0 for all v` 0. 

Let j = 0 

(2) j = j + 1 

Set u = 0 and v = V. 1 
(3) Compute D = c. + g. 	(u - c. v - a..) 

J 	j-1 	j 
v' 

If u - c. = u'<0 set u' = 0 and if v' = v - a.. < 1j 	1 
set v' = VI'. 

If D<g.
J 	 i g  

(u,v) set .(u ,v) = D 

If D = gi _1  (u,v) set gi(u,v) = g. 	 (u,v)1 



- 86 - 

	

uIf D > 
gJ

. 	(u,v) set 	( ,v) = g. 	v). 
-1 	

v 	
g. 	 1 • 

(4) v = v + 1 if v min 

	

	, V: 	go to step 5 
=1 

Otherwise go to step 3. 

(5) u=u+1 if u> 	[ 	, U] go to step 6. 

Otherwise go to step 3. 

(6) Tf j  <n go to step 2. 

Otherwise, terminate. All the values gn  (u,v) have 

been computed. Go to step 7. 

(7) Keep that column of the tableau [gin  (u,v)] that corresponds 

to 	 .o v = b. i e. keep those values gni (u,v) for 0 u U 

and v = b.. 1 
It should be noted that the solution of problem P. (u)by 

dynamic programming  rather than by any other technique, is not 

accidental but is dictated by the fact that the solution of subsequent 

problems 	 uroblems P.( ) with different values of the right hand side of con- 
straint (2) becomes a trivial matter. This is a most important 

property for such an iterative method and one which is not 

shared by other techniques (such as tree-search) available for 

solving  problem Pi(u). 

Since (with all data assumed integer) the minimum difference 

between zP+1 and zP is 1 and since we can start with a value 

z0 z = L z(LP) there is an upper bound on the number of iterations 

given by U - Lz(LP] where Lz(LP).1 is the smallest integer 

z(LP). 



- 87 - 

3.2.4. The generation of the feasible solutions to the k constraints 

In the process of constructing the final dynamic programming 

tableau [gin  (u,v)} of a problem Pi(u) another tableau Ti  of the 

same dimensions is constructed in parallel. This tableau will be 

used for backtracking in order to generate all the solutions 

corresponding to the values gin  (u,v). If the optimal solutions of 

a problem Pi(u) have to be found, when the right hand sides of 

constraints (2) and (3) are u and v respectively, the backtracking 

will start from the element tin  (u,v) - which in general will be a 

set of indices { j1,...,js }. These are the largest indices of 

variables which take the value 1 in the optimal solution(s). 

Thus, if to (u,v) = q1,...,q5} then there is at least one optimal 

solution to problem Pi (u,v) which has x = 1 and for all q > q1  
c11 

has xq  = 0, at least one optimal solution which has x = 1 
q2 

and for all q >q2 has xq  = 0, etc. All the elements of the tableau 

Ti are initialized to CS: to (u'  v) = p for all u and v. At the rth 
 

stage, the set of indices corresponding to element tir  (u,v) of the 

tableau Ti  for problem Pi(u) is updated as follows: 

(i) if the first term in the square brackets of equation (5) is 

smallest, the entries in tr  (u,v) remain unchanged. 

(ii) if the second term is the smallest, the entries in t i (u'  v) r  

are replaced by {r} , i.e. the rth  bit of the computer word 

corresponding to tir  (u,v) is set to one and the remaining bits 

are set to 0. 

(iii) if the two terms of equation (5) are equal then r is sinply 



- 88 - 

added to the other indices of tr  (u,v), i.e. the rth bit of 

the computer word tir  (u,v) is set to 1. 

Thus, the entries in to (u,v),{q1,q2 ,...cislimply that at stage 

q1  the optimal value gni  (u, v) was achieved (gni  (u, v) =(u,v)) 
(11 

by setting q1  to 1 and setting to 0 all variables with indices 

. q< q1  contained in tici1-1  (u v) At the next stage q2  ,the same 

value gi  (u,v) can be retained by setting gq2  to 1 (gi  (u,v) = 
c11 

gi  (u,v) = gi  (u,v1). The same is true for all subsequent stages 
q2 

q3' ...qs. Thus gi  (u,v) = 	(u,v) = 	= 	(u,v) = 	(u,v) 
c11 	q2 	 qs 

Consequently, when in the backtracking process a set fqi  

= n  (u, v) is encountered, this would mean that any of the variables 

gq2,... ,gqs  can be the variable with the highest index in 

some 	 Pi(u) of the optimal solutions to problem P.( ) when the right 

hand sides of constraints (2) and (3) are u and v respectively. 

During the pth  iteration - (i.e. in going from a solution XP  to 

another Xp+1) - let the stage be reached where all objective functions 

of the k problems Pi(zP) take the same value wP , and consider 

the set of indices Q1  defined by: '  
01= to (wP'  b1 	n  t2  (w '  b2 	n n...ntk (wP '  bk 	(8) 

Tf 01  is non-empty, it will contain a set of indices °I = I i1j2" —ijs}  
which will correspond to the variables 

These variables when set to 1 will form the first level of the tree, 

as shown in Fig. 1, which tree will eventually generate all common 

solutions (of value wP), to the k constraints. Tf the set 01. is 

empty, then no common solution of cost wP  exists, so the 



- 89 - 

development of the solution tree discontinues and the rhs of 

constraint (2) can be replaced by w +1 et as described in section 

3.2.2. 

If Qi  p then the sets Q2(lt  ) of the second level of the solu-

tion tree being generated can be calculated, for every lee Q1, 

as follows: 

Let V2  ge  = tn1  (wp 	, b1  - 	)fl tn2  (wP  - 	, b2  - a2l  ) 

n 	fl tkn (wP - c. , bk  - akje  ) 	 (9) 

Then, Q2(le) = 	E 	) and ji < i 	(10) 

i.e. elements j_i E Q2(je  ) where j'e 	le  are not included in Q2(je  ). 

The elimination of these variable 	je  is possible because of the 

(arbitrary)way that the variables have been numbered so that in 

deriving the final dynamic programming tableau [gin(u, v] vari- 

able 	is considered after variable gj  if h> j. Therefore, if 

j2  is the variable set to one at the first backtracking level only 

variables j< le  need be considered for the second level. 

If any Q20e ) is empty, further development of the correspond-

ing tree-branch stops and the development continues to the third 

level from those branches with Q2(1,e  ) 0 (see Fig. 1 ) . Thus, the 

development of the tree proceeds until: 

either; all branching has stopped, in which case the k problems 

(PP.1 z ) have no common solution of value wP  and the method 

continues as described in section 3.2.2. 



Q3(i1 , ja )=P0 

At this point u, v 0 
Solution corresponding 
to this node: E. = Sib 

g3 
all other 	. = 0 

/ I 
/ 	I 

/ 
1 	I 

I 

- 90 - 

Set Q1 

Sets Q, 

Sets 0 

Set r,  -‘4 

Fig. 1 THE SOLUTION TREE 



-91- 

or: 	some branches have reached the stage f at which 

Qf  = t1n  (u'  v1 	n ) 	t2 (u'  v2  )  • • • n (u'vk) 

where u and all v. -.5  0. 

In this case there exist common solutions XP+1  with 

cost zP+1  = wP. These solutions are then tested for 

feasibility to the initial problem P and if any of them 

is feasible this is the optimum, if not the rhs of 

constraint (2) becomes zP+1+ 1 and so on. 

The backtracking procedure that was just described corresponds 

to a "breadth-first" generation of the solution-tree. The 

alternative way which was in fact used here is a "depth-first" 

generation of the tree, i.e. it produces one solution at a time and 

tests each one for feasibility before the next solution is produced. 

Thus, a vector E of size n is introduced whose elements can 

take the values 0,1,-1. This vector will be used for generating 

the whole solution tree. 

At the start of the backtracking all elements E(j), j=1,...,n 

are set to 0. If during the backtracking process any of the sets 

Oi  contains more than one element i. e. Qi  = 	• • • , is } 

then the largest index js  is set of -1 (E()= -1) where the minus 

sign signifies that Qi  has more than one elements. If Oi  {js } 

then E(js) = 1 . For example, let a common solution to the k 

constraints of an m-constraint n-variable problem, of value wP, 

be expressed by the following state of the vector E: 

11 0 -1 0 ... 0 +1 0 ... 0 -1] 	(x13  x.= xn  = 1 all the rest = 0) j  1 2 3 



- 92 - 

We want to find all solutions of value wP  and the existence of 

minus signs in the vector E indicates that other solutions of 

value wP  might exist. The above state of the vector E repre-

sents the non-developed tree: 

To find all common solutions to the k constraints of value wP  

the following steps have to be followed: 

1. Locate the leftmost element of value -1, Ea) 

2. Set E01 and all Elj) j <.e equal to 0. 

Leave all E(j) j > E at their current values. 

3. Start the backtracking from that set Oi  which gave rise to 

the index --E, by setting to 1 the next lower index to e , )2'031  

continue backtracking until either a solution is found or a 

set Q is encountered which is empty. Tf a solution is 

found this has to be tested for feasibility to P. If it is 

infeasible or if an empty Q set is encountered go to step 4. 



- 93 - 

4. Tf there exists an element of E at -1, go to step 1. 

Otherwise, if all elements of E are non-negative all (if any). 

solutions of value WP  have been found. Proceed to the next 

iteration. 

3.3. Description of the basic algorithm  

Let the initial lower bound of the objective function of problem 

P, 6,, be O. 

Step 1. Construct the k dynamic programming tableaux 

[gi  (u,v)] i = 1,...k and the k value tableaux Ti. 

Keep those values gni" (u,bi) of the k tableaux { gni(u,v).] 

that correspond to u = 	and v = bi  for all 

i = 1,...,k and discard all other values gn  (u,v). 

S 

	

	 ftep2. Find wi =gni (A,b.) for all i=1,...,k. 

If all wi  are equal go to step 4. 

If not, go to step 3. 

Step 3. Set 	= max t 
1' i -4- k 

Go to step 2. 

Step 	 = 4. Let the common value of the w. 	1,...,k, be wP. 

Set E(j) j = 	equal to O. 

Start the backtracking and find if any common solutions 

to the k constraints, of value wP, exist i.e. Find 

01  = 	n 	to (wP, bi). = fii,i2/••., is  
i= 

02 (js) = 	n 	ti (wp cj  , b. 	ij a ) = .a'-b'•• "i y s 	s   i 1,...,k 

e• t. C. 



- 94 - 

4(a) 	0. (j ,j ,...j ) = sy 	h 

= i=1 	k to 	P  -c. -c. - . 

• 

. -c. , b. -a.. -a.. - . 

• 

. -a.. ) , Js 1y 	 1 is  11y 

Tf in the above backtracking process a set Oi  contains more 

than one element its rightmost element r is considered first 

and E(r)=-1 e.g. for 0i , Pljs)=-1 

Tn this case, the k pairs of values (u, v) that gave rise to 

the set 0i  containing more than one element, are kept for 

future reference. If a set 0. contains just one element j 

then E(j) = 1. If an empty set Qi  is encountered, go to 

step 6. If a common solution is found (which will be 

signified by Qf  = 
3.= 

to(u' v.) u and all v. G 0), go 

to step 5. 

Step 5. Test this common solution for feasibility to the remaining 

m-k constraints. If this solution happens to be feasible 

this is the optimum*, go to step 7. If not go to step 6. 

Step 6. Locate the leftmost element t , of the vector E that has 

the value -1, E(re ) -1. Set all E(j) = 0 

* If all optima need to be found, instead of going to step 7 we 

could proceed to step 6 a.nd find all common solutions to the k 

constraints of value z*. Those that are feasible to the remaining 

m-k constraints are optimal solutions. 



- 95 - 

Leave all E(j) unchanged. 
j>.e. 

