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ABSTRACT

The self-excited flexural vibration of a multi-rotor system due to
vertical misalignment of the support bearings was investigated using
numerical initial-value-problem techniques. The equations of motion are
expressed in terms of the free-free modes of the shaft, and the modal
coefficients propagated in time. |

The method was used to study a two rotor, four bearing system
subjected to vertical misalignment of one of the central bearings.

Previous authors have reported that, for single rotor systems supported

upon bearings with circular symmetry, the speed of the shaft had to be
increased beyond twice its first pinned critical speed, and external

damping applied to the shaft, in 6rder to predict the finite amplitude

whirl, at frequencies less than half shaft rotational frequency, that has
been observed in practice. This was confirmed for the two rotor system

but it was found that, by using a non-circular 1emon;bore bearing model,
realistic limit cycle motion was obtained, which was in agreement with the
amplitude and the frequency of the motion observed for large turbogenerators,
without the need to apply heavy (and quite arbitrary) damping to the shaft.

The method is general and may be used for any rotor geometry for
which the free-free modes and natural frequencies are known, and for any
number of bearings. Any bearing configuration for which there is a
suitable computational model for the oil-film forces may be included.

In addition, the basic method was adapted to calculate the bearing
settings required to align the system; the equilibrium position of the
rotating shaft; the stability of the equilibrium position; and the forced

response of the linearised system.
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Description
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CHAPTER 1
INTRODUCTION

1.1 STATEMENT OF PROBLEM

Vertical misalignment of the support bearings due to the differential
thermal expansion of the bearing pedestals is considered to be one of the
prihcipa] causes of the non—synthonous flexural vibration exhibited by
large turbogenerators. Although operational experience has shown that
the amplitude of the vibration is not always large enough to cause Toss on
internal clearance or bearing damage, its non-synchronous nature is
undesirable as the shaft is subjected to cyclic stresses which may
propagate fatigue cracks. Such vibration sometimes continues for several
hours which, because of its finite amplitude and non-synchronous frequency,
is a non-lTinear phenomenon normally attributable to the oil-film bearings.

“The non-Tinear behaviour of the generic rotor system, comprising a
rotor supported by two bearings, has been the subject of a number of
previous investigations.  However, with only two_bearings, it is not

possible to consider the effect of misalignment.

1.1.1 Terms of Reference

(1) To develop:a computer based method for predicting the non-

| Tinear flexural vibrations of a shaft supported upon oil-film
bearings. The method shou]d be capable of treating a shaft
having any realistic distribution of mass and flexural
stiffness and supported upon any number of bearings. A
facility must be available for introducing parallel
misalignmént (both horizontal and vertical) to any of the

bearings.
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The method should be used to study the non-linear behaviour

of a simple two rotor, four bearing system subjected to
vertical misalignment of the bearings. The objective being
to gain a better understanding of misalignment induced large
amplitude vibration by obtaining qualitative information about
the non-Tinear behaviour of the simple system, rather than

detailed quantitative information.
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1.2 PRELIMINARY DISCUSSION

It has been recognised for more than fifty years that, under certain
conditions, the interaction of the journal bearing oil-film forces and the
shafts they support may be responsible for violent vibration in rotating
machinery, ét frequencies not predicted by consideration of the shaft
alone. A]though the dynamic characteristics of flexible shafts are, to a
close approximation, linear and thus amenable to analysis, two factors
have impaired progress towards a full understanding and prediction of the
behaviour of rotating shafts supported upon journal bearings.

The first concerns the calculation of the oil-film forces, which
requires the solution of the Reynolds equation for the pressurelfie1d
generated in the bearing. Unfortunately, a solution to this equation is
not available, even for the comparative]y simpTe geometry of a plane
circular bore bearing, without recourse to numerical techniques and modern
computational aids. This difficulty has, however, been overcome in many
studies by the use of approximate solutions of which the "long" bearing
and "short" bearing solutions are well known.

The second and more fundamental difficulty is that the oil-film
forces are non-linear functions of the velocity and displacement of the
journal within the bearing. Incorporation of these forces into an analysis
of the shaft motion produce non-linear equations of motion: Because
numerical and analogue methods are the only means generally available for
obtaining solutions to non-Tinear differential equations, the iavestigation
of the non-Tinear effects of the oil-film force had to await the advent of
fhe modern computer.

In the majority of theoretical investigations reported in the
literature, it is assumed that the excursion of the journal about its

equilibrium position is small so that the oil1-film force, in each of two
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perpendicular directions, may be approximated as a linear function of the
velocity and displacement, relative to the equilibrium positioh, in each
of the two perpendicular directions. (The oil-film force acting on the
journal is, for a given bearing configuration and at a given equilibrium
position, thus determined by eight linearised bearing coefficients,-usua11y
known as the stiffness and damping coefficients of the bearing.) This
assumption yields linear equations of motion which are amenable to well
established techniques of analysis. But, although a Tinearised analysis
is valuable for determining the stability of the equilibrium position of
the rotating shaft, or the forced response of the system to unbalance
exéitation, it is unable to account for finite amplitude se1f-ekcited
vibration (or a subharmonic response to unbalance excitation), the study

of which is the purpose of this work.
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1.3 LITERATURE SURVEY

1.3.1 Early Studies

Newkirk & Taylor (1925) were the first to identify and
investigate journal bearing induced instability in rotating systems. A
comprehensive review of the studies, both experimental and theoretical,
conducted during the following thirty five years, is given in review papers
by Newkirk (1957) and Sternlicht (1967). A summary of some of the

principal experimental findings of this period will now be given.

(1) If self-excited vibration developed, the motion was observed

to be one of two types: the first, known as resonant whirl,
" occurred when the shaft was rotating at speeds in excess of

twice its first pinned (i.e. simply supported) critical speed.
The amplitude of vibration in this case was large and the
whirl frequency wﬁs approximately equal to the first pinned
nétura] frequency of the shaft. The second type of self-
excited motion, known as kalf frequency whirl, occurred at
speeds below twice the first pinned critical speed, when the
shaft was lightly loaded. In this case, the vibration was
not as violent as for resonant whirl and the fkequency was
approximately equal to, but always slightly less than, half

the rotational frequency.

(2) Heavy bearing loads promoted stable motion. For rotors
supported upon more than two bearings, whirling sometimes_
developed if misalignment reduced the Toad carried by one of

the bearings.
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(3) Newkirk & Taylor (1925) reported that, once whirl had
developed, it persisted at all higher speeds. Pinkus (1956),
however, reported a case where resonant whirl died out at

speeds exceeding three times the Towest pinned critical speed.

(4) The onset and intensity of self-excited vibration is almost

unaffected by rotor unbalance.

(5) A hysteresis (or inertia) effect was sometimes observed.
That is, when the rotational speed of the shaft was decreased,
se]f-ekcited vibrations persisted down to a speed Tower than
that at which self-excited vibration started when the speed
was increased. The ability to induce whirl in a shaft by
subjecting it to a sudden blow, reported by Newkirk & Taylor

(1925), is another facet of this phenomenon.

