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ABSTRACT 

The self-excited flexural vibration of a multi-rotor system due to 

vertical misalignment of the support bearings was investigated using 

numerical initial-value-problem techniques. The equations of motion are 

expressed in terms of the free-free modes of the shaft, and the modal 

coefficients propagated in time. 

The method was used to study a two rotor, four bearing system 

subjected to vertical misalignment of one of the central bearings. 

Previous authors have reported that, for single rotor systems supported 

upon bearings with circular symmetry, the speed of the shaft had to be 

increased beyond twice its first pinned critical speed, and external 

damping applied to the shaft, in order to predict the finite amplitude 

whirl, at frequencies less than half shaft rotational frequency, that has 

been observed in practice. This was confirmed for the two rotor system 

but it was found that, by using a non-circular lemon-bore bearing model, 

realistic limit cycle motion was obtained, which was in agreement with the 

amplitude and the frequency of the motion observed for large turbogenerators, 

without the need to apply heavy (and quite arbitrary) damping to the shaft. 

The method is general and may be used for any rotor geometry for 

which the free-free modes and natural frequencies are known, and for any 

number of bearings. Any bearing configuration for which there is a 

suitable computational model for the oil-film forces may be included. 

In addition, the basic method was adapted to calculate the bearing 

settings required to align the system; the equilibrium position of the 

rotating shaft; the stability of the equilibrium position; and the forced 

response of the linearised system. 
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CHAPTER 1 

INTRODUCTION 

1-1 STATEMENT OF PROBLEM 

Vertical misalignment of the support bearings due to the differential 

thermal expansion of the bearing pedestals is considered to be one of the 

principal causes of the non-synchronous flexural vibration exhibited by 

large turbogenerators. Although operational experience has shown that 

the amplitude of the vibration is not always large enough to cause loss on 

internal clearance or bearing damage, its non-synchronous nature is 

undesirable as the shaft is subjected to cyclic stresses which may 

propagate fatigue cracks. Such vibration sometimes continues for several 

hours which, because of its finite amplitude and non-synchronous frequency, 

is a non-linear phenomenon normally attributable to the oil-film bearings. 

The non-linear behaviour of the generic rotor system, comprising a 

rotor supported by two bearings, has been the subject of a number of 

previous investigations. However, with only two bearings, it is not 

possible to consider the effect of misalignment. 

1.1.1 Terms of Reference 

(1) To develop-a computer based method for predicting the non-

linear flexural vibrations of a shaft supported upon oil-film 

bearings. The method should be capable of treating a shaft 

having any realistic distribution of mass and flexural 

stiffness and supported upon any number of bearings. A 

facility must be available for introducing parallel 

misalignment (both horizontal and vertical) to any of the 

bearings. 
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(2) The method should be used to study the non-linear behaviour 

of a simple two rotor, four bearing system subjected to 

vertical misalignment of the bearings. The objective being 

to gain a better understanding of misalignment induced large 

amplitude vibration by obtaining qualitative information about 

the non-linear behaviour of the simple system, rather than 

detailed quantitative information. 
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1.2 PRELIMINARY DISCUSSION 

It has been recognised for more than fifty years that, under certain 

conditions, the interaction of the journal bearing oil-film forces and the 

shafts they support may be responsible for violent vibration in rotating 

machinery, at frequencies not predicted by consideration of the shaft 

alone. Although the dynamic characteristics of flexible shafts are, to a 

close approximation, linear and thus amenable to analysis, two factors 

have impaired progress towards a full understanding and prediction of the 

behaviour of rotating shafts supported upon journal bearings. 

The first concerns the calculation of the oil-film forces, which 

requires the solution of the Reynolds equation for the pressure field 

generated in the bearing. Unfortunately, a solution to this equation is 

not available, even for the comparatively simple geometry of a plane 

circular bore bearing, without recourse to numerical techniques and modern 

computational aids. This difficulty has, however, been overcome in many 

studies by the use of approximate solutions of which the "long" bearing 

and "short" bearing solutions are well known. 

The second and more fundamental difficulty is that the oil-film 

forces are non-linear functions of the velocity and displacement of the 

journal within the bearing. Incorporation of these forces into an analysis 

of the shaft motion produce non-linear equations of motion: Because 

numerical and analogue methods are the only means generally available for 

obtaining solutions to non-linear differential equations, the investigation 

of the non-linear effects of the oil-film force had to await the advent of 

the modern computer. 

In the majority of theoretical investigations reported in the 

literature, it is assumed that the excursion of the journal about its 

equilibrium position is small so that the oil-film force, in each of two 
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perpendicular directions, may be approximated as a linear function of the 

velocity and displacement, relative to the equilibrium position, in each 

of the two perpendicular directions. (The oil-film force acting on the 

journal is, for a given bearing configuration and at a given equilibrium 

position, thus determined by eight linearised bearing coefficients, usually 

known as the stiffness and damping coefficients of the bearing.) This 

assumption yields linear equations of motion which are amenable to well 

established techniques of analysis. But, although a linearised analysis 

is valuable for determining the stability of the equilibrium position of 

the rotating shaft, or the forced response of the system to unbalance 

excitation, it is unable to account for finite amplitude self-excited 

vibration (or a subharmonic response to unbalance excitation), the study 

of which is the purpose of this work. 
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1.3 LITERATURE SURVEY 

1.3.1 Early Studies 

Newkirk & Taylor (1925) were the first to identify and 

investigate journal bearing induced instability in rotating systems. A 

comprehensive review of the studies, both experimental and theoretical, 

conducted during the following thirty five years, is given in review papers 

by Newkirk (1957) and Stern!icht (1967). A summary of some of the 

principal experimental findings of this period will now be given. 

(1) If self-excited vibration developed, the motion was observed 

to be one of two types: the first, known as resonant whirl, 

1 occurred when the shaft was rotating at speeds in excess of 

twice its first pinned (i.e. simply supported) critical speed. 

The amplitude of vibration in this case was large and the 

whirl frequency was approximately equal to the first pinned 

natural frequency of the shaft. The second type of self-

excited motion, known as half frequency whirl, occurred at 

speeds below twice the first pinned critical speed, when the 

shaft was lightly loaded. In this case, the vibration was 

not as violent as for resonant whirl and the frequency was 

approximately equal to, but always slightly less than, half 

the rotational frequency. 

(2) Heavy bearing loads promoted stable motion. For rotors 

supported upon more than two bearings, whirling sometimes 

developed if misalignment reduced the load carried by one of 

the bearings. 
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(3) Newkirk & Taylor (1925) reported that, once whirl had 

developed, it persisted at all higher speeds. Pinkus (1956), 

however, reported a case where resonant whirl died out at 

speeds exceeding three times the lowest pinned critical speed. 

(4) The onset and intensity of self-excited vibration is almost 

unaffected by rotor unbalance. 

(5) A hysteresis (or inertia) effect was sometimes observed. 

That is, when the rotational speed of the shaft was decreased, 

self-excited vibrations persisted down to a speed lower than 
> 

that at which self-excited vibration started when the speed 

was increased. The ability to induce whirl in a shaft by 

subjecting it to a sudden blow, reported by Newkirk & Taylor 

(1925), is another facet of this phenomenon. 

(6) Some bearing configurations exhibited a greater resistance to 

the onset of self-excited vibrations than did others. The 

plain circular bore bearing was the most susceptible to self-

excited vibrations, whilst lemon-bore ("elliptical"), three 

lobe, and tilting pad bearings generally exhibited increasing 

stability, in that order. 

The few theoretical investigations conducted during this period 

were usually based upon the long bearing approximation to the circular-bore 

bearing. But, because the effects of cavitation were often ignored, the 

rotor systems were predicted to be inherently unstable, which did not 

accord with the experimental evidence. 
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1.3.2 Recent Studies 

The late 1950s saw the start of a new era in the study of rotor 

dynamics. The general availability of the modern electronic computer and 

the recent development of the short bearing approximation, due to Ocvirk 

(1952), provided the impetus for a whole series of papers on the theoretical 

prediction of rotor behaviour. It should, however, be added that not all 

the subsequent theoretical studies depended upon these two factors. 

The recent literature will be reviewed under four broad 

headings: (1) the determination of linearised bearing coefficients; 

(2) the prediction of non-linear behaviour; (3) methods used to represent 

the dynamic characteristics of shafts; (4) bearing induced instability in 

large turbogenerators. No attempt has been made to give a complete 

bibliography; such a task would not serve a useful purpose here. 

1.3.2.1 The determination of linearised bearing coefficients 

Sternlicht (1959) determined the stiffness and damping 

coefficients for a finite width circular bore bearing using numerical 

techniques. The pressure field for the bearing was solved using finite 

difference techniques and cavitation of the oil-film was allowed for. 

Before this date, the only linearised bearing 

coefficients available had been those corresponding to a long circular 

bore bearing - and cavitation effects were often ignored. Hagg & Sankey 

(1956,1958) had determined stiffness and damping coefficients for commonly 

occurring bearing configurations, from unbalance response experiments. 

But, as only four of the eight linearised coefficients may be found in such 

a manner, they ignored cross coupling effects and postulated a direct 

stiffness and a direct damping coefficient along each of the principal 

axes of the elliptical orbit of the journal. These apparent out-of-
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balance coefficients (to use Smith's (1969) terminology) are not properties 

of the bearing alone, and give an imperfect representation of the dynamic 

properties of the bearing, which make them unsuitable for stability 

calculations. 

Holmes (1960) calculated the eight stiffness and 

damping coefficients for a short circular bearing having a film extent of 

180°. The linearised coefficients were used to determine the stability 

profile of a rigid shaft supported upon short circular bearings. Mitchell 

et al (1965-66) determined the spring stiffness coefficients of a short 

circular bearing experimentally from the static loading locus of the 

journal and found good agreement between experiment and theory. The eight 

stiffness and damping coefficients for several common bearing designs were 

determined experimentally by Glienecke (1966-67). For this, two different 

sinusoidal loads (in addition to a static load to alter the equilibrium 

position of the shaft) were imposed, in turn, upon the bearing, and 

measurements of the phase and amplitude of the resulting elliptical orbits 

and the imposed load gave sufficient information for the eight unknown 

coefficients to be determined by the solution of two sets of four 

simultaneous equations. Later, Woodcock & Holmes (1969-70) claimed that, 

because of the ill conditioning inherent in Glienecke's method, more 

accurate results could be obtained by first obtaining the four stiffness 

coefficients from the static loading locus (i.e. the method of Mitchell 

et al) which then allows the four damping coefficients to be determined 

from a single unbalance test. 

Lund (1964) gave theoretically evaluated stiffness 

and damping coefficients for a tilting pad journal bearing. 

Morton (1971) used a similar technique to Glienecke 

to measure the stiffness and damping coefficients of large turbogenerator 
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bearings. He found that the predictions based upon theory considerably 

under-estimate the stability of a system, and over-estimate the stiffness 

of a bearing. A technique, for determining the linearised coefficients of 

a bearing, in situ, by applying a transient force to the rotating shaft is 

described by Morton (1974). Again, it was reported that stability 

calculations based upon theoretically predicted bearing coefficients are 

generally pessimistic. 

1.3.2.2 The prediction of non-linear behaviour 

The first comprehensive explanation of the phenomenon 

of journal bearing induced whirl was given by Hori (1959). Hori studied 

the behaviour of a single disc (represented as a point mass) mounted at the 

centre of a light flexible shaft supported upon "long" circular bore 

bearings. The stability of the equilibrium position of the rotating 

shaft was assessed, and by considering much simplified equations of motion, 

it was shown that large amplitude self-excited motion (i.e. resonant whirl) 

could not exist at speeds below twice the pinned critical speed of the shaft. 

Hori argued that, if the equilibrium position of a 

shaft becomes unstable, when the rotational speed is less than twice the 

first pinned critical speed, then the self-excited vibration is of small 

amplitude, the bending of the shaft is slight, and the frequency is 

approximately equal to half the rotational frequency. When, however, the 

speed reaches twice the pinned critical speed, large amplitude vibration 

develops at a frequency approximately equal to the pinned natural 

frequency of the system. 

The hysteresis phenomenon, observed experimentally, 

was also explained by postulating a situation in which the equilibrium 

position of the shaft does not become unstable until a speed beyond twice 
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the critical speed is reached. If, for this situation, the speed is 

increased, self-excited vibration does not occur until the equilibrium 

position becomes unstable; and then large amplitude vibration develops 

immediately. However, once the large amplitude vibration has developed, 

•it persists, even if the equilibrium position is stable, until the speed 

is reduced to below twice the pinned critical speed. 

Hori conducted a series of experimental tests to 

substantiate his assertions. These also revealed that, under certain 

conditions, the amplitude of the resonant whirl may decrease, accompanied 

by an increase in whirl frequency, as the rotational speed is increased. 

Some aspects of Hori's explanation for this effect were questioned by 

Tondl (1965). Tondl studied the same system as Hori but assumed that the 

shaft was vertical, and solved less simplified equations of motion. 

Tondl showed that a source of external damping was necessary to limit the 

amplitude of the mid-span of the shaft during resonant whirl, and was 

also able to give a more satisfactory explanation for the decrease in 

resonant whirl amplitude with increasing speed. 

With the advent of the modern computer, numerical 

initial-^oalue-^gvoblem techniques (e.g. Runge-Kutta type methods) became 

widely used for the solution of the non-linear equation of motion for 

• shafts supported upon journal bearings. Reddi & Trumpler (1962), who 

were the first to use these techniques to study journal bearing induced 

instability, investigated the symmetrical motion of a rigid shaft 

supported upon circular bore bearings. The oil-film forces for this were 

obtained using the long bearing approximation together with a side leakage 

correction factor, 

Someya (1963-64) used numerical initial-value-problem 

techniques to study the behaviour of a horizontal flexible shaft supported 
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upon circular bore bearings. The shaft was represented by three point 

masses (one situated at each of the journal positions and one at the mid-

span of the shaft) connected by light flexible shaft elements. The oil-

film forces for a finite width bearing were obtained using a series solution 

to the Reynolds equation. Although not stated, it is assumed that 

cavitation was allowed for by neglecting negative pressures when the oil-

film forces were calculated. Only symmetric motion of the shaft was 

considered, which reduced the number of equations of motion to be solved. 

Someya found that, when the equilibrium position of the shaft became 

unstable at speeds below twice the pinned critical speed, the motion of 

shaft centre and disc remained bounded and had a frequency approximately 

equal to half the rotational frequency. If, however, the speed was 

greater than twice the pinned critical speed, then whirl developed at a 

frequency approximately equal to the pinned natural frequency of the shaft, 

but the mid-span amplitude of the shaft grew incessantly. In order to 

obtain the finite amplitude resonant whirl observed in practice, Someya 

proposed that an external damping force, proportional to the square of the 

velocity of the shaft centre, should act upon the shaft; but he did not 

identify the physical mechanisms involved. 

The short bearing approximation has been used by 

several authors to study the symmetric motion of a rigid shaft supported 

upon circular bore bearings. Jennings & Ocvirk (1962) and Huggins (1963-64) 

used an analogue computer to solve the equations of motion as an initial-

value-problem. The analogue computer is ideally suited to transient 

analyses but, unfortunately, with this device it is difficult to adequately 

simulate the complex nature of the oil-film forces. Later, Badgley & 

Booker (1969) and Holmes (1970) solved the equations of motion using Runge-

Kutta techniques with the aid of a digitial computer. 
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An alternative approach was adopted by Lund (1966) 

who obtained the (symmetric) steady-state, self-excited motion of a rigid 

shaft, supported by short circular bearings, directly by applying the 

method of averaging to the equations of motion. It was assumed that the 

motion was dominated by its fundamental frequency component and so only 

motion due to a single frequency component was permitted in the analysis. 

This method, although elegant, becomes unmanageable if more than one 

frequency component is included, or if any but the simplest of systems is 

considered. 

All the aforementioned studies were for single rotor 

systems. To the best of the author's knowledge, no theoretical study of 

the non-linear behaviour of shafts supported upon more than two bearings 

has, to date, been published. 

1.3.2.3 Methods used to represent the dynamic characteristics 

of shafts 

In theoretical investigations into the behaviour of 

shafts supported upon journal bearings, three methods have generally been 

used to represent the linear dynamic characteristics of the shafts. They 

are: 

(a) lumped mass method; 

(b) transfer matrix method (Myklestad-Prohl method) 

(c) assumed modes method (Rayleigh-Ritz method) 

In the lumped mass method, the shaft is represented 

by a series of point masses (or, more generally, by localised inertias) 

connected by light flexible shaft elements. The equations of motion are 

applied directly at each mass station along the shaft. Such a method was 
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used by Someya (1963-64) in his study of the non-linear behaviour of a 

single rotor system. The principal disadvantage of this method is that, 

in order to adequately represent the dynamic characteristics of a shaft, a 

large number of mass stations are required, which in a linearised analysis 

(say) necessitates the manipulation of matrix equations of large order. 

This method is discussed further in Chapter 2. 

The transfer matrix method has been used by several 

authors to investigate the linearised properties (i.e. stability and forced 

response) of single and multi-rotor systems (see, for example, Lund & 

Orcutt (1967), Lund (1974), and Dostal et al (1974)). Although the 

transfer matrix method is similar to the lumped mass method in that the 

shaft is represented by a series of mass (or inertia) stations connected 

by uniform shaft elements (which are normally considered to be inertialess), 

it has the advantage that large matrices are not generated. (In a rotor 

dynamics calculation, the maximum size of a matrix would normally be 

8 by 8.) Unfortunately, however, the transfer matrix method does readily 

lend itself to the prediction of the non-linear behaviour of rotor systems. 

The assumed modes method was the most recent of the 

above methods to be applied to the study of shafts supported upon journal 

bearings. It was first used by Morton (1965-66) to predict the behaviour 

of large turbogenerator rotors, and later by Black et al (1972) and Black & 

Loch (1973) to study pump rotor dynamics. The method effectively reduces 

the number of degrees of freedom needed to represent the dynanf c 

characteristics of a shaft by expressing the deflection of the shaft as a 

linear combination of a suitable set of its modes shapes obtained for a 

simpler situation. To date, no work has been published in which this 

method is used in a study of non-linear shaft motion. There is, however, 

no reason why this method should not be used for such a study. 
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1.3.2.4 Bearing induced instability in large turbogenerators 

Although it has been recognised for many years that 

vertical misalignment of journal bearings may be the cause of large 

amplitude whirl in large turbogenerators, little information (e.g. frequency 

of vibration and its amplitude at various stations) has been published 

about this problem. Two reasons are responsible for this. The first is 

that only recently has it become design policy to install vibration 

monitoring devices at each bearing, station and at strategic rotor locations, 

as standard equipment on operational machinery. Before this, such devices 

were only installed in exceptional circumstances. Secondly, those whose 

responsibility it is to operate large turbogenerators are, quite reasonably, 

only willing to publish information couched in very general terms, on what 

will effectively be viewed as a machine fault, for fear of identifying and 

embarrassing a manufacturer. Therefore, much of the data used in this 

work is unpublished data supplied by the Central Electricity Generating 

Board. 

A number of papers have been published on methods of 

detecting vertical misalignments of bearings, and on methods for 

determining the remedial action to be taken to cure rotor instability. 

These include Seery et al (1972), Wronski et al (1973) and Ettles et al 

(1974). An important point made in Wronski's paper is that changes in 

the thermal environment may alter bearing pedestal heights by as much as 

0.100 inches. 
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1.4 THE METHOD TO BE ADOPTED 

The method to be adopted will be to represent the linear dynamic 

characteristics of the shaft using an assumed modes method based upon the 

free-free normal modes of the shaft. (The reason for choosing the free-

free modes will be discussed later.) The resulting system of non-linear 

ordinary differential equations will then be solved using numerical initial-

value-problem techniques. 
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CHAPTER 2 

MATHEMATICAL MODEL 

2.1 THE EQUATIONS OF MOTION FOR THE FLEXURAL VIBRATIONS OF A ROTATING 

SHAFT 

2.1.1 Description of the Rotor System to be Modelled 

The rotor system to be modelled comprises a number of flexible 

rotors coupled together to form a continuous shaft, of total length L, 

whose undeflected axis is parallel to the OZ direction of a fixed 

rectangular coordinate system OZXY. The 01 axis is chosen to coincide 

with vertical (upwards) direction and displacement of the shaft centreline 

parallel to the OX and OX axes is denoted by X and J, respectively (see 

Figure 2.1). The shaft has a circular cross-section, the diameter of 

which may vary along its length, and is supported upon n journal bearings. 

The location of the centre of the kth bearing relative to the frame of 

reference ozxx is given by (zVix* ). 
K  bk  Dk 

2.1.2 Statement of Equations 

Subject to the assumptions stated in the next section, the 

equations of motion for the flexural vibrations of the rotating shaft are: 

9Z
2 

EI(Z) 
92*1 

9 Z
2 

n 
I 6(Z-Zk) i? + pA(Z) or 
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n
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n 
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Figure 2.1: A multi-rotor system supported upon n journal bearings 
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where: 

F ~ F 

F - F 
yk y 

§ - <*-\> > 1 - ( * - \ > 

I > ( x - \ j - f - f y - y 

z=z 
k 

Z=Z, 

The Dirac delta function, &(Z-Z^), is defined as: 

2 . 2 

SfZ-Z^J = 0 , Z f Zk 

I &(Z-Zk) dz = 1 

2.3 

and and * (Z) are the displacements of the mass centre ( M j of the 

shaft from its geometric centre (G ) measured, as shown in Figure 2.2, 

relative to the rectangular coordinate system OZZn, which rotates about OZ 

at shaft speed w. 

Equations 2.1 are well known, and their derivation, which is 

achieved by considering the dynamic equilibrium of an elemental slice of 

the shaft, is described by several authors, including Gladwell & Bishop 

(1959), Dimentberg (1961) and Tondl (1965). 

2.1.3 Assumptions 

The following assumptions are made about the properties of the 

rotor system: 

(1) The inter-rotor couplings are rigid so that the coupled rotor 

train may be treated as one continuous shaft. 

(2) The shaft is thin so that the effects of rotary inertia and 

gyroscopic forces upon an element of the shaft, and deformation 
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Figure 2.2: The rotating coordinate system OZ£n 
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due to shear may be neglected. 

(3) The shaft, when straight, is free from residual bending 

stresses, i.e. the shaft does not have a permanent bend. 

(4) The shaft has the same flexural rigidity in all directions 

normal to its axis, i.e. the shaft is axially symmetric. 

(5) Internal damping within the shaft due to shrink fits and 

hysteretic damping is negligible. 

(6) The journal bearings are self-aligning, and so do not exert 

a bending moment upon the shaft. 

(7) The journal bearing oil film forces F and F act through 
xk  yk 

the mid axial plane (Z = Z^) of each bearing and are functions 
) 

of the displacement and velocity of the shaft centre, at this 

axial plane, relative to the bearing centre. 

(8) Fluid forces generated in seals, glands, etc., may be 

neglected. 

(9) The pedestals upon which the bearings are mounted are rigid so 

that there is no relative motion between the bearing shells 

and the frame of reference ozxi. 

(10) Any external damping acting upon the shaft is of a linear 

viscous nature. 

These assumptions are made for the following reasons: 

Firstly, the principal objective of this work is cc study the 

non-linear large amplitude vibrations induced in multi-rotor systems by 

parallel misalignment of the bearings. This behaviour, which results 

from the interaction of the bearing oil-film forces and the rotating shaft, 

is in itself a complex phenomenon, the study of which would not be 

facilitated i f further factors were allowed to influence the motion of 
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the shaft. 

It is acknowledged that steam forces in fine clearances are 

sometimes a cause of instability in large turbogenerators (Greathead (1976)) 

and that internal friction forces in a rotating shaft can also cause 

instability (see, for example, Gunter (1967)). However, it is known that, 

in many instances, instability results from the journal bearings alone. 

Mayes (1974), from operational experience on 500 MW generating sets, 

reported that large amplitude vibration, the principal component of which 

was usually in the range 20-25 Hz, sometimes developed when the machine 

had reached its operating speed of 3000 rpm after run up, but whilst still 

running with zero load. Under these conditions, the steam flow is very 

low and it is unlikely that steam forces are the cause of the excitation. 

Further, as the instability did not develop when the system passed through 

its lower critical speeds (a turbogenerator of this size operates in the 

region of twice its first critical speed), this suggested that internal 

friction forces were not the cause. 

(It should be added that, if desired, the fluid forces 

generated in the seals and glands can be incorporated into the equations 

of motion in a similar manner to that used for the bearing forces.) 

Secondly, many of the assumptions are mathematically expedient 

and may only be relaxed at the expense of increasing the complexity of the 

equations of motion. Although the resulting equations would not be 

intractable, their solution would be more difficult and, as computers are 

to be employed for this purpose, more costly. 

For example, including .the effect^of shear, deformation 

introduces terms that have a fourth order time derivative and, as will be 

seen later, would double the number of ordinary (non-linear) differential 

equations to be solved by numerical integration. Whilst several authors 
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have accounted for shear deformation, rotary inertia and gyroscopic effects 

in their analyses of rotor systems (see, for example, Lund (1974)), they 

have also assumed that the motion is of small amplitude so that the bearing 

forces may be approximated by linear functions - such an assumption would 

not be meaningful here. 

It should be emphasised that most of the assumptions listed 

above are closely approximated to in turbogenerators and if relaxed would 

only have a secondary influence upon the behaviour of the system. 

Morton (1967-68) in a series of tests on turbogenerator 

alternator rotors showed that the internal damping was not significant, 

and that the difference in flexural stiffness between the two principal 

planes (which, because of the winding slots, it would be reasonable to 

assume would be greatest in the alternator rotor of a generator set) was 

always less than 5%. . 

The assumption that the bearing forces act in a single plane 

of the shaft is justifiable in view of the ratio of shaft span to bearing 

length and the axial distribution of the pressure developed in the bearings. 

The self-aligning condition of the bearings is approximated to in practice 

by mounting the bearings in spherical seats. 

Assumption (10) needs further explanation: several authors, 

notably Tondl (1965) and Someya (1963-64), have shown that, for a single 

rotor supported in axisymmetric bearings, a source of damping, other than 

that provided by the bearings, is needed in order to maintain at a finite 

level any self-excited oscillations whose frequency is less than half 

shaft speed. As the frequency of -unstable motion in large turbogenerator 

is normally less than half speed, it was decided to incorporate into the 

model a facility for providing external linear viscous damping to the 

shaft, should this be required. 
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2.1.4 The Non-Dimensionalised Equations 

The number of independent variables needed to describe the 

rotor system may be reduced by casting the equations of motion into non-

dimensional form. This is achieved by first introducing the following 

dimensionless variables: 

a = X/e p 2.4 

y = I/or 2.5 

\  = \ / cr  2- 6  

°k  Dk  r  

' s = Z/L 2.8 

e k n Zj/L 2.9 

T = CO £ 2.10 

where is a reference dimension of the system comparable in magnitude to 

the amplitude of vibration, and is defined here to be the minimum radial 

clearance of all the bearings in the system. 

These are substituted into equations 2.1 and the equations are 

rendered dimensionless by dividing through by M u 2 A » where M i s the 

total mass of the coupled rotors, i.e. 

L 
M = / pA(Z) dZ 2.11 

o 

The resulting non-dimensional equations are: 
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2.2 THE NATURAL MODES OF VIBRATION OF THE FREE SHAFT 

2.2.1 Separation of the Variables 

The equations of motion 2.12 for the rotor system are non-linear 

and coupled in the horizontal and vertical directions due to the oil-film 

forces f and / . Before considering the proposed method for solving 
x y 

these, it is necessary to review the properties of the solution to the 

reduced problem of the free unconstrained, or free-free, motion of the 

shaft in a viscous medium. This is described by the homogeneous form of 

equations 2.12 and is given below by equations 2.22 and 2.23: 

d2 
o(s) 

ds2 a s 2<> 

B2 
o(s) 

ds2 Bs 2' 

+ ojs) + m, (s) 
d 8T I 9 t 2 

+ ojs) + m~(s) ^-JL 
d 3T I r, 2 

= 0 

= 0 

2.22 

2.23 

It may be seen that the equations for the horizontal and vertical directions 

are uncoupled and identical and so only equation 2.22 for the horizontal 

direction will be considered. 

A solution is sought according to the method of separation of 

variables. To this end, assume a solution of the form: 

x = T(i) §(s) 2.24 

which, after substituting into equation 2.22 and dividing through by 

T(T) $(s) m^(s), leads to: 

1 d 2  

mt(s) $(s) ^2 
o(s) d

2$) 

ds 2  T(T) 

°d ( s ) dT , d 2T 
di di 2  

2.25 

The separation of the variable may be effected i f the damping i s 
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proportional to the mass distribution along the length of the shaft, 

i.e. if: 

= constant = 2y 2.26 

Under this assumption, the left hand side of equation 2.25 is a function of 

s alone and the right hand side is a function of T alone, and so both sides 

must be equal to a constant, i.e. 

1 

ml ( s ) *s ds 2  
o(s) 

DH] 

ds 
i T T ; 

dT . d 2Tl 

dT 2  
= V 

f 
2.27 

where v^, is an as yet undetermined constant. After rearranging, this 

leads to two ordinary differential equations: 

T 2 = , 
DT dT ' y 

2.28 

ds 2  

o(s) 
DH) 

ds 2  

- Vjf m^(s) §(s) = 0 2.29 

The solution to the first of these equations is well known, i.e 

T(T) = 0 
_y T 

P P 
A2 oos (Vj* 2 - y 2)  2 T + A2 sin (v^ 2 - y 2)  2 T 2.30 

where Aj and A 2 are constants determined by the initial conditions. For 

the second equation, a solution must not only satisfy the differential 

equation but must be such that for all values of t the boundary conditions 

at the ends of the shaft are satisfied. For a free-free shaft, the 

requirement is that the bending moment and shear force at the ends of the 
% 

shaft should be zero, i.e. 
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EI(Z) 
B2X 

BZ2 

= 0 

Z=OjL 

JL 
BZ 

EI(Z) 
BW 

BZ2'Z=0JL 

= 0 

2.31 

2.32 

After non-dimensionalisation and substituting from equation 2.24 for the 

assumed solution, the above conditions are equivalent to: 

DH 

d_ 
ds 

ds 2  

o(s) 

= 0 

s=Jj 1 

d H 1 

ds 2  

= 0 

2.33 

2.34 
s=0.1 

A solution to equation 2.29 which satisfies both the differential equation 

and the boundary condition only exists for certain values of the constant 

Vy». Such a solution <f>̂  is known as an eigenfunction or mode and the 

associated value of v.- is known as an eigenvalue or natural frequency. 
H 

The eigenfunctions corresponding to different eigenvalues are mutually 

orthogonal, a property that will now be demonstrated. 

2.2.2 Properties of the Normal Modes 

Consider two different eigenfunctions <$>.(s) and <t>.(s), both of 
1> 0 

which satisfy equation 2.29, i.e. 

d 

ds 2  

D 

ds 2  

a(s) 

o(s) 

d H A 

ds 2  

DH.] 

ds 2  

- v ~  2 m*(s) <J). = 0 

-  2 mn(s) $>. = 0 
fj t> 3 

2.35 

2.36 

Multiplying the f i r s t of these equations by <f>. and the second by <(>. and 
3 I* 
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integrating along the length of the shaft gives: 

J 
J ds 2  

I t-
d 

ds 2  

o(s) 

o(s) 

dn: 

ds 2  

d H A 

ds 2  

ds = v „ 2 f <f>. m1(s) <j>. ds 
h o 0 1 % 

ds = v^  2 / <J>. m1(s) $. <is 
0 ^  U  0  

2.37 

2.38 

Integration by parts leads to: 

0 

1 

0  d s S ds 2  0 

1 dH. d\. 
o(s) - ds 

0 0 ds' ds :  

vr.  2 / 6. mTs) 6. ds 
0 3 U % 

2.39 

1 1 d 2§. 
* j —t 

0 0 ds 2  

d H . 
o(s) £ ds 

ds 2  

vjy  2 J <{>. m1(s) 4>. ds 
fj 0 0 L * 

2.40 

The first two terms in each of the above equations are zero as a result of 

the boundary conditions given by equations 2.33 and 2.34. Subtracting 

equation 2.40 from equation 2.39 gives: 

(v_p 2 - v n  2) J 6. m1(s) 6 . ds = 0 
fi tj o * L 3 

2.41 

When Vr. 2 f v„ 2 , the integral must be equal to zero, but for v,, 2 = v» 2 , 

the integral is equal to a non-zero constant which, because the 

differential equation 2.29 is linear and homogeneous with linear 

homogeneous boundary conditions*, is of arbitrary value. Hence, the 

* If 6. is a solution, so also is 4<f>., where A is a constant. 
Is 
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eigenfunctions are mutually orthogonal with respect to the mass 

distribution and are normalised here by setting G1 to unity, i.e. 

/ ^ ™t(s) <f>. ds = 6 
iQ 

2.42 

where 6.. is the Kronecker delta, defined as: 
•z-J 

0 when i f q 
6.. = { 
^ 1 when i = j 

2.43 

Two further important properties of the normalised eigen-

functions, or normal modes, follow immediately. From equations 2.37 or 

2.38: 

0 * ds 2  
a (a) 

d 2 cf>.] 

ds :  
ds = 6 .. v « 2 

fj 
2.44 

and from equations 2.39 or 2.40: 

1 d 2$ . dH . 
/ ^ o(s) ds 

0 ds 2 ds 2  

2 

^ h 
2.45 

2.2.3 Rigid-Body Modes 

It is possible for a free-free shaft to undergo a non-

oscillatory motion for which the natural frequency v^ is zero and equation 

2.29 reduces to: 

ds 2  
a (a) I = 0 

ds 2> 
2.46 

Performing repeated integration upon this equation whilst observing the 

boundary conditions 2.33 and 2.34 leads to: 
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<J>. = a. + b. s 2A7 
RV V V 

where a. and b. are constants of integration. From this it may be seen 
V V 

that any rigid body displacement of the shaft is an eigenfunction of 

equation 2.29 and is therefore also orthogonal to all the flexural modes. 

Two such linearly independent, rigid body modes are necessary to describe 

any rigid body displacement of the shaft in space. Let these be: 

<f>2 = a 2 2.48 

= a2 (1 + b2 s ) 2,49 

If it is required that these be mutually orthogonal with respect to the 

mass distribution, and normalised in the same manner as the flexural modes, 

then this produces three equations from which the three constants a^, a 2 

and b 2 may be determined, i.e. 

1 1 
j f<f>J2 mAs) ds = a 2 / mAs) ds = 1 2.50 

0 1 L 1 0 . 

1 1 

j m^(s) ds = cij a2 j (1 + b2 s) m^(s) ds - 0 2.51 

1 1 

J O J 2 mAs) ds = a 2 J (1 + b0 s) 2 mAs) ds = 1 2.52 
0 2 u d Q 

After noting from the non-dimensionalised form of equation 2.11 that: 

1 
f mt(s) ds = 1.0 2.53 
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and defining the following properties of the shaft: 

> - ! s mi(s) ds 2.54 
g n* I 0 

1 

I = / s 2mAs)ds 2.55 
m 0 1 

where s is the non-dimensional displacement along the shaft to the centre 

of mass, and I is the non-dimensional mass moment of inertia* about an 
m 

axis at s = 0.0, the solution of equations 2.50 to 2.52 giving the values 

of the constants to be: 

a 1 = 1 2.56 

a c = s /Jl - s  2 2.57 
2 gr m g 

b 0 = - 1.0/s 2.58 
2 g 

Hence, the mutually orthogonal and normalised rigid body modes are: 

= 1 2.59 

<f>0 = (s - s)/Jl - s  2 2.60 
g m g 

It may be seen that <f>2 describes pure trans!ational motion of the shaft 

whilst <f> describes a rotation, without translation, about the mass centre. 

It should be noted that the term (I- - s  2) in the denomenator of equation 
m g • 

2.60 is, by the parallel axis theorem, equal to the non-dimensional mass 

moment of inertia about an axis (s = s ) through the mass centre of the shaft, 

* Made non-dimensional by dividing by M L 2 . 
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2.2.4 Methods for Determining the Normal Modes 

In order to determine the normal modes of a shaft and their 

associated frequencies, it is necessary, except for the special case of a 

uniform shaft which is discussed in section 4.2 of Chapter 4, to make 

recourse to numerical techniques. The Mykelstad-Prohl approach which, 

when cast into matrix form is known as the transfer matrix method, is one 

such technique, a description of which is given by PesteT & Leckie (1963) 

and Meirovitch (1967). Another approach, developed by Witte (1968), 

effectively discretises equation 2.20, by means of finite difference 

approximations, to form stiffness and mass matrices from which the eigen-

values and associated eigenvectors may be determined by standard techniques. 

Both of the above methods are, in essence, lumped mass 

approximations in which the shaft is represented by a series of point 

masses connected by light flexible shaft elements. It should be noted 

that, in order to obtain a realistic estimate of the mth mode, the number 

of mass stations must greatly exceed m. Morton (1972) used some 250 mass 

stations to calculate, by the Mykelstad-Prohl method, the first dozen 

free-free modes of the coupled rotors of a 500 MW turbogenerator. 

The details of the procedures for obtaining the normal modes 

and natural frequencies will not be discussed further here as it is outside 

the terms of reference for this work. 
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2.3 THE PROPOSED METHOD FOR TREATING A MULTI-ROTOR SYSTEM SUPPORTED UPON 

JOURNAL BEARINGS 

2.3.1 The Transformation of the Equations of Motion Using the Free-

Free Modes 

The infinite family of eigenfunctions for the free-free shaft, 

which satisfy equation 2.42, constitute a complete set of orthonormal 

modes. Any function satisfying the homogeneous boundary conditions given 

by equations 2.31 and 2.32 may, according to-the expansion theorem (see 

Meirovitch (1967)), be represented as a linear combination of these. The 

shaft system depicted in Figure 2.1 does not have a bending moment or a 

shear force imposed at its ends and so the deflected shape of the shaft 

X(Zy t) and YfZjt) must, at all times, automatically satisfy equations 2.31 

and 2.32. Therefore, assume a solution of the non-dimensional equations 

of motion 2.12 to be of the form: 

i 
CO 

T) = I <7 M 4>.(s) 2.61 
xi  v  

T) = I q (T) 6.(8) 2.62 
i=l  yi  %  

from which it follows that: 

. 00 ^x. 
If = l - 2.63 

' 3 T dr 

f - I — H<*> 2- 6 4 

1 = 1 dx 

etc. 

The assumption made in the previous section concerning the 

distribution of the external damping, and expressed by equation 2.26, will 
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also be made here. 