Start backtracking from those values of u and v1,...vk  

that produced that set Q which contained the index £ . 
Go to step 4(a). If all E(j)'s j = 1, 	are non-negative, 

all common solutions to the k constraints of value wP  (if any) 

have been found and none of them is feasible to the 

complete problem P. SetA=w13+1 and proceed to the 

next iteration, go to step 2. 

Step 7. Stop. The current state of the vector E is the optimal 

solution to problem 13 2  where E(j) = 1 signifies xi  = 1 

and E(j) = 0 implies xi  = 0. 

3.4. Improvements to the basic algorithm  

The underlying objective in this algorithm is to have at each 

iteration a "thin" solution tree to speed up the iterations. We 

desire a small number of common sulutions to the k chosen 

constraints (a "thin" tree) and this obviously depends on the 

value of k. As k increases the number of solutions that have 

to be tested for feasibility to the remaining m-k constraints, 

obviously decreases. We also desire that the algorithm should 

detect the non-existence of common solutions of value wP  or 

the non-usefullness of developing some branches early on 

during the backtracking. We'll see that the ordering of the 

variables could help in detecting the eventual termination of a 

branch early on. Is .lalysis about the value of k, which k 



- 96 - 

constraints to choose once the value of k has been decided and 

a way of ordering the variables in a beneficial manner in such a 

way as to keep the solution trees "thin" will be presented in the 

next chapter. 

The use of LP  

Here, we will present another method of "early detection" of 

the termination of some branches, which will involve the use of 

Linear Programming. After having fixed a set of variables J 

to the values 0 or 1 the following LP problem could be solved 

whose optimum will determine if it is worth developing further 

the branch in question: 

minY= > c. x. ) 
J 	J ) 

J ) 
) 
) 

s. t. wP- 	c. x. ) c
J  
. 

J iEJ ) 
) 
) 

a.
j 
 xj  b. - 	Z 	i  a j  x. j 1=1 	• • • in ) 

) 
) 

0 	x. j=1,...,n ) 

where wP  is the current trial value of the objective function. 

Tf the problem is infeasible, or if the LP optimum is greater 

than (wP- > c. x.9 then it is not worth developing the branch in 
jCej 

question further. The above LP problem could be solved at 

steps of say 10 variables, i.e. every time we fix an additional 

set of 10 variables. 



- 97 - 

In addition, a cutting plane can be introduced to make the use of 

LP more efficient. It is known, that the cutting plane approach 

can be very effective in the initial cuts while it slows down later. 

This fact can be exploited in a beneficial manner if after a 

certain number of cuts has been introduced, the solving of 

problem R is stopped. This, obviously, can be done here as the 

aim is not an integer solution to problem R but a good bound 

arising from the value of the objective function of R. 

Morever, one can make an analysis of the logical structure of 

the original problem and "intersect" constraints which are derived 

from this analysis, instead of "intersecting" original constraints. 

In Chapter 5, where the concept of a "reduced set" is defined, a 

way by which logical analysis (in this case the "reduced sets") 

can be used in this algorithm is presented. 

The algorithm could be greatly improved if use of surrogare 

constraints is made. For example, one could group the constraints 

of the original problem and develop a sumo gate constraint 

corresponding to each group. Then, instead of "intersecting" the 

original constraints one would intersect the derived surrogate 

constraints where a DP tableau would correspond to each surrogate 

constraint. If, in addition, the grouping of the original constraints 

is done in an intelligent manner the use of surrogate constraints 

can be found very effective. 



- 98 - 

3. 5. 1. AN EXAMPLE  

ronsider the following 6-variable, 4-constraint problem: 

min z = 2x1 +4x2  + 3x3 + x4 + 2x5 + x6 

s. t. 	4x1 + 3x2 + 2x3 + 2x4 + 2x5 - x6 
	7 

7x1  + 2x2  - 3x3 x4 x5 x6 - 	- 	- 	4 

3x1 - 3x2 + 3x3 -2x4 - x5 + 3x6 

x + 2x2  + 3x3  + 3x4  x + 3x 1 2 3 4 5 3x6 

Say that k is chosen to be 2 i.e. two problems Pi(u) will be 

solved and that these involve the first and second constraint 

respectively. 

min w1 	2x1 + 4x2 + 3x3 + x4 + 2x5 + x6 

s. t. 	2x1 + 4x2 + 3x3 + x4 + 2x5 + x6 

4x1  + 3x2  + 2x3  + 2x4  + 2x5  - x6  

min w2 = 2x1 + 4x2 + 3x3 + x4 + 2x5 + x6 
) 

s. t. 	2x1  + 4x2 	• + 3x3  + x4  + 2x5  + x6 	u 	) P2(u) 
) 
) 

7x1 + 2x2 - 3x3 - x4 - x5 - x6 	4 	) 

P 
3 

3 



0 2 2 2 2 
2 2 2 2 2 
2 2 2 2 2 

Q. 	 

  

   

0° 	  

{ 1 g1  (u,v 

0 

1 
2 
3 
4 
5 
6 
7 
8 

- 99 - 

3.5.2. Problem P1  (u) 

The dimensions of the dynamic programming tableaux will 

be taken as U = 8, V = b1  + 	I = 7 + 1 = 8. The final 

tableau [g3-6  (u,v)] will be constructed sequentially as follows: 

The first tableau[goi  (u,v)] is initialized so that, 

1 go (u,v) = 	for all u, v> 0 

and 	g0 (u,v) = 0 for all u and v 

to  (u,v) = 0 for all u,v. 

The tableau [ gi (u, v11 is constructed using equation (51. 

For example: 

gl (2,3) = min[[o , c1  + go  (2-2,3-4)] = min [00 ,2 .1= 2 

and ti (2,3) = {1} according to section 3.2.4. hi). 

Hence, the tableau [gl (u0/ becomes : 

Table 1 
--> 

0 1 2 3 4 5 6 7 8 



0 2 2 2 2 6 6 6 CO 

2 2 2 2 2 6 6 6 
2 2 2 2 2 6 6 6 
4 4 4 4 6 6 6 6 

4 4 4 4 6 6 6 6 
6 6 6 6 6 6 6 6 
6 6 6 6 6 6 6 6 
00 
00 - - - _ - 

[gi"2 	' (u v) 

0 
1 
2 
3 
4 

5 
6 
7 

8 

- 100- 

Similary [ g2  (u, v)] is derived from [gi1  (u,v)] and so on as 

shown in tables 2 to 6. 

Table 2  

0 1 2 3 4 5 6 7 8 

Table 3  

0 1 2 3 4 5 6 7 8 

 

0 
1 

0 2 2 2 2 5 5 6 9 
2 2 2 2 2 5 5 6 9 
2 2 2 2 2 5 5 6 9 
3 3 3 4 5 5 5 6 9 
4 4 4 4 5 5 5 6 9 
5 5 5 5 5 5 5 6 9 
6 6 6 6 6 6 6 6 9 
7 7 7 7 7 7 9 9 9 
9 9 9 9 9 9 9 9 9 

[ g1
3 hi v) ' 

2 
3 
4 
5 
6 
7 
8 



- 101 - 

Table 4  

0 1 2 3 4 5 6 7 8 

0 1 1 2 2 3 3 6 6 

1 1 1 2 2 3 3 6 6 

2 2 2 2 2 3 3 6 6 

3 3 3 3 3 3 3 6 6 

4 4 4 4 4 5 5 6 6 

5 5 5 5 5 5 5 6 6 

6 6 6 6 6 6 6 6 6 

7 7 7 7 7 7 7 7 7 

8 8 8 8 8 8 8 8 9 

Table 5  

0 1 2 3 4 5 6 7 8 

  

0 0 1 1 2 2 3 3 5 5 

1 1 1 1 2 2 3 3 5 5 

2 	2 2 2 2 2 3 '3 5 5 

3 3 3 3 3 3 3 3 5 5 

4 4 4 4 4 4 4 4 5 5 

5 5 5 5 5 5 5 5 5 5 

6 6 6 6 6 6 6 6 6 6 

7 7 7 7 7 7 7 7 7 7 

8 8 8 8 8 8 8 8 8 8 

[ 1 
g5 	v) 

 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 



  

0 

1 
2 
3 
4 
5 
6 
7 

[g u,v) 

 

8 

- 102 - 

Table 6  

0 1 2 3 4 5 6 7 8 

0 1 1 2 2 3 3 5 5 
1 1 1 2 2 3 3 5 5 
2 2 2 2 2 3 3 5 5 
3 3 3 3 3 3 3 5 5 
4 4 4 4 4 4 4 5 5 
5 5 5 5 5 5 5 5 5 
6 6 6 6 6 6 6 6 6 
7 7 7 7 7 7 7 7 7 
8 8 8 8 8 8 8 8 8 

The solution tableau [t6  (u,v)J is derived during the computations 

and is as shown in Table 7. A crossing out of an element r of 

this tableau signifies that at a later stage r'). r a better value 

gr1  , (u,v)< gr1   (u,v) was achieved. For example, for u = 3, 

v = 4 the following changes of element (3,4) of the final T1  

tableau IDA place: 

gi1  

	

 (3,4) 	ti (3,4) = 0 

1 	 1 g2  (3,4) = 6 t2  (3,4) = (21 

1 	 1 

	

g3  (3,4) 	5< 6 t3  (3,4) ={3} and 2 is removed 

1 	 1 

	

g4 (3'4) 	3 < 5 t4 (3,4) ={ 4} and 3 is removed 

g15  (3,4) = 3 t15  (3,4 ) ={4,5} 

g16  (3,4) = 3 t16  (3,4) =14,51 



Table 7 Tableau Tl  

  

V 

0 	1 	2 	3 	4 	5 	6 	7 	8 

4 ; 4 1 1 A A 4 A 4  A,A 5  A A 5  

y 4 ; 4 A 4 1 1 A A 4 ,2  A 4  A,A 5  A A 5  

1,5,6 1,5,6 1,5 1 	• 1 A A 4 A A 4  $,,4 5  A A 5  

A 3,4,5,6 A 3,4,5,6 A 	3,4',5,6 A 4,5,6 A A 4,5 A A 4 A 4  ,2, j4 	5  A A 5  

2,4,5,6 2,4,5,6 2,4,5,6 2,4,5,6 A A 4,5,6 ,2 A A 5,6 A,A 5 A,A 5 A A 5 

A 3,4,5,6 A 3,4,5,6 A 3,4,5,6 A 3,4,5,6 A 3,4,5,6 A 3,4,5,6 A 3,5 A,A 5 A A 5 

2,4,5,6 2,4,5,6 2,4,5,6 2,4,5,6 2,4,5,6 2,4,5,6 2,5,6 2,4,6 ,3 4 

3,4,5,6 3,4,5,6 3,4,5,6 3,4,5,6 3,4,5,6 3,4,5,6 A,4,5,6 A,4,5,6 A 4,5 

A 4,5,6 A 4,5,6 A 4,5,6 A 4,5,6 A 4,5,6 A 4,5,6 A 4,5,6 1 A,4,5,6 A 5 



- 104 - 

3.5.3. Problem  P2(u) 

The final dynamic programming tableau [g26  (u,v)] for 

problem P2  is given in Table 8. (Dimensions U = 8 and 

V = 9 are taken and are sufficient). 

Table 8 

0 1 2 3 4 5 6 7 8 9 

0 2 2 2 2 2 2 2 6 6 
2 2 2 2 2 2 2 2 6 6 
2 2 2 2 2 2 2 2 6 6 
3 3 3 3 3 3 3 6 6 6 
4 4 4 4 4 4 4 6 6 6 
5 5 5 5 5 5 6 6 6 6 
6 6 6 6 6 6 6 6 6 6 
7 7 7 7 7 7 7 7 7 rx) 
8 8 8 8 8 8 8 8 800 

0 
1 
2 

[
2 g6 (u 'v)]= 3  

4 
5 
6 
7 
8 

The tableau T2 is shown in Table 9. 



