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ABSTRACT 

This thesis investigates the problem of choosing optimal 
feedback control laws for Markov chains and semi-Markov chains with 
controllable transition mechanisms. Except in certain special cases 
the optimal control law cannot be determined analytically and it is 
necessary to make use of numerical procedures for optimization. 
The principal questions of interest concerning such procedures are 
(i) the conditions under which they may be used, and (ii) their 
computational efficiency. 

The thesis surveys existing standard optimization procedures 
and proposes new algorithms with certain computational advantages. 
The most important of the new algorithms is a policy-iteration al-
gorithm in which the control law is iteratively improved by a conver 
gent sequence of single-component changes. The other new algorithm 
is an accelerated version of a successive-approximations procedure, 
in which the acceleration factor varies from iteration to iteration. 
In the development and analysis of these new procedures considerable 
use is made of the concept of equivalence between semi-Markov chains 
and it is shown that use of the equivalence concept makes possible 
the extension of many results concerning Markov chains to the more 
general semi-Markov case. 

The special transition structure of chains of the birth-death 
type are shown to permit a certain amount of simplification in the 
optimization algorithms. In addition, it is shown that for such 
chains it is possible to determine optimal quantized control laws 
by applying a modified form of the new policy-iteration algorithm 
to a certain embedded semi-Markov chain. The problem of state-space 
truncation for unrestricted birth-death chains is also investigated. 

The thesis concludes with the computational study of a specific 
optimization problem of the birth-death type, in which the control 
switching cost is a significant component of the total cost. 
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CHAPTER 1 

INTRODUCTION 

The growth of man's knowledge and understanding of the world 

is characterized in the main by the gradual accumulation of factual 

knowledge and the gradual evolution of ideas. From time to time, 

however, the development of a subject is marked by a new discovery 

or concept which in retrospect is seen to have been of crucial 

importance. Such a step forward occurred in optimization theory 

twenty years ago when Richard Bellman published his theory of multi-

stage decision processes in the book entitled "Dynamic Programming" 

C1957) 

. The concept of dynamic programming has been extremely fruit-

ful in a wide variety of optimization problems, particularly in the 

fields of economics, operations research, control engineering, and 

statistical decision theory. 

The dynamic programming technique is principally of value when 

the decision process to be optimized has sufficient structure to 

permit some simplification of the basic optimality equations - the 

so-called functional equations of dynamic programming. One class of 
such processes is the class of Markovian decision processes, intro-

(1957) 

duced by Bellman 7 r and the subject of intensive study during 

the past fifteen years. It has been found that a Markovian decision 

process is the appropriate mathematical model in a wide variety of 

sequential decision problems in the fields of operations research 

and management science; in particular, problems concerning the 

control of queueing systems, the control of material stocks (or 

"inventory control", in U.S. terminology), the dynamic scheduling c>f* 

resources, and many related problems, can often be modelled in this 

way. In addition, since a Markovian decision process is a special 

type of controllable stochastic process, such processes are of 
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interest in stochastic control theory as models for physical 

systems with noisy dynamics. 

Roughly speaking, a Markovian decision process is a Markov 

process whose transition mechanism is directly dependent on the 

value of an externally controllable variable called the control action 

or decision. The main problem of interest with such processes is 

to choose a sequence of decisions that will result in good, prefer-

ably optimal, process behaviour. Since the process is stochastic 

the sequence of decisions must be generated by feedback: that is, 

by making each decision a function of the available information 

about the current state of the process. The set of rules by which 

the decisions are related to the feedback information is called a 

feedback control policy; and a control policy which minimizes 

(maximizes) some suitably-defined cost (return) function is an 

optimal control policy. 

This thesis is concerned with procedures for deriving optimal 

control policies for Markovian decision processes having a finite 

number of possible states and a finite number of possible decisions. 

The restriction to a finite state set is a natural one in many 

operations research applications and at the same time permits the 

utilization of the classical theory of Markov chains in the analysis 

of the optimization problem. For example, Markov chain theory tells 

us that, under certain minor restrictions on the transition mechanism, 

a chain will tend to move towards a natural statistical equilibrium 

in which the average proportion of time spent in each state is 

easily computed from the transition properties of the chain. For 

such processes an optimization problem of major interest is the 

problem of choosing a control policy which will result in the mini-

mum (maximum) average cost (return) per unit time when the process 

is in statistical equilibrium. In the language of control theory 



this is an optimal regulation problem, and it is this type of 

problem in particular with which the thesis is primarily concerned. 

1.1 An optimal regulation problem 

As an example of an optimal regulation problem which can be 

formulated in terms of a finite-state Markovian decision model, 

consider the simple first-order control system shown in Fig.(1). 

As usual, the aim is to make the integrator output y(t) 

follow the reference input y^(t) as closely as possible. The inputs 

to the integrator are the error-driven control action u(t) and the 

Gaussian white noise input w(t), assumed to have zero mean and 

autocorrelation function ^ (X) where denotes the unit 

delta function. If y^t) = yQ = constant, the system is a regulator 

which in the absence of the noise w(t) would maintain the output 

y(t) at the required constant level yQ. In the presence of w(t) 

the regulator settles down to a statistical equilibrium in which 

y(t) fluctuates about the value yQ with a variance of • This 

equilibrium output variance can clearly be made as small as desired 

by increasing the control gain K. But the equilibrium variance of 
/ \ rr2 the control action u(t) is _ K so that large values of K result 

2 
in large control efforts which are normally undesirable. Let us 

therefore choose K so as to minimize the quadratic cost function, 

L(K) = E{f2Ct)J + £«o. E^i2(t)j 

where E J denotes expected value and is a weighting 

factor. 

The resulting problem is an example of the well known 

stochastic regulator problem (see, for example, Kwakernaak and 
(1Q7?1 Sivan ) and the solution in this case is that the optimal value 

X X 2 of K is ô  , the corresponding value of L being c< 2 (J* . 
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Fig. (1) A first-order linear control system 



Suppose now that the error e(t) is quantized , so that the 

error input to the controller, e (t), is given by the uniform quan-
q 

tization law : 

e (t) = n q , (n - V) q e(t) < (n + V) q , q o ' •• * ^o ^ • o 

for n = 0, 11 , 

= N qQ , e(t) > (N-J) qQ 

= -N qQ , e(t) < - (N--J) qQ 

Because the relation between e (t) and e(t) is non-linear it is 
q 

no longer true that the optimal linear control law (ie. a control 

law of the form u = K e ) is the best control law available. In fact, 
q 

it is now worthwhile to look for a more general optimal control law 

of the form u = f(e ) where f is some non-linear function. The opti-
q 

mal regulation problem would then be to determine f so as to minimize 

the cost function L0 
This optimal regulation problem can be formulated as a 

Markovian decision problem. For if t^, t^ ... are the instants at 

which the quantized error switches to a new value, the . 
sequence (e (t„), e (t„), ....) is a Markov chain whose state set q 1 q 2 
consists of the (2N + 1) possible values of e^(t). The equilibrium 

properties of this Markov chain depend on the form of the control 

law f ; by expressing the cost function L in terms of these equili-

brium properties and then using one of the optimization procedures 

outlined in this thesis it is possible to determine the optimal 

form of f. It should be emphasized that finite-state Markov chain 

(e^(t^), arising in this example provides an exact 

representation of the process to be controlled; it is not an 



approximation resulting from simplification of the original model of 

the process. Unfortunately this approach to control law optimization 

is not easily generalized to quantized linear regulators of higher 

order. 

The above application is in the field of control engineering; 

later we shall consider in detail an application in the operations 

research field - the problem of choosing a control strategy for a 

queueing system with an adjustable service rate. 

1.2 Background 

The concept of a Markovian decision problem (or Markov pro-
(1 QR7 } 

gramming problem, as it is also termed) was introduced by Bellman 

as an optimization problem amenable to numerical solution by the 

method of dynamic programming. The first major step in the develop-

ment of the subject was taken by H o w a r d s h o w e d that 

finite-state Markovian decision problems can be classified into four 

main categories: 

(i) Regulation problems, in which the aim is to minimize the 

average cost per unit time incurred by a Markov chain in 

statistical equilibrium; 

(ii) Discounted regulation problems, in which the aim is 

essentially as in (i) but future costs are discounted expo-

nentially in time so that the expected value of the accumu-

lated future costs is finite; 

(iii) Finite-time problems, in which the cost function is 

the expected total cost accumulated over a finite time inter-

val; and 

(iv) Transient-cost problems, in which the chain has an 

absorbing state and the cost function is the expected cost 

incurred before the absorbing state is entered. 
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By making use of the equilibrium properties of finite Markov 

chains Howard derived his so-called policy-iteration algorithm for 

the solution of optimization problems in the first of the above 

categories. Howard's algorithm has been widely used in applications 

and is the basis from which similar algorithms, due to Hastings 
(l971a) 

and Schweitzer , have been developed. The basic computational 

disadvantage of Howard's algorithm and its derivatives is that each 

iteration involves the solution of N simultaneous equations where N 

is the number of states in the system - a major difficulty when N is 

very large. 

A second, more direct, type of optimization procedure for 

Markov regulation problems (i.e. problems in category (i) above) is 

to solve the standard dynamic programming equations recursively until 

all transient terms in the solution have died away. This direct 

approach was first suggested by Eaton and Zadeh^^^ for problems 

of the transient-cost type (category (iv) above) and later modified 
(1963) 

by White for use in Markov regulation problems. White's 

successive-approximations algorithm has the advantage that it is 

computationally simple; on the other hand the rate of convergence 

of the algorithm depends on the dynamic characteristics of the system 

which is being optimized and in some cases convergence can be very 

slow. Further contributions related to White's algorithm have been 
(1969) 

made by Odoni , who derived an improved stopping criterion for 

the algorithm, and MacQueen^^^, who developed a successive-

approximations algorithm for discounted regulation problems (cate-

gory (ii) above). 

A third approach to the Markov regulation problem is to formulate 

it as a linear programming problem, that is, the optimization of a 

linear cost function subject to a set of linear constraints. This 
(1960) approach is due to Manne and was investigated further by 



Derman^9^^, and by Wolfe and Dantzig^9^^, who showed by using 

the linear programming formulation of the problem that the optimal 

control law, assumed to be a deterministic rule for specifying the 

decision to be used in any state, cannot be further improved by ran-

domization. 

Extensions of the theory have been in three main directions, 

each 01 which we now briefly indicate. In 195^ Levy general-

ized the concept of a continuous-time Markov chain by introducing 

processes which switch from state to state in the same way as Markov 

chains but in which the time spent in each state is a general rather 

than an exponential, random variable. Levy called such processes 

semi-Markov processes and their properties have since been thoroughly 

investigated by W.L. Smith(l955\ R. Pyke(l96la'196lb) and 
(1969a 1969b) 

E. ginlar ' • A natural development was the extension of 

Bellman's notion of a Markovian decision problem to that of a semi-

Markovian decision problem in which the process to be controlled is 
(196^) 

a semi-Markov process. The extension was suggested by Jewell 

who showed how such problems might be solved by the use of a modified 

version of Howard's policy-iteration algorithm. Similar extensions 
(1969) (l96̂ f) 

have also been proposed by Schweitzer and de Cani • Jewell's 
work was followed by semi-Markov generalizations of White's algorithm, 

(1971b) 

by Schweitzer and of Manne's linear programming algorithm by 

Osaki and Mine^9^^. The introduction of the semi-Markov concept 

has been of major importance to the development of the subject since 

it has vastly widened the range of potential applications of the theory. 

And, as we shall show, the semi-Markov concept helps to unify and 

clarify some of the results previously derived for pure Markov processes. 

The second extension of the theory, which is mainly of mathe-

matical rather than engineering interest, is the consideration of 



Markovian decision processes with infinite state sets. Markov 

regulation problems in which the state set is countably infinite 

have been studied by Veinott ̂ ^ ^ , Derman^^^, and by Haussman^^1 \ 

who demonstrated the existence of stationary optimal control laws for 

semi-Markov regulation problems with countably infinite state sets. 

- The most general case, when the state space is non-countable, has 

been investigated by g^ves sufficient conditions 

for the existence of a stationary optimal control law. Of course com-

putation of the optimal control law for such a problem by a finite-

state optimization algorithm necessitates the use of a finite-state 

approximation to the original infinite-state process. Methods for 

constructing such finite-state approximations have been proposed by 
Fox(1971,1973). 

The remaining topic to have been studied in some detail is the 

control of partially-observable Markovian decision processes; that is 

to say, processes in which complete knowledge of the current state is 

not always available to the controller. In such systems the controller 

must make the best use possible of whatever information is available. 

Usually the available information consists of a set of observations 

related, perhaps stochastically, to the past and present motion of 

the process; the set of data available as inputs to the controller 

is called the information pattern for the system. The case most 

readily amenable to analysis is when the controller has what is known 

as perfect recall, which means the information available at any time 

includes the information available at all earlier times; the infor-

mation pattern is then said to be "classical". A general discussion 

of some aspects of the control of partially-observable stochastic 
(1971) systems has been given by Witsenhausen • In the field of 

(1965) 
Markovian decision processes, Astrom showed that for a finite-

time problem the optimal control scheme satisfies the so-called 
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Separation Principle: that is, the optimal scheme consists of an 

estimator which generates a probability distribution for the states, 

conditional on the available information, followed by a controller 

whose input is the distribution generated by the estimator. Similar 
(1965) results were obtained at about the same time by Aoki , and the 

results were later extended to the countable-state case by Sarawagi 
(1970) 

and Yoshikawa ' . The essential argument in all the above work 

is that the partially-observable problem is equivalent to a completely-

observable problem in which the "states" are the possible outputs of 

the estimator. Since the "state" set is no longer discrete the 

actual computation of the optimal control law is difficult. However 

by using the fact that the optimal expected total cost is a convex, 
piecewise-linear function of the estimator output, Smallwood and 

(1973) 

Sondik have developed an elegant procedure for determining the 

optimal control lav/ for a finite-time problem. Unfortunately the 

method does not apply to regulation (i.e. infinite-time) problems. 

All of the above work deals with discrete-time Markovian decision 

problems; at the time of writing the more general semi-Markov case 
("107̂  -iqnc 

does not appear to have been studied, although Rudemo has 

published some results for pure Markov chains in continuous time. 

It is clear from the above brief review that a substantial amount 

of effort has been put into the development of this branch of stoch-

astic control theory. Nevertheless in applications the difficulty 

has remained that in the actual computation of the optimal control 

law the standard optimization algorithms can be very expensive in 

computational resources when the system to be optimized has a large 

state set. It is this difficulty which originally motivated the work 

described in this thesis. 1.3 Outline of the thesis 

Chapter 2 reviews the basic properties of discrete-state Markov 
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processes in both discrete and continous time. The concept of a 

semi-Markov chain is then introduced and the equilibrium properties 

of such chains are summarized. We next introduce the important notion 

of equivalence between two semi-Markov chains. This idea, of which 

considerable use is made later, is based on the fact that the observed 

sample paths of a semi-Markov chain do not uniquely define the law of 

motion of the chain: there is, in fact, a whole equivalence class of 

chains with the same set of possible sample paths. Finally in this 

Chapter, we consider the equilibrium behaviour of the cost function 

when an additive cost structure is imposed on a Markov or semi-Markov 

chain. The growth of the expected total cost is asymptotically linear, 

the rate of growth depending on the equilibrium probability distribu-

tion for the states of the chain. The optimal regulation problem 

consists of choosing a control law so that the resulting equilibrium 

distribution results in the smallest possible value for this asymptotic 

rate of growth. 

The optimal regulation problem is defined in detail in Chapter 3 

and the existing standard optimization algorithms are then reviewed. 

As has been mentioned, there are three basic types of algorithm: 

(i) policy-iteration algorithms, in which an initial trial control 

law is systematically improved by an appropriate form of Bellman's 
(1QR7) 

"approximation in policy-space" technique ; (ii) successive-

approximations algorithms, in which the non-linear optimality 

equations; are solved by simple Jacobi iteration; and (iii) linear , 

programming algorithms, in which the optimization problem is formulated 

as a linear programming problem and then solved by a linear program-

ming procedure. 

When the number of states is large the standard algorithms 

•require considerable computational resources (core storage and central 

processor time). In Chapter k we present some new optimization 
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algorithms which are, in general, likely to be more efficient than 

the standard methods. The first of the new methods is a modification i 
of the standard policy-iteration algorithm in which multi-state 

changes in the control law are replaced by successive single-state 

changes. Two related policy-iteration algorithms, in which the 

- single-state improvements to the control law are themselves optimal, 

are also discussed. We give a detailed comparison of the various 

policy-iteration algorithms; in particular, we demonstrate the con-

vergence of the new algorithms, compare the computational effort 

required, and show that their performance is not adversely affected 

when the chain to be optimized possesses transient states. 

We next consider algorithms of the successive-approximations 

type. We give a new convergence proof for White's original algorithm, 

which uses a contraction mapping argument and also makes use of some 

properties of inhomogeneous Markov chains. As we then show, the 

proof suggests a natural generalization of White's algorithm to the 

semi-Markov case, achieved by invoking the concept of equivalent 

chains mentioned earlier. Finally, we examine the possibility of 

accelerating the successive-approximations method by means of over-

relaxation. It turns out that some degree of acceleration is feasible 

provided that a variable acceleration factor is used; this is a use-

ful result since the standard successive-approximations procedure 

converges very slowly for certain classes of problem. 
r 

Many queueing systems are appropriately modelled by Markov 

processes in which transitions are possible only between adjacent 

states. Such processes are called birth-death processes and in 

Chapter 3 we consider optimal regulation of this type of process. 

The special structure of the birth-death process permits a certain 

amount of simplification in the optimization algorithms, in particular 

the Howard policy-iteration algorithm. A problem that arises in the 
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control of queueing systems is that the natural choice of state 

space for the system is countably infinite so that the finite-state 

optimization algorithms cannot be used without some form of trunca-

tion of the state space. We show that by introducing a certain em-

bedded Markov chain it is possible to truncate the state space 

without distorting the properties of the process. A related problem 

is that of choosing an optimal quanti zed control law for a Markovian 

decision problem. In general this is a very difficult problem; it 

can, in fact, be formulated as a partially-observable control problem 

with a non-classical information pattern - and such problems are 

notoriously difficult to solve. However, in the case of a birth-

death process, it is possible to show that use of a modified version 

of our single-state policy-iteration algorithm will generate the 

globally-optimal quantised control law for the process. The last 

part of Chapter 5 is devoted to this topic. 

Finally, in Chapter 6, we present some numerical results for a 

specific optimal regulation problem. The problem is the optimal 

regulation of a simple queueing system in which the number of service 

channels is variable but there is, in addition to the usual customer 

delay costs and open service-channel costs, a cost associated with 

any change in the number of active channels. The object of this 

numerical investigation is to compare the performances resulting 

from each of the following approaches to optimization of the system: 

(i) Determine the control law which is optimal in the absence 

of switching costs and add in the cost contribution due to 

switching after the optimization. 

(ii) For some sensibly chosen quantization of the state space, 

determine the quantized control law which is optimal in the 

absence of switching costs. A quantized control law results 

in less frequent changes in the number of active channels and 



hence in a lower switching cost contribution, 

(iii) Determine the control law which is optimal in the 

presence of switching costs. This approach involves re-

definition of the state space of the system in order that the 

switching costs can be properly incorporated in a separable 

cost function. The resulting control lav; exhibits a hysteresis-

like characteristic in which the number of channels active for 

a given queue length depends on whether the queue is growing 

or shrinking. 

The first two approaches result in sub-optimal control laws: 

the control law produced in (iii) is optimal. The question we have 

sought to resolve is this: is the performance of the optimal system 

sufficiently better than that of the sub-optimal systems to justify 

the extra computational effort needed to determine the truly optimal 

control law ? In addition we have compared the performances of the 

main optimization algorithms in part (iii). above. 

Contributions of the thesis 

The work described in this thesis lies in the general field of 

system optimization and control; in particular it deals with the 

optimization of Markovian decision processes. The main contributions 

to this field, believed to be original, are: 

(1) The development and use of the concept of equivalence for 

semi-Markov chains with additive costs. (Chapter 2) 

(2) The development of new optimization algorithms of the policy-

iteration type and an investigation of their properties. 

(Chapter 

(.3) A new proof of the convergence of the successive-

approximations algorithm for discrete-time chains, leading to the 

development of (a) a generalized semi-Markov 



version* of the algorithm, and (b) an accelerated version of 

the algorithm. (Chapter k) 

tt) A study of the application of Markovian decision theory 

to birth-death processes, including proposals for handling 

processes with a countably-infinite state space and for optimi-

mizing the performance of quantized systems. (Chapter 3) 

(5) A numerical study of a specific optimal regulation problem 

of considerable practical significance. (Chapter 6) 

*The semi-Markov version is not new: it was first proposed by 
Schweitzer(l971t>) in 1971• The arguments presented here, leading 
to the development of the algorithm, are new. 



CHAPTER 2 

MARKOV AND SEMI-MARKOV CHAINS 

2.1 Introduction 

As is well known, the analysis of the behaviour of a deter-

ministic dynamic system is usually simplified by suitably defining 

a state for the system and then analysing the motion of the state. 

The essential feature of this so-called state representation is that, 

given the present state, the future motion of the system is independ-

ent of its past history. An analogous situation holds for stochastic 

systems, that is, systems in which the motion is wholly or partially 

influenced by random effects. In such cases the law of motion is 

probabilistic rather than deterministic and the appropriate mathe-

matical model is a stochastic process. As in the deterministic case, 

it is in principle possible to introduce a state for the system 

having the property that the future motion, given the present state 

of the system, is (stochastically) independent of the past history. 

The stochastic process representing the motion of the state is then 

a Markov process and analysis of the system's behaviour is then 

reduced to analysis of the behaviour of a specific Markov process. 

For this reason the concept of a controllable Markov process plays 

a key role in stochastic control theory. 

In this chapter a brief outline is presented of the relevant 

theory of Markov processes and semi-Markov processes with particular 

emphasis on finite-state processes. The concept of equivalence 

between regular semi-Markov chains is introduced and the long-run 

behaviour of Markov chains with additive costs is then described. 

2.2 Markov Processes 

Given a probability space 

ion of random variables ] (X. : 

the indexed collect' 

is called 
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a stochastic process with state space X and parameter set (or index 

set) nf. In most applications t is the time at which X is observed 

and usually the only cases of interest are 

in which case is a discrete-time process, and (ii)'̂ P' = + — 

[0 
in which case is a continuous-time -process. For fixed 

t, X is a random variable taking values in the state space X : 

thus X. is the state of the process at time t. The state space OC 

may be discrete (ie. finite or countable) or continuous (for example, 

k dimensional Euclidean space, ̂ J*); but in this thesis we are con-

cerned largely with finite-state processes, that is, processes with 

a finite number of possible states. We may then without loss of 

generality take DC = J\J , — {l,2,...,Nf. Once 
X 

and r have N 

been specified the process JTL-^-X): t e IT} is denoted by the 

abbreviation 

A stochastic process l̂ -̂j-* -fL-^X): t £ HfJ is said to be a 

Markov process 
if 

is an infinite set and if, for every integer k, 

for every set of times T* : i = 1,2,.o.,k+1^ ordered so that 

t^ t^ < < t^ < ^k+11 every states £ X • 

i = 1,2,.o.,k+l|, and for every event E in X , = P L v , * E v x J ....(2.1) 

Property (2.1) is called the Markov property. It asserts that, 

given the "present state", , (interpreting t^ as the "present time"), 
k 

the future behaviour of the process is stochastically independent of 

every past value of the process. 

A Markov process with a discrete state space is called a 

Markov chain. Such a chain may be finite, in which, case we may 

take X = N , or countable in which case we may take X = N . N 



In a Markov chain the random variables are discrete and we can 

therefore work with probability mass distributions defined on the 

Xk 
,k= 1,2,... . 

For the Markov chain we define, for every k e I\J , 

Pi 1,...,i k
( tv-' t

k
) A p[ xt n

 = ii' \ = i k ] 

and, for every r £ ^ 1 , 2 , . . . , 

P.-
r+17 kl 1' ' 

\x 

("fc/1» • • • 1 ) 
r 

P L V . . = ir+1,#**,Xj- = 1 r+1 
X, = i ,.«.,X = i t „ 1 z r 1 r ] 

Then the Markov property (2.1) can be written in the specialized 

form 

"k+1 
(t ,...,t ) = p i v...i k 1 k+1 i k + 1 k (2.2) 

from which it follows that 

( t
1'--" t

k + 1
) = Pi •1""#,lk+1 1 * 1 X1 1 - r = 1 'r+1 

• (t ,t ^ l r7 r+1 r 

....(2.3) 

Thus if is a Markov chain, its finite-order distributions 

are uniquely determined by 

(i) the initial distribution p. (t„) 
1 

and (ii) the condition distributions p. 
r+1 

. (t ,t J, r = 1,2,... 1 r r+1 r 

Equation (2.2) is an assertion that the Markov property holds 

at the specified (ie. fixed) time tk« It turns out in the subsequent 

development that we sometimes need the Markov property to hold, not 

at a fixed time tk, but at some random time T. Let [x : t *T ] 

be a Markov chain and let T be a random variable, with values in r , 

defined on bhe same probability space. The random variable T is 
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said to be a stopping time for the chain iff for every 

t 6 T the event > t^ is independent of the posterior behaviour 

of the chain, {x^ : s > tj . Roughly speaking, if the value of T 

can be determined by observation of the chain [x^ then T is a 

stopping time if its value is determined by is 4 some 

t ^ T. For example "the time of the first occurrence of the event 

= i " is a stopping time; "tQ seconds before the first occur-

rence of = i "is not. 

It may be shown (for example, Chung ) that the Markov 

property holds at any stopping time: that is, if T is a stopping 

time for and if t is a positive time such that T' ̂  T + t 

then for t^,...,^ all less than T, 

Since any fixed time t, 
r is clearly a stopping time, 

property (2.*f) is a more general one than (2.2). It is known as the 

strong Markov property and it may be regarded as the defining charact-

eristic of a Markov chain. 

We now proceed to review those properties of finite Markov chains 

that will be needed in the sequel. 

2.2.1 Finite Markov chains in discrete time 

In this section we consider Markov processes for which 

X = f\J and T = Z . . 
As we have seen, such processes are M + 

completely characterised by the conditional probabilities connecting 

successive times of interest. We therefore introduce the one-step 

transition probabilities 
Pij(t) & p j x ^ = j | l t « i j , i,J & X 

and, more generally, the k-step transition probabilities 



P i j
( k ) (t) £ p{j xt+k = j llJ X 

An immediate consequence of the Markov property is that the 

p. (t) must satisfy the Cha-pman-Kolmogorov relation : -J 

p. ( k + r ) (t) = 
im 

p . ( . k ) ( t ) p . ( l ) ( t + k ) xlj jm ....(2.5) 

for every i,j,m £ X and every t.k.l £ T . 

In particular, with 1=1 equation (2.5) is a recurrence relation 

for generating the P^j^ (t) from the p ^ (t). 

In this thesis we are concerned only with Markov chains in which 

the transition mechanism does not vary with time, that is 

Pi3(t + to) = pid(t) • V 1 ' * e "X-

T 

Such a chain is said to be homogeneous (in time) and we denote 

its transition probabilities simply by p.. J 
(k) 

We now introduce the state probability vector 

[• p t A Col£Pl(t),.o.,pN(t)J 

±(t) ^ p|xt = ij , ie X J and the (1-step) where p 

transition probability matrix 

P £ M 
L 1 J J N X N 

Then, by the Markov property, 

T T 
Pt = Pt-1 P 

and hence 
T T Pt 

P p pt = 
T Pt 

P p 

....(2.6) 

(2.7) 

t th where P denotes the t power of P. 
f>£rnXts 

Equation (2.7)^the state distribution at any time t to be 

computed in terms of the initial state distribution and the transition 
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(k) 
probability matrix. Furthermore if P is the N x N matrix of 

k-step transition probabilities then the matrix form of (2.5) is 
....(2.8) p(k+l) = p(k)p(l) 

(k) ^k 

from which it follows that P = P^o 

The transition probability matrix P is a stochastic matrix: 

that is, a square matrix with real, non-negative elements and unit 

row sums. The properties of such matrices are well established 
(1975) (1975)\ (see, for example, Jinlar or Seneta J ): in particular, it 

can be shown that for any stochastic matrix P 

(i) pk is stochastic for every positive integer k ; 

(ii) the eigenvalues, A* , of P all lie on the closed unit 

disc [A: | Aj ; 

and (iii) X = 1 is always an eigenvalue of P. 
It is clear that the long run (t -> ° 0 behaviour of P^ and 

T 

hence, via (2.7)1 of p^ will depend on the eigenvalues of P with 

unit modulus and the associated eigenvectors. The form of the 

eigenvalue spectrum on the unit circle | X | = 1 is directly related 

to the availability of communication paths between the various states 

of the chain, a question which we now consider briefly. 

Let Ih denote the event that, for at least one integer k "> o, 

X. = i and let r. £ P H. X, = i . Then the state i is recurrent 
t+k 1 L 1 f J 

if r^ = 1 and transient if 1. Suppose that i is recurrent and 

that T^(k) is the time interval between the k ^ and (k+ 1)^ occupa-

tions of state i. Then T.(k) is a random variable with distribution 
1 

independent of k (by the strong Markov property the chain "restarts" 

at every visit to i). The expectation t^ is called the mean 

recurrence time of state i. In a finite chain t^ is finite for every 

recurrent state i. If the only possible values of are k, 2k, 3ki«.. 

for some k 1, the state i is periodic; otherwise i is ergodic. 
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In particular, if p ^ = 1 so that T^ is always 1 then state i is 

absorbing. 
( 9 o£r71 

Now it may be shown (for example, Chung ) that the state 

space X of any finite Markov chain.is the union of two disjoint 

subsets, 

X = XT u XE , 
where consists of all the transient states may be empty), 

X R consists of all the recurrent states, 

and no state in i s accessible from any state in Further-

more, 

may be uniquely partitioned into closed sets in each of 

which all states intercommunicate and are of the same type and period* 

(The set of states X A is closed if p£Xt+k e x
t £ = 1 f o r 

every k 0. Two states i and j intercommunicate if, for some k and 1, 

0 and 0.) The implication is that every finite 

chain consists of one or more recurrent subchains together, possibly, 

with some transient states and ultimately | will be absorbed into 

one or other of the subchains. 

The long-run behaviour of clearly depends on the number 

and nature of the subchains it possesses. Throughout this thesis 

our attention is confined to chains possessing a single ergodic sub-

chain (as well as, possibly, some transient states). Such a chain 

is said to be regular - in which case we also say that P is regular 

- and possesses the following properties: 

R.1 There exists a unique stationary probability distribution 

Tf ^ Col ( Tf , . o.., ̂ j^) satisfying 
(2.9) 

and, furthermore, 

-If = -X , i 6 x R 
1 

= 0 , i 6 0C T 
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Clearly if p = TT , then from (2.7) p. = TT for every time t O , L — 
and so is stochastically stationary. 

R.2 The chain is asymptotically stable in distribution: that is 

Lim 
pt = e T T T 

t-> & 
....(2.10) 

where e. — Col(l,1,...,1) , so that, for every pQ , 

Idm rp Dim T ^ 
p, p P 

t - t 

= ir 1 

Thus a regular chain always settles down to an equilibrium 

behaviour, which is independent of the initial state of the chain, 

and which is governed by the stationary distribution, •nr. 

R.5 The chain is strictly ergodic: that is, if : DQ £o,l| 

is the indicator function for state i then 

t Lim 
, t+1 t -> k=0 

^ "̂î k̂̂  = 7 surely. 

This means that for almost all sample paths of the chain 

the long-run proportion of time in which state i is occupied is 

equal to 

As we have already remarked, the long-run behaviour of a finite 

chain is governed by the unit-modulus eigenvalues of its P-matrix. 

In particular, the chain will be regular iff the principal eigen-

value, \ = 1, of its P-matrix is simple and is the only eigenvalue 

of unit modulus. In this case( the state distribution p^ can be re-

solved into steady-state and transient components. 

Let p ^ Dim Pt = e "TtT (using (2.10)) 
t-> <*3 

Then 
OO ©0 . co. p oO / N P P = P P = ( P ) ^ = P (2.11) 



cO 
so that, if P A P - P 

P r* SO p p 

whence 
oO t P + P 

Lim ~ t 
Note incidentally that P = 0. t«» 
Using (2.13) in (2.7) we obtain 

T tt-T T ~t >. = n + p P t — o 

....(2.12) 

(2.13) 

....(2.1**) 

T ^ t 

The rate at which the transient term pQ P decays is governed by 

X2, the eigenvalue of P with second largest modulus (since if the 

spectrum of P is [ 1, X?J A.,, •.. ̂  that of P is J 0, X , A , . . ). 

2.2.2 Finite Markov chains in continuous time 

We next consider Markov processes for which DC = j\l 

'T" = 1 ie. continuous-time Markov chains. The sample paths 

of such chains are random step functions in which instantaneous jumps 

between states are made at randomly occurring times. As before we 

confine our attention to homogeneous chains in which the transition 

probabilities are invariant with respect to translations in time. 

Corresponding to the k-step transition probabilities in discrete 

time, we now introduce transition probability functions 

p. .(X) A, iJJ D 
p |  Xt,x = i 

with t, X €t T"'. 

The transition function matrix 

xt = = ij , i,j DC 

P(x) A [pia(x>] N.xN 
must satisfy the continuous-time Chapman-Kolmogorov relation : -

p(x + x 2 ) = P(X 1)P(X 2) 
....(2.15) 
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The time interval between entry into a (non-absorbing) state and 

subsequent exit from the state is called the so.iourn time (or holding 

time) in that state. If sf^ i s the k b b sojourn time in state i it 

follows from the strong Markov property that the random variables 

...o ar.e independent and identically distributed. How-

ever to maintain the Markov property at every point in T more is 

needed : the sojourn times must be exponential random variables. That 

is, the distribution function F^ : —> mus1: have the 

form (see, for example, Cinlar^9''7'^) 
-yK t 

F. (t) = 1 - e 1 1 , t > 0 (2.16) 
l ^ 

for each i £ X . 
It follows that for small At, regardless of the entry time into 

state i , 
p£ xt+ At ct = ij = A t + o(At) 

..(2.17) 

Thus with probability jx^ A t the chain will leave state i in the 

small interval (t ,t+At), and by the Markov property the destination 

can depend only on the state i. Define the next-jump -probabilities , 

rij ' b y 

rij - P [ x t + A t 88 a xt = i ' xt+ At * ' 3 
(2.18) 

i.e. r. . is the probability, given the occurrence of a jump out of ^ 3 
state i, that the destination will be j. Clearly r.. = 0 , Vi ® X . 
(Note that this argument holds only for non-absorbing states. If 

state i is absorbing, then F. and r. . are not defined. In such o ° l l j o ou 

a case it is convenient to allow "pseudo-jumps" from i into itself: 

we can then take F. to be exponential with an arbitrarily-chosen 
o 

parameter ^x^ and the next-jump probabilities for by 

° r. . = 0 , } / iQ 
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It is then of course no longer true that r X ) 
It is now convenient to introduce transition intensities, q. 

defined by 

. A r. . 
13 — / 1 13 

* - a E ik 

, 3 / i 

3 = i ....(2.19) 

Then from C2.17) and (2.18) it follows that 

P. .(At) = q. . At + 0 (At) , j / i 13 13 

= 1 + q ± i A t + 0 (At) , j = i ....(2.20) 

The intensity matrix 

Nx N (2.21) 

is the continuous-time counterpart of the transition probability 

matrix P of a discrete-time chain. By considering an appropriate 

form of the Chapman-Kolmogorov equation it may be shown that the 

transition function matrix P(x) satisfies the differential equation 

P(-ir) = P(X) Q 

with initial condition p(o) = I. 

