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ABSTRACT

Non-linear finite element techniques are used to
study the undrained behaviour of shallow foundations under
monotonic and cyclic loadings, and the cracking of embank-
ment dam cores. A main aim of the work was to examine‘
stress éhanges beneath footings for use in laboratory stress-
path testing work. |

Comparisons of the finite element results with the
available closed form solutions, and with other numerical
soclutions, are madé to investigate the reliability and effec-
tiveness of the technique used. Goodvagreement was found.

In studying the undrained behaviour of shallow foun-
dations under monotonic loading, the effects of non-linea-
rity, laYer'thickness, side boundaries, footing rigidity,
initial state of stress, deformation properties and nonhomo-
geneity on stresses, displacements and fgilure loads are
examined,_and failure zones and rupture figures are studied.’
Some cases which have no closed form solution are analysed.
It is shown that the nonhomogeneity haé a major effect on
stresses, displacements, failure loads ahd failure zones.

The effect of cyclic loading on displacements and
stresses is examined, and the effects of different stress—
strain models on stresses, stress changes and displacements

during cyclic loading are investigated.
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In studying the cracking of an embankment dam core,
stresses and stress changes in ah idealised core at the
- end of construction and after impounding are analysed.
From these analyses, investigations are made of areas of
low stress and the likelihood of crack formation. It is
shown that the development of seepage pressures throughout
the core during impounding reduces the risk of hydfaulic
fracture.

During this study, it was found that some points
within the core exhibit strain-softening behaviour during
impounding. An iterative technique is developed and used
for this strain-softening behaviour. In this technique, a
modified form of the Newton-Raphson method, which enables
‘the relevant deformation parameters for shear unloading to
be assigned to every Gauss point in the domain in évery

iteration, was used where necessary.
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CHAPTER 1

INTRODUCTION

1.1 outline of the Research Project

_In order to perform the stress analysis for a continuum,
the governing equations must be solved. The enormous com-
plexities encountered in soils can make analytical closed
form approaches very difficult, and a large number of simpli-
fying assumptions are necessary to obtain such solutions.

Fortunately, numerical techniques enable the governing
equations of a complex problem to be solved approximately.

The popularity and versatility of these techniques have been
greatly enhanced by the availability of the large high-speed
-digital computers., )

The most widely used numerical technique in geotechnical
engineering is the finite element method. This method is
essentially a process through which a continuum with infinite
degrees of freedom is approximated by an assemblage of sub-
regions, calied Finite elements, each with a specified but
finite number of degrees of freedom. The fundamental pro-
perty underlying the finite element method is thét typical
subregions can be studied for their behaviour independently
of other elements. | Once the behaviour of a typical element
has been formulated in terms of behaviour of the nodes of
the element, the complete model is then obtained by appropriate.
assembly of all the elements.

Generally, it is easy to obtain a reasonable solution



for a geotechnical problem using the finite element method,
but it needs considerable checking to ensure that the
solution is sufficiently reliable. Therefore, the effec—
tiveness of the finite element programme must be investi-
gated by comparing finite element results with the results
obtained from closed form or approximate solutions.

In this research the finite element method is used to
study the behaviour of shallow foundations, and cracking
phenomenon of embankment dam cores.

The finite element programme used is designed for
two dimensional plane strain and axisymmetric geotechnical
problems. It uses the displacement approach to the éfnoded
isoparametric element with built-in reduced Gauss integration
rule for numerical integration of the element characteristics.
The solution of the banded symmetric matrix is achieved by
the direct Gauss elimination method. The deformation is
assumed not to change the overall geometry of the problem
‘(only small displacemeﬁtAand first order strain terms are
considered). 7 | |

The programme can handle linear and non-linear material
with a shear strengtﬁ cut-off. Saturated undrained shear
behaviour and non-dilatent drained shear behaviour can be
modelled. Non~linearity is dealt with using either incre-
mental or iterative methods, or a combination of‘the two.

The incremental technigue can be either the tangential
method or the Quasi Runge—Kﬁtta method. For the iterative
technique either the constant stiffness method or the Newton-

Raphson method can be chosen.



During this research an iterative technique is
developed and used in the programme for the hydraulic'
fracturing phenomenon which implies a strain-softening
problem. A modified form of the Newton-Raphson method,
which enables the relevant deformation parameters for shear
unlocading to be assigned to every Gauss point in the domain
iﬁ every iteration, was used where necessary.

In studying the behaviour of shaliow foundations,
first, a comparison between finite element results and
available closed form or approximate solutions is made to
ensure the reliability of the method. Then, effects of
layer thickness, side boundaries, footing rigidity, soil
unit weight and Kof Stress—-strain curve, non-homogeneity,
and an increase in the applied load on displacements and
stresses are investigated. Also, failure zones and rupture
figures in clay are studied, and some of the geotechnical -
problems which have no closed form solutions, such as:
inclined and eccentric léading of a finite layer whose un-
drained modulus and strength vary linearly with depth, are
analysed.

Furthermore, the effect of the cyclic loading on dis-
placements and stresses is considered. Also, with'cyciic
loading, effects of different streés—strain models on stresses,
stress changes, and displacements are invertigated.

In studying the behaviour of crack formation in the
embankment dam core, stresses and stress changes in the core
at the end of construction and after impounding are analysed.

From these analyses, investigations are made of areas of



low stress and the likelihood of crack formation. Also,
from finite element results, it is shown that impounding

tends to increase the average total stress (o, + 03)/2 and

1
so prevent cracking, as predicted by Vaughan (1976b).

1.2 Organization of the Thesis

The thesis has been divided into three parts and two
Appendices. Part one consists of one chapter (Chapter 2)
which considers the finite element method of analysis. The
purpose of stress analysis, methods of stress analysis, and
basic assumptions of the finite element method are briefly
explained. Also, in Chapter 2, the two different methods
for non-linear solutions (incremental and iterative) are
discussed. In the final section of Chapter 2, the non-
linear finife element programme used in this research is
explained.

Part two, which,consists of four chapters (Chapters
3, 4, 5 and 6), considers the study of the behaviour of
shallow foundations. Chapters 3 and 4 consist mainly of
a litefature review and contain the approximate theories
developed during this research. Chapter 3 deals with the
stress distribution, settlement analysis, and soil-foundation
interaction. Chapter 4 considers the failure and bearing
capacity of footings. |

In Chaptexr 5, the different cases for the footing
studies made in this work are tabulated, including the
material properties used. Chapter 6 éontains the finite

element results for monotonic and cyclic loading of the



footing, and discussion of these results. Also, in this
chapter, comparison is made between the finite element
results and available‘closed form solutions, in order to
investigate the effectiveness of the programme.

Part three consists of two chapters (Chapters 7 and
8), and studies stresses and stress changes in an idealised
embankment dam core during construction and impounding.

In Chapter 7 a brief review of cracking of embankment dam
cores is presented, together with the phenomena of load
transfer and hydraulic fracture in the core.

Chapter 8 contains finite element results for studying
stresses and stress chaﬁges in the core. The areas of low
stress and the likelihood of crack formation in the core are
investigated. Also, in this chapter, it is shown that
impounding tends to increase the averagé“total stresses.

In Appendix one the flow chart of the programme is
given. Appendix two consists of descriptions and algorithms
for the principal parﬁs ;f the programme specially written
for this research. |

While analysing the behaviour of'crack formation in
the core, it was found that some points within the core
exhibit strain-softening behaviour after impounding: The
programme has been extended to deal with this behaviour;

The algorithm for this is explained in.Appendix two, and
finite element results obtained after this modificatién are

discﬁssed in Chapter 8.
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CHAPTER 2

THE METHOD OF ANALYSIS; FINITE ELEMENT TECHNIQUE

2.1 The Stress Analysis of a Continuum

The study of the response of a real continuoﬁs struc-
ture to a given set of loading conditions can be done by
performing an engineering stress analysis of that structure.
From this study it is possible to obtain the information
about the mechanism of behaviour; the magnitude and the
direction of displacements, stresses and/or pore water
pressure (directly or inferred) at selected points; and the
stability (or the margin of safety) of the structure.v' Sﬁch
analyses involve a knowledge of the applied loads; the rele-
vant material propérties; and the geometry and approp:iate
boundary conditions. )

In the closed form soluﬁion of the stress analysis
problems three conditions should be satisfied throughout the
structure, Timoshenko and Goodier (1951). These conditions
are (i) equiliﬁfium ofiforces, (1i) éompatibility of dis-

placements, and (iii) the material stress-strain laws.

2.2 Methods of Stress Analysis

There ave two well-tried methods for solving a continuum.
Firstly there is t:ae model analysis, which involves the
application of scaled values of the real applied loads to
a model exhibiting all the features of the prototype structure.

The response of the model is measured and used to interpret -’



or predict the behaviour of the prototype. For this method
a detailed knowledge of the material properties is not
always necessary.

The second method is the direct solution of the
structure's governing equations. The enormous comélexities
encountered in the natural state 6fijuageologic media can
make analytical closed form approaches very difficult.
Pioneering work by Terzaghi (1943) imparted scientific and
mathematical bases to many aspects of these subjects, in
these developments the solutions were often obtained on the
basis of differential equations that were assumed to govern
the physical systems, and a large number of simplifying
assumptions were necessary to obtain the closed form solu-
tions. Although ﬁhis approach has provided useful solutions
for many practical situations, it cannot yield realistic
solutions for problems involving such complexities as non-
homogeneity, nonlinearity, in situ stress conditions, aﬁd
many othér factors imposed by geological characteristics.

However, numerical techniques enable the governing
equations of a complex problem to be approximated by a system
comprising a finite number of variables, whose solution
provides an approximation to the true soiution of tﬁé problem.

The most widely used methods in geotechnical engineering
are the finite element Qnd finite difference methods. Before
the era of the finite element method, the finite difference
méthod was perhaps the main numerical technique employed in

geotechnical engineering. Although the finite element



method possesses certain advantages over the finite
difference method, the latter can be more suitable for
certain classes cf problems.

The finite element method (FEM) is a particular
numerical technique which can be used to approximate lineér
differential equations by a system of simultaneous equations,
Zienkiewicz (1971). This approximation is the most impor-

tant and powerful feature of the method.

2.3 Basic Assumptions of the Finite Element Method

In the FEM a structure is approximated by an assem-
blage of elements of the structure, interconnected at a’ |
finite number of joints or nodal points replacing infinite
numbers of the element boundary points. This process is
called idealisation or discretisation; it involves fhe
evaluation of the element charécteristics independently
from the rest of the structure. Once the element charac-
teristiés are established, the general procedures of assem-
bly and solutioﬁ'will fdllow a pattern for which the struc-
tural analogy provides a convenient basis. During the
solution, the three conditions listed in section (2.1) are -
satisfied within each element and at the nodes, whiié in
general only one of the first two conditions can be satisfied
at the element interfaces depending on the approach followed.
This satisfaction will allow the structure to be approximated
by a finite set of primary variables inter-related by a

system of simultaneous equations. These primary variables



always appear in pairs and are called the nodal variables.
In the case of plane stress, plane strain, axisymmetric and
three dimensional stress analysis they are the corresponding
nodal components of force and displacement.

