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ii. 

ABSTRACT  

We define the term 'tree product of groupoids'. Then, 

using the theory of groupoids and defining a particular 

graph construction which we call a 'regular representative 

system', we prove that the vertex group of any connected 

tree product of groupoids is an HNN group with base-part 

some tree product of groups. For special connected tree 

products of groupoids we obtain a similar characterisation 

theorem without needing a 'regular representative system'. 

Also we define the term 'HNN groupoid', and prove that the 

vertex group of any connected HNN groupoid is an HNN group 

with base-part some tree product of groups. As an applica-

tion of these results we characterise the subgroups of any 

tree product of groups, and the subgroups of any HNN group. 
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INTRODUCTION  

Hanna Neumann ES] has described the subgroups of any 

generalised product of groups as generalised products of 

groups, but her method is complicated and involves trans-

finite induction. 

Karrass & Solitar [5] define a particular kind of 

generalised product of groups which they call a 'tree product 

of groups'. In particular a free product of two groups with 

an amalgamation is a special case of a tree product of groups. 

Then they show that if G is any free product of two groups 

with an amalgamation and H is any subgroup of G then H is a 

Higman, Neumann, Neumann group (HNN group) with base-part some 

tree product of groups. Their method does not use transfinite 

induction, and consists of defining a 'compatible regular 

extended Schreier system (cress) for G mod H' ([S] page 239 ), 

and then using a cress to construct'. . a 'Kurosch rewriting pro-

cess for G mod H' ([7] page 230 ). This produces a presentation 

for H, and the result follows from a detailed investigation 

of this presentation. However, they are unable to use the 

method to characterise the subgroups of an arbitrary tree 

product of groups. 

Also Cohen [2] uses Serre's theory of groups acting on 

graphs to obtain a similar result to that of Karrass & Solitar, 

but again it is difficult to see how to generalise Cohen's 

method. 

Our aim, here, is to describe the subgroups of any tree 

product of groups. Our method uses the theory of groupoids as 
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described by Higgins [4] . To be more precise we define 

what we mean by a 'tree product of groupoids'. Then, 

using a graph construction which we call a 'regular repre-

sentative system', we show that the vertex group of any 

connected tree product of groupoids is an HNN group with 

base-part some tree product of groups (theorem 3). From 

this result, and using a result of Higgins 

proposition 8), it will follow that any subgroup of any 

tree product of groups is an HNN group with base-part some 

tree product of groups (theorem 7). 

Further we define what we mean by an 'HNN groupoid'. 

Then we shall see that the vertex group of any connected HNN 

groupoid is an HNN group with base-part some tree product of 

groups (theorem 6). From theorem 6, and again using propo-

sition 8, it will follow that any subgroup of any HNN group 

is an HNN group with base-part some tree product of groups. 

Similar results to this have been obtained by Karrass & 

Solitar [6] & Cohen [2] . 

Now we give a note on the convention we adopt in our work. 

All groups and groupoids we consider will be multiplicative, 

and all maps will be written on the right. Any reference to 

other authors is denoted by using square brackets, for 

example (Higgins m page 31 ). 

All definitions are underlined. 



Chapter 1  

PRELIMINARIES  

In this chapter we give some basic definitions and 

results taken from group theory, graph theory and groupoid 

theory. 

We begin in section 1 by defining the terms: graph, 

groupoid, graph homomorphism and groupoid homomorphism. 

Then we describe the notions of a 'path in a graph' and a 

'connected graph'. Using these notions we define the terms 

'free groupoid on a graph', and a special kind of graph 

called a 'tree'. Next we describe what is meant by a 

'level-function on a tree induced by a vertex'. Finally 

we define the term 'quotient groupoid'. The definition of 

a 'level-function on a tree induced by a vertex' is due to 

Karrass & Solitar ( [s] page 231 ). All the other definitions 

and results given in section 1 are due to Higgins [4] . 

Next in section 2 we give the definition of a 'presenta- 

tion for a groupoid'. We follow the definition given by 

Higgins ( [3] page 10 ). As a special case we obtain the 

definition of a 'presentation for a group', and this definition 

agrees with the usual definition of a presentation for a 

group (see for example [7] page 7 ). 

Then in section 3 we use the notion of a 'presentation for a 

groupoid' to define the term 'tree product of groupoids'. This 

is an obvious generalisation of Karrass & Solitar's definition 

of a 'tree product of groups' ( [5] page 218) . Also we give 

a result on tree products of groupoids which follows easily 
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from a result on tree products of groups due to Karrass & 

Solitar ( [5] page23/). 

And in section 4 we give the well-known definition of 

an 'HNN group' (see, for example, [S] page 237). In addition 

we give a basic property of HNN groups (see [5] page 238). 

Finally in section 5 we give three results which are 

of basic importance to our approach to the problem of 

characterising the vertex group of any connected tree product 

of groupoids. 

1.1 On graphs & groupoids  

1.1.1 Definition of a graph, groupoid, graph homomorphism 

and groupoid homomorphism  

A directed graph consists of (1) a non-empty set of 

vertices I say, (2) a set of edges G say, and (3) an 

incidence map from G into the cartesian product IxI. For 

each edge g of G, if the image of g under the incidence map 

is (i,j) then we call i,j the initial, terminal vertex of g  

respectively. Also we call i and j the vertices of g. If 

i = j then g is a point, otherwise g is an arrow. 

All graphs we consider will be directed, and so we omit 

'directed' for convenience. 

Any graph which contains no edges is called an empty  

graph (it consists simply of a set of vertices), and any 

graph which contains only points is called a discrete graph. 

We sometimes call a graph with vertex set I, say, 

an I-graph. 
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For any pair of vertices i and j of any graph G, we 

write G..13  for the set of edges in G with initial vertex 

i and terminal vertex j. 

A groupoid is a graph G together with, 

(1) a law of partial multiplication: for any vertices 

j and k of G and any gE Gij, h EGjk  then the product gh 

is defined in G and belongs to Gik, 

(2) associativity: for any vertices i,j,k and 1 of G 

and any f (G. ., g(Gjk  and h ( Gkl then (fg)h = f(gh), 

(3) a set of identities: for each vertex i of G there 

existsanelementofG..,writtene.,such that for any 

vertices j and k of G and any gEGii  and h (Gki  then 

eig = g and hei  = h, 

(4) an inverse law: for any vertices i and j of G and 

any g FGij  there exists an element of Gji, written g-1, such 

that gg-1 = e
i and g lg = e,. 

It is easy to see that for any groupoid G and any vertex 

i of G, then Gii  is a group, which we call the vertex group  

of G at i. 

A graph homomorphism  e: G--01-1 is a pair of maps, one 

mapping the vertex set of G into the vertex set of H and called 

the vertex map of a  and the other mapping the set of edges of 

G into the set of edges of H and called the edge map of 0, 

such that for each edge g of G the initial, terminal vertex 

of the image of g under the edge map of e coincides with the 

image of the initial, terminal vertex of g under the vertex 
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map of e, respectively. 
A groupoid homomorphism is just a graph homomorphism 

which preserves products and identity elements (and so also 

inverses). 

A (graph) groupoid homomorphism is called a (graph)  

groupoid surjection if both its vertex map and edge map are 

surjections. A (graph) groupoid homomorphism whose vertex 

and edge maps are both injections is called a (graph) groupoid  

injection. A (graph) groupoid homomorphism satisfying both 

of these conditions is called a (graph) groupoid isomorphism. 

Consider any (graph) groupoid homomorphism E): G-411. 

Let I be any set and suppose that G and H have vertex set I. 

If the vertex map of e is the identity map on I, then we call (i) 
a (graph) groupoid I-homomorphism. The definition of a 

(graph) groupoid I-surjection, -injection and -isomorphism 

follow in an obvious way. 

A subgraph H of a graph G is a graph whose vertices, edges 

are contained in the set of vertices, edges of G respectively, 

and whose incidence map is simply the restriction of the 

incidence map of G. 

Similarly a subgroupoid H of a groupoid G is a subgraph 

of G which contains the identity element ei  of G for each 

vertex i of H, and which is closed under multiplication and 

inverse. 

Let G be any graph, and Gcx  (cxEA) any collection of 

subgraphs of G. The graph-union of G t (ct(A), written U G04 , 
oCiA 
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is that subgraph of G with vertex set the union of the vertex 

sets of the 	andd edge set the union of the edge sets of 

the G . Suppose that the intersection of the vertex sets 

of the G 
0( 
 is non-empty. Then the graph-intersection of  

G cx  (0(EA ), written r) G, is that subgraph of G with vertex 
a EA °( 

set the intersection of the vertex sets of the G and edge 

set ithe intersection of the edge sets of the Go(  . Let G c< 

and Gp be any subgraphs of G with common vertex sets. 

Then the graph-difference of G and
V 

 is that subgraph of 

G with vertex set the same as Gc( (& G(1  ) and edge set 

consisting of the edges of Gc(  not belonging to Gp . 

Let G be any groupoid, and H be any subgraph of G. 

By the subgroupoid of G generated by H we mean the graph-

intersection of all the subgroupoids of G which contain H. 

1.1.2 Paths & components  

Let En] denote the graph 0  
0 
 ) 

1 	2 	n-1 
 

with n + 1 vertices and n edges joining them in sequence 

(n 0). If X is any graph and i,j are any vertices of X 

we define a directed path in X of length n from i to j to be 

a graph homomorphism, p: [n]--+X say, whose vertex map takes 

o to i and n to j. In particular, for each vertex i of X, 

there is one directed path in X of length 0 from i to i, which 

we denote by Oi, and which we call the empty _path at the  

vertex i. Equivalently we may consider a directed path in X 

of length n 	0) to be a sequence of edges of X, (xl,...,xn) 

say, such that for each l< r■;r1 the terminal vertex of xr_i 
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coincides with the initial vertex of xr. If p = (xl,...,xn) 

and q = (171,...,ym) are directed paths in X from i to j 

and from j to k, say, respectively, then pq = (xl,...,xn, 

yi,...ym) is a directed path in X from i to k. Clearly this 

multiplication of directed paths in X is associative. 

Now we come to the notion of a 'path in X'. 

For each edge x of X let us introduce the symbol x, and 

let us define the initial, terminal vertex of X to be the 

terminal, initial vertex of x respectively. Let X denote 

the set of elements X as x ranges through X. Then, clearly, 

R is a graph with the same vertex set as X and with no edge 

in common with X. We define a path in X to be a directed path 

in XUR (by XUR we mean the graph with vertex set the same as X 

(& R) and with edge set the union of the edge sets of X and R). 

Then we see that for each edge x of X there are two paths in 

X of length 1, namely x and X. However we still have only.  one 

path in X of length 0 at each vertex of X. 

Let p be any path in X from i to j say. Then generalising 

some terminology given in (1.1.1) we call i and j the 

vertices of p. Also we call i the initial vertex of p and j 

the terminal vertex of 	Let us make the convention that for 

each edge x of X the symbol R is to be identified with x. Then 

if P = (Y1,..,17n) is a path in X from i to j, we have that 

(Yri,..,171)is a path in X from j to i, which we denote by p. 

A graph X is connected if there is at least one path in X 

from i to j for each pair of vertices i and j of X. A maximal 



7. 

connected subgraph of X is called a connected component of X  

or simply a component of X. 

Similarly a maximal connected subgroupoid of a groupoid G 

is called a (connected) component of G. 

It is easy to see that components of (graphs) groupoids 

are themselves (graphs) groupoids. 

Let X be any graph and Y any subgraph of X. We say that 

Y spans X if for each pair of vertices i and j of X such that 

there is a path in X from i to j then there is also a path 

in Y from i to j. 

Now we give the definition of a 'free groupoid'. 

Let X be any graph and p = (111,...,yn) be any path in X. 

If for some 	 y 	= yr  or v 	then r+1 	-r+1 = Yr 

(171,..,yr_,,yr42,..,yn) is also a path in X which we call a 

simple reduction of p. Let us write p-tq if there exists a 

finite sequence of paths in X (p=) po,pi,..,pm(=q) (rti 0) 

such that for each 1‹:r;rri pr  is a simple reduction of 

pr-1 or vice versa. This is an equivalence relation on the paths 

in X, and we write [p] for the equivalence class containing p. 

Since equivalent paths have the same initial, terminal vertex 

we can assign these as initial, terminal vertex of the 

equivalence class containing them. Then the set of equivalence 

classes of paths in X acquires the structure of a graph with 

vertex set the same as X. In fact this graph is a groupoid 

with multiplication as follows: if p and q are two paths in 

X such that the terminal vertex of p coincides with the initial 
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vertex of q then [p] [q) 	[pq]. It is easy to see that 

thisgroupoidhasidentityelements[O1] where i ranges 

through the vertices of X, and the inverse is given by 

[p]-1  =[:13]. We call this groupoid the free groupoid on X. 

We can describe free groupoids in another way as 

follows. 

Let X be any graph and let p = (yi,..,yn) be any path 

/ - in X. We call p reduced if for each 1 < r<n Yr T Yr4.1 

(that is p has no simple reduction). Clearly any path in X 

is equivalent to an unique reduced path in X. We can give 

the set of reduced paths in X the structure of a groupoid 

as follows: if p and q are reduced paths in X from i to j 

and from j to k, say, respectively, then their product is 

defined to be the reduced path in X obtained from pq by 

successive simple reductions. It is not difficult to see 

that this multiplication is associative, and then it is 

clear that this groupoid is the free groupoid on X. 

Let X be any I-graph and let F(X) be the free groupoid 

on X. Then it is easy to see that the inclusion map from X 

into F(X) is a graph I-homomorphism, and X generates F(X). 

A result of Higgins ( [3] page 14) tells us that the 

vertex group of any connected free groupoid is a free group. 

Now we give another result due to Higgins ( [it] page35 ). 
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Proposition 1  

Let G be any groupoid and X be any subgraph of G. 

Then G is.the free groupoid on X iffeach element of G is 

either an identity element or is uniquely expressed as 

■ a product x1 

E.1 ...xn n (n > 1) where each xr is an edge 

of X and Er  = +1, and if for some 1< r< n xr = xr+1 then  - 

r = Ertl • 

1.1.3 Trees  

Let X be any graph, and p = (y1,..,yn) be any path in X. 

We call p closed if the initial and terminal vertex of p 

coincide. If there are no non-empty closed and reduced paths 

in X, then we call X circuit-free. A connected circuit-free 

graph is called a tree. 

We have the following well-known result (see Higgins 

[4] page40), 

Proposition 2  

(1) Every circuit-free subgraph of a graph X is contained in 

a maximal circuit-free subgraph of X. 

(2) A circuit-free subgraph of X is maximal (among all 

circuit-free subgraphs) iff it spans X. 
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Corollary  

Every connected graph is spanned by a tree. 

Let X be any graph. A tree of X is a tree which is also 

a subgraph of X. Clearly, if X is connected, then any maximal 

tree of X has the same vertex set as X. Then the corollary 

says that every connected graph contains a maximal tree. 

Let T be any tree and i be any vertex of T. For each 

vertex j of T let 1(j) denote the length of that unique 

reduced path in T from i to j. Then the map 1 from the 

vertex set of T into the set of non-negative integers is 

called the level-function on T induced by i. 

This definition is due to Karrass & Solitar ( [5] 

page231). Also we have the following result due to 

Karrass & Solitar ( 1.5] page/SI). 

Proposition 3  

For each vertex j of T other than i, there exists an 

unique vertex k of T such that 1(k)< 1(j) and k,j are the 

vertices of an arrow of T. 

We call the vertex k in this proposition the predecessor  

of j with respect to 1, and it is easy to see that 1(k) 

1(j) -1 . For any vertex j of T we call 1(j) the 1-level of j. 
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1.1.4 Quotient groupoids  

A subgroupoid N of a groupoid G is a normal subgroupoid  

of G if (1) G and N have common vertex set, and (2) for 

each n( Nii  and g€Gij  then g-lng belongs to Njj. 

For any groupoid homomorphism, E) : G---sH say, we define 
• 

the kernel of e  , written kere, to be the graph of edges of 

G which map to ,identity edges of H under e . Then ker e is a 
normal subgroupoid of G. 

Let G be any groupoid, and H be any subgraph of G. 

By the normal subgroupoid of G generated by H we mean the graph- 

intersection of all the normal subgroupoids of G which 

contain H. 

Let N be any normal subgroupoid of G. The components 

of N define a partition on the vertex set of G, and we write 

i for the class containing i, and f for the set of classes. 