The solution of (2.22) is 

....(2.22) 

P(-tr) = exp (Qt) ....(2.23) 

is and so the state probability distribution at any time t e 

given by 

....(2.2*0 

Now, setting X = 1 in (2.23) yields the matrix P(l) = exp (Q). 

Thus if A^,..., A ^ a r e eigenvalues of Q and A,̂ , 

are the corresponding eigenvalues of we have 



whence 
X. = log X. 1 ° 1 i = 1,2,...,M 

But P(l) is a stochastic matrix and hence its eigenvalues are 

all on the unit disc JX| ̂  1; we therefore conclude that the 

eigenvalues of Q are all in the closed half-plane Re (A ) ̂  0, and 

that corresponding to the principal eigenvalue X = 1 of P(l), 

Q has a principal eigenvalue X^ = 0. 

The classification of states for discrete-time chains carries 

over to continuous time (with the exception that periodic states 

can no longer arise). Furthermore, if the chain is regular, the 

following properties hold : -

R.*f There is a unique stationary distribution which satisfies 

the equation 
m m 

C Q = 0 ....(2. 

R.5 The chain is asymptotically stable in distribution: that is 

(2. 
Lim 

exp(Qt) = e CT 
t -> os 

so that, for every pQ , 

Lim m 
P t = 

t->oo -

as in the discrete-time case. 

Ro6 The chain is strictly ergodic: that is 
.T Idm 

I.(X.) dt = <5\ , 
i t I almost surely 

v/here I. 
: X -> {0,1} is the indicator function for state i. 

A continuous-time finite chain is regular iff the principal 

eigenvalue, = 0, of Q is simple. In such a case we have, in 



analogy to (2.13) 1 

where 

and 

OS • <-J 
P("C) = P + P (-t) 

Dim ^ 
P (x) . = 0 

. . cO cX>r^ 
P (x) P = P P (x) 

ih. 

....(2.27) 

2.2.3 Finite semi-Markov chains f 

The matrix R ] r. . of next-jump probabilities (see (2.18)) 
L 1 J J N x N 

may be regarded as the transition probability matrix of a discrete-

time Markov chainjCx^ : JTL -> : t e • I f w e identify 

the sequence of points 0,1,2,... in *Z + with the sequence of random 

times 0, T , T^,... in at which the continuous-time chain 

changes state then ̂  is said to be embedded in and is called 

the embedded chain of the original continuous-time chain . It has 

the special property that the diagonal elements r ^ of its transition 

probability matrix R are all either zero (non-absorbing states) or 

one (absorbing states). 

The closed subchains of ̂ X J correspond to the closed subchains 

of ̂ XjJ » s 0 that if ike latter is regular then so and a unique 

equilibrium distribution will exist for each chain. These two equili-

brium distributions will not in general be identical since that of {x 

will depend on the so journ-time distributions whereas that of £ X "j will 

not. In fact if GJ and TT are the equilibrium distributions of 

respectively, we have (see Appendix) 

, V i £ X 
....(2.28) 

where IX ^ E = 7 m e a n so.iourn time in state i. 

Note that = 0 iff "TT̂  = 0 (we ignore the possibility of so-

called ephemeral states for which = 0) in which case state i is 



transient. Otherwise i is ergodic and then C. and give 

(almost surely) the long-run occupancy of state i as a relative 

duration and as a relative count, respectively. 

The concept of an embedded chain is clearly a general one. 

Thus, for example, if ^X^J is a discrete-time chain we may introduce 

an embedded chain whose index set Hf is the set of times 

t € D2+ for which ^ ^ . The sojourn times S^ are then 

discrete random variables whose distributions are geometric. 

The equilibrium probabilities of and ^ ^ in the regular case 

are again related by (2.28). 

We thus have an interpretation of any finite Markov chain 

: t €: T" | as a discrete-time chain : t £ embedded 

in the index set r in such a way that the sojourn-time distributions 

F. are all exponential (if I = K ) or geometric ^ T = 2 1 ) . 
1 T T 
Suppose however that the sojourn-time distributions, while still 

dependent only on the current state, were not exponential (continu-

ous r ) or geometric (discrete ̂ X )• The process would then no 

longer be Markov in 1 but the Markov property would still hold at 

the jump times t^,t2,... at which changes state. Such processes 

are called semi-Markov chains (or semi-Markov processes) and they 

are of considerable interest for the following reasons (a) They 

constitute a general class of processes of which Markov chains in 

discrete and continuous time are special cases; (b) certain more 

general stochastic processes called semi-regenerative processes 

(see, for example, Cinlar^*^^)which arise in queueing theory, 

always possess an embedded semi-Markov chain; and (c) semi-Markov 

chains are closely related to renewal processes (see, for example, 

and so provide a link between two distinct branches of 

applied probability theory. We now briefly review the main properties 

of this class of process when the number of states is finite. The 
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theory is mainly due to Levy^ 9 9^, W.L. Smith^999^ and Pyke^9^ai 

1 9 6 l b \ with further developments by Cinlar'19"9a'1969b) and Tettgels 
(1968) 

Jinlar 

. An excellent survey of the theory has recently been given by 
(1975) 

The joint process {(x
n : JL N N),(T : SL ): n 6 ] 

is called a (finite) Markov renewal process with state space N w , 

I X • T T \ o' ' n ' o' n 

....(2.29) 

if (i) 0 = Tq ^ T ^ T2 ^ ... 

and (ii) for all n € 3 e 1 t £ T " , 

= j ' A T n + 1 £ * 

= A T n + 1 « t | x j 

where AT £ T - T „ n n n-1 

Assume the process F^n'^nl is homogeneous in n and define the 

transition functions 

f. .(t) £ p[x = j , At ^ t 
13 n+1 d ' n+1 ^ 

i,j € t e T ....(2.30) 

(To exclude the possibility of ephemeral states, assume that 

F. j(o)=0, \/i,3 N k ) 

The matrix F(t) £ F. .(t) is called the semi-Markov kernel 
r 1 J N x N 

of the process Trom it w e derive the following quantities: 

(i) p. . £ p[x „ = j 
13 L n + 1 

Lim 
F (t) , i,j 6 N , t 6 T 
' " ....(2.31) 

(ii) G. .(t) pFAT ^ t 
13 L n+i ^ 

F. .(t) 
~ p. . 

13 

X — i , X n ' n+1 

if p. . 4 0 !3 

• 4 

£ 1 if p. . = 0 ^13 ....(2.32) 



(iii) H.(t) * p [ AT n + 1 « t Xn = i] + 

(2.33) 

The process iT ̂  best interpreted as a Markov chain 

x j . with transition probability matrix P ^ {j*!^ N' 

embedded in the index set T by the mapping n \r> T (w). 

Given (X^=:i, T̂ rr t) we can suppose the transition to 

(Xn+1, to be generated 
either (a) by the selection of X from the conditional state n+1 

distribution p. . , j = 1,...,N, followed by the selection of v) 
from the conditional sojourn-time distribution ^.^Ct), 

v/here j is the value of ; 

or (b) by the selection of A T . „ from the unconditional — J n+1 
sojourn-time distribution H (t), followed by the selection 

of from the time-dependent conditional state distribu-
tion p̂ .(i,j) defined by 

pt(i i,j) A P]x ^ = j X = i ; A T = t| 
L ^ n 1 J y 

6 N n , t ^ T , ....(2.3^) 
There are some obvious relations between the functions F. G. ij ij 

H. and p, defined above which we now list : 1 w 
F. .(t) = p. . G. .(t) , Vi'O e V t f e R , 1J v N W 

t ....(2.35) 

Fid(t) = I . Pt(i,j) dH.(t) , \/i,j e y t £ 
0 ....(2.36) 

H.ct) = 21Fij(t) ' V** Vt 6 
j — ( 2 . 3 7 ) 

Now for any t T ' let the random variable N ^ ̂ : X L 

denote the number of transitions into state i in the interval (o,t], 

and let N^ 4: ^t*^' ^h-en "the integer-valued process 

< N^ : t £ I V counts the total number of transitions in the interval 



(0,tj , and is called the renewal counting process associated with 

the process ̂ X^, T^ . 

The stochastic process SL-* t £ T ' j defined by-

setting 

x. ^ \jt — ( 2 . 3 8 ) 
t N V t 

is called the semi-Markov chain associated with the process ' 

and^X^j is its embedded Markov chain. The relationship between 

these processes when T = P, 
is illustrated in Fig.(2). 

Notice that in the above definition of a semi-Markov process, 
the embedded chain^ X̂ J is allowed to make self-transitions, ie. the 
diagonal elements p ^ of the transition probability matrix are not 
necessarily zero. In applications, however, it is usually natural to 
work with semi-Markov processes in which the embedded chain defines 
changes in state, so that necessarily p.. = 0, V i e N . (But see 
Section 2.2.*f). Note also that in some applications the time incre-
ment AT is statistically independent of the destination state 

^ n+1 
X . so that G. . = H. , V i £ IM , but this constraint does not n+1 IJ V J N simplify the analysis of the process. 

The random times T^, T^,.... are stopping times for the semi-

Markov chain CX. ' and the Markov property holds at each T ; unless, . t n 
however, the sojourn-time distributions IE are. all exponential (for 

X - Pb+) o r geometric (for X = "the Markov property does 

not hold for ̂ X "J at points between the times T^. 

The classification of states for a semi-Markov chain ^ X ^ 

follows that of its embedded chain ^ X ̂  . Thus state i is recurrent 

in ̂ X ^ iff it is recurrent in^X^. Furthermore, except in rather 
(1975) 

special circumstances (see Cinlar the recurrent states in 

^X ̂ can be assumed to be ergodic. As before, a chain possessing a 

single ergodic subchain is said to be regular and for such semi-Markov 
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chains we have the following long-run properties (cf. R.1 - R.3 

in section 2.2.1 and R.4 - R.6 in section 2.2. 2). 

Suppose that, for the recurrent state j , 

W ] . i.J e « « T 

Then : i s the distribution function of the 

so-called first passage time, from state i to the recurrent 

state j. 

K. .(t) = 10 P 0 

Let 

•cO 
t dK. . (t) 10 

ko. 

and let 

mean first passage time from i to j 

T . ^ E i [ At „ x = i L n+1 n J 

ob 
t dH. (t) i ....(2.39) 

= mean sojourn time in state i 

Assuming that "XT. •< oO , , we then have 

R.7 I f H = ColClf is the unique stationary distribution 

for the P-raatrix of the embedded chain ^ 1 then the mean recurrence 

time, /a.., of any ergodic state j is given by (see Appendix) 
1 30 

/ 3 3 1 1 
i a X R 

• V 3 « "DC. * R 

where is the set of recurrent states in INI R M 
R.8 For any recurrent state j , 

....(2.^0) 

Lim 

t -> 00 
P [ X f 3 | X o - r ] = ^ ....(2.^1) 



This result, which is demonstrated in the Appendix, shows that 

^ X ^ has a long-run distribution over which is independent of 

the initial state Xq. For, defining 

I d L m r 
ff . A P| x = d 

and using (2.*tO) in (2.*fl), we obtain 

- 0 

Tt. X . 
= ^ 3 , V d e X r 

....(2.*f2) 

and since ^ | (5"\ = 1 it follows that the probabilities 

form a distribution over 
In fact, since X = <r. 

3 u H R 3 3 
= 0 for any transient state 3" in N , we can write (2.*f2) in the 
form 

. V j N K 
(2.*t3) 

This is a key result for semi-Markov chains; it shows that the 

equilibrium probabilities 0\ depend on the semi-Markov kernel F(t) 
3 

only through the means T". of the so3*ourn-time distributions H. and 
3 3 

the stationary probabilities x . of the embedded Markov chain. 

Equation (2.28) is a special case of (2.*f3)« 

R.9 The semi-Markov chain ^X^ is strictly ergodic: that is, if 

I.: IM is the indicator function of state i, 
1 N 1 

T 
I. (XJ dt = C\ , almost surely 
1 u 1 

Idm 

T oO 

This result confirms the intuitively reasonable idea that 

(on almost every sample path) the long-run proportion of time spent 

in an ergodic state i should be the ratio of the mean so3*ourn time in 



i to the mean recurrence time of i. 

R.10 The equilibrium mean sojourn time, 

Idra r -» 
X ^ E [ a t J , 

n c>o 

for \x is given by 

....(2.¥f) 

since E [ A T J = E [ E [ A T n | X n J ] 

i M 

2.2.*f Equivalent chains 

From the preceding Sections we conclude that finite semi-Markov 

chains constitute a fairly general class of finite-state process 

which includes Markov chains in discrete and continuous time as 

special sub-classes. To be specific, the semi-Markov chain 

{(Xt: : t fcT} is 

(i) a discrete-time Markov chain if - ^ ^ 

either (a) every sojourn time AT n is equal to unity so that 

Tn = n' 

or (b) the sojourn-time distributions ID are all geometric, 

ie. *D(t) = 1 - (V/e may then interpret^ as the 

self-transition probability, P^? of state i of some 

underlying Markov chain with ^T = ni V n 6 

(ii) a continuous-time Markov chain if = R,. and the sojourn-
-M^t 

time distributions are all exponential, ie. H ( t ) = 1 - e ' 

(It is perhaps worth remarking here that the associated Markov 

renewal process ̂ X^ , T | is a generalization of an ordinary renewal 



process, since if the state space of lx
n 3 contains only one point l x ] c n J 

(N= 1) then is an ordinary renewal process.) 

We have previously defined a general semi-Markov chain ̂ .X ̂  in 

terms of an associated Markov renewal process Ia^iT^. The sample-

paths of are then completely determined by the semi-Markov ker-

nel F of the underlying process . However, if self-transitions 

are permitted in^X ̂ the converse is not true: the sample-path behaviour 

of n o b sufficient to determine the kernel F uniquely, since 

self-transitions in^X^are hidden in the observed process • 

Consider two Markov renewal processes J and^X f,T 1 j , 

v/ith the same index set T , the same state space IM^, and with 

serai-Markov kernels F and F • Let us say thatU ,TJ and^x' T'] are 

equivalent - or, F and f' are equivalent - iff they generate 

statistically identical semi-Markov chains, ^ ^ • a 

trivial example, all ordinary renewal processes are equivalent, since 

in each case the associated semi-Markov chain exhibits no transitions. 

Now if the semi-Markov kernels F and f' are equivalent then the 

associated semi-Markov processes ^ ^ 

(a) possess the same communication structure: that is if P and 

P1 are the transition probability matrices of the embedded chains 

[ x j and [ \ ] , 

Pid > 0 p/. > 0 , \ji, / i 

and (b) possess the same long-run properties; in particular if 

- and hence also - is regular, the equilibrium state 

distributions are identical: that is 
<r = or' , V i * N 
l l 1 N " 

In optimal regulation problems it is only the communication 

structure and the long-run properties that are significant. It is 

therefore useful to widen the notion of equivalence and to say that 



two regular semi-Markov kernels F and F1 (defined on the same state 

space and the same index set) are weakly equivalent if their assoc-

iated semi-Markov processes possess the same communication structure 

and identical equilibrium state distributions. This weak type of 

equivalence is useful because the equilibrium properties of a regular 

chain depend only on the stationary probabilities, if., and the mean 

sojourn times, and not on the precise form of its semi-Markov 

kernel F. Thus any changes to F that leave the products ""̂ i 

unchanged will, by (2.4-3), produce a kernel f' that is weakly equiva-

lent to F (provided that the changes do not alter the communication 

structure). 

(Equivalence has been defined as a relation between semi-Markov 

kernels. In what follows the term "equivalent chains" means chains 

with equivalent kernels.) 

Given any non-trivial regular chain it is possible to 

construct an equivalent canonical chain by suitably modifying 

the semi-Markov kernel, F, of . (By a non-trivial chain we mean 

one whose recurrent subchain does not consist of a single absorbing 

state, so that p.. < i , V i €: [\| .) 
11 » ^ 

Let if A Col (<,..., ....(2.^5) 

£ A Col(ff,..., (Tjj) (2.46) 

£ £ Col(T ...,t n) (2.47) 

The transformation to the canonical semi-Markov kernel F° changes 

It and tJ but leaves £ unchanged. It works by replacing the embedded 

chain \x by a new embedded chain {.X^j in which there are no self-

transitions of the form i->i. (Recall that the embedded chain of a 

continuous-time Markov chain is of this type.) Thus if P°£ I p.°. 
c— 7 --«xN 

is the transition probability matrix of ̂ X^ J, we choose, for 

all i,j 6 IM , 
N 



o _ . p. . 0 , 0 = 1 10 

= Pi'1 , j / i ....(2.48) 
1 - p.. 

so that the p? . are (for j / i) the next-jump probabilities associated 10 
with {x\. 

Now embed ̂ X ^ in X via the Markov renewal process ̂  X^, T^^ , 

where T° is the time of the n̂ *1 change of state in the original semi-

Markov process ĵ X : the associated semi— Markov chain is then 

equivalent to ̂ X The relationship between is 

illustrated in Fig.(3). 

Although the chains ̂ X^ and have the same sample-path 

properties, their semi-Markov kernels F and F° are different. In 

fact, from (2.48) we have 

>° = I - (j>(I - P) 
(2.49) 

where 

A diag(^,...,{ZfN) 

with 

tf. a (1 - p.j" 1 , V ± 6 N 
1 V N 

Note that the matrix is non-singular. 

Except when P has a special structure, we can say that if P is 

regular then so will P° be. For, from (2.49), the rank of (I-P°) 

equals the rank of (I-P), which implies that the principal eigen-

value, X = 1, has the same multiplicity in P° as in P. Thus if P 

is regular P° will have a simple eigenvalue \ = 1, and -provided 

there are no other eigenvalues of P° on the unit circle Ixl = 1, 

P° will be regular. If P° does have some unit-modulus eigenvalues 

other than X = 1, then (see, for example, Chung ) every recurren 

state in is periodic with the same period and the matrix P° 

is said to be periodic. (Properties R.1 - R.3 in Section 2.2.1 
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then hold in modified form.) 

We shall pay no further attention to periodic chains, since 

(a) results for regular chains are easily extended to the periodic 

case, and (b) we shall normally use the transformation Jx^ 5 

in conjunction with a second transformation ^ -> ̂ X*^ which will 

restore regularity. 

The stationary distribution , TC°t of P° satisfies 
T T 

(TT°) P° 

ie., using (2.*f9)» 
T 

ftf) (jj> (I - P) T (2.50) 

But since 11 is the unique stationary distribution of P, and 

since <£> is non-singular, the only solutions of (2.50) are 

T 
> c irT J-1 dt°) > c irT J-1 , C e R , 

....(2.51) -L 
, C e R , 

....(2.51) 
TfO and to make U a probability distribution, we require that 

c = ( H T | " 1 e ) 
- 1 

....(2.52) 

Now consider the new sojourn-time distributions, IL , i = 1,...,N. 

These are not, in general, simply related to the original distributions 

IL • we can however, by means of a simple renewal argument,relate the 

new mean sojourn times "U? to the original times £1. We have, at the 

m n ' 

x° 'm+1 m 

E [ E [ A T m + l | X n = i ' X n + l ] ] 

= ' [ W 1 t = i] E [AT0 „ n J L m+1 X = i , X • / 1 n ' n+1 

+ P X, = i X = i E At° „ X = i, X = i L n+1 | n J L m+1 n n+1 J 

= (1 - Pu) E |xn = i ] 4-
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+ p . . (E [AT „ p n+1 x = il + e[at° X°= il), n J L m+1 m J 

where, in deriving the second term on the right-hand side, we have 

used the fact that = a r e^ e n e r a^ o n "Point for the 

process 
—p-O . X . is 1 

The above relation expressed in terms of X - and 

= (1 - p..) X . + p..("C. +X?) li li l (2.53) 

and since this holds for each i in iNl we have \ N 

....(2.54) 

If we now use (2.51) and (2.54) in (2.43) we find that, for 

any j m N . , N 

•1 1 
T 

cir°) x { 

it T 

so that = as required for equivalence. Also, from (2.44), 

the new equilibrium sojourn time X is given by 
T 

X ° = (It0) t° = c X (2.55) 

where c is given by (2.52). 

Since the equilibrium distribution of the canonical chain 

depends on the sojourn-time distributions H? only via the vector 

X ° of mean sojourn times, any change in the IL which leaves X 0 

unchanged will result in a chain weakly equivalent to L ^ I and hence 

to the original chain In particular, if T ' = there 

exists a continuous-time Markov chain with sojourn-time distributions 

H?(t) = 1 - e i , yi 6 t\l which is weakly equivalent to j ; and 

if T = "tkere exists a discrete-time Markov chain with geometric 
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sojourn-time distributions H*(t) = 1 - (1 - ec?)"1) ,Vi * t ^ M 

which is weakly equivalent to - provided that (c?) 1 
"C 1 1 

(for otherwise we would have at least one less than the time for 

one transition in the equivalent Markov chain, which is impossible.) 

Given a canonical chain we can construct an equivalent 

chain ^ having the same mean sojourn time for each state. 
Let 

*X £ m i n 
min fa] 

( 

and, for some fixed k £ (0,l] , let 

(2.56) 

....(2.57) 

(If the chain is discrete (ie. X = it is advanta-

geous to choose k so that X ; see comment after equation 

(2.71 X) 
Then reduce all mean sojourn times to X Q by introducing 

* fictitious self-transitions i — i with probabilities p.., i = 1,...,N, 11 
such that, as in (2.54) , 

(2.58) 

where 

with 

A diag 

- 1 
c ^ (1 - P ± V , e N n 

and where, to ensure that T £ Col ("C*,. .., " O = x e we must ' — 17 ' N o — 
have 

so that 

"t° = 0T X o , V i ^ N 
1 I O * M 

p.. = 1 - , Vi * N 
n-0 ' * >4 

(2.59) 

(2.60) 
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and, as in (2.48), the off-diagonal elements of the new transition 

probability matrix P must satisfy 

ij 
ij 1 - p.. 

3 / 

Thus P* must satisfy (see 2.49) 

and so, since 

= 1 " i * P * ) 

is non-singular, 

....(2.6l) 

....(2.62) 

....(2.63) 

The semi-Markov chain ^X* | with transition probability matrix 

P* given by (2.63) has, by (2.58 - 2.60), a mean sojourn time of X Q 

in each state i, and it is easy to verify that for | we have the 

equilibrium properties 
T JL" f 

nr*) = (c*r 1 or 0) <| 
T 

where 
T -r * 

= 3? e 

and 

G 

....(2.64) 

....(2.65) 

....(2.66) 

so that is equivalent to and hence to any semi-Markov chain 

W eluivalen't to 
* 

Note, that on using (2.58) in (2.65) with X = X _e , we have 

if ....(2.67) 

so that, from (2.64), 
o 

T . 
< • — ( 2 . 6 8 ) 

a result which is intuitively acceptable as the relationship between 

the stationary probabilities of the embedded chains of and 
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There are three final points to be made in this Section: 

(i) It is clear that equivalence as defined in the present context 

is a proper equivalence relation on the class of finite semi-Markov 

kernels defined on the same index set and same state space. Each 

equivalence class contains a canonical kernel F° characterized by 

zero self-transition probabilities; and, as we have shown above, each 
* 

equivalence class also contains a kernel F which generates equal 

mean sojourn times for all states. 

(ii) Suppose that equivalent to a given canonical chain con-

struct, by the procedure described above, a chain j with mean 
sojourn times all equal to "t̂ - The detailed properties of | are 

* determined by its semi-Markov kernel F and this is not simply related 
O 4* 

to F . However, we can construct a semi-Markov kernel F which is 

weakly equivalent to F*, and hence to F°, by choosing 
G?.(t) = 0 , t < X 13 o 

1 , t ^ x q ....(2.69) 

for every i, j €= N.., so that (almost) all sojourn times are equal 

to X . o 
If we also choose 

+ * p. . = p. . 
13 *i3 

, V 1 ' ^ (2.70) 

and then use (see (2.35)) 

Ff.(t) = p+-. G?.(t) , \/i,j £ N , Y t £ R 13 13 ' N 1 * 
(2.71) 

we shall create a chain with semi-Markov kernel F+(t) £ 

FT .(t) , which is weakly equivalent to |X \ but whose tran-
U "IxN * z 

sitions are regularly spaced in I . (N.B. The reason 'for choosing 

k in equation (2.57) so that X €: T should now be clear: it is 

only possible to choose the according to (2.69) if "CQ 6: T" ) 
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(iii) The successive transformations [x^ — > 2111(1 ^ ^ 

can be combined by using (2.49) in (2. 63) to obtain 

P* = I - <J>(I - P) (2.72) 

where _ / 

i - -1 
....(2.73) 

It is easy to verify that 

$ • diagCgT ,.. . .... (2.74) 

where 
X 

= , V 1 * M ....(2.75) 1 i ' M 

and that P is a stochastic matrix. 

The concept of equivalence defined in this Section turns out to 

be a useful one in the study of the optimal regulation problem, in 

which it is average equilibrium properties rather than detailed 

sample-path properties that are of principal interest. 

2.3 Markov chains with costs 

In this thesis we are concerned with Markov chains which repre-

sent dynamic systems with which are associated certain operating 

costs or running costs. The general problem considered is that of 

minimizing the average operating cost per unit time over a long period 

of time by controlling, where possible, the transition probabilities 

of the system. A precise statement of the problem is given in Section 

3-2 of Chapter 3 • In this Section we define the cost structure to 

be considered and, since it is the long-run behaviour of the system 

which is of primary interest, we examine the asymptotic form of the 

total incurred cost as the operating time increases indefinitely. 

2.3»1 Discrete-time chains with costs 

Consider a homogeneous, regular, finite, discrete-time chain, 

[(X. : J l 
):t 6 Z , ] , with transition probability matrix P. U p M + ' 
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With each one-step transition X X, let there be associated a t+1 
cost whose value depends only on and ; more pre-

cisely, let there be a bounded function c : [\|2 R such that if 
H 

= i, = j the cost of the transition is c(i,j), for all 

(i,j)« Nf . 
Define, for each i £ N „ M 

o(± £ E^c(Xt, X t + 1) Xt = i] ....(2.76) 

Then 

= 2 P i j ^ j ) ' > V 1 * n k 
J E N. N 

....(2.77) 

and since the costs are bounded all the will be finite, oi. is 
1 1 

the expected one-step cost from state i. 

Define also, for each i conditional expectation 

k+n-1 
v.(n) A ° ( X f W ^ = 0 

t=k ....(2.78) 

(Because is homogeneous the expectation is independent of k.) 

Then (see, for example, Howard the v (n) satisfy the 
i recurrence relations 

v.(n) = + 2 1 P i d V n - l ) ' V i 6 N N 

j£ N M 
or, in vector form, 

(n) = + P v(n- 1) 

(2.79) 

(2.80) 

where * £ Col (<*,...,*) 

v(n) £ Col (v (n),...,vN(n)) 

From (2.80) v/e deduce immediately that, with Av ^ v(n) - v_(n - 1), 

A A ....(2.81) 



and assuming, as we always shall do, that y_(o) = (D (no terminal 

costs) we find from (2.80) that Av^ = ®< , so that 

....(2.82) 

Now since the chain {x."̂  is regular, equation (2.13) holds so 

that (2.82) can be written as 

Av = e"TtT + P11"1 oi •n (2.83) 

whence 
•Lim 

iW = — n = c< e iW = — n 

where 

(2.8*0 

....(2.85) 

Note that "TT is the stationary distribution of {x ^so that oC is 

the equilibrium one-step expected cost for • Equation (2.8*0 states 

that, whatever the state X^, for sufficiently large n the expected value 

of the cost increment c(X, , X, ) is oC • It follows from (2.83) 
t+n-v t+n 

that v(n) is asymptotically linear in n : that is 

Lim 
n 00 

which we write as 

Ĵ v_(n) - nc< ̂ J W 

v(n) r<sj n c< _e + CO 
(2.86) 

where, to ensure that (2.80) is satisfied, the constant vector 

must satisfy 
(I - P) w = <* _ R̂ £ (2.87) 

Since e is a null-vector of (I-P), W is not completely deter-

mined by (2.87). But we also have, from (2.80), that 

IT v (n) nc< + v(o) 
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which, on using (2.86), gives 

,rfT = 1TTv(o) = 0 

The unique solution to (2.87) and (2.88) is 

(2.88) 

^ -1 to = (I - p) * - o( e 
....(2.89) 

Note that the inverse (I - P) always exists when is 

regular. 

We shall refer to <X as the cost rate of the chain {.X^ and 

t o as the corresponding value vector0 It plays an important role in 

some of the optimization algorithms to be discussed in Chapter 4. 

2.3.2 Continuous-time chains with costs 

Now consider a homogeneous, regular, continuous-time chain 

^(Xp JTL-> N^): t £ with transition intensity matrix Q. 

Suppose that the transition times of are T^JT^JT^,... so that, 

if s X \ is the embedded chain, X. = X when t 6 IT ,T ). Associate L n) . t n Ln' n+1 
v/ith [X^ a running cost of c(^) per unit time; more precisely, let 

there be a cost function c: ]\l x R , R such that if 
N v + 

Xm = i and AT „ "!> t, the cost incurred between time T and T n+1 1 n n 
time T +1 is c(i).t. Also associate with a transition cost 

d(X^ , X^ ), that is, a function d : P J 2 such that if 
n n+1 

Xfj, = i and X^ = j the transition cost incurred is d(i,j). (Since 
n n+1 

j / i , the values of d(i,i) are of no significance.) 

Define, for each i £ N 

M Lim 
E 

c(Xt+^t}- c(Xt} 

dt->o 

Then (see Howard^ ) 

At 
xt = i 

P i = c(i) + t q ^ a(i,a) , t N 
' J / i ....(2.90) 
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is the expected cost rate in state i. 

Define also the conditional expectation 

.ct) - E [ y 
t + t 
c(Xt)dt + ^ d(Xfp ,X )l X = i 

A r 4 k-1 k J o J k ^ 
A-

T, ^ T , (t ,t 4-t) (2.91) 
k-1 k o' o 

(The expectation is independent of tQ by homogeneity.) 

Then (see Howard^1 ) the v±(t) satisfy the differential 

equations 

v ̂t ) = P i - 2 Oi 3'j ( t ) . v * « N n 
....(2.92) 

or, in vector form, 

....(2.93) 

where ^ A Col 

v(t) A Col (v1(t),...,vN(t)) 

Equation (2-93) is clearly the continuous-time analogue of 

equation (2.80), and as in the discrete-time case we can show that 

v(t) is asymptotically linear in t : 

v (t) r-/ t g e + U) 

where 

and 

...(2.9*0 

...(2.95) 

...(2.96) 

<T being the stationary distribution of . 
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2.3-3 Semi-Markov chains with costs 

We now come to the general case. Consider a regular semi-Markov 

chain : SL-> t 6 T*} with semi-Markov kernel F. Using the 

notation of Section 2.2.3 and letting fat A t-T for all t £ 

suppose that with each transition X^ —> X̂ , there is 
n n n n+1 

associated a cost which accumulates, as At increases from 0 to AT n+1' 
according to the cost function c : At Y-> c(At ; X™ jX-, ,AT ). We assume 

n n+1 n + 1 

that c is a non-decreasing function of At and that cCOiX™ ,Xm , AT7 ") = O 
•L -L ri+l n n+1 

Now define the transition cost 

C(XT i X t ATn ) A c( AT ;XT ,XT AT ) 
n n+1 n n+1 

and, for each i € N , 
N 

X * EfcCXj.Xj ,AT ) x^ = i ] 
n n+1 n J (2.97) 

Then V Col(^ , .. • is the vector of expected one-step 

costs of the chain ̂  X ^ . 

Also define, for each i 6 
N 

k +n-1 
jQ. 

i ( n ) - e L > D c ( x V \ xt„ = 0 y-L 1 k k+1 k -J k=k 

and 

L o o T, - 0 

(2.98) 

....(2.99) 

Then ( see Appendix) the vectors 

v(n) a Col(v (n),...,vN(n)) and t_(n) £ Col(t (n),...,tN(n)) 

satisfy the recurrence relations 

v(n) = Y + Pv(n-1) ....(2.100) 

and 
t (n) = + P t (n - 1) ....(2.101) 

with initial conditions v(o) = t(o) = 0 . 
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It follows, by an argument parallel to that following (2.8o), 

that when ^XR is regular 

and 

Dim 

n oc 

Dim 

n -> ®o 

•n 

At •n X e . 

(2.102) 

(2.103) 

where 

and 

5 A XC £ K ( equilibrium mean cost/transition) 
•—• . ip 
X — X (equilibrium mean time/transition) 

It follows that, for any i £ IM , 

Dim 

n oO 

v.(n) - v.(n - 1) 1 1 
t. (n) - t. (n- 1) . 1 1 

= c 

v/here 

....(2.104) 

....(2.105) 

It seems reasonable to speak of c as the cost rate associated 

with the chain . 

In fact v_(n) and jt(n) are asymptotically linear in n : 

v(n) r̂ / n ^ .e + 

t(n) n X e. + 

(2.106) 

(2.107) 

where ^ and are fixed vectors. 

Multiply (2.107) by "c and subtract from (2.106): we obtain 

v_(n) <v c _fc(n) + £ 
(2.108) 

where £ a, ^ - c ^ . 

Thus the expected total cost over n transitions increases, for 



sufficiently large n, linearly with the expected total time for the 

transitions, the rate of increase being c. 

Furthermore, on multiplying (2.101) by "c and subtracting from 

(2.100), we obtain 

vGi)-c'Jt(n) = f̂ - cT X + p£v(n - 1) - ~ _t(n - 1) J 

(2.109) 

Now let n -> od and use (2.108) : there results 

....(2.110) 

This equation is the semi-Markov generalization of (2.87), and 

as before we shall call ̂  the value-vector. As with (2.87) equation 

(2.110) determines the cost rate c" uniquely but the value-vector 

only to within an additive constant vector k e_. 

Equation (2.108) says nothing about the behaviour of the expected 

total cost when the time to go is some fixed time t £ r . We do, 
(1969 1970) 

however, have the following result due to Ross 1 

Let, for each i , and each t ^ r , 
r \ + t 

v!(t) * v.(Mt) +E[ c(t;X ,XT , A T m )dt X = i ] 
"k +M. 0 t 

Mt "mt+l 

where M is the number of transitions in (T^ , T + -tTJ ; that is, 
o o 

v. (t) is the expected total cost accumulated between and +t, 
1 0 0 
given that state i was entered at time T . 

o 
Then (see Appendix) 

Lim rv(t) 
= c 

t -> ©Q t , V i N N ....(2.111) 

provided that ̂ XjJ is regular, with a finite mean sojourn time in 

each state. 

This result permits us to interpret c" as the long-run average 
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cost per unit time of the chain 

Equivalence with costs 

We have seen in the previous section that if is a regular 

semi-Markov chain with additive costs, the cost rate c of 1 is 

given by (see (2.105)) 

-rrT Y 
c 

....(2.112) 

where ir is the stationary distribution of P (the transition probability 

matrix of the embedded chain), is the vector of expected one-step 

costs, and X is the vector of mean sojourn times. 

Suppose now that the equivalence transformation defined by 

(2.49) is applied to to produce a canonical chain ' ̂ "^k 

mean one-step cost vector , mean sojoum-tirae vector X , and 

cost rate 

By a renewal argument exactly parallel to that leading to (2.54)? 

we find that 

....(2.113) 

and hence, using (2.51), (2-54), (2.113) in (2.112), 

-X) — c = c ....(2.114) 

Thus the cost rate "c is invariant under the equivalence trans-

formation and it is clear that the same is true of 

the transformation \ ^ defined by (2.63), ie. 

....(2.115) 

where c* is the cost rate associated with the equal-sojourn-time 

chain, , equivalent to So, given a regular semi-Markov 

chain with cost rate c\ there exists an equivalent chain with 



the same cost rate but with equal mean sojourn times in all states. 

Furthermore, since c is the mean cost per unit time, and *XQ is the 

time per transition, of the equal-sojourn-time chain {x*^ , we can 

interpret c *Xq as the mean cost per transition of the embedded Markov 

chain, ̂ X*^ , of ̂ X ^ . Thus any regular semi-Markov chain with 

mean cost rate c has associated with it a discrete-time Markov chain, 

\x*S, wnose mean cost rate (measured as a cost/transition) is c x • n * o 
We shall make use of this important result in the next Chapter. 

