
D E R I V A T I O N

O F

L O G I C P R O G R A M S

by

Christopher John Hogger

A Thesis Submitted

For The Degree Of

DOCTOR OF PHILOSOPHY

Of The

University of London

Imperial College of

Science & Technology

1978

A B S T R A C T

Derivation of Logic Programs by Christopher John Hogger

The general theme of the thesis is the treatment of first order
logic as a programming language. The subject is introduced by
describing the way in which Robinson's resolution principle has enabled
the construction of theorem proving interpreters which execute programs
represented in clausal form. Kowalski's procedural interpretation of
logic, %rhich assigns operational significance to various properties of
resolution refutations for logic programs, is then described in detail.
There follows a whole chapter devoted to comparison of programming
styles, discussing examples discovered by other researchers and also
contributing some original ones.

After these preliminaries, the central subject of the thesis is
introduced, namely the utility of the standard formulation of first
order logic as a language for reasoning about the properties of logic
programs. It is shown that clausal form is generally unsuitable for
specifying, deriving, transforming and verifying logic programs, in
contrast to standard logic which is eminently suitable for encoding
the deductions which underlie these tasks.

It is then argued that the use of logic as a general computational
language requires suitable inference systems for relating clausal-form
programs to their properties expressed in standard logic. This leads to
the formulation of a goal-directed quasi-computational inference system
capable of deriving logic procedures from their specifications using just
object level deductions; this is identified as a novel way of unifying
the notions of synthesis and verification within a single technique.

It is shown that the inference system is adequate for deriving
alternative representations of various well-known algorithms and is also
capable of dealing with both procedures and data structures uniformly.
The final chapter exploits the procedure derivation methodology to clarify
logical taxonomic relationships within two algorithm families. Several
sorting programs are derived from a single specification of sortedness,
and several text-searching programs are likewise derived from basic
properties of the substring relation. These derivations illustrate a
number of interesting transformations which the inference system brings
entirely within the scope of logical deduction in order to secure
special kinds of algorithmic behaviour in the derived programs.

To my Parents

ACKNOWLEDGEMENT

I wish to record firstly an expression of appreciation to
Dr. John Munro , Reader in Civil Engineering Systems in my
Department, who invited me to apply for an academic appointment at
Imperial College in 1971. It was his suggestion that I should
undertake research for a doctorate and he has encouraged me to
pursue its completion ever since. I am grateful also for the
assistance which he has recently given me in order to present
aspects of this research at two overseas conferences.

My early interest in computer programming methodology was
much influenced by my contact with Professor M. M. Lehman in
the Department of Computing and Control, who gave me much of his
time during a period when my precise research intentions were
still uncertain. In particular, his own interest in the problems
facing the programming community in the construction of large-scale
software implementation made me aware of some of the fundamental
difficulties in the programming process to whose amelioration
I hoped that my own studies might eventually contribute. During
that time I was especially influenced by the views of other
individuals associated with Professor Lehman's research project,
and especially by Dr. A. L. Lim.

It was not until 1975 that I began to form a special interest
in the development of new programming languages, when it was my
privilege to meet Dr. Robert Kowalski shortly after he took up his
appointment as Reader in the Theory of Computing in the Department
of Computing and Control. Despite my limited background in
Computer Science ana complete inexperience in computational logic,
he very kindly agreed to act as supervisor for the research which
is now presented in this thesis. During the four years that have

passed since that time he has afforded me much advice and encouragemen
and has patiently read and criticized a number of reports on my
preliminary studies.

I have also benefited a good deal from contact with various
members of the Theory of Computing Research Group set up by
Dr. Kowalski soon after his appointment. Keith Clark, in particular,
has influenced my views on several aspects of logic programming
methodology, and I have learnt much from his contributions to that
research group as well as to the published literature. Additional
encouragement was given by Dr. John Darlington, whose fine work •
on program transformation has inspired many research efforts as well
as my own; several of his published examples in this field have been
adapted*in this thesis to the logic programming formalism. My
interest in programming style was particularly heightened by the

o

work of Sten-Ake Tarnlund presented to the Logic Programming Workshop
at Imperial College in 1976, and I was grateful for a recent
opportunity to hold several discussions with him on the progress of
logic as a programming language. Also at that time I enjoyed the
kindness and hospitality of Wolfgang Bibel from the Institut fur
Informatik in Munich whose work is quite close to our own.

Although my own studies have not been directly associated
with any of the external research funding agencies, I should conclude
here by acknowledging the support given by the Science Research
Council to Robert Kowalski's project Predicate Logic as Programming
Languageinasmuch as it has assisted that project, so it has also
assisted those of us who have been fortunate enough to have had our
researches enriched by Robert's vision and inspiration.

i

C O N T E N T S

ABSTRACT

ACKNOWLEDGEMENT
Page

INTRODUCTION 8

0.1 : Background q

0.2% : The Thesis n

Objectives of the Research 11

Contribution of Original Material 13

0.3 : Preview of Contents 14

CHAPTER 1 : THEOREM PROVING AND COMPUTATION &

Preview 19

1.1 : Historical Background 20

Early Objectives and Achievements 20

Theorem Proving and Conventional Programming 22

The Origins of Logic Programming 23

1.2 : The Resolution Principle 24

Validity and Undecidability 24

Unsatisfiability 25

Clausal Form Logic 25

Horn Clause Logic 26

Unification and Resolvents 27

The Empty Clause 28

The Resolution Theorem 28

Resolution Derivations 29

Proof Procedures 29

Completeness and Correctness 30

2

1.3 : Computation Using Resolution 30

Computation and Algorithms 30

Output from Computation 31

Non-determinism of Logic Programs 31

CHAPTER 2 : FUNDAMENTAL FEATURES OF LOGIC PROGRAMS 32

Preview 32

2.1 : The Syntax of Logic Programs 33

Vocabularies for Syntax and Metasyntax 33

Presentation of Logic Programs 34

Syntactical Classification of Clauses 34

2.2 : The Semantics of Logic Programs 34

The Operational Semantics 34

The Model-theoretic Semantics 35

The Fixpoint Semantics 35

2.3 : The Procedural Interpretation 36

Program Goal 36

Program Body 36

Procedure Calls 37

Procedure Definitions 37

Activation of Procedure Calls 37

Activation of Procedure Definitions 33

Procedure Invocation 38

Transmission of Data 38

An Example of Top-down and Bottom-up Computation 39

Scheduling of Calls and Procedures 40

2.4 : Logic Interpreters 42

Prolog 42

LIFO Scheduling of Procedure Calls 43

Scheduling of Procedure Definitions 45

Enhancements to Interpreters 43

3

CHAPTER 3 : LOGIC PROGRAMMING STYLE 51

Preview 52

3.1 : Logic and Control 54

Dependence of Behaviour upon Logic and Control 54

Iterative and Recursive Procedure Invocation 57

Quasi-bottom-up Computation 59

Exploiting Unification $3

Control Calls $5

Control Arguments 68

3.2 : Data Structures 71

Terms and Procedure Definitions as Data Structures 71

t Data Access 74

Data Abstraction 84

CHAPTER A : REASONING ABOUT LOGIC PROGRAMS 89

Preview 89

4.1 : Limitations of Clausal Form 92

Expression of Computational Problems 92

Reasoning about Programs 94

4.2 : Termination of Logic Programs 96

The Termination Criterion 96

Proving the Termination Formula 99

4.3 : Specification of Logic Programs 100

Logic as a Specification Language 100

The Meaning of Logic Program Specification 101

The Need for Independent Specifications 103

Specification Style 106

Non-computational Disposition 106

Non-recursiveness 108

Use of Primitive Relations 109

4

4.4 : Verification of Logic Programs 222

The Partial Correctness Criterion 221

Proving the Partial Correctness Criterion 123

4.5 : Synthesis of Logic Programs 225

Synthesis by Procedure Derivation 225

Derivation as Quasi-computation 120

CHAPTER 5 : DERIVATION OF LOGIC PROGRAMS 225

» Preview 225

5.1 : Motivation and Organization of Derivations 229

, Motivation 129

Methodological Principles 132

Hierarchical Program Development 134

Choice of Specification Set 136

Implicit Specification Axioms 13s

Objectives of Derivations 139

Inference Rules for Procedure Derivation 140

5.2 : Goal Simplifications 142

Deletion of an Implied Call 142

Deletion of a Valid Call 143

Distribution of Connectives 144

Distribution of Quantifiers 147

Deletion of Quantifiers 148

5.3 : Goal Substitutions 149

Inference Rules for Goal Substitution 150

Modus Toll ens 150

Transitivity of Implication 152

S-Equivalence Substitution 152

S-Conditional-Equivalence Substitution 154

Conditional Transitivity of Implication 155

Summary 156

Combining Simplification and Substitution 157

5

5.4 : Some Techniques for Procedure Derivation 260

Derivation of Recursive Procedures 160

Derivation of Basis Procedures 166

Completeness of Derived Procedure Sets 171

5.5 : Derivation of Data-Accessing Procedures 173

Procedures for Accessing Terms 173

Procedures for Accessing Assertions is2

CHAPTER 6 : EXAMPLES OF DERIVED PROGRAMS 188

Preview 286

6.1 t Programs for List Reversal 290

Specifying the Problem igo

The Recursive Reversal Program 190

Iterative Reversal Programs 194

6.2 : Searching Lists for Duplicates 201

Specifying the Problem 201

The Naive Algorithm 201

The Improved Naive Algorithm 202

The Length-independent Algorithm 205

6.3 : Generation of Factorial Tables 211

Specifying the Problem 211

Quadratic Anti-natural Ordering Algorithm 212

Linear Anti-natural Ordering Algorithm 215

Quadratic Natural Ordering Algorithm 217

Bi-linear Natural Ordering Algorithm 218

Linear Natural Ordering Algorithm 220

6.4 : Comparison of Tree Frontiers 222

Specifying the Problem 222

The Conventional Algorithm 223

6

6.5 : Summation of Matrix Transverses 230

Specifying the Problem 230

The Serial Summation Algorithm 232

The Quasi-parallel Summation Algorithm 234

6.6 : The Eight Queens Problem 239

Specifying the Problem 239

Program for the Eight Queens Problem 241

CHAPTER 7 : TRANSFORMATION OF LOGIC PROGRAMS 245

Preview 245

7.1 : Logic Programs for Sorting 247
i

Sorting and Logic Programming 247

The Naive-Sort Algorithm 248

The Merge-Sort Algorithm 255

The Quick-Sort Algorithm 264

The Insert-Sort Algorithm 267

The Selection-Sort Algorithm 267

7.2 : Logic Programs for String Searching 273

The String Searching Problem 273

The Naive (Quadratic) Algorithm 274

The Simplest Representation 277

Explicit Control of Suffix Selection 280

Explicit Control of Comparison Positions 283

Explicit Suffix Selection Using Pointers 287

The Linear Algorithm 288

The Sub-linear Algorithm 295

CLOSURE : 300

Retrospect 300

Related Research 301

Topics for Future Research 313

GLOSSARY :

BIBLIOGRAPHIC NOTE

REFERENCES :

I N T R O D U C T I O N

0.1 : BACKGROUND

Ever since the earliest developments of methods for programming
computers through the use of symbolic input, computer scientists have
been centrally concerned with the practical and theoretical attributes
of the great number of programming languages which have been designed
and implemented since that time. As the practice of professional
computer programming has become ever more sophisticated and subject
to increasingly stringent constraints upon the various parameters of
program quality, so the demands made upon the designer of new
languages have become more challenging. There are, of course, many
differing views as to the ideal resources which a programming language
ought to provide, even in respect of a particular problem domain.
Yet it would seem unlikely that one could find serious dissent from a
general goal of language design expressed more than thirty years ago (64)
by, most fittingly, John von Neumann : that is, to provide the
programmer with :-

" An effective and transparent logical terminology or
symbolism for comprehending and expressing a particular

problem, no matter how involved, in its entirety and in

all its parts; and a simple and reliable step-by-step

method to translate the problem (once it is logically

reformulated and made explicit in all its details)

into the code,"

Computer programmers are still waiting for a transparent logical
terminology like that advocated by von Neumann. In general, the
languages which they employ scarcely differ, in any fundamental sense,

from those used in the earliest days of computing. There are
naturally many differences between their respective ways of describing
a computational process intended to solve some problem of interest.

Yet their underlying philosophy is, for the most part, to describe
a process rather than a problem. Consequently their semantics are
specified in terms of the behaviour of abstract machines rather than in
terms of what facts hold about the problem domain and about the
particular problem at hand. These languages, then, share what
might reasonably be regarded as an intrinsic incomprehensibility,
in that they say very little that is explicitly meaningful about
the problem, with the results that are now well documented within
the annals of software practice : programs which are unclear,
incorrect and resistant to confident modification.

The manner in which programmers actually do accomplish the
composition of apparently correct programs is largely mysterious,
even to themselves. We know that an Algol programmer can be asked
to write a matrix multiplication routine and report back with the
result within our lifetimes even though he may afterwards admit
that he has conducted no logical analysis of the program, during

or after its composition, which associates its construction with

the meaning of matrix multiplication. His apparent success is
due to substantial intuitive skills which enable him to bridge
the two semantics which are associated, respectively, with the way
his program describes a computational process and the way his
specification describes a fact about matrices. If those skills
were wholly reliable then we would hear much less controversy about
language design and programmer education; in reality, of course,
those skills are highly fallible because they are not well-founded.

It has been interesting to observe how, in the last decade,
much greater emphasis has been placed upon the logical content of
programs than hitherto. This can be observed especially in the
proposals which have been made for the formal analysis of programs,
where the objective is to show by sound deduction that a given
program will compute some specified relation. It may also be seen
in the development of informal methodologies such as structured
programming which encourage programming styles intended to clarify
the logical content of programs. These developments represent
what we can interpret as successive approximations to von Neumann's
ideal, namely the role of logic as the central system of reasoning
in the programming process, rather than as just a peripheral tool.

10

The explicit manifestation of this role of logic has so far been
mainly observed in its use as a specification language for
conventional programming. Even in this respect it is scarcely used
at all outside academic computing circles. This may be because the .
great majority of programmers are not logically literate, rather
than because of the poor state of development of analytical devices
such as program verifiers; if the importance of logic as a program
reasoning tool was given greater emphasis in programmer education
then more significant advances could be expected to follow in the
provisions for assimilating its use into normal programming practice.

It is only comparatively recently that an even more interesting
application of logic to programming has arisen, namely its use as a
source language capable of automatic interpretation. This possibility
has come about as a result of progress in mechanical theorem proving
together with the creation of a. remarkable procedural interpretation of
first order logic developed by Robert Kowalski. During the last
five years this interpretation has been used to establish a sound
and convincing computational theory of 'logic programming', and has
been implemented in a number of practical interpreters for logic
programs. The most outstanding feature of logic as a programming
language is its semantical independence of any execution mechanism
conjoined with the fact that the source program statements which
it affords comprise explicit assertions about the problem domain and
the particular problem of interest; in other words, a logic program
is meaningful in terms of the problem rather than in terms of the
execution which will subsequently solve it.

It would be wrong to suggest that because the logic programmer
can express the logical content of a computational problem explicitly
that for him the question of correctness is inconsequential.
Suppose, for example, that he required a program capable of deleting
all occurrences of a member u from an input list. Then for
computational purposes he might compose the following program
statements :-

delete(u, u.nil, nil)

delete(u, v.x, v.x') u^v, delete(u, x, x')

11

Informally, these say that the result of deleting u from the unit
•list (u) leaves the empty list, whilst deleting u from a list which
appends a list x to a unit list (v) such that u^v is just the result
of deleting u from x to leave x' and finally appending x' to (v) .
We may ask whether this truly captures the notion which we associate
with the symbol delete. Intuitively that notion requires that
the members of the output list shall be exactly those of the input
list other than u , and that they shall retain the same relative
•ordering in the output as they had in the input. Can it now be
asserted with confidence that this coincides with, or is at least
consistent with, the assertions made in the logic program ?
Such questions are the concern of a fairly recently developed theory
of logic program analysis, within which the concepts of termination,
verification, synthesis and transformation are formulated upon a
coherent logical foundation. The principal intention of the
research reported in this thesis has been to contribute to this
theory and to demonstrate its practical application.

0.2 : THE THESIS

Objectives of the Research

The purpose of the present work is to formulate and justify
the concept of logic procedure derivation in support of the thesis

THESIS : .

1. The need for independent program specifications

prevails in logic programming to the same extent

as it does in conventional programming.

2. First order predicate logic provides an attractive

specification language as well as a programming

language.

3. First order deduction is sufficient for analysing

relationships between programs and specifications.

4. Such analyses are practicable as well as theoretically

well-founded.

12.

Logic procedure derivation refers to the task of showing that
the statements (procedures) comprising the body of a logic program
are true theorems about the problem domain implied by a first order
axiomatic formulation of the problem which constitutes the program's
specificati.on. In practice this just amounts to constructing a
series of deductions (a derivation) which treats the sentences in the
specification as assumption formulas in order to prove each statement
in the program. Because logic is a non-deterministic programming

. language, proof of each statement is logically independent of proofs
of the other statements, and furthermore is independent of any
assumptions about the behaviour of the program in execution; these
circumstances confer a dramatic distinction between proofs of logic
programs and proofs of conventional programs.

It is not only our purpose here to investigate the problem of
verifying programs, important as this is. Logic procedure derivation
can also be interpreted as synthesis (when the axioms used comprise
just a naive specification) or as transformation (when the axioms

.comprise some other logic program's procedures, perhaps together with
some other general facts about the problem domain). All these tasks
are unified by their formulation in terms of proving computationally
useful theorems implied by suitable axiom sets. Consequently it is
reasonable to suppose that all may be accomplished through the agency
of a single inference system for first order logic, and one of the
intentions of the research reported here is to provide empirical
evidence that this is indeed the case. Moreover, program transformation
does not necessarily entail algorithm transformation; very often we
may wish to modify the way in which a given logic program expresses
the logic of some particular formulation of the problem at hand,
perhaps with the object of exploiting an alternative control mechanism
in the intended interpreter, or perhaps in order to obtain clearer logic.
This may result in essentially the same algorithm (that is, run-time
behaviour) but a substantial change in programming style. A variety
of programming styles had been identified by other researchers before
the present undertaking, and it is hoped that the latter will afford
some clarification of the logic which underlies these kind of
transformations.

13

Contribution of Original Material

There are two senses in which the author hopes that the thesis
will afford evidence of an original contribution to the field of
logic programming. Firstly, a great deal of work has been pursued
by several other researchers on the methodology of logic programming
since the inception of the discipline around 1973-74. Much of this
remains unpublished or even undocumented in any comprehensive way,
being disseminated amongst the various groups involved only through
informal exchanges. It is true that there do exist a number of
very useful reports explaining the computational theory of logic
programming, amongst which are some fine publications by Kowalski,
van Emden, Warren, Clark and Tarnlund; all of these are cited in the
thesis and salient features from some of them are discussed here in
detail. However, as far as the author is aware, no comprehensive and
completed report describing the methodological advances in the last
two years has yet been released. This is not to imply that the
thesis captures the major part of those advances, but a considerable
effort has nevertheless been made to do justice here in reviewing
the contributions of others which have an especial bearing upon the
central themes of the thesis. It should be mentioned also that new and
substantial contributions to the literature of logic programming may
soon be expected from Kowalski, who is preparing a book on the subject,
and from Clark, who will doubtless be documenting his many researches
in the field in his own forthcoming doctoral thesis Predicate Logic
as a Computational Formalism. Jointly these should provide a fairly
complete and up-to-date account of the work at Imperial College on the
analysis of logic programs.

Secondly, all of the contents of Chapters 5, 6 and 7, together
with parts of Chapters 3 and 4, are offered as the author's independent
studies in logic programming methodology. The foundation for that
material is established in Chapter 4 which explains the motivation and
theoretical justification of logic procedure derivation. It must
be declared that the concept of procedure derivation was also developed
independently and contemporaneously by Clark, although our approaches
to the technique have always differed. Clark's approach is very
much aligned with that of Darlington's transformation system for sets of
recursive function definitions in its emphasis upon that systems's

14

special rules for definiens substitution and its primary goal of
securing recursions. The treatment of procedure derivation given
here, by contrast, is more general in character and employs inference
steps which are capable of a broader interpretation than those deployed
in Clark's analyses. However, both of us were initially much
influenced by Darlington's work, and it is additionally likely that
the prospects of procedure derivation were anticipated long before
by Kowalski. Chapters 5, 6 and 7 describe, respectively, the rules
of inference identified by the author as having especial utility in
the manipulation of standard logic in the course of deriving logic
procedures; a collection of reasonably simple examples which may be
viewed either as verifications or as syntheses; and two rather more
concentrated studies of algorithm families intended to show the «
.usefulness of the technique for program transformation.

0,3 : PREVIEW OF CONTENTS

Each chapter has been given its own preview in order to outline
its essential contents, and so it is unnecessary to give a great
deal of introductory detail here. Broadly the thesis can be viewed
in four parts. The first of these is principally a survey of the
general state of development in logic programming and spans
Chapters 1, 2 and 3. Chapter 1 briefly surveys the contribution
which theorem proving has made to computer programming, and explains
how the theory of resolution proofs enabled logical deduction to be
viewed as computation. The practical possibilities of resolution
theorem proving for constructing conventional programs were examined
in detail by Green, but it was Kowalski who formulated the procedural
interpretation of logic which enabled resolution proofs to be treated
as computations in their own right, thus establishing logic as a
viable source programming language. Since resolution provides, the
basis of the current view of logic as a programming language, its
relevant features are presented in Chapter 1. There, the syntax
known as clausal form is introduced and used to illustrate the
meanings of unification, resolution and refutation derivation which
underly the operational meaning of logic programs. Finally a very

15

brief indication is given of the meanings of computation, algorithm,
interpreter, output and non-determinism in terms of the proof-theoretic
features of resolution.

Chapter 2 provides a more detailed description of the syntax,
semantics and pragmatics of logic programs, together with some
notaticnal conventions adopted throughout the thesis. The procedural
interpretation is presented and illustrated by an example. Here
it is shown how mechanisms such as call activation, procedure invocation
and data transmission can all be defined in terms of refutational
theorem proving. The principal features of logic program interpreters
are also introduced together with a detailed example which illustrates
the significance of scheduling strategies. The chapter closes with
a survey of some of the refinements which have been considered in
order to improve upon the primitive default control mechanisms found
in the Prolog-like interpreters commonly used at present.

Chapter 3 assumes that the essential theory of logic programming
is understood, and proceeds to compare alternative styles in the
.composition of programs. The separation of logic from control is
emphasized as the outstanding feature of the formalism, offering* the
programmer various ways of mixing those components in order to secure
different algorithms or different representations of a given algorithm.
Discussion is given of various kinds of procedure invocation, such as
iterative and recursive mode, and different kinds of call activation,
such as sequential and coroutined mode. It is shown how these kinds
of behaviour may be procured through the agency of either explicit
control mechanisms or special styles in the construction of the logic.
Some rather exotic styles are demonstrated which enable top-down
execution to emulate bottom-up execution, and an example is given of
the application of this to the linear mathematical programming problem.
There are many other special behavioural effects which can be induced
through the correct choice of logic, and a few of these have been
singled out for consideration here; many more will appear in later
chapters. The important contribution of data structure choice to
both programming style and computational efficiency is reviewed in the
last section of Chapter 3. A wide selection of examples is given to
show the effects cf choosing different kinds of functional terms and
sets of assertions, affecting, for instance, the question of whether

16

data can be retrieved by direct access or computed access; whether
.procedures can be invoked recursively or iteratively; and whether
the accessing programs can be macroprocessed using appropriate data
selector procedures.

The second part - Chapter 4 - deals with some of the techniques
for reasoning about logic programs. Arguments are presented to
justify the need for the standard formulation of predicate logic as
a reasoning tool in addition to clausal form logic for mainly

^^•computational purposes. The early work by Clark and Tarnlund on
termination and verification is given there together with some examples.
A complete section is assigned to the discussion of the meaning of
specification for logic programs, together with some conventions
adopted for good specification style. The new technique of verification
by procedure derivation is outlined in a section giving its theoretical
justification and arguing its practical merits. The author's goal-
oriented quasi-computational derivation style is presented there as
the basis of the inference rules developed later on.

The third main part of the thesis is contained in Chapter 5.
This explains the fundamental features and assumptions in the author's
use of procedure derivation for analysing logic programs. Guidelines
are given there for the composition and style of specification sets,
together with some suitable conventions and terminology regarding the
logistical aspects of the methodology. The two principal classes of
inference rules are described in detail, explaining their differences
and their cooperative interleaving during the derivation process.
The most important rules for goal transformation - modus tollens,

equivalence substitution and conditional equivalence substitution - are
particularly emphasized. A complete section then surveys various
ways in which the inference rules procure the derivation of typical
recursive procedures and their bases, and the similarity of some of
these applications to the Darlington transformation system is observed.
The final section shows how the rules also apply to the derivation of

• low-level data accessing procedures, dealing firstly with access to
terms and then with access to assertions; the latter discussion shows
an interesting and instructive derivation which develops a list accessing
procedure through several levels of abstraction.

17

The final part of the thesis comprises Chapters 6 and 7 which
present examples of the application of procedure derivation. Chapter 6
examines six computational problems, developing various programs for
them in the spirit of program synthesis. The first problem is the
familiar one of list reversal, and derivations are given of both
iterative and recursive programs. The second problem is that of
searching a list for duplicates, and three algorithms of differing
efficiencies are examined. The first effectively employs two
independent iterative loops, the second makes the range of one of those
loops dependent upon the progress of the other, and the third makes
use of a stack to record the discovery of distinct members; all of these
differing behaviours are secured by deriving appropriate procedures
for a fixed control strategy. The next example deals with the generation
of factorial tables, which may be computed either iteratively or
recursively, with or without redundant multiplications and in either
the natural order or the reverse order; again, all these behaviours
are obtained satisfactorily using the derivation methodology. The
problem of comparing the labelled frontiers of two binary trees is the
subject of the fourth example, which exploits a simple associativity
argument in order to secure the well-known but subtle algorithm which
cooperatively transforms the trees in order to compare their first
frontier labels. The fifth example is a simple addition problem over
the elements of a matrix, but makes use of an interesting technique
related to one of Kowalski's programming styles in order to develop an
algorithm which computes a list of sums in quasi-parallel, in contrast
to the naive but less efficient algorithm which computes the same sums
sequentially. The final example is just the familiar eight queens
problem. This was the first problem in logic programming ever studied
by the author, and due to the attractive simplicity of its logic
representation deserves a place in the thesis.

Chapter 7 is concerned with program transformation within two
families of algorithms. The first section discusses the simplest
sorting algorithm - 'naive-sort' - and derives its logic component
from first principles. Then it is shown how additional information
about the constructibility of lists enables an alternative derivation
of 'merge-sort'. A series of transformations are shown which transform
'merge-sort' into 'quick-sort', 'merge-sort' into 'insert-sort' and
finally 'quick-sort' into 'selection-sort'. All of the transformations
use just the same inference rules as used for synthesis from basic

18

specifications. The final section considers rather more difficult
algorithms intended for solving the 'text-searching problem. Several
interesting alternative representations are given for the naive
algorithm in increasing order of sophistication, until reaching one
which can be transformed into either the linear Knuth-Morris-Pratt
algorithm or the sub-linear Boyer-Moore algorithm. Whilst logical
analyses of sorting algorithms have been developed by other researchers,
the logical unification of the text-searching algorithms given here is,
as far as the author can ascertain, a new contribution to the taxonomic
analysis of that family.

The thesis is closed with a discussion of some related work by
other individuals, not all of them using the logic programming
formalism, and some views are given on the prospects of developing
automatic tools for assisting derivations. Some suggestions are
finally made concerning possible expectations for logic procedure
derivation in the light of the experience described by the thesis.

19

C H A P T E R 1

T H E O R E M P R O V I N G

A N D

C O M P U T A T I O N

PREVIEW

The central thesis of the logic programming formalism is that
logical inference is amenable to a useful computational interpretation.
That this concept can now be realized in terms of practical tools allowing
-the implementation of logic as a programming language is due to the
successful results of research in automatic theorem provinq. More
specifically, the theory of logic programming is intimately associated
with the theory of resolution proofs for first order logic. The first
section of this chapter therefore begins with a brief account of the
progress in automatic theorem proving which led up to the discovery of the
resolution principle, and explains how this progress became relevant to
the interests of computer programmers.

Amongst the early applications of resolution in connection with
computer programming were implementations capable of synthesizing simple
conventional programs from specifications expressed by axiom sets. In
certain respects these might be viewed as the precursors from which
present-day logic program interpreters evolved. However, the
intelligibility of logic as an executable programming language came about,
not through advances in implementation technology but rather through the
development of a convincing procedural interpretation of predicate logic.
In order to properly appreciate the basis of this procedural interpretat-
ion it is firstly necessary to understand a limited part of the theory of
resolution. The latter is briefly reviewed in the chapter's second
section which introduces the notions of clausal form, unsatisfiability,
unification and refutation derivation.

The final section then outlines the.way in which various features

20

of resolution derivations can be interpreted computationally, thereby
justifying the view of logic as a (non-deterministic) programming
language capable of efficient implementation.

1,1 : HISTORICAL BACKGROUND

Early Objectives and Achievements

The study of automatic theorem proving during the last three
,-decades reflects much earlier aspirations towards the systematization of
mathematical proof. It is not surprising, then, that the earliest
programmed proof procedures developed in the 1950's were applied most
notably to mathematical theorem proving. This research was motivated 'by
the hope that computers would provide proofs of significant theorems
which would be too lengthy or too difficult to be undertaken by non-
mechanical procedures. Computers could then be expected to accelerate
the pace of mathematical discovery.

Apart from potentially contributing to the extension of mathemati-
cal knowledge, automatic theorem proving has also assumed importance in
those aspects of the study of artificial intelligence which deal with the
manipulation of knowledge by logical inference. There it has been
successfully applied to such tasks as question-answering, game-playing
and state-space problem solving. Theorem proving has proved useful in
these various applications in consequence of the sufficient expressiveness
of logic for representing knowledge and the efficacy of logical inference
for processing it.

The first significant implementation of a theorem proving program
was achieved by Newell, Shaw and Simon (65). This program was called
the 'Logic Theorist' and was intended for generating proofs of formulas
in the propositional logic. It was successfully used to prove various
theorems selected from Principia Mathematica by goal-directed problem
reduction. The Logic Theorist was later assimilated into the general
problem solving system 'GPS' developed by Newell and his co-workers (66).

Propositional logic is too restrictive to serve as a convenient
language for representing mathematical knowledge due to its lack of
quantification. Most effort in automatic theorem' proving has therefore
been concentrated upon first order predicate logic (FOPL), which is
adequate for representing all mathematics derivable from set theory.
Some of the earliest algorithms for proving theorems in FOPL were proposed
by Quine (69) and by McCarthy (58). McCarthy's paper outlined a proposal

26

for the construction of a theorem proving program called 'Advice Taker'
whose fundamental inference system combined modus pcnens with substitut-
ion of terms for variables. However, its intended capabilities could be
enhanced by the user's provision of 'common sense'heuristics to guide the
interrogation of an axiomatic data base describing the chosen problem,
domain. Implementation of this program was subsequently undertaken by
Black (4) who incorporated its essential ideas into a question-answering
system. This system was able to solve some problems posed in preposit-
ional logic which had formerly defeated the 'Logic Theorist', but was
nevertheless too inefficient to serve as a general purpose theorem prover

By 1960 interest was growing in the search for uniform syntactical
methods for proving theorems in FOPL, with the object of eliminating
reliance upon semantic heuristics and other domain-specific devices
designed for controlling theorem provers efficiently. Both Wang (81)
and Gilmore (27) contributed programmed proof procedures for FOPL based
solely upon syntactical rules. The behaviour of their programs, however
exhibited exponential dependence upon structural features of the input
formulas representing the 'target' theorems, thus rendering the programs
too inefficient for general application. A considerable improvement in
performance was provided soon after by Davis and Putnam (21), whose
program generated proofs with lengths only linearly dependent upon the
number of variables in the input formulas. Nevertheless, each step in
the proofs computed by it incurred a considerable computational burden,
and Robinson (72) soon demonstrated some very simple formulas for which
the Davis-Putnam program was quite infeasible.

It was not until 1965, when Robinson (73) published his discovery
of the resolution principle, that efficient FOPL theorem provers appeared
imminently feasible. Undoubtedly resolution provided a much stronger
inference system than had been previously available; yet the problem of
efficiently "controlling the generation of proofs remained. There has
subsequently been a great deal of investigation of heuristics for control
ling resolution proofs, but not with sufficient success to fully realize
the hopes of the mathematical theorem proving schools for efficient
autonomous provers of 'hard' theorems. Despite this, resolution has
contributed significantly to more specialized applications in computer
science such as logic programming and the logical analysis and synthesis
of conventional programs, wherein the necessary proofs are comparatively
modest and (generally) foreseeable.

22

Theorem Proving and Conventional Programming

Computer scientists became especially interested in formalizing and
proving properties of conventional programs after Floyd (26) showed how
FOPL could be used to provide an axiomatic definition of their meaning.
Although Floyd's proposals were focussed mainly upon the formalization
of program semantics, they also provided an operational technique for
proving programs to be correct with respect to axiomatic specifications.
The progress of automatic theorem proving then became a matter of interest
to the general programming community. King's thesis (42) describes a
general purpose verifier for proving assertions describing flowchart
programs. Program proving has since been investigated with great vigour
and has an extensive literature; a good overview of the earlier work is
given by London (55), and a more technical and up-to-date account by Katz
and Manna (41). Despite the continuing interest in program proving
amongst computer scientists, however, it would seem that programmers as a
whole do not yet consider it a viable means of verifying their own 'real-
world' programs. Generally they resort to testing methods instead.
There are several factors contributing to this attitude, some of which are
due to matters of programming psychology (described, for example, by
Dijkstra (22)), whilst others may be due to insufficient appreciation of
what can already be achieved with the verification tools now available.
Underlying these factors is the fact that programmers do not normally
view logic as the essential substance of their discipline, and so tend
to be unconvinced of its usefulness. Nevertheless it would appear that
computer-aided axiomatization and proof of conventional programs will not
be capable of realistic assimilation into everyday programming practice
until substantial improvements have been made in both programming
languages and the styles in which their resources are deployed; these
improvements will be necessary irrespective of the extent to which
programmers are educated in the theory and pragmatics of logic.

Complementary to the task of proving that a given program conforms
to some specification is the task of deriving the program from that
specification. This process of program synthesis has also been studied
with the aid of theorem provers. Green (30) has shown how a conventional
assignment program can be constructed by examining the bindings of terms
to variables in a resolution proof whose target theorem describes the
program's intended input-output relation. The recovery of these bindings
is the essence of the answer-extraction process which enables resolution
to be used as a computational tool. Answer-extraction is dealt with in
detail in Green's thesis (29) in connection with his work with Raphael

23

on the first implementation of a resolution theorem prover (28) as a
question-answering system. A particularly good account of program
construction by resolution is included in the book by Chang and Lee (11).
Synthesis of conventional flowchart programs from resolution proofs was
subsequently investigated by Lee and Waldinger (53) . Their 'Prow*
program-writing system suffered, like Green's system, the limitation of
being unable to construct loop-containing programs. Methods for loop-
construction were soon developed by Manna and Waldinger (60) by admitting
induction axioms to the axiom set specifying the desired program.

The Origins of Logic Programming

Logic programming, which refers to the use of logic as a source
programming language, has developed largely from progress in automatic
theorem proving. In particular the current treatment of FOPL as a
programming language derives from the computational features of resolution
proofs. Whereas Green, Waldinger and others employed resolution proofs
as the precursors for the construction of conventional programs, the logic
programming formalism treats such proofs as computations in their own
right. A sentence of logic may be looked upon as a source program
intended for an interpreter consisting of a programmed prc^f procedure.
Computation arises by the interpreter's construction of a proof of the
input sentence, and the output of the computation is (generally) an
accompanying set of bindings of terms to variables. Terms can therefore
be regarded as the primitive data structures generated during computation,
and the input sentences as procedures which process them. These notions
are clearly closely connected with the answer-extraction process developed
by Green. More general discussion of the relationships between logical
inference and computation is to be found -in papers by Hayes (33) and by
Sandewall (76).

Kowalski's 1974 report 'Logic for Problem Solving' forms the
earliest definitive account of logic as a programming language (49).
Kowalski illustrates the richness of FOPL for representing problems in
various ways and argues its merits as a machine-independent language
suitable for the natural expression of deductive inferences made about
computational problems. Computation is rigorously defined there in
terms of resolution proof theory and then used to establish the important
procedural interpretation of logic. A more concise summary is given in
his paper to the 1974 IFIP Congress (50). A very satisfying account of
the pragmatics of logic programming is also given by van Emden (23).
At the present time (1978) these last two papers provide the most

24

comprehensive accounts of the foundations of logic programming to be
found in the published literature.

The challenge of designing a practical interpreter in order to
realize Kowalski's proposals was taken up by Colmerauer, Roussel and
their colleagues, who successfully implemented a resolution interpreter
for logic programs called 'Prolog' at the University of Aix-Marseille
(17). Prolog, documented in greater detail by Roussel (74) and by
Warren (83, 84), has exerted a strong influence upon subsequent
implementations of logic interpreters in a number of schools of computing
^science and artificial intelligence.

In summary, then, the theoretical basis of the logic programming
formalism owes much to earlier research (especially that of Robinson) in
the application of automatic theorem proving to deductive problem solving,
whilst its practical merits rest upon Kowalski's procedural interpretation
and the efforts of those individuals who have given it expression in the
construction of feasible interpreters.

1.2 : THE RESOLUTION PRINCIPLE

The general theory of resolution theorem proving would doubtless
appear somewhat intimidating to the ordinary programmer whose notions of
computation rest upon the simple machine-oriented actions underlying
conventional programming language semantics. Fortunately, however, it
is only necessary to become acquainted with the rudiments of resolution
in order to understand how logic can be used for computation as well as
for purely declarative purposes» Thus the following outline of
resolution is restricted to deal with just those essential rudiments.

Validity and Undecidability

An important consequence of the treatment of logic program
execution as a process of deductive theorem proving is that it necessarily
confronts the central problem of any formal mathematical system, namely
the problem of determining whether an arbitrary well-formed sentence in
that system is a theorem, that is, provable. Godel's Completeness
Theorem establishes that for FOPL this problem is equivalent to that of
determining whether the sentence is valid, that is, true in all
interpretations over all domains of interpretation.

25

The existence of an algorithm capable of totally deciding whether
or not a sentence of FOPL is valid has been refuted by both Church and
Turing. FOPL is therefore said to be undecidable. There exist sub-
classes of FOPL which are totally decidable, but these are too restrictive
to be of practical value. There also exist partial decision procedures
for FOPL which are able to decide the validity of a valid sentence, but
vhich either fail to terminate or else terminate with no decision if
presented with an invalid sentence. (Resolution, in fact, is a partial
decision procedure for a particular subclass of FOPL.) FOPL is said to
be semi-decidable by virtue of the existence of such partial decision
procedures.

Unsatisfiability

The validity of a sentence can be investigated by considering the
unsatisfiability of its negation; that is, whether its negation is false
in all interpretations over all domains of interpretation. Clearly a
sentence is valid if and only if its negation is unsatisfiable.
Automatic theorem proving has most commonly been applied to the problem
-bf investigating unsatisfiability as an indirect means of testing validity
and in this guise is referred to as refutational theorem proving.

It is customary in logic programming to view a program as a set of
sentences rather than as a single sentence. A logic program is then
interpreted logically as the conjunction of its members. The set of
sentences is described as unsatisfiable (or, equivalently, inconsistent)
if and only if the conjunction of its members is unsatisfiable. The set
is called satisfiable (consistent) if and only if it is not unsatisfiable
(inconsistent). The equivalent meanings of satisfiability and
consistency are just consequences of the 'Completeness Theorem which
relates the model theory to the proof theory of FOPL.

Clausal Form Logic

The subclass of FOPL to which resolution is applicable is described
as clausal form. The syntax of a sentence in clausal form is construct-
ible from the following definitions :-

term : a constant symbol or a variable symbol or an
n-ary function symbol followed by an n-tuple
of terms;

atom : an n-ary predicate symbol followed by an n-tuple
of terms;

31

positive literal : an atom;

negative literal : an atom preceded by the negation symbol;

clause : a disjunction of literals (possibly empty);

matrix : a conjunction of clauses;

universal prefix : a string of universal quantifiers;

clausal form sentence : a universal prefix followed by a matrix such that
all variables in the matrix are quantified in the
prefix.

Clausal form therefore describes those sentences in prenex-conjunctive
normal form whose prefixes consist only of universal quantifiers.
Systematic procedures exist for transforming any FOPL sentence to an
equivalent sentence in clausal form; Nilsson's book (67) gives a clear
account of one such procedure.

N

A sentence in clausal form clearly conjoins a set of clauses.
Each clause is a sentence implicitly universally quantified over all the
variables occurring in it. Treating a logic program as a set of clauses,
'the task of a logic program interpreter is to show that the set of clauses
is inconsistent. The problem of showing that this is so is semi-
decidable using an interpreter which implements the resolution principle.

Horn Clause Logic

A procedural interpretation of clausal form logic is especially
simple to describe when it is applied just to a particular class of
clauses known as Horn clauses. A Horn clause is defined as a clause
which contains no more than one positive literal. Denoting a positive
literal by L+ and negative literals by L~, ..., Z," , the Horn clause :-

L+ V L~ V v L"
I n

is equivalent to the sentence

(i) L+ + A 2 , ... , An

where v and -«- are the connectives 'or' and 'if', a comma is the
connective 'and' and A,, ... and A are the atomic parts of IT, ... and

I n 1
L~. Various special cases exist where there is no positive literal and
where there are no negative literals; these are expressed in Kowalski's
notation as follows

27

(ii) <r A, , ... , A 1 n

(iii) L+ -t-

(iv) • .

Atoms appearing to the left and to the right of the connective -«- are
respectively called the clause's consequent and antecedent atoms. The
logical interpretations of these clauses are as follows, where X in each
case denotes collectively the variables, if any, which they contain : -

(i) for all X, L+ -*- A. , ... , A
1 n

(ii) for no X, A. , ... , A
I n

(iii) for all X, L+

(iv) false.

The restriction of logic programs to Horn clause form also simplifies the
description of resolution (which is applicable to all clausal form
sentences). Thus the following presentation of the resolution principle
is conveniently restricted to Horn clause logic.

Unification and Resolvents'

Unification is the process of determining a set G of substitutions
of terms for variables which, when applied to some given set of literals,
yields a single substituted literal. For example, the substitution
6 = { x:=c, z:=d } is a unifier of the set of literals { p(x,f(d)) ,
p(c,f(z)) } because its application to each literal yields the literal
p(c,f(d)). If a set of literals has one or more unifiers, then there
will exist amongst them a most general unifier. Informally, the most
general unifier has the property that no other unifier for the set of
literals is more simple. There exist algorithms which determine the
most general unifier of any unifiable set of literals.

Unification of literals in Horn clauses forms the basic step in Horn
clause resolution. Suppose G is a most general unifier of the set
{ L+, A. } where L* is the consequent atom of one Horn clause and A, is an k k
antecedent atom of another. Then the resolvent of the two clauses is the
unique clause obtained by substituting the entire antecedent of the first
clause for the occurrence of A^ in the other, and applying G to the result.
The two given clauses are said to be resolved on literals IT and A, . An

k example of the process just described is shown below.

Example : first clause
second clause

most general unifier
resolvent

28

: p(X/f(d)) g(d) , r(f(x))

: s(yfz) + g(y), p(c,f(z))

: 9 - { x:=c, z:=d }

: s(y,d) + g(y), g(d), r(f(c))

The two given clauses are called parent clauses. It is important to
observe that the resolvent is logically implied by the conjunction of
the parent clauses, and that the resolvent of two Horn clauses is
necessarily also a Horn clause.

The Empty Clause

The empty clause is generated as a resolvent in the special case
where one parent Horn clause has no antecedent atom and the other has no «
consequent atom. An example is shown below.

Example : first clause : •«- p(c,f(z))
second clause : p(x,f (d))

most general unifier : G = { x:=c, z:=d }
resolvent : •

Obtaining • as resolvent indicates that the parent clauses are
inconsistent (contradictory). Using conventional exposition of the logic,
it signifies that the sentence

*(3z)p(c,f(z)) ^ (Mx)p(x,f(d))

is false.

The Resolution Theorem

Given any set S of clauses, the resolution R(S) of S is defined as
the union of S with the set of all resolvents which can be obtained by
resolving parents chosen from S. For any n>l, the set Rn(S) is defined
as R (Rn~~l (S)) . Robinson's Resolution Theorem establishes th a S is
inconsistent if and only if either R(S) or some Rn(S) contains the empty
clause • . The theorem therefore provides a single rule of inference
(describing the generation of a resolvent) sufficiently powerful to
demonstrate the inconsistency of S.

Resolution provides a more powerful inference system than those
used by Gilmore, Davis and Putnam, whose methods relied upon successive

instantiations of the input sentence's variables by terms constructed
from its functional vocabulary (the set of all constant symbols and
function symbols occurring in the sentence). With these methods the
input sentence could be proved inconsistent by discovering an inconsistent
set of instantiations of it, by virtue of an important theorem due to
Herbrand. Methods of this kind are called saturation procedures and
are potentially combinatorially explosive, since the eligible set of
terms (called the Herbrand universe) is generally infinite. The poor
efficiency of saturation procedures is due to the lack of good criteria
for choosing instances from the Herbrand universe. Resolution escapes
these particular combinatorial difficulties by exploiting a more
sophisticated rule for discovering falsifying instances for the input
sentence.

Resolution Derivations

A resolution derivation from a set S of input clauses is a
sequence of derived clauses C) such that C^zS and every
C^ (i>l) is a resolvent of which each parent belongs either to S or to
'{ Cj, ..., ^ }. When this sequence has the additional property that
every C^ (i>l) also has C ^ as a parent, it is called a linear derivation.
If every (i>l) also has at least one parent in S then the sequence is
called an input linear derivation; these are the derivations which are
pursued by typical logic program interpreters.

Two kinds of linear derivation from Horn clauses are of especial
interest and are described as top-down and bottom-up derivations. A
top-down derivation consists solely of clauses having no consequent atoms;
a bottom-up derivation consists solely of clauses having no antecedent
atoms. The top-down/bottom-up distinction determines important
differences in the ways in which resolution is used for problem solving.

The application of an inference system such as resolution to a set
S of input clauses determines a space of all possible derivations from S.
Within this space the derivations which terminate with the derived empty
clause • (if any) are called refutation derivations.

Proof Procedures

A refutational proof procedure (which forms the core of any
typical resolution interpreter for logic programs) augments a resolution
inference system with a search strategy. The search strategy governs
the way in which the proof procedure searches the space of derivations

30

determined by its inference system. The object of search is to find
a refutation derivation, that is, to derive the empty clause • from
the input clauses and hence show that they are inconsistent.
Efficient search strategies are an important requirement of practical
interpreters intended for logic programs which admit more than one
derivation.

Completeness and Correctness

An inference system is said to be complete if the space of
derivations determined by any inconsistent set of input clauses contains
a refutation derivation. It is said to be correct if it contains a
refutation derivation only when the input clauses are inconsistent. In
its most general form, resolution has been proved to be both complete
and correct. However, when search heuristics are employed to guide
resolution in ways which potentially restrict search to particular
regions of the search space, completeness may not be preserved.
Investigations of completeness and efficiency in a variety of proof
procedures are reported in the doctoral theses of Kowalski (46) and
Kuehner (52).

1,3 : COMPUTATION USING RESOLUTION

Computation and Algorithms

The computational theory of logic programming is based upon an
operational interpretation of resolution derivations. A computation
is represented by a linear derivation (C , C) in which every

1 n
C^ (i>l) has one parent chosen from the set of input clauses (the other
parent being C. .). In particular, a refutation derivation (C = •) 1-1 n
represents a successfully terminating computation. If C cannot be

n
resolved with any input clause then the derivation represents an
unsuccessfully terminating computation. Moreover, a consequence of
the undecidability of FOPL is that a resolution execution may not
terminate at all.

A proof procedure associated with a particular set of input
clauses constitutes an algorithm for generating computations from them.
An implemented computer program which applies a search strategy with the
resolution principle constitutes a general logic program interpreter.
The logic programs which it interprets are just sets of input clauses.

31

Output from Computation

In general the objective in executing a logic program is not
merely to confirm that the program is inconsistent, but also to discover
instances of its variables which demonstrate the inconsistency. As each
derived clause is generated during a computation, the unifying substitut-
ion which allowed its parents to be resolved may contribute to a set of
bindings of terms to variables known as the binding environment of the
computation. When computation terminates successfully the final state
of this environment determines the desired instances of the variables
<?f interest. A practical logic program interpreter will automatically
output the final bindings of these variables if and when computation
terminates.

Non-determinism of Logic Programs
*

A logic program exhibits non-determinism when its associated
search space admits more than one derivation. The program determines
neither the choice nor the order of derivations generated during
computation. Instead these are determined by the search strategy
employed to control the computation. The occurrence of more than one
derivation in the search space is due fundamentally to the fact that
FOPL describes relations rather than functions. In general, several
input Horn clauses will be necessary in order to compute all possible
members of any particular relation of interest, so that a derived clause
C^ may resolve with more than one input parent and hence admit
alternative choices for its successor C. ..

i+1
The efficiency of a general interpreter intended for processing

non-deterministic as well as deterministic programs is strongly
dependent upon its ability to apply intelligent criteria for choosing
between alternative derivations. Furthermore, if the interpreter
terminates a derivation unsuccessfully (that is, without deriving •)
then it should (ideally) be capable of applying an intelligent analysis
of the cause of the failure in order to assist its choice of alternative
derivations (if any) still awaiting exploration.

When the search space admits more than one possible refutation
derivation, the possibility arises of alternative solutions to the
problem described by the program. The choice and order of the solutions
output from the computation is again determined by the interpreter's
search strategy and not by the program itself. Other non-deterministic
pr eg rains may have only one solution, yet allow this to be computed by
significantly different refutations.

32

C H A P T E R 2

F U N D A M E N T A L F E A T U R E S

0_F

L O G I C P R O G R A M S

PREVIEW
\

X

Chapter 2 presents the essential features of logic as a programming
language. The first section explains the simple conventions adopted for
-representing programs and classifying their constituent parts. Of
greater importance is the semantical description of logic programs given
in the following section. Logic is unique as a programming language
in that it has a model-theoretic semantics which makes no reference to
any intended execution mechanism; this semantics endows a purely
declarative meaning upon logic programs. By contrast, resolution theory
provides the basis of an operational semantics which explains the meaning
of logic programs in terms of what is computable (logically derivable)
from them; this meaning is more akin to that normally assigned to
computer programs. The procedural interpretation of logic is just one
way of articulating such an operational semantics in terms of notions
which prevail in other procedural programming languages. Moreover,
because the procedural interpretation treats recursive Horn clauses as
recursive procedure definitions, it is also possible to construct a
fixpoint semantics for logic programs. The three kinds of semantics
can be shown to be mutually equivalent in consequence of the Completeness
Theorem for first order logic.

The third section describes the procedural interpretation in detail,
introducing ideas such as program goal, program body, call activation,
procedure invocation and data transmission. The effective control of
these computational resources is closely bound up with the notion of
scheduling, and a simple summation problem is examined which shows the

role of this in both top-down and bottom-up computations. in particular,
last-in-first-out scheduling is the principal feature of the interpreters
derived from the first significant implementation (Prolog).
Prolog is briefly described in a new section, and some Prolog-like
computations are compared there for some problems concerned with addition
over the integers. The final section considers some of the useful
extensions to the elementary default" Prolog strategy which have been
proposed and implemented. The most notable of these extensions deal
with coroutining, iterative invocation and intelligent backtracking.

2.1 ! THE SYNTAX OF LOGIC PROGRAMS

Vocabularies for Syntax and Metasyntax

Throughout the thesis logic programs are assumed to be restricted
to Horn clauses, the syntax of which has already been described in the
previous chapter. Here it is only necessary to state the conventions
which will be adopted herein for the vocabularies employed to construct
Horn clauses and their metasyntax.

In the construction of Horn clauses :-

(a) commas and parentheses () are the only punctuation symbols;
(b) commas and are the only logical connective symbols;
(c) i,j,k,u,v,w,x,y and z (with arbitrary ornamentations) are

the only variable symbols;
(d) all other lower-case alphabetic strings and all non-

alphabetic strings may serve as function symbols or as
predicate symbols.

In the metasyntactical description of Horn clauses :-

(a) as (a) above;
(b) as (b) above;
(c) I,J,K,U,V,WfY and Z (with arbitrary ornamentations) are

the only metasyntactic variable symbols;
(d) all other upper-case alphabetic strings and all non-

alphabetic strings may serve as metasyntactic function
symbols and predicate symbols.

34

These conventions are not intended to coincide with ether presentations
of logic programming, amongst which there is considerable variation.

The thesis also makes much use of non-clausal sentences in order
to express facts about the problem domains investigated by the programs.
Such sentences are presented herein using the orthodox notation for the
standard formulation of first order logic. Thus in addition to the
symbols for constructing Horn clauses, we shall also use the connectives
and quantifiers :-

'v* v •«-»• v 3

.-'Note particularly that, throughout the thesis, the conjunction
connective is represented by a comma. For both clausal and non-
clausal sentences it will be permitted - where convenience dictates -
to present both functions and predicates in infix notation instead of
prefix notation.

Presentation of Logic Programs

A logic program is presented herein as a series of clauses. The
presented ordering of the clauses has no syntactical significance, and
no punctuation is employed to delimit individual clauses.

Syntactical Classification of Clauses

Horn clauses are classified according to their syntax as follows :-

(a) a clause with no consequent atom is called a denial;
(b) a clause with no antecedent atom is called an assertion
(c) the clause with no atoms is called the empty clause}
(d) all other clauses are called conditional assertions.

2.2 : THE SEMANTICS OF LOGIC PROGRAMS

The Operational Semantics

The formal semantics of logic programs are developed in a paper by
van Emden and Kowalski (24). They define the operational meaning of a
logic program in terms of the members of relations (named by the program's
predicate symbols) which are derivable from the program using some given
inference system. This treatment is operational in the conventional
sense in that the relations which the program computes are established by

35

reference to the computations (derivations) which it gives when executed
by a specified interpreter (proof procedure). By interpreting
derivations as computations, the operational semantics corresponds to
the proof-theory of logic.

Kowalski's procedural interpretation of Horn clause logic, which
forms the foundation of the logic programming formalism, treats atoms in
a denial as procedure calls. The denial is a goal statement whose
execution (through activation of.the calls) computes instances for the
variables occurring in it. Assertions and conditional assertions are
interpreted as procedure definitions which may be invoked in response to
calls activated from the goal. The procedural interpretation can be
formalized easily in terms of resolution derivations and can therefore be
regarded as one particular formulation of the operational meaning of logic
programs. Because of its paramount importance in the computational
interpretation of logic programs, a fuller discussion is deferred to a
later section.

The Model-theoretic Semantics

Tarski's model theory of logic can be used to determine the meaning
of a logic program in terms of the predicates which it logically implies.
Because, of the dependence of logical implication upon the notion of
satisfiability (and hence upon the notion of a domain of interpretation),
this treatment is essentially semantical, in contrast to the operational
meaning of programs which would be traditionally viewed as belonging to
the syntax of logic. However, in consequence of the completeness of
FOPL, the operational and model-theoretic semantics are equivalent in the
sense that they determine identical denotations for a given program's
predicate symbols.

The Fixpoint Semantics

Van Emden and Kowalski also define a fixpoint semantics for Horn
clause logic by interpreting sets of recursive conditional assertions
as sets of recursive procedure definitions. By choosing monotonic
transformations as mappings over Herbrand interpretations they establish
equivalence between their fixpoint semantics and the model-theoretic
semantics.

36

2.3 : THE PROCEDURAL INTERPRETATION

Program Goal

The goal of a logic program is, by convention, the unique clause
in the program which has the syntax of a denial :-

G ? •••/ G
1 n

Denoting the goal's variables (if any) by ..., X^ the goal
represents :-

*>(3x. ... 3X) (G_, ..., G) 1 m l n

and is treated as a refutable conjecture. The objective in executing
the program is to discover instances of X., ... and X which satisfy

1 m
(Gj/ ..., G^) , that is, which provide a counter-example to refute the
goal. When no variables occur in the goal, the intent of the program is
simply to show that the goal is false.

Program Body

The set of all clauses in a program whose consequent atoms have the
same particular predicate symbol R is called a procedure set for R.
Each of its clauses is called a procedure for R. The body of the
program is the set of all clauses in the program other than the goal,
and is therefore just the union of all the program's procedure sets.
The purpose of the program body is to assert knowledge about the problem
domain investigated by the goal, and is assumed to be consistent. An
example of a logic program is shown below.

Example : count(a.b.c.a.d.b.c.e.a.nil, w)

count(xfw) filter(x,y) , kount(y,w)

filter(nil,nil)

filter(u.x',u.y') delete(u,u.x' ,z) , filter(zfy')

kount(nil,0)
kount (u.y' ,w+l) kount (u' ,vr)

delete(ufnil,nil)

delete(u,u.x',z) delete(u,x' ,z)

delete(Uf v.x' ,v.z') •*• u^v, delete(u,x' ,z')

The program above contains four procedure sets associated respectively
with the relations named as count, kount, filter and delete. The first

clause of the program is the goal, which conjectures that there exists
no instance of w which is the count of the distinct members in the list
a.b.c.a.d.b.c.e.a.nil . The computational properties of this program
will be discussed in the next chapter.

Procedure Calls

In the procedural interpretation the antecedent atoms of a program's
clauses are interpreted as procedure calls. A denial ..., G is

1 n
interpreted procedurally as a set of calls to the procedures named by the
predicate symbols in G_, ... and G . No logical significance is

I n
attached to the order in which the calls appear in a clause. The calls
in the denial collectively constitute a goal whose solution requires the
conjoint solution of the calls. Terms appearing in G , ... and G are

1 n

interpreted as the arguments of the calls.

Procedure Definitions
The procedural interpretation assigns a computational meaning to

factual assertions about the problem domain. Each clause in the body
of a program is interpreted as a procedure definition. In a conditional
assertion :-

A <- B _ B
1 m

the atoms B,, ... and B are interpreted as a set of calls which 1 m
constitutes the body of the procedure definition for procedure A. When
there are no such atoms the body is empty. The atom A can be
interpreted as a. procedure heading which identifies the name of the
procedure and its arguments. The order in which calls in its body
(if any) appear has no logical significance. One way of reading the
procedure is to say that the goal •<- A can be solved by solving the goal
+ B. . . . , B .

1 m

Activation of Procedure Calls

Activating a procedure call consists of selecting a call from the
goal of the program with the object of initiating a computation which
solves that call. Activating some call G in a goal G , . .., G is

K J. 11
therefore the process of initiating computation with the object of
solving the subgoal •<- G . In conventional programs this corresponds to

K
the passing of control to a procedure call statement.

38

Activation of Procedure Definitions

Activating a procedure definition consists of selecting the
procedure definition with the object of initiating a computation which
derives a new procedure definition, that is, another fact about the
problem domain. This has no analogue in conventional program execution.

Procedure Invocation

In conventional program execution, invocation means the passing of
'control to a procedure definition in response to a call activation. In
logic program execution this process is emulated by top-down (goal-
directed) invocation. However, it is also possible to invoke a logic
procedure definition bottom-up by activating a procedure definition.

Top-down invocation of a procedure definition is the process of
resolving it with an activated call in the goal by matching the call with
the procedure heading through some unifying substitution 9. When a
procedure definition A -<- B , ..., B is invoked in response to a call

1 m
G, activated from a goal -«- G_, ..., G , the resolvent is the new goal Jz I n
obtained by replacing G. by the body B_, ..., B and applying 9 to the

k 1 m
result. Top-down invocation (corresponding to goal-directed problem
solving) is the usual mode of invocation used in logic program execution.

Bottom-up invocation of a procedure definition is the process of
resolving it with an activated procedure definition. When an invoked
procedure A B_, ...,B_ , ..., B is resolved with an activated procedure l k m
B C_/ ..., C by unifying the literals B and B with unifier 9, the jl n /C
resolvent is the definition obtained by substituting C., ..., C for B,

1 n k
in the first procedure and applying 9 to the result. Bottom-up
invocation derives a new fact from given facts and therefore corresponds
to fact-directed problem solving.

The notions of activation ana invocation described here must be
carefully distinguished. Activation chooses a subgoal to be solved
or a fact to be summoned; invocation chooses a procedure which responds
to the activated call or fact.

Transmission of Data

The unifying substitutions which accompany procedure invocation
can be interpreted as mechanisms for transmitting data between calls and
procedure definitions. When a call G in a goal is matched with the

39

heading of a responding procedure definition, the variables in G (if
A

any) are instantiated by terms supplied from the heading. Moreover, all
occurrences of these variables in the goal are instantiated by these terms,
so that data is distributed to other latent (unactivated) calls. The
terms are interpreted as output data passed from the definition to the
goal. Any variables occurring in the heading are simultaneously
instantiated by terms supplied from the activated call. These terms
are interpreted as input data passed from the call to the definition and
thence distributed to all occurrences of those variables in the
definition's calls.

An Example of Top-down and Bottom-up Computation

In the program below the predicate sigma(z,w) expresses the
summation*w = (1+ ... +z) where z is assumed to be a natural number.

Cl : sigma (3 ,w)

C2 : sigma(v+l,u+v+l) sigma(v,u)

C3 : sigma (1,1)

Here the function symbol + is written in infix notation. For ease of
presentation here, the symbols 2,3 ... etc.-will be used to conveniently
abbreviate terms like 1+1, 1+1+1 ... etc. The goal of the program is to
compute w as the sum of the first three natural numbers.

Top-down execution invokes C2 in response to the activation of the
call sigma(3,w) by resolving Cl and C2 to give :-

C4 : sigma (2 ,u)

The variable v "in C2 has been instantiated by the term 1+1 (=2) due to
the input of the term 1+1+1 (=3) in the goal transmitted to the argument
v+1 of the heading in C2. The binding v:=2 is distributed to all
occurrences of v in C2, so that the partially instantiated term u+3 is
passed back from the heading's second argument as output to the goal
variable w. Invoking C2 a second time to solve the new goal C4
similarly gives the resolvent C5 :-

C5 : sigma (1, u')

with the binding u:=u'+2 . Finally, invoking C3 for the activation of
the call in C5 gives • with the binding u':=1 , so that the fully
instantiated term 1+2+3 (-6) is computed for the goal variable w. The
computation generated by this top-down execution is the refutation
derivation (Cl,C4,C5, .

Alternatively a bottom-up computation (C3,C6,C7) can be
generated by resolving C2 with successively derived assertions. Let
C3 be activated, thereby summoning a fact about the problem domain.
Then C2 can be invoked in response to this fact by matching its call
sigma(v,u) to the heading of the activated procedure. The resolvent
is a new fact about the problem domain :-

C6 : sigma(2,3) -«-

Once again the procedure C2 can be invoked, this time in response to
an activation of C6. Resolving C2 and C6 in the same manner as
previously with C2 and C3, a further fact is derived :-

C7 .• sigma(3,6)

Finally, C7 is activated. However, suppose that the responding
procedure Cl is invoked instead of C2. C7 and CI resolve to give
the empty,clause • . This is just another fact about the problem
domain - namely the fact that Cl, C2 and C3 are inconsistent. Note
that the final invocation transmits the term representing 6 to the goal
variable w. Whereas the top-down execution computes w by successive
approximations w:=u+3 , w:=u'+2+3 , w:=l+2+3 , bottom-up execution defers
instantiation of w until the final invocation.

Scheduling of Calls and Procedures

In the example above, efficient solution of the problem expressed
by the input clauses required intelligent choices to be made betv/een
alternative responding procedures. For instance, the top-down
execution chose C2 in response to each of the first two goals Cl and C4,
but chose C3 instead in response to the final goal C5. Likewise, the
bottom-up execution chose C2 in response to the first two facts C3 and
C6, but chose Cl in response to the final fact C7. In neither regime
were these the only possible choices : C5 might have invoked C2 instead,
or C7 might have invoked C2. In other problems a second kind of choice
may also arise, namely the choice of which goal or fact to activate next.
Both kinds of choice are clearly important to computational efficiency.

The usual way of dealing with alternative choices is to assign
some schedule to them and then try each in turn. This is the way in
which logic program executions normally proceed. When a goal contains
several calls, the interpreter may assign to each a scheduling priority
and thence determine the next call to be activated (that with the highest
priority). If several procedure definitions respond to this call then
the interpreter may assign to each a scheduling prior.!ty and thence

determine the next procedure to be invoked. With bottom-up execution
scheduling priorities may likewise be assigned to determine the order
in which facts are activated and the order in which responding procedures
are invoked to deal with them. Scheduling priorities are governed by
control information encoded within - or supplied by the user to - the
interpreter.

Since the normal mode of execution is top-down, we shall normally
assume just two kinds of scheduling to be of interest here; scheduling
of calls in the current goal, and scheduling of the procedures which
respond to them. Both kinds contribute to the inherent non-determinism
of logic programs. Varying the activation or invocation schedules can
influence either the efficiency of the ensuing computations or the output
or both. Simple interpreters may process calls independently and in
order of introduction to the goal, and may select responding procedures
according»to a fixed schedule assigned to the input clauses. More
sophisticated interpreters can dynamically decide scheduling priorities
during run-time and exploit properties of the current state of the
computation in order to pursue this decision intelligently.

Because logic programs are non-deterministic, they leave open the
choice of execution strategy. Whilst it is possible, in general, to
choose scheduling strategies which emulate the kind of procedure invocation
offered by conventional programming languages, logic programming admits
more exotic possibilities which do not obtrude into the programming
language itself. The richness of these possibilities is due largely
to the great diversity in potential execution strategies provided by the
interpreter , the choice of which is not constrained by the language's
semantics. Indeed, procedure invocation from logic programs is more
interesting than that from conventional programs even when it is limited
to the simplest scheduling, since the successive approximation to output
arising from the instantiation of latent calls means that activation of
procedure calls and computation of output can be interleaved arbitrarily;
a conventional procedure call does not usually return output until the
computation which it instigates has successfully terminated, thereby
deferring the activation of other latent calls.

42

2,4 : LOGIC INTERPRETERS

Prolog

Most implemented logic program interpreters are either direct
versions of the Prolog interpreter written by Colmerauer and his
colleagues at Aix-Marseille or else close derivatives from it. Prolog
is essentially a top-down interpreter for Horn clause programs which, in
its simplest mode of operation, employs a last-in-first-out strategy for
Selecting calls; that is, a strategy which always selects the most
recently generated call in the goal as the next one to be activated.
This schedule promotes a depth-first search through a subspace within
the space of all top-down derivations determined by the program. The
depth-first search necessitates provision for backtracking when derivations
terminate unsuccessfully; Prolog is therefore often referred to as a
1 top-down backtracker'. Implementation of both backtracking and
recursive procedure invocation requires the interpreter to maintain a
run-time stack, whose management critically determines execution
efficiency. The stack records the history of call activations and
procedure invocations which determines the current state of computation.

In addition to its default backtracking strategy, Prolog offers
various devices to enable the programmer to specify further constraints
upon the control of program execution; these permit, for example,
run-time examination of bindings, discarding of branches in the search
space and interpretation of unsuccessful derivations as proofs of
negation. These control-determining devices are encoded within Prolog
source programs as system-defined procedures (or 'evaluable predicates')
in order to facilitate uniform parsing at compile-time. This is a rather
unsatisfactory arrangement in that it is at variance with the central
tenet of logic programming methodology, which is that matters of logic
and control should be represented as distinct aspects of the programming
process. Where it appears necessary for the programmer to provide
explicit control information to the interpreter, this should be achieved
without obtrusions into the logical text of the program. A more serious
objection to some of Prolog's control directives is that they may alter
the logical meaning of a program into which they are inserted, thereby
potentially violating the first order semantics which underlies the logic
programming formalism and guarantees its integrity.

43

Since its development at Aix-Marseille, Prolog has been
implemented in various other institutions. At Edinburgh University
Warren (84, 85) has established a version of Prolog which partially
compiles logic programs for a DEC-10 computer; applications there
include geometry problem solving (Welham, 87). Other versions have
been implemented by M. Bruynooghe at the Katholieke Universitiet Leuve
in Belgium and by B. Lichtman at Imperial College, London. P. Bonzon
has written a Prolog-like interpreter in Pascal at the University of
Lausanne in Switzerland. At Imperial College, a new Prolog-like
top-down backtracking interpreter has been written in Pascal for the
"CDC complex there; this is described briefly in a report by Clark and
Kowalski (14). This interpreter is free of the semantically doubtful
features of Prolog and has a more presentable syntax for its inpht programs.
It is also equipped with provisions for more sophisticated control
mechanisms such as coroutining and intelligent stack management. Like
Prolog, its simplest (default) mode of operation is sequential last-in-
first-out scheduling of procedure calls, and responding procedures are
selected in order of their presentation within the input program.

