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ABSTRACT 

Plate tectonic forces are known to give rise to strain accumulation 

in the crust of the earth. The stress field can be released by the 

extension of the existing fault-planes. The process of stress accumulation 

and its subsequent release are studied from a fracture view point. 

A systematic simulation of the process is carried out in three 

phases. In phase I, the process of gradual stress build-up in a static 

field containing a crack is considered. Phase II concerns wave propagation 

in a cracked structure and possible mechanisms for fracture initiation. 

Phase III concerns the transient field generated by a crack extending in 

a medium. In each case simple models are chosen to represent the process. 

These models are formulated in their equivalent weak variational 

form. Proofs of existence and uniqueness of solutions to stationary crack 

problems are given. For the running crack problem a new variational form 

taking into account the energy dissipation at the crack tip is presented. 

Regularity of the solutions to stationary problems, for angular 

domains, is studied. The problem is then numerically approximated by the 

finite element method. It is demonstrated that due to the presence of 

sharp re-entrant cdrners, convergence of the standard method of finite 

elements fails for these problems. This is remedied by the inclusion of 

proper singular basis functions in the approximating spaces. Using 

singular basis functions optimum rates of convergence in different norms 

are established. 

Using embedded singularity elements, computational results for the 

stationary crack problem giving dynamic stress intensity factors, crack-

opening displacements and transient response at an arbitrary point in the 



medium are presented. A numerical procedure for computer implementation 

of the moving crack problem is suggested and the elastic field in the 

limiting case of a crack propagating at the Rayleigh velocity is 

numerically evaluated. The suitability and power of the method in the 

analysis of fracture problems are emphasized. 
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OUTLINE OF THE THESIS AND CONTRIBUTION 

The physical problem considered in the thesis, together with 

the objectives to be achieved and the approach adopted here are 

explained in Chapter I where simple models of the problem are introduced 

and then some of the well-established tools, in particular the finite 

element method, for their analysis are reviewed. 

Chapter II is devoted to the analysis of static crack problems. 

The problem is first written in a weak variational form as the basis 

for any finite element analysis. Using symmetry, single mode crack 

problems are reduced to boundary value problems for which existence of 

a unique solution is already provided. As an alternative approach for 

the general mixed-mode crack problems, the definition of Sobolev spaces 

is extended to slit domains and it is then proved that the bilinear form 

in the problem is V-elliptic from which existence and uniqueness of 

solutions follows. Study of regularity of solutions is regarded as an 

important step in obtaining approximate solutions. The solution is 

expanded as the sum of singular and smooth functions on slit domains 

and these expansions are then employed in the approximations to show 

that by inclusion of these singular functions the optimum rate of 

convergence can be recovered. Estimates, in terms of data, for the 

approximation errors in displacements and stresses are also derived. 

Results concerning domains with cracks are treated as special cases. 

In Chapter III the equations of dynamic elasticity on slit 

domains are studied. For a finite element analysis of the system, the 

problem is written in its equivalent variational form. With the 

V-ellipticity of the bilinear form established in Chapter II, the 

existence and uniqueness of a solution to the system of equations is 



'straightforward. Then, using singular functions, an approximate solution 

to the problem is sought. Using finite elements on spatial variables 

in conjunction with singular functions, the approximate problem is 

reduced to the solution of a system of ordinary differential equations 

with time as the variable. The problem is further approximated by a 

full discretization in both time and space. In each case, rates of 

convergence for the solution are established. 

The problem of moving cracks is dealt with in Chapter IV. In 

order to apply finite element method a new variational form for the 

problem is proposed which is closely related to the rate of energy 

balance equation. This form takes into account the energy dissipation 

from the tip of the crack. In a manner consistent with the analysis 

of Chapter II, the asymptotic near field is re-derived. Using finite 

elements in both time and space a numerical scheme for approximation of 

the variational form is suggested. Due to the complexity of the problem 

only the special case of a crack running at the Rayleigh velocity is 

computationally implemented. The relevance of this velocity as an 

acceptable velocity is discussed. 

In Chapter V after a brief introduction to conformity and patch 

test different methods of inclusion of singular functions in the 

approximating spaces are discussed. It turns out that distorted 

isoparametric elements yield highly accurate results with a relatively 

coarse mesh, if the solution is interpreted correctly. A numerical 

procedure for consistent extraction of stress intensity factors for the 

general mixed-mode crack problems using 6-node quarter-point elements 

is suggested. The resulting set of simultaneous equations is solved by 

a direct method and the general organisation of the program is explained. 



Chapter V concludes by presentation of results for a number of 

stationary and non-stationary crack problems. 
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Chapter I 

PROBLEM AND BACKGROUND 

I.1 	PROBLEM STATEMENT  

1.1.1 Description of the Physical Problem  

A large class of earthquakes, classified as shallow-focus type, 

occur by fracture of the earth's crust. It is generally hypothesized 

that plate-tectonic forces give rise to a gradual stress build-up in the 

crust. The strain energy accumulated in this way is then rapidly released 

by the fracture of the crust. The process of fracture is normally initiated 

by extension of the existing fault planes. This sets off waves of high 

intensity into the medium. The resulting motion is then recorded at 

different seismological stations around the globe. 

The ground shaking is dominated by the way in which the fracture 

proceeds in the medium. From a physical view point this process, in turn, 

must depend on the structural and geometrical properties of the crust and 

the initial strain in it. However, the complete physical knowledge regarding 

the fracture phenomenon is lacking. 

This motivates one to develop a theoretical model of the process for 

a systematic approach to study the fracture phenomenon. 

1.1.2 Objectives  

In this work we are interested in obtaining the complete near and far 

field solutions for plane crack problems. 

1.1.3 Approach  

In strong-motion seismology the main interest is in a complete 
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knowledge of the field. While analytical methods have provided a partial 

solution to the problem, the complete solution can only be given by a 

reliable numerical technique. 

The numerical approximation method adopted here is that of the finite 

elements. This method has been Very successful in solving many partial 

differential equations of mathematical physics. 

For elliptic equations the method is standard for smooth domain and 

data. However, for hyperbolic systems of equations defined over domains 

with non-smooth boundaries, the method should further be developed. This 

step is regarded as essential in the study since important aspects of the 

problem are both the sharp reentrant corner present and its dynamic 

feature. 

Some theoretical aspects of the problem such as the question of 

existence and uniqueness of solutions to different crack problems are dealt 

with. The modified approximation procedure is discussed and shown to 

converge. Also the theoretical rates of convergence of the approximations 

are given. 

Finally, a computer implementation of the scheme is undertaken and 

numerical results reported. The power and value of the method is evident 

in its application,to a wide range of problems. 

1.1.4 Simple Models of the Problem  

In this work we will confine ourselves to linear elasticity and 

ignore any thermal effect. The assumption of linearity in fracture might 

seem to be restrictive and in certain cases give rise to physically 

unacceptable results. However, a linear analysis provides some insight 

into the complicated process. Also, regarding fracture in seismology, the 
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thermal effects are usually secondary and have little significance. 

Within the linear theory of elasticity the material can be regarded 

as inhomogeneous and anisotropic. For ease of presentation, in some parts 

of the theory we will concentrate on homogeneous isotropic material, 

nevertheless this should not be regarded as any restriction. The material 

is assumed to satisfy the minimum requirement of having positive-semi-

definite strain energy density. Throughout,the body is assumed to be "brittle. 

We will also be dealing with plane problems only, as the case of anti-

plane crack problems have been well treated in the literature. 

We consider three different problems: 

1.1.4.1 Stationary crack in a static field  

The body and boundary forces are- gradually applied to the medium so 

that we essentially have a static problem Fig. (1). The governing equations 

constitute an elliptic system with respect to the variables of interest 

(i.e.displacementsu.
1
,i = 1, 2) 

Au. = f. on 0 
	

(1) 

where A is an elliptic matrix of differential operators given by 

(Au) . 	(a.. (u)) 
 ax 
	 (2) 

where 

u = (u
1, 

u
2
) = displacement vector 

a..  (u) = a
i 
 . E (u) = stress tensor component 

1j 	jkh kh 

Dui  3u, 
ei3 	= .(u) 	12(---- + -- ;) = linearized strain tensor component 

Dx. 	Dx. 
3 	1 
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Solution of this problem, apart from its individual character, would 

simulate the initial strain required for the next phase of dynamic analysis. 

1.1.4.2 Stationary crack in a dynamic field  

In this case we study the transient response of the field due to 

dynamic forces acting in the medium while the crack tip remains stationary. 

The governing equations of motion constitute a conservative system of 

hyperbolic equations. Taking u(t) = a function x > u(x,t) and ut (t) = au/at 

we have 

u" (t) + Au(t) = f(t) 	in 	Q = OxI; I = ]0,T[ 	(3) 

where A was defined earlier. 

This system of equations together with the specified body and 

boundary forces as well as initial conditions obtained from the static 

analysis (u(0) = u0, u'(0) = 0) define a well-posed problem for analysis. 

1.1.4.3 Moving crack problem  

Throughout our analysis we will consider the material to be ideal 

brittle so that no plastic zone is formed ahead of the crack tip and the 

assumption of linear elasticity is valid. 

It is assumed that, under the influence of applied forces, when a 

certain critical condition is reached the crack tip starts to move. The 

direction of crack extension and position of the crack tip is not, a priori, 

known and needs to be determined. Evidently from physical considerations 

the crack tip position in time influences the complete elastic field and 

therefore knowledge of one should, in principle, be equivalent to the 

knowledge of both (see Fig. 2). 

The governing equations of motion constitute a locally-dissipative 
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system of hyperbolic equations. Part of the dissipative energy is spent 

on formation of new surfaces in the material by extension of the crack 

faces. Here again we have the same equations as in (3) with the additional 

condition that the position a(t) of the crack tip (p) is time-dependent. 

Later it will be shown how to incorporate this statement into our formulation. 

1.2 	SOLUTION TECHNIQUES  

A large number of techniques have been applied to crack problems. 

While most of these techniques are related and hence cannot be regarded as 

distinct from each other we attempt to, very briefly, classify some of the 

more important of these analytical and numerical methods. 

1.2.1 Analytical Methods  

1.2.1.1 Complex variable theory and conformal mapping  

This method has been intensively applied to two-dimensional problems 

of elasticity. The method essentially consists of introducing the Airy , 

Stress function x(x,y). Then the equations of motion reduce to -a biharmonic 

equation 

4 
V X(xty) = 0 

The solution can then be written (Muskhelishvili [11) in terms of the complex 

variable z =x +iy and two analytic functions 4(z) and J(z) as 

x(x,y) = Re [Z(1)(z)+flp(z)dz] 

Then the stresses are: 

5 



ax aY = 4Re W(z)] 

ay  - ax  + 2iixy = 2[4"(z)+41(z)] 

where 

= 2 -- etc. 
dz 

Introducing a complex stress-intensity factor k = k
1
-ik

2
, Sih [2] expressed 

the first stress invariant of the near tip solution as 

21/1:c  a + a = Re x 	y 
z-F=Z7" 

where z* expresses the location of the crack tip on the positive side of 

the x-axis, i.e. 

k = 2/ lim VZ-77Z-7  4' (z) 
z+z* 

This relation indicates that a local near tip knowledge of cp(z) would be 

sufficient for the determination of the complex stress intensity factor k. 

With the aid of a conformal transformation z = w(s) we can map 

suitably regular domains into a unit circle or a half plane. The equations 

of motion would then be transformed to 

(C)  ax  + a = 4 Re L x 	y 	w () 

a - a 	2iT 	= 2 { 	w(E) 	
W(C)4)"(C) 4)1  (0 1,3" 	+ 	 } y x xy 

[e(U]3 	 w' (C) 

and k is expressed as 
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k = 21/I lim ito(E)-m(*) 1-"111)  
m' 

C-4-E* 	
() 

 

with lim W(E) -* 0 where z* is mapped into E* in E-plane. It has further 

been shown that 

l( *) k = 2 (P  

)417) 

This form has been used in solving Laplace equations in conjunction with 

Schwartz-Christoffel transformation to yield closed form solutions. See 

Sih [3], Bowie [4], [5] and Neal [6]. 

1.2.1.2 Eigenfunction expansion  

For a wedge-shaped domain of a homogeneous linear isotropic material 

Williams [7], [8] has obtained the form of singularities at the corners. 

We make the polar coordinate transformation 

x
1 = r cos 0 

x
2 
= r sin 0 

and introduce R = ((rfe)1(kr`m,- ff<0<ffl with R
0  as the interior of R. Now 

takeu.and a..13 as the components of displacement and stress field, 

respectively. The equilibrium and compatability conditions would then 

reduce to 

V'
4
X =0  

on R 

7 



where x is the Airy Stress function,.x,
k,e 	ax x 

2 
	 and c..

lj 
 are the components 

• k 
of the 2-D alternator. For plane strain 

a
i 
 = 2A 

{1-2v 1-2v 
d
ij 

u
k,k 

+ u
(i,j)

} on R
0 

where 

u . 	1/2(u. .+u,
3 
 .) 

(1,3) 	1,3 	,1 

and (5.. is the Kronecker delta, A and v are the shear modulus and poisson 
lj 

ratio. The boundary conditions take the form 

(r 1-7) = 0 
i2 1-- 

0 < r < co 

Now choosing 

x(r,0) = r"'F(s) 

for m a constant and F an unknown function of 0, he finds that the 

solution x is a combination of the following biharmonic functions 

r
p14.1 

cos (m+1)0, r
m+1 

sin (m+1)0 
• 

The function x satisfying the specified boundary conditions leads to 

sin 2mn = 0 

F(0) = c1 	m 
[sin(m-1)0- 11sin (m+1)011+c2

[cos(m-1)0- cos (m+1)0] 1!1
+1 
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The roots of these equations are 

• 

2mTr = kir 	or 	m 2 	k is a positive integer 

Williams has also given the eigenequations corresponding to different 

boundary conditions on angular corners. 

1.2.1.3 Green's function approach  

If the fundamental solution to concentrated forces are known then we 

can always find the solution to an arbitrary loading by employing the Green 

function. In particular, if the stress intensity factors (Fig. (3)) due to 

normal and longitudinal point forces H and V .at x = b is known (Sre fiend4,f r  
civtear) 

H+iV K-1 	b+a k = k1-ik2 =+ 	b-a }' b < a, K = 3-4v for plane strain 
2Tr va r- K+1  

0 Then the solution to arbitrary ay and T are obtained from 
xY 

a 	 a 1 	r 0 la+x' 	1 	K.- 1 f 0 k1 = 	j (11 
	dx 	 T dx 

i; -a .1.7 	
xy 2Trtra 	-a 

n 	a 1  
(I----1) a f a-  dx + 1 	i TO 1-a +x dx  k2 - Ia- K.-1-1 	y 	 J xy -\I a-x 2Tr 	-a 	21T/-a 

1.2.1.4 Ri'3mann-Hilbert problem 

This method is particularly convenient for a system of cracks along 

	

a line or perimeter of a circle. Representing by a+
Y 	

+y, and T 	the stresses x  

on the upper crack face and a and T
xY 

 on the lower one, the boundary value 

problem is reduced to the following form 

F+(x) - aF (x) = p(x) on L 	(the crack line) 
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a and p(x) are known functions. 

Now we have to find an analytic function F(z) which assumes the values 

F
+
(x) and F (x) on the upper and lower crack line, resepctively, except at 

the crack tips. When the cracks are represented by branched cuts whose 

ends are a. and b. (i = 1, 	n) then the appropriate function for 

describing these cuts is 

n 
Q(z) = 	-1/2 

(z-a.) (z-b.) 

and the solution F(z) is given by: 

F(z) = Q(z)  r 	p(x) 	dx + Q(z)P(z) 
2ffj 

L Q
+
(x) (x-z) 	

n 
 

where P
n 
is a polynomial of degree n whose coefficients are determined from 

conditions on displacements and stresses, see [9] and [10]. (This is also 

a standard method in seismology and dislocations theory.) 

1.2.1.5 Wiener-Hopf technique  

This is one of the most celebrated techniques in analysis of crack 

problems. Its power lies in its potential to deal with mixed boundary 

conditions. 

Using integral transforms one can reduce a crack problem to an 

equation of the following form (Noble 1958) [11]: (Fig. 4)) 

A(s)H+(S) + B(s)K_(s) + C(s) = 0; 	s = a + iW 	(1) 

and 

- co < a < +co 

W 
< w 

< W
+ 
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the unknown function H (s) is regular in the half plane w > w and K (s) 

is regular in the w < 634.  plane. A(s), B(s) and c(s) are known functions 

in the strip. 

Basically we have to find 

M (s) in w > w 

M (s) in w < w 

such that 

M (s) A(s) 
M (s) 	B(s) 

Then the equation (1) can be rearranged as 

cs) M+ 	+ (s) + M (s)K (s) =—M (s) + 	+ 	 B(s) 

The r.h.s. in (3) can be decomposed as 

m-(s) c(s)B(s) = C (s) + C (s) 

whore 	C+(s) is regular in w > w_ 

C (s) is regular in w < w _ 	+ 

using (4) in (3) we have 

(2)  

(3)  

(4)  

and 

M
+ 
 (s)H 

+
(s) + C (s) = -EM (s)K (s)+c (s)] = J(s) 	(5) 



' Since 

M + (s)H  + (s) + c + (s) is regular in w > w_ 

M (s) K-  (s) + c (s) is regular in co < w _ 	_ 	+ 

then J(s) can analytically be continued over the whole.s-plane. 

Assuming that 

Im+(s)H+(s).-Fc+(s)I < Islm 	as 
	S 	co; W > W 

and 	 (6) 

IM (s)K (s) + C..(s),I<IsIn 	as 	s 	m; w < w 

then using the extended form of Liouville's theorem, we can represent J(s) 

as a polynomial P(s) with deg {P(s)} = min (m,n) and hence 

M + (s)H+  (s) + C (s) = P(s) 

(7) 

M (s)K (s) + C (s) = -P(s) 

These equations determine H (s) and K (s) to within polynomials P(s) whose 

coefficients may be found from other conditions. It can be observed that 

this technique is identical to the Riemann-Hilbert representation of a 

semi-infinite crack parallel to the x-axis. 

This technique has been employed by Koiter [12], Knauss [13] and 

Westman [14]. Baker [15] has solved the problem of a uniformly moving 

crack in plane using the Wiener-Hopf technique. 

and 
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1.2.1.6 Singular-integral equations  

A large number of crack and contact problems can be formulated as 

singular-integral equations on the boundary of a half-plane. For a crack 

problem we usually get a couple of dual integral equations corresponding 

to the boundary conditions on the crack line. The singular equation has 

a kernel of Cauchy-type singularity 

a4(x) + 11- f J-1-Wdt = P(x) 
L t -x 

	 (1) 

a and $ are constants s.t. a
2
-$
2 

0 and L represents the crack arc. )or 

more general forms of the equations refer to [16]. Muskhelishvili [1] has 

given the solution (P(x) to (1) as 

a 	 a 	f  i/(t-a) (t-b) 
t-x 	

P(t)dt flx) - 
a
2
-$

2 P(x) 
(a
2
-s2)7ji(x-a)x-b) L 

(2) 
f(x-a) (x-b) 

a and b are the end points of L and c is a constant 

The stress intensity factors are obtained by,,say, displacements 

ahead of the crack. (4)(x) could represent displacements.) 

Representation of cracks by a continuous distribution of dislocation 

singularities also results in singular integral equations. The Burger's 

vector b. in terms of the distribution D.(t) is 

fD.(t)dt 
	

(3) 
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where c is a path around the dislocation distribution and the net Burger's 

vector around a crack is zero, i.e. 

fD.(t)dt = 0 
1 

(4) 

Consider a central crack of length 2a in Mode I with traction a (x,0) = -P(xT 

on the crack faces -a < x < a. This crack can be modelled as a continuous 

array of dislocations of density Dy. The stress on the crack line are then 

D (t) 
a  _ 	r  Y  

1T (K+1) L x-t dt 

D (t) 
a  = 	f dt 

y  71.(K-El) 	x-t 

T = 0 xy 

Hence we have 

f
D (t) 
—Y--- dt = P(x) 

TT (K

2

+

p 

 1) 	t-X 

also the displacement is singled-valued if 

f D (t)dt = 0 

In a continuous dislocation model the stress-intensity factor ki  

can be expressed in terms of the density distributions D as 

(5)  

(6)  

(7)  

D (t) = 
(K+1) 

k
1 	(see [17]) 

2)/24 
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The equations (6) and (7) represent a special case for the general 

singular integral equations. 

1.2.1.7 Boundary collocation method  

This method is applicable to internal cracks in homogeneous isotropic 

materials. The method Uses Vie- 	Laurent series expansion of the 

relevant complex potentials which satisfy the boundary conditions. The 

unknown coefficients in the expansion are then written in terms of a 

parameter X which represents the non-dimensional crack length. Finally 

asetoflinearsystemofequationsareconstructedfromsegments„i = 1,  
1 

n, of the boundary, Isida [18]. This method is shown to give results 

with an accuracy as high as 0.1%. 

1.2.2 Numerical Methods  

In this category fall the method of finite differences and finite 

elements. We briefly review these techniques as applied to crack problems. 

1.2.2.1 Method of finite differences  

This method is based on a direct approximation of differential 

equations. In this method one discretizes a differential operator at any 

point in terms of neighbouring unknown values. With regard to stationary 

crack problems Chen [19], among others, has used a Lagrangian code, initially 

developed for problems in gas dynamics; etc.,to determine stress intensity 

factOrs. As he recognises, no finite-difference technique can deal with 

unbounded strains in the vicinity of the crack tips and hence a local 

refinement of meshes seems to be necessary in order to get reliable results. 

While the mesh refinement idea for finite difference methods as applied to 

crack problems is a natural one, it is not clear how one would go about - 

establishing improved rates of convergence, and this has not been attempted. 
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As a consequence of the required mesh refinement a much larger system of 

equations must be solved. This would impose difficulties on computer 

storage and processing time of problems. Still even with the extreme near 

tip mesh refinement reported there, results obtained in the vicinity of the 

crack tip are not reliable and orie has to revert to extrapolation 

techniques beyond this zone. 

Two main drawbacks of any finite-difference scheme are the 

difficulties in dealing with general mixed boundary conditions and domains 

of arbitrary shape. However, its formulation and computer implementation 

is straightforward and does not require a great deal of experience. We 

will return to these points, in a more specific manner, in the course of 

presentation of numerical results. 

1.2.2.2 The finite element method  

This is an elegant mathematical tool in solving systems of partial 

differential equations. It is perhaps the most versatile numerical technique 

available for this purpose that can deal with general mixed boundary 

conditions over domains of arbitrary shape. 

In this method we start by writing the variational form corresponding 

to the classical partial differential equations. The domain is divided into 

a finite number of elements with piecewise polynomials describing the 

variables of interest over each element. We then try approximately to 

satisfy the variational form. 

For static problems, the technique is essentially an optimization 

problem and the exact solution corresponds to the minimum of the cost 

function involved. For problems in linear elasticity the cost function 

corresponds to the potential strain energy, i.e. the exact solution is the 

solution that minimizes the potential strain energy. 
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However, there are two basic inherent difficulties involved. The 

first is the variational formulations of a given dynamic problem and the 

second is computer implementation of any finite element method requires a 

good deal of experience and computer system engineering. 

Once a problem is formulated in finite elements one can analyse 

the problem for the errors involved with relative ease. before trying to 

implement it. And when the problem is implemented and tested the same 

routine would be sufficient for a wide variety of problems in that category. 

One of the most beautiful aspects of finite elements is the fact 

that basis functions are specified over each element as piecewise 

polynomials with their support extended over—few elements. This would 

give a unique opportunity to include any desired behaviour of the solution 

in the scheme. In particular, for the crack problems it is possible to 

incorporate the proper singular forms obtained from an asymptotic near tip 

analysis of the problem. 

Many authors have studied the finite element approximation of 

stationary crack problems, see [20], [21] and [22]. 

Tong and Pian [23] show that for problems with singularities the rate 

of convergence depends on the nature of the singularities. In particular 

for plane problems of elasticity with a sharp crack the displacement rate 

of convergence, in energy norm, is of the order 1/4. In other words using 

any finite element with polynomial basis functions of any order this rate 

cannot be improved. Chan et al .[24] have used conventional finite element 

routines and mesh refinement around the crack tip. Their numerical results 

indicate the need for a very large system of equations to be solved and 

also the very poor convergence of the solution in the zone surrounding the 
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tip. In fact, solutions away from the tip are more reliable. According 

to Nitsche [25] this is to be expected as the one-half order of 

convergence is true only on the neighbourhood of the tip and away from this 

area it is better (order one). 

Babuska [26] has theoretically supported the idea of mesh refinement 

and for domains with corners proves that by a 'proper' refinement it is 

possible to get the same order of convergence, in energy norm, as for 

smooth domains. No numerical results to show how to approximate his model-

problem are presented. However it would not be surprising if the same 

difficulties and inherent shortcomings as in [24] were to arise in the 

implementation of this scheme. 

Hilton and Sih [21] divide the plane into two regions: on the core 

region surrounding the tip singularity-imbedded elements are used and over 

the rest of the plane the usual constant strain elements are defined. With 

this arrangement the potential energy is written as the sum of energies 

from these regions. The potential energy of the static problem is then 

minimized with respect to the unknown displacements at nodes and the unknown 

stress intensity factor. The resulting system of equations would determine 

both the displacement field and the stress intensity factor. For the 

results reported,uSing this method reasonable accuracies are obtained while 

the computational time is unreasonably large for typical problems. 

Wilson [22] has surrounded the crack tip with elements over which 

different singular functions are defined to represent the proper asymptotic 

forms associated with the problem. He has analytically worked out the 

stiffness matrices of these special elements. For the case using singular 

strain triangulars at the tip in conjunction with constant strain triangles 
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the accuracy of the results is improved by increasing the number of 

special elements at the tip. The difficulty in the convergence of the 

scheme arises from the fact that these special elements are not in 

equilibrium and do not possess compatibility conditions required to match 

the neighbouring elements in the :circumferential direction, i.e. the 

convergence of the method is questionable. Indeed, while the vertex 

angle of the elements is reduced to zero to improve the accuracy we are 

violating the basic requirement for the convergence of the finite element 

method, i.e. there should be a lower bound on this angle for any element. 

It is, heuristically, accepted that incompatible elements give convergent 

results if they pass the patch test. We have implemented Wilson's SST 

elements and observed that it does not pass the patch test. 

Another couple of special elements have been suggested by Aberson 

et al [20]. They employ two special symmetric and asymmetric elements 

which contain high order asymptotic behaviour of the solution near the tip. 

The corresponding stiffness and mass matrices are then calculated analytically 

and stored, once and for all. They apply these elements for the stationary 

dynamic problems. No results for the simple static problems are presented 

to check the errros involved in the method, but good accuracy is expected. 

1.2.3 Standard Methods for Simulation of  Source Mechanism in Seismology  

Due to the complexity of possible source mechanisms of earthquakes, 

different theories have been put forward to, at least partially, explain 

some of the observed phenomena in each event. In the 'force system' theory 

[27] a prescribed pattern of single/double forces and/or couples cause fracture 

within an elastic medium. Here, the process of extension of actual rupture 

is simulated by the propagation of applied forces along the fault planes. 
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Basic tools such as Fourier transformation are normally employed. However, 

due to a large arbitrariness in adopting any pattern of forces/couples 

these results are almost inconclusive, Fig. 5. 

Haskell [28] applied dynamic dislocation theory, which was 

developed in [29], for specific dislocation functions in an unbounded 

medium. Ida [30] and Ida and Aki [31] obtained analytical results for 

propagating faults of known displacement discontinuities in the simple model 

of longitudinal shear (Mode III). The main difficulty in applying this 

theory is the lack of a priori knowledge about dislocation functions, Fig. 6. 

A third theory which is speculated to be mainly associated with 

deep-focus earthquakes is known as the 'relaxation theory' [32]. This 

theory assumes a fundamental structural change in the properties of the 

material (such as fluidization) as the cause of earthquakes. Since we 

are not concerned with this type of earthquake we will not elaborate more 

on it. 

1.3 	PATH-INDEPENDENT INTEGRALS FOR STATIONARY PROBLEMS  

1.3.1 Static Problems  

For an elastic body containing a crack Eshelby [33] and Rice [34] 

have shown that the following integral 

=
c
(wdx2

-T
i
u
i,1

dt)  

taken around any closed curve surrounding the tip in xl-x2  plane has a 

constant value. In this expression w is the strain energy density, 

, 0 
13 13 	13 	

Ti 	
a. 
 .n. is  13 3 0 

the stress component on c and u. is the displacement component. 
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Knowles and Sternberg [35] in introducing new conservative laws 

point out that J integral is actually the first component of the vector 

J
k 

= i(wn
k
-Tu

i k
) 

,
de. 

where n is the unit outward normal to c. J
1 
and J

2 vanish over all closed 

curves in a region in which w depends only on the strain c.. = 12(u. 	•)•
13 	1,3 3.1  

and in which the stresses a.. satisfy 
13 

a 

96.. 13 	31 
and 

a.. . = 0 
13.1  

This would mean that the values of J
1 
and J

2 
are constant over any path 

enclosing the crack. 

For isotropic plane elasticity Budiansky and Rice [36] have 

represented these integrals in complex variables using the complex potential 

functions 4(z) and Ip(z) (defined earlier): 

J12 = - 	
[5(4)12)dz-25(1)Wdz] 

Hellen and Blackburn [37] have derived J in terms of stress intensity 

factors as 

(1+v)(11-K1 2 2 
J
f
-1-.J.J

2 
 = 	 CK I iK  II) -2iK IK II] 4E 

where K
I
, K

II 
are mode I, mode II stress intensity factors, respectively, and 
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K = 3-4v for plane strain. 

The great attraction of Jk 
for crack problems is its path-independency. 

On the other hand, any approximation of crack problems introduce errors 

which pollute the whole region but the error is greater in a zone closer to 

the tip. 

So by choosing contours of integration c away from the tip we expect 

to get better results for Jk  values. Consequently the representation of JI„.  

in terms of KI  and KII  would immediately enable one to extract ICI  and Kn. 

Obviously Jk  can also be interpreted as the energy release rate for 

virtual crack extensions. We note that the maximum energy release rate is 
2K K 

for a crack extending at an angle 0 = tan
-1

C 
I II). 

K
2
+K
2 

I II 

1.3.2 Dynamic Problems  

In parallel to the J-integral for the static problem, Nilsson [38] 

suggests a path independent integral fordvnamic problems. In a linear 

isotropic visco-elastic material he Laplace transforms the dynamic equations 

of elasticity. The transformed equations then constitute an elliptic system 

of equations. Then with an argument almost similar to the static case it 

Can be shown that the following integral, in the frequency domain, is 

path independent 

= fICW+11pp2Ui2)dx2 -Tii 1dZ} , 

where a bar denotes Laplace transformations with the parameter p. In this 

1 -  expression w..-2a....aricIT.
1 
 .a.

1
.n. represents the 

13 13 	3 	- 

transformed traction.on the closed curve c. He shows that the value of 

is independent of the choice of c. 
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The I-integral can be written in terms of the stress intensity factors. 

For mode I crack the relation between I and K
I 
is shown to be essentially 

the same as in the static case, i.e. 

I(P) 
(1+v) (1+0 -2 

4E 	XI(P) 

However the interpretation of I in terms of the energy release rate, 

as in the static case, is no longer valid. 

Nilsson applies I-integral to an infinite strip problem with a semi-

infinite crack and by calculating the I-integral obtains the dynamic stress 

intensity factor K1. 

While this representation of stress intensity factors in terms of 

I-integral is interesting, the evaluation of I-integral for typical problems 

is extremely difficult, if not impossible. Hence this formulation for 

obtaining stress intensity factors could be regarded as a conceptual one. 

Recently Gurtin [39] has given a time-domain representation of the 

I-integral in the form 

I = 11.1[a. *u. +pu *W!]dx - fa. n *u 	ds 
c  jk 3,k 	j 3 	2 	3k k j,1 

where * denotes convolution. 

1.4 	MATHEMATICAL BACKGROUND TO THE FINITE ELEMENT METHOD  

In this section we will briefly review some standard results on the 

application of the finite element method to a model problem. The aim is to 

clarify the necessary steps in any variational treatment of elliptic boundary 
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.problems. This section is based on Raviart's lecture notes [40]. For 

an engineering approach to the finite elements one can consult [41] 

while essential mathematical foundations of the method are presented in 

[42]-[44] as well as the research papers [45]-[50]. 

1.4.1 Notation and Preliminary Definitions  

Let 0 c Rn  be an open set with boundary r = DD. We define the 

following spaces: 

(1) L (0): space of measurable functions f such that for 1 < p < 

I 	IL. (0) = (11f(x)113d x)1/13  < 
	

(p 	CO) 

IIfIIL (Q) = ess sup If(x)1 

XEn 

L (0) with the norms is a Banach space. For p = 2, L
2
(0) is a Hilbert 

space where the scalar product corresponding to the norm is given by 

(f,g) = ff(x)g(x)dx 

c
m
(R
n
) denotes the space of infinitely differentiable functions in R

n 
and 

c (0) comprises elements which are restrictions of elements in cw(R
n
) to c. 

CO 

(2) D(0): space of c functions with compact support in 0; for a given 

sequence(1).ED(Wwewillsaythat in D(0) if (P3  

(i) The. have their support in a fixed compact subset E of Q; 4)3  

(ii) We have D
a
(I)
j 	

0 uniformly on CI, for all a where 

a = (al aN)' 	I a. > 0 integers  — 
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IaI 	G 
cN 

ai  

N 	a. 
Da¢ = II ( -) 14 

i=1 3xi 

94, 

(3) 	D'(0): space of distributionsLover SI i.e. spaces of forms ¢ 	(f,¢), 

which are linear and continuous on D(0) (i.e. (f,¢) 	0 when ¢
i 	

0 in D(S2)). 

