THE VERTEX GROUPS OF CONNECTED TREE

PRODUCTS .OF GROUPOIDS & HNN GROUPOIDS

THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

(MATHEMATICS)

John Bruce Tough April 1975

Imperial College, London



ii.

ABSTRACT

We define the term 'tree product of groupoids'. Then,
using the theory of groupoids and defining a par ticular
graph construction which we call a 'regular representative
system', we prove that the vertex group of any connected
tree product of groupoids is an HNN group with base-part
some tree product of groups. For special connected tree
products of groupoids we obtain a similar characterisation
theorem without needing a 'regular representative system'.
Also we define the term 'HNN groupoid', and prove that the
vertex group of any connected HNN groupoid is an HNN group
with base-part some tree product of groups. As an applica-
tion of these results we characterise the subgroups of any

tree product of groups, and the subgroups of any HNN group.
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vi.

INTRODUCTION

Hanna Neumann [S] has described the subgroups of any
generalised product of groubs as generalised products of
groups, but her method is complicated and involves trans-
finite induction.

Karrass & Solitar [5] define a particular kind of
generalised product of groups which they call a 'tree product
of groups'. In particular a free product of two groups with
an amalgamation is a special case of a tree product of groups.
Then they show that if G is any free product of two groups
with an amalgamation and H is any subgroup of G then H is a
Higman, Neumann, Neumann group (HNN group) with base-part some
tree product of groups. Their method does not use transfinite
induction, and consists of defining a 'compatible regular
extended Schreier system (cress) for G mod H' ([5] page 239 ),
and then using a cress to construct’. . a 'Kurosch rewriting pro-
cess for G mod H' ([7] page 230 ), This produces a presentation
for H, and the result follows from a detailed investigation
of this presentation. However, they are unable to use the
method to characterise the subgroups of an arbitrary tree
product of groups.

Also Cohen [2] wuses Serre's theory of groups acting on
graphs to obtain a similar result to that of Karrass & Solitar,
but again it is difficult to see how to generalise Cohen's
method.

Our aim, here, is to describe the subgroups of any tree

product of groups. Our method uses the theory of groupoids as
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described by Higgins {[4] . To be more precise we define
what we mean by a_'tree product of groupoids'. Then,
Ausing a graph construction which we call a 'regular repre-
sentative system', we show that the vertex group of any
connected tree product of groupoids is an HNN group with
base-part some tree product of groups (theofem 3). From
this result, and using a result of Higgins (
proposition 8), it will follow that any subgroup of any
tree product of groups is an HNN group with base-part some
tree product of groups (theorem 7).

Further we define what we mean by an 'HNN groupoid'.
Then we shall see that the vertex group of any connected HNN
groupoid is an HNN group with base-part some tree product of
groups (theorem 6). From theorem 6, and again using propo-
sition 8, it will follow that any subgroup of any HNN group
is an HNN group with base-part some tree product of g?oups.
Similar results to this have been obtained by Karrass &

Solitar [6] & Cohen [2] .

Now we give a note on the convention we adopt in our work.
All groups and groupoids we cansider will be multiplicative,
and all maps will be written on the right. Any reference to
other authors is denoted by using sguare brackets, for
example (Higgins [4] page 3l ).

All definitions are underlined.



Chapter 1

PRELIMINARIES

In this chapter we give some basic definitions and
results taken from group theory, graph theory and groupoid
theory.

We begin in section 1 by defining the terms: graph,
groupoid, graph homomorphism and groupoid homomorphism.

Then we describe the notions of a 'path in a graph' and a
'connected graph'. Using these notions we define the terms
' free groupoid on a graph',.and a special kind of graph
called a 'tree'. Next we describe what is meant by a
'level-function on a tree induced by a vertex'. Finally

we define the term 'quotient groupoid'. The definition of

a 'level-function on a tree induced by a vertex' 1is due to
Karrass & Solitar ({5] page 23| ). All the other definitions
and results given in section 1 are due to Higgins [4] .

Next in section 2 we give the definition of a 'presenta-
tion for a groupoid'. We follow the definition given by
Higgins ( [3] page I0 ). As a special case we obtain the
definition of a 'presentation for a group', and this definition
' agrees with the usual definition of a presentation for a
group (see for example [7j page 7 ).

Then in section 3 we use the notion of a 'presentation for a
groupoid' to define the term 'tree product of groupoids'. This
is an obvious generalisation of Karrass & Solitar's definition
of a 'tree product of groups' ( E;] page 218). Also we give

a result on tree products of groupoids which follows easily
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from a result on tree products of groups due to Karrass &
Solitar ( [5] pagel3l).

And in section 4 we give the well-known definition of
an 'HNN group' (see, for example, [5] page 237). 1In addition
we give a basic property of HNN groups (see [5] page 238).

Finally in section 5 we give three results which are
of basic importance to our approach to the problem of
characterising the vertex group of any connected tree product

of groupoids.

1.1 On graphs & groupoids

l.1.1 Definition of a graph, groupoid, graph homomorphism

and groupoid homomorphism

A directed graph consists of (1) a non-empty set of

vertices I say, (2) a set of edges G say, and (3) an
incidence map from G into the cartesian product IxI. For
each edge g of G, if the image of g under the incidence map

is (i,j) then we call i,j the initial, terminal vertex of g

respectively, Also we call i and j the vertices of g. 1If

i = j then g is a point, otherwise g is an arrow.

All graphs we consider will be directed, and so we omit
'directed' for convenience.

Any graph which contains no edges is called an empty
graph (it consists simply of a set of vertices), and any

graph which contains only points is called a discrete graph.

We sometimes call a graph with vertex set I, say,

an I-graph.
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For any pair of vertices i and j of any graph G, we
write Gij for the set of edges in G with initial vertex

i and terminal vertex j.

A groupoid is a graph G together with,
(1) a law of partial multiplication: for any vertices
i, j and k of G and any gwsGij, h éij then the product gh

is defined in G and belongs to Gixr

(2) associativity: for any vertices i,j,k and 1 of G

and any fGGi géij and hele then (fg)h = f£(gh),

jl
(3) a set of identities: for each vertex i of G there

exists an element of Gii' written €5 such that for any
vertices j and k of G and any gé;Gij and h éGki then

e.g =g and hei = h,

(4) an inverse law: for any vertices i and j of G and

. there exists an element of Gji' written g_l, such

J
that gg_l = e; and g_lg = e,.

any g € G;

It is easy to see that for any groupoid G and any vertex

i of G, then Gii is a group, which we call the vertex group

of G at i.

A graph homomorphism @: G—H is a pair of maps, oﬁe

mapping the vertex set of G into the vertex set of H and called

the vertex map of 6, and the other mapping the set of edges of

G into the set of edges of H and called the edge map of O,

such that for each edge g of G the initial, terminal vertex
of the image of g under the edge map of © coincides with the

image of the initial, terminal vertex of g under the vertex
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map of ©, respectively.

A groupoid homomorphism is just a graph homomorphism
which preserves products and identity elements (and so also
inverses) .

A (graph) groupoid homomorphism is called a (graph)

groupoid surjection if both its vertex map and edge map are

- surjections. A (graph) groupoid homomorphism whose vertex

and edge maps are both injections is called a (graph) groupoid

injection. A (graph) groupoid homomorphism satisfying both

of these conditions is called a jgréph) groupoid isomorphism.

Consider any (graph) groupoid homomorphism ©: G—H.
Let I be any set and suppose that G and H have vertex set I.
If the vertex map of © is the identity map on I, then we call &

a (graph) groupoid I-homomorphism. The definition of a

(graph) groupoid I-surjection, -injection and -isomorphism

follow in an obvious way.

A subgraph H of a graph G is a graph whose vertices, edges
are contained in the set of vertices, edges of G respectively,
and whose incidence map is simply the restriction of the
incidence map of G.

Similarly a subgroupoid H of a groupoid G is a subgraph

of G which contains the identity element e, of G for each
vertex i1 of H, and which is closed under multiplication and

inverse,

Let G be any graph, and G (a€A) any collection of

subgraphs of G. The graph-union of GN (x€A), written UA G ¢
¢




is that éubgraph of G with vertex set the union of the vertex
sets of the G and edge set the union of the aedge sets of

the Gy - Suppose that the intersection of the vertex sets

of the G°< is non-empty. Then the graph-intersection of

(3 (€A ), written nAG"" is that subgraph of G with vertex
€

set the intersection of the vertex sets of the G, and edge

set the intersection of the edge sets of the G Let G,

d L]
and G be any subgraphs of G with common vertex sets.
B

Then the graph-difference of Go( and G is that subgraph of

P_

G with vertex set the same as Gy (& GP ) and edge set

consisting of the edges of Gy not belonging to GF .

Let G be any groupoid, and H be any subgraph of G.

By the subgroupoid of G generated by H we mean the graph-

intersection of all the subgroupoids of G which contain H.

1.1.2 Paths & components

Let [n] denote the graph 2_§_4L_y;3 ...Itf;+__2

with n + 1 vertices and n edges joining them in sequence
(n » 0). If X is any graph and i,j are any vertices of X

we define a directed path in X of length n from i to j to be

a graph homomorphism, p: ﬁﬂ——+x say, whose vertex map takes
o to i1 and n to j. 1In particular, for each vertex i of X,

there is one directed path in X of length 0 from i to i, which

we denote by Q&, and which we call the empty path at the
vertex i. Equivalently we may consider a directed path in X

of length n (n) 0) to be a sequence of edges of X, (xl,...,xn)

say, such that for each i1¢ r4{n the terminal vertex of X._1

.



6.
coincides with the initial vertex of X_.. If p = (Xl""’xn)
and q = (yl,...,ym) are directed paths in X from i to j
and from j to k, say, respectively, then pqg = (xl,...,xn,

yl,...ym) is a directed path in X from i to k. Clearly this

multiplication of directed paths in X is associative.

Now we come to the notion of a 'path in X'.
~ For each edge x of X let us introduce the symbol x, and

let us define the initial, terminal vertex of x to be the
terminal, initial vertex of x respectively. Let X denote
the set of elements x as x ranges through X. Then, clearly,
X is a graph with the same vertex set as X and with no edge
in common with X. We define a path in X to be a directed path
in XUX (by XUX we mean the graph with vertex set the same as X
(& X) and with edge set the union of the edge sets of X and X).
Then we see that for each edge x of X there are two paths in
X of length 1, namely x and x. However we still have only one
path in X of length 0 at each vertex of X.

Let p be any path in X from i to j say. Then generalising

some terminology given in (l1.1.1l) we call i and j the

vertices of p. Also we call i the initial vertex of p and j

the terminal vertex of p. Let us make the convention that for

each edge x of X the synbol X is to be identified with x. Then
if p = (yl,..,yn)’is a path in X from i to j, we have that

(§n,..,§l)is a path in X from j to i, which we denote by p.

A graph X is connected if there is at least one path in X

from i to j for each pair of vertices i and j of X. A maximal
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connected subgraph of X is called a connected component of X

or simply a component of X.
Similarly a maximal connected subgroupoid of a groupoid G

is called a (connected) component of G.

It is easy to see that components of (graphs) groupoids

are themselves (graphs) groupoids.

Let X be any graph and Y any subgraph of X. We say that
Y spans X if for each pair of vertices i and j of X such that
there is a path in X from i to j then there is also a path

in ¥ from i to j.

Now we give the definition of a 'free groupoid'.
Let X be any graph and p = (yl,...,yn) be any path in X.
p - N =
If forsome 14 r<n Yppp =Yy OF Yo =Y, then
(Yl""yr—l'yr+2""yn) is also a path in X which we call a

simple reduction of p. Let us write p~rq if there exists a

finite sequence of paths in X (p=) po,pl,..,pm(=q) (m>0)

such that for each 1€ r<m P, is a simple reduction of

pP._; ©or vice versa., This is an equivalence relation on the paths
in X, and we write [p] for the equivalence class containing p.
Since equivalent paths have the same initial, terminal vertex

we can assign these as initial, terminal vertex of the
equivalence class containing them. Then the set of equivalence
classes of paths in X acquires the structure of a graph with
vertex set the same as X. In fact thié graph is a groupoid

with multiplication .as follows: if p and g are two paths in

X such that the terminal vertex of p coincides with the initial
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vertex of ¢ then[p][q] = [pq]. It is easy to see that
this groupoid has identity elements [Q%] where i ranges

through the vertices of X, and the invemse is given by

, [p]_l =[P]. We call this groupoid the free groupoid on X.

We can describe free groupoids in another way as
follows. |

Let X be any graph and let p = (yl,..,yn) be any path
in X. We call p reduced if for each 1< r<n y_# §r+1
(that is p has no simple reduction). Clearlybany path in X
is equivalent to an unique reduced path in X. We can give
the set of reduced paths in X the structure of a groupoid'
as follows: if p and g are reduced paths in X from i to j
and from j to k, say, respectively, then their product is
defined to be the reduced path in X obtained from pq by
successive simple reductions. It is not difficult to see
that this multiplication is associative, and then it is

clear that this groupoid is the free groupoid on X.
Let X be any I-graph and let F(X) be the free groupoid
on X. Then it is easy to see that the inclusion map from X

into F(X) is a graph I-homomorphism, and X generates F(X).

A result of Higgins ( [3] page 14 ) tells us that the

vertex group of any connected free groupoid is a free group.

Now we give another result due to Higgins ( D{l pageds ).



Proposition 1

Let G be any groupoid and X be any subgraph of G.
Then G is. the free groupoid on X iff each element of G is

either an identity element or is uniquely expressed as
‘ € €

a product Xy l...xn n (n> 1) where each X is an edge

— s &2 —_
of X and €r— +1, an@ if fqr some 1< r<n X, = X4 then
Cr=¢ra-

1.1.3 Trees
Let X be any graph, and p = (yl,..,yn) be any path in X.
We call p closed if the initial and terminal vertex of p

coincide. If there are no non-empty closed and reduced paths

in X, then we call X circuit-free. A connected circuit-free

graph is called a tree.

We have the following well-known result (see Higgins

[4] page#o),

Proposition 2

(1) Every circuit-free subgraph of a graph X is contained in
a maximal circuit-free subgraph of X. -
(2) A circuit-free subgraph of X is maximal (among all

circuit-free subgraphs) iff it spans X.



10.

Corollary

Every connected graph is spanned by a tree.

Let X‘be any graph. A tree of X is a tree which is also
a subgraph of X. Clearly, if X is connected, then any maximal
tree of X has the same vertex set as X. Then the corollary

says that every connected graph contains a maximal tree.

Let T be any tree and i be any vertex of T. For each
vertex j of T let 1(j) denote the length of that unique
reduced path in T from i to j. Then the map 1 from the
- vertex set of T into the set of non-negative integers is

called the level-function on T induced by i.

This definition is due to Karrass & Solitar ( [5]
page3l). Also we have the following result due to

Karrass & Solitar ([5] page 131 ).

Proposition 3

For each vertex j of T other than i, there exists an
unique vertex k of T such that 1(k)< 1(j) and k,j are the

vertices of an arrow of T.

We call the vertex k in this proposition the predecessor

of j with respect to 1, and it is easy to see that 1l(k) =

1(j) -1 . For any vertex j of T we call 1(j) the l-level of j.
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1l.1.4 Quotient groupoids

A subgroupoid N of a groupoid G is a normal subgroupoid

of G if (1) G and N have common vertex set, and (2) for
-1

each n¢ NS and g&_Gij then g "ng belongs to ij.

For any groupoid homomorphism, & : G—»H say, we define

the kernel of & , written ker e, to be the graph of edges of

G which map to .identity edges of H under © . Then ker© is a
normal subgroupoid of G.
Let G be any groupoid, and H be any subgraph of G.

By the normal subgroupoid of G generated by H we mean the graph-

intersection of all the normal subgroupoids of G which

contain H.