Table 9 Tableau T2 

  

0 
	

1 
	

2 
	3 
	

4 
	

5 
	

6 	7 	8 	9 

P 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

2 
2 
2 

2 
2 
2 

A 	3' 4,6 . A A 4,6 A„3,4,6 ,2 A 4,6 ,2 A 4,6 ,2 4,6 $ 4,6 2 2 2 
2,5,6 2,5,6 2,5,6 A ,3 5,6 ,2 	31 5,6 A 5,6 A 5 2 2 2 

,2 	3,4,5,6 ,2 	3,4,5,6 ,2 	3,5,6 $ 3,5,6 2' 3,5,6 2' 	5,6 2 2 2 2 
2,5,6 2,5,6 2,6 2,6 2,6 2 2  2 2 	. 2 
A 4,5,6 $ 4,6 $ 4,6 A 4,6 $ 4,6 ,3 4,6 3,4,6 4,6 4,6 p 

r3 , 5  ,3 	5,6 A 5,6 A 5,6 A 5,6 A 5,6 A 5,6 5,6 5 p 



- 106 - 

3.5.4. The iterations  

Starting  with a lower bound z0  of value 0 , we observe that 

w1  = g16  (0,7) = 5 41 w2  = g26  (0,4) = 2. So, no feasible 

solution of cost< 5 can exist. 
1 At the next step, g6 (5,7) = g6

2   (5,4) = 5 and so, there 

exists the possibility of having  a common solution of value 5 to 

the first and second constraints of problem P. 

(i) First iteration  

From equation (8) we can write: 

01  = t6 (5'7)n t6
2   (5,4) ={5} n {3,5,6} = 5} 

and from equations (9) and (10) we get: 

( S ) = ti (5-c 7-a )nt2  (5-c 4-a ) = 

	

' 	15 	6 	5' 	25 

= t6 (3,5) fl  t6(3,5) ={4} n {4,6i ={4} 

and 	02 ( 5) = {4} 

Similarly: (see Fig. 2(a)) 

03  (§ 
	= t6 (3-c4,5-a14)n t62  (3-c4,5-a24) = 

= t6 (2,3) n t26  (2,6) = 	n 	--41} 

and 
	03 (S5' §4) ={1 

(g 5 g ) = t1 (2-c 3-a )n t (2-c 6-a 4 5' 4' 1 	6 	1' 	11 	6 	1' 	21) =  

= t6  (0,-1)(1t62   (01 -1) 

So, the stage has been reached at which all u and v are 



-107- 

41  

Q2(5) 

1st iteration 

Q3(5 , 4) 
solution: g 5 = 4 	1 =1 

g 2  3  56- 0  

Fig. 2(a) 



- 108 - 

non-positive and the branch represents the solution 	 5 114 
§2 	= = 0 as shown diagrammatically in Fig. 2(a). This 

solution of value zP  = 5 is infeasible to the third constraint of 

problem p, so we proceed to the next iteration. The rhs's of 

the first constraint of both problems are replaced by zP  + 1 = 6. 

(See section 3.2.2.) 

(i.i.) Second iteration  

It is observed that g6 (6,7) = g2
6  (6,4) = 6. Thus from 

equation (8): 

01  = t16  (6,7)n t26  (6,4) = {2,4,6} n {2,6} ={2,6} 

Considering variable ;2  first: (See Fig. 2(b);) 

0'2 (E2) 	t16  (6-c2' 7-a12 	6 )n t2  (6-c2 ,4-a22) = 

2 	4 	2 	2 

and 022) = 0, ( 2).  

03 (g2' g16 ) = tl  (2-c1, 4-a11 	6 ) nth (2 - c' 2-a21  ) 

= t6  (0,0) n t62  

and since both u and v are non-positive a common solution 

has been found. 

The solution (§1  = 2 = 1 all other 	= 0) is infeasible to 

problem P. 

Considering variable 6 next: 

02 66  (c ) 	tl  (6-c6'  7- 	6a ) nt2(6-c6' 4-a26  ) 16  
5 	8 	5 	5 

= {5) n 15,0 ={5} 



- 109 - 

and 026) = 02  (g6) = {5) 

{11 

Continuing to the 5th revel it is indicated that a solution has been 

reached. This solution (gi  = g 4 	= § 6 
	1, 

g2 = g3  = 0) is feasible to problem P and is therefore the 

optimal solution. The solution-tree of the last iteration is shown 

in Fig. 2(b). 

(It can be observed that in this small example where Q1= { 2, 6 

in the second iteration, variable g2 was considered first instead 

of 56)- 



- 110 - 

2nd iteration 

solution. Ii.  = 

3 

Fig. 2(b) 



CHAPTER 4 

COMPUTATIONAL ASPECTS OF THE SEQUENTIAL 

APPROACH OF CHAPTER 3 



- 112 - 

4.1. Introduction  

This chapter examines the computational efficiency of the 

basic algorithm proposed in Chapter 3. 

The effects of choosing different values for those parameters 

of the algorithm which can be fixed arbitrarily are investigated 

in some detail. These include the choice of the value of k 

(number of "active" constraints chosen) and which k (out of the 

total of m constraints) to treat as "active". In addition, although 

the method has been described earlier assuming a fixed ordering 

of the variables in constructing the DP tableaux - and hence in 

developing the tree of common solutions - this ordering is arbi-

trary and a heuristic rule for a "good" ordering of the variables 

is given. 

The computational storage and time requirements of the basic 

method (not including the use of LP, cutting planes, generation of 

logical constraints etc.) are examined and test results for 80 

randomly generated problems and for some problems found in the 

literature are presented. The computational performance of the 

method is, therefore, demonstrated to be at least as good as that 

reported for any other existing algorithm, and generally superior 

for dense problems having "small" coefficients. 

4. 2. Storage Require ments 

The cost coefficients c. were, without any loss of generality, 

taken to be nonnegative. 



- 113 - 

The basic storage requirements of the method are: 

(i) Two tables of dimensions U x max 	- (see 
1 ---s" 	k 

section 3.2.3) - used several times - n times for each 

uproblem P.( ), i = 1, 	, k - in order to derive the final 

tableaux [gin  (u,v)] . 
•• 

(ii) A table of dimensions U x k which is used to store the 

columns gin(u,bi), u = 0, 	, U from each final tableau 

[gi  (u,v)] corresponding to each problem Pi(u), i = 1, 

, k. Note that only this one column for each problem 

is necessary to perform the iterations described in section 

3. 2. 2. 
wee. 	

k tables Ti  each of dimensions U x V.'  to perform the back- 

tracking. Each computer word corresponding to an 

element of Ti  is assumed to store a set of up to d indices 

where the word length is d bits. If d < n then rd . k, 

instead of just k, tables will be required, where Lxj is 

the smallest integer greater than x. 

It is quite apparent from what has been said above that the 

storage requirements of the method can become excessive if the 

coefficients13 	1 or b. are large. In these circumstances several 

courses of action are available for reducing these requirements. 

(a) The objective function and each constraint can be divided through by 

the greatest common divisor of their corresponding coefficients. 

(b) It is quite likely that after the application of (a) above, the 



- 114 - 

coefficients of some constraints are on average smaller than 

those of other constraints. In addition some constraints may 

be appreciably more sparce than others and hence lead to 

tables of smaller size. Since, as mentioned later, one is free 

to choose any k (of the m constraints) in order to apply the 

method of Ch 3, it would be beneficial - at least from the 

storage point of view - to choose constraints which lead to 

tables of small size. 

(c) One can use "logical" constraints derived from the structure 

of the problem where these constraints can have small coef-

ficients and fully express the particular problem. For example, 

the idea of a reduced set, as described in Chapter 5, can be 

used for extracting "logical" constraints having coefficients 

equal to 1. (See section 5.2.4) 

(d) Since for a given inequality with 0 - 1 variables there are many 

other "equivalent" inequalities with exactly the same 0 - 1 fea-

sible solutions, one can find that equivalent inequality with 

smallest coefficients [45] . In [45] an algorithm which con-

structs the minimum equivalent inequality is introduced by 

first determining all the "roofs" anditeilings" of the given 

inequality and then solving an associated LP problem. This is 

one of the most promising courses of action for coefficient 

reduction. 



- 115 - 

(e) Finally, by the introduction of surrogate constraints with the 

appropriate weight coefficients, one can reduce the size of the 

coefficients of the problem. 

4.3. Choice of the k constraints  

We will now investigate the effects that the value of k and the 

choice of which k constraints to use in the method, have on the 

computing tiff es. 

4.3.1. Value of k  

The value of k is related to the number of solutions that have 

to be tested for feasibility to the remaining m - k constraints. 

When k is small the number of common solutions to the k constraints 

is large and as k increases the number of common solutions decreases 

until we reach k = m where the common solutions to the k constraints 

are the optimal ones only. We have to find an acceptable value of 

k between the two extremes k = 1 and k = m. At the one end of the 

range of k, (k = 1), a situation of a combinatorial nature might arise 

where a very large number of solutions will have to be tested for 

feasibility to the remaining m - 1 constraints while at the other end, 

k = m, no testing for feasibility has to take place, at the end of an 

iteration, but m DP tableaux have to be constructed. 

The effect of the value of k on solution times is shown in Fig. 1. 

From this figure it is seen that the choice of the value of k is 

important but that it is much better to overestimate rather than 



99.2 

2 31'6 32.4
0.6 0.6 	30. 

-116- 

CDC 
6600 
secs 

100 

90 

70 

80 

FIGURE 1 

The effect of the value of k on solution time 

60 

50 

62.8 	15 x 60 

45.2 
44. 1 44. 45. 	 20 x 60 42.5 

40 

30 

20 

7.3 	25.5 

23.2 	 25. 
23.4 

16.2 16.5 17' 6 

27.4 
15 x 50 

20 x 50 

18.2 20 x 40 

10 

2 
	

3 
	

5 	6 	7 	8 	9 	10 

*The heuristic rule for ordering the variables (section 4.4.1.) has not been 
applied in the above problems. 



- 117 - 

underestimate the value of kmin  at which a minimum solution time 

is achieved. In particular, it is noted that the curves are quite ' 

shallow in the range kmin k m. 

Thus, in practice, k should be taken to be quite large (near m), 

since at worst any additional computing time that may result from 

the inclusion of (k - kmin)  constraints will be due to the construc-

tion of the additional Dynamic Programming tableaux. 

4.3.2. Choice of k constraints  

It was mentioned earlier, if k is small the number of solutions 

that, have to be tested for feasibility is large and thus the choice of 

which k constraints to intersect is important. This is so, because 

the number of 0 - 1 vectors that can satisfy each individual constraint 

varies, -as this number depends on the structure and right hand side 

of the particular. constraint, and thus we should choose those k 

constraints which can be satisfied by a small number of 0- 1 vectors. 

It is intuitively obvious that as the value of k increases the impor-

tance of which k constraints to choose decreases. Again, at k = 1 

it is extremely important to choose the most "tight" constraint 

while at k = m the problem of choice disappears. However, as 

shown by the experimental results in Table 1, for relatively large 

k it is almost immaterial which k constraints are chosen. In this 

Table, 15 randomly generated problems are each solved twice, 

once with a set of k constraints and a second time with another set 



-118- 

of k constraints. The first five 20- constraint problems were 

solved once for each of the two disjoint sets of k = 10 constraints. 

The rest of the problems were solved once for a given set of k 

constraints and a second time with another set of k constraints 

only a third of which were in common. 

