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ABSTRACT 

A numerical study has been made of an elastic ball normally impacting 
onto an elastic half-space covered by a thin layer of oil. 	The oil is 
compressible and has a pressure dependent viscosity. 

The solution of the Reynolds, Elasticity and State equations are found 
simultaneously using Newton-Raphson techniques and with quintic spline 
elements. 	The pressure field is integrated to give the load which determines 
the trajectory. 	The effect of coupling the ball dynamics to the instantaneous 
solution gives rise to a stiff set of equations, thus adding greatly to the 
numerical problems. 

An extended analysis of the rigid ball incompressible fluid system has 
been undertaken so that the effects of various parameters may be determined. 

The effect of temperature generation is shown to be small under the 
conditions that hold if the ball is to lose its momentum by viscous action 
alone. 

By integration of the Boussinesq formulae for the axisymmetric deformation, 
a general formula for the vertical deformation has been found, and if the 
applied pressure distribution is continuous up to the nth derivative, then 
by means of a simple recurrence relation the first n spatial derivatives 
of the deformation may be calculated. 	The formula for the horizontal 
distortion is obtained and is of a particularly simple form. 	The formulae 
are of general application. 

In the region of significant elastic distortion, the ball is dropping 
effectively at zero acceleration (constant film force), thus results obtained 
here are not directly comparable with those of previous workers who have 
assumed the unlikely configuration of the ball dropping under constant central 
pressure. 

Entrapments are obtained and the effect of the local elastic distortion 
velocity found to be significant. 
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CHAPTER ONE 

IMPACT SQUEEZE FILMS  

1.1 	Introduction.  

Until comparatively recently squeeze film effects in lubrication 

have been overlooked as a factor for providing separation between 

lubricated surfaces. 	They arise whenever any two bodies approach each 

other along their common normal, and will occur due to vibration in 

almost all components of running machinery. 	In counterformed elements, 

such as gear teeth, cams and rolling bearings, the thinness.of the oil, 

film under normal running conditions causes very high localized pressures 

to be generated, which give rise to elastic distortions of the bounding 

solids. 	These distortions, though small in absolute measure, are large 

compared to the film thickness. 	This effect will be further heightened 

by any starvation condition of the system. 	It has been found that this 

pressure generation can seriously reduce the scuffing load in rolling 

contacts. 

In this thesis, the various equations of Newtonian flow, continuity, 

acceleration, and elasticity for a ball droppingon to a lubricated half- 

space will be obtained and solved. 	In the isothermal case the pressure 

gradient varies approximately inversely as the cube of the film thickness; 

the viscosity-pressure model used changes approximately exponentially with 

the pressure; and the deformation is a linear function of the entire 

pressure field. 	They thus give a system of equations which are time- 

dependent as well as being inter-related in a highly non-linear way. 

This thesis will extend previous work in the following ways: 
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1) By considering the dynamics af one ball dropping under the action 

of gravity so that the velocity, film thickness, and film force 

are coupled. 

2) By allowing the viscosity to be an arbitary, continuous, 

differentiable function of pressure. An approximation to the 

second derivative needs to be defined numerically. 	Time- 

dependent viscosities will not be considered. 

3) Previous workers (CHRISTENSEN, 1967, 1970; CHENG and LEE, 1971) 

have assumed that the ball or cylinder drops with a pre-determined 

constant central pressure. 	Methods used here allow for a 

varying central pressure. 

4) The local approach velocity of the ball will be incorporated 

by an appropriate backward difference formula. 	This effects a 

space-time coupling, which together with the mass acceleration, 

presents a complicated system. 

5) A novel way of calculating the elastic distortion will be 

presented, enabling the distortion derivatives to be accurately 

calculated. 	This is later shown to be necessary to the method. 

6) A first order approximation to the horizontal distortion will 

be made, and its effects will be shown to be negligible. 

This more realistic approach to the behaviour of the dropping ball 

makes it difficult to compare results with previous investigations. 
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1.2. 	Previous Investigations. 

STEFAN, 1874, was probably the first to set up the equation relating 

the time of sinkage of a flat round plate on to a smooth plane from a given 

height; for an isoviscous fluid. 	In 1886, the classical work of REYNOLDS 

was produced, laying the basis for hydrodynamic lubrication theory. He 

combined the stress equations of STOKES, 1845, with the Lagrangian 

equation of motion for the fluid. 	Neglecting inertia terms and applying 

suitable boundary conditions he obtained the well-known Reynolds Equation. 

This is directly integrable for axisymmetric or elliptical plates, and also 

when the plate is rectangular but infinite in extent. 	The conditions 

that he assumed were:- 

1) Effects due to gravity and inertia forces within the fluid were 

neglected (i.e. no body forces). 

2) The fluid was Newtonian, incompressible and isoviscous. 

3) The thickness of squeeze film was small compared to the plate 

dimensions. 

4) There was no slip at the boundaries of fluid and bounding solids. 

5) Surface tension effects were negligible. 

6) The fluid was Stokesian. 

7) The pressure was transmitted normally across the film without 

change. 
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8) 	Fluid velocity derivatives in the normal direction were large 

compared to those in the direction of the flow. 

In 1940, NEEDS experimentally detected the influence of boundary 

surfaces on the viscosity of thin films between two optically plane 

parallel discs. 	He was able to verify the Stefan equation for both 

mineral oils and vegetable oils, but found that at large time values the 

experimental film thicknesses were much greater than the theoretical 

values. 	He attributed the increase to molecular effects, however it was 

subsequently determined (MOORE, 1965), that the molecular effects were 

of an order of magnitude too small to account for the observed behaviour. 

The theoretical models assumed an isoviscous oil to be present. 

In 1947, EIRICH and TABOR investigated the dynamic behaviour of a 

flat squeeze film under impact loading. 	The pressure distribution, flow 

velocity, shear rate and temperature rise within the film were calculated. 

For heavy impacts the pressures generated are sufficient to plastically 

deform the surface, while the temperature rise may be attributed to both 

viscous flow and a rapid adiabatic compression of gas bubbles trapped in 

the liquid film. 	They equated the loss of kinetic energy to the work 

done against the pressure generated, and assumed that the effect of 

pressure on viscosity was negligible. 	For a bubble free fluid and a 

mass of 0.040 kg and impact velocity of 1.5 ms
-1
, the maximum temperature 

generated by viscous flow was about 20C. 	The impact velocity was shown 

to have the major effect on producing this rise and was about 15 times 

greater than any considered here. 	BUTLER, 1960, extended the work of 

EIRICH and TABOR on surface deformation due to lubricant impaction to the 

case of a highly polished flat-ended cylindrical specimen compressed 

between polished dies. 	He showed that after impact the appearance of 

the impact faces is markedly changed according to the viscosity of the 

lubricant. 	In the general case of a pressure-sensitive viscosity it could 
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occur that the initially plane surfaces would take on a dished profile. 

1.3 	Experimental Work on Entrapment Formation. 

RABINOWICZ, 1952,noted that when an impact occurred between metal 

surfaces, metal was transferred from one surface to the other in both 

lubricated and dry conditions. 	When a lubricant of low viscosity was used, 

metal transfer occured in the same form as the dry case but when a high 

viscosity oil was used a small portion of the centre did not have transferred 

metal. 	He concluded that the oil had not been completely squeezed from 

the contact zone. 	This work was further reported in the earlier paper 

by TABOR, 1949, where it was noted that a large initial viscosity is 

needed to form conical dents. 	Interferometric results were obtained 

by ❑OWSON and JONES, 1967, who show that as the film is squeezed out, the 

depth of the pocket remains nearly constant. 

FOORD, 1968, obtained an interferogram which showed an entrapment 

with a minimum thickness of less than 200X which remained unchanged over 

a period of nine hours. 	WESTLAKE, 1970, using white light, studied this 

in greater detail, and noted that in the last part of the descent there 

was very little leakage of fluid. 	That is, a body of liquid is trapped 

in the contact while the elastic ball deforms around it. 	This effect is 

confirmed in the present work. 

PAUL, 1971, extended the interferometric work further by using mono-

chromatic light at two differing angles and was able to determine the 

absolute film thickness. 	From elastic considerations he obtained the 

pressure distribution and hence, by numerical substitution into Reynolds 

equation, was able to obtain pressure-viscosity curves, as well as pressure- 

density curves. 	This system has not been directly modelled in the present 
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work due to the numerical indeterminacy of the highly non-linear damping 

mechanisms, i.e. dashpot and magnet assemblies, as well as the squeeze 

film process, and also a desire not to increase the number of independent 

parameters. 

In 1974, GAMAN, HIGGINSON and NORMAN, looked at entrapments formed 

by the action of a rigid sphere falling through oil on to a silicone 

rubber surface layer resting on a rigid base. 	They noted that the time 

of descent to a specified centre film thickness was far shorter when 

the soft film was present. 

1.4 	Theoretical Elastohydrodynamic Work. 

When the squeeze film occurring between elastic bodies is considered, a 

complex system results. The pressure generated gives rise to an elastic 

displacement which tends to reduce the squeezing pressure. In 1960, 

CHRISTENSEN established the equations governing the normal approach of 

two elastic cylinders separated by a lubricant with exponential viscosity-

pressure characteristics, and presented numerical solutions for a number 

of cases, assuming isothermal conditions. 	CHRISTENSEN assumed that the 

rate of normal approach was constant across the surface of the film and 

took the central pressure to be fixed. 	The solution proceeded by 

decreasing the central deformed film thickness and solving the pressure 

field by iteration. 

In 1962, CHRISTENSEN published a theory of the elastrohydrodynamics 

of the normal approach of two elastic cylinders and predicted that the 

pressures in the film could considerably exceed the Hertzian stress at 

a finite film thickness under certain conditions. 

In 1967, he extended the work to consider the impact of spherical 
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elastic bodies in normal approach. 	As before, the system of equations 

was solved assuming the central pressure value to be a fixed constant and 

then, from the rigid solution, iterating to the elastic by using the 

elasticity equation to obtain the new film thickness. 	He made an 

3 	a 
approximation to the local velocity by using 	= Hoy_i  (H0  is the 

0 
normalized centre film thickness) and iterated for the actual distribution. 

He assumed that the differences calculated between solutions including 

this effect and those. ignoring it were only a few percent of the solution 

values. 	From the results shown it is not apparent whether this is indeed 

true. He used a different integral transform for the calculation for elastic 

distortion from the one used here.- The equations obtained are in fact identical. 

In 1971, CHENG and LEE extended the earlier work of CHRISTENSEN 

for elastic cylinders by allowing for a compressible fluid,and also to 

account for the spatial variation in local velocity. 	They further 

considered two types of viscosity-pressure relations for the lubricant; 

first an exponential, and then a composite exponential type as developed 

by ALLEN, TOWNSEND and ZARETSKY, 1970. They showed that the effect of 

compressibility is small and that the exponential type oil gives rise to a 

sharp spike in the pressure field at the centre. 	However, for the 

composite exponential the width of the spike is greater and for all cases 

studied a pocket is formed elastically in the early stages and remains 

without much change during the rest of the contacting process, until at 

the end a pocket of lubricant is entrapped. 	They also modelled the cylinder 

to have constant central pressure during the squeeze process. 

Meanwhile, HERREBRUGH, 1970, had produced an integral equation approach 

to the problem of approaching cylinders. 	This assumed that the local 

surface velocities were constant across the film and the equations were 

set up for either an isoviscous or an exponentially varying viscosity. 

Only the isoviscous case was solved; by means of successive approximations. 
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He then obtained an estimate of the variation of the local approach 

velocity. 

CONWAY, 1973, by analysing the case of a soft layer squeezed between 

two rollers, noted that for large values of absolute velocity, or for 

thin films, or even for soft bounding surfaces, the assumption of CHRISTENSEN 

1962, HERREBURGH, and GOULD, 1971, that the local approach velocity does 

not change radially, is invalid. He noted that this effect was exacerbated 

if an exponentially-varying viscosity oil was present. 

In 1975, CONWAY and LEE, published work on impact films in which 

they considered a rigid parobela squeezing on to a rigid flat through 

an incompressible exponential viscosity oil. 	As the model that they used 

is the same as one that is in this thesis, the results of this paper will 

be commented on in a later chapter. 	It should be noted that they discard 

the boundary condition that the pressure reaches zero at an infinite 

distance from the contact. 	This has also been done in this work. 

1.5 	The Development of this Thesis. 

In Chapter Two, the equations in their basic form are set up, together 

with appropriate boundary conditions. 	Some of the assumptions used are 

explained and justified'here. 

In Chapter Three, the impact of a rigid parabola ontoa rigid semi-

infinite solid with an incompressible liquid resting on the plate is 

discussed in some detail. 	The advantage of this is that a semi-analytical 

solution exists for this case and so it is much less expensive in computer 

time to analyse the behaviour of the system using this model, than to 

attempt the extensions to the (elastic ball, compressible liquid) case 
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immediately. 	It will be seen that, in the early stages of impact, there 

is no visible difference in the trajectories of the semi-analytical case 

and the fully varying case. 	This is because the pressures generated 

are low and the film thickness is large compared to the elastic distortions, 

and is partially a consequence of modelling only relatively hard materials. 

The effects of changing initial values and parameters of the system 

are presented and discussed as well as the various methods of time 

integration used. 	It will be found that the system exhibits stiffness, 

(see for example, GEAR, 1971). 

In Chapter Four, methods used for solving the Reynolds Equation 

taking into account elasticity and compressiblity effects are formulated 

and discussed. 	Several possible methods were rejected for various reasons, 

and the eventual method used is described and justified. 	It is important 

to note that space integration (i.e. solving for the instantaneous load) 

and time integration (i.e. obtaining the trajectories) may be considered 

separately since a partial decoupling of the equations may be made. 

In Chapter Five, the calculations necessary to obtain the vertical 

compliance matrix are made. 	The elements of this matrix are in general 

given as an integral, but for the case of piecewise polynomial interpolating 

functions these have been calculated explicitly. The spatial derivative of 

vertical deformation is required and so a transformation is made and the 

elements of the matrix shown to be reducible to the same form as required 

for the compliance matrix. 	The horizontal compliance matrix is also 

calculated. 

Chapter Six contains results for the fully varying case. The effect 

of the elastic and piezoviscous parameters are presented and discussed. 
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Chapter Seven contains a summary of results, a summary on the methods 

used and recommendations on -Further work. 
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Figure 2.1. 	The Rigid Body Co-ordinate System 

Figure 2.2. 	The Elastic Body Co-ordinate System. 
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CHAPTER TWO 

THE EQUATIONS TO BE SOLVED  

In this chapter the equations needed will be set up in their general 

form; 	during the remainder of the thesis particular cases considered 

will be obtained by substituting into these general equations. 

Before they are presented, the physical system, together with relevant 

nomenclature, will be shown. 

2.1 	Physical System and Coordinates. 

Consider a rigid ball of mass m approaching a rigid plane at velocity 

vc (note that for approach vc< 0), and he is the minimum clearance between 

the ball and the plane. (See Figure 2.1.) 

By definition 

v
c 

= h
c 
	 (2.1) 

At time t = 0, there is a layer of liquid of depth hs  and the ball is 

just touching the surface of the liquid. 	Its initial velocity is vc(0)=vs  

and h
c(0)=hs. 	h(r), the local film thickness, is a function of h

e 
and 

the film shape. i.e. 

h(r)=hc+s(r) 

where s(r) is the shape function. 

r
s 

is defined such that h(r )=h . 
s s 

(2.2) 
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When the ball and plane are both considered to be elastic, the 

co-ordinate system needs to be modified. To ease the representation of 

the system, the plane is assumed to be perfectly rigid and only the ball 

is elastic (as shown in Figure 2.2). 	This means that the ball is 

assumed to have elastic moduli that account for the elasticity of the 

plane as well as its own. 	This is reasonable as long as the radius of 

curvature is large compared to the local distortion, which is a requirement 

for the Reynolds equation to apply. 

The local film thickness, h(r), may now be written as 

h(r)=h +s(r)+w(r) 
	

(2.3) 

where s(r) is the shape function 

w(r) is the local vertical deformation. 

The vertical velocity at any point on the surface is given by 

dh(r)_ 	dw(r)  
dt 	

v + 
c dt 

(2.4) 

and h
e 
is the clearance that the ball would have had if it were rigid. 

Cylinderical polar coordinates were used far this problem and, due 

to the axisymmetry, dX = 0 for every function X. z gives the local co-

ordinate ordinate across the film thickness. 

2.2 	The Dynamics Equation. 

Consider a ball dropping under gravity into an oil film. There are 

two forces acting on the ball: gravity, which serves to accelerate it 
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and the film force, which acts to retard it. 	If the ball in considered 

to be of point mass, then 

mh
c 

= f 
s  27rpr.dr-mg 

0 
(2.5) 

where p(r) is the pressure field resulting from viscous action. 

The upper limit of integration is discussed in section 2.3.3. 

Reference will be made to both net force and to film force. These 
rs  

represent mhc  and fo  27rpr.dr respectively. 	The film force may also 

be referred to as the fluid force. 

The ball will be assumed to have its mass concentrated at its centroid 

and its surface to be instantly deformable. 	The assumption of point 

mass has no effect for the rigid case, and, for an elastic ball, although 

the distortions are large compared with film thickness, they are still 

very small relative to the radius of the ball. 	Comparing relative 

volume movements, the change in centroid position is seen to be negligible. 

The effects of shock waves into the ball are neglected. They would 

travel over a diameter of a 1 cm radius steel ball and back in 8 ps and 

due to the curvature of the ball would have time to decay into random 

motion within one time step, typically 100 ps. 

The effect of buoyancy is neglected, as only impacts into thin layers 

of oil are considered. 

2.3 	The Axisymmetric Reynolds Equation. 

2.3.1 	General Form. 

DOWSON, 1962 (extended by FOWLES, 1970) has shown that if the following 
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assumptions hold for a fluid film in pure squeeze:- 

1. 	The radius of curvature of the bearing components is large 

compared with the film thickness. 

2; 	The lubricant is a Newtonian fluid. 

3. Inertia and body force terms are small compared with the 

viscous and pressure terms in the equations of motion. 

4. Owing to the geometry of the fluid film the fluid velocity 

derivative across the film is large compared with the other 

velocity gradients. 

5. There is no slip between the fluid and bounding solids at 

common interfaces. 

6. There are no surface tension effects. 

7. The fluid is Stokesian. 

8. Pressure is transmitted normally through the films without change. 

then, using axisymmetric polar co-ordinates, and if 

dz ' 
0  n 

F =I
h  

0  

h 
F =I z'dz' 
1 o 	n 



) dz + (pv)h  - (pv)0 	(2.6) 
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M =f
h 
 P f

z dzi 
1 

dz 

F
1
M
1 

M
2
= 	

F 	
- f

h 
p f

z z'dz'  

0 	0 	0 

then 

dz 

1 	D 
— —  
r Dr (rM 	)- 2 Dr - 

This equation has been obtained by using the continuity equation, together 

with the Navier-Stokes equation far the forces on an element, and then 

using an order of magnitude analysis to eliminate small order terms. 

2.3.2. 	The Isothermal Reynolds Equation. 

If it is further assumed that the fluid has constant properties 

over the thickness of the film, which will be true for a fluid with a 

time and temperature independent viscosity and density, then 

F 
	h 

h
2 

= 
F1 2n 

(2.7) 

ph
2 

M
1
= 

2T' 

1 ph
3  

— 2= 12 	n 

J 
ph Dp d

z = h n 30 

0 
—  
at 	at 

3  
This gives, on writing Y-Ph 	the isothermal Reynolds equation 

n 



24 + ( 	21C) 212  = 12 ;It ( p h ) /y r 	Dr ar 
3r 

(2.9) 
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1 3 
r 3r 	Dr 

3p 
(Ty 	= 12 - 	(ph) (2.8) 

Which may be written, on expanding the derivative and dividing throughout 

by Y(Y. 0) 

This is the most general form of the Reynolds Equation that is to be 

considered in the major part of this work. 

2.3.3 	Boundary Conditions on Reynolds Equation. 

As the system is axisymmetric,-Froma consideration the continuity 

equation, 

1 3 e 
pu 	a 	 0 L 	= 

3z 	z)  r Dr 	r
J 	OU 	

at 

then 

aur  
= 0 at r=0 

ar 

Consequently the first boundary condition is that 

Dp 
= 0 at r=0 

Dr 
(2.10) 

The second boundary condition is one on the pressure value. Other workers 

CHRISTENSEN, 1970; CHENG and LEE, 1971, have used the condition that 
lim 

p(r)=0. This is normally interpretedasp(x)=0, where x is some "sufficiently" 

large value of radius. 
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In this wyrk a more limited finite boundary condition was used, as 

the ball only only extends to r=R. 	The one chosen here was that p(rs)=0. 

A further assumption for the radial extent of the film, is that there 

is no wave making effect that alters the load by having any pressure 

(positive or negative) in the region outside r=rs
. 

2.3.4 	The Equation at the Origin. 

If the spatial derivative term in Reynolds Equation is expanded, 

then 

	

2 	M 	DM 

M2 
	

+ 2 
p 	[ 2 	2) p 	fh Bp 

dz + (P v) 
h 

	

2 
Dr 	

r 	ar Dr = 0 Dt 

At the origin both r=0 and la =0 so, using L'Hopital's rule, the above 
Dr 

equation reduces to, as M2(0) / 0, 

	

2 	h  2M2 
	2  
a P  = f 	Dt 	+ (pV)h 

	

3r 	_0 
(2.11) 

which, on assuming constant properties across the film, gives 

D 

ar
2 

 

2 
 

2Y 	- 12 - 	(pv)
h
=0 (2.12) 

2.3.5 	The Validity of Using the Reynolds Equation. 

In the initial stages of the impact, rs<<hc, which reduces the validity 

of using the Reynolds Equation (2.6), as assumption (3) of DOWSON (in 

section 2.3.1) requires r s  »h c. 

However, in the initial stages of impact and at the velocities used 

here, there is negligible load in the first few milliseconds of impact 
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and consequently the ball is basically under free fall until such a time 

that r 
s  >>h c

, when the pressure becomes significant and the conditions for 

the Reynolds Equation hold. 

2.4 	Ball Shape. 

For a rigid ball of radius R having a minimum clearance he  above a 

plane, the clearance normal to the surface at any other point within the 

ball radius is given by 

h(r) = he 
	R + R(1- 11-(11) 2) 
	

(2.13) 

For thin films, since the width of the contact region is small 

compared to the radius, ii«1. 	Also as h
3 

is the important term for 

pressure generation when considering the shape of the ball, this effect 

is the dominant term near the origin. 	The expression for the film 

thickness may be expanded to give (on neglecting terms in (--r )4  and 

higher) 

2 
h(r) = h + c 2R (2.14) 

The effect of making this approximation is twofold: one is to reduce 

the curvature of the film in the outer regions; 	and the other is to move 

the radial extremity of the film further out from the centre. 

In terms of the film force and pressure distribution obtained, these 

two effects tend to cancel each other out. 	Computer runs have been made 

to check this approximation and the results obtained are in section 3.9. 

The results obtained in this work are referred to as either "ball" 
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or "parabola" depending on whether the exact shape is used or the parabolic 

approximation has been made. 	Almost all results are for the parabolic 

approximation. 

2.5 	Equations-of State for the Fluids. 

This work does not touch upon the problem of time dependent state 

equations. 	This is for two reasons:- 

1) The computation using models of this form would be prohibitively 

expensive. 	The method used would be an extension of the 

temperature generation algorithm (see Appendix 3). 

2) At this time there are no satisfactory models that have been 

obtained from experimental work. 	Consequently to include such 

effects is necessarily arbitrary. 

2.5.1 	Density/Pressure. p=p(p) 

The relation used is that first given by DOWSON and WHITAKER (1965) 

that 
PJ) 

0 
p=p (1+, - 

-143
b
p j 

(2.15) 

where pa = 5.828 x 10
-10  Pa-1  , pb  = 16.84 x 10

-10 
 Pa-1 , p is the local 

pressure. 

2.5.2 	Viscosity/Pressure. n=n(p) 

In this work three models are considered: 

a) Exponential Model. 

This is the standard model used in elastohydrodynamic lubrication. 
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n=n
ap  
e 0 

(2.16) 

b) "Mark I" Model. 

As the simple exponential model is known to give problems in 

numerical solution, it was decided to use a model with a limited 

viscosity. 	This was obtained by imposing a cut-off on the curve: 

n =r1
0 
e
ap 
 , 

p<
pL 

(2.17) 

n ap  e L, 	P > P — L 

There is evidence for a limiting viscosity from both the work 

of ALLEN, ZARETSKY and TOWNSEND, 1970, and from PAUL, 1971. Note 

that if pL=0, the isoviscous case results. 

c) "Mark II" Model. 

The Mark I viscosity model was found to give rise to numerical 

problems when the peak pressure moved through the value pL. Slight 

instabilities occured. It was felt that a physical property such as 

viscosity would not have a sharp cut-off and so a Mark II model was 

developed. It is basically a hyperbola with asymptotes logen/no=ap 

logen/no=apc  

This model has the equation 

(2.18) 

log
e n

a) = X(ap+ap
L
) - 1/X

L2 
 (ap+ap

L
)
2 

- 2Xap.ap
L o  

where X = 0.5 (1+c). 

Note that c and p are both free parameters. 	The value 
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Figure 2.3. 	Viscosity-Pressure Graphs 
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Figure 2.4. 	Viscosity-Pressure Graphs 
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of c was chosen to be a x 2x10
4 which gave a closely fitting curve. 

The value of apLwas chosen to be 25, so that the base viscosity could 

change by at most 10 orders of magnitude. 	This is greater than has 

been observed experimentally in dynamic contacts. 	It must be emphasied 

that the general program developed here is capable of accepting any time-

independent piezoviscous function as long as it is:- 

1) well-defined; 

2) has a well-defined first derivative with respect to p; and 

3) an approximation to the second pressure derivative is given. 

This may sound quite restrictive, but a consideration of the most 

probable physical systems will show that it is not so. 

A viscosity-pressure function should be continuous and smooth, hence 

it will have a first derivative. 	The requirement on the second derivative 

is not so important, and may be obtained by a coarse difference method. 

However having an exact second derivative is likely to speed the solution 

process. 

Figures 2.3, 2.4 and 2.5 show various distributions for differing 

values of a and app. 	The values for a are the two used in the numerical 

calculation for the elastic case. 