Also, N defines an equivalence relation on the edges of G 

as follows: g = h(mod N) iff g = nihn2  for some ni,n2  belonging 

to N. Two equivalent edges of G must have their initial 

vertices in the same component of N, and similarly for their 

terminal vertices, so each class g of edges can be assigned 

an unique initial; terminal vertex in f. This assignment gives 

the. et'of equivalence classes of'G, written G/N, the structure 

of an f-graph. We now define a partial multiplication in G/N 

as follows: the product gh is defined iff there exist g1( g 
and hi( R such that gihi  is.defined in G, and then 

gh =. gihi. It is easy to check that this multiplication 

is well-defined. Moreover, with this multiplication, G/N 
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becomes an f-groupoid, with identity elements given by 
_-1 

the components of N and inverses given by g = g' as 

g ranges through G. We call G/N a quotient groupoid. Note 

that the vertex map 	as i ranges through I, and the edge 

map g-4g as g ranges through G, constitute a groupoid 

surjection. Note also that if N is discrete then G/N is 

an I-groupoid, and the groupoid homomorphism just given is a 

groupoid I-surjection. 

1.2 Presentations for groups & groupoids  

Throughout this section let X be any I-graph, and 

G be any I-groupoid. 

Let e: X-.G be any graph I-homomorphism, and let R 

be any discrete subgraph of F(X) (the free groupoid on X). 

Clearly 8  extends to an unique groupoid I-homomorphism, 

E): F(X)-4G say. Then we say that R holds in G under e  if 
e maps each element of R to an identity element of G. 

Now let e : X.-4G be any graph I-homomorphism, and let 
R be any discrete subgraph of F(X) which holds in G under E?. 

Then we call the triple <X,R,E)>, an I-presentation for G if 

Xe generates G, and for each graph I-homomorphism Ay: X.-4H 

such that :0,1/generates H and R holds in H under -11/ , there 

exists a unique groupoid I-homomorphism (): G-4H say such 

that e4)=Y . 

This definition is taken from Higgins ([3] pagelO ). 
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If <X,R,e> is any I-presentation for G then we 

call X the generator graph of the I-presentation, and we 

call R the relator graph of the I-presentation. 

In the case that X is a subgraph of G and e is the 
inclusion map, then we abbreviate the notation <X,R,O> 

to <X,R> . Most of the presentations we consider will 

be of this kind. 

Now we give a result due to Higgins ( [3] page10 ), 
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Proposition 4  

Let <X,R,8> be any I-presentation for G, and let N 

denote the normal subgroupoid of F(X) (the free groupoid on 

X) generated by R. Then G is groupoid I-isomorphic to the 

quotient groupoid F(X)/N (that is there is a groupoid 

I-isomorphism from G to F(X)/N). 

Every I-groupoid G has an I-presentation. For choose 

any I-subgraph of G, X say, which generates G, and let N 

denote the kernel of the unique groupoid I-surjection 

from F(X) onto G extending the inclusion map from X into G. 

Then we have that G and F(X)/N are groupoid I-isomorphic, 

and it is not difficult to see that <X,N> is an 

I-presentation for G. 

Suppose now that G is a group (that is a groupoid with 

a single vertex). Then the above definition gives us a 

presentation for G. This definition of a presentation for 

a group agrees with the usual definition of a presentation 

for a group (see, for example, [7] page 7 ). 

If G is any group, then by the standard presentation for 

G, we mean that presentation for G with generators all of the 

elements of G and relators all expressions fgh-1 where 

f, g, and h range through G and fg = h in G. 
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1.3 Tree products of groups & groupoids  

Throughout this section let Go(  (0(k A) be any collection 

of I-groupoids which have mutually disjoint edge sets 

(for some vertex set I). 

Suppose we are given a set of groupoid I-isomorphisms, 

LO say, and that for each element e of (e the domain of e 
is an I-subgroupoid of one of the Go<  (c< EA ) and the range 

of e is also an I-subgroupoid of one of the Go<  ( KA . 

Consider any eE'e. Let us define the initial, terminal  

vertex of e  to be that groupoid among the Go<  (0(EA ) which 

contains the domain, range of e respectively. Then, clearly, 

with this definition Le becomes a graph with vertex set the 

set of groupoids tGo( 	If is a tree, then we call 

(31 a tree of groupoids G
at  (f)( E A )  . (Sometimes we shall abbre-

viate the phrase 'Go(  is a vertex of NU ' to 'c( is a vertex 

of Le ' . Under this abuse of definition we sometimes 

consider the vertex set of 	to to be A ) . 

Now let Le be any tree of groupoids Gcx  (0( 	). For each 

0(EA choose any I-presentation for Go<  , <Xce Ro() say. Let G 

denote the I-groupoid which has the I-presentation with generator 

graph the union of the X (o(EA ), and relator graph the union of 

the R (EA ) together with the graph with points, u(ue ) -1  0( 
where u ranges through the domain of e and 9 ranges through ce 
(Here, for each eee with initial, terminal vertex Go(  ,Gi3  say 

respectively, then we suppose that in the point u(ue ) -1 u is 

written as a path in )C,,  and ue is written as a path in X13  ). 
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Then we call G a tree product of groupoids G «  (0(E/\), or 

more precisely the tree product ofilfe. 

Tree products of groupoids are special cases of 

generalised products of groupoids (see Higgins [S] pagel5 for 

the definition of a generalised product of groupoids). It 

is straightforward to see that tree products of groupoids are 

independent of the particular presentations used in their 

definition (see, again, Higgins [3] pagei5 ). 

. Now we give a short-hand notation for describing trees 

of groupoids. So letce be any tree of groupoids Go(  (010\ ), 

and choose any element 0 say of A , and let I denote the 

level-function on C7 induced by the vertex 0. (Note that we 

are here considering ce to have vertex set A ). Consider 

any OEL12), and suppose the initial, terminal vertex of e is 

GGr 
 say respectively. If we denote the domain, range 
 

of e by Uo(  ,Vc<  respectively, then of course we have 	is a 

subgroupoid of G„(  and \lc, is a subgroupoid of G 3  . Also it 

is clear that either GD is the predecessor of G with respect 

to 1 or vice versa. Without loss of generality we suppose 

that Ga  is the predecessor of G with respect to 1. Then let 

us write e for e . If we use this convention for each edge 

of Le , then we can express ce as ce = te : 0( 	c(E q-0). 
• 

In this case it is clear that we can describe the tree 

product of C7 as that I-groupoid which has an I-presentation 

with generator graph the union of the Xo(  NO\ ), and relator 

graph the union of the R
0% 
 (0(0\ ) together with the graph with 

points, u(ue0 )-1  where u ranges through Uo(  and 0( ranges 

through iN-0. 
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In the case that each Gc(  is a group, then the above two 

definitions give us a tree of groups G c4(c(EA) and a tree  

product of groups G (cXEA). These definitions agree with 

those given by Karrass & Solitar in [5] page2.18 

We close this section with a result on tree products of 

groupoids, which is a straightforward generalisation of a 

result on tree products of groups due to Karrass & Solitar 

( [5] page 232. 	). 

Proposition 5  

Let G be any tree product of I-groupoids Go(  (0(00\ ). 

Then for each element 0( of A the map G --)G given by g_*g 

(as g ranges through Go(  ) is a groupoid I-injection. 

1.4 On HNN Groups  

Let G be any group, and suppose we have a set of group 

isomorphisms teoc  :U 	,o(EA} where for each 0(0\ 
(3( 

Uc( and Vc(  are subgroups of G. For each EXEA let us introduce 

the symbol to  . Choose any presentation for G (X,R> say. 

Let H be that group which has a presentation with generators X 

together with the elements to  (oc EA ), and relators R together 
with the expressions, to ut(-1(ue0(  )-1  as u ranges through 

U and r>( ranges through A . 
Then we call H the HNN group with base-part G and free-part  

generated by the elements t c( 
 (cCEA). Also for each r)(0N we 

call 	the group isomorphism associated with the generator to(_. 
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It is straightforward to see that HNN groups are 

independent of the particular presentations used to define 

them (see, for example, [S] page/37). 

We close this section with the following well-known 

.result (again see [5] page238), 

Proposition 6  

Let H be an HNN group with base-part G and free-part 

generated by N :c0A1 . Then G is naturally embedded in H, 

and it 	:0(EA1 freely generate a free subgroup of H (that is 

the free-part of H is a free group freely generated by 

:c1EN ) 

1.5 Three basic results  

In this final section we give three basic results involving 

some of the definitions we have discussed in the earlier 

sections. We shall use these results in our proofs of 

theorems 3, 5 and 6. The first result is due to Higgins 

( [3] page 13 ) . 

To begin with we need two definitions. 

Let G be any graph or groupoid. By a set of representative  

vertices for G we mean a subset of the vertex set of G which 

contains precisely one vertex from each component of G (this 

unique vertex is called the representative vertex for the  

component). 
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Now let G be any connected I-groupoid with an 

I-presentation <X,R> say. Let F(X) be the free groupoid 

on X, and choose any maximal tree T of F(X). Also choose 

any vertex i of G. Consider any element r of R with 

vertices j say. Then by the conjugation of r by T in i we 

meanthepatht.
7
rt71 wheret.is that unique reduced path 

in T from i to j. 

Proposition 7  

Let G be any I-groupoid. Choose any maximal circuit-free 

subgraph X of G, and any set of representative vertices J 

for G. For each representative vertex j let 	
7 

<G..
73

,R
3
..> be 

the standard presentation for the group 
J] 

 Then G has an 

I-presentation with generator graph XU( 
jE.  
U 
J
G..) and 
 33  

relator graph 
jEJ
U R... 

 33  

Lemma 1  

Let C7= 8:Uc7c-4.Vc4  ,r)(0\-0 be any tree of I-groupoids 

Go4  ((AEA((AEA), and let G be the tree product of (e. For each 

oNI\ choose an I-presentation for G ‹X
ce 
 ,R > , and for each 
 (3  

c0A-0 choose any maximal circuit-free subgraph Zr,?  of U 0( 

and any set of representative vertices J for U c( 	0(• 

Then G has an I-presentation with generator graph 

U X,, , and relator graph U R together with the graph of 
,,( o0+ 	 toq `"( 
points, u(ue) 1  where u ranges through (1.10?  )ii  and j ranges 

through Land o( ranges through PV-0, and the graph of points, 

z(zeoi )-1  where z ranges through Z(:,  and of ranges through 

A-o 
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Proof 

Let <X,R) denote the I-presentation described in the lemma. 

Consider any qE,61-oand any uE U0(  . Then to prove the lemma 

it suffices to show that the point u(u 00(  )-1  belongs to the 

normal subgroupoid of F(X) (the free groupoid on X) 

generated by R. 

To begin with, we have that u belongs to some component 

U of U
0( 	

Since Z is a maximal circuit-free subgraph of 

, it follows that some component Z of Z is a maximal 

tree of 170  . Let j denote the representative vertex for Ucx  . 

Then we can express u as p-11315 , where ul  belongs to 

(U )
jj 
 and p,q is that unique reduced path in Z0(  from j to 

the initial vertex of u and from j to the terminal vertex of 

u, respectively. Then it is easy to see that u(u%)-I can 

be expressed as a product of conjugates of the expressions 

P(Pl% )-1, q(q00( ) -1  and u1(u/ec4 )-1. And so it follows 

that u(ueo( )-1  belongs to the normal subgroupoid of F(X) 

generated by R. 

And so the lemma is proved. 
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Lemma 2  

Let G be any connected 1-groupoid with an I-presentation 

<X,R) . Let F(X) be the free groupoid on X. Choose any 

maximal tree of F(X), and any vertex i of G. For each relator 
/ 

r let r be the conjugation of r in i using this tree. Choose 

any set of free generators W for the free group F(X)ii. For 
// 

each relator r let r be the expression r rewritten in :terms 

of the set of free generators W. 

Then (1) <X,(r/: rE RI> is an I-presentation for G, and 

(2) <W, {r : r 	> is a presentation for the vertex 

group of G at i. 

Proof 

First let N(R) and N( ir : rE 	) denote the normal 

subgroupoid of F(X) generated by R and tr r(11 respectively. 

Clearly we have N(R) = N( ir : r(R)-). 

Then, by the remarks following proposition 4, we have that 

<X, tr rEl9is an 1-presentation for G. 

Now it is easy to see that the vertex group of the quotient 

groupoid F(X)/N([r/: rER1) at the vertex i is the factor group 

of the free group F(X)ii  modulo the group N(V. 	r(it )ii. 

And so it follows that <W, tr//: r(ROois a presentation 

for the vertex group of G at the vertex i. 

And so the lemma is proved. 
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Chapter 2  

CHARACTERISATION OF THE VERTEX GROUP OF ANY CONNECTED  

TREE PRODUCT OF GROUPOIDS  

Throughout this chapter and the next, suppose we are given 

any collection Go(  (rAE A ) of I-groupoids (for some vertex 

set I) whose edge sets are mutually disjoint, and any tree 

ce of I-groupoids,G(x  (okEA), and let G be the tree product of 

Ce and suppose that G is connected. Suppose we have chosen 

any element of I, which we call the 'origin', and any element 

of A , which we denote by 0. Further let A denote the level-

function on te induced by 0. Finally we suppose that C0 is 

expressed as 4ED .tec tr,,c,s7c4  , cW-5y-.0 (see (1.3)). 

Our object is to obtain a presentation for the vertex group 

of G at the origin, from which we hope to deduce the 

structure of the vertex group of G at the origin. 

We begin, here, by describing the general procedure we 

shall use to obtain presentations for the vertex group of G 

at the origin. 

Our starting-point is to choose any 'representative 

system' 	:ol(Al say. Of course we have not defined what we 

mean by a representative system, but at present it suffices to 

know that associated with [Q0(  :o(EN. we have for each ckeA , a 

maximal circuit-free subgraph of Gei  ,X0k  say, and a set of 

representative vertices for Gov 
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Then for each 0(0\ , using proposition 7 with the 

circuit-free graph X ci  together with the given set of 

representative vertices for G 	we construct an 

I-presentation for G. 

Next for each c(01,--o we choose any maximal circuit-free 

subgraph of 	and a set of representative vertices for Uck. 

Now we use lemma 1 with the given circuit-free 

subgraph of U a  and the given set of representative vertices 

for U (as of ranges through A-0) together with the given 

I-presentation for G oc  (as 01 ranges through A ), to obtain an 

I-presentation for G. 

We shall see that this I-presentation for G has the form 

<XUY,R> where X is the graph-union of the Xc4 , and Y is some 

discrete graph. Note that XUY is a connected I-graph. 

Now we choose any maximal tree of F(XUY) (the free groupoid 

on XUY), and for each relator r let us write r for the 

conjugation of r in the origin using this tree. Then from 

the first part of lemma 2 we have another I-presentation for G, 
/ 

<XUY,(r :rE 10, and of course each relator in this 

I-presentation has vertices the origin. 

Next using the representative system tQ oc  :c((Mwe 

describe a method for obtaining a set of free generators, 

W say, for the vertex group of F(XUY) at the origin. 

For each relator r in R let us write r for the relator r 

rewritten in terms of the free generators W. Then by the second 

part of lemma 2 we obtain a presentation for the vertex group 

of G at the origin (W, ir :r E RI> 

Finally from this presentation we shall try to deduce 

the structure of the vertex group of G at the origin. 
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In section 1 we define what we mean by a 'representative 

system', and we show how we can use representative systems 

to give us sets of free generators for the vertex group of 

F(XUY) at the origin (theorem 1 and corollary). 

In section 2 we define a particular kind of representative 

system which we call a 'regular representative system', and 

we prove the existence of a regular representative system 

(theorem 2). 

In section 3 we prove our main theorem (theorem 3). That 

is we shall prove that the vertex group of G at the origin 

is an HNN group with base-part some tree product of groups. 

We prove the theorem by choosing a regular representative 

system and following through the procedure outlined above. 

Finally a word on terminology. Throughout this chapter 

and the next we shall abbreviate 'predecessor of ci( with 

respect to X' to simply 'predecessor of o('. 

2.1 On representative systems  

To define a representative system we first need to 

choose for eacho(EA a maximal circuit-free subgraph of Gcx  
and a set of representative vertices for G which contains 

the origin. 