We willsaythatf.÷f in D'(0) if (f.,¢) 	(f,¢), for all ¢ E D(0). Now 

suppose Q is a Lipschitz domain, defined as follows: 

Definition 1  

A region 0 c EN  (N-dimensional Euclidean space) is called Lipschitz 

if it is bounded and its boundary r has the following properties: 

(i) To each point x c I' an open hypersphere sx  about x exists, such 

that the intersection s
x 
n r may be described by means of a Lipschitz function 

and, 

(ii) sx n r divides sx 
into exterior and interior parts w.r.t. 0. 

We may now introduce the Sobolev space W1.11.1)  (0) of order m on L (n). 

Definition 2 

For any integer m > 1, any 1 < p < 

MiP W 	(0) = I v L (0), Da E L (0), IaI < m} 

with the norm 

Ilv il 10, n 	( 	)11P, m,- 	P,0 
la <111  

where 

II'llp,0  = (111'11Pdx)11P  

1 < p < co 

It is a Banach space. 

i=1 
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Notation 

IM.Prn = ( 
	IIDCIVW)  

la =M 

1 
denotes semi-norm, 1 < p < co. 

For p = m 

111/11 	= max {11Dav11.0; 0<jal<p} 
m,'in 

Ivl 111 	
= max {hp% 

,'"Fn I I cc 1=m} 

and 

As a special case for p = 2 we have the Sobolev space, Hm(Q) = W
m,2

(0). 

It is a Hilbert space. 

We have 

D(0) c Hm(r2) 

So we may define 41(6) as the closure of p(0) in Hm(Q). 

1.4.2 Abstract Variational Problems  

We are given: 

(i) V (real) Hilbert space with norm 11.11 

(ii) A bilinear form u, v a(u,V) continuous on V 

There exists M such that la(u,v) 1 < MIlull'Ilv11 
f 

(iii) A linear continuous functional
k 
defined on V 

Let us denote by V* the dual of V 	 pace cf linear Cci Jirtuo,"C .fiRckc.ist 

Given f c V*, (f,v) value of f on V 

1 111 1* = sup l (f iv )1  
11 v 11 vEV 
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The problem (P) is as follows: 

Find u E V such that 
(P) 

a(u,v) = (f,v), for all v E V 

Fix u and consider v ÷ a(u,v) : V 4- R then there exists Au E V* such that 

a(u,v) = (Au,v), 	for all v E V 

Claim  

A c L(v,v*) 

in fact 

or 

sup  Au,v)1 _ 
v
sup 

IlAull* = 
vEV 

I( 
 Ilvil 	DEV 

a(u,v)I  

111711 	Miluil  

  

 

nen 

 

The problem (P)lican, equivalently, be written as 

( Find u E V such that 
(P) 

Au = f 

Definition 3  

The bilinear form a(u,v) is called V-elliptic if there exists a 

constant a > 0 such that 

If 
a(v,v) > allvil

2  , 	for all v E V 
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Theorem 1 (Lax-Milgram) 

Assume that the bilinear form a(u,v) is V-elliptic, then the 

problem (P) has a unique solution. This result is proved by simple 

application of the Browder Fixed Point Theorem [51]. 

Adjoint Problem  

We introduce the adjoint bilinear form 

a*(u,v) = a(v,u) 

a(u,v) 	A 

Similarly a*(u,v) 	A* = adjoint of A. The bilinear form a(u,v) is 

symmetric if and only if 

a(u,v) = a*(u,v) 

Introduce J(v) = -11a(v,v) - (f,v) and find u E V such that 

J(u) = Min J(v) 
vEV 

Theorem 2. 

Assume that a(u,v) is symmetric and V-elliptic, then there exists 

a unique u E V such that 

J(u) = Min J(v) 
veV 

Moreover, u is the solution of the problem (P). 
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Theorem 3 (Poincare-Friedrichs) 

Assume that c is a bounded open set in R
n
, then there exists a 

constant c = c(0) such that 

11v11 0,n ...5_, c1v1 1,0 	 for all v e 	
1
(o) 

where 

Ho(0) = {v e H
1 (n), v =0} 

Theorem 4 

Assume 0 is bounded. Then the semi-norm 1'1m, f) is a norm over the 

space H(0) which is equivalent to the norm [HI 
.0 

Theorem 5 

Assume that CI is Lipschitz. There exists a constant c = c(0) such 

that 

livil L2 ( r ) f_clIvil l,o 	,for all v E C (0) 

Theorem 6 

Assume Cl is Lipschitz. The space c. (Cl) is dense in H
1
(0). 

w Now define y
0 
 : v > vl r  : c (0) 	L

2
(N. 

Trace Theorem 

There exists a constant c such that 

Il virIlL (r) f-cilvklin ,for 
all vE H1  (0) 

2 

Green's Formula 

Suppose u and v are smooth. Then 
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fy-au vdx = 	dx + f 	, for all v E c1(0) 

0 0 
3x.
I 	

@x. 

where v = {v
1 	

} is the outward normal to the boundary r. 

Example 1  Dirichlet Problem (bounded 0) 

V = H
1
(0). Given c E L 

co
10), c > 0 almost everywhere in 0. Define 

N n n  

a(u,v) = ff y -u -v 	cuv}dx 
Dx. Dx. 

0 i=1 

(f,v) = f fvdx; 	f E L
2
(0) 

By the Cauchy-Schwarz inequality a(u,v) and (f,v) are continuous. Also 

we have 

Ov 12 	12 	
f r 	1 

a(v,v) = 	1-- -1 +civi }dx> X 	1--
Ov -
1
2 
 dx 

	

n 1=1 axi 
	 Dx. 

i=1 0 

Or 

a(v,v) > 1v12  
— 	1,0 

(semi-norm) 

Since 1v11,0 is a norm equivalent to Ilvil1,0 we have 

It 	112  
a(v,v) > Clivi1 1,0  

i.e. a(u,v) is V-elliptic. 

Applying abstract results we conclude that there exists u E H
1
(0) 

such that 

1 
a(u,v) = (f,v), 	for all v c H (0) 

0 
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Interpretation of the Problem  

1 
We know that D(fl) 	H (0), therefore 0 

fl ax. Dx . V 911 4  +cOldx = ff(pdx, 	for all 4) E D(0) 
0 d=1 	.r) 

Also by definition of distributional derivatives 

x 
<Du ,cp> = -<u, acf) 
ax. 	D. 

1 
Hence 

<-Au+cu,(P> = <f,(1)>; 	for all 4) e D(n) 

(6. t's 	Lariacc. cTara( -or  
So 

-Au + cu = f in 	(in distribution sense) 

U E H
1
(0) 

i.e. homogeneous Dirichlet problem for the operator (-A+c). Note that u 

1 
minimizes J(v) = 1.1a(v,v) - (f,v) over H

0 
 (n). 

Essential and Natural Boundary Conditions  

Given the following elliptic boundary problem 

Lu = f in 0 

	

= gj  on r; 	j = 1, 

where L and B. are differential operators of order 2t. and m., respectively. 
J 	 J 

TheboundarYconclition • 

	

Bju 
	] 	 7 

Otherwise for m. > Z the boundary conditions are natural. Natural boundary 
7 — 

conditions are not imposed on u in the variational problem as they are 

N 
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automatically satisfied by the minimizing u. However, the admissible 

solution u must, necessarily, satisfy the essential boundary conditions. 
This is ;Pus 	et. f I rro.  er.alte 
Example 2  

-Au + cu = f in 

u = 0 on r 

au 
= 0 on r 1 

(essential boundary condition) 

(natural boundary condition) 

Take 

V = {V E Hi  (0) IvI r =0} 
0 

 

We show that V is a closed subspace of H
1 (n).- -By trace theorem the mapping 

v vl 	vl r  is continuous. So if v
i v0 	r in H1(0) and v.I 	= 0 thenr

0  
by continuity of the above mapping vo ir  4- 0 and therefore V is a closed 

0 

where 

and 

/ Find u E v such that 

a(u,v) = (f,v), 	for all v E V 

, 3u av 
a(u,v) = 	ax ax  +cuv}dx

•  3. 

(f,v) = f fvdx 

By the general theory, a unique solution u E H
1(n) exists. To interpret 

suppose u E H
2(0), then in particular 

a(u,4) = (f,(P), 	for all (1) E D(n) 

subspace of H
1
(Q). The problem can, equivalently, be written as 
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implying 

for all (I) E V 

But by Green's formula, for any 4) E V 

giving 

(-Au+cu,(P) = (f,(1)) - 
f Du 

,(Pcli, 
r i  

f av 
 Du  (Pdy = 0, 	for all 4) e V 

21- = 0 on  r1  
1 

Or 
r1  

for all (t) E V 

i.e. the natural boundary condition is satisfied. 

1.4.3 The Approximating Problem  

In the approximation of the problem (P) basically we replace V by a 

finite-dimensional subspace V
h 
c V. So the approximating problem (P

h
) can 

be expressed as 

Find u
h 
c V

h'
such that 

(P
h
) 

a(u
h
,v
h
) = (f,v

h
), 	for all u

h 	
V
h 

Then from Lax-Milgram theorem we know that there exists a unique solution 

u
h 

V
h 
of (P

h
). The, approximation error is given by the following: 

Theorem 7  

For the problem (P
h
) there exists a constant c independent of vh 

such that 

Ilu-uh
II <_c inf Ilu-v

h
II 

v
h
cV
h 
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Graphically: 

Proof 

We have 

a(u-uh,wh) = (f,wh) - (f'
w
h
) = 0, 	for all w

h 	
V
h 

Also 
0 

a(u-u
h
,u-u

h
) = a(u-u

h
,u-v

h
) + a(u-u

h
,v
h
-u
h
), for all v

h 
E V

h 

Since 

a(u-u
h 	h — 
,u-u ) > allu-u

h
I 12 
	

(i.e. a(u,v) is V-elliptic) 

and 

a(u-uh
,u-v

h
) < MIlu-uh11.1Iu-vhII 	(i.e. a(u.v) is continuous) 

We conclude 

or 

Remark 1 

a llu-uh11 2 	MIlu-uhli'llu  

1111-Uh
IIIlu-vh

11 <inf. 	-ciltIlu-vh11 
v
h
cV
h 

   

Suppose a(u,v) is symmetric. Then J(u) = Min J(v) and J(uh
) = min J(v

h) 
vEV 	v

h
EV
h 

GiventhatVil issparmedblrbasisfunctionsftddj=1,...,0 i.e. 
M 

uh = .X.ajwi; a. ER.  
7=1  
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The problem (Ph) is written as 

a(u
h
,w
i
) = (f,w.

1
), 	1 < i < m 

or 
M 

	

a(0).,wJa. 	(f,(0.), 	1 < i < M 
3 	3 j=1 

where a(w.,w.) represents the (j,i) element of the stiffness matrix. 
3 1  

Remark 2  

a(u,v) symmetric implies symmetric stiffness matrix and V-ellipticity 

implies positive-definiteness of stiffness matrix. 

1.4.4 Interpolation Results  

In the finite element method a knowledge of the errors involved in 

interpolating a function is of fundamental importance. [52] unifies 

previous results in this respect and develops new results. We review some 

of these results that we need later on. 

1.4.4.1 Lagrange interpolation  

Given an integer m > 1, let Pk  denote the space of polynomials of 

degree < m defined over Rn  and we let 

• N = N(m1) = dim Pm 

We shall say that N distinct points a
i 
of R

n 
form an m-unisolvent set 

providedthatgivenanyrealnumbersa,1 < i < N, there exists one and 

only one polynomial p e Pm  such that 

p(a
i
) = a

i
, 	1 < i < N 
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Given a function u defined on an m-unisolvent set E, we say that u is 

its interpolating polynomial if it is the unique polynomial of degree < m 

with the property that 

1,1 

u(a.1
) = u(a.), 	1< i< N 

Let Z. = {a
i
,N 
i=1 

and 2 = {al}N 
i=1 

be two sets of N points of R
n
. Then we 

say that the two sets are equivalent if and only if there exists an 

invertible element B E L(Rn) and a vector b E Rn  such that 

a. = 	b, 	1 < i < N 
1 1 — — 

We say that a subset K c R
n 
is a E-admissible if and only if 

whenever it contains a point x, it also contains the closed-segments joining 

thepointsxanda.
1
,for all 1 < i < N (i.e. K is a star-shaped with 

reference to any point of E). 

Given a function u : K R, we say that u belongs to the class .  

T
k+1

(K) if and only if the Taylor formula 

1 	1 	 
u(a.) = u(x) + Du(x) (a-x) + ... + k — D

k 
 u(x). (a -x)

k 	
D
k+1

u (n + 	. 	x) 
16 

1 	1 	! 	i 	(k+r) ! 	1 (x) ) (a .- 

holds for.all points x E X and all 1 < i < N, where 

n.00 = O.x + (1-0.)a. for some 0 < 0. < 1. In particular, this will be 1 	1 	1 1 	1 

the case if K is the closed convex hull of E, u E C
k
(K) and D

k+1
u(x) 

exists for all points x in K. 

Given a set E = {a.
i
}
i
N  
=1 

we denote by K = K(E) the closed convex hull 

of E, and we associate with K, the two following geometrical parameters: 
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h = h(E) = diameter of K 

p = p(E) = sup {diameter of the spheres contained in K} 

(in many applications, K is an xi-simplex, so that p is the diameter of the 

inscribed sphere). Likewise we define p, h for K and E. If E is any 

0 
k-unisolvent set (k > 1), the interior K of K is non-empty, so that p > 0. 

Theorem 8 

N 
Let E = {a

i}i=1 
be a k-unisolvent set of points of R

n
, with h and p 

defined as before. Let u E T
k+1

(K) be given with 

s l , 
Mk+l 

= sup ti IDk+1  u(x) ; x e K} < +co 

If u is the unique interpolating polynomial of degree < k of u we have 

for any integer m with 0 < m < k, 

( 1) sup { I I Dinu (x) -Dmu (x) II; x€ K} < cMk  

 

hk+1  

+1 pm 

for some constant 

c = c(n,k,m,E) 

which are the same for all equivalent k-unisolvent sets and which can be 

computed once and for all in a k-unisolvent set E equivalent to E. II 

Remark 3 

It is clear that the estimates of (1) for m > 1 are better when 
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the ratio h/p is small. The intuitive significance of this is that one 

should not consider k-unisolvent sets E whose closed convex hull is "too 

flat", i.e. which is "almost" contained in an (n-1)-dimensional manifold 

of R
n
. For example, if K is a 2-simplex (i.e. a triangle) in R

2
, one 

has the estimate 

1 	2 

—
0 

< 

2 tan 	
— p 

< 
— sin 0 

2 

where 0 is the smallest angle of K.111.15 shows the smaller 0 is the poorer 

the estimate. 

1.4.4.2 Interpolation in Sobolev spaces  

We denote by (Wm'P(0))' the strong dual space of Wm'P(0), by (f,u) 

the pairing between an element of f E (Wm,P  (0))1  and an element u E Wm,P(W. 

and by 

I I f l l 	
v E W

i*11,13,52 
m,p,o  = sup 	(f,v)  

I
IlvIl l 	

m,P ; 	(0),V/0} 

the dual norm. We have the following lemma. 

Lemma 1 

Let 0 be a bounded open subset of Rn  with a continuous boundary 

(in the sense of Ne5as), let r be given with 1 < p < 00, let k > 0 be a 

fixed integer and f E (W
k+1,p

(0))' be such that 

(f,u) = 0, 	for all u E P
k 

Then there exists a constant 

c = c(n,k,P,c) 
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such that 

k+1,p ,for all u E 	 (0) 1(f,u)1 < 	lulk+1,p,0 	W  

Lemma 2 

Let n be a bounded open subset of Rn  with a continuous boundary, 

let p be given with 1 < p < co, let k > 0 be a fixed integer and let m be 

an integer with 0 < m < k+1. Let Tr e L(W
k+1,p

(0); W
m,p

(0)) be such that 

7TU 
	

for all u E P
k 

Then there exists a constant 

c = c(n,k,p,O) 

(the same as in Lemma 1) such that 

1 lu-lrul 1 	< CI 1 I-Trl 1 FP 	
lul 

k+1,p,0 m,P,n 	
L(w(n);Wm  (n)) 

for all u c w
k+1,p

(0) 

We need to define the notion of equivalent domains. Let n (resp. n) 

be a bounded open subset of R
n
. Then we say that 0 and n are equivalent 

if and only if there exists an invertible element B E L(Rn) and a vector 

b E Rn  such that 

A 	 A A 

0 = {x E R
n
; x=Bx+b for each x e 0) 
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. With each function u defined over 0, we associate a function u defined 

over 0 by letting 

A 	A 

11(10 = u(Bx+b) 	for each X c a 

It can be shown that the correspondence u u is an isomorphism between 

m,p 	m/P W 	(0) and W 	(0) for each m and p. 

m,p 
Likewise, if u is an element of L(W

k+1,p
(0); W 	(0)), we 

associate with u an element Tr E L(W
k+1,p

(); W
Mrp 
 (0)) by letting 

^^ A 
cru = 71- u 	for each u E W

k+1,p 
(n) 

It can easily be seen that P
k 

is left invariant by u if and only if it is 

left invariant by 

Theorem 9 
Lpsck■-4% 

Let 0 be a bounded open subset of Rn  with aJ\continuous boundary, 

let p be given with 1 < p < co,• let k > 0 be a fixed integer, and let m be 

, k+i,p 	m/P an integer with 0 < m < k+1. Let u E L(W 	(0); W 	(n)) be such that 

uu = u, for all u E P
k 

Then for any u c W
k+1,p

(0) (and for h small enough if p < co, i.e. h < p), 

k+1 
Ilu-uull 	< Clul 	h 	 

m,P,0 	k+1,p,0. pm 

for some constant 
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C = C(nrk,pAir) 

which are the same for all equivalent domains 0 and which can be computed 

once and for all in a domain 0 equivalent to 0. 

Now we shall apply this theorem to finite elements of Lagrange type. 

Remark 4 (Sobolev embedding theorem) 

Let 0 be a bounded open subset of Rn  with Lipschitz continuous 

boundary. Then 

Lq(0)
1 	1= — - — 1 if — 	> 0 q p n 

W
(1,P(Q) c 	Lq(0)

1 	1 
n 

= 0 for all -q,- 
p 
— - —  

c06) 	1
- 
 1 — — < 0 

p . n 

Then one can conclude 

Wm'cl 
(0) 	if  1_ 1 	k+1 - m> 0 

q p 

W
k+1,p

(0) 	W
m,q 	1 	k+1 - m 

(0) 	for all q, 	= 0 

Cm (ii) 1 	(k+1 - 	< 0 
p 	n 

Theorem 19  
^ ^ 

Let the triple (K,E,P) be a finite element of Lagrange type. 

Assume that-. 

W 	(K) c CO  (K) 

k+1,p 	m,q 
W 	(K) c W 	(IC) 	(continuous injection) 

and 

2k ci c wra'q (k)  
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find u
h 

E V
h 
such that 

(P
h
) 

a(uh,vh) = (f,v ), for all u
h 

E V
h 

Then for any u E Wk+1,p(K) 

1 1 	hk+1 

H u-Trull
m,q,K

c meas (K) 	
k+1,P,K km 

k 

for some constants 

c = c (K,E,P) 

which are the same for all affine equivalent finite elements (K,E, P) and 

which can be computed once and for all in domain K equivalent to K. 

1.4.5 Error Estimates in the Finite Element Method 

Recall the problem (P) 

find u e V such that 
(P) 

a(u,v) = (f,v), for all u c V 

and the approximating problem (Ph) 

where Vh  is a finite-dimensional subspace V
h 

V. 

Assume 0 is a polyhedral domain in Rn, Th  a collection of subsets K. 

Assume: 

(i)  

(ii)  

= U K 
KETh  

K is a closed polyhedron whose diameter.< h 
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(iii) 	any (n-1)-dim face of K is either a portion of the boundary 1' 

or an (n-1)-dim face of an adjacent element. 

Associate K 	(K,EK,PK) 

pK 
c C°(K) fl H

1 
 (K) 

We have the following: 

Theorem 11  

Given 

V
h 
c Co  (S2) 

Pk  c H1 
 (K) , 	for all K c Th 

then 

V
h 
c H

1 
 (0). 

Definition 4 

holds: 

where 

A finite element (K,E,P) is a C0-element if the following property 

For any (n-1)-dim face K' of K, the set EI
K' 
 =EnKis PI

K'
-unisclvent 

PIK1 	PEP}  

Definition 5 

The triangulation {(K,EK,PK)IKE Th} is a C°
-triangulation if the 

following conditions hold: 

(i) each element (K,EK,PK) is a C0-element 

(ii) for any pair of adjacent elements K1, K
2 
E T

h 
we have 
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Eft n K
2 
= E

K 
n K

1  
1 	2  

PIK I K' = PI

K2

I KI 
where K' = K

1 
 n K

2 
1 

II 

Define X
h 
= {v ECO  (0) ; for all K E T

h
, vI

K 
c P
k
} it follows that 

Xh  c H
1 
 (n). 

Take 

E
h KET 

= 	E = {d.o.f.  . of function v e X
h
} 

h 
K 

u
h
v = X

h 
interpolate of v on E

h 

By definition nhv E Xh.For v E CO  (f2): Nv(a) = v(a), for all a e Eh. 

Also we have the obvious result: w
h 
 vl K = n v. 

K 

Definition 6  

Let T
h 
be a family of triangulations of Q. We shall say that T

h 

is an affine regular family of triangulations if: 

(i) all (K,E
K
,P
K
) are affine equivalent to a reference finite element 

(K,E, P), 

(ii) there exists a constant a > 0 independent of h such that h
K 
 <ap

K
, 

—  

for all K E T
h
. 

Theorem 12 

Let T
h 

be an affine regular family of CO-triangulations of n 

associated with the reference finite element (K, E, P) which satisfies: 

p
k 
c P c C°  (K) n 111(R) 

for some integer k > 1 with k+1 -> 0. Then if u E H
k+1

(0), there 
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exists a constant c > 0 independent of h and u such that: 

k Ilu-u
h

i 1 
1,S ch julk+1,0 

Corollary 1 

From Theorems (3) and (12) we conclude: 

< ch
k  

Ilu-u lui II h 0,0 — 	k+1,0 

However using the duality argument of Nitsche we can get better 

estimates i.e. 0(h
k+1

). To do so we introduce.the following: 

Take V and H two Hilbert spaces with inner product and norms as: 

H <>(.,-), I-I 

V <> 	II 

A E L(V,V1 ) such that a(u,v) = (Au,v) and A
1 
exists also the adjoint 

bilinear form a*(u,v) = a(v,u) = (A*u,v) and (A*)
-1 

exists. 

Theorem 13  

Let the spaces V and H satisfy the above properties. Then 

lu-u
h 
 I < 	 u-uh  II sup 	1 inf 	II(A*)g-(P

hII) # 

	

gEH 	cplIEVh  

Definition 7 

The adjoint problem is regular if A* is an isomorphism 

A* : H
2 
 (C)) n V 	L

2
(CI). 
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If f E L2(c) then one can show that for sufficiently smooth 

boundary r, the solution to the adjoint problem 4 = (A*)
-1
g E

2
()) 

In fact using Kontradev's results (to be explained in the next chapter) 

one can conclude that for polyhedral convex domains I I I 2,0 < cl I fI I 0,0' 

Using Theorem 13 we have: 

Theorem 14 

Assume n < 3. Let {T
h
} be an affine regular family of C--0  

A A A 
triangulations of 5 associated with a reference finite element (K,E,p) 

such that 

A 	 A  
.p
k
cpcc 0(K) n H

1 
 (K) 	for some integer k> 1 

Assume that the adjoint problem is regular and that u E H
k+1

(0). Then 

there exists a constant c > 0 independent of h and u such that: 

6,0 ch
k+1

lulk+10 

Remark 5 

Nitsche also gives the following estimates (p = 00): 

Ilu-uHII 
	

< ch
k
'lull k+1,00 

 W 	(0) 	W 	(n) 

Il u-uhll 
L 

chk+1 Ilull 
(0) 	w 

k+1,m (n) 
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Chapter II 

ANALYSIS OF THE STATIC CRACK PROBLEM 

In this chapter we are concerned with the questions of existence 

and uniqueness of solutions to crack problems. We also study the 

regularity of solutions to the problem and obtain estimates for the errors 

involved in our approximating scheme. 

With an extension of the definition of Sobolev spaces, it is shown 

that the bilinear form in the problem is elliptic on slit domains. With 

this property, one then uses the usual arguments to establish the 

existence and uniqueness of solutions. 

Some general regularity results *for solutions to equations of 

elasticity are obtained. Results concerning smoothness of solutions on 

convex domains and domains containing cracks are treated as special cases. 

In particular, it is shown that the solution near a vertex of the domain 

can asymptotically be expanded into 'smooth' and 'singular' parts. 

Estimates, in terms of data, for the "smooth" part are also derived. 

Furthermore, by using the 'singular' functions in our approximating 

subspaces we obtain estimates for the rate of convergence of the solution 

which are known to be the best in both L
2 
and H

1 
norms. 
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I.1 	VARIATIONAL FORMULATION OF ELASTIC BOUNDARY VALUE PROBLEMS  

Consider the equations of elasticity in a Lipschitz domain S2 with 

boundary r. 

aik,k (u)-1-1(.=0 	in 0 	 (1) 

where the generalized Hookes law 

aik(u) = Ciktmtm(u) 
	

(2) 

and the strain-displacement relations 

Eik(u)  = "ui,k4uk,i) 
	

(3) 

hold. Here ui, eik  and aik  denote the components of the displacement 

vector u, the strain tensor e and the stress tensor a, respectively. We 
@u. 

use the usual summation convention and write u
ik 

- 	The elastic 
, 

 

coefficients C. 	are assumed to be measurable and bounded on ) and 

satisfy the symmetry relations: 

C 
a
n  =,C 	= C

Z 	
(4) 

Lm kam mik 

We also assume 	the ellipticity property: 

3 
r 2 

Cikx_ I)  m  (X)  iktm — > 	2, E 	 for some 1.10  > 0 (5) 
0 i,k=1 

C
. 

Consider initially the boundary conditions: 

- 50 - 



(6)  

and 

a
ik 

n
krF 

= f. (7)  

(n
k 

is the component of the unit outward normal n to r) where r is an 

open subset of r, and rF  is its complement. Let the body forces 

Ki eL2(c)andsurfscetractionsf.
1 
 EL2(r) be prescribed. We comment 

on more complicated boundary conditions below. 

To adapt this problem to the general abstract framework of Chapter I, 

introduce 

1 	3 
H (0) 

V ={viv e V, v.; =0} 	 (9) 0 	ru  

In view of the trace. theorem, V
0 
 is a closed space. 

The bilinear form is taken as: 

a(u,v) = f 	a..(u)c..(v)dx 
0 i,j=1 

ij 	1] 
(10) 

and the linear fun,ctional g  E V
0 
 is defined by: 

g(v) = f K
i i 
vdx 	v f f. dy 	(11) 

1 i 
rr  

We address the abstract problem: 

f

find u e V0 
such that 

a(u,v) = g(v), for all v E V0  

- 51 - 
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A solution to the abstract problem may be interpreted as a solution to 

our problem; indeed taking v e (D(0))3 we see a solution u to the 

abstract problem satisfies: 

a
ik,k

(u) + K.
1 
 = 0 
	

(13) 

(in a distribution sense), and (assuming that u e (H
2
(0))

3 
which it is 

probably not) an application of Green's theorem shows: 

aikn
k 

= f
i 

on rF 
	 (14) 

of course u satisfies the remaining boundary condition by definition of 

V0.  

11.2 EXISTENCE AND UNIQUENESS RESULTS  

Existence and uniqueness of solutions will follow from the previous 

chapter, if we can establish V-ellipticity of the bilinear form a(.,.). 

Definition 1 

The system of operators e..(v) is called V-coercive if there exists 

a constant C > 0 such that: 

f c..(v)c..(v)dx + fv
1

' 12  .v.
1
dx > C li vli

V
, for all v E V 

1] 	1] 	-  (15) # 

The following result is proved in [53]. For more smooth domains 

see [60]. 
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• Theorem 1 

Forilaldpschitzdomaill,c..(v) is V-coercive. 

This theorem asserts, loosely speaking, that the norm on the linear 

combinations of derivatives implicit in c.. is equivalent to the norm on 
ij 

the derivatives themselves. 

Remark 

For a more general domain having the cone property, Gobert [54] 

using the theory of singular integrals has proved that c
ij
(v) is again 

V-coercive. 

Now, using the property that the boundary condition ud, = 0 
1 IU 

excludes rigid-body motion, we may deduce the following: 

Theorem 2  

For V defined as above, a(.,.) is V-elliptic. 

Whence the problem has a unique solution. 

Proof of this result [53] uses the compactness of the injection 
3 

V 	(L
2
(0)) to get the Korn's inequality: 

,,2 
V 

fcik (v)E
ik 

 (v)dx > c
0 
 livil , all v 	V, for some Co  > 0 (16) 

Korn's inequality together with the ellipticity property gives the 

desired result. 

11.3 MORE GENERAL BOUNDARY CONDITIONS  

The existence and uniqueness results of the last section also apply 

under more general conditions along the boundary. 

Let us assume the following decomposition of the boundary r: 

- 53 - 



r= r
U 
u r

F 
 u r

K 
 u r

V 
u N 
	

(17) 

meas N = 0 (N = a set of surface measure zero) 

where r 
U 
 , r 

F 
 , r

K 
 and r

V 
 are mutually disjoint sets, which are either 

empty or open in r. These sets are defined for: 

Ul
rU 

= uo  

unlr

ik
n  k I F = f. 

r 

= 0, 	T 	= 0 

K 	t rK 

utir = uot' TnIT 
=

V  0 
	 (21) 

V 
where u

n 
and u

t 
= {u.

t
.} are normal and tangential components of displacement, 

respectively. 

and 
	u =un, u 	=u -unn, 	j, k = 1, 2, 3 	(22) 

n 	kk 	tj 	j 	iij 

= a.n - a n.n n., 	j, k = 1, 2, 3 	(23) T =a nn, Ti 	
i ik i k 	t3 	3k k 	k k 3 n 

T
n 
and T

t 
= {T t } denote normal and tangential stresses, respectively. 

j 

Now we introduce: 

W = {V E V 111 
n 
I, =0 and u

t
I
A
=0} 

A
n 	t 

	 (24) 

where 

A = {XE r, u = u } 
n 	n on 

 

and 

A
t 

= {x E r, u
t 
 = u

ot } 

(18)  

(19)  

(20)  
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Also define 

Bn  = {xcr, T
n 
 =f 

n
} 	 (25) 

Bt = {xEr, T
t 
 = ft} 
	 (26) 

We consider the problem (1)-(5) with the more general boundary conditions 

(17)-(21). By a weak solution we mean a function u e W such that: 

a(u,v) = b(v), 	all v E W 	 (27) 

where 

and 

b(v) = fkv
i
dx +ff

n
v
n
ds +ff

t
v
t
ds 

Bn 
 B

t 

K
i 
 E L

2  (n), f n  ns  ftj, ftj .n  si  n E L2  (r); i, j, s = 1, 2, 3 

If the boundary conditions exclude rigid body motion, it may be shown 

that a(-,.) is again V-elliptic. 

If rigid body motion is possible, we may still demonstrate existence 

and uniqueness of solutions in the class of functions, modulo rigid body 

motions, provided the body forces are invariant under rigid motions. 

Thee result.s are summarized in the following theorem [53]: 

Theorem 3  

Let any of the following conditions be satisfied: 

(i) r 	0 
	

(28)' 

(ii) v =a+axrimpliesv= 0, allveW 
	

(29) 
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(iii) 	(v = a + 	x r, v
n

I
A 
 = 0) implies v = 0 
	

(30) 

(a, S are constant vectors and r denotes radius vector). 

Then the Korn's inequality 

r „ 	2  „ JE
ik
(v)dx > oily!'

vr 
ail v E W, for some c > 0 (31) 

holds, one and only one solution u E W to the mixed boundary value 

problem exists, and the inequality 

ilullw 	c(IIKII
(L2(0))

3 	
14 

(B ) 	liftli
(1,2(Bt))3

) 	(32) 
2 n 

holds for the solution. 

11.4 APPLICATION TO SINGLE-MODE CRACK PROBLEMS  

Due to non-standard nature of boundary value problems on non-smooth 

domains (including domains with cracks), existence of a unique solution 

to these problems does not follow from well-known theories on elliptic 

boundary value problems. 

However, the results of the previous section for Lipschitz domains 

can be adopted for symmetric crack problems. Since in 11.3 we dealt with 

a rather general decomposition of the boundary we show that single-mode 

crack problems (i.e. the three basic modes of fracture) can be considered 

as mixed boundary value problems on Lipschitz domains but with more 

complicated boundary conditions. The problem of mixed-mode cracks will be 

analysed in Section 11.5. 
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A. 	Crack in Pure Tension (Mode I) 
(SeeeAdyffoschapter) 

An example for this problem is given in figure 	Using 

conditions of symmetry this problem can be reduced to that of figure (2) 

with the indicated homogeneous boundary conditions on the crack line. 

Obviously ru  is empty in this case. However, from other boundary 

conditions it can be verified that the condition (29) holds. For this 

problem 
2 	3 

r
V 
 = 4), r

k 
= u r

k. 
and r

F 
= u r

F. 
(nonhomogeneous 

i=1 i 	i=1 
conditions only on r

F 
) 

_ 
 

and therefore 

r = r
K U 

r
F 

With the condition (29) satisfied, the existence of a unique solution to 

this problem and its continuous dependence on the data,follows from 

Theorem 3. 

B. 	Crack in Pure Shear (Mode II) 

We consider the problem of figure (3) and reduce it to figure (4). 

Here F = 0 and we have the following decomposition of the boundary r 

3 	2 
rk  = O, rF  =ur

F 
 ,r

V 
 =ur

V 	
(nonhomogeneous conditions 

 
i=1 1 	i=1 

only on rF  ) 
3 

i.e. 