LIFO Scheduling of Procedure Calls

Last-in-first-out (LIFO) call scheduling plays an important role
in logic programming by virtue of its simplicity as an execution
mechanism. In assessing the practical merit of a program intended for
an interpreter of the kind typically available at present, it is useful
to consider firstly how well it behaves under the control of that
interpreter's simplest strategy. If LIFO call scheduling produces
inefficient behaviour from some initial ordering of the calls in the
goal and procedures, the programmer may resort to a number of ways of
seeking to improve this behaviour. In the first place it may be
advantageous to merely change the ordering of the calls in the input
program; this cannot affect the meaning of the program and is unlikely
to change the intelligibility of its clauses very significantly, yet
may produce dramatic changes in the ensuing computation. Alternatively
the desired improvement may be achievable by re-ordering the presentation
of the input clauses to the interpreter and thereby changing the
scheduling of responding procedures. Both of these possibilities
assume that the interpreter treats the ordering of calls and procedures
as implicit control information< and both are attractive ways of
improving behaviour because they preserve the meaning of the program.
When neither is a sufficient remedy the programmer may be able to

44

influence computation through the agency of explicit control directives
acceptable as input to the interpreter, and so override the default
strategy. A further possibility, which is less attractive, is that
the logic can be reformulated to give a more satisfactorily controllable
description of the problem; sometimes this may require the use of logic
which is less intelligible than the original version. Finally, and
least satisfactorily, it may be necessary to enrich the interpreter's
control strategy, a remedy which ought not to be within the province
of the programmer; clearly this is more properly the responsibility of
those concerned with implementation technology.

. To illustrate the sensitivity of program behaviour to the ordering
of calls, various goals are considered below for a simple program body
in which the predicate plus(x fy,z) expresses x+y=z for integers x,y and z.

CI : plus(x,y,z) plus (x-1 ,y+l/z)

C2 : plus (O fZf z)

C3 : plus (x,y ,z) plus(x+1,y-l,z)

C4 : plus(zfO,z)

Clauses CI - C4 are sufficient to solve all solvable calls to the plus
procedure, and therefore constitute what is referred to as a complete
procedure set for plus. Now suppose that a solution is required to the
equations :-

x + y = 6 x + 3 = 8

One way of expressing this problem is by using the goal :-

plus(x,y,6) , plus(x,3,8)

Prolog-like interpreters assume by default that calls are activated
sequentially and independently from left to right as presented in the
input clauses. Now if the call plus(x,y,6) is activated first and
solved independently of the goal's second call, it is most likely to
return an instance of x which will cause the second call to fail.
In fact the first call might have to be re-activated by repeated
backtracking many times under such a strategy, each time computing some
new solution to the first equation, until discovering the successful
instance x:=5 . This would clearly be an extremely inefficient
computation. Alternatively, submitting the re-ordered goal :-

plus(x,3,8) , plus(x,y,6)

would result in computation of x first, thus distributing the binding
x:=5 to the second call; then plus(5,y,6) would successfully return y:=l.
This computation would require no backtracking. .

45

Scheduling of Procedure Definitions

Scheduling of procedure definitions is as important to practical
logic programming as the scheduling of calls. In the example just
considered the clauses Cl - C4 constitute a non-deterministic procedure
set for plus. A given call plus(x,y,z) may compute various solutions
depending upon which clauses are invoked in response to it. In fact
Cl and C2 determine only triples (x,y,z) satisfying x^O, y4z whereas
C3 and C4 determine only triples (x,y,z) satisfying y>0, x4z. Thus if
Cl and C2 are assigned hioher priority than C3 and C4, a call plus(x,y,6)
"Will access solutions for (x,y) from the set { (0,6), (1,5), (2,4), ... }
in preference to solutions from the set { (6,0), (5,1), (4,2), ... }.

Prolog-like interpreters assume by default that clauses are
scheduled in order of their presentation within the input set. This
ordering is normally fixed throughout execution, although Prolog does
provide means of modifying procedures at run-time. Quite often it is
difficult to specify a schedule which suffices for a wide range of
possible invoking calls. For example, the call plus(-1,2,z) initiates
indefinite recursion on Cl if Cl has higher priority than C3, whereas
the call plus(2,-1,z) produces similar behaviour on C3 if the priorities
are reversed. Moreover, any call to plus generates indefinite recursion
if both Cl and C3 (the recursion steps) have higher priorities than C2 and
C4 (the recursion bases). Finally, if the invoking call is unsolvable
such as plus(1,2,4) then execution will not terminate (even unsuccessfully)
with any scheduling of Cl - C4.

If the intended interpreter is incapable of exercising any adequate
scheduling of procedures to solve a goal satisfactorily (or indeed to
abandon a goal satisfactorily) then the program has to be logically
modified. The clauses below provide a more deterministic procedure set
by introducing tests which 'block' fruitless computations.

Cl' : plus(x,y,z) x>0, plus(x-1 ,y+l,z)

C2 : plus (0,z,z) +

C3' : plus(x,y,z) y>0, plus (x+1 ,y-l ,z)

C4 : plus (z,0,z)

Here the predicate x20 is an infix notation for a call to some procedure
capable of determining whether x is positive. No .call to plus can
generate a non-terminating computation from the new procedures Cl' - C4,
irrespective of how the procedures are scheduled. This procedure set
.is suitable for calls in which the first two arguments are input integers.
Other procedure sets for plus may be necessary to deal efficiently with
invoking calls having different input-output arrangements.

46

Enhancements to Interpreters

Various enhancements have been proposed for improving the
efficiency and intelligence of logic program interpreters. Although
the simple control mechanisms afforded by the default Prolog strategy
are adequate in many cases, there are other occasions when they prove
inadequate to deal with the most favoured logical description of the
problem. In such circumstances the programmer must either reformulate
that description or else appeal to more sophisticated control mechanisms.

Inefficiency often derives from independent solution of problems
which individually contribute to some common computational purpose.
A typical example is the construction of a data structure X satisfying
two properties p and Q. If this requirement is expressed using two
calls P(X) and Q(X) then independent solution of them may result in
repeated attempts by one call to construct an instance of X which also
satisfies the other one. This is the kind of circumstance which may
benefit from a coroutining facility. A coroutined execution of a set
of calls is one which permits the computation instigated by each one of
them to be intermittently suspended and resumed under the control of
information received from the computations instigated by the others;
this temporal interleaving of computations is typically regulated by
the states of data structures to which the calls share access. In
logic programs, calls which share variables may sometimes be profitably
coroutined.

Kowalski (50) gives an example of coroutining for the goal :-

perm (S ,y) , ord (y)

which seeks an ordered list y which is also a permutation of the members
of some set S . By activating the two calls independently in the given
sequence, execution would repeatedly compute and discard complete but
unordered permutations y of S until discovering one which happened to be
ordered. A more efficient computation results when execution of the first
call is suspended each time a new member of s has been selected to
contribute to the construction of y , whereupon the second call is
activated to determine whether addition of the new member to the partially
constructed y preserves orderedness; if not, backtracking through one step
in the computation from the first call enables selection of an alternative
member. The coroutined execution is more efficient than sequential
independent processing of the calls because the second call never receives
an instance for y having more than one inversion of adjacent members; in
effect, the second call behaves as a regulator controlling the output

47

of the first call. A study of the applicability of coroutining in
logic interpreters is given in McCabe's MSc thesis (57). Apart from
sequential and coroutined execution of calls, parallel processing is
also possible when calls share no variables. When just one processor
is available, such calls may be executed in quasi-parallel by suspending
and resuming their executions arbitrarily, perhaps, for instance, to
achieve useful space-saving economies in the management of the run-time
stack.

Because logic possesses no means of specifying control information,
Idle requirement that some procedure should be executed iteratively is not
expressible within the text of a logic program. Instead, the programmer
has to construct a recursive procedure and then require the interpreter
to execute it iteratively. One way to do this is to execute the
procedure bottom-up, as in the sigma example in the previous section.
There, iterative summation of successive integers was accomplished by
bottom-up invocation of a recursive sigma procedure. Alternatively
one can resort to particular styles of recursive procedure which enable
the interpreter to airrange for iterative implementation of the invocation
mechanism whilst deploying top-down control. Examples of this are
considered in greater detail in the next chapter dealing with logic
programming style. In either case it is possible to mitigate the
burden of stacking normally associated with recursive invocation by
arranging that the interpreter reclaims the space allocated on the stack
to an invoked recursive procedure when it discovers that each of its calls
has been activated deterministically; the interpreter then knows that no
record of that invocation need be maintained on the stack for the
contingency of later backtracking.

In general it is advantageous to arrange that the interpreter
maintains its binding environment in a data structure separate from
that used to stack records of procedure invocations and their
associated pointer systems. For example, Clark and Kowalski (14) show
that a quasi-iterative execution of the recursive procedure :-

append(u.x,y,u.z) -«- appendix,y,z)

to solve a goal like append (a.b.nil,c.d.nil,z) can generate a stack
of bindings representing the incremental construction of the output
argument z whilst overwriting another stack used for recording the history
of procedure invocation. Moreover, they describe how in certain
circumstances it is even possible to avoid stacking the bindings by
using a data-overwriting mechanism which emulates conventional
destructive assignment.

Clearly the provision for run-time stack management economies
of the kind described above incurs a certain computational cost in
monitoring the activation of calls to decide whether they are activated
deterministically. With some logic programs it is possible in principle
for the interpreter to conduct a compile-time analysis which shows that
no stack is needed at all during the computation. For example,
solution of the goal append(a.b.nil,c.d.nil,a.b.c.d.nil) with the
procedures :-

append (nil ,z.

append(u.x,y,u.z) •*- append(x,y,z)

requires no stacking, and the interpreter should be capable of generating
a truly iterative (rather than quasi-iterative) computation identical to
that instigated by a compiled conventional program.

Efficient execution of non-deterministic logic programs requires
intelligent control of the backtracking mechanism. The simplest
backtracking interpreters preserve the stacked activation records
generated by the computation induced by a call even after the call has
been successfully solved, since the output which it distributes to other
'latent calls may cause them to subsequently fail; in that event sufficient
information remains on the stack upon backtracking to enable the
interpreter to decide which alternative ways remain for processing the
earlier call. However, if the interpreter can recognise when a call
can be processed deterministically then its activation record can be
deleted as soon as it has been successfully executed. This can give
substantial space reductions.

Sometimes it may also be possible to profitably rearrange the
stack before backtracking after an unsuccessful computation. In
particular it is"advantageous to prevent backtracking from discarding
useful results of computations which have not contributed to the cause
of failure, and from pursuing alternative computations which necessarily
fail for a common reason. The usefulness of analysing the cause of
failure in order to decide the subsequent course of computation is
examined in Hill's MSc thesis (34).

The question of whether or not a stacking mechanism is necessary
depends upon the choice of problems to be solved and the choice of
programming style. Many non-deterministic logic programs can be
reformulated to give programs which are essentially deterministic,
although the reformulations may be far from trivial and may result in
substantially more complex descriptions of the problems of interest.

49

Most traditional programming is deterministic and iterative, and so it
is possible to envisage restricted styles of logic programming which
would meet most normal programming requirements and at the same time
dispense with both search and recursion, thereby obviating the stack
requirement. It is probably fair to say that the provisions of
existing interpreters represent a view of computational problem solving
rather more sophisticated than that actually encountered in current
programming practice, thereby rendering those interpreters susceptible
to difficulties in efficient implementation and hence uncompetitive
against conventional program execution. On the other hand, successful
remedies to those implementation difficulties would establish unrestricted
Horn clause logic as a much more elegant and comprehensive problem solving
language than those now in popular use.

The restriction of logic programs to Horn clause logic precludes
the occurrence of negated calls. Yet sometimes it appears convenient
to construct calls which investigate the non-membership of tuples in
relations rather than their membership. For example, given a
procedure member(u,S) for investigating members of a set S, one might
wish to show that some instance a was not a member of S, by allowing
a goal like :-

-t- ^member (cl, S)

In general the membership of a relation cannot be specified completely
using just Horn clauses. However, Clark has investigated the
semantical questions raised by interpreting failure of the goal :-

member (cl,S)

as a metatheoretic proof of ^member(a,S) when it can be shown that all
ways of investigating the call member(a,S) have been tried. Clark's
investigation suggests that this metalogical inference may be a
semantically acceptable extension to Horn clause interpreters, thus
permitting them to process explicitly negated calls. The general
problem of interpreting failure logically in order to solve negated
subgoals is not special to logic programming; both Raphael (70) and
Black (4) encountered the same issue in their deductive question-
answering systems.

Most of the simple enhancements of Horn clause interpreters
considered to date in connection with the Imperial College implementation
are outlined in the report by Clark and Kowalski (14). It is likely that

their proposals will be implemented on the new interpreter there in the
near future. At present it seems reasonable to expect that by
intelligent control of non-determinism and efficient stack management
future logic program interpreters will behave much better than Prolog.
Warren's work at Edinburgh on the compilation of logic programs is .also
encouraging the view that it will not be too long before logic programs
can be implemented as efficiently as conventional ones.

51

C H A P T E R 3

L O G I C P R O G R A M M I N G

S T Y L E

>

PREVIEW

Good programming style is one of the defining attributes of a
program's 'quality', and is as important in logic programming as it is in
conventional programming. The art of good programming style is the
art of finding a representation of an algorithm which allows its
underlying concepts to be clearly perceived whilst ensuring that it
remains computationally useful. A good program is therefore one
which satisfies aesthetic as well as pragmatic criteria. In
conventional programming these criteria are difficult to reconcile,
as students of 'structured programming' will know only too well; here
the central difficulty is in describing all the minutiae of the
algorithm's control (to ensure efficiency) without committing the
program's logical intentions to obscurity.

Possibly the most significant advantage of using logic as a
programming language instead is that the meaning of the program is
not dependent upon a specification of an execution mechanism. This
permits the programmer to develop the program's logical and behavioural
attributes in a more separable way than could be achieved for its
counterpart written in a deterministic language of the kind now in
popular use. The 'logic programmer' can experiment with significantly
different Horn clause descriptions of the problem of interest and then
consider, for each one, how to deploy the various control mechanisms of
the interpreter at his disposal in order to secure an effective algorithm.
Nevertheless it should not be falsely assumed that logic programs will
therefore be intrinsically logically clear - it is not hard to find

published Prolog programs which are quite inscrutable at first sight.
Logic offers substantial provisions for achieving logical clarity in
programs, but does not enforce them.

Choice of programming style influences not only the effectiveness
of algorithms and the clarity of program texts. It also influences
activities such as the analysis and transformation of programs. The
non-determinism of logic permits these activities, like that of
composing programs, to deal with matters of logic and control separately.
These arguments in favour of logic are presented in Kowalski's paper (51)
describing the representation of algorithms as 2-tuples of the form
(logic, control). The merits of logic as a comprehensive computational
tool which allows direct access to the logic components of algorithms
are further expounded by Clark and Tarnlund (16). Investigation of a
variety of computational problems by these researchers and others has
contributed useful guidelines regarding the appropriate styles for logic
components required for inducing particular kinds of behaviour in
existing interpreters. Insofar as the primary purpose of the thesis
is to consider ways of deriving useful logic programs, it is clear
that awareness of the behavioural properties of various logic programming
styles is important for discriminating between alternative program
derivations.

The first section of the chapter concentrates upon the logic +
control representation of algorithms. Examples of programs for solving
a simple counting problem are firstly presented to show how the logic
programmer can influence a program's behaviour purely through the
agency of the logic component, and how by varying both logic and
control he can obtain different representations of the same algorithm.

In the previous chapter it was mentioned that quasi-iterative
invocation could be generated by employing appropriately styled
recursive procedures. The present chapter considers this in greater
detail by comparing two programs intended for list reversal. It is seen
that transformation of recursive procedures to iteratively invokable form
may require the construction of more elaborate procedures (in the sense
of having more arguments and more subtle relationships between them).

Also of interest is the way in which top-down control applied to
one procedure set can emulate the behaviour of another procedure set
executed with bottom-up control. Such 'quasi-bottcm-up' computations
are exemplified by comparing alternative procedures for the highest-level
description of the linear mathematical programming problem.

Unification is the fundamental device at the disposal of a
logic program interpreter for the purpose of constructing and comparing
data. Quite often it is possible to exploit unification in very subtle
ways to provide algorithms which appear to require hardly any procedure
invocation despite performing considerable computations. A few such
algorithms are presented here which are interesting as slightly
capricious novelties, although they cannot be advocated as examples
of 'good' programming style.

The non-determinism of logic often encourages the use of special
calls which do not significantly contribute to the logical description
of the problem under consideration, but which nevertheless usefully
constrain run-time behaviour. These are referred to here as 'control
calls' and several examples are shown of their application. Likewise,
it is sometimes convenient to constrain behaviour instead by the use
of special procedure arguments (called 'control arguments'). Both
of these methods for specifying control information implicitly through
the agency of logic are just particular ways of exploiting the logic
programming formalism's dependence upon pattern-directed procedure
invocation.

The chapter's second section emphasizes relationships between
procedures and data structure representations. It is shown how both
terms and procedure definitions can be interpreted as data structures
and how they dispose computation towards particular kinds of behaviour.
Data structures may be directly accessible to some procedures but only
indirectly accessible to others; the latter may only be able to access
particular data components after a considerable amount of computation.
The usefulness of indexing is mentioned for permitting direct access
to procedure definitions. A number of interesting palindrome-testing
programs are presented to illustrate the effects of choosing several
alternative representations for the input data.

The section closes with a discussion of data abstraction through
the use of selector procedures and the contribution which this technique
makes to the clarity and flexibility of a program's high-level procedures.

54

3.1 : LOGIC AND CONTROL

Dependence of Behaviour upon Logic and Control

The variation in behaviour which results from varying the logic
and control components of algorithms is indicated in the example below
which deals with the problem of counting the number w of distinct
members in some given input list x , for example a.b.c.a.d.b.c.e.a.nil.

A conceptually simple algorithm is one which firstly filters out all
duplicates from x to leave a list y and then computes the count w of
members in y. The logic program below can be used to compute the
relation count(x,w) in this way.

Program 1 : countfa.b.c.a.d.b.c.e.a.nil,w)

countfx ,w) filter(x,y) , kount(y,w)

filter (nil,nil) •*-

filter(u.x' ,u.y') delete (u,u.x' ,z) , filter(z,y')

kount(nil,0)

kount(u.y',whl) kount(y* ,w)

delete (u,nil,nil)

delete(u,u.x' ,z) delete(u,x' ,z')

delete(u,v.x' ,v.z') u^v, delete(u,x' ,z')

Here filter(x,y) holds when y is the list obtained by deleting all
duplicates from list x (preserving the ordering of the remaining
members); kount(y,w) holds when w is the number of members in list y,
delete(u,x,z) holds when list z results from the deletion of all
occurrences of member u from list x. When the program is executed
with the default Prolog control, the ensuing algorithm suspends all
counting until the task of filtering out all duplicates from the input
iist has been successfully completed. By delegating the tasks of
counting and filtering respectively to two distinct procedure calls,
a sequential LIFO interpreter like Prolog generates the computations
for these tasks sequentially and independently.

By contrast, the program below dispenses with an explicit
procedure for filtering out duplicates, and instead exploits knowledge

of the effect upon counting of deleting all occurrences of just one
particular member. Given some input list x whose count w is desired,
all occurrences of some member u are deleted from x to leave a list z;
then w is computed as I plus the count of z.

Program 2 : + count(a.b.c.a.d.b.c.e.a.nil,w)

count (nil ,0) •<-

count(u.x',w+l) delete(u,u.x',z) , count(z,w)

[together with the procedure set for delete]

A Prolog-like computation from this program has the effect of inter-
leaving the tasks of deleting and counting members in the input list.
Each recursive invocation of the count procedure contributes an increment
of 1 to the cumulative evaluation of w and then deletes all occurrences
of the member just counted. This program is more concise than the
previous one, but is perhaps less obvious in its net effect.

The programs just discussed show how different algorithms may
arise with a common control component (sequential scheduling) but
different logic components (Programs 1 <2 2). This indicates that
the behaviour of algorithms should not be judged to be determined
primarily by control information. Sequential scheduling is not the
only control strategy worth considering for the counting problem above.
The idea of interleaving counting with the deletion of duplicates
suggests the possibility of solving this problem using coroutined
procedure invocation. Suppose that a coroutining mechanism is used
to control the activations of the two calls in the count procedure
of Program 1 :-

count (x ,w) -t- filter(x,y), kount(y,w)

Activating the call filter(xfy) first, just one invocation of the
recursive filter procedure is sufficient to partially construct the
output y as some u.y' where u is the first member of x and y' is as
yet undetermined. At this point control can be switched to the call
kount(y,w) which counts the contribution of this u to w by recursing
once on the recursive kount procedure. Counting the members of y' is
then suspended until y' has been partially filtered by reactivating
the first call. The task of specifying appropriate control information
to the interpreter in order to achieve the effect of coroutining as
described above is an easy one, since the suspension-resumption
strategy here consists of no more than alternating from one recursive

56

procedure to the other, one invocation at a time. More generally,
information for controlling coroutining has to be more elaborate than
this simple arrangement in order to secure the computational economies
which motivate its application; for example, the timing of suspension
and resumption may depend in a complex way upon the instantaneous
states of the data structures which the coroutined procedures jointly
construct or interrogate.

It is interesting to observe that the algorithm having components
(Program 1, coroutining) is identical to the algorithm having components
.(Program 2, sequential scheduling). Program 2 represents in logic
the interleaving of two computations which Program 1 induces sequentially
in a Prolog-like interpreter. It is quite easy to explain the logical
relationships between the two programs. Considering Program 1, suppose
that x is the empty list nil in a call count(x,w). The filter and
kount bases can be resolved with the count procedure to give the assertion :-

count (nil ,0)

which provides a procedure capable of directly counting nil. Now
suppose instead that x is not empty, and resolve the filter and kount
recursions with the count procedure to give :-

count(u.x',w'+l) delete(u,u.x' ,z),filter(z,y'),kount(y',w')

Now execution of Program 1 by Prolog-like control will count the list
u.xr by sequentially deleting u to leave z, filtering z to give y' and
finally counting y' with the kount procedures. However, if the following
additional knowledge is given :-

count(z,w') (3y') (filter(z,y') , kount (y',w'))

then it is clearly unnecessary to separately filter z and count y', since
solving count(z,w') will achieve exactly the same result. The procedure
above with heading count(u.x',w'+l) can hence be written as :-

count(u.x',w'+l) delete(u,u.x',z) , count(z,w')

which is exactly the procedure used by Program 2. In the absence of the
assumed additional knowledge, no particular significance attaches to the
process of invoking the filter procedure once and then invoking the kount
procedure once; Program 1 does not describe the contribution which such
an invocation sequence makes to the progress of solving count(x,w) .
Program 2 exploits that knowledge by describing in its logic the fact
that such a process contributes an increment of 2 to w.

Iterative and Recursive Procedure Invocation

57

Many of the commonplace relations dealt with by programmers are
computable using iterative methods. In general, iteration is more
efficiently implementable than recursion because completion of an
iterative step - unlike a recursive one - does not depend upon the
results of future steps. Iteration therefore avoids the stack management
burden associated with recursive computation. Since Horn clause logic
is a recursive programming language, it is important to arrange that
interpreters execute recursive procedures in an iterative fashion
whenever this is possible. Clark and Kowalski (14) have proposed an
enhancement to the Imperial College interpreter which will implement
invocation of a recursive procedure in a quasi-iterative manner when
it can ascertain that all its calls in the previous invocation have
been activated deterministically. To take advantage of this facility i
it is necessary to devise suitable procedure definitions for iteratively
computable relations.

As an example, suppose that a program is required which, given
some list x as input, computes the reverse list y as output. The
program below describes this problem using the predicate reverse(x,y) to
express the fact that y is the reverse of x, and the predicate
append(z^rz^,z) to express that z is the list obtained by appending the
list z^ to list z^; for the sake of example, x is chosen to be the
list a.b.c.d.nil .

reverse(a.b.c.d.nil,y)

reverse (nil ,nil) •<-

reverse(u.x,y) reverse(x,z) , append(z,u.nil,y)

append (nil ,w,w)
append (v. z' ,w,v.y') append (z' ,w,y')

When the recursive reverse procedure is invoked (assuming Prolog control)
the only sensible choice of the first call to be activated is that to
reverse(x,z) - calling append(z,u.nil,y) instead would result in a highly
non-deterministic computation, because that call's input arguments do
not constrain the choice of responding append procedure. Thus since
the call to append cannot be activated deterministically before the next
invocation of the recursive reverse procedure, the computation cannot be
implemented itcrativcly; the program determines inherently recursive
algorithms.

•58

In contrast to the reversal program above, consider now the
reverse* program below which is capable of iterative execution :-

reverse*(nil,a.b.c.d.nil,y)

reverse* (y,nil,y) -«-

reverse*(x^,u.x^,y) •«- reverse*(u.x^,x^,y)

The predicate reverse*(x^,x^,y) holds when y is the reverse of the
list obtained by appending x^ to the reverse of x' ; to compute the
list y as the reverse of list x , x is represented implicitly as the
result of appending the goal's second argument to the reverse of the
.first argument. If the program is executed with Prolog-like control,
that is, by top-down sequential LIFO scheduling, each invocation of
the recursive reverse* procedure generates a single new call to
reverse* ; when this call is activated it is necessarily done so
deterministically, since no call to reverse* in which the second
argument is variable-free can invoke both the recursion and the basis.
Consequently the stack's record for the next reverse* invocation can
overwrite the current record, so that no extension to the stack is
required. Programs of a similar kind were demonstrated by Tarnlund
(80) during a Logic Programming Workshop at Imperial College in 1976.

The reverse* example illustrates a typical feature of
transformations of recursive procedures to iterative form, which is the
introduction of extra arguments to compute, in each iterative step,
information which a recursive computation would encode as a stack of
latent calls. Consider, for example, the recursive solution of the
goal + reverse(a.b.c.d.nil,y) . After two recursive invocations of
the reverse procedure the goal becomes :-

-4-reverse(c.d.nil,y") , append(y",b.nil,y') , append(y',a.nil ,y)

in which the two latent calls to append express the solution y as the
result of appending a.nil to the result y' of appending b.nil to the
reverse of c.d.nil ; for brevity, denote this solution of y by the
term (yn:(b.nil)):(a.nil).

Now the associativity of the appending operation determines that
the same solution y arises by appending b.a.nil to the reverse of
c.d.nil ' This fact is exploited by the reverse* procedure. After
two invocations of this procedure the goal becomes :-

reverse* (b.a .nil ,c.d.nil ,y)

In the first argument position the term b.a.nil has already been
constructed as a contribution to the partial evaluation of the

solution (y":(b.nil)):(a.nil) . A similar example is given by Clark
(12) for the problem of computing factorials. He exploits the
associativity of multiplication in order to derive a 3-place factorial
procedure which partially evaluates the desired factorial in each
iterative invocation rather than stacking multiplications in the
customary recursive style.

Quasi-bottom-up Computation

Kowalski's paper (51) shows that the iterative behaviour which
-is typically obtained from conventional programs can be described in
terms of bottom-up execution of recursive procedures. Whereas
bottom-up procedure invocation in the Algol-like languages is
precluded (due primarily to the irreversible nature of destructive
assignment), logic procedures may be invoked in either top-down or
bottom-up mode; their meanings are neutral with respect to the
top-down/bottom-up distinction. At the present time there exist
no logic interpreters capable of autonomously applying effective
general strategies for controlling bottom-up invocation, although
Prolog can be made to behave in a bottom-up fashion through the
use of explicit control directives. For this reason it is
interesting to discover that there exist logic programming styles
which, with top-down control, mimic bottom-up computations; hence
quasi-bottom-up behaviour can be obtained with existing interpreters
through the agency of logic rather than control.

An example of a problem in which iterative behaviour is desirable
is the general linear mathematical programming problem; here we
consider how to use logic to represent the high-level procedures of
the well-known Simplex algorithm. The objective of this algorithm
is to derive a sequence of 'tableaux' T_, . T each describing the

1 n
linear program's constraints and objective function, where T i s given
and T satisfies an optimality criterion. Each computed tableau is
derived from its predecessor using a matrix pivoting transformation,
the mechanics of which are unimportant for the present discussion.
It suffices here to assume that there exists some procedure pivot(x',x)
which, given tableau x' as input, computes the successor tableau x
as output. One possible formulation of the Simplex algorithm is
then as fellows :-

•60

+ tableau(x), optimal(x)

tableau(T^) +

tableau(x) + tableau(x'), pivot(x',x)

/together with procedures for optimal and pivot]

Here the metasyntactic symbol Tstands in place of some suitable term
identifying or comprising the initial tableau. The call optimal(x)
succeeds if an input tableau x satisfies the Simplex optimality criterion.

Prolog execution of this program is most unsatisfactory because of
the loss of useful computation during backtracking each time some T. fails
to satisfy the optimality test. Suppose that a call optimal(T^) has
failed after the solution of calls tableau(T^ and pivot(T^ J .
The latter call will normally have instigated a considerable amount of
computation which will be discarded upon backtracking, only to be
recomputed during the subsequent computation of It: difficult
to prescribe a simple general enhancement of the interpreter which
would equip it to decide upon a sensible rearrangement of the stack
prior to backtracking and hence avoid this loss; there appears to be
no immediate means by which the interpreter could conclude that the
computation from the call pivot (T^ S w o r t ^ preserving.

Much better behaviour can be obtained using the same control by
introducing a new predicate derive(x,x") which holds if tableau x can be
derived from tableau x" by a succession of calls to the pivot procedure.
The goal of deriving optimal x from T can now be pursued by the new
problem formulation below.

derive (x,T) , optimal (x)

derive (x,x)

derive (x ,x") •*• pivot (x" ,x') , derive(x ,x')

/together with procedures for optimal and pivot]

Suppose now that some tableau T has already been computed, and that
the goal is to derive an optimal tableau x from it. If T has not
already been submitted to the optimality test then the first obvious
possibility for x is just T^. This possibility is explored using the
derive basis procedure. Failing this, the other derive procedure
can be invoked to compute T.,_ by pivoting T. and then initiate a

l'l 1 j .

computation whose goal is to derive optimal x from is
illustrated by the following diagram of a region of the search space :

•61

derive(x, optimal (x)

-e optimal (T. • J.+I/

etc.

It should be clear that in this computation the tableau 2\ is not
recomputed after failing the optimality test. The program behaves as
an iterative generator of the sequence (T,, . T) with no redundant

1 n
computation. To obtain similar behaviour from the previous program
it would be necessary to invoke its recursive tableau procedure bottom-up,
each time activating the most recently derived tableau assertion. This
bottom-up computation would therefore generate a succession of assertions :-

tableau (T^)

tableau (T) •«-

etc.

in search of one which, when resolved with the goal, could transmit an
optimal tableau to the call optimal(x). A more detailed discussion of
the logic representation of the Simplex algorithm and the use of the
derive procedures to generate quasi-bottom-up behaviour is given in a
report by Hogger (37).

Quasi-bottcm-up behaviour has been independently investigated by
Kowalski (5.1.) and considered for the problem of path-finding in graphs.

•62

A path from node a to node b can be explored in a variety of ways
(depending upon the control strategy) using either the program :-

+ 90(b)

go(a) +

go(y) 4- arc(x,y), go(x)

/"together with arc assertions defining
the particular graph of interestj

or else the program :-

4- go*(a,b)

go*(x,x) 4-

go*(x,z) 4- arc(x,y) , go* (y,z)

/"together with arc assertions defining
« the particular graph of interestj

Moreover, Kowalski also discovered a useful general relationship
between these programming styles. An n-ary relation R(X,, ..., X)

4- n
can be used to specify a 2n-ary relation R*(X,, ..., „Y Y)

1 n 1 n
as follows :—

R*(X., . .., X ,Y , ..., Y) 4-± (R(X., ..., X) 4- R(Y , ..., Y)) n 1 n 1 11 1 n

Suitable instances of the definiens of R can then be substituted into
this sentence in order to derive a recursive procedure for R* whose
top-down execution behaves like the bottom-up execution of a recursive
procedure for R. Note that the above specification for R* trivially
implies the assertion :-

R*(X,r ..., X ,X-t ..., X) 4-
1 n l n

which typically serves as the basis for the recursive R* procedure.
The general technique is also outlined by Clark and Kowalski (14) ;
they make the interesting observation that the sentence relating R* to R
can be interpreted as the invariant of the loop associated with the
conventional iterative program for R, which suggests a potentially
useful link between logic program derivation and Dijkstra's calculus
of invariants. Clark's paper (12) presents a derivation of the kind
above, starting with the traditional 2-place factorial program and
then deriving from it a 4-place factorial program whose top-down execution
behaves like the former program executed bottom-up.

•63

Exploiting Unification

The unification mechanism in a resolution interpreter can be
regarded as a primitive processor for the class of data structures
representable by terms. Superficially this processor is very limited
in being capable only of lexically matching sets of unifiable terms.
Nevertheless it is sometimes possible to exploit this capability in
quite subtle ways, as will be shown presently. In particular,
unification performs computational tasks which the programmer would
otherwise (in the absence of unification) have to obtain through the
use of explicitly programmed procedures. The unification mechanism
can be looked upon as an implicit procedure which is automatically
invoked to perform primitive data processing every time a user-defined
procedure is invoked.

A trivial but instructive example is the problem of showing that
two given lists are equal. This problem is expressible using the
predicate equal(x,y) which holds when the lists x and y are equal.
Suppose then that it is required to show that x := a.b.c.nil and
y := a.b.c.nil are equal. One program for showing this is as follows :-

equal (a.b.c.nil,a.b.c.nil)

equal (nil,nil)

equal(u.x,v.y) u=v, equal(x,y)

The algorithm obtained by employing Prolog-like control then arranges
that the comparison of the input lists will be achieved by serially
testing a=a, b=b and c=c ; these tests are conducted sequentially
through the repeated calls to = . (which typical interpreters can solve
directly). Each invocation of the recursive equal procedure requires
a very simple unification. The total work done by this algorithm
has been explicitly discretized into a succession of elementary
unification steps by the procedures written by the programmer. By
contrast, consider now the following program for the same problem :-

equal (a.b.c.nil,a.b.c.nil)

equal (x ,x) -«-

Resolving the goal with the assertion instantiates both occurrences of x
with the term a.b.c.nil ; the unification mechanism has to compare the
two instances of that term in order to decide that both can be bound to
x. Thus just one invocation instigates an algorithm for comparing
lists using the interpreter's own built-in procedure for unification.

•64

A number of ingenious ways of exploiting unification have been
presented by Tarnluna (80). For instance, he has shown that for
some purposes the customary recursive program for appending two lists
(shown earlier in this section in connection with the list reversal
problem) can be replaced by a single assertion :-

append^ (w,v ,w,v) -«-

To append the list d.e.f.g.nil to the list a.b.c.nil just one
invocation is sufficient in response to the goal :-

append^ (a.b.c.x,d.e.f .g.nil ,y ,x)

which induces the bindings v:=d.e.f.g.nil, x:=v, w:=a.b.c.v and y:=w ;
the required list a.b.c.d.e.f.g.nil is then output to the variable y.
The single assertion is less general than the orthodox recursive append
program in that it cannot be used to solve all input-output possibilities;
for example, given an input list w it cannot'compute as output two
arbitrary lists wand w^ satisfying a p p e n d .

N.

It is interesting to note that the append+ assertion is derivable
in a manner similar to Kowalski's technique for obtaining quasi-bottom-up
computations. For suppose that append^(w,v,w',v') is specified in
terms of the append relation as follows :-

append^* (w,v,w' ,v') -*->• (3z) (append (z,v',w') append(z,v,w))

Then choosing w:=w' and v:=v' gives the desired assertion immediately.
With reference to the problem above which is solved by this assertion,
z is just the list a.b.c.nil. Thus Tarnlund's non-recursive appendT
procedure can be regarded as just the basis part of a more general
procedure set for appendt which exhibits quasi-bottom-up behaviour;
this basis just happens to be suitable for appending two given lists
by a clever arrangement of the invoking call's arguments.

Tarnlund has also found an interesting way of inserting an element
into a list by exploiting subtle binding mechanisms. When the insertion
position is known, it is convenient tc specify the given list x implicitly
in terms of two lists xand xsatisfying append(xsuch that
the inserted element u is to be inserted between xand x^. Then a
rather orthodox rendering of the insertion problem is given by the
following recursive program :-

insert(a.b.c.nil,d,e.f.g.nil,y)

insert (nil,u,y,u.y) •*•

insert(v.x ,u,x ,v.y) + insert(x ,u,x,y)

•65

Here the goal is to insert the element d between the third and fourth
members of the list a.b.c.e.f.g.nil. This program repeatedly invokes
the recursive insert procedure until all elements occurring in the first
argument have been transferred to the fourth argument, at which point
it is required to insert d between lists nil and e.f.g.nil ; the basis
does this trivially, whence y is output as a.b.c.d.e.f.g.nil. Now
suppose more generally that some list u.x^ is appended to a list x
to give y ; then this can be regarded as insertion of u between x
and x T h i s intuition underlies Tarnlund's 5-place predicate
insert*(w,u,x,z), which expresses the fact that w is the result of
- appending z to some x^ and also the result of inserting u between x
and x2* Then the following equivalence holds almost trivially :-

insert* (w,u,x^,w,u.x^) -<-*• append^ (w,u.x ,u.x

But this and the assertion append^ (w,v,w,v) • jointly imply the
assertion : -

insert*(w,u,x,u .x

Now this assertion is adequate for inserting d between a.b.c.nil and
e.f.g.nil using the goal :-

insert*(a.b.c.x,d,e.f.g.nil,y ,x)

The goal resolves with the assertion to give y:=a.b.c.d.e.f.g.nil as
output by virtue of the unifier 9 = { w:=a.b.c.x, u:=d, x^:=e.f.g.nil,

x:=u.x2, y:=w }.

These non-recursive programs are useful only when the desired
input-output relations are computable by a single act of unification;
their application is therefore very limited. Most commonplace relations
computed by programmers seem to require repeated procedure invocation.
For example, there seems to be no way of computing the reverse lists" of
arbitrary input lists except by using a recursive procedure to
successively rearrange the members.

r

Control Calls

Control calls are procedure calls whose purpose is primarily to
control execution in special ways, rather than to serve as an essential
part of the logical description of the problem at hand. Such devices
may be usefully employed, for example, to control backtracking and its
effects upon the binding environment, or to control procedure invocation.
Often their effect is to secure more deterministic behaviour than would
be obtained in their absence. Control calls are different from control

directives such as are offered by Prolog in that they are logical
constraints which indirectly influence control, having no special
meaning from the interpreter's point of view.

An instructive example is the problem of searching a given finite
set z for any two members u and v satisfying u<v. Let the predicate
pick(u,v,z) express the fact that u and v are members of z such that u<v.
Then a naive procedure for pick is as follows :-

pick(u,v,z) uzz, vzz, u<v

/"together with procedures for z and <]

Here the membership and comparison procedures are written in infix
notation for clarity. Prolog-like execution of a program using
the procedures above non-deterministically computes instances of u and
v and then compares them. If the call u<v fails then the interpreter
backtracks to seek an alternative choice for v and reactivates the
call u<v . If the choice of u happens to be the maximum member in z
then this choice will also eventually have to be repealed after all
instances of v have failed to satisfy u<v. Hence this computation
may encounter a lot of backtracking.

Much better behaviour can be obtained by exploiting the knowledge
that if any two members x and y satisfy x<y then (x,y) is the desired
solution, but if x^y and x^y then the solution is (y,x) . Let the
predicate assign(x,y,u,v) express the fact that the solution (u,v) is
to be computed from (x,y) as just described. Then an alternative set
of procedures adequate for investigating a call to pick is as follows :-

pick(u,v,z) xzz, yzz, x^y, assign (x,y ,u,v)

assign(x,y,x,y) x<y

assign(x,y,y,x) y<x

/"together with procedures for z and < and j6]
i

Using these procedures, members x and y are selected non-deterministically
and then passed to a test which checks that they are distinct; then
they are passed to the call assign(x,y,u,v) ; the test x^y ensures that
the call to assign will succeed in computing a solution (u,v). Although
the new arrangement is just as non-deterministic as the earlier one, the
search space is now such that every possible selection of distinct
members x and y results in a successful computation. The assign
procedures logically encode useful knowledge about failure (in the
sense that the instances causing the failure are used to infer a solution)
and are therefore essentially concerned with control rather than logic.

•67

Another interesting problem is that of showing that a given
finite list x with distinct members consists of a list xappended to
a list x such that x is in strictly ascending order and x is in 2 1 2
strictly descending order; x a n d x^ may be empty lists as special
cases. Introduce the predicate updown(x) to express this property of
x; an example is x:=1.3.4.8.6.5.2.0.nil . A naive program for
showing that this instance of x has the desired property is :-

updown(1.3.4.8.6.5.2.0.nil)

updown(x) -«- append(x2,x) , asc(x^) , desc(x J

asc(nil)

asc(u.nil)

asc(u.v.x) u<v, asc(v.x) [and procedures for <]

desc(nil)
% desc(u.nil)

desc(u.v.x) u>v, desc(v.x) [and procedures for >]

append (nil, x ,x)

append (v. x ,x„,v.x) -«- append (x ,x,x)
X ^ J. 6

Now this program can give non-deterministic behaviour arising from
the (generally) many ways of choosing xand xusing the append
procedures. If x has n members (n^O) then there exist n+1 ways of
choosing x a n d x^; but there exist no more than two of the choices
satisfying asc(x^) and descfx) when x has the desired property.
Prolog-like control is not a good strategy for this program because
each time new choices of x a n d x a r e transmitted as output from
the first call"in the updown procedure, their orderedness has to
be completely investigated by the calls to asc and desc even though
many of their members will have been compared already in previous
choices of x„ and xn.

1 2

When Prolog-like control is desired, the redundancies in the
above program can be avoided by devising alternative procedures which
interleave the decomposition of x with the task of comparing its
members. The program below achieves this without introducing any
new predicates.

•68

updown(1.3.4.8.6.5.2.0.nil)

updown(nil) •<-

updcwn(u.nil)

updown(u.v.x) u<v, updown(v.x)

updown(u.v.x) -«- u>v, desc(v.x)

(together with procedures for desc, < and >]

Note that the asc procedures have now been dispensed with, their role
being implicitly incorporated in the updown procedures. The role of
the calls u<v and u>v is rather more subtle than in the previous
updown program, where they served only to define the meanings of
ascending and descending order. In the new program they continue to
contribute to the logical description of the problem, but now also
serve to control procedure invocation deterministically. Previously
they in no way mitigated the program's non-determinism which came about
through the use of append procedures to perform the decomposition of x;
now this decomposition is put into effect by the last two updown procedures
whose invocations are made mutually exclusive by the calls to < and >.
The new program behaves excellently under Prolog-like control, successively
inspecting pairs (u,v) satisfying u<v and so confirming that x has a
prefix (1.3.4.8.) which is strictly ascending. When the eventual call
updown(8.6.5.2.0.nil) is activated the call 8<6 fails and so control is
directed to the last procedure; this then instigates an iterative
computation from the desc procedures to confirm that 6.5.2.0.nil is
strictly descending. Note that the program also fails efficiently if
x does not possess the desired property; the previous program would
inexorably try all possible decompositions of such an instance of x
before terminating unsuccessfully.

Control Arguments

Procedure invocation can also be controlled by introducing special
arguments for that purpose. Of course, procedure invocation in logic
program execution is always pattern-directed, but here we are referring
to arguments which are not components of the relations of interest but
simply enforce various desirable attributes in the program's behaviour.
This can be illustrated for the problem considered above. A new
predicate is introduced whose second argument is a control argument in
the sense intended here. Let the predicate updown*(x , asc) express the

•69

fact that there exists an ascending list x^ such that the list x
obtained by appending x_ to x satisfies updown(x). Likewise let

2 j.

the predicate updown*(xdesc) have an analogous meaning where xis
descending. Then the following program is sufficient for solving the
problem :-

4r updown* (1.3.4.8.6.5.2.0.nil)

updown*(nil,z)

updown* (u.nil ,z) 4-

updown*(u.v.x,asc) 4- u<v, updown*(v.x,asc)

updown*(u.v.x,asc) 4- u>v, updown*(v.x,asc)

updown* (u.v.x,desc) 4- u>v, updown*(v,x,desc)

/"together with procedures for < and >]

Every call to updown* which is activated during computation has its
second argument instantiated either by asc or desc. During discovery
of the ascending prefix of x, this argument remains set as asc; as soon
as the first descending pair (8,6) is found, the argument thereafter
remains set as desc and hence confines invocation to the last updown*
'procedure. The constant symbols act as control flags which
effectively switch procedures 'on' and 'off' ; they exploit the fact
that unification can only match identical terms. In the present
example the control argument serves to divide the computation into
two distinct and successive phases : the first-phase is governed by
the first two recursive updown* procedures whilst the third recursive
procedure is uninvokable ; the second phase is just the reverse of this,
permanently switching 'off' the first two recursive procedures and
generating computation just from the third one.

A more elaborate scheme for controlling procedure invocation
with control arguments is shown in the next example, in which a control
flag alternates between two states, so that each suspension of each
procedure's eligibility for invocation is only temporary. Here the
problem is that of splitting a given finite list x into two lists
x and x consisting respectively of alternate members of xi for
j. .
instance, if x = 1.2.3.4.5.nil then xand xare respectively .
1.3.5.nil and 2.4.nil . Let the predicate transfer(x,x^,x,z,w)

hold if lists y and z result from splitting some x1 in the manner
described whenever x a n d x 0 result from similarly splitting the list
obtained by appending x to x'; the splitting of x is such that its first

•70

member is assigned to x^ if w=l but to x 2 if w=2. The following
program effects the desired transfer of all members of x to Xj or

t o produce the specified splitting of x :-

•*• transfer (1.2.3.4.5.nil ,x ,x ,nil ,nil ,1)

transfer (nil fXyX^rX^rX^rW)

transfer(u.x,xyX2,y,z,l) -*- append(y,u.nil,y') ,

transfer(x,x^,x^,y'rz,2)

transfer(u.x,x^,x^,y,z,2) append(z,u.nil,z') ,

transfer(x,xlfx2,y,zr ,1)

(together with procedures for append]

The behaviour of this program with Prolog-like control can be seen
quite easily from the refutation below; the list x' is shown next to
each goal to clarify its role in the transfer specification above. For
brevity, the calls to append are not shown but are assumed to have been
processed.

transfer (1.2.3.4.5.nil ,x ,x2,nil ,nil,l) x'=nil

transfer (2.3.4.5 .nil ,x^ ,x2,l.nil ,nil,2) x'=l.nil

transfer (3.4.5 .nil ,x2,l.nil ,2 .nil ,1) x'=l. 2 .nil

4- transfer (4.5.nil,xyx ,1.3.nil ,2.nil,2) x'=1.2.3.nil

transfer (5.nil ,x.3.nil,2.4.nil ,1) x'=1.2.3.4.nil

•*• transfer (nil ,x.3.5.nil ,2.4.nil ,2) x' =1.2.3.4.5.nil

D {x :=1.3.5.nil, x2:=2.4.nil}

Here the last argument of transfer acts as a device for logically
encoding control information for governing procedure invocation. It
is easy to envisage other programs intended for Prolog-like interpreters
that compute the new states of control flags by calling programmer-
defined procedures to interrogate the current binding environment,
thereby representing in logic the kind of decisions which a coroutining
interpreter would implement through the control component.

Kowalski has employed constant symbols to improve programs like
the one given earlier for solving pick(u,v,z) . He observes that when
the call x<y fails for some pair of members x and y selected from z,
backtracking to an alternative procedure poses the problem of showing
*y<x. In general, it may be computationally expensive to attempt

•71

solution of both components of an if-then-else construct. He argues
that it may be better to compute a solution true or false encoded by
a control argument and then exploit unification to control procedure
invocation. Doing this for the pick(u ,v,z) problem would lead to the
procedures :-

pick(u,v,z) xez, yzz, x^y, less(x,y,w) , assign*(x,y,u,v,w)

assign*(x,y,x,y,true) •+-

assign* (x ,y ,y ,x, false)

/together with procedures for E, ^ and less]

Here it is assumed that procedures for less will efficiently compute
w:=true if x<y and w:=false otherwise. The use of the call to less

dispenses with the need to interrogate the < relation twice as in the
earlier procedure set which used the assign procedures.

x

3.2 I DATA STRUCTURES

Terms and Procedure Definitions as Data Structures

The primitive data structures manipulated by logic programs are
terms. These can be used to represent entities such as sets, lists,
trees and arrays which are traditionally dealt with by programmers.
Terms which contain no variables may be regarded as wholly determined
data structures. However, terms which do contain variables may also
be transmitted and manipulated by procedures in ways having no direct
analogy in conventional programming languages.

Semantical descriptions of conventional languages customarily
distinguish between data structures and procedure definitions, treating
them as distinct kinds of computational resource. The meanings of
procedures are explained in terms of their competence to interrogate
and generate data structures, but they are not also expected to
interrogate or generate other procedures. However, all sentences in
logic programs can be interpreted either in the normal way as procedure
definitions or else as data structures in their own right. Moreover,
execution of logic programs (notably using bottom-up invocation) can
result in the run-time generation of new sentences representing either
new data structures or new procedure definitions. Kowalski's paper (51)

•72

alludes to the terminological confusion which could arise in attempting
to apply to logic programs those views of algorithm structure which
treat procedures and data structures as fundamentally distinct.

A simple example which illustrates the flexibility of logic
for representing data is one which deals with lists. For simplicity
the example is restricted to lists in which no member has more than one
occurrence. Suppose that a procedure set is required which investigates
the relation of consecutivity between members of some given list. The
relation of interest can be expressed using the predicate consec(u,v,z)

which holds when v is consecutive to u in the list z (that is, v is the
immediate successor of u in z). If the lists which the desired
procedure set. investigates are to be constructed from the orthodox
constructors . and nil then the following sentences comprise a complete
procedure set for consec :-

consec(u,v,u.v.z) 4-

consec(u,v,w.z) 4- u^w, consec(u,v,z)

These provide a description of consecutivity which is applicable to all
lists represented by the chosen class of terms. To investigate a
particular list L = (a,b,c,d) , L is represented by the term a.b.c.d.nil
and transmitted as input to the procedures. Querying the consecutivity
of members c and d in I, for example, would then require repeated
procedure invocation to solve the appropriate goal 4- consec(c,d,a.b.c.d.nil).

An alternative way of representing a list makes use of a set of
sentences which assert the list's consecutive members. For instance,
L = (a,b,c,d) is representable by the set of three assertions :-

consec(a,b,L) 4-

consecfb ,c ,L) 4-

consec(c,d,L) 4-

These specify the list L uniquely subject to the assumption made earlier
that no member has more than one occurrence in L. Investigating
consecutivity in L now consists of a search amongst these assertions,
treating them as individual components of a data structure. The
assertions explicitly express the logical consequences of the general
consec procedures above applied to the specific list L represented by
the term a.b.c.d.nil; the assertions are derivable from them by
bottom-up invocation.

Yet another way of investigating consecutivity is by comparing
the positions of members in the list. Let the predicate item(u,i,z)
express the fact that u is the ith member of list z. Then to show
that some v is consecutive to some u in z we can invoke the procedure :-

consec(u,v,z) item(u,i,z) , item(v,i+l,z)

If the list z is to be represented by orthodox terras then its members
and their positions are computable using the following procedure set
for item

item(u,l,u.z)

item(u,i+l,v.z) item(u,i,z)

These, together with the consec procedure which they serve, allow the
positions of given u and v to be computed and compared to test for
consecutivity. Alternatively a particular list L = (a,b,c,d) can be
represented by the set of item assertions :-

item(a,l,L)

item(b,2 ,L) +

item(c,3,L)

item(d,4,L) +

which are derivable by bottom-up invocation using the general item
procedures above applied to the specific list L = a.b.c.d.nil .

The use of assertional data structures, that is, data structures
represented by sets of assertions or conditional assertions, in logic
programming is discussed by Kowalski (49) , who gives an elegant example
of their application to grammatical analysis of sentences represented
by chains in labelled graphs. More recently (51) he has shown that
conditional assertions can be usefully employed in path-finding
algorithms, representing each arc by a sentence of the form

node(n2) node(n^)

in place of the more obvious representation :-

arc(n)

A variety of interesting algorithms can be obtained by combining these
representations and their associated accessing procedures with different
kinds of control strategy.

•74

Data Access

Choice of data structure representation naturally influences the
design of procedures intended for processing them and is therefore an
important aspect of programming style. When terms are used as data
structures, programming style is disposed towards computations which
recursively assemble or disassemble the terns; such computations,
clearly require efficient management of procedure invocation and
binding environments to be of practical value.

Consider the problem of accessing a list representation using
Prolog-like control in order to discover which member (if any) is
consecutive to a given member. One algorithm for this task is that
which firstly locates the given member, infers the position of its
successor, if any, and then looks up that successor. Suppose we try
to do this using the general item procedures given earlier, choosing the
specific list L = (a,b,c,d) represented by a term and the specific
given member c. In this event the program is as follows :-

4 consec(c,v,a.b.c.d.nil)

consec(u,v,z) 4 item(u,i,z), item(v,i+l,z)

item(u,l,u.z) •*•

item(u,i+l ,v.z) 4 item(u,i ,z)

The resulting computation is quite inefficient because the two calls
to item activated from the consec procedure are almcst identical.
The call item(c,i,a.b.c.d.nil) searches L (by recursive decomposition)
to discover c's position i:=3 ; the next call item(v,4,a.b.c.d.nil)
searches L (again by recursive decomposition) to look up its 4 ^ member.
Clearly there is much computational redundancy in the two searches through
L's members.

A much better way of solving the goal above is to use instead the
general consec procedures for the term representation :-

consec (u, v ,u. v.z)

consec(u,vfW.z) 4 u^w, consec(u,v,z)

The ensuing computation maintains a pair (c,v) in the binding environment
until such time as the basis can be invoked in response to the call
consec(c,v,c.d.nil) ; now that c matches the first member of the last
argument (implicitly computing its position), the basis provides direct
access ro c's successor d.

Yet another way of solving the above problem is to represent L
by a set of consec assertions as shown previously; then no other
procedures are necessary to discover c's successor. With this
arrangement the interpreter never has to manipulate terms representing
the list fragments (b,c,d) and (c,d) as is the case with the two
preceding programs. In the simplest accessing regime for the present
program the interpreter will just conduct an iterative search through
the consec assertions seeking one which immediately solves the goal;
in this event the binding environment remains vacuous until the solution
is found.

Of course, the use of assertional data structures does not imply
that access must involve search. A powerful enhancement to elementary
interpreters is the facility for accessing individual assertions directly
by exploiting special arrangements in the binding of data to physical
memory. Indexing and hash-addressing are obvious potential techniques
for this purpose. Indexing is already employed extensively amongst
computational systems which rely upon pattern-directed invocation of
data or procedures, and is especially useful when the latter can be
arranged in some practical and natural ordering. For the current
problem the item assertions representing L can be conveniently ordered
using their second argument position as the key position; then to solve
the call item(v,4,L) the interpreter could directly access the 4&1

assertion and so discover the member d. More intricate accessing
mechanisms are necessary for dealing efficiently with other input-
output permutations of the argument positions. Sophisticated
accessing protocols are clearly essential to the manipulation of large-
scale collections of data such as are found in data base query systems,
but are also essential to quite routine computational tasks. For
instance, the inversion of a modestly-sized matrix by a logic program
would necessitate the use of an assertional representation of the matrix
emulating the traditional array (a term representation being wholly
unviable), and efficient access would be a crucial feature of the
inverting algorithm. Much useful material on logic and data bases
can be found in the papers presented at a Workshop on Logic and Data
Bases held at Toulouse in 1977 (90).

Terms are unsuitable as run-time representations of data structures
when their inherent syntactical properties obstruct convenient access to
the components of interest, since such obstruction generates expensive
computational penalties. Consider now a new problem which is that of

•16

showing two given finite sets to be equivalent, this being expressed
by the predicate equiv(x,y) . The simplest term representation of
sets uses two constructors, say 0 and : , where 0 represents the empty
set and a term u:x represents the set {iz} U x . With this arrangement
the set (a,b,c,d} has 24 distinct representations. Suppose that some
computation activates a call equiv(x,y) with x instantiated by the
term a:b:c:d:0 and y by d:c:b:a:0 . To show that these terms represent
equivalent sets it is necessary to search them for common members,
which is expensive since the members are not directly accessible. To
consider this in a little more detail, suppose that the problem is
solved using the procedure :-

equiv(x,y) 4- subset(x,y) , subset(y,x)

where subset(x,y) expresses xsy. The subset calls can in turn be
investigated using the procedures :-

subset (0,y)

subset(u:x,y) 4- uzy, subset(x,y)

uzu:y 4-
uzv:y 4- u^v, uzy

These recursive procedures are typical of those needed for accessing
the constituents of terms. The call equiv(a:b:c:d:0,d:c:b:a:0)

eventually instigates a call azd:c:b:a:0 which is only solvable by
recursing on the z procedure; similar calls are made to investigate both
the membership of b, c and d in the set represented by d:c:b:a:0

and the membership of d, c, b and a in the set represented by a:b:c:d:0 .

These calls to z obviously incur substantial computational costs.

A somewhat better way of solving the set equivalence problem is by
employing the procedures below :-

equiv(0,0) 4- ^

equiv(x,y) 4- union*(u,x',x), union*(u,y1,y), equiv(x',y')

where union* (u,x' ,x) holds when x is the set {u} U x'. Suitable
procedures for union* are as follows

union*(u,x' ,u:x') 4-

union* (u,v:x* ,v:x) union* (u,x',x)

Applying Prolog-like control to these procedures gives a better algorithm
than with the procedures which interrogate the subset relation because
as soon as some member u is selected from x, a search is made for u
in y; when this succeeds, the computation effectively deletes u from y

in order to dispense with the need to check subsequently that u is a
member of x in the course of showing that all members of y belong to x.
The previous algorithm is inefficient in that it does not exploit its
solution of subset(x,y) such as to avoid redundant membership tests
when solving the call subset(y,x). Nevertheless both approaches
suffer the cost of indirect access to the sets' members.

In the equivalent sets example the choice of terms to represent
sets introduces unwanted structural properties into the data structure
representations. The problem of showing two sets to be equivalent
does not logically require the notion of an inherent ordering of their
members. Yet the terms constructed using 0 and : inherently order
their constituents, so that programs which access them have to confront
this ordering even though it has no logical significance for the
problem at hand. Structurally the terms are more complicated than
the data structures which they represent.

In general one might expect that list-like terms are especially
suitable for representing lists. This is certainly true of many
problem formulations, but not so of others. A variety of examples
for palindrome-testing are now considered which illustrate several
ways of combining list representations with accessing procedures.
The examples will demonstrate procedures which provide for computed
access to terms, then a use of terms which places the burden of
access upon the interpreter's unification procedure, then the benefits
of choosing a term representation different from the orthodox one and
finally programs which access assertional list representations using
both computed and direct access.

Informally a list is a palindrome if its first and last members
are identical and when a palindrome remains after deleting those two
members; this remaining list is called here the 'middle' of the
original list. Also the empty list and all unit lists are defined
to be palindromes. These stipulations can be summarized more
precisely by the sentences

palin(x) -t- empty-list (x)

palin(x) •*• unit-list(x)

palin(x) first(x,u) , last(x,u), middle(x,x') ,palin(x')

Nov; these sentences can be regarded as procedures for solving calls
to palin, provided that procedures are also devised for dealing with
the selector calls to empty-list, unit-list, first, last and middle.

The procedure set for palin above is logically neutral to the choice
of representation for lists, but its computational usefulness depends
upon how efficiently the selector procedures can be implemented for
whatever representation is eventually chosen. Consider firstly the
position if orthodox terms are used, that is, terms constructed using
. and nil. . This representation allows trivial procedures for some
selectors

empty-list (nil) 4

unit-list(u.nil) 4

first(u.x,u) 4

but precludes direct access to the 'middle' and 'last' components.
The latter can only be obtained by computed access. One fairly
concise way of computing them is by using the familiar append procedures
as follows

middle(x,x') 4 append(u.x',v.nil,x)

last(x,u) 4 append(z,u.nil,x)

[and the usual procedures for append] • •

To access the middle or last components will then clearly require
repeated procedure invocation to disassemble the term passed to x.
Inspection of the procedure set for append will show that the last
member of x can be computed iteratively, and that most of the invocations
needed to extract the middle of x can also be implemented iteratively.
In fact the computations involved here are wholly deterministic except
for the very last append invocation used in computing the middle of x;
this is illustrated by the following computation which seeks the middle
of the list a.b.c.nil

4 middle(a.b.c.nil, x')

4 append(u.x',v.nil,a.b.c.nil)

4 append(x',v.nil,b.c.nil) {u:=a}

4 append(x",v.nil,c.nil) {x':=b.x"}

'4 appendix'" ,v.nil,nil) {x'" :=c.x"}

• [x":=nil, v:=c} :AI L

The branch appears in this search space because the call at its root
can invoke either the append basis or the recursion.

•79
Despite the possibilities for iterative procedure invocation

afforded by this way of solving palin(x), the algorithm as a whole is
clearly too inefficient to be useful. Accessing the last and middle
components of x is not only indirect but, worse still, engenders much
duplication of effort; for instance, investigating x = (a,b,c,d,c,b,a)

will require construction of the unit list (d) in the course of
computing each of the middles of (a,b,c,d,c,b,a) , (b,c,d,c,b) and
(c,d,c).

A rather better algorithm may be obtained using the same data
structure representation but quite different procedures. The logical
specifications for the relations palin and reverse can be shown to
imply the procedure

palin (x) reverse (x,x) .

where reverse(x,y) holds when x andy are mutually reversed lists.
Now it has already been shown that the standard procedures for list
reversal :

reverse (nil,nil) •

reverse(u.x,y) •*• reverse(x,z) , append(z,u.nil,y)

must give rise to recursive invocation if the second argument in the
invoking reverse call is an output variable. Here, however, both
calling arguments are input lists, and in this circumstance it is easy
to show that computation will be mostly deterministic if the call to
append is always activated before the call to reverse(x,z). A wholly
deterministic computation can alternatively be secured by using the
reverse* procedures instead which were discussed in the previous section.
Then the question of whether or not x is a palindrome can be answered
by the procedures

palin(x) -«- reverse* (nil,x,x)

reverse* (y,nil,y)

reverse* (w,u.z' ,y) reverse* (u.w,z' ,y) ,

As execution proceeds with this program, the revefse list of x is
gradually constructed in the first argument position of the calls to
reverse* in such a way that each new member contributing to this
construction is obtained from the beginning of the second argument and
affixed to the beginning of the first one; thus there is never any need
to access the last member of any term, which was the main source of
inefficiency in both the last and middle procedures considered earlier.
Altogether this formulation of the palindrome problem is satisfactory
both aesthetically and pragmatically for the data structure representation.

It is interesting to find that there exists an even simpler
program for palindrome-testing which is also deterministic and very
efficient. Its simplicity in appearance is due to its reliance
upon a single unification to perform the necessary comparison of the
input list's 'left' half with its 'right' half. The rest of the
computation is only concerned with assembling the two halves of x.
The intuition behind the algorithm is that any palindrome x must be
constructible by finding some list z, reversing it and then appending
to the result either the same list z or the list u.z where u is an
arbitrary element. For example, if x = a.b.c.c.b.a.nil then z is
the list c.b.a.nil ; if x = a.b.c..b.a.nil then z is the list b.a.nil
and u is the element c. This particular decomposition of x can be
expressed by the predicate palin*(z',z) which holds when the result
of appending z' to the reverse of z is a palindrome x. The problem
can then be solved using the procedures below :-

palin(x) 4- palin* (x,nil)

palin*(z,z) 4-

palin* (u.z,z) 4-

palin* (u.z' ,z) 4- palin* (z',u.z)

For instance, the computation required to show that a.b.c.b.a.nil
is a palindrome proceeds as follows :-

4- palin(a.b.c.b.a.nil)

4- palin* (a.b.c.b.a.nil,nil) x

palin* (b.c.b.a.nil,a.nil)

4- palin* (c.b.a.nil,b.a.nil)

— decomposing x into two lists

Q } comparing the two lists.

This algorithm can obviously be implemented iteratively. Moreover,
it terminates by comparing b.a.nil with b.a.nil as soon as just half
the given list has been disassembled by repeated procedure invocation,
requiring just two iterative cycles. By contrast, the program using
the reverse* procedures has to disassemble the entire input list and
then match a.b.c.b.a.nil with a.b.c.b.a.nil in order to terminate,
which requires five iterative reverse* cycles.

The main lesson to be learnt from the palindrome programs shown
so far is that in order to secure acceptable computational behaviour
with the orthodox term representation of lists, the programming style
has become disposed towards more subtle predicates, whose relationships
to the original naive, data-independent procedures for palin are not
trivially perceivable. To prove, for instance, that the palin* program
computes exactly the same relation as the original palin program
would necessitate a moderate amount of deductive effort. It is
useful now to take a contrary stance towards the pursuit of efficient
palindrome programs, retaining the original naive palin procedures and
seeking a data structure representation which allows reasonably
efficient computation. (It is assumed throughout this investigation
that the intention is to employ Prolog-like control.)

It is useful to present the original palin procedures again
for further contemplation :-

palin(x) 4- empty (x)

palin(x) 4- unit-list(x)

palin(x) 4- first(x,u) , last(x,u) , middle(x,x') , palin(x')

A data structure representation is required now which allows the first,
middle and last components to be directly accessible; here the notion
'directly accessible' means that each required component can be .computed
by a single invocation of a programmer-defined accessing procedure.
The most simple way of arranging this is to employ a 3-ary term of the
form t(u,x',v) where u, x' and v are respectively the first, middle and
last components of the list which the complete term represents. Then
the accessing procedures are just three assertions :-

first(t(u,x' ,v) , u) 4-

middle(t(u,x',v), x') 4-

last(t(u,x' ,v) , v) 4-

The question of whether the list (a,b,c,b,a) is a palindrcme is then
posed by the goal 4- palin(t(a,t(b,c.nil,b),a)) . The ensuing
computation is then clearly very efficient due to the direct access
of the list's components, provided, of course, that the interpreter
implements the terms and their matching efficiently. The new data
structure representation also improves the behaviour of the palindrome
program which tests whether the input list is its own reverse. . This
is because the reverse relation can now be computed using the procedures

•82

reverse (nil,nil)

reverse(u.nil,u.nil)

reverse(t(u,xfv)ft(v,x,,u)) •«- reverse(x,x')

which can be implemented iteratively. Note that the orthodox list
representation can be retained in order to represent the special cases
of the empty list and unit lists. Thus the choice of data structure
representation can determine whether recursive procedures are invokable
iteratively or only recursively. The t-terms are not suitable for all
purposes; in particular there appears to be no way of accessing
consecutive pairs in those terms using an iterative procedure, whereas
that kind of access is easy when the orthodox terms are used instead.

Unless the interpreter can perform a great deal of compile-time
optimization of the source logic program, and so make effective provisions
for the storing and accessing of its data structures, the use of terms
at run-time is generally unsatisfactory. It is often more satisfactory
to use sets of assertions to represent lists, since the mapping of
these onto physical memory is then a comparatively easy task for a logic
pre-processor. Thus the investigation of palindrome programs turns now
to considering the use of assertions to represent the input lists,
anticipating computations which merely adjust pointers to array-like
representations rather than manipulating cumbersome binding environments
induced by the unification of terms.

We consider here just the simplest assertional data structure for
lists. This asserts the existence of each member and its index,
and asserts the total number of members, that is, the length of the list.
For instance, the list (a,b,c,b,a) can be named by the constant L and
then represented by the six assertions :-

item(a,l,L)

item (b, 2 ,L)

item(c,3 ,L)

item(b,4,L) length(L,5) +

item(a,5,L)

where length(x,z) holds when the list x has a length z. To test
whether x is a palindrome by accessing its first, middle and last
components, the naive procedures for. palin may be supported by the
following rather intimidating set :-

'83

empty-list(x) 4 length(x,0)

unit-list(x) 4 length(x,l)

first(x,u) 4 item(u,l,x)

middle(x,mid(x)) 4

last(x,v) 4 length(x,z), item(v,z,x)

item(uei-l,mid(x)) 4 length(x,z), l<i, i<z, item(u,i,x)

length(mid(x),z-2) 4 length(x,z)

The logic can be described informally as follows. The first and last
members of the list can be accessed directly by just quoting their
appropriate indices. The middle of the list is itself a list, and
requires a name to distinguish it from the original list x; the function
symbol mid is just a naming device which allows us to name the middle
of x as mid(x). Since mid(x) is not just any list, but is uniquely
determined by x, it is necessary to state in the logic just what it
consists of. This is achieved by the last two procedures which can
be used to compute all the members and indices associated with mid(x)
and to compute its length. Hence this formulation of the problem
assumes computed access rather than direct access to the middle
component. Moreover, the computation is very unsatisfactory when
control is wholly top-down, because each time some midn(L) is
required, this has to be computed by recursively computing the lists
midn~^(L), ..., mid(mid(L)), mid(L). What is needed here in order
to solve 4 palin(L) with the procedures and assertions above is an
enhancement to Prolog-like control by which the interpreter can compute
those lists in a bottom-up manner, allowing each one to overwrite its
predecessor once the latter is no longer required for computation.
An implementation of this sort would emulate the space-saving economies
customarily associated with destructive assignment; iterative bottom-up
generation of mid(L), mid^(L) ... etc. would then be interleaved with
top-down execution of the palin procedures such that no component was
ever accessed more than once.