For eachcAEA choose any maximal circuit-free subgraph 
X of G(A, and let X be the graph-union of all the X -then X 

is a connected I-graph. Also, for eachomA, and each 

component of Gehich does not contain the origin we define 

the representative vertex for that component to be any 

vertex i of the component such that there exists a non-empty 

reduced path in X from the origin to i which does not end in 
±t 

an element of X . 
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Now consider any element c)( of A 

For each non-origin representative vertex i for G c< ,  

choose any non-empty reduced path in X from the origin to i 

X . which does not end in an element of 	Consider the graph 

whose edges are, all these chosen paths. Clearly this graph 

is a tree with vertex set the set of representative vertices 

for Got . Let us write Q ot  for the graph-union of this tree 

and the circuit-free graph X 0(  . Obviously Q0(  is a maximal 

tree of F(X) (the free groupoid on X). For each vertex i 

let us write q(ot,i)  for that unique reduced path in Q ot from 

the origin to i. In particular, then,if i denotes the origin 

we have that q(0(,i)  =0i  (the empty path at the origin). 

In this way we construct each Q. 

Consider any non-origin representative vertex i for Go  . 

Then, of course, the non-empty path q(0,i)  ends in an element 

of X -1 for some cqiN-0. In this case let us call i an 0( 

o(-vertex for Go. 

Then we call the set of trees 	:ocE, A1 a representative  

system if for each element c( of A-0 , with predecessor p 

then, 

(1) for each representative vertex i for Go(  we have 

q(pe,i)  = q( 	and 

(2) for each c4-vertex i for Go  we have q( ck ,i)  = q(0,i). 

Note that for each element of of I\ we have associated 

with [Q0  :uk(Al some maximal circuit-free subgraph of G 

namely Xo  , and some set of representative vertices for G 
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containing the origin, namely the set of representative 

vertices chosen in the construction of 	:0CEA1- 

Now in the following lemma we give two elementary 

properties of representative systems. 

So let 1Qci:0(EA  be any representative system and for 

each element o( of f\ let X be that maximal circuit-free 

subgraph of Go(  associated with kx  

Then, 

Lemma 3  

Consider any element o( of Aco. Then the set of repre-

sentative vertices for Go(  has empty intersection with the set 

of 0(-vertices for Go. 

Further suppose 11 is the predecessor of N. Then for 

each vertex i we have q(0(,i)  = q, 	
J) 
,,p for some reduced path p 

in X and some representative vertex j for G 
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Proof 

(1) Consider any non-origin vertex i. 

If i is a representative vertex for Gop  then from the 

definition of Q we have that the non-empty path q
(0( ti) 

does not end in an element of X-1 
c( • 

Now suppose i is an 0(- vertex for Go. 

This means that 
q(o,i) ends in an element of X

-1 

Also by the definition of a representative system we have that 

-41 q(c(,i)  = q(0,i), and so q(c4,1)  ends in an element of X:  

vertex for Go(  and an o(-vertex for Go. 

This proves the first part of the lemma. 

(2) Now consider any vertex i. 

If i is a representative vertex for G then from the 

definition of q( a i)  we have q( 	i)  = q( 	i)  . And so, in 

this case, we have q( ot ,i)  = q(  , j)p with i = j and p the 

empty path at the vertex i. 

On the other hand, if i is not a representative vertex 

for Go( , then let j denote the representative vertex for that 

component of Go(  which contains i. Also let p denote that 

unique non-empty reduced path in X0(  from j to i. Then again 

from the definition of q 	we have q 	= qA. 

And then, since j is a representative vertex for Go(  , we have 

`icy( 	qc p 
	Thus, q( ,i)  = q(tsi)p. 

This proves the second part of the lemma. 

0( 

And so we cannot have that i is both a representative 
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Corollary 

Consider any element o( of A-o of )\-level m, and let 044  

denote the predecessor of 0(, and for each l< rrri let 

r denote the predecessor oft:4r-1* 

Then for each vertex i we have q 	
=q(0,j)pill—P1P 

where p is some reduced path in )(cgs  and for each 	r',;m 

pr  is some reduced path in X ixr, and j is some representative 

vertex for G
o. 

Now we show how we can use representative systems to 

give us sets of free generators for the vertex groups of 

connected free groupoids. 

Theorem 1  

Let ■C2.0(  :01,4\be any representative system. For each 

0(EA let X0(  denote the maximal circuit-free subgraph of G tA  

associated with .1Q1 :01,0\, and let X denote the graph-union 

of all the X Q(  . 

Then the vertex group of F(X) (the free groupoid on X) 

at the origin is freely generated by the elements, q(0(,i)  

q(  1 -1 ,i) 	where 	is the predecessor of u(, and i ranges through 

those elements of I other than representative vertices for 

Go(  and o(-vertices for 	and and o(ranges through A-CO. 
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Proof 

Consider any element o( of A70, with predecessor p say, 

and any element i of I which is neither a representative 

vertex for Gtx  nor an cg-vertex for G. Let us write 

f 	for the element q 	q 
-1 

(cc ,i) 	(ok,i)c p ,i). 
Let F denote the set of all these elements. 

Then we must prove that the vertex group of F(X) at the 

origin is freely generated by the set of elements F. 

The proof of the theorem is based on the following result 

due to Higgins ([3] page 14 ). 

Consider any maximal tree T of X, and for each element 

iofIlett.be that unique reduced path in T from the origin 

to i. Then the vertex group of F(X) at the origin is freely 

generated by the elements, t.
D
xt
1
71  where j,i is the initial, 

terminal vertex of x respectively, and x ranges through X - T. 

It is not difficult to obtain the following generalisation 

of this result, 

Lemma 4  

The vertex group of F(X) at the origin is freely 

generated by the elements q(0,flyq(0,i)  where j is the 

representative vertex for that component of Goi,  which contains 

i, and y is that unique non-empty reduced path in X0(  from j 

to i, and i ranges through those elements of I other than 

representative vertices for Go(  and o(-vertices for Go, and 

0( ranges through i\-0. 
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For convenience let us now introduce some notation. 

Consider any element 0( of A-0 and any vertex i, other 

than a representative vertex for G or an o(-vertex for Go. 

Let j be the representative vertex for that component of Go(  

which contains i, and let y be that unique non-empty reduced 

path in X 	from j to i. We write w
((X i) 

for the element 
 

-1 
cl(o,j)/7  q(0,i) 

Let us write W for the set of all these elements. 

Then the lemma says that W is a set of free generators 

for the vertex group of F(X) at the origin. 

To show that F is a set of free generators for the 

vertex group of F(X) at the origin, we shall investigate how 

each element of F is expressed as a product of elements (or 

their inverses) of W. 

To do this, we have, 

Lemma 5  

Consider any element o( of Pro and any vertex i. Then 

-1 q(c4,i)q(0,i)  is expressed as a product of elements of the 

form Wq  13 i) where 	-1 and j ranges through those 
(   

elements of I other than representative vertices for Gil  or 

p -vertices for Go, and ranges through those elements of 

/V() such that X(p) '< Ma( ). 
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Proof 

We shall prove the lemma by induction on the A-level 

of I)( . 

Suppose first that o( has A-level 1. 

If i is either a representative vertex for G a  or an 

cc-vertex for Go, then obviously q(cx,i)  = q(osi)  and so the 

lemma follows trivially in this case. 

On the other hand, if i is neither a representative vertex 

for Gc4  nor an u(-vertex for Go, then we have q(c4,i) 	cl(of,j)17 
where j is the representative vertex for that component of G e(  

which contains i, and y is that unique non-empty reduced path 

in Xtx  from j to i. Also we have q(0( ,j)  = q(0,j)  since the 

-1 	 -1 predecessor of (xis o. And so q( oc,i)c1(0,i) _ 1̀(0,j)17c1(0,i) = 
. Thus the lemma holds in this case. w

( 	i) 

Now choose any n >1 and suppose the lemma holds for each 

0( of A-level<n. Suppose o( has A-level n, and let ?, denote 

the predecessor of cd, . Then of course 15 has A-level n-1. 

If i is an 0(-vertex for Go then q ((Ali) = q(0,i).  
If i is a representative vertex for G then we have 

-1 _ 	-1 
cl(c(,i) = q( 	,i) and so cl,(c(1 1-)c1(0,i) 	c1 ( p ,±)q(0,ir Then 

the lemma holds by our induction hypothesis. • 

Finally suppose i is neither a representative vertex for 

G o(  nor an c-vertex for Go. Let j denote the representative 

vertex for that component of Gyc  which contains i, and let y 

be that unique non-empty reduced path in Xof,  from j to i. 

Then we have q(ck,i)  = q(c,i)y. Also, since p is the 

predecessor of cc , we have q(04,j)  = q(rj). Thus 
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- 	-1 	-1 
q( ,i)q(0,i) 

	(q(  ,i)q(0,i) ) (q(0,i)Yel (0,i)).' 
(q(13,j)q -1  (0,j)) w(c(si). Then, again by our induction 

hypothesis, we see that the lemma holds in this case. 

Thus the lemma holds for A(0() = n. 

And so the lemma is proved, by induction on the A-level 

of o( .  

Now consider any element o( of /\-o,  with predecessor 13 say. 

Choose any vertex i which is neither a representative vertex 

for Gt)  nor an o{-vertex for Go. Let j denote the representative 

vertex for that component of G cc  which contains i, and let y 

be that unique non-empty reduced path in X ce,  from j to i. 

Then, clearly, 

f
( 0{,i) = cl(o{,i)c1( p ,

1
i) 	(q( 	)q(0,j) (q ( ,i)Yq(01))  

- 	-1 . 

-1 . (q(o,i)c1( 13,1)) = uw ( ot ,i)
v, 

 
where by lemma 5 we have that u and v can be expressed as a 

product of elements of the kind w( k) where k ranges through 

those vertices other than representative vertices for G 	or 

6-vertices for Go, and 6 ranges through those elements of 

A-0 such that A( 6 ) 4; A( ). 

From this it is easy to show, by induction on the A-level 

of cA, that F is a set of free generators for the vertex group 

of F(X) at the origin. 

And so the theorem is. proved. 
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Corollary  

Suppose the hypotheses of the theorem hold. Also suppose 

we have a set of discrete graphs -5(01,  :o(EA)whose edge sets are 

mutually disjoint, where for each element 0( of A the vertex 

set of Yo(  is the set of representative vertices for G. 

Let Y denote the graph-union of the Y o(  and let F(XUY) be the 

free groupoid on XUY. 

Then the vertex group of F(XUY) at the origin is freely 

generated by the elements given in the theorem, together with 

the elements q(c4,i)y q(ci1i)  where y ranges through (Y04 )ii  

and i ranges through the representative vertices for Go( 
 and 

LA ranges through A 

In the appendix we give an example of a connected tree 

product of groupoids. In this example we choose a representa-

tive system and then follow through the general procedure 

given in the introduction to this chapter, and so obtain a 

presentation for the vertex group of this connected tree 

product of groupoids. However, we shall see that we cannot 

characterise this vertex group precisely using this presenta-

tion. 

Further the example indicates the kind of condition we 

must impose upon the representative systems we use before we 

can obtain useful presentations for the vertex group of G. 

The condition is that the representative systems be 

'regular'. 

And qo, in the next section, we define what we mean by a 

'regular representative system'. 
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2.2 On regular representative systems. 

Let tQa,  :ok(N be any representative system. Recall, 

then, that for each element ok of Pro with predecessor p  say 

then, 

(1) for each representative vertex i for Got  q( ,i)  = 

q( ,i), and, 

(2) for each o(-vertex i for Go q ( e(  i) 	q ( o , ) 

If, in addition, the following condition holds, 

(3) for each element u( of A-0 and each 0(-vertex i for 

Go then q( 	i)  = q( ,i)  for all those elements 

p of A such that A( ) < A(0( ), then we call 

:okON1, a regular representative system. 

In the next lemma we give two basic properties of regular 

representative systems. So suppose tQty%  :c(EN is any regular 

representative system, and for each element cx of Aro , let 

Ia  denote the union of the set of representative vertices 

for Gc(  and the set of o(-vertices for Go. 

Lemma 6  

Consider any element o( of Aco . Then for each o(-vertex i 

for Go we have that i is a representative vertex for each Gr,  

such that A ( 11  )< A (c( ). 

Further we have that distinct elements of I « belong to 

distinct components of U . 
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Proof 

(1) Let i be any 01{-vertex for Go, and let p be any element 

of A such that A(p )( )(0(). Then, since [Qci  :001 is 

regular, we have q( ,i)  = q( p , i). Further,since i is not 

a representative vertex for Ge4  , it follows that q(0(,i)  ends 

in an element of X0(-1  . And so, from the definition of the 

path q(13 ,i), it follows that i is a representative vertex for 

G. 

This proves the first part of the lemma. 

(2) Let p be the predecessor of I:X. Then we have that Tic(  is 

a subgroupoid of Go( and V(xis a subgroupoid of Gq and %is a 

groupoid I-isomorphism from U to V 0( 	0( ' 

Consider any distinct elements i and j of I0( , and suppose 

these vertices belong to the same component of Uc<  . Then, of 

course, they also belong to the same component of G 	and the 

same component of Gp . 

First, suppose that neither i nor j is a representative 

vertex for Gci . Then both vertices are (A-vertices for Go. 

And so, from the first part of the lemma, we have that i and j 

are representative vertices for G1 . This is a contradiction 

since i and j belong to the same component of Gfi  . 

Next, suppose that one of the vertices, i say, is a repre-

sentative vertex for Gcc  . Then, from the definition of q 

we have q(ot,i)  = q( ,i). Also, since j is an o(-vertex for Go, 

we have q(c)(,j)  = q(rj). Further it is clear that q(cx ,i)  = 

q(oc,i)p and q( r i) 	q( 	 q  for some non-empty reduced path 

p,q in Gei , G p  respectively. From these equations we obtain 

q(ot,i)  = q( 0(,j)qp, a contradiction. 

This proves the second part of the lemma. 
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Theorem 2  

There exists a regular representative system. 

Proof 

To begin with, for each element 0( of A, choose any 

maximal circuit-free subgraph X of Go,  , and let X be the 

graph-union of the X0(  . Then X is a connected I-graph. 

We shall prove the theorem in four steps, as follows. 

First, we construct a very particular maximal tree T 

of X containing Xo. 

Second, using the level-function 1 on T induced by the 

origin (of I), we choose for each element q of A a particular 

set of representative.vertices for Go(  . 

Third, using for each element o( of A , the maximal 

circuit-free subgraph Xo(  of Go(  and the set of representative 

vertices for G chosen in step 2, we construct a 

representative system tQ0(  

Fourth, we show that N :cq,d1,  is regular, and to help 

us we give three lemmas. 

Step 1 Construction of the tree T. 

To help us to construct T we shall first describe a 

sequence of graphs Cr  (3:1) say. So for each r > 1, let Cr  

be the graph-union of all those X where 0( has ,\ -level r. 

Now choose any circuit-free subgraph TI  of C1  such that 

the graph-union XoUT1  is a maximal circuit-free subgraph of 
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XoUC1' 
It is easy to see that such a T1  can be chosen. 

Next choose any circuit-free subgraph T2  of C2  such that 

the graph-union X0UT1UT2  is a maximal circuit-free subgraph 

of XoUC1UC2' 
We continue in this way and so obtain a sequence of 

graphs Tr(r` 1) such that for each r, 1 Tr  is a circuit-

free subgraph of Cr and XoUT1U..UTr 
is a maximal circuit-

free subgraph of X0UCI.U..UCr. 

Let T denote the graph-union of X0  together with all 

the Tr. 

Then we have, 

Lemma 7  

T is a maximal tree of X. 

Proof  

To prove the lemma we show that T is a connected 

circuit-free I-graph. Then, from proposition 2, it 

follows that T is a maximal tree of X. 

First, then, we show that T is a connected I-graph. 

Consider any distinct vertices i and j. 

Since X is a connected I-graph there exists a non- 

empty path in X from i to j. Then, of course, this path 
E 	E  

is of the form x1 
1x2 

2....xm 
m  for some m>`1 where for 

each IA r =-1 and xr is some element of X. Let n 

denote the maximum of the A-levels of those elements of A ,  

of , such that X contains some xr (1A 
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Then, clearly, the vertices i and j belong to the 

same connected component of XoUCI.U..UCn. 

Now, since XoUT1U...UTn  is a maximal circuit-free 

subgraph of XoUC117..UCn, it follows that the vertices i 

and j belong to the same connected component of XoUT1U„UTn. 

This means that there exists a path in XoUT1U...UTn  with 

vertices i and j. 

Thus we have a path in T from i to j. 

Therefore T is a connected I-graph. 

Now we show that T is circuit-free. 

Consider any non-empty closed and reduced path in T, 

X
1 

 E1 X2
E2 	m  ...xm for some rct 1 where for each it r'< m 

Er = -1 and xr is some element of T. 

Again let n denote the maximum of the A-levels of 

those elements o(  of A such that 	contains some 

xr (1/< r m) . 

