
D E R I V A T I O N 

O F 

L O G I C P R O G R A M S 

by 

Christopher John Hogger 

A Thesis Submitted 

For The Degree Of 

DOCTOR OF PHILOSOPHY 

Of The 

University of London 

Imperial College of 

Science & Technology 

1978 



A B S T R A C T 

Derivation of Logic Programs by Christopher John Hogger 

The general theme of the thesis is the treatment of first order 
logic as a programming language. The subject is introduced by 
describing the way in which Robinson's resolution principle has enabled 
the construction of theorem proving interpreters which execute programs 
represented in clausal form. Kowalski's procedural interpretation of 
logic, %rhich assigns operational significance to various properties of 
resolution refutations for logic programs, is then described in detail. 
There follows a whole chapter devoted to comparison of programming 
styles, discussing examples discovered by other researchers and also 
contributing some original ones. 

After these preliminaries, the central subject of the thesis is 
introduced, namely the utility of the standard formulation of first 
order logic as a language for reasoning about the properties of logic 
programs. It is shown that clausal form is generally unsuitable for 
specifying, deriving, transforming and verifying logic programs, in 
contrast to standard logic which is eminently suitable for encoding 
the deductions which underlie these tasks. 

It is then argued that the use of logic as a general computational 
language requires suitable inference systems for relating clausal-form 
programs to their properties expressed in standard logic. This leads to 
the formulation of a goal-directed quasi-computational inference system 
capable of deriving logic procedures from their specifications using just 
object level deductions; this is identified as a novel way of unifying 
the notions of synthesis and verification within a single technique. 

It is shown that the inference system is adequate for deriving 
alternative representations of various well-known algorithms and is also 
capable of dealing with both procedures and data structures uniformly. 
The final chapter exploits the procedure derivation methodology to clarify 
logical taxonomic relationships within two algorithm families. Several 
sorting programs are derived from a single specification of sortedness, 
and several text-searching programs are likewise derived from basic 
properties of the substring relation. These derivations illustrate a 
number of interesting transformations which the inference system brings 
entirely within the scope of logical deduction in order to secure 
special kinds of algorithmic behaviour in the derived programs. 
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I N T R O D U C T I O N 

0.1 : BACKGROUND 

Ever since the earliest developments of methods for programming 
computers through the use of symbolic input, computer scientists have 
been centrally concerned with the practical and theoretical attributes 
of the great number of programming languages which have been designed 
and implemented since that time. As the practice of professional 
computer programming has become ever more sophisticated and subject 
to increasingly stringent constraints upon the various parameters of 
program quality, so the demands made upon the designer of new 
languages have become more challenging. There are, of course, many 
differing views as to the ideal resources which a programming language 
ought to provide, even in respect of a particular problem domain. 
Yet it would seem unlikely that one could find serious dissent from a 
general goal of language design expressed more than thirty years ago (64) 
by, most fittingly, John von Neumann : that is, to provide the 
programmer with :-

" An effective and transparent logical terminology or 
symbolism for comprehending and expressing a particular 

problem, no matter how involved, in its entirety and in 

all its parts; and a simple and reliable step-by-step 

method to translate the problem (once it is logically 

reformulated and made explicit in all its details) 

into the code," 

Computer programmers are still waiting for a transparent logical 
terminology like that advocated by von Neumann. In general, the 
languages which they employ scarcely differ, in any fundamental sense, 

from those used in the earliest days of computing. There are 
naturally many differences between their respective ways of describing 
a computational process intended to solve some problem of interest. 



Yet their underlying philosophy is, for the most part, to describe 
a process rather than a problem. Consequently their semantics are 
specified in terms of the behaviour of abstract machines rather than in 
terms of what facts hold about the problem domain and about the 
particular problem at hand. These languages, then, share what 
might reasonably be regarded as an intrinsic incomprehensibility, 
in that they say very little that is explicitly meaningful about 
the problem, with the results that are now well documented within 
the annals of software practice : programs which are unclear, 
incorrect and resistant to confident modification. 

The manner in which programmers actually do accomplish the 
composition of apparently correct programs is largely mysterious, 
even to themselves. We know that an Algol programmer can be asked 
to write a matrix multiplication routine and report back with the 
result within our lifetimes even though he may afterwards admit 
that he has conducted no logical analysis of the program, during 

or after its composition, which associates its construction with 

the meaning of matrix multiplication. His apparent success is 
due to substantial intuitive skills which enable him to bridge 
the two semantics which are associated, respectively, with the way 
his program describes a computational process and the way his 
specification describes a fact about matrices. If those skills 
were wholly reliable then we would hear much less controversy about 
language design and programmer education; in reality, of course, 
those skills are highly fallible because they are not well-founded. 

It has been interesting to observe how, in the last decade, 
much greater emphasis has been placed upon the logical content of 
programs than hitherto. This can be observed especially in the 
proposals which have been made for the formal analysis of programs, 
where the objective is to show by sound deduction that a given 
program will compute some specified relation. It may also be seen 
in the development of informal methodologies such as structured 
programming which encourage programming styles intended to clarify 
the logical content of programs. These developments represent 
what we can interpret as successive approximations to von Neumann's 
ideal, namely the role of logic as the central system of reasoning 
in the programming process, rather than as just a peripheral tool. 
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The explicit manifestation of this role of logic has so far been 
mainly observed in its use as a specification language for 
conventional programming. Even in this respect it is scarcely used 
at all outside academic computing circles. This may be because the . 
great majority of programmers are not logically literate, rather 
than because of the poor state of development of analytical devices 
such as program verifiers; if the importance of logic as a program 
reasoning tool was given greater emphasis in programmer education 
then more significant advances could be expected to follow in the 
provisions for assimilating its use into normal programming practice. 

It is only comparatively recently that an even more interesting 
application of logic to programming has arisen, namely its use as a 
source language capable of automatic interpretation. This possibility 
has come about as a result of progress in mechanical theorem proving 
together with the creation of a. remarkable procedural interpretation of 
first order logic developed by Robert Kowalski. During the last 
five years this interpretation has been used to establish a sound 
and convincing computational theory of 'logic programming', and has 
been implemented in a number of practical interpreters for logic 
programs. The most outstanding feature of logic as a programming 
language is its semantical independence of any execution mechanism 
conjoined with the fact that the source program statements which 
it affords comprise explicit assertions about the problem domain and 
the particular problem of interest; in other words, a logic program 
is meaningful in terms of the problem rather than in terms of the 
execution which will subsequently solve it. 

It would be wrong to suggest that because the logic programmer 
can express the logical content of a computational problem explicitly 
that for him the question of correctness is inconsequential. 
Suppose, for example, that he required a program capable of deleting 
all occurrences of a member u from an input list. Then for 
computational purposes he might compose the following program 
statements :-

delete(u, u.nil, nil) 

delete(u, v.x, v.x') u^v, delete(u, x, x') 
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Informally, these say that the result of deleting u from the unit 
•list (u) leaves the empty list, whilst deleting u from a list which 
appends a list x to a unit list (v) such that u^v is just the result 
of deleting u from x to leave x' and finally appending x' to (v) . 
We may ask whether this truly captures the notion which we associate 
with the symbol delete. Intuitively that notion requires that 
the members of the output list shall be exactly those of the input 
list other than u , and that they shall retain the same relative 
•ordering in the output as they had in the input. Can it now be 
asserted with confidence that this coincides with, or is at least 
consistent with, the assertions made in the logic program ? 
Such questions are the concern of a fairly recently developed theory 
of logic program analysis, within which the concepts of termination, 
verification, synthesis and transformation are formulated upon a 
coherent logical foundation. The principal intention of the 
research reported in this thesis has been to contribute to this 
theory and to demonstrate its practical application. 

0.2 : THE THESIS 

Objectives of the Research 

The purpose of the present work is to formulate and justify 
the concept of logic procedure derivation in support of the thesis 

THESIS : . 

1. The need for independent program specifications 

prevails in logic programming to the same extent 

as it does in conventional programming. 

2. First order predicate logic provides an attractive 

specification language as well as a programming 

language. 

3. First order deduction is sufficient for analysing 

relationships between programs and specifications. 

4. Such analyses are practicable as well as theoretically 

well-founded. 
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Logic procedure derivation refers to the task of showing that 
the statements (procedures) comprising the body of a logic program 
are true theorems about the problem domain implied by a first order 
axiomatic formulation of the problem which constitutes the program's 
specificati.on. In practice this just amounts to constructing a 
series of deductions (a derivation) which treats the sentences in the 
specification as assumption formulas in order to prove each statement 
in the program. Because logic is a non-deterministic programming 

. language, proof of each statement is logically independent of proofs 
of the other statements, and furthermore is independent of any 
assumptions about the behaviour of the program in execution; these 
circumstances confer a dramatic distinction between proofs of logic 
programs and proofs of conventional programs. 

It is not only our purpose here to investigate the problem of 
verifying programs, important as this is. Logic procedure derivation 
can also be interpreted as synthesis (when the axioms used comprise 
just a naive specification) or as transformation (when the axioms 

.comprise some other logic program's procedures, perhaps together with 
some other general facts about the problem domain). All these tasks 
are unified by their formulation in terms of proving computationally 
useful theorems implied by suitable axiom sets. Consequently it is 
reasonable to suppose that all may be accomplished through the agency 
of a single inference system for first order logic, and one of the 
intentions of the research reported here is to provide empirical 
evidence that this is indeed the case. Moreover, program transformation 
does not necessarily entail algorithm transformation; very often we 
may wish to modify the way in which a given logic program expresses 
the logic of some particular formulation of the problem at hand, 
perhaps with the object of exploiting an alternative control mechanism 
in the intended interpreter, or perhaps in order to obtain clearer logic. 
This may result in essentially the same algorithm (that is, run-time 
behaviour) but a substantial change in programming style. A variety 
of programming styles had been identified by other researchers before 
the present undertaking, and it is hoped that the latter will afford 
some clarification of the logic which underlies these kind of 
transformations. 
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Contribution of Original Material 

There are two senses in which the author hopes that the thesis 
will afford evidence of an original contribution to the field of 
logic programming. Firstly, a great deal of work has been pursued 
by several other researchers on the methodology of logic programming 
since the inception of the discipline around 1973-74. Much of this 
remains unpublished or even undocumented in any comprehensive way, 
being disseminated amongst the various groups involved only through 
informal exchanges. It is true that there do exist a number of 
very useful reports explaining the computational theory of logic 
programming, amongst which are some fine publications by Kowalski, 
van Emden, Warren, Clark and Tarnlund; all of these are cited in the 
thesis and salient features from some of them are discussed here in 
detail. However, as far as the author is aware, no comprehensive and 
completed report describing the methodological advances in the last 
two years has yet been released. This is not to imply that the 
thesis captures the major part of those advances, but a considerable 
effort has nevertheless been made to do justice here in reviewing 
the contributions of others which have an especial bearing upon the 
central themes of the thesis. It should be mentioned also that new and 
substantial contributions to the literature of logic programming may 
soon be expected from Kowalski, who is preparing a book on the subject, 
and from Clark, who will doubtless be documenting his many researches 
in the field in his own forthcoming doctoral thesis Predicate Logic 
as a Computational Formalism. Jointly these should provide a fairly 
complete and up-to-date account of the work at Imperial College on the 
analysis of logic programs. 

Secondly, all of the contents of Chapters 5, 6 and 7, together 
with parts of Chapters 3 and 4, are offered as the author's independent 
studies in logic programming methodology. The foundation for that 
material is established in Chapter 4 which explains the motivation and 
theoretical justification of logic procedure derivation. It must 
be declared that the concept of procedure derivation was also developed 
independently and contemporaneously by Clark, although our approaches 
to the technique have always differed. Clark's approach is very 
much aligned with that of Darlington's transformation system for sets of 
recursive function definitions in its emphasis upon that systems's 
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special rules for definiens substitution and its primary goal of 
securing recursions. The treatment of procedure derivation given 
here, by contrast, is more general in character and employs inference 
steps which are capable of a broader interpretation than those deployed 
in Clark's analyses. However, both of us were initially much 
influenced by Darlington's work, and it is additionally likely that 
the prospects of procedure derivation were anticipated long before 
by Kowalski. Chapters 5, 6 and 7 describe, respectively, the rules 
of inference identified by the author as having especial utility in 
the manipulation of standard logic in the course of deriving logic 
procedures; a collection of reasonably simple examples which may be 
viewed either as verifications or as syntheses; and two rather more 
concentrated studies of algorithm families intended to show the « 
.usefulness of the technique for program transformation. 

0,3 : PREVIEW OF CONTENTS 

Each chapter has been given its own preview in order to outline 
its essential contents, and so it is unnecessary to give a great 
deal of introductory detail here. Broadly the thesis can be viewed 
in four parts. The first of these is principally a survey of the 
general state of development in logic programming and spans 
Chapters 1, 2 and 3. Chapter 1 briefly surveys the contribution 
which theorem proving has made to computer programming, and explains 
how the theory of resolution proofs enabled logical deduction to be 
viewed as computation. The practical possibilities of resolution 
theorem proving for constructing conventional programs were examined 
in detail by Green, but it was Kowalski who formulated the procedural 
interpretation of logic which enabled resolution proofs to be treated 
as computations in their own right, thus establishing logic as a 
viable source programming language. Since resolution provides, the 
basis of the current view of logic as a programming language, its 
relevant features are presented in Chapter 1. There, the syntax 
known as clausal form is introduced and used to illustrate the 
meanings of unification, resolution and refutation derivation which 
underly the operational meaning of logic programs. Finally a very 
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brief indication is given of the meanings of computation, algorithm, 
interpreter, output and non-determinism in terms of the proof-theoretic 
features of resolution. 

Chapter 2 provides a more detailed description of the syntax, 
semantics and pragmatics of logic programs, together with some 
notaticnal conventions adopted throughout the thesis. The procedural 
interpretation is presented and illustrated by an example. Here 
it is shown how mechanisms such as call activation, procedure invocation 
and data transmission can all be defined in terms of refutational 
theorem proving. The principal features of logic program interpreters 
are also introduced together with a detailed example which illustrates 
the significance of scheduling strategies. The chapter closes with 
a survey of some of the refinements which have been considered in 
order to improve upon the primitive default control mechanisms found 
in the Prolog-like interpreters commonly used at present. 

Chapter 3 assumes that the essential theory of logic programming 
is understood, and proceeds to compare alternative styles in the 
.composition of programs. The separation of logic from control is 
emphasized as the outstanding feature of the formalism, offering* the 
programmer various ways of mixing those components in order to secure 
different algorithms or different representations of a given algorithm. 
Discussion is given of various kinds of procedure invocation, such as 
iterative and recursive mode, and different kinds of call activation, 
such as sequential and coroutined mode. It is shown how these kinds 
of behaviour may be procured through the agency of either explicit 
control mechanisms or special styles in the construction of the logic. 
Some rather exotic styles are demonstrated which enable top-down 
execution to emulate bottom-up execution, and an example is given of 
the application of this to the linear mathematical programming problem. 
There are many other special behavioural effects which can be induced 
through the correct choice of logic, and a few of these have been 
singled out for consideration here; many more will appear in later 
chapters. The important contribution of data structure choice to 
both programming style and computational efficiency is reviewed in the 
last section of Chapter 3. A wide selection of examples is given to 
show the effects cf choosing different kinds of functional terms and 
sets of assertions, affecting, for instance, the question of whether 
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data can be retrieved by direct access or computed access; whether 
.procedures can be invoked recursively or iteratively; and whether 
the accessing programs can be macroprocessed using appropriate data 
selector procedures. 

The second part - Chapter 4 - deals with some of the techniques 
for reasoning about logic programs. Arguments are presented to 
justify the need for the standard formulation of predicate logic as 
a reasoning tool in addition to clausal form logic for mainly 

^^•computational purposes. The early work by Clark and Tarnlund on 
termination and verification is given there together with some examples. 
A complete section is assigned to the discussion of the meaning of 
specification for logic programs, together with some conventions 
adopted for good specification style. The new technique of verification 
by procedure derivation is outlined in a section giving its theoretical 
justification and arguing its practical merits. The author's goal-
oriented quasi-computational derivation style is presented there as 
the basis of the inference rules developed later on. 

The third main part of the thesis is contained in Chapter 5. 
This explains the fundamental features and assumptions in the author's 
use of procedure derivation for analysing logic programs. Guidelines 
are given there for the composition and style of specification sets, 
together with some suitable conventions and terminology regarding the 
logistical aspects of the methodology. The two principal classes of 
inference rules are described in detail, explaining their differences 
and their cooperative interleaving during the derivation process. 
The most important rules for goal transformation - modus tollens, 

equivalence substitution and conditional equivalence substitution - are 
particularly emphasized. A complete section then surveys various 
ways in which the inference rules procure the derivation of typical 
recursive procedures and their bases, and the similarity of some of 
these applications to the Darlington transformation system is observed. 
The final section shows how the rules also apply to the derivation of 

• low-level data accessing procedures, dealing firstly with access to 
terms and then with access to assertions; the latter discussion shows 
an interesting and instructive derivation which develops a list accessing 
procedure through several levels of abstraction. 
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The final part of the thesis comprises Chapters 6 and 7 which 
present examples of the application of procedure derivation. Chapter 6 
examines six computational problems, developing various programs for 
them in the spirit of program synthesis. The first problem is the 
familiar one of list reversal, and derivations are given of both 
iterative and recursive programs. The second problem is that of 
searching a list for duplicates, and three algorithms of differing 
efficiencies are examined. The first effectively employs two 
independent iterative loops, the second makes the range of one of those 
loops dependent upon the progress of the other, and the third makes 
use of a stack to record the discovery of distinct members; all of these 
differing behaviours are secured by deriving appropriate procedures 
for a fixed control strategy. The next example deals with the generation 
of factorial tables, which may be computed either iteratively or 
recursively, with or without redundant multiplications and in either 
the natural order or the reverse order; again, all these behaviours 
are obtained satisfactorily using the derivation methodology. The 
problem of comparing the labelled frontiers of two binary trees is the 
subject of the fourth example, which exploits a simple associativity 
argument in order to secure the well-known but subtle algorithm which 
cooperatively transforms the trees in order to compare their first 
frontier labels. The fifth example is a simple addition problem over 
the elements of a matrix, but makes use of an interesting technique 
related to one of Kowalski's programming styles in order to develop an 
algorithm which computes a list of sums in quasi-parallel, in contrast 
to the naive but less efficient algorithm which computes the same sums 
sequentially. The final example is just the familiar eight queens 
problem. This was the first problem in logic programming ever studied 
by the author, and due to the attractive simplicity of its logic 
representation deserves a place in the thesis. 

Chapter 7 is concerned with program transformation within two 
families of algorithms. The first section discusses the simplest 
sorting algorithm - 'naive-sort' - and derives its logic component 
from first principles. Then it is shown how additional information 
about the constructibility of lists enables an alternative derivation 
of 'merge-sort'. A series of transformations are shown which transform 
'merge-sort' into 'quick-sort', 'merge-sort' into 'insert-sort' and 
finally 'quick-sort' into 'selection-sort'. All of the transformations 
use just the same inference rules as used for synthesis from basic 
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specifications. The final section considers rather more difficult 
algorithms intended for solving the 'text-searching problem. Several 
interesting alternative representations are given for the naive 
algorithm in increasing order of sophistication, until reaching one 
which can be transformed into either the linear Knuth-Morris-Pratt 
algorithm or the sub-linear Boyer-Moore algorithm. Whilst logical 
analyses of sorting algorithms have been developed by other researchers, 
the logical unification of the text-searching algorithms given here is, 
as far as the author can ascertain, a new contribution to the taxonomic 
analysis of that family. 

The thesis is closed with a discussion of some related work by 
other individuals, not all of them using the logic programming 
formalism, and some views are given on the prospects of developing 
automatic tools for assisting derivations. Some suggestions are 
finally made concerning possible expectations for logic procedure 
derivation in the light of the experience described by the thesis. 
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C H A P T E R 1 

T H E O R E M P R O V I N G 

A N D 

C O M P U T A T I O N 

PREVIEW 

The central thesis of the logic programming formalism is that 
logical inference is amenable to a useful computational interpretation. 
That this concept can now be realized in terms of practical tools allowing 
-the implementation of logic as a programming language is due to the 
successful results of research in automatic theorem provinq. More 
specifically, the theory of logic programming is intimately associated 
with the theory of resolution proofs for first order logic. The first 
section of this chapter therefore begins with a brief account of the 
progress in automatic theorem proving which led up to the discovery of the 
resolution principle, and explains how this progress became relevant to 
the interests of computer programmers. 

Amongst the early applications of resolution in connection with 
computer programming were implementations capable of synthesizing simple 
conventional programs from specifications expressed by axiom sets. In 
certain respects these might be viewed as the precursors from which 
present-day logic program interpreters evolved. However, the 
intelligibility of logic as an executable programming language came about, 
not through advances in implementation technology but rather through the 
development of a convincing procedural interpretation of predicate logic. 
In order to properly appreciate the basis of this procedural interpretat-
ion it is firstly necessary to understand a limited part of the theory of 
resolution. The latter is briefly reviewed in the chapter's second 
section which introduces the notions of clausal form, unsatisfiability, 
unification and refutation derivation. 

The final section then outlines the.way in which various features 
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of resolution derivations can be interpreted computationally, thereby 
justifying the view of logic as a (non-deterministic) programming 
language capable of efficient implementation. 

1,1 : HISTORICAL BACKGROUND 

Early Objectives and Achievements 

The study of automatic theorem proving during the last three 
,-decades reflects much earlier aspirations towards the systematization of 
mathematical proof. It is not surprising, then, that the earliest 
programmed proof procedures developed in the 1950's were applied most 
notably to mathematical theorem proving. This research was motivated 'by 
the hope that computers would provide proofs of significant theorems 
which would be too lengthy or too difficult to be undertaken by non-
mechanical procedures. Computers could then be expected to accelerate 
the pace of mathematical discovery. 

Apart from potentially contributing to the extension of mathemati-
cal knowledge, automatic theorem proving has also assumed importance in 
those aspects of the study of artificial intelligence which deal with the 
manipulation of knowledge by logical inference. There it has been 
successfully applied to such tasks as question-answering, game-playing 
and state-space problem solving. Theorem proving has proved useful in 
these various applications in consequence of the sufficient expressiveness 
of logic for representing knowledge and the efficacy of logical inference 
for processing it. 

The first significant implementation of a theorem proving program 
was achieved by Newell, Shaw and Simon (65). This program was called 
the 'Logic Theorist' and was intended for generating proofs of formulas 
in the propositional logic. It was successfully used to prove various 
theorems selected from Principia Mathematica by goal-directed problem 
reduction. The Logic Theorist was later assimilated into the general 
problem solving system 'GPS' developed by Newell and his co-workers (66). 

Propositional logic is too restrictive to serve as a convenient 
language for representing mathematical knowledge due to its lack of 
quantification. Most effort in automatic theorem' proving has therefore 
been concentrated upon first order predicate logic (FOPL), which is 
adequate for representing all mathematics derivable from set theory. 
Some of the earliest algorithms for proving theorems in FOPL were proposed 
by Quine (69) and by McCarthy (58). McCarthy's paper outlined a proposal 
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for the construction of a theorem proving program called 'Advice Taker' 
whose fundamental inference system combined modus pcnens with substitut-
ion of terms for variables. However, its intended capabilities could be 
enhanced by the user's provision of 'common sense'heuristics to guide the 
interrogation of an axiomatic data base describing the chosen problem, 
domain. Implementation of this program was subsequently undertaken by 
Black (4) who incorporated its essential ideas into a question-answering 
system. This system was able to solve some problems posed in preposit-
ional logic which had formerly defeated the 'Logic Theorist', but was 
nevertheless too inefficient to serve as a general purpose theorem prover 

By 1960 interest was growing in the search for uniform syntactical 
methods for proving theorems in FOPL, with the object of eliminating 
reliance upon semantic heuristics and other domain-specific devices 
designed for controlling theorem provers efficiently. Both Wang (81) 
and Gilmore (27) contributed programmed proof procedures for FOPL based 
solely upon syntactical rules. The behaviour of their programs, however 
exhibited exponential dependence upon structural features of the input 
formulas representing the 'target' theorems, thus rendering the programs 
too inefficient for general application. A considerable improvement in 
performance was provided soon after by Davis and Putnam (21), whose 
program generated proofs with lengths only linearly dependent upon the 
number of variables in the input formulas. Nevertheless, each step in 
the proofs computed by it incurred a considerable computational burden, 
and Robinson (72) soon demonstrated some very simple formulas for which 
the Davis-Putnam program was quite infeasible. 

It was not until 1965, when Robinson (73) published his discovery 
of the resolution principle, that efficient FOPL theorem provers appeared 
imminently feasible. Undoubtedly resolution provided a much stronger 
inference system than had been previously available; yet the problem of 
efficiently "controlling the generation of proofs remained. There has 
subsequently been a great deal of investigation of heuristics for control 
ling resolution proofs, but not with sufficient success to fully realize 
the hopes of the mathematical theorem proving schools for efficient 
autonomous provers of 'hard' theorems. Despite this, resolution has 
contributed significantly to more specialized applications in computer 
science such as logic programming and the logical analysis and synthesis 
of conventional programs, wherein the necessary proofs are comparatively 
modest and (generally) foreseeable. 
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Theorem Proving and Conventional Programming 

Computer scientists became especially interested in formalizing and 
proving properties of conventional programs after Floyd (26) showed how 
FOPL could be used to provide an axiomatic definition of their meaning. 
Although Floyd's proposals were focussed mainly upon the formalization 
of program semantics, they also provided an operational technique for 
proving programs to be correct with respect to axiomatic specifications. 
The progress of automatic theorem proving then became a matter of interest 
to the general programming community. King's thesis (42) describes a 
general purpose verifier for proving assertions describing flowchart 
programs. Program proving has since been investigated with great vigour 
and has an extensive literature; a good overview of the earlier work is 
given by London (55), and a more technical and up-to-date account by Katz 
and Manna (41). Despite the continuing interest in program proving 
amongst computer scientists, however, it would seem that programmers as a 
whole do not yet consider it a viable means of verifying their own 'real-
world' programs. Generally they resort to testing methods instead. 
There are several factors contributing to this attitude, some of which are 
due to matters of programming psychology (described, for example, by 
Dijkstra (22) ), whilst others may be due to insufficient appreciation of 
what can already be achieved with the verification tools now available. 
Underlying these factors is the fact that programmers do not normally 
view logic as the essential substance of their discipline, and so tend 
to be unconvinced of its usefulness. Nevertheless it would appear that 
computer-aided axiomatization and proof of conventional programs will not 
be capable of realistic assimilation into everyday programming practice 
until substantial improvements have been made in both programming 
languages and the styles in which their resources are deployed; these 
improvements will be necessary irrespective of the extent to which 
programmers are educated in the theory and pragmatics of logic. 

Complementary to the task of proving that a given program conforms 
to some specification is the task of deriving the program from that 
specification. This process of program synthesis has also been studied 
with the aid of theorem provers. Green (30) has shown how a conventional 
assignment program can be constructed by examining the bindings of terms 
to variables in a resolution proof whose target theorem describes the 
program's intended input-output relation. The recovery of these bindings 
is the essence of the answer-extraction process which enables resolution 
to be used as a computational tool. Answer-extraction is dealt with in 
detail in Green's thesis (29) in connection with his work with Raphael 
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on the first implementation of a resolution theorem prover (28) as a 
question-answering system. A particularly good account of program 
construction by resolution is included in the book by Chang and Lee (11). 
Synthesis of conventional flowchart programs from resolution proofs was 
subsequently investigated by Lee and Waldinger (53) . Their 'Prow* 
program-writing system suffered, like Green's system, the limitation of 
being unable to construct loop-containing programs. Methods for loop-
construction were soon developed by Manna and Waldinger (60) by admitting 
induction axioms to the axiom set specifying the desired program. 

The Origins of Logic Programming 

Logic programming, which refers to the use of logic as a source 
programming language, has developed largely from progress in automatic 
theorem proving. In particular the current treatment of FOPL as a 
programming language derives from the computational features of resolution 
proofs. Whereas Green, Waldinger and others employed resolution proofs 
as the precursors for the construction of conventional programs, the logic 
programming formalism treats such proofs as computations in their own 
right. A sentence of logic may be looked upon as a source program 
intended for an interpreter consisting of a programmed prc^f procedure. 
Computation arises by the interpreter's construction of a proof of the 
input sentence, and the output of the computation is (generally) an 
accompanying set of bindings of terms to variables. Terms can therefore 
be regarded as the primitive data structures generated during computation, 
and the input sentences as procedures which process them. These notions 
are clearly closely connected with the answer-extraction process developed 
by Green. More general discussion of the relationships between logical 
inference and computation is to be found -in papers by Hayes (33) and by 
Sandewall (76). 

Kowalski's 1974 report 'Logic for Problem Solving' forms the 
earliest definitive account of logic as a programming language (49). 
Kowalski illustrates the richness of FOPL for representing problems in 
various ways and argues its merits as a machine-independent language 
suitable for the natural expression of deductive inferences made about 
computational problems. Computation is rigorously defined there in 
terms of resolution proof theory and then used to establish the important 
procedural interpretation of logic. A more concise summary is given in 
his paper to the 1974 IFIP Congress (50). A very satisfying account of 
the pragmatics of logic programming is also given by van Emden (23). 
At the present time (1978) these last two papers provide the most 
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comprehensive accounts of the foundations of logic programming to be 
found in the published literature. 

The challenge of designing a practical interpreter in order to 
realize Kowalski's proposals was taken up by Colmerauer, Roussel and 
their colleagues, who successfully implemented a resolution interpreter 
for logic programs called 'Prolog' at the University of Aix-Marseille 
(17). Prolog, documented in greater detail by Roussel (74) and by 
Warren (83, 84), has exerted a strong influence upon subsequent 
implementations of logic interpreters in a number of schools of computing 
^science and artificial intelligence. 

In summary, then, the theoretical basis of the logic programming 
formalism owes much to earlier research (especially that of Robinson) in 
the application of automatic theorem proving to deductive problem solving, 
whilst its practical merits rest upon Kowalski's procedural interpretation 
and the efforts of those individuals who have given it expression in the 
construction of feasible interpreters. 

1.2 : THE RESOLUTION PRINCIPLE 

The general theory of resolution theorem proving would doubtless 
appear somewhat intimidating to the ordinary programmer whose notions of 
computation rest upon the simple machine-oriented actions underlying 
conventional programming language semantics. Fortunately, however, it 
is only necessary to become acquainted with the rudiments of resolution 
in order to understand how logic can be used for computation as well as 
for purely declarative purposes» Thus the following outline of 
resolution is restricted to deal with just those essential rudiments. 

Validity and Undecidability 

An important consequence of the treatment of logic program 
execution as a process of deductive theorem proving is that it necessarily 
confronts the central problem of any formal mathematical system, namely 
the problem of determining whether an arbitrary well-formed sentence in 
that system is a theorem, that is, provable. Godel's Completeness 
Theorem establishes that for FOPL this problem is equivalent to that of 
determining whether the sentence is valid, that is, true in all 
interpretations over all domains of interpretation. 
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The existence of an algorithm capable of totally deciding whether 
or not a sentence of FOPL is valid has been refuted by both Church and 
Turing. FOPL is therefore said to be undecidable. There exist sub-
classes of FOPL which are totally decidable, but these are too restrictive 
to be of practical value. There also exist partial decision procedures 
for FOPL which are able to decide the validity of a valid sentence, but 
vhich either fail to terminate or else terminate with no decision if 
presented with an invalid sentence. (Resolution, in fact, is a partial 
decision procedure for a particular subclass of FOPL.) FOPL is said to 
be semi-decidable by virtue of the existence of such partial decision 
procedures. 

Unsatisfiability 

The validity of a sentence can be investigated by considering the 
unsatisfiability of its negation; that is, whether its negation is false 
in all interpretations over all domains of interpretation. Clearly a 
sentence is valid if and only if its negation is unsatisfiable. 
Automatic theorem proving has most commonly been applied to the problem 
-bf investigating unsatisfiability as an indirect means of testing validity 
and in this guise is referred to as refutational theorem proving. 

It is customary in logic programming to view a program as a set of 
sentences rather than as a single sentence. A logic program is then 
interpreted logically as the conjunction of its members. The set of 
sentences is described as unsatisfiable (or, equivalently, inconsistent) 
if and only if the conjunction of its members is unsatisfiable. The set 
is called satisfiable (consistent) if and only if it is not unsatisfiable 
(inconsistent). The equivalent meanings of satisfiability and 
consistency are just consequences of the 'Completeness Theorem which 
relates the model theory to the proof theory of FOPL. 

Clausal Form Logic 

The subclass of FOPL to which resolution is applicable is described 
as clausal form. The syntax of a sentence in clausal form is construct-
ible from the following definitions :-

term : a constant symbol or a variable symbol or an 
n-ary function symbol followed by an n-tuple 
of terms; 

atom : an n-ary predicate symbol followed by an n-tuple 
of terms; 
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positive literal : an atom; 

negative literal : an atom preceded by the negation symbol; 

clause : a disjunction of literals (possibly empty); 

matrix : a conjunction of clauses; 

universal prefix : a string of universal quantifiers; 

clausal form sentence : a universal prefix followed by a matrix such that 
all variables in the matrix are quantified in the 
prefix. 

Clausal form therefore describes those sentences in prenex-conjunctive 
normal form whose prefixes consist only of universal quantifiers. 
Systematic procedures exist for transforming any FOPL sentence to an 
equivalent sentence in clausal form; Nilsson's book (67) gives a clear 
account of one such procedure. 

N 

A sentence in clausal form clearly conjoins a set of clauses. 
Each clause is a sentence implicitly universally quantified over all the 
variables occurring in it. Treating a logic program as a set of clauses, 
'the task of a logic program interpreter is to show that the set of clauses 
is inconsistent. The problem of showing that this is so is semi-
decidable using an interpreter which implements the resolution principle. 

Horn Clause Logic 

A procedural interpretation of clausal form logic is especially 
simple to describe when it is applied just to a particular class of 
clauses known as Horn clauses. A Horn clause is defined as a clause 
which contains no more than one positive literal. Denoting a positive 
literal by L+ and negative literals by L~, ..., Z," , the Horn clause :-

L+ V L~ V v L" 
I n 

is equivalent to the sentence 

(i) L+ + A 2 , ... , An 

where v and -«- are the connectives 'or' and 'if', a comma is the 
connective 'and' and A,, ... and A are the atomic parts of IT, ... and 

I n 1 
L~. Various special cases exist where there is no positive literal and 
where there are no negative literals; these are expressed in Kowalski's 
notation as follows 
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(ii) <r A, , ... , A 1 n 

(iii) L+ -t-

(iv) • . 

Atoms appearing to the left and to the right of the connective -«- are 
respectively called the clause's consequent and antecedent atoms. The 
logical interpretations of these clauses are as follows, where X in each 
case denotes collectively the variables, if any, which they contain : -

(i) for all X, L+ -*- A. , ... , A 
1 n 

(ii) for no X, A. , ... , A 
I n 

(iii) for all X, L+ 

(iv) false. 

The restriction of logic programs to Horn clause form also simplifies the 
description of resolution (which is applicable to all clausal form 
sentences). Thus the following presentation of the resolution principle 
is conveniently restricted to Horn clause logic. 

Unification and Resolvents' 

Unification is the process of determining a set G of substitutions 
of terms for variables which, when applied to some given set of literals, 
yields a single substituted literal. For example, the substitution 
6 = { x:=c, z:=d } is a unifier of the set of literals { p(x,f(d)) , 
p(c,f(z)) } because its application to each literal yields the literal 
p(c,f(d)). If a set of literals has one or more unifiers, then there 
will exist amongst them a most general unifier. Informally, the most 
general unifier has the property that no other unifier for the set of 
literals is more simple. There exist algorithms which determine the 
most general unifier of any unifiable set of literals. 

Unification of literals in Horn clauses forms the basic step in Horn 
clause resolution. Suppose G is a most general unifier of the set 
{ L+, A. } where L* is the consequent atom of one Horn clause and A, is an k k 
antecedent atom of another. Then the resolvent of the two clauses is the 
unique clause obtained by substituting the entire antecedent of the first 
clause for the occurrence of A^ in the other, and applying G to the result. 
The two given clauses are said to be resolved on literals IT and A, . An 

k example of the process just described is shown below. 



Example : first clause 
second clause 

most general unifier 
resolvent 
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: p(X/f(d)) g(d) , r(f(x)) 

: s(yfz) + g(y), p(c,f(z)) 

: 9 - { x:=c, z:=d } 

: s(y,d) + g(y), g(d), r(f(c)) 

The two given clauses are called parent clauses. It is important to 
observe that the resolvent is logically implied by the conjunction of 
the parent clauses, and that the resolvent of two Horn clauses is 
necessarily also a Horn clause. 

The Empty Clause 

The empty clause is generated as a resolvent in the special case 
where one parent Horn clause has no antecedent atom and the other has no « 
consequent atom. An example is shown below. 

Example : first clause : •«- p(c,f(z)) 
second clause : p(x,f (d) ) 

most general unifier : G = { x:=c, z:=d } 
resolvent : • 

Obtaining • as resolvent indicates that the parent clauses are 
inconsistent (contradictory). Using conventional exposition of the logic, 
it signifies that the sentence 

*(3z)p(c,f(z)) ^ (Mx)p(x,f(d)) 

is false. 

The Resolution Theorem 

Given any set S of clauses, the resolution R(S) of S is defined as 
the union of S with the set of all resolvents which can be obtained by 
resolving parents chosen from S. For any n>l, the set Rn(S) is defined 
as R (Rn~~l (S)) . Robinson's Resolution Theorem establishes th a S is 
inconsistent if and only if either R(S) or some Rn(S) contains the empty 
clause • . The theorem therefore provides a single rule of inference 
(describing the generation of a resolvent) sufficiently powerful to 
demonstrate the inconsistency of S. 

Resolution provides a more powerful inference system than those 
used by Gilmore, Davis and Putnam, whose methods relied upon successive 



instantiations of the input sentence's variables by terms constructed 
from its functional vocabulary (the set of all constant symbols and 
function symbols occurring in the sentence). With these methods the 
input sentence could be proved inconsistent by discovering an inconsistent 
set of instantiations of it, by virtue of an important theorem due to 
Herbrand. Methods of this kind are called saturation procedures and 
are potentially combinatorially explosive, since the eligible set of 
terms (called the Herbrand universe) is generally infinite. The poor 
efficiency of saturation procedures is due to the lack of good criteria 
for choosing instances from the Herbrand universe. Resolution escapes 
these particular combinatorial difficulties by exploiting a more 
sophisticated rule for discovering falsifying instances for the input 
sentence. 

Resolution Derivations 

A resolution derivation from a set S of input clauses is a 
sequence of derived clauses C ) such that C^zS and every 
C^ (i>l) is a resolvent of which each parent belongs either to S or to 
'{ Cj, ..., ^ }. When this sequence has the additional property that 
every C^ (i>l) also has C ^ as a parent, it is called a linear derivation. 
If every (i>l) also has at least one parent in S then the sequence is 
called an input linear derivation; these are the derivations which are 
pursued by typical logic program interpreters. 

Two kinds of linear derivation from Horn clauses are of especial 
interest and are described as top-down and bottom-up derivations. A 
top-down derivation consists solely of clauses having no consequent atoms; 
a bottom-up derivation consists solely of clauses having no antecedent 
atoms. The top-down/bottom-up distinction determines important 
differences in the ways in which resolution is used for problem solving. 

The application of an inference system such as resolution to a set 
S of input clauses determines a space of all possible derivations from S. 
Within this space the derivations which terminate with the derived empty 
clause • (if any) are called refutation derivations. 

Proof Procedures 

A refutational proof procedure (which forms the core of any 
typical resolution interpreter for logic programs) augments a resolution 
inference system with a search strategy. The search strategy governs 
the way in which the proof procedure searches the space of derivations 
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determined by its inference system. The object of search is to find 
a refutation derivation, that is, to derive the empty clause • from 
the input clauses and hence show that they are inconsistent. 
Efficient search strategies are an important requirement of practical 
interpreters intended for logic programs which admit more than one 
derivation. 

Completeness and Correctness 

An inference system is said to be complete if the space of 
derivations determined by any inconsistent set of input clauses contains 
a refutation derivation. It is said to be correct if it contains a 
refutation derivation only when the input clauses are inconsistent. In 
its most general form, resolution has been proved to be both complete 
and correct. However, when search heuristics are employed to guide 
resolution in ways which potentially restrict search to particular 
regions of the search space, completeness may not be preserved. 
Investigations of completeness and efficiency in a variety of proof 
procedures are reported in the doctoral theses of Kowalski (46) and 
Kuehner (52). 

1,3 : COMPUTATION USING RESOLUTION 

Computation and Algorithms 

The computational theory of logic programming is based upon an 
operational interpretation of resolution derivations. A computation 
is represented by a linear derivation (C , C ) in which every 

1 n 
C^ (i>l) has one parent chosen from the set of input clauses (the other 
parent being C. .). In particular, a refutation derivation (C = • ) 1-1 n 
represents a successfully terminating computation. If C cannot be 

n 
resolved with any input clause then the derivation represents an 
unsuccessfully terminating computation. Moreover, a consequence of 
the undecidability of FOPL is that a resolution execution may not 
terminate at all. 

A proof procedure associated with a particular set of input 
clauses constitutes an algorithm for generating computations from them. 
An implemented computer program which applies a search strategy with the 
resolution principle constitutes a general logic program interpreter. 
The logic programs which it interprets are just sets of input clauses. 
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Output from Computation 

In general the objective in executing a logic program is not 
merely to confirm that the program is inconsistent, but also to discover 
instances of its variables which demonstrate the inconsistency. As each 
derived clause is generated during a computation, the unifying substitut-
ion which allowed its parents to be resolved may contribute to a set of 
bindings of terms to variables known as the binding environment of the 
computation. When computation terminates successfully the final state 
of this environment determines the desired instances of the variables 
<?f interest. A practical logic program interpreter will automatically 
output the final bindings of these variables if and when computation 
terminates. 

Non-determinism of Logic Programs 
* 

A logic program exhibits non-determinism when its associated 
search space admits more than one derivation. The program determines 
neither the choice nor the order of derivations generated during 
computation. Instead these are determined by the search strategy 
employed to control the computation. The occurrence of more than one 
derivation in the search space is due fundamentally to the fact that 
FOPL describes relations rather than functions. In general, several 
input Horn clauses will be necessary in order to compute all possible 
members of any particular relation of interest, so that a derived clause 
C^ may resolve with more than one input parent and hence admit 
alternative choices for its successor C. .. 

i+1 
The efficiency of a general interpreter intended for processing 

non-deterministic as well as deterministic programs is strongly 
dependent upon its ability to apply intelligent criteria for choosing 
between alternative derivations. Furthermore, if the interpreter 
terminates a derivation unsuccessfully (that is, without deriving • ) 
then it should (ideally) be capable of applying an intelligent analysis 
of the cause of the failure in order to assist its choice of alternative 
derivations (if any) still awaiting exploration. 

When the search space admits more than one possible refutation 
derivation, the possibility arises of alternative solutions to the 
problem described by the program. The choice and order of the solutions 
output from the computation is again determined by the interpreter's 
search strategy and not by the program itself. Other non-deterministic 
pr eg rains may have only one solution, yet allow this to be computed by 
significantly different refutations. 
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C H A P T E R 2 

F U N D A M E N T A L F E A T U R E S 

0_F 

L O G I C P R O G R A M S 

PREVIEW 
\ 

X 

Chapter 2 presents the essential features of logic as a programming 
language. The first section explains the simple conventions adopted for 
-representing programs and classifying their constituent parts. Of 
greater importance is the semantical description of logic programs given 
in the following section. Logic is unique as a programming language 
in that it has a model-theoretic semantics which makes no reference to 
any intended execution mechanism; this semantics endows a purely 
declarative meaning upon logic programs. By contrast, resolution theory 
provides the basis of an operational semantics which explains the meaning 
of logic programs in terms of what is computable (logically derivable) 
from them; this meaning is more akin to that normally assigned to 
computer programs. The procedural interpretation of logic is just one 
way of articulating such an operational semantics in terms of notions 
which prevail in other procedural programming languages. Moreover, 
because the procedural interpretation treats recursive Horn clauses as 
recursive procedure definitions, it is also possible to construct a 
fixpoint semantics for logic programs. The three kinds of semantics 
can be shown to be mutually equivalent in consequence of the Completeness 
Theorem for first order logic. 

The third section describes the procedural interpretation in detail, 
introducing ideas such as program goal, program body, call activation, 
procedure invocation and data transmission. The effective control of 
these computational resources is closely bound up with the notion of 
scheduling, and a simple summation problem is examined which shows the 



role of this in both top-down and bottom-up computations. in particular, 
last-in-first-out scheduling is the principal feature of the interpreters 
derived from the first significant implementation (Prolog). 
Prolog is briefly described in a new section, and some Prolog-like 
computations are compared there for some problems concerned with addition 
over the integers. The final section considers some of the useful 
extensions to the elementary default" Prolog strategy which have been 
proposed and implemented. The most notable of these extensions deal 
with coroutining, iterative invocation and intelligent backtracking. 

2.1 ! THE SYNTAX OF LOGIC PROGRAMS 

Vocabularies for Syntax and Metasyntax 

Throughout the thesis logic programs are assumed to be restricted 
to Horn clauses, the syntax of which has already been described in the 
previous chapter. Here it is only necessary to state the conventions 
which will be adopted herein for the vocabularies employed to construct 
Horn clauses and their metasyntax. 

In the construction of Horn clauses :-

(a) commas and parentheses () are the only punctuation symbols; 
(b) commas and are the only logical connective symbols; 
(c) i,j,k,u,v,w,x,y and z (with arbitrary ornamentations) are 

the only variable symbols; 
(d) all other lower-case alphabetic strings and all non-

alphabetic strings may serve as function symbols or as 
predicate symbols. 

In the metasyntactical description of Horn clauses :-

(a) as (a) above; 
(b) as (b) above; 
(c) I,J,K,U,V,WfY and Z (with arbitrary ornamentations) are 

the only metasyntactic variable symbols; 
(d) all other upper-case alphabetic strings and all non-

alphabetic strings may serve as metasyntactic function 
symbols and predicate symbols. 
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These conventions are not intended to coincide with ether presentations 
of logic programming, amongst which there is considerable variation. 

The thesis also makes much use of non-clausal sentences in order 
to express facts about the problem domains investigated by the programs. 
Such sentences are presented herein using the orthodox notation for the 
standard formulation of first order logic. Thus in addition to the 
symbols for constructing Horn clauses, we shall also use the connectives 
and quantifiers :-

'v* v •«-»• v 3 

.-'Note particularly that, throughout the thesis, the conjunction 
connective is represented by a comma. For both clausal and non-
clausal sentences it will be permitted - where convenience dictates -
to present both functions and predicates in infix notation instead of 
prefix notation. 

Presentation of Logic Programs 

A logic program is presented herein as a series of clauses. The 
presented ordering of the clauses has no syntactical significance, and 
no punctuation is employed to delimit individual clauses. 

Syntactical Classification of Clauses 

Horn clauses are classified according to their syntax as follows :-

(a) a clause with no consequent atom is called a denial; 
(b) a clause with no antecedent atom is called an assertion 
(c) the clause with no atoms is called the empty clause} 
(d) all other clauses are called conditional assertions. 

2.2 : THE SEMANTICS OF LOGIC PROGRAMS 

The Operational Semantics 

The formal semantics of logic programs are developed in a paper by 
van Emden and Kowalski (24). They define the operational meaning of a 
logic program in terms of the members of relations (named by the program's 
predicate symbols) which are derivable from the program using some given 
inference system. This treatment is operational in the conventional 
sense in that the relations which the program computes are established by 
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reference to the computations (derivations) which it gives when executed 
by a specified interpreter (proof procedure). By interpreting 
derivations as computations, the operational semantics corresponds to 
the proof-theory of logic. 

Kowalski's procedural interpretation of Horn clause logic, which 
forms the foundation of the logic programming formalism, treats atoms in 
a denial as procedure calls. The denial is a goal statement whose 
execution (through activation of.the calls) computes instances for the 
variables occurring in it. Assertions and conditional assertions are 
interpreted as procedure definitions which may be invoked in response to 
calls activated from the goal. The procedural interpretation can be 
formalized easily in terms of resolution derivations and can therefore be 
regarded as one particular formulation of the operational meaning of logic 
programs. Because of its paramount importance in the computational 
interpretation of logic programs, a fuller discussion is deferred to a 
later section. 

The Model-theoretic Semantics 

Tarski's model theory of logic can be used to determine the meaning 
of a logic program in terms of the predicates which it logically implies. 
Because, of the dependence of logical implication upon the notion of 
satisfiability (and hence upon the notion of a domain of interpretation), 
this treatment is essentially semantical, in contrast to the operational 
meaning of programs which would be traditionally viewed as belonging to 
the syntax of logic. However, in consequence of the completeness of 
FOPL, the operational and model-theoretic semantics are equivalent in the 
sense that they determine identical denotations for a given program's 
predicate symbols. 

The Fixpoint Semantics 

Van Emden and Kowalski also define a fixpoint semantics for Horn 
clause logic by interpreting sets of recursive conditional assertions 
as sets of recursive procedure definitions. By choosing monotonic 
transformations as mappings over Herbrand interpretations they establish 
equivalence between their fixpoint semantics and the model-theoretic 
semantics. 
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2.3 : THE PROCEDURAL INTERPRETATION 

Program Goal 

The goal of a logic program is, by convention, the unique clause 
in the program which has the syntax of a denial :-

G ? •••/ G 
1 n 

Denoting the goal's variables (if any) by ..., X^ the goal 
represents :-

*>(3x. ... 3X) (G_, ..., G ) 1 m l n 

and is treated as a refutable conjecture. The objective in executing 
the program is to discover instances of X., ... and X which satisfy 

1 m 
(Gj/ ..., G^) , that is, which provide a counter-example to refute the 
goal. When no variables occur in the goal, the intent of the program is 
simply to show that the goal is false. 

Program Body 

The set of all clauses in a program whose consequent atoms have the 
same particular predicate symbol R is called a procedure set for R. 
Each of its clauses is called a procedure for R. The body of the 
program is the set of all clauses in the program other than the goal, 
and is therefore just the union of all the program's procedure sets. 
The purpose of the program body is to assert knowledge about the problem 
domain investigated by the goal, and is assumed to be consistent. An 
example of a logic program is shown below. 

Example : count(a.b.c.a.d.b.c.e.a.nil, w) 

count(xfw) filter(x,y) , kount(y,w) 

filter(nil,nil) 

filter(u.x',u.y') delete(u,u.x' ,z) , filter(zfy') 

kount(nil,0) 
kount (u.y' ,w+l) kount (u' ,vr) 

delete(ufnil,nil) 

delete(u,u.x',z) delete(u,x' ,z) 

delete(Uf v.x' ,v.z') •*• u^v, delete(u,x' ,z') 

The program above contains four procedure sets associated respectively 
with the relations named as count, kount, filter and delete. The first 



clause of the program is the goal, which conjectures that there exists 
no instance of w which is the count of the distinct members in the list 
a.b.c.a.d.b.c.e.a.nil . The computational properties of this program 
will be discussed in the next chapter. 

Procedure Calls 

In the procedural interpretation the antecedent atoms of a program's 
clauses are interpreted as procedure calls. A denial ..., G is 

1 n 
interpreted procedurally as a set of calls to the procedures named by the 
predicate symbols in G_, ... and G . No logical significance is 

I n 
attached to the order in which the calls appear in a clause. The calls 
in the denial collectively constitute a goal whose solution requires the 
conjoint solution of the calls. Terms appearing in G , ... and G are 

1 n 

interpreted as the arguments of the calls. 

Procedure Definitions 
The procedural interpretation assigns a computational meaning to 

factual assertions about the problem domain. Each clause in the body 
of a program is interpreted as a procedure definition. In a conditional 
assertion :-

A <- B _ B 
1 m 

the atoms B,, ... and B are interpreted as a set of calls which 1 m 
constitutes the body of the procedure definition for procedure A. When 
there are no such atoms the body is empty. The atom A can be 
interpreted as a. procedure heading which identifies the name of the 
procedure and its arguments. The order in which calls in its body 
(if any) appear has no logical significance. One way of reading the 
procedure is to say that the goal •<- A can be solved by solving the goal 
+ B. . . . , B . 

1 m 

Activation of Procedure Calls 

Activating a procedure call consists of selecting a call from the 
goal of the program with the object of initiating a computation which 
solves that call. Activating some call G in a goal G , . .., G is 

K J. 11 
therefore the process of initiating computation with the object of 
solving the subgoal •<- G . In conventional programs this corresponds to 

K 
the passing of control to a procedure call statement. 



38 

Activation of Procedure Definitions 

Activating a procedure definition consists of selecting the 
procedure definition with the object of initiating a computation which 
derives a new procedure definition, that is, another fact about the 
problem domain. This has no analogue in conventional program execution. 

Procedure Invocation 

In conventional program execution, invocation means the passing of 
'control to a procedure definition in response to a call activation. In 
logic program execution this process is emulated by top-down (goal-
directed) invocation. However, it is also possible to invoke a logic 
procedure definition bottom-up by activating a procedure definition. 

Top-down invocation of a procedure definition is the process of 
resolving it with an activated call in the goal by matching the call with 
the procedure heading through some unifying substitution 9. When a 
procedure definition A -<- B , ..., B is invoked in response to a call 

1 m 
G, activated from a goal -«- G_, ..., G , the resolvent is the new goal Jz I n 
obtained by replacing G. by the body B_, ..., B and applying 9 to the 

k 1 m 
result. Top-down invocation (corresponding to goal-directed problem 
solving) is the usual mode of invocation used in logic program execution. 

Bottom-up invocation of a procedure definition is the process of 
resolving it with an activated procedure definition. When an invoked 
procedure A B_, ...,B_ , ..., B is resolved with an activated procedure l k m 
B C_/ ..., C by unifying the literals B and B with unifier 9, the jl n /C 
resolvent is the definition obtained by substituting C., ..., C for B, 

1 n k 
in the first procedure and applying 9 to the result. Bottom-up 
invocation derives a new fact from given facts and therefore corresponds 
to fact-directed problem solving. 

The notions of activation ana invocation described here must be 
carefully distinguished. Activation chooses a subgoal to be solved 
or a fact to be summoned; invocation chooses a procedure which responds 
to the activated call or fact. 

Transmission of Data 

The unifying substitutions which accompany procedure invocation 
can be interpreted as mechanisms for transmitting data between calls and 
procedure definitions. When a call G in a goal is matched with the 
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heading of a responding procedure definition, the variables in G (if 
A 

any) are instantiated by terms supplied from the heading. Moreover, all 
occurrences of these variables in the goal are instantiated by these terms, 
so that data is distributed to other latent (unactivated) calls. The 
terms are interpreted as output data passed from the definition to the 
goal. Any variables occurring in the heading are simultaneously 
instantiated by terms supplied from the activated call. These terms 
are interpreted as input data passed from the call to the definition and 
thence distributed to all occurrences of those variables in the 
definition's calls. 

An Example of Top-down and Bottom-up Computation 

In the program below the predicate sigma(z,w) expresses the 
summation*w = (1+ ... +z) where z is assumed to be a natural number. 

Cl : sigma (3 ,w) 

C2 : sigma(v+l,u+v+l) sigma(v,u) 

C3 : sigma (1,1) 

Here the function symbol + is written in infix notation. For ease of 
presentation here, the symbols 2,3 ... etc.-will be used to conveniently 
abbreviate terms like 1+1, 1+1+1 ... etc. The goal of the program is to 
compute w as the sum of the first three natural numbers. 

Top-down execution invokes C2 in response to the activation of the 
call sigma(3,w) by resolving Cl and C2 to give :-

C4 : sigma (2 ,u) 

The variable v "in C2 has been instantiated by the term 1+1 (=2) due to 
the input of the term 1+1+1 (=3) in the goal transmitted to the argument 
v+1 of the heading in C2. The binding v:=2 is distributed to all 
occurrences of v in C2, so that the partially instantiated term u+3 is 
passed back from the heading's second argument as output to the goal 
variable w. Invoking C2 a second time to solve the new goal C4 
similarly gives the resolvent C5 :-

C5 : sigma (1, u') 

with the binding u:=u'+2 . Finally, invoking C3 for the activation of 
the call in C5 gives • with the binding u':=1 , so that the fully 
instantiated term 1+2+3 (-6) is computed for the goal variable w. The 
computation generated by this top-down execution is the refutation 
derivation (Cl,C4,C5, . 



Alternatively a bottom-up computation (C3,C6,C7) can be 
generated by resolving C2 with successively derived assertions. Let 
C3 be activated, thereby summoning a fact about the problem domain. 
Then C2 can be invoked in response to this fact by matching its call 
sigma(v,u) to the heading of the activated procedure. The resolvent 
is a new fact about the problem domain :-

C6 : sigma(2,3) -«-

Once again the procedure C2 can be invoked, this time in response to 
an activation of C6. Resolving C2 and C6 in the same manner as 
previously with C2 and C3, a further fact is derived :-

C7 .• sigma(3,6) 

Finally, C7 is activated. However, suppose that the responding 
procedure Cl is invoked instead of C2. C7 and CI resolve to give 
the empty,clause • . This is just another fact about the problem 
domain - namely the fact that Cl, C2 and C3 are inconsistent. Note 
that the final invocation transmits the term representing 6 to the goal 
variable w. Whereas the top-down execution computes w by successive 
approximations w:=u+3 , w:=u'+2+3 , w:=l+2+3 , bottom-up execution defers 
instantiation of w until the final invocation. 

Scheduling of Calls and Procedures 

In the example above, efficient solution of the problem expressed 
by the input clauses required intelligent choices to be made betv/een 
alternative responding procedures. For instance, the top-down 
execution chose C2 in response to each of the first two goals Cl and C4, 
but chose C3 instead in response to the final goal C5. Likewise, the 
bottom-up execution chose C2 in response to the first two facts C3 and 
C6, but chose Cl in response to the final fact C7. In neither regime 
were these the only possible choices : C5 might have invoked C2 instead, 
or C7 might have invoked C2. In other problems a second kind of choice 
may also arise, namely the choice of which goal or fact to activate next. 
Both kinds of choice are clearly important to computational efficiency. 

The usual way of dealing with alternative choices is to assign 
some schedule to them and then try each in turn. This is the way in 
which logic program executions normally proceed. When a goal contains 
several calls, the interpreter may assign to each a scheduling priority 
and thence determine the next call to be activated (that with the highest 
priority). If several procedure definitions respond to this call then 
the interpreter may assign to each a scheduling prior.!ty and thence 



determine the next procedure to be invoked. With bottom-up execution 
scheduling priorities may likewise be assigned to determine the order 
in which facts are activated and the order in which responding procedures 
are invoked to deal with them. Scheduling priorities are governed by 
control information encoded within - or supplied by the user to - the 
interpreter. 

Since the normal mode of execution is top-down, we shall normally 
assume just two kinds of scheduling to be of interest here; scheduling 
of calls in the current goal, and scheduling of the procedures which 
respond to them. Both kinds contribute to the inherent non-determinism 
of logic programs. Varying the activation or invocation schedules can 
influence either the efficiency of the ensuing computations or the output 
or both. Simple interpreters may process calls independently and in 
order of introduction to the goal, and may select responding procedures 
according»to a fixed schedule assigned to the input clauses. More 
sophisticated interpreters can dynamically decide scheduling priorities 
during run-time and exploit properties of the current state of the 
computation in order to pursue this decision intelligently. 

Because logic programs are non-deterministic, they leave open the 
choice of execution strategy. Whilst it is possible, in general, to 
choose scheduling strategies which emulate the kind of procedure invocation 
offered by conventional programming languages, logic programming admits 
more exotic possibilities which do not obtrude into the programming 
language itself. The richness of these possibilities is due largely 
to the great diversity in potential execution strategies provided by the 
interpreter , the choice of which is not constrained by the language's 
semantics. Indeed, procedure invocation from logic programs is more 
interesting than that from conventional programs even when it is limited 
to the simplest scheduling, since the successive approximation to output 
arising from the instantiation of latent calls means that activation of 
procedure calls and computation of output can be interleaved arbitrarily; 
a conventional procedure call does not usually return output until the 
computation which it instigates has successfully terminated, thereby 
deferring the activation of other latent calls. 
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2,4 : LOGIC INTERPRETERS 

Prolog 

Most implemented logic program interpreters are either direct 
versions of the Prolog interpreter written by Colmerauer and his 
colleagues at Aix-Marseille or else close derivatives from it. Prolog 
is essentially a top-down interpreter for Horn clause programs which, in 
its simplest mode of operation, employs a last-in-first-out strategy for 
Selecting calls; that is, a strategy which always selects the most 
recently generated call in the goal as the next one to be activated. 
This schedule promotes a depth-first search through a subspace within 
the space of all top-down derivations determined by the program. The 
depth-first search necessitates provision for backtracking when derivations 
terminate unsuccessfully; Prolog is therefore often referred to as a 
1 top-down backtracker'. Implementation of both backtracking and 
recursive procedure invocation requires the interpreter to maintain a 
run-time stack, whose management critically determines execution 
efficiency. The stack records the history of call activations and 
procedure invocations which determines the current state of computation. 

In addition to its default backtracking strategy, Prolog offers 
various devices to enable the programmer to specify further constraints 
upon the control of program execution; these permit, for example, 
run-time examination of bindings, discarding of branches in the search 
space and interpretation of unsuccessful derivations as proofs of 
negation. These control-determining devices are encoded within Prolog 
source programs as system-defined procedures (or 'evaluable predicates') 
in order to facilitate uniform parsing at compile-time. This is a rather 
unsatisfactory arrangement in that it is at variance with the central 
tenet of logic programming methodology, which is that matters of logic 
and control should be represented as distinct aspects of the programming 
process. Where it appears necessary for the programmer to provide 
explicit control information to the interpreter, this should be achieved 
without obtrusions into the logical text of the program. A more serious 
objection to some of Prolog's control directives is that they may alter 
the logical meaning of a program into which they are inserted, thereby 
potentially violating the first order semantics which underlies the logic 
programming formalism and guarantees its integrity. 
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Since its development at Aix-Marseille, Prolog has been 
implemented in various other institutions. At Edinburgh University 
Warren (84, 85) has established a version of Prolog which partially 
compiles logic programs for a DEC-10 computer; applications there 
include geometry problem solving (Welham, 87). Other versions have 
been implemented by M. Bruynooghe at the Katholieke Universitiet Leuve 
in Belgium and by B. Lichtman at Imperial College, London. P. Bonzon 
has written a Prolog-like interpreter in Pascal at the University of 
Lausanne in Switzerland. At Imperial College, a new Prolog-like 
top-down backtracking interpreter has been written in Pascal for the 
"CDC complex there; this is described briefly in a report by Clark and 
Kowalski (14). This interpreter is free of the semantically doubtful 
features of Prolog and has a more presentable syntax for its inpht programs. 
It is also equipped with provisions for more sophisticated control 
mechanisms such as coroutining and intelligent stack management. Like 
Prolog, its simplest (default) mode of operation is sequential last-in-
first-out scheduling of procedure calls, and responding procedures are 
selected in order of their presentation within the input program. 

LIFO Scheduling of Procedure Calls 

Last-in-first-out (LIFO) call scheduling plays an important role 
in logic programming by virtue of its simplicity as an execution 
mechanism. In assessing the practical merit of a program intended for 
an interpreter of the kind typically available at present, it is useful 
to consider firstly how well it behaves under the control of that 
interpreter's simplest strategy. If LIFO call scheduling produces 
inefficient behaviour from some initial ordering of the calls in the 
goal and procedures, the programmer may resort to a number of ways of 
seeking to improve this behaviour. In the first place it may be 
advantageous to merely change the ordering of the calls in the input 
program; this cannot affect the meaning of the program and is unlikely 
to change the intelligibility of its clauses very significantly, yet 
may produce dramatic changes in the ensuing computation. Alternatively 
the desired improvement may be achievable by re-ordering the presentation 
of the input clauses to the interpreter and thereby changing the 
scheduling of responding procedures. Both of these possibilities 
assume that the interpreter treats the ordering of calls and procedures 
as implicit control information< and both are attractive ways of 
improving behaviour because they preserve the meaning of the program. 
When neither is a sufficient remedy the programmer may be able to 
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influence computation through the agency of explicit control directives 
acceptable as input to the interpreter, and so override the default 
strategy. A further possibility, which is less attractive, is that 
the logic can be reformulated to give a more satisfactorily controllable 
description of the problem; sometimes this may require the use of logic 
which is less intelligible than the original version. Finally, and 
least satisfactorily, it may be necessary to enrich the interpreter's 
control strategy, a remedy which ought not to be within the province 
of the programmer; clearly this is more properly the responsibility of 
those concerned with implementation technology. 

. To illustrate the sensitivity of program behaviour to the ordering 
of calls, various goals are considered below for a simple program body 
in which the predicate plus(x fy,z) expresses x+y=z for integers x,y and z. 

CI : plus(x,y,z) plus (x-1 ,y+l/z) 

C2 : plus (O fZf z) 

C3 : plus (x,y ,z) plus(x+1,y-l,z) 

C4 : plus(zfO,z) 

Clauses CI - C4 are sufficient to solve all solvable calls to the plus 
procedure, and therefore constitute what is referred to as a complete 
procedure set for plus. Now suppose that a solution is required to the 
equations :-

x + y = 6 x + 3 = 8 

One way of expressing this problem is by using the goal :-

plus(x,y,6) , plus(x,3,8) 

Prolog-like interpreters assume by default that calls are activated 
sequentially and independently from left to right as presented in the 
input clauses. Now if the call plus(x,y,6) is activated first and 
solved independently of the goal's second call, it is most likely to 
return an instance of x which will cause the second call to fail. 
In fact the first call might have to be re-activated by repeated 
backtracking many times under such a strategy, each time computing some 
new solution to the first equation, until discovering the successful 
instance x:=5 . This would clearly be an extremely inefficient 
computation. Alternatively, submitting the re-ordered goal :-

plus(x,3,8) , plus(x,y,6) 

would result in computation of x first, thus distributing the binding 
x:=5 to the second call; then plus(5,y,6) would successfully return y:=l. 
This computation would require no backtracking. . 
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Scheduling of Procedure Definitions 

Scheduling of procedure definitions is as important to practical 
logic programming as the scheduling of calls. In the example just 
considered the clauses Cl - C4 constitute a non-deterministic procedure 
set for plus. A given call plus(x,y,z) may compute various solutions 
depending upon which clauses are invoked in response to it. In fact 
Cl and C2 determine only triples (x,y,z) satisfying x^O, y4z whereas 
C3 and C4 determine only triples (x,y,z) satisfying y>0, x4z. Thus if 
Cl and C2 are assigned hioher priority than C3 and C4, a call plus(x,y,6) 
"Will access solutions for (x,y) from the set { (0,6), (1,5), (2,4), ... } 
in preference to solutions from the set { (6,0), (5,1), (4,2), ... }. 

Prolog-like interpreters assume by default that clauses are 
scheduled in order of their presentation within the input set. This 
ordering is normally fixed throughout execution, although Prolog does 
provide means of modifying procedures at run-time. Quite often it is 
difficult to specify a schedule which suffices for a wide range of 
possible invoking calls. For example, the call plus(-1,2,z) initiates 
indefinite recursion on Cl if Cl has higher priority than C3, whereas 
the call plus(2,-1,z) produces similar behaviour on C3 if the priorities 
are reversed. Moreover, any call to plus generates indefinite recursion 
if both Cl and C3 (the recursion steps) have higher priorities than C2 and 
C4 (the recursion bases). Finally, if the invoking call is unsolvable 
such as plus(1,2,4) then execution will not terminate (even unsuccessfully) 
with any scheduling of Cl - C4. 

If the intended interpreter is incapable of exercising any adequate 
scheduling of procedures to solve a goal satisfactorily (or indeed to 
abandon a goal satisfactorily) then the program has to be logically 
modified. The clauses below provide a more deterministic procedure set 
by introducing tests which 'block' fruitless computations. 

Cl' : plus(x,y,z) x>0, plus(x-1 ,y+l,z) 

C2 : plus (0,z,z) + 

C3' : plus(x,y,z) y>0, plus (x+1 ,y-l ,z) 

C4 : plus (z,0,z) 

Here the predicate x20 is an infix notation for a call to some procedure 
capable of determining whether x is positive. No .call to plus can 
generate a non-terminating computation from the new procedures Cl' - C4, 
irrespective of how the procedures are scheduled. This procedure set 
.is suitable for calls in which the first two arguments are input integers. 
Other procedure sets for plus may be necessary to deal efficiently with 
invoking calls having different input-output arrangements. 
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Enhancements to Interpreters 

Various enhancements have been proposed for improving the 
efficiency and intelligence of logic program interpreters. Although 
the simple control mechanisms afforded by the default Prolog strategy 
are adequate in many cases, there are other occasions when they prove 
inadequate to deal with the most favoured logical description of the 
problem. In such circumstances the programmer must either reformulate 
that description or else appeal to more sophisticated control mechanisms. 

Inefficiency often derives from independent solution of problems 
which individually contribute to some common computational purpose. 
A typical example is the construction of a data structure X satisfying 
two properties p and Q. If this requirement is expressed using two 
calls P(X) and Q(X) then independent solution of them may result in 
repeated attempts by one call to construct an instance of X which also 
satisfies the other one. This is the kind of circumstance which may 
benefit from a coroutining facility. A coroutined execution of a set 
of calls is one which permits the computation instigated by each one of 
them to be intermittently suspended and resumed under the control of 
information received from the computations instigated by the others; 
this temporal interleaving of computations is typically regulated by 
the states of data structures to which the calls share access. In 
logic programs, calls which share variables may sometimes be profitably 
coroutined. 