Let N be any normal subgroupoid of G. The components
of N define a partition on the vertex set of G, and we write
i for the class containing i, and I for the set of classes.
Also,. N defines an equivalence relation on the edges of G
as follows: g = h(mod N) iff g = nlhn2 for.somenl,n2 belonging
to N. Two equivalent edges of G must have their initial
vertices in the same component of N, and similarly for their
terminal vertices, eb each ¢lass g of edges can be assigned
'aneﬁnique‘initiaij ferﬁinai Qeftex‘in I. This assiQnment gives
: thé~§et'of:equivaience elasses of:G, written G/N, the structure
of an I-graph. We now define a partiel multiplication in G/N
as follows: the product gh is defined iff there exist g, € g

and- hq € h such that g,h is.defined in G, and then .

1
gh = §Iﬁl. It is easy to check that this multiplication

is well-defined. Moreover, with this multiplication, G/N
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becomes an I-groupoid, with identity elements given by
——1 —3.
the components of N and inverses given by g =g} as

g ranges through G. We call G/N a gquotient groupoid. Note

that the vertex map i—i as i ranges through I, and the edge
map g—»g as g ranges through G, constitute a groupoid
surjection. Note also that if N is discrete then G/N is

an I-groupoid, and the groupoid homomorphism just given is a

groupoid I-surjection.

1.2 Presentations for groups & groupoids

Throughout this section let X be any I-graph, and
G be any I-groupoid.

Let @: X—»G be any graph I-homomorphism, and let R
be any discrete subgraph of F(X) (the free groupoid on X).
Clearly 8O extends to an unique groupoid I-homomorphism,

/ .
B: F(X)—G say. Then we say that R holds in G under © if

r'd . .
© maps each element of R to an identity element of G.

Now let © : X—»G Dbe any graph I-homomorphism, and let

R be any discrete subgraph of F(X) which holds in G under © .

Then we call the triple <X,R,©> an I-presentation for G if
X© generates G, and fér' each graph I-homomorphism '\V: X—H
such that X/ generates H and R holds in H under \ , there

exists a unique groupoid I-homomorphism (D: G—H say such

that e¢ =V .

This definition is taken from Higgins ( [?,] pagelO ).
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I1f <{X,R,B> is any I-presentation for G then we

call X the generator graph of the I-presentation, and we

call R the relator graph of the I-presentation.

In the case that X is a subgraph of G and © is the
inclusion map, then we abbreviate the notation <(X,R,0>
to {X,R> . Most of the presentations we consider will

be of this kind.

Now we give a result due to Higgins ( [3] pagelO ),
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Proposition 4

Let <X,R,e>'be any I-presentation for G, and let N
denote the normal subgroupoid of F(X) (the free groupoid on
X) generated by R. Then>G is groupoid I-isomorphic to the
quotient groupoid F(X)/N (that is there is a groupoid

I-isomorphism from G to F(X)/N).

BEvery I-groupoid G has an I-presentation. For choose
any I-subgraph of G, X say, which generates G, and let N
denote the kernel of the unique groupoid I-surjection
from F(X) onto G extending the inclusion map from X into G.
Then we have that G and F(X)/N are groupoid I-isomorphic,
and it is not difficult to see that {X,N) is an

I-presentation for G.

Suppose now that G is a group (that is a groupoid with
a single vertex). Then the above definition gives us a

presentation for G. This definition of a presentation for

a group agrees with the usual definition of a presentation

for a group (see, for example, [7] page 7 ).

If G is any group, then by the standard presentation for

G, we mean that presentation for G with generators all of the
elements of G and relators all expressions fgh_l where

f, g, and h range through G and fg = h in G.
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1.3 Tree products of groups & groupoids

Throughout this section let Gy (%€ A) be any collection
of I-groupoids which have mutually disjoint edge sets

(for some vertex set I).

Suppose we are given a set of groupoid I-isomorphisms,
L@ say, and that for each element © ofLG the domain of ©
is an I-subgroupoid of one of the Gy (€A) and the range
of © is also an I-subgroupoid of one of the Go( (O(GA).

Consider any 96(6. Let us define the initial, terminal

vertex of © to be that groupoid among the G (€A ) which

contains the domain, range of © respectively. Then, clearly,
with this definition L@ becomes a graph with vertex set the
set of groupoids {Go( :o(éA}. If"@ is a tree, then we call

L@ a tree of groupoids Gd(dEA ). (Sometimes we shall abbre-

(
viate the phrase 'Gy is a vertex of © ' to ' is a vertex
of L@ ‘. Under this abuse of definition we sometimes

consider the vertex set of L@ to be A ).

Now let © be any tree of groupoids G (€A). For each
€A choose any I-presentation for Gy <Xo(.Rp<> say.b Let G
denote the I-groupoid which has the I-presentation with generator
graph the union of the Xo( (€A ), and relator graph the union of
the R°<(r>(€A ) together with the graph with points, u(u@ )“l
where u ranges through the domain of € and 8 ranges throughte .
(Here, for each eéce with initial,terminal vertex Go( 'GP say
respectively, then we suppose that in the point u(u® )_l u is

and u® is written as a path in X

°< _ p

written as a path in X
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Then we call G a tree product of groupoids Go( (¢ A ), or

more precisely the tree product ofL@ .

Tree products of groupoids are special cases of
'
generalised products of groupoids (see Higgins [3] pagelS for
the definition of a generalised product of groupoids). It
is straightforward to see that tree products of groupoids are

independent of the particular presentations used in their

definition (see, again, Higgins [3] pagel5 ).

Now we give a short-hand notation for describing trees
of groupoids. So let('e be any tree of groupoids Gy (0<€A ).
and choose any element 0 say of /\ , and let 1 denote the
level-function on(fa induced by the vertex 0. (Note that we
are here considering(EB to have vertex set /\_). Consider
any 96%3, and suppose the initial, terminal vertex of © is
G°< ' GP say respectively. If we denote the domain, range
of © by UO( Vg respectively, then of course we have Uy is a
subgroupoid of GN and Vi is a subgroupoid of GF . Also it
is clear that either Gp is the predecessor of G°< with respect
to 1 or vice versa. Without loss of generality we suppose
‘that GP is the predecessor of qﬂ with respect to 1. Then let
us write E& for @ . If we use this convention for each edge
ofL@ ., then we can expressce as C@ = {eo(: Uo(__.)Vo( ,o(éA-o}.
In this case it is clear that we can describe the tree
product ofcfa as that I-groupoid which has an I-presentation
with generator graph the union of the XO<(C(€/\ ), and relator
graph the union of the Rd (€A ) together with the graph with

points, u('ueo()-l where u ranges through Uo( and X ranges

through A‘O .
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In the case that each GO( is a group, then the above two

definitions give us a tree of groups G (o(GAL and a tree

o
product of groups Gd (o<€A ). These definitions agree with

those given by Karrass & Solitar in [5] page218 .

We close this section with a result on tree products of
groupoids, which is a straightforward generalisation of a

result on tree products of groups due to Karrass & Solitar

( [5] page2z2 ).

Proposition 5

Let G be any tree product of I-groupoids G (€A ).
Then for each element &« of A the map Go(_> G given by g»g

(as g ranges through GO{ ) is a _groupoid I-injection.

1.4 On HNN Groups

Let G be any group, and suppose we have a set of group
isomorphisms {@d:Uo(——»VO( ,O(GA} where for each o€ A
U and V, are subgroups of G. For each <€A let us introduce
the symbol t°< . Choose any presentation for ¢ (X,R> say.
Let H be that group which has a presentation with generators X
together with the elements 1:0< (o(éA ), and relators R together
with the expressions, ty ut&l(u 9°< )"l as u ranges through
Uok and < ranges through A .

Then we call H the HNN group with base-part G and free-part
generated by the elements t O(QO(GA). Also for each o(EA we

call eo( the group isomorphism associated with the generator t,)(_.
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It is straightforward to see that HNN groups are
independent of the particular presentations used to define

them (see, for example, [ 5] page237 ).

We close this section with the following well-known

.result (again see [5] page238),

Proposition 6

Let H be an HNN group with base-part G and free-part
generated by {td uxé/\} . Then G is naturally embedded in H,
and {td :chA} freely generate a free subgroup of H (that is

the free-part of H is a free group freely generated by

ito( :O(GA} ) -

1.5 Three basic results

In this final section we give three basic results involving
some of the definitions we have discussed in the earlier
sections. We shall use these results in our proofs of
theorems 3, 5 and 6. The first result is due to Higgins

( [3] pagel3 ).

To begin with we need two definitions.

Let G be any graph or groupoid. By a set of representative

vertices for G we mean a subset of the vertex set of G which

contains precisely one vertex from each component of G (this

unique vertex is called the representative vertex for the

component) .
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Now let G be any connected I-groupoid with an
I-presentation <X,R> say. Let F(X) be the free groupoid
on X, and choose any maximal tree T of F(X). Also choose
any vertex i of G. Consider any element r of R with

vertices j say. Then by the conjugation of r by T in i we
1

mean the path tj:rt;| where tj is that unique reduced path

in T from i to j.

Proposition 7

Let G be any I-groupoid. Choose any maximal circuit-free
subgraph X of G, and any set of representative vertices J

for G. For each representative vertex j let <G. "Rjj> be

JJ
the standard presentation for the group ij. Then G has an
I-presentation with generator graph XU( U ij) and
i€

relator graph U R...

Lemma 1

LetLe= {eo(:Uo(——;Vo( ,o(GA-O} be any tree of I-groupoids

Go< (OQGA ), and let G be the tree product ofLe. For each
o{¢ A choose an I-presentation for Gd (Xo(,Ro(> , and for each

u(GA-o choose any maximal circuit-free subgraph Zc( of Uy

and any set of representative vertices Iy for Uy -

Then G has an I-presentation with generator graph

U X
e A

. and relator graph U R together with the graph of
% _ ole A 2 »
points, u(uec() " where u ranges through (Uy )jj and j ranges

through Jo'( and o ranges through A—o, and the graph of points,

z(z ed )~L where z ranges through Zo( and & ranges through

A-o .
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Proof

Let {X,R) denote the I-presentation described in the lemma.

Consider any Néﬁkoand any ué?Ud . Then to prove the lemma
it suffices to show that the point-uhned)_l belongs to the
normal subgroupoid of F(X) (the free groupoid on X)

generated by R.

To begin with, we have that u belongs to some component

/
Uq of Ud . Since Zd is a maximal circuit-free subgraph of
/
Uq , it follows that some component Zd of Zd is a maximal

/ ’
tree of Ud . Let j denote the representative vertex for Uo< .

Then we can express u as p_lulq , Where u; belongs to

/

(U and p,q is that unique reduced path in Zq, from j to

% )33
the initial vertex of u and from j to the terminal vertex of
u, respectively. Then it is easy to see that u(uE,’c<)—l can
be expressgd as a product of conjugates of the expressions
p(pO, )_l, q(qed)—l and ul(uled )_l. And so it follows
that u(u€9°<)_l belongs to the normal subgroupoid of F(X)

generated by R.

And so the lemma is proved.
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Lemma 2

Let G be any connected I-groupoid with an I-presentation
{X,R) . Let F(X) be the free groupoid on X. Choose any
maximal tree of F(X), and any vertex i of G. For each relator
r let r, be the conjugation of r in i using this tree. Choosé
any set of free generators W for the free group F(X)ii’ For
each relator r let r” be the expression r, rewritten in terms
of the set of free generators W.

Then (1) <X, {r’: r¢ R} D is an I-presentation for G, and

(2) <w, {r”: r€R} > is a presentation for the vertex

group of G at i.

Proof

First let N(R) and N( {r,: re¢ R} ) denote the normal
subgroupoid of F(X) generated by R and {r,: rQR} respectively.

Clearly we have N(R) = N( {r,: X¢Ry ).

Then, by the remarks following proposition 4, we have that
<X, j'rl: rQR}') is an I-presentation for G.

Now it is easy to see that the vertex group of the quotient
groupoid F(X)/N({rlz reR}) at the vertex i is the factor group

oy
of the free group F(X)ii modulo the group N({r : r¢R] )iif
And so it follows that <w, {r4= réR}) is a presentation

for the vertex group of G at the vertex i,

And so the lemma is proved.
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Chaptexr 2

CHARACTERISATION OF THE VERTEX GROUP OF ANY CONNECTED

TREE PRODUCT OF GROUPQOIDS

Throughout this chapter and the next, suppose we are given
any collection Gy (n¢ A ) of I-groupoids (for some vertex
set I) whose edge sets are mutually disjoint, and any tree
%5 of I—groupoids,Gd (€ A), and let G be the tree product of
%3 and suppose that G is connected. Suppose we have chosen
any element of I, which we call the 'origin', and any element
of A , which we denote by 0. Further let A denote the level-
function on %9 induced by 0. Finally we suppose that %9 is
expressed as ‘9 ={90\=U‘*-—;V(A . O(QA—O} (see (1.3)).

Our object is to obtain a presentation for the vertex group
of G at the origin, from which we hope to deduce the

structure of the vertex group of G at the origin.

We begin, here, by describing the general procedure we
shall use to obtain presentations for the vertex group of G
at the origin.

Our starting-point is to choose any 'representative
system' %Q“ :déPﬁ'say. Of course we have not defined what we
mean by a representative system, but at present it suffices to
know that associated with {Qo( :o{é[\} we have for each 0\&/\ , a
maximal circuit-free subgraph of Gy 1Xo say, and a set of

representative vertices for Gq.
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Then for each qé/\, using proposition 7 with the
circuit-free graph X together with the given set of

representative vertices for G

oA we construct an

I-presentation for Gy -

Next for each of¢A-o0 we choose any maximal circuit-free
subgraph of Uy and a set of representative vertices for Uk »

Now we use lemma 1 with the given circuit-free
subgraph of Uy and the given set of representative vertices
for U, (as o ranges through A-o0) together with the given
I-presentation for Go<(as of ranges through A ), to obtain an
I-presentation for G.

We shall see that this I-presentation for G has the form

<XUY,R>> where X is the graph-union of the X and Y is some

!
discrete graph. Note that XUY is a connected I-graph.

Now we choose any maximal tree of F(XUY) (the free groupoid
on XUY), and for each relator r let us write rl for the
conjugation of r in the origin using this tree. Then from
the first part of lemma 2 we have another I-presentation for G,
<XUY,[r’:rE R}), and of course each relator in this
I-presentation has vertices the origin.

Next using the representative system {Qd\ :O(é/\} we
describe a method for obtaining a set of free generators,

W say, for the vertex group of F(XUY) at the origin.

For each relator r in R let us write r” for the relator r,
rewritten in terms of the free generators W. Then by the second
part of lemma 2 we obtain a presentation for the vertex group
of G at the origin ¢, [r":re R .

Finally from this presentation we shall try to deduce

the structure of the vertex group of G at the origin.
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In section 1 we define what we mean by a 'representative
system', and we show how we can use representative systems
to give us sets of free generators for the vertex group of
F(XUY) at the origin (theorem 1 and corollary).

In section 2 we define a particular kind of representative
system which we call a 'regular representative system', and
we prove the existence of a regular representative system
(theorem 2).

In section 3 we prove our main theorem (theorem 3). That
is we shall prove that the vertex group of G at the Qrigin
is an HNN group with base-part some tree product of groups.

We prove the theorem by choosing a regular representative

system and following through the procedure outlined above.
Finally a word on terminology. Throughout this chapter

and the next we shall abbreviate 'predecessor of of with

respect to A\' to simply 'predecessor of «'.

2.1 On representative systems

To define a representative sgystem we first need to
choose for eachdeA a maximal circuit-free subgraph of G
and a set of representative vertices for qiwhich contains
the origin.