It would be wrong to conclude from the last example that a
top-down interpreter could not satisfactorily interrogate the assertional
data structure to test for palindromicity. Logically the problem only
requires inspection of the assertions using a simple pointer protocol.
Kowalski's method for parsing sentences represented as graphs provides
the clue as to how to capture this intention explicitly in the logic.

Introduce a new predicate palin**(ifx) to express that the fragment
of x which extends from the member to the member is a palindrome
It is useful to arrange that palin**(i,j,x) holds also when . Then
the following procedures are sufficient to solve palin (L) when L is
represented by the six assertions given previously :-

palin(x) 4- length(x,z), palin** (1 ,z,x)

palin** (i,j,x) 4- i^j

palin** (i,j ,x) 4- i<j, item(u,i,x) , item(u,jrx), palin** (i+l,j-l,x)

(together with procedures for < and >]

With Prolog-like control (that is, the wholly top-down default strategy)
these procedures yield excellent behaviour. The first two arguments of
palin** serve as pointers which delimit the fragment of L about to be
inspected for palindromicity. The program can be executed iteratively,
induces scarcely any bindings and, provided that some kind of direct
addressing mechanism is used to look up the assertions describing L,
would compete favourably with the execution of a conventional Algol-like
program.

Data Abstraction

Data abstraction is concerned with the logical separation of
procedures from the concrete data structure representations which they
manipulate. This separation has been widely approved in conventional
programming as a means of creating clear and flexible high-level
procedures? its value lies chiefly in the resulting ease with which
both these procedures and the data structures which they will process
can be constructed or modified independently and then brought together
through the mediation of suitable interfaces. The same motivation
prevails in its use in logic programming.

As an example of data abstraction in logic programming, consider
the problem of showing that some non-empty finite set x is a subset of
some set y. One possible algorithm is that which, for a set x having
several members, computes sets xand x^ satisfying x = x^ U x^ , and
then investigates the subproblems of showing that both x and x^ are
subsets of y. The trivial case is where x is a singleton, in which
case it is a subset of y if its member belongs to y. Expressing these
ideas straightforwardly in logic produces the procedures :-

subset(x,y) 4 singleton(x,u), uzy

subset(x,y) 4 union(x^,x2,x), subset(x^,y), subset(x2,y)

where singleton(x,u) expresses x = {u} and union(xexpresses
x = x^ U x^. Now any set of procedures which solves calls to
singleton, z and union can be regarded as an interface interposed
between the subset procedures and whatever means are chosen for
representing the sets of interest concretely. The procedures above
are logically neutral with respect to the concrete representation of
the data.

Purely for the sake of example, suppose that terms are used to
represent the sets. The use of terms in this way is justified by
appealing to existence theorems in set theory. For instance, two
such theorems are :-»

(Mx jX 2) Qx) union (x 2,x) (every pair of sets forms a union)
(\fu) C3x) singleton(x,u) (every element constructs a singleton)

Using Skolem symbols to instantiate the existentially quantified
variables in these theorems, we obtain two Horn clause assertions :-

1mi on (xJL, x^, uni on (x , x)) 4

singleton(s(u),u) 4

which may be treated as procedures serving as an interface between
the subset procedures and the representation of sets which uses terms
constructible from the function symbols union and s. For instance,
the set {a,b,c} might then be represented by the terra
union(union(s(a),s(b)),s(c)). Other simple theorems about set
membership can be summoned to provide procedures solving calls to z
when sets are represented in this way. Sufficient procedures for z
in the present example would be :-

uzs(u) 4

uzunion(x2) 4 uzx

uzunion(x4 uzx

When the interfacing procedures are non-recursive, they may be
eliminated from the program by resolving them bottom-up with procedures
which call them. Kowalski has interpreted this as the analogue of
conventional macroprocessing. It can be regarded as a compile-time
transformation (potentially achievable by the interpreter itself,
since only resolution is required) which enables vine resulting procedures
to refer directly to concrete data structure representations instead
of having to access them indirectly at run-time by invoking the accessing

procedures. Macroprocessing the subset procedures above would result
in the new procedures :-

subset (s (u) ,y) uzy

subset(union(x^,x2) fy) -e subset(x^,y), subset(x2,y)

When the interfacing procedures are recursive, Horn clause
resolution is not generally sufficient to eliminate them from the
program. As an example, suppose that sets were represented instead
by the more usual terms shown previously, that is, using constructors
0 and : . The procedures necessary for accessing these terms for
the benefit of the subset procedures are as follows :-

singleton (u:0) -<-

union (u:x^,x2,u:x) union (x2,x)

union (0,y,y)
% U£U:x -f-

U£V:X U£X

Now these cannot be used to eliminate calls to union and e in the
subset procedures, since they are recursive; resolution would only
introduce yet more calls to union and e. Nevertheless it is possible
to derive a suitably macroprocessed subset procedure set for this term
representation, but the necessary inferences use set-theoretic knowledge
not present in any of the above procedures. The result of macro-
processing using this knowledge is the procedure set :-

subset(u:0,u:y)

subset(u:0,v:y) subset (u :0,y)

subset(u:x,y) subset(u:0,y), subset(x,y)

The complementary process to macroprocessing is data abstraction.
In the procedures below, lists are represented by terms constructed
from . and nil :-

append (nil,y ,y)

append(u.x' ,y,u.z') append(x' ,y,z')

giving a compact, iteratively computable means of investigating the
append relation. Suppose, however, that it was required to make the
procedures data-independent. Tarnlund (73) has explained informally
(attributing the idea to Kowalski) hew the terms can be eliminated
by introducing new predicates. In the present example, introduce
a predicate append*(u,x',x) which expresses x - u.x'. Then Lhe

recursive append procedure can be replaced by the pair of procedures :-

append(x,y,z) append* (u,x',x) , append* (u,z' ,z) , append(x',y,z')

append* (u,x' ,u.x') 4-

Similarly the basis procedure can be replaced by the pair of procedures

append(x,y,y) 4- empty-list(x)

empty-list (nil) 4-

This transformation has segregated the concrete data from the higher-
level procedures. The general rules for achieving this can be
summarized as follows. Suppose that some procedure definition contains
an n-ary predicate p(tn/ ...,t,, t) where T,, ... and t denote

1 k n 1 n
arbitrary terms. Let T, denote a term of the form F(S,, ..., s)

k 1 r
where f denotes some function symbol and S and s denote

1 r
arbitrary terms. Then to eliminate the occurrence of the term t

k
from the ,clause under consideration, introduce a new variable denoted
by x and a new predicate denoted by p*. The predicate above is
replaced by the predicate P(T,, ...,X, ..., t) in which x has been

1 n substituted for t . and the predicate p*(x,s , ...,s) is conjoined to
k 1 r

the clause's antecedents. Finally the assertion :-

p*(f(s , ..., s),s_, s) +
1 r 1 r

is added to the program. This completes the elimination of one
occurrence of the function symbol denoted by F.

Kowalski (51) has pointed out that the new procedures introduced
in data abstraction can enhance the clarity of programs. For example,
a further transformation can be conducted upon the procedure definition

append (x,y,z) 4- append* (u ,x' ,x) , append* (u,z',z) , append(x',y,z')

by abstracting the data-dependent term in its supporting assertion :-

append* (u,x' ,u.x') 4-

This time, however, the dependence of the introduced variable x upon
u and x' is expressed by two calls first(x,u) and rest(x,x') :-

append* (u,x',x) 4- first (x ,u) , rest(x,x')

first(u.x' ,u) 4-

rest(u.x',x') 4-

In fact any number of calls to selector procedures can be introduced
in the abstraction process provided that, conjointly, they establish
the correct dependence of the substituted variable upon each of the
variables in the term for which it is substituted. The calls to the
append* procedure can now be inacroprocessed out to give :-

append(xfy,z) 4 first(x,u) , rest(x,x'),

first(z,u), rest(ZfZ'), append fx',y,z')

The presence of the first and rest procedures clarifies the composition
of the lists x and z; it is clear that x and z have the same first
member, and that the rest of z is obtained by appending y to the rest
of x. More convincing examples of the stylistic usefulness of data
abstraction arise when procedures are required which refer to many
distinct data structure components; the calls to selector procedures,
if named sensibly by well-chosen mnemonics, serve as program documentation
which can also be processed at compile-time to allow efficient run-time
access.

C H A P T E R • 4

R E A S O N I N G A B O U T

L O G I C P R O G R A M S

PREVIEW

In order to argue the thesis that logic is a credible programming
language it is not sufficient merely to refer to its computational
semantics or its amenability to practical implementation. It is also
important to show that logic programs can be conveniently subjected to
reliable analyses of their logical and behavioural properties. For
instance, we may wish to prove that a given program terminates
successfully with a correct solution to the problem which it purports
to describe.

To articulate such analyses it is clearly necessary to possess
some kind of program-reasoning language in which deductions can be
made about the relations computed by the programs under examination.
The motivation of the present chapter is to establish that this
language may be simply predicate logic itself. More precisely, the
standard formulation of FOPL can be treated as a general-purpose
program-analysis tool which is adequate for specifying programs and
inferring their properties. Horn clause logic is then just that-
subclass of the language which is suitaole for computation by virtue
of our possession of a convincing procedural semantics and the
capability of realizing it in resolution interpreters.

The need for the standard formulation of FOPL is argued from the
observation that the facts which we wish to assert during analyses of
programs are often not conveniently expressible in clausal form.
(It would be pleasing if those facts were so expressible, because
resolution would then provide a sufficient inference system for processing
them.) Evidence for this argument is offered in the chapter's first
section, where it is concluded that standard FOPL provides a more

convincing specification language than clausal form in which to
represent the facts of interest about the problem domain. Standard
logic therefore plays a central role in such tasks as verification and
synthesis of logic programs.

In the next four sections the logic programming formulations of
termination, specification, verification and synthesis are introduced,
emphasizing their dependence upon non-clausal sentences to capture the
program properties of interest. Termination is discussed firstly,
because it can be investigated without referring to the notion of an
independent specification for a program's computed relation. The
method of proof of termination shown here is that developed by Clark
and Tarnlund in their pioneering work on logic programming methodology.
Logic as a specification language is considered in the third section
and contrasted in its applications to logic programming and conventional
programming; it is shown that the input-output non-determinism of logic
procedure sets allows an interpretation of logic program specification •
which is more general than that associated with conventional program
specification. Here it is also explained why logic programs cannot
be usefully treated as self-specifying despite the fact that they
explicitly describe the very relations which they compute. The fourth
section presents the Clark-Tarnlund treatment of logic program
verification which relies not only upon the construction Of independent
specifications for the computed relations of interest, but also upon
inductive characterizations of the data structures manipulated by the
programs. This method is of theoretical interest but is unsatisfactory
in practice. A more satisfactory approach is to verify programs by
deriving them deductively from their specifications. This approach

' can, of course, also be regarded as a method for logic program synthesis.
Its underlying concept is simply that of showing constructively that
each procedure"definition used in a program is logically implied by
an axiomatic description of the relevant problem domain. This
derivation methodology is the subject of the final section of the chapter,
and underlies all the subsequent material in the thesis.

•91

4.1 : LIMITATIONS OF CLAUSAL FORM

Expression of Computational Problems

Clausal form logic is not always suitable for expressing knowledge
about computational problems. This fact is attributable partly to the
exclusion of certain logical connectives and partly to the exclusion of
explicitly quantified subformulas. Suppose, for instance, that it were
desired to express and subsequently solve some problem concerning the
membership relation z holding between elements and sets, the sets being
represented by terms constructible from : and 0. The briefest way of
specifying the relation z of interest is by the'non-clausal sentence :-

uzx (Ivlx') (x=v:x', (u=v v uzx'))

together with axioms specifying the identity (=) relation. The facts
which are summarized by this sentence could be expressed alternatively
in clausal form by a conjunction of four clauses as follows :-

•*- UZ0

uzv:x' 4- u=v

uzv:x' 4- uzx'

u=v v uzx1 4- uzv:x'.

Here the symbol 0 is a O-ary Skolem function representing the empty set,
and the first clause above is a consequence of the identity axiom :-

^(3v3x')0=v:x'

Now the fourth clause above is clearly a non-Horn clause. Indeed the
conversion of most non-trivial sentences of standard FOPL to clausal
form gives rise to mixtures of both Horn clauses and non-Horn clauses.
Frequently these are quite difficult to interpret, both individually and
collectively, particularly when they share several Skolem functions
introduced by the elimination of existential quantifiers. A more
striking example of this loss of intelligibility is shown in the
conversion of the following assertion about unit matrices :-

unit-matrix(x) -*-»• (Vu) (one(u) 4- ondiag(u ,x)) ,

(Vu) (zero(u) 4- offdiag(u,x))

•92

This non-clausal sentence, whose import is reasonably clear, converts
to the clause set below :-

unit-matrix(x) 4 one(f), zero(g)

unit-matrix(x) v ondiag(f,x) v offdiag(g,x) 4

unit-matrix(x) v ondiag(f,x) 4 zero(g)

unit-matrix(x) v offdiag(g,x) 4 one(f)

one(f) 4 ondiag(f,x), unit-matrix(x)

zero(g) 4 offdiag(g,x), unit-matrix(x)

which is much more difficult to perceive as a theorem about unit matrices.

Returning to the four clauses describing the z relation, suppose
these are regarded as procedures intended for computational purposes.
Then the question of whether or not the fourth clause is a necessary
adjunct to the others depends upon the particular problem to be solved
by them. If that problem only queries the membership of a given
element (and is thus expressible by a goal of the form 4 uzx) then the
second and third clauses alone provide a sufficient procedure set; they
would form the Horn clause procedure set customarily used for investigating
individuals in the e relation. By contrast, consider the problem of
showing that, for any u, the identity u=v holds if u belongs to the
singleton {v}. Investigation of this problem requires just the first
and fourth clauses. Moreover, this investigation will clearly-require
the use of some proof procedure for general clausal form, and so is
beyond the scope of those interpreters which are designed only for
executing Horn clause programs. Resolution interpreters for general
clausal form are not yet well-developed, although several proof procedures
have been examined and proved complete. One such proof procedure is
Kowalski's connection graph system (48) which has been implemented (for
Horn clause logic only) by Tarnlund (79) at the University of Stockholm.
However, it would seem that effective understanding of how best to
control. non-Horn clause resolution interpreters must await the
development of a procedural interpretation capable of satisfactorily
explaining the computational significance of mixing top-down and bottom-
up inferences. Some simple problems employing non-Horn clause logic
are dealt with in Kowalski's report (49), in which he suggests ways of
assigning procedural significance to the inferences used there; but
these would not be capable of giving a convincing account of the inferences
needed for more complicated problems.

Quite often even the goals of problems are not amenable to
convenient expression by Horn clauses. An example of such a case is

•93

that mentioned above which seeks to show that u=v holds if u belongs
to {v}. The most natural expression of this goal in logic would be
the sentence :-

^fVuv) (u-v uev:0)

which is a refutable conjecture asserting that not all instances of
u and v satisfying ue{v} also satisfy u=v. This is equivalent to

(3uv) (^(u=v) , u£v:0)

which in clausal form has to be expressed as two Horn clauses sharing
Skolem functions, say f and g, which replace the two existentially
quantified variables u and v. This produces a somewhat eccentric
rendering of the original goal :-

f£g:0

f=9

which asserts that some arbitrary f belongs to some arbitrary {g} and
simultaneously denies that f and g are identical. These two clauses
together with the clauses comprising the e specification shown earlier
then admit a resolution refutation.

The rather inelegant arrangement above suggests that standard FOPL
might provide a better external syntax for goals intended for solution
by Horn clause procedures, with conversion to clausal form being
undertaken by a suitable pre-processor. Then a more natural expression
of the goal above in the style of Horn clause notation would be ; —

-«- (\fuv) (u=v U£v:0)

in which the syntax has been elaborated to accommodate non-atomic calls
(in this case just one call). However, it is unlikely that such a
proposal would significantly enhance the methodology of Horn clause
programming, since the kind of problems whose goals benefit from
representation in standard FOPL are those whose solutions also require
non-Horn clause procedure invocation (as is the case in the present
example, which must invoke the fourth procedure for £ in order to
derive a refutation). Usually such goals investigate general laws
relating whole sets of individuals, and non-Horn clauses are the only
practical means of expressing those sets in clausal form. In the
current example the sets are the two relations {(u,v) | ue{v}} and
{(u,v) | u=v} and the general law expresses inclusion of one within the
other. To summarize, then, this example shows that certain computational
problems yield a representation in clausal form which is unconvincing in
appearance and not suitable for processing by existing interpreters.

•94

Reasoning about Programs

Even when particular computational problems can be expressed
satisfactorily by Horn clause programs, reasoning about the logical
properties of those programs may not be viable when we attempt to
restrict that reasoning to deduction in clausal form logic. The
potential utility of deduction for the conduct of such reasoning
highlights an important practical distinction between the analyses
of logic programs and conventional programs. Reasoning about logic
programs essentially consists of making inferences about the relations
which they are intended to compute. Reasoning about their run-time
behaviour is also of obvious importance, but is perhaps better
conceived as reasoning about computations. The semantics of
conventional languages do not emphasize this distinction because the
intention of a conventional program is to describe a particular
computation in considerable detail; the task of inferring facts about
the relations which it computes cannot be separated from analysis of
its run-time behaviour because both the relations and the behaviour
are intimately connected through their dependence upon the mechanism
of stat'e transformation applied to the program's variables.

Whereas the logical analysis of a conventional program requires
the assumption of an execution mechanism (without which the program
has' no meaning), the analysis of a logic program only relies upon
a suitable axiomatization of relevant knowledge about the problem
domain; the program under consideration is just one contribution to
this knowledge. Usually it is necessary to summon facts about the
problem domain which have no computational utility in themselves yet
nevertheless play an important supporting role in the analysis of the
program. Whether this is the case for a particular example or not,
no assumption of an execution mechanism is necessary in order to infer
exactly what the program can or cannot compute. This circumstance
allows the attractive possibility of formulating analyses of logic
programs as exercises in first order logical deduction which treat
logic programs as object-level axiom sets. Thus the tasks of
(a) computing individuals in the relations of interest (by execution), and
(b) deducing more general properties of the programs which compute those
relations (by deduction), closely coincide; this is just the consequence
of identifying programs with axiom sets, and computations with deductions.

•95

Some important questions "about a logic program which can be
investigated by deductive analysis are the following :-

(i) is the goal solvable ?
(ii) do the computed instances of the goal variables satisfy some

given specification which is asserted independently of the
program ?

(iii) are the program's procedure definitions logical consequences
of such a specification ?

These questions address the issues conventionally referred to as
(i) proof of successful termination, (ii) proof of partial correctness
and (iii) proof of correct synthesis. /The latter interpretation of
question (i) rests upon a relationship between solvability and successful
termination which is explained in more detail in the next section./
It it now recognized that the logical formulation and investigation of
such questions about logic programs cannot, in general, be satisfactorily
accomplished using just clausal form logic. Proof of termination, for
example, usually requires either an independent specification for the
program or else an inductive axiomatization of its data structures; in
either event the expression of this knowledge requires the construction
of non-clausal sentences whose equivalent representations in clausal
form would be wholly unmanageable. Likewise, verification and^synthesis
require the standard formulation of FOPL in order to express their
hypotheses in an intelligible way.

The methodological importance of non-clausal logic suggests the
need for practical non-resolution inference systems. It seems not
too optimistic to conjecture that these may not need to be especially
elaborate in order to admit feasible proofs about the properties of
logic programs, since both the programs and their specifications just
assert object-level facts about the relations of interest. In
particular, moderate stylistic restrictions imposed upon the syntax
of both programs and specifications may enable some relaxation of
constraints such as completeness and hence allow inference systems
somewhat simpler than traditional (and complete) natural deduction
systems. Moreover, a convincing procedural interpretation of standard
FOPL (if we possessed one) might provide useful insights into how best to
control such inference systems in order to analyse programs efficiently.
But these conjectures can only be tested by empirical investigation of
a wide range of 'real-world' programs, and in the present state of
knowledge it is not possible to say which methods for reasoning about
logic programs will eventually prove to be most practical.

•96

Having outlined the arguments in favour of standard FOPL as a
language suitable for reasoning about the logical properties of logic
programs, it is now appropriate to consider in greater detail how this
language is actually employed for that task. Termination is the first
property considered in detail, because it can be discussed without
reference to the notion of a program specification; the ideas already
presented about logic programs are a sufficient basis for the
discussion.

4.2 : TERMINATION OF LOGIC PROGRAMS

The Termination Criterion

An interpretation of familiar ideas like termination and
correctness as applied to logic programs was firstly given by Clark
and Tarnlund (16). Their termination criterion for a logic program
solving a call to some n-ary procedure set for a relation r is expressed
as a conjecture about the existence of individuals in that relation.
To make this a little clearer, suppose that the program under
consideration is required to compute, as output, instances of some
variables x .../ x occupying certain argument positions of.a call
to r, given, as input, particular instances t, ..., 2\ in the remaining
argument positions. For simplicity of presentation, and without any
loss of generality, it can be assumed that T,, .../ t.,x.m_, ..., x

1 i l+l n
are respectively associated with argument positions 1, n in J?.
Then the program's goal will take the form :-

4 r(t , •••/ t.,x. ,,
1 l l+l n

If no restrictions are placed upon the choice of the input instances
T^, ..., T^ then the termination criterion proposed by Clark and
Tarnlund is expressed as the requirement that the formula :-
(vx. ... VX J (3 X . , 7 ...3 x)r(x.r ..., x j

1 i 1+1 n 1 n

shall be provable using the program's procedure definitions as axioms.
If the above termination formula is provable from those procedures
then this guarantees that some satisfying instances of the output
variables •••/ X exist for any particular choice of the input
instances T 2 \ . . /"Obviously the termination criterion has to be
reformulated with a different quantification arrangement if a different
input-output arrangement in the goal is required./

•97

Of course, the execution of the program also has the object of proving
the existence of these satisfying output instances, but it should be
noted that successful execution only provides the proof for one choice
of the input instances (those quoted in the goal). a proof of the
Clark-Tarnlund termination formula is therefore more general than a
program execution in that it establishes a whole class of goals which
are solvable using the procedure definitions.

The justification for interpreting this analysis as a proof of
termination is related to the completeness of resolution. For a proof
of the termination formula establishes that the program is inconsistent;
in which case the completeness of resolution ensures the existence of
a refutation derivation, that is, a successfully terminating computation.
This means that if the program is executed by a complete resolution
interpreter then it must terminate successfully. The treatment of the
termination problem for logic programs can be viewed as independent of
an execution mechanism in the sense that it is indifferent to the choice
of control strategy and hence td> the course of run-time behaviour.

The question of whether or not a particular combination of source
program and interpreter will jointly determine a terminating computation
may be undecidable by the method above if the interpreter's search
strategy is such that not all refutations in the search space can be
generated. Prolog, for example, will not discover the obvious and
immediate refutation for the source program

4- set(x)

set(x) 4- set(u:x)

set(0) 4-

but instead will recurse indefinitely on the first procedure. This is
because Prolog assumes by default that the recursive procedure must always
be invoked in preference to the basis by virtue of their ordering in the
presented text. The termination criterion formulated by Clark and
Tarnlund is therefore a criterion for hypothetical rather than actual
termination. It should also be observed that even when the interpreter's
search strategy does not discard any refutations, the question of whether
or not a given logic program will terminate is only semi-decidable using
their method, since if it so happens that the program is consistent (and
hence has an unsolvable goal) then an attempt to prove the termination
formula must fail; in this event we cannot infer that execution-must
terminate, since an unsolvable program could well execute indefinitely
rather than terminate unsuccessfully. Fundamentally this uncertainty'
about the behaviour of such a program arises from the undecidability of
FOPL.

•98

In his paper with Tarnlund, and elsewhere, Clark has advocated
the explicit axiomatization of the data structures which programs are
required to process. As well as making assumptions about the data
types explicit, this also provides a useful logical basis for either
run-time or compile-time type-checking. Additionally, it forms an
important part of the Clark-Tarnlund approach to termination proofs.

As an example, consider the problem of symmetrically embedding
one palindrome in another to produce a third palindrome. For instance,
x = (c,d,c) can be embedded symmetrically in y = (a,b,b,a) to give
z = (a,b,c,d,c,b,a). In the previous chapter it was shown that
palindromes could be represented concretely by terms of the form
t(u,y,u) in which u is any element and y is a palindrome. The empty
palindrome is represented by nil and a unit palindrome by u.nil where
u is any element. A suitable set of embedding procedures is then as
follows :-

embed (x,nil ,x) palin(x)

embed(x,v.nil,t(v,x,v)) palin(x)

embed(x,t (u,y,u) ,t(u,z,u)) palin(x) , palin(y) , palin(z) ,

embed(x,y,z)

supported by the type-checking procedures

palin (nil)

palin (v. nil)

palin(t(u,y,u)) palin(y)
"'N

The palin procedures form part of a first order Peano-like axiomatization
which inductively generates the class of all terms defined to be of type
'palindrome'. A complete axiomatization also requires, for closure

palin(y) y=nil v (3v)y=v.nil v (3uy')(y=t(u,y',u), palin(y'))

together with axioms for = over the relevant classes of terms

t(u' ,y' ,u')=t(u,y,u) u'=u, y'=y

v' ,y'=v.y v'=v, y'=y

'Vnil=t(u,y,u)
r^v.z=t(u,y,u)

and an appropriate induction schema for all predicates on the defined
class :-

fVP; ((Vy)P(y) +?(nil), (Vv) P (v.nil) , (\tuy')(P(t(u,y',u))+P(y')))

•99

Now suppose that termination is required for goals of the form
4- embed(x,Pwhere P^ and P^ denote input instances. For example,
the actual goal might be :-

4- embed(x,t(a,b.nil,a) ,t(a,t(b,t(c,nil,c) ,b) ,a)

which is solved by the instance x:=t(c,nil,c) . Then the relevant
termination formula for goals of this class is :-

(Vyz) (0x) embed(x,y,z) 4- palin(y) , palin(z))

and is required to be provable using the axiom set made up from the
procedures for embed and palin in the intended program together with
the axioms characterizing the data structures. Notice that this
termination formula is a conditional formula because the instances
for the goal's last two arguments are required to be restricted to the
type 'palindrome'. If this proof succeeds then the program will
terminate successfully with an output instance of xj if the proof
fails then termination is undecided.

Proving the Termination Formula '

The Clark-Tarnlund method for proving termination begins by
instantiating the induction schema in the data axiomatization with
an appropriate instance of the termination formula. Using the
example above, the instantiation proceeds by replacing every
occurrence of some P(w) by the formula :-

(Vz) (Qx) embed(x,w,z) 4- palin(w), palin(z))

The result of this is a rather lengthy first order axiom of the form
c 4- w ^ o s e c o n s e c2 u e n t three antecedents are as follows

C ; (\fyz) (Qx) embed(x,y,z) 4- palin(y) , palin(z))

A^ : (\fz) (Qx) embed(x,nil,z) 4 palin (nil) , palin(z))

A2 : ((3x) embed (x,v. nil, z) 4- palin (v. nil) , palir(z))

A3 : (Vuy')((\/z) (Qx) embed (x, t (u,y' ,u) ,z) 4- .palin (t(u,y' ,u)) ,

palin(z))

4- (\fz) (Qx) embed (x,y',z) 4- palin (y'), palin (z)))

It is required to show that the above axiom c 4 &2'a2/a3 to9et*ier

with the Horn clause procedures for embed and palin logically imply
the consequent formula c, which is. equivalent to showing that c is
provable from the given axioms. This is accomplished by showing
that the Horn clause procedures logically imply a , a~ and a?, which

•100

presents little difficulty. For example, the first Horn clause-
procedure for embed implies :-

(Vz) ((^x)embed(x,nil,z) 4 palin(z))

(assuming that (\/z) ranges over a non-empty universe) , and this
together with the assertion palin(nil) 4 implies :-

(Vz)((3x)embed(x,nil,z) 4 palin(nil), palin(z))

which is just A^. Proof of A^ is similarly trivial, whilst the most
laborious proof is that of A^; none of the proofs of A^, A^ and A
encounters any conceptual difficulties. Proof of C is now immediate.

Proving termination of a logic program in the manner above
clearly requires the resources of standard FOPL in order to express
concisely both the termination formula and the induction axiom, as
well as the sentences making up the proof itself. Although the
proof may be quite easy it will normally require inference rules
rather more elaborate than resolution in order to be practical.
This observation confirms the need for convenient inference rules
for manipulating standard FOPL formulations of program properties.

Later on it will be shown that logic program termination can
be investigated by a rather different method from that shown above,
although the basic notion of proving the termination formula remains
the prime objective; rather it is the axiom set underlying the proof
which is different in the alternative approach, employing axioms
comprising a specification in place of axioms comprising executable
procedures. However, the concept of a specification also underlies
the tasks of verifying and synthesizing logic programs and so, being
of central importance to several strands of logic programming
methodology, is now discussed in a new section.

4.3 : SPECIFICATION OF LOGIC PROGRAMS

Logic as a Specification Language

The use of logic for specifying programs was first demonstrated
rigorously by Floyd (25), who attributed the underlying ideas of his
use of logic to Perlis and Gorn. The potential contribution of logic
to both the theory and practice of computer programming had also been
previously recognized by McCarthy (59). At the present time, FOPL is
frequently used by computer scientists to specify formally the properties

•101

of programs; yet programmers as a whole make little use of logic,
being unconvinced of its efficacy for significant programs.
Reservations about logic as a specification language are in any case
occasionally expressed by computer scientists themselves. Liskov
and Zilles (54), for instance, suggest that axiomatic specifications
for significant problems will be inherently incomprehensible and
difficult to compose, although they do not offer evidence for this view.
Noonan (68) also asserts that logic is impractical for specifying programs
which manipulate non-trivial data structures; instead of logic he chooses
a bnf grammar notation in order to specify a simple parsing problem, but
achieves a much less satisfactory result than Kowalski's treatment (49)
of parsing using Horn clause logic.

The objections to logic raised by the authors cited above appear
to focus on alleged shortcomings in matters of style, rather than on
questions* of whether or not logic is theoretically capable of specifying
all programs. Their objections can be countered by adopting logical
styles which are less formal in appearance and more imaginative in
expressiveness than the styles often employed in the objectors' own
examples.

More serious criticisms of logic as a specification language
have been advanced by Hewitt, McDermott and others, who consider it
unsuitable for specifying programs which behave as though they were
modifying their own specifications. These objectors have in mind the
kind of program typically used by researchers in artificial intelligence
where the program's logical competence is governed by an axiomatic data
base susceptible to modification as execution proceeds; altering the
data base may alter the universes of facts which the program can and
cannot prove and refute, so that the notion of an invariant specification
here seems to have little utility. This problem of logic's
'monotonicity' will require much investigation before its seriousness
can be properly assessed; but it is certainly an inconsequential problem
for most mundane programming purposes at the present time.

The Meaning of Logic Program Specification

The way in which a conventional program (by which is meant an
Algol-like program) is typically specified in logic is rather less
general than the way in which a logic program will be specified. When
a conventional program is specified with the usual intention of
establishing a proof of correctness, the specification expresses a

•102

requirement that, if execution begins with some predicate i(a , a)
1 m

holding upon the initial states a , ... and a of some input variables X,,
1 m 1

... and x , and subsequently terminates, then a predicate r(a_, ..., a)
m I n

will hold where a , ... and a are the final states of output variables
m+1 n

... and X^. If the program satisfies this requirement then it is
said to be partially correct with respect to i and r. Proving partial
correctness requires a preliminary axiomatization of all those program
statements which may influence, directly or indirectly, the final states
of Xjn+j' *** ' by a proof based upon that axiomatization
that the input-output relation described above will be satisfied. Thus
the conventional program-proving paradigm confines its analysis to one
input-output arrangement for the arguments of the computed relation r.

Specification in logic programming refers to the axiomatic
definition of the computed relation r which some procedure set for r
is required to compute, and does not assume any particular arrangement
of input and output for the arguments of that relation. Whereas
successful execution of a conventional program as described above
computes instances a ,, ... and a from input instances A., ... and A

mil n 1 m
so as to satisfy the predicate r(a., ..., a ,a ..., a) , execution

1 m m+1 n
of the analogous logic program solves the particular goal :-

+ r(a , ..., A ,X ..., x)
1 m m+1 n

by invoking procedure definitions capable of computing n-tuples of r.

The logic programming analogue of the imposition of an explicit
input condition i (a., ..., a) could be a procedure call to i included

1 m
in the goal as follows :-

+ i(a , ..., A J , r(a , ..., A ,X , ..., x)
--1 m l m m+1 n

whose execution will firstly invoke procedures for I to verify the
input instances and then initiate the investigation of.the principal
relation r. Alternatively, a call to i could be incorporated in
each of the procedures for R, thus restricting the class of n-tuples
which they were able to compute. These alternatives correspond
respectively to performing input-checking once before initiating the
main computation and performing it only at the times when it is
immediately needed for computing individuals in r. Robert Kowalski
has pointed out yet a third possibility of investigating the computed
relation r contingent upon an assumed input condition J. Instead of
arranging that calls to I occur in the program text, the program property
of interest is now expressed by the formula :-

(r(a , ..., A ,X , ..., X) <~ i (a , ... , a))
1 m m+1 n 1 m

•103

Then the assumed input condition appears in theorems about the
program rather than in the program itself.

Irrespective of whether or not some input condition is
incorporated in a logic program, specification in logic programming
is concerned solely with defining a relation R by some axiom set S,
with the understanding that any program's set P of procedure
definitions conforms to S (or, equivalently, is partially correct with
respect to S for relation R) if and only if every n-tuple computable
from them solving the goal 4- R does indeed belong to R as defined
by S. It must be emphasized that specification in this sense is
therefore associated with a set P of procedure definitions rather than
with an entire (goal-containing) program. This distinguishes our
approach from conventional program specification which is confined
to deal with just one particular choice of input and output variables.
Our approach benefits from the fact that, once the set P of procedure
definitions is known to be (partially) correct, this knowledge is
unaffected by the subsequent choice of goal; S then specifies a whole
class of programs exhausting all 2n possible permutations of the goal's
input-output arrangement. This is just a consequence of the input-
output non-determinism of logic procedures.

The Need for Independent Specifications

The underlying motivation of proving logic programs to be correct
in the sense described above is to ensure that they truly capture our
computational intentions. Of course, many simple logic programs can
be regarded as self-evidently correct in that they describe the
relations which they compute more plausibly than any other descriptions
which we could formulate, other than by explicit enumeration of all the
individuals in those relations. However, for most non-trivial programs
it is not easy to immediately perceive by inspection of their texts
that they do indeed correctly formulate our intuitive understanding of
the problems of interest. In such circumstances it is necessary to
construct a most-plausible specification and then decide whether a
given program conforms to it. The need for such a specification
prevails in logic programming to no less an extent than it does in
conventional programming, notwithstanding the fact that logic programs
possess an extremely useful declarative interpretation. For 'this
reason there is little utility in the idea that logic programs might
be 'self-specifying'.

•104

Despite the argument above, there remains the interesting
question of whether a given program - or, more precisely, a given set
of procedure definitions - might usefully be regarded as a plausible
specification for some other program, possibly more subtle in its
logic, intended to compute the same relation. Consider, for example,
the procedure set below, in which we identify the relation R with the
relation named by the predicate reverse :-

reverse (nil,nil) •*•

reverse(u.x,y) 4 reverse(x,z), append(z,u.nil,y)

append(nil,y,y) 4

append(v.z,w,v.y) 4 append(z,w,y)

Let P denote this set of procedures. Then P could be said to
implicitly 'define' the relation R* = i(x,y) J P \- reverse(x,y)},
which is the set of all 2-tuples computable from P by making calls
to reverse. This set might be regarded as a self-evidently correct
specification of the relation reverse holding between two mutually
reversed lists, in which case we would identify R* with reverse.
Now consider another procedure set P' capable of solving calls to
reverse :-

reverse(x,y) 4 append(x,y,z), palin(z),

append(y,x,zr), palin(z')

append(nil,z,z) 4

append(v.x,y,v.z) 4- append(x,y,z)

palin(nil) 4

palin(u.nil) 4

palin(u.x) 4 append(x',u.nil,x), palin(x')

Implicitly P' defines the relation R** = {(x,y) | P' j- reverse(x,y) },
which is the set of all 2-tuples computable from P' by making calls
to reverse. An interesting question now arises as to what
relationship obtains between R* and R**. In particular, if P is
intended as a specification for P' then we require thz.t R* shall
include R**, in order that any 2-tuple computable from the specified
procedure set P' shall belong to the relation specified by P. In
fact it can be shown that R* and R** are identical.

It would be pleasing to be able to investigate the relationship
between R* and R** above using just object-level deduction, treating
the procedures in P and P' as axioms for this purpose. Unfortunately

•105

it can be shown that this axiom set would not be sufficient in that
respect, because P does not comprise a complete object-level definition
of the reverse relation; this fact holds even though P is capable of
computing every 2-tuple in that relation. As an example of the
insufficiency of P, observe that it does not admit any object-level
deduction which decides whether or not the 2-tuple (a.nil,nil) belongs
to reverse. P implies neither reverse(a.nil,nil) nor ^reverse(a.nil,nil).

This shows that P does not define at object-level the exact membership
of the relation whose individuals it is capable of computing. Hence
object-level deduction will not be sufficient to decide whether or not
an arbitrary 2-tuple, such as might be computed from P1, belongs to
the relation specified by P. P is therefore not an adequate
specification for P' if the relationships between them are to be
investigated using object-level' deduction only. A proof that R* and R**
are equal can be deduced at meta-level by formulating meta-theorems
expressing what P and P' are capable of computing.

Establishing whether or not a logic program conforms to a
specification is just one of many tasks to do with reasoning about
programs which we would like to pursue by logical deduction. The
insufficiency of an axiom set like P above obstructs these tasks as
well as verification. Consider, for example, the question of-'
whether or not there is any computational redundancy in the behaviour
of a program having the goal :-

4 reverse(x,y), reverse(y,x)

Suppose that P is treated as the only knowledge available about the
reverse relation. In that case there is no object-level deduction
using P as the sole axiom set which establishes that reverse(x,y) and
reverse(y,x) are equivalent; that is, there is no deduction which shows
that P implies the following theorem about reversez-

(Vxy)(reverse(x,y) reverse(y,x))

By contrast, a reverse specification consisting of the axiom set ':- .

reverse (x,y) 44 (3k) (length (x,k) ,

((\luij) (item(u,i,x) 44 item(u,j,y)) 4 i+j=k+l))

(3k)length(x,k) 4

trivially implies that theorem by simply instantiating y:=x and then
invoking the fact that every list x has a length k. Then a further
trivial deduction shows that the goal above is equivalent to

reverse(x,y) .

•106

The significant feature of the reverse specification just
presented is that it contains an if-and-only-if definition of the
predicate reverse(x,y), and therefore contains more information about
the reverse relation than is provided by P. For instance, assuming
that the meanings of item and length were also specified for terms
constructed from . and nil, it would be adequate for deducing at
object-level that the 2-tuple (a.nil,nil) did not belong to reverse.
Moreover, given also suitable specifications for append and palin it
would be adequate for deducing the partial correctness of p' for the
reverse relation. A central feature of logic specifications, then,
is that by the use of if-and-only-if definitions of the specified
relations they assert more object-level knowledge about those relations
than do the conforming programs which compute those relations.

Specification Style

Logic program specifications underlie most of the material
presented here concerning reasoning about logic programs, and so it
is useful to consider now some of their desirable properties other
than the minimal technical requirement of completely defining the
relations of interest. Briefly, we require that they should be
unbiased towards particular kinds of computational behaviour, 'should
employ as little recursion as possible and should allow the
definitions of subsidiary relations to be specified separately from
the definition of the primary relation of interest. These features are
considered in turn.

Non-computational Disposition

Since a specification is naturally regarded as the most
authoritative knowledge about the relation under consideration,, it
is important that it should be sufficiently clear in its import to
be treated as self-evidently correct. Its correctness may, of course,
be more evident to some persons than to others, since clarity is a
subjective matter and depends upon personal intuitions. Nevertheless
it seems reasonable to require that specifications should be free of
idiosyncratic features which anticipate special behavioural properties
of programs designed to conform to them, since such arrangements tend
to obscure essential logical content. Generally, then, the style
of axioms comprising specifications is disposed towards naive
declarative assertions about the problem domain which take no account

•107

of specific algorithms known to be effective for that domain.

An immediate consequence of this recommendation is that
specifications and programs conforming to them will not usually share
close logical proximity, in the sense that the task of showing that
they both deal with the same relation may be a considerable undertaking
of logical deduction. The reasons for this are two-fold. Firstly,
there may exist no known algorithms which are effective for the
problem except those which exploit comparatively 'deep' theorems
about the problem domain. Secondly, even if a useful algorithm
only exploits theorems easily deducible from the specification, it
may be the case that the limitations of the interpreter's control
strategy demand the use of rather subtle logical representations of
those theorems such as were exhibited in the earlier chapter dealing
with logic programming style.

Consider as an example the problem of showing that some given
element u is the minimum member of a given set x. Representing the
sets in question by terms constructible from : and 0, the required
min relation can be specified with reasonable clarity by the axioms :-

min(u,x) 4-> uzx, lowerbound(u,x)

lowerbound(u,x) (\tv) (u£v 4 vzx)

uzx 44 Qvx') (x=v:x', (u=v v uzx'))

where min(u,x) holds if u is the minimum member in x and lowerbound(u,x)
holds if u is a lowerbound for x. The membership relation over the
chosen class of terms has to be defined recursively in the third axiom.
These axioms about the problem domain jointly constitute a
specification for procedure sets intended for solving calls to min.
The elementary relations = and < are assumed to be implicitly
axiomatized, and any calls to them which might appear in conforming
procedures are assumed to be directly executable by the interpreter.
Now the simplest procedure set which conforms to the specification
and employs no predicates other than those already introduced is :-

min(UfX) 4 uzx, lowerbound(u,x)

uzu:x' 4

uzv:x' 4 uzx'

lowerbound(u,0) 4

lowerbound(u,v:x') 4 u^v, lowerbound(u,x')

Each of the procedures above asserts a quite obvious fact about the
problem domain and can be shown to conform to the specification by

•108

pursuing some quite trivial deductions. - Now in practice this is
not the procedure set which we would employ with a Prolog-like
interpreter to deal with all possible calls to min. If both
calling arguments are given as input then the computation is quite
satisfactory and behaves as a sequence of two essentially iterative
tests - the first to confirm membership of the given element and the
second to confirm the element as a lower bound. Suppose instead
that the procedures were used to discover the minimum of a given-
set. Then the computation would, in general, be very inefficient,
since each time some member selected from the set was shown not to
be a lower bound, the ensuing backtracking would discard all the
comparisons made between that member and the others even though those
comparisons could assist subsequent computation.

A more subtle procedure set for solving calls to min is as
follows :-

min(u,u:0) -f-

min(u,v:w:xr) v<w, min(u,v:x')

min(u,v:w:x') w<v, min(u,w:x')

These procedures give excellent behaviour with Prolog-like control
for both discovery and confirmation of minima of given sets, yet
are not immediately obvious consequences of the specification set.
To deduce that this procedure set conforms to the specification
the transitive property of < has to be exploited in a not altogether
trivial way and results in some quite untidy proofs. However, this
does not detract in any way from the choice of specification; the
task of verifying useful but subtle programs using naive specifications,
difficult as this may be, must be viewed as a natural part of the
programming process.

a

Non-recursiveness

Another desirable feature of specification style is the minimal
use of recursiveness. Recursiveness cannot always be avoided because
some relations are only capable of inductive definition. The e relation
over terms used in the min example above is such an instance. The
objection to recursiveness in an axiom specifying seme relation is that
its definiens is not completely comprehensible until the axiom as a
whole has been understood, which just re-invokes the same difficulty.

•109

In cases where recursiveness is unavoidable it is useful to confine it,
if possible, to the axioms specifying the more primitive relations in
the specification set. Thus, in the min example the min and lowerbound
relations were defined ncn-recursively, whilst the primitive z relation
employed in their definitions was the only recursively defined relation.
As a further example, consider the subset specification below which
holds over sets represented by terms :-

subsetfx, y) 44 x=0 v Qux') (x=u:x', uzy, subset (x' ,y))

uzx 44 C3vx')(x=v:x', (u=v v uzx'))

These sentences do not provide an especially convincing account of
the subset relation, and are more appropriately regarded as a
computational description of how to solve a call to subset using an
incremental algorithm; the first sentence clearly anticipates the
familiar procedures for subset :-

subset(0,y) 4

subset(uzx',y) 4 uzy, subset(x',y)

The more natural specification of subset replaces that first sentence'
with a non-recursive one :-

subset (x, y) 44 (Vu) (uey uzx)

which captures the essential meaning of subset in the least obscure way.
The preference for the non-recursive subset definition is not only an
aesthetic one. It so happens that the recursive alternative contains
less object-level information than the latter even though it trivially
implies useful subset procedures. In some investigations of set
properties it has to be augmented by an induction schema for the class ""
of terms constructible from : and 0 ; there are several examples in the
paper by Clark and Tarnlund (16) in which an induction principle has to
be summoned in order to strengthen recursive specifications like that
above for subset.

Use of Primitive Relations

A logic specification S for some relation R will be permitted
to define R relative to some set of primitive relations whose own
specifications are not contained in S . More precisely, if S is an
axiom set comprising a specification for R and refers to some other

. • 110

relation R' whose own membership is not determined by S, then R' is
said to be a primitive of S. This does not preclude the possibility
that S might assert some general properties of R'. The specification
recently considered for the min problem contained examples of such
primitives, namely = and The memberships of min, lowerbound and e
are undetermined in the specification set S :-

min(u,x) uex, lowerbound(u,x)

lowerbound (u ,x) *-> (\fv) (u4v 4- vex) '

uex •<-> (3vx')(x=v:x', (u=v v uex'))

because the memberships of = and ^ are also undetermined by S.
However we may say that S specifies min relative to = and ^ in the
sense that the meaning of min is dependent upon whatever meaning is
assigned to those primitives.

In composing a specification set, then, it is not insisted
that sufficient information shall be included in it to determine
a non-empty denotation for the specified relation. /The denotation
of n-ary R in S is the set {(xn, ..., x) I S [- R(x^, ..., x) } .7

I n 1 1 1 n • - .

At this point the reader would be justified in questioning the purpose
of allowing a specification for R to define R relative to some set
of primitives rather than defining it absolutely; it would seem
valid to argue that a proper specification for R should at least
determine which members belong to R. The counter-reply to this is
that the meanings of the primitives in terms of which R may be
defined are sometimes wholly irrelevant to the task of creating or
verifying procedures for R. For example, consider the following
specification S for Kowalski's go* relation

go*(x,z) -*-»• (go(z) 4- go(x))

We might wish to use some procedure set for go* for the purpose of
finding paths in a graph represented by a set of go* assertions, each
one asserting a particular arc in the graph. Now a sufficient
procedure set for this purpose is

go*(x,x) +

go* (x,z) 4-go*(x,y), go*(y,z)

which conforms to S independently of the meaning of the specification's
primitive go relation. So in this example there would be no point in
providing knowledge about the members of go.

Ill

The question of whether or not it is necessary to specify
particular meanings for the primitives in some specification depends
entirely upon the task to which the specification is applied. For
instance, the above set of three axioms respectively defining the
relations min, lowerbound and z, together with some implicit
properties of =, is sufficient to deduce the partial correctness of
the min, lowerbound and z procedures used for the naive min algorithm.
This holds irrespective of whatever meaning might be attached to the
primitive On the other hand, the set of three min procedures
for the more subtle algorithm cannot be deduced to conform unless the
specification set is extended to include an assertion that ^ is
transitive; this assertion restricts the meaning of < in the
specification, although it will still be primitive.

It may be useful to summarize this discussion about primitives
by simply saying that in order to show that a procedure for r conforms
to a specification s , it is not generally necessary that s should
determine the membership of r; this is why the meanings of primitives
may be inconsequential. It is important to realize that an individual
procedure for r just asserts some property of r (for instance, the
property of transitivity of go*), and this property may transcend
consideration of the precise membership of r. Note in particular
that the computationally useful go* procedures say nothing about specific
individuals in the go* relation, the choice of which is wholly
unconstrained; this is why they are consistent with - and logically
independent of - any choice of graph-defining set of go* assertions.

4.4 : VERIFICATION OF LOGIC PROGRAMS

The Partial Correctness Criterion

The concept of correctness as applied to logic programs was
first investigated by Clark and Tarnlund (16). They defined a set p
of procedure definitions intended for computing some n-ary relation r
to be partially correct with respect to some 'axiomatic definition' a
if and only if every n-tuple which they compute to solve any goal 4 r
satisfies the definiens of r in A. Their 'axiomatic definition' a
broadly corresponds to what has been described in earlier discussions
herein as a 'specification set'. If the set p of procedure definitions

•112

also satisfies the termination criterion for some class of goals R
then it is defined to be totally correct with respect to A for that
class.

The style of the Clark-Tarnlund formulation of correctness can
be shown by considering the familiar subset relation. Suppose that
the axiomatic definition A for the subset relation over terms is as
follows :-

subsetCx,y) 44 x=0 v (3ux')(x=u:x', uzx, subset(x',y))

uzx 44 (3vx')(x=v:x', (u=v v uzx'))

and that the procedure set P whose correctness is in question is :-

subset*(0,y) 4

subset*(u:x',y) 4 uzy, subset*(x',y)

uzu:0 4

uzv:y 4 uzy

Allowing A to be the authoritative specification of the subset
relation, a proof that any 2-ttiple computable from P as a solution of
a call to subset* will indeed belong to subset as specified by A is '
a proof of the partial correctness of P with respect to A. Clark
and Kowalski (14) have shown that correctness of P can be expressed
and investigated either at object-level or at meta-level. Reading
P and A as conjunctions of formulas rather than sets, the requirement
at object-level is that of proving that the sentence :-

(Vxy)(subset(x,y) 4 subset*(x,y)) 4 p,a

is valid. This sentence can be interpreted as the analogue of the
'verification condition* in conventional program proving. It ought
to be mentioned here that in an unpublished report by Clark and
Kowalski a discussion is given of another example (a verification of
a quick-sort program) which suggests that they would prefer to have 44
in place of the left-most 4 in the above verification condition .for
the subset* procedure set. However, that stronger requirement would
not be necessary in order just to establish the partial correctness of
P. The significance of using 44 instead of 4 is that the sentence
will then require that a consequence of P and A is that any 2-tuple
in the subset relation as specified by A must be computable from
some call to subset* solved by P ; that is, P,A will imply that the
specified relation {(x,y) | a |- subset(x,y) } is equal to - rather than
merely includes - the computed relation {(x,y) | P j- subset*(x,y)}.

•113

When this is so, the two subset* procedures constitute a complete
procedure set for the subset* relation as specified by A through the
identification of subset* with subset', the set is complete in the sense
that, when placed in union with a similarly complete procedure set for e,
the result (P) is capable of computing all individuals in the specified
relation.

A somewhat neater expression of the partial correctness criterion
is given in the meta-language. The criterion here is that the
sentence :-

(Mxy) ((A |- subset* (x,y)) 4 (p f- subset(x,y))

should be a meta-theorem, in which case P is partially correct with
respect to A. Again, one can strengthen this criterion by replacing
the connective by 44 , which then adds the requirement that P is
complete with respect to A; but this property is not necessary for
partial correctness.

Proving the Partial Correctness Criterion

Two quite distinct approaches to logic program verification have
so far been researched and published in detail. These can be
distinguished informally by saying that the first one treats the'
procedure definitions and the sentences specifying the computed
relation as axioms and pursues a proof of the object-level verification
condition as a target theorem, whereas the second one seeks to prove
the procedure definitions as target theorems using just the specification
as the axiom set. Both approaches generate object-level proofs which
establish that the procedure set satisfies its partial correctness
criterion for the given specification.

The first approach is demonstrated in the Clark-Tarnlund paper
which presents object-level partial correctness proofs for two logic
programs (ordered-tree-insertion and quick-sort). As with their
treatment of termination proofs, they appeal to an induction schema
associated with data structure axiomatization in order to prove the
relevant object-level verification conditions. Proofs of the
corresponding meta-level verification conditions do not appear to have
been published, although Clark and Kowalski have affirmed that these
are structurally similar to those employed at object-level other than
in the way they invoke induction principles.

•114

Considering again the subset example examined above, object-
level proof of partial correctness proceeds quite easily by exploiting
the following induction schema for the class of terms chosen to
represent sets :-

(VP; ((Mx)P(x) 4- ?(0) , (Vvx')(P(v:x') 4- P(x')))

The appropriate instance of P chosen for the proof is :-

P(x) (Vy; (subset(x,y) 4- subset* (x,y))

and the general structure of the ensuing proof of the object-level
verification condition :-

(Vxyj (subset(x,y) 4- subset*(x,y)) 4- p,A

is then very similar to the inductive termination proofs, using the
subset* procedures, the subset specification and the instantiated
schema as axioms.

The inductive proofs of termination and partial correctness
developed by Clark and Tarnlund have the disadvantage of becoming
extremely cumbersome for non-trivial examples. Furthermore it is
easy to find cases which do not seem to fall naturally within the scope
of their method. For instance, the verification condition :-

(Vxz)(go* (x,z) 4- go* (x,z)) 4- P,A

cannot be proved at object-level from the axioms

P : go*(x,x) 4-

go*(x,z) +go*(x,y), go*(y,z)

A : go*(x,z) -«-> (go(z) 4- go(x))

even though A trivially implies the reflexivity and transitivity of go*.
Here there appears to be no obviously useful way of strengthening
the axioms with an inductive characterization (constraining the go
relation, for instance) for the data structures (graphs) to which P
will be applied.

Quite apart from these failings, the inductive approach to the
verification of logic programs fails to provide a satisfactory
clarification of the important logical relationships between programs,
their specifications and their data structures. In view of this, it
is fortunate for logic programming methodology that there exists an
alternative way of investigating the correctness criteria for logic
programs which :-

•115

(i) dispenses with the cumbersome and slightly confusing role
of inductive data structure characterization;

(ii) admits an intuitively more satisfying logical relationship
between programs and their specifications;

(iii) allows more manageable proofs of partial correctness;

and (iv) provides an attractive unification of the meanings of
verification and synthesis.

This approach was researched independently but contemporaneously by
Hogger (38) and by Clark(12), and has since been applied - albeit
in differing styles according to its various proponents - for both
verification and synthesis of a wide range of programs.

The alternative approach assumes, as before, that a specification
set is available to define the n-ary relation R of interest. Let
this set now be denoted by S rather than A, since it will be assumed
that S possesses the stylistic features of specifications advocated
in the previous section. (The 'axiomatic definitions' A typically
used in the Clark-Tarnlund paper do not possess these features; on
the contrary, they are highly recursive and computationally biased.)
Now suppose that T is any sentence logically implied by S , that is, T
is a theorem provable using S as an axiom set (these notions being
equivalent in FOPL). Then T is a theorem about the problem domain's
relations described in S; if S correctly describes the properties of
the problem domain, then so does T. In particular, let P be a set
of procedure definitions each of which is an example of such a T.
If P computes some n-tuple £ in response to a goal R, then we must
have P |- R(%) by virtue of the correctness of resolution (provided
that this is realized in the interpreter which computes £). In
that event we must also have S |- R(^) , because S J- P by assumption
and f- is transitive. Therefore R(%) must be a theorem about Rtj. . "
which is to say that £ belongs to R as specified by S. To summarize
this reasoning, it suffices to say that if the procedures in P compute
a solution £ to the goal R, and if S \- P , then £ belongs to R as
specified by S. Now if this holds for all n-tuples £ computable by P
in response to any goal -«- R, then the partial correctness criterion
is clearly satisfied; for this is all that the criterion requires,
namely that every computed solution is a specified solution.

•116

It might not be too presumptuous to say that this simple but powerful
concept is one of the most important ideas to have emerged so far from
research in logic programming methodology, since it not only provides
for a satisfactory way of verifying programs, but also gives the means
for deriving them.

Termination can also be investigated by using this logical
relationship between S and P. For suppose that the deduction of P .
from S is accomplished in such a way as to guarantee that P comprises
a complete procedure set for P. Then all goals <rR which are solvable
usipg P are solvable using S and vice versa. Therefore all the
computations initiated by those solvable goals must terminate,
provided that the interpreter's control strategy does not disallow
the generation of any refutations. To establish termination it is
sufficient to show that S implies the existence of solutions to the
goals in question, which may be much easier than the alternative of
showing that P implies their existence (which is the CIark-Tarnlund
method).

To make these ideas more concrete it will now be useful to
revisit the subset example and examine the correctness proof of the
procedure set P

subset(0,y) +

subset(u:x',y) uzy, subset (x' ,y)

using the most natural sentences specifying subset over terms
X

S : subset (x,y) (\/u) (uzy uzx)

uex (3vx')(x=v:x', (u=v v uzx'))

which are presumed to assert self-evidently correct facts about the
subset and z relations. It may also be assumed that S implicitly
contains an axiomatization of =. Now it is very easy to show (by
making a definiens substitution for uex in the sentence defining
subset and simplifying the result in two alternative ways) that

S |- (Vy)subset(0, y) +

and S (Vux'y) (subset(u:x' ,y) uzy, subset(x' ,y))

which is sufficient to confirm that p is partially correct for subset
with respect to S; that is, every 2-tuple £ computable from P will
satisfy S subset(K). Moreover, it is equally easy to deduce from
S the stronger result

1-17

S (\fxy) (subset(x,y) x=0 v Qux') (x=u:x' ,uzy,subset(x' ,y)))

from which it immediately follows that P exhausts all possible ways
of solving a call to subset, and is therefore a complete procedure
set for subset. Now suppose that a complete program body P* is
composed from the union of P with some complete procedure set P' for
the e relation. Then every 2-tuple £ satisfying S J- subset(E,)

will also satisfy P* J- subset (E,) , that is, will be computable
from P* by a successfully terminating computation. If there exists
a class of goals subset (x) for each of which S implies the
existence of at least one solution E,, then any program consisting
of the body P* and a goal in that class must terminate in execution
and hence be totally correct for subset as specified by S. Note
that a proof of that program's total correctness for subset as
specified by S does not require investigation of the partial
correctness of the assumed procedure set P' for e - it is only
necessary that P' should be complete for e.

None of the proofs alluded to above for proving the partial
correctness of P require the kind of inductions customarily
considered essential (in one guise or another) for the axiomatization
of classical flowchart programs containing loops. Loops are a
major problem in conventional program proving but have no special
status in the logic programming formulation of verification. Thus
the claim by Reynolds and Yeh (71) that "induction is the only technique by
which programs can be verified" is not true of logic programs. Manna
and Waldinger (60) also conjectured that synthesis of loop-containing
programs could not be accomplished without induction, and a similar
stance is taken by Spitzen and Wegbreit (78)j it will be seen presently
that this view, too, does not hold for logic programs.

There would seem to be two facets to a possible explanation of
the fact that logic program verifications and syntheses can avoid
induction (at least, in all examples examined so far), although it uiay
be that those facets are not mutually independent. Firstly we have
the fact that verification which derives procedure definitions from a
specification set (as just discussed above) will, in general, use a
richer corpus of object-level knowledge for its axiom set than would
be the case if the procedures instead were used as axioms for deriving
properties of the specification. The latter is the case with the
Clark-Tarnlund verification method and is approximately the position

•118

also taken in conventional program verification? in both circumstances
it is necessary to appeal to induction principles. Secondly we have
the fact that logic programs contain no explicit control information,
so that looping behaviour arises from the way in which the interpreter
(a) processes recursive procedures and (b) performs iterative search
through sets of procedures. The task of showing a procedure to be
implied by its specification in a partial correctness proof is
wholly indifferent to the way in which that procedure might be
eventually executed. For instance, Kowalski's go* specification
trivially implies the recursive go* procedure which expresses the
transitivity of go* and which, with a typical control strategy, will
generate looping behaviour; induction has no role to play here in
confirming that the procedure is a true theorem about go*. Despite
these observations, however, we do not yet possess a firm theoretical
explanation of what role, if any, induction has to play in the task
of reasoning about logic programs.

4.5 : SYNTHESIS OF LOGIC PROGRAMS

Synthesis by Procedure Derivation

In the previous section it was suggested that the notions of
verification and synthesis could be unified by the idea of showing
procedure definitions to be implied by their specifications. When
S and P are both given, the task of proving P from S just confirms
that P is partially correct. However, if P is not initially given
then that same task can be viewed as a synthesis, in that it results
in the formulation of knowledge about the problem domain which was
previously unfounded. Synthesis and verification then just connote
differing motivations - discovery and confirmation - in the use of S
to derive knowledge about that domain.

Traditionally the term 'program synthesis' alludes to the task
of creating a complete description of an algorithm. This is because
the nature of most computational formalisms is such that they
provide for the creation of programs whose texts do.indeed describe
algorithms in almost complete detail. Logic programs, on the other
hand, only contribute to the logic components of algorithms, even
though their styles may be heavily disposed towards particular control
mechanisms. Deductive derivation of procedures from specifications

•119

can be viewed as a process of program synthesis because the derived
procedure sets together with arbitrarily chosen goals can be treated
as source programs; this is a consequence of possessing interpreters
capable of contributing the control components of algorithms.

Because the correctness of derived procedures is independent of
control information, their improvement can be pursued solely by the
agency of logical deduction. If some given procedure set gives
poor behaviour then it may be possible to use it as an axiom set in
union with the original specification set in order to derive some
new procedures which behave more satisfactorily. Thus the logic
programmer who is equipped with a sound and practical inference
system for FOPL can pursue both the synthesis and transformation of
programs using a methodology which naturally preserves correctness
until he eventually finds the optimal program for his intended
interpreter. This freedom to develop the logical structure of
algorithms using logical deduction and an intuitively correct set
of initial axioms describing the problem domain is the outstanding
feature of logic program synthesis.

More generally, of course, the systematic incremental
development of correct, clear and well-behaved programs has been the
central ideal of modern programming methodology ever since Dijkstra's
investigations of 'structured programming' (18) and its subsequent
refinements by Wirth (89) and many others. However, despite the
invaluable improvements which the structured programming era has
wrought upon professional programming practice, attempts to fully
realize its ideals in the use of conventional programming languages
have not satisfactorily surmounted the problem of finding a practical
way of associating knowledge about the problem domain with the kind
of constructions which those languages typically provide for
processing that knowledge. Because those languages do not possess
a logical semantics, the programmer's task becomes estranged from
the underlying logic of the problem of interest. Just the opposite
is true of logic program synthesis; every step the programmer takes
towards the development of the program involves him directly in the
manipulation of theorems about the problem domain.

Although deduction is a logically sufficient tool for creating
logic programs from specifications (or from other programs), this tool
requires intelligent control in order to be practical. Whilst the

•120

use of deduction over the problem domain preserves correctness, it
offers no guidelines about the computational usefulness of the
theorems which it generates. Nevertheless this does not preclude
the possibility that some computational intuitions may be reflected
in the use of procedural styles imposed upon the presentation of
that deduction. We already possess a convincing procedural
interpretation of Horn clause logic which allows resolution derivations
(which comprise just one kind of deduction) to be viewed computationally;
when we are in a position to see that one such computation is more
favourable in some respect than another we can then arrange that
the control of the interpreter causes it to pursue the more favourable
one. Likewise, in the course of deriving procedures from a
specification using standard FOPL, it may be useful to have a
procedural interpretation applicable to derived sentences which allows
them to be assessed in terms of practical merit. For example, given
a choice of pursuing derivations from either of two FOPL theorems
about the problem domain, a procedural interpretation of those
theorems might indicate that one was more likely to lead to practical
Horn clause procedures than the other; deciding upon the progress
of the derivation on the basis of this assessment is then just another
instance of the exercise of intelligent control to guide a deductive
formalism.

The ideas expressed above underlie the style in which logic
program syntheses are presented here. On the whole these are
structured so as to resemble computational derivations; this
assists the gradual transformation of wholly declarative theorems
(that is, theorems which are almost meaningless from a computational
point of view) into Horn clauses whose computational intent is clear.
The formulation of logic program syntheses in a quasi-computational
style is next explained in some detail.

t

Derivation as Quasi-Computation"

In order to show how procedure derivations may be viewed as
computations, it is useful to firstly examine a typical program
transformation effected solely by deduction. Consider then the
two procedures below which have been selected from the counting
program discussed in Chapter 3 :-

count(u.x,w+1) 4 delete(u,u.x,y), count(yfw)

delete(u,u.x,y) 4 delete(u,x,y)

Now suppose that these are resolved by matching the delete literals;
the resolvent, which is implied by the two parents, is then the
sentence :-

count(u.x,w+1) 4 delete(u,x,y), count(y,w)

This can be viewed as a derived procedure for counting the distinct
members of list u.x. This deduction is a typical logic program
transformation which preserves correctness whilst slightly improving
computational efficiency. For if the original count procedure is
replaced by the new one derived above, then solution of some call
count(u.x,w) can begin by immediately deleting u from x and counting y,
instead, as formerly, of firstly invoking the delete procedure to
delete u from u.x. In other words, the use of the new procedure
eliminates one cycle in the iteration which accomplishes the deletion
of all occurrences of u from u.x.

Now the derivation above can be presented in a goal-oriented
style as follows. Suppose that the goal to be solved is
4 count(u.x,w+1) and that the procedures available for solving it
include the two original procedures given above. Then top-down
execution of the goal gives the computation :-

4 count(u.x,w+1)

4 delete(u,u.x,y) , count(y,w)

4 delete(u,x,y), count(y,w)

At this point in the computation it becomes apparent that the goal
4 count(u.x,w+1) is solvable if the derived goal 4 delete(u,x,y),

count(y,w) is solvable. From this observation it can be immediately
inferred that the procedure :-

count(u.x,w+1) 4 delete(u,x,y), count(y,w)

is a consequence of the original procedures. The goal-oriented
derivation above is essentially an orthodox top-down logic program
execution which has been suspended at some point in order to infer
a new procedure, and could be implemented as a compile-time program
transformation by appropriately controlling an ordinary resolution
interpreter.

•122

A similar derivation style can be formulated for a program
synthesis where the axioms comprise a specification set rather than
a Horn clause procedure set. In this case r the derivation of a
procedure for r likewise proceeds by showing that the goal •*• r is
solvable by solving some goal -<- r , ..., r whose calls are all

1 n
atomic. Frequently the goal which immediately succeeds the initial
goal in that derivation has the form -«- d , ..., d whose conjuncts

1 m
are arbitrary FOPL formulas rather than atoms, in consequence of
using standard FOPL to specify r with a sentence

r d. , ... , d
1 m

and then invoking this axiom in response to the initial goal.
Clearly if at least one of D , ... and d is non-atomic then the

1 m
derivation of the desired Horn clause goal will demand inference
rules other than resolution, and consequently may not be amenable
to such a simple computational interpretation as that afforded to
resolution derivations by the procedural interpretation of Horn
clause logic.

The computational nature of deductive procedure derivations
from specifications treated as input axioms was observed by Clark
and Tarnlund (16) in their treatment of verification, although they
did not attempt to organize their proofs into the goal-oriented
format of typical run-time derivations. (Considering the complexity
of their verification conditions it is unlikely that such an attempt
would have been very successful.) However, they did observe that
some of the inferences could be interpreted as 'symbolic' executions
of procedures with generalized arguments rather than arguments
instantiated by individuals specific to particular problems. Clark
and Tarnlund described such an execution as a 'slow mode' execution,
producing generalized procedures which could afterwards be invoked
in 'fast mode' to solve specific problems; this suggested the *"
possibility that a logic interpreter might be designed to apply
two control strategies - respectively slow and fast modes - to an
input specification set together with some goal, such that the first
execution provided procedures for solving the goal whilst the second
used the procedures to generate the actual solutions. This would
obviously be a much more powerful computational tool than existing
logic program interpreters.