Kowalski (50) gives an example of coroutining for the goal :-

perm (S ,y) , ord (y) 

which seeks an ordered list y which is also a permutation of the members 
of some set S . By activating the two calls independently in the given 
sequence, execution would repeatedly compute and discard complete but 
unordered permutations y of S until discovering one which happened to be 
ordered. A more efficient computation results when execution of the first 
call is suspended each time a new member of s has been selected to 
contribute to the construction of y , whereupon the second call is 
activated to determine whether addition of the new member to the partially 
constructed y preserves orderedness; if not, backtracking through one step 
in the computation from the first call enables selection of an alternative 
member. The coroutined execution is more efficient than sequential 
independent processing of the calls because the second call never receives 
an instance for y having more than one inversion of adjacent members; in 
effect, the second call behaves as a regulator controlling the output 
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of the first call. A study of the applicability of coroutining in 
logic interpreters is given in McCabe's MSc thesis (57). Apart from 
sequential and coroutined execution of calls, parallel processing is 
also possible when calls share no variables. When just one processor 
is available, such calls may be executed in quasi-parallel by suspending 
and resuming their executions arbitrarily, perhaps, for instance, to 
achieve useful space-saving economies in the management of the run-time 
stack. 

Because logic possesses no means of specifying control information, 
Idle requirement that some procedure should be executed iteratively is not 
expressible within the text of a logic program. Instead, the programmer 
has to construct a recursive procedure and then require the interpreter 
to execute it iteratively. One way to do this is to execute the 
procedure bottom-up, as in the sigma example in the previous section. 
There, iterative summation of successive integers was accomplished by 
bottom-up invocation of a recursive sigma procedure. Alternatively 
one can resort to particular styles of recursive procedure which enable 
the interpreter to airrange for iterative implementation of the invocation 
mechanism whilst deploying top-down control. Examples of this are 
considered in greater detail in the next chapter dealing with logic 
programming style. In either case it is possible to mitigate the 
burden of stacking normally associated with recursive invocation by 
arranging that the interpreter reclaims the space allocated on the stack 
to an invoked recursive procedure when it discovers that each of its calls 
has been activated deterministically; the interpreter then knows that no 
record of that invocation need be maintained on the stack for the 
contingency of later backtracking. 

In general it is advantageous to arrange that the interpreter 
maintains its binding environment in a data structure separate from 
that used to stack records of procedure invocations and their 
associated pointer systems. For example, Clark and Kowalski (14) show 
that a quasi-iterative execution of the recursive procedure :-

append(u.x,y,u.z) -«- appendix,y,z) 

to solve a goal like append (a.b.nil,c.d.nil,z) can generate a stack 
of bindings representing the incremental construction of the output 
argument z whilst overwriting another stack used for recording the history 
of procedure invocation. Moreover, they describe how in certain 
circumstances it is even possible to avoid stacking the bindings by 
using a data-overwriting mechanism which emulates conventional 
destructive assignment. 



Clearly the provision for run-time stack management economies 
of the kind described above incurs a certain computational cost in 
monitoring the activation of calls to decide whether they are activated 
deterministically. With some logic programs it is possible in principle 
for the interpreter to conduct a compile-time analysis which shows that 
no stack is needed at all during the computation. For example, 
solution of the goal append(a.b.nil,c.d.nil,a.b.c.d.nil) with the 
procedures :-

append (nil ,z. 

append(u.x,y,u.z) •*- append(x,y,z) 

requires no stacking, and the interpreter should be capable of generating 
a truly iterative (rather than quasi-iterative) computation identical to 
that instigated by a compiled conventional program. 

Efficient execution of non-deterministic logic programs requires 
intelligent control of the backtracking mechanism. The simplest 
backtracking interpreters preserve the stacked activation records 
generated by the computation induced by a call even after the call has 
been successfully solved, since the output which it distributes to other 
'latent calls may cause them to subsequently fail; in that event sufficient 
information remains on the stack upon backtracking to enable the 
interpreter to decide which alternative ways remain for processing the 
earlier call. However, if the interpreter can recognise when a call 
can be processed deterministically then its activation record can be 
deleted as soon as it has been successfully executed. This can give 
substantial space reductions. 

Sometimes it may also be possible to profitably rearrange the 
stack before backtracking after an unsuccessful computation. In 
particular it is"advantageous to prevent backtracking from discarding 
useful results of computations which have not contributed to the cause 
of failure, and from pursuing alternative computations which necessarily 
fail for a common reason. The usefulness of analysing the cause of 
failure in order to decide the subsequent course of computation is 
examined in Hill's MSc thesis (34). 

The question of whether or not a stacking mechanism is necessary 
depends upon the choice of problems to be solved and the choice of 
programming style. Many non-deterministic logic programs can be 
reformulated to give programs which are essentially deterministic, 
although the reformulations may be far from trivial and may result in 
substantially more complex descriptions of the problems of interest. 
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Most traditional programming is deterministic and iterative, and so it 
is possible to envisage restricted styles of logic programming which 
would meet most normal programming requirements and at the same time 
dispense with both search and recursion, thereby obviating the stack 
requirement. It is probably fair to say that the provisions of 
existing interpreters represent a view of computational problem solving 
rather more sophisticated than that actually encountered in current 
programming practice, thereby rendering those interpreters susceptible 
to difficulties in efficient implementation and hence uncompetitive 
against conventional program execution. On the other hand, successful 
remedies to those implementation difficulties would establish unrestricted 
Horn clause logic as a much more elegant and comprehensive problem solving 
language than those now in popular use. 

The restriction of logic programs to Horn clause logic precludes 
the occurrence of negated calls. Yet sometimes it appears convenient 
to construct calls which investigate the non-membership of tuples in 
relations rather than their membership. For example, given a 
procedure member(u,S) for investigating members of a set S, one might 
wish to show that some instance a was not a member of S, by allowing 
a goal like :-

-t- ^member (cl, S) 

In general the membership of a relation cannot be specified completely 
using just Horn clauses. However, Clark has investigated the 
semantical questions raised by interpreting failure of the goal :-

member (cl,S) 

as a metatheoretic proof of ^member(a,S) when it can be shown that all 
ways of investigating the call member(a,S) have been tried. Clark's 
investigation suggests that this metalogical inference may be a 
semantically acceptable extension to Horn clause interpreters, thus 
permitting them to process explicitly negated calls. The general 
problem of interpreting failure logically in order to solve negated 
subgoals is not special to logic programming; both Raphael (70) and 
Black (4) encountered the same issue in their deductive question-
answering systems. 

Most of the simple enhancements of Horn clause interpreters 
considered to date in connection with the Imperial College implementation 
are outlined in the report by Clark and Kowalski (14). It is likely that 



their proposals will be implemented on the new interpreter there in the 
near future. At present it seems reasonable to expect that by 
intelligent control of non-determinism and efficient stack management 
future logic program interpreters will behave much better than Prolog. 
Warren's work at Edinburgh on the compilation of logic programs is .also 
encouraging the view that it will not be too long before logic programs 
can be implemented as efficiently as conventional ones. 
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C H A P T E R 3 

L O G I C P R O G R A M M I N G 

S T Y L E 

> 

PREVIEW 

Good programming style is one of the defining attributes of a 
program's 'quality', and is as important in logic programming as it is in 
conventional programming. The art of good programming style is the 
art of finding a representation of an algorithm which allows its 
underlying concepts to be clearly perceived whilst ensuring that it 
remains computationally useful. A good program is therefore one 
which satisfies aesthetic as well as pragmatic criteria. In 
conventional programming these criteria are difficult to reconcile, 
as students of 'structured programming' will know only too well; here 
the central difficulty is in describing all the minutiae of the 
algorithm's control (to ensure efficiency) without committing the 
program's logical intentions to obscurity. 

Possibly the most significant advantage of using logic as a 
programming language instead is that the meaning of the program is 
not dependent upon a specification of an execution mechanism. This 
permits the programmer to develop the program's logical and behavioural 
attributes in a more separable way than could be achieved for its 
counterpart written in a deterministic language of the kind now in 
popular use. The 'logic programmer' can experiment with significantly 
different Horn clause descriptions of the problem of interest and then 
consider, for each one, how to deploy the various control mechanisms of 
the interpreter at his disposal in order to secure an effective algorithm. 
Nevertheless it should not be falsely assumed that logic programs will 
therefore be intrinsically logically clear - it is not hard to find 



published Prolog programs which are quite inscrutable at first sight. 
Logic offers substantial provisions for achieving logical clarity in 
programs, but does not enforce them. 

Choice of programming style influences not only the effectiveness 
of algorithms and the clarity of program texts. It also influences 
activities such as the analysis and transformation of programs. The 
non-determinism of logic permits these activities, like that of 
composing programs, to deal with matters of logic and control separately. 
These arguments in favour of logic are presented in Kowalski's paper (51) 
describing the representation of algorithms as 2-tuples of the form 
(logic, control). The merits of logic as a comprehensive computational 
tool which allows direct access to the logic components of algorithms 
are further expounded by Clark and Tarnlund (16). Investigation of a 
variety of computational problems by these researchers and others has 
contributed useful guidelines regarding the appropriate styles for logic 
components required for inducing particular kinds of behaviour in 
existing interpreters. Insofar as the primary purpose of the thesis 
is to consider ways of deriving useful logic programs, it is clear 
that awareness of the behavioural properties of various logic programming 
styles is important for discriminating between alternative program 
derivations. 

The first section of the chapter concentrates upon the logic + 
control representation of algorithms. Examples of programs for solving 
a simple counting problem are firstly presented to show how the logic 
programmer can influence a program's behaviour purely through the 
agency of the logic component, and how by varying both logic and 
control he can obtain different representations of the same algorithm. 

In the previous chapter it was mentioned that quasi-iterative 
invocation could be generated by employing appropriately styled 
recursive procedures. The present chapter considers this in greater 
detail by comparing two programs intended for list reversal. It is seen 
that transformation of recursive procedures to iteratively invokable form 
may require the construction of more elaborate procedures (in the sense 
of having more arguments and more subtle relationships between them). 

Also of interest is the way in which top-down control applied to 
one procedure set can emulate the behaviour of another procedure set 
executed with bottom-up control. Such 'quasi-bottcm-up' computations 
are exemplified by comparing alternative procedures for the highest-level 
description of the linear mathematical programming problem. 



Unification is the fundamental device at the disposal of a 
logic program interpreter for the purpose of constructing and comparing 
data. Quite often it is possible to exploit unification in very subtle 
ways to provide algorithms which appear to require hardly any procedure 
invocation despite performing considerable computations. A few such 
algorithms are presented here which are interesting as slightly 
capricious novelties, although they cannot be advocated as examples 
of 'good' programming style. 

The non-determinism of logic often encourages the use of special 
calls which do not significantly contribute to the logical description 
of the problem under consideration, but which nevertheless usefully 
constrain run-time behaviour. These are referred to here as 'control 
calls' and several examples are shown of their application. Likewise, 
it is sometimes convenient to constrain behaviour instead by the use 
of special procedure arguments (called 'control arguments'). Both 
of these methods for specifying control information implicitly through 
the agency of logic are just particular ways of exploiting the logic 
programming formalism's dependence upon pattern-directed procedure 
invocation. 

The chapter's second section emphasizes relationships between 
procedures and data structure representations. It is shown how both 
terms and procedure definitions can be interpreted as data structures 
and how they dispose computation towards particular kinds of behaviour. 
Data structures may be directly accessible to some procedures but only 
indirectly accessible to others; the latter may only be able to access 
particular data components after a considerable amount of computation. 
The usefulness of indexing is mentioned for permitting direct access 
to procedure definitions. A number of interesting palindrome-testing 
programs are presented to illustrate the effects of choosing several 
alternative representations for the input data. 

The section closes with a discussion of data abstraction through 
the use of selector procedures and the contribution which this technique 
makes to the clarity and flexibility of a program's high-level procedures. 



54 

3.1 : LOGIC AND CONTROL 

Dependence of Behaviour upon Logic and Control 

The variation in behaviour which results from varying the logic 
and control components of algorithms is indicated in the example below 
which deals with the problem of counting the number w of distinct 
members in some given input list x , for example a.b.c.a.d.b.c.e.a.nil. 

A conceptually simple algorithm is one which firstly filters out all 
duplicates from x to leave a list y and then computes the count w of 
members in y. The logic program below can be used to compute the 
relation count(x,w) in this way. 

Program 1 : countfa.b.c.a.d.b.c.e.a.nil,w) 

countfx ,w) filter(x,y) , kount(y,w) 

filter (nil,nil) •*-

filter(u.x' ,u.y') delete (u,u.x' ,z) , filter(z,y') 

kount(nil,0) 

kount(u.y',whl) kount(y* ,w) 

delete (u,nil,nil) 

delete(u,u.x' ,z) delete(u,x' ,z') 

delete(u,v.x' ,v.z') u^v, delete(u,x' ,z') 

Here filter(x,y) holds when y is the list obtained by deleting all 
duplicates from list x (preserving the ordering of the remaining 
members); kount(y,w) holds when w is the number of members in list y, 
delete(u,x,z) holds when list z results from the deletion of all 
occurrences of member u from list x. When the program is executed 
with the default Prolog control, the ensuing algorithm suspends all 
counting until the task of filtering out all duplicates from the input 
iist has been successfully completed. By delegating the tasks of 
counting and filtering respectively to two distinct procedure calls, 
a sequential LIFO interpreter like Prolog generates the computations 
for these tasks sequentially and independently. 

By contrast, the program below dispenses with an explicit 
procedure for filtering out duplicates, and instead exploits knowledge 



of the effect upon counting of deleting all occurrences of just one 
particular member. Given some input list x whose count w is desired, 
all occurrences of some member u are deleted from x to leave a list z; 
then w is computed as I plus the count of z. 

Program 2 : + count(a.b.c.a.d.b.c.e.a.nil,w) 

count (nil ,0) •<-

count(u.x',w+l) delete(u,u.x',z) , count(z,w) 

[together with the procedure set for delete] 

A Prolog-like computation from this program has the effect of inter-
leaving the tasks of deleting and counting members in the input list. 
Each recursive invocation of the count procedure contributes an increment 
of 1 to the cumulative evaluation of w and then deletes all occurrences 
of the member just counted. This program is more concise than the 
previous one, but is perhaps less obvious in its net effect. 

The programs just discussed show how different algorithms may 
arise with a common control component (sequential scheduling) but 
different logic components (Programs 1 <2 2). This indicates that 
the behaviour of algorithms should not be judged to be determined 
primarily by control information. Sequential scheduling is not the 
only control strategy worth considering for the counting problem above. 
The idea of interleaving counting with the deletion of duplicates 
suggests the possibility of solving this problem using coroutined 
procedure invocation. Suppose that a coroutining mechanism is used 
to control the activations of the two calls in the count procedure 
of Program 1 :-

count (x ,w) -t- filter(x,y), kount(y,w) 

Activating the call filter(xfy) first, just one invocation of the 
recursive filter procedure is sufficient to partially construct the 
output y as some u.y' where u is the first member of x and y' is as 
yet undetermined. At this point control can be switched to the call 
kount(y,w) which counts the contribution of this u to w by recursing 
once on the recursive kount procedure. Counting the members of y' is 
then suspended until y' has been partially filtered by reactivating 
the first call. The task of specifying appropriate control information 
to the interpreter in order to achieve the effect of coroutining as 
described above is an easy one, since the suspension-resumption 
strategy here consists of no more than alternating from one recursive 
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procedure to the other, one invocation at a time. More generally, 
information for controlling coroutining has to be more elaborate than 
this simple arrangement in order to secure the computational economies 
which motivate its application; for example, the timing of suspension 
and resumption may depend in a complex way upon the instantaneous 
states of the data structures which the coroutined procedures jointly 
construct or interrogate. 

It is interesting to observe that the algorithm having components 
(Program 1, coroutining) is identical to the algorithm having components 
.(Program 2, sequential scheduling). Program 2 represents in logic 
the interleaving of two computations which Program 1 induces sequentially 
in a Prolog-like interpreter. It is quite easy to explain the logical 
relationships between the two programs. Considering Program 1, suppose 
that x is the empty list nil in a call count(x,w). The filter and 
kount bases can be resolved with the count procedure to give the assertion :-

count (nil ,0) 

which provides a procedure capable of directly counting nil. Now 
suppose instead that x is not empty, and resolve the filter and kount 
recursions with the count procedure to give :-

count(u.x',w'+l) delete(u,u.x' ,z),filter(z,y'),kount(y',w') 

Now execution of Program 1 by Prolog-like control will count the list 
u.xr by sequentially deleting u to leave z, filtering z to give y' and 
finally counting y' with the kount procedures. However, if the following 
additional knowledge is given :-

count(z,w') (3y') (filter(z,y') , kount (y',w') ) 

then it is clearly unnecessary to separately filter z and count y', since 
solving count(z,w') will achieve exactly the same result. The procedure 
above with heading count(u.x',w'+l) can hence be written as :-

count(u.x',w'+l) delete(u,u.x',z) , count(z,w') 

which is exactly the procedure used by Program 2. In the absence of the 
assumed additional knowledge, no particular significance attaches to the 
process of invoking the filter procedure once and then invoking the kount 
procedure once; Program 1 does not describe the contribution which such 
an invocation sequence makes to the progress of solving count(x,w) . 
Program 2 exploits that knowledge by describing in its logic the fact 
that such a process contributes an increment of 2 to w. 
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Many of the commonplace relations dealt with by programmers are 
computable using iterative methods. In general, iteration is more 
efficiently implementable than recursion because completion of an 
iterative step - unlike a recursive one - does not depend upon the 
results of future steps. Iteration therefore avoids the stack management 
burden associated with recursive computation. Since Horn clause logic 
is a recursive programming language, it is important to arrange that 
interpreters execute recursive procedures in an iterative fashion 
whenever this is possible. Clark and Kowalski (14) have proposed an 
enhancement to the Imperial College interpreter which will implement 
invocation of a recursive procedure in a quasi-iterative manner when 
it can ascertain that all its calls in the previous invocation have 
been activated deterministically. To take advantage of this facility i 
it is necessary to devise suitable procedure definitions for iteratively 
computable relations. 

As an example, suppose that a program is required which, given 
some list x as input, computes the reverse list y as output. The 
program below describes this problem using the predicate reverse(x,y) to 
express the fact that y is the reverse of x, and the predicate 
append(z^rz^,z) to express that z is the list obtained by appending the 
list z^ to list z^; for the sake of example, x is chosen to be the 
list a.b.c.d.nil . 

reverse(a.b.c.d.nil,y) 

reverse (nil ,nil) •<-

reverse(u.x,y) reverse(x,z) , append(z,u.nil,y) 

append (nil ,w,w) 
append (v. z' ,w,v.y') append (z' ,w,y') 

When the recursive reverse procedure is invoked (assuming Prolog control) 
the only sensible choice of the first call to be activated is that to 
reverse(x,z) - calling append(z,u.nil,y) instead would result in a highly 
non-deterministic computation, because that call's input arguments do 
not constrain the choice of responding append procedure. Thus since 
the call to append cannot be activated deterministically before the next 
invocation of the recursive reverse procedure, the computation cannot be 
implemented itcrativcly; the program determines inherently recursive 
algorithms. 
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In contrast to the reversal program above, consider now the 
reverse* program below which is capable of iterative execution :-

reverse*(nil,a.b.c.d.nil,y) 

reverse* (y,nil,y) -«-

reverse*(x^,u.x^,y) •«- reverse*(u.x^,x^,y) 

The predicate reverse*(x^,x^,y) holds when y is the reverse of the 
list obtained by appending x^ to the reverse of x' ; to compute the 
list y as the reverse of list x , x is represented implicitly as the 
result of appending the goal's second argument to the reverse of the 
.first argument. If the program is executed with Prolog-like control, 
that is, by top-down sequential LIFO scheduling, each invocation of 
the recursive reverse* procedure generates a single new call to 
reverse* ; when this call is activated it is necessarily done so 
deterministically, since no call to reverse* in which the second 
argument is variable-free can invoke both the recursion and the basis. 
Consequently the stack's record for the next reverse* invocation can 
overwrite the current record, so that no extension to the stack is 
required. Programs of a similar kind were demonstrated by Tarnlund 
(80) during a Logic Programming Workshop at Imperial College in 1976. 

The reverse* example illustrates a typical feature of 
transformations of recursive procedures to iterative form, which is the 
introduction of extra arguments to compute, in each iterative step, 
information which a recursive computation would encode as a stack of 
latent calls. Consider, for example, the recursive solution of the 
goal + reverse(a.b.c.d.nil,y) . After two recursive invocations of 
the reverse procedure the goal becomes :-

-4-reverse(c.d.nil,y") , append(y",b.nil,y') , append(y',a.nil ,y) 

in which the two latent calls to append express the solution y as the 
result of appending a.nil to the result y' of appending b.nil to the 
reverse of c.d.nil ; for brevity, denote this solution of y by the 
term (yn:(b.nil)):(a.nil). 

Now the associativity of the appending operation determines that 
the same solution y arises by appending b.a.nil to the reverse of 
c.d.nil ' This fact is exploited by the reverse* procedure. After 
two invocations of this procedure the goal becomes :-

reverse* (b.a .nil ,c.d.nil ,y) 

In the first argument position the term b.a.nil has already been 
constructed as a contribution to the partial evaluation of the 



solution (y":(b.nil)):(a.nil) . A similar example is given by Clark 
(12) for the problem of computing factorials. He exploits the 
associativity of multiplication in order to derive a 3-place factorial 
procedure which partially evaluates the desired factorial in each 
iterative invocation rather than stacking multiplications in the 
customary recursive style. 

Quasi-bottom-up Computation 

Kowalski's paper (51) shows that the iterative behaviour which 
-is typically obtained from conventional programs can be described in 
terms of bottom-up execution of recursive procedures. Whereas 
bottom-up procedure invocation in the Algol-like languages is 
precluded (due primarily to the irreversible nature of destructive 
assignment), logic procedures may be invoked in either top-down or 
bottom-up mode; their meanings are neutral with respect to the 
top-down/bottom-up distinction. At the present time there exist 
no logic interpreters capable of autonomously applying effective 
general strategies for controlling bottom-up invocation, although 
Prolog can be made to behave in a bottom-up fashion through the 
use of explicit control directives. For this reason it is 
interesting to discover that there exist logic programming styles 
which, with top-down control, mimic bottom-up computations; hence 
quasi-bottom-up behaviour can be obtained with existing interpreters 
through the agency of logic rather than control. 

An example of a problem in which iterative behaviour is desirable 
is the general linear mathematical programming problem; here we 
consider how to use logic to represent the high-level procedures of 
the well-known Simplex algorithm. The objective of this algorithm 
is to derive a sequence of 'tableaux' T_, . T each describing the 

1 n 
linear program's constraints and objective function, where T i s given 
and T satisfies an optimality criterion. Each computed tableau is 
derived from its predecessor using a matrix pivoting transformation, 
the mechanics of which are unimportant for the present discussion. 
It suffices here to assume that there exists some procedure pivot(x',x) 
which, given tableau x' as input, computes the successor tableau x 
as output. One possible formulation of the Simplex algorithm is 
then as fellows :-
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+ tableau(x), optimal(x) 

tableau(T^) + 

tableau(x) + tableau(x'), pivot(x',x) 

/together with procedures for optimal and pivot] 

Here the metasyntactic symbol Tstands in place of some suitable term 
identifying or comprising the initial tableau. The call optimal(x) 
succeeds if an input tableau x satisfies the Simplex optimality criterion. 

Prolog execution of this program is most unsatisfactory because of 
the loss of useful computation during backtracking each time some T. fails 
to satisfy the optimality test. Suppose that a call optimal(T^) has 
failed after the solution of calls tableau(T^ and pivot(T^ J . 
The latter call will normally have instigated a considerable amount of 
computation which will be discarded upon backtracking, only to be 
recomputed during the subsequent computation of It: difficult 
to prescribe a simple general enhancement of the interpreter which 
would equip it to decide upon a sensible rearrangement of the stack 
prior to backtracking and hence avoid this loss; there appears to be 
no immediate means by which the interpreter could conclude that the 
computation from the call pivot (T^ S w o r t ^ preserving. 

Much better behaviour can be obtained using the same control by 
introducing a new predicate derive(x,x") which holds if tableau x can be 
derived from tableau x" by a succession of calls to the pivot procedure. 
The goal of deriving optimal x from T can now be pursued by the new 
problem formulation below. 

derive (x,T ) , optimal (x) 

derive (x,x) 

derive (x ,x" ) •*• pivot (x" ,x') , derive(x ,x') 

/together with procedures for optimal and pivot] 

Suppose now that some tableau T has already been computed, and that 
the goal is to derive an optimal tableau x from it. If T has not 
already been submitted to the optimality test then the first obvious 
possibility for x is just T^. This possibility is explored using the 
derive basis procedure. Failing this, the other derive procedure 
can be invoked to compute T.,_ by pivoting T. and then initiate a 

l'l 1 j . 

computation whose goal is to derive optimal x from is 
illustrated by the following diagram of a region of the search space : 
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derive(x, optimal (x) 

-e optimal (T. • J.+I/ 

etc. 

It should be clear that in this computation the tableau 2\ is not 
recomputed after failing the optimality test. The program behaves as 
an iterative generator of the sequence (T,, . T ) with no redundant 

1 n 
computation. To obtain similar behaviour from the previous program 
it would be necessary to invoke its recursive tableau procedure bottom-up, 
each time activating the most recently derived tableau assertion. This 
bottom-up computation would therefore generate a succession of assertions :-

tableau (T^) 

tableau (T ) •«-

etc. 

in search of one which, when resolved with the goal, could transmit an 
optimal tableau to the call optimal(x). A more detailed discussion of 
the logic representation of the Simplex algorithm and the use of the 
derive procedures to generate quasi-bottom-up behaviour is given in a 
report by Hogger (37). 

Quasi-bottcm-up behaviour has been independently investigated by 
Kowalski (5.1.) and considered for the problem of path-finding in graphs. 
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A path from node a to node b can be explored in a variety of ways 
(depending upon the control strategy) using either the program :-

+ 90(b) 

go(a) + 

go(y) 4- arc(x,y), go(x) 

/"together with arc assertions defining 
the particular graph of interestj 

or else the program :-

4- go*(a,b) 

go*(x,x) 4-

go*(x,z) 4- arc(x,y) , go* (y,z) 

/"together with arc assertions defining 
« the particular graph of interestj 

Moreover, Kowalski also discovered a useful general relationship 
between these programming styles. An n-ary relation R(X,, ..., X ) 

4- n 
can be used to specify a 2n-ary relation R*(X,, ..., „Y Y ) 

1 n 1 n 
as follows :— 

R*(X., . .., X ,Y , ..., Y ) 4-± (R(X., ..., X ) 4- R(Y , ..., Y )) n 1 n 1 11 1 n 

Suitable instances of the definiens of R can then be substituted into 
this sentence in order to derive a recursive procedure for R* whose 
top-down execution behaves like the bottom-up execution of a recursive 
procedure for R. Note that the above specification for R* trivially 
implies the assertion :-

R*(X,r ..., X ,X-t ..., X ) 4-
1 n l n 

which typically serves as the basis for the recursive R* procedure. 
The general technique is also outlined by Clark and Kowalski (14) ; 
they make the interesting observation that the sentence relating R* to R 
can be interpreted as the invariant of the loop associated with the 
conventional iterative program for R, which suggests a potentially 
useful link between logic program derivation and Dijkstra's calculus 
of invariants. Clark's paper (12) presents a derivation of the kind 
above, starting with the traditional 2-place factorial program and 
then deriving from it a 4-place factorial program whose top-down execution 
behaves like the former program executed bottom-up. 
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Exploiting Unification 

The unification mechanism in a resolution interpreter can be 
regarded as a primitive processor for the class of data structures 
representable by terms. Superficially this processor is very limited 
in being capable only of lexically matching sets of unifiable terms. 
Nevertheless it is sometimes possible to exploit this capability in 
quite subtle ways, as will be shown presently. In particular, 
unification performs computational tasks which the programmer would 
otherwise (in the absence of unification) have to obtain through the 
use of explicitly programmed procedures. The unification mechanism 
can be looked upon as an implicit procedure which is automatically 
invoked to perform primitive data processing every time a user-defined 
procedure is invoked. 

A trivial but instructive example is the problem of showing that 
two given lists are equal. This problem is expressible using the 
predicate equal(x,y) which holds when the lists x and y are equal. 
Suppose then that it is required to show that x := a.b.c.nil and 
y := a.b.c.nil are equal. One program for showing this is as follows :-

equal (a.b.c.nil,a.b.c.nil) 

equal (nil,nil) 

equal(u.x,v.y) u=v, equal(x,y) 

The algorithm obtained by employing Prolog-like control then arranges 
that the comparison of the input lists will be achieved by serially 
testing a=a, b=b and c=c ; these tests are conducted sequentially 
through the repeated calls to = . (which typical interpreters can solve 
directly). Each invocation of the recursive equal procedure requires 
a very simple unification. The total work done by this algorithm 
has been explicitly discretized into a succession of elementary 
unification steps by the procedures written by the programmer. By 
contrast, consider now the following program for the same problem :-

equal (a.b.c.nil,a.b.c.nil) 

equal (x ,x) -«-

Resolving the goal with the assertion instantiates both occurrences of x 
with the term a.b.c.nil ; the unification mechanism has to compare the 
two instances of that term in order to decide that both can be bound to 
x. Thus just one invocation instigates an algorithm for comparing 
lists using the interpreter's own built-in procedure for unification. 
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A number of ingenious ways of exploiting unification have been 
presented by Tarnluna (80). For instance, he has shown that for 
some purposes the customary recursive program for appending two lists 
(shown earlier in this section in connection with the list reversal 
problem) can be replaced by a single assertion :-

append^ (w,v ,w,v) -«-

To append the list d.e.f.g.nil to the list a.b.c.nil just one 
invocation is sufficient in response to the goal :-

append^ (a.b.c.x,d.e.f .g.nil ,y ,x) 

which induces the bindings v:=d.e.f.g.nil, x:=v, w:=a.b.c.v and y:=w ; 
the required list a.b.c.d.e.f.g.nil is then output to the variable y. 
The single assertion is less general than the orthodox recursive append 
program in that it cannot be used to solve all input-output possibilities; 
for example, given an input list w it cannot'compute as output two 
arbitrary lists wand w^ satisfying a p p e n d . 

N. 

It is interesting to note that the append+ assertion is derivable 
in a manner similar to Kowalski's technique for obtaining quasi-bottom-up 
computations. For suppose that append^(w,v,w',v') is specified in 
terms of the append relation as follows :-

append^* (w,v,w' ,v') -*->• (3z) (append (z,v',w') append(z,v,w) ) 

Then choosing w:=w' and v:=v' gives the desired assertion immediately. 
With reference to the problem above which is solved by this assertion, 
z is just the list a.b.c.nil. Thus Tarnlund's non-recursive appendT 
procedure can be regarded as just the basis part of a more general 
procedure set for appendt which exhibits quasi-bottom-up behaviour; 
this basis just happens to be suitable for appending two given lists 
by a clever arrangement of the invoking call's arguments. 

Tarnlund has also found an interesting way of inserting an element 
into a list by exploiting subtle binding mechanisms. When the insertion 
position is known, it is convenient tc specify the given list x implicitly 
in terms of two lists xand xsatisfying append(xsuch that 
the inserted element u is to be inserted between xand x^. Then a 
rather orthodox rendering of the insertion problem is given by the 
following recursive program :-

insert(a.b.c.nil,d,e.f.g.nil,y) 

insert (nil,u,y,u.y) •*• 

insert(v.x ,u,x ,v.y) + insert(x ,u,x,y) 
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Here the goal is to insert the element d between the third and fourth 
members of the list a.b.c.e.f.g.nil. This program repeatedly invokes 
the recursive insert procedure until all elements occurring in the first 
argument have been transferred to the fourth argument, at which point 
it is required to insert d between lists nil and e.f.g.nil ; the basis 
does this trivially, whence y is output as a.b.c.d.e.f.g.nil. Now 
suppose more generally that some list u.x^ is appended to a list x 
to give y ; then this can be regarded as insertion of u between x 
and x T h i s intuition underlies Tarnlund's 5-place predicate 
insert*(w,u,x,z), which expresses the fact that w is the result of 
- appending z to some x^ and also the result of inserting u between x 
and x2* Then the following equivalence holds almost trivially :-

insert* (w,u,x^,w,u.x^) -<-*• append^ (w,u.x ,u.x 

But this and the assertion append^ (w,v,w,v) • jointly imply the 
assertion : -

insert*(w,u,x,u .x 

Now this assertion is adequate for inserting d between a.b.c.nil and 
e.f.g.nil using the goal :-

insert*(a.b.c.x,d,e.f.g.nil,y ,x) 

The goal resolves with the assertion to give y:=a.b.c.d.e.f.g.nil as 
output by virtue of the unifier 9 = { w:=a.b.c.x, u:=d, x^:=e.f.g.nil, 

x:=u.x2, y:=w }. 

These non-recursive programs are useful only when the desired 
input-output relations are computable by a single act of unification; 
their application is therefore very limited. Most commonplace relations 
computed by programmers seem to require repeated procedure invocation. 
For example, there seems to be no way of computing the reverse lists" of 
arbitrary input lists except by using a recursive procedure to 
successively rearrange the members. 

r 

Control Calls 

Control calls are procedure calls whose purpose is primarily to 
control execution in special ways, rather than to serve as an essential 
part of the logical description of the problem at hand. Such devices 
may be usefully employed, for example, to control backtracking and its 
effects upon the binding environment, or to control procedure invocation. 
Often their effect is to secure more deterministic behaviour than would 
be obtained in their absence. Control calls are different from control 



directives such as are offered by Prolog in that they are logical 
constraints which indirectly influence control, having no special 
meaning from the interpreter's point of view. 

An instructive example is the problem of searching a given finite 
set z for any two members u and v satisfying u<v. Let the predicate 
pick(u,v,z) express the fact that u and v are members of z such that u<v. 
Then a naive procedure for pick is as follows :-

pick(u,v,z) uzz, vzz, u<v 

/"together with procedures for z and <] 

Here the membership and comparison procedures are written in infix 
notation for clarity. Prolog-like execution of a program using 
the procedures above non-deterministically computes instances of u and 
v and then compares them. If the call u<v fails then the interpreter 
backtracks to seek an alternative choice for v and reactivates the 
call u<v . If the choice of u happens to be the maximum member in z 
then this choice will also eventually have to be repealed after all 
instances of v have failed to satisfy u<v. Hence this computation 
may encounter a lot of backtracking. 

Much better behaviour can be obtained by exploiting the knowledge 
that if any two members x and y satisfy x<y then (x,y) is the desired 
solution, but if x^y and x^y then the solution is (y,x) . Let the 
predicate assign(x,y,u,v) express the fact that the solution (u,v) is 
to be computed from (x,y) as just described. Then an alternative set 
of procedures adequate for investigating a call to pick is as follows :-

pick(u,v,z) xzz, yzz, x^y, assign (x,y ,u,v) 

assign(x,y,x,y) x<y 

assign(x,y,y,x) y<x 

/"together with procedures for z and < and j6] 
i 

Using these procedures, members x and y are selected non-deterministically 
and then passed to a test which checks that they are distinct; then 
they are passed to the call assign(x,y,u,v) ; the test x^y ensures that 
the call to assign will succeed in computing a solution (u,v). Although 
the new arrangement is just as non-deterministic as the earlier one, the 
search space is now such that every possible selection of distinct 
members x and y results in a successful computation. The assign 
procedures logically encode useful knowledge about failure (in the 
sense that the instances causing the failure are used to infer a solution) 
and are therefore essentially concerned with control rather than logic. 
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Another interesting problem is that of showing that a given 
finite list x with distinct members consists of a list xappended to 
a list x such that x is in strictly ascending order and x is in 2 1 2 
strictly descending order; x a n d x^ may be empty lists as special 
cases. Introduce the predicate updown(x) to express this property of 
x; an example is x:=1.3.4.8.6.5.2.0.nil . A naive program for 
showing that this instance of x has the desired property is :-

updown(1.3.4.8.6.5.2.0.nil) 

updown(x) -«- append(x2,x) , asc(x^) , desc(x J 

asc(nil) 

asc(u.nil) 

asc(u.v.x) u<v, asc(v.x) [and procedures for <] 

desc(nil) 
% desc(u.nil) 

desc(u.v.x) u>v, desc(v.x) [and procedures for >] 

append (nil, x ,x) 

append (v. x ,x„,v.x) -«- append (x ,x,x) 
X ^ J. 6 

Now this program can give non-deterministic behaviour arising from 
the (generally) many ways of choosing xand xusing the append 
procedures. If x has n members (n^O) then there exist n+1 ways of 
choosing x a n d x^; but there exist no more than two of the choices 
satisfying asc(x^) and descfx) when x has the desired property. 
Prolog-like control is not a good strategy for this program because 
each time new choices of x a n d x a r e transmitted as output from 
the first call"in the updown procedure, their orderedness has to 
be completely investigated by the calls to asc and desc even though 
many of their members will have been compared already in previous 
choices of x„ and xn. 

1 2 

When Prolog-like control is desired, the redundancies in the 
above program can be avoided by devising alternative procedures which 
interleave the decomposition of x with the task of comparing its 
members. The program below achieves this without introducing any 
new predicates. 
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updown(1.3.4.8.6.5.2.0.nil) 

updown(nil) •<-

updcwn(u.nil) 

updown(u.v.x) u<v, updown(v.x) 

updown(u.v.x) -«- u>v, desc(v.x) 

(together with procedures for desc, < and >] 

Note that the asc procedures have now been dispensed with, their role 
being implicitly incorporated in the updown procedures. The role of 
the calls u<v and u>v is rather more subtle than in the previous 
updown program, where they served only to define the meanings of 
ascending and descending order. In the new program they continue to 
contribute to the logical description of the problem, but now also 
serve to control procedure invocation deterministically. Previously 
they in no way mitigated the program's non-determinism which came about 
through the use of append procedures to perform the decomposition of x; 
now this decomposition is put into effect by the last two updown procedures 
whose invocations are made mutually exclusive by the calls to < and >. 
The new program behaves excellently under Prolog-like control, successively 
inspecting pairs (u,v) satisfying u<v and so confirming that x has a 
prefix (1.3.4.8.) which is strictly ascending. When the eventual call 
updown(8.6.5.2.0.nil) is activated the call 8<6 fails and so control is 
directed to the last procedure; this then instigates an iterative 
computation from the desc procedures to confirm that 6.5.2.0.nil is 
strictly descending. Note that the program also fails efficiently if 
x does not possess the desired property; the previous program would 
inexorably try all possible decompositions of such an instance of x 
before terminating unsuccessfully. 

Control Arguments 

Procedure invocation can also be controlled by introducing special 
arguments for that purpose. Of course, procedure invocation in logic 
program execution is always pattern-directed, but here we are referring 
to arguments which are not components of the relations of interest but 
simply enforce various desirable attributes in the program's behaviour. 
This can be illustrated for the problem considered above. A new 
predicate is introduced whose second argument is a control argument in 
the sense intended here. Let the predicate updown*(x , asc) express the 
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fact that there exists an ascending list x^ such that the list x 
obtained by appending x_ to x satisfies updown(x). Likewise let 

2 j. 

the predicate updown*(xdesc) have an analogous meaning where xis 
descending. Then the following program is sufficient for solving the 
problem :-

4r updown* (1.3.4.8.6.5.2.0.nil) 

updown*(nil,z) 

updown* (u.nil ,z) 4-

updown*(u.v.x,asc) 4- u<v, updown*(v.x,asc) 

updown*(u.v.x,asc) 4- u>v, updown*(v.x,asc) 

updown* (u.v.x,desc) 4- u>v, updown*(v,x,desc) 

/"together with procedures for < and >] 

Every call to updown* which is activated during computation has its 
second argument instantiated either by asc or desc. During discovery 
of the ascending prefix of x, this argument remains set as asc; as soon 
as the first descending pair (8,6) is found, the argument thereafter 
remains set as desc and hence confines invocation to the last updown* 
'procedure. The constant symbols act as control flags which 
effectively switch procedures 'on' and 'off' ; they exploit the fact 
that unification can only match identical terms. In the present 
example the control argument serves to divide the computation into 
two distinct and successive phases : the first-phase is governed by 
the first two recursive updown* procedures whilst the third recursive 
procedure is uninvokable ; the second phase is just the reverse of this, 
permanently switching 'off' the first two recursive procedures and 
generating computation just from the third one. 

A more elaborate scheme for controlling procedure invocation 
with control arguments is shown in the next example, in which a control 
flag alternates between two states, so that each suspension of each 
procedure's eligibility for invocation is only temporary. Here the 
problem is that of splitting a given finite list x into two lists 
x and x consisting respectively of alternate members of xi for 
j. . 
instance, if x = 1.2.3.4.5.nil then xand xare respectively . 
1.3.5.nil and 2.4.nil . Let the predicate transfer(x,x^,x,z,w) 

hold if lists y and z result from splitting some x1 in the manner 
described whenever x a n d x 0 result from similarly splitting the list 
obtained by appending x to x'; the splitting of x is such that its first 
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member is assigned to x^ if w=l but to x 2 if w=2. The following 
program effects the desired transfer of all members of x to Xj or 

t o produce the specified splitting of x :-

•*• transfer (1.2.3.4.5.nil ,x ,x ,nil ,nil ,1) 

transfer (nil fXyX^rX^rX^rW) 

transfer(u.x,xyX2,y,z,l) -*- append(y,u.nil,y') , 

transfer(x,x^,x^,y'rz,2) 

transfer(u.x,x^,x^,y,z,2) append(z,u.nil,z') , 

transfer(x,xlfx2,y,zr ,1) 

(together with procedures for append] 

The behaviour of this program with Prolog-like control can be seen 
quite easily from the refutation below; the list x' is shown next to 
each goal to clarify its role in the transfer specification above. For 
brevity, the calls to append are not shown but are assumed to have been 
processed. 

transfer (1.2.3.4.5.nil ,x ,x2,nil ,nil,l) x'=nil 

transfer ( 2.3.4.5 .nil ,x^ ,x2,l.nil ,nil,2) x'=l.nil 

transfer ( 3.4.5 .nil ,x2,l.nil ,2 .nil ,1) x'=l. 2 .nil 

4- transfer ( 4.5.nil,xyx ,1.3.nil ,2.nil,2) x'=1.2.3.nil 

transfer ( 5.nil ,x.3.nil,2.4.nil ,1) x'=1.2.3.4.nil 

•*• transfer ( nil ,x.3.5.nil ,2.4.nil ,2) x' =1.2.3.4.5.nil 

D {x :=1.3.5.nil, x2:=2.4.nil} 

Here the last argument of transfer acts as a device for logically 
encoding control information for governing procedure invocation. It 
is easy to envisage other programs intended for Prolog-like interpreters 
that compute the new states of control flags by calling programmer-
defined procedures to interrogate the current binding environment, 
thereby representing in logic the kind of decisions which a coroutining 
interpreter would implement through the control component. 

Kowalski has employed constant symbols to improve programs like 
the one given earlier for solving pick(u,v,z) . He observes that when 
the call x<y fails for some pair of members x and y selected from z, 
backtracking to an alternative procedure poses the problem of showing 
*y<x. In general, it may be computationally expensive to attempt 
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solution of both components of an if-then-else construct. He argues 
that it may be better to compute a solution true or false encoded by 
a control argument and then exploit unification to control procedure 
invocation. Doing this for the pick(u ,v,z) problem would lead to the 
procedures :-

pick(u,v,z) xez, yzz, x^y, less(x,y,w) , assign*(x,y,u,v,w) 

assign*(x,y,x,y,true) •+-

assign* (x ,y ,y ,x, false) 

/together with procedures for E, ^ and less] 

Here it is assumed that procedures for less will efficiently compute 
w:=true if x<y and w:=false otherwise. The use of the call to less 

dispenses with the need to interrogate the < relation twice as in the 
earlier procedure set which used the assign procedures. 

x 

3.2 I DATA STRUCTURES 

Terms and Procedure Definitions as Data Structures 

The primitive data structures manipulated by logic programs are 
terms. These can be used to represent entities such as sets, lists, 
trees and arrays which are traditionally dealt with by programmers. 
Terms which contain no variables may be regarded as wholly determined 
data structures. However, terms which do contain variables may also 
be transmitted and manipulated by procedures in ways having no direct 
analogy in conventional programming languages. 

Semantical descriptions of conventional languages customarily 
distinguish between data structures and procedure definitions, treating 
them as distinct kinds of computational resource. The meanings of 
procedures are explained in terms of their competence to interrogate 
and generate data structures, but they are not also expected to 
interrogate or generate other procedures. However, all sentences in 
logic programs can be interpreted either in the normal way as procedure 
definitions or else as data structures in their own right. Moreover, 
execution of logic programs (notably using bottom-up invocation) can 
result in the run-time generation of new sentences representing either 
new data structures or new procedure definitions. Kowalski's paper (51) 
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alludes to the terminological confusion which could arise in attempting 
to apply to logic programs those views of algorithm structure which 
treat procedures and data structures as fundamentally distinct. 

A simple example which illustrates the flexibility of logic 
for representing data is one which deals with lists. For simplicity 
the example is restricted to lists in which no member has more than one 
occurrence. Suppose that a procedure set is required which investigates 
the relation of consecutivity between members of some given list. The 
relation of interest can be expressed using the predicate consec(u,v,z) 

which holds when v is consecutive to u in the list z (that is, v is the 
immediate successor of u in z). If the lists which the desired 
procedure set. investigates are to be constructed from the orthodox 
constructors . and nil then the following sentences comprise a complete 
procedure set for consec :-

consec(u,v,u.v.z) 4-

consec(u,v,w.z) 4- u^w, consec(u,v,z) 

These provide a description of consecutivity which is applicable to all 
lists represented by the chosen class of terms. To investigate a 
particular list L = (a,b,c,d) , L is represented by the term a.b.c.d.nil 
and transmitted as input to the procedures. Querying the consecutivity 
of members c and d in I, for example, would then require repeated 
procedure invocation to solve the appropriate goal 4- consec(c,d,a.b.c.d.nil). 

An alternative way of representing a list makes use of a set of 
sentences which assert the list's consecutive members. For instance, 
L = (a,b,c,d) is representable by the set of three assertions :-

consec(a,b,L) 4-

consecfb ,c ,L) 4-

consec(c,d,L) 4-

These specify the list L uniquely subject to the assumption made earlier 
that no member has more than one occurrence in L. Investigating 
consecutivity in L now consists of a search amongst these assertions, 
treating them as individual components of a data structure. The 
assertions explicitly express the logical consequences of the general 
consec procedures above applied to the specific list L represented by 
the term a.b.c.d.nil; the assertions are derivable from them by 
bottom-up invocation. 



Yet another way of investigating consecutivity is by comparing 
the positions of members in the list. Let the predicate item(u,i,z) 
express the fact that u is the ith member of list z. Then to show 
that some v is consecutive to some u in z we can invoke the procedure :-

consec(u,v,z) item(u,i,z) , item(v,i+l,z) 

If the list z is to be represented by orthodox terras then its members 
and their positions are computable using the following procedure set 
for item 

item(u,l,u.z) 

item(u,i+l,v.z) item(u,i,z) 

These, together with the consec procedure which they serve, allow the 
positions of given u and v to be computed and compared to test for 
consecutivity. Alternatively a particular list L = (a,b,c,d) can be 
represented by the set of item assertions :-

item(a,l,L) 

item(b,2 ,L) + 

item(c,3,L) 

item(d,4,L) + 

which are derivable by bottom-up invocation using the general item 
procedures above applied to the specific list L = a.b.c.d.nil . 

The use of assertional data structures, that is, data structures 
represented by sets of assertions or conditional assertions, in logic 
programming is discussed by Kowalski (49) , who gives an elegant example 
of their application to grammatical analysis of sentences represented 
by chains in labelled graphs. More recently (51) he has shown that 
conditional assertions can be usefully employed in path-finding 
algorithms, representing each arc by a sentence of the form 

node(n2) node(n^) 

in place of the more obvious representation :-

arc(n ) 

A variety of interesting algorithms can be obtained by combining these 
representations and their associated accessing procedures with different 
kinds of control strategy. 
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Data Access 

Choice of data structure representation naturally influences the 
design of procedures intended for processing them and is therefore an 
important aspect of programming style. When terms are used as data 
structures, programming style is disposed towards computations which 
recursively assemble or disassemble the terns; such computations, 
clearly require efficient management of procedure invocation and 
binding environments to be of practical value. 

Consider the problem of accessing a list representation using 
Prolog-like control in order to discover which member (if any) is 
consecutive to a given member. One algorithm for this task is that 
which firstly locates the given member, infers the position of its 
successor, if any, and then looks up that successor. Suppose we try 
to do this using the general item procedures given earlier, choosing the 
specific list L = (a,b,c,d) represented by a term and the specific 
given member c. In this event the program is as follows :-

4 consec(c,v,a.b.c.d.nil) 

consec(u,v,z) 4 item(u,i,z), item(v,i+l,z) 

item(u,l,u.z) •*• 

item(u,i+l ,v.z) 4 item(u,i ,z) 

The resulting computation is quite inefficient because the two calls 
to item activated from the consec procedure are almcst identical. 
The call item(c,i,a.b.c.d.nil) searches L (by recursive decomposition) 
to discover c's position i:=3 ; the next call item(v,4,a.b.c.d.nil) 
searches L (again by recursive decomposition) to look up its 4 ^ member. 
Clearly there is much computational redundancy in the two searches through 
L's members. 

A much better way of solving the goal above is to use instead the 
general consec procedures for the term representation :-

consec (u, v ,u. v.z) 

consec(u,vfW.z) 4 u^w, consec(u,v,z) 

The ensuing computation maintains a pair (c,v) in the binding environment 
until such time as the basis can be invoked in response to the call 
consec(c,v,c.d.nil) ; now that c matches the first member of the last 
argument (implicitly computing its position), the basis provides direct 
access ro c's successor d. 



Yet another way of solving the above problem is to represent L 
by a set of consec assertions as shown previously; then no other 
procedures are necessary to discover c's successor. With this 
arrangement the interpreter never has to manipulate terms representing 
the list fragments (b,c,d) and (c,d) as is the case with the two 
preceding programs. In the simplest accessing regime for the present 
program the interpreter will just conduct an iterative search through 
the consec assertions seeking one which immediately solves the goal; 
in this event the binding environment remains vacuous until the solution 
is found. 

Of course, the use of assertional data structures does not imply 
that access must involve search. A powerful enhancement to elementary 
interpreters is the facility for accessing individual assertions directly 
by exploiting special arrangements in the binding of data to physical 
memory. Indexing and hash-addressing are obvious potential techniques 
for this purpose. Indexing is already employed extensively amongst 
computational systems which rely upon pattern-directed invocation of 
data or procedures, and is especially useful when the latter can be 
arranged in some practical and natural ordering. For the current 
problem the item assertions representing L can be conveniently ordered 
using their second argument position as the key position; then to solve 
the call item(v,4,L) the interpreter could directly access the 4&1 

assertion and so discover the member d. More intricate accessing 
mechanisms are necessary for dealing efficiently with other input-
output permutations of the argument positions. Sophisticated 
accessing protocols are clearly essential to the manipulation of large-
scale collections of data such as are found in data base query systems, 
but are also essential to quite routine computational tasks. For 
instance, the inversion of a modestly-sized matrix by a logic program 
would necessitate the use of an assertional representation of the matrix 
emulating the traditional array (a term representation being wholly 
unviable), and efficient access would be a crucial feature of the 
inverting algorithm. Much useful material on logic and data bases 
can be found in the papers presented at a Workshop on Logic and Data 
Bases held at Toulouse in 1977 (90). 

Terms are unsuitable as run-time representations of data structures 
when their inherent syntactical properties obstruct convenient access to 
the components of interest, since such obstruction generates expensive 
computational penalties. Consider now a new problem which is that of 
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showing two given finite sets to be equivalent, this being expressed 
by the predicate equiv(x,y) . The simplest term representation of 
sets uses two constructors, say 0 and : , where 0 represents the empty 
set and a term u:x represents the set {iz} U x . With this arrangement 
the set (a,b,c,d} has 24 distinct representations. Suppose that some 
computation activates a call equiv(x,y) with x instantiated by the 
term a:b:c:d:0 and y by d:c:b:a:0 . To show that these terms represent 
equivalent sets it is necessary to search them for common members, 
which is expensive since the members are not directly accessible. To 
consider this in a little more detail, suppose that the problem is 
solved using the procedure :-

equiv(x,y) 4- subset(x,y) , subset(y,x) 

where subset(x,y) expresses xsy. The subset calls can in turn be 
investigated using the procedures :-

subset (0,y) 

subset(u:x,y) 4- uzy, subset(x,y) 

uzu:y 4-
uzv:y 4- u^v, uzy 

These recursive procedures are typical of those needed for accessing 
the constituents of terms. The call equiv(a:b:c:d:0,d:c:b:a:0) 

eventually instigates a call azd:c:b:a:0 which is only solvable by 
recursing on the z procedure; similar calls are made to investigate both 
the membership of b, c and d in the set represented by d:c:b:a:0 

and the membership of d, c, b and a in the set represented by a:b:c:d:0 . 

These calls to z obviously incur substantial computational costs. 

A somewhat better way of solving the set equivalence problem is by 
employing the procedures below :-

equiv(0,0) 4- ^ 

equiv(x,y) 4- union*(u,x',x), union*(u,y1,y), equiv(x',y') 

where union* (u,x' ,x) holds when x is the set {u} U x'. Suitable 
procedures for union* are as follows 

union*(u,x' ,u:x') 4-

union* (u,v:x* ,v:x) union* (u,x',x) 

Applying Prolog-like control to these procedures gives a better algorithm 
than with the procedures which interrogate the subset relation because 
as soon as some member u is selected from x, a search is made for u 
in y; when this succeeds, the computation effectively deletes u from y 



in order to dispense with the need to check subsequently that u is a 
member of x in the course of showing that all members of y belong to x. 
The previous algorithm is inefficient in that it does not exploit its 
solution of subset(x,y) such as to avoid redundant membership tests 
when solving the call subset(y,x). Nevertheless both approaches 
suffer the cost of indirect access to the sets' members. 

In the equivalent sets example the choice of terms to represent 
sets introduces unwanted structural properties into the data structure 
representations. The problem of showing two sets to be equivalent 
does not logically require the notion of an inherent ordering of their 
members. Yet the terms constructed using 0 and : inherently order 
their constituents, so that programs which access them have to confront 
this ordering even though it has no logical significance for the 
problem at hand. Structurally the terms are more complicated than 
the data structures which they represent. 

In general one might expect that list-like terms are especially 
suitable for representing lists. This is certainly true of many 
problem formulations, but not so of others. A variety of examples 
for palindrome-testing are now considered which illustrate several 
ways of combining list representations with accessing procedures. 
The examples will demonstrate procedures which provide for computed 
access to terms, then a use of terms which places the burden of 
access upon the interpreter's unification procedure, then the benefits 
of choosing a term representation different from the orthodox one and 
finally programs which access assertional list representations using 
both computed and direct access. 

Informally a list is a palindrome if its first and last members 
are identical and when a palindrome remains after deleting those two 
members; this remaining list is called here the 'middle' of the 
original list. Also the empty list and all unit lists are defined 
to be palindromes. These stipulations can be summarized more 
precisely by the sentences 

palin(x) -t- empty-list (x) 

palin(x) •*• unit-list(x) 

palin(x) first(x,u) , last(x,u), middle(x,x') ,palin(x') 

Nov; these sentences can be regarded as procedures for solving calls 
to palin, provided that procedures are also devised for dealing with 
the selector calls to empty-list, unit-list, first, last and middle. 



The procedure set for palin above is logically neutral to the choice 
of representation for lists, but its computational usefulness depends 
upon how efficiently the selector procedures can be implemented for 
whatever representation is eventually chosen. Consider firstly the 
position if orthodox terms are used, that is, terms constructed using 
. and nil. . This representation allows trivial procedures for some 
selectors 

empty-list (nil) 4 

unit-list(u.nil) 4 

first(u.x,u) 4 

but precludes direct access to the 'middle' and 'last' components. 
The latter can only be obtained by computed access. One fairly 
concise way of computing them is by using the familiar append procedures 
as follows 

middle(x,x') 4 append(u.x',v.nil,x) 

last(x,u) 4 append(z,u.nil,x) 

[and the usual procedures for append] • • 

To access the middle or last components will then clearly require 
repeated procedure invocation to disassemble the term passed to x. 
Inspection of the procedure set for append will show that the last 
member of x can be computed iteratively, and that most of the invocations 
needed to extract the middle of x can also be implemented iteratively. 
In fact the computations involved here are wholly deterministic except 
for the very last append invocation used in computing the middle of x; 
this is illustrated by the following computation which seeks the middle 
of the list a.b.c.nil 

4 middle(a.b.c.nil, x') 

4 append(u.x',v.nil,a.b.c.nil) 

4 append(x',v.nil,b.c.nil) {u:=a} 

4 append(x",v.nil,c.nil) {x':=b.x"} 

'4 appendix'" ,v.nil,nil) {x'" :=c.x"} 

• [x":=nil, v:=c} :AI L 

The branch appears in this search space because the call at its root 
can invoke either the append basis or the recursion. 
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Despite the possibilities for iterative procedure invocation 

afforded by this way of solving palin(x), the algorithm as a whole is 
clearly too inefficient to be useful. Accessing the last and middle 
components of x is not only indirect but, worse still, engenders much 
duplication of effort; for instance, investigating x = (a,b,c,d,c,b,a) 

will require construction of the unit list (d) in the course of 
computing each of the middles of (a,b,c,d,c,b,a) , (b,c,d,c,b) and 
(c,d,c). 

A rather better algorithm may be obtained using the same data 
structure representation but quite different procedures. The logical 
specifications for the relations palin and reverse can be shown to 
imply the procedure 

palin (x) reverse (x,x) . 

where reverse(x,y) holds when x andy are mutually reversed lists. 
Now it has already been shown that the standard procedures for list 
reversal : 

reverse (nil,nil) • 

reverse(u.x,y) •*• reverse(x,z) , append(z,u.nil,y) 

must give rise to recursive invocation if the second argument in the 
invoking reverse call is an output variable. Here, however, both 
calling arguments are input lists, and in this circumstance it is easy 
to show that computation will be mostly deterministic if the call to 
append is always activated before the call to reverse(x,z). A wholly 
deterministic computation can alternatively be secured by using the 
reverse* procedures instead which were discussed in the previous section. 
Then the question of whether or not x is a palindrome can be answered 
by the procedures 

palin(x) -«- reverse* (nil,x,x) 

reverse* (y,nil,y) 

reverse* (w,u.z' ,y) reverse* (u.w,z' ,y) , 

As execution proceeds with this program, the revefse list of x is 
gradually constructed in the first argument position of the calls to 
reverse* in such a way that each new member contributing to this 
construction is obtained from the beginning of the second argument and 
affixed to the beginning of the first one; thus there is never any need 
to access the last member of any term, which was the main source of 
inefficiency in both the last and middle procedures considered earlier. 
Altogether this formulation of the palindrome problem is satisfactory 
both aesthetically and pragmatically for the data structure representation. 



It is interesting to find that there exists an even simpler 
program for palindrome-testing which is also deterministic and very 
efficient. Its simplicity in appearance is due to its reliance 
upon a single unification to perform the necessary comparison of the 
input list's 'left' half with its 'right' half. The rest of the 
computation is only concerned with assembling the two halves of x. 
The intuition behind the algorithm is that any palindrome x must be 
constructible by finding some list z, reversing it and then appending 
to the result either the same list z or the list u.z where u is an 
arbitrary element. For example, if x = a.b.c.c.b.a.nil then z is 
the list c.b.a.nil ; if x = a.b.c..b.a.nil then z is the list b.a.nil 
and u is the element c. This particular decomposition of x can be 
expressed by the predicate palin*(z',z) which holds when the result 
of appending z' to the reverse of z is a palindrome x. The problem 
can then be solved using the procedures below :-

palin(x) 4- palin* (x,nil) 

palin*(z,z) 4-

palin* (u.z,z) 4-

palin* (u.z' ,z) 4- palin* (z',u.z) 

For instance, the computation required to show that a.b.c.b.a.nil 
is a palindrome proceeds as follows :-

4- palin(a.b.c.b.a.nil) 

4- palin* (a.b.c.b.a.nil,nil) x 

palin* ( b.c.b.a.nil,a.nil) 

4- palin* ( c.b.a.nil,b.a.nil) 

— decomposing x into two lists 

Q } comparing the two lists. 

This algorithm can obviously be implemented iteratively. Moreover, 
it terminates by comparing b.a.nil with b.a.nil as soon as just half 
the given list has been disassembled by repeated procedure invocation, 
requiring just two iterative cycles. By contrast, the program using 
the reverse* procedures has to disassemble the entire input list and 
then match a.b.c.b.a.nil with a.b.c.b.a.nil in order to terminate, 
which requires five iterative reverse* cycles. 



The main lesson to be learnt from the palindrome programs shown 
so far is that in order to secure acceptable computational behaviour 
with the orthodox term representation of lists, the programming style 
has become disposed towards more subtle predicates, whose relationships 
to the original naive, data-independent procedures for palin are not 
trivially perceivable. To prove, for instance, that the palin* program 
computes exactly the same relation as the original palin program 
would necessitate a moderate amount of deductive effort. It is 
useful now to take a contrary stance towards the pursuit of efficient 
palindrome programs, retaining the original naive palin procedures and 
seeking a data structure representation which allows reasonably 
efficient computation. (It is assumed throughout this investigation 
that the intention is to employ Prolog-like control.) 

It is useful to present the original palin procedures again 
for further contemplation :-

palin(x) 4- empty (x) 

palin(x) 4- unit-list(x) 

palin(x) 4- first(x,u) , last(x,u) , middle(x,x') , palin(x') 

A data structure representation is required now which allows the first, 
middle and last components to be directly accessible; here the notion 
'directly accessible' means that each required component can be .computed 
by a single invocation of a programmer-defined accessing procedure. 
The most simple way of arranging this is to employ a 3-ary term of the 
form t(u,x',v) where u, x' and v are respectively the first, middle and 
last components of the list which the complete term represents. Then 
the accessing procedures are just three assertions :-

first(t(u,x' ,v) , u) 4-

middle(t(u,x',v), x') 4-

last(t(u,x' ,v) , v) 4-

The question of whether the list (a,b,c,b,a) is a palindrcme is then 
posed by the goal 4- palin(t(a,t(b,c.nil,b),a)) . The ensuing 
computation is then clearly very efficient due to the direct access 
of the list's components, provided, of course, that the interpreter 
implements the terms and their matching efficiently. The new data 
structure representation also improves the behaviour of the palindrome 
program which tests whether the input list is its own reverse. . This 
is because the reverse relation can now be computed using the procedures 
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reverse (nil,nil) 

reverse(u.nil,u.nil) 

reverse(t(u,xfv)ft(v,x,,u)) •«- reverse(x,x') 

which can be implemented iteratively. Note that the orthodox list 
representation can be retained in order to represent the special cases 
of the empty list and unit lists. Thus the choice of data structure 
representation can determine whether recursive procedures are invokable 
iteratively or only recursively. The t-terms are not suitable for all 
purposes; in particular there appears to be no way of accessing 
consecutive pairs in those terms using an iterative procedure, whereas 
that kind of access is easy when the orthodox terms are used instead. 

Unless the interpreter can perform a great deal of compile-time 
optimization of the source logic program, and so make effective provisions 
for the storing and accessing of its data structures, the use of terms 
at run-time is generally unsatisfactory. It is often more satisfactory 
to use sets of assertions to represent lists, since the mapping of 
these onto physical memory is then a comparatively easy task for a logic 
pre-processor. Thus the investigation of palindrome programs turns now 
to considering the use of assertions to represent the input lists, 
anticipating computations which merely adjust pointers to array-like 
representations rather than manipulating cumbersome binding environments 
induced by the unification of terms. 

We consider here just the simplest assertional data structure for 
lists. This asserts the existence of each member and its index, 
and asserts the total number of members, that is, the length of the list. 
For instance, the list (a,b,c,b,a) can be named by the constant L and 
then represented by the six assertions :-

item(a,l,L) 

item (b, 2 ,L) 

item(c,3 ,L) 

item(b,4,L) length(L,5) + 

item(a,5,L) 

where length(x,z) holds when the list x has a length z. To test 
whether x is a palindrome by accessing its first, middle and last 
components, the naive procedures for. palin may be supported by the 
following rather intimidating set :-
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empty-list(x) 4 length(x,0) 

unit-list(x) 4 length(x,l) 

first(x,u) 4 item(u,l,x) 

middle(x,mid(x)) 4 

last(x,v) 4 length(x,z), item(v,z,x) 

item(uei-l,mid(x)) 4 length(x,z), l<i, i<z, item(u,i,x) 

length(mid(x),z-2) 4 length(x,z) 

The logic can be described informally as follows. The first and last 
members of the list can be accessed directly by just quoting their 
appropriate indices. The middle of the list is itself a list, and 
requires a name to distinguish it from the original list x; the function 
symbol mid is just a naming device which allows us to name the middle 
of x as mid(x). Since mid(x) is not just any list, but is uniquely 
determined by x, it is necessary to state in the logic just what it 
consists of. This is achieved by the last two procedures which can 
be used to compute all the members and indices associated with mid(x) 
and to compute its length. Hence this formulation of the problem 
assumes computed access rather than direct access to the middle 
component. Moreover, the computation is very unsatisfactory when 
control is wholly top-down, because each time some midn(L) is 
required, this has to be computed by recursively computing the lists 
midn~^(L), ..., mid(mid(L)), mid(L). What is needed here in order 
to solve 4 palin(L) with the procedures and assertions above is an 
enhancement to Prolog-like control by which the interpreter can compute 
those lists in a bottom-up manner, allowing each one to overwrite its 
predecessor once the latter is no longer required for computation. 
An implementation of this sort would emulate the space-saving economies 
customarily associated with destructive assignment; iterative bottom-up 
generation of mid(L), mid^(L) ... etc. would then be interleaved with 
top-down execution of the palin procedures such that no component was 
ever accessed more than once. 

It would be wrong to conclude from the last example that a 
top-down interpreter could not satisfactorily interrogate the assertional 
data structure to test for palindromicity. Logically the problem only 
requires inspection of the assertions using a simple pointer protocol. 
Kowalski's method for parsing sentences represented as graphs provides 
the clue as to how to capture this intention explicitly in the logic. 



Introduce a new predicate palin**(ifx) to express that the fragment 
of x which extends from the member to the member is a palindrome 
It is useful to arrange that palin**(i,j,x) holds also when . Then 
the following procedures are sufficient to solve palin (L) when L is 
represented by the six assertions given previously :-

palin(x) 4- length(x,z), palin** (1 ,z,x) 

palin** (i,j,x) 4- i^j 

palin** (i,j ,x) 4- i<j, item(u,i,x) , item(u,jrx), palin** (i+l,j-l,x) 

(together with procedures for < and > ] 

With Prolog-like control (that is, the wholly top-down default strategy) 
these procedures yield excellent behaviour. The first two arguments of 
palin** serve as pointers which delimit the fragment of L about to be 
inspected for palindromicity. The program can be executed iteratively, 
induces scarcely any bindings and, provided that some kind of direct 
addressing mechanism is used to look up the assertions describing L, 
would compete favourably with the execution of a conventional Algol-like 
program. 

Data Abstraction 

Data abstraction is concerned with the logical separation of 
procedures from the concrete data structure representations which they 
manipulate. This separation has been widely approved in conventional 
programming as a means of creating clear and flexible high-level 
procedures? its value lies chiefly in the resulting ease with which 
both these procedures and the data structures which they will process 
can be constructed or modified independently and then brought together 
through the mediation of suitable interfaces. The same motivation 
prevails in its use in logic programming. 

As an example of data abstraction in logic programming, consider 
the problem of showing that some non-empty finite set x is a subset of 
some set y. One possible algorithm is that which, for a set x having 
several members, computes sets xand x^ satisfying x = x^ U x^ , and 
then investigates the subproblems of showing that both x and x^ are 
subsets of y. The trivial case is where x is a singleton, in which 
case it is a subset of y if its member belongs to y. Expressing these 
ideas straightforwardly in logic produces the procedures :-



subset(x,y) 4 singleton(x,u), uzy 

subset(x,y) 4 union(x^,x2,x), subset(x^,y), subset(x2,y) 

where singleton(x,u) expresses x = {u} and union(xexpresses 
x = x^ U x^. Now any set of procedures which solves calls to 
singleton, z and union can be regarded as an interface interposed 
between the subset procedures and whatever means are chosen for 
representing the sets of interest concretely. The procedures above 
are logically neutral with respect to the concrete representation of 
the data. 