Note, finally, that the results presented in Section 2.3 rest on 

the additive nature of the cost structure that has been assumed: the 

total cost accumulated over n transitions is the sum of the n indivi-

dual transition costs. Concrete results are difficult to obtain for 

any other type of cost structure, but fortunately in most applications 

the transition costs are additive. 



CHAPTER 3 

THE OPTIMAL REGULATION PROBLEM 

3.1 Introduction 

We now consider Markov and semi-Markov chains with costs, whose 

"transition mechanisms can be modified by the application of control 

signals. If knowledge of the current state is available, suitable 

control signals can be generated by a feedback scheme, and if the 

number of possible control actions is finite the feedback scheme 

can usually be designed to minimize the cost rate of the chain. The 

problem of choosing such a feedback scheme is called the optimal 

regulation problem and in this Chapter we formulate the problem more 

precisely and then review existing methods for its solution. 

3-2 Optimal Regulation 

It will be convenient to develop the ideas in terms of semi-

Markov chains and then to show where the extra structure of pure 

Markov chains leads to simplifications and/or stronger results. As 

hitherto, attention is restricted to finite chains. 

3-2.1 Controllable chains 

A semi-Markov chain ̂ .(Xj.1 : t with semi-Markov 

kernel F is said to be a controllable semi- Markov chain (CSMC) if the 

elements of F depend on the value of some scalar control variable u. 

More precisely, is a CSMC if there exists a set of controls "\JL , 

such that for each (i, j) we can define the function F. . • 

.... 
The operational interpretation of (3-1) is as follows. At any 

transition time T a value of u is selected from n 



applied as a control input until the next transition time 

call this value un« Then ^ X ^ makes a transition governed by the 

semi-Markov kernel F(t; u ) , arriving at state X at time T . 
7 n 7 ° n+1 n+1 

A new control value is then selected and applied throughout 

the next transition X ,„ — > X ; and so on. 

n+1 n+2 7 

In this thesis we shall always assume that the control set 

is finite , ie. that 

= ^ u1, u 2 u k ^ 

and we shall refer to the elements u1 as control actions. 

We shall further assume, without loss of generality, that for 

each state i the subset I c U of feasible control actions in 

state i is U itself, ie. that the choice of control action is not 

restricted by the state currently occupied. 

A fixed sequence of controls (UQ,U^, u^,....), chosen before 

the starting time Tq of the process, is called a control schedule. 

With such a schedule the choice of control on^say, the interval 

t^"k7 Pre(^e^erm^ne(^ : there is no feedback of information 

about the past and present motion of the chain ^ X p t ^ T to the 

process of selecting u^. In the majority of practical control 

problems, however, such information is available for feedback purposes 

and can therefore be used to implement a control policy in which each 

control, u^, is made a function of the currently available infor-

mation about the motion of the chain. The problem of choosing a 

satisfactory control policy is, in engineering terms, that of design-

ing a suitable on-line controller whose inputs are data concerning 

past and present behaviour of the process; in mathematical terms, the 

aim is to find a suitable sequence of mappings from the space of 

available data histories into the control set u . 

Throughout this thesis attention is confined to so-called 



completely observable (or perfectly observable) chains (see, for 

example, M a y n e ^ ^ j , in which the current state X^ is known without 

ambiguity at every stopping time T . By the strong Markov property, 

the behaviour of such a chain after time T , given the value of X , 
n' n ' 

is independent of the past history of the chain, in which case the 

control action u^ may, without loss of generality, be taken to be a 

function of X alone. Such a function is called a control law. 
n Let f : N \ L be the control law for the chain \ X, \ at n N L t •> 

the stopping time T , so that if x n = i then u n = fn(i). The sequence 

of control laws 

(f) £ (f , f„,...,f J 
n o' 1 n-1 

is called a control policy for the chain ^ X ^ on the interval [OiT^). 

Once (f)n is determined the controlled chain becomes an ordinary 

(but, in general, non-homogeneous) semi-Markov chain on the given 

interval. 

If the objective is to control the chain over an indefinitely 

long period the control policy will be an infinite sequence of control 

laws. In particular, an infinite sequence of identical control laws, 

(f) & (f, f, f,••••), is called a stationary policy. When a station-

ary control policy is used the resulting CSMC is homogeneous in time 

and has a well-defined long-run behaviour. In particular, if the 

policy (f) is such that the controlled chain is regular there will be 

an equilibrium state distribution which is independent of the initial 

state of the chain and hence a unique equilibrium cost rate associated 

with the chain. 

A controllable chain which, for every possible stationary policy 

(f), is regular and has finite mean sojourn times will be called a 

totally regular chain. Although we shall confine our attention to 

such chains it should be pointed out that most of the optimization 
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methods discussed in the thesis are, with suitable modification, 

applicable to chains which may be non-regular under certain policies 

(see, for example, Denardo and Fox(l968)). Bxere is, m any case, a 

wide range of practical applications in which a totally regular CSMC 

is the appropriate system model. 

When associating a cost with a controllable chain it is natural 

to allow the cost for any transition X^ — > X^ to depend on the 
n n+1 

control action u as well as on the states Xm . Xm and the i n t t . n n+1 
sojourn time AT^ . In order to allow for control costs we assume 

a cost function of the form c : At t—> c( At ; X T , X T » 
n n+1 

instead of that used in Section 2.3*3, so that the transition cost 

becomes C(XT , X^ , J^T^ , un). Then, generalizing (2-97), we 
n n+1 

define, for each i J\| , each u n 

* E[C(XT , XJ , ATN+1, un) XT = i , un = u] 
n n+1 n 

....(3*2) 

T u is the expected one-step cost from state i under control 
u 

action u. Similarly, will denote the expected sojourn time in 

state i under control u. 

Consider a totally regular CSMC, controlled according to 

the stationary policy (f). Then if X^ = i we shall have u = f(i) 
n and the corresponding transition functions defined by (3*1) will be 

F. .(t ; f(i)) , V j € N . The matrix 1j » k, 

f
f(t) & [ v ^ H ....(3.3) 

N x N 

is the closed-loop semi-Markov kernel under the stationary policy (f). 

From it, we can determine the closed-loop transition probability £ 
matrix P by (2.31) and the vector of closed-loop mean sojourn times 

. p 

X by (2.37) and (2.39)- Similarly, the expected one-step cost from 
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f(i) 

state i under the stationary policy (f) will be 0 , and the 

vector 
,f v 1 V f ( N \ X £ Col ) ....(3.4) 

is thus the vector of expected one-step costs under (f). 

Since the chain ^X ^ is totally regular the asymptotic relation 

(2.108) will hold for every stationary policy (f) ; that is, for large 

(n) c tf(n) + 
(3.5) 

where the superscript f denotes quantities determined under the 

policy (f) : in particular 

. . . .(3.6) 

is the cost rate under (f). 

3-2.2 Optimization of the control policy 

The problem with which this thesis is concerned is as follows: 

determine a stationary control policy which will minimize the average 

operating cost per unit time of a given controllable semi-Markov chain 

which is expected to operate for an indefinitely long time. More 

precisely, given a totally regular CSMC ^(X : J1-* N ^ ) : t £ ] 

with a finite control set U , find a control lav; f 

such that if f : N - > U is any other feasible control law the > f\j > 

equilibrium cost rate under the stationary policy (f) = (f,f,...) is 

not less than that under the stationary policy (f°) = (f°,f0,...) , 

ie. such that c 0 ^ c^ for all feasible f. If such an f° can be 

found it is called an optimal control law and (f°) is the correspond-

ing optimal stationary policy. 



Note that since the state space and the control set are both 

finite, the number of possible control laws (and hence the number of 

stationary policies) is finite (in fact K^, where K is the number of 

possible control actions). It follows, since is totally regular, 

that at least one optimal stationary policy must exist. Uniqueness, 

on the other hand, is not guaranteed. 

At this point there are two questions to consider. First, if 

the class of control policies is enlarged to include non-stationary 

policies, does there exist a stationary policy which is optimal in 

this larger class ? This question has been answered in the affirmative 
(1962) 

for pure Markov chains by Blackwell and as we shall show in the 

next Section the result is also applicable to semi-Markov chains. 

Secondly, if we allow randomized control laws (that is, control laws 

which map the state space into the space of probability distributions 

on u instead of into u itself) may we thereby achieve a lower 

value of c ? The answer is no (see Wolfe/Dantzig^9^^ and Osaki/ 

Mine^ 9^^): there exists at least one pure (non-randomized) control 

law such that the corresponding stationary policy is optimal in 

wider class of randomized policies. 

Thus in order to design a controller which will cause the CSMC 

lXt1 °P e r a^ e minimal average cost per unit time under equili-

brium conditions we need to determine an optimal control law f° : 
[\J —> A X . The problem of finding such a function is the optimal n 
regulation problem. 

Note on terminology : In the operations research literature it is 

usual to refer to the elements of as possible decisions ; a 

controllable semi-Markov chain is called a semi-Markov decision 

process and the problem of finding an optimal f is called a semi-

Markov programming problem. Our terminology, which extends that of 

Astrom^ 9^ 9\ seems more appropriate in a control engineering context. 



3-2o3 Equivalent regulation problems 

Consider a totally regular CSMC ^(Xt : N n ) : t £ T ] 

with control set TJL and transition cost function c. Under a given 

stationary policy (f), the chain ^ X ^ has a stationary distribution 
f f f Tf , a mean sojourn-time vector X , and a mean one-step cost vector , 

f 
from which we may determine the equilibrium state distribution Q by 

(2.43) and the equilibrium cost rate c f by (2.112). 

• By using (2.43) in (2.112) we obtain an alternative expression 

for the equilibrium cost rate: 

....(3.7) 

where 

with 

Col ( 

f' CD • v* 
N N 

The component is the ratio of the expected transition cost 

to the expected transition time for state i (under the given policy 
f I 

(f)), and so if i is recurrent (<5\ >• 0) we can interpret ^ as the 

long-run average cost rate associated with state i. 

The result contained in (2.94-5) of Section 2.3*2 is the special 

case of (3.7) which arises when r = r . the sojourn-time distribu-
T tions are all exponential, and the cost function c is linear in t, ie. 

when { x ^ is a continuous-time Markov chain. In this particular case, 
/ f 

p^ has the stronger interpretation as the instantaneous rate at 

which the expected cost grows in state i. 

Similarly if X - and all the sojourn times are unity 
(under the given policy (f)) then X = e_ in (3.6) and so we get 

T 
c* = (t1) y 1 

which is just the result contained in ( 2 . 8 5-6) for 
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discrete-time Markov chains. 

In viewing Markov chains as special cases of semi-Markov chains 

we are led to the interesting question : is it possible to re-formulate 

the optimal regulation problem for a controllable semi-Markov chain 

as an "equivalent" pure Markov regulation problem ? To make sense of 

the question let us first define two totally regular controllable 

semi-Markov chains and to ke totally equivalent iff 

(i) ^ X ^ and J ^ t ^ P o s s e s s the same finite state space , 

the same index set T * , and the same finite control set I X ; 

(ii) for every stationary control policy (f), and J ^ t ^ 

are weakly equivalent in the sense defined in Section 2.2.4. 

It is clear that a policy (f°) which is optimal for ̂ X ^ is 

also optimal for ^XjJ ? and vice versa. Thus ^ X ^ j and ^ ^ t ^ 

possess the same optimal policies, with the same associated minimum 

cost rate . The optimal regulation problems for £ X ^ and ^ ^ t ^ 

are then equivalent in the sense that any solution to one of the 

problems is a solution to the other. 

The answer to the above question is thus that by carrying out 

appropriate equivalence transformations of the type defined in 

Section 2.2.4, it is possible to create a controllable discrete-time 

Markov chain which is totally equivalent to any given totally regular 

CSMC, and hence to optimize the cost rate of the Markov chain rather 

than the original CSMC. 

The required transformation is obtained as follows. > 

For each u € I L , let 

(x°)u = ....(3.8) 

where 

with 
i * diag ( f 

- 1 % * d - p ^ ) , v * - n n 
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Then find . A. min min [ ("U? ) 1 ....(3.9) 
ram u ± L 1 J ^ 

and set 
= k t — ( 3 . 1 0 ) 

o min 

with K e. (0,l]. 

With "C determined we can then , for any policy (f), transform 

^jX^ to a corresponding chain having all mean sojourn times 

equal to "C by using the transformation defined by (2.7?)5 that is, by choosing 

where 

with 

(P*)f = I - (I - P f) ....(3.11) 

^ diagw* ....(3.12) 

= TIT ' V 1 ^ n .—(3.13) 
1 

From (2.113)j the transformation (3«1l) gives 

f f 
O f ) = O l f ....(3.1W 

for the vector of expected one-step costs associated with ftj , and 

we have chosen (j) so that 

* f X f f (T ) J T = "C0 £ ....(3-15) 

— f 

Thus, on using (3-15) in (3.6), the equilibrium cost rate, (c*) , 

of the equal-sojourn-time chain under the policy (f) is given by f 
(c*) 8 AT 

T * f or ) 
0 J (3.16) 

* f * f 
where Cjf ) is the stationary distribution of (P ) • 

Finally, bearing in mind comment (ii) at the end of Section 2.2 , 

there exists a discrete-time Markov chain with index set I = 

2*1^, ... , transition probability matrix (P*) , and expected 



one-step cost vector , whose equilibrium mean cost per unit 

time is given by (3«l6), i.e. whose equilibrium mean cost per transi-

The transformation (3«11) is well-defined for any feasible station-

ary policy (f); therefore by applying it to ^ for every (f) we con-

vert the original CSMC to a totally equivalent controlled Markov chain 

with the same optimal performance. It is important to note, however, 

that when making use of the concept of total equivalence in the design 

of optimization algorithms it is not necessary to carry out transform-

ation (3.11) for every feasible stationary policy, but only for those 

policies, say (f)Q, (f)^, (f)^,...., arising as iterates in the course 

of the optimization. Furthermore if (f) differs from (f) only in 
f n f 

state i, then (P*) n will differ from (P*) n" n only in the i t h row 

and hence is easily updated. We take advantage of this property in 

the successive-approximations algorithm described in Chapter 4 • 

3.2.4 Related problems 

Before describing existing methods for solving the optimal regu-

lation problem we mention here two closely related control problems. 

In the first of these, the so-called discounted-cost problem, future 

accrued costs are discounted at a constant rate so that the expected 

total cost accumulated over an infinite operating period remains 

finite; then the optimal control problem is to find a policy which 

minimizes this cost. Under the conditions that we are assuming in 

this thesis (finite state space, total regularity) it may be shown 

(see Ross ( l 9 6 9 )) that the discounted-cost problem "tends to" the regu-

lation problem as the discount rate tends to zero, in the sense that 

for sufficiently small discount rate a policy which is optimal for 

the discounted-cost problem is also optimal for the regulation problem. 

tion V/e shall make use of this idea in the next 

Chapter. 
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The second related problem is the so-called transient-cost 

problem, in which the only recurrent state is a single absorbing 

state, say and the optimal control problem is to find a policy 

which minimizes the total expected cost of travelling to the target 
(1960) 

state. This problem has been treated by Howard , Eaton and 
(1962) (1968 1971) Zadeh , and, in particular, by Kushner and Kleinman ' 

We mention it here because some of the algorithms suggested for the 

optimal regulation problem are adaptations of those used for the 

transient cost problem. 

3.3 Existing methods of optimization 

We now consider procedures for solving the optimal regulation 

problem. The problem has attracted considerable attention during the 

past 15 years and several methods have been developed for computing 

the optimal control law. Of these, the main ones are the policy-

iteration method due to Howard ̂ ^ ^ and Jewell the successive-

approximations method due to W h i t e ^ ^ ^ , and the linear programming 

method due to Manne^*^^ and Osaki and Mine 

3.3.1 Policy-iteration methods 

Much of the interest in controllable Markov chains as system 

models has stemmed from Howard's pioneering work in this field. His 

policy-iteration algorithm for the discrete-time Markov regulation 

problem rests on the following argument. Let ^ : N,^ 

he a totally regular controllable Markov chain with finite control 
2 

set U and bounded cost function c , with value 
ut c(X,, X, 

u. ) for the transition X — X . 

Define, for each i ^ N , the optimal expected n-step cost n 
from state i , 
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k+n-1 
vi(n) ECZI c ( 3 Cf w v ^ = 0 

u k 6. ^ t=k 
: ....(3.17) 

Then - V. (n) 

is clearly the optimal expected value of the mean 

cost per transition over the n transitions from = i . 

A dynamic programming argument shows that the satisfy 

the non-linear recurrence relations: 

J « N „ 
....(3.18) 

where 

< ^ E [ c ( x f x t + v u t ) |xt = i ] • V 1 * 

....(3.19) 

Now recursive solution of equations (3.18) will yield a sequence 

(fQ,f^,f2,....) of control laws, namely, those control laws which 

minimize the successive right-hand sides of (3.18). In fact the 

sequence (fQ,f ,f2,•».•) is an optimal control policy for the chain, 

though not in general a stationary one. However, it has been shown 

by Bellman that the sequence (f ) tends, with increasing n, to 

a fixed control law; more precisely, there exists an nQysuch that for 

all n ^ n Q , f^ = f°. Thus the policy (fQ,f^,f2 ....) is asymptot-

ically stationary and it follows immediately that V^(n) is asymptot-

ically linear in n. (Take n Q as a new time origin.) Furthermore, 

the stationary policy (f°) = (f°,f°,f0 ...) will clearly yield the 

same equilibrium cost rate , oit as the above non-stationary policy 

and no other stationary policy can yield a lower cost rate. We there-

for seek the control law f° which minimizes the right-hand side of 

(3.18) when n is large. But under the stationary policy (f°) the 



asymptotic relation (2.86) holds; so if we subtract n o< from each 

side of (3.18) and let n-> co we shall obtain 

. v*« nn 
— ( 3 . 2 0 ) 

This is a set of N non-linear simultaneous equations for the 

cost rate oC and value-vector associated with an optimal policy. 

Now let us define a control law f by 

V i €. N : f°(i) = Arg. *** 
Y N u e U L 

u Y u 
C. + / p. . 
1 z-_t 3 w 

(3.21) 

Then the right-hand side of (3-20) can be written 

f°(i) f° 
<X. + / p. -
1 i 

f°(i) 
to . 3 3 

and so (3*20) takes the form 

U) + o< e f° f c>C + P1 W ....(3.22) 

which is equation (2.87) under the stationary policy (f°). Since c< 

and JW are, by assumption,the solution to (2.87) under an optimal 

policy, it follows that is an optimal policy. 

Howard's procedure consists of iterating between (3.21) and 

(3-22) until an optimal policy is found, ie. until (3.21) and (3«22) 

are satisfied simultaneously (so that (3-20) is then satisfied). In 

algorithmic form the procedure is : -

(1) Choose an initial control law, f. 

(2) "Value-determination" : With the given f solve (3.22) for 

OC and W . 

(3) "Policy-improvement" : With the given c<and to determine a 

new f by (3.21). If 
this differs from the previous f return 



to step (2); otherwise the iteration process has converged, 

the latest f is an optimal control law, and the latest of is 

the optimal cost rate. 
(1q^o ̂  — 

Howard showed that the successive values of (X converge 

monotoni'cally to the globally optimal value c<° . The number of itera-

tions required is necessarily finite and in practice is usually very 

small compared with the number of feasible control laws. A minor 

point is that, as we have seen, the solution (fX ,J0) of (3-22) is 

determined only to within an additive constant vector, k e_, in to , 

until we impose some additional constraint on such as = 0. 

A rigorous proof that any optimal policy for a totally regular chain 

must indeed satisfy (3«21) and (3-22) is given by R o s s ^ ^ ^ L 

The policy-iteration algorithm described above has been modified 

by Howard^^^ for application to the continuous-time Markov regulation 

problem. A much more important development is the extension of the 

Howard algorithm to cover the semi-Markov case. This has been achieved 

independently by Jewell^^-^, Schweitzer^^^, and de C a n i ^ ^ ^ L 

As we shall now show, the Jewell and Schweitzer algorithms can be 

developed rather elegantly from the Howard algorithm by application 

of appropriate equivalence transformations. 

We first determine the effect of the equivalence transformation 

(3-11) on the value-vector of a regular semi-Markov chain. From 

(2.110) we know that if f is any feasible control law satisfies 

the relation 
(i-pf) = x f - c x f ....(3.23) 

S* 
j. , of the equivalent CSMC, 

under the same policy f, must satisfy 

a . (p*/) r = a*) f - (2*)f ....(3.2w 

Now using (3-11), (3-1%) and (3.15) in (3.2%), we obtain 
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(j)1 (I - P f) r = <ji)f X - ^ X 1 (c*)~ ....(3.25) 

and, since J is non-singular, we have, on using (2.115), 

( i - p f ) s* = 3ff . 

•f f . f 

_ f 
c X ....(3.26) 

Thus ̂  satisfies the same equation as and we may take 

r = i . 

Now consider the discrete-time Markov regulation problem of 

minimizing the equilibrium mean cost rate c* of the equal-sojourn-time 

chain £x* | resulting from the equivalence transformation (3.11). On 

identifying ^ with and with in equation (3.20), and using 

the fact that the equilibrium mean cost per transition, OC, is given, 

via (3.16), by c< = "T̂  c* , we find that the optimal cost rate satis-

fies the equations 

s : + x r o = m i n [ (V*> u + y ( P : . ) u s * . l , u e w 
27) 

or, what is equivalent, 

y -s:-
u e u l 1 ^ j 1 

X c o - O . V i ^ H 
(3.27) 

Now use (3.11)- (3.15) to express the conditions (3.27) in 

terms of the properties of the original semi-Markov chain The 

result is 

Min 
u C-U 

£ 
-ol + V p « . s . . i _ . - l ] = 0 , V i € M 

^-u Z—1 3 x u 1 V n 
• 1 A J - ....(3.28) 

or, since 

Min 
u e u 

•x1 > 0, y 1 ' v u ' 311(1 ~ c
o
> 0 ' 

X u
 + 7 p u . S . - L l t " = 0 , V i 6 N 
1 / i 10 j 1 1 s v m 

....(3.29) 
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•f f _ f (c*) <j> (i - pf) r = | f - j x (c*)_ ....(3.25) 

and, since ^ is non-singular, we have, on using (2.115), 

a - p f ) §* = . 
_ f c X ....(3.26) 

Thus satisfies the same equation as and we may take 

r = i . 

Now consider the discrete-time Markov regulation problem of 

minimizing the equilibrium mean cost rate c* of the equal-sojourn-time 

chain ̂ X*j resulting from the equivalence transformation (3.11). On 

identifying with and _G0 with in equation (3.20), and using 

the fact that the equilibrium mean cost per transition, c<, is given, 

via (3*16), by c< = XQ C* , we find that the optimal cost rate satis-

fies the equations 

s: + 
— * 

X c 1 o 
min 
u € u . 1 x * 1 3 2 .2 . ( 3 . 2 7 ) 

or, what is equivalent, 

Min 

u e u 
u 

(y.*) + 
1 ( p r . ) u s : - s: - -c 

j 1 o 
— * 

c = 0 , v± <2 tm n 

....(3.27) 

Now use (3.11)- (3-15) "to express the conditions (3.27) in 

terms of the properties of the original semi-Markov chain ̂ X ^ . The 

result is 

min 
u e u 

. p i . < — • + .U s. -

or, s ince X U > 0 , Yi, \ju, and XQ>0, 

Min 

u s u 
r + 1 p. . . - - c X . 

ij j 1 1 

i J J 

(3.28) 

= 0, V i * N M 

....(3.29) 
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From (3.28) we deduce that 

Min 
c = 

u e. u -r-u i 1 -c 
L i 

? p u. $ . - S.]• 
*13 3 if 

i j 
* m 

(3.30) 

and from (3.29) we have 

Min 
i = uell + / p.U. S\ - c , V i e ^ K , 

1 Fi3 3 1 v N 

3 J (3.31) 

Thus by the same argument as for the pure Markov case we can 

define an optimal control law f° either by 

V i 6 N : f°(i) = Arg. ^ + V p. t t -

i 3 -
....(3.32) 

or by 

V i e N = f°(i) = Arg. t + y p.U. S. - " ^ ' N u H 1 A— 4 13 3 1 
3 

....(3.33) 

where, in each case, (c, S ) satisfies the value-determination 
equation 

£ = Y f ° + P f° % - F ....(3-3*f) 

The Jewell policy-iteration algorithm is based on iteration 

between (3-3^) and (3.33)J and the Schweitzer algorithm uses iteration 

between (3.3*f) and (3.32). As our derivation of (3.30) and (3-31) has 

shown, both algorithms are equivalent to applying the Howard algorithm 

to pure Markov regulation problem generated from the original semi-

Markov regulation problem by the equivalence transformation (3»11). 

This fact may be used to prove convergence of either algorithm, though 

more direct proofs are available. 

One feature of the policy-iteration algorithms defined above is 

that it is possible to compute, after each iteration, upper and lower 
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bounds on the true optimal cost rate, c°, and hence to monitor the 

progress of the algorithm. These bounds were first derived by 

Hastings(l97l). 

3*3-2 Successive-approximation methods 

A disadvantage of the policy-iteration methods of Section 3-3-1 

is that each iteration cycle involves the solution of the linear 

N-vector equation (3-23) (or its Markov equivalent, (3-22)), which 

can be computationally expensive if N is large. In the transient-cost 

problem (see Section 3-2.4), the successive-approximation method of 

Eaton and Zadeh^ 9^ 22 or the Kushner/Kleinman v a r i a n t s ^ 1 9 7 1 ) Qf 

it, are often less expensive in total computer resources than the 

corresponding policy-iteration method. It is natural therefore to 

enquire whether the Eaton/Zadeh method can be adapted to the optimal 

regulation problem. Such an adaptation has been developed by White 

for the discrete-time Markov regulation problem. 

White's successive-approximations algorithm is based on the 

following result. Suppose that there is a state, call it state 1, 

that is recurrent under every feasible control policy. Then define, 

for each i € AJ^, the sequences V_^(n) and v^(n) by the recurrence 

relations 

V.(n) = ^ + V p.U v.(n - 1) 
1 u f c u l 1 j ....(3.35) 

v.(n) = V. ( n ) - V ( n ) (3.36) 
1 1 1 

with v.(0) , i = 1,2,...,N, arbitrary but specified. 1 

Then, with <X and jO satisfying condition (3.22), and with ^ = 0 , 

idm 
v1 ( n ) = ^l 77) 

n->to 1 ....v^o^ 

and Lira \ 7 in 1 
v.(n) «0i , Y i €. N m ....(3-38) 

n-> co 



79-

That is to say, the algorithm defined by the iteration of (3-35) 

and (3.36) converges to the (unique) solution of the Howard equations 

(3.20). It is also clear that the sequence of control laws, obtained 

by the successive minimizations of the right-hand side of (3-35)? con-

verges to the optimal control law given by (3«21). 

The advantage of White's algorithm is of course that it is com-

putationally straightforward; the main disadvantage is that, in 

common with many iterative methods for solution of simultaneous equa-

tions, convergence may be slow. In fact the rate of convergence will 

depend on the detailed forms of the various closed-loop transition 
f 

probability matrices P that are generated by the algorithm. 

As with the policy-iteration algorithms of Section 3-3.1, it is 

possible to monitor the rate of convergence of White's algorithm. 

Define, for each n £ '2S. 1 
t 
Max f "I 

~ . n V.(n) - W.(n- 1) ....(3.39) 
u i £ n n li 1 j 

<xl(n)£ m n , |V.(n) - U).(n- 1) ....(3-*fO) l i e n ^ l 1 1 j 

Then 0< (n) \ ©< and c< (n) \ Thus if we take -g|c<(n) + o< (n) u L 2L w u J 

as an estimate of c>C , the magnitude of the error is bounded by 

j [<* (n) - c*(n)] , and the algorithm can be terminated when this 

has fallen to a specified level. These bounds on c< are due to 

Odoni(l969). 

The successive-approximations algorithm described above has no 

obvious counterpart for the continuous-time regulation problem, nor 

is it easily adapted for application to the semi-Markov regulation 

problem. However, as we shall show in Chapter *f, it is possible, by 

invoking the concept of total equivalence (see Section 3.2.3)1 "to 

develop successive-approximation methods for the general semi-Markov 

regulation problem. 
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3.3-3 Linear-programming methods 

At about the same time as Howard's development of the basic 

policy-iteration method for the discrete-time regulation problem, 
(1q6o) 

Marine showed that the problem can be formulated as a linear-

programming (LP) problem. This idea is interesting since there exist 

highly-developed and efficient computer programs for solving LP prob-

lems. The formulation of the discrete-time regulation problem as an 

LP problem is as follows. 

Suppose that the control set for the totally regular controllable 

chain £(Xt: JI-7- N h ) : t € X + } is Tjt=^u k : k e. Nljj-?and define 

for each i £ I\J , each k € l\|., , 
n in 

dik * p [ u t = « k | x t = i ] (3.%1) 

{ 
Then a stationary randomized control policy (d) is a set 

<*,,:!€ N , k £ N, C where all the d., are non-negative and also fij io 

2 J j l k . , , v » * N m 
£ 1 j-*- t tm 

Under the stationary policy (d) the one-step expected cost 

is given, for each i € N , by 

n 

* E [ c ( x t 7 x t + i ' u t } xt = i ] 

[ E[ c ( xt' xt+1' ut ) u t ; x t = i J xt = i ] 

= E 

2 
k 

d~ c*u ....(3.43) 4 i k i 

It then follows that , the cost rate under policy (d) is 

given by 

> k 
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If we now introduce the variables 

— (3.^5) 

and, for notational convenience, denote by we can 

re-write (j.bk) as 

* d tX.. x.. lk lk ....(3.*f 6) 
i k 

Furthermore, from their definition the x ^ must satisfy the 

relations 
r X.. lk ^ 0 , V 1 6 V k m k ....(3.^7) 

2 2 
i k 

x.. = 1 lk 

x., - x., p. . lk 

....(3.*»8) 

& - ° • V3 e 

(3.^9) 

The optimal regulation problem is now to minimize the linear 

function (3.if6) of the NK variables x ^ subject to the linear constraints 

(3.47) - (3.^9). This is a standard LP problem in canonical form 

which may be solved by, for example, the simplex method. Once the 

solution has been found, the stationary distribution under the optimal 

policy (d°) is given by 

,0 
tf 2 X i k . V i . N n (3.50) 

and then optimal control law d is given by 

d.. lk 
x.. lk 

-ttd 
- , V i « N . V k N , 

(3.51) 
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This LP formulation of the optimal regulation problem is of 
("1 qfio 1 

theoretical interest since it may be shown (see Wolfe/Dantzig 

that for each i only one of the d?̂ . is non-zero (and hence equal to 1). 

This means that the optimal stationary policy (d°) is deterministic, 

as asserted at the end of section 3-2.2. 

By again introducing the control probabilities it is a 

straightforward matter to formulate the continuous-time regulation 

problem as an LP problem. However, in the semi-Markov case the trans-

formation, which is due to Osaki and M i n e ^ ^ ^ , is a little more in-

volved. Suppose now that : t 6.T" J is a totally regu-

lar CSMC with control set \ L = k 6 N ^ , and again introduce 

the probabilities cL^ defined by (3«4l). Then, under the stationary 

policy (d), the expected one-step cost, o . , and expected one-step 
sojourn time, X ^ , are given respectively by 

r lk i ....(3.52) 

and 

t d 
1 ik 1 ....(3.53) 

for each i N . (As before, Y U and X U are the expected one-step 
N i i 

cost and expected sojourn time from state i under control action u.) 

Furthermore, the equilibrium cost-rate under (d) is, from (3-6), 

given by 

(3.54) 

where the are defined by (3*45) and, again for notational conven-

ience, V.. * P , P . ' ik 1 ' lk 1 
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The semi-Markov regulation problem is now to minimize the 

objective function (3-54-) subject to the linear constraints (3-4-7) -

(3-4-9). This is an example of a so-called fractional programming 

problem (see Charnes/Cooper^9^ ̂ ) : it may be transformed to 

equivalent LP problem as follows. 

Let 

an 

•y. 
A A ik 

i k t i k 
, V i e N n , \ / k e N k 

and introduce the variables 

* ik ik 
fik 

3 k 
"Rjk Xjk 

and 

, \/i 6 N • Vk £ N k 

....(3.55) 

y A 

3 k 
^ j k Xjk 

(3.56) 

Then, from (3-54) we have 

....(3.57) 

and from (3-36) - (3-38) the must satisfy 

y i k > 0 , V i € N n , Y k e N , (3.58) 

Ik 
....(3.59) 

zjk) 
= ° < V ^ N m 

(3.60) 

Furthermore, it is also clearly necessary that 
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" Z 
k 

y.. = 1 ....(3.61) 

We now have an LP problem in canonical form, namely: minimize 

the linear function (3-57) of the NK variables subject to the 

linear constraints (3-58) - (3-61). Furthermore one can show (see 

Osaki/Mine^9^^) (a) that the constraint (3«59) is redundant and 

hence so is the variable y ; and (b) that as in the discrete-time 

Markov case, there exists an optimal control law, d°, for the above 

problem which is deterministic, ie. such that d?^ = 0 or 1 for each 

i €. N and each k G. N L . 
M IN 

Finally, there is an important point to be noted about the 

relation between the LP formulations considered in this section and 

the policy-iteration algorithms of Section 3-3>«1» The LP problem 

defined by (3-57) - (3.61) has the form:-

P : Minimize 

where is a variable NK-vector, jx and b_ are fixed NK-vectors, 

and A is a fixed (NK x (N + 1)) matrix. 
(1071) As is well known (see, for example, Trustrum ), problem P 

has associated with it a dual problem having the form: -

t D J Maximize b z 

v 
_z unconstrained in sign 

where z is a variable (N + 1) - vector. 

Furthermore, since P has a solution then so has D, and 

(b" z°) = (jx y ), where and z are the solutions of P and D 
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respectively. So if we identify z^ with i = 1,...,N, and 

with c", and use the appropriate A and _b we obtain the following 

statement of the dual problem, D :-

Maximize c 

subject to 

S. 4: T P - • 2 , P u 2 . , j 
1 —1 j ' j 

j N . I 

V i e n n 

v* c nk 
....(3.62) 

This LP problem is clearly equivalent to the problem : -

Maximize "c 

subject to 

One can show that the maximal c (ie. the minimal c in the primal 

problem) is achieved at the vertex of the feasible region defined by 

(3.63), ie. that the optimal c satisfies the equality constraints:-

, V i N * n 

....(3.64) 

Reference to Section 3-3.1 shows that it is precisely this set 

of equations which the Howard/Jewell algorithm is designed to solve 

for the optimal c. We therefore have an alternative view of the 

Howard/Jewell algorithm, namely, as an algorithm for solving the dual 

of the LP program defined by (3.57) - (3.61). With such an interpre-

tation, however, it is not obvious that the minimizing arguments of 

the right-hand side of (3-64) define the optimal control law for the 

chain. 
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CHAPTER k 

NEW OPTIMIZATION ALGORITHMS 

b.1 Introduction 

Although the optimization procedures reviewed in the previous 

chapter are satisfactory in many applications, the fact remains that 

when the number of states is large (say ^ 100) the solution of the 

optimal regulation problem demands considerable computational effort; 

this is particularly true when the number of possible control alter-

natives in each state is also large. The search for efficient optimi-

zation algorithms has therefore continued and in this chapter we pro-

pose some new algorithms which, at least in certain circumstances, are 

computationally more efficient than the standard methods. As before, 

we first consider policy-iteration algorithms and then look at success-

ive-approximation methods. 

b.2 New policy-iteration methods 

The basic Howard/Jewell policy-iteration algorithm for the semi-

Markov regulation problem requires the solution of N simultaneous 

linear algebraic equations after each policy-improvement cycle and 

furthermore the policy-improvement procedure itself uses a value-vector 

which is not updated until the end of the cycle. The first attempt 

to improve on the basic Howard/Jewell algorithm was proposed by 

H a s t i n g s ^ Q suggested modifying the value-vector at each 

step in the policy-improvement cycle. The difference between the 

Hastings algorithm and the Jewell algorithm is best demonstrated by 

the flow-chart shown in Fig.(^f). 