F = rV u r
F 

Again it can be seen that the condition (29) is satisfied whence by 

Theorem 3 a weak solution exists and is unique. 
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C. 	Crack Under Anti-plane Loading  

This simple problem is shown in figure (5). As the symmetry of the 

problem with reference to the crack line indicates there is no rigid body 

motion and F = 0. With the condition (28) satisfied, Theorem 3 gives 

the desired results. 

So the question of existence and uniqueness of solutions to the 

single-mode crack problems was resolved in this section. 

11.5 MIXED-MODE CRACK PROBLEMS  

To establish existence and uniqueness of solutions, under conditions 

of combined loading on domains with cracks wd r rieed to introduce Sobolev 

spaces on slit domains. 

The difficulty in defining such spaces arises from the fact that we 

must permit elements in the space to take different values on either side 

of the crack line. Consequently we cannot define them as restrictions 

of functions defined on the whole plane. The required modifications were 

suggested by Vinter. 

11.5.1 Sobolcv Spaces on Slit Domains  

Take 0, an open, connected subset of R . 

Definition•2 

K 
c is a regular slit domain in case there exists a family {0.}. 

1 1=1 

of subsets such that 

0 = U0. 
. 1  

and 

(i) for each i 0. has non-empty interior, is bounded, connected with 
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z  

01 

51. 

0 - 	0 
lapschitzboundaryD0,=0\0 (c denotes closure, 0 denotes interior). 

0 	0 
(ii) 0 n0

j 
= 0, i 	j. 

(iii) (boundary measure) In n i+1
I > 0, i = 1, ..., K-1. 

The 0.'s are not assumed open or closed. 

Example  

Assumption (iii) excludes such domains as 

Or 

Definition 3 

ao 
We say (!) E C (0) in case 4  is infinitely differentiable for all x E 

,K 
and there exists a collection 

{()ii=1 
of el(R

n
) elements such that 

=i = 1, 2, ..., K 
0. 	(1) i Q. 

(0.'s as above). 

Definition 4 

H (0), k > 1 integer, is the completion of C (0) with respect to 

the inner product 

(u,v) 	f De4UDavdx 
1:1<k 
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- H
k
(n) is the completion of {4) EC

m 
 ( 7
n 
 ) I supp 	ci-2) with respect to inner 

product (u,v) 	f euDavdx 
la l <k 

Proposition 1  

The mapping 

a , 
U 	ul: H

k
(0) 4- H

k 
 (o.) 

is continuous and onto (for each i). 

Proof  

(i) Since 

IuI
k 	1111 Hk(0) H (0,) 

the mapping is continuous. 

k 0 	k 
(ii) Choose j E H (0i). By definition of H (0i), 1p is the restriction 

ofsomeipcHke).Wemaychooseasecluencefj-in C (R
n
) such that 1P3  

tp in Hk (Rn ) 

Select 

(1)., = 	, 	i = 1, 	K, 	j = 1, 2, ... 
13 	3 n. 

1  

m 
Then, for each j, {()ij

} 
i=1 

defines an element 	E C(). Further, 

1,. 	41 
Q 
 in H (0) 

and 

k 0 
= ip in H (0,) 

0. 	0, 
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Thus 	E H
k
(P) has restriction tp. Recalling that ip was arbitrary, the 

mapping is onto. 

Write 

  

E. = E. n 3C2 
1 1 

 

Definition 5 

  

 

00 

 

Given ¢ E C (fl), the trace of (I), written ¢ , is the collection 

of functions 

  

1 I
El
, KE 

(the Ws as above). Example: 

and 
Z2 

si  

 

Proposition 2 (A trace theorem.) 

The map 

1 
(1) 	cd ar, 	H (n) 	L2(E1) x 	x L

2
(EK) 

1 
on ¢ E C

co 
 (0) is continuous, and may therefore be extended to all of H (0), 

2 - 	2 - 
so defining "trace" as a L (f2

1 
n N- ) x 	x L K n act) valued function on 

1 
H (0) . 

Proof 

co 
Take ¢ E C (0), and let {¢i}i=1  define ¢ (as above). Then [55, p. 15], 

there exists a constant c, independent of ¢, such that 
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2 	21.i 21  

Vil an el 2 	

< c ciD 

L (E.) 	H (0.) 
1 	1 

Similarly over i, 

D01 2 	cH 1  
L (E

1 
 )x...xL2(E

k
) 	H (0) 

which establishes continuity. 

Proposition 3  

The mapping 

u 	d/dx : H
1 
 (c) 	L

2 
 (Q) 

co 
on C (Q) is continuous, whence d/dx(*) may be defined on H

1
(n) and is 

a continuous mapping into L
2
(n). 

Proof 

co 
Given4) E C (0), let 0 } be as above. Then by standard results, 

there exists c (independent of (P) such that 

51- (PI
22

1 4) 1

2 

dx 	H1  (0.) 	L
2 
 (n) 

Summing over i gives continuity. 

Proposition 4 

(Compactness of the injection H
1 
(S2) L

2
(0).) 

ui 	u, weakly in H
1
(0) implies u, 	u, strongly in L

2 
 (0).-  

Proof 

, Suppose ui 	11  (weakly in H1(0)). 
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Since the mapping 

u .4- ul
o. 

: H
1
(0) 	H

1 
 (Q.) 

1 
is onto, 

u
i  I 
	T.11 
	

1 
(weakly in H (O.)) j = 1, 2, ..., K 

	

n. 	I. 

	

3 	3 

(0.'s as above). But, by [55, p. 17] then, 

u.I 	-4- 
n. 

	

n. 	
( strolaglyiriL2(n.)) 

3 
i.e. 

 1lu.-Tl
2
dx = flu.-ul 

2 
 dx -4- 0, 

n
1 
 U...U0

k 

Thus 

u. 	u (strongly in L
2
(0)) 

11.5.2 V-ellipticity on Slit Domains  

i K 
Let 0 be a regular slit domain. rF(rU

) is a collection {rF1i=1 

(Cr K 
) of measurable subsets of 00.)Y  

U i=1 	 i=1.  

We consider 

	

. 	f. =0 in 0 

	

ij,J 	1  

aiini  = F "on FF" 
	

(33) 

ullan = U
i  "on ru" 
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Assume: 

(i) F. E EL
2 
(E n ri) 

(ii) U. lies in the range of the canonical injection 

÷ ((PI 	
n r 
i1 
}.=1 : Hi  (0) 4 

	
L2 

(a lk n T
U
) 

1 U 

(iii) (boundary measure) I Bilk  n ruk  I > 0 (for some k) . 

Define 

V = f(t.E (Hi ( n )  ) 3  I 4)  I 
DO 	1 

= u. on ri} 

We have shown that the canonical injection (I) 4- 4)1
DO 

: H
1 	

L
2 
is 

continuous, whence V is a closed, affine subspace. 

Define 

a(u,v) = la..(u)c..(v)dx, 	(u,v) 	(H
1
((I))

3 
13 	I] 

where 

c..(u) = 1-2(au./x. + 3u./ax); 	a.. = 	. 	c 
13 	1 3 3 1 13 i3kt 

We interpret weak solutions of (33) as u c V such that 

a(u,v-u) = X 	f 	F(v-u)ds + f f(v-u)dx 
k ail nr

k 
k F 

all v c V. 

With this definition, a(-,.) is a continuous bilinear form on V 

(continuous since, as shown above (I) 	d/dx 	: H
1 
 -4- L2 is continuous). 

To establish existence and uniqueness then, we need only show 
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ellipticity of a(*,') on V0  = Cv€ VI vi an=0}.t  

Proposition 6 (V-coercivity) 

There exists a constant c > 0 such that 

2 fe..c..dx + fv
i
v
i
dx > cllvl1V 	all v 	V 

n  13 1J 
(34)  

Proof 

	

Since (I) 	d/dx 	: H
1 

-4- L
2 
is continuous, we need only establish the 

result for v E (C (n))3. Let vk be the C (P ) elements associated with v. 

By [55], 

f c..(v)c. (v)dx + f v
i
v
i
dx LcIlvil

2 
ij 	ij 	 1 

	

nk 	n
k 	H (0k) 

and summing  over k gives the result. 

	

Theorem 4 (6:// 	' of a(*,*) on Vo) 

There exists a constant c such that 

2 a(u,u) = fa. (u)e. (u)dx > cllullV n  ij 

all U E Vor 

V
0 
= {UEVIU=0 on r ) 

t Take u
0 
 such that u

0 
 I an = U. Then ettEphCa.t)  - on V0  suffices since u 

is a weak solution of the above problem iff u = (u-u0 
 ) is a weak solution 

of 	a(u,v) =1 	f k  Fvds + ffvdx 
k n

k 
n rF 

allvcV,uEV 

	

0 	0 

and elLipkicEty 	on V
0 
 suffices for existence of a weak solution to this 

problem. 

(35)  
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Proof 

First note that 

a(u,u) = 0 

u E  V 
0 

<=> u = 

(<---) is obvious. In the forward direction, assume u E V
0 
 a(u,u) = 0. 

Suppose (without loss of generality) 130
1 
 n r

11 
> 0. Then by a standard 

result, 

ul
n .

= 0 

But by assumption (iii) (Definition 2) 

Int n 021 > 

whence (by the same standard result) 

ul
02 

= 

Likewise we show that ul
0
, 	ul 

0 	. 
= 0, whence ul 0 = 0. 

2 	K  

It is now easy to deduce that a(*,.) defines an inner product on V0. 

Write the resulting inner product space as V. 

Now suppose the theorem is false. Then there exists a sequence 

{ } in V
0 
 such that 

Iuil 2  = 	a(u.,u.) 4- 0, i 	m 
L 	a. I 

1 
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In view of 	 15,(11.1 is a bounded sequence in (H
1
(0))

3
. fu

i
} 1 

is obviously also bounded as a sequence in V. We may therefore extract 

a subsequence (also written {u.}) such that 

U
1  
. 4-  u 

- 

in (H1 
	3 
(c) 	(weakly) 

(36) 

u. 4 u 

- 

in V 
1 (weakly) 

But by a standard result, the norm a(u,u) (on V) is weakly lower semi-

continuous. • It follows that 

0 = lim a(u.
1ru.1

) > a(u,u) > 0 
 — 

so that u = O. 

On the other hand (36) implies 

u. u 
1 strongly in L

2
(0) 

It follows, 

1 = lim luiL
2
=11711

L2 
whence 	O. 

The theorem statement follows from this contradiction. 

Theorem 4 gives existence and uniqueness of solution by the general 

results of Section 4.2 (Chapter I). 
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11.6 REGULARITY RESULTS  

In error analysis of partial differential equations usually some 

degree of smoothness for solutions is assumed. From approximation theory 

we can get estimates for the error involved in the form, (see Chapter I, 

Theorem 14): 

1111-uhIL (0)  < ChklI u I k  
2 	H (n) 

(1) 

Now if we assume that u e Hk(Q.) then the right hand side is of finite 

value and the rate of convergence of solutions is entirely dependent on 

the order of polynomials used in the approximating subspaces. For smooth 

data and domain, the solution is smooth and therefore the assumption is 

valid. However, for certain physical problems this is not the case and 

hence, irrespective of the degree of interpolating ploynomials used, 

solutions do not converge. Solutions of the following types of problems 

are smooth to only a certain degree: 

1. Problems with non-smooth data 

2. Problems in which the differential operators have non-smooth 

parameters 

3. Problems on domains with interfaces 

4. Problems on non-smooth domains 

etc. 

In fact, it is known that these problems give rise to singularities in the 

solutions. 

We will only be dealing with non-smooth domains in two dimensions 

where there are a number of corners in the domain and assume data to be 

as smooth as required. It will be seen that these singularities are 
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present only over a small region very close to the vertices and vanish 

outside the areas. However, the local singular behaviour influences the 

accuracy of the solutions throughout the domain. 

The regularity of the solution depends on the angle of the vertices. 

For example, the oiriChlet problem: 

-Au = f in 0, f E HM(n) 

(2) 

u = 0 on DO 

• 
does not have square integrable second derivatives on non-convex domains, 

while for convex domains we have [56] 

Ilull m,2  < clIfIl m  -3/2 < m < 0 	(3) 

Our purpose in this section is to study the smoothness properties 

of solutions to equations of elasticity on slit domains. It is shown 

that the solution vector u can be written as the sum of a finite number 

of'singular'functions.and a 'smooth' function u: Xj  

u = u + X X. 	 (4) 

Ps,  

whereudependsondatawhile. xj is only dependent on the differential 

equations and the domain. In particular, estimates for the smooth part 

u in terms of data are obtained. This expansion is then employed to 

obtain improved rates of convergence in both L2  and H
1 
norms by including 
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Singular functions in the approximating subspaces. Domains containing 

cracks and convex domains are treated as special cases. 

11.6.1 Regularity of Solutions for Slit Domains  

In dealing with the equations of elasticity we need some general 

results concerning the regularity of solutions to a single differential 

equation. The available results [59, pp. 287-288] for two-dimensional 

angular domains are first quoted in their general form and then exploited 

for the equations of elasticity on slit domains. 

11.6.1.1 General theory  

Take S2 c R
2 an angular sector with vertex at the origin. The 

vertex angle is w and the boundary is denoted by r. 

We denote by Hk(c) the usual Sobolev space (k>0) and 

by Hk-1/2(r) the space of functions given on the 

boundary r defined by 

ic- 12 	= inf 	11\711 k  
H 	(r) 	vir=c) 	H (Q) 

We may also define the space H
k(Q) for k < 0 as the closure of C (CI) in 

the norm (I•II 	
0) 

where k < 0 
H ( 

 

uvdx  

	

IIuII
Hk(0) 

= 	sup

v€H 
-k

(Q)
Ifv11

H
k
(SO 

Consider now the elliptic boundary problem 

L(x; Dx
)u = f(x) in Q 

(5) 

B.(x; dx)u = 	
.(x) on r, j = 1, ..., m (1) 3  

where 	is an elliptic differential operator of order 2m and' Bi s  

constitute a normal system of boundary operators of order m.
3 
 < 2m-1 

0 
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covering L(*,*) (the details of the assumptions are given in £57]. For 

the sake of brevity we omit them here). x = (x
1
,x
2
) represents the 

Cartesian coordinates. 

Let L0(0,*) and Bj
0
(0,*) denote the principal part of the operators 

L(.,.)andEIA.,-) respectively with coefficients fixed at the origin 

0, We consider the following problem: 

L
0 
 (0; 

ax  co- —a )u = f(x) in Q 

(6) 

B.
0  

ax 
(0; 	= ¢i(x) on r, j = 1, ..., m 
j  

k+2m-m.-11 
wherefclik Mand(P.Ell 	3  (r), j . 1, 	m. As we shall 

see, the essential features of the solution to equation (5) will be 

obtained by studying equation (6). 

We transform (6) to polar coordinates (r,O) and, make the change 

of variable r = eT  so that the domain 0 becomes the strip S, 
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{ L1(T,0;•)u 
=e-2mT 

 f=Fin S 

-111T 
B1(T,O;')11 = e 3

7  = 
	(j = 1,...,m) on 0 = 0, w 

(7) 

S = {(T,0), 0<0<w; --00<T<+00} with boundary DS. System (6) will become 

Introducing the Fourier transform u(E,0) by (Fu)(E,O) = 	= 
+00 ., 
f e 	u(T,O)di the system (7) is transformed to 

L1 (*;,iE)(1(E,O) = F(E-2mi 3 O ) , 0 < 0 < w 

{ 

Then it is known [58] that there exists a meromorphic function R(E) 

k+2m-m.-11 
H(E) : H

k
(S)xH 	(DS) 	H

k+2m
(S) 

such that 

1 
{L1 	7 

(*0. ), 	(*O.E))11(E) = I 

, 	^ 
where the vector operator {L B1}  maps u into {L a, Bl  u}. 

1,  j 	1 

(8) 

BA.;i0a(E,0) = 	(E-m.
3
i3 O), 0 = 0, w 
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In fact R() can be regarded as the solution operator for the given elliptic 

problem and the behaviour of solutions to system (5) is dominated by the 

positions of the poles of R() in the -plane. Kondratev has studied 

system (5) and gives the following result [59, pp. 287-288]: 

Theorem 1: 
k
l  

Let u H
k+2m(0) be a solution to system (5) and suppose that f H (0) 

k
1 
 +2m-m.-1/2 

and 4  e H 	(1),1<j<in,k
1 
 >k.ThenprovidedthatfandCare 

— — 

'suitably behaved' at the origin and that kl  does not take certain pathological 

values, we have a decomposition of u into regular and singular components w 

and x's respectively: 

u = w + Ecc
3  
.X
7  
. 

.  

k
1 
 +2m 

where w e H 	(0) and the x.'s do not depend on the data f and cbj  and 

furthermore we have the bound: 

/lail 	11141i k +2m 	< 	 k
1 	

k +2m-m.-1/2 
H 1 

(0) 	H (0) H 1 - 	(r) 

(9) 

with c > 0 a constant. 

Ilull 
H
k+2m 

01) 1 • 

Remark 

Thesingularfunctions)Cill (9-a) -are given by 

n  1 

Xj 	

. 

= /j r 	3{(tnr)sPjsq
(rtncir)} + ct   ) 9'4  (0) 1 	(' 

s=0 	 t>k+2m-1 P
r { anr 

where gj  with k+2m-1 < Im. < h1 
= k

1
+2m-1 are poles of R(0 of multiplicity 

n
j 
 , cep  is a constant, pjsq 

are polynomials of degree (h1j
) with 

coefficients that are infinitely differentiable functions of 0, p, q > 0 

integers and gtp(0) is an infinitely differentiable function of 0. 
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11.6.1.2 Regularity results for slit domains  

The above theory has been developed for angular sector domains. 

We are primarily interested however in slit domains. It is easy 

to show, using coordinate transformations and partition of unity ideas, 

that for these more general domains Theorem 1 still applies with the 

following modification: each corner contributes singular functions with 

asymptotic properties determined by the corner angle and the analogous 

bound to inequality (10) applies. 

We consider equations of elasticity on a slit domain G and 

assume the material to be homogeneous and isotropic. The equations 

of elasticity can be written as: 

a 
(a(u)) = f. in G ax. 	ij 

a.
1 
 .(u)n. = g.

1 
 on ac 	 (12) 

3  

where u = (u
1
,u
2
) is the displacement vector. 
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The system of equations (11) together with the given boundary 

conditions (12) constitute a well-posed elliptic problem (in the 

sense of Agmon-Douglis-Nirenberg [57]). 
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11.6.1.2.1 Smoothness and boundedness of Airy's stress function  

Let r with vertex angle w be placed at the origin and its two 

sides lie along w = 0 and 0 = w in the polar coordinates (r,0). In 

applying results of Section 11.6.1.1 to the equations of elasticity 

we have to reduce the above system to a single partial differential 

equation. This is possible by introducing the well-known Airy's stress 

function. 

Suppose that the body forces f = (f12
) are derived from a 

potential function V E H
1
(0) such that 

f. = DV i 	ax. 
1 

Then we take 
2 

Gij = (- ax
a
ax 	s.. )ss..v 
j 
	13 
	(16) 

substitutingfora
13 
 from (16) into the system (11) we arrive at the 

nonhomogeneous biharmonic equation 

A
2
S = F in 0 	 (17) 

where 

jafi 
F = -2a(Dx  = -2aAV 

1 
and 

a - X+211 

(18) 
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With a series of polar coordinate transformations (r,0), change of 

variables r e
-T 

and Fourier transformation with respect to T (with 

the transformation variable E) we get the following ordinary differential 

equation in terms of 0: 

S"-2(C-2iE-2)S" + E
22

-4iE-4)S = F(E-4i3O) 	0 < 0 < to 

= 41(E-2i3O) 	0 = 0, w 	(19) 

= q2 (E-2i 3 O) 	0 = 0, to 

where 

a00 = g
1 
 (r,O) 

and 
	

i= 1, 2 

ar0 = 92(r,0) 

are given functions along the boundary. 

We now aim at finding the poles of the function R(E) associated 

with the problem. For this purpose consider the homogeneous boundary 

problem in the transformed form. The general solution of the homogeneous 

problem (19) is .given by (E / 0, i, 2i) 

S = c
1 
cos iE0 + c

2 
sin iE0 + c

3 
sin (iE+2)0 + c

4 
cos (iE+2)0 

It is straightforward to see that the solution satisfying the homogeneous 

boundary conditions is non-trivial provided the determinant of the 

coefficients c., i = 1, ..., 4 is non-zero. Calculation shows that a 

unique solution exists if 
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(
sin wz

)
2 

(
sin w 2 

) 	0 
wz 

(20) 

where z = -(1-FiC). Roots of this transcendental equation then give the 

poles of R(C). For C = i we let 

S = c
1 
sin 0 + c

2
0 sin 0 + c3 cos 0 + c4

0 cos 0 

then the determinant in question is 

A(i) = det 

 

1 	0 	0 	1 

cos w w cos w +sin w - sin w cos w-w sin w 

0 	0 	1 	0 

sin w w sin w 	cos w 	w cos w 

   

   

2. 
=w - sin

2
w > 0 

since w > 0. 

For C = 0 or E = 2i we let 

S = c
1 
sin 20 + c

2 
cos 20 + c

3
0 + c

4 

The determinant of the coefficients corresponding to the solution satisfying 

homogeneous boundary conditions is 

2 0 1 0 

2 cos 2w -2 sin 2w 1 0 
A(0) = det 

0 1 0 1 

sin 2w cos 2w w 1 

= 8 sin w(w cos w = sin W) 
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the following figure (1) shows the real roots Of equation (20), 

sin wz- + sin w 
wz — w (21) 

211 13g 

Wo  
Fig. 1 The Roots of Eq. (21) 

for real z 

The function on the left hand side 

3; 3 
- 	1.3' 

of (21) can be sketched as: 

which vanishes when either sinw= 0 or tan w = w. 

The equation (20) has a finite number of real roots and an 

infinite number of complex roots. Real roots, if any, are always 

smaller than the real part of any complex root of (20), i.e. the 

dominant pole of R(E) is given by the smallest real rool of (20) if 

such a root exists. Also we have 

Re z > CO  

where 	

f 1/2 	< w < 27r 
co  = 

1 	0 < w < rr 

Fig. 2. 
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We have the following: 

Theorem 2 

Let m > 0 be an integer. Assume f e (H
m
(0))

2 
 g E (H

m+12
)
2 
and 

conditions of Theorem (1) are satisfied. Then there exists an w
0 
 > 0 

(dependent on m) such that for all w < w • 
0 

S c H
111+3

(0) 
	

(22) 

and 

m+3 	m 	2 	lighl m+1/2 	2 +  11S11 2 	}, 
H 	(0) 	(H (0)) 	(H 	(r)) 	H (0) 

m > 0 # 

Proof 

It is enough to show that the equation (21) has no roots in the 

strip 0 < Re z < m+1 for w < w
0 
 m = 0, 1, .... Fix w at an arbitrary 

value w
0 
 then from Figure (1) it is seen that associated with w

0 
 is a 

smallest root 8 such that there are no roots in the region 0 < w z < 
0 	 0 	0 

of equation (21). We choose m such that 80/w0  = m+1. This can be done 

for 0 < w
0 
 < n, 7 < W

0 
 < 3n/2 and 37r/2 < w

0 
 < 2n with S0  /w0  > 1. As 

there are no roots of equation (21) in the strip 0 < Re z < m+1 from 
-iE4  

TheorernMwesee,thattherearenotermsoftheforme jf(0) in the 

expansion of S. Indeed, S W and therefore the assertion follows when 

we notice that F is a linear functional of f (see equation (18)), i.e. 

IIFII m_l 
H 	(o) 	(11

m 
 (n))2 

	(24) 

The proof is now complete. 
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Corollary  

For convex domains (i.e. 0 < w <' W
0 
 = TI) and square integrable 

data Theorem (2) holds withm = 0. 

11.6.1.2.2 Regularity properties of displacements  

In order to establish bounds on displacements u or 'smooth' part 

of u we need the following: 

Proposition 1  

Take 0 a slit domain. Suppose that u E (L
2 
 (0))

3 
 and 

{e. .(u)) E (H
k (0)3x3 

 . Then u E (H
k+1 

 (0))
3 
 and 

Ileii(u)11
2
k 	Hull 	3 	cllull2  k+1 	3 
H (0) 	(L

2
(0)) 	(H 	(0) ) 

- (25) 

Proof 

We prove the result for Lipschitz domains. The result follows 

for regular slit domains by decomposing 0 into Lipschitz components and 

considering sequences of smooth functions in an obvious way. 

We use induction. The assertion is true for k = 0 (see Chapter II 

Proposition 6). 

Suppose it is true for all k < k-1. We shall show it is true for 

k= k.  

3 
Set E = CUE (H(0))

3
le
1
..(u) EH

K 
 } 

This is a Banach space with norm 

(11Eii(u)112 R + Hull
2 	

3)1/2  
H 	(L2) 

R-1 3x3 
Take u e E, arbitrarily. In particular, fc..(u)} e (H 	) 	and by the 

13 

- 81 - 



induction hypothesis u E (H
K 
 (Q))

3
. 

Now choose arbitrary a 

Da   
a

1 
	

a
3 ' 
	

7 D = 	
x 	

lal = k 
l a 	3x3  

we have 

ax. 
(Dauic H-1 (0), for each i, j 

1 

(since u E (H (0))
3 
 ). 

On the other hand 

2 	 D
2
u. a  
I  

Mau.) - D
a 

Dx
j 
 ax 	1 	3x 3x 
k 	j k 

= D
a
C
aa  

E. Cu) + 	E Au) 	E. 0.0] 
3 

ax. ik 	dx
k 

ij 	ax. 3k 
1 

E H
-1 
 (0) 

(since {E
ij(11)) E (H

K 
 (C2)) 

3x3 
 ). 

Thus- 
a 	D 

177 (Dau.)and ----[..---(D
a
u.)] lie in H

-1
(0) and by a property of 

3 	
Dx
k axj 	

1 
 

Sobolev spaces on Lipschitz domains 

a 
ax. (D

a
u ) E L2

(0) 
J 

i.e. u E (H
r+1 

 (0))
3 
 , and we have shown E c (HK+1 )

3 
 . The reverse inclusion 

is obvious and we have the algebraic equality 

E = (H
K+1

(o))
3 

By the closed graph theorem, the norms on E and (H
K-1-1

)
3 
are equivalent 
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and 

116 	(u)11 2
k 
- 	11u11 2 	3 	cllull

2 
174.1 	3 

H(n) 	(L
2 (n) ) 	(H 	(0)) 

Proposition 2  

Take 0 a slit domain. Assume that S E H
k+2

(0) and 

Ce
ij

(u)) E (Hk(0))
3x3

. Then there exists a constant c > 0 such that 

Ilei4(u)11 k 	< clishl 
H-(0) 	H(n) 
	(26) 

This 50  LOWS immediatelyfrom the known  relation between 	 a . 
13 1] 

and S (see equation (16). 

Now we can prove the following main result: 

Theorem 3 

Let u e H
1
(0) be a solution of (11)-(12). Suppose f E (H

k
(0))

2 

and g E (Hk+11 (P)) 
2 
 (k > 0 integer). Let f, g and u satisfy the 

hypothesis of Theorem 1. 

Then we may write 

u = u 	 j ),(i 	 (27) 

where u E (H
k+2

(0))
2
. Furthermore, there is a constant.c > 0 (independent 

of f, g) such that 

11171112 k+2 	2 lc(' i fil 	k 	2 	11g11k
+1/2(r)2

) 	(28) 
(H 	(n) ) 	(n) ) 

Thefunctions. xj called the 'singular functions' are independent of 

data but depend on the differential equations and the vertex angle. 

These functions may be taken to vanish outSi.de a neighbourhood of the 
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vertices of 0. 

Proof 

With the hypothesis of Theorem (1) satisfied we apply Theorem 

(1) to the biharmonic equation in terms of Airy's stress function S, 

(equation (17)). 

Then it follows that 

S = w + YT. 	 (29) 

whereT.
3 
 are 'singular' functions of the form given there and w is 

'smoother' than S. Hence, there is a corresponding expansion for- u as 

u = u + Lxi  

Similarly a. (u) can be written as 
13 

a
1
. = a.

1 	ijm j 	.j 
.m 

Thesmoothpartsofu,a
ij 
 and S can be related according to 

a
i 
 = a

i  (u) = (- 	1 	
+ 	A)w + „V 

j 	j 	ax,
a
9x. 	i j 	

(S 
13 

2 

Now combining Propositions (1) and (2) and applying them to the smooth 

parts of the solutions we get 

IFiJ(u)Ilk+1 	c{ I 1w1 k+3} 
	

(33) 

(30)  

(31)  

(32)  
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and 

1117111k+2 -. colwilk+3+11711101 
	

(34) 

From Theorem (1) we have 

Ilw11,0 i  c{l IFI c_1+11 glik+12+ 1 1 s11 21  

or as F is a linear functional of f given by (18) 

IIFIl k_ i  _<_clIfIl k  

we obtain 

11w11  k+3 	< cflIfIl k 	2 + 1 1 g11 	k÷i 	2 + 1 IS11 2 	1 (35) 
H 	(Q) (H (Q)) 	(H 1  (r) ) 	H (0) 

substituting (35), into (33)and (34) we have 

IFi.II 	11f11 k 	2 4-  111311
(ii
k
+1/2(r))2 

 + IISII 2 	1  
3  H

k+1
(0) -- cl (H (0)) 	 H (Q) 

and 	 (36) 

1117111 ' k+2 	2 lc{11f11k 	2+ 11gII 	k+1/2 	2+ IISII
H
2
(0) (H 	(0)) 	(H (0) ) 	(H 	(PH 

+ 117111 	21 
(L2

(n)) 

< cflifi
l(Hk(Q))2 

 + 11g11
(H

k+11
(r))

2 + IISI
IH2(0) 

+ 

+ hu ll 1 	2) 
(H (0) ) 

(37) 
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using usual arguments on the uniqueness of solutions u and S 

IISII 2 	k 	2 	Ilgil k+.15 	21  
H (0) 	(n)) 	 (n) 

117111 1 	cilifil k 	2 	ki.1/2 	21  
H (0) 	(H (0)) 	(H 	(r)) 

The assertion of the theorem follows. 

Also, it can easily be seen from (36) that: 

11(lijIlki-1 1cf1"2+  Ug h! k-112 g h! k 	21  
H 	(Hk(0)) 	(r)) 

Corollary  

Let n be convex domain with a finite number of vertices. Let 

f E (L
2
(0))

2 
and g E (H

12  am 2  and let u be a solution of (11)-(12). 

Then 

u E (H2 
	2 
(0)) 	 (41) 

Moreover, there exists a constant c > 0 such that 

'l ull '2 	2 <
(n)) 	(H (r)) 2 + ligll 1/2 21  

(H (n)) 	(L2  

(42) 

This follows from the above theorem when we notice that R() has no poles 

in the strip 1 < ImE < 2 for convex domains (see Corollary to Theorem 2) 
I■J 

and hence u E 

11.6.1.3 Application to crack problems  

The preceeding results are now applied to the crack problem. This 

corresponds to the special case where w = 2Tr. The poles of R(E) are roots 

(38)  

(39)  

(40)  
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of the equation 

sin 211-(1+iE) = 0 	 (43) 

A 

//' 	/ 	// 	E -plane 
/ / 	/ /  

This equation has no repeated pole and therefore according to Theorem (1) 

the following expansion holds for S E H2(c) 

. • q 
S---Xar

-i 
 3f.(rtncir) + X cr tn

p 
 r-
tp

(0) + w 	(44) 
7c1. Z>1 

1 < Imp. < m+2, m > 0 
— 

2 
We have assumed f E (e(0))

2
, g E

m+1
(r)) and hypothesis of Theorem 

(1) are satisfied. 

The behaviour of the solution is seen to be dependent on E.. 

Suppose V E H
1(0) so that we have square integrable data. We consider 

the pole distribution in the strip 1 < ImEj  < 2. In this region there 

is only one non-integer pole at E = 3/2 i. This pole introduces the 

dominant singular term of the form r3/2W(0) in the expansion of S. 

The other poles at E = i, 2i give rise to polynomials rf, and 
r2 
f.• 
iq 

We can also find the function 11J(0) at the pole E = 3/2 i from (19), as 

11)(0) = c1 
cos 0/2 + c2  sin 0/2 + c2 sin 30/2 + 3c1 

 cos 30/2 where c
1 

and c2 
can be interpreted in terms of stress intensity _factors KI 

and K
II
. 
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K
I 

= 3c
1 

K
II 

= -c2 

The following expansions are therefore derived for S, 
a.. 

 and u. 
13 

(For a heuristic derivation of the expansion for S we refer to the work 

of Williams [8].) 

S = w + Xrj+1/21p.3(0), w 	) 
Hj+2(0. (j > 0 integer) (45) 

.0 	cr 
ij 	ij 
.=.+Yrt--3/2p.(0),csij EH (0) 	(,e > 0 integer) 	(46) 

and 

u = u + irj-1/2 X (0) , u E H
J+1  (0) 
	

(j > 0 integer) 	(47) 
j 

/NJ 

with the usual bounds on u,a and w in terms of data. i j  

For examplewithf E (L
2
(0))

2 
and g c Om)

2 
we have 

117111 	2 	2 	cflIfil 	2 	lig!' 	i2 	21  
(H (0) ) 	 (L2 (0) ) 	 (r) 

11 i; 	II 	c{lifil j 1 < — 	2 ligll I  2}  
,H (0) 	 (L2 (0)) 	 (0(r) ) 

I IwIl 3 	< c{I IfIl 11 1;11 	12 	2} 
H (0) 	(L2

(0))
2 

(H (r)) 

where only one singular term is taken in the expansions. 

1 
11.7 ERROR ESTIMATES IN L

2 
AND H NORMS  

In this section we develop some error estimates for crack problems. 

We use the previous results on the expansion of displacement for domains 

(48)  

(49)  

(50)  
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with cracks in the form: 

u = Yx. 	u 
3  

where xi  are the singular functions present due to thin cracks. 