For each d€A choose any maximal circuit-free subgraph
Xdof Gys and let X be the gravh-union of all the X¥-then X
1s a connected I-graph. Also, for eachdeA, and each
component of qxwhich does not contain the origin we define
the representative vertex for that component to be any
vertex 1 of the component such that there exists a non-empty

reduced path in X from the origin to i which does not end in

an element of X:l
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Now consider any element o of A.
For each non-origin representative vertex i for Go(,
choose any non-empty reduced path in X from the origin to i

4
which does not end in an element of X_l. Consider the graph

X

whose edges are all these chosen paths. Clearly this graph
is a tree with vertex set the set of representative vertices
for Gq . Let us write Q & for the graph-union of this tree
and the circuit-£free graph Xo( . Obviously Q is a maximal
tree of F(X) . (the free groupoid on X). For each vertex i
let us write U x,i) for that unique reduced path in Qo(frqm
the origin to i. In particular, then,if 1 denotes the origin

we have that q( o, i) =¢i (the empty path at the origin).
’

In this way we construct each Qo( .

Consider any non-origin representative vertex i for Gy

Then, of course, the non-empty path q(O i) ends in an element
+- [}

of X;l for some k¢A-0. In this case let us call i an

X -vertex for Go'

Then we call the set of trees {Qo& _:o((-A} a representative

system if for each element o of A—o , with predecessorﬁ say,
then, ‘

(1) for each representative vertex i for Gu( we have

(2) for each ¢{-vertex i for G, we have U ,i) = q(o,i)'

Note that for each element & of A we have associated
with {Qq :okéA} some maximal circuit-free subgraph of Gu .

namely Xo( , and some set of representative vertices for G
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containing the origin, namely the set of representative

vertices chosen in the construction of {Q°< :o&QA}.

Now in the following lemma we give two elementary
properties of representative systems.

So let {Q :qe/\} be any representative system and for

N

each element o of A let X be that maximal circuit-free

el
subgraph of Go( associated with {on :o(é/\} .
Then,
Lemma 3

Consider any element & of A-0. Then the set of repre-
sentative vertices for Go( has empty intersection with the set
of o -vertices for Gye |

Further suppose p is the predecessor of o . Then for

each vertex i we have q(q i) = q( B j)p for some reduced path p
! 14 .

in Xd and some representative vertex j for Goy »
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Proof

(1) Consider any non-origin vertex i.

If i is a representative vertex for Gy then from the

definition of Q we have that the non-empty path g
X + (0( i)
does not end in an element of xo} .
Now suppose i is an of- vertex for Go’
+
This means that d(o,i) ©nds in an element of X;} .
Also by the definition of a representative system we have that
+
-1

I o,i) = 9(0,i)¢ @nd so q i) ends in an element of Xy .
’ 14 ’

And so we cannot have that i is both a representative
vertex for Gq and an o{-vertex for Go'

This proves the first part of the lemma.

(2) Now consider any vertex 1i.
If i is a representative vertex for Gc( then from the

definition of q(cx i) we have CIa. And so, in

i) T 9(p i)
this case, we have q((x'i) = q(F 'j)p with 1 = j and p the
empty path at the vertex i.

On the oéher hand, if i is not a representative vértex
for Gy r then let j denote the representative vertex for that_
component of Go( which contains i. Also let p denote that
unique non-empty reduced path in Xc‘ from j to i. Then again

from the definitiqn of U ,i) Ve have U ,i) = q(‘o(,j)p'
And then, since j is a representative vertex for Gd . we have

Thus,

Uk, 5) =q(f,.j>. U, i) =q(p.j>l°'

This proves the second part of the lemma.
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Corollary

Consider any element o of A—o of A-level m, and let ¢
denote the predecessor of o , and for each 1 r<m let
o, denote the predecessor oftxr_l.
Then for each vertex i we have q(;(’i) = q(o'j)pm...plp
where p is some reduced path in Xy . and for each 1% r<m
p.. is some reduced path in X}xr, and j is some represeﬁtative

vertex for Go'

Now we show how we can use representative systems to
give us sets of free generators for the vertex groups of

connected free groupoids.

Theorem 1

Let {Qo(:QQ[¥§be any representative system. For each
weA let X« denote the maximal circuit-free subgraph of G
assoclated with iQo(=d&/¥§' and let X denote the graph-union
of all the Xd .

Then the vertex group of F(X) (the free groupoid on X)
at the origin is freely generated by the elements, q(o(,i)
q(;:’i) where F is the predecessor of o , and i ranges through

those elements of I other than representative vertices for

Gof. and -vertices for Go’ and & ranges through /—\-O .
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Proof

Consider any element of of ﬁ&%), with predecessor p say,
and any element i of I which is neithexr a representative
vertex for Gq nor an o{-vertex for Go' Let us write
f(o( 3y for the element q 3,9 ﬁ_}i)'

Let F denote the set of all these elements.

Then we must prove that theIVertex group of F(X) at the

origin is freely generated by the set of elements F.

The proof of the theorem is based on the following result
due to Higgins ({3] page 14 ).

Consider any maximal tree T of X, and for each element
io0f I let ti be that unique reduced path in T from the origin
to i. Then the vertex group of F(X) at the origin is freely
1

generated by the elements, tjxtz where j,1i is the initial,

terminal vertex of x respectively, and x ranges through X - T.

It is not difficult to obtain the following generalisation

of this result,

Lemma 4

The vertex group of F(X) at the origin is freely
‘ -1 .
generated by the elements q(o,j)yq(o,i) where j is the
representative vertex for that component of GC* which contains
o from j
to i, and 1 ranges through those elements of I other than

i, and y is that unique non-empty reduced path in X

representative vertices for Go( and o{-vertices for Go' and

of ranges through A-o.
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For convenience let us now introduce some notation.
Consider any element & of A-o0 and any vertex i, other

than a representative vertex for G or an o -vertex for Go.

A
Let j be the representative vertex for that component of G

which contains i, and let y be that unique non-empty reduced

ath in X from j to i. We write w
p n of J T (O(ll

-1
9(0,3)Y Yo,1) -

Let us write W for the set of all these elements.

i) for the element

Then the lemma says that W is a set of free generators
for the vertex group of F(X) at the origin.

To show that F is a set of free generators for the
vertex group of F(X) at the origin, we shall investigate how
each element of F is expressed as a product of elements (or
their inverses) of W.

To do this, we have,

Lemma 5

Consider any element & of /A-0 and any vertex i. Then

-1 .
. . t
U ,i)9(0,i) *8 expressed as a product of elements of ;ﬁe

form wf ) where &= :l and j ranges through those

’

elements of I other than representative vertices for GP or

P -vertices for Gy and P ranges through those elements of

A-0 such that MP) AN ) .
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Proof

We shall prove the lemma by induction on the A-level

of & .

Suppose first that o« has A-level 1.
If i is either a representative vertex for Go( or an
o-vertex for Go‘ then obviously q(‘x'i) = q(o,i) and so the
lemma follows trivially in this case.
Oon the other hand, if i is neither a representative vertex
for G, nor an o-vertex for Gy then we have'q(q;i) = qq o(,j)y
where j is the representative vertex for that component of G
which contains i, and y is that unique non-empty reduced path
in X ffom j to i. Also we have Ly = .y Since the
o J Uo,i) = Youd)
. -1 -1
redecessor of . And so . Cy = . .
predecessor of « 18 © U «,1)90,1) = Yo,3)¥90, 1)

w ye Thus the lemma holds in this case.

(i

Now choose any n > 1 and suppose the lemma holds for each
% of A-level{n. Suppose & has A-level n, and let‘; denote
the predecessor of o . Then of course P has A—level n-1.

If i is an -vertex for Go then q((x,i) = q(o,i)'

If i is a representative vertex for Gu'then we have

= and so -Loo q q-l

Ta,i) = 9p,4) U o,1)%0, 1) (g i)90, 1)
the lemma holds by our induction hypothesis.

Then

Finally suppose i is neither a representative vertex for
ch nor an o{-vertex for Go‘ Let j denote the representative
vertex for that component of G, which contains i, and let y
be that unique non-empty reduced path in X from j to i.
Then we have q, Ly = .\Y. Also, since is th

e © Ao ,i) T Vg, : p is the

predecessor of o, we have q(o‘ 3) Thus
. ’

=q(P.j)'
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-1 _ -1 -1, _
Yo, 1)90,8) = (p,5)%0,5)) 90,5)¥9(0,1)) =
(q(P ,j)q(o:%)) w(°<'i). Then, again by our induction
hypothesis, we see that the lemma holds in this case.

Thus the lemma holds for A(o) = n.

And so the lemma is proved, by induction on the A-level

of o.

Now consider any element of of A—o, with predecessorF say.
Choose any vertex i which is neither a representative vertex
for Gq nor an o-vertex for Go. Let j denote the representative
vertex for that component of Gy which contains i, and let y
be that unique non-empty reduced path in X o from j to i.

Then, clearly,

- -1 -1, 1
i) = ?(o‘ui)q(p,i) = (qq p.j)q(o,j)’<q<o.j)yq<o,i)’
o, 09y, 0)) = Mg, 1)

where by lemma 5 we have that u and v can be expressed as a

product of elements of the kind w where k ranges through

( h‘rk)
those vertices other than representative vertices for GU or
¥y-vertices for Go' and ¥ ranges through those elements of

A-o such that Ay )% A(p).
From this it is easy to show, by induction on the ) -level
. of o, that F is a set of free generators for the vertex group

of F(X) at the origin.

And so the theorem is proved,
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Corollary

Suppose the hypotheses of the theorem hold. Also suppose
we have a set of discrete graphs tYd :qg/\kwhose edge sets are
mutually disjoint, where for each element o of /A the vertex
set of Yq is the set of representative vertices for G .

Let Y denote the graph-union of the Y and let F(XUY) be the
free groupoid on XUY.

Then the vertex group of F(XUY) at the origin is freely
generated by the elements given in the theorem, together with
the elements q(cx,i)y q( ;}i) where y ranges through (YO()ii
and i ranges through the representative vertices for G and

A
o ranges through A .

In the appendix we give an example of a connected tree
product of groupoids. 1In this example we choose a representa-
tive system énd then follow through the general procedure
given in the introduction to this chapter, and so obtain a
presentation for the vertex group of this connected tree
product of groupoids. However, we shall see that we cannot
characterise this vertex group precisely using this presenta-
tion.,

Further the example indicates the kind of condition we
must impose upon the representative systems we use before we
can obtain useful presentations for the vertex group of G.

Yhe condition is that the representative systems be

'regular’,

And so, in the next section, we define what we mean by a

1
'regular representative system'.,
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2.2 On regular representative systems.

Let {on :o((/-\k be any representative system. Recall,
then, that for each element & of A—o with predecessor F say

then,

(1) for each representative vertex i for Go( q(o(,i) =

(1) and

(2) for each ¢f~vertex i for G, U ,i) = q(o,i)‘
If, in addition, the following condition holds,

(3) for each element & of A-O and each &-vertex i for

Go then q(u(,i) = q( i) for all those elements

[4

B of A such that )\(P )< A(&), then we call

{Qo( :0\(-/\} a reqular representative systemn.

In the next lemma we give two basic properties of regular
representative systems. So suppose {Qd =Ok(~f\} is any regular
representative system, and for each element of of A—o , let
Ig, denote the union of the set of represientative vertices
for Gy and the set of o-vertices for G,

Lemma 6

Consider any element o of A-0. Then for each o-vertex i
for Go we have tvhat i is a representative vertex for each GP
such that A(p )< A(a).

Further we have that distinct elements of I belong to

distinct components of Uq .
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Proof

(1) Let i be any {-vertex for Go' and letia be any element
of A such that /\(P )¢ AN(). Then, since {Qq :q(-A} is
regular, we have q(cx i) = q(P i)e Further, since i is not

a representative vertex for Gy + it follows that U , i) ends
+ ’
in an element of XS&.

path q(P i) it follows that i is a representative vertex for

And so, from the definition of the

Gd\.

This proves the first part of the lemma.

(2) Letl;be the predecessor of &{. Then we have that Uq is
a subgroupoid of Go(and %xis a subgroupoid of GP and egis a

groupoid I-isomorphism from U_ to Vi

(> §
Consider any distinct elements i and j of Iy » and suppose

these vertices belong to the same component of‘Uo< . Then, of

course, they also belong to the same compdénent of G and the

~x ’
same component of GP .

First, suppose that neither 1 nor j is a representative
vertex for Gy . Then both vertices are o-vertices for Go'
And so, from the first part of the lemma, we have that i and j
are representative vertices for GP . This is a contradiction

since i and j belong to the same component of GP .

Next, suppose that one of the vertices, i say, is a repre-
sentative vertex for Gq . Then, from the definition of q(cx i)
.1

we have q(cx,i) . Also, since j is an of-vertex for Go'

=q<P.i)

we have q(cx.j) = q( 3)° Further it is clear that q((x

3)
= q( j)q for some non-empty reduced path

’

U o, )P 3 (g4
P.q in Gq‘, GP respectively. From these equations we obtain

L. = . , tradict i ..
q(o‘lj) q( ﬂ:])qp a con adiction

This proves the second part of the lemma.
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Theorem 2

There exists a regular representative system.

Proof

To begin with, for each element of of A , choose any
maximal circuit-free subgraph Xd of Gd , and let X be the

graph-union of the XN . Then X is a connected I-graph.

We shall prove the theorem in four steps, as follows.

First, we construct a very particular maximal tree T
of X containing Xo'

Second, using the level-function 1 on T induced by the
origin (of I), we choose for each element  of A a particular
set of repreéentative.vertices for Gy *

Third, using for each element o of A , the maximal
circuit-free subgraph Xd. of Go( and the set of representative
vertices for Go‘chosen in step 2, we construct a
representative system {Qd :deA&.

Fourth, we show that {Qq :qe;ﬁ is regular, and to help

us we give three lemmas.
Step 1 Construction of the tree T.

To help us to construct T we shall first describe a
sequence of graphs Cr (r >‘l) say. So for each r3>1, let Cr

be the graph-union of all those X , where o has A-level r.

of

Now choose any circuit-free subgraphiTl of C1 such that

the graph-union XoUTl is a maximal circuit-free subgraph of
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XOUCl. It is easy to see that such a T, can be chosen.

1
Next choose any circuit-free subgraph T2 of 02 such that

the graph-union XOUTlUT2 is a maximal circuit-free subgraph

lUC2 .

We continue in this way and so obtain a sequence of

of X UC
o

graphs T_(r3 1) such that for each r) 1 T, is a circuit-

free subgraph of Cr and XOUT U..UTr is a maximal circuit-

1
free subgraph of XOUClU..UCr.

Let T denote the graph-union of Xo together with all

the Tr‘

Then we have,

Lemma 7

T is a maximal tree of X.

Proof

To prove the lemma we show that T is a connected
circuit-free I-graph. Then, from proposition 2, it

follows thét T is a maximal tree of X.

First, then, we show that T is a connected I-graph.
Consider any distinct vertices i and j.
Since X is a connected I-graph there exists a non-

empty path in X from i to j. Then, of course, this path

€ € €
is of the form X, lx2 2....xm M for some m» 1 where for

<nm Er =1 and X, is some element of X. Let n

each 1% ¢
denote the maximum of the A-levels of those elements of’f\,

ol , such that Xo(contains some X, (L2 xr<m).
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Then, clearly, the vertices i and j belong to the
same connected component of XOUClU..UCn.

Now, since XOUT U...UTn'is a maximal circuit-free

1

subgraph of XUc U..uc ., it follows that the vertices i

1

and j belong to the same connected component of XOUT UQ.UTn.

1

This means that there exists a path in XOUT U...UTn with

1
vertices i and j.

Thus we have a path in T from i to j.

Therefore T is a connected I-graph.

Now we show that T is circuit-free.