(6) Some bearing configurations exhibited a greater resistance to
thé onset of self-excited vibrations than did others. The
plain circular bore bearing was the most susceptible to self-
excited vibrations, whilst lemon-bore ("elliptical"), three
lobe, and tilting pad bearings generally exhibited increasing

stability, in that order.

The few theoretical investigations conducted during this period
were usually based upon the Tong bearing approximation to the circular-bore
bearing. But, because the effects of cavitation were often ignored, the
rotor systems were predicted to be inherently unstable, which did not

accord with the experimental evidence.
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1.3.2 Recent Studies -

The Tlate 1950s saw the start of a new era in the study of rotor
dynamics.  The general availability of the modern electronic computer and
the recent development of the short bearing approximation, due to Ocvirk
(1952), provided the impetus for a whole series of papers on the theoretical
prediction of rotor behaviour. It should, howeVer,.be added that not all
the'subsequent theoretical studies depended upon these two factors.

The recent literature will be reviewed undér four broad
headings: (1) the determination of linearised bearing coefficients;

(2) the prediction of non-linear behaviour; (3) methods used to represent
the dynamic characteristics of shafts; (4) bearing induced instability in
large turbogenerators. No attempt has been made to give a complete

bibliography; such a task would not serve a useful purpose here.

1.3.2.1 The determination of linearised bearing coefficients

' Sternlicht (1959) determined the stiffness and damping

- coefficients for a finite width circular bore bearing using numerical

techniques. The pressure field for the bearing was solved using finite

difference techniques and cavitation of the oil-film was allowed for.
Before this date, the only linearised bearing

coefficients available had been those corresponding to a long circular

bore bearing - and cavitation effects were often ignored. Hagg & Sankey

(1956,1958) had determined stiffnéss and damping coefficients for commonly

occurring bearing configurations, from unbalance response experiments.

But, as only four of the eight linearised coefficiehts may be found in such

a manner, they ignored cross coupling effects and postulated a direct

stiffness and a direct damping coefficient along each of the principal

axes of the elliptical orbit of the journal. These apparent out-of-
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balance coefficients (to use Smith's (1969) terminology) are not ﬁroperties
of the bearinghalohe, and give an imperfect representation of the dynamic
properties of the bearing, which make them unsuitable for stability
calculations.

Holmes (1960) calculated the eight stiffness and
damping coefficients for a short circular bearing having a film extent of

180°.

The linearised coefficients were used to determine the stability
profile of a rigid shaft supported upon short circular bearings. Mitchell
et al (1965-66) determined the spring stiffness coefficients of a short
circular bearing experimentally from the static loading locus of the
- Journal and found good agreement between experiment and theory. The eight
stiffness and damping coefficients for several common bearing designs were
determined experimentally by Glienecke (1966-67). For this, two different
sinusoidal Toads (in addition to a static load to alter the equilibrium
position of the shaft) were imposed, in turn, upon the bearing, and
measurements bf the phase and amplitude of the resulting elliptical orbits
and the imposed load gave sufficient information for the eight unknown
coefficients to be determined by the solution of two sets of four
simultaneous equations. Later, Woodcock & Holmes (1969-70) claimed that,
because of the i11 conditioning inherent in Glienecke's method, more
~accurate results could be obtained by first obtaining the four stiffness
coefficients from the static loading Tocus (i.e. the method of Mitchell
et al) which then allows the four damping coefficients to be determined
from a single unbalance test.

Lund (1964) gave theoretiéal]y evaluated stiffness
and damping coefficients for a tilting pad journal bearing.

Morton (1971) used a similar technique to Glienecke

to measure the stiffness and damping coefficients of large turbogenerator
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bearings. He found that the predictions based upon theory considerably
under-estimate the stability of a system, and over-estimate the stiffness
of a bearing. A technique for determining the Tinearised coefficients of
a bearing, in situ, by applying a transient force to the rotating shaft is
described by Morton (1974). Again, it was reported that stability
calculations based upon theoretically predicted bearing coefficients are

genéra]ly pessimistic.

1.3.2.2 The prediction of non-Tinear behaviour

The first comprehensive explanation of the phenomenon
of journal bearing induced whirl was given by Hori (1959). Hori studied
the behaviour of a single disc (represented as a point mass) mounted at the
centre of a light flexible shaft supported upon "long" circular bore
bearings. The stability of the equilibrium position of the rotating
shaft was assessed, and by considering much simplified equations of motion,
. it was shown that large amplitude self-excited motion (i.e. resonant whirl)
could not exist at speeds below twice the pinned critical speed of the shaft.

Hori argued that, if the equilibrium position of a
shaft becomes unstable, when the fotationa1 speed is less than twice the
first pinned critical speed, then the self-excited vibration is of small
amplitude, the bending of the shaft is slight, and the frequency is
approximately equal to half the rotational frequency. When, however, the
speed reaches twice the pinned critical speed, large amplitude vibration
develops at a frequency approximately equal to the pinned natural
frequency of the system. '

The hysteresis phenomenon, observed experimentally,
was also explained by postulating a situation in which the equilibrium

position of the shaft does not become unstable until a speed beyond twice
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the critical speed is reached. If, for this situation, the speed is
increased, self-excited vibration does not occur until the equilibrium
position becomes unstable; and then large amplitude vibration develops
immediately. However, once the large émp1itude vibration has developed,
it persists, even if the equilibrium position is stable, until the speed
is reduced to below twice the pinned critical speed.

Hori conducted a series of experimental tests to
substantiate his assertions. These also revealed that, under certain
conditions, the amplitude of the resonant whirl may decrease, accompanied
by an increase in whirl frequency, as the rotational speed is increased.
Some aspects of Hori's explanation for this effect were questioned by
Tondl (1965). Tondl studied the same system as Hori but assumed that the
shaft was vertical, and solved less simplified equations of motion.

Tond] showed that a source of external damping was necessary to Timit the
amplitude of the mid-span of the shaft during resonant whirl, and was
also ab]e‘to give a more satisfactory explanation for the decrease in
resonant whirl amplitude with increasing speed.

With the advent of the modern computer, numerical
initial—-value-problem techniques (e.g. Runge-Kutta type methods) became
widely used for the solution of the non-linear equation of motion for
shafts supported upon journal bearings. Reddi & Trumpler (1962), who
were the first to use these techniques to study journal bearing fnduced
instability, investigated the symmetrical motion of a rigid shaft
supported upon circular bore bearings. The oiT-film forces for this were
obtained using the long bearing approximation together with a side Teakage
correction factor.