Notation 

We denote by S
k 

the finite-dimensional space of singular functions 

{X.}.1=1  • 1  
-k 	3 k 	3 
(H (0)) means the space (H(0)), k > 0, from which has been 

factored out the singular functions x
i 	

(Hk(c))3, i = 1,...,k. 

-1 1 
We also note that H (0)xS

k 
is isometrically isomorphic to H (0) 

(because 	E H
1 

Xi 	(0), for all i). 

Set 

 
V
k
(fa) = 	cal ) 

3
LS
k  › 	n 13 
	 (51) 

where 

B = fo(li
1
(n))

3
14 satisfies'essential' homogeneous boundary 

conditions} 

Then u E V
r 
and Hull 

-r 	3 
means !lull 

(H (0)) 	(H
r
(0))

3' 

Further we assume that 

(i) a(u,v) is elliptic on V1, bounded on V
1
xV

1
. 

(ii) For all f E L
2(0) 

a(v,u) = (f,v) for all v E V
1 

has a unique solution u c V
2
. 

The mapping so defined is written (A*)-1. 
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Now in the notation of [60] we introduce the family of finite-

dimensional subspaces S
h 
of V

1 
such that 

inf liv-XII 	3 < chslIvIl 3 

	

(L
2 
(0) ) 	(H (o) ) 

XESrh  

XeSh 

inf  11v-XII 

	

r 	V 	 (H 	3  
< -hs-l livil c 

i  (0)) 

for all 1 < s < r. 

These approximating subspaces which include the singular basis 

functions are assumed to exist. 

We have the following estimates in both V1  and L2(Q): 

Theorem 4  

Fix r and h. Given u e V
1
, there exists a unique uh 

E S
r 

such 

that 

a(uh,v) = a(u,v), 	for all v c S
h 
	(54) 

If further we suppose that 

then 

(a) 

. 	(b) 

U E V
s
, 1 < S < r 

Ilu-uhll
V 
 < chs-lilull (H 

-s(0)) 3 

1111-uhll 	3 < chsllull 3  
(L2(0)) 	

(Hs(0)) 

where c is a constant independent of u and h. 

(52)  

(53)  
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Proof 

(a) 	For wh c Sh 

a(u-u
h 
 ,w
h 
 ) = 0 

It follows that for arbitrary x E Sh  

/0 
a(u-u

h
,u-u

h
) = a(u-u

h'
u-x) + a(u-u

h x-uh) 

SO 

allu-u
h 
 II
2 
< a(u-u ,u-u ) < MIlu-u 

h 	h 	h II 
V 1diu-XII 

IIu-u
h 
 II 	

a 
< 

 
whence 

M. 
	Ilu-x11 

-- 
V 

xeSh 

(a) follows from (53). 

(b) (Nitsche-Aubin duality argument) 

Given g civ  define cb = (A*)-ig 

then 

(u-u ,g) 	= (u-uh ,A*()) = a(u-uh h L
2 

But 

a(u-u.,) 
	

= 0, for all X E Sh 

SO 

(u-uh,g)L = a(u-uh,c)-x) 2 
 

whence 

(u-uh,g)
L2 	

Milu-uh II
V 
 inf  11(P-XII 

Vi  
xES

h 

fCIlu-uh li 
V
ch.!! I 

(by (53)) 
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• but 
(u-u

h
,g)

L2 Ilu-uhlIL = sup 
2 gEL2 l igIlL

2 
SO 

12 
< (sup 1 

	
)'c.11u-uh

11 
1
.h 

2 gEL2  g  L2 	
V 

Recalling (IS = (A*)
-1 

 g, 

(sup 1141  
-2 

) < IIA*-1 11 -2 
gEL2 L

2 	
L(L

2
,H ) 

and 

11u-uhlIL <ch11A*-111 	.;11u-uhll
v
1 

2 	L(L
2
,H ) 

(b) now follows from (53). 

Corollary  

When the conditions of Theorem (3) and Theorem (4) are satisfied 

we further conclude that 

and 

11u-uhII 	2 <chk+2{11f11 	k 	2 	11'311 k+1/2
(F))

2} 	(55) 
(L2 (n) ) 
	(H (a)) 	(H 

11u-u,11 	< ch
k+1 

 {11f11 
h 	1 — IlgIl k+1/2 	2} 

V 	(H (0) 
2 

(0)) 
 

(H 	(r) ) 

for some integer k > 0. 

In particular, for k = 0, i.e. for square integrable data by 

including only the leading singular term in the subspace Sh and,using 

polynomials of degree one as p (see Chapter I, Theorem(14)) so that we 

have the inclusion p1  c p then 

(56) 
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Ilu-uhll 1 	ch{lifil 	
(0))

2 	ligil 	} 	
(57) 

(1,2 
 

V 	 (1111(r))2  

lu-uh I I 2 —ch
2O
`

ki! 
- (1.2(0)) 2 

	
Ilgli ni m) 

Is 	2) 	(58) 
(L2

(0)) 

which gives the best rates of convergence that can be achieved. 

Remark 

From the Corollary to Theorem (3) and the singular expansion 

for u it is clear that for convex domains u E (H
2
(0))

2 
 but u does not 

necessarily belong to (H
3
(0))

2
. This implies that when using interpolating 

polynomials of degree one over convex domains, inclusion of singularities 

could be avoided while still having h
2 
rate of convergence in L

2 
norm. 

However, using higher order polynomials on convex domains without 

including singularities of appropriate form in the approximating subspaces 

will not give any improvement over linear elements. 
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Chapter III 

ANALYSIS OF THE DYNAMIC STATIONARY CRACK PROBLEM 

Equations of dynamic elasticity on regular slit domains are 

studied in this chapter. The problem is first put into a weak form 

and shown to possess a unique solution. In the existence and 

uniqueness proofs we heavily rely on our earlier result concerning 

ellipticity of the bilinear operator a(.,..) on regular slit domains 

which was established in Chapter II (Section 5). We then proceed to 

obtain an approximate solution to the problem. It is to be noted that 

the treatment here is general and can be applied to any domain 

including convex domains or domains with cracks. 

By spatial approximation of the weak form we reduce the problem 

to a system of ordinary differential equations in time. Using the 

earlier regularity results (see 11.6) we obtain estimates for the 

continuous-time approximation error in terms of the 'smooth' part u 

of the solution. 

Since in any computational algorithm for field calculations we 

inevitably deal with finite dimensions we require a fully discrete 

approximation of the weak form in both time and space. In this respect 

we combine the approximations using finite elements in space and 

finite differences in time. A variety of difference approximations in 

time can be employed. We adopt the Newmark's scheme for its known 

unconditional stability and minimum truncation error. With the time-

discretization we carry on to obtain estimates for the combined 

spatial-termporal approximation. It is formally proved that by inlcusion 
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of proper singular basis functions we can recover the best rates of 

convergence in time and space for the slit domains considered here, 

(e.g. crack problems). 

Earlier Dupont [61] and Baker [62] have analysed a single 

hyperbolic equation on domains with smooth boundaries (see also [63]). 

The present work can be regarded as an extension of these results to 

the system of elastodynamic equations on slit domains. 

111.1 NOTATIONS  

Let 0 be a regular slit domain with boundary 3Q. On the interval 

[0,T] cR (T < +00) and X a Banach space with the norm 	we denote by 

L ([0,T];X) the space of functions t 	f(t) measurable on [0,T] -4- X (for 

the measure dt) such that 

T 

IlfIlL  ( [0,T];X) > (flif(t)11dt)1/13  < + co 	/ +co) 
X 

0 

lifil L ([0,T];X) co 	
= ess sup 	HEW!'X < +00 

tc[O,T] 

when x is a Hilbert space with the inner product (*,")x, the space 

L
2
([0,T];X) is also Hilbert for the scalar product 

T 

(fig)L2 
	0 ([0,T];X) = f(f,g)

xdt 

We will also make use of the spaces H
k 
 (0), V

k
(0) and S

h(n) 

introduced in Chapter 11.7 
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111.2 WEAK FORMULATION OF THE PROBLEM 

For u a vector-valued function u = (u
1 
 ,u
2  ) 
	consider the equations 

of dynamic elasticity: 

2 (x,t) + Au(x,t) = f(x,t), 	(x,t) E n x I; I = ]O,T[ 	(1) 
a t 

with the boundary conditions as either 

u. (x,t) = ;171.(x,t), 	(x,t) E an x I 	(2) 

Or 

a..13 x,t)n. = 	(x,t), 	(x,t) E DO x I 	(3) 

and the initial conditions 

u(x,0) = u
0  (x,0), 

	x E SI 

au (x
'
0) = v0 (x '0) ' 

In (1) A is the operator of elasticity: 

a (Au). = — 	(o-  ) 
1 	ax. 	ij 

The corresponding weak variational problem is to find a solution (see 

Chapter 11.7 for definition of V 1) 

u e L
2
([0,T];V

1 
 ) 

au
2 

(4) 

X E 
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{ (u(.,0),v) = (uo,v), 	for all u
0 

E V
1 

(--(,,O) v) = (v ,v) 	for all v
0 

E (L
2
(OH

3 
Dt 
au 

(6) 

here 

2 • 
u w 	a 
2 

 
.with 	c L2 

	" 
([0 T]-(Vir) (duality 	w ith respect to L

2 
 (Q)) such that 

at 

a 
2

2
u 	 1 

e---(',t),v) + a(u(*,t),v) = (f(•,t),v), for all v c V1, t > 0 
at 

 

and 	 (5) 

f(.,t) E L2 ([0,T]; (V
1 
 ) 1) 

and 

a(u,v) = fcc.(u)s..(v)dx 
13 	13 

is the bilinear form defined earlier (see Chapter II.1). 

111.3 EXISTENCE OF A UNIQUE SOLUTION TO THE EQUATIONS OF DYNAMIC ELASTICITY 

We introduce (Mt) such that 

(I)  (t) E (H1 (0)) 3 	
and 	(Mt) = 0 on r 
	

(7) 

(see Chapter II.1 for the meaning of ru) and define 

V
o 
= tviv E (H

1 
 (0))

3 
 , V = 0 on r } 
	

(8) 

Then, replacing u(t) by u(t) - (1)(t), the problem is reduced to finding 

a function t u(t) : [0,T] 	Vo  such that 

(---
at
2,v) + a (u,v) = (T(t),v) 	for all v c V 
2
u- 

0 
	(9) 
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where 

(T(t),v) = (f,v) + 	v) + a(4)(t),v) 
at
2 

2
0  
' 
	 (10) 

with the previous initial conditions. 

We introduce H = (L
2
(0))

3 
and note that 

V0  c H, V
0 
 is dense in H 

We denote the norm in V
0 
 (resp. H) by 11'11  (resp. 1.1) and the scalar 

product in Hby (-,.). 

We identify H with its dual, then 

H c V'0 	 (12) 

By 11-11*  we denote the norm in V1, dual to 11-11, then 

11f11* = sup 1(f,v)I, 	v E V0 , 	
IIVII < 1 

We have the following: [64, p. 125]: 

Theorem 1  

We assume that 

T, T' e L2(0,T;(V1)1 ). 	 (13) 

1 
U

o 
	 Vo  E H 
	

(14) 

There exists one and only one function u such that 
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U E L (0,T;Vi) 	 (15) 

U' E L.(0,T;H) 	 (16) 

u" E L (0,T;(V1)') 	. 	 (17) 

which satisfies (5) and (6). 

Proof 

With the previous results concerning V-ellipticity of a(u,v) 

for regular slit domains, the proof goes through in the standard way. 

We present the proof for the sake of completeness. 

Assume that w ,, i = 1, 	m spans V
1 
and 

W = U 
1 	0 

We define u
m, the "approximate solution of order mu by 

U
m
(t) E EW

1
,...,W

m
] 

(uu,v) + a(u
m
,v) = (`Y(t),v), for all v 	 Cwl' '''''`'m]  

(18) 

u(0) = u 
m 	o 

u'(0) = vOm,  vOm 
E [w1m], vOm 

-4- v
0 
 in H when m a co 

(18) defines a system of m linear second order differential equations 

which is non-singular and therefore u
m is uniquely determined from it. 
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A Priori Estimates for  u
m 

If we take v = u'(t) in (18) it follows that 
m 

1/2 —
d

lu' (01
2 

+ 1/2 
d
t 
— a(u

m 
 ,u
m 
 ) = (ii(t),11 1 ) at 

	d  

Integrating both sides, 

t 
1 	12 

+ a(u
m
,u
m
) = 1v

Om
1
2 
+ a(u

0 
 ,u
0 
 ) + 2f(T(c),u'(a))dc 

0 

= Ivom 1 2  + a(uo,u0) + 2(T(t),um(t))-2(T(0),110) 

t 
--2f(TI (c),u

m
(c))da 

0 
(19) 

We also have 

1 	It 	1 	t a(v,v) > alivil2  - civl2  

IvOm l 	cl vol 

21(T(t ) ,um(t))i < 1/2a l lum(t)112  + cl 1 T (t ) W, 

So that (19) is written as 

1 111 ( t)12  + 	(t) [12  < c(Iv 12+1 Iuo l 1 2+111, (0)11) 

+ c11T(t)11 2  + c * 	l um (t) 1 2  

t 
+ cf111"(a)11*Ilu

m
(c)Ilda 	(20) 
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But 
t 

u
m
(t) = u + fut(a)do 

0 
	um (a) 

1  
lu
mWI2 211101

2 
 cflut (G)I

2
do 

0 

so that (20) becomes 

lui(t)12 	Ilu (t)112  < c(lv 1 24-1111011 2+11T(0)11!+11T(t)11! — 	o 

flITI (a)11
2
da) + cf(luI (01

2
+11u (a)11

2
)dc 

0 	0 
- (21) 

We set 
t 

illy1112  = foity(t)11 	IITT(t)11!)dt 
0 

and 

cpm (t) 	 lium (t)112  

Then from (21) we have 

¢m(t) <c(Ivo 124-1111011 2 I I II I12) 	cf(f)m(a)da 
0 

using Gronwall's inequality we get 

4,m(t) < c(1v01 2+1111011
2
+111T111

2
)exp(ct) 

and hence we conclude that 

1 um(resp. um) remains in a bounded subset of Lco(0,T;V1) 

I 	(resp. L.(0,T;H)) when m .--)- 

(22)  

(23)  

(24)  

(25)  

(26)  
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This means that we can select a subsequence u from u such that 
A 	m  

u 
A 
 (resp. u') 	u(resp. u') weakly star in Lco  (0,T;V

1
)(resp. L co(0,T;F  

(27) 

Now we have to verify that u is ,a solution to the problem. We introduce 

the space E of functions 4) of the form 

4)(t) = X 4).(t)la., 	4). E C (0,T), 	4).(T) = 0 
j=1 	3 	3  

l'o 	 1 

g
0 
 is an arbitrary finite integer. 

From (18) we conclude for m = g > go  that 

(u",¢) + a(u
A 
 4) - (T4) = 0 for 4) given by (28) 

Or 
T 

/E-(11'41 )-Fa(u 4)-(T4)]dt = (v 4(0)) 
0 A A 	Og 

passing to the limit with g in (29) 

f[-(u',4)')+a(u4)-(T4)idt = (v0,00)), for all 4) E E (30) 
0 

Since the finite linear combination of the w. are dense in V
1
, we obtain 

3 

(30), for all 4) E C 
1
(0,T;(V1)'), 4)(T) = O. 

From this we deduce that, in the sense of distributions, on 10,T[ 

with values in V
1 

u" + Au = T 	 (31) 

(28)  

(29)  

- 102 - 



where A E L(V
1
;(V

1
)') is defined by 

a(u,v) = (Au,v), 	for all u, v e V
1 	

(32) 

Therefore u" = T - Au E L (0,T;(V1)'). Taking the scalar product of the 

two sides of (31) with, say, (1) E E and comparing with (30) we conclude 

that 

(v
0
0 1 0)) = (u'(0),q)(0)), 	for all 4  E E 

from which follows that u'(0) = v0. Since (27) implies that u 
A 
 (0)=u

0  4- u(0) 

we have u(0) = u .
0 
 and u satisfies the conditions of Theorem (1). 

We now prove the uniqueness of the solution. Let u satisfy 

(15), (16) and (17) with 

u" 	Au =.0 	u(0) = 0 	u'(0) = 0 	(33) 

For, say, 

1 	1 
C (0,T;(V )') 

according to the first part of the proof, changing t to t-T, there exists 

a function w such. that 

w E L (0,T;V1), w' E L (0,T;H), 	E L (0,T;(0)1) 	(34) 

w" 	Aw = 	 (35) 

w(T) = 0, 	w' (T) = 0 	 (36) 

- 103 - 



The formula for integration by parts is valid 

T 	 T 
f (u",w)dt = f(u,w")dt 
	

(37) 

0 

Thus taking the scalar product of the two sides of (33) with w and 

making use of (37) we obtain (using symmetry of a(u,v)) 

T 

f(u,w"--1-Aw)dt = 0 

0 

i.e. 

T 
1 _ 

f(u,cp)dt = 0, for all cp E C (0,T;(V1)1 ). Therefore u 	0 

0 

The proof is now complete. 

111.4 THE CONTINUOUS-TIME GALERKIN APPROXIMATION 

Let h, 0 < h < 1, be a parameter and r > 2 be a fixed integer. 

Now introduce the family of finite-dimensional subspaces Sh(0) of 

V
1
(0) (see 11.7 for definition of Sh). The continuous-time Galerkin 

approximation to the problem (5)-(6) consists of finding a differentiable 

function U
h
(•,t) E S

h
(CI) such that 

2 

(

3 

2 	" 

h
(• t) v) 	a(U

h
(.,t),v) = (f(.,t),v), 	for all v E Sr(0). 

at 
t > 0 	(38) 

(U
h
(•,0),v) = (u01 v), for all v e S

r
(0) 	 (39) 

,
au
h 

(
yE(',0),v) = (v

0 
 ,v), for all v E S

r
(n) (40). 

- 104 - 



In the following we investigate the existence of a unique solution 

Uh  to (38)-(40) and give estimates for the approximation error u - Uh. 

We need the following two lemmas: 

Lemma 1 

Suppose that for some k > 0 

a
k
u(t) 

E L (0,T;V) 
at 

a(.0
h
(t),v) = a(u(t),v), for all v 6 S

h
(0) (elliptic projection) 

at
k 	'h 

EL (0,T-Sr) 

a k  0,h (t) a
k
u (t)  

k 	,v) = a ( k a( 	,v), for all v E Sr (D) 
at at  

Proof (by induction). 

The lemma is obviously true for k = 0. Suppose it holds for k = k 

and furthermore 

K+1 
U E L (0,T;V) 

at1-41 

Define w(t) E S
r 
by 

r(41 
u  a(w(t) ,v) = a(a 	,v), for all v E S

h
(0) 

atTc+1 

Setting v = w(t), ellipticity of a(-,.) on V gives 

nii+1 	1  
1 - 	1 2 
lw(t)1 	< const I' 	u't'l

v
.1w(t)I 

V - 

	

	 V 
at

1(+1 

and 

Then 

and 

• k (,),h  (t) 

(41)  

(42)  
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whence by (41) 

to(t) E p
(0,T;Sh

) 

integrating both sides of (42) 

t„ 	t ni+1 
a(fw(r)dT,v) = a(f 	u(T)  dT,v) 
0 	0 

at
ill. 

= a(a
K 
ot)  

,v) d( 
u(0)  

,v) 

Dt . at 

Now define z E S
r 

by 

Then 

a(z,v) = a(a u(0)  ,v), 	for all v E S
h(0) 

atK  

 
,a u a(z+fw(T)dT,v) = a(K

(t) 
 ,v), for all v E S

r
(n) 

0 

By the induction hypothesis 

a w
h 	

t, 
- z + fw(T)dT 

at
i  

and since w E L (0,T;S
r
) p 	h 

a  
r  

	

w = 	E L (0,T;S) 

at
i+1 h 

(42) now gives 

a
/41 

ak+1 
a( 	wh 	' (t) v) = a( 	u(t),v), for all v E Srh  - 	 (n) 

at
k+1 	

8t
E+1  

as required. 
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Lemma 2 

Let u(t) solve the dynamic problem (5)-(6). Then there exists a 

unique mapping wh  E L2(0,T;S) such that 

a(w
h
(t),v) = a(u(t),v), 	for all v E S

r 	
(43) 

If, for some k > 0 

d u 	— 
E L (0,T; (HS  (0)) 2) 

at 

kw 

h  E L (0,T;Sh) at
k  

(t,)kEu-wh7 < chs11(1-)kull 

n 
at 	s 	2 2 	L (0,T; (H (n)) ) L (0,T;(L

2()) ) 

for some constant c independent of u and h and 1 < s < r. 

Proof 

The lemma follows immediately from Theorem l (Chapter 11.7) and 

Lemma 1. 

Now we can give estimates for the rate of convergence of the 

semi-discrete approximation error involved in our scheme. 

Theorem 2  

Let u(t) solve the dynamic problem (5)-(6). For each h there 

exists a unique mapping Uh(t) c L2
(0,T;S

h
) such that (38)-(40) hold. 

at
Furthermore if u(t) E Lw  (0,T;V

r
(OH and at (t)  E L

2
(0,T;V

r(0)) then' there 

exists a constant c = c(T) independent of h and u(t) such that 

Then 

and 
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11(u-Uh)(t)11 	2  < chr(11u(t)11 
-r 

L 00'  (0,T-(L2  (n)) ) 	Lco co,T;(11 (0))
2
) 

Proof 

+ liDu 
li Dt 	I 	-r 	2 

L
2
(0,T;(H (n)) ) 

  

Except for some changes in the functional spaces and the fact 

that u is a vector-valued function the arguments of Baker [62] go 

through exactly in our setting. However, for the sake of completeness 

we write the proof out here. 

The existence of a unique solution U
h
(t) E S

r 
(finite-dimensions) 

follows from the standard arguments in the theory of ordinary 

differential equations. 

Now let w
h 

be defined by (43) and set 

n = u wh, * = Uh  - wh  and t = u - Uh 

From (38), (43) and (15) 

2 

2

D2w
h 

	

+ a(*(t),v) = (f(t),v) - 	- a(wh(t),v) 
at 	 at 

a2wh 
= (f(t),v) - a(u(t),v) - (--7(t),v) 

at 

2 

	

D n 	r 

	

- e-(t),v) 	for all v 	Sh(0), t > 0 
at 

(44)  

Now rewriting (44) 

d 	Dip Dv 	d Dr' 	3v 
v) - 	+ a(lP,v) = 	- 	for all v c Sr  (n) 

dt Dt 	at'at 	dt at 	at at 

(45)  
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Since t = n — i, (45) is written as 

Dtl) Dv + a(tp,v) = --
d (—

Dt. ,v) - (—arl ,—av) , for all v E Sr  (CI) t 	0 at at 	 dt at 	at at 	h 

(46) 

With the particular choice of 

.;>(*,T) = 	0 < t < T 	and 	0 < 	< T 	(47) 
t 

in (46) we have 

dt 
2 d } - 1/4(71--a (v,) = (1t( .1,c,) + (11,0 

. - 	at _ (48) 

cr 
(note that from (47) a --(t) = 	0 < t < T and 'v'7.(C) = 0). Now 

at   

integrating (48) from t = 0 to t = C we have 

I II()II2-11 1P(0)112+a((0) r'7(0)) = -2(1 	' 	at 
(0) .s7(0))+2(-112-(t)' tmt))dt at  

(49)  

Now from (40) it follows that 

at. 
(—
at

(0) , 	= 0, 	for all v E Sr(0) (50)  

Hence using (50) and ellipticity of the bilinear form a(*,.) we reduce 

(49) to 

Ii0E)112  < ik)(0)ii2 + 21.(12(t),IP(t))dt 
o at  

II 	
112 

IP(0)11 	+ 21/i7111/) 	an 
L (0,T;(L

2
(n))

2
)
Hat ll L (0 T-(L (0))

2
) 

00 	 2 " 2 

110°)I12 	1/211W2 2 	2 + 2T11-3T11  12 	2 2  
L (0,T; 	(n)) ) 

at"
L
2
(0,T;(L (0).  
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I RI I 	2 	2 
L (0,T;(L (0)) ) 

. Now taking the supremum in (51) over the variable 0 < < T, we obtain 

1/21MI
2 

2 	2 — WWI 1
2 
+ 2T11111-11 2  241))2) 	(52) 

L (0,T;(L (n)) ) 1,2(0,T;(1,  

(53) ICI I 
L (0,T; (L 

2(o))
2
) 

_V-2-11 Iv(o)11 + 2fil 
L2(0,T;(L2(0))2) 

or 

From (53), 

L 

L 

L 

2 
(0,T;(L 	(n)) 

2 
(0,T;(L(0)) 

(0,T;(L
2
(Q)) 

2 
) 

2
) 

2
) 

114)1 IL (0,T;(L2M))2) 

214-r I.?1-1-1 I Dt 	2 
L2 

(0,T;(L (c)) 

+ 1511V.,(0)11 

Dt L2(0,T;(L
2 
(0)) 

71 (0) I I + 711 It (0 ) I I 

Now from (39) and equations (52)-(53) (chapter 11.7) we have 

lit(0)11 < clf Iluollr 	chrliu(t)11 	-r 	2 
L (0,T;(H.(0)) ) 

Hence using (55) and Lemma 2 in (54) we get 

I It-I I 	2 	2 < c(T)hr{ I lul 	-r 	2 
L (0,T; (L (0)) ) 	L (0,T; (H (0)) ) 

, 1 
T "at L2(0,T;((0))

2
) 

The result of Theorem 2 now follows. 

(54)  

(55)  
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Remark 

It is noted that similar results can be obtained in V
1 
norm. 

111.5 THE DISCRETE-TIME GALERKIN APPROXIMATION  

In this section we study the fully-discrete approximatiOn to the 

equations of dynamic elasticity and derive estimates for the rate of 

convergence of the solution in L2(O,T;L2) norm. Our analysis differs 

from Baker [62] in that we use a different approximation scheme in time 

for the system of equations on slit domains. 

n N 
Let T = NT for some integer N > 1; for a sequence 	1

n=0 c (L
2 	2 
(fl)) , 

we define 

n+1 n 
n W -w 

+W = 	 

n 
wn = W -W

n-1 
 

- 	T 

n+1/2 Wn+1n 

2 

n,0 
W 	= OW

n+1 
+ (1-20)W

n 
+ OW

n-1
, 	0 E COW 	(59) 

for n = 1. 2, ..., N-1. 

Also for a continuous mapping W : [0,T] 4-  (H1(0))2, we define 

W
n 
= W(*,nT), 1 < n < N. 

Define the discrete-time Galerkin approximation to be a sequence 

n N 
{11
h
}
n=0 

c s
r 

such that U
n 
approximates u

n 
optimally in (L2(c))2. 

n,N 
n The following lemma defines the Galerkin approximation tU,J. n=0 

(56)  

(57)  

(58)  



n N in terms of an auxiliary sequence {V
h
}
n=1 

c S
r
(0). 

Lemma 3 

There exists a unique sequence 	
N
=0 

{17
h
n c Sr and a Corresrochrj 
n 

, 
unique sequence {Vn }N which simultaneously satisfy the equations 

h n=1 

(UhIx)= 	
(U 

1
,x) for all x E Sil(0) (60)  

1 	Du 1  
(Vh,x) 	E 	( (—)X) Dt 

for all x E S
h
(0) (61)  

and 

n n 1  1  
n I4,X), 

r 
'4,x) rx) + a(Uh 0+h V 

n 	n 

= 	(f for all x E S(n) (62)  

3
-
U
h 
= V

h
, 	1 < n < N-1 (63)  

Proof 

1 
It is clear that U

h 
and

h exist uniquely. (And hence from (63) 

so does U
o
.) 

n 
From (56) and (62)-(63) V

h
+1 
 satisfies 

n 
B
T
(V
h
+1 
 IX) = F X, 	for all XE S

h
, 1 < n < N-1 

where B (•,*) is the bilinear form given by 

T4  

2 
B (U,V) = — a(U,V) + (U,V) 

and F
n 

is the linear functional given by 

r -,4 	
T2 

n F
n
V = TL(F

n 
 ,V) - a(U

h
,V)] + (V

h
,V) + —

4 
a(V

h,V) 
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From ellipticity of a(',*), 	(•,*) is positive definite, so V
n+1 

exists uniquely and hence from (63) U
n+1

exists uniquely for 1 < n < N-1. # 
— — 

Note 

In the above definition of the discrete-time Galerkin approximation 

we have chosen 0 = 1. The reason for this choice, rather than Baker's 

one, is due to the well-known unconditional stability of the scheme for 

0 > 1. In particular, the resulting spectral radius would remain 

constant for the choice of 0 = 1 which indicates the minimal truncation 

error is achieved. This will be explained in more detail in the chapter 

on computational results. 

Before proceeding to get estimate for the error Ilun-unil we 

introduce the following functions 

n n n = U
h 
- w

h, 	
0 < n < N 	 (64) 

aw 
Wn = V

h 
n - 

Dt 	
1 < n < N 

n = u - wh 

where w
h 
is defined by (43). We prove the following lemma. 

Lemma 4 

Let u(t) be the solution of (5)-(6) and suppose that 

Du 
at E 
 L2(0,T;V

r
(0)) 	and 	(1-at)

k
u E L2 

 (OrT; (L
2  (n) ) 2 ) 

for k = 3, 4; then.for some constant c = c(T) independent of h and T, 

(65)  

(66)  
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max lell < /11011 	c{hrlr11111 
1<n<N 	 at 	~r 	2 

L2(0,T;(H (n)) ) 

3 
3lI  

D
4
u 

2  + I I711 
at 	L2 	' 

(0,T-(L
2  (0)) ) 	

at 	L2(0,T;(L2(0)) , 

Proof 

With the given time-discretization the proof requires some 

modifications to Baker's argument. From (5) for t = nt we have 

a2 u n„! 	n1 
,X)+a(u

, 
 ",X) = (f 	,X) 	for all xh 	' (n) t > 0 	(67) 

at 
Or 

au n ' 
	

n 1 	n,1 n 
(a+at 	x)+a(u '4,x) = (f 4+P ,X) 

where 

P 
n 
= a+

(
at
)21
)
n 
- 

2 
D u nr t 

at 
1 < n < N-1 (68) 

Now from (62), (64), (65), (43) and (67), for all x e sirl(n) we have 

n,1 	nd 	Dwh 
(D+W

n
,x) + a(E 4,X) = (a+

V
h
,x) + a(U

h ,X) - (a+ ( T)
n 
 ,x) 

aa,7 

a(to ',X) 

„ „ 	Dw "; 
= (f 	X - a (u 	, X) 	(a+(—Dt

h
)
n
,x) 

aw Du 
= (a+(-617)

n
x) - (a+

n  
Dth 
	

x) - (p ,x) 

an  
= (a

+(—at)n -P
n 
 ,X) 1 < n < N-1 (69) 

Also from (63). and (65) we obtain 
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A
o 

= -TE 1 

n 
T  r k 

k=1 
Then 

a 	
= 

a (unu)  = 3 un+1 	n 	n+1 
+ h

_co 

 h 	- h 
- 3

+
w
h 
 = v

h 	
3
+
w
h 

= W
n+1 

 + 
Dwh n+1 

- D w
n 

	

at 	+h 

= W 	+ D n n+1 	- 	n+1 
- a

n 
at 

(70) 

where 

en = a u — (au)  n+1 
at 

1 < n < N-1 (71) 

From (70) 
n 

a En = wl 	T  X 9 wk 	a nn 	(on+1 - a
n 

Dt k=1 

N 
Now we define a sequence 141m,

m=0 
by 

1 < n < N 

1 	 1 	T 

	

n, 4 = T  X Ek r4 	_.( r.1 	) 
4 k=1 

and 

1/2 =0 

(72) 

(73) 

(74) 

(75) 

and hence from (72), (74) and (69), for any x e Sh(0) and 1 < n < N-1 

we get 

i 	n 
( a
+

n

,x) 	a(1
1n, 

 ,X) = (W
1 
 +D+n -(

a
r ) 

n+1 
-a

n 
 ,x) 

k 	
n 
L 

k,z 	T 	 0 
(T 1 a

+
w ,x) + a(T L 	,X) + 4 a(E -E ,X) 

k=1 	k=1 
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1 	n+1 n 	
n 	k k 

= (W +fl -( 	
,X) + (T[ 	+ 	-p LX) 9t 

k=1 

T 	1 1 1 1 0 0 0 O„ 
+ -47a (U -u +u -w

h
-(U -u +u -wh),X) 

the 
using/elliptic projection property 

.. 0+  a  n -
In
)
n+1 

+71 	at 
	-an  ,x) + ( Dt 

r11-1 1-1 
at 

1 
-T x P ,X) 

• 
 

k=1 
0 

+ 71-a (U1  -u1  -(U0 
 -u ) X) 

1 an 1
'  

n  r k 
= (w 	x) + +nn-an-T L P ,X) at 	k=1 

n 
= ld+fln 

—an 
-T -T 	Pk 

 
,X)  

k=1 
(76) 

where in the last step we have used the fact that from (61) and (65) 

1 arkl 	1 hi 1 
(W -(7E1 ,X) = 	,x) = 0 	for all X E S

h h 

Now we define 

n 
n 	n n 	r k 
s =a+n - a -TLp 	1 < n < N-1 	 (77) 

k=1 

Then (76) reduces to 

n 1  
(a+En,x) + a(11 '4 ,X) = (E ,X), 	for all x E Sh

(0), 1 < n < N-1 

(78) 

We may use the particular test function x defined as 
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n+1 n-1 

X - 	2T 

Then from (73) we have 

n+1n 	
n+11 

X - 	2 	- 

Substituting for j( in (78) we get 

n+1n 
-E 

(E 

n+1 n 
ii 	+4 

) 	+ a((

n+1 nn 
)+(1 

T 	' 2 4 

n-1n+1n-1 
)  µ 	-A 

 
n n+2 

) 	(6 	) 
2T 

or 

e 
lie+11.2 

11e11 2  + a(gn+1/2,An+11 ) 	a(gn-11,An-12) = 2T(en, 1112)  

1 < n < N-1 
	

(79) 

Summing in (79) from n = 1 to n = m-1, for any 1 <m < N and using (75) 

and V-eLL.pfi eitj of a_(..,.) We tib-E,2-;rt 

m-1 

1lEm11 2  < 11011 2  + 2T X (en, n+ )  
n=1 

< 	 1112 + 4TTm-1 
y licnii2 	

m-1 

4T L 

T 	v ile+211 2 

n=1 	n=1 

m-1 

< 11E
1
11
2 

	

+ 4TT C l
icnii2 	12 max 	liEn11 2 

n=1 	1<n<N 

hence follows 
N-1 

max 11e112  < 211 1 11 2  + 8TT X Ilen11 2  

1<n<N 	 n=1 

Now from (68) we can obtain 

(80)  

(81)  
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4 
k 1 kT 
P = 	f 	[(k-1)T-s][2((k-1)T-s)  372-114 (s)ds 

(k-1)T 

	

	 at 
 

1  (k+1)T (k+1)T-s 2 	a
4
u f 	c(k+1)T—s][2( 	) —3] -7(s)ds 

12 
kT 	 at 

and hence by Schwarz inequality 

'IP
k
11
2 

< cT
3 f 	112— 
(k+1)T 	4

(s1112ds 

	

4 	'1  
(k-1)T at 

Therefore 
N-1 	4 
T 	li pkii2 

k=1 	at 	L (0,T;(L (0)) ) 

In a similar manner from (71) using integration by parts twice we have 

(k+1)1- 	o3 
k 1 

f L(k+1)T-sHkr-sl--P a = 2T 
s)ds 

a kT 	at  

and therefore 

CC N-1 	3 

T liak11
2 

< c2T4112 TI2  2 	2 
at L

2
(0,T;(L(Q))) 

(83)  

Also from Lemma 2 and the fact that 

k 1 (k+1) T an 
a 	f -r 	at 

= - 	—(s)ds 
k 

(k+1)T 

IIa+nk11 2  < 	f 	1[11(s)I12ds 
at 

T kT - 

we have 
N-1 k 2 	..aa ..2 

T  X Il a+11  11 	Ilatil 	
< ch2rilaull2 

11@til
L (0,T;(

iir 
 (0) ) 

2
) k=1 	L

2 
(0,T; (L

2 
(n) )

2
) 
- 

2 

(84)  

< c T41 19-- u11 2  - 1 	4 2 	2 	2 (82) 
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Now from (77) 

11En11 2  _<_c{11a+nn112 	Ilan 112 + 
T2Il 	pk11 2}  

k=1 

2 r11 	
N-1 < c3.0n11 	

+ 
	la/I 	Tw 	/ _ 1 21  

...... III 	
n2 	

2kG111PkII 

c{lia+nnii2 	
1 lan11 2  + 2T(TN-1 X 11Pk112)} 

	
(85) 

k=1 

Hence from (82)-(85) 

N-1 

T  1 116'1112 
< c h2ril aull 2 

3 	-r 2 
n=1 	L

2
(0,T;(H (n)) ) 

+ 0
4 
T411 4 	

2 
112 	

+0 5 
	I I 
T4113

3
11112 

311  at4 L2(0,T;(L2
(0)) ) 	at 	L2  (0,T;((0)) 

(86) 

Finally combining (86) and (81) we obtain 

max Hell < iillEi ll + c(T)fhrIq'tlIl 	 r 	2 .1<n<N 	 L
2(0,T; (H (0)) ) 

2 03ul 
+1-01--yi

l 	
2 

	

at 	L
2 
 (0,T;(L

2  (0)) ) 

,4 

-T11 
0 u.. 