Substituting the above expressions into equations 2.12, 

multiplying through each equation by <j>.(s)9 and integrating along the 
o 

shaft leads to: 

d 2  

Xi 0  0 ds 2  
o(s) 

dH.) 

ds 2  

dq d 2q 

ds + (2y + 

dx dx 2  

n 

cos 

J mAs) <fr. ds) = I . (sA f } + 
0  0  u  % k=l  0 k 

x j m^is) u^(s) ds - sin x j m1(s) un(s) ds 

d 2  

I {q f <t> . 
i-1  yi 0  0 ds 2  

dH.\ 
o(s) * 

ds 2  

mil Imf \ G / 44- I 

o I n 

ds + (2y - + 1) 

dx dx 2  

y 2 , 

. 1 n 
f 6. mAs) ds) - I {6. (sJ f } + 
) u  u  u k-1 ^ 

svn in x j $. mn(s) uAs) ds + cos x f <j> . m7(s) u (s) ds -
Q 3 L Q Q L> n 

S, j <{>. m1(s) ds 
v n 0 u 

By invoking the properties of the normal modes, given by equations 2.42 

and 2.44, the above equations may be reduced to: 
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d \ . ^x. 
* + v f 2 % 

J i i 
dx 2  

dx 

n 

I 
k-1 
I (Sy) f x ) + % , C 0 S T ~ S i n T 

d 2q. <k, 
u. 'y. n 

dx 2  

+ * v * q = I {<f>. (sk) f } + 
U  yi k-1  yk dx 

Q- sin x + Q cos x -6.-5. , 
h H ^ t 

(i = 1, 23 «) 

L 2.66 

where Q and Q are the generalised unbalance components given by: 
H \ 

Q = / $.(sJ mn(s) u (s) ds 
H 0 ^ u 6 

2.67 

Q = f <f>.(s) mn(s) u (s) ds 
\ 0 % u n 

2.68 

and the integral: 

0 

1 1 
f m^(s) ds (= J <f>£ m^(s) ^ ds) = 2.69 

may be evaluated as shown because the rigid body mode, has a constant 

value equal to unity. Thus, it may be seen that the two partial 

differential equations 2.12 describing the motion of the shaft have been 

transformed into an infinite system of ordinary differential equations in 

terms of the modal coefficients q„ and <7 . These equations are coupled 
x. y • 

through the oil-film forces f and f which, from equations 2.61 to 2.64, 
x 
k 

yk 
now become functions of the modal coefficients and their derivatives, i.e. 
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k  Js=s 
k 

2.70 

k ' s=s 
k 

2.71 

(' denotes differentiation with respect to T) 

2.3.2 Method of Solution 

Large turbogenerators do not normally operate at speeds beyond 

their third or fourth free-free (flexural) natural frequency. It is, 

therefore, reasonable to assume that the higher frequency modes make little 

contribution to the motion and that it is justifiable to truncate the modal 

expansion (equations 2.61 and 2.62) after m terms, thus reducing equations 

2.66 to a finite system suitable for solution by numerical initial-value-

problem techniques. The difficulty lies in determining a priori the term 

at which the truncation may be made. This problem, however, may be 

overcome empirically. First, a solution is obtained using m modes and 

then re-solved using (m+2) modes. If there are significant differences 

between the two solutions, then further pairs of terms are added to the 

modal expansion until the difference between successive solutions is 

reduced to an acceptable level. Terms are added in pairs because the 

addition of a single anti-symmetric mode for a motion that was 

predominantly symmetric in nature (or vice versa) would have little effect 

upon the solution and thus might falsely indicate that convergence had 

been achieved. 

differential equations require the equations to be of f i r s t order. By 

Most numerical methods for integrating a system of ordinary 
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defining the new variables: 

dq 

u - 2.72 
x. 

dq 
yi 

u = 2.73 
yi 
* dr 

The system of 2m second order equations, arrived at. by truncating the modal 

expansion, is converted into a system of 4m first order equations in a form 

suitable for numerical integration, i.e. 

du , 
x. n 

~  = I ^i  ( sk } 1 "  2 y  ux "  vf  2  qx  +  Qe  o o s  t ~  QX\
 s i n  T  

d k-1 k i  J i i i i 

dq 

" V 
dT * 

du 

— ~ = I (eJ fu 1 " ^Y m " v f
2 q + Q sin T + 0 cos T 

d x k-1  r  K  yk  yi  yi H \ 

- *il  St 

yi 
= u » (i = 2j ...j m) 

dT  H  

The 4m initial conditions needed for the solution procedure are discussed 

later. 

V 2.74 

2.3.3 Point Unbalance Forces 

It is sometimes more convenient to represent the unbalance 

force acting on a shaft by a set of point unbalance forces rather than a 
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(n) 
distributed unbalance. Let F ^ be the jth point unbalance force, acting 

at station s = s and let the components of this force in the directions 
J 

(n) 

5 and n of the rotating coordinate system OZE,n (see Figure 2.2) be F^ 

and F ^ , respectively. For this* situation, the generalised unbalance 

components in equations 2.66 and 2.74 become: 

2 - 7 5 

1 C M c^ ur 

P U ) 

%.= l A - f ^ h ^ 2-7 6 

-z- j M e ur 
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2.4 DISCUSSION 

The principal objective in this work was the study of the vibrations 

resulting from the interaction between the non-linear oil-film bearings 

and the rotating shaft. The modal method described above effectively 

separates the dynamic characteristics of the shaft, which is essentially a 

linear element and thus amenable to analytical treatment, from those of the 

bearings. 

2.4.1 The Case for Employing Free-Free Modes 

In general, the dynamic behaviour of a shaft may be 

characterised by a set of normal modes and natural frequencies of the free 

vibration of the shaft when supported upon idealised bearings. In the 

foregoing analysis, the displacement of the shaft was expressed in terms 

of the free-free modes, but several authors have shown that, for the 

linearised analysis of multi-rotor systems, other sets of assumed modes 

may be successfully employed. Morton (1972), when considering a turbo-

generator, used a combination of free-free modes and the modes obtained if 

the coupled rotors are "pinned" at each bearing. Whilst Black & Loch 

(1973) for an analysis of a four bearing pump suggested that high accuracy 

could be achieved by using the modes obtained by supporting the shaft in 

single stiffness bearings. However, the use of the free-free modes, 

besides being the natural choice of assumed modes from a mathematical 

viewpoint (as they are the eigenfunctions of the homogeneous form of the 

equations of motion 2.12) was desirable in this work for the following 

reasons. 

First, if a system of second order ordinary differential 

equations is to be solved by numerical integration techniques, it is 

necessary for the inertia matrix ( i .e . the matrix of coefficients for the 
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second order terms) to be diagonal. As may be seen from equations 2.65 

and 2.66, this condition is satisfied if the free-free modes are used as 

these are orthogonal with respect to the mass distribution along the shaft. 

Second, it is advantageous to choose the free-free modes as 

they are a property of the shaft alone, determined by the distribution of 

mass and flexural stiffness along its length, and are independent of the 

locations of the bearings or their characteristics. Hence, the 

relocation, insertion, removal, or modification of a bearing for an 

existing shaft (assuming this to be physically reasonable) may be 

accommodated for in the method without the need to calculate a new set of 

modes. 

Although the modes suggested by Black & Loch (cited above) 

result in off-diagonal terms in the inertia matrix, this does not present 

a difficulty with a linearised analysis. Brown (1977), when extending 

the work of Black & Loch to include the non-linear effects of the journal 

bearings, needed to diagonalise the inertia matrix in order that the 

equations should be amenable to solution by numerical integration 

techniques. To achieve this, he used the modes resulting from supporting 

the shaft in very soft single stiffness bearings - and which thus closely 

approximate its free-free modes. (The effect of fluid inertia in the 

ring seals was not included, as it had been in the linearised analysis, 

because they give rise to off-diagonal terms in the inertia matrix, 

irrespective of the system of assumed modes employed.) 

2.4.2 Comparison with the Direct Lumped Mass Approach 

Equations of motion for a shaft supported upon journal bearings 

may, alternatively, be developed by direct consideration of the lumped 

mass approximation. 
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If a shaft is represented by p lumped masses connected by 

light, elastic shaft sections, then a system of 2p ordinary differential 

equations may be derived by considering the dynamic equilibrium of each 

mass. The equations obtained, which are given in Appendix 1 by equations 

Al.l together with an outline of their derivation, are in a form suitable 

for solution by numerical initial-value-problem techniques. This 

approach, however, has a major disadvantage for, in order to adequately 

represent the lower frequency dynamic characteristics of the shaft, a 

large number of mass stations must be employed, but in doing this higher 

frequency modes, which make an insignificant contribution to the motion of 

the shaft, are also allowed for and an unnecessarily large system of non-

linear equations must be solved. 

With the modal method, this problem does not arise since the 

lower frequency characteristics of the shaft are contained in the normal 

modes and natural frequencies. For, whilst it is recognised that the 

lower frequency modes, for realistic shafts, may only be determined by 

allowing an approximate shaft model a sufficiently large number of degrees 

of freedom, such a calculation is linear in nature, need only be performed 

once for a given shaft, and does not necessitate the inclusion of 

unnecessary high frequency characteristics in the non-linear solution 

procedure. 

These assertions may be verified if the systems of equations 

for the two approaches are compared in a common form. In Appendix 1, it 

is shown that equations Al.l for the lumped mass system may be transformed, 

without affecting their accuracy, into a system of 2p equations in terms of 

the free-free modes of the lumped mass shaft. The resulting equations 

A1.25 are identical in form to the system of equations 2.66 for the 

continuous shaft ( i f the latter are truncated), d i f fer ing only in the 
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value of the free-free frequencies and the value of the modes at each 

shaft station. It may thus be seen that, for a given number of degrees 

of freedom, the modal method would be better able to represent the dynamic 

characteristics of the shaft as it employs more accurate estimates of the 

normal modes and natural frequencies of the shaft. 

The direct lumped mass approach suffers from a further 

disadvantage: in order to ensure that the equations of motion for the 

shaft are explicit, a mass station must exist at each bearing location. 

If it is subsequently decided to change the location of a bearing, it may 

be necessary, unless the new locations happen to coincide with a mass 

station, to modify the distribution of the point masses; this would be 

difficult to achieve without altering the dynamic characteristics of the 

shaft model. 

2.4.3 Conclusions 

A method has been developed for predicting the non-linear 

flexural vibrations of a multi-rotor system supported upon journal 

bearings. The equations of motion for the system are in terms of the 

free-free modes of the coupled rotors. The method is applicable (subject 

to the conditions given in section 2.1.3 of this chapter) to a rotor 

system having any realistic distribution of mass and flexural stiffness 

and supported upon any number of journal bearings. 
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CHAPTER 3 

THE JOURNAL BEARINGS 

3.1 INTRODUCTION 

Consideration has, so far, not been given to the type of bearings to 

be used in the computer model of the multi-rotor system. The method for 

treating the shaft, discussed in Chapter 2, is not restricted to a single 

type of bearing. For example, circular-bore, lemon-bore, three lobe or 

pivoted pad bearings, each with realistic design features such as feed 

ports, recesses, scallops, etc., could all, in principle, be incorporated 

into the model. 

The bearing forces that act upon a shaft result from the pressure 

generated in the oil film contained between the rotating journal and 

stationary bearing surfaces. The pressure distribution in the bearing 

is, under the assumption of laminar flow, governed by Reynolds equation. 

The Reynolds equation is described fully by Pinkus & Sternlicht (1961). 

To calculate the oil-film forces, the Reynolds equation must first be 

solved for the bearing geometry under consideration, and then the resulting 

pressure distribution integrated over the surface of the journal to give 

the required forces. Unfortunately, analytical solutions to the Reynolds 

equation do not exist in closed form even for the special case of a plain 

circular-bore bearing. For static bearing calculations, this difficulty 

is normally overcome by solving the Reynolds equation numerically using 

finite difference techniques. This approach, however, makes heavy demands 

upon computer time and is therefore normally considered unsuitable for use 

in a numerical integration procedure for which the oil-film forces must be 

recomputed at each time step. 

Recourse is therefore normally made to approximate solutions of which 
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the long and short bearing approximations are well known. Of these, the 

short bearing approximation is the one normally adopted in the study of 

rotor dynamics because, for practical bearings, it is the more realistic 

of the two assumptions to make. An unfortunate property of the short 

bearing approximation is that it has pre-determined circumferential 

boundary conditions which limit its applicability to plain circular-bore 

bearings. The short circular-bore bearing approximation was successfully 

employed by Badgley & Booker (1969) and Holmes (1970) to study, using 

digital techniques, the symmetric, non-linear motion of a rigid shaft 

supported upon two bearings. 

Although a plain circular-bore is a somewhat idealised configuration, 

the speed at which the bearing forces may be computed using the short 

bearing approximation recommended it for use in the computer model of the 

multi-rotor system - at least during the development stages of the work. 
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.3.2 THE OIL-FILM FORCES FOR A CIRCULAR-BORE BEARING 

3.2.1 The Reynolds Equation for a Circular-Bore Bearing 

The geometry of a circular-bore bearing is shown in Figure 

3.1. The Reynolds equation for this configuration is derived by Pinkus & 

Sternlicht (1961), and is given below by equation 3.1. It is assumed 

that the lubricant is isoviscous with an effective viscosity n : 
& 

• 6neL-2^)(-esine) +2%cose) 3.1 
R* 3 J 

The axial coordinate, J, is measured from the mid-plane of each bearing, 

and the film thickness, h, is given by: 

h = C + e cos 0 3.2 

where C is the radial clearance. 

As in the previous chapter, it is convenient to reduce the 

equations to non-dimensional form. This is achieved by first introducing 

the following non-dimensional variables: 

e = § 3.3 

i. - J L A 3 4 
e 03 C dt 

h* = — = 1-+ e oos 9 3.6 

= W2 3 J 
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Figure 3.1: The geometry of a circular bore bearing 
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P* = 3.8 
12r\ R 2 a)/C 2  

* s §• 3.9 

These are then substituted into equation 3.1 to give the following non-

dimensional form of the Reynolds equation: 

4* -TZrJ + « 2 ^ = - e (0.5 - sin 9 + e oos 9 3.10 
3 0 3 0 ds* 2 

It is important to note that e and de/dt are made non-

dimensional by using the bearing (or arc) clearance c and not the reference 

clearance of the system, c . This must be taken into account when 

converting from the cartesian coordinates of the shaft equations (2.44 and 

2.45) to the polar coordinates of the bearing equations for evaluation of 

the oil-film forces, i.e. 

= (—) J(x - xb)
2 + (y - yh)

2
 3.11 

C 

(x - Xb) 
cos Tp = (—) 3.12 

(y - vb) 
sin ^ = (—) 3.13 

C e 

c 
e = (—) (x cos ip + ij sin ty) 3.14 

C 

• _ (ij cos ip - x sin ip) 3 15 

c e • 
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3.2.2 The Non-Dimensional Oil-Film Forces 

The oil-film forces F & and F^ along and perpendicular to the 

line of centres (see Figure. 3.1) are obtained by integration as follows: 

B/2  6 2 
F - I ( P cos G R dQ dz 3.16 

e . -B/2 Q1 

B/2 °2 
Fy = J / P sin 0 R dQ dz 3.17 

-B/2 e1 

where Q 1 and e 2 are the start and finish, respectively, of the uncavitated 

oil-film. The non-dimensional oil-film force f and are defined as: 

F , 1 *2 
/ = 2 — = | a 2 3 (_Z)2 j j P* cos 0 dQ dz* 3.18 

e M a to2  £ C -1 0 7 ¥ 1 

F. * o 1*2 
f . = * — = 4 a 2 3 (—.) 2 j I P* sin 0 dQ dz* 3.19 
* Mc a>2  2 C -1 0 7 p 1 

x\ R B 3  

where: 3 = — 3.20 
M c 3 w ¥ 

It may be seen that the definition of f & and f^ is consistent with the 

definition of the non-dimensional bearing forces f and f given in Chapter 
x y 

2 (equations 2.19 and 2.20). The forces for the two coordinate systems 

are related as follows: 

4 = 4 * ~ 4 s i n * 3 , 2 1 

4 = 4 s i n + 4 e o s * 3 , 2 2 
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3.2.3 The Short Bearing Approximation 

In the short bearing approximation, it is assumed that: 

« h* 3 ^ 3.23 
9 0 9 0 

That is, the pressure induced flow in the circumferential direction is much 

less than that in the axial direction. The Reynolds equation thus reduces 

to: 

d 2P* _ (0.5 - \j>)(- e sin Q) + e cos 6 3 24 

dz* 2 a 2 h* 3 

which may be integrated directly to give the pressure distribution. If 

it is assumed that the pressure is zero at the sides of the bearing 

(z* = ± 1.0), then the resulting pressure distribution is given by: 

p* = (Vfl.5 - i>J(- e sin 6) + t cos e) (z* 2 - 1) 3 25 

2a 2 h* 3 

Substituting this expression into equations 3.18 and 3.19 gives the non-

dimensional oil-film forces, i.e. 

£12 f e - 3 (—) e c £ f O . S - i i 3.26 

f. = 3 (—) 2 e (0.5 - i; A 2 0 - e Al 1  

* C 
3.27 

d2 i 
where: A i j = J d Q 3 < 2 8 

n 82 (1 + z cos Q) n  

The definite integrals A ^ may be evaluated using Booker's (1965) table of 

journal bearing integrals. The oil-film is assumed to cavitate in the 

region of negative pressure (half Sommerfeld condition) and so, from 
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equation 3.25, the oil-film limits are given by: 

e2 = ^ 7 1 o T h j T 

e 2 = e 2 + tt 

To ensure that the region of positive, and not negative, pressure 

selected, the sign of the pressure at e 7 + v/2 should be checked. 
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CHAPTER 4 

THE MULTI-ROTOR CONFIGURATION INVESTIGATED 

4.1 THE TWO ROTOR, FOUR BEARING SYSTEM 

The large turbogenerators used in the British power generating 

industry normally consist of a number of turbine rotors and an alternator 

rotor, each supported near its ends upon journal bearings, and rigidly 

bolted together to form one continuous shaft. The large amplitude 

vibration of a single rotor supported upon journal bearings - which is the 

basic unit of which the multi-rotor system is composed - has been the 

subject of a number of previous studies (see, for example, Hori (1959), 

Someya (1963-64)). However, with a two bearing system it is not possible 

to investigate the effects of parallel misalignment of the bearings. For 

this reason, the behaviour of a simple two rotor, four bearing system was 

to be investigated - this being the lowest multiple of the basic unit that 

may suffer from parallel misalignment of the bearings. 

The shape of the rotor to be used in the investigation was arbitrary 

and so, for simplicity, the system chosen comprised two equal, rigidly 

coupled uniform rotors each supported symmetrically upon two bearings.(see 

Figure 4.1). The positions of the bearings is typical of the coupled low 

pressure turbines of a 500 MW generating set. Although a uniform shaft 

is an idealised shape, it has the essential properties of distributed mass 

and stiffness and is convenient to use as its normal modes and natural 

frequencies may be obtained analytically. 
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Figure 4.1: Two rotor, four bearing system 
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4.2 THE FREE-FREE MODES OF A UNIFORM SHAFT 

For a uniform shaft, the non-dimensional flexural rigidity a and mass 

distribution m^ assume constant values. From equation 2.13: 

a = constant = — — — 4.1 
M L 3 a)2 

and from equation 2.14: 

m^ = constant = ^ f -1.0 4.2 

and, hence, equation 2.29 reduces to: 

- t(e) = 0 4.3 
ds k  

where: y<> = v f
2 ^ ^ 4.4 

Equation 4.3 may be integrated directly and, for y 0 (i.e. v^, ̂  0), the 

general solution is: 

$(s) = Aj cos \i s + A2 cosh y s + A^ sin y s + A^ sink y s 4.5 

where A^ to A^ are constants of integration. Applying the boundary 

conditions for a free-free shaft (equations 2.33 and 2.34) leads to four 

algebraic homogeneous equations in terms of the constants A 1 to A 4 . 

These equations only have a non-trivial solution if: 

cos y cosh y = 1 4.6 
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The roots of this transcendental equation reveal, via equation 4.4, the 

free-free natural frequencies of the shaft. It should be noted that the 

root y = 0 corresponds to the rigid body modes.(see section 2.2.3 of 

Chapter 2). For flexural modes, the roots, which are given approximately 

by: 

may be obtained numerically using Newton's method. 

The constants A 1 to A 4 are found from the boundary conditions to 

within an arbitrary constant, but this is fixed by imposing the 

orthogonality condition expressed by equation 2.42. The complete set of 

free-free normal modes for a uniform shaft are then given by: 

y. « (2i - 3) tr/2 
v 

(1 = 3; 4; ...) 4.7 

(v, = 0) 
J1 

<t>2 = /3 (1 - 2s) (v« = 0) 
2 

• 4.8 
cos y. - cosh y. 

d). = (cos y. s + cosh y. s) - (• 
sin y. - sinh y. 

v v 

(sin y • s + sinh y . s) 
v v 

(i = 3; 4; ...) 
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CHAPTER 5 

STATIC AND LINEAR CONSIDERATIONS 

5.1 INTRODUCTION 

Before a study of the effect of bearing misalignment upon the non-

linear dynamic behaviour of a multi-rotor system can be undertaken, it is 

necessary to first know the correct alignment for the system. The 

equilibrium position of the rotating shaft for a given set of bearing 

alignments, and the stability of the equilibrium position, are also 

required. 

These properties of a rotor system, together with the response of the 

linearised system to unbalance excitation and the natural frequencies of 

the coupled rotors if "pinned" at each bearing, may be determined from 

the modal equations of motion (2.66 or 2.74) and are discussed in this 

chapter for a general multi-rotor system. 
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5.2 SYSTEM ALIGNMENT 

For this section only, the assumption is made that each rotor is 

supported upon two bearings; therefore, if a system has « bearings, then 

there are (n - 2)/2 couplings. 

In this work, a correctly aligned system will be defined as one in 

which zero bending moment and shear force act through each coupling when 

the shaft is running at design speed. This differs from industrial 

practice where, to facilitate assembly of the system, the aligned condition 

refers to a non-rotating shaft resting at the bottom of each bearing. 

However, for this situation, bending moment and shear force acting through 

the couplings remains small even when the shaft is running at design speed 

as the displacement of the shaft in each bearing due to hydrodynamic "lift" 

is approximately the same - and hence the distribution of bearing loads 

remains almost unchanged. 

The equations for the static deflection of the shaft, which may be 

obtained from equations 2.74 by removing acceleration, velocity and 

unbalance terms, are given by: 

X i*i ( sk } fx - v -  ( y ~ v )  } • v  =  0  

= 7 It k  JS=Sy Is 1 

X { W  fy h " V ' ^ ~ VLy ~ v ***= * y 5.i 

(i = 1, 2} ..m) 

m 
where: x(s k) = I -qx 4^(ak> 5.2 

i 

m 
and: y(sk) = 1 ^(sy) 5.3 

1s~~J- If 
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Consideration of the free body diagram of a single rotor shows that, 

for an aligned system, no forces act upon the shaft in the horizontal 

direction and so: 

4 (x - x. ) > (y - y« ) 
bk  bk >s=sk 

= 0 

fy 
(x - xb ) 3 (y - yh )\ = W k , (k = I* 2, ...j n) 

fc k 

y 5.4 

where W k is the bearing load at the kth station. It may thus be seen 

that, because = v« = 0, the equations for the horizontal directior 
J 2 

are satisfied if the shaft lies in any vertical plane, i.e. if: 

q = a = = q - 0 5.5 
tb r? lb . U / 

3 4 m 

The plane OZI is chosen here, so that: 

x(s) - 0 5.6 

and hence: q - q = 0 5.7 
* rf 

X1  x2 

The equations for the vertical direction may be written as: 

n 

I { W - v 2 q = S t , (i = 1i 777) 5.8 
k—1 is 

This is a set of m linear equations in (m+n) unknowns {q , ..., q , 
y l 772 

J*^, ..., « further equations are required. 

(n-2) equations arise from the requirement for zero bending moment 

and shear force at the (n-2)/2 couplings. Expressions for the bending 
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moment and shear force at any station along the shaft may be obtained by 

differentiation of the modal series, but this approach will not be used 

here for the following reasons. Firstly, as discussed by Bishop & Johnson 

(1960), the rate of convergence of the modal series becomes progressively 

worse each time it is differentiated, and so a truncated series, which 

converges adequately for displacement, may give rise to serious errors for 

the bending moment and shear force. Secondly, it is difficult for 

realistic rotors, whose modes are found by approximate methods, to obtain 

accurate estimates of the derivatives required. 

Instead, the desired equations are obtained by "resolving and taking 

moments" at each coupling, or more formally by integration of the static 

version of equation 2.12 (only the equation for the vertical direction is 

considered), which gives: 

s . 
n o 
I H(sj - sk) W k = St f mt(T\) dr\ 

k "1 o 

n 
S ' r 
d X R(s . - sk) W k = St J / m^(r\) dx\ d£, 

k=l  y o o 

U = 1; 2; (llr2)/2) 

y 5 .9 

where: H(s. - sk) 

R(s. - sk) 

- { 

= { 

1 

0 

s • - s 
k 

'  1 f  s3  <  Sk 

, i f S j > sk 

'  i f  s3  <  Sk 

'  i f *3  >  Sk 

5.10 

5.11 

and s . is the non-dimensional displacement along the shaft to the jth 

coupling. 

The final two equations required are obtained by fixing the vertical 

displacement of two stations along the shaft in order to orientate the 
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whole system with respect to the datum ozxx. For this purpose, the 

displacement of the shaft at bearing stations 1 and n is set to zero, i.e. 

n 
I q 6.(sk) = 0 , k = 1, n 5.12 

yi v K 

Equations 5.8, 5.9 and 5.12 give a system of (m+n) linear equations 

in (m+n) unknowns, which may be solved to yield the bearing loads Wy and 

the aligned static modal coefficients q for the shaft. 
y. 

Once the displacement of the aligned shaft and the bearing loads are 

known, the required position of the bearings relative to the datum may be 

found. This may be achieved for each bearing by solving the two 

simultaneous non-linear equations 5.4 lor the two unknowns x^ and y^ . 
k k 

The position of the bearings relative to the datum when the system is 

aligned will be denoted by (x^ ) and (y^ ) a and the misalignments of a 
k k 

bearing from the aligned condition, denoted by bx* and Ay h , are defined 
°k  Dk 

as: 

bx, - x* - (x* 7 5.13 
h h  h k a 

A \ = \ " \)a 5 , 1 4 

(If desired, the whole system may be reoriented by suitable 

modifications to q , q , q and q , so that the centreline of the two 
X1  x2  yl  y2 

end bearings, 1 and «, lie on the datum. The bearing locations x-̂  and 
k 

y^ must be adjusted accordingly.) 
k 
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5.3 THE EQUILIBRIUM POSITION OF THE ROTATING SHAFT 

(It should be noted that, in the matrix equations appearing in this 

and the following sections, { } denotes a column vector and [ ] a square 

matrix.) 

The equilibrium position of the rotating shaft for a given set of 

bearing alignments (x. , y % ) is governed by equations 5.1 which, for 
bk  bk 

convenience, are re-ordered in the following manner: 

« 

i 
k=l I W  fx > " v f 2  qx  = h  =  0  

( i = 1 ; 2 ; 772 ) 

I { W fyj - \ - hi  st = H m H -  0  

n 

I 
k-1 

(V = 1; 2; . . . Til) 

t 5.15 

and may be written in matrix form as: 

{H(iq} )} = 0 5.16 

where: 

w . 

.1 
lx 
m 

t yl 

% m 

5.17 

and the subscript { } Q is used to denote the equilibrium state. 

Equation 5.16 is a system of 2m non-linear algebraic equations, in 

terms of the 2m static modal coefficients"'-^} , which may be solved 



- 80 - , 

iteratively using the Newton-Raphson technique, that is: 

where { q i s the pth estimate of the solution, and [j] is the Jacobean 

matrix whose elements are given by: 

dH. 
J.. = 5.19 

V 

The matrix [j] is discussed in more detail in the next section. 

The initial estimate of the solution vector { q w a s obtained by 

choosing the first n modal coefficients for each direction so that the 

shaft passed through each of the n bearings at a suitable eccentricity. 

This is achieved by solving the following two sets of n simultaneous 

linear equations: 

n 
I q $.(sv) = xh + a , (fc = 2, n) 5.20 

n 
I q = yh +b , (k = 19 2, n) 5.21 

for (q * q 7 and (q 3 ...3 q ); the remaining modal coefficients 
X1  xn  yl  yn 

are set to zero. For most alignment conditions, convergence was achieved 

if a - 0.5 and b - -0.5. Occasionally, for extreme misalignment of the 

bearings, the solution procedure failed during the first few iterations as 

the shaft was predicted to lie outside one of the bearings. This 

difficulty could normally be overcome by suitable adjustments to a and b. 

The iteration procedure was continued until the elements of {q} had 

converged to a desired accuracy. 
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5.4 THE STABILITY OF THE EQUILIBRIUM STATE 

The stability of the equilibrium position of the shaft may be 

determined from the linearised form of equations 2.74. 

Firstly, after discounting the unbalance terms, equations 2.74 are, 

for convenience, re-ordered as follows: 

du 

dx 

x. n 

~  = I { W  fx } ~  2 y U x "  Vf  2  qx  =  Gi 
k=l  %  K  xk  xi  7 i  xi * 

(i = 2, m) 

du 

V ~ " 1 < W f y j " V " V % ~ 7 = 
dx 

(i = 2S .... j m) 

dq 
X . 

= u = G. . 
i a;. 2m 
ax % 

dq 
yf. 

dx 
= u = G„ . 

y. 3m+v 

(i - Is 2j ....jin) 

(i - ly 2y . . . . y m) 

> 5.22 

This system of equations may be written in matrix form as: 

= {Gdu})} 5.23 

where: 

{«} = 

w 
X1 

u 
X 
m 

u 
y.i 

u 

*  qx X1 

lx m 

lHi 

y. m 

5.24 
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By expanding the non-linear functions G.ttu}) about the equilibrium 

position iu) 9 this system of non-linear ordinary differential equations 

may be approximated to by a system of linear equations with constant 

coefficients: 

diu} 
~F 

p ] (w> 5.25 

where the (4m x 4m) matrix p ] has elements: 

9G. 
A.. = — 

Zu. 
3 

5.26 

and: {u} = {u} - {u}Q 5.27 

Equation 5.25 is valid for small excursions of the shaft about the 

equilibrium position. From the theory of ordinary differential equations 

with constant coefficients, it is known that if the eigenvalues (x^) of 

p ] have negative real parts, i.e. if: 

Max Re (X.) < 0 5.28 
v 

then any small disturbance the shaft is subjected to decays and hence the 

shaft is stable at its equilibrium position. For the large order system 

under consideration here, the most practical method for assessing the 

stability of the system is to calculate all the eigenvalues of p ] and 

inspect the sign of the real parts. In this work, a NAG (1973) library 

subroutine suitable for real non-symmetric matrices was used to find the 

eigenvalues of p ] . 

The matrix p ] will now be considered in more detail. To develop 

p ] , the derivatives > 9 4 / 9 c ^ » e t c " a r e required. From the 
x3 3 
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modal expansions (equations 2.61 and 2.64) it may be shown, by applying 

the rules for differentiating a function of a function, that: 

34 s 

a 

% 
= A _ £ 

3 *x 

5.29 

34 = 

a 

H 
- A x 

3 *x 
5.30 

% = 9V % 
J 9 y 5.31 

9/ 
x z \ 

9 / 
5.32 

9f y = 
x. 

3 

3 / 
= <f> JJL 

3 *x 
5.33 

9/ 
y = He. 
3 

- t.llL 
3 *x 

5.34 

9/ 
y = 

8V 
*3 

- • n 
3 9 y 

5.35 

9 f 
y = 
y3 

9/ 
: <f> —PL 

3 Zy 
5.36 

where -df^/dx, -Zf^/Zx, ..., -zf^ty are the eight stiffness and damping 

coefficients for each bearing, and may be obtained by numerical 

differencing. It should be noted that the stiffness and damping 

coefficients generally given in the literature (for example, those given by 

Smith (1969) for a short bearing) are for bearing supporting vertical loads. 

In a misaligned multi-rotor system,, the bearing load vectors are seldom 

vertical and so these coefficients are either not valid or, for the special 

case of axisymmetric bearings, must be modified before they may be 

employed. Such difficulties do not arise if the coefficients are found 
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by numerical differencing. 

Because of the order of equations 5.22, the matrix [A] may be 

conveniently partitioned into a number of square submatrices: 

M -

M l j 

M | M M l M 1 _ _ _ 

pa [0] 

5.37 

where the (m x m) matrices [c^J, p ], etc., have the elements: 

n 3 f 

li { } ^ 
k=l v 3 Qx s-

5.38 

w 3/ 
C = I 4 • <f> • —} 
^id k=l *  3 Qy s k 

n a / 

= I K - V z/0? V ^
 3 Qx s k 

n a / 

k=l  3 ay sk 

n *fx 

n a f 
= I it' V } 

~*»tj k=i  1 * ' 

yx 
ij k=l dx s k 

n a f 

k=l  v  3 Qy sk
 % 3  

5.39 

5.40 

5.41 

5.42 

5.43 

5.44 

5.45 

and [j] is the (2m x 2m) unit matrix, and [0] is a (2m x 2m) zero matrix, 
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Finally, returning to the problem of finding the equilibrium position 

of the shaft discussed in the previous section. The Jacobean matrix [j] 

required in the Newton-Raphson procedure is given by: 

M = 
^xx^ P U xy-

L yyJ 

5.46 

where the partial derivatives 'BfjBx, Bf^/By, Bf^/Bx and Bf^/By are 

evaluated not at the unknown equilibrium position, but at the latest 

estimate of the solution {q} . 
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5.5 THE FORCED RESPONSE OF THE LINEARISED SYSTEM 

If the equilibrium position of the shaft is stable, then equations 

5.25 may be used to determine the response of the linearised system to 

unbalance excitation. For this, equations 5.25 are re-synthesised to a 

system of 2m second order differential equations and the terms for 

unbalance re-introduced. That is: 

^ = M * M { q } + R e W * 
dx 2 

5.47 

where: {q} = {q} - {q}Q 

(see equation 5.17 for the definition of {q}) 

5.48 

M = 
a J ! ̂ xy^ 

• -> 

yy-

5.49 

M = 
L tiyWyyi. 

5.50 

{Q } c 

Q 
fl 

Qr 
m 

Q 
> 

?2 

e: 
m 

5.51 

<«s
} 

Q. 
?2 

- < 
m 

-Q 
h 

-Qv 
m 

5.52 
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The steady-state response of a linear system is at a single frequency 

if the excitation force contains a single frequency. Therefore, assume 

the steady-state solution of equation 5.47 to be of the form: 

IX 
(qy = { % } +±{qT}} 5.53 

where the vectors (qp) and {q^.} are not functions of t. By substituting 

equation 5.53 into 5.47 and equating real and imaginery parts, the system 

of 4m linear algebraic equations: 

¥i + M ] -[c] 

™ e T \l*T+l*l 

r 

J 7 x > 

5.54 

is obtained. The solution of equations 5.54 yields iq p} and {q^.} which, 

if the real part of the assumed solution 5.53 is taken, give the motion of 

the shaft at any station due to the unbalance excitation, i.e. 

x 
m _ m _ 

(s) = x(s) - x(s) - ( \ q-p cos T - ( J qT 4J(s)) sin x 5.55 
O . ft xl . If « •) J . m 1 

if=l if 1=1 i 

_ 171
 —

 171
 — 

y(s) - y(s) - yJs) = ( T qD 4>-(s)) cos x - ( \ qT <j\-(s)) sin x 5.56 
O M ~ F L . I L . * -L , » 1 

1=1 m+i 1=1 m+i 

From equations 5.55 and 5.56 it may be seen that the shaft describes an 

ellipse about the equilibrium position ( x Q , yQ). A scheme is presented in 

Appendix 2 for determining the magnitude and orientation of these elliptic 

orbits at a given shaft station. 

As an example of the application of this method, the response of the 

two rotor system supported upon four identical short journal bearings is 

shown in Figure 5.1. The system was aligned and the shaft had a uniform 
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Figure 5.1: The response of the aligned two rotor 

system to a uniform unbalance 

distribution 
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distribution of unbalance along its length, i.e. Q v = 0.1, 

Q = ... = QR = Q = ... = Q = 0 . When operating at design speed 
51 %m n7 \ 
(w^), the equilibrium eccentricity ratio of the bearings is given by 

e Q = 0.62, the lowest flexural free-free natural frequency of the shaft 

v- = 0.2, and the stability parameter s. = 0.4. Eight modes were used 
h t 

in the modal expansion (i.e. m = 8) and external damping was ignored. It 

should be noted that, as the system is symmetric, the behaviour for the 

first rotor, shown in Figure 5.1, is identical with that predicted for the 

second rotor. The system has two resonances in the speed range shown, 

one at co/iô  =0.55 and the other at w/u^ = 0.7. Between these two speeds, 

the shaft exhibited "backward" procession. 
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5.6 THE "PINNED" NATURAL FREQUENCIES OF A MULTI-ROTOR SYSTEM 

It is well known that the lowest natural frequency of a single rotor 

system when "pinned" (simply supported) at its bearings is an important 

parameter governing the vibrational behaviour of the system. Whether the 

pinned natural frequencies of a multi-rotor system assume a similar 

importance was a matter to be investigated, but for this purpose it was 

necessary to have a means of determining these frequencies. 

The method proposed for doing this was to replace the journal bearing 

forces in the linearised system by simple springs, i.e. 

Xi 
- K x 

s 
5.57 

V 5.58 

and to increase K , the spring constant, until the lower natural frequencies 
s 

of the system had converged to the corresponding pinned natural frequencies. 

If, for this situation, the unbalance terms in equation 5.47 are omitted, 

then the equations for the X and Y directions are decoupled and identical. 

The equations for the X direction are: 

d H q x } r . 5.59 

where: 

V = 

lx. 

x. 
m 

5.60 

and the elements of fej 
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The (square root of the) eigenvalues of the symmetric matrix p V ] yield 

the natural frequencies of the system. 

The method was tested by finding the first four natural frequencies 

of a uniform beam pinned at distances 0, V , and L along its length. 
o o 

An exact solution to this problem is given by MacDuff & Felgar (1957). 

The magnitude of K was increased until the first four natural frequencies 
o 

had converged to five significant figures. The errors resulting from 

representing the shaft by 8, 10, 12, 14 and 16 free-free modes are given 

in Table 5.1. 