•123

A significant feature of the counting example above is the fact
that the derivation uses only procedures capable of solving calls to
count and delete which are already known to be computationally useful.
In other circumstances it is often necessary during derivations to
exploit sentences wh'ich have no role in 'fast mode' execution (that
is, sentences which would not normally be included in an executable
program), but which nevertheless contribute important facts about
the problem domain. A simple case of this can be found in connection
with the pick problem which was also discussed in the last chapter.
This is the problem of finding two members u and v in a given set z
which satisfy u<v, in which case the predicate pick(u,v,z) holds.
Suppose it is desired to derive procedure sets for solving calls to
pick when the input sets of interest are represented by terms. A
sufficient specification set for the purpose is then

S : pick(u,v,z) •*-*• uez, vez, u<v

uez (3vz')(z=v:z', (u=v v uez'))

Now it is easy to see that S trivially implies the procedures

P^ : pick(u,v,z) uez, vez, u<v

P^ : ueuzz' •*•

P^ -* uevzz' uez'

These are just the 'if-halves' of the equivalences in S. Note'
that because, according to the specification, pick(u,v,z) can only
be solved by showing UEZ, vez, u<v it follows that { P i s a complete
procedure set for pick, whilst, by a similar argument, { P P ^ } is a
complete procedure set for e. Jointly these procedures are sufficient
for solving any solvable call to pick, albeit rather inefficiently.
The ineffiency arises from the execution of a rather large number of
superfluous calls to e. Nevertheless we have in { P P ^ , P^} a
(partially) correct procedure set which can be used as a sound basis
for further derivations even though it has some computational failings.
An example is now given to support this assertion.

Consider, then, the consequences of the 'only-if-halves' of the
equivalences in S. In particular observe that the p±ck definition
trivially implies the procedure-like sentences P , P c and P

4 ^ o
P , : uez •*• pick(u,v,z) 4
P5 : vez pick(u,v,z) P z u<v pick(u,v,z)

These do not form a useful adjunct to {Pj/ P2 / P3^ n o r m a ^
computational purposes, yet it will now be shown that they assist the

derivation of a new procedure set which behaves more sensibly than
the first one considered. This derivation employs, as an initial
axiom set, the theorems in (P,, P o / P 0, P^, P^, Pg} all of which are known
to be correct assertions about the problem domain (assuming s is).
The goal to which they are applied is that of pick-ing u and v from
a set w:z', and the symbolic execution of this goal proceeds as
follows :-

pick(u,v,w:z') (initial goal)
-J- uewzz', vewzz', u<v (after invoking Pj)
4- uez', vez', u<v (after invoking P^ twice)
4- pick(u,v,z') (after invoking P., P c and P-.)

4 0 o

From this a new procedure can be inferred for pick; it is :-

Py z pick(u,v,wzz') 4- pick(u,v,z')

Now this derivation was not deterministic. For instance, the
calls to £ in the second goal are processed there in such a way
as to ignore the possibility that either u or v is the member w.
There exists therefore another derivation which explores an
alternative branch from that second goal which deals with the case
where u is the first member w. This is depicted below, showing how
P^ - instead of P - . is invoked in response to the first call of
the second goal :-

•*- pick(u,v,wzz') (initial goal)
4- uewzz', v£w:z', u<v (after invoking P)
4- u=w, vez', u<v (after invoking P^ and P^)
4r vez', w<v (after simplifying by u:=w)

The inferred procedure from this derivation is :-

P Q : pick(w,v,w:z') 4- vez', w<v

o

Note that if the first two calls to e in the second goal are
processed respectively by invoking P^ and P^ instead of by invoking
P^ and P^ as shown, then another procedure will, be inferred which
deals with the only remaining branch from the second goal, namely
that for the case where v is the first member w :-

Pq : pick(u,w,w:z') 4- uez', u<w

The goal pick(u,v,w:z') can now be solved using the procedure
set {py, pq, pg, p2 / pg } instead of the former set ipj' p2'
This gives a modest improvement in efficiency when Prolog-like control

•125

is used with procedures Pg and Pg scheduled at higher priority than Py.
For example, solution of the goal 4 pick(u,v,4:3:2:1:0) generates
just seven e invocations with this set, whereas twelve are generated
in solving that goal with the previous set.

This example has shown how deductive inference is sufficient for
firstly deriving a program from its specification and then transforming
it to give run-time improvement. In both cases it proved possible
to employ a quasi-computational style which allowed the use of orthodox
top-down resolution. Resolution is also sufficient for a number of
other derivations concerned with the pick problem; for instance, if
the specification set is extended to include an assertion that < is
anti-symmetric (rather -than being just any binary relation) then it
is possible to show by resolution that Py is implied by Pg and Pg in
a theory which has S as its axiom set, the consequence of which is
that Py need not be included in the pick program. (It is easy to
show that in the algorithm suggested above using {.Py, Pg, Pg, PP^i

the procedure Py is never invoked when the goal is solvable and the
relation < is anti-symmetric.)

When specification sets contain sentences which do not trivially
imply Horn clause procedures, inferences other than resolution will
usually be needed in order to derive the desired procedure set for
the problem of interest. In such circumstances it can be
helpful to imagine the non-clausal sentences with which they deal as
being classifiable in much the same way as Horn clauses :-

R 4 assertion

R4R ..., R conditional assertion
1 m

4 r , ..., R denial 1 m

where R, R-, ... and R are arbitrary formulas rather than atoms.
1 m

Such sentences may then be assigned a procedural interpretation rather
like that for Horn clauses. For instance, the sentence :-

4 (Vuv)(u<v 4 consec(u,v,x))

is interpreted as a goal with one (non-atomic) call whose arguments
are its free variables - in this case, just x. The goal expresses
the objective of discovering instances of the variable x satisfying
(Vuv)(u<v 4 consec(u,v,x)). Likewise, a sentence like :-

(Vuv) (consec(u,v,x) 4-y consec(u,v,x') v (u=u',v=v'))

4 split (x,u' ,v' ,x')

is interpreted as a procedure having a non-atomic procedure heading
with arguments x, u', v', x' and a single atomic call in its body.
Pursuing quasi-computations with sentences of this kind in the course
of deriving Horn clause procedures from arbitrary FOPL specifications
is the central problem confronting the logic programmer who requires
formal proof that his programs are correct. The kind of inferences
which can be useful for this purpose form the subject of the next
chapter. However, the general style of these non-clausal derivations
may be appreciated for the brief example below which derives a
recursive procedure for the ord relation holding upon an ordered list.

Specification Set :

ord(x) -«-»- (Muv) (u<v •*• consec(u,v,x))

(Muv)(consec(u,v,x) consec(u,v,x') v (u=u' ,v=v'))

split(x,u',v',x')

Derivation :

ord(x)

-«- (Muv) (u<v -*r consec(u,v,x))

(Muv) (u<v •*• consec(u,v,x') v (u=u' ,v=v')) , split(x,u' ,v' ,x')

•«- (\fuv) (u<v -*- u=u',v=v'), (Muv) (u<v consec(utv,x*)) ,

split (x,u' ,v' ,x')

u'<v'e ord(x'), split(x,u' ,v' ,x')

Derived Procedure :

ord(x) split(x,u' ,v' ,x') , u'<v', ord(x')

The reasoning which underlies the derivation of the successive goals
here can be outlined informally as follows : to show that x is ordered
show that all its consecutive pairs (u,v) satisfy u<v; but if x can be
split into components u', v' and x' as depicted below :-

x : u' v '

then the set of all consecutive pairs in x is the union of
with the set of all consecutive pairs in x'; therefore show that
u'<v' and show that x' is ordered subject to x being split in this way

•127

By enriching the specification set above with the further
sentences :-

(Muv) (consec(u,v,x) •*-»• false) -«- empty-list(x)

(Vuv) (consec(u,v,x) -<-*- false) unit-list(x)

other goal-oriented derivations can be pursued to infer two more
procedures for ord :-

ord(x) -«- empty-list (x)

ord(x) unit-list(x)

Together the three derived procedures comprise a complete set for
the ord relation, subject to the assumption that a list can only
be either empty, a unit list or a list decomposable by split.
Each of the procedures is inferred from a branch in a derivation
tree explored within a graph of all the derivations determined by
the initial specification set S, the presumed inference rules
and the initial goal. This consideration supports the view
promoted here that procedure derivation and logic program execution
are not fundamentally different in principle, but instead just
connote particular classes of derivations in FOPL; logic program
execution just confines itself to Horn clause logic. Therefore
we can see that the two activities investigate problems expressed in
a single logical continuum extending from the most restricted subclass
of FOPL up to the standard formulation. Consequently there is reason
to hope that existing knowledge about the control of program execution
might also prove applicable to the strategy of program synthesis using
procedure derivation; knowing how best to control a program which
investigates the orderedness of a list must provide some insight into
the derivation of procedures for investigating crdercdness, since our
methodology treats these tasks as essentially similar acts of problem
solving.

C H A P T E R 5

D E R I V A T I O N

0_F

L O G I C P R O G R A M S

PREVIEW

This chapter describes in detail the more important rules
of inference which allow the derivation of logic programs. It
is of no consequence here whether this be considered in the context
of verification or synthesis because, as explained already, these
activities share a common logical foundation.

The first section explains in more detail the motivation
and justification behind the proposal that logic procedure derivation
can contribute usefully to computer programming. Essentially that
proposal advocates just one of the many ways of exploiting the
fundamental merit of the logic programming formalism argued in
previous chapters, namely the identification of deductive inference
as a sufficient device for reasoning about the logical content of
algorithms. As well as establishing its logical integrity, we
are also naturally concerned that the discipline of logic program
derivation should be well-organized from a logistical viewpoint,
in the sense that its practitioners should be able to deploy their
logical resources (axioms and inference rules) in a coherent way.
Therefore this section also explains a few general principles
which deserve to be incorporated in the derivation methodology.

The inference rules discussed here, which are intended
for the gradual transformation of arbitrary FOPL goals into Horn
clause goals, fall naturally into two kinds : those which apply
structural simplifications to goals independently of the axioms
in the specification set, and thos.e which exploit those axioms

•129

in order to combine goals with knowledge about the problem domain.
These two classes of inference rules are discusscd respectively in
two further sections, which conclude by showing how the two kinds
of goal transformation are cooperatively interleaved in practice.

The fourth section deals with the derivation of the principal
program procedures, that is, procedures not directly concerned with
the relatively low-level problems of data access. Some techniques
are presented for deriving both recursive procedures and their
bases, and the section closes with.a discussion of the completeness
of procedure sets, which is to say, their capacity to compute all
individuals in the specified relation.

The topic of the-final section is the derivation of data-
accessing procedures, considering in turn the way these can be
derived to provide access either to terms or to sets of assertions.
A rather interesting example is given there of how to derive the
kind of procedures which manipulate explicit pointers in order to
systematically process the components of assertional data
structures. The material presented altogether in the chapter is
then sufficient for the examples of derived programs demonstrated
in the final chapters of the thesis.

5,1 : MOTIVATION AND ORGANIZATION OF DERIVATIONS
V

Motivation

The motivation which underlies the program derivations presented
in later chapters is to contribute evidence for the thesis that logic
comprises a practical formalism for the creation and expression of
computer programs. General acceptance of the view that logic can
satisfy this role will depend, not so much upon proofs of its
theoretical adequacy for the task (which is not in doubt), as upon its
capacity to satisfy pragmatic user-oriented criteria expressing the
essential tenets of good programming practice. Important requirements
of any formalism for program derivation which is intended to meet
such criteria are (a) that it should provide for the explicit
expression of the knowledge about the problem domain which is used in
the course of program development, (b) that it should allow practical
proofs that the resulting programs conform to their specifications
and (c) that its application should produce programs which behave

•130

sensibly without necessitating a concomitant loss of logical clarity.
These requirements can be met in the derivation of logic procedures
by using, respectively, (a) well-styled FOPL specification sets to
declare facts about the problem domain, (b) a sound and practical
deductive inference system, and (c) good logic programming style.

The motivation expressed above chiefly anticipates the needs
of programmers engaged in the task of developing programs without
the assistance of 'clever' programming aids. Of course, informal
investigations of logic program synthesis of the kind portrayed in
this thesis may eventually provide insights into the appropriate
construction of new programming tools such as semi-automatic logic
program synthesizers, or even interpreters capable of directly
executing non-clausal logic as a programming language in its own
right. The possibility of gaining such insights is related to
the task of finding a comprehensive procedural interpretation for
standard FOPL; this we do not yet possess, although the quasi-
computational style of the derivations presented here might be
regarded as a preliminary step towards that eventual goal. The
prospects for partially mechanizing logic procedure derivations,
particularly in the light of progress made in other closely related
computational formalisms, are considered in the closure of the-
thesis.

Substantial efforts have, of course, already been made to
implement mechanical proof procedures for non-clausal logic. Some
of these are discussed in a report by Bledsoe (5). However, these
efforts have been predominantly directed to the problem of developing
more-or-less autonomous, intelligent proof procedures whose
implementations could be expected to take over the role of human
ingenuity in problem solving. Projects of this kind often reflect
the objectives of those researchers in artificial intelligence who
regard intelligent general-purpose problem-solving programs as
convenient operational representations of some intended theory of
intelligence, the latter usually being their ultimate, goal; the
potential capability of such programs to emulate the role of programmers
dealing with specific computational problems in the real world is then
somewhat incidental to this ambition.

The attitude underlying the study of procedure derivation in the
present work assumes - although this must be a cautious assumption -

•131

that advances in artificial intelligence will not significantly reduce
the need for human intuition in problem solving (and hence in computer
programming) for some considerable time. This view justifies the
pursuit of more modest short-term improvements in the tools with
which programmers pursue their computational objectives. In any case,
much of the intellectual pleasure of the programming discipline
derives directly from the human inventiveness and experimentation
currently essential for effective programming, and there seems to be
no pressing reason to pursue the demise of this contribution from the
programmer; of greater urgency is the need to provide him with tools
which allow the clear and accurate expression of his intellectual skills.

Therefore, rather than contributing to the long-term goal of
devising autonomous problem-solving systems, the present study
focuses instead upon the task of ameliorating the most serious problem
afflicting the current practice of computer programming, which is
undoubtedly the problem of ensuring correctness. Uncertainty about
correctness has its origins in the fact that conventional languages
possess no useful declarative semantics, and so do not in themselves
provide either for the logical confirmation that programs compute the
correct relations,or for the logical derivation of programs from
declarative statements about those relations. It dees not appear
likely at present that conventional program proving will eventually
overcome these difficulties : firstly because the notion of
retrospective verification is inherently unsatisfactory (due to its
somewhat eccentric requirement for the logic of the program to be
employed after writing the program rather than before - which raises
serious questions about how the program was firstly conceived) ; and
secondly because the preliminary axiomatizations upon which it depends
are made prohibitively complicated by the program's control information,
which consists not only of explicit control structures but also of
the control implicitly encoded by the use of destructive assignment.
Deductive derivation, on the other hand, which encourages the programmer
to express and infer knowledge about the problem domain and liberates
the soundness of that task from considerations of efficiency, seems to
offer much better prospects for overcoming the correctness problem.

•132

Methodological Principles

Since the thesis is centrally concerned with the derivation of
procedures from specifications as the basis of logic program synthesis,
and since the theoretical justification of the method has been
explained in the previous chapter, it is now appropriate to consider
some methodological constraints intended to assist the good conduct
of derivations. It is also natural to expect the same constraints
to prove valuable in the task of program transformation. Whereas
synthesis develops new procedures from specifications, transformation
develops them from given procedures (and sometimes specifications as
well). There is no fundamental distinction involved here, since
both activities have the object of deriving Horn clause procedures
from whatever logical knowledge is made available; it is only in
this initial resource that the two activities differ.

Proposed below, then, are five such constraints imposed upon
the task of deriving procedures ;. most of them are borrowed from
general programming methodology and are just expressions of common
sense.

1] Self-evidently Correct Specifications

Showing that a set of logic procedures is implied by a.
specification has little utility unless the specification correctly
summarizes the facts about the problem domain of interest. In
formulating the initial axioms for a procedure derivation, we shall
abide by the recommendations stated in Section 4.3 stipulating the
desirable properties of specifications; these will help to guard
against poor specification style, although the potentially difficult
task of formalizing the problem domain must always be prone to error.
Logic has no answer to this problem, except perhaps as a device for
checking the equivalenceor just the consistency, of alternative,
independently developed problem formulations.

2] Derivation by Sound Inference

Whilst intuition plays an essential role in guiding the direction
of procedure derivation, it is important that the logical expression
of the conclusions drawn from that intuition should not itself rely
upon that intuition for its correctness. Instead, derivations will
be constructed using sound inference rules to ensure that each derived

•133

goal is logically implied by the initial goal and the initial axioms
about the problem domain.

3] Goal-oriented Derivation

In order to motivate derivations towards procedures for solving
the specific problem at hand, it is desirable that they should proceed
(as far as practical) in a top-down goal-directed style in much the
same way as programs are developed in other programming methodologies.
This reflects the requirement that each step in a derivation should
contribute to solving the problem of deriving a useful procedure for
the particular relation of interest. This avoids the combinatorial
problems associated with bottom-up styles which combine general
problem-independent facts in a manner not motivated by specific goals.
This principle is therefore based upon arguments similar to those which
justify the goal-directed strategies normally used in logic program
execution.

4] Logical Clarity in Programs - .

It is important that derived programs should be reasonably clear
in what they assert about the relations of interest, even though the
derivation process inherently guarantees their correctness. This is
because the opportunities for understanding how to transform those
programs or assimilate them into other programs are seriously
diminished if their logic is incomprehensible. Unfortunately it is
often difficult to find clear logic which also gives excellent behaviour,
due to current limitations in implementation technology. Our attitude
towards this conflict between logical clarity and efficient behaviour
is expressed in the stipulation that, in the course of deriving a set
of procedures, the coupling of logic with control will be disposed
towards choosing those procedures which stand in greatest logical
proximity to their specification and at the same time allow acceptable
behaviour with the intended interpreter.

5] Use of Data Structure Abstraction

The last major principle also conforms to a generally accepted
tenet of good programming practice, which is that detailed decisions
about the implementation of concrete data structures should be deferred
until the higher-level procedural properties of the program have been
established. This prevents the text of the developing program from

becoming confused by extraneous and procedurally unimportant details
of representation. More importantly, it helps to clarify
consideration of which aspects of the final algorithm are influenced
by the logical properties of the data structures and which aspects
depend only upon their concrete run-time implementation; this kind of
knowledge is extremely useful when seeking localised modifications
- either to logic or to implementation - which improve efficiency.
Postponement of the choice of concrete data structure representations
can be arranged in the early stages of logic program synthesis by
specifying abstract data structures with appropriate sets of selector
procedures; near the end of the synthesis, these can be summoned for
the purpose of soundly substituting concrete representations, for
example by macroprocessing or more sophisticated transformations
of the data-accessing parts of the program.

Hierarchical Program Development

The development of a complete program body to solve some goal R

can be usefully organized as a hierarchical process in which each
level deals with the development of procedure sets serving calls in
procedures at higher levels. The highest level just develops a
procedure set for r; the lowest levels typically deal with data access.
This arrangement improves the management of program composition and
also allows a more precise meaning for the term synthesis as used in
logic programming. A simple example is now outlined to explain this.

Suppose that we require a program body capable of solving calls
to subset. Then we say that a procedure derivation for subset is a
single top-down derivation of the kind presented in Section 4.5 from
which it is possible to infer a Horn clause subset procedure.
Moreover, we say that a synthesis for subset is the set of all
procedure derivations for subset which contribute to the final program
body. A complete synthesis for subset with respect to a given class
of calls to subset is a synthesis for subset which contributes a
sufficient procedure set for subset for solving every solvable call in
that class.

Consider then the pursuit of a synthesis for subset with a
specification set s containing the axiom

subset (x,y) (Mu) (uzy uzx)

It is not possible to derive a practical Horn clause procedure set from

•135

this axiom alone, and so some more information about sets must.be added
to s . Now suppose we appeal to set theory for knowledge about the
constructibility of sets; this will provide the fact that a set is
either the empty set or a singleton or the union of two sets. The
minimal knowledge which s must contain in order to exploit this fact
for the derivation of a procedure set for subset is :-

(Mu) (uzx false) empty (x)

(\/u) (uzx u=v) 4- singleton(x,v)

(\fu) (uzx -«->• uzx^ v union(x^fX^,x)

The four axioms introduced so far to s together with implicitly
assumed properties of = then admit a synthesis for subset which
consists of three derivations; each derivation contributes one of
the three procedures below :-

subset(x,y) empty(x)

subset(x,y) singleton (xev) , vzy

subset(x,y) -e union(x ,x ,x) , subset(x ,y) , subset(x0,y)

1 « -l ^
This establishes the top level in the hierarchical development of the
program body.

Inspecting the derived procedures, it is apparent that other
procedure sets must also be devised in order to solve their calls to
empty, singleton, union and z. All these relations are primitives
of the axiom set shown so far, which does not determine their members.
It was only necessary to utilize some consequences of calls to them
in order to derive the procedure set for subset. The next level in
the hierarchy would now comprise four respective syntheses, each one
based upon its own specification set. Yet another level will be
needed if any of those syntheses generate procedures containing calls
to primitives. Observe that we do not attempt to establish a single
global specification set containing sufficient axioms for deriving
the entire program body - often these cannot be clearly perceived until
the hierarchy has been expanded enough to reveal which relations are
interrogated by calls in the derived procedures. This gradual
development of specifications as well as procedures around a developing
procedure-call hierarchy is rather like a number of conventional
program development packages already in commercial use.

•136

Choice of Specification Set

The choice of the initial axioms to comprise a specification set
is naturally the crucial determinant of the richness of the class of
procedures which can be derived from it. The problem of choosing,
these axioms is therefore one of the central problems of program
synthesis, and is at least as serious as the other notable problem
of prescribing an effective strategy for controlling the inference
system once suitable axioms have been assembled. Synthesis in the
fullest sense of the word consists not only of choosing between
alternative derivations, but also of choosing between alternative
axiomatizations of the problem of interest.

A complete programming methodology would provide techniques
for discovering and appraising alternative axiomatizations, given
just the'computational goal and a minimal description of the relevant
problem domain. At present our understanding of the ontological
principles which underlie effective algorithms is too rudimentary
to allow a very significant step towards such capabilities. Of
course, there do already exist implemented synthesizers which can
accept minimal problem descriptions and subsequently produce seme
modestly good, but unsurprising, executable programs as output.
Systems of this kind owe their competence to the empirical
accumulation of a large data base to which they refer - in a tightly
controlled way - in the course of choosing axioms and synthesis rules
to deal with the specific problem at hand; yet although their
repertoire may seem impressive upon first acquaintance, there does
not exist any cpherent general theory which justifies their particular
modus operandi. For instance, although we now possess synthesizers
which can output families of sorting algorithms, not one of them is
able to pursue those algorithms selectively using criteria of
computational efficacy; that is, not one of them will pursue a
quick-sort algorithm in preference to a bubble-sort algorithm by
undertaking the intricate analyses required to determine their respective
asymptotic comparison counts or other parameters of computational
efficiency.

In the syntheses presented here, the requisite axioms are
induced by unformalized intuitions concerning the overall structure
of the target algorithms. In the absence of firm theoretical - or
even empirical - guidelines,- those intuitions will have to suffice
for cur purpose.

•137

With many simple problems rudimentary but acceptable programs
can be derived without using any knowledge other than the minimal
problem description. The subset example just considered approximates
to this kind of problem. Suppose the input description is slightly
reformulated to express the assumption that the arguments of subset
have a type called set. The primary definition will then be :-

subset(x,y) 44 (\/u) (uzy 4 uzx), set(x) , set(y)

Then we may appeal to a general problem-independent axiomatization
describing what it means for any z to be of type set

set(z) 44 empty(z)

v Qv)singleton(z,v)

v Qz^J (setiZj) , set(z2) , union (z^z2,z))

empty(z) 44 (Mu)(uzz 44 false)

singleton(z,v) 44 (\/u) (uzz 44 u=v)

union(z^,z^,z) 44 (Vu)(uzz 44 uzzV UEZ^)

This set data-type characterization is now no longer an axiom set
special to the problem of deriving subset procedures; instead it is
a corpus of general knowledge which can be summoned to assist-
derivations for any problems which explicitly express the assumption
that they are dealing with objects of type set. The set of three
subset procedures given earlier are derivable quite trivially from
the above type-characterized subset definition and the type specification
together with axioms for =.

It should not be thought that this minimal description of the
subset problem admits just one feasible procedure set for subset.
The richness of the class of derivable procedure sets depends also
upon the proof procedure employed to search the derivation graph.
For instance, the kind of inference rules presented later on are
such that, applied to the axioms above, they admit derivations of
an alternative procedure set :-

subset(x,y) 4 empty(x)

subset(x,y) 4 vzx, vzy, singleton(x,singleton(y,

union(xlfx2,x) , union(y^y2,y) ,

subset(x,y)

•138

This procedure set schedules the membership tests in a Prolog-like
computation quite differently from its predecessor. Also, unlike
the latter, the recursive procedure can be invoked iteratively. Thus
the intelligent selection of derivations using problem-independent
knowledge is sometimes sufficient for obtaining interesting and useful
algorithms. In Chapter 7 it will be seen that the simpler sorting
algorithms may similarly be derived using no more than a rudimentary
definition of sortedness together with some general axioms about lists,
sets and ordering relations. It is only for the much deeper algorithms,
like Batcher's merge-exchange-sort, that the initial specification set
has to be furnished with non-trivial pre-proven theorems selected from
the mathematical theory of sorting.

Implicit Specification Axioms

On many occasions it is useful to assume that the specification
set implicitly contains axioms about elementary relations like — .
In many of the derivations presented later on, goals will be transformed
in simple ways which depend upon such axioms but which are not
explicitly formulated within the derivation texts. For instance,
the inference step shown in the derivation below exploits the 1:1
property of = which s implicitly asserts :-

4- (\/u) (uzy u=v)

4- veg

This inference is used in the derivation of the subset procedure
shown earlier which shows that {v} is a subset of y by showing that
v is a member of y. No attempt is made here to delineate the exact
set of assumed axioms about relations like = , but when any rather
special property is exploited in an inference step then an informal
note about this will be given alongside the derivation. However it
can be assumed that s will contain at least the knowledge of every
tuple in every tuple not in =, and the fact that = is a 1:1
equivalence relation.

It is also convenient for presentation's sake to assume some
implicit axioms in s which allow apparently surreptitious inferences
dealing with terms denoting arithmetic expressions. Thus the kount

•139

procedure discussed in Chapter 3 :-

kount (u.x,w+l) 4- kount (x,w)

may be used to infer directly the procedure :-

kount (u.x,w) 4r kount (x,w-l)

•The assumption which justifies this is that the first procedure merely
abbreviates the conjunction of the following pair :-

kount(u.x,w') 4 kount(x,w), plus(w,l,w')

plus(w,l,w+l) 4

and that plus also satisfies the axiom implicitly contained in S :-

plus(w-l,lfw) 4

It should be clear that the original two kount procedures shown in
the inference step above are both logically implied by the three
assumed procedures. These kinds of inference will not generate any
semantical difficulties at the superficial level at which they appear
in later derivations. Any derivation manipulating terms in the
manner above (performing quasi-arithmetic on them, for example) can
be justified in first order logic by reformulating it in the way
just shown.

Objectives of Derivations

The logical objective of a derivation is to show that a Horn
clause procedure is logically implied by S . As has been described
already, this task is organized as a top-down derivation from the
goal R where R is the relation interrogated by the target procedure.
The derivation is then a sequence (4r, . (4 r ^ , r)) of goals
of which each is logically implied by the conjunction of S with 4 r.

From the derivation we infer the implication :-

5j- (r 4 r , r)
l n

in order to obtain the target procedure.

The computational objective of a set of derivations for R (that
is, a synthesis for R) is a set P of Horn clause procedures adequate
for investigating some supposed class of goals 4 r. if this class
contains goals which collectively compute all individuals in R then
the objective is a complete procedure set for R. It is presumed, of
course, that the adequacy of this set takes cognizance of the efficiency

of the algorithms which it gives with the intended interpreter. A
sensible way to proceed is to derive some initial procedure set,
investigate its behavioural properties and then resume the derivation
process in order to obtain some efficiency-improving transformation.
We saw an example of this previously with the pick problem.

Inference Rules for Procedure Derivation

The inference rules presented here for procedure derivations are
not unlike some of those found in conventional natural deduction
systems for FOPL. However, the treatment'herein does not appeal to
the customary formulations of natural deduction since the latter do
.not seem to be amenable to a useful procedural interpretation.
Instead, the rules presented shortly are intended specifically for the
kind of goal transformations which reflect our computational view of
procedure derivation. In general they are applied with the intention
of inferring from a given goal :-

R, / •••/ R, / • •. / R
1 k m

a new goal

r11 •«./ r'
i n

by activating some procedure call R^ (not necessarily atomic), and
processing it either using just knowledge about the other calls in
the goal or else using knowledge invoked from some axiom in the
specification set. x

The last remark indicates that the inference rules fall into
two kinds. A rule of the first kind, called goal simplification,
typically simplifies the current goal by, for instance, simplifying
the activated call's connectives or quantifiers or by finding an
instantiation of its variables which trivially solves it. Whatever
way is used to simplify the goal, no reference is made to S. A rule
of the second kind, called goal substitution, often has the opposite
properties. It invokes some fact from s in response to the activated
call, typically substituting new knowledge into the goal. The skill
of logic procedure derivation lies in finding intuitively sensible ways
of applying the simplifications and enrichments afforded by the rules
in a cooperative manner. When the rules have been discussed in more
detail it will be seen their most simple manifestation is in the case
where all the manipulated sentences (goals and axioms) are in Horn
clause form, in which case they reduce to the mechanisms of an ordinary

•141

top-down resolution interpreter. Their more elaborate manifestations
are wholly consequences of admitting the possibility that an activated
call may be non-atomic, which in turn ensues from the adoption of
standard FOPL for specifying the relations of interest. Whether or
not the inferences are applied to non-clausal sentences, they reflect
the typical execution of logic programs in that they replace
activated calls by conjunctions of other calls and result in the
transmission of data between the calls' arguments. However, one
important difference between program execution and procedure derivation
is that in the former case we have a complete inference system . _
(resolution), whereas we make no claim to possess a correspondingly
complete inference system for the latter; the rules examined here are
just those which have proved useful in the examples considered. Of
course, we would hope to possess eventually a complete, compact and
empirically useful inference system together with an intelligent control
strategy to govern its application.

The division of the rules for procedure derivation into two kinds
is not an arbitrary one, but is rather a useful means of controlling
the introduction of knowledge during goal transformation. It would
be possible to combine them into a single class, but this would tend
to obscure the relative logical contributions made by the current
goal and the specification set to the derivation of the succeeding
goal; it seems desirable - to allow greatest insight - that these
contributions should remain separate in both the concept and the
representation of the derivations. In any case, the combined rules
would almost certainly be syntactically unmanageable.

Eefore discussing the various kinds of inference steps in
greater detail, it will be useful firstly to announce a small matter
of terminology for expressing the logical relationships between goals.
It has been pointed out that a rule of the first kind - goal
simplification - takes no account of the specification set. If G
is the current goal and g , is the goal derived from it by a rule of

r+1
this kind, then we shall cerrainly have the relationship :-

G b G
r 1 r+1

wherein is logically implied by G^ : which in FOPL is equivalent
to saying that is provable in a theory whose axioms are Gtogether
with the axioms of FOPL. Moreover, if the relationship below
also holds :-

•142

G , G
r+1 1 r

then G , and G are logically eauivalent. Now consider the derivation
r+1 r

of G , from G using a rule of the second kind - goal substitution.
r+1 r *

The logical relationship between these goals and the specification set
is now :-

s ' G 1"
r 1 r+1

wherein Gr+2 implied by S ,G . Now since the existence
of S is always assumed in discussing relationships between goals, it
is convenient to introduce some terminology which expresses that
assumption concisely within such discussions. So when the relation
above prevails, we shall say that G ^ is S-implied by G, and likewise
if the relationship below also prevails :-

S ' b G

r+1 1 r
than we shall say that G ^ and Gare S-equivalent. To say that one
goal is S-implied by another is just to say that the former is provable
in a theory which has as its axioms both S and the latter goal together
with the axioms of FOPL.

5,2 : GOAL SIMPLIFICATIONS

This section considers some of the more common ways in which a
goal can be simplified in the course of procedure derivation. The
discussion is limited to considering this just from a syntactical point
of view, although it is possible to assign very general problem-solving
interpretations to some of the inference rules. In each case it is
assumed that we have some arbitrary goal consisting of a conjunction
of calls, and the derivation of the successor goal arises by selecting
just one call for simplification.

Deletion of an Implied Call

One of the simplest ways of simplifying the current goal G r is
to delete one of its calls. Since it is assumed here that no sentences
other than the current goal are initially given for this purpose, the
simplification can only proceed in such a way as to satisfy G f- G if

r r+1
the deleted call is implied by the other calls. It may be helpful to
formalize this in terms of the inference rule modus tollens since this

•143

rule underlies our normal mode of top-down goal execution. Suppose
that the goal in question is :-

G • 4- R . 0 . . F R , 0 M . / R
r 1 k n

and that the activated call is R.. Here the calls are labelled so that
k.

the assumption that R is implied by some conjunction of other calls in
/C

the goal is expressible by the procedure-like sentence :-

k k+1 n

Invoking this sentence in response to the activated call, exactly as in
top-down resolution but permitting unification to apply more generally
to matchable formulas instead of just to matchable literals, the call
R^ in the goal is replaced by a conjunction of calls which then have
duplicate occurrences in the new goal; these can clearly be deleted to
leave simply

Gr+1 : * V Rk-l'Rk+l' Rn

Clearly this is just tantamount to deleting the call R f r o m the given
goal. Note that this simplification determines that G^ and are
logically equivalent.

Useful call deletions often depend upon suitable instantiation
of the goal variables, as shown in the following derivation :-•'

4- equiv(x,y)

'4- subset(x,y) , subset(y,x) [using equiv specification]
4- subset(x,x), subset(x,x) [instantiation y:=x]

4- subset(x,x) [deleting first implied call]

from which is inferred the derived procedure :-

equiv(x,x) 4- subset (x,x)

Deletion of a Valid Call

Any call which is a valid formula of FOPL can be deleted from
the current goal to leave a new logically equivalent aoal. In practice
this kind of simplification will only be applied without explicit
justification when the call's validity is trivially provable in FOPL.
Deletion of a valid call is, of course, just a special case of the
deletion of an implied call as above, since a valid call is necessarily
implied by all calls. Below is an example which uses a suitable

instantiation in order to generate a valid call

equiv(x,y)

(\!u) (uex uey) [using equiv specification]
•«- (\Ju) (uex uex) [instantiation y:=x]

D [deletion of valid call]

from which we conclude the procedure

equiv(x,x)

Distribution of Connectives

Distribution of the connectives in a call is an especially-
important means of simplifying the current goal. It is almost always
applied with the aim of replacing a moderately complicated call by a
conjunction of individually simpler ones. On many occasions this is
achieved by distributing -«- through conjunctions or disjunctions, and
so a few typical cases of this are enumerated below.

Case 1 : An activated call (A B^, B) may be replaced by any
non-empty conjunction of calls in which each call is some
(A -f- B^) where lgkcm. The new goal is logically implied
by - but not generally logically equivalent to - the given
goal. However, logical equivalence is obtained when the
substituted conjunction contains every conjunct (A B)

A such that 14k4m.

This simplification investigates the problem of showing that
a set of assumptions implies a by just attempting to show
that some of them individually imply A.

Case 2 : An activated call (Aj, ..., Am B) may be replaced by the
conjunction of calls (A^ B) , ... , (A -«- B) . The derived
goal is logically equivalent to the given goal. There is
no special problem-solving significance in this simplification
it just re-expresses the goal in a more discrete form.

Case 3 : An activated call (A B-^ v v Bm) may be replaced by the
conjunction'of calls (A B J (A •<• B) . The derived

•L m

goal is logically equivalent to the given goal. Like the
case above, the goal is merely given a more discrete
representation.

•145

Case 4 : An activated call (A v ... v A B) may be replaced by any
1 m

non-empty conjunction of calls in which each call is some
(A B) where Kk4m. The new goal is logically implied by -
sC

but not generally equivalent to - the given goal. However,
logical equivalence is obtained when the substituted
conjunction contains every conjunct (A B) such that I4k4m.

JC
This simplification investigates the problem of showing that
B implies a disjunction of alternatives by showing that B
implies some of them.

These distributions of conditionals may be easily combined to give
rules for distributing equivalence connectives in activated calls.
Four particularly common cases are shown below, in each of which the
derived goal is logically implied by - but not generally equivalent •
to - the given goal.

Case 5 : An activated call (A B_, ..., B) may be replaced by
1 m

the conjunction (A B) , ..., (A •<-»- B).
1 m

Case 6 : An activated call (A B, v ... v B J may be replaced by
1 m

the conjunction (A -<-> BJ , ..., (A -«-> B) .
1 m

Case 7 : An activated call (A , ..., A B„, ..., B) may be replaced I m 1 m
by the conjunction (A, -*-> B.) , ..., (A -*-»- B) .

1 1 m m

Case 8 : An activated call-fA, v ... v A -<-*- B, V ... v B) may be 1 m l m
replaced by the conjunction (An B,J, (A B).

1 1 m m

The above selection of cases is by no means a complete summary of all
goal simplifications which proceed by distributing connectives, but
is presented just to indicate their style. The frequent need to
distribute and arises fundamentally from the liberal use made
of these connectives by non-clausal specifications. All those goal
simplifications which distribute connectives can be reformulated as
combined applications of more elementary propositional rules such
as De Morgan's laws and the laws of associativity, distributivity and
tautology.

•146

Some justification should be given here of the description of
these goal transformations as 'simplifications' in spite of the fact
that their application usually introduces conjunctions of calls which
are syntactically more cumbersome than the calls which they replace.
In applying one of these rules to replace a call g by a conjunction
g^, ..., g• , the resulting derived goal G r +2 than the
given goal G in two possible senses. Firstly, the task of solving r
g is reduced to the separate tasks of solving g , ... and g , each

1 n
of which is simpler than g because (generally) it only deals with
some proper subset of the various atoms occurring in g; normally the
solution of g is made tactically simpler by pursuing solutions of its
subproblems even though they may not be independent of one another.
Secondly, it is often the case that g , ..., g implies g somewhat

1 n
trivially yet is not equivalent to it, and therefore has less
information to deal with; the new calls represent a special way of
solving g which is more trivial than the most general way of solving
it. For example, solution of the problem :-

4 (uea 4 uebj)

trivially solves :-

4 (uea 4 ueb^,

and is the case dealt with above as Case 1. Problem reduction and
problem trivialization are therefore distinct ways of simplifying the
solution of goals, and both are typical results of distributing
connectives as in the rules above.

Calls which are prefixed by quantifiers may also be replaced
by conjunctions of simpler ones by distributing connectives. In
particular, suppose that Qg is a call in the current goal G of r
interest, where Q is any prefix of universal quantifiers and g is any
formula. Then each of the eight simplification rules above which
replace a call a by some conjunction g_, ..., g can be generalized

I n
to a rule which permits the call Qg to be replaced by the conjunction
Qg, ..., Qg^ . This is so by virtue of the validity of the formula :-

((Vx)g(x) 4 (\Jx)g (x), ..., (Mx)g (x))
1 n

4 (Vx) (g(x) 4 g (x) , ..., g (x))
i n

The following example shows such a generalization of both Cases 3 and 4
above :-

•147

4- (\ju) (uky1 v uey uex^ v uex^)

4- (\fu) (uey 1 v uey^ uex7; , (Mu) (uey1 v uey^ -f- uex^) [Case 3]

4- (Mu) (uey1 4- uex) , (Mu) (uey2 4- uex^ ,

(Mu) (uey4- uex) , (Mu) (uey^ 4- uex2) [Case 4 twice]

This reduction seeks to show U x2) c (y^ U y^ by solving each of
the more trivial subproblems x <= y , x S y , x « y and x s y .

• X X X ^ ^ X b «

Distribution of Quantifiers

Quite often it is useful to distribute quantifiers through connectives.
In the simple cases illustrated below, Q is a prefix consisting just
of universal quantifiers; this is the most usual circumstance of interest.

Case 1: An activated call q(a_, a) can be replaced by the
1 m

conjunction qai, ..., qa . This just re-expresses the given
m

goal in an equivalent but more discrete form.

Case 2: An activated call Q(A. v ... v a) can be replaced by any
1 m

conjunction of calls each with the form QA^ where l^k^m. The
derived goal is logically implied by - but is not generally
equivalent to - the given goal. The intuition here is simply
that a disjunction can be satisfied by satisfying some of its
disjuncts; the quantification here is inconsequential.

Case 3: An activated call q(a 4- b_ b) can be dealt with by Case 2
I m

by expressing it in disjunctive form, i.e. q(a v v ... v .

These substitutions can be justifiably regarded as goal simplifications
for the same reasons as those advanced in the discussion of connective
distributions. Distributions of connectives and quantifiers are often
used cooperatively as shown in the following example :-

4- (Mu) ((uex 4- uey , uey2), (uey ̂ uey2 4- uex))

4- (Mu) (uex 4- uey , «ey2;, (Vuj (uey^ uey2 4- uex)

4- (Mu) (uex 4- uey), (Vu) (uey2 4- uex), (Mu) (uzy2 4- uex)

where the first step distributes V through conjunction whilst

the second distributes 4- through conjunction.

•148

Deletion of Quantifiers

Some rather minor goal simplifications proceed by the deletion of
quantifiers. The most trivial of these, of course, is the case where
a prefix is deleted because the formula which it quantifies has no free
occurrences of the prefix variables; there would be no good reason for
deliberately arranging such a pre-condition, but the latter could come
about instead as a side-effect of other more significant goal
transformations.

Another trivial deletion is that of a wholly existential prefix
q from a call q g to leave just g; this derives a logically equivalent e e
goal. An example is shown below in which q is (3z) :-e

4 (3zVu) (uzy 44 uzx v uzz)

4 (Vu)(uzy 44 uzx v uzz)

There is no problem-solving intuition involved here; the rule just
exploits Kowalski's goal notation which allows the suppression of
explicit existential quantifiers associated with the goal's free
variables.

Goals may often be simplified in their quantification by
exploiting special properties of elementary relations. A simple
example is the exploitation of the 1:1 property of =. Consider the
call :-

(Vu)(uzx 4 u=w)

assumed to be the activated call in the current goal. Now all
instances of u which falsify u=w make the conditional (uzx 4 u=w)
vacuously true. Assuming that = is 1:1, the only other instance
of u is w, and this instance makes the conditional true if and only if
it makes uzx true. This means that the call can be replaced by
simply wzx, leaving a goal which is equivalent to the given goal" in
a theory which has the properties of = as axioms. Strictly this
simplification .depends upon the implicit axiomatization of = in S
and is therefore strictly a goal substitution in the sense defined
earlier; but identity is such a fundamental relation, having no
specificity with respect to particular problem formulations, that for
practical purposes we can treat it as though it were independent of S.
An example is shown below in which both the 1:1 property and the
symmetry of = are summoned to simplify the goal :-

•149

4- (\fu) (u=v^ v uzx^ 4-y u=v2 v uzx
2)

4- (Vu)((u=v1 -«-»• u=v2) , (UZXj^ 4-+ uzx2))

4- (\fu) (u=v1 4-+ u=v2) , (Mu) (uzx1 4-+ uzx2)

4- vJ=v2, Y2=vlf (Vu) (uzx1 ++ uzx2)

4- v2=v2' (Vu) (uzx1 4r+ uzx2)

The inferences used here for the four steps are, respectively, a Case 8
distribution of -«-»• , distribution of V through conjunction, a double
exploitation of the 1:1 property of = , and finally use of the symmetry
of =. The first two steps are goal simplifications proper, and the
second two are strictly goal substitutions invoking properties of =
from the specification set but more conveniently interpreted as goal
simplifications.

5.3 : GOAL SUBSTITUTIONS

In contrast to the kind of simplification rules presented in the
last section, which do not enrich the knowledge in the current goal but
merely rearrange it or trivialize it, the object of each rule now to be
discussed is to derive a new goal by combining the knowledge in. the
current goal with that expressed in the specification set. It was
suggested in Chapter 4 that this process could be viewed as quasi-
computation analogous to conventional logic program execution by
interpreting the specification set as a procedure set and by interpreting
its interactions with derived goals as execution mechanisms. In
particular, these mechanisms exhibit features such as call activation
(independent or cooperative), procedure invocation (deterministic or
non-deterministic) and data transmission (input or output, by argument
instantiation). The notion of a successful derivation in this context
differs slightly from that associated with successful logic program
execution in that it is terminated when all the calls in the current
goal (if any) are atomic; note that this still allows the possibility
of a refutation derivation - that is, when no calls remain to be
processed. Observe, then, that whereas successful program execution
computes a solution /"refutation + induced bindings to output variablesj /
a successful procedure derivation generates a new way /"Horn clause
goal + induced bindings to output variablesj of investigating the
original goal.

•150

The inference rules which allow the implementation of the above
ideas are, for the most part, a little more elaborate than resolution
because of their need to cater for non-atomic calls and procedure
headings. As with the previous discussion of rules for goal
simplification, the following description of goal substitutions is
confined to deal with just those rules which have proved consistently
useful in the examples investigated. Fortunately they are few in
number, simple in concept and compact in presentation; however, a set
of rules proved to be complete would probably not share those attributes.

Inference Rules for Goal Substitution

Each incremental step in the top-down execution of a Horn clause
goal consists of selecting one of its conjuncts (that is, activating
a call), selecting a resolving input clause (that is, invoking a
procedure from the program body) and finally substituting the matched
procedure body for the call to the derived goal. The resolution which
accomplishes this essentially combines the inference rule modus tollens
with the unification of literals. This kind of inference has a simple
but useful analogue in the process of procedure derivation which only
requires an extension of the notion of unification so as to apply to
arbitrary formulas rather than just literals. In addition to this
simple analogue of program execution, there exist some variants of it
which allow slightly more elaborate ways of invoking knowledge in S
in order to make a substitution for the activated call. Each of the
substitution rules is now discussed in turn.

1] Modus Tollens

It will be helpful to begin with a concrete example; therefore
consider the following goal assumed to be the current goal in some
procedure derivation.:-

perm(x' ,y') , (\fuv) (u<v consec(u,v,y')),append*(w,y',y),select(w,x',x)

and suppose that the second (non-atomic) call is activated. Assume
also that the following sentence occurs in the specification set :-

(\Juv) (u<v -«- consec(u,v,z)) + ord(z)

and is invoked in response to the activated call. Viewed as a
procedure, this sentence has the procedure heading :-

•151

(\/uv) (u<v consec(u,v,z))

and the procedure body ozd(z). Now the activated call can clearly
be matched with the invoked heading by the unifier iy':=z} .
Applying this instantiation together with modus tollens then produces
the derived goal :-

4 perm(x',z), ord(z) , append*(w,z,y), select(w,x',x)

by the substitution of an atomic body for a non-atomic call. As a
second example, suppose that the current goal is

4 perm(x,y) , ord(y)

and that the invoked procedure from the specification set is :-

ord(z) 4 (\fuv) (u<v 4 consec(u,v,z))

Then the unifier {y:=z} with modus tollens substitutes the procedure
body for the call to give

perm(x,z) , (Vuv) (u<v 4 consec(u,v,z))

This time a non-atomic body replaces an atomic call.

The inferences just illustrated can be formalized in the following
way. Let F be the activated call in the current goal G and assume r
that S either contains or implies a sentence (F* 4 F') such thâ t F
and F* are unifiable by some 9. The derived goal G .is then obtained

r+1
by substituting F' for F in G and applying 9 to the result. /"Note
that to avoid confusion in the naming of variables, this and all other
goal substitution rules proceed on the assumption that prior to the
inference step the variables in the goal have been named so as to be
distinct from those in the invoked sentence, or at least to the extent
that no ambiguities arise in the composition of the unifier 9J.

A special case of this rule is where S simply implies the assertion
F* 4 which corresponds to F' being merely true; in this case the
assertion immediately solves the activated call and so effectively just
deletes it from the current goal. Clearly these inferences are direct
analogues of Horn clause procedure invocation. Observe in particular
that the application of 9 to the substituted goal acts as a device for
transmitting data between calls exactly as in logic program execution.
Finally, note that this rule determines that the derived goal is
S-implied by - but not generally S-equivalent to - the given goal.

•152

2] Transitivity of Implication

Because the calls in the goal are not limited to atomic formulas,
the possibility exists of more elaborate ways in which S may contribute
to the substitution of a goal subformula F by some F' originating from
S ; indeed most non-trivial procedure derivations depend crucially
upon this possibility. The next rule to be presented here deals with
a call which is itself a conditional of the form (F A) where both
F and A are arbitrary. This call seeks to show that A implies F.
Ignoring trivial ways of showing this (for instance, by relying upon
the specification set to imply (F A)) , the simplest general way of
solving the call is to show that A implies some Fr which itself implies
F. Imagine then that S contains or implies the procedure F* F'

where F* and F are unifiable by some 9. Then the derived goal is
obtained by substituting F' for F in the activated call and applying 9
to the result. In an analogous way, if the activated call takes the
form (A + F) and S implies the procedure F' F* with F* and F
unifiable by some 9, then the derived goal is obtained by substituting
F' for F in the call and applying 9 to the result. The applicability
of these rules is clearly dependent upon the context of F in the goal;
that is, unless F is either the consequent or the antecedent of a call
which is a conditional formula, these rules will not apply. Observe
also that the derived goal is S-implied by - but not generally
S-equivalent to - the given goal.

X

3] S-Equivalence Substitution

The rules presented so far have only considered circumstances
in which S implies a conditional sentence. A more powerful kind of
goal substitution is possible when S implies an equivalence. Suppose
now that S implies a sentence F* F' and that the current goal
contains a subformula F which unifies with F* using some 9. Then a
derived goal is obtained by substituting F' for F and applying 9 to the
result. This rule is more powerful than the others above insofar as
it applies independently of the context of F in the given goal; that is,
F need not be a call or have any special contextual position in a call.
In fact F can even be a whole conjunction of calls, as though all were
being simultaneously activated, but normally we shall prefer to apply

•153

the rule in cases where F is a subformula of a particular call, and
then consider that call to be the activated one in the current goal.
By contrast with Horn clause resolution, observe that derivations in
FOPL using rules of this kind allow inferences to be made about the
inner structure of calls. Because this particular rule allows F
to have an arbitrary context, it has the important property that the
derived goal is necessarily S-equivalent to the given goal. It can
be regarded as just a variant of the general replacement axiom for
deductive logic. At this stage in the discussion of goal substitutions
it will be useful to see a concrete example.

Suppose that the current goal seeks to show that the intersection
of some pair of sets is' a subset of some other set :-

•*- (Vu) (uzy 4 uzx^,)

and that the specification set contains the set membership axiom below
applicable to sets represented by terms

wzv:z 44 w=v v WZZ

Now this axiom can be used to express the membership of any of the
sets named in the goal in terms of the membership of its constituents.
Assume that the set x^ is chosen as the one to have its membership
expressed in more detail in consequence of what S says about the
construetibility of sets. Then the following identifications are
made to admit an application of the S-equivalence substitution rule

F* = wzv:z

F' = w=v V WEZ
F = uzx^

G = (u:=w, x^:=v:z} to match F with F*

so that the derived goal becomes :-

C^w) (wzy 4 (w=v v wzz) , wzx2)

and the single binding to a goal output variable, namely x^:=v:z , is
assigned to the binding environment of the derivation. Note also that
the same result could be obtained using one of the transitivity of

implication rules described in 2] above by exploiting a weaker fact
from S which is implied by the equivalence just used; this fact is
just the conditional :-

wzv:z 4 (w=v V wzz)

•154

Now the given goal can, just for the sake of example here, be re-written
in the form :-

(\fu) (uey v ^uex^ uex)

and then considered to have its activated call in the form (A F) ,

whilst S implies a sentence of the form Fr F* such that F and F* are
unified by {u:=w, x z } . Transitivity of implication then derives
the new goal :- -

(Mw) (wey v ^wex -«- w=v v wez)

which,after re-writing again to eliminate the explicit assumes the
same form as the goal just derived by 5-equivalence substitution.

4] S-Conditional-Equivalence Substitution

The inference rule to be explained now is probably the most
frequently used of all the goal substitution rules. Like the one
above it has the object of substituting a formula F' for an arbitrary
subformula F in the activated call of the goal. Now, however, this •
substitution is conditional upon some other arbitrary formula F", and
so a call to F" will appear in the derived goal. The specification set
is assumed to imply a conditional equivalence of the form (F* F') F"

such that the selected goal subformula F unifies with F* using 9. The
derived goal is obtained by substituting F' for F, applying 9 to the
result and finally appending the new call F". The rule allows the
context of F in the given goal to be arbitrary, and has the property
that the derived goal is S-implied by - but not generally S-equivalent
to - the given goal."

A simple example of the rule is shown below which seeks to show
that some y is a lower bound for some set x

-«- (Mu) (y4u + uex)

The specification set is assumed to contain the following axiom about
the constructibility of sets using set union :-

(\/w) (w£z w=v v wez') union* (v,z' ,z)

Now make the identifications

F = uex F' = (w=v v wez')
F* = wez F" = union*(v,z',z)

6 = { x : = z }

and apply the rule as just described to give the derived goal :-

•155

4- (Vw) (Y 4 - w=v v WEZ') , union* (v,z' ,z)

It should be stated here that the applicability of this rule does have
a slight contextual dependence upon the structure of the current goal
G , although this is not especially associated with the context of its
replaced subformula F; rather it is a constraint upon the quantification
of the goal variables. A sufficient condition for the rule to be
applicable as described earlier is that the free variable set of f"
and the bound variable set of g'g should be disjoint, where g' is the r r
result of substituting f' for F in the current goal g, and 9 is the
unifier of F with f*. In the example above this condition is
satisfied because the free variable set of f" is {v,z',z} whilst the
bound variable set of g'9 is {w} , these being clearly disjoint. r
Cases where this condition upon the quantification of the goal
variables is not satisfied and thus obstructs some substitution for F
conditional upon F" have not occurred during investigation of any of the
examples presented in this thesis, and so would not seem to represent
a significant limitation in practice.

A final observation about this inference rule is that when F" is
trivialized to just true, the S-conditional-equivalence substitution

reduces to the S-equivalence substitution; since the free variable set
of F" is then empty it must be disjoint with the bound variable set
of the substituted goal, and so the quantification constraint vanishes.
This is consistent with the fact that there are no quantification
constraints upon the applicability of the S-equivalence substitution.

5] Conditional Transitivity of Implication

This rule could be regarded as a hybrid formed from the two
previous rules 2] and 4]. There are two variants of it, both of
which exploit the transitivity of implication. In the first variant,
the activated call has the form (f 4- a) and s implies a sentence of
the form (f* 4- f') 4- f" with F and f* unifiable by some 0. The
derived goal is obtained by substituting f' for F, applying 0 and
finally appending a new call F". In the second variant, the activated
call has the form (a 4- f) and s implies a sentence of the form
(pi + p*) + f" with F and f* unifiable by 0. The derived goal is
obtained by substituting f' for F, applying 0 to the result and finally
appending the new call F". In each case the context of F in the goal

is specific, and in each case the derived goal is S-implied by - but
not generally S-equivalent to - the given goal. A concrete example
of the rule's application is not given here, but an interesting instance
of it will be found in the next section dealing with the derivation of
recursive procedures.

Summary

The detailed syntactical description of these rules appears a
little intimidating, and so it is useful now to give an informal
summary of their objectives and preconditions. Given a current goal,
the objective of all the rules is to replace some subformula by a
formula from the specification set; this will be motivated by the belief
that the goal becomes, in some sense, more informed about the problem
of interest. In general we would ideally like to replace the
selected subformula by an equivalent one, so that the derived goal would
certainly not say anything less.than did the given goal. Also we
would like to choose the subformula without worrying about its contex.t
in the goal. The realization of this ideal is the S-equivalence
substitution, and its precondition is simply that the appropriate
equivalence should be implied by the specification set.

The next best approximation to the latter rule is the
S-conditional equivalence substitution which still allows F to be
any subformula but no longer preserves S-equivalence between the given
and the derived goals. The remaining rules just deal with the simplest
of the special cases of F's context in the given goal : when it is the
consequent or antecedent of a conditional call, or when it is itself
a call. Jointly these rules suffice for a great variety of procedure
derivations, as will be seen in due course. Their general usefulness
can be made apparent by considering the style in which specification sets
are typically assembled. For suppose that R is the relation for which
procedures are to be derived, and is specified in S by the sentence :-

R -«-*• D. / ... , D
1 m

It may be possible to foresee that those procedures will usefully
interrogate some other relations R', R", ... specified in S by
analogous sentences :-

•157

where the conjuncts of the various definiens' are generally non-atomic.
It is because they are non-atomic that the derivation of procedures
for R from these sentences cannot be accomplished using just modus
tollens, which poses the need for the other inference rules which
exploit deeper relationships between the definiens1 obtaining through
the sharing of unifiable subformulas. Moreover, it is observed
empirically that it is very usual for an individual conjunct, say d",
to have the structure (f* 44 f') ; that is, the specification set
implies (f* 44 f') 4 r" by virtue of the 'only-if' half of the
R" definition. This is just the right pre-condition for making an
S-conditional equivalence substitution of F' for some subformula F in
the goal using G to unify F with F*. This inference step will
therefore introduce a call to R", and thereby contribute towards the
transformation of the goal to a conjunction of entirely atomic calls;
this is because R" is an atom by assumption. This is a highly typical

feature of non-trivial procedure derivation.

Combining Simplification and Substitution

In general, the strategy which underlies the procedure derivations
is disposed towards the substitution of atomic calls for non-atomic
calls. A goal simplification tends to increase the goal's amenability
to such substitutions by so modifying its syntax that its subformulas
can be matched with other formulas in the specification set. Typically
a simplification is applied to a call which is not unifiable with any
formula in that set; usually its result is to replace that call by a
conjunction of simpler ones of which some may be so unifiable.

The contribution of goal substitutions to the pursuit of clausal
form is more complex and does not seem capable of some single
generalized interpretation. Sometimes it may replace complete non-
atomic calls by atoms or vice versa; or it may only replace a highly
localized subformula, leaving the rest of the call intact. Yet the
most consistent feature of logic procedure derivation is the need to
interleave simplifications and substitutions cooperatively. This comes
about through the choice of a rather finely discretized approach to
the derivation methodology, allowing alternative choices of simplification
and substitution at each inference step.

This section closes with two examples of derivations which
interleave the rules described here.

Specification Set :

min(u,x) 44 uzx, lowerbound(u,x)

lowerbound(u,x) 44 (\/v) (u^v 4 vex)

union* (w,x',x) 44 (Vv) (vzx44vzx' v v=w)

empty (x) 44 (\fv) (vex 44 false)

Initial Goal : 4 min(u,x)

Derivation :

4 min(u,x)

4 uzx, lowerbound(u,x) [modus tollens]

4 uzx, (Vv)(u^v 4 vex) [modus tollens]

4 (uex' v u=w), (Vv) (u$v 4 vex1 v v=w), union*(w,x',x)

[S-cond.-equiv.-substitution]

4 w=w, (Vv) (u$v 4 vex') , (Vv) (u^v 4 v=w) , union* (w,x' ,x)

[2 simplifications]

4 u=w, (Vv)(u^v 4 false), u4w, union*(w,x',x), empty(x')

[S-cond.-equiv.-substitution]

[1:1 of = to'simplify]

4 u£w, union*(w,x',x), empty(x')

[delete valid 2nd call]

4 union*(w,x',x) , empty(x') [u:=w to solve first two calls]

at which point the calls are all atomic; the inferred procedure is

min(w.x) 4 union*(w,x',x), empty(x')

which just gives a useful basis procedure for certain recursive
procedures for min.

•159

Specification Set :

consec(u,v,z) (3i)(item(u,i,z), item(v,i+lfz))

first(z,u) item(u,l,z)

rest(z,z') (Mui) (item(u,i ,z) 44- item(u,i-l,z*)

v (i=l,first(z,u)))

Initial Goal : 4- consec(u,v,z)

Derivation :

4- consec(u,v,z)

(3i)(item(u,i,z), item(v,i+l,z)) [modus tollens]

4- item(u,i,z), item(v,i+l,z) [deletion of quantifier]

4- item(u,i,z) , item(v,i,z') , rest(z,z')

[conditional transitivity of implication by virtue

of S implying

(Mui) (item(u,i,z) 4- item(u,i-l,z')) 4- rest(z,z')

and also employing some primitive arithmetic]

4- first(z,u) , first(z',v), rest(z' ,z)

[modus tollens twice, inducing

x the binding i:=l]

at which point all calls are atomic, giving the derived procedure

consec(u,v,z) 4- first(z,u), first(z',v), rest(z,z')

This is just the non-recursive procedure for consec which seeks a
consecutive pair in a list by specifically inspecting the first pair.

•160

5,4 : SOME TECHNIQUES FOR PROCEDURE DERIVATION

Derivation of Recursive Procedures

Most interesting computations are either recursive or iterative.
Recursive computations emanating from logic program execution are
obtained from recursive procedures in the program; iterative behaviour
may arise either by bottom-up invocation of recursive procedures, or
by top-down invocation of recursive procedures using a stack-
overwriting mechanism or, more trivially, by the action of the
interpreter in performing incremental search. Examples of these
possibilities were given in Chapter 3. In this section we examine
the ways in which recursive procedures are typically derived from
non-recursive specifications.

A simple example of such a derivation begins with a specification
of the wth Fibonacci number due to De Moivre; here the predicate
fib(u,w) holds when u is this number :-

fib(u,w) u= -
A

The constant symbol $ abbreviates h(l+^5) and £ abbreviates .
These constants are related by two sentences which are included in
the specification set together with the fib definition above :-

$-1 + $-2 = j $-1 + $"2 _ j

It is also assumed that S implicitly contains some simple axioms
of arithmetic dealing with addition, multiplication and
exponentiation; these could easily be made explicit by introducing
predicates plus, times and exp, but for conciseness in what follows
it is more convenient to use function symbols to construct: arithmetic
expressions and then perform 'quasi-arithmetic*upon them-

The objective of the derivation below is to derive a recursive
procedure for fib which can then be used in a program for computing
Fibonacci numbers.

fib(u,w)

-t- u = i. * - iw)
A

u = L * * i - * i)
A

•161

U = L* * + $-2; - * + $-2;; [arithmetic]
/5

u = i * - $"-1 + . [arithmetic]
y5

u = l * 1 _ + I * _ [arithmetic]
/5 /5

u = uj+u2' fibCUj'™-1)' fib(u2,w-2) [modus tollens twice]

The derived procedure is then just the familiar Fibonacci identity :-

F = F _ + F _ w w-1 w-2

Kowalski's paper (51) discusses the computational properties of programs
which use this procedure. It should be noted that the inferences
used in.the above derivation are just modus tollens and so require
only the simplest kind of subformula substitution. The recursiveness
of fib is inherited here from that of the exponential relation which
is implicitly assumed in the specification :-

x1*^ = x1 * x^

and which in predicate form would be written as the recursive procedure
for exp :-

exp(x,k,y) plus (i ,j ,k) , exp(x,i,y j) , exp(x,j,y2) ,

times(ylfy2,y)

Before considering the underlying philosophy of derivations such
as this, two more examples will be shown now whose productions of
recursive procedures appear to have different origins from that above.
Consider then the derivation of the recursive go* procedure for which
Kowalski gives the specification

go*(x,z) 44 (go(z) 4 go(x))

h very simple derivation now proceeds as follows

-c- go* (x,z)

4 (go(z) 4 go(x)) [modus tollens]

4 (go(z) 4 go(y)), go*(x,y) [cond. trans, of implication]

90*(y,z), go*(x,y) [modus tol1 ens]

so that the procedure inferred is

go*(x,z) 4 go*(x,y), go*(y,z)

•162

It may be helpful to clarify the second step by observing that the
call in the second goal takes the form (A 4- F) whilst the specification
set implies a sentence (F' 4- F*) 4- F" , namely :-

(go(z) 4- go(x)) 4- go*(x,z)

The conditional transitivity of implication rule then admits a
substitution for go(x) conditional upon the introduced call go*(x,y)
as follows

match F and F* with unifier 9 = {x:=x} ;

substitute F1 for F , and apply 9; then add F" giving

4- (go(z) 4- go(z))9, go*(x,z) ;

then make the renaming {z:=y, x:=x} to give :-

(go(z) 4- go(y)), go* (x,y)

It should be observed that the derived procedure is recursive by
virtue of declaring the transitivity of go*; this recursiveness
is not inherited from that of any other problem-specific relations
as was the case in the Fibonacci example. Assertions of other
general properties of relations such as reflexivity and associativity
are also necessarily recursive and may often be useful for computational
purposes; for instance, the conventional recursive procedure for
append is just a specialization of the general property of associativity
for the appending operation.x

The third example given here illustrates perhaps the most common
way of deriving recursive procedures. This proceeds by decomposing
selected sub-projections of the relations of interest. To demonstrate
this, suppose that the given goal has the subformula vex and hence
investigates in some way the question of whether an element v can be
found in a set x. Now consider the projection of e associated with
its first argument position and, in particular, that sub-projection
{v | vex} of it determined by some choice of x. This sub-projection
can be expressed arbitrarily in terms of its component members and
subsets. For instance, if we have some algorithmic intuition about
the way the membership of x should be investigated during execution,
we might favour the decomposition x = x^ U x^ U {v'} ; this
relationship between the components of the sub-projection above
is conveniently summarized by the predicate union**(x1,xn,v',x) .

•163

which is specified in FOPL by :-

and

union** (x, ,x .vr ,x) ++ (Mv) (vex-*-*-vex, v VEX„ v v=vf)
1 2 JL 2

expresses {v | VEX} = {v | VEX^} U {V | U {v | v=v'} .

Note that the above sentence trivially implies a conditional
equivalence of the form (F* -«-*• F') union** (x^ ,x0,v' ,x) , which
just states what substitution can be made for a predicate vex subject
to the condition that the sub-projection {v | vex} is decomposed as
described by union**(x ,x2,v',x). To observe the usefulness of this
we revisit the lowerbound relation and pursue the derivation of a
recursive procedure for it as follows :-

lowerbound (u,x)

(Vv) (u£v •*• vex) [modus tollens, invoking assumed lowerbound specn.]

(\Jv) (u4v vex v VEX^ v v=v'), union**(x2,v* ,x)

[S-cond.-equiv.-substitution for subformula vex]

(\Jv) (u$v -«- vex ; , (\Jv) (u^v vex2) , (\fv) (u4v + v=v') ,

union** (x ,x ,v' ,x)

[distributing through v and then

distributing V through conjunction]

lowerbound(u,x^), lowerbound(u,x, u4v', union**(x,x)

[modus tollens twice, for first two calls,

and 1:1 of = to simplify the third call]

This clearly gives a recursive Horn clause procedure. An informal
explanation of the intuition underlying the derivation is as follows :
for given u and x, solving the call lowerbound(u,x) requires the
examination of all members in the e sub-projection {v J vex}; but
subject to the condition union**,x) this may be accomplished
by three individual examinations of all instances of v in, respectively,
{v | vex } , {v | vex } and {v | v=v'} ; on inspection of these

JL «

examinations it is seen that each one investigates the question of
whether u is a lowerbound for some set, which is finally expressed
in terms of the atomic predicates afforded by the original formulation.
It is especially important to note the role of the S-conditional-
equivalence substitution in this technique for obtaining recursive
procedures through the decomposition of sub-projections.

' 164

The same technique can be employed for relations of any -arity.
For instance, to show that a list x is ordered requires examination
of all pairs (u,v) satisfying consec(u,v,x). The sub-projection
{(u,v) j consec(u,v,x) } of the first two argument positions of consec

can be decomposed conveniently as the union :-

{(u,v) \ consec (u,v,x')} U {(u',v) | first(x' ,v)}

which is expressed by the conditional sentence :-

(Vuv) (consec(u,v,x) 44 consec (u,v,x') v (u?=u', first fx',v)))

4 append*(u',x',x)

This sentence is a consequence of the specification for append*(u',x',x)
which holds when u' is the first member of x and x' is the rest of x.
Similarly the analogous sentence in the previous example was just a
consequence of the specification of the union** relation. (However,
note that in the present example the sentence is not simply the only-if
half of a specification for append*, as the following counter-example
shows : choose x = (a,b,a,b), x' = (a,b,a) and u' = b j these instances
satisfy the conclusion of the conditional but do not satisfy
append*(u',x',x) .] A derivation of a recursive procedure for ord now
proceeds very easily :-

4 ord(x)

4 (Vuv) (u<v 4 consec(u,v,x))

4 (Vuv) (u<v 4 consec(u,v,x') v (u=u',first(x',v))), append*(u',x',x)

4 (\juv) (u<v 4 consec(u,v,x*)), (Vuv) (u'<v 4 first(x',v)),

append*(u',x',x)

4ord(x'), u1<v1, first(x',v')f append*(u1,x',x)

[by invoking an axiom that asserts that the

first relation is many:l , viz :-

(\fv) (v=v' 44 first (x' ,v)) 4 first (x1 ,v')

which allows an S-cond.-equiv. substitution

for the subformula first(x',v) in the goal's

second call; then exploit 1:1 of = to simplify.]