Once the primary variables have been evaluated the
secbndary variables, strains and stresses are uniquely
defined within each element usihg the definition of strains
and the material stress-strain laws.

As mentioned before, the finite element idealisation
cannot in general satisfy fully both equilibrium and com-
patibility at the élement interfaces. The two most common
idealisations satisfy either ccmpatibility or equilibrium
across each interface of a finite element. In this research,
the formulation satisfying compatibility throughout is used,
it is commonly referred to as the "displacement approach".
Thus the unknown primary variables are the displacements at
the nodes which are inter-related to the Xnown nodal forces
by a set of equations representing the stiffness of the
structure. These equations can be obtained either by the
virtual work principle or by minimising the strain energy
of the finite element idealisation.

The principle of virtual work or displacements does
not depend on the mechanical properties of the material and
is therefore valid for any state of the body such as solid,
liquid, elastic or inelastic. |

Generally, the dispiacement approach of the finite
element stress analysis of a continuum involves three basic

steps:-
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1. From the applied loads, the equivalent nodal
- forces are calculated. These are called the known primary

variables.

2. From the element characteristics, the overall
structural stiffness matrix is assembled. Inversion of

the stiffness matrix solves for the displacements at the

nodes. These are called the unknown primary variables.
3. From the displacements at the nodes, the strains
are calculated. Using the material stress-strain laws,

the stresses are also calculated, thus the secondary variables

are found.

The more fundamental discussion of the steps involved
in the finite element analysis can be found in the books by

zienkiewicz (1971), Desai and Abel (1972), and Cook (1974).

2.4 The Isoparametric Elements

The isoparametric'element concept proposed by Irons
and Zienkiewicz (1968) has proven to be a simple but elegant
basis for element formulations. Its ﬁse permits incorpora—'
tion of curved boundaries and greatly facilitates such
mathematical computations as iﬁtegrations and diffgrentia—
tions involved in an element formulation.

The term isoparametric implies common (iso-) parametric
description of the unknown displacement and geometry of the
element. The bacsic idea is to express both the displacement
and the geometry of the element by using the same shape

functions. So, if the displacement of a point in the
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element is defined in terms of displacements at the nodes
by using the shape functions Ni’ then the coordinates of a
point in the element has to be defined in terms of the
coordinates of the nodal points by using the samé shape
functions N,.

For Gauss quadrature, n sampling integration points
are sufficient to integrate a polynomial of degree (2n-1)
exactly. For example if the shape functions are quadratic
in X and Y directions, the polynomial of fhe stiffness
matrix willvbe quartic and 3 Gauss points are needed to
integrate the stiffness matrix correctly. But in some
cases in which the element type used in this research is
one, it was found, Nayak (1971) and Naylor (1974), that it
is possible to improve the performance by using a reduced
integration rule, say 2 instead of 3 Gauss points. -

The 8-noded isoparametric element with 2 integration
points implies a pafabolic distribution of displacements
across the X or ¥ direct;on. Thus the best approximation
obtainable from an element is limited by this parabolic
distribution.

Strains are the first derivative of the displacements,’
hence, only a linear strain distribution across the element
can be obtained. Therefore, if the strains are varying in
a more complex distribution, the elemeﬁt will approximate

that to a linear one.

2.5 The Stress-Strain Model used in this Research

A rigorous stress-strain law should be able to describe
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analytically the state of stress and state of strain,
including the state of failure, in all three phases (solid
particles, water and air), of an element of soil under any
case of loading having satisfied all implied boundary con-
ditions. A stress-~strain law is needed together with com-
patibility conditions and equilibrium eguations, in order
to solve a continuum problem.

In the geotechnical engineering, ﬁhe material non-
linearities, exhibited through variable material parameters,
can be causéd by a number of factors such as the state of
the stress or strain, in situ stresses, previous geological
and stress history, etc.

For many years the solutions of linear elasticity and
limit plasticity have been utilized in solving soil mechanics
and foundation engineering problems, many simplifying assump-
tions being made due to the lack of more sophisticated |
solutions. In deriving the elastic solution, the soilvis
assumed to be a linear eiastic body which can never fail;
in the plasticity solution the soil is assumed to be a rigid-
plastic body usually covered by the Mohr-Coulomb failure
criterion. The former predicts deformation only, the
latter assesses stability only. Neither approach models
the complete behaviour of a soil continuum under load.

Recent developments in numerical techniques with the
ability to predict deformations in soils (e.g. FEM) using
cémplicated stress-strain laws, have focussed attention on

the need to define soil stress—strain\laws, the solution
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techniques being limited by the availability of data on
soil properties. Nevertheless, the literature on the sub-
ject is full of stress-strain solutions for different soil

types, using mainly two categories of soil models:

1. those utilizing only the theory of elasticity,
but with attempts made to account for the nonlinearity
typically observed in soil stress-strain relationships

including the failure stage;

2. those utilizing theories of plasticity, which
are dependent on the type and variation of yield function
and flow rule used, this category is more varied than the

first.

It has to be mentionéd that, at the failure stage,
where an isotropic elastic model uses E % 0, the Poisson's
ratio must be equai to 0.5 or'very close to it, v = 0.499
say, otherwise the model_will produce very large volumetric
strain.

Hamza (1976), in a review of the assumptions and
basic principles cf theAelastic and plastic stress-strain
models, demonstrated that a wide diversity exists in these
models, and there appeared to be more fundamental differences
between the various plasticity models than between the
elasticity models. Also, he has mentiéned +hat the proof .
of the adequacy of most 6f the non-linear elastic approaches
has come from the successfui use of these models in analysis

of observed field behaviour. But no prcof has been
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presented for the accuracy of most of the plasticity models. .
Only the Roscoe and Burland (1968) plasticity model has
been demonstrated to adequately simulate certain classes of
soil behaviour observed in laboratory tests (Hamza, 1976).
However, one fact is clear that more fundamental testing is
needed to determine the most suitable model fér soil
behaviour. -

During the course of this researchAa logarithmic
equation is used to represent the nonlinear stress-strain
curve as shown on Fig. 2.1. The explicit form of the
equation for axial strain is

1+b 1
“ gr = —[-5-5-5- log(l—abor) + ‘5 U»r] (2-1)

where €. denotes the strain ratio = a/ee
(o, -0,)¢

E,
i

€a denotes the linear strain =

o denotes the maximum shear stress mobilised =

S

1 3 f
a,b denote constants to be determihed from the test
data.

The equatién is written in a dimensionlessvform, thus
enabling a family of curves to be normalised to a single
‘curve from which the two constahts "a" and "b" can be deter-
mined. Normalisation is achieved first by normalising
against the shear strength, and then against the linear

strain ¢ _.
e

The strain at failure could be written in the form:
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Z(itb (1 - + 1Y2Tpax
g (abz log (1l - ab) + b) Ei (2.2)

This strain may vary with the variation of o, independently

of 2 /Ei by linking the constant”"a" with the profile of

T
max
strain at failure versus o,. In this case the constant
"a" will be constant for single curve behaviour, but will
vary for the family of curves.

The above equation is fed into the computer in the
following form:

E, = E, 1-2R0%r

t i 1+aoy, (2.3)

which can be obtained by differentiating the original form.
The latter form is more suitable for the non-linear algorithm
adopted in the program used, and for any tangential stiff-
ness method.

The initial tangent modulus Ei may be varied either:

1. Linearly with depth;

2. Exponentially with o, (Janbu, 1963); or

3. Linearly with o,

The shear strength is defined by the Mohr-Coulomb or
Tresca failure criteria, where the latter one may be veried

with depth.

2.6 Non-Linear Solution'Techniques

'In geotechnical engineering problems, two kinds of
non-linearities exist. These are material non-linearity

and gecmetric non—-linearity. The work described in this
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thesis is based on the assumption that displacements are
sufficiently small for the problem geometry to be unchanged
and that the thecry of infinitesimal strains is valid.
Thus the non-linearity is only due to material properties
being dependent on the unknown required results.

The available techniques used in solving non-linear

problems can be classified in two main categories:

1. Incremental Methods; and

2. Iteration Methods using the residual force
concept.

The basis for classification is that the first cate-
gory does not give a measure of convergence or of error
(it can be inspected manually after the solution), while

the second category does give a measure of convergence.

2.6.1 Incremental Methods

In these methods tﬁé result after aApre—stated number
of increments or steps is considered as a solution for the
non—linear problem, where the number of increments are not
determined during the marching of the solution as in the
iteration methods. Thus the stresses and strains of the
solution are not compatible with the nominated stress-strain
law, althdugh they can be a good approximation, bearing in
mind the uncertainties involved in the selection of the

basic material properties used in the analyses.
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2.6.1.1 Thé Tangential Stiffness Method

The most commonly used algorithm of the incremental
method is the tangential stiffness method. Its mathematical
basis is the first order Euler-Cauchy step-by-step method,
which can be explained geometrically for a single equation,
Fig. 2.2, as an approximation of the curve by part of a
polygon whose first side is tangential to the curve at the
initial point and so on.

The greater the numbér of increments, the closer is
the approximation to the nominated stress—-strain curve at
the expense of more computer time.

Over-shooting above the failure surface is expected
with this method since the check on stress level is carried
out at the start of the increment. However, this cver-
shooting can be reduced by using smaller‘increments near
the failure state of the stress. Once a point of the
domain is above the failure stress, a very small value is
assigned to the deformati&n parameter (e.g. E nearly zero).

Strain-softening cannot be modelled using this method
because.the overall stiffness matrix may tend to be non-

positive definite.

2.6.1.2 The Quasi Runge-Kutta One-Step Method

| The method is an approximation to the fourth order
Runge-Kutta method which uses for each step four auxiliary
quantities to arrive at the solution. In this approxima-
tion one auxiliary vector is used instead of four. It

has a simple geometrical interpretation, for a single
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equation, fig; 2.3 , the curve is approximated by a straight
line whose slope corresponds to the tangent of the curve
at some intermediate point between the starting point and
the final solution: The position of the intermediate |
point is arrived at by an iterative process to avoid over-
shooting. '

This technique has the saﬁe general limitation as the
tangent method with regard to the post-peak modelling and
stress-strain compatibility with the material law. This

method has two main advantages:-

1. The size of the increment does not influence the
results greatly because the non-linearity is dealt with
during the increment, thus closer reproduction of the
nominated stress-strain curve is achieved for the same

computer time.

2. To avoid serious over-shooting the risk of local
failure during any loading increment is examined by an

iterative technique.

The more general discussion of this method has been
given by Hamza (1972 & 1976).