TABLE 5.1 

Percentage errors in the calculation of the 

pinned natural frequencies (a? ) of a three 
Pi 

span continuous beam 

Number of 
Free-Free Modes 

to 
Pi 

a) 
P2 

a) 
Pd 

0) 
P4 

8 0.85 1.50 1.66 2.12 

10 0.39 1.49 1.28 1.13 

12 0.21 0.77 1.26 0.62 

14 0.12 0.60 0.08 0.37 

16 0.08 0.60 0.05 0.24 

Predicting the pinned natural frequencies of a shaft using the free-

free modes is an extreme test for the modal method, but it may be seen 

from Table 5.1 that good estimates of the pinned natural frequencies were 

obtained by employing only eight free-free modes (two rigid body plus six 
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flexural). 

The first four pinned natural frequencies of the two rotor system 

(Figure 4.1), and their associated mode shapes, were found using the above 

method and are given in Figure 5.2. 
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5.2: The first four pinned modes and natural frequencies 

of the two rotor system 
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CHAPTER 6 

TWO ROTOR SYSTEM SUPPORTED 

UPON SHORT CIRCULAR BEARINGS 

6.1 COMPUTATIONAL PROCEDURE 

6.1.1 Numerical Integration of the Equations of Motion 

A computer program was developed, which employed a NAG (1973) 

library subroutine based upon the Runge-Kutta-Merson method, to integrate 

the equations of motion (2.74) for the flexural vibrations of a multi-

rotor system. For a given interval over which the equations were to be 

integrated, the NAG subroutine automatically adjusted the size of the time 

steps within the interval so that a specified bound on the local truncation 

error was not exceeded. This enabled the results to be obtained at 

uniform time intervals without recourse to interpolation. The short 

bearing approximation was used to obtain the bearing forces f and f ; 
x y 

these are given, via equations 3.21 and 3.22, by equations 3.26 and 3.27. 

The computer program was tested by predicting the symmetric 

motion of a uniform, rigid shaft supported at its ends in identical 

bearings. (Such a system is simply modelled by setting m = 1 and n = 2 

in equations 2.74.) The trajectories resulting from giving the balanced 

shaft a small displacement from its equilibrium position were found either 

to converge on the equilibrium position or tend to closed orbits of finite 

amplitude, depending upon whether the operating state was predicted by 

linear theory to be respectively stable or unstable. As a further check, 

a number of the whirl orbits given by Holmes (1970) for unbalance 

excitation were reproduced. 

Unless otherwise stated, the initial conditions used in the 

solution procedure were, for a balanced shaft, those corresponding to 
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giving the shaft a small rigid body translation from its equilibrium 

position but without imparting a velocity to it, i.e. 

a = f<7 J + a 6.1 

where 0.05 < \a\ <0.1 and 0.05 < \b\ < 0 . 1 . For a shaft experiencing 

unbalance forces, the (rotating) shaft was initially at rest at its 

equilibrium position. Also, unless otherwise stated, eight modes were 

used in the modal expansion, i.e. m = 8 in equations 2.74. 

6.1.2 Frequency Analysis 

Plotting the steady-state orbit of the shaft centre, as has 

been the practice in much previous work, only provides a limited amount 

of information about the nature of the motion, especially when the orbits 

are complicated due to the presence of a number of frequency components. 

The use of "time markers" to determine the frequency of the motion may lead 

to confusion if more than one component is present. Therefore, frequency 

analysis, which is widely used as a diagnostic technique in practice, was 

used to determine the constituents of the predicted steady-state motion. 

For this, a NAG (1973) subroutine based upon the fast fourier 

transform algorithm was employed to analyse the shaft centre displacement 

in the X and Y directions, at the six stations 1, 2, 3, 4, A and B shown 

in Figure 4.1, once the steady-state, determined by inspection of the 

trajectories at these stations, had been attained. The accuracy with 

which the frequency of each component may be determined, i.e. the 

resolution, depends upon the sample length, T, that is upon the length of 
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the period of analysis. However, consideration had to be given to the 

computer time required to generate the data. As a compromise, a period 

of 64 revolutions of the shaft was chosen which, whilst not making 

excessive demands upon computer time, gave an accurate equivalent to 

±0.39 Hz for a shaft rotating at 50 Hz. 

For frequency analysis, the sampling frequency, N/T, where N 

is the number of intervals into which the sample is divided, has to be at 

least twice the frequency of the highest significant component appearing in 

the signal. Initially, to ensure this, a very high sampling frequency of 

256 to (i.e. 256 data intervals per shaft revolution) was used, but later, 

as the highest significant component in the motion was always found to be 

less than 4 to, the sampling frequency was reduced to 16 co - which still 

allowed for a margin of safety. It should be noted that fast fourier 

transform algorithm requires the total number of data intervals (N) to be 

an integer power of 2, i.e. N = 2 \ i = 2, 4y ... . 

The sample length (T) was chosen to be an integer number of 

shaft revolutions so that a synchronous component present in the motion 

due to unbalance excitation (this being the only component whose frequency 

may be predicted a priori) would be a multiple of the base frequency 1/T 

and its amplitude given directly from the frequency spectrum by the 

component at 64/T. Determining the amplitude of a component whose 

frequency does not coincide with a multiple of the base frequency requires 

further discussion. 

Consider the frequency analysis of a signal containing a 

single component of amplitude x and frequency ft. If ft is not an exact 

multiple of the base frequency, 1/T, then the signal appears as more than 

one component in the frequency spectrum. The maximum component occurs at 

the frequency (p/T) that is closest to ft, but the amplitude of this 



component, denoted by a , may considerably under-estimate the signal 

amplitude x- For the worst situation when the signal frequency falls mid 

way between two spectrum frequencies, the maximum component has an 

amplitude of only 0.64 x- However, from Parseval's theorem (see Sneddon 

(1961)), it is known that the sum of the squares of the components in the 

spectrum is equal to the square of the amplitude of the original signal. 

This gives a method for determining the signal amplitude x From the 

components in the spectrum. In practice, it is not necessary to carry out 

the summation process over the whole spectrum as, after only a small number 

of components on either,side of the maximum, the contributions become 

negligible. By considering only seven components, i.e. 

x - V a p - S +  ap-2  +  ap-l  +  ap 2  +  apil  +  apl2
 +  apls  6- 3  

the amplitude, for the worst situation, is not under-estimated by more 

than 3%. It follows from the last argument that the correction formula 

may also be used for signals containing more than one frequency component 

if the frequencies are well separated with respect to the resolution. 

6.1.3 Parameters Governing the System 

Misalignment of any of the bearings in the two rotor system 

may, by translation and rotation of the whole system, be reduced to an 

equivalent misalignment of the. two central bearings. Even with this 

simplification, it is impractical to make a complete study of all possible 

misalignment conditions. For this reason, the investigation was 

restricted to the upward vertical misalignment of bearing number 2. 

In order to reduce the number of variables needed to describe 

the system, it was further decided to make the four bearings identical and 
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so for each bearing e^/C = 1. For this situation, the system, with the 

exception of the unbalance distribution, is uniquely described by the 

following non-dimensional parameters: 

v« : lowest flexural free-free natural frequency of the 
7 3 

coupled rotors 

(e Q) : equilibrium eccentricity ratio of the bearings for 

the aligned system 

Sj. : stability parameter 

Ay^ : vertical misalignment of bearing number 2 
2 

(y : external damping factor) 

For the low pressure turbines of a typical 500 MW turbogenerator, 

0.6 < (s ) a < 0 . 7 and S^ = 0.4; the value of the other parameters will be 

discussed later. 

The non-dimensional pinned natural frequencies v n of the 

system are given by: 
K 

to to to,, to 

7  f8  pi c , 
v = = = v« b .4 
p . w„ to« j -

w f3 w f2 - 3 

and so, from Figure 5.2: 

' 1 6.5 
v w 3.64 Vrt 

• Pi Pi ?3 

The reciprocal of v will be used here in order to conform with the 
Pi 

practice of previous literature. 
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6 . 2 I N I T I A L I N V E S T I G A T I O N 

For the first series of tests, the first free-free (flexural) natural 

frequency of each rotor of the two rotor system was made to coincide with 

the first free-free (flexural) natural frequency of a typical low pressure 

turbine from a 500 MW generating set. This gave v„ = 0.2 and to/to = 1.37. 
J 3  P1 

The shaft was considered to be perfectly balanced and not acted upon by 

external damping. 

Examples of steady-state orbits obtained for misalignments of 

Ay h = 0 . 5 and Ay h = 2.0 are shown in Figures 6.1 and 6.2. For bearing 

stations 1, 2, 3 and 4, the shaft centre orbits are shown within the 

bearing clearance circles, whilst for the mid-span stations A and B the 

small circles indicate, for comparison, the size and position of the 

clearance circles.of the two end bearings. The small vertical crosses 

show the equilibrium position of the shaft and the diagonal crosses give 

a single time marker. 

It may be seen that, for both alignment conditions, the bearing 

exhibiting the largest whirl orbit was the deloaded bearing number 3. 

Frequency analysis revealed that the fundamental steady-state whirl 

frequency, to , occurred at 0.5 to. Whirl frequencies lower than this 
w 2 

were not induced for any misalignment of'bearing number 2. 

Operational experience on large turbogenerators has shown that steady-

state whirl occurs at frequencies in the range 0.4 to - 0.5 to; but usually 

towards the lower end of this range. To induce whirl in the t./o rotor 

system at frequencies lower than 0.5 to, and closer to those occurring in 

practice, the flexibility of the shaft had to be increased until the 

rotational speed was greater than the first pinned critical speed of the 

system, i.e. to/to > 2. For this situation, the whirl developed at a 

frequency approximately equal to w , but the mid-span amplitude grew 
Pi 



Figure 6.1: The steady-state whirl orbits for the misaligned two rotor system. Balanced shaft, by b = 0.5, 
' 2 

v f = 0.2, (e 0) a = 0.62, S t = 0.4, y = 0.0. 



I 

0 

1 

Figure 6.2: The steady-state whirl orbits for the misaligned two rotor system. Balanced shaft, A2/, = 0.2, 

(e ; = 0.62, S, = 0.4, y = 0.0. 
0 a t 
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indefinitely whilst the journals moved in approximately circular orbits 

very close to and approaching the bearing surfaces. An example of a 

shaft exhibiting divergent whirl is shown in Figure 6.3. 

The above results revealed that the behaviour of the two rotor system 

supported upon short circular bearings was, even for a misaligned system, 

essentially the same as that reported by Someya (1963-64) for a single 

rotor supported upon finite width axisymmetric journal bearings. That is, 

when the shaft is operating below twice its first pinned critical speed 

and the system becomes unstable, steady-state whirl orbits are obtained at 

a frequency of 0.5 <o. But if the speed is in excess of twice the first 

pinned critical speed, then whirl develops at a frequency below 0.5 to, at 

a frequency approximately equal to the first pinned natural frequency, but 

steady-state motion is not obtained as the amplitude of the shaft 

continuously increases. This was explained by Someya, who argued that if 

the journal moves in a concentric circular orbit within a circular bearing 

at a frequency below half the rotational speed of the shaft, then the oil-

film forces continuously supply energy to the vibrating shaft and external 

damping is necessary to dissipate this. (It may be seen from equations 

6.21 and 6.22 for a short circular bearing in which the journal executes a 

circular orbit, that if the precession rate i (= v ) < 0.5 then the 

tangential force f^ is positive for all eccentricities, which for forward 

precession acts in the direction of motion and therefore "drives" the 

vibrating shaft.) It, therefore, appeared to be necessary to include a 

source of external damping in the rotor model in order to simulate the 

steady-state whirl exhibited by turbogenerators. Before considering this 

further, a number of interesting observations made during the above tests 

will be briefly discussed. 

Firstly, i t may be seen from the time markers on Figures 6.1 to 6.3 



o 
CO 

Figure 6.3: The shaft trajectories for the misaligned two rotor system. Balanced shaft, ty b = 0.5, 

v = 0.128, (zQ) a = 0.673, S t = 0.4, y = 0.0. 
J 7. 
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that, for both v„ = 0.2 and = 0.128, the self-excited motion of the 

shaft assumed on anti-symmetric "mode" shape. This anti-symmetric 

behaviour was also observed when the system, operating above twice its 

first pinned critical speed, became unstable in the aligned condition when 

the system was nominally symmetrical about the coupling; and even when 

the shaft was acted upon by the uniform unbalance distribution, Q = 0.1, 

*1 
QR = ... = Q,. = Q = ... = Q = 0 . (It should be added that, if for the 
h  Km n2 n/72 

aligned condition, the initial conditions were symmetric, then the anti-

symmetric large amplitude motion took considerable time to develop as it 

had to grow from small asymmetries in the system due to round off errors. 

Therefore, a small asymmetry was added to the initial conditions for the 

aligned system in order to accelerate the development of the instability.) 

Secondly, if the motion was such that e > 0.9 in any of the bearings, 

then the equations of motion became stiff, which required very small time 

steps to be taken by the solution procedure, and hence increased the 

computational costs. Even using a method due to Gear (1971) suitable for 

systems of stiff equations; it became impractical to solve the equations 

of motion for more than a few revolutions of the shaft if z > 0.95 in any 

of the bearings. 
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6.3 VERTICAL SHAFT MODEL 

6.3.1 Introduction 

Tondl (1965) in an analysis of a simple two bearing system, 

showed the need for external damping to limit the rotor amplitude and give 

steady-state motion. In order to gain a better understanding of the two 

rotor system, it was decided to extend Tondl's analysis to treat the case 

of a vertical shaft supported by more than two bearings, and was to be 

based upon the modal method. Although this analysis assumes circular 

motion (a reasonable assumption for a vertical shaft supported by 

concentric circular bore bearings), when a horizontal rotor executes large 

amplitude vibration, the centrifugal fcrce acting on the rotor is much 

greater than the force due to gravity and the motion is approximately 

circular. Therefore, useful information for the horizontal shaft . 

situation could be inferred from the computationally simpler vertical 

shaft system which required only the solution of a system of algebraic 

non-linear equations. 

6.3.2 Transformation of the Modal Equations of Motion 

From equations 2.66, 3.21 and 3.22, the equations of motion 

for a balanced, vertical shaft are: 

n 

V + 2 y ix + v f 2  qx  = £ 
xi  xi 4  xi k=l 

n 

% + q + v f
 2 q = I 

yi  yi  7 i  yi k=l 

n 
f Yi  Jx 

<t>- f 

, - t }k k=l 

n 

i = I 
k k-1 

H 0 0 3 * " 4 s i n ^ 

4 r4 6in ^+ 4 ^ 
'k 

y 6.6 

(i = 1, 23 m) 

By defining: 
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p i = 6 , 7 

1 47 ̂  

where = / T , the 2m equations of motion may be written as the 2m complex 

equations: 

h + h +  vf H = I 
* *  7i * k=l 

6.8 
sk 

It will be assumed that the n bearings are concentric and therefore 

x h - y-h = (As i n section 6.1.3, it is assumed, for simplicity, that 
Dk  bk 

the n bearings are identical, and so for each bearing c^/C = 1.) 

Equations 6.8 are to be transformed by making the substitution 

p. .= (av (x) + i aT (x)) e 6.9 
1 R . ~~ JL • 

1 1 

which, it should be noted, does not involve any assumption about the motion 

of the shaft. From this and from equations 2.61, 2.62, 3.11, 3.12, 3.13 

and 6.7, it follows that for the kth bearing: 

x + iy (AR, + i AJ I v „ t 
Vi) . . . . —  v R ~ I — W r m 

= oos \p + i sin - = e b. I u 

in which: = ^ A 2 + A 2 6.11 

m 
where: AR = I ART 6.12 

i 

m 
and: Aj = I a p 6.13 

i=l i 

It also follows from equations 3.14 and 3.15 that: 
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e = 
AR aR +  AI  Ai 

6.14 

and: 
AR Ax A j Ar 

6.15 

where: 
m 

AR * I HR. W 
1=1 ^ 

6.16 

and: 
m 

Ai = l  &i. W 
1=1 1s 

6.17 

Substituting 6.9 and 6.10 into 6.8, and separating into real and imaginary 

parts leads to the following system of 2m ordinary differential equations 

in terms of aR and ax : 
i i 

2Y &B + 2v„, ax+ hJ- - v f Z ) aR + 2y vtf « 
Is Is * 1s Is 1s 

n 

* I 
k=l 

(AR f , ~ A I V 
= OR. 

sk * 

a T . 
1s 

&R.~
 2 Y  hl7 ^ v

w AR.+  ( vw 2 ~  vf. 2 ; A I . 

1s 1s 1s 1s 1s 

n 

* I 
k=l 

( AI te  +  kR V 

s k 

(i = 19 2y m) 

y 6.18 

6.3.3 The Equations for Circular Motion 

It will now be assumed that, at all stations, the shaft 

executes circular orbits, concentric with the bearings, at a non-dimensional 

angular frequency, v . It, therefore, follows from equation 6.9 that 



- 108 -

aR ^  aR ^ anc*  aI ^  aI a n c* s o eclua'tions 6.18 reduce to: 

*i  ( AR U - h V 
f v / - aR + 2y v u £ 

n 

I 

i k=l 

n 

~  aR. + <V ~  vf. 2 )  aI. + X 
v  J v v k-1 

J . ' "R. -  hR. 
sk 

= 0 

\  ( Ai h  +  AR ty 
•
 h I . =

 0 

V 

6.19 

which is a system of 2m non-linear algebraic equations in the (2m+l) 

unknowns (an , ..., an j aT 3 ..., aT s v,). However, as equations 6.18 
ft* n 1 - 1 W 
1 m l m 

are autonomous, the phase of the shaft relative to a fixed datum is 

arbitrary, but for the purposes of finding a solution, the phase must be 

fixed. This may be achieved by fixing the phase of a single mode, and so 

for the pth mode set: 
al = 

6.20 

which, hence, reduces the number of unknowns to 2m, i.e. 

3 • • • 3 3 &J 3 • • • 3 &J- 3 V ^ J CLJ- J 3 ) • 
1 m l v-1 p+1 m 

For each bearing, e = 0 and ^ = and so the oil-film forces 

for a short circular bearing (see section 3.2.3) are: 

f = - 3 (0.5 - v ) 
® w (1 - e 2 ) 2 

6.21 

IT e 
f , = 3 (0.5-v) — 
*  W 2 (1- e 2)*/ 2  

6.22 

6.3.4 Solution Procedure 

Inspection of equations 6.19 reveals that the vertical two 

rotor system is uniquely described by the non-dimensional parameters, 

vn , 3 and y. In contrast to the horizontal system, the bearing 
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parameter 3 (defined by equation 3.20) is used to describe the bearings 

instead of the equilibrium eccentricity ratio e Q , as use of the latter is 

not meaningful for a vertical system. 

Equations 6.19 were re-ordered and solved, using the Newt'on-

Raphson method, in a similar manner to that described in section 5.3 for a 

static shaft. The partial derivatives Zh„ /Za„ , Zh^/ZaT , 97z n/9v,, 
xi . xi . xi. JL . xi. W 
1 3 1 3 l 

etc., needed to form the Jacobean matrix are given in Appendix 3. Because 

equations 6.19 are non-linear, they may, for a given set of system 

parameters, possess more than one solution, the one converged on by the 

solution procedure being determined by the initial estimate of the solution. 

For the two rotor system, three types of solution were found; 

the shape of the shaft for each is shown diagrammatically in Figure 6.4. 

These solutions were obtained by using, as initial estimates, the three 

lowest mode shapes (suitably scaled) of the coupled rotors when supported 

upon simple springs of typical bearing stiffness, and with the whirl 

frequency initially set to a value in the range 0.3 < v^ < 0.5. It should 

be noted that, for all three types of solution, the shaft does not lie in 

a single plane but "twisted" in three dimensions. Higher order solutions 

than the ones found may exist but these were not sought. 

Two difficulties were encountered whilst attempting to find 

examples of each solution type. First, during the first few iterations, 

the solution procedure sometimes failed because the shaft was predicted to 

be outside one, or more, of the bearings. This problem was overcome by 

under-relaxing the solution procedure so that only a fraction (sometimes as 

low as 10%) of the predicted change was made to the solution vector at 

each iteration. Secondly, the solution procedure occasionally convered on 

the trivial solution an = ... = = aT = ... = aT = 0, but this could 

xi 1 XI J. i JL̂  

1 m l m 
usually be prevented by solving the modified system of equations: 
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c ) 2 n d S Y M M E T R I C S O L U T I O N 

Figure 6.4: The approximate shape of the shaft for the three types of 

solution found 
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y 6.23 

, (i = ly 2y ... J m) 

in which p was chosen such that aR £ 0. 

P 

Once an example of a solution type had been obtained, all 

solutions of that type but for other values of the system parameters were 

obtained by changing the value of the parameters in small steps and using 

a known neighbouring solution as the initial estimate of the required 

solution. 

6.3.5 Stability of the Circular Motion 

The circular motion of the shaft is stable if the shaft, when 

subjected to a small disturbance sufficient to cause it to deviate slightly 

from its circular orbit, returns to its original orbit. During the motion 

resulting from such a disturbance, the modal coefficients aR and a.j. are 
i i 

not constant, and so the full equations of motion (6.18) must be 

considered. The stability of the orbit may be assessed by linearising 

equations 6.18 and evaluating the eigenvalues of the resulting linear 

system at a point on the orbit. For, if any of the eigenvalues have 

positive real parts, then the small changes to aR and ap , resulting from 
i i 

the disturbance, grow and hence the orbit is unstable. 

The procedure for linearising equations 6.18 and finding the 

H R. 

h 
R. 
1 

a 
R 

= 0 

h I. 

h 
I. 

a 
R 

= 0 
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eigenvalues was similar to that described in section 5.4; the required 

partial derivatives 3g n /3d„ 5 /3a„ , etc., are given in Appendix 3. 
XI . XI. XI. XI. 
% Is 1s Is 

It should be added that, as the phase of the shaft is arbitrary, the 

linearised system possesses a zero eigenvalue. Although, as a result, 

a D and aT may be permanently changed by a disturbance, the circular 
xi . JL . 
1s Is 

orbit, as a configuration, is unaltered and only the phase of the shaft 

is modified. Therefore, the zero eigenvalue was not considered when 

assessing the stability of the motion. 

6.3.6 Properties of the Vertical Two Rotor System 

The behaviour of the vertical two rotor system was investigated 

for a range of shaft stiffnesses. For this the bearing parameter 3 = 0.05 

(which gave ( s ) = 0.673 for the horizontal system when S^ = 0.4) and the 

external damping factor y = 0.025. For the anti-symmetric motion, a 

second level of damping, y = 0.01, was also considered. Ten modes were 

used in the modal expansion, i.e. m = 10. The effect of shaft stiffness 

upon the whirl frequency, the mid-span amplitude and the amplitude at the 

bearings is illustrated in Figures 6.5 and 6.6. Only the results for 

stable circular motion are shown. 

It may be seen that the symmetric motion of the first type is 

only stable for very stiff shafts, i.e. for low values of w/w ) and, as 
P1 

might be expected for a stiff shaft, the amplitude at the mid-span is 

almost the same as that at the bearings. The whirl frequency is slightly 

less than 0.5 w but by not more than 0.05%. It should be noted that, 

because the bearing forces contain the factor (0.5 - v^J, they would 

disappear if v^ = 0.5. This also explains why the amplitude at the 

bearings is always large when the circular motion has a frequency close 

to 0.5 a). 
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Figure 6.5: The whirl frequency and mid-span amplitude of the 

vertical two rotor system ($ = 0.05) 
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c o / c o p i 
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Figure 6.6: The amplitude at the bearings of the vertical two 

rotor system ($ = 0.05) 
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As the shaft stiffness is decreased, a region is reached where 

stable circular motion does not exist. The most likely explanation for 

this is that the steady-state motion of the shaft in this region contains 

more than one frequency component. The nature of the steady-state motion 

here might be investigated using numerical integration techniques but as 

the stable solutions on either side of this region indicated that large 

amplitudes could be expected at the bearings - which would cause the 

equations of motion to become unmanageably stiff - this was not pursued. 

Decreasing the stiffness further gives stable circular motion 

of the anti-symmetric type. At first, the whirl frequency has a value 

slightly less than 0.5 w, but as the shaft stiffness is further decreased 

and the rotational speed exceeds twice the first pinned natural frequency, 

the whirl frequency reaches a constant value which, for the lower level of 

damping, is approximately equal to w but for the higher level is 
P1 

approximately 10% below to . During this transition, the mid-span 
P1 

amplitude increases but just after the whirl frequency has reached a 

constant value, starts to decrease, as do the bearing amplitudes. These 

results confirm that, as with a single rotor system, the lowest pinned 

natural frequency is an important parameter determining the nature of the 

large amplitude vibration of a multi-rotor system supported upon 

circular bearings. 

For shaft stiffnesses in the range 1.3 < OJ/OJ < 2.75, the range 
P1 

of principal interest in the work, the only stable circular motion is of 

the anti-symmetric type. In order to see whether other types of steady-

state motion occur in this region, the equations of motion (2.74) for the 

two rotor system, in which v« = 0.128, 3 = 0.05 and y = 0.025, were solved 
. 3 

using numerical integration. Although several different sets of initial 

conditions were tried, only the anti-symmetric circular motion was obtained. 
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The anti-symmetric nature of the motion for shaft stiffnesses in this 

range is in agreement with the results obtained for the horizontal system. 

It may be observed that, for w/w > 2.75, both the anti-

symmetric motion and the symmetric motion of the second kind are stable 

for y = 0.025. If it may be assumed that the behaviour of the system 

would be similar if the variation in to/w was achieved by changing the 
V1 

shaft rotational speed (tests conducted for a number of cases showed that 

the variation of $ due to changes in rotational speed did not qualitatively 

affect the character of the solutions), then a hysteresis phenomenon could 

occur. For, if the speed of the shaft were increased until the anti-

symmetric solution became unstable, then the shaft might assume the motion 

corresponding to the second symmetric solution, as this is still stable, 

and the frequency would increase to - 0.5 u. If the speed were then 

decreased, the motion would remain symmetrical until this became unstable 

when the shaft would probably revert to the anti-symmetric motion with an 

accompanying decrease in whirl frequency. 

This investigation did not give a complete assessment of the 

properties of the vertical two rotor system - such an investigation was 

not relevant to the present work - but the results obtained do, if used 

with caution, give a valuable insight into the behaviour of multi-rotor 

systems supported upon circular journal bearings. 

6.3.7 Assessing the Convergence of the Modal Series 

The vertical shaft model provided a computationally economical 

means of assessing the convergence of the modal series (equations 2.61 to 

2.64) for the large amplitude vibration of a shaft supported by journal 

bearings. For this, the whirl frequency, mid-span and bearing amplitudes 

of the two rotor system were calculated used successively 8, 10, 12, 14 and 
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16 free-free modes in the modal expansions. The results for a two rotor 

system, in which = 0.128, a = 0.05 and y = 0.025, are given in 
t3 

Table 6.1. 

TABLE 6.1 

The whirl frequency and amplitudes for a vertical 

two rotor system 

Number of 
Free-Free Modes 

(m) 

Non-Dimensional 
Whirl Frequency 

(v ) 
v w' 

Non-Dimensional Amplitude 
Number of 

Free-Free Modes 
(m) 

Non-Dimensional 
Whirl Frequency 

(v ) 
v w' 

Bearings 
1 and 4 

Mid-Spans 
A and B 

Bearings 
2 and 3 

8 0.416 0.865 5.78 0.926 

10 0.407 0.856 5.70 0.919 

12 0.402 0.851 5.63 0.915 

14 0.401 0.849 5.62 0.914 

16 0.400 0.848 5.62 0.913 

It may be seen that increasing the number of modes from 8 to 16 

produces small qualitative changes to the calculated values, but the 

essential character of the motion is unaffected. These results also 

support the observation made in section 5.6 that a reasonably accurate 

representation of the shaft for the two rotor system may be achieved using 

as few as eight free-free modes in the modal series. 
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6.4 HORIZONTAL TWO ROTOR SYSTEM WITH EXTERNAL DAMPING 

So far, it has been shown that, in order to predict whirl at 

frequencies lower than 0.5 to for the two rotor system, it is necessary for 

the rotational speed of the shaft to exceed twice the first pinned natural 

frequency - this was confirmed using the vertical shaft approximation. 

But because, for w > , the motion of the (horizontal) shaft is 

approximately circular at the bearings, these continuously supply energy 

to the vibrating shaft and a source of dissipation is required in the model 

if steady-state motion is to be simulated. 

Whirl in large turbogenerators commonly occurs at frequencies 

significantly below 0.5 u but the amplitude does not usually become large 

enough for the machine to be damaged due to loss of internal clearance. 

Mayes (1973) reported that measurements taken from a turbine rotor of a 

turbogenerator exhibiting whirl at a frequency of approximately 0.4 OJ, 

revealed that the peak to peak mid-span amplitude was of the order of 

3 to 4 times the radial clearance of the turbine bearings. Consideration 

of the internal clearances of a typical turbogenerator suggested that the 

maximum peak to peak amplitude in the model should not exceed ten times 

the radial clearance of the bearings. 

The vertical shaft model was used to estimate the amount of external 

damping required to limit the mid-span amplitude in the two rotor system 

to the maximum desirable. However, for this level of damping, the 

equilibrium position of the shaft became so stable (external damping 

always increases the stability of the equilibrium position) that, except 

for extreme misalignment of the bearings, whirl could not be induced. 

Reducing the damping to a level that gave an unstable equilibrium position 

for reasonable misalignments resulted in steady-state circular whirl of an 

unacceptably large amplitude. These results suggested that the damping 
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should be non-linear in nature, only becoming effective during large 

amplitude motion. Both linear and non-linear damping have been 

postulated in the literature but no explanation has been given of the 

physical mechanisms involved. 

It was suggested that the required external damping in a turbogenerator 

might derive from the steam forces acting upon the shaft, but operational 

experience on large turbogenerators does not support this theory as steady-

state whirl, at frequencies below 0.5 w, has been observed for machines 

• running with zero load, when the steam flow, and hence the forces, are 

small. (Using data, given by Schlichting (1968) for the drag force 

experienced by a cylinder moving through a viscous medium, an order of 

magnitude estimate was made, employing the vertical shaft approximation, 

of the losses due to "windage" - but these were found to be insignificant.) 

No other mechanism for providing external damping could be suggested and 

the only remaining source of dissipation in a turbogenerator were losses 

within the shaft. 

If a rotating shaft whirls at a non-synchronous frequency, then it 

is subjected to cyclic stresses, and energy is absorbed from the motion 

due to internal friction. By calculating the maximum bending energy of 

the shaft, it is possible, by adopting a loss factor approach (see, for 

example, Lazan (1968)), to esimate the energy loss per stress cycle. The 

vertical shaft model was used to calculate this loss for a shaft whirling 

at the maximum permitted amplitude, but even assuming a high loss factor of 

0.02 to account for the friction between the shaft and the discs, this 

mechanism accounted for less than 1% of the required dissipation. 

As the level of damping required to simulate steady-state whirl at 

frequencies less than 0.5 u could not be physically justified, the 

assumptions made for the rotor model were reconsidered. Of these, the 
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assumption of circular symmety for the bearings was considered to be the 

most unsatisfactory. Such bearings rarely occur in practice as the 

circular symmetry of even the nominally circular bore is destroyed by the 

presence of feed ports, recesses, etc. 

Theoretical studies of large amplitude vibration in rotor systems 

have, to date, been confined to circular bearings. The argument advanced 

by Someya concerning the energy input to the shaft from the bearings 

during large amplitude motion explains why finite limit cycles at 

frequencies less than half shaft speed have not been predicted using 

classical circular symmetric bearings without recourse to external damping. 

It seemed possible that the non-circular bearings invariably used in 

practice might give realistic limit cycles due to their asymmetry, without 

the application of heavy (and quite arbitrary) damping to the shaft 

because, at a certain level of vibration, the bearings either cease to 

input energy to the shaft or, alternatively, a balance is reached between 

the input of energy at some bearings and the extraction at others. 

Therefore, it was decided, in order to test this hypothesis, to develop a 

non-circular bearing model. 
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CHAPTER 7 

DEVELOPMENT OF A LEMON-BORE BEARING MODEL 

7.1 INTRODUCTION 

As stated in Chapter 6, industrial bearings rarely possess circular 

symmetry. Feed ports for admitting oil to the bearing, and recesses and 

scallops in the bearing surface designed to reduce the frictional losses 

in the bearing all contribute to the detraction from circular symmetry. 

Besides the asymmetries due to these features, further asymmetry is often 

introduced into the design of a bearing in an attempt to suppress the 

onset of self-excited vibration. The lemon-bore ("elliptical") bearing, 

the three-lobe bearing and bearings with off-set halves are examples of 

this practice (see, for example, Pinkus & Sternlicht (1961) and Tondl 

(1965)). Of these, the lemon-bore bearing is the one most frequently 

employed industrially. 

An example of a lemon-bore bearing is illustrated in Figure 7.1. In 

principle, these bearings are made by boring a circular hole of radius 

R + C through the centre of the bearing whilst the two halves of the 

bearing are separated by shims of thickness 2d. Without the shims, the 

bearing is non-circular although each half is still part of a circular 

arc. The elliytioity ratio, d/C9 is a measure of the lack of circularity 
« 

and normally has a value in the range 0.25 < d/C < 0.75. 

Because the lemon-bore bearing has a comparatively simple geometry 

and is frequently used in large turbogenerators, it was decided to attempt 

to develop a model of this configuration suitable for use in the numerical 

integration solution procedure. 
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Figure 7.1: Lemon-bore bearing 
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Figure 7.2: Geometry of a preset partial arc 
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7.2 THE PROPOSED MODEL 

7.2.1 Description 

The simple model of a lemon-bore bearing used by Pinkus & 

Stern!icht was adopted. For this, the bearing is represented by two 

plain, preset, partial arcs, and it is assumed that the two horizontal 

axial feed ports extend the entire width of the bearing. The pressure at 

the sides of the bearing is set to zero (i.e. ambient pressure) and the 

comparatively low pressure in the feed ports is simulated by setting the 

pressure at the ends of each arc to zero. 

It will be assumed that the oil-film in the bearing cannot 

sustain sub-ambient pressures and that cavitation occurs. This is a valid 

assumption for a turbogenerator bearing, where the projected loads 

(i.e. W/2BR) carried by the bearings under static conditions are normally 

in the range 150 lb.in2 to 250 lb.in 2. 

Because the axial feed ports extend the entire width of the 

bearing, the pressure fields developed in the two arcs are independent and 

therefore the Reynolds equation is solved separately for each arc. The 

oil-film force components f and f generated by the bearing are the sum • 
y 

of the respective components generated by each arc. 

As each half of the bearing is part of a circular arc, the non-

dimensional form of the Reynolds equation (3.10) for a circular bore bearing 

is applicable if the displacement and velocity of the journal, in polar 

coordinates, are measured relative to the arc centre instead of the 

bearing centre. 

7.2.2 Bearing Geometry 

Consideration of the geometry of the "preset" partial arc, 

illustrated in Figure 7.2, shows that: 
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c 
£ = • 

c 
— /(x - x^) 2 + (y - yb)

2 7.1 

(2 fa -
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C e 
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C e 

c 
e = — fa cos ip + y sin ty) 7.4 

a - ( y o o s $ ~ x 7 5 

(7 

where, for the top arc: 

d_ _ C_d 
<̂2 e <2„ C 

and, for the bottom arc: 

d_ = C_ d 
f <2 
P P 

' o c C 

7.6 

7.7 

In addition to the circumferential coordinate 0, which is measured relative 

to a line joining the arc and journal centres, another circumferential 

coordinate, ?, measured from a fixed axis at the arc centre (see Figure 

7.2), is used to define the start and finish of the arc, e g and e^., 

respectively. The two coordinates are related by: 

9 = W - ip + n 7.8 

and so the start and finish of the arc in terms of e may be found for a 
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given position of the journal. (Sometimes, as shown in Figure 7.1, the 

angular positions for the start and finish of the arc are defined relative 

to a fixed axis at the bearing centre rather than the arc centre, but as 

d « R the difference is negligible.) 

The minimum radial clearance, <3 , in the bearing is the vertical 

radial clearance given by: 

c = C - d 7.9 
m 

Therefore, the reference clearance, c„, for a system supported upon lemon-
V

 2- A. -

bore bearings is, in accordance with the definition given in section -2-r3-.T 

of Chapter 2, given by: 

or = Min {(Cj^fc} 9 k - 19 .. n 7.10 

Finally, the eccentricity of the journal relative to the 

bearing centre will be denoted by e, and will be rendered non-dimensional 

by dividing by the reference clearance of the system, i.e. 

e =
 0 v 

~ = /(x - xb)
2 + (y - yb)

2 7.11 

7.2.3 The Governing Parameters of the Model 

The lemon-bore bearing model is uniquely described if the six 

non-dimensional parameters, e" , e\,, C/c , d/C> a and 3, are defined for 
S J X 

each arc. Normally, all (except and e~) have the same value for both 
s I 

the top and the bottom arc. 



- 126 - , 

7.2.4 A Criterion for Choosing a Method of Solution for the 

Reynolds Equation 

As stated in section 3.1 of Chapter 3, a closed form solution 

to the Reynolds equation does not exist for any journal bearing 

configuration of finite width; and the short bearing approximation used 

previously is only applicable to bearings possessing circular symmetry. 

A suitable method for solving the Reynolds equation for the partial arcs 

of the lemon-bore bearing model was therefore required. 

The computational time required to solve the equations of 

motion for the shaft (2.74) by numerical integration is, principally, 

governed by the time required to evaluate the oil-film forces f and f . 
x y 

Experience gained using the short circular bearing model indicated that if 

the solution procedure employing'the non-circular bearing model was not to 

take more than 2-3 times longer than it had using the short circular 

bearing model* - this being the maximum increase in computational time 

considered acceptable - then the time required to evaluate the oil-film 

forces should not increase by more than a factor of ten. 

* To solve the equations of motion .for the two rotor system supported upon 

short circular bearing, for 64 revolutions of the shaft during steady-

state motion (during which the eccentricity ratio e had not exceeded 0.9 

in any of the bearings) had, typically, required 200 seconds of central 

processor time using a CDC 6600 computer. 
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7.3 FINITE DIFFERENCE SOLUTIONS 

7.3.1 Two-Pimensional Finite Difference Solution 

A two-dimensional finite difference scheme was developed to 

solve the Reynolds equation for each partial arc of the lemon-bore bearing. 