11 - 2 71 
at L2(0,T;(L2(0))) 

 

The result of the lemma now follows. 

Now we give our main theorem for the fully-discrete approximation 

of the equations of dynamic elasticity on slit domains. 
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Theorem 3  

Let u be the solution of (5)-(6) and let {U N=0 c Siri  be the 

sequence defined by (60)-(63). Suppose that u E L.(0,T;Vr(0)), 

Du k 	2 
E L2(0,T;V

r
(0)) and (-767-) u E L2(0,Ti(L2(n)) ), for k = 3, 4. Then 

there exists a constant c = c(T) independent of h and T such that 

If n 	ni 	,,r 
-E2, 

 
max -u

hiI cin T  

Proof 

From (52) (Chapter 11.7) and (60) 

Ilu(.,T)-1111:111 < chrlful lir  < chr  Ilull 	-r 	2 
L.(1,T;(H (0)) ) 

and so from Lemma 2 

11E111 < 	 Ilu(' ,T) -14-111 f_ r 	2 
L.(1,T;(H (0)) ) 

(87) 
From Lemma (4) 

Ilu(*fnX) -141111 I lInn11 	IlEn11 

au 
< IlnnII 	+ c{hrl I-67I I 	—r 	2 

L
2
(0,T;(H (n)) ) 

3 
▪ T2[112- a ll  2 

L2(0,T;(L2(0))) 

11

3 

4
till 

2 ▪ II 	n.  
at L2(0,T;(L2(n)) ) 

1<n<N 

(88) 
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Using Lemma 2 and (87) in (88) we get 

Ilu(.,n1.)-U11 11 < c(T){hr[llull 	—r 2 
L (1 , 1̀'; (H (0))) 

—r 2 
L
2
(0,T;(H (0)) ) 

3 
+ 

T2010 311 
2 at L

2
(0,T;(L

2
(0))) 

4 

▪ 114 
Dt

11 
 L
2
(0,T;(L

2
(0))

2
)
71 

The result of the theorem now follows. 

This completes our error analysis for the system of hyperbolic 

equations of elasticity. Clearly, the above general results can be 

applied to dynamic crack problems at once. 
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Chapter IV 

THE MOVING CRACK PROBLEM 

The problem of a moving _Crack arising from the fracture of solids 

is dealt with in this chapter. As our approach in solving the problem 

is that of numerical approximation bylfinite element method it is 

essential to have the basic variational form of the problem which takes 

into account the flow of energy into the moving crack tip. For this 

purpose we first investigate the relationship between the already known 

variational form corresponding to stationary crack problems and rate of 

energy balance equations of the system. It is demonstrated that for a 

particular choice of test functions the variational form is an expression 

of total energy conservation. We will then extend this argument to 

moving crack problems to derive the required form. In this new 

variational form an additional term representing the 'fracture power' 

is incorporated. 

IV.1 VARIATIONAL FORMULATION OF MOVING CRACK PROBLEMS  

IV.1.1 The Stationary Crack Problem Revisited 

Let D be a plane domain whose boundary C consists of the union 

of a finite number of disjoint, piecewise smooth, simple closed curves, 

and let L be a straight line segment lying in D. Denote by D0  the 

domain consisting of those points in D which are not in L. Choose a 

Cartesian coordinate system xl, x2  so that L consists of the points 

(xl, x2) for which -a < xl  < a, x2  = 0. Also let L0  be the interior 

of L: L0  = { (xl,x2) I-a <xi  < a, x2=0}. 
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/C 
c/ 

x 

Finally let C(a), a = 1, 2 be circles of radius c > 0 centered at (-a,0) 

and (a,0), respectively, and denote by G(a), a = 1, 2, the set of points 

inside C
e
(a) 

 which do not lie on the crack L. Let C = uC
(a)

, a = 1, 2 
E 	a e - 

GE  = UG
(

a
a)

, a = 1, 2, and let Dc  consist of those points in D0 
 which 
 

are outside both circles C. . (It is assumed that c is small enough to 

assure that G
E 
is contained in D

0 
 .) In order to state the traction 

problem for D0, it is convenient to introduce the following notation. 

Let D
+ 

be defined by 

2 
D
+ 
= {(x1

,x
2
)1(x

1
,x
2
) E DU C, x

2 
 > 0, (x

1  -I- a) 2  + x2 7-I  0} 	(1) 

so that D
+ 
consists of all those points in D u C which lie on or above 

the x
1
-axis except for the crack tips x

1 
 = + a, x

2 
 = 0. Similarly let 

D be the set of points in D U C lying on or below the x
1
-axis excluding 

the crack tips. The standard traction problem for D
0 
 requires the 

determination of u., a.. with the following properties 

 

II
i 

 
E C

1 
(D
+
) n C

1 
 (D ) n C

2
(D
0 

 ) 

cif  e C(D
+
) n C (D ) n C1  (D0) 

(I) (2) 
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(II) 	There exists a constant M > 0 such that 

(3) 

luI < M on D 
0 

11(u.7 
	1 ) - aij

.  aaa on D
0 	

(4) 
1. 	3, aa  

(IV) 	a.. . + f. = U., a. . =a.. 	on D 	(5) 
13.3 1 1 1] ji 0 

	

a..n. = t. on C 	 (6) 
1 	13 3 	1 

a21 = a2 2 
= 0 on LO 	 (7) 

In the stress strain relations (4) a., 	are the components of the 
13W3 

given elastic compliance tensor and are assumed to be continuously 

differentiable functions of position on D U C which satisfy 

a.. =a.. =a0a1 ..onDuC 	 (8) 
131:03 	31aa 	3 

The elastic material under consideration may therefore be nonhomogeneous 

and anisotropic. Finally it is assumed that the quadratic form 

W(,x) = 	(x) i. 	
,x6DUC 

ljaa 	j aa (9) 

is uniformly positive definite in the sense that there exists a 

positive constant a0  such that 

W(,x) > a 
— 0 13 13 

xEDuC for all 	symmetric 	(10) 

(V)  

(VI)  
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For plane strain of a homogeneous isotropic material with shear modulus 

2 
g and Poisson's ratio v, (10) holds with ao  = min (IP.,(1-2v)/4g) 

provided g > 0, (1-2v) > 0. 

In the equations of motion (5), fi  are the components of body 

force per unit volume and assumed to be continuous on D u C. The 

components of traction d. acting on a curve whose unit normal vector has 

componentsn.aredefinedin(6),t.is the prescribed traction on C. 

In (6) the unit normal vector on C is taken to be outward with respect 

to D0. 

The boundary conditions (7) express the requirement that the 

crack be traction free. The generalization to the case in which suitably 

restricted non-zero tractions are prescribed on the crack offers no 

difficulty. 

The boundedness condition (3) on the displacement is the restriction 

on the singular behaviour at the crack tips. 

IV.1.2 Weak Variational Formulation of the Stationary Crack Problem  

Suppose that u., a,. satisfy (2)-(7). An application of the 
ij 

2-dimensional divergence theorem yields: 

f u.vdA + f aid  
(u).E

ij
(v)dA = f f.vdA + ft.vdS + 14.vds 

D
e 	

D
e 	

D
e 
	C 

 

or alternatively 

(ii,v)
De 
 + a(u,v)

De 
= (f,v)

De 
 + (t,v)

c 
+ (4,v)

Cc 
for all v c V 

(12) 

where V = (v I 	satisfying (I) , (II), (V), (VI) } 

(In the above relation we have used the usual notations.) 
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• When the crack is stationary we have 

z.vds E 0, 	for all 	and v c V 	(13) 
C  

(This can be demonstrated by writing down the form of singularities 

at the crack tip and carrying out the integration.) So that the 

variational form reduces to 

(a'v)De + a(u,v)
pc  = (f,v)De  + (t,v)c  for all v E V, when c 	0 

(14) 

Now it can be observed that, with the particular choice of v E la, this 

form expresses the power balance in our conservative system, i.e. 

61,170D 	a(u,i1)13  = (f01)13  + (toa)c, 	when c -÷ 0 	(15) 

The first and second terms in (15) are the time rates of change of kinetic 

and potential energy, respectively. The terms on the right hand side 

indicate the power supplied by body and boundary forces. So our weak 

form can be interpreted as a sound physical law (i.e. first law of 

thermodynamics) for a special choice of test functions. 

Comment 

In Chapter III it was shown that a weak solution u to the traction 

problem (2)-(7) is given by the corresponding weak form (14). We also 

note that u satisfies equation (15), therefore, one can regard the weak 

form (14) as a linearised version of the power balance equation (15). 

IV.1.3 The Moving-Crack Problem  

We replace all the domains in the previous section by their 

dynamic counterpart e.g. D DXI = D, I=]0,T[, D+ 	= D+  etc. 
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We also note that, due to the movement of the tip, some of the domains, 

such as C
c
, are time dependent. With these modifications the problem 

could be described by (2)-(7). We have the following weak formulation 

(v 	without any difficulty) 

(ii,ir) 	+ 	= (f, 	)- 	+ (t,;.  )- + 	
C 
)- 

C s(t) 	s(t) 	Ds (t) 	s(t)  

for all v E V, e + 0 

where 

= UvIv. satisfying (I), (II), (V), (VI) with D + D etc.) 

and 

(f,g);:z  = f(f,g)Ddt,etC. 

U  0 

The important difference between the stationary and moving crack 

cases arises from the fact that 

lim 	7  f,.vds / 0, 	for all v E V 	 (17) 
6+0 C (t) 

when the tip is running at a speed V / 0 along x1-axis. (This can be 

demonstrated by substituting for the elastic near field into (17) and 

verifying directly.) 

12 
>V 

(16 

• 

For a special choice of test functions i.e. v E u we get 
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)- 	+ 	)- 	= 	)- 	+ (t,i1 )- + (6,171 )- 
De(t) 	

D
e
(t) 	D

e
(t) 	) CE(t) 

E .4- 0 	(18) 

Now we try to give a physical interpretation of equation (18) and show 

that it is the limiting form (i.e. e -4- 0) of the first law of thermo- 

dynamics on the physical grounds that fracture process is dissipative 

in nature. For a general discussion on the energy balance equation we 

refer to the work of Craggs [65], Atkinson andEshelby [66], Freund [67] 

Kostrov [68] and [69, Chapter V]. 

It was already shown in the stationary crack problem that the 

principle of conservation of energy could be derived from the weak 

formulation of the problem by only using differential equations (i.e. 

principle of conservation of momentum). In other words, in the absence 

of heat processes, sinks and sources of energy, first law of thermodynamics 

would not give additional information over the principle of conservation 

of momentum. 

However for a moving crack problem and on physical grounds, there 

is a mechanism of energy dissipation from the tip of the crack. Naturally 

we must use both the principle of conservation of momentum (i.e. differential 

equations) and conservation of energy as the differential equations would 

not be sufficient to explain the process. 

Define 

K = lim f 	.0 dx, 	kinetic energy 
e-4-0 D

e
(t) 

U = lim f 	120". (u)dx, 	potential energy 
E-}0 D (t) ij 

	ij 

C 
	ds, 	F = (f 	D (t) 
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• Then the power balance is written as 

d 
dt 
	+ E = T + F 
	

(19) 

where E = rate of energy dissipation from the tip. 

Due to thetimedependence of D
6
(t) and C (t) in deriving  the time 

differentials, the amount of energy convection through the boundary CE(t) 

must also be accounted for i.e. 

lim C f pu u dx + f 	]V ds] 
E->0 D (t) 	C

e
(t) 	n 
	(20) 

where V
n 
is the velocity vector of curve CE(t). Also 

f 	(5— (11)."i"dx 	"11(7— (11)-c—  (11)]Vn
ds 	(21) 

17 	13 	13 	13 c+0 D
c
(t) 	C

e(t) 

Substituting  (20) and (21) into (19) and using  the divergence theorem 

we arrive at 

E = - lim 	fis.li iv
n
}cis] 	(22) 

13 	13  
6+0 C (t) 

Let us choose C
e
(t) as the loop in the figure. Now we show that for 

the particular choice of CE(t) the contributions from the second and 

third terms in the above integrand vanish ass
x 

and 6 ->- 0. 
y 

/ E x2 

Ey L(')  
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Along the horizontal sides of the rectanglejV
n 
= V n = 0 and 

i 

we only have to compute the second and third terms on the vertical sides. 

Now if we shrink this loop to zero by first letting 	0 and then e
x 
+ 0 

then we can expect that the vertical sides contribute nothing to the 

integral (in fact by various methods of calculating the rate of energy 

release it has been demonstrated that this expectation is valid). So 

we are left with 

E = - lim lim 5 s.a ds 
e-4-0 E ÷0 C (t) 
x y 

(23) 

With this result for the rate of energy release, our rate of energy 

balance equation would become (from (19)-(23)) 

(u 071 )D (t) + a(u,u )D (t) 
= (f,u )

D (t) 
+ (t,11 ) 	+ (60-1 

)C (t)E 	e 	 e 	 c 

e + 0 (24) 

Integrating both sides of the equation with respect to time we arrive 

at the same relation as (18) and hence a physical interpretation of the 

weak formulation (17) is provided. 

Remark 1  

We note that our weak formulation will only be valid if e 0 

i.e. in any numerical approximation of the problem we expect to get the 

exact solution for very fine meshes around the tip. In fact as the 

mesh size h -4- 0 we expect to get both convergence and convergence to 

the right values. However, this dependence on the value e of the 

solution has not been studied. 

Remark 2  

The integration in (23) can only be carried over two horizontal 
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sides of the rectangle as e 	0. Then E would correspond to the power 

required to remove the stresses d through the velocity u to create 

new surfaces and hence can be termed as the 'fracture power'. 

Summarizing, the solution u to the moving crack problem is given 

by 

)15 + 	)5  + b(u, )E = (f,Ir )5  + (t,' )E  

for all v e V, c
x 	

0, E ± 0 (25) 

where the bilinear form b(•,-) is given by 

b(u,v)E =4)( crii(u)n..vdsdt 
0 C 	= 0 V = 0, and V = VR 

i.e. fracture power is nonzero for 0 < V < VR 
(for V > V

R 
the fracture 

process acts as a source of energy and hence, in the absence of any 

external source of power applied at the crack tip, this velocity range is 

excluded). 

The proof of the existence of a unique solution u to this problem 

seems to be a difficult task and is left unresolved. However, we 

assume that we have a unique solution to this formulation and try to 

approximate the solution. 

IV.2 ASYMPTOTIC SOLUTION AND REGULARITY  

The equations of dynamic elasticity in terms of displacements 

are a set of two coupled equations. The solution to the equations would 

be easily determined if we could decouple them. This can be done by 

decomposing the displacement field into irrotational and solenoidal 

fields, see Sternberg [70]. 

> 0 0 < V < V
R 
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IV.2.1 Lam-Clebsch Representation of Equations of Dynamic Elasticity 

The equations of elasticity in displacement can be written as 

po
2
2
u
+ 
  + (A+p) grad div u + F = 0 
	

(1) 

where p and A are Lame's constants, and 

2 r.,2 1 3
2 

u n  = v 
 - C at 

2 2 
n  

n = 1, 2 	 (2) 

2 	2
1
(1-v) 2 	2 p 

C = 	and C
2 
 = 

1 	 2" C2 	
p ' p = mass density 

 

By decomposing the displacement vector into the sum of a gradient and 

a curl 

u = V4 + Vxi 
	

(i.e. grad 4  + curl i) 	(3) 

we can decouple system (1) into 

E121  = 0 

(4) 

02
IP = Q 

as can be verified directly. However the completeness of the representation 

(i.e. whether every solution to (1) can also.be represented as (3)) remains to bE 

shown. In the following we assume in the region n under consideration 

with boundary F the solution u together with its time and space derivatives 

of the first and second order are continuous for x c c , 
t
l 
< t < t

2
. 

 

Note: Eventhough these assumptions are violated in crack problems we 
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.conjecture that they are not necessary for the following theorem as 

long as the displacement field satisfies the condition of boundedness 

of strain energy density. 

Clebsch Theorem (due to Duhem) 

Let u be a particular solution of (1), in the region 0 and for 

ti  < t < t2. Then there exists a scalar function q(x,t) and a vector 

-4- 
function i(x,t) such that u(x,t) is represented by (3) with 

V.11) = 0 	(i.e. div ; = 0) 	 (5) 

and I), 	satisfy (4). 

Remark 

The condition (5) which corresponds to a solenoidal field is 

unnecessary for the Lame equation as long as (4) holds even for a non- 

-4- 
solenoidal field tp. 

This theorem assures the completeness of the solution. 

In the plane strain case 

u
1 
 = u(x,y,t), 	u

2 
= v(x,y,t), 	u

3 
= 0 
	(6) 

the Lame solution remains complete if the aenerating potentials are 

taken in the restricted form 

= (15(x/Y,t), 	1)3  = 1)(x/Yft), 	1)1  = 1)2  = 0 
	

(7) 

Equations (3), (4) and (5) now lead to 
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u = 	+ 
ax Dy 

v = 21- — 4  
ay ax 

(u and v are components of u in x and y directions, respectively) 

and 

= 0 

= 0 

Then stresses at any point can be written in terms of displacement 

potentials as 

a 24) 	a 2* a
x 

= XV
2
4) + 	+ 	 ) 

ax 	axay 

) 	a

2

qi  5 = XV
2
(t. + 2g(

a24  
2 	axay)  ay 

a2cf) 	a
2
IP 	a

2
IP 5 	= p(2 

xy 	axay 	2 	2 
ax 	ay 

So equations (9) together with specified values of displacement and/or 

stresses on the bopndary F (equations (8) or (10)) and initial displacements 

and/or stresses in the plane would determine a well-posed initial-boundary 

value problem. 

Remark 

The previous theorem can be extended to include volume forces F 

represented by 

(8) 

(10) 

F = grad (1) + curl T 	 (11) 
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c. 

(12) 

where (1) and P are given and the equations (9) would become 

2 	1-2v (1) + 	0 
1 	1-v 

__------- 
0
2
2
ip + 2T = 0 	\.t 

where V is the poisson ratio. 

Remark 

The previous results equally apply to some special viscoelastic 

materials where, due to damping, disturbances die out. In this case 

we substitute the operator 

	

2 	
a 	a

2 
(p --Ti k To for (p 

	

at 	 at 

so that (2) is replaced by 

2 	3
2 

k 
0
n 
= V - --2- (---2- 	) 

C
n 

at 
(n = 1, 2) 	(13) 
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IV.2.2 Steady Crack Propagation  

An isotropic elastic material with a stationary crack of length 

a is subjected to general plane strain loading. By an increase in the 

loading along the boundaries, at time t = 0, one end of the crack 

starts to move. The asymptotic elastic field near the tip of a crack 

moving with a constant speed V is obtained in the next section. See 

also Yoffe [71], Craggs [72], Broberg [73] and Baker [15]. 

IV.2.2.1 Asymptotic solution of the elastic field  

Using the previous analysis and decomposing the displacement 

field into irrotational, (1), and solenoidal, T, fields we write the 

equation of motion in the moving coordinate system (,T1) with the 

origin at the tip: 

2 	2 
V 2 D 4) 	3 (I)- 0 [1 - () ] -- + --- 
C 	2 	2 
1 	a 	an  

V 2 9
2
T 3

2
T 

[1 - (—) ] 	+ — - 
C2 aE2 ant 

In this way the system of equations is /educed to two elliptic equations 

for V < C2 
< C1. 

Now we can pse Kondratev's analysis (see Chapter II) to find 

the local field near the tip of the crack. 

(15)  

(16)  
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i01 
 

I

r1 e 
	= 	+ in

1 

we have • 
2 

2 r 
art 

 ' 
1 1 

	

1 	

- 

1  

t
2 

a 	1 	a 
2 r Dr Dr 2 2 

i0
2 r

2
e 	= E + in

2 

2 

-5tActi-u;v6 ( (5)-Q(,) recitAces 

D
2
(1) 4.  3

2
(
2  
D 

2 	
ani 

a
2 
	3

2

T = 0 

n 
 4- 

3n
2 = 
2 

where 	n1 = a1n 

n2 ' a2n 

and 	a
l
2 = 1 - (

C1 
• 	) 2 

a
2 
= 1 ( V  )2 

2 	C2 

Introducing the polar coordinates (r1,01) and (r2,02) as 

(19) 

2 
r
1 

2 
r2 

a
2 

1  , 0 

(20) 

2'' = 
D0

1 

2 
3 
2,w = 

30
2 

T
1 	

—T 

making the change of variables r
1 
= e 	and r

2 
= e 2, (20) becomes 

	

a2 	a2 

(--2– + 	2 cl)  = ° 
• a T 	ao 

	

2 	

a 

2 

a 

2 + --1 T = 0 y 
3T2 

302  
2 

(21) 

(17)  

(18)  
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Fourier transforming (I) with respect to T
1 
and T with respect to T

2 
we 

get 

2- 
a (1) A2  = o 
302 	1 

1 

3 T 	2- = 0 
ao
2 	2 

X T 

2 

which have the general solutions 

: = A sin iX1
0
1 
+ B cos iX

101 

T = C sin iX
2
0
2 
+ D cos iX

2
0
2 

(i = 	 ) 	(23) 

In order to find those cl) and T which result in stress free crack surfaces 

cc 	= 0 
nil 

(24) 
0. 	= 0 

sr,n 

we calculate a
nn 
 and a from (10). We notice that along the crack 

faces n = 0, any point (ri  = r, + Tr), i = 1, 2 is mapped into (Xi  = X, +TT ) 

i = 1, 2, in the X7plane. We substitute into the equations (1) the 

following identities 

3n 
34) _ 3(D 	1 = 	ac) 
ay - an1 	an 	

a 
1 @TI1  

a45 	ac = 	, etc. 
X 

and the Cartesian-polar transformation relations: 

(22) 
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a 2 
 

2 a2 
	

sin 20  a
2 	

sin220  a 	si:2202 0 :2 

	

E 2

- cos 	artsi:2° a 4. 	r 	DrD0 - 

D2 2 3
2 

cos
2
0  a 	sin 20 D2 

	
sin 20 a 	cos

2 
 0  a2 

 
ant

Dr2 
- sin 0 	+ 

	

r ar 	DrD0 r2 ao 
r
2 

DO
2 

a2 	a2 
 

sin 0 cos 0 a 	cos 20 	2 cos 20 a 
- sin 0 cos 0 30n 	2 	ar r ara® r2 30 

Dr 

sin 0 cos 0 a2 

r
2 

a® 
2 

 

which on the crack faces (0 = + 7) reduce to: 

2 
a
2 

DE
2 

a

- 

r2 

a2  1 	1 a
2 

-  r r 
an 	

+ 2 	D r2 
ao
2 

D2 	1 a
2 1 

DOn 

- 

r arao r
2 ao 

in (26) we have 

(25) 

(26)  

(27)  
• , 

a
2 

	

2T D
2 	

a 4. 	1 
2 e ( 2 aT' 

Dr 	3T 

With (26) and (27) used in (24) we arrive at the following  boundary 

conditions 

2a Z' + A(1+a2)C17  =• 0 
1 	2 

2a
2il' - 4(1+a

2)1 =• 0 

on 01  = 0 = + 7 1 2 — (28) 
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- 	- 
where g = is and 01 = 	, T' 

7 30 
etc. Substituting for 0 and T from 

DO1 	2  

(23) into (28) we get 

2a1  (Acos gu -TB sin gu) + (1+a2) (+ C sin gu + D cos gu) = 0 
2 — 

IN/ 

2a
2
(C cos pm + D sin gu) - (1+a2

2
) (+ A sin gu + B cos WO = 0 

which reduces to two independent sets of equations: 

2a
1 
 A cos gu 	

2 
+ (1+a2)D cos gm-  = 0 

2 
(1+a)A sin gu + 2a

2 
D sin gu = 0 

{

(l+a2
2
)C sin gu - 2a

1 
 B sin gu = 0 

2a
2 

C cos Aff - (1+a2) cos gu = 0 

- (30) 

(31) 

(29) 

A nontrivial solution is obtained if the determinants A
1 
and A

2 
of the 

system (30) and (31), respectively, vanish, i.e. 

A
l 
= A

2 
= [(1+a

2
2
)
2
-4a

1
a
2
] sin 27rµ = 0 
	

(32) 

For (32) we can consider two cases 

(i) sin 2ug = 0 

(ii) [(1+a
2
)
2
-4a1a2

] = 0 

and discuss the implications of each case. Case (ii) will be discussed 

later in IV.4. 

- 140 - 



• (i) 	Sin 2nA = 0 

The roots of the equation are A = + j/2, j integer, where for 

the physical condition that energy is finite we only accept 

A = - j/2, j > 1 integer 

or 

-iX. = j/2, j > 1 integer (i = 117-7) 

upon substitution for A into (30) and (31) we have 

2 j> 1 odd integer 	j> 1 even integer 
1+a

2 
2 	

2a
1 

D 	A 	 D= --- A 	(34) 
2a2 • 1+a2 

So the potentials from (23) are 

 

= -A sin 0 + B cos 0 
2 1 	2 1 

> 1 

  

 

	

-2a2 	

1+a
2 

T = 	1 	j 

	

B sin 02 2a 2 
	1 

	

A cos -0
2 	

j > 1 odd integer 	(35) 

	

1+a2 
	

2 	
2 2 

 
'  
1+a

2 	
j0 	2a 	j0

2 7 . - ---a B sin 
2
2 	12 A cos 	j > 1 even integer 

2a
2 	1+a2  2 i+a

2 

 

Therefore, according to Kondratev's analysis (see Chapter II) the 

following expansions hold 

r j/2 
0 = La.r P.(r thqr ) + W 

. 	1 	1 	1 	3 
J 

j > 1 integer 	(36) 

r T = Lb.r /2  Q.(r tnqr ) + W , 
. 3 	2 	2 	4)3 

2a 
C = 	12 

1+a 

1+a
2
2  

2a
2 
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where q is an integer and P. and Q. are polynomials with coefficients Q3  

infinitely smooth functions of 01  and 02, respectively. (These are given 

by eigen functions in (35).) 

Relations (36) together with (8) and (15) would determine the 

actual displacement and stress field e.g. when A = 0 (Mode I) the 

dominant singular terms given for j = 3 are: 

u = -2-B(t){r
1 
cos 

3 	1/2 	
01 2a1

a
2 12 	

02 

	

2 	2  r2  cos 	+ 0(1) 

	

1+a
2 	 (37) 

3 	
0 

v =- aB(t){ 	2  r1/2  sin 2 	
11 	0, 

	

22 2 	— - r  

1+a 	2 	
1 sin 2} + 0(1) 

2 

The corresponding well-known stresses and velocities are then: 

0
1 	

cos ((--)21) 3 	, 	2 2 cos (-7,) 	4a1a2  
	2  0

11 
=-413-I(1+2a

1
-a
2
) 	 

	

r1 	
(1+a21/2 	

) + 0(1) 

	

2
) 	r2 

 

	

0 

	
02 

 sin 1 
sin (-71) 	sin (-

) 1 3 
cr 	= -., j.).B a { 	, 	1 	5.+0(1) 
12 	z 	1 	-1 	1 

r1 	
r
2 

0
1 	

02 
3 	2 cos(  —

2
) 	4a 

1
a 
 2 

 cos (—) 
022 = -4 1113{--(1+a2) 	 2 	1/2 

2} +0(1) 
r1/2 (1+a2 ) r2  2 

	

O. 	2a a 	
.- 	

02 

	

= - 2v(t).B(t)(r-1 	2 12 	
1 

cos 	
1 2 r 

2 1 cos -I + (1) 
1+a 4 	2 	2 

v = - 
3  -v(t)B(t) a 4 

01 	2 	
-1/2 	02 

sin 	2  r2  sin - 	+ 0(1) 
1+a2  

An analog dynamic stress-intensity factor can be defined as 

KID = 4- ABL 
3 	,

4a
1
a2-(1+a

2  

1+a
2 

2 2, 
2) 
	

(40) 

and 

2 

(38)  

(39)  
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J (1) = r312{A sin 3  01 	Y + B cos 3  0
1 	

No } + 
1 	 3 

3/2 , 	
12 	2 

2a 	3 	3 1+a
2 

T r
2 	

B sin - 0
2 	2a + 	 A cos -2 02} + WO3 

	

1+a
2 	

2 

• 

2 
(43) 

• Similarly for Mode II (B = 0) 

2 -12 	
2 
2 	2 - 	0 12 a 	= 

11 	4 
3 - AA{ (1+a,

2
)r
2 

sin 0 — - (1+2a
1
2 -
a
2
)r

1 
sin - 2} 
	0(1) 

	

0
1 	(1+a

2
)
2 

3 	-1/2 	 2 

	

2 	4a1a: 
	 r 1  cos --i + 0(1) 

12 
= 
4-11A.2a1

fr
1 

cos 2 

3 	, -1/2 	0 	0 1 	-1/2 	2 
a22  = -- 11A(1+a

2
2 
 )ir

1 
sin — - r 	sin 	+ 0(1) 

22 4 	2 2 	2 

4a
1
a
2
-(1+a

2
2 

 ) 
2 

3 
K = µA[ 
IID 4 	2a

2 
(42) 

IV.2.2.2 Regularity of solution  

In parallel to the regularity analysis of Chapter II for 

stationary crack problems we study smoothness of the functions (I) and T. 

From the expansion (36) for j = 3 we have 

with 

(41) 

In general 1) E H
2
(0) and T E H

2
(0) and also for the right hand 

sides in (16) we have L
1 

E H
1
(0) and L

2 
6 H

1 
 (0). Since -1 + 2 < ImA. = 

2-< -1 + k
1 
 + 2 (i.e. k

1 
 = 1), from Theorem (1) Chapter 11.6, we obtain 

10
3 

E H3(0) 

and 

wlp
3 

E H
3 
 (0) 
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i.e. the solutions (I) and T can be asymptotically expanded as the sum 

of dominant singular terms and smoother functions 103  and Wtp3. 

Similar expansions also hold for displacements u and v with the 

leading singularities given by (37). In this way the solution 

u E H
1
(0) and v e H

1 
(c)(at any fixed time t) can be expanded 

containing smooth functions in H2 (0). Therefore, similarly to the 

analysis of stationary crack problems, we can incorporate the 

singular functions in any approximation scheme for solving moving crack 

problems and expect it to result in a convergent algorithm. 