If, however, due to different reasons (e.g. to reduce storage 

requirements) a small value of k has to be taken, the following 

heuristic criterion could help in choosing those constraints that 

will not yield an exceptionally large number of common solutions: 

Classify the m constraints into two categories: category I 

includes those constraints with b.1> 0 and category II those with 

b. 	0. 1 

1. 	For a constraint i in category I, 

n + 
aii _ bi  

j =  let: a. - 	1  1 	b. 1 

For a constraint i in category II 

let : a. = 1 
1 ri  

where a. are the positive coefficients of constraint i and ri  is 

the number of a. '5 for which a..1)
< b. .<0.  1 

If category I contains more than k constraints, choose those k 

with the lowest values of a., else choose the remainder from cate-1 

gory II again choosing according to the lowest ai. It is apparent 

that many heuristic criteria could be proposed. For example other 

possible criteria are: the value of the right hand sides bi , the 



- 119 - 

Table 1 

Effect of the choice of k constraints on computing times 

Problem , 
No. N M k 

Time 
(CDC 6600 secs) 
Set 1 	Set 2 

1 90 20 10 12.4 11.6 

2 90 20 10 21.7 41.8 

3 90 20 10 53.4 35.8 

4 90 20 10 11.9 9.9 

5 90 20 10 11.6 17. 

6 80 30 18 107.6 115.5 

7  80 30 18 23.2 23.3 

8 )80 30 18 38. 57.2 

9 80 30 18 48.5 48.1 

10 80 30 18 36.8 27.5 

11 90 20 12 17.9 17.1 

12 90 20 12 25.6 24.9 

13 90 20 12 51.3 51. 

14 90 20 12 17.1 16.3 

15 90 20 12 16.8 15.7 



-120- 

ratio 

n 
Z a+.. 
j = 1a" 
n 
Z a. 
J=1 .  

- b. 1 
etc. In the former case those k constraints . 

 

are chosen which have the largest bits while in the latter case those 

Z a+.. - b. 3.1 
k are chosen which have the smallest ratios of 	1 j 	 n 

Z 
1 Another heuristic criterion is the ratio, j =  

a+.. - b. 1.3  + bi and in this case, the most "tight" constraint is the Z  
one having the smallest.value for this ratio, so that those k 

constraints are chosen which correspond to the smallest values of 

Ea+. - b. .1  . All these criteria are based on the intuitive Z 	+ bi  
reasoning of which constraints are "tight". 

4.4. Ways Of limiting the size of the solution tree 

A consideration of prime importance is the existence of a 

small number of solutions that have to be tested to the non-

intersected m - k constraints and the main contributing factor 

was seen to be the value of k. However, even when there exist 

few common solutions we might have a large solution tree. Its 

excessive size would be then due to the fact that unnecessary 

branchings have taken place. Here we will present ways of 

detecting an infeasibility early' on and thus discontinue, early in 

the search, branches that would eventually terminate at a later 

stage. One of the main methods of limiting an unnecessarily large 

size of the solution tree is the ordering of the variables which we 

discuss in the next section. 



- 121 - 

4.4.1. Ordering of the variables  

Consider the following 2 - constraint, 5 - variable problem: 

min z = x1  + x2  + x3  + x4  + x5  

s. t. 	-3x1  - 4x2  + 3x3  +2x4  +4x5 	5 

	

4x/  + 6x2  - 3x3  - lx4  + 5x5 	5 

Two problems of the P1(u) type will be solved: P1(u) and P2(u). 

We observe that for u = 0, w/  = 2 and w2  = 1. 

Thus u = max ( w.) = 2. For u = 2, wi  = 2 and w2  = 2. 
i=1,2 1  

Consequently, there exists the possibility of having a common 

solution to both problems 13/(u) and P2(u). 

We have t5
1  
 (2,5) = {4,5} and t5 (2,5) = {2, 4, 5} 

Q1 	t1 = 	( 2, 5)1 t5
2  (2,  5) = {4, 5} n 1.2, 4, 5} = 	4, 5} 

5 
and the solution tree has to be developed at least up to the first 

level. If, however, we order the variables in the sequence 

x5,  x1,  x4,  x2, x3 we'll have the following problem, after 

assigning the new indices of the variables: 

min 	z= x1 + x2 + x3 + x4 + x5 

s. t. 	4x1 - 3x2 + 2x3 - 4x4 + 3x5 	5 

	

5x1  + 4x2  - lx 3  + 6x4  - 3x5 	5 

For u = 2, t5
1  (2, 5) = {3, 5) and t52   (2, 5) = {2, 4} 

. .. Q/  = p and hence no development of the tree is at all 



- 122 - 

necessary. The beneficial effect of an ordering of the variables 

is apparent. When ordering the variables, it would be better to 

assign to those variables having a great chance of being members 

of an optimal solution, the smallest indices, while to those vari-

ables with a small chance the largest indices should be assigned. 

(This is so, because the tree is developed in descending order of 

the variables index size). If the reverse was done we might have 

progressed far enough in the development of the tree just to 

realize later that there exist no common solutions to the k constraints. 

Of course the underlying objective is to make the set intersections of 

the section 3.2.4 either empty or "small" early enough in the pro-

cess. Assuming that the problem to be solved has a uniform 

structure, the variables that have a better chance of being members 

of an optimal solution are those which have positive a. 's in the 

constraints, while those variables that have "contradictory" co-

efficients a.. (i.e. positive a. j  in some constraints and negative in 

others) have a lesser chance of being members of an optimal solution. 

Of course, variables having negative a. 's in almost all constraints 

have the least chance of being members of an optimal solution. Many 

heuristic rules were tried for ordering the variables but the most 

successful one was as follows: 

1. 	Order the coefficients a.. of every constraint i 1 	i 	k 

in descending order: a.. • • • 	a. 
1J2 	ijn 



- 123 - 

2. Define the set a. ={ aa , • • • ' a 
ii 	1j.' 	2j. 	kj. 

3. The s (s k) different variables corresponding to the set 

a. are assigned the indices n, n - 1, 	n - s + 1. The 
n 

s' different variables corresponding to the set a. 	are 
in-1 

numbered n - s, n - s - 1, 	, n - s - s' + 1 and so on 

until all variables have been numbered. 

For the example of the present section the above rule was applied: 

The constraints of the problem were: 

-3x1 - 4x2 + 3x3 + 2x4 + 4x5 	5 

4x1 + 6x2 - 3x3 - x4 + 5x5 5 

Setting the coefficients in descending order we have 

4x5 + 3x3 + 2x4 - 3x1 - 4x2 5 

6x2 +' 5x5 + 4x1 - x4 - 3x3 	5 

Thus, the ordering of the variables is: 

X5  x1  x4  x2  x3  
and the new structure is: 

4x1 - 3x2 + 2x3 - 4x4 + 3x5 	5 

5x1 + 4x2 - x3 + 6x4  - 3x5 	5 

Petersen's problems* [44J 6 and 7 were solved once without any 

ordering of the variables and a second time after applying the 

* As found in 1441 after rescaling their coefficients to lie in the 

range 0 - 50. 



Time CDC 6600 secs 

Without any 
ordering of 
the variables 

By ordering 
the variables 

Value 
of k 

Petersen's prob-
lem 6 
N = 39 M = 5 

1.5 4 

Petersen's prob-
lem 7 
N = 50 M = 5 

4.7 4 

11.0 

24.0 

- 124 - 

above heuristic rule and the results are as shown in Table 2. 

TABLE 2 

Other random problems were solved once without any ordering 

of the variables and a second time after applying the heuristic 

rule just presented and the results are as shown in Table 3. 

TABLE 3 

CDC 6600 secs 

M N 
Without any 
ordering of 
the variables 

By ordering 
the variables 

20 
15 
20 
15 
15 
50 

40 
45 
50 
50 
55 
60 

48. 
38. 
70. 
86. 

166. 
178. 

32. 
25. 
56. 
16.7 
20.3 
94.3 



-125- 

4.4.2. Use of LP and cutting planes  

Another way of limiting the size of the solution tree, which • 

makes use of LP and cutting planes was presented in section 3.4. 

However, in the computational results of the next section no use 

of LP is made, at any stage, and thus the computing times reported 

are on the conservative side. 

4.5. Computational results  

The computational performance of the method has been tested 

on problems found in the literature and on 80 random problems. 

The results of the problems of the literature are as shown in 

Table 4 and the results for the random problems are shown in 

Table 5. The heuristic rule .for ordering the variables (section 

4.4.1) was applied for all the problems in the following tables. 



- 126 - 

Table 4 

Computational results for problems in the literature 

Problem 
No. 

Number 
of 

variables 
n 

Number 
of 

constraints 
m 

Time 
(CDC 6600 

secs) 
Value 
of k 

1 10 6 .15 3 

2 10 10 .34 5 

3 15 10 .28 5 

4 20 10 .46 5 

5  28 10 .79 5 

6 	- • 39 5 1.5 	. 4 

7 50 5 4.7 4 

8 17 15 .8 5 

9 15 35 4.3 10 

) 
) 
) 
) 
) 
) PETERSEN'S 
)) Problems 

) 
) 
) 
) 
) 
) 
) 

) HA. LDI' S 
Problems 

) 

The first 7 problems are Petersen's problems as found in 

[44] , after rescaling their coefficients to lie in the range 0 - 50. 

Problems 8 and 9 are Haldi's problem 5 and 9 respectively, 

as found in [461. 



- 127 - 

* 

Table 5 

Computational results for random problems 

n m 
Number of 
problems 

solved 

CDC 6600 secs 
Value 
of k Maximum 

time 
Minimum 

time 
Average 

time 

30+  15 3 8.5 1.9 5.06 10 
40+  20 3 13.4 4.3 7.96 10 

50+  15 3 18.2 9.9 13.06 10 
60+  15 3 43.0 11.5 28.86 10 
65* 10 5 90.60 24.32 38.87 8 

65 20 2 57.1 12.2 34.6 15 

70* 10 7 109.69 15.52 59.11 8 
70 20 2 30.2 13.5 21.8 15 
70 - 	30 4 61.1 33.2 44.5 24 
75 20 2 33.9 13.2 23.5 15 
80 20 4 63.2 14.4 36.6 15 

80 30 5 107.1 23.0 32.6 24 
85 .20 • 7 53.3 13.3 25.4 15 

90 20 7 51.5 17.0 25.4 15 

90 30 3 165.2 52.6 111.2 24 
95 20 5 38.8 18.3 28.5 15 

100 20 5 68.3 20.6 30.6 15 
100 30 3 103.2 28.9 55.4 24 
105 20 5 53.9 22.9 31.0 15 

110 20 4 43.8 24.6 30.2 15 

These problems leave a density of 66% and the ranges of the coefficients 
5are: 1 	c. 	, 10 b. G 30'  -9 a.. 	9. 1  

These problems have a density of 33% and the ranges of the coefficients 
are : 1 4  c. L 5, 1(- b..4-20, -3 	a.. -.4, 9. 1 	1) 
The problems without a superscript have a density of 33% and the range s 
of the coefficients are: 1-4.c. - 5, 10 b.1  20, -3 a.. 	15. 



- 128 - 

CHAPTER 5 

TWO TREE SEARCH ALGORITHMS USING THE 

LOGICAL STRUCTURE OF THE PROBLEM 



- 129 - 

5.1. Introduction  

In this chapter, two implicit enumeration algorithms are 

developed. These algorithms, use logical tests that arise from 

the structure of the problem and are employed when trying to 

fathom a node of the search tree and in deciding which variable(s) 

to branch on. 

The first method to be presented, is a breadth-first non-

binary tree search where more than two branches can emanate 

from a node while the other is a depth-first binary tree search 

with two branches enamating from a node every time. Both 

methods use the concept of a "reduced set", which we will now 

describe. 

