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ABSTRACT

Derivation of Logic Programs by Christopher John Hogger

The general theme of the thesis is the treatment of first order
logic as a programming language. The subject is introduced by
describing the way in which Robinson'’s resolution principle has enabled
the construction of theorem proving interpreters which execute programs
represented in clausal form. Kowalski's procedural interpretation of
logic, which assigns operational significance to various properties of
resolution refutations for logic programs, is then described in detail.
There follows a whole chapter devoted to comparison of programming
styles, discussing examples discovered by other researchers and also
contributing some original ones.

After these preliminaries, the central subject of the thesis is
introduced, namely the utility of the standard formulation of first
order logic as a language for reasoning about the properties of logic
programs. It is shown that clausal form is generally unsuitable for
specifying, deriving, transforming and verifying logic programs, in
contrast to standard logic which is eminently suitable for enccding
the deductions which underlie these tasks.

It is then argued that the use of logic as a general computational
language requires suitable inference systems for relating clausal-form
programs to their properties expressed in standard logic. This leads to
the formulation of a goal-directed quasi-computational inference system
capable of deriving logic procedures from their specifications using just
object level deductions; this is identified as a novel way of unifying
the notions of synthesis and verification within a single technique.

It is shown that the inference system is adequate for deriving
"alternative representations of various well-known algorithms and is also
capable of dealing with both procedures and data structures uniformly.
The final chapter exploits the procedure derivation methodology to clarify
logical taxonomic relationships within two algorithm families. Several
sorting programs are derived from a single specification of sortedness,
and several text-searching programs are likewise derived from basic
properties of the substring relation. These derivations illustrate a
number of interesting transformations which the inference system brings
entirely within the scope of logical deduction in order to secure
special kinds of algorithmic behaviour in the derived programs.
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INTRODUCTION

0.1 : BACKGROUND

Ever since the earliest developments of methods for programming
computers through the use of symbolic input, computer scientists have
been centrally concerned with the practical and theoretical attributes
of the great number of programming languages which have been designed
and implemented since that time. As the practice of professional
computer programming has become ever more sophisticated and subject
to increasingly stringent constraints upon the various parameters of
program quality, so the demands made upon the designer of new
languages have become more challenging. There are, of course, many
differing views as to the ideal resources which a programming language
ought to provide, even in respect of a particular problem domain.

Yet it would seem unlikely that one could find serious dissent from a
general goal of language design expressed more than thirty years ago (64)
by, most fittingly, John von Neumann : that is, to provide the

programmer with :-

" An effective and transparent logical terminology or
symbolism for comprehending and expressing a particular
problem, no matter how involved, in its entirety and in
all its parts; and a simple and reliable step-by-step
method to translate the problem (once it is logically
reformulated and made explicit in all its details)

into the code.”

Computer programmers are still waiting for a transparent logical
terminology like that advocated by von Neumann. In general, the
languages which they employ scarcely differ, in any fundamental sense,
from those-used in the earliest days of ccmputing. There are
naturally many differences between their respective ways of describing

a computational process intended to solve some problem of interest.



Yet their underlying philosopﬁy is, for the most part, to describe
a process rather than a problem. Consequently their semantics are
specified in terms of the behaviour of abstract machines rather than in
terms of what facts hold about the problem domain and about the
particular problem at hand. These languages, then, share what
might rezsonably be regarded as an intrinsic incomprehensibility,
in that they say very little that is explicitly meaningful about
the problem, with the results that are now well documented within

-~"the annals of software practice : programs which are unclear,

incorrect and resistant to confident modification.

The manner in which programmers actually do accomplish the
composition of apparently correct programs is largely mysterious,
even to themselves. We know that an Algol programmer can be asked
to write a matrix multiplication routine and report back with the
result within our lifetimes even though he may afterwards admit
that he has conducted no logical analysis of the program, during
or after its composition, which associates its construction with

" the meaning of matrix multiplication. His apparent success is
due to substantial intuitive skills which enable him to bridge
the two semantics which are associated, respectively, with the way
his program describes a computational.process and the way his
specification describes a fact about matrices. If those skills
were wholly reliable then we would hear much less controversy about
language design and programmer education; in reality, of course,

those skills are highly fallible because they are not well-founded.

It has been interesting to observe how, in the last decade,
much greater embhasis has been placed upon the logical content of
programs than hitherto. This can be observed especially in the
proposals which have been made for the formal analysis of programs,

'where the objective is to show by sound deduction that a given
program will compute some specified relation. It may also be seen
in the devzlopment of informal methodologies such as structured
programming which encourage programming styles intendéd to clarify
the logical content of programs. These developments represent
what we can interpret as successive approximations to von Neumann's
ideal, namely the role of logic as the central system of reasoning

in the programming process, rather than as just a peripheral tool.
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The explicit manifestation of this role of leogic has so far been
mainly observed in its use as a specification language for
conventional programming. Even in this respect it is scarcely used
at all outside academic computing circles. This may be because the .
great majority of programmers are not logically literate, rather

than because of the poor state of development of analytical devices
such as program verifiers; if the importance of logic as a program
reasoning tool was given greater emphasis in prcgrammer education
.then more significant advances could be expected to fdllow in the

provisions for assimilating its use into normal programming practice.

It is only comparatively recently that an even more interesting
application of logic to programming has arisen, namely its use as a
source language capable of automatic interpretation. This possibility
has come about as a result of progress in mechanical theorem proving
together with the creation of a. remarkable procedural interpretation of
first order logic developed by Robert Kowalski. During the last
five years this interpretation has been used to establish a sound
_and convincing computational theory of 'logic programming', and has
been implemented in a number of practical interpreters for logic
programs. The most outstanding feature of logic as a programming
language is its semantical independence of any execution mechanism
conjoined with the fact that the source program statements which
it affords comprise explicit assertions about the problem domain and
the particular problem of interest; in other words, a logic program
is meaningful in terms of the problem rather than in terms of the

execution which will subsequently solve it.

It would be wrong to suggest that because the logic programmer
can express the logical content of a computational problem explicitly
that for him the question of correctness is inconsequential.

Suppose, for example, that hg required a program capable cf deleting
all occurrences of a member u from an input list. Then for
computational purposes he might compose the following program

statements :-

delete(u, u.nil, nil) <«

delete(u, v.x, v.x') <« u#v, delete(u, x, x')



Informally, these sav that the result of deleting u from the unit

*list (u) leaves the empty list, whilst deleting u from a list which

appends a list x to a unit list (v} such that u#v is just the result

of deleting.u from x to leave x' and finally appending x' to (v).

We may ask whether this truly captures the notion which we associate

with the symkol delete. Intuitively *hat noction requires that

the members of the output list shall be exactly those of the input

list other than u , and that they shall retain the same relative

_--ordering in the output as they had in the input. Can it now be

asserted with confidence that this coincides with, or is at least

consistent with, the assertions made in the logic program ?

Such questions are the concern of a fairly recently developed theory

of logic program analysis, within which the concepts of termination,

verification, synthesis and transformation are formulated upon a

coherent logical foundation. The principal intention of the

research reported in this thesis has been to contribute to this

theory and to demonstrate its practical epplication.

0.2 : THE THESIS

Objectives of the Research

The purpose of the present work is to formulate and justify

the concept of logic procedure derivatioin in support of the thesis :-

THESIS

The need for independent program specifications
prevails in logic programming to the same extent

as it does in conventional programming.

First order predicate logic provides an attractive
specification language as well as a programming

language.

First order deduction is sufficient for analysing

relationships between programs and specifications.

Such analyses are practicable as well as theoreticaily

well-founded.

11
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Logic procedure derivation refers to the task of showing that
the statements (procedures) comprising the body of a logic program
are true theorems about the problem domain implied by a first order
axiomatic formulation of the problem which constitutes the program's
specification. In practice this just amounts to constructing a
series cf deductions (a derivation) which treats the sentences in the
specification as assumption formulas in order to prove each statement

in the program. Because logic is a non-deterministic programming

.- language, proof of each statement is logically independent of proofs

of the other statements, and furthermore is independent of any
assumptions about the behaviour of the program in execution; these
circumstances confer a dramatic distinction between proofs of logic

programs and proofs of conventional programs.

