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ABSTRACT

This thesis investigates the problem of choosing optimal
feedback control laws for Markov chains and semi-Markov chains with
controllable transition mechanisms. Except in certain special cases
the optimal control law cannot be determined analytically and it is
necessary to make use of numerical procedures for optimization.

The principal questions of interest concerning such procedures are
(i) the conditioné under which they may be used, and (ii) their

computational efficiency.

The thesis surveys existing standard optimization procedures
and proposes new algorithms with certain computational advantages.
The most important of the new algorithms is a policy-iteration al-
gorithm in which the control law is iteratively improved by a conver-
gent sequence of single-component changes. The other new algorithm
is an accelerated version of a successive-approximations procedure,
in which the acceleration factor varies from iteration to iteration.
In the development and analysis of these new procedures considerable
use is made of the concept of equivalence between semi-Markov chains,
and it is shown that use of the equivalence concept makes possible
the extension of many results concerning Markov chains to the more

general semi-Markov case.

The special transition structure of chains of the birth-death
type are shown to permit a certain amount of simplification in the
optimization algorithms. In addition, it is shown that for such
chains it is possible to determine optimal quantized control laws
by applying a modified form of the new policy-iteration algorithm
to a certain embedded semi-Markov chain. The problem of state-space

truncation for unrestricted birth-death chains is also investigated.

The thesis concludes with the computational study of a specific
optimization problem of the birth-death type, in which the control

switching cost is a significant component of the total cost.
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CHAPTER 1
INTRODUCTION

The growth of man's knowledge and understanding of the world
is characterized in the main by the gradual accumulation of factual
. knowledge and the gradual evolution of ideas. From time to time,
however, the development of a subject is marked by a new discovery
or concept which in retrospect is seen to have been of crucial
importance. Such a step forward occurred in optimization theory
twenty years ago when Richard Bellman published his theory of multi-
stage decision processes in the book entitled "Dynamic Programming'
(1957). The concept of dynamic programming has been extremely fruit-
ful in a wide variety of optimization problems, particularly in the
fields of economics, operations research, control engineering, and
statistical decision theory. |

The dynamic programming technique is principally of value when
the decision process to be optimized has sufficient structure to
permit some simplification of the basic optimality equations - the

so-called functional equations of dynamic programming. One class of

such processes is the class of Markovian decision processes, intro-

duced by Bellman(1957) and the subject of intensive study during
the past fifteen years. It has been found that a Markovian decision
process is the appropriate mathematical model in a wide variety of
sequential decision ?roblems in the fields of operations reséarch
and management science; in particular, problems concerning the
control of queueing systems, the control of material stocks (or
"inventory control", in U.S. terminology), the dynamic scheduling df
resources, and many related problems, can often be modelied in this
way. In addition, since a Markovian decision process is a special

type of controllable stochastic process, such proccsses are of



interest in stochastic control theory as models for physical
systems with noisy dynamics. .

Roughly speaking, a Markovian decision process is a Markov
process whose transition mechanism is directly dependent on the
value of an externally controllable variable called the control action
or decision. The main problem of interest with such processes is
to choose a sequence of decisions that will result in good, prefer-
ably optimal, process behaviour. Since the process is stochastic
the sequence of decisions must be generated by feedback: that is,
by making each decision a function of the available information
about the current state of the process. The set of rules by which
. the decisions are related to the feedﬁack information is called a
feedback control policy; and a control policy which minimizes
(maximizes) some suitably-defined cost (return) function is an
optimal control policy.

This thesis is concerned with procedures for deriving optimal
control policies for Markovian decision processes having a finite
number of possible states and a finite number of possible decisions.
The restriction to a finite state set is a natural one in many
operations research applications and‘at the same time permits the
utilization of the classical theory of Markov chains in the analysis
of the optimization problem. For example, Markov chain theory tells
us that, under certa?n minor restrictions on the transition mechaniém,
a chain will tend to move towards a natural statistical equilibrium
in which the average proportion of time spent in each state is
easily computed from the transition properties of the chain. For
such processes an optimization problem of major interest is the
problem of choosing a control policy which will result in the mini-
mum (maximum) average cost (return) per unit time when the process

is in statistical equilibrium. In the language of control theory



this is an optimal regulation problem, and it is this type of

problem in particular with which the thesis is primarily concerned.

1.1 An optimal regulation problem

As an example of an optimal regulation problem which can be
formulated in terms of a finite-state Markovian decision model,
consider the simple first-order control system shown in Fig.(1).

As usual, the aim is to make the integrator output v(t)
follow the reference input yR(t) as closely as possible. The inputs
to the integrator are the error-driven control acfion u(t) and the
Gaussian white noise input w(t), assumed to have zero mean and
autocorrelation function 6'2 g (C) , where %('U) denotes the unit
delta function. If yp(t) = ¥, = constant, the system is a regulator
which in the absence of the noise w(t) would maintain the output
y(t) at the required constant level Yo In the presence of w(t)

. the regulator settles down to a statistical equilibrium in which

2
y(t) fluctuates about the value Yo with a variance of CS/EK.

This
equilibrium output varianceAcan clearly be made as small as desired
by increasing the control gain K. But the equilibrium variance of
the control action u(t) is f{i& so that large values of K result
in large control efforts whicézare normally undesirable. Let us

therefore choose K so as to minimize the quadratic cost function.

LK) - EEZ(tﬂ b EEF(t)]

where E[: :] denotes expected value and CKO is a weighting
factor.
The resulting problem is an example of the well known

stochastic regulator problem (see, for example, Kwakernaak and

Sivan(1972)) and the solution in this case is that the optimal value

X 4
of K is o(oz, the corresponding value of L being o(g cr2.
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Fig. (1) A first-order linear control system
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Suppose now that the error e(t) is quantized, so that the
error input to the controller, eq(t), is given by the uniform quan-

tization law @

eq(t) = nqg ’ (nj-%Q q, < e(t) < (n;k%) 4y o
forn =0, *1, f2,...,1N-1
= N a, , e®) » -3 q,
= -Nq , et) < - Ww-3) 4

Because the relation between eq(t) and e(t) is non-linear it is
no longer true that the optimal linear control law (ie. a control
law of the form u = K eq) is the best control law available. In fact,
it is now worthwhile to look for a more general optimal control law
of the form u = f(eq) where f is some nqn—linear function. The opti-
mal regulation problem would then be to determine f so as to minimize

the cost function L.

This optimal regulation problem can be formulated as a
Markovian decision problem. For if t1, t2 «s+ are the instants at
vhich the quantized error eq(t) switches to a new value, the
sequence (eq(tq), eq(tz), eess) is a Markov chain whose state set
consists of the (2N + 1) possible values of eq(t). The equilibrium
properties of this Markov chain depend on the form of the control
law f ; by expressing the cost funétion L in terms of these equili-
brium properties and then using one of the optimization procedures
outlined in this thesis it is possible to determine the optimal
form of £f. It should be emphasized that finite-state Markov chain
(eq(t1), eq(ta), ees.) arising in this example provides an exact

representation of the process to be contirolled; it is not an
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approximation resulting from simplification of the original model of
the procéss. Unfortunately this approach to control law optimization
is not easily generalized to quantized linear regulators of higher
order.

The above application is in the field of control engineering;
" later we shall consider in detail an application in the operations
research field - the problem of choosing a control strategy for a

queueing system with an adjustable service rate.

1.2 Background

The concept of a Markovian decision problem (or Markov pro-
gramming problem, as it is also termed) was introduced by Bellmaé1957)
as an optimization problem amenable to numerical solution by the
method of dynamic programming. The first major step in the develop-

(1960) 115 showed ‘that

ment of the subject was taken by Howard
finite-state Markovian decision problems can be classified into four
main categories:
(i) Regulation problems, in which the aim is to minimize the
average cost per unit time incurred by a Markov chain in
statistical equilibrium;
(ii) Discounted regulation problems, in which the aim is
essentially as in (i) but future costs are discounted expo-
nentially in time so that the expected value of the accumu-~
lated future costs is finite;
(iii) Finite-time problems, in which the cost function is
the expected total cost accumulated over a finite time inter-
val; and
(iv) Transient-cost problems, in which the chain has an

absorbing state and the cost function is the expected cost

incurred before the absorbing state is entered.



By making use of the equilibrium properties of finite Markov
chains Howard derived his so-célled policy-iteration algorithm for
the solution of optimization problems in the first of the above
categories. Howard's algorithm has been widely used in applications

(1968)

and is the basis from which similar algorithms, due to Hastings

(1971a)

and Schweitzer » have been developed. The basic computational
disadvantage of Howard's algorithm and its derivatives is that each
iteration involves the solution of N simultaneous equations where N
is the number of states in the system - a major difficulty when N is
very large.

A second, more direct, type of optimization procedure for
Markov regulation problems (i.e. proﬁlems in category (i) above) is
to solve the standard dynamic programming equations recursively until
all transient terms in the solution have died away. This direct

approach was first suggested by Eaton and Zadeh(1962)

for problems
of the transient-cost type (category (iv) above) and later modified
by White(1963) for use in Markov regulation problems. White's
successive-approximations algorithm has the advantage that it is
computationally simple; on the other hand the rate of convergence

of the algorithm depends on the dynamic characteristics of the system
which is being optimized and in some cases convergence can be very
slow. Further contributions related to White's algorithm have been

. (1969)

made by Odoni , who derived an improved stopping criterion for

the algorithm, and MacQueen(1966)

» who developed a successive-
approximations algorithm for discounted regulation problems (cate-
gory (ii) above). |

A third approach\to the Markov regulation problem is to formulate
it as a linear programming problem, that is, the optimiz;tion of a
linear cost function subject to a set of linear constraints. This

(1960)

approach is due to Manne and was investigated further by

13.
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(1962) (1962)

Derman , and by Wolfe and Dantzig , who showed by using
the linear programming formulation of the problem that the optimal
control law, assumed to be a deterministic rule for specifying the
decision to be used in any state, cannot be further improved by ran-
domization.

Extensions of the theory have been in three main directions,
each of which we now briefly indicate. In 1954 Levy(1954) general-
ized the concept of a continuous-time Markov chain by introducing
processes which switch from state to state in the same way as Markov
chains but in which the time spent in each state is a general rather
than an exponential, random variable. Levy called such processes
semi-Markov processes and their properties have since been thoroughly

investigated by W.L. Smith(199%), B, Pyke(19612,19670) 4

(1969a,1969b).

E. @inlar A natural development was the extension of

Bellman's notion of a Markovian decision problem to that of a semi-

Markovian decision problem in which the process to be controlled is

(1963)

a semi-Markov process. The extension was suggested by Jewell
who showed how such problems might be solved by the use of a modified

version of Howard's policy-iteration algorithm. Similar extensions

(1969) . (1964)

have also been proposed by Schweitzer and de Cani . dewell's

work was followed by semi-Markov generalizations of White's algorithm,

(1971b)
(1968)

Osaki and Mine « The introduction of the semi-Markov concept

by Schweitzer and of Manne's linear programming algorithm by

has been of major importance to the development of the subject since

it has vastly widened the range of potential applications of the theory.

And, as we shall show, the semi-Markov concept helps to unify and

clarify some of the results previously derived for pure Markov processes.
The second extension of the theory, which is mainly of mathe-

matical rather than engineering interest, is the consideration of
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Markovian decision processes with infinite state sets. Markov

regulation problems in which the state set is countably infinite

(1966), D an(1966) (1971),

have been studied by Veinott erm , and by Haussman
who demonstrated the existence of stationary optimal control laws fqr
semi-Markov regulation prbblems with countably infinite state sets.

- The most general case, when the state space is non-countable, has

been investigated by Ross(1968a’1968b)

who gives sufficient conditions
for the existence of a stationary optimal control law. Of course com-
putation of the optimal control law for such a problem by a finite-
state optimization algorithm necessitates the use of a finite-state
approximation to the original infinite-state procesé. Methods for
constructing such finite-state approximations have been proposed by
Fox(1971,1973) '

The remaining topic to have been studied in some dgtail is the
control of partially-observable Markovian decision processes; that is
to say, processes in which complete knowledge of the current state is
not always available to the controller. In such systems the controller
must make the best use possible of whatever information is available.
Usually the available information consists of a set of observations
related, perhaps stochastically, to the past and present motion of
the process; the set of data available as inputs to the controller
is called the information pattern for the system. The case most
readily amenable to analysis is when the controller has what is known
as perfect recall, which means the information available at any time -
includes the information available at all earlier times; the.infor—
mation pattern is then said to be ''classical'. A general discussion
of some aspects of the control of partially-observable stochastic

(1971)_

systems has been given by Witsenhausen In the field of

(1965)

Markovian decision processes, Astrom showed that for a finite-

time problem the optimal control scheme satisfies the so-called
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Separation Principle: that is, the optimal scheme consists of an
estimator which generates a prébability distribution for the states,
conditional on the available information, followed by a controller
whose input is the distribution generated by the estimator. Similar

. (1965)

results were obtained at about the same time by Aoki , and the

results were later extended to the countable-state case by Sarawagi

and Yoshikawa(1970). The essential argument in all the above work

is that the partially-observable problem is equivalent to a completely-
observable problem in which the "states" are the possible outputs of
the estimator. Since the '"state" set is no longer discrete the

actual computation of the optimal control law is difficult. However

~ by using the fact that the optimal exbected total cost is a convex,
piecewise-linear function of the estimator output, Smallwood and
Sondik(1973) have developed an elegant procedure for determining the
optimal control law for a finite-time problem. Unfortunately the
method does not apply to regulation (i.e. infinite-time) problems.
A1l of the above work deals with discrete-time Markovian decision
problems; at the time of writing the more general semi-Markov case

does not appear to have been studied, although Rudemo(1973f1975)

has
published some results for pure Markov chains in continuous time.

It is clear from the above brief review that a substantial amount
of effort has been put into the development of this branch of stoch-
‘astic control theory. Nevertheless in applications the difficulty
has remained that in.the actual computation of the optimal c;ntrol
law the standard optimization algorithms can be very expensive in
computational resources when the system to be optimized has a large

state set. It is this difficulty which originally motivated the work

described in this thesis.

1.3 Outline of the thesis

Chapter 2 reviews the basic properties of discrete-state Markov
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processes in both discrete and continous time. The concept of a
semi-Markov chain is then introduced and the equilibrium properties
of such chains are summarized. We next introduce the important notion
of equivélence between two semi-Markov chains. This idea, of which
considerable use is made later, is based on the fact that the observed
sample paths of a semi-Markov chain do not uniquely define the law of
motion of the chain: there is, in fact, a whole equivalence class of
chains with the same set of possible sample paths. Finally in this
Chapter, we consider the equilibrium behaviour of the cost function
wvhen an additive cost structure is imposed on a Markov or semi-Markov
chain. The growth of the expected total cost is asymptotically linear,
the rate of growth depending on the equilibrium probability distribu-
tion for the states of the chain. The optimal regulation problem
consists of choosing a control law so that the resulting equilibrium
distribution results in the smallest possible value for this asymptotic
rate of growth.

The optimal regulation problem is defined in detail in Chapter 3
and the existing standard optimization algorithms are then reviewed.
As has been mentioned, there are three basic types of algorithm:

(i) policy-iteration algorithms, in which an initial trial control

law is systematically improved by an appropriate form of Bellman's

(1957)

"approximation in policy-space' technique ; (ii) successive-

approximations algorithms, in which the non-linear optimality

equations are solved by simple Jacobi iteration; and (iii) linear
programming algorithms, in which the optimization problem is formulated
as a linear programming problem and then solved by a linear program-
ming procedure.

When the number of states is large the standard algorithms
require considerable computational resources (core storage and central

processor time). In Chapter 4 we present some new optimization
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algorithms which are, in general, likely to be more efficient than
the standard methods. The firét of thp new methods is a modification
of the standard policy-iteration algorithm in which multi-state
changes in the control law are replaced by successive single-state
changes. Two related policy-iteration algorithms, in whic¢h the

- single-state improvements to the control law are themselves optimal,
are also discussed. We give a detailed comparison of the various
policy-iteration algorithms; in particular, we demonstrate the con-
vergence of the new algorithms, compare the computational effort
required, and show that their performance is not adversely affected
when the chain to be optimized possesses transient states.

Welnext consider algorithms of the successive-approximations
type. We give a new convergence proof for White's original algorithm,
which uses a contraction mapping argument and also makes use of some
properties of inhomogeneous Markov chains. As we then show, the
proof suggests a natural generalization of White's algorithm to the
semi-Markov case, achieved by invoking the concept of equivalent
chains mentioned earlier. Finally, we examine the possibility of
accelerating the successive-approximations method by means of over-
relaxation. It turns out that some degree of acceleration is feasible
provided that a variable acceleration factor is used; this is a use-
ful result since the standard successive-approximations procedure
converges very slowly for certain classes of problem.

Many queueing s&stems are appropriately'ﬁodelled by Markov
processes in which transitions are possible only between adjacent
states. Such processes are called birth-~death processes and in
Chapter 5 we consider optimal regulation of this type of process.

The special structure of the birth-death process permits'a certain
amount of simplification in the thimization algorithms, in particular

the Howard policy-iteration algorithm. A problem that ari§es in the
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control of queueing systems is that the natural choice of state
space for the system is countagly infinite so that the finite-state
optimization algorithms cannot be used without some form of trunca-
tion of the state space. We show that by introducing a certain em-
bedded Markov chain it is possible to truncate the state space
without distorting the properties of the process. A related problem
is that of choosing an optimal quantized control law for a Markovian
decision problem. In general this is a very difficult problem; it
can, in fact, be formulated as a partially-observable control problem
with a non-classical information pattern - and such problems are
notoriously difficult to solve. However, in the case of a birth-

. death process, it is possible to show-that use of a modified version
of our single-state policy-iteration algorithm will generate the
globally-optimal quantized control law for the process. The last
part of Chapter 5 is devoted to this topic.

Finally, in Chapter 6, we present some numerical results for a
specific optimal regulation problem. The problem is the optimal
regulation of a simple queueing system in which the number of service
channels is variable but there is, in addition to the usual customer
delay costs and open service-channel costs, a cost associated with
any change in the number of active channels. The object of this
numerical investigation is to compare the performances resulting
from each of the fol}owing approaches to optimization of the system:

(i) Determine the control law which is optimal in the absence

of switching costs and add in the cost contribution due to

switching after the optimization.

(ii) For some sensibly chosen quantization of the state space,

determine the quantized control law which is optimal in the

absence of switching costs. A quantized control law results

in less frequent changes in the number of active channels and



hence in a lower switching cost contribution.

(iii) Determine the contr;l law which is optimal in the

presence of switching costs. This approach involves re-

definition of the state space of the system in order that the
switching costs can be properly incorporated in a separable

cost function. The resulting control law exhibits a hysteresis-

like characteristic in which the number of channels active for

a given queue length depends onvwhether the queue is growing

or shrinking.

The first twa approaches result in sub-optimal control laws:
the control law produced in (iii) is optiﬁal. The question we have
sought to resolve is this: is the performance of the optimal system
sufficiently better than that of the sub-optimal systems to justify
the extra computational effort needed to determine the truly optimal
control law ? In addition we have compared the performances of the

main optimization algorithms in part (iii). above.

1.4 Contributions of the thesis

The work described in this thesis lies in the general field of
system optimization and control; in particular it deals with the
optimization of Markovian decision processes. The main contributions
to this field, believed to be original, are:

(1) The development and use of the concept of equivalence for

semi-Markov chains with additive costs. (Chapter 2)

(2) The development of new optimization algorithms of the policy-

iteration type and an investigation of their properties.

(Chapter 4)

(3) A new proof of the convergence of the successive-

approximations algorithm for discrete-time chains, leading to the

development of (a) a generalized semi-Markov

20.
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version* of the algorithm, and (b) an accelerated version of
the algorithm. (Chapter 4)

(4) A study of the application of Markovian decision theory

to birth-death processes, including proposals for handling
processes with a countably-infinite state space and for optimi-
mizing the performance of quantized systems. (Chapter 5)

(5) A numerical study of a specific optimal regulation problem

of considerable practical significance. (Chapter 6)

*The semi-Markov version is not new: it was first proposed by
Schweitzer(1971b) in 1971. The arguments presented here, leading
to the development of the algorithm, are new.



CHAPTER 2
MARKOV AND SEMI-MARKOV CHAINS

2.1 Introduction

As is well known; the analysis of the behaviour of a deter-
ministic dynamic system is usually simplified by suitably defining
a state for the system and then analysing the motion of the state.
The essential feature of this so-called state representation is that,
given the present state, the future motion of the system is independ-
ent of its past history. An analogous situation holds for stochastic
systems, that is, systems in which the motion is wholly or partially
influenced by random effects. In suéh cases the law of motion is
probabilistic rather than deterministic and the appropriate mathe-
matical model is a stochastic process. As in the deterministic case,
it is in principle possible to introduce a state for the system
having the property that the future motion, given the present state
of the system, is (stochastically) independent of the past history.
The stochastic process representing the motion of the state is then
a Markov process and analysis of the system's behaviour is then
reduced to analysis of the behaviour of a specific Markov process.
For this reason the concept of a controllable Markov process plays
a key role in stocpastic control theory.

In this chapteq a brief outline is presented of the relevant
theory of Markov processes and semi-Markov processes with particular
emphasis on finite-state processes. The concept of equivalence
between regular semi-Markov chains is introduced and the long-run

behaviour of Markov chains with additive costs is then described.

2.2 Markov Processes

Given a probability space % SZ ?} ’Fjg the indexed collect-
ERVAS)

ion of random variables {(Xt: L= X0 ¢ e'—r’} is called
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a stochastic process with state space JC and parameter set (or index

set)T. In most applications t is the time at which Xt is observed

and usually the only cases of interest are (i)(r = Z+ = {0,1,2,... ,E

in which case 1X, Y is a discrete-time process, and (ii) i = A
t +

[0,00>, in which case {Xt.g is a continuous-time process. For fixed
t, Xt is a random variable taking values in the state space X ;
thus Xt is the state of the process at time t. The state space X
may be discrete (ie. finite or countable) or continuous (for example,
k dimensiona;l Euclidean space, R_k); but in this thesis we are con-
cerned largely wit‘h finite-state processes, that is, processes with
a finite number of possible states. We may then without loss of
generality take X = NN 2 {1,2,...,N}. Once L and ’r have
been specified the process §(Xt: D-5X): te 'T} is denoted by the
 abbreviation §x3.

A stochastic process {(Xt: N-=23X: te T} is said to be a

Markov process if ’r is an infinite set and if, for every integer k,

for every set of times {ti e "r $ 1= 1,200kt 1% ordered so that
L ] - G :
t,] < 1:2 < <tk < tk+‘|’ for every set of states {xl = XL

i = 1,25e0e:k+ 1;, and for every event E in X s

P[X eElX :X,X = X ,.,.,X =X}
b b, K Tt T ket t, 0

o[r, e s
- k+1

Property (2.1) is called the Markov property. It asserts that,

X =x] ceee(2.1)
t, Tk

given the "present state", Xt , (interpreting t, as the "present time"),
k

k
the future behaviour of the process is stochastically independent of
every past value of the process.

A Markov process with a discrete state space is called a

Markov _chain. Such a chain may be finite, in which case we may

take :X; = NN’ or countable in which case we may take 3C = N .



In a Markov chain the random variables
therefore work with probability mass d

k
product sets :x; sk = 1,2)000 @

Xt are discrete and we can

istributions defined on the

For the Markov chain-{X%% we define, for every k € Pd R

' A s _ 3
po - (t1’...,tk) — P[Xt1 - 11,..‘.,Xt lk]

11,.o.,lk
and, for every r € {1,2,...,k§ ’

.pl (t1’...,tk)

1r+1,...,ik[ igpeeeiy

P[X =i yeeesX
tr+1 r+1 t

k

=i X =i ’...,X« -_—'i ]
X k t1 1 T, r

Then the Markov property (2.1) can be written in the specialized

form
P . . (t ,.oo,t ) = DP. . (t ,t )
Teq| oot T k+1 Tpaql B KA ceea(2.2)
from which it follows that
k
p. . (t ’QQO’t ) = P. (t ) p. . (t ,t )
11’°"’1k+1 1 k+1 11 1 | | 1r+1 ir r+1
r=1
0000(2-3)

Thus if {Xt% is a Markov chain, i

are uniquely determined by

ts finite-order distributions

(i) the initial distribution p; (t1)

and (ii) the condition distributions

1

P. o (E,t ), = 1,20,
lr+1 1r r’ r+1

Equation (2.2) is an assertion that the Markov property holds

at the specified (ie. fixed) time t.

It turns out in the subsequent

development that we sometimes need the Markov property to hold, not

at a fixed time tk’

be a Markov chain and let T be a random variable, with values in ’TJ )

defined on the same probability space.

but at some random time T. Let {Xt i t GL'TJ }

The random variable T is

2k.
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said to be a stopping time for the chain {th iff for every
t e ’T’ the event {T > ti is independent of the posterior behaviour
of the chain,‘{XS: 5 > t}. Roughly speaking, if the value of T

can be determined by observation of the chain {Xt% then T is a
stopping time if its value is determined by {XS: s & t} for some
t < T. For example "the time of the first occurrence of the event

Xt =3 " is a stopping time; "to seconds before the first occur-
rence of thi "is not.

It may be shqwn (for example, Chung(1967)) that the Markov

property holds at any stopping time: that is, if T is a stopping

time for X, and if t is a positive time such that T'& T+ t & ’T',

t

then for t1,...,t all less than T,

k-1

P . - (t ee e t T T') = of. (T T')
P3 igpeeeniy o VT RS ! Pili *7

‘...(2.4)
Since any fixed time tk € fT/ is clearly a stopping time,
property (2.4) is a more general one than (2.2). It is known as the

strong Markov property and it may be regarded as the defining charact-

eristic of a Markov chain.
We now proceed to review those properties of finite Markov chains

that will be needed in the sequel.

2.2.1 Finite Markov chains in discrete time

In this section we consider Markov processes for which
tx: = F\J and [ = 2224. As we have seen, such processes are
N

completely characterised by the conditional probabilities connecting
successive times of interest. We therefore introduce the one-step

transition probabilities
p;;(8) & PE(t+1=j xt=5£] , i, e X

and, more generally, the k-step transition probabilities




X:i] ,i,jex

(x) .
Py () & P[Xt-!-k:‘] Tt

An immediate consequence of the Markov property is that the

p.ﬁk)(t) must satisfy the Chapman-Kolmogorov relation : -

i3
p, ) () - E p, 8 @ 5w e (2.5)

im
J

for every i,j,m & CXZ and every t,k,1 € frJ .

In particular, with 1=1 equation (2.5) is a recurrence relation
for generating the pigk) (t) from the pij(t).

In this thesis we are concerned only with Markov chains in which

the transition mechanism does not vary with time, that is

pij(t+to) = pij(t) , \/i,j 3 I
Vt,to e T

Such a chain is said to be homogeneous (in time) and we denote

(k)
J

We now introduce the state probability vector

its transition probabilities simply by p;

Py A& Col[?1(t),.o.,pN(tﬂ

where pi(t) & P[Xt = i] , ie x) and the (1- step)

transition probability matrix

P & [IL.]
YUINxN

Then, by the Markov property,

T T
-I-Jt = _Ilt—'] P ..oo(2.6)
and hence
T T Lt
_p_t = BO P 0‘00(207)

where Pt denotes the tth power of P.
2rmits
Equation (2.7)Xﬁhe state distribution at any time t to be

computed in terms of the initial state distribution and the transition

26.
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(k)

probability matrix. Furthermore if P is the N x N matrix of

k-step transition probabilities then the matrix form of (2.5) is

P(k+l) _ P(k)P(l) : cen(2.8)

from which it follows that P(k) = Pk°

The transition probability matrix P is a stochastic matrix;

that is, a square matrix with real, non-negative elements and unit
row sums. <The properties of such matrices are well established

(1975) (1973)y,

(see, for example, ginlar or Seneta in particular, it
can be shown that for any stochastic matrix P

(i) Pk is stochastic for every positive integer k ;

(ii) the eigenvalues, %-, of P all lie on the closed unit

disc {?\: )}\, < ‘l} H
and (iii) N = 1 is always an eigenvalue of P.

It is clear that the long run (t -> ©0 ) behaviour of P’ and
hence, via (2.7), of pg} will depend on the eigenvalues of P with
unit modulus and the ;;sociated eigenvectors. The form of the
eigenvalue spectrum on the unit circle l).l: 1 is directly related
to the availability of communication paths between the various states
of the chain, a question which we now consider briefly.

Let Ri denote the event that, for at least one integer k > o,
Xiye =1 and let r, a P[Rilxt=i] . Then the state i is recurrent
if ri==1 and transient if ri< 1. Suppose that i is recurrent and

thoong (k+ 1) occupa-

that T, (k) is the time interval between the k
tions of state i. Then Ti(k) is a random variable with distribution
independent of k (by the strong Markov property the chain "restarts"
at every visit to i). The expectation t, & E{?i] is called the mean

recurrence time of state i. In a finite chain ti is finite for every

recurrent state i. If the only possible values of Ti are k, 2k, 3Kyeee

for some k >> 1, the state i is periodic; otherwise i is ergodic.
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In particular, if p;; = 1 so that Ti is always 1 then state i is
absorbing.
‘ : (1967)

Now it may be shown (for example, Chung ) that the state
space DC of any finite Markov chain is the union of two disjoint

subsets,
DC = :X;T U X’R 9

where :X/T consists of all the transient states (:E‘l‘ may be empty),
:XJR consists of all the recurrent states,

and no state in xT is accessible from any state in :CR' Further-

more, OCR may be uniquely partitioned into closed sets in each of

which all states intercommunicate and are of the same type and period.

X, € DCA) =1 for

every k > 0. Two states i and j intercommunicate if, for some k and 1,

pigk)> 0 and pjj(_l)> O.) The implication is that every finite

(The set of states :C’A is closed if P[Xt+k e :XLA

chain consists of one or more recurrent subchains together, possibly,
with some transient states and ultimately {th will be absorbed into
one or other of the subchains.

The long-run behaviour of {th clearly depends on the number
and nature of the subchains it possesses. Throughout this thesis
our attention is confined to chains possessing a single ergodic sub-
chain (as well as, possibly, some transient states). Such a chain
is said to be regular - in which case we also say that P is regular
- and possesses the following properties:

R.1 There exists a unique stationary probability distribution

T 2 Col (T ..., Ty) satisfying

—

wt - wt o veee(2.9)

and, furthermore,

’]T.:'i', i e x

i t
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Clearly if P, = I_r, then from (2.7) Py = TU for every time t
and so EX,J is stochastically stationary.

R.2 The chain is asymptotically stable in distribution: that is

Lim
Pt = 2 T_’FT 0000(2010)
t>o00

where ¢ 2 Col(1,1yeee,1), so that, for every P,

Iim T
pt = p P
t> - t>e0 -

Thus a regular chain always settles down to an equilibrium
behaviour, which is independent of the initial state of the chain,
and which is governed by the stationary distribution, 1l.

R.3 The chain is strictly ergodic: that is, if Ii : x > §O,1§
is the indicator function for state i then

Lj- t
m ; _
ey _;_ Ii(xk) = T(i , almost surely.

t->o00 =0

This means that for almost all sample paths of the chain {Xt}
the long-run proportion of time in which state i is occupied is
equal to 1T;.

As we have already remarked, the long-run behaviour of a finite
chain is governed by the unit-modulus eigenvalues of its P-matrix.
In particular, the cﬁain will bé regular iff the principal eigen-
value, N = 1, of its P-matrix is simple and is the only eigenvalue
of unit modulus. In this case the state distribution p, can be re-~
solved into steady-state and transient components.