It can be seen that, if we borrow some appropriately descriptive 

terminology from the field of linear iterative analysis (see, for 

example, V a r g a ^ ^ ^ ) , the Hastings routine is a "Gauss-Seidel" 

version of the Jewell routine, which we can think of as the basic 
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Fig. (4) 
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"Jacobi" version of the procedure. It is possible to show (see 
(1968) 

Hastings u ) that the Hastings algorithm converges to an optimal 

policy provided that the controlled semi-Markov chain is totally 

regular. There is, however, no guarantee that convergence will be 

more rapid than with the Jewell algorithm, though limited computational 

experience suggests that with certain types of P-matrix the Hastings 

version does converge more rapidly. 

As a further modification to the basic Jewell policy-improvement 
(1971a) 

routine, Schweitzer has proposed a procedure in which the 

Hastings policy-improvement routine is used iteratively before each 

return to the value-determination stage of the optimization cycle. 

It is not claimed that this procedure is computationally superior to 

the Hastings algorithm. 

*f.2.1 A revised policy-iteration algorithm 

We now outline a rather different modification of the Howard/ 

Jewell algorithm, in which the policy-improvement is carried out one 

state at a time, the value-vector being re-computed after each 

single-state policy improvement. That is, the policy-improvement and 

value-determination operations are interleaved, with the result that 

a properly updated value-vector is always used in the policy-improve-

ment stage. 

Consider the value-determination equation in the basic flow 
chart (Fig.(**)) : 

= y - 7 x + p s of.1) 

or, 
( I - P ) S + c X = V ...0f.2) 

If P is regular the co responding Tt -vector is unique and so 
ml pre-multiplication of Cf.2) by yields the unique solution 

tt tv 
c = for the cost rate, as required. On the other hand since 



I - P is of rank (N- 1) (for P regular) the vector Ŝ  is not uniquely 

determined by (*f.2). However, if we set $ = 0 we can write (*f.2) 

in the form 

r v = x ....(*f.3) 

where 

v £ coi u , s2,$3,...,sn ) 

and 

s [ ( i . p k l . ^ e j l t x e ^ ] 

(R is the matrix (I-P) with its first column replaced by T ) 

It is easy to see that R is non-singular if P is regular, so 

that the unique solution to (*f.3) is 

v = R"1 1 ....(*f.*f) 

Incidentally by equating the first rov/s of the identity R R = I 

we find that 

e* R-1 = (4") TCT ....Of.5) 
x. 

where, as usual, 
— . rp 
x a x. 

We make use of this property later. 

Now consider two control laws, f and f' , which differ only in 

state i , ie. 

f'(j) = f(j) i jj^i 

/ f(j) , j = i 

The corresponding R-matrices will differ only in their rows 

and so we can write 
t 

Rf = Rf + e. a T ....(*f-.6) 



T th f f where a . is the difference between the i rov/s of R and R • 
f — 1 f f —1 £ 

Suppose that (R ) is known: then, by (4.4), v1 = (R1) V . 

We now make use of the Sherman-Morrison matrix inversion lemma 
- 1 - 1 

to relate (R ) to (R ) • The lemma states that if A is a non-
i T 

singular n x n matrix, and the n x n matrix A £ A + Id c. is also 

"invertible, then 
(a •)"1 = a- 1[i - x b / r 1 ] 

where 

X ^ (1 + c T a"1 b) 
- 1 

....(4.7) 

Applying this result to (4.6) we obtain 

« -1 
(r1 ) = (r V 1 [ l - x± e±a® (Rf)"1] 

with 

x . = [l + 4 (hf)"1 e j 
- 1 

or, alternatively, on re-arranging (4.8), 

(rf') 
- 1 - 1 

where 

(Rf) - x. (r. s . ) l —i — l 

„ -1 
r. ± (R1) e. 

S T * a T(H ff 1 

and x . = (1 + a T r.) l —i 
- 1 

....(4.8) 

....(4.9) 

....(4.10) 

Thus if the control law is changed only in state i, the inverse 

of the R-matrix can be updated by simply adding the dyad jj- X^jr^ s^ J 

to the original inverse. We can then use (4.4) to obtain the updated 

vj-vector. 

We can now construct an optimization algorithm which makes use 

of the above updating procedure, as shown in Fig.(5). 



Fig. (5) 
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y* * J\]N- * ci) - c ^ + Zs'lr*] 

From the above flow-chart it can be seen that the value-

determination operation of the Howard/Jewell algorithm (and its vari-

ants) has now been split up into N stages (for an N-state problem), 

with the result that the policy-improvement operation in any state 

always makes use of the best available values of c and <2 This is 

in contrast with the previous algorithms in which the best available 

values of c and are used only when i = 1. 

Convergence of the above algorithm - which we shall call revised 

policy-iteration (PPI) - to a globally optimal policy may be proved ̂  

by the following argument which derives from Howard's original proof 

of convergence for the basic algorithm. 

For any two stationary policies, (f) and (f), define the test 

quantities 

f'(i) -f_f'(i) . p 

....(4.11) 

and also the following : 

V i ^ - N s A^.(f\f) ^.(f',f) - ....(4.12) 

Col (4.13) 

A c ( f \ f ) A c f' - c f ....(4.14) 

\j i 6 N p £&±if\f) ± - Sj ....(4.15) 

A £ A Col (ASi9oo.,A?n) ....(4.16) 

Then, as is easily veri 
fied, (A? , Ac") satisfies the equation 

A S = a^ - Ac"x f' + p f'as_ ....(4.17) 
f» T 

from which, on pre-multiplication by C]t ) , we deduce that 
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t t 
q c ) 

t 
cn:f) x f 

(TCf ) 
i T 

18) 

= f where, as usual, we have written X. for the equilibrium mean sojourn 
f' T f' time ("It1 ) "X1 . 

Then, introducing the scaled probability distribution 

ef ^ it 

we can compute the reduction in mean cost rate by 

» T 
ac(f',f) = (£ f) a£(f\f) (if.19) 

The coefficients of the A ^ in this linear functional are all 

non-negative. It follows that 

A c < 0 N n : A ^ . < 0 

and, since an optimal control exists, we have 

f non-optimal < 0 

3 f' 3 1 e < 0 
Now from (^.11) and (4-.12) A ^ depends on f1 only through f'(i) 

It therefore follows that 

f non-optimal 

or, equivalently, 

^ j i & N m [ - f ' :f'(j) = f ( j ) , \ / a V i ^ : A \ < 0 

r 
\/i £ N , \ ( f ' : f'(j) =f<3), / i « A ^ ^ 0 

f optimal 
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The lefthand side of the above implication is precisely the 

stopping condition for the revised policy-iteration algorithm. We 

have therefore shown that the algorithm converges to a globally 

optimal policy by a sequence of single-state policy changes. Further-

more, convergence is clearly monotonic in "c . 

It does not seem possible to show that the RPI algorithm always 

converges more rapidly than the basic Howard algorithm and its variants. 

The chief advantages offered by the new algorithm are: (i) the compu-

tational effort associated with the value-determination operation in 

each optimization cycle is now proportional to the number of states 

in which the control law is changed - in a large but highly-structured 

problem this number may be very much less than the total number of 

states, with a consequent substantial reduction in computing effort; 

and (ii) the values of ^ and *c used in the test quantities ' 

defined by (4.11) and (4.12) and used for policy-improvement, are 

continuously updated as the policy-improvement routine steps sequent-

ially through the states of the chain - in contrast to the Howard 

algorithm, in which the values of and c used are always those avail-

able at the end of the previous optimization cycle. The significance 

of this second feature is discussed in more detail in Section 4.2.4. 

(Footnote: If instead of using the "Jewell" test vector A ^ , defined 

by (4.11) - (4.13), we use the "Schweitzer" test vector A ^ defined 

by 

V i ^ N : V ( f \ f ) ^ b f ? ( l ) + Z p f ' ( i ) $ f 

* N J 1 f'(i) 1 ^ 1 1 3 3 ± 

X . L i 1 

A^.(f',f)A ^ ( f ' l f ) - ^ ( f . f ) 

a>j a coica^, aij2,....,aiyn) 

then it is easily shown that 
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\/i £ A ^ f ' . f ) = -C?'(i) A ^ f ' . f ) 

and hence that 

(a) A ^ C f ' . f ) < 0 At]Af\f) < 0 

and 

(b) 
....Of. 19a) 

which is perhaps a more elegant form of (*f.19)) 

k.2.2. An accelerated policy-iteration algorithm 

The policy-improvement routine in the RPI algorithm minimizes, 

in each state i, the test quantity ^ ^ with respect to u = f'(i), and 

by (*f.12) the resulting u also minimizes A ^ . There is however no 

guarantee that the resultant improvement in the cost rate "c is the 

best obtainable with respect to changes in f(i). For if f' differs 

from f only in state i, then from (*f.1l) and (*f.12) we have 

A^(f\f) = 0 , J / i and so, from (*f.19) the difference between 
—f1 —f 
c and c is given by 

ac(f\f) = ej A^.(f',f) ....of.20) 

so that minimization of does not necessarily correspond to 

minimization of A c . Indeed, if state i is transient under the policy 

f then 6. is zero, and so A c will be zero even though 
AV (f if) 

i ' 1 

may be non-zero. The problem of transient states is discussed in 

Section *f.2.5« Even if i is recurrent under each of several improved 

policies, say f', f", f'" , ..., it is clear from (^.20) that mini-

mization of Ac" is not necessarily achieved by minimizing A ^ -

Suppose we wish to achieve the greatest possible reduction in 

c at each single-state policy improvement. Such an optimal improvement 

is achieved in the following accelerated -policy-iteration (API) 
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algorithm. 

From (*f.5) we have 

and from (*f.8) 

h f ' = ) 1 e i • • • • (*f.21) 1 

(Ef 

so that 

) = i - k a rf) e.a* (rf) ....(*f.22) 

.... (*f.23) 

where r. £ (Ri) ' e. ....(*f.2*f) —x —1 
f » 

Thus in equation (*f.20) the scaled probability 0^ can he 

computed by (*f.23). 

We can nov/ construct an accelerated policy-iteration algorithm 

in which the policy-improvement stage minimizes A c rather than 

The flow chart is as in Fig.(6). 

Proof of convergence of this API algorithm is as for the RPI 

algorithm. As before, "c decreases monotonically to its minimal value, 

but we now have the additional property that each single-state policy 

improvement achieves the maximum possible reduction in c". On the 

other hand, if the control set U contains K alternative control 

actions, there are (K- 1) additional inner products (one for each 

trial 0.) to be computed at each policy-improvement. As in the RPI 
1 - 1 f f 

algorithm, (R ) and v_ need only be recomputed in those states for 

which the control law is changed. 

Incidentally, in the special case where the control set U con-

tains only two elements, so that the optimization proceeds by a sequ-

ence of binary choices, minimization of A^(f',f) is equivalent to 



Fig. (6) 



minimization of /\c(f',f). It is therefore unnecessary to compute 

the 0 i in this type of problem. 

4.2.3 A direct -policy-iteration algorithm 

Finally, in this group of algorithms we outline an alternative 

to the API algorithm in which c" is computed directly from (3.6). 

Changes in c due to single-state policy changes are computed by evalu-

ating directly the effect of a row change in the P-matrix on the 

corresponding stationary distribution, IT. 
1 

Suppose that pf and P are the transition probability matrices 

of a totally regular CSMC under the stationary policies (f) and (f). 

and let 

AP A P f' - P f ....(4.25) 

Since the chain is totally regular, the corresponding stationary 
f f' 

distributions, it and tt , exist and satisfy the relations 

t 
(]lf) (I - P f) = o T ....(4.26) 

t 
^ f ' ^ (I - Pf') = 0 T ....(4.27) 

f \ (I - P f ) = (TTf) (I - P f) ....(4.28) 

Subtracting (4.26) from (4.27), we obtain 
t _ t 

qrf) 
f' 

Now the matrix (I - p ) is of rank (N- 1) and hence singular. 
f However, let us separate out the principal dyad of p by writing 

P f A pf _ e(Ttf)T ....(4.29) 

Then, on using (4.25) and (4.29) in (4.28), we have 

t t ^ t 
(TT ) (I - P f - AP) = (TP) ( I - P * ) . ....(4.30) 

"if 

and furthermore the matrix (I - p - ap) is non-singular. To see this, 

note first that 
a ( t -of at^ t t,f' ^ f t m & (i - p* - ap) = i - pf + e(]tf) 
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Now, 

(ii) 

(iii) 

(iv) 

3 

(i) M singular — ^ v. / 0 : Mv = 0 

i r t ~ 
v / 0 : (i - pf ) v = - [(ttf) v i e 

• t > t 
^ v / 0 : (tcf ) (i - pf ) v = - j\]tf) v] 

t 
— t j v / 0 : (tif) v = 0 

Combining conditions (ii) and (iv) we find that 

„ T 
M singular CTC1) v =-- 0 (iv) 

^ and (I - P 1 ) v = 0 (v) 
r 

£ 

But since P is regular the only solutions to (v) are v = 0_ 

and v_ = _e ; and since "Tt 0 , the solution v = e, cannot satisfy 

(iv). It follows that v = is the only solution to M v ^ 0_ and hence 

that M is non-singular. 

Thus (^.30) can be written 
T t -1 

(TT1 ) = (IT1) (I - P f) (I - P f - AP) 

r v or, alternatively, since (I - P ) is also non-singular 

....(̂ f.31) 

1 t t r 
(ttf) = (tlf) I i - AP (I - P f) 1 - 1 

cf.32) 

Now suppose that f differs from f only in state i ; then P 
f th will differ from P only in the i row, and we can write 

A p = 
t e. a. 

If we also introduce 

and 

„ - 1 
t a (i - p1) 

b T 4 a T T —a —1 

(^.33) 

(^.3^) 
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then (4.32) becomes 

(tc = Qtf)T [1 - % 7 ] "1 — ( 4 . 3 5 ) 

which, on use of the Sherman-Morrison lemma (equation (4.7)), finally 

becomes 

....(4.36) 

where 
X. = (1 - b T e.) 1 —1 —1 

-1 
(4.37) 

i 
Thus the stationary distribution"]]^ can be updated by (4.36) for 

any single-state change in the control law f. In principle we could 

use (4.36) in conjunction with a single-state policy-improvement 

routine to optimize the cost rate c. However, as we shall now show, 

there are two features of such an algorithm that are capable of im-

provement. In the first place, the computation of A c for each possible 

control alternative f'(i), in state i involves the evaluation of the 
f' t f1 f' t f' two inner products (TT ) and ClC1 ) X 1 ; by working with a suit-

ably scaled stationary distribution it is possible to compute c and 

hence A"c by a single inner product evaluation. Secondly, the updating 

of the matrix T required after any single-state change in f involves 

a rank-2 modification of the Sherman-Morrison type; by using a slightly 

modified matrix it is possible to perform the updating by a rank-1 for-

mula with a consequent reduction in computational effort. 

Consider the matrix 

w A [ i - P f + x f P T ] ....(4.38) 

where p is an arbitrary fixed probability vector. By the same argu-

ment as that following (4.30), W is non-singular if P is regular; 

thus 

(4.39) E A w"1 
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exists, and 

EW = I 

W E = I 

Post-multiplying (4.40) by e. gives 

E X 

so that, using (4.40) again, E [i - P̂ J = I - e. p' T 

T 
Pre-multiplying (4.4l) by (TC ) gives 

T p 1 E (irf) 
T 

where — f X 
T 

....(4.4o) 

....(4.4l) 

....(4.42) 

....(4.43) 

(X f) 

equilibrium mean sojourn time under (f). 

Thus the scaled stationary distribution, 

ef a # TC" 
7c*' "" 

....(4.44) 

can be determined by taking a fixed linear combination of the rows 

of E. From (3-6), the cost rate under policy (f) is given by single 

inner product 

„ T 
....(4.45) 

1 
Furthermore if E is the E-matrix associated with the control 

law f , then 

(E') 
- 1 f' f' T I - P 1 + X 1 p 

E"1 - AP + AT T 

where 
• < 

Ax A. xf - X 
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Thus 
-i -1 

E = E ' JJL - ( A P - A t / ) EJ 

If f differs from f only in state i, then 
m m m 

AP - AR p = e.(a. - AX.p ) 

so introducing 

dT A (aT - Ax.pT) E — 1 — L 1_ 

= a T E - A x . (Bf ) T 

and using the Sherman-Morrison lemma, we have 

\ T -1 where A. - (1 - d. e. ) 

Finally, wri ting 

A E = E' - E 

A D = i f ' - 9 f 

we have, from (*f.*f9), (*fo*f3) and (*f.¥f), 

T 
AE = X.. E . D . 

l — i — i 

where E^ is the i^*1 column of E, 

and A8T = X. 6fd T 
1 1 — 1 

Also, since c* = P 1 E ^ f , we can write 

A c = 1 P 

where w f A E Y 

and A v; = wp -

....(*f.*f6) 

....(*f.*f7) 

.... (*f.*f8) 

....(*f.*f9) 

(*f.50) 

(*f.5l) 

(*f.52) 

(*f.53) 

(*i-.55) 
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We thus have a matrix E from which the scaled stationary 

distribution is easily determined and which can be updated by the 

rank-1 formula when a single-state change is made to the 

control law f. 
T Note that subject to the conditions p ^ 0, p _e = 1, the 

~ ~~ f T 

'choice of p is arbitrary. We shall choose p = e. , in which case ce1) 

is the first row of E. Note also that the vector w is easily updated 

by the rank-1 formula 

/ = [ i + A . k g J - At- PT)J [ / + A Y ^ J 

.... (̂f ) 

We are thus led to the direct policy-iteration algorithm 

shown in Fig.(7). 

Proof of convergence is as before. The cost rate "c decreases 

monotonically and, as with the API algorithm, the maximum possible 

reduction in Ac" is achieved at each single-state policy change. 

Comparison of policy-iteration algorithms 

The development of the above new policy-iteration algorithms 

was motivated by the search for improved computational efficiency in 

the solution of the optimal regulation problem. We shall now there-

fore attempt to compare those features of the various algorithms dis-

cussed above which potentially influence their computational effi-

ciency. 

(i) Howard/Jewell algorithm 

(a) Policy-iteration requires evaluation of the inner product 

p? . <b. for each control alternative u in each state i. 
<—-r—» l j J 

Thus assuming that the number of states is N and the number 

of possible control actions is K, the total number of multi-
p 

plications required for policy-improvement is approximately KN , 
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Specify initial control law, f 
f f 

Compute E, w_ , c_ 

n 

r For i = 1 to N 

Policy-improvement 

For each u £ 1A-, compute Ac by (4.54) 

and (4.56) 
New f(i) = Arg. m i n u [Ac] 

Value-determination 

New E given by (4.52) and (4.50) 

£ New w given by (4.56) 

Fig. (7) 



(b) Value-determination requires the solution of N simultaneous 

linear equations, equivalent to N rank-1 modifications to 
f -1 

the matrix (Rx) . If, say, Gaussian elimination is used 

for the solution the number of multiplications required is 

approximately 

(c) Thus the total number of multiplications required per major 
1 2 

iteration cycle is approximately (K + — N) N 0 

(d) The values of S and "c used in the policy-improvement stage 

get progressively more out of date through a cycle as i 

increases from 1 to N. 

(e) The 

reduction in c achieved by each single-state policy-

improvement is not necessarily the maximum attainable. 
(ii) Hastings algorithm 

Essentially the same properties as the Howard/Jewell 

algorithm. 

(iii) Revised policy-iteration (RPI) 

(a) Policy-improvement requires the evaluation of the inner 

product 2 j ^j e a c k alternative u in each state i, 

so that the total number of multiplications required for 
2 policy improvement is approximately KN . 

(b) Value-determination requires N^ rank-1 modifications to 
f - 1 

(R ) where N^ ^ N is the number of states in which the 

control law has changed in the optimization cycle; the 
2 number of multiplications required is approximately N^N . 

(c) Thus the total number of multiplications required per major 
p 

iteration cycle is approximately (K + N^) N . 

(d) The values of S and "c used in the policy-improvement stage 

are always the best available. 
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(e) The reduction in c achieved by each policy-improvement 

is not necessarily optimal. 

(iv) Accelerated policy-iteration (API) 

(a) Policy-improvement requires the evaluation of two inner 

products (one for A ^ , one for B^) for each alternative u 

in each state i. Value-determination is as in the RPI. Thus 

the total number of multiplications required per major itera-
2 

tion cycle is approximately (2K + N^) N . 

(b) The reduction in "c at each single-state policy-improvement 

is always the maximum attainable. 

(v) Direct policy-iteration (DPI) 

This has essentially the same properties as the API, the 

only difference being that the two inner product evaluations 

per alternative arise in the computation of trial values of 
i 

wf by (4.56) for use in (4.54). 

It can be seen from the above comparison that the new algorithms 

offer hope of more rapid convergence than the basic algorithm, together 

with a significantly more efficient major iteration cycle (less compu-

tational effort) when the number of control alternatives K is much 

less than the number of states N and changes in the control law are 

confined to relatively few states. This will be true for example when 

the set of recurrent states is, for all control laws, a small 

subset of the whole state space An additional minor advantage 

of the new algorithms is that since the procedure is identical for 

every state there is no need to define an iteration cycle as a cycle 

ending in state N: the procedure has converged as soon as- the N most 

recent policy-improvement stages have left the control law f unchanged. 

Thus by bringing the termination test within the state-incrementing 

loop in the flow charts of Figs.(4), (5) and (6) the possibility 
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(inherent in the basic algorithm) of carrying out up to N redundant 

policy-improvement stages is eliminated. 

We have implied, in the above comparison and in the description 

of the EPI algorithm, that the use of continually updated values for 

5>_ and c" in the test quantities A ^ offers some advantage over the 

'basic Howard/Jewell/Schweitzer procedure. To see the justification 

for such an assertion, consider a complete policy-improvement cycle 

of the Jewell algorithm which results in a change of policy from (fA) 

at the beginning of the cycle to (fg) at the end of the cycle as a 

result of changes in control action in states i^, i^,...,^. Now 

define the intermediate policy (f ) by r 

fp(i) = fA(i) , i = i r 

fB(i) , i / i r 

for any state i 6 ^ in which fg(i) / f^(i) 

Now using (*f.V+) in (*f.l8) we have, in general, 

Ac (f\f) = (9.f )T A ^ (f',f) ....(if.57) 

and, in particular, for the policies defined above 

f T 

Ac (fB,fA) = (j)B) A ^ (fB,fA) ....(if.58) 

A c (fr,fA) = (9fr)T A ^ (fr,fA) ....(if.59) 
Thus 

Ac (fB,fr) = A c (fB,fA) - Ac (fr,fA) 

N 

i=1 
(if.6o) 

However, by the definition of f , 
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A y w = - 1 * \ 

0 , i = i ' r 

and so (*f.6o) gives 

A c ( f B , f r ) = e*B as-. ( f B , f A ) 
r r 

f 

....(4-.61) 

where the primed summation is over all states except i • 
FV „f r 

Now the scaled distributions ^.and are necessarily non-

negative; and, because fg if the control law that minimizes 

for each state i, the test vector (fg,f^) is non-positive. Thus the 

first term on the right of (4.6l) is non-positive. However, the change 

in control in state i from fr(i) (= f^(i)) to fg(i) may change the 

scaled probability distribution in such a way that the second term 

on the right of (*f.6l) is positive and larger in magnitude than the 

first term. In such a case we would then have Ac (fB,f ) > 0. This 

means that, even though by assumption the test quantity A^. (fg,f^) 
r 

is strictly negative (for otherwise the policy-improvement routine 

would leave f^ti^) unchanged), f is a better control law than fg. In 

other words, given the changes from to fg(i) in all states other 

than i , the change from f^i^) to ^(i^) will actually degrade the 
performance of the system (increase the cost rate c). 

The possible occurrence of such counter-improvements is avoided 

in the EPI algorithm, in which for any single-state policy change 

f (i) — ^ f' (i) the change in cost rate AcXf ,f) is, via" (*f. 19), 

guaranteed to be non-positive if A ^ ( f ,f) is non-positive. 

As an example of a Howard/Jewell policy-improvement cycle in 

which the above effect occurs, consider the following regulation 
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problem : 

X = N 2 = \ , t Z \ 

Parameter;: 

Y. 
N/ 0. 

11 '12 

'21 22 

Policy (fA) = 

Under u 

1 

1 

1 

1 

0.25 

0.75 

0.75 

0.25 

Under u 

1 

1 

0.75 

0.25 

0.25 

0.75 

Then 

and so Jewell policy-improvement gives : -

f B d ) min f v u 
u 1 Arg. — a: - T X D = 

-a 
'1 

fB(2) = Arg. 

Thus (fB) = 

m m 
u ( Y u -a __ u - c ; = 

and so 

tc b 

whence -b c 

0.5 
0.5 

qrB)TxB 
-b 
X 

u 

u 

However, policy-improvement in state 1 alone would lead to the policy 

( f ) 
u 

u 
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for which 

TC 

— i whence c 

0.75 

0.25 

T ». . .» 
(TC ) Y I 

4 

Thus, given the policy change in state 1, the change in state 2 

indicated by the Jewell policy-improvement test actually increases 
3 1 the cost rate from - ̂  to - — . With the RPI, on the other hand, 

1 2 
the change in f(2), from u to u , would be seen to increase c and 

would not be carried out; at the end of the iteration cycle the policy 

would be (f) = \ and the cost rate c^ would be - . 
Vu / ^ 

Suppose however that the states are re-ordered, so that the 

RPI algorithm tests state 2 first and then state 1. It can easily be verified that the policy (f") resulting from such a cycle of single-

, so that the state policy improvements would then be (f ) = 
—it 1 

cost rate c at the end of the cycle would be as in the Jewell 

iteration cycle. 

The above example shows that, in contrast with the Howard/Jewell 

algorithm, the single-step algorithms will, in general, give different 

one-cycle cost reductions A"c for different orderings of the states 

of the chain. Except in certain special cases (see below) there is 

usually little point in trying to optimize the state ordering before 

using a single-step algorithm, since (a) the optimal state ordering 

will change from cycle to cycle, and (b) improvement in the cost 

reduction Ac achievable in a single optimization cycle does not 

necessarily guarantee improvement in the overall convergence properties 

of the algorithm. 

It is perhaps worth pointing out that in the special case where 

the control set contains only two elements (ie. a binary choice 

of control in each state) there is always at least one state ordering 
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for which the cost reduction achieved by a single cycle of the RPI 

algorithm is at least as good as the reduction achievable by a single 

Jewell iteration cycle. For if "cT* is the cost rate achieved by the 

Jewell cycle, and if ^i^ • • • ~ ^ ^ ) ^ke set of 

states in which the Jewell algorithm changes the control action, we 

can certainly order the states in 3 C so that the states in OCj are 

the first k states examined by the RPT algorithm. Furthermore there 

is an ordered subset of states in XLj, say (i ), such 
•IR 2 -J" m 

that the RPI algorithm can achieve a cost rate c ^ c by single-

state improvements first in i . then in i , and so on to i • For 
either the RPI algorithm makes changes in all the states in 

p j 

(ie. m = k), in which case c = c ; or the RPI algorithm makes changes 

in at most m < k states, in which case c^ ^ c^ (for otherwise fur-

ther one-state improvement is possible in at least one of the remain-

ing k - m states in X^.). 

The argument fails when 
U contains more than 2 elements since 1 

a control law f is not then uniquely specified by listing the states 

in which it differs from some reference control lav; f. In practice 

however, re-ordering of the states has very much the same effect in 

the general case as when 

U is binary. 

4.2.5 Transient states 
As we have seen (Chapter 2), the state space 

X of a regular 

semi-Markov chain is the union of two disjoint subsets, OG^and 

of which the first is the set of all the transient states of the chain 

and the second is a closed set of intercommunicating recurrent states. 

In a totally regular controllable chain the subsets X ^ and will 

in general depend on the choice of stationary control policy, so that 

in the policy-iteration algorithms considered in this Chapter policy 

changes may be made which move states from to X» and vice versa. 



Now in a single-state policy improvement the cost reduction in any 

state i is given by equation (4.20) : 

Ac(f\f) = e * A ^ . ( f \ f ) 

where 0^ is the scaled equilibrium probability of state i under 

the control law f. We also know that 

9 > o i 6 X. R 

e. = o 

so that the cost reduction Ac(f ,f) can be non-zero only if state i 

is recurrent under f'. This raises the following question: in the 

algorithms (API and DPI) based on optimal reduction in c at each 

iteration, is it possible for the algorithm ̂ to halt prematurely be-

cause changes in the control law will be confined to states which are 

recurrent under the changed control law? This could happen, for 

example, in the following situation : 

f°(-0 

^ i ^ 

f = 
f°(1) 

f°(2) 

with c c"1" . If state 1 is transient under f and state 2 is 

transient under f", (but both 1 and 2 are recurrent under f and under 

f°), the control law f° cannot be reached from f by two successive 
i policy improvements of the API/DPI type, since the first step, f —> f 

-f 

or f —>. f , will not be taken. 
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Fortunately such a situation cannot arise since it is forbidden 

by the following lemma. 

Lemma: Let f be a feasible stationary control policy for a totally 

regular CSMC, and let jCjji and be respectively the sets of states 

transient under f and recurrent under f. Then for any single-state 
i 

policy change f -> f in state i, 

f (a) i £ X 

(b) i € X 

X * = X * (and X ^ = X " ) R 

£ X R 

To prove this lemma, first order the states of the chain so that 

the states recurrent under f precede the states transient under f. 

The transition probability matrix P then has the canonical form (see, 

for example, Seneta^9^9^) : 

pf R 
i 1 
I 
1 

0 

Pf 
TR 

1 
1 
I 

T 
— 

1 
1 
I _ 

where 

P-n represents one-step transitions within x : K 

P^ represents one-step transitions within "X^, 

3 ? T R represents one-step transitions from to DC^ 

Now suppose that the control is changed from f to f in state 

i 3Crp » this will change a row of the submatrix F p ^ I P^ ]• 
f f ^ There will be no change in P^ : hence will remain a closed set 

of recurrent states. But in a totally regular chain there cannot be 

more than one recurrent subchain. It follows that no state in 

can become recurrent as a result of the change f 

Xf1 f 
T = " 

T 
f , and hence that 
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To. prove part (b) of the lemma, consider a change from f to f 
f 
R 

f-y f I 
in a recurrent state i . If the change f f made i tran-

sient under f' we would have i £ • u^er the reverse 

change f —> f in the now transient state i we must, by part (a), have 
f f '"V" I 

= —Â rp so that i 6. ; this contradicts the assumption that 
i ^ • 

The important part of the lemma is (b), which asserts that the 
* 

situation depicted in the left-hand side of the above diagram cannot 

occur : a single-state policy change in a recurrent state i cannot make 

i transient under the new policy. 

Now consider optimization by single-state policy improvement. 

We have 

f non-optimal — > : Ac"(f°,f) < 0 

2]f°: < 0 
R 

where / denotes summation over all spates in • Now by part 

/ \ R r- -yf 
\a.) of the lemma, we cannot have — p 5 so at least one 
state i €. must be recurrent under f. Then the single-state 

t policy change f f , where 

f'(j) £ f°(j) , j = i 

£ f(j) , j / i 

will, by part (b) of the lemma, leave state i recurrent under f • 

So we shall have 
« < e f > o 

i 

and hence 

A^.(f',f) = AX.(f°,f) < o 

Ac(f',f) = A ^ . ( f \ f ) < o 

* f. n z 
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Thus if f is non-optimal there is at least one state, recurrent 

under f, in which a single-state policy change can produce a reduction 

in the cost rate c, ie. at least one state in which API/DPI iteration 

can continue. 

There are two final points to be made on this topic. Note, in 

the first place, that part (b) of the lemma does not assert that 

O C ^ = OC-p if a change f f' is made in a recurrent state; it is -R 
V quite possible for a change f —> f in the recurrent state i to move 

X—Y* 
_ B to .Â p and vice versa. For example, 

the control change in state 1 represented by ^ iv\C.\<U.V\C£ Yf\aXr\c4.S 

leaves state 1 recurrent, but changes state 2 from a recurrent state 

to a transient state and state 3 from a transient state to a recurrent 

state. In general, then, control changes in recurrent states may 

change the communication structure of the chain. 

Secondly, policy-iteration algorithms based on minimization of 

the test quantities A^Csuch as Howard, Jewell, EPI) will minimize 

the relative values ^ of the transient states as well as the average 
~~ (1960) cost rate c (see Howard ). As has been pointed out by 
(1969) — 

Schweitzer , a policy which minimizes c does not necessarily 

satisfy the functional equations (3-31)> (3-3^)- ^ Schweitzer's 

terminology, f° is functional-optimal if it satisfies equations (3-31 

and is minimal-cost if it minimizes "c. The set of functional-

optimal policies is a subset of the set of minimal-cost policies; in 

fact, just the subset of minimal-cost policies for which the transient 

state costs are also minimized. Schweitzer has shown that the Howard/ 

Jewell algorithm always converges to a functional-optimal policy; it 
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follows immediately that the same is true of our RPI algorithm. On 

the other hand, the API/DPI algorithms will converge to a minimal-cost 

policy which is not necessarily functional-optimal. Of course, by 

(2.108), a functional-optimal policy will minimize the expected total 

cost from any state (transient or recurrent); but the contribution to 

.the expected total cost of any transient cost S^ becomes less and less 

significant as the operating time increases. 

4.2.6 Relation between the three single-state algorithms 

It is perhaps worth pointing out that the three single-state 

policy iteration algorithms considered in this Chapter are very closely 

related. The DPI algorithm is, in fact, easily modified to yield the 

test quantities needed in the other algorithms. For equation (4.55) 

may be written 

B-1 / = / 

or, on using (4.39) 1 

[i - P f + X p T ] / = Y f ' ....(4.62) 

ie. 
(I - P f) w f + ( p T / ) x f = I f ....(4.63) 

Multiplication of (4.63) by ( V ) gives 

f T f 
T f or ) x f 

(P w ) = = 
« * > V 

so that (4.63) can be written 

(I - P f) wf + c f x f = X f ....(4.64) 

£ 
Comparison of (4.62) with (4.2) shows that w_ is a value-vector: 

T f —f 

in fact, the unique value-vector satisfying p w = c • We could there-

fore use w* to compute the test quantities A ^ required in the EPI 
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and API algorithms. Conversely the matrix R in equation (4.3) is i 
very closely related to the special case of E which results from 

choosing p = e^. 

4-3 New successive-approximation methods 

As we saw in Section 3«3-2 of the previous Chapter, a computation-

ally convenient (though not necessarily more efficient) alternative 

to the policy-iteration method of optimization is the suecessive-

approximations method developed by White f o r the discrete-time 

Markov regulation problem. A naive extension of White's method to the 

semi-Markov case does not work since the resulting algorithm does not 

always converge. In this section we develop an effective semi-Markov 

version of White's algorithm and also consider the possibility of 

using accelerated-convergence algorithms analogous to those suggested 
(1968 197l) 

by Kushner and Kleinman ' for the transient-cost problem. 

Before doing so, it will be useful.to demonstrate the convergence of 

White's basic algorithm by means of a contraction mapping argument. 