Then, for each 	it is easy to see that xr  

belongs to XoUTI.U...UTn. 

Thus the given path is a non-empty closed and reduced 

path in XoUT1U...UTn. But this is a contradiction since 

Xo  UT1  U...UTn  is circuit-free. 

This proves that T is circuit-free. 

And so the lemma is proved. 
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For each element i of I let us write ti for that 

unique reduced path in T from the origin to i. 

It is very easy to see that for each connected 

component of X0  which does not contain the origin, there 

exists an unique vertex of the component i such that ti  

ends in an element of X-1 for some element o( of Pro. 

Step 2 Choosing a set of representative vertices for 

each G - 

As already mentioned we shall use the level-function 1 

to help us to choose a particular set of representative 

vertices for each G G. 

So consider any element 0( of A. For each component 

of Go(choose any vertex of the component of minimal 1-level, 

and let this vertex be the representative vertex for the 

component. In this way we choose a set of representative 

vertices for G, and note that the origin belongs to this 

set of vertices. 

And so we choose a set of representative vertices for 

each G c(' 

Note, then, that the representative vertices for G 
 

are uniquely determined. Indeed the set of non-origin 

representative vertices for Go  is precisely the set of 

non-origin elements i of I such that ti  ends in an element 

of X-1 for some element o( ofd4ro. 

Also it is easy to see that if i is any non-origin vertex 

and ti ends in an element of X 
-1 c( for some element O( of A 
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then i is not a representative vertex for Go(  . 

Step 3 Construction of the representative system tQci  :0(EN 

Here we shall use, for each element o( of A, the 

maximal circuit-free subgraph Xoc  of Go(  and the set of 

representative vertices for Go(  chosen in step 2, to construct 

the representative system fQci :cqN • 

We shall construct kx  :64V\). by induction on the 1\-level 

of elements of A. 

So, first, we construct Q0. 

To be precise, for each non-origin representative vertex 

i for Go, we shall define a non-empty reduced path in X from 

the origin to i, which we shall write q(o,i),  and then we 

shall write Q0  for the graph whose edges are all these paths 

together with the edges of Xo. 

We shall define the paths, q(0, i)  as i ranges through 

the non-origin representative vertices for Go, by induction 

on the 1-level of the representative vertices for Go. 

To begin with, then, consider any representative vertex i 

forGo ofl-levell./nuliscaset.is a path of length 1. 

From the remarks given in step 2 we have that ti  belongs to 

X-1 for some element o( of A-0. Then we define q(o,i) to o( 

be t.. 

Now choose any n>1 and_suppose that we have defined the 

paths, q(0.3.)  as i ranges through those representative vertices 

for Go  of 1-level< n. 
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Consider any representative vertex i for Go  of 

1-level n. 

Again from the remarks in step 2 we have that ti ends 

in an element of Xo(  for some element c< of A-0. Suppose o( 

has A-level m (for some m>1). Let j denote the representa- 

tive vertex for that component of Go:  which contains i, and let 

q be that unique reduced path in 	fromm j to i. Note that, 

from the definition of the representative vertices for Go(  , 

1(j)<n. 

Now let oci  denote the predecessor of o<, and let j1  be 

the representative vertex for that component of G,-,, which 1  

contains j, and let ql  be that unique reduced path in X 0(1  

from ji  to j. Again we observe that 1(j1)<n. 

Continuing in this way we obtain a set of elements of A 

[o(r:1'<r'<n.q and a set of verticesljr:1"‹ r'< m} such that for 
each 1< r'<mrr. is the predecessor of 'r-1 and jr is the 

representative vertex for that component of Goq.  which 

contains jr-1' 

It is easy to see that 1(jr)<n for each 1 t r'< m. 
For each 1 < r /<m let us write qr  for that unique reduced 

path in X.../  from jr  to jr-1* 

In particular we have 0(m  = o and 1(jm)cn. 

Thus, from our induction hypothesis, the path q(o,j) has m  

already been defined. (If jm  is the origin of I then we 

define q(0,i)  to be the empty path at the origin). m   

In this case we define the path q(0,i)  to be q(0,j0qm... 

It is not difficult to see that this path is reduced. 
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And so, by induction , we have-defined the reduced 

paths 
q(o,i) as i ranges through the non-origin representative 

vertices for Go. 

Note that for each non-origin representative vertex i 

for Go  then q(0,i)  and ti end in elements (perhaps different) 

of the same X 	for some element 0( of Ar0. c( 

Then we write Qo  for the graph whose edges are the edges 

of Xo together with the edges q(o,i) as i ranges through the 

non-origin representative vertices for Go. 

Now choose any n 9 1 and suppose that for each element cK 

of A of A-level< n, we have defined 00(  . 

Consider any element of of A of A-level n. 
Let p denote the predecessor of 0( 0  Then of course p 

has k-level n-1 and so by induction Q p  has already been 

defined. 

Then for each non-origin representative vertex i for Go(  

we define q 	
,i) 

to be q p,,i) , that is that unique reduced 

path in Qp  from the origin to i. 

Then we write Qo(  for the graph whose edges are the edges 

of X0( together with the edges q(0(,i)  as i ranges through the 

non-origin representative vertices for G. 

And so by induction we have defined [Q0(  :0(EN. It is 

immediate from its construction that tC2
d 
 ml(iN is a representa- 

tive system. 
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Recall that for each non-origin representative vertex i 

for Go then q(o,i) 
and ti 

end in elements of the same   Xa  ±1 

for some element 0( of A-0. From this it is clear that for 

any element o( of A-othen the o(-vertices for Go  are 

precisely those non-origin representative vertices i for Go  

1 such that the end of ti belongs to X c( 

Step 4 t(),0(  :G01\1 is regular 

Let us recall here that the representative system 

f Q 	1((iM 
0( :c 	

is regular if for each element o( of A1-0  and each 

o(-vertex i for Go  then q(c4,1)  = q(r,i)  for each element p 

of A such that 1\( )< A(o(). 

As we have mentioned, to help us see thattc2 o( "ON 

is regular, we now give three lemmas. 

Lemma 8  

Consider any element 0( of ko and any 0(-vertex i for Go. 

If o( has X-level m, then the origin and i belong to different 

components of XoUCiU..UCm_i. 

Proof 

To begin with, since i is an .0(-vertex for Go, we have 

from the remark given at the end of step 3 that ti  ends in 

an element of X-1 . 
c4 
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Suppose that the origin and i belong  to the same 

component of XoUC1U..UCm-1* 
Then, since XoUT1U..UTm-1 is 

a maximal circuit-free subgraph of XoUCiU..UCm_i, it follows 

that the origin and i belong  to the same component of 

XoUT1U..UTm_i. This means there exists a path p in 

X0UT1U..UTm-1 
from i to the origin. 

Then it is clear that the reduction of the path tip 

is a non-empty closed and reduced path in T. 

Of course this is a contradiction. 

This proves the lemma. 

In exactly the same way we prove, 

Lemma 9  

Consider any elements cgq, of A-0 and any distinct 

cg-vertex i, p-vertex j  for Go. If m=min{ N(00, q  

then i and j  belong  to different components of XoUCiU.. 

UCm_i. 

Lemma 10  

Choose any m>o and any component of XoUC111..UCm_i  

and any vertex i of this component of minimal 1-level. 

Then either i is the origin or i is an o(-vertex for Go  

for some element I. of A of N.-level m. 

Proof 

Suppose .i is not the origin, and that ti  ends in an 
4- 
-1 element of 	for some element 0(  of A of N-level < m. 
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Let j denote the initial vertex of the terminal 

element of t.. 

Then, since j has lesser 1-level than i, it follows 

that j does not belong to the given component of XoUC1U... 

UCm-1' 
On the other hand, since the terminal element of ti  

belongs to X-1 for some element of of A of N-level< m, 

it follows that j does belong to the given component of 

XoUC1U..UCm-1' 
This contradiction means that t. ends in an element of 

X-1 for some element c1( of /q of >-level m, and this means 

that i is an o(-vertex for Go. 

Thus the lemma is proved. 

Now from these three lemmas it is easy to see that 

1Q
0(  :c(ENis regular. 

For consider any element c( of Noand any c4-vertex i 

for Go. 

Let m denote the A-level of of. 

Consider that component of XoUC1U..UCm-1 which contains i. 

Then from lemmas 8, 9 and 10 it is clear that i is that unique 

vertex of this component of minimal 1-level. 

Now choose any element [1 of A  of lesser N-level than o(. 

Consider that component of XII which contains i. Obviously 

this component of XP,  is contained in the given component of 

XoUC1U..UCm-1' and so it follows that i is that unique vertex 

of this component of Xf.  of minimal 1-level. 
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Then, from the definition of the set of representative 

vertices for Gp , it follows that i is a representative 

vertex for Grp  . 

And so it is clear that q(ck,i) 	q( ,i)  for each 

element g of A of lesser \-level than cX. 

But this is precisely the condition required for 

:c0/\1 to be regular. 

And so the theorem is proved. 

2.3 The main theorem 

In this section we prove our main theorem, that is we 

characterise the vertex group of G at the origin as an HNN 

group with base-part some tree product of groups (theorem 3). 

Our method of proof will be to choose any regular 

representative system, and then follow through the general 

procedure given in the introduction to this chapter, to obtain 

a presentation for the vertex group of G at the origin, and 

from this presentation we shall see that this group has the 

structure just described. 

First though we make a simple observation. 

Consider any regular representative system fQc  :o(( N. 

Choose any element o( of A-0 and let p be the precedessor of c(. 

Also choose any vertex i, and let j,k be the representative 

vertex for that component of G
04  , G respectively which contains 
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i. Then for any element u of (U0( ) ii we have that 

q ( 	,i)uq (0(  1  ,i)  is an element of the group q ( 0( ,i) (G c(  )ii  

-1 q ( 	 i) . To see this we have q 
( 0( ,i) = q( cx , i)10  for some 

reduced path p in G 	So we can express q 	uq-1  . ( 0C,i) 	( 0(,i) 

-1 	 -1 	 -1 
q 

 
as (c(,i) (q (0(,i)q (0i,i)uq (c7C,i)q (011,i) )q (c(,j) = 

(pup)q 1  q ( oc  ) 	-1 ( , ) and of course we have that pup-1 

belongs to (G, t  ) jj . Similarly we have that q ( 	i) (u%) 

q (1 
 ,i)  is an element of the group q ( 	k)(G ) a-1 

•Ic-( 	,k)* 

Further, in the case that i is a representative vertex for 

G or an o(-vertex for Go we have q q 	and so (0( ,i) 	( 	,i) 

q( 	
(ue,' )(4 (1, , 	= q(„(,i)(u o., 	, 	- 1  

Theorem 3  

Let 	be any regular representative system. 

For each element of of A-0 let I be the set of representative 

vertices for Grx  and c(-vertices for Go, and choose any set of 

vertices K such that I nK a  is empty and I UK is a set 

of representative vertices for U0(  . Again for each element et of 

A-0 and each element i of Ia  , let cr( 	) denote the group 
- 	 -1 isomorphism given by q ( , i)uq( 1  0c 	q ( 	i)ueti  q ( 	i)  as u 

ranges through (U oc  )ii. Let be the set of all these group 

isomorphisms. 

Then 	is a tree of groups q (0( ,i) (G )iiq (0( ,i) as i 

ranges through the representative vertices for G and 

0( ranges through A 
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Further the vertex group of G at the origin is the 

HNN group with base-part the tree product of and free-

part generated by the elements q(00.)q4 ,i)  where
) 
 is 

the predecessor of o( and i ranges through K and o( ranges 

throughX-0 . 

Finally for each element o( of A-o , with predecessor 

p
say, and each element i'of Ko(  , then the group isomorphism 

1 associated with the generator q(0, ,i)q( is given by 

c1( ,±)ueotc1( ,i)-4`1( 	i)ucl( 	as u ranges through 

(Uo(  )ii. 

Proof 

We begin immediately with the following, 

Lemma 11  

is a tree of groups q(c(,i)(Gok )iig(-1  ok,i)  as i 

ranges through the representative vertices for G
ot 
 and of 

ranges through A. 

Proof 

First we show that the set of group isomorphisms can 

be considered as a graph with vertices the groups q 	(G ) 
(o(ti) 	ii 

as i ranges through the representative vertices for 
'1(0(,i) 
G and o( ranges through A . 
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So consider any element 0" of 	. Then we have 

0-.o( oc,i)  for some element i of I
0(  and some element 4rA 

of A-0. Let r, denote the predecessor of o( . Then 

q( ,i) = q( 3. i) 
and 0- 	has domain q

( 	i) 
 (U) 

- 	 - q(1  i)  and range q( 	i)  (V0(  )iig(c1  
( 

i)  = q( 	i)  (Vex  )ii  

-1 
p ,i)* 

Suppose first that i is a representative vertex for G. . 

Let j denote the representative vertex for that component 

of Gp  which contains i. Then the range of O( 0(  , i)  is a 

. 	..- s
u
bgroup of q

( f13)(G 
 ) 

JJq (1 1j). 
In this case we define the initial, terminal vertex of 

a'( ot i)  to be the group q( 	i)  (G0(  )iig( 0(  ,i),q( ,j) (GC 
q( j)  respectively. 

P' 

Now suppose that i is an o{-vertex for Go. 

Then of course i is a representative vertex for Gp . 

Let 1 denote the representative vertex for that component 

of Ga  which contains i. Then the domain of -(0<,1.) 	a 

)11q(c(,1)* 

In this case we define the initial, terminal vertex of 

C( cx,i)  to be the group q( 	(Go( )11q( 0(,1)'cl( p ,i) (G ) ii 
q( gi)  respectively. 

And so it is easy to see that 	is a graph with vertices 

the groups q ( 	i)  (Go(  ) jig(-1  i)  as i ranges through the 

representative vertices for G and 0( ranges through A 

subgroup of q( 0( ,i)  (G 	-1  

Now we show that is in fact a tree. 
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To begin with let denote that subgraph of 
1 

consisting of the group isomorphisms 0 0(,i)  as i ranges 

through the representative vertices for Go(  and oranges 

through A-0. 

Then it is easy to see that
1 is circuit-free. Also 

it is easy to see that for each component of 1 there 

exists a unique representative vertex i for Go  such that 

the group q(ogi)(Go)iiq-1  (0,i)  is a vertex of this component. 

Now put 	= - 	. 1 

We shall construct a graph, which we denote by 2, 

with vertices the connected components of 	To do this 

consider any edge cr of *2. Then we introduce the symbol 0" 

and we define the initial vertex of 5" to be that component 

of 1which contains the initial vertex of CT and we define 

the terminal vertex of 0" to be that component of 	which 

contains the terminal vertex of Cr. Then we write 2 for 

the graph consisting of the elements, 0" as 0  ranges through 2. 

It is clear that the vertices of 2  are the components of 

Also it is straightforward to see that 	is a tree iff 
•■• 

2 is a tree. 

To show that 2̀ is a tree, we use the following result 

due to Karrass & Solitar ( ES] page 15I ). 

Consider any graph and choose any vertex of the graph, 

and call this vertex the 'start'. Suppose we associate to 

each vertex of the graph, some non-negative integer, such that 

the non-negative integer associated to the 'start' is 0. Also 
3 
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suppose that the non-negative integer associated to the 

initial vertex of each edge of the graph is less than the 

non-negative integer associated to the terminal vertex of 

that edge. Finally suppose that each non-'start' vertex 

of the graph is the terminal vertex of a unique edge. 

Then'the graph is a tree. 

Lemma 12  

is a tree. 

Proof 

To begin with let us call that component of 	which 

contains the vertex group of Go  at the origin, the 'start'. 

Now consider any component of 1' Let i denote that 

unique representative vertex for Go  such that the group 

q. 	..(G ):.q-1  is a vertex of the given component. Let ko,i) o (o,i) 

us count the number of non-origin representative vertices j 

for Go  such that q(0,j)  is an initial segment of q(0,i)(that 

is q( 0,1  .) 	- a(o,j)P for some reduced path p). This is the 

non-negative integer we shall associate to the given 

component of 

Clearly the non-negative integer associated to the 

'start' is 0. 
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Next consider any edge 61  of 2• 

We shall show that the non-negative integer associated 

to the initial vertex of Ei is less than that associated to 

the terminal vertex of &  
We have c- = 
	i) 

for some element 0( of A-o and 
cr
.
(   

some o(-vertex i for G. Then of course we have that i is 

a representative vertex for each Gi!,  where has has lesser 

A-level than o . And so it follows that the terminal 

vertex of 0' is that component of 	which contains the vertex 

q(0,i)(Go)iig(0,i). Let j be that unique representative 

-1 
1j) 

vertex for Go such that the group q(0,j)  (G0 )j7 (0 
.q 	belongs 

to the initial vertex of 	Then it is easy to see that 

q(0,j)  is some proper initial segment of q(0,i). 