Purely for the sake of example, suppose that terms are used to 
represent the sets. The use of terms in this way is justified by 
appealing to existence theorems in set theory. For instance, two 
such theorems are :-» 

(Mx jX 2) Qx) union (x 2,x) (every pair of sets forms a union) 
(\fu) C3x) singleton(x,u) (every element constructs a singleton) 

Using Skolem symbols to instantiate the existentially quantified 
variables in these theorems, we obtain two Horn clause assertions :-

1mi on (xJL, x^, uni on (x , x ) ) 4 

singleton(s(u),u) 4 

which may be treated as procedures serving as an interface between 
the subset procedures and the representation of sets which uses terms 
constructible from the function symbols union and s. For instance, 
the set {a,b,c} might then be represented by the terra 
union(union(s(a),s(b)),s(c)). Other simple theorems about set 
membership can be summoned to provide procedures solving calls to z 
when sets are represented in this way. Sufficient procedures for z 
in the present example would be :-

uzs(u) 4 

uzunion(x2) 4 uzx 

uzunion(x4 uzx 

When the interfacing procedures are non-recursive, they may be 
eliminated from the program by resolving them bottom-up with procedures 
which call them. Kowalski has interpreted this as the analogue of 
conventional macroprocessing. It can be regarded as a compile-time 
transformation (potentially achievable by the interpreter itself, 
since only resolution is required) which enables vine resulting procedures 
to refer directly to concrete data structure representations instead 
of having to access them indirectly at run-time by invoking the accessing 



procedures. Macroprocessing the subset procedures above would result 
in the new procedures :-

subset (s (u) ,y) uzy 

subset(union(x^,x2) fy) -e subset(x^,y), subset(x2,y) 

When the interfacing procedures are recursive, Horn clause 
resolution is not generally sufficient to eliminate them from the 
program. As an example, suppose that sets were represented instead 
by the more usual terms shown previously, that is, using constructors 
0 and : . The procedures necessary for accessing these terms for 
the benefit of the subset procedures are as follows :-

singleton (u:0) -<-

union (u:x^,x2,u:x) union (x2,x) 

union (0,y,y) 
% U£U:x -f-

U£V:X U£X 

Now these cannot be used to eliminate calls to union and e in the 
subset procedures, since they are recursive; resolution would only 
introduce yet more calls to union and e. Nevertheless it is possible 
to derive a suitably macroprocessed subset procedure set for this term 
representation, but the necessary inferences use set-theoretic knowledge 
not present in any of the above procedures. The result of macro-
processing using this knowledge is the procedure set :-

subset(u:0,u:y) 

subset(u:0,v:y) subset (u :0,y) 

subset(u:x,y) subset(u:0,y), subset(x,y) 

The complementary process to macroprocessing is data abstraction. 
In the procedures below, lists are represented by terms constructed 
from . and nil :-

append (nil,y ,y) 

append(u.x' ,y,u.z') append(x' ,y,z') 

giving a compact, iteratively computable means of investigating the 
append relation. Suppose, however, that it was required to make the 
procedures data-independent. Tarnlund (73) has explained informally 
(attributing the idea to Kowalski) hew the terms can be eliminated 
by introducing new predicates. In the present example, introduce 
a predicate append*(u,x',x) which expresses x - u.x'. Then Lhe 



recursive append procedure can be replaced by the pair of procedures :-

append(x,y,z) append* (u,x',x) , append* (u,z' ,z) , append(x',y,z') 

append* (u,x' ,u.x') 4-

Similarly the basis procedure can be replaced by the pair of procedures 

append(x,y,y) 4- empty-list(x) 

empty-list (nil) 4-

This transformation has segregated the concrete data from the higher-
level procedures. The general rules for achieving this can be 
summarized as follows. Suppose that some procedure definition contains 
an n-ary predicate p(tn/ ...,t,, t ) where T,, ... and t denote 

1 k n 1 n 
arbitrary terms. Let T, denote a term of the form F(S,, ..., s ) 

k 1 r 
where f denotes some function symbol and S . ... and s denote 

1 r 
arbitrary terms. Then to eliminate the occurrence of the term t 

k 
from the ,clause under consideration, introduce a new variable denoted 
by x and a new predicate denoted by p*. The predicate above is 
replaced by the predicate P(T,, ...,X, ..., t ) in which x has been 

1 n substituted for t . and the predicate p*(x,s , ...,s ) is conjoined to 
k 1 r 

the clause's antecedents. Finally the assertion :-

p*(f(s , ..., s ),s_, s ) + 
1 r 1 r 

is added to the program. This completes the elimination of one 
occurrence of the function symbol denoted by F. 

Kowalski (51) has pointed out that the new procedures introduced 
in data abstraction can enhance the clarity of programs. For example, 
a further transformation can be conducted upon the procedure definition 

append (x,y,z) 4- append* (u ,x' ,x) , append* (u,z',z) , append(x',y,z') 

by abstracting the data-dependent term in its supporting assertion :-

append* (u,x' ,u.x') 4-

This time, however, the dependence of the introduced variable x upon 
u and x' is expressed by two calls first(x,u) and rest(x,x') :-

append* (u,x',x) 4- first (x ,u) , rest(x,x') 

first(u.x' ,u) 4-

rest(u.x',x') 4-

In fact any number of calls to selector procedures can be introduced 
in the abstraction process provided that, conjointly, they establish 
the correct dependence of the substituted variable upon each of the 
variables in the term for which it is substituted. The calls to the 
append* procedure can now be inacroprocessed out to give :-



append(xfy,z) 4 first(x,u) , rest(x,x'), 

first(z,u), rest(ZfZ'), append fx',y,z') 

The presence of the first and rest procedures clarifies the composition 
of the lists x and z; it is clear that x and z have the same first 
member, and that the rest of z is obtained by appending y to the rest 
of x. More convincing examples of the stylistic usefulness of data 
abstraction arise when procedures are required which refer to many 
distinct data structure components; the calls to selector procedures, 
if named sensibly by well-chosen mnemonics, serve as program documentation 
which can also be processed at compile-time to allow efficient run-time 
access. 
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R E A S O N I N G A B O U T 

L O G I C P R O G R A M S 

PREVIEW 

In order to argue the thesis that logic is a credible programming 
language it is not sufficient merely to refer to its computational 
semantics or its amenability to practical implementation. It is also 
important to show that logic programs can be conveniently subjected to 
reliable analyses of their logical and behavioural properties. For 
instance, we may wish to prove that a given program terminates 
successfully with a correct solution to the problem which it purports 
to describe. 

To articulate such analyses it is clearly necessary to possess 
some kind of program-reasoning language in which deductions can be 
made about the relations computed by the programs under examination. 
The motivation of the present chapter is to establish that this 
language may be simply predicate logic itself. More precisely, the 
standard formulation of FOPL can be treated as a general-purpose 
program-analysis tool which is adequate for specifying programs and 
inferring their properties. Horn clause logic is then just that-
subclass of the language which is suitaole for computation by virtue 
of our possession of a convincing procedural semantics and the 
capability of realizing it in resolution interpreters. 

The need for the standard formulation of FOPL is argued from the 
observation that the facts which we wish to assert during analyses of 
programs are often not conveniently expressible in clausal form. 
(It would be pleasing if those facts were so expressible, because 
resolution would then provide a sufficient inference system for processing 
them.) Evidence for this argument is offered in the chapter's first 
section, where it is concluded that standard FOPL provides a more 



convincing specification language than clausal form in which to 
represent the facts of interest about the problem domain. Standard 
logic therefore plays a central role in such tasks as verification and 
synthesis of logic programs. 

In the next four sections the logic programming formulations of 
termination, specification, verification and synthesis are introduced, 
emphasizing their dependence upon non-clausal sentences to capture the 
program properties of interest. Termination is discussed firstly, 
because it can be investigated without referring to the notion of an 
independent specification for a program's computed relation. The 
method of proof of termination shown here is that developed by Clark 
and Tarnlund in their pioneering work on logic programming methodology. 
Logic as a specification language is considered in the third section 
and contrasted in its applications to logic programming and conventional 
programming; it is shown that the input-output non-determinism of logic 
procedure sets allows an interpretation of logic program specification • 
which is more general than that associated with conventional program 
specification. Here it is also explained why logic programs cannot 
be usefully treated as self-specifying despite the fact that they 
explicitly describe the very relations which they compute. The fourth 
section presents the Clark-Tarnlund treatment of logic program 
verification which relies not only upon the construction Of independent 
specifications for the computed relations of interest, but also upon 
inductive characterizations of the data structures manipulated by the 
programs. This method is of theoretical interest but is unsatisfactory 
in practice. A more satisfactory approach is to verify programs by 
deriving them deductively from their specifications. This approach 

' can, of course, also be regarded as a method for logic program synthesis. 
Its underlying concept is simply that of showing constructively that 
each procedure"definition used in a program is logically implied by 
an axiomatic description of the relevant problem domain. This 
derivation methodology is the subject of the final section of the chapter, 
and underlies all the subsequent material in the thesis. 
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4.1 : LIMITATIONS OF CLAUSAL FORM 

Expression of Computational Problems 

Clausal form logic is not always suitable for expressing knowledge 
about computational problems. This fact is attributable partly to the 
exclusion of certain logical connectives and partly to the exclusion of 
explicitly quantified subformulas. Suppose, for instance, that it were 
desired to express and subsequently solve some problem concerning the 
membership relation z holding between elements and sets, the sets being 
represented by terms constructible from : and 0. The briefest way of 
specifying the relation z of interest is by the'non-clausal sentence :-

uzx (Ivlx') (x=v:x', (u=v v uzx')) 

together with axioms specifying the identity (=) relation. The facts 
which are summarized by this sentence could be expressed alternatively 
in clausal form by a conjunction of four clauses as follows :-

•*- UZ0 

uzv:x' 4- u=v 

uzv:x' 4- uzx' 

u=v v uzx1 4- uzv:x'. 

Here the symbol 0 is a O-ary Skolem function representing the empty set, 
and the first clause above is a consequence of the identity axiom :-

^(3v3x')0=v:x' 

Now the fourth clause above is clearly a non-Horn clause. Indeed the 
conversion of most non-trivial sentences of standard FOPL to clausal 
form gives rise to mixtures of both Horn clauses and non-Horn clauses. 
Frequently these are quite difficult to interpret, both individually and 
collectively, particularly when they share several Skolem functions 
introduced by the elimination of existential quantifiers. A more 
striking example of this loss of intelligibility is shown in the 
conversion of the following assertion about unit matrices :-

unit-matrix(x) -*-»• (Vu) (one(u) 4- ondiag(u ,x) ) , 

(Vu) (zero(u) 4- offdiag(u,x)) 
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This non-clausal sentence, whose import is reasonably clear, converts 
to the clause set below :-

unit-matrix(x) 4 one(f), zero(g) 

unit-matrix(x) v ondiag(f,x) v offdiag(g,x) 4 

unit-matrix(x) v ondiag(f,x) 4 zero(g) 

unit-matrix(x) v offdiag(g,x) 4 one(f) 

one(f) 4 ondiag(f,x), unit-matrix(x) 

zero(g) 4 offdiag(g,x), unit-matrix(x) 

which is much more difficult to perceive as a theorem about unit matrices. 

Returning to the four clauses describing the z relation, suppose 
these are regarded as procedures intended for computational purposes. 
Then the question of whether or not the fourth clause is a necessary 
adjunct to the others depends upon the particular problem to be solved 
by them. If that problem only queries the membership of a given 
element (and is thus expressible by a goal of the form 4 uzx) then the 
second and third clauses alone provide a sufficient procedure set; they 
would form the Horn clause procedure set customarily used for investigating 
individuals in the e relation. By contrast, consider the problem of 
showing that, for any u, the identity u=v holds if u belongs to the 
singleton {v}. Investigation of this problem requires just the first 
and fourth clauses. Moreover, this investigation will clearly-require 
the use of some proof procedure for general clausal form, and so is 
beyond the scope of those interpreters which are designed only for 
executing Horn clause programs. Resolution interpreters for general 
clausal form are not yet well-developed, although several proof procedures 
have been examined and proved complete. One such proof procedure is 
Kowalski's connection graph system (48) which has been implemented (for 
Horn clause logic only) by Tarnlund (79) at the University of Stockholm. 
However, it would seem that effective understanding of how best to 
control. non-Horn clause resolution interpreters must await the 
development of a procedural interpretation capable of satisfactorily 
explaining the computational significance of mixing top-down and bottom-
up inferences. Some simple problems employing non-Horn clause logic 
are dealt with in Kowalski's report (49), in which he suggests ways of 
assigning procedural significance to the inferences used there; but 
these would not be capable of giving a convincing account of the inferences 
needed for more complicated problems. 

Quite often even the goals of problems are not amenable to 
convenient expression by Horn clauses. An example of such a case is 
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that mentioned above which seeks to show that u=v holds if u belongs 
to {v}. The most natural expression of this goal in logic would be 
the sentence :-

^fVuv) (u-v uev:0) 

which is a refutable conjecture asserting that not all instances of 
u and v satisfying ue{v} also satisfy u=v. This is equivalent to 

(3uv) (^(u=v) , u£v:0) 

which in clausal form has to be expressed as two Horn clauses sharing 
Skolem functions, say f and g, which replace the two existentially 
quantified variables u and v. This produces a somewhat eccentric 
rendering of the original goal :-

f£g:0 

f=9 

which asserts that some arbitrary f belongs to some arbitrary {g} and 
simultaneously denies that f and g are identical. These two clauses 
together with the clauses comprising the e specification shown earlier 
then admit a resolution refutation. 

The rather inelegant arrangement above suggests that standard FOPL 
might provide a better external syntax for goals intended for solution 
by Horn clause procedures, with conversion to clausal form being 
undertaken by a suitable pre-processor. Then a more natural expression 
of the goal above in the style of Horn clause notation would be ; — 

-«- (\fuv) (u=v U£v:0) 

in which the syntax has been elaborated to accommodate non-atomic calls 
(in this case just one call). However, it is unlikely that such a 
proposal would significantly enhance the methodology of Horn clause 
programming, since the kind of problems whose goals benefit from 
representation in standard FOPL are those whose solutions also require 
non-Horn clause procedure invocation (as is the case in the present 
example, which must invoke the fourth procedure for £ in order to 
derive a refutation). Usually such goals investigate general laws 
relating whole sets of individuals, and non-Horn clauses are the only 
practical means of expressing those sets in clausal form. In the 
current example the sets are the two relations {(u,v) | ue{v}} and 
{(u,v) | u=v} and the general law expresses inclusion of one within the 
other. To summarize, then, this example shows that certain computational 
problems yield a representation in clausal form which is unconvincing in 
appearance and not suitable for processing by existing interpreters. 
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Reasoning about Programs 

Even when particular computational problems can be expressed 
satisfactorily by Horn clause programs, reasoning about the logical 
properties of those programs may not be viable when we attempt to 
restrict that reasoning to deduction in clausal form logic. The 
potential utility of deduction for the conduct of such reasoning 
highlights an important practical distinction between the analyses 
of logic programs and conventional programs. Reasoning about logic 
programs essentially consists of making inferences about the relations 
which they are intended to compute. Reasoning about their run-time 
behaviour is also of obvious importance, but is perhaps better 
conceived as reasoning about computations. The semantics of 
conventional languages do not emphasize this distinction because the 
intention of a conventional program is to describe a particular 
computation in considerable detail; the task of inferring facts about 
the relations which it computes cannot be separated from analysis of 
its run-time behaviour because both the relations and the behaviour 
are intimately connected through their dependence upon the mechanism 
of stat'e transformation applied to the program's variables. 

Whereas the logical analysis of a conventional program requires 
the assumption of an execution mechanism (without which the program 
has' no meaning), the analysis of a logic program only relies upon 
a suitable axiomatization of relevant knowledge about the problem 
domain; the program under consideration is just one contribution to 
this knowledge. Usually it is necessary to summon facts about the 
problem domain which have no computational utility in themselves yet 
nevertheless play an important supporting role in the analysis of the 
program. Whether this is the case for a particular example or not, 
no assumption of an execution mechanism is necessary in order to infer 
exactly what the program can or cannot compute. This circumstance 
allows the attractive possibility of formulating analyses of logic 
programs as exercises in first order logical deduction which treat 
logic programs as object-level axiom sets. Thus the tasks of 
(a) computing individuals in the relations of interest (by execution), and 
(b) deducing more general properties of the programs which compute those 
relations (by deduction), closely coincide; this is just the consequence 
of identifying programs with axiom sets, and computations with deductions. 
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Some important questions "about a logic program which can be 
investigated by deductive analysis are the following :-

(i) is the goal solvable ? 
(ii) do the computed instances of the goal variables satisfy some 

given specification which is asserted independently of the 
program ? 

(iii) are the program's procedure definitions logical consequences 
of such a specification ? 

These questions address the issues conventionally referred to as 
(i) proof of successful termination, (ii) proof of partial correctness 
and (iii) proof of correct synthesis. /The latter interpretation of 
question (i) rests upon a relationship between solvability and successful 
termination which is explained in more detail in the next section./ 
It it now recognized that the logical formulation and investigation of 
such questions about logic programs cannot, in general, be satisfactorily 
accomplished using just clausal form logic. Proof of termination, for 
example, usually requires either an independent specification for the 
program or else an inductive axiomatization of its data structures; in 
either event the expression of this knowledge requires the construction 
of non-clausal sentences whose equivalent representations in clausal 
form would be wholly unmanageable. Likewise, verification and^synthesis 
require the standard formulation of FOPL in order to express their 
hypotheses in an intelligible way. 

The methodological importance of non-clausal logic suggests the 
need for practical non-resolution inference systems. It seems not 
too optimistic to conjecture that these may not need to be especially 
elaborate in order to admit feasible proofs about the properties of 
logic programs, since both the programs and their specifications just 
assert object-level facts about the relations of interest. In 
particular, moderate stylistic restrictions imposed upon the syntax 
of both programs and specifications may enable some relaxation of 
constraints such as completeness and hence allow inference systems 
somewhat simpler than traditional (and complete) natural deduction 
systems. Moreover, a convincing procedural interpretation of standard 
FOPL (if we possessed one) might provide useful insights into how best to 
control such inference systems in order to analyse programs efficiently. 
But these conjectures can only be tested by empirical investigation of 
a wide range of 'real-world' programs, and in the present state of 
knowledge it is not possible to say which methods for reasoning about 
logic programs will eventually prove to be most practical. 
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Having outlined the arguments in favour of standard FOPL as a 
language suitable for reasoning about the logical properties of logic 
programs, it is now appropriate to consider in greater detail how this 
language is actually employed for that task. Termination is the first 
property considered in detail, because it can be discussed without 
reference to the notion of a program specification; the ideas already 
presented about logic programs are a sufficient basis for the 
discussion. 

4.2 : TERMINATION OF LOGIC PROGRAMS 

The Termination Criterion 

An interpretation of familiar ideas like termination and 
correctness as applied to logic programs was firstly given by Clark 
and Tarnlund (16). Their termination criterion for a logic program 
solving a call to some n-ary procedure set for a relation r is expressed 
as a conjecture about the existence of individuals in that relation. 
To make this a little clearer, suppose that the program under 
consideration is required to compute, as output, instances of some 
variables x .../ x occupying certain argument positions of.a call 
to r, given, as input, particular instances t, ..., 2\ in the remaining 
argument positions. For simplicity of presentation, and without any 
loss of generality, it can be assumed that T,, .../ t.,x.m_, ..., x 

1 i l+l n 
are respectively associated with argument positions 1, n in J?. 
Then the program's goal will take the form :-

4 r(t , •••/ t.,x. ,, 
1 l l+l n 

If no restrictions are placed upon the choice of the input instances 
T^, ..., T^ then the termination criterion proposed by Clark and 
Tarnlund is expressed as the requirement that the formula :-
(vx. ... VX J ( 3 X . , 7 ...3 x)r(x.r ..., x j 

1 i 1+1 n 1 n 

shall be provable using the program's procedure definitions as axioms. 
If the above termination formula is provable from those procedures 
then this guarantees that some satisfying instances of the output 
variables •••/ X exist for any particular choice of the input 
instances T 2 \ . . /"Obviously the termination criterion has to be 
reformulated with a different quantification arrangement if a different 
input-output arrangement in the goal is required./ 
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Of course, the execution of the program also has the object of proving 
the existence of these satisfying output instances, but it should be 
noted that successful execution only provides the proof for one choice 
of the input instances (those quoted in the goal). a proof of the 
Clark-Tarnlund termination formula is therefore more general than a 
program execution in that it establishes a whole class of goals which 
are solvable using the procedure definitions. 

The justification for interpreting this analysis as a proof of 
termination is related to the completeness of resolution. For a proof 
of the termination formula establishes that the program is inconsistent; 
in which case the completeness of resolution ensures the existence of 
a refutation derivation, that is, a successfully terminating computation. 
This means that if the program is executed by a complete resolution 
interpreter then it must terminate successfully. The treatment of the 
termination problem for logic programs can be viewed as independent of 
an execution mechanism in the sense that it is indifferent to the choice 
of control strategy and hence td> the course of run-time behaviour. 

The question of whether or not a particular combination of source 
program and interpreter will jointly determine a terminating computation 
may be undecidable by the method above if the interpreter's search 
strategy is such that not all refutations in the search space can be 
generated. Prolog, for example, will not discover the obvious and 
immediate refutation for the source program 

4- set(x) 

set(x) 4- set(u:x) 

set(0) 4-

but instead will recurse indefinitely on the first procedure. This is 
because Prolog assumes by default that the recursive procedure must always 
be invoked in preference to the basis by virtue of their ordering in the 
presented text. The termination criterion formulated by Clark and 
Tarnlund is therefore a criterion for hypothetical rather than actual 
termination. It should also be observed that even when the interpreter's 
search strategy does not discard any refutations, the question of whether 
or not a given logic program will terminate is only semi-decidable using 
their method, since if it so happens that the program is consistent (and 
hence has an unsolvable goal) then an attempt to prove the termination 
formula must fail; in this event we cannot infer that execution-must 
terminate, since an unsolvable program could well execute indefinitely 
rather than terminate unsuccessfully. Fundamentally this uncertainty' 
about the behaviour of such a program arises from the undecidability of 
FOPL. 
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In his paper with Tarnlund, and elsewhere, Clark has advocated 
the explicit axiomatization of the data structures which programs are 
required to process. As well as making assumptions about the data 
types explicit, this also provides a useful logical basis for either 
run-time or compile-time type-checking. Additionally, it forms an 
important part of the Clark-Tarnlund approach to termination proofs. 

As an example, consider the problem of symmetrically embedding 
one palindrome in another to produce a third palindrome. For instance, 
x = (c,d,c) can be embedded symmetrically in y = (a,b,b,a) to give 
z = (a,b,c,d,c,b,a). In the previous chapter it was shown that 
palindromes could be represented concretely by terms of the form 
t(u,y,u) in which u is any element and y is a palindrome. The empty 
palindrome is represented by nil and a unit palindrome by u.nil where 
u is any element. A suitable set of embedding procedures is then as 
follows :-

embed (x,nil ,x) palin(x) 

embed(x,v.nil,t(v,x,v)) palin(x) 

embed(x,t (u,y,u) ,t(u,z,u)) palin(x) , palin(y) , palin(z) , 

embed(x,y,z) 

supported by the type-checking procedures 

palin (nil) 

palin (v. nil) 

palin(t(u,y,u)) palin(y) 
"'N 

The palin procedures form part of a first order Peano-like axiomatization 
which inductively generates the class of all terms defined to be of type 
'palindrome'. A complete axiomatization also requires, for closure 

palin(y) y=nil v (3v)y=v.nil v (3uy')(y=t(u,y',u), palin(y')) 

together with axioms for = over the relevant classes of terms 

t(u' ,y' ,u')=t(u,y,u) u'=u, y'=y 

v' ,y'=v.y v'=v, y'=y 

'Vnil=t(u,y,u) 
r^v.z=t(u,y,u) 

and an appropriate induction schema for all predicates on the defined 
class :-

fVP; ( (Vy)P(y) +?(nil), (Vv) P (v.nil) , (\tuy')(P(t(u,y',u))+P(y')) ) 
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Now suppose that termination is required for goals of the form 
4- embed(x,Pwhere P^ and P^ denote input instances. For example, 
the actual goal might be :-

4- embed(x,t(a,b.nil,a) ,t(a,t(b,t(c,nil,c) ,b) ,a) 

which is solved by the instance x:=t(c,nil,c) . Then the relevant 
termination formula for goals of this class is :-

(Vyz) ( 0x) embed(x,y,z) 4- palin(y) , palin(z)) 

and is required to be provable using the axiom set made up from the 
procedures for embed and palin in the intended program together with 
the axioms characterizing the data structures. Notice that this 
termination formula is a conditional formula because the instances 
for the goal's last two arguments are required to be restricted to the 
type 'palindrome'. If this proof succeeds then the program will 
terminate successfully with an output instance of xj if the proof 
fails then termination is undecided. 

Proving the Termination Formula ' 

The Clark-Tarnlund method for proving termination begins by 
instantiating the induction schema in the data axiomatization with 
an appropriate instance of the termination formula. Using the 
example above, the instantiation proceeds by replacing every 
occurrence of some P(w) by the formula :-

(Vz) ( Qx) embed(x,w,z) 4- palin(w), palin(z)) 

The result of this is a rather lengthy first order axiom of the form 
c 4- w ^ o s e c o n s e c2 u e n t three antecedents are as follows 

C ; (\fyz) ( Qx) embed(x,y,z) 4- palin(y) , palin(z)) 

A^ : (\fz) ( Qx) embed(x,nil,z) 4 palin (nil) , palin(z)) 

A2 : ( (3x) embed (x,v. nil, z) 4- palin (v. nil) , palir(z)) 

A3 : (Vuy')( (\/z) ( Qx) embed (x, t (u,y' ,u) ,z) 4- .palin (t(u,y' ,u)) , 

palin(z) ) 

4- (\fz) ( Qx) embed (x,y',z) 4- palin (y'), palin (z)) ) 

It is required to show that the above axiom c 4 &2'a2/a3 to9et*ier 

with the Horn clause procedures for embed and palin logically imply 
the consequent formula c, which is. equivalent to showing that c is 
provable from the given axioms. This is accomplished by showing 
that the Horn clause procedures logically imply a , a~ and a?, which 



•100 

presents little difficulty. For example, the first Horn clause-
procedure for embed implies :-

(Vz) ( (^x)embed(x,nil,z) 4 palin(z)) 

(assuming that (\/z) ranges over a non-empty universe) , and this 
together with the assertion palin(nil) 4 implies :-

(Vz)( (3x)embed(x,nil,z) 4 palin(nil), palin(z)) 

which is just A^. Proof of A^ is similarly trivial, whilst the most 
laborious proof is that of A^; none of the proofs of A^, A^ and A 
encounters any conceptual difficulties. Proof of C is now immediate. 

Proving termination of a logic program in the manner above 
clearly requires the resources of standard FOPL in order to express 
concisely both the termination formula and the induction axiom, as 
well as the sentences making up the proof itself. Although the 
proof may be quite easy it will normally require inference rules 
rather more elaborate than resolution in order to be practical. 
This observation confirms the need for convenient inference rules 
for manipulating standard FOPL formulations of program properties. 

Later on it will be shown that logic program termination can 
be investigated by a rather different method from that shown above, 
although the basic notion of proving the termination formula remains 
the prime objective; rather it is the axiom set underlying the proof 
which is different in the alternative approach, employing axioms 
comprising a specification in place of axioms comprising executable 
procedures. However, the concept of a specification also underlies 
the tasks of verifying and synthesizing logic programs and so, being 
of central importance to several strands of logic programming 
methodology, is now discussed in a new section. 

4.3 : SPECIFICATION OF LOGIC PROGRAMS 

Logic as a Specification Language 

The use of logic for specifying programs was first demonstrated 
rigorously by Floyd (25), who attributed the underlying ideas of his 
use of logic to Perlis and Gorn. The potential contribution of logic 
to both the theory and practice of computer programming had also been 
previously recognized by McCarthy (59). At the present time, FOPL is 
frequently used by computer scientists to specify formally the properties 
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of programs; yet programmers as a whole make little use of logic, 
being unconvinced of its efficacy for significant programs. 
Reservations about logic as a specification language are in any case 
occasionally expressed by computer scientists themselves. Liskov 
and Zilles (54), for instance, suggest that axiomatic specifications 
for significant problems will be inherently incomprehensible and 
difficult to compose, although they do not offer evidence for this view. 
Noonan (68) also asserts that logic is impractical for specifying programs 
which manipulate non-trivial data structures; instead of logic he chooses 
a bnf grammar notation in order to specify a simple parsing problem, but 
achieves a much less satisfactory result than Kowalski's treatment (49) 
of parsing using Horn clause logic. 

The objections to logic raised by the authors cited above appear 
to focus on alleged shortcomings in matters of style, rather than on 
questions* of whether or not logic is theoretically capable of specifying 
all programs. Their objections can be countered by adopting logical 
styles which are less formal in appearance and more imaginative in 
expressiveness than the styles often employed in the objectors' own 
examples. 

More serious criticisms of logic as a specification language 
have been advanced by Hewitt, McDermott and others, who consider it 
unsuitable for specifying programs which behave as though they were 
modifying their own specifications. These objectors have in mind the 
kind of program typically used by researchers in artificial intelligence 
where the program's logical competence is governed by an axiomatic data 
base susceptible to modification as execution proceeds; altering the 
data base may alter the universes of facts which the program can and 
cannot prove and refute, so that the notion of an invariant specification 
here seems to have little utility. This problem of logic's 
'monotonicity' will require much investigation before its seriousness 
can be properly assessed; but it is certainly an inconsequential problem 
for most mundane programming purposes at the present time. 

The Meaning of Logic Program Specification 

The way in which a conventional program (by which is meant an 
Algol-like program) is typically specified in logic is rather less 
general than the way in which a logic program will be specified. When 
a conventional program is specified with the usual intention of 
establishing a proof of correctness, the specification expresses a 
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requirement that, if execution begins with some predicate i(a , .... a ) 
1 m 

holding upon the initial states a , ... and a of some input variables X,, 
1 m 1 

... and x , and subsequently terminates, then a predicate r(a_, ..., a ) 
m I n 

will hold where a , ... and a are the final states of output variables 
m+1 n 

... and X^. If the program satisfies this requirement then it is 
said to be partially correct with respect to i and r. Proving partial 
correctness requires a preliminary axiomatization of all those program 
statements which may influence, directly or indirectly, the final states 
of Xjn+j' *** ' by a proof based upon that axiomatization 
that the input-output relation described above will be satisfied. Thus 
the conventional program-proving paradigm confines its analysis to one 
input-output arrangement for the arguments of the computed relation r. 

Specification in logic programming refers to the axiomatic 
definition of the computed relation r which some procedure set for r 
is required to compute, and does not assume any particular arrangement 
of input and output for the arguments of that relation. Whereas 
successful execution of a conventional program as described above 
computes instances a ,, ... and a from input instances A., ... and A 

mil n 1 m 
so as to satisfy the predicate r(a., ..., a ,a ..., a ) , execution 

1 m m+1 n 
of the analogous logic program solves the particular goal :-

+ r(a , ..., A ,X ..., x ) 
1 m m+1 n 

by invoking procedure definitions capable of computing n-tuples of r. 

The logic programming analogue of the imposition of an explicit 
input condition i (a., ..., a ) could be a procedure call to i included 

1 m 
in the goal as follows :-

+ i(a , ..., A J , r(a , ..., A ,X , ..., x ) 
--1 m l m m+1 n 

whose execution will firstly invoke procedures for I to verify the 
input instances and then initiate the investigation of.the principal 
relation r. Alternatively, a call to i could be incorporated in 
each of the procedures for R, thus restricting the class of n-tuples 
which they were able to compute. These alternatives correspond 
respectively to performing input-checking once before initiating the 
main computation and performing it only at the times when it is 
immediately needed for computing individuals in r. Robert Kowalski 
has pointed out yet a third possibility of investigating the computed 
relation r contingent upon an assumed input condition J. Instead of 
arranging that calls to I occur in the program text, the program property 
of interest is now expressed by the formula :-

( r(a , ..., A ,X , ..., X ) <~ i (a , ... , a ) ) 
1 m m+1 n 1 m 
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Then the assumed input condition appears in theorems about the 
program rather than in the program itself. 

Irrespective of whether or not some input condition is 
incorporated in a logic program, specification in logic programming 
is concerned solely with defining a relation R by some axiom set S, 
with the understanding that any program's set P of procedure 
definitions conforms to S (or, equivalently, is partially correct with 
respect to S for relation R) if and only if every n-tuple computable 
from them solving the goal 4- R does indeed belong to R as defined 
by S. It must be emphasized that specification in this sense is 
therefore associated with a set P of procedure definitions rather than 
with an entire (goal-containing) program. This distinguishes our 
approach from conventional program specification which is confined 
to deal with just one particular choice of input and output variables. 
Our approach benefits from the fact that, once the set P of procedure 
definitions is known to be (partially) correct, this knowledge is 
unaffected by the subsequent choice of goal; S then specifies a whole 
class of programs exhausting all 2n possible permutations of the goal's 
input-output arrangement. This is just a consequence of the input-
output non-determinism of logic procedures. 

The Need for Independent Specifications 

The underlying motivation of proving logic programs to be correct 
in the sense described above is to ensure that they truly capture our 
computational intentions. Of course, many simple logic programs can 
be regarded as self-evidently correct in that they describe the 
relations which they compute more plausibly than any other descriptions 
which we could formulate, other than by explicit enumeration of all the 
individuals in those relations. However, for most non-trivial programs 
it is not easy to immediately perceive by inspection of their texts 
that they do indeed correctly formulate our intuitive understanding of 
the problems of interest. In such circumstances it is necessary to 
construct a most-plausible specification and then decide whether a 
given program conforms to it. The need for such a specification 
prevails in logic programming to no less an extent than it does in 
conventional programming, notwithstanding the fact that logic programs 
possess an extremely useful declarative interpretation. For 'this 
reason there is little utility in the idea that logic programs might 
be 'self-specifying'. 
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Despite the argument above, there remains the interesting 
question of whether a given program - or, more precisely, a given set 
of procedure definitions - might usefully be regarded as a plausible 
specification for some other program, possibly more subtle in its 
logic, intended to compute the same relation. Consider, for example, 
the procedure set below, in which we identify the relation R with the 
relation named by the predicate reverse :-

reverse (nil,nil) •*• 

reverse(u.x,y) 4 reverse(x,z), append(z,u.nil,y) 

append(nil,y,y) 4 

append(v.z,w,v.y) 4 append(z,w,y) 

Let P denote this set of procedures. Then P could be said to 
implicitly 'define' the relation R* = i(x,y) J P \- reverse(x,y)}, 
which is the set of all 2-tuples computable from P by making calls 
to reverse. This set might be regarded as a self-evidently correct 
specification of the relation reverse holding between two mutually 
reversed lists, in which case we would identify R* with reverse. 
Now consider another procedure set P' capable of solving calls to 
reverse :-

reverse(x,y) 4 append(x,y,z), palin(z), 

append(y,x,zr), palin(z') 

append(nil,z,z) 4 

append(v.x,y,v.z) 4- append(x,y,z) 

palin(nil) 4 

palin(u.nil) 4 

palin(u.x) 4 append(x',u.nil,x), palin(x') 

Implicitly P' defines the relation R** = {(x,y) | P' j- reverse(x,y) }, 
which is the set of all 2-tuples computable from P' by making calls 
to reverse. An interesting question now arises as to what 
relationship obtains between R* and R**. In particular, if P is 
intended as a specification for P' then we require thz.t R* shall 
include R**, in order that any 2-tuple computable from the specified 
procedure set P' shall belong to the relation specified by P. In 
fact it can be shown that R* and R** are identical. 

It would be pleasing to be able to investigate the relationship 
between R* and R** above using just object-level deduction, treating 
the procedures in P and P' as axioms for this purpose. Unfortunately 
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it can be shown that this axiom set would not be sufficient in that 
respect, because P does not comprise a complete object-level definition 
of the reverse relation; this fact holds even though P is capable of 
computing every 2-tuple in that relation. As an example of the 
insufficiency of P, observe that it does not admit any object-level 
deduction which decides whether or not the 2-tuple (a.nil,nil) belongs 
to reverse. P implies neither reverse(a.nil,nil) nor ^reverse(a.nil,nil). 

This shows that P does not define at object-level the exact membership 
of the relation whose individuals it is capable of computing. Hence 
object-level deduction will not be sufficient to decide whether or not 
an arbitrary 2-tuple, such as might be computed from P1, belongs to 
the relation specified by P. P is therefore not an adequate 
specification for P' if the relationships between them are to be 
investigated using object-level' deduction only. A proof that R* and R** 
are equal can be deduced at meta-level by formulating meta-theorems 
expressing what P and P' are capable of computing. 

Establishing whether or not a logic program conforms to a 
specification is just one of many tasks to do with reasoning about 
programs which we would like to pursue by logical deduction. The 
insufficiency of an axiom set like P above obstructs these tasks as 
well as verification. Consider, for example, the question of-' 
whether or not there is any computational redundancy in the behaviour 
of a program having the goal :-

4 reverse(x,y), reverse(y,x) 

Suppose that P is treated as the only knowledge available about the 
reverse relation. In that case there is no object-level deduction 
using P as the sole axiom set which establishes that reverse(x,y) and 
reverse(y,x) are equivalent; that is, there is no deduction which shows 
that P implies the following theorem about reversez-

(Vxy)(reverse(x,y) reverse(y,x) ) 

By contrast, a reverse specification consisting of the axiom set ':- . 

reverse (x,y) 44 (3k) (length (x,k) , 

((\luij) (item(u,i,x) 44 item(u,j,y)) 4 i+j=k+l)) 

(3k)length(x,k) 4 

trivially implies that theorem by simply instantiating y:=x and then 
invoking the fact that every list x has a length k. Then a further 
trivial deduction shows that the goal above is equivalent to 

reverse(x,y) . 
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The significant feature of the reverse specification just 
presented is that it contains an if-and-only-if definition of the 
predicate reverse(x,y), and therefore contains more information about 
the reverse relation than is provided by P. For instance, assuming 
that the meanings of item and length were also specified for terms 
constructed from . and nil, it would be adequate for deducing at 
object-level that the 2-tuple (a.nil,nil) did not belong to reverse. 
Moreover, given also suitable specifications for append and palin it 
would be adequate for deducing the partial correctness of p' for the 
reverse relation. A central feature of logic specifications, then, 
is that by the use of if-and-only-if definitions of the specified 
relations they assert more object-level knowledge about those relations 
than do the conforming programs which compute those relations. 

Specification Style 

Logic program specifications underlie most of the material 
presented here concerning reasoning about logic programs, and so it 
is useful to consider now some of their desirable properties other 
than the minimal technical requirement of completely defining the 
relations of interest. Briefly, we require that they should be 
unbiased towards particular kinds of computational behaviour, 'should 
employ as little recursion as possible and should allow the 
definitions of subsidiary relations to be specified separately from 
the definition of the primary relation of interest. These features are 
considered in turn. 

Non-computational Disposition 

Since a specification is naturally regarded as the most 
authoritative knowledge about the relation under consideration,, it 
is important that it should be sufficiently clear in its import to 
be treated as self-evidently correct. Its correctness may, of course, 
be more evident to some persons than to others, since clarity is a 
subjective matter and depends upon personal intuitions. Nevertheless 
it seems reasonable to require that specifications should be free of 
idiosyncratic features which anticipate special behavioural properties 
of programs designed to conform to them, since such arrangements tend 
to obscure essential logical content. Generally, then, the style 
of axioms comprising specifications is disposed towards naive 
declarative assertions about the problem domain which take no account 
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of specific algorithms known to be effective for that domain. 

An immediate consequence of this recommendation is that 
specifications and programs conforming to them will not usually share 
close logical proximity, in the sense that the task of showing that 
they both deal with the same relation may be a considerable undertaking 
of logical deduction. The reasons for this are two-fold. Firstly, 
there may exist no known algorithms which are effective for the 
problem except those which exploit comparatively 'deep' theorems 
about the problem domain. Secondly, even if a useful algorithm 
only exploits theorems easily deducible from the specification, it 
may be the case that the limitations of the interpreter's control 
strategy demand the use of rather subtle logical representations of 
those theorems such as were exhibited in the earlier chapter dealing 
with logic programming style. 

Consider as an example the problem of showing that some given 
element u is the minimum member of a given set x. Representing the 
sets in question by terms constructible from : and 0, the required 
min relation can be specified with reasonable clarity by the axioms :-

min(u,x) 4-> uzx, lowerbound(u,x) 

lowerbound(u,x) (\tv) ( u£v 4 vzx ) 

uzx 44 Qvx') ( x=v:x', (u=v v uzx') ) 

where min(u,x) holds if u is the minimum member in x and lowerbound(u,x) 
holds if u is a lowerbound for x. The membership relation over the 
chosen class of terms has to be defined recursively in the third axiom. 
These axioms about the problem domain jointly constitute a 
specification for procedure sets intended for solving calls to min. 
The elementary relations = and < are assumed to be implicitly 
axiomatized, and any calls to them which might appear in conforming 
procedures are assumed to be directly executable by the interpreter. 
Now the simplest procedure set which conforms to the specification 
and employs no predicates other than those already introduced is :-

min(UfX) 4 uzx, lowerbound(u,x) 

uzu:x' 4 

uzv:x' 4 uzx' 

lowerbound(u,0) 4 

lowerbound(u,v:x') 4 u^v, lowerbound(u,x') 

Each of the procedures above asserts a quite obvious fact about the 
problem domain and can be shown to conform to the specification by 
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pursuing some quite trivial deductions. - Now in practice this is 
not the procedure set which we would employ with a Prolog-like 
interpreter to deal with all possible calls to min. If both 
calling arguments are given as input then the computation is quite 
satisfactory and behaves as a sequence of two essentially iterative 
tests - the first to confirm membership of the given element and the 
second to confirm the element as a lower bound. Suppose instead 
that the procedures were used to discover the minimum of a given-
set. Then the computation would, in general, be very inefficient, 
since each time some member selected from the set was shown not to 
be a lower bound, the ensuing backtracking would discard all the 
comparisons made between that member and the others even though those 
comparisons could assist subsequent computation. 

A more subtle procedure set for solving calls to min is as 
follows :-

min(u,u:0) -f-

min(u,v:w:xr) v<w, min(u,v:x') 

min(u,v:w:x') w<v, min(u,w:x') 

These procedures give excellent behaviour with Prolog-like control 
for both discovery and confirmation of minima of given sets, yet 
are not immediately obvious consequences of the specification set. 
To deduce that this procedure set conforms to the specification 
the transitive property of < has to be exploited in a not altogether 
trivial way and results in some quite untidy proofs. However, this 
does not detract in any way from the choice of specification; the 
task of verifying useful but subtle programs using naive specifications, 
difficult as this may be, must be viewed as a natural part of the 
programming process. 

# a 

Non-recursiveness 

Another desirable feature of specification style is the minimal 
use of recursiveness. Recursiveness cannot always be avoided because 
some relations are only capable of inductive definition. The e relation 
over terms used in the min example above is such an instance. The 
objection to recursiveness in an axiom specifying seme relation is that 
its definiens is not completely comprehensible until the axiom as a 
whole has been understood, which just re-invokes the same difficulty. 
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In cases where recursiveness is unavoidable it is useful to confine it, 
if possible, to the axioms specifying the more primitive relations in 
the specification set. Thus, in the min example the min and lowerbound 
relations were defined ncn-recursively, whilst the primitive z relation 
employed in their definitions was the only recursively defined relation. 
As a further example, consider the subset specification below which 
holds over sets represented by terms :-

subsetfx, y) 44 x=0 v Qux') ( x=u:x', uzy, subset (x' ,y) ) 

uzx 44 C3vx')( x=v:x', (u=v v uzx') ) 

These sentences do not provide an especially convincing account of 
the subset relation, and are more appropriately regarded as a 
computational description of how to solve a call to subset using an 
incremental algorithm; the first sentence clearly anticipates the 
familiar procedures for subset :-

subset(0,y) 4 

subset(uzx',y) 4 uzy, subset(x',y) 

The more natural specification of subset replaces that first sentence' 
with a non-recursive one :-

subset (x, y) 44 (Vu) ( uey uzx ) 

which captures the essential meaning of subset in the least obscure way. 
The preference for the non-recursive subset definition is not only an 
aesthetic one. It so happens that the recursive alternative contains 
less object-level information than the latter even though it trivially 
implies useful subset procedures. In some investigations of set 
properties it has to be augmented by an induction schema for the class "" 
of terms constructible from : and 0 ; there are several examples in the 
paper by Clark and Tarnlund (16) in which an induction principle has to 
be summoned in order to strengthen recursive specifications like that 
above for subset. 

Use of Primitive Relations 

A logic specification S for some relation R will be permitted 
to define R relative to some set of primitive relations whose own 
specifications are not contained in S . More precisely, if S is an 
axiom set comprising a specification for R and refers to some other 
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relation R' whose own membership is not determined by S, then R' is 
said to be a primitive of S. This does not preclude the possibility 
that S might assert some general properties of R'. The specification 
recently considered for the min problem contained examples of such 
primitives, namely = and The memberships of min, lowerbound and e 
are undetermined in the specification set S :-

min(u,x) uex, lowerbound(u,x) 

lowerbound (u ,x) *-> (\fv) ( u4v 4- vex ) ' 

uex •<-> (3vx')( x=v:x', (u=v v uex') ) 

because the memberships of = and ^ are also undetermined by S. 
However we may say that S specifies min relative to = and ^ in the 
sense that the meaning of min is dependent upon whatever meaning is 
assigned to those primitives. 

In composing a specification set, then, it is not insisted 
that sufficient information shall be included in it to determine 
a non-empty denotation for the specified relation. /The denotation 
of n-ary R in S is the set {(xn, ..., x ) I S [- R(x^, ..., x ) } .7 

I n 1 1 1 n • - . 

At this point the reader would be justified in questioning the purpose 
of allowing a specification for R to define R relative to some set 
of primitives rather than defining it absolutely; it would seem 
valid to argue that a proper specification for R should at least 
determine which members belong to R. The counter-reply to this is 
that the meanings of the primitives in terms of which R may be 
defined are sometimes wholly irrelevant to the task of creating or 
verifying procedures for R. For example, consider the following 
specification S for Kowalski's go* relation 

go*(x,z) -*-»• (go(z) 4- go(x)) 

We might wish to use some procedure set for go* for the purpose of 
finding paths in a graph represented by a set of go* assertions, each 
one asserting a particular arc in the graph. Now a sufficient 
procedure set for this purpose is 

go*(x,x) + 

go* (x,z) 4-go*(x,y), go*(y,z) 

which conforms to S independently of the meaning of the specification's 
primitive go relation. So in this example there would be no point in 
providing knowledge about the members of go. 
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The question of whether or not it is necessary to specify 
particular meanings for the primitives in some specification depends 
entirely upon the task to which the specification is applied. For 
instance, the above set of three axioms respectively defining the 
relations min, lowerbound and z, together with some implicit 
properties of =, is sufficient to deduce the partial correctness of 
the min, lowerbound and z procedures used for the naive min algorithm. 
This holds irrespective of whatever meaning might be attached to the 
primitive On the other hand, the set of three min procedures 
for the more subtle algorithm cannot be deduced to conform unless the 
specification set is extended to include an assertion that ^ is 
transitive; this assertion restricts the meaning of < in the 
specification, although it will still be primitive. 

It may be useful to summarize this discussion about primitives 
by simply saying that in order to show that a procedure for r conforms 
to a specification s , it is not generally necessary that s should 
determine the membership of r; this is why the meanings of primitives 
may be inconsequential. It is important to realize that an individual 
procedure for r just asserts some property of r (for instance, the 
property of transitivity of go*), and this property may transcend 
consideration of the precise membership of r. Note in particular 
that the computationally useful go* procedures say nothing about specific 
individuals in the go* relation, the choice of which is wholly 
unconstrained; this is why they are consistent with - and logically 
independent of - any choice of graph-defining set of go* assertions. 

4.4 : VERIFICATION OF LOGIC PROGRAMS 

The Partial Correctness Criterion 

The concept of correctness as applied to logic programs was 
first investigated by Clark and Tarnlund (16). They defined a set p 
of procedure definitions intended for computing some n-ary relation r 
to be partially correct with respect to some 'axiomatic definition' a 
if and only if every n-tuple which they compute to solve any goal 4 r 
satisfies the definiens of r in A. Their 'axiomatic definition' a 
broadly corresponds to what has been described in earlier discussions 
herein as a 'specification set'. If the set p of procedure definitions 
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also satisfies the termination criterion for some class of goals R 
then it is defined to be totally correct with respect to A for that 
class. 

The style of the Clark-Tarnlund formulation of correctness can 
be shown by considering the familiar subset relation. Suppose that 
the axiomatic definition A for the subset relation over terms is as 
follows :-

subsetCx,y) 44 x=0 v (3ux')( x=u:x', uzx, subset(x',y) ) 

uzx 44 (3vx')( x=v:x', (u=v v uzx') ) 

and that the procedure set P whose correctness is in question is :-

subset*(0,y) 4 

subset*(u:x',y) 4 uzy, subset*(x',y) 

uzu:0 4 

uzv:y 4 uzy 

Allowing A to be the authoritative specification of the subset 
relation, a proof that any 2-ttiple computable from P as a solution of 
a call to subset* will indeed belong to subset as specified by A is ' 
a proof of the partial correctness of P with respect to A. Clark 
and Kowalski (14) have shown that correctness of P can be expressed 
and investigated either at object-level or at meta-level. Reading 
P and A as conjunctions of formulas rather than sets, the requirement 
at object-level is that of proving that the sentence :-

(Vxy)( subset(x,y) 4 subset*(x,y) ) 4 p,a 

is valid. This sentence can be interpreted as the analogue of the 
'verification condition* in conventional program proving. It ought 
to be mentioned here that in an unpublished report by Clark and 
Kowalski a discussion is given of another example (a verification of 
a quick-sort program) which suggests that they would prefer to have 44 
in place of the left-most 4 in the above verification condition .for 
the subset* procedure set. However, that stronger requirement would 
not be necessary in order just to establish the partial correctness of 
P. The significance of using 44 instead of 4 is that the sentence 
will then require that a consequence of P and A is that any 2-tuple 
in the subset relation as specified by A must be computable from 
some call to subset* solved by P ; that is, P,A will imply that the 
specified relation {(x,y) | a |- subset(x,y) } is equal to - rather than 
merely includes - the computed relation {(x,y) | P j- subset*(x,y)}. 
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When this is so, the two subset* procedures constitute a complete 
procedure set for the subset* relation as specified by A through the 
identification of subset* with subset', the set is complete in the sense 
that, when placed in union with a similarly complete procedure set for e, 
the result (P) is capable of computing all individuals in the specified 
relation. 

A somewhat neater expression of the partial correctness criterion 
is given in the meta-language. The criterion here is that the 
sentence :-

(Mxy) ( (A |- subset* (x,y)) 4 (p f- subset(x,y)) 

should be a meta-theorem, in which case P is partially correct with 
respect to A. Again, one can strengthen this criterion by replacing 
the connective by 44 , which then adds the requirement that P is 
complete with respect to A; but this property is not necessary for 
partial correctness. 

Proving the Partial Correctness Criterion 

Two quite distinct approaches to logic program verification have 
so far been researched and published in detail. These can be 
distinguished informally by saying that the first one treats the' 
procedure definitions and the sentences specifying the computed 
relation as axioms and pursues a proof of the object-level verification 
condition as a target theorem, whereas the second one seeks to prove 
the procedure definitions as target theorems using just the specification 
as the axiom set. Both approaches generate object-level proofs which 
establish that the procedure set satisfies its partial correctness 
criterion for the given specification. 

The first approach is demonstrated in the Clark-Tarnlund paper 
which presents object-level partial correctness proofs for two logic 
programs (ordered-tree-insertion and quick-sort). As with their 
treatment of termination proofs, they appeal to an induction schema 
associated with data structure axiomatization in order to prove the 
relevant object-level verification conditions. Proofs of the 
corresponding meta-level verification conditions do not appear to have 
been published, although Clark and Kowalski have affirmed that these 
are structurally similar to those employed at object-level other than 
in the way they invoke induction principles. 
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Considering again the subset example examined above, object-
level proof of partial correctness proceeds quite easily by exploiting 
the following induction schema for the class of terms chosen to 
represent sets :-

(VP; ( (Mx)P(x) 4- ?(0) , (Vvx')( P(v:x') 4- P(x') ) ) 

The appropriate instance of P chosen for the proof is :-

P(x) (Vy; ( subset(x,y) 4- subset* (x,y) ) 

and the general structure of the ensuing proof of the object-level 
verification condition :-

(Vxyj ( subset(x,y) 4- subset*(x,y) ) 4- p,A 

is then very similar to the inductive termination proofs, using the 
subset* procedures, the subset specification and the instantiated 
schema as axioms. 

The inductive proofs of termination and partial correctness 
developed by Clark and Tarnlund have the disadvantage of becoming 
extremely cumbersome for non-trivial examples. Furthermore it is 
easy to find cases which do not seem to fall naturally within the scope 
of their method. For instance, the verification condition :-

(Vxz)( go* (x,z) 4- go* (x,z) ) 4- P,A 

cannot be proved at object-level from the axioms 

P : go*(x,x) 4-

go*(x,z) +go*(x,y), go*(y,z) 

A : go*(x,z) -«-> (go(z) 4- go(x)) 

even though A trivially implies the reflexivity and transitivity of go*. 
Here there appears to be no obviously useful way of strengthening 
the axioms with an inductive characterization (constraining the go 
relation, for instance) for the data structures (graphs) to which P 
will be applied. 

Quite apart from these failings, the inductive approach to the 
verification of logic programs fails to provide a satisfactory 
clarification of the important logical relationships between programs, 
their specifications and their data structures. In view of this, it 
is fortunate for logic programming methodology that there exists an 
alternative way of investigating the correctness criteria for logic 
programs which :-
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(i) dispenses with the cumbersome and slightly confusing role 
of inductive data structure characterization; 

(ii) admits an intuitively more satisfying logical relationship 
between programs and their specifications; 

(iii) allows more manageable proofs of partial correctness; 

and (iv) provides an attractive unification of the meanings of 
verification and synthesis. 

This approach was researched independently but contemporaneously by 
Hogger (38) and by Clark(12), and has since been applied - albeit 
in differing styles according to its various proponents - for both 
verification and synthesis of a wide range of programs. 

The alternative approach assumes, as before, that a specification 
set is available to define the n-ary relation R of interest. Let 
this set now be denoted by S rather than A, since it will be assumed 
that S possesses the stylistic features of specifications advocated 
in the previous section. (The 'axiomatic definitions' A typically 
used in the Clark-Tarnlund paper do not possess these features; on 
the contrary, they are highly recursive and computationally biased.) 
Now suppose that T is any sentence logically implied by S , that is, T 
is a theorem provable using S as an axiom set (these notions being 
equivalent in FOPL). Then T is a theorem about the problem domain's 
relations described in S; if S correctly describes the properties of 
the problem domain, then so does T. In particular, let P be a set 
of procedure definitions each of which is an example of such a T. 
If P computes some n-tuple £ in response to a goal R, then we must 
have P |- R(%) by virtue of the correctness of resolution (provided 
that this is realized in the interpreter which computes £). In 
that event we must also have S |- R(^) , because S J- P by assumption 
and f- is transitive. Therefore R(%) must be a theorem about Rtj. . " 
which is to say that £ belongs to R as specified by S. To summarize 
this reasoning, it suffices to say that if the procedures in P compute 
a solution £ to the goal R, and if S \- P , then £ belongs to R as 
specified by S. Now if this holds for all n-tuples £ computable by P 
in response to any goal -«- R, then the partial correctness criterion 
is clearly satisfied; for this is all that the criterion requires, 
namely that every computed solution is a specified solution. 
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It might not be too presumptuous to say that this simple but powerful 
concept is one of the most important ideas to have emerged so far from 
research in logic programming methodology, since it not only provides 
for a satisfactory way of verifying programs, but also gives the means 
for deriving them. 

Termination can also be investigated by using this logical 
relationship between S and P. For suppose that the deduction of P . 
from S is accomplished in such a way as to guarantee that P comprises 
a complete procedure set for P. Then all goals <rR which are solvable 
usipg P are solvable using S and vice versa. Therefore all the 
computations initiated by those solvable goals must terminate, 
provided that the interpreter's control strategy does not disallow 
the generation of any refutations. To establish termination it is 
sufficient to show that S implies the existence of solutions to the 
goals in question, which may be much easier than the alternative of 
showing that P implies their existence (which is the CIark-Tarnlund 
method). 

To make these ideas more concrete it will now be useful to 
revisit the subset example and examine the correctness proof of the 
procedure set P 

subset(0,y) + 

subset(u:x',y) uzy, subset (x' ,y) 

using the most natural sentences specifying subset over terms 
X 

S : subset (x,y) (\/u) ( uzy uzx ) 

uex (3vx')( x=v:x', (u=v v uzx') ) 

which are presumed to assert self-evidently correct facts about the 
subset and z relations. It may also be assumed that S implicitly 
contains an axiomatization of =. Now it is very easy to show (by 
making a definiens substitution for uex in the sentence defining 
subset and simplifying the result in two alternative ways) that 

S |- (Vy)subset(0, y) + 

and S (Vux'y) (subset(u:x' ,y) uzy, subset(x' ,y)) 

which is sufficient to confirm that p is partially correct for subset 
with respect to S; that is, every 2-tuple £ computable from P will 
satisfy S subset(K). Moreover, it is equally easy to deduce from 
S the stronger result 
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S (\fxy) (subset(x,y) x=0 v Qux') (x=u:x' ,uzy,subset(x' ,y))) 

from which it immediately follows that P exhausts all possible ways 
of solving a call to subset, and is therefore a complete procedure 
set for subset. Now suppose that a complete program body P* is 
composed from the union of P with some complete procedure set P' for 
the e relation. Then every 2-tuple £ satisfying S J- subset(E,) 

will also satisfy P* J- subset (E,) , that is, will be computable 
from P* by a successfully terminating computation. If there exists 
a class of goals subset (x) for each of which S implies the 
existence of at least one solution E,, then any program consisting 
of the body P* and a goal in that class must terminate in execution 
and hence be totally correct for subset as specified by S. Note 
that a proof of that program's total correctness for subset as 
specified by S does not require investigation of the partial 
correctness of the assumed procedure set P' for e - it is only 
necessary that P' should be complete for e. 

None of the proofs alluded to above for proving the partial 
correctness of P require the kind of inductions customarily 
considered essential (in one guise or another) for the axiomatization 
of classical flowchart programs containing loops. Loops are a 
major problem in conventional program proving but have no special 
status in the logic programming formulation of verification. Thus 
the claim by Reynolds and Yeh (71) that "induction is the only technique by 
which programs can be verified" is not true of logic programs. Manna 
and Waldinger (60) also conjectured that synthesis of loop-containing 
programs could not be accomplished without induction, and a similar 
stance is taken by Spitzen and Wegbreit (78)j it will be seen presently 
that this view, too, does not hold for logic programs. 

There would seem to be two facets to a possible explanation of 
the fact that logic program verifications and syntheses can avoid 
induction (at least, in all examples examined so far), although it uiay 
be that those facets are not mutually independent. Firstly we have 
the fact that verification which derives procedure definitions from a 
specification set (as just discussed above) will, in general, use a 
richer corpus of object-level knowledge for its axiom set than would 
be the case if the procedures instead were used as axioms for deriving 
properties of the specification. The latter is the case with the 
Clark-Tarnlund verification method and is approximately the position 
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also taken in conventional program verification? in both circumstances 
it is necessary to appeal to induction principles. Secondly we have 
the fact that logic programs contain no explicit control information, 
so that looping behaviour arises from the way in which the interpreter 
(a) processes recursive procedures and (b) performs iterative search 
through sets of procedures. The task of showing a procedure to be 
implied by its specification in a partial correctness proof is 
wholly indifferent to the way in which that procedure might be 
eventually executed. For instance, Kowalski's go* specification 
trivially implies the recursive go* procedure which expresses the 
transitivity of go* and which, with a typical control strategy, will 
generate looping behaviour; induction has no role to play here in 
confirming that the procedure is a true theorem about go*. Despite 
these observations, however, we do not yet possess a firm theoretical 
explanation of what role, if any, induction has to play in the task 
of reasoning about logic programs. 

4.5 : SYNTHESIS OF LOGIC PROGRAMS 

Synthesis by Procedure Derivation 

In the previous section it was suggested that the notions of 
verification and synthesis could be unified by the idea of showing 
procedure definitions to be implied by their specifications. When 
S and P are both given, the task of proving P from S just confirms 
that P is partially correct. However, if P is not initially given 
then that same task can be viewed as a synthesis, in that it results 
in the formulation of knowledge about the problem domain which was 
previously unfounded. Synthesis and verification then just connote 
differing motivations - discovery and confirmation - in the use of S 
to derive knowledge about that domain. 

Traditionally the term 'program synthesis' alludes to the task 
of creating a complete description of an algorithm. This is because 
the nature of most computational formalisms is such that they 
provide for the creation of programs whose texts do.indeed describe 
algorithms in almost complete detail. Logic programs, on the other 
hand, only contribute to the logic components of algorithms, even 
though their styles may be heavily disposed towards particular control 
mechanisms. Deductive derivation of procedures from specifications 



•119 

can be viewed as a process of program synthesis because the derived 
procedure sets together with arbitrarily chosen goals can be treated 
as source programs; this is a consequence of possessing interpreters 
capable of contributing the control components of algorithms. 

Because the correctness of derived procedures is independent of 
control information, their improvement can be pursued solely by the 
agency of logical deduction. If some given procedure set gives 
poor behaviour then it may be possible to use it as an axiom set in 
union with the original specification set in order to derive some 
new procedures which behave more satisfactorily. Thus the logic 
programmer who is equipped with a sound and practical inference 
system for FOPL can pursue both the synthesis and transformation of 
programs using a methodology which naturally preserves correctness 
until he eventually finds the optimal program for his intended 
interpreter. This freedom to develop the logical structure of 
algorithms using logical deduction and an intuitively correct set 
of initial axioms describing the problem domain is the outstanding 
feature of logic program synthesis. 

More generally, of course, the systematic incremental 
development of correct, clear and well-behaved programs has been the 
central ideal of modern programming methodology ever since Dijkstra's 
investigations of 'structured programming' (18) and its subsequent 
refinements by Wirth (89) and many others. However, despite the 
invaluable improvements which the structured programming era has 
wrought upon professional programming practice, attempts to fully 
realize its ideals in the use of conventional programming languages 
have not satisfactorily surmounted the problem of finding a practical 
way of associating knowledge about the problem domain with the kind 
of constructions which those languages typically provide for 
processing that knowledge. Because those languages do not possess 
a logical semantics, the programmer's task becomes estranged from 
the underlying logic of the problem of interest. Just the opposite 
is true of logic program synthesis; every step the programmer takes 
towards the development of the program involves him directly in the 
manipulation of theorems about the problem domain. 

Although deduction is a logically sufficient tool for creating 
logic programs from specifications (or from other programs), this tool 
requires intelligent control in order to be practical. Whilst the 
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use of deduction over the problem domain preserves correctness, it 
offers no guidelines about the computational usefulness of the 
theorems which it generates. Nevertheless this does not preclude 
the possibility that some computational intuitions may be reflected 
in the use of procedural styles imposed upon the presentation of 
that deduction. We already possess a convincing procedural 
interpretation of Horn clause logic which allows resolution derivations 
(which comprise just one kind of deduction) to be viewed computationally; 
when we are in a position to see that one such computation is more 
favourable in some respect than another we can then arrange that 
the control of the interpreter causes it to pursue the more favourable 
one. Likewise, in the course of deriving procedures from a 
specification using standard FOPL, it may be useful to have a 
procedural interpretation applicable to derived sentences which allows 
them to be assessed in terms of practical merit. For example, given 
a choice of pursuing derivations from either of two FOPL theorems 
about the problem domain, a procedural interpretation of those 
theorems might indicate that one was more likely to lead to practical 
Horn clause procedures than the other; deciding upon the progress 
of the derivation on the basis of this assessment is then just another 
instance of the exercise of intelligent control to guide a deductive 
formalism. 

The ideas expressed above underlie the style in which logic 
program syntheses are presented here. On the whole these are 
structured so as to resemble computational derivations; this 
assists the gradual transformation of wholly declarative theorems 
(that is, theorems which are almost meaningless from a computational 
point of view) into Horn clauses whose computational intent is clear. 
The formulation of logic program syntheses in a quasi-computational 
style is next explained in some detail. 

t 

Derivation as Quasi-Computation" 

In order to show how procedure derivations may be viewed as 
computations, it is useful to firstly examine a typical program 
transformation effected solely by deduction. Consider then the 
two procedures below which have been selected from the counting 
program discussed in Chapter 3 :-



count(u.x,w+1) 4 delete(u,u.x,y), count(yfw) 

delete(u,u.x,y) 4 delete(u,x,y) 

Now suppose that these are resolved by matching the delete literals; 
the resolvent, which is implied by the two parents, is then the 
sentence :-

count(u.x,w+1) 4 delete(u,x,y), count(y,w) 

This can be viewed as a derived procedure for counting the distinct 
members of list u.x. This deduction is a typical logic program 
transformation which preserves correctness whilst slightly improving 
computational efficiency. For if the original count procedure is 
replaced by the new one derived above, then solution of some call 
count(u.x,w) can begin by immediately deleting u from x and counting y, 
instead, as formerly, of firstly invoking the delete procedure to 
delete u from u.x. In other words, the use of the new procedure 
eliminates one cycle in the iteration which accomplishes the deletion 
of all occurrences of u from u.x. 

Now the derivation above can be presented in a goal-oriented 
style as follows. Suppose that the goal to be solved is 
4 count(u.x,w+1) and that the procedures available for solving it 
include the two original procedures given above. Then top-down 
execution of the goal gives the computation :-

4 count(u.x,w+1) 

4 delete(u,u.x,y) , count(y,w) 

4 delete(u,x,y), count(y,w) 

At this point in the computation it becomes apparent that the goal 
4 count(u.x,w+1) is solvable if the derived goal 4 delete(u,x,y), 

count(y,w) is solvable. From this observation it can be immediately 
inferred that the procedure :-

count(u.x,w+1) 4 delete(u,x,y), count(y,w) 

is a consequence of the original procedures. The goal-oriented 
derivation above is essentially an orthodox top-down logic program 
execution which has been suspended at some point in order to infer 
a new procedure, and could be implemented as a compile-time program 
transformation by appropriately controlling an ordinary resolution 
interpreter. 



•122 

A similar derivation style can be formulated for a program 
synthesis where the axioms comprise a specification set rather than 
a Horn clause procedure set. In this case r the derivation of a 
procedure for r likewise proceeds by showing that the goal •*• r is 
solvable by solving some goal -<- r , ..., r whose calls are all 

1 n 
atomic. Frequently the goal which immediately succeeds the initial 
goal in that derivation has the form -«- d , ..., d whose conjuncts 

1 m 
are arbitrary FOPL formulas rather than atoms, in consequence of 
using standard FOPL to specify r with a sentence 

r d. , ... , d 
1 m 

and then invoking this axiom in response to the initial goal. 
Clearly if at least one of D , ... and d is non-atomic then the 

1 m 
derivation of the desired Horn clause goal will demand inference 
rules other than resolution, and consequently may not be amenable 
to such a simple computational interpretation as that afforded to 
resolution derivations by the procedural interpretation of Horn 
clause logic. 

The computational nature of deductive procedure derivations 
from specifications treated as input axioms was observed by Clark 
and Tarnlund (16) in their treatment of verification, although they 
did not attempt to organize their proofs into the goal-oriented 
format of typical run-time derivations. (Considering the complexity 
of their verification conditions it is unlikely that such an attempt 
would have been very successful.) However, they did observe that 
some of the inferences could be interpreted as 'symbolic' executions 
of procedures with generalized arguments rather than arguments 
instantiated by individuals specific to particular problems. Clark 
and Tarnlund described such an execution as a 'slow mode' execution, 
producing generalized procedures which could afterwards be invoked 
in 'fast mode' to solve specific problems; this suggested the *" 
possibility that a logic interpreter might be designed to apply 
two control strategies - respectively slow and fast modes - to an 
input specification set together with some goal, such that the first 
execution provided procedures for solving the goal whilst the second 
used the procedures to generate the actual solutions. This would 
obviously be a much more powerful computational tool than existing 
logic program interpreters. 
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A significant feature of the counting example above is the fact 
that the derivation uses only procedures capable of solving calls to 
count and delete which are already known to be computationally useful. 
In other circumstances it is often necessary during derivations to 
exploit sentences wh'ich have no role in 'fast mode' execution (that 
is, sentences which would not normally be included in an executable 
program), but which nevertheless contribute important facts about 
the problem domain. A simple case of this can be found in connection 
with the pick problem which was also discussed in the last chapter. 
This is the problem of finding two members u and v in a given set z 
which satisfy u<v, in which case the predicate pick(u,v,z) holds. 
Suppose it is desired to derive procedure sets for solving calls to 
pick when the input sets of interest are represented by terms. A 
sufficient specification set for the purpose is then 

S : pick(u,v,z) •*-*• uez, vez, u<v 

uez (3vz')( z=v:z', (u=v v uez') ) 

Now it is easy to see that S trivially implies the procedures 

P^ : pick(u,v,z) uez, vez, u<v 

P^ : ueuzz' •*• 

P^ -* uevzz' uez' 

These are just the 'if-halves' of the equivalences in S. Note' 
that because, according to the specification, pick(u,v,z) can only 
be solved by showing UEZ, vez, u<v it follows that { P i s a complete 
procedure set for pick, whilst, by a similar argument, { P P ^ } is a 
complete procedure set for e. Jointly these procedures are sufficient 
for solving any solvable call to pick, albeit rather inefficiently. 
The ineffiency arises from the execution of a rather large number of 
superfluous calls to e. Nevertheless we have in { P P ^ , P^} a 
(partially) correct procedure set which can be used as a sound basis 
for further derivations even though it has some computational failings. 
An example is now given to support this assertion. 