Someya (1963-64) used numerical initial-value-problem

techniques to study the behaviour of a horizontal flexible shaft supported
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upon circular bore bearings. The shaft was represented by three point
masses (one situated af each of the journal positions and one at the mid-
span of the shaft) connected by Tight flexible shaft elements. The oil-
film forces for a finite width bearing were obtained using a series solution
to the Reynolds equation. Although not stated, it is assumed that
cavitation was allowed for by neglecting negative pressures when the oil-
film forces were calculated. Only symmetric motion of the shaft was
considered, which reduced the number of equations of motion to be solved.
Someya found that, when the equilibrium position of the shaft became
unstable at speeds below twice the pinned critical speed, the motion of
shaft centre and>disc remained bounded and had a frequency apprdximate]y
equal to half the rotational frequency. If, however, the speed was

" greater than twice'the pinned critical speed, then whirl developed at a
frequency approximately equal to the pinned natural frequency of the shaft,
but the mid-span amplitude of the shaft grew incessantly. In order to
obtain the fihite amplitude resonant whirl observed in practice, Someya
proposed that an external damping force, proportional to the square of the
velocity of the shaft centre, should act upon the shaft; but he did not
identify the physical mechanisms involved.

The short bearing approximation has been used by
several authors to study the symmetric motion of a rigid shaft supported
upon circular bore bearings. Jennings & Ocvirk (1962) and Huggins (1963-64)
used an analogue computer to solve the equations of motion as &n initial- -
value-probTem. The analogue computer is ideally suited to transient
analyses but, unfortunately, with this device it is difficult to adequately
simulate the complex nature of the oil-film forces. Later, Badgley &

Booker (1969) and Holmes (1970) solved the equations of motion using Runge-

Kutta techniques with the aid of a digitial computer.
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An alternative approach was adopted by Lund (1966)
who obtained the (symmetric) steady-state, self-excited motion of a rigid
shaft, supported by short circular bearings, directly by applying the
method of averaging to the equations of motion. It was assumed that the
motion was dominated by its fundamental frequency component and so only
motion due to a single frequency component was permitted in the anajysis.
This method, although elegant, becomes unmanageable if more than one
frequency component is included, or if any but the simplest of systems is
considered.

A1l the aforementioned studies were for single rotor
systems. To the best of the author's knowledge, no theoretical study of
the non-linear behaviour of shafts supported upon more than two bearings.

has, to date, been published.

1.3.2.3 Methods used to represent the dynamic characteristics
A of shafts
| In theoretical investigations into the behaviour of
shafts supported upon journal bearings, three methods have generally been
used to represent the Tinear dynamic characteristics of the shafts. They
are: |
(a) lumped mass method;
(b) transfer matrix method (Myklestad-Prohl method)

(c) assumed modes method (Rayleigh-Ritz method)

In the Tumped mass method, the shaft is represented
by a series of point masses (or, more generally, by localised inertias)
connected by light flexible shaft elements. The equations of motion are

applied directly at each mass station along the shaft. Such a method was
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used by Someya (1963-64) in his study of the non-Tinear behaviour of a
single rotor system. The principal disadvadtage of this method is that,
in order to adequately represent the dynamic characteristics of a shaft; a
1afge number of mass sfations are required, which in a linearised analysis
(say) necessitates the manipulation of matrix equations of large order.
This method is discussed further in Chapter 2.

The transfer matrix method has been used by several
authors to investigate the Tinearised properties (i.e. stability and forced
response) of single and multi-rotor systems (see, for example, Lund &
Orcutt (1967), Lund (1974), and Dostal et al (1974)).  Although the
transfer matrix method is similar to the Tumped mass method in that the
shaft is represented by a series of mass (or‘inertia) stations connected
by uniform shaft elements (which ére normally considered to be inertialess),
it has the advantage that large matrices are not generated. (In a rotor
dynamics calculation, the maximum size of a matrix would normally be
8 by 8.) Unfortunately, however, the transfer matrix method does readily
lend itself to the prediction of the non-linear behaviour of rotor systems.

The assumed modes method was the most recent of the
above methods to be appliéd to the study of shafts supported upon journal
bearings. It was first used by Morton (1965-66) to predict the behaviour
of large turbogenerator rotors, and later by Black et al (1972) and Black &
Loch (1973) to study pump rotor dynamics. The method effectively reduces
the number of degrees of freedom ﬁeeded to represent the dynam’c
characteristics of a shaft by expressing the deflection of the shaft as a
Tinear combination of a suitable set of its modes shapes obtained for a
simpler situation. To date, no work has been published in which this
method is used in a study of non-Tinear shaft motion. There is, however,

no reason why this method should not be used for such a study.
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1.3.2.4 Bearing induced instability in large turbogenerators

Although it has been recognised for many years that
vertical misalignment of journal bearings may be the cause of large
amplitude whirl in large turbogenerators, Tittle information (e.g. frequency
of vibration and its amplitude at various stations) has been published
about this problem. Two reasons are responsible for this. The first is
thaf only recently has it become design policy to install vibration
monitoring devices at each bearing, station and at strategic rotor locations,
as standard equipment on operational machinery. Before this, such devices
were only installed in exceptional circumstances. Secondly, those whose
responsibility it is to operate large turbogenerators are, quite reasonably,
only willing to publish information couched in very general terms, on what
will effectively be viewed as a machine fault, for fear of identifying and
embarrassing a manufacturer. Therefore, much of the data used in this
work is unpublished data supplied by the Central E]ecfricity Generating
Board. '

A number of papers have been published on methods of
detecting vertical misalignments of bearings, and on methods for
determining the remedial action to be taken to cure rotor instability.

These include Seery et al (1972), Wronski et al (1973) and Ettles et al
(1974).  An important point made in Wronski's paper is that changes in
the thermal environment may alter bearing pedestal heights by as much as

0.100 1inches.
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1.4 THE METHOD TO BE ADOPTED

The method to be adopted will be to represent the Tinear dynamic
characteristics of the shaft using an assumed modes method based upon the
free-free normal modes of the shaft. (The reason for choosing the free-
free modes will be discussed later.) The resulting system of non-linear
ordinary differential equations will then be solved using numerical initial-

value-problem techniques.
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CHAPTER 2
MATHEMATICAL MODEL

2.1 THE EQUATIONS OF MOTION FOR THE FLEXURAL VIBRATIONS OF A ROTATING

SHAFT

2.1.1 Description of the Rotor System to be Modelled

The rotor system to be modelled comprises a number of flexible
rotors coupled together to form a continuous shaft, of total length L,
whose undeflected axis is parallel to the 0z direction of a fixed
rectangular coordinate system 0zxy. The 0Y axis is chosen to coincide
with vertical (upwards) direction and displacement of the shaft centreline
parallel to the 0X and 0Y axes is denoted by x and Y, respectively (see
Figure 2.1). The shaft has a circular cfoss—section, the diameter of
which may vary along its length, and is supported upon n journal bearings.
The location of the centre of the kth bearing relative to the frame of
reference 0ZXY is given by (Zk’XZ Ty ).

k "k

2.1.2 Statement of Equations

Subject to the assumptions stated in the next section, the

equations of motion for the flexural vibrations of the rotating shaft are:

2 » » ]
2 [E’I(Z) *’——X-} +Cy(2) %‘ + oa(z) X .
322 3z2 9t2
n , | |
= kzl 5(Z‘Zk) ka+ pA(Z) w [rg(z) cos w t - rn(Z) sin w t]
2.1
2 2 2
Kl [E’I(Z) 331] +Cp(2) 3L + pA(2) Lhd
az2 922 542
. _
= ¥ §(2-2,) F, + pA(Z) w? [r (Z2) sin w t + r_(Z) cos w 1;] - pA(Z) g
) . ]



Figure 2.7: A multi-rotor system supported upon » journa arings

- 9¢ -
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where: ‘ R
(39X 3y )
F. = F_ |2&, (x-x, ), 2=, (v-Y, )
“ay x (9t bk ot by, Jz=2,
> 2.2
(59X 3y )
F = F |=, (x-x, ) — , (Y¥-Y.
Yz y (9t bk > 3t ( bk)JZ=Zk
The Dirac delta function,'s(z-zk), is defined as:
G(Z-Zk) = (0 ’ 7 # Zk
> 2.3
L
[ 8(z-2,) dz = 1

o] o

and »,_(Z) and rn(z) are the displacements of the mass centre (Mé) of the

£
shaft from its geometric centre (Gc) measured, as shown in Figure 2.2,
relative to the rectangular coordinate system 0Zgn, which rotates about 0Z
at shaft speed w.

quations 2.1 are well known, and their derivation, which is
achieved by considering the dynamic equilibrium of an elemental slice of

the shaft, is described by several authors, including Gladwell & Bishop

(1959), Dimentberg (1961) and Tond1l (1965).

2.1.3 Assumptions
 The following assumptions are made about the properties of the

rotor system:

(1) The inter-rotor couplings are rigid so that the coupled rotor
train may be treated as one continuous shaft.
(2) The shaft is thin so that the effects of rotary inertia and

gyroscopic forces upon an element of the shaft, and deformation
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Figure 2.2: The rotating coordinate system 0Zgn



(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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due to‘shear may be neglected.

The shaft, when straight, is free from residual bending
stresses, i.e. the shaft does not have a permanent bend.
The shaft has.the same flexural rigidity in all directions

normal to its axis, i.e. the shaft is axially symmetric.

Internal damping within the shaft due to shrink fits and

hysteretic damping is negligible.
The journal bearings are se]f—aligning, and so do not exert
a bending moment upon the shaft.
The journal bearing oil film forces F. and 7 act through

k Y
the mid axial plane (Z = Zk) of each bearing and are functions

" of the displacement and velocity of the shaft centre, at this

axial plane, relative to the bearing centre.

Fl&id forces generated in seals, glands, etc., may be
neglected.

fhe pedestals upon which the bearings are mounted are rigid so
that there is no relative motion between the bearing shells
and the frame of reference 0zZxY.

Any external damping acting upon the shaft is of a Tinear

viscous nature.

These assumptions are made for the following reasons:

Firstly, the principal objective of this work is tc study the

non-linear large amplitude vibrations induced in multi-rotor systems by

parallel misalignment of the bearings. This behaviour, which results

from the interaction of the bearing oil-film forces and the rotating shaft,

is in itself a complex phénomenon, the study of which would not be

facilitated if further factors were allowed to influence the motion of
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the shaft.

It is acknowledged that steam forces in fine clearances are
sometimes a cause of instability in large turbogenerators (Greathead (1976))
and that internal friction forces in a rotating shaft can also cause
instability (see, for example, Gunter (1967)). However, it is known that,
in many instances, instability results from the journal bearings alone.
Mayés (1974), from operational experience on 500 MW generating sets,
reported that large amplitude vibration, the principal component of which
was usually in the range 20-25 Hz, sometimes developed when the machine
had reached its operating speed of 3000 rpm after run up, but whilst still
running with zero load. Under these conditions, the steam flow is very
Tow and it is unlikely that steam forces are the cause of the excitation,
Further, as the instability did not develop when the system passed throqgh
its Tower critical speeds (a turbogenerator of this size operates in the
region of twice its first critical speed), this suggested that internal
friction forces were not the cause.

(It should be added that, if desired, the fluid furces
generated in the seals and glands can be incorporated into the equations
of motion in a similar manner to that used for the bearing forces.)

Secondly, many of the assumptions are mathematically éxpedient
and may only be relaxed at the expense of increasing the complexity of the
equations of motion. Although the resultjng equations would not be
intractable, their solution would be more difficult and, as computers are
to be employed for this purpose, more cosfly.

For example, including the effect of shear, deformation
introduces terms that have a fourth order time derivative and, as will be
seen later, would double the number of ordinary (non-linear) differential

equations to be solved by numerical integration. Whilst several authors
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have accounted for shear deformation, rotary inertia and gyroscopic effects
in their analyses of rotor systems (see, for example, Lund (1974)), they
have also assumed that the motion is of sma11‘amp11tude so that the bearing
forces may be approximated by Tinear functions - such an assumption would
not be meaningful here.

It should be emphasised that most of the assumptions listed
abo?e are closely approximated to in turbogenerators and if relaxed would
only have a secondary influence upon the behaviour of the system.

Morton (1967-68) in a series of tests on turbogenerator
alternator fotors showed that the internal damping was not significant,
and that the difference in flexural stiffness between the two principai
planes (which, because of the winding s}ots, it would be reasonable to
assume would be greatest in the alternator rotor of a generator set) was
always Tess than 5%. . |

The assumption that the bearing forces act in a single plane
of the shaft is justifiable in view of the ratio of shaft span to bearing
length and the axial distribution of the pressure developed in the bearings.
The self-aligning condition of the bearings is approximated to in practice
by mounting the bearings in spherical seats.

Assumption (10) needs further explanation: several authors,
notably Tondl (1965) and Someya (1963-64), have shown that, for a single
rotor supported in axisymmetric bearings, a source of damping, other than
that provided by the bearings, is needed in order to maintain at a finite
Tevel any self-excited oscillations whose frequency is less than half
shaft speed. As the frequency of unstable motion %n large turbogenerator
is normally Tess than half speed, it was decided to incorporate into the
model a facility for providing external linear viscous damping to the

shaft, should this be required.
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2.1.4 The Non-Dimensionalised Equations

The number of independent variables needed to describe the
rotor system may be reduced by casting the equations of motion into non-
dimensional form. This is achieved by first introducing the following

dimensionless variables:

x = X/cr | 2.4
y = e, 2.5
x, = X /e 2.6
bk bk r
y, = Y, /e - 4 2.7
bk bk r
s = 2/L - 2.8
8, = Zk/Z | 2.9
T = wt 2.10

where c, is a reference dimension of the system comparable in magnitude to
the amplitude of vibration, and is defined here to be the minimum radial

clearance of all the bearings in the system.