2.6 Elasticity of the Bounding Solids. 

In this work the vertical distortion, w and horizontal distortion 

u are given by: 

w = L
1
p , 	u = L

2
p 
	

(2.19) 
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where the L are linear operators acting on the distributed pressure and 

are calculated from the Boussinesq formulae (TIMONSHENKO and GOODIER, 1970). 

They imply an assumption that-  the ball may be approximated by 

an infinite half space. 	It is reasonable to make this approximation for 

balls whose radii are large compared to the distortions. Further both 

the ball and plane are assumed to be homogenous and isotropic. 

The Winkler foundation, one in which the distortion at a point is 

proportional only to the pressure applied at that point, was not considered. 

This model is often used when very soft materials are modelled. (NORMAN, 

1971; CONWAY, 1973; NAKANO and HORI, 1975). 

The effect of horizontal distortion.was found to be small. When included 

in the calculation in one computer run, it gave no discernable difference 

in the results, the peak pressure being altered by at most 0.1%. 

The effect was included by assuming that the film shape is given by 

(r-u(r))2 

c 
h(r) = h + 

2R + w(r) 	(2.20) 

Note that there is a small error in this due to the fact that u(r) is the 

distortion of a point originally at r when the pressure field was applied, 

whereas the accurate solution requires the deflection obtained for a point 

that moves to r after the pressure has been applied, that is, ideally 

2 
h(r) = h

e + 2R 	w(r) 

where r = s + u(s). 

(2.21) 

The Boussinesq formulae state that for a point load W acting on the 

surface of a semi-infinite plane with elastic coefficients v,E, then at 
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a distance r away, the vertical deformation w and the horizontal deformation 

u are given by 

	

(1-v
2
) W 	(1+v)(1-2v) W 

w = 	 u -
T 	

(2.22) 
7E 	r 	 27E 

If the ball has elastic constants v
1
, E

1
, and the plane has constants 

v
2' 
 E2, and if 	and E* are defined by 

2 
1 	

1-v1 
2 	1-v

2 
7E' 7E

2 
7E

1  
(2.23) 

1 	(1-2v )(1+v ) 

 

(2.24) 
7E* 	7E

I 

 

then 

	

1 W 
	

1 

	

w = E -r- 	u=  - 27E* 	r 	(2.25) 

Note that E' is defined so that it is the sum of the effective elastic 

constants, whereas CHENG and LEE have defined E' to be the average effective 

elastic constant, and consequently it has a value twice that of this work. 

E* includes only the elasticity of the ball and not of the plane. 

This is because the horizontal deformation is used in order to calculate 

the film thickness using equation 2.20. 	Any horizontal deformation of 

the flat plane will have no effect in this respect. 

2.7 	On the Note of GOULD, 1971. 

It is appropriate to discuss the note by GOULD. He was concerned to 

show that the effect of temperature on the viscosity cannot be ignored 

if the pressure generated is such that it significantly alters the 

viscosity. 	He considered an isoviscous incompressible oil being squeezed 
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by a parabola and solved the isothermal Reynolds Equation using the 

boundary conditions p(co )=0 for a ball dropping at a constant velocity. 

Then, using the radial energy equation for incompressible fluids, he found 

the maximum temperature increase, assuming adiabatic conditions hold. He 

then concluded that 

"In squeeze films in which the variation of viscosity with 

temperature is important, the variation of viscosity with 

pressure will also be important." 

It was felt that for the system discussed in this thesis, in regions where 

the elastic effects would become important, it was a serious error to 

assume that the velocity of approach to be constant. Instead it should 

be considered to be exponentially decaying, i.e. 

he = h
0 
e
Xt ' 

X < 0 
	

(2.26) 

vc = Xhc =Xh0e
Xt 	

(2.27) 

(See section 3.7 for the solution of the isoviscous incompressible rigid 

system). 

The equations of GOULD were reworked using these equations for film 

thickness and ball velocity, giving 

3n
0
Xh
c
R 

P 
r2 2 

(h 
c 2R 

(2.28) 

3n
0
XR 

Pc h
c 

(2.29) 

The adiabatic energy equation in which conductivity is ignored may 
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be written at the bounding surface z=0 (where ur=uz=0) and if Tw  is 

the temperature at the wall (with initial value T0) then 

DTw 	
no 

at 	pc 

r
2
X
2
h 
2 

-c  

2 
(h 

c 2R 

(2.30) 

This may be integrated with respect to time to obtain 

t n r
2
X
2
h
2 

T
w
-T

0
= f 9 pc0 

 
 dt 

0 	(h 
c 2R 

h
e n

0  r
2
X
2
h* 
	c 	1 - 1 g 	dh* j 	pc 

r
2 
4 Xh* 	c 

h 	(h*
c 2R

4 	) 	c 
0  

f
h
c 
n0  r

2
Ah* 

pc 	
2 dh* 

(h*Z)4  
h0 	c 2R 

as h
c
=h

0
eXt  

2 

— — 
3 r1 0 	(3hC  
2 pc  2 3  

(h*+ 	
h0 c 2R 

-The radial maximum of this function occurs where 

12R
2
h
c
2
-8Rhr

2
-r

4 
12R

2
h0
2 

- 8Rh
0  r
2
-r
4 

(2Rh+ r
2

)
4 

(2Rh
0 
 + r

2
)
4 

(2.31) 

- 0 

(2.32) 

At this point 

n R
2
A 

2
( 6Rh

c 	
+r
2 

6Rh +r
2 

0 	 0  
T
w 	pc 
-T

0 
 = - 6 

2 3 ) 
(2Rh+r

2
)
3 

(2Rh +r ) 
0 

3n
0
Ah
c
4R3 

P 
(2Rh+r

2
)
2 

c 

 

(2.33) 

(2.34) 
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If it is assumed that the liquid has a viscosity-temperature pressure 

relation of the form 

1=10e 
 ap-(ST- 	

(2.35) 

then, at any point the local viscosity will decrease or increase compared 
6(T-T

0 < 0 
ton as the ratio 

0 	ap 

ratio given previously. 

In this case 

w-T ) 	r
2
(2Rh

c 	
+r
2
)
2 

-6Rh 
c 
 +r
2 

6Rh 0 	 0+r
2 

 - D 	 1 ap 	2Rh 	
(2Rh

c
+r)

3 	
(2Rh

0 
 +r
2
)
3 (2.36) 

8 
This is significantly different from 70 - GOULD's result. 

Writing 2Rh0  = A, he  = Ch0,r2  = RA 

The maximum wall temperature TW occurs where 

302-4Ck-k2 3-4k-K
2 

(C+k)
4 

(l+k)
4 

(2.37) 

= 0 	 (2.38) 

and 

(S(T*-T ) 
w 0 k(C+k)

2 
3C+k 	3+k - D 	- 

	
} = D.F(C,k), say ap (C+k)

3 
(1+K)

3 

For any value of C, k may be calculated,hence the ratio, e.g. 

C 
	

F(C,k) 

0.99 
	

0.33166 	0.011278 

0.9 
	

0.31586 	0.11545 
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C k F(C,k) 	(cont,...) 

0.8 0.29664 0.23740 

0.6 0.25126 0.50547 

0.4 0.19313 0.81463 

0.2 0.11385 1.16845 

0.1 0.06176 1.33988 

0.01 0.006453 1.42927 

0.001 0.0006457 1.43049 

0.0001 0.00006458 1.43050 

As there. is conduction from the fluid into the bounding solids, 

these temperatures give maximum values. Under appropriate conditions the 

temeperature rise is not significant during the phase where the elastic 

distortion is important. 	As C decreases, the ratio F(C,k) increases 

rapidly initially then increases only slowly. 	However, the trajectory 

is exponentially decaying and so the time taken for C to decrease by a 

fixed amount is increasing exponentially. 	Hence, time is available for 

conduction effects to be a significant factor in dissipating the energy 

from within the contact zone. 

Allowing for conduction would tend to suggest that the effect of 

temperature rise is small initially, becoming relatively larger, but in 

the region of very thin films the effect of temperature decreases again. 

When the effect of exponential viscosity is taken into account, 

this must be further amended, for the temperature rise is very small at 

the centre. 	The load concentrates towards the centre, thus as the 

pressure drops in the outer region (see frontispiece) the effect of the 

temperature rise will merely accelerate this concentration. 

HIRST and LEWIS, 1973, come to the conclusion that the temperature 
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rise is negligible by considering the Peclet number under the conditions 

that should hold for this system. 
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CHAPTER THREE 

THE SOLUTION FOR A PARABOLA SQUEEZING AN INCOMPRESSIBLE  

EXPONENTIAL PIEZOSCOUS FLUID. 

3.1 	The Mathematical Model. 

In this chapter a solution will be presented for the case of a 

rigid parabola squeezing through an incompressible exponential fluid film. 

These conditions imply that the following equations need to be solved 

simultaneously: 

1) Dynamic 

2) Reynolds 

3) Shape 

r 

f g  
mn
c-- 	

2 irprdr-mg 

0 

-3  -1   
r r ar 	at ID  

(rY :/) = 12 -1- ( h) 

2 
h=h + —

r 
c 2R 

4) Equations of State 

P= PO 

n=n
0
eap  

5) Elasticity 

(3.1) 

(3.2) 

(3.3) 

w=0 	 (3.5) 

Substituting (3.4.1) and (3.5) into (3.2), a reduced Reynolds Equation 

results: 

1 	d 	h
3 

dp ) = 12 V - — i — — 
r dr 

r 
 n dr - 

	
c 

(3.6) 
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This may be integrated with respect to r to obtain 

h3 

 dr 
	2 

r — —= 6r v
c n dr 

Using the boundary condition c(43.. = 0 at r=0, gives C=0, hence 
3 
h dp _ 

— - ory 
n dr 

Now, as h
3 

0, dividing by h
3
, integration w.r.t. r may again be performed 

and using p(rs)= 0 as the second boundary condition 

f

c  p 	= Sv frr dr  

0 	 r
s 
h3 (3.7) 

The body is rigid and the viscosity is a function only of pressure. 

Thus the left hand side of the equation is a function of pressure and 

depends only on the viscosity model chosen; 	the right hand side is a 

function of the geometry and depends only on the impactor shape. Consequently 

they may be considered separately. 

If equality cannot be achieved, then the model breaks down. This is 

discussed further in section 3.5.3. 

If the left hand side of equation 3.7 is first considered, then, 

using equation 3.4.2 

113  dp _ 1-e-aP  
n a 0 0 

(3.8) 

This expression has maximum value Ti a 0 

For the right hand side, as equation 3.3 holds, then 

Rdh = rdr 	 (3.9) 

1 
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SO 

_ dh 	

121 
6v
c 

f
rrd  
— 6v

c
R — 3v R 1 

r
s 
h 
3 

h h 
	h

s 
h 

3 

s 

Hence, combining (3.8) and (3.10) 

1 	1 	1 p= 
a 
 log 

 e 
 (1-3n

0 
 av c 
	2 
R(-- - 	) 
h
s 

(3.10) 

(3.11) 

In order to map the trajectory, equation (3.1) for the ball dynamics 

needs to be incorporated. 	Now 

r
s 

27r 	p(r)rdr = 211.R1 

0 

h 
 
p(h)dh 

h
c 

s  ZwR 
a 

log
e
(1-3n

0 
 aV 	

2 	2 
- 	) dh (3.12) 

h 	
h
s 

h 
c 

c 

By writing 

rEi
2
=3n

0
aV

c
R, y

2
.1413

2
/h
2
, 6.s / y 

after manipulation this integration yields 

27r J 	
u 	 n -6 

sp(r)rdr = ZaR { h
e 

log
e
(y
2 
 -13
2 
 /h2)+d log

e( hs.
4. 	
8 	h

hc+8) 

1 
c
-6 

.7R 
- 
2
7t  {2h log [ 	+ (h

c
+8) log

e
(h
c
+6) 

c 	e h 
Cl  

h -8 
+ (h-6) log

e
(h-6) s 	 1 

e 1-1
s
+6 

Now pc  may be written in the form 

(3.13).  

0 

Pc 
1 

= - — 
a 

{2loge 
 h 

) +log
e
(h
c
+(5)+log(h

c
-8) } 

c 
(3.14) 
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so pc -*00 as h
c
440, thus S gives the minimum height at which flow can 

occur in this system for a given velocity. 	S is a function of vc  only, 

for a given run has no,a, h
s 
fixed. 

It can be seen that the corresponding term in the film force (3.13), 

is (h
c
-Clog

e
(h

c-8) which remains finite as h÷d. This has effects that 

will be discussed later in section 3.5.3. 

3.2 	Integration with Time. 

The instantaneous force defined in (3.13) may be substituted into 

(3.1) to obtain an equation of the form 

h =f(h ,h ) 
c c c 

(3.15) 

subject to initial conditions hc 	c  (0)=Vs, h(0)=hs  

This formulation is recognizable as an initial value problem. 

Even for this simplified physical system, there is no known analytical 

solution with time, so numerical approximation must be used. 	There are 

many methods available, but for this type of system the equation (3.15) 

is first written as two simultaneous first order differential equations 

=f(v ,h ) 
c c 

h =v 
c c 

where 
rs  

f(v c  ,h  c 	m 
) =

21 
f p(r)rdr-g 

0 
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f(v ,h ) is wholly defined by (v ,h ) and for a given run all other 
c c 	 c c 

parameters remain fixed, hence there are no elastic effects to give rise 

to higher time derivatives. 	This problem is independent of time, except 

indirectly in that time derivatives of various functions are needed, so 

that altering the time base by a constant, T, will have no effect on the 

solution except a time axis displacememt. 

The method used initially to integrate these equations was Runge- 

Kutta-Merson. 	This gives an approximation to the local truncation error 

committed per time step taken. 	It may be summarised as follows. For a 

step of length At in the independent variable from to  to tn+1, if 

y =f(t,y) and if 

k1=At.f(tn
,y

n
) 

k
2
=At.f(t

n
+At/3, yn+k1/3) 

k3=At.f(t
n
+At/3,yn+k1/6+k2/6) 

k
4
=At.f(t

n
+At/2,y

n
+k

1
/8+3k

3/8) 

k
5
=At.f(t

n
+At, y

n
+k

1
/2-3k

3/2+2k4) 

are calculated, then 	 (3.17) 

1 
Yn+1 =yn 6 + -(k1  +4k4  +k5  ) 

with local error estimate 

1 r 
El -3-0L2k1-9k3+8k4-k5] 

(and E is exact if f(t,y)=At+By+C) 

This formula is obtained by expanding the Taylor series at several 

4 
points and then eliminating the higher derivates up to order At . Thus 
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it has an error of 0(At
5
). 	It is generally regarded as advantageous to 

have a method that has a high order of convergence. This may not always 

be so for the region of convergence may be smaller and only small steps 

may be made. The great advantage of using Runge-Kutta methods is that 

they are self starting, but there is a price to be paid, as five derivative 

evaluations are needed for each step, no matter how well-behaved the function 

is. 

3.3 	Eigenvalues of the Problem and Stability of the Integration Method. 

3.3.1 	Motivation for Investigating this Effect. 

It was found by experience that the problem was unstable when using 

fixed length time step integration methods. This instability occured 

when the ball was at a stage where the net force on it was small, and 

was steadily decaying approximately exponentially, towards zero net force. 

Prior to instability, the ball velocity and minimum film thickness, as 

first and second integrals were similarly well behaved, and the central 

pressure was increasing approximately exponentially with time. 	All 

factors of the analysis appeared well-behaved, then suddenly the value 

of the net force started to oscillate, gradually increasing in amplitude 

until the numerical integration required a solution in which h < 6 and"the 

calculation would stop. 

If the time step was reduced, the same trajectory was followed (to 

within truncation error), but at the time where the previous run had 

given oscillatory results, this run gave smoothly monotonic curves. 

However, this gave only temporary respite, for it just delayed the onset 

of the instability until a later time. 

Figure 3.1 shows an illustration of these effects. (For an explanation 
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of the graph coordinates see section 3.5.2). 

There appear to be four curves drawn, but with slight branches at 

21 ms and 27 ms. In fact there are three sets of four curves drawn, 

but most of the corresponding curves of each set are superimposed on each 

other. 

The first set of curves were computed using a fixed time step of 

10
-4 

second. At 21x10-3sthere is a branch from the main solution curve. 

This is where the instability occured far this time step. 

The second set of curves use a time step of 10
-5 

second. This 

attains a time of 26.7x10
-3 

second before the fatal oscillations occur. 

The third set of curves use a time step of 10
-6 

second. This solution 

does not exhibit the time step instability but gives hc<6 on the solution 

curve and thus the problem cannot be integrated past this point, using the 

Runge-Kutta-Merson algorithm. 

All curves were plotted at points a uniform 10
-4 

seconds apart. 

It may be seen, by inspection, that the sets of curves lie on one another, 

and so up to the time of instability the results are accurate to within 

truncation error for each value of time step. 

This computational instability has been noted for incompressible 

isoviscous squeeze films by NORMAN, 1971. 	He states that "whatever 

finite difference method is used to calculate x and X (here h
c 

and h
c
), 

the trajectory finally goes unstable producing a spurious solution." 

This statement should be modified, but before this may be done, the 

eigenvalues of the system need to be considered. 
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3.3.2 	The Solution of a first order ODE system with known eigenvalues. 

In order to analyse this problem, consider initially the simplest 

non-trivial first order differential equation y=Xy+c, with initial oondition 

y(0)=y0 	 (3.18.1) 

This has the solution 

At c At 
"1/0e + T(e -1)  (3.18.2) 

for whatever value A locally takes. 	If X=A(t) then by considering a 

small enough time interval At (One over which Aft) is sensibly constant) 

y(t+At)=y(t)eA(t)614- 	(ea(t)411 1) 

Aft) is known as the eigenvalue of the equation. 

Now this may be extended to a second order system (such as is 

needed here) 

=f(v ,h ) c c c 

h =. 
c c 

This may be linearised into the form 

  

a;/ 	av 
c 	c 

av ah 
c 	c 

31-1 	3h 
c 	c 

9v 9h 
c 	c 

     

       

c 

h
c 

  

v
c 

h
c 

 

C 
 

Ch 

(3.19) 

       

       

        

which may be written in matrix notation 

x = J.x + c 
	

(3.20) 
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This matrix J may diagonalised by a transformation T so that if y=Tx 

and TJT 1  is a diagonal matrix 

9=TJT
-1y + T C .=. 	- (3.21) 

In this case the elements of y are independent of each other and thus 

they each have a solution of the type given in (3.18), hence there are 

two eigenvalues Xi, X2. 	As
-1 

is non-diagonal and it is known (MINC 

and MARCUS, 1964), that under diagonalisation the eigenvalues are invariant, 

the solution contains a linear sum of both eigenvalue terms. 

3.3.3 The Calculation of the Eigenvalues. 

In order to find an explanation of the oscillatory behaviour, the 

linearised matrix J was found and hence the eigenvalues of the system 

at any time were easy to calculate. 	Rather than differentiate (3.13) 

directly, it was decided to differentiate (3.12) and it was found that 

J= 
27R 1 	h+6 

.[h(y2-1)+ 	log --- ]h
s 

ma 2. 	2 	h-6 h v
c 

1 

Hence the eigenvalues can be calculated for each point in time, and so 

as the problem is integrated in time, the values of IXAitl were printed 

out. 	As there as two first order differential equations, there will 

be two eigenvalues. 	It was found that during the initial pressure rise 

the eigenvalues were a complex pair and were of a small enough magnitude 

such that the time steps normally taken were short enough to give 

IXAt1=0(10
-2

). 	But, referring to Figure 3.1 , just after the initial 

pressure peak, these changed into a real pair, both of negative sign, 

implying decaying terms. 	One was of fairly small magnitude and was 

basically the solution, however, the other was negative and increased 

27R --Ce  
ma p (3.22) 
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in magnitude as the solution proceeded. This second eigenvalue represented 

a transient part of the solution. 

It was found that, when maxIAAt1=3.0, the oscillation began, resulting 

in spurious solutions. 

3.4 	Stiff Stability. 

As was mentioned above, the oscillations began when maxlMt143.0. 

Halving the time step just before this point gave only temporary respite, 

since this transient eigenvalue is continuously increasing in magnitude, 

and so after a short time maxIAAtl>3.0 again. 

In order to surmount this difficulty, another approach was needed. 

But first the type of problem will be defined. This configuration is 

called a stiff system (see GEAR, 1971). It occurs when there are large 

differences in the various rate processes of the system, the large 

negative eigenvalue(s) being transient compared to the main trend of 

the system. 

An operational requirement of the Runge-Kutta methods (and most 

predictor-corrector methods in common use) is that maxIXAtl<2.7, in 

order that they approximate e
Xt 

accurately. 	If this condition is not 

satisfied, these methods produce a solution of the form A(x)m, where 

x<-1 giving the oscillatory results found earlier. 

There is a class of integration methods that are stiffly stable. 

(See, for example, GEAR, 1971). 	Methods of this type have solutions 

which are (using Figure 3.2): 

1) absolutely stable in some region RI  (Re (XAt)<D, for some D<O) 



4Im(AAt ) 

Rt 

A bsolu tely 
stable 

XAt Plane 

Re(ltAt) 

Accurate 
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Fig. 115 Stiff stability. (GEAR) 

Figure 3.2. 	Regions of Stability 

Ft t) 

h A h 13 

Fig. 11.2 Euler's method for stiff problems. 

Figure 3.3. 	Stiff Forward Integration 

t 

(GEAR) 

F(t) 

to 	t, 	12 	13 

Fig. 113 The backward Euler method for stiff problems. (GEAR) 

Figure 3.4. 	Stiff Backward Integration 
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of the XAt plane (i.e. the solution is of the form A(x)m, where 

Ixl<1, so it decays to zero). 

2) .Accurate in the region of R2(D<Re(XAt)<adIm(AAt)I<B) of theXAt 

plane. 

Thus if XAtER1 
(i.e. the 	XAt is in the region R1) the solution has 

a rapidly decaying transient and some accuracy may be lost by neglecting 

the transient in order to obtain a solution at all. 	At should be chosen 

so that the non-transient part of the solution is integrated with XAttR2  

(if.there is more than one eigenvalue, a time step should be chosen to 

be compatible with the general trend of the solution). 

A stiff system may be constructed by considering 

	

y'=X(y-F(t)) + F'(t) 	 (3.23) 

where y0  =F(t0), X<<O, and F(t) is a sm000th, slowly varying function. 

This has the solution 

	

y=(yo-F(y)eXt+F(t) 	 (3.24) 

Suppose y0-F(t0)i0, due to numerical error (e.g. roundoff), then, 

soon Xt is sufficiently negative for the first component to be insignificant 

compared to the second, but it is known (GEAR) that the local truncation 

error is determined by Xt and a derivative of F(t) by the time Xt<<O, 

whereas stability is dependent on XAt. 

Consider the effect of integration using Euler's formula: 
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yn+1
yn+At.F'(tn

,y
n
) 
	

(3.25) 

in the stiff region, then if y0XF(0), an oscillating solution of the 

form depicted in Figure 3.3 is obtained. 

The solution starts at (t0  ,y0 
 ). At this point the derivative is 

calculated and, as y0 F(t0) and A:«0, y 1(t0,y0) is quite large. This 

is used to integrate to the point (t1,y1) and this value has a greater 

error than at (t0,y0)'. This error increases in magnitude as each new 

step is taken. 

If the same function is integrated usingthe Backward Euler Formula: 

y
n+1 51nn+1,yn+1) 
	(3.26) 

then a stable solution of the form shown in Figure 3.4 results. 

Although this backward difference method is able to solve the stiff 

system, it gives an implicit equation for yr.14.1  to be solved. This is 

true for all stiffly stable methods. 

Library subroutine packages which control the integration were used 

in this work. 'These were subroutines DO2AEF, GEAR and EPISODE. 	NAG 

own the proprietry rights of DO2AEF; and the latter two were obtained 

from the Argonne Code Center, Illinois, U.S.A. 	Further information 

may be found in NAG, 1971, HINDMARSH, 1974, BYRNE and HINDMARSH, 1975. 

The packages required as input an estimate of the maximum truncation 

error that may be committed over any step. 	They then adjust the step 

length and order of integration to minimize the number of derivative 

evaluations. 	They also need a subroutine to give the derivative values 
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for an arbitrary (vc..hc) pair, corresponding to equation 3.1. 

3.5 	Observations on the Solution. 

3.5.1 Roundoff and Truncation Errors - Their Effect on the Solution. 

For this semi-analytical case, the eigenvalues of the system may 

be calculated, and the time step reduced just before the onset of the 

instability induced by the integration method, 	With a more generalised 

system, this process is not trivial, for the linearisation cannot be 

so easily performed, and hence the eigenvalues calculated. 

The system is well-conditioned in the sense that small errors decay 

if a small enough time step is taken. 	Suppose that at any time an 

underestimate of the load is made: 	this means that the ball will tend 

to accelerate slightly more than it should over the next time step, and 

at the end of that step the ball will have dropped further and be moving 

faster thlan the real solution predicts. 	This gives rise to a greater 

load being predicted there than ought to be the case, for both a higher 

approach velocity and a thinner film predict higher pressure being 

generated. 	The behaviour is similar to that shown diagrammatically 

in Figure 3.3. This is the physical origin of the stiffness in the 

system. It becomes more stiff with time, for as the fiim thickness is 

decreased, the load becomes more and more sensitive to changes in the 

film thickness, i.e. 

dhc 

and p
c 	

is an increasing function with time in the final stages of 

impact. 

c 	2nR 
ap 

ma c 

It is to be concluded that as long as the time step is sufficiently 



pc Eh  
c 

- 48 - 

small, the effect of either roundoff or truncation on the trajectorV 

followed is not too serious as the well-conditioning will keep the 

numerical solution near to the actual solution. 

Against this however, there is the problem of relative error. 

The problem consists of solving equation 3.1 

r
r
s 

Ire = I 	2.7r14  p(r)dr - .W C 
0 

In the second stage of solution the net force on the body is small 

and decaying approximately exponentially. 	It is here that the problem 

of relative error arises. 	If mM =0.01 W, then the film force is 1.01 W . 

Thus for a 1% accuracy in the net force, the film force needs to be 

accurate to 0.01%. 	This process continues indefinitely as the net 

force decreases requiring that the film force be ever more accurately 

determined, in order to give a preset relative error. 