Consider, then, the consequences of the 'only-if-halves' of the 
equivalences in S. In particular observe that the p±ck definition 
trivially implies the procedure-like sentences P , P c and P 

4 ^ o 
P , : uez •*• pick(u,v,z) 4 
P5 : vez pick(u,v,z) P z u<v pick(u,v,z) 

These do not form a useful adjunct to {Pj/ P2 / P3^ n o r m a ^ 
computational purposes, yet it will now be shown that they assist the 



derivation of a new procedure set which behaves more sensibly than 
the first one considered. This derivation employs, as an initial 
axiom set, the theorems in (P,, P o / P 0, P^, P^, Pg} all of which are known 
to be correct assertions about the problem domain (assuming s is). 
The goal to which they are applied is that of pick-ing u and v from 
a set w:z', and the symbolic execution of this goal proceeds as 
follows :-

pick(u,v,w:z') (initial goal) 
-J- uewzz', vewzz', u<v (after invoking Pj) 
4- uez', vez', u<v (after invoking P^ twice) 
4- pick(u,v,z') (after invoking P., P c and P-.) 

4 0 o 

From this a new procedure can be inferred for pick; it is :-

Py z pick(u,v,wzz') 4- pick(u,v,z') 

Now this derivation was not deterministic. For instance, the 
calls to £ in the second goal are processed there in such a way 
as to ignore the possibility that either u or v is the member w. 
There exists therefore another derivation which explores an 
alternative branch from that second goal which deals with the case 
where u is the first member w. This is depicted below, showing how 
P^ - instead of P - . is invoked in response to the first call of 
the second goal :-

•*- pick(u,v,wzz') (initial goal) 
4- uewzz', v£w:z', u<v (after invoking P ) 
4- u=w, vez', u<v (after invoking P^ and P^) 
4r vez', w<v (after simplifying by u:=w) 

The inferred procedure from this derivation is :-

P Q : pick(w,v,w:z') 4- vez', w<v 

o 

Note that if the first two calls to e in the second goal are 
processed respectively by invoking P^ and P^ instead of by invoking 
P^ and P^ as shown, then another procedure will, be inferred which 
deals with the only remaining branch from the second goal, namely 
that for the case where v is the first member w :-

Pq : pick(u,w,w:z') 4- uez', u<w 

The goal pick(u,v,w:z') can now be solved using the procedure 
set {py, pq, pg, p2 / pg } instead of the former set ipj' p2' 
This gives a modest improvement in efficiency when Prolog-like control 
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is used with procedures Pg and Pg scheduled at higher priority than Py. 
For example, solution of the goal 4 pick(u,v,4:3:2:1:0) generates 
just seven e invocations with this set, whereas twelve are generated 
in solving that goal with the previous set. 

This example has shown how deductive inference is sufficient for 
firstly deriving a program from its specification and then transforming 
it to give run-time improvement. In both cases it proved possible 
to employ a quasi-computational style which allowed the use of orthodox 
top-down resolution. Resolution is also sufficient for a number of 
other derivations concerned with the pick problem; for instance, if 
the specification set is extended to include an assertion that < is 
anti-symmetric (rather -than being just any binary relation) then it 
is possible to show by resolution that Py is implied by Pg and Pg in 
a theory which has S as its axiom set, the consequence of which is 
that Py need not be included in the pick program. (It is easy to 
show that in the algorithm suggested above using {.Py, Pg, Pg, PP^i 

the procedure Py is never invoked when the goal is solvable and the 
relation < is anti-symmetric.) 

When specification sets contain sentences which do not trivially 
imply Horn clause procedures, inferences other than resolution will 
usually be needed in order to derive the desired procedure set for 
the problem of interest. In such circumstances it can be 
helpful to imagine the non-clausal sentences with which they deal as 
being classifiable in much the same way as Horn clauses :-

R 4 assertion 

R4R ..., R conditional assertion 
1 m 

4 r , ..., R denial 1 m 

where R, R-, ... and R are arbitrary formulas rather than atoms. 
1 m 

Such sentences may then be assigned a procedural interpretation rather 
like that for Horn clauses. For instance, the sentence :-

4 (Vuv)( u<v 4 consec(u,v,x) ) 

is interpreted as a goal with one (non-atomic) call whose arguments 
are its free variables - in this case, just x. The goal expresses 
the objective of discovering instances of the variable x satisfying 
(Vuv)( u<v 4 consec(u,v,x)). Likewise, a sentence like :-

(Vuv) (consec(u,v,x) 4-y consec(u,v,x') v (u=u',v=v')) 

4 split (x,u' ,v' ,x') 



is interpreted as a procedure having a non-atomic procedure heading 
with arguments x, u', v', x' and a single atomic call in its body. 
Pursuing quasi-computations with sentences of this kind in the course 
of deriving Horn clause procedures from arbitrary FOPL specifications 
is the central problem confronting the logic programmer who requires 
formal proof that his programs are correct. The kind of inferences 
which can be useful for this purpose form the subject of the next 
chapter. However, the general style of these non-clausal derivations 
may be appreciated for the brief example below which derives a 
recursive procedure for the ord relation holding upon an ordered list. 

Specification Set : 

ord(x) -«-»- (Muv) ( u<v •*• consec(u,v,x) ) 

(Muv)(consec(u,v,x) consec(u,v,x') v (u=u' ,v=v')) 

split(x,u',v',x') 

Derivation : 

ord(x) 

-«- (Muv) ( u<v -*r consec(u,v,x) ) 

(Muv) ( u<v •*• consec(u,v,x') v (u=u' ,v=v') ) , split(x,u' ,v' ,x') 

•«- (\fuv) ( u<v -*- u=u',v=v'), (Muv) ( u<v consec(utv,x*)) , 

split (x,u' ,v' ,x') 

u'<v'e ord(x'), split(x,u' ,v' ,x') 

Derived Procedure : 

ord(x) split(x,u' ,v' ,x') , u'<v', ord(x') 

The reasoning which underlies the derivation of the successive goals 
here can be outlined informally as follows : to show that x is ordered 
show that all its consecutive pairs (u,v) satisfy u<v; but if x can be 
split into components u', v' and x' as depicted below :-

x : u' v ' 

then the set of all consecutive pairs in x is the union of 
with the set of all consecutive pairs in x'; therefore show that 
u'<v' and show that x' is ordered subject to x being split in this way 
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By enriching the specification set above with the further 
sentences :-

(Muv) (consec(u,v,x) •*-»• false) -«- empty-list(x) 

(Vuv) (consec(u,v,x) -<-*- false) unit-list(x) 

other goal-oriented derivations can be pursued to infer two more 
procedures for ord :-

ord(x) -«- empty-list (x) 

ord(x) unit-list(x) 

Together the three derived procedures comprise a complete set for 
the ord relation, subject to the assumption that a list can only 
be either empty, a unit list or a list decomposable by split. 
Each of the procedures is inferred from a branch in a derivation 
tree explored within a graph of all the derivations determined by 
the initial specification set S, the presumed inference rules 
and the initial goal. This consideration supports the view 
promoted here that procedure derivation and logic program execution 
are not fundamentally different in principle, but instead just 
connote particular classes of derivations in FOPL; logic program 
execution just confines itself to Horn clause logic. Therefore 
we can see that the two activities investigate problems expressed in 
a single logical continuum extending from the most restricted subclass 
of FOPL up to the standard formulation. Consequently there is reason 
to hope that existing knowledge about the control of program execution 
might also prove applicable to the strategy of program synthesis using 
procedure derivation; knowing how best to control a program which 
investigates the orderedness of a list must provide some insight into 
the derivation of procedures for investigating crdercdness, since our 
methodology treats these tasks as essentially similar acts of problem 
solving. 



C H A P T E R 5 

D E R I V A T I O N 

0_F 

L O G I C P R O G R A M S 

PREVIEW 

This chapter describes in detail the more important rules 
of inference which allow the derivation of logic programs. It 
is of no consequence here whether this be considered in the context 
of verification or synthesis because, as explained already, these 
activities share a common logical foundation. 

The first section explains in more detail the motivation 
and justification behind the proposal that logic procedure derivation 
can contribute usefully to computer programming. Essentially that 
proposal advocates just one of the many ways of exploiting the 
fundamental merit of the logic programming formalism argued in 
previous chapters, namely the identification of deductive inference 
as a sufficient device for reasoning about the logical content of 
algorithms. As well as establishing its logical integrity, we 
are also naturally concerned that the discipline of logic program 
derivation should be well-organized from a logistical viewpoint, 
in the sense that its practitioners should be able to deploy their 
logical resources (axioms and inference rules) in a coherent way. 
Therefore this section also explains a few general principles 
which deserve to be incorporated in the derivation methodology. 

The inference rules discussed here, which are intended 
for the gradual transformation of arbitrary FOPL goals into Horn 
clause goals, fall naturally into two kinds : those which apply 
structural simplifications to goals independently of the axioms 
in the specification set, and thos.e which exploit those axioms 
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in order to combine goals with knowledge about the problem domain. 
These two classes of inference rules are discusscd respectively in 
two further sections, which conclude by showing how the two kinds 
of goal transformation are cooperatively interleaved in practice. 

The fourth section deals with the derivation of the principal 
program procedures, that is, procedures not directly concerned with 
the relatively low-level problems of data access. Some techniques 
are presented for deriving both recursive procedures and their 
bases, and the section closes with.a discussion of the completeness 
of procedure sets, which is to say, their capacity to compute all 
individuals in the specified relation. 

The topic of the-final section is the derivation of data-
accessing procedures, considering in turn the way these can be 
derived to provide access either to terms or to sets of assertions. 
A rather interesting example is given there of how to derive the 
kind of procedures which manipulate explicit pointers in order to 
systematically process the components of assertional data 
structures. The material presented altogether in the chapter is 
then sufficient for the examples of derived programs demonstrated 
in the final chapters of the thesis. 

5,1 : MOTIVATION AND ORGANIZATION OF DERIVATIONS 
V 

Motivation 

The motivation which underlies the program derivations presented 
in later chapters is to contribute evidence for the thesis that logic 
comprises a practical formalism for the creation and expression of 
computer programs. General acceptance of the view that logic can 
satisfy this role will depend, not so much upon proofs of its 
theoretical adequacy for the task (which is not in doubt), as upon its 
capacity to satisfy pragmatic user-oriented criteria expressing the 
essential tenets of good programming practice. Important requirements 
of any formalism for program derivation which is intended to meet 
such criteria are (a) that it should provide for the explicit 
expression of the knowledge about the problem domain which is used in 
the course of program development, (b) that it should allow practical 
proofs that the resulting programs conform to their specifications 
and (c) that its application should produce programs which behave 
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sensibly without necessitating a concomitant loss of logical clarity. 
These requirements can be met in the derivation of logic procedures 
by using, respectively, (a) well-styled FOPL specification sets to 
declare facts about the problem domain, (b) a sound and practical 
deductive inference system, and (c) good logic programming style. 

The motivation expressed above chiefly anticipates the needs 
of programmers engaged in the task of developing programs without 
the assistance of 'clever' programming aids. Of course, informal 
investigations of logic program synthesis of the kind portrayed in 
this thesis may eventually provide insights into the appropriate 
construction of new programming tools such as semi-automatic logic 
program synthesizers, or even interpreters capable of directly 
executing non-clausal logic as a programming language in its own 
right. The possibility of gaining such insights is related to 
the task of finding a comprehensive procedural interpretation for 
standard FOPL; this we do not yet possess, although the quasi-
computational style of the derivations presented here might be 
regarded as a preliminary step towards that eventual goal. The 
prospects for partially mechanizing logic procedure derivations, 
particularly in the light of progress made in other closely related 
computational formalisms, are considered in the closure of the-
thesis. 

Substantial efforts have, of course, already been made to 
implement mechanical proof procedures for non-clausal logic. Some 
of these are discussed in a report by Bledsoe (5). However, these 
efforts have been predominantly directed to the problem of developing 
more-or-less autonomous, intelligent proof procedures whose 
implementations could be expected to take over the role of human 
ingenuity in problem solving. Projects of this kind often reflect 
the objectives of those researchers in artificial intelligence who 
regard intelligent general-purpose problem-solving programs as 
convenient operational representations of some intended theory of 
intelligence, the latter usually being their ultimate, goal; the 
potential capability of such programs to emulate the role of programmers 
dealing with specific computational problems in the real world is then 
somewhat incidental to this ambition. 

The attitude underlying the study of procedure derivation in the 
present work assumes - although this must be a cautious assumption -
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that advances in artificial intelligence will not significantly reduce 
the need for human intuition in problem solving (and hence in computer 
programming) for some considerable time. This view justifies the 
pursuit of more modest short-term improvements in the tools with 
which programmers pursue their computational objectives. In any case, 
much of the intellectual pleasure of the programming discipline 
derives directly from the human inventiveness and experimentation 
currently essential for effective programming, and there seems to be 
no pressing reason to pursue the demise of this contribution from the 
programmer; of greater urgency is the need to provide him with tools 
which allow the clear and accurate expression of his intellectual skills. 

Therefore, rather than contributing to the long-term goal of 
devising autonomous problem-solving systems, the present study 
focuses instead upon the task of ameliorating the most serious problem 
afflicting the current practice of computer programming, which is 
undoubtedly the problem of ensuring correctness. Uncertainty about 
correctness has its origins in the fact that conventional languages 
possess no useful declarative semantics, and so do not in themselves 
provide either for the logical confirmation that programs compute the 
correct relations,or for the logical derivation of programs from 
declarative statements about those relations. It dees not appear 
likely at present that conventional program proving will eventually 
overcome these difficulties : firstly because the notion of 
retrospective verification is inherently unsatisfactory (due to its 
somewhat eccentric requirement for the logic of the program to be 
employed after writing the program rather than before - which raises 
serious questions about how the program was firstly conceived) ; and 
secondly because the preliminary axiomatizations upon which it depends 
are made prohibitively complicated by the program's control information, 
which consists not only of explicit control structures but also of 
the control implicitly encoded by the use of destructive assignment. 
Deductive derivation, on the other hand, which encourages the programmer 
to express and infer knowledge about the problem domain and liberates 
the soundness of that task from considerations of efficiency, seems to 
offer much better prospects for overcoming the correctness problem. 
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Methodological Principles 

Since the thesis is centrally concerned with the derivation of 
procedures from specifications as the basis of logic program synthesis, 
and since the theoretical justification of the method has been 
explained in the previous chapter, it is now appropriate to consider 
some methodological constraints intended to assist the good conduct 
of derivations. It is also natural to expect the same constraints 
to prove valuable in the task of program transformation. Whereas 
synthesis develops new procedures from specifications, transformation 
develops them from given procedures (and sometimes specifications as 
well). There is no fundamental distinction involved here, since 
both activities have the object of deriving Horn clause procedures 
from whatever logical knowledge is made available; it is only in 
this initial resource that the two activities differ. 

Proposed below, then, are five such constraints imposed upon 
the task of deriving procedures ;. most of them are borrowed from 
general programming methodology and are just expressions of common 
sense. 

1] Self-evidently Correct Specifications 

Showing that a set of logic procedures is implied by a. 
specification has little utility unless the specification correctly 
summarizes the facts about the problem domain of interest. In 
formulating the initial axioms for a procedure derivation, we shall 
abide by the recommendations stated in Section 4.3 stipulating the 
desirable properties of specifications; these will help to guard 
against poor specification style, although the potentially difficult 
task of formalizing the problem domain must always be prone to error. 
Logic has no answer to this problem, except perhaps as a device for 
checking the equivalenceor just the consistency, of alternative, 
independently developed problem formulations. 

2] Derivation by Sound Inference 

Whilst intuition plays an essential role in guiding the direction 
of procedure derivation, it is important that the logical expression 
of the conclusions drawn from that intuition should not itself rely 
upon that intuition for its correctness. Instead, derivations will 
be constructed using sound inference rules to ensure that each derived 
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goal is logically implied by the initial goal and the initial axioms 
about the problem domain. 

3] Goal-oriented Derivation 

In order to motivate derivations towards procedures for solving 
the specific problem at hand, it is desirable that they should proceed 
(as far as practical) in a top-down goal-directed style in much the 
same way as programs are developed in other programming methodologies. 
This reflects the requirement that each step in a derivation should 
contribute to solving the problem of deriving a useful procedure for 
the particular relation of interest. This avoids the combinatorial 
problems associated with bottom-up styles which combine general 
problem-independent facts in a manner not motivated by specific goals. 
This principle is therefore based upon arguments similar to those which 
justify the goal-directed strategies normally used in logic program 
execution. 

4] Logical Clarity in Programs - . 

It is important that derived programs should be reasonably clear 
in what they assert about the relations of interest, even though the 
derivation process inherently guarantees their correctness. This is 
because the opportunities for understanding how to transform those 
programs or assimilate them into other programs are seriously 
diminished if their logic is incomprehensible. Unfortunately it is 
often difficult to find clear logic which also gives excellent behaviour, 
due to current limitations in implementation technology. Our attitude 
towards this conflict between logical clarity and efficient behaviour 
is expressed in the stipulation that, in the course of deriving a set 
of procedures, the coupling of logic with control will be disposed 
towards choosing those procedures which stand in greatest logical 
proximity to their specification and at the same time allow acceptable 
behaviour with the intended interpreter. 

5] Use of Data Structure Abstraction 

The last major principle also conforms to a generally accepted 
tenet of good programming practice, which is that detailed decisions 
about the implementation of concrete data structures should be deferred 
until the higher-level procedural properties of the program have been 
established. This prevents the text of the developing program from 



becoming confused by extraneous and procedurally unimportant details 
of representation. More importantly, it helps to clarify 
consideration of which aspects of the final algorithm are influenced 
by the logical properties of the data structures and which aspects 
depend only upon their concrete run-time implementation; this kind of 
knowledge is extremely useful when seeking localised modifications 
- either to logic or to implementation - which improve efficiency. 
Postponement of the choice of concrete data structure representations 
can be arranged in the early stages of logic program synthesis by 
specifying abstract data structures with appropriate sets of selector 
procedures; near the end of the synthesis, these can be summoned for 
the purpose of soundly substituting concrete representations, for 
example by macroprocessing or more sophisticated transformations 
of the data-accessing parts of the program. 

Hierarchical Program Development 

The development of a complete program body to solve some goal R 

can be usefully organized as a hierarchical process in which each 
level deals with the development of procedure sets serving calls in 
procedures at higher levels. The highest level just develops a 
procedure set for r; the lowest levels typically deal with data access. 
This arrangement improves the management of program composition and 
also allows a more precise meaning for the term synthesis as used in 
logic programming. A simple example is now outlined to explain this. 

Suppose that we require a program body capable of solving calls 
to subset. Then we say that a procedure derivation for subset is a 
single top-down derivation of the kind presented in Section 4.5 from 
which it is possible to infer a Horn clause subset procedure. 
Moreover, we say that a synthesis for subset is the set of all 
procedure derivations for subset which contribute to the final program 
body. A complete synthesis for subset with respect to a given class 
of calls to subset is a synthesis for subset which contributes a 
sufficient procedure set for subset for solving every solvable call in 
that class. 

Consider then the pursuit of a synthesis for subset with a 
specification set s containing the axiom 

subset (x,y) (Mu) ( uzy uzx ) 

It is not possible to derive a practical Horn clause procedure set from 
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this axiom alone, and so some more information about sets must.be added 
to s . Now suppose we appeal to set theory for knowledge about the 
constructibility of sets; this will provide the fact that a set is 
either the empty set or a singleton or the union of two sets. The 
minimal knowledge which s must contain in order to exploit this fact 
for the derivation of a procedure set for subset is :-

(Mu) ( uzx false) empty (x) 

(\/u) ( uzx u=v ) 4- singleton(x,v) 

(\fu) ( uzx -«->• uzx^ v union(x^fX^,x) 

The four axioms introduced so far to s together with implicitly 
assumed properties of = then admit a synthesis for subset which 
consists of three derivations; each derivation contributes one of 
the three procedures below :-

subset(x,y) empty(x) 

subset(x,y) singleton (xev) , vzy 

subset(x,y) -e union(x ,x ,x) , subset(x ,y ) , subset(x0,y) 

1 « -l ^ 
This establishes the top level in the hierarchical development of the 
program body. 

Inspecting the derived procedures, it is apparent that other 
procedure sets must also be devised in order to solve their calls to 
empty, singleton, union and z. All these relations are primitives 
of the axiom set shown so far, which does not determine their members. 
It was only necessary to utilize some consequences of calls to them 
in order to derive the procedure set for subset. The next level in 
the hierarchy would now comprise four respective syntheses, each one 
based upon its own specification set. Yet another level will be 
needed if any of those syntheses generate procedures containing calls 
to primitives. Observe that we do not attempt to establish a single 
global specification set containing sufficient axioms for deriving 
the entire program body - often these cannot be clearly perceived until 
the hierarchy has been expanded enough to reveal which relations are 
interrogated by calls in the derived procedures. This gradual 
development of specifications as well as procedures around a developing 
procedure-call hierarchy is rather like a number of conventional 
program development packages already in commercial use. 
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Choice of Specification Set 

The choice of the initial axioms to comprise a specification set 
is naturally the crucial determinant of the richness of the class of 
procedures which can be derived from it. The problem of choosing, 
these axioms is therefore one of the central problems of program 
synthesis, and is at least as serious as the other notable problem 
of prescribing an effective strategy for controlling the inference 
system once suitable axioms have been assembled. Synthesis in the 
fullest sense of the word consists not only of choosing between 
alternative derivations, but also of choosing between alternative 
axiomatizations of the problem of interest. 

A complete programming methodology would provide techniques 
for discovering and appraising alternative axiomatizations, given 
just the'computational goal and a minimal description of the relevant 
problem domain. At present our understanding of the ontological 
principles which underlie effective algorithms is too rudimentary 
to allow a very significant step towards such capabilities. Of 
course, there do already exist implemented synthesizers which can 
accept minimal problem descriptions and subsequently produce seme 
modestly good, but unsurprising, executable programs as output. 
Systems of this kind owe their competence to the empirical 
accumulation of a large data base to which they refer - in a tightly 
controlled way - in the course of choosing axioms and synthesis rules 
to deal with the specific problem at hand; yet although their 
repertoire may seem impressive upon first acquaintance, there does 
not exist any cpherent general theory which justifies their particular 
modus operandi. For instance, although we now possess synthesizers 
which can output families of sorting algorithms, not one of them is 
able to pursue those algorithms selectively using criteria of 
computational efficacy; that is, not one of them will pursue a 
quick-sort algorithm in preference to a bubble-sort algorithm by 
undertaking the intricate analyses required to determine their respective 
asymptotic comparison counts or other parameters of computational 
efficiency. 

In the syntheses presented here, the requisite axioms are 
induced by unformalized intuitions concerning the overall structure 
of the target algorithms. In the absence of firm theoretical - or 
even empirical - guidelines,- those intuitions will have to suffice 
for cur purpose. 
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With many simple problems rudimentary but acceptable programs 
can be derived without using any knowledge other than the minimal 
problem description. The subset example just considered approximates 
to this kind of problem. Suppose the input description is slightly 
reformulated to express the assumption that the arguments of subset 
have a type called set. The primary definition will then be :-

subset(x,y) 44 (\/u) ( uzy 4 uzx), set(x) , set(y) 

Then we may appeal to a general problem-independent axiomatization 
describing what it means for any z to be of type set 

set(z) 44 empty(z) 

v Qv)singleton(z,v) 

v Qz^J (setiZj) , set(z2) , union (z^z2,z) ) 

empty(z) 44 (Mu)( uzz 44 false) 

singleton(z,v) 44 (\/u) ( uzz 44 u=v ) 

union(z^,z^,z) 44 (Vu)( uzz 44 uzzV UEZ^ ) 

This set data-type characterization is now no longer an axiom set 
special to the problem of deriving subset procedures; instead it is 
a corpus of general knowledge which can be summoned to assist-
derivations for any problems which explicitly express the assumption 
that they are dealing with objects of type set. The set of three 
subset procedures given earlier are derivable quite trivially from 
the above type-characterized subset definition and the type specification 
together with axioms for =. 

It should not be thought that this minimal description of the 
subset problem admits just one feasible procedure set for subset. 
The richness of the class of derivable procedure sets depends also 
upon the proof procedure employed to search the derivation graph. 
For instance, the kind of inference rules presented later on are 
such that, applied to the axioms above, they admit derivations of 
an alternative procedure set :-

subset(x,y) 4 empty(x) 

subset(x,y) 4 vzx, vzy, singleton(x,singleton(y, 

union(xlfx2,x) , union(y^y2,y) , 

subset(x,y) 
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This procedure set schedules the membership tests in a Prolog-like 
computation quite differently from its predecessor. Also, unlike 
the latter, the recursive procedure can be invoked iteratively. Thus 
the intelligent selection of derivations using problem-independent 
knowledge is sometimes sufficient for obtaining interesting and useful 
algorithms. In Chapter 7 it will be seen that the simpler sorting 
algorithms may similarly be derived using no more than a rudimentary 
definition of sortedness together with some general axioms about lists, 
sets and ordering relations. It is only for the much deeper algorithms, 
like Batcher's merge-exchange-sort, that the initial specification set 
has to be furnished with non-trivial pre-proven theorems selected from 
the mathematical theory of sorting. 

Implicit Specification Axioms 

On many occasions it is useful to assume that the specification 
set implicitly contains axioms about elementary relations like — . 
In many of the derivations presented later on, goals will be transformed 
in simple ways which depend upon such axioms but which are not 
explicitly formulated within the derivation texts. For instance, 
the inference step shown in the derivation below exploits the 1:1 
property of = which s implicitly asserts :-

4- (\/u) ( uzy u=v) 

4- veg 

This inference is used in the derivation of the subset procedure 
shown earlier which shows that {v} is a subset of y by showing that 
v is a member of y. No attempt is made here to delineate the exact 
set of assumed axioms about relations like = , but when any rather 
special property is exploited in an inference step then an informal 
note about this will be given alongside the derivation. However it 
can be assumed that s will contain at least the knowledge of every 
tuple in every tuple not in =, and the fact that = is a 1:1 
equivalence relation. 

It is also convenient for presentation's sake to assume some 
implicit axioms in s which allow apparently surreptitious inferences 
dealing with terms denoting arithmetic expressions. Thus the kount 
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procedure discussed in Chapter 3 :-

kount (u.x,w+l) 4- kount (x,w) 

may be used to infer directly the procedure :-

kount (u.x,w) 4r kount (x,w-l) 

•The assumption which justifies this is that the first procedure merely 
abbreviates the conjunction of the following pair :-

kount(u.x,w') 4 kount(x,w), plus(w,l,w') 

plus(w,l,w+l) 4 

and that plus also satisfies the axiom implicitly contained in S :-

plus(w-l,lfw) 4 

It should be clear that the original two kount procedures shown in 
the inference step above are both logically implied by the three 
assumed procedures. These kinds of inference will not generate any 
semantical difficulties at the superficial level at which they appear 
in later derivations. Any derivation manipulating terms in the 
manner above (performing quasi-arithmetic on them, for example) can 
be justified in first order logic by reformulating it in the way 
just shown. 

Objectives of Derivations 

The logical objective of a derivation is to show that a Horn 
clause procedure is logically implied by S . As has been described 
already, this task is organized as a top-down derivation from the 
goal R where R is the relation interrogated by the target procedure. 
The derivation is then a sequence (4r, . ( 4 r ^ , r ) ) of goals 
of which each is logically implied by the conjunction of S with 4 r. 

From the derivation we infer the implication :-

5j- ( r 4 r . ... , r ) 
l n 

in order to obtain the target procedure. 

The computational objective of a set of derivations for R (that 
is, a synthesis for R) is a set P of Horn clause procedures adequate 
for investigating some supposed class of goals 4 r. if this class 
contains goals which collectively compute all individuals in R then 
the objective is a complete procedure set for R. It is presumed, of 
course, that the adequacy of this set takes cognizance of the efficiency 



of the algorithms which it gives with the intended interpreter. A 
sensible way to proceed is to derive some initial procedure set, 
investigate its behavioural properties and then resume the derivation 
process in order to obtain some efficiency-improving transformation. 
We saw an example of this previously with the pick problem. 

Inference Rules for Procedure Derivation 

The inference rules presented here for procedure derivations are 
not unlike some of those found in conventional natural deduction 
systems for FOPL. However, the treatment'herein does not appeal to 
the customary formulations of natural deduction since the latter do 
.not seem to be amenable to a useful procedural interpretation. 
Instead, the rules presented shortly are intended specifically for the 
kind of goal transformations which reflect our computational view of 
procedure derivation. In general they are applied with the intention 
of inferring from a given goal :-

R, / •••/ R, / • •. / R 
1 k m 

a new goal 

r11 •«./ r' 
i n 

by activating some procedure call R^ (not necessarily atomic), and 
processing it either using just knowledge about the other calls in 
the goal or else using knowledge invoked from some axiom in the 
specification set. x 

The last remark indicates that the inference rules fall into 
two kinds. A rule of the first kind, called goal simplification, 
typically simplifies the current goal by, for instance, simplifying 
the activated call's connectives or quantifiers or by finding an 
instantiation of its variables which trivially solves it. Whatever 
way is used to simplify the goal, no reference is made to S. A rule 
of the second kind, called goal substitution, often has the opposite 
properties. It invokes some fact from s in response to the activated 
call, typically substituting new knowledge into the goal. The skill 
of logic procedure derivation lies in finding intuitively sensible ways 
of applying the simplifications and enrichments afforded by the rules 
in a cooperative manner. When the rules have been discussed in more 
detail it will be seen their most simple manifestation is in the case 
where all the manipulated sentences (goals and axioms) are in Horn 
clause form, in which case they reduce to the mechanisms of an ordinary 
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top-down resolution interpreter. Their more elaborate manifestations 
are wholly consequences of admitting the possibility that an activated 
call may be non-atomic, which in turn ensues from the adoption of 
standard FOPL for specifying the relations of interest. Whether or 
not the inferences are applied to non-clausal sentences, they reflect 
the typical execution of logic programs in that they replace 
activated calls by conjunctions of other calls and result in the 
transmission of data between the calls' arguments. However, one 
important difference between program execution and procedure derivation 
is that in the former case we have a complete inference system . _ 
(resolution), whereas we make no claim to possess a correspondingly 
complete inference system for the latter; the rules examined here are 
just those which have proved useful in the examples considered. Of 
course, we would hope to possess eventually a complete, compact and 
empirically useful inference system together with an intelligent control 
strategy to govern its application. 

The division of the rules for procedure derivation into two kinds 
is not an arbitrary one, but is rather a useful means of controlling 
the introduction of knowledge during goal transformation. It would 
be possible to combine them into a single class, but this would tend 
to obscure the relative logical contributions made by the current 
goal and the specification set to the derivation of the succeeding 
goal; it seems desirable - to allow greatest insight - that these 
contributions should remain separate in both the concept and the 
representation of the derivations. In any case, the combined rules 
would almost certainly be syntactically unmanageable. 

Eefore discussing the various kinds of inference steps in 
greater detail, it will be useful firstly to announce a small matter 
of terminology for expressing the logical relationships between goals. 
It has been pointed out that a rule of the first kind - goal 
simplification - takes no account of the specification set. If G 
is the current goal and g , is the goal derived from it by a rule of 

r+1 
this kind, then we shall cerrainly have the relationship :-

G b G 
r 1 r+1 

wherein is logically implied by G^ : which in FOPL is equivalent 
to saying that is provable in a theory whose axioms are Gtogether 
with the axioms of FOPL. Moreover, if the relationship below 
also holds :-



•142 

G , G 
r+1 1 r 

then G , and G are logically eauivalent. Now consider the derivation 
r+1 r 

of G , from G using a rule of the second kind - goal substitution. 
r+1 r * 

The logical relationship between these goals and the specification set 
is now :-

s ' G 1" 
r 1 r+1 

wherein Gr+2 implied by S ,G . Now since the existence 
of S is always assumed in discussing relationships between goals, it 
is convenient to introduce some terminology which expresses that 
assumption concisely within such discussions. So when the relation 
above prevails, we shall say that G ^ is S-implied by G, and likewise 
if the relationship below also prevails :-

S ' b G 

r+1 1 r 
than we shall say that G ^ and Gare S-equivalent. To say that one 
goal is S-implied by another is just to say that the former is provable 
in a theory which has as its axioms both S and the latter goal together 
with the axioms of FOPL. 

5,2 : GOAL SIMPLIFICATIONS 

This section considers some of the more common ways in which a 
goal can be simplified in the course of procedure derivation. The 
discussion is limited to considering this just from a syntactical point 
of view, although it is possible to assign very general problem-solving 
interpretations to some of the inference rules. In each case it is 
assumed that we have some arbitrary goal consisting of a conjunction 
of calls, and the derivation of the successor goal arises by selecting 
just one call for simplification. 

Deletion of an Implied Call 

One of the simplest ways of simplifying the current goal G r is 
to delete one of its calls. Since it is assumed here that no sentences 
other than the current goal are initially given for this purpose, the 
simplification can only proceed in such a way as to satisfy G f- G if 

r r+1 
the deleted call is implied by the other calls. It may be helpful to 
formalize this in terms of the inference rule modus tollens since this 
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rule underlies our normal mode of top-down goal execution. Suppose 
that the goal in question is :-

G • 4- R . 0 . . F R , 0 M . / R 
r 1 k n 

and that the activated call is R.. Here the calls are labelled so that 
k. 

the assumption that R is implied by some conjunction of other calls in 
/C 

the goal is expressible by the procedure-like sentence :-

k k+1 n 

Invoking this sentence in response to the activated call, exactly as in 
top-down resolution but permitting unification to apply more generally 
to matchable formulas instead of just to matchable literals, the call 
R^ in the goal is replaced by a conjunction of calls which then have 
duplicate occurrences in the new goal; these can clearly be deleted to 
leave simply 

Gr+1 : * V Rk-l'Rk+l' Rn 

Clearly this is just tantamount to deleting the call R f r o m the given 
goal. Note that this simplification determines that G^ and are 
logically equivalent. 

Useful call deletions often depend upon suitable instantiation 
of the goal variables, as shown in the following derivation :-•' 

4- equiv(x,y) 

'4- subset(x,y) , subset(y,x) [ using equiv specification ] 
4- subset(x,x), subset(x,x) [ instantiation y:=x ] 

4- subset(x,x) [ deleting first implied call ] 

from which is inferred the derived procedure :-

equiv(x,x) 4- subset (x,x) 

Deletion of a Valid Call 

Any call which is a valid formula of FOPL can be deleted from 
the current goal to leave a new logically equivalent aoal. In practice 
this kind of simplification will only be applied without explicit 
justification when the call's validity is trivially provable in FOPL. 
Deletion of a valid call is, of course, just a special case of the 
deletion of an implied call as above, since a valid call is necessarily 
implied by all calls. Below is an example which uses a suitable 



instantiation in order to generate a valid call 

equiv(x,y) 

(\!u) ( uex uey ) [ using equiv specification ] 
•«- (\Ju) ( uex uex) [ instantiation y:=x ] 

D [ deletion of valid call ] 

from which we conclude the procedure 

equiv(x,x) 

Distribution of Connectives 

Distribution of the connectives in a call is an especially-
important means of simplifying the current goal. It is almost always 
applied with the aim of replacing a moderately complicated call by a 
conjunction of individually simpler ones. On many occasions this is 
achieved by distributing -«- through conjunctions or disjunctions, and 
so a few typical cases of this are enumerated below. 

Case 1 : An activated call (A B^, B) may be replaced by any 
non-empty conjunction of calls in which each call is some 
(A -f- B^) where lgkcm. The new goal is logically implied 
by - but not generally logically equivalent to - the given 
goal. However, logical equivalence is obtained when the 
substituted conjunction contains every conjunct (A B ) 

A such that 14k4m. 

This simplification investigates the problem of showing that 
a set of assumptions implies a by just attempting to show 
that some of them individually imply A. 

Case 2 : An activated call (Aj, ..., Am B) may be replaced by the 
conjunction of calls (A^ B) , ... , (A -«- B) . The derived 
goal is logically equivalent to the given goal. There is 
no special problem-solving significance in this simplification 
it just re-expresses the goal in a more discrete form. 

Case 3 : An activated call (A B-^ v v Bm) may be replaced by the 
conjunction'of calls (A B J (A •<• B ) . The derived 

•L m 

goal is logically equivalent to the given goal. Like the 
case above, the goal is merely given a more discrete 
representation. 
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Case 4 : An activated call (A v ... v A B) may be replaced by any 
1 m 

non-empty conjunction of calls in which each call is some 
(A B) where Kk4m. The new goal is logically implied by -
sC 

but not generally equivalent to - the given goal. However, 
logical equivalence is obtained when the substituted 
conjunction contains every conjunct (A B) such that I4k4m. 

JC 
This simplification investigates the problem of showing that 
B implies a disjunction of alternatives by showing that B 
implies some of them. 

These distributions of conditionals may be easily combined to give 
rules for distributing equivalence connectives in activated calls. 
Four particularly common cases are shown below, in each of which the 
derived goal is logically implied by - but not generally equivalent • 
to - the given goal. 

Case 5 : An activated call (A B_, ..., B ) may be replaced by 
1 m 

the conjunction (A B ) , ..., (A •<-»- B ). 
1 m 

Case 6 : An activated call (A B, v ... v B J may be replaced by 
1 m 

the conjunction (A -<-> BJ , ..., (A -«-> B ) . 
1 m 

Case 7 : An activated call (A , ..., A B„, ..., B ) may be replaced I m 1 m 
by the conjunction (A, -*-> B.) , ..., (A -*-»- B ) . 

1 1 m m 

Case 8 : An activated call-fA, v ... v A -<-*- B, V ... v B ) may be 1 m l m 
replaced by the conjunction (An B,J, (A B ). 

1 1 m m 

The above selection of cases is by no means a complete summary of all 
goal simplifications which proceed by distributing connectives, but 
is presented just to indicate their style. The frequent need to 
distribute and arises fundamentally from the liberal use made 
of these connectives by non-clausal specifications. All those goal 
simplifications which distribute connectives can be reformulated as 
combined applications of more elementary propositional rules such 
as De Morgan's laws and the laws of associativity, distributivity and 
tautology. 
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Some justification should be given here of the description of 
these goal transformations as 'simplifications' in spite of the fact 
that their application usually introduces conjunctions of calls which 
are syntactically more cumbersome than the calls which they replace. 
In applying one of these rules to replace a call g by a conjunction 
g^, ..., g• , the resulting derived goal G r +2 than the 
given goal G in two possible senses. Firstly, the task of solving r 
g is reduced to the separate tasks of solving g , ... and g , each 

1 n 
of which is simpler than g because (generally) it only deals with 
some proper subset of the various atoms occurring in g; normally the 
solution of g is made tactically simpler by pursuing solutions of its 
subproblems even though they may not be independent of one another. 
Secondly, it is often the case that g , ..., g implies g somewhat 

1 n 
trivially yet is not equivalent to it, and therefore has less 
information to deal with; the new calls represent a special way of 
solving g which is more trivial than the most general way of solving 
it. For example, solution of the problem :-

4 ( uea 4 uebj) 

trivially solves :-

4 (uea 4 ueb^, 

and is the case dealt with above as Case 1. Problem reduction and 
problem trivialization are therefore distinct ways of simplifying the 
solution of goals, and both are typical results of distributing 
connectives as in the rules above. 

Calls which are prefixed by quantifiers may also be replaced 
by conjunctions of simpler ones by distributing connectives. In 
particular, suppose that Qg is a call in the current goal G of r 
interest, where Q is any prefix of universal quantifiers and g is any 
formula. Then each of the eight simplification rules above which 
replace a call a by some conjunction g_, ..., g can be generalized 

I n 
to a rule which permits the call Qg to be replaced by the conjunction 
Qg, ..., Qg^ . This is so by virtue of the validity of the formula :-

( (Vx)g(x) 4 (\Jx)g (x), ..., (Mx)g (x) ) 
1 n 

4 (Vx) (g(x) 4 g (x) , ..., g (x)) 
i n 

The following example shows such a generalization of both Cases 3 and 4 
above :-
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4- (\ju) ( uky1 v uey uex^ v uex^) 

4- (\fu) ( uey 1 v uey^ uex7; , (Mu) ( uey1 v uey^ -f- uex^) [ Case 3 ] 

4- (Mu) ( uey1 4- uex ) , (Mu) ( uey2 4- uex^ , 

(Mu) ( uey4- uex ) , (Mu) ( uey^ 4- uex2) [ Case 4 twice ] 

This reduction seeks to show U x2) c (y^ U y^ by solving each of 
the more trivial subproblems x <= y , x S y , x « y and x s y . 

• X X X ^ ^ X b « 

Distribution of Quantifiers 

Quite often it is useful to distribute quantifiers through connectives. 
In the simple cases illustrated below, Q is a prefix consisting just 
of universal quantifiers; this is the most usual circumstance of interest. 

Case 1: An activated call q(a_, a ) can be replaced by the 
1 m 

conjunction qai, ..., qa . This just re-expresses the given 
m 

goal in an equivalent but more discrete form. ... . 

Case 2: An activated call Q(A. v ... v a ) can be replaced by any 
1 m 

conjunction of calls each with the form QA^ where l^k^m. The 
derived goal is logically implied by - but is not generally 
equivalent to - the given goal. The intuition here is simply 
that a disjunction can be satisfied by satisfying some of its 
disjuncts; the quantification here is inconsequential. 

Case 3: An activated call q(a 4- b_ b ) can be dealt with by Case 2 
I m 

by expressing it in disjunctive form, i.e. q(a v v ... v . 

These substitutions can be justifiably regarded as goal simplifications 
for the same reasons as those advanced in the discussion of connective 
distributions. Distributions of connectives and quantifiers are often 
used cooperatively as shown in the following example :-

4- (Mu) ( (uex 4- uey , uey2), (uey ̂ uey2 4- uex)) 

4- (Mu) ( uex 4- uey , «ey2;, (Vuj (uey^ uey2 4- uex) 

4- (Mu) ( uex 4- uey ), (Vu) (uey2 4- uex), (Mu) (uzy2 4- uex) 

where the first step distributes V through conjunction whilst 

the second distributes 4- through conjunction. 
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Deletion of Quantifiers 

Some rather minor goal simplifications proceed by the deletion of 
quantifiers. The most trivial of these, of course, is the case where 
a prefix is deleted because the formula which it quantifies has no free 
occurrences of the prefix variables; there would be no good reason for 
deliberately arranging such a pre-condition, but the latter could come 
about instead as a side-effect of other more significant goal 
transformations. 

Another trivial deletion is that of a wholly existential prefix 
q from a call q g to leave just g; this derives a logically equivalent e e 
goal. An example is shown below in which q is (3z) :-e 

4 (3zVu) ( uzy 44 uzx v uzz ) 

4 (Vu)( uzy 44 uzx v uzz ) 

There is no problem-solving intuition involved here; the rule just 
exploits Kowalski's goal notation which allows the suppression of 
explicit existential quantifiers associated with the goal's free 
variables. 

Goals may often be simplified in their quantification by 
exploiting special properties of elementary relations. A simple 
example is the exploitation of the 1:1 property of =. Consider the 
call :-

(Vu)( uzx 4 u=w ) 

assumed to be the activated call in the current goal. Now all 
instances of u which falsify u=w make the conditional ( uzx 4 u=w ) 
vacuously true. Assuming that = is 1:1, the only other instance 
of u is w, and this instance makes the conditional true if and only if 
it makes uzx true. This means that the call can be replaced by 
simply wzx, leaving a goal which is equivalent to the given goal" in 
a theory which has the properties of = as axioms. Strictly this 
simplification .depends upon the implicit axiomatization of = in S 
and is therefore strictly a goal substitution in the sense defined 
earlier; but identity is such a fundamental relation, having no 
specificity with respect to particular problem formulations, that for 
practical purposes we can treat it as though it were independent of S. 
An example is shown below in which both the 1:1 property and the 
symmetry of = are summoned to simplify the goal :-
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4- (\fu) ( u=v^ v uzx^ 4-y u=v2 v uzx
2 ) 

4- (Vu)((u=v1 -«-»• u=v2) , (UZXj^ 4-+ uzx2)) 

4- (\fu) ( u=v1 4-+ u=v2) , (Mu) ( uzx1 4-+ uzx2) 

4- vJ=v2, Y2=vlf (Vu) ( uzx1 ++ uzx2) 

4- v2=v2' (Vu) ( uzx1 4r+ uzx2) 

The inferences used here for the four steps are, respectively, a Case 8 
distribution of -«-»• , distribution of V through conjunction, a double 
exploitation of the 1:1 property of = , and finally use of the symmetry 
of =. The first two steps are goal simplifications proper, and the 
second two are strictly goal substitutions invoking properties of = 
from the specification set but more conveniently interpreted as goal 
simplifications. 

5.3 : GOAL SUBSTITUTIONS 

In contrast to the kind of simplification rules presented in the 
last section, which do not enrich the knowledge in the current goal but 
merely rearrange it or trivialize it, the object of each rule now to be 
discussed is to derive a new goal by combining the knowledge in. the 
current goal with that expressed in the specification set. It was 
suggested in Chapter 4 that this process could be viewed as quasi-
computation analogous to conventional logic program execution by 
interpreting the specification set as a procedure set and by interpreting 
its interactions with derived goals as execution mechanisms. In 
particular, these mechanisms exhibit features such as call activation 
(independent or cooperative), procedure invocation (deterministic or 
non-deterministic) and data transmission (input or output, by argument 
instantiation). The notion of a successful derivation in this context 
differs slightly from that associated with successful logic program 
execution in that it is terminated when all the calls in the current 
goal (if any) are atomic; note that this still allows the possibility 
of a refutation derivation - that is, when no calls remain to be 
processed. Observe, then, that whereas successful program execution 
computes a solution /"refutation + induced bindings to output variablesj / 
a successful procedure derivation generates a new way /"Horn clause 
goal + induced bindings to output variablesj of investigating the 
original goal. 
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The inference rules which allow the implementation of the above 
ideas are, for the most part, a little more elaborate than resolution 
because of their need to cater for non-atomic calls and procedure 
headings. As with the previous discussion of rules for goal 
simplification, the following description of goal substitutions is 
confined to deal with just those rules which have proved consistently 
useful in the examples investigated. Fortunately they are few in 
number, simple in concept and compact in presentation; however, a set 
of rules proved to be complete would probably not share those attributes. 

Inference Rules for Goal Substitution 

Each incremental step in the top-down execution of a Horn clause 
goal consists of selecting one of its conjuncts (that is, activating 
a call), selecting a resolving input clause (that is, invoking a 
procedure from the program body) and finally substituting the matched 
procedure body for the call to the derived goal. The resolution which 
accomplishes this essentially combines the inference rule modus tollens 
with the unification of literals. This kind of inference has a simple 
but useful analogue in the process of procedure derivation which only 
requires an extension of the notion of unification so as to apply to 
arbitrary formulas rather than just literals. In addition to this 
simple analogue of program execution, there exist some variants of it 
which allow slightly more elaborate ways of invoking knowledge in S 
in order to make a substitution for the activated call. Each of the 
substitution rules is now discussed in turn. 

1] Modus Tollens 

It will be helpful to begin with a concrete example; therefore 
consider the following goal assumed to be the current goal in some 
procedure derivation.:-

perm(x' ,y') , (\fuv) (u<v consec(u,v,y')),append*(w,y',y),select(w,x',x) 

and suppose that the second (non-atomic) call is activated. Assume 
also that the following sentence occurs in the specification set :-

(\Juv) (u<v -«- consec(u,v,z)) + ord(z) 

and is invoked in response to the activated call. Viewed as a 
procedure, this sentence has the procedure heading :-
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(\/uv) (u<v consec(u,v,z)) 

and the procedure body ozd(z). Now the activated call can clearly 
be matched with the invoked heading by the unifier iy':=z} . 
Applying this instantiation together with modus tollens then produces 
the derived goal :-

4 perm(x',z), ord(z) , append*(w,z,y), select(w,x',x) 

by the substitution of an atomic body for a non-atomic call. As a 
second example, suppose that the current goal is 

4 perm(x,y) , ord(y) 

and that the invoked procedure from the specification set is :-

ord(z) 4 (\fuv) (u<v 4 consec(u,v,z)) 

Then the unifier {y:=z} with modus tollens substitutes the procedure 
body for the call to give 

perm(x,z) , (Vuv) (u<v 4 consec(u,v,z)) 

This time a non-atomic body replaces an atomic call. 

The inferences just illustrated can be formalized in the following 
way. Let F be the activated call in the current goal G and assume r 
that S either contains or implies a sentence (F* 4 F') such thâ t F 
and F* are unifiable by some 9. The derived goal G .is then obtained 

r+1 
by substituting F' for F in G and applying 9 to the result. /"Note 
that to avoid confusion in the naming of variables, this and all other 
goal substitution rules proceed on the assumption that prior to the 
inference step the variables in the goal have been named so as to be 
distinct from those in the invoked sentence, or at least to the extent 
that no ambiguities arise in the composition of the unifier 9J. 

A special case of this rule is where S simply implies the assertion 
F* 4 which corresponds to F' being merely true; in this case the 
assertion immediately solves the activated call and so effectively just 
deletes it from the current goal. Clearly these inferences are direct 
analogues of Horn clause procedure invocation. Observe in particular 
that the application of 9 to the substituted goal acts as a device for 
transmitting data between calls exactly as in logic program execution. 
Finally, note that this rule determines that the derived goal is 
S-implied by - but not generally S-equivalent to - the given goal. 
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2] Transitivity of Implication 

Because the calls in the goal are not limited to atomic formulas, 
the possibility exists of more elaborate ways in which S may contribute 
to the substitution of a goal subformula F by some F' originating from 
S ; indeed most non-trivial procedure derivations depend crucially 
upon this possibility. The next rule to be presented here deals with 
a call which is itself a conditional of the form (F A) where both 
F and A are arbitrary. This call seeks to show that A implies F. 
Ignoring trivial ways of showing this (for instance, by relying upon 
the specification set to imply (F A) ) , the simplest general way of 
solving the call is to show that A implies some Fr which itself implies 
F. Imagine then that S contains or implies the procedure F* F' 

where F* and F are unifiable by some 9. Then the derived goal is 
obtained by substituting F' for F in the activated call and applying 9 
to the result. In an analogous way, if the activated call takes the 
form (A + F) and S implies the procedure F' F* with F* and F 
unifiable by some 9, then the derived goal is obtained by substituting 
F' for F in the call and applying 9 to the result. The applicability 
of these rules is clearly dependent upon the context of F in the goal; 
that is, unless F is either the consequent or the antecedent of a call 
which is a conditional formula, these rules will not apply. Observe 
also that the derived goal is S-implied by - but not generally 
S-equivalent to - the given goal. 

X 

3] S-Equivalence Substitution 

The rules presented so far have only considered circumstances 
in which S implies a conditional sentence. A more powerful kind of 
goal substitution is possible when S implies an equivalence. Suppose 
now that S implies a sentence F* F' and that the current goal 
contains a subformula F which unifies with F* using some 9. Then a 
derived goal is obtained by substituting F' for F and applying 9 to the 
result. This rule is more powerful than the others above insofar as 
it applies independently of the context of F in the given goal; that is, 
F need not be a call or have any special contextual position in a call. 
In fact F can even be a whole conjunction of calls, as though all were 
being simultaneously activated, but normally we shall prefer to apply 
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the rule in cases where F is a subformula of a particular call, and 
then consider that call to be the activated one in the current goal. 
By contrast with Horn clause resolution, observe that derivations in 
FOPL using rules of this kind allow inferences to be made about the 
inner structure of calls. Because this particular rule allows F 
to have an arbitrary context, it has the important property that the 
derived goal is necessarily S-equivalent to the given goal. It can 
be regarded as just a variant of the general replacement axiom for 
deductive logic. At this stage in the discussion of goal substitutions 
it will be useful to see a concrete example. 

Suppose that the current goal seeks to show that the intersection 
of some pair of sets is' a subset of some other set :-

•*- (Vu) ( uzy 4 uzx^, ) 

and that the specification set contains the set membership axiom below 
applicable to sets represented by terms 

wzv:z 44 w=v v WZZ 

Now this axiom can be used to express the membership of any of the 
sets named in the goal in terms of the membership of its constituents. 
Assume that the set x^ is chosen as the one to have its membership 
expressed in more detail in consequence of what S says about the 
construetibility of sets. Then the following identifications are 
made to admit an application of the S-equivalence substitution rule 

F* = wzv:z 

F' = w=v V WEZ 
F = uzx^ 

G = (u:=w, x^:=v:z} to match F with F* 

so that the derived goal becomes :-

C^w) ( wzy 4 (w=v v wzz) , wzx2 ) 

and the single binding to a goal output variable, namely x^:=v:z , is 
assigned to the binding environment of the derivation. Note also that 
the same result could be obtained using one of the transitivity of 

implication rules described in 2] above by exploiting a weaker fact 
from S which is implied by the equivalence just used; this fact is 
just the conditional :-

wzv:z 4 (w=v V wzz) 



•154 

Now the given goal can, just for the sake of example here, be re-written 
in the form :-

(\fu) ( uey v ^uex^ uex ) 

and then considered to have its activated call in the form (A F) , 

whilst S implies a sentence of the form Fr F* such that F and F* are 
unified by {u:=w, x z } . Transitivity of implication then derives 
the new goal :- -

(Mw) ( wey v ^wex -«- w=v v wez) 

which,after re-writing again to eliminate the explicit assumes the 
same form as the goal just derived by 5-equivalence substitution. 

4] S-Conditional-Equivalence Substitution 

The inference rule to be explained now is probably the most 
frequently used of all the goal substitution rules. Like the one 
above it has the object of substituting a formula F' for an arbitrary 
subformula F in the activated call of the goal. Now, however, this • 
substitution is conditional upon some other arbitrary formula F", and 
so a call to F" will appear in the derived goal. The specification set 
is assumed to imply a conditional equivalence of the form (F* F') F" 

such that the selected goal subformula F unifies with F* using 9. The 
derived goal is obtained by substituting F' for F, applying 9 to the 
result and finally appending the new call F". The rule allows the 
context of F in the given goal to be arbitrary, and has the property 
that the derived goal is S-implied by - but not generally S-equivalent 
to - the given goal." 

A simple example of the rule is shown below which seeks to show 
that some y is a lower bound for some set x 

-«- (Mu) ( y4u + uex ) 

The specification set is assumed to contain the following axiom about 
the constructibility of sets using set union :-

(\/w) ( w£z w=v v wez' ) union* (v,z' ,z) 

Now make the identifications 

F = uex F' = (w=v v wez') 
F* = wez F" = union*(v,z',z) 

6 = { x : = z } 

and apply the rule as just described to give the derived goal :-
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4- (Vw) ( Y 4 - w=v v WEZ' ) , union* (v,z' ,z) 

It should be stated here that the applicability of this rule does have 
a slight contextual dependence upon the structure of the current goal 
G , although this is not especially associated with the context of its 
replaced subformula F; rather it is a constraint upon the quantification 
of the goal variables. A sufficient condition for the rule to be 
applicable as described earlier is that the free variable set of f" 
and the bound variable set of g'g should be disjoint, where g' is the r r 
result of substituting f' for F in the current goal g, and 9 is the 
unifier of F with f*. In the example above this condition is 
satisfied because the free variable set of f" is {v,z',z} whilst the 
bound variable set of g'9 is {w} , these being clearly disjoint. r 
Cases where this condition upon the quantification of the goal 
variables is not satisfied and thus obstructs some substitution for F 
conditional upon F" have not occurred during investigation of any of the 
examples presented in this thesis, and so would not seem to represent 
a significant limitation in practice. 

A final observation about this inference rule is that when F" is 
trivialized to just true, the S-conditional-equivalence substitution 

reduces to the S-equivalence substitution; since the free variable set 
of F" is then empty it must be disjoint with the bound variable set 
of the substituted goal, and so the quantification constraint vanishes. 
This is consistent with the fact that there are no quantification 
constraints upon the applicability of the S-equivalence substitution. 

5] Conditional Transitivity of Implication 

This rule could be regarded as a hybrid formed from the two 
previous rules 2] and 4]. There are two variants of it, both of 
which exploit the transitivity of implication. In the first variant, 
the activated call has the form (f 4- a) and s implies a sentence of 
the form (f* 4- f') 4- f" with F and f* unifiable by some 0. The 
derived goal is obtained by substituting f' for F, applying 0 and 
finally appending a new call F". In the second variant, the activated 
call has the form (a 4- f) and s implies a sentence of the form 
(pi + p*) + f" with F and f* unifiable by 0. The derived goal is 
obtained by substituting f' for F, applying 0 to the result and finally 
appending the new call F". In each case the context of F in the goal 



is specific, and in each case the derived goal is S-implied by - but 
not generally S-equivalent to - the given goal. A concrete example 
of the rule's application is not given here, but an interesting instance 
of it will be found in the next section dealing with the derivation of 
recursive procedures. 

Summary 

The detailed syntactical description of these rules appears a 
little intimidating, and so it is useful now to give an informal 
summary of their objectives and preconditions. Given a current goal, 
the objective of all the rules is to replace some subformula by a 
formula from the specification set; this will be motivated by the belief 
that the goal becomes, in some sense, more informed about the problem 
of interest. In general we would ideally like to replace the 
selected subformula by an equivalent one, so that the derived goal would 
certainly not say anything less.than did the given goal. Also we 
would like to choose the subformula without worrying about its contex.t 
in the goal. The realization of this ideal is the S-equivalence 
substitution, and its precondition is simply that the appropriate 
equivalence should be implied by the specification set. 

The next best approximation to the latter rule is the 
S-conditional equivalence substitution which still allows F to be 
any subformula but no longer preserves S-equivalence between the given 
and the derived goals. The remaining rules just deal with the simplest 
of the special cases of F's context in the given goal : when it is the 
consequent or antecedent of a conditional call, or when it is itself 
a call. Jointly these rules suffice for a great variety of procedure 
derivations, as will be seen in due course. Their general usefulness 
can be made apparent by considering the style in which specification sets 
are typically assembled. For suppose that R is the relation for which 
procedures are to be derived, and is specified in S by the sentence :-

R -«-*• D. / ... , D 
1 m 

It may be possible to foresee that those procedures will usefully 
interrogate some other relations R', R", ... specified in S by 
analogous sentences :-
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where the conjuncts of the various definiens' are generally non-atomic. 
It is because they are non-atomic that the derivation of procedures 
for R from these sentences cannot be accomplished using just modus 
tollens, which poses the need for the other inference rules which 
exploit deeper relationships between the definiens1 obtaining through 
the sharing of unifiable subformulas. Moreover, it is observed 
empirically that it is very usual for an individual conjunct, say d", 
to have the structure (f* 44 f') ; that is, the specification set 
implies (f* 44 f') 4 r" by virtue of the 'only-if' half of the 
R" definition. This is just the right pre-condition for making an 
S-conditional equivalence substitution of F' for some subformula F in 
the goal using G to unify F with F*. This inference step will 
therefore introduce a call to R", and thereby contribute towards the 
transformation of the goal to a conjunction of entirely atomic calls; 
this is because R" is an atom by assumption. This is a highly typical 

feature of non-trivial procedure derivation. 

Combining Simplification and Substitution 

In general, the strategy which underlies the procedure derivations 
is disposed towards the substitution of atomic calls for non-atomic 
calls. A goal simplification tends to increase the goal's amenability 
to such substitutions by so modifying its syntax that its subformulas 
can be matched with other formulas in the specification set. Typically 
a simplification is applied to a call which is not unifiable with any 
formula in that set; usually its result is to replace that call by a 
conjunction of simpler ones of which some may be so unifiable. 

The contribution of goal substitutions to the pursuit of clausal 
form is more complex and does not seem capable of some single 
generalized interpretation. Sometimes it may replace complete non-
atomic calls by atoms or vice versa; or it may only replace a highly 
localized subformula, leaving the rest of the call intact. Yet the 
most consistent feature of logic procedure derivation is the need to 
interleave simplifications and substitutions cooperatively. This comes 
about through the choice of a rather finely discretized approach to 
the derivation methodology, allowing alternative choices of simplification 
and substitution at each inference step. 



This section closes with two examples of derivations which 
interleave the rules described here. 

Specification Set : 

min(u,x) 44 uzx, lowerbound(u,x) 

lowerbound(u,x) 44 (\/v) ( u^v 4 vex ) 

union* (w,x',x) 44 (Vv) ( vzx44vzx' v v=w ) 

empty (x) 44 (\fv) (vex 44 false ) 

Initial Goal : 4 min(u,x) 

Derivation : 

4 min(u,x) 

4 uzx, lowerbound(u,x) [modus tollens] 

4 uzx, (Vv)( u^v 4 vex ) [modus tollens] 

4 (uex' v u=w), (Vv) ( u$v 4 vex1 v v=w), union*(w,x',x) 

[S-cond.-equiv.-substitution] 

4 w=w, (Vv) ( u$v 4 vex' ) , (Vv) ( u^v 4 v=w) , union* (w,x' ,x) 

[2 simplifications] 

4 u=w, (Vv)( u^v 4 false), u4w, union*(w,x',x), empty(x') 

[S-cond.-equiv.-substitution] 

[1:1 of = to'simplify] 

4 u£w, union*(w,x',x), empty(x') 

[delete valid 2nd call] 

4 union*(w,x',x) , empty(x') [u:=w to solve first two calls] 

at which point the calls are all atomic; the inferred procedure is 

min(w.x) 4 union*(w,x',x), empty(x') 

which just gives a useful basis procedure for certain recursive 
procedures for min. 
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Specification Set : 

consec(u,v,z) (3i)(item(u,i,z), item(v,i+lfz)) 

first(z,u) item(u,l,z) 

rest(z,z') (Mui) (item(u,i ,z) 44- item(u,i-l,z*) 

v (i=l,first(z,u))) 

Initial Goal : 4- consec(u,v,z) 

Derivation : 

4- consec(u,v,z) 

(3i)(item(u,i,z), item(v,i+l,z)) [modus tollens] 

4- item(u,i,z), item(v,i+l,z) [deletion of quantifier] 

4- item(u,i,z) , item(v,i,z') , rest(z,z') 

[conditional transitivity of implication by virtue 

of S implying 

(Mui) (item(u,i,z) 4- item(u,i-l,z')) 4- rest(z,z') 

and also employing some primitive arithmetic] 

4- first(z,u) , first(z',v), rest(z' ,z) 

[modus tollens twice, inducing 

x the binding i:=l ] 

at which point all calls are atomic, giving the derived procedure 

consec(u,v,z) 4- first(z,u), first(z',v), rest(z,z') 

This is just the non-recursive procedure for consec which seeks a 
consecutive pair in a list by specifically inspecting the first pair. 
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5,4 : SOME TECHNIQUES FOR PROCEDURE DERIVATION 

Derivation of Recursive Procedures 

Most interesting computations are either recursive or iterative. 
Recursive computations emanating from logic program execution are 
obtained from recursive procedures in the program; iterative behaviour 
may arise either by bottom-up invocation of recursive procedures, or 
by top-down invocation of recursive procedures using a stack-
overwriting mechanism or, more trivially, by the action of the 
interpreter in performing incremental search. Examples of these 
possibilities were given in Chapter 3. In this section we examine 
the ways in which recursive procedures are typically derived from 
non-recursive specifications. 

A simple example of such a derivation begins with a specification 
of the wth Fibonacci number due to De Moivre; here the predicate 
fib(u,w) holds when u is this number :-

fib(u,w) u= -
A 

The constant symbol $ abbreviates h(l+^5) and £ abbreviates . 
These constants are related by two sentences which are included in 
the specification set together with the fib definition above :-

$-1 + $-2 = j $-1 + $"2 _ j 

It is also assumed that S implicitly contains some simple axioms 
of arithmetic dealing with addition, multiplication and 
exponentiation; these could easily be made explicit by introducing 
predicates plus, times and exp, but for conciseness in what follows 
it is more convenient to use function symbols to construct: arithmetic 
expressions and then perform 'quasi-arithmetic*upon them-

The objective of the derivation below is to derive a recursive 
procedure for fib which can then be used in a program for computing 
Fibonacci numbers. 

fib(u,w) 

-t- u = i. * - iw) 
A 

u = L * * i - * i) 
A 
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U = L* * + $-2; - * + $-2;; [arithmetic] 
/5 

u = i * - $"-1 + . [arithmetic] 
y5 

u = l * 1 _ + I * _ [arithmetic] 
/5 /5 

u = uj+u2' fibCUj'™-1)' fib(u2,w-2) [modus tollens twice] 

The derived procedure is then just the familiar Fibonacci identity :-

F = F _ + F _ w w-1 w-2 

Kowalski's paper (51) discusses the computational properties of programs 
which use this procedure. It should be noted that the inferences 
used in.the above derivation are just modus tollens and so require 
only the simplest kind of subformula substitution. The recursiveness 
of fib is inherited here from that of the exponential relation which 
is implicitly assumed in the specification :-

x1*^ = x1 * x^ 

and which in predicate form would be written as the recursive procedure 
for exp :-

exp(x,k,y) plus (i ,j ,k) , exp(x,i,y j) , exp(x,j,y2) , 

times(ylfy2,y) 

Before considering the underlying philosophy of derivations such 
as this, two more examples will be shown now whose productions of 
recursive procedures appear to have different origins from that above. 
Consider then the derivation of the recursive go* procedure for which 
Kowalski gives the specification 

go*(x,z) 44 ( go(z) 4 go(x) ) 

h very simple derivation now proceeds as follows 

-c- go* (x,z) 

4 ( go(z) 4 go(x) ) [modus tollens] 

4 ( go(z) 4 go(y) ), go*(x,y) [cond. trans, of implication] 

90*(y,z), go*(x,y) [modus tol1 ens] 

so that the procedure inferred is 

go*(x,z) 4 go*(x,y), go*(y,z) 
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It may be helpful to clarify the second step by observing that the 
call in the second goal takes the form (A 4- F) whilst the specification 
set implies a sentence (F' 4- F*) 4- F" , namely :-

( go(z) 4- go(x) ) 4- go*(x,z) 

The conditional transitivity of implication rule then admits a 
substitution for go(x) conditional upon the introduced call go*(x,y) 
as follows 

match F and F* with unifier 9 = {x:=x} ; 

substitute F1 for F , and apply 9; then add F" giving 

4- (go(z) 4- go(z))9, go*(x,z) ; 

then make the renaming {z:=y, x:=x} to give :-

(go(z) 4- go(y)), go* (x,y) 

It should be observed that the derived procedure is recursive by 
virtue of declaring the transitivity of go*; this recursiveness 
is not inherited from that of any other problem-specific relations 
as was the case in the Fibonacci example. Assertions of other 
general properties of relations such as reflexivity and associativity 
are also necessarily recursive and may often be useful for computational 
purposes; for instance, the conventional recursive procedure for 
append is just a specialization of the general property of associativity 
for the appending operation.x 

The third example given here illustrates perhaps the most common 
way of deriving recursive procedures. This proceeds by decomposing 
selected sub-projections of the relations of interest. To demonstrate 
this, suppose that the given goal has the subformula vex and hence 
investigates in some way the question of whether an element v can be 
found in a set x. Now consider the projection of e associated with 
its first argument position and, in particular, that sub-projection 
{v | vex} of it determined by some choice of x. This sub-projection 
can be expressed arbitrarily in terms of its component members and 
subsets. For instance, if we have some algorithmic intuition about 
the way the membership of x should be investigated during execution, 
we might favour the decomposition x = x^ U x^ U {v'} ; this 
relationship between the components of the sub-projection above 
is conveniently summarized by the predicate union**(x1,xn,v',x) . 
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which is specified in FOPL by :-

and 

union** (x, ,x .vr ,x) ++ (Mv) ( vex-*-*-vex, v VEX„ v v=vf ) 
1 2 JL 2 

expresses {v | VEX} = {v | VEX^} U {V | U {v | v=v'} . 

Note that the above sentence trivially implies a conditional 
equivalence of the form (F* -«-*• F') union** (x^ ,x0,v' ,x) , which 
just states what substitution can be made for a predicate vex subject 
to the condition that the sub-projection {v | vex} is decomposed as 
described by union**(x ,x2,v',x). To observe the usefulness of this 
we revisit the lowerbound relation and pursue the derivation of a 
recursive procedure for it as follows :-

lowerbound (u,x) 

(Vv) (u£v •*• vex) [modus tollens, invoking assumed lowerbound specn.] 