These are substituted into equations 2.1 and the equations are
rendered dimensionless by dividing through by M c, w2/L, where M is the

total mass of the coupled rotors, i.e.

L
M = [ pA(Z) dz 2.11
o

The resulting non-dimensional equations are:



- 43 -

1
2 2 2
Kk [6(3) 3—-”5] +e(s) 2 4 my(s) S
3s2 ds? T 372
n
= kzl 6(s—sk) ka+ mz(s) [ug(s) cos T - un(s) sin T}

2 2 2
2 [o(s) —a—iJ +o(s) v m(s) L
3s2 3s2 T 912

n ,
= kzl G(S’Sk) fyk+ mz(s) [ug(s) sin T + un(s) cos T] - mz(s) St

.

7

where: o(s) = —LEL
M L3 w?
. o4
mz(s) 7
r
u.(s) = £
N g cr
rn
u (s) = —
., n CI,
c
Cd(S) = D
w M/L
s = __L_.
¢ e w?
r
) Fm
2 k
.= F =, (x=x, ), s (y—y )] =
%, x |97 bk T bk s=5 Me w
r
Fy
oz k
£, = f |5, (z=x, ), > (y=y )] =
Yr y 3t b 3 bk s=s; Me, w?

6(s—sk) = 0 s s.# sy

' 1
i §(s-5y) ds = 1
0 ,

.13
14
.15
.16
17
.18
.19

.20

21
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2.2 THE NATURAL MODES OF VIBRATION OF THE FREE SHAFT

2.2.1 Separation of the Variables

The equations of motion 2.12 for the rotor system are non-linear
and coupled in the horizontal and vertical directions due to the oil-film
forces f& and f?. Before considefing the proposed method for solving
these, it is necessary to review the properties of the solution to the
reduced problem of the free unconstrained, or free-free, motion of the
shaft in a viscous medium. This is described by the homogenheous form of

equations 2.12 and is given below by equations 2.22 and 2.23:

2 ( 2 2
2% o(s) 3—£) + cy(s) §£.+ m (s) = ., 2.22
N EL 352 t 912
2 ( 2 2
i~c@)l%+cfwgﬂ+%@)lﬂ= 0 2.23
- 382 \ 3s? t a2 ,

It may be seen'that‘the equations for the horizontal and vertical directions
are uncoup]ed and identical and so only equation 2.22 for the horizontal
direction will be considered.

A solution is sought according to the method of separation of

. variables. To this end, assume a solution of the form:
x = T(1) ¢(s) 2.24

which, after substituting into equation 2.22 and dividing through by
T(t) ¢(s) mZ(S)’ leads to:

1 2 [ o
m(e) 960 o U0 o (o

ed(s) é_T,,_iz_'l_‘
s) dr dr?

m

2(

The separation of the variable may be effected if the damping is
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proportional to the mass distribution along the length of the shaft,

i.e. if:
Cd(S)

= constant = 2y 2.26
ml(s)

Under this assumption, the left hand side of equation 2.25 is a function of

s alone and the right hand side is a function of t alone, and so both sides

‘must be equal to a constant, i.e.

2 2 2
1 d [o(s) i‘ﬂ - -T(ZT) [2y@+4—:§] = y2 2.27

where vf is an as yet undetermined constant. After rearranging, this

leads to tWo ordinary differential equations:

2

ciz_TT”Y%;_F”fz = 0 2.28
dz? ae) _ o -
2;; [o(s) E;EJ vf mz(s) ¢(s) = 0 2.29

The solution to the first of these equations is well known, i.e.
Ttr) = ¥ |4, cos (v,2 - v2)% « 44, sin (v,2 - y2)% 2.30
T e 1 f Y 2 f Y T .

where Aq and A, are constants determined by the initial conditions. For
the second equation, a solution must not only satisfy the diffcrential
equation but must be such that for all values of v the boundary conditions
at the ends of the shaft are satisfied. For a free-free shaft, the
requirement is that the bending moment and shear force at the ends of the

shaft should be zero, 1.é.
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2
pr(z) X = 0 2.31
9222=0,L
2
’5% [E’I(Z) 9——"—] = 0 2.32
022/ 2=0,L

After non-dimensionalisation and substituting from equation 2.24 for the

assumed solution, the above conditions are equivalent to:

2
i) = 0 | 2.33
ds?|s=0,1
2
4 [ors) fz-"l] 0 2.34
ds ds?)s=0. 1

A solution to equation 2.29 which satisfies both the differential equation
and the boundary condition on1y.ekists for certain values of the constant
vf. Such a solution ¢i is known as an eigenfunction or mode and the

associated vélue of vfé is known as an eigenvalue or natural frequency.
The eigenfunctions corresponding to different eigenvalues are mutually

orthogonal, a property that will now be demonstrated.

2.2.2 Properties of the Normal Modes

Consider two different eigenfunctions ¢i(8) and ¢j(s), both of

which satisfy equation 2.29, i.e.

a |, 4%
""‘—2‘ 0(3) 2 - \’f 2 mz(S) ¢1: = 0 2.35
a2 | ds2) 1% .

( da2¢ )
—-d—z o(s) ;7 - vp2myls) ¢; = 0 2.36
ds L ds J j

Multiplying the first of these equations by ¢j and the second by b, and
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integrating along the length of the shaft gives:

IJ d ()dz%wds 2 fl (s) ¢, ds 2.37
¢, — |o(s = v 6. m,(s) ¢. .
00 Jas2 | ds?, fg o0 9V 7
fz ¢ d f (s) d2¢jw ds 2 jl 6. m (s) ¢ s 2.38
, —— |0{(S = v , M, {8 o .
00 Tas2 |  de?, Ty o0 HLT
Integration by parts leads to: |
0 0 o
1 (dé. $.\1 1.d%. d2¢.
P Elds— {ofs - |—Log L | J 5(s) L ds
J ds2 " jo |ds ds2jo 0 ds? ds?
1 .
= vf..2 0'[ ¥ my(s) ¢, ds 2.39
7
0
) . . AV 1 d%. 2¢ .
} ! - 2 ol F; + f T o(s) ‘ F ds
0 ds ds?2{0 0 ds? ds?
1 .
= vf.Z 0] ¢;]’ my(s) ¢, ds 2.40
J

The first two terms in each of the above equations are zero as a result of
the boundary conditions given by equations 2.33 and 2.34. Subtracting
equation 2.40 from equation 2.39 gives:
1
2 _ 2 =
ve 2) Oj 6y my(s) ¢ ds 0 2.41

r; £

(v

When Ve 2 £y the integral must be equal to zero, but for Ve 2 = Ve 2,
. . ;

2’
7 fj 7
the integral is equal to a non-zero constant ey which, because the
differential equation 2.29 is Tinear and homogeneous with Tlinear

homogeneous boundary conditions*, is of arbitrary value. Hence, the

* If 9, is a solution, so also is A¢i’ where 4 is a constant.
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eigenfunctions are mutually orthogonal with respect to the mass

distribution and are normalised here by setting ey to unity, i.e.