Consider any non-empty closed and reduced path in T,
€ € €
1 lx2 2 el X M for some m#? 1 where for each 14r4m

X
€ =1%1 ang x. is some element of T.
Again let n denote the maximum of the A-levels of

those elements of of A such that Xo( contains some

xr(12 r<m).

Then, for each 1% r%4m, it is easy to see that X

belongs to XOUT U...UTn.

1
Thus the given path is a non-empty closed and reduced

path in XOUTlU...UTn. But this is a contradiction since

X UT.U...UT_  is circuit-free.
o 1 n

This proves that T is circuit-free,

And so the lemma is proved.
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For each element i of I let us write ti for that
unique reduced path in T from the origin to i.
It is very easy to see that for each connected
component of Xo which does not contain the origin, there
exists an unique vertex of the component i such that ti

+
ends in an element of X;g for some element o of f\~0.

Step 2 Choosing a set of representative vertices for

each Gé( .

As already mentioned we shall use the level-function 1
to help us to choose a particular set of representative

vertices for each Go( .

So considexr any elemenf of of /\. For each component
of Go(choose any vertex of the component of minimal l-level,
and let tbis vertex be the representative vertex for the
component. In this way we choose a set of representative

vertices for G and note that the origin belongs to this

d [
set of vertices,

And so we choose a set of representative vertices for

each Gq .

Note, then, that the representative vertices for Go
are uniquely determined. 1Indeed the set of non-origin
representative vertices for Go is precisely the set of

non-origin elements i of I such that ti.ends in an element

&
of X;l for some element & of A-o.

Also it is easy to see that if i is any non-origin vertex

1

and ti ends in an element ofixd

for some élement X of A
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then i is not a representative vertex for Gy -

.
b

Step 3 Construction of the representative system le uxépﬁ

Here we shall use, for each element o of /\, the
maximal circuit-free subgraph X ©0f G and the set of
representative vertices for Gd chosen in step 2, to construct

the representative system {Q“ uxepd.

We shall construct {Q“ =d€ﬁ0'by induction on the ,K—level

of elements of/\.

So, first, we construct QO.

To be precise, for each non-origin representative vertex
i for G, we shall define a non-empty reduced path in X from
the origin to i, which we shall write 9o,i)" and then we
shall write Qo for the graph whose edges are all these paths
together with the edges of Xo‘ |

We shall define the paths, q(o,i) as i ranges through
the non-origin representative vertices for Gy by induction

on the l-level of the representative vertices for G, -

To begin with, then, consider any representative vertex i
for G, of 1-level 1. 1In this case ti is a path of length 1.
From the remarks given in step 2 we have that ti belongs to

g

X for some element o of /\-0. Then we define g ., to
(o4 (o,1)

be t..
i

Now choose any n>»1 and._suppose that we have defined the

paths, 9(0,1i) as i ranges through those representative vertices

for G of l-level( n.
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Consider any representative vertex i for G0 of
l1-level n.
Again from the remarks in step 2 we have that ti ends
in an element of Xi for some element of of A-o. Suppose «
has A -level m (for some m’l). Let j denote the representa-

tive vertex for that component of G_, which contains i, and let

(e 4

g be that unigue reduced path in X _ from j to i. Note that,

X
from the definition of the representative vertices for ch,
1(j)<n.

Now let<xl denote the predecessor of o, and let jl be
the representative vertex for that component of Goﬁ' which
contains j, and let q; be that unique reduced path in X<xl
from jl to j. Again we observe that l(jl)<n.

Continuing in this way we obtain a set of elements of /\

{O(r:l? r¥ m} and a set of vertices{jr:lé rX m} such that for
each 1< rgm oL is the predecessor of dr-l and jr is the
representative vertex for that component of chr which
contains j._;-.

It is easy to see that l(jr)<n for each 1%4r4 m.

For each 1<r<m let us write g, for that unique reduced

Jy-1°

In particular we have X = O and l(jn9<n.

path in Xo(r from jr to

Thus, from our induction hypothesis, the path q(O 59 has
‘Jm
already been defined. (If jm is the origin of I then we
define q(0 5.9 to be the empty path at the origin).
tJm
In this case we define the path A . .o
path qq, 3y to Pe q(g, 5 yan

q;9-.

It is not difficult to see that this path is reduced.
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And so, by induction , we have defined the reduced
paths q(o;i) as 1 ranges through the non-origin representative
vertices for Go'

Note that for each non-origin representative vertex i
for G0 then q(o,i) and ti end in elements (perhaps different)
of the same Xi& for some element (& of AVO'

Then we write Q0 for the graph whose edges are the edges
of X0 together with the edgeé q(o,i) as 1 ranges through the

non-origin representative vertices for Go‘

Now choose any n> 1 and suppose that for each element
of A of A-level< n, we have defined Qq -

Consider any element { of A of A-level n.

Let P denote the predecessor of o, Then of course P
has A-level n-1 and so by induction QP has already been
defined.

Then for each non-origin representative vertex i for G
we define q(c*’i) to be qQ i) that is that unique reduced
path in QF from the origin to 1i.

Then we write Qo( for the graph whose edges are the edges
of Xy together with the edges qoy , i) 28 i ranges through the

non-origin representative vertices for Gy -

And so by induction we have defined {Qd uié/\&. It is
immediate from its construction that {Qd :qé/\}.is a representa-

tive system.
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Recall that for each non-origin representative vertex i

. +

for G_ then q,_ ., and t. end in elements of the same x
o (o,1i) i (o ¢

for some element ¢ of A—o. From this it is clear that for

any element & of A—o then the o{-vertices for Go are

precisely those non-origin representative vertices i for Go

Y1

such that the end of ti belongs to Xo( .

i

Step 4 {QO( :o((-A} is regular

Let us recall here that the representative system
{QO( :o((A} is regular if for each element & of A-o and each
o{-vertex i for Go then q( o, i)

ofAsuch that /\(F, )< AlK).

for each element P

=q(|a,i>

As we have mentioned, to help us see that {Qot :o(QA}

is regular, we now give three lemmas.

Lemma 8

Consider any element X of A—o and any {-vertex i for Go'
If { has )-level m, then the origin and i belong to different

components of XOUC U“Ucm

1 -1°

Proof

To begin with, since i is an ¢{-vertex for Go' we have

from the remark given at the end of step 3 that ti ends in

1
an element of X

d )
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Suppose that the origin and i belong to the same
1 1° 1 -1 *%
a maximal circuit-free subgraph of X,Uc,u..UC 4 it follows

component of X UC,U..UC Then, since X UT,U..UT

that the origin and i belong to the same component of

XOUT U..UTm This means there exists a path p in

1 -1°

XOUT U..U'I‘m from i to the origin.

1 -1

Then it is clear that the reduction of the path tip
is a non-empty closed and reduced path in T.
Of course this is a contradiction.

This proves the lemma.
In exactly the same way we prove,

Lemma 9

Consider any elements<x,P of /\-o and any distinct
o{-vertex i, P-vertex j for Go' If m=mini Al ), )\({5 )ﬁ
then i and j belong to different components of XOUClU..
Ucm-l‘

Lemma 10

Choose any m>o and any component of XOUC U..UCm

1
and any vertex i of this component of minimal l-level.

-1

Then either 1 is the origin or i is an o{-vertex for G,

for some element of of /\ of A—level > m.

Proof

' Suppose. i is not the origin, and that t, ends in an
-

element of X;(l for some element o{ of A of A-level< m.
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Let j denote the initial vertex of the terminal
element of ti'
Then, since j has lesser l-level than i, it follows
that j does not belong to the given component of XoUClU"'

m-1

On the other hand, since the terminal element of ti
+ _

belongs to .X&l for some element o of A of A-level ¢ m,

it follows that j does belong to the given component of
X Uc,U..UC _

1 1’

This contradiction means that ti ends in an element of
+
X;(l for some element o ofA of )\—level)‘ m, and this means
that i is an o-vertex for Go'

Thus the lemma is proved.

Now from these three lemmas it is easy to see that
lQo( :d(—A}ls regular.
For consider any element o of A—o and any o{-vertex i

for Go’

Let m denote the A-level of « .

Consider that component of XOUC which contains 1i.

[U--ue
Then from lemmas 8, 9 and 10 it is clear that i is that unique
vertex of this component of minimal l-level.
Now choose any element P ofA of lesser A\-level than .
Consider that component of XF which contains i. Obviously

this component of XF' 1s contained in the given component of

XOUClU..UCm_l, and so it follows that i is that unique vertex

of this component of XF of minimal l-level.
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Then, from the definition of the set of representative
vertices for GP , it follows that i is a representative
vertex for GP . .

And so it is clear that q((x'i) = q( i) for each
‘element? of A of lesser A-level than & .

But this is precisely the condition required for

{Qq :e(GA} to be regular.

And so the theorem is proved.

2.3 The main theorem

In this section we prove our main theorem, that is we
characterise the vertex group of G at the origin as an HNN
group with base-part some tree product of groups (theorem 3).

Our method of proof will be to choose any regular
representative system, and then follow through the general
procedure given in the introduction to this chapter, to obtain
a presentation for the vertex gréup of G at the origin, and
from this presentation we shall see that this group has the

structure just described.
First though we make a simple observation.

Consider any regular representative system {Qd uxép&.
Choose any element of of Ano and letF, be the precedessor of .

Also choose any vertex i, and let j,k be the representative

vertex for that component of G°< ' GF respectively which contains
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we have that

i. Then for any elemgnf: u. of (Uo( )ii

. 1 . :
q(d'i)uq(O('i) is an element of the group q(o('j)(GD( )jj

-1

q(o('j). To see this we have q(q;i) = q(

o ’j)p for some

reduced path p in Gy - So we can express q og.i)uqzlo( i)
-1 -1 -1
28 9o, T, T, ), )N %, 9) T )

Do, 9) (pup_l)qzlo(’j) and of course we have that pup—'1

belongs to (G, )jj‘ Similarly we have that T, i) (u@q)

-1 . -1
q(P i) is an element of the group q 'k)(GF )kkq( P k)"

Further, in the case that i is a representative vertex for

Go( or an o(Qvertex for G0 we have q(o(,i) = q( P ,i) and so
(w6 )a;t .y = (u®_ g7t
q(F'i) o q(F.i) T oi) Mo T o, 1)

Theorem 3

Let {Q)< :o(eA} be any regular representative system.
For each element o of A-o 1let Iok be the set of representative

vertices for G and o-vertices for Gy and choose any set of

o
vertices K such that I K is empty and I UK is a set

g TAAE Pty X
of representative vertices for Uo( . Again for each element « of
‘A-o and each element i of Iq , let 0’( o e i) denote the group

. . . -1 -1
isomorphism given by DUy, 1), 5) I ( 'i)ueo( I, 1) 35 ©
ranges through (Ud )ii' Let i be the set of all these group

isomorphisms.

Then gjis a tree of groups q(o( i)(Ga() as i

q—l
1i7( o, 1)
ranges through the representative vertices for G and

o ranges through A .
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Further the vertex group of G at the 6rigin is the
HNN group with base-part the tree product of 2 and free-
part generated by the elements q(q,i)qzl ,i) where’; is
the predecessor of of and i ranges through Kq and & ranges
through A-O .
Finally for each element &{ of /\-o , with predecessor

F, say, and each element i’of K then the group isomorphism

P”

-1
q(P )_.)q(o( i) q(o( i) as u ranges through

of ¢

associated with the generator q(o‘ 1)q

(g, i)
UP

ll

is given by
d
(

Proof

We begin immediately with the following,

Lemma 11

2 is a tree of groups q(o(,i)(Go( )iiq.(-t(,i) as i

ranges through the representative vertices for G and

A
ranges through /\.

Proof

First we show that the set of group isomorphisms f can

be considered as a graph with vertices the groups .\ (G ca

grap group q(o(,l)( o()_ll

ng i) as i ranges through the representative vertices for
[

G and o ranges through A .
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So consider any element O of i . Then we have
&, i) for some element i of Io( and some element o
of A—o. LetF denote the predecessor of of . Then

T= O
(

¢} i .
and ( has domain q o(,l)(U )

Uk, i) =q<F,i) o, i) ! id

-1 -1
Tao1) 29T G g4 Ve 5i(er,5) = T, 0 Vet s
-1
Up.i)e

Suppose first that i is a representative vertex for G -
Let j denote the representative vertex for that component

of Gp which contains i. Then the range of 0'(0( i) is a
1

.\ (G LG, Y e
P,J)( r; )qu(p /J)
In this case we define the initial, terminal vertex of

-1
iiq(c(.i)’q(F-j)(Gp )33

subgroup of q(

G(q,i) to be the group q(d,i)(Go( )
q_l . respectively.
( p :J)
Now suppose that i is an o -vertex for Go'
Then of course i is a representative vertex for G? .
Let 1 denote the representative vertex for that component
of G, which contains i. Then the domain of ¢ .y 15 a
o (X ,1)
-1
subgroup of qQ o, 1) (Gd )llq(o( 1)"
In this case we define the initial, terminal vertex of

-1
Wa 1) B0 P RS FOUP (g, 1) (Bt I 1aT o, 1) T, 1) Cp us

qzlr”i) respectively.
And so it is easy to see that 2 is a graph with vertices
_ _1 .
the groups q(o( i) (Go( )iiq( o, i) as 1 ranges through the

representative vertices for Go( and  ranges through A .

- Now we show thaté is in fact a tree.
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To begin with let i‘ denote that subgraph of 2
consisting of the group isomorphisms (ﬁcx,i) as i ranges
through the representative vertices for Gd and ¢ ranges

through A‘O .

Then it is easy to see that fi is circuit-free., Also
it is easy to see that for each component of 21 there

exists a unique representative vertéx i for G, such that

1

o, i) is a vertex of this component.
’

the group q(o,i)(Go)iiqz

Now put 52 =$ - 21.

We shall construct a graph, which we denote by 3;,
with vertices the connected components of il’ To do this
consider any edge O of fé. Then we introduce the symbol G
and we define the initial vertex of O to be that component
ofiiv&ﬁch contains the initial vertex of 0 and we define
the terminal vertex of G to be that component of &, which
contains the terminal vertex of O, Then we write %é for
the graph consisting of the elements, O as 0" ranges through Ez.
It is clear that the vertices of gé are the components of El'

| Also it is straightforward to see that.z is a tree iff

—

fz is a tree.

Ta show that E; is a tree, we use the following result
due to Karrass & Solitar ( [5] page 151),

Considexr any graph and choose any vertex of the graph,
and call this vertex the 'start'. Suppose we associate to
each vertex of the graph, some non-negative integex, such thatA

the non-negative integer associated to the 'start' is 0. Also
3
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suppose that the non-negative integer associated to the
initial vertex of each edge of the graph is less than the
non-negative integer associated to the terminal vertex of
-that edge. Finally suppose that each non-'start' vertex
of the graph is the terminal vertex of a unique edge.

Then' the graph is a tree.

Lemma 12

22 is a tree.

Proof

To begin with let us call that component of él which

contains the vertex group of G, at the origin, the 'start'.

Now consider any component of 21. Let i denote that

unigue representative vertex for Go such that the group
. -1 . .

q(o,i)(Go)iiq(o,i) is a vertex of the given component. Let
us count the number of non-origin representative vertices j
for G_ such that .y is an initial segment of .y (that

o q(o,J) g q(O,l)(
is 9o,i) = q(o j)p for some reduced path p). This is the

’ [4

non-negative integer we shall associate to the given
component of 21.

Clearly the non-negative integer associated to the

'start' is 0.
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Next consider any edge O of -2-2.
We shall show that the non-negative integer associated
to the initial vertex of O is less than that associated to

the terminal vertex of O .