0 i T '
Let pe a Lim Pt = e T_EJ' (using (2.10))
tdea

Then

PP = P P = (P°°)2 = Pw 00-0(2011)



~ 00
so that, if P 4 P-P ,
” 2 ~ *
Pu{‘ P = P I’a‘g = 0 ....(2.12)
whence
oD ~ :
pt - p® 4 Bt ceee(2.13)
Lim o~
Note incidentally that Pt = 0.
£ o0

Using (2.13) in (2.7) we obtain

T T ~
pt - :,_r- + pf Pt .o.-(201’+)

~
The rate at which the transient term p-; Pt decays is governed by

)\2, the eigenvalue of P with second largest modulus (since if the

spectrum of P is {’i, )\2, )\3,...} that of P is {O, XZ’ XB,... ).
2.2.2 Finite Markov chains in continuous time
We next consider Markov processes for which :x; = I\J;‘ and

/r = R_ 40 ie. continuous-time Markov chains. The sample paths
of such chains are random step functions in which instantaneous Jumps
between states are made at randomly occurring times. As before we
confine our attention to homogeneous chains in which the transition
probabilities are invariant with respect to translations in time.
Corresponding to the k-step transition probabilities in discrete

time, we now introduce transition probability functions
A — - — 3 3 3
p (0) & P[Xt-z-'\: - 3%, = ] , i e X

with t, T & /TJ

The transition function matrix

must satisfy the continuous-time Chapman-Kolmogorov relation : -

Pv, +T,) = P(T)P(<) y T T, e T

cees(2.15)




The time interval between entry into a (non-absorbing) state and

subsequent exit from the state is called the sojourn time (or holding

time) in that state. If s:.fk)

is the kth sojourn time in state i it

follows from the strong Markov property that the random variables

S§1), S:.Ee), eeeo are independent and identically distributed. How-
ever to maintain the Markov property at every point in T more is
needed : the sojourn times must be exponential random variables. That
is, the distribution function Fi: R+ — [O,’I] of Si must have the
(1975))

form (see, for example, Sinlar
-mt
Fi(t) = 1 - € /Ai 9 t > 0 .000(2.16)

for each i & DC.
It follows that for small At, regardless of the entry time into

state i,

P[Xt+ Y P A 1J = /«i At + o(At)
ceee(2.17)
Thus with probability 5 At the chain will leave state i in the
small interval (t,t+ At), and by the Markov property the destination

can depend only on the state i. Define the next-jump probabilities,

rij'l by
A P

iy — [Xt+At = 3 [X =iy X # 1] v 1ad

cees(2.18)

i.e. rij is the probability, given the occurrence of a jump out of

state i, that the destination will be j. Clearly r,.= 0, Yi e JC.
(Note that this argument holds only for non-absorbing states. If

state io is absorbing, then Fi and r, j are not defined. In such
o o
a case it is convenient to allow 'pseudo-jumps' from io into itself:

we can then take Fi to be exponential with an arbitrarily-chosen
o .
parameter /Ai and the next-jump probabilities for i0 by
[ (o]

rioj = 0 ’ 37!10

31.



It is then of course no longer true that ry; = 0, \/i e X))

It is now convenient to introduce transition intensities, qij’

defined by
G5 & /“i i3 » 341
A - s 2
2 /f\i E Ty s J=14i eees(2.19)
kAL

Then from (2.17) and (2.18) it follows that

Pij(At) % 5 At +0 (At) , 41

14q; At+0(At), j=1 eeee(2.20)

The intensity matrix

Q A [qij]

_ is the continuous-time counterpart of the transition probability

NxN cese(2.21)

matrix P of a discrete-time chain. By considering an appropriate
form of the Chapman-Kolmogorov equation it may be shown that the

transition function matrix P(T) satisfies the differential equation
P(r) = P(T)Q eeeo(2.22)

with initial condition P(0) = I.

The solution of (2.22) is

P(t) = exp(Qm® eees(2.23)

and so the state probability distributicn at any time t e ’T/ is

given by

PtT = pf exp (Qt) cese(2.28)

Now, setting T = 1 in (2.23) yields the matrix P(1) = exp (Q).

Thus if }\‘I’ ?\2,..., )\M are the eigenvalues of Q andl )\1, Xa,...,)\M
are the corresponding eigenvalues of P(1), we have

— }\‘

Ac = e * [ i = 1,2,0.,}1

32.
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whence

-

Ai = log Xi 9 i = 1,2,00.,M

" But P(1) is a stochastic matrix and hence its eigenvalues are
all on the unit disc l)“<5 1; we therefore conclude that the
eigenvalues of Q are all in the closed half-plane Re(A) € 0, and
that corresponding to the principal eigenvalue Xﬂ = 1 of P(1),

Q has a principal eigenvalue )”‘= 0.

The classification of states for discrete-time chains carries
over to continuous time (with the exception that periodic states
can no longer arise). Furthermore, if the chain is regular, the
following properties hold : =

R.4 There is a unique stationary distribution O which satisfies

the equation

6°Q = 0 : ceee(2.25)

R.5 The chain is asymptotically stable in distribution: that is

Lim T
exp(Qt) = e 6 ceee(2.26)

t>00

so that, for every Py s

Lim T
tH o0 —
as in the discrete-time case.

R.6 The chain is strictly ergodic: that is
T
Lim
I.(X)dat = 6., almost surely
it i

Hi-

t-»00 0
vhere Ii : X - {0,1 } is the indicator function for ‘state i.
A continuous-time finite chain is regular iff the principal

eigenvalue, )\1=:O, of Q is simple. In such a case we have, in



analogy to (2.13),

[« B ~
P(t) = P + P(%) ceee(2.27)
where
Lim ~
~s P(T). = O©
and
~ oD ~
P(T) P = POP(e) = o
2.2.3 Finite semi-Markov chains (

The matrix R % [rij]NxN of next-jump probabilities (see (2.18))
may be regarded as the transition probability matrix of a discrete-
time Markov chain{ -}Et: L > NN) it e 'Z_+‘§. If we identify
the sequence of points 0,1,2,«.. in Z+ with the sequence of random
times O, T,], TZ"" in R_+ at which 1':he continuous~time chain ith
changes state then {YJ is said to be embedded in R _ and is called

the embedded chain of the original continuous-time chain {th. It has

the special property that the diagonal elements rog of its transition
probability matrix R are all either zero (non-absorbing states) or
one (absorbing states).

The closed subchains of %Yt? correspond to the closed subchains
of {Xt} , so that if the latter is regular then so is {itz and a unique
equilibrium distribution will exist for each chain. These two equili-
brium distributions will not in general be identical since that of {Xt}
will depend on the sojourn-time distributions whereas that of {3(-1} will
not. In fact if & and I are the equilibrium distributions of § X}

and {-itz respectively, we have (see Appendix)

; T

G-' = — ] vi e x
* Z‘Wj T C eeee(2.28)
3 .

A _ -1 . R . .
where ‘Ci = E[Si] = /“i , the mean sojourn time in state i.

Note that Gi =0 iff 'rr’i = 0 (we ignore the possibility of so-

called ephemeral states for which T, = O in which case state i is



transient. Otherwise i is ergodic and then 6& and TTi give
(almost surely) the long-run occupancy of state i as a relative
duration and as a relative count, respectively.

The concept of an embedded chain is clearly a general one.

Thus, for example, if {Xt} is a discrete-time chain we may introduce
an embedded chain {SQ;§ whose index set KT' is the set of times
t e izz* for which Xg « # X, 4 - The sojourn times S, are then
discrete random variables whose distributions Fi are geometric,
The equilibrium probabilities of {th and {;i&} in the regular case
are again related by (2.28).

We thus have an interpretation of an& finite Markov chain
{Xt st e ’T/} as a discrete-time chain %_it it e Z+§ embedded
in the index set,TJ in such a way that the sojourn-time distributions
F, are all éxponential Gt T = Fi“f) or geometric (if ’T/ = :Z:+).
Suppose however that the sojourn-time distributions, while still
dependent only on the current state, were not exponential (continu-
ous (r-) or geometric (discrete ’TJ). The process {th would then no
longer be Markov in /TJ but the Markov property would still hold at
the jump times t1,t2,... at which.{X%E changes state. Such processes

are called semi-Markov chains (or semi-Markov processes) and they

are of considerable interest for the following reasons (a) They
constitute a general class of processes of which Markov chains in
discrete and continuous time are special cases; (b) certain more

general stochastic processes called semi-regenerative processes

(see, for example, ginlar(1975))’which arice in queueing theory,

always possess an embedded semi-Markov chain; and (c) semi-Markov

chains are closely related to renewal processcs (see, for example,
(1962) . . - -

Cox ) and so provide a link between two distinct branches of

applied probability theory. We now briefly review the main propertiecs

of this class of process when the number of states is finite. The
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(1954), VoL Smm(1955) (1961a,

and Pyke
(1959a,1969b)

theory is mainly due to Levy

1961b)
(1968)

, with further developments by Cinlar and Tetgels

. An excellent survey of the theory has recently been given by
girxlar(1975).

The joint process {(in: L - NN),(Tnt L > T)ne Z_,_g

_is called a (finite) Markov renewal process with state space NN s

if (i)o=T°5T1<T2\<...

and (i) foralln ¢ Z,35 ¢ Ng,te T,

Xo,o.o,xn; TO".. ’Tn]

Yn] eeeo(2.29)

P[Xnﬂ =3, ATn+’l st

= P[xnﬂ:j’ ATn-l~1 <t

Pay -
where ATn & Tn Tn—'l

Assume the process {Yn’Tnz is homogeneous in n and define the

X =1J ,
I
i, € NN, te ] ....02.%0)

(To exclude the possibility of ephemeral states, assume that

Py (o) =0, YVis e N

transition functions

PaN v )
Fij(t) & P[Xnﬂ_ 3, A.Tn+1 <t

The matrix F(t) & [‘Fij(t% is called the semi-Markov kernel
NxN

of the process {S(-n,Tn.g; from it we derive the following quantities:

. N ey = T3 s
(i) pig 2 P[_xm,l_ X, = 1:(
Lim
= ORI 9 = NN, te T
t>00 eeea(2.31)
. o A‘ ~ _ . ey — 3
(ii) Gij(t) & P[ATn+’I é t Xn =1, Xn+’l— J}
Fi.(t)
=~ ir p..AoO
P 5 ij
ﬁ 1 ) if P:s = 0 o---(2032)
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Yn=i] vie Ngte R,

eees(2.33)

e o o A
@) K@ 2 p[AT <t

The process iin’Tng is best interpreted as a Markov chain
%xn :ne L j, with transition probability matrix P& Y-pilexN'
embedded in the index set /r by the mapping n > Tn(w).

Given (S(-n_—:i, Tn= t) we can suppose the transition to

x T +1) to be generated

n+1' "n
either (a) by the selection of -in+1 from the conditional state

distribution pij sy J = 1y0e.,N, followed by the selection of
ATn+1 from the conditional sojourn-time distribution Gij(t),
where j is the value of )_(.n+1 H
- or (b) by the selection of ATnH from the unconditional
sojourn-time distribution Hi(t), followed by the selection
of -5(-11 +1 from the time-dependent conditional state distribu-

tion pt(i,j) defined by

. . A ke _ o= kT3 s . _
pt(l"]) = PIXn-r'l'J X =1; ATn+‘l‘:] >

i,5e N, te T, v (2.38)

There are some obvious relations between the functions Fij’ Gij’

Hi and Py defined above which we now list :

F ) = py Gl(e) Vi,; e NN, Vi e R.
' . veee(2.35)
F (8 = CpyGLd) aE (8) Yi.ie ]\]N, Vt e R,
° ceee(2.36)
() = ZFij(t) ) Vie NN, \{t e R+
J eeee(2.37)

Now for any t & T let the random variable Nil): Q > Z+
denote the number of transitions into state i in the interval (O,{l,
and let T\I‘t a Z Nél). Then the integer-valued process

_ ie N,
{Nt st te T} counts the toltal number of transitions in the interval
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(O,t] , and is called the renewal counting process associated with

the process {Xn’ Tj .
The stochastic process i(xtt - NN): t e T} defined by

setting

X, A iﬁt , \]t e T eeee(2.38)

is called the semi-Markov chain associated with the process {Yn’Tn% s
and g'-fn} is its embedded Markov chain. The relationship between
these processes when /r = P\-+ is illustrated in Fig.(2).

Notice that in the above definition cf a semi-Markov process,
the embedded chaing_inf is allowed to make self-transitions, ie. the
diagonal elements Pii of the transition probability matrix are not
necessarily zero. In applications, however, it is usually natural to
work with semi-Markov processes in which the embedded chain defines
changes in state, so that necessarily p.; =0, \/i e NN. (But see
Section 2.2.4). Note also that in some applications the time incre-
ment ATn+1 is statistically independent of the destination state

Xn+1, so that Gij = Hi’ \Qlj € NN, but this constraint does not

5implify the analysis of the process.

The random times T T2’"" are stopping times for the semi-

11
Markov chain Y(Xt:; and the Markov property holds at each Tn; unless,
however, the sojourn-time distributions Hi are all exponential (for
fr = P\_+) or geometric (for fr = Z+) the Markov property does
not hold for {th at points between the times Tn.
The classification of states for a semi-Markov chain letg

follows that of its embedded chain {-J_(;}. Thus state i is recurrent
in g_th iff it is recurrent in {.)_(n%. Furthermore, except in rather

(1975

special circumstances (see ?inlar )), the recurrent states in
SLXt% can be assumed to be ergodic. As before, a chain possessing a

single ergodic subchain is said to be regular znd for such semi-Markov
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chains we have the following long-run properties (cf. R.1 - R.3
in section 2.2.1 and R.4 - R.6 in section 2.2.2).

Suppese that, for the recurrent state j,
K (8) = P[N§3)>O io=i] , i€ NN, te T

Then Kij :’T/€>[p,1] is the distribution function of the

so-called first passage time, Tij’ from state i to the recurrent

state j.
Let
/‘/~.. =3 E[T]
ij ij
0
= / t dK. . (t)
1]
o .

= mean first passage time from i to J

and let

A
T, & E[AT

n+1

X = i]
n
od
/ t dH; (t) eees(2.39)
o .

= mean sojourn time in state i

Assuming that 'Ci < o0, Vi € NN’ we then have
R.7 Ir T = ColC“;,...,TTN) is the unique stationary distribution

for the P-matrix of the embedded chain.ij;}, then the mean recurrence

time, /Vaj, of any ergodic state j is given by (see Appendix)

S N &
/'“ja“wch"Ti‘Ci Nie%

iaDCR

eeee(2.40)

where jER is the set of recurrent states in ‘\{q‘

R.8 For any recurrent state j ,
Iim ) <.
P [Xt = j X = i] = '_J— 0000(2.41)
o ..
t-> o0 /J:'JJ



L4,

This result, which is demonstrated in the Appendix, shows that

{Xt§ has a long-run distribution over :I;P which is independent of

o -1]
o

the initial state Xo. For, defining

s Lim
. A r’[x = j
J ty o0 t

and using (2.40) in (2.41), we obtain

5 Jj 73 ,‘VjeDC

R
cees(2.42)

and since ;ZEE:: G‘j = 1 it follows that the probabilities

je Xy \ ]
Gj t je xR form a distribution over :I’R' In fact, since '“-.:_j = G-j
= 0 for any transient state j in ]\JN, we can write (2.42) in the

form
Tfj'c-
J
G_. = 9 je N
J E m. T. \VI N
m iod
Te™Ny ceee(2.43)

This is a key result for semi~Markov chainsj it shows that the
equilibrium probabilities 65 depend on the semi-Markov kernel F(t)
only through the means ’Es of the sojourn-time distributions Hj and
the stationary probabilities TTj of the embedded Markov chain.
Equation (2.28) is a special case of (2.43).

R.9 The semi-Markov chain {th is strictly ergodic: that is, if
1.t N —{0,1§ is the indicator function of state i,

Lim T
Ii(xt) at = Cii , almost surely

1l

T-=><0

This result confirms the intuitively reasonable idea that
(on almost every sample path) the long-run proportion of time spent

in an ergodic state i should be the ratio of the mean sojourn time in



i to the mean recurrence time of i.

R.10 The equilibrium mean sojourn time,
— Lim
T =2 E [ATn] :
n-y oo

for sLth is given by

ieN
Lol 3,1
Z'ti p[in_1 = i]

ie
NN

since E [ATH]

2.2.4 Equivalent chains

From the preceding Sections we conclude that finite semi-Markov
chains constitute a fairly general class of finite-state process
which includes Markov chains in discrete and continuous time as

special sub~classes. To be specific, the semi-Markov chain

{(Xt:ﬂe NN) : t eT} is

(1) a discrete-time Markov chain if fr B Z+ and

either (a) every sojourn time ATn is equal to unity so that
Tn =n, Vn & Z + 0

or (b) the sojourn-time distributions I—Ii are all geometric,

ie. Hi(t) =1 - 0(; (We may then interpret 0<i as the

\

self-transition probability, p.., of state i of some

11

underlying Markov chain with Tn = n, Vn € Z+ <)

(ii) a continuous-time Markov chain if T: R, and the sojourn-

+

-M.t
time distributions are all exponential, ie. Hi(t) =1-c¢e /wl .

(It is perhaps worth remarking here that the associated Markov

renewal process {Xn s Tn? is a generalization of an ordinary renewal

T - Z . T, veeo(2.44)

Lo,
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process, since if the state space of §§;§ contains only one point
(N=1) then {ig,Tn% is an ordiﬁary renewal process.)

We have previously defined a general semi-Markov chain {Xt§ in
terms of an associated Markov renewal process {RL,Tgi. The sample--
paths of ixgg are then completely determined by the semi-Markov ker-

-nel TF of the underlying process {Yn’Tn%' However, if self-transitions
are permitted iniigithe converse is not true: the sample-path behaviour
of %Xé is not sufficient to determine the kernel F uniquely, since
self-transitions in{iggare hidden in the observed process {X;i.

Consider two Markov renewal processes {-.in’Tng and i-)—{n',Tn'§ .
vith the same index set ’T/, the same stafe space Ddea’ and with
semi-Markov kernels F and F'. Let us say that{.)_(n,TJ and {T(-I;,Tl'lg are
equivalent - or, F and F' are equivalent - iff they generate
statistically identical semi-Markov chains, {Xti and {X;%. As a
trivial example, all ordinary renewal processes are equivalent, since
in each case the associated semi-Markov chain exhibits no transitions.

Now if the semi-Markov kernels F and F' are equivalent then the
associated semi-Markov processes {Xt} and {Xé?

(a) possess the same communication structure: that is if P and

P' are the transition probability matrices of the embedded chains

{x fana {7,
pij>o <> pi'j > 0 ,\/i, Vj;! i

and (b) possess the same long-run properties; in particular if {Xti
- and hence also {Xég - is regular, the equilibrium state

distributions are identical: that is

o, = o Yie NN

In optimal regulation problems it is only the communication
structure and the long-run properties that are significant. It is

therefore useful to widen the notion of equivalence and to say that
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two regular semi-Markov kernels F and F' (defined on the same state

space and the same index set) are weakly equivalent if their assoc-

iated semi-Markov processes possess the same communication structure
and identical equilibrium state distributions. This weak type of
equivalence is useful because the equilibrium properties of a regular
chain depend only on the stationary probabilities,'“a, and the mean
sojourn times, 'Ei, and not on the precise form of its semi-Markov
kernel F. Thus any changes to F that leave the products 1r£’ti
unchanged will, by (2.43), produce a kernel F' that is weakly equiva-
lent to F (provided that the changes do not alter the communication
structure).

(Equivalence has been defined ag a relation between semi-Markov
kernels. In vhat follows the term "equivalent chains'" means chains
with equivalent kernels.)

Given any non-trivial regular chain {Xt¥ it is possible to

construct an equivalent canonical chain {Xz}'by suitably modifying
the semi-Markov kernel, F, of {Xt}. (By a non-trivial chain we mean
one whose recurrent subchain does not consist of a single absorbing

state, so that p., < 1, Yi e N )

Lt T & Col(T,..., ) eeea(2.45)
T & ColS,..., o) eee(2.46)
T 2 CollT,..., Ty eeea(2.47)

The transformation to the canonical semi-Markov kernel F° changes
TI and © but leaves O unchanged. It works by replacing the embedded
chain {Yf by a new embedded chain {—fo} in which there are no self-
n n
transitions of the form i-—>i. (Recall that the embedded chain of a
continuous-time Markov chain is of this type.) Thus if P°a [_pioj]
NxN

is the transition probability matrix of 1?(';}, we choose, for

all i,j € I\,
N
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(o]
pij = 0 ’ J=1
| FP
= _J— Py j#i o-oc(2048)
1 - p..
11

so that the pgj are (for j # i) the next-jump probabilities associated
with {Xn.i.

Now embed {)-(;?} in ’r via the Markov renewal process {i;,Tg‘i s
where Tg is the time of the nth change of state in the original semi-
Markov process {&5: the associated semi— Markov chain {Xz} is then

. . . v <0 ol .
equivalent to %X&. The relationship between an,Tng and%_Xn ’Tng is
illustrated in Fig.(3).

Although the chains {th and {X?;ﬁ have the same sample-path
properties, their semi-Markov kernels F and F° are different. In

fact, from (2.48) we have

P - I- %ﬁ(x - P)

eeee(2.49)

where

G & aiag,... )
with

1

g & (1-p;)

, Yi e T\lN
Note that the matrix § is non-singular.

Except when P has a special structure, we can say that if P is
regular then so will .PO be. For, from (2.49), the rank of (I-p°)
equals the rank of (I -P), which implies that the principal eigen-
value, N = 1, has the same multiplicity in P° as in P. Thus if P

is regular P° will have a simple eigenvalue A\ = 1, and provided

there are no other eigenvalues of P° on the unit circle D\] =1,

P° will be regular. If P° does have some unit-modulus eigenvalues
other than A\ = 1, then (see, for example, Chung(196?)) every recurrenc
state in {XZZ is periodic with the same period and the matrix p°

is said to be periodic. (Properties Re1 - R.3 in Section 2.2.1
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then hold in modified form.)

We shall pay no further attention to periodic chains, since
(a) results fof regular chains are easily extended to the periodic
case, and (b) we shall normally use the transformation {th > {X?_’S
in conjunction with a second transformation §X2.3—> ZX:} which will
- restore regularity.

The stationary distribution , Tj_o, of P° satisfies

T T
®% = @) P°

ie., using (2.{&9),

T
@) a-e T-P) = o eees(2.50)

But since ‘T_f_T is the unique stationary distribution of P, and

since i) is non-singular, the only solutions of (2.50) are

T
(M) = T o1 , e '
— ¢ % ) R eeee(2.51)

and to make W° a probability distribution, we require that

-
¢ = (1_\'_T§“1 e) eeee(2.52)

Now consider the new sojourn-time distributionms, Hg, i=1,ee0,N.

L7.

These are not, in general, simply related to the original distributions

Hi; we can however, by means of a simple renewal argument,relate the
new mean sojourn times "Cg to the original times 'Ci. We have, at the

. . o
stopping time Tm = Tn ,

'}Z°=i:|
m

5)
E A"T'|m+'l

E [A g

m+1

Il
=
=

—

>
5%
F
UL

= P [an 1 £i

+ P[XI'H-’I =i

= (1-p;,) E ‘@Tnﬂ
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ke . (o] Erie] .
XII:l]. + E[ATm+1 sz ]),

where, in deriving the second term on the right-hand side, we have

+ py; (B {Tn+’i

used the fact that (Xn+1=1’ Tn+1) is a regeneration point for the

proces_s{?n,Tng. The above relation expressed in terms of 'T,i and

dO

(1-p,,)T, + py;(T, +'c§) eee.(2.53)

and \since this holds for each i in NN we have

T - §E | eee.(2.54)

If we now use (2.51) and (2.54) in (2.43) we find that, for

. any J in NN’
o _.0
° - TKJ-T.

. T
! @) <’

) cT.T.

c"ET'U

so that Qo = 0, as required for equivalence. Also, from (2.’-!11»),

the new equilibrium sojourn time T° is given by

— T —

—D = (1-_(0) 10 = C-D ootu(2.55)
where ¢ is given by (2.52).

Since the equilibrium distribution Q'_(_) of the canonical chain
[LX(,;} depends on the sojourn-time distributions H;_) only via the vector
Eo of mean sojourn times, any change in the Hi which leaves Eo
unchanged will result in a chain weakly equivalent to S\_Xzz and hence
to the original chain {X’c}' In particular, if ’r = R,+ there
exists a continuous-time Markov chain with sojourn-time distributions
Hi(t) =1-e 1, Vi € NN which is weakly equivalent to ixij ; and

if T = Z+ there exists a discrete-time Markov chain with geometric
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-1.t
sojourn-time distributions H;(t) =1- 01 - (’Cg) ) ,Vi e NN

which is weakly equivalent to {Xzi ~ provided that ";" (€7) = 1

(for otherwise we would have at least one ‘Cg less than the time for
one transition in the equivalent Markov chain, which is impossible.)

Given a canonical chain ‘Xi% we can construct an equivalent

chain {ng having the same mean sojourn time for each state.
Let
.IU . é mln [to ] LN ) (2.56)

min . i
ie NN

and, for some fixed k & (0,1] , let

T & kT, eeee(2.57)

[¢] min

(If the chain {Xi% is discret_e (ie. T = Z+) it is advanta-~
geous to choose k so that ‘CO & ’r; see comment after equation
(2.71)

Then reduce all mean sojourn times to “CO by introducing
fictitious self-transitions i — i with probabilities p;.:i, i=1,.0.,N,

such that, as in (2.5%) ,

*
*
—20 = % E 0000(2058)
where
*
. * *
% & diag (Qf,l,...,QfN)
with
-1
* O T %k .
g7 & G-p) , Yie N
and where, to ensure that ’E* A Cor(Tl,..., 'CI;) = 'Co e we must
have
o * .
T - g, . Vie NN eeea(2.59)
~ so that
T
* o) .
pii = 1 - -CO 3 Vl e- N'é 0100(2-60)

i
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and, as in (2.48), the off-diagonal elements of the new transition

probability matrix P* must satisfy

*

o pij
Bij = T o %
1-p

ii ee.o(2.67)
Thus P* must satisfy (see 2.49)
P°

*
and so, since % is non-singular,

I- é (I - P*) eees(2.62)

« =1
P = 1_@) (I - P°)

eees(2.63)

The semi-Markov chain {X;{with transition probability matrix
P* given by (2.63) has, by (2.58 - 2.60), a mean sojourn time of T,

*
in each state i, and it is easy to verify that for {th we have the

* equilibrium properties

, T PR
@) = () ) eeea(2.6h)
o T T*
where c* = (W) e eeeo(2.85)
and
* o
g =« eeea(2.66)

*
so that {th is equivalent to {Xi} and hence to any semi-Markov chain

1%, { equivalent to {xi}

*
Note, that on using (2.58) in (2.65) with T =C e, we have

cf = = eees(2.67)
©
so that, from (2.64),
0
* i o .
'ﬂ'i == Tfi , \'/1 3 NN " eeee(2.68)

a result which is intuitively acceptable as the relationship between

*
the stationary probabilities of the embedded chains of {Xt} and {X‘f_‘}.
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There are three final points to be made in this Section:
(i) It is clear that equivaleﬁce as defined in the present context
is a proper equivalence relation on the class of finite semi-Markov
kernels defined on the same index set and same state space. ZEach
equivalence class contains a canonical kernel F° characterized by
zero self-transition probabilities; and, as we have shown above, each
equivalence class also contains a kernel F* which generates equal

mean sojourn times for all states.

(ii) Suppose that equivalent to a given canonical chain {Xz} we con-
struct, by the procedure described above,'a chain {X;:§with mean
sojourn times all equal to T The @etailed properties of {XIE are

- determined by its semi-Markov kernel F* and this is not simply related
to F°. However, we can construct a semi-Markov kernel F which is

weakly equivalent to F*, and hence to Fo, by choosing

+
Gij(t) o , t< T,

= 1T, t 2T eees(2.69)
for every i, j & Pdhp so that (almost) all sojourn times are equal
to 'Cb.

If we also choose

+ _ _* \vl
pij = pij ) i,j & T\AN ees.(2.70)

and then use (see (2.35))

+ ot .t V
Fij(t) = i} G, .(t) , i,j & NN, \/t [ R_+
Q.l.(2.71)
we shall create a chain {X:], with semi-Markov kernel F'(t) A
*
[F;j(t;]N , which is weakly equivalent to {th but whose tran-
x N

sitions are regularly spaced in . (N.B. The reason for choosing

k in equation (2.57) so that <T_ & T should now be clear: it is

only possible to choose the G;j according to (2.69) if T € ’T’)

.
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e . . o) 0 *
(iii) The successive transformations {th —> {Xt} and {Xti —> {Xt g

can be combined by using (2.49) in (2.63) to obtain

/
PP 1. §(I_P) ceee(2.72)

g & (%?—1 | ceee(2.73)

It is easy to verify that
/

where

gi: = diag(¢1,-.-,¢N) eees(2.70)
where
- T
'¢i = -E?_: ’ Vi € NN oooo(2-75)

and that P* is a stochastic matrix.

The concept of equivalence defined in this Section turns out to
be a useful one in the study of the optimal regulation problem, in
which it is average equilibrium properties rather than detailed

sample-path properties that are of principal interest.

2.3 Markov chains with costs

In this thesis we are concerned with Markov chains which repre-
sent dynamic systems with which are associated certain operating
costs or running costs. The general problem considered is that of
minimizing the average operating cost per unit time over a long period
of time by controlling, where possible, the transition probabilities
of the system. A precise statement of the problem is given in Section
3.2 of Chapter 3. "In this Seétion we define the cost structure to
be considered and, since it is the long-run behaviour of the system
vhich is of primary interest, we examine the asymptotic form of the

total incurred cost as the operating time increases indefinitely.

2.%.1 Discrete-time chains with costs

Consider a homogeneous, regular, finite, discrete-time chain,

{(Xt: RPREY NN):t e L +} , with transition probability matrix P.
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With each one-step transition Xt -—> Xt-!—’l let there be associated a

cost C(Xt’xt+1) whose value depends only on Xt and Xt+

cisely, let there be a bounded function ¢ : NZ -> R such that if
N

43 more pre-

X, =i, X, . = J the cost of the transition is c(i,j), for all

(i,3)€ N~2 .
Define, for each i € NN’

& & E[c(Xt, X, ..) Xt=i:] eeee(2.76)

t+1
Then

X, = E  SEICOE D Vie N

jeNN .

eeea(2.77)
and since the costs are bounded all the o(i will be finite. O(i is

the expected one-step cost from state i.

Define also, for each i & NN’ the conditional expectation

k+n-1

vi(n) a E[ E c(Xt, Xt+1) ka=i]
t=k

(Because {th is homogeneous the expectation is independent of k.)

eeee(2.78)

Then (see, for example, Howard(1960)) the v_(n) satisfy the
i

recurrence relations

vi(n) = O<i + E P; 5 vj(n-—’l) , Vi e NN

i€ N . o0 (2.79)
or, in vector form,
vin) = X + Pyv(n-1) eess(2.80)
where [ 2 0ol (0{1"“’0(1\!)

v(n) 2 o1 (v1(n),...,vN(n))

From (2.80) we deduce immediately that, with Ay & v(n) - v(n-1),

AV b= Pn_1 AV ....(2.81)
_-"] .
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and assuming, as we always shall do, that v(o) = 0 (no terminal

costs) we find from (2.80) that Ay,l = X, so that

-1
Ay, = PTIx oo (2.82)

Now since the chain {th is regular, equation (2.13) holds so

that (2.82) can be written as

Av - g'fsﬁ + P ... (2.83)
whence
Jdm .
Av = Xe
n-»=0 ' ceee(2.84)
" where —- 7
% & qx
eees(2.85)

Note that Ir_is the stationary distribution of {Xtiso that & is
the equilibrium one-step expected cost for {Xt}' Equation (2.84) states
that, whatever the state Xt’ for sufficiently large n the expected value

of the cost increment c(X ) is & . It follows from (2.83)

t+n-1? X1:+n

that v(n) is asymptotically linear in n : that is
Lim .
[l(n) -n& g] = W ,
n->en

which we write as

vin) A~v nXe + W |,

cees(2.86)

where, tc ensure that (2.80) is satisfied, the constant vector W

must satisfy

I-Pw = X - Ke ... (2.87)

Since e is a null-vector of (I-P), W is not completely deter-

mined by (2.87). But we also have, from (2.80), that

—

']_T_T v(n) = nX + 'E_T v()



which, on using (2.86), gives
™w - Ty = o .e..(2.88)

The unique solution to (2.87) and (2.88) is

~ =1 —
_kl = (I-P) O_<. - O(g_

eee.(2.89)

~r =
Note that the inverse (I-P) always exists when {Xt]g is
regular.
We shall refer to ©&X as the cost rate of the chain {th and

W as the corresponding value vector. It plays an important role in

some of the optimization algorithms to be discussed in Chapter k.