A rather tidier derivation expresses the desired decomposition a little
differently using the conditional equivalence :-

(Vuv) (consec(u,v,x) 4-v consec(u,v,x') v (u=u' ,v=v'))

4 split (x,u' ,v* ,x')

•165

where the split relation is the one used in the example at the end
of Section 4.5 ; the derivation of the.desired ord procedure now
follows exactly as shown in that example, resulting in :-

ord(x) splitfx ,u' ,v' ,x') , u'<v' , ord(x')

Then split(x,u',v',x') can be shown to be implied by the conjunction
(first(x',v'), append*(u',x',x)) as a later exercise.

In each of the three examples considered, a recursive procedure
for some relation R arose through the transformation of an initial
goal R into a goal -«- R ,, ..., R such that at least one R . turned

I n 1
out to be some substitution instance R9 of R. This was achieved by
a goal-oriented symbolic execution of the conjuncts in the definiens D
of R which were introduced into the derivation by invoking R's
definition from the specification set. Eventually some R b e c a m e
recognizable as D9 and so was replaced by the S-equivalent atom R9,
thereby introducing recursiveness into the procedure inferred from the
derivation. This technique was developed by Burstall and Darlington
(10) and also by Manna and Waldinger (61), the former applying it to
the derivation of sets of executable recursion equations and the latter
applying it to the derivation of LISP programs from specifications.
Burstall and Darlington have given the terms 'folding' and 'unfolding1

to the acts of definiens-substitution and definiens-replacement which
underlie the process described above. Transformations of recursion
equations closely resemble transformations of Horn clause procedures,
since the two formalisms share many similarities. Clark seems to have
been the first to apply seriously the ideas of Burstall and Darlington
to the correctness-preserving improvement of Horn clause programs.
Application of the same ideas to the derivation of logic procedures
from FOPL specifications was investigated soon after by Hogger (38), by
Clark and Sickel (15) and - in a less obvious way - by Bibel (3).

As a final note in this section, it should not be thought that
the derivation of recursive procedures depends upon the 'fold/unfold'
paradigm. Logic has the curious property that a derived procedure

1 n

necessarily s-implies
R R^ / • • • R R^ *R9

for any arbitrary R and e.

•166

Derivation of Basis Procedures

Suitable bases for recursive procedures may be derived from
specifications using the same inference rules as have been shown
here for deriving other kinds of logic procedures. In general they
arise from trivializations which render calls immediately solvable
without requiring further recursive invocations. There are various
ways in which calls may be trivially solved. Perhaps the simplest
way is to instantiate their variables with known solutions towards
which the associated recursive computations are known to converge.
An example of this is shown below which derives a basis for the
consec relation :-

4- consec(u,v,z)

» 4- (3i)(item(u,i,z), item(v,i+l,z)) [modus tollens]

4- item(u,i,z), item(v,i+lfz) [delete quantifier]

4- item(ufl,z) , item(v,2,z) [instantiate i:=l]

and thus infer the basis :-

consec(u,v,z) 4- item(u,l ,z) , item(v,2,z)

This procedure is sufficient to terminate computation initiated by a
solvable call to the consec procedure set consisting of that procedure
together with the recursive procedure :-

consec(u,v,z) 4- rest (z,z') , consec(u,v,z')

This is because in the case where the call is solvable the computation
must generate a list whose first and second members are respectively
the two quoted in the initial call.

The consec example above is only concerned with the discovery
of any instances of u and v which satisfy consec(u,v,z). However,
in other problems it is necessary to investigate all the instances
in some sub-projection of the relation of interest. V7e have seen
how this can be represented in derived recursive procedures by
exploiting conditional decompositions of such sub-projections. The
appropriate bases for computations generated by these means typically
deal with the trivial sub-projections that are eventually computed
from a succession of decompositions, for instance, sub-projections
which are empty or just contain one individual. A simple example
of this can be considered in connection with the lowerbound relation,
beginning with a derivation :-

4- lowerbound (u ,x)

(Mv) (ugv 4- vex)

Here there is no apparent instantiation of the call's variables
which immediately solves the call through the sole agency of goal
simplification. Now the usual algorithm employed for the problem
of testing whether a given u is indeed a lower bound for a given set x
makes use of a recursive (but iteratively implementable) procedure :-

lowerbound(u,x) 4- union*(v,x',x), u^v, lowerbound(u,x')

which selects successive members v from x and compares them with u.
The requisite basis deals with the case where there is no such
member v, signalled by the recursive procedure's failure to solve
the call to union*. Suppose then that a specification is given
of the empty set

empty (x) •<-> (Mv) (vex false)

Then the derivation above can be continued by invoking this axiom
in the context of an S-conditional-equivalence substitution as follows :-

4- (Mv) (u^v 4- false) , empty(x) [S-cond.-equiv. substitution]

4- empty (x) [deletion of valid lsi: call]

from which the lowerbound basis is inferred

lowerbound (u,x) 4- empty (x)

This is a rather round-about way of proving an obvious theorem about
lowerbound, but it is clearly desirable that the advocated inference
rules should cater for the trivial theorems as well as the less
trivial ones in order to merit any claim for their general applicability

Whilst the simple treatment of basis derivation shown above is
adequate for many cases, there are nevertheless more subtle ways of
providing bases. Kowalski's go* relation offers such an example,
where a particular instantiation allows the deletion of a valid call :-

go*(x,z)

4- (go(z) 4- go(x)) [modus tollens]

4- (go(x) 4- go(x)) [instantiate z:=x]

• [delete valid call]

resulting in the familiar go* basis

go*(x,x) 4r

•168

This basis just expresses the general property of symmetry in the go*
relation, and does not arise through consideration of successive
decomposition of the relations named in the program body.

A rather more exotic example is provided by the palin* relation
discussed briefly in Section 3.1 . Recall that the predicate
palin*(z',z) holds when some result x of appending z' to the reverse
of z is a palindrome; this is specified easily by :-

palin* (z' ,z) ++ (3xz*) (palin (x) -<- append (z*,z' ,x) , reverse (z ,z*))

Now suppose that the motivation for deriving some procedures for palin*
is to find a procedure set which behaves better than that below :-

palin(x) -«- append(z*,z,x) , reverse(z,z*)

palin(x) append(z* fu.z,x) , reverse(z,z*)

These could be the procedures trivially implied by a high-level palin
specification of the meaning of 'palindrome' which avoided reference
to the individual indexed members of x. In Section 3.1 it was shown
that very satisfactory behaviour could be obtained from a palin*
procedure set having one recursive procedure and two bases; here we
explain the derivation of those procedures. Consider, then, a
derivation for palin* which assumes that the naive (non-deterministic)
palin procedures above are available as axioms in the specification set.

palin* (z' ,z)

•<- (palin(x) append(z* ,z' ,x) , reverse(z,z*)) [modus tollens and

delete quantifier]

Now treat the first palin procedure above as an assertion F* •<- which
unifies with the call in the derived goal by 0 = {z'.-=z} ; thus modus
tollens will ..give an immediate refutation. Similarly, invoking
the second palin procedure as though it were an assertion will also
give a refutation with the unifier 6' = {z':=u.z} . These two ways
of terminating the derivation with the facts available give the two
desired bases :-

palin* (z,z)

palin* (u.zfz)

Discussion of the palin* recursion is a little out of context
here, but below is an outline of its derivation. It is only
necessary to add to the specification set the further axioms :-

•169

append(z",z',x) append(z*,u.z',x), append(z*,u.nil,z")

reverse(u.z,z") + reverse(z,z*) , append(z*,u.nil,z")

of which the first just states a simple consequence of the general
associativity of the appending operation, whilst the second is just
the familiar recursive reverse procedure. These admit a fairly
straightforward derivation

4- palin* (u.z' ,z)

4- (palin(x) append(z*,u.z',x) ,reverse(z,z*)) [as for the bases]

4- (palin(x) -(r append(z",z',x) , reverse(u.z,z"))

[substituting for each of the inner

antecedents by invoking the append

and reverse axioms above to exploit

transitivity of implication]

•4- palin* (z' ,u.z)

and hence produce the recursive procedure
palin* (u.z' ,z) •*- palin* (z' ,u.z)

Finally it may also be noted that the procedure which solves calls
to palin by solving calls to palin* can also be derived trivially
using the palin* specification. Noting generally that a sentence
A (B 4- c) logically implies B 4- c,A , the palin* specification
similarly implies the non-recursive procedure

palin(x) 4- append(z* ,z' ,x) reverse(z,z*) , palin* (z' ,z)

Choosing the instantiations z:=nil and z':=x and invoking trivial
properties of reverse and append then gives

palin(x) 4- palin* (x,nil)

It is interesting to observe here that although investigation
of whether x is a palindrome requires examination of all its members
- and hence a recursive palin* procedure to achieve this incrementally
- it has not proved necessary to consider as a potential basis the
limiting case where x is the empty list; in general, the computation
apparently terminates before reaching a state where it is involved
in processing empty lists generated by successive decomposition. In
reality, of course, empty lists are inspected, but net through the
direct agency of the program's explicit procedures; instead they are

•170

generated by the interpreter's unification procedure which is
presented with the task of matching two identical instances of z by
a call to either palin*(z,z) or palin*(u.z,z), this being performed
member by member by the interpreter until only empty lists remain to
be matched? this implicit convergence to a basis comparing empty lists
is just a consequence of the implicit role of the unification mechanism.
A similar example was discussed in Section 3.1 in the case of the
procedure set for the list equality relation.

In the course of deriving basis procedures it is frequently
necessary to solve several calls conjointly. This can be illustrated
in the task of deriving a basis for the program which tests whether
x is a palindrome by testing whether x is its own reverse. The
appropriate specification set for this purpose is

palin(x) 44 reverse(x,x)

reverse(x,y) 44 (3w) (length(x,w) ,

(Mui)(item(u,i,x) 44 item(u,w+1-i,y)))

length(x,w) 44 (Mi) (I4i<w 44 (3u) item(u,i ,x))

empty-list (x) 44 (Mui) (item(u,i,x) 44 false)

which admits an innocuous derivation :-

4 palin(x)

4 reverse(x,x)

4 length(x,w), (Mui)(item(u,i,x) 44 item(u,w+l-i,x))

4 (Mi)(I4i4w 44 (Mu)item(u,i ,x)) , (Mui) (item(u,i,x) 44 item(u,w+l-i,x))

Now these calls can be solved conjointly and trivially by assuming the
case where x is the empty list, which makes item(11,i ,x) false for all u,i
and by also letting w be 0, which makes I4i4w false for all i.
Introducing these assumptions has the result of making each of the
two substituted calls valid formulas, and adds a call to empty-list(x) in
consequence of the obvious S-conditional-equivalence substitution.

Therefore the inferred procedure is the expected basis for palin

palin(x) 4 empty-list(x)

A cautionary counter-example is provided by the problem of
computing the minimum of a set using the min procedure shown earlier.
After pursuing the derivation

•171

-i- min(u,x)

4- uzx, (\jv) (u^v 4r vex)

it would not be possible to obtain a basis by attempting to solve
the second call using the empty specification to substitute false for
its subformula vex. The reason for this is that the first call
would then be inconsistent with the newly-introduced call empty(x) ;
the substitution inference could be applied soundly to obtain this
result, but would just produce an unsolvable goal. Instead, the
appropriate derivation is that shown at the end of Section 5.3,
which transforms the goal above to one which seeks the minimum u
in a set x' satisfying x = {w} U x' , and then solves this for the
trivial case where x' is the empty set; the result of which is the
inferred procedure :-

min(w,x) 4- union* (w,x' ,x) , empty (x')

Completeness of Derived Procedure Sets

We say that a procedure set p is complete for a relation r
when it is capable of computing all individuals in R , provided that
similarly complete procedure sets are also given for all other
relations which might by investigated in P. It is also meaningful to
say that a procedure set P is complete for r with respect to a given
class of goals; then it must be able to compute all individuals in
the sub-projection of r determined by that class of goals.

Provision for ensuring completeness is not explicit in the
presentation of logic procedure derivations given here, just as
provision for ensuring a search through all ways of solving a goal
is not explicit in the text of an executed logic program; we just
assume that the search through the derivation graph employs an implicit
labelling system which indicates the points at which choices have been
made in processing the derivation goal.

Choices of goal transformation which introduce a branch into the
tree of derivations making up a synthesis arise in both goal
simplification and goal substitution. Some of our simplification rules
preserve S-equivalence whilst others do not; if, for instance, we
simplify (a <- b,c) to 4- (a -<- b) , then a systematic approach for
obtaining a complete procedure set will also require a derivation which

•172

explores the alternative simplified goal (A C) . This will lead
perhaps to a number of procedures in the derived program which solve
the problem at hand in different ways. A different way of organizing •
their derivation would be to defer goal simplification and instead
process the goal first given in some equivalence-preserving way, until
its body eventually became transformed into the disjunction of the
bodies of all the inferred procedures; but for all but the most trivial
problems this is grossly over-cumbersome, and it is then better to
concentrate attention on individual derivations in conjunction with
proper observance of points where several possibilities need to be
explored along different branches in order to ensure completeness.

Alternatives also arise in choice of goal substitutions.
When S-equivalence substitution is used then no loss of information
occurs when generating a new goal. Of course, there might well be
alternative S-equivalence substitutions which could be applied, but
this must not be confused with our immediate problem of dealing with
the consequences of loss of S-equivalence. S-equivalence is usually
lost when applying the S-conditional-equivalence substitution rule,
because the appended condition may represent only one of several ways
of replacing the selected goal subformula. Suppose that we use
a lemma (F*<-+F') F'^ in order to substitute for a goal subformula.
Then it may be, according to the particular problem formulation,
that S implies the sentence (F'^ v F^j ; in this event the use of the
former lemma is associated with just one of two possible branches
which must be explored in order for the synthesis to be complete for
the resources provided by S ? the other branch corresponds to the
application of the alternative lemma (F*+-+F') -*- FN in order to
replace that same goal subformula. A typical example of this is where
we derive a complete procedure set for the subset relation by replacing
the subformula uex in the subset definiens by either false or ^
(u=ur v uex'; respectively in two subset derivations. The completeness
of the two cases has to be justified by the independent assumption that
the specification set implies (F"^ v F'^) where F^ is empty (x) and F£ is
(3u'x')union*(u',x',x). Without that assumption, which comes about from
a proper data structure characterization of the data structures in this
case (but not in all cases, by any means), we could not say that the two
inferred procedures would compute all individuals in subset. Again, it
is too cumbersome to arrange all the equivalence-preserving knowledge to
be held in a single goal; we pursue alternative goals for the various
cases of substitution, and argue for completeness afterwards.

5,5 : DERIVATION OF DATA-ACCESSING PROCEDURES

A set of derived procedures for some relation will usually
refer to some other relations as well. In .Section 5.1 it was
explained how the successive derivation of procedure sets in the
course of deriving a complete program body imposed a hierarchical
structure upon the synthesis methodology. Whereas it has been
advocated that the higher-level procedures should only refer abstractly
to their data structures, the lower-level procedures will refer to
data structures using concrete representations. The discussion
which now follows deals firstly with, the derivation of procedures
which access the components of term representations, and then (briefly)
with the derivation of procedures which interrogate assertional data
structures.

Procedures for Accessing Terms

Illustration of the ways in which procedures may be derived
for accessing terms can be accomplished by concentrating upon lists
as the data structures of interest. Lists are, of course, the
primary data structures manipulated by most programs, and so the
restriction of the following discussion to lists is not a very
serious one. Throughout the present work, the fundamental notion
associated with lists is that of indexed membership as expressed by
the predicate item(u,i,x), which holds when u is the ith member of
list x. This predicate is treated as a primitive constructor for
specifying other computationally useful relations like append*,
and has the following axioms associated with it :-

Al : (3w) length (x,w) 4

A2 : length(x,w) 44 (Vi) (l^i^w 44 (3u) item(u,i,x))

A3 : (Vu)(item(u,i,x) 44 u=u') 4 item(u',i,x)

The elementary relation < in A2 is assumed to have only non-negative
integers in its domain. Al and A2 jointly determine that every list
x has an integral length WZO and that every list x with length w
has some member u associated with each index i | In
particular, Al and A2 jointly imply l<i if item(u,i,x) holds. Axiom
A3 determines that the member associated with any index is unique.

•174

In deriving procedures which manipulate lists, it will normally, be
assumed that axioms A1-A3 are included in the specification set.

Now consider the term representation of lists which has been
used so frequently in the examples presented previously, that is,
terms constructible using . and nil. The meaning of indexed
membership for such representations of lists is specified by the
rather recursive sentence

item(u,i,z) 4-+ (3vz') (z=v.z' , (item(u,i-l,z') v (u=v,i=l)))

This can be rewritten as shown below so as to separate two cases
according to whether or not z is empty :

item(u,i,nil) -«-»- false

item(u,i,v.z') item(u,i-l,z') v (u=v,i=l)

where nil is just a Skolem function symbol. These considerations
establish the preliminaries for derivation of procedures accessing
lists represented as terms.

As a first example of the way in which the above knowledge
can be applied, suppose that the composition of some program body
demands the supply of procedures which simply investigate the
question of an element's membership in a list, ignoring the question
of its position, if any. The predicate symbol used to express list
membership is e; the specification of e is as follows :-

uez -«-*- (3i)item(u,i,z)

This, together with A1-A3, is sufficient for the derivation of a
procedure set for £ . This can be shown quite briefly as follows

. uez

4~ item(ufi,z) [modus tollens, and delete quantifier]

4- item(u,i-l,z') v (u=v,i=l) [modus tollens + induced

binding z:=v.z* ']

The derivation so far has proceeded virtually deterministically. Now,
however, the derivation branches according to whether we have i=l
or i>I. Axioms Al and A2 determine that these cases are exhaustive.
If the first case is assumed, the derivation continues

4- item(u,0,z') v (u=v,l=l) [instantiate i:=l]

-e false v u=v [because S implies, from A1-A3,

the fact

(item(u,i,z) false) 4-i^O]

• [simplifying the disjunction to u=v

and then trivially solving with instantiation v:=u]

Pursuing the alternative case instead :-

•*- item(u,i-l,z') v (u=v,i=l) [returning to the branch point]

•<-(item(ufi-lfz') v (u=v, false)) , i>l

[S-cond.-equiv. substitution using

(i=l false) + i > 2 J

item(u,i-l,z'), i>l [simplifying] .

item(u,i-l,z') [deleting second call S-implied by the first]

item(u,j,z') [instantiating j:=i-l]

(3j)^tem(u,j,z') [inserting explicit quantifier]

uizr [modus tollens)

The two procedures inferred from these derivations are then just

ueu.z' -«-

uev.z' uizr

Of course, these are just trivial consequences of an alternative
recursive e specification which makes no use of the notion of
indexed membership :

uzz Ovz') (z=v.z', (uzz' v u=v))

but which is less general than the former specification in that it is
specific to a particular representation of lists (by terms). For
instance, the former specification immediately provides an e procedure
for accessing lists represented by sets of item assertions instead

uez item(u,i,z)

As a general methodological principle it seems desirable to derive
accessing procedures using a data structure axiomatization like
A1-A3 even though those procedures might be obvious from the outset;
deriving them from a common foundation (like the notion of indexed
membership) gives coherence and integrity to the general task of
interfacing procedures and their data structures.

•176

The question of membership regarding a particular element is
perhaps the easiest question that can be asked about some list. A
slightly more elaborate query is that which also requires the position
of a list's member. Clearly questions about both membership and
position can be investigated by some appropriate call to our item
predicate provided that a suitable procedure set for item is made
available. Such a procedure set is trivially implied by the
specification given previously for lists represented by terms; the
procedures are simply

item(u,l,u.z') 4- •

item(u,i,v.z') 4- item(u,i-l,z*)

and their derivation is so trivial that it is not worth formalizing it.
Of course, if the list in question was represented by a set of item
assertions then it would not be necessary to devise any other
procedures in order to investigate a call to item; this reflects the
fact that assertional data structure representations can be regarded
as accessing procedures in their own right.

In many cases we need accessing procedures which not only
manipulate individual members of lists, but also whole fragments
of those lists. A simple case of this is found in any algorithm
which searches a list sequentially by a succession of decompositions,
each of which inspects and then discards the first member of the
current fragment. Typically we would employ the append* procedure
for this task, since a call append*(u',z',z) can deal with both
the first member u1 and the rest z' of the list z. Knowledge about
append* can be composed from the elementary properties of item, as is
now demonstrated.

A simple specification of append* is as follows :-

append* (u1 ,zf ,z) first(z,u') , rest(z,z')
i

where first and rest are in turn specified by

first(z,u') 4+ item(u',l,z)
rest(z,z') (\fui) (item(u,i-l,z') item(u,i,z) ,i>l)

These axioms allow us to choose a list representation, define the
meaning of item for that representation and then derive an appropriate
procedure set which accesses the representation in whatever way is
desired. Only the simplest case is illustrated here, where lists
are represented by the orthodox terms already considered above.
This permits the following trivial derivations

•177

4 first(z,u')

4 item(u',l,z) [modus tollens]

D [modus tollens, inducing z:=u'.z']

giving the accessing procedure for the first member of a list

first(u'.z',u') 4

For the rest procedure

4 rest(z,z')

4 (Mui)(item(u,i-l,z') 44 item(u,i,z), i>l) [modus tollens]

4 (Mui)(item(u,i-l,z') 44 (item(u,i-l,z') v (u=v,i=l)),i>l)

[S-equiv. substitution, inducing z:=v.z']

4 (Mui)(item(u,i-l,z') 44 (item(u,i-l,z'),i>l) v false)

[distributing conjunction through v

and then simplifying using properties of >]

4 (Mui)(item(u,i-l,z') 44 item(u,i-l,z'))

[deleting i>l S-implied by 'item(u,i-l,zr)] ..

Hi [modus tollens]

giving the accessing procedure for the 'rest' of a list :-

rest(v.z',z') 4

The appropriate procedure for append* for this list representation is
then obtained trivially by combining the two results above :-

4 append*(u',z',z)

4 first(z,u'), rest(z,z') [modus tollens]

4 restfu',zr,z') [modus tollens, inducing z:=u'.z']

• [modus tollens, inducing z':=z']

giving the familiar assertion for decomposing a list

append*(u',z',u'.z') 4

These derivations thus provide a coherent foundation for those simple
theorems about the constituents of terms which we conventionally employ
as useful accessing procedures.

•178

The decomposition of lists by calls to append* is important
to many of the logic programs derived in this thesis. To see how
such calls can be introduced during procedure derivation, observe that
the specifications just given for append*, first and rest jointly
imply an alternative append* specification which refers directly to
the list's indexed members; the new definiens for append* is
obtained by conjoining the definiens' of first and rest and slightly
simplifying the result, which is :-

append*(u1,z',z) ++ (Mui)(item(u,i,z) ++ item(u,i-l,z') v (u=u',i=l))

When this specification is included amongst the axioms used by some
derivation, it can clearly be summoned for the purpose of making an
S-conditional-equivalence substitution which replaces some goal
subformula consisting of just an item predicate by an S-cond.-equivalent
disjunction, and adds a call to append* to the goal. Thus the goal
is modified by an assumption of a particular way of accessing the
lists to which it refers.

In order to aid the comprehension of subsequent derivations, it
will be instructive now to see how the above process is applied to
the task of deriving the conventional recursive append procedure

append(u' .z^rz^ru' .z') + append(z'^z^fz*)

which is essentially a generalization of append* which allows the
first argument to be any list rather than just a single member. The
append relation is specified rigorously by :-

append(z^z^z) «-»• (jj) (length(z^,j) ,

(Mui) (item(u,ifz) itemfUfifZ^)

v item(u,i-j,z^)))

Assuming a specification set which contains this definition of append
together with that for append* and the list axioms A1-A3, it is now
desired to derive a procedure for append which accomplishes its
task by decomposing the lists in question in the specific manner
expressed by append*. There are two ways of going about this :
the 'low-level' way which just instantiates the lists quoted in
the append specification with their term representations and then
simplifies the result to obtain the append procedure shown above;
and the 'high-level' way which pursues a derivation that introduces
explicit calls to append*, deferring commitment to any particular

•179

choice of list representation until the end of the derivation. An
example of the low-level approach to the synthesis of a procedure set
for append is given in Clark's paper (12), although the style of his
approach is rather different from that employed here. The high-level
derivation proceeds as follows :-

4 append(z^z ,z)

4 length(zj), (Vui)(...) [modus tollens, delete quantifier]

It is convenient just for presentation's sake to show separate
derivations emanating from these two calls, combining them later.

length (z^rj) [investigating the first call]

4 (Vi)(I4i4j 44 (3u)item(u,i,Zj)) [modus tollens]

4 (\fi) (l^izj 44 (3u) (item(u,i-l,zp v (u=u',i=l))), append* (u'rz^z^

[S-cond.-equiv. substitution to express the

decomposition of z^ by append*]

4 (Vi) 44 (3u)item(u,i-l,z'1) v (3u) (u=u' ,i=l)),append* (u' sz^z^

[distributing 3 through v]

4 (Vi) (l<i4j v i=l 44 (3u)item(ufi-l,z'1) v i=l) , append* (u' fz'1'z1)

[exploiting simple property of 4 over integers,

and simplifying (3u)(u=u',i=l) to just i=l]

4 (Vi) (l<i4j 44 (3u)item(u,i-l,z')) , append* (u' rZ'^Zj)

[simplifying by cancellation of each disjunct i=l]

4 (Vi)(l$i4j-l 44 (3u)item(u,i,z^), append*(u'

[instantiation l:=i-l, and properties of 4]

4 length(z',j-l) [modus tollens]

This derivation shows that when the condition append* (u' fz^z^) is
imposed, a call lengthfzcan be replaced by length(z'3,j-l) ; an
obvious result but deserving of proof from the assumed problem
formulation. Next we pursue a derivation from the second call of
the original goal, again exploiting the condition expressing the list
decomposition. This proceeds as follows :-

•180

(Mui) (item(u,i,z) •«->• itemCUfirZ^) v item(u,i-j,z2))

(Mui) (item(u,i,zt) item(u,i v item(u,i-jrz^)) ,

append*(u',z',z), append*(u'

[after simplifying the result of making two obvious

S-cond.-equiv. substitutions using append*]

If the two derivations are now combined, a single application of modus
tollens produces the desired procedure :-

append (z^z^z) append* (u', z j, z^) , append (z'^z^z') ,

append*(u*,z',z)

If the decision is made now to use the orthodox term representation,
some trivial macroprocessing of the append* calls gives the familiar
procedure :-

append(u' .z'^,z2,u' .z') •«- append (z'^,z 2,z')

It is important to appreciate the way in which comparatively
high-level accessing procedures like append* can be assimilated
into goals which investigate decomposable data structures. The
derivation above offers us the freedom at the end to pick an
alternative representation upon which to implement the calls to
append*, perhaps to improve run-time efficiency. In order to justify
these remarks, an example will be given in the later discussion of
access to assertional data structures, in which two calls to append*
appearing in a context similar to that above will be implemented
firstly upon a non-orthodox term representation, followed by an
interesting transformation of the result which leads to their
efficient implementation upon a representation using a set of assertions
instead.

Derivations like those above may of course be undertaken for
data structures other than lists. Access to representations of sets
is also quite a common requirement. There, it is usual to employ
the constructors : and 0 with accessing procedures like e, union* and
union. Although sets are mathematically simpler than lists, the
customary term representation of sets is similar to that of lists
where . and nil are used.* A curious consequence of this is that
sets of accessing procedures which manipulate terms representing sets
tend to be more complicated than their analogues which treat the terms

•181

as representations of lists. Suppose r for instance, that some'
procedure contains a call append*(u,z',z). Then we know that if
z is decomposable then its term representation will have the form
v.y 7 moreover, the call computes the unique solution u:=v, z' :=y
by a single invocation of a trivial procedure

append* (u,y,u.y) •*•

By contrast, suppose that some procedure contains a call union* (u,x' ,x)
where x is some term v:y representing a decomposable set. Then there
are generally many instances of u and x' representing solutions of
the call for that particular x. Additionally, however, even for
a particular instance of u chosen from x, there will exist generally
many solutions of x'. For example, if x is a:b:c:0 then two possible
solutions are (u:=a, x1:=b:c:0) and (u:=a, x':=c:b:0). A procedure
set for union* capable of computing all representations of the
various solutions is as follows :-

union* (u,y,u:y) •*•

union* (u,v:y' ,v:y) union* (u,y' ,y)

union*(u,y',y) 4- union*(v,y",y),union*(u,y' ,v:y")

Whether or not all these are necessary depends upon the context in
which they are summoned to access data. The following procedure set
for the subset relation

subset (0,y) 4-

subset(x,y) 4- union*(u,x',x), uey, subset(x',y)

only requires one of the union* procedures to solve the problem of
showing that the set a:b:c:0 is a subset of the set c:b:a:0, namely :-

union* (ufx' ,u:x') 4-

But to solve the same problem using the program
4- subset(a:b:c:0,c:b:a:0)

subset (0,y) 4-

subset(x,y) 4- union*(u,x',x), union*(u,y',y), subset(x',y')

additionally requires the second union* procedure. All three union*
procedures are needed to solve the problem of showing those two sets
to be equivalent using the procedure set :-

equiv(0,0) 4-

equiv(x,y) 4- union*(u,x',x), union*(u,x',y)

Procedures for Accessing Assertions

•182

The merits of assertional data structures were remarked upon
in Section 3.2 . There it was argued that when terms are used to
represent data structures it is often not possible to construct
procedures allowing direct access to their components. This
consideration encourages the search for alternative representations
such as sets of assertions which allow efficient access and storage.
When some derived procedure contains a call to some procedure P, it
may be convenient to arrange for this call to be investigated by
interrogating a set of assertions of the form P 4- which provide
immediate solutions to the call. Whether or not this is sensible
depends upon the circumstances of the overall problem. Consider,
for example, the problem of discovering whether or not a set S^={b,c}
is a subset of S^={a,b,c,d} using the procedures :-

subset (x,jy) 4- empty (x)

subset(x,y) 4- union*(u,x',x), uzy, subset(x1,y)

Here it might seem reasonable to represent the set S b y the assertions :-

azS„ 4- b>cS 4- czSn 4- dzS„
2 2 2 2 .

thus providing immediate solutions to any call uzS^. On the other

hand it seems much less reasonable to provide a set of assertions :-

union* (b,S^,S^ 4- union* (c 4 - empty (S'p 4-

to represent S N e v e r t h e l e s s the more obvious treatment of S^ :-
bzS1 4- czS1 4-

cannot be manipulated in any straightforward way by a call to
union*(u,x', since this call must generate a representation of x'.
Section 3.2 examined a similar case concerning a palindrome-testing
program which inspected a list x represented by a set of assertions.
It was shown that, in principle, a computation could be obtained by
giving the name mid(x) to the middle of x and then providing procedures
capable of computing the indexed members of mid(x). But that kind
of program really requires mixed top-down and bottom-up invocations
to be practical, Together with a sensible strategy fcr interleaving
them. A more satisfactory approach to that problem was shown which
used alternative procedures containing explicit pointers to the
components of the assertional data structure representation. This

•183

approach can also be followed for dealing with problems like the
one above for subset. Before demonstrating this for the subset
problem, it will be instructive to firstly examine in detail an
analogous problem which processes lists rather than sets; this is
the problem of showing that a given list is ordered.

Suppose that the following naive procedure set has already been
derived for the ord relation

ord(x) length (x,0)

ord(x) 4 length(x,l)

ord(x) 4 append* (u',x',x) , append* (v',x" ,x') , u'<v', ord(x')

using the specification set

A1-A3 [the list axioms]
ord(x) 44 (Muvi) (u<v 4 item(u,i,x), item(v,i+l,x))

append*(u',x',x) 44 (Mui) (item(u,i,x)44item(u,i-l,x') y (u=u',i=l))

It will be assumed here that any list L of interest, such as (3,5,7,9)

will be represented by a set of assertions :-

item(3,l,L) 4 item(7,3,L) 4 length(L,4) 4

item(5,2,L) 4 item(9,4,L) 4

so that the orderedness of lists with length < 2 can be investigated
•by the ord bases by direct interrogation of the data structure's
length component. Thus the central problem remaining is how to
deal with the general case (length > 2) where the orderedness of L has
to be ascertained by successive inspection of its consecutive pairs.
This poses the problem of implementing the calls to append* in the ord
procedure responsible for this successive decomposition upon the
given list representation.

Consider a fragment of any list x which extends from its i^th
member up to and including the Tnen^5er# assuming ij < i2» By
analogy with the naming mid(x) in the palindrome problem, here we can
name this fragment as f(x,iwhere f is just a Skolem function
symbol signifying the existence of such a fragment. The indexed
membership in the fragment is then specified logically by an
s-equivalence f* 44 f' , namely

item(u,i-i+l,f(x,i,i)) 44 item(u,i,x), i

•184

It will probably be helpful to portray the relationship between x
and f(x,i ,i) as follows

1 2

1 2 i-i ••• i-2 ••• j

" i i i 'i " n

f(x,i)—•

This sentence specifying the meaning of item for fragments of x
represented that way is assumed also to be included in the specification
set. The primary pbjective now is to derive procedures for append*
capable of accessing the components of such fragments; in particular,
such procedures would then be capable of accessing x represented
as the fragment f(x,l,j) where j is the length of x.

Consider then a derivation from the first call in the recursive
ord procedure above, renaming (just for convenience) the last two
arguments :-

4- append* (uf ,y' ,y)
4- append*(u',f(x,ij+l,i2), f(x,i,i^)) [an intuitive choice of

fragments of x, •inducing

y:=f(x,i 2)

4- (Mui) (item(u,i,f(x,i ,i)) item(u,i-l,f(x,i +l,i)))

v (u=u',i=l))

[modus tollens]

4- (Mui) (item(u,i+ij-l,x) ,(i^i+i^-l4i2) 4+

(item(u,i+ij-l,x),(ij^i+ij-l^i2)) v (u=u',i=l))

[S-equiv. substitution for each of the item predicates

and some arithmetic on the indices (trivial)]

4- (Mui) (itemfUfi+i^-lfX) , (i^i+i^-lzi^ 4- u=u',i=l)

[a goal simplification which solves 4-(A AvB)

by solving 4-(A 4- B)]

4- i 4 i^, item(u' ,i^,x) [using 1:1 of = to simplify]

•185

What this derivation has shown is that a call :-

append* (u' ,f(x ,1^+1,1) , f(x,i,i2))

which decomposes the list f (x , i c a n be solved by showing that
ij&i (essentially checking that the term is a well-formed list) and
then confirming that u' is the i ^ member of x. Similarly it is
easy to pursue a directly analogous derivation from the second
append* call in the recursive ord procedure which shows that to solve
a call :-

append* (v' ,f(x,i +2,i2) , f (x,1^+1)

it suffices to show i+l4i and confirm that v' is the (i + 1) ^ member
of x. This derivation induces the bindings

y':= f(x,i3+l,±2)

y":= f(xt1^2r±2)

when initiated by the goal append* (v' ,y" ,y') . Each derivation
allows us to infer a non-recursive procedure for append* which can
be used to macroprocess out the associated call to append* in the
recursive ord procedure, the result of which is :-

ord(f (x,i^,i2)) -t- i^+I^i^, item(u' ,i^x) , item(v' ,i^+1 ,x)

u'<v', ord(f(x,i +l,±2)

Now the list whose orderedness is in question is simply x, and so it
is pertinent to consider under what circumstances x and f(x,i^,i2)

name the same list. By exploiting the item specification together
with the length specification, it is trivial to establish a
sufficient condition for this in the form of an S-conditional-

equivalence :-

(Mui) (item(u,i,x) item(u,i ,f (x,i^,i2))) i length(x,i2)

Then this sentence and the ord specification trivially imply yet
another sentence in that form :-

(ord(x) «-»- ord(f(x,l,i2))) length(xfi^

We shall use this result to transform the derived append*-free
recursive ord procedure into one which dispenses with the explicit
references to fragments represented by terms.

It can be shown that, for computational purposes, the Skolem

' 186

symbol f is superfluous in the argument structure of a call to ord.
An easy way to eliminate references to f is to introduce a new
predicate ord* specified by

ord*(x,i ++ o r d (f (x , i , i 2))

This and the previous sentence jointly imply a procedure which
investigates orderedness by making a call to ord*

ord(x) 4r iength(x, j) , ord* (x , l , j)

Moreover, the ord* specification admits a trivial transformation of
the recursive ord procedure which eliminates its references to f,
the result of which is

ord* (X f i ^ f i ^ 4- i^+l^i , itemfu' , ± l f x) , i t e m (v ' , i + l , x) ,

u'<v', ord* (x , i

Some further inferences easily show that a suitable basis for this
is simply

ord* (x , j , j) 4-

which deals with the case of a fragment of x consisting just of a
unit list.

The consequence of these transformations of the original
procedure for ord is that orderedness can now be investigated using
the new procedure set :-

ord(x) 4- length (x,0)

ord(x) 4- length(x,j) , ord* (x , l , j)

ord* (x , j , j) 4-

o r d * (x / ± 1 , i 2) 4- i ,• i t e m (u ' , x) , i t e m (v ' , i j + l , x) ,

u ' < v ' , o r d * (x , i j + l r i 2)

This procedure set gives excellent behaviour when executed in
conjunction with a set of assertions representing the list of interest.
It behaves very much as a conventional program which maintains a loop
index i varying from I up to j to select the consecutive pairs from x .

Note that the only list named explicitly in the new procedure set is x .

All other lists which underlie the logic of the algorithm (that is,
the various fragments considered in the above derivations) are
represented only implicitly by the pointers in the last two argument
positions of the ord* procedures. It is these explicit pointers
which enable direct access to members and hence efficient behaviour.

•187

The general approach taken to the above example is also
applicable to the subset problem with which we opened the discussion
of access to assertional data structure representations. All that
is necessary is to arrange that members of the set S a r e labelled
in some way which enables explicit pointers to select them
systematically . Additionally it is necessary to assert the
cardinality of Putting these arrangements into effect for
the example considered earlier, the sets' representations would
be

member (b,1 ,Sj) 4- aeS2 ceS2

member(c,2,S4- beS 4- dzS2

cardin(Sj,2) 4-

and the transformed subset procedure set would be

subset (x,y) 4- car din (x,0)

subset(x,y) 4- cardin(x,j) , subset^(x,1 ,j,y)

subset^(x,j,j,y) 4-

subseft(x,i^,i2,y) i^+l^i^, member(u,i,

u£y, subsetf(x,ij+1,i2,y)

This programming style just makes explicit the iterative search
through a set of assertions. Its implementation can be made very
efficient for an interpreter already equipped to access sets of
procedures for normal computational purposes. The most attractive
feature of such p>rograms in contrast to their counterparts for
accessing terms is that they incur almost no burden upon the unifying
mechanism, and do not generate a complex binding environment in
order to represent the explicit products of data structure
decompositions. Thus, whilst the derivation of accessing procedures
for terms is of theoretical interest, and can be an interesting
first stage in a synthesis, the derivation of accessing procedures
for assertions is of greater practical importance.

•188

C H A P T E R 6

E X A M P L E S

0_F

P R O G R A M D E R I V A T I O N S

PREVIEW

Six examples are given in this chapter in order to illustrate
the application of logic procedure derivation as described in Chapter 5.
All of them consider very simple computational problems which are
nevertheless sufficient to demonstrate a variety of interesting
programming styles and derivations.

The first example considers the familiar problem of list
reversal, initially deriving the standard recursive algorithm which
employs a binary appending operation for representing both the input
and output lists. The first salient point of the reversal example is
encountered in that exercise, namely the need for the preliminary
derivation of useful lemmas. Here we wish to pursue an intuitively
obvious goal substitution, but the initial specification set does not
contain an axiom immediately suitable for that purpose. It is shown
how the inference miles normally applied to derivation goals can also
be used to derive the desired lemma and so allow the required goal
substitution. It is next shown how the general reversal program can
be specialized in a number of ways to give iterative algorithms,
although none of these are as satisfactory as the reverse* program
(introduced in Chapter 3), which is now derived here. It is seen that
the reverse* program is obtained by exploiting the procedures already
produced for the recursive program, together with invocation of an
associative property of the appending operation.

The second example is the problem of searching a given list for

•189

duplicates. Whereas the list reversal algorithms shared more or less
comparable efficiency, three algorithms of differing efficiencies are
given here for the duplicate problem. The last of these is especially
interesting in its specification, employing a special argument in the
logic which acts as a stack recording the distinct members found during
the search. The derivation of the latter algorithm makes use of the
procedures from the more naive algorithms to construct an important
lemma from which a useful goal substitution is procured. The use of
case analysis for goal transformation is particularly high-lighted here
by the natural occurrence of disjunctive calls in the goal and the way
in which those calls are simplified and regrouped.

The third example deals with the generation of factorial tables,
presenting a number of algorithms with various efficiencies. The last

i
one is particularly interesting in the structure of its specification,
which encodes in the logic an assumption about the context in which
the procedures of an earlier algorithm are invoked; the newly derived
algorithm is then able to avoid a contextual check (in fact, a test to
ensure a correct run-time goal structure) which the previous algorithm
could not.

The fourth example is that of comparing the frontiers of tv/o
binary trees. Here the key to the desired algorithm lies in the
relatively low-level matters concerning the data structures. A lemma
describing the associativity of tree construction is proved and then
used to provide an essential equivalence substitution. Also, it is
shown that the most obvious basis can be usefully generalized in order
that the comparison of frontiers may, at some stage during the execution,
be accomplished immediately by a single unification rather than by
continuing sequential comparisons under the agency of the program's
recursive decomposition procedures.

The fifth example is a particular summation problem in a matrix.
An interesting use of Kowalski's quasi-bottom-up programming style is
shown which, instead of its normal role of just reversing the direction
of a top-down computation, here generates an efficient quasi-parallel
bottom-up summation in contrast to the most obvious top-down solution
of the problem in which distinct sums are computed in sequence.

The sixth and last example is just the eight queens problem, which
is included just to emphasize how the powerful control mechanisms of
logic interpreters allow a far more pleasing representation of the
problem than is possible in conventional programming languages.

6.1 : PROGRAMS FOR LIST REVERSAL

•190

Specifying the Problem

The simple problem of reversing a list almost invariably
appears in examples of new methods for developing programs, and has
already received some attention in earlier parts of the present work.
It is appropriate, then, to examine the reversal problem in detail
to see how well it can be dealt with in the logic procedure
derivation methodology. The relation of chief interest initially
is the 2-ary relation reverse which can be specified in terms of the
basic list constructor item as follows :-

reverse(x,y) 44 Qz) (length(x,z) ,

(Mui) (item(u,i,x) 44 item(u,z+l-i,y)))

It is also assumed that the specification set used in formulating
this problem contains the list axioms A1-A3 established in the last
chapter, together with general properties of elementary relations
like = and <. Specifications of other relations will also be
introduced to the set when their need becomes apparent.

It is perhaps worth noting that there is a little redundancy
in the above definition of reverse in that the predicate length(x,z)

can be deleted from the definiens to leave an S-equivalent sentence;
that is, in order that x and y shall be specified as reverse to one
another, it is only necessary to insist that there shall exist some z
such that u is in the position of x if and only if it is also in
the (z+l-i)^h position of y. This is because axioms A1-A3 constrain
the item relation in such a way as to ensure that any instance of z
satisfying this last requirement must be the length of both x and y.
However, rather than just permitting this to be enforced implicitly,
it is more satisfactory to include the fact that z must be the length
of one of the lists in the reverse definition itself; this helps us to
keep the special status of z explicit within the derivations.

The Recursive Reversal Program

The first reverse synthesis examined here pursues the well-known
recursive algorithm which arbitrarily splits the given list into two
parts, reverses them, and finally composes the results into the reverse
of the given list. This is just one of the most simple ways of

•191

arranging for the systematic decomposition of the input list, which
must necessarily underlie the logic of a reversal algorithm. Here
we consider just the most conceptually simple way of splitting that
list, namely that of generating two lists x a n d x^ satisfying the
property that x results from appending xto x T h i s idea prompts
the introduction of the append specification :-

appendixirx2,x) 44 Qz^ (length (x^z^ ,

(Vui)(item(u,i,x)44item(u,i,xj) v itemfUfi-z^fX^)))

which is now added to the specification set. Note here that the
predicate lengthfx^fZ^) must be included in the definiens for append,

notwithstanding the presence of axioms A1-A3. This completes the
initial knowledge necessary to derive the recursive reversal algorithm.
It is now desired to derive the high-level procedures for reverse by
beginning :-

4 reverse(x,y)

4 length(.x , z) , (Vui) (item(u,i,x) 44 item(u,z+l-i,y))

If the assumption that x is to be split in the manner described using
a call to append is now to be incorporated into the derivation, it
would be pleasing to accomplish this by invoking the sentence
specifying append with the object of making an appropriate goal
substitution. Intuitively we can foresee a goal substitution which
replaces the predicate item(u,i,x) by another formula referring to
the members of x a n d x^, conditional upon some appended call to
append; in other words, a normal S-conditional-equivalence substitution.

To achieve the objective just outlined, it is necessary to have
a sentence implied by S with the form :-

(f* 44 f') 4 append(x^x ,x)

It might be thought at first sight that the only-if half of the append
definition would provide such a sentence, but unfortunately this turns
out not to be so due to the obstructive presence of the existential
quantifier. This is not to say that there is no such sentence
implied by S; there is indeed such a sentence, but it will have to
be derived as a lemma before the above derivation can be developed in
the desired fashion. The need for such preliminaries just reflects
the fact that, in general, assembling a naive set of axioms in S does

•192

not ensure that those axioms can be immediately applied to the
derivation goal using our most-favoured inference rules. Lemma
generation, as well as goal transformation, plays an important role
in logic program development, and is not often easy to organize in an
obviously top-down style. The need for a lemma may be induced by
top-down reasoning from the current goal, considering how a goal
substitution might be procured; but the deduction of the lemma itself may
be quite a bottom-up process.

In the present example, an appropriate lemma can be obtained by
showing that the length of a list is unique, as expressed by

(length(x,z') 4-4- z=z') length(x,z)

and then using this sentence to make an S-conditional-equivalence

substitution in the definition of append. For ease of presentation,
suppose that we had the sentences :-

A(x) ++ (3u)(C(u,x), B(u,x)) [like the append defn.]

(C(UfX) 4-4- u=v) 4- C(v,x) [like uniqueness of length]

Then these would imply

J- (A(x) 4-> (3u) (u=v,B(u,x))) 4- C(v,x)

f- (A(x) 4-+ B(v,x)) 4- C(v,x)

|- B(v,x) 4- A(x) , C(v,x)

By analogy, in the present case we would thereby have shown that S
implied the S-conditional-equivalence :-

(Vui) (item(u,i,x) •«-* item(u,i,x^)

v item(u,i-z2)) 4- append(x^rx) , length(x^zj

Proof of the lemma that states that the length of a list is unique
can be obtained by using axiom A2 as a means of making a subformula
substitution into its own definiens as follows

S |- length (x,z) <-4- (\fi) (l<i4z 4-4- (3u) item(u,i ,x)) [axiom A2]

length(x,z')4-+ (\fi) (I$i4z'4r4- (3u) item(u,i,x)) [just renaming]

f- (length(x,z') (Vi) (liz' 4-+ Ui^z)) 4- length(x,z)

[making an S-cond.-equiv. substitution]

|- (length(x,z') 4-+ z=z') 4- length(x,z) [exploiting properties of <

to simplify]

•193

With this somewhat digressive exercise accomplished, the
pre-condition for a goal substitution which expresses the decomposition
of x by a call to append is now established. Now it has also been
anticipated that the output list y is constructed by an appending
operation as well; therefore a substitution can be made for each
item predicate in the second call to give :-

length(x,z) , (Mui)(item(u,i,x^) v itemfUfi-z^x) 44

item(u,z+l-i,y^) v item(u,z-z2+l-i,9^)),

length (x ̂ ,z^) , length (y^zj ,

append (x^x^x) , append (y , y , y)

4 length(x,zj+z2) , (Mui)(item (u,i,xv item(u,i-z^,x2) 44

item(u,zj+z2+l-i,y^) v item(u,zj+l-i,y 2)),

length(xlfz2) , length(y^z^ ,

append(//x), append(y1,y2,y)

[by making the obvious instantiation z := z^+z2

to conserve length in the decompositions of x and y]

4 length (x,zj+z2) , (Mui)(item(u,i,x44 item(u,Zj+l-i ,y2))

(Muj)(item(u,j,x2) 44 item(u,z2+l-j ,y ̂),

and calls to length and append as above

[instantiating i := j + z t o simplify the arithmetic

of the indices, followed by distribution of 44 through v]

4 length(x,z+z^) , reverse(x^y2) , append(x^x2,x) ,

reverse(x^,y), append(y1,y2,y)

[modus tollens by invoking reverse specification twice]

4 reverse (x^, y) , append (x^x^x) ,

reverse(x2,y^ , append(y^y^y)

[by prefixing the first call with an existential quantifier

over the length of x, and then modus tollens invoking Al]

Hence this rather unbeautiful derivation establishes the recursive
reverse procedure :-

reverse(x,y) 4 append(x ,x ,x), reverse(x ,y),
X 6 wL

reverse(x2,y^ , append(y ,y ,y)

•194

The proof of this procedure was pursued as the consequence of
an assumption that both x and y were decomposable by calls to append.
The remaining cases to be considered are those arguments in a call
to reverse which are not so decomposable. Some easy trivializations
of the reverse specification provide suitable basis procedures, which
are stated here without proof :-

reverse(x,y) length(x,0), length(y,0)

reverse(x,y) length(x,l) , length(y,l), item(u,l,x) , item(u,l,y)

In order to show that the three derivations providing this procedure
set were complete for reverse as specified by S, it would be
sufficient to prove .from S the theorem :-

length(x,0) v length(x,l) v (^xx)append(x1,x2,x)

thus ensuring that the set of conditions summoned for making
conditional substitutions into the goals was exhausted by this
particular synthesis. Proof of that theorem is tedious but
conceptually simple, and is omitted here.

The behaviour of this procedure set is sufficiently well-known
to restrict our discussion of it here to the simple observation that
it is inherently recursive for all input-output permutations of its
invoking arguments. There are no special virtues manifested by it,
except in its role as a general theorem about reverse and append which
can be specialized to give more computationally useful reversal
programs. This possibility is the subject of the next discussion.

Iterative Reversal Programs

There are a number of ways of obtaining iterative reversal
programs by specializing the recursive procedure set above.
Beginning with the simplest way, a simple inspection of the definitions
of the append and append* relations is sufficient to establish the
sentence below, which becomes an S-conditional-equivalence when the
append* definition is added to the specification set. Note that
append* is just a specialization of append, so that its substitution
for append in the above procedures will naturally specialize them as
well :-

(append(xirx2,x) -«-»- append* (u,x2,x)) length (x^ 1) ,

item(u,l,x1)

•195

As has been demonstrated in the derivation of the lemma, the inference
rules which have been named as S-equivalence and S-conditional-
equivalence substitutions are applicable to any sentences as well as
to derived goals. Therefore apply the last sentence to the recursive
reverse procedure to obtain

reverse(x,y) -e- append* (u,x ,x) , reversefx ,y) , reverse(x ,y) ,
2 j . 2 2 1

append(ylfy2,y) , length(x^ 1) , itemfu,!^^

When x i s specialized to a unit list in this way, the second call
can obviously be solved using the second reverse basis; so, invoking
that basis in response to the second call will transform the above
procedure to

reverse (xf y) -t- append* (u,x2,x) , reverse (x2, y ̂ , append (y^ y2 , y) ,

length(x1) , length(y2,1), item(u,l,Xj),

item(u,l,y 2)

[with a slight re-ordering of calls]

f- reverse(u.x^y) -<- append(y^,u.nil,y) , reverse(x2,y

[by invoking the theorems :- length(u.nil,1)

item(u,l,u.x2)

append* (u,x2,u.x2)

trivially implied by S after specifying item over terms,

and thus macroprocessing out the high-level selectors]

Now invocation of this procedure can be implemented quasi-iteratively
when y is given as input, since the call to append can then be
solved deterministically before activating the call to reverse. Thus
to iteratively reverse some list such as a.b.c.nil the invoking goal
can be chosen as -«- reverse(x,a.b.c.nil) . A sufficient basis to
accompany this procedure is the macroprocessed basis given previously
for dealing with empty lists

reverse (nil,nil) -e-

The procedure set consisting of these two procedures for lists
represented by terms, and specialized so as to split the list x
into its first member and its 'rest', is adequate if some means can
be found of solving rhe call to append efficiently. The orthodox
append procedures are of little use here because they cannot directly
access the last member u of the argument y in the call append(y ,u.nil,y) .

•196

The problem of computing the last member of a list as just
discussed vanishes if an alternative data structure representation
is chosen. For instance, in Section 3.2 the term t(u,x,v) was
used to represent a list with first member u, last member v and
middle x. There it was shown that this representation allowed
an iterative computation which, at the level of the source program
at least, appeared to have direct access to all the components of
the list submitted as input for reversal. How efficient that
arrangement would really be in practice would depend upon how the
interpreter stored and matched terms constructed using the t-function.

An even easier way of dealing with the call to append in the
above procedure is to represent lists by terms of the form app(y
such that app(y2) represents the list obtained by appending y to
y. By defining the meaning of item for this representation as
follows :-

item(u,i ,app(nil,nil)) false

item(u,i,app(y1,y2)) ++ item(u,i,y)

v Qw) (length(y^w) ,item(u,i-w,y2))

and assigning these axioms to S, it is then easy to derive from S the
theorem :-

append(y1,y2,app(y1,y2)) +

and so macroprocess out the call to append , leaving an iteratively
invokable reverse procedure

reverse(u.x ,app(ynil)) •*• reverse(x2,y

The efficiency of an implementation of this procedure would depend
critically upon the interpreter's capacity to perform clever
evaluations in the binding environment in order to manage the concrete
data expressed at source-level by these rather clumsy terms. However,
without the use of interpreters capable of efficient management of such
terms, none of the procedure sets considered here for reverse is
satisfactory. This is why we now turn attention to the derivation
of procedures for the more sophisticated reverse* relation, which was
also examined in Chapter 3.

•197

The reverse* predicate has been specified by Robert Kowal'ski
[Lecture Notes, Syracuse, 1978] using the sentence

reverse*(z,x,y) 44 (3w)(reverse(x,w) , append(w,z,y))

so that reverse*(z,x,y) holds when y is the result of appending z to
the reverse of x. Thus in order to compute y as the reverse of x it
is sufficient to solve reverse*(z,x,y) for the case where z is the
empty list. A formal proof of this would only require a lemma

(append(w,z,y) 44 y=w) 4 length(z,0)

to be derived using the append specification. Then an immediate
substitution for the append predicate in the reverse* specification
would establish the first procedure in our desired procedure set,
this being

reverse(x,y) 4 reverse*(nil,x,y) [using length(nil,0)4]

The derivation of this procedure then constitutes a synthesis for the
reverse relation having reverse*as its primitive. Therefore the
next level in the synthesis hierarchy has the aim of synthesizing
a procedure set for reverse*. Only a brief outline of this is shown
below.

Two lemmas are required in order to derive the recursive
.reverse* procedure :-

appendfw' ,u.z,y) 44 Qw) (append(w' ,u.nil,w) , append(w,z,y))

reverse(u.x^fW) 4 reverse(x^fW*) , append(w' ,u.nil,w)

The first of these is derived from the properties of the append
relation and just expresses a consequence of its associativity. The
second lemma is just the recursive reverse procedure already derived?
note.that the derivation of more sophisticated procedures often relies
upon the use of simpler procedures treated as specification axioms in S.
From these preliminaries, the following treatment is straightforward

4 reverse*(z,x,y)

4 reverse(x,w), append(w,z,y)

4 reverse(x2,w'), append(w',u.nil,w), append(w,z,y)

[first call invokes the reverse procedure above,

inducing the binding x:=u.x2]

4 reverse(x2,w') , Qw) (append(wr ,u.nil,w) , append(w,z,y))

[prefixing last two calls by Qw)]

•198

4- reverse(x2,w') , append(w',u.z,y) [modus tollens, invoking

append lemma]

4• (3w') (reverse(x2,w') , append(w',u.z,y)) [prefixing by (3w')]

4- reverse*(u.z,x2,y) [modus tollens using reverse* spec.]

and so we infer the procedure :-

reverse*(z,u.x2,y) 4- reverse*(u.z,x2,y)

Inspection of the second inference step in this derivation (the one
which invoked the associative property of append) shows that it
introduces the assumption that x is decomposable, that is, has the
structure u.x^* A n alternative branch at that point deals with the
other case where x is the empty list. From the procedure set for
the recursive reverse algorithm we have the two bases :-

reverse (nil,nil) 4-

append(nil,y,y) 4-

which can now be invoked as lemmas in the derivation below which
provides a basis for reverse* :-

reverse* (z,x,y)

4- reverse(x,w), append(w,z,y) [just proceeding as before]'

• [taking the other branch by invoking the bases

for append and reverse, thereby inducing the

bindings x:=nil, w:=nil and z:=y]

thus inferring the basis :-

reverse* (y,nil,y) 4-

The properties of this new procedure set have already been discussed
in Chapter 3 and so do not warrant further discussion here, other than
to recall the iterative behaviour which they give? this will be
reasonably efficient if the interpreter possesses good means of
storing and accessing the terms constructible from . and nil•

The reverse* derivation closely parallels that of the 3-place
factorial program described in Clark's paper (12); there, he exploits
the associativity of multiplication where above we use the same
property of the appending operation. Clark also derives procedures
for Kowalski's 4-place factorial relation, whose top-down execution
simulates the bottom-up execution of the conventional 2-place program.

•199

Similarly it is possible to derive a procedure set which interrogates
a 4-place relation reverse**

reverse(x,y) -<- reverse** (x,y,nil,nil)

reverse** (x,y ,x,y)

reverse** (x,y ,w,z) -4- append(x' ,u.w,x) , append(z,u.nil,z') ,

reverse**(x,y,u.w,z')

whose top-down execution behaves like the bottom-up execution of the
procedures which use the 2-place reverse relation-:-

reverse (ni l,nil) 4-

reverse(u.x',y) reverse(x',y'), append(y',u.nil,y)

Given the goal 4- reverse(a.b.c.nil,y) both computations compute
the successive approximations nil, c.nil, c.b.nil and c.b.a.nil to
the output variable y. By contrast the 3-place program just
examined computes the successive approximations nil, a.nil, b.a.nil
and c.b.a.nil when executed top-down.

By analogy to the procedure set investigating ordered lists
which was derived in Section 5.5, there exists a reversal program
which maintains explicit pointers in the procedures* arguments in
order to allow direct access to the individual members of the lists
in question. Its derivation is sufficiently similar to that of
the analogous orderedness program to allow its omission here, but it
is interesting to see just what that program looks like. Suppose
that two lists L^ and L^ are given as input and represented in such
a way as to allow direct look-up of any ith member (for example, by
representing them by sets of item assertions). Then the following
procedures provide excellent top-down behaviour when executed for
the goal 4- reverse(L^fL^)

reverse(x,y) 4- length(x,0) , length(y,0)

reverse(x,y) -4- length(x,j) , reverse* (x, 1,j,y)

reverse^(x,j,j,y) -4- length(x,j) , item(u,j,x), item(u,l,y)

reversed(x,ilfi2,y) length(x, j) ,

item(u,j+l-i ,y),

reverse+(x,i +1,i2,y)

Here the reverset relation is specified by :-

reverse i ,i ,y) 4-* (3j) (length(x,j) ,

reverse(f(x,ilfi2),f(y,j+l-i ,j+l-i)))

•200

where the term f represents the list fragment of x which
extends from its i ^ up to and including the i ^ member. When

JL «

one list, say y, is required as output given the other as input,
the successive activations of the call item(u,j+l-i,y) will
contribute satisfactorily to a cumulative term representation of
the output. Alternatively, if the output y is required to be
represented by a set of computed item assertions, there may exist
semantically justifiable ways of inducing such assertions in order
to 'quasi-solve' those calls to item(u,j+l-i,y) ; but this is a
matter beyond the scope of the present discussion dealing with the
logic underlying the reversal algorithms.

In summary it should be noted that the algorithms considered
here all pursue the task of accessing j members from one list of
length j and then accessing or constructing exactly j members of the
other list. The differences between their behaviours are really
just associated with different implementations of that task, for
example, whether they perform it recursively or iteratively, or
whether or not they induce a significant binding environment. By
contrast, the next section examines a problem in which the opportunity
exists for achieving differences in efficiency between alternative
programs which are not attributable to superficial differences in
implementation.

•201

6.2 : SEARCHING LISTS FOR DUPLICATES

Specifying the Problem

Whereas the problem in the previous section concerned a relation
between two lists, here we consider just a 1-ary relation defined upon
a single list. The property expressed by this relation holds when the
list in question contains at least one duplicate member; when this is
satisfied by some list x the predicate dupllc(x) holds. The duplic
relation is specified by the following sentence which requires that
some member u shall occur in both positions i and j such that i<j.i-

duplic(x) (3uij) (item(u,i ,x) , item(u,j,x) , i<j)

The initial specification set contains this sentence, the list axioms
A1-A3 and the specification for the append* relation. General
properties of = and < (over non-negative integers) are assumed implicitly.
These axioms provide enough information for the derivation of the.first
two algorithms considered here. It is assumed, as always, that the
programs are intended primarily for a Prolog-like interpreter.

The Naive Algorithm

The naive algorithm applies Prolog-like control to a procedure .
set having just one procedure for duplic. This procedure is trivially
implied by the duplic specification, which, having a definiens
consisting of just a conjunction of atoms, immediately provides an
executable Horn clause :-

duplic(x) item(u,i,x) , item(u,j,x), i<j

Now suppose that procedures for solving calls to item efficiently
are provided; for instance x may be represented assertionally, or
procedures for item may be available for accessing some other
representation. Further assume that calls to < can be processed
directly by the interpreter. Then the procedures already considered
will make up a complete program body for solving a call to duplic.

The computation generated from this algorithm is essentially
the iteration of one loop within another, in much the same way. as
the pick program examined previously which executed the procedure :-

•202

pick(u,v,z) uez, vez, u<v

Observe that this duplic procedure does not constrain the order in
which members are selected from x and compared, this being determined
instead by the interpreter's strategy for processing the calls to item.
Assume however that the most straightforward arrangement prevails in
which members are selected in order of increasing index. Then the
first solution (if any) of duplic(x) is obtained by finding the least
indices m^ and m satisfying (item(u,m^,x) , item(u,m2,x) , m^m^) .

Let the algorithm described above be designated Al. A convenient
measure of its efficiency is the number of comparisons executed
between members of the given list x, since the essential behaviour of
the algorithm is to select some u satisfying item(u,i,x) and then
successively compare it with other members of x until a matching
member is found with an index j exceeding i. Assuming that x has
n members, the total comparison count of Al needed to discover the
first solution i:=mJ:=m2 W(A1) such that

N(Al) = m 2 + n(m1 - 1)

This comparison count is rather unsatisfactory in that every pair of
members having distinct indices less than m i s compared twice;
moreover, every member having an index less than or equal to m i s
compared with itself. Thus there are h(m^)(m^-1) + m r e d u n d a n t
comparisons executed by Al assuming the accessing protocol suggested
above for selecting the members of x. Note also that N(Al) is
dependent upon n, despite the intuitively obvious fact that the
problem can be solved - if at all - by inspecting just the first
m2 members. The remaining algorithms to be considered respectively
remedy these two failings in the efficiency of algorithm Al.

The Improved Naive Algorithm

The reason for the redundant comparisons executed by Al is that
the logic does not constrain the order in which members are selected
and compared. In particular the algorithm does not take into account
the fact that if the ith member u fails to match some jth member v,
then there is no point in attempting at some later time to select
that same v as the ith member and then compare it with a jth member u .
Instead it generates comparisons for the index pair (i,j) and the
index pair (j,i) without recognizing that these compare the same

•203

members. The improved naive algorithm, designated A2, constrains
the scheduling of the choices of comparison indices (i,j) such that
these redundancies cannot arise. The derivation of duplic procedures
for A2 requires just the minimal knowledge about the constructibility
of lists as expressed by axioms A1-A3 together with the append*
specification. By introducing calls to append*, we can arrange that
the logic deals explicitly with the components of x so as to logically
preclude redundant comparisons. The obvious agency for introducing
such calls is the S-conditional-equivalence substitution, as is now
demon s trated.

Assuming the specification set already enunciated, consider a
derivation for duplic

4 duplic(x)

4 item(u,i,x), item(u,j,x), i<j

4 (item(u,i-l,x') v (u=u',i=l)),

(item(u,j-l,x') v (u=u',j=l)), i<j, append*(u',x',x)

[orthodox S-cond.-equiv. substitution,

replacing two item predicates conditional

upon a call to append*]

A little intuition is useful at this point in order to decide how to
simplify this goal. Note that if the goal is to be solvable then
the solutions for i and j must satisfy either (i>I, j>l) or (i=I, j>l)
as a consequence of the general properties of <. Considering the
former case first, its application to the current goal simplifies
the first two calls, as follows

4 .(item(u,i-l,x') v false),

(item(u,j-l,x') v false), i<j, append*(u',x*,x), i>l, j>l

[because the properties of = and > S-imply

the S-conditional-equivalence

(i=l 44 false) 4 i>l]

4 item(u,i-l,x'), item(u,j-l,x'), i<j, append*(u',x',x)

[simplifying first two calls, and deleting last

two calls as they are then implied by the first two]

A A A A

4 item(u,i,x') , item(u ,j ,x') , i+Kj+l, append* (u' ,x* ,x)

A A

[instantiating i:=i-l, j:=j-l]

tr (3uij)(item(u,2,x') , item(u,j,x'), i<j), append (u' ,x' ,x)
A A

[exploiting properties of < , and prefixing with (Buij) J

4- duplic(x'), append*(u',x',x) [nodus tollens using duplic spec.]

Returning to the earlier branch point, the consequence of choosing
the alternative case (i=l, j>1) is the derivation

4- (item(u,i-l,x') v (u=u,,i=l)),

(item(u,j-l,xt) v (u=u',j=l)), i<j, append*(u',x',x)

[the goal at .the branch point again]

4- (false v u=u') ,
(item(u,j-l,x') v (u=u',false)) ,i<j, append*(u',x',x), i=I, j>l

[substitutions conditional upon i=l, j>l,

and using list axioms to assert indices must be]

a

item(u' ,x') , append* (u',x',x)

[some obvious simplifications, and instantiation j:=j-l]

These two derivations comprise a complete synthesis for the duplic
relation because they exhaust the two cases for the values of i and j.
Note that they both consider the case where x is decomposable; there
is no case corresponding to an empty list x, since the assumption
that x was empty would make the derivation goal unsolvable. The
two procedures inferred in the synthesis are

duplic(x) 4- append* (u',x',x) , item(u' ,x')

duplic(x) -(- append* (u' ,x' ,x) , duplic(x')

This is the procedure set for algorithm A2. Now suppose that in a
Prolog-like execution the first procedure is invoked and faiis. Then
u' will have been compared with all members of x'. When control
passes to the second procedure, the append* call effectively discards
this instance of u' from the ensuing computation, so that no
subsequent comparisons of members with that instance can be executed.
Thus the calls to append* eliminate the possibility of redundant
comparisons. The comparison count of algorithm A2 when it terminates
successfully is :-

N (A2) = (m2 - m) -f (m - 1) (n - hn^)

•205

The difference between N{Al) and N{A2) is just the number
m^ + h(m^) (nij-1) of redundant comparisons executed by Al.

Both Al and A2 generate comparisons of members whose indices
fall in the range m^i^n. As a result, the measures N(Al) and N(A2)
both depend upon n. This can result in some very inefficient
computations for certain choices of goal. For example, if n is
very large and both m a n d m a r e small relative to n , then both
AT (Al) and n(A2) approximate to (m^-l)n, so that both have comparison
counts of order n• even when the matching pair could be found by just
inspecting the first few (m^) members of x. The next algorithm A3
performs exactly that inspection in order to solve duplic(x).

The Length-Independent Algorithm

The logic underlying the length-independent algorithm A3 can
be anticipated by the following intuitive reasoning. Suppose at
some instant in the execution of A3 the fragment (x , ..., x)

J. JC

of x has been inspected and found to have no duplicates. Moreover,
assume that duplic(x) is solvable with i:=m , j:=m . Then k is

Jm £
certainly less than in . Now consider the two cases k<m„ and k>m^.

2 1 . 1 If k<mthen the duplicate members must occur in the fragment
fx , ..., x) ; if k^m then one of the duplicate members occurs in

JCtJ. 12 J.
(x,, ..., x.) whilst the other occurs in (x. ,,, ..., x) . A 1 k k+l n
convenient formalization of these ideas makes use of a new predicate
whose arguments represent the fragments explicitly; let duplic* (z^z^)

hold when z is some permutation of {x , ..., x } and z_ is the
JL J. Ji 2

fragment x
n)• Informally, z^ is associated with the

set of members currently known to be distinct, whilst z^ is the
remaining fragment of the input list which still awaits inspection
for duplicates. The logical specification of duplic* is

duplic* (zlfz2) «-»" (3uij) (item(u,ifz1) , item(u,j,z2)) v duplic(z2)

Another way of informally considering the meaning oi duplic*fz^,z2)

is to say that the structure contains duplicates but Zj
does not; in which case either some member is common to z^ and z^'
or else some member has duplicate occurrences in z^.