; ‘
0[ ¢, my(s) ¢ ds = 8:7 2.42

where Gij is the Kronecker delta, defined as:

0 when 72 # g
§.. = { - 2.43
¥ 1 when ¢ = j .

Two further important properties of the normalised eigen-
functions, or normal modes, follow immediately. From equations 2.37 or

2.38:

1 2 d2¢.
[ 6,9 lote) —Z| ds = 6. v,?2 2.44
0 J gs2 ds? 2 f'b

and from equations 2.39 or 2.40:

1 d?%, d%¢ .
| —Xo(s) —Lds = 6,.v,2 2.45
0 ds? ds? wfy

2.2.3 Rigid-Body Modes

It is possible for a free-free shaft to undergo a non-
oscillatory motion for which the natural frequency vf is zero and equation

2.29 reduces to:

_‘izi{o(s) 5‘32—.9) = 0 o 2.8
dSZ

Performing repeated integration upon this equation whilst observing the

boundary conditions 2.33 and 2.34 leads to:
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¢, = a, +b.s 2.47

where a; and bi are constants of integration. From this it may be seen
that any rigid body displacement of the shaft is an eigenfunction of

equafion 2.29 and is therefore also orthogonal to all the flexural modes.
Two such Tinearly independent, rigid body modes are necessary to describe

any rigid body displacement of fhe shaft in space. Let these be:
¢; = ag ‘ 2.48
¢ = a (1 + b, g) 2.49
If it is required that these be mutually orthogonal with respect to the
mass distribution, and normalised in the same manner as the flexural modes,

then this produces three equations from which the three constants a;, a,

and b, may be determined, i.e.

1 -1
oj (6,02 my(s) ds = a;? oj m,(s) ds = 1 2.50
1 "1
of ¢; my(s) ¢,ds = a; a, OI (1 +b, s)AmZ(s) ds = 0 2.51
1 1
0[ (6,)%2 m (s) ds = a,? of (1 +b, )% my(s) ds = 1 2.52

After noting from the non-dimensionalised form of equation 2.11 that:

] _ | .
~J mye) ds = 1.0 2.53
0
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and defining the following properties of the shaft:

. 1
8, = 0[' s my(s) ds 2.54
¥) ) .
I = 0}' s? my(s) ds _ 2.55

whefe g, is the non-dimensional displacement along the shaft to the centre
of mass, and I is the non-dimensional mass moment of inertia* about an
axis at s = 0.0, the solution of equations 2.50 to 2.52 giving the values
of the constants to be: 4

a, = 1 2.56

= sg//Im -2 2.57
g

%
b2 = -1.0/sg 2.58
Hence, the mutually orthogonal and normalised rigid body modes are:

6, = 1 : : 2.59

- _ o s 2
¢, = (sg s)/Im sg 2.60

It may be seen that ¢, describes pure translational motion of the shaft
whilst ¢2 describes a rotation, without translation, about the mass centre.
It should be noted that the term (I - sgz) in the denomenator of equation

2.60 is, by the parallel axis theorem, equal to the non-dimensional mass

moment of inertia about an axis (s = sg) through the mass centre of the shaft.

* Made non-dimensional by dividing by M L2.
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2.2.4 Methods for Determining the Normal Modes

In order to determine the normal modes of a shaft and their
associated frequencies, it is necessary, except for the special case of a
uniform shaft which is discussed in section 4.2 of Chapter 4, to make
recourse to numerical techniques. The Mykelstad-Prohl approach which,
when cast into matrix form is known as the transfer matrix method, is one
such technique, a description of which is given by Pestel & Leckie (1963)
and Meirovitch (1967). Another approach, developed by Witte (1968),
effectively discretises equation 2.20, by means of finite difference
approximations, to form stiffness and mass matrices from which the eigen-
values and assqciated eigenvectors may be determined by standard techniques.

Both of the above methods are, in essence, lumped mass
approximations in which the shaft is represented by a series of point
- masses connected by 1ight flexible shaft elements. It should be noted
that, in order to obtain a realistic estimate of the mth mode, the number
of mass stations must greatly exceed m. Morton (1972) used some 250 mass
stations to calculate, by the Mykelstad-Prohl method, the first dozen
free-free modes of the coupled rotors of a 500 MW turbogenerator.

The details of the procedures for obtaining the normal modes
and natural frequencies will not be discussed further here as it is outside

“the terms of reference for this work.
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2.3 THE PROPOSED METHOD FOR TREATING A MULTI-ROTOR SYSTEM SUPPORTED UPON

JOURNAL BEARINGS

2.3.1 The Transformation of the Equations of Motion Using the Free-

Free Modes

The infinite family of eigenfunctions for the free-free shaft,
which satisfy equation 2.42, constitute a complete set of orthonormal
modes. Any function satisfying the homogeneous bdundary conditions given
by equations 2.31 and 2.32 may, according to-the ewpansion theorem (see
Meirovitch (1967)), be represented as a linear combination of these. The
shaft system depicted in Figure 2.1 does not have a bending moment or a
shear force imposed at its ends and so the deflected shape of tﬁe shaft
X(z,t) and Y(Z,¢) must, at all times, automatically satisfy equations 2.31
and 2.32. Therefore, assume a solution of the non-dimensional equations

of motion 2.12 to be of the form:

}

z(s,t) = ) 4, (t) ¢.(s) 2.61
i=1 “4 i
(s,1) = q. (1) ¢.(s) 2.62
Y izl Yi v

from which it follows that:

v A
ooy AN 2.63
5 @ dqyi ‘
¥ .oy 6.(s) 2.64
dt

etc.
The assumption made in the previous section concerning the

distribution of the external damping, and expresséd by equation 2.26, will
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also be made here.

Substituting the above expressions into equations 2.12,

multiplying through each equation by ¢j(s), and integrating along the

shaft leads to:
.

2 d2¢ . dqx R dqu .
Z {q [ 6., — [c(s) t] ds + (2y T . Z)
. X P 752
dt dt?