2+3.2 Continuous-time chains with costs

Now consider a homogeneous, regular, continuous-time chain
. {—(Xt: SL-»> NN): t e K +§ with transition intensity matrix Q.

Suppose that the transition times of {th are T1,T2,T yese S0 that,

=X when t € [‘1‘ ,T ). Associate
n n’ n+

if iin.g is the embedded chain, X ;

t

with {Xt‘g a running cost of C(Xt) per unit time; more precisely, let

there be a cost function c: NNX P\+ - R, such that if

XTn =1 and ATn+1 > t, the cost incurred between time ‘I‘n and
time 'I'n+t is c(i).t. Also associate with {ij a transition cost

A%y , Xp ), that is, a function d : N® > R such that if
n n+1
Xp =i and X; =] the transition cost incurred is d(i,j). (Since
n n+1

j £ i, the values of d(i,i) are of no significance.)

Define, for each i & NN1

E X, = 1
>0 At t

,(1960))

Then (see Howard

)
[/Si = c(i) + 2 0y 2.3 \;/i e NN

ifi eees(2.90)

F, N Lim C(Xt+At)— C(Xt)
i At

55.
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Pi is the expected cost rate in state i.

Define also the conditional expectation

1%+-b V
v.(t) A& E[{ c(X,)dat + E a( ,X )} X =i]
t . t k XTk—1 k to
/ 2
° A ;
o TN
T qo' Ty € (to,to+t) eeee(2.91)

(The expectation is indepewdent of to by homogeneity.)

Then (see Howard(1960)) the vi(t) satisfy the differential

equations

ACIEN A > g v, @, Yie N

je NN ceee(2.92)

or, in vector form,

v (t) = + Q v(t) '
- (§ - eeee(2.93)

where Ag A&  Col (F1,...,FN)

v(t) & Col (v, (t),eee,vy(t))

'

Equation (2.93) is clearly the continuous-time analogue of
equation (2.80), and as in the discrete-time case we can show that

zﬂt) is asymptotically linear in t:

l(t)rut;gg_+w

T cees(2.94)
where
F =) _Q‘_TIB eeee(2.95)
and -1
W o= e -D s +Q I oo
- ceee(2.9

G being the stationary distribution of {X;g .
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2+.3.3 Semi-Markov chains with costs

We now come to the general case. Consider a regular semi-Markov
chain {(Xt: _ﬂ_—) NN) :t e ’l'] with semi-Markov kernel F. Using the
notation of Section 2.2.3 and letting At & t- T forall t &

[Tn’TnH)’ suppose that with each transition XTn-é XTn+1 there is

associated a cost which accumulates, as At increases from 0 to ATn+’]’

according to the cost function c: At w> c(At; Xp o+ Xq ’ATn+1)' We assume
n n-+1 .
that ¢ is a non-decreasing function of At and that c(O;XT ’XT ’ A'T,'H_‘) = 0.
: n n+1

Now define the transition cost

A .
CQkp oXp AT ) 8 oCAT s¥p Xy AT )
n n+1 n n+1

and, for each i € N ,
N

\6, & EjoiX AT ) =']
1 [ Tn’xTnM, n+1 xTn * ....(2.9’7)

Then § & C°1(X1"“:6N) is the vector of expected one-step

costs of the chainixts.
Also define, for each i € NN,

k_+n-1

v.(@) & E[ E ' C(Xp 4 Xgp ’ATk+1) Xp = i]
" k Tkt k.
) ceee(2.98)
and A
N - _ s -
tj(n) 2 E[(Tkom T ) XTko = 1] S e (2099

Then (see Appendix) the vectors
v(n) A Col(v,l(n),...,vN(n)) and t(n) & Col(t,l(n),...,tN(n))

satisfy the recurrence relations

_Y_(n) = I + P _Y_(n— 1) . 0-00(20100)
and

ta) = T + Pitln-1) eees(2.101)
with initial conditions y(o) = t(o) = 0.
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It follows, by an argument parallel to that following (2.80),

that when {Xt’g is regula‘r

Iim -
_A_‘_’ = XE o-o-(2¢102)
n
n-5 o0
and
Lim
é_tn = -Cg 0000(20103)
n-> o0
where -
¥ a 'TLTE_ (equilibrium mean cost/transition)
and T2 TETE (equilibrium mean time/transition)
It follows that, for any i € NN,
Lim v.(n) - v.(mn-1)
i i - 3
n-;oo ti(n) - ti(n-1) 00.0(20104)
" where = A .:‘T_
T eee.(2.105)

It seems reasonable to épeak of ¢ as the cost rate associated

with the chain }XJ.

In fact v(n) and t(n) are asymptotically linear in n :

vin) ~ n¥ e + cess(2.106)

N

tln) ~ nT e + g eess(2.107)

where \C) and 2 are fixed vectdrs.

Multiply (2.107) by ¢ and subtract from (2.106): we obtain

vin) ~ citln) + § ( 8)
- essel2.10

where Sé.. ‘9 -'5%.

Thus the expected total cost over n transitions increases, for
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sufficiently large n, linearly with the expected total time for the
transitions, the rate of increase being c.
Furthermore, on multiplying (2.101) by ¢ and subtracting from

(2.100), we obtain

v@) -5 = ¥ -5T + Plrw-1-Titm-1]
eeee(2.109)

Now let n —> o0 and use (2.108) : there results

S = ¥ - sT + PSS eeee(2.110)

This equation is the semi-Markov generalization of (2.87), and
as before we shall call éi the value-vector. As with (2.87) equation
(2.110) determines the cost rate ¢ uniquely but the value-vector éi
only to within an additive constant vector k e.

Equation (2.108) says nothing about the behaviour of the expected
total cost when the time to go is some fixed time t & ’T’. We do,
(1969,1970)

however, have the following result due to Ross

Let, for each i &€ NN , and each t & ’r ’

M m, +1 t k

Tko+t
! A [ . —_
ORI N . L L i ]
ko+Mt t t o

where Mt is the number of transitions in (T,_ , Tk + {1; that is,
o

o
v;(t) is the expected total cost accumulated between Tk and Tk +t,
"o )
given that state i was entered at time Tk .
o
Then (see Appendix)
]
Li
im vi(t) _ . r\l
= (o] [ 1 e
£ 00 t NLLc2a111)
provided that {XtE is regular, with a finite mean sojourn time in

each state.

This result permits us to interpret T as the long-run average
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cost per unit time of the chain {th.

2.3.4 Eguivalence with costs

We have seen in the previous section that if {th is a regular
semi-Markov chain with additive costs, the cost rate ¢ of {Xt} is

given by (see (2.105))

Ty

Tt ceea(2.112)

El

T =

where 'T__r_is the stationary distribution of P (the transition probability
matrix of the embedded chain), z_ is the vector of expected one-step
costs, and T is the vector of mean sojourh times.

Suppose now that the equivalence" transformation defined by
(2.49) is applied to {th to produce a canonical chain {XE} , with
mean one-step cost vector f y mean sojourn-time vector '_U_o, and
cost rate c .

By a renewal argument exactly parall‘el to that leading to (2.5.4),

€ - by

and hence, using (2.51), (2.54), (2.113) in (2.112),

we find that

ceee(2.113)

- -
¢c =¢ ceeo(2.118)

Thus the cost rate ¢ is invariant under the equivalence trans-
formation {Xt? - {Xz}; and it is clear that the same is true of

the transformation §X2§ - {X: ; defined by (2.63), ie.

c* = c

eeea(2.115)

where c* is the cost rate associated with the equal-sojourn-time
chain, {X’Zz , equivalent to {th. So, given a regular semi-Markov

chain %XJ with cost rate ¢, there exists an equivalent chain with



the same cost rate but with equal mean sojourn times in all states.
Furthermore, since ¢ is the mean cost per unit time, and ‘ts is the
time per transition, of the equal-sojourn-time chain {X;}, we can
interpret E'WCO as the mean cost per transition of the embedded Markov
chain, {igg , of iX_:}. Thus any regular semi-Markov chain {_Xt§ with
mean cost rate ¢ has associated with it a discrete-time Markov chain,
{XQK, whose mean cost rate (measured as a cost/transition) is 3'1:0.
We shall make use of this important result in the next Chapter.

Note, finally, that the results presented in Section 2.3 rest on
the additive nature of the cost structure that has been assumed: the
total cost accumulated over n transitions is the sum of the n indivi-
dual transition costs. Concrete results are difficult to obtain for
any other type of cost structure, but fortunately in most applications

_ the transition costs are additive.

61.
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CHAPTER 3
THE OPTIMAL REGULATION PROBLEM

3.1 Introduction

We now consider Markov and semi-Markov chains with costs, whose
“transition mechanisms can be modified by the application of control
signals. If knowledge of the current state is available, suitable
control signals can be generéted by a feedback scheme, and if the
number of possible control actions is finite the feedback ‘scheme
can usually be designed to minimize the cost rate of the chain. The
problem of choosing such a feedback scheme is called the optimal
regulation problem and in this Chapter we formulate the problem more

precisely and then review existing methods for its solution.

3.2 Optimal Regulation

It will be convenient to develop the ideas in terms of semi-
Markov chains and then to show where the extra structure of pure
Markov chains leads to simplifications and/or stronger results. As

hitherto, attention is restricted to finite chains.

%3.2.1 Controllable chains

A sémi-Markov chain {(Xtt - NN) it e 'r}with semi-Markov
kernel F is said to be a controllable semi-Markov chain (CSMC) if the
elements of T depend on the value of some scalar control variable u.
More precisely, {Xt} is a CSMC if there exists a set of controls \l,,

such that for each (i,j) ¢ I\Ji we can define the function F., . :

1J
Tx W R, vy
X =i H ﬁ]
n

o A — 3
Fij(t,u) = P[X 4= 3 AT <t
ceeal(3.1)

n+ n+1

The operational interpretation of (3.1) is as follows. At any

transition time Tn a value of u is selected from the set 11, and



applied as a control input until the next transition time Tn+1;

call this value u . Then {X;E makes a transition governed by the

semi-Markov kernel F(t;un) , arriving at state X at time Tn

n+1 +1°
A new control value Woiq is then selected and applied throughout
the next transition Xh+1 > Xn+2 3 and so on.

In this thesis we shall always assume that the control set

is finite , ie. that

'\L = {u‘l, uz,...-,uk}

and we shall refer to the elements u:L as control actions.

We shall further assume, without loss of generality, that for
. each state i the subset \LiC: \Ju of feasible control actions in
state i is‘\k.itself, ie. that the choice of control action is not
restricted by the.state currently occupied.

A fixed sequence of controls (uo,uq, u2,....), chosen before

the starting time To of the process, is called a control schedule.

With such a schedule the choice of control on,say, the interval

[Tk' $k+{>ls predetermined : there is no feedback of information

about the past and present motion of the chain {Xt: t £ Tkg to the

process of selecting u In the majority of practical control

k.
problems, however, such information is available for feedback purposes

and can therefore be used to implement a control policy in which each

control, u is made'a functioq of the currently available infor-
mation about the motion of the chain. The problem of choosing a
satisfactory control policy is, in engineering terms, that of design-
ing a suitable on-line controller vwhose inputs are data concerning
past and present behaviour of the process; in mathematical terms, the
aim is to find a suitable sequence of mappings frqm the space of
available data histories into the control set jl,.

Throughout this thesis attention is confined to so-called

63.



completely observable (or perfectly observable) chains (see, for

(1967))

example, Mayne , in which the current state i; is known without
‘ ambiguity at every stopping time $n° By the strong Markov property,
the behaviour of such a chain after time Tn, given the value of i;,
is independent of the past history of the chain, in which case the
control action v may, without loss of generality, be taken to be a
function of i; alone. Such a function is called a control law.

Let £ ¢ N -5 "W ve the control law for the chain {X,at
the stopping fime Tn, so that if i;::i then u = fn(i). The sequence
of control laws

2%
(f)n A (fo, f1,...,fn__1)

is called a control policy for the chain gxtg on the interval [p,Tn).

Once (f)n is determined the controlled chain zxt% becomes an ordinary
(but, in general, non-homogeneous) semi-Markov chain on the given
interval.

If the objective is to control the chain over an indefinitely
long period the control policy will be an infinite sequence of control
laws. In particular, an infinite sequence of identical control laws,

(f) & (f,f, fy¢...), is called a stationary policy. Wnen a station-

ary control policy is used the resulting CSMC is homogeneous in time
and has a well-defined long-run behaviour. In particular, if the
policy (f) is such that the controlled chain is regular there will be

an equilibrium state‘distributiQn which is independent of the initial

6.

state of the chain and hence a unique equilibrium cost rate associated

with the chain.
A controllable chain which, for every possible stationary policy
(£), is regular and has finite mean sojourn times will be called‘a

totally regular chain. Although we shall confine our attention to

such chains it should be pointed out that most of the optimization
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methods discussed in the thesis are, with suitable modification,

applicable to chains which may be non-regular under certain policies

(1968)).

(see, for example, Denardo and Fox There is, in any case, a

wide range of practical applications in which a totally regular CSMC
is the appropriate system model.
- When associating a cost with a controllable chain it is natural

to allow the cost for any transition XT o XT to depend on the
- n n+1

control action u as well as on the states XT , XT and the
! n n+1

« In order to allow for control costs we assume

sojourn time ATn+‘|

a cost function of the form c: At > c(At; XTn, XTnH, ATn+1,

u)
instead of that used in Section 2.3.3, so that the transition cost
becomes C(Xy , Xp s ATnM’ un). Then, generalizing (2.97), we
n 1_1+’l
define, for each i € NN, each u &€ '\,L,
XuAEC(X AT w) [X, =i, u =u
i - T 9 XT ? n+17 n T - b] n -
n n+1 n
cees(3.2)
a :
.Xi is the expected one-step cost from state i under control
u
action u. Similarly, "Ui will denote the expected sojourn time in
state i under control u.
Consider a totally regular CSMC, {xtz, controlled according to
the stationary policy (f). Then if XT = i we shall have u = us= £(i)
n

and the corresponding transition functions defined by (3.1) will be

Fij(t;f(i)) , Vj e NN. The matrix

f .
F'(z) & [?ij(t; f(l)i] « ceee(3.3)
NxN

is the closed-loop semi-Markov kernel under the stationary policy (f).
From it, we can determine the closed-loop transition probability
matrix PL by (2.31) and the vector of closed-loop mean sojourn times
-t

by (2.37) and (2.39). Similarly, the expected one-step cost from
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£(i)
state i under the stationary policy (f) will be \Ki , and the
vector
f £(1) £(N)
1 & Col (\61 ,...,YN ) 0.--(3.1'!')

is thus the vector of expected one-step costs under (£).
Since the chain %th is totally regular the asymptotic relation
(2.108) will hold for every stationary policy (f); that is, for large

n,

V@) ~ o tfm) + §F

ee..(3.5)

where the superscript f denotes quantities determined under the

policy (f) : in particular

T
wf) $*f
°f A —
@) <f ceea(3.6)

is the cost rate under (f).

3.2.2 Optimization of the control pclicy

The problem with which this thesis is concerned is as follows:
determine a stationary control policy which will minimize the averaée
operating cost per unit time of a given controllable semi-Markov chain
which is expected to operate fér an indefinitely long time. More
precisely, given a totally regular CSMC {(Xt:.514> Vd"): t e /r’}
with a finite control set "LL ’ find a control law f° : NN -> U.
such that,if f: Pdh;>‘LL is any other feasible control 1aw)the
equilibrium cost rate under the stationary policy (£) = (£,£,...) is
not less than that under the stationary policy (£°) = (fo,fo,...),
je. such that o © & of for all feasible f. If such an £° can be

found it is called an optimal control law and (£°) is the correspond-

ing optimal stationary policy.
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Note that since the state space and the control set are both
finite, the number of possible.control laws (and hence the number of
stationary policies) is finite (in fact KN, where K is the number of
possible control actions). It follows, since {Xt§ is totally regular,
that at least one optimal stationary policy must exist. Uniqueness,
“on the other hand, is not guaranteed.

At this point there are two questions to consider. First, if
the class of control policies is enlarged to include non-stationary
policies, does there exist a stationary policy which is optimal in
this larger class ? This question has been answered in the affirmative

(1962)

for pure Markov chains by Blackwell and as we shall show in the
next Section the result is also applicable to semi-Markov chains.
Secondly, if we allow randomized control laws (that is, control laws
which map the stéte space info the space of probability distributions
on W instead of into e itself) may we thereby achieve a lower

(1962)

value of ¢ ? The answer is no (see Wolfe/Dantzig and Osaki/

Mine(19685: there exists at least one pure (non-randomized) control
law suéh that the corresponding stationary policy is optimal in Aﬂqg
wider class of randomized policies.

Thus in order to design a controller which will cause the CSMC
{Xt} to operate at minimal average cost per unit time under equili-
brium conditions we need to determine an optimal control law £

Dd «%>’\1.. The problem of finding such a function is the optimal
N : ,

regulation prcblem.

Note on terminology : In the operations research literature it is

usual to refer to the elements of 114 as possible decisionsj a

controllable semi-Markov chain is called a semi-Markov decision

process and the problem of finding an optimal f is called a semi-

Markov programming problem. Our terminology, which extends that of
9 (1965)

Astrdm , Seems more appropriate in a control engineering context.
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3.2.3 Eguivalent regulation problems

Consider a totally regular CSMC {(x,c : JL~> NN) 1t e ’r}
with control set 11, and transition cost function c¢. Under a given
stationary policy (f), the chain §Xt§ has a stationary distribution
I[?, a mean sojourn-time vectoz':E?, and a mean one-step cost vector ]Lf,
from which we may determine the equilibrium state distribution Sif by
(2.43) and the equilibrium cost rate cf by (2.112).
- By using (2.43) in (2.112) we obtain an alternative expression

for the equilibrium cost rate:

T £ 4
ST - (j)F_ e (3.7)

where

S m(ﬁ,...,ﬁﬁ)

with £

X,
/5:9-_;, ,VieNN

i

The component F: is the ratio of the expected transition cost
to the expected transition time for state 1 (under the given policy
(£)), and so if i is recurrent (G'if > 0) we can interpret /5: as the
long-run average cost rate associated with state i.

The result contained in (2.9%-5) of Section 2.3.2 is the special
case of (3.7) which arises when (T, = Fk+, the sojourn-time distribu-
tions are all exponeﬁtial, and the cost function ¢ is linear in t, ie.
when {th is a continuous-time Markov chain. In this particular case,
f%? has the stronger interpretation as the instantaneous rate at
which the expected cost grows in state i.

Similarly if /1/ = :Z;.and all the sojourn times ar; unity
(under the given policy (£)) then.]f?= e in (3.6) and so we get

T
of = aY) ¥F vhich is just the result contained in (2.85-6) for
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discrete-~time Markov chains.

In viewing Markov chains és special cases of semi-Markov chains
we are led to the interesting question : is it possible to re-formulate
the optimal regulation problem for a controllable semi-Markov chain
as an "equivalent'" pure Markov regulation problem ? To make sense of
the question let us first define two totally regular controllable

semi-Markov chains {1Xt§ and §2Xt . to be totally equivalent iff

(i) {1Xt§ and {Eth possess the same finite state space PJN,

the same index set ’TJ , and the same finite control set 'Lk,;

(ii) for every stationary control policy (f), {1Xt§ and {th}

are weakly equivalent in the sense defined in Section 2.2.k.

It is clear that a policy (£°) which is optimal for~§4Xt§ is
also optimal for {th} , and vice versa. Thus i1X$} and {th}
~ possess the same optimal policies, with the same associated minimum
cost rate cf®. The optimal regulation problems fbr'{1xt} and gzxt}
are then equivalent in the sense that any solution to one of the
problems is a solution to the other.

The answer to the above question is thus that by carrying out
appropriate equivalence transformations of the type defined in
Section 2.2.4, it is possible to create a controllable discrete-time
Markov chain which is totally equivalent to any given totally regular
CSMC, and hence to optimize the cost rate of the Markov chain rather
than the original CSMC.

The required transformation is obtained as follows.

For each u & ’u,, let

u
" - § e (3.8)
where
u .
% a diag((/f:,...,ﬁ;)
with
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i'g

u
Then find Tin mig min [(’C‘i’ ) ] vees(3.9)

and set

—co = K-Cmin 0000(3010)

vith K & (0,1].

With 'Co determined we can then , for any policy (£), transform
;_th to a corresponding chain %_X:} having all mean sojourn times
equal to 'Co by using the transformation defined by (2.72); that is,

by choosing

* f f .
®*) - I- % (x - pf) ceee(3.11)
where .
£
% & aiag(gh.,..85) e (3.12)
with '
<
£ o .
g> = = Vl e l\]N ceee(3.13)

1

From (2.113%), the transformation (3.11) gives

« L . f
«H = $ X eeea (3l

for the vector of expected one-step costs associated with {X;g s and

f
we have chosen é so that

. T £
) - P - e ceee(5.15)

- . f
Thus, on using (3.15) in (3.6), the equilibrium cost rate, (c*) N

of the equal-sojourn-time chain under the policy (f) is given by

T 4T < £
G*) = ==l@ | Q4O
T [— ‘] eees(3.16)

f f
where (X°)" is the stationary distribution of (P%) .
Finally, bearing in mind comment (ii) at the end of Section 2.2,
,—J
there exists a discrete-time Markov chain with index set | =

f
{O,"‘Co, 2‘5‘0, ...}, transition probability matrix ®") , and expected
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one-step cost vector C}f)f, whose equilibrium mean cost per unit
time is given by (3.16), i.e. Qhose equilibrium mean cost per transi-
tion is [ﬁ:*)f]T(:é*)f. We shall make use of this idea in the next
Chapter.

The transformation (3.11) is well-defined for any feasible station-
-ary policy (£); therefore by applying it to §Xt} for every (f) we con-
vert the original CSMC to a totally equivalent controlled Markoyv chain
with the same optimal performance. It is important to note, however,
that when makxing use of the concept of total equivalence in the design
of optimization algorithms it is not necessary to carry out transform-
ation (3.11) for every feasible stationary policy, but only for those

policies, say (f)o, (£) (f)z,...., arising as iterates in the course

11
of the optimization. Furthermore if (f)n differs from (f)n_1 only in
£ f
state i, then (P*) ™ will differ from (P*) n-1 only in the i®B row

and hence is easily updated. We take advantage of this property in

the successive-approximations algorithm described in Chapter 4.

3.2.4t Related problems

Before describing existing methods for solving the optimal regu-
lation problem we mention here two closely related control problems.

In the first of these, the so-called discounted-cost problem, future

accrued costs are discounted at a constant rate so that the expected
total cost accumulated over an infinite operating period remains
finite; then the optimal control problem is to find a policy which
minimizes this cost. Under the conditions that we are assuming in
this thesis (finite state space, total regularity) it may be shown
(see Ross(1969)) that the discounted-cost problem 'tends to" the regu-
lation problem as the discount rate tends to zero, in the sense that
for sufficiently sﬁall discount rate a policy which is optimal for

the discounted-cost problem is also optimal for the regulation problem.



The second related problem is the so-called transient-cost

problem, in which the only recurrent state is a single absorbing
state, say io, and the optimal control problem is to find a policy

which minimizes the total expected cost of travelling to the target

(1960), Eaton and

(1968,1971).

state. This problem has been treated by Howard

Zadeh(1962)

, and, in particular, by Kushner and Kleinman
We mention it here because some of the algorithms suggested for the
optimal regulation problem are adaptations of those used for the

transient cost problem.

3.3 Existing methods of optimization

We now consider procedures for solving the optimal regulation
'problem. The problem has attracted considerable attention during the
past 15 years and several methods have been developed for computing
. the optimal control law. Of these, the main ones are the policy-

(1960) and Jewell(1963), the successive-

(1963)

iteration method due to Howard

approximations method due to White

(1960)

, and the linear programming

(1968).

method due to Manne and Osaki and Mine

%3e3.1 Policy-iteration methods

Much of the interest in controllable Markov chains as system
models has stemmed from Howard's pioneering work in this field. His
policy-iteration algoiithm for the discrete-time Markov regulation
problem rests on the following argument. Let {(Xt : JL-> NJ: te Z_*_}
be a totally regular.controllable Markov chain with finite control
set ql_ and bounded cost function c :Pds X FLL,4> F{_ , with value

u

c(X,, X, , ut) for the transition Xt -E%-X

t? Tt¢ t+1°

Define, for each i & I\JN, the optimal expected n-step cost

from state i ,




k+n-
Vi(n) Min E[Zc(xt, Xt+’l’ ut) Xk = i]
¢ U =k
: e (3.17)
uk_m_,le'u_ )

Then ﬁ-Vi(n) is clearly the optimal expected value of the mean
cost per transition over the n transitions from Xk= i.
A dynamic programming argument shows that the Vi(n) satisfy

the non-linear recurrence relations:

V(n) = [ Puj Vj(n"'])i\a Vi € NN
ue'll jeN,

eees(3.18)

where

: a [c(X Xy g0 Uy) lxt=i] , \/ie NN
ceee(3.19)

Now recursive solution of equations (3.18) will yield a sequence

(fo,f1,f2,....) of control laws, namely, those control laws which

minimize the successive right-hand sides of (3.18). In fact the

sequence (fo f1,f2,.o..) is an optimal control policy for the chain,

though not in general a stationary one. However, it has been shown

(1957)

that the sequence (f ) tends, with increasing n, to

and an §°
a fixed control law; more precisely, there exists an no)fuch that for

by Bellman

alln»n_, f = £°. Thus the policy (fo,f f_ eess) is asymptot-

172

ically stationary and it follows immediately that Vi(n) is asymptot-
ically linear in n. (Take n, as a new time origin.) Furthermore,

the stationary policy (£f°) = (£°2,£°,£° ...) will clearly yield the
same equilibrium cost rate ,éz, as the above non-stationary policy
and no other stationary policy can yield a lower cost rat;. We there-

for seek the control law f° which minimizes the right-hand side of

(3.18) when n is large. But under the stationary policy (£°) the
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asymptotic relation (2.86) holds; so if we subtract n o< from each

side of (3.18) and let n-> ®0 we shall obtain

- Min u :Eg u r\l
W, + &« = + .. WL V'
i uéu[O(i le J] ) 1 & N

J

eee.(3.20)

This is a set of N non-linear simultaneous equations for the
cost rate & and value-vector W associated with an optimal policy.

Now let us define a control law f° by

. . O(. _ min u u
Vl € NN‘ (1) = Arg. u{:o(i + Zpij (,Qj

J .
ceee(3.21)
Then the right-hand side of (3.20) can be written
(1) £O(4)
X, + Pe x W,
1 1] J
J
and so (3.20) takes the form
— o o
LA)_ + °< 2_ = °_<_f + Pf _1‘2 o-oo(3022)

which is equation (2.87) under the stationary policy (£°). Since x
and W are, by assumption,the solution to (2.87) under an optimal
policy, it follows that (£°) is an optimal policy.

Howard's procedure consists of iterating between (3.21) and
(3.22) until an optimal policy is found, ie. until (3.21) and (3.22)
are satisfied simultaneously (so that (3.20) is then satisfied). In
algorithmic form the procedure is : -

(1) Choose an initial control law, f.

(2) "Value-determination” : With the given f solve-(3.22) for
¢ and W .
(3) "Policy-improvement" : With the given = and W determine a

new £ by (3.21). If this differs from the previous f return

71‘*‘0
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to step (2); otherwise the iteration process has converged,
the latest f is an optimal control law, and the latest o< is
the optimal cost rate.

(1960)

Howard showed that the successive values of & converge
monotonically to the globally optimal value x° . The number of itera-
—tions.required is necessarily finite and in practice is usually very
small compared with the number (KN) of feasible control laws. A minor

point is that, as we have seen, the solution Gi,gg) of (3.22) is

determined only to within an additive constant vector, k ¢, in W,

until we impose some additional constraint on W such as h% = O.
A rigorous proof that any optimal policy for a totally regular chain
must indeed satisfy (3.21) and (3.22) is given by Ross(1969).

The policy-iteration algorithm described above has been modified

by Howard‘h96d

for application to the continuous-time Markov regulation
problem. A much more important development is the extension of the
Howard algorithm to cover the semi-Markov case. This has been achieved

(1963) (1969) . (1964).

independently by Jewell s Schweitzer , and de Cani
As we shall now show, the Jewell and Schweitzer algorithms can be
developed rather elegantly from the Howard algorithm by application
of appropriate equivalence transformations.

We first determine the effect of the equivalence transformation
(3.11) on the value-vector Ei of a regular semi-Markov chain. From

(2.110) we know that if f is any feasible control law Ei satisfies

the relation

a-p5H S - Yf .o o<f .eee(3.23)

*®
and, correspondingly, the value-vector éi of the equivalent CSMC,

under the same policy f, must satisfy
T S* * I sy E *yf |
@-@EH) 58 - &Y - @ eH eea(3.28)

Now using (3.11), (3.14) and (3.15) in (3.24), we obtain



f x f s £ £ _ . f
¢ a-H8 - ¥ - $ =@ ceea(3.25)
f .
and, since % is non-singular, we have, on using (2.115),

a-H S8 - XY - o= ceee(3.26)

*
Thus § satisfies the same equation as _S_ and vwe may take

8" - §.

Now consider the discrete~time Markov regulation problem of
minimizing the equilibrium mean cost rate c* of the equal-sojourn-time
chain {X;} resulting from the equivalence transformation (3.11). On
. . e . X* . g*. . .
identifying X with b  and & with © in equation (3.20), and using
. the fact that the equilibrium mean cost per transition, 0_(, is given,
via (3.16), by = 'Co o , we find that the optimal cost rate satis-
fies the equations

* — ; . x+ 0 o~x
Si +Tc = u":%'[(xi) + Z (pij) SJ] ) \/i e )\j
J

N (3.27)

or, what is equivalent,

Min ’y D + A * — .
ue‘u,[(\(i) + Z (pij) Sj - Si - 'Coc:‘ =0, Vl c NN
J

ee..(3.27)
Now use (3.11) - (3.15) to express the conditions (3.27) in
terms of the properties of the original semi-Markov chain {-Xt-?' The
result is

u
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Min |__ ¥ 1 E’ u S - V
vell L'o " + a pij Sj———u-c =0, i€ NN

T T -
i i J i

ceee(3.28)

u
or, since"C:'l > 0, Vi, \du, and 'CO>O,

Min u u —_— ul . .
ue'lLIjb,i+ Zpij - 8- =0 fie N
| .

J ceee(3.29)



‘i’f @-eH 5" - firgf 3 - F T @ eeen(3.25)

+
and, since % is non-singular, we have, on using (2.115),
* 1§ — f
a-»H8 - Y . T=x ceea(3.26)

*
Thus E satisfies the same equation as i and we may take

§*_ 8.