We have C= for some element o of MA-o and

o .
(o,1)
some of-vertex i for Go' Then of course we have that i is
a representative vertex for each G‘,) where i; has lesser
A-level than o . And so it follows that the terminal
vertex of O is that component of 21 which contains the vertex
-1 . . .
q(o,i)(Go,)iiq(o,i)‘ Let j be that unique representative
. -1

vertex for G ch that the grou (G ). .y belongs

X o °% grTouP d(4, 4 (Go) 5490, 5) d
to the initial vertex of 0. Then it is easy to see that

q(o,j) is some proper initial segment of q(o,i)'

From this it follows that the non-negative integer
associated to the initial vertex of O is less than that

associated to the terminal vertex of O .

It remains to show, then, that each non-'start' component
of 21 is the terminal vertex of a unique element of § ,.

So consider any non-'start' component of él'

Let i be that unique representative vertex for G, such

that the group q(o i) (G is a vertex of the given

0)1i%(o, i)
component.

Obviously i is not the origin, and so we have that i
is an ol-vertex for Go for some element o of A—o.

Thus 0'( belongs to 22, and the given component

o, 1)

of il is the terminal vertex of 5'( o, 1)
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Suppose the given component of 51 is the terminal
vertex of some other edge 5‘( P .35) of 3-2, for some element
P of A—O and some P—vertex j for Gy- Then we must have
i = j, and so it follows that d:f, .

Thus we have shown that each non-'start' component
of il is the terminal vertex of a unique edge of 32.

And so we have shown that _2-2 satisfies the conditions
given just before lemma 12.

Therefore 22 is a tree, and so lemma 12 is proved.

And so, also, lemma 11 is proved.

Now we show that the vertex group of G at the origin is
the HNN group described in the statement of the theorem.

As we stated in the beginning of this section, we prove
this result using the regular representative system {Qd:qGP$
and following through the procedure given in the introduction
to this chapter. This will give us a presentation for the
vertex group of G at the origin, and from this presentation
we shall see that the vertex group of G at the origin has

the structure described.

First though for each element K of /-\let Xo( be the
maximal circuit-free subgraph of Gy associated with {Qd:de/\}
‘and let Lo‘ be the set of representative vertices for Gq
associated with {Qo‘:q(-/\}. Then for each o(GA-o we have that

Ix is the union of Ly and the set of ofvertices for G..
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So, now, let us follow through the given procedure.
Step‘l An I-presentation for each Go( .

Consider any element o of A

We shall use proposition 7 to give us an I-presentation
for Gq . Recall, then, that we must choose some maximal
circuit-free subgraph of Go( , and some set of representative
vertices for Gq . The maximal circuit—free subgraph of G«

we choose is X and the set of representative vertices for

ql
Go( we choose is Lo( .

Now for each element i of Lo( let <(G°() L (Ro( )ii>
be the standard presentation for the group (Go()ii'

Then we obtain an I-presentation for Go( R

X U(U (G)::), U (R)..D.
< o iGqu(J.J_ iGLq ol’11

Step 2 An I-presentation for G.

For each element of A-o, choose any maximal circuit-free
subgraph Zo( of UO( .

We now use lemma 1 to give us an I-presentation for G.
To do this we must choose for each elemento(of A, some
I-presentation for Gy v and for each element o of A—o , some
set of representative vertices for Uy and some maximal
circuit-free subgraph of U,. Here for each element o of A

o

the I-presentation for G_, we choose is that given in step 1,

X
and for each element o of A—o the set of representative vertices

for Uo( we choose is Io(UKO( and the maximal circuit-free

sg‘bgrap}} of Uc( we choose is Zd .
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Then we obtain an I-presentation fof G with generator
graph the union of the generator graphs given in step 1,
.‘ and with relator graph the union of the relator graphs

given in step 1 together with the graphs {u(ueo()_l:u((U

i quUKo( ,o(GA—o} and {z(z@o()_l:zezd :dEA‘O}-

RETY

Now, to save us from repeating long expressions for
graphs of generators and relators, let us introduce some

short-hand notation.

So let us denote the relator graph {z(z@t‘)_l:

2€2 .O(C-A-o}by {z(ze‘x)-l:/\-o}and the relator graph
) -1 . : -1 .
Ju(u8) ™ u€(U, ), i€T UK (e -0} by {u(ud )T Uk, ,A-of.
Similarly let us denote the graphs U X _ , U (.U (G

weA A e
‘N

and U (U (R,)..) by Ix:AlLlg:n ,Al , ana {r:L
oA der, 4 e Al {oe2 A b
respectively.

o) igle

Sometimes we shall use obvious generalisations of this

notation. For example by {u(ueo()_l: Id,A'o}we mean

{'l.:l('l.:le(x ) _l: uG(Uo‘ )ii' iélo(: deA"O}o

With this notation the I-presentation we have for G
becomes,
4 {X:A} U{ 1L, .A} '
{r:Ld ,A}U{z(zeq)-l: /\—o}U{u(ueq,)_l:IdUKd,A'o} >
Now choose any maximal tree of F( {x:A} U { g:Ld,A} )
(the free groupoid onix:/\}U 1 9’La'Alj ), and for each relator
s in the given I-presentation for G let s’ denote the

conjugation of s in the origin using this tree (see the

introduction to section 5 of chapter 1).
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Then by the first part of lemma 2 we have another
I-presentation for G,
< {x:A}U {g:Ld ,A‘] ' p ;
/ 1 -1 An -1,.
(rrr Alv {(2(28) 2 Arofu {(u(uo, ) ).IO(UKO(,A..O} >

Note then that each relator in this I-presentation has

vertices the origin.

Step 3 A set of free generators for the vertex group of

F({x:Aju {g:Ld A} at the origin.

Now, using the regular representative system [on :O(EA}
in theorem 1 and its corollary (with Y = {g:Ld ,A} ).
we see that the vertex group of F( {x:A}U {g:Lo( ,A} )

at the origin is freely generated by the elements

-1 . -1
q( q,i)gq(o(,i) (gé(Gq )ii:leLd :O(EA ) and q( o(,i)q( P i)

where P is the predecessor of o, i¢I-I , ¢ A-0).

Let us write iq(u'i)gq-("lo('i):Ld ,A} for the set of
-1 , .
elements {q(d'i)gq(d 'i).ge (G )yiri€ Ty ,o((-A] » and

-1
iq(o( 1)9¢ P'i). I-Io( ,A-o} for the set of elements

_l .
iq(q ,i)q( P'i): p the predecessor of o, i€ I-I ,d@l\-o},

Step 4 A presentation for the vertex group of G at the origin.

/
For each relator s'in the I-presentation for G given at

] /
the end of step 2 let us write s for s rewritten in terms

of the free generators given in step 3.
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Then using the second part of lemma 2 we obtain a

presentation for the vertex group of G at the origin,

< {8, 1)59 1) T A} Ul mi)q?lp i) T Ty Acols
{r”:Lo(,A‘SU {(z(zeq) _l)”: A—o}
R ¥/ e
U i(u(ueo()_l)’:IdUKo(,A-o}. >'_

Our aim now is to deduce from this presentation that the
vertex group of G at the origin is the HNN group described
in the statement of the theorem.

In order to simplify the computational work which follows
we make the following three conditions.

For each element & of A—o we suppose that Xc( contains Zo( .
Also we suppose that both the initial vertex of each edge of

Zo( and the terminal vertex of each edge of Xo‘—‘zo‘ belongs to

IO(UKQ( (the set of representative vertices for Uo( ). and
finally we suppose that the initial vertex of each edge of

X belongs to Lo( (the set of representative vertices for

_Za(
G-
Since Xc( and z ,are subgraphs of the groupoid Go( it is

not difficult to see that Xo( and Zo( can be chosen to satisfy

. these conditions.

To make clear the meaning of these conditions let us

give an example. So consider any element X of A—o, and let

/ ’
G« be any component of GO( , and let Uo( be that subgroupoid

. / ’
of Uo( belonging to Go( . Als,o let Xo(be that component of Xo(

/
belonging to Go( . and let Zo(be that subgraph of Zo(belonging
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% % .
& Suppose Gdllas vertex set {1—10} with representative

’
vertex 1, and suppose the components of Uo( have vertex sets

to G

{1—4} , [5} , {6—8} , and {9,10} wit_:h representative vertiqes
1,5,6 and 9 respectively. Then, in accordance with the
above conditions, Xo( and Z 4 are typically of the form

shown in the following figure,

Now from the above three conditions we have the
following simple properties.

Consider any element ¢ of f\-o . Then for any vertex i
which is not a representative vertex for dee see that
q( o, i) ends in an element of Xo( . Also consider any element
z qf Z a4 with initial, terminal vertex j and 1 say respectively.

Then'q( o, i) ends in z and i belongs to I-(I

o‘UKQ() and j

belongs to IO(UKO,‘.
We shall see that these properties simplify the

computational work which follows.

And so we now describe the forms taken by the relators

occurring in the presentation given in step 4.
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. 174
(a) It is easy to see that any relator in {r =Lc( ,A} ‘

when reduced, is of the form (q( & i)fq'(_lo( i))(q(o( i)
-1 -1

. .\ h L.

I, i) I, 1), 1)

and some representative vertex i for Go( ,, and some elements

)_l for some element o of A,
f,9 and h of (GO()ii where fg = h in (GO()ii'

Now consider any element & of A—o , with predecessor i}
say, and any vertex i, and any element u of (Uo()ii‘

We discuss the two cases i€ 1I and iéKo‘ separately.

=
(b) Suppose i belongs to Io( .

Note that q(o( i) in this case.
’

- Yp.i)

(b.1) First let us assume that 1 is a representative
vertex for Gy -

Let j denote the representative vertex for that component
of GF which contains i, and let p denote that unique reduced
path in XF from j to i.

-1
Th f course L= . and pu® = g for
en of ¢ s q(P i) q(xi'J)p P o(P g

some element g of (G )j..

In this case the relator u(u@o( )_1 is written u(p—lgp)_l,

1.7
and it follows that the relator (u(u@d) l) . when reduced,

is written (q ;)99 1)) (9 F.j)gq?lp.j)’_l°

p
And so we have that the set of relators (u(u@o( )"l) ,

as u ranges through (Uo( )ii' when reduced, is expressed as
-1 0 41 -1
(q(e‘ ’i)uq( o('i))(q( F' ’i)u - q( F‘ ,i)) , as u ranges through
t q, . . -1
Furthgr we note that (e ,1) takes q(o( ,i)uq(o( to

1 . 1)
q(q“i)ueqq(q i) for each u in (Uo( iz
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(b.2) Second let us assume that i is an -vertex for GO.. |

Then i is a representative vertex for G?’ .

This time let j denote the representative vertex for
that component of G, which contains i, and let p denote that
unique reduced path in X from j to 1i.

Then q( i) = 9( «,§)P and pup_l = g for some element
g of (Gc&)jj'

In this case the relator u(u 60()_1 is written

1 -1 . -1/
gp)(u@o< )" —, and it follows that the relator (u(uec{ )

).
when reduced, is written ( . -1 ) ( L ud gt . )—l
: ’ U x,3)99 «,3) q(F.l) qq(P,l) .

(p~

- [/

Here again we see that the set of relators, (u(u®y) l)/

as u ranges through (UO‘ )ii' when reduced, is expressed as
.. -1 -1 -1
(q(o( ,i)uq( «x,i))(q( ‘g, ,i)ued qq F,,i)) , a@s u ranges through
-1
V) . . . t
And we note that ( of,i) takes q(q'l)uq( o, i) o
-1 .

q(o"i)ueo‘ U, i) for each u in (Ud )ii'

(¢} Suppose i belongs to Kd .

1

-1 . : -
Then q( o(.i)q( F"i) is an element of iq(q,i)q(
Kd ,A‘o} .

Now, let j,k be the representative vertex for that com-

p,,i)’

ponent of G G respectively which contains i, and let p
D

a ’
be that reduced path in Xo( from j to i, and let g be that
reduced path in XF’ from k to 1i.
-1
Then q(o‘ i) = q(d'j)p and pup = g for some element



and qu® q—l = h for some

Moo dip . T %m0 &
element h of (GF' )kk'

In this case we have that the relator (u(ueq)—l is
written (p_lgp)(q_lhq)-l, and it follows that the relator

7

-1 . s
(u(ueq) ), when reduced, is written (q( 3099 o(,j))

-1 -1 -
(@, 1) P.i)"q( p .k)hq<P X))

1 -1

( L)
q(a.i)q(p,i) .

-1.”

Then we see that the set of relators, (u(u ; ) 7) as u

ranges through (U“
-1 -1 -1
9 a1 (a0 S n)T0p 090 ,i)“eo«q(F 1))

-1 -1
(9 o, 1)9¢ B ,i))

)ii' when reduced, is expressed as

-1

as u ranges through (Ud)ii’

- “”
Finally we consider any relator in {(z(zeq )71y :A—-o} .

(d) Suppose

Then we have

Let j be the
I . UK X

Let k be the
GP which contains
in XP from k to j

Th ]
en q(,; '3)

O()'

ends in some element z of Z .

(at,1) c(

initial vertex of z. Then j belongs to

that i belongs to I-(IO(UK

that g

representative vertex for that component of
i (and j), and let p,q be that reduced path

and from k to i respectively.

=P a5 T Up 0 and

pzeo( q-lzz g for some element ¢ of (GP )kk'

And so the relator z(zeo( )7L is written as z(p-lgq)_l.

We discuss the two cases j &I

o and J\-KO( separately.
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So first assume that j belongs to Iq .

and it follows that the relator

1

Then q( o, 4) = Uy .9
)
Fll)

1 _ . ) -
(z(z@d) ~) , when reduced, is written (q(d'i)q(

-1 -1
(a g K9 P,kﬁ" :
Note that q(o&,i)q-(-lP i) belongs to {q( d'i)q.(‘lF i)°

I—(IdUKe(),A-o} .

Second let us assume that j belongs to Ko{ .
”

Then it follows that the relator (z(zeo( )-l), when reduced,

, , -1 -1 -1 -1 -1
is written (q d'j)q(]’;'j)) (D, 1)9¢ F'i))(q(P k)99 B x)!

-1
And note here that q( o(.i)q( |3 ,i) belongs to

-1 -1
CIPULY p i) T (I UK ) Ame] o vhereas a5y p3) PoHones

-1
€0 {1 4,1)9( p ,1) 'A‘°} .

Now from these remarks we observe the following.

(1) Consider any element of of A-o , with predecessor P say,
-1

and any element i of I-(IdUKOi)’ We have that q( ‘x'i)q( 1)

. : . -1
is an element of zq(q'i)q( P 'i).I-(I«UKd),A-o} , and q(q,'i)
ends in some element z of Zy - ‘

Then from (a), (b), (c) and (d), we see that among the

relators in the presentation given in step 4 the only occurrence

of the generator q(o(.i)qzlp i) (oxr its inverse) is in the relator

(z(28, 17"

And so we can omit the set of generators

-1
iq( « ,i)q( 3 ,i)"II'(Id UKO( ) 'A°0} and the set of relators
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. -1 7 -
{(z(z@o() ) :A—o} from the presentation given in step 4.
That is we have a presentation for the vertex group

of G at the origin,
-1 -1
< {q<o<.i)q(p,i)‘KwA'°}U 19(g 1990, 1) Lk Al

{r”:Lo(,AS U {(u(ueo()_l)”: I“UKd,A-o} >

(2) From (a), (b) and the construction of the treei given
in lemma 11, it follows that the tree product ofé has a pre-

sentation,

< iqm.i)gq?ol«i)‘%( Al
ir”:L‘x,AS U i(u(ueo() —l)” :Id,/\-o} .

(3) Consider any element & of A-o, with predecessor ‘; say,

and any element i of Ky - We have q d'i)qz:;% i) belongs
Y -1
to {aq1)9( 7, 1)K A9
Then from (a), (b), (c¢) and (d) we see that among the

relators in the presentation given in (1) the only occurrences
-1

( P (1)
as u ranges through (Uo()ii‘

of the generator q( i)q (or its inverse) are in the

-1 .4
relators (u(u@q) l)/
And so from (c¢), (1) and (2) we see that the vertex

group of G at the origin is precisely the group described

in the theoren.

