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ABSTRACT  

A new approach to the design of active RC filters that simulate 

doubly terminated LC ladder filters is developed in this thesfs. The 

approach is based on the Linear Transformation of the conventional port 

variablevectors[V.I.11 
T  of two-port subnetworks into which an LC 

ladder filter is decomposed. In their simplest form these subnetworks 

are taken to be the series and shunt arms of the LC ladder filter. 

Their transformation is then effected from the V-I description into a 

x-y domain where direct active RC implementation and interconnection 

is possible. The active RC filters so derived are referred to as the 

Linear Transformation Active (LTA) filters. The theoretical development 

as well as the effective implementation of the entire approach are 

analytically presented in such a manner to serve as a powerful active 

RC filter design tool. The flexibility of the new approach is such that 

new filter structures can be obtained having desirable features such as 

the R-Self-Dual LTA method and in addition many well known ladder simu-

lation methods are interpreted as special cases of the general LTA 

method. The LTA approach is applied, both in its general form and also 

in its constrained forms, to several filter design problems to illustrate 

not only its flexibility but also its effectiveness in producing practical 

RC active filter simulations of doubly terminated LC ladder filters. 
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GLOSSARY OF SYMBOLS AND ABBREVIATIONS  

CIii 	Nonsingular 2x2 left transformation matrix for the left 

port-variable vector of the two-port N. . 

02i 	
: Nonsingular 2x2 right transformation matrix for the right 

port-variable vector of the two-port Ni. 

T. 	: The modified chain matrix of the two-port N. . 

CI-1  : The inverse matrix of Q. 

QT  : The transpose of the matrix Cl. 

ac : The compatible matrix of O. 
under the cross-cascade connection. 

: logic "and" 

V : logic "or" 

:"identically equal to" 

=t> 	: "implies that" 

< 	> 	: "equivalent to" 

LT 	: Linear Transformation, Linearly Transformed, Linear Transform. 

THE 	: Transfer Ratio Elimination. 

TRI 	: Transfer Ratio Identification. 

: "for each and every" 
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C HAP ER 

ACTIVE-RC FILTERS : A SURVEY 

1.1 SOME INTRODUCTORY COMMENTS ON FILTERS  

Any communication system,by virtue of its very nature, involves 

signal processing operations and employs several filters at the various 

stages within its structure.' These filters may be classified according 

to the following criteria: 

(i) Frequency range of operation (audio, radio 

and microwave filters 

(ii) Band selectivity (lowpass, highpass, bandpass, 

band-reject, all-pass). 

(iii) Kind of elements employed (LC, distributed 

• components, electromechanical, piezoelectric, 

magnetostrictive resonators). 

(iv) Filter topology (ladder, lattice) 

(v) External power requirements (passive, active). 

The initial information given to the filter designer refers to 

the first two criteria (i.e. the frequency range of operation and the 

band selectivity) in the form of typical filter specifications. 
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These filter specifications define the limits which the response of the 

filter must not exceed. Typical specifications of a bandpass filter 

are shown in Fig. 1.1,where T(jro) is the transfer function of the filter 

. () yes) def1ned as T s = xes). xes) and yes) are the Laplace -transforms of 

the input signal x(t) and yet) respectively. 

o 

Lower f1 
Stopband T~~~~iO~ 

Passband 

Fi g. 1.1 

f3" 
Upper 

Transiti on 

Upper 
Stopband 

The dotted line represents the ideal filter response to which the . 

designer must approximate within the realistic specification margins. 

The approximation process consists of finding a function T(s) which 

satisfies the specifications,i.e. the plot of IT(jro)1 lies in that 

region in Fig. 1.1 \-:hich is not cross-hatched. The appro::imation 

problem warrants and has received extensive treatment [1)[2J[3]. 
Nevertheless it is importa~t to point out that the steepness in the 

. A1 
transition region or" the required filter (a measure of which 1S f -f 

A 2 1 
for the lower transition region and f :f for the upper transition 

" 4 3 ~.r2 f3 
region) as vlell as -the selectivity of the filter Cf--=--f ) greatly 

. 3- 2 

affect the order of the transfer function T(s) and its pole-Q values, 
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Fig. 1.2 

in the sense that very steep and selective filters require high order 

functions with large pole Q values [4J . 

Once a transfer function T(s) has been determined that meets 

the specifications, a synthesis procedure is then implicated for which 

the type of the filter, according to criteria (ii~, (iv) and (v), must 

have been predetermined. This is done according to the capacity of 

each type of filter to provide the maximum pole-Q for the given transfer 

function at the required frequencies. '.rhis is discussed in detail in 

references [4Jand [6J from \-/hich we have the plot of Q versus frequency 

of Fig. 1.2 above. The mechanical, ceramic and crystal filters are 
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not within the scope of this thesis where we are entirely concerned 

with active RC filters and particularly with a special class of such 

filters, defined in this thesis, that simulate passive LC networks. 

Our attention will be,therefore, focused on the LC filters and active . 

RC filter case of Fig. 1.2. 

The weakness of the LC passive filters to operate at very low 

frequencies, even with very low pole-Q values, is due 	among other 

reasons )to the fact that at these frequencies the inductors become very 

bulky and their inductive behaviour is dominated by the resistive beha-

viour due to their loss resistance R1 
shown in Fig. 1.3 as a series loss 

resistance. 

R 

Fig. 1.3 

Any attempt to reduce the value of R1, increases the cost of the induc-, 

tors and contributes rather negatively to the reduction of their size. 

The case for active RC filters use,becomesimmediately apparent 

from the above discussion and also from Fig. 1.2, in such a way that 

for low-to-medium pole-Q s at low-to-very-low frequencies appear without 

alternatives in the analogue domain. Moreover, within the voice frequency 

band, where in communication systems the demand on filter complexity may 

be considerable, the active RC filters are eminently suitable due to 

their being. microelectronically realizable. In general, active RC • 

filters can replace effectively LC passive filters for frequencies up 

1 
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to 100 kHz with pole-Q requirements of up to several hundreds, whilst 

at higher frequencies, where inductors are less bulky, LC filters are 

less objectionable. 

The pole-•Q and frequency limitations in active RC filters are 

mainly due to the active components available. The use, for instance, 

of commercial integrated operational amplifiers with a gain-bandwidth 

product 1 MHz does not allow satisfactory operation of the active RC 

filter at frequencies beyond 100 kHz approximately. However, many 

filtering applications are well within this frequency range. Active RC 

filters provide a very powerful, elegant and practicaly desirable solu-

tion to many of these filtering problems whilst the development of new 

design methods and the continuous improvement of active components could 

conceivably extend the frequency limits to much higher levels. 
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1.2 ACTIVE FILTER DESIGN - TRANSFER FUNCTION SIMULATION 

Once the decision on the use of an active RC realization of 

the transfer function T(s) has been made, a synthesis procedure must be 

followed. The transfer function T(s) has,of course, been derived through 

some approximation procedure to satisfy the design specifications: This 

approximation procedure leads to a transfer function of the form: 

y(s) 	bms
m 
+ bm-1sm-1  + . . . . + b1

s + bo  
T(s) = 	= 

3:179D 	a
n
sn + a

n-1
sn-1,+ . . . . + a1

s + ao 

which may be written as the product of second order functions as 

follows: 

n/2 	n/2 
(s- )(s- 

T(s) = ri T (s) = 	
zji 	zj2)  

j=1 j 	j 
rl =1  k  j (s-p. )(s- p*.) 

J 	J 

where z. are the zeroes of the transfer function (roots of the nominator) 

and p., ps  are the conjugate pole pairs of T(s) (i.e. the roots of the 

denominator). Odd polynomials, of course, have at least single negative 

real root. in addition to the conjugate pole pairs p., p.. 
J J 

The above procedure is known as the decomposition of the 

transfer function T(s) into the second order subfunctions T.(s) which 

now can be realized individually by single-input-single-output second 

order active RC networks D6j[8kdwhich,when cascaded,form T(s). 

This synthesis procedure is known as the transfer function 

simulation by cascading second order active RC building blocks. Several 

methods such as those presented in references [6] [73[8] and [9] , are 

concerned with the grouping of the poles and zeroes of T(s) so that the 

resulting cascade structure is optimized with respect to sensitivity, 

dynamic range and distortion. With the cascade structure.las a starting 

network, several feedback paths may be added intending to reduce the 

sensitivity of the resulting structure. Such a modification, of course, 

• 
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. will change the overall transfer function. The new transfer function 

may be re-adjusted and identified with the desirable T(s) and new element 

values are then determined so that the cascade structure with the addi-

tional feedback paths represents a realization of the initial T(s). 

Various active structures of this kind have appeared in the literature, 

of which the most successful hitherto have been the Follow-the-Leader 

C- 	
structure [10] , 61] and the Shifted-Companion-Form structure H. 

A second approach to the synthesis problem is to use the analogue 

computer concept which involves solving the differential equation defined 

by the transfer function T(s) [8]. 

The use of Negative Impedance Converters (NIC s) for the synthe-

sis of transfer impedances originated by Linvill [13] , was of great inte-

rest in the early days of active RC filter design (1950 - 1965) and many 

active RC filter synthesis methods using NICs have been proposed during 

that tim414], Cif], [16] , [1A. Considerable research has been done on 

the NIC active RC filters concerning. their stability 6ffq and sensiti- 

vity N 	pq. However, the NIC active RC filters based on transfer 

function simulation are no longer of potential practical significance due 

mainly to their large sensitivities with respect to element variations 

and also due to the excesive number of RC components needed for their 

realization [8]. 

In conclusion it must be said that active RC filters derivable 

through transfer function simulation, are not of minimum sensitivity and, 

as a rule, they are more sensitive than active RC structures obtainable 

through any ladder simulation method, as it will be seen in the following 

section[27][57]. 

r 



-17- 

1.3 ACTIVE FILTER DESIGN - THE LADDER SIMULATION PRINCIPLE  

A transfer function T(s) that meets the filter specifications, 

can be determined using the very familiar and systematic passive network 

synthesis techniques [1] [ 2 ] [ 3 [41 ] • The familiarity of the majority of 

filter designers with those methods as well as the availability of LC 

filter design tables and catalogues[4] 	can be beneficially used for 

the design of active RC filters. Moreover, as it will be discussed later, 

active filters derived from passive LC networks by some form of simulation 

technique, present low sensitivity which is of vital importance in any 

filter structure. 

The most general type of passive network is the lattice network 

which presents certain disadvantages over the most widely used passive 

filter circuit configuration, the ladder form. The most severe dis-

advantage of the lattice filter realization is that transmission zeroes 

are formed.when a very sensitive bridge-balance condition is satisfied 

[23]. This leads to high sensitivity and poor performance in the stop-

band, a fact, among others, which makes ladder filters more desirable 

since in this case a transmission zero occurs only if either a series 

admittance or a shunt impedance becomes zero[23]. This transmission 

zero condition is easily satisfied and lthereforei the transmission zero 

sensitivities appear lower than in the lattice filter case. 

Taking into account that the active RC simulation of passive 

filters is employed for it 'transfers desirable properties of the passive 

original to the active RC; structure to copy its operation, the low sensi-

tivity and satisfactory performance of the LC ladder in the stopband 

makes this kind of filter highly suitable for active RC simulation. 

The sensitivity of a passive filter within the passband is 

extremely low since it appears to he proportional to the reflection 
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coefficient p which assumes very low values within the passband [23]. 

Therefore, reactive laddersdesigned between two-resistive terminations 

as to match them at certain frequencies (p=0, maximum power transfer 

points) will present zero sensitivity with respect to the reactive 

elements at these frequencies. This is known as the Orchard's Princi-

ple and states that the first order differential sensitivity of the 

transfer function of a passive LC doubly terminated network with respect 

to"the reactive components assumes zero value at those frequencies for 

which the reactive ladder matches the source resistance to the load 

thereby allowing maximum power transfer to occur (p=0)[24]. A very 

elegant proof of this statement is given in references[8]and[231. These 

sensitivity zeroes at the maximum power transfer points keep the sensi 

tivity low within the entire passband. 

Therefore, doubly terminated ladder LC filters with maximum 

power transfer points (referred to as well-designed doubly terminated 

LC ladder filters) can be used as a design vehicle for active RC filters 

for the following reasons : 

(i) Their sensitivity performance within the passband 

is extremely low n] [24][25][26  ] . 

(ii) Their sensitivity in the stopband is lower than that 

of the corresponding lattice network43]. 

(iii) They are readily obtainable from design catalogues 

and tables[ 4][28] [29]. 

The various active RC simulation methods are briefly described in the 

rest of this section. 

1.3.1 Inductance Simulation Method 

• A doubly terminated LC ladder filter consists of resistors. 

capacitors and inductors (RLC network). It is the presence of the 

inductor, as explained earlier, that makes these filters very problematic 
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at certain frequencies and very objectionable indeed at others. 

Therefore,if the inductive behaviour (i.e. a terminal relationship of 

the form V = sLsI) can be performed by an active RC section, this simu-

lated inductance can replace directly the inductors in the RLC ladder, 

turning it into an active RC ladder filter leaving the ladder topology 

unaltered. Several active RC simulated inductance circuits have been 

proposed[31][32] but the gyration concept is backed by a very sound theory. 

A gyrator is an actively realizable two-port device that is ca:- 

pable of converting a capacitive load into a simulated inductance at its 

input terminals. Its schematic representation together with its Z-matrix 

is shown in Fig. 1.4a where port 2 is terminated in the perallel combi-

nation of a resistance R1 
and a capacitance C1 

producing the equivalent 

circuit as shown. 

0 
1Z = 

R2/R
i R2C1  • (b) 

0 	 

Fig. 1.4 

It is observed that when R, =CO , the input impedance of the terminated 

gyrator becomes purely inductive. The simulation of a floating inductor 

is more complicated requiring two gyrators in a back-to-back arrangement 

as shown in Fig. 1.4b. Several circuits  fnr the  active re  ivaginn of 

the gyrator have been proposed in references [8] [301]. 

fit 



zn 
X( s) 

Z3 
X( s) 	z2 	X(s) 

X(s) 	T x(s) 
Eci  

-20- 

1.3.2 The Impedance Scaling Method  

On d.viding all impedances of an LC doubly terminated ladder 

filter by a function of the complex frequency X(s), the transfer function 

Vo(s) , T(s) 	in accordance with Fig. 1.5 , remains unchanged. 

Fig. 1.5 

This almost self evident statement ,which revolutionized active filter 

design,was first presented , proved and applied to the simulation of 

LC ladder filters by L. Bruton [33] , for X(s) = ks and has been general-

ized in reference[34]. Fig. 1.6 gives the scaled ladder impedances for 

X(s) =ks. The element with impedance of the form 1/s2  is referred to as 

supercapacitor or, rather missleadingly,as Frequency Dependent Negative 

Resistance (FDNR). 

The realization of the earthed supercapacitor is shown in Fig. 

1.6b for which we have: 

Z. 	
z1z3z5 

in R2RLf  

Therefore, by making any two of the elements Zl, Z3,Z5  capacitive and 



Zn 

Z5 
O 	 

Fig. 1.6 

• 
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z.,,k,s2 
0 

the rest resistive,a supercapacitive behaviour is obtained. For minimum 

sensitivity, it has been proved that the choice Z1
=Z
3
=1/sC

D' 
 Z5=R2=Rk  

is appropriate[35]. The floating supercapacitor that emerges from a 

floating inductor, requires two circuits similar to that of Fig. 1.6b 

connected in a back-to-back configuration[8][33]. It must be noted that 

the circuit of Fig. 1.6b is a General Impedance Converter (GIC) and can 

be used for the realization of a simulated inductance as well as for the 

realization of other complex impedances by a proper choice of its impe.,  

dances. 

Some modifications of the impedance scaling method have been 

proposed in referances[36][37](38]and [39]to enable practical simulation 

of narrowband bandpass filters at high frequencies, as well as to minimize 

the number of.capacitors and supercapacitors involved in the active RC 

structures. 
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1.4 LINEAR TRANSFORMATION ACTIVE (LTA) FILTERS - A NEW APPROACH TO THE  

ACTIVE RC SIMULATION OF PASSIVE LADDER FILTERS [521[53] . 

In this thesis a new approach is presented for the design of 

active RC filters from doubly terminated LC ladder networks. The new 

approach is based on linearly transforming the port-variable vectors of 

a two-port network from the V-I domain to a new x-y domain, in which the 

two-port is then realized actively. By examining the ladder filter as a 

cascade connection of two-port subnetworks we obtain the Linearly Trans-

formed active structure for each of these subnetworks and then intercon-

nect them in an appropriate way to derive the Linear Transformation (LTA) 

filter simulating the original doubly terminated LC filter. The element-

by-element linear transformation of the ladder filter ensures the low 

sensitivity of the derived structures due to the correspondence that 

exists between a ladder arm and the Linearly Transformed equivalent 

version of it. The new approach is systematically presented so as to 

yield a powerful active RC filter design technique which with the theo-

retical background provided can be very useful to active filter designers. 

The structure of this thesis is as follows : 

In chapter 2 the fundamentals of the Linear Transformation theory 

as applied to the simulation of two port networks are presented.The neces-

sary and sufficient conditions for the existence of the Linearly Trans-

formed structures that correspond to a given two-port network are given 

explicitly. Moreover,analytical formulae for the Active realization 

of the corresponding LT structures for the constituent two-port subnetworks 

of a ladder filter (i.e. series and shunt arms) are given. 

The interconnection problem of the so derived LT active RC stru-

ctures is examined in chapter 3 and the necessary and sufficient condi-

tions for the existence of such interconnection are given in terms of 

I 



-23- 

the elements of the adjacent transformation matrices. In addition, 

the input and the output termination constraints are studied in this 

chapter and some simplifications are made concerning the number of 

active elements required for the realization of the LT terminations. 

Some rules for the efficient use of the LT concept in the si- 

mulation of passive ladder filters are given in chapter 4 concerning 

the complexity of th LT structures and the existence of a convenient 

output node which represents the output of the original ladder filter. 

Moreover, the minimum complexity interconnection is defined and it is 

proved that it can be used without any loss of generality. The above 

principles are practically applied in two design examples. 

In chapter 5 the linear transformation procedures that can be 

derived from the general case are classified according to the relation-

shops imposed between the individual transformation pairs which are used 

for the LT simulation of a passive ladder filter. Moreover, some well-

known ladder simulation techniques like the Wave Active Filters and the 

Leapfrog Synthesis, are interpreted as special cases of the general LTA 

approach. 

The Self-Dual LTA filters presented in chapter 6 possess the 

self-duality property,as defined there, and the necessary and sufficient 

conditions for a transformation to be Self-Dual are established. In 

addition, by imposing a linear relationship between the transformed 

variable of the self-dual LT structures and by requiring them to 

possess the Rotation or R-Property,as defined in chapter 6, we obtain 

highly modular, simple 	very insensitive LTA filters. 

The LTA ladder simulation approach is put into practice in 

chapter 7, where several ladder filters of various orders and band 

selectivities are simulated using either the general acyclic LTA 

procedure or some special LTA cases to derive Active RC filtcrs. 

ib 
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These filters are then constructed and their complexity, sensitivity 

and high frequency performance are examined and compared to those of 

the original passive ladder and to some conventional active RC structures 

so as to show the flexibility of the LTA approach and the importance of 

the practical results. 

The final conclusions concerning the practicality, efficiency, 

flexibility and usefulness of the new approach, are drawn and discussed 

in chapter 8 where, in addition, some directions for further research 

along the line of the LTA simulation concept are given. 

• 

• 
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CHAPTER 2  

THE LINEARLY TRANSFORMED TWO-PORT 

INTRODUCTION 

The principles of Linear Transformations)as applied to passive 

two-ports, are defined and examined in this Chapter. The chain matrix 

description of a two-port network is used exclusively but in the slightly 

modified form: 

	

V1 	. [A B [V2  A -B V
2 

	

1 	I
2 

= -C 	-D- 	-1
2- 

[11 2 
T
n 

, 

L 2 

(2 .1) 

 

where the voltage and current variables are in accordance with Fig. 2.1 

Fig. 2.1 

The port vectors A
=EV11.