Now consider the discrete-time Markov regulation problem of
minimizing the equilibrium mean cost rate ¢* of the equal-sojourn-time
chain {X;} resulting from the equivalence transformation (3.11). On
identifying & with ¥* and 0 with © in equation (3.20), and using
the fact that the equilibrium mean cost per transition, 0_(, is given,
via (3.16), by X = T ¢, we find that the optimal cost rate satis-
fies the equations

* — 3 *u
$* + ot = mnlgYy
i ) uelW|

u %
(pf.) S ] . \U/i [ N
* e N (3.27)

w

or, what is equivalent,

Min * ol ¥ U * - ™ \ .
ge .LL [(Yl) + z (Pij) Sj = gl = [:0 C] =0 [ «l < T\]N
J

ceee(3.27)
Now use (3.11) - (3.15) to express the conditions (3.27) in
terms of the properties of the original semi-Markov chain {_X,}. The

result is

u

T J

Mi j Y. S.  _
e = . L E b, O, e —cz =0, Vi e N
uell OL < U = u N

i J i

eeea(3.28)
-Qu -
or, since ’Li > 0, Vl, \du, and ‘CO>O,

M v E" u — u
hn.ﬁ + g}.—g.-c—ci =O,Vie‘-NN

ué.’u, i - pij J 1
J ceea(3.29)



From (3.28) we deduce that

—_ Min
= 1 u u :
c = ueu;{ﬁi + z pij g,] - S:L} ’ Vl € NM
1 J eeee(3.30)

and from (3.29) we have
Min u u — u .
Si=ue.’ll,\6i+ Zpij Sj"’ti ; VleNN
J ceee(3.31)

Thus by the same argument as for the pure Markov case we can

define an optimal control law £° either by

. . . min _1_ u u
Vl € NN : £2(1) Arg,u el u{\‘i + z pi:j Sj - Sl}

J
eeee(3.32)

o min u u — u

i € : £ (1) Arg. .+ 108, - .

Vl NN 8 2 ell \61 E Pis 95-¢ 4
J

ceee(3.33)
where, in each case, (;, éi) satisfies the value-determination

equation

0o

N - | eeea(3.34)

The Jewell policy-iteration algorithm is based on iteration
between (3.34) and (3.33), and the Schweitzer algorithm uses iteration
between (3.34) and (3.32). As our derivation of (3.20) and (3.31) has
shown, both algorithms are equivalent to applying the Howard algorithm
to pure Markov regulation problem generated from the original semi-
Markov regulation problem by the equivalence transformation (3.11).
This fact may be used to prove convergence of either algorithm, though
more direct proofs are available.

One festure of the policy-iteration algorithms defined above is

that it is possible to compute, after each iteration, upper and lower
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bounds on the true optimal cost rate, ;b, and hence to monitor the
progress of the algorithm. These bounds were first derived by

Hastings(1971).

3.3%.2 Succescive-approximation methods

A disadvantage of the policy-iteration methods of Section 3.3.1
is that each iteration cycle involves the solution of the linear
N-vector equation (3.23) (or its Markov equivalent, (3.22)), which
can be computationally expensive if N is large. In the transient-cost
problem (see Section 3.2.4t), the successive-approximation method of

Eaton and Zadeh(1962) (1968’1971)of

, or the Kushner/Kleinman variants
it, are often less expensive in total computer resources than the
corresponding policy-iteration method. It is natural therefore to
enquire whether the Eaton/Zadeh method can be adapted to the optimal
regulation problem. Such an adaptation has been developed by White(1963)
for the discrete-time Markov regulation problem.

White's successive-approximations algorithm is based on the
following result. Suppose that there is a state, call it state 1,

that is recurrent under every feasible control policy. Then define,

for each i € IUN, the sequences Vi(n) and vi(n) by the recurrence

relations
Min u u
Vi(n) = ue'\l_[o(i + § P; 5 vj(n—’l)] eees(3.35)
je N
N
v, = V@) -V (@) -ee-(3.36)

with vi(O) y 1 = 1,2,e0.,N, arbitrary but specified.

Then, with & and &) satisfying condition (3.22), and with ¥, =0,

Iim
a1 T X eeee(3.37)

and Iim
v.(m) = w,, Vie N, .G

n-»o0
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That is to say, the algorithm defined by the iteration of (3.35)
and (3.36) converges to the (unique) solution of the Howard equations
(3.20). 1t is also clear that the sequence of control laws, obtained
by the successive minimizations of the right-hand side of (3.35), con-
verges to the optimal control law given by (3.21).

- The advantage of White's algorithm is of course that it is com-
putationally straightforward; the main disadvantage is that, in
common with many iterative methods for solution of simultaneous equa-
tions, convergence may be slow. In fact the rate of convergence will
depend on the detailed forms of the various closed-loop transition
probability matrices Pf that are generated by the algorithm.

As with the policy-iteration algorithms of Section 3.3%.1, it is
possible to monitor the rate of convergence of White's algorithm.

Define, for each n & :Z:¥,

A
Min '

Then O(u(n) \L & and 0<L(n) T o{. Thus if we take %[du(n) + x‘_(n;:l
as an estimate of &, the magnitude of the error is bounded by
%[o(u(n) - ‘_(n)] , and the algorithm can be terminated when this
has fallen to a specified level. These bounds on o are due to
Odoni (19690,

The successive-approximations algorithm described above has no
obvious counterpart for the continuous-time regulation problem, nor
is it easily adapted for application to the semi-Markov regulation
problem. However, as we shall show in Chapter L, it is possible, by
invoking the concept of total equivalence (see Section 3.2.3), to

develop successive-approximation methods for the general semi-Markov

regulation problem.
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%e3.3 linear-programming methods

At about the same time asAHoward's development of the basic
policy-iteration method for the discrete-time regulation problem,
Manne(1960) showed that the problem can be formulated as a linear-
programming (LP) problem. This idea is interesting since there exist
highly—-developed and efficient computer programs for solving LP prob-
lems. The formulation of the discrete~time regulation problem as an
LP problem is as follows.

Suppose that the control set for the totally regular controllable
chain {(Xt: > NN) it e Z+} is u=iuk tk e NK.S’,and define

for each i & NN’ each k ¢ NK’

‘ k
o —_
di] A P ut_u

Then a stationary randomized control policy (d) is a set

X, = i] cees(3.41)

d., :1i €& N , k € N gwhere all the d., are non-negative and also
ik N K ik
; d. = 1 9 Vi e N
k N lk ) N 00.0(3.42)
<k

Under the stationary policy (d) the one-step expected cost ¢>(Jid

d A .
o(i = E[c(Xt, Xy g0 ut) X, = ]
E[E [C(Xt’ Xpppr vg) |ugs X = i]

Z ‘ k
u
= dik di evsee (3.1"’3)

k
eNl<

is given, for each i € NN’ by

It then follows that X @, the cost rate under policy (d) is

given by

d
x = Z i i

:‘Le.NM

z \ k d
— ) l‘ ....( .Ll'l‘l’)
B Z b<i i dik 3

1 k
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If we now introduce the variables

X 2 T i ’ \V‘i € NN’ \V/ke NK’

1

ceee(3.45)

k
and, for notational convenience, denote o(? by cxik, we can

re-write (3.44) as

f .
—d E E
o( = Nik xik 0000(3046)
i ok | |

Furthermore, from their definition the x,, must satisfy the

ik
relations
X 2= 0 Vi e NN, \fk c NK ceeo(3.47)
2 E Xik = 1 .-..(3.48)
i k
k
u .
ijk’ z Z: Xk Pig = 0 VJe NN
k i k .

ceee(3.49)

The optimal regulation problem is now to minimize the linear

function (3.46) of the NK variables X1

(3.47) - (3.49). This is a standard LP problem in canonical form

subject to the linear constraints

which may be solved by, for example, the simplex method. Once the
solution has been found, the stationary distribution under the optimal

policy @) is given by

(o]
’nfg = Z X Vi € NN ... (3.50)

k

and then optimal control law d° is given by

© . ik , \v’ieN,VkeN
N K

(o]
T(g eeea(3.51)
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This LP formulation of the optimal regulation problem is of
(1962),

theoretical interest since it may be shown (see Wolfe/Dantzig

that for each i only one of the dg is non-zero (and hence equal to 1).

k
This means that the optimal stationary policy (@°) is deterministic,
as asserted at the end of section 3.2.2.

By again introducing the control probabilities dik it is a
straightforward matter to formulate the continuous-time regulation
problem as an LP problem. However, in the semi-Markov case the trans-

(1968)

formation, which is due to Osaki and Mine s 1s a little more in-
volved. Suppose now that {(Xt: YIS NN): t &’r} is a totally regu-
lar CSMC with control set ’\L = {uk= k e Nk}’ and again introduce

the probabilities di defined by (3.41). Then, under the stationary

k
d
policy (d), the expected one-step cost, Xi , and expected one-step

d
sojourn time, "Ci , are given respectively by

k
N :EE: ds ) 7{: cees(3.52)

k

o{
Q
]

and

d uk ( )
T, d. Ty eeea(3.53

for each i € NN. (As before,\&li1 and ’Cl,l are the expected one-step
i

cost and expected sojourn time from state i under control action u.)

Furthermore, the equilibrium cost-rate under (d) is, from (3.6),

given by

—a
¢ = z Z Yik %5k
i k
:Ef: TZE: Tix Xix vees(3.50)
i X |

where the x;, are defined by (3.45) and, again for notational conven-
¥ o
ience, Yike‘ Yi , tike T, -



The semi-Markov regulation problem is now to minimize the
objective function (3.54) subject to the linear constraints (3.47) -
(3.49). This is an example of a so-called fractional programming

(1961)):

problem (see Charnes/Cooper it may be transformed to an

equivalent LP problem as follows.

Y.
/wiké 'Ulk ; VieNN,Vke NK

Let

ik
and introduce the variables

Tix %ik

A
TS
Tk *jk
J k :

: \/ieNN, \/keNK

eeea(3.55)

and
1

y &
22'53-1{*;;1:
i k

eese(3.56)

Then, from (3.54) we have
-C—d = ; ; ﬁ_k yik .aoo(3057)
i k

and from (3.36) - (3.38) the ¥;, must satisfy

Vi 2 0, Vi e NN, \fk € Nl< ceee(3.58)
Y-
Z 2 Qc—lk' = Y ee..(3.59)
i k ik
;z%z: ZiE) EE E Zik) k \/: PJ
(Tjk - £ (":l Py =0 7€ Ny
eee(3.60

Furthermore, it is also clearly necessary that



8l

EE ngz’ Vi = 1 eese(3.61)

i k

We now have an LP problem in canonical form, namely: minimize
the linear function (3.57) of the NK variables Yi» Subject to the
linear constraints (3.58) - (3.6]). Furtnermore one can show (see
Osaki/Mine(1968)) (a) that the constraint (3.59) is redundant and
hence so is the variable y ; and (b) that as in the discrete-time
Markov case, there exists an optimal control law, do, for the above
problem which is deterministic, ie. such that dgk = 0 or 1 for each
i€ NNand each k & NK'

Finally, there is an important point to be noted about the
relation between the LP formulations considered in this section and
the policy-iteration algorithms of Section 3-.3.1. The LP problem
defined by (3.57) - (3.61) has the form: -

P: Minimize ]&T ha

subject to
A l = _11

I S 0

where y is a variable NK-vector, 7& and b are fixed NK-vectors,

and A is a fixed (NK x (N+ 1)) matrix.

As is well known (see, for example, Tmstzum(19’71)), problem P

has associated with it a dual problem having the form: -

Maximize QT z

o

subject to

Az g /t?

Z unconstrained in sign

where z is a variable (N+ 1) -vector.

Furthermore, since P has a solution then so has D, and

(_Q_T 2°) = (/&Tlo)‘ where lo and _go are the solutions of P and D
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respectively. So if we identify zs with Si’ i =1,eee,N, and zN+1
with ¢, and use the appropriate A and b we obtain the following
statement of the dual problem, D :-
Maximize ¢
subject to
K K K Vi e N
u
S <Y e > at s, N
i 7i i ij 7 j \;k e N
jeN, K
eee(3.62)

This LP problem is clearly equivalent to the problem: -
Maximize ¢

subject to

Min
S. < U oSt . E Pl S ie N
IS pewml ' * jeNN” ! A a

ceee(3.63)

One can show that the maximal ¢ (ie. the minimal ¢ in the primal
problem) is achieved at the vertex of the feasible region defined by

(3.63), ie. that the optimal ¢ satisfies the equality constraints :-

g. = o Te Tl Z piuj gj , ViQNN

1 1 1
uéfU. jG-NN

ceee(3.64)

Reference to Section 3.3.1 shows that it is precisely this set
of equations which the Howard/Jewell algorithm is designed to solve
for the optimal ce We therefore have an alternative view of the
Howard/Jewell algorithm, namely, as an algorithm for solying the dual
of the LP program defined by (3.57) - (3.61). With such an interpre-
tation, however, it is not obvious that the minimizing arguments of
the right-hand side of (3.64) define the optimal control law for the

chain.
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CHAPTER 4
NEW OPTIMIZATION ALGORITHMS

4.1 Introduction

Although the optimization procedures reviewed in the previous
chapter are satisfactory in many applications, the fact remains that
when the number of states is large (=ay > 100) the solution of the
optimal regulation problem demands considerable computational effort;
this is particularly true when the number of possible control alter-
natives in each state is also large. The search for efficient optimi-
zation algorithms has therefore continued and in this chapter we pro-

. pose some new algorithms which, at le;st in certain circumstances, are
computationally more efficient than the standard methods. As before,
we first consider policy-iteration algorithms and then look at success-

ive-approximation methods.

L o New policy-iteration methods

The basic Howard/Jewell policy-iteration algorithm for the semi-
Markov regulation problem requires the solution of N simultaneous
linear algebraic equations after each policy-improvement cycle and
furthermore the policy-improvement procedure itself uses a value-vector
which is not updated until the end of the cycle. The first attempt
to improve on the basic Howard/Jewell algorithm was proposed by

(1968) who suggested modifying the value-vector jé at each

Hastings
step in the policy-improvement cycle. The difference between the
Hastings algorithm and the Jewell algorithm is best demonstrated by
the flow-chart shown in Fig.(4).

It can be seen that, if we borrow some appropriatelj descriptive

terminology from the field of linear iterative analysis (see, for

example, Varga(1962)), the Hastings routine is a "Gauss-Seidel"

version of the Jewell routine, which we can think of as the basic



Specify initial policy, f

3

"Walue-determination"

Solve

jé = 2{? - 'E”t; + Pf Ei

f —
Solution denoted by (5, cf)

Y

Jewell '"policy-improvement' routine

New policy f given by
u £
f(i) = AI‘ . [x + PR .
¢ ueu Z Pij 9

Hastings "policy-improvement' routine

New policy f given by

. i-1
min u — hif
f(i) = Arg. ”h. S & riul E o §T 4 ]
ue 1 1 i3 J lJ J

3=1

where

51 min i-1 £ N

L= u~ -—f_cu u u '

37 weull - T +Zpij%j+2pijsj
3=1 j=i

Termination test

Stop

~ Fig. (4)

87.
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"Jacobi" version of the procedure. It is possible to show (see
Hastings(1968)) that the Hastiﬁgs algorithm converges to an optimal
policy provided that the controlled semi-Markov chain is totally
regular. There is, however, no guarantee that convergence will be
more rapid than with the Jewell algorithm, though limited computational
experience suggests that with certain types of P-matrix the Hastings
version does converge more rapidly.

As a further modification to the basic Jewell policy-improvement

(1971a)

routine, Schweitzer has proposed a procedure in which the
Hastings policy-improvement routine is used iteratively before each
return to the value-determination stage of the optimization cycle.

It is not claimed that this procedure‘is computationally superior to

the Hastings algorithm.

L.2.1 A revised policy-iteration algorithm

We now outline a rather different modification of the Howard/
Jewell algorithm, in which the policy-improvement is carried out one
state at a time, the value-vector ji being re-computed after each
single-state policy improvement. That is, the policy-improvement and
value-determination operations are interleaved, with the result that
a properly updated value-vector is always used in the policy—improve-
ment stage.

Consider the value-determination equation in the basic flow
chart (Fig.(4)):

§ = I - ¢cT + P_S_ ceee(t1)

or,
(I—P)g_ + -C-.E = 1 ....(4-2)
If P is regular the corresponding'ﬁz—vector is unique and so
pre-multiplication of (4.2) by'Igr yields the unique solution
g

Tlc

C =

for the cost rate, as required. On the other hand since



I-P is of rank (N—1) (for P regular) the vector & is not uniquely

determined by (4.2). However, if we set S% =0 we can write (4.2)

in the form

Ry = § L eeee(8.3)
where
v & Co1(%, Sa'Sy""SN)
and
R2 [@-P@-ged+xT s

(R is the matrix (I-P) with its first column replaced by T)
It is easy to see that R is non-singular if P is regular, so

that the unique solution to (4.3) is

l"_ = R—1 1 -.0-(4.4)
Incidentally by equating the first rows of the identity R-1R = I
we find that
e 1 - Dt eeo(4.5)
- T =

where, as usual,

T a1l

We make use of this property later.
Now consider two control laws, f and f', which differ only in
state 1, l1e.
£ = £, §#i
£ £(3) , j=1
The corresponding R-matrices will differ only in their ith rovws

and so we can write

A°
|

Rf = Rf + T -...(4-6)

89.
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where g;']_} is the difference between the i™ rows of B' and R'.

-1 1t

Suppose that ®))™" is known: then, by (4.4), _? = (&) X .
We now make uce of the Sherman-Morrison matrix inversion lemma(ngg)
' -1 -1

to relate (Rf ) to (Rf) « The lemma states that if A is a non-

T
singular n x n matrix, and the n x n matrix A' & A +b ¢ is also

“invertible, then

-1
") = a7 [I - Abch A"1] ceee(l.7)

where
-1

T 41 p)

N Aa (1 +c

Applying this result to (4.6) we obtain

- -1 -1
f f T f
® ) = @& [I-)\igig_i(n)J
eees(4.8)
with
r e 77
A, = [1 +a; (R) _e_i] cenn(4.9)
or, alternatively, on re-arranging (4.8),
v =1 -1
&y = &) - Ma@sh) eeee(5.10)
111
where £ -1
. A& (R) e,
=i =3
s & g;f(Rf)_1
y Ty
and ;3 = (+a.r)

Thus if the control law is changed only in state i, the inverse
of the R-matrix can be updated by simply adding the dyad [—)\,i_g 5 ggi]
to the original inverse. We can then use (4.4) to obtain the updated
v-vector.

We can now construct an optimization algorithm which makes use

of the above updating procedure, as shown in Fig.(5).



-1
Compute (Rf)

Specify initial poiicy, T

f

and v

-

————

Fori=1to N

Policy-improvement

New £(i) = Arg. min[§§ -

ot

u u
Tyt z (Pij

J

s§]

Value-determination

1

New (Rf)-

New v

given by (4.10)

given by (4.4)

cycle

Termination test:

Stop if f is the same

as at end of previous

Stop

Fig. (5)
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From the above flow-chart it can be seen that the value-
determination operation of the Howard/Jewell algorithm (and its vari-
ants) has ncw been split up into N stages (for an N-state problem),
with the result that the policy-improvement operation in any state
always makes use of the best available values of ¢ and §_° This is
in contrast with the previous algorithms in which the best available

values of ¢ and 3 are used only when i = 1.

Convergence of the above algorithm - which we shall call revised

policy-iteration (RPI) - to a globally optimal policy may be proved i

by the following argument which derives from Howard's original proof
of convergence for the basic algorithm.

For any two stationary policies, (f) and (f£'), define the test

guantities

Vi 3 NN: L. (e'0) & \l{zf'(i) _etgf@, 2 "p;";.(i)gg

1 je_NN
ceee(lta11)
and also the following :
YieN: 2fc.02 56'\0- 5@ eee(h12)
AL & ol (A%,,... A% ) cees(B13)
Ase', o 4 5t - 5t ceee(hal)

VieN: AS 008 € - 6] ceee(75)

N

AS A con U ... M50 ceer(4.16)

Then, as is easily verified, (AE ,AT) satisfies the equation

AV - 4y . szl & f AS eeee(B17)

from which, on pre-multiplication by (Ef) , we deduce that
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rq
@) A%

1 T
() <t

1 T
(') A%
= — coee(L.18)

1
’Cf

1)
where, as usual, we have written '-f,f for the equilibrium mean sojourn

) T |
time ('I_T'_f ) '_'_Ef .
Then, introducing the scaled probability distribution

of & (—1— et
_%t.l

we can compute the reduction in mean cost rate by

'+ T .
Asie',e) = (BF) Ax (¢',0) eeee(4.19)

The coefficients of the A%l in this linear functional are all

non-negative. It follows that

As <o = Biel\l": A¥. < o

and, since an optimal control exists, we have

n——

f non-optimal —>» —~' AF <0

—_~_,—‘>3f' —ﬂieNN: A§i<o

o
cm—

Now from (4.11) and (4.12) A}‘li depends on f' only through £'(i).

It therefore follows that

f non-optimal —>» —|i & NN\-_ Hf' :£'(5) = £(3) ,\/j# i}:A%( 0

or, equivalently,

Vi € NN[\-{f': £'() = £(3), Vj £ i}: Agi > 0

’.:-"? f optimal
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The lefthand side of the above implication is precisely the
stopping condition for the revised policy-iteration algorithm. We
have therefore shown that the algorithm converges to a globally
optimal policy by a sequence of single-state policy changes. Further-
more, convergence is clearly monotonic in ¢.

It does not seem possible to show that the RPI algorithm always
convergcs more rapidly than the basic Howard algorithm and its variants.
The chief advantages offered by the new algorithm are: (i) the compu-
tational effort associated with the value-determination operation in
each optimization cycle is now proportional to the number Qf states
in which the control law is changed - in a'large but highly-structured
problem this number may be very much less than the total number of
states, with a consequent substantial reduction in computing effort;
and (ii) the values of & and T used in the test quantities b;%i’
defined by (4.11) and (4.12) and used for policy-improvement, are
continuously updated as the policy-improvement routine steps sequent-
ially through the states of the chain - in contrast to the Howard
algorithm, in which the values of EL and ¢ used are always those avail-
able at the end of the previous optimization cycle. The significance
of this second feature is discussed in more detail in Séction Lok,
(Footnote: If instead of using the "Jewell" test vector £§i , defined

by (4.11) - (4.13), we use the "Schweitzer" test vector A;‘r) defined

by

VieNgy oo & —— [¥7® ) r @t ot
£1G) | * — 3
T i

Vie NN: A'»?i(f',f) A 'V‘i(f',f) - W?i(f,f)
zg] & Gol (A, Ay,,...., 0

then it is easily shown that
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\(i e NN: Agi(f',f) = 'til(i) A“?i(f',f)

and hence that

@ A% G0 <o & A?i(f',f) < 0

and

(b)

' T
Asis',e) = @) ga)w',f) eeee(4.192)

which is perhaps a more elegant form of (4.19))

L.,2.2 An accelerated policy-iteration algorithm

The policy-improvement routine in the RPI algorithm minimizes,
in each state i, the test quantity %i with respect to u = f'(i), and
by (4.12) the resulting u also minimizes A%i' There is however no
guarantee that the resultant improvement in the cost rate ¢ is the
best obtainable with respect to changes in f£(i). For if f' differs
from f only in state i, then from (4.11) and (4.12) we have

Agj(f',f) =0, j#4i and so, from (4.19) the difference between
'

—f = . .
¢ and ¢ is given by

et £' .
eee) = B, A%, eees (4.20)

so that minimization of Axh does not necessarily correspond to
minimization of A?. Indeed, if state i is transient under the policy
1]

f' then Bf

1

is zero, and so AZ will be zero even though A%i(f',f)

may be non-zero. The problem of transient states is discussed in

Section 4.2.5. Even if i is recurrent under each of several improved

policies, say £, £'5 £'", vuu, it is clear from (4.20) that mini-

mization of /T is not necessarily achieved by minimizing A%l
Suppose we wish to achieve the greatest possible reduction in

¢ at each single-state policy improvement. Such an optimal improvement

is achieved in the following accelerated policy-iteration (API)




algorithnm.

From (4.5) we have

' 1t =1
(.JT —Kif = 3T1(Rf) ey eoee(li21)
—-Ef )
and from (4.8)
1 =1 -1 -1
&) = [I - ?\i(Rf) g_ig_Ti}(Rf) eeen(ha22)
so that
bl & ()
Tt
= 2‘1'-‘[1 - NI éf] r ceee(4.23)
where I A (Rf)-1 e. eees (. 2k)
=

Thus in equation (4.20) the scaled probability ei can be
computed by (4.23).

We can now construct an accelerated policy-iteration algorithm
in which the policy-improvement stage minimizes Ag rather than A%i'
The flow chart is as in Fig. (6)..

Proof of convergence of this API algorithm is as for the RPI
algorithm. As before, ¢ decreases monotonically to its minimal value,
but we now have the additional property that each single-state policy
improvement achieves the maximum possible reduction in ©. On the
other hand, if the control set '\k contains K alternative control
actions, there are (K- 1) additional inner products (one for each
trial Gi) to be computed at each policy-improvement. As in the RPI
algorithm, (Rf)-1 and lf need only be recomputed in those states for
which the control law is changed.

Incidentally, in the special case where the control set u con-

tains only two elements, so that the optimization proceeds by a sequ-

ence of binary choices, minimization of Agi(f',f) is equivalent to

9%.
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Policy-improvement

-1
Select r, = 1™ column of (Rf)

For each u € \L , compute A? = Qi A*?i
New f(i) = Arg. mli;n [AE]

Y

Value-determination

-1
New (&) given by (4.10)

New v given by  (k.4)

l—.—-—-c-—.——._.

Termination test:

Stop on unchanged f

Stop

Fig. (6)



minimization of ZXEKf',f). It is therefore unnecessary to compute

the Bi in this type of problem.

L,2.3 A direct policy-iteration algorithm

Finally, in this group of algorithms we outline an alternative
to the APL algorithm in which ¢ is computed directly from (3.6).
Changes in ¢ due to single~state policy changes are computed by evalu-
ating directly the effect of a row change in the P-matrix on the
corresponding stationary distribution, ’T_\'_.

Suppose that pf and Pf' are the transition probability matrices
of a totally regular CSMC under the stationary policies (f) and (f '),
‘and let

Ap & pf _ pf e (B25)

Since the chain is totally regular, the corresponding stationary
1

distributions, Ef and T_Ef , exist and satisfy the relations

T

@iy a-pf) = of cee (526)
T '

(.n.f'> @-pf) = of ceee(427)

Subtracting (4.26) from (4.27), we obtain

T ' T
Qlf') a-p) = @) a-hH ceeo(h.28)

!
Now the matrix (I - P* ) is of rank (N-1) and hence singular.

However, let us separate out the principal dyad of Pf by writing

f

P oa pf

T
- e@d eeee(B.29)

Then, on using (4.25) and (4.29) in (%4.28), we have
e\ T ~ 17 ~f
@) @-p - Ap) = @U) (T -P) . eses(h.20)

o :
and furthermore the matrix (I - B AP) is non-singular. To see this,

note first that

M & x-Pf_ ap) - 1 .9Pf +_e_(1tf)T



99.

Now,
(i) M singular —=> 31;!03141: 0
' T

(ii) :> 31£Q:G-ﬁ)z=-Bf)ﬂg
flT fl f‘l‘

(1ii) @Hzﬁg:(ﬁ)(I-P).[:—[(ﬁ)l]
T

(iv) = Eng: @) v = o

Combining conditions (ii) and (iv) we find that

M singular ——> 31%9_3 ('Ef) v = 0 (iv)

1
and (I-Pf)w_r_z_Q (v)
£' '
But since P~ is regular the only solutions to (v) are v = O

and ¥ = e ; and since Ef > 0 , the solution ¥ = e cannot satisfy
(iv). It follows that v = O is the only solution to My = O and hence
that M is non-singular.

Thus (4.30) can be written

' T T ~ ~ -1
@)y - afy @-FH @ - - Ap) vene(1.31)

or, alternatively, since (I - ’ﬁf) is also non-singular

-1
y T T e =1
@) = @) [_1- AP (1 - FF) ]

ceee(Bo32)

Now suppose that £' differs from f only in state i; then Pf

will differ from Pf only in the ith row, and we can write
AP =

If we also introduce

-1
T & (1-%H e (5.33)
and
T A Ll veea (B30
et i
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then (4.32) becones
£'\T £\7 |-
(_T_l-_ ) = (TL ) [I - E'j. hi] 0000(4035)

vhich, on use of the Sherman-Morrison lemma (equation (4.7)), finally

becomes
afy - @h 1+ Ae, bl (4.36)
AN = 1L ig'i _i soee 03
vhere
L
AN, o= (1-Dbjey) cess(4.37)

Thus the stationary distribution'ﬂffcan be updated by (4.36) for
any single-state change in the control law f. In principle we could
use (4.36) in conjunction with a single-state policy-improvement
routine to optimize the cost rate C. However, as we shall now show,

- there are two features of such an algorithm that are capable of im-
provement. In the first place, the computation of AT for each possible
control alternative f'(i), in state i involves the evaluation of the

] T 1 N 1 T
two inner products (Ef) lf and (lf) _'Ef

; by working with a suit-
ably scaled stationary distribution it is possible to compute Ef' and
hence AT by a single inner product evaluation. Secondly, the updating
of the matrix T required after any single-state change in f involves

a rank-2 modification of the Sherman-Morrison type; by using a slightly
modified matrix it is possible to perform the updating by a rank-1 for-

mula with a consequent reduction in computational effort.

Consider the matrix
W oA [1 - pt +—£pr] veea(4.38)

where p is an arbitrary fixed probability vector. By the same argu-
ment as that following (4.30), W is non-singular if pt is regular;

thus

=
1>
=
!
N

eees(.29)
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exists, and

EW = I -o--(LI'."I’O)

WE = I ceee(ltli1)

Post-multiplying (4.40) by e gives

ext = o eeee (B42)

so that, using (4.40) again, E[I - Pﬂ = I- _e_pT.

T .
Pre-multiplying (4.41) by (T_f_f) gives

iy T
p E = (f{) (T-Lf) oo.o(l*'oL"B)
—_— T ‘
T
where T . ('_!_f_f) _'P__f

i

equilibrium mean sojourn time under (f).

Thus the scaled stationary distribution,

f
9 & (_—_‘-;) 7 vee G )
T

can be determined by taking a fixed linear combination of the rows
of E. From (3.6), the cost rate under policy (f) is given by single

inner product

fT

st - ehH ¥ eeee (bohS)

R
Furthermore if E is the E-matrix associated with the control

law £', then
-1 ! U
€®) = 1-2" +xF T
= E' . AP + At p
wl:lere
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Thus
' m -1 =1
E = E[I - (AP - ATp) EJ eeee(B.146)

If £ differs from f only in state i, then

AP - _422 = gi(giT- A‘CpT)
so0 introducing
T T
4 & (@ - Obrp)E eeee(hli7)
T
- aE- At @H eee(.18)
i

and using the Sherman-Morrison lemma, we have

E' = E[I 4 xi_eigiT] eeee(BB9)
o N (1-g8 e
where i = 1 - 4d. &
Finally, writing
AE = E -E eeee(4.50)
do - B _Bf cees(B51)
we have, from (4.49), (4.43) and (4.4h4),
T
Az = N.E.g; , oo (l52)
where _El is the i column of E,
T f T
and _A_B_ = )\l 91 gﬂ. ...-(4.53)
AL . —f T E f .
so, since ¢~ = P 0" , we can write
A? = ET M ceoo(h.5h)
where Ef <y Elf
cees(l.55)

and Aw = Ef' - wf
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We thus have a matrix E from which the scaled stationary
distribution Ez is easily determined and which can be updated by the
rank-1 formula (4.52) when a single-state change is made to the
control law f.

Note that subject to the conditions p » O, g?_g = 1, the
“choice of E.is arbitrary. We shall choose P =8 , in which case (9f>
is the first row of E. Note also that the vector w is easily updated

by the rank-1 formula

£ eagal - o[ o Mg

0.00(4.56)
We are thus led to the direct policy-iteration algorithm
shown in Fig.(?).
Proof of convergence is as before. The cost rate ¢ decreases
monotonically and, as with the API algorithm, the maximum possible

reduction in Z&E'is achieved at each single-state policy change.