However, there is a limit to the ability of the computer to calculate 

the film force. Even if the film force may be calculated exactly for a 

given (v 
c 
 ,h 
c) pair at any instant of time (i.e. with no roundoff errors) 

there is an error in the (v C  ,h C) pair itself. 	This is because the 

values of v
c 

and h
e are known only to afinite number of significant digits 

- about 14 on the CDC machine. 

From equation 3.22 it may be deduced that if E 	is the error in 

c due to roundoff errors cv 
and c

h 
in v C  , h respectively, then c 	c 	C 

	

2irR 1 	r 2 2 	h 8,
h
s • - 	Lh (y -1)+ 	log 	E 	2TrIR vc 	ma 2 	e y v

c 	 h v
c ma 

c 
 

For any particular values this may be calculated. As the impact continues 
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and the system becomes stiffer this error increases in absolute as well 

as relative magnitude. 

There is a further error obtained by not being able to calculate 

the load exactly even if an exact (vc'hc)  pair could be found. 

When these effects become important, it is perhaps appropriate to 

change the problem to be solved, and consider the system 
frs 

 27rrp(r)dr=W 

0 

i.e. model the case of a ball dropping under .constant load. 	This 

case is discussed in section 3.5.7. 

3.5.2 	The Graphical Behaviour of the Solution. 

Figure 3.5 is a representative graph of this type of problem and has 

four curves plotted against time:- 

1) Centre Pressure(p c) 

As the pressure at the centre ranges over many orders of magnitude 

it was decided to plot logiop c  against time (using the solid line), 

rather than the pressure itself. 	Since 103Pa is a very low pressure 

all pressures less than this are not shown and this value is used 

as origin. 	As an aid to comprehension the positions of 10n  psi, 

n=0,1,2,3,4,5 are marked by small numbers written on the right side 

of the pressure axis. 

2) Parabola Velocity (-vc/R) 

The absolute value of the velocity is shown with the short dashed 

line and is measured non-dimensionalised with respect to the semi- 
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latus rectum (i.e. the local radius of curvature at r=0). Since 

R=0.01m, this scale is cm/sec. 

3) Minimum Film Thickness (h
c
/R) 

This value is also given non-dimensionalised with respect to the 

semilatus rectum and thus similarly is measured in cm. 

•• 

4) Net Force (thc/W ) 

This gives the resultant force on the parabola but non-dimensionalised 

with respect to its weight. Initially the fluid force is zero and 

consequently the scale starts at -1. 

At the end of the contact the fluid force will just balance the 

gravitational force and so the net force tends to zero. This graph 

may be adapted to give a, measure of the fluid force by adding one to 

all values, since 

r 
 

mh
c 

= 	2Trp(r)dr-W 
0 

mhc 	
rs 
+  1 = I 2urp(r)dr 

mg '0 	W 

This particular computer run, which has initial conditions vs=0, 

h
s= 0.0005m, gives a solution that has characteristics that are common 

to all runs for this type of system. 	The results may be divided into 

two stages. The first stage lasts for about 15ms and is the initial 

build up of pressure and force due to the gravitational field. At about 

10 ms there is a pressure peak with an associated force peak. 	These 

"velocity-induced" pressure peaks reduce the velocity of the parabola 
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to a very low value. It can be seen that the force is already reducing 

from its peak value when the pressure reaches its peak. 

For the first 5ms the fluid force is negligible. This is confirmed 

by noting that the velocity increases in a virtually linear way during 

this time and that the film thickness curve is parabolic. 	The central 

pressure takes about 6ms to reach a value of 1psi. 	The ball has travelled 

about half of its total movement during this first interval. 

The net force rises to a peak value of about 5mg, where mg is the 

weight of the parabola, and is due to a film force of about 6mg, with 

a peak pressure of 2.3X106Pa at a time 11ms into the contact. 

Subsequent to the pressure peak, the force and pressure values drop 

due to the large amount of momentum suddenly removed. 	The net force 

drops close to zero, and thereafter it decays slowly and approximately 

exponentially. 	However the pressure starts to rise again, and the 

parabola enters the second stage of the impact process. 

This second stage has the net force, vc  and he  all tending to zero. 

The pressure, however, starts rising as a power law in time(since log10 

(pressure) is linear with time), and is due to he  becoming extremely 

small and the highly non-linear film shape rather than the earlier peak 

associated with v
c
. 	At 27ms, the net force remains small but the pressure 

continues to increase and goes towards infinity. 

It is possible for an "infinite" pressure to occur without an "infinite" 

force. 	This is due to the particular model of viscosity chosen, and will 

always occur with this exponential piezoviscous system at some point in 

time, either in the first stage (before the velocity pressure peak) or 



IP  dp _ 1-e-ap 

n 	noa 	— noa 0 

(3.27) 
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during the final stage of "settlement". 

The first stage covers the impulse that virtually reduces the 

momentum of the ball to zero, and the second stage is the final part 

where the flim force is almost constant. 

3.5.3 	The "Infinite" Pressure, Why it can occur. 

Equation 3.7 is rewritten below 

i
P dP  = 6v r rdr 

n 	c 
h3  0 	r

s 

In its derivation it was noted that each side is independent of the 

other in that the left hand side is a function of pressure only and the 

right hand side is a function the geometry only. 	For any (vc,hc) pair 

the right hand side may be calculated. 	This integral will be a well- 

defined function of r. 

Consider the left hand 'side, with the viscosity pressure function 

n=n0 e
ap 

then 

Given the limitation (3.27), there is a restriction on the solution 

	

space for the pressure 	to be finite, using (3.10) 

 
> 3v 	

1 	1 
R ---- n 0 c 

 h
2 

h
2 

	

s 	c 
 

or 

1-3floavcR[ 12 	
1 

h
s 	

h
c
2 ) 

> 0 	(3.28) 
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This condition is obvious by considering (3.11). 

It was noted in section 3.1. that Pmax4°°  as hc÷6 and that the film 

force remains finite. 	This, together with the conditions which will 

be discussed in the next section (3.5.4), allows the solution to have 

an "infinite" pressure, yet the net force remains nearly constant. 

There is a breakdown in the model if this situation occurs. A 

physical explanation for this behaviour may be found by considering the 

process which is actually occurring. The ball is dissipating its energy 

(both kinetic and potential) into the oil film. 	If a (v c  ,h c)pair is 

obtained by the integration method which does not satisfy condition 

(3.28) then it implies that the energy cannot be dissipated by viscous 

action alone. 	From the experience of PAUL, 1971, it appears that the 

ball would bounce unless viscous dampers are also used, reducing the 

velocity of approach. 

This infinity occurs due to the particular viscosity pressure model 

chosen. 	If, for example, the Mark I viscosity-pressure model was used:- 

Ip dp _ 1-e-aP  

Oa  0 
(3.29) 

1-e-apL p . PL  

Oa 	h
0
eap L 

This has no upper bound, and so no restriction exists on solution space. 

this statement, though theoretically true, must be qualified as only 

finite length arithmetic may be performed. 	This is discussed further 

in the next section. 

P<PIL 

As a general rule, if 



a 
1 -e 

-ap 
q  . (3.30) 
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r w  

)0 

1 . L < co, for some L 

then a singular value of pressure can exist, as there are regions that 

cannot be reached with a finite pressure. 

3.5.4 	The "q-model" and Precision Limitations. 

Other workers, CHRISTENSEN; CHENG and LEE; RANGER, 1974, in the field of 

elastio-hydrodynamic lubrication have used the q-model for solving 

Reynolds Equation. 	The basis of this that if n=n
0  e
ap

, on writing 	r 

then 

1dq ' 	1 dp  
n
0 
 dr 	n dr 

(3.31) 

In this way the explicit pressure dependent viscosity term in the 

Reynolds Equation is eliminated. 

However, the actual pressure distribution is found from 

p = - 
1

--c-c 
log

e
(1-aq) 
	

(3.32) 

Here arise problems that are not often discussed in the literature, 

though RANGER refers to it. 	First, the maximum value that q can attain 

. 	1 
a 

is — . 	This is a condition of the substitution made, not directly on 

the reduced Reynolds Equation, so solutions of that equation can exist 

1 
in which q> .

T 
. 	A second problem is one due to the fact that computation 

is done to a specified number of significant digits, e.g. about 14 places 

in CDC single precision (with which most of this work was undertaken) 

or approximately 15 places in IBM double precision. 

If either the "q-model" or equation (3.11) is used, then a formula 
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of the type 

1 
p= a — log 

e
(1-X) 

is obtained. 

The question arises as to what the maximum pressure that can be 

possibly calculated? 	The answer lies in the so-called unit round-off, 

which is the smallest positive number such that 1+u 	1 when using 

finite length arithmetic. 

Now 

thus 

u=7.11E-15 (CDC single precision) 

=2.52E-29 (CDC double precision) 

=2.22E-16 (IBM double precision) 

loge(7.11E-15) =-32.58 

loge(2.52E-29) =-65.85 

loge(2.22E-16) =-36.04 

p c 1 < /a.33 (CDC single) 

p c< 1/a.66 (COG double) 

p c< 1/a.36.5 (IBM) (3.33) 

These are the maximum attainable central pressures (pressures larger 

than this cannot be calculated without using multiword precision). The 

values of (v 
c  ,h c) also have small errors in them due to round-off and it 

was found empirically that the maximum pressure that could be calculated 

in CDC single precision was about 12/a, using the Runge-Kutta-Merson 

method. 

When the Mark I viscosity model was used, with the same integration 

method controlling it, it was found that pL  had to be less than 12/a. 

This is because up to that pressure the two models are identical, thus 

if one model breaks down so does the other, if pL>12/a. 
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Using the variable order, variable step method contained in the 

EPISODE package, the value of pL  could be increased to 20/a, compared 

with the theoretical limit of 32/a. 

Results obtained using this model will be presented and discussed 

in section 3.6.5. 

Using the "q-model" substitution, equation 3.29, may lead one to 

believe that the problem of the large spatial change of the viscosity 

have been eliminated. 	However, the problem has merely changed and 

the question of precision limitation now arises. 	It would be necessary 

to calculate the reduced pressures with far greater accuracy than at 

first appeared. 

The "q-model" was not used in this work. However, this semi-analytical 

model may be considered to be a degenerate case. 

This pressure limitation gives a further justification for using 

the Runge-Kutta-Merson method and shortening the time step, to eliminate 

the stiffness oscillations because there is a limit to the solution, and 

thus on the amount of time step shortening. 	With an appropriate Mark I 

viscosity liquid, the is no such limitation, consequently this method 

is unsuitable. 

3.5.5 	The Spatial Distribution of Pressure and its Change with Time. 

Considering the second stage of the solution, the load remains 

virtually constant, but the centre pressure is increasing. 	This can 

only mean that the pressure is decreasing elsewhere. 	From the frontis- 

piece, this can be seen to be so. 	It was generated for the same conditions 

as given in Figure 3.5. 	A frame shows the following information: 
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The parabola falling into the liquid is represented by the upper 

curve. The lower curve is the instantaneous pressure distribution at 

the clocktime (measured in ms.). 	The pressure varies over such a large 

range that there is a variable scale which is changed so as to give the 

maximum curve, except for the first few diagrams. 	The scale is shown 

by the symbols 1En, where n is an integer. The line represents a pressure 

of 10
n
Pa . 	Logarithms were not used in order not to distort the pressure 

distribution when showing the radical change of pressure with time. In 

the initial stage the solution is very similar to that for the isoviscous 

case, i.e. 

1 	1 (1 r2  ) 	r2 ci+c2 
P =3nOvc4-7f 

hc 	hcR 
(3.34) 

When the film becomes thin the effect of the viscosity-pressure 

characteristic becomes more important, eventually dominating the solution. 

Its effect is to concentrate the load carrying capacity at the centre. 
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3.5.6 	The Effect of Errors on the Solution. 

The solution of a non-linear equation normally requires an iterative 

method of solution and because such methods would be used for solving 

the fully varying (elastic) case, it was though appropriate to find the 

effect of errors on the integrated solution. 	Instead of integrating 

c 
=f(v 

 c 
 ,h 
c
) as given in (3.15), this was performed by integrating 

c
=(1.0+ERMEAN+ERR.RANF(X)) * 2v m 	p(r)rdr-g 	(3.35) 

where RANF(X) is a random number uniformly distributed on [-1,1] and 

• 
h =v as defined. c c 

It may be'sebn that.a non-zero value for ERMEAN applies a bias 

to the film force obtained and a value for ERR gives the magnitude of 

errors obtained. These are relative values because they are multiplied 

by the film force. 

With the substitution (3.35) and using constant time step integration 

with the Runge-Kutta-Merson method, it was found that with (ERMEAN=X, 

ERR=0.01) there was a relative error of about -4X in the peak pressure 

due to the relative error X in the film force. 	The error was found to 

be virtually independent of the step length taken (though in the cases 

considered these were small compared to the maximum possible for stability). 

This error tended to increase with time as the stiff phase was reached. 

The effect of (ERMEAN=0, ERR=X) error was much more dependent on 

the time step, but tended to decrease on shortening the time step. 	At 

the peak pressure, its error was about 0.15X and remained at this level 

until IXAti>2.0 when stiffness became a problem and then the errors greatly 

increased. 

r
s  
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By using combinations of these types of error it was found that the 

errors at any time were additive, in the sense that the errors obtained 

with (ERMEAN=X, ERR=Y) were virtually identical to those of (ERMEAN=X, 

ERR=O) added to those with (ERMEAN=O, ERR=Y). 	From the results is was 

concluded that if ERMEAWO then the results are not those required but 

is a solution to a different problem and as long as ERR is small and 

stiffness is not a problem then the errors globally are not too large. 

This procedure was run again using the GEAR package instead of the 

Runge-Kutta-Merson method. 	There are two points to be noted:- 

Firstly, GEAR allows integration using either stiff or non-stiff 

methods. 	The non-stiff methods (Adams-Moulton with functional iteration) 

are more appropriate for the initial increase in force, and stiff methods 

(Backward difference with the Jacobian calculated numerically) are better 

for the remainder of the impact. 	This policy was adopted. 

Secondly, the GEAR (and EPISODE) packages require a parameter EPS, 

used to control the maximum local truncation error over any step. The 

solution is integrated so that 

( 2 	1 

I (E./Y.)
2 )2 

< EPS 
i=1 	

1 

where E. is the local truncation error and 
1 

Y.1=max(X.1(t)) 	during the first part of the impact (non-stiff) 

Y.=X.(t) 	during the remainder (stiff) 

with 	X1(t)=vc(t), X2(t)=hc(t) 

With this method it was found that the value of EPS had a strong effect 

on the ability of the system to be integrated within a reasonable time. 

The effect of mean error was the same as that obtained with the Runge-

Kutta-Merson method, ie. the error accumulated in a non-trivial manner. 
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From results using a range of errors, it was found that if ERR>EPS with 

ERMEAN=0 the system integrated virtually exactly, but took a very long 

time to do so. 	It was only when ERR<EPS, that the system was able to 

be integrated with only a small increase of computational time over that 

with ERR=O. 	It should be remembered that the stiff methods need to use the 

Jacobian of the system (3.15) and although it is known analytically for 

this case (3.22), the object was to find the effect of errors to throw 

light on the behaviour of the general case, thus it was decided to calculate 

the Jacobian numerically, i.e. 

afi 	f(x
1
+Ax

1 	
x
2
) - f

i
(x

1
, x

2
) 

ax1 	Ax
1 

3f.
1 	

f.
1(x1  , x2 

 + Ax
2
) - f

i
(x

1'
x
2
) 

, i=1 , 2 

(3.36) 

3x
2 	Ax

2 

 

Finding the Jacobian requires three function evaluations, each one 

gives a random error due to machine roundoff. Since the Jacobian is found 

by subtracting  two similar numbers and dividing by a small number, this 

process magnified the errors, accounting for the relation 

ERR<EPS 	 (3.37) 

To obtain an acceptable solution, EPS muatbe fairly small, for 

example, 10
-6

, for in the second stage of impact the acceleration becomes 

small compared to the film force. This implies that 

ERR<10
-6 	

(3.38) 

This is quite a tight convergence criterion and prospective solution 

methods need to take account of this. 
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3.5.7 	Alternative Methods for Integration when hc-}0. 

In the second stage, hc  -+.0 and the ball is dropping under virtually 

constant load. 	One way to eliminate the problem of stiffness is to solve 

another system, 

r
s 

27 I p(r)rdr -mg=0 

0 

(3.39) 

PO 

This is obtained from equation 3.1 by neglecting mhc  relative to the 

other two terms, and is equivalent to considering that the ball becomes 

inertialess. 

To solve this system a step Ah in hc  was taken, the change Av in vc  

estimated by linear extrapolation, and a (vc,hc) pair obtained. This was 

used to find the load. 	If equation 3.39 was solved to within a convergence 

criterion, then the value of v
c was accepted. 	Otherwise v

c was corrected 

using a secant method (CONTE and DE BOOR,19721 and the cycle repeated. 

This gave a set of solutions of the form (vc, hc) and as it was 

found that locally vc  was nearly linear with hc, it was decided to assume 

v
c
=a*h

c
2
+ b*h

c+c and to calculate the time for the ball to drop from 

(vc,hc
)
2 
to  (vc,hc)3 by passing a parabola through (vc,hc)1, (vd,hc)2,  

and (v
c
,h
c 	

v 
c 
 =h 

c
. 

It was subsequently found that NORMAN, 1971, had used a similar method 

but he had stepped the solution in units of Av and estimated, then 

iterated for, the solution in h
c
. 

3.5.8 	On the Paper by CONWAY and LEE, 1975. 

After the inception of this project, the paper of CONWAY and LEE was 
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published. 	Their model is identical to the one used here and so it was 

repeated using the computer program developed for this work, but set with 

their initial conditions. 

Using single precision arithmetic, at the last time interval before 

the singularity was reached:- 

t=1.1830x10
-5
s (At=10

-8
s) 

h
c
/R=1.16258x10

-3 

pc =3.52624 x 10
8
Pa 

giving 

T=V t/h =0.41878 
s s 

11=h/hs
=0.58129 

T3=p/(3n v c 
 /h s

2
)=13.2 

compared to their 

compared to their 

compared to their 

T=0.4159268 

1
0  

-7 =0.5841 

p=34.2 

The whole program was repeated using double precision calculations; 

an effort was made to see how far the system could be integrated. With 

a minimum time step of 10
-15

s, it was possible to integrate to:- 

t=1.18362177x10
-5
s 	giving 	T=0.419001 

h
c
/P=1.16214x10

-3 	
giving 
	

T -
0
=0.58107 

Pc 
=1.24382x10

9
Pa 	giving 	17=46.8 

The results indicate close agreement, but the slight changes are 

attributable to using different machines, and hence word lengths,:to 

obtain the results. 

Even with extremely short time steps, the maximum value of ap 

attained is 25.13, significantly lower than the limiting machine precision 

value (see section 3.5.4). 	Using yet shorter time increments could increase 

this value. 



vs= 0 ms
-1, 	hs=0.0005m, R=0.01 m 

o
=0.7Pas 	a=6.1E-6 Pa-1, m=0.0325 kg 

(3.40) 
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They give the model of CAMERON, 1966 as an example of a viscosity- 

pressure function that also gives a pressure singularity. 	This model 

has ri=i
0 
 (14-cp)

16
. 

Now 

dp 	1  

0 0(1+cp)
16 	15cri

0 

Hence this function does have a finite.limit and so can have a singularity, 

(see section 3.5.3). 

3.6 	Varying the Problem Parameters. 

3.6.1 	Introduction. 

In this section the effect of changing the various parameters are 

discussed. 	The available parameters are vs,hso, apL,no, m and R. Each 

will be considered in turn. 	The plots were mainly obtained by using 

an initial time step, At=10 4  sec 	and 	integrating using the Runge- 

Kutta-Merson method with the time step being divided in two when 

maxlXAtl>2.0. For the cases in which pi_  is finite this method is 

inappropriate as it resulted in extremely stiff equations and eigenvalue 

ratios of the order 10
20 

were obtained. 	The EPISODE package was then 

used to control the integration process. 

The base system from which parameters were changed was 

aPL=0  

and the changes with time are shown in Figure 3.5. 
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This value of a is large compared to that expected for normal mineral 

oils. 	It will be seen that changing differeing physical parameters 

can bring about the same effect.on the solution. 	Considering the 

isoviscous case (which give a simpler, more obvious, grouping of the 

parameters) will allow a greater insight into the behaviour of the piezo- 

viscous case. 	The isoviscous case is considered in section 3.8. 

There are two groups each containing 3 parameters which give rise 

to the same set of curves, given an initial set of conditions (vs,hs). 

There exists a whole family of solutions obtainable from only one result 

by linear scaling.. 

3.6.2 	On Changing vs  

Figure 3.6 shows the effect of increasing the initial velocity of 

impact to vs
=.-0.1ms

1 
 . 	It may be seen that the peak force and pressure 

occur much earlier, at about 4.5 ms after contact with the oil first 

occurs. 	Further, both these peaks are higher and narrower than was the 

case for zero initial velocity. 	The increase in velocity under gravity 

is less than with v
s
=0 because there is less time for the ball to be accelerated. 

It was found that in the second stage, the pressure field seemed to 

retrace the same profile, for both velocities, although displaced in time. 

It was therefore decided to see if this was indeed so. 	This was done 

by arbitrarily choosing a value of centre pressure, say 5 x 107Pa. , then 

for each run the time at which that pressure was attained was found by 

linear interpolation. 

Let the time for the ith run be denoted by .t. Then time displacements 

1 were found. 	The curves were then plotted assuming a displacement 

of Ti  for curve i(T1=0). 
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Figure 3.7 shows the result obtained for vs
=0, v

s
= -0.05 ms

-1
, 

vs= -0.1ms
-1 

. 	To assist clarity, he  has not been plotted. 

The pressure curves displaced in time fall onto one line, but it 

was only required that the pressure values should agree at just one point. 

It may be concluded that for rigid balls after the first stage of 

impact the intital velocity of the ball is no longer a factor determining 

its trajectory. 	It will be shown later that for cases presented here 

that this fact remains true for elastic impacts when only reasonably hard 

materials and low initial velocities are considered. 

The velocity at which the fluid film could not withstand the impact 

so that the "infinite" pressure occured in the initial stage was approx- 

imately -0.115 ms
-1

, all other parameters being as before. 	This is 

equivalent to free fall from 0.0007 m above the liquid surface. 

From Figure 3.7, it may be seen that although the initial velocities 

are equally spaced, the peak farce and initial peak pressure are by no 

means changed by similiar amounts. 	It is clear that as the initital 

velocity is increased these values increase superlinearly. 

3.6.3 	On Changing hs  

There are two differing cases to be considered. One is to change 

hs in the obvious way implying that the ball is to be dropped from a 

different height. 	The other, not really a change in hs  at all, is to 

change rs, i.e. the radial extent of the film for rs  defined such that 

h(r s  )=h s
. 	This is physically equivalent to putting the ball at a height 

hc
(0) above the plane but in a pool of liquid h 

s 
 >h 

c(0), and then releasing 

the ball. 	This value of h
s is then used in the calculation of the load 

(equation 3.13) and is similar to the assumption of CHRISTENSEN, 1967, 1970; 
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CHENG and LEE, 1971, and NORMAN, 1971). 

Considering the first case, Figure 3.8 shows the effect of the base 

run and also with hs=0.00025 m. In the latter, the pressure and force 

both rise much more quickly though to lower peaks - the force is decreased 

more than the pressure. 	In the first stage all trajectory time derivatives 

are less than those of the base curve. 	In the second stage the results 

follow those of the base run (but again displaced in time). 

Just as there is an initial velocity that is too great for the oil 

film to stop the ball by viscous flow alone, there is a film thickness 

that is too great. 	This is because there is virtually no film force 

generated in the initial moments of impact, which allows the ball to 

accelerate under gravity and to attain a sufficiently high velocity. 

Figure 3.9 shows a run-with hs=0.01 m and hc(0)=0.0005 m. 	There 

is an almost immediate rise in the pressure and force curves, giving a 

very low maximum force of about 1.5 W, compared to about 4.5W for the 

base run. 	Again, the solution curves merge into those of the base run. 

Thus it may be concluded that at low film thicknesses, the rigid 

solution is effectively independent of the initial height from which the 

ball is dropped and of the extent of the oil film. 

3.6.4 	On Changing a. 

Runs were made with a=6.1E-8Pa
-1 

and with a=2E-8Pa
-1 

(this second 

value is more representative of a normal mineral oil). From Figure 3.10 

there is no difference due to the decrease in a over that of the base 

run during the initial stage. 	The second stage is drawn out longer and 

the (log) pressure curve remains on the straight line for a greater time. 
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The final pressure attained is approximately three times higher than that 

for a=6.1E-8Pa
-1, being a confirmation of the pressure limitation mentioned 

in section 3.5.4. 

Before coming to the conclusion that the value of a has no effect 

in the inital stages of impact (which one might deduce from Figure 3.10) 

another run, in which v
s
= -0.1 ms

-1, was completed. 	This is shown in 

Figure 3.11. 	It is seen here that the peak pressure is such that the 

value of a is significant, hence altering the impact trajectory. 	The 

pressure curves in the second stage of impact are no longer co-incident 

but, by altering the time base in such a manner similar to that of section 

3.6.2, these could be made to give a similar pair of curves as Figure 

3.7 in the second stage. 

3.6.5 	On Changing apL  

These runs were performed using the EPISODE package as there was no 

longer a limit to the amount of time step halving needed due to the 

singularity. 	Indeed it was found that the value of maxiXAtl was doubling 

faster than once every step in places. 	The model used here is the Mark 

I viscosity model where the maximum viscosity is n
0  e
aPL. 	If apL=0, then 

the isoviscous case is obtained. Figure 3.12 shows the results for several 

runs with various values of apL. 	It may be seen that the solution is 

initially close to the isoviscous solution except at the initial peak 

pressure, but during the final stages as ap increases, the solutions 

diverge more and more from the isoviscous case and tend to the exponential 

model. 

It was found that for 10<apt_<20 approximately this system could be 

integrated out further in time compared to those obtainable with either 

the exponential or isoviscous models. 	Figure 3.13 shows the pressures 
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obtained from this system with ccpc10, 15 and 20. 	It must be stressed 

that these results only apply to a hypothetically absolutely rigid system, 

as the pressures shown are extremely high. 	Further, the film thickness 

predicted is of sub-atomic dimensions, but the results show that in extreme 

regions solutions may be obtained. 