5.2. Reduced sets  

5. 2. 1. Definitions  

Consider the 0 - 1 programming problem of m constraints and n 

variables: 
n 

min Z c.x. 
J = 1 

s.t. 	a..x. 	b. i = 1, • • • / 

	

= 1 ij j 	1 

xjE-tO,1} j =1, 	n 

and c. 

P 

 

) 

 

A reduced set R. is associated with every constraint i of problem 

P, and is defined as follows: 



- 130 - 

a. When the right hand side b.  is positive: 
(5■mcille-1(-3  

A reduced set is thatiset of variables at least one of which must 

be equal to one if constraint i is to be satisfied, i.e. at least one 

of the variables in the set R. must take the value 1 in the optimal 

solution of problem P. 

b. When the right hand side of a constraint i is non-positive 

Obviously, a constraint with a non-positive right hand side can 

be satisfied by setting all the variables x., j = 1, 	, n equal to 0. 

A set R1, in this case, is defined as that set of variables everyone 

of which can take the value 1 (individually) without violating the 

feasibility of constraint i. In other words, 

{R. / b. 4 0] x. - x. , 	, x. 
1 32 	3s 

where for any 	R. we have b. - a. 4  0. 1 	1 	ij 

5.2.2. Calculation of the reduced sets  

= all b. i 1, 	m are non positive then, the optimal solution 

to problem P is: x. = 0 for all j = 1, ...,n, and there is no need to 

calculate any Ri. But if some bi's are positive, the m sets Ri  are 

calculated as follows: 

a. For those constraints i with b. > 0 [47] 

The 	are ordered in descending order so that we have the 

sequence a.. , a.. 7 ••  • a• •  , a • • 	 a. j  where a.. 
 

a.. 	. 
111 	32 	11s 	11s+1 	l n 	l s 	11s 1. 

q 

	

Z a.. 	b. for some q = s, s 1, 

	

13 	1 r s r 

Then a variable x. is a member of R. if and only if: 
3s 

s + 2, ..., n 



- 131 - 

When a variable x. cannot be a member of the set R. it is obvious 
is 	 1 

that none of the variables x. 	, 	, x. can belong to R.. 
is+1 is+2 	in 	1 

 

b. When the right hand side of constraint i is negative or zero  

The set Ri  contains those variables x. for which a.. ' bi  
s 	s 

• 5. 2. 3. Example  

Consider the problem: 

min z = x1  + 3x
2 + 5x3 + 7x4 + 10x5 

s.t. 	-4x1 + x2 + x3 - 3x4 + 5x5 	2 

2x1  - 2x2 	2x3 + 6x4 - 3x5 .e -2 

- x1  - x2 	- x4 + 2x5 N 1 

The sets R. are: 
1 

1 = { 5, 2 

R2 = 	1, 2, 3, 41- 

R3  {5}  

5.2.4. Uses of reduced sets  in the sequential method of Chapter 3 

The idea of the reduced set can also be applied to the method 

developed in Chapter 3, where it can facilitate the exploration of 

the existence of a common feasible solution to the in constraints, 

in the following way: 

Suppose that k constraints are "intersected" the remaining m - k 

constraints being "passive", and that the backtracking process is at 

"stage" ji  i.e. n ji  + 1 variables are fixed at either 0 or 1. Then, 



-132- 

at stage ji  the sets Ri  can be found for the m - k constraints where 

the right hand sides of these are changed accordingly as n- ji  + 1 

variables are fixed. Then, if any Ri  = p, for any i, 

i = k + 1, k + 2, ... , m, the current development of the tree of 

common solutions can stop and a new iteration, corresponding 

to a higher value of the objective function can start. 

In addition, if Ri 	p for all i = k + 1, 	m 

and Z c.x. + max 	min c. > u 
j ji 	 jE Ri  

(where u is the current value of the objective function) the current 

iteration can stop as there is no possibility of having a common 

solution to the m constraints, of cost u. 

Moreover, if Fti  y p for all i = k + 1, 	, m and some R.'s 

as 	 my R 
t 	

, R k + 1-4 	have an empty intersection 

Q = R
-e i

n R n 	nR
-en 

= p the development of the tree 

of solutions can stop if the following is true: 

c. x. + 	min c. > u 
j> J. 	-e. j ER, 

Finally, as it was stated in section 4.2. (c) the reduced sets 

can help in reducing the storage requirements of the method 

presented in Chapter 3. In this case, instead of intersecting .k 

original constraints one can intersect the following m constraints: 

E x. 	1 	= 1, ...,m 



-133- 

5.3. A NON-BINARY TREE SEARCH METHOD BASED ON REDUCED 

SETS 

5.3.1. Introduction  

Non- binary tree search both breadth-first and depth-first 

have been used previously in algorithms for solving the IP 

problem. e.g. [43] 	[471. The main disadvantages of a breadth- 

first approach,' is that it might require a lot of computer storage, 

especially when applied to the general IP problem. The main 

advantage, however, of a breadth-first approach is that, it 

requires, less branchings than those required by depth-first 

search. _ 

The present method is a non-binary breadth-first tree search 

and it deviates from the other algorithms of breadth-first tree 

search in: 

a. selecting a variable to branch 

b. the branching strategy 

c. the way a node is fathomed 

where in a, b, and c extensive use of the sets R. is made. 

In the method proposed here, every branch that emanates from 

a node corresponds to fixing a variable at 1. A node corresponds 

to a partial solution S and the cost associated with that node is 

c.. That node is chosen for branching which is associated 
DES 
with the lowest cost among the live ones. Once a node, correspond- 

ing to a partial solution S is chosen the right hand sides 



- 134 - 

	

= b. -. E a. i = 1, ..., m are found. If b: 	0 for all i 
1 	1 jES lj 	 1 

i = 1, 	, m, then the solution x j = 1 jES, xi = 0 	S is the 

optimal. If bi > 0 for some i, then the m sets Ri are found, 

and if any of these is empty, the current node under consideration 

is fathomed since the following is true: 

a. If R. =13 b: > 0, obviously, the ith constraint cannot be 

satisfied. 

b. R. =13 13: -4 0 In this case the ith constraint is satisfied 

by x. = 0 j S, x. = 1, jES, but the fact that some other 

constraint r has la' > 0 necessitates that some variable(s) 

have to be fixed at 1; this, however, is not permitted by 

constraint i. 

Thus, if any R1 7 j the node under consideration is fathomed. 

If all Ri , p, then a set Rk = 	,!2' 	 , ,et } is selected and 

t nodes are created that correspond to the partial solutions 

IS, 	, {s,t21, 	s,-et 1 and to the costs 

E c. + c 	> c. + c Z c. + c 4, 	2 • • • 	
j

,p. These 
jES 3 	 JCS 	2 	es 	- t 
t nodes, then join the list of live nodes, and the process continues. 

That set Rk should be chosen, so that one proceeds to the 

optimum quickly. Some alternative heuristic ways of choosing 

the set Rk are: 

a. 	Select that set Rk which contains the variable corresponding 

to max min C. 
x.ER. 3 	1 

slarger c.' 

and all the other variables x.eRk have 



- 135 - 

b. 	Let the set Rk be the one which has the minimum number 

of elements,. Call this set R . . min _ 

The method presented here employs the second alternative. 

Also several bounds can be introduced in this algorithm, 

and some of them are as follows: 

• a. 	Solve the LP probelm: 

min zs = 	c.x.
jS J J 

s. t. 	Z a..x 	13! 	= 1, 	, m 
J 
es . 

1 

Then the bounds associated with the t nodes generated, are: 

c. + max [ c 
' ie S j  

LzsJ] 	q = 1, 	, t 

where tzsi is the smallest integer greater than zs. 

b. Solve the covering problem: 

	

min z' = 	c.x. 
jftS 

s•te 	d .x. 	1 i = 1, 

	

i) J 	• • • / 

x. - 

where d.. = 0 if x. R. 1] 	J 	1  
d.. = 1 if x.e R. 13 	 1 

Then, the bounds associated with the t nodes are: 

c. + max [C 2 	 q - 1, • • • t 
j ES j 	iq 

c. Find the variable x., having the cost coefficient 

max min c. = p Then, the bound associated with 
j€Ri  3  

every newly generated nodes is: 



-136- 

Sc. + max p, c4, 
j 	 q 

The bound presented in paragraph c is, of course, the easiest 

to calculate and it has been used in the problems whose computational 

results appear in Table 1 of section 5.3.5. 

5.3.2. The algorithm  

The algorithm then using the bound presented in paragraph c 

above proceeds as follows: 
** 

Step 1* Find that node , among the live ones, which has a minimum 

cost, zt associated with it, and corresponds to the partial 

solution S 	Go to step 2. 

Step 2 Check if any other live nodes of the same cost ze  (if any) 

correspond to the same partial solution Si'. If so, delete 

them from the list. Go to step 3. 

Step 3 Find bi. = b. - Esaij  i = 1, ...,m 

If bt. 0 for all i = 1, ...m the optimum has been found 

z*=ze xi  = 0 j 	, xi  = 1 

If there exist some 131> 0,go to step 4. 

Step 4 Find the m sets Ri  i = 1, ...,m where only free variables 

are considered and the right hand sides are 131. If any set 

R. is empty the node is fathomed, go to step 1. 

pi( R. 	for all i = 1, 	, m go to step 5. 

*At the start, the starting node-e has ze  = 0, 	= p 

**If the list of live nodes is empty, the problem is infeasible. 



• Step 6 Say Rmin  = 

Step 5 Find that the set which contains the minimum number of 

elements Rmm (if more than one sets have the same 

number of elements, say these sets are the jth, kth, 

choose that R 	which contains the variable with cost mm 
coefficient: max min c.) . Go to step 6. 

i=j,k jERi 
.{E1' 4)2' •••Cet} and p = max min c. 

jERi  
Create the t nodes corresponding to the partial solutions 

-137- 

Is , 	Is, £2] 	• • • 9 {S , 47t} 

and. having associated costs: 

c. + max [ p, c,11 , 
ieS 	jE 

C + max [p, c 
▪ 2 

• • • 7 	C. + max [ p, C 
je S j 	 t 

Add these t nodes to the list. Go to step 1. 

5. 3. 3. An example : 

Consider the example of section 3.5.1. : 

min z = 2x1 + 4x2 + 3x3 + x4 + 2x5 + x6 
s. t. 	4x1  + 3x2  + 2x3  + 2x4  +,2x5  x6 	7 

7x1  + 2x2  3x3  - x4  - x5  - x6 

 ▪ 

4  

3x1 - 3x2 + 3x3 - 2x4 - x5 + 3x6 

• 

3 

x1 + 2x2 + 3x3 + 3x4 - x5 + 3x6 

• 

3 

The sets R. are as follows: 

= {1, 	, R2  = 	, R3  = 	3, 6} R4 = {3, 4,6, 2} 
Rmin = R2  = {1} 



- 138 - 

So x1 is fixed at 1 and we have 

b' 	 2 = 7 - 4 = 3 b' = - 3' 	3  b' = 0' 4  b' =2 

The new sets R. are: 

R1  = {2, 3, 4} , R2  = 2, 3, 4, 5, 6 	R3 = {3, 6} 

R4  = .f2, 3, 4, 6} .*. Rmin  = R3  {3, 61 

p = max min c. = 1 
j E Ri  

We have, thus, the nodes 2 and 3 of costs: 

+ max [13, c3] = ci  + c3  = 5 and ci  + max [p, c61 = ci  + c6  = 3 

(see Fig. 1) 

The minimum cost node is node 3 with z3  = 3. 