From the comparison shown in Fig. 2.4 it is clear
that the results of one step of Quasi Runge-Kutta is better
than the reéults of two steps of the tangential stiffness method.
Figures 6.52 and 6.53 (ChaptefG}, show how well the technique
succeeded in following to failure the nominated stress-strain
curve at two different points in a problem of about 1200

degrees of freedom.
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2.6.2 Iteration Methods Using the Residual Force Concept

The iterative procedure consists of successive
corrections to a solution until the equilibrium under the
total load is satisfied. In other words, in an iteration
technique an approximation to the true solution is arrived
at for each iteration using a convenient stiffness matrix
(which need not bhe the true one). The state of the struc-
ture during this iteration is such that the displacement
pattern is not in equilibrium with the external applied
nodal forces because the stiffness matrix used is inappropriate.

Thus the residual forces are those forces which if
added to the external loads would exactly balance the inter-
nal loads due to the incorrect state of stress in the struc-—-
ture. The iteration process will try torrelax the structure
by giving successive additional increments of displacement
so that the residual force beccmes zero or negligible, ending
with a correct displacement vector.

In the above iterative procedure, a method has to be
selected for the computation of the stiffness matrix. One
choice is the Newton—Raﬁhson method, which computes a
different stiffness for each iteration, and that is the
tangent stiffness at the end of the previous iterative step.
The main disadvantage of this method is that in each iteration
the tangential stiffness matrix for eacﬁ element has to be
calculated and the stiffness matrix for the whole structure
has té be reassembled and in&erted, which will result in a

high computer cost.
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The second choice is the Constant Stiffness method
‘which, instead of computing a different stiffness for each
iteration, utilizes only the initial stiffness. Obviously
this method has a slower convergence than the Newton-Raphson
method. The widely used initial stress and initial strain
methods aré variations of this concept.

Figure 2.5 shows these two methods.

2.6.3 Discussion on the Non-Linear Solution Techniques

The incremental methods are applicable to nearly all
types of the non-linear behaviour, with the exception of the
strain-softening materials. One other advantage of this
technique is that it provides a relatively complete des-—
cription of the loéd-deformatibn behaviour.

On the other hand, for the incremeﬂﬁal method, it is
difficult to knqw in advance what increments of loads are
necessary to obtain a good approximation to the exact
solution.’ h

The iterative technique is applicable for the analysis
of structures with strain-softening material properties.

The principal disadvantage of the iterative method is that
there is no assurance that it will converge to the exéct
solution.

Because the mixed method combinés the advantages of
both the incremental and iterative procedures and tends to
minimize the disadvantages. of each, incremental-iteration

is being utilized increasingly.



21

2.7 General Description of the Programme Used in this

Research

The programme is designed for two dimensional plane
strain and axisymmetric geotechnical problems. It is a
compact rather‘than a general purpose system. The programme
uses thé displacement approach to the 8-noded isoparametric
element with built-in reduced Gauss integration rule for
numerical integration of the element characteristics. The
solution of the banded symmetric matrix is achieved by the
direct Gauss elimination method. The deformation is assumed
not to change the overall geometry of the problem (only
small displacement and first order strain terms are retained).

Boundary conditions are specified in terms of displace-
ment, in one or both of the vertical and horizontal directions,
or by specifying a spring with constant stiffness. The
prescribed displacement at the boundary could be prescribed
to be free, a specific value of zero. (Prescribed dis-
placement or springs could also be applied to nodes within
the domain)."”;

Tﬁe programme can handle linear and non-linear material
with a shear strength cut—-off. Saturated undrained shear
behaviour and non-dilatent dfained shear behaviour'éan be
modelled. Anisotropic linear elastic material is also
available, provided that the axis of anisotropy coincides
with_the axis of geometry. In any problem the domain may
be composed of non-linear isotropic, linear isotropic and/or

linear anisoctropic in terms of drained and/or undrained
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deformation and shear strength parameters. In case of
undrained material prbperties, pore Water‘pressure is
evaluated using the pore pressure parameters A and B. For
undrained loading if linear deformation parameters are used
pore water pressure is evaluated using water compreséibility.

Types of loading include: Body forces to simulate
gravity or horizontal or inclined forces due to earthquake,
surface tangential and normal stresses, concentrated forces
and seepage forces and internal straining of the domain
(including volume change). The latter could simulate
creep and has other useful applications. Forces may be
applied in one step or in equal or non—equal increments or
in selected stages.

Non~linearity is dealt with using either incremental -
or iterative methods, or a combination of the two. 'Thé
incremental technique can be either the tangential method
or thé Quasi Runge-Kutta method. For the iteraéive tech-
nique either the constant stiffness method or the Newton-
Raphson method can be chosen.

For the tangentialbmethod the material properties are
éelected at the start of each increment according to the
current state of stress. If the state of stress is near
or above the failure state, the point is given a very small
value of deformaticn modulus and a valué very close to 0.5
for the Poisson's ratio. Obviously over-shooting is
expected and can only be confrolled by repeating the runs

with more increments. The Quasi Runge-Kutta method uses
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a pilot solution to determine the magnitude and direction

of the stress increment. Therefore, the.material proper-
ties are assigned more closely to the nominated stress-strain
curve. The pilot solution enables the relevant deformation
parameters for loading, unloading and reloading to be
aséigned to every Gauss point in the domain.

The output in terms of accumulated stresses and sfrains
at the Gauss points and/or at the nodes and incremental
displacements and residual forces of the nodes can be partly
or totally printed or totally saved in a magnetic tape or
permanent file for future reference. It can also be used
for graphic plotting and as an input for further loading or
increments.

During this résearch an iteration technique has been
developed and used in the programme for the hydraulic
fracturing phenomenon which implies a strain-softening
problem. A modified form of the Newton-Raphscn or Constant
Stif fness method which engbies the relevant deformation
parameters for unloading to be assigned to every Gauss point
in the domain in every iteration, was used where necessary
(see Appendix 2). The root mean squares of the residual
forces at £he nodes are used as the measure of convergence.

A flow chart of the programme is given in Appendix 1.

2.8 Modifications and Developments in the Programme

The finite element programme used in this research is
a modified form of the original programme developed by

Hamza at Imperial College, 1972-74.
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In the following section a list of the most impertant
modifications has been given. Description and discussion

of these modifications have been considered in Appendix 2.

1. Shear unloading and reloading;
2, Poisson's ratio varying with stress;
3. Spring as the boundary condition;

4. Appiying the seepage forces;
5. Iteration modified for shear unloading; and

6. Strain-softening.
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" Explicit nen-linear law

Fig. 2.2 One dimensional explanation of the Tangential

Stiffness Matrix method.
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After n load increments Aoi=(Acy), » €1=(81)A

For n+lth increment:-

If:
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Filg.

First solution: E = (Et)A = tana

gives (Aoy)g and (g )y

Second solution: E = (E.), = tanf

(Ao, + (Aoyg

where (A01)C = "

gives (A01)D and ( g )D s curve fitting error = e

(Ao, )A > 0-95(1301 )f 'y failure assumed and solution made
with E very small. '

/

4
U4
if (Aoy)s < (Aoy); determine (E and use in second solution.

(A01)B - (A01)A

’
t)C

if (A°1)/c> (Ao1)f , try (A01)/é, = (L’\Oq)A + 5

and s0O on.

2.3 The Runge~-Kuita algorithm for one varlable problem.
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PART II

STABILITY ANALYSIS OF SHALLOW FOUNDATIONS
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CHAPTER 3

STRESS DISTRIBUTION AND SETTLEMENT ANALYSIS

3.1 Introduction

Generally, twé considerations enter into the stability
analysis of a foundation, namely, safety against failure by
excessive settlement and safety against failure by shear.

Thé idealised load-settlement curve for a footing on
an elasto-plastic soil can be divided into three sections,

Fig. 3.1:

(1) Linear section, AB, where the settlementvis
proportional to the load;

(2) Non-linear section, BC, which represents the
region of contained failure; )

(3) Section CD, which represents the failure of

the foundation at the ultimate bearing pressure.

So, analysis of a foundation requires solutions to
the three types of problems, namely, the linear phase, the
contained failure, and the ultimate load. Elasticity,
used as linear theory, deals with stress and deformation of
the so0il under the footing subjected to working load con-
ditions and mainly limited to the section AB of the curve
in Fig. 3.1, where a linear relationship between stress ahd
strain is assumed. to exisé. The ultimate load analysis,
on the other hand, deals with the condition at the first
complete failure of the foundation. The theory of perfect

plasticity is generally used to develop methods which are
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capable of predicting the failure load. The intermediate
between the elasticity and the ultimate load is the problem
of contained plastic flow (D'Appolonia et al, 1971, defined
this section as the region of local yielding), where the
transition from the initial linear state to the final plas—'
tic state takes place in thé soil around the foundation.

A method of‘analysis which considers contained plastic flow,
such as the finite element method, is required to study

this region.

The point B, Fig. 3.1, is the boundary between the
linear phase and the contained plastic flow region, and
represents a state of stress within the soil mass, where
the shear streéses induced in the soil will first reach the
shear strength a£ some point, and local yielding will first
occur (D'Appolonia et al, 1971). After this stage, a
further increase in the load will cause a redistribution of
the stresses within the spil to ensure that the shear stresses
nowhere exceed the shear strength. Then, the deformations
at a point in. the soil within the zone of local failure will
no longef depend sclely on the stresses at that point, but
will bé dependent on the state of stress within the entire
soil mass. -

The purpose of this chapter is to summarise some of
the more commonly used method of settlemeht prediction and
to discuss the estimation of the stress distribution within
the soil. This chapter is divided into three parts. The
first deals with the determination of stress distribution,

the second with settlement analysis, and the third with the
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soil-foundation interaction. | The section on settlement is
subdivided into parts which deal with non-free drained_and
free drained soils.

The problems of the contained failure and the ultimate

pressure will be considered in Chapters 4 and 6.

3.2 Stress Distribution

3.2.1 General

Determination of the stress distribution within a
particular region is‘an important proéess of predicting
the settlement due to the compressibility of a soil, and
may also be important in certain stability problems.

The most common method for determination of the stress
distribution in a homogeneous soil keneath a foundation is
linear elastic theory. The justificatibn for this liés
in both laboratory and field tests which have utilized
in-situ pressure cells to measure the stresses. The
results of a variety of sﬁall and large scale laboratory
and field tests with in-situ pressure measurements (Foster
& Fergus, 1951 ; Morgan.& Scala, 1968 ; and Bozozuk &
Leonards, 1972) suggest that when the boundary conditions
of the analytical model approximate the in-situ boundary
conditions, the computed stress distribution will corrés—
pond reasonably well to that interpréfeé from the field

measurements.
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3.2.2 Calculation of Stresses Imposed by a Point Load

Boussinesq (1885) provided a solution to the distri-

bution of stresses within an isotropic linear elastic

half-space under the influence of a surface point load

(Fig.

means of the following expressions:

where

equations are defined in Fig.

3.2)

The stresses at a point can be calculated by

3
s = 3P 2
z 2t RS
_ P [3zr2 __1-2y ]
° T 7= R> R(R+2)
- P - 1
T4 57 (1=2v) [jmes)
_ 3p rz?
Trz = 27 5
Yoz = ‘re 0

3.2.