From this it follows that the non-negative integer 

associated to the initial vertex of a is less than that 
associated to the terminal vertex of Er . 

It remains to show, then, that each non-'start' component 

of 1 is the terminal vertex of a unique element of 2' 

So consider any non-'stare component of 

Let i be that unique representative vertex for Go  such 

that the group q(0,i)(Go)iig(0,i)  is a vertex of the given 

component. 

Obviously i is not the origin, and so we have that i 

is an *vertex for Go for some element of of Pro. 

Thus Cr
(0( i) 

belongs to 2' and the given component 

of 1 is the terminal vertex of 0'( 
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Suppose the given component of 	is the terminal 

vertex of some other edge a'(13 j)  of 2' 
for some element 

p  of A-0 and some p-vertex j for Go. Then we must have 

i = j, and so it follows that o<=1 

Thus we have shown that each non-'start' component 

of 	is the terminal vertex of a unique edge of 2' 

And so we have shown that 2 satisfies the conditions 

given just before lemma 12. 

Therefore 2 
is a tree, and so lemma 12 is proved. 

And so, also, lemma 11 is proved. 

Now we show that the vertex group of G at the origin is 

the HNN group described in the statement of the theorem. 

As we stated in the beginning of this section, we prove 

this result using the regular representative system tQut:c{cM 

and following through the procedure given in the introduction 

to this chapter. This will give us a presentation for the 

vertex group of G at the origin, and from this presentation 

we shall see that the vertex group of G at the origin has 

the structure described. 

First though for each element o( of A  let X00( be the 

maximal circuit-free subgraph of Go  associatedwith 11Q0ec<EN 

and let L be the set of representative vertices for G 

associated with (:EOM- Then for each cAEA-C)  we have that 

is the union of Lot  and the set of o(-vertices for Go. 
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So, now, let us follow through the given procedure. 

Step 1 An I-presentation for each G. 

Consider any element of of 

We shall use proposition 7 to give us an I-presentation 

for Gc(  . Recall, then, that we must choose some maximal 

circuit-free subgraph of Go , and some set of representative 

vertices for Get\  . The maximal circuit-free subgraph of 

we choose is Xcc'  and the set of representative vertices for 

Gam(  we choose is L 

Now for each element i of L0(  let <(Gtx)ii, (R0(  )ii> 

be the standard presentation for the group (Go)ii. 

Then we obtain an I-presentation for Go( , 

< X U(U (G )..), U (R ) ii  >. i(L 	jeL  0( 
6( 

Step 2 An I-presentation for G. 

For each elementc(of A-0, choose any maximal circuit-free 

subgraph Z
c( 
 of U0(  . 

We now use lemma 1 to give us an I-presentation for G. 

To do this we must choose for each elemento(of A, some 

I-presentation for Goy  and for each element of of ik-o, some 

set of representative vertices for 	and some maximal 

circuit-free subgraph of Uot. Here for each element o( of 

the I-presentation for Go(  we choose is that given in step 1, 

and for each element o( of A-0 the set of representative vertices 

for Uo(  we choose is I UKo(  and the maximal circuit-free  
subgraph of U we choose is Z0( 0( ' 
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Then we obtain an I-presentation for G with generator 

graph the union of the generator graphs given in step 1, 

and with relator graph the union of the relator graphs 

given in step 1 together with the graphs lu(ue,x)-1:uE(Uoi  )ii, 

E iottaci  ,c(EA-0 and kz(zeci  ) -1: zEz 	EA-O}. 

Now, to save us from repeating long expressions for 

graphs of generators and relators, let us introduce some 

short-hand notation. 

So let us denote the relator graph z(zEL)-1: 

zEZ0(  ,040N-01by z(zE)(1 )-1:A-01.and the relator graph 

1u(uq0-1: uE(Uoi )ii,iEIG(UK01  ,o(EA-0 by u(ued)-l:IID(UKc4  ,Arol. 

Similarly let us denote the graphs U X
' 
 U (.0 (Gc4 )), 

f■(01 	1101 1EL 
	ii 

0( 1  
and U (U (Rill) by tx:/54,(3:10c Al , and r*:Iici(  Al 

(OA iELot  

respectively. 

Sometimes we shall use obvious generalisations of this 

notation. For example by ti(uE)t )-1:10(,ArOlwe mean 

t
u(uecx)-1:uE(Uo 	a(A-01. 

With this notation the I-presentation we have for G 

becomes, 

< 	Utg:Lcx  

	

L ot 	U ( zeti  ) 	A-o} 	(uee ) aotUKcit, A-01 

Now choose any maximal tree of F( x:A\ U g:Lot,A} ) 

(the free groupoid onx:AIU k:Lot,1401  ), and for each relator 

s in the given I-presentation for G let s denote the 

conjugation of s in the origin using this tree (see the 

introduction to section 5 of chapter 1). 
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Then by the first part of lemma 2 we have another 

I-presentation for G, 

< tx:A1U tg:Lok 	, 

tri:L
o 	

i(z(zelA  )-1):kol.U(u(ue 
r 	 0( 

)UK ,A-ol -1 
ci 

>. 
Note then that each relator in this I-presentation has 

vertices the origin. 

Step 3 A set of free generators for the vertex group of 

Fqx:NIU tog:Lc(  ,A1) 
	at the origin. 

Now, using the regular representative system c:201, :•:{EN 

in theorem 1 	and its corollary (with Y = ig:Lc4 ,A1 ), 

we see that the vertex group of F( [x:NU { g:1„0(  AS ) 

at the origin is freely generated by the elements 

q( ot,i)qq( 	,i) 
(gE(GscA lis ).. 	E 04  0(0\ ) 

(where p  is the predecessor of 

1, q ( 	,i)gq--( 10(,1) :Lc4  ,A1 for the set of 

i ci(ot,i)gcl(ol,i): o( ii' 	 0( 'C((  A) 	and elements 	-1 	
gE (G  ) 	i(L  

 

q (c4 i)q ( p,i): 	,A-0,} for the set of elements 
1 	al 

p the predecessor of 0( , i E 

Step 4 A presentation for the vertex group of G at the origin. 

For each relator s'in the I-presentation for G given at 
ii 

the end of step 2 let us write s for s rewritten in terms 

of the free generators given in step 3. 

and q 	q-1 
( ,1) ( 

o(, 	E 	a( A-0) . 
i) 

Let us write 

-1 
i c1(0( ti)c1( oq-A-0). 
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Then using the second part of lemma 2 we obtain a 

presentation for the vertex group of G at the origin, 

< ig -1 - uk -1 
(c<si)gq(0(ti).  GIV 	-( c<,i)c1( 13,i)1I-I0(JVC)}/  

r :L A\Ui(z(zevd -1): A- 01 
u t(u( uect  ) cc IcituKoe  A- 0) >. 

Our aim now is to deduce from this presentation that the 

vertex group of G at the origin is the HNN group described 

in the statement of the theorem. 

In order to simplify the computational work which follows 

we make the following three conditions. 

For each element 0( of A-o we suppose that Xc(contains Z0( • 

Also we suppose that both the initial vertex of each edge of 

Z and the terminal vertex of each edge of X - 	 belongs to 

I0( UK0( (the set of representative vertices for U0(  ). 	And 

finally we suppose that the initial vertex of each edge of 

X0( -Z0( belongs to L (the set of representative vertices for 

G c( ). 

Since X and Z are subgraphs of the groupoid G
c< 
 it is 

not difficult to see that X and Z can be chosen to satisfy 

these conditions. 

To make clear the meaning of these conditions let us 

give an example. So consider any element c( of 	and let 

Gc(  be any component of Goy  and let 

of U belonging to G . Also let X c( 	o( 	ci 

belonging to Go(  , and let Zot  be that 

Ube that subgroupoid 

be that component of X 0(  

subgraph of Zc(belonging 



to Gov  Suppose Go( has vertex set t1-101 with representative 

vertex 1, and suppose the components of U0(  have vertex sets 

t1-43 , [5},t6-8, and [9,101 with representative vertices 

1,5,6 and 9 respectively. Then, in accordance with the 

above conditions, X0(  and Zoc  are typically of the form 

shown in the following figure, 

7 
10 

FIG. 

/ 	/ 

X - Zci = tx1-31 
/ 

z ip( ' tzi.-61  

Now from the above three conditions we have the 

following simple properties. 

Consider any element c( of Ar0. Then for any vertex i 

which is not a representative vertex for G o( we see that 

q(04,i)  ends in an element of Xo(  . Also consider any element 

z of Z 
cc 
 with initial, terminal vertex j and i say respectively. 

Then.q(c4,i)  ends in z and i belongs to I-(I UKc(  ) and j 

belongs to I0(701,. 

We shall see that these properties simplify the 

computational work which follows. 

And so we now describe the forms taken by the relators 

occurring in the presentation given in step 4. 
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(a) It is easy to see that any relator in r 	, 
-1 when reduced, is of the form (q ( (3,i) fq ( 0(,i))(q ( oc,i)  

-1 	 -1 	1- 
gq(cCi))(q(0(,i)hc1(0(,i)) 	

for some element 0( of A , 

and some representative vertex i for Got  , and some elements 

f,g and h of (Go(  ) i.j.  where fg = h in (G o(  ) ii. 

Now consider any element 0( of A-0 , with predecessor r  

say, and any vertex i, and any element u of (U oc ) ii. 

We discuss the two cases i E I 	and i(K0(  separately. 

(b) Suppose i belongs to I. . 

Note that q( ,i)  = q ( ,i)  in this case. 

(b.1) First let us assume that i is a representative 

vertex for Got 

Let j denote the representative vertex for that component 

of G t3  which contains i, and let p denote that unique reduced 

path in 	from j to i. 

Then of course q ( p ,i)  = q (  , j)p and puGeip-1 = g for 

some element g of (Gr,);; • 

In this case the relator u(ueo(  )-1  is written u(p-1gp)-1, 

and it follows that the relator (u(uG ) 1  // ) , when reduced, 
 is written (q(,A,i)uq(o(,i) 	(q( p,i)gc1(
1 

 ,J)
1-1 

 ' 

// 
And so we have that the set of relators (u(ueo  )-1) 

as u ranges through (U0( 	when reduced, is expressed as 

	

p. 	 1 
(c1( vc,i)ucl ( 	,i))(c1( 	gi- )11-0( c1 ( 	,i) )-1 , as u ranges through 

(1_1 (x )ii• 
Further we note that 0" 	 -1 

(fXi) takes q (0( fi)ucl(o(,i) to 
-1 q oc 	q 	,i)  for each u in (U_

( 
 )... 
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(b.2) Second let us assume that i is an (x-vertex for Go. 

Then i is a representative vertex for Gr  

This time let j denote the representative vertex for 

that component of Go(  which contains i, and let p denote that 

unique reduced path in Xc( from j to i. 

Then q(cx,i) = q(0„i)p and pup
-1 = g for some element 

g of (Gc0ii. 

In this case the relator u(ue )-1  is written 

k (p-igp,  ,,. 	x -1,  and it follows that the relator (u(ue )-1), u 	1 

	

1 	n  
when reduced, is written (q( c-X,i)

qq( ot,i))(q( p,i)uq(q(
-1 

 p,i) )
-1 

 - 

-1 0  Here again we see that the set of relators, (u(ue,() ) 

as u ranges through (Uoc  )ii, when reduced, is expressed as 

-1 	n, -1 -1 
(q(ot,i)uq( 	(q( ,i)1"10( q ( 	 , as u ranges through 

(Uo( )ii' 
-1 

And we note that 0- 	takes q 	uq 	to 
( 	( cX,i) 

q(c4fi)u1 
a.
°( q( o 

-1  ti) for each u in (U ) 

(c) Suppose i belongs to KcX • 

Then q(0(,i)q-(1 i)  is an element of tq ( 
	

-1 
13(,i) (1( 	,i):  

Ka 'A-01 • 

Now, let j,k be the representative vertex for that com- 

ponent of G 	G p respectively which contains i, and let p 

be that reduced path in X from j to i, and let q be that 

reduced path in X from k to i. 

Then q(0(si)  = q(44,i)p and pup-1 = g for some element 

g of (Go()ii. 
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Also q (1 
,i) = q ( 13 ,k)q  

element h of (G p )kk' 
In this case we have that the relator (u(uG ) 1  is cx 

written (p-lgp)(q-1hq)-1, and it follows that the relator 

	

(u(uea )  1  11 	 -1 ), when reduced, is written (q ( cA j) gq  (0(,j) ) 

	

 
1 	 1 	) -1 (q  

(q ( ot,i)q ( 15,i) )  (q( 13 ,k)hq  (r) ,k) 	(c( ,i)q (
1 
 ,i-)

1-1 
 ' 

Then we see that the set of relators, (u(ueci  )-1 /f  ) as u 

ranges through (Uot  ) ii, when reduced, is expressed as 

	

-1 	 1 	 a. -1 
) 
-1 

(q ( c<,i)uci ( cA,i) ) (c1 ( okii)c1 ( 13 ,i) ) (c1 ( 13 ,i) u `'e< cl(13 ,i)
)-1 

	

-1 	--1. 
(14 ( ot,i)c1 ( D i))  

' 

-1 1/  Finally we consider any relator in t(z(zeci  ) ) :A-01 

(d) Suppose that i belongs to I-(I01K 0( ). 

Then we have that q (0t,i)  ends in some element z of Z 0( . 

Let j be the initial vertex of z. Then j belongs to 

I 0t  UX ok  . 

Let k be the representative vertex for that component of 

G il  which contains i (and j), and let p,q be that reduced path 

in X13  from k to j and from k to i respectively. 

	

The

1

n q( 	
q(  

,i) 	
`k)P and q

(  ,i)  = q ( p ,k)q, and 
= 

pzeo(  q- = g for some element g of (G p  ) •kk' 

And so the relator z(zeL ) -1  is written as z(p-igq) -1. 

We discuss the two cases j t  I 	and j EX 0(  separately. 

and querx  q-1  = h for some 

as u ranges through (U cO ii. 



—1 
(q 	)q( (c4,1 	p ,i) )  
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So first assume that j belongs to 'di . 

and it follows that the relator 
Then q( 0(,i) = 

(z(ze ) 1-)11  ci , when reduced, is written 

(q ( 	,k)gq-(111,k)Cl.  
-1 Note that q ( 	. q 

( (1, 1) ( q,i) 
I-(Id  UK cx  ) 

belongs to [q( cx,i)q-(111 
,i) 

Second let us assume that j belongs to K. 
* 

Then it follows that the relator (z(z at  v k.o(  ) - 1 ), when reduced, 

- 
is written (q

(00j)q(
1 
 .1,j ) .

1-11 
lq(d,i)q(

1 
 11,10(q( 	k)qq(1 k))-1  

And note here 	
- that q(  01,,i)q( 1  13,1)  belongs to 

S
q 	a-1  . :I -(Id UN c4)fik -01 ' whereas 

to  IC1( oiti)C1( p 	
, 
n 

Now from these remarks we observe the following. 

(1) Consider any element 0( of A-o, with predecessor 	say, 

- 	• 
and any element i of I-(Id  UK q). We have that q( 4x,i)q(1  11,1)  

-1 is an element of (q(e6i)q(  0,i)a-(I UK ,e ),A-01 , and q(coi)  

ends in some element z of Z o( 

Then from (a), (b), (c) and (d), we see that among the 

relators in the presentation given in step 4 the only occurrence 

1 of the generator q(0(4)q( p,i)  (or its inverse.) is in the relator 

(z(zeci )-1)11. 

And so we can omit the set of generators 

q( 	
)q-(113 	) belongs 

—1 
1.q ( 	,i)q ( p I-(I UKo( ),Av.pland the set of relators 
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) 
 

olfrom the presentation given in step 4. 

That is we have a presentation for the vertex group 

(z(ze ) -1 
// 

of G at the origin, 

-1 < tq(0,1)(q. 
p,1  

.) :K -1 tq ,i)gq(oc,i):LA  (4  

r"  :L 	
to, U 	(u(u, ) 

i. 1  ):I
0( 

 UK 
 0( 

,A.01 

(2) From (a), (b) and the construction of the tree 	given 

in lemma 11, it follows that the tree product of has a pre-

sentation, 

< tq(c, i)gq—cocl , 'oc 

	

tr :L
0(' 

	U 1(u(uao) ) :1 A-0,} >. 