IV.3 FAILURE CRITERIA  

The study of mechanisms of initial growth of a crack is 

important for both failure analysis of cracked structures and also 

determination of the initial conditions set for the propagation phase 

of the moving crack problem. We also notice that once a crack has 

started to move its subsequent motion should only depend on the local 

behaviour of the field variables. In general it would be reasonable 

to substitute the global energy balance equations with a local 

'fracture criterion' as the whole energy dissipation takes place from 

the moving tip. In this section we review certain failure criteria 

that provide the required initial conditions for the moving crack 

problem. 

IV.3.1 Griffith Criterion [74]  

In a linearly elastic brittle material the Griffith energy 

criterion can be stated as follows: for a crack of length C to extend 

an amount SC, the change in the total energy released would be 
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= kinetic and strain energy 
SU = SW - ST; 

	

	
( 1) 

-= work of applied forces 

On the other hand, in order to create fresh surfaces in the material 

certain energy is required. This energy denoted by r is the "surface 

energy" of the crack. The extension of the crack would entirely depend 

on the availability of the minimum surface energy F, i.e. 

Su > r 	 (2) 

Griffith expresses r in terms of y (surface tension) of solids by r = 2Cy. 

Equation (2) would then be written as 

6u > 2Cy 

Define the rate of energy release by 

_ SU 
G TsE. 

The Griffith criterion can be written as: 

G > y 

G can be regarded as the force tending to open the crack and its 

evaluation should only need a local knowledge of the field near the 

crack tip. This can be obtained for a semi-infinite crack in an infinite 

medium for, say, Mode I by calculating the work done at the crack as 

1 = 41 	I 

 

it (K+1) 
 K

2
, 	K = 3 - 4v for plane strain 

(3)  

(4)  

(5)  
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The Griffith criterion would then yield the following failure condition 

2 	21.1 
K
I —> Tr (1-v) Y 

IV.3.2 Barenblatt's Criterion [75]  

Barenblatt established the earlier conjecture that the position 

of the crack tip is determined by the condition of boundedness of 

stresses. This is to say that the stress intensity factors vanish 

there and the crack faces close smoothly (cusp shape) at the tip. Due 

to non-zero Stress intensity factors calculated from the infinitesimal 

theory he postulated the existence of an 'end' region at the crack tip 

where the opposite faces of the crack are so close that the cohesive 

forces are operating on that area. This would resolve the discrepancy 

of the classical theory in giving unbounded stresses. Outside this 

region (the inner region) the continuum model holds and the effect of 

cohesive forces can be neglected. He assumes that the dimensions of the 

end region are very small in comparison with the largest dimension of 

the crack and that the distribution of the cohesive forces in the 

neighbourhood of points having its maximum intensity is independent of 

the loading condition. (The autonomy hypothesis.) Denoting by Kia  

' (i = 1, 3) the stress intensity factors due to cohesive forces acting 

on the end region and by K
10
, (i= 1, 3) the corresponding stress 

intensity factors for the forces acting on the inner region due to 

infinitesimal theory then the condition of finiteness of stresses is 

K
i0 

+ K
ia 

= 0 	(i = 1, 3) 	 (1) 
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For example, Barenblatt has shown that the stress intensity factor K
2a 

can be expressed in terms of the cohesion modulus K, regarded as a 

material constant, through 

K 	-  
2a 	7 

so everywhere on the rim of the crack 

K 
K < 
20 — u 

with equality sign for a limiting case where any increase in the load 

would result in a movement of the tip. 
• 

The following hypothesis for crack initiation is given by 

Barenblatt: "for any brittle (or quasi-brittle) material there exists 

a universal function 0(-K
la

, -K
2a 

 , -K3a)  of the stress intensity factors 

of the cohesive force, such that: 

0(-Kla ,-K2a ,-K3a ) < 0 
 — 
	 (4) 

at all points on the rims of all cracks within the body. At points 

at which = 0 the state of stress is limiting in that the attainment 

'of this state at some point on the rim makes the crack move at that 

point and any increase in the load which would have led to 0 < 0 in 

fact leads to crack propagation." Because of (1) the initiation .  

condition can be written in the form 

0(K
10
,K
20
,K
30
) = 0 
	

(5) 

(2)  

(3)  
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If the limiting condition corresponds to the constant energy of rupture 

so that the density of energy rs, expended in forming a new crack 

surface is constant, equatidn (5) is written as 

7(1+v) 	2 2 2 
[(1-0(K20

+K
30
)+K

10
] = r0  

Since Barenblatt has shown that 

(1-v
2
)K
2 

1'0  — 
7rE 

(5) can be written as 

(1)(-K
la
,-K

2a
,-K

3a
) = K2a 

2 
+ K3a 

2 
+ 
1-
1--
v K

2 - 
1a K2 

Willis [76] has proved the equivalence of these two fracture criteria 

and showed that the modulus of cohesion K is not a constant but depends 

on the speed of the crack and therefore is not so fundamental a quantity 

as the surface energy of Griffith. 

IV.3.3 Sih's Mixed-Mode Criterion  

When fracture occurs in a mixed mode, experimental evidence 

indicates that the crack does not extend in its plane (unlike Griffith's 

one) and hence the classical energy balance of Griffith is not directly 

applicable. In such a. case there are two basic questions [77]: 

1. critical loads for fracture to occur 

2. initial direction of crack extension. 

The strain energy density dU in an element dA = rdrd0 is 

1 
t
, 

dU = r a
11 1 
K
2+2a

12  K1  K 2 
+a

22 2 
K
2
)dA 

(6)  

(7)  

2 
(8)  
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K
1
, K

2 
are stress intensity factors for Mode I and II respectively and 

all 	16 
- 
1
---(1+cos 0)(K-cos 0) 
g.  

1 a = 
12 Ti6 

sin 0 [2 cos 0 - (K-1)] 

a
22 	16g 

= 1 ___[(K+1)(1-cos 0)+(1+cos 0)(3 cos 0-1)] 

K = 3-4v for plane strain, g = shear modulus. 

The strain energy density 
dA 

 i — s singular of order 0(r
-1 	

4-  ) as r 0. Now dA 

define the strain energy density factor as 

dU, 	2 	2 
S = lim trial = a

11
K
1 
+ a

12
K
1
K
2 

+ a
22
K
2 

r4-0 

Sih states that: 

(i) The initial crack growth takes place in the direction 0 = 00 
 

along which S possesses a minimum i.e. 

a S 
80 = 0 4-  0 = 0

0; 	-n < 0
0  < 

 it 

(ii) Fracture is initiated when S reaches a critical value S 
cr

, i.e. 

S = S for 0 = 0 
Cr 	0 • 

S is assumed to be a material property. 
cr 

Using this concept for a central crack of length 2a in an 

infinite medium under Mode I loading (a) we find 
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2 
S = 2=

6p
1(1+ cos 0)(K- cos 0) 1 

and 

and 

DS 
ro- = 0 ='> 00  = 0 

(K-1)o
2
a  S

cr 84 

erN 
I
c_ 	;14_1 
	`l 80 

Diajr-A(A) 

which can be related to the critical stress intensity factor K = 
1C 

aV 

(K-1)K
2 
1C  as S

Cr 	8p. 	and hence, for this problem, S
cr  has similar implication 

as Irwin's idea of taking the critical stress intensity factor as a 

material constant. 

The concept of critical strain energy is best demonstrated on 

a Mode II crack problem. For K1  = 0, K2  = T41. ( DI°̀ 3/-"I)  

2 
S T 

(K+1) (1- cos 0) + (1+ cos 0) (3 cos 0-1) 16p. 
cr 

as 0 ao  v = 	cos
o 
 = K-1  
 G 

and 

(-K
2
+18K-1) 2 

S
cr T a 192p 

i.e. the crack does not initially extend at the crack plane. This has 

experimentally been verified on a number of materials and 00  measured. 

The agreement between the 00  from the S-criterion and reported experiments 

are good. 

For an inclined crack in a plate in tension we have Is  -010,-5rcn' B) 

2  
S = a 

a(a11 sin 
2
R + 2a

12 sin a cos a +.a22  costs) sin
2

P. 

1 
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2S 
= 0=.>(K-1) sin (0o

-20-2 sin2(00-8) - sin20 = 0, a 	0 
ao 

It should be mentioned that the maximum stress criterion gives an angle 

which for an isotropic material is independent of the material 

properties and for large values.Of 8 is close to the S-criterion results. 

More details on this problem are given in [77]. 

IV.4 CRACK PROPAGATION AT THE LIMITING RAYLEIGH VELOCITY  

In this section we discuss the possibility and implications of 

having a Rayleigh speed of crack propagation (V = VR). From the earlier 

result in (32) (see IV.2.2.1) we know that the existence of a non-trivial 

solution to the problem is guaranteed if 

(1+a
2
2 2
) - 4a

1
a
2 
= 0 

i.e. 

V = 0 or V = V
R 

Since we have analyzed the stationary case (V = 0) we exclude it here 

and only deal with V = VR. In particular we want to see if this velocity 

can be regarded as'an acceptable speed for propagating cracks and if so 

get numerical results for the problem. 

Stroh [78] has apparently been the first stating that the velocity 

V = VR 
is the terminal velocity (i.e. the upper bound for all acceptable 

velocities). His heuristic proof is based on the assumption that the 

surface energy to be zero. He was then led to the conclusion that the 

local tensile stresses are zero and hence the crack can be thought of as 

a disturbance along a free surface which can only propagate at V = VR. 
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By arguments based on the analysis of exact solutions of the 

dynamic equations of elasticity, several authors concluded that the 

terminal velocity is VR. Craggs [72] considered steady propagation 

of a semi-infinite straight crack with symmetrically distributed 

normal and shear stresses applied on a part of the crack faces adjacent 

to the tip. Ang [79] dealing with an unsteady elastic field in an 

infinite body with a semi-infinite crack loaded normal to the crack 

surfaces suggests that when V 4- VR  a 'resonance' effect seems to be 

produced. Barenblatt [80] treats the wedging of brittle bodies. He 

assumes a zone of cohesive forces ahead of the crack to remove the 

stress singularities and as the conclusion states that as the crack 

velocity approaches the Rayleigh velocity, peculiar resonance phenomena 

arise. 

In order to clarify the relation between 'resonance', say, in 

an electrical circuit and that in an elastic field when a free crack is 

running at V = VR  we give the following explanation. In a circuit if 

the source supplies energy at a frequency w which corresponds to the 

'natural' frequency wn  of the circuit (assuming that the energy could 

be supplied) then the oscillator would gain large amplitudes, in fact 

it tends to infinity for w w
n
. If this provision of energy is 

continued one can theoretically reduce the amplitude of the alternating 

supply (but keeping the frequency locked at w = wn) to almost zero at 

the input while still getting infinite amplitude of oscillations at 

the output. Now even if the source is removed the circuit would continue 

oscillating at its 'natural' frequency (assuming a conservative system). 

In analogy with the circuit we have a free crack where the 

energy required to move it decreases with increasing velocity of the 
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crack tip and reaches zero at V = V (if a constant velocity could be 

established at all). In fact the surface waves due to the dynamics 

of the problem (at VR) would interfere with the tip motion. (This 

analogy should not be regarded as a perfect parallel, however.) So 

in a propagating crack problem once the constant velocity VR  is 

reached it will maintain this speed even if the external forces are 

removed. A crack in this state could be called a 'self-maintaining 

crack' and it could be arrested if any of the assumptions in the 

solution of the problem are violated (e.g. any change in the material 

property etc.). 

Broberg [73] in treating the problem of a uniformly propagating 

crack assumes zero surface energy and for large values of time 

concludes that V = VR 	(Infinite body, finite length crack.) In fact 

by using (22) of IV.1 we can get the following expression (see also [81]) 

for the fracture power E in terms of stress-intensity factors K
I 
and K

II
: 

E = 
1-a

2  
2 	 1+v 	, 	2 , 

V(t) 2 2taKI
+a
2
K
II

J  
E 	-4a12+(l+a2

) 

From (40) and (42) we see that 

(a) KI  = K
IT 

= 0 if V = V
R • 

(b) E = 0 	if V = 0 or V = V
R 

i.e. fracture at the Rayleigh velocity proceeds without any loss of 

energy from the system. 

It seems that the resonance phenomena at V = VR  is not limited to 

the problem of moving cracks only. In the 'punch' problem the same 

pecularity arises as the punch velocity approaches V
R
. 

(It should also be mentioned that Eshelby [82] in studying the 

R 
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velocity of motion of linear dislocations concludes that VR  is the 

upper limit for the velocity. if the atomic nature of the material is 

taken into account.) 

As to the experimental evidence, most of the experiments reported 

in the literature are based on Mode I fracture for specimen of finite 

dimensions. These dimensions are usually so small that the dynamic 

analysis of the problem can be valid only.for very small intervals of 

time after fracture is initiated. Hence,in general,it is too much to 

expect that there would be enough time for the crack to settle down 

on a steady velocity as high as VR  before breaking the boundaries. 

However, in our particular application, i.e—extension of geological 

faults, the medium is large enough to allow for the crack to propagate 

at any physically possible velocity for any reasonable length of time. 

This provides a unique experiment that cannot be simulated in small-

scale in laboratories. 

Experimental results [78] for metals, glass, polymers etc. indicate 

velocities of propagation as high as V = 0.78C2  < VR  = 0.92C2. Regarding 

the nature of the measurements together with the material inhomogeneity 

and anisotropy (even for a perfectly brittle body) lower values for the 

upper limit of velocity is reasonable. It is also suggested that in 

real materials crack would run in a jerky manner, coming to rest and 

moving forward again. Such a process would give a mean crack velocity 

less than the limiting velocity (on seismograms, sometimes, there are 

indications of a stopping-and-starting phase (stick-slip mechanism) 

during the fault propagation). 

Yoffe [71] showed that for a non-zero speed of crack propagation 

in Mode I the normal stress a
22 

does not have its maximum on the crack 

line for velocities greater than a critical velocity Vcr (Vcr  < VR 
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if one uses a failure criterion such as the "maximum principal 

stress" 	then one can conclude that before the speed of the crack 

reaches V
R
, due to symmetry, bifurcation takes place at the critical 

velocity Vcr. 

By branching, the velocity is reduced and hence the upper 

limit for the velocity would, in this case, be Vcr < V. 

A 	 A  1 

Biftrcated Crack (Mode I) 

In conclusion for Mode I fracture : the upper limit is dictated 

by (known) failure criteria and is VSS VR- 

However for the general loading, due to lack of symmetry, 

bifurcation cannot happen and instead the crack would smoothly bend 

along a curved trajectroy in order to satisfy any failure criterion. 

This would possibly imply that under general loading conditions the 

crack starts to move from zero initial velocity to a critical velocity 

unsteadily along a straight line. For velocities of the accelerating 

crack greater than,  this critical velocity, the crack tends to curve, 

in a specific way, by changing its slope while increasing its velocity 

until the velocity approaches V
R 

where it is locked at this velocity 

with no further change in its speed or its trajectory. 

	_7 7.  

V=VR 
.71) 

11 <V< VR 
°<11-Vcr 	1 Cr 

I 

Trajectory of an Accelerating Crack 
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IV.5 NUMERICAL TREATMENT OF CRACK PROPAGATION PROBLEMS  

IV.5.1 Current Techniques  

Many authors have attempted to get solutions for moving crack 

problems. Using a finite difference technique (HEMP mode) Chen [83] 

presents plots of stress field for a number of time steps. With the 

inherent impossibility of simulating the propagating crack problem with 

the aid of any finite-difference scheme it is clear that this method can-

not represent the true physical problem. However, his solution could be 

acceptable only as a limiting case (V=VR) provided the tip of the crack 

is moved in a way consistent with this velocity. 

Aboudi [84] has also used finite difference methods to solve 

the problem of an interface propagating crack. The use of finite_ 

differences for an interface problem introduces even more serious 

errors. This is due to the expected oscillatory behaviour (with the 

frequency of oscillations rapidly increasing as the crack tip is approached) 

ofistress field from the linear theory of elasticity for an interface crack 188]. 

Clearly, finite difference technique cannot take into account this 

feature and one expects more erroneous results as is reflected in the 

numerical values presented in the reference. 

Employing a conventional finite element routine, Aberson et al 

[85] and.Malluck [86] give numerical values for dynamic stress intensity 

factor (Mode I fracture). Their approach is to use the same finite 

element formulation as for standard dynamic problems (i.e. no term 

corresponding to fracture power). The moving crack is simulated by 

subsequent release of the nodes in front of the crack tip. The resulting 

displacements are then matched with the correct asymptotic solutions to 

extract the dynamic stress intensity factors. In the next section it 

becomes clear that the conventional finite elements correspond only to 
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E = 0 (i.e. either for stationary cracks V = 0 or V = VR  if the tip 

is moved exactly at this speed) and any attempt to extract non-zero 

dynamic stress intensity factors is bound to fail. In fact it is 

surprising that they get a non-zero value for KI  (for any crack 

velocity). However they state that their more accurate stress intensity 

factors correspond to higher crack velocities. Indeed as V VR  then 

K
I 
4- 0 which represents the only consistent interpretation of the 

numerical values and hence the reason for getting more accurate results 

when V VR. 

Anderson [87(i-ii)] has also used finite element method for this 

problem. He does not take into account the dynamic effects while he 

considers the plastic deformation at the crack tip. 

Nilsson [89] using the Wiener-Hopf technique has found dynamic 

stress intensity factor for a strip in mode I fracture. Other relevant 

references in this regard include [90]-[92]. 

IV.5.2 Approximation of the Variational Formulation for Unsteady Crack  

Propagation  

IV.5.2.1 Finite elements in time and space  

We have earlier seen that the moving crack problem can be represented 

by the solution u,to the following equation (see equation (25). Chapter IV.1) 

(P ) : 
T 	T 	T 
f f iidxdt + f f e 

e 

	(u)c .(.0dxdt - f f 0... 	
3 

(u)n.imsat = 
0 D 	0 D ij 	ip 	0 C 13 

e 

T . 	T 	 - 
f f fv dxdt + f fti7 dsdt, for all V c V 
0 D

e 	
0 C 

Or  c O. 
x 	y 

With the asymptotic expressions (37)-(41) of (IV.1) for stresses and 

velocities near the tip it is obvious that we have to use an approximation 
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.scheme capable of handling singularities in both stresses and velocities. 

Failure to do so will result'in a zero fracture power which, in general, 

contradicts the physics of the problem. 

Now we suggest that the only valid numerical scheme for an 

approximate solution of the problem is to use finite elements in both 

time and space. 

The usual finite element technique as applied to hyperbolic 

systems is to reduce the time dependent problem to a sequence of elliptic 

systems at any instant of time by finite difference approximation of 

time derivatives involved. This is the technique that was applied to 

stationary dynamic crack problems. However,-in the moving crack case 

since we have velocity singularity as well, any finite difference in 

time is bound to give finite velocities (velocities calculated from 

displacements are finite throughout the domain). As a consequence,the 

third term in the left hand side of (P) which involves a contour 

integration around a circuit would always be zero even though stress 

singularities are preserved. 

The approximating problem (Pt) is as follows: 

(Po): Find ut  E 	such that ut  - not  E Vt. and 

•• 
(u 	)- 	+ a(u 	)- + b(u 	)- = (f,ir )- + (t,ir )- 	for all ve 

	
V
t
' 

t' t De. 	t' 	t' 	c 	De 	t ' _e 
e
x 	

0, E -4- 0 where V c V is of finite dimensions. 

Note: It is observed that (Pt) is approximate in two ways, one approximation 

is due to discretization in time and space (represented by the symbol t 

for discrete time interval(T)and discrete space mesh of size(h)) and the 

other due to the size of the finite region C as the formulation (P) is 

dependent on e
x 

-4- 0 and E 	0 in a particular way. We do not know the 

behaviour of the solution for different values of e e , h and T but 
x y 
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expect to get a convergent solution as h + 0 and T 4  0 with small 

(compared to any characteristic length in the problem) e
x 
and e . These 

can be investigated by numerical experiments. 

IV.5.2.2 Reduction to a set of simultaneous linear equations  

We take the approximating space Vt.  to be spanned by the basis 

functionsfAx,y,t) i.e. 
1 

m 
u = X f.(x,y,t)a. 

i=1 1 	1 
	 (1) 

Then (Ps) can be written as 

+ a(Xf.a. 	3 ,/f. Ja.)- + b(yf. 1  
a.,If. v )74  = 

	

i li i33  De 	1 .D 	. 	.3 3 

	

1 	3 

r• 
(3  • "JfA"-"t,LfJ"-,forall.ri. 3 3 D 	j  

or alternatively 

•• 
X a.{(f.,f.)- + a(f.,i,)- + b(fai.)- } = (f,f.)- + (t,i.)- 

i=1
3 D

e 
1 	1 3 DE 	3 D 	3 C 	3 C 

for all j = 1, 	m 	(2) 

This system can equivalently be written in the form: 

Ka = F 
	

(3) 

where 

K. = 	= 	+ a(f.j.)- + b(f.j.)- k. 	
1 3 D 

	

1 3 D
c 	

1 3 CE 
 

F  _,../y 	:=, ;F(f,i.)- 	(t„i.)- 
3 3 	3 D

e 	
C 

and 

a = {a.}, i, j = 1, 	m 
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Note: The space 0! incorporates the basis functions corresponding to 

displacements near the tip given by the asymptotic solution there (e.g. 

see equation (37) of IV.2 for near-tip displacements in Mode I). 

While this scheme is conceptually easy, its computer implementation 

is difficult. The difficulty is due to two different reasons. 

1. Choice of basis functions satisfying the conditions of interelement 

compatibility in time and space in the presence of singular functions. 

2. The inherent large dimensions of the resulting system of 

equations. 

With the present computer generations this poses serious storage 

problems (this is one reason for using finite difference in time in 

conjunction with finite elements in space for standard time-dependent 

problems). 

The first difficulty could be alleviated if we are content with 

basis functions in our approximating space that are not mathematically 

elegant even though they preserve all the dominant features of the 

problem. Specifically we can extend the idea of quarter-point elements 

in 2-D space to 3 dimensions i.e. 2 space dimensions and time. For 

this we can use a three dimensional element having an edge along which 

stresses and velodities are unbounded. This element is computationally 

easy to implement. 

// 

However, the second difficulty remains unresolved. 

Note: The first difficulty could also be considered as the problem of 
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matching the global and local field variables. By deciding on a 

particular form for fracture 'power (in terms of the crack propagation 

speed V) we will be able to combine the global and local behaviour of 

the field to get both the unknown crack velocity V and field variables. 

IV.5.2.3 Approximation of the Rayleigh problem  

For the special case when the crack is propagating at the constant 

Rayleigh velocity VR  we know that the fracture power is zero and the 

singularities are absent. The only non-standard feature of the problem 

would then be that of a moving boundary into the medium. Moreover,we 

can use finite differences in time for this case (no velocity singularities). 

Therefore, we get round the difficulties for-the general unsteady crack 

problem. In this case the problem is reduced to the following: 

Find u e V 

6.1  '171D(t) 
+ a(u,v)p(t) = (f,v)

D(t) 
 + (t,v)C(t) for all v E V 

where 

V = {vive(H1  (0)) 2, v=U on ruI 

This variational fqrm is similar to the stationary crack problem analysed 

earlier in Chapter III with the only difference that the domain is now 

time-dependent. This is equivalent to saying that any finite-dimensional 

approximation of the problem results in a linear system of equations 

with a time-dependent dimension (i.e. as time goes on new surfaces are 

created in the material and hence the dimensions of the matrix K increase 

with time). 

For Mode I fracture we can use symmetry and then the problem is 
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tractable as it would only require a change in tne boundary conditions 

with time. It is clear, that in the presence of boundaries (i.e. 

reflected waves) for any finite domain V = VR  remains as a consistent 

velocity for all time. 

In the next chapter we will present numerical results for Mode I 

fracture at the Rayleigh velocity. 
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Chapter V 

COMPUTATIONAL ASPECTS OF THE PROBLEM 

V.1 	INTRODUCTION 

We have earlier seen that the standard approximate problem 

(P
h
) 	( Find u

h 
E V

h 
such that 

a(uh,vh) = (f,vh) 
	

for all v
h 

E V
h 
	 (1) 

can be solved by Galerkin's method. In the method one looks for a 

solution to (P
h
) in a finite-dimensional subspace V

h 
E V spanned by a 

linearly independent set of basis functions wi(x),...,wm(x). The 

solution u
h is then of the form: 

m 
uh
(x) = X a.w.(x) 

i=1 
	 (2) 

wherethecoefficientsa.,i = 1, ...m are to be determined such that 
1 

u
h 

satisfies (P
h
) i.e. 

m 

	

y a(w.,w.).. = (f,w,), 	for all j = 1, ..., m 	(3) 
i=1 i j 

1 	3 

Or 

Ka = f 	 (4).  

Where 1( . = a(w,,w,) is the stiffness matrix entry and f 	.) is 13 	1 J 	 7 

the load vector entry. Now we have to solve a linear system of 

simultaneous equations in terms of the unknown coefficients ai, i = 1, 	m. 
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We recall some of the basic properties of this solution as 

being the best L2  approximation with the residual error orthogonal 

to the subspace V1 . (The admissible space is, obviously, H1 (Q).) 

For the standard dynamic problem we are concerned with 

(P
h
) 
	

I

Find u
h 

E V
h 

such that 

1 

(u
h 
 ,v

h 
 ) + a(u

h
,v
h
) = (f,vh) 	for all vh  E Vh 	(5) 

then using Galerkin's solution in the form of (2) the problem is reduced 

to 

"(w.,wia.-FX,a(,7.,w.)ce.=(f,wifor all j = 1, 	m 
i=1 1 31 1=1 131 

(6) 

Thus the Ia.'s are the solution of system of ordinary differential 
1 

equations: 

MC; + Ka= f 	 (7) 

where 

M.. = (w.,w.) 	is the mass matrix entry 
13 	1 3 

K.. = a(w.
1
,w.) is the stiffness matrix entry 

13 	j 

and 

f. = (f,w.) 	is the load vector entry 

V.2 	CHOICE OF BASIS FUNCTIONS  

In earlier chapters we have seen that for any convergent 

finite element scheme we should incorporate the proper singularities 

of the solution in the approximating subspaces. For this reason we 

introduded the spaces
k 

(see Chapter 11.7) which can be interpreted 
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as the usual smooth spaces augmented by singular basis functions xi. 

As to the practical implementation of this scheme, we will only 

be dealing with the space V1  which includes the leading term singularity 

of the solution. With this we, theoretically, expect an order of 

convergence of two (see Chapter II) for displacements from any finite 

element method using polynomials of minimum degree one. 

Before going into details of the basis functions we need to 

clarify two basic considerations: conformity and the patch test. 

V.2.1 Conformity  

For a differential equation of order 2m in the plane we want to 

know which piecewise polynomials lie in the admissible space H
m
(Q). 

The sufficient condition for conformity is then to have basis functions 

which together with their (m-1) derivatives are continuouz across element 

boundaries. In case we choose our basis functions from polynomials (as 

we usually do) on each element, then they lie in H
m 
 if and only if all 

derivatives of order less than m are continuous along interelement 

boundaries. Any violation of this rule would result in infinite strain 

energy and consequently a physically meaningless approximation. In the 

problems we are dealing with C
0 
 conformity is enough. However, in 

practice, some non-conforming elements have proved useful and reliable. 

The reason for their reliability is explained by the fact that the total 

strain energy is found by the sum of the contributions from each individual 

element and therefore the interelement discontinuities do not affect the 

finiteness of the strain energy. The reason for their popularity is in 

their simplicity for construction. 

However, one should be very careful in using the non-conforming 

elements as in many cases they do not result in a convergent algorithm 

- 165 - 



and one has to have means to ensure the convergence before applying new 

elements to any particular problem. One such a tool has been devised 

by engineers and is called the patch test. 

V.2.2 The Patch Test  

This has a recent historical development since 1965 and we refer 

to the work of Irons [43] and references there. 

The importance of the interelement continuity was earlier 

noticed for convergence.Irons, the originator of the empirical tool 

holds the idea that the patch test provides a necessary, and possibly 

sufficient, condition for convergence as h 0. Strang [42] proves 

that passing the patch test is, indeed, sufficient for convergence. 

However, by establishing upper bounds for the approximation error, 

Oliveira [93] proves that, in contradiction with the Irons' thinking, 

passing the patch test is not a necessary condition for convergence. 

He also demonstrates the sufficiency of the test for convergence. 

Moreover, he shows that contrary to Strang's argument [42] higher order 

patch tests are not necessary for higher order accuracy analysis and 

that, with the completeness condition satisfied, the order of the 

error involved is dependent on the order of the completeness condition. 

Suppose that all polynomials Pt  of degree 	(with t being the 

maximum order of derivatives appearing in the expression for the strain 

energy) are contained in the approximating space. Suppose also that 

around an arbitrary patch of elements, the boundary conditions are 

chosen such that the true solution within the patch is u = Pt. Then 

the patch test requires that the approximation uh, computed by using 

non-conforming elements (i.e. ignoring 6-functions along the interelement 

boundaries) must also coincide with Pt. When the test is passed, and 
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completeness conditions satisfied, then it is expected that the convergence 

would follow as in conforming models. 

With this background on the conformity and patch test we are able 

to discuss the non-standard approximation we use for the crack problem. 

V.2.3 Singular Basis Functions  

There is a variety of ways to supplement a piecewise polynomial 

approximating space by proper singular functions to achieve the desired 

optimum rates of convergence. The efficiency of methods varies according 

to the degree to which the actual problem has been idealized. 

a. The most straightforward method which thoroughly satisfies the 

theoretical requirements to improve rates of convergence of the technique 

is to augment the space of piecewise polynomials with the exact form of 

singular behaviour of the solution near the crack tip, i.e. the 

approximating space has the basis {w.}P 1 
 (usual piecewise polynomials) 

and {s.}q=1 (singular functions in the expansion of the exact solution). 

This idea has already been implemented for the problem of torsion of a 

cracked beam (i.e Laplace's equation) by Fix et al [94]. See also [95]. 

However, there are, even 'for this simplest problem, some computational 

difficulties associated with the evaluation of inner products involving 

singular functions and inversion of the resulting matrix. It is obvious 

that introduction of the functions destroys the band-structure of the 

matrix and in most cases the condition number of the matrix is much 

increased resulting in possible numerical instabilities. Eventhough 

there are ways out of these difficulties, the amount of effort involved 

might turn out to be too much, particularly, for equations of elasticity - 

in plane domains. However, since in this method we have singular functions 

defined over a fixed domain (either on a part or on the whole of the 

domain), in practice, we have to be able to get the expected theoretical 
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rates of convergence. See [96] for application to a strip problem. 

b. An alternative approach is the use of the so called 'singular 

elements'. In this approach one surrounds the crack tip with special 

elements over which the dominant singular behaviour is simulated. This 

method fits well into the standard finite element systems with the 

difference that one has to develop a new element type. In this category 

of elements fall the Wilson's elements [22] and Byskov's cracked 

elements [97] . For example, Wilson uses triangular elements with 

the following shape function at the creak tip 

0.-0 	0-0. 
u = uo  + [0. 3 _0.  ui 	0. 	 u] -0.  3 	rd 

3 1 	3 

i.e. elements that preserve the exact r1/2  behaviour but approximate in 

0-direction. 

While numerical implementation of singular elements is relatively 

easy, there are two basic problems that make their convergence questionable. 

One is their strong non-conformity and the other is their support shrinking 

to zero as h 4- 0. The non-conformity arises from the displacement 

discontinuity along the common boundary of the singular and the standard 

elements (they only match at the nodes). With this difficulty, good 

accuracy can only be obtained if the element sizes in the angular 

direction is significantly reduced. On the other hand, a basic assumption 

in convergence analysis of the standard finite element is that all elements 

have angles far from zero i.e. not too thin elements. It is not clear how 
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one can reconcile these two opposing conditions for convergence and 

whether there exists any critical element size for which reliable 

results could be obtained. We have implemented Wilson's crack (singular 

strain triangular -SST) element [22] and were not able to obtain the 

accuracy reported there. The explanation could be that either due to 

the preceding discussion we should not expect accurate enough solutions 

or he might have used (but not mentioned) a layer of auxiliary elements 

between singular and standard elements to reduce the degree of non- 

conformity present there. We also observed that these elements do not 

pass the patch test and hence their convergence is not guaranteed (in 

fact this element is not in static equilibrium). 

The second difficulty of having singularities defined over a 

domain of variable size is practically less important. The reason for 

this is that singularities are limited to a very small neighbourhood 

of the crack tip and as long as they are present there, in principle, 

we have to get good accuracy. However, it is not known how small this 

region is and it seems the only way to get an estimate for the size of 

the region is by numerical evaluation. In this way one would expect to 

get convergent results as h 0 up to a critical element size h
e 
beyond which 

the behaviour would become erroneous. We will explain this further in 

the next approach. 

c. A third approach, and by far the easiest of all, has been 

recently put forward, independently, in [98] and [99]. This method, 

referred to as the quarter-point approach is now widely used for static 

crack analysis. 

In this approach by using standard quadratic isoparametric 

elements, and moving the mid-side nodes to quarter position one can 

produce square root singularities so desirable in linear fracture 
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mechanics. 

The basic idea was initially demonstrated on a standard 8-node 

rectangular element and was shown that the square root singularities 

are present along the element boundaries. 

7 - -a 	:•6" 

I 	\ 

I   -  
3 

In a recent correct analysis, Barsoum [100] indicates that by moving 

the mid-side nodes, in an 8-node rectangular isoparametric element, to 

quarter position we get a stronger singularity 1/r within the element 

as well which is not appropriate for elastic crack analysis. However, 

the singular function r could be produced if one side of the element 

is collapsed to zero length. 

64/ 

7 / 

The collapsed rectangular elements are then the desired ones. (See 

also [101].) 

d. 	Inspired by the above idea we use the standard 6-node isoparametric 

triangular element znd move the mid-side nodes to quarter-position along 

the edges intersecting at the crack tip. Then following the above 

arguments one can show that these elements have the proper order of 

singularity (r
1/2
). These imbedded singularity elements are easier than the 

collapsed 8-node elements to construct and implement. 
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Take p(r,0) an arbitrary point in the triangle 1-2-3 with the local 

coordinate system x-y. 