Setting x1  and x6  equal to 1 we have: 

b'1  = 	b2 = - 2 b3 = - 3, 134 = - 1 

and Ri  = 	3, LO 	So, the set R1 will create three nodes 

(see Fig. 1) of costs 3 -i- c2  = 7, 3 + c3  = 6, 3 + c4  = 4. Now, the 

node associated with the minimum cost is node 6 and by setting 

x1, x6, x4  at 1 we have: bi = 2, b2 = - 1, 133 = - 1, b4 = -4 

and Ri  = {2, 3, 5} , R2  = {2, 5} , R3  = 3, 51 , R4  = 2, 3, 5.1 

and Rmin  = R2  = {2, 51 . Thus the nodes 7 and 8 are created. The 

next node for branching is node 2 of cost z2  = 5. Setting x1  and x3 
at 1, we have Rmin  = R2  = {2 3 and node 9 is created of cost 

z9 = 9. Now, node 8 is the minimum cost node (z8 = 6). 

Setting xi, x4,  x5, x6 at 1 we have: 



=6 

-139- 

loptimum 

The numbers adjacent to the nodes represent the sequence according 

to which the nodes were generated. The encircled numbers repre-

sent the indices of the variables that are fixed. 

Figure 1 



- 140 - 

b1 = 0' 	= 0' b' = 0' 134 = - 3 

The optimum has been found as all right hand sides are non-positive. 

The optimal solution is 

x1  =x4  =x5  =x6  =1 x2 =x3 = 0 and z*= 6 

5.3.4. Improvements to the above algorithm  

Similar 	 n be 1 	 1 
defined for every constraint i, which contains those variables that 

should take the value 0 in an optimal solution. Li  then, contains 

those variables that correspond to the coefficientsaik  for which 

aik 	 3. < b. 	.. a where a._]  denotes the sum of the positive 

coefficients of constraint i. 

In the present algorithm, the number of the nodes of the tree 

depends on the size of .min  and Rmin  can be further reduced if 

the sets L.1  are introduced: Every set R. can be intersected with  1 
each set Lk k = 1, ...;n and produce a set RI, 

R. 
	

{RinLi , Rin L2 , 

so that, R' 	is that set among R.', containing the minimum number 1 
of elements. 

E.g. consider the constraints: 

2x1 - 3x2 + x3 + 3x4 - 4x5 	3 

3x1  + 2x2  - x3  - 6x4  + 2x5 	2 

Then: R1 = {4, 11 	L1 = 4 51 

R2  = {1, 2, 5) L2  = {4) 



- 141 - 

R' = R1 L2 J 	= 

	

R2  - {R2nL1i = 	2} 

andR'min = O.) whereas without the introduction of the sets 

Li' Rmin = 14, 11. 

5.3.5. Computational aspects 

The basic storage requirements of the algorithm are: 

1. An one-dimensional array of size N for keeping the costs 

of the live nodes where N is an upper bound on the number 

of live nodes at any stage of the algorithm. 

2. An one-dimensional array for keeping the partial solutions 

that correspond to the live nodes. The storage is done here 

as in the method of Chapter 3 i.e. a computer word that corres-

ponds to an element of this array, is assumed to store up to d 

indices where the word length is d bits. If d < n then 1.*1 

arrays are required for storing the solutions S. 

The method presented here has been tested on problems found 

in the literature and on a few random problems. The results are 

as shown in Table 1. 

R' 
2 



- 142 - 

Table 1 

Computational Results  

Problem 
No. 

Number 
of 

variables 
n 

Number 
of 

constraints 
m 

Present method 

I 
Iterations** 

Time 
(sec) 

CDC 6600 

1 6 10 6 0.22 
2 10 10 8 0.23 
3 15 10 56 0.73 
4 20 10 366 4.63 
5  28 10 481 4.16 
6 39 . 	5 802 11.7 
7 50 5 870 12.6 

8 17 15 374 2.85 
9 

i 
15 35 715 6.95 

10 10  1 6 0.09 
11 	. 10 1 21 0.32 
12 10 1 17 0.30 
13 10 1 14 0.27 
14 10 1 14 0.25 
15 10 1 16 0.24 
16 10 1 15 0.23 
17 10 1 7 0.11 
18 10 1 4 0.08 

19 12 6 5 0.4 
20 20 10 35  0.92 
21 30 15 76 k 	1.14 
22 35 15 88 1.32 
23 50 15 1112 47.5 

) 
) 
) 
) Petersen's 

[44j 
) problems.  

) 

) Haldi's [46] 
problems 

Trauth's [17] 
allocation 
problems 

Random 
problems* 

* The density of these problems is 40% and -5 aij  10, 5 G bi  -4  30 

** By "iteration" here is meant the finding of the m sets Ri 



- 143 - 

5.4. A BINARY TREE SEARCH METHOD 

This method solves problem P (as defined in section 5.2.1.) 

and it is described in terms of a depth-first approach. 

The algorithm consists of two distinct parts, the first part is 

directed at finding a feasible solution (of cost z°) as early as 

possible and the second part is the search for the optimal solution 

of cost z* z°  and uses a different branching rule than the first 

part. Both parts at every branching step, calculate the m reduced 

sets R. ( as defined in section 5.2.1.) for every constraint i, i=1, 	m. 

At every stage of the algorithm there is a set S of variables that are 

fixed at either 1 or 0, the remaining variables being free . The 

set S of fixed variables is expressed in the usual way, where an 

index with a positive sign signifies that the variable of that index 

is fixed at 1 while a negative sign signifies that the corresponding 

variable is fixed at 0. E.g. S = {2, 5, -6, 7} means that x2  = 1, 

x5  = 1 x6  = 0 and x7  = 1. 

5.4.1. Finding an initial feasible solution to problem P 

The 	 = reduced sets R. i 1, ...pi are found at every step of 

this  initial procedure. Let s., 1 s. m, be the number of the 

sets R. that contain the variable x. (the index j) e.g. if m = 3, and 

R1  = {2, 

s1 = 1' 

4, 5} , 

s2 = 2, 

R2  = 

s3  = 1, 

2} 	and R3  = {3, 4} 	we have 

s4  = 2, s5  = 1 	all other si  = 0. Initially, 

S =13 and let 13!1  = b.1  The initial feasible solution is then found as 

follows: 



- 144 - 

Step I 	Find V. = b. - 	a..x. for all i = 1, ...1m. 1 	1 jEs  3.) 

If bt. 0 for all i = 1, ...,m go to step 6 

If 14 > 0 for some 1, go to step 2. 

Step 2 Find the sets R. for all i = 1, ...,m, when the right hand 

sides of the constraints are 131 and only the free variables 

x. j4S are considered. 

If for any i, Ri = p go to step 4. 

If for all i, Ri d p go to step 3. 

Step 3 (Branching) Find that variable x. for which s. = max st  
3  

(In case two or mor s'ts have the same value, max st, 

choose that variable j for which c. = min I cdt: max st} 
11  

Fix the variable x. at 1 and add its index j to the set of 

fixed variables: Make S --> {S, -Fj} 

(this variable x. is set to 1 because it has the greatest chance 

of leading towards feasibility quicker.) 

Go to step 1. 

Step 4 (Backtracking) Find the rightmost element jr  of the set S, 

which has a positive sign i.e. find that variable last fixed at 

1; if no such element exists go to step 5. Otherwise, reverse 

the positive sign of jr  to minus i.a fix x. at 0. Discard any 

indices located to the right of jr  (which,obviously, have a 

minus sign). 

Go to step 1. 



- 145 - 

Step 5 The problem has no feasible solution. 

Step 6 A feasible solution has been found: 

Its value is z° j€ s  J c.x. and x. = 1 if +j ES, 

x. = 0 if -j E S, x. = 0 if jE S. 

An example 

This example is specially constructed to show all the steps 

of the technique of finding an initial feasible solution. 

Consider the problem: 

min z = x1  + 2x2 	3x3 + x4 + 2x5 + 2x6 
s.t. 	2x1  - 3x2 + 3x3 + x4 - x5 

a 	x2 - 2x3 - 4x4 - x5 - x6 
bi = 3, b2 =3 and R1 = {1, 	, R2  = -11j si  = max st  =2 

and variable x1  is fixed at 1: S = 1 . The new rhs are: 

bi = 1, b2 = 0; and R1  = {3, 4} R2  = -{ 2 } . . We have 

max st = 1 and variable x4  is fixed at 1 as it has the smallest 

cost coefficient among the variables having the same value 

max st  . 	S = {i, 4} and b' = 0, b2 = 4, R1  = {3}, R2  = p. 
1 

Setting the rightmost positive element of S at 0, we have: 

S = 	-4} and bi = 1, bZ = 0, R1  = -(31 , R2  = 12} 

Fixing variable x2 at 1, we have: 

S = {1, -4, 2} , bi = 4, b2 = -1, R1  = p . Thus, the variable 

x2 has to be fixed at 0 and the set S becomes: S = 	-4, -2 

and WI  = 1, b2 = 0, R1  = 131 , R2  = p. Thus S becomes S = -1 j 

which leads to bi = 3, 13'2  = 3 and RI  =-f3, R2  = p. 

3 

3 



- 146 - 

The set S contains no positive element, thus the problem is 

infeasible. 

5.4.2. Finding the optimal solution 

This part of the algorithm finds the optimal solution to 

problem P by either establishing the optimality of the already 

found feasible solution or by finding other better feasible solutions 

of cost z < zo. Here, use is made of LP to facilitate the fathoming 

of nodes. 

Branching: 

At every step, the sets Ri  are found for all i = 1, ... m, and 

the set Rmin having the minimum number of elements is considered. 

That variable jb  is chosen for branching which is contained in Rmin, 

and cb  = min { 	This branching rule aims at finding a feasible 
jERrnin 

solution of cost< zcs. 

Fathoming of a node. 

Further branching from a node is discontinued when one of the 

following conditions is true: 

la. If 	c.x. + Lw] 	z°  
±j ES 
where w is the LP optimum of the remaining subproblem: 

min w = Z c.x. 
itt s " 

s. t. 
) T (S) 

b! for those i for which b! > 0 ) 
j(6S 	1 



-147- 

lb. If Problem T(S) is infeasible. 

2. If any Ri  = p for any 1 i m, branching is discontinued 

from that particular node. 

3. After having chosen the variable to branch, jb, if 

c + Z c. x. >z branching stops from that node. bjES j j 

5. 4. 3. The algorithm  

Thus, the algorithm proceeds as follows: 

Step 1 Find an initial feasible solution in the way described in 

section 5.4.1. If no such solution can be found the 

problem is infeasible. If such a solution exists, let it 

be expressed by the set S°  which contains the indices 

of the variables fixed at either 1 or 0, and where the 

remaining variables not contained in the set S°  have the 

value 0. Let the cost of this solution be z°. Let S = S°. 

Step 2 (Backtracking) Find the rightmost element of S, jr , which 

has a positive sign. Make jr--* jr. If no element of 

S has a positive sign go to step 9. Otherwise, discard the 

elements of S which have a minus sign and are located to 

the right of -jr. Go to step 3. 

Step 3 Find the new right hand sides bi. If all bi 0, another 

feasible solution has been found of cost > c. x.. Go to 
-±jES 

step 8. If some bi > 0 go to step 4. 



this problem is ihfeasible or ifc.x. + 
±jES 3  

go to step 2. Otherwise; go to step 6. 

s. t. 

min w = c.x. 
jOS 

Sa..x. 11.1  and for those i for which b' > 0. If 

z°, [wJ 

- 148 - 

for 4 Find the sets R. f r i = 	m 

If R. = 13 for any i, go to step 2. Otherwise go to step 5. 

Step 5 Solve the following LP problem : 

Step 6 Find the set Rmth from the newest generated sets R.. 1 

Find that variable jb, jbERmin  and cb  = min -1 ci  
je Rmin 

IfZ c.x. +c 	z° go to step 2. Otherwise, go to step 7. 
±jES 	b  

Step 7 (Branching) Add the index jb  to the set S. (The consequences 

of setting x. at 1 are examined first). Go to step 3. 
13 

Step 8 If 	c.x. z°, go to step 2. If 	c x.< z0, tne 
±j ES 3 3 	 +jES 3  

feasiNe solution just found, has a lower cost, and z° 

is replaced by E c.x. and the solution S is stored in 
±i e s " 

S°. Go to step 2. 