(3) Consider any element of  of /A-0, with predecessorlIsay, 

and any element i of K0( . We have q(06i)q(1  , i)  belongs 

to 	. 	. :K 	• 
1 

O( I) ( 	1) 	0( 

Then from (a), (b), (c) and (d) we see that among the 

relators in the presentation given in (1) the only occurrences 

of the generator q(04,i)q-1  (13,i)  (or its inverse) are in the 

1 /' relators (u(ue) ) as u ranges through (Uo()ii. 

And so from (c), (1) and (2) we see that the vertex 

group of G at the origin is precisely the group described 

in the theorem. 

Thus the theorem is proved in the case that each X and Z 

k(No) satisfies the conditions following step 4. 
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In the general case the computations become more 

intricate, but it is fairly straightforward to see that 

the theorem is still true. 

This completes the proof of the theorem. 
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Chapter 3  

THE VERTEX GROUPS OF TWO IMPORTANT KINDS OF  

CONNECTED TREE PRODUCTS OF GROUPOIDS  

In this chapter we suppose that G satisfies one of 

two conditions, the first being that Go  is connected, and 

the second being that for each element c( of A-o Uo(  is 

discrete. 

In the first case we shall see that we can characterise 

the vertex group of G at the origin as an HNN group whose 

base-part is some tree product of groups, using simply a 

representative system (theorem 4). This theorem is a 

straightforward special case of theorem 3. 

In the second case we shall obtain a similar charac-

terisation of the vertex group of G at the origin, without 

needing even a representative system (theorem 5). The 

basic point of interest in the proof of theorem 5 is that 

for each element o( of A we choose a particular 

I-presentation for G unlike the usual kind of I-presentation 

described in proposition 7. 
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Theorem 4  

Suppose that Go  is connected, and choose any represen-

tative system 1Qcx :c(Eiq . For each (0A-o choose any set 

of representative vertices for Uoi  containing the set of 

representative vertices for Go(  . Again for each 00\-o 

and each representative vertex i for Gc(  , let 0(ci,i)  denote 

the group isomorphism given by q(0(,i)uq(0 -1 (,i)--.)q(00i)uelo(  

q(1;(,i)  as u ranges through (UJ)ii. Let 	be the set of 

all these group isomorphisms. 

Then 	is a tree of groups q( cx,i)(Gci  )11q(0e,i)  as i 

ranges through the representative vertices for Go(  and 

ranges through A . 

Further the vertex group of G at the origin is the HNN 

group with base-part the tree product of and free-part 

generated by the elements q( ,i)q( p,i)  where p is the 
predecessor of of and i ranges through the representative 

vertices for U other than representative vertices for Go(  

and 0( ranges through 	. 

Finally for each o(Eko, with predecessor say, and 

each representative vertex i for U0(  other than a representative 

vertex for G 	then the group isomorphism associated with 

 
cl 
   is given by q 
(0< 	,i) 	(p fi)uee( c1(

1 
 ,i) -1( 0( fi)

uq
(0( i) 

as u ranges through (Uci )ii. 
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Now for the remainder of this chapter suppose we 

have chosen, for each element n( of A , some maximal circuit-
free subgraph 3C,3  of Gc<  . Let X be the graph-union of the Xor  

and suppose we have also chosen some maximal tree T of X. 

Foreachvertexiletuswritet.for that unique reduced 

path in T from the origin to i. 

Before we give the next theorem we give a definition, 

and make some simple observations. 

For each element 0( ofA we define the a-part of i to 

consist of those vertices i such that t. does not end 

in an element of X,) • 

Now consider any element c( of A , and any vertex i which 
does not belong to the c(-part of I. Of course this means that 

ti ends in an element of X 
	. Let (14)j denote that vertex 

such that t. is that largest initial segment of ti 	does 

not end in an element of X-1 . Then it follows that j belongs 

- to the *part of I. Also we have that tj1  ti  is a path in XD(. 

Now consider any element g of (Go()ii. Writing tigtil  as 

-1 	 1 	-1 	1 tj(tj  tigti  tj)tj 	we see that tigti  belongs to the group 

t (G ) . -1  
j 	jJ

t 
 

-1 
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Theorem 5  

Suppose for each c0A-o Uoc  is discrete. For each o(EA-o 

and each vertex i let CT(ci ,i) denote the group isomorphism 

given by t.ut.1 	ir)( t.
1  as u ranges through (U0( )ii. 

Let be the set of all these group isomorphisms. 

Then 	is a tree of groups ti(Go( )iitil  as i ranges 

through the 0(-part of I and o( ranges through A. 

Further the vertex group of G at the origin is the HNN 

group with base-part the tree product of and free-part 

generated by the elements tjxt71 
 where j,i is the initial, 

terminal vertex of x respectively and x ranges through X-T. 

Finally consider any edge x of X-T and suppose x belongs 

to X and has initial, terminal vertex j,i respectively. Then 

the group isomorphism associated with t.
7
xt 1
1
. 	is given by 

tigti 1 	-1 -1 )t. 	as g ranges through (G )... 
7 

Proof 

First we make two observations. 

(1) For each element o( of A the of-part of I contains the origin 
and forms a set of representative vertices for X ON, considered 

as an I-graph. 

(2) Consider any non-origin vertex i. Then there exists a 

unique element r( of A such that i does not belong to the of-part 

of I. That is the end of ti belongs to X 
-1 . 0( 

Now we show that is a tree of groups. 
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Lemma 13  

is a tree of groups ti(%(  )iitll  where i ranges 

through the 0(-part of I and o( ranges through A . 

Proof 

To prove the lemma we shall show that, for each vertex i, 

the set of group isomorphisms, Cr( 01,i)  as of ranges through 

constituteatr" say. 

Then we shall see that the union of the trees 	I) 

is also a tree, and contains the same set of group isomorphisms 

as 	. Then it will follow that 	is a tree. 

So let us construct the trees 	
iJ 

First suppose i is the origin. We associate two 

vertices to each group isomorphism, 0- 	as of ranges 

through A-o , as follows. 

So consider any element c( of /v-o , with predecessor 3 

say. Then the group isomorphism 0-(0i ,i)  has domain (U ) 

a subgroup of (Go‘ )ii'  and range (Vo(  )ii, a subgroup of (Gp )ii. 

In this case we define the vertices of Cr 
,i) 

 to be the 

groups (G,, )ii  and (G- p )ii (it does not matter which of these 

groups we define to be the initial vertex of 
0.(0( ,i) 

and 

which the terminal vertex of Cr(cx ,i)). Observe that since i 

is the origin we have i belongs to both the rx-part and the 

-part of I. 

In this way we define the vertices of each group 

isomorphism 6(cK,i)  as 0( ranges through A o . 

Then it is clear that the set of group isomorphisms, Cr 
( 	,i) 

as 0( ranges through i\-0 , constitutes a tree of groups (Gci  )ii 
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as c< ranges through A . And this is the tree we denote by 

Now suppose that i is a non-origin vertex. 

Then, from the remarks preceding the theorem, we have 

that there exists a unique element '6 of A such that i does 

not belong to the 6-part of I. This means that ti  ends in 

an element of X 	Then let (1.4)j denote that vertex 
" 

suchthatt.is that largest initial segment of ti  which 

does not end in an element of X  . Recall then that j 

belongs to the -6-part of I and t;iti  is a path in X15 . 

We associate two vertices to each group isomorphism, 

0-(a,i)  as o4 ranges through A-0 , as follows. 

So consider any element c( of Aro with predecessor g say. 

Note then that the group isomorphismcr(c4,i)  has domain 

ti(UcOiiti1  and range tiN)iiti1  . 

We deal with the three cases: 	# .6 	. c ='. and 
=3, separately. 

First then suppose 	. In this case we have that 

i belongs to both the 04,-part and the p-part of I. Then we 

define the vertices of aitx,i)  to be the groups ti(G00iitil  

and t.(G 	)..t.1  . 

Next suppose 0(.6. In this case we have that i belongs 

to the [-part of I. Observe also that the domain of 0' 
(0i,i) 

- 	- can be expressed as ti(tj1  ti(Urx  )iitilyti1  which is a sub- 

group of t (G ) .t 1 	
CT . Then we define the vertices of iJ 	 ,i) 

to be the groups t (G )
j]  
.t-1 	and t.(G )iiti1  . 

Finally suppose -6 	. In this case we have that i belongs 

to the c(-part of I. Observe, this time, that the range of 
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-1 cr",i)  can be expressed at ti(ti-1  ti(1/ 

3 3 
- which is a subgroup of t.(G13  )

3
..t.1  . Then we define 

 
the vertices of 0-(0t,i)  to be the groups ti(G0(  )iitIl  

and t.
3(Gi3 

 )..t. . 
33 3 

In this way we define the vertices of each group 

isomorphism 03-( ,i) as 04 ranges through 40  . 

Then it is easy to see that the set of group isomorphisms, 

CY 	as c( ranges through Aco , constitute a tree of groups 
(0(,i) 

ti(Got  ) ti1  as q ranges through Arl together with the group 

- tj  (G,(c  )iiti1  . And this is the tree we denote by 	i. 

Now it is not difficult to see that is the union of 

the 	 j.(iE 1), and that 	is a tree of groups ti(Gc0iitil  

as i ranges through the 0(-part of I and 0( ranges through P\ . 

Thus the lemma is proved. 

Now to characterise the vertex group of G at the origin. 

The steps of the proof are as follows. 

To begin with we choose a particular I-presentation for 

each G c( (and we shall see that these I-presentations are 

unlike those usually considered). 

Then, using these I-presentations in lemma 1, we obtain 

an I-presentation for G, <Y,S> say. 

Next we choose any maximal tree of F(Y) (the free groupoid 

on Y), and using this tree we form the conjugation in the origin 

of each relator in S, and so obtain another I-presentation for 

G, 1(Y,St> say, by the first part of lemma 2. Recall then that 

each relator in S has vertices the origin. 
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Then we use the result of Higgins given in theorem 1 

to obtain a set of free generators W for the vertex group 

of F(Y) at the origin. 
f 

And so, rewriting each relator in S in terms of the 

set of free generators W, we obtain a presentation for the 
,,,, 

vertex group of G at the origin <W,S > say, by the second 

part of lemma 2. 

Finally we describe the forms taken by the relators in 
& 

S , and so deduce that the vertex group of G at the origin 

is as described in the statement of the theorem. 

Step 1 An I-presentation for each G ov  

Choose any element r( of A. 

We use the following lemma to give us a particular . 

I-presentation for G o . The proof of the lemma is quite 

straightforward and so is omitted. 
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Lemma 14  

Choose any subgraph Yc(  of X, , together with any set 

of representative vertices I for Y, considered as an ( 

I-graph. For each element i of Ic(  let <:(Gn( )ii, (11,3(  )ii> 

be the standard presentation for (Gc0ii. 

Consider any edge x of X -Y
cA 
 with initial and terminal 

vertex j,i respectively. Let k,1 denote the representative 

vertex for that component of Ye(  which contains j,i 

respectively. Also let us write Rx  for the graph of points 

h(xgx-1)-1 as g ranges through (Gc( )ii  and xgx-1 h in 

(Gc0ii, where the elements g are written in terms of yni  U(Gc(  

and the elements h are written in terms of Y U(G)
kk' 

Then G has an I-presentation with generator graph X 

together with the graphs (Gc(  )ii  (iE Itx), and relator graph 

the union of the graphs (Rt( )ii  (iE ID() together with the 

graphs Rx(xEX„,(  -Y0( ). 

Recall now that the o(--part of I is a set of representative 

vertices for X)(("\T considered as an I-graph. And so, using 

lemma 14 with Y
0( 
 = X

0( 
 (1T and I the f(-part of I, we obtain 

an I-presentation for Gc(  with generator graph XL)(  together 

with the graphs (Gc( )ii  (as i ranges through the 0-part of I), 

and relator graph the union of the graphs (Ro( )ii  (as i ranges 

through the f5(-part of I) together with the graphs Rx  (as x 

ranges through x0( -(Xv\T) = X, - T). 

In this way we choose an I-presentation for each Grx. 
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Step 2 An I-presentation for G 

Here we use lemma 1, together with the I-presentation 

for each G given in step 1, to obtain an I-presentation for 

G. 

To do this, we need, for each oNAro, some set of 

representative vertices for Uoc  and some maximal circuit-free 

subgraph of uok  . Of course, since each Uo(  (c(E/\-o) is 

discrete, it follows that the only set of representative 

vertices for Uok is I itself and the only maximal circuit-free 

subgraph of Ucx  is the empty I-graph. 

And so we obtain an I-presentation for G with generator 

graph the union of the generator graphs of the I-presentations 

for the Gry(  given in step 1, and with relator graph the union 

of the relator graphs of the I-presentations for the G
("‘ 
 given 

in step 1 together with the points u(ue )-1  as u ranges 

through (110(  )ii  and i ranges through I and 04 ranges through 

A-0 . 

Of course, in this I-presentation for G, each relator 

of the form u(ue can be written in many ways in terms 

of the given generators of G. We adopt the following rule 

for writing such relators. 

So consider any element c( of A-0, with predecessor q say, 

and any vertex i, and any element u of (U, )ii. Let j,k 

be the representative vertex for that component of X OT,xa()T 

which contains i respectively. Then in the relator u(ueriN )-1  

we write u in terms of (X r\T)U(G )
jj 	

ue0(  and we write 	in 

terms of (Xpr1T)U(Gp )kk' 
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Now let us introduce a short-hand notation similar to 

that given in theorem 3, to describe the generator and 

relator graphs we consider. 

So let us denote the generator graph U(U 	(Gr )ii) 
NEA 

	

by [g:Ic,  d0\, and the relator graph U (U 	(R.„)ii) by 
aE A i EIS  

. Also we denote the relator graph U 	R by 
xEX-T 

tr:X-T1 , and the relator graph tu(uGei  )-1:uE(U0( )iviEI,o(EAV-01 

by u(uEtt  

Then in this notation the I-presentation for G we obtain 

in step 2 becomes, 

< XU tg:I,4  
, -1 tr:I0(  ,A1 U4r:X-TiUu(u0 ) 	A 	;>. 

Step 3 A second I-presentation for G 

Choose any maximal tree of F(XU[gan( A15) (the free groupoid 

on Xlqg:I(.4 ,Al. ), and using this tree let us form the 

conjugation in the origin of each relator in the I-presentation 

for G given in step 2. 

Then by the first part of lemma 2 we obtain a second 

I-presentation for G, 

XU lg:Icy Al 

:I 	U tr 	Ut(u(ue 	> 

Note that each relator in this I-presentation has vertices 

the origin. 
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Step 4 A set of free generators for the vertex group of 

F(XU 	,04,1 ) at the origin 

Using the maximal tree T of XUtg:It  ,k1 , and Higgins' 

result given in theorem 1 we obtain that the vertex group of 

F(XUtg:I0 	) at the origin is freely generated by the 

elements tigt:1 (as g ranges through (G,,i  )ii  and i ranges 

through I and 0( ranges through A ) together with the elements 

t.xti1  (where j,i is the initial, terminal vertex of x 

respectively and x ranges through X-T). 

Let us denote the set of elements t.gt.1  (as g ranges 

through (G00ii  and i ranges through I,„(  and c.< ranges through 

) by tigtil:Io( 	, and the set of elements tixtil  (where 

j,i is the initial, terminal vertex of x respectively and 

x ranges through X-T) by itixtil:X-T1 . 

Step 5 A presentation for the vertex group of G at the origin 

Now let us rewrite each relator in the I-presentation for 

G given in step 3 in terms of the set of free generators given 

in step 4. 

Then by the second part of lemma 2 we have the following 

presentation for the vertex group of G at the origin, 

4 

ir": Ic4 	Ut (11(Uee,( 	itA'1:01 

U itjxt 1:X-T , 
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Step 6 Investigation of the forms taken by the relators in 

the presentation given in step 5. 

Here, finally, we describe the forms taken by the relators 

in the presentation given in step 5. From this description 

we shall see that the vertex group of G at the origin has the 

structure given in the statement of the theorem. 

(a) Consider any relator in {r 	• 

Clearly this relator, when reduced, is of the form 

(t.ft 1)(t.gt3.1)(t.ht3.1)-1  for some o(EiN and some iE I0{  and 

some f, g and h belonging to (G o(  )ii  where fg = h in (Gc( )ii. 

-1 " (b) Now consider any relator int(u(u) ) :I,Pco. 

So choose any element o( of A-o , with predecessor 	say, 

and any vertex i, and any element u of (U0(  )ii. 