For this, it was computationally simpler to solve the cartesian coordinate 

form of the Reynolds equation: 

JL ( h « Wl) + a 2 h*3 

ae a© ds*2 

c _ c _ 
= — [O.S (x - xh) - y} sin 0 — {0.5 (y - y. - g ) + x] cos 0 7.12 

C  D C 0 c 

in which the non-dimensional film thickness, h*9 is given by: 

h ° — 
h* = — = 1 —- {(x - x^) cos Q + (y - yb - gQ) sin e} 7.13 

and where ¥ is the non-rotating coordinate shown in Figure 7.2. The 

Reynolds equation in cartesian coordinate form was derived from first 

principles by Kirk & Gunter (1976). But equation 7.12 may al tentatively 

be derived from the polar coordinate form (3.10) by first substituting for 

0 from equation 7.8 and then converting the velocity and displacement of 

the journal from polar coordinates to cartesian coordinates using equations 

7.2 to 7.5. For the non-rotating coordinate system ¥, the non-dimensional 

oil-film forces for each arc are given by: 

c 1 
f = - I a 2 3 / _ / p* cos 0 dQ ds* 7.14 
*  J C -1 Q2 

1 ^2 

f = - f a 2 3 ^ 2 /_/ p*sinQdQdz* 7 . 1 5 
y  6 C -1 Q2 
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A uniform, rectangular grid (of mesh size A? * As*) was 

superimposed on the surface of each arc and, after expanding the first term 

of equation 7.12, the pressure derivatives were replaced by the finite 

difference approximations: 

8p* _ p*fe" + a?j3*J - p*re - a~e,z*) 

8? 2a? 

8 2p* „ p*re"v- Air,a*; - v- p*r? 

8?2 ta?;2 

a 2p* „ p*r?,s* * as*; - - p*r? Js* - as*; 

8s*2
 C A S * ; 2 

The resulting system of algebraic non-linear equations was solved 

iteratively. 

Cavitation was allowed for by setting all negative pressures 

to zero as they were generated. This gives the boundary condition: 

P* = El = o 7.19 

at the cavitation boundary of the oil-film, where c is a coordinate in the 

?,s* surface, normal to the cavitation boundary. 

By exploiting the symmetry of the pressure field about the 

mid-axial plane, it was possible (by making the mid-axial plane into a 

boundary having floating boundary conditions) to reduce the number of 

finite difference equations to be solved by almost one half. 

Successive over-relaxation was employed to accelerate the rate 

of convergence of the iteration process. For the first twenty iterative 

sweeps, the relaxation-factor was set to a value that was assumed to be 

less than the maximum. During this time, an estimate was made of the 

7.16 

7.17 

7.18 
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optimum relaxation-factor which was then used until convergence was 

achieved. Details of this method are given by Holmes & Ettles (1975). 

Once the pressure field had been found, the oil-film forces 

were obtained by numerical quadrature. 

To test the finite-difference scheme, the equilibrium 

characteristics of a centrally-loaded partial arc were calculated using a 

grid of Ae" = (e„ - e* )/40 and a2* = 1/10. For a given value of the journal j s 

equilibrium eccentricity ratio (e^), the attitude angle (if>) was adjusted 

until the horizontal force generated by the bearing was zero; the vertical 

oil-film force was then equal and opposite to the applied load. The 

results obtained were in agreement with those given by Pinkus & Sternlicht 

(1961). 

An estimate of the time required to evaluate the oil-film 

forces for the lemon-bore bearing under dynamic conditions was determined 

by imposing the circular orbit: 

x - xu = 0.7 cos (0.45 T) 
b - 7.20 

y ~ y-fr = 0.7 sin (0.45 t) 

upon the journal of the lemon-bore bearing shown in Figure 7.1 (for which 

C/cr = 1.9, d/C = 0.474, and a = 1.333), and evaluating the oil-film 

forces at five degree intervals around the orbit. For each point on the 

orbit, the pressure field obtained for the previous oil-film force 

calculation was used as an initial estimate of the solution to the finite 

difference equations. The average computational time required to 

calculate the oil-film forces for two different grid sizes is given in 

Table 7.1 as a multiple of the time required using the short circular 

bearing approximation. Clearly, the two-dimensional finite difference 
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method was unsuitable for use in the numerical integration procedure for 

the multi-rotor system, even if a comparatively coarse grid was employed. 

TABLE 7.1 

The comparative computational time required to evaluate the 

oil-film forces for the lemon-bore bearing using different 

methods of solution 

Method of Solution Time 

(Short circular bearing approximation 1.0) 

Two-dimensional finite difference solution 

A0 = (Qy - es)/40 

A2* = 1/10 
7000 

Two-dimensional finite difference solution 

A? = - ? J / 2 0 
f 8 

As* = 1/4 
590 

One-dimensional finite difference solution 

A ? = - Jj/40 
I s 

380 

One-dimensional finite difference solution 

A? = - e~ )/20 
f 8 

85 

Long bearing approximation with side 
leakage factor obtained using the method 
of Galerkin 

(Q2 - Q^/50 66 
Long bearing approximation with side 
leakage factor obtained using the method 
of Galerkin 

(Q2 - Q^/24 37 

Long bearing approximation with side leakage factor obtained 
using the method of collocation 

8.4 
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7.3.2 One-Dimensional Finite Difference Solution 

It may be seen from equation 3.25 that the infinitely narrow 

bearing has a parabolic pressure profile in the axial direction. A 

method, first proposed by Frankel (1949), of obtaining a simplified form 

of the Reynolds equation is to assume that the axial pressure profile in a 

finite width bearing is also parabolic, i.e. assume: 

P* = Pje) (l - s* 2; = ~Pje) (i - z*2) 7.21 
c 2 a 

where p and P are the non-dimensional centre-line and mean axial 
c a 

pressures, respectively. By substituting the parabolic pressure 

distribution into equation 3.10, the following one-dimensional form of the 

Reynolds equation is obtained: 

3§" ( h * Z ~ T Ct2 h*3 P = - e (0.5 - i) sin 8 + e cos 0 7.22 

in which: y = 2 , if P - PQ 

or: V = 3 , if P = P 
1 a 

Equation 7.22 cannot be integrated directly and so it was 

converted into cartesian coordinate form and solved using finite difference 

techniques. 

An estimate was made of the computational time reqrired to 

evaluate the oil-film forces for a lemon-bore bearing under dynamic 

conditions, using the procedure described in the previous section. The 

required times for two interval sizes (A?) are given in Table 7.1 as a 

multiple of the time required by the short circular bearing approximation. 

Again, the method of obtaining the oil-film forces did not 

satisfy the criterion set in section 7.2.4. 
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7.4 SOLUTIONS BASED UPON THE LONG BEARING APPROXIMATION 

7.4.1 Introduction 

As the fastest finite difference method of obtaining the oil-

film forces for the lemon-bore bearing was in excess of fifty times slower 

than the short circular bearing model - and therefore impractical for use 

in the propagation programme - recourse was made to the long bearing 

approximation. Although this approximation is somewhat unrealistic for 

normal turbine bearings, it has the advantage of providing an analytical 

solution for a partial arc bearing and thus enables the oil-film forces for 

the lemon-bore bearing to be calculated rapidly. 

By using the long bearing approximation, it was hoped to verify 

the hypothesis that a non-circular bearing model would give finite limit 

cycles at frequencies below 0.5 to. Later, if this was successful, a 

correction factor for the long bearing approximation would be sought to 

take account of the finite width of realistic bearings. 

But first, the long bearing solution for a partial arc bearing 

will be considered. 

7.4.2 The Long Bearing Approximation 

7.4.2.1 The basic equations 

For an infinitely long bearing, the axial pressure 

gradient is zero and so the Reynolds equation (3.10) reduces to: 

A sin 9 + B cos 9 7.23 
£ £ 

where, for notational convenience: 

d 
dQ 

fa*3 

dP, 

dQ 
-) = -

A = e (0.5 - ipj 7.24 
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£ = e 7.25 
e 

and P^ (= P*) is used to indicate that the non-dimesional pressure 

distribution corresponds to the long bearing approximation. The right 

hand side of equation 7.23 may alternatively be written as: 

d (h*3 — ) = - A 1 + B 2 sin fe + a j '= V f e; d Q dQ  £  e e e 
7.26 

where: a = tan"1 (£ /4 J 7.27 
e e e 

Equation 7.23 may be integrated once to give: 

dP1 • 
h** —- = A cos 0 + B sin 6 + C 7.28 

do  e  

and a second time to give: 

6 A cos 0 + B sin 0 + C 
p 7 f e ; - p 7 f e J = J ? 7.29 

1 1 1 o\ h*3 

where and a r e constants of integration determined from the 

boundary conditions for the oil-film. Equation 7.28 may alternatively be 

written as: 

dP7 , 
—t = /A

 2 + B  2 cos (6 + a ) + C = V (0) + C 7.30 
do  e  e  
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7.4.2.2 Non-cavitating oil-film 

If the boundary conditions: 

P(QS) = 0 

P(Qf) = 0 
7.31 

are used for the oil-film, where e and 0« are, respectively, the start 
s T 

and finish of the arc in terms of the e coordinate, then equation 7.29 

becomes: 

p /0; = A J6 ££sJl dQ + B f + C J° 7.32 
e 0 h*3 e 0 e 0 h*3 

s s s 

with: 0 0 

- A J f?os_±dQ_B j fein±dQ 

e 6 h* 3 e 0 h* z 

C = 5 2 7.33 
e 0 -

J J L 
0 h** 
s 

Equation 7.32* gives the four types of pressure distribution shown in 

Figures 7.3a, 7.3b, 7.3c and 7.3d, the type obtained being determined by 

the displacement and velocity of the journal relative to the arc, 

i.e. upon the values of e, e, ip and As regions of sub-ambient pressure 

are predicted, and it is assumed that the oil-film cannot sustain sub-

ambient pressures, then clearly the boundary conditions 7.31 must be 

modified, for the solution types giving sub-ambient pressure, in order to 

allow for cavitation. 

* The integrals in equation 7.32 may be evaluated with the aid of Booker's 

(1965) table of journal bearing integrals. 
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(c) 

R r — 1 = 0 
a e 

© c 

(f) 

©m © c f f 

(9) 

Figure 7.3: Pressure distributions for an infinitely long partial 

arc bearing 
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7.4.2.3 Allowance for cavitation 

In a region where the oil-film cavitates, the pressure 

is uniformly zero (i.e. at ambient pressure) and hence the pressure 

gradient, dP^/ds, is uniformly zero. The Reynolds equation is not 

applicable to this region and so the boundary conditions for the Reynolds 

equation for the uncavitated region must be applied at the cavitation 

boundaries. The appropriate boundary conditions for the cavitation 

boundaries are deduced by considering the oil flow in the bearing. 

For the uncavitated region of an infinitely long 

bearing, the oil flow in the axial direction is zero and the flow rate 

(qQ) in the circumferential direction is, if terms of order ( C / R ) are 

neglected*, given by: 

M n dP 7 
qa = R C di — h* 3 —) ' 7.34 

6  2 dQ 

Now, as the oil may only enter or leave the arc through the two feed ports 

situated at e g and e^,, the oil flow rate through the uncavitated region 

must be continuous, and therefore, as h* is continuous and non zero, the 

pressure gradient dP^/dz must be continuous. (It should be added that 

the non-dimensional film thickness h* may only have a value in the range 

0 < h* < 1.) Physical considerations also require the flow rate across 

the cavitation boundary to be continuous. Therefore, in order for both 

the pressure and the flow rate to be continuous across the cavitation 

boundary, the condition: 

* It should be noted that terms of order (C/R) are neglected in the 

derivation of the Reynolds equation. 
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dP-

w = — 
L ° do 

= 0 7.35 

must be satisfied at the point (e ) where the oil-film cavitates. This 

boundary condition is well known (see, for example, Pinkus & Sternlicht 

(1961)), and is the condition that would be obtained at the point of 

cavitation, if equation 7.23 was solved using finite difference techniques 

and all negative pressures were set to zero as they were generated by the 

iteration procedure. 

7.4.2.4 Types of pressure profile occurring for a cavitating 

oil-film 

If an oil-film cannot sustain sub-ambient pressures, 

then it may, depending upon the velocity and displacement of the journal 

relative to the arc, be either: uncavitated, in which case it has a 

pressure distribution of the type shown in Figure 7.3a; completely 

cavitated, when the pressure is zero over the entire arc; or partially 

cavitated. For the partially cavitated condition, the pressure 

distributions of the type shown in Figures 7.3e, 7.3f, 7.3g and 7.3h may 

be postulated for a partial arc bearing. It will now be shown that the 

pressure distributions of the type shown in Figures 7.3g and 7.3h cannot 

occur for an infinitely long partial arc bearing for which 

- e J < 180°. j s 

Consider first the pressure distributions shown in 

Figure 7.3g. This pressure distribution requires the pressure gradient 

dP^/de to be zero at the first point of cavitation, , the point of 

maximum pressure, e , and at the second point of cavitation, e . It may 
m c 2 

be seen from equation 7.30 that-the pressure gradient may not be zero more 
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than twice in a range of 180°. Therefore, this pressure distribution 

cannot occur if (Q* - e ) < 180°. 
f 8 

The pressure distribution shown in Figure 7.3h will 

now be considered with the aid of Figure 7.4. In Figure 7.4, the point 

of maximum pressure, e , and the point of cavitation, e , for the first 
ml  C1 

uncavitated region are, from equation 7.30, given by the intersection of 

the horizontal line a-Z>- and the cosine curve V (Q). The vertical 
1 1 e 

displacement of the line a^b^ is governed by the constant of integration, 

C , but as re - e ) < 180° (which must be the case if (Q „ - e ) < 180°) 
e^ °l ml f 8 ' 

and the pressure gradient between 0 and 0 is negative, the line a1bn 

171 ̂ ^^ J- J. 

must lie below the 0 axis and be bisected by the normal (m^n^) to the local 

minimum of the curve V (Q). For the second uncavitated region, the point 

of cavitation, 0 , and the point of maximum pressure, 0 , are given by 
a2 « m2 

the intersection of the horizontal line a^>2 and the curve V (Q). A 

similar argument to the one given above may be used to show that the line 

m u s t k e above the 0 axis and be bisected by the normal {mgi^) to the 

local maximum of the curve V^fQ). It may thus be seen that 

(e - 0 ) > 180°, but as 0 < 0 and > 0 , this type of solution 

m^ m2 s rrij *  m2 

cannot occur if - e ) < 180°. 
J s 

7.4.2.5 Determination of the type of pressure profile 

occurring 

Having established the four types of pressure profile 

that may occur for each partial arc of the lemon-bore bearing model, a 

procedure will now be given for determining the type of profile that 

occurs for a given displacement and velocity of the journal. First, the 

pressure gradient at the ends of the arc, 0 and 0«, are calculated for a 
s T 

non-cavitation oil-f i lm using equations 7.28 and 7.33. The type of 



- 139 - , 

Figure 7.4: The functions VjQ) and VjQ) 

Figure 7.5: The function F(Q ) 
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pressure profile obtained for a cavitating oil-film is then determined as 

follows: 

(a) If dPj/dQ | e > 0 and d P ^ d Q | 0 < 0 , the pressure 
s f 

profile is of the type shown in Figure 7.3a and 

cavitation will not occur. 

(b) If dP^/do | Q > 0 and dP^/do\ Q > 0 , the non-cavitating 

s f 
pressure profile is of the type shown in Figure 7.3b. 

If cavitation occurs, a partially cavitated pressure 

profile of the type shown in Figure 7.3e develops. 

(c) If dPy/de| Q < 0 and dP^/de|0 < 0, the non-cavitating 

s / 
pressure profile is of the type shown in Figure 7.3c. 

If cavitation occurs, a partially cavitated pressure 

profile of the type shown in Figure 7.3f develops. 

(d) If d P ^ d o | 0 < 0 and d P ^ d e | 0 > 0 , the non-cavitating 

s f 
pressure profile is of the type shown in Figure 7.3d. 

If cavitation occurs, the oil-film may either 

completely cavitate or partially cavitate. This is 

explained as follows. 

The term W (Q) on the right hand side of equation 7.26 

is analogous to the wedge term (dh/do) for a statically loaded bearing. 

If W z(Q) is positive for the entire arc (and this is possible since 

(e_p - 6 ) < 180°), then the oil-film experiences a divergent "wedge" at j s 

all points on the arc and only sub-ambient pressures are generated for a 

non-cavitating oil-film. If, however, for this situation, the oil-film 
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cavitates, then the completely cavitated condition results. This may be 

verified from Figure 7.4 where and V (&) are plotted on the same 

axis. For, if 17 £(
Q
S) and W / e y are both positive, then the pressure 

gradient cannot be zero at more than one point on the arc, and hence a 

partially cavitated condition cannot occur. 

A fully sub-ambient pressure profile may also arise 

for a non-cavitating oil-film when W e(0) is positive for most, but not all, 

of the arc. For this situation, the divergent "wedge" is predominant, but 

if the oil-film cavitates, then the influence of the divergent "wedge" is 

nullified, and so the small section of convergent "wedge" is able to 

generate a region of positive pressure at the end of the arc where W^fQ) is 

negative. This may be verified from Figure 7.4 where it may be seen that 

if W (Q) changes sign at a point on the arc, then the pressure gradient 

may be zero at two points on the arc and so the partially cavitated 

condition can develop. 

The above reasoning may be summarised as follows: 

i) If w (Q ) > w and w CeJ > w , the oil-film 
' e s a e f a 

completely cavitates. 

ii) If w re ) > w and W re J < w , the partially 

C S CC C J" CL 

cavitated condition of the type shown in Figure 7.3e 

occurs. 
iii) If w re ) < w. and W re J > W , the partially 

G S CL £ J CL 

cavitated condition of the type shown in Figure 7.3f 

occurs. 
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iv) If w Ce ) < w and w (QJ < w„9 the oil-film does not 
' e s a e f a 

cavitate. This situation would not occur, since an 

uncavitated oil-film would have been detected above 

by (a), and is only given here for completeness. 

Where, for computational purposes, w had a value slightly less than zero, 

because it was found that if, for example in (ii), W ( Q ) had a value in 
c s 

the range w < W (e ) < 0, then the small region of positive pressure 
CL 8 8 

generated made an insignificant contribution to the oil-film forces. When 

calculating the oil-film forces for the numerical integration solution 

procedure, w = -0.01, but for calculating the linearised bearing 

coefficients by numerical differencing, this increased to w = -0.001. 

7.4.2.6 Determination of the point of cavitation 

If one of the partially cavitated pressure profiles 

is known to occur, then it is necessary to find the point, e , at which 
c 

the oil-film cavitates. For the partially cavitated pressure profile of 

the type shown in Figure 7.3e, the boundary conditions are: 

P 7fe ) = .0 7.36a 
A s 

P 7Ce ) = O 7.36b 
i c 

d h 

dQ 
= 0 7.36c 

e 
Q 

(Although it may appear that we have three boundary conditions for a second 

order equation (7.29), it should be remembered that e is unknown, and 

this effectively reduces 7.36b and 7.36c to a single condition.) 
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By using condition 7.36a, equation 7.29 becomes: 

0 A cos Q + B sin Q + C 
P-(Q) = f — ^ 7.37 

1 0 h* 3 

s 

and, from equation 7.28, condition 7.36c gives: 

C = - A cos 0 - B sin 0 7.38 
e e e e <2 

By requiring the pressure to be zero at 0 (i.e. condition 7.36b), equation 

7.37 together with equation 7.38 reduce to a single equation in terms of one 

unknown, 0 , i.e. 
c 

0 
c A (cos 0 - cos Q ) + B (sin 0 - sin 0 ) 

F(Q ) = J - £ = 0 7.39 
e 0 s h* 3 

The derivative of the function F(Q) is given by: 
G 

0 

) = = M sin 0 - B cos 0 J / — 7.40 

s 

from which it may be deduced that F(Q) has either of the two forms shown 

in Figure 7.5 or the mirror image (about the 0 axis) of these. From 

Figure 7.5 it may be seen that equation 7.39 is satisfied at two points on 

the arc, but one of these is the trivial solution 0^ = 0 . Equation 7.39 
c s 

may be satisfied by other values of 0 but these do not lie on the arc. 
G 

Newton's method was used to solve equation 7.39, i.e. 

F(Q ) 
cn 

0 = 0 ~ m/ f l » = 0 - A0 7.41 
<3 <3 F r(Q ) c c 
n+1 . n c n n 

n 

but the initial estimate of the solution, 0 , had to be chosen to ensure 
o 
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that the correct solution was found. 

If F(B ) does not have a point of inflection after 

it has reached its non-zero turning point (this is shown by the full line 

in Figure 7.5), then e^ = is a suitable initial estimate to the solution, 

If, however, F(e ) has the form shown in Figure 7.5 by the dotted line, 

then using 0 o = e^, as an initial estimate for the solution may result in 

the wrong solution being found; usually the trivial solution. This 

problem was overcome by using, for both situations, an initial estimate 

given by: 

I H L 8 = Qs. - a 
c f 
o J 

7.42 
F , (°f> 

where a is a number in the range 0 < a < 1. For all cases cited in this 

work, an initial estimate obtained using a = 0.5 always gave the correct 

solution. The solution was always tested to ensure that it had a value 

in the range e < e < e« and was hence the correct solution. 
S Q j 

The iteration procedure (7.41) was normally 

continued until AG < 0.86°, but if the oil-film forces were being used to 
c 
n 

find the linearised bearing coefficients, then the procedure was continued 

until AG < 0.03°. c 
n 

For the partially cavitated pressure profile of the 

type shown in Figure 7.3f, the boundary conditions are: 

dP, 

dQ 

= 0 

P 7 ( e ) = 0 
Is Q 

= 0 

7.43 
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The point of cavitation was found in the same manner as described above, 

except that here: 

Q 
f A (cos 0 - cos 0 ) + B (sin 0 - sin 0 ) 

F(Q ) = f ^ § — do 7.44 
* 0 h** 

c 
6f 
. J /Ja 

F'(Q ) = (A sin 0 - B cos 0 ) J — 7.45 
e o e ° Q h*3 

c 

F(0 ) 
and 0 = 0 - a — 7.46 

s F'(Q ) 

7.4.2.7 The oil-film forces 

The general expression (according to the long bearing 

approximation) for the pressure field developed in a partial arc bearing 

is: 0 

2 A cos 0 + B sin 0 + C 
PAo) = J JE £ *d0 7.47 

1 o2 h*i 

where the oil-film limits o 1 and 0correspond to the start and finish of 

the uncavitated oil-film. (For example, 0^ = o q and o 2 = o^ for the 

partially cavitated oil-film of the type shown in Figure 7.3f.) 

From equations 3.18 and 3.19, the non-dimensional 

oil-film forces generated by a single partial arc bearing are given by: 

/ = 3 a
2
 3 (-Z-) 2 J PAo) cos 0 do' 7.48 

6 c o1
 L  

f = 3 a 2 3 (JL)2 f P ( Q ) s i n e do 7.49 

* C 0\  1  

The above integrals may be evaluated as follows: 
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®2 ®2 02 
/ P.w 6<H e « = A (sinQ, J 2 2 L ± d e - / s i n 6 c o s 6 DE) 

®2 . B
 02 ; 2 f l „ / • o f sin 8 , f sj.« 8 

+ B (sin 8 J <28, - J d8J 
e ^ Sj /z*3 Sj h* 3  

®2 ®2 
+ C (sin e / J*L - J dej 

c a " 

2 2 2Q 5 
/ p 7re; cos Q de = A ( I 52L-H. ̂  - e 9 J 521.1 

g^ e 0 2 ft*3 ^ e2 h** 

6 * „ . „ V . , „ cos o svn o jr. n t s%n o - , 
•f B ( J dd - cos 0 9 J dej 

e e2 h*3 * Q2 h** 

+ -c ( j ££s-±d* - 008 0, / 4L) : 
e e 2 h* 3 e 2 h* s 

For the completely cavitated oil-film, the oil-film 

forces are, of course, zero. 

7.4.3 The Two Rotor System Supported Upon "Long" Lemon-Bore Bearings 

The lemon-bore bearing model, in which the long bearing 

approximation was used to calculate the pressure field developed by each 

arc, was incorporated into the computer program for the flexible shaft 

system. 

The behaviour of the two rotor, four bearing system was 

investigated for the three values of v„ given below in Table 7.2. In 
13 

each case, the shaft was assumed to be balanced and external damping was 

not applied. All four bearings were identical with 30° axial feed ports, 

as shown in Figure 7.1, and with C/cr = 2.5 and d/C = 0.6. The stability 

parameter S^ = 0.4, and for the aligned system the equilibrium eccentricity 

ratio (7 ) = 0.691. 
o a 
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For each value of v„ , and for all vertical misalignments of 
T3 

bearing number 2 investigated, the self-excited vibrations of the shaft 

remained finite. Although the solution procedure had often to be 

continued for several hundred revolutions of the shaft to allow the 

transients of the motion to decay, the shaft centre trajectories eventually 

formed closed orbit limit cycles. Examples of the steady-state whirl 

orbits for the three values of are shown in Figures 7.6 to 7.8. The 
? 3 

fundamental whirl frequencies (w ) for these are given in Table 7.2. 
W1 

TABLE 7.2 

Fundamental whirl frequencies for a 

misaligned two rotor system supported upon "long" 

lemon-bore bearings 

J3 
% 

2 

A 
W1 

0.128 2.15 0.5 0.375 ± 0.008 

0.160 1.72 1.0 0.406 ± 0.008 

0.200 1.37 2.0 0.438 ± 0.008 

These results gave clear evidence to support the assertion 

that: the steady-state large amplitude vibrations, at frequencies below 

0.5 w, which are observed in practice, have not previously bee" simulated, 

without recourse to external damping, because the bearing models employed 

did not take account of the non-circular nature of practical bearings. 

The results also showed that steady-state whirl at frequencies significantly 

less than 0.5 w could also occur for a shaft rotating at speeds well below 

twice its first pinned critical speed. 



00 

Figure 7.6: The steady-state whirl orbits for the two rotor system supported upon "long" lemon-bore 

bearings, v- = 0.128, Ay h = 0.5. 
7 3 2 
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Figure 7.7: The steady-state whirl orbits for the two rotor system supported upon "long" lemon-bore 

bearings, v« = 0.16, by. - 1.0, 
7 3 2 
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Figure 7.8: The steady-state whirl orbits for the two rotor system supported upon "long" lemon-bore 

bearings, v,. = 0.2, Ay h = 2.0 
J3 °2 
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7.4.4 A Side Leakage Correction Factor 

The oil-film forces obtained for the lemon-bore bearing model 

using the infinitely long bearing approximation needed to be corrected to 

take account of the finite width of realistic bearings. For this, a 

modification of a method due to Black & Brown (1976) for determining a 

side leakage factor was adopted. 

By assuming a parabolic axial pressure profile (7.21) in the 

bearing, the two-dimensional Reynolds equation is reduced to one-dimensional 

form (7.22). Equation 7.22 cannot be integrated directly and so an 

approximate method is used, which assumes the solution is of the form: 

P = k P tCeJ 7.52 

where P^foJ 1 S the long bearing solution for the non-dimensional pressure, 

and k is a side leakage correction factor. (This is a single term form 

of the well known method for solving boundary value problems in which the 

solution is assumed to be a linear combination of a set of trial functions, 

each of which satisfies the boundary conditions of the problem.) By 

substituting equation 7.52 in equation 7.22, and invoking equation 7.23, a 

residual R may be formed: 

R = K Y CL h* 3 PjQ) + (K - 1) (A sin 0 - B cos 0) 7.53 
L c e 

If Black & Brown's approach is continued, then k is determined by requiring 

the residual to be minimised according to the method of Galenkin, i.e. by 

requiring: fl 

2 _ 
/ P7(0) R(O) do = 0 7.54 
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where e^ and e^ are the limits of the uncavitated oil-film, and leads to 

the following expression for the side leakage correction factor: 

k = 1 / 

Y a 2 / P 2(Q) h* 3 dQ 
0. * 

1 + 

J P1(Q) (A cos 0 - B sin Q) 

7.55 

Unfortunately, this requires the evaluation of the integral: 

J P 2(Q) H* 3 dQ 7.56 

which, to date, has only been achieved numerically and greatly increases 

the time required to evaluate the oil-film forces. 

At this stage, an alternative argument may be proposed. For, 

since most of the force generated derives from the region of maximum 

pressure, it would seem reasonable to set the residual to zero at the 

point of maximum pressure, e . This method of collocation results in the 

computationally simpler expression for the side leakage factor: 

k = 1 / 1 + 

y a 2 h*
3(Qm) Pt(Qm) 

A sin 0 - B cos 0 
e m e m 

7.57 

It may be verified, by substitution in equations 7.23 and 7.28, that: 

cos 0 = - (A C + B /A
 2 + B  2 - C  2 ) / ( A

 2 -b B  2) 
m e e e e e e e e 

7.58 

and: sin Q = - (B C - A Jk 2
 + B  2 - C  2 ) / ( A  2 + B  2) 

m e e e e e e e e 
7.59 

Once the side leakage factor has been found (by whichever 
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method), the compensated oil-film forces are simply calculated. For 

example, if the centre-line pressure had been used in equation 7.22, then 

V = V , and so the non-dimensional pressure distribution is, from equations 
G 

7.21 and 7.52, given by: 

P* = k Pt(Q) (1 - z* 2) 7.60 

which, when substituted into equations 3.18 and 3.19, yields the non-

dimensional oil-film forces, i.e. 

f = 2 a 2
 3 (—.) 2

 K j cos e dQ 7.61 
6 • C  l  

and: f. 2 a 2 3 (—.) 2 k / P,(B) sin 9 de 7.62 
^ C  U  

To'test the above assertions, an accurate two-dimensional 

finite difference solution (with Ae" = - e~ )/40 and Az* = 1/10) was 

I s 

used to calculate the oil-film forces for the lower arc of the bearing 

shown in Figure 7.1. The length-to-diameter ratio 1/a = 0.75, which is 

typical for turbogenerator bearings. 

The error in the force for the centrally loaded arc, when 

calculated using the compensated long bearing approximation, is shown in 

Figure 7.9. Both methods for minimising the residual were investigated 

using both the centre-line and mean axial pressure in equation 7.22. To 

assess the accuracy under dynamic conditions, the journal was subjected to 

100 random conditions of velocity and displacement in the range: 

« 

0.0 < e < 0.9 

-0.2 < e < 0.2 



Figure 7.9: The error in the vertical force for a centrally loaded partial arc bearing using various approximate methods 
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-IT < lj> < 0.0 

-0.2 < \j> < 0.6 

Table 7.3 contains the mean and standard deviation of the error in the 

resultant force obtained by the approximate methods. 

TABLE 7.3 

Errors for approximate methods of calculating oil-film forces 

% Error 

Method of Collocation Method of Galerkin 

% Error 
Mean Axial 
Pressure 

Centre-Line 
Pressure 

Mean Axial 
Pressure 

Centre-Line 
Pressure 

Mean 22.09 -4.00 9.56 -12.08 

Standard 
Deviation 

10.03 8.07 8.33 6.18 

These results showed that the method of collocation using the centre-line 

pressure could be expected to give the oil-film forces for the lemon-bore 

bearing to within 20% of those calculated from the two-dimensional finite 

difference solution and compares favourably with the Galerkin method. 

This was considered sufficiently accurate to obtain a good approximation 

to the non-linear limit cycle behaviour. 

The method described in section 7.3.1 was used to estimate 

the computational time required to evaluate the oil-film forces for the 

lemon-bore bearing using the compensated long bearing solution. Both 

methods for obtaining the side leakage correction factor were tested, and 

the results are given in Table 7.1. For Galerkin1s method, the integral 

7.56 was evaluated using Simpson's quadrature formula, for which two step 
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sizes, (q2 - o^) /SO and ( q 2 - o^/Bi, were considered. It may be seen 

that the method of collocation satisfies the criterion set in section 

7.2.4, but Galerkin's method does not. Even for the larger step size, 

Galerkin's method is in excess of four times slower than the method of 

collocation. 

The stability profile for a rigid shaft supported by two 

identical bearings, of the type shown in Figure 7.1, and for which 

C/cv = 1.9, d/C = 0.474 and 1/a = 0.75, was calculated using: 

(a) the two-dimensional finite difference solution; 

(b) the compensated long bearing solution: method of Galerkin 

(mean axial pressure); 

(c) the compensated long bearing solution: method of collocation 

(centre-line pressure); 

(d) the uncompensated long bearing solution. 

The results for this, are shown in Figure 7.10. It may be seen that both 

methods for obtaining the side leakage correction factor improve the 

estimate of the stability borderline, but a greater improvement is achieved 

using the method of Galerkin. With both methods, the characteristics of 

the long bearing solution are retained; this is most marked for the 

method of collocation at high eccentricity ratios. It should, however, 

be emphasised that the prediction of the stability threshold is, by its 

nature, extremely sensitive to small errors in the linearised bearing 

coefficients. Errors in the bearing forces, which would not have a 
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Figure 7.10: Stability profiles for a lemon-bore bearing (rigid 

shaft). Refer to text for details. 
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significant effect upon the non-linear limit cycle behaviour, could 

considerably alter the character of the stability profile. (Mitchell 

(1967-68) showed that a ±5% error in the linearised bearing coefficients 

for a short circular bearing supporting a rigid shaft could cause a 100% 

variation in the value of the stability parameter (g/Cu 2) over the normal 

range of eccentricity.) 

A number of the tests conducted for the two rotor system 

supported upon "long" lemon-bore bearings were repeated using the 

compensated long bearing solution, in which the side leakage factor was 

obtained using the method of collocation. The behaviour was found to be 

qualitatively in agreement with that observed previously. That is: 

i) Without the application of external damping, the self-excited 

vibrations remained, finite when the shaft was rotating at 

speeds above, as well as below, twice its first pinned 

critical speed. 

ii) Steady-state whirl with a fundamental frequency significantly 

below 0.5 a could be induced in a shaft rotating at speeds 

substantially below twice its first pinned critical speed. 

These observations were in complete contrast to the behaviour observed for 

the two rotor system supported upon short circular bearings. 

Finally, a two rotor system supported upon four identical 

bearings of the type used for the stability profile calculation above was 

tested. (This bearing was to be the one used in the series of tests 

later.) An example of the orbit for the steady-state self-excited 

vibrations of a shaft running in excess of twice its first pinned critical 

speed (to/ai = 2.15) is shown in Figure 7.11. 



D 

( ^ 

cn 
<sq 

Figure 7.11: The steady-state whirl orbits for a two rotor system supported upon lemon-bore 

bearings, v- = 0.128, Ay h = 0.5, (z ) = 0.623. 
7 3 2 °  A  
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CHAPTER 8 

THE TWO ROTOR SYSTEM SUPPORTED 

UPON LEMON-BORE BEARINGS 

8.1 COMPUTATIONAL PROCEDURE 

A series of tests was conducted for the two rotor system supported 

upon lemon-bore bearings to assess the effect of the vertical misalignment 

of a bearing upon the self-excited vibrations of the system. 

For this, the lowest (flexural) free-free natural frequency of the 

coupled rotors = 0.20, which gave u/oj = 1.37. The shaft was assumed 
TZ  P1 

to be perfectly balanced, and was not acted upon by external damping. 

All four bearings were identical with 30° axial feed ports, as shown in 

Figure 7.1, and with = 1.9, d/C = 0.474 and 1/a = 0.75. Such a 

geometry is typical for the lemon-bore bearings used in large turbo-

generators. The compensated long bearing solution, in which the side 

leakage correction factor was calculated according to the method of 

collocation using the centre-line pressure, was used to obtain the oil-

film forces. The stability parameter S t = 0.4, and for the aligned 

system the equilibrium eccentricity ratio of the shaft relative to the 

centre of each bearing, ( s ) = 0.627. For discussion purposes, it is 

assumed that for the above conditions the shaft is rotating at design 

speed, i.e. w/w^ = 1.0. 

It was considered that sufficient accuracy would be achieved by using 

eight free-free modes to represent the shaft. This was confirmed by 

repeating selected tests using ten -modes. As an example (but for a 

system differing slightly from the one described above in that c/c p = 1.75, 

d/C = 0.43 and G . ) = 0.82), the steady-state orbits at bearing number 2 

obtained using 8 and 10 free-free modes are shown in Figure 8.2 for a 



I 

Figure 8.1: The steady-state whirl orbits for the two rotor system supported upon lemon-bore bearings 
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(a) 

(b) 

Figure 8.2: The steady-state whirl orbit at bearing number 2 using 

(a) 8 modes, and (b) 10 modes in the modal expansion 
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misalignment of Ly h = 1.5. The steady-state orbits at all six stations, 
d2 

for the calculation employing 10 modes, are shown in Figure 8.1. It may 

be seen that the orbit at bearing number 2 is the most complex and, 

although it would be reasonable to assume that any changes to the solution 

would be most marked here, the details of the orbit are almost unchanged 

by the addition of two further modes to the modal series. This was 

corroborated by the frequency analysis. 

Except for the initial conditions (which are discussed below), the 

remaining computational procedure was the same as that given in section 

6.1. An interactive version of the computer program used for the tests 

is given in Appendix 4. 

8.1.1 Initial Conditions 

Previous experience had shown that if the initial conditions 

for the non-linear solution procedure corresponded to small disturbances 

of the shaft from its equilibrium position, then the solution procedure 

had to be continued for several hundred revolutions of the shaft before 

the steady-state was reached. (This is reasonable considering the 

increase in energy of the vibrating system and that at 3000 rpm it only 

takes 5 seconds to complete 250 revolutions.) It was also found to be 

important to ensure that the steady-state had been fully attained, 

otherwise misleading results could be obtained. 

For small excursions of the shaft about the equilibrium 

position, the oil-film forces are approximately linear. A considerable 

saving in computer time was achieved by using the linearised equations of 

motion (5.25) to determine the unstable motion up to an amplitude where 

the linear assumption had ceased to be valid, at which point the velocity 

and displacement of the shaft were used as initial conditions for the non-
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linear solution procedure. 

Assuming that all the eigenvalues of the matrix \A\ are 

district, then the general .solution of equations 5.25 is: 

V V _ 
{u} = a 1 {uj} e + a 2 { u e + ... + a 4 j R ( u 4 m } e 8.1 

where {uXs are the eigenvectors of the matrix [a], arid a^ are constants 

determined by the initial conditions. Let X^ and x^ be the complex 

conjugate pair of eigenvalues that have, algebraically, the maximum real 

parts. (The eigenvalue with the maximum real part is complex as the 

unstable motion of the shaft is invariably oscillatory.) If the initial 

conditions for the shaft are such that: 

=  a3  =  a4m =  0  8' 2  

then equation 8.1 reduces to: 

{u} = a^ { u ^ e 8.3 

which, if the real part of the solution only is considered, becomes: 

-
 X R t

 - -

iu} = cij e ({uR} cos XjT - {Uj} sin \j-x) 8.4 

where {u D} and {u T} are the real and imaginary parts, respectively, of the 
a i 

eigenvector {u^}, and \ R and x^ are the real and imaginary parts, 

respectively, of the eigenvalue x^. 