For the isoparametric family of finite elements, the geometry 

within the element is approximated by the same interpolation functions 

that are used to specify the displacement field within the element, i.e. 

6 
u = 	N.0 , etc. 

i=1  1 i 

6 
x = 	N.x., etc. 

i=1  1 1 

where u. and x, are the nodal displacement and coordinate values 
1 	1 

respectively and Ni  are the quadratic isoparametric functions over the 

triangleintermsofthewell-knownareacoordinates,L.
1
,i = 1, ..., 3 

N1  = (2L1-1)L1  

N
4 
= 4L

1
L
2 
	 (3) 

etc. 

Now we show that by proper positioning of the side nodes (4) and (6) along 

the edges of the triangle the shape function N
1 
associated with the node 

(1) produces square root singularity r when p moves along any arbitrary 

line 0 = const. and hence the desired property for linear fracture 

application is derived. 

We note that 

x
1 
= 0 x

2 
= h x

3 
= h x

4 
= h/4 h

5 
= h x

6 
= h/4 

+e. 
Y1 = 	Y2 = -1 Y3 = 	Y4 = -1/4 Y5 = 	

y
6 

= t/4 

(1)  

(2)  

(4; 
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substituting  (3) and (4) into (2) we obtain: 

x = (2L
1
-1)L

1
x°+(4L

1
L
2
+4L

1
L
3
)xh/4+[(2L

2
-1)L

2
+(2L

3
-1)L

3
ih+4L

2
L
3
.h 

= h(1 -L1 )
2 

(5) 

y = (2L -1)L1
x0+(-4L1L2+4L1L3)xt/4+1-(2L

2
-1)L

2
+(2L

3
-1)L

3
Ie.+4L

2
L
3
x° 

= L(1-L1-2L2) (1-L
1
) 

where we have used L
1 
+ L

2 
+ L

3 
= 1 to eliminate L

3 
in x and y. 

The radius r to point p is then given by: 

r = VX2+y2  = x1/1 +(1)2  = h(1-L1
)21/1+ tan20 
	

(6) 

From (6) follows-that 

L
1 
 = 1 1r 	r

m,0 
 = 111/1 + tan

2 
 0 = const for 0 = const 	(7) 

. m,0 

Substituting  (7) into (3) we get: 

N
1 
 = (1-21 r ) (1 ✓r 	) 

m,0 	m,0 

or 

N
1 
= 1 + 2 (rr 	) 	3

Ir
r 

mit) 	m,0 

(8) 

i.e. the required r1/2  singularity is available at the tip. 
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An important property of the elements in (c) and (d) category is 

that they are conforming elements and pass the patch test. Therefore 

the convergence of the algorithm using these elements is guaranteed. 

6-node crack elements have been incorporated in the programme for both 

static and dynamic crack analysis. 

V.3 	TIME-DISCRETIZATION IN DYNAMIC PROBLEMS  

The differential equation (7) can be reduced to a system of linear 

simultaneous equations by direct step-by-step integration in time. One 

method is the Newmark's scheme [102]. In this method we replace X
n+1 

and k
n+1 

by 

X
n+1 

= X
n 

+ k
n
.T 	N1/2-13)51n

+6R
n+1

]T2 

(8) 

Xn+1  = n + [(1-y)K+y3in+1 

where X
n+1 

and X
n 

denote the value of X(t) at times t
n+1 

and t
o 
respectively 

and t
n+1 - to = to - to-1 = T is the time increment. Usually y is taken 

to be 11. With this value the equation (7) can be shown to reduce to 

, 
[M+8T2 KJXn+1 = [2M-T

2 
 (1-n)1(]X

n 
- [M+OT2 

1(]Xn-1 
+ T2 [8f

n+1+(1-2(3)fn ,  

+13f
n-1] 	(9) 

n = 1, 	N, 'where fn  is the value of f(t) at t = tn. 

Equation (9) presents a recursive formula for determination of X(t) 

at any given time step from previous information. It is clear that for 

dynamic problems the matrix to be inverted is the sum of contributions 

from both mass and stiffness matrices. The load vector also involves 

contributions from both the actual dynamic loading and past system response. 
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This scheme is known to be unconditionally stable for 0 > 4 [103]. 

Also for the particular choice of 0 = 4 it results in the minimum time- 

truncation error. It is for these reasons that we will exclusively be dealing 

with the Newmark's scheme with y = 12 and 0 = 4. In fact, it is for 

these values of parameters that we have proved results on the rates of 

convergence for fully-discretized equations of elastodynamics (see 

Chapter III). For other methods of integration of equations of motion 

and on evaluation of their performance on a one-dimension problem we 

refer to [104] and [105]. 

The central difference method for numerical integration leads to 

equation (9) with R = 0. Therefore, the system is only conditionally 

stable and for large values of the time increment T it becomeS unstable. 

Throughout our analysis we have used the consistent mass matrix 

i.e. the correct form for evaluation of the entries according to M,. = (w.,w.). 
iJ 	3. J 

On theoretical grounds, this seems to be the only option to calculate the 

mass matrix. However, many engineers have already idealized the mass 

distribution within'each element by their equivalent lumped masses at 

the nodes. This results in a diagonal mass matrix. The great attraction 

in the lumping process, in conjunction with central difference schemes, 

comes from the fact that from equation (9), with 0 = 0 and M diagonal, 

explicit expressions for xl, 	XN  are obtained. For large systems 

and when a large number of time steps are to be used, computational effort 

could greatly be reduced by having an explicit form [106]. While the 

lumping procedure for simple elements is rather easy there is a snag in 

finding a proper diagonal mass matrix for more sophisticated elements. 

For this reason some improved versions of diagonal mass matrices avoiding 

the inherent inaccuracies of lumping procedures have been developed [107]. 
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to obtain X
1. It is to be noted that the matrices to be inverted in (9) 

2 
and (10) are the same and hence we can invert [M+ 

4 
 K] once and store 

One more point in connection with the starting procedure for the 

recursive relation (9) is in order. As the equation (9) only provides 

values for x
2
, ..., X we have to approximate X

1 
from initial values 

X
0 
 and X0. Using the truncated Taylor series expansion for X

1 
we have 

2 	, 

2

2 
T 	x 	a 

2  
2
x  X1 = X0 + T (-3x)0 4 + 	0 + (—) Bt 3t 	at 

multiplying both sides by M. and using (7) we obtain 

2 	2 	 2 
[M+ 

4 4 	
T 	 T 

M+ — K]X
1 	4 
= EM- ---IQX

0 
 + T[M]k

o 
+ (f

0  +f1 4  
) — (10) 

so before using the recursive formula (9) we have to solve equation (10) 

it for further application of loads to get X
1
, ... X

N
. 

V.4 	NUMERICAL (SPATIAL) INTEGRATION OF THE APPROXIMATING PROBLEM . 

In error analysis of Chapter III we have assumed that [M] and [K] 

are evaluated exactly. Due to use of polynomials in finite elements 

these inner.  products and bilinear forms can easily be evaluated by 

analytical means over simple elements. However, these calculations are 

cumbersome for more complex elements and it is advantageous to use some 

standard quadrature rules for numerical evaluation of the matrices. In 

particular, for isoparametric elements it is essential to use 

numerical integration routines. 

Numerical integration introduces some additional errors in the 

results. For the simple Sturm-Liouville equation in one-dimension 
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-(pu') ' + qu = f 

one can show [42] that the error in the strain using (k-1) Gauss points 

is of the order of h
k
. 

An interesting advantage of numerical integration is that it, 

generally, yields more accurate results. This is because we have an 

overstiff system in the Ritz method and by numerical integration we 

commit errors in the right direction (relaxation). 

While we have not attempted to give estimates for the numerical 

quadrature-errors involved in our results, it seems that such estimates 

for equations of dynamic elasticity could be obtained by an approach 

similar to [108]. 

Throughout the analysis we have used Gaussian quadrature formulae. 

In each element there are a certain number of evaluation points 	= 

known as Gauss points - with weights wi  which depend on the geometry of 

the element and on the particular quadrature rule. A table of E. and w. 

values for quadrature rule over triangles has been provided by Cowper [109]. 

In particular, for the 6-node crack element we have implemented 

quadrature rules with varying numbers of Gauss points. The corresponding 

numerical values are presented in this chapter. A maximum of 12 Gauss 

points over triangles gives accurate enough results. 

The convenience of numerical integration in handling singularities 

is also to be considered. It is known that the Jacobian matrix for crack 

elements become zero at the crack tip and therefore the transformation 

ceases to be valid. However, by using a finite number of Gauss points, 

and without having any such points at the tip, numerical integration 

presents a way out of the difficulty. 
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V.5 	SOLUTION OF THE FINITE ELEMENT EQUATIONS  

It was shown that any finite element approximation of both static 

and dynamic problems results in a set of linear equations of the following 

form (cf. equations (4) and (9)): 

AX = b 	 (11) 

where 

LB (k) 
	Xc(k) 

k 	 k 
A = LB , b = 

(A is an nxn symmetric, positivedefinitematrix). Each superscript 

represents an element so that the summation is over all the elements. 

The matrix B
(k) 

has non-zeros only in position (i,j) which are such that 

variables x. and x. are associated with the k
th 

finite element so that 
3 

it may be stored as a small full matrix of order the number of variables 

associated with the k
th 

element. Similarly the vector c
(k) 

may be stored 

as a small full vector. With the condensed form of storage, small 

vectors of integers are needed to indicate which variables are associated 

with the columns of each small full matrix. 

A finite element calculation usually involves three distinct phases: 

1. calculation of the individual matrices B
(k) 

 and vectors c
(k) 

(as small full matrices and vectors) 

2. assembly of the overall problem (11) 

and 	3. 	solution of the overall problem (e.g. by the Gaussian 

elimination). 

In phase (1) element matrices and load vectors are generated and 

stored. Usually phase (2) and phase (3) are combined. Considerable 

savings can be made if a backing store (e.g. disk) is used to store the 

overall matrix A. 

(12) 
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For phase (3) analysis, considerable research has been devoted 

towards finding very efficient equation solvers. During recent years 

it has been recognised that in most cases direct solution of the 

equations is preferable to using an iterative technique [110]. Various 

direct solution procedures such as band-matrix techniques [111], frontal. 

methods [112], nested dissections [113] etc. are available. Also see 

[114]. 

These equations can be solved using plane rotations or Householder 

transformation matrices. However, it is most efficient to use the basic 

Gauss elimination procedure described below. 

V.5.1 Gaussian Elimination  

We consider the sparse set of equations (11) without making any 

assumptions about the nature of the sparsity. We use variants of the 

method of Gaussian elimination, which may be summarized by the formulae 

(k+1) 	(k) 	(k) (k) -1 (k) 
a.. 	= a.. 	- a. 	Ea 	] akj ' 

	
(i, j > k) 13 	13 	kk 

and 

b
(k+1) (k) (k) -1 (k) 

= 	- a
ik 

 Ca 
(k)

] b
k ' (i > k) 

which express the operations performed at the kth step, k.= 1, 	n 

beginning with A
(1)' 

= A, b
(1) 

= b. This eventually leads to an upper 

triangular ssytem which can be solved by the back-substitution 

X 	la(k)]-1(b(k)- 	) a(k)x.', kj 	
k = n, n-1, 	1 (15) k  

kk j=k+1 

Each a
(k
ij
+1) 	

aid)  in overwrite a
ij 

in storage and the "multipliers" 

Pik 	 ) kk 
(k)
] 
 -1 	

w 	aik 
(k) 
. = a ik 

 [a 	may overrite 	We will have obtained the 

desired triangular factorization 

(13)  

(14)  
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A = LU 	(16) 

where L is unit lower triangular with off-diagonal elements t
ik 

and 

U is the upper triangular matrix {a. (i)  , i<j}. 

V.5.2 Numerical Stability  

When large numbers are added to small ones in equation (14) 

numerical instability may occur as the information present in the 

small number is lost. In particular, a total loss of information 

results when a pivot a
kk

) 
 is zero and must seriously be avoided. It 

is also important to have some control over any partial loss of 

information. In fact the LU factorization obtained for A is the exact 

factorization of a perturbed matrix A + A where the perturbations A. 13 

are bounded. 

In order to control the size of the largest matrix element at 

each stage we can introduce row and column interchanges if the matrix 

elements are of comparable size. This has the additional advantage of 

limiting the number of fill-ins, i.e. zero entries that become non-zero 

after elimination. 

The algorithm we have used for solving the set of linear equations 

is known as the Irons' frontal method that is explained below. 

V.5.3 Frontal Method  

Irons [112] proposed a very useful technique for combining phases 

(2) and (3) of the process mentioned earlier. It depends on the fact 

that the elimination steps for a
ij 

involve subtracting the quantities 

a. 
 (t) (t) (Z) a, /a0, , 	= 1, 2, ..., min (i-1,j-1) 	(17) „ 
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and the assembly operations involve adding the quantities b
(k) 

for all 
ij 

the finite elements k that involve variables i and j. These operations 

can be performed in any order. All that matters is that they must all 

be completed before row i or column j becomes pivotal. Irons therefore 

eliminates each variable as soon 'as its row and column is fully 

assembled. Variables not yet eliminated that are involved in elements 

that have been assembled constitute the "front", which separates the 

region of assembled elements from the rest. A full matrix can be used 

at each stage to hold rows and columns that correspond to the front. On 

assembly its order increases to accommodate any new variables. On an 

elimination, the pivotal row is written away to backing store and the 

size of the active matrix reduces by one. In this way variables 

frequently leave the front in a different order to that in which they 

entered it, so it may be necessary to perform a symmetric interchange 

on the full active matrix before an elimination. If the front never 

has more than m variables then we will need main storage for m(m+1)/2 

variables to hold the active matrix at its largest. 

The ordinary problem has now shifted from the variables to the 

elements. We want to order the elements for keeping a small front. 

This is likely to be somewhat easier manual]y since there are likely to 

be fewer elements than variables. 

The storage demands of variable band methods and the front method 

are often similar. Each requires room for a symmetirc "active" matrix 

and a buffer for input-output operations. The orders of the largest 

active matrices will be actually identical (and equal to the maximal 

semi-band width) if the ordering makes the variables leave the front in 

the same order as they entered it (first in, first out). An example 
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where they differ, to the advantage of the frontal method, is where 

some variables are associated with just one element so that they can 

be eliminated immediately after the element is assembled. (This process 

is sometimes called "static condensation".) Similar, but less dramatic 

results may be obtained when some variables are associated with just two 

elements. 

V.5.4 Operation Counts and Comparison  

Some feeling for the relative merits of direct and iterative 

methods may be obtained by looking at the 5-point finite difference 

approximation to Laplace's equation in a square and a cube, in each 

case with s unknowns in each coordinate direction so that the number 

of unknowns are s
2 
 and s3, respectively. Using direct methods the 

maximum semi-band width is s and s
2 
 and the number of multiplications 

1 4 	1 
-s 

 7 
is approximately -s and 	. Using successive over-relaxation with 4 	7 

parameter w (iterative method), the number of multiplications per 

iteration is about 2s
2 
and 2s

3
, the maximal eigenvalues are about 

(1-4n
2
/s
2
) at w = 1 and (1-2n/s) at the optimum w so that the number of 

iterations needed to gain a decimal is about s2/17 at w = 1 and s/2.7 at 

w
opt

. This corresponds to s
3
/1.3 and s

4
/1.3 multiplications per decimal 

in 2-D and 3-D, respectively, with the 
wopt. 

 It can be seen from these 

approximate figures that direct and iterative methods are likely to be 

fairly competitive in two dimensions while iterative methods are likely 

to be superior in three dimensions. 

In a more general situation, much depends on the problem. Well 

conditioning and very large numbers of variables favour iterative 

methods, unless the structure results in little fill-ins for a direct 

method. The cost of direct method is dependent on the structure and not 

on conditioning. 
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For the dynamic problem where several sets of equations with 

the same matrix but different right hand sides are to be solved, the 

factorization may be retained so that the second and subsequent sets 

may be solved much more rapidly. For example, the operation counts of 

1 4 	1 7 
about -5 and --s for Laplace's equation in a square and a cube, 

4  
4 5 

respectively, reduce to about 43 
	

-5 and 	, respectively. Iterative 
5 

methods are able to use previously determined relaxation parameters and 

perhaps have a good first iterate, but this does not result in such a 

dramatic improvement. Direct methods are therefore superior to 

iterative methods more frequently for "many-off" cases than for "one-

off" cases. 

V.6 	GENERAL PROGRAM ORGANIZATION  

There are three distinct phases in any efficient computational 

implementation of solution technique discussed in earlier chapters. 

These are: 

(i) data generation and processing phase 

(ii) solution phase 

(iii) post-solution processing phase. 

As mentioned earlier an efficient development of a finite element system 

requires a good deal of experience and computer system engineering so 

that with the available central memory (25K-50K) a problem of medium 

size can be solved within reasonable time of the central processor. 

The program is employing the Iron's frontal processor (see [115] for 

details of implementation) and extends the range of applications to 

include singular elements and dynamic problems. 
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V.6.1 Data Generation and Processing Phase  

In any idealisation of a structure we divide it into a finite 

number of elements of particular types. With each element is 

associated a number of nodes and each node has a finite degree of 

freedom. Within each element the distribution of loads and/or body 

forces can be specified. 

Boundary conditions are accounted for by imposing relevant 

conditions on the nodes along the boundary. In this phase an automatic 

mesh generator is employed to provide the node coordinates, element 

connectivities, boundary conditions, element material properties, and 

loads on each element. The data input for each element is then stored 

in a long array of a variable length. The length of the array (dynamic 

array) is problem-dependent and after data processing, the program 

decides on the required maximum length of the dynamic array and proceeds 

to compute element stiffenss and/or mass matrices and retrieve them for 

the next sequence of computations. With detection of any error in data 

input the program terminates and returns to the next problem. 

V.6.2 Solution Phase  

With the element matrices already computed and stored in the 

dynamic vector array the frontal solution is employed to find the 

actual displacement solution. In order to reduce the amount of time 

required at the central processor for this phase, the very inner core 

of the frontal solution technique is written in basic language. 

Clearly, the maximum size of the problem is only decided by the amount of 

central memory available to the user. Another feature of the solution 

procedure is the use of random access disc transfers. This facility 

saves both peripheral and central processing time without any further 

use of central memory. It is recognised that the frontal solution 
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method employed in this work is one of the most efficient solution 

processors available for this purpose. The solution (i.e. displacement) 

obtained in this way is then stored in the dynamic vector for post-

processing phase. 

V.6.3 Post-Solution Phase  

In this phase the element stresses and strains are computed 

from displacements and are stored on tape. The options in this phase 

are to output stresses/strains at either nodes or Gauss points. If 

necessary, reactions due to loading of the structure can also be output. 

From the stresses one can plot stress variations within each element. 

One point in order is that as the stresses at nodes are obtained by 

extrapolation of the stresses at Gauss points, there are some small 

errors involved in the process. Obviously, the most accurate result 

for any post-processing of solution is obtained by working directly with 

displacements. It is for this reason that we compute stress intensity ,:  

factors from displacements and not stresses in the next section where 

computational results are presented. 

V.7 	COMPUTATIONAL RESULTS  

While a full range of applications cannot be included in the thesis 

some results for certain problems are presented. These examples are 

chosen in a way to represent a wide range of applications of the system 

to problems for which comparison, even partially, can be made. These 

include problems in both dynamic and static analysis of fracture problems. 

- throughout the analysis we use SI units. 

V.7.1 Static Analysis  

A central crack in a square sheet subject to pure tension is 

analysed as a model problem (Fig. 1). 
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Fig. 1 - A Central Crack Problem 

Using symmetry only one-quarter or one-half of the sheet is considered. 

The crack tip is surrounded by only four quarter-point triangular 

isoparametric elements and layers of ordinary 8-node quadrilateral 

isoparametric elements. The discrete structure is shown in Fig. 2. 

Before proceeding any further we give a consistent procedure 

for derivation of stress intensity factors in a crack problem from 

displacements. This procedure is then used to extract the numerical 

values of stress intensity factors. 

Consider an oblique crack at angle 8 (Fig. 3) at the tip B. 

Denoting by U and V the displacements in X-Y coordinatesand by u and v 

the displacements in x-y coordinates we have 

U= u cos s+ v sin f3 

(1) 

V= -u sin 8 + v cos a 
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v 

Also with the known asymptotic expansion of the solution near the crack 

tip we have 

U 	a 	b (0) \ 
1 	1 	( 

‘/ 	a2 	b2(0) i 	c2  
+ 	(2) 

where r and 0 are measured in the X-Y coordinate system and 

b1 	K
I 	( 

f
x 
	K

II ! gx 	
(3) 

b2 ; 	G/EITT 	f 
	

G1/57W gy  

where 

, 

( 

f \ 	, cos 0/2[K-1+2 sin
2 
 0/2J 

x 

f
Y 
	\ sin 0/2[K+1-2 cos

2
0/2] 

and 

	

( 

gx 	'/ sin 0/2[K+1+2 cos20/2] 	) 
= 

g
or ) 	

\ - cos 0/2[K-1-2sin20/2] / 

3-v K - 
1+v 
	for plane stress 

K
I  

(we can normalise KI 
and K

II 
by dividing through TI/Tr i.e. H

I 
- 

K 
and H

II 
- 	 
D4Wri; 
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By using quarter-point triangular elements of side length we can obtain 

parameters a., b, and c. in (2) from displacements at the crack tip (0), 

quarter point (t/4) and nodes at r = £. at any angle 0. e.g. we have 

( 

-
b
2 
) 	4V(i./4)-V(t)-3V(D) ) ir ' 

b1  \ _ 	41J(t./4)--U(t)-3U(0) ‘\ 1 	
(4) 

As the oblique crack problem is normally solved in x-y system 

i.e,we usually have u and v, the stress intensity factors KI 
and K

II 

are the solution to the following set of equations: 

IT37 
KI.fx(0) + KIIfy(0) = G 	 {[4u (t./4) -u (t) -3u (0) icos + 

VE 
[4v (t/4) -v (t.) -3v (0) sin B } 

(5) 

ATi7 
KIgx

(0) + KII  .g y 	
G 

(0) = 	 {C4v(t./4) -v(t) -3v(0) ]cos R - 
 re 

[4u(t/4)-u(2)-3u(0)]sin 

It is noted that the new proposal for a correct interpretation of data 

for extraction of stress intensity factors requires the system (5) to 

be solved along each ray making an angle 0 with the x-axis. This, in 

particular, implies that in any problem (either in pure shear or pure 

tension) we will determine KI and KII 
simultaneously but expect a 

comparatively small ICI  (resp. K11) for a crack in pure shear (resp. 

tension). In fact this also provides a good test for accuracy of the 

solution. 

- 187 -- 



s
q
u
am
a
o
v
T
d
s
T
G
  
P
U
P
  
2
4
P
G
  

T
a
b
l
e
 I
 
-
 Ce
n
tr
a
l
 Cr
a
c
k
  P
r
o
b
l
e
m
 

SUNNAP Y 	OF 	CA TA 

TOTAL NUMBER CF ELIME NTS 1  434 
TOTAL NUMBER OF N01ES = 1255 
TOTAL NUMBER.  CF SL 0301T NON! 1  39 
TOTAL NUMBER CF LCACING CASES 2  

DYNAMIC VICTOR ARRAY REOU/REMENT3 

DATA PROCFSSING 
DATA STGRAGE 
°R-SCLuTION PROC:SS 
SCLUTICN PPOCFSS 
POST-sOLUTIoN PPT:ESS 
LOCATIONS AVAILABLE 

2 7923 
7713 

2  11939 
= i7422 
2 430 3 
2 2530u 

0 /SPLACE MSNTS ' A T 	NtODE' S 

	

NOOE 
	

DISPLACEMENT 

	

NO. 	 • IN SYSTEM 
X--DIPECTION 

	

641 	- .c65!57R+4 3 

	

64? 	 •.2817 44 4. 01 

	

643 	 - .45FG91F+00 

	

644 	 -.3140 910.4. J 

	

645 	 -.33161,4t 4. 01 

	

6 145 	 - .34 E7E8E40 

	

647 	 •4 .2628 27E4 13 

	

649 	 - .378P t.LF 4. 0 0 
649 

 
-.394711-+4J 

	

659 	 .4 .411,560 t+C.3 

	

651. 	 -.442 63 554 +JO 

	

65? 	 -.4142C13E+ C 1 

	

653 	 -04576 2PE+Qj 
• 654 	 -.472'c 4.2E+1.;,5 

	

E55 	 - .484319br+CJ 

	

656 	 -4 .4972f9E+01 

	

657 	 -4 .5046 4.704 C0 

	

559 	 -.4b3C 53E+C.; 

	

653 	 -.42 71 	F -4- 4:3 

	

659 	 -.Laze 04' 4  CO 

	

51 	 - .40712.3E+01 

	

662 	-.4204. CCE•0 a 

	

663 	 -.43c6a1E+4. 9 

	

654 	 -.444 c51.2E+.0 

	

665 	 -.454910L-+ 0 0 

	

665 	 -.44 e51,26 4-  0 J 

	

667 	 -.432621E4. C) 

	

E63 	 - .421.4 C it 4 C1 

	

E69 	 •'-*L. 71 i.3r 4  0 CI 

	

673 	 -.4125 64 € 4 01 

	

6 71. 	- 	-.4427Ct4E+c3 

	

672 	 -.4623 535.4 4 U 

	

673 	 -.5u 46:. 7E+00 

	

674 	 -.51 44,  1 44t4 CJ 

	

675 	 -.4745271•03 

	

675 	 ''•40 25. 3..'.F4.( 0 

	

577 	 -.1473646F+Cri  

	

679 	 -.48 431.cf +I n  

	

679 	 -.473546E+00 

	

693 	 -.4c 253CE+0J 

	

691. 	 -.474927E+JC 

	

682 	 -.514814F-4 4;8 

	

653 	 -.516662:- +00 

	

6.84 	 -.37571,4 E+00 

	

635 	 - .378312E+00 

	

695 	 -.3093 54E+C 0 

	

697 	 -.444..3.:7E+i.1 

	

659 	 4- .41E762,4 00 

	

689 	 -.40 44 271+ 07 

	

 
691 	 -.4134L9E 4 CC 

	

691 	 -.41.t665t+C(.. 

	

69.? 	 -.41t77.44441: 0 

	

633 	 -.42:2 4i. t+ CO 
6i'4 44  

	

695 	
-.44  GI  
-4 .44114414 lu 

	

695 	 - .49 7c. 65E+ L 3 

	

697 	 -.43c537;4 CI 

	

659 	 - .448754.E*60 

	

63'3 	 -.444 1.1 4- 14e 4  01? 
• 

	

70) 	 -.4167:.4E 4 ( ''•:. 

	

711 	 • . 4? 52 4i 6 41 (..1  

	

73? 	 -.41u784::+00 

	

713 	 - .44:41.27F+ 00 

	

70'4 	 -.410449F 4- :7 

	

7?5 	 -.418665E+40 

	

7..;5 	 -.37 57 E.i. A.  0 3 

	

70 7 	 - .376312E+CO 

	

705 	 -.38q31.4.6 4 0 0 

	

739 	 -.4C r337641, 's  

	

833 	 - .2154 SLE-11  

CISPOZEMENT 
N SYST:44 

Y -DIQICTfCN 

- .!52531 2 4 1) 
-.."33 I 4,_+31 
- .1124112+07 
-.7 853 3 32+.:1 

3 ,243J 
-.7 4 3 3) 4- 11 
- .'1"4 - 2+11 
- .1713' 3.5.7+03 
-.(451!1- 4 7 .4 

1132+34 
-.567013.4. 33 
- .2211i7 E 4 03 
- .461.36i- 4 j3 
-..4.19.9.'•!12 4 11 
-. .1.7E4 :67 4. 31 

3/i+31 
- .18441i+11 
- .22/53 3 -2.+J3 
-.2:7473=+ 3 
-.15813:+07 

/.31131I+J 

-.'46111'4:2-44/ 
- .1 °c .4 1 47 -31 
.1 66 4 147-09 

.461131=-71 

.1652325-11 

.120 A T) 3:+01 

.13 4 1 2 1.2+13 

.Z0i4 3 32+03 

MAXIMUM FRONT 	HID-H CF STIFFNES3 MATRIX 
HA xImLH milLF PA N3qIcTil OF 	STIFFNESS MATRIX 
TOTAL 	NUMBER 	CF 	A.1TIVE NCCES 
TOTAL NUMBER OF 	ECUATIONS 

TIME FCR 	imIs PHASE 	2 	37.721 

TIME USED TO PROCESS INPUT DATA 	2 	99.472 SEC. 

2  
2 
2  
2  

SEC. 

161 
703 
1145 
2293 

.21"41E1.J1 
- .11 E 5' 11.:+03 
-.1^ 1'112+C3 

-.41225(i -J1 
.213416 -99 
.212 752-11 

. 	3C 31."2-31 
.11 J 7 1  4' +10 
.11i6112+.41 

.29/3317+10 

.13135i4.01 

. /145332•1J 

.4 319411-11 

.2= 42132+.33 

.13?Ji1.2+71 

.77723 SE-c.  

.43 5. 3 132-LI1 

.223531_+01 

.';) 7 7  137-01 

.7319 054- 00 

.7 511152-'1 
31E+33 

.1

• 9

1127_-99 
-4 .2:3347+J1 
...2571152-01. 
- .1213312 41j 
- .2^ 774';'7- r.1 
- .794?312+13 
- .1823:412+33 
-077? 332-31 
- .434 3 135-,1 
-.101= 1'4. 03 

.4 .1133312.+01 
- .5P 19432-J1 
„CI:411=41i 3. 

TIME AT CENTRAL FRuCESSOR = 22 29.12. HR3/mINS/S..113 

TIME USED IN PRE-SOLUTION PROCESS (ALL ELEMENT STIFFNESS MATRICES) 	m 54.423 SEC. 

TIME AT CENTRAL FROCESSOF = 22.31.37. WI'S/MINS/SECS 

SOLUTICN BY FRCNTAL SoARSE MATRIX TECHNIQUE 

MACHINE COCE INNER LCCPS AND DYNAMIC RANDOM ACCESS /N CPERAT/ON 

TImE usec'FCR ASSEMBLY AND !LIMINA-ICN WITH 1 RIGHT NANO SIDES 2  236.990 SEC. 

TIME USED IN BACK-SUBSTITUTION PROCESS WITH 1 RIGHT HAND SIDES 2 	6.779 SEC. 

TIME AT CENTRAL FPCCESSOR = 22.39.17. HRS/mINs/SECS 	' 

TOTAL AREA OF ELEMENTS • = 	.2G00302.31 	SO. 



Now returning to the central crack problem we evaluate K1  and 

KII along each ray 0 = -180 to 0 = +180 at intervals of 45°. In the 

fine meshes of figure 2 which represents only half of the strucutre, 

we have used a total of 434 isoparametric elements having 1255 nodes 

which results in a set of 2290 equations. The time for solvifig this 

problem is about 294 seconds on a CDC 6400. Summary of the data and 

the solution for displacement field near the crack tip is given in 

Table 1. From Table 1 and system (5) numerical values for HI 
and H

II 

are obtained and presented in Table II(a). The variation of HI  and 

H
II 

with 0 is plotted in Fig. 5. 

0 
, 

H
I  

180°  180 135°  135 90°  90 45°  45 0° 

1.1990 1.1930 1.1685 1.1407 1.1089 

H 
II 	i 

0.0069 0.0037 0.0077 0.0016 0.0000 

Table II(a) - Variations of HI 
and H

II 
with 0 

Isida [18] has solved this problem using boundary collocation 

techniques and obtained H = 1.216 (assumes HII 
= 0.). It is seen that 

the values of HI and HII 
in Fig. 5 have small variations with 0 and the 

most accurate values (as compared with Isida's values of K1  = 1.216 and 

K
II 

= 0) are obtained by averaging the values obtained from 0 = -180 

and 0 = 180 (i.e. along crack faces). The averaged values are HI 
= 1.199 

and K
II 

= 0.000 and hence we suggest that the most reltaiple results are 

obtained from crack opening displacements (COD). 

The profile of the crack is sketched in Fig. 6 and as is 

expected, it has a local parabolic variation with distance from the 

crack tip. 
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Fig. 5 	Variations of H/  and I-Inwith 0 for the central crack in tension 

Fig 6. 	COD for central crack in tension 



In this initial approximation we have used a rather fine 

discretization of the structure with 434 elements. To show the 

effectiveness of the techniques, using symmetry, the same structure is 

represented by only 34 isoparametric elements and 123 nodes. In this 

case a total of 246 equations has to be solved. (See fig. 7.) The 

solution time is only 2.4 seconds as compared with 294 seconds for the 

previous fine discretization of the problem (i.e. about 1 : 100). 

The calculated stress intensity factors are given in Table II(b) 

below. 