L,o.4 Comparison of policy-iteration algorithms

The development of the above new policy-iteration algorithms
was motivated by the search for improved computational efficiency in
the solution of the optimal regulation problem. We shall now there-
fore attempt to compare those features of the various algorithms dis-
cussed above which potentially influence their computational effi-
ciency.

(1) Howard/Jewell algorithm

(a) Policy-iteration requires evaluation of the inner product
E pzj Sj for each control alternative u in each state i.
J
Thus assuming that the number of states is N and the number

of possible control actions is K, the total number of multi-

plications required for policy-improvement is approximately KNE.
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Policy-improvement

For each u € A, compute AT by (4.54)
and (4.56)
. min —
New £(i) = Arg. u [ﬁ&c]

Value-determination

New E given by (4.52) and (4.50)

New Ef given by (4.56)

Termination test:
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(ii)

(iii)

(b)

(c)

(a)

(e)

(a)

(v)

(c)

(a)

Value-determination requires the solution of N simultaneous
linear equations, equivalent to N rank-1 modifications to
the matrix (Rf)_1. If, say, Gaussian elimination is used
for the solution the number of multiplications required is
approximately Nié.

Thus the total number of multiplications required per major
iteration cycle is approximately (K + %N) N2,

The values of E and ¢ used in the policy-improvement stage
get progressively more out of date through a cycle as i
increases from 1 to N.

The reduction in ¢ achieved by ea;h single-state policy-

improvement is not necessarily the maximum attainable.

Hastings algorithm

Essentially the same properties as the Howard/Jewell

algorithm.

Revised policy-iteration (RPI)

Policy-improvement requires the evaluation of the inner
product jZ:pzj ‘Sj for each alternative u in each state i,
so that thg total number of multiplications required for:
policy improvement is approximately KNZ.
Value-determination requires N1 rank-1 modifications to

-1
(Rf) where N £ N is the number of states in which the

1
control law has changed in the optimization cycle; the
number of multiplications required is approximately N1N2.
Thus the total number of multiplications required per major
iteration cycle is approximately (K + N1) NZ.

The values of §. and ¢ used in the policy-improvement stage

arc always the best available.

105.
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z
(e) The reduction in ¢ achieved by each policy-improvement

is not necessarily optimal.

(iv) Accelerated policy-iteration (API)

(a) Policy-improvement requires the evaluation of two inner
products (one for Aﬂéi’ one for Bi) for each alternative u
in each state i. Value-determination is as in the RPI. Thus
the total number of multiplications required per major itera-
tion cycle is approximately (2K + N1) N,

(b) The reduction in ¢ at each single-state policy-improvement

is always the maximum attainable.

(v) Direct policy-iteration (DPI)

This has essentially the same properties as the API, the
only difference being that the two inner product evaluations

per alternative arise in the computation of trial values of
t

g? by (4.56) for use in (L4.54).

It can be seen from the-above comparison that the new algorithms
offer hope of more rapid convergence than the basic algorithm, together
with a significantly more efficient major iteration cycle (less compu-
tational effort) when the number of control alternatives K is much
less than the number of states N and changes in the control law are
confined to relatively few states. This will be true for example when
the set UCTEOf recurrent states is, for all control laws, a small
subset of the whole state space {\JN‘ An zdditional minor advantage
of the new algorithms is that since the procedure is identical for
every state there is no need to define an iteration cycle as a cycle
ending in state N: the procedure has converged as soon as the N most
recent policy-improvement stages have left the control law f unchanged.
Thus by bringing the termination test within the state-incrementing

loop in the flow charts of Figs.(4), (5) and (6) the possibility
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(inherent in the basic algorithm) of carrying out up to N redundant
policy-improvement stages is eliminated.

We have implied, in the above comparison and in the description
of the RPI algorithm, that the use of continually updated values for
Si and ¢ in the test quantities sti offers some advantage over the
‘basic Howard/Jewell/Schweitzer procedure. To see the justification
for such an assertion, consider a complete policy-improvement cycle
of the Jewell algorithm which results in a change of policy from (fA)
at the beginning of the cycle to (fB) at the end of the cycle as a
result of changes in control action in states i1, iz,...,i . Now

n

define the intermediate policy (fr) by

fr(i) = fA(i) . i =1

)]

fB(i) . i # i,

for any state i € {i1,..,°,in§ in which f5(i) # £,(i)

Now using (4.44) in (4.18) we have, in general,

T
AS ') = (') A% (e',0) ceen (1a57)

and, in particular, for the policies defined above

fo T
s o'n)" A
AC (fr,fA) = (8N A% (2,1, eeee(4.59)

Thus

AT (5,1 - AT (£ 1))

AT (fB,“fr)

N

£ £
z , I:eiB A% (£5,1,) - 0.7 Agi(fr’fA)]

i=1

]

coee(l.60)

However, by the definition of fr )
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A (e g,) T

1l
=

s

~

H
(os]

H
o2

-’

and so (4.60) gives

AT (£5,5.)

£
B

Bi bﬁ;i (£5,£,)
r r

1

* T f
B
+ Z <Bi - Bir> A%i(fB,fA)

3
cees(B.61)

where the primed summation is over all states except ir.

Now the scaled distributions _@.fBand _er are necessarily non-
~negative; and, because f3 if the control law that minimizes [f%i(f,fA)
for each state i, the test vector ég\(fB,fA) is non-positive. Thus the
first term on the right of (4.61) is non-positive. However, the change
in control in state i from fr(i) (= £,(i)) to fp(i) may change the
scaled probability distribution.gi in such a way that the second term
on the right of (4.61) is positive and larger in magnitude than the
first term. In such a case we would then have [&3 (fB,fI) > 0. This
means that, even though by assumption the test quanfity ngi (fB,fA)
is strictly negative (for otherwise the policy-improvement roitine

would leave fA(ir) unchanged), f. 1is a better control law than fp. In

other words, given the changes from £,(i) to f3(i) in all states other

than i, the change from fA(ir) to fB(ir) will actually degrade the
;;;E;;;;;Ee of the system (increase the cost rate c).

The possible occurrence of such counter-improvements is avoided
in the RPI algorithm, in which for any single-state policy change
£(1) — £'(4) the change in cost rate AT(E ,f) is, via (4.19),
guaranteed to be non-positive if ZSgi(f',f) is non-positive.

As an example of a Howard/Jewell policy-improvement cycle in

which the above effect occurs, consider the following regulation



problem :

pe
W

Parameters

[}
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Policy (fA) = (:)

Then

A

c
SI&

1

o

0.75

0.25

and so Jewell policy-improvement gives: ~

fB(ﬁ) =

fB(Z)

Thus (fB)

and so

vhence c

However, policy-improvement in state 1 alone would lead to the policy

i u
Arg. mllln(x,] -

1 u

c)
2]

T
a5 ¥°

-B
T

(£) =

—A
c

u

2

u
-c1)

)
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%

1

1

0.75 0.25

0.25 0.75

ul
2
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for which
' 0.75
IE =
0.25
' T\(p
whence 'g' = (7- ) = = _%
.'-_C"

Thus, given the policy change in state 1, the change in state 2
indicated by the Jewell policy-improvement test actually increases

the cost rate from - E- to —-% « With the RPI, on the other hand,

the change in £(2), from u1 to u2, would be seen to increase c and

would not be carried out; at the end of the iteration cycle the policy

] u2 —p z

would be (f ) = 1 and the cost rate c would be - L *
u

Suppose however that the states are re-ordered, so that the

RPI algorithm tests state 2 first and then state 1. It can easily be

verified that the policy (f") resulting from such a cycle of single-

2
state policy improvements would then be (f") = u2 s, so that the
u
cost rate G at the end of the cycle would be-v% as in the Jewell

iteration cycle.

The above example shows that, in contrast with the Howard/Jewell
algorithm, the single-step algorithms will, in general, give different
one-cycle cost reductions [lE'for different orderings of the states
of the chain. Except in certain special cases (see below) there is
usually little point in trying to optimize the state ordering before
using a single-step algorithm, since (a) the optimal state ordering
will change from cycle to cycle, and (b) improvement in the cost
reduction A¢ achievable in a single optimization cycle does not
necessarily guarantee improvement in the overall convergence properties
of the algorithm.

It is perhaps worth pointing out that in the special case where
the control set QA, contains only two elements (ie. a binary choice

of control in each state) there is always at least one state ordering
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for which the cost reduction achieved by a single cycle of the RPI
algorithm is at least as goosi és the reduction achievable by a single
Jewell iteration cycle. For if EJ is the cost rate achieved by the
Jewell cycle, and if $.i1’i2""’ik2$ = J( Ll DC ) is the set of
states in which the Jewell algorithm changes the control action, we
can certainly order the states in x so that the states in :)CJ are
the first k states examined by the RPT algorithm. Furthermore there

is an ordered subset of states in X , say (io< 1l seeeni, ), such
1 2 m

that the RPI algorithm can achieve a cost rate cR < 'EJ by single-

state improvements first in i  , then in i , and so on to i . TFor
% 2 *m

either the RPI algorithm makes changes in all the states in :X;J
-(ie. m = k), in which case ER = ?:J s or the RPI algorithm makes changes
in at most m < k states, in which case ;R < EJ (for otherwise fur-
ther one-state improvement is possible in at least one of the remain-
ing k-m states in :I,J).

The argument fails when '\A, contains more than 2 elements since
a control law f' is not then uniquely specified by listing the states
in which it differs from some reference control law f. In practice
however, re-ordering of the states has very much the same effect in

the general case as when 'IL is binary.

L.2.5 Transient states

As we have seen (Chapter 2), the state space :)C» of a regular
semi-Markov chain is the union of two disjoint subsets, I;T and xR,
of which the first is the set of all the transient states of the chain
and the second is a closed set of intercommunicating recurrent states.
In a totally regular controllable chain the subsets I;T and :);R will
in general depend on the choice of stationary control policy, so that
in the policy~iteration algorithms considered iﬁ this Chapter policy

changes may be made which move states from IT to xR and vice versa.
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Now in a single-state policy improvement the cost reduction in any
state i is given by equation (4.20):

f
i

Acts',2) = ®© ﬁg%i(f',f)

£
where E)i is the scaled equilibrium probability of state i under

the control law f. We also know that
8. > 0 <& 1e L
B, =0 < ie Xy

so that the cost reduction AG(f',f) can be non-zero only if state i
is recurrent under £'. This raises the following question: in the
algorithms (API and DPI) based on optimal reduction in c at each
iteration, is it possible for the algorithm‘to halt prematurely be-
cause changes in the control law will be confined to states which are
recurrent under the changed control law? This could happen, for

example, in the following situation :

' £°(1)
f =
(i) £ (2) (ii)
£(1) _ 5 £2(1)
f = f =
£(2) £2(2)
(1) (i)
£ (1)
f" = .
£2(2)

o
with o° < . If state 1 is transient under £ and state 2 is

transient under f", (but both 1 and 2 are recurrent under f and under
fo), the control law f° cannot be reached from f by two successive

]
policy improvements of the API/DPI type, since the first step, f —> f

or T -9-f", will not be taken.
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Fortunately such a situation cannot arise since it is forbidden

by the following lemma.

Lemma ¢ Let f be a feasible stationary control policy for a totally
f f :
regular CSMC, and let jtﬂl and DCR be respectively the sets of states
transient under f and recurrent under f. Then for any single-state
‘policy change f —> £' in state i,
£ At £ £ £
(a) i el = XL; =X, @i X = X))
T T R R
) f £
) i€, —> i e DCR
To prove this lemma, first order the states of the chain so that
the states recurrent under f precede the states transient under f.
The transition probability matrix PT then has the canonical form (see,
(1973))

for example, Seneta

. —
£ I
_______ %______
£ . of
Prg | Py
- l A
where
Pf s sy
R represents one-step transitions within D:R
£ s s £
PT represents one~step transitions within :N:T
£ f £
PTR represents one-step transitions from :KZT to 3(:R

Now suppose that the control is changed from f to £' in state

!
There will be no change in Pg ¢ hence :I;§ will remain a closed set

o . £ ! _f
i e :x:T; this will change a row of the submatrix | Ppp I Po |
of recurrent states. But in a totally regular chain there cannot be

. f
more than one recurrent subchain. It follows that no state in :ILT

can become recufrent as a result of the change f — f', and hence that

ALl



To. prove part (b) of the lemma, consider a change from f to f'
hif 1
in a recurrent state i & "rJR . If the change f —> f made i tran-
f'
sient under f' we would have i € 'I’T . But under the reverse
change f' —> f in the now transient state i we must, by part (a), have

t

f £ f
:)CT = I’T so that 1 € :x"l‘ 3 this contradicts the assymption that

£
i e X..

The important part of the lemma is (b), which asserts that the
situation depicted in the left-hand side of the above diagram*ca.tmot
occur ¢ a ‘single-state policy change in a recurrent state i cannot make
i transient under the new policy.

Now consider optimization by single-state policy improvement.

* We have

f non-optimal ——>> 31‘0 : Ac(£°,8) < o
fo
E 9. A5 (+°,0) < o
1 1L
R

£0
where E denotes summation over all states in 3CR . Now by part
R o
f f
(a) of the lemma, we cannot have xR - IT 3 so at least one

=

]

4 £0 .
state i € I’R must be recurrent under f. Then the single-state

policy change f —» f', where
£'¢) & 22 , =i

will, by part (b) of the lemma, leave state i recurrent under f'.

So we shall have

Bf > o
L
Agi(f',f) = A.%i(fo,f) < 0
and hence |
Az, ) = 9: A%i(f',f) < 0

* }: n2



115.

Thus if f is non-optimal there is at least one state, recurrent
under f, in which a single-state policy change can produce a reduction
in the cost rate ¢, ie. at least one state in which API/DPI iteration
can continue.

There are two final points to be made on this topic. DNote, in
the first place, that part (b) of the lemma does not assert that
txlil = :X:; if a change f —> f' is made in a recurrent state; it is
guite possible for a change f —9-f' in the recurrent state i to move
states other than i from :I:R to tl:T and vice versa. For example,

the control change in state 1 represented by the incidence makrices

* * *
* *®
* * *

leaves state 1 recurrent, but changes state 2 from a recurrent state

to a transient state and state 3 from a transient state to a recurfent

state. In general, then, control changes in recurrent states may
change the communication structure of the chain.

Secondly, policy-iteration algorithms based on minimization of
the test quantities [K;i(such as Howard, Jewell, RPI) will minimize
the relative values %i of the transient states as well as the average

(1960)).

cost rate ¢ (see Howard As has been pointed out by

(1969)

Schweitzer , a policy which minimizes ¢ does not necessarily
satisfy the functional equations (3.31), (3.34). In Schweitzer's

terminology, fo igs functional-optimal if it satisfies equations (3.31),

(3.34), and is minimal-cost if it minimizes G. The set of functional-

optimal policies is a subset of the set of minimal-cost policies; in
fact, just the subset of minimal-cost policies for which the transient
state costs are also minimized. Schweitzer has shown that the Howard/

Jewell algorithm always converges to a functional-optimal policy; it
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follows immediately that the same is true of our RPI algorithm. On
the other hand, the API/DPI algorithms will converge to a minimal-cost
policy which is not necessarily functional-optimal. Of course, by
(2.108), a functional-optimal policy will minimize the expected total
cost from any state (transient or recurrent); but the contribution to
the expected total cost of any transient cost gg becomes less and less

significant as the operating time increases.

4.2.6 Relation between the three single-state algorithms

It is perhaps worth pointing out that the three single-state
policy iteration algorithms considered in this Chapter are very closely
related. The DPI algorithm is, in fact, easily modified to yield the
test quantities needed in the other algorithms. For equation (4.55)

may be written

f
or, on using (4.39),
f
[I ety < _I_D_T]' y_f = if' cese(lt,62)
ie.
@-pH + oTuDef = X ees(h.63)
T
Multiplication of (4.63) by CE;) gives
£f.T.f
()
. @) <
so that (4.63) can be written
£y f - £ £
I-P)lw + ¢c T = X eees (b.6h)

Comparison of (4.62) with (4.2) shows that y? is a value-vector:

in fact, the unique value-vector satisfying pT:E? = Ef. We could there-

fore use E? to compute the test quantities ﬁﬂ%_zequired in the RPI
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and API algorithms. Conversely the matrix R in equation (4.3) is
i
very closely related to the special case of E' which results from

choosing p = e,

4.3 New successive-approximation methods

As we saw in Section 3.3.2 of the previous Chapter, a computation-
ally convenient (though not necessarily more efficient) alternative
to the policy-iteration method of optimization is the successive-

(1963)

approximations method developed by White for the discrete-time
Markov regulation problem. A naive extension of White's method to the
semi-Markov case does not work since the resulting algorithm does not
always converge. In this section we develop an effective semi--Markov
version of White's algorithm and also consider the possibility of
using accelerated-convergence algorithms analogous to those suggested

(1968,1971)

_ by Kushner and Kleinman for the transient-cost problem.
Before doing so, it will be useful.to demonstrate the convergence of

White's basic algorithm by means of a contraction mapping argument.

4.3,1 The White contraction mapping

In what follows, l(gwl denotes the 1, - norm of the real n-vector
x and ‘lA][ denotes the corresponding subordinate norm of the real
n x n matrix A, Recall that the mapping T : R* > R is a contract-

ion mapping with respect to the norm || || on B iff

\{z.a_:{_ e®: |1 - T(y) ll < ‘°‘ “5‘1“

for some & €& [O,']).
If T is a contraction the equation x = T(x) has a unigue solution .
5?, called the fixed point of T, and furthermore the iteration
o) . . : _
x = TQ§H_1) converges to x . More generally, the iteration x = T<5n-1>
converges to 5? if for some finite r the mapping ™:R >’ is a

contraction (in which case T is called an r-stage contraction).
' \
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The affine mapping T: R —> R* defined by

™Mx) & Ax + b ' cees(4.65)

wﬁere A € B2*1 » b € Rn, is' a contraction if “A“ < 1,

since

“T@)-Mf“ = uAg-@ﬂ
< ol . Jz-s]

Now suppose that we have some control set \U_ and that the first
row of [A:' jg] is a function of f1 & u s the second row of [A i .‘Q]
is a function of f2 € u , etc. The complete matrix [A; h] is

then determined by the sequence f & (f1”"’fn) and we denote it by

[ ]

n
For every £ &€ \J , define the mapping o B —> B by
) & afx + pf eenn(1.66)

Then, as before, of is a contraction if “ Af" < 1.

A
Now consider the non-linear mapping T : R — R defined by

[T(Z_)]i - fieu A" x + b . cees(4t.67)

fOI‘ i = 1,2,.--,11.

For brevity we write equations (4.67) in the symbolic form
A .
T(x) 2 M;n [ccf (5_)] veen(4.68)

£ o A
Now if T” is a contraction for every f & WL then T is also
a contraction,

For we have

A A Min | of Min | f
T(x) - T(z) = ]:T (_}5_)] - [T (1)]
fx T
where £, ~minimizes Tf(g)
T minimizes Tf(y)
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fx f
But T ) £ T Y(x)
so that T £
A
T(x) - T(y) L V) - ¢ y(z)
£
= AY(x-y) ceeela)
By a similar argument
f
T - My P oA Tx-y) (Y

so that, from (a) and (b),
f A A fx
AV - ¥) 2 T(x) - T(l) Z A7 - ¥)

Now the component. of ‘3(5) - AT(y) with maximum modulus is either
‘zero - in which case “6(_)_(_) - @(z_) “ ‘= O ; or positive - in which
case it is bounded above by the corresponding component of A y(£ - _y_),
~whose modulus does not exceed “A I(x - l) “ ; or negative - in
vhich case it is bounded below by the corresponding component of

f
A *(x - y), vhose modulus does not exceed “A *x -y ll . Ve con-

clude immediately that

so that

|

) - T(y) l[ & IB
where |
g o el
and, by hypothesis, IA < 1.
As a generalization of the above idea suppose that not all the
matrices Af are contraction operators but that instead they satisfy
the weaker condition

T r-1 2 1
. 31» [\{(f“,fz,.o.,fr) e(\kn)r:]: “Af At Lt At " < 1

LR (4.69)



Let

A Ar-1
=r-1 - T (x)
Ar-1
Ty-1 & T (¥)
and
r-1 A . £
fX & Arg. min T (Xr~l)
f
r-1 A . f
fy 2 Arg. min T" (y__,)
f
Then
/\r T _ _
T (x) - T (y) = T (x._4) T (Yy—y)
- r-1
vl £,
=T (X)) = T (¥pr-y)
Il r-1
T (%) - TY (y )
_ e
= A (%3 Ypey)
fr_l A
- Ar—
= aY {Tr Lix) —Trl(x)g ... (a)
A similar argument gives
r-1
A A £ Ay— Ao
T - T 2 oax (Tl - T lplim

Then (4.70) follows by recursion on (a) and (b), with

Max
K =
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Then by an extension of the above argument it is straight-
N ’ A
forward to show that T is an r-stage contraction, ie. that T is a

contraction:

Vz_,z e R : “@r(z)—arx(l) “é 04“5-_}:“
eeeo(ko70)
‘for some & & [0,1)-
Consider now the valuc--determination equation (equation 2.110)

for a controllable semi-Markov chain. If the control law is f the

equation is

£
S - ¥_.sT + S eeen (B71)

Let us ensure a unique solution to (4.71) by adjoining the

constraint (see Section 4.2.6)
pT g = E b 00-0(4072)

where p is an arbitrary but fixed probability vector.

Then (4.71) becomes

§ = of-zfyHE - AR ceee (4.73)
or, o i = Tf(i) ceeo(l.7h)

where 'l‘f: RN - RN is the mapping defined by

Tf(gg) a - @f -lng) x + if cees(4,75)

Clearly (4.75) is the particular case of (4.66) obtained by
f f o
taking n = N, af .ot T pT) and p_f = 8~ . Thus the solution i
to (4.73) is the unique fixed point of the mapping Tf, and if T is

a contraction the iteration

S = i€ ) eeee(1.76)

* See -Y-o;cir\ﬁ ?ajg
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o o
will converge to EL . More generally (4.76) will converge to EL if
T is an r-stage contraction for some finite r.

Now in the particular case of a discrete-time Markov chain we

bl
have © = e , so that At o f -£ PT)-

Also,
. 2
ahH - @ oeph pf - afpf
and, by induction,
n n-1 '
afy - afeh ceee(B.77)

Thus if Pf is regular, so that

Lim £
@) - @)
n—=> oo ’
we have
Lim T
T U,

It follows that Tf is an r-stage contraction for some choice of
3 3 o
r, and hence that the iteration (4.76) will converge to 9 .

Now consider the non-linear equation

5 = T(H) eeee(4.78)

N .
where T is defined by (4.68), with pf given by (4.75). The component
equations of (4.78) are precisely the optimality equations, (3.31),

A
whose solution we are seeking. If T is a contraction the required

solution can be obtained by the iterative procedure

S - NS ) eoea(1.79)

~n —n-1

White's successive-approximations algorithm for the discrete-



122.

time Markov regulation problem is equivalent to iterative use of

(4.79). To prove convergence of the algorithm we must therefore show

A A

that T is a contraction or at least that T%

is a contraction for some
finite r. Since we are dealing with a particular case of a mapping

A
of the form (4,68), a sufficient condition for T° to be a contraction
. . i . X i oorl T
is condition (4.69), with, in this case, A~ = P~ - ep for

i = 1,2900.,1‘.

But, as is easily verified, (4.77) generalizes to

oo v e (4.80)
In order to proceed we now invoke a rather elegant theorem due

(1963) (1958)

to Wolfowitz which in turn is based on some results of Hajnal

on inhomogeneous products of stochastic matrices. If P is a finite

stochastic matrix and if
Ap) 4 1. MR E P: .« AN\ Dp. .
.. - 1,3 15d

then P is said to be a scrambling matrix if A (P) < 1. The scramb-

ling property, A(P) < 1, implies that for every pair of distinct

states i there exists at least one state j (possibly i, or i,

1 2 1
itself) accessible in one step from both i1 and i2. It may be shown
that the set of scrambling matrices of a given order is a proper sub-
set of the corresponding set of regular matrices.

Wolfowitz' theorem may for present purposes be stated in the

following form :
I Fa {P(1), P(Z),.o.,P(k)§ is a finite family of
stochastic matrices of the same order such that

W for every positive integer n the inhomogeneous product

A ’} ;
P(n) & Pn Pn-1"' P2 P1 s \{Pi &€ v , is a regular
matrix, '

then the following weak ergodicity property holds : -
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‘ \
VE.}O —jno(i) \/n Z 1, V/P(n) : S(P(n)) < &
0001(4081)

where for any stochastic matrix P the parameter $(P) is defined

by Max  Ma
X X
S@®) 2 P. . - D: =
o . . 1.] 1.] -ooo(Ll’o82)
J 1,,1 1 2
1’72
Furthermore, a sufficient condition for property W to hold is
that every'P(l) € g be a scrambling matrix.

Roughly speaking, the theorem asserts that for sufficiently
large n any product P(n)" whose factors are scrambling matrices drawn
from a finite set, is a stochastic matrix with almost identical rows.
In a sense the theorem can be regarded as a generalization of the
asymptotic stability property R.2 (equation 2.10) for regular homo-
.geneous chains. Now if property W holds then P(n) is a regular matrix
and therefore possesses a unique stationary distribution En' We can

then write

T ~
Py = E-T-I(n) + P : ceoe(4.83)

~/ ~
where P(n) is a differential matrix. As we shall now show, P(n) is
a contraction operator for sufficiently large n.

First note that if P is a regular stochastic matrix with station-

ary distribution T__[ , then

™ - e

- Zwri By oo (4.81)
-
th

where Bf denotes the i row of P.

The right-hand side of (4.84) is a convex combination of the
T
rows of P: thus T belongs to the convex hull of the rows of P.

The following then holds :



12k,

i B

e

eoes(B.85)
T “T“ = Ma.X ]p. . - 'W l
i |Pi; i
Max
3 }Pij - Z Ty P
k
Max since
=3 lz-“_k(Pij - Pyy) {2‘@{: 1
X &

Max since
S Z“k pij‘ij}{Tf;{ Zo
k

< kz.’“‘k M?X \pij ‘ijl

T T
- 20T B - B
k
Max T T by
< k. “ P T Py ” convexi’cy)
~ T T . th ~
Thus, if P £ P - eT , and P, denotes the i~ row of P,
we have
A ERR Y
i = i i -
Max Max T T
<l - 5] e
_ Max Max _
= i,j k Pik Pik
Then

H =Y
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<2
|

Hax N.“'g?

i _i

£ n. 8@

so that

§® < ¢ = NF]| < ¢ e (4.86)

It follows that the weak ergodicity property (4.81) asserted by

Wolfowitz' theoxem may be re-stated : -

V£>O Hno(ﬁ) \V/n Z \/P(n) : “’g(n)n< £

L N W ] (4.87)
~
where P(n) is given by (4.83). The contraction property follows
- immediately.
Returning now to the successive-approximations iteration, (4.79),
suppose that for each feasible control law f the transition probability

matrix pt is a scrambling matrix. Then in analogy to (4.77) we can

write (4.80) as

P(r_1) eeee(l.88)
where

o
Ploey = B et ?®

is an inhomogeneous product of the type to which Wolfowitz' theorem

is applicable.

So
r 2 1 r
f f f f
A eeo0 A A = A P(r-1)
r
£ T T ~
= & —ep) X, 4y + Pp)
T
f ~t
= A P(r—1)



126.

since, by (4.87),‘§kr q) converges element-wise to the zero matrix
as r increases.
It follows immediately that for sufficiently large r the matrix

£2 g1

r
eee A A" is a contraction operator on ﬁg. Hence by (4.69) and

Af

(4.70) the successive-approximations algorithm based on (4.79) is
convergent.
The requirement, in our statement of Wolfowitz' theorem, that
o . (1) (x) .
every matrix in the family = )P yeoee P be a scrambling
matrix, is in fact unnecessarily restrictive, and may be relaxed in
either of the following ways.

(1) If the family ?}* is such that

P.1 : for some fixed n, > 1, every product

A

Payy & Pn T qeee B By Vpi € }’
1 1 1

*is a scrambling matrix,

then the weak ergodicity property (4.81), and hence (4.87), will hold.
Thus a sufficient condition for the successive-approximations

scheme to converge is that there exist an n, such that for every

1 .2 1 14
feasible sequence of control laws (£ y T 3e0a,f ) the product
n
1 g1 2 1
et ' pf ... Pt P')isa scrambling matrix.

As an example of a controllable chain in which, although the
individual P-matrices, Pf, are not scrambling, condition P.1 is satis-
fied, consider a controllable birth-death process'(ginlar(1975)), in
which transitions aré possible only between adjacent states. For
such a process, Pf is tri-diagonal for every feasible f, and hence
(for N Z L) not scrambling. However, it is easy to see that con-
dition P.1 will hold with n, -;-( N - 1), where N is the num’t;er
of states.

It is not, in general, possible to express condition P.1 in

terms of equivalent conditions on the individual members of ?}‘.
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(2) If the family ? is such that
P.2 ¢ each P(l) € S}’ is regular and has a strictly
positive principal diagonal,

then property W of Wolfowitz' theorem holds (see Seneta(1973)) and

hence so does the weak ergodicity property (4.81).

Thus an alternative sufficient condition for the successive-
approximations algorithm to converge is that each of the feasible
transition prohability matrices Pf have a strictly positive principal
diagonal. (Since we are dealing with totally regular processes the
regularity of each Pf is assured.) This is a most important result
since, as we shall show in Section 4.3.2 it is always possible to
transform an optimal regulation problem into an equivalent problem in
- which every feasible Pf has a strictly positive principal diagonal.
(Footnote: A stochastic matrix with a strictly positive principal

diagonal is said to be normed.)

We have presented the above convergence proof in detail because
although it is less direct than White's own proof(1963) it has the
following advantages:

(i) It establishes convergence under less stringent conditions than

those required by White. He requires that for some n, every

1
product P(n1) = Pn1 Pn1-1"°P1 (where each Pi is a feasible
transition probability matrix) be a Markov matrix (a stochastic
matrix with a strictly positive column). In fact, more is re-
quired: there must be a state, say m, such that for some n, the
mth column of every product P(na) be strictly positive. We

i
require only that every product P(n1) be scrambling; or, alter-
natively, that each feasible Pf has a strictly positive principal

diagonal.

(ii) By emphasizing the role of the matrices Af in determining the
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contractive properties of the successive- approximations trans-
A .

formation T , the proof offers a hint as to how the method might

be extended to the semi-Markov case. We now proceed to consider

this extension.

L.2.2 Successive-approximations in the semi-Markov problem

White's algorithm is designed to solve the discrete-time Markov
regulation problem. As we have shown, the convergence of the algorithm
rests on the contractive nature of the matrices Af A [Pf -e BT]
arising in the iterative solution of equation (4.78). In the more
general case of semi-Markov regulation, the vector e of unit sojourn
times is replaced by the vector]?_:f of mean sojourn times under the
current policy; that is, we must work with matrices Afﬁ' [Pf - ‘_l:_f _;_)_T],
The crucial properties (4.77) and (4.80) then no longer hold, Gy is
_no longer necessarily a contraction mapping, and (4.79) is not guaran-
teed to converge.

However, as we have seen (Section 3.2.3), any semi-Markov regu-
lation problem is equivalent to soﬁe discrete-time Markov regulation
problem. This observation leads directly to an appropriate extension
of the White algorithm to the semi-Markov case.

Consider a totally regular CSMC, iXt}, and the corresponding
equal-sojourn~-time chain, {X:;, derived via the transformation defined
by equations (3.8) - (3.15). For any feasible control law f, let
(P*)f, (]2*)fand.(j[*ffbe respectively the transition probability
matrii, the mean sojourn-time vector and the mean one-step cost vector,
of the chain EX;E.