From equations 2.61, 2.62, 5.24 and 5.27, the displacement of 

the shaft from its equilibrium position is: 
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- Xi?T 

x(s) = x(s) - ss (s) = ccj e (XR cos XjX - Xj. sin Xjx) 8.5 

V 
y(s) = y(s) - yQ(s) = a^ e (YR cos Xj.x - Yj sin Xjx) 8.6 

m __ 
in which: X^ = I u n <f>.(s) 8.7 

n xi 0 , . x-

772 _ 
XJ = I 8.8 

m 

4 • J , x ^ 8 , 9 

^=l Sm-H. 

m _ 
y x = u i k ( s ) 8 - 1 0 

i-1 . 

where m^ and Uj. are the jth elements of the vectors {uR} and iuj.}, 

3 3 

respectively. Thus, the trajectories of the shaft, corresponding to a 

single eigenvector, are in the form of "elliptical" spirals. 

The modal coefficients for the start of the non-linear 

solution procedure were, using equations 5.27 and 8.4, given by: 

iu} = {u} + a ({uA cos XTx - {uT} sin XTx) 8.11 
o R i l i 

where a had the largest value possible such that, if the shaft moved in 

the elliptical orbit: 

x(s) - a (XR cos Xjt - Xj sin Xjx) 8.12 

y(s) = a ( Y r COS XJX - YJ sin Xj-x) 8.13 
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then the maximum film thickness in any of the bearings should not be less 

than 0.25 c. As the value of t in equation 8.11 is arbitrary, it was set 

to zero which simplified the initial conditions for the non-linear solution 

procedure to: 

iu} = (w) + aiu13- 8.14 
o R 

By using the above procedure, in which the initial conditions 

are found from the "dominant" eigenvector of the linearised system, it was 

found that only approximately 60 revolutions of the shaft were required to 

reach the steady-state, which represented a considerable saving in computer 

time. It should also be added that the deflected shape of the shaft 

obtained from the dominant eigenvector was always of the anti-symmetric 

type shown in Figure 6.4b. 
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8.2 RESULTS AND DISCUSSION 

The effect of vertical misalignment of bearing number 2 upon the 

stability of the equilibrium position of the rotating shaft is shown in 

Figure 8.3. At the design speed (i.e. w/w^ = 1 . 0 ) the system is 

marginally stable when aligned, but small upward or downward misalignments 

cause the equilibrium position to become unstable. If the misalignment 

becomes excessive, the equilibrium position again becomes stable as the 

initially deloaded bearing becomes loaded in the reverse direction. It 

may also be seen from Figure 8.3 that, when the system is operating above 

its design speed at w/ai^ = 1.2, the equilibrium position is always unstable 

and, conversely, when operating below the design speed at w/ui^ = 0.8, the 

equilibrium position remains stable for all misalignments of bearing 

number 2. 

The behaviour of the corresponding non-linear steady-state motion for 

the system operating at its design speed, and for upward misalignment of 

bearing number 2, is illustrated in Figures 8.4 to 

Although near the aligned condition, the equilibrium position of the 

shaft is marginally stable, large amplitude self-excited motion could be 

induced by giving the shaft a sufficiently large disturbance. (The 

motion of the shaft used for this initial disturbance corresponded to the 

eigenvector of the linearised system, whose eigenvalue was least damped.) 

If, however, the shaft was only given a small disturbance from the 

equilibrium position, then, in accordance with the predictions of linear 

theory, it returned to its equilibrium position. This hysteresis effect 

is often observed in practice when the shaft continues to whirl as the 

rotational speed is reduced below the threshold for the onset of whirl 

during run-up. A steady-state whirl orbit corresponding to a stable 

equilibrium position was not found for Ay^ > 3.25. 



Figure 8.3: The stability of the equilibrium position of the two rotor system. Max {Re(\J\ denotes 

the maximum real part of the eigenvalues of the linearised system. 
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In the aligned condition, the steady-state motion at each of the 

three stations (2, A and 2) was 180° out of phase to that occurring at the 

corresponding stations (3, B and 4) on the other rotor. The shaft 

retained this anti-symmetric "mode" shape (which is of the type shown in 

Figure 6.4b) at all conditions of misalignment but for these the phase 

relationships were more complex due to the asymmetry of the system. It 

should also be added that the centre-line of the shaft did not lie in a 

single plane. 

Although the initial conditions for a number of tests were varied, 

only one limit cycle solution was ever found. The results obtained 

earlier for the vertical two rotor system supported upon short circular 

bearings suggest that if the speed of the system were to be increased so 

that (u/Wp > 3.0, then at some point the anti-symmetric motion would give 

way to symmetric motion in which the shape of the shaft would be of the 

form shown in Figure 6.4c. This, however, was not investigated. 

The dominant component of the steady-state motion at all stations was 

at the fundamental whirl frequency, u . A number of harmonics were 
W1 

present at 2w, , 3w > but were usually an order of magnitude smaller 
W1  w2 

than the dominant component. These caused the whirl orbits to be non-

elliptical, this being most noticeable at bearing number 2 for larger 

misalignments. Figure 8.5 shows clearly that the frequency of the 

steady-state whirl is affected by bearing misalignment. In the aligned 

condition, the fundamental whirl frequency is a half shaft speed (0.5 w), 

but increased misalignment reduces this to 0.44 w. (Such behaviour was 

not observed for the horizontal two rotor system supported upon short 

circular bearings where (for = 0.2) the fundamental whirl frequency 

remained at approximately 0.5 m for all misalignment conditions 

investigated.) When the equilibrium position of the shaft became unstable, 
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Figure 8.4: Steady-state whirl orbits in each bearing of the two rotor 

system. Numbers on loci denote the non-dimensional 

vertical misalignment (Ayh ) of bearing number 2. 
°2 
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the whirl initially developed at the lowest damped natural frequency of the 

linearised system but, as the amplitude of the motion increased, so did the 

whirl frequency. However, the greater the misalignment, the smaller the 

difference between the fundamental steady-state whirl frequency and the 

lowest damped natural frequency of the linearised system, until for 

Ay h = 3 . 2 5 the two frequencies almost coincided. 
d2 

Increased misalignment brought about a decrease in the amplitude of 

the whirl, which (in agreement with linear predictions) disappeared for 

large misalignments as the two central bearings became heavily loaded, but 

in opposite directions. An explanation for this reduction in amplitude 

is that any individual misalignment of two closely spaced bearings 

effectively imposes upon the shaft a "single bearing" that is more non-

circular than either bearing individually, and this has a stabilising 

influence on the large amplitude vibrations. (This effect was also 

observed with the horizontal two rotor system supported upon short 

circular bearings.) 

For misalignments in the range 0.0 < Ay h < 1.5, the vertical load 
d2 

on bearing number 3 was in the downwards direction, and the amplitude of 

whirl in this bearing remained almost constant. If, however, the 

misalignment was increased beyond Ay h = 1.5, then the direction of the 

vertical load carried by bearing number 3 was reversed and the amplitude 

of whirl in the bearing decreased, becoming at large misalignments 

marginally smaller than the amplitudes in either of the two cu.-board 

bearings. It has sometimes been suggested that the deloaded bearing in a 

system may be identified because the steady-state amplitude in this 

bearing is larger than in any other bearing. Subject to the qualification 

that the bearing is deloaded and not heavily negatively loaded, the results 

obtained for the two rotor system supporting this assertion. The 
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V E R T I C A L M I S A L I G N M E N T OF BEAR ING N°-2 A y ^ 2 

Figure 8.5: Steady-state whirl frequencies of the two rotor system. 

Also shown are the corresponding lowest damped natural 

frequencies, Min {lm(A J } , of the linearised system. 
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alternative argument that the smallest steady-state whirl amplitude occurs 

in the bearing that is most heavily loaded (i.e. bearing number 2) was not 

always true. It should, however, be added that the steady-state 

amplitude in bearing number 2 was always smaller than in the adjacent 

bearing, bearing number 3. 

The steady-state motion in the two out-board bearings (numbers 1 and 

4) was very similar for all misalignments but, in general, the amplitude 

in bearing number 1 was slightly larger. A possible explanation for this 

is that the bending moment imposed upon the shaft by the relative 

misalignment of the two central bearings always caused bearing number 1 to 

be marginally less heavily loaded than bearing number 4. 

The steady-state motion at the mid-spans of the two rotors was also 

similar, although the rotor supported by the nominally deloaded bearing 

(number 3) always had a slightly larger amplitude. 

It is a commonly held belief that, if a rotor system becomes unstable 

due to misalignment of a bearing, then the amplitude of motion at the 

onset of instability is largest in the deloaded bearing. This would be 

equivalent to saying that the amplitude, in the bearings, of the elliptical 

"orbit" (equations 8.12 and 8.13) given by the eigenvector corresponding 

to the eigenvalue with maximum real part, is largest for the deloaded 

bearing. The size of the major axis of this elliptical orbit was 

calculated using the procedure described in Appendix 2, but for all cases 

of misalignment tested, the major axis was largest for bearing number 4 and 

not the nominally deloaded bearing, bearing number 3. It was, however, 

observed that the major axis was always smallest for the heavily loaded 

bearing, bearing number 2. 
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Figure 8.6: The amplitude, in the X direction, of the dominant component of the steady-state whirl at 

each bearing of the two rotor system. 
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8.2.1 Energy Interchange Between the Shaft and the Bearings 

For steady-state, self-excited motion to exist, the net energy 

input from the bearings to the shaft over a complete cycle must be zero. 

An investigation was undertaken to determine whether, during the steady-

state motion, the net input of energy from each bearing to the shaft over 

a complete cycle is zero, or whether, alternatively, some bearings put a 

net amount of energy into the shaft over a complete cycle, whilst an 

equivalent amount of energy is extracted by the others. 

From a knowledge of the oil-film forces acting on the shaft 

and its position at each time step (AT) on the steady-state orbit, the 

cumulative energy (E ) input to the shaft from the kth bearing up to a 

time x. was obtained by numerical integration using the formula: 
3 

v y = M w 2 X { 0 ' 5 * W * - 1 " 

(xCsy.) - xisy.^)) + 0.5 (f^x.) * f ^ J ) 

(y(sk>t J - V ^ T ^ j ) ) } 8.15 

in which: T . = T + o AT 8.16 
3 s 

where T is an arbitrary time during the steady-state motion when the 

cumulative energy is assumed to be zero. 

For the aligned system, the net energy input by each bearing 

after a complete cycle was, to the-accuracy obtainable, found to be zero, 

but during the cycle there was an interchange of energy between each 

bearing and the shaft. However, for a misaligned system (see Figure 8.9), 

individual bearings could have a net exciting or damping effect upon the 
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Figure 8.9: Cumulative energy input to the whirling shaft from the bearings during the steady-state motion, 

Two rotor system mi sal igned at bearing number 2 by Ay-, - 2.0. 
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system. In all cases, the nominally deloaded bearing put energy into the 

system while the damping was provided by the two end bearings, principally 

bearing number 1. The misaligned bearing (number 2), which was heavily 

loaded, either put energy into the system or remained passive. 
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CHAPTER 9 

CLOSURE 

9.1 SUMMARY AND CONCLUSIONS 

9.1.1 General 

(1) A method has been developed for predicting the non-linear 

flexural vibrations of a multi-rotor system. The equations 

of motion are in terms of the free-free modes of the coupled 

rotors and the modal coefficients are propagated in time using 

numerical initial-value-problem techniques. The method is 

general and may be used for any shaft for which the free-free 

modes and natural frequencies are known, and for any number of 

bearings. The modal approach effectively separates the linear 

dynamic characteristics of the shaft from the non-linear 

properties of the bearings, and allows the shaft to be 

represented by relatively few degrees of freedom. By using 

the free-free modes, the "inertia" matrix in the equations of 

motion is diagonalised and the equations of motion are thus in 

a form suitable for solution by standard numerical initial-

value-problem techniques. The free-free modes also allow the 

relocation, insertion, removal or modification of a bearing 

for an existing shaft, without the need to compute a new set 

of modes. 

(2) An adaptation of the basic method was used to calculate the 

horizontal and vertical bearing settings required to align the 

system; the equilibrium position of the rotating shaft for 

given bearing settings; the stability of the equilibrium 
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position; and the forced response of the linearised system. 

(3) A computationally efficient model of a lemon-bore bearing has 

been developed, suitable for use in the numerical integration 

procedure for solving the equations of motion of the shaft. 

The model takes account of the region of comparatively low 

pressure occurring at the axial feed ports, and cavitation of 

the oil-film is allowed for. 

(4) Frequency analysis was used to determine the amplitude and 
j 

frequency of the components of the predicted steady-state 

motion. 

(5) A considerable saving in computer time was achieved by 

obtaining the initial conditions for the solution procedure 

from the "dominant" eigenvector of the linearised system. 

9.1.2 Two Rotor System Supported Upon Short Circular Bearings 

(6) The non-linear behaviour of the two rotor system supported 

upon short circular bearings was, even with bearing 

misalignment, found to be essentially the same as that of a 

single rotor system supported upon plain circular-bore 

bearings, reported in the literature. 

(7) In order to predict steady-state whirl at frequencies less 

than 0.5 w (and closer to those normally occurring in large 

turbogenerators), the flexibility of the shaft had to be 

increased so that the rotational speed was in excess of twice 
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its first pinned critical speed, and external damping had to 

be imposed on the shaft to limit the amplitude of vibration. 

(8) Tondl's vertical shaft model, the equations of motion for 

which may (assuming circular motion) be solved as a system of 

non-linear algebraic equations, was extended to treat the case 

of a shaft bearing distributed mass and elasticity, and 

supported upon more than two bearings. 

(9) Using the vertical shaft model, the behaviour observed for the 

horizontal two rotor system was confirmed, and estimates were 

made of the amount of external damping required to limit the 

amplitude to maximum that could occur in practice without loss 

of internal clearance. However, the level of dissipation 

required could not be physically accounted for. 

9.1.3 Two Rotor System Supported Upon Lemon-Bore Bearings 

(10) If the two rotor system was supported upon lemon-bore bearings, 

the self-excited vibrations remained finite, without the 

application of external damping, when the shaft was rotating 

at speeds both above and below twice its first pinned critical 

speed. 

(11) The amplitude and frequency of the steady-state self-excited 

motion was affected by.parallel misalignment of the bearings. 

Increased misalignment tended to reduce both the amplitude and 

the frequency of the motion. 
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(12) Steady-state whirl at frequencies significantly below 0.5 w 

could be induced in a shaft rotating at speeds substantially 

below twice its first pinned critical speed. 

.(13) During the steady-state, limit cycle motion, the net energy 

input from each bearing to the shaft over a complete cycle 

was, for the aligned condition, found to be zero. For a 

misaligned system, however, some bearings put a net amount of 

. energy into the shaft whilst others extracted an equivalent 

amount of energy, thus maintaining the zero net input required 

for steady-state motion. For both situations, there was an 

interchange of energy between each bearing the the shaft during 

each cycle. 

9.1.4 Principal Conclusion 

(14) The steady-state self-excited motion at frequencies less than 

half the rotational frequency of the shaft, observed in 

practice, cannot be predicted without recourse to heavy 

external damping unless the bearing model used to obtain the 

oil-film forces takes account of the circumferential asymmetry 

of practical bearings. 
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9.2 SUGGESTIONS FOR FURTHER WORK 

A method for improving the accuracy of the compensated long bearing 

solution, in which the side leakage factor is obtained using the method of 

collocation, would be desirable in order to obtain better estimates of the 

stability threshold for a system supported upon lemon-bore bearings. It 

is doubtful whether such an improvement in the accuracy of the oil-film 

forces would have an appreciable effect upon the results obtained for the 

large amplitude limit cycle behaviour of the system and so it is important 

that the computational time required should not increase significantly. 

A comparison of the results given in Figure 7.9 and Table 7.3 would 

suggest that the error in the oil-film forces is principally a function of 

the eccentricity ratio of the journal, and are comparatively insensitive to 

its attitude angle or velocity. One possible method of improving the 

accuracy of the oil-film forces would be to obtain a further correction 

factor in the form of a polynomial in terms of the eccentricity ratio, 

i.e. (cf. equation 7.61): 

f = 2 a 2 3 ) 2 K (a + a 7 e + a9 e 2 + ...) J P7(eJ aos Q dQ 9.1 
e C °  1  61 

etc. The constants a. would be obtained by curve fitting, using values 

of the oil-film forces obtained from finite difference solutions. 

Another method for improving the accuracy would be to increase the 

number of trial functions in equations 7.52, but the choice of suitable 

trial functions, or the additional places in the pressure field where the 

residual should be set to zero, are not immediately obvious. 
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APPENDIX 1 

AN ALTERNATIVE DERIVATION OF THE EQUATIONS 

OF MOTION - LUMPED MASS APPROACH 

An outline is given here of the derivation of the modal equations of 

motion for a shaft by direct consideration of the lumped mass 

approximation. The notation used here differs slightly from that used 

elsewhere in the text. 

A shaft is represented by p point masses connected by light elastic 

shaft elements. Let the mass at the ith station be given by M. and its 

transverse displacement in the horizontal and vertical directions be given 

by X . and Y., respectively. Let [k] be a matrix of stiffness influence 

coefficients for the shaft, where an element of the matrix K.. is the 
I'd 

force required at the ith station to produce unit deflection at the jth 

station and zero deflection elsewhere. It should be noted that [K] is a 

symmetric matrix due to the reciprocity relationship, but is singular as 

the shaft is unconstrained. 

If the external damping acting on the shaft and the unbalance forces 

are omitted (for the sake of brevity), then the equations of motion for the 

rotor system are: 
\M] + [K] {X} = {FY} 

dt 1 * 

[Af] ^ A + [*] m = {Fy} - g [M] {1} ' 
dt 2  

y AI.I 

where [m] is a diagonal matrix containing the point masses; {F^} and {F^} 

contain the bearing reactions at the relevant stations; and {1} is a 

vector whose elements are all equal to unity. 

These equations may be rendered dimensionless by dividing through each 
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equation by AL,c w 2 , where AL, (= I M.) is the total mass of the shaft. 
J. 171 JL m ^ 1s 

The non-dimensional equations are: 

[m] fa} -f [k] fa} = { 4 } 

M ffl * LkJ iy) = ify} - St [m] {1} 
J 

S Al .2 

where: xi = V c r 

Y . = J . / B 
is' r 

M . . = A L . / A L , 

L i = 

4 . = F X . / M f ° r a 2 

Is 1s 

fy.-  Fl/ MT  Gr « 2  

Al .3 

Al .4 

Al .5 

Al .6 

Al .7 

Al .8 

Consider now the free-free vibration of the unconstrained shaft 

described by the homogeneous form of equations Al.2. As the equations 

for the horizontal and vertical directions are identical, only the one for 

the horizontal direction will be considered, i.e. 

fin] fa} + [fc] fa} = 0 Al .9 

Assume a solution of the form: 

fa} = {$} e 
Lvfr 

Al .10 

which, upon substituting into equation A1.9, leads to the eigenvalue 
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problem: 

(i), _ .. 2 rji r Ji) 
N [k] = v 2 [m] { * a ) } Al .11 
J"..* 

The eigenvectors are normalised with respect to \m\ by setting: 

{ * ( i ) } T [m] = 1 Al.12 

from which it follows directly from equation Al.ll that: 

{ * a ) } T [k] { * a ) } = v 2 Al .13 
7i 

If and are eigenvectors corresponding to eigenvalues and 

v« , respectively, then, as [k] and [m] are both symmetric matrices, the 

4 

following orthogonality relationship exists between them (see, for example, 

Timoshenko et al (1974)): 

[m] = 0 , if v f / v Al .14 
7i 7 3 

{ * H ) } T [k] { / j V } = 0 , if f v f Al .15 
7i  7 3 

All the non-zero eigenvalues of equation Al.ll are, by physical 

consideration, necessarily distinct but as the shaft is unconstrained, it 

has two zero eigenvalues. For v^, = 0, equation Al.11 reduces to: 

[k] M = 0 Al. 16 

which is satisfied by any rigid body displacement of the shaft. However, 

it is desirable that the two rigid body eigenvectors should also be 
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mutually orthogonal and normalised according to equation AT.12. This is 

achieved by choosing them to be: 

H ( 1 ) } = (1} AT .17 

(J m.i V {1} - (s^} 

U ( 2 ) y = ^ A1.18 

V ( i m. s , 2) - ( i m. s.) 2  

where s^ is the non-dimensional displacement along the shaft to the ith 

mass station, and is.} is a vector containing these. 

Returning now to the situation of the shaft supported upon bearings 

and whose motion is expressed by equations Al.2. As the eigenvectors of . 

equation Al.ll are mutually orthogonal, they may be used to form a basis 

in p-dimensional space and so any displacement of the shaft may be 

represented as a linear combination of these. This may be expressed as: 

{x(i)} = I fa (T) = [A] {qjx)} Al .19 
0 CJJ 0 «V 
3-I Q 

iy(T)} = f (a (x) = [A] {q (x)} Al .20 

where: [a] = \ { *
( 1 )

h .... i*
( p )

}\ A1.21 

As a consequence of the orthogonality relationship existing between its 

columns, [a] has the properties: 

\AF [»] [A] = [J] AT.22 

and: ¥f m w = [n] Al .23 
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where [l] is the unit matrix, and [p] is a diagonal matrix whose elements 

along the diagonal are v* 2 . (It should be remembered that v = = 0.) 
H  J2 

Substituting equations A1.19 and A1.20 into equations A1.2 and pre-
M 

multiplying each equation by [A] leads to: 

+ [n] V = 

+ [n] iq } = W T ify} - p ] * [m] {7} 
IT 

A1.24 

which, upon expansion, gives: 

q + v - z q 
xi f<i  xi 3=1  0  

(W f- > x 
3' 

q + v * q = > f ) - 6.- S+ Hy. f. ^y. 3  Jy . il t 
3=1  D  V 3 

(i = 1, 2,, p) 

A1.25 

It may be seen that, but for the absence of terms for external damping and 

unbalance forces, these equations would have an identical form to 

equations 2.66 for a continuous shaft. 
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APPENDIX 2 

A SCHEME FOR DETERMINING THE 

SIZE AND ORIENTATION OF THE ELLIPTICAL 

ORBITS OBTAINED FOR A LINEARISED SYSTEM 

Equations 5.55 and 5.56, which describe an ellipse, may be written in 

simplified form as: 

x - E cos x - F sin x A 2 . 1 

y = G cos x - 2 7 sin x A 2 . 2 

Let a new coordinate system (x'9y') be coincident with the principal axes 

of the ellipse, and let the angle between the x and x' axes be e. The two 

coordinate systems are identical except for a rotation by 9 and are 

therefore related as follows: 

x' 

y l 

> -

cos 9 sin 6 

- sin 6 cos 9 

x 
^ > 

y 
A 2 . 3 

Transforming A2.1 and A2.2 into the (x'9y') coordinate system gives: 

x' = (E cos Q + G sin 6) cos x - (F cos 6 + H sin Q) sin x 

y' = (G cos 8 - E sin Q) cos x - (H cos 0 - F sin 0) sin x 

A2.4 

A2.5 

but, as the principal axes of the ellipse are coincident with the (x'9y') 

coordinates, the equation of the ellipse may be written as: 

x ' - A cos (x + = A cos 3 cos x - A sin 3 sin x A 2 . 6 

y' = B sin (x + 37 = B sin 3 cos x + B cos 3 sin x A 2 . 7 
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Therefore, equating coefficients of cos t and sin t in equations A2.4 to 

A2.7 gives: 

A cos 3 = E cos 0 + G sin 0 A2.8 

A sin 3 = F cos 0 + E sin 0 A2.9 

B sin 3 = G cos 0 - E sin Q A2.10 

- B cos 3 = H cos 0 - F sin 0 A2.ll 

Eliminating A, B, cos 3 and sin 3 from equations A2.8 to A2.ll leads to: 

tan 20 = 2 ( F H + G E ) A2.12 
(F 2 + E 2) - (G 2 + H 2) 

from which 0 may be determined. 

Once 0 is known, the phase angle 3 may be obtained from equations 

A2.8 and A2.9 (or A2.10 and A2.ll) and then the semi-axis A is determined 

from equation A2.8 (or A2.9) and the semi-axis B from equation A2.10 (or 

A2.ll). If |b| > \A |, then B is the major semi-axis and tt/2 must be 

added to 0 (adjusted to the range-ir/2 < 0 < tt/2 if necessary) to give the 

angle of inclination of the major axis of the ellipse to the a; axis. It 

should be noted that if (A/B) < 0.0 (i.e. A and B are of different signs), 

then the shaft at that station exhibits "backwards" precession. 
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APPENDIX 3 

THE PARTIAL DERIVATIVES REQUIRED FOR THE 

VERTICAL ROTOR MODEL 

The oil-film forces for a circular bearing are a function of the 

three variables e, i and i only, i.e. 

and: 

fe = A3.1 

A3.2 

From A3.1, A3.2 and equations 6.11 to 6.17, it may be shown that the 

partial derivatives required to linearise equations 6.18 are given by: 

dg 
R. 

3 a 
R. 
3 

n 

l 
k=l 

*i u •> » fe  AB  AI * fe 
R 

3 e 3i|> 

At 

R  1 3e e Bi J 
- 6. . 2y 

*3 
A3.3 

R. 

3 a X . 
3 

n 

I 
k=l 

<f>. <J>. 
JL L (A A 

o  l AR  aI 
% .  AR ^ 

3E e dj; 

3e W J 
+ 6. . 2v 

1*3 w 
A3.4 

I. 
3 a R. 

3 

n 

I 
k-1 

<|>. <J>. df A J- 3 f ri A
 J e I  J e 

(Ar AX 
3e e dip 

+ A-p — Ap A t 
R de  R  1 dip ) 

- 6. . 2v 
1-3 W 

A3.5 
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i. n 

da 
I. k=l 
3 

6. <f> . 3f A Aj 3f 

e 2 3e z 3ij> 

3/. A  2 3 f. 

3e z 
- 6 . . 2y 

13 
A3.6 

R. 
i 

3a 

n 

I 
R . k=l 
3 

-1—2- (A 2 - 1 

z 2  R Zz 
+ * f e - A R A I 3e 

- ^ { "
 f e

" V 
e 

- 6 .. fa 2 - v . 2 ) 
s k ** W h 

A3.7 

90 i?. 
-z. 

3a 
I. 
3 

n 

I 
k-1 

<f>. 6 . 3/ 3f. 
* J M 4 —£ - e f - A  2 11-

3e 3e 

+ 6 . . 2y v , 
•z-j 1 zj 

A3.8 

90 

3a 
i?. 
3 

n 

I 
k=l 

6.6. Zf Zf, 
I 3 ( A A A± + z f + A^ - L i 

2
 l AR I „  fip R 3e 3e 

- a R { 

- Ai 4 * aR 4 ] ; - 6. . 2y v , 
•Z-J ZJ 

A3.9 

9? J . 
•z. 

3a 

n 

I 
I. k=l 
3 

<f>„. 3f 
2 

2 T 
^ ( A 2 - ^ + z f e + A R A I 

V, 
3e 3e 

_ , ft 4 - 4 4 } ; + 6 . . fa 2 - v . 2 

„ 13 V> fj sk 1 
A3.10 

and the partial derivatives needed to form the Jacobean matrix used for 

the solution of equations 6.19 are: 
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3 h 
R. 
v 

3 a R. 
3 

R. 
v 

3 a 
R3 

A3.n 

3 h 
R. 
v 

3 a 4 
R. 

9 a 
I. 
3 

A3.12 

3k 
J . 

3a 

4 

9<7 J. 
9a 

4 

A3.13 

'3k 
J . 

3a 
4 

9^ J . 

3a 
J . 
3 

A3.14 

3k 
i?. n 

3v 
w 

2 v w a R . + a I . + I 
v v k=l 

64 
i? 

9ij> 3ip 
A3.15 

3k J. w 
= - 2 Y « f l / 2 v a + J 

3v. ^ t- k=7 e 9if> 3i|; J 
A3.16 

where, for a short circular bearing in which i = 0 and $ = v. 

V , 

9e 
= - 3 (0.5 - v.) 

4z (1 + z 2) 
W (1 - z 2) 3  

A3.17 

3e  W 2 (1 - z 2)^ 2  

A3.18 

0 TT (1 + 2z 2) - — p 

9e 2 (1 - z 2) 5 / l  

A3.19 

9e 

i = 3 ^ 

n - e 2 ; 2 

A3.20 
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3/ J e 

aifi 
= 3 

2e 2 

(1 - e 2 ; 2 

A3.21 

* _ 
3ij/ 

= - 3 
TT Z 

2 (1 - z 2) 3^ 2  

A3.22 

r 
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APPENDIX 4 

COMPUTER PROGRAM 

Namelist of Input and Principal Variables 

AJ1(J) 

A02(J) 

s . 
3 

: / m^(r)) dx\ (c.f. equations 5.9) 

s. ^ 
3 X 

: J J m^(r\) dx\ dz (c.f. equations 5.9) 
o o 

ALPHA(K,I) 

AMU(I) 

ANU(I) 

A2NU(I) 

ARCS(K,I) 

ARCF(KJ) 

BETA(KJ) 

BGSHPE(K,I) 

C0EFLN(I,K) 

CAVCC 

DAMP 

DELXB(K) 

DELYB(K) 

DATAFQ 

FF3 

FX(K) 

FY(K) 

value of a for kth bearing, ith arc 

VL-

v 
h 

V v
 — 

Value of 0 for kth bearing, ^th arc (degrees) 
s 

value of Jj. for kth bearing, ith arc (degrees) 

value of 3 for kth bearing, ith arc 

value of at kth bearing 

for kth bearing contains linearised bearing force 

coefficients Bf^/Bx, Bf^/Bx, df^/Zy* if^y, 

Ofy/Bx, Bfy/By, Bfy/By, in that order 

convergence criterion (A0 ) for solving equation 7.41 
n 

2y 

ATF, 

Ry-i 

used to .store data for frequency analysis 

7 

f. X, 

f, 
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FQSHPE(J,I) 

GAMMA 

GC(K,I) 

NBRG 

NCPL 

NFRQ 

NMODE 

Q Q ( U ) 

QQ(2,I) 

QQ(3,I) 

QQ(4,i) 

QEXI(I) 

QETA(I) 

RACSC(K,I) 

RELAX 

SBRG(K) 

SCPL(J) 

SFRQ(J) 

ST 

T, TAU 

WFACT 

Wl, W2, W3, etc, 

XBRG(K) 

XDIS 

XDOT 

value of i).(s) at jth monitor point 
it 

value of g at kth bearing, it\\ arc 

n - number of bearings 

number of couplings 

number of monitor points 

m - number of free-free modes in modal expansion 

u = d 
x. ^x. 
t i> 

qx 

u = d 

H  yi 

V 
Q, 
H 

Q n 

value of C/cr for kth bearing, ith arc 

"a" in equation 7.42 

Sj, - non-dimensional displacement along shaft to 

kth bearing 

non-dimensional displacement along shaft to jth 

coupling 

non-dimensional displacement along shaft to jth 

monitor point 

V (see section 7.4.2.5) 
a x ' 

working arrays used by NAG routines 

X-, 
uk 

x(s, x) 

x(s3 x) 



- 206 - , 

YBRG(K) : yh 

YDIS : y(syx) 

YDOT : y(syx) 
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P R O G R A M M A
T
N < I N P U T T O U T P U T « T A P E 5 I T A P E * )

 0 0
°1 

C 0 0 0 2 
O * * * T H E N U M E R I C A L I N T E G R A T I O N OF THE n o n - L I N E A R E Q U A T I O N S 0 0 0 3 
c OF M O T I O N FOR THE F L E X U R A L V I B R A T I O N S OF A R O T A T I N G .0004 
c S H A F T S U P P O R T E D U P O N J O U R N A L B E A R I N G S . 0 0 0 5 
c 0006 
c***# A U T H O R A . G . H O L M E S 0 0 0 7 
C 0 0 0 8 
C • * * • D A T E S E P T E M B E R 1 9 7 7 0 0 0 9 
C 0010 
C * * # * THE T H E O R Y U P O N W H J C H T H I S P R O G R A M M E IS B A S E D IS G I V E N IN 0 0 1 1 
C 0 0 1 2 
C THE L A R G E A M P L I T U D E V I B R A T I O N OF M U L T I - R O T O R S Y S T E M S 0 0 1 3 
C S U P P O R T E D U P O N O I L - F I L M B E A R I N G S , 0014 
C 0 0 1 5 
C BY 0 0 1 6 
C • 0 0 1 7 
c A . G . H O L M E S o o i a 
c 0019 
C P H . D . T H E S I S L O N D O N U N I V E R S I T Y 1977/78 0020 
C 0021 
C 0022 
C 0023 
C**** T H E P R O G R A M M E IS ( S U B J E C T TO T H E A S S U M P T I O N S S T A T E D IN C H A P T E R 2) 0024 
C G E N E R A L L Y A P P L I C A B L E TO ANY R O T O R S Y S T E M FOR W H I C H T H E F R E E - F R E E 0025 
C M O O E S ANO N A T U R A L F R E Q U E N C I E S ARE K N O W N A N D A S U I T A B L E M O D E L 0026 
C FOR T H E B E A R I N G S F O R C E S IS A V A I L A B L E . THE B E A R I N G F O R C E S ARE 0027 
C C A L C U L A T E D BY S U B R O U T I N E F L L M X Y AND THE V E R S I O N OF T H I S 0028 
C S U B R O U T I N E G I V C M H E R E IS FOR A L E M O N B O R E B E A R I N G , 0029 
C 0030 
C**** T H I S V E R S I O N OF THE P R O G R A M M E IS D E S I G N E D TO BE U S E D IN 0031 
C C O N J U N C T I O N W I T H AN O N . L I M E P L O T I N G F A C I L I T Y , 0032 
C 0033 
C # * * * THE P R O G R A M M E H A S B E E N D I M E N S I O N E O FOR 0034 
C 0035 
C N M O D E . L E . 10 0036 
C . N B R G . L E . 6 0037 
C N C P L . L E . 2 0038 
C N F R O . L E . 6 0039 
C . . . 0040 
C IF V A L U E S L A R G E R T H A N THE A B O V E M A X I M A ARE R E Q U I R E D T H E N THE 0041 
c THE P R O G R A M M E D I M E N S I O N S M U S T BE I N C R E A S E D ANO THE F O L L O W I N G 0042 
c S T A T E M E N T S M O D I F I E D AS S H O W N W H E R E EVER THEY A P P E A R 0043 
C 004A 
C ' M = N M O O E « N = N B R G , . J = N C P L . K = N F R Q 0045 
C 0046 
C 0047 
C B L A N K C O M M O N 0048 
C 0 0 4 9 
C 0050 
C Q Q ( 4 .M) I A2I\|U (M) «SBRG (N) » XBRG (N > « Y B R G (N) « 8 G S H P E ( N « M ) I S C P L ( J ) 0 0 5 1 
C A J 1 ( J ) , A J 2 ( J ) , S F R Q ( K > , F O S H P E ( K , M ) . Q E X K M ) I Q E T A < M ) , F X C M I I F Y ( N ) 0 0 5 2 
C C O E F L N ( 8 » N ) I D A T A F Q ( 2 0 4 8 + K ) 0 0 5 3 
C 0054 
C C O M M O N / B R G S E T / - 0 0 5 5 
C 0 0 5 6 
C 0 0 5 7 
C B E T A ( f J , 2) » G C ( M » 2 ) T R S C A C ( N , 2 J I A R C L ( N , 2 ) T A L G A M ( N , 2 ) 0 C 3 R 
C S C O S ( N » 2 ) I S S I N ( N « 2 ) . F C O S ( N , 2 ) I F S I N { N , 2 ) 0 0 5 9 
C 0060 
C D I M E N S I O N * E Q U I V A L E N C E AfjD C A L L S TO S U B R O U T I N E S 0 0 6 1 
C — 00 6 2 
C * 0 0 6 3 
C D E T A I L S A R E G I V E N IN THE R E L E V A N T S U B R O U T I N E S 0 0 6 4 
C 0 0 6 5 
C 0 0 6 6 
C 0 0 6 7 
C » * * * THE P R O G R A M M E C A L L S THE F O L L O W I N G N A G L I B R A R Y S U B R O U T I N E S 0 0 6 8 
C 0 0 6 9 
C C 0 6 A A F C A L C U L A T E S THE F I N I T E FOIJRLEN T R A N S F O R M OF A S E T OF 0070 
c R E A L D A T A V A L U E S U S I N G THE C O O L E Y - T U K E Y A L G O R I T H M . . 0 0 7 1 
C 0 0 7 2 
C D 0 2 A B F I N T E G R A T E S A S Y S T E M OF O R D I N A R Y D I F F E R E N T I A L E Q U A T I O N S 0 0 7 3 
c O V E R A R A N G E * U S I N G M E R S O N S M E T H O D . 0 0 7 4 
C 0 0 7 5 
C F 0 2 A F F F I N D S A L L T H E E I G E N V A L U E S OF A R E A L U N S Y M M E T R I C M A T R I X . 0 0 7 6 

C 0077 
C F 0 2 A G F C A L C U L A T E S ALL THE E I G E N V A L U E S A N D E I G E N V E C T O R S OF A 0 0 7 8 

C R E A L U N S Y M M E T R I C M A T R I X , 0 0 7 9 

C 0080 



- 208 - , 

C F 0 4 A T F S O L V E S A S E T OF R E A L L I N E A R A L G E B R A I C E Q U A T I O N S » 0 0 8 1 

C BY C R O U T S F A C T O R I Z A T I O N M E T H O D , 0 0 8 2 
C 0 0 8 3 
C M 0 1 A A F P E r F O R M S A D E T A C H E D K E Y S O R T , S O R T I N G AN INDEX A R R A Y TO 0080 
C G I V E THE A S C E N D I N G O R O f R OF A P E A L A R R A Y . (USED TO S O R T 0085 
C THE D A M P E D E I G E N V A L U E S OF T H E L I N E A R I Z E D S Y S T E M INTO 0 0 8 6 
c O R D E R OF A S C E N D I N G F R E Q U E N C Y . ) 0 0 8 7 
c 0 0 8 8 