(\Jv) (u4v vex v VEX^ v v=v'), union**(x2,v* ,x) 

[S-cond.-equiv.-substitution for subformula vex] 

(\Jv) (u$v -«- vex ; , (\Jv) (u^v vex2) , (\fv) (u4v + v=v') , 

union** (x ,x ,v' ,x) 

[distributing through v and then 

distributing V through conjunction] 

lowerbound(u,x^), lowerbound(u,x, u4v', union**(x,x) 

[modus tollens twice, for first two calls, 

and 1:1 of = to simplify the third call] 

This clearly gives a recursive Horn clause procedure. An informal 
explanation of the intuition underlying the derivation is as follows : 
for given u and x, solving the call lowerbound(u,x) requires the 
examination of all members in the e sub-projection {v J vex}; but 
subject to the condition union**,x) this may be accomplished 
by three individual examinations of all instances of v in, respectively, 
{v | vex } , {v | vex } and {v | v=v'} ; on inspection of these 

JL « 

examinations it is seen that each one investigates the question of 
whether u is a lowerbound for some set, which is finally expressed 
in terms of the atomic predicates afforded by the original formulation. 
It is especially important to note the role of the S-conditional-
equivalence substitution in this technique for obtaining recursive 
procedures through the decomposition of sub-projections. 
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The same technique can be employed for relations of any -arity. 
For instance, to show that a list x is ordered requires examination 
of all pairs (u,v) satisfying consec(u,v,x). The sub-projection 
{(u,v) j consec(u,v,x) } of the first two argument positions of consec 

can be decomposed conveniently as the union :-

{(u,v) \ consec (u,v,x')} U {(u',v) | first(x' ,v)} 

which is expressed by the conditional sentence :-

(Vuv) (consec(u,v,x) 44 consec (u,v,x') v (u?=u', first fx',v) ) ) 

4 append*(u',x',x) 

This sentence is a consequence of the specification for append*(u',x',x) 
which holds when u' is the first member of x and x' is the rest of x. 
Similarly the analogous sentence in the previous example was just a 
consequence of the specification of the union** relation. (However, 
note that in the present example the sentence is not simply the only-if 
half of a specification for append*, as the following counter-example 
shows : choose x = (a,b,a,b), x' = (a,b,a) and u' = b j these instances 
satisfy the conclusion of the conditional but do not satisfy 
append*(u',x',x) .] A derivation of a recursive procedure for ord now 
proceeds very easily :-

4 ord(x) 

4 (Vuv) (u<v 4 consec(u,v,x)) 

4 (Vuv) (u<v 4 consec(u,v,x') v (u=u',first(x',v))), append*(u',x',x) 

4 (\juv) (u<v 4 consec(u,v,x*)), (Vuv) (u'<v 4 first(x',v)), 

append*(u',x',x) 

4ord(x'), u1<v1, first(x',v')f append*(u1,x',x) 

[by invoking an axiom that asserts that the 

first relation is many:l , viz :-

(\fv) (v=v' 44 first (x' ,v)) 4 first (x1 ,v') 

which allows an S-cond.-equiv. substitution 

for the subformula first(x',v) in the goal's 

second call; then exploit 1:1 of = to simplify.] 

A rather tidier derivation expresses the desired decomposition a little 
differently using the conditional equivalence :-

(Vuv) (consec(u,v,x) 4-v consec(u,v,x') v (u=u' ,v=v')) 

4 split (x,u' ,v* ,x') 
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where the split relation is the one used in the example at the end 
of Section 4.5 ; the derivation of the.desired ord procedure now 
follows exactly as shown in that example, resulting in :-

ord(x) splitfx ,u' ,v' ,x') , u'<v' , ord(x') 

Then split(x,u',v',x') can be shown to be implied by the conjunction 
(first(x',v'), append*(u',x',x)) as a later exercise. 

In each of the three examples considered, a recursive procedure 
for some relation R arose through the transformation of an initial 
goal R into a goal -«- R ,, ..., R such that at least one R . turned 

I n 1 
out to be some substitution instance R9 of R. This was achieved by 
a goal-oriented symbolic execution of the conjuncts in the definiens D 
of R which were introduced into the derivation by invoking R's 
definition from the specification set. Eventually some R b e c a m e 
recognizable as D9 and so was replaced by the S-equivalent atom R9, 
thereby introducing recursiveness into the procedure inferred from the 
derivation. This technique was developed by Burstall and Darlington 
(10) and also by Manna and Waldinger (61), the former applying it to 
the derivation of sets of executable recursion equations and the latter 
applying it to the derivation of LISP programs from specifications. 
Burstall and Darlington have given the terms 'folding' and 'unfolding1 

to the acts of definiens-substitution and definiens-replacement which 
underlie the process described above. Transformations of recursion 
equations closely resemble transformations of Horn clause procedures, 
since the two formalisms share many similarities. Clark seems to have 
been the first to apply seriously the ideas of Burstall and Darlington 
to the correctness-preserving improvement of Horn clause programs. 
Application of the same ideas to the derivation of logic procedures 
from FOPL specifications was investigated soon after by Hogger (38), by 
Clark and Sickel (15) and - in a less obvious way - by Bibel (3). 

As a final note in this section, it should not be thought that 
the derivation of recursive procedures depends upon the 'fold/unfold' 
paradigm. Logic has the curious property that a derived procedure 

1 n 

necessarily s-implies 
R R^ / • • • R R^ *R9 

for any arbitrary R and e. 



•166 

Derivation of Basis Procedures 

Suitable bases for recursive procedures may be derived from 
specifications using the same inference rules as have been shown 
here for deriving other kinds of logic procedures. In general they 
arise from trivializations which render calls immediately solvable 
without requiring further recursive invocations. There are various 
ways in which calls may be trivially solved. Perhaps the simplest 
way is to instantiate their variables with known solutions towards 
which the associated recursive computations are known to converge. 
An example of this is shown below which derives a basis for the 
consec relation :-

4- consec(u,v,z) 

» 4- (3i)(item(u,i,z), item(v,i+l,z)) [modus tollens] 

4- item(u,i,z), item(v,i+lfz) [delete quantifier] 

4- item(ufl,z) , item(v,2,z) [instantiate i:=l] 

and thus infer the basis :-

consec(u,v,z) 4- item(u,l ,z) , item(v,2,z) 

This procedure is sufficient to terminate computation initiated by a 
solvable call to the consec procedure set consisting of that procedure 
together with the recursive procedure :-

consec(u,v,z) 4- rest (z,z') , consec(u,v,z') 

This is because in the case where the call is solvable the computation 
must generate a list whose first and second members are respectively 
the two quoted in the initial call. 

The consec example above is only concerned with the discovery 
of any instances of u and v which satisfy consec(u,v,z). However, 
in other problems it is necessary to investigate all the instances 
in some sub-projection of the relation of interest. V7e have seen 
how this can be represented in derived recursive procedures by 
exploiting conditional decompositions of such sub-projections. The 
appropriate bases for computations generated by these means typically 
deal with the trivial sub-projections that are eventually computed 
from a succession of decompositions, for instance, sub-projections 
which are empty or just contain one individual. A simple example 
of this can be considered in connection with the lowerbound relation, 
beginning with a derivation :-



4- lowerbound (u ,x) 

(Mv) (ugv 4- vex) 

Here there is no apparent instantiation of the call's variables 
which immediately solves the call through the sole agency of goal 
simplification. Now the usual algorithm employed for the problem 
of testing whether a given u is indeed a lower bound for a given set x 
makes use of a recursive (but iteratively implementable) procedure :-

lowerbound(u,x) 4- union*(v,x',x), u^v, lowerbound(u,x') 

which selects successive members v from x and compares them with u. 
The requisite basis deals with the case where there is no such 
member v, signalled by the recursive procedure's failure to solve 
the call to union*. Suppose then that a specification is given 
of the empty set 

empty (x) •<-> (Mv) (vex false) 

Then the derivation above can be continued by invoking this axiom 
in the context of an S-conditional-equivalence substitution as follows :-

4- (Mv) (u^v 4- false) , empty(x) [S-cond.-equiv. substitution] 

4- empty (x) [deletion of valid lsi: call] 

from which the lowerbound basis is inferred 

lowerbound (u,x) 4- empty (x) 

This is a rather round-about way of proving an obvious theorem about 
lowerbound, but it is clearly desirable that the advocated inference 
rules should cater for the trivial theorems as well as the less 
trivial ones in order to merit any claim for their general applicability 

Whilst the simple treatment of basis derivation shown above is 
adequate for many cases, there are nevertheless more subtle ways of 
providing bases. Kowalski's go* relation offers such an example, 
where a particular instantiation allows the deletion of a valid call :-

go*(x,z) 

4- (go(z) 4- go(x)) [modus tollens] 

4- (go(x) 4- go(x)) [instantiate z:=x] 

• [delete valid call] 

resulting in the familiar go* basis 

go*(x,x) 4r 
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This basis just expresses the general property of symmetry in the go* 
relation, and does not arise through consideration of successive 
decomposition of the relations named in the program body. 

A rather more exotic example is provided by the palin* relation 
discussed briefly in Section 3.1 . Recall that the predicate 
palin*(z',z) holds when some result x of appending z' to the reverse 
of z is a palindrome; this is specified easily by :-

palin* (z' ,z) ++ (3xz*) (palin (x) -<- append (z*,z' ,x) , reverse (z ,z*) ) 

Now suppose that the motivation for deriving some procedures for palin* 
is to find a procedure set which behaves better than that below :-

palin(x) -«- append(z*,z,x) , reverse(z,z*) 

palin(x) append(z* fu.z,x) , reverse(z,z*) 

These could be the procedures trivially implied by a high-level palin 
specification of the meaning of 'palindrome' which avoided reference 
to the individual indexed members of x. In Section 3.1 it was shown 
that very satisfactory behaviour could be obtained from a palin* 
procedure set having one recursive procedure and two bases; here we 
explain the derivation of those procedures. Consider, then, a 
derivation for palin* which assumes that the naive (non-deterministic) 
palin procedures above are available as axioms in the specification set. 

palin* (z' ,z) 

•<- (palin(x) append(z* ,z' ,x) , reverse(z,z*) ) [modus tollens and 

delete quantifier] 

Now treat the first palin procedure above as an assertion F* •<- which 
unifies with the call in the derived goal by 0 = {z'.-=z} ; thus modus 
tollens will ..give an immediate refutation. Similarly, invoking 
the second palin procedure as though it were an assertion will also 
give a refutation with the unifier 6' = {z':=u.z} . These two ways 
of terminating the derivation with the facts available give the two 
desired bases :-

palin* (z,z) 

palin* (u.zfz) 

Discussion of the palin* recursion is a little out of context 
here, but below is an outline of its derivation. It is only 
necessary to add to the specification set the further axioms :-
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append(z",z',x) append(z*,u.z',x), append(z*,u.nil,z") 

reverse(u.z,z" ) + reverse(z,z*) , append(z*,u.nil,z") 

of which the first just states a simple consequence of the general 
associativity of the appending operation, whilst the second is just 
the familiar recursive reverse procedure. These admit a fairly 
straightforward derivation 

4- palin* (u.z' ,z) 

4- (palin(x) append(z*,u.z',x) ,reverse(z,z*)) [as for the bases] 

4- (palin(x) -(r append(z",z',x) , reverse(u.z,z")) 

[substituting for each of the inner 

antecedents by invoking the append 

and reverse axioms above to exploit 

transitivity of implication] 

•4- palin* (z' ,u.z) 

and hence produce the recursive procedure 
palin* (u.z' ,z) •*- palin* (z' ,u.z) 

Finally it may also be noted that the procedure which solves calls 
to palin by solving calls to palin* can also be derived trivially 
using the palin* specification. Noting generally that a sentence 
A (B 4- c) logically implies B 4- c,A , the palin* specification 
similarly implies the non-recursive procedure 

palin(x) 4- append(z* ,z' ,x) reverse(z,z*) , palin* (z' ,z) 

Choosing the instantiations z:=nil and z':=x and invoking trivial 
properties of reverse and append then gives 

palin(x) 4- palin* (x,nil) 

It is interesting to observe here that although investigation 
of whether x is a palindrome requires examination of all its members 
- and hence a recursive palin* procedure to achieve this incrementally 
- it has not proved necessary to consider as a potential basis the 
limiting case where x is the empty list; in general, the computation 
apparently terminates before reaching a state where it is involved 
in processing empty lists generated by successive decomposition. In 
reality, of course, empty lists are inspected, but net through the 
direct agency of the program's explicit procedures; instead they are 
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generated by the interpreter's unification procedure which is 
presented with the task of matching two identical instances of z by 
a call to either palin*(z,z) or palin*(u.z,z), this being performed 
member by member by the interpreter until only empty lists remain to 
be matched? this implicit convergence to a basis comparing empty lists 
is just a consequence of the implicit role of the unification mechanism. 
A similar example was discussed in Section 3.1 in the case of the 
procedure set for the list equality relation. 

In the course of deriving basis procedures it is frequently 
necessary to solve several calls conjointly. This can be illustrated 
in the task of deriving a basis for the program which tests whether 
x is a palindrome by testing whether x is its own reverse. The 
appropriate specification set for this purpose is 

palin(x) 44 reverse(x,x) 

reverse(x,y) 44 (3w) (length(x,w) , 

(Mui)(item(u,i,x) 44 item(u,w+1-i,y)) ) 

length(x,w) 44 (Mi) ( I4i<w 44 (3u) item(u,i ,x) ) 

empty-list (x) 44 (Mui) (item(u,i,x) 44 false) 

which admits an innocuous derivation :-

4 palin(x) 

4 reverse(x,x) 

4 length(x,w), (Mui)(item(u,i,x) 44 item(u,w+l-i,x)) 

4 (Mi)( I4i4w 44 (Mu)item(u,i ,x)) , (Mui) (item(u,i,x) 44 item(u,w+l-i,x)) 

Now these calls can be solved conjointly and trivially by assuming the 
case where x is the empty list, which makes item(11,i ,x) false for all u,i 
and by also letting w be 0, which makes I4i4w false for all i. 
Introducing these assumptions has the result of making each of the 
two substituted calls valid formulas, and adds a call to empty-list(x) in 
consequence of the obvious S-conditional-equivalence substitution. 

Therefore the inferred procedure is the expected basis for palin 

palin(x) 4 empty-list(x) 

A cautionary counter-example is provided by the problem of 
computing the minimum of a set using the min procedure shown earlier. 
After pursuing the derivation 
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-i- min(u,x) 

4- uzx, (\jv) ( u^v 4r vex ) 

it would not be possible to obtain a basis by attempting to solve 
the second call using the empty specification to substitute false for 
its subformula vex. The reason for this is that the first call 
would then be inconsistent with the newly-introduced call empty(x) ; 
the substitution inference could be applied soundly to obtain this 
result, but would just produce an unsolvable goal. Instead, the 
appropriate derivation is that shown at the end of Section 5.3, 
which transforms the goal above to one which seeks the minimum u 
in a set x' satisfying x = {w} U x' , and then solves this for the 
trivial case where x' is the empty set; the result of which is the 
inferred procedure :-

min(w,x) 4- union* (w,x' ,x) , empty (x') 

Completeness of Derived Procedure Sets 

We say that a procedure set p is complete for a relation r 
when it is capable of computing all individuals in R , provided that 
similarly complete procedure sets are also given for all other 
relations which might by investigated in P. It is also meaningful to 
say that a procedure set P is complete for r with respect to a given 
class of goals; then it must be able to compute all individuals in 
the sub-projection of r determined by that class of goals. 

Provision for ensuring completeness is not explicit in the 
presentation of logic procedure derivations given here, just as 
provision for ensuring a search through all ways of solving a goal 
is not explicit in the text of an executed logic program; we just 
assume that the search through the derivation graph employs an implicit 
labelling system which indicates the points at which choices have been 
made in processing the derivation goal. 

Choices of goal transformation which introduce a branch into the 
tree of derivations making up a synthesis arise in both goal 
simplification and goal substitution. Some of our simplification rules 
preserve S-equivalence whilst others do not; if, for instance, we 
simplify (a <- b,c) to 4- (a -<- b) , then a systematic approach for 
obtaining a complete procedure set will also require a derivation which 
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explores the alternative simplified goal (A C) . This will lead 
perhaps to a number of procedures in the derived program which solve 
the problem at hand in different ways. A different way of organizing • 
their derivation would be to defer goal simplification and instead 
process the goal first given in some equivalence-preserving way, until 
its body eventually became transformed into the disjunction of the 
bodies of all the inferred procedures; but for all but the most trivial 
problems this is grossly over-cumbersome, and it is then better to 
concentrate attention on individual derivations in conjunction with 
proper observance of points where several possibilities need to be 
explored along different branches in order to ensure completeness. 

Alternatives also arise in choice of goal substitutions. 
When S-equivalence substitution is used then no loss of information 
occurs when generating a new goal. Of course, there might well be 
alternative S-equivalence substitutions which could be applied, but 
this must not be confused with our immediate problem of dealing with 
the consequences of loss of S-equivalence. S-equivalence is usually 
lost when applying the S-conditional-equivalence substitution rule, 
because the appended condition may represent only one of several ways 
of replacing the selected goal subformula. Suppose that we use 
a lemma (F*<-+F') F'^ in order to substitute for a goal subformula. 
Then it may be, according to the particular problem formulation, 
that S implies the sentence (F'^ v F^j ; in this event the use of the 
former lemma is associated with just one of two possible branches 
which must be explored in order for the synthesis to be complete for 
the resources provided by S ? the other branch corresponds to the 
application of the alternative lemma (F*+-+F') -*- FN in order to 
replace that same goal subformula. A typical example of this is where 
we derive a complete procedure set for the subset relation by replacing 
the subformula uex in the subset definiens by either false or ^ 
(u=ur v uex'; respectively in two subset derivations. The completeness 
of the two cases has to be justified by the independent assumption that 
the specification set implies (F"^ v F'^) where F^ is empty (x) and F£ is 
(3u'x')union*(u',x',x). Without that assumption, which comes about from 
a proper data structure characterization of the data structures in this 
case (but not in all cases, by any means), we could not say that the two 
inferred procedures would compute all individuals in subset. Again, it 
is too cumbersome to arrange all the equivalence-preserving knowledge to 
be held in a single goal; we pursue alternative goals for the various 
cases of substitution, and argue for completeness afterwards. 



5,5 : DERIVATION OF DATA-ACCESSING PROCEDURES 

A set of derived procedures for some relation will usually 
refer to some other relations as well. In .Section 5.1 it was 
explained how the successive derivation of procedure sets in the 
course of deriving a complete program body imposed a hierarchical 
structure upon the synthesis methodology. Whereas it has been 
advocated that the higher-level procedures should only refer abstractly 
to their data structures, the lower-level procedures will refer to 
data structures using concrete representations. The discussion 
which now follows deals firstly with, the derivation of procedures 
which access the components of term representations, and then (briefly) 
with the derivation of procedures which interrogate assertional data 
structures. 

Procedures for Accessing Terms 

Illustration of the ways in which procedures may be derived 
for accessing terms can be accomplished by concentrating upon lists 
as the data structures of interest. Lists are, of course, the 
primary data structures manipulated by most programs, and so the 
restriction of the following discussion to lists is not a very 
serious one. Throughout the present work, the fundamental notion 
associated with lists is that of indexed membership as expressed by 
the predicate item(u,i,x), which holds when u is the ith member of 
list x. This predicate is treated as a primitive constructor for 
specifying other computationally useful relations like append*, 
and has the following axioms associated with it :-

Al : (3w) length (x,w) 4 

A2 : length(x,w) 44 (Vi) (l^i^w 44 (3u) item(u,i,x)) 

A3 : (Vu)(item(u,i,x) 44 u=u') 4 item(u',i,x) 

The elementary relation < in A2 is assumed to have only non-negative 
integers in its domain. Al and A2 jointly determine that every list 
x has an integral length WZO and that every list x with length w 
has some member u associated with each index i | In 
particular, Al and A2 jointly imply l<i if item(u,i,x) holds. Axiom 
A3 determines that the member associated with any index is unique. 
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In deriving procedures which manipulate lists, it will normally, be 
assumed that axioms A1-A3 are included in the specification set. 

Now consider the term representation of lists which has been 
used so frequently in the examples presented previously, that is, 
terms constructible using . and nil. The meaning of indexed 
membership for such representations of lists is specified by the 
rather recursive sentence 

item(u,i,z) 4-+ (3vz') (z=v.z' , (item(u,i-l,z') v (u=v,i=l))) 

This can be rewritten as shown below so as to separate two cases 
according to whether or not z is empty : 

item(u,i,nil) -«-»- false 

item(u,i,v.z') item(u,i-l,z') v (u=v,i=l) 

where nil is just a Skolem function symbol. These considerations 
establish the preliminaries for derivation of procedures accessing 
lists represented as terms. 

As a first example of the way in which the above knowledge 
can be applied, suppose that the composition of some program body 
demands the supply of procedures which simply investigate the 
question of an element's membership in a list, ignoring the question 
of its position, if any. The predicate symbol used to express list 
membership is e; the specification of e is as follows :-

uez -«-*- (3i)item(u,i,z) 

This, together with A1-A3, is sufficient for the derivation of a 
procedure set for £ . This can be shown quite briefly as follows 

. uez 

4~ item(ufi,z) [modus tollens, and delete quantifier] 

4- item(u,i-l,z') v (u=v,i=l) [modus tollens + induced 

binding z:=v.z* '] 

The derivation so far has proceeded virtually deterministically. Now, 
however, the derivation branches according to whether we have i=l 
or i>I. Axioms Al and A2 determine that these cases are exhaustive. 
If the first case is assumed, the derivation continues 

4- item(u,0,z') v (u=v,l=l) [instantiate i:=l] 

-e false v u=v [because S implies, from A1-A3, 

the fact 

(item(u,i,z) false) 4-i^O] 



• [simplifying the disjunction to u=v 

and then trivially solving with instantiation v:=u] 

Pursuing the alternative case instead :-

•*- item(u,i-l,z') v (u=v,i=l) [returning to the branch point] 

•<-(item(ufi-lfz') v (u=v, false)) , i>l 

[S-cond.-equiv. substitution using 

(i=l false) + i > 2 J 

item(u,i-l,z'), i>l [simplifying] . 

item(u,i-l,z') [deleting second call S-implied by the first] 

item(u,j,z') [instantiating j:=i-l ] 

(3j)^tem(u,j,z') [inserting explicit quantifier] 

uizr [modus tollens) 

The two procedures inferred from these derivations are then just 

ueu.z' -«-

uev.z' uizr 

Of course, these are just trivial consequences of an alternative 
recursive e specification which makes no use of the notion of 
indexed membership : 

uzz Ovz') (z=v.z', (uzz' v u=v)) 

but which is less general than the former specification in that it is 
specific to a particular representation of lists (by terms). For 
instance, the former specification immediately provides an e procedure 
for accessing lists represented by sets of item assertions instead 

uez item(u,i,z) 

As a general methodological principle it seems desirable to derive 
accessing procedures using a data structure axiomatization like 
A1-A3 even though those procedures might be obvious from the outset; 
deriving them from a common foundation (like the notion of indexed 
membership) gives coherence and integrity to the general task of 
interfacing procedures and their data structures. 
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The question of membership regarding a particular element is 
perhaps the easiest question that can be asked about some list. A 
slightly more elaborate query is that which also requires the position 
of a list's member. Clearly questions about both membership and 
position can be investigated by some appropriate call to our item 
predicate provided that a suitable procedure set for item is made 
available. Such a procedure set is trivially implied by the 
specification given previously for lists represented by terms; the 
procedures are simply 

item(u,l,u.z') 4- • 

item(u,i,v.z') 4- item(u,i-l,z*) 

and their derivation is so trivial that it is not worth formalizing it. 
Of course, if the list in question was represented by a set of item 
assertions then it would not be necessary to devise any other 
procedures in order to investigate a call to item; this reflects the 
fact that assertional data structure representations can be regarded 
as accessing procedures in their own right. 

In many cases we need accessing procedures which not only 
manipulate individual members of lists, but also whole fragments 
of those lists. A simple case of this is found in any algorithm 
which searches a list sequentially by a succession of decompositions, 
each of which inspects and then discards the first member of the 
current fragment. Typically we would employ the append* procedure 
for this task, since a call append*(u',z',z) can deal with both 
the first member u1 and the rest z' of the list z. Knowledge about 
append* can be composed from the elementary properties of item, as is 
now demonstrated. 

A simple specification of append* is as follows :-

append* (u1 ,zf ,z) first(z,u') , rest(z,z') 
i 

where first and rest are in turn specified by 

first(z,u') 4+ item(u',l,z) 
rest(z,z') (\fui) (item(u,i-l,z') item(u,i,z) ,i>l) 

These axioms allow us to choose a list representation, define the 
meaning of item for that representation and then derive an appropriate 
procedure set which accesses the representation in whatever way is 
desired. Only the simplest case is illustrated here, where lists 
are represented by the orthodox terms already considered above. 
This permits the following trivial derivations 
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4 first(z,u') 

4 item(u',l,z) [modus tollens] 

D [modus tollens, inducing z:=u'.z'] 

giving the accessing procedure for the first member of a list 

first(u'.z',u') 4 

For the rest procedure 

4 rest(z,z') 

4 (Mui)(item(u,i-l,z') 44 item(u,i,z), i>l) [modus tollens] 

4 (Mui)(item(u,i-l,z') 44 (item(u,i-l,z') v (u=v,i=l)),i>l) 

[S-equiv. substitution, inducing z:=v.z'] 

4 (Mui)(item(u,i-l,z') 44 (item(u,i-l,z'),i>l) v false) 

[distributing conjunction through v 

and then simplifying using properties of >] 

4 (Mui)(item(u,i-l,z') 44 item(u,i-l,z')) 

[deleting i>l S-implied by 'item(u,i-l,zr)] .. 

Hi [modus tollens] 

giving the accessing procedure for the 'rest' of a list :-

rest(v.z',z') 4 

The appropriate procedure for append* for this list representation is 
then obtained trivially by combining the two results above :-

4 append*(u',z',z) 

4 first(z,u'), rest(z,z') [modus tollens] 

4 restfu',zr,z') [modus tollens, inducing z:=u'.z'] 

• [modus tollens, inducing z':=z'] 

giving the familiar assertion for decomposing a list 

append*(u',z',u'.z') 4 

These derivations thus provide a coherent foundation for those simple 
theorems about the constituents of terms which we conventionally employ 
as useful accessing procedures. 
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The decomposition of lists by calls to append* is important 
to many of the logic programs derived in this thesis. To see how 
such calls can be introduced during procedure derivation, observe that 
the specifications just given for append*, first and rest jointly 
imply an alternative append* specification which refers directly to 
the list's indexed members; the new definiens for append* is 
obtained by conjoining the definiens' of first and rest and slightly 
simplifying the result, which is :-

append*(u1,z',z) ++ (Mui)(item(u,i,z) ++ item(u,i-l,z') v (u=u',i=l)) 

When this specification is included amongst the axioms used by some 
derivation, it can clearly be summoned for the purpose of making an 
S-conditional-equivalence substitution which replaces some goal 
subformula consisting of just an item predicate by an S-cond.-equivalent 
disjunction, and adds a call to append* to the goal. Thus the goal 
is modified by an assumption of a particular way of accessing the 
lists to which it refers. 

In order to aid the comprehension of subsequent derivations, it 
will be instructive now to see how the above process is applied to 
the task of deriving the conventional recursive append procedure 

append(u' .z^rz^ru' .z') + append(z'^z^fz*) 

which is essentially a generalization of append* which allows the 
first argument to be any list rather than just a single member. The 
append relation is specified rigorously by :-

append(z^z^z) «-»• (jj) (length(z^,j) , 

(Mui) (item(u,ifz) itemfUfifZ^) 

v item(u,i-j,z^)) ) 

Assuming a specification set which contains this definition of append 
together with that for append* and the list axioms A1-A3, it is now 
desired to derive a procedure for append which accomplishes its 
task by decomposing the lists in question in the specific manner 
expressed by append*. There are two ways of going about this : 
the 'low-level' way which just instantiates the lists quoted in 
the append specification with their term representations and then 
simplifies the result to obtain the append procedure shown above; 
and the 'high-level' way which pursues a derivation that introduces 
explicit calls to append*, deferring commitment to any particular 
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choice of list representation until the end of the derivation. An 
example of the low-level approach to the synthesis of a procedure set 
for append is given in Clark's paper (12), although the style of his 
approach is rather different from that employed here. The high-level 
derivation proceeds as follows :-

4 append(z^z ,z) 

4 length(zj), (Vui)( ... ) [modus tollens, delete quantifier] 

It is convenient just for presentation's sake to show separate 
derivations emanating from these two calls, combining them later. 

length (z^rj) [investigating the first call] 

4 (Vi)(I4i4j 44 (3u)item(u,i,Zj)) [modus tollens] 

4 (\fi) (l^izj 44 (3u) (item(u,i-l,zp v (u=u',i=l))), append* (u'rz^z^ 

[S-cond.-equiv. substitution to express the 

decomposition of z^ by append*] 

4 (Vi) 44 (3u)item(u,i-l,z'1) v (3u) (u=u' ,i=l) ),append* (u' sz^z^ 

[distributing 3 through v] 

4 (Vi) (l<i4j v i=l 44 (3u)item(ufi-l,z'1) v i=l) , append* (u' fz'1'z1) 

[exploiting simple property of 4 over integers, 

and simplifying (3u)(u=u',i=l) to just i=l] 

4 (Vi) (l<i4j 44 (3u)item(u,i-l,z')) , append* (u' rZ'^Zj) 

[simplifying by cancellation of each disjunct i=l] 

4 (Vi)(l$i4j-l 44 (3u)item(u,i,z^), append*(u' 

[instantiation l:=i-l, and properties of 4] 

4 length(z',j-l) [modus tollens] 

This derivation shows that when the condition append* (u' fz^z^) is 
imposed, a call lengthfzcan be replaced by length(z'3,j-l) ; an 
obvious result but deserving of proof from the assumed problem 
formulation. Next we pursue a derivation from the second call of 
the original goal, again exploiting the condition expressing the list 
decomposition. This proceeds as follows :-
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(Mui) (item(u,i,z) •«->• itemCUfirZ^) v item(u,i-j,z2)) 

(Mui) (item(u,i,zt) item(u,i v item(u,i-jrz^) ) , 

append*(u',z',z), append*(u' 

[after simplifying the result of making two obvious 

S-cond.-equiv. substitutions using append*] 

If the two derivations are now combined, a single application of modus 
tollens produces the desired procedure :-

append (z^z^z) append* (u', z j, z^) , append (z'^z^z') , 

append*(u*,z',z) 

If the decision is made now to use the orthodox term representation, 
some trivial macroprocessing of the append* calls gives the familiar 
procedure :-

append(u' .z'^,z2,u' .z') •«- append ( z'^,z 2,z') 

It is important to appreciate the way in which comparatively 
high-level accessing procedures like append* can be assimilated 
into goals which investigate decomposable data structures. The 
derivation above offers us the freedom at the end to pick an 
alternative representation upon which to implement the calls to 
append*, perhaps to improve run-time efficiency. In order to justify 
these remarks, an example will be given in the later discussion of 
access to assertional data structures, in which two calls to append* 
appearing in a context similar to that above will be implemented 
firstly upon a non-orthodox term representation, followed by an 
interesting transformation of the result which leads to their 
efficient implementation upon a representation using a set of assertions 
instead. 

Derivations like those above may of course be undertaken for 
data structures other than lists. Access to representations of sets 
is also quite a common requirement. There, it is usual to employ 
the constructors : and 0 with accessing procedures like e, union* and 
union. Although sets are mathematically simpler than lists, the 
customary term representation of sets is similar to that of lists 
where . and nil are used.* A curious consequence of this is that 
sets of accessing procedures which manipulate terms representing sets 
tend to be more complicated than their analogues which treat the terms 
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as representations of lists. Suppose r for instance, that some' 
procedure contains a call append*(u,z',z). Then we know that if 
z is decomposable then its term representation will have the form 
v.y 7 moreover, the call computes the unique solution u:=v, z' :=y 
by a single invocation of a trivial procedure 

append* (u,y,u.y) •*• 

By contrast, suppose that some procedure contains a call union* (u,x' ,x) 
where x is some term v:y representing a decomposable set. Then there 
are generally many instances of u and x' representing solutions of 
the call for that particular x. Additionally, however, even for 
a particular instance of u chosen from x, there will exist generally 
many solutions of x'. For example, if x is a:b:c:0 then two possible 
solutions are (u:=a, x1:=b:c:0) and (u:=a, x':=c:b:0). A procedure 
set for union* capable of computing all representations of the 
various solutions is as follows :-

union* (u,y,u:y) •*• 

union* (u,v:y' ,v:y) union* (u,y' ,y) 

union*(u,y',y) 4- union*(v,y",y),union*(u,y' ,v:y") 

Whether or not all these are necessary depends upon the context in 
which they are summoned to access data. The following procedure set 
for the subset relation 

subset (0,y) 4-

subset(x,y) 4- union*(u,x',x), uey, subset(x',y) 

only requires one of the union* procedures to solve the problem of 
showing that the set a:b:c:0 is a subset of the set c:b:a:0, namely :-

union* (ufx' ,u:x') 4-

But to solve the same problem using the program 
4- subset(a:b:c:0,c:b:a:0) 

subset (0,y) 4-

subset(x,y) 4- union*(u,x',x), union*(u,y',y), subset(x',y') 

additionally requires the second union* procedure. All three union* 
procedures are needed to solve the problem of showing those two sets 
to be equivalent using the procedure set :-

equiv(0,0) 4-

equiv(x,y) 4- union*(u,x',x), union*(u,x',y) 
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The merits of assertional data structures were remarked upon 
in Section 3.2 . There it was argued that when terms are used to 
represent data structures it is often not possible to construct 
procedures allowing direct access to their components. This 
consideration encourages the search for alternative representations 
such as sets of assertions which allow efficient access and storage. 
When some derived procedure contains a call to some procedure P, it 
may be convenient to arrange for this call to be investigated by 
interrogating a set of assertions of the form P 4- which provide 
immediate solutions to the call. Whether or not this is sensible 
depends upon the circumstances of the overall problem. Consider, 
for example, the problem of discovering whether or not a set S^={b,c} 
is a subset of S^={a,b,c,d} using the procedures :-

subset (x,jy) 4- empty (x) 

subset(x,y) 4- union*(u,x',x), uzy, subset(x1,y) 

Here it might seem reasonable to represent the set S b y the assertions :-

azS„ 4- b>cS 4- czSn 4- dzS„ 
2 2 2 2 . 

thus providing immediate solutions to any call uzS^. On the other 

hand it seems much less reasonable to provide a set of assertions :-

union* (b,S^,S^ 4- union* ( c 4 - empty (S'p 4-

to represent S N e v e r t h e l e s s the more obvious treatment of S^ :-
bzS1 4- czS1 4-

cannot be manipulated in any straightforward way by a call to 
union*(u,x', since this call must generate a representation of x'. 
Section 3.2 examined a similar case concerning a palindrome-testing 
program which inspected a list x represented by a set of assertions. 
It was shown that, in principle, a computation could be obtained by 
giving the name mid(x) to the middle of x and then providing procedures 
capable of computing the indexed members of mid(x). But that kind 
of program really requires mixed top-down and bottom-up invocations 
to be practical, Together with a sensible strategy fcr interleaving 
them. A more satisfactory approach to that problem was shown which 
used alternative procedures containing explicit pointers to the 
components of the assertional data structure representation. This 
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approach can also be followed for dealing with problems like the 
one above for subset. Before demonstrating this for the subset 
problem, it will be instructive to firstly examine in detail an 
analogous problem which processes lists rather than sets; this is 
the problem of showing that a given list is ordered. 

Suppose that the following naive procedure set has already been 
derived for the ord relation 

ord(x) length (x,0) 

ord(x) 4 length(x,l) 

ord(x) 4 append* (u',x',x) , append* (v',x" ,x') , u'<v', ord(x') 

using the specification set 

A1-A3 [the list axioms] 
ord(x) 44 (Muvi) ( u<v 4 item(u,i,x), item(v,i+l,x)) 

append*(u',x',x) 44 (Mui) (item(u,i,x)44item(u,i-l,x') y (u=u',i=l )) 

It will be assumed here that any list L of interest, such as (3,5,7,9) 

will be represented by a set of assertions :-

item(3,l,L) 4 item(7,3,L) 4 length(L,4) 4 

item(5,2,L) 4 item(9,4,L) 4 

so that the orderedness of lists with length < 2 can be investigated 
•by the ord bases by direct interrogation of the data structure's 
length component. Thus the central problem remaining is how to 
deal with the general case (length > 2) where the orderedness of L has 
to be ascertained by successive inspection of its consecutive pairs. 
This poses the problem of implementing the calls to append* in the ord 
procedure responsible for this successive decomposition upon the 
given list representation. 

Consider a fragment of any list x which extends from its i^th 
member up to and including the Tnen^5er# assuming ij < i2» By 
analogy with the naming mid(x) in the palindrome problem, here we can 
name this fragment as f(x,iwhere f is just a Skolem function 
symbol signifying the existence of such a fragment. The indexed 
membership in the fragment is then specified logically by an 
s-equivalence f* 44 f' , namely 

item(u,i-i+l,f(x,i,i)) 44 item(u,i,x), i 
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It will probably be helpful to portray the relationship between x 
and f(x,i ,i ) as follows 

1 2 

1 2 i-i ••• i-2 ••• j 

" i i i 'i " n 

f(x,i )—• 

This sentence specifying the meaning of item for fragments of x 
represented that way is assumed also to be included in the specification 
set. The primary pbjective now is to derive procedures for append* 
capable of accessing the components of such fragments; in particular, 
such procedures would then be capable of accessing x represented 
as the fragment f(x,l,j) where j is the length of x. 

Consider then a derivation from the first call in the recursive 
ord procedure above, renaming (just for convenience) the last two 
arguments :-

4- append* (uf ,y' ,y) 
4- append*(u',f(x,ij+l,i2), f(x,i,i^)) [an intuitive choice of 

fragments of x, •inducing 

y:=f(x,i 2) 

4- (Mui) (item(u,i,f(x,i ,i )) item(u,i-l,f(x,i +l,i ))) 

v (u=u',i=l)) 

[modus tollens] 

4- (Mui) (item(u,i+ij-l,x) ,(i^i+i^-l4i2) 4+ 

(item(u,i+ij-l,x),(ij^i+ij-l^i2)) v (u=u',i=l) ) 

[S-equiv. substitution for each of the item predicates 

and some arithmetic on the indices (trivial) ] 

4- (Mui) (itemfUfi+i^-lfX) , (i^i+i^-lzi^ 4- u=u',i=l) 

[a goal simplification which solves 4-(A AvB) 

by solving 4-(A 4- B) ] 

4- i 4 i^, item(u' ,i^,x) [using 1:1 of = to simplify] 
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What this derivation has shown is that a call :-

append* (u' ,f(x ,1^+1,1) , f(x,i,i2)) 

which decomposes the list f ( x , i c a n be solved by showing that 
ij&i (essentially checking that the term is a well-formed list) and 
then confirming that u' is the i ^ member of x. Similarly it is 
easy to pursue a directly analogous derivation from the second 
append* call in the recursive ord procedure which shows that to solve 
a call :-

append* (v' ,f(x,i +2,i2) , f (x,1^+1 ) 

it suffices to show i+l4i and confirm that v' is the (i + 1 ) ^ member 
of x. This derivation induces the bindings 

y':= f(x,i3+l,±2) 

y":= f(xt1^2r±2) 

when initiated by the goal append* (v' ,y" ,y') . Each derivation 
allows us to infer a non-recursive procedure for append* which can 
be used to macroprocess out the associated call to append* in the 
recursive ord procedure, the result of which is :-

ord(f (x,i^,i2)) -t- i^+I^i^, item(u' ,i^x) , item(v' ,i^+1 ,x) 

u'<v', ord(f(x,i +l,±2) 

Now the list whose orderedness is in question is simply x, and so it 
is pertinent to consider under what circumstances x and f(x,i^,i2) 

name the same list. By exploiting the item specification together 
with the length specification, it is trivial to establish a 
sufficient condition for this in the form of an S-conditional-

equivalence :-

(Mui) (item(u,i,x) item(u,i ,f (x,i^,i2)) ) i length(x,i2) 

Then this sentence and the ord specification trivially imply yet 
another sentence in that form :-

(ord(x) «-»- ord(f(x,l,i2))) length(xfi^ 

We shall use this result to transform the derived append*-free 
recursive ord procedure into one which dispenses with the explicit 
references to fragments represented by terms. 

It can be shown that, for computational purposes, the Skolem 
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symbol f is superfluous in the argument structure of a call to ord. 
An easy way to eliminate references to f is to introduce a new 
predicate ord* specified by 

ord*(x,i ++ o r d ( f ( x , i , i 2 ) ) 

This and the previous sentence jointly imply a procedure which 
investigates orderedness by making a call to ord* 

ord(x) 4r iength(x, j ) , ord* ( x , l , j ) 

Moreover, the ord* specification admits a trivial transformation of 
the recursive ord procedure which eliminates its references to f, 
the result of which is 

ord* ( X f i ^ f i ^ 4- i^+l^i , itemfu' , ± l f x ) , i t e m ( v ' , i + l , x ) , 

u'<v', ord* ( x , i 

Some further inferences easily show that a suitable basis for this 
is simply 

ord* ( x , j , j ) 4-

which deals with the case of a fragment of x consisting just of a 
unit list. 

The consequence of these transformations of the original 
procedure for ord is that orderedness can now be investigated using 
the new procedure set :-

ord(x) 4- length (x,0) 

ord(x) 4- length(x,j) , ord* ( x , l , j ) 

ord* ( x , j , j ) 4-

o r d * ( x / ± 1 , i 2 ) 4- i ,• i t e m ( u ' , x ) , i t e m ( v ' , i j + l , x ) , 

u ' < v ' , o r d * ( x , i j + l r i 2 ) 

This procedure set gives excellent behaviour when executed in 
conjunction with a set of assertions representing the list of interest. 
It behaves very much as a conventional program which maintains a loop 
index i varying from I up to j to select the consecutive pairs from x . 

Note that the only list named explicitly in the new procedure set is x . 

All other lists which underlie the logic of the algorithm (that is, 
the various fragments considered in the above derivations) are 
represented only implicitly by the pointers in the last two argument 
positions of the ord* procedures. It is these explicit pointers 
which enable direct access to members and hence efficient behaviour. 
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The general approach taken to the above example is also 
applicable to the subset problem with which we opened the discussion 
of access to assertional data structure representations. All that 
is necessary is to arrange that members of the set S a r e labelled 
in some way which enables explicit pointers to select them 
systematically . Additionally it is necessary to assert the 
cardinality of Putting these arrangements into effect for 
the example considered earlier, the sets' representations would 
be 

member (b,1 ,Sj) 4- aeS2 ceS2 

member(c,2,S4- beS 4- dzS2 

cardin(Sj,2) 4-

and the transformed subset procedure set would be 

subset (x,y) 4- car din (x,0) 

subset(x,y) 4- cardin(x,j) , subset^(x,1 ,j,y) 

subset^(x,j,j,y) 4-

subseft(x,i^,i2,y) i^+l^i^, member(u,i, 

u£y, subsetf(x,ij+1,i2,y) 

This programming style just makes explicit the iterative search 
through a set of assertions. Its implementation can be made very 
efficient for an interpreter already equipped to access sets of 
procedures for normal computational purposes. The most attractive 
feature of such p>rograms in contrast to their counterparts for 
accessing terms is that they incur almost no burden upon the unifying 
mechanism, and do not generate a complex binding environment in 
order to represent the explicit products of data structure 
decompositions. Thus, whilst the derivation of accessing procedures 
for terms is of theoretical interest, and can be an interesting 
first stage in a synthesis, the derivation of accessing procedures 
for assertions is of greater practical importance. 
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C H A P T E R 6 

E X A M P L E S 

0_F 

P R O G R A M D E R I V A T I O N S 

PREVIEW 

Six examples are given in this chapter in order to illustrate 
the application of logic procedure derivation as described in Chapter 5. 
All of them consider very simple computational problems which are 
nevertheless sufficient to demonstrate a variety of interesting 
programming styles and derivations. 

The first example considers the familiar problem of list 
reversal, initially deriving the standard recursive algorithm which 
employs a binary appending operation for representing both the input 
and output lists. The first salient point of the reversal example is 
encountered in that exercise, namely the need for the preliminary 
derivation of useful lemmas. Here we wish to pursue an intuitively 
obvious goal substitution, but the initial specification set does not 
contain an axiom immediately suitable for that purpose. It is shown 
how the inference miles normally applied to derivation goals can also 
be used to derive the desired lemma and so allow the required goal 
substitution. It is next shown how the general reversal program can 
be specialized in a number of ways to give iterative algorithms, 
although none of these are as satisfactory as the reverse* program 
(introduced in Chapter 3), which is now derived here. It is seen that 
the reverse* program is obtained by exploiting the procedures already 
produced for the recursive program, together with invocation of an 
associative property of the appending operation. 

The second example is the problem of searching a given list for 
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duplicates. Whereas the list reversal algorithms shared more or less 
comparable efficiency, three algorithms of differing efficiencies are 
given here for the duplicate problem. The last of these is especially 
interesting in its specification, employing a special argument in the 
logic which acts as a stack recording the distinct members found during 
the search. The derivation of the latter algorithm makes use of the 
procedures from the more naive algorithms to construct an important 
lemma from which a useful goal substitution is procured. The use of 
case analysis for goal transformation is particularly high-lighted here 
by the natural occurrence of disjunctive calls in the goal and the way 
in which those calls are simplified and regrouped. 

The third example deals with the generation of factorial tables, 
presenting a number of algorithms with various efficiencies. The last 

i 
one is particularly interesting in the structure of its specification, 
which encodes in the logic an assumption about the context in which 
the procedures of an earlier algorithm are invoked; the newly derived 
algorithm is then able to avoid a contextual check (in fact, a test to 
ensure a correct run-time goal structure) which the previous algorithm 
could not. 

The fourth example is that of comparing the frontiers of tv/o 
binary trees. Here the key to the desired algorithm lies in the 
relatively low-level matters concerning the data structures. A lemma 
describing the associativity of tree construction is proved and then 
used to provide an essential equivalence substitution. Also, it is 
shown that the most obvious basis can be usefully generalized in order 
that the comparison of frontiers may, at some stage during the execution, 
be accomplished immediately by a single unification rather than by 
continuing sequential comparisons under the agency of the program's 
recursive decomposition procedures. 

The fifth example is a particular summation problem in a matrix. 
An interesting use of Kowalski's quasi-bottom-up programming style is 
shown which, instead of its normal role of just reversing the direction 
of a top-down computation, here generates an efficient quasi-parallel 
bottom-up summation in contrast to the most obvious top-down solution 
of the problem in which distinct sums are computed in sequence. 

The sixth and last example is just the eight queens problem, which 
is included just to emphasize how the powerful control mechanisms of 
logic interpreters allow a far more pleasing representation of the 
problem than is possible in conventional programming languages. 
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Specifying the Problem 

The simple problem of reversing a list almost invariably 
appears in examples of new methods for developing programs, and has 
already received some attention in earlier parts of the present work. 
It is appropriate, then, to examine the reversal problem in detail 
to see how well it can be dealt with in the logic procedure 
derivation methodology. The relation of chief interest initially 
is the 2-ary relation reverse which can be specified in terms of the 
basic list constructor item as follows :-

reverse(x,y) 44 Qz) (length(x,z) , 

(Mui) (item(u,i,x) 44 item(u,z+l-i,y)) ) 

It is also assumed that the specification set used in formulating 
this problem contains the list axioms A1-A3 established in the last 
chapter, together with general properties of elementary relations 
like = and <. Specifications of other relations will also be 
introduced to the set when their need becomes apparent. 

It is perhaps worth noting that there is a little redundancy 
in the above definition of reverse in that the predicate length(x,z) 

can be deleted from the definiens to leave an S-equivalent sentence; 
that is, in order that x and y shall be specified as reverse to one 
another, it is only necessary to insist that there shall exist some z 
such that u is in the position of x if and only if it is also in 
the (z+l-i)^h position of y. This is because axioms A1-A3 constrain 
the item relation in such a way as to ensure that any instance of z 
satisfying this last requirement must be the length of both x and y. 
However, rather than just permitting this to be enforced implicitly, 
it is more satisfactory to include the fact that z must be the length 
of one of the lists in the reverse definition itself; this helps us to 
keep the special status of z explicit within the derivations. 

The Recursive Reversal Program 

The first reverse synthesis examined here pursues the well-known 
recursive algorithm which arbitrarily splits the given list into two 
parts, reverses them, and finally composes the results into the reverse 
of the given list. This is just one of the most simple ways of 
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arranging for the systematic decomposition of the input list, which 
must necessarily underlie the logic of a reversal algorithm. Here 
we consider just the most conceptually simple way of splitting that 
list, namely that of generating two lists x a n d x^ satisfying the 
property that x results from appending xto x T h i s idea prompts 
the introduction of the append specification :-

appendixirx2,x) 44 Qz^ (length (x^z^ , 

(Vui)(item(u,i,x)44item(u,i,xj) v itemfUfi-z^fX^))) 

which is now added to the specification set. Note here that the 
predicate lengthfx^fZ^) must be included in the definiens for append, 

notwithstanding the presence of axioms A1-A3. This completes the 
initial knowledge necessary to derive the recursive reversal algorithm. 
It is now desired to derive the high-level procedures for reverse by 
beginning :-

4 reverse(x,y) 

4 length(.x , z) , (Vui) (item(u,i,x) 44 item(u,z+l-i,y)) 

If the assumption that x is to be split in the manner described using 
a call to append is now to be incorporated into the derivation, it 
would be pleasing to accomplish this by invoking the sentence 
specifying append with the object of making an appropriate goal 
substitution. Intuitively we can foresee a goal substitution which 
replaces the predicate item(u,i,x) by another formula referring to 
the members of x a n d x^, conditional upon some appended call to 
append; in other words, a normal S-conditional-equivalence substitution. 

To achieve the objective just outlined, it is necessary to have 
a sentence implied by S with the form :-

(f* 44 f') 4 append(x^x ,x) 

It might be thought at first sight that the only-if half of the append 
definition would provide such a sentence, but unfortunately this turns 
out not to be so due to the obstructive presence of the existential 
quantifier. This is not to say that there is no such sentence 
implied by S; there is indeed such a sentence, but it will have to 
be derived as a lemma before the above derivation can be developed in 
the desired fashion. The need for such preliminaries just reflects 
the fact that, in general, assembling a naive set of axioms in S does 
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not ensure that those axioms can be immediately applied to the 
derivation goal using our most-favoured inference rules. Lemma 
generation, as well as goal transformation, plays an important role 
in logic program development, and is not often easy to organize in an 
obviously top-down style. The need for a lemma may be induced by 
top-down reasoning from the current goal, considering how a goal 
substitution might be procured; but the deduction of the lemma itself may 
be quite a bottom-up process. 

In the present example, an appropriate lemma can be obtained by 
showing that the length of a list is unique, as expressed by 

(length(x,z') 4-4- z=z') length(x,z) 

and then using this sentence to make an S-conditional-equivalence 

substitution in the definition of append. For ease of presentation, 
suppose that we had the sentences :-

A(x) ++ (3u)(C(u,x), B(u,x)) [like the append defn.] 

(C(UfX) 4-4- u=v ) 4- C(v,x) [like uniqueness of length] 

Then these would imply 

J- (A(x) 4-> (3u) (u=v,B(u,x))) 4- C(v,x) 

f- (A(x) 4-+ B(v,x)) 4- C(v,x) 

|- B(v,x) 4- A(x) , C(v,x) 

By analogy, in the present case we would thereby have shown that S 
implied the S-conditional-equivalence :-

(Vui) (item(u,i,x) •«-* item(u,i,x^) 

v item(u,i-z2) ) 4- append(x^rx) , length(x^zj 

Proof of the lemma that states that the length of a list is unique 
can be obtained by using axiom A2 as a means of making a subformula 
substitution into its own definiens as follows 

S |- length (x,z) <-4- (\fi) (l<i4z 4-4- (3u) item(u,i ,x) ) [axiom A2] 

length(x,z')4-+ (\fi) (I$i4z'4r4- (3u) item(u,i,x) ) [just renaming] 

f- (length(x,z') (Vi) (l$i$z' 4-+ Ui^z)) 4- length(x,z) 

[making an S-cond.-equiv. substitution] 

|- (length(x,z') 4-+ z=z') 4- length(x,z) [exploiting properties of < 

to simplify] 
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With this somewhat digressive exercise accomplished, the 
pre-condition for a goal substitution which expresses the decomposition 
of x by a call to append is now established. Now it has also been 
anticipated that the output list y is constructed by an appending 
operation as well; therefore a substitution can be made for each 
item predicate in the second call to give :-

length(x,z) , (Mui)(item(u,i,x^) v itemfUfi-z^x ) 44 

item(u,z+l-i,y^) v item(u,z-z2+l-i,9^)), 

length (x ̂ ,z^) , length (y^zj , 

append (x^x^x) , append (y , y , y) 

4 length(x,zj+z2) , (Mui)(item (u,i,xv item(u,i-z^,x2) 44 

item(u,zj+z2+l-i,y^) v item(u,zj+l-i,y 2) ), 

length(xlfz2) , length(y^z^ , 

append(//x), append(y1,y2,y) 

[ by making the obvious instantiation z := z^+z2 

to conserve length in the decompositions of x and y] 

4 length (x,zj+z2) , (Mui)(item(u,i,x44 item(u,Zj+l-i ,y2) ) 

(Muj)(item(u,j,x2) 44 item(u,z2+l-j ,y ̂ ), 

and calls to length and append as above 

[ instantiating i := j + z t o simplify the arithmetic 

of the indices, followed by distribution of 44 through v] 

4 length(x,z+z^) , reverse(x^y2) , append(x^x2,x) , 

reverse(x^,y ), append(y1,y2,y) 

[ modus tollens by invoking reverse specification twice] 

4 reverse (x^, y ) , append (x^x^x) , 

reverse(x2,y^ , append(y^y^y) 

[ by prefixing the first call with an existential quantifier 

over the length of x, and then modus tollens invoking Al] 

Hence this rather unbeautiful derivation establishes the recursive 
reverse procedure :-

reverse(x,y) 4 append(x ,x ,x), reverse(x ,y ), 
X 6 wL 

reverse(x2,y^ , append(y ,y ,y) 
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The proof of this procedure was pursued as the consequence of 
an assumption that both x and y were decomposable by calls to append. 
The remaining cases to be considered are those arguments in a call 
to reverse which are not so decomposable. Some easy trivializations 
of the reverse specification provide suitable basis procedures, which 
are stated here without proof :-

reverse(x,y) length(x,0), length(y,0) 

reverse(x,y) length(x,l) , length(y,l), item(u,l,x) , item(u,l,y) 

In order to show that the three derivations providing this procedure 
set were complete for reverse as specified by S, it would be 
sufficient to prove .from S the theorem :-

length(x,0) v length(x,l) v (^xx )append(x1,x2,x) 

thus ensuring that the set of conditions summoned for making 
conditional substitutions into the goals was exhausted by this 
particular synthesis. Proof of that theorem is tedious but 
conceptually simple, and is omitted here. 

The behaviour of this procedure set is sufficiently well-known 
to restrict our discussion of it here to the simple observation that 
it is inherently recursive for all input-output permutations of its 
invoking arguments. There are no special virtues manifested by it, 
except in its role as a general theorem about reverse and append which 
can be specialized to give more computationally useful reversal 
programs. This possibility is the subject of the next discussion. 

Iterative Reversal Programs 

There are a number of ways of obtaining iterative reversal 
programs by specializing the recursive procedure set above. 
Beginning with the simplest way, a simple inspection of the definitions 
of the append and append* relations is sufficient to establish the 
sentence below, which becomes an S-conditional-equivalence when the 
append* definition is added to the specification set. Note that 
append* is just a specialization of append, so that its substitution 
for append in the above procedures will naturally specialize them as 
well :-

( append(xirx2,x) -«-»- append* (u,x2,x) ) length (x^ 1) , 

item(u,l,x1) 
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As has been demonstrated in the derivation of the lemma, the inference 
rules which have been named as S-equivalence and S-conditional-
equivalence substitutions are applicable to any sentences as well as 
to derived goals. Therefore apply the last sentence to the recursive 
reverse procedure to obtain 

reverse(x,y) -e- append* (u,x ,x) , reversefx ,y ) , reverse(x ,y ) , 
2 j . 2 2 1 

append(ylfy2,y) , length(x^ 1) , itemfu,!^^ 

When x i s specialized to a unit list in this way, the second call 
can obviously be solved using the second reverse basis; so, invoking 
that basis in response to the second call will transform the above 
procedure to 

reverse (xf y) -t- append* (u,x2,x) , reverse (x2, y ̂ , append (y^ y2 , y) , 

length(x1) , length(y2,1), item(u,l,Xj), 

item(u,l,y 2) 

[ with a slight re-ordering of calls] 

f- reverse(u.x^y) -<- append(y^,u.nil,y) , reverse(x2,y 

[ by invoking the theorems :- length(u.nil,1) 

item(u,l,u.x2) 

append* (u,x2,u.x2) 

trivially implied by S after specifying item over terms, 

and thus macroprocessing out the high-level selectors] 

Now invocation of this procedure can be implemented quasi-iteratively 
when y is given as input, since the call to append can then be 
solved deterministically before activating the call to reverse. Thus 
to iteratively reverse some list such as a.b.c.nil the invoking goal 
can be chosen as -«- reverse(x,a.b.c.nil) . A sufficient basis to 
accompany this procedure is the macroprocessed basis given previously 
for dealing with empty lists 

reverse (nil,nil) -e-

The procedure set consisting of these two procedures for lists 
represented by terms, and specialized so as to split the list x 
into its first member and its 'rest', is adequate if some means can 
be found of solving rhe call to append efficiently. The orthodox 
append procedures are of little use here because they cannot directly 
access the last member u of the argument y in the call append(y ,u.nil,y) . 
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The problem of computing the last member of a list as just 
discussed vanishes if an alternative data structure representation 
is chosen. For instance, in Section 3.2 the term t(u,x,v) was 
used to represent a list with first member u, last member v and 
middle x. There it was shown that this representation allowed 
an iterative computation which, at the level of the source program 
at least, appeared to have direct access to all the components of 
the list submitted as input for reversal. How efficient that 
arrangement would really be in practice would depend upon how the 
interpreter stored and matched terms constructed using the t-function. 

An even easier way of dealing with the call to append in the 
above procedure is to represent lists by terms of the form app(y 
such that app(y2) represents the list obtained by appending y to 
y. By defining the meaning of item for this representation as 
follows :-

item(u,i ,app(nil,nil) ) false 

item(u,i,app(y1,y2)) ++ item(u,i,y ) 

v Qw) (length(y^w) ,item(u,i-w,y2)) 

and assigning these axioms to S, it is then easy to derive from S the 
theorem :-

append(y1,y2,app(y1,y2)) + 

and so macroprocess out the call to append , leaving an iteratively 
invokable reverse procedure 

reverse(u.x ,app(ynil)) •*• reverse(x2,y 

The efficiency of an implementation of this procedure would depend 
critically upon the interpreter's capacity to perform clever 
evaluations in the binding environment in order to manage the concrete 
data expressed at source-level by these rather clumsy terms. However, 
without the use of interpreters capable of efficient management of such 
terms, none of the procedure sets considered here for reverse is 
satisfactory. This is why we now turn attention to the derivation 
of procedures for the more sophisticated reverse* relation, which was 
also examined in Chapter 3. 
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The reverse* predicate has been specified by Robert Kowal'ski 
[Lecture Notes, Syracuse, 1978] using the sentence 

reverse*(z,x,y) 44 (3w)(reverse(x,w) , append(w,z,y)) 

so that reverse*(z,x,y) holds when y is the result of appending z to 
the reverse of x. Thus in order to compute y as the reverse of x it 
is sufficient to solve reverse*(z,x,y) for the case where z is the 
empty list. A formal proof of this would only require a lemma 

(append(w,z,y) 44 y=w) 4 length(z,0) 

to be derived using the append specification. Then an immediate 
substitution for the append predicate in the reverse* specification 
would establish the first procedure in our desired procedure set, 
this being 

reverse(x,y) 4 reverse*(nil,x,y) [using length(nil,0)4] 

The derivation of this procedure then constitutes a synthesis for the 
reverse relation having reverse*as its primitive. Therefore the 
next level in the synthesis hierarchy has the aim of synthesizing 
a procedure set for reverse*. Only a brief outline of this is shown 
below. 

Two lemmas are required in order to derive the recursive 
.reverse* procedure :-

appendfw' ,u.z,y) 44 Qw) (append(w' ,u.nil,w) , append(w,z,y)) 

reverse(u.x^fW) 4 reverse(x^fW*) , append(w' ,u.nil,w) 

The first of these is derived from the properties of the append 
relation and just expresses a consequence of its associativity. The 
second lemma is just the recursive reverse procedure already derived? 
note.that the derivation of more sophisticated procedures often relies 
upon the use of simpler procedures treated as specification axioms in S. 
From these preliminaries, the following treatment is straightforward 

4 reverse*(z,x,y) 

4 reverse(x,w), append(w,z,y) 

4 reverse(x2,w'), append(w',u.nil,w), append(w,z,y) 

[first call invokes the reverse procedure above, 

inducing the binding x:=u.x2] 

4 reverse(x2,w') , Qw) (append(wr ,u.nil,w) , append(w,z,y)) 

[prefixing last two calls by Qw) ] 
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4- reverse(x2,w') , append(w',u.z,y) [modus tollens, invoking 

append lemma] 

4• (3w') (reverse(x2,w') , append(w',u.z,y) ) [prefixing by (3w') ] 

4- reverse*(u.z,x2,y) [modus tollens using reverse* spec.] 

and so we infer the procedure :-

reverse*(z,u.x2,y) 4- reverse*(u.z,x2,y) 

Inspection of the second inference step in this derivation (the one 
which invoked the associative property of append) shows that it 
introduces the assumption that x is decomposable, that is, has the 
structure u.x^* A n alternative branch at that point deals with the 
other case where x is the empty list. From the procedure set for 
the recursive reverse algorithm we have the two bases :-

reverse (nil,nil) 4-

append(nil,y,y) 4-

which can now be invoked as lemmas in the derivation below which 
provides a basis for reverse* :-

reverse* (z,x,y) 

4- reverse(x,w), append(w,z,y) [just proceeding as before]' 

• [taking the other branch by invoking the bases 

for append and reverse, thereby inducing the 

bindings x:=nil, w:=nil and z:=y] 

thus inferring the basis :-

reverse* (y,nil,y) 4-

The properties of this new procedure set have already been discussed 
in Chapter 3 and so do not warrant further discussion here, other than 
to recall the iterative behaviour which they give? this will be 
reasonably efficient if the interpreter possesses good means of 
storing and accessing the terms constructible from . and nil• 

The reverse* derivation closely parallels that of the 3-place 
factorial program described in Clark's paper (12); there, he exploits 
the associativity of multiplication where above we use the same 
property of the appending operation. Clark also derives procedures 
for Kowalski's 4-place factorial relation, whose top-down execution 
simulates the bottom-up execution of the conventional 2-place program. 
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Similarly it is possible to derive a procedure set which interrogates 
a 4-place relation reverse** 

reverse(x,y) -<- reverse** (x,y,nil,nil) 

reverse** (x,y ,x,y) 

reverse** (x,y ,w,z) -4- append(x' ,u.w,x) , append(z,u.nil,z') , 

reverse**(x,y,u.w,z') 

whose top-down execution behaves like the bottom-up execution of the 
procedures which use the 2-place reverse relation-:-

reverse (ni l,nil) 4-

reverse(u.x',y) reverse(x',y'), append(y',u.nil,y) 

Given the goal 4- reverse(a.b.c.nil,y) both computations compute 
the successive approximations nil, c.nil, c.b.nil and c.b.a.nil to 
the output variable y. By contrast the 3-place program just 
examined computes the successive approximations nil, a.nil, b.a.nil 
and c.b.a.nil when executed top-down. 

By analogy to the procedure set investigating ordered lists 
which was derived in Section 5.5, there exists a reversal program 
which maintains explicit pointers in the procedures* arguments in 
order to allow direct access to the individual members of the lists 
in question. Its derivation is sufficiently similar to that of 
the analogous orderedness program to allow its omission here, but it 
is interesting to see just what that program looks like. Suppose 
that two lists L^ and L^ are given as input and represented in such 
a way as to allow direct look-up of any ith member (for example, by 
representing them by sets of item assertions). Then the following 
procedures provide excellent top-down behaviour when executed for 
the goal 4- reverse(L^fL^) 

reverse(x,y) 4- length(x,0) , length(y,0) 

reverse(x,y) -4- length(x,j) , reverse* (x, 1,j,y) 

reverse^(x,j,j,y) -4- length(x,j) , item(u,j,x), item(u,l,y) 

reversed(x,ilfi2,y) length(x, j) , 

item(u,j+l-i ,y), 

reverse+(x,i +1,i2,y) 

Here the reverset relation is specified by :-

reverse i ,i ,y) 4-* (3j) (length(x,j) , 

reverse(f(x,ilfi2),f(y,j+l-i ,j+l-i ))) 
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where the term f represents the list fragment of x which 
extends from its i ^ up to and including the i ^ member. When 

JL « 

one list, say y, is required as output given the other as input, 
the successive activations of the call item(u,j+l-i,y) will 
contribute satisfactorily to a cumulative term representation of 
the output. Alternatively, if the output y is required to be 
represented by a set of computed item assertions, there may exist 
semantically justifiable ways of inducing such assertions in order 
to 'quasi-solve' those calls to item(u,j+l-i,y) ; but this is a 
matter beyond the scope of the present discussion dealing with the 
logic underlying the reversal algorithms. 

In summary it should be noted that the algorithms considered 
here all pursue the task of accessing j members from one list of 
length j and then accessing or constructing exactly j members of the 
other list. The differences between their behaviours are really 
just associated with different implementations of that task, for 
example, whether they perform it recursively or iteratively, or 
whether or not they induce a significant binding environment. By 
contrast, the next section examines a problem in which the opportunity 
exists for achieving differences in efficiency between alternative 
programs which are not attributable to superficial differences in 
implementation. 
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6.2 : SEARCHING LISTS FOR DUPLICATES 

Specifying the Problem 

Whereas the problem in the previous section concerned a relation 
between two lists, here we consider just a 1-ary relation defined upon 
a single list. The property expressed by this relation holds when the 
list in question contains at least one duplicate member; when this is 
satisfied by some list x the predicate dupllc(x) holds. The duplic 
relation is specified by the following sentence which requires that 
some member u shall occur in both positions i and j such that i<j.i-

duplic(x) (3uij) (item(u,i ,x) , item(u,j,x) , i<j) 

The initial specification set contains this sentence, the list axioms 
A1-A3 and the specification for the append* relation. General 
properties of = and < (over non-negative integers) are assumed implicitly. 
These axioms provide enough information for the derivation of the.first 
two algorithms considered here. It is assumed, as always, that the 
programs are intended primarily for a Prolog-like interpreter. 

The Naive Algorithm 

The naive algorithm applies Prolog-like control to a procedure . 
set having just one procedure for duplic. This procedure is trivially 
implied by the duplic specification, which, having a definiens 
consisting of just a conjunction of atoms, immediately provides an 
executable Horn clause :-

duplic(x) item(u,i,x) , item(u,j,x), i<j 

Now suppose that procedures for solving calls to item efficiently 
are provided; for instance x may be represented assertionally, or 
procedures for item may be available for accessing some other 
representation. Further assume that calls to < can be processed 
directly by the interpreter. Then the procedures already considered 
will make up a complete program body for solving a call to duplic. 

The computation generated from this algorithm is essentially 
the iteration of one loop within another, in much the same way. as 
the pick program examined previously which executed the procedure :-
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pick(u,v,z) uez, vez, u<v 

Observe that this duplic procedure does not constrain the order in 
which members are selected from x and compared, this being determined 
instead by the interpreter's strategy for processing the calls to item. 
Assume however that the most straightforward arrangement prevails in 
which members are selected in order of increasing index. Then the 
first solution (if any) of duplic(x) is obtained by finding the least 
indices m^ and m satisfying (item(u,m^,x) , item(u,m2,x) , m^m^) . 

Let the algorithm described above be designated Al. A convenient 
measure of its efficiency is the number of comparisons executed 
between members of the given list x, since the essential behaviour of 
the algorithm is to select some u satisfying item(u,i,x) and then 
successively compare it with other members of x until a matching 
member is found with an index j exceeding i. Assuming that x has 
n members, the total comparison count of Al needed to discover the 
first solution i:=mJ:=m2 W(A1) such that 

N( Al) = m 2 + n(m1 - 1) 

This comparison count is rather unsatisfactory in that every pair of 
members having distinct indices less than m i s compared twice; 
moreover, every member having an index less than or equal to m i s 
compared with itself. Thus there are h(m^)(m^-1) + m r e d u n d a n t 
comparisons executed by Al assuming the accessing protocol suggested 
above for selecting the members of x. Note also that N(Al) is 
dependent upon n, despite the intuitively obvious fact that the 
problem can be solved - if at all - by inspecting just the first 
m2 members. The remaining algorithms to be considered respectively 
remedy these two failings in the efficiency of algorithm Al. 

The Improved Naive Algorithm 

The reason for the redundant comparisons executed by Al is that 
the logic does not constrain the order in which members are selected 
and compared. In particular the algorithm does not take into account 
the fact that if the ith member u fails to match some jth member v, 
then there is no point in attempting at some later time to select 
that same v as the ith member and then compare it with a jth member u . 
Instead it generates comparisons for the index pair (i,j) and the 
index pair (j,i) without recognizing that these compare the same 
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members. The improved naive algorithm, designated A2, constrains 
the scheduling of the choices of comparison indices (i,j) such that 
these redundancies cannot arise. The derivation of duplic procedures 
for A2 requires just the minimal knowledge about the constructibility 
of lists as expressed by axioms A1-A3 together with the append* 
specification. By introducing calls to append*, we can arrange that 
the logic deals explicitly with the components of x so as to logically 
preclude redundant comparisons. The obvious agency for introducing 
such calls is the S-conditional-equivalence substitution, as is now 
demon s trated. 