T 
and A2=11/2 	12]

T, 
arc 

referred to as the ].eft and the right port variable vectors respectively 

whilst T
n will be referred to as the modified chain or transmission matrix  

of the passive two-port N. The incorporation of the negative sign of 

-1
2 

in.B and D without changing the direction of the flow of I
? allows 

uniform definitions of the transformed variable vectors without complicating 

the mathematical manipulations involved 4 n this work. 

4 
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The chain matrix description of a two-port network is a non-

oriented terminal relationship Wwhich describes the nonoriented two-

port network N, in the sense that it does not provide any information as 

to which variables are the inputs (causes) and which are the outputs 

(effects). 

On attempting to determine the input and output variables, the 

interdependence of VI  and 	( V2  and 12  ) must be taken into account to 

ensure that they do not belong jointly to the input set or indeed the 

output set. Therefore, for an oriented description of a two-port network, 

the set of port variables 

X=1111,11, V2,121 

must be so divided into two sets that one set may then serve as the inputs 

(i.e. causes) whilst the other set may be taken as the outputs (i.e. 

effects). The interdependence of V, and I, (V, and 12) implies that only 
1 

two divisions of the set'of port variables of a two-port network Nn  into 

input and output sets are possible which are: 

(i) 1V1,V2  11,121 

and 	(ii) [V1lI2  i V2,Il  

In division (i) tV,I ,V2  may be taken as the inputs and consequently [Ii,I21 

are the outputs or vice versa. Similar implications exist for division 

(ii) above. 

2.1 	ANALYTICAL CONSIDERATIONS 

The left and the right port variable vectors that appear in the 

modified chain.matrix description of a passive two-port network Nn
,[1/

1 
If 

iT 
and [V

2
, can be linearly transformed as follows 
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v -x2 	1/2- 

and = a 2 ( 2 . 2 ) 

where 	

-Y2-1 	I2  I2_ 

• 

=a, 

oc 

a [2  2= 
 

Y2 	2 

/32]with det a2 0 

where the left transformation matrix Cl
1 

is defined as 

a
[a

1 Pi] 
l= 

Y1 	61  

with det al  , 0 

whilst the right transformation matrix  is 

The new port-vectors [x
1 

y1J T  and 	c2  y
2
j are referred to as the 

left and the.right Linearly Transformed port-vectors respectively. 

On substituting the port variable vectors in eqn. (2.1) by the new 

vectors,as defined by eqn. (2.2), we obtain the result: 

-1 2] [ 
- CI T

] [y21 
[xl- 	1 n 	2 lc  = a 	

b 	x 

1 	Y2 	
d 	

2 

(2.37 

Equation (2.3) constitutes a description of a nonoriented 

• 

network N' , the terminal variables of which are x x2' 

This network is referred to as the corresponding Linear 

Network of the passive two-port N. This network can be 

schematically as in Fig. 2.2 below 

y1 
and y2.  

Transform 

represented 

Fig. 2.2 
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The matrix description of the Linear-Transform nonoriented 

n3twork provides the definition of the Linear - Transform chain matrix: 

	

[a 	b 
n  -1 T' 	= 

c 	d 	al TnLA, 2 

as it can be seen from eqn. (2.3.). This matrix relates the Linearly 

ij 
1 	. 

Transformed port-variable vectors [X. 	y
T 
 ,3.= 1, 2 in a manner 

similar to that achieved through the chain matrix of the normal V - I 

description of the passive two-port Nn. The elements of the Linear 

Transform chain matrix are determined from eqn. (2..3.) to be as shown 

below: 

r a --= 2

2 

uX (E)

2

A - y
2
B ) + N(62C - y2D 

b = -1- [a
1 
(a
2
B - 

32A )  A 	4. P1(M2D  - P2C ),2 

c =-A-24y1(62A - y
2
B ) + 6

1
(6
2
0 y

2
D )] 

d . ' 
2 

[le
1
(a
2
B - 

P2A 
 ) + 6

1 
 (a
2 
 D 
-(32C )J A 

2 2= a252 - 132Y2 

It can be found that the determinant of T' is related to the determinants 

of  a 1  and (12 through the following equation 
det a1  det T' = ad - be =     t 0 
det a2 	A2 

The dimensions of the elements of the Linear-Transform chain 

matrix depend on the dimensions of the elements of the transformation 

matrices CI
1 

and (12 
as it is apparent from eqn. (2.4). The trans-

formation matrices evidently determine the dimensions of the transformed 

variables x and y. Indeed,the transformed variables can represent any 

electrical quantity depending on the dimensions of the elements of 

(2 .4) 

• 
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the transformation matrices . To illustrate this point it may be 

assumed that a and y, for example, represent conductances whereas p 

and 6 may be taken to be dimensionless quantities. In such a case 

x and y have the dimensions of electrical currents. 

However, in practice the nature,and hence the dimensions of, 

the variables x and y is influenced by the active components to be 

used in the final implementation of the Linear Transform network. 

If operational amplifiers are employed it is reasonable to require 

the transformed variables to represent voltages. This implies that 

the a,b,c and d parameters of eqn. (.3) and (2.4) represent voltage 

transfer ratios and hence they are dimensionless. This can be achieved 

by taking a and y in the transformation matrices to be dimensionless 

(i.e. pure numbers or voltage transfer ratios) and p, 6 to have 

dimensions of impedances. 

The active realization of the LT netwotk requires an oriented 

description of the network of Fig. 2.2. It should'be noted that the 

interdependence of V
1 
and I

1 
(V
2 
and I

2
) in the V-I domain is transferred 

to x1 
and y

1 
(x
2 
and y

2
) through the linear transformation, implying 

that x
1 
and y

1 
(x
2 
and y

2
) carinot be taken simultaneously as inputs or 

outputs of the LT network. Therefore, only two divisions of the set of 

the transformed variables into input and output sets are possible as 

previously, and they are 

txl ,x2,1: Y1'Y2 

and (ii) 5  t 	Y2 Yi  x21 
• 

These two divisions ,however, theoretically are not independent. It 

is apparent that by considering the first division and then interchanging 

the rows of (12  we actually obtain the second' division, since an inter-

change of x..)  and y2  is effected thereby. Henceforth, only the first 



a 
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division will be considered without any loss of generality. Moreover 

in the first division x
1 
and x2 

are considered to be the inputs and 

y
1 
and y

2 
the outputs and this is by no means restrictive since it can 

be observed that the case in which x
1 
and x

2 
are the outputs of the 

LT network for the excitations y1  and y2  is included by merely inter-

changing the rows of both al  and a,2.  Therefore,the first division 
with x

1 
and x

2 
as inputs can be considered to be a general case. 

The description of the oriented LT network,according to the 

previous discussion,can now be derived from eqn. (2.3) in the following 

form 

	

ryl 	
L x, 

1=  [ 

	

2 	
x
2  

 

(2 . 5.) 

 

where the four transfer ratios K,L,M and N are given below in terms 

of the elements of the LT chain matrix 

K = 

L- ad - be 
b 

N = a 
b 

(2.5 a ) 

The mathematical procedure f-:,1lowed so far ensures the existence 

of such an LT network provided that 13.0 0. The representation of the 

oriented LT network described by eqn. (2.5) is shown in Fig. 2.3.a. In 

this figure the inputs x1  and x2  are denoted by a small circle, whilst 

the outputs y1  and y2  are denoted by a small triangle appropriately 

oriented. For the active realization , this representation is shown 

in Fig. 2.3b, where Lhe sinal flow graph of eqn. (2.5,) is drawn. 



ORIENTED 

LT STRUCTURE 

(b) 

I  ><2 

Fig. 2.3 

(a) 
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The transfer ratios K,L,M and N must be practically realizable 

under the technology in mind (e.g. active RC ), while their stability 

may or may not be necessary. This fact is. not surprising if one were 

to re-examine the Impedance Scaling procedure of Bruton [33] f.4] 

where supercapacitors (i.e. one port elements having impedance of the 

form 1/ks
2) are by themselves unstable but within an appropriate ladder 

connection are stable L2].  

• 

• 
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(a) 

(b) 

Fig. 2.4 

• 
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2.2 LADDER ELEMENT CONSIDERATIONS 

Passive LC filters are composed of simple two-port networks 

which may be connected in series, in parallel or in cascade. These 

simple two-ports are in ladder LC filters of two kinds 

(i) Series arms (Fig. 2.4 a) 

and 	(ii) Shunt arms (Fig. 2.4U) 

and are shown in Fig. 2.4 where also their modified chain matrices are 

included. It should be observed that for these elements T = T-1 n n 

0 	 

 

0 

 

1 0 T ]_ 

Y Y -1
. T

V
1 

 
[ 

This fact and the form of the chain matrix are very important contri-

buting factors towards the simplification of the transform equations 

derived so far for the individual series and the shunt cases. Eqn. 

(2.3).which constitutes the nonoriented description of the LT network, 

gives the following relationships for the two cases taken individually 



For the series arm Z 

x1 

For the 

x1 

-yl- 

-a
1(52 

+ y
2
Z) 

-Y1(El2 + y2
Z) 

arm Y 

	

(31(52Y 	Y2)  

	

-61(62Y 	Y2)  

+ pi  2 

6 1 y
2  

a162 

Y162 

a1(a2Z 	°2) 	P1a2  

y
1
(a2Z + 02) - 1

a
2- 

131(/32Y 	(12) 	01132-  

- 6
1
(0
2
Y + a

2) - Y1P2- 

x2 

y
2- 

x
2 

2- 

(2.6) 

(.2.7) 

= detU2  

shunt 

_ 
detU2 

It can be observed that these equations can be simplified further by 

setting one or more of the elements of the transformation matrices 

equal to zero. This is discussed in the next chapter which deals not 

only with the simplification of the equations but also with the cor-

responding simplifications of the active realizations of the Linear 

Transform structures. 

The transfer ratios of eqn. (2.5) can also be simplified by 

taking the series and the shunt arm cases separately as follows 

For the series arm Z 

y1(a2Z + p2) + 51a2  
K - 

(2 , 8) 

M - - 	2  

a1(a2Z °2)  1a2 

a1(y2Z + 52) + p1y2 N - a1(a2Z + p,) + 01a2  

a1(a2Z 
 + p2) + 01a2 

a 



For the shunt arm Y  
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6
1
(p
2 

4. a
2
) 	y

1
p
2 K - p

1
(p
2
y + a

2
) + a

l
p
2 

A i  L = p
1
(p
2
Y + a

2
) + a

l
p
2 (2.9) 

M - A 2 

Pl (P2Y  "2)  "iP2 

p
1 
 (62Yy2) + a1b2 N = 

In both cases A. = a.6. - P.y. = det a i. 

K,L,M and N are in fact the transfer ratios to be actively realized 

within the LT structure to generate the outputs yi  and y2  from the 

inputs xl  and x2. Therefore ,as already pointed out, they must be 

realizable. This requirement sets some constraint on the choice of 

the transformation matrices as it will be discussed elsewhere in this 

work. 

• 

p1
(p
2
Y a2

) a
1
p
2 

a 
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2.3 AN ILLUSTRATIVE EXAMPLF,  

An illustration of the ideas of this chapter is presented 

here using as an example the Linear Transformation of an inductance 

in the series arm. The nonoriented description of the corresponding 

LT network is given in eqn. (2.6.). This equation for Z= sL and CI
1 

and a in the form 

 

[al 	1311 
1 a 0 	6

1  

   

al = 2 

 

a
2 	132 

 

0 	62- 

   

yields the following expressions: 

x
2 

- a1(a2Ls + p2) 	p
1
a2  

-61a2 

     

xI 

 

1 

 

a
1
62 

0 1 

 

a2 2 

 

    

     

x2  

Y2 

Considering x
1 
and x

2 
to be the inputs and y

1 
and y

2 
the outputs of 

the system,as it has been explained in the previous section, the 

oriented description of the LT structure for the series inductor under 

the linear transformation 	, a,2  as defined above, will be 

given by eqn.(2.5) as folows 

1 
= 

Y2 
	l4 	N 

•Le 

where, according to eqn. (2.8) we have 

•  
K(s)= 	

6
1
a2  

aP+Ba +aa Ls 

	

1 2 '1 2 	1 2 

L(s)= 
a
1
6
1 

-
xl 

a1p
2 
+ p1a2 

+ a
1
a
2
Ls 



M(s) - a2
62 

 
a
1
p
2 
+ p

1
a
2 
+ a1a2Ls 

• 
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N(s) = 	
a162  a

1
p
2 

p
1
a
2 
+ a

1
a
2
Ls 

Theparametersai,Pi and6.,i = 1, 2 may be, at this juncture, 

chosen freely. 

Let al  = a2  = - 1 , pi  = 02  = R and 61  = 62  = R , so that 

K(s) = 

L(s) - 

R 
sL - 2R 

sL - 2R 

R>0 

M(s) - 	 sL - 2R 

N(s) - 	 
sL 2R 

The variables x. and y. represent voltages where the parameter R 

above has the dimensions of resistance. It can be seen that the 

four voltage ratios K,L,M, and N are unstable having a possitive 

real pole s =2R/L. This is not important, however, as 	has been 

pointed out earlier. The problem in this case is that such voltage 

transfer ratios require complex structures for their realization 

with operational amplifiers . This can be avoided by choosing 

P1 
= p

2 
= -R 
	11> 0 

in which case the voltage transfer ratios become stable and easily 

realizable. Moreover, it can be observed from the above expressions 

for the four voltage ratioss  that for the new choice: 

K(s) = -M(s)= 

 

sL + 2R 



(b) L(s) 

(c)  

(d)  

Fig. 2 .5 

and 
	

L(s) = -N(s) = 	+2R 

which yields yi  = -y2= K(s)x1  + L(s)x2  . 

The ratio K(s) can be realized as shown in Fig. 2.5a whilst the ratio 

L(s) is realized as shown in Fig. 2.5b. For the realization of the 

output y1  a circuit must be constructed to realize yi= K(s)x1  + L(s)x2 

and an inverter must generate y2  as -yl  as it is shown in Fig. 2.5C. 

The final optimized version of this circuit is shown in Fig. 2.5d. 

(a) 
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An alternative and better choice of the elements of the 

transformation matrices, however, can lead to a different and simpler 

LT structure for the series inductor under consideration. For example 

when 

	

1-1 	0 ] 
and- 

-Ft] 	
0.2=

L0 

we obtain the following voltage transfer ratios 

K(s) = L(s) = M(s) = N(s) - 	1  
1 sL/P. 

The LT structure of the series inductor under the above linear trans-

formation can be actively realized using only one operational amplifier 

as shown in Fig. 2.6 below. 

Fig. 2.6 

Therefore, a successful choice of the transformation matrices cannot 

only lead to stable and easily realizable voltage transfer ratios 

(Fig. 2.5.),but also to minimum operational amplifier realizations like 

the one of Fig. 2.6.. The general rules for such a successful choice 

are given in chapter 4. 

It must be observed, however, that although the LT structures 

obtained in this section do correspond to the series inductance in the 

x-y domain, they must not be taken as actual. replacements of this 

element in the original V-I domain. This will become more apparent 

if we consider in the above R = sL. In such a case the voltage ratios 

w 



,J+0- 

become 

K(s) = L(s) = M(s) = N(s) = ---2— 

and the corresponding LT structure is as shown in Fig. 2.7 where no 

capacitors are involved (zero order network) 

Fig. 2.7 

This reduction of the order of the LT structure demonstrates the fact 

that the LT structures are not V-I simulations of the arm from which 

they were derived through a linear transformation of the original port 

variable vectors and they must be taken in the entire context of the 

LC filter transformation. (In fact the LT structure of Fig. 2.7 will 

be part of an LTA filter where its adjacent LT structures compensate for 

the reduction of the order in this section.) 
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CHAPTER 3 

THE LINEARLY TRANSFORMED LADDER NETWORK 

INTRODUCTION  

In this chapter we examine the manner in which ladder filters 

can be transformed. The ladder is examined from its constituent parts, 

that is,as being composed of series impedances and shunt admittances 

in addition to the resistive terminations at the input and output. 

These constituent parts are individually transformed and examined below. 

The general form of a doubly terminated lossless ladder filter 

is shown in Fig. 3.1 where the two-port networks Ni, i = 1, n are simple 

or composite series or shunt reactive arms connected in cascade to form 

the ladder filter. 

Fig. 3.1 

In the previous chapter we dealt with transformations of such 

two-port networks and in this chapter the important question of their 

interconnection in the transformed domain is examined as in addition 

the transformation of. the passive terminations (i.e. R in series with 

the voltage source E, and RL) are considered so as to enable the 

S 

4 



complete formation of the Linear Transform Active (LTA) ladder filter. 

3.1 INTERCONNECTION CONSTRAINTS 

The interconnection (i.e. cascading) of two ladder elements 

(e.g. a series arm connected to a shunt arm) involves certain constraints 

at the interconnecting ports. The cascade connection of two passive 

two-ports in the V-I domain shown in Fig. 3.2 is described by eqn. (3.1) 

below 

• 

V . 21 

I . 
21 , 

1 

0 	-1 LI 
(3.1) 

Fig. 3.2 

The linear transformation fa1i'C12i  1 is assumed to be applied 

to Ni whilst the transforMation set {a 	is applied to N.. 
i 	 1j' C12j  

The question of how the two LT structures so obtained must be inter- 

connected in order that their connection represents the 	cascade 

connection of N. and N. is now explained. It is observed that eqn. 

(3.1) in conjunction with 

V . 

Ili  
- a 2i (3.2) 

    



= 
y1j 

1 xli 	 0  

0 -1 
(3.3) 

-44- 

and r 
Vij  

1j 
J 

  

a 1] 
x 
1j 

yl 

   

from the definition of the transformed port-variable vectors, yields 

Equation (3.3), indicates the manner in which the two LT structures 

Ni and NI are to be interconnected so that eqn. (3.1) is satisfied 

under the transformation matrices ri . and a1j  . The matrix 

ij  [1 	0]  
Iii 	 a-21 
I1, 	 =  a  

0 , 
(3.3a) 

of eqn. (3.3) is called the interconnection matrix which may be 

looked upon as describing the " interconnecting network " between the 

LT structures N! and N! as it is shown in Fig. 3.3 below. 

4  

yl i 

              

              

      

Y2i 

  

Yij 

  

y21 

                

                

         

o 4 

I 

 

D o 
j 

   

            

            

        

x21  

   

           

           

Fig. 3.3 

The interconnection matrix I.. can be written explicitlly in 
ij 

terms of the elements of the transformation matricesCla  and CI1j 

as follows: 



a j8 	. 1 	23. 13 	 j y 1 	23. -(a 	p,. 	a 	.p 	) i. 2 	a ij 

(3.3b) 
det 

11P2i 

. 

51j121 

det 

(Y1jP2i 	51ja2i) 

de 
L li det a2i 

-c 	C] 
I . .= 

13 

 

-45- 

Under the above notation eqn. (3.3) can be re-expressed as 

E 

(3.3c) 
Ylj 72i 

The role of the interconnecting network is seen from Fig. 3.3 to be that 

of generating the inputs xli  and x2i  from the outputs yij  and y2i. 

Consequently the system of equations of (3.3c) must be solvable with 

respect to the unknowns xlj  and x2i. The necessary and sufficient 

condition for this is 

in which case eqn. (3.3c) 

or in matrix form 

The condition yij82i  

0 je,  2i  + 	jy2i  

E 	- 

0 	 (3.4) 

(3.4a) 

(3.5) 

existence condition 

Jpi 

yields 

xlj  

x 
21 

[xi j  

L x 23.  . _ 

=Tyli  

1 . 
21 

Y1j 

y21 

the 

y 
/I 	1j 	71 

KI 	L, 
J. 

MI 	NI  

Sliy2i  / 0 is 

for the interconnecting network between two adjacent ports 21 and 1j 

under the transformation matricesCI 2i  and  CV which are referred to 

as the adjacent transformation matrices. The physical meaning of the 
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existence condition is that the outputs ylj  and y2i  are linearly 

independent (i.e. there is no k such that y1j=ky2i)? This is 

violated in fact when y1j621 . + b1jy2i  = 0 since eqn, (3.3c) implies 

Y1j = °Y2i.  