(3.1)
(3.2)
- 731 (3.3)
(3.4)
(3.5

v is the Poisson's ratio and other quantities in the

These stresses are for

a weightless medium, and pre-existing stresses due to the

weight of the material must be superimposed upon these.

Vy

As the vertical normal stress oé is independent of

the Eq.

3.1 can be written:

Z IzB é%

G =

(3.6)

where IzB is an influence value which depends only upon

the geometry:

I, = —= [

1
2 1 r )

]5/2

(3.7)
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This influence value is plotted in Fig. 3.3.

The Boussinesq formula for the vertical stress applies
only for isotropic and homogeneous soil masses. When the
soil is stratified, Westergaard (1938) worked out a limit-
ing solution on the assumption that the soil is restricted.
from horizontal deformation; The vertical streés according

to Westergaard is:

o, = I, TZEZ | (3.8)
1/ 1l

I = _{__________]3/2 _

ZW T 1+ 2(%)2 . (3.9)

Izw is the influence value for Westergaard solution, and it

has been plotted in Fig. 3.3.

3.2.3 Calculation of Stresses Imposed by a Loaded Area

By the principle of superposition, the point load
results can be integrated over a finite area to produce the
stress distribution resulting from a uniform stress applied
to the surface.

Janbu, Bjerrum and Kjaernsli (1956) have given a
design chart (Fig. 3.4) for the values of the vertical
stresses beneath the centre of a unifdrmly loaded fquiblé
area of strip, rectangular or circular shape.

For estimating the vertical stresses beneath flexible,
uniformly loaded areas of irregular shapes the chart given
by Newmark (1942) and shown in Fig. 3.5 can be used.

The vertical stresses at any location under a loaded

area can be calculated by using the principle of superposition

and Figs. 3.4 and 3.5.
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After determining the stress increments due to sur-
face loading at a variety of points within a medium, it is
useful to draw these stresses graphically in relation to

their points of action.

3.2.4 Analysis of Layered Systems

Natural soil deposits and fills are often composed
of two or more layers with different properties. Concern
about the potential influence of a layered system on the
distribution of stresses and displacements has led to
analysis of elastic systems consisting of layers of differ-
ing elastic properties. Burmister (1943) developed
expressions for stresses and displacements of 2- and 3-
layer flexible elastic systems»subjected to a uniform stress
acting over a circular area of the surface. Numeriéal
values of these results have béen presented by Acum and Fox
(1951); Burmister (1958, 1967); Jones (1962) and Peattie
(1962).

If there a;e more.than three layers in the real system,
similar layers can be grouped together and assigned average
physical properties (Peattie, 1963) in order to/reduce the
number of layers to three. B

Figure 3.6 represents a typical stress distributibn
in which a uniformly loaded circular area is acting on the
surface of a 2-layer elastic system. The vertical stress
distribution under the centre of the loaded area is shown

as a function of depth for various ratios of Young's moduli.
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The results show that when the upper layer is much étiffer
than the lower layer, the stress in the lower layer is sig-
nificantly reduced. Conversely, the stress in a layer
underlain by a very stiff layer is increased remarkably.
Thus, the stresses in an elastic layer underlain by a stiff
granular material or rock would be significantly higher than
those predicted by Boussinesq theory for a homogeneous
semi-infinite elastic layer. This difference is remarkable
near the base of the elastic layer, where a concentration
of stresses occurs.

For natural soil deposits, the superficial layers
are normally softer and weaker than those beneath, and the
foundation soil or soils overlying bedrock may be considered
to be a single compressible layer overlying an incompressible
layer. If the upper layer is thick compared to the’
lateral extent of the loaded area placed on its surface, it

is reasonable to assume that the layer is semi-infinite.

3.2.5 Influence of a Rigid Base below the Loaded Layer

The problem of layered system has been discuséed in
the previous section. The simplest case of a layered
system is that of an elastic layer overlyiﬁg a rigid base.
The interface betweeﬁ the layer and base can either be per-
fectly rough or perfectly smooth. When the interface is
perfectly smooth, surface settlement is independent of the
layér thickné!gﬁ%g%gg%bi, 1974). Tabulated results for

the stresses and displacements in an elastic layer over-

lying a smooth rigid base and subiected to a uniformly
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distributed load of rectangular shape have been given by
Sovinc (1961).

In soil mechanics problems, rough interface is more
realistic than smooth one. Poulos (1967) has considered
an elastic layer underlain by a rough rigid base, and he
has given tabulated results for stresses and displacements.
Figures 3.7 to 3.10 represent the influence factors ISt for
the vertical stresses O under the edge of a strip load
for four values cf Poisson's ratiov (after Poulos, 1967).

From Fig. 3.6 it has been mentioned that the stresses
calculated from the Boussinesq solution for a semi-infinite
layer is less than the true stresses in a finite 1ayer. 
In addition, the Poisson's ratio of the material has a more
significant effect on the stress distribution in a finite

layer than in a semi-infinite one (Poulos, 1967).

3.2.6 Effect of the Loads acting within the Medium

Terzaghi (1943) has observed that the stresses induced
by a point.load within a semi-infinite incompressible
elastic solid (v = 0.5); are one half of the values due to
the same load acting at the surface of the same medium.
Mindlin (1936) and Mogami (1957) have solved for the stresses
due to a vertical or horizontal point load acting within
the semi-infinite medium, and tabulafed.results have been
given in the second reference.

For practical cases, sfress changes required for
settlement predictions for foundations at shallow depths

may be computed using net foundation pressure and the
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solution for surface loading (Vaughan, 1973).

3.2.7 Effect of the Non-homogeneity

For many years the formulae, chafts and tables used
by engineers for problems of surface loading, based on the
solution of ﬁoussinesq's problem, have assumed the semi-
infinite soil medium to be isotropic and homogeneous.

It is now generally understood that within the réai
soil strata, strength and moduli increase with depth,
reflecting the increasing overburden pressure (Gibson,
1974) . The variation of E with depth may well be approxi-

mated by a line as given in the following expression:

Ez = EO + Az ' ‘ (3.10)

where Ez is the value of modulus at depth‘z; EO is the wvalue
of modulus at ground surface; ‘A is the rate of increase in
E with depth; and z is the depth from soil surface.

The variation of shear strength with depth will be
considered in Chapter 4, and here it should be mentioned
that the ratio of undrained modulus to undrained shear
strength (Eu/Cu) is constant. |

Gibson (1967, 1968 & 1969) has given the expressions
for the components of stress at any point within a non-
homogeneous elastic half-space, due to loading normal to
its plane boundary, for any linear variation 6f E with depth.
He suggested that the effect of non-homcgeneity on the

stress components may be small, and for a special case
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(EO = 0) the stress components are unaffected by the
variation of E with depth. On the other hand, Carrier and
Christian (1973) considered a smooth rigid circular plate
at the surface of a non-homogeneous semi~infinite layer,
and concluded that the ratio EO/AD (D = plate diameter) has
a marked effect on the stress distribution.

With the advent of digital computers, there have been
a very large number of influence charts developed which cover
a wide range of variables, see Scott (1963); Poulos and

Davis (1974); and Perloff (1975).

3.3 Settlement

3.3.1 General

Predictioﬁ of settlement is important for different
reasons. Probably the most important one is that the‘
settlement of structufes can result in structural damage
or failure by causing redistribution of loads in structural
members. It is known that, generally the differential
settlement is more criﬁical than the total settlement in
this respect. A recent discussion of differential settle-
ment is given by Grant et al (1974). Table 3.1 and Fig.
3;11 represent tvpical guidelines concerning total and
allowable settlements, and structural damage due to angular
distortion. -

Settlement may be caused due to a number of reasons,
Table 3.2 lists some of theﬁ and it may ke noted that many
of the causes are not amenable to quantitative analysis.

The discussion described herein is restricted to consideration
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of settlements resulting from change in vertical static load,
although ﬁany of the principles may be applied to settle—
ments due to other causes. It must be =mphasized that
settlements due to other causes, such as dynamic loads,
change in moisture content, and the effect of nearby con-
struction may often be as significant as those due to
static loads. ,
In'Chaptér 6, the settlement due to cyclic loads will
be considered.
From the standpoint of the change in volume due to
changes in loading, soil can be divided into two classes,

namely, non-free drained and free drained soil.

3.3.2 Settlement of Non-free Drained Soils

It is generally recognized that settlement of non-
free drained soils due to change in vertical stress is made

up of three components

8 = &, + GC + 4 (3.11)

where at is the total final settlement; ai is the immediate
or undrained settlement; §, is the consolidation settlement;
and SS is the creep or seconeary consolidation settlement.

Although it is convenient to separate each of these
components for analysis, it is important to recognize that
in nature all three components occur to some extent simul-
taﬁeously.

Lambe (1973a) summarized some of the methods available

for computing the above settlements (Table 3.3). Further
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discussion of this problem is given by Moorhouse (1972);

Simons (1974); and Sowers (1975).

3.3.2.1 Immediate Settlement-

Immediate settlement is defined as: the settlement
associated with the undrained shear deformation of the soil,
under constant volume change, due to rapid application of
the load to a deposit of saturated clay.

The immediate settlement may be a very significant
part of the total final settlement. However, immediate
settlements are reduced if horizontal displacements of the
foundation'are constrained, and they become zero if there
is total constfaint.

If the shearing stresses in a clay layer are small,
it is reasonable to assume that the sheaf strain will be
approximately proportional to them. Making this assumption
and considering the independence of time, it is possible to
compute the immediate settlement for the clay deposit from
linear elastic theory.

The linear elastic method used in computing the
immediate settlement is based on the approach described by
Davis and Poulos (1963 & 1968), and a similar approach by
Kerisel and Quatre (1968) and Egorov et al (1957).

The immediate settlement may be calculated either by
summation of vertical strains beneath the foundation or

directly by the use of elastic displacement theory:
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(1) Elastic strain summation is based on a 3-dimen-
sional strain calculation and is useful for

non-homogeneous or stratified soil deposits:

tf.lll__,

§, = ) fo, - vu(cx-Fcy)]Sh (3.12)

u
where Eu is the undrained Young's modulus of

the s0il; 2 is the Poisson's ratio (for saturated
soil, vy = 0.5); Ot cy' g, are the stress

increments; and dh is the thickness of each

stratum or layer.

(2) Elastic displacement theory for calculating the
immediate settlement based on the following

general formula:

s, = 9B g (3.13)
1 Eu 8 _ -

where IG is:the influence factor; B is the
foundation width; and g is the applied stress.
Many solutions are available for the influence factor,
including: the élassicél solution of Bouscinesq (1885) for
loading on the surface of an elastic half-space; Burmister
(1956), Davis and Taylor (1961), and Poulos (1967) for a
layer nnderlain by a rigid base; and Ueshiﬁa and Meyéfhof
(1967) for a 3-layer elastic system.
For computing the average immediate settlement of
uniformly loaded, flexible areas, rectangular or circular
in shape, Fig. 3.12 fepresents the chart given by Janbu et

al (1956). The average settlement is obtained from Eq. 3.13
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by putting I, = MoHys and Poisson's ratio equal to 0.5.