It is not only our purpose here to investigate the problem of
verifying programs, important as this is. Logic procedure derivation
can also be interpreted as synthesis (when the axioms used comprise
just a naive specification) or as transformation (when the axioms
comprise some other logic program's procedures, perhaps together with
some other general facts about the problem domain). All these tasks
are unified by their formulation in terms of proving computationally
useful theorems implied by suitable axiom sets. Consequently it is
reasonable to suppose that all may be acccmplished through the agency
of a single inference system for first order logic, and one of the
intentions of the research reported here is to provide empirical
evidence that this is indeed the case. Moreover, program transformation
does not necessarily entail algorithm transformation; very often we
may wish to modify the way in which a given logic program expresses
the logic of some particular formulation of the problem at hand,
perhaps with the object of exploiting an alternative control mechanism
in the intended interpreter, or perhaps in order to obtain clearer logic.
This may result in essentially the same algorithm (that is, run-time
behaviour) but a substantial change in programming style. A variety
of programming styles had been identified by other researchers before
the present undertaking, and it is hoped that the latter will afford
some clarification of the logic which underlies these kind of

transformations.
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Contribution of Originai Material

There are two senses in which the author hopes that the thesis

will afford evidence of an original contribution to the field of

logic programming. Firstly, a great deal of work has been pursued

by several other researchers on the methodology of logic programming
‘since the inception of the discipline around 1973-74. Much of this
remains unpublished or even undocumented in any comprehensive way,
’peing disseminated amongst the various groups involved only through
’informal exchanges. It is true that there do exist a number of

very useful reports explaining the computational theory of logic
programming, amongst which are some fine publications by Kowalski,

van Emden, Warren, Clark and Tarnlund; all 9f these are cited in the
thesis and salient features from some of them are discussed here in
detail. Hcwever, as far as the_author is aware, no comprehensive and
completed report describing the methodological advances in the last
two years has yet been released. This is not to imply that the
thesis captures the major part of those advances, but a considerable
éffort has nevertheless been made to do justice here in reviewing

the contributions of others which have an especial bearing upon the
central themes of the thesis. It should be mentioned also that new and
substantial contributions to the literature of logic programming may
soon be expectedlfrom Kowalski, who is preparing a book on the subject,:
and from Clark, who will doubtless be documenting his many researches
in the field in his own forthcoming doctoral thesis Predicate Logic

as a Computational Formalism. Jointly these should provide a fairly
complete and up-to-date account of the work at Imperial College on the

analysis of logic programs.

Secondly, all of the contents of Chapters 5, 6 and 7, together
with parts of Chapters 3 and 4, are offered as the author's independent
studies in logic programming methodology. The foundation for that
material is established in Chapter 4 which explains the motivation and
theoretical justification of logic procedure derivation. It must
be declared that the concept of procedure derivation was also developed
independently and contemporaneously by Clark, although our approaches
to the technique have always differed. Clark's approach is very
much aligned with that of Darlington's transformation system for sets of

recursive function definitions in its emphasis upon that systems's
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special rules for definiens substitution and its primary goal of
securing recursions. The treatment of procedure derivation given
here, by contrast, is more general in character and employs inference
steps which are capable of a broader interpretation than those déployed
in Clark's analyses. However, both of us were initially much
influenced by Darlington's work, and it is additionally likely that
the prospects of procedure derivation were anticipated long kefore
by Kowalski. Chapters 5, 6 and 7 describe, respectively, the rules
of inference identified by the éuthor as having especial utility in
the manipulation of standard logic in the course of dériving logic
procedures; a collection of reasonably simple examples which may be
viewed either as verifications or as syntheses; and two rather more
concentrated studies of algorithm families intended to show the

usefulness of the technique for procgram transformation.

0.3 : PREVIEW OF CONTENTS

Each chapter has been given its own preview in order to outline
its essential contents, and so it is unnecessary to give a great
deal of introductory detail here. Broadly the thesis can be viewed
in four parts. The first of these is principally a survey of the
general state of development in logic programming and spans
Chapters 1, 2 and 3. Chapter 1 briefly surveys the contribution
which theorem proving has made to computer programming, and explains
how the theory of resolution proofs enabled logical deduction to be
»viewed as computation. The practical possibilities of resolution
theorem proving for constructing conventional programs were examined
in detail by Gieen, but it was Kowalski who formulated the procedural
interpretation of logic which enabled resolution proofs to be treated
as computations in their own right, thus establishing logic as a
viable source programming language. Since resolution.proviagsutbe
basis of the current view of logic as a.prégramming ignguagé;.ité
relevant features are presented in Chapter 1. There, the syntax
known as clausal form is introduced and used to illustrate the
meanings of unification, resolution and refutation derivation which

underly the operational meaning of logic programs. Finally a very



-

brief indication is given of the meanings of computation, algorithm,
interpreter. output and non-determinism in terms of the proof-theoretic

features of resolution.

Chapter 2 provides a more detailed description of the syntax,
semantics and pragmatics of logic programs, together with some
notaticnal conventions adopted throughout the thesis. The procedural
interpretation is presented and illustrated by an example. Here
it is shown how mechanisms such as call activation, procedure invocation

_.and data transmission can all be defined in terms of refutational
theorem proving. The principal features of logic program interpreters
are also introduced together with a detailed example which illustrates
the significance of scheduling strategies. The chapter closes with

a survey cf some of the refinements which have been considered in
order to improve upon the primitive default control mechanisms found

in the Prolog-like interpreters commonly used at present.

Chapter 3 assumes that the essential theory of logic programming
is understood, and proceeds to compare alternative styles in the
_.composition of programs. The separation of logic from control is
emphasized as. the outstanding feature of the formalism, offering'thé
programmer various ways of mixing those components in order to secure
different algorithms or different representations of a given algorithm.
Discussion is given of various kinds of procedure invocation, such as
iterative and recursive mode, and different kinds of call activation,
such as sequential and coroutined mode. It is shown how these kinds
of behaviour may be procured through the agency of either explicit
control mechanisms or special styles in the construction of the logic.
Some rather exotic styles are demonstrated which enable top-down
execution to emulate bottom-up execution, and an example is given of
the application of this to the linear mathematical programming problem.
" There are many other special behavioural effects which can be induced
through the correct choice of logic, and a few of these have been
singled out for consideration here; many more will appear in later
chapters. The important contribution of data structure choice to
both programming style and computational efficiency is rev?ewed in the
last section of Chapter 3. A wide selection of examples is given to
show the effects cf choosing different kinds of fﬁnctional terms and

sets of assertions, affecting, for instance, the question of whether



data can be retrieved by direct access or computed access; whether
.procedures can be invoked recursively or iteratively; and whether
the accessing programs can be macroprocessed using appropriate data

selector procedures.

The second part - Chapter 4 - deals with some of the techniques

for reasoning about logic programs. I.rguments are presented to

justify the need for the standard formulation of predicate logic as

a rea<oning tool in addition to clausal form logic for mainly
.-~computational purposes. The early work by Clark and Tarnlund on

termination and verification is given there together with some examples.

A complete section is assigned to the discussion of the meaning of

specification for logic programs, together with some conventions

adopted for good specification style. The new technigque of verification

by procedure derivation is outlined in a section éiving its theoretical -

justificaticn and arguing its practical merits. The author's goal-

oriented quasi-~computational derivation style is presented there as

the basis of the inference rules developed later on.

- The third main part of the thesis is’contained in Chapter 5.

This explains the fundamental features and assumptions in the.euthor's
use of procedure dérivation for analysing logic programs. Guidelines
are given there for the composition ana style of specification sets,
together with some suitable conventions and terminology regarding the
logistical aspects of the methodblogy. The two principal classes of
inference rules are described in detéil, explaining their differences
and their cooperative interleaving during the derivation process.