The existence condition for the interconnecting network/imposes 

a constraint on the choice of the adjacent transformation matrices that 

may be used and it can be noticed directly from expression (3.4) that 

the following choices violate the existence condition. 

Y1j = 'y2i = 0 

61j = 62i = ° 

The interconnecting network under eqn.(3.5) may be interpreted 

as a network. generating two linear combinations of the two adjacent 

outputs y
1j 

and y
2i 

to generate each of the two inputs x
lj 

and x
2i 

as 

illustrated in Fig. 3.4 below. 

Fig. 3.4 

The overall LT interconnection of Fig. 3.4 between the ports 

indicated by 0 and ® is described by 

^x1.  11 
-1 	0 

   

x2j  

LY2ji 

 

= Clii Ti 

0 -1 

  

(-1 -1 
T ju 2j 

 

J 

 

S 
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i.e. the above equation represents the LT structure of the cascade 

connectienofN.and N under the transformation {a ' O.2  j1 with 

10 
T. 

0 	-1 

as the modified chain matrix of the passive cascade connection of Ni  

and N.. 

Eqn. (305) can be interpreted in two ways. (i) If the trans-

forMation matrices of the adjacent arms are assumed to be given then eqn, 

(3.5) dictates the manner in which the two LT structures must be inter-

connected. Moreover this interconnection depends strongly on the adjacent 

transformation matrices and hence the interconnection network will be 

different for different choices of the transformation matrices. (ii) 

Alternatively eqn. (3.5) may be interpreted as defining an interconnecting 

network to suit.the design requirements thereby imposing a relationship, 

through eqn. (3.3), between the adjacent transformation matrices. 

T. 
1 

• 



Vi 

111 	Rs 	 

E sCif.  
(a)  

N 

0-11 

(b)  

L 

Flo.. 3.5 

3.2 INPUT TERMINATION CON TRAINTS 

The resistive input termination of a ladder LC filter imposes 

certain constraints to the variables of the left port of the first 

reactive two-port of the ladder. The form of these constraints in the 

transformed x-y domain as well as their implications to the LT network 

of the first reactive arm of the ladder are examined in this section. 

The first reactive arm N
1 

of the doubly terminated lossless 

ladder filter of Fig. 3.1 is terminated by the source resistance Rs  as 

shown in Fig. 3.5a below. 

Let N
1 
be transformed using the linear transformation [(1

11' 
Cl
21

1  

so that 

= a11  T1  a-i 21 (3.6) 

  

   

• 



s] CCii 
Y11 

= E  

11 
R

1 x 

(3.7) 

_1+9_. 

Moreover, for the resistive termination we have V11,  E - I11Rs  or 

equivalently 

[1 	R
s
] 

I11- 

so that when this equation is combined with the left transformed 

variable vector 

11 
= E 

 

Y11 

 

  

we obtain the relationship 

Equation (3.7) is then said to describe the LT resistive termination of 

the filter. The explicit form of x11  in terms of E and y11  of eqn. (3.8) 

below is more illustrative since it describes the way in which the 

input x11  is expressed in terms of the other variables and in addition 

it shows the influence of the entries in the transformation matrix. 

X11 - a11Rs  a
11

(5
11 

- p
11
y
11  E x -  

11 	6 	- v R 
11 	'11 s 	

611 
- y11

R
s 
 Y11 (3.8) 

The above relationship is illustrated in Fig. 3.5b from which it can 

be seen that the corresponding LT structure of the first reactive arm 

of the ladder when taken in conjuction with the source resistance, is 

in fact a two-input-one-output system; one of the two inputs being 

equal to the source voltage E. The description of this two-input-one-

output LT structure which corresponds to the combination of the first 

reactive arm of the ladder and the source resistance can be derived 

from eqns (3.6) and (3.7) by eliminating the left linearly transformed 

vector rx 	y 1 . The result is as given below. 
L 11 	11J 
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[-1 rxal 
Rs] Ti a2ii 	=E 

LY21 

(3.9) 

It is worth observing  that this relationship depends only on the right 

transformation matrix C121. The corresponding  IT structure of the first 

reactive arm of the ladder under the above considerations is shown in 

Fig. 3.6 and it is denoted by No. 

R s  
	AA 	 

EN 

  

121 

V21 

0 
a21 
0 

 

N1  

  

21 

	■ 

x21 

Fig. 3.6 

The explicit forms of eqn. (3.9) are given separately below 

when N
1 

is taken to be (i) a series arm of a ladder and (ii) a shunt 

arm of the ladder. 

(i) For the series arm ZI  

P21121 - a21521 	
621 	

y
21
(Z

1 
+ R

s
) 

=  p

21 
+ 

21"( 	

E + 	x
21 Y21 	

1 
+R
s
) 	p21 

+
21
(Z

1 
+ R

s 
) 

(3.10a) 

(ii) For the shunt arm Y
1  

y 
	
+ 
621 	

(1  + R Y ) 
1321Y21 	- cc21621 	s 1

. x21 Y21 = 	
E+ 	 (3.10b) 

a
21
R
s 
+ p21(1  +R

s
Y
1
) 

a21Rs 
+ p21(1  + R

s
Y
1
j 

E 0 	 

• 
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3.3 OUTPUT TERMINATION CONSTRAINTS 

The last reactive arm Nn 
of the ladder filter of Fig. 3.1 is 

shown in details in Fig. 3.7 together with the resistive termination 

which represents the load of the filter. 

On applying the linear transformation L ain,  (Ila to Nn  the LT 

structure N' can be derived described from the relationships 
n 

x
1n 

= CI1n Tn 

 

y1n 

(3.11) 

   

However, since 
	V

2n 
 

[1 	Rt 
	

= 0 

- 2n 

and moreover, 

   

 

V 
2n 

a2n -1  
x2n 

7.2nJ 

   

   



from the definition of the right transformed variable vector of N , the 

following relationship between y2n  and x2n  can be derived 

x2n 

RL]
n-i  
LA. 2n 

= 0 	(3-12) 

12n 

In fact eqn. (3.12) represents the LT resistive termination of the 

filter and it shows the relationship between x
2n 

 and y
2n

, which can 

be written explicitly as 

P2n - a2nR  x 
2n 62n Y2nR y2n (3.13) 

The above relationship is illustrated in Fig. 3.7b where y2n  is oon- 

siderad to be the output of the LTA filter. If v
2n 

 is expressed in 
- 

terms of the output voltage V2n  of the original ladder filter, it can 

be shown that 

y2n = (y2n - 62n
G)V

2n (3.14) 

where G1  = 1/RL. It should be noted that if y2n  is to be taken to 

represent the output voltage V,_ 
in 

then the factor ( '12n-b2nGL) must  

be frequency independent and ideally equal to unity. 

The LT structure for the last reactive ladder arm N
n 

of the 

ladder in conjunction with the resistive termination. in Fig. 3.7b 

can be considered as a single-input-single-output network in a manner 

similar to the input termination case. The description of this network 

can be derived by eliminating the right transformed vector [x
2n 	Y2ri 

between eqn. (3.11) and eqn (3.12). This yields the result 

x1n 
-1 	-1 Rd Tn  ri 2n 0 	 (3.15) 

yin 

which equation again involves only one transformation matrix 
(a.1n 

) 
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However, if this model for the terminated last reactive ladder 

arm is employed the y2n  output which is directly associated with the 

output V2n  of the original ladder filter is no longer available ex - 

plicitly. In such a case the output node of the LTA filter must be 

located from equation (3.11) which can be written as 

       

-x
1n
•  

=a1n Tn 
[72n 

I
2n 

 

1 

 

  

C
in 

Tn 

 

V
2n 	(3.16) 

-3r1n- 

  

-GL  

 

       

with a proper choice for 
0ln 

as it will be discussed in the following 

chapter. 

• 
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3.4 SOME ILLUSTRATIVE EXAMPLES 

The series arm inductance of the example of the previous 

chapter will again be used with the same transformation matrices as 

shown in Fig. 3.8a. 

The LT structure of the series inductance under these transformation 

matrices is already known and let us suppose that N'
1 	3 and N' are also 

• known under the transformations shown in Fig. 3.8a. From these trans.:- 

formatiqn matrices .the interconnecting network. between 11!1  and 1%1 

as well as that betwen N
2 

and N3 can be derived using eqn. (3.3) 

from which we obtain for the first 



-55- 

• 

or equivalently' 

x21 = Y12 

x12 - Y21 	- Y12 

The above interconnection between N' and N2 
	
is shown in Fig. 3.8b 

from which it can be observed that it requires at least one active 

component for its implementation to perform the operation y21 - y12 

to generate x12. 	Eqn. (3.3) will also give the interconnection 

between N2  
' and N3 as shown 

x13 

below 

0 	1 x22 

or equivalently 

Y13 
1 	0 

Y22 

x13 = Y22 

x22 = Y13 

which as it can be observed from Fig. 3.8b it does not require any 

extra passive or active components. 

Let us now suppose that N
1 
is a shunt capacitor terminated by 

the source resistor as shown in Fig. 3.9a. 	According to eqn. 	(2.7) 

the corresponding LT structure can be found and the use of eqn. (3.8) 

will give the resistive termination. 	The LT structure for the input 

terminated capacitor is given in Fig. 3.9b. 

However, the use of eqn. (3.9) for a two-input-two-output 

LT structure for the Hi-St reactive arm produces the relationship 

Rs  
Y21 E  - 	R(1 + sRs-9-x21 	R(1 + sRs00 

which for R = R
s 

can be realized as shown in Fig. 3.9c. 

This example shows the advantage 	of using the two-input-two- 

output model for the first reactive arm of the ladder in conjunction 

with the resistive input termination. 

S 
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Rs  

   

   

   

   

   

   

(c) 
/2\ 

E 
2R 	=al 

 

N10 

2R 

  

Fig. 3.9 

Consider now N
3 

of Fig. 3.8a to be a shunt capacitor C
3 

and 

let it be terminated by the load resistance RI  as shown in Fig. 3.10a 

below. 
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When eqn. (2.7) is used for the transformation of the shunt capacitor 

C
3 

with the transformation matrices shown under N
3 

in Fig. 3.9a and 

moreover,eqn. (3.13) is used for the resistive termination it is found 

that 

1  
Y13 = Y23 = sRC (x13 + x23) 3 

and x - y 23 RL  23 

which yields the realization of Fig. 3.10b. The use of eqn. (3.15), 

however, would give the equation 

RL  
Y13 - R(1 + sRC

3 
 ) x13 

which has been realized in Fig.3.10c 

From the definition of the right transformed variable vector 

[x23  y23  ]T  we have that 

x 	-RI 
23 - 	23 

and Y23 
= -

V23 

where V23  is the output of the original passive ladder filter. Hence-

forth y23,of the LTA filter, can represent its output with 180°  phase 

shift. In the realization of the single-input single-output model 

of Fig. 3.10c, however, the location of the output node is performed 

according to eqn. (3.16) as it has been mentioned in section 3.3,from 

which 

      

0 -R 

-1 	0 

 

1 1 

V23 

  

1 
RL  

 

 

sC
3 
 -1 

 

   

   

x23 	;1,(1 "RLC3)-  

[ 

x23  = - 70  (1 + sRL
C
3
)V
23 

V23  

T23  = -v23 = OUTPUT L 23  J L 	
-1 
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Fig. 3.11 summarizes the LTA simulation procedure followed for this 

particular example of a third order polynomial lowpass filter. 

nn 

1 i.  R L  
i 
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E + x

21 
Y21- 1+sRsC1  
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xl2 Y127Y21 

Y12=Y22 -  

x22=Y13 

x13-Y22 
x
12
+x
22 	

R
L 

1+s-- 
L 	I 

y
13
=X13 Rs  (1+sRL

C3) 
R
s 

• 

Rs  L 
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L X1j = y2i 
i.e. 

x = y 
2i 	1 j 

(3.17) 
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1 

Y2i 

x21  
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3.5 THE CROSS-CASCADE CONNECTION  

As it has been mentioned earlier, the adjacent transformation 

matrices (i.e. the right transformation matrix of one ladder arm and 

the left transformation matrix of its adjacent arm, alj  and Cl2i in 

Fig. 3.2), can be freely chosen provided that they do not violate the 

existence condition of the interconnecting network Y 
'1,P2i+Y2i61 j 	O. 

Such an arbitrary choice defines an interconnecting network which 

generally requires for its realization several passive and active 

components. The simplest possible interconnecting network is defined 

by the following interconnection matrix 

and this will be referred to as the cross-cascade interconnection. 

The above cross-cascade interconnection matrix yields the interconnecting 

network of Fig. 3.12 below. 

According to section 3.1 of this chapter, by requiring the cross-

cascade interconnection at some position, a relationship between the 

two adjacent matrices is automatically set since the general inter - 

connection matrix of eqn. (3.3) is restricted to the form of eqn. (3.17). 

• 
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Eqn. (3.3) and eqn. (3.17) yield the following relationship between 

the adjacent transformation matrices under the cross-cascade inter-

connection: 

    

al, 
0 	1 

1 

(3.17a) 

    

This relationship implies that in order that the Interconnection of 

two LT structures be cross-cascade, each of the adjacent transformation 

matrices must be derivable from the other by merely interchanging rows 

and changing the sign of the second column of one of the matrices. 

Eqn, (3.17a) will be referred to as the compatibility relationship 

for cross cascade interconnection. 

Under the cross-cascade connection the general interconnecting 

network can be considered then as the corresponding LT structure to 

the zero impedance series arm for specific transformation matrices. 

Referring to Fig. 3.13 the zero impedance series arm can be linearly . 

transformed using the linear transformationglc 2 	
c-Is where ac  i' 	1j 

represents the compatible matrix of Cl10, 
under the cross cascade 

connection as described by eqn. (3..17a). 

• 
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2c xlc 

= ac rl  1 
21 

T
c ""Alj (3.18) 
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This ensures the cross-cascade connection shown in Fig. 3.13. Moreover, 

the network N
c 
(the LT structure for the series as with Z = 0) is 

described by 

where 1-  

0 

and 

Tc  
0 

xlc 

ylc 

Y2i 

x22.. 

-1 

5 

x
2c 

,_ 3r2c 

ylj 

x 	. la 

Substituting these equations into eqn. (3.18) it yields 

-x1j- 

.y1.  la 

-1 

.o 	-1- 

x 
21 

Y2i 

a-1 2i j 

which is indeed the description of the general interconnecting network 

as given in eqn. (3.3). 

The cross-cascade interconnection does not only contribute 

to the low compleiity of the overall LTA structure, but in addition, 

it can be considered as a step towards the sensitivity improvement of 

the LTA filter re-liz-tien. 

	

^ 	,,bCr sVing 

	

Co''i be , 	", 
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in thegeneral interconnecting network, changes in the passive or 

active elements do not correspond to any changes of the reactive elements 

of the original ladder and hence extra sensitivity contributions are 

introduced. Moreover,the cross-cascade interconnection does not 

have any extra elements in its realization and hence there will be no 

extra sensitivity contributions in this case. 

r 
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CHAPTER 4 

LINEAR TRANSFORMATIONS 

FOR LOW COMPLEXITY PRACTICAL LTA FILTERS 

INTRODUCTION 

The application of Linear Transformations to the elementary 

two-ports of a series impedance Z or a shunt admittance Y from which 

a ladder filter is made up, as well as their interconnection and 

terminations have been presented in their general form in the previous 

two chapters. 

It is worth recalling that the choice of the transformation 

matrices for each individual two-port is relatively free limited 

only by the constraint that they must be nonsingular and satisfy 

the existence condition b A 0 for the LT structure (section 2.1) 

Moreover, the necessary and sufficient condition for the existence 

of the interconnecting network between the ports 2i and lj given 

in chapter 33imposes a constraint to the adjacent transformation 

matrices CI
21 

and Cl 
j.  

However, these requirements leave a great degree of freedom 

in the choice of the transformation matrices which seem to be almost 

arbitrary. It is this freedom that makes the LTA approach so general 

but at the same time so problematic to the filter designer. The 

problem lies in the fact that each arbitrary set of transformations, 

so chosen to satisfy the above mentioned basic requirements, leads 

• 
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always to an LTA filter structure, leaving the designer wondering 

whether another transformation would have given a better result, since 

P 
the comlexity of the individual LT structures as well as that of the 

interconnecting networks depend heavily on the Linear Transformations 

chosen. 

It is, therefore, abscitutely necessary to have in hand some 

rules for the choice of the transformation matrices so as to ensure 

the low complexity and practicality of the resulting LTA filters. 

The aim of this chapter is to give such rules and to discuss several 

matters concerning not only the calexity but also the performance of 

the overall LTA structures. 

S 

• 
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4.1 FREQUENCY INDEPENDENT LINEAR TRANSFORMATIONS FOR LOW COMPLEXITY  

REALIZATIONS. 

The description of the oriented LT structure corresponding to 

a two-port N under the linear transformation set Pall 021 .given in 

section 2.1 (eqn. (2.5)) is repeated here below for convenience. 

Y1  
K 	L x

1 
(4.1) 

Y2 M 	N x
2 

K,L,M and N are the transfer ratios required to be actively realized. 

Explicit formulae for these ratios are given in section 2.2 (eqns(2.8) 

and (2.9)) for the two ladder cases of series and shunt arms separately. 

Eqn. (4.1) implies that two of these transfer ratios are needed 

for the generation of each of the outputs y1  and y2  in addition to a 

summing.network that may be required as shown in Fig. 2.3b of chapter 

2. In practice, this implies that somewhat complex active circuits 

will be required in the realization of y
1 
 and y2 

and it is desirable 

to reduce their complexity. The way this may be approached is by 

utilizing the degrees of freedom that exist in the ratios K,L,M,N. 

There are two direct ways by means of which this reduction may be 

achieved. These ways are obtained by considering the general expres-

sions for K,L,M and N of eqns (2.8) and (2.9) as follows 

(i) By choosing the transformation matrices in such a way 

that ona or more of the transfer ratios becomes zero. 

This will be referred to as the Transfer Ratio 

Elimination approach (TRE) 

(ii) . By choosing the transformation matrices so that some 

all of the  transfer ratios of ern. (4.1) become 

identical.This will be referred to as the Transfer 

Ratio Identification (TRI) approach. 



• 
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4.1.1 The Transfer Ratio Elimination (TRE) Approach. 

It is apparent from the expressions of the transfer ratios of 

eqn. (2.8) and eqn. (2.9), that the ratios L and M cannot be made 

equal to zero since this would require either det 
	or detC

12 to 

be equal to zero and so violating the condition for nonsingularity of 

the transformation matrices. Therefore, only two THE cases are pos-

sible in this approach. 

CASE 1 : K = 0 

The necessary and sufficient conditions for K =0 can be found 

for the series and shunt arm cases as follows. 

For the series arm Z  

From eqn. (2.8) 

y
l
a
2
Z + y

1
p
2 
+ 5

1
a2  

K - 

	

	0 	<====> 
a
1
a
2
Z + a

1
p
2
+ a

2
p
1 

	

 	y1a2Z + y1132  + 1a2 - 0 	 y1a2 = 0/Ny113 2+51a27-",-  

	 ryi  = ol  = 0 V a2  = 132  = 0 V yi  = a2  = 

The first two solutions violate the nonsingularity of the transformation 

matrices. Henceforth, for the series arm Z: 

K?1,0 < 	> y1 	
a
2 
= 0 

Under this condition the LT structure of the series arm Z will be 

described by 

61  
Y1 1"--- - 

 
P2 x2  

	

Y2 	
a
1

y
2
Z  a

12 
+ p

1
y1 y = 	x + 	 n 2 a

1 
 1 

-1'2 
and 

• 



.1- 113 2=0  A 61".2 Y1P2 = °\ P 	= 0 12 

V 132  = a2  = 0 V 61  = 132  = 0 

• 	
K--> €61132Y 61a2 

<--->  151  = y1  = 0 

• 
—63— 

For the shunt arM Y 

From eqn. (2.9) 

61p2 
+ 6

1
a
2 

y
1
p
2 = 

o K = 
p1p

2
Y + p1a

2 
+ a

1
p
2 

The first two solutions violate the nonsingularity condition of the 

transformation matrices leaving for the shunt arm Y : 

K.E 0 	 61  = p2  = 0 

in which case 

and 

Y1  y
1 
- 

a2 
x
2 

62 	
p
1
,5
2
Y + p1y

2 
a162 

Y2 	(3 X1 4- 
	P1a2 	

x2 

CASE 2 : N = 0 

It can be found in a similar way that 

For the series arm Z 

• in which case 

and  

N E 0 	M
1 

= y2 = 0 

= 	  1 	 P1m2 	
X 	X 1 	a2 2 

Y2 =  

y
1
u
2
Z y1p

2 
+ 6

1
a
2 	Y1 

For the shunt arm I 
N = 0 <#. pi  = 62  = 0 

6
1
p
2
Y + 6

1
a
2 

+ y
1
p
2 	

61 	Y2 
V = 	 X, 	. X  , yn = .... X4 v 1 	

pip2 	1 	v2  e.. 	, 	,....1 	, 
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The conditions found Lhus far simplify the LT structure of an arm by 

making one of the outputs directly proportional or indeed equal to 

one of the inputs to the structure and leaving only one output to 

be realized RC-actively. 