3.6.6 	On Changing n0  

Figure 3.14 shows the effect of changing n0. Three sets of curves 

are shown:- n0=0.5, 0.7, 0.9 Pas. 	As the base viscosity is increased, 

the rise in force and pressure starts earlier, but rise to a decreased 

peak. 	The time gradients in all physical variables are reduced as no  

is increased. 

Because the initial peak values depend on n0, the maximum velocity 

of impact that can be supported by viscous action in the initial phase 

is dependent on the base viscosity as well as the depth of the film. 

This is supported by the conclusions of RABINOWICZ, 1952: 	that a thick 

oil is needed in order to form the conical indentation, rather than a 

dent typical of dry contact. 

The second stage shows an initially linear slope of flogio  pressure) 

against time, giving a power law relation, the slope depending on the base 

velocity. 	The dependence is presented in section 3.7.2. 

3.6.7 	On Changing m.  

It may be seen by inspecting Figure 3.14 and Figure 3.15 that the 

effect of increasing the mass of the ball is similar to that of decreasing 

the base viscosity of the oil. 	This relationship holds very closely 

in the second stage of the impact, but not so closely as the first part. 
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The difference arises due to the very small film force generated in 

the initial stage, thus the trajectory initially followed is the same for 

differing masses, and as the other parameters remain fixed the same pressure 

curve results. 	The runs which have different initial viscosities allow 

changes in the generated pressure field which are quickly visible. 

Having found the effects, it was decided to ascertain if the problems 

could be defined in terms of groups of parameters. For example, as 

increasing the mass gave the same effect as decreasing the base viscosity, 

there could be a group (no/m), that would characterise the problem. 

Consequently a run was made in which (no/m) was kept fixed, the results 
•• 

are shown in Figure 3.16. 	The curves of fl, 
c 
 ,v
c 
 and h

e 
were nearly 

identical but the pressure curve was displaced. 

The equations of motion do not give an immediately obvious grouping of 

terms. 	It was decided to investigate the isoviscous incompressible 

solution and it was there that the answer was found. 

3.6.8 	On Changing R.  

This section is included for logical completeness. It will be shown 

in sections 3.7 and 3.8 that the problem may be characterised by two groups, 

each a function of (m,no,R), thus a change in R is equivalent to one in 

no  and m. 

3.7 	The Isoviscous Incompressible Fluid Solution. 

3.7.1 	Introduction. 

To aid in the comprehension of the total system it was decided to 

solve for the rigid parabola squeezing onto an incompressible isoviscous 

fluid. 	Using this analysis, an understanding of the interaction of the 
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various physical parameters was obtained. This is the base system used 

by NORMAN in his work on porous squeeze films. 

3.7.2 	The Differential Equation to be Solved and Dimensional Groups. 

The solution of the Reynolds Equation is found by using the isoviscous 

equation of state in equation 3.7. Then 

p(h)= -3n0R vc  (1/h2-1/h2) 
	

(3.41) 

Integrating this in the same manner as given above over [0,rs], the equation 

of motion is obtained 

h 	1 
m' =21r. 3n

0 
 Rzv c [ h 
	

c 	
h
c 	

mg 
c  

s 	h
s 

(3.42) 

This may be rewritten to give 

c 
= 	

n0R 	h 
2 

r 2 	c 
+ 

1 — L mg c h
s h 

 

] -1 	(3.43) 

  

In this form it is immediately clear that. for a given set of initial 
noR2 conditions (v 

s 
 ,h 
s), there is only one group — 	that determines the 

g 

trajectory. 	Thus any set of results which have the same value for that 

group will give rise to the same trajectory, given the same initial conditions. 

This is shown in Figure 3.17 using the base values and then with m*=5m 

and n0  *=5n0  . 
	It is seen that the values of h 

c  , N , Hc  are the same for c  

both runs. (Remember that the force has been divided by the weight of 

the ball). 

The pressure curve does not lie on the SdA;ifEir curve as before and an explanation 



- 84 - 

of this is needed. If the equation for the centre pressure is substituted 

into the trajectory equation, then 

h2 

	

loR 	c
p, 

 _P 
g 	mg 	n0R 

h_-h,1 

6v hs 
(3.44) 

This implies that to obtain a family of parameters that lie on only 
n

0  R

2  

one curve then both mg 
 and r R need to remain constant for the entire 

0 

family. 

Pc  
It was found empirically by plotting 	instead of oc that for 

no 

the parameters of Figure 3.17, the value of "pressure" did indeed lie on 

just one curve. 

n

0  R

2  

Thus if only mg 
	

is constant, then the centre pressure is known to 

within a multiplication factor. 

3.7.3 	The Behaviour of the Solution.  

With insight into the behaviour of the isoviscous solution, it is 

appropriate to discuss the solution and compare it to that of the exponential 

viscosity model. 

It is seen from the results that the solutions forthe exponential 

case follows very closely those for the corresponding isoviscous case 

during the first stage of impact. 	There are only small differences for 

the value of a typically encountered with mineral oils. 

In the second stage of impact, when the pressure curve lies on a 

straight line, (log. pressure linear with time), the effect 	of the 

exponential viscosity becomes visibly apparent and the pressure curve 

diverges from the isoviscous solution, rising to the "infinite" value. 
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Let the two groups be denoted by 

n
0
R2 

K
1 

= 
mg 	

K
2 

= n
O
R (3.45) 

Using this isoviscous model the value of the power law may be ascertained 

from the formula 

Slope - 
log pc(t2) - log pc(ti) 

t
2-t1 

and it is known that the slope is a function of Ki  alone. 	This is because 

it has been determined that by fixing only K1, a change in K2  will displace 

the pressure line vertically as can be seen by considering 3.41 and 3.43. 

Thus a series of runs altering no  were made and it was found that 

Pc =C e
5.30516E-2 t/K

1 

Considering the dynamics equation and neglecting terms in hs  compared to 

h
c
, if ■'

c is negligible compared to the magnitude of the other terms, then 

1 
6TrK

1  v c 	
- 1 = 0 

• 1 
K 

Now if h
c
=AeXt 
	

671-  
,thenX= 	= -5.39516E-2/K

1' 
at t/67rK 

pc give pa
=Ce =Ce 	1. 

Similarly the terms in 

These results may be further confirmed by the ratios vc/hc; 

also the analytical calculation of the eigenvalues. 

There does not appear to be a grouping that includes the intital 

conditions (v 
s 
 ,h 
s) to give a family of solutions, that allows an extra 

physical variable to be removed from the defining set. A consideration 

of possible substitutions or rearrangement of the force equation 3.42 

will confirm this. 
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3.7.4 	The Method Used to Integrate the Differential Equations. 

It has been mentioned previously that to integrate the dynamical 

equation a Runge-Kutta method with step halving was used. 	When this 

was applied to the isoviscous case (or the Mark I viscosity model) it 

was found to use large amounts of computer time but with an extremely 

slow rate of advance. 	One reason for this is that the model has no 

obvious time limit for the integration process. 	The only method that 

was effective in integrating this equation was the EPISODE package. Even 

with this care was need, because of the sensitivity of the solution to 

small changes in vc  or hc. 	This could be controlled to some extent by 

using a local error estimate of the order 10-10, a criterion that would 

normally be considered excessively small. 	At the time where even this 

was giving rise to integration problems, the film thickness predicted is 

in fact far below sub-atomic dimensions, but the pressure had remained 

log-linear with time up to values of about 10
25

Pa. 	The ratio between 

the eigenvalues of the solution became greater than 10
20 

- giving a very 

stiff problem indeed, whose solution is not feasible to obtain using 

conventional methods. 

Thus, although _it appears at first sight to be simpler to solve 

the isoviscous case than the exponential case, there are numerical problems 

that make it just as difficult. 

3.8 	Using the Groups with the Piezoviscous Liquid. 

Given an understanding of the interrelationship of the. groups for 

the isoviscous case, it is now appropriate to find the effect on the 

exponential viscosity oil system. 

Two sets of runs were performed, one in which only the group K1  was 
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kept constant and the other in which both K1  and K2 were fixed..  

It was found that when just K1 was kept constant, there were small 

changes between the runs, due to the changing viscosity. The run was 

made by altering m to km and no  to Kno, thus varying K2. 	The value 

of pressure obtained is approximately k times greater (see Figure 3.18): 

except near the end of the solution space. Using the time displacement 

method gave the same pressure curve for the second stage. 

1 When K
1 and K2 were kept constant (i.e. m÷km, R÷KR, n0 k0) and 

keeping hs  and vs  fixed, both sets of trajectories were coincident, as 

were pressure and force/weight curves, thus giving a whole family of 

curves from a single set. 	These computer runs were made using a very 

large value of a(=6E-7Pa
-1
), one that would quickly show up any difference-_ 

and using k=50. 

It may be concluded that for each set of initial conditions (vs ,hs), 

together with an a value, as well as K
1 and K2' there is a single infinity .  

of parameter values giving rise to the same solution curves. This is 

because three independent parameters are required to define the two 

groups K1  and K2. 

Similar tests were run using the Mark I viscosity model, it was 

found if both K
1 and K2  are conserved over runs, then all four curves 

K2 
 

are coincidental between runs. 

In general, the results are very similar for the ranges of a 

considered here. 	A knowledge of the groups may be used to give a rough 

idea of the behaviour for other sets of (m,n
0' 
 R_). 	For example, for 

the base system 
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0.7.(0.01)  K - 	- 2.196E-4 
1 	0.0325.9.807 

K2 
= 0.007 
	

Pasm 

Now consider m = 0.65kg, R=0.02m, no=3.5Pas 

then 

K
1 
 = 2.196E-4 

K
2 

= 0.07 	Pasm 

As the group K1  is equal for both sets, the behaviour of the 

solution should be very similar. 	However, the pressure generated at 

any time should be about 10 times greater than for the base system. The 

results for this run are shown in Figure 3.18. 

This system will be integrated for the fully varying elastic case. 

3.9. 	The Solution for a Rigid Sphere with an Exponential Viscosity Oil. 

It is interesting to see the effect on not making the assumption 

that the ball isof parabolic cross-section, but to retain the assumption 

of sphericity. The equations(3.1 -3.5) are solved, but instead of 

using equation 3.3, use 

This gives 

h = h
e 

+ R  
14—) (3.46) 

- 
dh - 	R  	dr 

Or 

((R + hc) - h) dh = rdr 
	

(3.47) 

Substituting into equation 3.7 
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vc 

f
h 

R + h
c 
- h 

 

0 71 	h 	h3  
s 

 

dh 	(3.48) 

Hence 

1 	1 
p = - 

1  
- log (1-3n a'v (R+h )(--1 	1 

- — ) + 6n av (--- - -.)) 
a 0 c c 

h
2 

h
2 0 c h

s 	
h 	(3.49) 

s 

The film force is, on writing, 

C = 3n
0
avc(R+h

c
) 

B = -6n
0
avc 

A = 1 - 
B 
  - C  
h
s h

2 

with 

0 = 7T-----  
B -4AC 

given by 

r
e 	

27r h
c 

F -27T I prdr = - — 	(R+h-h)log(A+B/b+C/h
2
)dh 

a 
0 	h

s 

Integrating by parts gives 

	

1 	 0
3 

2At4B-D  h
cl (3.50) F - 	{h (R- -2-)(-ap)- 	[ 2ABh+log(Ah

2
+Bh+C)- --log 

a c 2 	 2A0+8+0 	 "`" 
4A
2 	

311
s 

Figure 3.19 shows the results from a run using the base parameters 

and it is seen that there are only small differences in the curves 

plotted. There is a small increase in the peak pressure and force 

values. In the second stage of impact, the peak pressure is slightly 

greater than for the parabolic case, though it gives virtually the 

same curve when displaced in time. 	The similarity between the two 

sets of results is mainly due to the strong coupling effected by the 

dynamic equation. 



- 92 - 

3.10 	Discussion on the Rigid Body Solutions. 

Having run many tests using the rigid body model, 	insight has 

been obtained into the likely behaviour of the elastic solution. This 

is because the elastic effects are small for most of the impact up to 

the time that the rigid system becomes computationally unstable. 

These effects may be summarised by considering the results as a 

whole. 

1. The solution is stable as long as time steps are sufficiently 

short. 

2. The equations have been shown to exhibit stiffness, thus time 

integration methods need to be stiffly stable in order to obtain 

a solution in a reasonable time, or need to use very short time 

steps with conventional methods. 

3. When using exponential viscosity models, at pressures not considered 

to be high in the literature, machine precision limitations 

become apparent, which together with theoretical considerations 

of the applicability of this type of model, mean that results 

using these models should be used with caution. 

4. It was found that, using random errors of known form, quite 

small errors gave results that were unacceptable. This is due to 

the solution being a difference of very nearly equal 

quantities at later solution times. 	This has ramifications 

on the acceptability of solution methods for the elastic case. 

11 

5. The alternative methods used when h
c
±0, are stable and do not 

have the problems that beset the normal dynamic solution. However, 

in section 6.1, it will be shown that for the elastic solution 

this introduces its own errors due to an instability in the pressure 

obtained with time. 
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6. With regard to the various problem parameters, it may be seen 

that these fall into two classes:- (a) Physical Parameters 

(a, app, no, m, R) which are intrinsic to a particular ball 

and oil combination, and (b) Initial Conditions (v
s  ,h s) which 

are freely variable. It was found that the range of suitable 

initial conditions was quite small and when the ball reached 

the second stage, then the initial conditions no longer had 

any effect on the behaviour of the trajectory or the peak pressure 

generated. However, the physical parameters -(m, no,R) did. 

The value of K1 determined the basic gradient of pressure rise 

in the second stage. K2  is not as important as it may be considered 

to move the time base along if only the elastohydrodynamic 

region is considered. 

7. By solving for both the sphere and its parabolic approximation 

and showing that the results are virtually indentical confirms 

that the approXimation is a good one in that the equations to 

be solved are simplified yet no significant error is introduced. 

8. The statement of NORMAN, 1971, quoted in section 3.3.1 should 

be modified to read "whatever finite difference method is used 

to calculate x and x, the ability to determine the trajectory 

is limited by either machine precision limitation or algorithmic 

deficiencies. 
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CHAPTER FOUR 

SOLUTION METHODS FOR THE NON-ANALYTICAL ISOTHERMAL  

REYNOLDS EQUATION  

4.1 	General Considerations. 

4.1.1 	Introduction. 

In this chapter several methods of solving the non-linear Reynolds 

Equation will be presented. 	They range from the so-called Direct 

methods to Newton-Raphson techniques, using a Vogelpohl type substitution 

and quintic spline elements, (see 4.6 and 4.8). 

If the liquid is compressible, (using formula 2.15), or the bounding 

solids are elastic, there is no analytic solution to the Reynolds 

Equation. 	Consequently, all methods used for solving these non-linear 

equations are numerical. 

The pressure distribution was assumed to be quasi-static, i.e. at 

each instant in time the Reynolds Equation holds, and if the ball centre 

velocity and height are given, together with any previous values that 

have been calculated, the pressure distribution at that instant may 

be found, i.e. Inertia and temperature effects are ignored. 

The programs to solve these equations were built up with a main 

routine which set up the variables, and a time integrator, which controlled 

the impacting process, together with a subroutine. This subroutine, 

when given a (vc,hc) pair, would calculate the pressure distribution 

and film force. 	If the integration method gave values that lay outside 

some preassigned convergence criterion, the subroutine could be called 
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again using a slightly different (vc,hc) pair. 	Consequently, this 

pressure solution method may be discussed separately from any time 

integration aspects. 

To check that a method was sufficiently accurate, it was tested 

with the parameters set to solve the rigid parabola, incompressible 

exponential viscosity fluid system. 	The integration of the dynamics 

equation using the Runge-Kutta-Merson method with time, and a comparison 

with that obtained from the analytical solution method, (also using 

Runge-Kutta-Merson), allowed a check to be made on the efficacy of 

any solution method. 	The fixed time step method was used in order to 

eliminate any uncertainties that could have arisen from the time integration 

rather than those of space integration. 	This is because a variable 

time step method uses local results to determine the time step to be 

used, so varying the space integration method would alter the integration 

process between the tests. 

4.1.2 	The General Method of Solving the Reynolds Equation. 

The general method used to solve the non-linear Reynolds Equation 

was to replace the problem of solving a non-linear differential equation 

by that of solving a set of non-linear difference equations. 	To do 

this it is necessary to map a set of node, or grid, points onto the 

independent variable domain [0, rs]. 

r = {r
1
., 1< i<n I 0=r

1<r2< ...<rn=rs 
 } 

— — 

and define Ar = r2  - r1. 

At each point ri  let there be defined a value pi, so that 

(4.1) 
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p ={p..1<i<n} with p =0. (One of the boundary conditions on the Reynolds 1 -- 

Equation.) 

It is the aim to satisfy the Reynolds Equation at each node point 

by changing p appropriately. 

in dp 
	d p 

2 
Now Reynolds Equation is an equation n — and 	• 

dr 
dr
2 

Thus "connectedness" relations are needed between dp — and 2.  , and 
dr 

d
2
p 

dr
2 and -a . i.e. 

dr 
1 
r = dri 	D1 	A 

2 — + 0(Ark1) =  

2 	2 d 	d 2, 	1 
t 	t =  2 art + 0(Ark =2 Ar 

dr
2 

dr2 i 

(4.2) 

(4.3) 

where the last term in each equation is the local truncation error made 

by using the relation. 	The exact form of these relations depends on 

the particular method used, but will be of polynomial form in this 

thesis. 	By substituting them in the Reynolds Equation the difference 

equations are obtained. 

The methods presented here fall into two classes. One class may be 

referred to as the Direct methods. 	They give directly the new pressure 

vector and assume that the equations are locally linear and thus do not 

take into account varying coefficients during an interation. 

The second class is the Newton methods, which do not give the 

pressure directly, but give the changes that need to be made in the 
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pressure vector. 	This class of method estimates the effect on the 

coefficients of changing the pressure vector, and consequently tends to 

have a higher order of convergence than the linear methods. 

4.1.3. 	The Relatively Fixed Grid and its Importance to the Solution  

Method. 

The definition of the grid mesh r has been chosen so that there 

are n points covering the domain [0,rs]. 	However, from its definition, 

r
s 

is a function of time, so it was decided to choose a grid such that 

	

r (t) = R .Ar(t) 	 (4.4) 

Thus, R1 =0, R2=1, 	R
n
=r
s
/A
r 

 

This implies that R is a fixed grid at all times for a given run, 

and r is a scaling factor, giving a relatively fixed grid for r , 

r.(t) 	R. 
i.e. 	1 . 	1 	a constant. 

r. (t) = R. ' 

Now consider the set of pressures mapped onto the vector R rather 

than the space vector r. 	Then,'using the "connectedness" relations 

to find the gradients of the pressure curves, 

dp 	d
2
p 

= D  
dR =1—

p 	
dR2 

= 
' 	=2p_ 

As R is fixed for a given run, then D
1 
 and D

2 
 are similarly fixed = 	= 

and so need to be calculated once only. 

Similarly, if the pressure is integrated over the domain, then 
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rs 

p(r)dr 	

fR
n 

p(R)dR. Er 

This will be used in chapter five to calculate the elastic distortions 

in order that they may be calculated during the 	intialisation of the 

problem and not be recalculated with each step. 

4.2 	Direct Difference Method. 

dP If it assumed that the ball is rigid and that dt — may be assumed 

negligible (4.5), the Reynolds Equation may be written as 

d
2
p 	1 	1 dY dp 	12pV 

dr
2 	r Y dr dr (4.5) 

If the domain is divided into n-1 equal segments of length Ar, then if 

the values of D1  and D2  are obtained by assuming that the solution curve = 	= 

at ri  is locally a parabola passing through (ri_1, pi-1),  (ri,pi), 

(ri+1,pil1), then the "3-point formulae" are obtained. 

D1  = = 0 0 

1 
2 0 7  

O x' 1 0 - 1 	7 

Dr 
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D2  = 
= 

1 

Ar
2 

0 
1 	-2 	1 

dp Note that the first row of 9.1  is zero as (-17)1  = 0, also (122) 2=2 

as the function is symmetric and p(-Ar)=p(Ar). 	Di  and D2  are only of 

size (n-1) x (n-1) for there are only n-1 unknowns as pn=0. 

Thence the tridiagonal system. 

A.p 	+ B.p. + C p 	= E 	,1<i<n-1 	(4.6) u i-1 	i i+1 	.  

1 	1 	,1 	1 
where 	A. = 	t- 	

dY, 
- -1 . 	 , 2<i<n-1 

Ar
2 	2Ar r Y dr 1- 	— — 

2 
B.  
1Ar2 	 , 2<i<n-1 — — 

	

1 ,1 	1 dY, , C. 1 	- 
- Ar2 	2Ar r Y dr i 	2<i<n-1 

-2 	2 

1 -2 1 

N 

E = 	(120/) 
Y i 

and Al is not defined 

4 
81 - 

Ar
2 

C1 = Ar
t 
4 

, 1<i<n -1 
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i+1
-V

i-1 1 dY 
The value 	is needed, this could be approximated by 

Y dr i 	 2Ar 

however, at small film thicknesses, due to excessive curvature in h, 

a better approximation is 

1 dY =  (1 dp 	 ) 	+ 1 dp 	1 do dp 	3 dh 
7' dr 	p dp n  dp dr h dr 

(4.7) 

This is the one place 	where non-linearity arises, for this 

expression is a function of p. 

As the system is non-linear, an initial estimate of the pressure 

distribution is needed in order to calculate p,n,h and Y. It is normally 

obtained by extrapolating the values of the elements of Previous solution 

vectors. 	Let this be denoted by Co )0. 	Using this vector the values 

may be calculated and the tridiagional scheme quickly solved to give a 

new distribution (p )1, which may be used as an initial pressure vector 

to calculate fp )2. 	This process may be carried on ad infinitem, but 

the solution is attained when (p)sil= fp )s. 	An approximation has 

already been made by converting the differential equation into a 

difference equation, thus when the difference between successive iterations 

becomes sufficiently small, it is assumed that the solution has been 

obtained. 

This will be so when 

n-1 

E 	l(P.) 	(p.) 	I i=1 	s 	s-1 
n-1 

E 	1(pi)s 
i=1 

< e 	 (4.8) 

for some predetermined E. 
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At not very high pressures (i.e. about 107 Pa) this method becomes 

unstable due to the strong dependence of the viscosity on the pressure, 

coupled with the pressure distribution being strongly peaked at the 

centre. There are several ways to reduce this problem. One is to use 

more grid points, which involves more computational work, and is not 

really feasible remembering that a time integration is needed. 

Another way is to use a damping, or relaxation factor, where, 

instead of using the new calculated pressure 	as the iterate, 

only a fraction of the change calculated is used. 	From work by RANGER, 

1974, it appears that for the EHD rolling ball problem a relaxation 

factor in the range 0.02 to 0.05 must be used, making this a computationally 

expensive method, especially considering the number of pressure distributions 

required per run. 

The third method is aimed at reducing the effect of the pressure 

peak by concentrating the node points in the centre zone and spreading 

them out in the outer regions where the pressure is less (and the 

pressure gradients smaller). 	This method improves the accuracy, however, 

the nodes in the outer regions cannot be placed too far apart, otherwise 

the film force becomes inaccurate due to the weighting given to the 

outer values. 

Modifications to this method include using higher order elements, 

and instead of using 3-point formulae for the derivatives, 5-point 

ones could be used, obtaining a pentadiagonal matrix equation to solve. 

The Direct Difference method was rejected due to the low values after 

which solutions could not be obtained. 
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4.3 	Direct Integral Method. 

Taking as the initial equation to be solved 

1 	d 
r dr 

(r412) = 12pv
c dr (4.9) 

Integrating this with respect to r 

r 
dp 
dr 	

12v.ci r Y 	
oPrdr + C1  

Using the boundary conditions dp — at r=0 gives C
1
=0. 

dr 

Hence 

rr 12vc  ir 

P o 
 

o 
pr'dr'dr+C

2 (4.10) rY 

Now p=0 at rs, 

0 = 

Hence 

p = 
111 

so 

r 12v 	Jr 
s 	c 

(4.11) 

—
rY 	

pr'drldr+ c
2 00 

r 12v
c —r-cr 	pr'dr'dr 

rs 	0 

The functions p and Y are functions of pressure, so again an 

iterative process is obtained. 

The second integration was carried out from the centre to the edge, 

starting with an arbitrary value of pi(normally the previously iterated 

value). 	When the pressure had been integrated to rs, then, in general, 
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p
n
=6, for some 6 .Finally 6 is subtracted from all node values, obtaining 

the second boundary condition pn=0. 

This cycle is repeated until the convergence criterion (4.8) is 

reached. 	In order to perform these integrations, different interpolating 

functions may be assumed. 	If these are assumed to be linear, the 

trapezium rule is obtained. 	Using this allows the grid spacing to be 

easily altered. 	If the function is to be quadratic then a form of 

Simpson's rule is used. 	Use is made of the fact that at the centre 

the pressure is symmetric and its gradient is antisymmetric. 

With this method, derivatives of the density-pressure and of the 

viscosity-pressure relations are not required and if the local deformations 

are calculated between each iteration then the elastic case can be 

solved with no further work. 

However, a Vogelpohl substitution (see section 4.6) cannot be 

used with this method. 	It is very useful as it can speed up convergence, 

so the Direct Integral Method was not pursued. 

4.4 	Newton-Raphson Method. 

4.4.1 	Algorithm.  

Potentially, the Reynolds Equation gives a highly non-linear system 

of equations. Due to the strong effect of the pressure on the viscosity 

at high pressure, the direct methods become unstable as they do not 

account for the changes in the coefficients. 	This effect was also 

found by previous workers, for example, CHRISTENSEN, 1970. It is 

possible to reduce this effect by using a small relaxation factor, but 
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this only serves to delay the onset of the instability. 