The most important rules for goél transformation - modus tollens,
equivalence substitution and conditional equivalence substitution - are
particularly emphasized. A complete section then surveys various

ways in whiéh the inference rules procure the derivation of typical
recursive procedures and their bases, and the similarity of some of
these applications to the Darlington transformation system is observed.
.The final section shows how the rules also apply to the derivation of
low-level data accessing procedures, dealing firstly with access to
terms and then with access to assertions; the latter discussion shows
an interesting and instructive derivation which develops a list accessing

procedure through several levels of abstraction.
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The final part of the thesis comprises Chapters 6 and 7 which
present examples of the application of procedure derivation. Chapter 6
examines six ccmputational problems, developing various programs for
them in the spirit of program synthesis. The first problem is the
familiar one of list reversal, and derivations are given of both
iterative and recursive programs. The second problem is that of
searching a list for duplicates, and three‘algorithms of differing
efficiencies are examined. The first effectively employs two
independent iterative loops, the second makes the range of one of those
loops dependent upon the progress of the other, and the third makes
use of a stack to record the discovery of distinct members; all of these
differing behaviours are secured by deriving appropriate procedures
for a fixed control strategy. The next example deals with the generation
of factdrial tables, which may be computed either iteratively or
recursively, with or without redundant multiplications and in either
the natural order or the reverse order; again, all these behaviours
are obtained satisfactorily using the derivation methodology. The
problem of comparing the labelled frontiers of two binary trees is the
subject of the fourth example, which expioits a simple associativity
argument in order to secure the well-known but subtle algcrithm which
cooperatively transforms the trees in crder to compare their first
frontier labels. The fifth example is a simple addition problem over
the elements of a matrix, but makes use of an interesting technique
related to one of Kowalski's programming styles in order to develop an
algorithm which computes a list of sums in quasi-parallel, in contrast
to the naive but less efficient algorithm which computes the same sums
sequentially. The final example is just the familiar eight gqueens
problem. This was the first problem in logic programming ever studied
by the author; and due to the attractive simplicity of its logic

representation deserves a.place in the thesis.

Chapter 7 is concerned with program transformation within two
families of algorithms. The first section discusses the simplest
sorting algdrithm - 'naive-sort' - and derives its logic component
from first principles. Then it is shown how additional information
about the constructibility of lists ensbles an alternative derivation
of 'merge-sort’. A series of transformations are shown which transform
'‘merge-sort' into 'quick-sort', 'merge-sort' into ‘insert-sort' and
finally 'quick-sort' into 'selection-sort'. All of the transformations

use just the same inference rules as used for synthesis from bhasic
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spe&ifications. The final section considers rather more difficuit

. algorithms intended for solving the ‘text-searching problem. Several
interesting alternative representations are given for the naive
algorithm in increasing order of sophistication, until reaching one
which can be transformed info either the linear Knuth-Morris-Pratt
algorithm or the sub-linear Boyer-Mocre algorithm. Whilst logical
analvses of sorting algorithms have been developed by other researchers,
the logical unification of the text-searching algorithms given here is,

.as far as the author can ascertain, a new contribution to the taxonomic

analysis of that family.

The thesis is closed with a discussion of some related work by
other individuals, not all of them using the logic programming
formalism, and some views are given on the prospects of developing
automatic tools for assisting derivations. Some suggestions are
finally made concerning possible expectations for logic procedure

derivation in the light of the experience described by the  thesis.



CHAPTER 1

THEOREM PROVING

AND

COMPUTATION

The central thesis of the\logic programming formalism is that
logical inference is amenable to a useful computational interpretation.
That this concept can now be realized in terms of practical tools allowing
-the implementation of logic as a programming language is due to the
successful results of research in automatic theorem brovinq. More
specifically, the theory of logic programming is intimately associated
with the theory of resolution proofs for first order logic. The first
section of this chapter therefore begins with a brief account of the
progress in automatic theorem proving which led up to the discovery of the

resolution principle, and expiains how this progress became relevant to

the interests of computer programmers.

Amongst the early applications of resolution in connection with
computer programming were implementations capable of synthesizing simple
conventional programs from specifications expressed by axiom sets. In
certain respects these might be viewed as the precursors from which
present-day logic program interpreters evolved. However, the
intelligibility of logic as an executable programming language came about
not through advances in implementation techneclogy but rather through the
development of a convincing procedural interpretation of predicate logic.
In order to properly appreciate the basis of this procedural interpretat-
ion it is firstly necessary to understand a limited part of the theory of
resolution. The latter is briefly reviewed in the chapter's second
section which introduces the notions of clausal form, unsatisfiability,

unification and refutation derivation.

The final section then outlines the way in which various features
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of resolution derivations can be interpreted computationally, thereby
justifying the view of logic as a (non-deterministic) programming

language capable of efficient implementation.

1.1 : HISTORICAL BACKGROUND

Early Objectives and Achievements

The study of autcmatic theorem proving during the last three
_--decades reflects mﬁch earlier aspirations towards the systematizaticn of
mathematical proof. It is not surprising, then, that the earlijest
programmed proof procedures developed in the 1950's were applied most
notably to mathematical theorem proving. This research was motivated by
the hope that computers would provide proofs of significant theorems
which would be too lengthy or too difficult to be undertaken by non-
mechanical procedures. Computers could then be expected to accelerate

the pace of imathematical discovery.

_Apart from potentially contributing to the extension of mathemati-
.cal knowledge, automatic theorem proving has also assumed importance in
those aspects of the study of artificial intelligence which deal with the
manipulation of knowledge by logical inference. There it has been
successfully applied to such tasks as question-answering, game-playing
and state~space problem solving. Theorem proving has proved useful in
these various applications in consequence of the sufficient expressiveness
of logic for representing knowledge and the efficacy of logical inference

for processing it.

The first significant implementation of a theorem proving program
was achieved by Newell, Shaw and Simon (65). This program was called
the 'Logic Theorist' and was intended for generating proofs of formulas
in the propésitional logic. It was successfully used to prove various
theorems selected from Principia Mathematica’by goal-directed problem
reduction. The Logic Theorist was later assimilated into the general

problem solving system 'GPS' developed by Newell and his co-workers (66).

Propositional logic is too restrictive to serve as a convenient
language for representing mathematical knowledge due to its lack of
quantification. Most effort in automatic theorem proving has therefore
been concentrated upon first order predicate logic (FOPL), which is
adequate for representing all mathematics derivable from set theory.

" Some of the earliest algorithms for proving theorems in FOPL were proposed

by Quine (69) and by McCarthy (58). McCarthy's vpaper outlined a proposal
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for the construction of a theorem proving program called 'Advice Taker'
whose fundamental inference system combined mcdus ponens with substitut-
ion of terms for variables. However, its intended capabilities could be
enhanced by the user's provision of 'common sense’heuristics to guide the
interrogation of an axiomatic data base describing the chosen éroblem,
domain. Implementation of this program was subsequently undertaken by
Black (4) who incorporated its essential ideas intc a question-answering
s§stem. This system was able to solve some problems posed in proposit-
ional logic which had formerly defeated the 'Logic Theorist', but was

nevertheless too inefficient to serve as a general purpose theorem prover.

-,

By 1960 interest was growing in the search for uniform syntactical
methods for proving theorems in FOPL, with the object of eliminating
reliance upon semantic heuristics and other domain-~specific devices '
designed for controlling theorem provers efficiently. Both Wang (81)
and Gilmore (27) contributed programmed nroof procedures for FOPL based
solely upon syntactical rules. The behaviour of their programs, however,
exhibited exponential dependence upon structural features of the input
formulas representing the 'target' theorems, thus rendering the programs
too inefficient for general application. A considerable improvement in
—performance was provided soon after by Davis and Putnam (21), whose
program generated proofs with lengths only linearly dependent upon the
number of variébles in the input formulas. Nevertheless, each step in
the proofs computed by it incurred a considerable computational burden,
and Robinson (72) socon demonstrated some very simple formulas for which

the Davis-Putnam program was quite infeasible.