C O M M O N O Q ( 1 1 1 0 ) »A?N(J(10 ) , N M O D E « S T « D A M P » N 8 R G , S B R G ( 6 ) , X B R G ( 6 ) 0 0 8 9 

+» YBRG (6) i B G S H P E < 6»10 ) »NCPL » S C P L ( 2 ) • A«JH
 2
) , A J 2 ( 2 ) INFRQ i S F R Q ( 6 ) 0090 

+ . F Q S H p E ( 6 , 1 0 ) T Q E X I ( 1 0 ) , Q E T A ( 1 0 ) , F X ( 6 ) , F Y ( 6 ) , C 0 E F L N ( 0 , 6 ) 0 0 9 1 
+ , X D O T , X D I S , Y D O T , Y n i S , D A T A F Q ( 1 2 2 8 8 ) 0 0 9 2 
D I M E N S I O N 0 E L X B ( 6 ) , D E L Y B ( 6 ) 0 0 9 3 

C 0094 
C # * * * S T A T E M E N T M O D I F I C A T I O N S FOR I N C R E A S E D P R O G R A M M E D I M E N S I O N S 0 0 9 5 
C 0 0 9 6 
C D I M E N S I O N 0 0 9 7 
C 0 0 9 8 
C 0 0 9 9 
C D E L X B ( N ) , D E L Y B ( N ) 0100 
C 0 1 0 1 
C * * » * R E A D IN A L L D A T A E X C E P T S H A F T A N D B E A R I N G D A T A 0 1 0 2 
C 0 1 0 3 

R E A D ( 5 , 5 0 1 0 ) N M O D E » N B R G , N C P L « N F R Q « I S T A R T 0 1 0 4 
R E A D ( 5 , 5 0 2 0 ) S T , G A M M A 0 1 0 5 
R E A D ( 5 , 5 0 2 0 ) ( S O R G ( N ) ' N = 1 » N B R G ) 0 1 0 6 
R E A D ( 5 , 5 0 2 0 ) ( X B R G ( N ) , Y B R G ( N ) , N = 1 , N B R G ) 0 1 0 7 
R E A D ( 5 , 5 0 2 0 ) ( D E L X B ( N ) , O E L Y B ( N ) , N = 1 , N B R G ) 0 1 0 8 
I F ( N C P L . M E . 0 ) R E A D ( 5 , 5 0 2 0 ) ( S C P L ( I ) , 1 = 1 » N C P L ) 0 1 0 9 
R E A D ( 5 , 5 0 2 0 ) ( Q E X I ( J ) » Q E T A ( I ) , 1 = 1 » N M O D E ) 0110 
R E A D ( 5 , 5 0 2 0 ) ( S F R Q ( I ) , 1 = 1 , N F R Q ) 0 1 1 1 

C 0 1 1 2 
c *#* * M A N I P U L A T E D A T A W H E R E N E C E S S A R Y A N D W R I T E OUT P R O G R A M M E V A R I A B L E S 0 1 1 3 
C R 0 1 1 4 

D A M P = 2 . 0 * G A M M A 0 1 1 5 
W R I T E ( 6 , 6 0 1 0 ) 0 1 1 6 
W R I T E ( 6 , 6 0 2 0 ) rjMODE ,nbRg , N C P L , S T , G A M M A 0 1 1 7 

C 0 1 1 8 
C * * # * C A L L A S H A F T TO R E A D IN D A T A FOR S H A F T T O S E T UP 0 1 1 9 
C A R R A Y S A 2 N U , B G S H P E » F Q S H P E I A J I » A J 2 0 1 2 0 
C 0 1 2 1 

C A L L A S H A F T 0 1 2 2 
C 0 1 2 3 
C » * » * C A L L S E T B R G TO R E A D IN B E A R I N G D A T A A N D S E T UP A R R A Y S U S E D 0124 
C IN O B T A I N I N G O I L - F I L M F O R C E S 0 1 2 5 
C 0126 

C A L L S E T B R G 0 1 2 7 
C 0 1 2 8 
C**** C A L L A L I G N M TO D E T E R M I N E AND SET H O R I Z O N T A L A N D V E R T I C A L P O S I T I O N 0 1 2 9 
C OF T H E B E A R I N G S IN O R D E R TO G I V E A C O R R E C T L Y A L I G N E D S Y S T E M . S E T 0130 
C N C P L = 0 IN I N P U T D A T A TO P R E V E N T A C A L L TO T H I S R O U T I N E . 0 1 3 1 
C 0 1 3 2 

I F ( N C P L . N E . O ) C A L L A L I G N M 0 1 3 3 
C 0134 
C**** W R I T E OUT B E A R I N G L O C A T I O N S AND M I S A L I G N M E N T S 0 1 3 5 
C 0136 

W R I T E ( 6 , 6 0 3 0 ) 0 1 3 7 
W R I T E ( 6 , 6 0 4 0 ) < N , S B R G < N ) , X B R G ( N ) , Y B R 6 ( N ) , N = 1 , N B R G ) 0 1 3 8 
W R I T E ( 6 , 6 0 5 0 ) 0 1 3 9 
W R I T E ( 6 , 6 0 6 0 ) ( N . D E L X B ( N ) , D E L Y B ( N ) , N = 1 , N B R G ) 0140 

c o m 
C « * * * M I S A L I G N B E A R I N G S 0 1 4 2 
C ' 0 1 9 3 

DO 10 N = 1 , N B R G 0 1 4 4 
X B R G ( N ) = X B R G ( N ) + D E L X B ( N ) 0 1 4 5 
Y B R G ( N ) = Y B R G ( N ) + D E L Y B ( N ) 0196 

10 C O N T I N U E 0 1 9 7 

.C 0 1 9 8 
C * * » * W R I T E OUT G E N E R A L I Z E D U N B A L A N C E C O M P O N E N T S A N D L O C A T I O N OF 0 1 9 9 
C M O N I T O R P O I N T S 0150 
C 0 1 5 1 

W R I T E ( 6 , 6 0 7 0 ) 0 1 5 2 
W R I T E ( 6 , 6 0 8 0 ) (I , Q E X I ( I ) , Q E T A ( I ) , 1 = 1 , N M O O E ) 0 1 5 3 
W R I T E ( 6 , 6 0 9 0 ) 0154 
W R I T E ( 6 , 6 1 0 0 ) ( I . S F R G ( I ) , 1 = 1 , N F R Q ) 0 1 5 5 

C 0 1 5 6 
C * » * * C A L L S T A T I C To F I N D E Q U I L I B R I U M P O S I T I O N OF S H A F T 0 1 5 7 
C 0 1 5 8 

C A L L S T A T I C 0 1 5 9 
C 0160 
C * * » * R O U T I N E S L N S V E C ANO L N S T A B B O T H C A L C U L A T E T H E E I G E N V A L U E S OF 0 1 6 1 
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C THE L I N E A K ^ E D S Y S T E M AT T H E E G U L L I N R L U M P O S I T I O N OF T H E S H A F T . 0 1 6 2 
C IF THE I N I T I A L C O N D I T I O N S FOR THE N O N - L I N E A R S O L U T I O N P R O C E D U R E 0 1 6 3 
C A R E TO OE G I V E N [}Y THE E I G E N V E C T O R C O R R E S P O N D I N G TO THE 0164 
c E I G E N V A L U E W I T H M A X I M U M R E A L P A R T T H E N L N S V E C S H O U L D RE C A L L E D . O I 6 S 
C T H I S IS A C H I E V E D F3Y S E T T I N G I S T A R T s I IN THE INPUT D A T A , O T H E R W I S E 0 1 6 6 
C L N S T A B IS C A L L E D AND THE I N I T I A L C O N D I T I O N S C O R R E S P O N D TO 0 1 6 7 
C S T A R T I N G F R O M R E S T AT THE E Q U I L I B R I U M P O S I T I O N , 0 1 6 3 
C 0 1 6 0 

I F ( I S T A R T . E O . L ) CALL L N S V E C 0170 
I T D S T A R T . N E . l ) C A L L L N S T A B 0 1 7 1 

C 0 1 7 2 
C * * # * C A L L P R O p G T TO I N T E G R A T E THE E Q U A T I O N S U N T I L THE S T E A D Y - S T A T E 0 1 7 3 
c is R E A C H E D AND THEN FOR A F U T H E R 64 R E V O L U T I O N S TO O B T A I N D A T A 0 1 7 4 
C FOR F R E Q U E N C Y A N A L Y S I S 0 1 7 5 
C 0 1 7 6 

C A L L P R O P G T 0 1 7 7 
C 0 1 7 8 
C * * • * C A L L F O R I E R TO F R E Q U E N C Y A N A L Y S E D A T A O B T A I N E D FOR S T E A D Y - S T A T E 0 1 7 9 
C M O T I O N AT M O N I T O R P O I N T S , ' 0180 
C 0 1 8 1 

C A L L F O R I E R 0 1 8 2 
C 0 1 8 3 

S T O P 0 1 8 4 

C 0 1 8 5 
5010 F O R M A T { 5 1 1 0 ) ' 0 1 8 6 
5 0 2 0 F O R M A T ( 8 F 1 0 »0) 0 1 8 7 
6 0 1 0 F O R M A T ( 1 H 1 / / / 5 X 0 1 8 8 

+ . 5 3 H T H E N U M E R I C A L I N T E G R A T I O N OF T H E N O N - L I N E A R E Q U A T I 0 N S / 5 X 0 1 8 9 
+ . 5 1 H O F M O T I O N FOR T H E F L E X U R A L V I B R A T I O N S OF A R 0 T A T I N G / 5 X 0190 
+ 1 3 8 H S H A F T S U P P O R T E D U P O N J O U R N A L B E A R I N G S . ) 0191 

6 0 2 0 F O R M A T ( //5X , 2 0 H G O V E R N I N G PAR A M E T E R S / 5 X » 20H / / 5 X 0 1 9 2 
+ » 7 H N M G 0 E = » I 1 3 / 5 X 0 1 9 3 
+ . 7 H N B R G = , I 1 3 / 5 X 0 1 9 4 
+ . 7 H N C P L = I I 1 3 / / 5 X R <" 0 1 9 5 
+ 1 7 H S T = , E 1 3 , 5 / 5 X 0 1 9 6 
+ . 7 H G A M M A = T E 1 3 . 5 ) 0 1 9 7 

6 0 3 0 F O R M A T ( / / / 5 X . 2 0 H L O C A T I O N OF B E A R I N G S / 5 X . 20H // 0 1 9 8 
• » 6 X , 1 H N , 1 9 X , 2 6 H P 0 S I T I 0 N R E L A T I V E TO D A T U M / / 2 2 X 0 1 9 9 
+ » 3 H ( S ) . 1 2 X , 3 H ( X ) . 1 2 X i 3 H ( Y ) / ) 0200 

6 0 4 0 F 0 R M A T ( 5 X » I 2 . 8 X , E 1 3 . 5 , 2 X , E 1 3 . 5 , 2 X , E 1 3 . 5 ) 0 2 0 1 
6 0 5 0 F O R M A T ( / / S X . 4 O H B E A R I N G M I S A L I G N M E N T F R O M A B O V E S E T T I N G S / / I 5 X 0202 

+ , 3 H ( X ) , 1 2 X , 3 H ( Y ) / > 0 2 0 3 
6 0 6 0 F 0 R M A T ( 5 X , I 2 , 2 X , E 1 3 . 5 , 2 X . E 1 3 . 5 ) 0 2 0 4 
6 0 7 0 F O R M A T ( / / 5 X , 3 2 H G E N E R A L I 7 . E D U N B A L A N C E C 0 M P 0 N E N T S / 5 X 0 2 0 5 

+ .32H / / 6 X » 1 H I , 9 X . 7 H Q E X I ( I ) FLOX 0 2 0 6 
+» 7 H Q E T A { I ) / ) 0 2 0 7 

6 0 8 0 F 0 R M A T ( 5 X . I 2 , 4 X . E 1 3 , 5 , 4 X . E 1 3 . 5 ) 0 2 0 8 
6 0 9 0 F 0 R M A T ( / / 5 X , 4 9 H L 0 C A T I 0 M OF M O N I T O R P O I N T S FOR F R E Q U E N C Y A N A L Y S I S / 0 2 0 9 

+ 5X / 0210 
+ / / 1 7 X I 3 H ( S ) / ) 0 2 1 1 

6 1 0 0 F 0 R M A T ( 5 X . I 2 , 3 X . E 1 3 , 5 ) 0 2 1 2 
E N D 0 2 1 3 
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SUBROUTINE ASHAFT 0214 
C 0215 

AsllAFT SETS Up ARRAYS A2NU» BGslIpE, F Q S H P E • A J 1 , A J2 0216 
C 0217 

c***» S T A T E M E N T M O D I F I C A T I O N S FOR I N C R E A S E D P R O G R A M M E D I M E N S I O N S 0210 
c 0219 
C D I M E N S I O N 0220 
C 02.21 
C - 0222 
C S H P E ( M ) f A N U ( M ) 0223 
C 0224 

C O M M O N G Q ( 4 t l O ) . A 2 N U ( 1 0 ) , N M O D E , S T . D A m P » N B R G t S O R G ( 6 ) . X B R G ( 6 > 0225 
+ , Y B R G ( 6 ) , B G S H P E ( 6 , 1 0 > , N C P L , S C P L < ? ) , A J 1 ( 2 ) , A J 2 ( 2 ) , N F R Q , S F R Q ( 6 ) 0226 
+ , F O S H P E ( 6 « 1 0 ) . G E X I ( 1 0 ) , Q E T A ( 1 0 ) , F X ( 6 ) » F Y ( 6 ) , C O E F L N < 8 . 6 > 0 2 2 7 
+ » X O o T i X D i S . Y D o T » Y D l S » O A T A F Q ( 1 2 2 8 0 ) 0228 
D I M E N S I O N S H P E ( I O ) . A N U ( I O ) 0229 

C 0230 
C**** READ IN A OATA C A r D . IF I S U A F T = 1 A U N I F O R M SHAFT IS A S S U M E D 0231 
C ANO THE R E Q U I R E D SHAFT DATA IS O R T A I N E D A N A L Y T I C A L L Y F R O M 0232 
C R O U T I N E U N I F R M . O T H r R W l S E THE R E Q U I R E D DATA IS REAO I N , NOTE 0233 
C THE VALUE OF FF3 IS ONLY R E L E V A N T IF THE U N I F O R M S H A F T OPTION 0234 
C IS C H O S E N 0235 
C 0236 

R E A D ( 5 , 5 0 1 0 ) IsHAFTiFF3 0237 
I F ( I S H A F T . E O , l > Go TO 20 0 2 3 8 

C 0239 
C**** R E A D DATA INTO ARRAYS A N U « B G S H P E » F Q S H P E t A J 1 » A J 2 0240 
C 0241 

R E A D ( 5 . 5 0 2 0 ) { A M U ( I ) » 1 = 1 • N M O D E ) 0242 
R E A D ( 5 , 5 0 2 0 ) ( ( B G s H p E < M » I ) » 1 = 1 . N M O D E ) » N = 1 . N B R G ) 0243 
R E A D ( 5 , 5 0 2 0 ) ( ( F Q S H P E ( K , I ) , 1 = 1 , N M O D E ) » K = 1 , N F R Q ) 0244 
I F ( N C P L , N E . O ) REAO f 5« 5020 ) < A J 1 ( J > , A J 2 { J > i J = 1 i N C P L > 0245 

C 0 2 4 6 
W R I T E ( 6 , 6 0 1 0 ) r ' 0247 
00 10 I = l , N M O O E 0248 
A 2 N U ( I ) = A N U ( I ) + A N U ( I ) 0249 
W R I T E ( 6 , 6 0 2 0 ) I.ANU(I) 0250 

10 C O N T I N U E 0251 
R E T U R N 0252 

C 0 2 5 3 
C***c* C A L C U L A T E THE SHAFT DATA FOR A U N I F O R M S H A F T 0254 
C 0255 
20 DO 22 N = l i N B R G 0256 

C A L L U N I F R M ( N M 0 D E , S B R G ( N ) , S H P E , 1 ) 0257 
DO 24 M = l , M M O O E 0258 
8 G S H P E ( N , M ) = S H P E ( M ) 0259 

24 C O N T I N U E 0260 
22 C O N T I N U E 0261 

00 26 1 = 1 , N F R Q 0262 
CALL U N I F R M ( N M 0 D E , S F R Q ( I ) . S H P E . I ) 0263 
DO 28 M = l , N M O D E 0264 
F Q S H P E ( I * M ) = S H P E ( M ) 0 2 6 5 

28 C O N T I N U E 0 2 6 6 
26 C O N T I N U E 0267 

I F ( N C P L , E Q . O ) GO TO 32 0 2 6 8 
DO 30 J = 1 « N C P L 0 2 6 9 
A J 1 ( J ) = S C P L ( J ) 0270 
A J 2 ( J ) = 0 . 5 * S C P L { J ) * S C P L ( J ) 0271 

30 C O N T I N U E ' 0272 
C • . 0273 
32 CALL U N I F R M ( N M o D E , F F 3 » A N U » 0) 0274 

W R I T E ( 6 , 6 0 1 0 ) . 0275 
DO 34 1 = 1 i N M O D E 0276 
A 2 N U ( I ) = A N U ( I ) * A N U ( I ) 0277 
W R I T E ( 6 , 6 0 2 0 ) IfANU(I) 0278 

34 C O N T I N U E ' 0279 
R E T U R N 0280 

C 0 2 8 1 
5010 F O R M A T ( I 1 0 « F 1 0 , 0 ) 0282 
5020 F O R M A T ( 8 F 1 0 « 0 ) 0 2 8 3 
6010 F O R M A T ( / / / 5 X 0284 

+ , 5 8 H N 0 N - D I M E N S I 0 N A L F R E E - F R E E N A T U R A L F R E Q U E N C I E S OF THE S H A F T / 5 X 0285 
+ .58H - / / / ) 0286 

6020 F O R M A T ( 5 X I I 2 . 3 X . E 1 3 . 5 ) 0287 
END .0288 
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SUBROUTINE PROPGT 0341 
C ' 0342 
c**** PRQPGT INTEGRATES THE EQUATIONS OF MOTION (2.74) UNTIL THE 0343 
C STEADY-STATE HAS BEEN KEACHED AND THEN FOR A FURTHER 0344 
c REVOLUTIONS OF THE SHAFT TO OBTAIN DATA FOR FREQUENCY A N A L Y S I S . 0345 
C DURING BOTH STAG E S HATA IS GENERATED FOR THE ON-LINE GRAPH 0346 
c FACILITY to PLOT THE TRAJECTORIES OF THE SHAFT AT THE MONITOR 0347 
c S T A T I O N S , IT SHOULD BE NOTED THAT THIS ROUTINE OPERATES 0343 
C INTERACTIVELY TO ENABLE THE USER - WHO BY INSPECTION OF THE 0344 
C PLOTTED TRAJECTORIES ASCERTAINS WHEFJ THE S T E A D Y - S T A T E HAS BEEN 0350 
C REACHED - TO SPECIFY WHEN DATA COLLECTION FOR THE FREQUENCY 0351 
C ANALYSIS SHOULD 6 F G I N . THE NUMBER OF DATA INTERVALS FOR BOTH 0352 
C STAGES OF THE SOLUTION PROCEDURE HAS BEEN SET TO 16 0353 
C I . E . NF0INT=16 . 0354 
C 0355 

• c**** STATEMENT MODIFICATIONS FOR INCREASED P R O G R A M M E D I M E N S I O N S 0356 
C 0357 
C DIMENSION 0350 
C 0359 
C 0360 
C Q ( 4 * M ) t E R ( 4 * M ) , w t ( 4 * M ) » W 2 ( 4 * M ; , W 3 ( 4 * M ) , W 4 { 4 * M ) , W 5 < 4 * M ) , W 6 ( 4 * M ) 0361 
C X(N)tY(N) 0362 
C 0363 

COMMON Q O ( 4 • 1 0 ) , A 2 N U t 1 0 ) . N M O D E . S T « D A M P , N B R G i S 3 R G ( 6 ) i X R R G ( 6 ) 0364 
+ . YBRG (6) i BGSHPE (6.10) . NCPL , SCPL (2 ) ,AJ1<2>,AJ2{2) tfJFRQ« SFRQ (6 > 03&5 
+ »FysHpE{6,10 i i Q E X K I O ) . q E T A ( 1 0 ) . F X ( 6 ) « F Y I 6 ) , C 0 E F L N ( 8 , 6 ) 0366 
+ , X D 0 T , X D I S , Y D 0 7 , Y D I S , D A T A F 0 ( 1 2 2 8 3 ) 0367 
DIMENSION Q ( 4 0 ) » E R ( 4 0 ) , W l ( 4 0 ) » w 2 ( 4 0 ) , W 3 { 4 0 ) , W 4 ( 4 0 ) , W 5 < 4 0 ) , W 6 ( 4 0 ) 0360 

»«X(6).Y(g) " 0369 
EXTERNAL DERIVT 0370 

C 0371 
C**«* INITIALIZE AND SFT VARIA8LES 0 3 ? 2 
C 0373 

PI=3.14159265350?79 0374 
NP0INT-"16 0375 

_ N5REV=5*NP0INT 0376 
H 0 = 2 . 0 * P l / F L O A T ( N p o l N T ) 0377 
H=0.05*H0 0370 
NEQ=4*NM0DE . 0379 

C 0330 
C**** FOR ROUTINE D02A8F THE VARIABLES TO BE P R O P O G A T E D MUST BE 0301 
C CONTAINED IN A ONE DIMENSIONAL ARRAY SO DEFINE A NEW ARRAY 0 0302 
C AS 0383 
C 0384 
C Q{I+4*(M-'l) )=qq(I,M) , 1 = 1 . . . , 4 t M = l t . . . . .NMODE 0385 
C 0386 
C 0387 

DO 12 1=1.NEQ 0300 
Q(I)=QQ(I.l) 0389 
ER,I)=1•OE-5 0390 

12 CONTINUE 0391 
T=0.0 0392 
IFAIL=Q 0393 
IT=1 0394 
NDATA=0 - , 0395 
NSTEP=0 0396 

10 NSTEP=NSTEP+1 0397 
C 0398 
C**** CALL D02ABF TO INTEGRATE EQUATIONS OF MOTION OVER INTERVAL HO 0399 
C 0400 

CALL 0 0 2 A B F ( T , Q , E R , I T , N E Q , I F A I L , H O , H , O E R I V T , W 1 . W 2 , W 3 , W 4 , W 5 . W 6 ) 0401 
DO 16 1=1,NEQ 0402 
90(I,1)=Q(I) • 0403 

16 CONTINUE 0404 
C 0405 
C***» CALCULATE DISPLACEMENTS IN HORIZONTAL AND VERTICAL D I R E C T I O N S 0406 
C AT MONITOR STATIONS 0407 
C 0408 

DO 20 Ksl.NFRQ 0409 
X(K)=0.0 0410 
Y(K) = 0« 0 0411 
DO 22 1=1.NMODE 0412 
X ( K ) = X ( K ) + Q O ( 2 . I ) * F Q S H p E ( K . I ) 0413 
Y ( K ) = Y ( K ) + q q { 4 , I } * F G S H p E ( K , I ) 0414 

22 CONTINUE 0415 
20 CONTINUE 0416 
C 0«17 
C#*** CALL PLOTTING ROUTINE TO PLOT THE NEXT L I N E - S E G M E N T OF THE 0410 
C SHAFT T R A J E C T O R I E S , 0419 
C 0420 

CALL PLOTER(X,Y) 0421 
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" C 0122 
I F ( N O A T A « G T # 0) GO TO 32 0 1 2 3 

C 0 1 2 1 
C**»* E V E R Y FIVE R E V O L U T I O N S OF THE SHAFT ASK ( I N T E R A C T I V E L Y ) IF 0 1 2 5 
C S T E A D Y - S T A T E H A S BEEN R E A C H E D , IF YES START S T O R I N G OATA» 0 1 2 6 
c 0 1 2 7 

I F ( M O D ( N S T E P . N 5 R E V ) , N E . O ) GO TO 10 0928 
c 0 1 2 9 

P R I N T 1 0 0 0 0 1 3 0 
R E A D * » I F R Q 0131 
I F ( I F R Q . M E . l ) GO TO 10 0132 

c 0133 
C*»*# STORE OATA For F R E Q U E N C Y A N A L Y S I S 0 1 3 1 
C 0 1 3 5 
32 N D A T A = N 0 A T A + 1 0 1 3 6 

00 30 K = 1 , N F R Q 0137 
J = ( K - 1 ) * 2 0 1 0 0138 

; O A T A F O ( J + N D A T A ) = X ( K ) 0 1 3 9 
O A T A F Q ( J + 1 0 2 1 + N O A T A ) = Y ( K ) -- 0110 

30 C O N T I N U E 0 9 9 1 
C 0 9 9 2 
C#*»* IF ALL S T E A D Y - S T A T E DATA H A S BEEN O B T A I N E D R E T U R N TO 0 9 9 3 
c MAIN P R O G R A M M E FGR CALL TO F R E Q U E N C Y A N A L Y S I S R O U T I N E 09ii 
c 099 5 

IF(NDATA.LT.102'4) GO TO 10 0996 
C 0 9 9 7 

R E T U R N 0 9 9 8 
1000 F O R M A T ( 9 0 H P/1 +1 IF S T E A D Y - S T A T E H A S BEEN R E A C H E D ) 0 9 9 9 
C <- 0950 

END 0 9 5 1 
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SU3R0UHME DERIVT(F»QiT) 0U52 
C ' 0953 
C*# + * D E R I V T Is C A L L E D BY NAG R O U T I N E D 0 2 A B F TO C A L C U L A T E THE 0959 
C RHS OF EQUATIONS 2.79 0955 
C 0956 
c***.* STATEMENT M O D I F I C A T I O N S FOR I N C R E A S E D P R O G R A M M E D I M E N S I O N S 0957 
C 0958 
C D I M E N S I O N 0959 
C 0960 
C 0961 
C 0(9*M)< F ( 4 * M ) 0962 
C 0963 

C O M M O N Q Q ( 9 » 1 0 , » A 2 N I J ( 1 0 ) « N M O D E » S T » D A M P » N B R G • S P R G ( 6 ) . X B R G < 6 ) 0969 
+ F Y B R G ( 6 ) , 8 G S H P E ( 6 , 1 0 ) • N C P L , S C P L ( 2 ) , A J 1 ( 2 > « A J 2 < 2 ) « N F R Q , S F R 0 ( 6 ) 0965 
+ « F o S H p E ( 6 1 1 0 ) • O E X J ( 1 0 ) , Q E T A ( 1 0 ) » F X ( 6 ) < F Y ( 6 ) . C 0 E F L N < 8 » 6 ) 0966 
+ , X D O T , X O I S , Y O O T , Y O I S , D A T A F Q ( 1 2 2 8 8 ) 0967 
D I M E N S I O N 0 ( 9 0 ) , F ( 9 0 ) 0468 

C 0969 
DO 12 N = 1 , N B R G < - 0970 
X D O T = 0 . 0 0971 
X D I S = - X B R G ( N ) 0972 
YDOT=Q.O 0973 
Y D I S = - Y B R G ( N ) 0979 
DO 16 M = 1 i N M o D E 0975 
M E Q = 9 * ( M - 1 ) 0976 
S H A P E = B G S H P E ( N , M ) 0977 
X D O T = X D O T + G ( 1 + M E Q ) * S H A P E 0978 
X 0 I S = X D I S + Q ( 2 + M E Q ) * S H A P E J 0979 
Y D O T = Y D O T + Q < 3 + M E O ) * s U A P E „ , 0980 
Y 0 I S = Y D I S + Q ( 9 + M E 0 ) * S H A P E ' 1 0981 

16 C O N T I N U E 0982 
CALL F I L M X Y ( N ) 0983 

12 C O N T I N U E 0989 
C 0985 

T A U = A M 0 0 ( T » 6 , 2 8 3 1 8 5 3 0 7 1 7 9 5 9 ) 0486 
C O S T = C O S ( T A U ) 0987 
S I N T = S I N ( T A U > 0988 

C 0989 
DO 18 M = L , N M O D E 0490 
S U M X = 0 . 0 0491 
S U M Y = 0 • 0 0492 
00 20 N = 1 , M B R G 0493 
S U M X = S U M X + F X ( N ) * B G S H P E < N . M > 0499 
S U M Y = S U M Y + F Y ( N ) * B G S H P E ( N , M ) 0495 

20 C O N T I N U E 0 4 9 6 
M E Q = 4 * ( M - 1 ) 0497 
F< 1+MEO) =SUMX-A2M|J (M) *Q (2+MEQ) - D A M P # Q (1 + M E Q ) 0498 

+ + Q E X I ( M ) * C O S T - O E T A ( M ) * S I N T 0499 
F ( 2 + M E Q ) - Q ( 1 + M E Q ) 0500 
F ( 3 + M E Q ) = S U m Y - A 2 N U ( M ) * Q ( 9 + m E Q ) - D A M P * Q ( 3 + M E Q ) 0501 

+ + Q E X I (M ) * S I N T + O E T A { M ) # C O S T 0502 
F ( 9 + M E Q ) = Q ( 3 + M E Q ) 0503 

18 C O N T I N U E 0504 
F ( 3 ) = F ( 3 ) - S T 0505 

C ' 0506 
R E T U R N 0507 
END 0508 
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SUBROUTINE F I L M X Y ( N ) 0509 
C ' 0510 
C***» FILMXY CALCULATES T!IE NOU-OIMENSIONAL OIL-FILM FORCES FX(M> 0511 
c and FY(N> FOR THE riTM REARING, THE CONFIGURATION MODELLED IS 0512 
C A LEMON BORE REARING REPRESENTED BY TWO PRESET INFINITELY 0513 
c LONG PARTIAL A R C S , THE METHOD CF C O L L O C A T I O N IS USED TO OBTAIN 0514 
C A SIDE L E A K A G E F A C T O R , ( R E F . C H A P T E R 7 ) 0515 
C 0516 

COMMON Q Q ( 4 , I C ) » A 2 N U ( 1 0 ) , N M O D E , S T • D A M P » N B R G , S B R G ( 6 ) « X B R G ( 6 ) 0517 
+ , Y 8 R G ( 6 ) , B O S H P E ( 6 , 1 0 > , N C P L , S C P L ( 2 ) , A J 1 ( 2 ) , A J 2 ( 2 ) » N F R Q , S F R Q ( 6 ) 0518 
• »FoSHpE (6,10) ,QEXT (10) QETA (10 ) , FX (6 ) , FY (6) , COEFLN (8,6 ) 0519 
• , X O O T , X D I S , Y D O T . Y O I S , D A T A F O ( 1 2 P 8 9 ) 0520 
C O M M O N / B R G S E T / B E T A ( 6 , 2 ) , G C { 6 , 2 ) , R S C A C ( 6 , 2 ) , A R C L ( 6 , 2 ) , A L G A M ( 6 , 2 > 0521 

+ , F X A ( 2 ) » F Y A ( 2 ) , S C O S ( 6 , 2 ) , S S I M ( 6 , 2 ) , F C O S ( 6 , 2 ) , F S I N ( 6 , 2 ) , C A V C C , W F A C T 0522 
DATA P I , P 2 I / 3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 , 6 , 2 8 3 1 0 5 3 0 7 1 7 9 5 9 / 0523 
M X I T E R = 5 0 0524 

C 0525 
C 0526 

DO 50 N A = 1 , 2 - 0527 
R E L A X = 0 , 5 0528 

C 0529 
X = R S C A C ( N , N A ) * X D I S 0530 
Y S R S C A C ( N » N A ) * ( Y D I S - G C ( N »NA)) 0531 
E2s=X*X+Y*Y 0532 
EE=1* 0-E2S 0533 
E P S = S Q R T ( E 2 S ) 0534 
I F (Eps . L T . 1 . 0 E - 4 . O R . E P S . G T . 0 . 9 9 9 ) GO TO 16 0535 
S Q R T E E = S Q R T ( E E ) 0536 
C O S P S I = X / £ R S ^ 0537 
S I N P S I = Y / E P S _ 0538 
A A = 0 . 5 * E P S - R S C A C ( N , N A ) * ( Y D O T « C O S P S I ' X D O T * S I N P S I ) 0539 
B B = R S C A C ( N , N A ) * < X O O T * C O S P S I + Y D O T * S I M P S I ) 0540 
C O S S = - S C O S ( N » N A ) * C O S P S I - S S I N ( N « N A ) * S I N P S - I 0541 
S l N S s S C O S ( N , N A ) * S I M P S L » S S I N ( N , N A ) * C O S P S I 0542 
C O S F = - F C O S ( N , N A ) * C O S P S L - F S I N ( N , N A ) * S I N P S I 0543 
S j M F s F C O S ( N i N A ) * S L N P S L - F S L N ( N t N A ) * C O S P S I 0544 

C 0 5 4 5 
A N G S = A T A F J 2 ( S 0 R T E E * S L N S . E P S + C 0 S S ) 0546 
S I I O O S A N G S / S O R T E E 0547 

. RHs=l,0/(1.0+EpS*COSS) 0548 
S 2 I 0 0 = ( S 1 I 0 0 - E P S * S I N S * R H S ) / E E 0549 
S3100= (3 . 0 * s2100-S l l 00 - E P S * S I N S * R H S » R H S ) / ( 2 . 0 *EE ) 0550 
S 3 I 0 1 = ( S 2 I 0 0 - S 3 I 0 0 ) / E P S 0551 
S3 l l 0=0 . 5 * R H S * R H S / EpS 0552 

C 0553 
ARJGF=ATAN2{SQRTEE*SINF.EPS+C0SF) 0554 
A D D 2 P I = 0 . 0 0555 
I F F A N G F . L T . A N G S ) A D D 2 P I = P 2 I 0556 
A N G F = A N G F + A D D 2 P I 0557 
F 1 I 0 0 = A N G F / S Q R T E E 0558 
R H F = 1 . 0 / ( 1 . 0 + E P S * C O S F ) 0559 
F 2 I 0 0 = ( F 1 I 0 0 - E P S * S I N F * R H F ) / E E 0560 
F3I00=(3.0 + F 2 100 - F 1 100 - E P S * S L N F * R H F * R H F ) / ( 2 . 0 *EE ) 0561 
F 3 I O ! = ( F 2 I O O - F 3 I O O ) / E P S 0562 
F 3 I 1 0 = 0 . 5 * R H F * R H F / E P S ' 0563 

C 0564 
A 3 I O O = F 3 I O O - S 3 I O O 0565 
A 3 I I 0 = F 3 I 1 0 - S 3 I 1 0 0566 
A 3 I 0 1 = F 3 I 0 1 - S 3 I 0 1 0567 

C — 0568 
M S = - 1 0569 
MF=3 " 0570 
C 1 S - ( A A # A 3 I 0 1 + B B * A 3 I 1 0 ) / A 3 I 0 0 ' 0 5 7 1 
I F ( A A * C O S S + B B * S I N S + C 1 . L T . O . O ) M S = 1 0572 
I F ( A A # C O S F + B B * S L N F + C L . L T . O . 0 > M F = 2 0573 
M F s M F + M S 0574 
GO TO ( 1 0 , 2 0 . 3 0 . 4 0 ) . M F 0575 

C 0576 
C C O M P L E T E FILM 0577 
C 0578 
10 A 3 I 0 2 = ( A 3 I O O - 2 . 0 * ( F 2 I O O - S 2 I O O ) + F 1 I O O - S 1 I O O ) / E 2 S 0579 

A 3 I 2 0 = A 3 I 0 0 - A 3 I 0 2 0580 
A 3 I 1 1 = ( ( R H F - R H S ) / E P S - A 3 I 1 0 ) / E P S 0581 

C 0582 
F E = A A * ( S I N F * A 3 I 0 1 - A 3 I 1 1 ) + B B * { S I N F # A 3 I 1 0 - A 3 I 2 0 ) 0583 

+ + C 1 * ( S I N F * A 3 I 0 0 - A 3 I 1 0 ) 0584 

F p = A A * ( A 3 L 0 2 - C O S F * A 3 L 0 1 ) + B B * ( A 3 I 1 1 - C O S F * A 3 U O ) 0585 
+ + C 1 * ( A 3 I 0 1 - C O S F » A 3 I O O ) 0586 

C 0587 
A 2 B 2 = A A * A A + B B * B B 0588 
S Q T A B C = S Q R T ( A 2 B 2 - C 1 » C 1 ) 0589 
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C 0 S F = - ( A A * - " n n n 4 S 0 T A B C ) / A 2 B 2 0590 
S L N F = < A A * S Q T A B C " B N * C L ) / A 2 B 2 . 0 5 9 1 

C 0 5 9 2 

A N G F = A T A N 2 ( S Q R T E E * S I N F » E P S + C 0 S F )
 0 5 9 3 

I F ( A M G F . L T . A N G S ) A N G F = A N G F v P 2 I 0 5 9 4 
F 1 I 0 0 = A N G F / S Q R T E E 0 5 9 5 
R H F = 1 , 0 / ( 1 . 0 + E P S * C O S F > 0 5 9 6 
F 2 I O O = { F 1 I O O - E P S * S I N F * R H F ) / E E 0 5 9 7 
F 3 I 0 0 = ( 3 . 0 * F 2 I 0 0 - F 1 I 0 0 - E P S * S I N F » R H F * R H F ) / { 2 , 0 * E E ) 0 5 9 8 
F 3 I 0 1

=
( F 2 I O O - F 3 I O O ) / E P S 0 5 9 9 

F 3 I 1 0 = 0 . 5 * R H F * R H F / E P S OGOO 
A 3 I 0 0 ~ F 3 I 0 0 - S 3 I 0 0 0 6 0 1 
A 3 I 1 0 = F 3 I 1 0 « S 3 I 1 0 0 6 0 2 
A 3 I 0 1 = F 3 I 0 1 ~ S 3 I 0 1 0 6 0 3 

C 0604 
T E M p l = A L G A M ( N , N A ) * ( A A * A 3 l n i 4 G B * A 3 l l C + C l ^ A 3 I 0 0 ) / ( R H F 4 R H F * R H F ) 0 6 0 5 
F C O L = 1 . 0 / ( 1 . 0 4 T E M P 1 / ( A A * S I N F - B B * C O S F ) ) 0 6 0 6 

C 0 6 0 7 
F X A ( N A > = F C 0 L * ( F E * C 0 S P S l - F p * S l N p S l ) - 0 6 0 8 
F Y A ( N A ) = F C O L * ( F E * S l N p S l + F p * C O s p S l > 0 6 0 9 
GO TO 50 0610 

C 0 6 1 1 
C F I R S T P A R T I A L L Y C A V l T A T E D C O N D I T I O N 0 6 1 2 
C 0 6 1 3 
20 N I T E R = Q - 0 6 1 4 