Assuming the specification set already enunciated, consider a 
derivation for duplic 

4 duplic(x) 

4 item(u,i,x), item(u,j,x), i<j 

4 (item(u,i-l,x') v (u=u',i=l)), 

(item(u,j-l,x') v (u=u',j=l)), i<j, append*(u',x',x) 

[orthodox S-cond.-equiv. substitution, 

replacing two item predicates conditional 

upon a call to append* ] 

A little intuition is useful at this point in order to decide how to 
simplify this goal. Note that if the goal is to be solvable then 
the solutions for i and j must satisfy either (i>I, j>l) or (i=I, j>l) 
as a consequence of the general properties of <. Considering the 
former case first, its application to the current goal simplifies 
the first two calls, as follows 

4 .(item(u,i-l,x') v false), 

(item(u,j-l,x') v false), i<j, append*(u',x*,x), i>l, j>l 

[because the properties of = and > S-imply 

the S-conditional-equivalence 

(i=l 44 false) 4 i>l ] 

4 item(u,i-l,x'), item(u,j-l,x'), i<j, append*(u',x',x) 

[simplifying first two calls, and deleting last 

two calls as they are then implied by the first two] 

A A A A 

4 item(u,i,x') , item(u ,j ,x') , i+Kj+l, append* (u' ,x* ,x) 
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[instantiating i:=i-l, j:=j-l] 

*tr (3uij)(item(u,2,x') , item(u,j,x'), i<j), append* (u' ,x' ,x) 
A A 

[exploiting properties of < , and prefixing with (Buij) J 

4- duplic(x'), append*(u',x',x) [nodus tollens using duplic spec.] 

Returning to the earlier branch point, the consequence of choosing 
the alternative case (i=l, j>1) is the derivation 

4- (item(u,i-l,x') v (u=u,,i=l)), 

(item(u,j-l,xt) v (u=u',j=l)), i<j, append*(u',x',x) 

[the goal at .the branch point again] 

4- (false v u=u') , 
(item(u,j-l,x') v (u=u',false)) ,i<j, append*(u',x',x), i=I, j>l 

[substitutions conditional upon i=l, j>l, 

and using list axioms to assert indices must be ] 

a 

item(u' ,x') , append* (u',x',x) 

[some obvious simplifications, and instantiation j:=j-l ] 

These two derivations comprise a complete synthesis for the duplic 
relation because they exhaust the two cases for the values of i and j. 
Note that they both consider the case where x is decomposable; there 
is no case corresponding to an empty list x, since the assumption 
that x was empty would make the derivation goal unsolvable. The 
two procedures inferred in the synthesis are 

duplic(x) 4- append* (u',x',x) , item(u' ,x') 

duplic(x) -(- append* (u' ,x' ,x) , duplic(x') 

This is the procedure set for algorithm A2. Now suppose that in a 
Prolog-like execution the first procedure is invoked and faiis. Then 
u' will have been compared with all members of x'. When control 
passes to the second procedure, the append* call effectively discards 
this instance of u' from the ensuing computation, so that no 
subsequent comparisons of members with that instance can be executed. 
Thus the calls to append* eliminate the possibility of redundant 
comparisons. The comparison count of algorithm A2 when it terminates 
successfully is :-

N (A2) = (m2 - m ) -f (m - 1) (n - hn^) 
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The difference between N{Al) and N{A2) is just the number 
m^ + h(m^) (nij-1) of redundant comparisons executed by Al. 

Both Al and A2 generate comparisons of members whose indices 
fall in the range m^i^n. As a result, the measures N(Al) and N(A2) 
both depend upon n. This can result in some very inefficient 
computations for certain choices of goal. For example, if n is 
very large and both m a n d m a r e small relative to n , then both 
AT (Al) and n(A2) approximate to (m^-l)n, so that both have comparison 
counts of order n• even when the matching pair could be found by just 
inspecting the first few (m^) members of x. The next algorithm A3 
performs exactly that inspection in order to solve duplic(x). 

The Length-Independent Algorithm 

The logic underlying the length-independent algorithm A3 can 
be anticipated by the following intuitive reasoning. Suppose at 
some instant in the execution of A3 the fragment (x , ..., x ) 

J. JC 

of x has been inspected and found to have no duplicates. Moreover, 
assume that duplic(x) is solvable with i:=m , j:=m . Then k is 

Jm £ 
certainly less than in . Now consider the two cases k<m„ and k>m^. 

2 1 . 1 If k<mthen the duplicate members must occur in the fragment 
fx , ..., x ) ; if k^m then one of the duplicate members occurs in 

JCtJ. 12 J. 
(x,, ..., x.) whilst the other occurs in (x. ,,, ..., x ) . A 1 k k+l n 
convenient formalization of these ideas makes use of a new predicate 
whose arguments represent the fragments explicitly; let duplic* (z^z^) 

hold when z is some permutation of {x , ..., x } and z_ is the 
JL J. Ji 2 

fragment x
n)• Informally, z^ is associated with the 

set of members currently known to be distinct, whilst z^ is the 
remaining fragment of the input list which still awaits inspection 
for duplicates. The logical specification of duplic* is 

duplic* (zlfz2) «-»" (3uij) (item(u,ifz1) , item(u,j,z2)) v duplic(z2) 

Another way of informally considering the meaning oi duplic*fz^,z2) 

is to say that the structure contains duplicates but Zj 
does not; in which case either some member is common to z^ and z^' 
or else some member has duplicate occurrences in z^. 

The objective now is, firstly to find a way of solving a call 
to duplic using procedures for duplic* and, secondly, to derive 
procedures for duplic* which can be controlled so as to give A3. 
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In order to make use of the duplic* predicate in the solution 
of duplic(x) it is useful to recall the list axiom A3 

length(z,w) 44 (Mi)(l^i^w 44 Qu) item(u,i ,z) ) 

Both A3 and the duplic* specification are assumed to be established 
in S, and can now be combined as follows : using A3 to make an 
S-cond.-equiv. substitution, substitute for the predicate item(u,i,z^) 

conditional upon the assumption length(z^,0). This gives the" 
sentence :-

(duplic* (z^zj 44 (3uij) (false, item(u,j,z2)) v duplic(z2)) 

4 length(z^,0) 

which, after some trivial simplification, clearly implies the 
following procedure for duplic 

duplic(z2) 4 duplic*(z2) , length(z^,0) 

Renaming the variables and ordering the calls appropriately, this 
gives the first procedure in the program body for algorithm A3 

duplic(x) 4 length(z^,0), duplic*(z^,x) 

The next step is a synthesis for duplic*. The derivation tree 
for this obviously begins as follows 

-c- duplic* (zlfz2) 

(3uij) (item(u,i ,z^) , item(u,j,z2)) v duplic(z2) 

[note that this has just one call - a disjunction] 

We shall now make some rather subtle substitutions into this goal 
using a number of lemmas. The overall objective here is to capture 
the algorithmic notion of successively selecting members from the 
fragment z^ and testing them for membership in z^. This motivates 
the search for lemmas which allow useful goal substitutions 
conditional upon append* (u',z'2, z^ . 

Note firstly that the two derived duplic procedures can be 
expressed as 

(duplic(x) 4 itemfu',j,x')) 4 append*(u1,x',x) 

(duplic(x) 4 duplic(x')) 4 append*(u',x',x) 

(that is, the duplic procedures used in the improved naive algorithm.) 



Then the completeness of that procedure set for duplic determines 
that these two sentences can be combined to provide a single lemma :-

(duplic(z^) (3j)item(u' ,j,z'2) v duplicfz'^) ) 4- append* (u' ,z'2,z2) 

From the specification of append* we also have the lemma 

(Muj) (item(u,j,z2) -4-* item(u,j-l ,z'2) v (u=u' ,j=l) ) 4- append* (u',z'2,z. 

The two lemmas can now be used to make S-conditional-equivalence 

substitutions for the respective goal subformulas duplic(z^ and 
item(u,j,z2) ,the result of which after a little simplification 
by distribution is :-

4- ((3 ui) (item(u,i,z2) , item(u,j-l ,z'2) ) 

v (Bi)item(u',i,Zy) 

v (Bj)item(u',j,z') 
» z 

v duplic(z'2) ), append* (u' ,z'2,z2) 

The disjuncts of the first call just represent the four cases in 
which (z^,u' .z'2) may contain duplicates when z^ does not. It may 
be helpful to see these, cases portrayed below :-

0 1 1 1 2 

u' J 
u

r 

L—t 

jst disjunct 2nd disjunct 

Z1 

U ' u' 

3rd disjunct 

u' u 
1-

disjunct 

Suppose now that the member u' is selected from and is found not 
to belong to z . Then the only way in which the duplicate problem 
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can still be solved is by showing that either z^ contains duplicates 
or that z'2 contains a member identical to one of those already 
inspected by the algorithm - these being u' together with the members 
now in z . An obvious step for the algorithm to take is therefore 
to transfer u' from z t o z , producing z'2 and z^ respectively. 
Consider each of the disjuncts of the goal's first call on the 
assumption that u' is to be transferred in this way. Subsequent 
solution of the problem depends upon finding some state of the two 
list fragments amongst (z'p z p a^d its successors arising from 
further transfers such that in that state there is some member 
common to both fragments. The 2n(^ and 4 ^ disjuncts express an 
arrangement in which the question of a common member occurring in 
succeeding fragments after transferring u' remains undecided. By 
contrast, the 1 s t and disjuncts express arrangements in which 
a member common to both fragments is assured after transferring u'. 
With this latter remark in mind, it is quite easy to show that 
the disjunction of the I s t and disjuncts can be substituted 

by the formula (3uij)(item(u,i,z"), item(u,j,z')) which expresses 
the fact that the new fragments must have a common member. This 
substitution is an S-conditional-equivalence substitution whose 
condition is append* (u' ,z'2,zp , append* (u* rz^zp . This transforms 
the goal to :-

-f- ( (3uij) (item(u,i,z'p , item(u,j,z'2)) 

v (Bi)item(u' ,i,zp 

v duplic(z'2) ), append* (ur ,z'2,z2) f append* (u' ,z^zp 

4r- ( duplic*(zpzp v (3i)item(u' fi,zp ), append* (u'fz'2,zp , 

append* (u' rz^zp 

[modus tollens by invoking duplic* spec. 

in order to summarize the ways of solving-

the problem after transferring u'] 

This goal now permits two procedures for duplic* to be inferred :-

duplic* (z,zp 4- append* (u' rz'2,z2) , item(u' ,i,zp 

duplic* (z^zp + append* (u' ,z'2,zp , append* (uz^,zp , duplic*(z'^zp 

These form a complete procedure set for duplic* because the goal 
transformations which were made all preserved S-equivalence -
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conditional upon the calls to append*. The last condition is 
exhaustive in that the alternative assumption that z„ was not 
decomposable would make the goal unsolvable. Assuming then that 
procedures are already available for solving calls to item and 
append*, the synthesis of a complete program body is complete. 
Executing a call to duplic using the three derived procedures and 
Prolog-like control gives algorithm A3. As execution proceeds, 
successive distinct members are deleted from the list z^ and stacked 
in the record z^; z^ is initially empty. Each new member is 
deposited in z^ by the second duplic* procedure after the first 
duplic* procedure has failed to show that this member already occurs 
in z^. If, however,- a call to the first duplic* procedure is 
successful then computation terminates; at this point, exactly (m^-I) 
members which were originally in z^ have been transferred to z^, and 
one of them is now known to match the m ^ member of The 

2 2 
total number of comparisons made by A3 in order to find the first 
solution of duplic(x) is :-

N(A3) = (m2 - jn2; + (m2 - 1) (m2 - 2) 

which is independent of n . Algorithm A3 is not necessarily more 
efficient than A2 in terms of comparison counts. If A^, A^ and A^ 
are the lengths depicted below :-

7 ml m2 n 

-f- A . M — A „ — M— A , -4 

then we have N(A3) < N(A2) if and only if A2(A2+l) 4 2X^X^1). 

The essential differences between the three algorithms can be summed 
up by saying that every inspected member of x is compared in Al with 
its predecessors, itself and its successors; in A2 with its successors 
only; and in A3 with its predecessors only. Algorithm Al is therefore 
less efficient than both A2 and A3. 

Since algorithm A3 has no other task than to select successive 
members from x and compare them with their predecessors, it would 
seem unnecessary to implement that process using two distinct data 
structures z^ and z^. Those data structures are useful for describing 
the problem abstractly as in the duplic* derivations above, but could 
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clearly be implemented implicitly instead by just employing a 
suitable pointer system governing selections and comparisons in x. 
In fact all we need is one pointer j varying from I up to n which 
marks the boundary between the fragments z a n d z^. Then a 
transformation similar to those shown earlier for the palindrome 
and orderedness problems gives the rather elegant alternative logic 
component for algorithm A3 :-

duplic(x) 4- duplic^ (x,l) 

duplic^ (x ,j) 4- item(u ,j ,x) , find(u,l,j-l,x) 

duplic^' (x,j) 4- length (x,w) , j<w, duplic^(x,j+l) 

find(u/i/j,x) 4- i^j, item(u,i,x) 

find(u,i fj,x) 4- ±<j, find(u,i+l,j,x) 

\ 

This gives excellent behaviour for an implementation allowing direct 
access to the members of x selected by the pointer j in the calls 
to item. The relations introduced above may be specified informally 
using the list membership predicate z and the £-notation used in 
previous examples for denoting list fragments :-

duplic^(xj) 4-+ x £f(x,l,j-l) v @w) (length(x,w) , 

duplic (f (xfj ,w))) 

find(u,i,j,x) uzf (x,i ,j) 
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6.3 : GENERATION OF FACTORIAL TABLES 

Specifying the Problem 

The problem considered in this section is that of constructing 
a table of factorials containing entries (u,u!) for u = O, ..., z 
where z is some non-negative integer given as input. Such a table 
might serve as a useful data structure accessed by some other program 
requiring frequent look-up of a limited range of factorials. Several 
programs for computing individual factorials are discussed in Clark's 
paper (12) and are quite interesting as demonstrations of various 
logic programming styles; however, the task of constructing an entire 
series of factorials is more interesting in that it provides scope 
for varying the exploitation of their dependencies and order of 
generation, as well as raising matters of data structure representation. 
Construction of factorial tables is also briefly considered in the 
paper by Burstall and Darlington (10) who show how to compute them 
using programs represented as sets of recursive function definitions. 

The logical specification of the problem is accomplished quite 
concisely with the sentences :-

table(x,z) (Muv) (entry (u,v,x) 0<u<z, fact(u,v)) 

fact(u,v) (u=0, v=l) v (3w) (times(u,w,v) , fact(u-l,w)) 

in which table(x,z) holds when x is a table containing entries 
(0,0!), ..., (z,z!) ; entry(u,v,x) holds when (u,v) is an individual 
entry in table x ; times(u,w,v) expresses the multiplication 
relation over non-negative integers ; and fact(u,v) expresses u/=v. 
Elementary properties of < over the latter domain are implicitly 
assumed in S as always, and the only property of times(u,w,v) which 
we shall need to summon is that any pair (u,v) determines w uniquely 
when that predicate is satisfied. Any calls to ^ and times which 
may appear in the derived procedures will be assumed to be directly 
executable by the intended Prolog-like interpreter. 

Several algorithms are presented here which are classified 
according to their arithmetical properties (measured by how many 
multiplications are needed to construct a table of a given size) 
and according to the order in which they generate the table entries. 
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When an algorithm generates entries in the order (0,0!), ..., (z,zl) 
we shall call it a natural ordering algorithm, and when it generates 
them in the reverse order we shall call it an anti-natural ordering 
algorithm. Five algorithms are considered altogether, and presented 
in order of decreasing naivety. 

Quadratic Anti-natural Ordering Algorithm 

This simple algorithm is derived by exploiting some basic ideas 
about the constructibility of the data structures which we have 
called 'tables'. Any given table can be viewed as simply a set of 
pairs ('entries') and so be expressed in terms of the set union of 
its component subsets. Here it is convenient to regard the table 
as the union of a singleton containing some entry (u',v') with the 
set X' of all its other entries. Then the construction of tables 
can be specified by the sentence below which is admitted to the 
specification set :- .. 

enter(u',v',x',x) 44 (Muv)(entry(u,v,x) 44 (u=u',v=v') 

v entry(u,v,x*)) 

where enter(u',v',x',x) expresses x = {(u',v') } U x' and is named 
so as to reflect the notion of an algorithm which successively 
'enters' the computed entries into some partially constructed table. 

The derivation below uses this knowledge about the table's 
structure to make a substitution for the specification's predicate 
entry(u,v,x) in order to explicate the way in which any particular 
computed entry is assigned to the table. The result of this is that 
the table x becomes expressed in terms of its sub-table x'; to 
achieve this objective it is necessary to exploit the fact that the 
size of x' is one less than that of x, which is easily ensured,' as 
will be seen in the derivation, by appealing to an elementary 
property of assumed in S :-

O^u^z 44 u=z v 04u4z-l 

With these preliminaries established, the derivation proceeds :-

4 table(x,z) 

4 (Muv) (entry(u,v,x) 44 04u$z, fact(u,v)) ; 

4 (Muv)(entry(u,v,x') v (u=u',v=v') 

44 0£u4z, fact(u,v)), enter(u',v',x',x) 



[S-cond.-equiv. substitution for the entry predicate] 

4 (Vuv)(entry(u,v,x') 44 odu4z-l, fact(u,v)), 

(\fv) ( v=v' 44 fact(z,v)) , enter(z,v' ,x' ,x) 

[S-equiv. substitution for the predicate 04u4z using 

the axiom about 4 declared above; then assume u':=z 

to reflect the anti-natural ordering determined by 

arranging that the computed entry (u,v) is (z,z!) ; 

then distribute 44 through v and simplify ; 

then distribute v through conjunction] 

4 table(x',z-l),(Vv)(v=v' 44 fact(z,v)), enter(z,v',x',x) 

[modus tollens] 

The interesting problem now arises of the significance of the goal's 
second call, and how to process it . The call expresses the 
requirement of showing that the factorial of any u is unique, 
and arises in the derivation because the table specification in S 
quantifies u and v in such a way as to admit the possibility of 
arbitrarily many instances of v satisfying fact(u,v) for a given u. 
The other specification axioms do not explicitly preclude this 
possibility. Here we shall assume that S contains enough knowledge 
about = and times to prove the uniqueness of any factorial as*'a 
lemma; summoning that lemma will then replace the second call to leave 

4 table(x' ,z-l) , fact(z,v') , enter(z,v',x' ,x) 
x 

The calls are now clearly all atomic. Suppose now that we backtrack 
through the derivation to the point at which it was decided to 
introduce considerations of the constructibility of x. Here there is 
no point in trying instead the usual assumption that x can be an 
empty table, because - as a little experimentation will quickly 
confirm - there is then no simplification which will produce.ar 
solvable goal; the table specification insists that any table must 
contain at least one entry (0,0!). Nevertheless we certainly require 
a basis for the recursive table procedure inferred from the above 
derivation. Clearly a sufficient basis is that which deals with the 
most trivial table, namely the unit table {(0,0!)} specified by 

unit-table(x,u',vr) 44 (Vuv)(entry(u,v,x) 44 u=u', v=v') 

Admitting this to S and then pursuing the alternative derivation 
dealing with the case of a unit table, the procedure set for table 
concluded from this analysis is :-
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table (x,0) ,-t- unit-table(x,0,1) 

table(x,z) 4- fact(z,v'), table(x',z-l), enter(z,v',xr,x) 

This set is complete for table. Now it remains to provide means 
of solving calls to fact, enter and unit-table. Now S already 
contains sufficient information for the synthesis of a complete 
procedure set for fact. The fact procedures which are most easily 
derived here are the following, which are both trivially implied 
by the fact specification 

fact (0,1) 4-

fact(u,v) 4- fact(u-l,w) , times(u,w,v) 

These just represent the conventional top-down recursive computation 
of factorials. As an alternative to these we could instead make use 
of the more efficient procedure sets derived by Clark (12) ; however, 
all these procedure sets have the property that their computations 
give rise to z multiplications in the course of computing any zJ 
for z>0. 

If some procedure set is devised for solving calls to enter, 
leaving the call enter(z,v',x',x) in the table procedure above 
as it stands, then that latter procedure must clearly be invoked 
recursively. On the other hand, a choice of table representation 
which permitted that call to be eliminated by macroprocessing would 
then allow iterative invocation. In view of this, admit now to S 
the low-level data-accessing axioms for the simplest term representation :-

entry(u,v,0) 4-*- false 

entry (u,v,e(u',v') :x') •«-*• (u=u',v=v') v entry (u,v,x') 

which employs 0 and : to construct sets of pairs constructed from e. 
Then S will trivially imply the data-accessing procedures :-

unit-table(e(u',v') :0, u', v') 4-

enter(u' ,v' ,x', e(u',v'):x' ) 4-

and thus enable the procedures for table to be macroprocessed, giving 

table(e(0,1) :0, 0) 4-

table(e(z,v') :x' , z) 4- factfz ,vr) , table (x1 ,z-l) 

fact (0,1) 4r 

fact(u,v) 4- fact(u-l,w) , times(u,w,v) 
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These procedures instigate h(z)(z+1) multiplications in the 
course of solving a goal table(x,z) given an input instance z>0. 
This holds irrespective of the fact that a particular representation 
has been chosen for the computed table. Assuming commitment to Prolog's 
control strategy , the quadratic dependence of the algorithm's 
arithmetic burden upon z arises solely by virtue of the fact that 
z independent factorials have to be computed by the explicit calls 
to fact in the table procedure. We should obviously be able to 
improve upon this; for instance, z/ and (z-1)! are computed here by 
a total of (2z-l) multiplications even though z! is computable in 
principle by just one multiplication once (z-1)! is known. This 
latter consideration is the intuition underlying the next algorithm. 

Linear Anti-natural Ordering Algorithm 

A more efficient algorithm can be obtained using the axioms in S 
together with the procedures already derived. Recalling the 
recursive procedures for table and fact :-

table(x,z) fact(z,v'), table(x',z-1), enter(z,v',x',x) 

fact(u,v) -<r fact(u-1,w) , times(u,w,v) 

resolve them by invoking the fact procedure in response to the call 
to fact in the first one. This produces :-

table(x,z) 4- fact(z-1,v"), times(z,v",v') , enter(z,v',x',x) , 

table(x',z-1) 

after a little renaming of variables. The process of resolving 
them in this way contributes towards a compile-time symbolic 
solution of the table procedure's call to fact. The new procedure 
above requests the factorial of (z-1) and so still gives rise to 
quadratic behaviour if substituted for the parent table procedure. 
Suppose instead, however, that this factorial is already accessible 
from the computation of the table x'; a procedure for accessing that 
factorial is trivially implied by the table specification, by 
virtue of the general fact that A -*->• (B 4-+ C) implies C 4- B,A . 
Here the implied procedure is just, after some renaming :-

fact(z-l,v") 4r entry (z-1,v" ,x') , table(x',z-1) 

Now invoke this in response to the call fact(z-1,v") in the new 
table procedure to give :- > ' 
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table(x,z) + table(x',z-1), entry (z-1 ,v" ,x') , times (z,v" ,v') , 

enter(z,v' ,x' ,x) 

Observe that this contains no call to fact; thus the fact procedures 
are now computationally superfluous, playing no role in the new 
algorithm. If the same data structure representation is chosen as 
before, then the complete procedure set for the algorithm (which 
employs the same table basis as before) is :-

table(e(O,1):0, 0) 

table(e(z,v') :e(z-l,v"):x", z) + table(e(z-1,v"):x", z-1), 

times(z,v",v') 

With Prolog-like control these execute just z multiplications in 
response to a goal table(x,z) when z>0. However they have to 
be executed recursively, and so are not necessarily more efficient 
in practice. Essentially they behave rather like the result of 
executing bottom-up those procedures which comprise the former 
algorithm. Top-down execution of the present procedures for the 
goal table(x,2) is depicted below in order to clarify their 
behaviour :-

+ table(x,2) 

<*- table(e(1 ,v") :x" ,1) , times (2,v" ,v') x:=e(2,v') :e(l,v") :x" 

table(e(0,v") :x",0) , times (1 ,v" ,v") , 

times (2,v" ,v') x" :=e(0,v") :x" 

t- times (1,1,v") , times (2 ,v" ,v') x" :=0 , v" :=1 

times(2,l,v') v" :=1 

• v' i=2 

output : x:=e(2,2):e(l,l):e(0,l):0 

The two anti-natural ordering algorithms are both inefficient in one way 
or another; the former executes too many multiplications, whilst the 
latter performs them in an order that demands recursive stacking of 
latent calls. In what follows we pursue the elimination of both of 
these defects. 
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Quadratic Natural Ordering Algorithm 

The next three factorial table algorithms all compute tables 
in the natural order (0,0!), ..., (z,z!). Since (0,01) is initially 
known in consequence of the specification set trivially implying 

fact(0,1) + 

it can be summoned at the beginning of some computation and then used 
as the basis for generating higher entries. The previous algorithms 
had no immediate knowledge of any entries except (0,0!) either, but 
could not summon it immediately upon the start of computation; instead 
its role was deferred- until completion of other recursive invocations 
initiated from requests for the higher entries. 

A preliminary natural ordering algorithm can be obtained by 
admitting to S a new specification for a 3-place predicate table*. 

Essentially this defines a partial table {(w,w!), ..., (z,z')}as 
follows :-

table* (x,w,z) 4-4- (\/uv) (entry(u,v,x) 4-4- w^u^z, fact(u,v)) 

Choosing the instantiation w:=0 obviously makes table(x,z) and 
table*(x,0,z) S-equivalent, so that a call to the former can be 
investigated by a call to the latter. 

It is very easy to pursue derivations for table* which are 
closely analogous to those already seen for table. By using the 
consequences of the enter and unit-table specifications to reveal 
the construction of partial tables we obtain :-

table* (x,z,z) fact(z,v') , unit-table(x,z,v') 

table*(x,w,z) 4- w<z, fact(w,v), table*(x',w+l,z), enter(w,v,x',x) 

as the complete procedure set for table* serving the initiating table 

procedure .- table (x,z) 4- table* (x,0,z) 
! 

Using the term representation and macroprocessing, the resulting table* 
procedures are iteratively executable :-

table* (e(z,v') :0, z,z) 4- fact(z,v') 

table* (e(w,v) :x', w,z) 4- w<z, fact(w,v) , table* (x' ,w+l ,z) 

A complete program body for solving a call to table will also clearly 
have to contain a suitable procedure set for solving the calls to fact. 
With top-down control, this algorithm must execute h(z) (z+1) 
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multiplications in the course of computing a table with entries' up 
to (z,z!), just like the earlier quadratic algorithm. So now we 
attempt a refinement as before with the aim of obtaining a linear 
behaviour instead. 

Bi-linear Natural Ordering Algorithm 

Once again we pursue a symbolic execution of the calls to fact, 
using a resolution step to eliminate those calls from the quadratic 
procedure set. Considering the recursive table* procedure first, 
the call fact(w,v) is required to be replaced by a look-up of the next 
factorial in question from the table x'. This factorial will clearly 
be (w+1)! by virtue of the sentence implied by S (similar to that which 
was exploited in the earlier refinement) ,which after renaming is 

fact(w+l,v") 4 entry(w+l,v",x'), table*(x',w+l,z) 

This means that a procedure is required which solves fact(w,v) by 
solving fact(w+1,vn). Now it is trivial to show that the specification 
given for fact implies :-

Qv) (fact(w,v) , times (w+1 ,v,v") ) 4 fact (w+1,v") , 04w 

from which it is possible to infer the universally quantified 
sentence 

fact(w,v), times(w+1,v,v") 4 fact(w+1,v"), 0$w 

because of the assumptions introduced earlier that v is uniquely 
determined in the consequent formula above for any given choice 
of w and v". Then since, generally, (A,B) 4C implies A4B,C the 
desired procedure for fact is immediately obtained :-

fact(w,v) 4 fact(w+1,v"), times(w+1,v,v"), 0$w 

and resolved with the recursive table* procedure above to produce 
a new procedure having no explicit call to fact. There is no similar 
way of eliminating the call to fact in the table* basis, and it is 
important to understand why this is so : the reason is that if it 
were eliminated, the resulting procedure set would not have any 
intrinsic knowledge about any particular factorials; this contrasts 
with the linear procedure set for table which, despite having no calls 
to fact nevertheless has the entry (0,1) embedded in the first 
argument of the basis. In the present case there is no way of 
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assimilating the immediate knowledge of that entry in the basis, 
whose task is not to compute 0! but rather any arbitrary zl where (z,z!) 
is the last entry of the desired table. Therefore the best we can 
achieve in modifying the table* procedures is the set :-

table*(e(z,v'):0, z,z) 4 fact(z,v') 

table*(e(w,v):e(w+l,v"):x",w,z) 4 O^w, w<z, times(w+1,v,v"), 

table*(e(w+l,v"):x",w+l,z) 

[together with procedures for fact] 

Executed top-down to solve a goal like 4 table*(e(0,1):x',0,z) 

for some given input instance of z, these can be executed iteratively 
to generate entries in the natural order. Note that a goal of that 
kind effectively injects an initial factorial entry (0,1) into the 
computation from its first argument; if the first argument were 
simply an output variable instead, as in 4 table*(x,z),then the calls 
preceding the recursive procedure's call to table* could not be 
activated deterministically, disallowing an iterative computation. 
We call the algorithm 'bi-linear' here to reflect the fact that the 
total number of multiplications which it executes is 2z for the 
goal 4 table*(e(0,1):x* ,0,z) where z>0. This is unsatisfactory but 
certainly an improvement upon h(z)(z+1). 

Note that if the goal is set up as above with a correct entry 
in its first argument, the calls fact(z,v') and O^w can be deleted 
from the modified table* procedure set above and still give a 
successful computation but with only z multiplications. This is a 
perfectly satisfactory computation, but the table* procedures no 

longer conform to the specification set ; that is, it is no longer 
possible to show that they are true theorems about the various relations 
as specified by 5; they execute 'correctly' only if given a goal 
which provides a genuine entry in its first argument. The presence 
of those two calls in the truly correct procedures can be interpreted 
as a constraint which checks that any entry injected by the goal is 
(i) in a valid range, that is, higher than the entry for 01 or equal 
to it, and (ii) a pair (u,v) such that v really is the factorial of u: 
the latter being checked indirectly by using whatever entry is given 
in order to compute some v' as the potential factorial of z, and then 
explicitly checking that this value of v' really is the factorial of' z 
through the agency of the call to fact in the basis. It is the 
latter check on the goal's integrity which gives rise to the extra 
z multiplications in the algorithm. 
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Linear Natural Ordering Algorithm 

The last algorithm considered is the best of those examined 
so far. The failing which has still to be dealt with is that it 
requires the invoking call to supply a known initial entry (in order 
to obtain deterministic iterative behaviour), and that it is then 
burdened by an internal check applied to that initial entry. The 
final algorithm presented here eliminates these irritations and thus 
gives impeccable behaviour. The price of this is the need to resort to 
slightly unobvious intuitions in order to find the right specification. 
It so happens that a further predicate has to be specified in order 
to provide procedures for a 4-place relation table**. 

In contemplating the failings of the table* program just 
examined, it is possible to perceive that its final call to fact 
would be unnecessary if it had been executed inherently upon the 
condition that the injected entry (w,v) satisfied w! = v. This 
is the intuition which underlies the table** specification below, 
which is also admitted to S 

table**(x,w,v,z) (table*(x,w,z) 4- fact(w,v)) 

It is easy to see that this trivially implies 

table*(x,w,z) 4- fact(w,v), table**(x,w,v,z) 

Choosing the case w:=0 and invoking the fact basis to eliminate 
the call to fact in this sentence, an initiating procedure for table 
is readily obtained 

table (x,z) 4- table** (x,0,1,z) 

so that an entry (0,1) known to be correct is inherently built in to 
the new procedure set. Once again, the axioms of constructibility of 
tables assembled already in S are sufficient to permit derivations for 
both a recursion and a ba«*is on table**. In particular it is 
possible to take a short cut in the derivation of the basis by 
observing that the table* basis 

table* (e(z,v') :0, z,z) 4- fact(z,vf) 

matches the table** definiens, thereby immediately providing a 
table** basis :-

table** (e(z,v) :0, z,v,z)4-

Tne recursive table** which completes the necessary procedure set is 
derivable without difficulty just like the recursive table procedure 
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table** (e(w,v) :x' , w,v,z) 4- 04w, w<z, times (w+1 ,v,v") , 

table** (x' ,w+l,v" ,z) 

Executed with Prolog-like control, this set of three procedures gives z 
multiplications in order to solve the goal table (x,z) . Entries 
are computed in the natural order and no initial entry need be 
injected through the goal. The computation is also deterministic 
and iterative. It will probably be helpful to present an example 
of a computation using them to compute the table for the case z:=2. 
This computation is depicted below with the < checks omitted for 
clarity, although it is, of course, assumed that they have been 
properly executed. ^ 

4- table (x ,2) 

4- times(1,1,v"), table**(x',1,v",2) x:=e(0,l):x' 

4- table** (x' ,1,1,2) v' 

4- times(2,2,v"), table**(x",2,v",2) x':=e(l,l):x n 

4- table** (x" ,2,2,2) • v" z=2 

x":=e(2,2):0 

output : x := e (0,1) :e (1,1) :e (2 ,2) :0 
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6,4 : COMPARISON OF TREE FRONTIERS 

Specifying the Problem 

This example deals with the well-known problem of determining 
whether or not two given trees have identical frontiers. For 
simplicity of presentation, the input data is here assumed to be 
restricted to binary trees, but this does not reduce the generality 
of the algorithm employed. The most interesting aspect of that 
algorithm is a special data structure transformation applied to 
each of the two trees of interest which assists the task of accessing 
and comparing the members of their frontiers. This transformation 
can be assimilated into the. logical derivation of the frontier-
accessing procedures by proving a simple theorem about the associative 
constructibility of the trees' representations. 

To specify the problem formally it is necessary to define the 
data structures involved. A binary tree is representable by a pair 
(x ,x ) of which each component is either a binary tree or a labelled 
tip ? in any particular tree the tips are labelled distinctly. The 
frontier of a binary tree (x^,xp is the result of appending the 
frontier of x t o the frontier of x^ ? the frontier of a labelled tip 
is the unit list whose member is that tip's label. Thus each 
binary tree has a unique frontier consisting of a list of distinct 
tip labels. However, associated with any given frontier there exist 
finitely many binary trees possessing that frontier; each tree 
corresponds to one way of constructing the frontier by appending 
its constituent sublists. As an example, two trees shown below 
are selected from 42 distinct binary trees which all possess the 
frontier (a,b,c,d,e,f). 

b e 

This pair might constitute the data for our problem, that is, to 
show that they do indeed have the same frontier. 

two trees with 

same frontier. e f 
a 



•223 

To construct a logical specification it is convenient to 
introduce the predicate label(u,i,x) to express the fact that u is 
the i^b label in the frontier of binary tree x. Furthermore let 
the predicate same-frontier(x,y) hold when trees x and y have the 
same frontier. The latter predicate names the primary relation of 
interest, and can be expressed in terms of the label predicate as 
follows :-

same-frontier(x,y) 44 (Mui)(label(u,i,x) 44 label(u,i,y)) 

Thus, given two trees and the means of determining their frontier 
labels, we require a procedure set capable of solving a call to 
same-frontier. This is the- object of the ensuing derivations. 
An approach to the problem which is rather different from that given 
here may be found in the paper by Burstall and Darlington (10), 

The Conventional Algorithm 

The most naive algorithm for the problem is that which compares 
the 1 t h labels in the given trees x and y choosing i = 1, 2, ..., etc. 
in sequence. This is the algorithm which is considered here; the 
central problem which it poses for the programmer is how to access 
the î -b label in the frontier of a given binary tree having otherwise 
arbitrary topology. In fact it turns out to be unnecessary to 
devise procedures which explicitly seek a particular label, as 
will be shown shortly. 

Suppose that the frontier of x is some list (u_, ...,u ) whilst 
1 m 

that of y is some list (y , ..., y ). If u and v are successfully 
I n 1 1 

matched, it remains to compare the sublists ..., u ) and 
2 m 

(v , ..., v ). In devising procedures for the logic component of the 2 n 

algorithm which makes these comparisons, it is possible - and indeed 
advantageous - to avoid explicit reference to (and hence computation 
of) these sublists by postulating the existence, of trees x' and y' 
whose frontiers are respectively (u , ..., u ) and (v., ..., v ). 

2 m 2 n 
We shall see that to solve the problem of matching the labels it 
is sufficient to match representations of these trees associated 
with sublists of the trees' frontiers, rather than having to match 
explicit list representations of those frontiers. With this.in mind, 
then, admit to the specification set a sentence 
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split-frontier (u' ,x' ,x) (Mui) (label (u,i,x) •*-»• label(u,i-1,x*) 

v (u=u',i=l)) 

The predicate split-frontier(u',x',x) holds when the frontier of 
tree x is the result of appending the frontier of tree x' to the 
unit list whose member is the tip label u'; it provides a means 
of explicating the construction of tree frontiers. Now there are 
also trees whose frontiers are not expressible in this manner, namely 
trees consisting of single tip nodes; their relationship to their 
frontiers is expressible using the predicate unit-tree(x,u*) which 
holds when the frontier of tree x is the unit list whose member is 
the tip label u'. This predicate is specified in S by :-

unit-tree(x,u') (Mui) (label (u,i,x)4-+ u=u' , i=l) 

From the experience of previous examples presented here, it 
should be clear that the two construction axioms for frontiers just 
described can be used as a source of S-conditional-equivalence 

substitutions for label predicates in a derivation for same-frontier 

which begins :-

same- frontier (x ,y) 

4- (Mui) (label (u,i ,x) -t-* label (u,i ,y) ) 

By exploiting the ways of constructing frontiers expressed in the 
specification set, this derivation branches in order to deal with 
unit trees on one branch and more general trees on the other. Some 
trivial goal substitutions and simplifications then lead to the 
complete procedure set for same-frontier 

same-frontier(x,y) 4- unit-tree(x,u'), unit-tree(y,u*) 

same-frontier(x,y) 4- split-frontier(u',x',x), 

split-frontier(u',y',y), same-frontier(x',y') 

Note that there is no need to devise a procedure catering for empty 
o 

trees because it is assumed that there is no such kind of tree in this 
particular formulation of the problem. 

It now remains to synthesize procedure sets for unit-tree and 
split-frontier. In other examples we have met similar circumstances 
where it was required to compose procedure sets for almost analogous 
relations such as unit-list and append*, and it was seen that by choosing 
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particular data structure representations the calls to those data-
accessing procedures could be trivially eliminated by macro-processing. 
In the present case, however, a concrete tree representation is chosen 
which allows the calls to unit-tree to be eliminated, whilst those to 
split-frontier are not; instead they invoke procedures for 
split-frontier which provide a rather subtle means of computed access 
to the first label u' in the concrete representation of any tree z 
and simultaneously construct the tree z' whose frontier is the result 
of deleting u' from the frontier of z . The behaviour of the 
procedures for split-frontier is the central feature of the whole 
algorithm. 

Suppose, then, that the trees of interest are represented 
concretely by terms using constructors t and A, such that the term 
t(z^,z^ denotes a binary tree with left-tree z^ and right-tree z^, 
whilst the term A(u) denotes a unit tree whose tip is labelled u. 
Moreover, introduce a predicate numtips(z,j) to express the fact that 
a tree z has j tip labels in its frontier. Then the following 
sentences can be added to S in order to specify the meaning of label 
for the chosen representation :-

label(u,i,\(ur)) 44 (u=u', i=l) 

label (u,i,t (z^ , z^)) 44 Qi ) (numtipsfz ,i ) , 

(label(Ufi/Z^) v label(u,i-i ,z ))) 

together with three axioms constraining the well-formedness of trees, 
analogous to the list axioms A1-A3 :-

(3j) numtips (z,f) 4 

numtips(z,j) 44 (Vi) (l4i€j 44 Qu) label (u,i,z)) 

(\fu) (label (u,i,z) 44 u=u) 4 label(u,i,z) 

The resources now established in S provide for the derivation of 
a rather subtle property of the split-frontier relation which we shall 
employ as a split-frontier procedure. In pursuing the derivation 
goal :-

4 split-frontier(u',x',x) 

two cases are possible for the structure of the tree x if x is 
decomposable : either it has the form t(t(XyX^) ,x^ or else it has the 
form t(X(u'),x'). This just represents a case analysis on the left-tree. 
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In dealing with the former case by pursuing the goal :-

4- split-frontier(u' ,x' ,t(t(x^,xp r*p) 

a lemma will be invoked which underlies the logic of the target 
algorithm. The usefulness of this lemma is not easy to perceive 
by merely considering the derivation goal and depends upon some 
considerable inspiration. Here it is derived from S beforehand by 
somewhat bottom-up inferences as follows. Recalling the analogous 
treatment of the list reversal problem examined in Section 6.1, 
the uniqueness of a tree's tip count can be proved from the axioms 
of well-formedness and then exploited so as to re-organize the 
specification of label(u ,i ,t(z ̂,zp ) as follows :-

(Vui) (label (u,i ,t(z^,zp ) 44- label(u,i,zp 

v label(u,i-izp) 4 numtips(z^,ip 

This will now be used as a source of S-conditional-equivalence 

substitutions applied to itself for the instances z^:=t(x^,xp , zp=x^ 

chosen above in the derivation goal. For ease of presentation, 
let F abbreviate the formula label(u,i,t(t(xp ,xp) ; then the 
desired lemma is proved as follows :-

(Vui) ( F 44- label (u,i ,t(x^,xp ) v label(u,i-i12,xp) 

4 numtips(t(xlfxp ,i12) 

(Mui) ( F 44 label(u,i,xp v label (Ufi-i^xp v label(u,i-i12,xp) 

4 numtips (t(x^,xp *i12) / 

numtips (Xj^,ip 

I- fVui; ( F 44- label (u,i,x ) v label(u,i-i.t(x,x))) 
s 1 1 X J 

4 numtipsCtCx^xp ,i12) , 

numtips(x^,ip , 

n\zmtips(x2,ip 

|- (\fui)( F 44- label(u,i,t(x.,t(x0,x)))) 
e JL X J 

numtips(t(x ,xj ,i +i ) , 
1 Ji 1 2 

numtips(x^,ip , 

numtips(x2fip [ := ipti ] 

This is the desired lemma. Informally, it says that if u is the it*1 

label in the frontier of t(t(x^,xp ,xp then it is equivalently the it** 
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label in the frontier of t(x ̂ ,t(x2,x 3) ) . The numtips antecedents 
can be deleted by proving the existences of the tip counts from the 
axioms already in S; this establishes that S implies the sentence 

lemma : label(u,i,t(t(xi,x2) ,x3))4-±label(u,i,t(xl,t(x2,x3))) 

The derivation of the general procedure for split-frontier is now 
trivial, using the lemma to make an S-equivalence substitution :-

-«- split-frontier(u' ,x' ,t(t(x3,x2) 

+ (Vui)(label(u,i,t(t(x ,x ),x )) ++ label(u,i-l,x') v (u=u',i=l)) 

(Vui)(label(u,i,t(x1,t(x2,x3))) ++ label(u,i-l,x') v (u=u',i=l)) 

•<r split-frontier(u' ,x' ,t(x3,t(x2,x3))) 

from which is inferred the procedure 

split-frontier(u',x',t(t(x3,x2) fx3)) 

4- split-frontier (u' ,x' ,t(x^tix^x3))) 

When the derivation pursues the alternative case for the 
structure of the tree, the call in the goal is simplified by using 
the properties of unit trees already established in 5, as follows :-

4- split-frontier(u' ,x' ,t(X(u') ,x') ) 

4- CVui; (label(u,i,t(\(u') ,x')) label (u,i-l,x') v (u=u',i=l)) 

[modus tollensJ 

4- (Vui) ((label (u,if\(u')) v label (u ,i-i ,x') ) 4+ 
(label(u,i-l,x') v (u=u*,i=l))), 

numtips(\(u'),2) 

[S-cond.-equiv. substitution, invoking label specification] 

4- (\fui) (((u=u',i=l) v label (u,i-l,x')) 

(label(u,i-l,x') v (u=u',i=l))) 

[using property of unit tree \(W) in S that it has just 

one label, thus inducing i:=l and solving last call] 

I I [simplifying by instantiation to delete call : x':=x', u':=u'] 

from which is inferred the split-frontier basis procedure 

split-frontier (u' ,x' ,t(\(u') ,x') ) 4-
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This completes the synthesis for split-frontier. There remains 
the matter of dealing with the calls to unit-tree in the basis for 
same-frontier. Now the specifications already given for unit-tree 
and for the meaning of label for trees represented by \(u) jointly 
imply the assertion :-

unit-tree (X (u) , u) 

so that the calls to unit-tree can be macro-processed out to leave 
the basis 

same-frontier(\(u') , \(u')) 

This basis is perfectly adequate for terminating the successive 
decomposition of frontiers by the split-frontier procedures. However, 
the behaviour of the algorithm is such that it is possible for the 
recursive same-frontier procedure to generate identical sub-trees 
x' and y' whose frontiers necessarily coincide, so that computation 
could then be terminated immediately with the frontiers of the given 
trees successfully matched. Thus a considerable gain in efficiency 
is possible by generalizing the basis above to :-

same-frontier(x,x) 

Clearly this is trivially implied by the same-frontier specification 
through the instantiation y:=x, and also implies the basis above 
which was derived specifically for dealing with unit trees. When 
computation is terminated by this basis in the case where x' and y' 
are not unit trees, the matching of them is accomplished through 
this single procedure invocation in consequence of the unification 
mechanism. The present example bears similarities to the example 
discussed in Chapter 3 dealing with programs for investigating the 
list equality relation. Here then is the final procedure set for 
the present problem :-

same-frontier(x,x) -«-

same-frontier(x,y) 4- split-frontier(u',x',x) , 

split-frontier(u',y',y), same-frontier(x',y') 

split-frontier(u' ,x', t(X(u') fx')) 4-

split-frontier(u',x', t(t(x ,x ),x )) 
JL « J 

4-split-frontier(u' ,x' ,t(x ,t(x ,x ))) 
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With Prolog-like control these procedures generate the rather 
charming algorithm which successively transforms the given trees in 
order to compare their first frontier labels. If these do not match 
then termination is immediate; if they do match, the transformation 
which made them accessible will also have generated two more trees 
respectively associated with the reduced frontiers, and then the 
computation proceeds to transform these in a similar manner. The 
general behaviour of the algorithm can be seen as a series of label 
comparisons before each of which there is a series of tree 
transformations which accesses the labels to be next compared. The 
logic of this transformation process is summed up in the recursive 
procedure for split-frontier which makes the first label in the 
tree t ( t ( x ^ , x 2 ) m o r e accessible by seeking it in the tree 
t(x^,t(x2,x) [thus reducing its depth in the tree being searched] 

in the knowledge that this transformation preserves the frontier. 

A slice selected from a simple computation is depicted below in 
order to indicate the algorithm's strategy. 

The input trees x and y above are transformed by repeated recursions 
on the split-frontier procedure until both.calls to split-frontier 

in the same-frontier procedure return identical instances of the first 
label u w h i c h is a in the example above. The reduced trees x1 and 
y1 having the frontier (b,c,d,e,f) are then compared using similar 
transformations until b becomes accessible. Here, the tree x, for 
example, is represented by the term :-

t(t(t(X(a) ,t(X(b) ,\(c))),\(d) ) ,t(\(e) A(f))) 
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6.5 : SUMMATION OF MATRIX TRANSVERSES 

Specifying the Problem 

This example considers the problem of computing the sums of the 
elements on the transverse diagonals of a given matrix and storing 
those sums in a list. There are two quite different approaches to 
this task which differ in efficiency : firstly, one can compute the 
members in that list sequentially, so that to compute any one of them 
it is necessary to use some accessing protocol which finds just 
those elements in the matrix which occur in the transverse summed 
by that particular list member; secondly, one can access the elements 
from the matrix in any convenient way and, for any one of them, decide 
which transverse it occurs in and so add it to a cumulative sum in 
the list associated with that transverse. In the former case complete 
sums are generated serially, whereas in the latter case those sums are 
built up in quasi-parallel. The difference in efficiency is 
determined by the computations necessary for associating particular 
members of the list with particular elements in the matrix. In the 
first algorithm some k is known as the index of the transverse whose 
sum is to be computed, whence it is then necessary to generate just 
those pairs (i,j) of coordinates in the transverse of the matrix; 
this involves some untidy counters and associated bounds. In the 
second algorithm some pair (i,j) is given which selects the next 
element of the matrix to be added to some k̂ b. transverse's sum; the 
computation of the relevant k is trivial - it is just k = i+j-1. 

In both algorithms it is favourable to efficiency to arrange an 
essentially bottom-up generation of the cumulative sums, rather than 
pursuing top-down recursive evaluations. For this reason, both logic 
programs shown here - which are intended for top-down interpreters -
resort to the programming styles which simulate bottom-up behaviour. 
Both of them use procedures which maintain explicit pointers in their 
argument structure which govern the access to the matrix, and so their 
derivations require the kind of techniques for arranging this which 
have already appeared in other examples. A synthesis is not given 
here for the logic representation of the first algorithm because this 
would not comprise particularly difficult or interesting derivations. 
However, the greater part of the ideas needed for synthesizing the logic 
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component of the second algorithm is presented in some detail to 
show, for the first time in the thesis, a non-trivial derivation which 
exploits Kowalski's -arity-doubling technique for specifying procedures 
which simulate bottom-up behaviour. Furthermore, whereas this has 
been employed by others with the simple aim of actually using those 
procedures for computational purposes [ for example, Kowalski's use (51) 
of the go* procedures and Clark's use (12) of the 4-place factorial 
procedures ], here we do not employ it exactly in that way, but rather 
use it to introduce a specification of a relation which only plays 
an intermediate, but nonetheless important, role as an axiom invoked 
during a derivation. Whereas the typical use of the technique just 
reverses the direction of a serial computation, its use here results 
in the transformation of a serial computation to a quasi-parallel one. 

It is now appropriate to introduce some notation in order to 
specify the problem in greater detail. Let x be the given matrix 

A A A A 

having i rows and j columns, where i^l and J>1; when this is so, the 
predicate size(x,1,j) is satisfied. Then associated with x there 

A A 

exist k distinct 'transverses' which can be labelled 1, ..., k. 
The 

kth 
transverse is that substructure of the matrix which consists 

of just those elements x[i,j] satisfying k = i+j-1; this definition 
determines the partitioning of the matrix elements into k disjoint 
non-empty transverses. Associated with x is a list z such that 
any v is a member of z if and only if it is the sum of the elements 
in the kt*1 transverse of xj when this is so, the predicate sumlist(x,z) 

is satisfied. The picture below should help to clarify these ideas 
and notations. 

k : 1 2 3 4 5 6 7 

The formal specification of sumlist is given by the sentence 

sumlist(x,z) (Vvk) (item(v,k,z) transum(v,k,x) ) 
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where the predicate transum(v,k,x) holds when v is the sum of the 
elements in the k^b transverse of x. The look-up of elements whose 
coordinates are known is implemented by calls to procedures for a 
relation elem(u,i,x) which holds when u = x\_i,j]. For instance, 
the matrix might be represented by an array of elem assertions, 
thereby allowing direct access. Whichever arrangement is chosen in 
practice is not important to the analysis given here, which is 
concerned only with the order in which calls to elem are executed; 
thus elem is left as a primitive in the specification set. A few 
more relations will be specified in S when the need arises. 

The Serial Summation Algorithm 

The serial algorithm is that firstly described in the previous 
introduction to .the problem; it serially computes the list members 
z[k] for k = I, ..., k in that order. Each time some new k is chosen, 
the algorithm has to determine the elements on the kth transverse. 
Probably the simplest way to achieve this is to compute a 'start-address' 
(i,j) for the transverse at which its first element can be found; 
more precisely, we can arrange that its i component is the least row 
coordinate on the transverse (that is, the one nearest the top of the 
diagram). This address is computable by the expression :-

(i,j) := if_ kgj then (l,k) else (k-j+l,j) 

In order for the algorithm to iterate through the selection of elements 
from the transverse, it must also know how to recognize the last one 
selected. The most efficient arrangement here is to compute in 
advance the number of elements on the transverse and then count the 
elements selected. If k' represents this count, it is computable 
using :-

A A A A _ . - ' A 

k' := if_ l£k<i then k else if i$k4j then i else k-k+1 

Once these preliminaries have been accomplished, the required elements 
on the kbb transverse can be accessed successively (proceeding 'down' 
the transverse) by incremental address modification until all k' of them 
have been accessed; meanwhile, of course, they are being added to a 
cumulative sum whose final state will be the 

ktb 
member assigned to z. 

It will be useful to show the conventional representation of. this 
arrangement before discussing a possible logic representation. Thus a 
simple Algol-like rendering of the serial algorithm is :-
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begin for k := 1 to i+j-1 do^ [ iteration through transverses 

begin in succession] 
A A 

compute(i,j,k,i,j,k') ; [ get start-address (i,j), count k'] 

k" 1 ; 

v := x[i,j] ; [ initializing transverse sum] 

while k"<k' do_ [ iteration through elements on 

begin kth transverse] 

i := i + 1 ; 

3 •= J " 1 ; 
k" := k"+ 1 / 

v := v + x[i,j] [adding to transverse sum] 

end 

z[k]:= v [assigning transverse sum 

end to k*-*1 member of output list] 

end 

The algorithm above can be represented without much difficulty 
as a Prolog-like execution of a logic program using procedures 
for the relations specified earlier. One possible rendering now 

A A 

follows, in which the predicate compute(i,kfi,j,kf) holds when the 
Jtth transverse of an i x j matrix has k' elements and a start-'address 
(i,j). It may be assumed that the call to compute just evaluates 
i, j and k as specified by the rule given previously. The predicates 
sumlist* and transum* are just variants of sumlist and transum which 
explicate the indices governing the iterations, and are like the 
predicates ord* and palin** seen in Chapter 3. 

A A A A * A 

sumlist(x,z) 4- size(x,i,j), k = i + j - 1, sumlist*(x,l,k,z) 
A A A 

sumlist*(x,k,k,v.nil) 4- transum(v,k,x) 
A A . 

sumlist* (x,k,k,v.z') 4- k<k, transum(v,k,x) 
A A A A 

transum(v,k,x) •*- size(x,i ,j) , compute(i ,j ,k,i ,j ,k') , 

transum*(v,i,j,l,k',x) 

transum*(u,i,j,k',k',x) elem(u,i,j,x) 

transum*(u+v',i,j,k",k',x) 4- k"<k', elem(u,i,j,x), 

transum*(v',i+l,j-l,k"+l,k',x) 

These procedures are a more-or-less direct transcription of the 
A 

conventional program above. The predicate sumlist(x,k,k,z") holds 
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when z" is the list of the sums of the X t h up to the k^ 1 transverses 
of x; the predicate transum*(v",i,j,k",k',x) means that v" is the 
sum of the jfc,,-th up to the elements on the transverse 
of x. The procedures behave quite acceptably in response to a goal 
4- sumlist(x,z) , successively binding new transverse sums to the 
output argument z. Their inefficiency in having to call the compute 

procedure in order to select the elements on each transverse is no 
worse than the conventional program's behaviour. This particular 
computational burden is, nevertheless, a nuisance, and in the next 
discussion we eliminate it altogether. The result is not only 
greater efficiency but also a significant shortening and clarification 
in the texts of both the conventional program and the logic program. 

The Quasi-parallel Summation Algorithm 

Since every element in the matrix contributes to some transverse, 
there exists an algorithm for the problem at hand which exhaustively 
accesses elements from x and adds each one to a cumulative sum of 
the elements in its associated transverse. The order in which the 
elements are selected from x is inconsequential to the fact that 
by the time they have all been selected and added to the appropriate 
sums, the final state of the output list will be correct. In 
general the sums in the list z are not computed successively 
(although this can still be arranged) but rather are built up in 
quasi-parallel. The conventional program below depicts the algorithm 
which uses the easiest method for selecting the elements, that is, 
by executing a column-selecting iteration within a row-selecting 
iteration, each in the natural order I, 2, ... etc. 

begin for k := 1 to_ i+j-1 do_ z [k} 0 ; 

for i := 1 to i do 
for j := 1 to j do 

. begin 

k i + j - 1 ; 

z[k] := z[k] + x[i,j] 
end 

end 

This is certainly much less clumsy than the program for the serial 



algorithm in appearance and better behaved in execution. Now we 
shall show that the same improvements can be realized in the logic 
representation of this algorithm. 

Since the order of selection of elements is of no logical 
consequence it is sensible to choose the natural orderings of 
row and column coordinates as the protocol for the logic program, 
just as in the above conventional program. For this purpose it 
is convenient to imagine a substructure x' of x which grows in a 
uniform way as computation proceeds under the control of natural 
row and column selection; at any particular instant the substructure 
is just that part of the matrix whose elements have so far been 
added to the appropriate cumulative sums in z. Let the term s(x,i, 
represent the substructure x' as depicted below. The successor 

a 

state in the computation will be either s(x,i,j+l) (if j<j) or 
else s(x,i+l,l) (if j=j), provided that x' is not the final state 

A A 

(i=i, j=j). This successor state is also shown below (named x") 
revealing the newly selected element u = x[i,j+l\ . 

A A 

J j j+1 3 
4- 4, 4- 4, 

x' >•>)>)>>))))>>>>>>>>>>>-> x" 
select and add next u 

Considering the algorithm in a general way, imagine that the 
list z is constructed incrementally by the successive additions of 
elements to its various members. initially z will consist of a 
list z° consisting of k zeros; this is associated with the state 
s(x,l,0) of the substructure x' of selected elements. More 
generally, each time some state x' is promoted to x", the state of 
z will be promoted from z' to z". The objective is to compute the 

A A 

final state z associated with x' = s(x,i,j) from z°. 

14 
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. The objective just outlined can.be expressed in a preliminary 
way in terms of a new predicate sumlist**(x,z,x',z') which is 
interpreted to mean that z is the list of transverse sums of elements 
in the substructure x if z' is the list of transverse sums of elements 
in the substructure x'. Logically this is expressed :-

sumlist**(x,z,x',z') 44 (sumlist(x,z) 4 sumlist(x',z*)) 

and so is exactly an instance of Kowalski's typical specification 
style for some anticipated sumlist** program whose top-down 
execution behaves like the bottom-up execution of some recursive 
program for sumlist. The algorithm which is of interest here is 

A A A 

that which solves a call sumlist**(5(x,i,j),z,s(x,1,0),z°) given some 
data structure representing the zero-filled list z° and, of course, 
access to x-

Whilst the s-notation is useful for descriptive purposes, it 
is not desirable that it should remain in the argument structure of 
calls in the eventual program, partly because it clutters the text, 
and partly because it places an overhead on run-time unification 
(unless it can be eliminated by some compile-time inferences). 
At this stage, then, we make a transformation of the principal 
predicate of interest by giving it the name sumlist+ and the 
specification :-

A A A A 

sumlist^(x,i,j,z,i,j,z') 44 size(x,i,j), sumlist**(x,z,s(x,i,j),z') 

Now the essential logic of the problem is obviously concerned 
with the relationship between successive states of the list z as 
x'progresses through successive states. Two axioms can be added 
to S which summarize some simple and (we hope) clearly correct facts 
concerning the relations of interest. In the first place, it should 
be clear that if z" is the succeeding state to zr, as expressed by 
a predicate add(u,i,j,z\z") holding when the addition of u to the 
( i + j m e m b e r of z' produces z", then all members of z' and z" will 
be correspondingly identical except for their (i+j)^1 members which 
will differ by u :-

(\fvk) (item(v,k,z") 44 (item(v,k,z') , k?i+j) 

v (item(v-u,k,z,)f k=i+j)) 4 add(u,i,z',z") 
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Likewise, if the condition elem(u,i,j+l,x) holds, it is easy to see 
that the transverse sums of the substructures s(x,i,j) and s(x,i,j+l) 

will be correspondingly identical except for their (i+j)^b transverse 
sums which will differ by u :-

(Mvk)(transum(v,k,x") 44 (transum(v,k,x'), k^i+j) 

v (transum(v-u,k,x'), k=i+j)) 4 elem(u,i,j+l,x) 

From these two axioms it is then easy to combine them (by conjunction), 
simplify the result and exploit the sumlist specification to arrive 
at what will prove to be a useful lemma; it just describes an obvious 
fact about the states of the data structures when a new element is 
selected and added :-

(sumlist(s(x,i,j),z'; 44 sumlist(s(x,i,j+l),z")) 4 elem(u,i,j+l,x), 

add(u,i,j,z',z") 

Observe that this is now an S-conditional equivalence. 

Sufficient preliminaries have now been established to allow 
the following derivation of a recursive procedure for sumlist+ 

t A A 

4 sumlist*(x,i,j,z,i,j,z*) 
A A 

4 size(x,i,j), sumlist** (x,z,s(x,i,j) ,z') [modus tollens) . 

4 size(x,l,j), (sumlist(x,z) 4 sumlist(s(x,i,j),z')) 
A A 

4 size(x,i,j), (sumlist(x,z) 4 sumlist(s(x,i,j+l) ,z") , 

elem(u,i,j+l,x), add(u,i,j,z',z") 

4 sumlist^(x,i,j,z,i,j+l,z"), elem(u,i,j+l,x), add(u,i,z',z") 

This provides a procedure for sumlistwhich deals with the case 
where j<j in the current state of the inspected substructure of x. 

A 

An alternative procedure can be derived for the other case where j-j, 
at which point the row coordinate for the next selected element is 
increased by I. Derivation of a basis is trivial, dealing with the 
case where there remain no more elements to be inspected. The 
complete procedure set for sumlist^ is as follows 

sumlist^(x,i,j,z,i,j,z) 4 
f A A A 

sumlist*(x,i,j,Z,i,j,z') 4 elem(u,i+l,1,x), add(u,i,1,z* ,z"), 
T A A 

sumlist*(x,i,j,z,i+l,1,z") 

sumlist^(x,i,j,z,i,j,z') 4 elem(u,i,j+l,x), add(u,i,j,z',z"), 
, A A 

sumlist*(x,i,j,z,i,j+lfz") 
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Given suitable means of implementing the calls to elem and add, these 
procedures will give excellent iterative behaviour in response to a 
goal of the form 4- sumlist^(x,i,j,z,l,0,z°) , proceeding in exactly the 
same manner as the conventional representation shown earlier. The 
recursive sumlist^ procedures are closely akin to the loop invariants 
which one might construct in an axiomatization of the latter 
representation. The computation given for the example portrayed 
previously using Prolog-like control is as follows, where a term 
representation is chosen for the output list and the calls to elem and 
add have been omitted below just for clarity 

element selected 

sumlist^(x,3,5, z. 1,0, 0.0.0.0.0.0.0.nil ) 

sumlist^(x,3,5, z. 1,1, 3.0.0.0.0.0.0.nil ) 3 

4- 1,2, 3.1.0.0.0.0.0.nil ) 1 

4- 1,3, 3.1.4.0.0.0.0.nil ) 4 

4- 1,4, 3.1.4.4.0.0.0.nil ) 4 

4- 1,5, 3.1.4.4.2.0.0.nil ) 2 

4- 2,1, 3.1.4.4.2.0.0.nil ) 0 

4- 2,2, 3.1.5.4.2.0.0.nil ) 1 

4- 2,3, 3.1.5.7.2.0.0.nil ) 3 

4- 4- 4- 4-

> Y 4- 4- 4-

4-sumlist^(x,3,5, Z, 3,4, 3.1.12.12.5.10.0.nil ) 2 

sumlist^(x,3,5, 
A 

z, 3,5/ 3.1.12.12.5.10.9.nil ) 9 

• z := 3.1. 12.12.5.10.9.nil 

Note that, in addition to an improvement in efficiency, we have 
also secured much greater clarity in the logic program text. ^ 
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6,6 : THE EIGHT QUEENS. PROBLEM 

Specifying the Problem 

The eight queens problem is the problem of finding a way of 
positioning eight chess queens on a conventional chess-board such that 
none can be taken by any of the others. More generally, we might 
wish to place n pieces of any kind on an mxm board subject to any 
given constraint of interest. 

The specific problem of placing eight queens on an 8x8 board 
has been discussed a great deal in the literature of conventional 
programming methodology. The usual algorithm employed pursues a 
potentially exhaustive search through all possible 8-queen 
configurations under the control of a backtracking strategy. In 
deterministic programming languages this arrangement has to be 
explicitly encoded within the program text, and is consequently a . 
significant challenge to the precept of 'structured programming' 
which requires control information to be expressed in a clear way 
using some minimal set of primitive control constructs; this is 
why the problem appears so frequently in the structured programming 
literature, its most notable first occurrence in that context being 
provided by Dijkstra (18). Whilst the task of programming the 
algorithm in deterministic languages is non-trivial, the problem 
can be expressed trivially in logic; this just reflects the fact that 
specification of the problem itself is trivial - it is the algorithm's 
control information which, in other languages, makes it appear more 
complicated than it really is. The backtracking strategy is, of 
course, already inherent in logic program interpreters, so that 
the programmer has no need to describe it in the course of devising 
a suitable logic program. Moreover, the logic programmer has no 
need to re-write specific arrangements for backtracking in the 
course of writing programs for different problems which might also 
require that kind of control. He therefore has no need of elaborate 
tools like the 'control structure abstraction methodology' proposed 
by Gerhart and Yelowitz [IEEE Trans. Soft. Eng., SE-2 No.2, 1976] for 
expressing the control mechanisms in the eight queens algorithm and 
in algorithms for other combinatorial problems; the very use of a 
logic interpreter already comprises such a methodology. 
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A Horn clause formulation of the eight queens problem is given 
in an early report by Hogger (36), but without proof that it conforms 
to an intuitive FOPL specification. Here we derive a procedure set 
which conforms to a reasonably obvious specification set which simply 
describes the properties of the desired configuration. 

Admit to S the sentence 

config(x,w,z) 44 numpos(x,w), 

(Vu)(onboard(u,z) 4 pos(u,x)), neutral(x) 

in which config(x,w,z) holds when x is a configuration (that is, a 
set) of w positions on a zxz board such that no piece placed upon 
any of those positions can take any piece in one of the other 
positions. The predicate numpos(x,w) expresses the fact that the 
configuration x contains w positions, pos(u,x) holds when u is a 
position in the configuration x and neutral(x) means that no pieces 
in distinct positions in x can take each other. The neutral-ity of 
a configuration can be specified in turn by a further sentence 

neutral(x) 44 (Vu^J (notakefUj^rU^ 4 pos(uirx) , pos (u2,x) ru^u^ 

in which notake(u) holds when a piece on position ucannot 
take a piece on position u2» A useful and slightly more abstract 
way of expressing the neutral specification employs the predicate 
inviolate(u,x) which means that a piece on position u cannot take 
pieces on any other position in configuration x. Specifications 
for neutral and inviolate are given by 

neutral(x) 44 (Vu)(inviolate(u,x) 4 pos(u,x)) 

inviolate(u,x) 44 (Vu')(notake(u,u') 4 pos(u',x) , u^u') 

Synthesis of a suitable procedure set for solving calls to config 
only requires some simple facts about the constructibility of,, 
configurations, together with some constraints which specialize the 
problem to dealing with chess queens on a. zxz board. Suppose 
that any computed configuration is generated by extending a given 
configuration x' by adding a new position u' to it. This can be 
expressed by a predicate extend(u',x',x) having the properties 

(Vu)(pos(u,x) 44 pos(u,x') v u=u') 4 extend(u1,x',x) 

(numpos (x,w) 44 numpos(x',w-l) )4 extend(u*,x',x) 

In addition the empty configuration x satisfies :-
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(\fu) (pos(u,x) false) 4- numposfx,0) 

Enough information is now available to begin a derivation for config. 

Program for the Eight Queens Problem 

To obtain a complete procedure set for config it is only 
necessary to investigate the two alternative ways in which x.can 
be a configuration : either it is empty, or else it is constructible 
using a call to extend. The derivation for the first case is 
trivial and just gives the procedure 

ccnfigfx,0,z) 4- numpos(x,0). 