Then

) = T, e © eeel(4.89)

where T, is chosen according to equations (3.8) - (3.10). Because

of the way in which the equivalence transformation is defined, (4.89)
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holds for every feasible control law f; hence, for every feasible f,
%X:% is weakly equivalent to a pure Markov chain with index set
KWJ = %_o,-r%, 2-t0,....§ « The original semi-Markov regulation
problem has been converted to a pure Markov regulation problem to
which White's successive-approximations algorithm is applicable.
The rest is straightforward. For the transformed:problem,

equation (4.71) becomes

S - Av - mE s o' S eena (h50)

and if we now add the constraint

pT £% = "%E* ceeo(B.91)

equation (4.90) can be written

§* - of(sH ceea(4,92)

where, now, the mapping Tf is defined by
o £ f
T (x) & [(p*) -Q_BT]E + QD ceee (4.93)

As before, the non-linear mapping iy defined by (4.68) will be
an r-stage contraction for some r < o6 provided that (4.69) holds
with, now, af & [ﬂP*)f - g_g? . But, for any f, P’ and (P*)f possess
the same communication structure (ie. same incidence matrix). Thus
if in the original semi-Markov problem the matrices Pf satisfy the
weak ergodicity condition then the transformed successive-approxima-

tions algorithm
8- WSt ceen (tiol)

will converge to the unique solution of the transformed semi-Markov
regulation problem - which, as we have seen (Section 3.2.3), is the
solution to the original (untransformed) problem.

It remains to write (4.94) in terms of the characteristic



parameters of the original CSMC. In component form, (4.94) is

* Min * T * * .
6, - eyl "Eﬁ)gn-“i]. - Vee N,
1

eee(4.95)

which, on using (3.11) - (3.15) and (4.91), becomes

(Si*)n - uMZIU[{I - §(I-P)} §_*n-1 - T, o0 e %Il . Vi e NN
wefi Heoos,tozex)] e,

e o | Rlen s mm e 23] Ween,
1

Finally, dropping the * and using (3.12), (3.13), we obtain the

il

_ required iteration equations : -

Min { To_ u j;i: u - u
(Si)n = (gi)n-'] * uell| {Xi' + pij(gj)n—'l = %n-1 T - (Si)n-’l.g

Ve N,

cees(l.96)

Provided that the matrices pt satisfy the weak ergodicity con-

dition, iteration of equations (4.96) will yield a value-vector Ei

satisfying pT.§_= T ¢ where ¢ is the minimal equilibrium mean cost
rate.
Comments:

(i) The iterative algorithm defined by (4.96) has been developed as
a natural generalization of White's algorithm to the case of
semi-Markov regulation. Thus, as we shoyld expect, equations
(4.96) reduce to White's equations when the state transitions are

1
uniformly spaced in time (ie. when T = T, \ji , 1 e
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(ii) The rate of convergence of (4.96) will depend, inter alia, on
the magnitude of the equivalent sojourn time, 'co, defined by
equation (3.10). In general it will pay to make T, as large as
possible: thus we would normally take K=1 in (3.10).

Note however that if K < 1 then, by equations (3.9) - (3.13),

the equivalent transition probability matrix (P*)f will possess
a strictly positive principal diagonal (even though Pf may not)
for every feasible control law f. Thus by choosing K to be
slightly less than unity we can guarantee that property P.2 of
Section 4.3.1 will hold for the transformed matrices (P*)f and
hence, by Wolfowitz' theorem, that the successive-approximations:
algorithm will always converge when applied to the transformed
regulation problem (provided only that all the Pf, and hence
a1l the (") are regular - as they will be for any totally
régular chain). |

(iii) A closely-related iterative procedure has been proposed by

(1971b)

Schweitzer whose argument is based on the idea that a
semi-Markov chain is (in a sense not explicitly defined) equiva-

lent to a continuous-time pure Markov chain. We have presented

the above development, partly as independent corroboration of
Schweitzer's conclusions, and partly because the arguments on
which it rests are (at least in our view) rather more compelling

than those put forward by Schweitzer.

L.3.,3 An accelerated-convergence algorithm

(1968,1971)

In two related papers by Kushner and Kleinman on the
transient~cost problem (for Markov chains with an absorbing state),
Kushner and Kleinman point out that some of the convergence results

of linear iterative analysis are relevant to the non-linear iterations

arising in the successive-approximations method for the transient-cost
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problem,

As is well known, the affine mapping
TO: Rn—% R.Cl 3 £ ' ‘—> A°£ + _b_ ) 0...(4-97)

-1
has the fixed point x° = (I-A) b, provided that the matrix A_
doés not have a unit eigenvalue. Furthermore, the iteration

X =T(X
o R ¢

X, 1) converges to 5? iff the spectral radius, CV(AO),

of Ao is strictly less than unity, and the rate of convergence increases

with decreasing OTAO). Now A can be split into three terms:

Ao = L + D + U | 0000(4098)
where
L is strictly lower triangular

D is diagonal

U is strictly upper triangular

Then, provided (I-D) is non-singular, each of the mappings

T, X > Ajx o+ (I-D)-1 b eee(lt 972)

T, x > Ayx + (I-L)—1_‘r_>_ oo (4.970)

T, ox k> Agx o+ (1-0-1)" "1 eee(h97¢)
where .

A, -0 @+1) i (h9Ba)

A, 2 .(I-.L)—'] (D+U) ees(4.98D)

T 1-p-1)" U ... (4.98c)

has the same fixed point as the mapping To. The iteration 3h==T&(X _1)

will converge iff GV(Ai)~< 1. Iterations using TO or T1 are called

Jacobi. iterations, while those using T, or T, are called Gauss-Seidel

2 3

iterations.



If A0 is a non-negative matrix, the following results concerning

the spectral radii of Ao, A1, AZ and A3 are available in a theorem

due to Stein and Rosenberg(1948):

1) o@) =1 = 060l)=cl)= G'(A3) = 1

(ii) O‘(Ao) < 1 — o-(AZ) < O‘(Ao)

_@G(AB) < o)

(1973)y 1,

provided that Ao is irreducible (see Seneta
the diagonal elements of Ao belong to [O,{) s with at least one

a; s > 0, then also

(iii) G‘(AO) < 1 G‘(A,]) < G'(Ao)

_an_dG‘(AB) < s(A,)

Thus under the appropriate conditions a Gauss-Seidel iterative

in addition,
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scheme is more rapidly convergent than the corresponding Jacobi itera-

(1968)

tive scheme. In their first paper

Kushner and Kleinman show that a "Gauss-Seidel" successive-approxi-

on the transient-cost problem,

mations method based on the use of (4.97b) converges more rapidly than

the corresponding "Jacobi' method based on the use of (4.97). In
(1971)

their second paper they consider accelerated methods based on

so-called over-relaxation iterative methods of the form Zh::T'(x ),

. “n-1
10 T2, T3, where To, Tq’ TZ?
Té are given by (4.97), (4.97a), (4.97b), (4.97c) after replacing

A by [on + (1 - oo)I:] with w ¢ (1,2).

in which T' is one of the mappings T;, T

The Kushner/Kleinman results suggest that the convergence of
the successive-approximations algorithm (4.94) will be accelerated

if we can reduce the spectral radius of each of the matrices

g
At a [(P*) - EET] by transforming from the "Jacobi! form of (4.94)
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to the correspondiﬁg "Gauss-Seidel" form. Unfortunately, however,
the matrices Af are not in general non-negative and the Stein-
Rosenberg theorem is no longer applicable. Thus even though, for any
feasible f, a(af) < 1 (since (Af)n-—jf>-0), we cannot conclude that
the corresponding Gauss-Seidel matrix will have a spectral radius
less that CTAf); indeed, the new spectral radius may even be greater
than one. Thus the only obvious way of accelerating the convergence
of the basic algorithm (4.94) is by the use of over-relaxation in
conjunction with the "Jacobi matrix Af.

In the affine mapping T defined by {(4.97) replace the matrix

Ao by the corresponding accelerated-Jacobi matrix

aw) 2 [wa + (1 -co)I] eoea (5.99)

vhere A\ € R + 3 and replace b by Wb. The resultant mapping,

T;, will have the same fixed point as T (provided that W is chosen

so that A(W) does not have a unit eigenvalue). From (4.99), the eigen-
values X; ’ Xé,..., of A(W) are related to the eigenvalues )W’ XZ,...,
of Ao by

l.' = wX. + (1 —b\)) oooo(ll'o'loo)
1 1

and so, for given W, the spectral radius of A(W) is given by

& (A() = Mg" wk + (1-w) veeo(L101)

Now the linear iteration = T; (gn_1) will converge more

X
-

rapidly than the iteration x_ = T (x ) if we can find an W such
-n o =n-1

that c(AW)) < G'(Ao) (assumed < 1). Clearly such an W

must differ from unity since, by (4.99), A(1) = Ao. Under-relaxation

corresponds to W < 1, over-relaxation to W 5 1; which procedure

is used will depend on the location of the eigenvalues of the original
matrix A .
o

Now consider the application of the transformation (4.99) to the
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successive-approximations algorithm (4.94). At each iteration the
matrix Ao will have the form P - e pT , where pT is a fixed probability

vector and P is a regular stochastic matrix whose elements depend on

the current control lawe.

Lemma ¢ Let the eigenvalues of the regular stochastic matrix P be
T

>\1(=1), >\2, X ,...,>\n. Then the matrix A =P - L e p  , where &

is a real number and pT is a probability vector, has eigenvalues

(1-), X, >\3,.°., A .

n

Proof : We have

Ae = [P- xspT]s = Pe - <(pe)e

(1-%) e
so that e is an eigenvector of A, with associated
eigenvalue (1 - ).

For any )\i £ X,] let q; be an associated eigenvector of P,

Then, for any complex number /Ai.

o ] o o
Pili- OC(ET&.L)_@+/‘A1 Pe - o(/V\i_e_

Ayt [/\"1 VA “(»P.Tﬂi)]ﬁ

A(&i + /Ai.g)

So if /Vti is chosen so that

& (pT q.)
n DYy
/* 1- o =X,
then
Alg; + /"‘ig) = )‘ifﬂi A e

so that )"i is an eigenvalue of A, with an associated eigenvector
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('2]._ + [A—i_e_).

(Note : In the particular case when & = 1 - ki the associated

eigenvector is e and the eigenvalue (1 - ) is multiple.)

Now since P is a regular stochastic matrix the only eigenvalue
of P with unit modulus is the principal eigenvalue, X,l = 1 3 the
remaining eiggnvalues )\i all lie in the interior of the unit disc,

l)\\ & 1, in the complex plane. It follows from the lemma that
for & €& (0,2) the eigenvalues of A 21l lie in the inlterior of the
unit disc and hence that the spectral radius of A is strictly less

, 6(a)

- than one. In fact, provided that ]1 - °<I < isz,' \)\
will be independent of the value of ¢, being equal to l)\al , the
imodulus of the subdominant eigenvalue of P. In particular this is
the case when o = 1, as in our successive-approximations algorithm.
We should expect an accelerated algorithm to result if, at each

T
D

iteration, the matrix Ao = [P - e ]is replaced by the correspond-
ing accelerated-Jacobi matrix A(W) defined, for some suitably chosen
relaxation factor W, by (4.99). If the eigenvalues of P are known
then so, by the above lemma, are those of Ao and it is possible in
principle to determine the optimal value of W, ie. the value of W
which minimizes 6(A(w)). In practice, of course, the eigenvalues
of P are not knowp and a suitable value of W must be estimated and,
if necessary, improved by trial and error. We now show how a reason-~
able estimate of W may be made in some cases.

We have seen that, apart from the special eigenvalue (1 - ),
the eigenvalues of A = [P - e BT] are eigenvalues of P. Now the
(1962)

eigenvalues of P all lie on the largest Gershgorin disc associ-

ated with P: that is, the region Gp in the )\-plane defined by

¢, 2 «{)\: l}\—pol £ ’l-p°§ oo (4.102)
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where 1 is the smallest diagonal element of P. Thus with & suit-
ably chosen (ie. so that the eigenvalue x; = (1 = %) belongs to Gp),
G? will contain all the eigenvalues of A. The situation is illustrated
in Fig.(8) for the case

E o o |
P = 0.2 0.6 0.2 ; o = 1

0.2 0.4 0.4

) -—

In this example the eigenvalue of A with largest modulus is
A = 0.8 : thus 6(A) = 0.8. If we now use over-relaxation (W > 1)
to shift the eigenvalues to the left, we can produce an accelerated-
Jacobi matrix A(W) whose spectral radius is less that &(A). For
example a relaxation factor of W ='% will reduce the spectral radius
from 0.8 to 0.67.

Generally speaking we can say that if p, << 1 Gp will cover
most of the unit disc {}u ]X\ < 115 and it is unlikely that the
spectral radius of A can be significantly reduced by over-relaxation.
If on the other hand p_ is not too small (say » 0.2) Gp will be
mainly in the right half-plane and it is then likely that over-
relaxation can reduce the spectral radius of A. We now consider brief-

1y how the relaxation factor W should be chosen. In doing so it is

convenient to work with the parameter

/géw'1-1

in terms of which equation (4.99) and (4.100) have the forms

Mp) (1+IA)-1(AO+ po weea (4.103)

) {j#_ T eeeo(Bo10h)
1 1 + /3

We now have the following fact available to us (see, for example,
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AIn(™) 4 Im(XN)
it unit
circle circle
R Ln >
Re(N) Re(N)
(a) Eigenvalues of P (b) Eigenvalues of A =[% - g_ij

Fig. (8)
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(1966)) .

Isaacson and Keller if all the eigenvalues of P (and hence
of A) are real, the value of /3 for which G(A(/g)) is a minimum
is

1
/go = -2 ()‘max + xmin)

where \ and A_. are the maximal and minimal eigenvalues of A.
max min

In practice A and X ._ will not be known. However, we know
max min

that they belong to the largest Gershgorin disc Gp and hence that

Mo €1
xmin P~ 2 by - 1

If then we assume that xmaxz 1-2, kmin = (2p°- 1) + £,

we obtain the estimate

ﬁo ~ - P, eeee(4.105)

ie. the optimal relaxation factor when all the eigenvalues are real
is W, o (1 - po)-‘| . Thus in the above example the value W = %
is in fact the optimal value of W . It must be emphasized that the
estimate (4.105) can be very different from the true optimum if Xmax
and >\min are not symmetrically disposed about the centre of Gp as
they are in the example.
Two further comments are in order here :
(i) The estimate Fs_o o - p, is based on the assumption that the
eigenvalues of P are all real. This will be so if, for example,
P is symmetric or — of more importance in practice — if P is
tri-diagonal (as it will be for a controllable birth-death
process). ’
(ii) The accelerated matrix P(llg) = (1+ /5)-1 [P + {gI], with
(g I is a stochastic matrix in which the diagonal element
P. A min (pii )' = P, is replaced by O, but whose incidence

1111
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matrix is otherwise the same as that of P. This implies that even if
P has some complex eigenvalues, use of the acceleration factor

w =0- po)m1 will not take any eigenvalue of P outside the unit
disc in the complex plane — though in such a case there may well be
no reduction in spectral radius. Furthermore, if W is chosen slight-
-1y greater than - p, so that W < (1 - po)“‘I , the accelerated
matrix P(F) will have the same incidence matrix as P ; thus if P is
regular (scrambling/normed/etc.) P(/5 ) will be regular (scrambling/
normed/etc. ).

Returning to the problem of accelerating the successive approxi-
mations algorithm (4.94), we now propose an algorithm based on the
use of the acceleration factor W = 1 + Pys @ value which is between
1 and the "optimal" value (1 - po)_1 and which is close to the latter
when p_ <K 1 (as it usually will be in practice).

Using the symbolic notation defined in (4.68) equation (4.94) may
be written in the more explicit form

8 - Min[Af S .+ @*)f] eeee(k.106)

f -n-1

where

At [(P"‘)f - EET]

Equation (4.106) defines the unaccelerated form of the successive-
approximations scheme. Now consider the following scheme : -

Set io = arbitrary real N-vector and, forn > 1,

~ . . £
S - Mln{[(P*)f-_e_gT] S + () § oo (ha107)

n f -n-1
_S_n = W, _%n + (1= ) En_,l . eees(4.108)
where
W, = 1+p, ceos(4.109)
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with . n
X A Mln * f

Pn — i ii) 0000(40110)

where f is the control law which minimizes the right-hand side of

(%.107).

Equations (4.107 - 8) define an accelerated iteration on § _ with

a variable acceleration parameter (.an. To see this write (4. 107) in

the form
~
Ein = [}P*)fn - 2_2? Ein_q + (]L*)in ' ceee(Be111)
and substitute this into (4.108) to get
g_n = [hf’n - wnggT S_n_1 + ln ceees(Ba112)
where
~ fn .
n *
P A [I - wn(I - (P) )] coes(le113)
and ,
¥ - wn(l*)fn eeee(Bor1h)

fn

The matrix f’ln is the accelerated version of (P*) s note that
with W chosen as in (4.109 - 10) B2 will be a stochastic matrix
with the same incidence matrix as (P*)fn and, it is to be hoped, with
a smaller spectral radius than (P*)fn.
Ir i is a solution to the non-linear difference equations (4.107 - 8)

then, as is easily seen,
. '* f
E = M;ni[(P )f - gBT]E_ + (_\:*) S coos(.115)

ie. ._g__ is indeed the value-vector for the given optimization problem,
S A A
since (4.115) is precisely the equation & = T(ﬁ) with T defined by

(4.68) and (4.93).

Recall that the vector p is an arbitrary probability N-vector.

We now show that in the particular case p= Q%) & the above acceler-
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ated successive-approximations (ASA) algorithm is guaranteed to con-

verge for any _§_0 .
If £° is the oplimal control law then

o + 0
£ T T
where, as usual, A~ & (P') -ep |. It follows that, for any W,

s

1
&
=] l
Hy
(o]
oM
+
~~
4
»*
-
[—b
| I—
+
-~
-
1
5
-
oN

In particular,

S

wn[Afo S+ (l*)fo_] £ (1-w)§

< wn[Afng + (l*)fn] + (1-ton)_§

by the minimizing properties of £°.

But, at stage n,

> - wn[Afn §-n-1 + (l*)fn_] F(1-w)9

Zn n’ =n-1

so that, subtracting,

S-S5 <« w At E-8 Hr-wpd-8 0

ie. g, 0z A £ cees(ha116)
where
s a S _§ ceee(4.117)
n n -
and fn
~n
A & [wn AN+ (1 - wn) I] ceee(l.118)
~
= [Pn -y EPT] ceea(t119)
Iterating on & ,
i = [”n G 'X"] £ ceee(4.120)
n (o}
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We now require a generalization of (4.80), which because of its

intrinsic interest, we state as a

Lemma : Let Ai yi = 1,2,.e. be an infinite sequence of matrices,

each of the form Ai = [Pi - wi e pT], where Pi is stochastic

and W, € (0,2).

Then for any m 2> 1
Iim
n-> oca A An+m-’l oo By A'l

= Aim Basmeteer Ao T Pm-1"'P1:X =0

Proof: We have
n+m° "2 1. n+m"*"*72 1 ==
n-+m )
= A AP - w (1-m)epT
n+m"**"2 71 1 _ i° ==
i=2

since ¢ is an eigenvector of A, with corresponding eigenvalue (1-wi).
But w, € (0,2) and so 1(1 —Wi)l < 13it follows that

n-Hm

(1 - wi) _— s o
i=2 n

and hence that
[An"‘m'...AZ A1] ’_'? [An_*_mo.-.Az P1]

Now use induction : if the result holds for (m- 1) then

[An+m...oA1] = [Anmo..-Am Pm_1...P1:] + En’m

_ 5 . ]
where n,m ra. 0

Therefore
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But each‘gd'is a normed, regular stochastic matrix and so the weak

ergodicity property holds: that is

So

~ ~ ~ T
[An+m .”?{mﬂ i;m“op'l:] — yo+m .”Kmﬂ:] e T,

n-+m
( e I¥ *
= 1=-W,J)e
$eme i (m)
""—-91,1 0
We have shown that
Iim '~ ~
[An.o.o. A1] = 0 ceea(B,127)
n-yoQ
and hence, from (4.120), that
Lim <
n-y»ea I z 2
ie. ILim
Sn > _S_ eoee (lha122)
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Thus §-n is bounded below (component-wise) by $ for all n
sufficiently large.

Furthermore, reversing the argument leading to (4.120),

fO
S g w AT E -0 e @ -8

(o}
ie. 3 < [ - W, @- af )] &no 1 ceee(B.123)

-n

T 0
Multiplying by the stationary distribution, lTo , of @5 e

get

: T
T, £) & @M. g, )-un, b g ) NN CRED

o0 —&n 1 n - —n-1

But, from (k.122), _2_n 2 0 for all n sufficiently large; so

-1
since we are taking p = (1?1')3 we shall have (pT En-’|) > O unless

£,.1=0- Then, for all n sufficiently large, (4.124) gives

T T
@ ) < @ =g )

— -0 =n-1

which, since the error vectors are (for n —> o0) non-negative, implies
that (_T_(E _gn) —5> 0. This in turn, using (4.124) again, implies

that
<
n> e = —n-1

But, by (4.122), £,.1 = O for sufficiently large n. Therefore,

since p = (-%) e > o, it follows that

ILim
= o]
n->e TN -
ie. that
Ii
) = S
n>o TR0 -

Comments :
(i) Ve have shown that acceleration of the standard successive-

approximations algorithm, by the use of over-relaxation with a
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variable acceleration factor, is feasible. The accelerated

algorithm is defined by equations (%.107) - (4.110).

What we have not shown is that the accelerated (ASA) algorithm
will always converge at least as rapidly as the standard (SA)
algorithm. However, since the transformation matrices used in
the ASA algorithm have, in general, smaller spectral radii than
those used in the SA aigorithm, it is reasonable to expect the
ASA algorithm to be more rapidly convergent. This expectation

is borne cut in practice.

(iii) Although we have proved convergence only for the case p = (%)_e; s

(iv)

it should be clear from the proof that it is sufficient to have
P > 0. Furthermore, numerical experience suggests that even
this condition may not be necessary, though we have been unable

to dispense with it.

Any attempt to use over-relaxation with a constant relaxation

factor fails, because in order to guarantee that the matrix

[:I - W{I - (P*)f } ]

remains a normed stochastic matrix for all control laws f, we

must use W 1 + Py o where

' Min Min x U
Po = i (p;;)

But it is easily shown that b, = O and hence that w <.

Thus we cannot use over-relaxation. (In fact, this statement is
equivalent to the conclusion that we cannot take K :>'1 in equation
(3.10) when transforming the original semi-Markov regulation prob-

lem to the equivalent Markov regulation problem.)
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CHAPTER 5

OPTIMAL REGULATION OF GENERALIZED BIRTH-DEATH PROCESSES

5.1 Introduction

A birth-death process is a Markov chain, usually with state space
:X: = r\J , in which transitions are possible only between adjacent
states. Thus if {Xti is a birth-death process with embedded chain

{3Q§, the transition probability matrix, P, of'gi%% is such that
Vl e N H pij = (o] [ \1 - J \ > 1 ..00(5.1)

The term originated from the use of such chains to model the
- dynamics of biological populations subject to randomly-occurring
births and deaths. In discrete time (ie. when ’T‘ = '2:#), a birth-
death process is often called a random walk with a barrier. We shall

use the term generalized birth-death process (GBDP) to denote a semi-

Markov chain whose embedded chain has a transition probability matrix

satisfying (5.1). By a controllable GBDP we shall mean a controllable

semi-Markov chain which is a GBDP for every feasible control law.
Such processes are of considerable interest in queueing theory
since tﬁéy serve as useful models for a wide variety of queueing and
congestion systems. In particular, so-called Markov/Markov queues
(see, for example, Gross and Harris(1974)) with state-dependent ser-
vice rate are appropriately modelled by controllable GBDP's. As an
example, consider an M/M/u/N queueing system (see Gross/Harris —
~'(1?74) for the standard nomenclature for classification of queues)

in which the number, Uy, of open service channels at time t can be

either 1 or 2. Suppose that the mean arrival rate is A\ , the mean

service rate per open channel is//k, and that '/Pk > A. Then if

up o= for all t the queue is stable in the sense that when N = 00

(no upper bound to the permitted queue length) the queue length
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possesses a well-defined stationary distribution whose properties

: A
are parametrized by the so-called traffic intensity, fﬁ %. Let

Nt denote the number of items in the system at time t and let Xt A

(1974)

Nt 4+ 1. Then, as is well known (see, for example, Gross and Harris
{Xt§ is a continuous-time Markov chain with state space X = NN+1 .
In particular, if Uy is made the following function of the current

state X, ¢

t
= 2 ’ Xt > io oooo(502)

then the embedded chain of {th will have the transition probability

matrix ¢ - .
1 0] 1
2 //»,] 0 )\1
: MO A
* TN
Y ~
hd ~
P = lo /A'l 0 X'l
i +1
0 A
. /“2 2
: x
: V- N
. ~
[ ] \
'Y ~ O
N+ 1
1 | ]

where /\,l = ( A ) ; /‘A‘I = (-7L); )\2= (__)‘.__);/u_2= (——ZL) .
)\+/w X+ alh A+ z/w N+ ?&
ﬁote that P has the tri-diagonal structu;*e characteristic of
birth-death processes. Note also that the function (5.2) is an exam-
ple of a feasible control law for the controllable GBDP %ths with
control set u = 21,2} « It is clear that an optimal regulation
problem appears in a natural way if we associaté with ;_X'tg a state

cost, representing the cost per unit time incurred by each queued item,
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plus a control cost, representing the cost per unit time of providing

an open service channel. A discrete-~time version of this optimal

(1970)

regulation problem has been studied by Brosh , and the more gen-

eral optimal regulation problem in which W\ = {OJ,Z,...,K% has
been analysed in detail by Crabill 1972,

In this chapter, we first consider the possibility of simpli-
fying the algorithms described in Chapters 3 and 4 when the chain to
be optimized is a controllable GBDP.. Next, we examine the problem of
truncating the state space of an infinite-state GBDP so that optimiza-
tiOI.l may be performed by one of the finite-state optimization algorithms
of Chapters 3 and 4; this is an important consideration in the applica-
tion of the algorithms to queueing systems since in many such systems
the state space is infinite, ie. D(_ = Z+. Finally, we show how to
determine globally-optimal quantized control laws for controllable

GBDP's. In Chapter 6 we shall consider the application of our ideas

to a specific optimal regulation problem.

5.2 Simplifications arising from the birth-death structure

Consider a controllable GBDP {(Xt: > NN) it e R_,_}
with control set u = 5Lu",...,uk}o Under any feasible control law
f, the transition probability matrix of the canonical embedded chain

for {Xt} has the form (assuming that no state is absorbing) : -

0 1
f ‘ £
1-¢2 o x5
f
m-«é 0 1
3
\\
f
P o= S o R
f o f
ol
1=N-1 0 oﬁv-1
1 0
- -

eeee(5.3)
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where (1)
T i
°<i e pi’i+1 Y i = 2,3,-..,N—1 0000(504)

In what follows it is assumed that {th is in canonical form

(see Section 2.2.4) so that the transition probability matrices

associated with {XJ will always be of the form (5.3).

The first simplification arising from the above structure is
that it is easy to determine by inspection the states which are tfan—
sient under f. Thus
(1) if xf € (0,1) , i = 2,3,...,N-1, then all states inter-

communicate and hence belong to a single recurrent class @ Pf

is regular and possesses a unique, strictly positive, stationary

distribution;

(ii) if °<§ = 0 and all other <><f € (0,1), then states 1,2,eee,]

are recurrent and the remaining states are transient;

f f
(iii) 4if < =1 and all other . € (0,1), then states j,j+71,e..,N

are recurrent and the remaining states are transient;

f : f
(iv) if °<j =0, dli; = 1 for some k < j, and all other o(i € (0,1),

oxe recuvrrankt
then states j,j+1,...,kA?nd the remaining states are transient;

f
k

then the states 1,2,...,J form one recurrent class, states

(v) if o<§ =0, X =1 for some k > j, and all other o<if e (0,1,
k,k+1,¢0. N form a second recurrent class, and the states j+1,

J+24eeee,k-1 are transient : Pf is no longer regular.

In this chapter we continue to restrict our attention to totally
regular chains, that is, chains which are regular under every feasibie
control law f. If case (ii), (iii) or (iv) holds for every feasible
f in a given optimal regulation problem, the state space can be
reduced to the set  3CR of states recurrent under all f.

A second simplification is that the stationary distribution,

Tri of Pl is very easily determined. In fact, introducing ot

1% 191,
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£ A £
Xy £ 0, the components of T are related by

bl
£ Xy £
1T. = ( ) . 9 i= 1,2,.--,N—1
i+ f i
1 - o

eess(5.5)

£
so that if f is changed only in state i_, the ratios €“i+}ﬁTf) will
i

be unchanged except at i = io -1and i = io. As we shall see, it
is this fact which permits state quantization to be introduced with-
out destroying the convexity of the optimal regulation‘problem.

When we come to consider the effect of the special birth-death
structure on the performance of the optimization algorithms of
Chapters 3 and &4, we note that Pf is a sparse matrix in which the only
f f

PIRRY O(N-1° Thus instead of

storing Pf as a 2-dimensional array of size N2 it is only necessary

independent parameters are clg, <

to store a 1-dimensional array of size (N-2). Briefly, the behaviour

of the chain under the control law f is characterized by (i) the para-
£
2’...,,

vector, 322 and (iii) the vector, ]fﬁ of mean one-step costs.

-

meter vector qﬁf & (X C‘§_1), (ii) the mean sojourn time

In the Howard policy-iteration algorithm and its variants
(Section 3.3.1) it is necessary to solve a set of N simultaneous
linear equations once per iteration. As we have seen, this is nor-
mally done by Gaussian elimination, involving an operation count of
approximately‘%; . ‘hen Pf is tri-diagonal the equ%tions can be
solved much more efficiently by using the following procedure @

(1) Determine the stationary distribution Iff using equations (5.5)
and the usual normalizing condition (T_Y_f)T e = 1. The opera-
tion count is approximately ZNR, where NR is the number of
recurrent states.

(2) Evaluate the corresponding cost rate ¢ by equation (3.6). The

operation count is again approximately ZNR.
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(3) Solve the system

S = ¥t « S

in the form

a-pH§ - ¥F_ 5

where now the right-hand side is a known vector. (s’ usual, to
obtain a unique _8_we set, for example, SN = 0). The coefficient
matrix (I - Pf) is tri-diagonal and so the system can be solved
(1972))
b ]

by the so-called Thomas algorithm (see, for example, Williams

for which the operation count is approximately 5N .

The operation count for this procedure is thus £ 10N, an
enormous improvement '(for large N) on the figure of _I‘I;_ for the stan-
dard method using Gaussian elimination.

On the other hand very little simplification is possible when the
modified policy-iteration algorithms of Chapter 4 are applicd to a
birth-death optimization problem. The reason is that the methods are
based on the use of the inverse matrix, E & [I P s e BT_] y in which
the tri-diagonal structure of Pf is completely hidden. For example, in
t?he DPI algorithm the most efficient way of implementing the calcula-
tion of AT via equations (4.54) and (4.55) is, insteéd of using the
E-matrix as in (4.56), to compute the new w vector directly via steps
(1), (2) ana (3) listed above for the Howard/Jewell algorithm. (This
is possible since w is the unique value vector i satisfying BT _S_ =c.)
The operation count for the DPI algorithm is thus < 10N for each
single-step policy improvement, compared with N2 operations per step
in the general case.

Because the value vector is updated only once per optimization
cycle in the Howard/Jewell algorithm, as against once per single-step

policy improvement in the DPI algorithm, the latter can actually be
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less efficient than the former when the P-matrix is tri-diagonal.

In the various successive-approximations algorithms the tri-
diagonal structure of Pf'confers benefits in both speed and storage
requirements. The speed improvement results from the reduction in the

-1

number of multiplications required for the product P_gn' from N° in

the general case to 3N in the tri-diagonal case.