The objective now is, firstly to find a way of solving a call
to duplic using procedures for duplic* and, secondly, to derive
procedures for duplic* which can be controlled so as to give A3.

•206

In order to make use of the duplic* predicate in the solution
of duplic(x) it is useful to recall the list axiom A3

length(z,w) 44 (Mi)(l^i^w 44 Qu) item(u,i ,z))

Both A3 and the duplic* specification are assumed to be established
in S, and can now be combined as follows : using A3 to make an
S-cond.-equiv. substitution, substitute for the predicate item(u,i,z^)

conditional upon the assumption length(z^,0). This gives the"
sentence :-

(duplic* (z^zj 44 (3uij) (false, item(u,j,z2)) v duplic(z2))

4 length(z^,0)

which, after some trivial simplification, clearly implies the
following procedure for duplic

duplic(z2) 4 duplic*(z2) , length(z^,0)

Renaming the variables and ordering the calls appropriately, this
gives the first procedure in the program body for algorithm A3

duplic(x) 4 length(z^,0), duplic*(z^,x)

The next step is a synthesis for duplic*. The derivation tree
for this obviously begins as follows

-c- duplic* (zlfz2)

(3uij) (item(u,i ,z^) , item(u,j,z2)) v duplic(z2)

[note that this has just one call - a disjunction]

We shall now make some rather subtle substitutions into this goal
using a number of lemmas. The overall objective here is to capture
the algorithmic notion of successively selecting members from the
fragment z^ and testing them for membership in z^. This motivates
the search for lemmas which allow useful goal substitutions
conditional upon append* (u',z'2, z^ .

Note firstly that the two derived duplic procedures can be
expressed as

(duplic(x) 4 itemfu',j,x')) 4 append*(u1,x',x)

(duplic(x) 4 duplic(x')) 4 append*(u',x',x)

(that is, the duplic procedures used in the improved naive algorithm.)

Then the completeness of that procedure set for duplic determines
that these two sentences can be combined to provide a single lemma :-

(duplic(z^) (3j)item(u' ,j,z'2) v duplicfz'^)) 4- append* (u' ,z'2,z2)

From the specification of append* we also have the lemma

(Muj) (item(u,j,z2) -4-* item(u,j-l ,z'2) v (u=u' ,j=l)) 4- append* (u',z'2,z.

The two lemmas can now be used to make S-conditional-equivalence

substitutions for the respective goal subformulas duplic(z^ and
item(u,j,z2) ,the result of which after a little simplification
by distribution is :-

4- ((3 ui) (item(u,i,z2) , item(u,j-l ,z'2))

v (Bi)item(u',i,Zy)

v (Bj)item(u',j,z')
» z

v duplic(z'2)), append* (u' ,z'2,z2)

The disjuncts of the first call just represent the four cases in
which (z^,u' .z'2) may contain duplicates when z^ does not. It may
be helpful to see these, cases portrayed below :-

0 1 1 1 2

u' J
u

r

L—t

jst disjunct 2nd disjunct

Z1

U ' u'

3rd disjunct

u' u
1-

disjunct

Suppose now that the member u' is selected from and is found not
to belong to z . Then the only way in which the duplicate problem

•208

can still be solved is by showing that either z^ contains duplicates
or that z'2 contains a member identical to one of those already
inspected by the algorithm - these being u' together with the members
now in z . An obvious step for the algorithm to take is therefore
to transfer u' from z t o z , producing z'2 and z^ respectively.
Consider each of the disjuncts of the goal's first call on the
assumption that u' is to be transferred in this way. Subsequent
solution of the problem depends upon finding some state of the two
list fragments amongst (z'p z p a^d its successors arising from
further transfers such that in that state there is some member
common to both fragments. The 2n(^ and 4 ^ disjuncts express an
arrangement in which the question of a common member occurring in
succeeding fragments after transferring u' remains undecided. By
contrast, the 1 s t and disjuncts express arrangements in which
a member common to both fragments is assured after transferring u'.
With this latter remark in mind, it is quite easy to show that
the disjunction of the I s t and disjuncts can be substituted

by the formula (3uij)(item(u,i,z"), item(u,j,z')) which expresses
the fact that the new fragments must have a common member. This
substitution is an S-conditional-equivalence substitution whose
condition is append* (u' ,z'2,zp , append* (u* rz^zp . This transforms
the goal to :-

-f- ((3uij) (item(u,i,z'p , item(u,j,z'2))

v (Bi)item(u' ,i,zp

v duplic(z'2)), append* (ur ,z'2,z2) f append* (u' ,z^zp

4r- (duplic*(zpzp v (3i)item(u' fi,zp), append* (u'fz'2,zp ,

append* (u' rz^zp

[modus tollens by invoking duplic* spec.

in order to summarize the ways of solving-

the problem after transferring u']

This goal now permits two procedures for duplic* to be inferred :-

duplic* (z,zp 4- append* (u' rz'2,z2) , item(u' ,i,zp

duplic* (z^zp + append* (u' ,z'2,zp , append* (uz^,zp , duplic*(z'^zp

These form a complete procedure set for duplic* because the goal
transformations which were made all preserved S-equivalence -

•209

conditional upon the calls to append*. The last condition is
exhaustive in that the alternative assumption that z„ was not
decomposable would make the goal unsolvable. Assuming then that
procedures are already available for solving calls to item and
append*, the synthesis of a complete program body is complete.
Executing a call to duplic using the three derived procedures and
Prolog-like control gives algorithm A3. As execution proceeds,
successive distinct members are deleted from the list z^ and stacked
in the record z^; z^ is initially empty. Each new member is
deposited in z^ by the second duplic* procedure after the first
duplic* procedure has failed to show that this member already occurs
in z^. If, however,- a call to the first duplic* procedure is
successful then computation terminates; at this point, exactly (m^-I)
members which were originally in z^ have been transferred to z^, and
one of them is now known to match the m ^ member of The

2 2
total number of comparisons made by A3 in order to find the first
solution of duplic(x) is :-

N(A3) = (m2 - jn2; + (m2 - 1) (m2 - 2)

which is independent of n . Algorithm A3 is not necessarily more
efficient than A2 in terms of comparison counts. If A^, A^ and A^
are the lengths depicted below :-

7 ml m2 n

-f- A . M — A „ — M— A , -4

then we have N(A3) < N(A2) if and only if A2(A2+l) 4 2X^X^1).

The essential differences between the three algorithms can be summed
up by saying that every inspected member of x is compared in Al with
its predecessors, itself and its successors; in A2 with its successors
only; and in A3 with its predecessors only. Algorithm Al is therefore
less efficient than both A2 and A3.

Since algorithm A3 has no other task than to select successive
members from x and compare them with their predecessors, it would
seem unnecessary to implement that process using two distinct data
structures z^ and z^. Those data structures are useful for describing
the problem abstractly as in the duplic* derivations above, but could

•210

clearly be implemented implicitly instead by just employing a
suitable pointer system governing selections and comparisons in x.
In fact all we need is one pointer j varying from I up to n which
marks the boundary between the fragments z a n d z^. Then a
transformation similar to those shown earlier for the palindrome
and orderedness problems gives the rather elegant alternative logic
component for algorithm A3 :-

duplic(x) 4- duplic^ (x,l)

duplic^ (x ,j) 4- item(u ,j ,x) , find(u,l,j-l,x)

duplic^' (x,j) 4- length (x,w) , j<w, duplic^(x,j+l)

find(u/i/j,x) 4- i^j, item(u,i,x)

find(u,i fj,x) 4- ±<j, find(u,i+l,j,x)

\

This gives excellent behaviour for an implementation allowing direct
access to the members of x selected by the pointer j in the calls
to item. The relations introduced above may be specified informally
using the list membership predicate z and the £-notation used in
previous examples for denoting list fragments :-

duplic^(xj) 4-+ x £f(x,l,j-l) v @w) (length(x,w) ,

duplic (f (xfj ,w)))

find(u,i,j,x) uzf (x,i ,j)

•211

6.3 : GENERATION OF FACTORIAL TABLES

Specifying the Problem

The problem considered in this section is that of constructing
a table of factorials containing entries (u,u!) for u = O, ..., z
where z is some non-negative integer given as input. Such a table
might serve as a useful data structure accessed by some other program
requiring frequent look-up of a limited range of factorials. Several
programs for computing individual factorials are discussed in Clark's
paper (12) and are quite interesting as demonstrations of various
logic programming styles; however, the task of constructing an entire
series of factorials is more interesting in that it provides scope
for varying the exploitation of their dependencies and order of
generation, as well as raising matters of data structure representation.
Construction of factorial tables is also briefly considered in the
paper by Burstall and Darlington (10) who show how to compute them
using programs represented as sets of recursive function definitions.

The logical specification of the problem is accomplished quite
concisely with the sentences :-

table(x,z) (Muv) (entry (u,v,x) 0<u<z, fact(u,v))

fact(u,v) (u=0, v=l) v (3w) (times(u,w,v) , fact(u-l,w))

in which table(x,z) holds when x is a table containing entries
(0,0!), ..., (z,z!) ; entry(u,v,x) holds when (u,v) is an individual
entry in table x ; times(u,w,v) expresses the multiplication
relation over non-negative integers ; and fact(u,v) expresses u/=v.
Elementary properties of < over the latter domain are implicitly
assumed in S as always, and the only property of times(u,w,v) which
we shall need to summon is that any pair (u,v) determines w uniquely
when that predicate is satisfied. Any calls to ^ and times which
may appear in the derived procedures will be assumed to be directly
executable by the intended Prolog-like interpreter.

Several algorithms are presented here which are classified
according to their arithmetical properties (measured by how many
multiplications are needed to construct a table of a given size)
and according to the order in which they generate the table entries.

•212

When an algorithm generates entries in the order (0,0!), ..., (z,zl)
we shall call it a natural ordering algorithm, and when it generates
them in the reverse order we shall call it an anti-natural ordering
algorithm. Five algorithms are considered altogether, and presented
in order of decreasing naivety.

Quadratic Anti-natural Ordering Algorithm

This simple algorithm is derived by exploiting some basic ideas
about the constructibility of the data structures which we have
called 'tables'. Any given table can be viewed as simply a set of
pairs ('entries') and so be expressed in terms of the set union of
its component subsets. Here it is convenient to regard the table
as the union of a singleton containing some entry (u',v') with the
set X' of all its other entries. Then the construction of tables
can be specified by the sentence below which is admitted to the
specification set :- ..

enter(u',v',x',x) 44 (Muv)(entry(u,v,x) 44 (u=u',v=v')

v entry(u,v,x*))

where enter(u',v',x',x) expresses x = {(u',v') } U x' and is named
so as to reflect the notion of an algorithm which successively
'enters' the computed entries into some partially constructed table.

The derivation below uses this knowledge about the table's
structure to make a substitution for the specification's predicate
entry(u,v,x) in order to explicate the way in which any particular
computed entry is assigned to the table. The result of this is that
the table x becomes expressed in terms of its sub-table x'; to
achieve this objective it is necessary to exploit the fact that the
size of x' is one less than that of x, which is easily ensured,' as
will be seen in the derivation, by appealing to an elementary
property of assumed in S :-

O^u^z 44 u=z v 04u4z-l

With these preliminaries established, the derivation proceeds :-

4 table(x,z)

4 (Muv) (entry(u,v,x) 44 04u$z, fact(u,v)) ;

4 (Muv)(entry(u,v,x') v (u=u',v=v')

44 0£u4z, fact(u,v)), enter(u',v',x',x)

[S-cond.-equiv. substitution for the entry predicate]

4 (Vuv)(entry(u,v,x') 44 odu4z-l, fact(u,v)),

(\fv) (v=v' 44 fact(z,v)) , enter(z,v' ,x' ,x)

[S-equiv. substitution for the predicate 04u4z using

the axiom about 4 declared above; then assume u':=z

to reflect the anti-natural ordering determined by

arranging that the computed entry (u,v) is (z,z!) ;

then distribute 44 through v and simplify ;

then distribute v through conjunction]

4 table(x',z-l),(Vv)(v=v' 44 fact(z,v)), enter(z,v',x',x)

[modus tollens]

The interesting problem now arises of the significance of the goal's
second call, and how to process it . The call expresses the
requirement of showing that the factorial of any u is unique,
and arises in the derivation because the table specification in S
quantifies u and v in such a way as to admit the possibility of
arbitrarily many instances of v satisfying fact(u,v) for a given u.
The other specification axioms do not explicitly preclude this
possibility. Here we shall assume that S contains enough knowledge
about = and times to prove the uniqueness of any factorial as*'a
lemma; summoning that lemma will then replace the second call to leave

4 table(x' ,z-l) , fact(z,v') , enter(z,v',x' ,x)
x

The calls are now clearly all atomic. Suppose now that we backtrack
through the derivation to the point at which it was decided to
introduce considerations of the constructibility of x. Here there is
no point in trying instead the usual assumption that x can be an
empty table, because - as a little experimentation will quickly
confirm - there is then no simplification which will produce.ar
solvable goal; the table specification insists that any table must
contain at least one entry (0,0!). Nevertheless we certainly require
a basis for the recursive table procedure inferred from the above
derivation. Clearly a sufficient basis is that which deals with the
most trivial table, namely the unit table {(0,0!)} specified by

unit-table(x,u',vr) 44 (Vuv)(entry(u,v,x) 44 u=u', v=v')

Admitting this to S and then pursuing the alternative derivation
dealing with the case of a unit table, the procedure set for table
concluded from this analysis is :-

•214

table (x,0) ,-t- unit-table(x,0,1)

table(x,z) 4- fact(z,v'), table(x',z-l), enter(z,v',xr,x)

This set is complete for table. Now it remains to provide means
of solving calls to fact, enter and unit-table. Now S already
contains sufficient information for the synthesis of a complete
procedure set for fact. The fact procedures which are most easily
derived here are the following, which are both trivially implied
by the fact specification

fact (0,1) 4-

fact(u,v) 4- fact(u-l,w) , times(u,w,v)

These just represent the conventional top-down recursive computation
of factorials. As an alternative to these we could instead make use
of the more efficient procedure sets derived by Clark (12) ; however,
all these procedure sets have the property that their computations
give rise to z multiplications in the course of computing any zJ
for z>0.

If some procedure set is devised for solving calls to enter,
leaving the call enter(z,v',x',x) in the table procedure above
as it stands, then that latter procedure must clearly be invoked
recursively. On the other hand, a choice of table representation
which permitted that call to be eliminated by macroprocessing would
then allow iterative invocation. In view of this, admit now to S
the low-level data-accessing axioms for the simplest term representation :-

entry(u,v,0) 4-*- false

entry (u,v,e(u',v') :x') •«-*• (u=u',v=v') v entry (u,v,x')

which employs 0 and : to construct sets of pairs constructed from e.
Then S will trivially imply the data-accessing procedures :-

unit-table(e(u',v') :0, u', v') 4-

enter(u' ,v' ,x', e(u',v'):x') 4-

and thus enable the procedures for table to be macroprocessed, giving

table(e(0,1) :0, 0) 4-

table(e(z,v') :x' , z) 4- factfz ,vr) , table (x1 ,z-l)

fact (0,1) 4r

fact(u,v) 4- fact(u-l,w) , times(u,w,v)

•215

These procedures instigate h(z)(z+1) multiplications in the
course of solving a goal table(x,z) given an input instance z>0.
This holds irrespective of the fact that a particular representation
has been chosen for the computed table. Assuming commitment to Prolog's
control strategy , the quadratic dependence of the algorithm's
arithmetic burden upon z arises solely by virtue of the fact that
z independent factorials have to be computed by the explicit calls
to fact in the table procedure. We should obviously be able to
improve upon this; for instance, z/ and (z-1)! are computed here by
a total of (2z-l) multiplications even though z! is computable in
principle by just one multiplication once (z-1)! is known. This
latter consideration is the intuition underlying the next algorithm.

Linear Anti-natural Ordering Algorithm

A more efficient algorithm can be obtained using the axioms in S
together with the procedures already derived. Recalling the
recursive procedures for table and fact :-

table(x,z) fact(z,v'), table(x',z-1), enter(z,v',x',x)

fact(u,v) -<r fact(u-1,w) , times(u,w,v)

resolve them by invoking the fact procedure in response to the call
to fact in the first one. This produces :-

table(x,z) 4- fact(z-1,v"), times(z,v",v') , enter(z,v',x',x) ,

table(x',z-1)

after a little renaming of variables. The process of resolving
them in this way contributes towards a compile-time symbolic
solution of the table procedure's call to fact. The new procedure
above requests the factorial of (z-1) and so still gives rise to
quadratic behaviour if substituted for the parent table procedure.
Suppose instead, however, that this factorial is already accessible
from the computation of the table x'; a procedure for accessing that
factorial is trivially implied by the table specification, by
virtue of the general fact that A -*->• (B 4-+ C) implies C 4- B,A .
Here the implied procedure is just, after some renaming :-

fact(z-l,v") 4r entry (z-1,v" ,x') , table(x',z-1)

Now invoke this in response to the call fact(z-1,v") in the new
table procedure to give :- > '

•216

table(x,z) + table(x',z-1), entry (z-1 ,v" ,x') , times (z,v" ,v') ,

enter(z,v' ,x' ,x)

Observe that this contains no call to fact; thus the fact procedures
are now computationally superfluous, playing no role in the new
algorithm. If the same data structure representation is chosen as
before, then the complete procedure set for the algorithm (which
employs the same table basis as before) is :-

table(e(O,1):0, 0)

table(e(z,v') :e(z-l,v"):x", z) + table(e(z-1,v"):x", z-1),

times(z,v",v')

With Prolog-like control these execute just z multiplications in
response to a goal table(x,z) when z>0. However they have to
be executed recursively, and so are not necessarily more efficient
in practice. Essentially they behave rather like the result of
executing bottom-up those procedures which comprise the former
algorithm. Top-down execution of the present procedures for the
goal table(x,2) is depicted below in order to clarify their
behaviour :-

+ table(x,2)

<*- table(e(1 ,v") :x" ,1) , times (2,v" ,v') x:=e(2,v') :e(l,v") :x"

table(e(0,v") :x",0) , times (1 ,v" ,v") ,

times (2,v" ,v') x" :=e(0,v") :x"

t- times (1,1,v") , times (2 ,v" ,v') x" :=0 , v" :=1

times(2,l,v') v" :=1

• v' i=2

output : x:=e(2,2):e(l,l):e(0,l):0

The two anti-natural ordering algorithms are both inefficient in one way
or another; the former executes too many multiplications, whilst the
latter performs them in an order that demands recursive stacking of
latent calls. In what follows we pursue the elimination of both of
these defects.

•217

Quadratic Natural Ordering Algorithm

The next three factorial table algorithms all compute tables
in the natural order (0,0!), ..., (z,z!). Since (0,01) is initially
known in consequence of the specification set trivially implying

fact(0,1) +

it can be summoned at the beginning of some computation and then used
as the basis for generating higher entries. The previous algorithms
had no immediate knowledge of any entries except (0,0!) either, but
could not summon it immediately upon the start of computation; instead
its role was deferred- until completion of other recursive invocations
initiated from requests for the higher entries.

A preliminary natural ordering algorithm can be obtained by
admitting to S a new specification for a 3-place predicate table*.

Essentially this defines a partial table {(w,w!), ..., (z,z')}as
follows :-

table* (x,w,z) 4-4- (\/uv) (entry(u,v,x) 4-4- w^u^z, fact(u,v))

Choosing the instantiation w:=0 obviously makes table(x,z) and
table*(x,0,z) S-equivalent, so that a call to the former can be
investigated by a call to the latter.

It is very easy to pursue derivations for table* which are
closely analogous to those already seen for table. By using the
consequences of the enter and unit-table specifications to reveal
the construction of partial tables we obtain :-

table* (x,z,z) fact(z,v') , unit-table(x,z,v')

table*(x,w,z) 4- w<z, fact(w,v), table*(x',w+l,z), enter(w,v,x',x)

as the complete procedure set for table* serving the initiating table

procedure .- table (x,z) 4- table* (x,0,z)
!

Using the term representation and macroprocessing, the resulting table*
procedures are iteratively executable :-

table* (e(z,v') :0, z,z) 4- fact(z,v')

table* (e(w,v) :x', w,z) 4- w<z, fact(w,v) , table* (x' ,w+l ,z)

A complete program body for solving a call to table will also clearly
have to contain a suitable procedure set for solving the calls to fact.
With top-down control, this algorithm must execute h(z) (z+1)

•218

multiplications in the course of computing a table with entries' up
to (z,z!), just like the earlier quadratic algorithm. So now we
attempt a refinement as before with the aim of obtaining a linear
behaviour instead.

Bi-linear Natural Ordering Algorithm

Once again we pursue a symbolic execution of the calls to fact,
using a resolution step to eliminate those calls from the quadratic
procedure set. Considering the recursive table* procedure first,
the call fact(w,v) is required to be replaced by a look-up of the next
factorial in question from the table x'. This factorial will clearly
be (w+1)! by virtue of the sentence implied by S (similar to that which
was exploited in the earlier refinement) ,which after renaming is

fact(w+l,v") 4 entry(w+l,v",x'), table*(x',w+l,z)

This means that a procedure is required which solves fact(w,v) by
solving fact(w+1,vn). Now it is trivial to show that the specification
given for fact implies :-

Qv) (fact(w,v) , times (w+1 ,v,v")) 4 fact (w+1,v") , 04w

from which it is possible to infer the universally quantified
sentence

fact(w,v), times(w+1,v,v") 4 fact(w+1,v"), 0$w

because of the assumptions introduced earlier that v is uniquely
determined in the consequent formula above for any given choice
of w and v". Then since, generally, (A,B) 4C implies A4B,C the
desired procedure for fact is immediately obtained :-

fact(w,v) 4 fact(w+1,v"), times(w+1,v,v"), 0$w

and resolved with the recursive table* procedure above to produce
a new procedure having no explicit call to fact. There is no similar
way of eliminating the call to fact in the table* basis, and it is
important to understand why this is so : the reason is that if it
were eliminated, the resulting procedure set would not have any
intrinsic knowledge about any particular factorials; this contrasts
with the linear procedure set for table which, despite having no calls
to fact nevertheless has the entry (0,1) embedded in the first
argument of the basis. In the present case there is no way of

•219

assimilating the immediate knowledge of that entry in the basis,
whose task is not to compute 0! but rather any arbitrary zl where (z,z!)
is the last entry of the desired table. Therefore the best we can
achieve in modifying the table* procedures is the set :-

table*(e(z,v'):0, z,z) 4 fact(z,v')

table*(e(w,v):e(w+l,v"):x",w,z) 4 O^w, w<z, times(w+1,v,v"),

table*(e(w+l,v"):x",w+l,z)

[together with procedures for fact]

Executed top-down to solve a goal like 4 table*(e(0,1):x',0,z)

for some given input instance of z, these can be executed iteratively
to generate entries in the natural order. Note that a goal of that
kind effectively injects an initial factorial entry (0,1) into the
computation from its first argument; if the first argument were
simply an output variable instead, as in 4 table*(x,z),then the calls
preceding the recursive procedure's call to table* could not be
activated deterministically, disallowing an iterative computation.
We call the algorithm 'bi-linear' here to reflect the fact that the
total number of multiplications which it executes is 2z for the
goal 4 table*(e(0,1):x* ,0,z) where z>0. This is unsatisfactory but
certainly an improvement upon h(z)(z+1).

Note that if the goal is set up as above with a correct entry
in its first argument, the calls fact(z,v') and O^w can be deleted
from the modified table* procedure set above and still give a
successful computation but with only z multiplications. This is a
perfectly satisfactory computation, but the table* procedures no

longer conform to the specification set ; that is, it is no longer
possible to show that they are true theorems about the various relations
as specified by 5; they execute 'correctly' only if given a goal
which provides a genuine entry in its first argument. The presence
of those two calls in the truly correct procedures can be interpreted
as a constraint which checks that any entry injected by the goal is
(i) in a valid range, that is, higher than the entry for 01 or equal
to it, and (ii) a pair (u,v) such that v really is the factorial of u:
the latter being checked indirectly by using whatever entry is given
in order to compute some v' as the potential factorial of z, and then
explicitly checking that this value of v' really is the factorial of' z
through the agency of the call to fact in the basis. It is the
latter check on the goal's integrity which gives rise to the extra
z multiplications in the algorithm.

•220

Linear Natural Ordering Algorithm

The last algorithm considered is the best of those examined
so far. The failing which has still to be dealt with is that it
requires the invoking call to supply a known initial entry (in order
to obtain deterministic iterative behaviour), and that it is then
burdened by an internal check applied to that initial entry. The
final algorithm presented here eliminates these irritations and thus
gives impeccable behaviour. The price of this is the need to resort to
slightly unobvious intuitions in order to find the right specification.
It so happens that a further predicate has to be specified in order
to provide procedures for a 4-place relation table**.

In contemplating the failings of the table* program just
examined, it is possible to perceive that its final call to fact
would be unnecessary if it had been executed inherently upon the
condition that the injected entry (w,v) satisfied w! = v. This
is the intuition which underlies the table** specification below,
which is also admitted to S

table**(x,w,v,z) (table*(x,w,z) 4- fact(w,v))

It is easy to see that this trivially implies

table*(x,w,z) 4- fact(w,v), table**(x,w,v,z)

Choosing the case w:=0 and invoking the fact basis to eliminate
the call to fact in this sentence, an initiating procedure for table
is readily obtained

table (x,z) 4- table** (x,0,1,z)

so that an entry (0,1) known to be correct is inherently built in to
the new procedure set. Once again, the axioms of constructibility of
tables assembled already in S are sufficient to permit derivations for
both a recursion and a ba«*is on table**. In particular it is
possible to take a short cut in the derivation of the basis by
observing that the table* basis

table* (e(z,v') :0, z,z) 4- fact(z,vf)

matches the table** definiens, thereby immediately providing a
table** basis :-

table** (e(z,v) :0, z,v,z)4-

Tne recursive table** which completes the necessary procedure set is
derivable without difficulty just like the recursive table procedure

•221

table** (e(w,v) :x' , w,v,z) 4- 04w, w<z, times (w+1 ,v,v") ,

table** (x' ,w+l,v" ,z)

Executed with Prolog-like control, this set of three procedures gives z
multiplications in order to solve the goal table (x,z) . Entries
are computed in the natural order and no initial entry need be
injected through the goal. The computation is also deterministic
and iterative. It will probably be helpful to present an example
of a computation using them to compute the table for the case z:=2.
This computation is depicted below with the < checks omitted for
clarity, although it is, of course, assumed that they have been
properly executed. ^

4- table (x ,2)

4- times(1,1,v"), table**(x',1,v",2) x:=e(0,l):x'

4- table** (x' ,1,1,2) v'

4- times(2,2,v"), table**(x",2,v",2) x':=e(l,l):x n

4- table** (x" ,2,2,2) • v" z=2

x":=e(2,2):0

output : x := e (0,1) :e (1,1) :e (2 ,2) :0

•222

6,4 : COMPARISON OF TREE FRONTIERS

Specifying the Problem

This example deals with the well-known problem of determining
whether or not two given trees have identical frontiers. For
simplicity of presentation, the input data is here assumed to be
restricted to binary trees, but this does not reduce the generality
of the algorithm employed. The most interesting aspect of that
algorithm is a special data structure transformation applied to
each of the two trees of interest which assists the task of accessing
and comparing the members of their frontiers. This transformation
can be assimilated into the. logical derivation of the frontier-
accessing procedures by proving a simple theorem about the associative
constructibility of the trees' representations.

To specify the problem formally it is necessary to define the
data structures involved. A binary tree is representable by a pair
(x ,x) of which each component is either a binary tree or a labelled
tip ? in any particular tree the tips are labelled distinctly. The
frontier of a binary tree (x^,xp is the result of appending the
frontier of x t o the frontier of x^ ? the frontier of a labelled tip
is the unit list whose member is that tip's label. Thus each
binary tree has a unique frontier consisting of a list of distinct
tip labels. However, associated with any given frontier there exist
finitely many binary trees possessing that frontier; each tree
corresponds to one way of constructing the frontier by appending
its constituent sublists. As an example, two trees shown below
are selected from 42 distinct binary trees which all possess the
frontier (a,b,c,d,e,f).

b e

This pair might constitute the data for our problem, that is, to
show that they do indeed have the same frontier.

two trees with

same frontier. e f
a

•223

To construct a logical specification it is convenient to
introduce the predicate label(u,i,x) to express the fact that u is
the i^b label in the frontier of binary tree x. Furthermore let
the predicate same-frontier(x,y) hold when trees x and y have the
same frontier. The latter predicate names the primary relation of
interest, and can be expressed in terms of the label predicate as
follows :-

same-frontier(x,y) 44 (Mui)(label(u,i,x) 44 label(u,i,y))

Thus, given two trees and the means of determining their frontier
labels, we require a procedure set capable of solving a call to
same-frontier. This is the- object of the ensuing derivations.
An approach to the problem which is rather different from that given
here may be found in the paper by Burstall and Darlington (10),

The Conventional Algorithm

The most naive algorithm for the problem is that which compares
the 1 t h labels in the given trees x and y choosing i = 1, 2, ..., etc.
in sequence. This is the algorithm which is considered here; the
central problem which it poses for the programmer is how to access
the î -b label in the frontier of a given binary tree having otherwise
arbitrary topology. In fact it turns out to be unnecessary to
devise procedures which explicitly seek a particular label, as
will be shown shortly.

Suppose that the frontier of x is some list (u_, ...,u) whilst
1 m

that of y is some list (y , ..., y). If u and v are successfully
I n 1 1

matched, it remains to compare the sublists ..., u) and
2 m

(v , ..., v). In devising procedures for the logic component of the 2 n

algorithm which makes these comparisons, it is possible - and indeed
advantageous - to avoid explicit reference to (and hence computation
of) these sublists by postulating the existence, of trees x' and y'
whose frontiers are respectively (u , ..., u) and (v., ..., v).

2 m 2 n
We shall see that to solve the problem of matching the labels it
is sufficient to match representations of these trees associated
with sublists of the trees' frontiers, rather than having to match
explicit list representations of those frontiers. With this.in mind,
then, admit to the specification set a sentence

•224

split-frontier (u' ,x' ,x) (Mui) (label (u,i,x) •*-»• label(u,i-1,x*)

v (u=u',i=l))

The predicate split-frontier(u',x',x) holds when the frontier of
tree x is the result of appending the frontier of tree x' to the
unit list whose member is the tip label u'; it provides a means
of explicating the construction of tree frontiers. Now there are
also trees whose frontiers are not expressible in this manner, namely
trees consisting of single tip nodes; their relationship to their
frontiers is expressible using the predicate unit-tree(x,u*) which
holds when the frontier of tree x is the unit list whose member is
the tip label u'. This predicate is specified in S by :-

unit-tree(x,u') (Mui) (label (u,i,x)4-+ u=u' , i=l)

From the experience of previous examples presented here, it
should be clear that the two construction axioms for frontiers just
described can be used as a source of S-conditional-equivalence

substitutions for label predicates in a derivation for same-frontier

which begins :-

same- frontier (x ,y)

4- (Mui) (label (u,i ,x) -t-* label (u,i ,y))

By exploiting the ways of constructing frontiers expressed in the
specification set, this derivation branches in order to deal with
unit trees on one branch and more general trees on the other. Some
trivial goal substitutions and simplifications then lead to the
complete procedure set for same-frontier

same-frontier(x,y) 4- unit-tree(x,u'), unit-tree(y,u*)

same-frontier(x,y) 4- split-frontier(u',x',x),

split-frontier(u',y',y), same-frontier(x',y')

Note that there is no need to devise a procedure catering for empty
o

trees because it is assumed that there is no such kind of tree in this
particular formulation of the problem.

It now remains to synthesize procedure sets for unit-tree and
split-frontier. In other examples we have met similar circumstances
where it was required to compose procedure sets for almost analogous
relations such as unit-list and append*, and it was seen that by choosing

•225

particular data structure representations the calls to those data-
accessing procedures could be trivially eliminated by macro-processing.
In the present case, however, a concrete tree representation is chosen
which allows the calls to unit-tree to be eliminated, whilst those to
split-frontier are not; instead they invoke procedures for
split-frontier which provide a rather subtle means of computed access
to the first label u' in the concrete representation of any tree z
and simultaneously construct the tree z' whose frontier is the result
of deleting u' from the frontier of z . The behaviour of the
procedures for split-frontier is the central feature of the whole
algorithm.

Suppose, then, that the trees of interest are represented
concretely by terms using constructors t and A, such that the term
t(z^,z^ denotes a binary tree with left-tree z^ and right-tree z^,
whilst the term A(u) denotes a unit tree whose tip is labelled u.
Moreover, introduce a predicate numtips(z,j) to express the fact that
a tree z has j tip labels in its frontier. Then the following
sentences can be added to S in order to specify the meaning of label
for the chosen representation :-

label(u,i,\(ur)) 44 (u=u', i=l)

label (u,i,t (z^ , z^)) 44 Qi) (numtipsfz ,i) ,

(label(Ufi/Z^) v label(u,i-i ,z)))

together with three axioms constraining the well-formedness of trees,
analogous to the list axioms A1-A3 :-

(3j) numtips (z,f) 4

numtips(z,j) 44 (Vi) (l4i€j 44 Qu) label (u,i,z))

(\fu) (label (u,i,z) 44 u=u) 4 label(u,i,z)

The resources now established in S provide for the derivation of
a rather subtle property of the split-frontier relation which we shall
employ as a split-frontier procedure. In pursuing the derivation
goal :-

4 split-frontier(u',x',x)

two cases are possible for the structure of the tree x if x is
decomposable : either it has the form t(t(XyX^) ,x^ or else it has the
form t(X(u'),x'). This just represents a case analysis on the left-tree.

•226

In dealing with the former case by pursuing the goal :-

4- split-frontier(u' ,x' ,t(t(x^,xp r*p)

a lemma will be invoked which underlies the logic of the target
algorithm. The usefulness of this lemma is not easy to perceive
by merely considering the derivation goal and depends upon some
considerable inspiration. Here it is derived from S beforehand by
somewhat bottom-up inferences as follows. Recalling the analogous
treatment of the list reversal problem examined in Section 6.1,
the uniqueness of a tree's tip count can be proved from the axioms
of well-formedness and then exploited so as to re-organize the
specification of label(u ,i ,t(z ̂,zp) as follows :-

(Vui) (label (u,i ,t(z^,zp) 44- label(u,i,zp

v label(u,i-izp) 4 numtips(z^,ip

This will now be used as a source of S-conditional-equivalence

substitutions applied to itself for the instances z^:=t(x^,xp , zp=x^

chosen above in the derivation goal. For ease of presentation,
let F abbreviate the formula label(u,i,t(t(xp ,xp) ; then the
desired lemma is proved as follows :-

(Vui) (F 44- label (u,i ,t(x^,xp) v label(u,i-i12,xp)

4 numtips(t(xlfxp ,i12)

(Mui) (F 44 label(u,i,xp v label (Ufi-i^xp v label(u,i-i12,xp)

4 numtips (t(x^,xp *i12) /

numtips (Xj^,ip

I- fVui; (F 44- label (u,i,x) v label(u,i-i.t(x,x)))
s 1 1 X J

4 numtipsCtCx^xp ,i12) ,

numtips(x^,ip ,

n\zmtips(x2,ip

|- (\fui)(F 44- label(u,i,t(x.,t(x0,x))))
e JL X J

numtips(t(x ,xj ,i +i) ,
1 Ji 1 2

numtips(x^,ip ,

numtips(x2fip [:= ipti]

This is the desired lemma. Informally, it says that if u is the it*1

label in the frontier of t(t(x^,xp ,xp then it is equivalently the it**

•227

label in the frontier of t(x ̂ ,t(x2,x 3)) . The numtips antecedents
can be deleted by proving the existences of the tip counts from the
axioms already in S; this establishes that S implies the sentence

lemma : label(u,i,t(t(xi,x2) ,x3))4-±label(u,i,t(xl,t(x2,x3)))

The derivation of the general procedure for split-frontier is now
trivial, using the lemma to make an S-equivalence substitution :-

-«- split-frontier(u' ,x' ,t(t(x3,x2)

+ (Vui)(label(u,i,t(t(x ,x),x)) ++ label(u,i-l,x') v (u=u',i=l))

(Vui)(label(u,i,t(x1,t(x2,x3))) ++ label(u,i-l,x') v (u=u',i=l))

•<r split-frontier(u' ,x' ,t(x3,t(x2,x3)))

from which is inferred the procedure

split-frontier(u',x',t(t(x3,x2) fx3))

4- split-frontier (u' ,x' ,t(x^tix^x3)))

When the derivation pursues the alternative case for the
structure of the tree, the call in the goal is simplified by using
the properties of unit trees already established in 5, as follows :-

4- split-frontier(u' ,x' ,t(X(u') ,x'))

4- CVui; (label(u,i,t(\(u') ,x')) label (u,i-l,x') v (u=u',i=l))

[modus tollensJ

4- (Vui) ((label (u,if\(u')) v label (u ,i-i ,x')) 4+
(label(u,i-l,x') v (u=u*,i=l))),

numtips(\(u'),2)

[S-cond.-equiv. substitution, invoking label specification]

4- (\fui) (((u=u',i=l) v label (u,i-l,x'))

(label(u,i-l,x') v (u=u',i=l)))

[using property of unit tree \(W) in S that it has just

one label, thus inducing i:=l and solving last call]

I I [simplifying by instantiation to delete call : x':=x', u':=u']

from which is inferred the split-frontier basis procedure

split-frontier (u' ,x' ,t(\(u') ,x')) 4-

•228

This completes the synthesis for split-frontier. There remains
the matter of dealing with the calls to unit-tree in the basis for
same-frontier. Now the specifications already given for unit-tree
and for the meaning of label for trees represented by \(u) jointly
imply the assertion :-

unit-tree (X (u) , u)

so that the calls to unit-tree can be macro-processed out to leave
the basis

same-frontier(\(u') , \(u'))

This basis is perfectly adequate for terminating the successive
decomposition of frontiers by the split-frontier procedures. However,
the behaviour of the algorithm is such that it is possible for the
recursive same-frontier procedure to generate identical sub-trees
x' and y' whose frontiers necessarily coincide, so that computation
could then be terminated immediately with the frontiers of the given
trees successfully matched. Thus a considerable gain in efficiency
is possible by generalizing the basis above to :-

same-frontier(x,x)

Clearly this is trivially implied by the same-frontier specification
through the instantiation y:=x, and also implies the basis above
which was derived specifically for dealing with unit trees. When
computation is terminated by this basis in the case where x' and y'
are not unit trees, the matching of them is accomplished through
this single procedure invocation in consequence of the unification
mechanism. The present example bears similarities to the example
discussed in Chapter 3 dealing with programs for investigating the
list equality relation. Here then is the final procedure set for
the present problem :-

same-frontier(x,x) -«-

same-frontier(x,y) 4- split-frontier(u',x',x) ,

split-frontier(u',y',y), same-frontier(x',y')

split-frontier(u' ,x', t(X(u') fx')) 4-

split-frontier(u',x', t(t(x ,x),x))
JL « J

4-split-frontier(u' ,x' ,t(x ,t(x ,x)))

•229

With Prolog-like control these procedures generate the rather
charming algorithm which successively transforms the given trees in
order to compare their first frontier labels. If these do not match
then termination is immediate; if they do match, the transformation
which made them accessible will also have generated two more trees
respectively associated with the reduced frontiers, and then the
computation proceeds to transform these in a similar manner. The
general behaviour of the algorithm can be seen as a series of label
comparisons before each of which there is a series of tree
transformations which accesses the labels to be next compared. The
logic of this transformation process is summed up in the recursive
procedure for split-frontier which makes the first label in the
tree t (t (x ^ , x 2) m o r e accessible by seeking it in the tree
t(x^,t(x2,x) [thus reducing its depth in the tree being searched]

in the knowledge that this transformation preserves the frontier.

A slice selected from a simple computation is depicted below in
order to indicate the algorithm's strategy.

The input trees x and y above are transformed by repeated recursions
on the split-frontier procedure until both.calls to split-frontier

in the same-frontier procedure return identical instances of the first
label u w h i c h is a in the example above. The reduced trees x1 and
y1 having the frontier (b,c,d,e,f) are then compared using similar
transformations until b becomes accessible. Here, the tree x, for
example, is represented by the term :-

t(t(t(X(a) ,t(X(b) ,\(c))),\(d)) ,t(\(e) A(f)))

•230

6.5 : SUMMATION OF MATRIX TRANSVERSES

Specifying the Problem

This example considers the problem of computing the sums of the
elements on the transverse diagonals of a given matrix and storing
those sums in a list. There are two quite different approaches to
this task which differ in efficiency : firstly, one can compute the
members in that list sequentially, so that to compute any one of them
it is necessary to use some accessing protocol which finds just
those elements in the matrix which occur in the transverse summed
by that particular list member; secondly, one can access the elements
from the matrix in any convenient way and, for any one of them, decide
which transverse it occurs in and so add it to a cumulative sum in
the list associated with that transverse. In the former case complete
sums are generated serially, whereas in the latter case those sums are
built up in quasi-parallel. The difference in efficiency is
determined by the computations necessary for associating particular
members of the list with particular elements in the matrix. In the
first algorithm some k is known as the index of the transverse whose
sum is to be computed, whence it is then necessary to generate just
those pairs (i,j) of coordinates in the transverse of the matrix;
this involves some untidy counters and associated bounds. In the
second algorithm some pair (i,j) is given which selects the next
element of the matrix to be added to some k̂ b. transverse's sum; the
computation of the relevant k is trivial - it is just k = i+j-1.

In both algorithms it is favourable to efficiency to arrange an
essentially bottom-up generation of the cumulative sums, rather than
pursuing top-down recursive evaluations. For this reason, both logic
programs shown here - which are intended for top-down interpreters -
resort to the programming styles which simulate bottom-up behaviour.
Both of them use procedures which maintain explicit pointers in their
argument structure which govern the access to the matrix, and so their
derivations require the kind of techniques for arranging this which
have already appeared in other examples. A synthesis is not given
here for the logic representation of the first algorithm because this
would not comprise particularly difficult or interesting derivations.
However, the greater part of the ideas needed for synthesizing the logic

•231

component of the second algorithm is presented in some detail to
show, for the first time in the thesis, a non-trivial derivation which
exploits Kowalski's -arity-doubling technique for specifying procedures
which simulate bottom-up behaviour. Furthermore, whereas this has
been employed by others with the simple aim of actually using those
procedures for computational purposes [for example, Kowalski's use (51)
of the go* procedures and Clark's use (12) of the 4-place factorial
procedures], here we do not employ it exactly in that way, but rather
use it to introduce a specification of a relation which only plays
an intermediate, but nonetheless important, role as an axiom invoked
during a derivation. Whereas the typical use of the technique just
reverses the direction of a serial computation, its use here results
in the transformation of a serial computation to a quasi-parallel one.

It is now appropriate to introduce some notation in order to
specify the problem in greater detail. Let x be the given matrix

A A A A

having i rows and j columns, where i^l and J>1; when this is so, the
predicate size(x,1,j) is satisfied. Then associated with x there

A A

exist k distinct 'transverses' which can be labelled 1, ..., k.
The

kth
transverse is that substructure of the matrix which consists

of just those elements x[i,j] satisfying k = i+j-1; this definition
determines the partitioning of the matrix elements into k disjoint
non-empty transverses. Associated with x is a list z such that
any v is a member of z if and only if it is the sum of the elements
in the kt*1 transverse of xj when this is so, the predicate sumlist(x,z)

is satisfied. The picture below should help to clarify these ideas
and notations.

k : 1 2 3 4 5 6 7

The formal specification of sumlist is given by the sentence

sumlist(x,z) (Vvk) (item(v,k,z) transum(v,k,x))

•232

where the predicate transum(v,k,x) holds when v is the sum of the
elements in the k^b transverse of x. The look-up of elements whose
coordinates are known is implemented by calls to procedures for a
relation elem(u,i,x) which holds when u = x_i,j]. For instance,
the matrix might be represented by an array of elem assertions,
thereby allowing direct access. Whichever arrangement is chosen in
practice is not important to the analysis given here, which is
concerned only with the order in which calls to elem are executed;
thus elem is left as a primitive in the specification set. A few
more relations will be specified in S when the need arises.

The Serial Summation Algorithm

The serial algorithm is that firstly described in the previous
introduction to .the problem; it serially computes the list members
z[k] for k = I, ..., k in that order. Each time some new k is chosen,
the algorithm has to determine the elements on the kth transverse.
Probably the simplest way to achieve this is to compute a 'start-address'
(i,j) for the transverse at which its first element can be found;
more precisely, we can arrange that its i component is the least row
coordinate on the transverse (that is, the one nearest the top of the
diagram). This address is computable by the expression :-

(i,j) := if_ kgj then (l,k) else (k-j+l,j)

In order for the algorithm to iterate through the selection of elements
from the transverse, it must also know how to recognize the last one
selected. The most efficient arrangement here is to compute in
advance the number of elements on the transverse and then count the
elements selected. If k' represents this count, it is computable
using :-

A A A A _ . - ' A

k' := if_ l£k<i then k else if i$k4j then i else k-k+1

Once these preliminaries have been accomplished, the required elements
on the kbb transverse can be accessed successively (proceeding 'down'
the transverse) by incremental address modification until all k' of them
have been accessed; meanwhile, of course, they are being added to a
cumulative sum whose final state will be the

ktb
member assigned to z.

It will be useful to show the conventional representation of. this
arrangement before discussing a possible logic representation. Thus a
simple Algol-like rendering of the serial algorithm is :-

•233

begin for k := 1 to i+j-1 do^ [iteration through transverses

begin in succession]
A A

compute(i,j,k,i,j,k') ; [get start-address (i,j), count k']

k" 1 ;

v := x[i,j] ; [initializing transverse sum]

while k"<k' do_ [iteration through elements on

begin kth transverse]

i := i + 1 ;

3 •= J " 1 ;
k" := k"+ 1 /

v := v + x[i,j] [adding to transverse sum]

end

z[k]:= v [assigning transverse sum

end to k*-*1 member of output list]

end

The algorithm above can be represented without much difficulty
as a Prolog-like execution of a logic program using procedures
for the relations specified earlier. One possible rendering now

A A

follows, in which the predicate compute(i,kfi,j,kf) holds when the
Jtth transverse of an i x j matrix has k' elements and a start-'address
(i,j). It may be assumed that the call to compute just evaluates
i, j and k as specified by the rule given previously. The predicates
sumlist* and transum* are just variants of sumlist and transum which
explicate the indices governing the iterations, and are like the
predicates ord* and palin** seen in Chapter 3.

A A A A * A

sumlist(x,z) 4- size(x,i,j), k = i + j - 1, sumlist*(x,l,k,z)
A A A

sumlist*(x,k,k,v.nil) 4- transum(v,k,x)
A A .

sumlist* (x,k,k,v.z') 4- k<k, transum(v,k,x)
A A A A

transum(v,k,x) •*- size(x,i ,j) , compute(i ,j ,k,i ,j ,k') ,

transum*(v,i,j,l,k',x)

transum*(u,i,j,k',k',x) elem(u,i,j,x)

transum*(u+v',i,j,k",k',x) 4- k"<k', elem(u,i,j,x),

transum*(v',i+l,j-l,k"+l,k',x)

These procedures are a more-or-less direct transcription of the
A

conventional program above. The predicate sumlist(x,k,k,z") holds

•234

when z" is the list of the sums of the X t h up to the k^ 1 transverses
of x; the predicate transum*(v",i,j,k",k',x) means that v" is the
sum of the jfc,,-th up to the elements on the transverse
of x. The procedures behave quite acceptably in response to a goal
4- sumlist(x,z) , successively binding new transverse sums to the
output argument z. Their inefficiency in having to call the compute

procedure in order to select the elements on each transverse is no
worse than the conventional program's behaviour. This particular
computational burden is, nevertheless, a nuisance, and in the next
discussion we eliminate it altogether. The result is not only
greater efficiency but also a significant shortening and clarification
in the texts of both the conventional program and the logic program.

The Quasi-parallel Summation Algorithm

Since every element in the matrix contributes to some transverse,
there exists an algorithm for the problem at hand which exhaustively
accesses elements from x and adds each one to a cumulative sum of
the elements in its associated transverse. The order in which the
elements are selected from x is inconsequential to the fact that
by the time they have all been selected and added to the appropriate
sums, the final state of the output list will be correct. In
general the sums in the list z are not computed successively
(although this can still be arranged) but rather are built up in
quasi-parallel. The conventional program below depicts the algorithm
which uses the easiest method for selecting the elements, that is,
by executing a column-selecting iteration within a row-selecting
iteration, each in the natural order I, 2, ... etc.

begin for k := 1 to_ i+j-1 do_ z [k} 0 ;

for i := 1 to i do
for j := 1 to j do

. begin

k i + j - 1 ;

z[k] := z[k] + x[i,j]
end

end

This is certainly much less clumsy than the program for the serial

algorithm in appearance and better behaved in execution. Now we
shall show that the same improvements can be realized in the logic
representation of this algorithm.

Since the order of selection of elements is of no logical
consequence it is sensible to choose the natural orderings of
row and column coordinates as the protocol for the logic program,
just as in the above conventional program. For this purpose it
is convenient to imagine a substructure x' of x which grows in a
uniform way as computation proceeds under the control of natural
row and column selection; at any particular instant the substructure
is just that part of the matrix whose elements have so far been
added to the appropriate cumulative sums in z. Let the term s(x,i,
represent the substructure x' as depicted below. The successor

a

state in the computation will be either s(x,i,j+l) (if j<j) or
else s(x,i+l,l) (if j=j), provided that x' is not the final state

A A

(i=i, j=j). This successor state is also shown below (named x")
revealing the newly selected element u = x[i,j+l\ .

A A

J j j+1 3
4- 4, 4- 4,

x' >•>)>)>>))))>>>>>>>>>>>-> x"
select and add next u

Considering the algorithm in a general way, imagine that the
list z is constructed incrementally by the successive additions of
elements to its various members. initially z will consist of a
list z° consisting of k zeros; this is associated with the state
s(x,l,0) of the substructure x' of selected elements. More
generally, each time some state x' is promoted to x", the state of
z will be promoted from z' to z". The objective is to compute the

A A

final state z associated with x' = s(x,i,j) from z°.

14

•236

. The objective just outlined can.be expressed in a preliminary
way in terms of a new predicate sumlist**(x,z,x',z') which is
interpreted to mean that z is the list of transverse sums of elements
in the substructure x if z' is the list of transverse sums of elements
in the substructure x'. Logically this is expressed :-

sumlist**(x,z,x',z') 44 (sumlist(x,z) 4 sumlist(x',z*))

and so is exactly an instance of Kowalski's typical specification
style for some anticipated sumlist** program whose top-down
execution behaves like the bottom-up execution of some recursive
program for sumlist. The algorithm which is of interest here is

A A A

that which solves a call sumlist**(5(x,i,j),z,s(x,1,0),z°) given some
data structure representing the zero-filled list z° and, of course,
access to x-

Whilst the s-notation is useful for descriptive purposes, it
is not desirable that it should remain in the argument structure of
calls in the eventual program, partly because it clutters the text,
and partly because it places an overhead on run-time unification
(unless it can be eliminated by some compile-time inferences).
At this stage, then, we make a transformation of the principal
predicate of interest by giving it the name sumlist+ and the
specification :-

A A A A

sumlist^(x,i,j,z,i,j,z') 44 size(x,i,j), sumlist**(x,z,s(x,i,j),z')

Now the essential logic of the problem is obviously concerned
with the relationship between successive states of the list z as
x'progresses through successive states. Two axioms can be added
to S which summarize some simple and (we hope) clearly correct facts
concerning the relations of interest. In the first place, it should
be clear that if z" is the succeeding state to zr, as expressed by
a predicate add(u,i,j,z\z") holding when the addition of u to the
(i + j m e m b e r of z' produces z", then all members of z' and z" will
be correspondingly identical except for their (i+j)^1 members which
will differ by u :-

(\fvk) (item(v,k,z") 44 (item(v,k,z') , k?i+j)

v (item(v-u,k,z,)f k=i+j)) 4 add(u,i,z',z")

•237

Likewise, if the condition elem(u,i,j+l,x) holds, it is easy to see
that the transverse sums of the substructures s(x,i,j) and s(x,i,j+l)

will be correspondingly identical except for their (i+j)^b transverse
sums which will differ by u :-

(Mvk)(transum(v,k,x") 44 (transum(v,k,x'), k^i+j)

v (transum(v-u,k,x'), k=i+j)) 4 elem(u,i,j+l,x)

From these two axioms it is then easy to combine them (by conjunction),
simplify the result and exploit the sumlist specification to arrive
at what will prove to be a useful lemma; it just describes an obvious
fact about the states of the data structures when a new element is
selected and added :-

(sumlist(s(x,i,j),z'; 44 sumlist(s(x,i,j+l),z")) 4 elem(u,i,j+l,x),

add(u,i,j,z',z")

Observe that this is now an S-conditional equivalence.

Sufficient preliminaries have now been established to allow
the following derivation of a recursive procedure for sumlist+

t A A

4 sumlist*(x,i,j,z,i,j,z*)
A A

4 size(x,i,j), sumlist** (x,z,s(x,i,j) ,z') [modus tollens) .

4 size(x,l,j), (sumlist(x,z) 4 sumlist(s(x,i,j),z'))
A A

4 size(x,i,j), (sumlist(x,z) 4 sumlist(s(x,i,j+l) ,z") ,

elem(u,i,j+l,x), add(u,i,j,z',z")

4 sumlist^(x,i,j,z,i,j+l,z"), elem(u,i,j+l,x), add(u,i,z',z")

This provides a procedure for sumlistwhich deals with the case
where j<j in the current state of the inspected substructure of x.

A

An alternative procedure can be derived for the other case where j-j,
at which point the row coordinate for the next selected element is
increased by I. Derivation of a basis is trivial, dealing with the
case where there remain no more elements to be inspected. The
complete procedure set for sumlist^ is as follows

sumlist^(x,i,j,z,i,j,z) 4
f A A A

sumlist*(x,i,j,Z,i,j,z') 4 elem(u,i+l,1,x), add(u,i,1,z* ,z"),
T A A

sumlist*(x,i,j,z,i+l,1,z")

sumlist^(x,i,j,z,i,j,z') 4 elem(u,i,j+l,x), add(u,i,j,z',z"),
, A A

sumlist*(x,i,j,z,i,j+lfz")

•238

Given suitable means of implementing the calls to elem and add, these
procedures will give excellent iterative behaviour in response to a
goal of the form 4- sumlist^(x,i,j,z,l,0,z°) , proceeding in exactly the
same manner as the conventional representation shown earlier. The
recursive sumlist^ procedures are closely akin to the loop invariants
which one might construct in an axiomatization of the latter
representation. The computation given for the example portrayed
previously using Prolog-like control is as follows, where a term
representation is chosen for the output list and the calls to elem and
add have been omitted below just for clarity

element selected

sumlist^(x,3,5, z. 1,0, 0.0.0.0.0.0.0.nil)

sumlist^(x,3,5, z. 1,1, 3.0.0.0.0.0.0.nil) 3

4- 1,2, 3.1.0.0.0.0.0.nil) 1

4- 1,3, 3.1.4.0.0.0.0.nil) 4

4- 1,4, 3.1.4.4.0.0.0.nil) 4

4- 1,5, 3.1.4.4.2.0.0.nil) 2

4- 2,1, 3.1.4.4.2.0.0.nil) 0

4- 2,2, 3.1.5.4.2.0.0.nil) 1

4- 2,3, 3.1.5.7.2.0.0.nil) 3

4- 4- 4- 4-

> Y 4- 4- 4-

4-sumlist^(x,3,5, Z, 3,4, 3.1.12.12.5.10.0.nil) 2

sumlist^(x,3,5,
A

z, 3,5/ 3.1.12.12.5.10.9.nil) 9

• z := 3.1. 12.12.5.10.9.nil

Note that, in addition to an improvement in efficiency, we have
also secured much greater clarity in the logic program text. ^

•239

6,6 : THE EIGHT QUEENS. PROBLEM

Specifying the Problem

The eight queens problem is the problem of finding a way of
positioning eight chess queens on a conventional chess-board such that
none can be taken by any of the others. More generally, we might
wish to place n pieces of any kind on an mxm board subject to any
given constraint of interest.

The specific problem of placing eight queens on an 8x8 board
has been discussed a great deal in the literature of conventional
programming methodology. The usual algorithm employed pursues a
potentially exhaustive search through all possible 8-queen
configurations under the control of a backtracking strategy. In
deterministic programming languages this arrangement has to be
explicitly encoded within the program text, and is consequently a .
significant challenge to the precept of 'structured programming'
which requires control information to be expressed in a clear way
using some minimal set of primitive control constructs; this is
why the problem appears so frequently in the structured programming
literature, its most notable first occurrence in that context being
provided by Dijkstra (18). Whilst the task of programming the
algorithm in deterministic languages is non-trivial, the problem
can be expressed trivially in logic; this just reflects the fact that
specification of the problem itself is trivial - it is the algorithm's
control information which, in other languages, makes it appear more
complicated than it really is. The backtracking strategy is, of
course, already inherent in logic program interpreters, so that
the programmer has no need to describe it in the course of devising
a suitable logic program. Moreover, the logic programmer has no
need to re-write specific arrangements for backtracking in the
course of writing programs for different problems which might also
require that kind of control. He therefore has no need of elaborate
tools like the 'control structure abstraction methodology' proposed
by Gerhart and Yelowitz [IEEE Trans. Soft. Eng., SE-2 No.2, 1976] for
expressing the control mechanisms in the eight queens algorithm and
in algorithms for other combinatorial problems; the very use of a
logic interpreter already comprises such a methodology.

•240

A Horn clause formulation of the eight queens problem is given
in an early report by Hogger (36), but without proof that it conforms
to an intuitive FOPL specification. Here we derive a procedure set
which conforms to a reasonably obvious specification set which simply
describes the properties of the desired configuration.

Admit to S the sentence

config(x,w,z) 44 numpos(x,w),

(Vu)(onboard(u,z) 4 pos(u,x)), neutral(x)

in which config(x,w,z) holds when x is a configuration (that is, a
set) of w positions on a zxz board such that no piece placed upon
any of those positions can take any piece in one of the other
positions. The predicate numpos(x,w) expresses the fact that the
configuration x contains w positions, pos(u,x) holds when u is a
position in the configuration x and neutral(x) means that no pieces
in distinct positions in x can take each other. The neutral-ity of
a configuration can be specified in turn by a further sentence

neutral(x) 44 (Vu^J (notakefUj^rU^ 4 pos(uirx) , pos (u2,x) ru^u^

in which notake(u) holds when a piece on position ucannot
take a piece on position u2» A useful and slightly more abstract
way of expressing the neutral specification employs the predicate
inviolate(u,x) which means that a piece on position u cannot take
pieces on any other position in configuration x. Specifications
for neutral and inviolate are given by

neutral(x) 44 (Vu)(inviolate(u,x) 4 pos(u,x))

inviolate(u,x) 44 (Vu')(notake(u,u') 4 pos(u',x) , u^u')

Synthesis of a suitable procedure set for solving calls to config
only requires some simple facts about the constructibility of,,
configurations, together with some constraints which specialize the
problem to dealing with chess queens on a. zxz board. Suppose
that any computed configuration is generated by extending a given
configuration x' by adding a new position u' to it. This can be
expressed by a predicate extend(u',x',x) having the properties

(Vu)(pos(u,x) 44 pos(u,x') v u=u') 4 extend(u1,x',x)

(numpos (x,w) 44 numpos(x',w-l))4 extend(u*,x',x)

In addition the empty configuration x satisfies :-

•241

(\fu) (pos(u,x) false) 4- numposfx,0)

Enough information is now available to begin a derivation for config.

Program for the Eight Queens Problem

To obtain a complete procedure set for config it is only
necessary to investigate the two alternative ways in which x.can
be a configuration : either it is empty, or else it is constructible
using a call to extend. The derivation for the first case is
trivial and just gives the procedure

ccnfigfx,0,z) 4- numpos(x,0).

The derivation for the second case proceeds as follows

4r config(x,w,z)

4- numpos(x,w) , (Mu) (onboard(u,z) 4- pos(u,x)) , neutral(x)

[modus tollens. Note that onboard(u,z) just means

that u is a valid position on a zxz board]

4- numpos(x' ,w-l) , (Mu)(onboard(u,z) 4- pos(u,x') v u=u') , neutral (x) ,

extend (u' ,x' ,x)

[the usual S-cond.-equiv. substitution]

4- numpos(x' ,w-l) , (Mu) (onboard(u,z) 4- pos(u,x')), onboard(u* ,z) ,
neutral(x), extend(u',x',x)

[simplification by distribution]

Next we activate the call neutral(x) , but for concise presentation
this is shown below as a separate derivation

4- neutral (x)

4r (Mu) (inviolate(u,x) 4- pos(u,x))

4- (Muu) (notake(u,u) 4- pos(u,x) , pos(u,x) , u^u)

[S-equiv. substitution and simplifying]

4- (Muu) (notake(u,u) (pos(ufx') v u=v.'), u?u ,

(pos(u,x') v u=u')), extend(u1,x',x)

[S-cond.-equiv.substitutions]

4- (Mu) (notake(ufu') pos(u,xT) , u?u'), neutral(x') ,

(Mu) (notake(u\ ,u) 4-pos(u,x') , u'^u) , extend(u' ,x' ,x)

[simplifying by distribution and 1:1 property of =]

•242

If this derivation is then assimilated into that for config, the
definiens of config(x',w-l,z) is recognized as a conjunction of
the calls numpos(x',w-l) , (Mu) (onboard(u,z) 4- pos(u,x')) and
neutral(x') and so can be replaced accordingly; thus the following
procedure is inferred

config(x,w,z) 4- config(x' ,w-l,z) , (Mu) (notake(u,u') 4- pos(u,x') ,u?u') ,

(Mu) (notake(u' ,u) 4- pos(u,x') ,u'?v0,

onboard(u' ,z) ,. extend(u' ,x' ,x)

Further simplification at this stage depends upon the provision
of knowledge about onboard and notake, which means that the
derivation is to be specialized to deal with a particular class
of problems. In the case of the chess queens problem, the meaning
of onboard is given by

onboard(p(z ,z) ,z) -*-»• I4z 4z, 14z 4z
X X «

and the meaning of notake by

notake (p (z lfz J ,p(z'ltz'2)) 4-+ z^z'^z^z^, | z^zjj^l zy-z^|

where the term p(z^,z2) represents a position with row coordinate z^
and column coordinate z . Then it is clear that the notake

2
relation is symmetric, so that one of the non-atomic calls cah be,
deleted by virtue of being implied by the other. The non-atomic
call which then remains is just the definiens of inviolate(u',x')

and so can be replaced accordingly. If the conventional term
representation is used to signify sets of positions (configurations),
thus determining that S implies the assertions :-

extend(u' ,x' ,u' :x') -«-

numpos(0,O) 4-

then the above call to extend can be eliminated to give the following
procedure set for config

config(0,O,z)

config(p(z^,z2) :x' ,w,z) 4- config(x',w-l,z),

I4z4z, 14z4z,
1 2

inviolate(p(z ,z) ,x')

•243

The recursive procedure can be interpreted informally as follows :
given some neutral set of positions x' comprising a partial configuration,
this can be extended by adding a new position p(z^,z2) provided that
this position is on the board (that is, its row and column
coordinates are within the bounds I and z) and that a piece placed
upon it cannot take pieces on any of the positions in x'.

A procedure set for inviolate is trivially derivable from the
given specification; given some position u and some configuration x,
it just iteratively checks whether each piece on a position in x
is untakeable by u :-

inviolate(u,x) numpos (x,0)

inviolate(u,x) -«- extend(u' ,x' ,x) , notake(u,u*) ,

inviolate(u,x')

The necessary derivations just exploit the knowledge in S about how
configurations are constructed. The calls to numpos and extend
can obviously be easily eliminated by macroprocessing as in the
procedures for config. A complete set of procedures for solving
a goal config(x,8,8) then consists of the macroprocessed procedures
for config and inviolate, together with the single procedure for
notake :-

notake(p(z,z) ,pfzj,z^); + z^z^z^z^, | z^zj z2~z^|

Executed with Prolog-like control, they quickly recurse on
the config procedure until activating a call which establishes the
empty configuration. Then partial configurations are generated in
an essentially bottom-up fashion as the stacked calls to the two
selection procedures for z^ and z^ are gradually processed. Each
time some new position is returned from these calls, a top-down
iterative computation is activated from the call to inviolate to
test whether that position can be added to the current partial
configuration; if not, the computation backtracks to re-invoke-."
the selection procedures in order to find an alternative position.

The arrangement of the selection of candidate positions in the
procedures above is inefficient in that no analysis of the current
partial configuration is conducted in order to assist the intelligent
determination of a new position to add to it. The conventional

•244

remedy for this inefficiency is to arrange the selection of column
coordinates such that any

Jfeth position in the current partial
configuration x' has k as its column coordinate. Then to extend x'
by one position to produce x, the new position u' is selected as
p(z^,w) for some K z ^ z where w is the number of positions which x
will then have. Because the column coordinate of u' in x is then
certainly distinct from all column coordinates in x', the inviolability
of u' with respect to x' can be investigated by comparisons of row and
diagonal coordinates only. The procedures which put these ideas into
effect can be obtained by some simple transformations upon those above,
or else by backtracking through the derivations to a point at which
it is convenient to introduce the assumption that configurations are
to be constructed in this restricted way. They are shown below
without proof :-

config*(0,0,z) 4

config* (p(z^,w) :x', w,z) 4 config*(xt,w-l,z), l4z^4z,

inviolate*(p(z^,w) ,x')

inviolate*(u1,0) 4

inviolate*(u',u:x) 4 notake*(u',u), inviolate*(u',x)

notake*(p(zlfzp rpfzpz'p) 4 z^zj, | Z2_Z21 ^ I Z2~Z2^

It can be assumed that the interpreter can directly solve the calls
in the new notake* procedure, and that the selection call I4z^4z
is implemented such as to non-deterministically select values of z^
in the range 1 to z; this is the source of the program's inherent
non-determinism, and hence the cause of backtracking in its behaviour
with a Prolog-like interpreter. Solution of a goal 4 config(x,8,8)

will now be accomplished with efficiency comparable to the conventional
representation of the algorithm. The text of the program is clearly
very simple by comparison with typical renderings in Algol-like
languages. Moreover, the derivation of the procedures required
only a trivial analysis of the structure of configurations. The
most notable point made by the treatment given here is that the
program, its specification and its derivation are all logically
innoccous; this just reflects the power of the logic programming
formalism in allowing the composition of programs which possess no
explicit control information, thereby revealing their simple logic.

•245

C H A P T E R 7

T R A N S F O R M A T I O N

0_F

L O G I C P R O G R A M S

PREVIEW

The problems examined in this chapter are rather more difficult
than those considered in Chapter 6. Here the aim is to show that
the inference rules employed for derivation from specification sets
can also be employed to transform programs, for example, to improve
efficiency or to achieve a different distribution of logic and control
in the components of a particular algorithm.

Two algorithm families are presented. The first consists of
some closely related sorting algorithms - the bi-partition sorts.
Kowalski's naive-sort is derived first from a very general specification
and its behaviour discussed. Naive-sort then forms the basis for an
alternative derivation which leads to the general merge-sort. Rather
than pursuing other algorithms from scratch in the same way, they are
now obtained by specializing merge-sort in various ways. These
specializations are all effected by conditional-equivalence substitutions
applied to procedures rather than to goals.

The second algorithm family deals with the text searching problem,
and is rather more interesting than the sorting algorithms. Here
the naive quadratic algorithm is examined in great detail and a number
of alternative representations are given for it. The most explicitly
informed of these is deterministic, iterative, has explicit provision
for matching failures, and gives direct access to the members of both
text string and keyword through the use of pointers in its procedures'
argument structures. This representation then forms the basis for

•246

some rather subtle transformations on the procedure responsible for
responding to a mismatch, leading to the Knuth-Morris-Pratt linear
algorithm in one case, and to the Boyer-Moore sub-linear algorithm
in another. The reader who is new to logic programming should find in
these examples much interesting material illustrating alternative
programming styles and the logical relationships between them.

•247

7.1 : LOGIC PROGRAMS FOR SORTING

Sorting and Logic Programming

Logic programs for sorting sets into ordered lists have been
studied ever since the inception of logic as a programming language.
Early investigations of Horn clause sorting programs were undertaken
by van Emden and by Kowalski (47) , who examined the algorithm named
in this chapter as 'naive-sort'. Kowalski gives a fairly detailed
account of naive-sort in his IFIP paper (50), and compares it with
a logic program for Hoare's 'quick-sort' in other reports (49,51).
Quick-sort is also chosen as an example in van Emden's paper (23).