It was not until 1965, when Robinson (73) published his discovery
of the resolution principle, that efficient FOPL theorem provers appeared
imminently feasible. Undoubtedly resolgtion provided a much stronger
inference system than had been previously available; yet the problem of
efficiently ‘controlling the generation of proofs remained. There has
subsequently been a great deal of investigation of heuristics for control-
ling resolution proofs, but ﬁot with sufficient success to fully realize
the hopes of the mathematical theorem proving schools for efficient
autonomous provers of 'hard' theorems. Despite this, resolution has
contributed significantly to more specialized applications in computer
science such as logic programming and the logical analysis and synthesis
of conventional programs, wherein the necessary proofs are comparatively

modest and (generally) foreseeable,.
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Theorem Proving and Conventional Programming

Computer scientists became especially interested in formalizing and
proving properties of conventional programs after Floyd (26) showed how
FOPL could be used to provide an axiomatic definition of their meaning.
Although Floyd's proposals were focussed mainly upon the formalization
of program semantics, they also provided an operational technique for
proving programs to be correct with respect to axiomatic specifications.
The progress of automatic theorem proving then became a matter of interest
to the general programming community. King's thesis (42) describes a
general purpose verifier for proving assertions describing flowchart
programs. Program proving has since been investigated with great vigour
and has an extensive literature; a good overview of the earlier work is
given by London (55), and a more technical and up-to-date account by Katz
and Manna (41). Despite the continuing interest in program proving
amongst computer scientists, however, it would seem that programmers as:-a
whole do not yet consider it a viable means of verifying their own 'real-
world' programs. Generally they resort to testing methods instead.
There are several factors contributing to this attitude, some cof which are
due to matters of programming psychology (described, for example, by
Dijkstra (22) ), whilst others may be due to insufficient appreciaticn of
what can already be achieved with the verification tools now available.
Underlying these factors is the fact that programmers dc not normally
view logic as the essential substance of their discipline, and so tend
to be unconvinced of its usefulness. Nevertheless it would apopear that
computer—aided axiomatization and proof of conventional programs will not
be capable of realistic assimilation into everyday programming practice
until substanéiél improvements have been made in both programming
languages and the styles in which their resources are deployed; these
improvements will be necessary irrespective of the extent to which

programmers are educated in the theory and pragmatics of logic.

Complementary tc the task of proving that a given program conforms
to some specification is the task of deriving the program from that
specification. This process of program synthesis has also been studied
with the aid of theorem provers. Green (30) has shown how a conventional
assignment program can be constructed by examining the kindings cf terms
to variables in a resolution proof whose target theorem describes the
program's intended input-output relation. The recovery of these bindings
is the essence of the answer-extraction process which enables resoluticn
to be used as a computational tool. Answer-extraction is dealilt with in

detail in Green's thesis {29) in connection with his work with Raphael
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on the first implementation of a resolution theorem prover (28) as a
question-answering system. A particularly good account of program
construction by resolution is included in the book by Chang and Lee (11).
Synthesis of conventional flowchart programs from resolution proofs was
subsequently investigated by Lee and Waldinger (53). Their 'Prow'
program-writing system suffered, like Creen's system, the limitation of
being unable to construct loop-containing preograms. Methods for loop-
construction were soon developed by Manna and Waldinger (60) by admitting

induction axioms to the axiom set specifying the desired program.

~
The Origins of Logic Programming

Logic programming, which refers to the use of logic as a source
programming language, has developed largely from progress in automatic
theorem proving. In particular the curren£ treatment of FOPL as a
programming language derives from the computational features of resolution
proofs. Whereas Green, Waldingér and others employed resolution proofs
as the precursors for the construction of conventional programs, the lcgic
programming formalism treats such proofs as computations in their own
';ight. A sentence of logic may be looked upon as a source program
intended for an interpreter consisting of a programmed prouf procedure.
Computation arises by the interpreter's construction of a proof of the
input sentence, and the output of the computation is (generally) an
accompanying set of bindings of terms to variables. Terms can therefore
be regarded as the primitive data structures generated during computation,
and the input sentences as procedures which process them. These notions
are clearly closely connected with the answer-extraction process developed
by Green. More general discussion of the relationships between logical
inference and computation is to be found -in papers by Hayes (33) and by
Sandewall (?6).

Kowalski's 1974'report 'Logic for Problem Solving' forms the
earliest definitive account of logic as a programming language (49).
Kowalski illustrates the richness of FOPL for representing problems in
various ways and argues its merits as a machine-independent language
suitable for the natural expression of deductive inferences made about
computational problems. Computation is rigorously defined there in
terms of resolution proof theory and then used to establish the important
procedural interpretation‘of logic. A more concise summary is given in
his paper to the 1974 IFIP Congress (50). A very satisfving account of
the pragmatics of logic programming is also given by van Emden (23).

At the present time (1978) these last two papers provide the most
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comprehensive accounts of the foundations of logic programming to be

found in the rublished literature.

The challenge of designing a practical interpreter in order to
realize Kowzlski's proposals was taken up by Colmerauer, Roussel and
their colleagues, who successfully implemented a resolution interpreter
for logic programs called 'Prolog' at the  University of Aix-Marseille
(17). Prolog, documented in greater detail by Roussel (74) and by
Warren (83, 84), has exerted a strong influence upon subsequent
implementations of logic interpreters in a number of schools of computing

_-science and artificial intelligence.

In summary, then, the theoretical basis of the logic programming
formalism owes much to earlier research (especially that of Robinson) in
the applicaticn of automatic theorem proving to deductive problem solving,
whilst its practical merits rest upon Kowalski's procedural interpretation
and the efforts of those individuals who have given it expression in the

construction of feasible interpreters.

1,2 : THE RESOLUTION PRINCIPLE

The general theory of resolution thecrem proving would doubtless
appear somewhat‘intimidating to the ordinary programmer whose notions of
computation rest upon the simple machine-oriented actions underlying
conventional programming language semantics. Fortunately, however, it
is only necessary to become acquainted with the rudiments of resolution
in order to understand how logic can be used for computation as well as
for purely declarative purposes. Thus the following outline of

resolution is restricted to deal with just those essential rudiments.

Validity and Undecidability

An important consequence of the treatment of logic program
execution as a process of deductive theorem proving is that it necessarily
confronts the central problem of any formal mathematical system, namely
the problem of determining whether an arbitrary well-formed sentence in
that system is a theorem, that is, provable. Godel's Completeness
Theorem establishes that for FOPL this proklem is -equivalent to that of
determining whether the sentence is valid, that is, true in all

interpretations over all domains of interpretaticn.



The existence of an algorithm capable of totally deciding whether

or not a sentence of FOPL is valid has been refuted bv both Church and

Turing. FOPL is therefore said to pe undecidable. There exist sub-

classes of FOPL which are totally decidable, but these are too restrictive

to be of practical value. There also exist partial decision procedures

for FOPL which are able

to decide the validity of a valid sentence, but

vhich either fail to terminate or else terminate with no decision if

presented with an invalid sentence. (Resolution, in fact, is a partial

decision procedure fcr a.particular subclass of FOPL.) FOPL is said to

" procedures.

Unsatisfiability

The validity of a

unsatisfiability of its

be semi-decidable by virtue of the existence of such partial decision

sentence can be investigated by considering the

negation; that is, whether its negation is false

in all interpretations over all domains of interpretation. Clearly a

sentence is valid if and only if its negation is unsatisfiable.

Automatic theorem proving has most commonly been applied to the problem

-of investigating unsatisfiability as an indirect means of testing validity

and in this guise is referred to as refutational theorem vroving.

It is customary in logic programming to view a program as a set of

sentences rather than as a single sentence. A logic program is then

interpreted logically as the conjunction of its members. The set of

sentences is described as unsatisfiable (or, equivalently, inconsistent)

~ if and only if the conjunction of its members is unsatisfiable. The set

is called satisfiable (consistent) if and only if it is not unsatisfiable

(inconsistent). The equivalent meanings of satisfiability and

consistency are just consequences of the ‘Completeness Theorem which

relates the model theory to the proof theory of FOPL.

Clausal Form Logic

The subclass of FOPL to which resolution is applicable is described

as clausal form. The syntax of a sentence in clausal form is construct-

ible from the following

term :

atom :

definitions :-

a constant symbol or a variable symbol or an
n-ary function symbol followed by an n-tuple

of terms;

an n-ary predicate symbol followed by an n-tuple

of terms;



positive literal : an atom;

negative literal : an atbm preceded by the negation symbol;
clause : a disjunctio; of literals (possibly empty) ;
matrix : a conjunction of clauses;

universal prefix : a.string of universal quantifiers;

clausal form sentence : a universal prefix followed by a matrix such that
' all variables in the matrix are quantified in the

d prefix.