0 
180° 

 
1350 
	

900 
 

45 0 

H 1.2043 1.1938 	' 	1.1642 1.1298 1.1130 
I 1 
H
II 

0.0076 i 0.0079 
__L 

0.0209 0.0159 0.0000 

Table II(b) - Variations of H
I 
and H

II with 0 

Table III summarizes data and gives displacements at the nodes for the 

coarse mesh. We obtain the following stress intensity factors from 

crack opening displacements (COD): 

H
I 

= 1.2043 

HII  = 0.0000 

which apparently, is even more accurate (as compared with Isida's values 

of HI 
= 1.216 and H

II 
= 0 which are regarded as accurate up to four 

figures) than the corresponding results based on previous fine meshes. 
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SUMMARY OF 

TCTAL NLMEEP Cc iL?MINTS 	= 	34 
TCTAL NUH1EA CF KC2:5 	= 	123 
TCTAL NUltzER CF ELc1 C1T NCt:S 2 	22 
TCTAL NUM6ER CF LCA :INS CAE:S = 	1 

DINAM1C VECTOR ARgAY 5ECUIREMEN7S 

DATA CCOt3ESSINS 
	

1 	91J 

P;1-SCLUTILN FC00:55 
DATA ETO.iAGb 	

1 11E9 
311 

SCLLTICN RCCFc.5 
	= 1E21 

PCEI-ECLUTICN 6c.C.:2SE 
	

= 1115 
= 91)J LCtATION LVAILAELE 

M4XIwEN FRONT 61t-H CF STIFFNEE3 mATR1X 	= 	41 
MAXIMLM HALF RINC:IICTH OF STIFFNESS 91TRIX = 	75 
TCTAL NUMEEP CF 	NCCE3 	= 	121 
TCTAL NOMDER CF ECUATIONS 	 = 	245 
TINE' FCR THIS RNA's; 
	

14375.52C. 

lIvE USEC IC PROCESS INFLT DATA 	= 	4.543 SEC. 
TI'! 41 CENTRAL FROCESECR = //,04.14. H93/MINS/IECS 

TIME USEC FCR AESQMBLY 4ND ELIvIAA'ICN WITH 1 RIGHT MAN; 3/0ES = 	2.988 SEC. 
TIME USEC IN SACK-SUESTITU7ICN PRIC13E WITH 1 lIGiT HAN) SI3ES = 	.274 SEC. 
TIME AT CENTRAL FROCESECR = 11.14.1S. HRi/MINE/SiCS 

TOTAL AREA CF ELEMENTS 	= 	.123C10E431 	SC. 

ICTAL TINE MSc IN'SCL%INC PRCELEM 2  13.198 !ES. 

TIME USEC IN PcESOLLTIGN FlOCESE (Lt. ELE1ENT STIFFNESS M AT1ICC.S) 
	

5.008 SEC. 
TIME Al CENTRAL FROCESECR = 	MR:/MINE/SECS 

SILLTICN 	bY 	FR.CNTAL 	3 0 AFSE 	PITRIX 
	TECHNICLE 

MACHINE COCE INNER LCOFS ANO DYNAMIC PAN114 ACCZ3S IN CPERITICN 

DISPLACEMENTS 	A..T 	NODE/S 

NCIE 
NO. 

CISFLACE47NT 
IN SVS7P. 

X-CInECTICS 
C/Seu.11i4F.41 
IN SY;T: 

-.510.75E-C2 

	

-.457317F-.Z 2 	...5471'2-11 
1  .0317  i- -.17; 

	

3 	-.441 75E E -E2 	.13 1 273E-13 

	

4 	-.41d0:3.--02 	.13 .̀ 541'-- .02 

	

5 	-.4ic714t-72 	 .13171'F- ; 

	

5 	...505F:,tf-C2 	." 1 f1N-a 3  
• 7 	 .41:.2tr'E-,;2 	7 .1)7:- 5  

	

i 	-..,,Kii.-EL-,2 	.14,=!),:-- i 

	

3 	
-.3774 u4t-C2 

	

-. J cE 11F -E2 	
..“3, -03 

1 	 ... .1412 ,4 -12 

	

11 	-.222/11e-02 	 .227:433 -.12 

	

41 	-.2c 5711c -■.2 	.-195311 -:2 

	

13 	-."..Ei l 7E-72 	.!'0 1)1 - , 2 

	

14 	-.E4.c:271i--C2 	. 	- 	-3' 

	

11 	.4711,1E-''2 	..2!Ail- -Cl" 
1) 

-.4E i;`)17 F -: 2 

	

-.35E571E-2 	
.17.. i 3,3. -12 .111 7  • 1E... 1  

	

13 	-. ic53ti1E-f. 2 	 .27:5 5 '.-1:: 

	

19 	...:0 11 44"C2 	.44)41E-"2 
2) -.:,..1.7cLJ"52 	

:)1333;ili 

	

21 	-.21.1631i:E-.2 
-1  

	

c. -.114L14F-,1 	.551::- - 1 

	

23 	-.:417S5i.-C2 	.11i5lo3--2 

	

24 	-.2v,E EcF-C2 	.21:3117-:2 

	

25 	-.E'..,?.ii-7E -C2 	.32253 1 2-12 

	

25 ...2,0-1053F-,...? 	.4:'3 ,iti:-.2 

	

27 	-•cE ,.( ..i4E-' 2 	.E1.:71j7- 1 2 

	

21 	-.33E247.---02 	,E52571.-33 

	

21 	..L1efE4F..(2 	.31313.:-12 

REACTIONS TO EARTH 

FCRCE IN 
SYSTEM 

>1-0ImbCITCN 

	

i 	
0 '0 

	

t; 	
0.75121+91 
-.251579:+.1 

	

7 	 J 	-.11!3E7.:L:3 

	

il 	 0 .. 

	

C 	
.1215i-)1 .... 1 E3c76:413 

	

3C 	 C 	-.1'4C:-4"19 

	

35 	 -.11.1.1. .'9 

	

131 	 1 	-.2EEE1i 4.'S. 

	

11E 	 0 	-.1c13q3 +19 

	

115 	 1 	-.1i/C1) 4-13 

	

122 	 C 	-.1215:4 ...t1 

	

114 	-.145175E+C3 	 1 

	

1  1 c 	.212115E+r1 	 ) 

	

11i 	.344.511E+14 	 1 

	

I!? 	.itcbcc;E+td 	 1 

	

111 	.83e,57C+Ci 	 J 

	

11S 	 j 	-.271771 .19 

	

142 	 n 	-.E7E841 +II 

	

152 	-.E97762f+ca. 	a 

	

152 	...42•35:2F 47 4 	 1 

	

155 	-.141,14E+ce 

	

171 	-.I32192E4.14  

NOCE 
NC. 

FCVJE 1:%1 cv3TEN 

TCTAL FCRCE -.564126E-03 	-.ECJCti1i+19 



The percentage of the error involved can be calculated as 

f(HT-11 	
11

)23. 1 

 
% error - 

• r  T2 T2,1/2 
11-1
I 
+H
II

1 

{(1.2160-1.2043)2+(0.0000-0.0000)2}
1/2  

= 0.962 
{(1.216)2+(0.0000)2}12  

A possible explanation for this behaviour is that when using quarter-

point singular elements we do not expect a uniform rate of convergence 

because with the mesh refinement we are necessarily reducing the size 

of the singular zone which violates the basic requirement for convergence. 

These relatively coarse and fine discretizations can be regarded as two 

extreme cases and for intermediate ones convergence has the following 

typical behaviour. 

In other words we get reasonably accurate results if the discretization 

near the crack tip is not too coarse or too fine. 

Since the stiffness matrix is numerically integrated we investigate 

the effects the total number of Gauss points (NGP) have on the numerical 

accuracy of the solution. We test the accuracy of the central crack 

problem with the relatively coarse mesh using different number of Gauss 

points. For the structure with 34 elements we use 3, 6 and 12 integration 

points in each quarter-point trianguler isoparametric elements while the 

number of integration points in other elements are kept constant at 3 

(resp. 4) for ordinary triangular (resp. quadrilateral) isoparametric 

elements. 
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problem are as follows. 
T 

 	•' 

r-7,*,-;(P 

Table IV shows the corresponding numerical values obtained from 

COD. 

NGP 3 (mid-side points) 	3 (corner points) 6 12 

HI  1.119054 1.234625 1.211158 1.204302 

H
II 

0.000000 0.000000 0.000000 0.000000 
_ 

% Error -7.9772 +1.5317 -0.3982 -0.9621 

Table IV - Effect of Number of Gauss Points (NGP) on H
I 
and H

II 

As is noted from the table good accuracy is obtained using only. 6 

integration points inside each crack tip element. 

Results for an edge crack (Fig. 8) and a double-edge crack (Fig. 9) 

using symmetry and the same discretization as in the central crack 

-4 

For the edge crack,  problem using 12 Gauss points over singular elements 

and 4 Gauss points for quadrilateral isoparametric elements we obtain 

H
I 
= 2.0620 from the COD which is about 2.3% less than the approximate 

value H
I 
= 2.11 obtained by Tracey [116]. 

Similarly for the double-edge crack problem of Fig.(9)using 12 

Gauss points and the same discretization as in the central crack problem 

we obtain H = 1.2663 from COD. This value can be compared with the 

interpolated (not accurate enough) value of HI  = 1.227 from [117]. 
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As a further analysis of static crack problems we thoroughly 

analyse an oblique edge crack in a sheet subject to tensile forces 

(Fig. 10). 	
2.0 

F;3C10) 

T 

The geometry and loading was specifically chosen from the Bowie's 

example [16, p. 51] so that the accuracy of the method can be tested on 

another model problem for which the stress intensity factors are known. 

For discretization mesh see Fig. 11. The data for this analysis and 

the corresponding solution near the tip of the crack 	are given in 

Table V. From system (5) and the displacement field we can simultaneously 
K 	 K 

find H
I 
- 	 and H

II 	
II  . These values as obtained from 

TAT]; 

displacements along each ray from the crack tip are shown in Table VI 

and are plotted in Fig. 12. In this problem in order to remove rigid 

body motion we have fixed the crack tip and restrained node at (x = 0, 

y = 0) in the vertical direction. 
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Fig 11a Finite element representation of an inclined edge crack- problem 
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Fig 11 b. Enlarged shaded area in fig 11a. 



NODE 
NO. 

1 
2 

• 3 
4 
5 
5 
7 
1 

.1 
13 
11 
12 
13 
14 
15 
15 
17 
19 
11 
21 
21 

 
23 
24 
25 
25 
27 
Z9 
29 
31 
31 
32 

34 

35 
35 
37 
39 
39 
4'3 
41 
42 
43 
44 
45 
45 
4 7  
43 
49 
57 

c. 2 1  2 
53 
54 
55 
5.i 
5 7  
59 
59 
60 

2; 
63 
64 
65 
65 
57 
Ei 
69 

DISPLACEMENT 
IN SYSTLm 
X-JIRr:CTION 

-.119771F-24 
.151625E-L2 
.1120E0E-02 
.441523E-01 
.51241,4E-15 

-.3552EOL-.,3 
-.92/41P4 F-i3 
-.125232E-C2 
-.112673:.-02 
-.1676E4F-l2 
.41E41EE-02 
.214I.G9i-C2 
.2.s,IE-C2 
.13312Fi-Q2 
.65661EF-C3 
.95 774nc -L,4 

-.30tli.sLc.-03 
-.711!;oF-03 
-.9730E4t-L3 
-.131LICE-t2 
-.1v 31“4,-02 
-.235qt2E-02 
-.202eC2F-02 
- 33t8 74E-L2 
-.
. 	

:,“/185F-r 2 
- .3361,11, - b2 
- .315.314L- C2 

..:7 3i. /7 E-. 2 

.......;o991,c- i..2 

.6676E4t- C 3 
-.67t2766-  G3 
-.14114t-C2 
-.257169E-1. 2. 
- ...it 75.464-L 2 
- .4451::Er -  C 2 
... .39E9tEE-C 2 

• /13 tE 7F c.-  02 
..524772 c- 4.2 
.37.,2 584- . 2 
.1. 45E9r .-  0 2 
.€131 .5c- C3 

.- .33123CP- C3 
- .1126713E - C2 
- .1412721- ' 2 
-.1•151i1tc-  02 
- .23327...c- 02 
- ..:11'21.2t- C.  2 
- .366755E-C2 
- .4545 4..E- l: 2 
-.434091E-02 
- .51ce 2CE--  C2 
- .436L €5c-.2 
- .457251E-C2 

.91.1.392" 02 

.456C S2E-  02 
• 44. t7 GE E-  C 3 

-.1745 l A c -C 1  
- .27..26.:E-  02 
- .36 6u CAP-  ■32 
- ..;321c1c- C2 
- .6L 12 	lt-..2 
-.53.12EFE-C.2 

.1.!' b'c 29E -1 1 
..732461.c.- 1,2 
.i2'oE 3EC- C 2 
.24.35i 9F-C 2 
.43L1 4,  E -1 7 

- .125451=- 02 
- .2...1r.76E-'12 
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V-DIRI:T/ON 

.212 1 32S-21 
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.13 7 313. -,12 
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..32E631-t.3 
.311 1 117-1 7  

71 .11c).-05 
i3:7i 

2j7 5i-11 
.304E0 E- 	1 

-. .22:46 / 3:-13 
•- .116947:-.03 
- .1114 11Z-0' 

• 2 14E5 1.'1-0 -2 
.12E511E-J2 
.1 4E111:-"/ 
.13'711:-12  
.iji'4337.-02 
.12 1131.1-O3 
.36E511.7-C1 

-.."e93 7 :-03 
-.iiJElli-02 
.!.1.413 7 7-02 
.377 2 131-u' 
.41 .° ;17 E -02 
.ZEW'o "-02 
.:122315-0 5  
• i2213.1::-U.1 
.1E453):-.; 7  
.12 171) '.-02  
,114 ritE-0 2 
.121331E- 0 =  
.132333-.: -02.  
.12 c 1)5E-u2 
.c5.5,17 	-13 

- 
	.5'195.11:.-13 
-.11:i613-03 

• -. .191.931:- 32 
''.153 )5i-i. 2 

.420165L-02 

..:62...ii3:-11  
.42/11i-05  
.1947 7•  -:- 	5  
.115iH-55  
.13E9 s '1_ -0...5  
.13'3'37-3 7  

..43J,IiE-J1 
-. .1 .:.1'3 ':-.,.. 

,...-' 5i1._ - 9 1  
.,:5 331,.-15  
.46'141E-62 
.5317334-'  2 
..1-E3t•r..■1 

4 ii /A if. f - 3 ;  
.222121: 

TCTAL 	NUMBER CF 	ELSMENTS 	= 	117 
TOTAL NUMBER OF NOCES 	= 	362 
TCTAL 	NUMBER CF 	SUFPORT NOCES 	= 	2 
TCTAL 	NUMEIFR OF 	LCACING CASES 	2  

DYNAMIC VECTOR ARRAY 	RECU/R2PENT1 

DATA 	PROCESSING 	 2249 
DATA 	STORAGE 	= 	2441 
PRE-SCLUTION PROCESS 	4213 
SCLUTICN 	FROCFSS 	2 	374E 
PCSI-SCLUTICN 	PRC".'ESS 	1.341 	• 
LCCATICNS AVAILA1LS 	= 25J0) 

MAxInt,  FRONT WICTH OF STIFFNESS MATRIX 	= 	75 
MAXImUm HALF BAWINICIF CF STIFFNESS MATRIX = 	162 
TOTAL 	Num6ER OF 	ALTIVE NOCES 	s 	352 
TCTAL NUMBER OF 	EQUATIONS 	= 	724 

TIMI 	FOR THIS PHAS2 	= 	3.641 SEC. 

TIME USED TO PROCESS INPUT CATA 	= 	14./77 SSC. 

TIME AT CENTRAL PROCESSOR = 	22.'11.58. 	HRS/mINS/SSCS 

TIME USED 	IN FRE-SOLUTION 	PROCESS 	(ALL 	ELEMENT STIFFNESS MITRICES, 

TIME AT CENTRAL PROCESSOR = 22.01.22. HRS/mINI/SSCS 

SOLUTICNBY 	RCNTAL 	SPARSE 	MATRIX.  

MACHINE COLE INNER LOOPS ANO CYNAMIC RANCOM ACCESS IN OPERATION 

TIME USED FCR ASSEMBLY AND 	ELININATICN 	WITH 	1 RIGHT HAND SIDES = 

TIME USED 	IN BACK-SUBSTITU7ION PRCCESS 	hITH 	1 RIGHT HAND SIDES 2  

TIME AT CENTRAL PROCESSOR = 22.)1.57. MRS/MINS/SECS 

* 	14.830 SEC. 

TECHNIQUE' 

18.,764 SEC. 

1.217 SEC. 
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HI  
H 

1,050  rom Bowie { Fir —1.23 
(scaled) 	Hn —0.55 
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Fig.12 Variations of stress- intensity factors with 0 



0 
o 

-180 
0 

-135 
o 

-90 
0 

-45 0
o 

H 
I 

1.2017 1.1842 1.1569 1.1332 1.1512 

H
II 

0.5530 0.5496 0.5393 0.5268 0.5126 

45
o  90o  135o  180° 

 

HI __T  
1.2078 1 	1.2350 

t 
1.2442 1.2384 

H
II 	

0.5184 I 	0.5293 0.5363 0.5425 

Table VI - H
I 
and H

II 
for Mixed-Mode Crack 

As is seen in Fig. 12 the most accurate values are again obtained 

from COD (i.e. averaging the values on 0 = -180°  and 0 = +180°). This 

in fact, is physically very appealing as in practice we can only measure 

the COD and then find the corresponding HI  and }III. Also it is noted 

that the computed values compare well with those of Bowie's. The reason 

for these values being slightly less than Bowie's values might be due to 

the inherent underestimation of the displacement field in the approximation 

method. The COD for the mixed-mode crack problem is plotted in Fig. 13 

for a small neighbourhood of the tip. The final distortion of the 

sheet if sketched in Fig. 14. 

One can also find the state of stress in the sheet due to the 

tension T applied uniformly along the edges. While there is a number of 

ways to present the state of stresses we only plot the contours Of maximum 

principal stress in Fig. 15 and Fig. 16. In the very inner core near 

the tip (Fig. 16) the state of stresses are very high and are given by 

the formulae (for -r-< 0.02) 
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a 	• 0 	0 	• 30 	
1 xx =  1  

T 	 2 {1.2200 cos 	(1- sin -Isin 	
2 

- 0.5479 sin -(-  

/2(1) 
a30 

(2+ cos 0 cos --.)} 
2 

xy _  1 	30 	30 	30 
{0.6100.sin 0 cos — + 0.5479 cos --- (1- sin 	sin T.)} 

v/2(-) 
a 

a 
_  1 	0 	0 YY  {1.2200 cos -;- (1+ sin 	sin 

2 	+ 0.27395 sin 0 cos 39- ] 
T 	

2 	 2 	2 
/2(I) 

a 	 (6) 

where T = 0.2x10
10, a = 0.5 and r and 0 are as shown in Fig. 12. 

Now we can consider an edge-crack in a tensile sheet and assume 

that the crack has branched off at an angle of 135°  from the crack line 

(Fig. 17). The COD for this problem is plotted in Fig. 17. The values 

of stress intensity factors obtained from the COD are 

H 	= 8.8220 

H
II 

= -1.6286 

See Table VII for computational data and results. 
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crack faces 
after loading 

• 
♦ 

/unload crack faces 

\B 

Fig.13 Local CAB) mixed-mode crack opening displacement(COD) 

1 displ. Unit 7.4. 3000 mm 

1 

CB= 0.15 

2 

Fig.14 Distortion of an edge-cracked sheet 
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Fig 15 - Contours of maximum principal stress, for the inclined crack problem 



Fig 16 	Contours of maximum principal stress near the 
crack tip for the inclined crack problem. 
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SUMMARY 	0 F 	GATA 

TOTAL 	NDHSER OF 	ELEMENTS 	m 	117 
TOTAL 	Nip-18ER OF 	NCC:S 	 2 	362 
ICTAL 	NUMBER OF 	SupPO:T NCC-IS 	= 	13 
TOTAL NUMBER OF LCA:ING CASES 	1 	 1 

DYNAMIC VECTOR ARRAY RSCUIRIMENTS 

DATA PROCESSING 	 2 	n1s9 
DATA 	STORAGE 
PRE-SCLUT ION PROCESS 	 = 	425352 63 
SCLUTICN PROCESS 	 = 	3745 
PCST-ZcLunoN PF.00:iSS 	 = 	1375 
LCCATICNS 	AvAILADL . 	 2 	25003 

MA X IMUM FRONT 	HICTM OF STIFFNESS MATRIX 	2 	75 
MAXIMUM HALF FANDWI:Tt OF 	STIFFNESS MATRIX 	2 	162 
TOTAL 	NUMBER OF 	ACT T 	NCCES NCCES 	 2 	162 

' 	TOTAL 	NUMBE 44 OF 	ECUA I 1CNS 	 2 	724 

TINE FOR THIS PHASE 	 2 	3.874 SSC. 

TIME .  USED TC PROCESS 	INPUT 	CAT 4 	2 	15.355 SEC. 

TIME IT CENTRAL FriOCESSOP 	= 	22.42.18. HRS/mINS/Sill 

TIME 'JSEO 	IN  PRE-SOLUTION 	PROCESS 	(ALL 	ELEMENT STIFFNESS MATRICES) 
TIME 	AT CENTRAL PROCESSOR 	2 	22, 42.34. 	113/M/NS/SSCS 

SOLUTICN 	6 Y 	F 11 	C 	hT AL 	S°ARSE 	MATRIX 
MACHINE COCE INNER LOOPS 	AND OTNAHIC RAN70M ACCESS 	IN CF::RATION 

TIME USED 	FOR ASSEMBLY AND ELINISATION 	WITH 	1 RIGHT HANO 	SIDES 7  
TIME USED 	IN BACK ,..SU6STITUrICN PRC:;ESS 	HITH 	1 RIGHT HAND 	SIDES = 

TIME 	AT CENTRAL 	PROCESSOR 	2 	22. 43. 13, 	F4RS/MINS/SECS 

= 	15.418 SEC. 

TECHNIQUE 

18,777 SEC..  

1.312 SEC. 



12 
E = 0.2x10 
T = E 
V = 0.3 
HI = 8.8220 
Hu  =-1 6286 

tttftttttttttttnttt 

45.  

2 

Fig.17 The profile of a branched-crack after loading 

-207- 



Now we study the effects of anisotropy on the solution. ConSider 

the previous central crack problem with only changes in the material 

properties as representing an orthotropic material with lines of 

material symmetry coinciding with the x- and y-axes of Fig. 18 

- 	L-T-FM-T7  

•>: 

       

      

F; (1s ?  

and 
1 2_71.7.17 
2_ 

= 0.56x10
11  

 

  

elastic moduli 

= 0.14x10
11  

G
12 

= 0.1x10
11 	

shear modulus 

v
12 

= 0.3 	a poisson's ratio 

q = 0.2x10
10 	

load intensity 

a = 0.4 	 half-crack length 

The asymptotic displacement field is then given by [118, Ch. II] 

u = K
I TF 

 Re I 
r 
 s 
 is 

 [s1p2 (cos 0 +s2 sin 0) - s2P1 (cos 0 +s1  sin 0) 
1 2 

/2r r  1 	 15 KII v  —Tr Re t s -s EP2 (cos 0 +s2 
sin 0) -p

1 
 (cos 0 +s

1  sin 0) -71 + 
1 2 

0 (r) 

(7) 
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r 	1  
v = K ) 

27  
---Re t 	Ls

1
q
2
(cos 0 +s sin 0) 1-s

2 
(cos 0 +s sin 0) '1} s

l
-s
2 

I 7 	 2 	1 

/2r  
K it — Re 	

1  
II IT 	 [cl2 

(cos 0 +s
2 
sin 0)12-q

1 
(cos 0 +s sin 0) ]) -s  

2 	 1  
0(r) 

where s1 and s2 are roots of the following equation: 

a
11
s
4 

- 2a
16
s3 + (2a

12
+a
66
)s2 	2a

26
s + a

22 
= 0 

the coefficients a..13  in the orthotropic case are given by: 

a 	= —
1 	v

12- _ 
v
21 	.1 

16 
= , a

12 
= - 

E 	
, a 	- 

	

11 E a 0 
	

E
2 66 G

12 

	

1 	1 

1 
a
26 

= 0 and a = 
22 E

2 

From equation (8) we obtain 

sis2  

si+s2  = i/2(a0+80) 

where 

j

a
o 
= (E

1
/E
2
)1/2  

t 	- E

1  
0 2G

12 
v
12 

In (T)103  . and q. are given by 

(7) 

(8) 
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KI  0.28x10
11  

• 

/2r 	3.0 

p1  =as
2 
+a -a 

1 	11 1 	12 	16
s 

 1 

2 
P2 

= a
11
s
2 
+ a

12 
- a

16
s
2 

(9) 

q1  = {a s
2
+a -a 	

}
/s 

1 	12 1 22 26 -
s
1 	1 

2 
q2 = {a12s2

+a
22
-a
26
s
2
}/s

2 

substituting for the elastic constants we obtain 

and 

P1 = 

= 

41 

Si 
= 

s
2 
 = 

i 

2i 

1.3 	) 	4.3 
- 0.56x10

11 	P2 	( 0.56x10
11  

4.3 	) 	/ 	2.6 	\ 

0.56x10 
11 	

q 	= 	) /i 2 	\. 
0.56x10

11 

From (7) 	along 0 = + 180 we obtain 

3.0  
u = K 111 + K /2r  Ref 111 = 

0.56x10 
I rr 	

1.7i 	
IT 7 

0.56x10 

KII 7 
0.56x10

11  

3. 	1.7i  
v = K 

2r
- Re 111 + KII IT Re t- 	111 = 

I 	0.28x10 	0.56x10 

/2r  3.0 
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. Similarly 

get 

to the isotropic material treated before 

✓2 	3.0 	4v(t/4)-v(t)-3v(0) 

(equation 

( 	= 

(5)) 

0.04) 

we 

K 
I 	Tr 

0.28x1011 

3.0 	4u(t14)-u(t.)-3u(0) 
K
II 	

71. 
0.56x10

11 
 

in which along 0 = 1800, K and K have decoupled. 
IT 

Using Table VIII along 0 = + 1800 we obtain 

K 
HI  = 	I  = 1.1082 

q/77.;' 

HII 
 = 

K
II = 0.0489 

 

and along 0 = - 180°  we get 

H 	= 1.1082 

= -0.0489 HIT 
 

The averaged values of H1  and H
II 

from 0 = - 1800 and 0 = + 1800 which 

correspond to H1  and H11  obtained from COD in the orthotropic case are 

given by 

H 	= 1.1082 

H
II 

= 0.000 

The corresponding interpolated values from Bowie's work [119] are 
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SUti9APY 	OF 	DATA 

6TRU,:riRE 	TYPE 	= PLANESTRESS 
TOTAL 	NUM3E; 	OF EL::H.7NTS 	= 	3E 	• 
TOTAL NOIDEP OF NODES 	= 123 
TOTAL 	11 1112R OF 10 0PORT NODS = 22 
TOIAL 	WPCER OF L)A,-)ING CA.;ES = 1 

OY.NAMIS 	4E,.:TOR ARRAY 	REOUIREME1rs 

UATA 	1 1-.0.2ES:I0G 	 = 
LATA 1TORAGE 	 = 534 
PA_-C)LOTICN PROD:SS 	= 1763 
CLU-TON 	0711:.:33?S 	= 1621 

PO.:T-3OLUTION 	PROCESS 	= 1.575 
LOSATION3 AVAILA3LE 	= 
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TOTAL NNM1E.7 OF A.:',TIVE NODES 	= • 123 
TOTAL lOm3E4 OF _OVATIONS 	= 	2146 

TIME ?J1 THIS PHASE 	

• 	

.793 SEC. 

TIME USED TO P:OC;SS INPUT DATA 	= 	3.,94 SEC. 



H 	= 1.125 
I 

H
II 

= 0. 

1.1250-1.1082  
with an error of 	

1.1250 	
= 1.49% for the relatively coarse 

discretization of the sheet. 

As the. last example in static analysis we consider a central 

crack in a bi-material sheet (see figure). 

The physical data for the problem is as follows: 

E
1 
= 0.2x10

12 
E
2 
= 0.5x10

12 

and 

v
1 
 = 0.3 	v

2 
= 0.25 

Using the same mesh as before we obtain the following values for the 

stress intensity factors: 

{

H 	= 1.0739 
I 

H
II 

= 0. 
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V.7.2 Dynamic Analysis  

Consider the central crack problem of the previous section as a 

model for dynamic analysis. This time the uniform tension T is suddenly 

applied along the boundary (i.e. step load) and the time behaviour of 

the stress intensity factor K
I
(t) and other field variables are studied. 

For this problem the same spatial finite element representation 

as in the previous section is used. Employing the Newmark's difference 

scheme (see Chapter II) and a consistent mass matrix we surround the 

crack tips by quarter-point singular elements. Eventhough the adopted 

difference scheme is unconditionally stable, in order to obtain an accurate 

result we have to use time-intervals (At) smaller than the time required 

for the longitudinal waves to travel across the smallest elements in the 

spatial discretization. With E = 0.2x10
12
, v = 0.3 and p = 5000 (SI units) 

we have 

c
1 
= 
/X4-2p 	1/E 	1-v  

- 7338, longitudinal wave velocity 
p 	p (14-v)(1-2v) 

= fi.  1  _ 
3922, shear wave velocity c = ✓  -p- 	p  2(1A-v) 

VR 
= 0.9274c

2 
= 3638, Rayleigh wave velocity 

We choose At = 4ps which is slightly less than the time required for waves 

to propagate across the singular (smallest) elements. Table IX presents 

the numerical displacement field after t = 260ps from the application of 

the step load. 

The profile of the crack tip at four different times is plotted in 

Fig. 19. From the COD variations with time we can extract the stress 

intensity factor Ki(t) at any time using equations (5). For numerical 

values of the normalised stress intensity factor see Table X. 
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TIME 

(pis) 

H 
1 

0 0.000 

12 -0.0002 

24 0.0012 

36 0.0007 

48 -0.1026 

60 0.1103 

72 -0.1497 

84 0.1025 

96 0.0910 

108 -0.0278 

120 -0.1397 

132 -0.0543 

144 0.0881 

156 0.3288 

168 0.5871 

180 0.7429 

192 0.9152 

204 1.0476 

216 1.2196 

228 1.2225 

240 1.2707 

252 1.2965 

264 1.6408 

TIME 

(p.$) 

H 
I 

276 1.5794 

288 1.6839 

300 1.8885 

312 1.7167 

324 1.9258 

336 1.9477 

348 2.0320 

360 2.2899 

.. 	372 2.3521 

384 2.3827 

396 2.3907 

408 2.1046 

420 2.4056 

432 2.3370 

444 2.3455 

456 2.3518 

468 2.3713 

480 2.3221 

492 2.5745 

504 2.2336 

516 2.3344 

528 2.2401 

540 2.3358 

Table X - Stress-intensity-factor Hi(t) at Different Times 
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H
I
(t) is also plotted in Fig. 20. As it is observed in this 

figure, before the first arrival of longitudinal waves there is some 

small-amplitude oscillations in Hi(t) which is due to numerical 

cancellations and reinforcements of COD as calculated from (5). To 

see this more clearly we have plotted the time-variation of the 

displacement at the centre of the crack in Fig. 21. The same pattern 

for initial oscillations with small amplitudes is observed. As H
I
(t) 

is obtained from displacements at three nodes very close to the tip 

(i.e. equation (5)) the numerical inaccuracies involved could add or 

subtract, resulting in a slightly larger error for H
I
. One way to 

reduce these oscillations is to choose a smaller time step (i.e. 

At < 411s). However, we can hardly justify the use of a smaller time 

interval At without a simultaneous reduction in the size of the 

elements (h). Smaller time-increments (At) and mesh size (h) would 

then enable one to detect higher frequency components of displacements 

and stresses in the field. 

The arrival time of different waves are marked in Figs. 20 and 

21. In these figures pl  (resp. sl) represents the arrival time of 

the first longitudinal (resp. transverse) waves and prime on pl  (e.g. 

p"
1
, etc.) indicates,later arrivals of the scattered longitudinal waves. 

Also R 	(resp. R
sl

) is the time required for the Rayleigh waves generated 
I)1 

by the first incident longitudinal wave to travel from one crack tip to 

another and back to the point (0,0). Clearly, in the sheet of finite 

dimensions there are large number of different types of waves reflected 

from boundaries into the medium and as time rolls on the picture for H
I 

becomes more complex. However, the arrival times of some of the waves 

are shown on these figures to mark the more important features of the 

problem. As seen in Fig. 21 from about 480p.s up to the time for which 
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centre (0,0)for the central crack problem 



'results are obtained the displacement shows an oscillatory behaviour around 

vs = 0.0201 with very small amplitudes. The curve is plotted for 137 

time steps of size At = 4As. The time required for forward elimination 

of the resulting linear set of simultaneous equations is about 2.12 seconds 

while backward substitution for each time step takes about 0.49 seconds on 

a CDC 6400. 

V.7.3 A Propagating Crack Problem  

With the analysis in Chapter IV of a crack propagating at the 

Rayleigh velocity VR  we consider a crack developing from zero initial 

length at the centre of a tensile sheet and moving at a velocity VR  

(Fig. 22). For this problem it is known that the stress intensity 

factors are zero. The data for this problem is as follows: 

E = 200 Gpa 

v = 0.25 

p = 5000 Kg/m
3 

which results in 

ci  = 6928 m/s 

c
2 
 = 4000 m/s 

V
R 

= 0.919c2 
= 3676 m/s 

A finite element mesh for this problem is shown in Fig. 25. The problem 

is simulated by first applying static loads to a level that is assumed 

to initialize a crack at the centre of the sheet in the static field (i.e. field 

velocity is initially zero). The propagating crack is modelled by uniformly 

cutting through the material along the line immediatley ahead of the crack. 
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1 

As we have discretized the structure in a finite number of elements we 

can simulate the crack propagation by the release of nodes in front of 

crack line at a rate 

VR = a(t) = lim [a(t+At)-a(t), 
At 

At÷0 

where a(t) is the crack length at time t. In the time interval At we 

analyse a stationary crack of length a(t+At) with a time increment 

At 
(At)' = — where N is an arbitrary integer (Fig. 16.). 

A1/4  

F6(2.0 c.t 

As the smallest length in the elements is 12 we have taken 

At = 
3676 	

136.02x10
-6

s so that release of nodes results in almost 

uniform velocity.VR. Subsequent to the release of a node we analyse 

At 
two stationary dynamic problems with (At)' =--and crack length a(T+At). 

This process is repeated for any desired period of time. The crack 

profile at two different times is shown in Fig. 23 and time variation 

of the displacement v due to propagation of the crack at an arbitrary 

point (x=1.0, y=1.0) is plotted in Fig. 24. There dog  not seem to be any 

values available in literature for comparison. 

(T-frist) 

( -r-) 
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Fig 23 Crack profile of Rayleigh problem at different times 
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