4.1.2  The Transfer Ratio Identification (TRI) Approach. 

If in eqn. (4.1) we require that 

K = XM 

and 	L = XN 
	 (4.2) 

it yields yi  = Xy2  = K x1  + L x2  which in fact requires only one 

of the outputs yi  and y2  to be RC-actively realized the other being 

proportional or indeed equal (for X = 1) to this. The necessary 

and sufficient conditions for the validity of eqn. (4.2) will be 

found below for the two ladder cases. 

For the series arm Z 

 

Y
1
a2Z Y1132 51a2 	p2y2 - a22  - X a1a2Z + a1

p2 + 
p
1
m
2 	

a
l
a
2
Z + a

1
p
2 

+ p1a2 eqn. (4.1) 4:=-2). 

p1Y1 alai 	aly2Z + a1
6
2 
+ p

1
y2 - X 

L1a2
Z+a1p2  +P1a2  - 	

a
18  
aZ + a

1
p
2 

+ p
1
m2 

Ila2Z  + T1P2+ 61a2+ Xa252 - 4212 = 0 

[ 
'(=> 

r1a2 = 0 A a1Y2 = 0 A a2(61 + X82)  + 132(Y1- XY2)  = 0 

A a1(E)1 + M2) - p1(y1 - N.y2) = 0 

al = Y1 = ° V a2 = Y2 .7.-° V al = a2 = ° V Yl = Y2 = 0  

a2(61
-1..X5

2
)+p

2
(y1-Xy2)=0 A a (5 	(y -Xy )=0 1 1 4 1 1 2 

Xa1y2Z + Xa1Ei2 + xp1y2 + alai - p1y1 = 0 

0 



Since a
1 

= y
1 

= 0 and a2 
= y2 

= 0 violate the nonsingularity of the 

transformation matrices and a
1 
= a2 

= 0. violates the existence 

condition of the LT structure ( b = 0 in eqn. 2.5a) for the series 

arm the above system simplifies to 

( Yi = Y2 = ° 
Yi = Y2 = 13  1 	I K= AM 

a2(61 + X62
) = 0 	<—> 	4===> L = XN 

a
1
(6

1 
+ X62

) = 0 	61 
 = - X62 

Under the above conditions, the description of the LT structure for 

the series arm Z is given below 

61  
Y1 = - 62 Y2 = 

XY2 

a262 	a1 
Y 	(x 

	X2) 2 	ap+ap
1 
 +aa....Z 	1 	a2  2 

1 2 	2 	1 e 

For the shunt arm Y  

In a similar manner it can be found for the shunt arm Y that 

K = XM 61  = 62  = 0 

'<> 
L = XN Y1  = XY2 

in which case 
Y1 

Y1 - y2  Y2 
= XY 2 

212 
(x1 Y2 = pipg + a1p2  + pla2  

The conditions for K = ?M and L = XN simplify the LT structures by 

making one of the outputs proportional or even equal to the other 

which has to'be realized actively. 

a 
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Table 4.1 below summarizes the TRE and TRI conditions for low 

comlexity LT structures for both the series and the shunt arm cases. 

In the last column of -this table some conditions for further reduction 

of the complexity of the corresponding structures are given explicitly. 

TABLE 4.1 
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SIMPLIFICATION 
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TABLE 4.1 (continued ) 
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a
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Y1 	61 	y2 	62 _  
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The two inadmissible conditions violate the existence condition for 

the LT structure ( b=0 in eqn. 

0 
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4.2 LINEAR TRANSFORMATIONS FOR MINIMUM COMPLEXITY INTERCONNECTIONS  

• 

The complexity of the overall LTA filter structure depends not 

only on the complexity of the individual LT structures corresponding to 

the simple ladder two-ports but also on the complexity of the inter-

connecting network which in turn is dictated upon by the adjacent 

transformation matrices employed. Fig. 4.1a below shows such an LT 

connection where Nc is the interconnecting network described by eqn.(3.3). 



Equation (3.3) is repeated here for convenience 

0 	-1 

-x
lj 

o-1 

lj 

0 	1 

(4.3) 

° 

1 

in accordance with Fig. 4.1a where Ylc = x2i  and xic  = y2i. Substituting 

	

in eqn. (4.3) [.)c
1j 	

y
i j
f from the 	LT description of N' given below 

	

= a . 	a 1. 

	

1, 	23  
yl j- 

x2i  

Y2j 

y  and solving for [x
lc 	

10i
IT 
 we obtain 

xic] [0 	1- 

= 

y
1c 	

1 	0 

 

-1 	0] 
ry  1 

2j 
0 -1 U 

x2ii 

_Y2j]  

(4.4) (121 

  

In this equation it is readily observed that 

[1 	0 
(Li 	= ac 2i 

1 0 	0 -1 

where a 2i 
	 Cl 2i  is the matrix compatible with 	under the cross- 

cascade interconnection as defined in chapter 3. 	This implies that 

the interconnecting network N
c 

together with the LT structure Pik 

under the linear transformation set ICIVG2j 
is equivalent to 

the LT structure N" under the transformation set{a 	 a2i) as 

illustrated in Fig. 4.1c. 

This equivalence may be considered as a validation of the fact 

that the cross-cascade interconnection.is the general interconnection 

fro' LT structures which  correspond. to two twn-ports connected in 

cascade in the V-I domain. The general interconnecting network N, 

• 
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which emerges when Cl
lj # ac 

2i  together with the corresponding LT 

structure for this case may be considered as an alternative way of 

realizing the LT structure which will emerge under the cross-cascade 

compatibility relationship, i.e. for CI
1j 

= a  2i • 
The final conclusion drawn from the above discussion is that 

the cross-cascade interconnection, which is the simplest way for 

connecting the LT structures derived from two two-ports connected 

in cascade in the V-I domain, may be used without any loss of generality. 

Therefore, the compatibility relationship between two adjacent linear 

transformation matrices under the cross-cascade interconnection (eqn. 

(3.17)), may be considered as a constraint on the choice of the 

transformation matrices, which contributes to the simplicity of the 

overall LTA filter structure. 

0 

• 

• 
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4.3 	LINEAR TRANSFORMATIONS FOR LOW COMPLEXITY TERMINATIONS  

The choice of the linear transformation set Clj for 

the last reactive arm Nn of the ladder is of vital importance to the 

LTA filter structure as a whole since it must enable an output node to 

appear, the voltage of which with respect to ground to be directly • 

related to the actual output of the original ladder filter. 

If either eqn. (3.12) or eqn (3.13) are used to describe the 

output model of Fig. 3.7 then we shall have 

Y2n = (Y2n 62nGL)V2n 

where GL  = 1/RL  and V2n  is the voltage output of the original passive 

ladder filter. The quantity (Y2n 
 .52nGL) must, therefore, be frequency - 

independent and moreover, it must be equal to unity if the output of 

the LTA filter is to be exactly equal to that of the original passive 

ladder. . 

However, if the single-input-single-output model described by . 

eqn. (3.15) is employed then yan  is no longer available explicitly. 

For low complexity structures, therefore, the nodal voltages representing 

xln or y1n 
must be required to provide an output nodal voltage since 

these variables are readily available in this component saving model. 

For this purpose it is necessary to express[x1n y1n
I
T 

in terms of 

IV
2n2n

T 
and from the obtained relationship to set the necessary 

conditions for one of the quantities xln  , yin  to be a suitable output 

node. The definition of the left transformed variable vector 

x
1n 

yin 

V
in 

- 1n- 

 

combined with 
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Vin 
= T

n 

V
2n 

I
2n- - in 

 

 

and V
2n = -I2nL 

IR_ 	give the relationship 

1 
= n 

T n 

x
1n 

1 
yin 

from which the output node conditions can be derived for the two 

ladder cases separately as follows. 

For the series arm Z
n 

eqn. (4.5) becomes 

x
1n 

=[a
in
(1 + ZnGL)  + plnGL ] V2n 

(4.5a) 

=(yin(1 + ZnGL) + 5 Yin 	1nGL lV2n 

from which it can be seen that either a
in.

or  y1n must be equal to zero 

making either x
1n 

or y
1n 

suitable as output respectively. 

For a shunt arm Y
n 

eqn. (4.5) can be writen as 

x
1n 

= [a.
1n 

+ 
pin(Yn 

+ G
L
) V

2n 

(4.5b) 
y
1n 

=[y
1n 

+ 5
1nn 

 + G
L
) 	 2n 

Similarily either p1n  or 51n must be equal to zero to make either xin 
or y1n  respectively suitable as output. 

It is,therefore,essential that there must exist a zero 

entry in the CI
1n 

transformation matrix in order that the single-

input-single-output model be used effectively without the need for 

extra passive and active components to generate an output node other 

than the already available xln  and yin. In Table 4.2 all zero entries 

are examined and the corresponding output node is given as well as the 

V
2n (4.5) 
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LT description of the single-input-single-output LT structure of the 

resistively terminated last reactive arm Zn 
or Y

n 
of the passive 

ladder. 

TABLE 4.2 

TERMINATED ARM Gin LT STRUCTURE DESCRIPTION 

Zn 

y
in 

 
61n Yln(zn RL)  

131n 

"Y1n 	bin x
1n 

= p
1n
G
L
V
2n 

V2n R 

a
1n 	P1n 

0 	5
1n 

1n  

P1n + a
ln(Zn  + RL) x1n 

y
1n 

= 5
1n
G
L
V
2n 

a
1n 

0 

Yin 51n 
x = a 
1n 	1n

V  2n 

y
1n
R
L  

a1nRL Pln
(YnRL+1) x1n 

= V 
x1n Yin 2n 

a
1n 
	

P1n 

Yin 
	0 



4.4 OPERATIONAL AMPLIFIER CONSIDERATIONS  

The operational amplifier is lately used almost exclusively[43] 	 

for the realization of RC-active filters despite its limitations due to 

the finite gain bandwidth product. Although the LTA filters can be 

realized using some other active elements,the operational amplifier 

has been used exclusively in this thesis, because of its versatility. 

However, some operations involved in realizing the LT structures become 

very problematic when they are performed by the operational amplifiers 

due not only to their nature but also due to the gain bandwidth product' 

limitations of the operational amplifiers and they should be avoided. 

The major operation to be avoided within the LT structures is that 

of differentiation. This is due,among other reasons, to the fact that 

the gain of the differentiator is required to increase with frequency 

thereby lowering the useable bandwidth of the operational amplifier. 

Differentiation can be avoided systematically by inspecting tha expressions 

for y1  and y2  in every case. It can be observed from Table 4.1 that 

whenever Z appears only in the numerator of an expression for y1  or y2  

this particular transformation should be avoided for Z = sL (inductor 

s
2
LC4-1  in the series arm) or indeed 	
sC 	

(series tuned circuit in the 

series arm). Similar conclusions can be drawn for the shunt arm cases. 

Non-inverting integration operation in the realizations should also be 

avoided. for in such cases a non-inverting integrator is required which 

can be realized using the sensitive Deboo 5][46] 	non-inverting 

integrator or the Miller-inverter non-inverting integrator which employs 

two operational amplifiers. Unfortunately, it is not always possible 

to avoid positive integration in which case the number of the non-

inverting integrators must be minimized. Such a minimization is 

presented in the next chapter. 

• 



[a13 	1313 

0_13 = 
Y13 	

6
13 

4.5 A DESIGN EXAMPLE 

Thethird order polynomial lowpass filter of Fig. 4.2 will be 

simulated using the LTA technique taking into account the conditions 

for low complexity and effective circuit realizations presented in 

this chapter. 
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w 	 
Rs  

E 0 
L2 

C1 	 C3 	R, 

a21a 12 	a22 	a13 

Fig. 4.2 

aartirmfroma_taken in conjuntion with the load resistance 

R
L' 

one transformation matrix CI13 
is required for the single-input-

single-output model as indicated in Fig. 4.2. This matrix is of the 

general form 

For a convenient output node to exist however and in accordance with 

the previous considerations, either 013  or 613 
must be equal to zero. 

If 0
13 

is equal to zero then according to Table 4.2 we shall have 

6
13 

	

y
13 

sC 6 	+ 
3 13 RL  

Y13 = 	a
13 	

x13 

The active realization of this expression however,involves an un-

desirable differentiation and hence the case 613 
 = 0 must be considered 

for which we have from Table 4.2 
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Y13  	 
Y13 = a13 + 

p13/RL + sC3p13 x13 

Choosing y
13 

=-1 and p
13 

= R
L 
with a

13 
possitive the above expression 

becomes 

1 
Y13 - a

13 
+ 1 + 

sRLC3 
x13 

which does not need a differentiator and pan be realized in fact using 

an inverting lossy integrator as shown in Fig. 4.3 below. 

R3 

Fig. 4.3 

From the Cl
13 

 matrix above the right transformation matrix 

of the series inductor can now be derived from the compatibility 

relationship yielding 

a22 P22 

a22 = 
Y22 

622 	
a
13 

-R
L 

It can be observed from Table 4.1 that for a low complexity LT structure 

for the series inductor L2, either a22 
or y

22 
must be taken as zero: 

But since a
22 
 - y

13 - 
.-: -1 / 0 the only choice left in C122  along 

-  

the line of low complexity LT structure is Y
22 = a13 = 0 which makes 

OUT 
R3C =FRLC3 
R3 _, -- + Ct13  

S 



R
3 
 = R

3 
in the IT structure for the terminated capacitor C

3 
of Fig. 4,3. 

Again, from Table 4.1 the left transformation matrix CI12 
for the series 

inductor L
2 

must have either a12 
= 0 or Y12 = 0 for a low complexity  

realization of the corresponding LT structure. For a12  = 0, however, 

the realization of the LT structure requires differentiation as it can 

be seen from the expression for v
22 

 from Table 4.1. Consequently, y
12 - 

must be equal to zero in which case the LT structure for the series 

inductor L2 
is described by 

12 
Y12 = RL. Y22 

RL  

Y22 = p
12 

+ 
sa12L2 
	(x12 

+ a
12
x
22
) 

To reduce still the complexity of the realization we rake N.  - 12 = Y22 

so that 6
12 

= RL, and we set a12 
= 1. Under these assumptions the above 

description of the LT structure for the series inductor L2 
becomes 

Y12 = Y22 

1  
y22 

p
12 	

sL
2
(x

12 
+ x

22
) 

R
L 	

R
L 

For p
12

> 0 the above expressions can be realized using an operational 

amplifier whilst for pip  = 0 a non-inverting integrator will be 

necessary. According to the last section this should be avoided. 

Therefore we choose p = R> 0 in which case the LT structure of 
12 

the inductor L
2 

can be realized as shown in Fig. 4.4. 

Once the 
Q12 

matrix is defined, its adjacent matrix CI21 
is 

also defined from the compatibility relationship of eqn. (3.17a) 

from which 

  

 

a21 = 
0 	-R 

1 	-R 
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[1 	R [-1 

0 -Rd 

Y22 R2C = 2 L2/ R 

k = 2RLIR 

L2 

	

x12 	71--C 	x22 

Fig. 4.4 

The two-input-two-output LT structure corresponding to the shunt arm 

capacitor C
1 

when taken in conjunction with the source resistance Rs
, 

is derivable from eqn. (3.10b) and is given by 

1 	
-R
s 

+ R(1 + sR
s
C 

X21  Y21 = 1 + sR
s
C1 E + 
	

(1 + sRsC1)RL  

For R = Rs 
the above expression becomes 

	

1 	
R
s 	

sR
s
C
1  E + RL  1 + sRsCi  x21 Y21 = 1 + sR

s
C
1 

which can be realized as shown in Fig. 4.5 when Rs 
R
L 

o  

—1  
[0 -R] 

1 -R, 

C RsC 



The overall LTA filter structure which simulates the passive ladder 

filter of Fig. 4.2 together with the relevant transformations and the 

corresponding descriptions of the LT structures, is shown in Fig. 4.6 

below: The frequency response and the sensitivity of this structure is 

examined elsewhere in this thesis. 

0 

RL  RS  

Fig. 4.6 

0 
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CHAPTER 5 

THE LTA FILTER STRUCTURES 

INTRODUCTION  

The flexibility of the LTA method, due to the almost arbitrary 

choice of the transformation matrices, may be used to derive new active 

filter structure from passive LC ladder networks. The LTA structures 

that can be derived from a given passive ladder filter are so many that 

there is space for reducing  their complexity by means of an appropriate 
• 

transformation choice, as already discussed in chapter 4. 

In this chapter a classification of the LTA filters is attempted 

based on both the manner of selecting  the transformation matrices as 

well as on some distinct and desirable characteristics of the LTA 

structures themselves. In addition, some well known ladder simulation 

methods are interpreted as special cases of the general LTA procedure. 

The general ladder network,consists of series and shunt arms. 

connected in cascade and it will be denoted by 

• {N1, N2, • • • , Ni, . . , Nni 

where N. is a series or a shunt arm of the ladder which,for the 1 

purposes of this work ill be transformed linearly using  the LT 

matrices pair 10,i, 	The transformation. of the ladder, as a 

whole, requires a linear transformation set which consists of the n 

individual LT.pairs and is denoted by the following  set of ordered 

pairs : 

• 



022Y • • • • (01 C1-2n 

Such a set of linear transformation pairs is said to be compatible if 

all the adjacent matrices satisfy the compatibility relationship for 

cross-cascade interconnections (see chapter 3). 

Several families of LTA methods are obtained in this chapter by imposing 

certain relationships between the individual transformation pairs of 

a compatible transformation set. 



-Y2 -62- 

(5.1) 

a
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5.1 THE SERIES. - SHUNT COMPATIBLE TRANSFORMATIONS  

DhINITION 5.1 : A compatible set of linear transformation pairs 

• • 40-1i' 1.t2i3 ' • • • 'Kiln' a 2n\ 

used to transform a ladder /N
I' 
 . . , Ni,. . . , Nn} is called 

series-shunt compatible if and only if the following conditions are 

satisfied 

C111 =0.1(i+1) 

121 = C12(i+1) 

i = 1, 2, 3, . . . ,(n-2) . 

These conditions imply that all series arms are transformed using the 

same linear transformation pair 	 2Z {(1IZ ' Cl 	, whilst all shunt arms 

are transformed using the linear transformation pair (aryl a 2, where 
Cily is compatible with (12Z and (AIZ is compatible witha

2y. 

The LTA filter structures obtained by using a series-shunt compatible 

transformation set are referred to as the series-shunt compatible LTA 

filters. 

Under definition 5.1, if for all series arms we set 

a1 	131 
and 0.2Z= 

Y1
61 	Y2 	

62 

• then as a consequence of the compatibility relationship we shall have 

a2 	132 

and for the determinants ,det(Ily=det Cl2Z=L 2 ' deta2Y- -deta 1Z 1 

The transfer ratios K,L,M and N in the series-shunt compatible case, 

therefore, will be given as shown below. 