Clausal form therefore describes those sentences in prenex-conjunctive
normal form whose prefixes consist only of universal quantifiers.
Systématic procedures exist for transforming any FOPL sentence to an
equivalent sentence in clausal form; Nilsson's book (67) gives a clear

account of one such procedure.

A sentence in clausal form‘clearly conjoins a set of clauses.
Each clause is a sentence implicitly universally quantified over all the
variables occurring in it. Treating a logic program as a set of clauses,
“the task of a logic program interpreter is to show that the set of clauses
is inconsistent. The problem of showing that this is so is semi-

decidable using an interpreter which implements the resolution principle.

Horn Clause Logic

A procedural interpretation of clausal form logic is'especially
simple to describe when it is applied just to a particular class of
clauses known as Horn clausés. A Horn clause is defined as a clause
which contains no more than one positive literal. Denoting a positive

literal by L* and negative literals by L7, ..., Lo , the Horn clause :-

tfviiv...vzi”
1 n

is equivalent to the sentence :-

(1) tt<«a;, ..., 2,

where v and <« are the connectives 'or' and 'if', a comma is the

connective 'and' and a ... and An are the atomic parts of L7, ... and

ll
L;- Various special cases exist where there is no positive literal and
where there are no negative literals; these are expressed in Kowalski's

notation as follows :-
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(ii) + Al r oeee 2 An

(iii) 1t «
(iv) g.

Atoms appearing to the left and to the right of the connective <« are
respectively called the clause's consequent and antecedent atoms. The
logical interpretations of these clauses are as follows, where X in each

case denotes collectively the variables, if any, which they contain : -

(i) for all x, .t «a, , ... , A

1 n

= (ii) for no Xx, Al 4 eee » An

(iii) for all x, L*

(iv) false.
The restriction of logic programs to Horn clause form also simplifies the
description of resolution (which is applicable to all clausal forﬁ

sentences). Thus the following presentation of the resolution principle

is conveniently restricted to Horn clause logic.

Unification and Resolvents

Unification is the process of determining a set © of substitutions
of terms for variables which, when applied to some given set of literals,
yields a single substituted literal. For example, the substitution
6 = { x:=c, z:=d } is a unifier of the set of literals { p(x,£(d)),
p(c,£(z)) } because its application to each literal yields the literal
p(c.f(d)). If a set of literals has one or more unifiers, then there
will exist amongst them a most general unifier. Informally, the most
general unifier has the property that no othér unifier for the set of
literals is more éimple. There exist algbrithms which determine the

most general unifier of any unifiable set of literals.

Unification of literals in Horn clauses forms the basic step in Horn
clause resolution. Suppose 9 is a most general unifier of the set

{ ¢*, Ak } where L* is the consequent atom of one Horn clause and Ak is an
antecedent atom of another. Then the resolvent of the two clauses is the
unique clause obtained by substituting the entire antecedent of the first

clause for the occurrence of A, in the other, and applying 6 to the result.

k

The two given clauses are said to be resolved on literals LT and Ak. An
example of the process just described is shown below.
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Example : first clause : p(x,f(d)) <« q(d), r(f(x))
second clause : s(y,z) < q(y), p(c,f(z))
8 = { x:=c, z:=d }

s(y,d) < a(y), q(d), r(f(c))

most general unifier

..

resolvent

.

The two given clauses are called parent clauses. It is important to
observe that the resolvent is logically implied by the conjunction of
the parent clauses, and that the resolvent of two Horn clauses is

necessarily also a Horn clause.

The Empty Clause

The empty clause is generated as a resolvent in the special case
where one parent Horn clause has no antecedent atom and the other has no

consequeﬁt atom. An example 1is shown below.

Example : first clause : <« p(c,f(z))
second clause : p(x,f(d)) <«
most general unifier : 6 = { x:=c, z:=d }

resclvent : 2

Obtaining [] as resolvent indicates that the parent clauses are
inconsistent (contradictory). Using conventional exposition of the logic,

it signifies that the sentence :-

v(3z)p(c,f(z)) ~ (Vx)p(x,f(d))

is false.

The Resolution Theorem

Given any set S of clauses, the resolution R(S) of § is defined as
the union of S with the set of all resolvents which can be obtained by
resolving parents chosen from S. For any n>1, the set Rn(s) is defined
as R(Rn-l{s)). Robinson's Resolution Theorem establishes that S is
inconsistent if and only if either R(S) or séme R1(S) contains the empty
clause OO . The theorem therefore provides a single rule of inference
(describing the generation of a resolvent) sufficiently poweriul to

demonstrate the inconsistency of S.

Resolution provides a more powerful inference system than those

used by Gilmore, Davis and Putnam, whose methods relied upon successive



instantiations of the input sentence's variables by terms constructed

from its functicnal vocabulary {(the set of all constant symbels and
function symbols occurring in the sentence). With these methods the
input sentence could be proved inconsistent by discovering an inconsistent
set of instantiations of it, by virtue of an important theorem due to
Herbrand. Methods of this kind are called saturation procedures and

are potentially combinatorially explosive, since the eligible set of
.terms (called the Herbrand universe) is generally infinite. The poor
efficiency of saturation procedures is due to the lack of good criteria

for choosing instances from the Herbrand universe. Resolution escapes

-

" these particular combinatorial difficulties by exploiting a more
sophisticated rule for discovering falsifying instances for the input

sentence.

Resolution Derivations

A resolution derivation from a set S of input clauses is a

sequence of derived clauses (Cl, ceeys Cn) such that C.,eS and every

1
Ci (i>1) is a resolvent of which each parent belongs either to S or to
f Cl' ceeys Ci-l }. When this sequence has the additional property that

every Ci (i>1) also has Ci- as a parent, it is called a linear derivation.

1
If every Ci (i>1) also has at least one parent in S then the sequence is
called an input linear derivation: these are the derivations which are

pursued by typical logic program interpreters.

Two kinds of linear derivation from Horn clauses are of especial
- interest and are described as top-down and bottom-up derivations. A
top-down derivation consists solely of clauses having no consequent atoms;
a bottom-up derivation consists solely of clauses having no antecedent
atoms. The top¥down/bottom—up distinction determines important

differences in the ways in which resolution is used for problem solving.

The application of an inference system such as resolution to a set
S of input clauses determines a space of all possible derivations from S.
Within this space the derivations which terminate with the dexived empty

clause 0 (if any) are called refutation derivations.

Proof Procedures

A refutational proof pfocedure (which forms the core of any
typical resolution interpreter for logic programs) augments a resolution
inference system with a search strategy. The search strategy governs

the way in which the proof procedure searches the space of derivations
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e

determined by its inference system. The object of search is to find
a refutation derivation, that is, to derive the empty clause O from
the input clauses and hence show that they are inconsistent.
Efficient search strategies are an important requirement of practical
interpreters intended for logic programs which admit more than one

derivation.

Completeness and Correctness

An inference system is said to be complete if the space of
derivations determined by any inconsistent set of input clauses contains
a refutation derivation. It is said to be correct if it contains a
refutation derivation only when the input clauses are inconsistent. In
its most general form, resolution has been proved to be both complete
and correct. However, when search heuristics are employed to guide
resolution in ways which potentially restrict search to particular
regions of the search space, completeness may not be preserved.
Investigations of completeness and efficiency in a’variety of proof
procedures are reported in the doctoral theses of Kowalski (46) and
Kuehner (52).

1.3 : COMPUTATION USING RESOLUTION

Computation and Algorithms

The computational théory of logic progyramming is based upon an
operational iﬂtérpretation of resolution derivations. A computation
is represented by a linecar derivation (Cl, ceer Cn) in which every
Ci (i>1) has one parent chosen from the set of input clauses (the other
parent being Ci— ). In particular, a refutation derivation (Cn =0)

represents a sucéessfully terminating computation. If C_ cannot be
resolved with any input clause then the derivation represénts an
unsuccessfully terminating computation. Moreover, a consequence of
the undecidability of FOPL is that a resolution execution may not

terminate at all.

A proof procedure associated with a particular set of input
clauses constitutes an algorithm for generating computations from them.
An implemented computer program which applies a search strategy with the
resolution principle constitutes a general lcgic program interpreter.