If the equations are written in the form 

f (p )=0 
	

(4.12) 

where, with * defined in Appendix IV 

.1 

2  
f(p ) 	= 	D

2 
+ 	H*D )p 

Ar  

1 	1 dY, 
(L) 	

r - r Y dr1  r 

(52)i 	= 	(12 a- (ph)/Y ). r. 
1 

then, given an initial approximation for the pressure (p)0  (which is 

needed for every method), and if the jacobian J(iEjs  can be cale4.4.(ated 

F. 

p 
J
=  ( (p )s )13 	a = 	I — 

(13 )s 

(4.13) 

We can form 

(Ap )s  =
1
((p )s) . f 	)s) 
	

(4.14) 

then the next approximation for the pressure is given by 

(a )s+1 = (a )s 	(L- I s 
	 (4.15) 



Now 

SO 

df. 

d . Pj  
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This is the (n-1) dimensional version of the Newton-Raphson method. 

It will iterate to a solution for p if (p )0  is sufficiently near that 

solution of the fuctional. 	It is known that this region will 

generally be larger: than the region 

for solution of the direct iteration method. 	The method estimates the 

effect of changes in the pressure values on changing the values of the 

coefficients as well as the derivatives. 

Consider again the rigid parabola squeezing onto a compressible 

exponential viscosity-pressure fluid. 	We obtain as a difference formula 

	

p -2p.+13. + ( 
	

p. p. 
i+1 	1 1-1 	1 	1 dY

). 	
1+1- 1-1 

f
1  
. 	

Ar
2 	

+ 	(12pv./y) 
r Y dr 1 2Ar 

If it is assumed that the 3-point formulae of section (4.3) for the 

derivatives hold, then D1  and 02  are those given above, and the problem is = 	= 

to solve forp in f (p )=0. 

p 	 p. 1 i+1 	-1  (1 dY ) = (-1  • dp 	dn - —) + 3r.  
Y dr 	dp n dp i 	2Ar 

0 	 ,yi,i+1 

1 	1 	1 dY 	dp 	1  do 	Pi+1 Pi-1 	1 
{( 	- — 	) 

Ar
2 — r 	Y dr i 	p dp 	n dp i 	2Ar 	,j=i+l 

(4.16) 
2 	d 	1 dp 	1 dri 	Pi+i Pi-1 )2 

	
dn = - 	( — — - 	( 	) -12—=v /Y Art 	dpi 	p dp 7.1 dp i 2A r 	dp c i 

+ 12pV/Y. . (-1 dp  - 	d n) p dp 	n dp ,j=i 

Thus a tridiagonal matrix is again obtained, but instead of solving 

for the pressures, it is the changes in them that are calculated. 	This 

also gives the changes in the pressures needed to estimate the convergence 

directly. 

h
i  
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4.4.2 	The Advantage of Higher Order Convergence Methods. 

The second major advantage is that if (ja )s  is sufficiently near 

the root, then the convergence to the root is quadratic, that is if 

the values of (p)
s 
 are accurate to five significant digits, then the 
 

next iteration (05+1  will be accurate to ten places. 	So if the 

convergence criterion CRIT=10
-5
, then the solution vector obtained is 

accurate to approximately ten places. 

However, this shows how the pressures converge to the solution 

of the difference equation, not to the solution of the differential 

equation. 	There is a truncation error made in solving this different 

problem given by kl  and k2  in equations (4.2) and (4.3). 	Note that 

for the case considered here lc1 and lc2 
are 2. 	If, instead of using 

a tridiagonal scheme, a pentadiagonal scheme is used, then kl  and k
2 

equal 4, and a more accurate solution may be obtained. 

Using higher order approximations increases the bandwidth of the 

matrices D
1 
 , D

2' 
 thus more work is needed to solve for (hp) s. 	To 

= =   

compensate for this it is expected that the number of nodes may be reduced 

so that overall accuracy is maintained. 

Consider now, the elastic case. 	The compliance matrix is full 

since pressure at a point gives rise to distortion at every other point 

and hence a full matrix for the partial derivatives is obtained. Thus 

if the Newton-Raphson method is used, it is worthwhile to find the 

highest possible order method and reduce the number of grid points. 

If there are n equations to solve, the work needed to find the solution 

of the matrix equation (4.12) is proportional to n
3
. 
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Consider the curve to be represented by p. So far it has only 

been defined at the node points. Given a set of points (r, p) there 

are infinitely many functions g(r) that can be constructed such that 

g(ri)=pi. 	It is desirable that the function should pass through 

(r,p). 

For example, suppose the interpolating function is chosen to be 

r-r. 
1 

g(r) = p
1  
. +  1 
	

(P. 	-P.1  ) 	i 	re[r ,r. 	] 

	

r. -r. 	+1 	i 1+1 
+1 	

1 
 1 

The derivatives have not been defined at the node points, where 

the gradient is discontinuous. 	The 3-point formula for the first 

derivative is equivalent to requiring the derivative at ri  to be the 

linearly interpolated gradient over (ri_i, ri+1) calculated by weighting 

the gradient at each segment mid-point with respect to the length of 

that segment. 

4.5 	Interpolating Functions. 

4.5.1 	The Cardinal Interpolating Functions. 

In the last section it was seen that in order to reduce the number 

of equations in the finite difference form of the Reynolds Equation, 

large values of kl  and k2  were needed. 	It is appropriate to discuss 

various interpolating functions and their relationship with the solution 

of the Reynolds Equation. 

Assume that there is a set of grid points r and a calculated set 

of pressures p, with (p)i  defined at (r)i. 	The problem is to construct 

the function g(r) with the condition 
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g(r.)=p. 
J 	J 

(4.17) 

As elements of p are independent variables (excepting that as a 

set they must satisfy the difference form of the Reynolds Equation), 

the function g(r) shall be required to be of the form 

with 

n 
g/(r) = E C.1.(r)p. 

j=1 " J  
(4.18) 

CI. .(r. ) =S.. 	 (4.19) 

Further, in this work, the function Cij(r) are required to be piece- 

wise polynomials of degree 1. 	Note that the requirement (4.19) assures 

the independence of the values p except in the Reynolds Equation. 

Thefunctionsa,.
13

(r) may be called the Cardinal Interpolating 

Polynomials of degree 1. (c.f. RHODE and OH ,1975). 	They are called 

cardinal due to the property that equation (4.19) holds. 

Piecewise polynomial-functions are chosen in preference to other 

types (for example, Langrangian interpolation) as they are well behaved 

and do not oscillate in an alarming manner between the node points. 

Indeed, using Langrangian interpolation of high order is likely to 

increase the interpolating errors. 

4.5.2 	The Form ofCli  (r) for Differing 1. 

If 1=0, then for 1<j‹n, and defining r0=0 here 



C
07
(r) 

I 	I 	I 

C
06

(r) 

t. 	C
05
(r) 

C
04(r) 

C
03
(r) 

C
02
(r) 

1 

C01  Cr) 

- 109 - 

C08 (r) 

Figure 4.1. 	Cardinal Interpolating Polynomial of Degree 0. 
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Figure 4.2. 	Cardinal Interpolating Polynomial of Degree 1. 
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Figure 4.3. 	Cardinal Interpolating Polynomial of Degree 2. 
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C (r) = 0, r<l(r. +r.) 0j 	— j-1 j (4.20) 

1, i(r. 4-r.)<r<2(r.+r. ) 
3-1  J — J 3+1  

0, r>i(r.+r. ) 
j j+1 

C
On
(r) is defined as p

n
=0,but maybe defin&J as identically zero. 

These functions are shown diagramatically in Figure 4.1. for a mesh 

of 8 linearly spaced mesh points. 

If 1=1, then 'overlapping triangles' are obtained. 	These are 

shown in Figure 4.2. 	Again, Cin(r) is similarly undefined and may 

be put identically to zero. 

If 1=2 there is a more complicated system. Requiring a curve 

to pass through the points at each end gives two conditions for each 

interval. 	The third (3 parametersareneededtodefine a parabolic 

segment), is that the curve must pass through the mesh point towards 

the pole from the interval. 	This was chosen because it is known that 

the pressure field is symmetrical. 	That is if the segment is rri„r
j
i, 

then the curve is to pass through [rj-2 ,p. 2  ] as well. 	This process results 

in a piecewise parabolic curve. 	For 1=2, C
2n(r) remains undefined and again 

is put to zero. 	This is shown in Figure 	4.3 for linearly spaced meshes. 

In this work, 1=0 is not used, 1=1 has been used in the direct 

differential and direct integral methods, and 1=2 is only used in the 

direct integral method. 

4.5.3 	The Cubic Spline. 

If 1=3, a cubic interpolating function is obtained. This could be 

extended from the case of 1=2 by forcing it to go through the point 
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frj.+1j ,p.+1 ). 	However, in this case a cubic spline formulation will be 

used. 

A cubic spline is a continuous piecewise cubic polynomial with the 

property that the first and second derivatives are continuous across the 

knots. (A knot is where the third derivative can be discontinuous). If 

a knot is put at each of the n grid points it can be seen that there are 

n-1 intervals, thus 4n-4 constants need to be found to uniquely determine 

the function. 	2n-2 constants are obtained by requiring the curve to 

pass through the knots on either side of the n-1 intervals and a fOrther 

2n-4 by requiring the first and second derivatives to be continuous at the 

interior knots. 	This leaves 2 conditions to be satisified, normally one 

at each end of the curve to make it well-conditioned. 

These can be of differing types. 	One, the so-called natural spline 

end condition, requires that el =0. 	This is not appropriate for this 

problem as the pressure does not have second derivative zero at r=0 (see 

the Reynolds equation). 

However, p'(0)=0, so choosing the end conditions to be 	given by 

the end slopes gi0=p(0), gin=p 1(rs), these give the two conditions needed. 

p'frs) is required in order to solve for the cubic spline uniquely. 

This may be written as p'n. Its value could be calculated by writing 

p'n=f(E,Ar) for some function f. However, this is not satisfactory for it 

was found that with Newton's method it gave an oscillating, but only very 

slowly converging solution. 	It was decided therefore to extend the 

system to be solved. 

Instead of solving for p with n-1 variables unknown (pn=0), this 
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becomes p*=(p, p'nAr), then 

n-1 
g
1
(r) = E C (Hp + 

ln
(r)p'

n
Ar 

j=1 	j  
(4.21) 

As p'(0)=0, Din(r) is not required. 

Note that for dimensional compatibility instead of using p'n, p'nAr 

is employed. 	This may be treated as finding the spline over the set of 

points R, for the end derivative on this domain is p'
nAr. 

Only n-1 equations have been used so far to calculate for the pressure 

distribution. 	Thus If Reynolds equation is required to be satisfied at 

rn, then there are n equations for n unknowns. pin may be calculated 

and the system is solvable. 

4.5.4 	The Cardinal Cubic Spline Functions. 

Recalling that 

n-1 
g1(r) = E Clj  .(r)p.+ Dln  p' nAr j  

j=1 

then the functionsC3j  (r) and D
3n(r) are defined such that 

C3j Jr.)  1 

C'
j(0) 3 

C3 	(r 	) j 	n 

D
3n
(r

i
)  

0' 	(0) 
3n 

D3 	(r 	) n 	n 

= 

= 

= 

= 

= 

= 

S.., 	1<i<n — — 

0 

0 

0, 	1<i<n 

0 

1 

(4.22) 

These are Known as the Cardinal Cubic Splines [Rhode and Oh, 1971, and 
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Figure 4.4. 	Cardinal Interpolating Polynomial of Degree 3. 



then 

n 
g
1
(r) = E C .(r) p. 

j=1 
lj J 

, 1=0,1,2,3 	(4.23) 
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are shown in Figure 4.4 for 8 linearly spaced mesh points. 

The matrices D
1 
 and 0

2 
 are required (from section 4.1). If the 

= 	= 

definitions (4.2) and (4.3) are extended so that 

ddr 

p* 	k 
1 - D

1
.p* .  

Ar 
 + D(Ar ) 

=   

d
2
p*. 	1 	

k
2 

D* . * 	+ 0(Ar ) 
dr 	 2 

 
Dr
2 

To simplify the notation, drop asterisks and note that pn  is identically 

zero and so C
ln
(r) is not used. 

Write 

P  = {P1' 
	p n-1 ,p'Ar} 

C(r)!D (r) 
In 

 
In 

Note that by defining Con(r), Cln(r), C2n(r) to be identically zero then 

the new definition of p will not alter g0(r), g1(r) and g2(r). 

4.5.5 	The Cubic Spline Derviative Influence Coefficients. 

Rememberingthatgo(r) has two continuous derivatives, and different-

iating g3(r) twice gives 

n-1 
g'
3
(r) = E C' 3  r)  j( Pj 

j=1 
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n 
g3(r) 	= E 	C"

3 J
r) p. 

J 
j=1  

Novi it is known [Ahlberg, Nilson and Walsh,1967] that.  

do 
g'(r) 	= dr + 0(Ar4) 
3  

_42 

2 g"
3
(r) 	= 	P  + 0(Ar2) 

dr 
 

Thus 

(4.24,i) 

(4.24,11) 

dp 

dr: 
= 01. p —

1 
+ 0(Ar4) 

d2p 
= 	p 	+ 0(Ar

2
) 

dr 	Ar 
=2. — 

1
2 

Ar 
 

(4.25,1) 

(4.25,11) 

If 

(k 
(D
kj 
).. 	= C3 .) (r.) , 	1<j<n 1 = 	1 

1<i<n 

k=1,2 

(4.26 ) 

 

= 0(k)(ri ) , j=n 3n  

  

     

	

D 	d p k 
(D )

ij 	Do 	k is equal to — (---) 
r 
 if p

n 
is taken to be p'

nAr. - 	 . j dr 

As it was decided to use a relatively fixed grid the matrices Di  and 

D2  could be calculated initially assuming Ar=1 and remain = fixed throughout 

the run. The appropriate value for Ar was used explicitly where appropriate. 

By using cubic splines, a unified method has been obtained in which 

the complete continuous pressure curve is generated. 	Further, as Reynolds 

Equation is a second order differential equation in pressure, the pressure 

has to have at least continuity in the second derivative. Cubic spline 
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interpolation gurantees second differential continuity and may be 

considered to be a finite element method, albeit one-dimensional. 

4.5.6 	The Calculation of the Jacobian. 

It is instructive to write the calculation necessary to solve for 

the pressure field in the case of an elastic parabola squeezing onto a 

compressible variable viscosity fluid film. 

Let it be assumed here that the deformation w may be calculated as 

w = F.2_ .Ar 
	

(4.27) 

dw 

 

-= G .p = (4.28) 
dr 

This will be shown to be possible, and a method for calculating F and 

and G given, in the next chapter. 

Remember that (equation 4.12) 

d  
d
2
p 	1 	1 dY 	dp 	12dt (ph)  

1 

	

f.= (---
dr
2 + (—r + Y dr 	dr ) 	)1  = 

6 
(J)ii  = (sp  (fi) 

3 
d   dt 

(ph) 
 i 	1 

=p.v 
 c 
 + E 	c (pw) 

i j=1 	j 	j  
(4.29) 

and 

Let 
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where 	(pw)
i1 

is to be evaluated at t
i  

(pw)i2wasthevalueof(Pw)at ti-1 

(pw)
i3 
 was the value of (pw)1  at t

i-2 

and 
	

c is found from the 3-point Lagrangian interpolation formula. 

Note that (pw)
21 

and (pw)
31 

are fixed values as they were solutions 

at an earlier time. 	Now from equations 4.2 and 4.3 

d
2 

3 

	1 
( 	 ) = (D ) 

	

Pj 	dr
2 i 	=2 ij 

Ar
2 

 
and as 	

p 
= (0 ) . —

1 

	

a 	dr i 	=1 ij Ar j  P 

1 dY _ (1 dp 	1 do ) dp 	3 dh 

Ta dr - p dp n dp dr 	dr 

then 

	

3 ( 1 dY)  . 6. 	D 	(1 dp 	1 do ) dp 	(1 dp _ 1 dn) 	 1 rn 	1 

pj  n dp i dr 	-r dp 	TT dp i `'"="1' 	Ar 

3 dh 
- 	. F. 	Ar+ 2() 

h
2 dr 	=1j 	

h(
= ij 

Finally, 

;pi  

	

D' 	
12(pivc+clpiwi+c2(pw)i2+c3(pw)i3 	126ij  3pj  (vc+civii) 

(   ) 
a . 	Y. 	 Y. 

	

P j 	1 	 1 

12c p. 	12(p .v+cp w.+c (pwl 	+c (pw). 

Y. 

	

1 1 
 (F 	

1 c 1 i 1 2 	i2 2 	i3 
. 

=1)13. 
 r + 	

Y 
1 	 1 

 
{6.(

dp
) + CF) Ar} 

 do n 
- 

p 
1 
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By elimination this may be written 

12(c (pw)
i2  4o,3(Pw).3) 	127 (ph) 

	

1 do 	
+ { 

12--(ph) 
dt 

(S  ..{ Y1  ..{ 	
2 	(.1 dp 

dp
)

i 
 4. 	a  

Y 	
(
n dp . 	 . 

1
Y  

1 	
p 

 

126.
1
p 

3 
Y   } 	

3 h 
- (F)

1
..Ar 

=  

Thence 

1 	1 	1 dY 	1 dP 	1 dn 	1 	3 dp 
(3);_f(y.2)ii  Ar2  + {(- + - —) + (- -.- - - 	 )}. (17 ) 

r Y dr 	
--- + -- (--).(G ) 

p dp 	n dp 1 =1 ij Or 	h. dr 1 - ij 
1 

d 
12--(ph) 	12t p 

dt 	1 	1 dh 	3 
4{ 	y  

Y 	
(ii- c7f,)}i  F

.  
, (E) •

1 
 .6r+ (1-Sin 

)6 - ,3 	ij 
1 

d 
12(c

2
(pw)

12
+c
3
(pw)

i3 
 (p 

 OP 
)+ 

12
a

(ph) ( 1 do  ).1 a 	1 dp' 1 d 	d 2 -1- -- ( — - - 	..1 ) (-2) + 
a 	p dp n dp 	dr 	Y 	p dp 	Y 	n dp 13  Pi  

(4.30) 

Note that this last term does not appear for i=n, as p' has no effect 

on the density or viscoisty at any grid point. 

4.5.7 	A Modification to the Newton-Raphson Method. 

The Newton-Raphson algorithm gives a method to calculate the changes 

6p that need to be made to the pressure values at the nodes in order 

to converge to the solution f 	)=0. The magnitude of the Ag are 

absolute values. In the outer regions of the contact the pressures are 

low and there 62 are expected to be correspondingly small. Near the 

centre the pressure values are high and thus large values of An_ are to 

be expected. 

The equations which are to be solved using the Newton-Raphson method 
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are linear sums of the Ap . It is possible for large errors to be made 

in the calculations of the Ap in the outer regions where they are 

much smaller in magnitude and are thus liable to be swamped by those 

of the inner regions. 

A possible remedy is to use the fact that the initial estimate is 

normally quite close to the final solution at all grid points and then 

to look for a method which solves for relative changes. 

A function 	y(p) will satisfy this requirement if Ay = .12 

i.e. if 1  dp  = -13  , giving y(p) = In p 

Now the problem is reduced to solving f (p ) = J*(y).(-Ay) 

where 
aPi
(R)  

(.2"ij 	alnpj  

af.(2) 
_  1  

BP 	Pi 

= (4)ii  pi  

Note that f (_p) remains unchanged, and does not need to be written 

a 	_ 
Dino  - P.  Bp 

Thus the modified algorithm is to calculate f (p) and J. Then 

for each j, multiply the j-th column of the matrix J by pi  to obtain J*. 

This matrix equation is solved to give Alnpi=Api/pi  and hence gives 

(pi)si.T(pi)s(1-(Alnpi)s) for the (S+1)-th iteration. 

as f*(y). Use is made of the fact that 
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This was found to give only a slight improvement to the convergence 

of the system, and was not pursued. Instead the method described in the 

next section was employed. 

4.6 	Vogelpohl Type Substitution. 

VOGELPOHL (1937) was aware that due to the h
3 
term in the Reynolds 

Equation the pressure was high where the film thickness was low, and 

vice versa, so if s=phn  was substituted into the equation, a more linear 

3 
distribution would result. He assumed n= 7  in order to eliminate the 

first derivative in the particular case he was considering. However, 

there was no great advantage in doing so in the fully varying case, and 

n=2 was chosen. 	Also the effect of the viscosity-pressure was to cause 

greater pressure near the centre than in an isoviscous case making this 

substitution give 

d
2
5 	,1 	1 dY* 7,dS 	1 	1 dY*

)Z 	
dZ
)S 	12 dt-  

(ph) 

dr
f 	"TK 	- TI T - 

„ 	
7* 	- 	Y* (4.31) 

and by L'Hopital 's Rule 

2 
2 d 

r

2S 
2--S = 12---(ph)/Y* , at r=0 dt 

d 
	dr 

dh 
where Y* = p 

nh2 

3 
, 	. _2 	

dr 0 
with S=ph2  

0 h 
0 

h0  = max(10
-7

,h
c) + r

2
/2R 

If the body is rigid then h=h0  and so Y*= nh 

(4.32) 
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The substitution S=ph
o
2  
 was used rather than S=ph

2
, for the elastic 

case. As h is a function of all the pressures, given a set S, then the 

relation between S and p would be S.=p.(h.+Fp).
2  
, giving a further non- 

linear set of equations to be solved for p after S has been obtained. 

h
e 

becomes negative in the elastic case at low film thickness and because 

the 	property that he  is small at the centre and increases like the 

undeformed film shape outwards is needed, he  is chosen to have some 

fixed minimum value, here 10
-7
. 

Note that this process gives a different differential equation 

and as such is not a solution method but allows us to solve for a more 

linear function. 	Most methods that are applicable to solve the Reynolds 

Equation may be used for this Vogelpohl-Reynolds Equation. 

Note that 

1 dY*= (1 dp 	1 dr')  dp + 3 dh _ 2 dh0 
e* dr 	p dp 	ri dp dr 	h dr 	h0  dr 

1 dY 
Y dr 

The main attribute of this method is to reduce the difficulty 

involved due to the centre pressure peak being so high, and it was found 

by experience to be a very good method. 	Comparing errors obtained by 

a method solving for Reynolds Eqaution and those obtained by solving 

the Vogelpohl-Reynolds equation showed that greatly reduced errors were 

obtained in about the same time. 	Thus it was decided that the modified 

equation was the one to be solved. 

The integral solution method cannot be directly used to solve the 

Vogelpohl-Reynolds equation. 
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4.7 	A Combination Method. 

4.7.1 	Introduction  

The Newton-Raphson method requires the solution of a complete 

matrix of size (n)*(n) with spline methods or (n-1)*(n-1) with ordinary 

difference formulae. 	As the work involved is proportional to n
3
, it 

is worthwhile to look for methods which reduce the size of the system 

to be solved. 

One way to do this is to use two different methods, and join the 

two together under suitable conditions. 

4.7.2 	The Method. 

In order to solve for the Reynolds Equation using the direct integral 

method (see section 4.3), the boundary conditions used were 

1) dp — = 0 at r=0 dr 

2) p= 0 at r=rs  

These may be rewritten as 

 

1) dr  C4t r=ra (for some ra 0 <r <r ) — -a- s 

 

2) p=0 at r=rs  

and gives p(ra) = pp  

 

In the normal case, ra=0, so that CN  = 0 and p0  = p(0) 
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dp • 
Again, in the normal case, ra  = rs, giving pN=0 with CN  = — 

dr(rs).  

The equations were rewritten in the different forms to show that 

methods already developed may be used with only minimal change to solve 

with each of the separate domains. 

The combination method described here works on the principle that 

the domain [0,r
s
] may be divided into two zones - an inner zone 10,r ] 

- 	a 

in which the pressure is high and large relative changes in film 

thicknesses and viscosity are occurring, thus needing a Newton method 

(with or without Vogelpohl substitution) and an outer zone [r ,r ] in 
a s 

which the pressure is low, the film thickness is large and the effect 

of the elasticity is small, and thus is amenable to the Direct Integration 

method. 

The algorithm is to use the Newton method with p(ra) = pN  and 

obtain 
dp  
---(r 

a
) = C

N. 	
This value of C

N 
is used as a boundary condition dr  

in the Direct Integration method and a new pressure pp  is generated. 

If pN=pp  (to within an error tolerance), then the solution has 

been obtained. 

With [0,r
a
], the pressure field satisfies the Reynolds Equation 

by Newtons method. 	It is also satisfied over [r
a
,r
s
] by the Direct 

Method. 	At r
a the pressures match from both methods, the first derivative 

matches, for CN' obtained from Newtons method,.is used as a boundary 

condition for the Direct method - and as Reynolds Equation is satisfied 

on both sides of r
a, the second derivative matches. 

	Hence, all parameters 

that can be defined using these models have been matched at the junction, 

so the entire pressure field is the solution required, satisfying (4.7.1) 

over the whole range. 
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In general, pN  i=p0, in this case the solution has not been found, 

and iterative process needs to be used. 	The simplest method would 

be to set po  = pN  and iterate again. 	A slight modification to this 

was made in that instead of just p(ra) being changed, all pressure 

values within the inner zone were altered by an amount Ap = pN-po. As 

Reynolds Equation is basically an equation relating gradients, if all 

pressure values were changed, the gradients remain unaltered. 	This 

modification guarantees that the complete curve would be continuous. 

The advantage of this method is that in the outer zones it uses 

a computationally cheap method,and an expensive method only in the inner 

region where it is necessary. 

4.7.3 	Discussion. 

This method was initially thought to be promising as it was far 

quicker than using Newtons Method over the whole range and it was able 

to solve for higher pressures than the Direct Method alone. However, 

at yet still higher pressures, one that are low in EHL terms, the method 

did not converge. The exact reason for this is difficult to ascertain. 

It could have been the relative mesh spacing, the position of ra, or 

the fact that for large derivatives the method could require under-

relaxation, or perhaps some other reasons. 

This method was, however, rejected in favour of the next method 

to be described because, although the pressure is small in the outer 

regions, it has a disproportionate effect on the load. 	The load has 

to be accurate in order to integrate with respect to time in any 

reasonable computational time (see section 4.2). It has been noted in 

4.5.4 that the order of the cubic spline method for Reynolds Equation 

2, 
is 0(Ar J. 	By using the linear spacing it is possible to solve Reynolds 
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Equation to 0(Ar
4
), however, in the outer zone, the direct method is 

only accurate to 0(Ar
3
). 

It was decided to look for a higher order method that would be 

more accurate in the outer zones, rather than to track down the reason 

for the divergence. 