• 
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a
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Y1a2Z + y1  p2  + 61  a_ 

(5.2a) 

M = Z a1a2Z  + a
1
p
2 
+ p

1
a2 

Shunt arm Y 

61132Y Y1P2 61(12  

KY  - 6162Y  - Y162 " 611'2 

a1y2Z + a
1
6
2 
+ p

1
y
2. N - Z a1a2Z  + a

1
p
2 
+ p

1
a
2 

- A 2  
LY - 6162Y  - y162 - 61y2 

-- A 2  

(5.2b) 

M = Y 6162Y  - y162 - 611'2  
NY 2
162Y - a162 p1y2  

"Y 	6162Y  - 1'162 - 61
1'
2 

- A 1  

In the above relationships no constraints have been placed in the ai, 

Si, y. and 6
i
,i=1, 2 parameters other than the compatibility condition. 

When these parameters are constraint to assume specific values then 

different structures are derivable dependihg on these actual values. 

This is examined below. 

5.1.1 	The lowpass Leapfrog--LTA Approach 

The well-known leapfrog Synthesis (47] emerges from the 

general LTA procedure as a shunt-series compatible LT approach by 

considering the transformation matrices to be,for the series arm case: 

	

r a 	0 

C11Z =[ 	C1 	

-a 

 
2Z =[- 

	

0 	6 	0 

and consequently,for the shunt arm case we shall have; 

n ■-4,1 y 

0 

-a 	0 
CLY 

	

0 	-5 
I 

	

La 	0_ 

• 
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where a is a real dimensionless number and b has resistive dimension,; 

but it may be positive or negative. 

Such a scheme for the LT structure of the series arm Z yields 

the following relationships 

Y1 = -Y2 
(5.3a) 

Y2 = ceZ 
(x

1 
+ x

2
) 

and for the shunt arm Y we have 

Y1 = -Y2 
(5.3b) 

y2  = - 6-ya  (xi  + x2) 

Table 5.1 gives the description of the LT structures for the series 

and shunt arms as well as the input and output terminations. The two-

input-one output model has been employed for the input termination, 

whilst the appropriate zero entries in the chosen left transformation 

matrices allowed,for both ladder cases, the use of the single-input-

single-output model for the last reactive arm of the ladder when 

taken in conjunction with the resistive termination , as shown in this 

Table. 

The original Girling and Good leapfrog structures for lowpass 

polynomial ladder filters [47] are derivable for a=1 and 6=Rs. The 

last column of Table 5.1 gives the LT descriptions of the corresponding 

LT structures for this case. It is obvious from this table that for 

• the lowpass ladder elements (i.e. series inductor and shunt capacitor) 

the realizations of all LT structures involve only integrators which 

is very much desirable as it has been explained earlier. However, 

for highpass ladder arms (i.e. series capacitors and shunt inductors) 

this transformation is not of particular interest since it leads to 

LTA filters requiring differentiators for their realizations. 
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LADDER ARM LT MODEL LT DESCRIPTION a=1 , 6=Rs  

yl "-Y2 

b  --. , ,x 	) 
Y2 = aZ 1

+x  2 

Y1 =- Y2 
R 

y2  =- -z-
s 
 (x1  + x2) 

-illill- z 
O 	 cr 

Yi l 	Y2 

xi 	x2  
Y1 "-Y2 

Y2  =- 2--L  (x +x ) 2 by 1 2 

Y1 = - Y2 

1 - 	(x + x2) Y2 = RsY 1 	2 

5 (x21+aE)  
Y21-  a(Zi+Rs) 

a(--I-6 x21-E)  
b  

Y21 	1 + Rs
Y1 

R 
Y = 	

s  (x +E) 
21 Z

1
+Rs  21 

x21
-E  

Y21- 1 +RsY1 

bx
1n  

Y1n - a(Zn+RL
) 

6  v 	„ =— v 
" 1n RL 2n 

aRLx1n 
Y1n - o(1+RLYn) 

yin = -MV2n 

R
s  

in Zn+RL
x1n 

Rs" y 
1n RL  2n 

R
L  

Y1n-  Rs (1+RLYn
) x1n 

y1n -V
2n 

aiz 

-a 0 

0 	a a J 

0 -6 'a 	0 

=0 	5 
) 02Z=  Cla= 

21 

E 	x21 

RL 

TABLE 5.1 
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The leapfrog-LTA simulation of a 5th order lowpass polynomial filter 

is illustrated in Fig. 5.1. The integrators have been realized by 

the very effective Miller inverting integrator circuit. 

Fig. 5.1 

a 



a2=
[.r  -5  ] a 	-13 

(5.4b) 

y2Z L 	-A  
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5.2 SELF-COMPATIBLE TRANSFORMATIONS 

DEFINITION 5.2 A compatible set of linear transformation pairs 

(C1111 021 	• • 	' (C11i' C12.5.' • . . 'ICI1n'1:1211 

usedfor the transformationofaladderINI,..,N.,. . ,N
n
1 is 

• defined as a self-compatible if and only if 

au. =ai A a2i = a2 	= 1,2, . . ,n 

where a1  and CI 2  are two nonsingular compatible square matrices. 

The LTA filters emerging from such transformation sets will be referred 

to as Self-Compatible LTA Filters. 

Thus if we set the matrix CI1 
to be 

( 5. 4a) 

then fromi the compatibility relationship we find that 

Moreover, we have detq = detC12  = (\ 

The transfer ratios K,L,M and .N can now be re-expressed under the above 

transformation matrices as follows. 

For the series arm Z 
• 

(5.5a) 
-A  MZ -  ayZ -A 

2 
N2 - 	Z  

ayZ 

For the shunt arm Y 

w 	.62y 	 A  
- MY +A 	LY - MY --1-A 

(5.5b) 
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MY PaY
A  
+ 

P2Y  N - Y 13bY + A 
(5.5b) 

5.2.1 The Active-RC All-Integrator Highpass Filters [47] 

The lowpass Leapfrog Linear Transformation which which can 

be used for deriving the leapfrog structures from lowpass polynomial 

ladder networks have been discussed in section 5.1.1 where it was 

observed that these particular transformations would, in the case of 

highpass filters, lead to leapfrog-LTA structures involving undesirable 

differentiations. 

There are, however, two self compatible transformations leading 

to the Girling and Good [47] all-integrator active structures for the 

highpass filter case. The first of these transformations,is defined by 

the following self-compatible matrices 

P 	Y 	0 

= 	 io o 	2 l 	-p 

which is obtainable from the general self compatible matrices of eqn. 

(5.4) for a=5=0. This transformation will be referred to as the HP-LT1 

case. The voltage transfer ratios K,L,M and N for the HP-LT1 case are 

found from eqns (5.5) and are given below. 

For the series arm Z 

KZ  p - YZ 	Lz  = 1 	
yZ 

73 Y1 = x1 "2 

M = 1 	N _0 

(5.6a) 

For 	

y

2 

 = X

1  

For the shunt arm 

KY  = O 	LY - 1 	

Y1 - x2 

M = 1 	

pv 	= 	- ,  
(5.6b) 

• 
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The second of the self-compatible transformations which leads to all-

integrator active highpass filters is defined by 

0 	-6 

a1 = 
a 
	0 

This transformation will be referrdd to as the HP-LT2 case. The cor-

responding descriptions of the LT structures for the ladder arms are 

given below. 

For the series arm Z 

y
1 
 =X

2  

aZ 
y
2 
 = xi  

6 
x
2 

For the shunt arm Y 

6Y 
yl = a xl x2 

Y2 =x1 

The corresponding LT structures for the highpass ladder arms for the 

HP-LT2 case as well as the terminations are given in Table 5.2 

The use of this Table for the transformation of a highpass polynomial 

filter leads to the active structures of Girling and Good. This is 

illustrated in Fig.5.2 by means of the LTA simulation of a 5th order 

polynomial highpass ladder filter. In Fig. 5.2a the structure has 

not been yet simplified. The simplified version of this structure is 

shown in Fig. 5.2b. The simplification Alas based on the fact that 

when Miller integrators are used they can. perform-addition at the 

virtual earth terminal in which case some of the adders are not 

necessary. Similar simplifications can be made using the virtual earth 

point of the inverters. The simplified LTA filter structure will 

ultimately need eight 	operational amplifiers connected as shown 

in this figure. 

• 
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Summing Miller inverting integrator 

• 



5.2.2 The Wave Active Filters  

An additional constraint within the self-compatible. linear 

transformations can simplify the general equations and derive one 

very interesting special case. By considering a = a , 	2 	eqns (5.4) ' 

yield 

a 	13  
Q1 Q2 
[] 

and consequently for the series arm Z we have 

aZ 	 2P 
KZ  aZ + 2p 

L - 	 Z aZ + 2P 

(5.7a) 
2p aZ  

MZ=  aZ + 2P 	
NZ  = aZ + 2P 

whilst for the shunt arm Y we shall have 

-PY  
KY = py 4. 2a 

2a  
MY py + 2a 

T 	2a  
'Y pY + 2a 

-PY  N = pY + 2a 

(5.7b) 

This self compatible LT procedure for a=1 and pr,R was first presented 

by A.G.Constantinides and G.Haritantis under the name Wave Active 

Filters 0][49] 	and independently by H.Wupper and K.Meerkdtter 

under the name Scattering Parameter Active Filters[50[51]. The 

Wave Active Filter terminology stems from the fact that under this 

specific self compatible transformation set, the transformed variables 

x and y can be identified with the incident and reflected voltage 

waves at the corresponding ports, whilst the voltage transfer ratios 

K,L,M and N, being equal to the elements of the scattering matrix of 

the corresponding ladder arms, thereby justify the second term. 

As far as the input termination is concerned, for the wave 

active filter case eqn. (3.8) yields : 

-98- 

-43 

• 
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2R 
x = 	 11 R + R

E 
s 

 

which becomes x
11 
 = E for R = R. This implies that the x

11 
 input of 

the LT structure corresponding to the first reactive arm N1  of the ladder 

represents the actual input of the Wave Active Filters. It is worth 

noting that in the Wave Active Filter case the output y11  represents 

the complementary output of the filter as pointed out in ref.[48N491 

The output termination of the Wave Active filters can be found from 

eqn. (3.13) as follows 
R
L 
 - R 

x = 
2n R + R Y2n 

which implies that for R = RL  the input x2n  must be grounded in 

which case from eqn. (3.14) we find that Y2n = 2V2n
. This implies 

that the output y2n  of the Wave LTA structure represents the output 

of the original ladder filter with a gain of 2. The single-input-single-

output model for the last reactive arm of the ladder when transformed 

in conjunction with the load resistance,cannot be used in the Wave 

Active Filter case due to the absence of the necessary for the 

existence of a convenient output node zero entries in the Wave Active 

transformation matrices. 

Table 5.3 gives the Wave Active LT structures for all simple 

ladder arm cases. The series (parallel) tuned circuit in the series 

(shunt) arm is not shown in the table since due to the self compati-

bility of the transformations it can be formed by simply cross-cascading 

the Wave Active LT structures of its consistuent parts. The series 

(parallel) tuned circuit in the shunt (series) arm are more problematic. 

Their Wave Active.LT structures are shown in Fig. 5.3a and Yiig. 5.3b 

respectively whilst Fig. 5.3c and 5.3d show the operational amplifier 

saving (but non-canonic) Wave Active LT structures for the same 

arms,propcsed in ,...>-P.(51L 

• 
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5.3 FORM - COMPATIBLE TRANSFORMATIONS 

DEFINITION 5.3 : 	A compatible set of linear transformation pairs 

a21 j' 	• • ,4ain, a2n 
is said to be form-compatible if and only if 

icild =la 1(i+2)1 n  102i1 =1 0,2(i+2)1 

i = 1, 2, • • • ,(n-2) 

where by I al we denote a matrix the elements of which are the absolute 

values of those of a l  i.e 

• 

a= r 

From the above definition it becomes clear that all transformations 

for series arms will have the same zero entries. The same is true for 

the transformations of the shunt arms. It can also be observed that 

any series-shunt compatible transformation as well as any self compatible 

transformation is a form-compatible transformation under definition 5.3. 

The form-compatible linear transformations may be used for the 

reduction of the number of the operational amplifiers;in some self-

compatible and series-shunt compatible cases as it is shown below. 

5.3.1 Form-Compatible Transformations for minimum Operational 

• Amplifier Leapfrog-LTA Structures.  

We recall that the leapfrog structures for lowpass polynomial 

ladder filters can be derived using the series-shunt compatible set 

of transformation pairs defined by 
. 	_ 

02Y- Ctiz ) a2Z= 

I--1 	0 

; (11Y=  

1 	0 

0 	R J 	LO 	R 

 

0 -R 

-1 	0 

 

	

0 	-R1 

	

L1 	U J 



k  
Yin i+sz

n 
x
in 

-k 
Y1n 1+stn

x
1n 

(a) (b) 
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The LT structures so derived for the simple lowpass ladder arms need 

one inverting Miller integrator for every simple lowpass arm and in 

addition to an inverter as it can be seen from Table 5.1. 

The form-compatible leapfrog LT is defined by the following 

transformation matrices. 

For the series arms 
1 	0 

o 	R =la 2Z1 
whilst for the shunt arms 

oid=r, 
R 

0 =102y1 

  

Under the above transformations the output terminated reactive lowpass 

arm will be described by an expression of the form (Table 5.1) 

yin - 	
k 0 

1 + st
n 
x
n 

which may be realized as in Fig. 5.4a. Similarily the input terminated 

lowpass reactive arm will be described by (Table 5,1) 

kx
21
- E 

Y21 = 1 + s-C
1 	

k;>0 

which can be realized as in Fig. 5.4b below. 

kx
21 

- E 

Y211+st 
1 

-kx
21 

- E 

Y21 1 +s p
l  

Fig. 5.4 
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Therefore, under any form-compatible leapfrog LT only one amplifier is 

needed for the input and one for the output lowpass reactive arms when 

transformed in conjunction with the terminations. Note that any 

amplifier used to scale the input E is not really necessary. 

For the intermediate arms transformed using the leapfrog 

form-compatible linear transformations we have that for a series arm 

Z under the transformation 

r0 61 

1 0 	a2 0 

(11Z = 	C12Zio  
6
2 

the LT structure description is given below 

5 1 
yl =- 62  Y2 

62 , 	a1 
Y2 = -o7127'xi-  a2 x21  

From these expressions it is evident that constraining y1  to be equal 

to y2  and removing invers5ons from the input variables, the following 

conditions must be held: a2  = -a1  and 62  = -61  . Therefore, the 

general form-compatible leapfrog transformations for minimum number 

of operational amplifiErs for the LT structure of the series arms Z 

is as follows 

Cliz 

-a 	0 -I 	-a 	0 

Cl2z= 
-0 5 	0 -5 

yielding 6 
(x + x Y1Z = j2Z azi 	1Z 	2Z)  

(5.8a) 

Similarily, it can be found that the general form-compatible leapfrog 

transformations for the shunt arms Y for minimum number of operational 

amplifiErs, is of the general form 
0 r 	pi 13 

CIlY 
Y 	

C6i= 
0 L 	0 

yielding yiy y__=1-(x +x ). 
py lY 2Y 

(5.8h) 
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From the above relationships it can be observed that for a desirable 

negative integration operation for a series arm Zi  to exist, the 

parameters a and 15 must be of opposite sign. The compatibility 

relationship between the two adjacent matricesCI 	
and CI 

2Zi 	1Y(i4.1) 

will make p and y of the shunt arm Yu" have the same sign and, 

of course, the sign of the corresponding integration positive 

Therefore, the sign of the integration required within the 

form-compatible LT structures alternates. The minimization of the 

positive integrations in the intermediate stages is evidently possible 

only for odd order filters since in that case there is an odd number 

of intermediate LT structures which require an integrator, and by 

making the first (or the last) of them negative (inverting) we minimize 

the number of positive (non-inverting) integrators. 

Once the transformation matrices for the first (or the last) 

of the intermediate reactive arms is chosen, with the help of eqns 

(5.8), to yield an inverting integrator, the rest of the leapfrog 

form-compatible linear transformations can be found from the same 

equations. Fig. 5.5 below illustrates the LTA simulation of a 5th 
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order lowpass polynomial filter using the form-compatible linear 

transformations to minimize the number of the operational amplifiers. 

The resulting leapfrog LTA structure when compared to the original 

leapfrog structure of Fig.5..1 illustrates the benefitial use of these 

transformations. It is evident from these two Figures that in the 

original leapfrog case of Fig. 5.1, nine operational amplifiers are 

used whilst in the improved version of Fig. 5.5 only six operational 

amplifiers are employed two of which are used as buffers. 

The three classes of linear transformations sets examined in 

this chapter together with their special cases are summarized in 

Table 5.4 and can be used as a quick reference table for design 

purposes. 

TABLE 5.4 

LT 	CASE  C ONDITIONS SPECIAL 	CASES 

GENERAL 
(ACYCLIC) 

NON] ALL 

SERIES-SHUNT 

COMPATIBLE 

faii,02i 

= 1(i+2P2(i+2) -̀̀1Z 

I 	i=1,2, 	. 	. 	,(n -2) 

LEAPFROG STRUCTURES(Table 5.1) 

	

_i 	0] 

	

0 	R 

ro 	-11 
oi 

is 

polynomial 

ladder 

them from 

lrl 

For all 

For all 

cily- 

Note 

series 

	

1 	0 

	

0 	R 	1 

shunt 

	

r0 	_R 

	

_i 	0 	j,  

for 

and the 

can be derived 
to BP 

: This transformation 

arms 

' (12Z=  

arms Y 

G2Y =Li  

lowpass 

bandpass 

transformation. 

suitable 

ladders 

that 
via LP 
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TABLE 5.4 (continued) 

SELF COMPATIBLE 

• 

Gli = al 

Chi =(21.2(i+1) 

V i=1,2, 	. 	. 	(n-1) 

ALL INTEGRATOR HIGHPASS 

For all 

arms (see 

U1 LO  
[0 

WAVE ACTIVE 

FILTERS 

0 	-R 

01 

5.3) 

series and shunt 

Table 5.2) 

_ 

10.1 R 	
) a2.-

[1 

FILTERS 

For all arms (see Table 

1 	R 
CI1-02i 
- 	- 	1 1 	-R 

FORM COMPATIBLE 

Ia2i 

1• al l = 1 	b1 (1+1) 

Ha2(i+1)1 

1  

MINIMUM OP.AMP. LEAPFROG 

For the 

01Zi 

For the 

CI Y*= 1 i 

rail 	=fril 

The sign 

determines 

which 

STRUCTURES 

0-  

0 	. -6 

o 	pil 

li 	
0  

=16iHs  

PiYi  
sign of 

integrator the corresponding  

series 

[xi 	0 

0 	6i 
shunt 

ro 	pi  

Li 	%-i 

= 	1, 

of ai6i  

only 

varies 

(see eqn. 

,_ 	,102Yil:.  

1  

arms 

periodically. 

arms 

)  
CI- : 

Ipil 

and 

the 

(5.8)) 
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5.4 THE ACYCLIC TRANSFORMATIONS 

DLuINITION 5.4 : A set of compatible linear transformation pairs 

tarp 0.21‘, • 	• 10-1i, 	• • - 

employed in the transformation of a ladder network iN1, . . . N.. •, , . I  

. ,N
n 

is called acyclic when no constraints are imposed on these pairs 

apart from the necessary compatibility relationship. 

This is, in other words, the general case of the LTA method 

leading to the acyclic LTA filter structures. This term is due to 

the fact that transformation matrices once used for transforming a 

ladder arm are not used again. 	Their re-deployment would enable the 

definition of a period or cycle of transformations as in the previous 

cases studied in this chapter. The use of such acyclic transformations 

is rather intuitive and heuristic and requires considerable experience 

on behalf of the designer who must be very familiar with the general 

LTA method, otherwise the resulting LTA structures will be very complex 

indeed. 

However, one can draw some useful rules for using the acyclic 

case, to ensure that certain conditions are automatically met. Thus 

one should start from a matrix Cl
1n 

which ensures the existence of a 

convenient output node in accordance with the results of section 4.3 

so that a practical LT structure may be derived for the last reactive 

arm of the ladder taken in conjunction with the load resistance. 