S
Recently, Christian and Carrier (1978) have improved

the Janbu et al (1956) chart. Their improved version of

the chart 1s composed of Giroud (1972) results for the effect

of depth and Burland (1970) results for the effect of embed

ment.

The more comprehensive solutions for the influence

factor are given by Poulos and Davis (1974).

3.3.2.2 Effect of Local Yielding on Immediate Settlement

One of the most important shortcomings of the linear
elastic theory in computing the immediate settlement is in
the evaluating of the strains after stress redistribution
due to local yielding. 7

Davis and Poulos (1968) have shown that the factor
of safety against a bearing capacity failure at first local
yvield for normally consol?dated clays is between 4 and 8,
for slightly overconsolidated clays is 2 to 3, and for
heévily overconsolidated clays is less than 2. Foundations
for structures, on the other hand, may be designed with a
factor of safety, against ultimate failure, of the order of
2% to 3, thus, for normally consolidated clays the use of
elastic method may well lead to underestimation of the
immediate settlement.

D'Appolonia et al (1971) considered this problem, and
prdposed a correction factor to be used with the elastic

method. Their modified elastic displacement is:
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E S *
u r :

where S is the settlement ratio, and its value depends
on the ratio of applied stress to ultimate stress (q/qu);
ratio of layer thickness to foundation width (H/B); initial
stresses in the deposit; and shear strength of the soil.
Before local yield occurs, the value of S, is equal to one,
and elastic displacement theory gives the proper settle-
ment. After local yield, the value of Sr becomes less
than one, as the actual settlement is greéter than that
predicted from elastic theory. When the ultimate beafing
capacity is approaéhed, the value of Sr becomes equal to
Zero.

Figures 3.13 to 3.15 represent the values of Sr at

the centre of a uniformly loaded strip foundation on a

homogeneous isotropic layer. The factor £ used in these
1-K 4
figures is the initial shear stress ratio = ( 28i0vo ’

where Ko is the coefficient of lateral earth pressure at

, .
rest; 9yo ‘is the initial vertical effective stress; and

Cu is the undrained shear strength.

The results for H/B = 1.5 are applicable for all values

of H/B greater than 1.5.

3.3.2.3 Effect of Foundation Rigidity and Roughness

The settlement of a flexible load is not uniform,
and it settles more at the centre than at the edges. A

rigid foundation, in order to produce a uniform settlement,
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must experience a decrease in pressure at thé centre and an
increase at the edges (Fig. 3.24).

Since most foundations are neither truly rigid nor
truly flexible, this becomes the classic soil-foundation
interaction problem.

Davis and Poulos (1968) give the following expressions
relating rigid foundation settlements to flexible foundation
settlements for a semi-infinite uniform elastic foundation:-

For a circle:
1

Srigid = 2(%centre * Sedge) flexible (3.15)

For a rectangle: | |

Grigid - %[ZScentre-+Gcorner)flexible (3.16)
For a strip: }

"rigid %(Gcent_re * Scage) e1exible (3.17)

Analysis of a rigid circular plate resting 6n a non-
homogeneous elastic half-space (Carrier and Christian,
1973) showed that for most practical problems (with v 2 0.3)

roughness has no effect on the solution. Only when

Eo/AD is large and v < 0.3 need the roughness be taken into

account.

3.3.2.4 Effect of Non-homogeneity and Anisotropy

Generally, the use of an average value of Eu may give
a reasonable estimate of the average immediate settlement,
but if it is necessary to predict the initial deflected

shape, non-homogeneity and anisotropy must be taken into
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account (Simons, 1974). For effects of non-homogeneity
and anisotropy reference can be made to Lambe (1964);
Gibson (1967); Davis and Poulos (1968); Gibson and Sills
(1971); Burland, Sills and Gibson (1973); Carrier and
Christian (1973); and Hopper (1974).

Gibson (1967) has shown that the variation of modulus
with depth has a marked effect on surface displacements
which are concentrated within the loaded.area for an incom-
pressible medium.

Butler (1974) gives charts for the approximate
settlement of the corner of a uniformly loaded, flexible
rectangular area resting on the surface of a non-homogeneous
elastic layer. If_is assumed that the modulus increases
linearly with depth. Butler®s charts for immediate
settlement are given in Figs. 3.16 and 3.17. ”

The effects of non-homogeneity and anisotropy can be

summarized by three important points:

(1)l Non-homogeneity localizes the settlement of the
grouha surface to the wvicinity of the loaded
area.

(2) -Horizontal modulus Ejy has a marked effect on
the vertical displacement.

(3) The maximum settlement of a flexible loaded area
is near the edge for EV = 0 at the surface and

E, increasing with depth, for anisotropic soil.

The effect of non-homogeneity (Point No. 1) has been.

studied by Gibson (1967, 1968 & 1969) and Brown and Gibson
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(1972). They assumed that the Young's modulus E increases
linearly with depth according to Egq. 3.10. This effect has
been represented for a uniformly loaded circular area and

v = 0.5 in Fig. 3.18, which shows that by introducing non-
homogeneity the surface settlement at the outside cf the

loaded area becomes smaller, and finally for "Gibson Soil"

(EO = 0) the settlements are:
s5(r) = s(o)= 33 r <R (3.18)
§(x) = 0 r > R (3.19)

where R is the radius or half-width of loaded area; r is
the horizontal'disﬁance from the centre line of loaded
area; 6(o)is the surface settlement at the centre; and
5(r) is the surface settlement at distance r from the
centre.

The effect of anisotropy (points 2 and 3) have been
given by Simons and Menziés (1975), and have been shown
in Fig.‘3.19 (after Rodrigues, 1975) for a.uniformly loaded
_flexible.circﬁlar footing resting on a wide deep elastic

" solid.

.3.3.2.5 Consolidaticn Settlement

When foundation load is transmitted to cohesive sub-
soil, there is avtendency for volumetric strain which in
the case of a saturated material is manifested in an
increaée in pore water pressure. With sufficient elapsed

time, the excess pore water pressure dissipates, accompanied
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by wvolumetric strains, which results in vertical settle-
ments. When the dimensions of the loaded area are large
relative to the thickness of the compressible layer, or
when the compressible material lies between two stiffer
soils, whose presence tends to reduce‘the magnitude~of
horizbntal strains, it is reasonable to assume that there
are only vertical strains.

Based on ﬁhis assumption, Terzaghi (1943) developed
a method, known as "conventional bne—diménsional method",
which involves the nume rical summation or integration of
vertical strains beneath.the foundation. The resulting
settlement will be referred to as Sped, and is calculaééd

as:

Soed = va.Aoz.az (3.20)

where my, is the coefficient of compressibility; Ao, is
the increase in vertical stress at the centre of the layer;
and §, is the thickness of each layer.

Aiternative forms of Eq. 3.20, which is in terms of
the compression index of the soil, are available (Perloff,
1975).

The l1-dimensiconal method assumes that:

8 = § (3.21)

which has been modified with the subséquent recognition of
the immediate settlement to:

$ = §

c oed (3.22)

At any time t after the application of the foundation
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load, the consolidation settlement is:

8 = U_.8_ , (3.23)

where Uc is the rate of settlement; and ac refers to

ultimate consolidation settlement.

3.3.2.6 Skempton and Bjerrum Method

To take into account the effect of the 3-dimensional
nature of the settlement process, Skempton and Bjerrum
(1957), developed a semiempirical method which is based

upon the following two assumptions:

(1) Consolidation settlement §_, is expressed by:
5, = ZmV,Au.sz : (3.24)
where Au is the induced eXcess pore water pressure
at each depth z due to an ‘increment of stress
applied at the surface, and other symbols are
defined in Eq,\3.20. |

(2)‘ The excess poré water pressure Au is given by
the Skempton (1954) - Bishop (1954) equation
for saturated soils:

bu = ho, + A(Ao, = Ao,) : "~ (3.25)

3

where A is a pore pressure parameter, and'Aal,
Aa3 are the major and minor principal stress

increases.

From these éssumptions it is clear that even though
the excess pore water pressure is from a 3-dimensional
analysis, the settlement is still l1-dimensional.

The consolidation settlement, based on pore pressure



50

generated according to three dimensional theory, followed

by one dimensional consolidation, is given by:-

U = A+ o(l~A) . (3.27)
and
TAo_ 8§ . .
3 A
o = — (3.28)
ZAGI.GZ :

where p is the settlement coefficient, a function of A and
the geometry of the problem. Figure 3.20 shows the values
of u.

The effect of 3-dimensional analysis also considered

by Davis and Poulos (1968).

3.3.2.7 Rate of Settlement

The consolidation process involves expulsion of
water from the soil being\compressed. The preceding dis-
cussion has been concerned with the calculation of ultimate
consolidation settlement, where the excess pore water
pressure-has dissipated completely. At any time between
application of load and the time at which essentially.
ultimate, or 100 per cent consolidation has Occurred;{v
the progress of settlement can be described by the rate of
settlement, or degfee of consolidation (Eq. 3.23).

The rate of settlement can be determined from one-
dimensional consolidation theory (Terzaghi, 1925). If
accurate rates of consolidation are required, the use of

3-dimensional consolidation theories is required (Davis
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and Poulos, 1272).

It should be mentioned that the observéd rate of
settlement is usually very much faster than that calculated
using l-dimensional consolidation theory. It is generally
assumed that the reasons for'this are the poor knowiedge
of drainage boundary conditions that exist at a site (Rowe,
1968 and 1972), and variation of the coefficient of
permeability and the coefficient of compressibility of the
soil with depth (Schiffman and Gibson, 1964). Thin layers
of drained soil (sand and silt) can be easily missed in a
subsoil investigation bu; they have a significant effect

on the overall rate of settlement.

3.3.2.8 Secondary Consolidation Settlement

The consolidation of a clay deposit may be divided
into two fundamental pérts: fifst, the compression which
is cohtrolled by the flow‘of the pore water from the soil,
known as consolidation, ana discussed in the preceding
section; second, the compression because of the inter-
granular viscosity effects (Zeevaert, 1972), which occurs
at essentially constant effective stress, and is known as
secondary consolidation. | .

Generally, the secondary consolidation starts simul-
taneously with the nrimary consolidatibn. After complete
dissipation of the excess pore water pressure, the primary

consolidation is completed, and the secondary consolidation

continues at constant effective stress (Bjerrum, 1967).
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In the majority of laboratory and field measurements
it has been observed that the magnitude of secondary con-
solidation is approximately a linear functioﬁ of the loga-
rithmic of time, after the primary consolidation has been
completed (Fig. 3.21). The linear logarithmic relation-
ship was reportéd for the first time by Buisman (1936) from
laboratory and field observations.