S U M D E L = 0 . 0 0 6 1 5 
22 N I T E R = N I T E R + 1 ? 0 6 1 6 

O E L T H = R E L A X * ( A A * A 3 I 0 1 + 6 B * A 3 I 1 0 - ( A A * C O S F + B B * S I N F ) * A 3 I O O > 0 6 1 7 
+ / < < A A * S I N F - B B * C O S F ) * A 3 L 0 0 > 0 6 1 8 
C O S D E L = C O S ( D E L T H ) - 0 6 1 9 
S I N D E L = S I N ( 0 E L T H ) 0620 
S U M D E L = S U M D E L + D E L T H ' 0 8 2 1 
T E M P 1 = C 0 S F 0 6 2 2 
T E M P 2 = S I N F 0 6 2 3 
C 0 S F = T E M P 1 * C 0 S D E L + T E M P 2 * S I N 0 E L 0 6 2 4 
S I N F = T E M P 2 * C 0 S D E L - T E M P 1 * S I N D E L 0 6 2 5 

C 0 6 2 6 
AfjGF=ATArj2 { S Q R T E E * S l N F » E P S + C O S F ) 0 6 2 7 
I F ( A N G F . L T . A N G S ) A N G F = A N G F + P 2 l 0 6 2 8 
FlIOO=AfjGF/SQRTEE 0 6 2 9 
R H F = 1 . 0 / ( 1 . 0 + E P S * C O S F ) 0630 
F 2 I O O = { F l I O O - E P S * S l N F * R H F ) / E E 0 6 3 1 
F 3 I 0 0 = ( 3 • 0 - > F 2 l 0 0 - F H 0 0 - E P S * S I N F * R H F * R H F ) / ( 2 . 0 * £ E ) 0 6 3 2 
F 3 I 0 1 = ( F 2 I O O - F 3 I O O ) / E P S 0 6 3 3 
F 3 I 1 0 = 0 . 5 * R H F * R H F / E P S 0 6 3 4 
A 3 I O O = F 3 I O O - S 3 I O O 0 6 3 5 
A 3 I 1 0 = F 3 I 1 0 - S 3 I 1 0 0 6 3 6 
A 3 I 0 1 = F 3 I 0 1 - S 3 I 0 1 0 6 3 7 
I F ( A B S f D E L T H ) . L T . C A V C C ) Go TO 29 0 6 3 8 
I F ( N I T E R . G E . M X I T E R ) GO T O - 1 0 0 6 3 9 
R E L A X = 1 . 0 0640 
GO TO 22 0 6 4 1 

24 A 3 I 0 2 = ( A 3 i n O - 2 . 0 * ( F 2 l O O - S 2 l O O ) + F l l O O - S l I O O ) / E 2 S 0 6 4 2 
A 3 I 2 0 = A 3 I 0 0 - A 3 I 0 2 0 6 4 3 
A 3 I 1 1 = ( ( R H F - R H S ) / E P S - A 3 I 1 0 ) / E P S ' 0 6 4 4 
C l = - A A * C O S F - B B * S l N F 0 6 4 5 

C 0 6 4 6 
I F ( S U M D E L . L T . 0 • 0 . O R . S U M O E L . G T • A R C L ( N * M A ) ) GO TO 14 0 6 4 7 

C 0 6 4 8 
F E = A A * ( S I N F * A 3 I 0 1 - A 3 I 1 1 ) + 8 B * ( S I N F * A 3 I 1 0 - A 3 I 2 0 ) 0 6 4 9 

+ + C 1 * ( S I N F * A 3 I Q 0 - A 3 I 1 0 ) 0650 
F P = A A * ( A 3 I 0 2 - C O S F * A 3 I 0 1 ) + B B * ( A 3 I 1 1 - C O S F * A 3 I 1 0 ) 0 6 5 1 

+ + C 1 * ( A 3 I 0 1 - C O S F * A 3 I O O ) ' 0 6 5 2 
C 0 6 5 3 

A 2 B 2 = A A * A A + B B * B 0 0 6 5 4 
S 0 T A B C = S Q R T ( A 2 B 2 - C 1 * C 1 ) 0 6 5 5 
C 0 S F = - ( A A * C 1 + B 8 * S Q T A B C ) / A 2 8 2 0 6 5 6 
S I N F = (AA*SQTARC-F3B*C1)/A2B2 0 6 5 7 

C 0 6 5 8 
A N G F = A T A N 2 ( S Q R T E E * S l N F . E P S + C 0 S r ) 0 6 5 9 
I F ( A M G F . L T . A M G S ) A M G F = A M G F + P 2 I C660 
Fl 100 = AfjGF/SQRTEC 0 6 6 1 
R H F = 1 . 0 / ( 1 . 0 + E P S ^ C O S F ) 0 6 6 2 
F 2 I 0 0 = ( F 1 I 0 0 - E P S * S I M F * R H F ) / E E 0 6 6 3 
F 3 I 0 0 = ( 3 . 0 * F 2 I G 0 - r l l 0 0 « E P S * S l N F * R H F * R H F ) / ( 2 « 0 * E E ) 0 6 6 4 
F 3 I 0 1 = ( F 2 I 0 0 - F 3 I 0 0 ) / E P S 0 6 6 5 
F 3 1 1 0 = 0 . 5*RHF*RHF/('PS 0 6 6 6 
A 3 I O O = F 3 I O O - S 3 I O O 0 6 6 7 
A 3 I 1 0 = F 3 I 1 0 - S 3 1 I A 0 6 6 8 
A 3 I 0 1 = F 3 I 0 1 - S 3 I 0 1 0 6 6 9 

C 0670 
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T E M P 1 = A L G A M < N I N A ) * ( A A * A 3 I 0 1 + B D * A 3 H 0 + C 1 * A 3 I 0 0 ) / I R H F . * R H F * R H F ) 0671 

F C O L - l , 0 / ( l , 0 i - T E M P l / ( A A * S i N F - 8 B * C O S F ) ) 0672 

C 0673 
F X A ( N A ) = F C O L * ( F E * C O s p S l - F p * S l N p S l ) - 0 6 7 9 
FYA(NA)=FCoL*(FE*Slf!F

J
Sl+Fp*CoSPSl) 0675 

GO TO 50 0676 
C ' 0 6 7 7 
C S E C O N D P A R T I A L L Y C A V I T A T E O C O N D I T I O N 0670 
C 0679 
30 N I T E R = 0 0680 

S U M D E L = 0 . 0 0681 
32 N I T E R = N I T E R + 1 0682 

O E L T H = R E L A x * ( A A * A 3 l O l + f i R * A 3 l l O - ( A A * C O S S + B B * S I N S ) * A 3 I O O ) 0683 
+ / < ( A A * S I N S ~ B B * C O S S ) * A 3 I O O »

 0 6 Q
4 

C 0 S D E L = C 0 S ( D E L T H ) 0685 
S I N D E L = S I N ( D E L T H ) 0686 
SIJMDEL = SUMDEL-DELTII 0687 
T E M P 1 = C 0 S S - 0688 
T E " P 2 = S I M S 0689 
C O S S = T E H P 1 * C O S D E L * T E M P 2 * S I N O E L 0690 
S I N S = T E M P 2 * C 0 S D E L - T E M P 1 # S I N D E L 0691 

C 0692 
A N G S = A D D 2 P I + A T A N 2 ( S O R T E E * S l N S . E P S + C O S S ) 0693 
I F ( A N G F . L T . A N G S ) A N G S = A N G S - P 2 I 0699 
S 1 I 0 0 = A N G S / S Q R T E E 0 6 9 5 
R H S = 1 . 0 / d . O + E P S + C O S S ) 0 6 9 6 
S2I0 0 = ( S 1 I 0 0 " E P S * S I N S * R H S ) / E E 0 6 9 7 
S 3 I 0 0 = ( 3 . 0 * S 2 I 0 0 - S 1 I 0 0 - E P S * S I N S * R H S * R H S ) / ( 2 « 0 * E E > 0698 
S 3 I O l = ( S 2 I O O - S 3 l O O ) / E P S 0699 
S 3 I 1 0 - 0 . 5 * R H S * R H S / E P S - 0700 
A 3 I O O = F 3 I O O - S 3 I O O _ 0701 -
A 3 I 1 0 = F 3 I 1 0 - S 3 I 1 0 0702 
A 3 I 0 1 = F 3 I 0 1 - S 3 I 0 1 0 7 0 3 
I F ( A B s ( D E L T H ) . L T . C A V C C ) GO TO 39 0709 
I F ( N I T E R . G E . M X I T E R ) GO TO 18 0 7 0 5 
R E L A X = 1 , 0 0 7 0 6 
GO TO 32 0707 

39 A 3 I 0 2 = ( A 3 I O O - 2 . 0 * ( F 2 I O O - S 2 I O O ) + F 1 I O O - S 1 I O O ) / E 2 S 0 7 0 8 
A 3 I 2 0 = A 3 I 0 0 - A 3 I 0 2 0 7 0 9 
A 3 I 1 1 = ( (RI!F-RHS)/EPS-A3I10)/EPS 0710 
C l = - A A * C O S S - B B * S l N S 0 7 1 1 

C 0712 
IF (SUMDEL«l.T• 0,0 . O R , S U M D E L .GT.ARCL (NiNA) ) GO TO 19 0 7 1 3 

C 0 7 1 9 
F E = A A * ( S I N F * A 3 I 0 1 - A 3 I H ) + B 3 * ( S I N F * A 3 I 1 0 - A 3 I 2 0 J - 0 7 1 5 

+ + C 1 * ( S I N F * A 3 I 0 0 - A 3 I 1 0 ) 0 7 1 6 
F P = A A * ( A 3 I 0 2 - C O S F * A 3 I 0 1 ) + 8 B * ( A 3 I 1 1 - C O S F * A 3 H O ) 0 7 1 7 

+ +C1*(A3I01-.COSF*A3IOQ> 0 7 1 8 
C 0719 

A 2 B 2 = A A * A A + B 8 * B B 0720 
S Q T A B C = S Q R T ( A 2 B 2 - C 1 * C 1 ) 0721 
C 0 S F = - ( A A * C 1 + B B * S Q T A B C ) / A 2 B 2 0722 
S I N F = (AA'*S0TA8C-BB*C1 J/A2B2 0723 

C 0729 
A N G F = A T A M 2 ( S Q R T E E * S I N F . E P S + C O S F > 0 7 2 5 
I F ( A N G F . L T . A M G S ) A N G F = A N G F + P 2 I 0 7 2 6 
F 1 I O O = A N G F / S O R T E E 0 7 2 7 
R H F = 1 . 0 / ( l , 0 * E p S * C O S F ) 0728 
F 2 I 0 0 = ( F 1 I 0 0 - E P S * S I N F # R H F ) / E E 0729 
F 3 I 0 0 = ( 3 « 0+F210 0 - F 1 1 0 0 - E P S * S l N F * R H F * R H F ) / ( 2 . 0 * E E ) 0730 
F 3 I 0 1 = ( F 2 I 0 0 - F 3 I 0 0 > / E P S 0731 
F 3 I 1 0 = 0 . 5 * R H F * R H F / E P S 0732 
A 3 I 0 0 = F 3 I 0 0 - S 3 I 0 0 0733 
A 3 I 1 0 = F 3 I 1 0 - S 3 I 1 0 ' ' 0739 
A 3 I 0 1 = F 3 I 0 1 - S 3 I 0 1 0735 

C 0 7 3 6 
T E M P l = A L G A M ( N . N A ) * ( A A * A 3 I n i + B G * A 3 l l O + C l * A 3 I O O ) / ( R H F * R H F * R H F ) 0 7 3 7 
F C O L = 1 . 0 / ( 1 . 0 + T E M P 1 / ( A A * S I N F - B B * C O S F ) ) 0738 

C 0739 
F X A ( N A ) = F C 0 L * ( F E * C 0 . S P S I - F P * S I M P S I ) 0790 
F Y A ( N A ) = F C O L * ( F E * S I N P S I + F P * C 0 S P S I ) 0791 
GO TO 50 0792 

C 07 93 
C C O M P L E T E L Y C A V I T A T E O C O N D I T I O N 0799 
C 07 95 
90 M S = 1 0 7 9 6 

M 9 = 3 0747 
R E L A X = 0 , 5 0798 
I F ( B B * C 0 S S - A A * S I N S . L T . W F A C T ) M S = - 1 0799 
I F ( B B * C 0 S F - A A * S I N F . L T . W F A C T ) M 9 = 2 0750 
M 9 = M 9 + M S . 0751 
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GO TO (14,20,30,42) ,N',4 0752 
42 F'X A (NA) =0 • 0 0753 

KYA(NA)=0•0 0754 
C ' 0755 
50 CONTINUE 0756 
C 0757 
c SUM F O R C E S FOR BOTH ARCS 075S 
c 0759 

F X ( N ) = B E T A (M , 1 ) * F X A ( 1 ) + B E T A ( N , 2 ) * F X A ( 2 ) 0760 
FY(N)=BETA{N,1)*FYA(1)I-BEYA(N,2)*FYA(2) 0761 

C 0762 
RETURN 0763 

14 W R I T E ( 6 , 1 0 1 4 ) N,NA 0764 
STOP 0765 

16 W R I T E ( 6 , 1 0 1 6 ) EPS,N,NA 0766 
STOP 0767 

18 W R I T E ( 6 , 1 0 1 8 ) N,NA 0768 
STOP 0769 

C 0770 
1 0 1 4 F O R M A J ( 4 0 H 0 7 7 1 

F36HWROUG SOLUTION OBTAINED FOR BEARING ,I2,SH ARC , U / / ) 0772 
1016 FORMAT (40H • + 0773 

+ ,20HFILMXY FAI1.S AS E P S = . E L 3 . 5 , 1 3 H FOR BEARING ,I2,5H ARC ,11//) 0774 
1018 FORMAT (4 0H ***************************************//lQX% 0775 

•» 3 7 H C O N V E R G E N C E NOT ACHIEVED FOR BEARING ,12,5H ARC ,Il//> 0776 
END 0777 
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S U B R O U T I N E L N c O E F U b N L ) 0778 

C 0779 
C**** LNCOEF C A L C U L A T E S THE C O E F F I C I E N T S (COEFLN(I,N) il=l..,i8) 0780 
C OF THE LINEAR R E D BEARING FORCES FOR THE NTH B E A R I N G BY 0701 
C N U M C R I C A L B I F F E r E M C I N G , IF NL=«J ONLY THE D I S P L A C E M E N T 0782 
C C O E F F I C I E N T S ARE CALCULATED (I.E. C O E F L N ( 2 , N ) , C O E F L N ( 4 » N ) , 0783 
C C 0 E F L N ( 6 , N ) , A M D C O E F L N ( 8 » N ) ) O T H E R W I S E ALL E I G H T ARE 0784 
C C A L C U L A T E D , 0735 
C 0786 

COMMON QQ(4 110) ,A2Nij(10) , N M O D E , S T • D A M P » N 3 R G , S R R G < 6 ) .XBRG(6) 0787 
+ , Y 5 R G ( 6 ) , B G S H P E ( 6 , 1 0 > , N C P L , S C P L ( 2 > , A J l < 2 > « A J ? ( 2 ) , N F R Q , S F R Q ( 6 * 0783 
> i F o S H p E ( 6 . 1 0 ) T O E X K L O ) i Q E T A ( I O ) , F X C f i ) « F Y ( 6 ) t C O E F L N ( 8 . 6 ) 0789 
+ , X 0 0 T , X D I S t Y D 0 T , r D I S , D A T A F 0 ( 1 2 2 8 f l ) 0790 
COMMON /ORGSET/ B E T A ( 6 , 2 ) , G C ( 6 , 2 ) , R s C A C ( 6 » 2 ) , A R C L ( 6 , 2 ) i A L G A M ( 6 i 2 ) 0791 

+ , F X A ( 2 ) , F Y A ( 2 ) , S C 0 S ( 6 , 2 ) , S S I N ( 6 , 2 > , F C 0 S { 6 , 2 ) , F S I N ( 6 , 2 ) . C A V C C , W F A C T 0792 
D I M E N S I O N X Y < 4 ) 0793 
E Q U I V A L E N C E (XY(l).XOOT) 0794 
S T O R E l = C A V C C 0795 
S T 0 R E 2 = W F A C T 0796 
C A V C C = 0 . 0 0 0 5 0797 
W C O N V = - 0 . 0 0 1 0798 
CALL F I L M X Y I N T 0799 
F X 0 = F X ( N ) ' 0800 
F Y 0 = F Y ( N ) 0801 
M=1 0802 
IF(NL.EQ.4> M=2 v 0803 
DO 10 I=M,4,M 0804 
D E L X Y = 0 . 0 0 0 1 * A B S ( X Y ( I ) ) 0805 
I F { D E L X Y . L T . 1 . 0 E - 5 ) O E L X Y = 1 . 0 E - 5 0806 
T E M P = X Y ( I ) 0807 
X Y ( I ) = X Y ( I ) + D E L X Y 0808 
CALL F I L M X Y ( N ) 0809 
C O E F L N ( 1 , N ) = ( F X ( N ) - F X 0 ) / D E L X Y 0810 
C O E F L N ( I + n , N ) ^ ( F Y { N ) - F Y O ) / O E L X Y 0811 
X Y ( I ) = T E M P 0 8 1 2 

10 C O N T I N U E 0813 
F X ( N ) = F X 0 0814 
F Y ( N ) = F Y 0 0815 
C A V C C = S T 0 R E 1 0816 
W F A C T = S T 0 R E 2 0817 
R E T U R N 0818 
END . * ' 0819 



- 220 - , 

S U O R O U F L N E U N I F R M J N M O D E . A . U N F M . I F L A G ) 0 3 2 0 
c 0021 
C * * * + I F I F L A G , E Q „ 1 I J N I F R M C A L C U L A T E S T H E V A L U E O F T H E M O O E S 0 0 2 2 
c AT S T A T I O N S=A FOR A F R F E - F R E E U N I F O R M S H A F T . 0 0 2 3 
C I F I F L A G .rjE. 1 U m I r R f i R E T U R N S T H E N A T U R A L F R E Q U E N C I E S O F T H E 0 0 2 4 
C F R E E - F R E E U N I F O R M S H A F T A D J U S T E D S O T H A T A N U ( 3 ) = F F 3 , 0 0 2 5 
C ( R E F , S E C T I O N 4 . 2 ) 0 8 2 6 
C 0 0 2 7 
C * * » * S T A T E M E N T M O D I F I C A T I O N S F O R I N C R E A S E D P R O G R A M M E D I M E N S I O N S 0 0 2 0 
C 0 0 2 9 
C D O U B L E P R E C I S I O N 0 0 3 0 
C - - 0 0 3 1 
C 0 8 3 2 
C A M u ( M ) . . . . B U T O N L Y FOR M , G T , 16 0 8 3 3 
C 0 8 3 4 
C FOR M , G T , 16 A M U ( M ) = 0 . 5 * ( ( 2 * M ) - 3 ) * P I I W H E R E P I = 3 . 1 4 1 5 . , . . 0 8 3 5 
C 0 8 3 6 
C 0 8 3 7 

0 1 M E N S I O N U N F M ( N M O D E ) 0 8 3 8 
D O U B L E P R E C I S I O N A ^ u ( 1 6 ) , C O s H . s I N H , r H O S , A M U S , S , X 0 8 3 9 
CATA A M U / O . O D O t O . O O O 0 8 4 0 

+ , 0 . 4 7 3 0 0 4 0 7 4 4 8 6 2 7 0 4 0 2 6 0 D + 0 1 
+ • 0 . 7 0 5 3 2 0 4 6 2 ' 1 0 9 5 0 3 7 5 5 6 4 0 + 01 0 8 4 2 
+ , 0 . 1 0 9 9 5 6 0 7 0 3 8 0 0 1 6 7 0 9 0 6 0 + 0 2 0 8 4 3 
+ , 0 . 1 4 1 3 7 1 6 5 4 9 1 2 5 7 4 6 4 1 7 7 D + 0 2 0 8 4 4 
+ , 0 . 1 7 2 7 0 7 5 9 6 5 7 3 9 9 4 8 1 4 3 8 0 + 0 2 0 8 4 5 
+ , 0 . 2 0 4 2 0 3 5 2 2 4 5 6 2 6 0 6 1 0 9 0 D + 0 2 0 8 4 6 
+ . 0 . 2 3 5 6 1 9 4 4 9 02 04 0 4 5 5 0 7 5 0 + 0 2 0 8 4 7 
+ . 0 . 2 6 7 0 3 5 3 7 5 5 5 5 0 8 1 0 6 2 4 0 0 + 0 2 0 8 4 8 
+ . C . 2 9 8 4 5 1 3 0 2 0 9 1 0 3 2 5 4 2 6 7 0 + 0 2 0 8 4 9 
+ . 0 , 3 2 9 8 6 7 2 2 0 6 2 6 9 2 3 1 9 5 6 1 0 + 0 2 0 8 5 0 
+ . 0 , 3 6 1 2 0 3 1 5 5 1 6 2 8 2 6 2 2 6 5 0 0 + 0 2 0 8 5 1 
+ . 0 , 3 9 2 6 9 9 0 0 1 6 9 8 7 2 4 1 5 4 6 3 0 + 0 2 0 8 5 2 
+ . 0 . 9 2 4 1 1 5 0 0 8 2 3 4 6 2 2 0 8 7 2 0 0 + 0 2 0 8 5 3 
+ . 0 . 4 5 5 5 3 0 9 3 4 7 7 0 5 2 0 0 1 9 5 7 0 + 0 2 / 0 8 5 4 
C O S H ( X > = 0 . 5 D O * ( D E X P < X > + D E X P ( - X ) ) 0 8 5 5 
S I N H ( X ) = 0 . 5 D 0 * ( D E X P ( X ) - D E X P ( - X ) > 0 8 5 6 
S=A 0 8 5 7 
I F ( I F L A G . N E . l ) GO TO 12 0 8 5 8 
U N F " ( 1 ) = 1 . 0 08.59 
U N F V ( 2 ) = { 1 . O D O - ? . n D O * S ) * n s Q R T ( 3 , O D O ) 0 8 6 0 
I F { N M O D E « L T . 3 ) R E T U R N v 0 8 6 1 
DO 10 M = 3 . N M O D E 0 8 6 2 
A M U S = A M U ( M ) 0 8 6 3 
R H 0 s = I D C 0 s ( A M U s ) - C 0 s H ( A M U s ) ) / ( O S l N ( A M U S ) - S I N H ( A M U S ) ) 0 8 6 4 
A W U S = A M U ( M ) * S 0 8 6 5 
U N F M ( M ) = D C O S ( A m U S ) + C O S H ( A M U S ) - R H O S * ( D S I N ( A M U S ) + S I N H ( A M U S ) ) 0 8 6 6 

10 C O N T I N U E 0 8 6 7 
R E T U R N 0 8 6 8 

C 0 8 6 9 
12 F A C T 0 R = A M U ( 3 ) * A M U < 3 ) 0 8 7 0 

F A C T O R = F A C T O R / A 0 0 7 1 
DO 14 M = l , N M O D E 0 8 7 2 
U N F M ( M ) = A M U ( M ) * A M U ( M ) 0 8 7 3 
U N F M ( M ) = U N F M ( M ) / F A C T O R 0 8 7 4 

14 C O N T I N U E 0 8 7 5 
R E T U R N 0 8 7 6 
E N D 0 8 7 7 
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SUBROUTINE ALIGNM C078 
C 0079 
C**#* ALIGNM D E T E R M I N E S AND SETS THE HORIZONTAL AND VERTICAL POSITION 0800 
C OF EACH BEARING IN ORDER TO PRODUCE A CORRECTLY ALIGNED S Y S T E M , 0881 
C THE ROUTINE IS ONLY APPLICABLE TO SYSTEMS HAVING AN EVEN NUMBER 0882 
c OF BEARINGS GREATER THAN T W O , IKEF. SECTION 5,2) 0883 
c 0 8 8 4 
C***=* STATEMENT M O D I F I C A T I O N S FOR INCREASED PROGRAMME DIMENSIONS 0885 
C 0886 
C DIMENSION 0887 
C --- 0888 
C 0889 
c A R R A Y ( N + M I N + M ) , B V E C ( M + N ) , X V E C ( M + N ),W1 ( M + N , M + N ) , W 2 { M + N ) » W 3 ( M + N ) 0890 
C 0391 
C EQUIVALENCE 0892 
C 0893 
C 1 0894 
C ( W l ( l , l ) • D A T A F Q { 1 + ( N + M ) » * 2 ) ) 0895 
C 0896 
C CALLS TO S U B R O U T I N E S 0897 
C — 0898 
C ~ 0899 
C F04ATF( ,M+N, , T , ,M+N, , , ) 0900 
C 0901 

COMMON Q Q ( 4 , 1 0 ) t A2N(j( 10 ) , N M O D E , S T i D A M P , N B R G , SBRG (6) ,XBRG(6> 0902 
+ , Y B R G < 6 ) , B G S H P E ( 6 , 1 0 ) , N C P L , S C P L ( 2 > , A J 1 < 2 > t A J 2 ( 2 ) , N F R Q , S F R Q ( 6 ) 0903 
+ •FQSHpE(6 » 1 0 ) , Q E X I ( 1 0 ) » Q E T A ( 1 0 ) , F X ( 6 ) , F Y ( 6 ) , C O E F L N < 8 , 6 ) 0904 
+ , X O O T , X O I S , Y D O T , Y O l S , O A T A F Q ( 1 2 2 0 8 ) 0905 
DIMENSION ARRAY<lft.l6).BVEC(16),XVEC(16).Wl(16,16) 0906 

+ •W2(16)»W3(16) 0907 
EQUIVALENCE (ARRAY(ltl).DATAFQ(I)),(Wl(ltl).DATAFQ(257)> 0908 " 

C 0909 
IF((NORG+1)/2-NBRG/2,NE,0 .OR. N B R G . E G . 2 ) GO TO 50 0910 
I F ( N 8 R G / 2 - l , N E , N C P L ) GO TO 52 0911 
M1=NM0DE 0912 
MNRNMODE+NBRG 0913 

C 0914 
XDOT=0.0 0915 
YDQT=0.0 0916 

C 0917. 
DO 10 1=1,MN 0918 
8VEC(I)=0.0 - 0919 
00 12 J=1,MN 0920 
ARRAY(I,J)=0 « 0 R 0921 

12 CONTINUE 0922 
10 CONTINUE 0923 

BVEC(1)=ST 0924 
DO 14 1=1,Ml 0925 
ARRAY( 1 , 1 ) = « A 2 M U ( I ) 0926 
A R R A Y ( M N - 1 , I ) = B G S H P E ( 1 , 1 ) 0927 
ARRAY( M N , I ) = B G S H P E ( N B R G , I ) 0928 
DO 16 N=1,NBRG 0929 
A R R A Y ( I , M 1 + N ) = B G S H P E ( N , I ) 0930 

16 CONTINUE 0931 
14 CONTINUE 0932 

DO 18 J=1,NCPL 0933 
8VEC( M 1 + J ) = S T * A J 1 ( J ) 0934 
B V E C ( N C P L + M 1 + J ) = S T * A J 2 ( J ) 0935 
00 20 N=1,NBRG 0936 
I F ( S C P L ( J ) . L T . S B R G ( N ) ) GO TO 20 0937 
ARRAY( MI+J,MI+N)=I,O 0938 . 
A R R A Y ( N C P L + M 1 + J , M 1 + N ) = S C P L ( J ) - S B R G ( N ) 0939 

20 CONTINUE 0940 
18 CONTINUE 0941 
C ~ ' • 09^2 

IFAIL=0 0943 
C 0944 

CALL F 0 4 A t F ( A r r A Y , 1 6 , B v E C , M N , X V E C , w 1 , 1 6 » W 2 , W 3 , I F A I L ) 0945 
C 0946 

W R I T E ( 6 , 1 0 1 0 ) 0947 
C 0948 

MXITER=50 0949 
00 22 N = 1 , N B R G 0950 
XBRG(N)=0,7 0951 
YBRG(N)=-0,3 0952 
NITER=0 0953 

24 N I T E R = N I T E R + 1 0954 
XDIS=XBRG(N) 0955 
YDIS=YBRG(N) 0956 
CALL F I L M X Y ( N ) 0957 
CALL L N C O E F ( N , 4 ) 0958 
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D L " N O M = C O E K L N ( 2 , N ) * C O F - F T N ( O . N ) - C O F F I N ( 4 • M ) + C O E F L N ( 6 . N ) 0 9 5 9 
X F 3 R G { N ) = X B R G ( N ) - ( C O E F L N ( 8 . N ) * F X ( N ) - C O E F L N ( 4 T N ) * { F Y { N ) - X V E C ( M L + N ) ) ) 0 9 6 0 

+ / O E N O M 0 9 6 1 
Y B R G ( N ) = Y 8 ? ? G ( N ) - ( C Q E F I N ( 2 . N ) * ( F Y ( N ) - X V E C ( M l V N ) ) - C O E F L N ( 6 » N ) * F X » M ) ) 0 9 6 ? . 

+ / O E N O H 0 9 6 3 
I F ( A N S ( X B R G { N ) - X L ) I S ) + A E S ( Y B R G { N > - Y O I S > . L T . 1 . 0 E - 8 ) G O T O 2 6 0 9 6 4 
I F ( N I T E R . G T . K X I T E R ) G O T O 5 4 0 9 6 5 " 
G O T O 2 4 0 9 6 6 

2 6 E Q E P t s = S O R T { X B R G ( N ) * * 2 + Y B R G ( N U * ? . . ) 0 9 6 7 
W R I T E ( 6 , 1 0 2 0 ) N F X S R G ( N ) , Y B R G ( N ) , E Q E P S 0 9 6 3 

2 2 C O N T I N U E 0 9 6 9 
C 0 9 7 0 

M = N 0 R G 0 9 7 1 
O E N O M r B G s U P E ( 1 , 1 ) * P G S H P E ( N , 2 ) - B G s H P E ( 1 1 2 ) * B G S H P E ( N I L ) 0 9 7 2 
Q X I = ( B G S H P E ( M , ? > * X R R G ( 1 ) - R G S H P E ( 1 , ? ) * X B R G { N ) ) / O E N O M 0 9 7 3 
G X 2 = ( B G S H P E ( 1 . 1 ) * X B R G (fj) - B G S H P E ( f j » 1 ) * X 8 S G ( 1 ) ) / O E N O M 0 9 7 4 
X V E C ( 1 ) = X V E C ( 1 ) + ( R G S H P E ( N , 2 ) + Y S R G ( 1 ) - B G S H P E ( 1 , 2 ) * Y B R G ( N ) ) / O E N O M 0 9 7 5 
X V E C ( 2 ) = X V E C ( 2 > + < B G S H P E ( 1 . 1 ) * Y 3 R G ( N ) - B G S H P E ( F J • 1 ) * Y B R G ( 1 > ) / O E N O M 0 9 7 6 

C 0 9 7 7 
D O 3 0 M R L . N O R G 0 9 7 3 
Y = 0 . 0 . 0 9 7 9 
D O 3 2 . 1 = 1 • N M O D E 9 9 8 0 
Y s Y + X V E C ( I ) * B G S H P E ( N » I > 0 9 8 1 

3 2 C O N T I N U E 0 9 8 2 
X = S X 1 * B G S H P E ( N » 1 ) + Q X 2 * B G S H P E ( N » 2 ) 0 9 8 3 
X B R G ( N ) = X - X B R G ( N ) 0 9 8 4 
Y B R G ( N ) = Y - Y 8 R G ( N ) 0 9 8 5 
I F ( A B S ( X B R G C N ) ) . L T . 1 . 0 E - 8 ) X B R G ( N ) = 0 , 0 0 9 8 6 
I F ( A B S ( Y B R G ( N ) ) . L T . 1 . 0 E - 8 ) Y B R G ( N ) = 0 . 0 0 9 8 7 

3 0 C O N T I N U E 0 9 8 8 
R E T U R N 0 9 8 9 

C 0 9 9 0 
5 0 W R I T E ( 6 . 1 0 3 0 ) N B R G 0 9 9 1 

S T O P 0 9 9 2 
5 2 W R I T E ( 6 , 1 0 4 0 ) 0 9 9 3 

S T O P 0 9 9 4 
5 4 W R I T E ( 6 . 1 0 5 0 ) 0 9 9 5 

S T O P 0 9 9 6 
C 0 9 9 7 
1 0 1 0 F 0 R M A T ( / / 5 X 0 9 9 8 

+ , 5 8 M E Q U I L I B R I U M P O S I T I O N O F T H E S H A F T R E L A T I V E T O E A C H B E A R I N G / 5 X 0 9 9 9 
+ . 5 8 H — - / 5 X 1 0 0 0 
+ . 2 2 H F O R T H E A L I G N E D S Y S T E M / 5 X 1 0 0 1 

+ , 2 2 H / / 6 X 1 0 0 2 
+ , l H N t l O X « 3 H ( X ) » 1 4 x , 3 H ( Y ) , 1 3 X » 5 H E Q E p S / / ) 1 0 0 3 

1 0 2 0 F 0 R M A T ( 5 X . I 2 , 3 ( 4 X , E 1 3 . 5 ) ) 1 0 0 4 

1 0 3 0 F O R M A T ( 4 0 H * * * ± * * * ± * * * * M * * * * * * * * * * * * * * * * * * * * * * * * * * / / 1005 
+ 5 X . 3 6 H A L I G N M E N T R O U T I N E N O T A P P L I C A B L E T O , I 2 . 1 6 H B E A R I N G S Y S T E M S ) 1 0 0 6 

1 0 4 Q F O R M A T ( 4 0 H * * * * * * * + * * • * * * * * * # * # * * * * * * * # * • # * * * * # * • * / / 1 0 0 7 
+ 5 X . 4 0 H I M C 0 R R E C T N U M B E R O F C O U P L I N G S D E S I G N A T E D ) 1 0 0 3 

1 0 5 0 F O R M A T ( 4 0 H * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / / 1 0 0 9 
+ 5 X . 4 5 H C 0 N V E R G E N C E N O T A C H I E V E O I N S U B R O U T I N E A L I G N M ) 1 0 1 0 

E N D • 1 0 1 1 
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S U B R O U T I N E S T A T I C 1012 
C 1013 
O * * * S T A T I C CALCIJI ATES THE E Q U I L I B R I U M P O S I T I O N OF THE R O T A T I N G 1014 
C S H A F T , IT IS "APPLICABLE TO ANY SYSTEM HAVING TWO OR M O R E 1015 
C B E A R I N G S . ( R E F . SECTION 5.3) 1°18 
C 1017 
O * * * S T A T E M E N T M O D I F I C A T I O N S FQR I N C R E A S E D P R O G R A M M E D I M E N S I O N S 1010 
C 1019 
C D I M E N S I O N 1020 
C - 1021 
C 1022 
C ARRAY (2*Mi2*M> i HOG {2*?4) . O E L O O < 2*M ) . Wl ( 2 » M , 2 * M ) ,W2(2*M) ,U3(2*M) 1023 
C 1024 
C E Q U I V A L E N C E 1025 
C 1026 
C 1027 
C ( W l ( l t 1 > . 0 A T A F Q ( 1 + ( 2 * M ) # * 2 ) ) 1028 
C 1029 
C CALLS' TO S U B R O U T I N E S 1030 
C - 1031 
C 1032 
C F04ATF( «2*M» . * . ,2#Mi » 1 ) 1033' 
C 1034 
C 1035 

C O M M O N Q Q ( 4 • 1 0 ) t A 2 N U ( 1 0 ) . N M O D E . S T , o a m p » N 3 R G , S B R G ( 6 ) , X p R G < 6 > 1036 
+ • Y B R G ( 6 ) . B G S H P E ( 6 , 1 0 ) , N C P L , S C P L ( 2 ) , A J l ( 2 ) , A J 2 ( 2 ) , N F R Q . S F R Q ( 6 ) 1037 
+•«FQSHPE(6,10) .QEXI(lO) ,GETA(10) <FX(6> .FY (6) .C0EFLN(8i6) 1038 
+ . X D O T 1 X D I S . Y O O T , Y D I S » D A T A F Q ( 1 2 2 8 8 ) 1039 
D I M E N S I O N A R R A Y ( 2 Q » 2 0 ) » H Q 3 ( 2 0 ) » D E L Q Q ( 2 0 ) « W 1 ( 2 0 , 2 0 ) 1090 

+»W 2 ( 2 0) * W 3 ( 2 0 ) 1091 
E Q U I V A L E N C E { A R R A Y d t l ) . D A T A F Q ( I ) ) , (Wl(1•1> « D A T A F Q ( 9 0 1 ) ) 1092 

C 1093 
I F ( N B R G . L T . 2 . O R . N H O D E . L T . N B R G ) GO TO 69 1094 
X O O T s O . O 1095 
Y D O T = 0 . 0 1096 
00 62 M = 1 , N M Q O E 1097 
Q Q ( 1 . M ) = 0 . 0 1098 
Q Q ( 2 , M ) = 0 . 0 1099 
Q Q ( 3 , M ) = 0 . 0 1050 
Q Q ( 4 , M ) = 0 . 0 ' 1051 

62 C O N T I N U E 1052 
C - 1053 

00 52 1=1,NBRG 1054 
H Q Q ( I ) = X B R G ( I ) + 0 . 7 1° 55 
DC 54 J=i,i;r.RG 1056 
A R R A Y ( I . J ) = 8 G S H P E ( I , J ) 1 0 5 7 

54 C O N T I N U E - 1956 
52 C O N T I N U E 1059 

N 1 = N B R G 1060 
IFAIL=0 1061 
CALL F 0 4 A T F ( A R R A Y , 2 0 » H Q Q . N l , D E L Q Q , W l t 2 0 , W 2 , W 3 , I F A I L > 1062 
DO 56 1=1,NBRG 1 0 6 3 
Q Q ( 2 , I ) = D E L Q Q ( I ) I O 6 4 
H Q Q ( I ) = Y 8 R G ( I ) - 0 . 3 1065 
DO 58 J = 1 , N B R G 1066 
A R R A Y ( I , J ) = B G S H P E { I , J ) 1067 

58 C O N T I N U E 1068 
56 C O N T I N U E 1069 

CALL F 0 4 A T F { A R R A Y , 2 0 , H Q Q , N l » D E L C J Q f W l » 2 0 , W 2 , W 3 , I F A I L ) 1070 
DO 60 1=1,NBRG 1071 
G G ( 4 , I ) = D E L 0 Q C l ) . 1072 