Although the computational analysis of sorting algorithms has
been studied in great depth (reviewed in detail by Knuth's treatise
(43) on sorting and searching), formal syntheses for those algorithms
have only been pursued comparatively recently. Automated syntheses
of sorting programs are reported by Green (31) and by Green and
Barstow (32), who use an implementation of a large data base of
rules describing fundamental properties of sets, arrays,
permutations and ordered lists together with schemas representing
simple algorithms for processing those kinds of data structures.
Their approach is intended to decide matters of both logic and
control, which they do not separately consider and represent as we
do in our treatment of logic program synthesis.

Darlington (20) has also presented syntheses of several sorting
algorithms expressed in a recursion equation language, based upon the
ideas underlying his transformation system reported variously in
(9), (10) and (19). This system is semi-automatable to the extent
thatwnilstan interacting user decides upon suitable definitions for
the functions of interest, together with prescriptions for their
subsequent manipulation, the mechanized part of the implementation
assumes responsibility both for preserving correctness and for
contributing in a limited but useful way towards the exploration
of the search space determined by the input definitions and the
transformation rules. However, Darlington considered that semi-
automation of his sorting program syntheses as originally formulated
was impractical; his paper presents them as examples of wholly .
non-mechanical syntheses.

•248

Derivation of sorting programs presented a useful challenge to
the development of methods for logic program synthesis, and so
several of Darlington's examples were reformulated in predicate logic
by Hogger (38), but employing a much simpler ontology. Darlington's
original treatment of sorting introduced quite a lot of rather
high-level properties of the functions of interest into the initial
problem description, but these do not seem to be necessary in order
to derive the essential structure of the required programs. They
also tend to obscure some of the more general taxonomic relationships
between the various kinds of sorting algorithms, which in fact are
capable of clarification in much simpler terms than presented in his
report. Subsequently, some of these sorting algorithms were
derived by Clark and Darlington (13) using a notation which is a
hybrid of recursive function language and Horn clause logic. They
emphasize the usefulness of a synthetic approach to the study of
algorithm families, observing that much can be learnt about their
similarities and differences from identifying critical decision
points in a tree of derivations which spans the space of all sorting
programs determined by the given axiomatization.

An earlier analysis of a quick-sort logic program was shown
in the paper by Clark and Tarnlund (16), who summon it as an example
of their treatment of verification described here in Chapter 4.
There they begin with a sorting program and then prove various
properties about it which a correct sorting program ought to possess.
Their treatment there of a proof of quick-sort is also interesting
in its use of a somewhat novel data structure representation for the
sorted lists produced as the program's output.

The Naive-Sort Algorithm

Naive-sort is the algorithm obtained by applying a naive
procedural interpretation to the basic definition of sortedness.
Because that definition serves as a starting point for all the
sorting programs considered here, it will be useful to discuss it
immediately in some detail.

Throughout the present examination of sorting, the predicate
of primary interest names a two place relation sort(x,y) which

•249

holds between a set x and.a list y when y is both a permutation of x
and ordered by a total ordering relation < . A simple way of
specifying orderedness has already been shown in previous examples
which uses the item predicate as a primitive constructor of lists

ord(y) 44 (Muv)(u<v 4 consec(u,v,y))

consec(u,v,y) 44 (item(u,i,y), item(v,i+l,y))

[together with the list axioms A1-A3

and general laws about <]

The assumption that < is a total ordering relation (rather than just
any binary relation) has the consequence that these axioms can be shown
to imply an alternative way of specifying the ord relation as follows :-

ord(y) 44 (Muv)(u<v 4 prec(u,v,y))

when augmented by the definition of prec

prec(u,v,y) 44 Qij) (item(u,i ,y) , item(v,j,y), i<j)

The predicate prec(u,v,y) means that the member u precedes the member
v in the list y. The alternative ord specification is a consequence
of the transitivity of the total ordering <. We shall use either
specification according to convenience.

The notion of permutedness is expressed here using a predicate
perm(x,y) which holds when the list y is a permutation of the members
of the set x, and is specified as follows

perm(x,y) 44 (Mu) (uex 44 uzy) ,

(Mu)(uex 44 occurs(u,l,y))

where e and e are respectively the set and list membership relations,
and occurs(u,z,y) holds when a member u has z distinct occurrences in
the list y ; that is, when u has multiplicity z in y. The sort
relation can then be specified simply by :-

sort(x,y) 44 perm(x,y), ord(y)

The interpretation of permutedness adopted above is in accordance
with the conventions used by Knuth (43) and by Darlington (20) for
defining the perm relation, but is at slight variance with the
interpretations found in the papers by Kowalski (50), by Clark and
Tarnlund (16) and by Clark and Darlington (13). All of these
interpret perm(x,y) to mean that a list y is a rearrangement of a

•250

list x which preserves each member's multiplicity. This difference
is of some consequence since it determines differing specifications
and derivations. Knuth's treatment of multiple occurrences employs a
kind of set-list hybrid called a 'multiset*; he generalizes the notion
of permutation of a set to permutation of a multiset, and hence
arrives at a position to sort multisets into ordered lists. However,
if one really does wish to rearrange a list, the appropriate
specification is :-

perm(x,y) (\fuz) (occurs(u,z,x) -«-+• occurs(u,z,y))

which just requires that a member occurring z times in x must occur
z times iny. This must, of course, be augmented by a specification
for occurs and the axioms for well-formed lists. The analyses given
by Clark and Tarnlund (16) and by Clark and Darlington (13) have the
object of dealing with programs which rearrange lists in this way,
but they use the following sentence as their specification :-

perm(x,y) (\fu) (uex-«-*-uey)

It would seem that this sentence does not precisely capture the
relation which they actually expect to hold between x and y, because
it admits possibilities such as x = (1,2) and y = (2,2,2,1,1,2) in
consequence of dropping the constraint upon preservation of
multiplicities. The relation which they wish to compute is therefore
properly included in the relation which they specify, and so they
have to resort to incomplete procedure sets which are only capable
of executing the desired rearrangements. This does not appear to
be a very satisfactory way of proceeding, even though the use of a
weaker specification makes the higher-level derivations easier than
they would otherwise be. The treatment here, by contrast, will
begin with an accurate specification of the intended computed relation
and then pursue complete procedure sets for it; this eliminates the
uncertainties which would otherwise prevail about the relationship
between the specification and the high-level procedures derived from
it.

The naive-sort algorithm, as observed previously, just
interprets the sortedness specification in a naive way, searching for
complete permutations of the set x until discovering one which is
ordered. Its logic component therefore uses the procedures :-

•251

sort(x,y) 4 perm(x,y), oxd(y)

[together with procedure sets for perm and ord]

whilst its control component is just top-down LIFO (Prolog-like)
call scheduling. As a result the calls dealing respectively with
permutedness and orderedness are, in the simplest control arrangement
of this kind, executed sequentially and independently. This algorithm
is clearly very inefficient, generating a comparison count of the
order (n-1).n! where n is the cardinality of x (the comparisons arising
in the orderedness checks instigated by the call to ord). This is
much worse than the count n.logQn which is normally expected of a 'good'
sorting algorithm. - The inefficiency arises from the circumstance that
when some instance of y computed by the call to perm fails to pass the
check on orderedness, the ensuing backtracking causes the entire
permutation to be discarded, even though it might contain large sublists
which appear also in the correct solution of y. Thus the backtracking
destroys knowledge about comparisons which must be generated afresh in
checking subsequent instances of y. Clark and Kowalski have examined
ways of adjusting the control of backtracking in this sorting algorithm
and have shown that some improvement in its behaviour can be achieved.
Kowalski (50) has also investigated the behaviour obtained by executing
the procedures above with a coroutining control strategy, and has
shown that this also improves upon naive-sort; it does this by
arranging that the choice of new members made in the execution of perm
whilst constructing partial permutations is constrained by intermittent
activation of the ord call in order to decide whether that choice will
preserve orderedness when the member is appended to give an extended
partial permutation. Despite such improvements in the control, the
behaviour of the naive-sort logic component cannot, apparently, aspire
to that of the commonly used sorting algorithms.

The derivation of procedures for perm and ord is accomplished by
exploiting knowledge about the constructibility of sets and lists.
In the case of naive-sort the usual procedures employed for perm and
ord make calls to a partitiioning procedure partition*(u',x',x) which
just selects an arbitrary member u' of x to leave x', where u' is the
next member to be added to the current partial permutation. The
latter process is implemented by a call to the familiar procedure
append*(u',y',y). Neither of these two calls makes any special
assumptions about the relationship between u' and the data structures
x' and y'; the partition* call does not choose u' by comparing it in

•252

any way with the other members in x, and the append* call does not
append y' to u' on the assumption that this will preserve orderedness.

The sentences admitted to S in order to derive these procedures
are as follows : -

append*(u',y',y) 44 (Vui) (item(u,i ,y) 44 item(u,i-l,y')

v (u=u',i=l))

partition*(u',x',x) 44 (Vu) (uzx 44 uex' v u=u'),

(3u)uex', "ou'zx'

uzy 44 Qi) item(u,i ,y)

together with list axioms A1-A3 and set axioms asserting that
sets either have cardinality 0 or are singletons or are constructible

by partition*.

These form a sufficient adjunct to the elementary specifications for
sort, perm and ord to allow reasonably straightforward derivations.
The latter are not presented here in the case of the ord relation •
because they have already been indicated elsewhere in the thesis
and raise no special issues. They are :-

ord(y) 4 length(y,0)

ord(y) 4 length(y,1)

ord(y) 4 append*(u',y',y), append*(v1,y",y'), u'<v', ord(y')

The perm synthesis, however, requires proofs of some preliminary
lemmas in order to obtain the usual recursive perm procedure. To
show the motivation for summoning those lemmas, consider how the
perm derivation begins :-

4 perm(x,y)

4 (Vu) (uzx44uey), (\fu) (uzx44occurs(u,1 ,y)) ^

It is required to substitute references to u', x' and y' for references
in the goal to x and y in order to explore the "consequences of the
assumptions about the constructibility of x and y. Note that this
will require substitutions for identical occurrences of the predicate
uzx : we must resist the temptation to simplify the goal above to
(Vu)(uex 44 uey, occurs(u,1,y)) since this is not sound (as a
counter-example, consider x=0, y=(a,a) which solves the conjectured
simplification but not the goal above]. The necessary lemmas are :-

•253

(Mu) (uzx -H- u e x ' v u=u') 4- partition* (u1 ,x' ,x)

(Mu) (uzy 4-± u£yi v u=u') 4- append* (u' ,y' ,y)

(Mu) (occurs(u,l,y) 4-+ occurs (u ,1 ,y') v u=u') 4- append* (u' ,y' ,y) ,

^u'zy'

The first of these follows trivially from the partition* specification;
the second is obtained easily by making an S-conditional-equivalence

substitution for item(u,i,y) in the definiens of £ conditional upon
append*(u',y',y) and then simplifying the result; and the third is
obtained with a little more difficulty by making a similar substitution
in the definiens of occurs(u,1,y) using the specification :-

A A *

occurs(u,l,y) -<-*• (3i) (Mi) (i=i -<->- item(u,i,y))

Applying all three lemmas to the above derivation goal for perm in
the context of S-conditional-equivalence substitutions produces :-

4- (Mu) (uzx1 v u=u' uzy' v u=u'),

(Mu) (uzx' v u=u' 4-+ occurs (u,l,y') v u=u') , append* (u' ,y' ,y) ,

partition* (u' ,x' ,x) ,

*vu' zy'

A
4r perm(x' ,y') , append* (u', y', y) , partition* (u' ,x' ,x) , vi'ey'

[simplification by cancellation of identical disjuncts,

and then definiens replacement]

4- perm(x',y'), append*(u',y',y), partition*(u',x',x)

[because it is easy to show that the last call is implied by

the conjoined calls to perm and partition*]

Derivations for perm bases are trivial, and just exhaust the remaining
cases of the structures of x and y. The complete procedure set for
perm used by naive-sort is then as follows :-

perm(x,y) 4- cardin(x,0) , length(y,0)

perm(x,y) 4- singleton(x,u) , item(u,l,y) , length(y,l)

perm(x,y) partition* (u' ,x' ,x) , perm(x',y')f

append*(u',y',y)

Macroprocessing the procedure sets for perm and ord by choosing the
usual term representations will then render them in a form rather

•254

like those which appear in Kowalski's examples (49,50). A suitable
procedure set for partition* is trivially derivable. The complete
naive-sort program body for processing sets and lists represented by
terms is as follows

sort(x,y) 4- perm(x,y) , ord(y)

perm(0,nil) 4-

perm(u:0,u.nil) 4-

perm(x,u' .y') 4- partition* (u' ,x' ,x) , perm(x' ,y*)

ord(nil)

ord(u.nil)

ordfu.v.u") 4- u<v, ord(v.y")

partition* (u' ,x' ,u' :x') 4- u'^x'
partition* (u' ,v:x" ,v:x') 4- partition* (u',x" ,x')

u'^0 4-

u'{v:x' 4- u7v, li'^x'

Observe that the call in the first partition* procedure acts
essentially as a type-check upon the input term representing the set
to be partitioned. If the call is deleted - so that the resulting
partition* procedures no longer describe the true set partitioning
relation - then the program can sort multisets into ordered lists
and thus behave essentially the same as Kowalski's program for finding
ordered rearrangements of arbitrary input lists.

This discussion of naive-sort closes by showing an interesting
transformation which employs just the procedures above and s ; no
other information is necessary in order to put it into effect.
Suppose, generally, that we have two procedures a^ 4- b and a^ 4- b ;

then these jointly imply a new procedure ^Bl'B2^ '
this fuCt is exploited with the procedures above, coupling each perm
procedure with its counterpart for ord, the result is :-

sort(0,nil) 4-

sort(u:0,u.nil) 4-

sort(x,u.v.y") 4- partition*(u,x',x), sort(x',v.y") , u<v

[together with procedures solving the call to partition*]

With Prolog-like control these behave quite like the naive-sort
procedures executed using coroutining as mentioned a little earlier.

The Merge-Sort Algorithm

•255

In the naive-sort synthesis the relations partition* and append*
were specified in order to express just one way of constructing the
sets and lists in question. Neither of them incorporated any
assumptions about the relative magnitudes of the constituent members
of the data structures which they related. In the algorithms now
to be introduced the construction of sets and lists is constrained
in a variety of ways which reflect just such assumptions. For
example, we shall see that merge-sort constructs the output list from
two given lists in a manner which takes account of the ordering of
the members which are manipulated in the course of that construction.
By contrast, quick-sort partitions the input set in a manner which
decides the particular partitioning by comparing the input set's
members. From a very general point of view, we may say that such
arrangements allow the decomposition of the input set and the
composition of the output list to be more informed about their
contributions towards the ultimate goal of generating a complete
ordered permutation than was the case in the strategy employed by
naive-sort.

Merge-sort belongs to a family of algorithms which may be
loosely described as 'bi-partition sorts'. Their characteristic
feature is that the input set x is sorted to give the output list y
by bi-partitioning x into two subsets xand xsorting these to
give ordered lists y a n d y^, and finally constructing y from y^
and y . During this process various pairs of members originating
from x are compared to provide knowledge about their eventual relative
positions in y.

Algorithms in this family can be arranged within a spectrum,
at one extreme of which are those which defer all comparisons until
both x2 and x h a v e been computed, whilst those at the other extreme
perform no comparisons after x a n d x^ have been computed.
Merge-sort is of the former kind : x is partitioned arbitrarily into
x a n d x s o that construction of y cannot proceed without comparing
members of y^ with y^. At the opposite extreme is quick-sort : x is
partitioned such that every member of xexceeds every member of x , .
after which y is constructed from y^ and y 2 with no further comparisons.
Both of these algorithms are conceptually simple, although their
practical implementations - like those of any other sorting algorithm -

•256

may only secure these manipulations of the data structures in deeply
implicit ways, for example by allowing them to share common memory
and controlling the movement of members by elaborate pointer systems.
Certain rather more complicated algorithms , like Williams' heap-sort
(88), occupy intermediate positions in this notional spectrum.
Heap-sort bi-partitions x into x and x = {u} U x' using enough
comparisons to establish a representation of x as an ordered tree with
root node u and sub-trees representing x a n d x 2 ; the algorithm then
initiates an elaborate 'sifting' computation which constructs y by
making further comparisons between members of the tree, implicitly
constructing and simultaneously merging the ordered permutations of
x and x2 as it does'so. Floyd's variant of heap-sort (25) is
partially derived in the paper by Burstall and Darlington (10).

In contemplating a logic synthesis for merge-sort, it is useful
to briefly reconsider naive-sort, whose fundamental failing is that no
comparisons are made during the construction of any candidate
permutation y; a permutation is generated first, and then inspected
for orderedness. To obtain more sensible behaviour, knowledge about
the progress made towards the solution at any stage during the
computation must be made accessible to whatever permuting and ordering
activities still remain to be accomplished, so that they may proceed
more intelligently than they otherwise would. An improvement of
this kind can be obtained through the agency of the logic component
by arranging particular ways of permuting and ordering which are
conditional upon other constraints controlling knowledge about the
relative magnitudes of members. The conditional-equivalence
substitution is ideal for this purpose during the derivation of
procedures intended to behave in this way; for instance, it will be
seen that the calls to perm and ord in the preliminary derivation
goal can be usefully elaborated by subformula substitution to.reveal
special, ways of solving them which are conditional upon the new call
introduced by that inference rule; that call will inform the goal
about the permutedness and orderedness of the subsets and sublists
from which the input and output lists are composed, and will thereby
dispose the derivation to a particular kind of algorithm which improves
upon naive-sort. In fact the merge-sort synthesis can be seen as a
symbolic execution of naive-sort, beginning with its general goal
4 perm(x,u), ord(y) but solving the calls using different facts
about sorting than those which normally comprise the naive-sort program.

•257

The specification set chosen for the merge-sort derivation
defines the sort relation exactly as for naive-sort :-

sort(x,y) 44 perm(x,y) , ord(y)

The perm specification is also exactly as before, together with
associated axioms characterizing sets and lists. Now the merge-sort
algorithm, as already explained, assumes that the input set can be
partitioned arbitrarily, leaving the task of constructing output until
the latter has been completed. In view of this, it is appropriate
to introduce to S the relation which expresses this particular way
of decomposing x :-

partition(x2,x) 44 (Mu) (uzx 44 uzx^ v uzx^),
(Mu)(uzx^, uzx^ 44 false),

(3u)(uzXj), (3u)(uzx2)

where partition(x^,x2,x) holds when x is partitioned into the two
disjoint, non-empty subsets and x^.

When x a n d x^ are chosen arbitrarily and then sorted to give
y^ and y^ respectively, the output y has to be computed by interleaving
y^ with y2 such as to achieve orderedness. This process is said to
'merge' y^ and y^. The specification of merging needs a little care.
Here we adopt Knuth's interpretation (43) which considers that
"Merging means the combination of two or more ordered files into

a single ordered file." Therefore the merge specification given
here explicitly requires that y^ and y^ shall both be ordered. This
position is somewhat different from that taken by Clark and Darlington
(13), who choose instead a slightly strange meaning for the concept
of 'merging' y^ and y^ to give y : they require that y shall be a
permutation of the members composing y^ and y^/ and that y shall be
ordered if both y^ and y^ are ordered. This means that they do not
consider that the result of merging two lists must be unique, for in
the event that one or both are unordered, they allow the result of the
merging to be any permutation of their members;' this they incorrectly
describe as a merging 'function' from (y^,y2) to y. They do not take
their analysis as far as deriving the lower-level procedures for their
programs, such as for merge, and so the consequences of adopting their
treatment are not clear. However, it would seem that by choosing their
particular specification of merge, they would eventually find' themselves
in the position of either having to construct an incomplete procedure
set for merge(omitting the procedures necessary for merging unordered

•258

lists, and so having to incorporate assumptions of orderedness into
analyses such as proof of termination) or else having to construct
a complete but non-deterministic procedure set in any completeness-
preserving derivation methodology which they might employ. They
arrive in this position, not by deliberately choosing such a
specification, but rather through manipulating a specification of
sortedness until recovering a subformula which they then interpret
as a definiens for merge ; from our point of view here, that subformula
is a consequence of, but not an instance of, the customary definiens
of the merging function.

In view of the considerations above, then, the specification
chosen here for merge is as follows :-

merge(yl/y2,y) ++ ordfy^ , ord(y2) ,

(Vuv) (prec(u,v,y) •«-*• prec(ufv,y ^ vprec(u,v,y^

v u€v,(spans(u,v,ylfy2) v

spans(v,u,ylfy2))),

(Vuw) (occurs(u,w,y) (3wjwj (occursy j ,

occurs (u ,w2,y 2) ,

w 2 + w
2
 =

Informally, this says that the merge relation holds when both y a n d y^
are ordered, composition of y from them preserves ordering, and each
member in y has as many occurrences in y as it has jointly in yand y^.
The predicate spans(u,v,y ,y) just summarizes (uzy , vey).

Finally a specification of orderedness must be given. Here
we choose the alternative specification :-

ord(y) 4-4 (Vuv) (u<v 4- prec(u,v,y))

[and the spec. for prec]

because it will be required during the derivation to investigate the
orderedness of y conditional upon the assumption that it is
constructed by merge(y2,y) , and it will clearly be convenient to
arrange, as above, that both ideas refer to the relative positions of
members (in terms of precedence rather than consecutivity) in the
same way; merge is very hard to specify using consec to describe the
relative positions of members in the output list.

•259

The specification set now contains enough information to begin
a synthesis for the sort relation. This is most conveniently
represented as the combination of derivations from the calls perm(x,y)

and ord(y) in the derivation goal :-

4- sort(x,y)

4- perm(x,y) , ord(y)

just as in the previous presentation of the naive-sort synthesis.
Once again, the definiens1 of perm and ord are introduced to the
goal by modus tollens in order to reveal their dependence upon
relations over the members of x and y. We pursue a perm derivation
first, this being the harder one. For this, some lemmas will be
needed as in naive-sort in order to exploit the assumptions that
x and y are respectively constructed by partition and merge. These
lemmas are :-

(Vu) (uex 4-y uex^ v ue*^) 4 partition(x2,x)

(Vu) (u£y 44 uzy1 v uey^) 4 merge(y^y2,y)

(Vu)(occurs(u,l,y) 44 (occurs(u,l,y , occurs(u,0,y2))

v (occurs(u,0,y^) , occurs(u,l,y^)))

4 merge(y3,y2,y)

The first lemma is just a trivial consequence of the partition
specification. The second one is obtained by observing the fact that
merge(y2,y) implies its fourth definiens conjunct and that this .
in turn implies (Vu)(uey 44 ueyv uey2) by virtue of the simple
relationship assumed in the list axioms of S :-

uey 44 (3w) (occurs(u,w,y) , w>0)

together with elementary properties of =, > and + . The third lemma
is just a consequence of merge(y2,y) implying the instance of its
fourth definiens conjunct in the case w:=l, together with properties
of = and + . Equipped with these, the derivation from 4 perm(x,y) is

4 (Vu) (uex 44 uey) (Vu) (uex 44 occurs (u,1 ,y))

4 (Vu) (uex3 v ue*2 44 uey3 v uey2),

(Vu) (uex3 v uex244 (occurs(u,l,y, occurs(u,0,y2))

v (occurs(u,0,y^ , occurs(u,l,y2))),

partition(x1,x2,x), merge(y1,y2,y)

•260

4 permfx^yp , permix^yp ,

(\/u) (uzx^ 44 occurs(u,l.yp , occurs(u,0,u)) ,

(\fu) (++ occurs(u,0,yp , occurs(u,l,y)) ,

partition(x ,xpx) , merge(y ^y 2,y)

[using some simple distributions to simplify,

followed by obvious definiens replacements]

The goal at this stage clearly reflects the general idea of the
merge-sort algorithm; it describes how permutedness is achieved
when x and y are constructed by partition and merge. The two non-
atomic calls can be deleted by virtue of being implied by the others.
To show this, note that S implies :-

occurs(u,0,yp 44 ^uzy^

and that the specifications of perm and partition trivially imply :-

(Vu)(^uey2 4 occurs(u,1,yp),

(\Ju) (a,uey occurs (u,l,yp) 4 permCx^yp , perm(x2,yp ,

partition (x^,x2,x)

These facts determine immediately that the subformulas occurs(u,0,yp

can be deleted from the goal above, and then the reduced non-^atomic
calls are implied by the respective two calls to perm. Thus the
goal simplifies to one with wholly atomic calls.

To obtain a complete procedure set for perm it is only necessary
to consider the cases where x and y are not constructible by
partition and merge . These are just the cases where x is empty or
a singleton, and the derivations are too trivial to present here.
The final procedure set is :-

perm(x,y) 4 cardin(x,0), length(y,0)

perm(x,y) 4 singleton(x,u), item(u,l,y) , length(y,l)

perm(x,y) 4 partition(xlfx2,x) , perm(x1,yp , perm(x2,yp ,

merge(y1,y2,y)

The other half of the sort synthesis deals with the call to
ord in the original derivation goal. Again, the bases are trivial
and so will be given without proof. The derivation of the recursive
procedure for ord is somewhat more interesting and proceeds as follows

•261

ord (y)

4- (MUV) (u<v prec(u,v,y))

4- (Muv) (u<v + prec(u,v,y^ v prec(u,v,yJ v u$v, (spans (u,v ,y ̂y 2) v

spans(v,u,ylfy2))) ,

merge (y^y^y)

4- (Muv) (u<v 4- prec(u,v,yj)) , (Muv) (u<v 4- prec(urv,y))•,

(Muv) (u<v 4- u^v, (spans (u,v,yify2) v spans (v ,u ,y ̂y 2))) ,

merge(y1,y2,y)

4- ord(yr) , ord(y2),(M u) (u<u 4- spans (ufufyi fy 2)) , mergefy^

4-ord(y1)f ord(y2) merge(ylfy2fy) f partition (x ̂x^x) ,

perm(xl,y1), perm(x2,y2)

[because S trivially implies :-

^spans(u,u,y^y2) 4- partition(x2,x),
perm(xl,yl),perm(x2,y2)]

thus giving a goal with atomic calls only. The three procedures then
inferred in this synthesis for ord are :-

ord(y) 4 length(y,0)

ord(y) 4- length (y,1)

ord(y) 4- partition(x^x ,x) , sort(x), sort(x2,y2) ,

merge(ylty 2,y)
x

[Note that the calls to sort in the recursive procedure just arise
by replacing the conjoined calls to perm and ord in the final goal.7

The procedure sets for perm and ord can now be combined as in the
naive-sort synthesis to give procedures for sort :-

sort(x,y) 4- cardin(x,0) , length(y,0)

sort(x,y) 4- singleton(x,u) , item(u,l,y) , length(y,l) .

sort(x,y) 4~ partition(xj^fx2,x) , sozt(x ,y) , sort(x2,y^) ,

merge(ylfy2,y)

These are the high level procedures for the intended merge-sort
algorithm : to sort a set with more than one member, partition it
into x^ and x^, sort these to y^ and y^, and finally merge these to
give the desired output y.

•262

A complete program body for merge-sort will also require
procedure sets for solving the calls to partition and merge.
Procedures which arbitrarily partition sets are very easy to derive,
and so will not be considered further here; they are just simple
generalizations of the partition* procedures used in naive-sort.
The procedures for merge are a little more interesting, and so we
review these briefly. The derived merge procedures obtained by
just assuming minimal information about constructibility with append*
are as follows

merge(y1,y2,y) + ord(y2), length(y2,0)

merge (y1,y2,y) ord (y2) , length (y1,0)

merge(y1,y2,y) ord(y^ , append*(u,yj,y),

append* (v,y'2,y2) ,

u4v, merge(y'1,y2,y') , append* (u,y' ,y)

merge(ylty2,y) + ord(y2> , append* (ufy^y^,

append* (v,y'2,yJ ,

V4u, merge(y2,y'), append*(v,y',y)

The residual calls to ord in these procedures are just consequences
of the merge specification insisting upon the lists y a n d y2 being
ordered; this is required irrespective of the context in which the
procedures are called. However, in the present context we know
that y a n d y^ are necessarily ordered before being processed by the
call to merge in the recursive sort procedure, bccause they have
both been transmitted as output from the calls sort(x ,y), sort(x ,y)

To have their orderedness subsequently checked by the merge procedures
would clearly be computationally intolerable. One could simply
delete the calls to ord from the merge procedures, but this would,
not leave true theorems about merge as specified by S even though
they would compute the correct output in their present context.
However, there is an interesting transformation which is logically
justifiable and is tantamount to deleting the unwanted checks on
the orderedness of y^ and y^. The technique used is similar to
that for deriving the linear natural ordering factorial algorithm
derived in the last chapter, in that we construct a new predicate
which is inherently conditional upon the predicate which we.do not
want to be explicitly tested at run-time. In the present case,
introduce the specification

•263

merge*(yiry2,y) 44 (merge(y ̂ y 2>y) 4 ord(yj), ord(yJ)

Then it is very easy to show that a call to merge in which yand
y2 are ordered can be investigated by a call to merge*. This is
because the sentence above trivially implies

merge(y^y ,y) 4 ordfy^ f ord(y2) f merge* (y^y2,y)

Now observe that the first merge basis above can be written as

merge(y ,y ,y) 4 ordfy^ , ord(y2), length(y2,0)

since the basis for ord determines that ord(y^ is trivially implied
by length(y2,0). Thus the merge basis can be rewritten yet again
to give

(merge(ylfy2,y) 4 ord(y), ord(y2)) 4 length(y2,0)

But this immediately implies a procedure for merge*

merge*(ylfy2,y) 4 length(y2,0)

This is one of two similar bases for a merge* procedure set. The
recursive merge procedures can be transformed in a similar fashion.
Firstly assume that the following property of ord can be easily
established :-

ord(yj; 4 append* (u,y'lfyj) , ord(y)

Then substitute for merge(y 2,y') in the first recursive procedure
for merge above using modus tollens in conjunction with the following
sentence trivially implied by the merge* specification

merge (y'1,y2,yt) 4 ordfy^) , ord(y), merge* (y',y,y')

The result of this is

merge (y1,y2,y) 4 ord(y), append* (u,y',y) , append* (v,y'2,y 2) , u*v,

ord(y'j) ,ord (y2) ,merge* (yj,y2,y'; ,append* (u,y1,y)

Now substitute for the predicate ord(y^) using the property of ord
assumed above and rearrange the connectives to give

. (merge (y lfy2,y) 4 oxd(y) , ord(y2)). 4 append* (u,y',y ̂ ,

append*(v,y',y), u^v, merge*(y',y,y'), append*(u,y',y)

and finally replace the consequent formula by an instance of merge*
to give one of two recursive procedures for merge*. The complete
merge* procedure set is then exactly as though the checks upon

•264

the orderedness of y^ and y^ were deleted from the merge procedures,
and then merge renamed as merge*. The call to merge in the
recursive sort procedure can be replaced simply by merge*(y2,y)

because the calls to sort in that procedure imply that both y^ and y
are ordered. With top-down Prolog-like control, the merge-sort
program body as outlined here will solve a call to sort with a
reasonable computation (that is, reasonable for a recursive algorithm)..

The merge-sort procedures will next be used as the foundation
for a quick-sort program. In fact we shall see that a simple
S-conditional-equivalence substitution is sufficient to transform the
principal merge-sort sort procedure into one which captures the logic
of quick-sort. After that, an alternative transformation is given to
turn merge-sort into insert-sort, and finally quick-sort is transformed
into selection-sort.

The Quick-Sort Algorithm

Hoare's quick-sort algorithm (35) can be regarded as a specialized
case of merge-sort in which the input set is partitioned into sets x^
and x^ satisfying the property that every member of x excee'ds every
member of x.' In other words, the partitioning process is required
to take some responsibility for comparing the members of x. When x
is partitioned as above, the relationship between x^ and x w i l l be
summarized by the predicate smaller(x.

Rather than deriving quick-sort from scratch, it is more
interesting to explore the consequences of introducing to the existing
merge-sort procedures the assumption that smaller(x^x^) holds.
Clearly the sort bases are not affected by this assumption, and so
it is only necessary to consider its effect upon the recursive sort
procedure for merge-sort.

Consider the definiens of merge(y 2,y), which has two non-
atomic conjuncts D^ and D^ ':-

Djl : (Muv)(prec(u,v,y) ++ prec(u,v,y^ v prec(utv,y2) v

u$v, (spans (u,vfyiry2) v spans(v,u,y1,y2)))

D2 : (\fuw) (occurs(u,w,y) •<-* (3w^w2) (occurs (u^y^ , occurs(u,vr2,y2),

w 2 + w
2
 = w))

•265

The second of these just ensures that the number of occurrences of
any u in y is just the sum of the numbers of occurrences which it has
in y and y . Clearly D is unaffected by the supposition that

JL 2 2
members of y^ are all less than all members of y^f as they will be
if sorted from x and x satisfying smaller(x ,x). However, D

1 X J. 2 Jl
is capable of some simplification when this supposition is correct.
Observe that z? contains the subformula :-

u4v, (spans(u,v,y^yj v spans (v,u,y ,y))

If all members of u are less than all members of y then u4v is
2

implied by spans(u,v,y 2) , so that (u4v,spans(u,v,y) is s-

equivalent to spans(u,v,y2). Moreover, the formula
(u4v,spans(v,u,y2)) is then false, so that the above subformula of
D^ simplifies to spans(u,v,y^ywhen the condition (perm(x3,y,

perm(x2,y2),smaller(x^rX^)) holds; this is because that condition
trivially implies that all members of y^ will be less than all members
of y^. The conclusion of this reasoning can be formalized by the
S-conditional-equivalence :-

(merge(y ,y ,y) ++ ord(y) , ord(y) , ; 4 perm(x ,y ; perm(x2,y,

smaller (x^fx^)

where D* is the result of simplifying D^ as just described to :-

(Vuv) (prec(u,v,y)<-4 prec(u,v,y]) v prec(v,u,ylfy2) v spans (u,v,y1 ,y 2))

Now suppose also that y^ and y^ are ordered, and append this assumption
to the S-conditional equivalence; then the ord predicates in the
consequent subformula can be replaced by simply true, whilst the
newly-introduced ord antecedents can be partnered with the calls to
perm to produce calls to sort instead. The result of which is :-

(merge(ylfy2,y) 44 D'yD) 4 sort(x,y^ , sort(x2,y2) , smaller (x^xj

Nov; the subformula exactly describes the relationship
between y, y^ and y^ which we would customarily write as the predicate
append(y ,y ,y), and it is easy to show that (D',D) is S-equivalent

JL JL xi

to the more usual definiens for append (like that used in Section 6.1).
Thus that definiens can be replaced here by the append predicate
to give the sentence :-

(merge(y^y2,y) 44 append(ylfy2,y)) 4 sorttx^y^ , sort(x2,y2),

smaller,x }

This lemma makes good sense intuitively. If and y are ordered

•266

permutations such that all members of y^ are less than all members
of y0, then merging y7 and y~ involves no interleaving and so is
equivalent to the appending operation. Observing that the lemma
has the familiar form (F 44 F') 4 F" , we can now make an 5-conditional
-equivalence for the call to merge in the recursive merge-sort
procedures for sort; the result of which is :-

sort(x, y) 4 parti tion (x^ ,x) , smaller (x^xp , sort(x ,y),

sort(x2,yp , append(y1,y2,y)

This new sort procedure asserts the essential logic of quick-sort,
which performs all the necessary comparisons between members of x
before constructing any ordered permutations.

To obtain a practical .quick-sort computation it is necessary to
conjointly solve the calls to partition and smaller in a manner which
deals with the partitioning of x deterministically. Hoare's
partitioning algorithm chooses any member w from x to leave a non-empty
set x' , each of whose members is allocated either to a set z (i f it is
less than w) or else to a set (if it exceeds w). Then z and z'

2 1 2
are each quick-sorted to give y^ and y^, whence the output y is
constructed by appending to y^ the result of appending y'2 to the unit
list (w). This process can be captured in logic by transforming the
sort procedure above to

sort(x,y) 4 partition* (w,xr ,x) , allocate(,x' ,w) , sort(z ,y'p ,

sort(z2,yp , append* (wfy'2,y') r append (y'^y',y)

The transformation is conceptually simple but rather laborious, and
so is omitted here. The predicate allocate(z^,Z2*x',x) is specified
by : -

allocate (z irz 2,x' ,w) 44 (\/u) (uez 44 uex', u<w),

(\fv) (uez2 44 uex', w<v)

and expresses the fact that w is the discriminator used for allocating
the members of x' to either z^ or z^ as just described. It is easy
to see that x' is properly partitioned by a call to allocate(zz,x',w)

such that smaller(x^,xp will hold. The sets z^ and z^ are related
to those named as x^ and x^ in the quick-sort sort procedure first
derived above by x^ = {w} U z^ , x^ = z^ (if z^ is empty) or by x^ = z^ ,.
x„ = {w} U z„ (otherwise). These considerations establish that 2 2
partition(x2,x) and smaller(x) are implicitly satisfied by
solving a call to allocate. Suitable procedures for allocate for
term representations of sets are trivially derivable, and are just

•267

allocate(0,0,0,w)

allocate(u:zn,z0,u:x',w) 4- u<w, allocate(z1,z0,x',w)

allocate (z : z 2,v :x' rw) 4- w<v, allocate (z2,x' ,w)

Procedures rather similar to these appear in the Clark-Tarnlund paper
(16), except that quick-sort is treated there as an algorithm which
accepts a list rather than a set as input? it is then necessary to
cater for the possibility of identical members in the procedures .. .
used in place of those above.

The principal qualities of quickrsort as a 'fast' sorting
algorithm depend critically upon the implementation of the partitioning
process; the procedures given above only provide a high-level
representation of what this partitioning achieves. Hoare's algorithm
firstly arranges the input set (or multiset) into a linear array, and
then pursues a series of interchanges governed by the bi-directional
movement of two pointers. Efficient implementation of this requires
a data-overwriting mechanism together with a flag system to control
the alternate adjustment of the pointers which indicate the next
comparison (and possible interchange). This kind of behaviour could
not be feasibly generated from the procedures above with the resources
of Prolog ; with a Prolog-like interpreter we would have to devise some
more elaborate partitioning procedures which brought the pointer
arrangements explicitly into the procedures' argument structures. This
is easy enough to accomplish. If the interchanges are somehow
implemented upon an internal array representation of the sets, then the
subsequent appending operations would no longer be necessary, since
the same single array would be adequate to represent both the input
and output data? but the latter arrangement is essentially a matter of
implementation technology and beyond the scope of the present study.

The Insert-Sort Algorithm

The insert-sort algorithm proceeds by choosing any member w from
the input set x to leave the set x', then sorting x' to y', and finally
inserting w into the correct position in y' to give the output list y.
Clearly this behaviour can be generated from the merge-sort procedure

sort(x,y) 4- partition(x^x^x) , sortfx^y^ , sortix^y^,

merge(y,y,y)

•268

by constraining the solution of partition(x^,x2,x) so as to compute
x a s a singleton {w}. This can be arranged merely by choosing an
appropriately restricted (incomplete) procedure set for partition.

More satisfactorily, the merge-sort procedures can be transformed into
a specific program for insert-sort; this will eliminate the need to
repeatedly sort singletons by the call to sort(x^,y^) in the merge-sort
procedure above. The transformation makes use of the elementary
relationship

(partition(x,x,x) partition* (w,x 0,x)) + singleton (x ,w) J. 2 ' J.

in order to make an S-conditional-equivalence substitution for the
call to partition in the recursive procedure for sort, which produces

sort(x,y) 4- partition*(w,x',x), singleton(x, sort(x^,y^),

[x2,y2:=x',y'J sort (x' ,y, merge* (y^y1 ,y)

The call sort(x^can be symbolically solved by invoking the
merge-sort basis which sorts (w) into a unit list (w) ; resolving the
basis with the recursive procedure therefore gives :- -

sort(x,y) 4- partition*(w,x',x), singleton(x, unit-list(y^,w),

sortfx',y'), merge*(y^,y',y)

This procedure clearly performs a constrained merging operation, in
that merge*(y^,y',y) is called subject to y^ being just a unit list.
But this is the operation which would normally be described as
insertion; therefore, to capture that fact in the logic, introduce
a new predicate insert(w,y1,y) which bears the following relationship
to merge* '-

(insert (w,y',y) merge* (y ' ,y)) unit-list (y^,w)

Using this to make the obvious S-conditional-equivalence substitution
and then deleting the calls unit-list(y^,w) and singleton(x^w) (since
s implies the existences of {v} and (w) for any w) , the essential
sort procedure for the insert-sort algorithm is obtained

>sort(x,y) 4- partition*(w,x',x), sort(x',y'), insert(w,y',y)

The bases for this procedure are just those used in merge-sort.

It is clearly desirable to specialize similarly the procedure
set for merge* to take account of the fact that the first argument in
the invoking call can be assumed to be a unit list; the specialized
set then serves the new sort procedure for insert-sort by virtue of
the sentence trivially implied by the relationship between merge* and
insert asserted above; that sentence is just the procedure :-

•269

insert(w,y' ,y) 4- unit-list (y^w) , merge* (y^y' ,y)

Consider one of the merge* bases

merge* (y^,y',y j) 4- length(y' ,0)

If the conclusion is substituted by insert(w,y',y) conditional upon
y^ being a unit list, then a basis for insert is obtained :-

insert(w,y',y) 4- length(y',0) , unit-list(y^,w)

The other merge* basis has no analogous transformation, since it
requires y to be the empty list which is clearly inconsistent with an
assumption that y i s a unit list; hence it does not contribute to the
procedure set for insert.

Consider next one of the merge* recursions, making a convenient
renaming :-

merge*(ylfy',y) 4- append* ,y), append*(v,y",y'), w*v,

merge*(y',y',y*), append*(w,y*,y)

If y^ is the unit list (w) then the call append*(w,ycan be solved
immediately to give y' as the empty list. In this case the call
merge* (y'^,y' ,y*) is also solved immediately by the second merge* basis
which computes y*:=yt. Hence it is easy to see that the assumption
that yis a unit list (w) will transform the procedure to a non-
recursive procedure for insert

insert(w,y',y) 4- append*(v,y",y'), w4v, append*(w,y',y)

Finally, the other merge* recursion transforms under the same
assumption to give a recursive procedure for insert

insert(w,y',y) 4-append*(v,y",y'), v4w, insert(w,y",y*), append*(v,y*,y)

The logic component of the insert-sort algorithm can now be shown in
its entirety, choosing terms as data structures

sort (0,nil) 4-

sort (w:0,w.nil) 4-

sort(w:x',y) 4- sort(x',y'), insert(w,y',y)

insert(w,nil',w.nil) 4-

insert (w,v.y" ,w.v.y") 4- w4v

insert(w,v.y",v.y*) 4- v^w, insert(w,y",y*)

These give a good recursive computation with Prolog-like control.

•270

The Selection-Sort Algorithm

Selection-sort can be viewed as a special case of either quick-
sort or insert-sort. The algorithm selects w from x to leave x' such
that w is the least member of x; hence x is decomposed selectively
into {w} and x'. After sorting x' to y', the output list y is
obtained by appending x' to the unit list (w) . Select-sort is thus
the special case of insert-sort in which w is always inserted at the
beginning of y' to give y, and is the special case of quick-sort where
the 'smaller' set x i s just a singleton {w}. Select-sort is derived
here by specializing the quick-sort procedures :-

sort(x,y) 4- cardin(x,0) , length(y,0)

sort(x,y) 4- singleton(x,w), unit-list(y,w)

sort(x,y) 4- partition*(w,x',x), allocate(zz,x',w),

sort(z2,yp , sort(z2,y'2) ,

append* (w,y'2,y') , append(y1 ,y)

Suppose now that w is the least member of x computed by the call to
partition*. Then no members of x are allocated to zby the call to
allocate. If the sort basis is therefore used to solve the first
call to sort on the assumption that zis the empty set, and if a
basis for append is likewise invoked to solve the last call to append,
then the recursive sort procedure above simplifies to :-

sort(x,y) 4- partition*(w,x',x), allocate(z2,x',w),

cardin(zifO) , sort(z2,y'2) , append* (w,y'2,y)

However, the properties of allocate determine that z^ and x' must be
identical when z^ is empty. Thus we may write the above as :-

sort(x,y) 4- partition*(w,x',x), allocate(0 ,x',x* ,w),^

sort(x',y'), append*(w,y',y)

by the instantiation z2:=x' and macroprocessing out the call to cardin
for greater conciseness. Now the usual notion of selection can be
expressed by a predicate select(w,x',x) which holds when w is selected
as the least member from x to leave x'; a fairly intuitive way of
specifying this is :-

select(w,x' ,x) 4-+ partition* (w,x* ,x) ,

(Mu) (w<u 4- uex')

•271

It is then easy to show that the specification can be rewritten :-

select(w,x',x) 44 (singleton(x,w), empty(x'))

v (partition*(w,x',x), allocate(0,x',x',w))

by a little case analysis and exploitation of the specification for
allocate. The consequence of this is that the second basis for
sort above can be combined with the modified recursive procedure for
sort just derived, to give a new single sort procedure capable of
processing any non-empty sets; this procedure is just :-

sort(x,y) 4 select(wfx',x), sort(x',y')f append*(w,y',y)

This and the first sort basis comprise a complete procedure set for
sort.

It is tempting to anticipate that the allocate procedures used
by quick-sort can be specialized to give useful procedures for
selecting the least member w of x. Observe that the specification
given for select above trivially implies :-

select(w,0,w:0) 4

select(w,x',x) 4 partition*(w,x',x), allocate(0,x1fx',w)

Suppose that a new predicate were introduced expressing a special
case of allocate :-

compare(w,x') 44 allocate(0,x*,x',w)

Only two of the allocate procedures shown earlier can deal with cases
where the first argument is 0 ; renaming these using the compare
predicate gives

compare(w,0) 4

compare(w,v:x') 4 w<v, compare(w,x')

which could then be used, in principle, to solve the call to compare
in the paraphrased procedure for select :-

select(w,x',x) 4 partition*(w,x',x), compare(w,x')

In practice, however, these do not constitute an efficient means of
achieving the decomposition of x, because the solutions output from the
call to partition* are not constrained. This is reminiscent of the
inefficient way of solving the min problem which picks a member as a
candidate for the minimum and then tests to see if it is a lower bound.

•272

In both problems the remedy is found by exploiting the supposed
transitivity of the ordering relation <. In the present case this
results in two recursive procedures for select, whose effect in
execution is to successively discard from x those members which cannot
be the minimum w, meanwhile accumulating these in the other data
structure x'. These procedures are shown below together with the
rest of the complete program body

sort(0,nil) 4

sort(x,w.y') 4 select (w,x' ,x) , sort(x',y')

select(w,0,w:0) 4

select(w,v:x",u:v:x") 4 u<v, select(w,x",u:x")

select(w,v:x",v:u:x") 4 u<v, select(w,x",u:x")
\

These generate a satisfactory iterative computation from a typical
logic program interpreter.

•273

7 2 : LOGIC PROGRAMS FOR STRING SEARCHING

The String Searching Problem

The problem considered in this final section arises in the
general field of text processing, which encompasses a rich class of
problems concerning the analysis of symbol strings. The present study
examines the specific task of determining whether a given string (the
'keyword') occurs in some other string (the 'text string'). This
task is obviously of paramount importance in applications such as
text editing and bibliographic retrieval. In applications such as
those, much can be gained in terms of computational efficiency by
employing techniques such as indexing, hash-addressing and so forth to
allow rapid retrieval; these generally proceed by consulting other
elaborate data structures established by pre-processing the keyword
or the text string. The objective of such techniques is to improve
upon the simplest algorithm which conducts a sequential search
through the text string, potentially inspecting all its symbols.
Here we derive the logic representation of this 'naive' algorithm,
and then consider how it may be transformed into two somewhat more
intelligent algorithms which refer to pre-processed data structures
in order to restrict the search without missing potential solutions.

The problem can be formulated in logic by introducing the
predicate string (x,y) which holds when the keyword x has an occurrence
in the text string y; more briefly, we can say that x is a string in y
when the predicate holds. In order to specify this predicate
precisely it is convenient to summon the item predicate and so express
the relationship between x and y in terms of their indexed members.
Assuming also the axioms A1-A3 used elsewhere to constrain the data
types possessing indexed members, the principal specification can
be announced as :- - ;

I

string(x,y) 44 (3k) (Mui) (item(uf.i+k-lfy) + item(ufi ,x))

+-Vi
which simply requires that there is some Jr* member of y with which
the first member, if any, of x can be aligned such that all members
of x then match their counterparts in y. This circumstance is

•274

depicted in the diagram below in which the shaded sections are
matching symbol strings

y :

k
4-

i+k-1
4-

x : W / / / / / A W / / / / 7 7 A

Observe that the given specification allows the possibility that x is
the empty string, in which case it is a string in y with k undetermined,
It should also be noted that the string relation is transitive, as
is usually the case with relations having definiens' of the form (A+-B).
In fact it can easily be ascertained that the following slightly
stronger property of string also holds

string(x,y) Qz) (string(z,y) , string(x,z)) ' •

The computational significance of this property is that in order to
show that x is a string in y, it is sufficient to find a string z in y
in which x is a string. All the algorithms considered here exploit
this property in one way or another.

The Naive (Quadratic) Algorithm

The naive algorithm attempts to find x in y by sequentially
inspecting the members of y until discovering one which matches the
first member of x; having thus found a potential solution, the
algorithm pursues a process of comparing the members of x with
those to which they align in y when the first two matching members
are aligned. In other words, having found a potential solution
beginning at the kth member in y as in the diagram above, a local
matching exercise is conducted to discover whether the shaded sections
shown there can be matched member for member. If the latter process
encounters a mismatch, then the original search is resumed from its
current point to seek a new kth member in y which matches the first
member in x.

In all the logic representations of the algorithms examined
here it is convenient to make use of the notion of a prefix. A

•275

prefix x of a string z is some string in z whose first member, if any,
coincides with the first member of z. Another way of expressing this
is to say that every Jfkh member of x is identical to the k^1 member of
z. This can be captured by the following specification of prefix(x,z)
which holds when x is a prefix of z :-

prefix(x,z) (\fui) (item(u,i ,z) 4- item(u,i,x))

Observe that this admits the possibility that x can be the empty
string and a prefix of (any) z.

Another useful notion is that of suffix. A suffix z of y is
a string in y such that the last members of z and y coincide.
This can be expressed by identifying z with a string in y denoted
by the term suf(y,k); this term denotes the string in y which extends
from its k^1 member right up to its end. The relationship between
the indexed members in y and those in its k^1 suffix suf(y,k) is
expressed by the following axiom in S

item(u,i-k+l,suf (y ,k)) 4-* item(u,i,y),

Hence our logical treatment of the string searching problem will refer
to prefixes using the prefix predicate, but to suffixes using the suf
term.

These definitions now allow a useful way of viewing the naive
algorithm : that algorithm successively inspects the suffixes
suf(y,l), suf(y,2), ..., etc. seeking some suffix suf(y,k) of which
x is a prefix. This is depicted in the diagram below

suf (y,k) 4

W//////////A

x : \A////////////J\ ^ is a prefix of cuf(y,kj

Now it is possible to see how the naive algorithm exploits the
transitivity of the string relation. Instantiate the transitivity
axiom :-

string(x,y) 4- string(z,y) , string(x,z)

with the choice z:=suf(y,k). The string specification together with

•276

the axiom specifying indexed membership in suffixes just given
jointly imply

string(suf(y,k),y) 4

string(x,suf(y,k)) 4 prefix(x,suf(y,k))

Invoking these in response to the two 'calls' in the instantiated
transitivity axiom then produces :-

string(x,y) 4 prefix(x,suf(y,k))

th
This sentence may be viewed as a procedure which selects some k
suffix of y and tests whether it has x as a prefix; if not, some
other k must be tried. Given a procedure set solving calls to
prefix, the string procedure above would be sufficient - that is,
would be a complete procedure set for string. This fact can be shown
by the proof

|~s string(x,y) 4+ ($k)(Vui)(item(u,i+k-l,y) 4 item(u,i,x))

f-g string(x,y) 44 Qk) (Mui) (item(u,i ,suf (y,k)) 4 item(u ,i ,x))
string(x,y) 44 Qk)prefix(x,suf(y,k))

This guarantees that there must exist some suffix suf(y,k) of which
x is a prefix when string(x,y) is solvable. This is a very,
important fact about the problem domain, and is the basis of other
algorithms as well as the naive one. Note that it embodies two
computational concepts : suffix selection, which consists of choosing

th
some k suffix of y in which to seek the string x; and prefix testing,

which consists of determining whether x is a prefix of some string.
The naive algorithm iteratively selects suffixes, each time applying
the prefix test, and it potentially investigates every suffix suf(y,k)
for k = 1,2, ... , etc. in that order. There are a number of
alternative representations of the logic component of the naive
algorithm, which differ in the amount of information about the progress
of computation that they encode within their argument structures.
We shall develop these in order of increasing information in that
respect, and so arrive at a logic component which is sufficiently
informed to allow some useful transformations leading to more
sophisticated algorithms.

•277

1] The Simplest Representation

The first representation of the naive algorithm considered here
makes use of no other information than the string specification
together with some axioms about data constructibility. It is
assumed that strings are either empty strings or else constructible
from a call append*(ur,z',z) which holds when string z has first
member u' and the rest of the string z is z':-

empty-list(z) (Mui) (item(u,i ,z) false)

append* (u',z',z) 4-+ (Mui) (item(u ,i ,z) 4-+ item(ufi-l,z')

v(u=u',i=l))

Admitting these to the specification set allows the derivation of
procedures for string to be trivially pursued just as with many other
examples given in the thesis; there is no need to present the
derivations in detail. By .considering the two cases k=l and k">l
it is easy to produce the procedure set

string(x,y) 4- prefix (x,y) [k=l]

string(x,y) 4- append* (v' ,y' ,y), string(x,y') [k>l]

Jointly these say that to show that x is a string in y, either show
that x is a prefix of the first suffix of y, or else show that it is
a prefix of one of the remaining suffixes - that is, a string in the
rest of y. A procedure set for prefix is obtained by just considering
the cases of the construction of x and y. It is easy to show that
all cases are dealt with by just two procedures :-

prefix (x,y) 4- empty-list (x)

prefix(x,y) 4- append* (u' ,x' ,x) , append* (u' ,y' ,y) , prefix (x1 ,y')

The first of these deals with all cases of y when x is empty. The
second one deals with all cases where both x and y are constructible by
append*; there is no procedure for the case where x is so constructible
but y is not, because it can be shown that the prefix problem is not
then solvable. Perhaps it should also be noted that there is no need
to compose a procedure for string for the case where k>l but y is not
constructible by append* - this could only be solved with x as the
empty string, and the first string procedure can deal with this by
invoking the prefix basis. The computation typically generated from
the prefix procedures is just a fast iteration which repeatedly
accesses aligned members in x and y and compares them.

•278

The procedures above can be made very concise using terms to
represent the strings; by introducing these through the device of
macroprocessing we obtain a representation of the naive algorithm
which appears to be simpler than all others :-

string(x,y) 4 prefix(x,y)

string(x.y') 4- string(x,y')

prefix(nil,y) 4

prefix(u* .x' ,u' .y') 4 prefixfx',y*) x

The computation generated from these procedures exhibits non-determinism
by virtue of the two ways of responding to a call to string. Clearly
the second procedure for string can be repeatedly invoked to select
any suffix before applying any prefix test. However, a Prolog-like
execution applied to the procedures as scheduled in the order given
above would always defer the generation of the next suffix until
completing the prefix test upon the currently inspected suffix. This
is the most sensible schedule to use in the absence of any information
about the likeliest region of y, if any, in which x may appear as a
prefix. If the scheduling of the two string procedures is the
reverse of that just suggested, the prefix test is applied instead
to suffixes of y in order of decreasing k, which will not come about
until the computation from the second procedure has iterated right
through y to arrive at the empty string - at which point a stack of
suffixes is represented in the binding environment, each one awaiting
its prefix test. .

A simple way of visualizing the effects cf these schedules is to
imagine that the keyword x 'slides' one position alongside the text
string y each time a new suffix is selected. The former schedule
slides x from left-to-right (treating y's first member as left-most),
attempting at each new alignment to match x with the substring of y
with which it is contiguous. The other schedule slides x from right-
to- left, which is a reasonable strategy when there is reason to believe
that x occurs in y near its right-end; however, the procedures above
do not implement that strategy effectively because they do not give
direct access to the right-end part of y.

The order of suffix selection can be enforced by the logic by
making a simple modification to the second string procedure.
Suppose that the first members of x and y are distinct. Then x
cannot be a prefix of y, and so string(x,y) can only be solved by

•279

showing that x is a string in the rest of y. Therefore replace the
second procedure by :-

string (u ' .x' , v'.y') u'^v', string (v' .x' ,y')

The computation is now much more deterministic, because the control
call u'^v' suppresses the possibility of selecting a new suffix
before completing the prefix test for the current one; execution
successively applies the prefix test to suf(y,l), suf(y,2), ..., etc.

as x slides from left-to-right alongside y. [It is assumed throughout
that the control is Prolog-like./ Observe that in the original string
procedure set the tasks of suffix selection and prefix testing were
initiated by distinct string procedures, whereas with the new
arrangement the prefix test is shared between the two string procedures.
We can regard the call u'^v' as a device encoding control information

»

about the potential failure of a call to the other string procedure;
that is, the second procedure is effectively informing the computation
that the first one cannot succeed when the first members of x and y
are distinct.

The naive algorithm is so-called, not because of its central
features of suffix selection and prefix testing, but rather because
it potentially selects every suffix; using the sliding notion, the
characteristic feature of the naive algorithm's exhaustive suffix
selection is that when a mismatch occurs during a prefix test, the
keyword x slides just one position down y , which is tantamount to
selecting the next suffix (increasing k by 1). More sophisticated
algorithms permit x to slide several positions after a mismatch .
before the resumption of comparing members, and are consequently able
to make fewer comparisons than does the naive algorithm. The ability
to slide x several positions without any intermediate member
comparisons depends upon knowledge about the instigating mismatch
in order to ensure that no solutions are 'skipped over* as x slides
past intermediate positions. Knuth, Morris and Pratt (44) have
shown that the worst-case behaviour of the naive algorithm gives a
comparison count approaching &.L where £ is the least suffix pointer

A

for which prefix(x,suf(y,k)) holds and L is the length of x. Now it
A

can be argued that the average penetrance k over all keywords of some
length L for a given text string is a monotonically increasing function
of 7"», and so this together with the result above shows that k has a
non-linear dependence upon L; in fact in the worst case that dependence

•280

is almost quadratic in L; this is the case when y contains many
proper substrings of x with length approaching L. An extreme
example is where y has the form amb and x has the form anb with m » n.

In realistic circumstances, such as natural language text searching
with large phrases as keywords, y will contain relatively few large
substrings of x and the comparison count will approximate more

A A

closely to k than to k.L, so that the algorithm's efficiency is then
approximately linear in I.

As already mentioned, the more elaborate algorithms which are
available for the string searching problem have the ability to decide
how to re-align x after a mismatch on the basis of an analysis of
the context in which that mismatch occurred. The more penetrating
that analysis of the failure to solve prefix(x,y) , the more
intelligent can be the subsequent choice of suffix. In order to
express such analyses in the logic representation of an algorithm of
this kind it is necessary to arrange that enough information is held
in the procedures' argument structures for the context of the
mismatch to be ascertained. The minimal information in this respect
is the position k in y with which the first member of x currently
aligns. Additionally it would be useful to have direct access to the
positions of the mismatch in question. In the following discussions,
further representations of the naive algorithm are developed which
arrange for this kind of information to be represented explicitly,
rather than implicitly in the current binding environment.

2] Explicit Control of Suffix Selection

The logic of the naive algorithm can be slightly elaborated in
a way which makes little improvement upon its efficiency but which is
nevertheless very instructive for our pursuit of logic repre'sentations
of better algorithms. Consider the behaviour of the current program
when a mismatch occurs during a prefix computation. When this occurs
the interpreter has to backtrack in order to find out how to choose
the next suffix. By backtracking to the activation of the call which
invoked the first string procedure, and thereby instigated this
particular prefix test, the interpreter discovers, in effect, the
identity of the current suffix as represented by the second argument
of that call? then, by transmitting that argument during the •
invocation of the alternative string procedure in response to that
call's re-activation, the latter procedure becomes informed about the

•281

identity of the current suffix and so is able to generate the next one.
It is interesting to secure these arrangements for responding to a failed
prefix test by expressing them in the logic component; this requires
the construction of somewhat more elaborate predicates than those
introduced so far.

Consider a predicate string*(x,y,w,z) which has the meaning
that either x is a prefix of y or else w is a string in z :-*

string*(x,y,w,z) 44 prefix(x,y) v string(w,z)

This anticipates the run-time circumstance when a test is initiated to
find out whether some x is a prefix of some y; if the test fails, then
computation assumes that the only way remaining in which to solve
the original goal 4 string(x,y) is to show that w is a string in z.
We shall see presently that it is possible to compose a program body
using the new predicate which arranges that when a prefix test is
initiated it is supplied with a record of the next suffix which must
be inspected if the test fails; that record is maintained in a - .
directly accessible state in the last two argument positions of the
procedures which will be used to conduct the test, so that no
backtracking is needed for their retrieval. This is just another
instance of how suitable choices of programming style can allow the
logical representation of matters which would otherwise be treated
as control information.

Recalling the procedure set already established for strings
represented by terms, the completeness of the procedure set for
string establishes the sentence :-

string(x,v'.y') 44 prefix(x,v'.y*) v string(x,y1)

However, the disjunction in this sentence unifies with the definiens
given above for string*, so that the following holds :-

1
string(x,v'.y') 44 string*(x,v'.y',x,y')

This shows that a call to string can be investigated using
the procedure :-

string(x,v'.y') 4 string*(x,v'.y',x,y')

together with procedures solving the call to string*. Observe, then,
that when we wish to solve a goal 4 string(x,y) in this way, the
call to string* will associate its first two arguments with the task

•282

of showing that x is a string in the first suffix of y (by showing
A

that it is a prefix of y), whilst its last two arguments are
associated with the task of showing that x is a string in one of the
remaining suffixes of y (by showing that x is a string in suf(y,2)).

A procedure set for string* can be derived easily using the
knowledge already available. The completeness of the set of prefix
procedures already given establishes the sentence :-

prefix(u'.x', u'.y') 44 prefix(x',y')

so that the first disjunct in the definiens of string* may be replaced
accordingly with an S-equivalent formula giving :-

string*(u'.x',u'.y',w,z) 44 prefix(x',y') v string(w,z)

We may infer a procedure for string* from this as follows :-»
string*(u'.x',u'.y',w,z) 4 string*(x',y',w,z)

The completeness of the procedure set for prefix also determines
that prefix(u'.x',v'.y') is false when u' and v' are distinct, which
easily provides another procedure for string* by virtue of the
following deductions :-

^ string*(u'.x',v'.y',w,z) 44 prefix(u'.x',v',y') vstring(w,z)

^ (string*(u'.x',v'.y',w,z) 44 false v string(w,z)) 4 u'^v'

^ string*(u'.x',v',y',w,z) 4 u'^v', string(w,z)

The string* synthesis has so far considered the two cases in which x
is non-empty and the first member of x either does or does not match the
first member of y . When x is empty the definiens of string* is
made true because the prefix basis shows that empty x is a prefix of
any y, from which we infer a basis for string* :-

string*(nil,y,w,z) 4

Finally there is the possibility that a call is made to string with
A

y empty; this cannot invoke the procedure already inferred above which
investigates string by investigating string*. However, when y is
empty then the call can only be solved when x is also empty, and so
this, final case amongst those cases of the input strings is dealt
with by the string basis :-

string(nil,nil) 4

•283

Clearly all these- procedures could be derived very straightforwardly
in the goal-directed format of previous examples, requiring only
trivial subformula substitutions and simplifications. Their behaviour
is quite interesting, and so it is worth gathering them all together
for further contemplation :-

string (nil,nil)

string(x,v' .y') 4 string* (x,v* ,y' ,x,y')

string*(nil,y,w,z) 4

string*(u'.x',u'.y',w,z) 4 string*(x',yf,w,z)

string*(u',x',v'.y',w,z) 4 u'^v', string(w,z)

Consider a call string(x,y) for instances of x and y in the case
where y is not empty. By invoking the second string procedure, a
record w:=x, z:=y' is established in the last two arguments of the
string* call which effectively describes the way in which the
original problem might yet be solved if subsequent computation fails to
show that x is a prefix of y. During the prefix test, which is
conducted by the first two string* procedures, this record is preserved
in readiness for a failure due to mismatch; in such an event, the
third string* procedure accesses this record and injects it into a
new computation which has the object of solving string(w,z), this being
the only remaining way in which the original call string(x,y) can be
solved. Execution is now very deterministic, instigating very little
backtracking. This does not necessarily improve upon the run-time
behaviour of the naive algorithm when using the simpler logic
component instead, because a modest interpreter ought to be able to
manage the latter's backtracking quite efficiently. But we are more
concerned at present with the information encoded by the procedures
rather than with their"behavioural attributes.

3] Explicit Control of Comparison Positions

In order to analyse fully a failure to match some member of x
with a member of y it is necessary to know the positions at which these
members occur in the respective strings. These positions are not
known within the logic representations considered so far. For
example, consider the computation instigated by the goal :-

•284

4 string(a.b.c.nil , b.a.b.a.b.a.b.c.nil)

by the first of the procedure sets already examined. Eventually a
failure is encountered in the attempt to show that a.b.c.nil is a
prefix of a.b.a.b.c.nil ? this failure is signalled by the mismatch
of the member c in x with the third occurrence of a in y (x and y
being the original arguments in the goal shown above). The goal
at the point in the computation when the mismatch occurs is :-

4 prefix(c.nil , a.b.c.nil)

which contains no information about the positions in x and y of the
mismatched members. Of course, that information could be recovered
from the run-time stack by determining various counts of procedure'
invocations, but the point at issue here is that the positions of the
mismatched members are not represented explicitly in any way by which
our procedures may directly refer to them. Hence those procedures
cannot express in logic the relationship between those positions and
the best way to proceed with the remaining task of showing that
a.b.c.nil is a string in a.b.a.b.c.nil now that it is known not to be
a prefix of a.b.a.b.c.nil.

To provide for the analysis of mismatch positions it is
necessary to introduce a new predicate which reflects the general
view of the string searching algorithm as a controller of two pointers
j and k respectively pointing to the members of x and y next to be
compared; the adjustments of these pointers can be interpreted in terms
of suffix selection and prefix testing. Let the predicate
prefix*(x,y,j,k) hold when the string suf(x,j) is a prefix of the
string suf(y,k) ; this is depicted in the diagram below, where the
shaded regions signify the members which remain to be matched in
order to solve the call string(x,y) :-

< suf(y,k)
k-j+1 k

F . 1 I I t V / / / / / / / / Z / J ~ 1

* - I I Vy / / / /777777X
+ t
i 3

« suf(x,j) >

shaded regions match when prefix*(x,y,j,k) holds

•285

The logical expression of this new predicate can be expressed either
in terms of the indexed members of x and y :-

prefix*(x,y,j,k) 4-4 (Mui) (item(u,k-j+l ,y) 4-item(u,i ,x) ,i>j)

or else, at a somewhat higher level, using the suffix notation

prefix*(x,y,j,k) 44 prefix(suf(x,j), suf(y,k))

These specifications are S-equivalent by virtue of the axiom given
previously defining the meaning-of indexed membership for suffixes
constructed from suf. Now consider the case where j takes the
value 1; then we have :-

^ prefix* (x,y,l,k) 4-4 (Mui) (item(u,k-l+i) 4- item(u,i,x) ,i>l)

^ prefix* (x,y,l,k) 4-4 (Mui) (item(u,k-l+i) 4- item(u,i,x))

Is (3k)prefix*(x,y,l,k) 4-4 string(x,y)

This establishes that string(x,y) can be investigated completely by
calling prefix*(x,y,l,k). Procedures capable of dealing with such
a call can be derived very easily, and are closely analogous to those
given previously for investigating prefix(x,y) . They are

prefix* (x,y,j ,k) 4- length (x,w) , j>w

prefix* (x,y,j,k) 4- item(u,j,x) ,

item(u,k,y), prefix*(x,y,j+l,k+l)

The recursive prefix* procedure tries to show that suf(x,j) is a
prefix of suf(y,k) by showing that both strings have the same first
memberu and that suf(x,j+l) is a prefix of suf(yfk+l). The basis
procedure deals with the case where suf(x,j) is empty, this being so
when j exceeds the length w of x. The suffixes referred to here are,
of course, represented only implicitly by the prefix* procedures
through the pointers j and k. They essentially paraphrase the
prefix procedures shown below

1

prefix (suf (x,j) , suf(y,k)) 4- lengthfsuf (x,j) , 0)

prefix(suf(x,j), suf(y,k)) 4- append*(u,suf(x,j+l),suf(x,j)),

append*(u,suf(y,k+l),suf(y,k)),

prefix(suf(x,j+l), suf(y,k+l))

which result by simply instantiating the general procedures for
prefix(x,y) with x:=suf(x,j), y:=suf(y,k).