The seconaary consolidation settlement may be approxi-

mately estimated by the following expression:

s, = C, log(t/t)) | (3.29)

where CS is the slope of "the straight line, and known as
the coefficient of”secondary consolidation; tC is the time
corresponding to the 100 per cent primary consolidation and
t is the time at which the magnitude of secondary consoli-
dation is required (see Fig. 3.21).

Although much research has been conducted on secon-
dary consolidation, no reliable methods are available for
calculafing the magnitude and rate of consolidation.  For
a detailed discussion of secondary consolidation, reference
may be made to Garlanger (1972), Zaretskii (1972), and

Simons (1974).

3.3.2.9 Other Methods of Predicting Settlement

Some other methods of predicting settlement of struc-

tures are outlined below.

(1) Elastic Method. The value of total settlement.
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may be calaculated either by Eq. 3.12 or by
Eqg. 3.13, and using the drained parameters (E',
v}) instead of undrained parameters.

(2) PFinite Element Method. Settlement may also be
computed using the finite element method, which
enables the analysis of any form of loading and
boundary conditions. The finite element
technique has been considered‘in Chapter 2, and its
application to stress analysis and immediate settle-
ment calculation will be discussed in Chapter 6.

(3) Stress Path Method. The principles of this
method have been explained by Lambe (1964 & 1967).
This method consists of four general steps:

(a) selection of one or ﬁore points within the
soil beneath the foundation; kb) estimation of

the stress path for each of the selected points,
i.e. the initial vertical and nhorizontal stresses
and the stresses due to the foundation; (c) carxry-
ing out laboratory tests in wﬁich the specimen

is first consoiidated under the initial in-situ
~stresses and then the stress increases are
imposed. The undrained and consolidation verti-
cal strains are measured; and (d) the settlement

is estimated by integration of m=asured strains.

There are some other methods of secondary importance,
and reference may be made to Simons and Menzies (1975).

Theoretical studies suggest that the classical method
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of estimating total settlement based on the assumption of
one-dimensional compression is surprisingly accurate both
for normally consolidated and heavily overconsolidated clays
(Burland and Wroth, 1974). Therefore, accurate éstimates
of settlement are much more dependent on correct measuremenﬁ
of parameters such as m, ana Ceo than on sophisticated calsu—
lations using complex stress-strain laws.

Usually, stresses are less sensitive to soil properties
than settlements, so, it is better to estimate stresses,
and calculate settlements from these stfesses by using the

linear elastic theory.

3.3.3 Settlement of Free Drained Soils

Some of the methods for settlement prediction dis-
cussed in the preceding'section are applicable for the
settlement of free drained soils.

Generally, it is difficult to obtain undisturbed
samples of cohesionless soils, and therefore settlement
analysis based on laboratory tests are rarely performed.
Instead,'empirical correlations based on field tests are
usually used. Table 3.4 represents some of the methods
used for settlement prediction (after Lambe, 1973b):

The total settlement of footings on cohesionless soil
is small, however, differential settlement san approach the
total settlement, and is the important parameter in settle-
ment analysis o0f cohesionless scils. Bjerrum (1963) found
that differential settlemeﬁt is greater than 50% of the

total settlement. Terzaghi and Peck (1948, 1967) suggested
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settlement. Skempton and MacDonald (1956) have also shown
from case studies that differential settlement is of the
same order of magnhitude as total settlement. |

The simplest and most widely used procedures for
estimating settlement in cohesionless soils employe sound-
ings such as the Standard Penetration Test (SPT) and the

Cone Penetration Test (CPT).

3.3.3.1 Standard Penetration Test

This technique, generally, correlates the driving
resistance to observed settlement for plate load tests
and actual structures. An example of the type of empirical
‘correlation commonly used is given in PFig. 3.22, which was
first published by Terzaghi and Peck (1948). The Térzaghi
and Peck correlations were originally intended to provide
a conservative basis for design, irrespective of the
geological origin and environment of the cohesionless
soil deppsit.i -

Meyerhof (1965) has suggested a different relation-

ship as follows:-

Aq = géé - for B ¢ 4 ft (3.30)
N.& (B+ly2
Ag = T3 (_E_) for B > 4 ft (3.31)

where Aq is the allowable load (T/ft%2);
§ is the settlement (inches);
N is the SPT Resistance; and

B is the footing width (ft)
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Other correlations have been suggested by D'Appolonia
et al (1968); and Peck and Bazaraa (1969) which consider

the effect of overburden pressure.

3.3.3.2 Cone Penetration Test

This technique is alsb used to predict settlement as
an indirect method. A similar approach can be used with
the Cone Penetration Test as is used with the SPT. The
method is discussed in detail by De Beer (1948, 1965).
Schmertmann (1970) has suggested that the elastic modulus
needed in the settlement analysis by elastic theory can be

approximated by the following exXpression:
E = 2qc ‘ (3.32)

where q, is the Cone Penetration Resistance.

3.3.3.3 Plate Load Test

™~

Terzaghi and Peck (1948 & 1967) have developed an
empirical relationship in order to predict the settlement
of the prototype footing from plate load tests. Their

expression is as follows:-

2 i .vx"lr
8 1 + E.l_ .
L B
where § is the settlement of prototype footing;
§. is the settlement of test plate;
B is the smallest dimension of prototype footing; and
B, is the smallest dimension of test plate. The
test plate is usually a 1 ft x 1 ft square plate.

According to Bjerrum and Eggestad (1963), although
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this relationship is approximately correct, there is a
large amount of scatter (Fig. 3.23). In addition to the
scale effect, correlation is also dependent upon soil
density. |

There are also other methods for settlement analysis,
e.g. stress path method (Lambe, 1964 & 1967). Referencé
may also be made to D'Appolonia et al (1968), Sutherland

(1974), and Simons and Menzieé (1975).

3.3.4 Determination of the Soil Properties

One of the most important difficulties in settlement
analysis is the determination of the values of soil proper-
ties E and v (both drained and undrained). The discrepan-
cies between the in-situ values and those on which the
design is based, may cause a large error in the proéér
design of a footiﬁg.

The values of soil properties are usually determined
from laboratory tests, or in-situ tests. In both cases
some factors infiuence the measured values, such as sampling,
sample size, anisotropy, type of test, rate of shearing,
and non-homogeneity. A comprehensive discussién of the
determination of soil properties and its difficultiéé has

been given by Davachi (1974).

3.4 Soil-Foundation Interaction

3.4.1 general

In the preceding sections the problems of stress
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distribution within a soil mass, and settlemént of non-free
drained and free drained soils resulting from a foundation
load have been considered. In this section the subgrade
reaction and distribution of confact pressure will be dis-
cussed,

The most significant advantage of a soil-foundation
interaction study lies in including the foundation struc-
ture in the analysis. Almost all field and analytical
studies have confirmed the importance of including both
soil and foundation structure in the analysis (see De Jong

et al, 1971).

3.4.2 The Modulus of Subgrade Reaction

Winkler (1867) represented the soil as a type of
elastic springs under the loads imposed by the foundation,
and introduced a linaer relationship between vertical

stresses gy and vertical settlement 6V:

ov' = ks'sv _ (3.34)

The factor kS is called the "modulus of subgrade reaction".
Terzaghi (1955) defined the subgrade reaction as the
load per unit of area of the surface of contact between a
loaded foundation and the subgrade on which.it rests énd
on towhich it transfers the load. The modulus of sub—
grade reaction is the ratio between this contact pressure

and the settlement due to the load at any point.

k., = -2 | (3.35)
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The modulus of subgrade reaction can be obtained by
performing a plate load test and extrapolating results to
the actual fcundation. Empirically, Terzaghi (1955)
proposed the follcwing formula for cohesive sbils wﬁen the
contact pressure is less than one-half the ultimate bearing
capacity.

= L
kg = § kg (3.36)

where ks and B are the value of subgrade modulus and footing
width for actual foundation, and k51 is the subgrade modulus

using a square plate of 1 ft x 1 ft,.

For cohesionless soils the formula is:

B+1,2 :
kg = kg (5g) | (3.37)

Bond (1961) indicates that Eq. 3.37 overéétimates the values
of subgrade modulus for medium‘tb dense sands.

Terzaghi (1955) pointed out that the modulus is not
a fundamental property. \It depends on many things, such
as the size of the lbaded area and the length of time it
is loaded. He proposed the following formulae for obtain-
ing the modulus of subgrade reaction kSrl for a rectangular
plate of dimensions 1 ft and m £t using the subgrade modulus
of a square plate of 1 ftx1 ft:

For cohecive soils

k =k, (B0 | (3.38)

srl
For cohesionless soils

=k

Q
ksrl sl (3'3“)
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Several proposals have been made to attempt to £ind

a value of modulus of subgrade reaction using laboratory

tests. Vesic (196la & 1961b) proposed using the modulus
of elasticity from laboratory triaxial tests. The value
of ksB = kgB given by Vesic is:

ES.B” E
Kep 0.65L2 BT T2 (3.40)
S

where ES and vy = modulus of elasticity and Poisson's

ratio of soils

Ef = modulus of elasticity of footing;
B = width of footing;
I = moment of inertia of footing cross-section.

There are several other methods of obtaining the
modulus of subgrade reaction, including extrapolating from
consolidation tests (Young, 1960), and extrapolating from
CBR tests (Nascimento et al, 1957, Black, 1961).

All these equations\are applicable only to surface or
near-surface conditions. The modulus of subgrade reaction
would be expected to increase as a footing is placed at
a greatér depth in the ground. Bowles (1975) considered
a footing of width B located at a depth D in a soil mass,
and he gave the expression for subgrade modulus at depth
ksd related to the subgrade modulus at ground surface kS .

S

1+ EP-) . (3.41)

k = kss( B

sd

Bowles (1975) mentioned that it is doubtful for Keg

when D/B ratios are larger

to be much greater than 2kSS

than 0.5.
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3.4.3 Problems Associated with Modulus of Subgrade Reaction .
The conventional Winkler elastic foundation assumes
that the movement of any point is independent of the others.
Thus, in Fig. 3.24(a) a load over region A causes sgttle—
ment only under A and nowhere else. But, in reality, the
surface would deform as in Fig. 3.24(b), so the Winkler
theory may be seriously wrong. However, theoretical work
by Gibson (1967) has shown that when the modulus of elasti-
city of a finite layer of soil or of a half-space increases
with depth, for a special case (Eo = 0), the settlement
behaves similarly to those in the Winkler theory.
Brown and Gibson (1972) mentioned that the condition
of compressibility of the soil is vital for obtaining a
surface settlement behaviour similar to the Winkler model.
They showed that the effect of the presence of a smgll
degree of compressibility on the settlement profile is far
more important than a further increase in compressibility.
Fﬁrthermore, Brown and Gibson (1972) wrote that in
the homogeneouéfcase Poisson's ratio has no effect on the
settlement profile, and the effect of introducing some
compressibility remains quite small unless there is a con-
siderable degree of inhomogeneity. ’
Carrier and Christian (1973) examinedAby means of a
finite element analysis the effect of a modulus increasing
with depth on the settlement of a smooth rigid circular
plate (diameter D) at the surface of a semi-infinite half-

space. Figures 3.25 and 3.26 represent the variation of
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the settlement with Poisson's ratio, for a homogeneous and
non—homogéneous (according to Eg. 3.10) cases, respecitvely.
The results for various combinations of EO and » have been
given in Figurés 3.27 and 3.28, where I and I' are the
influence factors in the expressions for settlement. For
EO/AD greater than 10, the solution is essentially the same
as a homogeneous one, and for EO/AD less than 0.01, the
result is essentially identical to ﬁhe one with EO = 0.