The logic programs which it interprets are just sets of input clauses.
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Output from Computation

In general the objective in executing a logic program is not
merely to confirm that the program is inconsistent, but also to discover
instances of its variables which demonstrate the inconsistency. As each
derived clause is generated during a computation, the unifying substitut-
ion which allowed its parénts to be resolved may contribute to a set of
bindings of terms to variables known as the binding environment of the
computation. When computation terminates successfully the final state
of this environment determines the desired instances of the variables
of interest. A practical logic program interpreter will automatically
output the final bindings of these variables if and when computation

terminates.

Non-determinism of Logic Programs

A logic program exhibits non-determinism when its associated
search space admits more than one derivation. The program determines
neither the choice nor the order of derivations generated during
computation. Instead these are determined by the search strategy
employed to control the computation. The occurrence of more than one
derivation in the search space is due fundamentally to the fact that
FOPL describes relations rather than functions. In general, several
input Horn clauses will be necessary in order to compute all possible
members of any particular relation of interest, so that a derived clause
Ci may resolve with more than one input parent and hence admit

alternative choices for its successor C'+l'
i

The efficiency of a general interpreter intended for processing
non-deterministic as well as deterministic programs is strongly
dependent upon its ability to apply intelligent criteria for choosing
between alternafive derivations. Furthermore, if the interpreter
terminates a derivation unsuccessfully (that is, without deriving 1 )
then it should (ideally) be capable of applying an intelligent analysis
of the cause of the failure in order to assist its choice of alternative

derivations (if any) still awaiting exploration.

When the search space admits more than one possible refutation
derivation, the possibility arises of alternative solutions to the
problem described by the program. The choice and oxder of the solutions
output from the computation is again determined by the interpreter's
search strategy and not by the program itself. Other non-deterministic
programs may have only one soluticn, yet allew this to be computed by

significantly different rafutations.
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CHAPTER 2

FUNDAMENTAL FEATURES

0F

LOGIC PROGRAMS

PREVIEW

~
~

Chapter 2 presents the essential features of logic as a programming
language. The first section explains the simple conventions adopted for
-representing programs and classifying their constituent parts. of
greater importance is the semantical description of logic programs given
in the following section. Logic is unique as a programming language
in that it has a model-theoretic semantics which makes no reference to
any intended execution mechanism; this semantics endows a purely
declarative meaning upon logic programs. By contrast, resolution theory
provides the basis of an operational semantics which explains the meaning

" of logic programs in terms of what is computable (logically derivable)
from them; this meaning is more.akin to that normally assigned to
computer programs. The procedural interpretation of logic is just one
way of articulating such an operational semantics in terms of notions
which prevail in other procedural programming languages. Moreover,
because the procedural interpretation treats recursive Horn clauses as
recursive procedure definitions, it is also possible to construct a
fixpoint semantics for logic programs. The three kinds cf semantics
can be shown to be mutually equivalent in consequence of the Completeness

Theorem for first order logic.

The third seétion describes the procedural interpretation in detaii,
introducing ideas such as program goal, program body, call activation,
procedure invocation and data transmissicn. The effective control of
these computational resources is closely bound up with the notion of

scheduling, and a simple summation problem is examined which shows the
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role of this in both top-down and bottom-up computations. In particular,
last-in-first-out scheduling is the principal feature of the interpreters
derived from the first significant implementation (Prolog).

Prolog is briefly described in a new section, and some Prolog-like
computations are compared there for some problems concerned with addition
over the integers. The final section considers some of the useful
extensions to the elementary default- Prolog strategy which have been
proposed and implemented. The most notable of these extensions deal

with coroutining, iterative invocation and intelligent backtracking.

2.1 : THE SYNTAX OF LOGIC PROGRAMS

Vocabularies for Syntax and Metasyntax

Throughout the thesis logic programs are assumed to be restricted
to Horn clauses, the syntax of which has already been described in the
previous chapter. Here it is only necessary to state the conventions
which will be adopted herein for the vocabularies employed to construct

Horn clauses and their metasyntax.
In the construction of Horn clauses :-

(a) commas and parentheses () are the only punctuaticn symbcls;

(b) commas and <« are the only logical connective symbols;

(¢) i,j,k,u,v,w,x,y and z (with arbitrary ornamentations) are
the only variable symbols;

(d) all other lower-case alphabetic strings and all non-
alphabetic strings may serve as function symbols or as
predicate symbols.

In the metasyntactical description of Horn clauses :-

(a) as (a) above;

(b) as (b) above; .

(¢) z,7,K,U,V,W,X,Y and Z (with arbitrary ornamentations) are
the only metasyntactic variable symbols;

{(d) all other upper-case alphabetic strings and all non-
alphabetic strings may serve as metasyntactic function

symbols and predicate symbols.
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These cenventions are nect intended to coincide with cther presentations

of logic programming, amongst which there is ccnsiderable variation.

The thesis also makes much use of non-clausal sentences in order
to express facts about the problem domains investigated by the programs.
Such sentences are presented herein using the orthodox notation for the
standard formulation of first order logic. Thus in addition to the

symbols for constructing Horn clauses, we shall also use the connectives

and quantifiers :-
n v v 3

.--Note particularly that, throughout the thesis, the conjunction
connective is represented by a comma. For both clausal and non-
clausal sentences it will be permitted - where convenience dictates -
to present both functions and predicates in infix notation instead of

prefix notation. o

Presentation of Logic Programs

A logic program is presented herein as a series of clauses. The
_presented ordering of the clauses has no syntactical significance, and

no punctuation is employed to delimit individual clauses.

Syntactical Classification of Clauses

Horn clauses are classified according to their syntax as follows :-

(a) a clause with no consequent atom is called a denial;
(b) a clause with no antecedent atom is called an assertion;

(c) the clause with no atoms is called the empty clause;

{(d) all other clauses are called conditional assertions.

2.2 : THE SEMANTICS OF LOGIC PROGRAMS

The Operational Semantics

The formal semantics of logic programs are developed in a paper by
van Emden and Kowalski (24). They define the operational meaning of a
logic program in terms of the members of relations (named by the program's
predicate symbols) which are derivable from the program using some given
inference system. This treatment is operational in the conventional

sense in that the relations which the program computes are established by



35

P

reference to the computations (derivations) which it gives when executed
by a specified interpreter (proof procedure). By interpreting
derivations as computations, the operational semantics corresponds to

the proof-theory of logic.

Kowalski's procedural interpretation of Horn clause logic, which
forms the foundation of the logic programming formalism, treats atoms in
a denial as procedure calls. The denial is a goal statement whose
execution (through activation of the calls).comﬁutes instances for the
variables occurring in it. ~Assertions ahd;éondi£10nal assertions are
interpreted as procedure definitions which may be invoked in response to
éalls activated from the goal. The procedural interpretation can be
formalized easily in terms of resolution derivations and can therefore be
regarded as one particulaf formulation of the operational meaning of logic
programs. Because of its paramount importance in the computational
interpretation of logic programs, a fuller discussion is deferred to a

later section.

The Model-theoretic Semantics

Tarski's model thneory of logic can be used to determine the meaning
of a logic program in terms of the predicates which it logically implies.
Because, of the dependence of logical implication upon the notion of
satisfiability (and hence upon the notion of a domain of interpretation),
this treatment is essentially semantical, in contrast to the operational
meaning of programs which would be traditionally viewed as belonging to
the syntax of logic. However, in consequence of the completeness of
FOPL, the operational and model-theoretic semantics are equivalent in the
sense that thev determine identical denotations for a given program's

predicate symbols.

The Fixpoint Semantics

Van Emden and Kowalski also define a fixpoint semantics for Horn
clause logic by interpreting sets of recursive conditional assertions
as sets of recursive procedure definitions. By choosing monotonic
transformations as mappings over Herbrand interpretations they establish
equivalence between their fixpoint semantics and the model-theoretic

semantics.