Thus the theorem is proved in the case that each Xo(and be

({€ \-0) satisfies the conditions following step 4.
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In the general case the computations become more
intricate, but it is fairly straightforward to see that

the theorem is still true.

This completes the proof of the theorem.
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Chapter 3

THE VERTEX GROUPS OF TWO IMPORTANT KINDS OF

CONNECTED TREE PRODUCTS OF GROUPQIDS

In this chapter we suppose that G satisfies one of
two conditions, the first being that G0 is connected, and
the second being that for each element o of A-o Uo( is

discrete.

In the first case we shall see that we can characterise
the vertex group of G at the origin as an HNN group whose
base-part is some tree product of groups, using simply a
representative system (theorem 4). This theorem is a

straight forward special case of theorem 3.

In the second case we shall obtain a similar charac-
terisation of the vertex group of G at the origin, without
needing even a representative system (theorem 5). The
basic point of interest in the proof of theorem 5 is that
for each element o of /\ we choose a particular
I-presentation for Gq unlike the usual kind of I-presentation

described in proposition 7.
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Theorem 4

Suppose that G0 is connected, and choose any represen-
tative system {Qot 1ol é A} . For each o(eA-o choose any set
of representative vertices for Uq containing the set of
representative vertices for GO( . Again'for each %x¢A-o

and each representative vertex i for G let O denote

o (o ,1)
the group isomorphism given by 9 i)uq?]r;(‘ 19 i)ueo(-
-1

Ut 1)
all these group isomorphisms.

as u ranges through (U ), ;. Let g be the set of

. -1 .
Thené is a tree of groups q(q,i)(GO( )iiq( ~,i) 3 1

ranges through the representative vertices for G, and

~
ranges through A .

Further the vertex group of G at the origin is the HNN

group with base-part the tree product ofi and free-part

generated by the elements q( o( i)q( where P is the

1)
predecessor of « and i ranges through the representative

vertices for U_ other than representative vertices for G,

>t
and ¢ ranges through A-o .

Finally for each olé A~o, with predecessorP say, and

each representative vertex i for U, other than a representative

o

vertex for GO( , then the group isomorphism associated with
-1 . . -1 -1
U ,1)9(p ,1) 1S Fiven bY q(F i) "% q(? AT (o, 1) (o, 1)

as u ranges through (UO( )ii‘
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Now for the remainder of this chapter suppose we
have chosen, for each element X of'ﬁ\, some maximal circuit-

free subgraph Xd of Gd . Let X be the graph-union of the X,

(¢
and suppose we have also chosen some maximal tree T of X.
For each vertex i let us write ti for that unique reduced

path in T from the origin to i.

Before we give the next theorem we give a definition,
and make some simple observations.

For each element o of A we define the S-part of I to

consist of those vertices i such that ti does not end
I
q -

Now consider any element of/\, and any vertex i which

in an element of X

does not belong to the of-part of I. Of course this means that

+
ti ends in an element of X;& . Let (i=%)j denote that vertex

such that tj is that largest initial segment of ti which does
+

not end in an element of X&l .

to the o(-part of I. Also we have that t;lti is a path in &X.

) . . -1 .

Now consider any element g of (Gd)ii' ertlng tigti as

1, -1 -1
£ (e e gt e e
3 (E57E 95 7E5)E,

-1
€y (G545

Then it follows that j belongs

we see that tigt;l belongs to the group
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Theorem 5

Suppose for each o€Aro UO( is discrete. For each %€A-o
and each vertex i let Oko(,i) denote the group isomorphism
given by tiutlk__,tiueg(t;l as u ranges through (Ug ).;-
Leté be the set of all these group isomorphisms.

Then 2}is a tree of groups ti(Gq )iit;l as i ranges
through the o{-part of I and o ranges through ﬁ\.

Further the vertex group of G at the origin is the HNN
group with base-part the tree product of g and free-part |
generated by the elements tjxt;l where j,i is the initial,
terminal vertex of x respectively and x ranges through X-T.

Finally consider any edge x of X-T and suppose x belongs
 to Xq and has initial, terminal vertex j,i respectively. Then
the group isomorphism associated with tjxt;l

J

is given by

) ise

-1 -
tigti._atj(xgx as g ranges through (Gq ii

Proof

First we make two observations.
(1) For each element  of A the o-part of I contains the origin
and forms a set of representative vertices for &J\T, considered
as an I-graph.
(2) Consider any non-origin vertex i. Then there exists a

unique element o of/A such that ‘i does not belong to the -part
+
of I. That is the end of t, belongs to X;% .

Now we show that glis a tree of groups.



69.

Lemma 13

. -1
€J.S a tree of groups ti(Go( )iiti

through the oo-part of I and o(ranc_;;es through IA\ .

where i ranges

Proof
To prove the lemma we shall show that, for each vertex i,

the set of group isomorphisms, C"(d i) as o ranges through
[

A-o , constitute a tree 2.1 say.
Then we shall see that the union of the trees Si'(ié 1)
is also a tree, and contains the same set of group isomorphisms

as 2 . Then it will follow thatg is a tree.

So let us construct the trees gi‘
First suppose i is the origin. We associate two

vertices to each group isomorphism, as o ranges

T(o,i)
through A-o , as follows.

So consider any element o of A-o0 , with predecessor r,

say. Then ’the group isomorphism 0'(0( 1) has domain (UO‘ )ii'
a subgroup of (Gog )ii' and range (Vo( )ii’ a subgroup of (GF )ii'
In this case we define the vertices of 0'( o, 1) to be the
groups (Gq )ii and (GF )ii (it does not matter which of these

groups we define to be the initial vertex of o and

(O( 'i)

which the terminal vertex of O Observe that since i

( ,3)) "
is the origin we have i belongs to both the o{-part and the

P—part of I.

In this way we define the vertices of each group

isomorphism 0'( as o ranges through A‘O .

& i) |
Then it is clear that the set of group isomorphisms, 0‘( X, 1)
as ¢ ranges through A-o , constitutes a tree of groups (Go( )

i,

ii
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as o ranges through A . And this is the tree we denote by fi.

. Now suppose that i is a non-origin vertex.
Then, from the remarks preceding the theorem, we have
that there exists a unique element h ofA such that i does

not belong to the B—part of I. This means that ti ends in
-+
an element of X%l . Then let (i# )j denote that vertex

such that tj is that largest initial segment of ti which
-+

does not end in an element of X%l . Recall then that j

1

belongs to the j-part of I and tJT t, is a path in XK .

We associate two vertices to each group isomorphism,

0'(0( i) a8 % ranges through A-o , as follows.

So consider any element of of A-0 with predecessor F say.

Note then that the group isomorphism O'( o, i) has domain
-1 -1

o )iit and range t, (VO()J.J. i -

We deal with the three cases: O(#U#P » 4 =¥ . and

50

=P separately.
First then suppose % #K#P . In this case we have that

1 belongs to both the o-part and the P-part of I. Then we

-1

-deflne the vertices of @ i) to be the groups t. (Go( )ll i

(of /1
-1
Next suppose o =7 . In this case we have that i belongs

to the P—part of I. Observe also that the domain of O

(ef,1)
-1 . .
can be expressed as tj(tj ti(UrA )11t1 t )t whlch is a sub-
group of t.(Gq )jjt]Tl' Thenlwe define the vertices of 0'( X, 1)
-1
to be the groups t. (Go‘ )JJ 3 and ti(GP )iiti .

Finally suppose 5 =f, . In this case we have that i belongs

to the o-part of I. Observe, this time, that the range of
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-1 -1 -1
c L] » . » @ . » O
(o, i) can be expressed at tj(tJ tl(vo( ):thl tj)tJ
which is a subgroup of tj(GP )jjtgl . Then we define

. -1
the vertices of 0'(0‘ i) to be the groups ti(Go( )iiti
1

and t. (G S
5 P)JJ J
In this way we define the vertices of each group

isomorphism O, as o ranges through A"O .

(o ,1)

Then it is easy to see that the set of group isomorphisms,

qu i) as o ranges through PVO , constitute a tree of groups
-1 .

ti(Gq )iiti as o ranges through A—U together with the group

tj(G\G )jjtgl . And. this is the tree we denote by 2i'

Now it is not difficult to see that é is the union of

1

the Ei(iél), and that { is a tree of groups ti(Go() t

iivi

as i ranges through the o{-part of I and & ranges through A .
Thus the lemma is proved.

Now to characterise the vertex group of G at the origin.

The steps of the proof are as follows.

To begin with we choose a particular I-presentation for
each GCX (and we shall see that these I-presentations are
unlike those usually considered).

Then, using these I-presentations in lemma 1, we obtain
an I-presentation for G, <£Y,S) say.

Next we choose any maximal tree of F(Y) (the free groupoid
on Y), and using this tree we form the conjugation in the origin
of each relator in S, and so obtain another I-presentation for

'4
G, <Y,$D> say, by the first part of lemma 2. Recall then that

, .
each relator in S has vertices the origin.



72.

Then we use the result of Higgins given in theorem 1
to obtain a set of free generators W for the vertex group
of F(Y) at the origin.

And so, rewriting each relator in S, in terms of the
set of free generators W, we obtain a presentation for the
vertex group of G at the origin (W,S”> say, by the second
part of lemma 2.

| Finally we describe the forms taken by the relators in
”

S , and so deduce that the vertex group of G at the origin

is as described in the statement of the theorem.

Step 1 An I-presentation for each GC‘.
Choose any element of A.
We use the following lemma to give us a particular .
I-presentation for G- The proof of the lemma is quite

straight forward and so is omitted.
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Lemma 14

Choose any subgraph Yo( of X

of representative vertices Io( for Y

. together with any set

=
~ considered as an
I-graph. For each element i of I let <(G'>()ii' (R )ii>
be the standard presentation for (Gq )ii’

Consider any edge x of Xo( —Yq with initial and terminal

vertex j,i respectively. Let k,l denote the representative
vertex for that component of Y0< which contains j,i

respectively. Also let us write R_ for the graph of points
X

h(xgx—l)"'l as g ranges through (Go< )ii and xgx-l = h in

(G(x )jj' where the elements g are written in terms of Yc( U(Go( )ll
and the elements h are written in terms of X*U(GO( )kk'

Then Go\ has an I-presentation with generator graph Xq

together with the graphs (G, ).. (1€ I,), and relator graph
e G

ii

the union of the graphs (Re( )ii (i¢ I°<) together with the

graphs RX,(xE Xb( -Yo( ).

Recall now that the o-part of I is a set of representative
vertices for X(X(\T considered as an I-graph. And so, using

lemma 14 with YO( = X°<f'\T and Io( the o(-part of I, we obtain

an I-presentation for Go( with generator graph XD( together
with the graphs (Go( )ii (as 1 ranges through the o{-part of I),
and relator graph the union vf the graphs (RO( )ii (as 1 ranges

through the ~-part of I) together with the graphs R_ (as x

ranges through Xo( —-(qu\ T) =X _,-1T).

e
In this way we choose an I-presentation for each GO( .
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Step 2 An I-presentation for G

Here we use lemma 1, together with the I-presentation
for each Gd given in step 1, to obtain an I-presentation for
G.

To do this, we need, for each ¢ A“O, some set of
representative vertices for Ud and some maximal circuit-free
subgraph of‘Ud . Of course, since each Uq (oA€A-0) is
discrete, it follows that the only set of representative
vertices for Uokis I itself and the only maximal circuit-free
subgraph of Uy is the empty I-graph.

And so we obtain an I-presentation for G with generator
graph the union of the generator graphs of the I-presentations
for the Gn(given in step 1, and with relator graph the union
of the relator graphs of the I-presentationsfor the G given

in step 1 together with the points u(uéi()-l as u ranges

through (Uq )ii and i ranges through I and o ranges through

A-o .

Of course, in this I-presentation for G, each relator

of the form u(uéi*)_l

can be written in many ways in terms
of the given generators of G. We adopt the following rule
for writing such relators.

So consider any element o of A-O, with predecessor ‘; say,

and any vertex i, and any element u of (UCK)ii' Let j,k

NT
1

be the representative vertex for that component of &X(\T,X

which contains i respectively. Then in the relator u(uE%A)—
we write u in terms of (X_NT)U(G .. and we write u6, in
(0(“)(0\)3:1 o

terms of (XPf\T)U(GP )kk'
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Now let us introduce a short-hand notation similar to
that given in theorem 3, to describe the generator and
relator graphs we consider.
So let us denote the generator graph U(U (G

o€ A ler,

by {g:Iq ”A} , and the relator graph U (U _ (Rq)ii) by
oG€A 1€l
{r:I ,A} . Also we denote the relator graph U R. by
A : x€x-T ¥

{r:X—T} , and the relator graph {u(u€%<)_l:uE(U°‘)ii,ié I.dGAVO}

%) i1

by {u(u@d )_l:I,A-o} .

Then in this notation the I-presentation for G we obtain

in step 2 becomes,

< xv {9=Id A}
{r:Iq Al U{r:X-T}U{u(ued )'l:I,A-o} >.

Step 3 A second I-presentation for G

Choose any maximal tree of F(XU{g:;d,Ak) (the fFee groupoid
on XUig:Lq,A} ), and using this tree let us form the
conjugation in the origin of each relator in the I-presentation
for G given in step 2.

Then by the first part of lemma 2 we obtain a second

I-presentation for G,

< XUzg:Id ,A} ‘ ,
{r':Id ,P\} U ir’;::X—T} U{(u(ueo( ) D1, A0)

Note that each relator in this I-presentation has vertices

the origin.
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Step 4 A set of free generators for the vertex group of

F (XU {g:Id A} ) at the origin

Using the maximal tree T of XU{g:Iq ,A} . and Higgins'
result given in theorem 1 we obtain that the vertex group of

F(XU{g:Iq ,A} ) at the origin is freely generated by the

1

elements tigt; (as g ranges through (GN ) and i ranges

ii
through Id and o ranges through/\ )  together with the elements
t.xtTt
3

i (where j,i is the initial, terminal vertex of x

respectively and x ranges through X-T),

Let us denote the set of elements tigt;l (as g ranges

throug G .. and 1 ranges through I  and « ranges throug
h h ( o )ll d i h h d h h

1

of

A ) by {tigtllggx ,A} , and the set of elements tjxt; (where
j,i is the initial, terminal vertex of x respectively and

x ranges through X-T) by itjxtzlzx-T} .

Step 5 A presentation for the vertex group of G at the origin

Now let us rewrite each relator in the I-presentation for
G given in step 3 in terms of the set of free generators given
in step 4.

Then by the second part of lemma 2 we have the following

presentation for the vertex group of G at the origin,

< itigt;-l::[q,A‘s U itjxa.;i‘lgx-T} ,' | \
{x":1, Aju {2 sx-m) ol (aud, ) hen A} .
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Step 6 Investigation of the forms taken by the relators in

the presentation given in step 5.

Here, finally, we describe the forms taken by the relators
in the presentation given in step 5. From this description
we shall see that the vertex group of G at the origin has the

structure given in the statement of the theorem.

(a) Consider any relator in {r”:Iq ,A& .
Clearly this relator, when reduced, 1s of the form

—l)—l

-1 -1
(tifti )(tigti )(tihti
some £, g and h belonging to (GC()ii where £fg = h in (Gd )

for some o(eA and some 1€ Io( and

ii®

(b) Now consider any relator inl(u(uea )_l)H:I,PvOS.

So choose any element { of A-o , with predecessor’g say,
and any vertex i, and any element u of (Uq )ii‘

L.et j be the representative vertex for that component of
X&f\T which contains i, and let p be that reduced path in
qu\T from j to 1i.