Several improvements for Winkler theory have been
developed (Vlasov and Leont'ev, 1966; Harr et al, 1969;and
Klein and Duraev, 1971). Such improvements give an increased
complexity which may not be necessary, and in many cases
the Winkler theory may be reasonably valid.

Other major problems associated with the concept of
modulus of subgrade reaction are: ’
(1) the soil is not elastic;

(2) the soil stratification effect;
(3)‘ the depth and footing size effect;
(4) the duplicating of in-situ conditions in the

laborafory.

3.4.4 Distribution of Contact Pressure

There have been several investigations (theoretical
and experimental) to evaluate the actual coistact pressure
of the soil against the footing, such aé: Cummings (1936) ;
Bofowicka (1936 & 1938); Krynine (1938); Casagrande and

Fadum (1942); Benscoter (1944); Schultze (1961); Barden

(&)}

(1962); Sommer (1965); Ho and Lopes (19262); amd Timoshenko

and Goodier (1970).
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Boussinesq (1885) and Sadowsky (1928) solved for the
diétribution of the contact pressure for the smooth rigid
circular and strip footings on elastic half-space according

to the following equations (given by Timoshenko and Goodier,

1970).
o . . a '
Veircle = . . (3.42)
%7

21-(§)

OVstrip = —"—*g——j; ' (3.43)
T X :
3yt - ()

where Oy is the contact pressure,

g 1is the applied vertical stress,;”

R is the footing radius,

b is the footing half width ; B/2, and

x 1is the horizontal distance from centre line.
For x = R (edge) the value of contact pressure is infinite,
and for x = O'(éentre) it.is q/2 for circle and 2q/r for
strip. |

Borowicka (1936, 1938) considered the effect oﬁ the_
footing rigidity upon the distribution of contact-pfessure,
and expressed the rigidity in terms of soil.Poisson's
ratio Vg and modulus ES, footihg Poisson's ratio Ve
modu lus Ef,.thickness tf, and radius R as the following

equatibn:
1 (1-v3) Ef
K = — e s
r 6

te3 -
= 3 (3.44)
(1 —vf) E_ R
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where K_ = 0 represents the fully flexible footing with
uniform contact pressure (cv = q), and Kr = o represents
the fully rigid footing with non-uniform contact pressure.
Figure 3.29 shows the Borowicka's curves for circular and
strip footings for various rigidity factors. For étrip
footing the values cof Kr are also given by Eq. 3.44.

Theoretically, the value of contact pressure at the
edge is infinite, but in practice, because of the local
failure, the contact pressure will be limited by the shear
strength of the soil at the edge.

As shown in Fig. 3.24, the settlement of a footing
that exerts a uniform pressure on the soil is not uniférm.
The footing, therefore, must be flexible so that it can con-
form to the settlement and keep the pressure uniform. When
the footing is fully rigid, the settlement will be dhiform,
and the pressure will be greaﬁest at the edges of the foot-
ing on an elastic soil (e.g. saturated clay) and greatest
at the centre of the footing on a cohesionless soil, for

safety factor close to'unity (Fig. 3.244) -

3.4.5 Distribution of Contact Pressure at Failure

As mentioned at the beginning of this chapter}ﬁthe
increase of load on a footing causes progressive transition
of the loaded mate:ial from the state of elastic to that
of plastic flow. This traqsition influences the distri-
bution of contact pressure by limiting its values at the

points where plastic flow has been reached. By increasing
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the footing load the yielded region becomes larger, and
finally, Qhen the load is equal to the ultimate bearing
capacity, the distribution of contact pressure will be
uniform as shown in Fig. 3.30.

The contact pressure distribution of a shallow foot-
ing is trapezoidal with a maximum at footing centre, and
consists of a uniform Nc component, two relatiVely.small
triangular Nq components, and a triangular NY component.

By increasing the footing depth, and for ¢4 > 0 the Nq
component increases more rapidly than Nc and NY components,
and at a great footing depth, where in practicé the Nc and
NY components can be neglected compared with the Nq com-
ponent, the contact pressure will be uniform because the
depth of the failure surface is small compared with the
depth of the footing, Fig. 3.30(a). ’

In Fig. 3.30(a), the distribution of the Nq component
is two small triangles because Meyerhof (1951) assumed an
inclined équivalent free surface on which the stress yD
increases from éero or a small value at the ground surface
(which affects the stress at the centre of the footing) to
a maximum at the footing edge. By assuming a horizontal
equivalent free surface (Terzaghi, 1943) the distribﬁﬁion
of N component’will be uniform, Fig. 3.30(b).

To obtain‘a truer distribution of concéct pressure
for any stage of applied load, Schultze (1961) and Smoltczyk
(1967) proposed an elastic-plastic concept which considers
a reascnable combination of the following two extreme

cases:
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(1) A load of low intensity acting on a rigid
footing, and the Boussinesq and Sadowsky elastic
éolutions (Eqs; 3.42 and 3.43) give an estimate
of the pressure distribution;

(2) A load according to ultimate bearing capacity
of the footing with a rectangular and triangular

distribution (Fig. 3.30).

Figure 3.31 (after Schultze, 1961) shows the distri-
bution of contact pressure for different safety factors FS
against ultimate load. In this figure the distribution is
a combination of elastic and plastic states, and X, repre-
sents the distance from centre line to the intersection

between these two states.

3.4.6 Effects of a Rigid Boundary underlying the Foundation

on Contact Pressure Distribution

The problem of distribution of contact pressure between
a rigid footing and an elastic solid underlain by a rigid
base has.been‘tgeated by several investigators (Poulos,
1968; Yamaguchi, et al, 1968; Brown, 1969; Milovic et al,
1970).

The ratio of layer thickness to footing radiué:H/R
has a marked effect on the distribution of contact pressure
except at the edge where the effect is small. By decreas-
ing the ratio H/R the distribution becomes more uniform,
Fig. 3.32.

The results of Brown (1969 a & b) show that the
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effect of the ratio H/R on contact pressure distribution
decreases when the footing rigidity decreases.

For a rigid strip footing Yamaguchi et al (1968)
showed that when the ratio H/B (B = footing width) ;eaches
1.5, the distribution becomes approximately equal to
Sadowsky's distribution (Eq. 3.43). Furthermore, from
their results it is possible to conclude that by using the
Sadowsky's distribution for the case with ratio H/B = 1 the
contact pressure will be underestimated, and the maximum
.error is about 12% at the centreline.

The effect of Poisson's ratio on contact pressure
distribution is small and when the interface between the
layer and rigid base is smooth it does not affect the
distribution (Yamaguchi et al,1968). The results of more
recent analysis of a circular plate on non—homogeneoﬁs half-
space by Boswell and Scott (1975) indicate that the con-
tact pressure is almost independent of Poisson's ratio.

Yamaguchi et al (1968} used the "method of division"
in their analysig for contact pressure distribution, which
assumes that, directly under a small section into which the
width of rigid feooting is divided, stress is uniformly
distrikuted. Then by calculating the displacementéJat the
centre of each small section,.due to. its own load and other
section's loads, and equating them to the displacement of
the rigid footing, the distribution of ceontact pressure can
be acquired. In this method of computation, the validity

of the solution depends on the accuracy of calculation in
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displacement of each small flexible section of the footing.
Milovic et al (1970) studied the problem of a rough

strip on a finite layer underlain by a rough rigid base,

and subjected to inclined and eccentric loading, using a

finite element anralysis.

3.4.,7 Effect of Scil Non-homogeneity on Contact Pressure

Distribution

It has been mentioned previously that, for EO =0,
E = xz and v = 0.5, the surface displacement of a uniform -
locad of any shape or size is uniform beneath the load and
is zero just outside.the lcaded are (Gibson, 1967, 1968 &
1969). Conversely, a rigid plate may result in a uniform‘
contact pressure, which has beén confirmed for a rigid
circular plate (E = )1z and v = 0.5} by Zaretsky and ’
Tsytovich (1965). |

Figure 3.33 (after Carrier and Christian, 1973) repre-
sents the distribution of contact préssure for a smooth
rigid circular élate reSting cn a non--homcgeneous ﬁalf—space
with EO/AD = 0.1 and 1, and indicates tha+ the effect of .
hetercgeneity on distribution of contact pressufe is
remarkible.

Figure 3.33 and results given by Boswell and Scott
(1975) éuggest that non-homogeneity leads to more uniform

distribution of contact pressure.
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3.4.8 Effects of Footing Roughness and Repeated Loading

upon Contact Pressure Distribution

The effect of footing roughness on contact pressure
distribution has been studied by Parkes (1956), Yamaguchi
Eﬁiél (1968) ; and Schiffman (1969) for a homogeneous half-
space, and it has been shown that, for Poisson's ratio equal
to 0.5, the contact pressures are the same for rough and
smooth footings. For smaller values of Poisson's ratio
there is a slight’difference between the contact pressures
for rough and smooth footings.

For the case of a non-homogeneous half—space, Carrier
and Christian (1973) showed that for most pfactical prob-
lems (Poisson's ratio greater than or equal to 0.3) the
solution for a rough plate is the same as for a smooth
piate. )

Ho and Lopes (1969) considered the effect of repeated
loading upon the distribution of contact pressure of a |
rigid ciréular footing resting on the surface of and embedded
in sand. Theyiéoncluded that the effect of repeated load-
iné,’for both surface and embedded footings, is important
in the first two cycles of loading, provided that the maxi-
mum load in subsequent cycles is not larger than that'of.
the first cycle, and after two cycles of repeated loading
the settlement and contact pressure dis tribution are
stabilized. -

For more general discussion of the effect of repeated
loading on the contact pressure distribution, the reader is

referred to Chae et al {1965); and Ho and Burwash {1968).
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e sy Maximum
Type of Movement Limiting Factor Settlement
Total settlement Drainage 6-12 in
Access ‘ 12-24 in
Probability of nonuniform
settlement: _
Masonry walled structure 1- 2 in
Framed structure 2- 4 in
Smokestacks, silos, mats 3-12 in
Tilting Stability against over- Depends on
turning height and
width
Tilting of smokestacks,
towers 0.004l
Rolling of trucks, etc. 0.01l
Stacking of goods 0.01l
Machine operation-cotton
loom 0.003l
Machine operation-—
turbogenerator 0.0002l
Crane rails 0.003l
Drainage of floors 0.01-0.021
Differential High continuous brick walls | 0.0005-0.001l
movement One-story brick mill

building, wall cracking
Plaster cracking (gypsum)
Reinforced-concrete
building frame
Reinforced-concrete

0.001-0.002l
0.001l

0.0025-0.0041

building curtain walls 0.0031
Steel frame, continucus 0.0021
Simple steel frame 0.005|
From Sowers (1962)
Note: | = distance between adjacent columns that settle

different amounts, or between any two points that

settle differently.

settlements and more tolerant structures.
values are for irregular settlements and critical

structures

Higher values are for regular
Lower
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Table 3.2 Causes of Foundation Settlement
From: Sowers (1975)

Structural Load

Mechanism Amount of Settlement Rate of Settlement
Deformation Compute by Elastic Rapid
(change in shape | Theory from modulus of
of soil mass) elasticity of plate load
test or lab test
._|Initial Stress-void ratio curve | Rapid - from time
Consoli- .