2.3 : THE PROCEDURAL INTERPRETATION

Program Goal

The goal of a logic program is, by convention, the unique clause-

in the program which has the syntax of a denial :-

v

« G ceey Gn

1[
Denoting the goal's variables (if any) by Xl' csoy Xh the goal
represents :- ’

e

ru(axl me) (Gyr =eer G)
and is treated as a refutable conjecture. The objective in executing
the program is to discover instances of Xl, ... and Xh which satisfy
{Gl, ceer Gn) , that is, which provide a counter-example to refute the
goal. When no variables occur in the goal, the intent of the program is

simply to show that the goal is false.

Program Body

The set of all clauses in a program whose consequent atoms have the
same particular predicate symbol R is called a procedure set for R.
Each of its clauses is called a procedure for R. The body of the
program is the set of all clauses in the program other than the goal,
and is therefore just the union of all the program's procedure sets.
The purpose of the program body is to assert knowledge about the problem
-domain investigated by the goal, and is assumed to be consistent. An

example of a logic program is shown below.

Example : < coﬁnt(a.b.c.a.d.b.c.e.a.nii, w)
. count(x,w) < filter(x,y), kount(y,w)

filter(nil,nil) <«

filter(u.x',u.y') « delete(u,u.x’',z), filter(z,y')

kount(nil,0) <

kount(u.y',w+l) <« kount(u',w)

delete(u,nil,nil) <«
delete(u,u.x',z) « delete{u,x’',z)

delete(u,v.x',v.z') « u#v, delete(u,x',z')

The program above contains four procedure sets associated respectively

with the relations named as count, kount, filter and delete. The first

36
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clause of the program is the goal, which conjectures that there exists
no instance of w which is the count of the distinct members in the list

a.b.c.a.d.b.c.e.a.nil . The computational properties of this program

will be discussed in the next chapter.

Procedure Calls

In the procedural interpretation the antecedent atoms of a program's

1
interpreted procedurally as a set of calls to the.procedures named by the

clauses are interpreted as procedure calls. A denial ~ G,, ..., Gn is

predicate symbols in Gl' ... and Gn' No logical significance is

attached to the order in which the calls appear in a clause. The calls
in the denial collectively constitute a goal whose solution requires the
conjoint solution of the calls. Terms appearing in G_, ... and Gn are

1
interpretgd as the arguments of the calls.

Procedure Definitions

The procedural interpretation assigns a computational meaning to
factual assertions about the problem domain. Fach clause in the body

of a program is interpreted as a procedure definition. In a conditional

assertion :-

A-<-Bl' ---,'Bm

the atoms Bl' ... and Bm are interpreted as a set of calls which
constitutes the body of the procedure definition for procedure A. When
there are no such atoms the becdy is empty. The atom A can be
interpreted as a. procedure heading which identifies the name of the
procedure and its arguments. The order in which calls in its body

(if any) appea;_has no logical significance. One way of reading the
procedure is to say that the goal « A can be solved by éolving the goal

'("Bl, ey Bmo

Activation of Procedure Calls

Activating a procedure call consists of selecting a call from the
goal of the program with the object of initiating a computation which
solves that call. Activating some call G

in a goal « G ceey Gn is

k 1’
therefore the process of initiating ccmputation with the object of
solving the subgoal <« Gk' In conventional pregrams this corresponds to

the passing of control to a procedure call statement.



Activation of Procedure Definitions

Activating a procedure definition ccnsists of selecting the
procedure definition with the object of initiating a computation which
derives a new procedure definition, that is, another fact about the

problem domain. This has no analogue in conventional program execution.

Procedure Invocation

In conventional program execution, invocation means the passing of
~control to a procedure definition in response to a call activation. In
logic program execution this process is emulated by top-down (goal-
directed) invocation. However, it is also possible to invoke a logic

procedure definition bottom-up by activating a procedure definition.

Top-down invocation of a procedure definition is the process of
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resolving it with an activated call in the goal by matching the call with

the procedure heading through some unifying substitution 6. When a
procedure definition A <« Bl' cees Bm is invoked in response to a call

Qk activated from a goal <« Gl' caeys Gn , the resolvent is the new goal

obtained by replacing Gk by the body Bl' cees Bm and applying @ to the
result. Top-down invocation (corresponding to goal-directed problem

solving) is the usual mode of invocation used in logic program execution.

Bottom-up invocation of a procedure definition is the process of
resolving it with an activated procedure definition. When an invoked

procedure A < Bl' ...,Bk, ceeys Bm is resolved with an activated procedure

"B < Cl, ceey Cn by unifying the literals B, and B with unifier 8, the

k

resolvent is the definition obtained by substituting Cl, ceas Cn for B

in the first procedure and applying 6 to the result. Bottom-up

k

invocation derives a new fact from given facts and therefore corresponds

to fact-directed problem solving.

The notions of activation and inveccation describted here must be
carefully distinguished. Activation chooses a subgoal to be solved
or a fact to be summoned; invocation chooses a procedure which responds

to the activated call or fact.

Transmission of Data

The unifying substituticns which accompany procedure invocatica
can be interpreted as mechanisms for transmitting data between calls and

procedure definitions. ‘When a call G

X in a goal is matched with the
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heading of a responding procedure definition, the variables in Gk (if

any) are instantiated by terms supplied from the heading. Moreover, all
occurrences of these variables in the goal are instantiated by these terms,
so that data is distributed to other latent (unactivated) calls. The
terms are interpreted as output data passed from the definition to the
goal. Any variables occurring in the heading are simultaneously
instantiated by‘terms supplied from the activated call. These terms

are interpreted as input data passed from the call to the definition and
thence distributed to all occurrences of those variables in the

definition's calls.

An Example of Top-down and Bottom—-up Computation

In the program below the predicate sigma(z,w) expresses the

summationsw = (1+ ... +2z) where z is assumed to be a natural number.

¢l : <« sigma(3,w)
c2 : sigma(v+1,u+v+1l) < sigma(v,u)

Cc3 : sigma(l,1) <«

Here the function symbol + is written in infix notation. For ease of
presentation here, the symbols 2,3 ... etc. willbe used to conveniently
abbreviate terms like 1+1, 1+1+1 ... etc. The goal of the program is to

compute w as the sum of the first three natural numbers.

Top-down execution invokes C2 in response to the activation of the

call sigma(3,w) by resolving Cl1 and C2 to give :-
C4 : <+ sigma(2,u)

The variable v in ¢2 has been instantiated by the term 1+1 (=2) due to
the input of the term 1+1+1 (=3) in the goal transmitted to the argument
v+l of the heading in C2. The binding v:=2 is distributed to all
occurrences of Q in €2, so that the partially instantiated term u+3 is
passed back from the heading's second argument as output to the goal
variable w. Invoking C2 a second time to solve the new goal C4

similarly gives the resolvent C5 :-
C5 : -+« sigma(l,u')

with the binding u:=u'+2 . Finally, invoking €3 for the activation of
the call in €5 gives [ with the binding u’:=1 , so that the fully
instantiated term 1+2+3 (=6) is computed for the goal variable w. The
computation generated by this top-down execution is the refutation

derivation (Cl,Cc4.,c5,[1).
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Alternatively a bottom-up computation (C3,C6,C7,[1) can be
generated by resolving €2 with successively derived assertions. Let
C3 be activated, thereby summoning a fact about the problem domain.
Then C2 can be invoked in response to this fact by matching its call
sigma(v,u) to the heading of the activated procedure. The resolvent

is a new fact about the problem domain :-
c6 : sigma(2,3) <«

Once again the procedure C2 can be invoked, this time in response to
an activation of Cé6. Resolving C2 and C6 in the same manner as

previously with C2 and €3, a further fact is derived :-

C7 : sigma(3,6) <«

Finally, €7 is activated. However, suppose that the responding
procedure Cl is invoked instead of c2. C7 and C1l resolve to give

the empty.clause 0. This is just another fact about the problem

domain - namely the fact that €1, €2 and C3 are inconsistent. Note

that the final invocation transmits the term representing 6 to the goal
variable w. Whereas the top-down execution computes w by successive
approximations w:=u+3 , we=u'+2+3 , w:=1+2+3 , bottom-up execution defers

instantiation of w until the final invocation.