The derivation for the second case proceeds as follows 

4r config(x,w,z) 

4- numpos(x,w) , (Mu) (onboard(u,z) 4- pos(u,x)) , neutral(x) 

[modus tollens. Note that onboard(u,z) just means 

that u is a valid position on a zxz board] 

4- numpos(x' ,w-l) , (Mu)(onboard(u,z) 4- pos(u,x') v u=u') , neutral (x) , 

extend (u' ,x' ,x) 

[the usual S-cond.-equiv. substitution] 

4- numpos(x' ,w-l) , (Mu) (onboard(u,z) 4- pos(u,x')), onboard(u* ,z) , 
neutral(x), extend(u',x',x) 

[simplification by distribution] 

Next we activate the call neutral(x) , but for concise presentation 
this is shown below as a separate derivation 

4- neutral (x) 

4r (Mu) (inviolate(u,x) 4- pos(u,x)) 

4- (Muu) (notake(u,u) 4- pos(u,x) , pos(u,x) , u^u) 

[S-equiv. substitution and simplifying] 

4- (Muu) (notake(u,u) (pos(ufx') v u=v.'), u?u , 

(pos(u,x') v u=u')), extend(u1,x',x) 

[S-cond.-equiv.substitutions] 

4- (Mu) (notake(ufu') pos(u,xT) , u?u'), neutral(x') , 

(Mu) (notake(u\ ,u) 4-pos(u,x') , u'^u) , extend(u' ,x' ,x) 

[simplifying by distribution and 1:1 property of =] 



•242 

If this derivation is then assimilated into that for config, the 
definiens of config(x',w-l,z) is recognized as a conjunction of 
the calls numpos(x',w-l) , (Mu) (onboard(u,z) 4- pos(u,x')) and 
neutral(x') and so can be replaced accordingly; thus the following 
procedure is inferred 

config(x,w,z) 4- config(x' ,w-l,z) , (Mu) (notake(u,u') 4- pos(u,x') ,u?u') , 

(Mu) (notake(u' ,u) 4- pos(u,x') ,u'?v0, 

onboard(u' ,z) ,. extend(u' ,x' ,x) 

Further simplification at this stage depends upon the provision 
of knowledge about onboard and notake, which means that the 
derivation is to be specialized to deal with a particular class 
of problems. In the case of the chess queens problem, the meaning 
of onboard is given by 

onboard(p(z ,z ) ,z) -*-»• I4z 4z, 14z 4z 
X X « 

and the meaning of notake by 

notake (p (z lfz J ,p(z'ltz'2)) 4-+ z^z'^z^z^, | z^zjj^l zy-z^| 

where the term p(z^,z2) represents a position with row coordinate z^ 
and column coordinate z . Then it is clear that the notake 

2 
relation is symmetric, so that one of the non-atomic calls cah be, 
deleted by virtue of being implied by the other. The non-atomic 
call which then remains is just the definiens of inviolate(u',x') 

and so can be replaced accordingly. If the conventional term 
representation is used to signify sets of positions (configurations), 
thus determining that S implies the assertions :-

extend(u' ,x' ,u' :x') -«-

numpos(0,O) 4-

then the above call to extend can be eliminated to give the following 
procedure set for config 

config(0,O,z) 

config(p(z^,z2) :x' ,w,z) 4- config(x',w-l,z), 

I4z4z, 14z4z, 
1 2 

inviolate(p(z ,z ) ,x') 
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The recursive procedure can be interpreted informally as follows : 
given some neutral set of positions x' comprising a partial configuration, 
this can be extended by adding a new position p(z^,z2) provided that 
this position is on the board (that is, its row and column 
coordinates are within the bounds I and z) and that a piece placed 
upon it cannot take pieces on any of the positions in x'. 

A procedure set for inviolate is trivially derivable from the 
given specification; given some position u and some configuration x, 
it just iteratively checks whether each piece on a position in x 
is untakeable by u :-

inviolate(u,x) numpos (x,0) 

inviolate(u,x) -«- extend(u' ,x' ,x) , notake(u,u*) , 

inviolate(u,x') 

The necessary derivations just exploit the knowledge in S about how 
configurations are constructed. The calls to numpos and extend 
can obviously be easily eliminated by macroprocessing as in the 
procedures for config. A complete set of procedures for solving 
a goal config(x,8,8) then consists of the macroprocessed procedures 
for config and inviolate, together with the single procedure for 
notake :-

notake(p(z,z) ,pfzj,z^); + z^z^z^z^, | z^zj z2~z^| 

Executed with Prolog-like control, they quickly recurse on 
the config procedure until activating a call which establishes the 
empty configuration. Then partial configurations are generated in 
an essentially bottom-up fashion as the stacked calls to the two 
selection procedures for z^ and z^ are gradually processed. Each 
time some new position is returned from these calls, a top-down 
iterative computation is activated from the call to inviolate to 
test whether that position can be added to the current partial 
configuration; if not, the computation backtracks to re-invoke-." 
the selection procedures in order to find an alternative position. 

The arrangement of the selection of candidate positions in the 
procedures above is inefficient in that no analysis of the current 
partial configuration is conducted in order to assist the intelligent 
determination of a new position to add to it. The conventional 
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remedy for this inefficiency is to arrange the selection of column 
coordinates such that any 

Jfeth position in the current partial 
configuration x' has k as its column coordinate. Then to extend x' 
by one position to produce x, the new position u' is selected as 
p(z^,w) for some K z ^ z where w is the number of positions which x 
will then have. Because the column coordinate of u' in x is then 
certainly distinct from all column coordinates in x', the inviolability 
of u' with respect to x' can be investigated by comparisons of row and 
diagonal coordinates only. The procedures which put these ideas into 
effect can be obtained by some simple transformations upon those above, 
or else by backtracking through the derivations to a point at which 
it is convenient to introduce the assumption that configurations are 
to be constructed in this restricted way. They are shown below 
without proof :-

config*(0,0,z) 4 

config* (p(z^,w) :x', w,z) 4 config*(xt,w-l,z), l4z^4z, 

inviolate*(p(z^,w) ,x') 

inviolate*(u1,0) 4 

inviolate*(u',u:x) 4 notake*(u',u), inviolate*(u',x) 

notake*(p(zlfzp rpfzpz'p) 4 z^zj, | Z2_Z21 ^ I Z2~Z2^ 

It can be assumed that the interpreter can directly solve the calls 
in the new notake* procedure, and that the selection call I4z^4z 
is implemented such as to non-deterministically select values of z^ 
in the range 1 to z; this is the source of the program's inherent 
non-determinism, and hence the cause of backtracking in its behaviour 
with a Prolog-like interpreter. Solution of a goal 4 config(x,8,8) 

will now be accomplished with efficiency comparable to the conventional 
representation of the algorithm. The text of the program is clearly 
very simple by comparison with typical renderings in Algol-like 
languages. Moreover, the derivation of the procedures required 
only a trivial analysis of the structure of configurations. The 
most notable point made by the treatment given here is that the 
program, its specification and its derivation are all logically 
innoccous; this just reflects the power of the logic programming 
formalism in allowing the composition of programs which possess no 
explicit control information, thereby revealing their simple logic. 
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C H A P T E R 7 

T R A N S F O R M A T I O N 

0_F 

L O G I C P R O G R A M S 

PREVIEW 

The problems examined in this chapter are rather more difficult 
than those considered in Chapter 6. Here the aim is to show that 
the inference rules employed for derivation from specification sets 
can also be employed to transform programs, for example, to improve 
efficiency or to achieve a different distribution of logic and control 
in the components of a particular algorithm. 

Two algorithm families are presented. The first consists of 
some closely related sorting algorithms - the bi-partition sorts. 
Kowalski's naive-sort is derived first from a very general specification 
and its behaviour discussed. Naive-sort then forms the basis for an 
alternative derivation which leads to the general merge-sort. Rather 
than pursuing other algorithms from scratch in the same way, they are 
now obtained by specializing merge-sort in various ways. These 
specializations are all effected by conditional-equivalence substitutions 
applied to procedures rather than to goals. 

The second algorithm family deals with the text searching problem, 
and is rather more interesting than the sorting algorithms. Here 
the naive quadratic algorithm is examined in great detail and a number 
of alternative representations are given for it. The most explicitly 
informed of these is deterministic, iterative, has explicit provision 
for matching failures, and gives direct access to the members of both 
text string and keyword through the use of pointers in its procedures' 
argument structures. This representation then forms the basis for 
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some rather subtle transformations on the procedure responsible for 
responding to a mismatch, leading to the Knuth-Morris-Pratt linear 
algorithm in one case, and to the Boyer-Moore sub-linear algorithm 
in another. The reader who is new to logic programming should find in 
these examples much interesting material illustrating alternative 
programming styles and the logical relationships between them. 
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7.1 : LOGIC PROGRAMS FOR SORTING 

Sorting and Logic Programming 

Logic programs for sorting sets into ordered lists have been 
studied ever since the inception of logic as a programming language. 
Early investigations of Horn clause sorting programs were undertaken 
by van Emden and by Kowalski (47) , who examined the algorithm named 
in this chapter as 'naive-sort'. Kowalski gives a fairly detailed 
account of naive-sort in his IFIP paper (50), and compares it with 
a logic program for Hoare's 'quick-sort' in other reports (49,51). 
Quick-sort is also chosen as an example in van Emden's paper (23). 

Although the computational analysis of sorting algorithms has 
been studied in great depth (reviewed in detail by Knuth's treatise 
(43) on sorting and searching), formal syntheses for those algorithms 
have only been pursued comparatively recently. Automated syntheses 
of sorting programs are reported by Green (31) and by Green and 
Barstow (32), who use an implementation of a large data base of 
rules describing fundamental properties of sets, arrays, 
permutations and ordered lists together with schemas representing 
simple algorithms for processing those kinds of data structures. 
Their approach is intended to decide matters of both logic and 
control, which they do not separately consider and represent as we 
do in our treatment of logic program synthesis. 

Darlington (20) has also presented syntheses of several sorting 
algorithms expressed in a recursion equation language, based upon the 
ideas underlying his transformation system reported variously in 
(9), (10) and (19). This system is semi-automatable to the extent 
thatwnilstan interacting user decides upon suitable definitions for 
the functions of interest, together with prescriptions for their 
subsequent manipulation, the mechanized part of the implementation 
assumes responsibility both for preserving correctness and for 
contributing in a limited but useful way towards the exploration 
of the search space determined by the input definitions and the 
transformation rules. However, Darlington considered that semi-
automation of his sorting program syntheses as originally formulated 
was impractical; his paper presents them as examples of wholly . 
non-mechanical syntheses. 
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Derivation of sorting programs presented a useful challenge to 
the development of methods for logic program synthesis, and so 
several of Darlington's examples were reformulated in predicate logic 
by Hogger (38), but employing a much simpler ontology. Darlington's 
original treatment of sorting introduced quite a lot of rather 
high-level properties of the functions of interest into the initial 
problem description, but these do not seem to be necessary in order 
to derive the essential structure of the required programs. They 
also tend to obscure some of the more general taxonomic relationships 
between the various kinds of sorting algorithms, which in fact are 
capable of clarification in much simpler terms than presented in his 
report. Subsequently, some of these sorting algorithms were 
derived by Clark and Darlington (13) using a notation which is a 
hybrid of recursive function language and Horn clause logic. They 
emphasize the usefulness of a synthetic approach to the study of 
algorithm families, observing that much can be learnt about their 
similarities and differences from identifying critical decision 
points in a tree of derivations which spans the space of all sorting 
programs determined by the given axiomatization. 

An earlier analysis of a quick-sort logic program was shown 
in the paper by Clark and Tarnlund (16), who summon it as an example 
of their treatment of verification described here in Chapter 4. 
There they begin with a sorting program and then prove various 
properties about it which a correct sorting program ought to possess. 
Their treatment there of a proof of quick-sort is also interesting 
in its use of a somewhat novel data structure representation for the 
sorted lists produced as the program's output. 

The Naive-Sort Algorithm 

Naive-sort is the algorithm obtained by applying a naive 
procedural interpretation to the basic definition of sortedness. 
Because that definition serves as a starting point for all the 
sorting programs considered here, it will be useful to discuss it 
immediately in some detail. 

Throughout the present examination of sorting, the predicate 
of primary interest names a two place relation sort(x,y) which 
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holds between a set x and.a list y when y is both a permutation of x 
and ordered by a total ordering relation < . A simple way of 
specifying orderedness has already been shown in previous examples 
which uses the item predicate as a primitive constructor of lists 

ord(y) 44 (Muv)( u<v 4 consec(u,v,y) ) 

consec(u,v,y) 44 (item(u,i,y), item(v,i+l,y)) 

[together with the list axioms A1-A3 

and general laws about < ] 

The assumption that < is a total ordering relation (rather than just 
any binary relation) has the consequence that these axioms can be shown 
to imply an alternative way of specifying the ord relation as follows :-

ord(y) 44 (Muv)( u<v 4 prec(u,v,y) ) 

when augmented by the definition of prec 

prec( u,v,y) 44 Qij) (item(u,i ,y) , item(v,j,y), i<j) 

The predicate prec(u,v,y) means that the member u precedes the member 
v in the list y. The alternative ord specification is a consequence 
of the transitivity of the total ordering <. We shall use either 
specification according to convenience. 

The notion of permutedness is expressed here using a predicate 
perm(x,y) which holds when the list y is a permutation of the members 
of the set x, and is specified as follows 

perm(x,y) 44 (Mu) ( uex 44 uzy ) , 

(Mu)( uex 44 occurs(u,l,y) ) 

where e and e are respectively the set and list membership relations, 
and occurs(u,z,y) holds when a member u has z distinct occurrences in 
the list y ; that is, when u has multiplicity z in y. The sort 
relation can then be specified simply by :-

sort(x,y) 44 perm(x,y), ord(y) 

The interpretation of permutedness adopted above is in accordance 
with the conventions used by Knuth (43) and by Darlington (20) for 
defining the perm relation, but is at slight variance with the 
interpretations found in the papers by Kowalski (50), by Clark and 
Tarnlund (16) and by Clark and Darlington (13). All of these 
interpret perm(x,y) to mean that a list y is a rearrangement of a 
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list x which preserves each member's multiplicity. This difference 
is of some consequence since it determines differing specifications 
and derivations. Knuth's treatment of multiple occurrences employs a 
kind of set-list hybrid called a 'multiset*; he generalizes the notion 
of permutation of a set to permutation of a multiset, and hence 
arrives at a position to sort multisets into ordered lists. However, 
if one really does wish to rearrange a list, the appropriate 
specification is :-

perm(x,y) (\fuz) (occurs(u,z,x) -«-+• occurs(u,z,y)) 

which just requires that a member occurring z times in x must occur 
z times iny. This must, of course, be augmented by a specification 
for occurs and the axioms for well-formed lists. The analyses given 
by Clark and Tarnlund (16) and by Clark and Darlington (13) have the 
object of dealing with programs which rearrange lists in this way, 
but they use the following sentence as their specification :-

perm(x,y) (\fu) ( uex-«-*-uey ) 

It would seem that this sentence does not precisely capture the 
relation which they actually expect to hold between x and y, because 
it admits possibilities such as x = (1,2) and y = (2,2,2,1,1,2) in 
consequence of dropping the constraint upon preservation of 
multiplicities. The relation which they wish to compute is therefore 
properly included in the relation which they specify, and so they 
have to resort to incomplete procedure sets which are only capable 
of executing the desired rearrangements. This does not appear to 
be a very satisfactory way of proceeding, even though the use of a 
weaker specification makes the higher-level derivations easier than 
they would otherwise be. The treatment here, by contrast, will 
begin with an accurate specification of the intended computed relation 
and then pursue complete procedure sets for it; this eliminates the 
uncertainties which would otherwise prevail about the relationship 
between the specification and the high-level procedures derived from 
it. 

The naive-sort algorithm, as observed previously, just 
interprets the sortedness specification in a naive way, searching for 
complete permutations of the set x until discovering one which is 
ordered. Its logic component therefore uses the procedures :-
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sort(x,y) 4 perm(x,y), oxd(y) 

[together with procedure sets for perm and ord ] 

whilst its control component is just top-down LIFO (Prolog-like) 
call scheduling. As a result the calls dealing respectively with 
permutedness and orderedness are, in the simplest control arrangement 
of this kind, executed sequentially and independently. This algorithm 
is clearly very inefficient, generating a comparison count of the 
order (n-1).n! where n is the cardinality of x (the comparisons arising 
in the orderedness checks instigated by the call to ord). This is 
much worse than the count n.logQn which is normally expected of a 'good' 
sorting algorithm. - The inefficiency arises from the circumstance that 
when some instance of y computed by the call to perm fails to pass the 
check on orderedness, the ensuing backtracking causes the entire 
permutation to be discarded, even though it might contain large sublists 
which appear also in the correct solution of y. Thus the backtracking 
destroys knowledge about comparisons which must be generated afresh in 
checking subsequent instances of y. Clark and Kowalski have examined 
ways of adjusting the control of backtracking in this sorting algorithm 
and have shown that some improvement in its behaviour can be achieved. 
Kowalski (50) has also investigated the behaviour obtained by executing 
the procedures above with a coroutining control strategy, and has 
shown that this also improves upon naive-sort; it does this by 
arranging that the choice of new members made in the execution of perm 
whilst constructing partial permutations is constrained by intermittent 
activation of the ord call in order to decide whether that choice will 
preserve orderedness when the member is appended to give an extended 
partial permutation. Despite such improvements in the control, the 
behaviour of the naive-sort logic component cannot, apparently, aspire 
to that of the commonly used sorting algorithms. 

The derivation of procedures for perm and ord is accomplished by 
exploiting knowledge about the constructibility of sets and lists. 
In the case of naive-sort the usual procedures employed for perm and 
ord make calls to a partitiioning procedure partition*(u',x',x) which 
just selects an arbitrary member u' of x to leave x', where u' is the 
next member to be added to the current partial permutation. The 
latter process is implemented by a call to the familiar procedure 
append*(u',y',y). Neither of these two calls makes any special 
assumptions about the relationship between u' and the data structures 
x' and y'; the partition* call does not choose u' by comparing it in 
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any way with the other members in x, and the append* call does not 
append y' to u' on the assumption that this will preserve orderedness. 

The sentences admitted to S in order to derive these procedures 
are as follows : -

append*(u',y',y) 44 (Vui) (item(u,i ,y) 44 item(u,i-l,y') 

v (u=u',i=l)) 

partition*(u',x',x) 44 (Vu) ( uzx 44 uex' v u=u' ), 

(3u)uex', "ou'zx' 

uzy 44 Qi) item(u,i ,y) 

together with list axioms A1-A3 and set axioms asserting that 
sets either have cardinality 0 or are singletons or are constructible 

by partition*. 

These form a sufficient adjunct to the elementary specifications for 
sort, perm and ord to allow reasonably straightforward derivations. 
The latter are not presented here in the case of the ord relation • 
because they have already been indicated elsewhere in the thesis 
and raise no special issues. They are :-

ord(y) 4 length(y,0) 

ord(y) 4 length(y,1) 

ord(y) 4 append*(u',y',y), append*(v1,y",y'), u'<v', ord(y') 

The perm synthesis, however, requires proofs of some preliminary 
lemmas in order to obtain the usual recursive perm procedure. To 
show the motivation for summoning those lemmas, consider how the 
perm derivation begins :-

4 perm(x,y) 

4 (Vu) ( uzx44uey ), (\fu) ( uzx44occurs(u,1 ,y) ) ^ 

It is required to substitute references to u', x' and y' for references 
in the goal to x and y in order to explore the "consequences of the 
assumptions about the constructibility of x and y. Note that this 
will require substitutions for identical occurrences of the predicate 
uzx : we must resist the temptation to simplify the goal above to 
(Vu)( uex 44 uey, occurs(u,1,y) ) since this is not sound (as a 
counter-example, consider x=0, y=(a,a) which solves the conjectured 
simplification but not the goal above]. The necessary lemmas are :-
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(Mu) ( uzx -H- u e x ' v u=u' ) 4- partition* (u1 ,x' ,x) 

(Mu) ( uzy 4-± u£yi v u=u' ) 4- append* (u' ,y' ,y) 

(Mu) ( occurs(u,l,y) 4-+ occurs (u ,1 ,y') v u=u') 4- append* (u' ,y' ,y) , 

^u'zy' 

The first of these follows trivially from the partition* specification; 
the second is obtained easily by making an S-conditional-equivalence 

substitution for item(u,i,y) in the definiens of £ conditional upon 
append*(u',y',y) and then simplifying the result; and the third is 
obtained with a little more difficulty by making a similar substitution 
in the definiens of occurs(u,1,y) using the specification :-

A A * 

occurs(u,l,y) -<-*• (3i) (Mi) ( i=i -<->- item(u,i,y)) 

Applying all three lemmas to the above derivation goal for perm in 
the context of S-conditional-equivalence substitutions produces :-

4- (Mu) ( uzx1 v u=u' uzy' v u=u'), 

(Mu) ( uzx' v u=u' 4-+ occurs (u,l,y') v u=u') , append* (u' ,y' ,y) , 

partition* (u' ,x' ,x) , 

*vu' zy' 

A 
4r perm(x' ,y') , append* (u', y', y) , partition* (u' ,x' ,x) , vi'ey' 

[simplification by cancellation of identical disjuncts, 

and then definiens replacement] 

4- perm(x',y'), append*(u',y',y), partition*(u',x',x) 

[because it is easy to show that the last call is implied by 

the conjoined calls to perm and partition*] 

Derivations for perm bases are trivial, and just exhaust the remaining 
cases of the structures of x and y. The complete procedure set for 
perm used by naive-sort is then as follows :-

perm(x,y) 4- cardin(x,0) , length(y,0) 

perm(x,y) 4- singleton(x,u) , item(u,l,y) , length(y,l) 

perm(x,y) partition* (u' ,x' ,x) , perm(x',y')f 

append*(u',y',y) 

Macroprocessing the procedure sets for perm and ord by choosing the 
usual term representations will then render them in a form rather 
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like those which appear in Kowalski's examples (49,50). A suitable 
procedure set for partition* is trivially derivable. The complete 
naive-sort program body for processing sets and lists represented by 
terms is as follows 

sort(x,y) 4- perm(x,y) , ord(y) 

perm(0,nil) 4-

perm(u:0,u.nil) 4-

perm(x,u' .y') 4- partition* (u' ,x' ,x) , perm(x' ,y*) 

ord(nil) 

ord(u.nil) 

ordfu.v.u" ) 4- u<v, ord(v.y") 

partition* (u' ,x' ,u' :x') 4- u'^x' 
partition* (u' ,v:x" ,v:x') 4- partition* (u',x" ,x') 

u'^0 4-

u'{v:x' 4- u7v, li'^x' 

Observe that the call in the first partition* procedure acts 
essentially as a type-check upon the input term representing the set 
to be partitioned. If the call is deleted - so that the resulting 
partition* procedures no longer describe the true set partitioning 
relation - then the program can sort multisets into ordered lists 
and thus behave essentially the same as Kowalski's program for finding 
ordered rearrangements of arbitrary input lists. 

This discussion of naive-sort closes by showing an interesting 
transformation which employs just the procedures above and s ; no 
other information is necessary in order to put it into effect. 
Suppose, generally, that we have two procedures a^ 4- b and a^ 4- b ; 

then these jointly imply a new procedure ^Bl'B2^ ' 
this fuCt is exploited with the procedures above, coupling each perm 
procedure with its counterpart for ord, the result is :-

sort(0,nil) 4-

sort(u:0,u.nil) 4-

sort(x,u.v.y") 4- partition*(u,x',x), sort(x',v.y") , u<v 

[together with procedures solving the call to partition*] 

With Prolog-like control these behave quite like the naive-sort 
procedures executed using coroutining as mentioned a little earlier. 
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In the naive-sort synthesis the relations partition* and append* 
were specified in order to express just one way of constructing the 
sets and lists in question. Neither of them incorporated any 
assumptions about the relative magnitudes of the constituent members 
of the data structures which they related. In the algorithms now 
to be introduced the construction of sets and lists is constrained 
in a variety of ways which reflect just such assumptions. For 
example, we shall see that merge-sort constructs the output list from 
two given lists in a manner which takes account of the ordering of 
the members which are manipulated in the course of that construction. 
By contrast, quick-sort partitions the input set in a manner which 
decides the particular partitioning by comparing the input set's 
members. From a very general point of view, we may say that such 
arrangements allow the decomposition of the input set and the 
composition of the output list to be more informed about their 
contributions towards the ultimate goal of generating a complete 
ordered permutation than was the case in the strategy employed by 
naive-sort. 

Merge-sort belongs to a family of algorithms which may be 
loosely described as 'bi-partition sorts'. Their characteristic 
feature is that the input set x is sorted to give the output list y 
by bi-partitioning x into two subsets xand xsorting these to 
give ordered lists y a n d y^, and finally constructing y from y^ 
and y . During this process various pairs of members originating 
from x are compared to provide knowledge about their eventual relative 
positions in y. 

Algorithms in this family can be arranged within a spectrum, 
at one extreme of which are those which defer all comparisons until 
both x2 and x h a v e been computed, whilst those at the other extreme 
perform no comparisons after x a n d x^ have been computed. 
Merge-sort is of the former kind : x is partitioned arbitrarily into 
x a n d x s o that construction of y cannot proceed without comparing 
members of y^ with y^. At the opposite extreme is quick-sort : x is 
partitioned such that every member of xexceeds every member of x , . 
after which y is constructed from y^ and y 2 with no further comparisons. 
Both of these algorithms are conceptually simple, although their 
practical implementations - like those of any other sorting algorithm -
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may only secure these manipulations of the data structures in deeply 
implicit ways, for example by allowing them to share common memory 
and controlling the movement of members by elaborate pointer systems. 
Certain rather more complicated algorithms , like Williams' heap-sort 
(88), occupy intermediate positions in this notional spectrum. 
Heap-sort bi-partitions x into x and x = {u} U x' using enough 
comparisons to establish a representation of x as an ordered tree with 
root node u and sub-trees representing x a n d x 2 ; the algorithm then 
initiates an elaborate 'sifting' computation which constructs y by 
making further comparisons between members of the tree, implicitly 
constructing and simultaneously merging the ordered permutations of 
x and x2 as it does'so. Floyd's variant of heap-sort (25) is 
partially derived in the paper by Burstall and Darlington (10). 

In contemplating a logic synthesis for merge-sort, it is useful 
to briefly reconsider naive-sort, whose fundamental failing is that no 
comparisons are made during the construction of any candidate 
permutation y; a permutation is generated first, and then inspected 
for orderedness. To obtain more sensible behaviour, knowledge about 
the progress made towards the solution at any stage during the 
computation must be made accessible to whatever permuting and ordering 
activities still remain to be accomplished, so that they may proceed 
more intelligently than they otherwise would. An improvement of 
this kind can be obtained through the agency of the logic component 
by arranging particular ways of permuting and ordering which are 
conditional upon other constraints controlling knowledge about the 
relative magnitudes of members. The conditional-equivalence 
substitution is ideal for this purpose during the derivation of 
procedures intended to behave in this way; for instance, it will be 
seen that the calls to perm and ord in the preliminary derivation 
goal can be usefully elaborated by subformula substitution to.reveal 
special, ways of solving them which are conditional upon the new call 
introduced by that inference rule; that call will inform the goal 
about the permutedness and orderedness of the subsets and sublists 
from which the input and output lists are composed, and will thereby 
dispose the derivation to a particular kind of algorithm which improves 
upon naive-sort. In fact the merge-sort synthesis can be seen as a 
symbolic execution of naive-sort, beginning with its general goal 
4 perm(x,u), ord(y) but solving the calls using different facts 
about sorting than those which normally comprise the naive-sort program. 
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The specification set chosen for the merge-sort derivation 
defines the sort relation exactly as for naive-sort :-

sort(x,y) 44 perm(x,y) , ord(y) 

The perm specification is also exactly as before, together with 
associated axioms characterizing sets and lists. Now the merge-sort 
algorithm, as already explained, assumes that the input set can be 
partitioned arbitrarily, leaving the task of constructing output until 
the latter has been completed. In view of this, it is appropriate 
to introduce to S the relation which expresses this particular way 
of decomposing x :-

partition(x2,x) 44 (Mu) ( uzx 44 uzx^ v uzx^ ), 
(Mu)( uzx^, uzx^ 44 false), 

(3u)( uzXj), (3u)( uzx2) 

where partition(x^,x2,x) holds when x is partitioned into the two 
disjoint, non-empty subsets and x^. 

When x a n d x^ are chosen arbitrarily and then sorted to give 
y^ and y^ respectively, the output y has to be computed by interleaving 
y^ with y2 such as to achieve orderedness. This process is said to 
'merge' y^ and y^. The specification of merging needs a little care. 
Here we adopt Knuth's interpretation (43) which considers that 
"Merging means the combination of two or more ordered files into 

a single ordered file." Therefore the merge specification given 
here explicitly requires that y^ and y^ shall both be ordered. This 
position is somewhat different from that taken by Clark and Darlington 
(13), who choose instead a slightly strange meaning for the concept 
of 'merging' y^ and y^ to give y : they require that y shall be a 
permutation of the members composing y^ and y^/ and that y shall be 
ordered if both y^ and y^ are ordered. This means that they do not 
consider that the result of merging two lists must be unique, for in 
the event that one or both are unordered, they allow the result of the 
merging to be any permutation of their members;' this they incorrectly 
describe as a merging 'function' from (y^,y2) to y. They do not take 
their analysis as far as deriving the lower-level procedures for their 
programs, such as for merge, and so the consequences of adopting their 
treatment are not clear. However, it would seem that by choosing their 
particular specification of merge, they would eventually find' themselves 
in the position of either having to construct an incomplete procedure 
set for merge(omitting the procedures necessary for merging unordered 
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lists, and so having to incorporate assumptions of orderedness into 
analyses such as proof of termination) or else having to construct 
a complete but non-deterministic procedure set in any completeness-
preserving derivation methodology which they might employ. They 
arrive in this position, not by deliberately choosing such a 
specification, but rather through manipulating a specification of 
sortedness until recovering a subformula which they then interpret 
as a definiens for merge ; from our point of view here, that subformula 
is a consequence of, but not an instance of, the customary definiens 
of the merging function. 

In view of the considerations above, then, the specification 
chosen here for merge is as follows :-

merge(yl/y2,y) ++ ordfy^ , ord(y2) , 

(Vuv) (prec(u,v,y) •«-*• prec(ufv,y ^ vprec(u,v,y^ 

v u€v,(spans(u,v,ylfy2) v 

spans(v,u,ylfy2) )), 

(Vuw) (occurs(u,w,y) (3wjwj (occursy j , 

occurs (u ,w2,y 2) , 

w 2 + w
2
 = 

Informally, this says that the merge relation holds when both y a n d y^ 
are ordered, composition of y from them preserves ordering, and each 
member in y has as many occurrences in y as it has jointly in yand y^. 
The predicate spans(u,v,y ,y ) just summarizes (uzy , vey ). 

Finally a specification of orderedness must be given. Here 
we choose the alternative specification :-

ord(y) 4-4 (Vuv) ( u<v 4- prec(u,v,y)) 

[and the spec. for prec] 

because it will be required during the derivation to investigate the 
orderedness of y conditional upon the assumption that it is 
constructed by merge(y2,y) , and it will clearly be convenient to 
arrange, as above, that both ideas refer to the relative positions of 
members (in terms of precedence rather than consecutivity) in the 
same way; merge is very hard to specify using consec to describe the 
relative positions of members in the output list. 
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The specification set now contains enough information to begin 
a synthesis for the sort relation. This is most conveniently 
represented as the combination of derivations from the calls perm(x,y) 

and ord(y) in the derivation goal :-

4- sort(x,y) 

4- perm(x,y) , ord(y) 

just as in the previous presentation of the naive-sort synthesis. 
Once again, the definiens1 of perm and ord are introduced to the 
goal by modus tollens in order to reveal their dependence upon 
relations over the members of x and y. We pursue a perm derivation 
first, this being the harder one. For this, some lemmas will be 
needed as in naive-sort in order to exploit the assumptions that 
x and y are respectively constructed by partition and merge. These 
lemmas are :-

(Vu) ( uex 4-y uex^ v ue*^ ) 4 partition(x2,x) 

(Vu) ( u£y 44 uzy1 v uey^ ) 4 merge(y^y2,y) 

(Vu)( occurs(u,l,y) 44 (occurs(u,l,y , occurs(u,0,y2)) 

v (occurs(u,0,y^) , occurs(u,l,y^))) 

4 merge(y3,y2,y) 

The first lemma is just a trivial consequence of the partition 
specification. The second one is obtained by observing the fact that 
merge(y2,y) implies its fourth definiens conjunct and that this . 
in turn implies (Vu)( uey 44 ueyv uey2 ) by virtue of the simple 
relationship assumed in the list axioms of S :-

uey 44 (3w) (occurs(u,w,y) , w>0) 

together with elementary properties of =, > and + . The third lemma 
is just a consequence of merge(y2,y) implying the instance of its 
fourth definiens conjunct in the case w:=l, together with properties 
of = and + . Equipped with these, the derivation from 4 perm(x,y) is 

4 (Vu) ( uex 44 uey ) (Vu) ( uex 44 occurs (u,1 ,y)) 

4 (Vu) ( uex3 v ue*2 44 uey3 v uey2), 

(Vu) ( uex3 v uex244 (occurs(u,l,y, occurs(u,0,y2)) 

v (occurs(u,0,y^ , occurs(u,l,y2))), 

partition(x1,x2,x), merge(y1,y2,y) 
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4 permfx^yp , permix^yp , 

(\/u) ( uzx^ 44 occurs(u,l.yp , occurs(u,0,u)) , 

(\fu) ( ++ occurs(u,0,yp , occurs(u,l,y)) , 

partition(x ,xpx) , merge(y ^y 2,y) 

[using some simple distributions to simplify, 

followed by obvious definiens replacements] 

The goal at this stage clearly reflects the general idea of the 
merge-sort algorithm; it describes how permutedness is achieved 
when x and y are constructed by partition and merge. The two non-
atomic calls can be deleted by virtue of being implied by the others. 
To show this, note that S implies :-

occurs(u,0,yp 44 ^uzy^ 

and that the specifications of perm and partition trivially imply :-

(Vu)( ^uey2 4 occurs(u,1,yp ), 

(\Ju) ( a,uey occurs (u,l,yp ) 4 permCx^yp , perm(x2,yp , 

partition (x^,x2,x) 

These facts determine immediately that the subformulas occurs(u,0,yp 

can be deleted from the goal above, and then the reduced non-^atomic 
calls are implied by the respective two calls to perm. Thus the 
goal simplifies to one with wholly atomic calls. 

To obtain a complete procedure set for perm it is only necessary 
to consider the cases where x and y are not constructible by 
partition and merge . These are just the cases where x is empty or 
a singleton, and the derivations are too trivial to present here. 
The final procedure set is :-

perm(x,y) 4 cardin(x,0), length(y,0) 

perm(x,y) 4 singleton(x,u), item(u,l,y) , length(y,l) 

perm(x,y) 4 partition(xlfx2,x) , perm(x1,yp , perm(x2,yp , 

merge(y1,y2,y) 

The other half of the sort synthesis deals with the call to 
ord in the original derivation goal. Again, the bases are trivial 
and so will be given without proof. The derivation of the recursive 
procedure for ord is somewhat more interesting and proceeds as follows 
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ord (y) 

4- (MUV) ( u<v prec(u,v,y) ) 

4- (Muv) ( u<v + prec(u,v,y^ v prec(u,v,yJ v u$v, (spans (u,v ,y ̂y 2) v 

spans(v,u,ylfy2))) , 

merge (y^y^y) 

4- (Muv) ( u<v 4- prec(u,v,yj)) , (Muv) ( u<v 4- prec(urv,y ) )•, 

(Muv) ( u<v 4- u^v, (spans (u,v,yify2) v spans (v ,u ,y ̂y 2) ) ) , 

merge(y1,y2,y) 

4- ord(yr) , ord(y2),(M u) ( u<u 4- spans (ufufyi fy 2) ) , mergefy^ 

4-ord(y1)f ord(y2) merge(ylfy2fy) f partition (x ̂x^x) , 

perm(xl,y1), perm(x2,y2) 

[ because S trivially implies :-

^spans(u,u,y^y2) 4- partition(x2,x), 
perm(xl,yl),perm(x2,y2) ] 

thus giving a goal with atomic calls only. The three procedures then 
inferred in this synthesis for ord are :-

ord(y) 4 length(y,0) 

ord(y) 4- length (y,1) 

ord(y) 4- partition(x^x ,x) , sort(x ), sort(x2,y2) , 

merge(ylty 2,y) 
x 

[ Note that the calls to sort in the recursive procedure just arise 
by replacing the conjoined calls to perm and ord in the final goal.7 

The procedure sets for perm and ord can now be combined as in the 
naive-sort synthesis to give procedures for sort :-

sort(x,y) 4- cardin(x,0) , length(y,0) 

sort(x,y) 4- singleton(x,u) , item(u,l,y) , length(y,l) . 

sort(x,y) 4~ partition(xj^fx2,x) , sozt(x ,y ) , sort(x2,y^) , 

merge(ylfy2,y) 

These are the high level procedures for the intended merge-sort 
algorithm : to sort a set with more than one member, partition it 
into x^ and x^, sort these to y^ and y^, and finally merge these to 
give the desired output y. 
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A complete program body for merge-sort will also require 
procedure sets for solving the calls to partition and merge. 
Procedures which arbitrarily partition sets are very easy to derive, 
and so will not be considered further here; they are just simple 
generalizations of the partition* procedures used in naive-sort. 
The procedures for merge are a little more interesting, and so we 
review these briefly. The derived merge procedures obtained by 
just assuming minimal information about constructibility with append* 
are as follows 

merge(y1,y2,y) + ord(y2), length(y2,0) 

merge (y1,y2,y) ord (y2) , length (y1,0) 

merge(y1,y2,y) ord(y^ , append*(u,yj,y ), 

append* (v,y'2,y2) , 

u4v, merge(y'1,y2,y') , append* (u,y' ,y) 

merge(ylty2,y) + ord(y2> , append* (ufy^y^, 

append* (v,y'2,yJ , 

V4u, merge(y2,y'), append*(v,y',y) 

The residual calls to ord in these procedures are just consequences 
of the merge specification insisting upon the lists y a n d y2 being 
ordered; this is required irrespective of the context in which the 
procedures are called. However, in the present context we know 
that y a n d y^ are necessarily ordered before being processed by the 
call to merge in the recursive sort procedure, bccause they have 
both been transmitted as output from the calls sort(x ,y ), sort(x ,y ) 

To have their orderedness subsequently checked by the merge procedures 
would clearly be computationally intolerable. One could simply 
delete the calls to ord from the merge procedures, but this would, 
not leave true theorems about merge as specified by S even though 
they would compute the correct output in their present context. 
However, there is an interesting transformation which is logically 
justifiable and is tantamount to deleting the unwanted checks on 
the orderedness of y^ and y^. The technique used is similar to 
that for deriving the linear natural ordering factorial algorithm 
derived in the last chapter, in that we construct a new predicate 
which is inherently conditional upon the predicate which we.do not 
want to be explicitly tested at run-time. In the present case, 
introduce the specification 
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merge*(yiry2,y) 44 (merge(y ̂ y 2>y) 4 ord(yj), ord(yJ) 

Then it is very easy to show that a call to merge in which yand 
y2 are ordered can be investigated by a call to merge*. This is 
because the sentence above trivially implies 

merge(y^y ,y) 4 ordfy^ f ord(y2) f merge* (y^y2,y) 

Now observe that the first merge basis above can be written as 

merge(y ,y ,y) 4 ordfy^ , ord(y2), length(y2,0) 

since the basis for ord determines that ord(y^ is trivially implied 
by length(y2,0). Thus the merge basis can be rewritten yet again 
to give 

(merge(ylfy2,y) 4 ord(y), ord(y2)) 4 length(y2,0) 

But this immediately implies a procedure for merge* 

merge*(ylfy2,y) 4 length(y2,0) 

This is one of two similar bases for a merge* procedure set. The 
recursive merge procedures can be transformed in a similar fashion. 
Firstly assume that the following property of ord can be easily 
established :-

ord(yj; 4 append* (u,y'lfyj) , ord(y ) 

Then substitute for merge(y 2,y') in the first recursive procedure 
for merge above using modus tollens in conjunction with the following 
sentence trivially implied by the merge* specification 

merge (y'1,y2,yt) 4 ordfy^) , ord(y ), merge* (y',y,y') 

The result of this is 

merge (y1,y2,y) 4 ord(y ), append* (u,y',y) , append* (v,y'2,y 2) , u*v, 

ord(y'j) ,ord (y2) ,merge* (yj,y2,y'; ,append* (u,y1,y) 

Now substitute for the predicate ord(y^) using the property of ord 
assumed above and rearrange the connectives to give 

. (merge (y lfy2,y) 4 oxd(y ) , ord(y2)). 4 append* (u,y',y ̂  , 

append*(v,y',y), u^v, merge*(y',y,y'), append*(u,y',y) 

and finally replace the consequent formula by an instance of merge* 
to give one of two recursive procedures for merge*. The complete 
merge* procedure set is then exactly as though the checks upon 
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the orderedness of y^ and y^ were deleted from the merge procedures, 
and then merge renamed as merge*. The call to merge in the 
recursive sort procedure can be replaced simply by merge*(y2,y) 

because the calls to sort in that procedure imply that both y^ and y 
are ordered. With top-down Prolog-like control, the merge-sort 
program body as outlined here will solve a call to sort with a 
reasonable computation (that is, reasonable for a recursive algorithm).. 

The merge-sort procedures will next be used as the foundation 
for a quick-sort program. In fact we shall see that a simple 
S-conditional-equivalence substitution is sufficient to transform the 
principal merge-sort sort procedure into one which captures the logic 
of quick-sort. After that, an alternative transformation is given to 
turn merge-sort into insert-sort, and finally quick-sort is transformed 
into selection-sort. 

The Quick-Sort Algorithm 

Hoare's quick-sort algorithm (35) can be regarded as a specialized 
case of merge-sort in which the input set is partitioned into sets x^ 
and x^ satisfying the property that every member of x excee'ds every 
member of x.' In other words, the partitioning process is required 
to take some responsibility for comparing the members of x. When x 
is partitioned as above, the relationship between x^ and x w i l l be 
summarized by the predicate smaller(x. 

Rather than deriving quick-sort from scratch, it is more 
interesting to explore the consequences of introducing to the existing 
merge-sort procedures the assumption that smaller(x^x^) holds. 
Clearly the sort bases are not affected by this assumption, and so 
it is only necessary to consider its effect upon the recursive sort 
procedure for merge-sort. 

Consider the definiens of merge(y 2,y), which has two non-
atomic conjuncts D^ and D^ ':-

Djl : (Muv)(prec(u,v,y) ++ prec(u,v,y^ v prec(utv,y2) v 

u$v, (spans (u,vfyiry2) v spans(v,u,y1,y2))) 

D2 : (\fuw) (occurs(u,w,y) •<-* (3w^w2) (occurs (u^y^ , occurs(u,vr2,y2), 

w 2 + w
2
 = w ) ) 
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The second of these just ensures that the number of occurrences of 
any u in y is just the sum of the numbers of occurrences which it has 
in y and y . Clearly D is unaffected by the supposition that 

JL 2 2 
members of y^ are all less than all members of y^f as they will be 
if sorted from x and x satisfying smaller(x ,x). However, D 

1 X J. 2 Jl 
is capable of some simplification when this supposition is correct. 
Observe that z? contains the subformula :-

u4v, (spans(u,v,y^yj v spans (v,u,y ,y )) 

If all members of u are less than all members of y then u4v is 
2 

implied by spans(u,v,y 2) , so that (u4v,spans(u,v,y) is s-

equivalent to spans(u,v,y2). Moreover, the formula 
(u4v,spans(v,u,y2)) is then false, so that the above subformula of 
D^ simplifies to spans(u,v,y^ywhen the condition (perm(x3,y, 

perm(x2,y2),smaller(x^rX^)) holds; this is because that condition 
trivially implies that all members of y^ will be less than all members 
of y^. The conclusion of this reasoning can be formalized by the 
S-conditional-equivalence :-

(merge(y ,y ,y) ++ ord(y ) , ord(y ) , ; 4 perm(x ,y ; perm(x2,y, 

smaller (x^fx^) 

where D* is the result of simplifying D^ as just described to :-

(Vuv) (prec(u,v,y)<-4 prec(u,v,y]) v prec(v,u,ylfy2) v spans (u,v,y1 ,y 2) ) 

Now suppose also that y^ and y^ are ordered, and append this assumption 
to the S-conditional equivalence; then the ord predicates in the 
consequent subformula can be replaced by simply true, whilst the 
newly-introduced ord antecedents can be partnered with the calls to 
perm to produce calls to sort instead. The result of which is :-

(merge(ylfy2,y) 44 D'yD ) 4 sort(x,y^ , sort(x2,y2) , smaller (x^xj 

Nov; the subformula exactly describes the relationship 
between y, y^ and y^ which we would customarily write as the predicate 
append(y ,y ,y), and it is easy to show that (D',D) is S-equivalent 

JL JL xi 

to the more usual definiens for append (like that used in Section 6.1). 
Thus that definiens can be replaced here by the append predicate 
to give the sentence :-

(merge(y^y2,y) 44 append(ylfy2,y)) 4 sorttx^y^ , sort(x2,y2), 

smaller,x } 

This lemma makes good sense intuitively. If and y are ordered 
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permutations such that all members of y^ are less than all members 
of y0, then merging y7 and y~ involves no interleaving and so is 
equivalent to the appending operation. Observing that the lemma 
has the familiar form (F 44 F') 4 F" , we can now make an 5-conditional 
-equivalence for the call to merge in the recursive merge-sort 
procedures for sort; the result of which is :-

sort(x, y) 4 parti tion (x^ ,x) , smaller (x^xp , sort(x ,y ), 

sort(x2,yp , append(y1,y2,y) 

This new sort procedure asserts the essential logic of quick-sort, 
which performs all the necessary comparisons between members of x 
before constructing any ordered permutations. 

To obtain a practical .quick-sort computation it is necessary to 
conjointly solve the calls to partition and smaller in a manner which 
deals with the partitioning of x deterministically. Hoare's 
partitioning algorithm chooses any member w from x to leave a non-empty 
set x' , each of whose members is allocated either to a set z ( i f it is 
less than w) or else to a set (if it exceeds w). Then z and z' 

2 1 2 
are each quick-sorted to give y^ and y^, whence the output y is 
constructed by appending to y^ the result of appending y'2 to the unit 
list (w). This process can be captured in logic by transforming the 
sort procedure above to 

sort(x,y) 4 partition* (w,xr ,x) , allocate(,x' ,w) , sort(z ,y'p , 

sort(z2,yp , append* (wfy'2,y') r append ( y'^y',y) 

The transformation is conceptually simple but rather laborious, and 
so is omitted here. The predicate allocate(z^,Z2*x',x) is specified 
by : -

allocate (z irz 2,x' ,w) 44 (\/u) ( uez 44 uex', u<w ), 

(\fv) ( uez2 44 uex', w<v ) 

and expresses the fact that w is the discriminator used for allocating 
the members of x' to either z^ or z^ as just described. It is easy 
to see that x' is properly partitioned by a call to allocate(zz,x',w) 

such that smaller(x^,xp will hold. The sets z^ and z^ are related 
to those named as x^ and x^ in the quick-sort sort procedure first 
derived above by x^ = {w} U z^ , x^ = z^ (if z^ is empty) or by x^ = z^ ,. 
x„ = {w} U z„ (otherwise). These considerations establish that 2 2 
partition(x2,x) and smaller(x) are implicitly satisfied by 
solving a call to allocate. Suitable procedures for allocate for 
term representations of sets are trivially derivable, and are just 
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allocate(0,0,0,w) 

allocate(u:zn,z0,u:x',w) 4- u<w, allocate(z1,z0,x',w) 

allocate (z : z 2,v :x' rw) 4- w<v, allocate (z2,x' ,w) 

Procedures rather similar to these appear in the Clark-Tarnlund paper 
(16), except that quick-sort is treated there as an algorithm which 
accepts a list rather than a set as input? it is then necessary to 
cater for the possibility of identical members in the procedures .. . 
used in place of those above. 

The principal qualities of quickrsort as a 'fast' sorting 
algorithm depend critically upon the implementation of the partitioning 
process; the procedures given above only provide a high-level 
representation of what this partitioning achieves. Hoare's algorithm 
firstly arranges the input set (or multiset) into a linear array, and 
then pursues a series of interchanges governed by the bi-directional 
movement of two pointers. Efficient implementation of this requires 
a data-overwriting mechanism together with a flag system to control 
the alternate adjustment of the pointers which indicate the next 
comparison (and possible interchange). This kind of behaviour could 
not be feasibly generated from the procedures above with the resources 
of Prolog ; with a Prolog-like interpreter we would have to devise some 
more elaborate partitioning procedures which brought the pointer 
arrangements explicitly into the procedures' argument structures. This 
is easy enough to accomplish. If the interchanges are somehow 
implemented upon an internal array representation of the sets, then the 
subsequent appending operations would no longer be necessary, since 
the same single array would be adequate to represent both the input 
and output data? but the latter arrangement is essentially a matter of 
implementation technology and beyond the scope of the present study. 

The Insert-Sort Algorithm 

The insert-sort algorithm proceeds by choosing any member w from 
the input set x to leave the set x', then sorting x' to y', and finally 
inserting w into the correct position in y' to give the output list y. 
Clearly this behaviour can be generated from the merge-sort procedure 

sort(x,y) 4- partition(x^x^x) , sortfx^y^ , sortix^y^, 

merge(y,y,y) 
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by constraining the solution of partition(x^,x2,x) so as to compute 
x a s a singleton {w}. This can be arranged merely by choosing an 
appropriately restricted (incomplete) procedure set for partition. 

More satisfactorily, the merge-sort procedures can be transformed into 
a specific program for insert-sort; this will eliminate the need to 
repeatedly sort singletons by the call to sort(x^,y^) in the merge-sort 
procedure above. The transformation makes use of the elementary 
relationship 

(partition(x,x,x) partition* (w,x 0,x) ) + singleton (x ,w) J. 2 ' J. 

in order to make an S-conditional-equivalence substitution for the 
call to partition in the recursive procedure for sort, which produces 

sort(x,y) 4- partition*(w,x',x), singleton(x, sort(x^,y^), 

[x2,y2:=x',y'J sort (x' ,y, merge* (y^y1 ,y) 

The call sort(x^can be symbolically solved by invoking the 
merge-sort basis which sorts (w) into a unit list (w) ; resolving the 
basis with the recursive procedure therefore gives :- -

sort(x,y) 4- partition*(w,x',x), singleton(x, unit-list(y^,w), 

sortfx',y'), merge*(y^,y',y) 

This procedure clearly performs a constrained merging operation, in 
that merge*(y^,y',y) is called subject to y^ being just a unit list. 
But this is the operation which would normally be described as 
insertion; therefore, to capture that fact in the logic, introduce 
a new predicate insert(w,y1,y) which bears the following relationship 
to merge* '-

(insert (w,y',y) merge* ( y ' ,y) ) unit-list (y^,w) 

Using this to make the obvious S-conditional-equivalence substitution 
and then deleting the calls unit-list(y^,w) and singleton(x^w) (since 
s implies the existences of {v} and (w) for any w) , the essential 
sort procedure for the insert-sort algorithm is obtained 

>sort(x,y) 4- partition*(w,x',x), sort(x',y'), insert(w,y',y) 

The bases for this procedure are just those used in merge-sort. 

It is clearly desirable to specialize similarly the procedure 
set for merge* to take account of the fact that the first argument in 
the invoking call can be assumed to be a unit list; the specialized 
set then serves the new sort procedure for insert-sort by virtue of 
the sentence trivially implied by the relationship between merge* and 
insert asserted above; that sentence is just the procedure :-
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insert(w,y' ,y) 4- unit-list (y^w) , merge* (y^y' ,y) 

Consider one of the merge* bases 

merge* (y^,y',y j) 4- length(y' ,0) 

If the conclusion is substituted by insert(w,y',y) conditional upon 
y^ being a unit list, then a basis for insert is obtained :-

insert(w,y',y) 4- length(y',0) , unit-list(y^,w) 

The other merge* basis has no analogous transformation, since it 
requires y to be the empty list which is clearly inconsistent with an 
assumption that y i s a unit list; hence it does not contribute to the 
procedure set for insert. 

Consider next one of the merge* recursions, making a convenient 
renaming :-

merge*(ylfy',y) 4- append* ,y ), append*(v,y",y'), w*v, 

merge*(y',y',y*), append*(w,y*,y) 

If y^ is the unit list (w) then the call append*(w,ycan be solved 
immediately to give y' as the empty list. In this case the call 
merge* (y'^,y' ,y*) is also solved immediately by the second merge* basis 
which computes y*:=yt. Hence it is easy to see that the assumption 
that yis a unit list (w) will transform the procedure to a non-
recursive procedure for insert 

insert(w,y',y) 4- append*(v,y",y'), w4v, append*(w,y',y) 

Finally, the other merge* recursion transforms under the same 
assumption to give a recursive procedure for insert 

insert(w,y',y) 4-append*(v,y",y'), v4w, insert(w,y",y*), append*(v,y*,y) 

The logic component of the insert-sort algorithm can now be shown in 
its entirety, choosing terms as data structures 

sort (0,nil) 4-

sort (w:0,w.nil) 4-

sort(w:x',y) 4- sort(x',y'), insert(w,y',y) 

insert(w,nil',w.nil) 4-

insert (w,v.y" ,w.v.y") 4- w4v 

insert(w,v.y",v.y*) 4- v^w, insert(w,y",y*) 

These give a good recursive computation with Prolog-like control. 
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The Selection-Sort Algorithm 

Selection-sort can be viewed as a special case of either quick-
sort or insert-sort. The algorithm selects w from x to leave x' such 
that w is the least member of x; hence x is decomposed selectively 
into {w} and x'. After sorting x' to y', the output list y is 
obtained by appending x' to the unit list (w) . Select-sort is thus 
the special case of insert-sort in which w is always inserted at the 
beginning of y' to give y, and is the special case of quick-sort where 
the 'smaller' set x i s just a singleton {w}. Select-sort is derived 
here by specializing the quick-sort procedures :-

sort(x,y) 4- cardin(x,0) , length(y,0) 

sort(x,y) 4- singleton(x,w), unit-list(y,w) 

sort(x,y) 4- partition*(w,x',x), allocate(zz,x',w), 

sort(z2,yp , sort(z2,y'2) , 

append* (w,y'2,y') , append(y1 ,y) 

Suppose now that w is the least member of x computed by the call to 
partition*. Then no members of x are allocated to zby the call to 
allocate. If the sort basis is therefore used to solve the first 
call to sort on the assumption that zis the empty set, and if a 
basis for append is likewise invoked to solve the last call to append, 
then the recursive sort procedure above simplifies to :-

sort(x,y) 4- partition*(w,x',x), allocate(z2,x',w), 

cardin(zifO) , sort(z2,y'2) , append* (w,y'2,y) 

However, the properties of allocate determine that z^ and x' must be 
identical when z^ is empty. Thus we may write the above as :-

sort(x,y) 4- partition*(w,x',x), allocate(0 ,x',x* ,w),^ 

sort(x',y'), append*(w,y',y) 

by the instantiation z2:=x' and macroprocessing out the call to cardin 
for greater conciseness. Now the usual notion of selection can be 
expressed by a predicate select(w,x',x) which holds when w is selected 
as the least member from x to leave x'; a fairly intuitive way of 
specifying this is :-

select(w,x' ,x) 4-+ partition* (w,x* ,x) , 

(Mu) ( w<u 4- uex' ) 
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It is then easy to show that the specification can be rewritten :-

select(w,x',x) 44 ( singleton(x,w), empty(x') ) 

v ( partition*(w,x',x), allocate(0,x',x',w)) 

by a little case analysis and exploitation of the specification for 
allocate. The consequence of this is that the second basis for 
sort above can be combined with the modified recursive procedure for 
sort just derived, to give a new single sort procedure capable of 
processing any non-empty sets; this procedure is just :-

sort(x,y) 4 select(wfx',x), sort(x',y')f append*(w,y',y) 

This and the first sort basis comprise a complete procedure set for 
sort. 

It is tempting to anticipate that the allocate procedures used 
by quick-sort can be specialized to give useful procedures for 
selecting the least member w of x. Observe that the specification 
given for select above trivially implies :-

select(w,0,w:0) 4 

select(w,x',x) 4 partition*(w,x',x), allocate(0,x1fx',w) 

Suppose that a new predicate were introduced expressing a special 
case of allocate :-

compare(w,x') 44 allocate(0,x*,x',w) 

Only two of the allocate procedures shown earlier can deal with cases 
where the first argument is 0 ; renaming these using the compare 
predicate gives 

compare(w,0) 4 

compare(w,v:x') 4 w<v, compare(w,x') 

which could then be used, in principle, to solve the call to compare 
in the paraphrased procedure for select :-

select(w,x',x) 4 partition*(w,x',x), compare(w,x') 

In practice, however, these do not constitute an efficient means of 
achieving the decomposition of x, because the solutions output from the 
call to partition* are not constrained. This is reminiscent of the 
inefficient way of solving the min problem which picks a member as a 
candidate for the minimum and then tests to see if it is a lower bound. 
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In both problems the remedy is found by exploiting the supposed 
transitivity of the ordering relation <. In the present case this 
results in two recursive procedures for select, whose effect in 
execution is to successively discard from x those members which cannot 
be the minimum w, meanwhile accumulating these in the other data 
structure x'. These procedures are shown below together with the 
rest of the complete program body 

sort(0,nil) 4 

sort(x,w.y') 4 select (w,x' ,x) , sort(x',y') 

select(w,0,w:0) 4 

select(w,v:x",u:v:x") 4 u<v, select(w,x",u:x") 

select(w,v:x",v:u:x") 4 u<v, select(w,x",u:x") 
\ 

These generate a satisfactory iterative computation from a typical 
logic program interpreter. 
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7 2 : LOGIC PROGRAMS FOR STRING SEARCHING 

The String Searching Problem 

The problem considered in this final section arises in the 
general field of text processing, which encompasses a rich class of 
problems concerning the analysis of symbol strings. The present study 
examines the specific task of determining whether a given string (the 
'keyword') occurs in some other string (the 'text string'). This 
task is obviously of paramount importance in applications such as 
text editing and bibliographic retrieval. In applications such as 
those, much can be gained in terms of computational efficiency by 
employing techniques such as indexing, hash-addressing and so forth to 
allow rapid retrieval; these generally proceed by consulting other 
elaborate data structures established by pre-processing the keyword 
or the text string. The objective of such techniques is to improve 
upon the simplest algorithm which conducts a sequential search 
through the text string, potentially inspecting all its symbols. 
Here we derive the logic representation of this 'naive' algorithm, 
and then consider how it may be transformed into two somewhat more 
intelligent algorithms which refer to pre-processed data structures 
in order to restrict the search without missing potential solutions. 

The problem can be formulated in logic by introducing the 
predicate string (x,y) which holds when the keyword x has an occurrence 
in the text string y; more briefly, we can say that x is a string in y 
when the predicate holds. In order to specify this predicate 
precisely it is convenient to summon the item predicate and so express 
the relationship between x and y in terms of their indexed members. 
Assuming also the axioms A1-A3 used elsewhere to constrain the data 
types possessing indexed members, the principal specification can 
be announced as :- - ; 

I 

string(x,y) 44 (3k) (Mui) (item(uf.i+k-lfy) + item(ufi ,x) ) 

+-Vi 
which simply requires that there is some Jr* member of y with which 
the first member, if any, of x can be aligned such that all members 
of x then match their counterparts in y. This circumstance is 
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depicted in the diagram below in which the shaded sections are 
matching symbol strings 

y : 

k 
4-

i+k-1 
4-

x : W / / / / / A W / / / / 7 7 A 

Observe that the given specification allows the possibility that x is 
the empty string, in which case it is a string in y with k undetermined, 
It should also be noted that the string relation is transitive, as 
is usually the case with relations having definiens' of the form (A+-B). 
In fact it can easily be ascertained that the following slightly 
stronger property of string also holds 

string(x,y) Qz) (string(z,y) , string(x,z)) ' • 

The computational significance of this property is that in order to 
show that x is a string in y, it is sufficient to find a string z in y 
in which x is a string. All the algorithms considered here exploit 
this property in one way or another. 

The Naive (Quadratic) Algorithm 

The naive algorithm attempts to find x in y by sequentially 
inspecting the members of y until discovering one which matches the 
first member of x; having thus found a potential solution, the 
algorithm pursues a process of comparing the members of x with 
those to which they align in y when the first two matching members 
are aligned. In other words, having found a potential solution 
beginning at the kth member in y as in the diagram above, a local 
matching exercise is conducted to discover whether the shaded sections 
shown there can be matched member for member. If the latter process 
encounters a mismatch, then the original search is resumed from its 
current point to seek a new kth member in y which matches the first 
member in x. 

In all the logic representations of the algorithms examined 
here it is convenient to make use of the notion of a prefix. A 
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prefix x of a string z is some string in z whose first member, if any, 
coincides with the first member of z. Another way of expressing this 
is to say that every Jfkh member of x is identical to the k^1 member of 
z. This can be captured by the following specification of prefix(x,z) 
which holds when x is a prefix of z :-

prefix(x,z) (\fui) (item(u,i ,z) 4- item(u,i,x)) 

Observe that this admits the possibility that x can be the empty 
string and a prefix of (any) z. 

Another useful notion is that of suffix. A suffix z of y is 
a string in y such that the last members of z and y coincide. 
This can be expressed by identifying z with a string in y denoted 
by the term suf(y,k); this term denotes the string in y which extends 
from its k^1 member right up to its end. The relationship between 
the indexed members in y and those in its k^1 suffix suf(y,k) is 
expressed by the following axiom in S 

item(u,i-k+l,suf (y ,k) ) 4-* item(u,i,y), 

Hence our logical treatment of the string searching problem will refer 
to prefixes using the prefix predicate, but to suffixes using the suf 
term. 

These definitions now allow a useful way of viewing the naive 
algorithm : that algorithm successively inspects the suffixes 
suf(y,l), suf(y,2), ..., etc. seeking some suffix suf(y,k) of which 
x is a prefix. This is depicted in the diagram below 

suf (y,k) 4 

W//////////A 

x : \A////////////J\ ^ is a prefix of cuf(y,kj 

Now it is possible to see how the naive algorithm exploits the 
transitivity of the string relation. Instantiate the transitivity 
axiom :-

string(x,y) 4- string(z,y) , string(x,z) 

with the choice z:=suf(y,k). The string specification together with 
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the axiom specifying indexed membership in suffixes just given 
jointly imply 

string(suf(y,k),y) 4 

string(x,suf(y,k) ) 4 prefix(x,suf(y,k)) 

Invoking these in response to the two 'calls' in the instantiated 
transitivity axiom then produces :-

string(x,y) 4 prefix(x,suf(y,k)) 

th 
This sentence may be viewed as a procedure which selects some k 
suffix of y and tests whether it has x as a prefix; if not, some 
other k must be tried. Given a procedure set solving calls to 
prefix, the string procedure above would be sufficient - that is, 
would be a complete procedure set for string. This fact can be shown 
by the proof 

|~s string(x,y) 4+ ($k)(Vui)(item(u,i+k-l,y) 4 item(u,i,x)) 

f-g string(x,y) 44 Qk) (Mui) (item(u,i ,suf (y,k) ) 4 item(u ,i ,x) ) 
string(x,y) 44 Qk)prefix(x,suf(y,k)) 

This guarantees that there must exist some suffix suf(y,k) of which 
x is a prefix when string(x,y) is solvable. This is a very, 
important fact about the problem domain, and is the basis of other 
algorithms as well as the naive one. Note that it embodies two 
computational concepts : suffix selection, which consists of choosing 

th 
some k suffix of y in which to seek the string x; and prefix testing, 

which consists of determining whether x is a prefix of some string. 
The naive algorithm iteratively selects suffixes, each time applying 
the prefix test, and it potentially investigates every suffix suf(y,k) 
for k = 1,2, ... , etc. in that order. There are a number of 
alternative representations of the logic component of the naive 
algorithm, which differ in the amount of information about the progress 
of computation that they encode within their argument structures. 
We shall develop these in order of increasing information in that 
respect, and so arrive at a logic component which is sufficiently 
informed to allow some useful transformations leading to more 
sophisticated algorithms. 
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1] The Simplest Representation 

The first representation of the naive algorithm considered here 
makes use of no other information than the string specification 
together with some axioms about data constructibility. It is 
assumed that strings are either empty strings or else constructible 
from a call append*(ur,z',z) which holds when string z has first 
member u' and the rest of the string z is z':-

empty-list(z) (Mui) (item(u,i ,z) false) 

append* (u',z',z) 4-+ (Mui) (item(u ,i ,z) 4-+ item(ufi-l,z') 

v(u=u',i=l)) 

Admitting these to the specification set allows the derivation of 
procedures for string to be trivially pursued just as with many other 
examples given in the thesis; there is no need to present the 
derivations in detail. By .considering the two cases k=l and k">l 
it is easy to produce the procedure set 

string(x,y) 4- prefix (x,y) [k=l] 

string(x,y) 4- append* (v' ,y' ,y), string(x,y') [k>l] 

Jointly these say that to show that x is a string in y, either show 
that x is a prefix of the first suffix of y, or else show that it is 
a prefix of one of the remaining suffixes - that is, a string in the 
rest of y. A procedure set for prefix is obtained by just considering 
the cases of the construction of x and y. It is easy to show that 
all cases are dealt with by just two procedures :-

prefix (x,y) 4- empty-list (x) 

prefix(x,y) 4- append* (u' ,x' ,x) , append* (u' ,y' ,y) , prefix (x1 ,y') 

The first of these deals with all cases of y when x is empty. The 
second one deals with all cases where both x and y are constructible by 
append*; there is no procedure for the case where x is so constructible 
but y is not, because it can be shown that the prefix problem is not 
then solvable. Perhaps it should also be noted that there is no need 
to compose a procedure for string for the case where k>l but y is not 
constructible by append* - this could only be solved with x as the 
empty string, and the first string procedure can deal with this by 
invoking the prefix basis. The computation typically generated from 
the prefix procedures is just a fast iteration which repeatedly 
accesses aligned members in x and y and compares them. 
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The procedures above can be made very concise using terms to 
represent the strings; by introducing these through the device of 
macroprocessing we obtain a representation of the naive algorithm 
which appears to be simpler than all others :-

string(x,y) 4 prefix(x,y) 

string(x.y') 4- string(x,y') 

prefix(nil,y) 4 

prefix(u* .x' ,u' .y') 4 prefixfx',y*) x 

The computation generated from these procedures exhibits non-determinism 
by virtue of the two ways of responding to a call to string. Clearly 
the second procedure for string can be repeatedly invoked to select 
any suffix before applying any prefix test. However, a Prolog-like 
execution applied to the procedures as scheduled in the order given 
above would always defer the generation of the next suffix until 
completing the prefix test upon the currently inspected suffix. This 
is the most sensible schedule to use in the absence of any information 
about the likeliest region of y, if any, in which x may appear as a 
prefix. If the scheduling of the two string procedures is the 
reverse of that just suggested, the prefix test is applied instead 
to suffixes of y in order of decreasing k, which will not come about 
until the computation from the second procedure has iterated right 
through y to arrive at the empty string - at which point a stack of 
suffixes is represented in the binding environment, each one awaiting 
its prefix test. . 

A simple way of visualizing the effects cf these schedules is to 
imagine that the keyword x 'slides' one position alongside the text 
string y each time a new suffix is selected. The former schedule 
slides x from left-to-right (treating y's first member as left-most), 
attempting at each new alignment to match x with the substring of y 
with which it is contiguous. The other schedule slides x from right-
to- left, which is a reasonable strategy when there is reason to believe 
that x occurs in y near its right-end; however, the procedures above 
do not implement that strategy effectively because they do not give 
direct access to the right-end part of y. 

The order of suffix selection can be enforced by the logic by 
making a simple modification to the second string procedure. 
Suppose that the first members of x and y are distinct. Then x 
cannot be a prefix of y, and so string(x,y) can only be solved by 
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showing that x is a string in the rest of y. Therefore replace the 
second procedure by :-

string (u ' .x' , v'.y') u'^v', string (v' .x' ,y') 

The computation is now much more deterministic, because the control 
call u'^v' suppresses the possibility of selecting a new suffix 
before completing the prefix test for the current one; execution 
successively applies the prefix test to suf(y,l), suf(y,2), ..., etc. 

as x slides from left-to-right alongside y. [It is assumed throughout 
that the control is Prolog-like./ Observe that in the original string 
procedure set the tasks of suffix selection and prefix testing were 
initiated by distinct string procedures, whereas with the new 
arrangement the prefix test is shared between the two string procedures. 
We can regard the call u'^v' as a device encoding control information 

» 

about the potential failure of a call to the other string procedure; 
that is, the second procedure is effectively informing the computation 
that the first one cannot succeed when the first members of x and y 
are distinct. 

The naive algorithm is so-called, not because of its central 
features of suffix selection and prefix testing, but rather because 
it potentially selects every suffix; using the sliding notion, the 
characteristic feature of the naive algorithm's exhaustive suffix 
selection is that when a mismatch occurs during a prefix test, the 
keyword x slides just one position down y , which is tantamount to 
selecting the next suffix (increasing k by 1). More sophisticated 
algorithms permit x to slide several positions after a mismatch . 
before the resumption of comparing members, and are consequently able 
to make fewer comparisons than does the naive algorithm. The ability 
to slide x several positions without any intermediate member 
comparisons depends upon knowledge about the instigating mismatch 
in order to ensure that no solutions are 'skipped over* as x slides 
past intermediate positions. Knuth, Morris and Pratt (44) have 
shown that the worst-case behaviour of the naive algorithm gives a 
comparison count approaching &.L where £ is the least suffix pointer 

A 

for which prefix(x,suf(y,k)) holds and L is the length of x. Now it 
A 

can be argued that the average penetrance k over all keywords of some 
length L for a given text string is a monotonically increasing function 
of 7"», and so this together with the result above shows that k has a 
non-linear dependence upon L; in fact in the worst case that dependence 
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is almost quadratic in L; this is the case when y contains many 
proper substrings of x with length approaching L. An extreme 
example is where y has the form amb and x has the form anb with m » n. 

In realistic circumstances, such as natural language text searching 
with large phrases as keywords, y will contain relatively few large 
substrings of x and the comparison count will approximate more 

A A 

closely to k than to k.L, so that the algorithm's efficiency is then 
approximately linear in I. 