Let j be the representative vertex for that component of 

x r■T which contains i, and let p be that reduced path in 

X AT from j to i. 

Also let k be the representative vertex for that component 

of X(‘T which contains i, and let q be that reduced path in 

XIIAT from k to i. 

Then pup-1 = g for some element g of (Go(  )ii, and que,(  q-1-- 

h for some element h of 	) 'kk' 

In this case we have that the relator u(uG )-1  is 

written (p lgp)(q-1hq)-1, and it follows that the relator 

- (u(uG )-1  , ) 	when reduced, is written (t.gt 1  )(tk  ht
-1)-1 j 	• 
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And so we see that the set of relators, (u(u% 

as u ranges through (Uci  )ii, when reduced, is expressed as 

(tiutil)(tiuAci tI1)-1  as u ranges through (Uo(  )ii. 

Further we note that Ir(oc,i)  takes tiutil  to tiuAo( t;1  

for each u in Wo( )ii. 

From (a), (b) and the construction of the tree given 

in lemma 14, we obtain that the tree product of has a 

presentation, 
• < {t .gt71:i 	1 	& 

:I 	U i(u(uA 	>. 

(c) Next consider any relator in V: X-Tq . 

So choose any element o( of A , and any element x of 
X -T with initial, terminal vertex j,i say respectively, 

and any element g of (Go()ii, and suppose xgx-1  = h in (Go( )ii. 

We discuss the relator (h(xgx-1)-1)". 

Let k,1 denote the representative vertex for that 

component of X nil,  which contains j, i respectively, and let 

p,q be that reduced path in X r\T from k to j and from 1 to i 

respectively. 

Then php-1  = h1  for some element h1  of (G)kk' and 

qgq-1  = gl  for some element gl  of 	 )11.  

In this case the relator (h(xgx-1)-1) is written 

(p-lhip)(x(q-1g1q)x-1)-1, and it follows that the relator 

" - (h(xgx-1 )-1  ) , when reduced, is written (tkhitk  )(tjxtil) 

(tigit11)-1(tixt;.1)-1. 

1 1 Thus we see that the set of relators, (h(xgx)- ) as 
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g ranges through (Go(  )11, when reduced, is expressed as 

(t3 
	i 
(xgx-1)t -1)(t3 

1  
.xt71)(ta. i 	1

.gt71)- 1(t.
3
xt71)-1  as g ranges 

through (G c )  ii' 

From these remarks it is straightforward to see that 

the vertex group of G at the origin is the HNN group with 

base-part the tree product of S and free-part generated 

by itixtil:X-T1 . Also for each o(EA and each xEXCx-T with 

initial, terminal vertex j,i respectively, then we see that 

the group isomorphism associated with the generator tixtil  

isgivenbytigtil t.
3
(xgx-1)t;1  as g ranges through 

(G o( )1i• 

Thus the theorem is proved. 

In closing this chapter we mention that in the proof 

of theorem 5 it is important that we choose I-presentations 

for the G according to lemma 14. If, as usual, we choose 

I-presentations for the G according to proposition 7, 

then the method breaks down - for we are then faced with the 

same kind of problem which appears in the example considered 

in the appendix. 



80. 

Chapter 4  

DEFINITION OF HNN GROUPOIDS AND CHARACTERISATION OF THE  

VERTEX GROUP OF ANY CONNECTED HNN GROUPOID  

In this chapter we define what we mean by an 'HNN 

groupoid', and then we show that the vertex group of any 

connected HNN groupoid is an HNN group with base-part some 

tree product of groups (theorem 6). 

4.1 Definition of an HNN groupoid  

Consider any I-groupoid G, for some vertex set I. Let 

eoc:u 	0( , 0(EA1 be any set of groupoid isomorphisms where, L  

for each o(EA , tic<  and V0(  are I-subgroupoids of G. Here 

we do not require that the 	be groupoid I-isomorphisms. 

Now for each 0(0\ and each vertex i, let j denote the 

image of i under the vertex map of e 	and then let us 

introduce the edge s(0(,i)  with initial vertex j and terminal 

vertex i. 

Choose any I-presentation <X,R> for G. 

Let H be the I-groupoid with the I-presentation with 

generator graph XU fs(rx,i):0(0\ ,1€ 	, and relator graph R 

n  , together with the graph of points sus-1 	 (u ,0< ,-1  

where u ranges through (Uo )ij  and i,j range through I and cx 

ranges through A 

Then we call H the HNN groupoid with base-groupoid G, 

groaclidisalloalltepo(--4V0(  ,0(0\1 and related graph  

is( 	.AEA 	. 
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It is not difficult to see that HNN groupoids are 

independent of the particular I-presentation used in their 

definition. 

4.2 Some constructions  

Here we describe the constructions we use to prove theorem 

6. 

Also we give some elementary properties of these 

constructions. 

So let H be any connected HNN I-groupoid with base-

groupoid G, groupoid isomorphisms feot:uo —..vw  ocAl , and 
related graph (s( c, i)  :0(FA ,iE 

Choose any element of I, and call this vertex the origin. 

Our object is to describe the vertex group of H at the origin. 

To do this we need to choose a maximal circuit-free subgraph X 

of G, and for each c.EA a set of representative vertices lc<  

for U0( , and a maximal tree T of H, and a set of representative 

vertices IG for G. 

To begin with, then, choose any maximal circuit-free 

subgraph X of G, and for each 0(0\ choose any set of represen-

tative vertices I for U 0( • 

Now for each o<kA put S0(  = ts(cx,i):i( 10(1 , and then write 

S for the graph-union of the S0((c(eA). Clearly we have that 

XUS is a connected I-graph. Choose any maximal tree T of XUS 

containing X. 
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Let 1 denote the level-function on T induced by the 

origin. Then for each component of G there exists a unique 

vertex of the component of minimal 1-level - choose this vertex 

to be the representative vertex for the component. In this 

way we obtain a set of representative vertices IG  for G 

which we call the set of representative vertices for G minimal  

with respect to 1. 

Finally we make two observations. 

First, for each vertex i let ti be that reduced path in T 

from:the origin to i. Then it is easy to see that the set of 

non-origin representative vertices for G consists precisely 

of the set of non-origin vertices i such that ti  ends in an 

element of S-1. 

Second, consider any vertex i, and let k denote the 

representative vertex for that component of G which contains i. 

Then for any element glof Gii  we have that tigtil  belongs to the 

group tkGkktk1  . 

4.3 The theorem 

Throughout this section suppose we have the following. 

Let H be the connected HNN I-groupoid with base-groupoid G, 

groupoid isomorphisms K/Ut(--p e, (XE/q , and related graph 

ts(c,(,i):(XEA 	. 

Suppose we have chosen any element of I which we call the 

origin, and any maximal circuit-free subgraph X of G, and for 

each cVE A any set of representative vertices I0(  for 170( . 
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Put Sc(  = 	i)  i F  Ic0 for each 	A , and S 	 , =c4ASv<   

and suppose we have chosen any maximal tree T of XUS 

containingx.Foreachvertexilett.denote the reduced 

path in T from the origin to i. 

Finally we denote by IG  the set of representative 

vertices for G minimal with respect to the level-function 

on T induced by the origin. 

Theorem 6  

For each 0(EA and each sE WIT with initial, terminal vertex 

j,i say respectively let 6 denote the group isomorphism given 

by tiutil_____4tjueo( til  as u ranges through (U,x )ii. Let E‘  

denote the set of all these group isomorphisms. 

Then E is a tree of groups t.G..t. 	where i ranges through 

the representative vertices for G. 

Further the vertex group of H at the origin is the HNN 

group with base-part the tree product of and free-part generated 

by t.st71  where j,i is the initial, terminal vertex of s 

respectively and s ranges through S-T. 

Finally consider any edge s of S-T and suppose s belongs to 

S 	and has initial, terminal vertex j,i respectively. Then 

- the group isomorphism associated with t.
J
st
1
.1  is given by 

- 1 t.ut.1 	t.ue t. as u ranges through (U ) 0( 3 	 c)! iis 

Proof  

We begin by proving that is a tree. 
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Lemma 15  

1 is a tree of groups t.G1..t.
1
1  as i ranges through the 

representative vertices for G. 

Proof  

First we show that 	is a graph with vertices the 

groups t.G..t71 as i ranges through the representative 11 1 

vertices for G. 

To do this we define an initial and terminal vertex 

for each group isomorphism in 

So consider any element cr of 	Then 6= 0
; 

for some 

edge s of SAT. Suppose s belongs to So(  and has initial, 

terminal vertex j,i say respectively. Then 6has domain 

-1 ti  (U ) 11  .t  i 	j] 
and range t 	) .t . Let k,1 be the 

representative vertex for that component of G which contains 

j,i respectively (note that at least one of k = j or 1 = i 

is true). Then we have that t.1(Uc(1  )..t71 is a subgroup of 1 1 
- t1G11t11  and tj(VrOjiti1  is a subgroup of tkGkktk1  . In this 

case we define the initial, terminal vertex of 0" to be the 

group t1G11t11  , tkGkk  tk
1 respectively. 

If we define the initial, terminal vertex of each element 

of in this way, we see that acquires the structure of a graph 

with vertices the groups t.G .t.-1  as i ranges through the 

representative vertices for G. 

Now to show that E is a tree. 

To do this we construct a graph n of group isomorphisms, 

A. as i ranges through the non-origin representative vertices 
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for G. We shall see thatA is a tree, and from this it will 

follow that 	is a tree. 

We construct the group isomorphisms Ai  as follows. 

Consider any group isomorphism 0 in 	Then C. = s 

for some edge s of SAT. Let us suppose that s belongs to So(  

and has initial, terminal vertex j,i say respectively. Of 

-1 course C has domain t.(U )..t. 	and range t.(V_,)..t. . 0( 11 1 	-̀)N 

Itiseasytoseethateithertj is an initial segment 

of t.1  in which case t.1  ends in s and i is a non-origin 

representative vertex for G, or ti  is an initial segment of 

t.inwhichcaseti ends in s-1 and j is a non-origin 

representative vertex for G. 

First,supposethatti is an initial segment of ti. 

Let k be the representative vertex for that component of G 

which contains j. Then Cr has initial vertex t.G..t71 and 1 11 1 

terminal vertex tk Gkk  tk
1 • In this case we define the group 

isomorphism Ai  to be C . 

Second, suppose that ti  is an initial segment of tj. 

This time let k be the representative vertex for that component 

of G which contains i. Then G' has initial vertex t G t-1 k kk k 

and terminal vertex t.Gjj 
 t
-1. In this case we define the 

group isomorphism A, to be ar.-1 

Then we write A for the graph of group isomorphisms Ai  

as i ranges through the non-origin representative vertices for G. 

It is easy to see that each edge of is either an edge 

of A or the inverse of an edge of A, and vice versa. 

Then it follows that is a tree iff A is a tree. 
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It only remains to show that A is a tree. 

This we do using Karrass & Solitar's result given in 

theorem 3. For completeness we restate their result here. 

Choose any vertex of A, which we call the 'start'. 

Then to each vertex of A associate a non-negative integer, 
such that the non-negative integer associated with the 'start' 

is 0. Suppose that each non-'start' vertex of A is the 

terminal vertex of a unique edge of A . Also suppose that 

for each edge A of A, the non-negative integer associated 
with the initial vertex of A is less than that associated with 
the terminal vertex of A . Then A is a tree. 

This result holds if we replace 'initial vertex' by 

'terminal vertex' and vice versa. 

To use this result to show that A is a tree, we choose 

1 
the group t.

1G1..t.
1

1  (=G.., where i denotes the origin) to be  11 

the 'start' of A . Also, for each representative vertex i for 
G, the non-negative integer we -associate with the vertex 

. t.
1
G..t.1  is to be the length of the path t.. 

Then using Karrass & Solitar's result it is quite 

straightforward to see that A is a tree. 

And from this we obtain that 	is a tree. 

Thus the lemma is proved. 

Now to prove that the vertex group of H at the origin is 

the HNN group described in the statement of the theorem. 
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To begin with we obtain an I-presentation for H, using 

the folloWing easy lemma. 

Lemma 16 

For each element i of IG  let <Gii,Rii> denote the 

standard presentation for the group Gii. 

Then H has an I-presentation with generator graph 

XUSU(U G.4), and relator graph U Rii  together with the 
iEIG 

ii iEIG 
1 	(u 9

0( 
1 where u ranges ) 
- 

us graph of points s
(c< ,i) ( 0( ,i)  

through (Li )ii and i ranges through I0( 
 and 0? ranges through A . 

For convenience we now introduce some short-hand notation 

for the graphs of generators and relators in which we are 

interested. 

We denote the graph of generators U Gii  by g:IG , 

iEIG 

and the graph of relators U Rii  by tr:IG . 
iIG  

Similarly we write [sus-1  (ueo< )-1  :S) for the graph of 

(ue )-1  where u ranges through (U ).. points 5
(0( ,i)

us
(10(,i) 2.2. 

and s
(
0( 
,i) 

ranges through S
0( 
 and c< ranges through A 

Also we shall find it convenient to split up the graph 

{sus-1(u190<  )-1:S) as follows. We write 'sus-1(1161o(  )-1:S(\Tj  

for the graph of points s(c,c,i)us( 	-1 (u et(  )-1  where u ranges 

through (Uo<  )ii  and s( 0( ,i)  ranges through sx(-) T and c< ranges 

through A . And we write {sus-1(ueot  )-1:S-T} for the graph of 

points s( 	1 ,i)  us(  ,( ,i)(ueo(  ) -1  where u ranges through (Uo<  )ii  

ranges through S -T and ranges through I.  . and s
(0( , i)  
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Then, with this notation, the I-presentation for H given 

in lemma 16 can be written, 

< XUSU g: IG1 

G isus-1(ue )-1: SI 

For each relator in this I-presentation let us form its 

conjugation in the origin using the maximal tree T. (Of course, 

instead of T, we could choose any maximal tree of F(XUSUtg:IG1 ),  

the free groupoid on XUSUtg:IGI).. 

Then, by the first part of lemma 2, we have another 

I-presentation for H, 

XUSU 1g: IG 	, 

1r/ aG U i(sus-1 	-1 (ue ) )/ s) c.‘ 

And each relator in this I-presentation has vertices 

the origin. 

Now, using Higgins' result given in theorem 1 with the 

maximal tree T, we have that the vertex group of F(XUSUlg:IG1) 

at the origin is freely generated by the elements tt.gt.-1  

1 gEG3...,“ 	 3 IG} together with the elements t.st.-1  (where j,i is 

the initial, terminal vertex of s respectively and s ranges 

through S-T ). 

We abbreviate the set of elements itigtil  :gE Gii,iE IG} 

to{tigtil:IG  , and we write [tjstIl:S-T1 for the set of 

elements t st 1 (where j,i is the initial, terminal vertex of 

s respectively and s ranges through S-T). 
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Next let. us rewrite each relator in the second 

I-presentation given for H in terms of these two sets of 

free generators. 

Then, by the second part of lemma 2, we have a presenta-

tion for the.  vertex group of H at the origin, 

t.3st.1 	- 3. :S-t4 U ttigt i:IG)
1  
, 

G U i(sus-1 	-1 =1  (u 	) ) 	k /,„ 

Now the structure of the vertex group of H at the origin 

follows on investigating the forms taken by the relators in 

this presentation. 

This we now do. 

, 
(a) First it is clear that any relator in tr :IG'  1 when 

reduced,is written (t.ft.1  )(t.gt.1  )(t.ht.1 )-1  for some 

representative vertex i for G, and some f,g and h belonging 

to G.., where fg = h in G11... 

(b) Next consider any relator in {(sus-1  % (u 	) 1)*: 

(b.1) First we consider any relator in i(sus-1(ue,< ) 1)11 :S(11q. 

So choose any element o< of A, and any s(o(ii)  belonging 

to S
0( 
 r\T (of course i belongs to Ic<  ), and any element u of 

(Utx  )ii. 

Let j denote the initial vertex of s 
(o< fir 

Then either t. is an initial segment of ti  in which case 

ti  ends in s(o(ii)  and i is a representative vertex for G, or t. 

is an initial segment of tj  in which case tj  ends in s( ,i)  

and j is a representative vertex for G. 
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Tobeginwith,supposet.is an initial segment of t.. 

Then let k denote the representative vertex for that 

component of G which contains j, and let p be that reduced 

path in X from k to j. 

Then pueck p-1  = g for some element g of Gkk. 