Step 9 The search has finished and the optimal solution z* has 

been found : z* = z° and x. = 1 if +jES°, x. = 0 if -j€S° 

and x. = 0 if j ES° 

5. 4. 4. An example  

Consider the problem of chapter 3 whose initial feasible solu-

tion is found to be: x1  = x2  = x3  = 1, x4  = x5  = x6  = 0, zo = 9. 



-149- 

The initial solution is: S = {1, 3, 2} 

Applying step 2 of the algorithm we have: S 	3, -21 The 

when R. w en S = {1, 3, -2) are: Ri  = {4, 5} 	R2 = 

R3  = {4, 5, 6) , R4  = {4, 5, 6} . Therefore, S = 	-3) 

which leads to Rmin  = R3  = {6} . Applying step 7 we have 

S = {1, -3, 6) and the following LP problem has to be solved: 

min w = 4x2 + x4 + 2x5 

s. t. 	3x2 + 2x4 + 2x5 4 

givinglwl= 2. 	c.x. +Lwi= 3 + 2 = 5 < 9 
jes 

Rmin  =R1  = {2, 	S = {1, -3, 6, 4} b1 = 2, 2  b' = -1, 3  b' = -1 

b4=-4 and Rmin  = R3  = {5} . 

The solution S = 	-3, 6, 4, 5] of cost z = 6 is feasible to 

the problem and therefore z°  = 6. We then start backtracking by 

considering S= {1, -3, 6, 4, -5} which gives bi = 2, b2 = -1, 

1313  = -1, b4 = -4 and R3  =13. S = il, -3, 6, -4) gives 13'1  = 4, 

b2 = -2, b'3  = -3, 134 = -1 and Rmin  = R1  = 2 

The problem 

min w = 4x2 + 2x5 

s. t. 	3x2 + 2x5 4 

gives w = 4 and c1 + c6 + w = 3 + 4 = 7 > zo = 6 and the branch is 

discontinued. S = {1, -3, -6} gives bi = 3, b2 = -3, b3 = 0, b4 = 2 

and R3  = )9. Finally S = -11 gives R2  = fb and the process termin- 



- 150 - 

ates. The whole procedure is shown in Figure 2. 

5.4.5. Computational results  

The above algorithm has been tested on a number of random 

problems and the results are as shown in Table 2. It was noted 

from these experiments that the cost of the initial feasible solu-

tion did not differ greatly from the optimum and usually the 

optimal solution had a value 20% - 30% less than the cost of the 

initial solution. 



initial feasible 
solution, zo = 9 

I feasible solution of cost z = 6 
. 	z°  = 6 

- 151 - 

The tree for the example of section 5. 4. 4. 

The symbol. X under a node signifies that branching from that node 
is discontinued. 

Figure 2 



- 152 - 

Table 2 

Computational results on random problems 

Problem 
No. Iterations Time (secs) 

CDC 6600 

1 40 10 238 21.9 

2 40 15 886 110.3 

3 45 15 273 34.6 

4 45 10 357 33.7 

5 45 10 312 32.5 

6 50 10 346 42.7 

7 50 15 774 131.3 

8 50 15 510 90.2 

9 50 10 320 44.3 

10 60 15 968 178.3 

11 60 20 713 195. 

12 60 10 276 41.1 

13 60 10 192 32.1 

14 65 10 467 69.3 

Cont. / 	 



Table 2 Cont. - 153 - 

   

Problem 
No. n m Iterations CDC 6600 secs. 

15 70 10 211 36.1 
* 

16 70 10 461 82. 

17 70 10 720 121.1 
* 

18 70 15 928 231. 

19 75 10 121 20.9 

20
* 
 75 10 326 55.2 

21 75 10 193 30.5 
* 

22 80 10 769 120.9 

23 80 10 920 182.2 
* 

24 80 10 520 101.3 

25 85 10 823 135.6 
* 

26 85 15 > 300 

27 90 10 412 80.8 

28 90 10 389 74.3 

29 90 10 641 141.3 
* 

30 90 10 891 221.9 

31 95 10 980 215.4 
* 

32 95 15 > 300 

33 95 15 1007 242.1 

34 100 10 864 166.9 

35 100 	i 10 615 114.2 

* These  problems have -3 -=a,..ij  9 0 -= b.]  20 0 -= c 
J  
. 5 

j s 	 u The rest of the problems have aid 's lying in the range -3 a.. 15 

The density of all the problems is 35%. 



- 154 - 

CHAPTER ER 6 

C ONC LUSIONS 



- 155 - 

Conclusions  

In this thesis, three new methods are presented for solving 

the 0 - 1 linear programming problem. The method presented 

in Chapter 3 is the most promising. Its computational results 

suggest that the method is most powerful for dense problems 

having small coefficients. Many improvements can be incor-

porated in the basic algorithm to make it even more powerful. 

For example, the use of LP and cutting planes can further enhance 

its power. 

The two methods presented in Chapter 5 place the emplasis 

on the logical structure of the problem and their deviation from 

related schemes is in the branching process and the way that 

subproblems are fathomed. The computational results of these 

two methods are acceptable and they can become more effective 

if stronger bounds are introduced. 



-156- 

REFERENCES 



- 157 - 

1. BALAS E. "An Additive Algorithm for Solving the Linear 
Programs with 0 - 1 variables". Oper. Res. Vol 13, 1965; 
p. p. 517 - 546. 

2. GEOFFRION A.M. "Integer Programming by Implicit 
Enumeration and Balas' Method". SIAM review Vol. 9, 
1967, p.p. 178 - 190. 

3. GLOVER F. "A Multiphase Dual Algorithm for the 0 - 1 
Integer Programming Problem". Oper. Res. Vol. 13, 1965, 
p. p. 879 - 919. 

4. GLOVER F. & ZIONTS S. "A note on the additive algorithm 
of Balas". Oper. Res. Vol. 13, 1965, p.p. 546 - 549. 

f. 
5. HAMMER P. & RUDENAU S. "Boolean Methods in 

Operational Research'. Springer-Verlag, Berlin 1968. 

6. LEMKF C. & SPIELBERG K. "Direct Search Algorithms 
for 0 - 1 and Mixed Interger Programming". Oper. Res. 
Vol. 15, 1967, p.p. 892 - 914. 

7. HAMMER P. & NGUYEN S. "A Partial Order in the 
Solution Space of Bivalent Programs". Report No. CRM -163, 
1972, University of Montreal. 

8. LAWLER E. & BELL M.D. "A Method for Solving 
Discrete Optimization Problems". Oper. Res. Vol. 14, 
1966, p.p. 1098 - 1112. 

9. FLEISCHMANN B. "Computational Experience with the 
Algorithm of Balas". Oper. Res. Vol. 15, 1967, p.p. 
153 - 155. 

10. PIERCE J. F. "Application of Combinatorial Programming 
to a class of All 0 - 1 Interger Programming problems". 
Man Sci. Vol. 15, 1968, p.p. 191 - 209. 



- 158 - 

11. GARFINKEL R.S. & NEMHAUSER G. L. "Integer 
Programming" John Wiley, 1972. 

12. MARTIN G. T. "Solving the Travelling Salesman Problem 
by Integer Programming". Control Data Corporation, New 
York, May 1966. 

13. MARTIN G.T. "Integer Programming: Gomory Plus Ten". 
38th National ORSA meeting, Miami, November 1969. 

14. SRINIVASAN A.V. "An Investigation of Some Computational 
aspects of Integer Programming". JACM Vol. 12, 1965, p. p. 
525 - 535. 

15. GOMORY. R. "All-Integer Integer Programming Algorithm" 
in Muth & Thompson"Industrial Scheduling" Prentice Hall, 
1963, p.p. 193 - 206. 

16. . LAND A. H. & DOIG A.G. "An Automatic Method for 
Solving Discrete Programming Problems". Econometrica 
Vol. 28, 1960, p.p. 497 - 520. 

17. TRAUTH C . A. & WOOLSEY R. E . "Integer Linear 
Programming: A Study in Computational Efficiency". 
Man. Sci. , Vol. 11, 1969, p.p. 481 - 493. 

18. GOMORY R.E. "An Algorithm for Integer Solutions to 
Linear Programs" in Graves & Wolfe "Recent advances in  
Math Prop': McGraw Hill 1963, p.p. 269 - 302. 
TOriginally appeared in 1958). 

19. GLOVER F. "Generalized Cuts in Diaphantine Programming' 
Man. Sci. Vol. 13, 1966, p.p. 254 - 268. 

20. BOWMAN V. J. & NEMHAUSER G. L. "Deep cuts in 
Integer Programming". Oper. Res. Vol. 8, 1971, p. p. 
89 - 111. 



- 159 - 

21. BALAS E. "Intersection Cuts - A New Type of Cutting 
Planes for Integer Programming". Oper. Res. Vol. 19, 
1971, p.p. 19 - 39. 

22. BURDET C. "A Class of Cuts & Related Algorithms in 
Integer Programming" Man. Sci. Res. Report No. 220, 
Carnegie Mellon University, 1970. 

23. BALAS E. , BOWMAN V. , GLOVER F. , SOMMER D. , 
"An Intersection Cut from the Dual of the Unit Hypercube". 
Oper. Res. Vol. 19, 1971, p.p. 40 - 44. 

	

. 24. 	BURDET C. "On Cutting Planes". Man. Sci. Report 
No. 319, Carnegie Mellon University, 1973. 

25. BURDET C. & BRE U R. "Numerical Experimentation 
in Large Scale Integer Programming". W.P. 90 - 72 - 3 
Carnegie Mellon University, 1973. 

26. YOUNG R.D. "Hypercylindrically Deduced Cuts". Oper. 
Res. Vol. 19, 1971, p.p. 1393 - 1405. 

27. BALAS E. "Integer Programming & Convex Analysis, 
Intersection Cuts from Outer Polars". Math. Progr. 
Vol. 2, 1972, p.p. 330 - 383. 

28. BURDET C. "Enumerative Cuts". Oper. Res. Vol. 21, 
1973, p.p. 61 - 89. 

29. GLOVER F. "Cut search Methods in Integer Programming". 
Math. Progr. Vol. 3, 1972, p.p. 86 - 100. 

30. DAMN R. J. "A Tree Search Algorithm for Mixed Integer 
Programming Problems". Computer Journal Vol. 8, 1965, 
p. p. 250 - 255. 



- 160 - 

31. GE OFFRION A. M. & MARSTEN R. E. "Integer 
Programming Algorithms: A Framework and State of 
the Art Survey". Man. Sci. Vol. 18, 1972, p.p. 465 - 491. 

32. DRIEBEEK N.J. "An Algorithm for the Solution of Mixed 
Integer Programming Problems". Man. Sci. Vol. 12, 1966, 
p. p. 576 - 587. 

33. TOMLIN J.A. "Branch & Bound Methods for Integer and 
Non-Convex Programming" in Abadie's 'Integer & Non-Linear 
Programming,' 1970, p. p. 437 - 450. 

34. TOMLIN J.A. "An Improved Branch & Bound method for 
Integer Programming": Oper. Res. 19, 1971, p.p. 1070-1074. 

35. BENICHOU M. J. et al. "Experiments in Mixed Integer 
Programming". Math. Progr. 1, 1971, p.p. 76 - 94. 

36. LAWLER E. L. & WOOD D.E. "Branch & Bound Methods: 
A Survey". Oper. Res. 14, 1966, p.p. 699 - 719. 

37. BREU R. & BURDET C.A. "Branch & Bound Experiments 
in 0 - 1 Programming". Man. Sci. Report, October 1973, 
Carnegie Mellon University. 