With Cl
1n 

specified,its adjacent right transformation matrix CI
2(n-1) 

is automatically defined by the compatibility relationship. Next,the 

matrix 
Q1(n-1) 

can now be so chosen that the transformation pair 

M1(n-1)' 0.2(n-1) leads to a practical and easily realizable LT 

structure for the reactive arm N.. 'This can be checked using the 
n-A 

general expressions for the transfer ratios K,L,M and N (see chapter 2) 
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unless the transformation pair falls into one of the categories 

defined in this chapter in wich case the appropriate Tables can be 

used. 

Once the matrix 
1(n-1) 

has been determined,its adjacent 

matrix 
(12(n-2) 

is then automatically known and the acyclic procedure 

continues on this basis so that the LT structure relizations can be 

tailored to the needs of the designer. The realization of the final 

LTA structure, from such choices of transformation pairs, whether 

practical or not, will in any case be a novel one since all known 

structures result from cyclic LTA procedures. 

A 

• 
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5.5 FREQUENCY DEPENDENT LINEAR TRANSFORMATIONS (FDLT)  

The dimensions of the elements of the transformation matrices 

have been considered so far to be such that a and y are dimensionless 

whereas p and 6 are taken to have dimensions of impedances. The simplest 

form of such a scheme, as illustrated so far, is to consider a and y 

as numerical constants with p and 6 set equal to some resistive values 

(i.e. frequency independent). In such a case the linear transformations 

become frequency independent since the elements of the transformation 

matrices do not vary with frequency. 

However, if any one of the elements of the transformation 

matrices of a set of linear transformation pairs is taken to depend on 

frequency, then the transformation becomes frequency dependent and it 

is our aim in this section to study such transformations and to assess 

the way in wich they affect the corresponding LT structures. 

The frequency dependent elements will be chosen in such a way, 

that the transformed variables will still represent voltages and hence 

a and y can only be voltage transfer ratios whilst p and 6 can be 

impedences (i.e. they can be measured inQ). The TRE and TRI conditions 

for low complexity LT structures established in section 4.1 and sum-

marized in Table 4.1 in the form of appropriate zero entries in the 

transformation matrices are still valid although they have been 

derived under the assumption that the transformation matrices are 

frequency independent. This is so, because these zero entries have 

been determined in both the TRE and TRI approaches from an expression 

of the form 

(gaiRtY,OX(s) 	e(ccIPIY,O) = 0 	(5.9) 

where X(s) is the immittance of the arm under consideration, by con-

sidering (ga,[3,y,6) = O. This condition then allowed a frequency 

• 



independent relationship between the transformation parameters of the 

form 

8(a,p,y,o) = 0 . 

On considering the FDLT case with y(a,(3,y,6) / 0, eqn. (5.9 ) establishes 

a relationship between the elements of the transformation matrices and 

the immittance X(s) of the arm under consideration. This implies that 

at least one of the elements will be related to.X(s). The compatibility 

relationship for cross cascade interconnection (eqn. 5.17a)) will then 

transfer this transformation matrix element to the adjacent matrix 

thus making the adjacent LT structure dependent on the immittance X(s) 

of the neighbouring arm. This will break the desirable one-to-one 

correspondence between the ladder arms and the LT structures with 

contributes greatly to thelow sensitivity of the LTA simulated filters. 

Therefore, in the FDLT case y(m,p,y,o) must be equal to zero and from 

eqn. (5.9) we obtain 0(a,[3,y,b) = O. This implies that for the 

FDLT case-the THE and TRI conditions will be derived in the same manner 

as already done for the frequency independent case. This , of course, 

will lead to the same zero entries as those of Table 4.1. The nonzero 

matrix elements shown there can then be frequency dependent. The 

secondary conditions for further simplifications of Table 4.1 can still 

be used as a guide to even lower compleXity realizations of the cor-

responding LT structures. Moreover, all families of LTA procedures 

presented in this chapter can be made frequency dependent by considering 

one or more matrix elements to depend on the complex frequency s. 

The reason for •sing FDLT is that the degree of the voltage 

transfer ratios K,L,M and N may be influenced, in contrast to the 

frquency independent case where the degree of an LT structure cor-

responding to a ladder arm is determined by its immittance. Consequently 

it would be possible to reduce 'die order of an LT 8tructure for an arm 

• 
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Ni  of the ladder. However, due to the compatibility relationship the 

frequensy dependent element(s) ofalinear transformation pairrL a .1\ 2, 

will be transmitted to the transformation matrices used for the adjacent 

arms so affecting the degree of the neighbouring LT structures. 

Therefore, the use of FDLT need not be used for the transformation of 

canonic ladders(1)in that,reduction of the order of an LT structure in 

such filters will be compensated for in the LT structures of the 

adjacent ladder arms. 

However, it has been found the:43.f the ladder to be transformed 

has a T or a fl of similar impedances (Fig. 5.6a) or indeed of impedances 

having a common pole (Fig. 5.6b), the FDLT procedure may be applied 

beneficially, This is due to the fact that if one or more elements of 

the transformation matrices for the middle arm of the 11 or T section 
are chosen to be frequency dependent so as to reduce the order of its 

corresponding LT structure, the compatibility relationship will transfer 

(1) 	Canonic in the sense that they employ the minimum number of 

reactive elements consistent with the order of the filter. 

9 
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this frequency dependence to the adjacent matrices thereby reducing 

the degree of the LT structures of the adjacent arms. To illustrate 

the above points and also the manner in which the FDLT may be usefully 

employed, let us consider an example in some detail and also another 

design of practical significance. 

A doubly terminated reactive ladder is shown in Fig, 5.7 [ 4], 

consisting of five reactive elements connected in such a way that an 

inductive T is formed. The straightforward application of the frequency 

(a)  

1 

1 
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independent form compatible transformation set, used for the trans-

formation of the ladder of Fig. 5.5 would lead to an LTA filter 

with five capacitors and six operational amplifiers one of which is 

connected as a differentiator as shown in Fig. 5.7a. The use of the 

FDLT shown in Fig. 5.7b, with the appropriate frequency dependent 
• 

matrices, yields the LTA structure of Fig. 5.7c with the 	evident 

simplification of Fig.5.7d. The final LTA structure employs only 

four rather than five capacitors and the same number of operational 

amplifiers as the structure of Fig. 5.7a, with the very noticable 

difference that no differentiation is involved in this case. 

It is worth noting that not all transformation matrices are 

frequency dependent. In fact, frequency dependent transformations 

are used for transforming that part of the ladder which has a nor T 

of the kind shown in Fig. 5.6. The FDLT procedure is very powerful 

in the very important case,from the practical point of view, of zig-

zag bandpass filters which have arms of the kind shown in Fig.5.8 (4]. 

In such a case the filter is composed of rl and T networks of the form 

shown in Fig. 5.6b where the series arms have an impedance of the form 

1+s
2(C

1
+C
2
)L 

Zz = , 2 
s0+s LC

1
)C
2 

and the shunt arms have admittances of the form Y=1/Zy  where 

Z = 	1 	
• 

y s(C1+C2)(1+5
2LC1C2/(C1

+C
2
)) 

Both arm impedances have a pole at s=0 which may be removed by using 

the FDLT approach. The detailed FDLT simulation of an 8th order 

zig-zag filter is presented in chapter 7. 

1+s
2LC 
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• 

CHAPTER 6 

SELF-DUAL LTA FILTERS 

• 

INTRODUCTION, 

In the previous chapter a classification of the LTA structures 

was presented and some well known ladder simulation methods were inter-

preted as special cases of the general LTA procedure. This classifi-

cation was based on imposed relationships between the individual linear 

transformations used for the LTA simulation of a given ladder network. 

However, there are some more degrees of freedom within the 

presented classes of LTA procedures which can be effectively utilized 

to produce LTA filter structures possessing highly desirable features. 

In this chapter the series-shunt compatible case is so constrained to 

yield structures that possess the property of self-duality as defined in 

section 6.1. The introduction of two more constraints,one in the form 

of a simple linear relationship between the transformed variables and 

the other in the form of the so called "rotation" or R-property,yields 

• 
	even more practical and highly modular active RC realizations. 

• 
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6.1 NECESSARY AND SUFFICIENT CONDITIONS FOR SELF DUALITY 

DEFINITION 6.1 : 	A set of linear transformation pairs 

• {(111'0211  ' ' • • ' CIli 'Cl2ii ' • ' 	'fain'().2n 
used for the LTA simulation of a ladder {N1, 	,Ni, 	. . ,Nn 

is said to be self-dual if and only if 

(i) It is series-shunt compatible (see section 5.1) 

(ii) The LT structures of a series arm Z (shunt arm Y7) 

Z 
is identical to that of its dual shunt arm Y = 11/R

2  
o 

(series arm ZX= YXRo
2  
 ), where R

o 
is a convenient 

resistance value. 

Such a transformation yields active RC filters which will be referred 

to as self-dual LTA filters. 

The necessary and sufficient conditions for self-duality in 

terms of the elements of the transformation matrices are derived below. 

For the series-shunt compatible transformation case we have, according 

to the previous chapter, all series arms transformed using the same 

transformation pair below 

z= 

	

a
1 	- 131 132 

a
2 

Cl2e 

	

1 	
6
1 	Y2 	62 

(6.1a) 

whilst all shunt arms are transformed using the transformation pair 

y= 

r 
12 -62 

• 

  

   

`^ 2Y (6.1b) 

  

a
2 -P 

   

      

where the series-shunt compatibility has been taken into account. . 

Under these conditions the LT-chain matrix descriptions of the LT 

structures fol. the two ladder cases (eqn. (2.6) and eqn. (2.7) respec-

tively) are given below : 

• 
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For the series arm Z we have 

- 41
1
y2Z + a1

5
2 
+ p

1
y2 	

a.1a2
Z + a1p2 

+ p
12 

A2 	 A2 

_Y1— • 1
y
2
Z + y

1
5
2 
+ 51y2 	- 

1
1
a
2
Z  + 1

p2 + 51a2 

02 	Q2 

_
x2 

Y2 

(6.2a) 

For the shunt arm Y we have 

-x 
1 	p162

Y - a152 - p112 	-152Y y 6_-
,5 1 c ,51
12 -x2 

A1  

- 131132Y - a1132 - P12 - 51p2Y - y1
p2 - 51

a2 __Y2_ _y1 _ 
A l 	 A1  

(6. 2h) 

where Q1  = detalz  and A 2  = detC12z  

The conditions for self-duality are derived by requiring the two LT-

chain matrices of eqn. (6.2a) and eqn. (6.2b) to be equal when Y=Z/R2, 

i.e. the two ladder arms are dual. This yields the following relations: 

Z(a1y2R
2 - p152k) + R2(a152  + p1y2)(A1  +p2) = 0 

Z(a1a2RA1  - 51522) + R2(a1
p2  + p1a2)A1  + (1162  +6112)A2  = 0 

Z(yiy2R2 - ) + R2(y152  + 51y2)d1  + (a1(32  + P1a2)Q2  =0 

z(TiaAi 61P2A2)  R2(Y1P2 61a2)(Q1 °2)  = 0 

Fortheentriesa.,13
i'  y.and5.to be independent of the arm impedance 

Z, we obtain from the above equations the following relationships which 

must hold even for the FDLT case: 

2 
R  t11 
	p152 1 	2 	5152 	PP2 	12 p* 

02 	a1Y2 	a1a2 

- 

I112 	le a 
1 2 

(6.3a) 

 

(a152  + p1y2)(A1 
 + Q 2) = 0 	, 	(y1132  + 51a2)(A 1+A2)=0 (6.3b) 

(a1p2 + p1a2)A1 + (1152 + 5112)A2 
= 0 (6.3c) 

(a
1  p2 

 + p
1  a2 	2  )A 	+ (1

12  + 	1 
y
2 	1 

= 0 (6.3d) 



S 

It can be found from eqn. (6.3a) that 

p
1
a2 

= 61y2 and m12 
= y162 	(6.4) 

under which, eqn. (6.3c) and eqn.(6.3d) become identical both yielding: 

(7162 + 1
y2) (A  1 	

p 2) =0 	 (6.5) 

From eqn. (6.3a), eqn. (6.3b) and eqn. (6.5) the necessary and suffi-

cient conditions for self-duality follow. Mathematical manipulations 

taking into account that A i 
0 , i=1,2 produce the following explicit 

conditions for self-duality : 

6162 	P1132 	p12 	61p2  - R2 
- Y1Y2 a1m2 	

- a

1Y2 

- 

Y1a2  
, p1  = - A 2 	(6.6) 

where R is a convenient resistance value used for the definition of 

duality between a series impedance Z and a shunt admittance Y= Z/R
2 

• 
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6.2 PRACTICAL SELF-DUAL LTA FILTERS  

Any series-shunt compatible set of linear transformations 

satisfying the necessary and sufficient conditions of eqn. (6.6), is 

a self-dual set of transformations. In such a case the LT description 

of the series arm Z and that of the dual shunt arm Y=Z/R2 will be 

identical and their general form will be as given below: 

y
1 
= K

s
x
1 
+ L

s
x
2 	 (6.7) 

y
2 

= M
s
x
1 
+ N

s
x
2 

The simplification achieved , however, is not evident from such expres-

sions since four voltage transfer ratios are still required to be 

realized in order to generate the outputs y
1 
 and y

2 
from the inputs x1 

 

and x
2. Nevertheless, it can be noticed that the necessary and suf-

ficient conditions for self-duality impose only five relationships on 

the eight elements of the two series-shunt compatible transformation 

matrices, leaving three degrees of freedom which may be effectively 

utilized to lead to more practical realizations. To this end, we 

require the following condition to hold between the transformed vari-

ables of each and every ladder arm: 

63'2 = E1  x1 + 62'2 
	 (6.8) 

E 1  = 1,0,-1 ' -1 	E2 	" 	, = 1 0 -1 	E = 1 

The usefulness of the above constraint lies in the fact that under it, 

only one of the expressions of eqn. (6.7) is required to be realized, 

so as to generate one output, the other output being directly derivable 

from eqn. (6.8). ' 

Consequently, the necessary and sufficient conditions for a 

self-dual transformation to satisfy the additional constraint of 

practical significance of eqn. (6.8) are as follows. 
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(6.9) 
a162( - £:1 E:2) = 1 

A a
2
6
1(E: E£1 £ 2) =E2L1 2  

If the nonsingularity of the transformation matrices is to be preserved 

we also have: 

a
1
a
2
a
1
6
2 
/ 0 and 	E 	f: 2 	(6.9a) 

The conditions of eqn. (6.9) are equivalent to the following: 

Y1 = Elal 
	 (6.10a) 

E2 
Y2 =-E- a2 

a
1
6
2 
+ 6

1
a
2 
= 0 

a 6 (E- 	) = A 1 2 	1 2 	1 

(6.10b) 

(6.10c) 

from which it is found that under self-duality only three of these 

are independent, the fourth condition being derivable from these 

three and the self-duality conditions of eqn. (6.6). Therefore, the 

necessary and sufficient conditions for self duality with the linear 

constraint y
1 
+E:y

2 =E1x1 +E 
 2
x
2 

are summarized below: 

6162 	P1P2 	P162  61132 
- 	 = 	 = 	= - R

2 , 
a
1
a
2 Y1I2 a1Y2 Y1a2 

• 
1 2 	 (6.11) 

= C1a1 

Y2 = E a2 

a
1
6
2 

+ 6
1
a
2 
= 0 

Solving these eight equations for the eight unknown entries of the 

transformation matrices, we find the following transformation matrices 
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for the series arms : 

1 
E2  
E 1111  

1 	El pR - 
E 

_- £ 2  El  11R 

02Z =  

 

and consequently,for the shunt arms we have : 

1  
-E2 	E 

,R 
	€1 

Clly = 	 `12-e 

1 	El 
E -1 

In both cases the parameter p assumes values 2: 1. 

The corresponding LT description of the series arm under this 

constrained self-dual transformation is given by: 

2 
E Z + PRO -E: ) X -I- 	VR(E -E: 1  .E ) x2 y = 	1 	 2  1 	 1 

Z + pR(E E 2  - El) 	Z + p.R(EE 2  -E i ) 
(6.13a) 

2 
-El  E2) 	EE2 	2 Z + pR(E - 1) 

Y2 = Z + pR(EE2
+  Z vR(E E 2  - 1 ) X2 

whilst the corresponding relationships for the shunt arm can be found 

from the above for Z=YR2 as follows: 

E1  RY + p(1 -E2) 

Y1 - RY + 11( CE 2 -E I )xl 
p.(E - E i  E 2) 

RY + IL( E 2  -E i )x2 

(6.13b) 

2 - p.(E -E 
1 
 £2) - 	EERY + p 2  (E -1) 

Y2 =PY + ( E E: 2 - E:1)x1 	RY + P(EHE. 2  - -E.-7)i  -x2 

Due to.the self-duality of the transformation of eqn. (6.12), only one 

of the above expressions, either (6.13a) or (6.13b), is sufficient to 

describe the self dual structures. 

(6.12a) 

6.12b) 

£2 



All self dual cases for which yi  +E:y2  =Eixi  +
e

are tabulated 

in Table 6.1 for the various combinations of E:, El  and E:2. 	The 

parameter has been incorporated in R which can now assume either 

positive or negative resistance values. However, it can be observed 

from this Table that cases 2, 3 and 13 are not suitable for practical 

and convenient realizations. In the last column of Table 6.1, we 

indicate the output which can most conveniently be realized by an active 

RC network,the other output being of course realized using eqn. (6.8). 

vt 



• 

• 
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TABLE 6.1 

No Ei 	E.-. 	E E2 n --iz • 	a2Z 
1 	R 	1 	R 

LT STRUCTURE DESCRIPTION 

Y1 	Y2 
* 
1 -I 	-1 	-1 

1 1 	1 

[1 	fil 	[1 	-R] 
y1- y2=4(1-x2 

E =El  62 

y 	 v 	2R x + Z =i+Z2  

R 	'2=Z42R -1 Z+2R x2 
ii<1 +i+22R yi  2  

-1 	1 	-1 E  =  Ei E2 
INADMISSIBLE 

v 	x  + 	2R 	-2R x .. 
2 -1 	1 	1 

1 	-1 	-1 

[11 	
RJ  
yl+y,,x1.2 

	

F1 	-.RR]  

	

II 	J 
E=Ei e2 

= 	x 
	Y2

_x_ 
11  Z+2R 1 Z+ 2R 2 	12 Z+2R 1 Z+2R 4  

INADMISSIBLE 

3 1 	-1 	1 [11 	-RR] 	
[11 	R1  
L 	RI 

Yi +Y2' x1 x7 
r 	_Ri 	. 	ri 	-R 

xl+Z213R x2 Y1=Z 2R 	Yi:Z-13Rx1+Z-2Rx 

Y1 	Y2 Z 	)i. 	-21% 	v=  2R x, x  
4 

* 
1 	1 	-I Lli 	RI 	v  k,-Fj 

Y1 — Y7'̂ 1 .1. 's2 
E =El 62 

Y1=Z -2 R'+Z -2R-2 	14  ± — 2R—'  Z-2R 2 R <0 
INADMISSIBLE 

5 j 

* 6 

7 7 

1 	1 	1 

v 	R 	Z Y2 0 -1 	-1 01 	RR] 	[11 -R1 
y1-x2 

Y1=z*x1- x 2) 	
„ 	x  

12=Z+R-1 Z+R 

Yi 0 -1 	1 o -RR] 	[ii 	R1 
Yi+Yr-x? 

x1+ 	x2 Y1-*(X1 +X2) 	Y2=z RR 	itZ--1 
R <0 

Y2 
rI 

0 	1 	-1 ol 	RR] 	[11 -R1 yi  - y7= x? (X1 - 	
y 

Y1=TRTR 	X2) 	Yf ZR-R xl+Z-Z-R -2 R <0  

y1 

* g 
1 

10 
* 

11 j 

12 
A- 

* 
8 0 	1 	1 o RR] 	[11 	Rcr 

Yi +Y2= x9 
Yi=z.E±R(xi+ )(2) 	Y2=Z4-RR xl*-z-x2 

-1 	0 	1 

	

[ 	
Rol 	[01 	_RR]  

Yi-Y2=--xi 

	

1 	01 	F1 	-Ri  

xi+ 	R+ 	(xi_ yi=z_ z  R 	z_ 	R x2 	y2:: zR+ R 	x2)  Yi 

.... z 	..... y _ 	+ 	x 	2  
-1 	0 	1 1 	RJ 	Lo 	RI y1  +y2,-x1  

R 	- R 	(xi+x  ) i-z +R  xi Z+R 	2 	Yz". Z + R 
Y2 

Y1 1 	0 	-1 
1 

[1 	R1 	[10 :RR] 
Y1 - Y2" x1 

ii 	- 01 	1 	R1  

RR  Yl= A x1+ z- 	X2 	Y2= OFT(X1-X2) R < 0 

1 	0 	1 L1 	RI 	[0 	R J 
Y1 + Y2= xl 

1-1 	01  [1 	01 

ZR 	RR 	(xi Yi= z 	X1 4' z 	X2 	Y2= iF.!R 	+ x2) 
Y2 

R<0 

13 0 	0 	-1 [0 	RJ 
Y - Ya. 0 

11 	0 

1 	i  LO -R 
1 

_ R (x -x ) 	R 	( v _x2)  ( x1-x2) 
 

y, -I- Z 	1 	2 	 Z 

Yl Y2 
14 0 0 	1 to 	R Y,►Y2 - 

0 	(R1 
v _ R 	( v ,x  ) 	v --R (x +x ) 11- 	z 	^1' 	2 	.2---z 	1 	2 

R 

• 
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6.3 THE ROTATION OR R-PROPERTY IN SELF-DUAL LTA FILTERS 

DEFINITION 6.3  : 	A self dual linear transformation is said 

to possess the rotation or R-property if the RC-actively realized 

output yi  of the LT structure for a series arm Z (shunt arm Y) being 

Yi  = A(s)x1 + B(s)x2 	' 

the RC-actively realized output yl of the LT structure of the series 

R2 
arm 	(shunt arm 	1/YR2) is 

yl = A(s)x2 + B(s)xA.  . 