4.3*1 The White contraction mapping 

In what follows, J|x. | denotes the - norm of the real n-vector 

x and 1| A 1[ denotes the corresponding subordinate norm of the real 

n x n matrix A. Recall that the mapping T : Rp Ep is a contract-

ion mapping with respect to the norm I | j | on Rp iff 

^ x , y 6. BP : II T(x) - T(y) ]| oC |[ x - Z | 

for some c< £ 

If T is a contraction the equation x = T(x) has a unique solution . 

x°, called the fixed point of T, and furthermore the iteration 

x = T(x D converges to x°. More generally, the iteration x = T(x „ ) —n —n-1 0 — —n —n-1 
converges to x° if for some finite r the mapping T37 : Rp —> iP is a 

contraction (in which case T is called an r-stage contraction). 
\ 
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The affine mapping T : I?1 — > H11 defined by 

T(x) A A x + b (4.65) 

where A is a contraction if || A |J < 1, 

since 

|T(X) - T(y) | II A(x - y) 

^ M . | U - y . 

Now suppose that we have some control set \JL and that the first 

row of [A] Jbj is a function of f^ £ \JL , the second row of j~A j b_J 

is a function of f^ £ X L , etc. The complete matrix j~A! is 

then determined by the sequence f A (f^,...,f ) and we denote it by 

For every f £ \JL , define the mapping T : R*1 — > if1 by 

Tf(x) A Af x + b f ....(4.66) 

Then, as before, T^ is a contraction if || A"̂  | -C. 1. 

Now consider the non-linear mapping T : Rp — > R11 defined by 

....(4.67) 

for i = 1,2,...,n. 

For brevity we write equations (4.67) in "the symbolic form 

T(x) ^ [ V (x)] ....(4.68) 

n 
Now if T is a contraction for every f £ u then T is also 

a contraction. 

For we have 

T(x) - T(y) = ^ [l f (x)] - [ V (y)] 

f f 
T x(x) - T y(y) 

where 1 minimizes r(x) X — 
f minimizes ^ ( y ) 



But 

so that 

f f 
T X(x) < T y(x) 

T(x) - T(y) ^ T y(x) - T y(y) 

119. 

A y(x - y) ••••(a) 

By a similar argument 

T(x) - T(y) > A X(x - y) (b) 

so that, from (a) and (b), 

^ f 
A y(x - y) > T(x) - T(y) > A X(x - y) 

A A 
Now the component of T(x) - T(y) with maximum modulus is either 

zero - in which case ]l T(x) - T(y) | = 0 ; or positive - in which 
~ f 

case it is bounded above by the corresponding component of A y(x - y), 

whose modulus does not exceed II A y(x - y) ll ; or negative - in 
which case it is bounded below by the corresponding component of 
fx II fx I A (x - y), whose modulus does not exceed |[ A (x. - y) | We con-

clude immediately that 

A A 
T(x) - T(y) < l U S x - y ) ! V i U ^ C x - y | 

^ K i v U a M I ) i u - a 

so that 
A A T(x) - T(y) f> | * - z 

Max || Af 
where 

/>4 -
and, by hypothesis, ^ < 1. 

As a generalization of the above idea suppose that not all the f 
matrices A are contraction operators but that instead they satisfy 

the weaker condition 

. T L | \/(fV,...,f r) e O T ) 
n r r r-1 2 1 

A1 A1 A1 A1 < 1 
....(^.69) 



Let 

-r-1 * ^ 1 

^ T ^ 1 (y) 

and 

< 
fr-l A, 
x Arg. min T (x . ) J — r-1 

f 

:r-l A, ^ Arg. min T (zr_x) 
f 

Then 
A r T r (x) T r( Z) = T (xr_1) - T ( Z r - 1 ) 

= T 
Y - l x 

r-1 

<2r-l> - T y <*r-l> 

.r-1 .r-1 
i? T ^ ( x ^ p - T Y ) 

f r _ 1 
= A Y (Xj-.i " J ^ ) 

= a f y i ^ - h x ) - fr-1 (*>$ . . . (a) 

A similar argument gives 
r-1 

T r (x) - T r (y) > A f^ {t27"1 (x) - T*"1 (y)} ... (b) 

Then (4.70) follows by recursion on (a) and (b), with 

Max 
f 1 f r 
J - j • • • f £ 

f r f ^ 1 f 1 A A A 
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Then by an extension of the above argument it is straigjht-

forward to show that T is an r-stage contraction, ie» that T is a 

contraction: 

V x , 7 * tf : || ̂ ( x ) - Tr.(y) || <* J x - y | 

....(4.70) 

for some 

Consider now the valuo-determination equation (equation 2.110) 

for a controllable semi-Markov chain. If the control law is f the 

equation is 

= - ~ + p f S. (4.71) 

Let us ensure a unique solution to (4.71) by adjoining the 

constraint (see Section 4.2.6) 

p T = C* (4.72) 

where p is an arbitrary but fixed probability vector. 

Then (4.71) becomes 

= (Pf - x f pT) £ + X f ....(4.73) 

or, S. = Tf(_S) ....(4.74) 

where T̂ " : K^ —> K^ is the mapping defined by 

Tf(x) * ( P f - X f p T ) x + X f ....(4.75) 

Clearly (4.75) is the particular case of (4.66) obtained by 

taking n = N, Af =-• (Pf - X f p T) and bf = ]j_f • ^ u s the solution S_° 
f f 

to (4.73) is the unique fixed point of the mapping T , and if T is 

a contraction the iteration 
i a = > ....(4.76) 
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So r o 

. More generally (4.76) will converge to if 

T is an r-stage contraction for some finite r. 

Now in the particular case of a discrete-time Markov chain we 

have = e. , so that A f = (P^ - e_ p 2 . 
Also, 

(Af)2 = (Pf - e p T) P f = A f P f 

and, "by induction, 
j> n p p n~1 

(A ) = A (P ) ....(4.77) 

f 
Thus if P is regular, so that 

Lim „ n f t 
(Pf) = eQT ) 

oO 

we have 
Lim x. n p f T 

(A ) = A . e(TC ) n —> oo 

= (Pf - e p T) e ( 7 ) 
T 

= 0 

f 
It follows that T is an r-stage contraction for some choice of 

So , „ . _ . 
Now consider the non-linear equation 

1 = T(_S) ....(4.78) 

A f 
where T is defined by (4.68), with T given by (4.75). The component 

equations of (4.78) are precisely the optimality equations, (3«31), 
A 

whose solution we are seeking. If T is a contraction the required 

solution can he obtained by the iterative procedure 

— n = ....(if.79) 

White's successive-approximations algorithm for the discrete-



time Markov regulation problem is equivalent to iterative use of 

Of.79). To prove convergence of the algorithm we must therefore show 
A A r 

that I is a contraction or at least that T is a contraction for some 

finite r. Since we are dealing with a particular case of a mapping 

of the form (*f068), a sufficient condition for / to be a contraction 
ji 

is condition (A.69), with, in this case, A = P - e_ p for 

i — 1•o•,Pt 

But, as is easily verified, (A. 77) generalizes to 
A A ... A A = A (Pf .o. P f P r ) 

(A.80) 

In order to proceed we now invoke a rather elegant theorem due 
(1963) (1958) 

to Wolfowitz which in turn is based on some results of Hajnal 

on inhornogeneous products of stochastic matrices. If P is a finite 

stochastic matrix and if 
M P ) & 1 - ? p A P ± . 

i i *• » 2J 

then P is said to be a scrambling matrix if X(P) < 1. The scramb-

ling property, X(P) < 1, implies that for every pair of distinct 

states i^, i^ there exists at least one state 3* (possibly i^ or i^ 

itself) accessible in one step from both i^ and i^. It may be shown 

that the set of scrambling matrices of a given order is a proper sub-

set of the corresponding set of regular matrices. 

Wolfowitz' theorem may for present purposes be stated in the 

following form : 

If jf^ P(2),.o.,P(k) ̂  is a finite family of 

stochastic matrices of the same order such that 

W : for every positive integer n the inhomogeneous product 

P(n) - Pn Pn-1*" P 2 P 1 ' Y P i £ ' i s a regular 
matrix, 

then the following weak ergodicity property holds : -
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J % ( 1 ) V n > n ° V P ( n ) 1 $ ( P(n) } « £ 

•... (*f.8l) 

v/here for any stochastic matrix P the parameter S(P) is defined 

by 
C r ^ ^ Ha* X _ 

....(*f.82) 3 X V 1 2 
p. . - p. 
V 12; 

Furthermore, a sufficient condition for property W to hold is 
(i) r~L 

that every P & jf be a scrambling matrix. 

Roughly speaking, the theorem asserts that for sufficiently 

large n any product whose factors are scrambling matrices drawn 

from a finite set, is a stochastic matrix with almost identical rows. 

In a sense the theorem can be regarded as a generalization of the 

asymptotic stability property R.2 (equation 2.10) for regular homo-

geneous chains. Now if property W holds then is a regular matrix 

and therefore possesses a unique stationary distribution It . We can 

then write 
*>(„) = e v j j + ? ( n ) ....(4.83) 

where is a differential matrix. As we shall now show, P(n) is 

a contraction operator for sufficiently large n. 

First note that if P is a regular stochastic matrix with station-

ary distribution it , then 
T T 

-tr = ir p 

i 

T th where p. denotes the i row of P. 

The right-hand side of (*f.8*f) is a convex combination of the 

rows of P : thus jy belongs to the convex hiill of the rows of P. 

The following then holds : 
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V
1 4 

T t>. -1 _ It T <1 
Max 
j T T 

P.- - Ph 

...(4.85) 

(Proof: T - T 
P-? - 3L 

Max 

3 
p. . - "IT. 

Max 
3 

Max 
3 

Max 
^ d 

13 T R pkj 

z 

since 

k 

since 
" f l k K j " pkj| ) TTk 

k 
I Pi3 " pk3 I 

Max 
k j K i j ^kj 

T T 
Pi " Pk - 1 - ll 

Thus, if P 

we have 

Max 
k 

T T 
pi " pk 

by 
convexi t y ) 

P -

Max 
i 

/v/T 
Pi 

T /n/T" th ^ 
e "It , and p. denotes the i row of P. 

Max 
i 

T 

Max Max 
i 3 

Max Max 
i?3 k 

>t - t t 1 

T T 
Pi " Pi 

Pik " Pjk 

, by (4.85) 

S(P) , by (4.82) 

Then 

iizii = ^ 2 \% 
k 
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T Z 
y Max > Max , 
* « / • k pik 

< N . S(P) 

so that 

S(P) ^ 1 l\p 11 4 . ...(*f.86) 

It follows that the weak ergodicity property (*f.8l) asserted by 

Wolfowitz' theorem may be re-stated : -

] n o ( £ ) V n > - n o VP(n) : K J ̂  £ 
cf.87) 

/v/ 
where P(n) is given by (^.85). The contraction property follows 

immediately. 

Returning now to the successive-approximations iteration, (*f.79)i 

suppose that for each feasible control law f the transition probability 

matrix P is a scrambling matrix. Then in analogy to (*f.77) we can 

write (*f.80) as 
r r-1 ~2 -.1 „r 

A1 A1 . 0. A1 A1 = A1 P( r - 1 ) Of.88) 

where 
r-1 2 1 

P, £ P 1 P1 P 1 

(r-1; 

is an inhomogeneous product of the type to which Wolfowitz' theorem 

is applicable. 
S° r 2 1 r f f f f A1 ..o A1 A1 = A1 P, x (r-1) 

/ f Tx , T /N/ \ (P1 - e p 1 ) (elt, x + P, x) — £. (r-1) (r-1 j 

(r-1; 

0 , as r •—> 06 
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since, by (4.87), ^ converges element-wise to the zero matrix 

as r increases. 

It follows immediately that for sufficiently large r the matrix 
f37 f 2 f^ T-N 

A ...A A is a contraction operator on If. Hence by (4.69) and 

(4.70) the successive-approximations algorithm based on (4.79) is 

convergent. 

The requirement, in our statement of Wolfowitz1 theorem, that 
$ (t) (k)? 

every matrix in the family = i P ,.Q..,P j be a scrambling 

matrix,( is in fact unnecessarily restrictive, and may be relaxed in 

either of the following ways. 

(l) If the family ^ is such that 
P.1 : for some fixed n^ ^ 1, every product 

P(n,) * % V l - P 2 P1 < V P i « I K 

' is a scrambling matrix, 

then the weak ergodicity property (4.8l), and hence (4.87), will hold. 

Thus a sufficient condition for the successive-approximations 

scheme to converge is that there exist an n^ such that for every 
1 2 n1 feasible sequence of control laws (f\ f%...,f ) the product 

n 1 2 f1 
(Px P* ' ... PA Px ) is a scrambling matrix. 

As an example of a controllable chain in which, although the 
f 

individual P-matrices, P , are not scrambling, condition P.1 is satis-
('1) 

fied, consider a controllable birth-death process (Cinlar 1 ) in 

which transitions are possible only between adjacent states. For f 

such a process, P is tri-diagonal for every feasible f, and hence 

(for N 4) not scrambling. However, it is easy to see that con-

dition P.1 will hold with n^ — (N - 1), where N is the number 

of states. 

It is not, in general, possible to express condition P.1 in 

terms of equivalent conditions on the individual members of • 
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(2) If the family is such that 
(i) rt 

P. 2 : each P £ \h is regular and has a strictly 

positive principal diagonal, 

then property W of Wolfowitz1 theorem holds (see Seneta ( l 9 7 3 )) and 

hence so does the weak ergodicity property (4.8l). 
Thus an alternative sufficient condition for the successive-

approximations algorithm to converge is that each of th® feasible 
f transition probability matrices P have a strictly positive principal 

diagonal. (Since we are dealing with totally regular processes the 
£ 

regularity of each P is assured.) This is a most important result 

since, as we shall show in Section 4.3-2 it is always possible to 

transform an optimal regulation problem into an equivalent problem in 
f 

which every feasible P has a strictly positive principal diagonal. 

(Footnote: A stochastic matrix with a strictly positive principal 

diagonal is said to be normed.^) 
We have presented the above convergence proof in detail because 

(196^5) 

although it is less direct than White's own proof it has the 

following advantages: 

(i) It establishes convergence under less stringent conditions than 

those required by White. He requires that for some n^ every 
product P/ \ = P P (where each P. is a feasible * ui/j; n^ n^-1 1 1 
transition probability matrix) be. a Markov matrix (a stochastic 

matrix with a strictly positive column). In fact, more is re-

quired: there must be a state, say m, such that for some n^ the 

th 
m column of every product P ^ ^ be strictly positive. We 
require only that every product ^ be scrambling; or, alter-

natively, 

diagonal. 

f natively, that each feasible P has a strictly positive principal 

£ 
(ii) By emphasizing the role of the matrices A in determining the 
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contractive properties of the successive- approximations trans-
A 

formation T , the proof offers a hint as to how the method might 

be extended to the semi-Markov case. We now proceed to consider 

this extension. 

A.3-2 Successive-approximations in the semi-Markov problem 

White's algorithm is designed to solve the discrete-time Markov 

regulation problem. As we have shown, the convergence of the algorithm 
f a r f t 

rests on the contractive nature of the matrices A — IP - e p J 

arising in the iterative solution of equation (A.78)0 In the more 

general case of semi-Markov regulation, the vector je of unit sojourn 
f 

times is replaced by the vector X of mean sojourn times under the 

current policy; that is, we must work with matrices A* - T^P^J* 

The crucial properties (A.77) and (A.80) then no longer hold, T is 

no longer necessarily a contraction mapping, and (A.79) is not guaran-

teed to converge. 

However, as we have seen (Section 3-2.3)1 any semi-Markov regu-

lation problem is equivalent to some discrete-time Markov regulation 

problem. This observation leads directly to an appropriate extension 

of the White algorithm to the semi-Markov case. 

Consider a totally regular CSMC, ^X^] , and the corresponding 

equal-sojourn-time chain, , derived via the transformation defined 
by equations (3-8) - (3-15)- For any feasible control law f, let 

f * f * f 

(P ) , (jC ) and a ) be respectively the transition probability 

matrix, the mean sojourn-time vector and the mean one-step cost vector, 

of the chain 
Then 

(T*) f -CQe ' ....(A.89) 

where X Q is chosen according to equations (3-8) - (3.10). Because 

of the way in which the equivalence transformation is defined, (A.89) 
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holds for every feasible control law f; hence, for every feasible f, 

is weakly equivalent to a pure Markov chain with index set 

= 2x o,....| . The original semi-Markov regulation 

problem has been converted to a pure Markov regulation problem to 

which White's successive-approximations algorithm is applicable. 

The rest is straightforward. For the transformed problem, 

equation (4.71) becomes 

I* = (X*)F - O*(X*)F + (P*)F I* ....(4.90) 

and if we now add the constraint 

p T -X "c* (*f.9l) 

equation (4.90) can be written 

V = Tf(£*) ....(4.92) 

where, now, the mapping T^ is defined by 

T ^ x ) * [(P*)f - e p T J x + (X +) f ....(4.93) 

A 
As before, the non-linear mapping T defined by (4.68) will be 

an r-stage contraction for some r < provided that (4.69) holds 
f r , f T-1 ^ f 

with, now, A — I (P ) - e p . But, for any f, P and (P ) possess 

the same communication structure (ie. same incidence matrix). Thus 
f 

if in the original semi-Markov problem the matrices P satisfy the 

weak ergodicity condition then the transformed successive-approxima-

tions algorithm 

V = T(S* J ....(4.94) 
— n — n - 1 

will converge to the unique solution of the transformed semi-Markov 

regulation problem - which, as we have seen (Section 3-2.3)i is the 

solution to the original (untransformed) problem. 

It remains to write (4.94) in terms of the characteristic 
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parameters of the original CSMC. In component form, (4.94) is 

. . . . ( 4 . 9 5 ) 

which, on using (3.11) - (3-13) and (4.91)I becomes 

/r*\ Win 
= u UL [l- J d - P ) } ^ . , - ^ o ^ e + J l ] 

JL 

Min j((p.I)s* . c * y u \ a € n 
-n-1 i ) —n-1 11-1 — — ( j l( m 

Min 
i'n-1 u e U = (S*> - + 

Finally, dropping the * and using (3-12), (3-13)* we obtain the 

required iteration equations : -

(S.) 1 n (S.) + M N 

i n-1 u e U ^ h U
 + 7 p » . ( S . ) , - o T U . (g.) } 

^U I 1 L— ( J n-1 n-1 1 M -
i j 

V i e N N 
....(4.96) 

f 
Provided that the matrices P satisfy the weak ergodicity con-

dition, iteration of equations (4.96) will yield a value-vector X 
T c — 

satisfying p o_ = -x c where c is the minimal equilibrium mean cost 

rate. 

Comments: 

(i) The iterative algorithm defined by (4.96) has been developed as 

a natural generalization of White's algorithm to the case of 

semi-Markov regulation. Thus, as we should expect, equations 

(4.96) reduce to White's equations when the state transitions are 

uniformly spaced in time (ie. when = , ^ i , u ). 
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(ii) The rate of convergence of (4.96) will depend, inter alia, on 

the magnitude of the equivalent sojourn time, "C , defined by-

equation (3-10). In general it will pay to make as large as 

possible: thus we would normally take K=1 in (3»10). 

Note however that if K < 1 then, by equations (3-9)- (3«13)» 

the equivalent transition probability matrix (P ) will possess 

a strictly positive principal diagonal (even though P may not) 

for every feasible control law f. Thus by choosing K to be 

slightly less than unity we can guarantee that property P.2 of 
* f 

Section 4.3-1 will hold for the transformed matrices (P ) and 

hence, by Wolfowitz' theorem, that the successive-approximations 

algorithm will alv/ays converge when applied to the transformed 
£ regulation problem (provided only that all the P , and hence 

r * 

all the (P ) are regular - as they will be for any totally 

regular chain). 
(iii)A closely-related iterative procedure has been proposed by 

(1971b) 

Schweitzer whose argument is based on the idea that a 

semi-Markov chain is (in a sense not explicitly defined) equiva-

lent to a continuous-time pure Markov chain. We have presented 

the above development, partly as independent corroboration of 

Schweitzer's conclusions, and partly because the arguments on 

which it rests are (at least in our view) rather more compelling 

than those put forward by Schweitzer. 
4.3*3 An accelerated-convergence algorithm 

(1968 1971) 

In two related papers by Kushner and KLeinman ' on the 

transient-cost problem (for Markov chains with an absorbing state), 

Kushner and Kleinman point out that some of the convergence results 

of linear iterative analysis are relevant to the non-linear iterations 

arising in the successive-approximations method for the transient-cost 
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problem. 

As is well known, the affine mapping 

Tq : Bp — > Rp , x v-> A q x + b (4.97) 

o / 1 
has the fixed point x = (I - A^) b_ , provided that the matrix Aq 

does not have a unit eigenvalue. Furthermore, the iteration 

x^ = T^Cx^ converges to x° m spectral radius, cr(A^) , 

of Aq is strictly less than unity, and the rate of convergence increases 

with decreasing 0 " ( A N o w Aq can be split into three terms : 

A = L + D + U (4.98) o 
where 

L is strictly lower triangular 

D is diagonal 

U is strictly upper triangular 

I 

Then, provided (I - D) is non-singular, each of the mappings 

- 1 
T : x | — > A x + (I-D) b ...(4.97a) 

- 1 
t
2
 : £ \ — > a

2 * + ( I - D b ...(4.97b) 

-1 
t_ : x h—> A x + (i-d-l) b ...(4.97c) 
j ~~ 3 

where 

A1 £ (I-D)"1 (L + U) ...(4.98a) 

A 2 ^ (I - L)"*1 (D + U) ...(4.98b) 

- 1 
A £ ( i - d - l ) U ...(4.98c) 
5 

has the same fixed point as the mapping t . The iteration x = t.(x .) 
^ ° o —n i —n-1 

will converge iff < 1 . Iterations using Tq or T^ are called 

Jacobi iterations, while those using T 2 or T^ are called Gauss-Seidel 

iterations. 
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If Aq is a non-negative matrix, the following results concerning 

the spectral radii of Aq, A^, A^ and A^ are available in a theorem 

due to Stein and R o s e n b e r g ^ ^48) : 

(i) <r(a ) = 1 o*(A ) = cr(A ) = <r(A_) = 1 
o ^ 1 2 3 

(ii) cr(Ao) < 1 cr(A2) < cr(Ao) 
and <T(A_) < 0"(A ) 5 1 

(1973)\ provided that A^ is irreducible (see Seneta ). If, in addition, 
the diagonal elements of Aq belong to £0,1) , with at least one 

a. . *>" 0 , then also 11 ' 

(iii) CT(A ) < 1 <r(A.) C <r(A ) o 1 o 
and <5*(A_) < G"(A ) 5 ^ 

Thus under the appropriate conditions a Gauss-Seidel iterative 

scheme is more rapidly convergent than the corresponding Jacobi itera-

tive scheme. In their first p a p e r ^ ^ ^ on the transient-cost problem, 

Kushner and KLeinman show that a "Gauss-Seidel" successive-approxi-

mations method based on the use of (4.97b) converges more rapidly than 

the corresponding "Jacobi" method based on the use of (4.97). In 
(1971) their second paper they consider accelerated methods based on 

so-called over-relaxation iterative methods of the form x = T (x .), 
-11 -n-1 7 

in which t' is one of the mappings T^, T^, T^, T^, where T^, T^, T^, 

T^ are given by (4.97), (4.97a), (4.97b), (4.97c) after replacing 
Ao b y L ^ o + " ^ ^ 10 ^ ^»2) • 

The Kushner/KLeinman results suggest that the convergence of 

the successive-approximations algorithm (4.94) will be accelerated 

if we can reduce the spectral radius of each of the matrices 
f P *%f T~1 

A £ ^(P ) - P J by transforming from the "Jacobi" form of (4.94) 
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to the corresponding "Gauss-Seidel" form. Unfortunately, however, 
f 

the matrices A are not in general non-negative and the Stein-

Rosenberg theorem is no longer applicable. Thus even though, for any 
f f n feasible f, <r(A ) < 1 (since (A ) —Jf^ ' w e c311110^ conclude that 

the corresponding Gauss-Seidel matrix will have a spectral radius £ 
less that 0"(A ); indeed, the new spectral radius may even be greater 

than one. Thus the only obvious way of accelerating the convergence 

of the basic algorithm (A.9A) is by the use of over-relaxation in 
f 

conjunction with the "Jacobi" matrix A . 

In the affine mapping Tq defined by (A.97) replace the matrix 

Aq by the corresponding accelerated-Jacobi matrix 

A(w) £ jjoAQ + (1-w)I^J ....(A.99) 

where AO 6. ; and replace b. by CoId . The resultant mapping, 

T^, will have the same fixed point as Tq (provided that CO is chosen 

so that A(w) does not have a unit eigenvalue). From (A.99X the eigen-

values , X^,..., of A(ta) are related to the eigenvalues X^, X^,..., 

of A by o 0 

XI = w X. + (1 - to) ....(A.100) 1 1 

and so, for given CO , the spectral radius of A(<0) is given by 

+ (1 _ to) ....(A.101) <r(A(«*)) = ^ 
1 1 

Now the linear iteration x = T1 (X .) will converge more 
—n o —n-1 & 

rapidly than the iteration x = T (x J if we can find an to such ^ J - n o -n-1 
that <r(A(io)) < ^ ^ o ^ ( 3 s s u m e d •< 1)- Clearly such an 00 

must differ from unity since, by (A.99)» A(l) = Aq. Under-relaxation 

corresponds to 10 < 1, over-relaxation to Co 1; which procedure 

is used will depend on the location of the eigenvalues of the original 

matrix A . 
o 

Now consider the application of the transformation (A.99) to the 
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successive-approximations algorithm (4.94). At each iteration the 
T T . 

matrix Aq will have the form P - e p , where ]? is a fixed probability 

vector and P is a regular stochastic matrix whose elements depend on 

the current control law. 

Lemma : Let the eigenvalues of the regular stochastic matrix P be 
T (=1), X-,,..., X • Then the matrix A = P - c< e p , where c< 1 d. 5 n — m 

is a real number and p is a probability vector, has eigenvalues 

(1 -<*) , x2, \ .... x n. 

Proof : We have 

A __ _ . _ 

(1 - < 0 e 

rT~l T 
P - o< e_ p I e_ = P _e - c< (p _e) _e 

so that je is an eigenvector of A, with associated 

eigenvalue (1 - cC). 

Then, for any complex number 7 

For any / X^ let q. be an associated eigenvector of P. 

A(fk + ft-*) = f p - ^ ® p T j + 

T Pq^-o^Cp Pe, -

= T/^i - - ^ z s P ] * 

r* So if is chosen so that 

A 

c*(pT q j 

1 - - X ± 

then 
A ( q . + ^ . e ) = X..(q. * yvx. e) 

so that is an eigenvalue of A, with an associated eigenvector 
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( q . + f-.e). 

(Note : In the particular case when = 1 - X^ the associated 

eigenvector is e_ and the eigenvalue (1 -o^) is multiple.) 

Now since P is a regular stochastic matrix the only eigenvalue 

of P with unit modulus is the principal eigenvalue, X^ = 1 ; the 

remaining eigenvalues all lie in the interior of the unit disc, 

Ixl ^ 1, in the complex plane. It follows from the lemma that 

for o< £ (0,2) the eigenvalues of A all lie in the interior of the 

unit disc and hence that the spectral radius of A is strictly less 

than one. In fact, provided that ]l - | ^ <\ I \ » ^ ^ 

will be independent of the value of , being equal to » 

modulus of the subdominant eigenvalue of P. In particular this is 

the case when = 1, as in our successive-approximations algorithm. 

Vie should expect an accelerated algorithm to result if, at each 

iteration, the matrix A^ = jp - ê  p^Jis replaced by the correspond-

ing accelerated-Jacobi matrix A(to) defined, for some suitably chosen 

relaxation factor by (4.99)- If the eigenvalues of P are known 

then so, by the above lemma, are those of Aq and it is possible in 

principle to determine the optimal value of U3, ie. the value of ui 

which minimizes cr(A(w)). In practice, of course, the eigenvalues 

of P are not known and a suitable value of us must be estimated and, 

if necessary, improved by trial and error. We now show how a reason-

able estimate of W may be made in some cases. 

We have seen that, apart from the special eigenvalue (1 - <<), 

the eigenvalues of A = ĵ P - oC ê  p^J are eigenvalues of P. Now the 

eigenvalues of P all lie on the largest Gershgorin disc^ 9^^ associ-

ated with P : that is, the region G in the X - plane defined by 
P 

G P * l X - P o l < 1 " P o I (4.102) 
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where pQ is the smallest diagonal element of P. Thus with c*' suit-

ably chosen (ie. so that the eigenvalue = (1 - °<) belongs to G ), 
* P 

Gp will contain all the eigenvalues of A. The situation is illustrated 

in Fig.(8) for the case 

P = 

1 0 0 

0.2 0.6 0.2 

0.2 0.4 0.4 

= 1 

In this example the eigenvalue of A with largest modulus is 

X = 0.8 : thus C"(A) = 0.8. If we now use over-relaxation (to > 1) 

to shift the eigenvalues to the left, we can produce an accelerated-

Jacobi matrix A (to) whose spectral radius is less that C"(A). For 
5 example a relaxation factor of 60 = will reduce the spectral radius 
5 

from 0.8 to O.67. 

Generally speaking we can say that if p « . 1 G will cover . ® P 
most of the unit disc : ] X \ ^ 1 J and it is unlikely that the 

spectral radius of A can be significantly reduced by over-relaxation. 

If on the other hand p is not too small (say ">0.2) G will be 

mainly in the right half-plane and it is then likely that over-

relaxation can reduce the spectral radius of A. We now consider brief-

ly hov; the relaxation factor 10 should be chosen. In doing so it is 

convenient to work with the parameter 

r k 
u t 1 - 1 

in terms of which equation (4.99) and (4.100) have the forms 

^ (Ao + f I) 

X' 
1 

x. + 

1 + t 

....(4.103) 

(4.104) 

We now have the following fact available to us (see, for examp3.e, 
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Alm(X) 

unit 
circle 

I m O O 

Ee(X) 

unit 
circle 

Re(X) 

(a) Eigenvalues of P (b) Eigenvalues of A = |p - _e p"*" J 

Fig. (8) 
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(1Q66) 

Isaacson and Keller ) : if all the eigenvalues of P (and hence 

of A) are real , the value of p for which is a minimum 
is 

t - ± (X + X . ) 
2 max m m 

where X and X . are the maximal and minimal eigenvalues of A . max rain ° 
In practice X and X • will not be known. However, v/e know max m m 7 

that they belong to the largest Gershgorin disc G and hence that P 
X < 1 max ^ 
X . > 2 p - 1 
m m v* * o 

If then we assume that X = 1 - £ , X . = ( 2 p - l ) + £ , 
max min 7 

we obtain the estimate 

t CX - p ....(4.105) o m 

ie. the optimal relaxation factor when all the eigenvalues are real 
-1 5 is U>q CX (1 - pQ) • Thus in the above example the value to = ^ 

is in fact the optimal value of to . It must be emphasized that the 

estimate (4.105) can be very different from the true optimum if X max 
and X . are not symmetrically disposed about the centre of G as m m p 
they are in the example. 

Two further comments are in order here : 

(i) The estimate |8 Q C^ - pQ is based on the assumption that the 

eigenvalues of P are all real. This will be so if, for example, 

P is symmetric or — of more importance in practice — if P is 

tri-diagonal (as it will be for a controllable birth-death 

process). 

(ii) The accelerated matrix P(^) = (1 + )~1 £p + ^ ij , with 

= - pQ , is a stochastic matrix in which the diagonal element 

p. . m i n (p. . ) = p is replaced by 0, but whose incidence 
i 1 1 ° 
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matrix is otherwise the same as that of P. This implies that even if 

P has some complex eigenvalues, use of the acceleration factor 
-1 

(O = (1 - p ) will not take any eigenvalue of P outside the unit 

disc in the complex plane — though in such a case there may well be 

no reduction in spectral radius. Furthermore, if to is chosen slight-
-1 

ly greater than - pQ so that 00 < (1 - pQ) , the accelerated 

matrix ) will have the same incidence matrix as P ; thus if P is 

regular (scrambling/normed/etc.) P(̂ 5 ) will be regular (scrambling/ 

normed/etc.). 

Returning to the problem of accelerating the successive approxi-

mations algorithm (Ao9A), we now propose an algorithm based on the 

use of the acceleration factor to = 1 + p , a value which is between 
o -1 

1 and the "optimal" value (1 - p Q) and which is close to the latter 

when pQ -̂ jC* 1 (as it usually will be in practice). 

Using the symbolic notation defined in (A.68) equation (A.9A) may 

be written in the more explicit form 
i ; = * n | y + a * ) f J io6) 

where 

Af = [ W -

Equation (A.106) defines the unaccelerated form of the successive-

approximations scheme. Now consider the following scheme : -

Set = arbitrary real N-vector and, for n 

i n = ^ [ c p * ) f - e p T ] s a _ 1 + ( r ) f J ....a. 107) 

<v 

where 

— n = S ^ n + (1 " W n 5 ^n-1 ....(4.108) 

= 1 + p n ....(4.109) 
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with w. . xP-

where fn is the control law which minimizes the right-hand side of 

(4.107)o 

Equations (4.107-8) define an accelerated iteration on ̂  with 

a variable acceleration parameter W n. To see this write (4.107) in 

the form 

£ n = [ ( p * ) f n - + . . . . (4.111) 

and substitute this into (4.108) to get 

S = | > - " e p * l i n . + l n ....(4.112) — n L n — — J — n - 1 — 

where 

P n * [i - wn(l - (p*)f ) ] ....(4.113) 

and 

S T £ ^ n ^ ^ ....(4.114) 

rJ f11 
The matrix P n is the accelerated version of (P*) ; note that 

with W chosen as in (4.109- 10) P will be a stochastic matrix n 
* fn 

with the same incidence matrix as (P ) and, it is to be hoped, with 
* f11 

a smaller spectral radius than (P ) 

If ̂  is a solution to the non-linear difference equations (4.107-8) 

then, as is easily seen, 
i = ^ n ( [ ( P * ) f - e p T ] i + ( X Y j ....(4.115) 

ie. jy is indeed the value-vector for the given optimization problem, 

since (4.115) is precisely the equation = T(_S_) with T defined by 

(4.68) and (4.93). 

Recall that the vector p is an arbitrary probability N-vector. 

We now show that in the particular case _p = _e the above acceler-
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ated successive-approximations (ASA) algorithm is guaranteed to con-

verge for any Jb • 

If f° is the optimal control law then 

% = A f 0 % + ( Y * ) f ° 

f r * f t! 

where, as usual, A £ I (P ) - e_ p . It follows that, for any W , 

= + (l*)f°] + ( l - t o ) i In particular, 

S = W r A f ° S + ( V ) f 0 | + (1 - to ) S 
— n L — — -I n — 

< M n [S 1 + C T + (1 " V 1 

by the minimizing properties of f°. 

But, at stage n, 

% = u T a ^ s + a * ) f n [ + d - « ) S , 

— n n L — n - 1 — J n — n - 1 

so that, subtracting, 
S - £ ^ to a ^ (S - S j + (1 - to )(S - S J 
— — n ^ n — — n - 1 n — — n - 1 

le. 

where 

£ > . A n £ „ ....(4.116) — n ^ —n-1 

and 

£ £ S - S ....(4.117) — n — n — 

A n £ F w A ^ + (1 - w ) i ] ....(4.118) L n n J 

n t I 
P - J (4.119) 

Iterating on £_, 

£ A A ... A A 1 £ (4.120) 
— n ^ L J — o 
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We now require a generalization of (4.8o), which because of its 

intrinsic interest, we state as a 

Lemma : Let , i = 1,2,... be an infinite sequence of matrices, 

each of the form A. = Tp. - W. e p"\, where p. is stochastic 
I L 1 I ~ _ J I 

and ta £ (0,2). 