5.3 Truncation of the state space for the M/M/k/ 0 queue

In many applications of queueing theory there is no restriction
on the length of the queue that may form at the entrance to the ser-
vice facility. Thus if a system is to be modelled by, say, an M/M/u/N
queueing model, it is necessary to set N = o0, Then if the number of

items in the system at time t is N_, the proceSS'{Nt% is a continuous-

£
time Markov chain with an infinite state space. This presents a major
difficulty in that optimization of such a system by any of the algor-
ithms of Chapters 3 and 4 is not possible unless the state space can
be reduced to a finite set such aé Pdra' The usual way round this
difficulty is to approximate the M/M/k/e0 model by the corresponding
M/M/k/N model for some sufficiently large N that is, to use a model
in which the arrival rate to the system drops to zero whenever the
number of items in the system exceeds N. If N is such that under all
feasible control laws P[yt > ﬁ] 2 O then the behaviour of the two

models should be almost identical — a hypothesis that can be checked

by varying N.

As we shalili now show, an alternative approach is possible in
which the M/M/ik/°® model is replaced by an exactly equivalent con-
trollable finite-state GBDP. The basic idea is to introduce an em-

bedded semi-Markov process in which there is a reflecting barrier at
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i=Naswell asati=0.

5.3.1 The controllable M/M/k/ ©2 queue

The basic system with which we are concerned is the following
controllable queueing system, denoted by CQS 1.
CQS8 1 : | Single Poisson arrival stream : arrival rate, A
Exponential service channels : service rate,
Number of open service channels, k e u: {0,1,2,...,K§
Queue discipline : FIFO (ie. arrival order) |

System capacity, N = ©O

k]

Let Nt be the number of items in the System at time t ; then
.{N{_} is a continuous-time Markov chair; wii‘;h state space I = Z+ .
Associate with {Ntz a set of expected one-step costs 'B'ff y 1 € x,
k € 'LL defined according to (3.2) for some specified cost function
c; the costs \ﬂi{ are assumed to be non-negative and non-decreasing
in i and k. The problem of finding an optimal control law £°: DC-%’U.,
for the controllable birth-death process {Nt.g is then an optimal
regulation problein with a countably infinite state space. The problem
is properly posed, in the sense that an optimal control law exists

for {Nt‘% , if the following conditions are satisfied (see Lippman(1973) )

(1) For some k € WL ’ k/u, > A . (This condition ensures that there
is sufficient service capacity to maintain stability.)

(ii) For some positive constant C and some positive integer m,
\(f Loy " s Vk [ u. (This polynomial bound on the
one-step costs ensures that the mean cost rate ¢ is finite when

t-he system is properly regulated.)

5.%3.2 The eguivalent semi~Markov chain

Assume now that the above conditions hold, and consider the

associated optimal regulation problem in which the set of allowable
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control laws is the restricted set

r}N e{f:(Vi }N:f(i):k),k?k*}

. 0000(5.6)
vhere k, is the minimum value of k € usuch that k/w > .

For every f € E}N the mean cost rate —gf is finite; and since '}N

e . Min ~fy . -

is finite the existence of fe % (¢”) is guaranteed. To determine a
N

control law which is optimal over '3;\], we introduce the embedded semi-

Markov chain , {Mtz , defined by setting

A
e = Ny t

A N . A > N eeee(5.7)

Thus {Mtg is an (N+ 1)-state process in which the top state,
i = N, is occupied whenever Nt > N. Now with f & ?N the traffic
intensity for {NS is less than one whenever Nt 2 N it follows
(see, for example, Cinlar(1975)) that the state i = N - 1 is positive-
recurrent and hence that the mean first-passage time from i = N to
i =N--14is finite. In turn, this implies that the transition
(Mt = N) —> (Mt = N - 1) is certain and that the mean sojourn time
in state N for the process {Mtz is finite. Note however that {M_l_} is
not a pure Markov process: in states 0,1,2,¢..,N=1 the behaviour of
{MJ is identical to that of {th and the sojourn time distributions
are therefore exponential, but in state N this is no longer the case.
As usual the equilibrium properties of the semi-Markov chain
§Mt§ are characterized by (i) the transition probabilities ?;j of the
embedded Markov chain,{-ﬁn{; (ii) the mean sojourn times, -"l-'.i_(, and

(iii) the mean one-step costs, %-ik . We now determine these quantities.

(i) Transition probabilities, ?;i

For 0 € i < N, we have, by (5.7),
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= 0 , otherwise

Also, the transitions (Mn = 0) -——}(Mn_m = 1) and (Mn = N)—>

(ﬁn-!-’l = N - 1) are certain. Thus under any feasible control law f,

the transition probability matrix §f & [p?(.l )J has the form
1]

o 1 0 ]
a0 A
/"2 © A
——f
P —
S5 00 M
\\
/- M
© 1 OJ eee.(5.8)

k.
where A. 2 (——>3.——) , . A (-1&), and k. & f£(i).
1 )""/A.k /Al )\ 1
i

.. . . k
(ii) Mean sojourn times, T,

Consider first the original process ;_Ni}, whose sojourn time
distributions are all exponential. In state O the event counting
process is the Poisson arrival process which has a mean rate of )
In any other state i the event counting process is the‘ total Poisson
process generated by arrivals and departures: this has a mean rate

(A +/A.ki) where k; = £(i).

156.
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Thus, using (5.7),

=k 1
’Ui = (_X‘) s i=20
= (=) , 0 £<i <N
X’i‘/ﬂk 0-00(509)

Now for all i > N and any f & '}N' let

"Cf = Mean sojourn time of {th in state i
and c
T’i = Mean first passage time from i to i -1

for the process {N’J

. Then, by a renewal argument,

oozt x5

f
T, o= 4 o+t i+1 i

i i i,i+1

eeee(5.10)

 since on exit from state i the process {th either enters state

£

i-1, in which case Tl , or (with probability pj; . ) it enters
i i i,i+1

state i +1, in which case a further time .’-C_f is required for the

+1

passage to state.i, followed by a still further time _'Ef for the sub-
sequent passage to state i-1.

Since £(i) = constant = £(N) for all i N the process {Nt§

=
is h in i( > N) <! <L Using this fact
is homogeneous in i 2> and so -Ci+1 = "Ci o Using s fac

in (5.10) we obtain

f
.
— i
.t?f = 9.00(5-11)
i 1-2 £
P; i+
But, with f(N) = ky» we have
-cf = (2 )
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and so, for all i 7/ N,
=T - eeen(5.12)
k.

— — AN .
But -CI:\EI is just the mean sojourn time tN of the process thg in
state N.

Thus, using (5.9) and (5.12) ,

-
T - D, 1=
1
< = (————) ,0 <« i < N
N+ /wk
€kN I G .
\ L N /ukN-)\ oo s (5.13)

provided that ky > % , so that f e r}N.

=k
(iii) Mean one-step costs, i

If, for all i = N,

\6f = ~ Mean one-step cost in state i of N,
i
and .
- f ~ .
Y = Mean cost accumulated by {Nt_} in the passage
i

from i to 1i-1
then, by an analogue of the above argument,

< £ f £ — T —
Yi - Xi + pi’i+1 (Yi_’_'] + \‘i) -000(5014)
. . < f f . .
It is not now possible to argue that Y it = Yi since, in
£, . : : £ A
general, Yi is not independent of i. However, since pi,i+1 = ()\+/“kN)

for all i 2z N, we can write (5.14) as

f

C-MIV ., + G=XPY; = Y veee(5.15)

vhere AN & A _\). This is a linear, constant coefficient,

)\+/4,kN
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first-order difference equation for 7f whose solution can be
. T .
determined once \Ji is specified.
k
For example, suppose that Yi is the sum of a linear state cost

and a general control cost:

¥¥. = i+ )T C eeen(5.76)
1 1
ky .
Then, cince ‘Uf.f = T S (— ) foralli > N,

* )\+/,\kN

£ 1 ]
., = (———) (i + D ) ee..(5.17)
Yl A+ /AkN * kN :

£
With "{i given by (5.17) the solution of (5.15) is

Ci +D i
s 1 1+ kN c XN 1_)\N 1
. = ( ) + + AT
1 )”'/“kN (1 - 2)y 1 - 2)~N)2 N
....(5.18)

where A is a constant.

But any solution to (5.15) must satisfy the condition

and so, in (5.18), A = O,
Finally, substituting for >‘N and taking i = N, the mean one-step

cost in state N for the process {Mtg is given by

CN + D
ky (DN

S | S A S
DN (pmky - AP
/MgN /AN eeee(5.19)

In general, since M, = N when N, &< N the complete specifica-

tion of one-step costs for {Mf} is
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- X
\511_‘ S , i <N

Xk, _
)'N“ - Y:r eee.(5.20)

where -%-xfr is the solution of the equation (5.15) at the point
i=N.

For any control law I &€ ‘}N’ the (N+ 1)-state semi-Markov chain
{MJ will have the same mean cost rate Zf as the infinite-state Markov

chain {N&; and so optimization of the performance of{NJ over the

restricted class ’}N is equivalent to optimization of the performance
of {Mé.

Comments

(i) Ve have shown that it is possible to truncate the state space
of the M/M/k/od queueing system in a way which propérly incorpor-
ates the contributions to the cost rate generated in states above
the truncation level N. Since no approximations are made, the
cost rate ¢ computed from the truncated model is the true cost
rate of the original system. This is in contrast with the
standard method of truncatioﬁ, in which the arrival rate N is
assumed to fall to zero whenever the number of items in the system
reaches N.

(ii) Of course a control law which is optimal over the class ’}N is
not in general optimal over the class, ’;)L = {f: Z+ > \)L} ’
of all possible control laws for {th . For example, if N = 1
the embedded process {Mt§ will have only two states and the
corresponding optimal control law will generate, at most, two
different values. However, if the one-step costs 7(1: associated
with JN { are such that, for all k, ¥F > 0 asi > oo,

then for sufficiently large N optimality over }N is equivalent

~.
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to optimality over E}. This fact follows from a result due to

(1972) \nich states that under the above condition on the

Crabill
‘r? the control law £° which is optimal over ra”is what Crabill

calls "simply connected" : that is, there exist K states (0 £ ).,,

i1 < 12 K eee iK-1 & igs such that
£°1) = 0 , i< i,
= 1 ’ i1 i < i2
= K , i 2 i

Thus there is some state iK in and above which it is optimal
to use the control action K. If in our téuncation procedure we
choose N > iK it is clear that the resulting optimization over
:}N will yield the above optimal control law £°. Of course ig is
not known a priori and in practice a check must be made that the
chosen value of N is sufficiently large — for example, by in-
creasing N and re-optimizing.

(iii) The results -of this section apply, with only trivial modification,
to the slightly more general form of the CQS1 system in which

2,...,kK are real numbers such that

W =62, e 18 funere KTk
0< ' < K2 < eee <kK° More generally, the method of state trun-
cation proposed here, based on the introduction of an appropriate
finite-state semi-Markov chain, is applicable in principle to .any

infinite-state controllable GBDP for which the optimal regulation

problem is properly posed.

5.4 Quantization of the state space

" In the previous section we considered the problem of optimizing
the performance of the M/M/k/°0 queue with respect to a set of control
laws ;}N in which the control action is constrained to be constant

)
over a given subset i :i > N.} of the state space. A natural
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extension is to consider those control laws in which the control
action is constant on each of the subsets %i i N? and

{i i ;: N§ . More generally we may partitiop‘the state space of
any GBDP into a finite number of subsets and consider only those con-
trol laws in which the control action is constant on each subset.
Quantizatioﬁ of the state space generates such a partitiog and in
this section we show how state quantization may be handled. Tbe basic
idea is again to use an embedded chain with an appropriately - defined

state space.

S5.4.1 The embedded semi-Markov chain for a partitioned

state space

Consider for the moment a general semi-Markov process‘{XtE with
state space I= NN‘ Let {Si P 1= 1,2,....,M§ be a partition
of Dc,such that S1 contains N1

and, if necessary, re-label the states so that

states, 52 contains N2 states, etc.,

S1 = {1,2,..0,N1§
s, = {N1+1, N1+2,...,N1+N23

etc.

For any two states in :X, write i = j if i and j belong to the
same subset S, and i # j otherwise.

Denote the transition probability matrix, the mean sojourn time
vector, and the mean one-step cost vector, of {th by P, T and j[,
respectively. Then, provided that P is regular, the equilibrium mean

cost rate of the process {X£} is

— Y
c =
X ETE

vhere ]ir is the stationary distribution of P.

We now introduce an embedded semi-~-Markov chain {Yti’ related to
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{Xt§ in the following way. Lgt {Yn’ TnE and {Tn’ Un§ be the Markov
renewal. processes (see Section 2.2.3) underlying gth and {Yti respect-
_ively, and for each positive integer i let n, be the value of n for

which -in Z "in_,l for the ith time. Then {Yn’ Un% is defined by

0. a o , i=o
2 T , i >o ceee(5.21)
s .
I & X , i=o
1 (o]
& in , i>o ceee(5.22)
i

and as usual the semi-Markov process {Yt} is related to {Yn’ Un% by

Yt A Yﬁt eeee(5.23)

where {th is the renewal counting process for SLYn’ Un}. .

The process {Yt} changes state only when {xt} changes subset,
and the new state of {Yt§ is the state at which {Xt} enters the new
subset. The relationship }Jetween ith and {Y’cS is illustrated in
Fig.(9)

We now consider the properties of the embedded chain thz. Note

first that ):LYtg has the same state space as {Xf}’ since Yo = Xo . Let

R & [rij] be the transition probability matrix of the process
Nx N

{Ytg (strictly, of g:fng ). Then immediately

g = P{Ynﬂ-J Yn=i]
= 0 , if j=i cees(5.201)

and, by a simple renewal argument,

Tij 0= Pyy ¥ Zi‘, Pig Ty » i 3Z1
k=1 eee.(5.25)

since the Y-transition i —> j involves either the single X-transition
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1
o T—7 ] T T R T 1 1 >
To ‘J?3 T5 T8 T9 T‘IO t
Yt f\
T T t 1 Y >
Uo U’l U2 U3 Uq U5 t

Fig. (9) Relationship between Eth and {Ytg
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i—>jor an X-transition i —>k = i followed by one or more further
transitions.

Now define

o]
>
iel
()
n
H

i3 ij .
& 0 , jEi eeee(5.26)

Then (5.24) and (5.25) can be combined in the form

F =@m”ﬂ*z:%HM’V““J:
ke X eeee(5.27)

ie..
(I-QR = P-Q : ees.(5.28)

where Q & [qa,]] . Note that the matrix Q has a block diagonal
NxN :

structure in which the block sizes correspond to the sizes of the sub-

SZ"" of ')C.

sets S1,

We are assuming that {Xt{ is regular, that is, that it possesses
a single recurrent subchain, with state set :X;R, say. Provided that
the partitioﬁ iSi ti = 1,2,...,M} is such that X.JR is not a subset
of any single Si.. the matrix I-Q will be non-singular. Equation (5.28)

can then be written

-1
R = ([I-9Q) (-9

eees(5.29)

Properties of R

(i) It is easily verified that R is a stochastic matrix. We have

(a) P-Q 2 Y
and o
-1 .
(I-Q = E e = o
i=o
so that E > O
B Re = @T-Q ®-Qe

= (I—Q)-q(I—Q)_e_,sincePg_:_e_
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so that Re = e

(ii) Furthermore if P is regular, with stationary distribution__f_r .

we have
R o

Subtracting ’ET Q from each side :

TIIT-Q = T (@-Q
ie. T T
T_ER = T.LR R.
where T
T, = kT @C-Q eee.(5.30)

Since T_LT I -9 = T_\'__T P-Q = QT , the vector Tig is a

probability distribution if k is suitably chosen. Thus R possesses

the unique stationary distribution Iﬁ (unique because _'T_\fT is unique

and (I - Q) is non-singular), and hence {-Yn} possesses only one
recurrent subchain. R is therefore regular or periodic; but the

latter possibility may be ignored since R is equivalent (in the sense
of Section 2.2.4) to the matrix R = I - £(I- R) which, for £ ¢(0,1),
has a strictly positive diagonal (and cannot therefore be periodic).

So regularity of P implies regularity of R. |

As has been pointed out by Smith(1971)

, although the state space
of {Yts is the same as that of {_th, the set of recurrent states of
zYtg will consist of only those recurrent states of S(Xt{ which are
accessible in one step from states in a different subset. Call a state
J an entry state for the subset S if pij > o for at least one

"i Z j. Then the recurrent states of {—Yt§ are the recurrent entry

states of {X_tz. Use is made of this fact in formulating the optimal

regulation problem for birth-death processes with state quantization.

Cost rate of the embedded chain ILYf}

Denote by %i the mean sojourn time in state i of the semi-Markov
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chain gYé . Then, by applying the usual renewal argument to gxt},

ie.

~S
T, =
1

‘Ci + E pij T’j
Jsi
T, *+ E % 5 "[:j eeee(5.31)
jexX
¥ . a-o'=x veen(5.32)

~
where T and U are the mean sojourn time vectors of {th and {Y& .

A precisely analogous argument shows that

4R

. oa- X ceeo(5.33)

~
where l and _I are the mean one-step cost vectors of {th and {Ytg'

Then, assuming that ¢(X } and hence {Y_ %} are regular, the equili-
t t

brium mean cost rate c_ of {Ytg is given by

ie.

ol

c.
y

cees(5.34)

o 3 wl;{a <
=

=

~
<

T -1

kT @ -QE@-Q ¥

kTT(T-Q T-Q ' T

Y

=

| Ex eeee(5.35)

Thus the cost rate Ex of the original chain {th can be computed

as the cost rate -gy of the embedded chain {Yé , ie. by using (5.34)

and then (5.35).
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Optimal regulation of the embedded chain {Yti

If {XJ is a totally regular controllable chain then {XJ and
hence {Yti will be regular for every control law f which is feasible
for both {th and {Yti . Note however that a control law for {YJ will
generate a sequence of control actions each of which remains constant
while {YJ remains constant, that is, while {thremains within a single
state subset S; furthermore the control action while EXti € S will, in
general, depend on the state at which S is entered and'hence may vary
from one S-occupation to the next. Thus a given control law for {Ytg
does not in general induce an equivalent control law for YLXJ ; nor
can a general control law for {Xt} be represented by an equivalent
control law for {Ytz' However, each control law for {X,J belonging

to the set of gquantized control laws, }O a {f: (r(1) = £, Vie S«),

AL = 1,2,...,M§ is equivalent to a quantized control law for {Yt.i .
For each such control law, the cost rate :x can be determi.ned by
evaluating Ey and then using (5.35). In this way it is, in principle,
possible to determine the optimal quantized control law for the con-

trollable chain {X,§.

It is of course possible to treat the optimization of gy’ with
respect to unrestricted (ie. unquantized) control laws for {Yt}’ as
an optimal regulation problem in its own right. The resulting opti-
mal control law will not in general, have a representation as an

equivalent control law (ie. as a map from JC to u ) for the process
gxtz.

5.4.2 The quantized birth-death process

Now consider the specific case when {Xi'} is a generalised birth-
death process with state space :)C. = NN. Let {Si: i= ‘1,2,...,M}

be a natural partition of :)C, such that
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§'1,2"..,N1}

{N1+1,N

i

1

etc.
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-1-2,...,N1 + NZ}

Then, for any feasible f, Pl has the form given by (5.3) and

transitions are possible only between adjacent states. It follows

that the entry states of {Xt} are:

Subset “Entry states
S1 i= N1
S2 i= N1+1;
S3 i= N1+N2
: M1
éM i= j:%;:
1

1 = N1+N2

+N_+N

+13di =N >

1 3

Thus if all the states of {Xt} are recurrent the embedded process

{Yt} defined by (5.23) possesses a total of 2M-2
viz. the states listed above.
tion probability matrix of {Ytg has the form

p—e
v

B l i
; S
1 * |

I < ]

@T I |

s « e I

g ° |

R = - T - T
: {_— CDI IC)
__ & &

recurrent states,

Furthermore, using (5.29), the transi-

— e a—
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where * = non-zero transition probability (ringed for each recurrent

state of {Yt} )-

Note incidentally that (I - Q) in (5.29) is of block diagonal
form; hence R is easily determined by appropriate partitioning.
Furthermore in the present case each block of (I - Q) is tri-diagonal
and so use may be made of the Thomas algorithm in the calculation of

~/

R, T and § via (5.29), (5.32) and (5.33).

Now if f is a quantized control law, ie. f & ?]LQ, we have seen
that the cost rate ;x may be evaluated via (5.34) and {(5.35), ie. by
working with the embedded chain {Yt} and its cost rate Zy. But the
stationary distribution T—YR in (5.34) is non-zero only over the (2M-2)
recurrent states of {Ytg : the transient states of {Ytg contribute
nothing to Zy and may be jettisoned. (It follows that the only com-
ponents of E and i that need be evaluated are those associated with

recurrent states of {Yt} .)

Thus for any quantized control law the equilibrium mean cost
rate of the N-state controllable é:BDP {Xt§ is equal to the equili-
brium mean cost rate of the (2M-2)-state embedded chain {Yti. The
pxzoblem of determining the optimal quantized control law is reduced
from an N-state regulation problem to a (2M-2) -state problem, where

M is the number of quantum sets.

S.t.3 Convexity of the optimal regulation problem for

guantized birth-death processes

We have seen (see Section 3.3.3) that the optimal regulation
problem can be formulated as a linear programming problem. As is well
known, any such problem is convex and so the objective function
possesses no local minima apart from the global minimum (minima). It
is this fact which ensures that the‘ optimization methods of Chapters

3 and 4 will always converge to the globally minimal value of the cost
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rate ¢. If however the problem is to determine the optimal quantized
control law, an additional set‘of non-convex constraints must be satis-
fied; the problem is then no longer convex and the existing optimiza-
tion algorithms are no longer guaranteed to find a globally optimal
control law.

For the discrete-time Markov regulation problem the non-convex
constraints arise as follows. With d;, and x;, defined by (3.41) ana

k ik

(3.45), quantized control requires that for each quantum set, S , we

must have
dp = dak , Vi =3 , Vk eeee(5.36)
ie. X. X. )
Lk _ _.;LLS 7 =
| B R CEE RN LR 2
J
ie. on using (3.50) ,
Sk _fk , \/i =3, \]’k
Z'Xik ijk vee(5.38)

The equality constraints (5.38) are seen to be quadratic in the
variables xik and hence non-convex. Minimization of the function ;Zd,
defined by (3.46), subject to the constraints (5.28) is thus a non-
convex programming problem.

However, as we shall now show, in the particular case when the
controllable chain {Xt¥ is a generalized birth-death process, quanti-
zation of the state space does not destroy the convexity of the prob-
lem and our one-step policy-iteration algorithms will yield a globally
optimal control law.

Let §Xt§ be a controllable GBDP and let 5 , & = 1,2,...,M,
be the quantum sets of states of {th. Denote the set of feasible

control laws for {Xt} by ZF, and the set of feasible quantized con-

trol laws for {Xti by E}Q. Then for any two control laws f,f'
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we have, by equation (4.18)

As(s', %)

t+ T
—1—,[(f ) A%, (f',f)] e (5.39)
=f

Zn Ag (£',1) | oo (5.50)

where K = < > > 0.

But assuming that each quantum set is recurrent we can write,

for each i & I..,

f' f' f' .
T = PL . q¢ , = 1,2, 000,M ceee(5.141)
d 0( il“

where Pi is the equilibrium probability under £' that Xt € Sy and

T(f‘ is the equilibrium conditional probability under £' that Xt= i
ilx
given Xt € S, .
Thus (5.40) can be written
— ]
Acie',e) = «x E 1I Agi(f',f)
: 165
- M '
E ‘ '
= K Px A%* 0000(5.1'"2)
<=1
where

A_Er ZTY ENS e (5.13)

163

—_f
We next show that the value of the averaged test quantity At(.(

depends only on control law changes in the quantum set Sx y ie. only

. . ' ‘
on the restriction, f, , of f to St>< « Suppose that So< = {I,I+1,...,..
J-1 ,Jf and consider the embedded chain iZtE related to g_Xti as

follows:
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&L

zZ, & I-1 : X, < I
a X, , X, € 5.
£ J+1 , X, > J

Since {Zti and {.Xt? have the same sample paths on the quantum
-set S they will have identical stationary conditional distributions
on S, . But the canonical transition probability matrix of §zt§ has

the form when the current control law for {th is f =

—
I-1 0 1 0
f f
1-041 0 O(I
f f
1-KI+1 0 o{I+1
£
P, = ~_
\\
~
~ .
£~ £
1-NJ 0 dﬁ
J+1 (¢ 1 (0]
£ £ < -
where, as usual, &3 a PI T4 = P[_Xn+1=I + 1 Xn=I;f(I;J

The first row of Pé is independent of f3; the second row depends
on f£(I); the third row on f(I+1); and so on. Thus Pg depends only
on £f(I), f(T+1)eeee,£(J), ie. only on the restriction of f to Sy *

But the stationary distribution F—Z of Pg is uniquely determined by
P;. It follows that ’l_l:g , and hence the stationary conditional distri-
bution of iXtE on S°< , is determined by the restriction f_, . Thus

(5.42) may be written
M '

'E ‘ £ -
K P, A?x  eeeo(504h)
X = ‘

Now by an argument analogous to that following equation (%.19),

NS, )
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f non-optimal ——=> 3«[]}": f’; = %, \{f; # e(}f{f <0
eeee(5.45)

from which it follows that

'
V.([\Jf' e }: f{; = ff Vf £ oc}—A—g'j‘ 2 0 =7 optimal
’ over E}
ceee(5.46)
If in (5.46) the choice of control law is restric#ed to the set
pf feasible quantized control laws, ?}é, the statement remains true.
Thus policy iteration algorithms based on thé use of the test, quanti-
ties 753;53 defined by (5.43) will always converge to a globally opti-
_mal quantized control law.
Comments
(i) Ve have shown that the single-state policy iteration algorithms
described in Chapter 4 may be used in modified form to determine
the optimal quantized control law for any controllable GBDP. The
modification consists of changing the control law on one quantum
set at a time instead of in one state at a time.
(ii) As we have seen, quantized control of any birth-death process
%th is equivalent to quantized control of an associated process
§¥£§ with a smaller set of recurrent states. It is usually more
efficient to work with the Y-process when carrying out the opti-
mization, since the quantum sets of thg contain, at most, two
recurrent states.
(iii) Equations (5.42) and (5.43) show that evaluation of Ac(f',f) for
any new quantized control law £' requires.a knowledge of Tgﬁ;’,
the conditicnal state probabilities under the new law f'. This
means that the standard Howard/Jewell algorithm (see Section 3.3.1)

cannot be used for optimization — nor, indeed, can the successive-

approximations method (Section 3.3.2) or the linear programming
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method (Section23.3.3). We must use policy-iteration with the
control law f being updated one quantum set at a time.

The single-state policy-iteration algorithm most easily adapted

to the quantized control problem is the direct policy-iteration
(DPI) algorithm of Section 4.2.3. The essential modification is
that, uéing the embedded Y-process, the control.law must be changed
in both Y.states in any quantum set simuitaneously. Label the

recurrent states of Yt as follows : -

Then if f' differs from f only on the quantum set S, we shall

have, with i = 2« -~ 2,

T i T
Ap - Ac r = [3131+1]{ a; - Av, 0 | p
7
241 o At .,

so that (4.48) and (4.49) must be replaced by

and

where

and

T .
a. A, 0 T
Di =" - E - * (&f) ooco(S.Ll'?)
T
§i+4 0 A§i+1

0000(501'{'8)

Bj-
i
9]
’ HH l
+
=
s
n
-

P-N
AV [I - D, H vees(5.49)
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Equation (5.48) gives the required updating of the E-matrix

when the controls are changed in the quantum set S, . The corre-
sponding change AT is then determined via appropriately modified
versions of (4.52) - (4.55). Note that each updating of E requires
the inversion of the 2x 2 matrix Y‘I - Di Hil . The test quanti-
ties Eo( need not be determined explicitly'.

In order to determine an optimal quantized control law for tke
M/.'M/k/°0 queueing system it is first necessary to truncate the
state space to NN by the method described in Section 5.3 the>
quantizing partition is then imposed on N o A numerical exauple

N

is given in Chapter 6.
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CHAPTER 6

OPTIMAL REGULATION OF AN M/M/k/e0 QUEUE
WITH SWITCHING COSTS

6.1 Introduction

In this chapter we consider the application of some of the
previous ideas to a specific optimal regulation problem. The problem
in question is that of regulating the job mix of a computer whose load
is a variable mixture of batch jobs and time-sharing jobs. Control is
exerted by varying the proportion of central processor power allocated
to the batch load; the optimization problem is to determine an on-line
. allocation algorithm which will miniﬁize the long-run average value of
some suitably defined operating cost per unit time. Under certain
assumptions, the system can be modelled as a controllable birth-death
process in which the state is the number of batch jobs currently in the
system. The operating cost of the system has four components: (a) a
state-dependent cost, representing the costs of delays to the batch
job stream; (b) a control-dependent cost, representing the effect of
reduced processor power on the tiﬁe-sharing response time; (c) a second
control-dependent cost, representing lost traffic due to saturation of
the time-sharing system; (d) a switching cost, representing the adverse
effect of time lost incurred whenever the processor power is re-allocated.

It is important to include the switching component (d) in the
cost function, since the amount of production time lost due to fre-
quent re-allocation of central processor resources can be significant.
Unfortunately, however, it is not possible to define a separable (addi-
tive) cost function incorporating control switching cost§ unless the
state space of the system is suitably enlarged. The redefined state

space may be very much larger than the original state space, with a
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consequent substantial increase in the size of the optimal regulation
problem when switching costs are included. It is therefore tempting
to look for sub-optimal solutions in which the number of re-allocations
per unit time (and hence the mean switching cost) is kept down to a
reasonable level by using a quantized control law. Our aim in the
work describéd in this chapter has been to see how f;r the performance
of the system is improved (i) by the use of quantization as a method
of reducing switching costs, and (ii) by the use of a control law
vhich is optimal when the cost function incorporates the switching

cost component. The approach we have used is as follows:

(A) With switching costs excluded, solve the optimal regulation prob-
lem with no state quantization. To the resulting optimal cost rate
add the appropriate switching cost contribution and so obtain A figure

for the overall (non-optimal) cost rate. (Section 6.4)

(B) Again with swi£ching costs excluded, solve the optimal regulation
problem with a "reasonable" choice of state quantization. As before,
the resultant overall (sub-optimal) cost rate can be determined by

adding in the appropriate switching cost contribution after the opti-

mization. (Section 6.5)

(C) With switching costs included, solve the full optimal regulation
problem by working with the appropriately re-defined state space. The

resultant overall cost rate is optimal. (Section 6.6)

The results for the three approaches are compared and discussed
in Section 6.7.

In the final part of this chapter we attempt to draw some general
conclusions concerning the investigations described in this thesis,

and also make some suggestions as to how the work might be extended.
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6.2 Description of the system

The system under investigation is a large computer complex which
provides (a) a batch processing service and,concurrently, (b) a time-
sharing service to a large number of remote user terminals. Batch jobs
are input to the computer system via a local batch job entry (BJE) ter-
" -minal, or via a data communications link from another cbmputer, or via
the time-sharing system itself. Time~sharing jobs are submitted from
the remote user terminals via a switching network and multiplexor.

The computer itself is a multiprocessor system in which several central
processors share a common memory. The number of central processors
allocated to processing the batch job stream can be altered at any time;
feedback control of this dynamic allocation process is implemented by
means of a resource allocation controller whose input is the size of
the batch queue and whose output is the currently-required division of
resources between batch processing and the time-sharing'system. The
general scheme is as shown in‘Fig.(10).