60 C O N T I N U E 1073 
C 1074 

M X I T E R = 5 0 1075 
N I T E R = 0 1076 

10 N I T E R = N I T E R + 1 1077 
DO 12 N = 1 , N B R G 1078 
X O I S = - X B R G ( N ) 1079 
Y D I S = - Y B R G ( N ) 1080 
DO 14 H s l . N M O O E 1°81 
X 0 I S = X D I S + Q G ( 2 , M ) * B G S H P E ( N , M ) 1082 
Y Q I S = Y D l S + Q Q ( 4 , M ) * B G S H p £ ( N , M ) 1003 

14 C O N T I N U E I O 8 4 
CALL L N C 0 E F ( N , 4 ) 1°°5 

12 C O N T I N U E 1036 
C 1087 

DO 16 I = 1 , N M 0 D E 1089 
S U M X = 0 . 0 1089 
S U M Y = 0 . 0 1090 
DO 20 N = 1 , N B R G 1091 
S U M X = S U M X + F X ( N ) * B G S H P E ( N » I ) 1092 
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SUMY=SUMY+FY(N)*OGSHPE(N•I) 1093 
20 CONTINUE 1094 

HOG(I) =SIIMX-A2MU(I)*QQ(2.I) 1095 
HQQ(NMOOE+t)=SUMY-A2Nun)*QQ(4.I) 1096 
DO 1Q Jsl,NMODE 1097 
SUMKXX=0.0 1098 
SUMKXY=0.0 • 1099 
SUMKYX=0.0 1100 
SU'/KYY = 0.0 1101 
00 22 N=JUNBRG 1102 
BGIj=BGsHpE(N»I)*BGsHpE(N.J) 1103 
SUvkXX=SUMKXX+OGIJ*CCEFLN(2.N) 1104 
SU'.,''<XY = SUMKXY + BG I J*COEFLN (4 »N) 1105 
SUvKYX=SUMKYX+BGIJ*C0EFLN(6»N) 1106 
SUWKYY=SU"KYY+BGIJ*COEFLN(8»N) 1107 

22 CONTINUE 1108 
ARRAY(I»J)=SUMKXX 1109 
ARRAY ( I .NMODE+-J)=SUMKXY l l l l ) 
ARRA Y (fJv.ODE + 1 » J ) = SUMKYX l l l l 
ARRAY(NMOOE+I.NMODE+J)=SUMKYY 1112 

18 CONTINUE 1113 
16 CONTINUE —-- 1114 

HSQ(NMODE + t>=HQQ(NMODE-H)-ST 1115 
00 24 1=1tNMODE 1116 
ARRAY( I , I )=ARRAY( I . I )-A2NU( I ) 1117 
IMsNMQDE+I 1118 
ARRAY(IM,IM)=ARRAY(IM,IM)-.A2MU(I) 1119 

24 CONTINUE 1120 
C 1121 

H2=NMODE+NMOOE 1122 
IFAIL=0 1123 

C 1124 
CALL F04ATF(ARRAY.20iHQQ.M2,DELQQ«W1,20.W2,W3,IFAIL) 1125 

C 1126 
QXMAX=0.0 1127 
QYMAX=0.0 1128. 
DO 26 1=1.NMODE . 1129 
SO(2 « I )=QQ(2 ,1)-DELQQ(I ) 1130 
9C ' 4 , I ) = 0 0 ( 4 , I ) - D E l q q ( fjMODE+I) 1131 
IF(ADS(QQ(2i I ) ) .GT.OXMAX) QXMAX=ABS(OQ(2»I)) 1132 
IF(ABS(G0(4, I )>.GT.OYMAX) QYMAX=A8S(QQ(4,I>> 1133 

26 CONTINUE 1134 
DO 32 1=1,NMODE 1135 
IF(ABS(QQ(2»D/QXMAX).LT.1 .0E-6) GO TO 39 1136 
IF (ABS(DELQQ( I ) /GQ(2 . I ) ) .GT . l .OE-O) GO TO 28 1137 

39 IF (ABS(0Q(4 , I ) /0YMAX) .LT.1 .0E-6) GO TO 32 1138 
lF(ABS(0ELQQ(NM0DE+l)/QQ(9t I ) ) ,GT,1.0E-8) GO TO 28 1139 

32 CONTINUE 1190 
WRITE(6,92) 1191 
DO 99 N=1.NBRG 1192 
XDIS=-XBRG(N) 1193 
YDIS=-YBRG(N> 1194 
DO 46 M=l,NMODE 1195 
XDIS=X0IS+QQ(2,M)*8GSHPE(N.M) 1196 
•YDIS=YDIS+Q9(9 ,M)*BGSHPE(N,M) 1197 

96 CONTINUE 1198 
EQEPS=SQRT(XDIS**2+YDIS**2) 1199 
WRITE(6,98) N,XOIS,YDIS,EQEPS .1150 

99 CONTINUE 1151 
RETURN 1152 

28 IF(NITER.LT.MXITER) GO TO 10 1153 
WRITE(6,1020) 1159 
STOP 1155 

69 WRITE (6»1030 )• 1156 
STOP 1157 

C 1158 
92 FORMAT(//5X ~ 1159 

+ 1 5 5 H P R E D I C T E D E Q U I L I B R I U M P O S I T I O N R E L A T I V E TO EACH BF:ARING/5X H 6 O 
+ ,55H ~ / /6X 1161 
+, 1H.\', 10X t 3H( X ) , 19x«3H (Y ) » l3Xi5HEQEpS//) 1162 

48 F0R ' 'AT(5X , I2 ,3 (4X ,E13 .5 ) ) 1163 
1020 FORWAT(40H ******jk** + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / / 1164 

+5X,46H CONVERGENCE NOT ACHIEVED IN SUBROUTINE STATIC) 1165 

1030 FORMAT(40H * •***** •*******************+***•+********* / / 1166 
+5X.41HEXECUTION TERMINATED IN SUBROUTINE STATIC/ 1167 
+SX,40H AS VALUE OF NBRG OR NMODE IS UNSUITABLE) 1168 
END 1169 
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S U B R O U T I N E L N S T A 8 1170 

C 1171 
C*-*** L N s T A B C A L C U L A T E S . USING MAG R O U T I N E F 0 2 A F F . THE E I G E N V A L U E S 1172 
C OF THE L I N E A R I Z E D S Y S T E M , ( R E F . SECTION 5 . 9 ) 1173 
C 1179 
C***» S T A T E M E N T M O D I F I C A T I O N S FOR INCREASED P R O G R A M M E D I M E N S I O N S 1175 
C 1176 
C D I M E N S I O N 1177 
C 1178 
C 1179 
C A R R A Y ( 9 # M , 9 # M ) . A R E A L ( 9 * M ) , A J M A G ( 9 * M ) , I W ( 4 » M ) , I N 0 E X < 4 * M ) 1180 
C S 0 R T R ( 9 * M ) , S 0 R T I ( 4 * M > 1 1 8 1 
C • 1182 
C C A L L S TO S U B R O U T I N E S 1183 
C 1189 
C 1185 
C F02AFF( , 9 * M , , * , . ) 1186 
C 1187 

C O M M O N QQ(9 * 1 0 ) . A 2 N U ( 1 0 ) » N M O D E « S T I D A M P . N B R G » S R R G ( 6 ) , X B R G ( 6 ) 1188 
+ , Y B R G ( 6 ) , B G S H P E ( S , 1 0 > . N C P L , S C P L ( 2 ) , A J 1 < 2 ) . A J 2 ( 2 > . N F R Q , S F R O ( 6 ) 1189 
+ . F O S H P E ( 6 , 1 0 ) . Q E X T D O ) . Q E T A ( I O ) , F X ( 6 ) . F Y ( 6 ) » C O E F L N ( 8 . 6 ) 1190 
+ , X D 0 T , X D I S , Y D 0 T , Y D I S , 0 A T A F Q ( 1 2 2 8 8 ) 1191 
D I M E N S I O N A R R A Y ( 9 0 . 9 0 ) . A R E A L ( 4 0 ) , A J M A G ( 4 0 ) » I W ( 9 0 ) 1192 

+ »INDEX(40)» S O R T R ( 4 0 ) » S O R T L ( 4 0 ) 1 1 ^ 3 
E Q U I V A L E N C E < ARRAY ( I »I ) . D A T A F Q U ) > 1194 

C 1195 
MlsNMOOE 1196 
M 2 = M 1 + M 1 1197 
M3=»-U+M2 1198 
M 4 = V 1 + M 3 1199 
X D 0 T = 0 . 0 1200 ~ 
Y D O T S O . O 1201 
DO 10 N = 1 » N B R G 1202 
XDIS=-XBKG(N> 1203 
Y O I S = - Y B R G ( N ) 1204 
DO 12 M = l,FJMOOE 1 2 0 5 
XDIS=yOIS-K)9(2.M)*BGSHpE(N»M> 1 2 0 6 
Y0LS=YDLS+QA (4 .M)*BGSHpE(N«M) 1 2 0 7 

12 C O N T I N U E 1208 
C A L L LNC0EF (N,8> 1 2 0 9 

10 C O N T I N U E 1210 
C ' ' " 1211 

DO 14 I = L , N M O D E 1212 
DO 16 J = L . N M O D E 1 2 1 3 
S U M C X X = 0 . 0 1214 
SU|/CXY=0.0 - 1215 
S U V C Y X = 0 . 0 12X6-
S U M C Y Y = 0 . 0 1 2 1 7 
S U M K X X = 0 . 0 1 2 1 8 
S U " K X Y = 0 . 0 121?-
S U W K Y X = 0 . 0 - 1220 
S U M K Y Y = 0 . 0 ' 1221 
DO 18 N = 1 , N B R G 1 2 2 2 
BGIJ=BGSHPE(N.I)*BGsHPE(N,VIR 1 2 2 3 
S UM C X X = S U M C X X + B G I J *C 0 E F L N ( 1 . N ) 1224 
S U M C X Y = S U M C X Y + B G I J * C 0 E F L N ( 3 . N J 1 2 2 5 
SUKCYX=SUMCYX+BGU*C0EFLN(5 .N ) 1 2 2 6 
S L ' M C Y Y = S U M C YY+BGI J*COEFLN{ 7 » N ) 1 2 2 7 
S U V K X X = S U M K X X + B G I J * C 0 E F L N ( 2 « N ) 1 2 2 8 
S U M K X Y = S U V K X Y + B G I J T C 0 E F L N ( 4 » N ) 1 2 2 9 
S U M K Y X = S U W K Y X + B G I J * C 0 E F L N ( 6 . N ) 1230 
S U M K Y Y = SUMKYY+F5GIJ*COEFLN(8.N) 1 2 3 1 

18 C O N T I N U E 1232-
ARRAY( I.J )=SUMCXX 1 2 3 3 
ARRAY( I . K 1 + J ) = S U M C X Y 1234 
A R R A Y ( M L + I . J )=SUWCYX - 1 2 3 5 
A R R A Y ( M 1+ I . V I + J ) = S U M C Y Y 1 2 3 6 
A R R A Y ( I."-2+J)=SUMXXX 1 2 3 7 
ARRAY( I . M 3 + J ) = S U M K X Y 1238 
ARRAY(M1+ I ,M2+J)=SUMKYX 1 2 3 9 
ARRAY(ML+I ,M3+J)=SUM KTY 1240 

16 C O N T I N U E 1241 
14 C O N T I N U E 1242 
C 1 2 4 3 

M 2 P 1 = M 2 + 1 1244 
DO 20 I = M 2 P 1 • M 4 1 2 4 5 

DO 22 J = 1 , M 4 1 2 4 6 
A R R A Y ( I . J ) = 0 . 0 1 2 4 7 

22 C O N T I N U E 1240 
20 C O N T I N U E 1 2 4 9 

DO 24 1 = 1 . N M O D E 1250 
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ARRAY( I i M 2 + I ) = A R R A Y ( I I M 2 + I ) - A 2 N U ( I ) 1 2 5 1 
A R R A Y { M1 + 1 , M 3 +1) "ARRAY (M1 + 1 . +1) -A2N<J (I) 1252 
A R R A Y t III )=ARRAYi I»T )-DAMP 1 2 5 3 

A R R A Y {Ml + IiHl + I )
=
A R R A Y { M l + l t M l + I ) - O A M P l

2 5 t
* 

A R R A Y ( M 2 + I « I )=l.O 1 2 5 5 

A R R A Y ( M 3 > I , M 1 + I ) = 1 . 0 1 2 5 6 
29 C O N T I N U E 1 2 5 7 
C 1 2 5 8 

I F A I L = 0 1 2 5 9 
C A L L F 0 2 A F F ( A R R A Y , 4 0 » M 4 . A R E A L « A J M A G , I W . I F A I L ) 1260 

C 1 2 6 1 
R E A L M X - - 1 . 0 E 2 0 1 2 6 2 
00 26 1=1.M9 ' 1 2 6 3 
IF(AREAL(J.) . G T . R E A L M X ) R E A L M X = A R E A L ( I ) 1 2 6 9 
S O R T I ( I ) = A B S ( A J M A G ( I ) ) 1 2 6 5 

26 C O N T I N U E 1 2 6 6 
W R I T E ( 6 »1012) R E A L M X 1 2 6 7 
W R I T E ( 6 , 1 G 1 9 > 1 2 6 8 
I F A I L = 0 1 2 6 9 
C A L L M O I A A F C S O R T I , 1 , M 9 , I N D E X . I W f l F A I L I 1270 
DO 32 1 = 1 , M 9 _ 1 2 7 1 
J = I N D E X ( I ) 1 2 7 2 
S O R T R ( J ) = A R E A L ( I ) 1273 
SORT I {J) =AJMAG( I) 12.79 

32 C O N T I N U E 1 2 7 5 
W R I T E ( 6 . 1 0 1 6 ) ( S O R T R ( I ) . S O R T I ( I ) . I = 1 . M 9 ) 1 2 7 6 
R E T U R N 1277 

C 1278 
1012 F O R M A T ( / / / 5 X » 1 6 H L I N E A R S T A B I L I T Y / 5 X - 1 2 7 9 

+ . 16M — / / 5 X 1280 
+ . 5 6 H T H E M A X I M U M REAL PART OF THE R O O T S TO T H E C H A R A C T E R I S T I C / / 5 X 1281 
+ » 3 5 He Q Ua T I O N OF THE L I N E A R I Z E D S Y S T E M =.E13.5) 12.8a 

1019 F 0 R M A T ( / / / 5 X . 3 6 H E I G E N V A L U E S OF THE L I N E A R I Z E D S Y S T E M / 5 X 1283 
+ , 37H--.- / / 1 9 X 1289 
+ .9HREAL PART »6X.9HIMAG P A R T / ) 1285 

1016 F O R M A T ( 1 0 X , E 1 3 . 5 , 2 X , E 1 3 , 5 ) 1286 
E N D 1 2 8 7 
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S U B R O U T I N E L N s V E C ' 1288 

C 1289 
C**** L N s V E C C A L C U L A T E S . USING NAG R O U T I N E F02AGF? THE E I G E N V A L U E S 1290 
C ANO E I G E N V E C T O R S OF THE L I N E A R I Z E D S Y S T E M . THE INITIAL C O N D I T I O N S 1291 
C FOR THE N O N - L I N E A R S O L U T I O N P R O C F D U R r ARE SET TO THE E I G E N V E C T O R 1 2 9 2 
C C O R R E S P O N D I N G TO THE E I G E N V A L U E W I T H M A X I M U M REAL P A R T . THE 1293 
c E I G E N V E C T O R IS S C A L E D SO THAT THE M I N I M U M FILM T H I C K N E S S 1294 
c FOR ANY P O I N T ON THE L I N E A R I Z E D E L L I P T I C O R B I T IS NOT l.ESS 1295 
C THAN 0.25 OF THE ARC R A D I A L C L E A R A N C E IN ANY OF THE B E A R I N G S . 1 2 9 6 
C ( R E F . S E C T I O N S 5.4 AND 8 . 1 ) 1 2 9 7 

C 1 2 9 3 
c**** S T A T E M E N T M O D I F I C A T I O N S FOR I N C R E A S E D P R O G R A M M E D I M E N S I O N S 1 2 9 9 
C 1308 
C D I M E N S I O N 1 3 0 1 
C 1 3 0 2 
C 1 3 0 3 
C A R R A Y ( 4 * M . 4 # M ) »VR(4*M,4*MJ . VI (4*M • 4*M > » AREAL < 4*M)., A J M A G (4#M) 1304 
C IW( 4 # M ) , I N D E X ( 4 * M ) « S O R T R { 4 * M ) . S O R T I ( 4 * M ) i X O D I S ( N ) « Y 0 D I S ( N ) 1 3 0 5 
( X R ( M ) . X I ( N ) . Y R { f J),YI(N) 1 3 0 6 
C 1 3 0 7 
C E Q U I V A L E N C E 1 3 0 8 
C — 13 0 9 
C 1310 
C { V R ( 1 « 1 ) . D A T A F Q ( 1 + ( 4 * M ) # * 2 ) ) . ( V l ( 1 • 1 ) • D A T A F Q ( 1 + 2 * ( ( 4 * M ) * * 2 ) ) ) „ 1 3 1 1 
C 1312 
C C A L L S TO S U B R O U T I N E S . 1 3 1 3 
C 1 3 1 4 
C 1 3 1 5 
C F 0 4 A G F ( , 4*M« , , , , 4 * M , ,4#M« , ) 1 3 1 6 
C 1 3 1 7 

C O M M O N Q Q ( 4 , 1 0 ) . A g N l K l O ) • N M O D E , S T . D A M P . N B R G . S n R G ( 6 ) » X 8 R G ( 6 ) 1 3 1 8 
+ , Y B R G ( 6 ) . B G S H P E ( 6 . 1 0 ) . N C P L , S C P L < 2 ) . A J 1 C 2 ) . A J 2 ( 2 ) . N F R Q , S F R Q ( 6 ) 1 3 1 9 
+ . F Q S H p E ( 6 , 1 0 ) . q E X K I O ) , g E T A ( 1 0 ) , F X ( 6 ) , F Y < 6 ) . C O E F L N ( 8 , 6 ) 1320 
+ . X Q O T , X D I S . Y D O T . Y D I S , D A T A F Q ( 1 2 2 8 8 ) 1 3 2 1 
C O M M O N / B R G S E T / B E T A ( 6 , 2 ) , G C ( 6 , 2 ) . R S C A C ( 6 , 2 ) , A R C L ( 6 , 2 ) , A L G A M ( 6 , 2 ) 132? 

+ , F X A ( 2 ) , F Y A ( 2 ) , S C 0 S ( 6 , 2 ) , S S I N ( 6 , 2 > , F C O S ( 6 . 2 ) . F S I N ( 6 , 2 ) . C A V C C . W F A C T 1323-
D I M E N S I O N A R R A Y ( 4 O , 4 0 ) , \ / r ( 4 0 , 4 0 ) , v i ( 4 0 , 4 0 ) 1324 

+ , A R E A L ( 4 0 ) , A J M A G ( 4 0 ) ,Iw(4Q) . IfjDEX ( 40 ) .SORTR (40 ) .SORTI (40) 1 3 2 5 
+ , X 0 O I S ( 6 ) , Y 0 D I S ( 6 ) , X R ( 6 ) , X I ( 6 ) , Y R ( 6 ) . Y I ( 6 ) 1 3 2 & 
+ , A M A J N ( 6 ) , R A T I O ( 6 ) . T H E T A N J 6 ) 1 3 2 7 
E Q U I V A L E N C E ( A R R A Y ( I . I ) . D A T A F Q U ) ), ( V R < 1 « 1 ) • 0 A T A F Q ( 1 6 0 1 ) > 1 3 2 8 

+ . ( V I ( l . l ) , D A T A F Q ( 3 2 0 1 ) ) 1 3 2 9 
C 1 3 3 0 

P I = 3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 1 3 3 1 
M l = N M O D E 1 3 3 2 
M 2 = M 1 + M 1 1 3 3 3 
M 3 = M 1 + M 2 1334-
M 4 = M 1 + M 3 1 3 3 5 
X D O T = 0 . 0 1 3 3 6 
Y D O T = 0 . 0 1 3 3 7 
DO 10 N = 1 , N B R G 1 3 3 8 
X O I S = - X B R G ( N ) . . 1 3 3 9 
Y O I S = - Y B R G ( N ) - 1 3 4 0 
DO 12 M = 1 » N M O D E 1 3 4 t 
X D I S = X D I S + Q Q ( 2 t M ) * 8 G S H P E ( N » M ) 1 3 4 2 
Y D I S = Y 0 I S + Q Q ( 4 i M ) * B G S H P E ( N . M ) 1 3 4 3 

12 C O N T I N U E 1 3 4 4 
X O D I S ( N ) = X D I S 1 3 4 5 
Y O D I S ( N ) = Y 0 I S 1 3 4 6 
C A L L L N C 0 E F ( N i 8 ) 1 3 4 7 

10 C O N T I N U E ' 1 3 4 8 
C 1 3 4 9 

0 0 14 1 = 1 , N M O D E 1 3 5 0 
DO 16 J = 1 . N M 0 D E 1 3 5 1 
S U M C X X = 0 . 0 1 3 5 2 
S U M C X Y = 0 . 0 1 3 5 3 
S U M C Y X = 0 . 0 1 3 5 4 
S U M C Y Y = 0 . 0 1 3 5 5 
S U M K X X = 0 . 0 1 3 5 6 
S U v K X Y = 0 . 0 1 3 5 7 
S U " K Y X = 0 . 0 1 3 5 8 
S U M K Y Y = 0 • 0 1 3 5 9 
DO 18 N = 1 « N B R G , 1360 
8 G I J = B G S H P E ( N . I ) * B G s H P E ( N T J ) 1 3 6 1 
S U M C X X = S U M C X X + B G I J * C 0 E F L N ( 1 , N ) 1 3 6 2 
S U M C X Y = S U M C X Y * B G I J * C 0 E F L N ( 3 , N ) 1 3 6 3 
SL!MCYX=SU MCYX + R G I J * C 0 E F L N ( 5 , N ) 1 3 6 4 

S U M C Y Y = S U M C Y Y + B G I J * C 0 E F L N ( 7 I N ) 1 3 6 5 

S U M K X X = S U M K X X + B G I J * C 0 E F L N ( 2 . N ) 1 3 6 6 
S U M K X Y = S U M K X r + B G I J # C 0 E F L N ( 4 » N ) 1 3 6 7 
S U M K Y X = S U M K Y X + B G I J # C 0 E F L N ( 6 . N ) 1 3 6 8 
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S U M K Y Y = S U M K Y Y + B G I J + C 0 E F L N ( 8 i N > 1 3 6 9 

18 C O N T I N U E 1370 
A R R A Y ( I , J ) = $ U M C X X 1 3 7 1 
A R R A Y < I I M 1 + J ) = S U M C X Y 1 3 7 2 
A R R A Y ( M I + I , J > = S U M C Y X 1 3 7 3 
A R R A Y (M1 + I ,r.'i+J)=SUMCYY - 1 3 7 4 
ARRAY( I.**2+J)=SUMXXX 1 3 7 5 
A R R A Y ( I , M 3 + J ) = S U M K X Y 1 3 7 6 
A R R A Y ( M 1 + I , M 2 + J ) = S U V K Y X 1 3 7 7 

A R R A Y ( M I + I,M2*J)=stlMKYY 1 3 7 8 
16 C O N T I N U E 1 3 7 9 
14 C O N T I N U E 1380 
C 1 3 8 1 

M 2 P 1 = M 2 + 1 1 3 8 2 
DO 20 I = M 2 P 1 , M 4 1 3 8 3 
DO 22 J = 1 . M 4 1 3 8 4 
A R R A Y ( I • J ) = 0 , 0 1 3 8 5 

22 C O N T I N U E 1 3 8 6 
'.0 C O N T I N U E 1 3 8 7 

DO 24 1 = 1 , N M O D E 1 3 8 8 
A R R A Y I I,M2 + I ) = A R R A Y ( I»M2 + I ) - A 2 N U ( I ) 1 3 8 9 
A R R A Y ( M x + I , M 3 + I ) = A R R A Y ( M I + I , M 3 + I ) . A 2 N U ( I ) 1390 
ARRAY( 1,1 >=ARRAY( I,I ) - D A M P 1 3 9 1 
A R R A Y ( M l + I , M l + I ) = A R R A Y ( M l , M l + I ) - D A M P 1 3 9 2 
A R R A Y ( M 2 + I , I )=1.0 1 3 9 3 
A R R A Y ( M 3 + I , M 1 + I ) = L , 0 1 3 9 4 

24 C O N T I N U E - 1 3 9 5 
C 1 3 9 6 

I F A I L = 0 1 3 9 7 
C A L L F 0 2 A G F ( A R R A Y , 4 0 , M 4 , A R E A L , A J M A G , v R » 9 0 f V I , 4 0 , I W , I F A L L ) 1 3 9 8 

C 1 3 9 9 -
R E A L M X = - 1 . 0 E 2 0 1 9 0 0 
DO 26 1 = 1 , M 9 1 9 0 1 
I F ( A R E A L ( I ) . G T . R E A L M X ) M X R = I 1 9 0 2 
I F ( A R E A L ( I ) . G T . R E A L M X ) R E A L M X = A R E A L ( I ) 1 9 0 3 
S 0 R T I ( I ) = A 8 S ( A J M A G ( I ) ) 1 9 0 9 

26 C O N T I N U E 1 9 0 5 
W R I T E ( 6 , 1 0 1 2 ) R E A L M X 1 9 0 6 
W R I T E ( 6 , 1 0 1 9 ) 1 9 0 7 
I F A I L = 0 1 9 0 8 
C A L L M 0 1 A A F ( S O R T l , l . M 9 , I N D E X t I W , I F A L L ) 1 9 0 9 
DO 32 1 = 1 T M 9 V 1 9 1 0 
J = I N O E X ( I ) 1 9 1 1 
S O R T R ( J ) = A R E A L ( I ) 1 9 1 2 
S O R T I (VJ) = A J M A G (I) 1 9 1 3 

32 C O N T I N U E 1 9 1 9 
W R I T E ( 6 , 1 0 1 6 ) ( S O R T R ( I ) , S 0 R T I ( I ) » I = 1 » M 9 ) 1 9 1 5 

C 1 9 1 6 
A X I S M X = 0 . 0 1 9 1 7 
D O 90 N = 1 , N B R G " ~ . . 1 9 1 8 
S U M X R = 0 • 0 1 9 1 9 
S U M X I = 0 , 0 " 1 9 2 0 
S U M Y R = 0 . 0 L U 2 L 
S U M Y I = 0 . 0 1 9 2 2 
0 0 92 1 = 1 » N M O O E L U 2 3 
S H A P E = B G S H P E ( N i I ) 1 9 2 4 
S U M X R = S U M X R + V R ( M 2 + I , M X R ) * S H A P E 1 9 2 5 
S U M X I = S U M X I + V I ( M 2 + I , M X R ) * S H A P E 1 9 2 6 
S U M Y R = S U " Y R + V R ( M 3 + I , M X R ) * S H A P E 1 9 2 7 
S U V Y I = S U M Y I + V I ( M 3 + I , M X R ) * S H A P E 1 9 2 8 

92 C O N T I N U E 1 9 2 9 
X R ( N ) = S U M X R , 1 9 3 0 
X I ( N ) = S U M X I 1 9 3 1 
Y R ( M ) = S U M Y R 1 9 3 2 
Y I ( N ) = S U M Y I 1 9 3 3 
X 2 A W P = S U m X R * S U M X R + S U M X I * S U M X I 1 9 3 9 
Y 2 A V P = S U M Y R * S U V , Y R + S U M Y I * S U M Y I 1 9 3 5 
T H E T A = 0 . 5 * A T A U ( 2 . 0 * ( S U M X I * S U M Y I + S U M X R * S U M Y R ) / ( X 2 A M P « Y 2 A M P ) ) 1 9 3 6 
C T H E T A = C O S ( T H E T A ) 1 9 3 7 
S T H E T A = S l N { T H E T A ) 1 9 3 8 
P H A S E = A T A N 2 ( S U M X l * C T H E T A - » - s U M Y I » S T H E T A , S U M X R # C T H E T A + S U M Y R * S T H E T A ) 1 9 3 9 
C P H A S E = C O S ( P H A S E ) 1 9 9 0 
A M A J = ( S U M X R * C T H E T A + S U M , Y R * S T H E T A ) / C P H A S E r ' 1 9 9 1 
A ' - N R = ( S U M X I * S T H E T A - S U M Y I * C T H E T A ) / C P H A S E 1 u 9 2 
I F ( A B S ( A ^ A J ) . G T . A B S ( A M U R ) ) GO TO 44 1 9 9 3 
T E M P = A M A J 1 9 9 4 

A M A J = A M N R 1 9 9 5 
A M N R = T E M P 1 9 9 6 
T H E T A = T H E T A+ 0 . 5 * P I 1 9 9 7 
I F ( T H E T A . G T . 0 . 5 + P I ) T H E T A = T H E T A - p I 1 9 9 8 

99 I F ( A B S < A M A J ) . G T . A X IS M X ) A X I S M X = A B S ( A M A J ) 1 9 9 9 
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AMA JM(N)=AMA J 1450 
RrtTlO(N)=A«NR/AMAJ 1451 
THETAfj(fl)=THETA*lQO tO/Pl 1452 

40 CONTINUE 1453 
C0NST=0•05/AXISMX 1454 

C 1455 
C O S D E L = C O S ( P I / 1 8 . 0 ) 1456 
SINDEL = SI[J(PI/18.0) 1457 

64 C0NST=C0fiST + ().05/AXISMX 1^53 
COST=1.0 1459 
SINT=0.0 1460 
DO 60 1=1,36 l u 6 l 
TEMP1=C0ST 1462 
TEMP2=SINT 1463 
C0ST = TEN'P1#C0SDEL-TEMP2»SINDEL 1464 
S l N T = T E M p 2 * C 0 S D E L + T E M p i * s i N D E L 1465 
DO 62 N=l.f|BRG 1466 
X = RSCAC(rj,l )*(XOOIS(N)+CONST*(XR(N>*COST-XI(N)*SINT> ) 1467 
Y = R S C A C ( N , 1 ) * < Y O D I S ( N ) - G C ( N , 1 ) + C O N S T * ( Y R ( N ) * C O S T - Y I ( N ) * S I N T ) ) 1468 
I F < X * X + Y * Y . G E . 0 . 5 6 3 ) GOTO 66 1469 
Y=RSCAC(fj,2 ) Y O D I S ( N ) - G C ( N » 2 ) + C O N S T * ( Y R ( N ) * C O S T - Y I ( N ) * S I N T ) ) 1470 
IF(X*X + Y * Y . G E . 0.5-63; 6 0 TO 66 I 1* 7! 

62 CONTINUE 1472 
60 CONTINUE 1473 

GO TO 64 1474 
66 C O N S T = C O N S T - 0 . 0 5 / A X I S M X 1475 
C 1476 

WRITE(6,1018) 1477 
DO 72 N=1,N8RG 1478 
A M A J N ( N ) = C O N S T * A M A J N ( N ) " - 1479 
WRITE(6 »1020) N . A M A J N ( N ) , r A T I 0 ( N ) . T H E T A N ( N ) 1480 -

72 CONTINUE 1481 
C 1482 

DO 70 1=1«NMODE 1483 
39 (1•I ) = 0 0(1,1)+C0NsT*VR( I.MXR) l t t84 
G S ( 2 , I ) = Q Q ( 2 , I ) + C 0 M S T * V R ( M 2 + I » M X R ) 1485 
9 G ( 3 , I ) = 0 0 ( 3 , I ) + C 0 N S T * V R ( M 1 + I , M X R ) 1486 
0 9 ( 4 , I ) = Q Q ( 4 , 1 ) + C 0 N S T * V R ( M 3 + I , M X R ) 1487 

70 CONTINUE ~ 1488 
RETURN 1489 

C 1490 
1012 FORMAT(///5X•16HLINEAR STABILITY/5X - 1491 

+ , 16H //5X 1492 
+.56HTHE MAXIMUM REAL PART OF THE ROOTS TO THE CHARACTERISTIC//5X 1493 
+.35HEOUATION OF THE LINEARIZED SYSTEM =,E13.5) 1494 

1014 F 0 R M A T ( / / / 5 X , 3 6 H E I G E N V A L U E S OF THE LINEARIZED SYSTEM/5X 1495 
+ , 37H //14X 1496 
+.9HREAL PART.6X,9HIMAG P A R T / ) 1497 

1016 F O R M A T ( 1 0 X , E 1 3 , 5 , 2 X , E 1 3 , 5 ) 1498 
1018 F 0 R M A K / / / / 5 X , 2 4 H T H E ELLIPTICAL MOTION AT 1499 

+,39H THE BEARINGS GTVEN BY THE EIGENVECTOR,/5X 1500 
+.60HCORRESPONDING TO THE EIGENVALUE WITH MAXIMUM REAL P A R J , USEO/ 1501 
+,5X,59HAS INITIAL CONDITIONS FOR THE NON-LINEAR SOLUTION PROCEDURE 1502 
+ / / 1 2 X , 1 3 H M A J . S E M I - A X I S , 4 X , 1 4 H R A T I 0 ( M I N / M A J ) , 4 X , 1 2 H A N G . M A J . A X I S / / ) 1503 

1020 FORMAT(5X,12,6X•Ell.5 «6X tEll*519X«F6.2) 1504 
ENO 1505 



- 230 - , 

S U B R O U T I N E F O R I E R 1 5 0 6 

C 1507 
C * * * » F O R I E R A R R A N G E S THE DATA C O L L E C T E D FOR THE S T E A D Y - S T A T E 1508 
C M O T I O N , AT THE MONITOR P O I N T S , IN A FORM S U I T A B L E FOR 150G 
c P R E S E N T A T I O N TO THE NAG R O U T I N E C O 6 A A F - W H I C H THEN P E R F O R M S ISIO 
C A F I N I T E F O U R I E R T R A N S F O R M ON E A C H SET OF D A T A . 1 5 1 1 

C 1512 
C O M M O N Q Q ( 4 , I O ) , A 2 N U < I O ) , N M O D E , S T » D A M P , N B R G , S B R G < 6 ) , X R R G ( 6 > 1 5 1 3 

+ , Y R R G ( 6 ) , B G S H P E ( 6 , 1 0 > , M C P L , S C P L ( 2 ) , A J 1 ( 2 ) , A J 2 ( 2 ) , N F R O . S F R O ( 6 ) ' 1514 
+ « F g s H p E ( 6 , 1 0 ) , G E X I ( 1 0 ) , Q E T A ( 1 0 ) , F X ( 6 ) , F Y ( 6 ) , C O E F L N T 8 , 6 ) 1 5 1 5 
+ , X D 0 T , X D I S , Y D 0 T , Y D I S , D A T A F Q ( 1 2 2 8 8 ) 1516 
D I M E N S I O N F R C 0 s ( 5 l 3 ) . F R s I N ( 5 1 3 ) , I L s T ( 2 0 ) 1 5 1 7 

C • 1 5 1 8 
P I = 3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 1 5 1 9 
M F 0 R = 9 1520 

N F 0 R = 2 * * M F 0 R 1521 
M l F 0 R = 2 * M F 0 R + 2 1522 
N 1 F 0 R = N F 0 R + 1 1 5 2 3 
DO 20 N S T N = 1 , N F R Q 1524 
N X Y = 1 H X 1 5 2 5 
DO 18 I X Y = 1 , 2 1 5 2 6 
N C 0 S = 2 * N F 0 R * ( 2 * N S T N + I X Y - 3 ) 1 5 2 7 
N S I N = N C O S + N F O R 1 5 2 8 
DO 22 1 = 1 , N F O R 1 5 2 9 
F R C 0 S ( I ) = D A T A F Q ( N ' C 0 S + I ) 1530 
F R S L N ( I ) = D A T A F Q ( N S L N + I ) 1531 

22 C O N T I N U E 1532 
W R I T E ( 6 , 6 0 1 0 ) N S T N « N X Y 1 5 3 3 

C 1534 
CALL C 0 6 A A F ( F R C O S , F R S L N , N L F O R , . F A L S E . , M 1 F O R . I L S T ) 1535 

C 1 5 3 6 
F R C O S ( 1 ) = F R C O S ( 1 ) * 0 . 5 1537 
DO 12 1 = 1 , 2 0 1 • 1 5 3 8 
I H A R = I - 1 1 5 3 9 
F 0 R A M P = S Q R T ( F R C 0 S ( I ) * * 2 + F R S I N ( I ) # * 2 ) 1540 
FORPHA=ATARJ2(-FRSLN(I) . F R C O S ( I ) ) * 1 8 0 . 0 / P I 1 5 4 1 
W R I T E ( 6 , 6 0 2 0 ) I H A R . F R C O S ( I ) . F R S I N ( I ) . F O R A M P , F O R P H A 1 5 4 2 

12 C O N T I N U E _ 1 5 4 3 
N X Y = 1 H Y 1544 

18 C O N T I N U E 1 5 4 5 
20 C O N T I N U E 1 5 4 6 

R E T U R N 1 5 4 7 
C 1 5 4 8 
6 0 1 0 F 0 R M A T ( 1 H 1 / 1 5 X . 4 8 H F 0 U R I E R C O E F F I C I E N T S FOR M O T I O N AT M O N I T O R P O I N T 1 5 4 9 

+ , I 3 » 5 X » A 1 , 1 0 H - D I R E C T I O N / / / 1 3 X . 1 H K . 1 4 X , 6 H C 0 S I N E , 1 7 X , 4 H S I N E , 1 8 X 1550 
+ , 9 H A M P L I T U D E , 1 5 X , 5 H p H A s E / / / / > 1 5 5 1 

6 0 2 0 F O R M A T ( 1 0 X • 1 5 «6X * 4 ( E 1 7 . 9 «7X)) 1 5 5 2 
E N D 1 5 5 3 
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S U B R O U T I N E P1.0TER 1554 

C 1555 
C * * * * THIS ROUTIfjC P L O T S OUT A L I N C - S E G M E ^ T OF THE S H A F T T R A J E C T O R I E S 1556 
C AT THE M O N I T O R P O I N T S . D E T A I L S ARE NOT GIVEN AS THE R E Q U I R E D 1557 
C P R O G R A M M I N G CODE IS I N S T A L L A T I O N O E P E N O E N T . 1550 
c 1559 
C * * * + S T A T E M E N T M O D I F I C A T I O N S FOR I N C R E A S E D P R O G R A M M E D I M E N S I O N S 1560 
C 1 5 6 1 
C D I M E N S I O N 1562 
C 1563 
C 1564 
C X ( N ) » Y ( N ) 1 5 6 5 
C 1566 

D I M E N S I O N X ( 6 ) , Y ( 6 ) ' 1 5 6 7 
C 1568 

R E T U R N 1569 
ENO 1570 