Then for any m ^ 1 

Idm 
n A . A ... A A n+m n+m-1 2 1 

- a a. a p p n+m n+m-1 m+1 m m 

Proof: We have 

a ••••a_ a. n+m 2 1 An+m-"- A2 (P1 " > 

n+m 
— a . . . . a p — to >. 

n+m 2 1 1 
i=2 

(1 -U). ) e p' l — £. 
t 

since e is an eigenvector of A. with corresponding eigenvalue (1-W. ) 

But W i £ (0,2) and so (l - W ) < 1 ; it follows that 

n+m 

i=2 
(1 - W. ) ^ o 

and hence that 

ta ^ a a 1 > (a ^ a p̂  
I n+ra 2 1| n n-Hn 2 1 I 

Now use induction : if the result holds for (m - 1) then 

r "i _ r 1 
a . . . . a t ~ i a . . . . a p .••«p. i L n+m 1J I n+m m m-1 1J 

+ e 

where E — - — > 0. n,m n 
Therefore 

Ta ^ .o..A 1 = Ta ^ A . (p - w e p T)P „...P„ | + E. 
L n+m 1J L n + m m m~" — ^J n' m 
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- 1 
A ... A P • t•*F 
n+m m+1 m 

n+m 
•1 

- U ) I I (1 - W . ) e p T | P P„ m -J. , L 1 — — m-1 1 | i=m+1 L J 

+ E n,m 

+ E + E m,n n,m 

and E m,n n 

- A A P 13 1 — i" ••••A t i 
\ n+m m+1 m 1J 

! ^ I p . . i - p i ll ^ 1 -> 0 , since 

Applying the lemma to the matrix product in (4.120) we get 

[An+ffl ....A1] n [A n + m....A m + 1 P m 

But each P 1 is a normed, regular stochastic matrix and so the weak 

ergodicity property holds : that is 
m £1 A .... i m * — —(m) 

So 

[ A n + m . o o r m + 1 ? r a
0.£ 1] [A n + m . 0 ,A m + 1 ] e t r j } 

n+m 

= J - (1 - to.) e. 
i=m+ 

T 
i'AJSCm) 

n 0 

V/e have shown that 

Idm 
n o<3 A a o . o . A I 

and hence, from (4.120), that 

Lim 
n-> oo — n ~ 

(4.121) 

le, Idm 
n in * S ....(4.122) 
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Thus S is bounded W cw (component-wise) by_o_for all n •n 
sufficiently large. 

Furthermore, reversing the argument leading to (A.120), 

ie. c. —n <T [l - to (I - A f 0) [ £. „ (A. 123) 
^ L n J —n-1 

get 

T * f° 
Multiplying by the stationary distribution, TC , of (P ) vie 

o r T i ) < ( T t S J - U ( P
T s j ....(A.12A) 

— o — n ^ — o —n-1 n _ —n-1 

But, from (A. 122), l n > 0 for all n sufficiently large; so 

since we are taking p = _e we shall have (p"̂  > 0 unless 

£ 1 = 0. Then, for all n sufficiently large, (A.12A) gives 

T T 
CK £ ) < (IT s. ) — o — n — o —n-1 

which, since the error vectors are (for n -> »£>) non-negative, implies 
T 

that (Tt J;n) — — > 0. This in turn, using (A.12A) again, implies 
that 

Lim m 
(p S J < 0 — —n-1 ^ n o<b 

since 

But, by (A.122), 0 for sufficiently large n. Therefore, 

p = — ^ — ' ̂  follows that 

Idm 
£ n — n 

ie. that T. lam j 

Comments : 

(i) V/e have shown that acceleration of the standard successive-

approximations algorithm, by the use of over-relaxation with a 
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variable acceleration factor, is feasible. The accelerated 

algorithm is defined by equations (4.107)- (4.110). 

(ii) What we have not shown is that the accelerated (ASA) algorithm 

will always converge at least as rapidly as the standard (SA) 

algorithm. However, since the transformation matrices used in 

the ASA algorithm have, in general, smaller spectral radii than 

those used in the SA a±gorithm, it is reasonable to expect the 

ASA algorithm to be more rapidly convergent. This expectation 

is borne out in practice. 

(iii) Although we have proved convergence only for the case p = ̂ ^.e , 

it should be clear from the proof that it is sufficient to have 

p ^ 0>. Furthermore, numerical experience suggests that even 

this condition may not be necessary, though we have been unable 

to dispense with it. 

(iv) Any attempt to use over-relaxation with a constant relaxation 
I 

factor fails, because in order to guarantee that the matrix 

[ i . « { x . ( p Y } ] 

remains a normed stochastic matrix for all control laws f, we 

must use ^ xf 1 + p , where 
O 

Min Min , * Nu 
P = . (p..) ° u i 1 1 

But it is easily shown that pQ = 0 and hence that 10^.1-

Thus we cannot use over-relaxation. (In fact, this statement is 

equivalent to the conclusion that we cannot take K > 1 in equation 

(3-10) when transforming the original semi-Markov regulation prob-

lem to the equivalent Markov regulation problem.) 
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CHAPTER 5 

OPTIMAL REGULATION OF GENERALIZED BIRTH-DEATH PROCESSES 

5-1 Introduction 

A birth-death process is a Markov chain, usually with state space 

= IX] ? in which transitions are possible only between adjacent 

states. Thus if | is a birth-death process with embedded chain 

^ X ^ , the transition probability matrix, P, of ̂  X ^ is such that 

V i S N : Pi;j = o , \± - j \ > 1 ....(5.1) 

The term originated from the use of such chains to model the 

dynamics of biological populations subject to randomly-occurring 

births and deaths. In discrete time (ie. when T" = Z ^ ) , a birth-

death process is often called a random walk with a barrier. We shall 

use the term generalized birth-death process (GBDP) to denote a semi-

Markov chain whose embedded chain has a transition probability matrix 

satisfying (5.1). By a controllable GBDP we shall mean a controllable 

semi-Markov chain which is a GBDP for every feasible control lav/. 

Such processes are of considerable interest in queueing theory 

since they serve as useful models for a wide variety of queueing and 

congestion systems. In particular, so-called Markov/Markov queues 
(l974)\ 

(see, for example, Gross and Harris ) with state-dependent ser-

vice rate are appropriately modelled by controllable GBDP's. As an 

example, consider an M/M/u/lN queueing system (see Gross/Harris 

-(1974) £ o r ^ e g-fcan^pd nomenclature for classification of queues) 

in which the number, u^, of open service channels at time t can be 

either 1 or 2. Suppose that the mean arrival rate is \ , the mean 

service rate per open channel is J ^ , and that J*- )> X . Then if 

u^ = 1 for all t the queue is stable in the sense that when N = oO 

(no upper bound to the permitted queue length) the queue length 
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possesses a well-defined stationary distribution whose properties 

are parametrized by the so-called traffic intensity , ^ — Let 

denote the number of items in the system at time t and let £ 

+ 1# Then, as is well known (see, for example, Gross and Harris (197^) 

{ x ^ is a continuous-time Markov chain with state space 3C = 

In particular, if u^ is made the following function of the current 

state X, : t 

u. 1 , 

2 , 

X. ^ i t ^ o 

> \ (5.2) 

then the embedded chain of will have the transition probability 

matrix : -

P = 

i +1 o 

N+1 

ft 0 

a. 
h 

o y 
/>2 ° 

A \ 

2 
where A = ; * = ; A = ) ; fk = ( - A - ) . 

Ay*- ' X+y*- • A + y*- / k + y*. 

Note that P has the tri-diagonal structure characteristic of 

birth-death processes. Note also that the function (5.2) is an exam-

ple of a feasible control law for the controllable GBDP ^ X ^ with 

control set W . = ^1,2^0 It i^ clear that an optimal regulation 

problem appears in a natural way if we associate with ^ X ^ a state 

cost, representing the cost per unit time incurred by each queued item, 
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plus a control cost, representing the cost per unit time of providing 

an open service channel. A discrete-time version of this optimal 
(1970) 

regulation problem has been studied by Brosh , and the more gen-

eral optimal regulation problem in which 'VL = ^0,1,2,...,K^ has 
(1972) 

been analysed in detail by Crabill 

In this chapter, we first consider the possibility of simpli-

fying the algorithms described in Chapters 3 and 4 when the chain to 

be optimized is a controllable GBDP. Next, we examine the problem of 

truncating the state space of an infinite-state GBDP so that optimiza-

tion may be performed by one of the finite-state optimization algorithms 

of Chapters 3 and 4; this is an important consideration in the applica-

tion of the algorithms to queueing systems since in many such systems 

the state space is infinite, ie. 3C. = Finally, we show how to 

determine globally-optimal quantized control laws for controllable 

GBDP's. In Chapter 6 we shall consider the application of our ideas 

to a specific optimal regulation problem. 
5*2 Simplifications arising from the birth-death structure 

Consider a controllable GBDP {(Xt : J L N ^ ) : t 6 + } 

with control set W , = ^u^,... ,11̂  Jo Under any feasible control law 

f, the transition probability matrix of the canonical embedded chain 

for {x^ has the form (assuming that no state is absorbing) : -

P f = 

0 

1 

0 o< 

\ 

1 N-1 0 c< 

1 

N-1 

0 

(5.3) 
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where 
f f(i) 

- Pi,i+1 > i = 2 , 3 I . . . , N - 1 .... (5.4) 

In what follows it is assumed that is in canonical form 

(see Section 2.2.4) so that the transition probability matrices 

associated with will always be of the form (5-3)• 

The first simplification arising from the above structure is 

that it is easy to determine by inspection the states which are tran-

sient under f. Thus 

f 
(i) if X £ (0,1) , i = 2,3,...,N-1 , then all states inter-

i f 
communicate and hence belong to a single recurrent class : P 

is regular and possesses a unique, strictly positive, stationary 

distribution; 

(ii) if = 0 and all other <X. £(0,1), then states 1,2,..., 3* 
3 1 

are. recurrent and the remaining states are transient; 
1 f f (iii) if X. = 1 and all other X. (0,1), then states j,3*+1,...,N 3 are recurrent and the remaining states are transient; f f f (iv) if c<. = 0 , <*k = 1 for some k < j, and all other £ (0,1), 

3 OCT-Z, r̂-CAJV-yXrvt 
then states j, j+1,... ,kĵ and the remaining states are transient; 

f + f (v) if <X. = 0, = 1 for some k > j, and all other (X . £ (0,1), 
3 k 1 

then the states 1,2,...,j form one recurrent class, states 

k,k+1,...,N form a second recurrent class, and the states j+1, 
f j+2,....,k~1 are transient : P is no longer regular. 

In this chapter we continue to restrict our attention to totally 

regular chains, that is, chains which are regular under every feasible 

control law f. If case (ii), (iii) or 

(iv) holds for every feasible 

f in a given optimal, regulation problem, the state space can be 

reduced to the set of states recurrent under all f. 
A second simplification is that the stationary distribution, f f f IT, of P is very easily determined. In fact, introducing oC £ 1 , 
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f A f C*^ 0, the components of "Tt are related by 

^ f 
= ' f } ' H " 1 

1 - "Sl+I 
(5-5) 

TTf so that if f is changed only in state iQ, the ratios ( i+y^f) will 

be unchanged except at i = i - 1 and i = i • As we shall see, it 

is this fact which permits state quantization to be introduced with-

out destroying the convexity of the optimal regulation problem. 

When we come to consider the effect of the special birth-death 

structure on the performance of the optimization algorithms of 
f 

Chapters 5 and 4, we note that P is a sparse matrix in which the only 
f f f 

independent parameters are o^i ©^i.-.i Thus instead of 

storing P as a 2-dimensional array of size N2 it is only necessary 

to store a 1-dimensional array of size (N-2). Briefly, the behaviour 

of the chain under the control law f is characterized by (i) the para-
f f f meter vector ©< ^ ( © C (ii) the mean sojourn time 

f f vector, , and (iii) the vector, mean one-step costs. 

In the Howard policy-iteration algorithm and its variants 

(Section 3«3«l) it is necessary to solve a set of N simultaneous 

linear equations once per iteration. As we have seen, this is nor-

mally done by Gaussian elimination, involving an operation count of 

N3 f approximately — . When P is tri-diagonal the equations can be j > 

solved much more efficiently by using the following procedure : 
f 

(1) Determine the stationary distribution 7T using equations (5-5) 

and the usual normalizing condition (Tt ) _e = 1 . The opera-

tion count is approximately 2N^ , where N^ is the number of 

recurrent states. 

(2) Evaluate the corresponding cost rate c by equation (3«6). The 

operation count is again approximately 2N^. 
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(5) Solve the system 

£ = - + pf s 

in the form 

(i - pf) i = Yf - - f c 

where now the right-hand side is a known vector. (As usual, to 

obtain a unique £ w e set, for example, = 0). The coefficient £ 
matrix (I - P ) is tri-diagonal and so the system can be solved 

(1Q7P) 

by the so-called Thomas algorithm (see, for example, Williams ), 

for which the operation count is approximately 5^ . 
The operation count for this procedure is thus ^ 10 N, an 

N3 
enormous improvement (for large N) on the figure of —- for the stan-

3 

dard method using Gaussian elimination. 

On the other hand very little simplification is possible when the 

modified policy-iteration algorithms of Chapter 4 are applied to a 

birth-death optimization problem. The reason is that the methods are 

based on the use of the inverse matrix, E — JjE - P^ + _e p^J , in which 
f 

the tri-diagonal structure of P is completely hidden. For example, in 

the DPI algorithm the most efficient way of implementing the calcula-

tion of A c v a a equations ( 4 . 5 4 ) and ( 4 . 5 5 ) is, instead of using the 

E-matrix as in ( 4 . 5 6 ) , to compute the new w vector directly via steps 

(1), (2) and (3) listed above for the Howard/Jewell algorithm. (This 

is possible since w is the unique value vector ji satisfying y^ £ = c.) 

The operation count for the DPI algorithm is thus 10N for each 
2 

single-step policy improvement, compared with N operations per step 

in the general case. 

Because the value vector is updated only once per optimization 

cycle in the Howard/Jewell algorithm, as against once per single-step 

policy improvement in the DPI algorithm, the latter can actually be 
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In the various successive-approximations algorithms the tri-
f • 

diagonal structure of P confers benefits in both speed and storage 

requirements. The speed improvement results from the reduction in the 

number of multiplications required for the product P S n ^ from N^ in 

the general case to in the tri-diagonal case. 

5.3 Truncation of the state space for the M/M/k/°^ queue 

In many applications of queueing theory there is no restriction 

on the length of the queue that may form at the entrance to the ser-

vice facility. Thus if a system is to be modelled by, say, an M/M/u/ft 

queueing model, it is necessary to set N = oO. Then if the number of 

items in the system at time t is the process is a continuous-

time Markov chain with an infinite state space. This presents a major 

difficulty in that optimization of such a system by any of the algor-

ithms of Chapters 3 and ^ is not possible unless the state space can 

be reduced to a finite set such as N - The usual way round this 
N 

difficulty is to approximate the M/M/k/©6 model by the corresponding 

M/M/k/N model for some sufficiently large N $ that is, to use a model 

in which the arrival rate to the system drops to zero whenever the 

number of items in the system exceeds N . If N is such that under all 

feasible control laws *> nJ ^ 0 then the behaviour of the two 

models should be almost identical — a hypothesis that can be checked 

by varying N . 

As we shall now show, an alternative approach is possible in 

which the M / M / k / m o d e l is replaced by an exactly equivalent con-

trollable finite-state GBDP. The basic idea is to introduce an em-

bedded semi-Markov process in which there is a reflecting barrier at 
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i = N as well as at i = 0 . 

5-3.1 The controllable M/M/k/ 0 0 queue 

The basic system with which we are concerned is the following 

controllable queueing system, denoted by CQS 1 . 

CQS 1 : | Single Poisson arrival stream : arrival rate, X 

Exponential service channels : service rate, J** 

Number of open service channels, k £ "VJL = { 0,1,2,. •. ,K ̂  

Queue discipline : FIFO (iec arrival order) 

System capacity, N = 

Let Nj_ be the number of items in the system at time t ; then 

^ N ^ is a continuous-time Markov chain with state space 

Associate with ̂ N Y a set of expected one-step costs , i £ "DC, 

defined according to (3-2) for some specified cost function 

c; the costs "Y ̂  are assumed to be non-negative and non-decreasing 

in i and k. The problem of finding an optimal control law f 

for the controllable birth-death process ^ N ^ is then an optimal 

regulation problem with a countably infinite state space. The problem 

is properly posed, in the sense that an optimal control law exists 

for ^ N ^ , if the following conditions are satisfied (see L i p p m a n ^ ^ ) : 

(i) For some k 
E U 

, kyi*, > X . (This condition ensures that there 

is sufficient service capacity to maintain stability.) 

(ii) For some positive constant C and some positive integer m, 

^ C(i V l)m , Y k 6 "U.. (This polynomial bound on the 

one-step costs ensures that the mean cost rate c is finite when 

the system is properly regulated.) 

5o3«2 The equivalent semi-Markov chain 

Assume now that the above conditions hold, and consider the 

associated optimal regulation problem in which the set of allowable 
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control laws is the restricted set 

^ N ~ { f : ^V 1 ^ N : f ( i ) = k)' k ^ k * } (5.6) 

where k+ is the minimum value of k such that ky*. > X . 

For every f £ ^ ^ the mean cost rate is finite; and since 
l̂tLn 

is finite the existence of ^ ̂  
G 1) is guaranteed. To determine a 1 € N 

control law which is optimal over '"tĵji we introduce the embedded semi-

Markov chain , ̂ M ^ , defined by setting 
M. — Nx N, ^ N t t 1 t ^ 

— N Nt > N ....(5.7) 

Thus is an (N + l)-state process in which the top state, 

i = N, is occupied whenever N^ ^ N. Nov/ with f €: ""JJJ the traffic 

intensity for {n^ is less than one whenever N^ N ; it follows 

(see, for example, ) that the state i = N - 1 is positive-

recurrent and hence that the mean first-passage time from i = N to 

i = N - 1 is finite. In turn, this implies that the transition 

(M^ = N) — > (M^ = N - 1) is certain and that the mean sojourn time 

in state N for the process ̂ M ^ is finite. Note however that is 

not a pure Markov process: in states 0,1,2,...,N- 1 the behaviour of 

^ M ^ is identical to that of and the sojourn time distributions 

are therefore exponential, but in state N this is no longer the case. 

As usual the equilibrium properties of the semi-Markov chain 

l^t^ a r e characterized by (i) the transition probabilities p Z of the 

embedded Markov chain, ̂ M^; (ii) the mean sojourn times, X? ; and 

(iii) the mean one-step costs, ̂  ̂  . We now determine these quantities. 

—k 
(i) Transition probabilities, p. . il 

For 0 < i < N , we have, by (5«7)i 
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- k . P. . — 
' E 

M = j 
11+1 J 

X + yVck 

X + 

M = i , k = k 1 n n J 

j = i - 1 

j = i + 1 

otherwise 

Also, the transitions (M = 0) — > ( M „ = 1) and (M = N) 
n n+1 n 

= N - 1) are certain. Thus under any feasible control law f, 
-f r f(i)~l 

the transition probability matrix P # J has the form 

0 

h 

1 0 

0 

A 
0 h • 

A 
0 X, \ 3 

N. 

where X . ( — 

T 

v N-1 

0 

—) , 
i r 

(5.8) 

. * ) , and k. f(i). 
L X + 1 

(ii) Mean sojourn times, "Tĵ  

Consider first the original process , whose sojourn time 

distributions are all exponential. In state 0 the event counting 

process is the Poisson arrival process which has a mean rate of X . 

In any other state i the event counting process is the total Poisson 
\ 

process generated by arrivals and departures: this has a mean rate 

(X + Avk.) where k. = f(i). / 
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Thus, using (3.7), 

= (f) , i = 0 

= ( — ) , 0 < i < N 
....(5.9) 

Now for all i N and any f £ let 

f x f = Mean sojourn time of in state i 

= f 
U^ = Mean first passage time from i to i - 1 

for the process ^ N ^ 

Then, by a renewal argument, 

x f = xf + p f . „ (=5* + X-f ) 
pi,1+1 1+1 1 . . . .(5.10) 

since on exit from state i the process ^N either enters state 
f f £ i - 1 , in which case X . = X. , or (with probability p ) it enters 
1 1 i,i+1 

— f 
state i + 1, in which case a further time "C^+i is required for the 

— f 

passage to state .i, followed by a still further time X ^ for the sub-

sequent passage to state i - 1 . 

Since f(i) = constant = f(N) for all i ^ N the process ^ N ^ 
— f — f 

is homogeneous in i( N) and so = X ^ o Using this fact 

in (5.1°) we obtain 
f 

X 
— f i t \ 
X T ; = 7: (5.11) 

1 

But, with f(N) = k^, we have 

x f = ( — 3 ) 
1 A + M.kH 

f = ( ) 
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and so, for all i N, 

1 k»T — X 
....(5.12) 

— f — "fJ C > 
But X N is just the mean sojourn time X ^ of the process ^ M ^ in 

— kN 
N 

state N. 

Thus, using (5-9) and (5.12) , 

r — k 
X . 

1 <i> 1 = 0 

< X + 
) , 0 < i < N 

V 

— kN 
X N 

( 1 -) 

X, 

r provided that k^ -77 , so that f e ^ n * 

k (iii) Mean one-step costs, Y f 

If, for all i N, 

.,...(5.13) 

Y = Mean one-step cost in state i of N i z 

and 

1 
Mean cost accumulated by \ N ^ in the passage 
from i to i - 1 

then, by an analogue of the above argument, 

Y ? 
— f 

= V I + P ±, i + 1 < Y i + 1 • Yi> . . . . ( 5 . 1 % ) 

f TT- f 
It is not now possible to argue that Y = 0 ̂  since, in 

general, Y ^ is not independent of i. However, since p^ ^+^ = 

for all i N, we can write (5»l4) as 
•/*i N 

N\ 

(5.15) 

where X N £ / X » Tj^g i s a linear, constant coefficient, 
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— f first-order difference equation for whose solution can be 
v»f 

determined once o^ is specified. 

For example, suppose that is the sum of a linear state cost 

and a general control cost : 

Then, since 
1 

(C i + DJ T * k 1 

% TX 
i 

....(3.16) 

X + juk 
0 for all i > N, 

Y 
X+ 

0 (C i + D ) 
N 

(5.17) 

With *)( given by (5-17) the solution of (5-15) is 

X+ ^M-kN 

Ci +D, 
n c X N 

^ - ^X^) ( 1 . 2 A n ) 2 j 

+ A 
kn 

(5.18) 

where A is a constant. 

But any solution to (3-15) must satisfy the condition 

Idm f 

X N-> 0 = 

and so, in (5 . 1 8 ) , A = 0. 

Finally, substituting for X ^ and taking i = N, the mean one-step 

cost in state N for the process ^ M ^ is given by 

Y % - Y f 
N N 

CN + D, 
N c X 

- X 
/ ^ ....(5.19) 

In general, since = when N^ N the complete specifica-

tion of one-step costs for ^ M ^ is 
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= T i , i < N 1 1 

" N N = v f ....(5.20) 

_ £ 

where is the solution of the equation (5-15) at the point 

i = N. 

For any control law i <E "the (N + l)-state semi-Markov chain 

^ M ^ will have the same mean cost rate X as the infinite-state Markov 

chain ̂ N ^ ; and so optimization of the performance of ̂ N-t^ over the 

restricted class is equivalent to optimization of the performance 

of { M j . 
Comments : 

(i) We have shown that it is possible to truncate the state space 

of the M/M/k/o<3 queueing system in a way which properly incorpor-

ates the contributions to the cost rate generated in states above 

the truncation level Nc Since no approximations are made, the 

cost rate c" computed from the truncated model is the true cost 

rate of the original system. This is in contrast with the 

standard method of truncation, in which the arrival rate X is 

assumed to fall to zero whenever the number of items in the system 

reaches N. 

(ii) Of course a control law which is optimal over the class is 

not in general optimal over the class, = ^f : 'VX.j , 

of all possible control laws for ̂ N ^ . For example, if N = 1 

the embedded process ^ will have only two states and the 

corresponding optimal control law will generate, at most, two 

different values. However, if the one-step costs Y ^ associated 

with {N-JJ are such that, for all k, ^ as i , 

then for sufficiently large N optimality over is equivalent 
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to optimality over It. This fact follows from a result due to 

Crabill^ which states that under the above condition on the 

Tf? the control law f° which is optimal over 'Tj" is what Crabill 

calls "simply connected" : that is, there exist K states (0 ^ 

i1 i 2 ^ ... i K - 1 ^ iR, such that 

f°(i) = 0 

K-1 

K 

i < i, 

i 1 ^ i < ± 2 

1K-1 ^ 1 ^ 1K 

1 > % 

Thus there is some state i^ in and above which it is optimal 

to use the control action K. If in our truncation procedure we 

choose N i^ it is clear that the resulting optimization over 

will yield the above optimal control law f°. Of course i^ is 

not known a priori and in practice a check must be made that the 

chosen value of N is sufficiently large — for example, by in-

creasing N and re-optimizing, 

(iii ) The results -of this section apply, with only trivial modification, 

to the slightly more general form of the CQS 1 system in which 

Ur 1 2 ĵl 1 2 K 
= k ,k ,...,k Jwhere k ,k ,...,k are real numbers such that 

1 2 K 
0 ^ " k < k < . . . <k o More generally, the method of state trun-

cation proposed here, based on the introduction of an appropriate 

finite-state semi-Markov chain, is applicable in principle to .any 

infinite-state controllable GBDP for which the optimal regulation 

problem is properly posed. 

5.4 Quantization of the state space 

In the previous section we considered the problem of optimizing 

the performance of the M/M/k/°^ queue with respect to a set of control 

laws t?"̂  in which the control action is constrained to be constant 
V 7 over a given subset : i ^ N J of the state space. A natural 
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extension is to consider those control laws in which the control 

action is constant on each of the subsets ^i : i ^ N ̂  and 

^i : i N^ . More generally we may partition the state space of 

any GBDP into a finite number of subsets and consider only those con-

trol laws in which the control action is constant on each subset. 

Quantization of the state space generates such a partition and in 

this section we show how state quantization may be handled. The basic 

idea is again to use an embedded chain with an appropriately defined 

state space. 

5*4.1 The embedded semi-Markov chain for a partitioned 
state space 

Consider for the moment a general semi-Markov process b t ^ 

state space x = n N . Let ̂ S : i = 1,2,....,M^ be a partition 

of x such that S contains N^ states, S^ contains N^ states, etc., 

and, if necessary, re-label the states so that 

s 1 = {1,2,...,^"$ 

S 2 = 1 N1 + 1' N 1 + 2 , . . . , N 1 + N 2 ] 

etc. 

For any two states in X write i = j if i and j belong to the 

same subset S, and i ^ j otherwise. 

Denote the transition probability matrix, the mean sojourn time 

vector, and the mean one-step cost vector, of by P, X and jf , 

respectively. Then, provided that P is regular, the equilibrium mean 

cost rate of the process is 

c 
x " irT-c 

T where TC is the stationary distribution of P. 

We now introduce an embedded semi-Markov chain ^Y ^ , related to 
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{x ^ in the following way. Let £xn, tJ a n d ^ , u j be the Markov 

renewal processes (see Section 2.2.3) underlying and ̂ Y^ respect-

ively, and for each positive integer i let n^ be the value of n for 

which X i l „ for the ith time. Then \ Y , U > is defined by n n-1 I n' n) J 

U. £ o , i = o 1 * 

~ T , i > o (5.21) n. 1 

Y. ~ X , i = o 1 o ' 

~ \ , i > o ....(5.22) 
i 

and as usual the semi-Markov process ̂ Y^l is related to ̂ Y^, U ^ by 

Yt ^ % t ....(5.23) 

where ̂ N ^ is the renewal counting process for • 

The process changes state only when ^X^ changes subset, 

and the new state of is the state at which enters the new 

subset. The relationship between and ̂ Y ^ is illustrated in 

Fig.(9) 

We now consider the properties of the embedded chain ̂ Y^. Note 

first that ̂ Y^ has the same state space as ^ , since Yq = Xq . Let 

R £ I r. . I be the transition probability matrix of the process 
L ^ J N x N 

^Y^ (strictly, of ). Then immediately 

[~Y = -j Y = i I L n+1 J n J r. . = P Y 13 

0 , if j = i (5.24) 

and, by a simple renewal argument, 

• „ - Z •! = ' P ^ + X . P-TV » if j £ i "i j i j 1 ik kj 
k = i (5.25) 

since the Y-transition i —> j involves either the single X-transition 
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1 i 1 
T8 T9 **> t T 

1—i j 1 r 
T T 3 5 

Y t A 

~i r 
U_ U u u u. 3 ^ 5 

Fig. (9) Relationship between and 
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i —> j or an X-transition i — ^ k = i followed by one or more further 

transitions. 

Now define 

— 0 , j tf i (5.26) 

Then (5-24) and (5.25) can be combined in the form 

r. . 

k * X ....(5.27) 

ie. 
(I - Q) R = P - Q ....(5.28) 

where Q — j q. . . Note that the matrix Q has a block diagonal 

structure in which the block sizes correspond to the sizes of the sub-

sets S , S ,... of 
X . 

We are assuming that is regular, that is, that it possesses 

a single recurrent subchain, with state set say. Provided that 

the partition : i = 1,2,...,M^ is such that is not a subset 

of any single the matrix I - Q will be non-singular. Equation (5.28) 

can then be written 

- 1 
R = ( I - Q ) (P - Q) (5.29) 

Properties of R 

(i) It is easily verified that R is a stochastic matrix. We have 

(a) P - Q > 0 

and ^ 
-1 ^T^ . 

( I - Q ) = > Q ^ 0 
i=o 

so that R ^ 0 

(b) R e = (I - Q)~1 (P - Q) e 

(I - Q)"1 (I - Q) e. , since P e = e 
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so that R _e = e_ 

(ii) Furthermore if P is regular, with stationary distribution "Tf , 

we have „, „ 
TT = i f P 

T Subtracting Tf Q from each side : 

7TT(I - Q) = TTT (P - Q) 

ie. 

where 

m T 
4 = R 

H h = k T T T ( I - Q ) ....(3.30) 

Since X T (I - Q) = TTT (P - Q) > , the vector Tf r is a 

probability distribution if k is suitably chosen. Thus R possesses 
__.T T 

the unique stationary distribution TTr (unique because X is unique 

and (I - Q) is non-singular), and hence ^ possesses only one 

recurrent subchain. R is therefore regular or periodic; but the 

latter possibility may be ignored since R is equivalent (in the sense 

of Section 2.2.A) to the matrix R = I - £(I - R) which, for 1 fc(0,l), 

has a strictly positive diagonal (and cannot therefore be periodic). 

So regularity of P implies regularity of R. 
(1971) 

As has been pointed out by Smith , although the state space 

of { y J is the same as that of , the set of recurrent states of 

^ Y ^ will consist of only those recurrent states of ^X ^ which are 

accessible in one step from states in a different subset. Call a state 

3* an entry state for the subset S if p. . o for at least one 

i i 3 • Then the recurrent states of $ are the recurrent entry 

states of { x ^ . Use is made of this fact in formulating the optimal 

regulation problem for birth-death processes with state quantization. 
Cost rate of the embedded chain 

Denote by "Ĉ  the mean so3*ourn time in state i of the semi-Markov 
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chain ^Y.^ • Then, by applying the usual renewal argument to ^X^, 

AN/ X . 1 X. + X p. . X . 1 X—I 3 
3=i 

Z + 

j e X 
^ 3 X 3 ....(5.31) 

l e . 

AN/ 
X = (I - Q) X ....(5.32) 

where ̂ H and X are the mean sojourn time vectors of and { Y ^ . 

A precisely analogous argument shows that 

V = (i - Q) Y ....(5.33) 

where and £ are the mean one-step cost vectors of {x J 

Then, assuming that ^X^ and hence ^ Y ^ are regular, the equili-

brium mean cost rate c^ of is given by 

Tt1 1 
R 

~ R — 

k f ( I - Q) (I - Q)~1 1 

k £ T (I - Q) (I - Q)"1 X 

(5.34) 

, by (5.30),(5.32),(5-33) 

1 * 1 
1 C T X 

ie. x ....(5.35) 

Thus the cost rate c of the original chain £ x X can be computed x z 

as the cost rate c^ of the embedded chain , ie. by using (5-34) 

and then (5-35)• 
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Optimal regulation of the embedded chain 

If is a totally regular controllable chain then and 

hence ^ will be regular for every control law f which is feasible 

for both (x $ and {.X^ . Note however that a control law for {x J will 

generate a sequence of control actions each of which remains constant 

w h i l e r e m a i n s constant, that is, while^X^remains within a single 

state subset S; furthermore the control action whileJx ^ 6 S will, in 

general, depend on the state at which S is entered and hence may vary 

from one S-occupation to the next. Thus a given control law for ^X^J 

does not in general induce an equivalent control law for ; nor 

can a general control law for { x ^ be" represented by an equivalent 

control law for .̂X ̂ . However, each control law for belonging 

to the set of quantized control laws, — ^f : (f(i) = f^, \j± 6 S^), 

oC = is equivalent to a quantized control law for . 

For each such control law, the cost rate c can be determined by 
i x J 

evaluating c and then using (5-35)• In this way it is, in principle, y 

possible to determine the optimal quantized control law for the con-

trollable chain . 

It is of course possible to treat the optimization of c , with 
y 

respect to unrestricted (ie. unquantized) control laws for^Y^J, as 

an optimal regulation problem in its own right. The resulting opti-

mal control law will not in general, have a representation as an 

equivalent control law (ie. as a map from X to U . ) for the process 

hi 
5.4.2 The quantized birth-death process 

Now consider the specific case when jjx^Jis a generalised birth-

death process with state space X = N m . Let [ s . : i = 1 , 2 , . . . , m | 

be a natural partition of such that 
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\ 2 

etc. 

Then, for any feasible f, P has the form given by (5*3) and 

transitions are possible only between adjacent states. It follows 

that the entry states of {x } are : 

Subset 

M 

Entry states 

i = N1 + 1; i = N , + N 2 

i = N 1 + N 2 + 1 ; i = N^j+N^N 

M-1 

• z H + 1 

Thus if all the states of are recurrent the embedded process 

b t } d e f i n e ( i by (5.23) possesses a total of 2 M - 2 recurrent states, 

viz. the states listed above. Furthermore, using (5-29)1 the transi-

tion probability matrix of {y^J has the form 

R = 

• 0 
0 * 
* © 

0 * 

r - - + © 

• © 
0 * 

* 0 

- f 
[ © 
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where • = non-zero transition probability (ringed for each recurrent 

state of ). 

Note incidentally that (I - Q) in (5-29) is of block diagonal 

form; hence R is easily determined by appropriate partitioning. 

Furthermore in the present case each block of (I - Q) is tri-diagonal 

and so use may be made of the Thomas algorithm in the calculation of 

R, T^ and via (5-29), (5-32) and (5-33). 

Now if f is a quantized control law, ie. f £ we have seen 

that the cost rate cx may be evaluated via (5-34) and (5-35)i ie- by 

working with the embedded chain and its cost rate c^. But the 

stationary distribution in (5-34) is non-zero only over the (2M-2) 

recurrent states of : the transient states of ^YfJ contribute 

nothing to c and may be jettisoned. (It follows that the only com-y 
ponents of JZ and o_ that need be evaluated are those associated with 

recurrent states of h j . ) 

Thus for any quantized control law the equilibrium mean cost 

rate of the N-statq controllable gbdp is equal to the equili-

brium mean cost rate of the (2M-2)-state embedded chain ̂ Y ^ . The 

problem of determining the optimal quantized control law is reduced 

from an N-state regulation problem to a (2M-2)-state problem, where 

m is th^ number of quantum sets. 

5-4.3 Convexity of the optimal regulation problem for 
quantized birth-death processes 

We have seen (see Section 3«3«3) that the optimal regulation 

problem can be formulated as a linear programming problem. As is well 

known, any such problem is convex and so the objective function 

possesses no local minima apart from the global minimum (minima). It 

is this fact which ensures that the optimization methods of Chapters 
1 

3 and 4 will always converge to the globally minimal value of the cost 
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rate c • If however the problem is to determine the optimal quantized 

control law, an additional set of non-convex constraints must be satis-

fied; the problem is then no longer convex and the existing optimiza-

tion algorithms are no longer guaranteed to find a globally optimal 

control law. 