The multiprocessor system It is assumed that the multiprocessor

system consists of K identical processors sharing a common memorye.
Each processor can handle one job (batch or time-shared) at a time, so
that when the system is fully loaded there are K jobs being processed
at any one time. The number, k, of processors allocated to batch

processing is the control variable in our optimal regulation problem.

The batch-processing load The batch jobs arriving to join the batch
input queue are regarded as a single Poissoﬁ érrival stream and the
processing times of the jobs are assumed to have a negative-exponent-
ial distribution. Jobs are processed in arrival order, ie. first-in,
first out.

Arrival stream : Poisson, mean rate >\B

Job processing times @ Neg - exp., mean rate /“%
Queue discipline : Arrival order (FIFO)
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The time-sharing load The switchiqg network between the N1 remote

terminals and the N2 multiplexor ports provides full availability:

that is to say, there is a route from every terminal to every port.

It is assumed that N1 >> N2 so that the switching network concen-
trates the traffic from the terminals. A job submitted from one of
the remote términals is routed to one of the currentiy free ports, or,
if all ports are active, is held in a FIFO queue until a porf becomes
available, SzIt should be emphasized that in the present context a
time-sharing job means a single task requiring the use of a central
processor, such as compiling a program, running a program, processing
a file, etc. At the completion of each such job the associated port
is assumed to be released and subsequent jobs from the same terminal
will in general .be associated with different ports{} The length of the

time-sharing queue is restricted to N, :if an attempt is made to sub-

2
mit a job when the time-sharing queue is full the system returns a
message announcing that there is saturation and the job is then pre-
sumed to be lost. Arrivals to the system are assumed to be Poisson,
at a rate which is independent of the degree of congestion in the
system. The job processing times are again negative-exponential, and
é&nce the processor is time-shared between the currently active ports

the effective mean service rate at any time is inversely proportional

to the number of currently active ports.

-

Arrival stream Poisson, total mean rate )LT

Job processing times ¢ Neg- exp., mear rate /AKT‘

ﬁ No. of servers : N2

Max. queue length : N2

Arrival order (FIFO)

Queue discipline

System operating costs As already mentioned, there are four compo-

nents to the total system operating cost; we now discuss these in turn.
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(a) State-dependent cost The state of the system is (for the pre-

sent) taken to be the number of batch jobs in the system (including

those currently being processed). For any time t, let X, denote the

number of batch jobs in the system at time t and let k, denote the num-

ber of processors devoted to batch processing at time t. Then the num-

“ber of batch jobs awaiting service at time t is O, if Xt < kt’ or

- (xt - kt), if X, > ki- Bach waiting job accumulates waiting time at
unit rate until it is serviced; thus the rate at which the total wait-
ing time (summed over all waiting jobs) accumulates is equal to
Max (O, Xt - kt)' We shall assume that the state-dependent cost is

proportional to this rate, ie. that

Cq(Xt,kt) = ¢, Max (O, X, - kt) | eeeel(6.1)

where c1 is a constant.

(b) Control-delay cost It is assumed that the dynamics of the time-

sharing load are fast compared with those of the batch-processing load;
more precisely, we assume that >\T > )\B and /”T > /MB‘

This means that between any two consecutive batch events (arrivals or
departures) there will, with high probability, be a large number of
time-share events (arrivals and/or departures). The control variable
kt is to be a function of the state Xt only, and hence its value can-
not change between batch events. Whenever kt does change to a new value
we can assume, because of the relatively high rate at which time-share
events occur, that the state of the time-sharing load (ie. number of
ports active + size of time-sharing queue) reaches its new statistical
equilibrium very rapidly and that this equilibrium is maintained until
kt again changes value. The equilibrium properties when kt =k (k € O,
1,2,..+ K) are determined as follows.

Essentially we have a M/'M'/Na/N2 queueing system in which the number
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We now argue that it is desirable for mE to be close .to N2, the
total number of multiplexor ports. For if mE << N2 the average
number of idle ports will be large which means inefficient use of the
time-sharing system ; and if mE > N2 the reéponée time (ie. the
total time spent in the system by a time-sharing job) will tend to be
unacceptably large.. The mean response time is in fact (n‘lz/)?s) where
>\E is the effective mean arrival rate for ti;'ne—sharing jobs and is
given by )\'E = >\T (1 - Py ). Thus, denoting the mean respoﬁse time

2
by t-l-{- and using (6.2) and (6.3), we have

2N,
) /ok > <2N2 /OE
- 2
N M (% = eeea(6.1)

Thus both m-l-{- and tl—{- depend in a known way on the traffic intensity

o
|
!

IOE « In particular when /O-E = 1 equation (6.3) reduces to

mE = N2 ceea(6.3a)

and equation (6.4) reduces to

1
. (2t
X by
N,
= —~— . N, >> 1 cees(6.ba)
T

.so that m ™~ N t_ when P— =
k T % K

2
that the control-delay cost rate has the form

Since N_ is taken to be the desirable value of mE we shall assume

2
Cz(kt) = 02.(N2—mEt) eee.(6.5)

where s is a constant and Et A K- kt is the numher of processors
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of available servers is the number, N_, of multiplexor ports and the

2

queue size is also limited to N The mean arrival rate is )\T, and

2.
if k & K-k is the number of processors currently devoted to time-

sharing, the mean departure rate (ie. the mean rate at which completed
time-share jobs leave the system) is E/M.T . This assumes that there

are always at least k time-sharing jobs in the system; this is likely

to be the case provided that N, >> K.

2

Let Yt denote the number of time-sharing jobs in the system at

time t, and let P, & P[Ytzi] denote the equilibrium probability

that ¥ =i . The equilibrium birth-death equations are then

t
)\T Pi = k/‘“OT Pi+1 Y i=0,1,co.’2N2+1
so that
P - fof{' —] 1 i 0 {
i = '2N2+1 J {o’E y L = ,1,0.0,2N2
"
k
....(6.2)
>\T
where /0.lz & Jd = s the traffic intensity in the time-
k/“-
T

sharing system when k processors are devoted to time-sharing.

E‘JB. In the special case when /0-1-{- = 1 the above equilibrium distri-

bution becomes the uniform distribution

P' = U ) i = 0,1g2,-00,2N2 -000(6028.)]

From (6.2) or (6.2a) we can compute the equilibrium mean value,

HLE = E\-Yt} y of the number of time-sharing jobs in the system.

The result is
2N 5 + 1

¥ ) fr

n’]E = -—'—'————-1 _ _ haael (2N2+1) z 2N2+1
{)k T /DE ceee(6.3)
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devoted to time-sharing at time t.

(c) Control-loss cost The quadratic loss function (6.5) is symmetri-

>° In practice, however, the over-busy sit-

uation, mi; > N2’ is less desirable than the under-busy siﬁuation,

cal about the point mE =N

m.iz < NZ’ because the rate at which jobs are lost to the system, due
to saturation, increases with mTE' The probability that a job is lost

that the system is full, and from

to the system is the probability Pz“’
. 2
(6.2) this is given by
= P& 2N,
P = - ....(6‘6)
2N2 2N2+1 k

The mean rate at which jobs are lost is XT PZII; we therefore
: 2
assume a cost-rate associated with lost jobs of the form

CB(kt) - c3.)\T P2N2 eees(6.7)

where ¢, is a constant and P is given by (6.6).
3 2N2

(a) Switching cost There is a system overhead associated with each

change in k, the number of processors devoted to batch processing. If
k is reduced, then one or more of the bétch jobs currently being pro-
cessed will have to be "frozen'" (contents of registers, states of flags,
etc. must be stored) until a processor again becomes available. If k
is increased, the time-shared jobs will have to be re-arranged for the
reduced number of processors available for time-sharing. For simplicity
we shall assume that the switching cost function is symmetrical: if at
time t the value of k changes from kt- to kt there is incurred an

instantaneous cost

1
Ay

Cy, ey s Ky ) l k, - k't_l .eee(6.8)

where cy is a constant.
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Note that the value of 04 depends not only on the current value

of the control, k,_, but also on the immediately preceding value, k

t’ t— °

6.3 Mathematical model of the system

In the system specified in the previous section the batch job
arrival process is Poisson and the job processing times are negative-
exponential. As a consequence, the process Xt: t e'FKA:§ is a
continuous-time birth-death process whose state space :I}, if there
is no limit on the number of waiting batch jobs, is the set ;2:4 of
non-negative integers. By utilising the truncation procedure introduced
in Section 5.3 of the previous chapter we now represent the system by

a finite-state controllable birth-death process. In order to be able

to do so we must assume that the total number of processors K is such
that K/MB > XB so that the restricted set of control laws, SF ,
defined by (5.6) is non-void. With this assumption we now define a

controllable GBDP, {-Mtg y by setting

M, & X . X, &N

4 N , X, >N cees(6.9)

-

where, as already stated, X

& is the number of batch jobs in the system

at time t.
The characteristic parameters of the semi-Markov chain %Mtg are
obtained as follows.

(i) Transition probability matrix

This is given by equation (5.8), with A= }\'B’/“ = /I\B , and
£(i) = number of processors allocated to batch processing when Mt =i,
under the control law f.

(ii) Mean sojourn times

These are given by equation (5.13), again with N = )»B’/u'= /MB'
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(iii) Mean one-step costs

For the optimal regulatién problem to be properly posed the

mean one-step costs must not depend on past values of state and/or

control. This means (see equation (3.2)) that the transition cost

function C(XTn, X$n+1, .ATh+1, un) must be independent of past control
“values — a condition which is not satisfied by the switching-cost

component Gy (equation (6.8)) in the present problem. For the prosent,

therefore, we set ¢ = O so that there is no switching cost; the result-

ing transition cost function for the process §X£} is defined by

Xy Ty . AT u) A [C,‘(XTn,un) F O ) + c3<un)1 AT .

n n+

eees(6.10)

vhere C., C,, C, are defined by (6.1), (6.5), (6.7). Then, using

> .
(3.2), the mean one-step cost for the process {X{E, from the state

XT = i under the control w, = k, is given by

n

k . .
\61 = [C,I(l,k) + Cz(k) + 03(1;)} E [ATIH_,, XTn =1,y = ﬂ

= CIF -cl.{ 0100(6.11)
i 1
k A .

vhere C:.L A C1(1,k) + CE(k) + 03(k) ceesl(6.12)

Reference to (6.1) shows that the function Cg has the form
C. = c, Max (0,i- k) + CZ(k) + C3(k) ceee(6.13)

so that ‘X? is of the form specified by (5.16). Thus the mean one-
i

step costs, 8i , of the embedded chain %Mt§ are given by equation
(5.20), with ¥ given by (5.19).

The controllable GBDP %Mtg , with transition probabilities, mean
sojourn times, and mean one-step costs defined as indicated above, has

—f ‘

an equilibrium mean cost rate ¢ which depends on the choice of control

law f. Minimization of';f over the set S}h.of feasible control laws
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is an optimal regulation problem of the type considered in the earlier

chapters of this thesis.

Parameter values

The following values were used in the numerical computations :

Batch arrival rate, )EB = 0.1 sec-1
Batch service rate, /AB = 0.06 sec-1
Time-share arrival rate, )\T = 2 sec™ !
Time-share service rate,/khr = 1 sec”]
Number of processors, K = 3
Number of time-share ports,N2:=- 20
Batch queue truncation level, N = 9
Comments
(i) There is clearly no loss in generality in taking ¢, = 1e
In the optimization computations we have therefore taken c, = 1,

1

¢ = O (no switching costs) and examined the effect of changes

in ¢, and c, on the optimal control law and optimal cost rate.

2 3
(ii) Note that with the above values R A so that the trunca-

tion procedure is valid.

6.4 Method A: no quantization

The optimal regulation problem specified in the previous section
has been solved for various values of the cost coefficients c2 and 03,
using the direct policy-iteration (DPI) algorithm described in Section
L,2.3. The results are given in Tables 1~ 3 below. ﬂ

Suppose now that the system has been optimized by the above pro-
cedure. We now ask : what would be the additioﬁal contribution to the

(hitherto optimal) mean cost rate ;f if the switching-cost coefficient

were changed to a non-zero value ? The answer will depend on the mean
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OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO
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METHOD A : NO QUANTIZATION
02 = 0.005
oy = 1 ¢y = 4 Cq = 16
OPTIMAT,
COST RATE = 2.693 5.325 14,703
STATE CONTROL CONTROL CONTROL
0 1 1 1
OPTIMAL 1 1 1 1
2 3 3 1
CONTROL 3 3 3 1
L 3 3 3
LAW 5 3 3 3
6 3 3 3
7 3 3 3
8 3 3 '3
9 3 3 3
STATE PROBABILITY PROBABILITY PROBABILITY
0 0.106 0.106 0.032
OPTIMAL 1 0.283 0.283 0.086
2 0.275 0.275 0.143
STATIONARY 3 0.153 0.153% 0.238
L 0.085 0.085 0.231
DISTRIBUTION 5 0.047 0.047 0.129
6 0.026 0.026 0.071
7 0.015 0.015 0.040
8 0.008 0.008 0.022
9 0.002 0.002 0.008
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OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO
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METHOD A : NO QUANTIZATION
o, = 0.01
¢y = 1 C5 = L cy = 16
OPTIMAL
COST RATE = Lk.205 6.837 16.150
STATE CONTROL CONTROL CONTROL
0 1 1 1
OPTIMAL 1 1 1 1
2 3 3 1
CONTROL 3 3 3 1
4 3 2 3
LAW 5 3 3 3
6 3 3 3
7 3 3 3
8 3 3 3
9 3 3 3
) STATE PROBABILITY PROBABILITY PROBABILITY
0 0.106 0.106 0.032
OPTIMAL 1 0.283 0.283 0.086
2 0.275 0.275 0.143
STATIONARY 3 0.153 0.153 0.238
L 0.085 0.085 0.231
DISTRIBUTION . 5 0.047 0.047 0.129
6 0.026 0.026 0.071
i 0.015 0.015 0.0L40
8 0.008 0.008 0.022
9 0.002 0.002 0.008




TABLE 3

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO

METHOD A : NO QUANTIZATION
c, = 0.02
c3 = 1 03 = 4 c3 = 16
OPTIMAL
COST RATE = 7.228 9.789 19.045
STATE CONTROL CONTROL CONTROL
o} h 1 1 1
OPTIMAL 1 1 1 1
2 3 1 1
CONTROL 3 3 3 1
L 3 3 3
TAW 5 3 3 3
6 -3 3 3
7 3. 3 3
8 | 3 3 3
9 3 3 3
STATE PROBABILITY PROBABILITY PROBABILITY
0 I 0.106 0.057 0.032
OPTIMAL 1 0.283 0.151 0.086
2 0.275 0.252 0.143
STATTONARY 3 0.153 0.245 0.238
L 0.085 0.136 0.231
DISTRIBUTION 5 0.047 0.076 0.129
6 0.026 0.042 0.071
i 0.015 0.023 0.040
8 0.008 0.013 0.022

191.
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rate at which the control variable k changes and this in turn will
depend on the equilibrium staté distribution‘ of the system.

The additional cost rate component due to switching costs may be
computed as follows. Given a control law f, let Aﬂ: denote the ex-

pected one-step switching cost for a transition out of state i. Since,

under f, the control action is f(i) in state i, the switching cost for
a transition i —> j is, by (6.8), c. ] £(3) - f(i)l . It follows

L
immediately that

£ E-f(i)

J

£(3) - 2| ceee(Bb)

The additional cost rate due to switching costs is then computed

" by (3.6) in the usual way, so that

T
- fy a3t
Acf (—]t')—‘A—— eees(6.15)

T
@ <

vhere A;fis the required switching-cost component, and Mfé

Col ( AY:, eeo ,A¥§) . The mean one-step switching costs A"‘f are very
easily computed in the present problem since in (6.14) the p::'fj are non-
zero only for j=1 +1 and j=1i - 1.

Note that _ézf cannot be computed unless the control law f is
already known. It is this fact that precludes the use of the presentl
model for the optimization of f when switching costs are present. (It
is also, of course, necessary to determine Ef explicitly, for use in
(6.15).)

Switching-cost components Athave been computed for each of the
optimal control laws f listed in Tables 1 - 3, for variogg values of

the cost coefficient c. The results are given in Tables 4 - 6 below.

6.5 Method B : fixed quantization

We now ccnsider the possibility of achieving a lower overall cost



TABLES 4 - 6

TOTAL COST RATES FOR A-OPTIMAL SYSTEMS WHEN

SWITCHING COSTS ARE INCLUDED

Table 4 : c, =25

03 = 1 03 = 4 c3 = 16

= 0.005 6.203 8.835 17.623

= 0.01 7.715 10.347 19.070

= 0.02 10.738 12. 904 21.965
Table 5 cy = 50

c3 = 1 c3 = 4 c5 = 16

= 0.005 9.713 12.345 20.543

= 0.0] 11.225 13.857 21.9%

= 0.02 14.248 16.019 24.885
Table 6 : ¢y = 100

\ 03 = 1 03 = ,-I- 03 = 16

= 0.005 16.733 19.365 26.383

= 0.01 18.245 20.877 27.820

= 0.02 21.268 20.725

193.



rate by using a quantized control law. Our argument is as follows:
by optimizing f over a set of Quantized control laws the optimal cost
rate (with cy = 0) will not be as low as in the optimal unquantized
case; however, the equilibrium mean switching rate should be signifi-
cantly lower in the quantized case and hence so should the switching
costs when é# is non-zero. As a consequence we might expect the over-
all cost rate (including switching cost component) to be lower in the
quantized case than in the unquantized case — at least for suffici-
ciently large values of cy,e

Two different quantized versions of the present optimal regulation
problem have been solved, each for various values of ¢, and c

2 3
the modified DPI algorithm described at the end of Chapter 5. The

using

guantizing partitions used were as follows : -

(XL

{o,1,2,...,8,9§ , as before)

Case B.1

Quantum subset 1 2 3 L 5 6

States 0] 1,2 3,4 536 7s8 9

Case B.2

Quantum subset 1 2 3 L

States 0] 1a213a4 5’69718 9

Comments :

(1) In both cases we have isolated the boundary states as single-state
subsets : state O because the condition Mt = 0 is clearly a special
case, and state 9 because the condition Mt = 9 in the truncated chain

represents the condition Xt ja; 9 in the original, untruncated GBDP.

(ii) In both cases the quantization of the interior of X is uniform 3
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although this simplifies the programming of the optimization algorithm

it is not, of course, an essential feature of the procedure.

(iii) The embedded chain ‘{Ytg defined by (5.21) - (5723) (with, in this
case, {Mtg as the unquantized process) is, in case B.1, as LLS as

%Mtg itself. However, in case B.2, the state space of the embedded
chain {¥£§ is the reduced set {9 ,1,4,5,8 ,9} and it is necessary

to use equations (5.29), (5.32) and (5.33) to compute the parameters
of {Xti.

The results of the quantized optimization are gi&en in Tables 7-9
(case B.1) and Tables 10- 12 (caée B.2) shown below.

As in case A, it is possible to compute the additionai component
of cost due to switching costs. Again we use (6.14) and (6.15), applied
in this case either to the quantized process {Mti or to the equivalent
embedded process {Yt%. The results are given below in Tables 13- 15

(case B.1) and Tables 16 -~ 18 (case B.2).

6.6 Method C: variable gquantization

The control laws determined by methods A and B above are suﬁ—
optimal when the switching costs are non-zero. As we have already
remarked, when the system state is defined in the natural way (ie. as
the number of batch jobs in the system) it is not possible to include
the switching cost component in the cost function to be optimized.

This is because, with the natural definition of systeﬁ state, the swit-
ching éost per step is associated with two consecutive control actions

rather than a single control action. In order to include the switching
cost in a sgparable cost function it is necessary to redefine the state
in such a way that it incorporates the immediately past control action.
We therefore now define Wt, the system state at time t, as the ordered

pair (Xt’ ut_), where as before X, is the number of batch jobs in the

system at time t (ie. the natural system state) and u, is the control

te



TABLE 7

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO

196.

METHOD B1 : 1 -2 -2 = 2 = 2 - 1 QUANTIZATION
c, = 0.005
\ 03 = 1 03 = ll' C3 = 16
~— !
OPTIMAL
COST RATE ~ 2.939 5.382 14.728
STATE CONTROL CONTROL CONTROL
0 1 1 1
OPTIMAL 1 3 1 1
2 3 1 1
CCONTROL 3 3 3 3
A b 3 3 3
LAW 5 3 3 3
6 3 3 3
7 3 3 3
8 3 3 3
9 3 3 3
STATE PROBABILITY PROBABILITY PROBABILITY
0 0.223 0.057 0.057
OPTIMAL 1 0.347 0.151 0.151
2 0.193 0.252 0.252
STATIONARY 3 0.107 0.245 0.245
b 0.060 0.136 0.136
DISTRIBUTION 5 0.033 0.076 0.076
6 I 0.018 0.0li2 0.0li2
7 0.010 0.023 0.023
8 0.006 0.013 0.013
9 0.003 0.C05 0.005




197.

TABLE 8

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO

METHOD B1 : 1 -2 =2 = 2 - 2 —= 1 QUANTIZATION
‘\ 03 - 1 03 = l+ C3 = 16
OPTIMAL
COST RATE = 4,515 6.851 16.197
STATE CONTROL CONTROL CONTROL
0 1 1 1
OPTIMAL 1 1 1 1
2 1 1 1
CONTROL 3 3 3 3
L 3 3 3
LAW 5 3 3 3
6 3 3 3
7 3 3 3
8 3 3 3
9 3 3 3
STATE PROBABILITY PROBABILITY PROBABILITY
0 0.057 0.057 0.057
OPTIMAL 1 0.151 0.151 0.151
2 0.252 0.252 0.252
PROBABILITY 3 0.245 0.245 0.245
L 0.136 0.1%6 0.1%6
DISTRIBUTION 5 0.076 0.076 0.076
6 0.042 0.042 0.042
7 0.023 0.023 0.023
8 0.013 0.013 0.013
9 0.005 0.005 0.005




TABLE 9

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO

METHOD B1 ¢ 1 -2 - 2 - 2 - 2 - 1 QUANTIZATION
02 = 0.02
c5 = 1 c5 = L ey = 16
gggfIDMARim = 7.542 9.789 19.135
STATE CONTROL CONTROL CONTROL
0 1 1 1
OPTIMAL 1 1 1 1
2 1 1 1
CONTROL 3 3 3 3
b 3 3 3
AW 5 3 3 3
6 3 3 3
7 3 3 3
8 3 3 3
9 3 3 3
STATE || PROBABILITY | PROBABILITY | PROBABILITY
0 0.057 0.057 0.057
OPTIMAL 1 0.151 0.151 0.151
2 0.252 0.252 0.252
STATIONARY 3 ' 0.245 0.245 0.245
b 0.1%6 0.136 0.136
DISTRIBUTION 5 0.076 0.076 0.076
6 0.042 0.042 0.042
7 0.023 0.023 0.023
8 0.013 0.013 0.013
9 0.005 0.C05 0.005
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"TABLE 10

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO

199.

METHOD B2 : 1 - 4 - 4 - 1 QUANTIZATION
c3 = 1 03 = 4 c3 = 16
OPTIMAL
COST RATE ; 2.929 6.272 15.111
STATE - CONTROL CONTROL CONTROL
OPTIMAL o) 1 1 1
1 3 3 1
CONTROL 4 3 3 1
5 3 3 3
LAW 8 3. 3 3
9 3 3 3
STATE PROBABILITY PROBABILITY PROBABILITY
OPTIMAL o | 0.453 0.453 0.053
1 0.453 0.453 0.053
STATIONARY L 0.043 0.043 0.408
5 0.043 0.043 0.408
DISTRILBUTICH 8 0.004 0.004 0.039
9 0.004 0.004 0.039
Note : The stationary distributions shown here refer to

the equivalent embedded chain %_Ytg .



TABLE 11

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO

METHOD B2 ¢ 1 - 4 - 4 - 1 QUANTIZATION

\’l 03 = 1 03 = 4 03 = 16
OPTIMAL i o
COST RATE = 'l L 552 7.885 16.547

sTATE || CONTROL CONTROL CONTROL
OPTIMAL 0 1 1 1
1 3 3 1
5 3 3 3
LAW 8 3 3 3
9 3 3 3
STATE PROBABILITY | PROBABILITY PROBABILITY
OPTIMAL 0] 0.453 0.453 0.053
1 0.453 0.453 0.053
STATIONARY L 0.043 0.043 0.408
5 0.043 0.043 0.408
DISTRIBUTION 8 0.00k4 0.004 0.039
9 0.004 0.004 - 0.039
Note @ The stationary distributions shown here refer to

the equivalent embedded chain {ij .
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OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO

201.

METHOD B2 : 1 - 4 - 4 - 1 QUANTIZATION
02 = 0002
03 = 1 03 = b 03 = 16
o
STATE CONTROL CONTROL CONTROL
OPTIMAL 0 " 1 1 1
1 3 1 1
CONTROL L 3 1 1
5 3 3 3
LAW 8 3 3 3
9 3 3 3
STATE || PROBABILITY | PROBABILITY PROBABILITY
OPTIMAL 0 0.453 0.053 0.053
) 1 0.453 0.053 0.053
STATIONARY L 0.043 0.408 0.408
5 0.043 0.408 0.408
DISTRIBUTION 8 0.00k4 0.039 0.039
9 0.004 0.039 0.039
Note : The stationary distributions shown here refer to

the equivalent embedded chain {Yf} .



TABLES 13 - 15

TOTAL COST RATES FOR B1-OPTIMAL SYSTEMS
WHEN SWITCHING COSTS ARE INCLUDED

Table 13 : ¢y =25

\ 03 = 1 c3 = 4 03 = 16
= 0.005 7.384 8.497 17.843
= 0.01 7.630 9.966 19.312
= 0.02 10.657 12.904 22.250
Table 14 : ¢y = 50
c3 = 1 03 = 4 03 = 16
= 0.005 11.829 . 11.612 20.958
= 0.01 10,745 13.081 22.427
= 0.02 13.772 16.019 25.365
Table 15 : C’+ = 100
03 = 1 c3 = 4 03 = 16
= 0.005 20.719 17.842 27.188
= 0.01 | 16.975 19.311 28.657
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TOTAL COST RATES FOR B2-OPTIMAL SYSTEMS
WHEN SWITCHING COSTS ARE INCLUDED

TABLES 16 - 18

Table 16 : cy = 25
c5 = 1 03 =k c3 = 16
0.005 7.384 10.717 17.924
0.01 8.997 12.330 19. 360
0.02 12.224 13.794 22.231
. Table 17 : ¢, = 50
¢y = 1 cy = L Cy = 16
0.005 11.829 15.162 20.736
0.01 13. 4442 16.775 22.172
0.02 16.669 16.606 25.043
Table 18 H CLI' = 100
c3 = 1 03 = 4 03 = 16
0.005 20.719 2k.052 26.361
0.01 22.332 25.665 27.797
0.02 25.559 22.231 20.668
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action in the interval immediately preceding the most recent transition
of the process §Xt§'

Ve shall call the process §Wt§, where

W

t é (Xt,ut) 0000(6-16)

the augmented chain .

The transition cost function for the augmented chain {Wt} now
has the required separable form, even when switching costs are included,
since the function 04 defined in (6.8) is now a function only of the
current state and current control. With switching costs included we

now define the transition cost function for the augmented chain {W;%
by

Clig o Wy AT ) & [0y, )
n n+1 n

+ Cz(un) + Cj(un):l ATn+']

+ CLl-(un, un-,‘) 0000(6.17)
where C1, 02, 03 and Ch are defined by (6.1), (6.5), (6.7) and (6.8)
respectively, and XT is the first component of WT o
. n n

Then the expected one-step cost for the augmented chain~{wt%,

from the state Wy = (i,h) under the control u =k, is given by
n

k k _k
\Ki,h = 6 T oo l k-h 1 eeee(6.18)

where C? is given by (6.13). The second term, of course, represents
the switching cost.

As in Methods A and B it is necessary to truncate the state space
by replacing the component Xt in (6.16) by the finite component Mt’
defined by (6.9). The result is a truncated version of the augmented

chain, say %Vti, in which
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Vt é (Mt 3 ut-) 0000(6019)

The essential parameters of Qvtg are easily determined.

Define the following quantities :

(i) Transition probabilities of I(Vti

n

k A (4
PGom),(5.1) 2 P[anﬂ_(a,l)

(ii) Mean sojourn times of {Vt}

. A E AT
Tin " [ n+1

n

(iii) Mean one-step costs of {Vt}

k
A
\&i’h A E[C(VT v Vp o ATn+1,un) :

n n+1

Then it is straightforward to show that

k k ' i
p(i,h),(j,l) = pij Sk_l 0-'0(6.20)

k
vhere P; ; is the relevant transition probability for {Mt} and S%l is
the Kronecker delta ;

that
k =k

T —
S b = T cees(6.21)

where'ti is the relevant mean sojourn time of {Mtg;

and that i
Y. = 71; + c4lk-hl veea(6.22)

k ‘
where Y. is the relevant mean one-step cost of’{Mtg.
i

A control law for {Vt{ is a map from the new state space (:Xlzc’LL)
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to the control set rbk. Once such a control law f has been specified,
the equilibrium mean cost rate (assuming that {Vtg is a totally regu-

lar chain) is given by

f f
Z T(i,h 7y:i.,h
—f i,h
cV" = T "
:E::T( T

i,h i,h i,h

eeee(6.23)

f

where the —T. . and ‘1§ ,, are given by (6.21) and (6.22), and the
9

i,h
£
Wti p are the unique stationary probabilities for {V£§ under the con-
9% 2
trol law f.

As already discussed in Chapter 3 the minimization of Ejf wifh
respect to f is a properly defined optimal regulation problem only
if the controllable chain {Vti is totally regular; ie. only if {Vig
is regular for every feasible control law f. Unfortunately, unless
the set of feasible f is suitably restricted this will not be the case
in the present problem. For if f is allowed to be any function from
the augmented state space (XL x quL) to the control set ‘Lk,, there
is always one control law for which.{V£§ possesses more than one
recurrent subchain and hence is not regular. The control law in

-

question is the following :
Vame XxW : san = coes(6.20)

ie. always make the current control action the same as the immediately
past control action, regardless‘of the currént number of batch jobs
in the system;

With this control law, if the initial state is (Mo,ho) all sub-
sequent states will be of the form (Mt’ho)’ Thus, as inspection of
the state transition diagram (Fig.(11)) shows, there will be K (= 4)

recurrent subchains, one for each value of ho' In fact there are many

control laws for which {th is not regular and it is not easy to list
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them all systematically. If an attempt is made to use the DPI algor-
ithm to optimize f, there will be a high probability (at least for
certain choices of initial control law) that a '"policy improvement"
step will lead to a non-regular f: in such a case the E-matrix becomes
singular and the algorithm explodes.

Fortunately, a simple restriction on the set of feasible control

laws will restore total regularity. We make use of the following

sufficient condition for total regularity: if {Vtg possesses a single

state (i,h) accessible from all other states under all feasible control

laws, f, then (i,h) is recurrent for every f, and the set of states
accessible from (i,h) constitutes the single recurrent subset of the

state space of {Vt} .

This condition is met if we impose the constraint
f(N,h) = 3 [ Vh & u -000(6.25)

ie. restrict the control value at the upper boundary i = N to the
single value K = 3, regardless of the immediately preceding control
action. The state transition diagram for an example of a control law
satisfying (6.25; is shown in Fig.(12) where it can be seen that state
(8,3) is neceséarily recurrent since it is accessible from every other
state. The choice f(N,h) = 3 is a natural constraint in view of the
results for methods A and B. (Incidentally the apparently equivalent
constraint £(0,h) = 1 does not yield a totally regular chain.)

The well-defined optimal regulation problem resulting from the
use of (6.25) has been solved for various values of ¢

c., and 04

2' 73
using the DPI algorithm of Chapter 4. The results are given in

Tables 19 - 24,

6.7 Discussion of results

Generally speaking, there are no major surprises in the results

obtained, but there are several specific points which are worthy of
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