As already mentioned, the more elaborate algorithms which are 
available for the string searching problem have the ability to decide 
how to re-align x after a mismatch on the basis of an analysis of 
the context in which that mismatch occurred. The more penetrating 
that analysis of the failure to solve prefix(x,y) , the more 
intelligent can be the subsequent choice of suffix. In order to 
express such analyses in the logic representation of an algorithm of 
this kind it is necessary to arrange that enough information is held 
in the procedures' argument structures for the context of the 
mismatch to be ascertained. The minimal information in this respect 
is the position k in y with which the first member of x currently 
aligns. Additionally it would be useful to have direct access to the 
positions of the mismatch in question. In the following discussions, 
further representations of the naive algorithm are developed which 
arrange for this kind of information to be represented explicitly, 
rather than implicitly in the current binding environment. 

2] Explicit Control of Suffix Selection 

The logic of the naive algorithm can be slightly elaborated in 
a way which makes little improvement upon its efficiency but which is 
nevertheless very instructive for our pursuit of logic repre'sentations 
of better algorithms. Consider the behaviour of the current program 
when a mismatch occurs during a prefix computation. When this occurs 
the interpreter has to backtrack in order to find out how to choose 
the next suffix. By backtracking to the activation of the call which 
invoked the first string procedure, and thereby instigated this 
particular prefix test, the interpreter discovers, in effect, the 
identity of the current suffix as represented by the second argument 
of that call? then, by transmitting that argument during the • 
invocation of the alternative string procedure in response to that 
call's re-activation, the latter procedure becomes informed about the 
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identity of the current suffix and so is able to generate the next one. 
It is interesting to secure these arrangements for responding to a failed 
prefix test by expressing them in the logic component; this requires 
the construction of somewhat more elaborate predicates than those 
introduced so far. 

Consider a predicate string*(x,y,w,z) which has the meaning 
that either x is a prefix of y or else w is a string in z :-* 

string*(x,y,w,z) 44 prefix(x,y) v string(w,z) 

This anticipates the run-time circumstance when a test is initiated to 
find out whether some x is a prefix of some y; if the test fails, then 
computation assumes that the only way remaining in which to solve 
the original goal 4 string(x,y) is to show that w is a string in z. 
We shall see presently that it is possible to compose a program body 
using the new predicate which arranges that when a prefix test is 
initiated it is supplied with a record of the next suffix which must 
be inspected if the test fails; that record is maintained in a - . 
directly accessible state in the last two argument positions of the 
procedures which will be used to conduct the test, so that no 
backtracking is needed for their retrieval. This is just another 
instance of how suitable choices of programming style can allow the 
logical representation of matters which would otherwise be treated 
as control information. 

Recalling the procedure set already established for strings 
represented by terms, the completeness of the procedure set for 
string establishes the sentence :-

string(x,v'.y') 44 prefix(x,v'.y*) v string(x,y1) 

However, the disjunction in this sentence unifies with the definiens 
given above for string*, so that the following holds :-

1 
string(x,v'.y') 44 string*(x,v'.y',x,y') 

This shows that a call to string can be investigated using 
the procedure :-

string(x,v'.y') 4 string*(x,v'.y',x,y') 

together with procedures solving the call to string*. Observe, then, 
that when we wish to solve a goal 4 string(x,y) in this way, the 
call to string* will associate its first two arguments with the task 
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of showing that x is a string in the first suffix of y (by showing 
A 

that it is a prefix of y), whilst its last two arguments are 
associated with the task of showing that x is a string in one of the 
remaining suffixes of y (by showing that x is a string in suf(y,2) ). 

A procedure set for string* can be derived easily using the 
knowledge already available. The completeness of the set of prefix 
procedures already given establishes the sentence :-

prefix(u'.x', u'.y') 44 prefix(x',y') 

so that the first disjunct in the definiens of string* may be replaced 
accordingly with an S-equivalent formula giving :-

string*(u'.x',u'.y',w,z) 44 prefix(x',y') v string(w,z) 

We may infer a procedure for string* from this as follows :-» 
string*(u'.x',u'.y',w,z) 4 string*(x',y',w,z) 

The completeness of the procedure set for prefix also determines 
that prefix(u'.x',v'.y') is false when u' and v' are distinct, which 
easily provides another procedure for string* by virtue of the 
following deductions :-

^ string*(u'.x',v'.y',w,z) 44 prefix(u'.x',v',y') vstring(w,z) 

^ (string*(u'.x',v'.y',w,z) 44 false v string(w,z) ) 4 u'^v' 

^ string*(u'.x',v',y',w,z) 4 u'^v', string(w,z) 

The string* synthesis has so far considered the two cases in which x 
is non-empty and the first member of x either does or does not match the 
first member of y . When x is empty the definiens of string* is 
made true because the prefix basis shows that empty x is a prefix of 
any y, from which we infer a basis for string* :-

string*(nil,y,w,z) 4 

Finally there is the possibility that a call is made to string with 
A 

y empty; this cannot invoke the procedure already inferred above which 
investigates string by investigating string*. However, when y is 
empty then the call can only be solved when x is also empty, and so 
this, final case amongst those cases of the input strings is dealt 
with by the string basis :-

string(nil,nil) 4 
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Clearly all these- procedures could be derived very straightforwardly 
in the goal-directed format of previous examples, requiring only 
trivial subformula substitutions and simplifications. Their behaviour 
is quite interesting, and so it is worth gathering them all together 
for further contemplation :-

string (nil,nil) 

string(x,v' .y') 4 string* (x,v* ,y' ,x,y') 

string*(nil,y,w,z) 4 

string*(u'.x',u'.y',w,z) 4 string*(x',yf,w,z) 

string*(u',x',v'.y',w,z) 4 u'^v', string(w,z) 

Consider a call string(x,y) for instances of x and y in the case 
where y is not empty. By invoking the second string procedure, a 
record w:=x, z:=y' is established in the last two arguments of the 
string* call which effectively describes the way in which the 
original problem might yet be solved if subsequent computation fails to 
show that x is a prefix of y. During the prefix test, which is 
conducted by the first two string* procedures, this record is preserved 
in readiness for a failure due to mismatch; in such an event, the 
third string* procedure accesses this record and injects it into a 
new computation which has the object of solving string(w,z), this being 
the only remaining way in which the original call string(x,y) can be 
solved. Execution is now very deterministic, instigating very little 
backtracking. This does not necessarily improve upon the run-time 
behaviour of the naive algorithm when using the simpler logic 
component instead, because a modest interpreter ought to be able to 
manage the latter's backtracking quite efficiently. But we are more 
concerned at present with the information encoded by the procedures 
rather than with their"behavioural attributes. 

3] Explicit Control of Comparison Positions 

In order to analyse fully a failure to match some member of x 
with a member of y it is necessary to know the positions at which these 
members occur in the respective strings. These positions are not 
known within the logic representations considered so far. For 
example, consider the computation instigated by the goal :-
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4 string( a.b.c.nil , b.a.b.a.b.a.b.c.nil ) 

by the first of the procedure sets already examined. Eventually a 
failure is encountered in the attempt to show that a.b.c.nil is a 
prefix of a.b.a.b.c.nil ? this failure is signalled by the mismatch 
of the member c in x with the third occurrence of a in y (x and y 
being the original arguments in the goal shown above). The goal 
at the point in the computation when the mismatch occurs is :-

4 prefix(c.nil , a.b.c.nil ) 

which contains no information about the positions in x and y of the 
mismatched members. Of course, that information could be recovered 
from the run-time stack by determining various counts of procedure' 
invocations, but the point at issue here is that the positions of the 
mismatched members are not represented explicitly in any way by which 
our procedures may directly refer to them. Hence those procedures 
cannot express in logic the relationship between those positions and 
the best way to proceed with the remaining task of showing that 
a.b.c.nil is a string in a.b.a.b.c.nil now that it is known not to be 
a prefix of a.b.a.b.c.nil. 

To provide for the analysis of mismatch positions it is 
necessary to introduce a new predicate which reflects the general 
view of the string searching algorithm as a controller of two pointers 
j and k respectively pointing to the members of x and y next to be 
compared; the adjustments of these pointers can be interpreted in terms 
of suffix selection and prefix testing. Let the predicate 
prefix*(x,y,j,k) hold when the string suf(x,j) is a prefix of the 
string suf(y,k) ; this is depicted in the diagram below, where the 
shaded regions signify the members which remain to be matched in 
order to solve the call string(x,y) :-

< suf(y,k) 
k-j+1 k 

F . 1 I I t V / / / / / / / / Z / J ~ 1 

* - I I Vy / / / /777777X 
+ t 
i 3 

« suf(x,j) > 

shaded regions match when prefix*(x,y,j,k) holds 
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The logical expression of this new predicate can be expressed either 
in terms of the indexed members of x and y :-

prefix*(x,y,j,k) 4-4 (Mui) (item(u,k-j+l ,y) 4-item(u,i ,x) ,i>j) 

or else, at a somewhat higher level, using the suffix notation 

prefix*(x,y,j,k) 44 prefix(suf(x,j), suf(y,k)) 

These specifications are S-equivalent by virtue of the axiom given 
previously defining the meaning-of indexed membership for suffixes 
constructed from suf. Now consider the case where j takes the 
value 1; then we have :-

^ prefix* (x,y,l,k) 4-4 (Mui) (item(u,k-l+i) 4- item(u,i,x) ,i>l) 

^ prefix* (x,y,l,k) 4-4 (Mui) (item(u,k-l+i) 4- item(u,i,x)) 

Is (3k)prefix*(x,y,l,k) 4-4 string(x,y) 

This establishes that string(x,y) can be investigated completely by 
calling prefix*(x,y,l,k). Procedures capable of dealing with such 
a call can be derived very easily, and are closely analogous to those 
given previously for investigating prefix(x,y) . They are 

prefix* (x,y,j ,k) 4- length (x,w) , j>w 

prefix* (x,y,j,k) 4- item(u,j,x) , 

item(u,k,y), prefix*(x,y,j+l,k+l) 

The recursive prefix* procedure tries to show that suf(x,j) is a 
prefix of suf(y,k) by showing that both strings have the same first 
memberu and that suf(x,j+l) is a prefix of suf(yfk+l). The basis 
procedure deals with the case where suf(x,j) is empty, this being so 
when j exceeds the length w of x. The suffixes referred to here are, 
of course, represented only implicitly by the prefix* procedures 
through the pointers j and k. They essentially paraphrase the 
prefix procedures shown below 

1 

prefix (suf (x,j) , suf(y,k)) 4- lengthfsuf (x,j) , 0) 

prefix(suf(x,j), suf(y,k)) 4- append*(u,suf(x,j+l),suf(x,j)), 

append*(u,suf(y,k+l),suf(y,k)), 

prefix(suf(x,j+l), suf(y,k+l)) 

which result by simply instantiating the general procedures for 
prefix(x,y) with x:=suf(x,j), y:=suf(y,k). 
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A complete program body for the string searching problem can 
now be composed of just the initiating procedure 

string (x, y) prefix*(x,y,l,k) 

together with the two procedures given for prefix* and some means of 
accessing the indexed members of x and y. In conjunction with a 
goal string(x,y) they just contribute a new logic component for the 
naive algorithm. It is interesting to note that whereas the previous 
procedure set for string :-

string(x,y) 4- prefix(x,y) 

string(x,u' .y') 4- string(x,y') 

gave rise to non-determinism through offering two alternative ways 
of responding to a call to string the new body's non-determinism 
arises through the non-deterministic solution of the call to item. 
A typical computation from the new procedures responds to a failure 
to solve some call prefix*(x,y,j,k) by backtracking to the most 
recently activated call item(u,k,y) which was activated with k as an 
output argument in order to solve prefix*(x,y,l,k) ; since the choice 
of k computed by that call has resulted in a failure on the prefix 
test, the call must be re-activated to seek an alternative choice of 7c. 
The response to the call item(u,k,y) obviously depends upon the 
arrangements made for interrogating the string y; when the members of 
y are accessed serially, such as by applying Prolog-like control to the 
procedures below . \ 

item(u' ,l,u' .y') 

item(ufk,u'' .y') 4- item(u,k-l,y') 

then the computation behaves in the manner already described for the 
simplest representation given earlier for the naive algorithm. The 
non-deterministic selection of k by the call item(ufkfy) in the new 
procedures corresponds to the non-determinism manifested in the two 
string procedures in the simplest representation in that the second 
of them can be recursively invoked arbitrarily many times before the 
first one is invoked ; each of those invocations of the second string 

procedure implicitly selects a new member of y with which the 
first member of x is aligned. 

In the next, and final, logic representation of the naive 
algorithm, the ideas of the two former representations are combined. 



4] Explicit Suffix Selection Using Pointers 

By holding two pointers j and k in the argument structure, it is 
possible to control the selection of suffixes deterministically . 
through the agency of the logic component using much the same idea 
as employed in the earlier representation 2]. This requires the 

. introduction of a new predicate string**(x,y,j,k) which holds when 
either suf(x,j) is a prefix of suf(g,k) or else x is a string in 
suf (y,k-j+2). The specification is therefore :-

string**(x,y,j,k) 44 prefix*(x,y,j,k) v string(x,suf(y,k-j+2)) 

An informal explanation of this choice of predicate is as follows : 
suppose that computation has proceeded to the point where the jt*1 

member^ of x is aligned with the k^1 member of y in the course of 
investigating the call string(x,y) ; assume that the preceding 
members of x, if any, have been matched with their counterparts in y 
[note, with care, that the string** specification above does not 

insist upon this, but only considers matches at and beyond the jth] ; 

the problem is then solved either by matching the members at.and beyond 
the pointers j and k, or else a new suffix must be selected? the 
current suffix is suf(y,k-j+l) with the supposed alignment of the jth 
and members of x and y respectively; the naive algorithm chooses 
the next suffix as suf(y,k-j+2) in which to show that x is a string. 

A program body using the string** predicate can be derived 
exactly as for the previous representation in which comparison 
pointers were only implicit. It turns out to be :-

string(x,y) 4 string**(x,y,1,1) 

string**(x,y,j,k) 4 length(x,w), j>w 

string**(x,y,j,k) 4 item(u,j,x), 

item(u,k,y) , string** (x,y ,j+J.,k+l) 

string**(x,y,j,k) 4 item(u,j,x), 

item(v,k,y), 

u?v, string**(x,y,l,k-j+2) 

The first two string** procedures behave rather like the prefix* 
procedures, except that k is now an input argument in every string** 
invocation. When a mismatch occurs, directing control to the third 
string** procedure, this procedure uses the directly accessible 
pointers j and k of the mismatched members in order to determine the 
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identity of the next suffix; since this, in the naive algorithm, is 
just suf(y,k-j+2), the values of j and k comprise sufficient 
information within the procedures' argument structures for this 
determination to be made. There is therefore no significant 
backtracking during the computation. Observe also that, because 
the arguments j and k in the calls to item are always input instances, 
the solution of those calls is deterministic; this allows the 
recursive string** procedures to be invoked iteratively, in contrast 
to the necessarily recursive invocation of the string* procedures in 
the previous representation. 

The procedures above using the string** predicate provide a very 
satisfactory account of the logic which underlies the naive algorithm. 
More importantly, because they introduce to the logic explicit 
arrangements for accessing the mismatch position - and hence the 
current suffix identity - they form an excellent basis for deriving 
the logic components of those algorithms which use that information 
to decide whether the keyword can slide more than one position after 
each mismatch without missing potential solutions. These are the 
algorithms considered next. 

The Linear Algorithm 

In order to introduce the linear algorithm, which is due to 
Knuth, Morris and Pratt (44), it is useful to consider the behaviour 
of the string** program examined above. Suppose that a call to 
string**(x,y,j,k) is executed with x .^y . The ensuing mismatch 

J k 

signals the fact that x is not a prefix of the current suffix 
suf (y ,k-j+l) . Thus to show that x is a string in suf(y,k-j+l) it 
must be shown that x is a string in suf(y,k-j+2). The third string** 
procedure above investigates this latter objective by displacing 
x by just one position relative to its current alignment with y, 
so that whereas x^ was formerly aligned with y^ when the mismatch 
occurred, the displacement now aligns x^ with y^ j+2' A consequence 
of displacing x by one position is that, depending upon the nature of 
x and y, the member y may subsequently be compared with x in the 

k j-l 

course of showing x to be a prefix of suf(y,k-j+2), in which event the 
computation compares y .with a member of x more than once. ' It is for 
this reason that the naive algorithm gives behaviour which is 
generally worse-than-linearly dependent upon the length of the keyword. 
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Suppose that when the mismatch occurs between x . and y , x is 
J k 

immediately displaced such that x aligns with some y . where 7'<7. 
1 k-j'+2 J J 

Then y aligns with x.t , and y aligns with x.r. This is shown 
A J "I JC+J. J 

below (that is, after the displacement) :-

k-j'+2 + k+1 

9 : 

+ + + 
1 r 3 

next alignment after mismatch of x • and y (shaded) 
j 1 A " 

Observe that after the mismatch x has been displaced by j-j'+l 
positions; the naive algorithm always chooses j=j' whereas we are now 
considering algorithms which choose j'<j and thus displace x by 
several positions. 

The linear algorithm has the characteristic property that when 
xj does not match with y^ , the values of j and k are used to compute 
a particular value of j' such that by displacing x by j-j'+l positions 
the comparison of members can be resumed starting with x and 
This arrangement assumes, firstly, that the determination of j' is 
such that any members of x preceding x̂ ., will match those members of 
y with which they align after the displacement (so that there is no 
need to match them again), and assumes secondly that no opportunities 
for solving string(x,y) are missed by displacing x by more than one 
position when j'<j. When the displacement of x after each mismatch 
satisfies these conditions, no member of y is ever compared more than 

A 
once; the resulting algorithm's behaviour is therefore linear in k 
and thus (because of the argument about the mean penetrance) linear 
in the length L of the keyword. Observe, however, that when the 
given goal is solved with x finally aligned with yr., exactly k+L-1 

1 A 
of the members of y will have been compared with members of x; later 
on we consider an algorithm which improves upon this. 

The logic of the linear algorithm can be derived by modifying 
the third string** procedure given previously, since this is the 
procedure responsible for selecting a new suffix after a mismatch. 
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We require that instead of calling string**(x,y,1,k-j+2), that 
procedure should compute an appropriate j' and then call 
string**(x,y,j',k+l), and that this modification will not allow any 
solutions to be missed; in other words, we require a more efficient, 
but nevertheless complete, procedure set for string**. The 
precondition for such a modification is apparent from consideration 
of the circumstances when, generally, string(x,suf(yfk^)) and 
string(x,suf (y ,k2) ) are S-equivalent when k Using the string 
specification it is easy to prove that this S-equivalence holds when 
x is not a prefix of any suffix suf(y,k*) satisfying 
Applied to the present -.context, this fact is expressible by the 
S-conditional-equivalence :-

(string (x,suf (y rk-j+2) ) string(x,suf(y,k-j'+2))) 

**• *(3k*) (k-j+24k*<k-j'+2, prefix (x ,suf (y ,k*) ) ) 

Informally, this just states the fairly obvious fact that, given 
the goal of showing that x is a string in suf(y,k-j+2), which is 
the naive algorithm's goal after the mismatch of x. and y , it is 

J k 
possible instead to just determine whether x is a string in the 
suffix (j-3') positions further on, provided that j'4j and there 
is no intermediate suffix amongst those ignored in which x could be 
a prefix. This lemma allows an S-conditional-equivalence substitution 
in the third string** procedure when the latter is written as :-

string** (x,y,j,k) 4- item(u,j,x) , 

item(v,k,y), u^v, string(x,suf(y,k-j+2)) 

by replacing its original call string**(x,y,1,k-j+2) by the 
S-equivalent call string(x,suf(y,k-j+2)). The result of this 
inference is the procedure 

string**(x,y,j,k) 4- item(u,j,x), item(v,k,y), u?v, j'4jf 

*Gk*) (k-j+24k*<k-j '+2,prefix(x,suf (y ,k*) ) ) , 

string (x, suf (y ,k-j'+2) ) . 

Having modified the procedure in this way, the next objective 
is to accommodate in the logic the requirement mentioned earlier 
that comparisons are to be resumed beginning with x .f and y ^ ^ ' 
This suggests that there must be some way of introducing a call 
string**(x,y,j' rk+1) to the modified procedure which will replace 
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the rather less useful call to string introduced by the lemma. . 
In fact there is quite an easy substitution which satisfies this 
objective and which comes about from considering the position as 
depicted below after the displacement of x has taken place 

suf(y,k-j'+2) 

k-j'+2 k+1 

x : 

+ 
r 

-pre (x,j' )-

when single-shaded-only sections match, 

prefix(pre(x,j'), suf(y,k-j'+2)) holds 

when double-shaded-only sections match, 

string**(x,y,j',k+l) holds 

when both shaded sections match, 

string(x,suf(y,k-j'+2)) holds • 

A term pre(x,j') has been introduced in order to refer conveniently 
to the prefix of x which extends up to the member, if any, which 
immediately precedes the (j')^1. With this arrangement, the matching 
in the picture above can be expressed by the obvious lemma below, which 
just expresses the matching of x with its contiguous section in y in 
terms of matching a prefix of x and a suffix of * 

string (x, suf ( y,k-j'+2)) prefix(pre(x,j'), suf(y,k-j'+2)), 

string**(x,y,j',k+l) 

This allows a straightforward S-equivalence substitution in the 
modified procedure to give 
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string**(x,y,j,k) item(u,jrx), item(v,k,y), u?v, j'<*j, 

(k-j+2$k*<k-j'+2 , prefix(x ,suf(y,k*))), 

prefix(pre(x,j'), suf(y,k-j'+2)) f 

string**(x,y,j',k+l) 

Having thus obtained a preliminary procedure which, after a 
mismatch of x. and y , computes a displacement which, with no loss J k 
of solutions, allows x to re-align with y 

'k-j' +2 and resumes the 
comparisons beginning with x and y , it is appropriate to 
consider how the displacement is actually computed in the linear 
algorithm. 

The arrangement proposed by Knuth, Morris and Pratt causes 
the algorithm to refer to a pre-processed data structure which 
effectively tabulates, for each possible combination of pointer j 
and member y , the largest value of j' which makes pre(x,j'-1) a 

JC 
prefix of suf(x,j-j'+2) and satisfies the formula (y=x.t 4 j'>i), 

k j —1 
This data structure can be constructed from knowledge of x alone by 
assuming the possible choices of y to be either those which are 

k 
members of x or those which-are not members of x; Knuth, Morris and 
Pratt have shown that the construction is then achievable with an 
algorithm whose efficiency is linearly dependent upon the length L 
of x. 

The significance of computing j' so as to satisfy the above 
constraints may become appreciated from inspection of yet another 
picture, which depicts the state of the algorithm when a mismatch 
has occurred but the displacement not yet put into effect :-

y • 

k-j+1 
4-

x ; Vv//
h //A 

k-j'+2 
4 

~7~r 
/ / B///.k 

"Mr 

f 
mismatch 

m r n a z j 
4 4 4 
j'-l j~j'+2 j 

light-shaded sections A , B and C match 
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In the diagram of the instant at mismatch, the sections A, B and C 
are identical. B and C match because of the assumption that pre(x,j) 

has already been matched with that part of y with which it aligns. 
A and C match such as to maximize j' (whose least value is I). 
When x is displaced after the mismatch, A becomes aligned with B, 
and x , if it exists, aligns with y , which it matches because 

3 ~1 k 

of the way it is computed in accordance with the Knuth-Morris-Pratt 
rule given earlier. It follows that, after the displacement, 
comparisons can resume beginning with x_.t and y ^ ^ ' maximization 
of j' and hence of the lengths of A and B determines that no potential 
solutions are omitted by the displacement of x through j-j'+l positions, 
since any intermediate solution would obviously imply a non-maximal 
value of j 1. 

Some useful consequences follow from the computation of j1 as• 
just described.. Suppose that the predicate displace(x,y,j,k,j') holds 
when j' is computed as specified above. A call to a procedure for 
displace can be implemented as a look-up of an assertional data 
structure which uses the input x,j and y to determine j' ; this data 
structure can be pre-computed by appropriate bottom-up processing of 
other procedures which implement: the algorithm of Knuth et al. The 
specification of displace(x,y,j,k,j') - requiring jr to be the 
maximum value satisfying prefix(pre(x,j'-l), suf(x,j-j'+2)) and 

(y =x 4 j'>1) - admits simple proofs of the following facts :-
k j —1 

1] 3'^3 4 displace (x,y ,j ,k,j') 

2] ^(3k*)(k-j+24k*<k-j'+2, prefix(x,suf(y,k*))) 

4 displace(x,y,j,kfj'), 

prefix(pre(xrj), suf(y,k-j+l)) 

3] prefix(pre(x,j'), suf(y,k-j'+2)) 

4 displace(x,y,3 fk,j1) r 

prefix(pre(x,j), suf(y fk-j+l)) 

Invoking these by modus tollens in response to the calls of the 
modified procedure then produces the result :-

string**(x,y,j,k) 4 item(u,j,x), item(v,k,y), u?v, 

displace(x,y,k,3'), 

prefix(pre(x,i), suf(y,k-j+l)), 

string**(x,y,j',k+l) 
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One more step is necessary now to turn this last result into 
a useful procedure for the linear string searching algorithm. That 
step has the object of eliminating the call to prefix which still 
remains in that result. The call occurs there of logical necessity, 
since unless it is satisfied the conclusion string**(x,y,j,k) cannot 
be drawn even though the other calls are satisfied. However, the 
context in which this procedure is invoked is such that the predicate 
prefix(pre(x,j),suf(y,k-j+l)) is already satisfied as a result of 
previous successful matching prior to the mismatch . Thus the call 
to prefix is computationally, if not logically, superfluous. The 
way to eliminate the call is suggested by our earlier experience in the 
derivation of the merge-sort. program body, where computationally 
superfluous checks upon orderedness of lists were eliminated by a 
simple transformation. In the present case, it suffices to specify 
a new predicate 

string*** (x,y,j ,k) 4-4 (string** (x ,y ,j ,k) 4- prefix(pre(x,j), 

suf(y,k-j+l))) 

and use this exactly as in the transformation of the merge procedures 
into merge* procedures, thereby giving the final program body for the 
Knuth-Morris-Pratt algorithm apart from the assertions solving calls 
to item and displace'.-

string(x,y) 4- string*** (x,y ,1,1) 

string*** (x,y,j ,k) 4- length (x,w) , j>w 

string*** (x,y ,j,k) 4- item(u/j,x) , 

item(u,k,y), string***(x,y,j+1,k+l) 

string*** (x,y,j,k) -t- item(u,j,x) , item(v,k,y) , ujv, 

displace(x,y,j,k,j') , 

string***(x,y,j',k+l) 

Execution of these procedures by Prolog-like control gives the linear 
algorithm. The algorithm is conventionally programmed such that the 
logic of the two recursive string*** procedures is encoded within a 
single 'next move' function which maps (x,y,j,k) to (x,y,j',k+l), 

where (j,k) identifies the current comparison and (j',k+l) identifies 
the next. An interesting formulation of the algorithm is given by 
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Aho and Corasick (1) who treat the 'next move' function as a 
deterministic finite state automaton which processes the input string 
y as its input tape. They give proofs of some Algol-like procedures 
which construct the automaton from x in time linearly dependent upon 
the length L of x, and then prove that the automaton behaves 
deterministically. Their treatment is more general than the logic 
derivation given here in that their algorithm can deal with a set of 
several keywords simultaneously rather than, as here, just one. 

The Sub-linear Algorithm 

A 
When string(x,y) is solvable, there exists some least k for 

A 
which string(x,suf(y,k)) holds. The Knuth-Morris-Pratt linear 

A 

algorithm finds this solution after exactly (k+L-1) comparisons. 
Here we now consider briefly a remarkable algorithm due to Boyer 
and Moore (6) which finds this same solution with fewer comparisons, 
for which reason it is called the 'sub-linear algorithm*. It also 
has the surprising property that, generally, its comparison count 
decreases with increasing length I of x. 

The essential idea in the sub-linear algorithm is that of 
performing the comparisons in the reverse order to that of the naive 
and linear algorithms. The overall strategy of repeated suffix 
selection and prefix testing is retained, so that each displacement 
of x after a mismatch moves x further towards the right-end of y. 
The particular qualities of the sub-linear algorithm arise partly from 
the special nature of its method of prefix testing (that is, by the 
reversed order of comparisons) and partly from the way in which it 
computes the displacements of x. The logic representation of this 
algorithm can be developed by appropriately modifying the string** 
procedures :-

string(x,y) 4 string** (x,y ,1,1) 

string** (x,y,j,k) 4 length(x,w) , j>w . 

string** (x,y ,j,k) item(u,j,x) , item(u,k,y) , 

string**(x,y,j+l,k+1) 

string**(x,y,j,k) 4 item(u,j,x), item(v,k,y), u^v, 

string**(x,y,l,k-j+2) 
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Recall that the purpose of a call string**(x,y,j,k) is to show, that 
either (xx. , ... ) matches (y , y , ... ) or else x is a 

j j+J. iz x 
string in suf (y ,k-j+2), in accordance with the specifications :-

string**(x,y,j,k) 44-prefix*(x,y,j,k) v string(x,suf(y,k-j+2)) 

prefix*(xfy,k) 44 prefix(suf(x,j) , suf(y,k)) 

When it is required to conduct a prefix test in the reverse order, 
this can be achieved by calling a new procedure string*^(x,y,j,k) 

specified by :-

string^ (x,y,j,k) 44-prefix^ (x,y,j,k) v string (x, suf (y ,k-j+2) ) 

prefix^(x,y,jfk) 44 prefix(pre(x,j+l), suf (y ,k-j+l) ) 

A call string^(x,y,j,k) has the object of showing that either 
(x x. , ... ) matches (y , y ....) or else x is a string in 
j J~1 k k-1 

suf(y,k-j+2). The picture below illustrates the meaning of" 
prefix^(x,y,j,k)• r-

k-j+1 k 

1 iv//////i\ ~ 
- w / / / / / / v \ 

+ \ 
1 j shaded sections match 

» ff : prefix^(x,y,j,k) 

Using the new string^ predicate it is now possible to construct 
procedures directly analogous to those for string**. They are :-

stringfx,y) 4 length(x,w) , string^(x,y,w,w) 

string^(x,y,j,k) '4 j<l 

string^f(x,y,j,k) 4 item(u,j,x) , item(u,k,y) , string^ (x ,y ,j-l,k-l) 

string^(x,y,k) 4 item(u,jfx) , item(v,k,y) , ufv, 

length(x,w) string^(x,y,w,k-j+w+l) 

These can all be derived formally without difficulty. When executed 
to solve string(x,y) their overall behaviour is that of the naive 
algorithm in that they potentially inspect every suffix in y to see if 
it has x as a prefix. The order of comparisons in each prefix test 
is inconsequential as far as the asymptotic behaviour of this 
algorithm is concerned; the worst-case total comparison count continues 
to exhibit worse-than-linear dependence upon Lhe length L of x. 
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Top-down execution of the new procedures has the effect that 
when a mismatch occurs for some pair (x .,y ) then the suffix 

J k 
suf(x,j+l) will have already been matched with that part of y with 
which it aligns. This knowledge is exploited in the Boyer-Moore 
algorithm in such a way that the subsequent displacement of x may be 
more than one position. Suppose then that execution reaches the 
state depicted below, in which such a mismatch has just occurred prior 
to a displacement of x :-

k-j+1 k k-j+L 
1 1 1 

I E Z Z Z Z Z Z Z Z I H Z Z H Z Z "I 

mi smatch < 
II t m y / A - W T & m 

+ i t 
1 j L 

The light-shaded sections B and C match at this point. Moreover, 
let A be the penultimate occurrence, if any, of C in x. If A exists, 
then x can be displaced so as to align A with B without omitting any 
potential solutions. If A does not exist then x can be displaced 
so as to align x w i t h the member of y which immediately follows the 
end of B, again with no omission of potential solutions. In each case 
the comparisons are then resumed beginning with the last member of x. 
Irrespective of whether or not A exists, there is yet another piece of 
information which can be used to decide the optimal displacement. 
Suppose that k" is the maximum position in x less than j(if any) at 
which x ,,-y ; then x can be displaced so as to align x1 „ with y . 

K. K K. K 
If k" does not exist then x can be displaced so as to align x ̂ with 
y . Again, these displacements omit no potential solutions, and 
J\< -L 
are followed by resumption of comparisons beginning at the end of x. 

Boyer and Moore show that x can be pre-processed such that the 
appropriate displacement (which is chosen to be the largest afforded 
by the various choices indicated above) can be looked up in a data 
structure using y as the key. In logic this arranaement can be 

k 

implemented by a procedure call displace^' (x,y,j,k,k'), whose 
specification allows a proof of the sentence :-
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(stringff(x,y,w,k-j+w+l) string^ (x ,y ,w ,k') ) 

4- length(x,w) , 

prefix(suf(x,j+l), suf(y,k+l)), 

item(u,j,x), item(v,k,y), u?v, 

displaced (x ,y ,j ,k,k') 

The antecedent in the lemma above just implies that 
prefix(x,suf(y,k*)) is false for all k* in the range k-j+2$k*<k'-L+l t 

proof of which follows easily from the displace^ specification. 
Consequently the antecedent implies that string^(x,y,w,k-j+L+l) is 
completely investigated by displacing x through k'-(k-j+L) positions 
and then investigating string^(x,y,w,k*). As with the linear 
algorithm, a final transformation is necessary in order to dispense 
with explicitly testing the condition prefix(suf(x,j+l),suf(y,k+l)) 

after a mismatch, since this will have already been ensured by the way 
in which procedure invocation is controlled. By specifying a final 
predicate analogous to string*** as follows :-

stringr+1T(x,y,j,k) 4-y (string^(x,y, j,k) 4- prefix(suf(x,j+l, 

suf(y,k+l))) 

the high-level procedures of the sub-linear algorithm are found to be 
transformed to :-

x 
string(x,y) 4- length(x,w) , string^^(x,y,w,w) 

s t r i n g ^ ^ ( x , y , k ) 4- j<l 

string^^(x,yrj,k) -t-item(u,j,x) , item(u,k,y) , . ' 

stringr+++(x,y, j-l ,k-l) 

string^^(x,y,k) 4-item(u,j,x) , item(v,k,y) , u?v, 

displace"^(x,y, j,k,k*) , 

string^"^ (x ,y ,w ,k') 

The two recursive stringprocedures can be reformulated as 
a single one employing a slightly more elaborate displacement 
procedure which behaves as a deterministic 'next move' generator like 
that used in the Aho-Corasick implementation. It is also worth 
observing that whereas each call to the recursive string*** procedures 
in the linear algorithm increments the suffix pointer k by I, thus 
inspecting every member of y(potentially), this is not true of the 
recursive string1"tf procedures; in general the sub-linear algorithm 



inspects fewer than the first (k+L-1) members of y, and indeed can 
also inspect some of them more than once. Its worst-case behaviour 
is that of the naive algorithm. 



C L O S U R E 

Retrospect 

The thesis set out to show that standard FOPL has a substantial 
and practicable role to play in several important activities 
associated with logic programming. Its usefulness for 
specification, derivation and transformation has been especially 
emphasized and, it is believed, justified by successful application 
to the various examples presented here. We have used FOPL to 
specify the relations computed by programs, to formulate useful lemmas 
about the problem domains of interest and to express the goals of 
procedure derivations. Throughout these applications, deductive 
analysis of relations has been treated as the fundamental business of 
logic program composition as well as of logic program execution. We 
have assumed that future logic programmers can be trained to a 
sufficient degree of competence in logical manipulation to allow the 
expression of such analyses to proceed fluently and naturally. It is 
our confident expectation that such competence could be instilled quite 
easily by virtue of the essential simplicity of first order logic. 
This is not to say that the use of logic in this way will greatly 
diminish the need for serious intellectual effort in the composition 
of programs; rather we expect that the programmer who is already 
capable of formulating intelligent and well-organized ideas about his 
intended algorithms will, after suitable training, find logic to be a 
more satisfactory means of expressing those ideas than conventional 
computational languages. 

Little attention has been given in the present research to the 
prospect of automating syntheses and verifications of logic programs. 
This is not because such a possibility was considered to be either 
unimportant or ultimately unattainable, but rather because it seemed 
more urgent to establish that logic is practicable as a human-oriented 
programming language. Unless its credibility can be proven in this 
respect first, it will attract little immediate attention from the 
existing programming community and so diminish the probability that 



•301 

researchers will become motivated to devise useful mechanized logic 
programming aids. Apart from this consideration, it has to be 
recognized that insofar as many useful logic programs may require the 
inclusion of arbitrarily 'deep' theorems as procedures, the general 
problem of fully automating logic procedure derivation approximates 
to that of automating the derivation of much of mathematics; we cannot 
realistically regard this problem as capable of short-term solution 
given our existing state of knowledge. In view of these considerations 
it appeared a more sensible objective to consolidate a comparatively 
informal and empirical corpus of experience in program derivation 
without demanding rigid adherence to any particular set of derivation 
rules or strategies. Nevertheless it is already clear that there is 
much scope for developing useful mechanized aids for such tasks as 
checking given derivations or interacting with the programmer's 
decisions whilst he chooses amongst alternative paths through the 
derivation search space. Existing aids for deriving programs in other 
formalisms, such as those surveyed presently, will doubtless contribute 
useful strategies for these purposes. 

Related Research 

Although the earlier parts of the thesis have included quite a 
number of citations of related work, it is useful at this concluding 
stage to review in a little more detail those projects undertaken by 
other researchers which afford reasonably close comparison with our own. 
The general field of program synthesis is naturally very wide, but 
discussion is confined here to projects whose object is to provide for 
deductive derivations of programs from complete specifications of their 
computed relations. Therefore we omit comparisons with methods such 
as Kodratoff's (45) in which specifications are incomplete or in which 
the derivation process depends upon highly specialized mathematical 
analyses bearing little relation to the conventional approach to 
program synthesis. 

The early contributions of theorem proving to program synthesis 
have already been surveyed briefly in Chapter 1. The work of Green 
on answer-extraction from resolution proofs formed the basis upon which 
both he and Waldinger subsequently implemented various synthesizers 
capable of generating very simple assignment programs from the bindings 
induced by proofs of their input-output relations. Later on an 
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interesting advance was made by Manna and Waldinger in their discovery 
of the utility of induction axioms over the data domains of interest 
for enabling the construction of recursive and iterative programs. 
At that time they were not particularly optimistic about the prospects 
for autonomous synthesizers. They noted the probable need for 
restrictive strategies in order to control the manipulation of the 
specification axioms, but also recognized the difficulty of designing 
these so as to be sufficiently general to cope with a variety of 
semantic domains. They were aware, too, of the potential usefulness 
of future interactive synthesizers. 

Since these early beginnings, Manna and Waldinger have actively 
pursued their synthesis work at Stanford. Their 1975 paper (61) 
indicates several changes in approach since the 1971 report (60) and 
additionally describes a partially completed implementation. Rather « 
than using FOPL to express program specifications, they choose a 
high-level quasi-procedural language in which to describe the input 
problems to the synthesizer? the language is not defined formally and 
is viewed as arbitrarily extendible by the additions of new general 
constructs and domain-specific notations. This arrangement represents 
a significant departure from their previous use (60) of purely 
descriptive, tightly-formalized axiomatic specifications, although the 
new specification language does admit a certain amount of logical 
symbolism such as quantification and basic connectives. Consequently 
a considerable sacrifice of uniformity and simplicity in both syntax 
and semantics is incurred in their abandonment of FOPL, although it 
might be claimed that their input problem specifications usefully 
suggest initial abstract algorithms awaiting suitable refinements; 
however, we would argue that similar effects could be obtained just as 
convincingly in FOPL through the use of appropriate logical styles. 
The language chosen for the target programs generated by the 
synthesizer is intended to be essentially LISP-like but capable also of 
supporting side-effect mechanisms like destructive assignment. The 
generation of the target programs proceeds incrementally by application 
of various transformation rules which refine the problem description 
through successive stages towards an executable program. The 
transformations are implemented by procedures written in some language 
suitable for encoding reasoning tactics such as QLISP; these are 
summoned by pattern-directed procedure invocation induced by 
sub-expressions of the current problem description, such that the 
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overall effect is to gradually replace descriptive expressions by 
suitable algorithmic constructions. No discussion is given by Manna 
and Waldinger in this paper of what strategic principles are assumed to 
govern the choice of transformations when several are simultaneously 
applicable; intelligent choice in such cases is obviously crucial to 
both the efficiency of the synthesis and the usefulness of the 
output program. 

The transformation rules used by Manna and Waldinger are simple 
and few in number. They provide chiefly for the construction of 
conditionals and recursions, for solution of conjoint goals and for 
introducing side-effects. Their mechanism for recursion construction 
is especially interesting and appears, in one guise or another, in 
various other researchers' synthesis systems. It is invoked upon 
recognition that the current description of the problem's goal 
contains as a sub-expression some substitution instance of the goal's 
definiens, thus allowing that instance to be replaced by an 
appropriately instantiated call to that goal; this clearly results in 
a recursive description of the goal. Manna and Waldinger also employ 
a check to ensure that a computation induced by the recursion will 
terminate by appealing to some well-ordering defined upon its 
argument domain; their transformation process therefore preserves 
total - rather than just partial - correctness. 

Another interesting technique employed in their system is that 
of generalization of specifications. Usually this is summoned when 
it appears impossible to construct certain recursions using just the 
goal predicates or functions initially given; generalization entails 
the reformulation of the goal's description, typically by introducing 
new parameters into it, in such a way as to permit construction of the 
desired recursion. Instances of this have already been seen in this 
thesis. For example, the use of the reverse predicate in Section 6.1 
precludes a recursive description of the list reversal problem in 
which calls to append are absent; but use of the reverse* predicate,* 
which generalizes reverse through the device of an additional parameter, 
does allow such a description. This technique often results in 
improvements to efficiency such as the replacement of recursions by 
iterations. Manna and Waldinger offer some loose guidelines for 
recognizing opportunities for making simple generalizations, but they 
do not yet possess any precise characterization of the technique which 
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would allow either its automatic application or its evaluation in 
terms of computational advantage. In fact the particular kinds of 
reformulations which they examine are just aspects of a much more 
general problem which, in our formalism, is manifested as that of 
choosing the 'right' predicates for problem specification. For 
example, the elaborations of the string predicate used in our 
refinements of the text-searching problem in Chapter 7 entail the 
introduction of new argument structures apparently beyond the scope 
of Manna's and Waldinger's simple generalization technique and yet 
are motivated by comparable intentions, namely•the construction of 
sophisticated recursions whose logic induces special behavioural effects. 
Their paper likewise examines the list reversal problem and also shows 
how the method can be successfully applied to the rather harder problem 
of generalizing a pattern-matching algorithm into an algorithm capable 
of computing most-general unifiers. We concur with their view of the 
importance of gaining an understanding of the underlying principles of 
appropriate predicate formulation in order to allow more intelligent 
syntheses and to clarify the pragmatic distinctions between alternative 
programming styles. 

A more recent working implementation of a synthesis system 
called 'DEDALUS', incorporating the ideas previously described, is 
reported by Manna and Waldinger in a 1977 Stanford Report [Report No. 
STAN-CS-77-630 : "Synthesis : Dreams => Programs"], and a further 
implementation called 'SYNSYS' is reported in their IJCAI-77 paper (62). 
The specification language used there continues to be a somewhat 
arbitrary mixture of logical, mathematical and algorithmic notations. 
The target language is pure LISP (having no side-effect features) and 
QLISP is used to encode more than a hundred transformation rules. They 
regard the system as being essentially 'deductive', although the 
relationships which prevail between their specifications and target 
programs are not those of logical implication as in our own derivation 
methodology. Nevertheless it seems clear that a suitable axiomatic 
formulation of their rules and specifications could be devised so as to 
enable their syntheses to appear as deductions employing logical 
equivalence substitution as the principal refinement mechanism. 

Manna and Waldinger emphasize that they do not have a strong 
prior commitment to any particular specification language or programming 
language. They regard their project as belonging more to research in 
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artificial intelligence than to research in general programming 
methodology, and their interests are primarily in elucidating 
reasoning strategies rather than in advocacy of new programming 
formalisms. However, this is not to say that their approach to 
program synthesis is neutral with respect to the choice of languages, 
since there are several respects in which its development has been 
affected by the particular choices which they have in fact made. 
Firstly, because of their use of different.languages for expressing 
programs and specifications, the transformation rules at the heart of 
their system rely for their justification upon establishing 
relationships between two distinct semantics. Although Manna and 
Waldinger would like to regard their syntheses as 'deductive', the 
deductive relationships actually exploited do not appear explicitly 
in the successive object-level problem representations developed by the 
synthesizer - instead they are only implicit in the 'crossing' axioms 
which have presumably been invoked in order to justify the procedures 
which implement the various transformations. This arrangement tends 
to make the logical basis of the transformations less visible (and so' 
less obvious) than we should ideally desire. Secondly, they recognize 
that program modification represents an important aspect of synthesis, 
so that a comprehensive synthesizer should be capable of accepting 
as input information encoded in the target programming language. 
Insofar as their system already accepts somewhat procedural specifications 
it would seem likely that it could also accept LISP-like programs as 
input and then proceed to modify them, and in fact they do describe 
some hypothetical examples of this. However, such an arrangement 
requires that the semantics of the specification language should fully 
incorporate that of the programming language, and it could be argued 
that the use of a conventional language having semantically awkward 
features like destructive assignment (unlike pure LISP) would make 
the complete formalization of the synthesis system unduly cumbersome. 
Thirdly, their choice of formalism constrains their syntheses to be 
input-output deterministic. Their specifications are functional 
rather than relational and their target programs are function evaluators. 
This means that distinct syntheses are necessary in order to procure 
programs which investigate various input-output arrangements of some 
given relation; by contrast, we often find that a derived logic procedure 
set is suitable for solving different .input-output permutations of the 
goal arguments. 
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The various papers by Manna and Waldinger suggest some ambivalence 
on their part towards adopting a single formalism such as logic. The 
1971 report (60) uses FOPL for specification but not in the way that 
we do, since they employ it primarily to construct theorems expressing 
the existence of solutions satisfying the partial correctness formula 
rather than for simply defining the relations of interest. Their 
more recent specification languages are claimed to include FOPL, yet 
still they clearly do not intend to deploy it in the manner used for 
logic program specification. The 1971 report anticipates the possible 
adoption of partial function logic instead, presumably for both 
specification and target languages, but this idea does not seem to have 
been pursued further. (Interestingly, the contemporaneous work of 
Burstall and Darlington, considered presently, does employ the language 
of recursive functions as a single uniform formalism for program 
derivation.7 In the 1977 Stanford Report cited earlier, Manna and 
Waldinger refer to papers by Kowalski and by Clark and Sickel, but 
mistakenly assert there that logic specifications are restricted to 
clausal form. They question whether logic (clausal or otherwise) is 
sufficiently expressive to serve as a specification language in view of 
its preclusion of the algorithmic constructs used in their own problem 
formulations; but this doubt probably arises because of their different 
conception of logic's role in specification, as they apparently wish to 
make their specifications somewhat algorithmic in character. 

In summary, the work of Manna and Waldinger has usefully influenced 
the approach taken here to logic program derivation in that it has 
helped to clarify the tactics necessary for introducing recursions and 
has confirmed the importance of the generalization technique. Devices 
such as side-effects are, of course, regarded as implementation features 
in our treatment rather than as matters deserving representation in the 
logical development of programs. Their loosely-defined specification 
language appears to be unnecessarily extensive and results in a loss of 
semantical simplicity and uniformity, and we would hope that they will 
eventually reconsider the use of logic as the principal formalism. 

In many ways the work of Manna and Waldinger since the early 
1970*s has been paralleled by that of Burstall and Darlington, whose 
studies of program derivation are described in various papers (9, 10, 19). 
These studies have their origins in Darlington's earlier doctoral 
research into systematic program improvement, and have now culminated in 



•307 

a nicely organized and semantically clear implementation of a system 
capable of transforming programs expressed as sets of recursion 
equations. The notion of syntheses beginning with purely descriptive 
specifications is not prominent in Darlington's approach, which is 
instead essentially directed to the transformation of naive programs 
into more sophisticated ones, using a uniform notation throughout. 
The input equations do, of course, possess a perfectly straightforward 
declarative semantics, being no more than function definitions, yet are 
intrinsically more procedural in character than typical logic 
specifications; for instance, in order to define some function by 
reference to all members of some set, Darlington's formalism must 
resort to a definition which has the appearance of a procedure which 
recursively inspects that set's individual members, whereas in standard 
FOPL we can use a universal quantifier instead and thereby avoid a 

» 
recursive specification. 

Darlington's current implementation accepts an initial set of 
function definitions as input, together with any lemmas which the user 
considers might be useful to the ensuing transformations. The latter 
arise through a succession of rule applications including (i) symbolic 
execution ('unfolding') of the given definitions (treating them 
collectively as a function evaluation program using call-by-name 
invocation) for particular argument instances selected by the user, 
(ii) rewriting definitions using given lemmas and certain built-in 
laws and (iii) replacement of definiens sub-expressions by calls to 
the given functions ('folding'), which is tactically similar to the 
recursion-introduction method of Manna and Waldinger. Some simple, 
general and non-deterministic heuristic algorithms are proposed by 
Burstall and Darlington (10) for scheduling these various phases of 
the transformation process and are shown to be effective for a variety 
of problems such as list reversal, generation of factorial tables and 
comparison of tree frontiers. 

Some reviews by other researchers have mistakenly suggested that 
the implementation described in the 1977 paper (10) is interactive and 
necessarily a program improver. In reality the user has to contribute 
much of the intelligence required for procuring the desired output by 
selecting appropriate definitions, lemmas and instantiations as initial 
input, whereupon the transformations are executed autonomously and 
exhaustively without further user intervention. /"However, it may be 
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the case that Darlington - who continues to implement enhancements -
has since introduced some truly interative capability./ Furthermore, 
as Burstall and Darlington admit, there is no precise reason to expect 
that - in general - their transformations will result in more efficient 
programs, although there are good intuitive reasons for supposing that 
certain steps (like 'folding') are more likely to eliminate 
computational redundancies than to introduce them. 

Burstall and Darlington also recognize the important role of 
generalization and other kinds of redefinition, although, like Manna 
and Waldinger, they have not yet been able to fully characterize or 
automate such capabilities. Altogether the contemporaneous but 
independent approaches taken by these two research groups seem to have 
similar scope and power, and have identified much the same general 
principles underlying the process of transformation by symbolic 
execution. However, Darlington's implementation benefits very 
substantially from his use of a formalism having a simple and precise 
semantics which allows exceedingly transparent application of the 
transformation rules. Moreover, because his function definition 
language can be trivially paraphrased in Horn clause logic, his 
implementation could easily and usefully be adapted as an automated 
aid to logic program derivation, a possibility foreseen some years ago 
by Keith Clark. A particularly interesting feature incorporated by 
Darlington is a built-in ability of the matching routine used for 
'folding' and 'unfolding' to exploit special user-asserted function 
properties like associativity, thereby providing for more sophisticated 
kinds of pattern-directed invocation than that used in this thesis for 
making subformula substitutions - our treatment has explicitly encoded 
such properties as derived lemmas which are summoned just as though they 
were arbitrary specification axioms without conferring any enhancements 
upon the normal matching process. 

The question of whether Darlington's approach could also cater for 
specifications presented in standard FOPL - with the object of 
synthesis 'proper' - is a more difficult one. We know that 'folding' 
and 'unfolding' are just instances of what has been termed herein as 
goal substitution, whilst our goal simplifications are like some of 
Darlington's rewriting laws. However, some of our transformations 
which are performed during logic procedure derivation - such as 
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conditional equivalence substitution - seem to have no counterpart in 
his system, even though they are undoubtedly powerful and frequently-
used devices for invoking facts from the specification set. Further 
studies will have to be pursued before it will be possible to assess 
the applicability of Darlington's implementation to the general 
problem of logic program derivation using standard FOPL. 

Darlington's transformation system does not try to measure or 
compare the computational efficiencies of the programs which it 
generates. By contrast, Wegbreit (86) has attempted to integrate an 
inference system like Darlington's with provisions for analysing 
programs (albeit somewhat superficially) in order to identify sources 
of inefficiency. With these arrangements, an initial input program 
is analysed so as to identify those segments of its text which are 
responsible for redundant computational effort; these segments are » 
then regarded as targets for simplification using rules like 'folding', 
•unfolding', generalization and such-like with the object of improving 
the program's overall run-time performance. On the whole, the kind 
of improvement which can be obtained by Wegbreit's system only requires 
rather modest transformations to the program text and does not involve 
a radical alteration of the overall algorithm structure; for example, 
Wegbreit sees no way of using it to transform a bubble-sort program 
into a quick-sort program. Input programs are presented in a LISP-
like notation which is not greatly removed from Horn clause logic, and 
so it is possible to envisage the application of this simple improving 
system to logic programs. 

A synthesis system of considerable power, called 'PECOS', has 
been implemented at Yale University; a brief outline of its 
capabilities is given by Barstow (2). 'PECOS' accepts some very 
abstract algorithm as an input specification and then generates a tree 
of 'refinement' sequences terminating in INTERLISP programs which 
implement the algorithm concretely; the tree is grown during the 
synthesis by summoning applicable rules from a catalogue of more than 
four hundred, this being an extremely heterogeneous mixture of 
refinement rules encoding knowledge about the logical and implementational 
properties of various classes of algorithms and data structures. 
Operation of the system can be controlled interactively to allow the user 
to decide which derivations in the developing tree are to be continued 
or abandoned. Because the built-in rules are well-informed about the 
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properties of sets, lists, arrays, permutations and orderings, 'PECOS' 
has been able to synthesize a wide range of very concrete sorting 
algorithms. The versatility of 'PECOS' seems to be chiefly 
attributable to its large catalogue of specific rules rather than to 
the use of powerful general strategies. 

An approach to program synthesis which is rather different 
from those previously considered has been taken by Bibel (3) in 
Munich. He uses standard FOPL as a specification language but not 
quite in the way that we do; instead he uses it to construct input-
output specifications like those used by Manna and Waldinger, having 
the general form :-

(Vx3y)(output-predicate(y) input-predicate(x)) 

and thegreby fixes the input-output status of the variables. The 
matrix of a formula like that above is then interpreted by Bibel as 
a definiens for a function which maps x to u. Such specifications 
are intended to be purely descriptive and thus undisposed towards 
any particular algorithms for computing their associated functions. 
Bibel is not especially concerned with the choice of target language 
and resorts to a loosely-defined ALGOL-like notation for the 
expression of his derived programs. Synthesis proceeds by summoning 
a rather curious collection of transformation rules, of which some 
are activated in response to highly specific syntactical structures 
in the definiens being transformed, whilst others are applicable only 
over certain semantic domains such as set theory; it is expected 
(by Bibel) that many more' rules will have to be devised in order to 
provide a reasonably comprehensive synthesis tool. Bibel attaches 
much significance to the precise arrangement of quantification over 
the definiens' variables, associating distinct rules with distinct 
groupings of quantifiers.- Amongst his rules one can discern 
provisions analogous to Darlington's 'folding' and rewriting tactics, 
but it is clear that he does not view his transformations as symbolic 
executions. Some small account is given to matters of efficiency by, 
for instance, comparing the cardinalities of alternative sets to be 
searched, but these arrangements appear to be rather idiosyncratic. 
Bibel also believes that certain sequences of rule application are 
sufficiently powerful to synthesize quite broad classes of algorithms, 
and so his system tends to be rather more deterministic than those of 
Waldinger and Darlington. Altogether it is rather difficult to reach 
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a clear appraisal of the relationship which Bibel's work bears to 
that of the latter researchers or ourselves, since he provides no 
such comparison himself and, in his reports to date, leaves much 
technical and motivational detail unspecified. No implementation has 
been pursued yet, because Bibel has not been able to gain access to 
computer facilities at his own institute. 

The work of Keith Clark is undoubtedly closer to the research 
described in this thesis tJian any of the other projects for program 
derivation previously discussed. Comments upon both his approach and 
his examples appear in earlier chapters and so it is not necessary to 
recount them at length here. Suffice it to recall that he also uses 
standard FOPL for specifying relations and derives logic programs from 
them using inference rules like those of Darlington. Clark's initial 
ideas on program derivation appear in a draft paper for IJCAI-77 (15) 
in which he chooses the subset problem to illustrate logic procedure 
derivation; there he also sketches the relationship between the latter 
and the inductive verification method which he had previously developed 
with Tarnlund. In this draft paper he presents his derivation method 
as one specifically applicable to problems dealing with inductively 
definable sets, but his later papers drop this undeserved emphasis. 
The final IJCAI-77 paper uses a slightly more interesting example of a 
program which assigns a yes/no answer to an output variable in response 
to the question of whether a given element belongs to a given list. 
This example also appears in a rather more lengthy report (12) . In 
that report Clark presents an append derivation and derives a number 
of iterative programs for the fact, reverse and fib relations. The 
append specification which he uses and describes as "intuitively correct" 
is, in fact, erroneous for the same reason as is his perm specification 
in (13) in that, as explained in Chapter 7, it fails to properly 
conserve the multiplicities of list members. /"However, Clark and 
Darlington have very recently revised the paper (13) to give a new 
version entitled "Algorithm Classification Through Synthesis" in which 
they correct their perm specification.7 It is something of an irony 
that proponents of logic programming, including the present writer, 
occasionally present (by accident) confident derivations based upon 
"intuitively correct" but nonetheless erroneous specifications; this is 
a cautionary reminder that the potential clarity of logic does not in 
itself render us immune from the import of Russell's (75) dictum : 
"obviousness is the enemy of correctness". 
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Clark has consistently emphasized his treatment of program 
derivation as symbolic execution, although his presentations of 
examples do not usually expose this theme very clearly and often 
appear somewhat disorganized. This impression is given mainly by 
his seemingly unsystematic treatment of definiens manipulation. 
Admittedly, it is often very difficult to cast the latter convincingly 
into the format of a program execution when using standard FOPL, as 
is reflected by the somewhat non-uniform nature of the inference rules 
used in this thesis. Because FOPL is inherently less uniform than 
the notation of recursion equations, Clark's often-expressed (but so 
far unrealized) intention to implement a practical symbolic executor 
analogous to Darlington's will prove very difficult to fulfil until we 
possess a strong problem-solving interpretation to guide and justify 
all the various syntactical manipulations which FOPL seems to demand. 
Another significant problem confronting implementation of logic 
program synthesizers is that of dealing properly with lemma generation. 
It seems very difficult to organize this as a top-down activity which 
can be assimilated naturally into the main-stream of the derivation 
process. Clark also recognizes that the choice of lemmas and the 
scheduling of their invocations "is vihere some of the cleverness comes 

into the program syntheses"; this is, if anything, an understatement. 
Perhaps one day we shall have inference systems which dispose of the 
need to conduct preliminary derivations of lemmas; the role of lemmas, 
with the question of whether they are really necessary at all, is an 
appropriate topic for future research. 

Neil Murray at Syracuse University has recently reported (63) 
an interesting proof procedure for a quantifier-free subclass of FOPL 
whose inference system he calls "NC-resolution", that is, non-clausal 
resolution. .This is clearly capable of mechanization although the 
choice of practical control strategies for it remains undetermined. 
Murray shows how the inference system (which he proves complete) can 
be used to derive Kowalski1s fact* program from specifications of 
the fact, times and fact* relations, once these have been rewritten 
in his chosen NC-syntax. /"Actually his initial fact specification 
is erroneous due to the omission of an existential quantifier from 
the definiens; fortuitously this does not affect the correctness of 
the particular derivations which he pursues.7 Murray's work provides 
a nicely-judged intermediary between adaptations of Darlington's 
system for Horn clause logic and inference systems for the complete 
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standard formulation of FOPL, and it will be interesting to find out 
how well it deals with more difficult examples. 

Topics for Future Research 

The present project must be seen as only a preliminary exploration 
of logic program derivation, although it has already yielded much 
useful experience and clarification. Many important questions 
remain open to future study. Primarily, we need to investigate more 
thoroughly the question of which kinds of inference consistently 
prove to be the most intuitive and practicable for problems expressed 
in FOPL. Whilst there seems to be little doubt that such inferences 
must entail various kinds of substitutions for definiens subformulas, 
the most desirable preconditions for these substitutions are at 
present unknown. In most of the examples studied so far, which use 
fairly simple rules like conditional and unconditional equivalence 
substitution, it has appeared necessary to engage firstly in a certain 
amount of lemma generation, often with some degree of sacrifice in 
goal-directedness. It is possible that a more thorough study of the 
fundamental logical structure of such examples will suggest alternative 
rules or ways of writing specifications which will allow more clearly 
motivated derivations. This, then, is certainly a matter which we 
shall pursue in the short term : improvements to the inference system. 

We further need a better understanding of logic programs 
themselves in order to discriminate intelligently between alternative 
targets for derivation. Even when the control component is fixed, 
there may exist a number of substantially different logic components 
which, with that control, all give essentially the same algorithm. 
Some of these logic components may be much more difficult to derive 
than others or may require more subtle specifications. It would be 
useful to discover general characteristics of procedure sets which are 
both practicable to derive and efficient to execute. Furthermore, it is 
to be expected that advances in implementation technology will lead to 
interpreters supporting richer control mechanisms than those found in 
the Prolog family. The ability to vary control components adds an 
extra level of complexity to the investigation of alternative programming 
styles. Throughout the thesis it has been assumed that control is 
Prolog-like, because this reflects the current position regarding 
practical program implementation. This must have biased the 
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investigation to some extent in that many of the derivations were 
deliberately steered towards procedures giving useful sequential 
computations. Significantly different assumptions about control 
might have led to different impressions about suitable inference 
systems for procedure derivation. 

At present it is not easy to foresee which control strategies 
will eventually predominate in automatic computation, whether the 
latter be instigated by logic programs or otherwise; future 
developments here depend partly upon which kinds of new processors 
become available. It would seem unduly presumptuous to believe, 
as Luckham and others (56) seem to do, that efficient execution of 
logic programs will require the existing apparatus of conventional 
control constructs, especially at a time when the adequacy of these 
is already being questioned in relation to conventional programs 
and processors. One topic which clearly deserves investigation is 
the nature and derivation of logic programs intended for concurrent, 
rather than sequential, processing. At present there is growing 
interest in the problem of verifying concurrent, but otherwise 
conventional, programs; we may hope to confirm in due courcc that 
their logic program counterparts will prove easier to verify, just 
as is,the case with sequential programs. The advantages of 
separating logic from control can be expected to withstand quite 
radical developments in execution strategies, but this conjecture 
must be tested against experience. 

Although logic programming has been presented in this thesis 
as essentially to do with deductively analysing computed relations, 
it is clear that this activity must be guided by intelligent 
consideration of run-time behaviour. Superficially it might appear 
that FOPL does not provide for explicit representation of that part 
of the programmer's reasoning which deals with assessing the efficiency 
of programs, as though such reasoning were necessarily extralcgical. 
From this viewpoint it might then seem that FOPL was less useful for 
expressing computational knowledge than the various 'algorithmic' 
logics which have been recently developed with the express intention 
of formalizing inferences about computations. An interesting topic 
for research, then, is the comparison of these new formalisms with 
FOPL in order to find out whether the former really can provide the 
programmer with better program-reasoning tools than the latter. 
Kowalski has recently studied the problem of treating FOPL as both 
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object language and metalanguage, using an interfacing predicate which 
explicitly refers to axiom sets, conjectures, proofs and control 
strategies. This interface appears to have considerable power for 
expressing metalogical problems. In particular we can see that it 
might bring deductive reasoning about computations within the ambit 
of FOPL, thus countering the proposition that such reasoning demands 
new systems of logic. Kowalski's research on this topic might 
therefore form the basis for FOPL inference systems which take account 
of computational efficiency as well as ensuring the correctness of 
programs, thereby opening the prospect of a single comprehensive tool 
for reasoning about all aspects of programs. 

We shall continue to use program derivation for the purpose of 
elucidating the logical relationships between members of algorithm 
families. The family of sorting algorithms examined in this thesis 
really encompasses only minor variants of merge-sort. By contrast, 
we already know from Darlington's earlier studies (20) that certain 
other sorting algorithms like bubble-sort involve some subtle 
difficulties not encountered in the merge-sort sub-family, and so these 
certainly deserve future study. The text-searching algorithms 
presented here also need much more scrutiny in order to clarify the 
role of the various lemmas which appeared to be crucial to their 
respective derivations. It is known that Bibel has been recently 
examining this family using his derivation system, and so it will be 
interesting to compare his treatment with our own. Also in Munich, 
Lothar Schmitz (77) has recently synthesized a family of difficult 
transitive closure algorithms (though not using logic) which we may 
investigate in due course. 



G L O S S A R Y 

The meanings of the principal predicates used in the thesis are 
expressed informally below. 

append(x,y,z) 

append*(u,y,z) 

cardin(x,w) 

consec(u,v,y) 

count(y,w) 

delete(u,x,y) 

duplic(x) 

duplic*(x,y) 

elem(u,i,j,x) 

embed(x,y,z) 

empty(x) 

empty-list(y) 

enter(u,v,x,y) 

entry(u,v,x) 

equal(x,y) 

equiv(x,y) 

fact(u,v) 

fib(ufw) 

filter(x,y) 

first(xfu) 

go(x) 

go*(x,y) 

insert(u,xfy) 

item(ufi,x) 

kount(y,w) 

label(u,i,x) 

last(x,u) 

length(xfz) 

lowerbound(u,x) 

appending list y to list x gives z 
appending list y to list (u) gives z 
set x has cardinality w 
element v is consecutive to u in list y 
list y has w distinct members 
deleting element u from list x leaves y 
list x contains duplicates 
either list y contains duplicates or lists x 
and y share a common member 
u is the matrix element x±j 
palindrome x is symmetrically embedded in 
palindrome y to give z 
x is the empty set 
y is the empty list 
y is the set union of {(u,v)} with x 
(u,v) is a member of set x 
lists x and x are equal 
sets x and y are equivalent 
v is the factorial of u 
u is the w1-*1 Fibonacci number 
deleting all duplicates from list x leaves y 
list x has first member u 
node x (in some graph) is reachable 
node y is reachable if node x is 
ordered-insertion of u in ordered-list x gives 
u is the member of list x 
list y has w members 
u is the ith label in the frontier of tree x 
list x has last member u 
list x has length z 
u is a lower bound for set x 

Contd. 



merge(x,y,z) 

middle(x,y) 

min(u,x) 

occurs(ufw,y) 

ord(y) 

palin(x) 

palin*(x,z) 

parti tion(x ,y ,z) 

partition*(u,y,z) 

perm(x,y) 

pick(u,v ,z) 

plus(x^y,z) 

prec(u,v,x) 

prefix(x,y) 

reverse(x,y) 

reverse*(z,x,y) 

same-frontier(x,y) 

select(u,x,y) 

singleton(x,u) 

size(x,i,j) 

smaller(x,y) 

spans(u,v rx,y) 

string(x,y) 

subset(x,y) 

table(x,z) 

table*(x,w,z) 

table**(x,w,v,z) 

times(x,y fz) 

unit-list(x,u) 

union(x,y,z) 

union*(u,y,z) 

uzx 
A 

uzy 
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merging ordered lists x and y gives z 
list y is the middle of list x 
u is the minimum member of set x 
element u has w occurrences in list y 
list y is ordered 
list x is a palindrome 
appending list x to the reverse of list z 
gives a palindrome 
set z is partitioned into sets x and y 
set z is partitioned into sets {u} and y 
list y is a permutation of set x 
u and v are members of set z satisfying u<v 
z is the sum of numbers x and y 
member u precedes v in list x 
string x is a prefix of string y 
list y is the reverse of list x 
appending list x to the reverse of list z gives y 
trees x and y have identical frontiers 
set y is the set union of x with {u | min(u,y)} 
set x is the singleton {u} 
matrix x has i rows and j columns 
all members of set x are < all members of set y 
u and v are respectively members of sets x and y 
string x is a substring of string y 
set x is a subset of set y 
x is the set {(0,01), .(z,z\)} 

x is the set {(w,w\), (z,z\)} 

x is the set {(w,v) , (z,z\)} if wl = v 
z is the product of numbers x and y 
x is the unit list (u) 
z is the set union of sets x and y 
z is the set union of sets {u} and y 
u is a member of set x 
u is a member of list y 
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B I B L I O G R A P H I C N O T E 

A brief guide is given here to the literature of logic 
programming relevant to the thesis. The new reader of this 
literature should firstly consult Kowalski's publications (49,50) 
to learn how problems may be solved using resolution and to gain 
appreciation of the scope and expectations of logic programming. 
This may then be consolidated by reference to van Emden's paper (23). 
Probably the best description of the Prolog system in English is 
that given in Warren's reports (82,83,84,85), based very much upon 
the implementation at Edinburgh University. Practical experience 
with Prolog is described by Bundy (7,8). A readable account of 
logic program execution using connection-graph systems instead is 
presented in an early paper by Tarnlund (79). More recent papers 
on logic programming generally are those by Clark and Kowalski (14,51). 
This covers the principal literature of the general field. 

Papers concerned specifically with logic program derivation are 
those*by Clark (12,13,15) and by Hogger (38,39,40). The paper by 
Clark and Tarnlund (16) is an important contribution to logic program 
verification by other means than derivation. Systems for program 
derivation in other formalisms are described by Manna and Waldinger 
(60,61,62), by Burstall and Darlington (10) and by Bibel (3). 

Helpful textbooks in computational logic are those by Nilsson (67) 
and (especially) by Chang and Lee (11). Kowalski is currently 
preparing a book which revises the original report (49) and which will 
doubtless become a standard text on logic for problem solving. 
Wolfgang Bibel is currently writing a book on the applications of 
logic, and Manna and Waldinger are also preparing a book on program 
synthesis. 
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