For the discrete-time Markov regulation problem the non-convex 

constraints arise as follows. With d ^ and x ^ defined by (3«4L) and 

(3«45), quantized control requires that for each quantum set, S , we 

must have 

d., = d., ik jk \J± = 3 , V k (5.36) 

le. x., x 
i k . V 1 5 3 ' V k -•(5.37) 

ie. on using (3»50) , 

x.. x.. lk .ik , \fi = j , \fk 

k ik K D K . . . . ( 5 . 3 8 ) 

The equality constraints (5-38) are seen to be quadratic in the 

variables x., and hence non-convex. Minimization of the function o£ , lk 
defined by (3-46), subject to the constraints (5.38) is thus a non-

convex programming problem. 

However, as we shall now show, in the particular case when the 

controllable chain ^ is a generalized birth-death process, quanti-

zation of the state space does not destroy the convexity of the prob-

lem and our one-step policy-iteration algorithms will yield a globally 

optimal control law. 

Let ^X $ be a controllable GBDP and let S^ , = 1,2,... ,M , 

be the quantum sets of states of £x ^. Denote the set of feasible 

control laws for {x^J by Jjf", and the set of feasible quantized con-

trol laws for ^ X ^ by jf"̂ . Then for any two control laws f,f' 
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we have, by equation (4.18) , 

A c C f ' . f ) = - J T | ^ ( T t f , ) T A I , ( f ' , f ) ^ . . . . ( 5 . 3 9 ) 

i £ DC. 

where K = f — ~ ) 0 . 

K ^ Tt^' A^ i(f',f) ....(5.40) 

But assuming that each quantum set is recurrent we can write, 

for each i £ 

TTf = .TCf, 1 = 1,2,...,M ....(5.41) i X • 

f • 
where P^ is the equilibrium probability under f that £ S^ and 

is the equilibrium conditional probability under f' that X = i 

given £ S ^ . 
Thus (5.*tO) can be written 

M 
Ac(f',f) = A V f , - f ) 

«=1 1 

M 
K 

<< = 1 
X £ ....(5.42) 

where 

f' A 
. . C IX 

S * 

(5.43) 

-77-f1 

We next show that the value of the averaged test quantity 

depends only on control law changes in the quantum set S^ , ie. only 

on the restriction, f^ , of f to Ŝ , . Suppose that S^ = £1,1+1,...,. 

j-1,jj and consider the embedded chain j z ^ related to as 

follows: 



173. 

Zt A I - 1 

x. 
- j + 1 

xt < I 

X. e s. 

xt > J 

Since and ^X ^ have the same sample paths on the quantum 

set S^ they will have identical stationary conditional distributions 

on S^ . But the canonical transition probability matrix of has 

the form when the current control law for is f :-

1-1 

P f = Z 

1 - 4 

Oi 
1+1 

1 -otr. 

j+1 

f f where, as usual, oij £ Pj = 

J 
0 

P 1 W I + 1 r = I ; f ( l ) j 

The first row of P^ is independent of f ; the second row depends 

on f(l) ; the third row on f(l+l) ; and so on. Thus P^ depends only 

on f(l), f(1+1)..••,f(J), ie. only on the restriction of f to S . 

But the stationary distribution 
IT 7 of P 7 is uniquely determined by f f 

It follows that i hence the stationary conditional distri-

bution of I x J on S^ , is determined by the restriction f 
t1 << 

(3.A2) may be written 

Thus 

M 
Ac(f',f) = K ....(3.AA) 

Now by an argument analogous to that following equation (A.19)> 
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f non-optimal > '1 f/j = ' ̂ f ^ ^ ^ V < ° 

....(5.45) 

from which it follows that 

"1 f' 

V<[\/f' = 'Vf ^ > 0 optimal 

over Ĵ" 

....(5.46) 

If in (5-46) the choice of control law is restricted to the set 

of feasible quantized control laws, the statement remains true. 

Thus policy iteration algorithms based on the use of the test, quanti-
ties A ^ defined by (5.43) will always converge to a globally opti-

mal quantized control law. 

Comments 

(i) We have shown that the single-state policy iteration algorithms 

described in Chapter 4 may be used in modified form to determine 

the optimal quantized control law for any controllable GBDP. The 

modification consists of changing the control law on one quantum 

set at a time instead of in one state at a time. 

(ii) As we have seen, quantized control of any birth-death process 

^ x j is equivalent to quantized control of an associated process 

^Y^ with a smaller set of recurrent states. It is usually more 

efficient to work with the Y-process when carrying out the opti-

mization, since the quantum sets of ^Y^J contain, at most, two 

recurrent states. 

(iii) Equations (5.42) and (5-43) show that evaluation of Ac(f',f) for 

any new quantized control law f requires a knov/ledge of ? 

the conditional state probabilities under the new law f'. This 

means that the standard Howard/Jewell algorithm (see Section 3«3«l) 

cannot be used for optimization — nor, indeed, can the successive-

approximations method (Section 3«3«2) or the linear programming 
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method (Section 3.3«3)> We must use policy-iteration with the 

control law f being updated one quantum set at a time, 

(iv) The single-state policy-iteration algorithm most easily adapted 

to the quantized control problem is the direct policy-iteration 

(DPI) algorithm of Section 4.2.3° The essential modification is 

that, using the embedded Y-process, the control law must be changed 

in both Y-states in any quantum set simultaneously. Label the 

recurrent states of Y^ as follows : -

X-states: 

Y-states: 

Quantum 
sets: 

1 2...N N +1 ..o N1+N N +N +1 .. 
\ J 

2M-3 

Then if f* differs from f^only on the quantum set S^ , we shall 

have, with i = 2©c - 2 , 

&P - A x P T = 
~ T " a. —x 

— -~ T " a. —x - Ax. X 0 

T 
_%+1 0 x+1 

so that (4.48) and (4.49) must be replaced by 

D. x 

and 

E 

where 

and 

= E [ I + H . A . D . ] 

Hi * [ ^ i l ] 
-1 

T £ > 

" T a. —x E -
Ax-

X 
0 + T 

(£f) (5.47) 
T 0 Ar. „ x+2 

(5.48) 

(5.49) 
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Equation (5.48) gives the required updating of the E-matrix 

when the controls are changed in the quantum set S^ . The corre-

sponding change A c is then determined via appropriately modified 

versions of (4.52) - (4.55). Note that each updating of E requires 

the inversion of the 2 x 2 matrix - D^ H . The test quanti-

ties need not be determined explicitly^ 

In order to determine an optimal quantized control law for the 

M/M/kAo queueing system it is first necessary to truncate the 

state space to N by the method described in Section 5-3 5 "the 
N 

quantizing partition is then imposed on . A numerical example 

is given in Chapter 6. 



CHAPTER 6 

OPTIMAL REGULATION OF AN M/M/k/^ QUEUE 
WITH SWITCHING COSTS 

6.1 Introduction 

In this chapter we consider the application of some of the 

previous ideas to a specific optimal regulation problem. The problem 

in question is that of regulating the job mix of a computer whose load 

is a variable mixture of batch jobs and time-sharing jobs. Control is 

exerted by varying the proportion of central processor power allocated 

to the batch load; the optimization problem is to determine an on-line 

allocation algorithm which will minimize the long-run average value of 

some suitably defined operating cost per unit time. Under certain 

assumptions, the system can be modelled as a controllable birth-death 

process in which the state is the number of batch jobs currently in the 

system. The operating cost of the system has four components : (a) a 

state-dependent cost, representing the costs of delays to the batch 

job stream; (b) a control-dependent cost, representing the effect of 

reduced processor power on the time-sharing response time; (c) a second 

control-dependent cost, representing lost traffic due to saturation of 

the time-sharing system; (d) a switching cost, representing the adverse 

effect of time lost incurred whenever the processor power is re-allocated. 

It is important to include the switching component (d) in the 

cost function, since the amount of production time lost due to fre-

quent re-allocation of central processor resources can be significant. 

Unfortunately, however, it is not possible to define a separable (addi-

tive) cost function incorporating control switching costs unless the 

state space of the system is suitably enlarged. The redefined state 

space may be very much larger than the original state space, with a 
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consequent substantial increase in the size of the optimal regulation 

problem when switching costs are included. It is therefore tempting 

to look for sub-optimal solutions in which the number of re-allocations 

per unit time (and hence the mean switching cost) is kept down to a 

reasonable level by using a quantized control law. Our aim in the 

work described in this chapter has been to see how far the performance 

of the system is improved (i) by the use of quantization as a method 

of reducing switching costs, and (ii) by the use of a control law 

which is optimal when the cost function incorporates the switching 

cost component. The approach we have used is as follows: 

(A) With switching costs excluded, solve the optimal regulation prob-

lem with no state quantization. To the resulting optimal cost rate 

add the appropriate switching cost contribution and so obtain a figure 

for the overall (non-optimal) cost rate. (Section 6.4) 

(B) Again with switching costs excluded, solve the optimal regulation 

problem with a "reasonable" choice of state quantization. As before, 

the resultant overall (sub-optimal) cost rate can be determined by 

adding in the appropriate switching cost contribution after the opti-

mization. (Section 6.5) 

(C) With switching costs included, solve the full optimal regulation 

problem by working with the appropriately re-defined state space. The 

resultant overall cost rate is optimal. (Section 6.6) 

The results for the three approaches are compared and discussed 

in Section 6.7. 

In the final part of this chapter we attempt to draw some general 

conclusions concerning the investigations described in this thesis, 

and also make some suggestions as to how the work might be extended. 
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6.2 Description of the system 
The system under investigation is a large computer complex which 

sharing service to a large number of remote user terminals. Batch jobs 

are input to the computer system via a local batch job entry (BJE) ter-

- minal, or via a data communications link from another computer, or via 

the time-sharing system itself. Time-sharing jobs are submitted from 

the remote user terminals via a switching network and multiplexor. 

The computer itself is a multiprocessor system in which several central 

processors share a common memory. The number of central processors 

allocated to processing the batch job stream can be altered at any time; 

feedback control of this dynamic allocation process is implemented by 

means of a resource allocation controller whose input is the size of 

the batch queue and whose output is the currently-required division of 

resources between batch processing and the time-sharing system. The 

general scheme is as shown in Fig.(10). 

The multiprocessor system It is assumed that the multiprocessor 

system consists of K identical processors sharing a common memory. 

Each processor can handle one job (batch or time-shared) at a time, so 

that when the system is fully loaded there are K jobs being processed 

at any one time. The number, k, of processors allocated to batch 

processing is the control variable in our optimal regulation problem. 

The batch-processing load The batch jobs arriving to join the batch 

input queue are regarded as a single Poisson arrival stream and the 

processing times of the jobs are assumed to have a negative-exponent-

ial distribution. Jobs are processed in arrival order, ie. first-in, 

first out. 

provides (a) a batch processing service and,concurrently, (b) a time 

Poisson, mean rate X 

Neg - exp., mean 

Arrival order (FIFO) 

B 

Queue discipline 
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Fig. (10) Schematic of the computer system 
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The time-sharing load The switching network .between the N^ remote 

terminals and the N^ multiplexor ports provides full availability: 

that is to say, there is a route from every terminal to every port. 

It is assumed that N^ R
2
 s 0 ^bat the switching network concen-

trates the traffic from the terminals. A job submitted from one of 

the remote terminals is routed to one of the currently free ports, or, 

if all ports are active, is held in a FIFO queue until a port becomes 

availableo jjtt should he emphasized that in the present context a 

time-sharing job means a single task requiring the use of a central 

processor, such as compiling a program, running a program, processing 

a file, etc. At the completion of each such job the associated port 

is assumed to be released and subsequent jobs from the same terminal 

will in general be associated with different portsQ The length of the 

time-sharing queue is restricted to N^ : if an attempt is made to sub-

mit a job when the time-sharing queue is full the system returns a 

message announcing that there is saturation and the job is then pre-

sumed to be lost. Arrivals to the system are assumed to be Poisson, 

at a rate which is independent of the degree of congestion in the 

system. The job processing times are again negative-exponential, and 

since the processor is time-shared between the currently active ports 

the effective mean service rate at any time is inversely proportional 

to the number of currently active ports. 

Arrival stream 

Job processing times 

No. of servers 

Max. queue length 

Queue discipline 

Poisson, total mean rate X.^ 

Neg-exp., mean rate 

N 

N 

Arrival order (FIFO) 

System operating costs As already mentioned, there are four compo-

nents to the total system operating cost; we now discuss these in turn, 
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(a) State-dependent cost The state of the system is (for the pre-

sent) taken to be the number of batch jobs in the system (including 

those currently being processed). For any time t, let denote the 

number of batch jobs in the system at time t and let k̂ . denote the num-

ber of processors devoted to batch processing at time t. Then the num-

•ber of batch jobs awaiting service at time t is 0, if ^ kj., or 

(X^ - k j . ) , if X "> kj.. Each waiting job accumulates waiting time at 

unit rate until it is serviced; thus the rate at which the total wait-

ing time (summed over all waiting jobs) accumulates is equal to 

Max (0, X^ - kj.). We shall assume that the state-dependent cost is 

proportional to this rate, ie. that 

C 1(X t,k t) = c1 Max (0, Xt - k t) (6.1) 

where c^ is a constant. 

(b) Control -delay cost It is assumed that the dynamics of the time-

sharing load are fast compared with those of the batch-processing load; 

more precisely, we assume that Xrp "^v* X-g and ^ ^ ^ ^ y^B" 

This means that between any two consecutive batch events (arrivals or 

departures) there will, with high probability, be a large number of 

time-share events (arrivals and/or departures). The control variable 

kj. is to be a function of the state X only, and hence its value can-

not change between batch events. Whenever k^ does change to a new value 

v/e can assume, because of the relatively high rate at which time-share 

events occur, that the state of the time-sharing load (ie. number of 

ports active + size of time-sharing queue) reaches its new statistical 

equilibrium very rapidly and that this equilibrium is maintained until 

k^ again changes value. The equilibrium properties when kj. = k (k € 0, 

1,2,... K) are determined as follows. 

Essentially we have a M/M/N^ft queueing system in which the number 
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We now argue that it is desirable for m — to be close to N , the 
k 2 

total number of multiplexor ports. For if m — N the average 
k 2 

number of idle ports will be large which means inefficient use of the 

time-sharing system ; and if m - N the response time (ie. the .K 
total time spent in the system by a time-sharing job) will tend to be 

m — 

unacceptably large.' The mean response time is in fact ( where 

Ag is the effective mean arrival rate for time-sharing jobs and is 

given by A.^ = A (1 - P ). Thus, denoting the mean response time 
2 by t— and using (6.2) and (6.3), we have k 

t -
k 

r* 
T ....(6.4) 

Thus both m — and t— depend in a known way on the traffic intensity k k 
^ — . In particular when = 1 equation (6.3) reduces to 

m _ 
k 

N. ....(6.3a) 

and equation (6.4) reduces to 

t_ 
k 

N + -
2 2 

T 

" ' N2 » 1 ....(6.4a) 

'SO that m _ — A m t_ when ^ ~ - 1 • T k k 

Since N is taken to be the desirable value of m _ we shall assume 2 k 
that the control-delay cost rate has the form 

2 
W c2.(N2 - m ^ ) ....(6.5) 

where c is a constant and k̂ . £: K- k^ is the number of processors 
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of available servers is the number, N2, of multiplexor ports and the 

queue size is also limited to N^. The mean arrival rate is X^,, and 

if k — K - k is the number of processors currently devoted to time-

sharing, the mean departure rate (ie. the mean rate at which completed 

time-share jobs leave the system) is kyw-g, . This assumes that there 

are always at least k time-sharing jobs in the system; this is likely 

to be the case provided that N 2 ">3> K. 

Let Y denote the number of time-sharing jobs in the system at 

time t, and let P^ £ P^Y^si^ {leno^e equilibrium probability 

that = i . The equilibrium birth-death equations are then 

\T p± 
T T i+1 i = 0,1,...,2N2+ 1 

so that 

a 
~t 

2N2+1 P , i = 0,1,...,2N2 

where h 
X T 

k/*T 

....(6.2) 

, the traffic intensity in the time-

sharing system when k processors are devoted to time-sharing. 

^NB. In the special case when = 1 the above equilibrium distri-

bution becomes the uniform distribution 

P. l .•••(6.2a) 

From (6.2) or (6.2a) we can compute the equilibrium mean value, 

jjVjTJ , of the number of time-sharing jobs in the system. m_ ^ E 
k 
The result is 

m_ = 
k 

t 
- 1 " f 

- (2N2+1) 
I , ~f> 

2N 2+ 1 

2N2+1 

••••(6.3) 
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devoted to time-sharing at time t. 
(c) Control-loss cost The quadratic loss function (6.5) is symmetri-

cal about the point m— = N . In practice, however, the over-busy sit-
k 2 

uation, m— > N , is less desirable than the under-busy situation, 
k 2 

m_ N , because the rate at which jobs are lost to the system, due 
k 2 

to saturation, increases with m— • The probability that a job is lost 

to the system is the probability P M that the system is full, and from 
2 

(6.2) this is given by 

2N. 

1 -
ft 

- ft 

2N2+1 r 
2N. 

••••(6.6) 

The mean rate at which jobs are lost is X̂ , P ^ ; we therefore 

assume a cost-rate associated with lost jobs of the form 

c3(kt) C3' \ P2N. (6.7) 

where c^ is a constant and is given by (6.6). 

(d) Switching cost There is a system overhead associated with each 

change in k, the number of processors devoted to batch processing. If 

k is reduced, then one or more of the batch jobs currently being pro-

cessed will have to be "frozen" (contents of registers, states of flags, 

etc. must be stored) until a processor again becomes available. If k 

is increased, the time-shared jobs will have to be re-arranged for the 

reduced number of processors available for time-sharing. For simplicity 

we shall assume that the switching cost function is symmetrical: if at 

time t the value of k changes from k̂ . to k̂ . there is incurred an 

instantaneous cost 

c4(kt • kt-) kt " kt -I •...(6.8) 

where c^ is a constant. 
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Note that the value of C^ depends not only on the current value 

of the control, kj_, but also on the immediately preceding value, k^ . 

6.3 Mathematical model of the system 

In the system specified in the previous section the batch job 

arrival process is Poisson and the job processing times are negative-

exponential. As a consequence, the process t e is a 

continuous-time birth-death process whose state space if there 

is no limit on the number of waiting batch jobs, is the set 2S + 

non-negative integers. By utilising the truncation procedure introduced 

in Section 5*3 of the previous chapter we now represent the system by 

a finite-state controllable birth-death process. In order to be able 

to do so we must assume that the total number of processors K is such 

that K ^ > V B 30 that the restricted set of control laws, % 

defined by (5-6) is non-void. With this assumption we now define a 

controllable GBDP, { M.J , by setting 

Mt - Xt 7 Xt « N 

a n , x > n (6.9) 

where, as already stated, is the number of batch jobs in the system 

at time to 

The characteristic parameters of the semi-Markov chain are 

obtained as follows. 

(i) Transition probability matrix 

This is given by equation (5-8), with X = X.̂  , ̂  = , and 

f(i) = number of processors allocated to batch processing when M^ = i , 

under the control law f. 

(ii) Mean sojourn times 

These are given by equation (5-13)> again with X = ^ ft 
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(iii) Mean one-step costs 
For the optimal regulation problem to be properly posed the 

mean one-step costs must not depend on past values of state and/or 

controlo This means (see equation (3.2)) that the transition cost 

function C(X^ , X^ , AT n , u^) must be independent of past control 
n n+1 

values — a condition which is not satisfied by the switching-cost 

component C^ (equation (6.8)) in the present problem. For the present, 

therefore, we set c^ = 0 so that there is no switching cost; the result-

ing transition cost function for the process is defined by 

C(XT , XT , AT , u n) A F c (XT , u a) + c (un) + c (un)l 
n n+1 L n _J " n+1 

....(6.10) 
where C^, C^, C^ are defined by (6.1), (6.5), (6.7). Then, using 

(3.2), the mean one-step cost for the process from the state 

Xj, = i under the control u = k, is given by 
n 

^ t = [ V i , k ) + C2(k) + C3(k)] E [ A T n + i = i , u n = k] 

c* -u k (6.11) 
1 i 

where C? £ C„(i,k) + C (k) + C_(k) (6.12) 
1 1 2 5 

Reference to (6.1) shows that the function has the form 

C k = c^ Max ( 0, i - k) + C ^ k ) + C ( k ) (6.13) 

so that is of the form specified by (5.16). Thus the mean one-i 
step costs, Yf?* , of the embedded chain ^ M ^ are given by equation 

(5.20), with given by (5-19). 

The controllable GBDP , with transition probabilities, mean 

sojourn times, and mean one-step costs defined as indicated above, has 
- f 

an equilibrium mean cost rate c which depends on the choice of control 

lav/ f. Minimization of over the set of feasible control laws 
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is an optimal regulation problem of the type considered in the earlier 

chapters of this thesis. 

Parameter values 

The following values were used in the numerical computations : 

Batch arrival rate, Xg = 0.1 sec -1 

-1 sec Batch service rate, yU^ = 0.06 

Time-share arrival rate, X^, = 2 sec ̂  

Time-share service rate, = 1 sec"*̂  

Number of processors, K = 3 

Number of time-share ports, N^ = - 20 

Batch queue truncation level, N = 9 

Comments 

(i) There is clearly no loss in generality in taking c^ = 1. 

In the optimization computations we have therefore taken c^ = 1, 

c^ = 0 (no switching costs) and examined the effect of changes 

in c_ and c_ on the optimal control law and optimal cost rate. 2 3 

(ii) Note that with the above values Ky/Vg so that the trunca-

tion procedure is valid. 

6.A Method A : no quantization 

The optimal regulation problem specified in the previous section 

has been solved for various values of the cost coefficients c0 and c_ , 
2 3 

using the direct policy-iteration (DPI) algorithm described in Section 

A.2.3- The results are given, in Tables 1-3 below. 

Suppose now that the system has been optimized by the above pro-

cedure. We now ask : what would be the additional contribution to the 

(hitherto optimal) mean cost rate c if the switching-cost coefficient 

were changed to a non-zero value ? The answer will depend on the mean 
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TABLE 1 

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO 
METHOD A : NO QUANTIZATION 

c _ = 0.005 

°3 1 °3 = * c_ = 16 5 

OPTIMAL 
COST RATE ~ 2.693 5.325 14.703 

STATE CONTROL CONTROL CONTROL 

0 1 1 1 
OPTIMAL 1 1 1 1 

2 3 3 1 
CONTROL 3 3 3 1 

4 3 3 3 
LAW 5 3 3 3 

6 3 3 3 
7 3 3 3 
8 3 3 3 
9 3 3 3 

STATE PROBABILITY PROBABILITY PROBABILITY 

0 0.106 0.106 0.032 
OPTIMAL 1 0.283 0.283 0.086 

2 0.275 0.275 0.143 
STATIONARY 3 0.153 0.153 0.238 

4 0.085 0.085 0.231 
DISTRIBUTION 5 0.047 0.047 0.129 

6 0.026 0.026 0.071 
7 0.015 0.015 0.040 
8 0.008 0.008 0.022 
9 0.002 0.002 0.008 



. TABLE 12 

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO 
METHOD B2: 1 - A - A - 1 QUANTIZATION 

c„ = 0.01 

°3 = 1 °3 " * c = 16 3 

OPTIMAL 
COST RATE ~ 4.205 6.837 16.150 

STATE CONTROL CONTROL CONTROL 

0 1 1 1 
OPTIMAL 1 1 1 1 

2 3 3 1 
CONTROL 3 3 3 1 

4 3 •z > 3 
LAW 5 3 3 3 

6 3 3 3 
7 3 3 3 
8 3 3 3 
9 3 3 3 

STATE PROBABILITY PROBABILITY PROBABILITY 

0 0.106 0.106 0.032 
OPTIMAL 1 0.283 0.283 0.086 

2 0.275 0.275 0.143 
STATIONARY 3 0.153 0.153 0.238 

4 0.085 0.085 0.231 
DISTRIBUTION . 5 0.047 0.047 0.129 

6 0.026 0.026 0.071 
7 0.015 0.015 o.oto 
8 0.008 0.008 0.022 
9 0.002 0.002 0.008 



. TABLE 12 

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO 
METHOD B2: 1 - A - A - 1 QUANTIZATION 

c2 = 0.02 

° 3 = 1 ° 3 * 
C - , = 16 

5 

optimal 
cost pate = 7 - 2 2 8 9 . 7 8 9 1 9 . 0 4 5 

state control control control 

0 1 1 1 

optimal 1 1 1 1 

2 3 1 1 

control 3 3 3 1 

4 3 3 3 

law 3 3 3 3 

6 • 3 3 3 

7 3 3 3 

8 3 3 3 

9 3 3 3 

state probability probability probability 

0 0 . 1 0 6 0 . 0 5 7 0 . 0 3 2 

optimal 1 0 . 2 8 3 0 . 1 5 1 0 . 0 8 6 

2 0 . 2 7 5 0 . 2 5 2 0 . 1 4 3 

stationary 3 0 . 1 5 3 0 . 2 4 5 o.238 
4 0 . 0 8 5 0 . 1 3 6 0 . 2 3 1 

distribution 5 0 . 0 4 7 0 . 0 7 6 0 . 1 2 9 

6 0 . 0 2 6 0 . 0 4 2 0 . 0 7 1 

7 0 . 0 1 5 0 . 0 2 3 0 . 0 4 0 

8 0 . 0 0 8 0 . 0 1 3 0 . 0 2 2 

9 0 . 0 0 2 
( 

0 . 0 0 5 0 . 0 0 8 



192. 

rate at which the control variable k changes and this in turn will 

depend on the equilibrium state distribution of the system. 

The additional cost rate component due to switching costs may be 

computed as follows. Given a control law f, let 

A T denote the ex-

pected one-step switching cost for a transition out of state i. Since, 

under f, the control action is f(i) in state i, the switching cost for 

a transition i —> j is, by (6.8), c,. | f(j) - f(i)| • It follows 

immediately that 
A * f = > ck |f(j) - f(i) j ....(6.14) 

The additional cost rate due to switching costs is then computed 

by (3.6) in the usual way, so that 

q f ) A j f ,, , 
ac = _ (6.15) 

< i f ) V 

where Ac is the required switching-cost component, and A Y 1 & 
I f f 

Col ( AYq, ..O JAV^ ) . The mean one-step switching costs A ^ are very 

easily computed in the present problem since in (6.14) the p.. are non-

zero only for j = i + 1 and j = i - 1. 

Note that 
AY1 

cannot be computed unless the control law f is 

already known. It is this fact that precludes the use of the present 

model for the optimization of f when switching costs are present. (It 
f 

is also, of course, necessary to determine TC explicitly, for use in 
(6.15).) f 

Switching-cost components Ac have been computed for each of the 

optimal control laws f listed in Tables 1 - 3 ? for various values of 

the cost coefficient c^. The results are given in Tables 4 - 6 below. 
6.5 Method B : fixed quantization 

We now consider the possibility of achieving a lower overall cost 



TABLES A - 6 

TOTAL COST RATES FOR A-OPTIMAL SYSTEMS WHEN 
SWITCHING COSTS ARE INCLUDED 

Table A : c. = 23 

°3 = 1 c3 = A C , = 16 
3 

c 2 = 0.003 

c2 = 0.01 

c 2 = 0.02 

6.203 

7-715 

10.738 

8.835 

10.3A7 

12.90A 

17.623 

19.070 

21.965 

Table 3 : c^ = 50 

°3 = 1 c 3 = 4 c 3 = 16 

c 2 = 0.003 

c 2 = 0.01 

c2 = 0.02 

9.713 

11.225 

1A.2A8 

12.3A5 

13.857 

16.019 

20.5A3 

21.990 

2A.885 

Table 6 : c^ = 100 

C3 = 1 °3 * C - , = 16 3 

c2 = 0.005 

c 2 = 0.01 

c 2 = 0.02 

16.733 

18.2A5 

21.268 

19.365 

20.877 

22.2A9 

26.383 

27.830 

30.725 
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rate by using a quantized control law. Our argument is as follows: 

by optimizing f over a set of quantized control laws the optimal cost 

rate (with c^ = 0) will not be as low as in the optimal unquantized 

case; however, the equilibrium mean switching rate should be signifi-

cantly lower in the quantized case and hence so should the switching 

costs when c^ is non-zero. As a consequence we might expect the over-

all cost rate (including switching cost component) to be lower in the 

quantized case than in the unquantized case — at least for suffici-

ciently large values of c^. 

Two different quantized versions of the present optimal regulation 

problem have been solved, each for various values of and c., , using 

the modified DPI algorithm described at the end of Chapter 5- The 

quantizing partitions used were as follows : -

( x = { 
0,1,2,...,8,9 \ , as before) 

Case B.1 

Quantum subset 1 2 3 4 5 6 

States 0 1 , 2 3 , 4 5 , 6 7 , 8 9 

Case B.2 

Quantum subset 1 2 3 4 

States 0 1,2,3,4 5 , 6 , 7 , 8 9 

Comments : 

(i) In both cases we have isolated the boundary states as single-state 

subsets : state 0 because the condition = 0 is clearly a special 

case, and state 9 because the condition M^ = 9 in the truncated chain 

represents the condition 9 in the original, untruncated GBDP. 

(ii) In both cases the quantization of the interior of is uniform ; 
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although this simplifies the programming of the optimization algorithm 

it is not, of course, an essential feature of the procedure. 

(iii) The embedded chain ^Y ^ defined by (5.21)- (5-23) (with, in this 

case, J as the unquantized process) is, in case B.1, o_s bug as 

M ^ itself. However, in case B.2, the state space of the embedded 

chain ^Y ̂  is the reduced set ,1 , 4 , 5 1 8 , 9̂ } and it is necessary 

to use equations (5.29), (5.32) and (5.33) to compute the parameters 

Bie results of the quantized optimization are given in Tables 7 - 9 

(case B.1) and Tables 10-12 (case B.2) shown below. 

As in case A, it is possible to compute the additional component 

of cost due to switching costs. Again we use (6.14) and (6.15), applied 

in this case either to the quantized process ^ or to the equivalent 

embedded process ^. The results are given below in Tables 13 - 15 

(case B. 1) and Tables 16-18 (case B.2). 

6.6 Method C : variable quantization 

The control'laws determined by methods A and B above are sub-

optimal when the switching costs are non-zero. As we have already 

remarked, when the system state is defined in the patural way 
(ie. as 

the number of batch jobs in the system) it is not possible to include 

the switching cost component in the cost function to be optimized. 

This is because, with the natural definition of system state, the swit-

ching cost per step is associated with two consecutive control actions 

rather than a single control action. In order to include the switching 

cost in a separable cost function it is necessary to redefine the state 

in such a way that it incorporates the immediately past control action. 

We therefore now define W^, the system state at time t, as the ordered 

pair 

(X, , u, ), where as before X is the number of batch jobs in the 

system at time t (ie. the natural system state) and u, is the control 



. TABLE 12 

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO 
METHOD B2: 1 - A - A - 1 QUANTIZATION 

c. = 0.005 

°3 = 1 c 3 = * c 7 = 16 3 

OPTIMAL 
COST RATE ~ 2.939 5.382 14.728 

STATE CONTROL CONTROL CONTROL 

0 1 1 1 
OPTIMAL 1 3 1 1 

2 3 1 1 
CONTROL 3 3 3 3 

4 3 3 3 
LAW 5 3 3 3 

6 3 3 3 
7 3 3 3 
8 3 3 3 
9 3 3 3 

STATE PROBABILITY PROBABILITY PROBABILITY 

0 0.225 0.057 0.057 
OPTIMAL 1 0.34 7 0.151 0.151 

2 0.193 0.252 0.252 
STATIONARY 3 0.107 0.245 0.245 

4 0.060 O.136 0.136 
DISTRIBUTE ON 5 0.033 0.076 0.076 

6 0.018 0.042 0.042 
7 0.010 0.023 0.023 
8 0.006 0.013 0.013 
9 0.003 0.005 0.005 



. TABLE 12 

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO 
METHOD B2: 1 - A - A - 1 QUANTIZATION 

c 2 = 0.01 

° 3 = 1 ° 3 » 
C 3 = 16 

optimal 
cost rate ~ 4 . 5 1 5 6 . 8 5 1 1 6 . 1 9 7 

state control control control 

0 1 1 1 

optimal 1 1 1 1 

2 1 1 1 

control 3 3 3 3 

4 3 3 3 

law 5 3 3 3 

6 3 3 3 

7 3 . 3 3 

8 3 3 3 

9 3 3 3 

state probability probability probability 

0 0 . 0 5 7 0 . 0 5 7 0 . 0 5 7 

optimal 1 0 . 1 5 1 0 . 1 5 1 0 . 1 5 1 

2 0 . 2 5 2 0 . 2 5 2 0 . 2 5 2 

probability 3 0 . 2 4 5 0 . 2 4 5 0 . 2 4 5 

4 0 . 1 5 6 0 . 1 3 6 o.136 
distribution 5 0 . 0 7 6 0 . 0 7 6 0.076 

6 0 . 0 4 2 0 . 0 4 2 0 . 0 4 2 

7 0 . 0 2 3 0 . 0 2 3 0 . 0 2 3 

8 0 . 0 1 3 0 . 0 1 3 0 . 0 1 3 

9 
} 

0 . 0 0 5 0 . 0 0 5 0 . 0 0 5 



. TABLE 12 

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO 
METHOD B2: 1 - A - A - 1 QUANTIZATION 

c2 = 0.02 

°3 = 1 c., = 4 c = 16 

optimal 
cost rate ~ 7-542 9.789 19.135 

state control control control 

0 1 1 1 
optimal 1 1 1 1 

2 1 1 1 
control 3 3 3 3 

4 3 3 3 
law 5 3 3 3 

6 3 3 3 
7 3 3 3 
8 3 3 3 
9 3 3 3 

state probability probability probability 

0 0.057 0.057 0.057 
optimal 1 0.151 0.151 0.151 

2 0.252 0.252 0.252 
stationary 3 0.245 0.245 0.245 

4 0.156 0.136 0.136 
distribution 5 0.076 0.076 0.076 

6 0.042 0.042 0.042 
7 0.025 0.023 0.023 
8 0.013 0.013 0.013 
9 0.005 0.005 0.005 



. TABLE 12 

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO 
METHOD B2: 1 - A - A - 1 QUANTIZATION 

C 2 = 0 . 0 0 5 

° 3 " 1 
O 5 = 4 c = 16 

OPTIMAL j 
COST RATE ~ i 2 . 9 3 9 6 . 2 7 2 1 5 . 1 1 1 

STATE CONTROL CONTROL CONTROL 

OPTIMAL o ; 1 1 1 

1 3 3 1 

CONTROL 4 3 3 1 

5 3 3 3 

LAW 8 I 3 • 3 3 

9 i 3 3 3 

STATE PROBABILITY PROBABILITY PROBABILITY 

OPTIMAL 0 0 . 4 5 3 0 . 4 5 3 0 . 0 5 3 

1 0 . 4 5 3 0 . 4 5 3 0 . 0 5 3 

STATIONARY 4 0 . 0 4 3 0 . 0 4 3 0 . 4 0 8 

5 0 . 0 4 3 0 . 0 4 3 o.*to8 
DISTRIBUTION 8 0 . 0 0 4 0 . 0 0 4 0 . 0 3 9 

9 0 . 0 0 4 0 . 0 0 4 0 . 0 3 9 

Note : The stationary distributions shown here refer to 
the equivalent embedded chain yY j . 