4.8 	The Quintic: Spline Formulation. 

Just as a higher order method was obtained by changing interpolating 

functions from C
2j
(r) to C

3j
(r), then this can be further extended by 

changing the form of the functions from C3i(r) to C5i(r). 

Remember that for the cubic spline, in order to evaluate uniquely 

all the available coefficients, the curve is required to be piecewise 

cubic with continuity of value first and second derivatives over the 

knots as well as needing two end conditions. For the quintic spline 

however, it is required that the function and the first four derivatives 

be continuous over the domain together with two end conditions being 

required at each end. 

The quartic spline was not considered as it does not always exist 

for an arbitary spacing (see ALHBERG, NILSON and WALSH, 1967). 

What two end conditions msy be giVen? 

One may be that the end slope is a given value, as is used for the 

cubic spline. 	For the other:, ALHEERG, NILSON and WALSH, give a condition 

that requires the second derivative to be given. 	This cannot be directly 

used in this problem, for the Reynolds Equation is used to give a value 
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for the pressure at r=0 and the derivative at r=rs. That is, there 

is a (1-1) correspondence between the number of unknown pressure values 

and points at which the pressure is to be satisfied. 	To use the 

second derivative condition means that one equation (Reynolds equation 

at r=0) has two unknowns at that point; the pressure value and the 

second derivative. 

A solution to this problem would be to require that Reynolds Equation 

be satisfied at some extra point, say the first mid-point; and that 

the pressure at that point isnot independent but lies on the interpolated 

pressure curve. 	This gives an extra equation, but not an extra unknown. 

The one used here, however, it that 

3 (iv) • 	3 	(iv) 
A g 	= A.gn 	= 0 0 ' (4.33) 

i.e. the third divided difference of the fourth derivative of the inter- 

polating spline function was zero at each end. 	This is the highest 

order end condition consistent with using quintic splines. 	Further, 

using this allows the function x5 to be accurately interpolated. The 

method of calculating C5i(r) is to be found in Appendix I. 

Writing as before 

C
5n
(r) E D (r) , 	) 	= 

dr
)r  .Ar 5n 	n 	s 

gives 
n 

p(r) = j!C5j(r) p. ,, pj  

and similarly as above 



i 
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Figure 4.5. 	Cardinal Interpolating Polynomial of Degree 5. 
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dp 	K
1 

= 	
1 

D p — + 0(Ar 
dr 	=1— Ar 

d2p 	K 1 
: 	D p — + 0(Ar

2
) 

dr 
2 

Ar
2 

Here k1=6 and k2=4 and gives a high order system which will help 

to accurately calculate the load, especially the part obtained in the 
f rs 

outer regions. 	This is very important in the later stages when 27 	prdr÷ W 
0 

and the difference between these is required, thus noise in the system 

becomes increasingly important. 

The only difference between the solution method using the cubic 

spline and that of the quintic spline are small changes in the Di  and 

D
2  matrices reflecting the different set-up. 	A larger curvature in = 

the quintic spline may be observed from Figure 4.5, otherwise the same 

solution method may be used for the two methods. 

Usingthe standard benchmark test of comparing the solution obtained 

for a rigid parabola-exponential viscosity oil system by these methods 

with that obtained by the analytical solution using a fixed time step 

integrator it was found that the errors obtained for a given mesh were 

an order of magnitude lower using the quintic spline over that of the 

cubic spline. 

Other conclusions could also be drawn, as during these tests different 

grid spacings were used in addition to changing the number of grid points. 

In order to calculate the elastic distortion accurately, it is necessary 

to solve the system of equations with many points in the middle and 

more widely spaced towards the outer zones of the contact. However, 

it was found that when using a non-linear grid spacing, increasing the 

number of points could increase the errors. 	Increasing the number of 
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points should give smaller errors, and this so when using a linearly 

spaced grid, consequently an explanation was needed. 

The answer lay in the effective spacing, i.e. the average length 

between nodes. 	If the solution is actually smooth and of the form 

assumed, then putting in an extra grid point had little effect, so when 

a non-linear grid was used, putting an an extra grid point in the outer 

region squeezed several of the central points so close together that 

no extra information was gained from using them. 	The solution behaves 

as if there were less points. 

Thus, the choice of grid spacing must be made with great care. 

Again, the advantage of using a relatively fixed grid spacing (see 

section 4.1.3) hold, so the extra overhead of using the quintic spline 

formulation over the cubic spline is only the extra work involved in 

finding the load. 

Now the number of points may be reduced to reduce the order of 

the matrix, but to maintain approximately the same truncation error, 

i.e. 31 grid points down to 26, making the ratio of n3  to be 1.7:1, so 

the reduced matrix takes about 60% of the time to solve the larger one. 

This method, (together with the Vogelpohl substitution) is the one used 

to obtain the results of Chapter 6. 	Alternatively if the number of 

points is kept large the solution may be able to sustain larger time step 

intervals. 
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CHAPTER FIVE 

THE ELASTIC DEFORMATION  

5.1 	Introduction  

In this chapter an expression will be obtained for the vertical 

deformation at any point due to an arbitary axisymmetric pressure distribution 

extending over the contact, (Formulation I). 	Using this expression a 

similar formulation for the spatial derivative of the deformation will 

be calculated. 	A simple correlation is found in which the derivative 

is calculated by finding the deformation due to a transformed pressure 

distribution. 

Next the actual pressure distribution that is interpolated from the 

set of pressure values at the grid points is discussed and then for given 

pressure distributions of appropriate type the deformations and their 

derivatives may be calculated exactly (to machine roundoff). 	These 

values will be obtained in a different manner (Formulation II) from the 

initial formulation as it is easier to calculate analytical solutions 

for the particular pressure functions considered. 	The relation correlating 

the derivative with the deformation is used to obtain the spatial 

derivative. 	Hence, for a specific grid, the relevant compliance matrices 

may be obtained. 

Finally, the horizontal deformations are similarly calculated and 

the values of the matrix obtained are seen to be small compared to those 

of the normal deformation matrix, especially at the centre where the effects 

of horizontal displacements on the pressure field would be greatest. 



Figure 5.1. 	Co-ordinates for the 

Calculation of the Vertical 

Deformation. (Formulation I). 

Figure 5.3. 	Co-ordinates for 

the Calculation of the Horizontal 

Distortion. 
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5.2 	The Elastic Deformation (Formulation I)  

The deformation produced at any point by the pressure distribution 

extending over the contact is to be calculated. 

Following CHRISTENSEN (1967,1970), the problem consists of finding 

the deformation at point A on the surface of a semi-infinite solid by 

a concentrated load pEdEde applied at an element B.(see Figure 5.1). The theory of 

elasticity (TIMONSHENKO and GOODIER, 1970) predicts that the local vertical 

deformation is 

1 	pEdE Sw = 	de 
TrE 1 	L (5.1) 

From the cosine rule 

L = (r+E-2rEcose)2  

Now if this is substituted in the above equation and then integrated 

with the appropriate boundary conditions, (6 runs from 0 to 2n and the pressure 

is non-zero only on [0,r
s
] 	At any given time r

s 

w(r) = 	

is fixed). 
21- 	Ede  

1 Ts 
p(E) 	V 2 	_

dE 
(5.2) IrE 	0 	0 	r + 	2rE cos 0 

Consider first the inner integral, then 

(27r  Ede
4E 	T 	de  
_rE j0 r+E-2rEcose 	r+E 10 	1- 

4
(7Tvin u 

4E K r(4r  
r+E L 	.2 J  

(r+E; 

where K(k) is the complete elliptic integral of the first kind. 
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Hence, 

1 irs 4 2VRI1 
o(E) — K [---j 

	

w(r)  = 7E' 	' -- r+g 	r+g 
0 

7E
1 

1
frs 

	

= — 	p(g). F(r,g)dg 

0 

4g 2A7g- where F(r,g) - ] 
r+g r+ 

(5.3) 

Note that this expression is different to that obtained by CHRISTENSEN, 

1967,1970, who using another integral transform, obtained 

Ed@  

E-- r
2
+g
2
-2rgcose 

= 4K( 	) 
0 

5.3 	The Derivative of the Elastic Deformation. 

5.3.1 Transformation 

dw 
Given the expression above for w(r), ---(r) may now be calculated: dr 

this is needed for the solution of Reynolds Equation. 

dw(r) d 1 frs 
( p (g)F(r,g)dg) dr 	dr 7E' 0 (5.4) 

Differentiating under the integral sign, noting that the limits are not 

functions of r. 

r
s -4g 	21/T.T 	4g d 7E' dw.(r) = 	p() (r 	K [ 	] + o(g) 	Ki I--]] d (b b) dr 	+g)- 	r+g 	' 	r+g dr 	' r+g 0 

Now if r 	0 

d2J--  K 	1S dk 
dk • dr ' if k = 2117- 
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dK 

	

dk • (r+E) 	r 

And if 	0 

d 247 0 r 71 	dK dk 

	

r E' 	dk 	dE 

dK 	r-E 	r 
dk • 77.7-71  

Hence 

dK 	_ g dK 
dr 	r dE (5 .6) 

Substituting this result in the equation 5.5 

  irs 	 E .: 	 fr s 	 .E 
	

-E 
—
d 

 
2 ffa, r(r) 

	
p()cr7K 	p(W

r+; •  r dE 1:7
4
7T
7E-1

u 
0 

Integrating this second integral by parts. 

r
s 	-1 	4

2 	
r2iR-  1]

r
s 7E' dr(r) = f 	13 (E) 	- (p(E) 	j 

 r+E 	tr+Eir r+E 0 	 0 

r
s 

f 	(do (v  4E2  	n(r1  	„ 4E
2 	

] r247 
dE 	(t"-E)r 	''(r+)r 	dLE) 	d 

0 

rs 

	

= -(
r,1  4E

2 	
Kr fil 	dd(E)Lf(r,r)4.p()c.:1E 4.  2 -E 	1 

13 "''(r+E)r 	r+E jo .0  dE 	r 	r r(14E) 
	jF(r,E)dE 

1 
= - 

7
fp(V 

r 	1 
EF(r,E)] 0s 

	
r 

+ — 
rs 

f 0 

dp 
fp(E)+ 	(71(E).E) 	F(r,E) 	dE 

However, at E = 0, EF(r,E) = 0, and at E =r
s' p(E) = 0, so that 
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r 
[p(E)EF(r,E)]os  = 0 

Hence 

r
s 

r
E  dr 

E' dw  Cr)(r) = 	(p(E) + c11-3(E)EjF(r,E)dE , 
0 

	

= 0 
	

r=0 	(5.7) 

To obtain this relation, it is necessary that 0(E) is continuous. 

If it is not, several partial integrations are performed, and terms of the 

	

form [p(E)EF(r,E)11, 	are found. 	Only continuous pressure functions 
x 

are used in this work. 

5.3.2 The Derivative as a Transform of the Deformation. 

dw 
It may be seen by inspection that the formula for---(r) requires 

dr 

the calculation of an integral term of the same form as in the formula 

for w(r), (equation 5.3). 	Let the pressure distribution p(E) be given. 
dw (r) 

It gives rise to a deformation distribution w (r), and 	P
r 	

is to be 
d 

calculated. 	Then, all that is necessary is to construct the function 

dp 
q(E)=p(E)+--- (E) and, using equation 5.3, calculate w (r). 	This function dE 

is the deformation produced by the pressure function q(C). 

Then substituting for the integral in equation 5.7 

dw (r) 

dr 	
1 

= 	w 
q
(r) 	, 

r  

= 0 	, r=0 	(5.8) 

If p(E) is a continuous piecewise polynomial of degree L, then q(E) 

is a piecewise polynomial df degree L. 	Thus, if a method is found that 

can find the deformation for an arbitary piecewise polynomial of degree L 
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then the spatial derivative may be immediately found. 

If p(E) is not only continuous but also has continuity in its first 

derivative (such as a cubic spline), then q(E). is continuous and consequently 

dq 
if q*(E)=q(E)+E--(E) with a corresponding deformation w *(r) then 

dE 

d
2
w (r) 

d 	1 
	 - 	

r dr 	q
( r)) 

dr
2 

1 
dw

q
(r) 

1 
-  

r 	dr 	
r
2 w q

(r) 

Hence 

d
2
w (r) 

dr'P 
	1 • - 2(wq*(r)-w (r)) 

r 
(5.9) 

This may be extended so that if p(E) has continuity in the m th 

derivative, then the (m+1)st derivative of the deformation is given by 

repeated application of equation 5.8, using appropriate forms of p(E) and 

q(E). 

5.3.3 A Check on the Transformation. 

The transformation may be seen to be correct by considering the 

pressure obtained between two sp!.lerical bodies (the Hertzian problem) 

and also the problem of a rigid, flat die being normally squeezed on to 

the surface. 

The solution for the Hertz problem is given by: 

(see TIMONSHENKO and GOODIER) 
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s 	Tra 	_ r2 
wCri  = 	2 PO 	2R 

p(r) = p 
-1(82-r2) 

 

a 

, 

where 

1 	.n.R 
a _ - 	 2- p0 

Now 

dw 
= - 

dr 

And 

p(r) + 
dp  
---(r).r=2p(r) - p0  
dr  dao-r4  4   

If q*(r) = p, 	
a 	and has associated deformation w *(r) then as 

u VaZ_r2 	 q 

q(r)=p(r) + 12(r).r (Definition of q(r) from equation 5.8). 
dr 

= 2p(r) - q*(r) (Differentiating p(r) and definition for q*(r)) 

then considering deformations 

w (r)=2w (r) - w *(r) 
q 	p 	q 

But from equation 5.8 

dw (r) 
w (r) = r 	P  

dr 
r
2 

= --- 
R 

r2  
So 	w *(r) = 2w (r)+ 

1 
= 	Tr apo  

This is a constant and the pressure q*(r) and its associated deformation 

w ( ) gives the solution for a rigid flat die impressed onto an elastic 
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half-space. 

5.4 	The Calculation of The Deformation Matrices. (Formulation II)  

5.4.1 The Interpolating Function and the Deformation Matrix. 

In section 4.5.4 it was determined that 

n 

g
1
(r) = E C

lj 
(r)p 

j=1 

where gi(r) is the interpolated function through the grid points. 

So if the actual pressure distribution is approximated by the 

interpolated one, then 

r 

71E' w(r) = 	
s
g
1 
 (E)F(r,E)dE 

0 

r
s 
n 

= 	E C
lj

rE).p
j 
F(r,E)dE 

0 j=1 

 

n fr 
= E [I 

s
C1 .(E)F(r;E)dE]. pj  

j=1 0 
(5.10) 

Thus, 

  

where 

7rE'w(r) = (F
1
.p)Ar 

r 
(
f
1
) 	Ar =I 

s 
 C (E)F(ri  E)dE 

0 
(5.11) 

5.4.2 The Invariance of the F Matrix for a Relatively Fixed Grid. 

It has been shown in Chapter Four that in solving the Reynolds 

Equation a grid has been used in which ri(t)=Ri.Ar(t), that is, the whole 

grid expands to cover the area of impact. 	This means that 
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Rj..r.(t) = R.rj(t) 1 
I V i,j 

Now consider 

n 
E I 

s
C:
lj

r  
TrE,14(1-.

1
) = 	.(E)F(r.,E)dE 

j=1 

and consider the effect of putting r=Ar.R,E=ArE (i.e. expanding the grid 

by a constant factor), then, by inspection 

F(Ri,E) = F(ri,E) 

and as from Chapter Four 

f

r
s
C- 	

R
n 

.(E)d =. 1 C1 (E)dE,Ar 
lj 0 	0 	7 

(where Clj  (E) is mapped onto r and Clj  (E) is onto R) then if 

1 in 
,E)dE 

0 
then 

w(r.) = w*(R.).Ar 
1 	1 (5.12) 

Thus it may be seen that if a relatively fixed grid R is used to 

calculate for the elements of F, then F is invariant with time and these 

elements can be calculated once only, finally giving equation 5.10 for 

the actual deformation with real spacing Ar. 

5.4.3 The F Matrix 

  

The problem is to calculate the F
1 
matrix. 	The interpolating 
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functions gi(r) have been chosen to be piecewise polynomials and are 

continuous if 1>1. 	If 1> 1 then the g
1
(r) will satisfy the condition 

of continuity necessary to obtain equation 5.8. 

The elements (F
1
).. of F are then calculated. 	As C

lj
(r) is a 

= 

piecewise polynomial of degree 1, it has an equation of the form 

1 
Clj  (r) = E a

ljkm
(r-R)m 	, re[R

k
,R

k+1
] 

m=0 

which may be written as 

1 

C
lj
(r) = E A

ljkm
r
m 

m=0 
, r RR

k+1
] 

(5.13) 

by expansion and collection of the terms. 

Using the rule of linear superposition 

R
n 

(e)ij =1. .C.(E)F(FR.:E)dE 
0 iJ  

n-1 
fiRk+1 

1 
m 

E 	_F(R.,E)dE 
k=1 R

k 
m=0 

n-1 1 	
R
k+1  

= E 	I A
l kmIE

rTIF(R.,E)C= 
k=1 m=0 

n-1 1 
=EZA 	IrT.1  

ljkm 
k=1 m=0 

Thus the problem reduces to that of finding ITK  where 

I
ik 	fR

K 

= 	
k+1 

=
m 
_ F(R..--)d- 

1- 	- 
(5.14) 

But if 
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Jik  = fo
R
k 	m 

 .F(R. 11-  - 

then 

m = Jm 	- J
m 

Iik 	ik+1 	ik (5.15) 

Nowsq.k isthedeformation(multipliedb e to a 

disk of pressure with distribution p(r)=rm, extending to Rk. 	The 

method used to calculate these will be found in 5.4.5. 

The algorithm used to calculate (F1)..is:- 
= 3.3 

Choose a grid R and an order of interpolation 1 

For each value of i,1 < i < n 

Set R. 1 

For each value of k, 1 < k < n 

Set R
k 

For each value of m, 0 < m < 1 

Find Im 
ik 

End loop m 

End loop k 

For each value of j, 1 < j < n 

Set (F1 ) ..=0 

Find Cl.  (r) 

For each k, 1 < k < n 

For each m, 0 < m < 1 

Find a
ljkm 

from
lj
(r) 

Hence Alikm, by expansion 

Set (F1).. = (FI). 	+ Al. 
	. Im  = lj = lj ljkm ik 

End loop m 

End loop K 

End loop j 

End loop i 
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Indentation has been used to show the loop structure of the 

algorithm. 	The final summation is at the fourth level of nesting. 

5.4.4 	The G Matrix  

To calculate the G matrix, use if made of equation 5.8 

As 

= 
 1

R 
0s Cij(E)F(Ri,E)dE 

dw Cr) 

dr 
1 

	 - r w 
q
(r) 

1i I0s

R 	
d 

(G1). = 	
(Clj 	

_ 
(E) + 	C

lj 
 (E)) .F(R

I'
E)dE 

- 	R 	dE 

1 
C
lj
(E) =.E A . 

	
Em  

m=0 

1 
C
i 
 .(E) + E 

d  C. 
.(E) = E (m+1

)Aljkm 
Em 

j 	E  
m=0 

Hence 

n-1 1 
' 	E 	E (m+1)A 	I (G) = 	 "1 7mF(Ri,E)dE ij 	Ri k=1 m=0 	ljkm   

R
k 

n-1 1 
= 

1
— E E (m+1)A 	I

m 

Ri k=1 m=0 	
ljkm ik 

 
(5.16) 

Thus the G matrix elements may easily be obtained as a by-product 

of calculating the F matrix. 

and 

But 

So 



IrE'w = 2f 	E 	() 
0 iL

2 m
dLd 
 

0 L
1  

( 5.17) 
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5.4.5 The Calculation of J
. 

  

 Jik  isthedeformationproducedatr.due to a pressure field of 

radial extent r
k 

and of form rm. Figure 5.2 is used for the coordinates. 

Taking the origin to be the point at which the deformation is 

required (point A), a distance r away from the centre. 	Let the disk 

be of radius s, and an arbitary point in the disc has coordinates (LA)) 

and pressure 	m. Equation 5.1 becomes, as the origin is point A 

1 p(L)dLde  dw = 
TrE' 	L = E,

m
dLde 

Thus, the deformation w is given by 

There are three cases to be considered for each value of m, 

i) r<s. The point A is within the disc. Here 0= Z . 

ii) r=s. The point A is on the edge of the disc. Also 0= 	. 

iii) r>s. The point A is outside the disc. 0=sin-1 s 

From the cosine rule 

E= (L2-1-r
2
-2rL coO)2  

Hence 

TrE'w = 210 L 
	m/2 
2
(L

2
+r
2
-2rLcos0) dLd4 

f  

But the limits, L1. and L2, are given by 

s=(L
2
+r2-2rL cos02 

0 L
l  
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L1,L2  = r coscpi s2-r2sin24) 

Put b=L-rcos4) 

ysZ-r2sin(1)(1:3 24.r2sin20m/2db  2 (L2i.r2_
2rLcos4))

m/2
dL=2 

0 JL1 

Hence 

(1) 	isz-rzsin2(1) 	2 . 2 m/2 2 	x) 	db d(1) +r sin y ffE'w = 41 
0 10 

(5.18 ) 

These integrals 	are given in Appendix II. 

5.5 	The Horizontal Deflection 

5.5.1 	Derivation 

Consider a point S inside an axisymmetric ring of pressure. Whereas 

the vertical deflection is positive for any positive pressure applied 

at a point on the plane, the horizontal deflection has an associated 

direction, that is, it will move towards the applied pressure element. 

Again the Boussinesq solution (TIMONSHENKO and GOODIER, 1970) is 

used. 	This gives the deformation produced at a point L .distant from an 

applied point load W is 	-1* W 

Consider a sector subtending small angle 64, it intersects the 

circle of radius 	in two places. 	The pressure at X1  tends to deflect 
-1 PrldOri 

the point S towards it by 
27E*r 	

and that at X2 towards X2 by 

-1 	
Pr2dOr2 	1 

2TrE*r
2 

In the limit as the width of the pressure ring tends to zero these 

. (See Figure 5.3). 
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are equal and opposite in direction, thus they cancel each other out. 

This process may be applied to all such sectors, so as to cover the 

surface outside the point S. 

Hence the horizontal deflection at a point wholly inside an axis-

ymmetric pressure field is zero. 

This result is analagous to that of the gravitation field inside 

a uniform spherical shell due to that shell. 

For a point T outside the ring, the same process may be performed 

as for the vertical deformation, but remembering that as direction is 

involved the distortion may be resolved into two directions, one along 

the radial line OA and the other perpendicular to it. 	The deflection 

perpendicular must be zero as the line is a line of symmetry, so only 

radial deflection need be considered. 

du - -1 PEdEd0 
 cos. 27rE* 	L 

L
2
=r
2
+E
2
-2rEcos0, Lcosq) = r-E dose 

-1 PEdede  Su - 	(r-Ecos 0) 21TE* 
r
2
+E
2
-2rEcose 

thus 
r 

u(r)= -1  f 2 	
P()cke  

(r-EcoTe)dE 2TrE* f 2 2 
0 0 r +E -2rEcose 

but 

SO 

The upper limit on E is r due to the result obtained above. 
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Now 

de = 2 
r-Ecosi3 	1

{7 + 	
r
2
-E
2 

0 r
2
+E
2
-2rEcose 	0 r

2
+E
2
-2rEcose 

r 	-1 (r-E)tan 2]7 	= 27 
. {Tr+1.2tan (r-c) 0 

from DWIGHT, 1961, thus 

u(r) - 	
1

r 
p(E).E7  

nE* 	dE 
 j 

(5.19) 

Putting r=rs, it may be seen that if W is the instantaneous load 

u(r
s
) - 

7E* 2r
s 

5.5.2 	An Order of Magnitude Analysis for the Horizontal Deflection. 

Now 

I lul fr p(°" 	d 

(equality iff r=0) 

= •11E* 

E' 

0 	r 

1 

	

Trff' 	fo 	(E) 44 • 

	

1 	I
r 	

4E Kr  2V77E---Idt. p()  

2E* 

< E' 
2E* 

E' 

' 	nE' 

1 

r 	L 	r+E J  
0 

r 
4e 	Kr247 	dr  p(r)  

0 	r+E 	L  r+E J  

E'  
< — • 	p(E) F(r,E)dE 

' i s 

E* 71 
0 

= —E w (r) E* 

(equality iff r=rs) 

This shows that the magnitude of the horizontal deformation is less than 

that of the vertical deformation. 

1 	W 
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The horizontal distortion is zero at the centre and also at an infinite 

u( 
The maximum value occurs when ddrr) = 0, and let r=r

x 
at 

the maximum value. 

_A 	)r n 	
t. 

r 
i.e. 

L  
i f xx 	fxp4.) 	

= °
• 

nE* 	2  
x 

- Es p(rx).rxn - nE* 

ix 
P(g)gwdE  1 

or 

u(r 	
1 

x 	nE* 
) - 	x p(r.).r x

.n 

Hence 

1 
* lu(r)I < 7E p(r)).r 

X
.7 

X  

Given an arbitary pressure distribution, not much more may be interpreted 

from these formulae except by substituting various distributions. 

The horizontal deflection was incorporated into the algorithm to find 

its effect on one run. 	It was found to have negligble effect. 

5.5.3. 	The U Matrix  

Now from 5.4.1, if 

n 
p(r) = E C..

13 
 (r) P. 

and it is desired to calculate U, where 

-nE* u(r ) = U • p . Ar 

distance out. 

x 	0 	r 



or 
n 

-rE*u(r.)= E u.. . P. 
1 j=1 1 	3 (Pn=PnAr)  
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Hence by (5.19) 

ul j  = 	f 	C,i(g)gr dg 
ri 0  

But, using the Cardinal Cubic SplinesC3j  (r) 

r. 