Also let k be the representative vertex for that component
of,XPf\T which contains i, and let g be that reduced path in
XPF\T from k to i;

Then pup—l = g for some element g of (Gc()jj' and qué%(q_l=
h for some element h of (GP )kk‘

In this case we have.that the relator u(uea )_l is
written (p_lgp)(q_lhq)_l, and it follows that the relator

‘ -1.” . . -1 -1,-1
(u(uG& ) ") , when reduced,_ls written (tjgtj ) (g, ht, )T
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. _1 7
And so we see that the set of relators, (u(uek ) l)
as u ranges through (Ud )ii' when reduced, is expressed as

(tiut;l)(tiuézit;l)—l' as u ranges through (U, ),;-

1 1

Further we note that ¢ ) takes tiut;

Cofod to tiuec,(t__.L

for each u in (Ud )ii‘

From (a), (b) and the construction of the tree<€ given
in lemma 14, we obtain that the tree product ofé has a

presentation,

< {tyotiteny WAL {I”:Iq A} U { e, )™ i1,A0) >,

(c) Next consider any relator in {r”: X—T} .
So choose any element of of A . and any element x of

X , -T with initial, terminal vertex j,1 say respectively,

o
and any element g of (GO()ii' and suppose xgx_l = h in (Gd )
_l) —l)ll

jj°
We discuss the relator (h(xgx

Let k,l1 denote the representative vertex for that

component of X MNT which contains j, i respectively, and let

[
P.q be that reduced path in Xd(\T from k to j and from 1 to i

respectively.
-1
Then php = hl for some element hl of (GC()kk' and
ng_l =g, for some element 97 of (GO()ll'
1

In this case the relator (h(xgx )—l) is written

_l)_l, and it follows that the relator

1

(p_lhlP)(X(q_lglq)x
_l) -1 )//

- _l ]
1977 (t,xt

. . -1 -
, when reduced, is written (tkhltk )(tjxti

-1,-1
)

2

1,-1)" g

Thus we see that the set of relators, (h(xgx
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g ranges through (Gq )ii' when -reduced, is expressed as
1 1)—1 -1

(t.xt;l) as g ranges

t. -
( J(xgx j

)t;l)(tjxt;l)(tigt;
through (Gc()ii‘

From these remarks it is straightforward to see that
the vertex group of G at the origin is the HNN group with
base-part the tree product of i. and free-part generated
by itjxtzl:X-T} . Also for each of¢A and each x€X ~T with

X
initial, terminal vertex j,i respectively, then we see that

the group isomorphism associated with the generator t.xt;l

is given by tigt;l___,tj(xgx—l)tgl as g ranges through

Thus the theorem is proved.

In closing this chapter we mention that in the proof
of theorem 5 it is important that we choose I-presentations
for the Gd according to lemma 14, If, as usual, we choose
I-presentations for the Gc< according to proposition 7,
then the method breaks down - for we are then faced with the
- same kind of probiem which appears in the example considered

in the appendix.
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Chapter 4

DEFINITION OF HNN GROQUPQIDS AND CHARACTERISATION OF THE

VERTEX GROUP OF ANY CONNECTED HNN GROUPOQID

In this chapter we define what we mean by an 'HNN
groupoid', and then we show that the vertex group of any
connected HNN groupoid is an HNN group with base-part some

tree product of groups (theorem 6).

4,1 Definition of an HNN groupoid

Consider any I-groupoid G, for some vertex set I. Let
{Eaqu“_’vd ,dé/\} be any set of groupoid isomorphisms where,
for each oleA , Uy and Vy are I-subgroupoids of G. Here
we do not require that the ea be groupoid I-isomorphisms.

Now for each ®{¢A and each vertex i, let j denote the
image of i under the vertex map of ©_, and then let us

introduce the edge s with initial vertex j and terminal

(k,1)
vertex 1i.

Choose any I-presentation <(X,R> for G.

Let H be the I-groupoid with the I-presentation with
generator graph XU {s(o<,i)=cx6/\ 1€ I} , and relator graph R

together with the graph of points s )OJQN)-l

-1
(et rd) "5 (e,
where u ranges through (U0< )ij and i,j range through I and «x
ranges through A .

Then we call H the HNN groupoid with base-groupoid G,

, o(eA} and related graph

X

groupoid isomorphisms {Q(X:Uo(__;v

is( A, i) adehA i€ I} .
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It is not difficult to see that HNN groupoids are
independent of the particular I-presentation used in their

definition.

4.2 Some constructions

Here we describe the constructions we use to prove theorem

Also we give some elementary properties of these
constructions,

So let H be any connected HNN I-groupoid with base-
groupoid G, groupoid isomorphisms f%mo(—’ Vg(,c(éA} , and
related graph {S(cx,i):de/\ Jie 1) .

Choose any element of I, and call this vertex the origin.
Our object is to describe the vertex group of H at the origin.
To do this we need to choose a maximal circuit-free subgraph X
of G, and for each o¢A a set of representative vertices I
for Uq , and a maximal tree T of H, and a set of representative
vertices Ia for G.

To begin with, then, choose any maximal circuit-free
subgraph X of G,'and for each QE/\ choose any set of represen-
tative vertices Iq for Uq .

Now for each «¢A put S°<= {s( 0('i):ie IO(} , and then write
S for the graph-union of the Sq(cxéf\). Clearly we have that

XUS is a connected I-graph. Choose any maximal tree T of XUS

containing X.
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Let 1 denote the level-function on T induced by the
origin. Then for each component of G there exists a unique
vertex of the component of minimal l-level - choose this vertex
to be the representative vertex for the component, In this
way we obtain a set of representative vertices IG for G

which we call the set of representative vertices for G minimal

with respect to 1.

Finally we make two observations.

First, for each vertex i let ti be that reduced path in T
from 'the origin to i. Then it is easy to see that the set of
non-origin representative vertices for G consists precisely

of the set of non-origin vertices i such that ti ends in an
o+

element of S—l.

Second, consider any vertex i, and let k denote the
representative vertex for that component of G which contains 1i.
Then for any element g:of Gii we have that tigt;l belongs to the

-1
group thkktk .

4.3 The theorem

Throughout this section suppose we have the following;

Let H be the connected HNN I-groupoid with base-groupoid G,
groupoid isomorphisms {eq:Uq-—.V,x,o(éA} , and related graph
{s(q'i):deA,iQI}. |

Suppose we have chosen any element of I which we call the
origin, and any maximal circuit-free subgraph X of G, and for

each O(GA any set of representative vertices I , for Uo< .

X
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Put So( = {s(ohi):ieIO(k for each o(e/—\, and S =o<L(I-AS°< ‘
and suppose we have chosen any maximal tree T of XUS
containing X. For each vertex i let ti denote the reduced
path in T from the origin to i.

Finally we denote by IG the set of representative

vertices for G minimal with respect to the level-function

on T induced by ‘the origin.

Theorem 6
For each o¢A and each s ¢ S&\T’ with initial, terminal vertex
j,1 say respectively let Gg denote the group isomorphism given
-1 -1
by t ut, __,t.uE%(tj as u ranges through (U°<)ii' Let g‘

J
denote the set of all these group isomorphisms.

1 where i ranges through

Then i is a tree of groups tiGiitE
the representative vertices for G.

Further the vertex group of H at the origin is the HNN
group with base-part the tree product of é:and free-part generated
by tjst;l where j,i is the initial, terminal vertex of s
respectively and s ranges through S-T,

Finally consider any edge s of S-T and suppose s belongs to
SC< and has initial, terminal vertex j,i respectively. Then
the group isomorphism associated with tjst;l is given by
tiutzl._,, tjueo( tj_l as u ranges through (Uo( )ii'

Proof

We begin by proving that g is a tree.



84.

Lemma 15

S is a tree of groups tiGiit;l as i ranges through the

representative vertices for G.

Proof

First we show that i is a graph with vertices the
groups tiGiit;l as i ranges through the representative
vertices for G.

To do this we define an initial and terminal vertex
for each group isomorphism in i .

So consider any element ¢ of 2 « Then U= O'S for some
edge s of SNT. Suppose s belongs to S and has initial,
terminal vertex j,i say respectively. Then ¢ has domain
ti(Ud )iit_i and range tj(V& )jjtJTl
representative vertex for that component of G which contains

. Let k,1 be the

j.1 respectively (note that at least one of k = j or 1 =1i

. -1
is true). Then we have that ti(UD()iiti

=1 -1 -1
£1611% e )35%; kCkxx -
case we define the initial, terminal vertex of G to be the

group thllt;l, thkktil respectively.

If we define the initial, terminal vertex of each element

is a subgroup of

is a subgroup of t

and tj(V In this

of 2 in this way, we see that i acquires the structure of a graph

1

with vertices the groups tiGiit; as i1 ranges through the

representative vertices for G.

Now to show that 2 is a tree,
To do this we construct a graph.ﬁ\of group isomorphisms,

Ai as i1 ranges through the non-origin representative vertices
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for G. We shall see that/\ is a tree, and from this it will

follow that 2 is a tree.

We construct the group isomorphisms Ai as follows.
Consider any group isomorphism ¢ in é . Then O = Gé
for some edge s of SNT. Let us suppose that s belongs to So<

and has initial, terminal vertex j,i say respectively. Of
1

. -1
course 0 has domain ti(UO()iiti and range tj(Vo()

3355
It is easy to see that either tj is an initial segment
of ti in which case ti ends in s and i is a non-origin
representative vertex for G, or ti is an initial segment of
tj in which case tj ends in s T and j is a non-origin
representative vertex for G.
First, suppose that tj is an initial segment of ti.

Let k be the representative vertex for that component of G

1

which contains j. Then ¢ has initial vertex tiGiit; and

terminal vertex thkktil' In this case we define the group

isomorphism Ai to be O .
Second, suppose that ti is an initial segment of tj.
This time let k be the representative vertex for that component

of G which contains i. Then & has initial vertex t.G t—l

k“kk "k
and terminal vertex t.G..tTl. In this case we define the

J 3373
group isomorphisnnAj to be T T,
Then we write \ for the graph of group isomoxrphisms Ai
as i ranges through the non-origin representative vertices for G.
It is easy to see that each edgé of i is either an edge

of /\ or the inverse of an edge of /\ , and vice versa,

Then it follows that € is a tree iff /\ is a tree.
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It only remains to show that A is a tree.

This we do using Karrass & Solitar's result given in
theorem 3. For completeness we restate their result here.

Choose any vertex of /\', which we call the 'start'.
Then to each vertex of /\ associate a non-negative integer,
such that the non-negative integer associated with the 'start!'
is 0. Suppose that each non-'start' vertex of/\ is the
terminal vertex of a unique edge of A\ . Balso suppose that
for each edge A of /\, the non-negative integer associated
with the initial vertex of A is less than that associated with
the terminal vertex of A\ . Then /\ is a tree.

This result holds if we replace 'initial vertex' by

'terminal vertex' and vice versa.

To use this result to show that A\ is a tree, we choose

-1
the group tiGiiti

(=Gii' where i denotes the origin) to be
the 'start’ of /\ . Also, for each representative vertex i for
G, the non-negative integer we -associate with the vertex
-1 .
tiGiiti is to be the length of the path ti.
Then using Karrass & Solitar's result it is quite

straightforward to see that /\ is a tree.

And from this we obtain that é is a tree.

Thus the lemma is proved.

Now to prove that the vertex group of H at the origin is

the HNN group described in the statement of the theorem.
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To begin with we obtain an I-presentation for H, using

‘the following easy lemma.

Lemma 16

For eagh element i of I; let <Gii'Rii> denote the
standard presentation for the group Gyy»
Then H has an I-presentation with generator graph

'XUSU(U G.,), and relator graph U R,, together with the
: ii ii
1eIG 1EIG :

h int .
graph of points s((x,l)us((*'

-1
i)UJQX) where u ranges

) s and « ranges through A .

ii and i ranges through I

th;ough (Ud o

For convenience we now introduce some short-hand notation
for the graphs of generators and relators in which we are
interested.

We denote the graph of generators U G,; by {g:IG},
i¢I
G

and the graph of relators U R, by {r:IG}.
1€IG

Similarly we write {sus_l(uea )_l:S} for the graph of

points S(o(,i)us(o(,i

-1
)(ueq ) where u ranges through (UO< )ii

and s(o( i) ranges through S and « ranges through A .

[o4

’

Also we shall find it convenient to split up the graph
{sus_l(ué%k)-lzs) as follows. We write [sus_l(u€L<)_l:Sf\T}

for the graph of points s —lthi)-l where u ranges

(A, i) P (x,1)

through (qx )ii and s ranges through %XP\T and « ranges

(et ,1)

through A . And we write {sus_l(ued )_l:S-T} for the graph of
. -1 -1 :
points S(cili)uS(O(,i)“JQd) where u ranges through (U, )ii
and s ., ranges through S, -T and % ranges through A
(e ,1) N



88.
Then, with this notation, the I-presentation for H given

in lemma 16 can be written,

{ xusu {g:1.}

ir:IG}Ufsus_l(uG& )_1: Sj >Z

For each relator in this I-presentation let us form its
conjugation in the origin using the maximal tree T. (Of course,
instead of T, we could chobse any maximal tree of F(XUSUIg:IG} ).
the free groupoid on XUSU[g:IG}).'

Then, by the first part of lemma 2, we have another
I-presentation for H,

< xusu {g:1 )} .

7/

{r,:IG} U {(sus-l(uGL )-l) : S] :>.

And each relator in this I-presentation has vertices

the origin.

Now, using Higgins' result given in theorem 1 with the

maximal tree T, we have that the vertex group of F(XUSUig:IG})

at the origin is freely generated by the elements [tigtll :

1

geGii,ié IG} together with the elements tjst; (where j,1 is

the initial, terminal vertex of s respectively and s ranges
through sS-T ).

We abbreviate the set of elements {tigtll :ge¢ Gii,iE IG}

1

toftigt;1:1G§ . and we write [tyst} :S-T} for the set of

elements tjst;1 (where j,i is the initial, terminal vertex of

!

s respectively and s ranges through S-T).
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Nekt let. us rewrite each relator in the second
I-presentation given for H in terms of these two sets of
freé generators.
Then, by the second part of lemma 2, we have a presenta-

tion for the vertex group of H at the origin,

< {tjst;l:S—T} U 1tigt;‘-_i:IG}, »

{r”:IG} U {(sus_l(u€& )_l),:S§ :Z

Now the structure of the vertex group of H at the origin
follows on investigating the forms taken by the relators in
this presentation.

This we now do.

(a) First it is clear that any relator in {r”:IG}, when
. ) -1 -1 -1,-1

reduced,is written (tifti )(tigti )(tihti ) for some

representative vertex i1 for G, and some f,g and h belonging

to G.., where fg = h in G.,..
ii ii

- -1
(b) Next consider any relator in {(sus l(ueh ) l) : S}.

1

— , +
(b.l) First we consider any relator in [(sus'l(ufa() )/:SHT}.

So choose any element X of A, and any s( 1) belonging

x,1

to ST (of course i belongs to I and any element u of

o
(Uy )

oy
ii*

Let j denote the initial‘vertex of s cy e
(e ,1)

Then either tj is an initial segment of ti in which case

ti ends in s and i is a representative vertex for G, or ti

(e , 1)

is an initial segment of t. in which case t. ends in s_l .
J J (x,1)

and j is a representative vertex for G.
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To begin with, suppose tj is an initial seg?ment of ti'
Then let k denote the representative vertex for that
component of G which contains j, and let p be that reduced

path in X from k to j.