The self-dual LTA transformations possessing the rotation property 

will be referred to as R-Self-Dual transformations and the corresponding 

active filters as the R-Self-Dual LTA filters. 

The definition of the R-property implies that the LT structures 

of the highpass arms can be realized from the LT structures of the 

corresponding lowpass arms by interchanging the inputs x1  and x2. A 

similar state of afairs exists between the band-reject and the bandpass 

ladder arms. This is very desirable indeed since the already high 

modularity of the Self-Dual LTA filter structures is greatly enhanced 

by enabling a larger variety of ladder arms to be actively realized 

using the same active module. 

The necessary and sufficient conditions for a Self-Dual trans-

formation to possess the rotation property can be found in terms of the 

signs E, E1  and E2  since all eight parameters of the transformation 

matrices have been defined from eqn. (6.12a) and eqn. (6.12b). 

If y1  is the RC actively realized output in the LT structure 

of a series arm.Z, then from eqn. (6.13a) and the definition of the 

rotation property we have 

n2 	p2/  

	

y.
IZ 

= K(Z)x
1 + L(Z)x2  = 	/Z)x

2 
+ 	/Z)x

1 

from which it can be seen that 



• 
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E 1 = E = -1 and E 2 = 0 

corresponding to case 9 of Table 6.1. In addition cases 5,7 and 11 of 

this Table can also be seen to posses the rotation property, these four 

cases. being the only R-, elf-Dual cases of Table 6.1. 

Table 6.2 illustrates the four R-Self Dual cases and the cor-

responding LT structure for the series inductor L is given. This 

L 2 structure is identical to that of a shunt capacitance C = /R and 

moreover by interchanging the inputs x
1 

and x
2 

it can provide the LT 

structures required for the simple highpass arms. Therefore, the LT 

structure of the series inductance is very illustrative for any R-Self-

Dual case since it gives automatically the LT structures of four ladder 

arms. 

TABLE 6.2 

R Self Dual Case L T Structure for the se'ries inductor L 

CASE 5 

R>O 
CASE 11 

fl 01 P -Rl 
U RJ Lo -RJ 

R<.O 

CASE 7 

r -R] f1 01 
lo R bl -RJ 

R<O 
CASE 9 

R)O . 
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The LT structures in Table 6.2 are realized using operational 

amplifiers. It can readily observed that the most economical cases are 

case 5 and case 11 because of the low number of active elements they 

require. Indeed it is apparent that the LT structures for the series 

inductance in cases 5 and 11 are symmetric. This is expected since they 

emerge from symmetric transformations in the sense that the left trans-

formation matrix of one case is equal to the right transformation matrix 

of the other. 

4 
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6.4 THE APPLICATION OF AN R-SELF-DUAL TRANSFORMATION 

For reasons explained in the previous section, cases 5 and 11 

of Table 6.1 and 6.2, are the most practical cases and since they 

are very similar,the study is concentrated in case 5 only. 

The R-Self-Dual transformation of case 5 uses for all series 

arms the transformation pair 

	

1 	R 0 
= 	 L'A2Z1 

	

-0 	R 	L1 	-R 

and consequently for all shunt arms the transformation pair below: 

	

1 	R 	[0 	-R1 

Cliy= 	) 	02Y = 

	

[1 	o 	 1 	-R 

For both series and shunt cases the output y1  can be formed from the 

input x2  and the RC actively realized output y2  using the relationship 

Y1 = Y2 - x2 

The output y2  is given for the series arm Z case by the equation: 

Y2Z = R Z 
X
1 
 I- 	 x 

R + Z 2 

Whilst for the shunt arm Y case it is given by 

1 	RY  
Y = 2Y 	1 	

x + 
RY 1 	1 + RY 

x
2 

The above expression for v -2Z becomes identical to that for y2y  for 

Y = Z/R2, as expected from a Self-Dual transformation. 

Table 6.3 gives the LT structures for this R-Self-Dual case 

for all simple ladder arms wherein both the self duality and the 

rotation properties are evident and the transformed terminations are 

included. Table 6.4 gives the LT structures for the tuned circuits. 

• 
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It is observed that in the circuits of Table 6.3 and 6.4 the LT stru-

ctures for all ladder arms are constructuble using the active block 

shown in Fig. 6.1 below, consisting of a unity gain voltage follower 

(buffer) and a differential amplifier. 

r 

Fig. 6.1 

This situation.is highly desirable from the practical point of view 

since it makes the corresponding R-Self-Dual LTA filters highly modular 

and dmenable to microelectronic realization. 

Table 6.5 gives alternative realizations for the LT structures 

of the tuned circuits which involve a saving in the number of the 

operational amplifiers. These economic realizations are based on the 

twin-T network arangement[6][27Iand they also use the active building 

block of Fig. 6.1. 	Tables 6.3 , 6.4 and 6.5 can be used to obtain 

the R--Self-Dual LTA structure directly from the passive ladder. This 

has been done in the relevant section of the next chapter to simulate 

various ladder networks using the R-Self-Dual transformation concept. 

e 
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TABLE 6.5 

TUNED ARM LT 	STRUCTURE 

„r e__11--. CFC2=C- 
L0 	Co  

R1R2.1-000 
c 
L
2 

r 
.Y1 ' 4 ° R2  = 	0  

R1 0  
- 

... 
Y2 

R2  
C2 

C1 =C2=C 
(Ri +R2) 

Cl 
RiR2=1-- °C2 

C2  
x1 CI +C2) 	R1 	

x2 Lo  C 
 ° 

R2 = 4 R2C0  
R1 	Lo  

_c; 	Ci= C2  ::: C 

" Cc 
icp.0

0 
r  

—0--riA 
R1  132= 

C2  C 
R2 _ 4R2C.0  1 _ r I L y.  ° 	 Ri 	0 

< -4 
Y2 I 	.ri 

,fi _.--,- 
(R1.R2) C2 	R2  . C 1 =C2 =C 

C1 

p------ 	

Ri R2= --.--1-°C° 

FL—e-° 	R2 _ 4 L0  al 0 
)(1 R1 	( Ci 	C2)

c' 	 2 
	C° 	— 40 	R1 	17272E-c, . 

• 
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CHAPTER 7 

PRACTICAL APPLICATIONS OF THE LTA METHOD 

INTRODUCTION 

The general LTA approach to the simulation of passive ladder 

networks,has been presented in chapters 2 and 3, whilst in chapter 4 

some useful rules for its effective application have been proposed. 

In chapter 5 we dealt with the classification of the LTA procedures 

based of the imposed constraints between the linear transformation 

pairs of the transformation set, necessary for the simulation of a 

ladder and we interpreted several existing simulation methods as 

special cases of the LTA approach ,as a result of which they were 

further developed. The FDLT case was also presented in chapter 5 

whilst the Self Dual LTA filters were discussed in chapter 6. 

It is our aim of this chapter to apply the above 

theory to practice by simulating several ladder filters. The frequen-

cy responses of the LTA structures so derived as well as their sensi-

tivities are examined in each case and comparisons are carried out 

showing the advantages of LTA procedures over some existing ladder 

simulation methods. 
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7.1 A STUDY OF LOW ORDER LTA STRUCTURES  

The LTA simulation of second and third order polynomial low-

pass filters will be used as a basis for comparing the sensitivities 

and performance of various LTA structures derived from such polynomial 

filters using different transformation sets. 

The reactive ladder filters used here are so designed, as to 

match the source resistance Rs 
to the load RL  at certain fraquencies 

within the passband, so providing maximum power transfer points at 

which the first order sensitivity of their amplitude characteristic 

with respect to a reactive component is zero (see chapter 1). This 

is known as the Orchard's Principle and is one of the main reasons why 

the simulation of these doubly terminated LC ladders is desirable. 

Ideally, RC-active simulation of such filters should possess this low 

sensitivity property with respect to most, if not all, of their pas-

sive (RC) elements. However,in practice, only some of the passive 

elements of the simulated RC-active structure obey the Orchard's 

Principle so that the sensitivity of the filter attenuation character-

istic with respect to these elements will be very low. within the pass-

band due to the zero sensitivity at the maximum power transfer points. 

It is possible in the LTA structures to make all capacitors 

present this low sensitivity due to their correspondance with the 

reactive element;s of the original ladder filter. It is not seldom, 

though,to find in the LTA structures in addition to the capacitors 

some resistors obeying Orchard's Principle due to an RC-product cor-

respondance with a reactive ladder element as it will be illustrated 

in this chapter. 

a 
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7.1.1 Second Order Lowpass Ladder LTA Simulation  

The second order Chebyshev ladder filter shown in Fig. 7.1a (Rs=111.3554  

RI: 1, Lo=1.2087 ,C0= 1.6382 and passband ripple 0.1 dB) is simulated 

using several different LTA approaches. Since there are only two 

reactive arms in the passive ladder, only two transformation pairs are 

needed. However,both of these arms may be taken in conjunction with 

the appropriate termination resistance and hence only one matrix is 

significant for each transformation,according to sections 3.3 and 3.4, 

always provided that 0
12 

is chosen to provide a convenient output 

node. The LTA simulations shown in Fig. 7.1 give the LT matrices em-

ployed, the LTA filter structure and the sensitivities I s t I ( the 

absolute value of the gain sensitivity with respect to the passive 

components xi  of the LTA filter). The sensitivities of the original 

passive ladder are shown in Fig. 7.1b. In this figure the sensitivities 

of this LTA filter are shown under the LTA structure in continuous 

lines. It is obServed that the sensitivity of the realization with 

respect to R2  is constant and equal to unity and therefore this resistor 

can be used for output level adjustment. It is also observed,that 

the sensitivities with respect to the capacitors C1,C2 
and the resistor 

R
4 

are identical to those for Lo 
and Co 

in the original passive ladder, 

presenting zero sensitivity at the maximum power transfer point as 

e. 
	 expected by Orchard's Principle. The sensitivity with respect to R1  

is identical to that corresponding to the dissipative elements in the 

passive ladder filter whilst the sensitivity with respect to R
3 
(the 

only element of the LTA structure which does not correspond to any 

element of the passive ladder) is very low as shown. 

It can be seen from Fig. 7.1b that the resistance R1  can be 

removed to reduce the number of components but in so doing we shall 

no longer be simulating the LC filter of Fig. 7.1a. Moreover,a 



0 

(a) 	Eq 
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readjustment of component values must be done in order to keep the 

transfer function the same. It is interesting,from the practical point 

of view,to examine the resultant circuit which is shown in Fig. 7.1c. 

The sensitivity performance of this circuit of course, is not 

expected to be similar to either that of the passive prototype or indeed 

to that of theLTA filter of Fig. 7.1b. In fact, we do not expect to 

have zero sensitivity at the frequency point corresponding to maximum 

power transfer. This can be verified from the sensitivity plots of 

Fig. 7.1c. Moreover, it can be seen from these sensitivity plots,that 

the sensitivities with respect t'o the capacitors have increased as well 

as that corresponding to R3  which has been doubled in this case. 

As a general 3onclusion,it can be seen that the sensitivity 

performance of the LTA filter is indeed lower than that of an active 

RC filter not simulating the doubly terminated LC ladder but merely 

having the same transfer function. 

The transformation matrices used in the design of the LTA filter 

of Fig.7.1d, are the R-Self-Dual transformations (case 5 of Table 6.1) 

The corresponding realization structure is seen to be very simple where 

both operational amplifiers are employed as buffers. This state of 

affairs is highly desirable for high frequency operation. Moreover,. 

the elements C1, C
2 

and R
2 
 present very low sensitivity performance 

within the passband due to their correspondence with the reactive 

elements of the passive ladder, as it can be observed from the sensi-

tivity plots of Fig. 7.1d. 

In Fig. 7.1e the LTA filter is derived using the transforma-

tion matrices shown and is subsequently modified as indicated, 

keeping the modifications within the LC simulation limits. Thus, the 

first amplifier of the initial LTA structure employed to provide a • 

gain of 2 and also to isolate its input node from the rest of the 

• 
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circuit is removed since both of these operations can be performed by 

passive elements when their values are appropriately modified. 	Con- 

sequently, the resulting single amplifier circuit with C1 
arbitrary 

and R = R' = R - 31, /R C 	R = 9L RL  R 2C and C =12
2C C /9L 

1 	2 R3  - os1 , 4 - 	oL s1 	2so1 	o 

is equivalent to the two amplifier LTA filter and of course to the LC 

filter. The disadvantage of the single amplifier circuit is the wide 

spread of the component values that results.in addition to the increased 

sensitivity performance of the resistors. The sensitivity of the 

capacitors, however, is identical to that of Lo  and Co  components in 

the original passive ladder. 

7.1.2 Third Order Lowpass LTA Simulation  

A third order Chebyshev lowpass (ripple 0.5 dB) shown in Fig. 

7.2a, is simulated using different linear transformation sets. Normally 

three transformation pairs are needed as follows: 

a11,  C-121 { (112'(2221 ,{a13, (2231  
but since the terminated arms are transformed in conjunction with the 

corresponding resistive termination, Oil  and C123  are redundant. 

The doubly terminated ladder exhibits maximum power transfer 

at zero frequency and at approximately i9.= 0.85. 	Therefore, zero 

sensitivity is expected at these points with respect to the reactive 

elements. Indeed, all capacitors of the LTA structures shown in Fig. 

7.2 exhibit this property and in three cases one or more resistors are 

seen to behave similarily, as is evident from the figure. 

In Fig. 7.2b a leapfrog structure is presented having four 

operational amplifiers and designed using the transformation set in-

dicated. There are also three capacitors in this realization all 

• 
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presenting zero.sensitivity performance at the maximum power transfer 

points ,owing to the one-to-one correspondence that exists between 

these capacitors and the reactive arms of the passive ladder. Moreover, 

it can be observed from the circuit that changes in the resistance R 

can be interpreted as changes in the capacitor C2  since the stage 

containing R merely scales (nominaly by unity) the integrator employing 

C2. Consequently, the resistance R in the circuit will have the same 

differential sensitivity performance as the capacitor C
2
( and hence it 

will be zero at the maximum power transfer points). Element values for 

ladder equivalence are 

C1 = C2 = C3 = C  

Ri  = 	= R,T = RsCio/C 

R2  = R2  = L20/RsC 

R3 	3 
= R' = R s C3o /C 

where C is a conveniently chosen but otherwise arbitrary capacitor 

value. Note that the capacitors in the active filter are all of equal 

value. 

The form-compatible transformations have been used in deriving 

the LTA circuit of Fig. 7.2c, in accordance with section 5.3. The LTA 

structure shown in this figure employs only three operational amplifiers 

(as opposed to four amplifiers in the leapfrog structure) two of which 

act as buffers. The sensitivity performance is still observed to be 

very low for all passive elements, whilst elements C
1
, C

2
, C

3 
and R

3 

present zero sensitivity at the maximum power transfer points. In 

comparing this circuit with the previous one in Fig. 7.2b, it is seen 

that both have very low sensitivities, but the LTA filter shown in 

Fig. 7.2c has the following advantages over that of Fig. 7.2b : 

(i) Only three amplifiers are employed(4 in Fig. 

7.2b. i.e. reduction in active components) 



• 
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(ii) Two,out of the three, amplifiers are buffers 

(i.e. ease of design and extension of fre- 

quency operation). 

(iii) Only five resistors are used (9 in Fig. 7.2b, 

i.e. reduction of passive resistive components) 

Element values for ladder equivalence must be chosen so that: 

Cl = C2 = C3 = C  

R =42 = 2R C /C 
1 	1 	s 10 

2R2= R2 = L20/RsC 

R
3 

= R
L
C
3o
/C 

Note that this LTA structure has equal value capacitors also since C is 

a conveniently chosen capacitor value. 

In Fig. 7.2d alternative transformation matrices have been 

employed as shown, with the middle pair having a third entry. This has 

the effect, in conjunction with the other transformation matrices pairs, 

to produce amplifier connections having no frequency dependent gains. 

There are in fact three operational amplifiers in the circuit of Fig. 

7.2d. The first is employed effectively as a buffer, whilst the 

second amplifier is connected to provide a gain of 2. The third 

amplifier may be interpreted as a lossy integrator the frequency per-

formance of which iss of course,almost ideal even with amplifiers 

having gains very far from ideal since the amplifier in this lossy 

integrator is acting at low frequencies as a unity gain inverier.The 

frequency performance, therefore, of the entire filter is expected to 

be very good indeed. This was exemplified by constructing a filter 

with cutoff frequency of 100 kHz (rather high for normal RC active 

filters [44]) and there was no severe 
	

deviation from the ideal 

vassive filter attenuation characteristic as it is the case with 

with the leapfrog' filter structure of Fig. 7.2b at this high frequency. 

• 

• 
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The sensitivity performance of this filter with respect to 

the passive components is very low within the passband as expected . 

In addition the capacitors C1, C
2 
and C

3 
as well as the resistor R

1 

present the zero sensitivity at the maximum power transfer points. 

The element values for ladder equivalence are found directly from the 

descriptions for the individual LT structures as follows: 

Cl  = C2  = C3  = C 

Ri  = RsCio/C 

R2 = R2 = L2o/RsC  

R3 	3 = R' = R s C3o /C 

Again here we note that this filter is an equal value capacitor design. 

The RC active structure of Fig. 7.2e has been derived from the 

structure corresponding to the form-compatible LTA filter of Fig. 7.2c. 

This derivation was effected by removing the first and the last oper-

ational amplifiers and altering the values of the passive elements in 

such a way as to incorporate the loading effects on the corresponding 

nodes that will result. These adjustments are all within the LC 

simulation limits and the element values of the active filter so derived 

are related to the LC filter elements as follows: The capacitor C
1 
may 

be chosen arbitrarily whilst R1, R2  and 13.!I  are equal to 3C
1o
Rs/01  

2 
Additionally we have R2  =2R1  , C2 = L2oC1/9RsC1o' 

R
3 
 = 

 

R
. 