38. ZIONTS S. "Linear and Integer Programming". Prentice 
Hall, 1974. 

39. BRADLEY G.H. "Transformation of Integer Programs to 
Knapsack Problems" Discrete Math. 1, 1971, p.p. 29 - 45. 

40. PADBERG M. "Equivalent Knapsack-type Formulations of 
Bounded Integer Linear Programs". Man. Sci. Report No. 
227, 1970, Carnegie Mellon University. 



- 161 - 

41. EDMONDS J. & JOHNSON E.L. "Matching: A Well 
Solved Class of Integer Linear Programs". Proceedings 
of the Calgary International Conference (1969) on Combinatorial 
Structures and their applications Pub. by Gordon & Beach, 
1970. 

42. GEOFFRION A.M. "An Improved Implicit Enumeration 
Approach for Integer Programming". Oper. Res. Vol. 17, 
1969, p.p. 437 - 454. 

43. BALAS E. "Discrete Programming by the Filter Method". 
Oper. Res. Vol. 15, 1967, p.p. 915 - 957. 

44. PETERSEN C. "Computational Experience with Variants of 
the Balas Algorithm Applied to the Selection of R & D 
Projects". Man. Sci. Vol. 13, 1967, p.p. 736 - 750. 

45. BRADLEY G. H., HAMMER P. L. , WOLSEY L. 
"Coefficient Reduction for Inequalities in 0 - 1 variables". 
Math. Progr., Vol. 7, 1974, p.p. 263 - 282. 

46. HALDI J. "Integer Programming Test Problems". 
Working paper No. 43, Dec. 1964, Stanford University. 

47. CHRISTOFEDES N. "Zero-One Programming Using Non-
Binary Tree Search". Computer Journal Vol. 14, 1971, 
p. p. 418 - 421. 

48. BERGE C. "Balanced matrices". Math. Progr. Vol. 2, 
1972, p.p. 19 - 31. 

49. KARP R. M. "Reducibility among combinatorial problems". 
in'Complexity of Computer Computations!' Edited by R.E. 
Miller & J.W. Thatcher, Plenum Press, New York-London 
1972. 



- 162 - 

50. PADBERG M.W. "Perfect zero-one matrices". Math. 
Progr. Vol. 6, 1974, p.p. 180 - 196. 

51. GARFINKEL R. S. & NEMHAUSER G. L. "Optimal set 
covering: A survey" 1972, in "Perspectives on  
Optimization: A collection of Expository articles"  
Geoff: ion editor 1972. Addison - Wesley. 

52. DAY R. H. "On Optimal Extracting From a Multiple File 
Data Storage System: An Application of Integer Programming" 
Oper. Res. Vol. 13, 1965, p.p. 482 - 494. 

53. BELLMORE M. , GREENBERG H. J. , JARVIS J. J. 
"Multi-Commodity Disconnecting Sets". Man. Sci. Vol. 16, 
1970, B427 - B433. 

54. BALINSla M. L. , & QUANDT R.E. "On an Integer Program 
For a Delivery Problem". Oper. Res. Vol. 12, 1964, p.p. 
300 - 304. 

55, 	WAGNER W. H. "An application of Integer Programming to 
Legislative Redistricting" presented at the 34th Nat. Meeting 
of ORSA. 

56. GARFINKEL R. S. & NEMHAUSER G. L. "Optimal Political 
Districting by Implicit Enumeration Techniques". Man. Sci. 
Vol. 16, B495 - B508. 

57. BESSIERE F. "Sur la Recherche du Nombre Chromatique 
d'un Graphe par un programme Lineaire en nombres entiers". 
Rev. Franc. Recherche Operationelle, 1965, Vol. 9. p.p. 
143 - 148. 

58. KOLNER T.N. "Some Highlights of a scheduling matrix 
generator system" United Airlines, 1966. 



- 163 - 

59. ARABEYRE J. P. et al "The airline crew scheduling 
problem: A Survey" Trans. Sci. Vol. 3, 1969, p.p. 
140 - 163. 

60. COBHAM A. , FRIDSHAL IL , & NORTH J. H. "An 
application of Linear Programming to the minimization 
of Boolean functions" Research Report RC - 472 IBM, 
1961. 

61. COBHAM A. , FRIDSHAL R. , & NORTH J. H. "A 
statistical study of the minimization of Boolean functions 
using Integer Programming" Research Report RC - 756, 
IBM, 1962. 

62. BALINSKI M. L. "Fixed cost transportation problems" 
Nay. Res. Log. Quart. Vol. 11, 1961, p.p. 41 - 54. 

63. BALINSKI M. L. & SPIE'LBERG K. "Methods for Integer 
Programming: Algebraic, Combinatorial and Enumerative" 
Chapter 7 in"Progress in Operational Research'Volume III 
edited by J.S. Aronofsky, John Wiley & Sons, 1969. 

64. LEMKE C.E. , SALKIN H.M., SPIELBERG K. "Set 
Covering by Single Branch Enumeration with Linear 
Programming subproblems" Oper. Res. Vol. 19, p. p. 
998 - 1022. 

65. CHRISTOFIDES N. & KORMAN S. "A computational 
survey of methods for the set covering problem" Imperial 
College, Dept. of Manag. Science, 1973, Report 73/2. 

66. PIERCE J.F. & LASKY J.S. "Improved Combinatorial 
Programming algorithms for a Class of all 0 - 1 Integer 
Programming problems". Man. Sci. Vol. 19, 1973, p.p. 
528 - 543. 

67. MANNE A.S. "Plant Location under Economies of Scale-
Decentralization and Computation". Man. Sci. Vol. 11, 
1964, p.p. 213 - 235. 



- 164 - 

68. SPIELBERG K. "Algorithms for the simple plant-location 
problem with some side conditions" Oper. Res. Vol. 17, 
1969, p.p. 85 - 111. 

69. DAVIS P. S. & RAY T. L. "A Branch & Bound Algorithm 
for the Capacitated Facilities location problem" Nay. Res. 
Log. Quart. Vol. 16, 1969, p.p. 331 - 344. 

70. CHRISTOFIDES N. "The optimum traversal of a graph" 
Imperial College, Dept. of Manag. Sci. Report 71/16 
November 1971. 

71. BELLMORE M. & NEMHAUSER G. L. "The travelling 
salesman problem: A Survey" Oper. Res. Vol. 16, 1968, 
p. p. 538 - 558. 

	

,72. 	BEALE E.M. L. "Mathematical Programming in practice" 
Pitman, 1968. 

73. CONWAY R. W. , MAXWELL W. L. ,  MILLER L. W.'Theory 
of Scheduling"Addison-Wesley, 1967 

74. BOWMAN E. H. "The Schedule-Sequencing Problem" Oper. 
Res. Vol. 7, 1959, p. p. 621 - 624. 

75. MANNE A.S. "On the Job Shop Scheduling Problem" in 
"industrial Scheduling'Ed. J. Muth & G. L. Thompson, 
Prentice Hall, 1963. 

76. WAGNER H. M. "An Integer Linear Programming Model for 
Machine Scheduling" Nay. Res. Log. Quart. Vol. 6, 1959, 
p.p. 131 - 140. 

77. EDMONDS J. "Maximum matching and a polyhedron with 
0 - 1 vertices" in Journal of Research Section B, National 
Bureau of Standards Vol. 69, 1965, p.p. 125 - 130. 



- 165 - 

78. WEINGARTNER H.M."Mathematical Programming and ' 
the Analysis of Capital Budgeting Problems", 1963 
Prentice Hall. 



- 166 - 

APPENDIX I 

THE FLOW CHART FOR THE METHOD OF CHAPTER 3 



NO 

u = w 
v =b i=1 ,...,k 
1 i 	'•  • • ' 

E(j) = 0 j=1,...,n 
K = n +1 

Find Q = j/ j <K, j E n(u,v. 
i=1,.. ,k n  

NO  

Is 

j 1 
a..x. '• bi  

= 	13 3  
/ for all i=1,...,m? 

(x.J 
 = 1 if E (j) = +1 

x. = 0 otherwise) 

Find the lowest index 
j for whichE(j) = -1 
u = IVECT (j, 1) 

IVECT = VECT (j, i+ 1) 
K = j 

A= w +1 

E(j) = 1 

u -c. if u<0 —u=0 
v.1  = v.1  -a.. if v <V"—v j.  

,k 
K = j 

Find w. 	 (L, '  b ) 
for all i =1,... ,k 

Let j be the highest index 
Set E (j) = -1 

Store u, v: 
IVECT (j,1) = u 
IVECT (j, i + 1) = v. 

Choose k constraints and solve 
for each constraint chosen the 
following problem by DP: 

min 11  c.x. 
j=1 

s. t. 	c.x. 	u 
i=1 J ' 

Ea..x. v 
j=1 

for every u, 0 u U 
and for every v, Vi v Vi 

Construct k DP tableaux Keep 
the last columns corresponding 
to the values gin(u, bi), 
Let a lower bound to the opt. 
solution of P,  be A  

W. 

n l 
The optimum has been found z* = vi.̀ " 
and x. = 1 if E(j) = +1 
x. =A Otherwise 

A = max w. NO 
1  



- 168 - 

APPENDIX II 

THE FLOW CHART OF THE NON-BINARY TREE SEARCH 

METHOD PRESENTED IN CHAPTER 5 (SECTION 5.3. ) 



NO 

Do 
these nodes 

orrespond to an 
identical solution 

S-e? 

YF,S 

NO  

- 16:1; - 
...■■■••■ 

The optimum is: 
z* = z x. =1 j ES 

x. = 0 W:S 

ES 

Find the m sets R.1  where only 

free variables jg- S are con 

sidered and the rhs are b! 

Is 
any Ri  =p 

Delete the 
correspond-
hag node from 
the list 

NO 

Create the t partial solu- 
tions Si  = 	where 

zi  = 	c.+max p, c/.1 
lE S 3  

Add these t nodes to the 
list of live nodes. 

Find the live node with 
the min cost ze  and the 
associated solution 	. 
(If the list is empty the 
problem is infeasible) 

Find 
13! =b.- > a.. 

jES 

YES 

Delete these 
nodes from 
the list 



-170- 

APPENDIX III 

THE FLOW CHART OF THE BINARY TREE SEARCH 

METHOD PRESENTED IN CHAPTER 5 (SECTION 5.4. ) 



• 

▪ s 
'e

▪ 

3 3 3 + 
7zo  

Does 
S contain 
a positive 
element? 

'YES 

z* = Zo 

and the optimal solution is: 
x. = 1 +jeS°, x. = 0 otherwise 

NO 

YES 

<YES c.x. + tw1 z 
+jeS 

NO YES 
A 

Find 
hi = b. - 	a..x. I] 3 jeS 
i = 1, 	m 

Find all sets R. 
considering only 
the free variables 
and for rhs b: 

S 

Solve the LP problem: mn w =Ec.x.,s.t. E 
S 	" 31S " 

and for those h: >0 

Is 
it infeasible? 

NO 

Find the sets Ri  i=1,...,m 
considering free variables 
only and when the rhs are b! 

initial feasible 
solution found: 
z°=c.x. 

+-j cS 
= S 

YES Does YES 
S contain 
a positive 
element? 

NO 

Find the right most 
positive element of 
S, + jeS. Set -jeS 
and discard all ele-
ments to the right 
of -j. 
b' i- a..x. i  ±jeS 

NO 

The problemI 
is infeasible  

Find the rightmost element 
of S, +j. 
Make -jeS and discard all 
elements to the right of j 

Find max is.1 Set  
3S 

the corresponding a 
equal to 1 
IS = ;S,+j} 
)! = b.- 7' a..x. 

'D 	
j 

Find R IT1111  and j for which  
Ci  = j  /11  

nun 
S= IS, j} 