Scheduling of Calls and Procedures

In the example above, efficient solution of the problem expressed
by the input clauses required intelligent choices to be made between
alternative responding procedures. For instance, the top-dcwn
execution chose C2 in response to each of the first two goals C1 and C4,
but chose C3 iné%ead in response to the final goal C5. Likewise, the
bottom-up executicn chose C2 in response to the first two facts €3 and
C6, but chose C1 in response to the final fact C7. In neither regime
were these the only possible choices : C5 might have invoked C2 instead,
or C7 might have invoked C2. In other problems a second kind of choice
may also arise, namely the choice of which goal or fact to activate next.

Both kinds of choice are clearly important to computational efficiency.

The usual way of dealing with alternative choices is to assign
some schedule to them and then try each in turn. This is the way in
which logic program executions normally proceed. When a goal contains
several calls, the interpreter may assign to each a scheduling priority
and thence determine the next call to be activated {that with the highest
priority). If several procedure definitions respond to this call then

the interpreter may assign to each a scheduling priority and thence
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determine the next procedure to be invoked. With bottom-up execution
scheduling priorities may likewise be assigned to determine the order

in which facts are activated and the order in which responding procedures
are invoked to deal with them. Scheduling priorities are governed by
control information encoded within - or supplied by the user to - the

interpreter.

Since the normal mode of execution is top-down, we shall normally
assume just two kinds of scheduling to be of interest here; .scheduling
of calls in the current goal, and scheduling of the procedures which
respond to them. Both kinds contribute to the ;nherent non-determinism
of logic programs. Varying the activation or invocation schedules can
influence either the efficiency of the ensuing computations or the output
or both. Simple interpreters may process calls independently and in
order of introduction to the goal, and may select responding procedures
according.to a fixed schedule assigned to the input clauses. More
sophisticated interpreters can dynamically decidevscheduling priorities
during run-time and exploit properties of the current state of the

computation in order to pursue this decision intelligently.

Because logic programs are non-deterministic, they leave open the
choice of execution strategy. Whilst it is possible, in general, to
choose scheduling strategies which emulate the kind of procedure invocation
offered by conventional programming languages, logic programming admits
more exotic possibilities which do not obtrude into the programming
language itself. The richness of these possibilities is due largely
to the great diversityv in potential execution strategies provided by the
interpreter , the choice of which is not constrained by the language's
semantics. Indeed, procedure invocation from logic programs is more
interesting than that from conventional programs even when it is limited
to the simplest scheduling, since the successive approximation to output
arising from thé instantiation of latent calls means that activation of
procedure calls and computafion of output can be interleaved arbitrarily;
a conventional prccedure call does not usvally return output until the
computation which it instigates has successfully terminated, thereby

deferring the activation of other latent calls.



2.4 : LOGIC INTERPRETERS

Prolog

Most implemented logic program interpreters are either direct
versions of the Prolog interpreter written by Colmerauer and his
colleagues at Aix-Marseille or else close derivatives from it. Prolog
is essentially a'top—down interpreter for Horn clause programs which, in
its simplest mode of operation, employs a last~in-first-out strategy for
sélecting calls; that is, a strategy which always selects the most
recently generated call in the goal as the next one to be activated.
This schedule promotes a depth-first search through a subspace within

the space of all top-down derivations determined by the program. The

depth-first search necessitates provision for backtracking when derivations

terminate unsuccessfully; Prolog is therefore often referred to as a
'top-down backtracker'. Implementation of beth backtracking and
recursive procedure invocation requires the interpreter to maintain a
run-time stack, whose management critically determines execution
efficiency. The stack records the history of call activations and

procedure invocations which determines the current state of computation.

In addition to its default backtracking strategy, Prolog offers
various devices to enable the programmef-to specify further constraints
upon the control of program execution; these permit, for example,
run-time examination of bindings,.discarding of branches in the search
space and interpretation of unsuccessful derivations as proofs of
negation. These control—determining devices are encoded within Prolog

source programs as system-defined procedures (or 'evaluable predicates’)

in order to facilitate uniform parsing at compile-time. This is a rather

unsatisfactory arrangement in that it is at variancé with the central
tenet of logic programming methodology, which is that matters of logic
and control should be represented as distinct aspects of the programming
process. Where it appears necessary for the programmer to provide
explicit control information to the interpreter, this should be achieved
without obtrusions into the logical text of the program. A more serious
objection to some of Prolog's control directives is that they may alter
the logical meaning of a program into which they are inserted, thereby
potentially violating the first order semantics which underlies the logic

programming formalism and guarantees its integrity.
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Since its development at Aix-~-Marseille, Prolog has been
implemented in various other institutions. At Edinburgh University
Warren (84, 85) has established a version of Prolog which partially
compiles logic programs for a DEC-10 computer; applications there
include geometry problem solving (Welham, 87). Other versions have
been implemented by M. Bruynooghe at the Katholieke Universitiet Leuve
in Belgium and by B. Lichtman at Imperial College, London. P. Bonzon
has written a Prolog-like interpreter in Pascal at the University of

~Lausanne in Switzerland. At Imperial College, a new Prolog-like

fop-down backtracking interpreter has been written in Pascal for the

‘Ebc complex there; this is described briefly in a report by Clark and
Kowalski (14). This interpreter is free of the semantically doubtful
features of Prolog and has a more presentable syntax for its input programs.
It is also equipped with provisions for more sophistiéated control
mechanisms such as coroutining and intelligent stack management. Like
Prolog, its simplest (default) mode of operation is sequential last-in-
first-out scheduling of procedure calls, and responding procedures are

selected in order of their presentation within the input program.

-* LIFO Scheduling of Procedure Calls

Last—in—first—out (LIFO) call scheduling plays an important role
in logic programming by virtue of its simplicity as an execution
mechanism. In assessing the practical merit of a program intended for
an interpreter of the kind typically available at present, it is useful
to consider firstly how well it behaves under the control of that
interpreter's simplest strategy. If LIFO call scheduling produces
inefficient behaviour from some initial ordering of the calls in the
goal and procedures, the programmer may resort to a number of ways of
seeking to improve this behaviour. In the first place it may be
advantageous to merely change the ordering of the calls in the input
program; this cannot affect thg meaning of the program and is unlikely
to change the intelligibility of its clauses very significantly, yet
may produce dramatic changes in the ensuing computation. Alternatively
the desired improvement may be achievable by re-ordering the presentation
of the input clauses to the interpreter and thereby changing the
scheduling of responding procedures. Both of these possibilities
assume that the interpreter treats the ordering of calls and procedures
as implicit contrcl information; and both are attractive ways of
improving behaviour because they preserve the meaning of the program.

When neither is a sufficient remedy the programmer may be able to



44

influence computation through the agency of explicit control directives
acceptable as input to the interpreter, and so override the default
strategy. A further possibility, which is less attractive, is that

the logic can be reformulated to give a more satisfactorily controllable
description of the problem; sometimes this may require the use of logic
which is less intelligible than the original version. Finally, and
1east.satisfactorily, it may be necessary fo enrich the interpreter's
control strategy, a remedy which ought not to be within the province

of the programmer; clearly this is more properly the responsibility of

those concerned with implementation technology.

s
-

. To illustrate the sensitivity of program behaviour to the ordering
of calls, variocus goals are considered below for a simple program body

in which the predicate plus(x,y,z) expresses x+y=z for integers x,y and z.

cl : plus(x,y,z) <« plus(x-1,y+1,z)
c2 : plus(0,z,z) +
Cc3 : MMMJJ)+ﬂWMHgdm)
c4 : plus(z,0,z) <«

Clauses Cl1 - C4 are sufficient to solve all solvable calls to the plus
@iocedure, and therefore constitute what is referred to as a complete

procedure set for plus. Now suppose that a solution is required to the

equations :-
x+y==6 x+ 3 =28
One way of expressing this problem is by using the goal :-
< plus(x,y,6), plus(x,3,8)

Prolog-like interpreters assume by default that calls are activated
sequentially and independently from left to right as presented in the
input clauses. Now if the call plus(x,y,6) is activated first and
solved independently of the goal's second call, it is most likely to
return an instance of x which will cause the second call to fail.

In fact the first call might have to be re-activated by repeated
backtracking many times under such a strategy, each time computing some
new solution to the first equation, until discovering the successful
instance x:=5 . This would clearly be an extremely inefficient

computation. Alternatively, sub