•286

A complete program body for the string searching problem can
now be composed of just the initiating procedure

string (x, y) prefix*(x,y,l,k)

together with the two procedures given for prefix* and some means of
accessing the indexed members of x and y. In conjunction with a
goal string(x,y) they just contribute a new logic component for the
naive algorithm. It is interesting to note that whereas the previous
procedure set for string :-

string(x,y) 4- prefix(x,y)

string(x,u' .y') 4- string(x,y')

gave rise to non-determinism through offering two alternative ways
of responding to a call to string the new body's non-determinism
arises through the non-deterministic solution of the call to item.
A typical computation from the new procedures responds to a failure
to solve some call prefix*(x,y,j,k) by backtracking to the most
recently activated call item(u,k,y) which was activated with k as an
output argument in order to solve prefix*(x,y,l,k) ; since the choice
of k computed by that call has resulted in a failure on the prefix
test, the call must be re-activated to seek an alternative choice of 7c.
The response to the call item(u,k,y) obviously depends upon the
arrangements made for interrogating the string y; when the members of
y are accessed serially, such as by applying Prolog-like control to the
procedures below . \

item(u' ,l,u' .y')

item(ufk,u'' .y') 4- item(u,k-l,y')

then the computation behaves in the manner already described for the
simplest representation given earlier for the naive algorithm. The
non-deterministic selection of k by the call item(ufkfy) in the new
procedures corresponds to the non-determinism manifested in the two
string procedures in the simplest representation in that the second
of them can be recursively invoked arbitrarily many times before the
first one is invoked ; each of those invocations of the second string

procedure implicitly selects a new member of y with which the
first member of x is aligned.

In the next, and final, logic representation of the naive
algorithm, the ideas of the two former representations are combined.

4] Explicit Suffix Selection Using Pointers

By holding two pointers j and k in the argument structure, it is
possible to control the selection of suffixes deterministically .
through the agency of the logic component using much the same idea
as employed in the earlier representation 2]. This requires the

. introduction of a new predicate string**(x,y,j,k) which holds when
either suf(x,j) is a prefix of suf(g,k) or else x is a string in
suf (y,k-j+2). The specification is therefore :-

string**(x,y,j,k) 44 prefix*(x,y,j,k) v string(x,suf(y,k-j+2))

An informal explanation of this choice of predicate is as follows :
suppose that computation has proceeded to the point where the jt*1

member^ of x is aligned with the k^1 member of y in the course of
investigating the call string(x,y) ; assume that the preceding
members of x, if any, have been matched with their counterparts in y
[note, with care, that the string** specification above does not

insist upon this, but only considers matches at and beyond the jth] ;

the problem is then solved either by matching the members at.and beyond
the pointers j and k, or else a new suffix must be selected? the
current suffix is suf(y,k-j+l) with the supposed alignment of the jth
and members of x and y respectively; the naive algorithm chooses
the next suffix as suf(y,k-j+2) in which to show that x is a string.

A program body using the string** predicate can be derived
exactly as for the previous representation in which comparison
pointers were only implicit. It turns out to be :-

string(x,y) 4 string**(x,y,1,1)

string**(x,y,j,k) 4 length(x,w), j>w

string**(x,y,j,k) 4 item(u,j,x),

item(u,k,y) , string** (x,y ,j+J.,k+l)

string**(x,y,j,k) 4 item(u,j,x),

item(v,k,y),

u?v, string**(x,y,l,k-j+2)

The first two string** procedures behave rather like the prefix*
procedures, except that k is now an input argument in every string**
invocation. When a mismatch occurs, directing control to the third
string** procedure, this procedure uses the directly accessible
pointers j and k of the mismatched members in order to determine the

•288

identity of the next suffix; since this, in the naive algorithm, is
just suf(y,k-j+2), the values of j and k comprise sufficient
information within the procedures' argument structures for this
determination to be made. There is therefore no significant
backtracking during the computation. Observe also that, because
the arguments j and k in the calls to item are always input instances,
the solution of those calls is deterministic; this allows the
recursive string** procedures to be invoked iteratively, in contrast
to the necessarily recursive invocation of the string* procedures in
the previous representation.

The procedures above using the string** predicate provide a very
satisfactory account of the logic which underlies the naive algorithm.
More importantly, because they introduce to the logic explicit
arrangements for accessing the mismatch position - and hence the
current suffix identity - they form an excellent basis for deriving
the logic components of those algorithms which use that information
to decide whether the keyword can slide more than one position after
each mismatch without missing potential solutions. These are the
algorithms considered next.

The Linear Algorithm

In order to introduce the linear algorithm, which is due to
Knuth, Morris and Pratt (44), it is useful to consider the behaviour
of the string** program examined above. Suppose that a call to
string**(x,y,j,k) is executed with x .^y . The ensuing mismatch

J k

signals the fact that x is not a prefix of the current suffix
suf (y ,k-j+l) . Thus to show that x is a string in suf(y,k-j+l) it
must be shown that x is a string in suf(y,k-j+2). The third string**
procedure above investigates this latter objective by displacing
x by just one position relative to its current alignment with y,
so that whereas x^ was formerly aligned with y^ when the mismatch
occurred, the displacement now aligns x^ with y^ j+2' A consequence
of displacing x by one position is that, depending upon the nature of
x and y, the member y may subsequently be compared with x in the

k j-l

course of showing x to be a prefix of suf(y,k-j+2), in which event the
computation compares y .with a member of x more than once. ' It is for
this reason that the naive algorithm gives behaviour which is
generally worse-than-linearly dependent upon the length of the keyword.

•289

Suppose that when the mismatch occurs between x . and y , x is
J k

immediately displaced such that x aligns with some y . where 7'<7.
1 k-j'+2 J J

Then y aligns with x.t , and y aligns with x.r. This is shown
A J "I JC+J. J

below (that is, after the displacement) :-

k-j'+2 + k+1

9 :

+ + +
1 r 3

next alignment after mismatch of x • and y (shaded)
j 1 A "

Observe that after the mismatch x has been displaced by j-j'+l
positions; the naive algorithm always chooses j=j' whereas we are now
considering algorithms which choose j'<j and thus displace x by
several positions.

The linear algorithm has the characteristic property that when
xj does not match with y^ , the values of j and k are used to compute
a particular value of j' such that by displacing x by j-j'+l positions
the comparison of members can be resumed starting with x and
This arrangement assumes, firstly, that the determination of j' is
such that any members of x preceding x̂ ., will match those members of
y with which they align after the displacement (so that there is no
need to match them again), and assumes secondly that no opportunities
for solving string(x,y) are missed by displacing x by more than one
position when j'<j. When the displacement of x after each mismatch
satisfies these conditions, no member of y is ever compared more than

A
once; the resulting algorithm's behaviour is therefore linear in k
and thus (because of the argument about the mean penetrance) linear
in the length L of the keyword. Observe, however, that when the
given goal is solved with x finally aligned with yr., exactly k+L-1

1 A
of the members of y will have been compared with members of x; later
on we consider an algorithm which improves upon this.

The logic of the linear algorithm can be derived by modifying
the third string** procedure given previously, since this is the
procedure responsible for selecting a new suffix after a mismatch.

•290

We require that instead of calling string**(x,y,1,k-j+2), that
procedure should compute an appropriate j' and then call
string**(x,y,j',k+l), and that this modification will not allow any
solutions to be missed; in other words, we require a more efficient,
but nevertheless complete, procedure set for string**. The
precondition for such a modification is apparent from consideration
of the circumstances when, generally, string(x,suf(yfk^)) and
string(x,suf (y ,k2)) are S-equivalent when k Using the string
specification it is easy to prove that this S-equivalence holds when
x is not a prefix of any suffix suf(y,k*) satisfying
Applied to the present -.context, this fact is expressible by the
S-conditional-equivalence :-

(string (x,suf (y rk-j+2)) string(x,suf(y,k-j'+2)))

**• *(3k*) (k-j+24k*<k-j'+2, prefix (x ,suf (y ,k*)))

Informally, this just states the fairly obvious fact that, given
the goal of showing that x is a string in suf(y,k-j+2), which is
the naive algorithm's goal after the mismatch of x. and y , it is

J k
possible instead to just determine whether x is a string in the
suffix (j-3') positions further on, provided that j'4j and there
is no intermediate suffix amongst those ignored in which x could be
a prefix. This lemma allows an S-conditional-equivalence substitution
in the third string** procedure when the latter is written as :-

string** (x,y,j,k) 4- item(u,j,x) ,

item(v,k,y), u^v, string(x,suf(y,k-j+2))

by replacing its original call string**(x,y,1,k-j+2) by the
S-equivalent call string(x,suf(y,k-j+2)). The result of this
inference is the procedure

string**(x,y,j,k) 4- item(u,j,x), item(v,k,y), u?v, j'4jf

Gk) (k-j+24k*<k-j '+2,prefix(x,suf (y ,k*))) ,

string (x, suf (y ,k-j'+2)) .

Having modified the procedure in this way, the next objective
is to accommodate in the logic the requirement mentioned earlier
that comparisons are to be resumed beginning with x .f and y ^ ^ '
This suggests that there must be some way of introducing a call
string**(x,y,j' rk+1) to the modified procedure which will replace

•291

the rather less useful call to string introduced by the lemma. .
In fact there is quite an easy substitution which satisfies this
objective and which comes about from considering the position as
depicted below after the displacement of x has taken place

suf(y,k-j'+2)

k-j'+2 k+1

x :

+
r

-pre (x,j')-

when single-shaded-only sections match,

prefix(pre(x,j'), suf(y,k-j'+2)) holds

when double-shaded-only sections match,

string**(x,y,j',k+l) holds

when both shaded sections match,

string(x,suf(y,k-j'+2)) holds •

A term pre(x,j') has been introduced in order to refer conveniently
to the prefix of x which extends up to the member, if any, which
immediately precedes the (j')^1. With this arrangement, the matching
in the picture above can be expressed by the obvious lemma below, which
just expresses the matching of x with its contiguous section in y in
terms of matching a prefix of x and a suffix of *

string (x, suf (y,k-j'+2)) prefix(pre(x,j'), suf(y,k-j'+2)),

string**(x,y,j',k+l)

This allows a straightforward S-equivalence substitution in the
modified procedure to give

•292

string**(x,y,j,k) item(u,jrx), item(v,k,y), u?v, j'<*j,

(k-j+2$k*<k-j'+2 , prefix(x ,suf(y,k*))),

prefix(pre(x,j'), suf(y,k-j'+2)) f

string**(x,y,j',k+l)

Having thus obtained a preliminary procedure which, after a
mismatch of x. and y , computes a displacement which, with no loss J k
of solutions, allows x to re-align with y

'k-j' +2 and resumes the
comparisons beginning with x and y , it is appropriate to
consider how the displacement is actually computed in the linear
algorithm.

The arrangement proposed by Knuth, Morris and Pratt causes
the algorithm to refer to a pre-processed data structure which
effectively tabulates, for each possible combination of pointer j
and member y , the largest value of j' which makes pre(x,j'-1) a

JC
prefix of suf(x,j-j'+2) and satisfies the formula (y=x.t 4 j'>i),

k j —1
This data structure can be constructed from knowledge of x alone by
assuming the possible choices of y to be either those which are

k
members of x or those which-are not members of x; Knuth, Morris and
Pratt have shown that the construction is then achievable with an
algorithm whose efficiency is linearly dependent upon the length L
of x.

The significance of computing j' so as to satisfy the above
constraints may become appreciated from inspection of yet another
picture, which depicts the state of the algorithm when a mismatch
has occurred but the displacement not yet put into effect :-

y •

k-j+1
4-

x ; Vv//
h //A

k-j'+2
4

~7~r
/ / B///.k

"Mr

f
mismatch

m r n a z j
4 4 4
j'-l j~j'+2 j

light-shaded sections A , B and C match

•293

In the diagram of the instant at mismatch, the sections A, B and C
are identical. B and C match because of the assumption that pre(x,j)

has already been matched with that part of y with which it aligns.
A and C match such as to maximize j' (whose least value is I).
When x is displaced after the mismatch, A becomes aligned with B,
and x , if it exists, aligns with y , which it matches because

3 ~1 k

of the way it is computed in accordance with the Knuth-Morris-Pratt
rule given earlier. It follows that, after the displacement,
comparisons can resume beginning with x_.t and y ^ ^ ' maximization
of j' and hence of the lengths of A and B determines that no potential
solutions are omitted by the displacement of x through j-j'+l positions,
since any intermediate solution would obviously imply a non-maximal
value of j 1.

Some useful consequences follow from the computation of j1 as•
just described.. Suppose that the predicate displace(x,y,j,k,j') holds
when j' is computed as specified above. A call to a procedure for
displace can be implemented as a look-up of an assertional data
structure which uses the input x,j and y to determine j' ; this data
structure can be pre-computed by appropriate bottom-up processing of
other procedures which implement: the algorithm of Knuth et al. The
specification of displace(x,y,j,k,j') - requiring jr to be the
maximum value satisfying prefix(pre(x,j'-l), suf(x,j-j'+2)) and

(y =x 4 j'>1) - admits simple proofs of the following facts :-
k j —1

1] 3'^3 4 displace (x,y ,j ,k,j')

2] ^(3k*)(k-j+24k*<k-j'+2, prefix(x,suf(y,k*)))

4 displace(x,y,j,kfj'),

prefix(pre(xrj), suf(y,k-j+l))

3] prefix(pre(x,j'), suf(y,k-j'+2))

4 displace(x,y,3 fk,j1) r

prefix(pre(x,j), suf(y fk-j+l))

Invoking these by modus tollens in response to the calls of the
modified procedure then produces the result :-

string**(x,y,j,k) 4 item(u,j,x), item(v,k,y), u?v,

displace(x,y,k,3'),

prefix(pre(x,i), suf(y,k-j+l)),

string**(x,y,j',k+l)

•294

One more step is necessary now to turn this last result into
a useful procedure for the linear string searching algorithm. That
step has the object of eliminating the call to prefix which still
remains in that result. The call occurs there of logical necessity,
since unless it is satisfied the conclusion string**(x,y,j,k) cannot
be drawn even though the other calls are satisfied. However, the
context in which this procedure is invoked is such that the predicate
prefix(pre(x,j),suf(y,k-j+l)) is already satisfied as a result of
previous successful matching prior to the mismatch . Thus the call
to prefix is computationally, if not logically, superfluous. The
way to eliminate the call is suggested by our earlier experience in the
derivation of the merge-sort. program body, where computationally
superfluous checks upon orderedness of lists were eliminated by a
simple transformation. In the present case, it suffices to specify
a new predicate

string*** (x,y,j ,k) 4-4 (string** (x ,y ,j ,k) 4- prefix(pre(x,j),

suf(y,k-j+l)))

and use this exactly as in the transformation of the merge procedures
into merge* procedures, thereby giving the final program body for the
Knuth-Morris-Pratt algorithm apart from the assertions solving calls
to item and displace'.-

string(x,y) 4- string*** (x,y ,1,1)

string*** (x,y,j ,k) 4- length (x,w) , j>w

string*** (x,y ,j,k) 4- item(u/j,x) ,

item(u,k,y), string***(x,y,j+1,k+l)

string*** (x,y,j,k) -t- item(u,j,x) , item(v,k,y) , ujv,

displace(x,y,j,k,j') ,

string***(x,y,j',k+l)

Execution of these procedures by Prolog-like control gives the linear
algorithm. The algorithm is conventionally programmed such that the
logic of the two recursive string*** procedures is encoded within a
single 'next move' function which maps (x,y,j,k) to (x,y,j',k+l),

where (j,k) identifies the current comparison and (j',k+l) identifies
the next. An interesting formulation of the algorithm is given by

•295

Aho and Corasick (1) who treat the 'next move' function as a
deterministic finite state automaton which processes the input string
y as its input tape. They give proofs of some Algol-like procedures
which construct the automaton from x in time linearly dependent upon
the length L of x, and then prove that the automaton behaves
deterministically. Their treatment is more general than the logic
derivation given here in that their algorithm can deal with a set of
several keywords simultaneously rather than, as here, just one.

The Sub-linear Algorithm

A
When string(x,y) is solvable, there exists some least k for

A
which string(x,suf(y,k)) holds. The Knuth-Morris-Pratt linear

A

algorithm finds this solution after exactly (k+L-1) comparisons.
Here we now consider briefly a remarkable algorithm due to Boyer
and Moore (6) which finds this same solution with fewer comparisons,
for which reason it is called the 'sub-linear algorithm*. It also
has the surprising property that, generally, its comparison count
decreases with increasing length I of x.

The essential idea in the sub-linear algorithm is that of
performing the comparisons in the reverse order to that of the naive
and linear algorithms. The overall strategy of repeated suffix
selection and prefix testing is retained, so that each displacement
of x after a mismatch moves x further towards the right-end of y.
The particular qualities of the sub-linear algorithm arise partly from
the special nature of its method of prefix testing (that is, by the
reversed order of comparisons) and partly from the way in which it
computes the displacements of x. The logic representation of this
algorithm can be developed by appropriately modifying the string**
procedures :-

string(x,y) 4 string** (x,y ,1,1)

string** (x,y,j,k) 4 length(x,w) , j>w .

string** (x,y ,j,k) item(u,j,x) , item(u,k,y) ,

string**(x,y,j+l,k+1)

string**(x,y,j,k) 4 item(u,j,x), item(v,k,y), u^v,

string**(x,y,l,k-j+2)

•296

Recall that the purpose of a call string**(x,y,j,k) is to show, that
either (xx. , ...) matches (y , y , ...) or else x is a

j j+J. iz x
string in suf (y ,k-j+2), in accordance with the specifications :-

string**(x,y,j,k) 44-prefix*(x,y,j,k) v string(x,suf(y,k-j+2))

prefix*(xfy,k) 44 prefix(suf(x,j) , suf(y,k))

When it is required to conduct a prefix test in the reverse order,
this can be achieved by calling a new procedure string*^(x,y,j,k)

specified by :-

string^ (x,y,j,k) 44-prefix^ (x,y,j,k) v string (x, suf (y ,k-j+2))

prefix^(x,y,jfk) 44 prefix(pre(x,j+l), suf (y ,k-j+l))

A call string^(x,y,j,k) has the object of showing that either
(x x. , ...) matches (y , y) or else x is a string in
j J~1 k k-1

suf(y,k-j+2). The picture below illustrates the meaning of"
prefix^(x,y,j,k)• r-

k-j+1 k

1 iv//////i\ ~
- w / / / / / / v \

+ \
1 j shaded sections match

» ff : prefix^(x,y,j,k)

Using the new string^ predicate it is now possible to construct
procedures directly analogous to those for string**. They are :-

stringfx,y) 4 length(x,w) , string^(x,y,w,w)

string^(x,y,j,k) '4 j<l

string^f(x,y,j,k) 4 item(u,j,x) , item(u,k,y) , string^ (x ,y ,j-l,k-l)

string^(x,y,k) 4 item(u,jfx) , item(v,k,y) , ufv,

length(x,w) string^(x,y,w,k-j+w+l)

These can all be derived formally without difficulty. When executed
to solve string(x,y) their overall behaviour is that of the naive
algorithm in that they potentially inspect every suffix in y to see if
it has x as a prefix. The order of comparisons in each prefix test
is inconsequential as far as the asymptotic behaviour of this
algorithm is concerned; the worst-case total comparison count continues
to exhibit worse-than-linear dependence upon Lhe length L of x.

•297

Top-down execution of the new procedures has the effect that
when a mismatch occurs for some pair (x .,y) then the suffix

J k
suf(x,j+l) will have already been matched with that part of y with
which it aligns. This knowledge is exploited in the Boyer-Moore
algorithm in such a way that the subsequent displacement of x may be
more than one position. Suppose then that execution reaches the
state depicted below, in which such a mismatch has just occurred prior
to a displacement of x :-

k-j+1 k k-j+L
1 1 1

I E Z Z Z Z Z Z Z Z I H Z Z H Z Z "I

mi smatch <
II t m y / A - W T & m

+ i t
1 j L

The light-shaded sections B and C match at this point. Moreover,
let A be the penultimate occurrence, if any, of C in x. If A exists,
then x can be displaced so as to align A with B without omitting any
potential solutions. If A does not exist then x can be displaced
so as to align x w i t h the member of y which immediately follows the
end of B, again with no omission of potential solutions. In each case
the comparisons are then resumed beginning with the last member of x.
Irrespective of whether or not A exists, there is yet another piece of
information which can be used to decide the optimal displacement.
Suppose that k" is the maximum position in x less than j(if any) at
which x ,,-y ; then x can be displaced so as to align x1 „ with y .

K. K K. K
If k" does not exist then x can be displaced so as to align x ̂ with
y . Again, these displacements omit no potential solutions, and
J\< -L
are followed by resumption of comparisons beginning at the end of x.

Boyer and Moore show that x can be pre-processed such that the
appropriate displacement (which is chosen to be the largest afforded
by the various choices indicated above) can be looked up in a data
structure using y as the key. In logic this arranaement can be

k

implemented by a procedure call displace^' (x,y,j,k,k'), whose
specification allows a proof of the sentence :-

•298

(stringff(x,y,w,k-j+w+l) string^ (x ,y ,w ,k'))

4- length(x,w) ,

prefix(suf(x,j+l), suf(y,k+l)),

item(u,j,x), item(v,k,y), u?v,

displaced (x ,y ,j ,k,k')

The antecedent in the lemma above just implies that
prefix(x,suf(y,k*)) is false for all k* in the range k-j+2$k*<k'-L+l t

proof of which follows easily from the displace^ specification.
Consequently the antecedent implies that string^(x,y,w,k-j+L+l) is
completely investigated by displacing x through k'-(k-j+L) positions
and then investigating string^(x,y,w,k*). As with the linear
algorithm, a final transformation is necessary in order to dispense
with explicitly testing the condition prefix(suf(x,j+l),suf(y,k+l))

after a mismatch, since this will have already been ensured by the way
in which procedure invocation is controlled. By specifying a final
predicate analogous to string*** as follows :-

stringr+1T(x,y,j,k) 4-y (string^(x,y, j,k) 4- prefix(suf(x,j+l,

suf(y,k+l)))

the high-level procedures of the sub-linear algorithm are found to be
transformed to :-

x
string(x,y) 4- length(x,w) , string^^(x,y,w,w)

s t r i n g ^ ^ (x , y , k) 4- j<l

string^^(x,yrj,k) -t-item(u,j,x) , item(u,k,y) , . '

stringr+++(x,y, j-l ,k-l)

string^^(x,y,k) 4-item(u,j,x) , item(v,k,y) , u?v,

displace"^(x,y, j,k,k*) ,

string^"^ (x ,y ,w ,k')

The two recursive stringprocedures can be reformulated as
a single one employing a slightly more elaborate displacement
procedure which behaves as a deterministic 'next move' generator like
that used in the Aho-Corasick implementation. It is also worth
observing that whereas each call to the recursive string*** procedures
in the linear algorithm increments the suffix pointer k by I, thus
inspecting every member of y(potentially), this is not true of the
recursive string1"tf procedures; in general the sub-linear algorithm

inspects fewer than the first (k+L-1) members of y, and indeed can
also inspect some of them more than once. Its worst-case behaviour
is that of the naive algorithm.

C L O S U R E

Retrospect

The thesis set out to show that standard FOPL has a substantial
and practicable role to play in several important activities
associated with logic programming. Its usefulness for
specification, derivation and transformation has been especially
emphasized and, it is believed, justified by successful application
to the various examples presented here. We have used FOPL to
specify the relations computed by programs, to formulate useful lemmas
about the problem domains of interest and to express the goals of
procedure derivations. Throughout these applications, deductive
analysis of relations has been treated as the fundamental business of
logic program composition as well as of logic program execution. We
have assumed that future logic programmers can be trained to a
sufficient degree of competence in logical manipulation to allow the
expression of such analyses to proceed fluently and naturally. It is
our confident expectation that such competence could be instilled quite
easily by virtue of the essential simplicity of first order logic.
This is not to say that the use of logic in this way will greatly
diminish the need for serious intellectual effort in the composition
of programs; rather we expect that the programmer who is already
capable of formulating intelligent and well-organized ideas about his
intended algorithms will, after suitable training, find logic to be a
more satisfactory means of expressing those ideas than conventional
computational languages.

Little attention has been given in the present research to the
prospect of automating syntheses and verifications of logic programs.
This is not because such a possibility was considered to be either
unimportant or ultimately unattainable, but rather because it seemed
more urgent to establish that logic is practicable as a human-oriented
programming language. Unless its credibility can be proven in this
respect first, it will attract little immediate attention from the
existing programming community and so diminish the probability that

•301

researchers will become motivated to devise useful mechanized logic
programming aids. Apart from this consideration, it has to be
recognized that insofar as many useful logic programs may require the
inclusion of arbitrarily 'deep' theorems as procedures, the general
problem of fully automating logic procedure derivation approximates
to that of automating the derivation of much of mathematics; we cannot
realistically regard this problem as capable of short-term solution
given our existing state of knowledge. In view of these considerations
it appeared a more sensible objective to consolidate a comparatively
informal and empirical corpus of experience in program derivation
without demanding rigid adherence to any particular set of derivation
rules or strategies. Nevertheless it is already clear that there is
much scope for developing useful mechanized aids for such tasks as
checking given derivations or interacting with the programmer's
decisions whilst he chooses amongst alternative paths through the
derivation search space. Existing aids for deriving programs in other
formalisms, such as those surveyed presently, will doubtless contribute
useful strategies for these purposes.

Related Research

Although the earlier parts of the thesis have included quite a
number of citations of related work, it is useful at this concluding
stage to review in a little more detail those projects undertaken by
other researchers which afford reasonably close comparison with our own.
The general field of program synthesis is naturally very wide, but
discussion is confined here to projects whose object is to provide for
deductive derivations of programs from complete specifications of their
computed relations. Therefore we omit comparisons with methods such
as Kodratoff's (45) in which specifications are incomplete or in which
the derivation process depends upon highly specialized mathematical
analyses bearing little relation to the conventional approach to
program synthesis.

The early contributions of theorem proving to program synthesis
have already been surveyed briefly in Chapter 1. The work of Green
on answer-extraction from resolution proofs formed the basis upon which
both he and Waldinger subsequently implemented various synthesizers
capable of generating very simple assignment programs from the bindings
induced by proofs of their input-output relations. Later on an

•302

interesting advance was made by Manna and Waldinger in their discovery
of the utility of induction axioms over the data domains of interest
for enabling the construction of recursive and iterative programs.
At that time they were not particularly optimistic about the prospects
for autonomous synthesizers. They noted the probable need for
restrictive strategies in order to control the manipulation of the
specification axioms, but also recognized the difficulty of designing
these so as to be sufficiently general to cope with a variety of
semantic domains. They were aware, too, of the potential usefulness
of future interactive synthesizers.

Since these early beginnings, Manna and Waldinger have actively
pursued their synthesis work at Stanford. Their 1975 paper (61)
indicates several changes in approach since the 1971 report (60) and
additionally describes a partially completed implementation. Rather «
than using FOPL to express program specifications, they choose a
high-level quasi-procedural language in which to describe the input
problems to the synthesizer? the language is not defined formally and
is viewed as arbitrarily extendible by the additions of new general
constructs and domain-specific notations. This arrangement represents
a significant departure from their previous use (60) of purely
descriptive, tightly-formalized axiomatic specifications, although the
new specification language does admit a certain amount of logical
symbolism such as quantification and basic connectives. Consequently
a considerable sacrifice of uniformity and simplicity in both syntax
and semantics is incurred in their abandonment of FOPL, although it
might be claimed that their input problem specifications usefully
suggest initial abstract algorithms awaiting suitable refinements;
however, we would argue that similar effects could be obtained just as
convincingly in FOPL through the use of appropriate logical styles.
The language chosen for the target programs generated by the
synthesizer is intended to be essentially LISP-like but capable also of
supporting side-effect mechanisms like destructive assignment. The
generation of the target programs proceeds incrementally by application
of various transformation rules which refine the problem description
through successive stages towards an executable program. The
transformations are implemented by procedures written in some language
suitable for encoding reasoning tactics such as QLISP; these are
summoned by pattern-directed procedure invocation induced by
sub-expressions of the current problem description, such that the

•303

overall effect is to gradually replace descriptive expressions by
suitable algorithmic constructions. No discussion is given by Manna
and Waldinger in this paper of what strategic principles are assumed to
govern the choice of transformations when several are simultaneously
applicable; intelligent choice in such cases is obviously crucial to
both the efficiency of the synthesis and the usefulness of the
output program.

The transformation rules used by Manna and Waldinger are simple
and few in number. They provide chiefly for the construction of
conditionals and recursions, for solution of conjoint goals and for
introducing side-effects. Their mechanism for recursion construction
is especially interesting and appears, in one guise or another, in
various other researchers' synthesis systems. It is invoked upon
recognition that the current description of the problem's goal
contains as a sub-expression some substitution instance of the goal's
definiens, thus allowing that instance to be replaced by an
appropriately instantiated call to that goal; this clearly results in
a recursive description of the goal. Manna and Waldinger also employ
a check to ensure that a computation induced by the recursion will
terminate by appealing to some well-ordering defined upon its
argument domain; their transformation process therefore preserves
total - rather than just partial - correctness.

Another interesting technique employed in their system is that
of generalization of specifications. Usually this is summoned when
it appears impossible to construct certain recursions using just the
goal predicates or functions initially given; generalization entails
the reformulation of the goal's description, typically by introducing
new parameters into it, in such a way as to permit construction of the
desired recursion. Instances of this have already been seen in this
thesis. For example, the use of the reverse predicate in Section 6.1
precludes a recursive description of the list reversal problem in
which calls to append are absent; but use of the reverse* predicate,*
which generalizes reverse through the device of an additional parameter,
does allow such a description. This technique often results in
improvements to efficiency such as the replacement of recursions by
iterations. Manna and Waldinger offer some loose guidelines for
recognizing opportunities for making simple generalizations, but they
do not yet possess any precise characterization of the technique which

•304

would allow either its automatic application or its evaluation in
terms of computational advantage. In fact the particular kinds of
reformulations which they examine are just aspects of a much more
general problem which, in our formalism, is manifested as that of
choosing the 'right' predicates for problem specification. For
example, the elaborations of the string predicate used in our
refinements of the text-searching problem in Chapter 7 entail the
introduction of new argument structures apparently beyond the scope
of Manna's and Waldinger's simple generalization technique and yet
are motivated by comparable intentions, namely•the construction of
sophisticated recursions whose logic induces special behavioural effects.
Their paper likewise examines the list reversal problem and also shows
how the method can be successfully applied to the rather harder problem
of generalizing a pattern-matching algorithm into an algorithm capable
of computing most-general unifiers. We concur with their view of the
importance of gaining an understanding of the underlying principles of
appropriate predicate formulation in order to allow more intelligent
syntheses and to clarify the pragmatic distinctions between alternative
programming styles.

A more recent working implementation of a synthesis system
called 'DEDALUS', incorporating the ideas previously described, is
reported by Manna and Waldinger in a 1977 Stanford Report [Report No.
STAN-CS-77-630 : "Synthesis : Dreams => Programs"], and a further
implementation called 'SYNSYS' is reported in their IJCAI-77 paper (62).
The specification language used there continues to be a somewhat
arbitrary mixture of logical, mathematical and algorithmic notations.
The target language is pure LISP (having no side-effect features) and
QLISP is used to encode more than a hundred transformation rules. They
regard the system as being essentially 'deductive', although the
relationships which prevail between their specifications and target
programs are not those of logical implication as in our own derivation
methodology. Nevertheless it seems clear that a suitable axiomatic
formulation of their rules and specifications could be devised so as to
enable their syntheses to appear as deductions employing logical
equivalence substitution as the principal refinement mechanism.

Manna and Waldinger emphasize that they do not have a strong
prior commitment to any particular specification language or programming
language. They regard their project as belonging more to research in

•305

artificial intelligence than to research in general programming
methodology, and their interests are primarily in elucidating
reasoning strategies rather than in advocacy of new programming
formalisms. However, this is not to say that their approach to
program synthesis is neutral with respect to the choice of languages,
since there are several respects in which its development has been
affected by the particular choices which they have in fact made.
Firstly, because of their use of different.languages for expressing
programs and specifications, the transformation rules at the heart of
their system rely for their justification upon establishing
relationships between two distinct semantics. Although Manna and
Waldinger would like to regard their syntheses as 'deductive', the
deductive relationships actually exploited do not appear explicitly
in the successive object-level problem representations developed by the
synthesizer - instead they are only implicit in the 'crossing' axioms
which have presumably been invoked in order to justify the procedures
which implement the various transformations. This arrangement tends
to make the logical basis of the transformations less visible (and so'
less obvious) than we should ideally desire. Secondly, they recognize
that program modification represents an important aspect of synthesis,
so that a comprehensive synthesizer should be capable of accepting
as input information encoded in the target programming language.
Insofar as their system already accepts somewhat procedural specifications
it would seem likely that it could also accept LISP-like programs as
input and then proceed to modify them, and in fact they do describe
some hypothetical examples of this. However, such an arrangement
requires that the semantics of the specification language should fully
incorporate that of the programming language, and it could be argued
that the use of a conventional language having semantically awkward
features like destructive assignment (unlike pure LISP) would make
the complete formalization of the synthesis system unduly cumbersome.
Thirdly, their choice of formalism constrains their syntheses to be
input-output deterministic. Their specifications are functional
rather than relational and their target programs are function evaluators.
This means that distinct syntheses are necessary in order to procure
programs which investigate various input-output arrangements of some
given relation; by contrast, we often find that a derived logic procedure
set is suitable for solving different .input-output permutations of the
goal arguments.

•306

The various papers by Manna and Waldinger suggest some ambivalence
on their part towards adopting a single formalism such as logic. The
1971 report (60) uses FOPL for specification but not in the way that
we do, since they employ it primarily to construct theorems expressing
the existence of solutions satisfying the partial correctness formula
rather than for simply defining the relations of interest. Their
more recent specification languages are claimed to include FOPL, yet
still they clearly do not intend to deploy it in the manner used for
logic program specification. The 1971 report anticipates the possible
adoption of partial function logic instead, presumably for both
specification and target languages, but this idea does not seem to have
been pursued further. (Interestingly, the contemporaneous work of
Burstall and Darlington, considered presently, does employ the language
of recursive functions as a single uniform formalism for program
derivation.7 In the 1977 Stanford Report cited earlier, Manna and
Waldinger refer to papers by Kowalski and by Clark and Sickel, but
mistakenly assert there that logic specifications are restricted to
clausal form. They question whether logic (clausal or otherwise) is
sufficiently expressive to serve as a specification language in view of
its preclusion of the algorithmic constructs used in their own problem
formulations; but this doubt probably arises because of their different
conception of logic's role in specification, as they apparently wish to
make their specifications somewhat algorithmic in character.

In summary, the work of Manna and Waldinger has usefully influenced
the approach taken here to logic program derivation in that it has
helped to clarify the tactics necessary for introducing recursions and
has confirmed the importance of the generalization technique. Devices
such as side-effects are, of course, regarded as implementation features
in our treatment rather than as matters deserving representation in the
logical development of programs. Their loosely-defined specification
language appears to be unnecessarily extensive and results in a loss of
semantical simplicity and uniformity, and we would hope that they will
eventually reconsider the use of logic as the principal formalism.

In many ways the work of Manna and Waldinger since the early
1970*s has been paralleled by that of Burstall and Darlington, whose
studies of program derivation are described in various papers (9, 10, 19).
These studies have their origins in Darlington's earlier doctoral
research into systematic program improvement, and have now culminated in

•307

a nicely organized and semantically clear implementation of a system
capable of transforming programs expressed as sets of recursion
equations. The notion of syntheses beginning with purely descriptive
specifications is not prominent in Darlington's approach, which is
instead essentially directed to the transformation of naive programs
into more sophisticated ones, using a uniform notation throughout.
The input equations do, of course, possess a perfectly straightforward
declarative semantics, being no more than function definitions, yet are
intrinsically more procedural in character than typical logic
specifications; for instance, in order to define some function by
reference to all members of some set, Darlington's formalism must
resort to a definition which has the appearance of a procedure which
recursively inspects that set's individual members, whereas in standard
FOPL we can use a universal quantifier instead and thereby avoid a

»
recursive specification.

Darlington's current implementation accepts an initial set of
function definitions as input, together with any lemmas which the user
considers might be useful to the ensuing transformations. The latter
arise through a succession of rule applications including (i) symbolic
execution ('unfolding') of the given definitions (treating them
collectively as a function evaluation program using call-by-name
invocation) for particular argument instances selected by the user,
(ii) rewriting definitions using given lemmas and certain built-in
laws and (iii) replacement of definiens sub-expressions by calls to
the given functions ('folding'), which is tactically similar to the
recursion-introduction method of Manna and Waldinger. Some simple,
general and non-deterministic heuristic algorithms are proposed by
Burstall and Darlington (10) for scheduling these various phases of
the transformation process and are shown to be effective for a variety
of problems such as list reversal, generation of factorial tables and
comparison of tree frontiers.

Some reviews by other researchers have mistakenly suggested that
the implementation described in the 1977 paper (10) is interactive and
necessarily a program improver. In reality the user has to contribute
much of the intelligence required for procuring the desired output by
selecting appropriate definitions, lemmas and instantiations as initial
input, whereupon the transformations are executed autonomously and
exhaustively without further user intervention. /"However, it may be

•308

the case that Darlington - who continues to implement enhancements -
has since introduced some truly interative capability./ Furthermore,
as Burstall and Darlington admit, there is no precise reason to expect
that - in general - their transformations will result in more efficient
programs, although there are good intuitive reasons for supposing that
certain steps (like 'folding') are more likely to eliminate
computational redundancies than to introduce them.

Burstall and Darlington also recognize the important role of
generalization and other kinds of redefinition, although, like Manna
and Waldinger, they have not yet been able to fully characterize or
automate such capabilities. Altogether the contemporaneous but
independent approaches taken by these two research groups seem to have
similar scope and power, and have identified much the same general
principles underlying the process of transformation by symbolic
execution. However, Darlington's implementation benefits very
substantially from his use of a formalism having a simple and precise
semantics which allows exceedingly transparent application of the
transformation rules. Moreover, because his function definition
language can be trivially paraphrased in Horn clause logic, his
implementation could easily and usefully be adapted as an automated
aid to logic program derivation, a possibility foreseen some years ago
by Keith Clark. A particularly interesting feature incorporated by
Darlington is a built-in ability of the matching routine used for
'folding' and 'unfolding' to exploit special user-asserted function
properties like associativity, thereby providing for more sophisticated
kinds of pattern-directed invocation than that used in this thesis for
making subformula substitutions - our treatment has explicitly encoded
such properties as derived lemmas which are summoned just as though they
were arbitrary specification axioms without conferring any enhancements
upon the normal matching process.

The question of whether Darlington's approach could also cater for
specifications presented in standard FOPL - with the object of
synthesis 'proper' - is a more difficult one. We know that 'folding'
and 'unfolding' are just instances of what has been termed herein as
goal substitution, whilst our goal simplifications are like some of
Darlington's rewriting laws. However, some of our transformations
which are performed during logic procedure derivation - such as

•309

conditional equivalence substitution - seem to have no counterpart in
his system, even though they are undoubtedly powerful and frequently-
used devices for invoking facts from the specification set. Further
studies will have to be pursued before it will be possible to assess
the applicability of Darlington's implementation to the general
problem of logic program derivation using standard FOPL.

Darlington's transformation system does not try to measure or
compare the computational efficiencies of the programs which it
generates. By contrast, Wegbreit (86) has attempted to integrate an
inference system like Darlington's with provisions for analysing
programs (albeit somewhat superficially) in order to identify sources
of inefficiency. With these arrangements, an initial input program
is analysed so as to identify those segments of its text which are
responsible for redundant computational effort; these segments are »
then regarded as targets for simplification using rules like 'folding',
•unfolding', generalization and such-like with the object of improving
the program's overall run-time performance. On the whole, the kind
of improvement which can be obtained by Wegbreit's system only requires
rather modest transformations to the program text and does not involve
a radical alteration of the overall algorithm structure; for example,
Wegbreit sees no way of using it to transform a bubble-sort program
into a quick-sort program. Input programs are presented in a LISP-
like notation which is not greatly removed from Horn clause logic, and
so it is possible to envisage the application of this simple improving
system to logic programs.

A synthesis system of considerable power, called 'PECOS', has
been implemented at Yale University; a brief outline of its
capabilities is given by Barstow (2). 'PECOS' accepts some very
abstract algorithm as an input specification and then generates a tree
of 'refinement' sequences terminating in INTERLISP programs which
implement the algorithm concretely; the tree is grown during the
synthesis by summoning applicable rules from a catalogue of more than
four hundred, this being an extremely heterogeneous mixture of
refinement rules encoding knowledge about the logical and implementational
properties of various classes of algorithms and data structures.
Operation of the system can be controlled interactively to allow the user
to decide which derivations in the developing tree are to be continued
or abandoned. Because the built-in rules are well-informed about the

•310

properties of sets, lists, arrays, permutations and orderings, 'PECOS'
has been able to synthesize a wide range of very concrete sorting
algorithms. The versatility of 'PECOS' seems to be chiefly
attributable to its large catalogue of specific rules rather than to
the use of powerful general strategies.

An approach to program synthesis which is rather different
from those previously considered has been taken by Bibel (3) in
Munich. He uses standard FOPL as a specification language but not
quite in the way that we do; instead he uses it to construct input-
output specifications like those used by Manna and Waldinger, having
the general form :-

(Vx3y)(output-predicate(y) input-predicate(x))

and thegreby fixes the input-output status of the variables. The
matrix of a formula like that above is then interpreted by Bibel as
a definiens for a function which maps x to u. Such specifications
are intended to be purely descriptive and thus undisposed towards
any particular algorithms for computing their associated functions.
Bibel is not especially concerned with the choice of target language
and resorts to a loosely-defined ALGOL-like notation for the
expression of his derived programs. Synthesis proceeds by summoning
a rather curious collection of transformation rules, of which some
are activated in response to highly specific syntactical structures
in the definiens being transformed, whilst others are applicable only
over certain semantic domains such as set theory; it is expected
(by Bibel) that many more' rules will have to be devised in order to
provide a reasonably comprehensive synthesis tool. Bibel attaches
much significance to the precise arrangement of quantification over
the definiens' variables, associating distinct rules with distinct
groupings of quantifiers.- Amongst his rules one can discern
provisions analogous to Darlington's 'folding' and rewriting tactics,
but it is clear that he does not view his transformations as symbolic
executions. Some small account is given to matters of efficiency by,
for instance, comparing the cardinalities of alternative sets to be
searched, but these arrangements appear to be rather idiosyncratic.
Bibel also believes that certain sequences of rule application are
sufficiently powerful to synthesize quite broad classes of algorithms,
and so his system tends to be rather more deterministic than those of
Waldinger and Darlington. Altogether it is rather difficult to reach

•311

a clear appraisal of the relationship which Bibel's work bears to
that of the latter researchers or ourselves, since he provides no
such comparison himself and, in his reports to date, leaves much
technical and motivational detail unspecified. No implementation has
been pursued yet, because Bibel has not been able to gain access to
computer facilities at his own institute.

The work of Keith Clark is undoubtedly closer to the research
described in this thesis tJian any of the other projects for program
derivation previously discussed. Comments upon both his approach and
his examples appear in earlier chapters and so it is not necessary to
recount them at length here. Suffice it to recall that he also uses
standard FOPL for specifying relations and derives logic programs from
them using inference rules like those of Darlington. Clark's initial
ideas on program derivation appear in a draft paper for IJCAI-77 (15)
in which he chooses the subset problem to illustrate logic procedure
derivation; there he also sketches the relationship between the latter
and the inductive verification method which he had previously developed
with Tarnlund. In this draft paper he presents his derivation method
as one specifically applicable to problems dealing with inductively
definable sets, but his later papers drop this undeserved emphasis.
The final IJCAI-77 paper uses a slightly more interesting example of a
program which assigns a yes/no answer to an output variable in response
to the question of whether a given element belongs to a given list.
This example also appears in a rather more lengthy report (12) . In
that report Clark presents an append derivation and derives a number
of iterative programs for the fact, reverse and fib relations. The
append specification which he uses and describes as "intuitively correct"
is, in fact, erroneous for the same reason as is his perm specification
in (13) in that, as explained in Chapter 7, it fails to properly
conserve the multiplicities of list members. /"However, Clark and
Darlington have very recently revised the paper (13) to give a new
version entitled "Algorithm Classification Through Synthesis" in which
they correct their perm specification.7 It is something of an irony
that proponents of logic programming, including the present writer,
occasionally present (by accident) confident derivations based upon
"intuitively correct" but nonetheless erroneous specifications; this is
a cautionary reminder that the potential clarity of logic does not in
itself render us immune from the import of Russell's (75) dictum :
"obviousness is the enemy of correctness".

•312

Clark has consistently emphasized his treatment of program
derivation as symbolic execution, although his presentations of
examples do not usually expose this theme very clearly and often
appear somewhat disorganized. This impression is given mainly by
his seemingly unsystematic treatment of definiens manipulation.
Admittedly, it is often very difficult to cast the latter convincingly
into the format of a program execution when using standard FOPL, as
is reflected by the somewhat non-uniform nature of the inference rules
used in this thesis. Because FOPL is inherently less uniform than
the notation of recursion equations, Clark's often-expressed (but so
far unrealized) intention to implement a practical symbolic executor
analogous to Darlington's will prove very difficult to fulfil until we
possess a strong problem-solving interpretation to guide and justify
all the various syntactical manipulations which FOPL seems to demand.
Another significant problem confronting implementation of logic
program synthesizers is that of dealing properly with lemma generation.
It seems very difficult to organize this as a top-down activity which
can be assimilated naturally into the main-stream of the derivation
process. Clark also recognizes that the choice of lemmas and the
scheduling of their invocations "is vihere some of the cleverness comes

into the program syntheses"; this is, if anything, an understatement.
Perhaps one day we shall have inference systems which dispose of the
need to conduct preliminary derivations of lemmas; the role of lemmas,
with the question of whether they are really necessary at all, is an
appropriate topic for future research.

Neil Murray at Syracuse University has recently reported (63)
an interesting proof procedure for a quantifier-free subclass of FOPL
whose inference system he calls "NC-resolution", that is, non-clausal
resolution. .This is clearly capable of mechanization although the
choice of practical control strategies for it remains undetermined.
Murray shows how the inference system (which he proves complete) can
be used to derive Kowalski1s fact* program from specifications of
the fact, times and fact* relations, once these have been rewritten
in his chosen NC-syntax. /"Actually his initial fact specification
is erroneous due to the omission of an existential quantifier from
the definiens; fortuitously this does not affect the correctness of
the particular derivations which he pursues.7 Murray's work provides
a nicely-judged intermediary between adaptations of Darlington's
system for Horn clause logic and inference systems for the complete

•313

standard formulation of FOPL, and it will be interesting to find out
how well it deals with more difficult examples.

Topics for Future Research

The present project must be seen as only a preliminary exploration
of logic program derivation, although it has already yielded much
useful experience and clarification. Many important questions
remain open to future study. Primarily, we need to investigate more
thoroughly the question of which kinds of inference consistently
prove to be the most intuitive and practicable for problems expressed
in FOPL. Whilst there seems to be little doubt that such inferences
must entail various kinds of substitutions for definiens subformulas,
the most desirable preconditions for these substitutions are at
present unknown. In most of the examples studied so far, which use
fairly simple rules like conditional and unconditional equivalence
substitution, it has appeared necessary to engage firstly in a certain
amount of lemma generation, often with some degree of sacrifice in
goal-directedness. It is possible that a more thorough study of the
fundamental logical structure of such examples will suggest alternative
rules or ways of writing specifications which will allow more clearly
motivated derivations. This, then, is certainly a matter which we
shall pursue in the short term : improvements to the inference system.

We further need a better understanding of logic programs
themselves in order to discriminate intelligently between alternative
targets for derivation. Even when the control component is fixed,
there may exist a number of substantially different logic components
which, with that control, all give essentially the same algorithm.
Some of these logic components may be much more difficult to derive
than others or may require more subtle specifications. It would be
useful to discover general characteristics of procedure sets which are
both practicable to derive and efficient to execute. Furthermore, it is
to be expected that advances in implementation technology will lead to
interpreters supporting richer control mechanisms than those found in
the Prolog family. The ability to vary control components adds an
extra level of complexity to the investigation of alternative programming
styles. Throughout the thesis it has been assumed that control is
Prolog-like, because this reflects the current position regarding
practical program implementation. This must have biased the

•314

investigation to some extent in that many of the derivations were
deliberately steered towards procedures giving useful sequential
computations. Significantly different assumptions about control
might have led to different impressions about suitable inference
systems for procedure derivation.

At present it is not easy to foresee which control strategies
will eventually predominate in automatic computation, whether the
latter be instigated by logic programs or otherwise; future
developments here depend partly upon which kinds of new processors
become available. It would seem unduly presumptuous to believe,
as Luckham and others (56) seem to do, that efficient execution of
logic programs will require the existing apparatus of conventional
control constructs, especially at a time when the adequacy of these
is already being questioned in relation to conventional programs
and processors. One topic which clearly deserves investigation is
the nature and derivation of logic programs intended for concurrent,
rather than sequential, processing. At present there is growing
interest in the problem of verifying concurrent, but otherwise
conventional, programs; we may hope to confirm in due courcc that
their logic program counterparts will prove easier to verify, just
as is,the case with sequential programs. The advantages of
separating logic from control can be expected to withstand quite
radical developments in execution strategies, but this conjecture
must be tested against experience.

Although logic programming has been presented in this thesis
as essentially to do with deductively analysing computed relations,
it is clear that this activity must be guided by intelligent
consideration of run-time behaviour. Superficially it might appear
that FOPL does not provide for explicit representation of that part
of the programmer's reasoning which deals with assessing the efficiency
of programs, as though such reasoning were necessarily extralcgical.
From this viewpoint it might then seem that FOPL was less useful for
expressing computational knowledge than the various 'algorithmic'
logics which have been recently developed with the express intention
of formalizing inferences about computations. An interesting topic
for research, then, is the comparison of these new formalisms with
FOPL in order to find out whether the former really can provide the
programmer with better program-reasoning tools than the latter.
Kowalski has recently studied the problem of treating FOPL as both

•315

object language and metalanguage, using an interfacing predicate which
explicitly refers to axiom sets, conjectures, proofs and control
strategies. This interface appears to have considerable power for
expressing metalogical problems. In particular we can see that it
might bring deductive reasoning about computations within the ambit
of FOPL, thus countering the proposition that such reasoning demands
new systems of logic. Kowalski's research on this topic might
therefore form the basis for FOPL inference systems which take account
of computational efficiency as well as ensuring the correctness of
programs, thereby opening the prospect of a single comprehensive tool
for reasoning about all aspects of programs.

We shall continue to use program derivation for the purpose of
elucidating the logical relationships between members of algorithm
families. The family of sorting algorithms examined in this thesis
really encompasses only minor variants of merge-sort. By contrast,
we already know from Darlington's earlier studies (20) that certain
other sorting algorithms like bubble-sort involve some subtle
difficulties not encountered in the merge-sort sub-family, and so these
certainly deserve future study. The text-searching algorithms
presented here also need much more scrutiny in order to clarify the
role of the various lemmas which appeared to be crucial to their
respective derivations. It is known that Bibel has been recently
examining this family using his derivation system, and so it will be
interesting to compare his treatment with our own. Also in Munich,
Lothar Schmitz (77) has recently synthesized a family of difficult
transitive closure algorithms (though not using logic) which we may
investigate in due course.

G L O S S A R Y

The meanings of the principal predicates used in the thesis are
expressed informally below.

append(x,y,z)

append*(u,y,z)

cardin(x,w)

consec(u,v,y)

count(y,w)

delete(u,x,y)

duplic(x)

duplic*(x,y)

elem(u,i,j,x)

embed(x,y,z)

empty(x)

empty-list(y)

enter(u,v,x,y)

entry(u,v,x)

equal(x,y)

equiv(x,y)

fact(u,v)

fib(ufw)

filter(x,y)

first(xfu)

go(x)

go*(x,y)

insert(u,xfy)

item(ufi,x)

kount(y,w)

label(u,i,x)

last(x,u)

length(xfz)

lowerbound(u,x)

appending list y to list x gives z
appending list y to list (u) gives z
set x has cardinality w
element v is consecutive to u in list y
list y has w distinct members
deleting element u from list x leaves y
list x contains duplicates
either list y contains duplicates or lists x
and y share a common member
u is the matrix element x±j
palindrome x is symmetrically embedded in
palindrome y to give z
x is the empty set
y is the empty list
y is the set union of {(u,v)} with x
(u,v) is a member of set x
lists x and x are equal
sets x and y are equivalent
v is the factorial of u
u is the w1-*1 Fibonacci number
deleting all duplicates from list x leaves y
list x has first member u
node x (in some graph) is reachable
node y is reachable if node x is
ordered-insertion of u in ordered-list x gives
u is the member of list x
list y has w members
u is the ith label in the frontier of tree x
list x has last member u
list x has length z
u is a lower bound for set x

Contd.

merge(x,y,z)

middle(x,y)

min(u,x)

occurs(ufw,y)

ord(y)

palin(x)

palin*(x,z)

parti tion(x ,y ,z)

partition*(u,y,z)

perm(x,y)

pick(u,v ,z)

plus(x^y,z)

prec(u,v,x)

prefix(x,y)

reverse(x,y)

reverse*(z,x,y)

same-frontier(x,y)

select(u,x,y)

singleton(x,u)

size(x,i,j)

smaller(x,y)

spans(u,v rx,y)

string(x,y)

subset(x,y)

table(x,z)

table*(x,w,z)

table**(x,w,v,z)

times(x,y fz)

unit-list(x,u)

union(x,y,z)

union*(u,y,z)

uzx
A

uzy

•317

merging ordered lists x and y gives z
list y is the middle of list x
u is the minimum member of set x
element u has w occurrences in list y
list y is ordered
list x is a palindrome
appending list x to the reverse of list z
gives a palindrome
set z is partitioned into sets x and y
set z is partitioned into sets {u} and y
list y is a permutation of set x
u and v are members of set z satisfying u<v
z is the sum of numbers x and y
member u precedes v in list x
string x is a prefix of string y
list y is the reverse of list x
appending list x to the reverse of list z gives y
trees x and y have identical frontiers
set y is the set union of x with {u | min(u,y)}
set x is the singleton {u}
matrix x has i rows and j columns
all members of set x are < all members of set y
u and v are respectively members of sets x and y
string x is a substring of string y
set x is a subset of set y
x is the set {(0,01), .(z,z\)}

x is the set {(w,w\), (z,z\)}

x is the set {(w,v) , (z,z\)} if wl = v
z is the product of numbers x and y
x is the unit list (u)
z is the set union of sets x and y
z is the set union of sets {u} and y
u is a member of set x
u is a member of list y

•318

B I B L I O G R A P H I C N O T E

A brief guide is given here to the literature of logic
programming relevant to the thesis. The new reader of this
literature should firstly consult Kowalski's publications (49,50)
to learn how problems may be solved using resolution and to gain
appreciation of the scope and expectations of logic programming.
This may then be consolidated by reference to van Emden's paper (23).
Probably the best description of the Prolog system in English is
that given in Warren's reports (82,83,84,85), based very much upon
the implementation at Edinburgh University. Practical experience
with Prolog is described by Bundy (7,8). A readable account of
logic program execution using connection-graph systems instead is
presented in an early paper by Tarnlund (79). More recent papers
on logic programming generally are those by Clark and Kowalski (14,51).
This covers the principal literature of the general field.

Papers concerned specifically with logic program derivation are
those*by Clark (12,13,15) and by Hogger (38,39,40). The paper by
Clark and Tarnlund (16) is an important contribution to logic program
verification by other means than derivation. Systems for program
derivation in other formalisms are described by Manna and Waldinger
(60,61,62), by Burstall and Darlington (10) and by Bibel (3).

Helpful textbooks in computational logic are those by Nilsson (67)
and (especially) by Chang and Lee (11). Kowalski is currently
preparing a book which revises the original report (49) and which will
doubtless become a standard text on logic for problem solving.
Wolfgang Bibel is currently writing a book on the applications of
logic, and Manna and Waldinger are also preparing a book on program
synthesis.

•319

R E F E R E N C E S

1] A. V. and Corasick, M. J. Efficient string matching: an
aid to bibliographic search. Comm. ACM, 18̂ No. 6, 1975.

2] Barstow, D. R. Experience with a refinement paradigm in a
knowledge-based automatic programming system. Proc. AISB/GI
Conf. on Artificial Intelligence, Hamburg, July 18-20, 1978.

3] Bibel, W. On strategies for the synthesis of algorithms.
Proc. AISB/GI Conf. on Artificial Intelligence, Hamburg, July
18-r20, 1978.

4] Black, F. A deductive question-answering system. Doctoral
Dissertation, Harvard, June 1964.

5] Bledsoe, W. W. Non-resolution theorem proving. Research
Report ATP-29, Automatic Theorem Proving Project, Univ. of
Texas at Austin, 1975.

6] Boyer, R. S. and Moore, J. S. A fast string searching algorithm.
Comm. ACM, 20 No. lO, 1977.

7] Bundy, A. My experiences with Prolog. DAI Working Paper No. 12,
•University of Edinburgh, 1976.

8] Bundy, A. and Welham, R. K. Utility procedures in Prolog.
DAI Occasional Paper No. 9, University of Edinburgh, 1977.

9] Burstall, R. M. and Darlington, J. Some transformations for
developing recursive programs. Proc. Int. Conf. on Reliable
Software, Los Angeles, California, pp 465-472, 1975.

10] Burstall, R. M. and Darlington, J. A transformation system for
developing recursive programs. J. ACM 2_4(1) , 1977.

11] Chang, C-L. and Lee, R. C-T. Symbolic logic and mechanical
theorem proving. Academic Press, 1973.

12] Clark, K. L. The synthesis and verification of logic programs.
Research Report, Theory of Computing Research Group, Dept. of
Computing and Control, Imperial College, London, 1977.

•320

13] Clark, K. L. and Darlington, J. Algorithm analysis through
synthesis. Research Report, Theory of Computing Research Group,
Dept. of Computing and Control, Imperial College, London, 1977.

14] Clark, K. L. and Kowalski, R. Predicate logic as programming
language. Research Report, Theory of Computing Research Group,
Dept. of Computing and Control, Imperial College, London, 1977.

15] Clark, K. L. and Sickel, S. Predicate logic : a calculus for the
formal derivation of programs. Proc. IJCAI-77, 1977.

16] Clark, K. L. and Tarnlund, S-A. A first order theory of data and
programs. Proc. IFIP Congress, 1977.

17] Colmerauer, A., Kanoui, H., Pasero, R. and Roussel, P. Un systeme
de communication homme-machine en francais. Rapport Preliminaire,
Groupe de Researche en Intelligence Artificielle, Universite d'Aix-
Marseille, Luminy, 1972.

18] Dahl, 0-J•, Dijkstra, E. W. and Hoare, C. A. R. Structured
Programming. Academic Press, 1972.

19] Darlington, J. Application of program transformation to program
synthesis. Proc. Symp. on Proving and Improving Programs,
Arc-et-Senans, France, pp. 133-144, 1975.

20] Darlington, J. A synthesis of several sorting algorithms. DAI
Research Report No. 23, University of Edinburgh, 1976.

21] Davis, M. and Putnam, H. A computing procedure for quantification
theory. J. ACM 7_ , 1960.

22] Dijkstra, E. W. Correctness concerns and, among other things,
why they are resented. Proc. Int. Conf. cn Reliable Software,
Los Angeles, California, pp. 546-550, 1975.

23] van Emden, M. Programming with resolution logic. Machine
Intelligence 8 , 1977.

24] van Emden, M. and Kowalski, R. The semantics of predicate calculus
as a programming language. J. ACM, 23_ (4), 1976.

25] Floyd, R. W. Algorithm 245, TREESORT 3. Comm. ACM No. 12,
1964.

26] Floyd, R. fv. Assigning meanings to programs. Proc. Symposia
in Applied Mathematics, Vol 19_, Amer. Math. Soc., pp. 19-32, 1967.

•321

27] Gilmore, P. C. A proof method for quantification theory. IBM J.
Research and Development , , pp. 28-35, 1960.

28] Green, C. and Raphael, B. The use of theorem-proving techniques
in question-answering systems. Proc. ACM 23rd Nat. Conf., pp.
169-181, Brandon Systems Press, Princeton, N. J. , 1968.

29] Green, C. The application of theorem proving to question
answering systems. PhD Thesis, Stanford University at Stanford,
California, 1969.

30] Green, C. Application of theorem proving to problem solving.
Proc. IJCAI Conf., Washington D.C., 1969.

31] Green, C. Progress report on program-understanding systems.
Stanford Memo AIM-240, Computer Science Dept., Stanford University,
1974.

32] Green, C. and Barstow, D. Program synthesis for efficient
sorting. A.I. Lab.. Report, Computer Science Dept., Stanford
University, 1977.

33] Hayes, P. -J. Computation and deduction. Proc. MFCS Conf.,
Czechoslovakian Academy of Sciences, 1973.

34] Hill, A. J. A predicate logic data base. MSc Thesis, Dept. of
Computing and Control, Imperial College, London, 1976.

35] Hoare, C. A. R. Algorithm 64. Comm ACM 1961.

36] Hogger, C. J. Stepwise refinement for the synthesis of predicate
logic programs. Research Report, Theory of Computing Research
Group, Dept. of Computing and Control, Imperial College, London,
1975.

37] Hogger, C.J. A logic program for the linear programming
Simplex Algorithm. Research Report, Theory of Computing
Research Group, Dept, of Computing and Control, Imperial College,
London, 1976.

38] Hogger, C. J. Deductive synthesis of logic programs. Research
Report, Theory of Computing Research Group, Dept. of Computing
and Control, Imperial College, London, 1977.

Hogger, C. J. Program synthesis in predicate logic. Proc.
AISB/GI Conf. on Artificial Intelligence, Hamburg, July 18-20, 1978.

•322

40] Hogger, C. J. Goal-oriented derivation of logic programs.
Proc. MFCS Conf., Polish Academy of Sciences, Zakopane, 1978.

41] Katz, S. and Manna, Z. Logical analysis of programs. Comm. ACM
19, 1976.

42] King, J. A program verifier. PhD Thesis, Carnegie-Mellon
University, Pittsburgh, Pa., 1969.

43] Knuth, D. E. The art of computer programming. Vol. :
Sorting and Searching, Addison-Wesley Publ. Co., 1973.

44] Knuth, D. E., Morris, J. H. and Pratt, V. R. Fast pattern
matching in strings. Technical Report CS-74-440, Stanford
University, Stanford, California, 1974.

45] Kodratoff, Y. A sane algorithm for the synthesis of LISP
functions from example problems : the Boyer and Moore algorithm. %
Proc. AISB/GI Conf. on Artificial Intelligence, Hamburg, July
18-20, 1978.

46] Kowalski, R. Studies in the completeness and efficiency of
theorem proving by resolution. PhD Thesis, University of
Edinburgh, 1970.

47] Kowalski, R. A proof procedure using connection graphs.
DCL Memo No. 74, University of Edinburgh, 1973.

48] Kowalski, R. A proof procedure using connection graphs.
J. ACM 22̂ (4) , 1975.

43] Kowalski, R. Logic for problem solving. DCL Memo No. 75,
University of Edinburgh, 1974.

50] Kowalski, R. Predicate logic as programming language. Proc.
IFIP Congress, 1974.

51] Kowalski, R. Algorithm = logic + control. Research Report,
Theory of Computing Research Group, Dept. of Computing and Control,
Imperial College, London, 1976.

52] Kuehner, D. G. Strategies for improving the efficiency of
theorem proving by resolution. PhD Thesis, University of
Edinburgh, 1971.

53] Lee, R. C. T. and Waldinger, R. J. PROW : a step tov;ard
automatic program writing. Proc. IJCAI, Washington D.C., 1969.

•323

54] Liskov, B. and Zilles, S. Specification techniques for data
abstraction. Proc. Conf. on Reliable Software, Los Angeles,
California, 1975.

55] London, R. L. A view of program verification. Proc. Conf. on
Reliable Software, Los Angeles, California, 1975.

56] Luckham, D. C., Morales, J. J. and Schreiber, J. F. A study in
the applications of theorem proving. Proc. AISB/GI Conf. on
Artificial Intelligence, Hamburg, July 18-20, 1978.

57] McCabe, F. G. Euclid - a coroutining theorem-prover. MSc
Thesis, Dept. of Computing and Control, Imperial College,
London, 1976.

58] McCarthy, J. Programs with common sense. Mechanization of
Thought Processes, Vol. JL, pp. 77-84, Proc. Symp. Nat. Phys. Lab.,
London, Nov. 24-27, 1958.

59] McCarthy, J. A basis for a mathematical theory of computation.
In Studies in Logic and the Foundations of Mathematics : Computer
Programming and Formal Systems. North Holland Publ. Co., 1963.

60] Manna, Z. and Waldinger, R. J. Toward automatic program synthesis.
Comm. ACM 14, 1971.

61] Matina, Z. and Waldinger, R. J. Knowledge and reasoning in
program synthesis. Artif. Intel J. (2), 1975.

62] Manna, Z. and Waldinger, R. J. The automatic synthesis of
systems of recursive programs. Proc. IJCAI Conf., 1977.

63] Murray, N. A proof procedure for non-clausal first order logic.
Research Report, University of Syracuse, New, York, 1978.

64] von Neumann, J. and Goldstine, H. H. On the principles of large
scale computing machines. In The Collected Works of John von
Neumann, Vol. 5_, Pergamom Press, 1963.

65] Newell, A., Shaw, J. and Simon, H. Empirical explorations of the
logic theory machine. Proc. West. Joint Computer Conf., Vol. 15,
pp. 218-239, 1957.

66] Newell, A., Shaw, J. and Simon, H. Report on a general problem-
solving program. Proc. Intern. Conf. on Information Processing,
pp. 256-264, UNESCO House, Paris, 1959.

•324

67] Nilsson, N. J. Problem-solving methods in artificial intelligence.
McGraw Hill Book Company, 1971.

68] Noonan, R. E. Structured programming and formal specification.
IEEE Trans, on Software Engineering, Col. SE-1 (4), 1975.

69] Quine, W. V. 0. A proof procedure for quantification theory.
J. Symbolic Logic, £0 , 1955.

70] Raphael, B. SIR : a computer program for semantic information
retrieval. PhD Thesis, Mass. Inst, of Technology, 1964.

71] Reynolds, C. and Yeh, R. T. Induction as the basis for program
verification. IEEE Trans, on Software Engineering, Vol. SE-2 (4),
1976.

72] Robinson, J. A. Theorem-proving on the computer. J. ACM 10 ,
1963.

73] Robinson, J. A. A machine-oriented logic based on the resolution
principle. J. ACM 12_ , 1965.

74] Roussel, P. Prolog : manuel de reference et d1utilisation.
University d'Aix-Marseille, 1975.

75] Russell, B. International Monthly, p. 85, 1901.

76] Sandewall, E. Conversion of predicate-calculus axioms, viewed as
non-deterministic programs, to corresponding deterministic
programs. Proc. IJCAI-3, pp. 230-234, 1973.

77] Schmitz, L. An exercise in program synthesis : algorithms for
computing the transitive closure of a relation. Research Report,
Pachbereich Informatich, Hochschule der Bundeswehr, Munich, 1978.

78] Spitzen, J. and Wegbreit, B. The verification and synthesis of
data structures. Acta Informatica, pp. 127-144/ 1975.

79] Tarnlund, S-A. An interpreter for the programming language
predicate logic. Proc. IJCAI-4, Tbilisi, USSR, 1975.

80] Tarnlund, S-A. Unpublished presentation to a Workshop on Logic
Programming, Imperial College, London, May 1976.

81] Wang, H. Towards mechanical mathematics. IBM J. of Research
and Development, 4 , pp. 2-22, 1960.

•325

82] Warren, D. A user's guide to the DEC-10 Prolog system.
University of Edinburgh, 1975.

83] Warren, D. Implementing Prolog, a language for programming in
logic. Dept. of Artificial Intelligence, University of Edinburgh,
1976.

84] Warren, D. Implementing Prolog - compiling predicate logic
programs, Vols. 1 and 2 , DAI Research Reports Nos. 39 and 40,
University of Edinburgh, 1977.

85] Warren, P., Pereira, L. and Pereira, F. Prolog - the language
and its implementation compared with LISP. Proc. SIGPLAN-SIGART
Language Conf., Rochester, 1977.

86] Wegbreit, B. Goal-directed program transformation. IEEE Trans,
on Software Engineering, Vol. SE-2 (2), 1976.

87] Welham, R. Geometry problem solving. DAI Research Report No. 14,
University of Edinburgh, 1976.

88] Williams, J. W. J. Algorithm 232, HEAPSORT.
Comm. ACM 7_, No. 6, 1964.

39] Wirth, N. Systematic programming. Prentice Hall, 1973.

90] Workshop on Logic and Data Bases. Toulouse, November, 1977.

E N D