. TABLE 12 

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO 
METHOD B2: 1 - A - A - 1 QUANTIZATION 

= 0.01 

C 3 = 1 C 3 = 4 C_j = 16 
5 

OPTIMAL | 

COST RATE ~ I 
4 . 5 5 2 7 . 8 8 5 1 6 . 5 4 7 

STATE CONTROL CONTROL CONTROL 

OPTIMAL 0 1 1 1 

1 3 3 1 

CONTROL 4 3 3 1 

5 3 3 3 

LAW 8 3 3 3 

9 3 3 3 

S T A T E P R O B A B I L I T Y P R O B A B I L I T Y P R O B A B I L I T Y 

OPTIMAL 0 0 . 4 5 3 0 . 4 5 3 0 . 0 5 3 

1 0 . 4 5 3 0 . 4 5 3 0 . 0 5 3 

STAT IONARY 4 0 . 0 4 5 0 . 0 4 3 0 . 4 0 8 

5 0 . 0 4 3 0 . 0 4 3 0 . 4 0 8 

D I S T R I B U T I O N 8 0 . 0 0 4 0 . 0 0 4 0 . 0 3 9 

9 0 . 0 0 4 0 . 0 0 4 0 . 0 3 9 

Note : The stationary distributions shown here refer to 
the equivalent embedded chain ^Y "J . 



. TABLE 12 

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO 
METHOD B 2 : 1 - A - A - 1 QUANTIZATION 

c 2 = 0.02 

°3 = 1 c 3 = 4 c, = 16 3 

optimal 
cost rate ~ 7.779 10.981 19.A18 

state control control control 

optimal 0 1 1 1 
1 3 1 1 

control A 3 1 1 
5 3 3 3 

law 8 3 3 3 
9 3 3 3 

state probability probability probability 

optimal 0 O.A53 0.053 0.053 
1 0.A53 0.053 0.053 

stationary A 0.0A3 0.A08 0.AO8 
5 0.0A3 0.A08 0.A08 

distribution 8 O.OOA 0.039 0.039 
9 O.OOA 0.039 0.039 

Note The stationary distributions shown here refer to 
the equivalent embedded chain ^ . 



tables 13-15 

TOTAL COST RATES FOR B1-OPTIMAL SYSTEMS 
WHEN SWITCHING COSTS ARE INCLUDED 

Table 1 3 : 0 . = 25 

c3 - 1 °3 4 C , = 16 5 

c 2 = 0.005 7-384 8.497 17.843 

c 2 = 0.01 7.630 9.966 19.312 

c 2 = 0.02 10.657 12.904 22.250 

Table 14 : c. = 50 

°3 = 1 °3 = % C - . = 16 5 

c 2 = 0.005 11.829 11.612 20.958 

c 2 = 0.01 10o745 13.081 22.427 

c 2 = 0.02 13.772 16.019 25.365 

Table 15 : c. = 100 

c3 = 1 °3 = 4 c-z = 16 

c 2 = 0.005 20.719 17O842 27.188 

c 2 = 0.01 16.975 19.311 28.657 

c 2 = 0.02 20.002 22.249 31.595 



TABLES 16 - 18 

TOTAL COST RATES FOR B2-OPTIMAL SYSTEMS 
WHEN SWITCHING COSTS ARE INCLUDED 

Table 16 : c. = 25 

°3 = 1 c 3 = 4 C_j = 16 

c 2 = 0.005 

c 2 = 0.01 

c 2 = 0.02 

7-384 

8.997 

12.224 

10.717 

12.330 

13.794 

17.924 

19.360 

22.231 

Table 17 : c^ = 50 

°3 = 1 °3 = * c_ = 16 5 

c 2 = 0.005 

c 2 = 0.01 

c 2 = 0.02 

11.829 

13-442 

16.669 

15.162 

16.775 

16.606 

20.736 

22.172 

25.043 

Table 18 : c^ = 100 

°3 = 1 c 3 = 4 c_ = 16 

c 2 = 0.005 

c 2 = 0.01 

c 2 = 0.02 

20.719 

22.332 

25.559 

24.052 

25.665 

22.231 

26.361 

27.797 

30.668 
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action in the interval immediately preceding the most recent transition 

of the process • 

We shall call the process , where 

W £ (X , u t_) (6.16) 

the augmented chain o 

The transition cost function for the augmented chain now 

has the required separable form, even when switching costs are included, 

since the function C^ defined in (6.8) is now a function only of the 

current state and current control. With switching costs included we 

now define the transition cost function for the augmented chain 

by 

c ( w T ! ' WT ' V ± [C1(XT < V n n+1 «- n 

+ C (u ) + C (u ) A t _ 2 n 3 n J n +1 

+ C,(u , u „) ....(6.17) 4 n' n-1 

where CI, 0o, C_ and C. are defined by (6.1), (6.5), (6.7) and (6.8) 1 2 5 T" 
respectively, and X^ is the first component of W^ 0 

n n 

Then the expected one-step cost for the augmented chain 

from the state W^ = (i,h) under the control u^ = k, is given by 
n 

= c k X k + c. I k - h 1 ....(6.18) i ,h 1 1 4 1 \ 

where C. is given by (6.13). The second term, of course, represents 

the switching cost. 

As in Methods A and B it is necessary to truncate the state space 

by replacing the component in (6.16) by the finite component , 

defined by (6.9). The result is a truncated version of the augmented 

chain, say ^VjJ, in which 
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V A (Mt , u t J . . . . ( 6 . 1 9 ) 

The essential parameters of are easily determined. 

Define the following quantities : 

(i) Transition probabilities of 

P/. (i,h),(j,l) A p f v T = (3,1) 
L n+1 

V T = (i,h) , u n = k | 
n J 

(ii) Mean sojourn times of 

k 
X A E i,h [ A T

n + 1 (i,h) , u n = k ] 

(iii) Mean one-step costs of {v J 

k r* 
Y . A E\ C(V„ , AT A , , U ) i,h T T . yi n+1 n L n n+1 

V T = (i,h) , 
n 

u = k 
n J 

Then it is straightforward to show that 

k 
P/. (i,h),(j,l) = P ij kl s ....(6.20) 

where p k. is the relevant transition probability for \m } and S, 
13 

the Kronecker delta ; 

that 

kl is 

i ,h 
- k 
X . 

1 ....(6.21) 

where X . is the relevant mean sojourn time of ^M ^ ; 1 t) 

V , h = + ° % | k - h l 

- k 

and that 
....(6.22) 

where Y ^ is the relevant mean one-step cost 

A control lav; for is a map from the new state space ( O C x T L ) 
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to the control set U . Once such a control law f has been specified, 

the equilibrium mean cost rate (assuming that ^ is a totally regu-

lar chain) is given by 

Z i i,h i,h 
— f i 
c = . i ....(6.23) 

Z-^Tt. ^ -r. . 
i,h i,h i,h 

where the , and . are given by (6.21) and (6.22), and the 1, n 1, n 
itf k are the unique stationary probabilities for under the con-

trol law f. 
— f 

As already discussed in Chapter 3 the minimization of c^ with 

respect to f is a properly defined optimal regulation problem only 

if the controllable chain is totally regular, ie. only if ̂ V^ £ 

is regular for every feasible control law f. Unfortunately, unless 

the set of feasible f is suitably restricted this will not be the case 

in the present problem. For if f is allowed to be any function from 

the augmented state space ( X x I X ) to the control set U , there 

is always one control law for which L^tl possesses more than one 

recurrent subchain and hence is not regular. The control law in 

question is the following : 
Y(i,h) € X x X L : f(i,h) } = h (6.24) 

ie. always make the current control action the same as the immediately 

past control action, regardless of the current number of batch jobs 

in the system. 

V/ith this control law, if the initial state is (M ,h ) all sub-
o1 o 

sequent states will be of the form (M^,hQ). Thus, as inspection of 

the state transition diagram (Fig.(11)) shows, there will be K (= 4) 

recurrent subchains, one for each value of hQ. In fact there are many 

control laws for which { ^ J is not regular and it is not easy to list 
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Fig.(11) State transition diagram - A recurrent chains 



208. 

them all systematically. If an attempt is made to use the DPI algor-

ithm to optimize f, there will be a high probability (at least for 

certain choices of initial control law) that a "policy improvement" 

step will lead to a non-regular f : in such a case the E-matrix becomes 

singular and the algorithm explodeso 

Fortunately, a simple restriction on the set of feasible control 

laws will restore total regularity. We make use of the following 

sufficient condition for total regularity : if ^YjJ possesses a single 

state (i,h) accessible from all other states under all feasible control 

laws, f, then (i,h) is recurrent for every f, and the set of states 

accessible from (i,h) constitutes the single recurrent subset of the 

state space of • 

This condition is met if we impose the constraint 

f (N,h) = 3 , V * 1 1 (6.25) 

ie. restrict the control value at the upper boundary i = N to the 

single value K = 3i regardless of the immediately preceding control 

action. The state transition diagram for an example of a control law 

satisfying (6.25) is shown in Fig.(12) where it can be seen that state 

(3,3) is necessarily recurrent since it is accessible from every other 

state. The choice f(N,h) = 3 is a natural constraint in view of the 

results for methods A and B. (Incidentally the apparently equivalent 

constraint f(0,h) = 1 does not yield a totally regular chain.) 

The well-defined optimal regulation problem resulting from the 

use of (6.25) has been solved for various values of c^, c^ and c^ 

using the DPI algorithm of Chapter A. The results are given in 

Tables 19 - 2A. 

6.7 Discussion of results 

Generally speaking, there are no major surprises in the results 

obtained, but there are several specific points which are worthy of 
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Fig.(12) State transition diagram - 1 recurrent chain 



. TABLE 12 

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO 
METHOD B2: 1 - A - A - 1 QUANTIZATION 

c 2 = 0.005 ; C = 4 ; c^ = 50 

O P T I M A L C O S T R A T E = 7. 2 3 7 

O P T I M A L C O N T R O L L A W 

0 1 2 3 4 5 6 7 8 9 

0 1 1 1 3 3 3 3 3 3 3 

1 1 1 1 1 1 3 3 3 3 3 

2 1 1 1 3 3 3 3 3 3 3 

3 1 3 3 3 3 3 3 3 3 3 

O P T I M A L S T A T I O N A R Y D I S T R I B U T I O N 

0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 . 0 4 5 0 . 1 1 6 0 . 1 0 4 0.085 0 . 0 5 3 0 . 0 3 3 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 0 . 0 3 3 0 . 0 5 2 0.080 0 . 0 9 6 0 . 1 0 5 0.077 0 . 0 6 1 0 . 0 3 4 0 . 0 1 9 0 . 0 0 9 



. TABLE 12 

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO 
METHOD B2: 1 - A - A - 1 QUANTIZATION 

c 2 = 0.01 ; c^ = 4 ; c^ = 50 

O P T I M A L C O S T RA TE = 8. 7 2 3 

O P T I M A L C O N T R O L L A W 

= 
h = 0 1 2 3 4 5 6 7 8 9 

0 1 1 1 3 3 3 3 3 3 3 

1 1 1 1 1 1 3 3 3 3 3 

2 j 1 1 1 3 3 3 3 3 3 3 

3 1 3 3 3 3 3 3 3 3 3 

O P T I M A L S T A T I O N A R Y D I S T R I B U T I O N 

0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0.043 0.116 0.104 0.085 0.053 0.033 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 0.033 0.052 0.080 0.096 0.105 0.077 0.061 0.034 0.019 0.009 



. TABLE 12 

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO 
METHOD B2: 1 - A - A - 1 QUANTIZATION 

c 2 = 0.02 5 c = 4 ; c^ = 50 

o p t i m a l cost rate = 1 1 . 6 9 4 

o p t i m a l c o n t r o l law 

0 1 2 3 4 5 6 7 8 9 

0 1 1 1 3 3 3 3 3 3 3 

1 1 1 1 1 1 3 3 3 3 3 

2 1 1 1 3 3 3 3 3 3 3 

3 1 3 3 3 3 3 3 3 3 3 

o p t i m a l s t a t i o n a r y d i s t r i b u t i o n 

0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 . 0 4 3 0 . 1 1 6 0 . 1 0 4 0 . 0 8 5 0 . 0 5 3 0 . 0 3 3 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 0 . 0 3 3 0 . 0 5 2 0.080 0.096 0.105 0.077 0 . 0 6 1 0 . 0 3 4 0.019 0.009 



. TABLE 12 

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO 
METHOD B2: 1 - A - A - 1 QUANTIZATION 

c 2 = 0.005 ; c-7 = 4; c^ = 100 

O P T I M A L C O S T R A T E = 80 3 4 4 

O P T I M A L C O N T R O L L A W 

0 1 2 3 4 5 6 7 8 9 

0 1 1 1 3 3 3 3 3 3 3 

1 1 1 1 1 1 1 3 3 3 3 

2 1 1 1 3 3 3 3 3 3 3 

3 1 3 3 3 3 3 3 3 3 3 

O P T I M A L S T A T I O N A R Y D I S T R I B U T I O N 

0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 . 0 3 7 0.100 0 . 0 9 4 0 . 0 8 5 0.069 0 . 0 4 3 0 . 0 2 7 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 0.027 0 . 0 4 2 0.066 0 . 0 7 9 0 . 0 8 6 0.090 0.065 0 . 0 5 1 0.028 0.011 



. TABLE 12 

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO 
METHOD B2: 1 - A - A - 1 QUANTIZATION 

c = 0.01 ; c = 4 ; c,, = 100 

o p t i m a l c o s t ra te = 9 . 8 1 7 

o p t i m a l c o n t r o l l a w 

0 1 2 3 4 5 6 7 8 9 

0 1 1 1 3 3 3 3 3 3 3 

1 1 1 1 1 1 1 1 3 3 3 

2 1 1 1 3 3 3 3 3 3 3 

3 1 3 3 3 3 3 3 3 3 3 

op ti ma l s t a t i o n a ry d i s t r i b u t i o n 

= 

h= o 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0.033 0.088 0.085 o.oso 0.072 0.059 0.037 0.023 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 0.023 0.036 0.056 0.067 0.073 0.076 0.078 0.056 0.044 0.014 



. TABLE 12 

OPTIMAL SYSTEM WHEN SWITCHING COSTS ARE ZERO 
METHOD B2: 1 - A - A - 1 QUANTIZATION 

c 2 = 0.02 ; c-, = k ; c^ = 100 

O P T I M A L C O S T RA TE = 1 2 . 7 5 1 

O P T I M A L C O N T R O L LA W 

h = 0 1 2 3 k 5 6 7 8 9 

0 1 1 1 3 3 3 3 3 3 3 

1 1 1 1 1 1 1 1 3 3 3 

2 1 1 1 3 3 3 3 3 3 3 

3 1 3 3 3 3 3 3 3 3 3 

O P T I M A L S T A T I O N A R Y D I S T R I B U T I O N 

0 1 2 3 k 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0.033 0.088 0.085 0.080 0.072 0.059 0.037 0.023 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 0.023 0.036 0.056 0.067 0.073 0.076 0.078 0.056 O.OAA 0.01A 



comment. 
Method A 

(i) As expected, the optimal control law f° is always monotone in 

the state: that is, f°(i2) ^ f 0 ^ ) for every pair of states 

i^, i 2 such that i >» i^. That the optimal control law for a 

simple, infinite-state, birth-death process is of this form has 
(1972) 

been demonstrated by Crabill 

(ii) For the chosen range of values for the cost parameters c2 and 

c^, the controls k = 0 and k = 2 are absent from the optimal con-

trol laws. Their absence is a consequence of the particular cost 

structure associated with our system. Thus for the given range 

of values of c_ and c^ the control k = 1 is actually cheaper to 

use than k = 0 and hence is always chosen in preference to the 

latter. Similarly, with the given cost parameters the control-

cost penalty for using k = 3 rather than k = 2 is relatively small 

whereas the corresponding state-cost benefit is large, 

(iii) The stationary distributions have the expected form, the maximum 

probability'being located near the control-switching boundary. 

Below this boundary will tend to increase until k is switched 

from 1 to 3, and above this boundary will tend to decrease 

until k is switched from 3 "to 1. 

(iv) V/ith 

the given values of c^ the switching cost component is a 

significant part of the total cost. For this reason we should 

expect the control lav/s yielded by Method A to be non-optimal 

when c^ is non-zero. 
Method B 1 
(i) Again the controls k = 0 and k = 2 are absent from the optimal 

control laws, for the same reasons as before. 

(ii) The performance of the Bl-optimal systems are very little worse 
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than (in some cases, the same as) the performance of the corre-

sponding A-optimal systems. The reason is that the A-optimal 

control laws need only a very small change (in some cases, no 

change) to convert them to control laws which are feasible as 

quantized control laws for the given quantization pattern, 

(iii) Because of (ii) there is very little reduction in switching cost 

when the control is quantized. 

Method B 2 

(i) Quce again the controls k = 0 and k = 2 are absent from the opti-

mal control laws. 

(ii) Because the number of quantum subsets is now relatively small, 

the choice of control laws is now highly constrained. As a result 

the performance of the B2-optimal systems is significantly worse 

than that of the corresponding A-optimal systems. 

(iii) The switching cost component is in many cases, larger than for 

the corresponding A-optimal or Bl-optimal system. The reason is 

that the switching boundary is, in these cases, forced down to 

i = cy4 = 1, where the rate of switching from k = 1 to k = 3 is 

increased. Only in those cases where the switching boundary is 

forced up to i = kji. = 5 is the switching cost component lower 

than in the corresponding A-optimal and Bl-optimal systems. 

Method C 

(i) For all the results shown in Tables 19 - 24, the initial control 

law v/as: 

f f(i,h) = 1 , i 2 , all h 

3 , i > 2 , all h-

Under this control law all states of the form (i,0) or (i,2) are 

transient. As we have shown (Chapter 4) no change in control in 

such a state can (a) result in a reduced cost rate c, or (b) cause 
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the state to become recurrent. Thus the controls in these states 

are left unchanged by the DPI optimization algorithm, 

(ii) The optimization procedure results, in each case, in a hysteresis 

type of control, in which the value k = 1 tends to be maintained 

when the state X^ is increasing and the value k = 3 tends to be 

maintained when is decreasing. The width of the hysteresis 

loop increases with increasing c^. For example, for Table 20 the 

optimal control law can be represented by the diagram : 

k /K 

3 ' r 

3 4 6 7 8 

and for Table 23 the optimal control law can be represented by 

k A 

3-

2 -

^ J 

T r 
0 2 3 4 5 6 7 8 9 

(iii) The set of recurrent states in each case is readily seen to be 

closely related to the form of the control law. 



(iv) It is clear that, by permitting the use of hysteresis-type con-

trol laws, optimization of the system by Method C ensures that 

the mean control-switching rate is kept low with the result that 

the overall cost rate is substantially lower than is attainable 

by the other methods. 

A comparison of the performance achieved by the various methods 

is shown in Table 25- The average optimization times (on a CDC Cyber 

174 computer) were as follows : -

Method A : 0.42 sec 

Method B1 : 0.40 sec 

Method B2 : 0.28 sec 

Method C : 2.64 sec . 

Although the much enlarged state space needed for Method C clearly 

results in a substantially more expensive optimization procedure, the 

results in Table 25 suggest that Method C is nevertheless well worth 

using when the switching costs are likely to be significant. 

Comparison of algorithms 

In order to obtain a practical estimate of the relative computa-

tional efficiencies of the DPI algorithm and the standard Howard/Jewell 

algorithm, the optimization problems in case C were also solved using 

the latter algorithm. To ensure that the results obtained were not 

specific to the birth-death optimization problem, no account was taken 

of the special structure of the P-matrix in either the DPI program or 

the Howard/Jewell program. The results, for the same set of optimiza-

tion runs, were as follows : 

Mean 
optimization time 

Mean number of 
optimization cycles 

DPI method 

Howard/Jewell method 

2.64 sec 

. 2.95 sec 

3-2 

3.5 



TABLE 25 

COMPARISON OF COST RATES FOR 
DIFFERENT OPTIMIZATION METHODS 

• • » 

method 
a 

method 
B1 

method 
B2 

method 
c 

% = 0 5 . 5 2 5 * 5 . 3 8 2 6 . 2 7 2 5 . 3 2 5 

C 2 = 0 . 0 0 5 
C 4 = 

5 0 1 2 . 5 4 5 1 1 . 6 1 2 1 5 . 1 6 2 7 . 2 3 7 

° 4 = 
100 1 9 . 3 6 5 1 7 . 8 4 2 2 4 . 0 5 2 8 . 3 3 4 

C 4 
0 6 . 8 3 7 6.851 7 . 8 8 5 6 . 8 3 7 

C 2 = 0 . 0 1 
° 4 = 

50 1 3 . 8 5 7 13.081 1 6 . 7 7 5 8 . 7 2 3 

C 4 = 
100 2 0 . 8 7 7 19.311 2 5 . 6 6 5 9 . 8 1 7 

C 4 = 
0 9 . 7 8 9 9.789 1 0 . 9 8 1 9 . 7 8 9 

C 2 = 0 . 0 2 
° 4 = 

50 1 6 . 0 1 9 16.019 1 6 . 6 0 6 11 .694 

C 4 = 
100 2 2 . 2 4 9 2 2 . 2 4 9 2 2 . 2 3 1 1 2 . 7 5 1 



It can be seen that, for the 40-state problem investigated here, 

the DPI algorithm is approximately 10% faster than the Howard/Jewell 

algorithm. Since, as the analysis in Section 4.2.4 shows, the time 

per optimization cycle increases at least quadratically with the number 

of states N, the DPI algorithm can be expected to show a substantial 

time advantage over the Howard/Jewell algorithm when N is very large. 

6.8 Concluding remarks 

In this thesis we have presented a critical review of the main 

algorithms currently used for the numerical optimization of controll-

able semi-Markov chains. The major difficulty with the main algorithms 

is that the amount of computational effort involved increases rapidly 

with the number of states in the chain. In an attempt to mitigate this 

difficulty we have developed new algorithms of the policy-iteration 

type and have shown that these new algorithms may be expected to be 

more efficient in many cases than the standard procedures. 

We have also investigated optimization algorithms of the success-

ive-approximations type, in which, although the amount of computational 

effort may not increase rapidly with the number of states in the chain, 

the computation time depends strongly on the dynamics of the chain and 

may consequently be very long for certain problems. Here again we 

have shown how it may sometimes be possible, by suitable modification 

of the standard procedure, to speed up the computation substantially. 

In the special case when the controllable chain is a birth-death 

process we have shown that it is possible to determine the optimal 

control law even when the state space is quantized. In such a case 

the standard algorithms do not work and it is necessary to make use 

of one of the new single-step algorithms. 

Two major problems to which no reference has been made in this 

thesis, but which merit further investigation, are the following : 



(i) Optimal regulation of partially-observable semi-Markov chains 

(with both classical and non-classical information patterns). 

This is a difficult problem for which, at the time of writing, 

no substantial results have been obtained. 

(ii) Optimal regulation of multi-dimensional birth-death chains 

(vector chains) in which the state space is quantized. Such 

problems are of interest because a vector birth-death chain 

can in principle serve as a general (though approximate) model 

for a wide class of non-linear stochastic systems. 



LIST OF PRINCIPAL SYMBOLS 

the set of natural numbers 1,2,3?••• 

the first N natural numbers 1,2,3?«»-?N 

the set of integers 

the set of non-negative integers 

the set of real numbers 

the set of non-negative real numbers 

unit matrix 

column vector 

row vector : transpose of x 

vector v/hose elements are all unity 

vector v/hose i^*1 element is "unity, the rest zero 

sample space 

state space of a stochastic process 

index set of a stochastic process 

control set of a controllable stochastic process 

probability of the event A 

expectation of the random variable X 

Markov chain or semi-Markov chain 

embedded Markov chain 

one-step transition probability 

matrix of one-step transition probabilities 

semi-Markov kernel 

vector of stationary probabilities 

vector of mean sojourn times 

vector of expected one-step costs 

vector of expected n-step costs 

value vector 
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equilibrium mean sojourn time 

equilibrium mean one-step cost 

equilibrium mean cost rate 

control action at time t 

control law at time t 

stationary control law 

optimal stationary control law 

VY\in\»Y\ovY\ (. 3 ̂  V ) 

vmuvn ( u t ) 
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APPENDIX 

SOME PROPERTIES OF SEMI-MARKOV CHAINS 

I. Equilibrium Probabilities 

Let [Xn : n £ be a sequence of non-negative, independent, 

identically-distributed random variables. Such a sequence is a discrete-

parameter stochastic process known as a renewal process. We may think 

of a s s e 9 u e n c e inter-event times for some underlying point 

process. Associated with the renewal process ^ are the stochastic 

processes 11 ^ nn^ : t €. ? defined by 

S A o , n = 0 n ' 
n 

' Xi ' n > 0 (A.1) 
i=1 

and 

Nt £ sup^n: 4 t^ ....(A.2) 

The process is called the renev/al counting process for ; 

and S is the time of the n l b renewal generated by ° Ihe funda-

mental relationship between ^ i^t^ 

[ « t ^ n] [s n ^ t] ....CA.3) 

Let jj^ be the common expectation of the random variables X^ 

(̂ t- exists since the X^ are non-negative) and assume that jx. is finite. 

From the strong law of large numbers, B^/n converges almost surely to 

yAA. and so the event S^ t only finitely often. It follows from 

(A.3) that, for any finite t, N is finite. 

The function ra : t V-> c aH e (i the renev/al function 

associated v/ith the processes , . It may be shown 
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that if F is the common distribution function of the random variables 

X the renewal function m satisfies the so-called renewal equation n a 

c m(t) = F(t) + I m(t - x) dF(x) (A.A) 
J o 

* 
from which the Laplace transform, m (s), of m(t) is given by 

m(s) = (A.5) 
1 - F(s) 

where F(s) is the Laplace transform of F(t)o 

More generally, if h(t) is a known function of t, the integral 

equation ^ 

u(t) = h(t) + I w(t — x) dF(x) ....(A.6) 
Jo 

is called a renewal-type equation, and its solution is given in terms 

of the Laplace transforms w(s) and h(s) by 

h(s) 
w(s) = — ....(A.7) 

1 - F(s) 

or, using (A.5), 

w(s) = h(s) + h(s) m(s) ....(A.8) 

Inversion of (A.8) yields 

r* 
w(t) = h(t) + I h(t - x) dm(x) ....(A.9) 

Jo 

In order to derive the equilibrium probabilities of a regular 

semi-Markov chain, a result known as the key renewal theorem (see, for 
(1970 ) 

example, Ross ) is needed. A simplified statement of this 
theorem is as follows : 

If h is a non-negative, nori-increasing function of t such that 
oO 
h(t)dt < °0 , and if the distribution function F is not 

o 

X d J w d kj -e~S 



lattice (ie. the points of increase in F are not restricted to the 

lattice set it = n T : n £ , T fixed r ), then 

/ t r>00 

h(t - x) dm(x) = ~ h(t)dt 
IK / 
' J ° ....(A.10) 

Now consider a stochastic process X L : b ^ } 

with the following property: there exists a time T^ such that, for 

every positive integer k, for every sequence of values (x , x0,...,x. ) 
i 2 k k k 

£ , for every sequence of times (t^, t2,.o.,tk) £ T " 1 ̂ ^ f°r 
each i T 

[ X t $ x1' x
2» • • • •' X t k ^ * k | x

0 = i ] 

/ Xt„+T ^ X V "V+T, ^ x 2 , " , , X t 1 + T ^ xk L 1 1 2 1 k 1 

P I t„ T ^ 2' ' t, k I o u 1 2 k I 
....(A.11) 

that is to say, there exists a time T^ such that the continuation of 

the process beyond t= T^ is a probabilistic replica of the whole pro-

cess starting at t = 0 o 

It follows immediately that if such a T^ exists then so also do 

later times T T ,...., having the same property as T 0 2 5 1 

A stochastic process with the property (A.11) is called a 

regenerative process, and the times T^, 0 ? 2 a r e called regenera-

tion times for the process. Clearly the sequence of time intervals 

(T - T ), (T - T ), (T - T ) , (where T £ o), is a renewal 
1 o ? 1 3 2 o 

process. The segment of the process on the interval jjL 
th C J 

is called the i cycle of j ^ X • 
Nov; define the indicator variable 

Y^(t) £ 1 , Xt = j and ^ > t 

~ 0 , otherwise 
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o6 
Then Y.(t)dt is the amount of time for which X - j 

during the first cycle of . Furthermore, if 

q(t) - Xco p[x t = i = s ] 

dF(s) 

....(A.12) 

then 

E [ y Vt} dt] 
oO 
E h ( t ) ] dt 

/ p [ v J t i > *] 
Vo 

dt (A. 13) 

and 

/

oO 
P [ h = 3. > t dF(s) 

/ ©0 
p[x t= 3 T1 = s ] d F ( s ) 

= 9d(t) ....(A.14) 

Note that since is regenerative E £ ^ * 

expected time spent in state j during any cycle of ^X "J . 

Now define, for each t €. r and each j £ > 
T 

is the 

P.(t) 6 P [ x t = j ] ; 

then 

P.(t) 
3 

n 00 
/ pj^Xt= j ^ = s ] dF(s) 

Jo 

J p.(t-s) dF(s) + J  p[ x
t=d T1  =  SJ dF(s) 

P.(t- s) dF(s) + q . (t) 
3 0 

....(A.15) 
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ie. P.(t) satisfies a renewal-type equation (see A.6) whose solution J 
(see A.9) is 

ft 
P.(t) = q. (t) + / q.(t - x) dm(x) ....(A.16) 

But q. (t) is a non-negative, non-increasing function of t such that 

(provided E ^ J < 0 0 ) J q^(t) dt < ©o 5 it follows by the 

key renewal theorem that (again, provided that 

/

oo 

q.(t) dt P.(t) 

ie. on using (A„13) and (A.14) 

L i m
 n . . E [ 

Time in state j during one cycle^j 
t •> 06 j E [Duration of one cycle^J 

(A.17) 

This result is true for any regenerative process. More generally, 

for a so-called delayed regenerative process, in which the time at 

which the first cycle of the process starts is T^ 0, the result 

(A.17) remains true but the expected duration of a cycle is then 

measured by E - T ^ . 
Now if ^ is a finite-state, regular semi-Markov chain in 

which the state j is recurrent, with mean recurrence time M..., we 
/ 33 

can regard as a delayed regenerative process in which the regen-

eration times T^, T^,..., are the times of entry into state j. Then 

by (Ao17), for any initial state i, 
Idm 

t -y oo 
P [ x t ^ w ] 

X . 
J - (A.18) 

/*id 

where T . is the mean sojourn time in state j. 
J 



ie. P.(t) satisfies a renewal-type equation (see A.6) whose solution 
J 

(see A.9) is 

r P.(t) - q.(t) + / q.(t - x) dm(x) ....(A.16) 3 J 3 

But q.(t) is a non-negative, non-increasing function of t such that 
J r l 

(provided EjJ^J < ) J d t < 0 0 » i t follows by the 

key renewal theorem that (again, provided that 

/ oo 
q.(t) dt P.(t) 

ie. on using (A013) and (A.lA) 

Edrn p ^ ^ E^Time in state j during one cycle J 

t oo J E ^Duration of one cycle J 

....(A.17) 

This result is true for any regenerative process. More generally, 

for a so-called delayed regenerative 

pro c ess, in which the time at 

which the first cycle of the process starts is T^ 0, the result 

(A.17) remains true but the expected duration of a cycle is then 

measured by E ^ - T ^ . 
Now if is a finite-state, regular semi-Markov chain in 

which the state j is recurrent, with mean recurrence time M.. ., we 
I 33 

can regard \ x ] as a delayed regenerative process in which the regen-

eration times T^, T^,..., are the times of entry into state j. Then 

by (Ao17)1 for any initial state i, 

Lirn -1 X . 
P Xx = j X = i = (A. 18) 

t - * c 0 ° J A : 

where X . is the mean sojourn time in state j. J 
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This is property R.8 (equation 2.4l) in Chapter 2. 

In order to evaluate . note first that, if T. . is the first 
/ 33 iJ 

passage time from i to j and = P1-j^J » "then, denoting the 

embedded Markov chain by ^ as usual, 

r±3 - 2 E[Tia I X ' v k ] pik 

Pik( V + /\j> + pid 1±3  ( A' 1 9 )  

k/j 

where _ ^ 

^ I t dF. ,(t) ij 
o 

Now 

= E ^transition time from i to ĵ J 

2 Pik *) i 
k 

so that, from (A.19) , 

= ~C ik 1 

/ « = ^ i + / i k 
y k/j ' 

....(A.20) 

Multiply both sides of (A.20) by the stationary probability It. 

and sum over i J we obtain 

A i d ~ X 1 " E + "^i X - j Pik Akj 
i ' i i k/i k^d 

^ i "^i + X L "k /"kd Z ^ k A : 
k/d ' 

since / "IT. P. k = . 
i 

Finally, subtracting ^Z* A'kj ^ r o m ea°L side, 
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T . 
S p a = 2 x i 

ie. 

fx, 
/ 00 TT. 0 

(A.21) 

This is property R.7 (equation 2.40) in Chapter 2. The equilibrium 

probabilities <5\ for the semi-Markov chain are obtained immedi-

ately by using (A„21) in (A018) : 

TT. X . o i <r = 

T̂-1 1 1 
....(A.22) 

II. Semi-Markov Chains with Costs 

Let{(Xt: J L - > IM n) : be a semi-Markov chain with 

semi-Markov kernel F. Associate with each transition X^ X̂ , 
n n+1 

the transition cost 

C(XT , XT , M n ) 
n n+1 

and, for each i £ , define 

Y . A e|"c(x t , x t , At J xT = il ....(A.23) 
k n n+1 n -I 

1 £ coi(Y Y Y h ) N' (A.24) 

k +n-1 o 
.(n) - C ( \ ' \ + 1 ' A Tk +1 } \ - i ] »..<*• 

k=k o 
>5) 

v(n) — Col(v1(n),...0,vN(n)) (AO26) 
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Then, separating out the first term in (A.25) , 
k +n-1 o 

v.(n) = Y. + C(X ,X , M k + 1 ) 
k=k +1 o 

k k+1 T • 0 

k +n-1 

- ft+ i b E 2 T c ( v \ + 1 • \ = - \ J ] 
T k=k +1 k + 1 o o 

Xrp = i, 
k o o 

= y . + E 
1 x T L 

vY (n - 1) 
T 

k + 1 o o 

Xrp = i 
k o 

= Y . + 

l 
p. . v .(n - 1) 
13 3 

(A.27) 

ie. using (A.24) and (A.26) 

(n) Y + P V (n - 1) (A.28) 

Similarly, if 

t. (n) £ El (T - T ) i I k +n kQ 
XT = i 
k o 

and 

t(n) ± Col(t^ (n),..., tj^(n) 

(A.29) 

....(A.30) 

then taking the transition cost in (A.25) to be 

C(XT ,X AT ) A t 
n n+1 n+1 

immediately yields, as the corresponding version of (A.28) , 

t(n) = X + P t(n - 1) (A.31) 
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III. The Equilibrium Mean Cost Rate 

Let C.(t) be the total cost accumulated between T^ and T + t , 
1 o o 

given that the recurrent state i was entered at time , and let 
' o 

rUt) ± E^C.Ct)]. 

Then (see Ross^1970^ - theorem 3.16) 

Lim 

t -> oo 

V .'(t) 

E 

[ A c J 
[ A T J 

(A.33) 

where ) A^k = cost incurred on cycle starting in state i 

A t, = duration of a cycle starting in state i 

But E ^AtDJ is just the mean recurrence time of state i, and 

so (by A.21) 

E ! > J 
i (A.34) 

mean If now we interpret the mean one step costs as the 

sojourn times of a fictitious semi-Markov chain with the same embedded 

chain, , as ^ , we then have that E j^Ac/] is the mean recur-

rence time of state i for the fictitious chain, and hence that 

E = ~ — — — ....(A.35) 
IT. 1 

Then using (A.34), (A.35) in (A.33) , 

Lim v.'(t) 
1 

\ ^ i 
i 

t-»c* t y T . x . 
i—i 1 1 
i 

(A.36) 
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(If not all the are positive it is necessary to modify the 

argument slightly by considering (Y. + Y ) to be recurrence times, 

where o is some constant such that a . + Y ) > o for each recurrent 
1 

state i.) 