0 
c3i(g)gdE 	0, 	i=1 

i-1 f' k+1 
E 

K=1 0 
(g-r

k 
 )+C. (g-r

k  )

2
+d. (g-r

k  )

3
]dg , i/1 

jk 	jk  

Performing the integration and eliminatingcjK  and d
jk 

gives the 

following formula when AK  = RK.41 -RK, 

uij 

1-1  a
jk
(30R+9A

k
) + 

bjkAk
(5R

k
+2A

k
) 

	

60R. 	+a. 	(30R 	-9A ) - b 	A (SR 	-2A 
1 K=1 	jk+1 	K+1 	k 	j k+1 K 	k+1 

(5.20) 

5.6. 	Effective Storage of the Compliance Matrices. 

It may be seen that the compliance matrices are written so that 

7E' 2d(r ) = (F.p) Ar 

dw 
rE' 	(r ) = G. pdr 

- rE?  _u(r ) = (U.p). Ar 

r. 
1 

i=1 

It has already been shown that if ri(t) = Ri.Ar(t), then the matrix 
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need be calculated once only, but further, by keeping the elastic constants 

E' and E* out of the expression for F, G and U, then these matrices may 

be calculated in a separate program and read in during program initialisation. 

These internally stored values are then scaled by the appropriate elastic 

constant giving 

w(r ) = (F1  p)Ar 

dw(r) 

dr = G'.p =  

u(r ) = (U'.p)Ar 

if 	F' = 
TrE' ' • - 

G' 

U' = 

1 
TrE' • G 

5.7 	Visualisation of the Matrices 

The procedure set out above for calculating the matrices may be 

extended to any order continuous piecewise polynomial interpolating function. 

For the calculations in this thesis cubic splines were used, giving truncation 

errors comparable with those of solving Reynolds Equation, rather than the 

quintic splines as it was felt that roundoff errors could distort the 

results, especially in the outer regions. 

A linearly spaced grid of 61 points in R was defined such that Ri=i-1 

and then using the methods described above the matrices were calculated 
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and are shown in Figures 5.1, 5.2 and 5.3, in the following manner. 

The horizontal plane represents a pair of co-ordinates (i,j), 

1<i<61, 1<j<61 and the vertical height represents the value of the matrix 

elements (F)ii,(G)ij  and (U).. respectively. 	The zero plane is marked 

explicity. 

The matrices are each viewed from a height 20 above the zero plane 

and from two directions. 	These are given by: 

direction 1 
V 

w 	

F 	p 	Ar 

direction 2 

n 
where w.= E 	F. p. Ar 

1 	j 
i=1 

The range in values of the matrices are:- 

Minimum Maximum 

F -1.3053 15.756 

G -3.8837 3.621 

U -0.2608 3.298 

Note that the last element in each row is the coefficient that multiplies 

p' Ar. 
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Figure 5.5. 	The G Matrix 
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Figure 5.6. 	The U Matrix 
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CHAPTER SIX 

THE RESULTS FOR THE FULLY VARYING CASE  

6.1 	The Method Used to Integrate the Equations. 

The results presented in this chapter have all been obtained using 

the same algorithm. 	The Vogelpohl-Reynolds equation (4.31) was integrated 

in the space domain using the quintic spline formulation and the integration 

with time was performed using Runge-Kutta-Merson. 	The program incorporated 

checkpoint and restart features so that it could be restarted if the 

instability in the time integration method required the time step to be 

decreased; 	and because the solution time required per run was of the order 

of 5000 sec. on the COC 6400, in which time about 11000 solutions to the 

Reynolds equation had been found. 	The maximum time used in any one run 

was about 75000 sec. during which time about 170000 instantaneous pressure 

and deformation solutions were found. 

There are two points to note concerning the time integration method 

used. 	Firstly, having discovered that the trajectory gives rise to stiff 

equations, the method used does not account for this behaviour; 	and 

secondly, the method of solving for constant load (see section 3.5.7) 

is not used in the latter part of the solution. 	The reason for both 

these methods being rejected is implicit in the assumptions used for the 

model, that is, that the effect of the local velocity of the deformation 

being taken into account. 	This has a serious effect on the stability of 

the solution algorithm. 	It was mentioned in section 3.5.1 that the 

solution is well conditioned, in that an overestimate in the load at one 

point in time will give an underestimate in the next. 	This gives 

confidence that the solution is correct and not sensitive to truncation and 

roundoff errors. 	However, when local elastic effects are included, then 
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this possible oscillation is very undesirable. For when attempting to 

calculate the local deformation velocity, alternate over- and under-estimates 

of the pressure distribution obtained give large errors in the values of 

the derivatives obtained. 	These themselves affect subsequent solutions. 

It was therefore necessary to use small time steps in order to 

integrate this system, ones that were comparable to those necessary to 

integrate using Runge-Kutta-Merson. 	Hence there was no reason to use 

any of the stiffly stable methods as there was nothing to be gained and 

there was extra computational overhead in using them. 

A very similar effect was noted when solving for constant load, 

though its manifestation was different. 	It may be recalled that this 

method was to "drop" the ball a distance Ah and find the velocity of the 

ball, vc, such that the load is equal to the weight of the ball. 	It 

should be remembered that the local approach velocity is the sum of the 

elastic deformation velocity and the velocity of the centre of gravity 

of the ball. 	These latter two values tend to become equal in magnitude 

and opposite in sign. 	With this method, the effect of using large time 

steps was to start oscillations in the velocity calculated for the ball 

dw 
as vc

=v - 
dt.. 

6.2 	The Cases Considered. 

All cases discussed here are to solve for a compressible Mark II 

viscosity-pressure type oil. 	It was assumed that the ball shape was 

initially parabolic. 	There were two values of a that were considered, 

and two values of E'; 	one approximates to steel on steel, the other to 

glass on glass, (the type used by PAUL, 1971). 
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If G is defined as 2aE', so that G is the same as that of other 

workers, (e.g. CHENG and LEE, 1971) then G has the following values:- 

a(Fa
-1
) E'(Pa) aE' G 

High a, High E' 6.1E-8 1.1374E11 6938 13876 

High a, Low E' 6.1E-8 3.9063E10 2578 5156 

Low a, High E' 2.0E-8 1.1374E11 2275 4550 

Low a, Low E' 2.0E-8 3.9063E10 781 1563 

This is quite a large range compared with other work given in the 

literature. 

Results are presented for these four sets at two different combinations 

of ball mass, radius, and oil initial viscosity. 	These are: 

Low Mass 

High Mass 

Mass (kg) 

0.0325 

0.65 

Radius (m) no(Pas) 	K1 (s) 	K
2(Pasm) 

	

0.01 	0.7 	2.196x10
-4 

0.007 

	

0.02 	3.5 	2.196x10
-4 

0.07 

The low mass cases were integrated using initial conditions of 

vs-0.1ms
-1
,and hs=0.0005m. 	The low mass, high a, cases were also integrated 

	

with initial conditions of v5=0 	ms
-1

, h
s
=0.0005m. 	The high mass cases 

were integrated using initial conditions of v
s
=0 ms

-1
, h

s
=0.0005m. 

These may be summarised as: 

Run No. 	m 	a 	E' 	vs/R 

1 	0.65 	6.1E-8 	1.1374E11 	0 

2 	0.65 	6.1E-8 	2.9063E10 	0 
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3 0.65 2.0E-8 1.1374E11 0 

4 0.65 2.0E-8 3.9063E10 0 

5 0.0325 6.1E-8 1.1374E11 0 

6 0.0325 6.1E-8 1.1374E11 -10 

7 0.0325 6.1E-8 3.9063E10 0 

8 0.0325 6.1E-8 3.9063E10 -10 

9 0.0325 2,0E-6 1.1374E11 -10 

10 0.0325 2.0E-8 3.9063E10 --10 

Four further runs were made to test other features of the system. 

They were all run on the high mass case with a=6.1x10
-8 

Pa
-1 

and E'=3.9063x10
10 

Pa. 	They were to:- 

1. Account for the horizontal deflection by setting the film 

thickness to be: 

h.=h 
c
+((r-Up).)

2
/2R4w. 

 - =- 

Otherwise the standard algorithm is used. 	This was run 

number 11. 

1 
2. Solve the rigid compressible case by setting-ff, =0. As there 

was no instability due to the local deformation velocity, 

this was solved successfully using stiffly stable methods. 

dp 
(Problems could have arisen due to the c-Tc  term in the Reynolds 

dw 
Equation, but this effect is much smaller than that in TIE; 

dp 
also the equation has 7  multiplied by h=0(10

4
).R whereas 

-t  
dw 
-cf  is multiplied by p* which is of order 1.) (Run 12). 

3. A run was made accounting for the deformation but its 
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velocity is ignored. 	This gave a halfway case between the 

rigid case and the fully-varying case. 	Again it was 

successfully integrated using the stiffly stable methods. 

(Run 13). 

4. 	Check whether the results depended on the Vogelpohl substitution 

method (section 4.6). It was noted that the substitution 

made was S=ph
2
. 	A run was made to determine whether the 

particular choice of h
0 
 had a strong effect on the solution 

obtained. For this run (run 14) 

h
o
(r)=0.1 * max(h

c
,10

-7
)+r

2
/2R 

This meant that the value of S at the centre was 1% of its 

value when using the normal method. 

It should be noted that as all velocities and film thicknesses are 

non-dimensionalised with respect to the ball radius, the value of 

hs* is 0.05 for the low mass case, and 0.025 for the high mass. 

6.3 	The Grid Mesh Used. 

There were two different meshes used in this work, one, with 26 points, 

was used for the low load cases, the other, with 31 points, was used for 

the high load cases. 	The great advantage of using a grid that expands 

with the domain on [0,rs] is that the compliance matrix may be pre-calculated. 

This allows for a fast computation time, but, on the other hand, denies 

flexibility and use of adaptive methods. 
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The 26 point mesh has values at (remembering R2-R1=Ar=1) 

0 1 2 3 4 5 7 10 14 19 25 33 

44 59 79 105 140 190 270 500 750 1000 1250 1500 

1750 2000 

The 31 point mesh similarly has:- 

0 1 3 7 10 13 20 30 43 7.0 102 145 

190 250 300 360 420 490 560 640 720 810 900 1000 

1100 1200 1300 1400 1550 1700 1350 2000 

The 31 point mesh  has more points in the outer regions than the 

26 point mesh. 	This was because the solutions are limited by the ability 

to accurately calculate the force. 	This point is further discussed in 

Section 6.9. 	It was also used for the large mass case, where greater 

radial spread of the pressure field is to be found. 

6.4 	The Solutions 

It is obvious from the graphs that during the first stages of impact 

the solution is virtually identical to that obtained for the rigid parabola- 

incompressible case. 	This is because the pressure generated is low and 

the elastic effects small compared with the rigid body effects. 	There is 

a slight decrease in the maximum values of pressure and force at the force 

peak, due to elastic effects. 	This is only apparent for the high load 

case. 

Many of the graphs are plotted against the central deformed film 

thickness, h(0). This is to facilitate comparison with the work of CHENG 

and LEE and CHRISTENSEN. 
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Figure  

6.1 

6.2 

6.3 

6.4 

6.5 

6.6 

6.7 

6.8 

6.9 

6.10 

6.11 

6.12 

6.13 

Ordinate(s) Abscissae Run No(s). Comment 

h 	v c 	c 
1°g1OPc' R.,,  ' 	R 	' 

II 

n 

\:/ c 	t 
Rg 

II  

u 

I/ 

8 

6,8 

9,10 

5 

II II  5,6 

II II  7,8 
PP " 6,8,R R-Rigid Incompressible 

Solution 
I/ II  1,3 
n n 2,4 
It " 1,2,R Ignore i) 	E' 	ii) 	

aw
1TE 

II " 3,4,R 
II " 1,12,13 
/I n 4  Different time scale 

	

6.14 	log10(pc) 

	

6.15 	/I 

	

6.16 	II 

	

6.17 	v(0)/R 

	

6.18 	n 

	

6.19 	n 

v(a/4) v(a/2) v(a)  6.20 
v(0), v(0), v(0) 

	

6.21 	vc/R 

	

6.22 	PI 

	

6.23 	II 

	

6.24 	w(0)/R 

	

6.25 	n 

	

6.26 	Depth of pocket/R 

	

6.27 	■i
c
/ Rg 

	

6.28 	IP 

v(a/4) v(a/2) v(a) 
6.29 

v(0) , v(0), v(0) 

	

6.30 	Depth of pocket/R 

h(0)/R 	1,2,3,4,R 
II 	1,2,3,4,R 

" 	5,7,9,10,R 

h(0)/R 	1,2,3,4,R 

" 	1,2,3,4,R 

" 	5,7,9,10,R 

h(0)/R 	4 

hc/R 	1,2,3,4,R 

" 	1,2,3,4,R 

II 	5,7,9,10,R 

h(0)/R 	1,2,3,4,R 

u. 	5,7,9,10,R 

h(0) 	4 	- 	i.e. 

h(0)/R 	1,2,3,4,R 

IP 	5,7,9,10,R 

h(0)/R 	4 

h(0)/R 	4 

Phase-plane diagrams 

Spatial change of 
relative velocity 

Phase-plane diagrams 

sup (h(0)-h(r)) 

Different scale in 
h(0) to 6.20 

Different scale in 
h(0) to 6.26. 

TABLE 6.1 
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R= 0.01m E' = 1.1374x1011Pa. 
Compressible Mark II Viscosity Oil. 
Pa= 5.828x10-1°Pa-1  pb= 16.84x10-1°Pa-1  
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Elastic Parabola. m= 0.0325Kg 
R= 0.01m E' = 3.9063x101°Pa. 
CompressIble Mark II Viscosity Oil. 
p0 5.828x10-1 °Pa-1  Pb::  16.84x10-1°Pa-1  
a= 6.1x1 0-8Pa-1  apes= 25.0 no= 0.7Pas. 
	  Logi 0  ( Pc  ) 

vc  

	

hc  	
 Net Force / W 

• 
- • •+ 

0-* °b.00 3.00 	6.00 9.00 	12.00 	1 .00 	1;.00 	21.00 	24.00 	2 .00 	30.00 	33.00 	36.00 
TIME (MS) 



0 _ 

C1:1000 

La 

-10 

-1 

•■•■•••• 11•100M. 

L
•
9
  
a
J
n
2
T
A
  C) 

U) 

Cr) 

N 

■t- 

cl 	tD 

O 	a) 
O 

Yt

- 

	

•••^ 

sn 	

• 

• o 
0 in 

- 
Co 

=o ui  

vy  C) 

CD 0 

0 

0 	13.00 

E'=o. 
p
a

=0 

E'=3.9063x10
10

Pa 

"..—E'=1.1374x10
11

Pa 

Elastic Parabola. m= 0.0325Kg 
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R= 0.02m E'= 1.1374x1011Pa. 
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R= 0.02m E'= Varying. 
Compressible Mark 0 Viscosity Oil. 
pc= 5.828X10-1930-1  Pb= 16.64x10-10P0-1 
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Elastic Parabola. m= 0.65Kg 
R= 0.02m E' = Varying. 
Compressible Mark II Viscosity Oil. 
pa= 5.828x10-1°Pa-1  Pb= 16.84x10-1°Pa-1  
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a= Varying app= 25.0 no= 3.5Pas. 
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Elastic Parabola. m= 0.65Kg 
R= 0.02m E'= Varying. 
Compressible Mark II Viscosity Oil. 
Pa= 5.828x10-1°Pa-1  Pb=  16.84x10-1°Pa-1  
a= Varying 	apes= 25.0 no= 3.5Pas. 
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Elastic Parabola. m= 0.0325Kg 
R= 0.01m E'= Varying. 
Compressible Mark II Viscosity Oil. 
Pa= 5.828x10-1°Pa-1  pb= 16.84x10-1°Pa-1  

apes= 25.0 	no= 0.7Pas. 
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Elastic Parabola. m= 0.65Kg 
R= 0.02m 	= Varying. 
Compressible Mark II Viscosity Oil. 
pa= 5.828x10-1°Pa-1  pa= 16.84x10-1°Pa-1  
a= Varying 	app= 25.0 no= 3.5Pas. 
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Elastic Parabola. m= 0.0325Kg 
R= 0.01m E '=- Varying. 

cq Compressible Mark II Viscosity Oil. 
p.= 5.828x10-1°Pa-1  pb= 16.84x10-1°Pa-1  
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Elastic Parabola. m= O. 65Kg 
R= 0.02m E' = 3.9063x101°Pa. 
Compressible Mark II Viscosity Oil. 
pa= 5.828x10-1°Pa-1  p.= 16.84x10-1°Pa-1  
a= 2.0x10-8Pa-1  apes= 25.0 no= 3.5Pas. 
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Elastic Parabola. m= 0.65Kg 
R= 0.02m E'= Varying. 
Compressible Mark II Viscosity Oil. 
pa= 5.828x10-1°Pa-1  Pb=  16.84x10-1°Pa–I  
a= Varying 	apes= 25.0 no= 3.5Pas. 

a 	 E/  
	  6.1x10-8 	!INN 	 II/ 
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The graphs are grouped together according to the major axes rather 

than the run number. 	Figures 6.1 - 6.13 show loglopc, vc/R, he/R, m■/c/W 

plotted against time for different initial velocities as well as physical 

parameters. 	Figure 6.12 shows the effect of ignoring the elasticity 

of the ball completely and also of ignoring just the local deformation 

velocity, dw 
LT.  

Figures6.14- 6.16 show the central pressure plotted against the 

central (deformed) film thickness (h(0)=h
c
+w(0)). 	Figures 6.17 - 6.19 

give phase plane diagrams of h(0), i.e. v(0) vs. h(0). Figure 6.20 shows 

the ratio of velocity of several points on the surface relative to vc  

against h(0), Figure 6.29 gives the same graph plotted to a different 

horizontal scale. 

Figures 6.21 - 6.23 are phase plane diagrams of hc, i.e. vc  vs. hc. 

Figures 6.24 and 6.25 have the central deformation, w(0), plotted against 

the central film thickness h(0); Figure 6.26 gives the depth of the 

entrapment plotted against h(0). 	The depth of the entrapment is given 

by sup(h(0)-h(r)). 	This graph is also replotted as Figure 6.30 with a 

different horizontal scale. 	Figures 6.27 and 6.28 give rmic/W plotted 

against h(0). 

6.5 	Central Pressure 

This is the most sensitive of the derived quantities and thus gives 

the best indication of slight differences in changes of algorithms or 

parameters. 

The effect of elasticity is to relieve the pressure, thus making 

the pressure distribution less spiked: 	the amount of relief is determined 
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by the elastic coeeficient. 	As the pressure becomes more spiked, in the 

later stages of impact, more of the load is concentrated in the middle 

of the contact, thus tending to invalidate the assumption of no horizontal 

deformation. 

Where the pressure diverges from the straight power law, (isoviscous 

solution), the elastic results diverge from the rigid results. 	Thus, 

it is concluded that whenever the effect of a needs to be accounted for, 

so does the elasticity of the body, for the range of a and E' considered 

in this work. 

By increasing the elasticity of the ball, the effect of a may be 

mare than counteracted, and so the pressure increases less than log-linearly 

(i.e. isoviscous solution). 	Indeed, for the softest case it appears that 

a constant peak pressure is obtaine-d. 

From Figures 6.5 and 6.6, if the time base is moved then the second 

stage of the solution curves are superimposed. 	Hence, for the elastic 

case as well as the rigid incompressible case the intital velocity does 

not determine the trajectory in the region of fluid entrapment. (Unless 

the intitial position of the ball is in this region). 

When the central pressure is plotted against h(0), the curves fall 

into two groups, depending on the value of a (Figures 6.14, 6.15, 6.16). 

Within a group the curves diverge in the zone of significant distortion. 

This is to be expected as the ordinate is a function of deformation and 

thus of pressure. 

6.6 	Velocity Characteristics  

The same remarks that applied to the rigid incompressible case apply 
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here, i.e. the initial velocity does not significantly influence the 

eventual trajectory, (see section 3.6.2). 	Figures 6.17, 6.18, 6.19 

show phase-plane diagrams. 

The result, by other workers (CHENG and LEE; CHRISTENSEN) that 

v q4-1
2 does not hold here due to the different assumptions made for the 

c—  

impacting process. 	Again, two groups are found, depending on a, though 

for the light mass, they are virtually inseparable when h(0) is small. 

The figures show that the centre velocity is tending to zero at 

a finite film thickness indicating the existence of an entrapped pool of 

liquid. 	There is some noise in the results which is due to (1) a breakdown 

of the solution algorithm, and (2) the velocity being calculated from 

values written to a data file with only five significant figures. 

In the low mass case, the extrapolated entrapment thickness is small, 

but the effect of a slight bounce may be seen. (Figure 6.19). 	This occurs 

just after the peak force and is due to pressure relief. 

The approach velocity varies over the surface of contact, Figures 

6.20, 6.29 and 6.30 show the local approach velocity non-dimensionalised 

with respect to the central local approach velocity at various multiples 

of the Hertzian radius. 	The relative value for the centre of gravity 

of the ball is also plotted. 	At the maximum film thickness shown in 

Figure 6.20, the centre point is moving faster than the centre of gravity 

due to the pressure field temporarily decreasing. 	As the pressure field 

starts increasing again, this is more than compensated for, and the centre 

point slows down much more rapidly than the centre of gravity. 

The curves obtained are quite different to those obtained by CHENG 

and Lee for cylinders in that no values are obtained less than 0.8, but 
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the assumption of CHRISTENSEN that there is only a few percent difference 

is apparently in error, though this may be due to different assumptions 

of the trajectory. 	The maximum value of about 1.1 obtained by HERREBURGH, 

1970, for cylinders also seems to be an underestimate. 

The accuracy of the last part of Figure 6.20, where the ratios drop, 

is not known, as here the solution algorithm is breaking down. 	In this 

latter part of the solution, radially the local relative velocity is 

oscillating very rapidly, especially in the region of minimum film thickness. 

Unfortunately there was only one grid point in the immediate vicinity of 

the minimum film. Results indicate that the local pressure becomes negative 

at that point, but that further out radially the pressure field is positive 

again. 

Figures 6.21, 6.22 and 6.23 show vc  plotted against hc;. negative 

values of h
e 
exist. 	Note that as a straight line relation holds, the 

velocity is an exponentially jecaying function of film thickness. 	The 

observations regarding h(0) also apply for hc. 

6.7 Deformation 

Figures 6.24 and 6.25 show the deformation plotted against the film 

thickness. The two groups depend on E', one group is about three times 

larger than the other group, reflecting the different values of E'. 

For the low mass case, the maximum deformation is obtained during 

the force peak at which point large time steps were taken; here the curves 

are given by straight line segments. 

In Figures 6.26 and 6.31, the pocket depth formed is plotted for the 

large mass, low a, low E' case (Run 4) against h(0). 	Note that the only 
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difference between the graphs is the horizontal scale used. 	The film is 

extremely thin before the entrapment really starts to form - less than 

1 pm - and it rapidly increases in depth and gradually becomes wider as 

the impact progresses. 

The pressure field outside the minimum film thickness is supporting 

less and less of the load as it is being concentrated near to the Ole. 

This will have the effect of making the horizontal distortion more and 

more important as time increases, however, the run including horizontal 

distortion is virtually indistinguishable from the run ignoring it ( - a 

change in peak pressure at any time of less than 0.1%). 	The form of the 

horizontal distortion was the same as given in Section 5.5.2 and with the 

maximum magnitude of the distortion about 20% of the central vertical 

deformation and occured at about 5 Hertzian radii from the centre. 

It is to be expected that as the load is further concentrated at the 

centre, the point of maximum horizontal distortion will move towards the 

centre and if it comes close to being within the entrapment zone then this 

distortion will have a significant effect on the subsequent entrapment. 

6.8 	Film Force 

Figures 6.17 and 6.28 show the net force/weight vs. h(0). 	The film 

is quite thin before the net force become small compared to the weight of 

the ball. 	Again the two groups are found depending on a. Different 

values of a cause significant changes in the peak force attained in the 

high mass case, but not for the low mass case, for higher pressures are 

generated due to the different value of K
2
. 	Note how close the force 

lines lie to each other, showing how the force is sensitive to changes in 

film thickness, so that slight discrepancies are forced back on to the correct 

curve. 



- 198 - 

6.9 	The Stability of the Algorithm 

It is appropriate to discuss here the effect of changing the parameter 

used in the Vogelpohl substitution and also the points at which the programs 

were stopped. 

A run was performed in which h
0 
 =0.1*max (h

c'
10

-7
), as against h

0 
 =max 

(h
c'
10
-7

) used for all other runs where the value of max(h
c'
10
-7

) is 

h
e 
when h

c
>10

-7
, and h

e 
otherwise. 	It was found that the curves obtained 

were identical. 	This gave confidence in the solution algorithm being 

accurate for the results shown. 	It was mentioned in Section 4.7.3 that 

the load needs to be accurately calculated and it was this that caused the 

algorithm to break down and hence the solutions were not carried further. 

Near the end of some force curves there is a small change from the extra- 

polated line. 	This error will occur due to the accuracy requirement 

on the load becoming ever more stringent, as discussed in Section 3.5.1. 

The effect is exacerbated by the load being concentrated in the centre 

region, thus essentially solving for the pressure distribution with less 

than the full number of grid points. 

This was the cause of failure for all runs except the high mass, 

low a, low E' run. 	This failed due to an insufficient number of points 

near to the minimum film thickness, as discussed earlier. 

It should be realised that the breakdown of the model only occurs 

when the central film thickness is at most 2.4 pm (6 pin) for the high mass 

cases or 0.25 pm (0.6 pin) for the low mass cases. 	These are well within 

the surface roughness expected on machine components and even on polished 

components with the lightly loaded cases. 	Hence, integrating the system 

further is not really realistic for the model takes no account of asperity 

interaction, although by using more points integration may proceed. 
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CHAPTER SEVEN 

CLOSURE 

7.1 	Summary on the Results. 

1) The rigid parabola, isoviscous incompressible fluid system gives 

a good approximation to the fully varying case whilst the centre 

pressure is less than 10
7 
Pa. 	After that time only the method 

that takes into account all variations gets close to the correct 

solution. 

2) Machine precision limitations occur at quite low pressures when 

considering the load coupling effect, i.e. at about 2x10
8
Pa and 

for any system above 5x10
8
Pa. 

3) For numerical experiments with preset. errors, the solution used 

has to be extremely accurate in order to integrate the system. 

4) As long as the initial film thickness is reasonably thick (i.e. 

about 1mm) then the trajectory followed will be independent of the 

initial conditions (v 
s  ,h s) as long agthe ball can dissipate its 

energy by viscous action alone. 

5) There are two groups which characterize the behaviour of the rigid 

imcompressible solution K1  and K2. 
	The value of K1 determines 

the rate of exponential decay in the second stage. 