The sensitivity, performance of this structure with respect to 

all passive elements is shown in Fig. 7.2e and it can be observed that 

it is comparable to that of the corresponding LTA three amplifier 

filter of Fig. 7.2c. However, the wide spread of the element values, 

that resultsas a consequence of the adjustments above, is the price 

	

paid for the.reduction in the number of 	operational amplifiers. 

Note that the sensitivity performance of the structure with respect 

R3C3  = 2RLC30  and 

• 



tz 

to the capacitors C1, C
2 

and C
3 

exhibits the expected zero value at 

the maximum power transfer points(and low value elsewhere in the pas.- 

band) which is,of course, a validation of the adjustments carried out 

as being within the LC simulation framework. 

Concluding this section it is noticed that different LTA 

structures with distinct properties and special features are derived 

from the same original LC ladder for different choices of the trans-

formation matrices. However, the sensitivity performance of the various 

LTA structures is very low independently of the transformation used. 

Moreover, those elements in these structures which do not correspond 

to any reactive arms of the passive ladder filter, appear to have 

sensitivities of the same order as those which simulate the sensitivity 

behaviour of the reactive arms of the ladder. 

fg 

• 

• 

• 
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7.2 APPLICATION. OF THE FORM - COMPATIBLE TRANSFORMATIONS TO THE 

SIMULATION OF A 5th ORDER CHEBYSHEV FILTER  

The form compatible transformations of Fig. 5.5 are applied to 

the simulation of a fifth order lowpass Chebyshev ladder filter (ripple 

0.5 dB) as shown in Fig. 7.3a along with the appropriate transformation 

matrices pairs. The resulting LTA filter structure, after denormaliza' 

lization for fc=10 kHz and R = 1kQ, was constructed with equal value 

polysterene capacitors (10 nF, 2,5 tolerance) and 5% tolerance resistors 

the values of which can be found from the design equations shown in Fig. 

7.3 below. 
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The commercially available liA741 operational amplifier was employed 

for the realization of the LTA filter and the experimental response of 

the filter is shown in Fig. 7.3c (curve 2). The response of a leapfrog 

realization structure of the same filter is also shown in this figure 

(curve 3), from which it can be observed that the form-compatible design 

is favourably compared to the direct leapfrog structure. This becomes 

more evident at higher frequencies where in the form compatible case 

the performance of the filter is satisfactory for frequencies up to 50kHz0  

It is interesting and of practical significance to remove the 

first and the last operational amplifiers in the LTA circuit designed 

above by compensating for the loading effects that will be produced at 

the appropriate nodes merely by modifying the element values of those 

elements connected to these nodes ( a similar procedure was followed in 

the previous section, see Fig. 7.2e). The result of this procedure is 

shown in Fig. 7.4, where the values of the elements indicated with a 

prime have been suitably modified. The behaviour of this circuit was 

similar to that of Fig. 7.3b and indeed there existsan one-to-one cor-

respondance between the reactive components of the original ladder and 

the capacitors contained in the realization of Fig. 7.4. Consequently a 

zero first order sensitivity at the maximum power transfer frequencies 

exists with respect to the-capacitors of this realization. 

Fig. 7,4 
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7.3 APPLICATION OF THE ACYCLIC LTA PROCEDURE  

The general acyclic procedure as described in section 5.4 is ap-

lied in this section to two different ladder filters. 

7.3.1 An Acyclic Simulation of a 5th Order Lowpass Chebyshev Filter. 

The simulation procedure is illustrated in Fig. 7.5 where we 

started with the transformation matrix 0
15 

(the left transformation 

matrix for C5  taken in conjunction with RL). The choice of this matrix 

was so made that a very simple LT structure is obtainable with a conve-• 

nient output node(see section 4.3). The matrix 024 was then determined 
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from the compatibility relationship (eqn. 3.17a) and 1)
14 was chosen as 

to yield a simple LT structure for the inductor L
40 

avoiding the y
14
0 

case which would lead to a TRI structure (see Table 4.1). The right 

transformation matrix 0
23 

for the transformation of the capacitor C
30 

is automatically determined from the compatibility relationship and 013  

is so chosen as to yield a practically desirable inverting lossy inte-

grator for the realization of the LT structure of C30. The right trans-

formation matrix 0
22 for L20 is then automatically determined and 012 

is so chosen as to yield an LT structure which can be realized using a 

noninverting lossy integrator as shown in Fig. 7.5b. The transformation 

matrix CI
21 

for C
10 

taken in conjunction with the source resistance R 

is consequently found and the corresponding LT structure is very simple 

indeed, requiring its active component to serve the role of a buffer 

in its realization. The overall LTA structure requires six operational 

amplifiers as is the case for the form-compatible LTA structure of Fig. 

7.3b. However, in this present structure only two operational amplifiers 

are involved in frequency dependent feedback arrangements, a fact which. 

is desirable for good high frequency operation of the active RC filter. 

The filter was constructed using equal value (10 nF, 2%) poly-

sterene capacitorsolA741 operational amplifiers (six in total) and 5% 

resistors. The resistor values were determined from the following 

design equations which are directly derivable from the descriptions 

of the corresponding LT structures: 

R
1
C = RC

10 
, R2C = 2L20/R , R3C = RC30  , R4C = L40/R and R5C =RC50  . 

Denormalization was carried out for R=1kS2and fc=10 kHz. The measured 

frequency response is shown without any compensation in Fig. 7.5c(curve 2) 

A response very near to the ideal (curve 1) was easily achieved by adju-

sting the gain of the inverter (resistors r ). Curve 3 in this figure 

represents the uncompensated response of the corresponding leapfrog 
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structure of Fib. 5.1 when implemented in the same way as that of Fig. 

7.5 (i.e. ILA 741 operat. amplifiers, 2°i6  polysterene capacitors and 5% 

resistors) 

It must be emphasized here that in the structure of Fig. 7.5 

all capacitors and, in addition, resistors R
1 
and R

5 
present zero sensi.- 

tivity behaviour at the maximum power transfer frequencies due to their 

correspondence with the reactive elements of the ladder. The sensitivity 

performance of the rest of the resistors was found to be of the order of 

that of the elements of the original ladder filter. 

7.3.2 An Acyclic LTA Simulation of a 6th Order Bandpass Ladder Derived 

from a 3rd Order Chebyshev Lowpass Prototype. 

The passive bandpasa ladder is shown in Fig.7.6 together with 

its element values and passband characteristics. 

For the LTA simulation we start from the output terminated inductor L30 
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of that arm when taken in conjunction with the load resistor: 
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1  = Vo(the output of the ladder) 
S  

Y16 = 	L30 x16 ' x16 

This relationship may then be realized as shown in Fig. 7.7 below 
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The 
025 

matrix for the transformation of the shunt capacitor C30 is 

readily found from 016  by interchanging its rows and changing the sign 

of the second column (compatibility relationship).0
•15 

is then so chosen 

• as to yield a noninverting lossy integrator for the realization of the 

LT structure for C30. This is shown in Fig. 7.7 above. The matrix 

C124 	 CI15, is then automatically defined by the matrix 	and the matrix 

44  is taken to be 	yielding 
1 	2R 

Y24 = x14 and 
	

Y14 

1 s2RC
20 

 

x 24 - s2RC
20 

	x 

 

(which is a TRE case, see Table 4.1). The LT structuremay then be 

• 
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realized as shown in Fig. 7.8a. Once the matrix 014  is known, its  

adjacent matrix 023  is defined by the compatibility relationship, and 

a13 is then so chosen - as to yield an inverting integration for the LT 

structure of the series inductor L20  . Thus, the transformation pair 

0.13,023 shown in Fig. 7.8 for L20  yields: 

Y13 = y23 

4
- 	

1  
Y23 	L

20 
(x13+ x23) 

s 7R— 

the realization of which is shown in Fig. 7.8a. The virtual earth point 

of the inverting integrator involved in the LT structure for L20 
can 

perform the summing operation of the adder that appears in the LT stru-

cture of the capacitor C20  and this has been done in Fig. 7.8b. Thus, 

a reduction of one active element takes place. 

• 
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Again from the matrix
3'

we can find its adjacent matrix()22 
for the 

transformation of L10 
and then determine a matrix CI12 

for the transfor-

mation pair 012,Q22 
to yield a 'simple LT structure. The transforma-

tion matrices for L10 
are shown in Fig. 7.9a which yield for the cor- 

responding LT structure + 1 
2R  

Y12 = 	L
10 

X
21 

4- X
22 ' y22 = - x12 - x22 

s-07 

the realization of which is shown in Fig. 7.9a. Finally, the transforma-

tion of the capacitor C10  taken in conjunction with the source resistance 

can be obtained from 12 
and the compatibility relationship. The matrix 

- 1 

021  is shown in Fig. 7.9a from which we have 

In the filter under consideration RL = RS  R, and the above equation 

after this simplification may be realized as shown in Fig. 7.9 below. 

41 

Y21 2R 	(x -,E) 
-1+s2RC10 21 Es R 
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A simplified version of this structure is shown in Fig. 7.9b, where the 

op_o 
input inverter has been removed introducing a phase shift of 1uo, and 

the value of R' has been halved to provide the required gain of 2. 

Moreover, the virtual earth point of the first amplifier is effectively 

used to perform the addition required in the LT structure for L10. 

Fig. 7.10 shows the overall LTA structure for the 6th order 

bandpass filter and gives the element values of the active RC structure 

so derived. The passband response of the LTA filter (constructed 

using two 4136 quad operational amplifier chips, 2% polysterene capacitors 

and 1% resistors) is shown in Fig. 7.10 from where it is evident that no measutabb- 

deviation from the ideal behaviour occurs. As far as the component sensi- 

tivities are concerned, all capacitors show zero sensitivity at the maxi- 

. 
mun power transfer points and, in addition, the resistors R2, R

4 
and R

6 

(related to L10, C
20 

 and L
30 

respectively) possess this property. The 

sensitivities with respect to the remaining resistors were also examined 

using the sensitivity facility of the MINNIE interactive computer program 

[58] , and they were found to be very low and comparable to those with 

respect to the capacitors ( and therefore, comparable to those of the re-

active elements of the passive ladder original). 

Finally,it may be observed that in the LTA filter above, when 

two consecutive LT structures of elements in the same position (i.e. 

series or shunt) are taken together, they produce biquadratic sections. 

The three biquadratic sections that appear as a result of such a group-

ing are all of finite Q in contrast with other techniques of simulation 

that require at least the central biquadratic section to be of infinite 

Q (e.g. leapfrog, direct SFG simulation (-55]). 
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7.4 TNE APPLICATION OF FDLT TO AN 8th ORDER ZIG - `LAG FILTER 

The zig-zag filter shown in Fig 7.11a is transformed here using 

a frequency dependent linear transformation set for reasons explained in 

section 5.5. This filter was taken from referenceNwhere it is simula-

ted using the "Direct Signal Flow Graph" method. Before we apply the 

FDLT set it would be perhaps interesting to obtain the same structure for 

the zig-zag filter as that obtained, in reference[55]using a suitable 

transformation set in order to show the flexibility of our methods. 

This is shown in Fig. 7.11b where a form-compatible transformation set 

has been employed. The"port reciprocator" used in ref.(5A,which is neces-

ary whenever an inductive T or a capacitive Flappears in the LC filter, 

is here realized by a noninverting differentiator showing in fact that 

the "port reciprocator" is no more than an implicit differentiator. The 

active RC filter, so derived employs 15 operational amplifiers and 10 

capacitors.. Precisely the same structure and the number of components 

are given in reference [55]. 

The same LC ladder has been simulated using the FDLT.set shown 

in Fig. 7.11c. The resulting LTA structure employs only 12 operational 

amplifiers and 8 capacitors. The total number of capacitors is precise-

ly equal to the order of the original zig-zag filter. This LTA filter 

was constructed using three 4136 quad operational amplifier chips,with 

2% polysi.,:rene capacitors and 3% resistors. The measured frequency 

response is shown in Fig. 7.11, which even before any compensations or 

adjustments is dried out,is indeed much closer to the theoretically 

expected response than that of the filter resulting from the methods 

of reference[55]. 

• 
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7.5 APPLICATION OF THE R-SELF-DUAL TRANSFORMATIONS 

The R-Self-Dual transformations prasented in section 6.4 will 

be used for the LTA simulation of a third order lowpass Chebyshef filter 

and a third order lowpass elliptic filter for which two alternative 

self dual realizations will be given. 

7.5.1 The R-Self-Dual LTA 3rd Order Lowpass Filter 

A third order Chebyshev lowpass filter is shown in Fig. 7.12 

with the element values normalized. The corresponding R-Self-Dual LTA 

structure is also shown in this figure, derived directly from Table 6. 

The design equations are also shown in this figure. When the element 

values are denormalized for R
s = 1 kc2and fc 

= 10kHz, for equal capa-

citor design ( 10 nF) design we obtain: 

Ci  = C2  = C3  = C = 10nF, Ri  = 2966Q, R2  . 2037Qand R3=2966Q. 

The R-Self-Dual LTA structure was constructed using a 4136 quad opera-

tional amplifier chip, with 5% resistors and 2'4 polysterene capacitors. 

The measured frequency response of the constructed prototype was found 

coincident with the theoretical curve. When the capacitor values are 

changed to 1 nF3thereby increasing the cutoff frequency fc  to a value 

of 100 kHz, the frequency response obtained is shown in Fig. 7.12c (curve 

2). The maximum deviation from the ideal behaviour does not exceed 

0.35 dB and was easily compensated for by adjusting resistor r' to earth 

(see Fig. 7.12). The frequency response of the corresponding leapfrog 

filter is also shown in Fig. 7.12c for comparison reasons. The obvious 

superiority of the R-Self-Dual filter as far as the high frequency re-

sponse is concerned is mainly due to the fact that all its operational 

amplifiers are involved in frequency independent feedback arrangements. 

Moreover,all capacitors and resistors R
1
, R

2 
and R

3 
are directly related 
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to the reactive arms of the original passive ladder,thereby presenting 

the zero sensitivity at the maximum power transfer points. The sensiti-

vity behaviour of the filter with respect to the resistors r and r' (which 

define the gains of the differential amplifier) are found to be very low 

indeed and in any case no larger than that of R2 
and R

3 
in the leapfrog 

structure (see Fig. 7.2b). 

41■ 
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From the above, therefore, it appears that the R-Self-Dual filter 

structure is preferable to that of the leapfrog case which employs the • 

same number of passive and active components. 

7.5.2 A Third Order Elliptic R-Self-Dual LTA Filter  

The original passive ladder is shown in Fig. 7.13a together with 

the normalized element values. The R-Self-Dual structure is directly de-

rivable from Table 6.3 and 6.4 for R=Rs, as shown in Fig. 7.13b together 

with the design equations. Denormalization of the element values for Rs  

R
s 1 kc.2and fc =10 kHz for equal value (10hF) capacitors gives the 

resistor values for this active RC structure. The LTA filter constructed 

using 12 4136 quad operational amplifier chip, with 5% resistors and 
werthom.a.kaa. 

polysterene capacitors, behaves ideally without any deviation from 

the theoretically expected response. 

On replacing the 10 nF capacitors by 1nF , the passband is 

extended to 100 kHz, in which case a 0.65 dB maximum deviation is observed 

as shown in Fig. 7.13c. However,this discrepancy was easily compensated 

for by adjusting the resistance 	The The corresponding leapfrog structure 

which requires the realization of a transfer ratio of the form s
2LC +1  
si/R 

(function which increases with frequency) could not match the response 

of the R-Self-Dual LTA structure at these high frequencies of up to 100 

kHz, being very problematic even at the frequency of 10 kHz. This is 

mainly due to the differentiation involved in the realization of the 

above transfer ratio, and partialy due to the integrP*ors employed in 

the leapfrog structures. The R-Self-Dual LTA structure requires opera-

tional amplifiers to have frequency independent gains with a maximum 

value of 2, thereby ensuring such good high frequency performance of 

the active RC filter. 

• 
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The intermediate LT structure corresponding to the parallel 

tuned circuit in the series arm can be replaced by an equivalent twin-

T configuration (see Table 6.5). The total number of amplifiers can then 

be reduced to 4, three of which act as buffers but the number of the ca-

pacitors increases by one resulting to a noncanonic structure, This 

replacement was carried out in practice and did not appear to affect the 

sensitivity of the overall R-Self-Dual LTA filter structure. The 

• 

• 

• 
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behaviour of the modified filter was very near to the theoretically 

expected one and without any compensation or adjustment the filter operated 

satisfactorily with cutoff frequencies up to 50 kHz. 

The transmission zero of the filter was very well behaved in both cases 

presenting an attenuation of more than 60 dB. 

t. 

w 
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CHAPTER 8 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER 

RESEARCH 

A new approach to the design of active RC filters (LTA filters) 

simulating doubly terminated passive LC ladder filters, has been deve-

loped and presented in this thesis. The capability of this approach 

to interpret existing simulation methods as special cases of the gene-

ral LTA-method combined with its inherent potential to derive novel 

practical active RC filter structures tailored to the design needs, 

make the LTA simulation more than a new active RC filter design method. 

Indeed, it could conceivably be labelled as a new design philosophy. 

New structures have been derived at various stages in this 

work, with the derivation of the R-Self-Dual LTA filters serving as a 

striking example of the manner in which the general procedure may be 

so ccrstrained to yield active RC filter structures with prescribed . 

special features.; In fact in the case of the R-Self-Dual LTA filters 

the general approach •":as constrained to yield highly modular structures 

whereby all ladder arms are realized using the same basic active buil-

ding. block of• Fig. 6.1 (see Tables 6.3,6.4 and 6.5). This feature 

may be greatly appreciated not only by the active Re filter theorist 

who can study theoe 5~c•uC~UT-e8 more effectively, but also by the mic;:uo- 



o 	X(s) 	[1 	0 j 
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[0 	-X(s) 1 
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electronic industry since the realization of highly modular structures 

is more economical and space saving. 

As far as the generality of the LTA approach is concerned, it 

must be emphasized that all the existing LC ladder simulation methods 

which involve transformations cf the voltages and the currents of the 

original ladder filter may be seen as special LTA cases. This has been 

shown explicitly for the Wave Active Filter case in section 5.2.2 and 

for the Leapfrog Synthesis in section 5.1.1 in which case the conven-

tional method has been improved as to derive more economical structures 

(section 5.3. The Direct Signal Flow Graph simulation has also been 

shown to be a form-compatible LTA case where the application of the 

FDLT proved to be more effective yielding more economical and,under 

certain conditions, canonic structures. 

The Impedance Scaling method introduced by L. Bruton can be 

interpreted as a voltage-current LTA procedure in the sense that the 

transformed variables x and y do not both represent voltages but instead, 

one of them represents current and the other retains its voltage nature. 

The transformation which leads to the impedance scaling method structures 

is a self-compatible transformation defined by the matrices 

which are used for all series and shunt arms of the ladder. --The 

quantity X(s) is a dimensionless frequency dependent ratio which in ' 

the original FDNR[33] case is of the form X(s) = sk. The modifications 

of the original Impedance scaling method (see chapter 1).  may be seen 

as voltage-current acyclic transformations where the scaling factor X(s) 

may differ from arm to arm according to its nature so as to give conve-

niently realized structures. Research into the voltage current linear 

transformations would not only give an insight to the variou impedance 
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scaling techniques, but also would obtain some more interesting new 

methods. 

Although the inductance simulation method for deriving active 

RC filter structures from doubly terminated passive ladders does not 

alter the port variables of the consiEtuent subnetworks of the original 

ladder, the LTA method may be used as a tool for deriving new simulated 

inductance circuits as it has been done in references ROI and [2►9]from 

the Wave Active LTA method. The establishment of a general LTA 

procedure towards this end would be a very interesting research area 

since it could derive new, and perhaps better, simulated inductance 

circuits. 

Research on the sensitivity of the general LTA structures in 

order to express explicit sensitivity formulae in terms of the parameters 

of the transformations would be of great theoretical and practical value 

since the sensitivities of the various LTA structures would then be 

compared and perhaps minimized so establishing optimum sensitivity 

performance structures within the LTA concept which, as already pointed 

out,it includes most of the existing ladder simulation methods. 
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