In this case we have that the relator s 	us-1  
(v?,i) 	(c'(,i) 

i) 
(ue

0( 	is written s 
( 0( 

)-1 	-1 
i) us 	(p-Igp)-1, and it follows 

, 	( 0 (  

that the relator 	us -1 	1 11  (s 
(of ,i) 	( 	

(ue
'( 

- ) 	) , when reduced, •'( ,i)  
is written (t i  uti

1  )(tk  gt-1)-1 
k . ' 

And so we see that the set of relators, 	-1 

	

(s 	us 
(c< ,i) 

-1 1/ ( u 	) ) 	as u ranges through (Uo(  )ii, when reduced, is 

expressed as (t iut i 	J )(t.ue t-1) -1 as u ranges through (1.1ci  )ii. 

Also we observe that cr 	takes (t.ut-1) to 

	

s ( 	i) 	 i  

(t.ue t-1) for each u in (U ) 

Now, suppose t i  is an initial segment of t.. 

This time let k denote the representative vertex for that 

component of G which contains i, and let p he that reduced 

path in X from k to i. 

Then pup-1 = g for some element g of Gkk. 

In this case the relator s(0(,i)us-(1,( ,i)(ue,_,)-1  is 

written s
(p 

-1 	-1 	cue )-1  and it follows that ( o( ,i) 	gP )s( 0( ,i) 	0( 	' 
-1 the relator (s ( o( ,i)us ( c<  , i)  (ue )-1)°, when reduced, is 

written (tkgtk-1) (t jueo  ti-1). 
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Here again, we see that the set of relators, 

" (s(  oc,i)us( 1  rx,i)(u ec< )-1  ) 	as u ranges through (U < )ii' I ).. < 	' 
when reduced, is expressed as (tiutil)(t.0111  t;1)-1  

as u ranges through (Uc( )11. 

And again we observe that Cr 	takes (tiuti
1  ) to 

s('X ,i) 

(tjuEtx  t;1) for each u in (Uoc  )ii. 

From (a), (b.1), and the construction of the tree 	given 

in lemma 15, we obtain that the tree product of has a 

presentation, 

	

‹: it .gt 1: IG  , r 	U I ( sus-1  (ug,( )-1 )" Si\ Ti 

(b.2) Finally consider any relator in t(sus-1(utc  )-1)"1 :S-T1 . 

So choose any element q of Al% , and any s 	belongingi) 

to S -T, and any element u of (Ufx  )ii. 

Let j denote the initial vertex of s 
(0(,i)•  

Also let k,1 denote the representative vertex for that 

component of G which contains j,i respectively, and let p,q 

be that reduced path in X from k to j and from 1 to i 

respectively. 

Then quq-1  = g for some element g of G11, and pueoc p = h 

for some element h of Gkk' 

Then the relator s( ot ,i)us-1  ( o,i)(u Oci  ) -1 is written 

s ( ,) , i)  (q-1  gq ) s ( 1  ,,, , i)  (p-1hp) -1, and it follows that the 

(ue )-1)'1, when reduced, is written us-1  relator ( s 
( (,( , i ) 	( 0( , i) 	c< 
1 	 I 

3 t 1)-1(t ht-1)-1  (t .3s 	t 	)(t gt 	)(t.s (0( ,i) i 	1 1 	(0(,i) 1 	k 	k 	• 
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Thus we have that the set of relators, 

-1 -1 /1  (s (0( ,i)us(,)( ii)(ue0(  ) ) as u ranges through (Uoc  )ii, 

when reduced, is expressed as (t s
(,i)

t 1 )(t.ut.1 )(t
j
s
(
oe
,i) 

t-1)-1(t.Jue t-1)-1 as u ranges through (U0( )... 

From these remarks we see that the vertex group of H 

at the origin is the HNN group described in the theorem. 

Thus the theorem is proved. 

We shall see in the next chapter how we can use theorem 

6 to help us describe the subgroups of any HNN group. 
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Chapter 5  

APPLICATIONS: THE SUBGROUPS OF TREE PRODUCTS  

OF GROUPS AND HNN GROUPS  

In this chapter we describe the subgroups of any tree 

product of groups, and the subgroups of any HNN group. 

In section 1 we give a basic result of Higgins 

(proposition 8). 

In section 2 we define what we mean by a 'regular 

representative system for a tree product of groups modulo 

any one of its subgroups'. We shall see that this 

definition is a straightforward analog of a 'regular 

representative system'. 

Then, in section 3,we characterise any subgroup H of 

any tree product of groups G as an HNN group with base-part 

some tree product of groups. This result follows easily 

from proposition 8 and theorem 3, using a 'regular 

representive system for G mod H'. 

Finally we observe that we can obtain a similar 

characterisation of any subgroup of any HNN group, this 

time using propositiongand theorem 6. 

5.1 A result of Higgins  

Let G be any group and H be any subgroup of G. For any 

elements a and x of G, if Hax = Hb then x induces a mapping 

from the right coset Ha of H in G to the right coset Hb. These 

mappings form a groupoid, which we denote by r(G,H), under 
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composition of mappings, and the vertices of this groupoid 

are the right cosets of H in G. Clearly r(G,H) is connected. 

Also if x and y induce the same map Ha-  -"Hb then ax = ay 

and so x = y. So we have a groupoid surjection from 

r(G,H) onto G which takes each map of r(G,H) into that 

element of G which induces it. And it is clear that the 

restriction of this groupoid surjection to the vertex group 

of r(G,H) at the vertex H is a group isomorphism from 

this group onto the subgroup H of G. 

For any subset K of G let us write K for the subgraph 

of r(G,H) consisting of all the maps induced by all the 

elements of K. It is easy to see that if K is a subgroup 

of G, then R is a subgroupoid of r(G,H). 

Now we give a result due to Higgins ( [p] page 135 ). 

Proposition 8  

Let G be any group and H be any subgroup of G, and let 

I denote the set of right cosets of H in G. If G has a 

presentation <X,R> then the I-groupoid r(G,H) has an 

I-presentation <R,R> . 

And we have two corollaries, 



95. 

Corollary 1  

Let ce= {ecx:Ucc-Vo(, 0(EA-olbe any tree of groups G cx  HEA ), 

and let G be the tree product of 40. Then r(G,H) is the tree 

product of Le=1450c:Uoc—,170(  ,o(EA-cl where for each c<EA-0 

denotes the groupoid I-isomorphism induced by E. 

This corollary follows as a special case of another 

result of Higgins ( N.] page117 ). 

Corollary 2  

Let G be the HNN group with base-part K, free-part 

generated by W =kx:oc/6\ and for each o(EP■ let :U 
rA (A 

be the group isomorphism associated with the generator woi . 

Then r(G,H) is the HNN groupoid with base-groupoid 

groupoid isomorphismsrg:U
0( 	

,o(EA1 , and related 
vc   

graph W. 

To prove this corollary let <Y,S> be any presentation 

for the group K. Then we must show that <q,g> is an 

I-presentation for the I-groupoid K. To see this let r 

be any relator in K, and let r be the element of G which 

induces r. Then r is a product of elements of K and is a 

relator in G. From proposition 6 we have that K is naturally 

embedded in G, and so r is a relator in K. That is r is a 

consequence of the relators in S, and so i is a consequence of 

the relators in S. Thus <cr,g> is an I-presentation for R. 

Then the corollary follows easily. 
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5.2 Definition of a 'regular representative system for  

G mod H' 

Throughout this section let Le=t8:Uoc7-*V„(  , o(EA-0.1- 

be any tree of groups 	OXEA )s and let G be the tree 

product of (9, and let H be any subgroup of G. Also let A 

be the level-function on ce induced by the vertex 0. For 

each element o( of At-0 we shall abbreviate 'predecessor of 

c with respect to A ' to simply ' predecessor of W. 

For each element 0( of A choose a set of generators for G o(  

say. We call any element of 1...,x0(  ,...1U 

i• • • „„„ 1 , 	an cc-symbol. 

Also for each element 0( of A choose a right coset 

representative function Qc(  for G mod H (see/Aagnus, Karrass 

and Solitar[7] page 88 ). 	We call each element of Q.  an 

0K-representative. 

Let us suppose that the set of right coset representative 

functions cQ :occA satisfies the following two conditions, 

(1) for each representative q if q =px and x is an o(-symbol 

for some orki\ then both q and p are oc-Ifepresentatives, 

(2) for each (AEA, when all the c(-symbols are completely 

deleted from the ends of all the c(-representatives, then 

the resulting set of 0(- representatives constitute a 

double coset representative function for G mod (H,Gc( ) 

(see Magnus, Karrass and Solitar [7] page 239 ). 
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We callfQ :oiEAa regular representative  system for G  

mod H if the following two conditions are also satisfied, 

(3) for eachokEA-o, with -predecessorp say, then each double 

coset representative for G mod (H,Go ) is a 

11-representative, 

(4) for each double coset representative q for G mod (H,G0 ), 

if q ends in an o(-symbol, for some 0(EA-o, then q is a 

13-representative for each pEA of lesser >-level than %X. 

The existence of a regular representative system for G 

mod H follows from the existence of a regular representative 

system for r(G,H). 

Now, for convenience, we introduce a little notation and 

terminology connected with any regular representative system 

jQd:lo(EAR for G mod H. 

First, for any representative q and any clkiN , we write 

g for the o(-representative of the right coset H7. 

Second, consider any 0(EA-o. Choose any double coset 

representative function for G mod (H,U ) in Q x  which contains 

the double coset representatives for G mod (H,G cx ) and the 

o-representatives in Q . Then we call those double coset 

representatives for G mod (H,U o( ) which are neither double 

coset representatives for G mod (H,G 0( ) nor o-representatives 

a complement for U0<. 

We close this section by showing how we can use proposition 

8 and theorem 3 to describe the structure of the group H. 

To begin with, from the first corollary to proposition 8 

we have that r(G,H) is the tree product ofcGwherec"-E5 is the 

tree of groupoids 	( 0(eA ) given by `e= LE50(:f1ci---)i7-  ,r4EA-o} 
(see (5.1) for this -notation) . 
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Choose any regular representative system tQ :cAE./\1 
r)( 

for G mod H. Also choose the vertex H to be the 'origin' 

of rn(G, H). 

For each representative q let us write q for that 

map in r(G,H) induced by q and with initial vertex H. 

Then for each 0,,E A put 50(  = [ : q c21 

Then it is easy to see that t5c( :0,A) is a regular 

representative system (see (2.2)). 

And so, from theorem 3, we obtain that the vertex group 

of r(G,H) at the origin is an HNN group with base-part some 

tree product of groups. 

That is we have characterised the group H. 

5.3 The theorem 

From the remarks just made we have the following result. 
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Theorem 7  

Let c'e.le :uc(  —417 « ,c(EAy-o be any tree of groups 
Gc( (0(EA ), and let G be the tree product of (G, and H 

be any subgroup of G. Choose any regular representative 

system tQc :c(EAlj  for G mod H, and for each element of of 

A-o choose any complement for Uo(. 

Consider any element 0( of A-(7) and any o(-representative 

q which is either a double coset representative for G mod 

(H,G0(  ) or a o-representative, and consider the isomorphism 

given by quq 	que,(  q-1  as u ranges through cr1Hq r■ 	. 
Let 	be the set of all these isomorphisms. 

Then 	is a tree of groups Hi1ciGocq-.1 where q ranges 

through the double coset representatives for G mod (H,G0c ) 

and 0( ranges through /1( 

Also H is the HNN group with base-part the tree product 

of and free-part generated by the elements q(c? )-1  where 

q ranges through the complement for Uo(  and p is the predecessor 

of o( and 0( ranges through k-o 

Finally consider any element of of A-o , with predecessor r  
say, and any element q of the complement for Uci . Then the 

isomorphism associated with the generator q(qP )-1  is given 

by qP  uti  (q 11  ) 1-1 as u ranges through q-1HqrlUc(. 

Finally we can characterise the subgroups of any HNN group. 

To do this we use corollary 2 of proposition 8 and theorem 6, 

and we obtain results similar to those of Karrass & Solitar [6] 

and Cohen [Z]. The method is straightforward, and we omit 

the details. 
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APPENDIX  

AN EXAMPLE OF A CONNECTED TREE PRODUCT OF GROUPOIDS 

Here we give an example of a connected tree product of 

groupoids, G say, and we show that the presentation we obtain 

for the vertex group of G, Gii  say, using simply a represen-

tative system, does not enable us to describe Gii  precisely 

as an HNN group with base-part some tree product of groups. 

To begin with put I = 	and and A----t4)(114. 

Let Go(  , G and G be I-groupoids with G 	and G
o' 

connected and G discrete. 

Suppose the group (G) )11' (G )11 has a presentation 

<(c11).4>, 	<[b1,b21, tbi2b22b21-b  22) > respectively (here 0 denotes 

the empty set), and that 

(Gc022  has a presentation<M,0> . 

Choose any edge y,z of (G[ )12' (G-if )12 respectively, '  

and let 	e be the groupoid I-isomorphisms generated by 

2 	2 z-1c2z__41,-1  bly , y-1  102y---a2 respectively. Note then that 

the domain, range ofeis a discrete subgroupoid of G o  , Gp 

respectively, and that the domain, range ofell is a discrete sub-

groupoid of G , Goc  respectively. 

Then (()=- tevEy is a tree of I-groupoids Go(  , Gr,  and G-6  

Let G be the tree product of LE). Obviously G is a connected 

I-groupoid. 

Put o(=0, and call 1 the 'origin' of I, and let Q0, Q 

Q.6  be the graphs 	, tyl and t.z.  respectively, Clearly 

[(20, 	4..1  is a representative system. 

)11  is the trivial group, and 
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Using the general procedure outlined in the introduction 

to chapter 2, with the representative system 	,Q61 

we obtain a presentation for the vertex group of G at the 

origin, as follows. 

First, from proposition 7, we have that Go,G p  , and 
2 2 1 has an I-presentation <tal,0>, <1.101,b2, 1i , tbibb1b22  j> 

and<ic,z 44> respectively (here c6 is an empty graph). 

And so, from lemma 1 and the first part of lemma 2, 

we obtain an I-presentation for G. 

[a,bi ,b2,c 	U (y,zls  , 

04.7414.b Utc 2zy-licVyz-1,14ya-2y-11, 

Now, let F( [a,b1,b2,c1 U ty,z1 ) be the free groupoid on 

U {y,z} . Then, using theorem 1 and its corollary, 

with the representative system 	 , we see that the 

vertex group of F( a,bi ,b2,c1 U 	) at the origin is 

freely generated by the elements (zaz-1 ),b1,b2' (yz ),C . 

Then, from the second part of lemma 2, rewriting the 

relators in this I-presentation for G in terms of this set 

of free generators, we obtain a presentation for the vertex 

group of G at the origin, G11, 

tb

t(zaz-1),b1,b2,c1 U tyz-11 
2 2 2 21_ ec2,17_-1, ib2bib23u 	k z ) Di  (yz ),D2 (yz ) 

-2 	-1 -11 (zaz-4") (yz ) 
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From this presentation we see that G11 is the HNN group 

with free-part generated by (yz-1) and base-part presented 

by, 

4: t(zaz-1),b1,b2,c1 

2 	2 	( 2 	-12 2 	-1 2, 
ibib2bb21 U tc (zaz ) c (zaz ) 	„7. 

However we cannot describe this base-part as a tree product 

of the groups (G )11'  (G.15- )
11  and z(Go)22z-1. All we can 

do is write K for the subgroup of G11  generated by 

(G)11 U (z(Go)22z-1
), and then say that the base-part 

is a.tree product of the groups (61 )11  and K (of course 

the base-part is in fact the free product of (G p  )11  and K).  

Now let us follow through this procedure again, this 

time using a regular representative system. 

/ 
So put Qo - 

	
Then, clearly, 	o'Qp  ,Q. 	is a 

regular representative system. And so, using theorem 1 and 

its corollary, with the regular representative system 

1 Q(/),Q1; 	, we see that the vertex group of F(ta,bi,b2,c) U 

ty,z1) at the origin is freely generated by the elements 

(yay-1),bb2'c,(zy
-1). Then, rewriting the relators in the 

given I-presentation for G in terms of this new set of free 

generators, we obtain another presentation for Gli, 

(yay-1),b1,b2,c1 Utzy-1 , 

2 2 	2,_ 	 -2
1 `44.. tbibpib21U tC kzy )Di  kzy 	,D2kydy ) 	..,-. 
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And from this second presentation we see that G11 is 

the HNN group with free-part generated by (zy-1) and base-

part some tree product of the groups (G, )11' (G7r)11 and 

(Y(Go)22Y-1)' 

This example, then, indicates the necessity of choosing 

a regular representative system to help us to describe the 

vertex group of any connected tree product of groupoids. 