1 n '
of ¢ m,(s) ¢, ds} = kzl {qu (s,) ka} +

1 1
cos T Of ¥ my(s) u,(s) ds - sin « 0[ ¢ my(s) u (s) ds

_ dq, ~dq
:] ds + (2y L )
ds dt drt2

© 1 ) 2 » d2¢
Ite, | ¢Ji?[°(3)

=1 Yz

AY

i . n
0[ 6 m,(s) ¢, ds} = kzz {¢j (s,) ka} +

1 1
sin T 0[ ¢;my(s) u.(s) ds + cos = of 6;my(s) wu (s) ds -

- 2.65

1
S, of . m,(s) ds
By invoking the properties of the normal modes, given by equations

and 2.44, the above equations may be reduced to:

2.42
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2
dqy, dq,,
L+ o2y
dr? dr

7

+v,2¢q

fi %

" .
= k-ZZ {¢i (sk) ka} + Qgi eos T - Qn. sin T

7
X A 2.66
i K2 dqyi > 1
+ 2y + vf, q = Z {¢7: (sk) f } +
Qgi sinT+Qn7; cos T—6i1 5, s (2=1, 2, .., ©)

bl

where Qg. and Qn are the generalised unbalance components given by:
7 7 :

1

[ 6y0e) my(s) ugls) ds 2,67

D
o
]

7 0

1.
0] 4>$.(s) my (s) un(s) ds 2.68

D
n

and the integral:

2.69

-1 1 i
0] ¢, my(s) ds (= of 6, my(s) ¢, ds) = &,

may be evaluated as shown because the rigid body mode, ¢ has a constant
value equal to unity. Thus, it may be seen that the two partial
differential equations 2.12 describing the motion of the shaff have been
: transformed into an infinite system of ordinary differential equations in

terms of the modal coefficients 9. and q These equations are coupled

Yy’
1 1
through the oil-film forces i and fé which, from equations 2.61 to 2.64,
now become functions of the modal coefficients and their derivatives, i.e.
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8’*’:
n

o (20, 0 s fota, ) =2y ¥ o e, ) s Tula, ) -y Y] 2.70
w0 €y by Yz y; by s=s,

f = f Lﬁ(q ) s {wlq, ) =2}, 90q,) 5 {ylq,) -y }] 2.7
% = bk vy Yi Prless,

(* denotes differentiation with respect to t)

2.3.2 Method of Solution

Large turbogenerators do not normally operate at speeds beyond
their third or fourth free-free (flexural) natural frequency. It is,
therefore, reasonable to assume that the higher frequeﬁcy modes make little
contribution to the motion and that it is justifiable to truncate the modal
expansion (equations 2.61 and 2.62) after m terms, thus reducing equations
2.66 to a finite system suitable for solution by numerical Znitial-value-
problem techﬁiques. The difficulty lies in determining a priori the term
at which the truncation may be made. This problem, however, may be
overcome empirically. First, a solution is obtained using m modes and
then re-solved using (m+2) modes. If there are significant differences
between the two solutions, then further pairs of terms are added to the
modal expansion until the difference between successive solutions is
reduced to an acceptable level. Terms are added in paiks because the
addition of a single anti-symmetric mode for a motion that was
predominantly symmetric in nature (or vice versa) would have Tittle effect
upon the solution and thus might falsely indicate that convergence had
been achieved.

Most\numerica] methods for integrating a system of ordinary

differential equations require the equations to be of first order, By
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defining the new variables:

dqx B
- 7
U, = 2.72
v . dt
dq
y o
w, = z 2.73
v dr

The system of 2m second order equations, arrived at by truncating the modal
expansion, is converted into a system of 4m first order equations in a form

suitable for numerical integration, i.e.

.1
gy } B
= . (s,) f -2yu_,-v.%q + Q. cosT~-@Q sinn1
e k=1 ¢ K Ty @, Ty ®p & ng
dq,, .
1’ 3
U,
dt v
du
-_— = . {8 - aY U =V q. B * sin T + Q coS T .
e k=1 ¢ K Ty y; Iy Yy & ng
= %15
dqyi
= uy' R (=1, 2, ..., m) L
dt v J

The 4m initial conditions needed for the solution procedure are discussed

Tater.

2.3.3 Point Unbalance Forces

It is sometimes more convenient to represent the unbalance

force acting on a shaft by a set of point unbalance forces rather than a
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(7)

distributed unbalance. Let F, be the jth point unbalance force, acting

at station s = 8 and Tet the components of this force in the directions
£ and n of the rotating coordinate system 0Z&n (see Figure 2.2) be Fﬁé)

and Fii), respectively. For this*situation, the generalised unbalance

components in equations 2.66 and 2.74 become:

() : ‘
o, = J[——s. (s} 2.75
51: Jd Me_w v d ‘

r

(4 |
Q. = y A ¢, (sj)} 2.76

7 jMerw

Al
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2.4 DISCUSSION

The principal objective in this work was the study of the vibrations
résu]ting from the interaction between the non-linear oil-film bearings
and the rotating shaft. The modal method described above effectively
separates the dynamic characteristics of the shaft, which is essentially a
Tinear element and thus amenable to analytical tre&tment, from those of the

{

bearings.

2.4.1 The Case for Employing Free-Free Modes

In general, the dynamic behaviour of a shaft may.be
characterised by a set of normal modes and natural frequencies of the free
vibration of the shaft when supported upon idealised bearings. In the
foregoing analysis, the displacement of the shaft was expressed in terms
of the free-free modes, but several authors have shown that, for the J
Tinearised analysis of multi-rotor systems, other sets of assumed modes
may'be successfully employed. Morton (1972), when considering a turbo-
generator, used a combination of free-free modes and the modes obtained if
the coupled rotors are "pinned" at each bearing. Whilst Black & Loch
(1973) for an analysis of a four bearing pump suggested that high accuracy
could be achieved by using the modes obtained by supporting the shaft in
single stiffness bearings. However, the use of the free-free modes,
besides being the natural choice of assumed modes from a mathematical
viewpoint (as they are the eigenfunctions of the homogeneous form of the
equations of motion 2.12) was desirable in this work for the following
reasons.

First, if a system of second order ordinary differential
equations is to be solved by numerical integration techniques, it is

necessary for the inertia matrix (i.e. the matrix of coefficients for the
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second order terms) to be diagonal. As may be seen from equations 2.65
and 2.66, this condition is satisfied if the free-free modes are used as
these are orthogonal with respect to the mass distribution along the shaft.

Second, it is advantageous to choose the free-free modes as
they are a property of the shaft alone, determined by the distribution of
mass and flexural stiffness a1ong its length, and are independent of the
locations of the bearings or their charactefistics. Hence, the B
relocation, insertion, removal, or modification of a bearing for an
existing shaft (assuming this to be physically reasonable) may be
accommodated for in the method without the need to calculate a new set of
modes.

Although the modes suggested by Black & Loch (cifed above)
result in off-diagonal terms in the inertia matrix, this does not present
a difficulty with a linearised analysis. Brown (1977), when extending
the work of Black & Loch to include the non-Tinear effects of the journal
bearings, needed to diagonalise the inertia matrix in order that the
- equations should be amenable to solution by numerical integration
techniques. To achieve this, he used the modes resulting from supporting
the shaft in very soft single stiffness bearings - and which thus closely
approximate its free-free modes. (The effect of fluid inertia in the
ring seals was not included, as it had been in the linearised analysis,
because they give rise to off-diagonal terms in the inertia matrix,

irrespective of the system of assumed modes employed.)