6) Using the parabolic approximation to the spherical profile of the 

ball gives negligible error. 
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7) For an impact which loses its energy by viscous flow the temperature 

generated will be small (see also Appendix III) and can be ignored. 

8) For all elastic impacts a pocket is formed. This grows in size 

throughout the solution time, forming a pressurized central pocket. 

This region supports 	virtually all of the load. 	Outside this 

zone the pressure falls to zero. 

9) As the effect of pressure dependent viscosity becomes important 

so does the elasticity. It is not true that the load is more 

influenced by piezoviscous behaviour than by elastic effects. 

(CHRISTENSEN). 

10) The thickness of the oil film is likely to be strongly affected 

by the surface roughness of the impacting bodies by the time 

either elastic or non-isoviscous effects become significant. 

Consequently many aspects of the behaviour of the problem may be 

studied by just considering the rigid body isoviscous incompressible 

fluid system. 

11) Pressures, far greater than the Herztian, are generated and maintained 

within the contact region. 

12) For the pVessures generated here the horizontal distortion is small 

and can be safely ignored. 	It is not, however, significantly 

difficult to include this effect. 

13) The radial distribution of local elastic velocity cannot be ignored 

when the peak pressure is greater than 10
8
Pa, which is shortly 

after the time when elastic and non-isoviscous effects begin to 
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apply. 	There is a large change through the contact zone, and 

it is interesting to note that in the region of minimum film 

thickness, the local velocity tends to push the surfaces together 

faster than the velocity of the centre of gravity, due to the 

changing pressure profile. 

14. The solution coupling the ball dynamics produces significantly 

different results to those obtained assuming fixed central pressure. 

Such results should be used with caution. 

7.2 	Summary on the Computational Methods Used. 

1) The only methods that are effective in integrating the limited 

viscosity-rigid body models are stiffly stable ones. However, 

they are of limited use when employed in the fully varying cases 

with local velocity variations included. 

2) The Newton-Raphson method is needed to obtain results in the high 

pressure region. 	However, using it, the Reynolds, Elasticity and 

State Equations may be solved simultaneously. 

3) The Vogelpohl substitution allowed results to be obtained more 

easily. 	By changing the substitution it was found that the results 

obtained were not sensitive to the particular parameter used. 

4) The use of quintic spline interpolating polynomials allowed an 

accurate solution of high order to be obtained with virtually no 

extra work over that of the cubic spline. (The error in the solution 

is of the the order Ar
4
). 	If the cubic spline formulation had 

been used for the pressure field determination, then a completely 

unified treatment of the problem would have been achieved. 	The 
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cubic spline pressure distribution determines the deformation and 

the D1' D2  matrices, and hence the revised pressure. 	However, = = 

in this case it was decided to use methods in which the truncation 

errors were of the same order. 	The unified method with a cubic 

spline formulation has been applied by RHODE and OH to rolling line 

contact problems. 	It is possible to use the quintic spline 

formulation to attain greater accuracy as long as there is no 

discontinuity in gradient through the domain. 	The extra curvature 

of the quintic elements mean that less points are needed in the 

region of the pressure spike. 

5) The method used to obtain the compliance matrix is general in its 

application. 	When calculating the deformation due to an arbitrary 

pressure distribution the only error is that from a possible 

discretization error in the interpolating polynomial. The spabial 

derivative of the deformation may be found to the same order as 

the deformation by use of the given transformation. 	The form of 

the equation for the horizontal distortion is particularly amenable 

to calculation. 	An application of these matrices to the work of 

PAUL is given in Appendix V. 

6) This model has been applied to the problem of a flat steel pad 

of area 10
-6

m
2 

squeezing on air from a height of 0.5 pm (BOWYER, 1977). 

7.3 	Recommendations for Further Work. 

The solution to this problem is not as trivial to obtain as it 

may at first sight appear. 

Proposals to extend this work should be viewed with extreme caution. 

The solution of the problem, coupled in space and time, requires large 
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amounts of computer time. 	To obtain pressures significantly higher 

than those shown here with viscosity pressure models of an exponential 

form will require use of a machine with an extended word-length, either 

by hardware or by software simulation. 	However, there are very few 

machines currently available with a word length greater than 60 bits. 

Also, use of double precision multiplies the computation time by a factor 

of four. 

If it is desired to perform further work, then areas to be explored 

are:- 

1) Changing the grid mesh dynamically as the impact progresses 

in order to counteract loss .orfr -accuracy. 

2) Increasing the number of mesh points used in order to gain 

accuracy in the calculation of the load. 	However, this 

enormously increases the amount of work necessary to obtain 

a solution. 

3) The combination method given in 4.7 could be extended so 

that the outer zone has many more points than were used 

here. 	As the pressure and deformations are small in the 

outer region, two procedures could be used. These are: 

a) To calculate the deformations accurately at a few points 

and interpolate for the deformations. 

or 

b) Use elements that are of a higher order than the parabolic 

ones used here to integrate the Reynolds Equation in 

the outer zone. 

Neither of these procedures are totally satisfactory. 
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4) 	All the cases calculated in this work have modelled a ball 

freely falling and only being retarded by the liquid pool. 

To obtain higher loads being supported by the contact, a 

modification could be made, suggested by the experimental 

conditions of PAUL. 	It would be necessary to model 

external viscous damping, i.e. 

= 
fr 

m 	
s 

■/ 	27prdr - mg -Cv 

0 

This would ensure that the velocity does not become large 

enough for the ball to bounce. 

5) 	It is known that the fluid viscosity shows time-dependence 

as well as pressure-dependence. 	If a satisfactory model 

could be interpreted from experimental work then this model 

can be incorporated in the temperature solution' method. (See 

Appendix III). 
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APPENDIX I 

THE CALCULATION OF THE QUINTIC SPLINE 

The algorithm is taken from AHLBERG, NILSON and WALSH, 1967, Chapter 

4 for a quintic spline over [0,Rs] with knots R . It has the form 

g(R)=a
il  
+b.(R-R

i 
 )+C
i 
 (R-R.)

2
+d
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 (R-R.)

3
+e
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	l 	l 
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4
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A. +A. +A 

(3CA
i-1

+A
i
)+A) + 

i-2 i-1 	i-2 1-1 i 

+A 	.. 
+ A. A. 	(

Ai+1 	
A 
1 1+1  

1 
(
+1 A. +A. 

1 1+1

+2)+A

i-1
+A
i
+A
i+1 Ai-1  

+3(A. +A) }M. 
1-1 1  

	

2 	 A
. 

+ 
120
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A. 
	
+(A
i
+A

1+1
)(3A

1+1
+A
i
(
A. +Ai 

+2))/(A
1-1

+A
i
+A

i+1
) + 

1-1  
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A
i
2(A

i-2
+A
i-1)  

(A 	+A )(A. +A 	+A ) 1 mi+1 i-1 i 1-2 i-1 i 
3 

1 	i+1 	 
120 (A

1.+A1
. )(A +A.+A 	Mi+2 
+1 i-1 1 i+1) 

= (A 	+A 	+A +A 	) S [R 	,R 	,R R 	R 	] 	3<i<n-2 	(A1.2) i-2 i-1 i i+1 	A i 	i+11  i+2 
	
, 

Two further conditions are needed at each end in order to determine M 

explicitly. 	As it is required that the spline approximation and the function 

have the same slope at each end, the formula 

2 
A  1 A24.A3 

2A1+3A
2 

m1 	4- 
(4A1+3A2)(A2+A3) Al  

(3A1+4A2) +A
2 

A
1
+A
2
+A
3 

A
1
+A2 A

1
+A
2
+A
3 A

1
+A
2 

2 
A
2
A
3
(2A

2+3A3) 	A
2
(3A

1+2A2)(A2+A3) A3
(3A

2+4A3) A1A2  
(A2+A3)(A1 +A2+A3)

1 m2  .4- {(A1+A2)(A1+A2+A3) 	A1+A2+A3 	(A1+A2)2/M3 

3 
A
3  ..Cgly-S[Ri,R2])+S(Ri,R2,R31) 

(A2+A3)(A1+A2+A3) 
M
4 
 = S[RR

2'R3'R4j - 81  
A+A 
1 2 

(A1.3) 

and its equivalent may be used. 	Their other formula for the end condition 

using g"(Ri) is not applicable directly to this problem (though it could 

be made so, as outlined above), and the one chosen was that 

3 
A M

1 
 = 0 (A1.4) 

Similar relations hold for the point Rn. 

This was chosen as it is simple to set up, and it enabled the function 

X
5 

to be approximated to within round off error. 	The complete system to 

be solved was then a pentadiagonal matrix with two extra non-zero 

coefficients, these were eliminated first and then a standard method 
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[CONTE and DE BOOR,1972] was used to solve the penta-diagonal matrix. 

Once M had been found, the first derivatives (4.1.31 - of AHLBERG, NILSON and 

WALSH) were calculated using the formulae:- 

.
2 	2 2 	2 

A 

	

A. -A. 	A. 
1-1 	1-1 1 m 	m 	-2 	,4 	4 

- 	= ---- 
30 i-1 	N. 	n 20 	1 	30 1+1 A

i -1g 
	1-1 J -I A

i -1 
+)gi(Ri) 

	

 

76` 	
ER Ri+1 	AI-1 

3+ 	SA[Ri 1,R1]  

	

_ 2 	cm 	71.1  - _AI., ; _p‘rsi+1)+  (A1.5) 

giving a tridiagonal matrix to solve. 	Although the first derivatives could 

have been calculated explicity, since this matrix equation was 

diagonally dominant, the equations were all well-conditioned and errors 

would be small. 	The second and third derivatives could be then calculated 

as explicit functions of the previously solved values. 

Finally it should be noted that:- 

gUR
1J= a.  1 

g'(R.) = b. 
A.. 	1 

eOR1A--- 2c.  1 

g"'(R.) = 6d. 1 	1 

g1-v.(R.) = 24e. = M 1 	1 	i e(R.). 120f. 
1 

(A1.6) 

Testing  

It was tested by checking that it could accurately interpolate for 

Xn,D<n<5 with 11 grid points over the range [0,10] both with equidistant 

spacing and also with random spacing. 	It was found that with equidistant 

spacing, the interpolation was accurate to round off, about 13 significant 

figures, but using random spacing, the coefficients given in the book gave 
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erroneous results. 	This was due to typographical error in the equation 

for g'(Ri) (e:g. 3h2+2h3  should have read 3h3+2h2); ':-- for changing to the 

formula given above gave results to within roundoff error. 

Further tests were conducted showing that that at the grid points 

g'(r) is correct to 0(A6) and g"(r) to 0(e), i.e. K1=6,K2=4. 



0 0 i

Vs1-r4sin2(1) 
(b
2
+r
2
sin

2 
m/2 

(P) 	db dq 

-1 a 
—r 0-sin 
	I= 	I

m
f Ode 0 iii) 	r>s: 
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APPENDIX II 

THE CALCULATION OF 4 

A2.1 Introduction 

It has been noted in Section 5.4.3 that for each value of m, there 

are three cases to be considered depending on whether the point whose 

deformation is required lies inside, on the edge of, or outside the applied 

pressure disk. 	As this makes a difference only in the angle subtended 

by the disk at the point under consideration, it is only the integration 

limit of it that is altered. 	Thus the  integrals may be written as 

f0 	
0

l) 	

i isz-rzsin10 	m/2 
I
M
(0), where I

m(flE 	(b24-r2ain24))L db depends only on the 
0 

degree m, once r and s are fixed, then the integration with respect to j 

is performed using the appropriate boundary conditions. 

If the interpolating polynomial is of degree 1 then the integrals 

I
m(4)), m=0,1,...1 need to be calculated. 	The highest order polynomial 

used here for the deformation coefficients is three. 	For each I
m
(4)), 

the three further integrals are identified as: 

i) 	r<s: 	0= 2, 	I= 
,0 
	I

m
(4)  )d (i) 

ii) r=s: 	0= 1.
' 	

I= j.-2.  I 
m 
 (q) )c1(.0 

2 
0 

0 

For this last case, to obtain solutions in terms of complete elliptic integrals, 

the substitution rsing5=ssine is made. 	So, isz-r2Sin 	stos8 and d q5=. 

v1-(s/r)2sin2e de . 
Then I= st; 	

°DSO 
17n(e) '117-s7/7.3 	de  

0  
, with I*

m
(8)=I

m 
qDs  

0 



I W=2(SVSZ-rZSinZ(i) 	r2Sir124)Sinh-1 /S2-r2Sin24) 
111 
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A2.2 m=0 

I
m
(0=4 

r2'sin2,1) 

db 

0 

= 4isz-rz  sin2.4) 

Hence 

i)  r<s: 1=4 isz-rzsin4cpdcp =4sE(S) 

ii)  r=s: I=4s.
2 

7 	COS° 

iii)  r>s: I=42  scols0/1-(s/r)sin26d0 

0 

A.2.3 	m=1 

iez-r2sinz0 

I (4)) = 
	

isz+r2sin'0 db 
0 

On integrating by parts 

Hence 

7 

i) r<s: 1=2 7  (sVsz-r2sin295 
f 0  

 , r2sin24, sinh-1  I  r  i  ir",:sin2(1)  ) d0 

7 
COS(1) 

= s2EC- 	- (r2-s
2
)KEJ-Fr

2 	
sinh

-1 i/s2.-rz  
)0 sing)4/1-(r/s)25in20 ci°1  

11 

ii) r=s: I=s2(1+7 
0 4 

 
sin

d0)  , 

IT 
7  
f 

0 2i2cose+s2sin26,3 inh 
	

7.
-1 cosO is cos@  iii) r>s: I=

71177) 
ri1-(s/r)2Sin2P 

de 
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1 2 2 	2 2 s 	s 	
sine 

3 	sin2e Qose 	-1 Q fr 2[(rE()-(r-s  m())  
r 	r 	r 	r 	V1-(s/r)2sinze sinh 

M1 de] 

A2.4 	m=2 

Im(4)) 
= 4 isz-r2sin24) 

	

b2+r2sin2cPci (1)- 
-4/b2-rzsinc4 2 	2 	2  

3 	[s +2r sin (1) .1 
0 

Hence 

1'7 	/ 	
0 i) r<s: I = 4 	(s2  rs4-r4sin24) + 2r sin/sz-r2sinz 	dcf) 

d 
0 

. s [(4r2+s2 )E(-I) - 2(r2-s2 )K(I)] 9 

ii) r=s: I = 20s 3 
9 

7 
iii) 

 
r>s: I = 4 	Ys

1
[sine'2sin20::ose] s  case 	  de 

 /1-(s/r)zsin2  e 

- 	 s = 4 - 	Lr2  (4r2  +s2 )E(-17.)  - (3s2+4r2 )(r2-s2 )K(-)] 

A2.5 	m=3 
fis2-r2 sin24) 

Im 	= 4 	 032+1,2sin203/2 db 

, 1 = s3isz-rzsin21) + 3r2 sin-q5 	(sis2-r2 	4-(Pr2sin24)3inh-1 /s2-r2T171) 
rsind? 

Hence 

7 
/ 	 i) 	r<s: I= ' s3vs2-r2sin21) 

f 	
+ _.3._ c2,sin2,1)34s2_ r2sin2.(1)  

2 
  4. 	4 sin 4 

7 
r 	ci)sinh-1  

0 

Vs1-rzsin24) 
 dth rsinqb 

[s2 (4s2+9r2 )E(-) - (12s2+ 9r2 )(r2-s2 )1((-)] 



integrals are continuous over the boundary r=s (Iv+1 (1.-:k2)K(k)=0). 

It should be noted that as a check on the calculations, the various 
lim 
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ii)  

iii)  

9r
4 

ru 	
sinh 

 -1 
L—  2 

4 
I =1

6 	
[13 

Tr 

I = 	— 
Tr 

s
5 

TT 
'COCOS CIS dt] 

cos8 cose 

sis 2  - r 2  
16 

r=s: 

r>s: 

7 
v  917 

0 	sincibi1-(r/s)2sin24) 

de] 

3 	4 	-1 
dose+ 2  Sin e8inh 

sine  
0 

3 
(cose+ vine 

r --.7) sinq 
V1-(s/r)2-sin2e

de 

= 6r [r2(9r2+2s2)E(2) - (r2-s2)(8s2+9r2)K(2)] 

cose 

+ s 
9 3r 
	

1 7  sin2ecosesinh sine  
8 	0 	1/1-(s/r)2s1n2e 

de 

A2.6 	Conclusion 

For any r,s and m (m<4), the integral may be calculated from one of 

above formulae. 	The E(k) and K(k) are complete elliptic integrals of the 

first kind and the integrals that are explicitly written out must be calculated 

by quadrature, (e.g. Gaussian quadrature). 
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APPENDIX III 

ON THE THERMODYNAMIC IMPACT OF A RIGID BALL ONTO AN  

OIL FILM  

A3.1 	The Problem 

A3.1.1 Introduction  

Some exploratory work was carried out on the feasibility of calculating 

the temperature distribution within the oil fim. 	It was assumed that the 

ball was of rigid parabolic section, squeezing onto an exponential viscosity 

pressure temperature-modified oil. 

A3.1.2 	The Equations to be Solved. 

(A3.1) 

Dynamic 

m■J= J s  27rprdr-mg 
0 

Ball Shape 

h(r) 	= hc + r
2
/2R (A3.2) 

Reynolds Equation 

2 	=
h 

-1-7 
1 	a 	

(rM
2 	b -57 

1E
)dz + [pw] 

at (A3.3) 

where 	M2  = 
	

h 
f
z 

z'dz'
dz 2 

= 
F
0 	JO 	0 

h 	jz dz' 
„„ 	 dz 
"1 

0 	0 

— 
F = 	zdz - z Fo 1 0 

=
h 
dz 

FO 0 



Pressure-Temperature Density 
PaP 

p = p
o
(1+ 	 

1+p
Li
p + ET) 	 (A3.7) 
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Thermodynamic 

,c  DT _ ( avl TDp 
KV
2
T + (I) " p pt 	aT'p'Dt = (A3.4) 

where 
u  r 	, 	au 	

c  H au 	au. 
	z12] = n[2((--)2 

	ur2 	z 2) 
	

r. 	22 4r  r 	au 	u 

ar' 	ar at J  r 	ar 	az 

(A3.5) 
Pressure-Temperature Viscosity 

etraT 	 (A3.6) 

The thermodynamic equation is from DOWSONand WHITTAKER, 1965, assuming 

no external heating and the conductivity of the oil is constant. 	It was 

decided not to eliminate any of the terms in (1) using an order of magnitude 

analysis as there were high rates of shear whose relative magnitudes varied 

greatly from point to point. 

A3.1.3 	The Fluid Velocity  

These are needed in the calculation of the temperature. 	It is necessary 

to calculate temperatures outside the contact zone so velocities there 

are also needed. 	Two sets of formulae are needed. 

I. 	Within the Contact Zone 

For the radial velocity, ur  

z  u
r
(z) = la i 	

n
dz 

9  r  (A3.8) 

The vertical velocity, uz, is obtained by integrating the continuity 

equation 
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1 j
z 

r ar 
p 1 a 

uz(z) = - — 	
(ru 

r
)dz 

0 
(A3.9) 

II 	Outside the Contact Zone 

A more complicated system holds here. 	This is because the liquid 

has a free surface, so the assumption that ur(hs)=0 is invalid. 	It was 

decided to model the outer zone by assuming that: 

a. Incompressible continuity holds 

b. uz
(z) is indentically zero 

c. The film is of constant thickness h
s 

d. The approximately parabolic velocity profile (at the end of the 

contract) changes into an exponential one. 	This will be such that 

1-e-x(z/h) 
ur(rmax

) = C 	where x is chosen to give 1-e
-x/8 

 =O. 6(1-e
-x 

 ) 
1-e  

s  

[i.e. the first grid point from the plane has 60% of the maximum 

e.  

velocity] and C is calculated so that 

If the edge of the contact is at r=r 
s fh 

s
u 	. dzF 	C is chosen so that 

0 	
r 	rs 

continuity holds. 

then the flow there 
h 
s r 	u 	(r 	)dz= 
0 	max r 	max 

is 

(h s
r u 	Cr )dz. 

0 	
s r 	s 

The velocity at any intermediate value is calculated from 

2 
r -r 

ru 1 	= r Ou 1 	+ r 	(1-6)u 	, withe =( 
x max

) rir 	s zir 	max 	zir 	r -r max 	s max 

This satisfies continuity. 

These assumptions for the fluid velocity in the outer region have 

been made in order to estimate the convection and conduction effects before 

they (perhaps) become enclosed by the contact zone. 	It is important to 

note that these assumptions are made only to obtain answers in the right 

order of magnitude. 	It is not suggested in any way that these are definitive 

conditions. 	To obtain a complete solution is not feasible. 
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A3.1.4 	Thermal Boundary Conditions  

Boundary conditions are needed for the temperature field. 

3T 
1) Radially - 	= 0 at r=0 and r=r Dr 	max 

2) Vertically 

a) For the free surface (z=hsare[r ,r 	]) 
S max 

aT 0  
az - 

b) For the Solid-Oil Interface, there are four main possibilities: 

i) Isothermal 

T=0 

ii) Adiabatic 

al.  _0  
az - 

iii) Full Thermodynamic 

aT a T 
) 	(K 	 ) 

d Z Oil 	az solid 

iv) Approximation to Thermodynamic 

(K.)
oil 

= C
, 

a constant 

The actual surface temperature will be bounded by the Isothermal 

and Adiabatic conditions. 

These were the only conditions considered. 

A3.2 Method  

The equations were solved by mapping a fixed (in space) finite difference 

a 
grid of 60 x 15 points. 	Derivatives of the form-TIE  were approximated by 
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backward difference formula and all others were approximated by a central 

difference formulae wherever possible. 	Truncation errors with respect to 

space and time were 0(Ar
2
) and 0(At) respectively. 

D 
The Stokesian,  -iii-T-,  arises as Eulerian co-ordinates are used. 	The 

fixed grid is used to represent accurately temperature and time derivatives 

and to account for the oil being heated outside the contact zone. 

The Reynolds, Fluid Velocity and Thermodynamic equations were solved 

in rotation, converging first the Reynolds Equation, then calculating the 

velocities and finally the temperature. 	If any change in temperature were 

greater than some predetermined amount, the entire process was repeated. 

A3.3 	Results  

The parameters used were 

Solid: 	E' = 00 Pa
-1 

R=0.01m 

Oil 	a=6.1x10
-8 

Pa
-1 

p0=852.1 Kgm
-3 

p
a
=5.828x10

-10 
 Pa

-1 
 

p
b
=16.84x10

-10
Pa

-1 
C 
P 
 =2020 J 

kg-10C-1 
 r10=0.7 Pas 

-40 -1 	n -1 	n -1 e= -5.5x10 	C 	f3= -0.04 -C 	K=0.1308 Wm -C 

Initial conditions 	h
s
=0.0005m 	v

s
= -0.1 ms

-1 

Thermal Boundary Conditions 
	

1) Isothermal 	2) Adiabatic. 

The integration was carried out to a maximum time of 4.7 x 10-3s. This 

is after the peak force and pressure have occurred. 

When impact first occurs, the temperature profile within the contact 

was approximately parabolic across the film thickness, with the maximum 

near the centre-line. 	Outside of the contact the temperature tends to 

zero faster along the centre-line than at the edge of the film. 
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As the impact progresses the form of the distribution changes with 

the maximum temperature being generated at the exit zone of the contact 

(r=rs) and near to the boundary solids. 	This result is conistent with 

the analysis of section 2.7. 

The maximum temperature obtained at the force peak was 0.519°C for 

isothermal boundary conditions and 2.24 °C for the adiabatic boundary 

conditions. 
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APPENDIX IV 

THE OPERATOR * 

This operator is an extension of the Hadamard Product (see MINC and 

MARCUS, 1964) and is defined to operate on a vector and either a vector or 

a matrix. 	The number of rows in both operands must be equal. 

Case 1 	Both Operands Vectors 

The result is a vector such that 

C= a*b=b* a ..._   

The elements of c are given by 

ck  = ak  bk  

i.e. the kth element is a multiplied by the kth element of b to give the 

kth element of c. 

Case 2 	One Operand in a Matrix 

The result is a matrix such that 

C=A*b=b *  A 

The elements of C are given by 

(C) jk  = (A)jk(b)j 
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i.e. the Kth row of A is multiplied by the kth element of b to give the 

kth row of C. 

Note that 

(A.b)*c = c*(A.b) = (c*A).b 

but 

(A.b)*c 	A*(b.c) 
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APPENDIX V 

AN APPLICATION OF THE COMPLIANCE MATRICES TO THE WORK  

OF PAUL, 1971  

PAUL, 1971 describes an experiment in which the film thickness within 

an extrapment is measured and, using the theory of elasticity, the applied 

pressure is calculated. 	The method of calculation used is given in 

RANGER, 1974. 

The problem consists of finding the pressure at n points, given the 

film thickness at n + 1 points, the value of he  being unknown. 	So the 

problem reduces to solving the n + 1 equations 

h.
1 
 =h

c 
 + s(r.) + w. 	1<i<n+1 — 	—a —a  (A5.1) 

A matrix F may be calculated as given in Chapter 5 for the n pressure points 

p, giving the n+1 deformations w. 

Then 

h = (F Iv) (plh )+s 	 (A5.2) 

where v is the vector (1 1 1... 1)
T 

s is given by s
d  = r.

2  
/ 2R = r.r /2R — —a 

With some extra work, this result may be extended to allow for the 

horizontal deformation. 	This is done by realising the elements of s should 

be corrected to account for the fact that the undeformed surface is moved 

ti 
when the pressure is applied. 	Thence a corrected s, s where 

(ra-ua)
2 

Si —a 	2R (A5.3) 
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Thus if U is calculated, in the same manner as F, then 

% s = s - 1r*Up 
+ 
2R (up)*(Up) — — R— -- 	-- =— (A5.4) 

This gives a non-linear system to solve, and is not completely accurate, 

for the matrix U was calculated at the points r, not r-u, where it should 

be. 

If it is assumed that the last term in s may be neglected, then a 

linear set of equations is obtained, giving 

h = ((F - :RI. r*U)Iv)(plhc) + s 	 (A5.5) 

Hence 

1 	1 
(Pihc) = ((F - F7r*U)[v) -1  (h-s) (A5.6) 
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