1

Then puE&lp_ = g for some element g of G

kk*

In this case we have that the relator S(t(,i)uszix,i)

uszlo(’i)(p'lgp)'l, and it follows

—l 174
) 7) , when reduced,

(uea )_l is written S, 1)

-1

(o, 1) 98 (=, 1) (WO
is written (t ut"l)(t t‘l)‘l
[ | k9% /- -

that the relator (s

-1
(O(Ii)us((’( 1)
.+, when reduced, 1is

And so we see that the set of relators, (s
“

UIQA)—l) as u ranges through (U“ )

ii
-1 -1,-1
expressed as (tiuti )(tjued tj ) as u ranges through (Qﬁ )ii'
Also we observe that O takes (tiutzl) to
(e ,1)
(t.ub tTl) for each u in (U )..
J ] o Tii”®

Now, suppose t, is an initial seggment of tj.

This time let k denote the representative vertex for that
component of G which contains i, and let p be that reduced
path in X from k to i.

Then pup—l = g for some element g of Gy -

In this case the relator S(cx,i)uszi&,i)hlgx)—l is
written S( o 'i)(p-lgp)szﬁ(’i)(uE%()_l: and it follows that
the rglator (S(q 'i)uSZt('i)(uGQ )-l)/, when reduced, is
1) 1.

written (tkgtk (tjued tj
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Here again, we see that the set of relators,

-1 -1,*
(s(<x,i)us(‘x,i)“1Qx) ) as u ranges through (U°<)ii'

when reduced, is expressed as (tiut )(tlle t ) -1
as u ranges through (UC()ii'
And again we observe that O takes (tiutzl) to

(”(li)

_l ..
(tjueo( tj ) for each u in (Uy ),y-

From (a), (b.l), and the construction of the tree € given
in lemma 15, we obtain that the tree product of_s has a

presentation,

¢ feotiterg iy uitsusT ue ) hisnT

_ _ 1 ”
(b.2) Finally consider any relator in {(sus l(uﬁ& ) l) :S—T}

So choose any element o of A, and any s i) belonging

(X,
to S -7, and any element u of (Uq )ii'
Let j denote the initial vertex of s ) e
(x,1)
Also let k,1l denote the representative vertex for that

component of G which contains j,1i respectively, and let P.q
be that reduced path in X from k to j and from 1 to i

respectively.

-1

Then quq"l = g for some element g of Gyqv and puEL(p =h

for some element h of Gkk‘

Then the relator s(Cx'i)uszo('i)(uEL()_l is written

-1 -1 -1 -1 .
s(q 'i)(q gq)s(r*'i)(p hp) ~, and it follows that the

_l _l 7
relator . ) h i i
e (s(c" ) (cx, )(u ) ) , when reduced, is written

)(tlgtl ) (k48 £ g nehH 7t

(t S (0( l) i ‘ (tkht k) .

(o, 1)1
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Thus we have that the set of relators,
-1 -1.7
(S(o( ,i)us(q'i)(ueo( ) ©) as u ranges through (U )ii'
-1
t.

when reduced, is expressed as (tjs( o1yt

-1
Y(egut; ) (Eys 1)

-1 -1,-1

-1
t;7) (tjueo( tj ) ~ . as u ranges through (Ugg )g5-

From these remarks we see that the vertex group of H

at the origin is the HNN group described in the theorem.

Thus the theorem is proved.

We shall see in the next chapter how we can use theorem

6 to help us describe the subgroups of any HNN group.
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Chapter 5

APPLICATIONS: THE SUBGROUPS OF TREE PRODUCTS

OF GROUPS AND HNN GROUPS

In this chapter we describe the subgroups of any tree
product of groups, and the subgroups of any HNN group.

In section 1 we give a basic result of Higgins
(proposition 8). |

In section 2 we define what we mean by a 'regular
representative system for a tree product of groups modulo
-any one>of its subgroups'. We shall see that this
definition is a straightforward analog of a 'regular
representative system'.

Then, in section 3,we characterise any subgroup H of
any tree product of groups G as an HNN group with base-part
some tree product of groups. This result follows easily
from proposition 8 and theorem 3, using a 'regular
representaive system for G mod H'.

Finally we observe that we can obtain a similar
characterisation of any subgroup of any HNN group, this

time using proposition$and theorem 6.

5.1 A result of Higgins

Let G be any group and H be any subgroup of G. For any
elements a and x of G, if Hax = Hb then x induces a mapping

from the right coset Ha of H in G to the right coset Hb. These

mappings form a groupoid, which we denote by [(G,H), under
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composition of mappings, and the vertices of this groupoid
are the right cosets of H in G. Clearly [™(G,H) is connected.
Also if x and y induce the same map Ha— Hb then ax = ay
and so x = y. So we have a groupoid surjection from
M(G,H) onto G which takes each map of ['(G,H) into that
element of G which induces it. And it is clear that the
restriction of this groupoid surjection to the vertex group
of [M(G,H) at the vertex H is a group isomorphism from

this group onto the subgroup H of G.

For any subset K of G let us write K for the subgraph
of ['(G,H) consisting of all the maps induced by all the
elements of K. It is easy to see that if K is a subgroup

of G, then K is a subgroupoid of [(G,H).

Now we give a result due to Higgins ( [4] page 135 ).

Proposition 8

Let G be any group and H be any subgroup of G, and let
I denote the set of right cosets of H in G. If G has a
presentation <X,R> then the I-groupoid [(G,H) has an

I-presentation <X,RD .

And we have two corollaries,
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Corollary 1

Let c9= [@o(:Uq-—»VO(, déA—o}be any tree of groups Go( (HEA ),

and let G be the tree product of %9. Then ['(G,H) is the tree

product of Lezieo“Uo(“"Vo( ,o(éA-o} where for each c(éA-o @9(

denotes the groupoid I-isomorphism induced by EL(.

This corollary follows as a special case of another

result of Higgins ( 'B+] page 37 ).

Corollary 2

Let G be the HNN group with base-part K, free-part

7] - VC(

be the group isomorphism associated with the generator w

generated by W ={wo(: OKGA} and for each €A let 6(:U
o °
Then [Y(G,H) is the HNN groupoid with base-groupoid K,
groupoid isomorphisms{éo(:ﬁo‘-—)\—fo( ,O(EA} , and related

graph W,

To prove this corollary let <£Y,S> be any presentation
for the group K. Then we must show that {¥,3> is an
I-presentation for the I-groupoid K. To see this let r
be any relator in K, and let r be the element of G which
induces r. Then r is a product of elements of K and is a
relator in G. From proposition 6 we have that K is naturally
embedded in G, and so r is a relator in K. That is r is a
consequence of the relators in S, and so r is a consequence of

the relators in §. Thus €¥,5> is an I-presentation for K.

Then the corollary follows easily.

¢
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5.2 Definition of a 'regular representative system for

G mod H'

Throughout this section let L@:{@(}(:UO@—;VO( ,f.a(eA-o}
be any tree of groups er (XA ), and let G be the tree
product of (@, and let H be any subgroup of G. Also let A
be the level-function on ® induced by the vertex 0. For
each elemeﬁt O(Vof A-0 we shall abbreviate ' predecessor of

& with respect to A ' to simply ' predecessor of . '.

For each element  of A choose a set of generators for Go(

{...,xo( (e. sSay. We céll any element of {...,xo( ,} U
{...,x&l,...} an o\ -symbol.
Also for each element ¢ of A choose a right coset
representative function Qo( for G mod H (see Magnus, Karrass
and Solitar [7] page 88 ). We call each element of Q . an

o
o ~representative,

Let us suppose that the set of right coset representative
functions {Qq :o((-A} satisfies the following two conditions,
(1) for each representative q if g =px and x is an -symbol

for some o[¢A then both g and p are X -—-Tepresentatives,
(2) for each ¢ A, when all the «-symbols are completely

deleted from the ends of all the «-representatives, then

the resulting set of «- representatives constitute a

double coset representative function for G mod (ﬁ,Go()
(see Magnus, Karrass and Solitar [7] page 239).
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We call {Qd:qu} a regular representative system for G
mod H if the following two conditions are also satisfied,

(3) for eacha€ A-0, with predecessorp say, then each double
coset representative for G mod (H’Q#) is a
B-representat ive,

(4) for each double coset representative q for G mod (H,Gc> )
if q ends in an {-symbol, for some XeA-o, then g is a
p-representative for each péA of lesser A-level than =

The existence of a regular representative system for G
mod H follows from the existence of a regular representative
system for "(G,H).

‘Now, for convenience, we introduce a little notation and
terminology connected with any regular representative system
{Qq:o(éA} for G mod H.

First, for any representative g and any o¢A , we write
qo( for the o-representative of the right coset HY

Second, consider any AePA-0 . Choose any douﬁle coset

representative function for G mod (H,UO() in Q , which contains

¢
the double coset representatives for G mod (H,GO() and the

o-representatives in Q Then we call those double coset

q [ ]
representatives for G mod (H,UO() which are neither double
coset representatives for G mod (H,Go<) nor o-representatives

a complement for Ueg .

We close this section by showing how we can use proposition
8 and theorem 3 to describe the structure of the group H.

To begin with, from the first corollary to proposition 8
we have that ["(G,H) is the tree product ofLé where"é is the
tree of groupoids Go( (€A ) given by"@: {EZ(:UD(——avo( ,'-YGA-O}

(see (5.1) for this -notation).
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Choose any regular representative systeﬁ iqx:ruef\}
for G mod H. Also choose the vertex H to be the 'origin'
-~ .of [(G, H).

For each representative q let us write g for that
map in [7(G,H) induced by g and with initial vertex H,
Then for each ¢ A put 60(= {&:qéQo\}.

Then it is easy to see that ié(x:exe/\} is a regular
representative system (see (2.2)).

And so, from theorem 3, we obtain that the vertex group
of M(G,H) at the origin is an HNN group with base-part some
tree product of groups.

That is we have characterised the group H.

5.3 The theorem

From the remarks just made we have the following result.
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Theorem 7

Let‘@:ied:Uq —_>Vo< ,O(GA-O} be any tree of groups
Go( (€A ), and let G be the tree product of ‘9, and H
be any subgroup of G. Choose any regular representative

system zQ :O(GA)) for G mod H, and for each element o of

A
A-o0 choose any complement for U, .

Consider any element & of A-o .and any o-representative
q which is either a double coset representative for G mod
(H,GO( ) or a o-representative, and consider the isomorphism
given by quq_].'___, queg( q_l as u ranges through q-lqu\ Uy -« -
Let g be the set of all these isomorphisms.

1 where g ranges

Then { is a tree of groups Hf\qGo‘q_'
through the double coset representatives for G mod (H,GO()
and X ranges through A .

Also H is the HNN group with base-part the tree product
of€ and free-part generated by the elements q(qr’ )_l where
q ranges through the complement for Uo< and P is the predecessor
of & and o ranges through A-o .

Finally consider any element o of A~0, with predecessor P
say, and any element g of the complement for Uy - Then the

isomorphism associated with the generator q(qp. )_l is given‘

by qp ueo‘ (qP )_l......>quq_l as u ranges through q—lHq('\Uc('.

Finally we can characterise the subgroups of any HNN group.
To do this we use corollary 2 of proposition 8 and theorem 6,
and we obtain results similar to those of Karrass & Solitar [6]
and Cohen [2]. The method is straightforward, and we omit

the details.
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APPENDIX

AN EXAMPLE OF A CONNECTED TREE PRODUCT OF GROUPQIDS

Here we give an example of a connected tree product of
groupoids, G say, and we show that the presentation we obtain
for the vertex group of G, Gii say, using simply a represen-
tative system, does not enable us to describe Gii pPrecisely

as an HNN group with base-part some tree product of groups.

To begin with put I = {1,2} and A\={W:P:XS‘

and G._.

o p 4

connected and Gc,< discrete.

Let G GB and GB’ be I-groupoids with G

Suppose the group (GH )ll,(GB)ll has a presentation
< {c},ﬁ) , ([bl,bz} , {bibgbibg})respectively (here ¢ denotes
the empty set), and that (q>< )ll is the trivial group, and
(G )y, has a presentation([a} B> .

Choose any edge y,z of (Gﬁ )12, (GX )12 respectively,
and let ex,eﬁ be the groupoid I-isomorphisms generated by
z_lczz._gy_lbiy ¢ y_lbgy-—-;az respectively. Note then that
the domain, range of€96is a discrete subgroupoid of sz, GF
respectively, and that the domain, range of 8

Bis a discrete sub-

groupoid of GB ' Gq respectively.

o GB and G-zS .

Let G be the tree product of “©. Obviously G is a connected

Then © = {ea,eP} is a tree of I-groupoids G

I-groupoid.
Put =0, and call 1 the 'origin' of I, and let Qo' QF .
Qy be the graphs 2} + {v} and {2} respectively, Clearly

{Qo' QF ’ Qbk is a representative system.
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Using the general procedure outlined in the introduction
to chapter 2, with the representative system ng'QF 'QK} ,
we obtain a presentation for the vertex group of G at the

origin, as follows.

First, from proposition 7, we have that Go'GP , and G

has an I-presentation ({a},¢>‘, <{bl,b2,y} . {bib%bib%})

b1
and <[e.z} ,#> respectively (here $ is an empty graph).

And so, from lemma 1 and the first part of lemma 2,

we obtain an I-presentation for G.

£ {abypyel v {v,2}
2. 2.2, 2 2 -1 -2 =1 .2 =2 -1
(pIp203p2Y U{c?zy by %ya"t boya 2y ) D

Now, let F( [a,bl,bz,c} U {y,z} ) be the free groupoid on
ia'bl’bZ'c} U {y,z} . Then, using theorem 1 and its corollary,
with the representative system {QO,QP ,Qﬁ} , we see that the
vertex group of F( {a,bl,bz,c} U{y.,z} ) at the origin is
freely generated by the elements (zaz_l),bl,bz, (yz-l),c .

Then, from the second part of lemma 2, rewriting the
relators in this I-presentation for G in terms of this set

of free generators, we obtain a presentation for the vertex

group of G at the origin, Gy,

< {(zaz-l),bl,bz,c} U {yz_l} ,

{bibgbibg}U {c?(yz~!

-1
) b2 (yz"h bi(yz™h)

-2 -1

Ly Yyzh T3>

(zaz~
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From this presentation we see that Gi1 is the HNN group
with free-part generated by (yz-l) and base-part presented

by,

<: 1(zaz-l),bl,b2,c} .

2 2
(p2p2p202} U{c?(zash) c?(zaz™h) } D.

However we cannot describe this base-part as a tree product

-1
of the groups (GP )11, (GK )11 and z(Go)zzz . All we can

do is write K for the subgroup of Gll generated by

l), and then say that the base-part

(Gy )11 U (2(Gy) 5,2
is a tree product of the groups (GF )ll and K (of course

the base-part is in fact the free product of (G? )ll and K).

|

‘Now let us follow through this procedure again, this

time using a regular representative system,

/ - / .
So put Q_ =zy}, Then, clearly, {QO,QF ,QES is a
regular representative system. And so, using theorem 1 and
its corollary, with the regular representative system

7/ - .
{QO,QF 'QK} , we see that the vertex group of F({a,bl,bz,c} U

[y,z}) at the origin is freely generated by the elements
(yay-l),bl,bz,c,(zy-l). Then, rewriting the relators in the
given I-presentation for G in terms of this new set of free

" generators, we obtain another presentation for Gll'

<: {(yay-l)lbllbzlc} U{ZY-I '

-1 -2
2, 2. 2.2 2 -1,,. -2 -1, 2 -1
{blbzblbz}U {c“(zy )bl (zy ) ,b2(yay ) } );
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And from this second presentation we see that Gll is
the HNN group with free-part generated by (zy_l) and base-
part some tree product of the groups (GP )ll'(GYY)ll and

-1
(y(G ),y 7).
This example, then, indicates the necessity of choosing

a regular representative system to help us to describe the

vertex group of any connected tree product of groupoids.