2.4.2 Comparison with the Direct Lumped Mass Approach

Equations of motion for a shaft supported upon journal bearings
may, alternatively, be developed by direct consideration of the Tumped

mass approximation.
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If a shaft is represented by p lumped masses connected by
Tight, elastic shaft sections, then a system of 2p ordinary differential
equations may be derived by considering the dynamic equilibrium of each
mass. The equations obtained, which are given in Appendix 1 by equations
A1.1 together with an outline of their derivation, are in a form suitable
for solution by numerical initial-value-problem techniques. This
appfoach, however, has a major disadvantage for, in order to adequately
represent the Tower frequency dynamic characteristics of the shaft, a
large number of mass stations must be employed, but in doing this higher
frequency modes, which make an insignificant contribution to the motion of
the shaft, are also a]]bwed for and an unnecessarily large system of non-
linear equations must be solved. |

With the modal method, this problem does not arise since the
Tower frequency characteristics of the shaft are contained in the normal
modes and natural frequencies. For, whilst it is recognised that the
Tower frequency modes, for realistic shafts, may only be determined by
allowing an approximate shaft model a sufficiently large number of degrees
of freedom, such a calculation is linear in nature, need only be performed
once for a given shaft, and does not necessitate the inclusion of
unnecessary high frequency characteristics in the non-linear solution
procedure.

These assertions may be verified if the systems of equations
for the two approaches are compared in a common form. In Appendix 1, it
is shown that equations Al1.1 for the Tumped mass system may be transformed,
without affecting their accuracy, into a system of ép equations in terms of
the free-freé modes of the lumped mass shaft. The resulting equations
A1.25 are identical in form to the system of equations 2.66 for the

continuous shaft (if the Tatter are truncated), differing only in the
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value of the free-free frequencies and the value of the.modes at each
shaft station. It may thus be seen that, for a given number of degrees
of freedom, the modal method would be better able to represent the dynamic
characteristics of the shaft as it employs more accurate estimates of the
normal modes and natural frequencies of the shaft.

The direct Tumped mass approach suffers from a further
disédvantage: in order to ensure that the equations of motion for the
shaft are explicit, a mass station must exist at each bearing location.
If it is subsequently decided to change the location of % bearing, it may
be necessary, unless the new locations happen to coincide with a mass
station, to modify the distribution of the point masses; this would be
difficult to achieve without a1terin§ the dynamic characteristics of the

<

shaft model.

2.4.3 Conclusions
A method has been developed for predicting the non-linear
flexural vibrations of a multi-rotor system supported upon journal
bearings. The equations of motion for the system are in terms of the
free-free modes of the coupled rotors. The method is applicable (subject
to the conditions given in section 2.1.3 of this chapter) to a rotor
system having any realistic distribution of mass and flexural stiffness

and supported upon any number of journal bearings.
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CHAPTER 3
THE JOURNAL BEARINGS

3.1 INTRODUCTION

Consideratioﬁ has, $0 far, not been given to the type of bearings to
be used in the computer model of the multi-rotor system. The method for
treating the shaft, discussed in Chapter 2, is not restricted to a single
type of bearing. For example, circular-bore, lemoh-bore, three lobe or
pivoted pad bearings, each with realistic design features such as feed
ports, recesses, scallops, etc., could all, in principle, be incorporated
into the model. _

The bearing forces that act upon a shaft result from the pressure
generated in the oil film contained between the rotating journal and
stationary bearing surfaces. The pressure distribution in the beéring
is, under the assumption of Taminar flow, governed by Reynolds equation.
The Reynolds équation is described fully by Pinkus & Sternlicht (1961).

- To calculate the oil-film forces, the Reynolds equation must first be
solved for the bearing geometry under consideration, and then the resulting
pressure distribution integrated over the surface of ?he journal to give
the required forces. Unfortunately, analytical solutions to the Reynolds
equation do not exist in closed form even for the special case of a plain
circular-bore bearing. For static bearing calculations, this difficulty
is normally overcome by solving the Reynolds equation numericaily using
finite difference techniques. This approach, however, makes heavy demands
upon computer time and is therefore normally considered unsuitable for use
in a numerical integration procedure for which the oil-film forces must be
recomputed at each time step.

Recourse is therefore normally made to approximate solutions of which
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the Tong and short bearing approximations are well known. Of these, the
short bearing approximation is the one normally adopted in the study of
rotor dynamics because, for practical bearings, it is the more realistic
of the two assumptions to make. An unfortunate property of the short
bearing approximation is that it has pre-determined circumferential
boundary conditions which Timit its abplicability to plain circular-bore
bearings. The short circular-bore bearing approximation was successfully
employed by Badgley & Booker (1969) and Holmes (1970) to study, using
digital techniques, the symmetric, non-linear motion of a rigid shaft
supported upon two bearings.

A]though a plain circular-bore is a somewhat idealised configuration,
the speed at which the bearing forces may be computed using the short
bearing approximation recommended it for use in the computer mbdel of the

multi-rotor system - at least during the development stages of the work.



- 64 -

3.2 THE OIL-FILM FORCES FOR A CIRCULAR-BORE BEARING

3.2.1 The Reynolds Equation for a Circular-Bore Bearing

The geometry of a circular-bore bearing is shown in Figure
3.1. The Reynolds equation for this configuration is derived by Pinkus &
Sternlicht (1961), and is given below by equation 3.1. It is assumed
that the lubricant is isoviscous with an effective viscosity n,:
13 g3 3P, 43 0% S o B s ) 48 e |
2 90 (h ae) +h = = 6n, (w -2 dT)( e sin 0) + 2 gz ©os © 3.1
The axial coordinate, z, is measured from the mid-plane of each bearing,

and the film thickness, #, is given by:

h = C+ecos 6 3.2

. where ¢ is the radial clearance.

As in the previous chapter, it is convenient to reduce the
equatiohs to non-dimensional form. This is achieved by first introducing

the following non-dimensional variables:

c =S 3.3
. 515-4%- o 3.4
meo= 2= 14cooso 3.6

] |
g% = 375 3.7
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Figure 3.1: The geometry of a circular bore bearina
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Pt = P 3.8
12n, R? w/C?
o = %’3- 3.9

These are then substituted into equation 3.1 to give the following non-

dimensional form of the Reynolds equation:

32p#

* . . .
—a% (h*3 %%—) + a2 p*3 = —¢ (0.5 -1Vy) sin 8 + € cos 6 3.10

It is important to note thit e and'de/dt are made non-
dimensional by using the bearing (or arc) clearance ¢ and not the reference
clearance of the system, e, This must be taken into account when
converting from the cartesian coordinates of the shaft equations (2.44 and

2.45) to the polar coordinates of the bearing equations for evaluation of

the 0il-film forces, 1i.e.

e
e = (5 /(;- xb)z + (y - yb)2 3.1
C .
e. (x-x,)
eos § = -£) - 3.12
c €
e. (y -y,)
siny = (L) —P 3.13
c €
e, .
€ = (=) (x cos ¢ + 7y sin P). 3.14
c
Vo= (_c_r_) (y cos y = & sin ) 3.15

€
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3.2.2 The Non-Dimensional 0i1-Film Forces

The oil-film forces F, and 7, along and perpendicular to the

]
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