) curve
dation:

Qhangg Primary Stress-void ratio curve Compute from
in void .

. Terzacghi Theory
Ratio - :
under .

tress Secondary| Compute from log time- Compute from log

S settlement time settlement

Environmental Load
Mechanism Amount of Settlement Rate cf Settlement
Consolidation due | Compute from stress- Compute from
to fill weight void ratio and stress Terzaghi Theory
Consolidation due | Compute from stress-— Compute from Terzaghi]
to water table void ratio and stress theory and water ”
lowering- change table change
Shrinkage due to | Estimate from stress- Equal to rate of
drying void ratio or moisture- drying,

void ratio and moisture Seldom can be

loss limit-shrinkage estimated

limit
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Table 3.2 Continued
Environmental—-continuing process
Mechanism Amount of Settlement Rate of Settlement

Biochemical Decay

Estimate susceptibility

Erratic, often
decreases with time,
increases with water
table changes

Chemical Attack

Estimate susceptibility

Erratic, depending on
chemical diffusion

Mass Distortion,
Shear, creep or
landslide in slope

Compute susceptibility
from stability analysis

Erratic: catastrophic
to slow creep

Expansion - Frost,
clay expansion
chemical attack

Estimate susceptibility
sometimes limiting
amount

Erratic: increases
with wet weather,
temperature changes

(Resembles
Settlement .
Environmental-sudden settlement
Mechanism Amount of Settlement Rate of Settlement

Reposition par-
ticles and densi-
fication by shock,

vibration,blasting;

and earthquakes

tive density (up to
60-70%

Fstimate limit from rela-

Erratic: depends on

shock, relative den-
sity, water; can be
catastrophic

Liguefaction from
pore pressure
increase upon
densification

Shear failure -
large and erratic

Catastrophic in
saturated cohesion-
less fine sands

Structural

collapse - Loss of
Bondinyg (Satura-
tion, thawing,etc)

Estimate susceptibility
and possibly limiting-
amount

Begins with environ-
ment change — rate
erratic but sudden
changes

Revelling,Erosion
into openings,
cavities

Estimate susceptibiliﬁy
but not amount

Erratic: gradual or
catastrophic, often
increases with time

Mass Collapse -
collapse of sewer,
mine, cave :

Estimate susceptibility

Likely to be cata-
strophic

Tectonic Fault
Displacement
accompanying
earthquake

Possibly estimated from
accumulating strains in
earthguake-prone areas

Catastrophic




Table 3.3

After Lambe (1973a)

73

Methods of Predicting Settlement of Cohesive Soils

Type of Daformation

Method

Reference

Initial Settlement

Elastic Displacement

Elastic Strain
Summation.
Modified Elastic -
Displacement.
Finite Element

Janbu, Bjerrum and
Kjaernsli (1956)
and Skempton and
Bjerrum (1957)

Davis and Poulos (1968)

D'Appolonia et al.
(1971) T

Total Settlement

One-dimensional
Skempton-Bjerrum

Elastic Displacement
Elastic Strain
Summation.

Finite Element

Terzaghi (1943)
Skempton and Bjerrum
(1957)

Davis and Poulos (1968)
(1968)

Davis and Poulos

Rate of Settlement

1-D strain and
drainage,

average m__ and cC
g v v

1-D strain and
drainage,

distributed m,, and c

v

Terzaghi (1943)

Schiffman and Gibson
(196 4)

Ay il g e Tr Dy f A AR Ko Ar agow e 1.

Bt AL i P T
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Table 3.4 Methods of Predicting Settlement of Cohesionless
Soils
After Lambe (l973b)A
Predicted Method "Parameter Selection of
Parameter
Total Based on SPT
gettlement - Terzaghi & Blowcount N Must use Jjudge-
Peck from SPT ment because
- Peck & Bazaraa gravel affects
~ Meyerhof N values
-~ D'Appolonia
Based on CPT .
- Schmertmann Static cone Difficult or
- Others penetration impossible to
™ resistance apply in dense
soil because
exceed capacity
of penetrometer
Plate load Settlement Plate loading
test of standard test is not repre-
plate sentative for large
' mat because only
the surface soil
properties are
measured
Wave velocity Shear modulus Requires corre-
measurements or and Young's lation to adjust
other dynamic modulus for strain level
test
Differential | Empirical rule Type of soil. Difficult to apply
settlement ' and building experience in

judging relation-
ship between
differential
settlement and
foundation
stiffness

Subgrade
reaction

Elastic theory

Modulus of
subgrade
reaction

Elastic moduli

Many assumptions
and judgements
must be made
because total
settlement cannot
even be predicted
well

S g e s e
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Fig. 3.2 Stresses in an elastic half-space due to
a point load at ’qhe surface.
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vortical

uniformly loaded flexible

footing, after Newmark(1l942).
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Fig. 3.5
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Limit of danger for frames
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M walls is to be expected.
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Limit where tilting of high, rigid buildings
might become visible.

. Considerable cracking in panel walls
9 —and brick walls,

Safe limit for flexible brick walls,
T n/1 L+,

Limit where structural damage of general

N buildings is to be feared.

Fig. 3.11 Limiting angular distortions, after Bjerrum(1963).
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Fig. 3.17 Influence values
for immediate settlement,

after Butler(1974).
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CHAPTER 4

BEARING CAPACITY OF SHALLOW FOUNDATIONS

4.1 Introduction

The purpose of this chapter is to discuss metﬁods.of
estimating the bearing capacity associated with stability
problems. The next two chapters are concerned with the
non—-linear finite element solutions which give answexrs
mainly to the contained plastic flow problems.

In Chapter 3, the ultimate load was defined as the
load at the first complete failure of the foundation.

This bearing capacity failure occurs usually as a éheaf'
failure of the soil supporting the footing. In some cases
there is not a complete rupture, and it is difficult to
recognize the exact failure load. ’

Before any discussion of the computation of ultimate‘
load, two important subjects, namely, modes of shear failure
and ultimate load definition will be considered.

4.2 Modes of Failure

It is known that rupture underneath a footing méy be
produred by a general shear failure-(Caquot, 1934 Bﬁisman,
1935; and Terzaghi,1943), by local shear failure (Terzaghi,
1943; and De Reer «nd Vesic, 1958), of by punching shear
failure (De Beer and Vesic,'1958; and Vesic, 1963a).

Figure 4.1, after Vesic (1963a), represents these
three modes of failure. For general shear failure there

is a well-defincd failure pattern consisting of a ccentinucus
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slip surface from one edge of the footing to the ground
surface. In this failure mode a tendency for bulging of
adjacent soil exists on both sides of the footing, but the
final soil collapse occurs only on one side,

Local shear failure has a failure pattern which is
clearly defined only immediately below the foundation.

The slip surfaces end somewhere in the soil mass, and they
appear at the ground surface only after a large post-failure
vertical displacement of the footiﬁg. There is a small,
but visible, tendency of soil bulging on the sides of the
footing.

In punching shear failure, there is no well-defined
failure pattern,iand as the load increases, the vertical
movement of the footing (which is made possible by vertical
shear around the footlng perimeter) is accompanied by com-
pression of the soil immediately underneath. The 5011
outside the loaded area has practically no movement.

The appearance Of oﬁe of‘these failure modes depends
on a number of factors; such as: relative compressibility,
overburden pressure, trénsient or dynamic loading, layered
soil and rate of the loading. Of these factors the most
important is probably the relative compressibility of the
soil in particular geometrical and loading conditions.

For a practically ‘ncompressible soil thch has a finite
shear strength, £allure will be a general shear. In con-—
trast, if the soil is very compreSSLble for 1its strength,

it will fail in punching shear.
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A footihg on saturated, normally consolidated clay
will fail in general shear if it is loaded so that no
volume change can take place, while it may fail in punching
shear if loaded slowly enough for volume change to téke
place in the soil under the load (Vesic, 1973).

At present, there is ﬁo general numerical criterion
-which can be used for prediction of the mode of shear
failure of soils loaded by footings. Vesic (1963 & 1965)
has given the rigidity index Ir’ for evaluation of relative
compressibility of the soil mass under the load, defined

as:

. G
Iy = % gtan¢ (4.1)

where G is' the shear modulus and ¢ and ¢ are strength
parameters of the soil. To take into account the aberage
volumetric strain A in the plastic zone, Vesic (1965)
suggested that the wvalue given by Eq. 4.1 should be

reduced to:

I = g .I_ ' (4.2)

rr v r
and
_ 1
v T T+ I-a (4.3)

The rigidity index is a function of the stress level and
the character of loading, and a high value of it (> 250)
represenfs a relatively incompressible soil mass, whereas
a low value (< 10) implies a relatively compressible soil

mass (Vesic, 1965).
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4,3 ~Ultimate Bearing Capacity Criterion’

From the previous comments it is apparént that in the
case of‘the general shear failure the ultimate load corres-
ponding to the failure is well defined and is the peak load
in a load-settlement plot. In the two other failufe modes,
local and punching shear failure, the ultimate load is not
clearly defined (Fig. 4.1).

The ultimate load criterion can be based on a settle-
ment value or a load-settlement curve. In the first case
an uitimate settlement will be defined as the settlement of
the footing needed to mobilize the ultimate load. Cbser-
vations in saturated clays (Skempton, 1951) indicate that
these settlements may be about 3% to 7% of the footing
width for Surface footings.

In the second case, the ultimate load is definéd as
the point at which the slope df the load-settlement curve
first reaches zero or a steady minimum value. This
criterion has an important disadvantage; that when the
failure mode is,hot a general shear failure, there will be
a continuous increase of the load against settlement;

Brinch Hansen (1963) has defined the ultimate load
as the load for which the ultimate settlement is twiée the
settlement at a 10% lower load.

Now, if the ioad per unit width and settlement are
represented by g and § respectively, then the Brinch Hansen

(1963) criterion will be:
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C

a8 | (4.4)

ala
|
Uif
Hh

In general Eg. 4.4 may be written as:
d Ing = C.d 1In$ (4.5)

where C is a characteristicvvalue depending on the stiff-
ness (clay), or relative density (sand).

The criterion used in this research to predict the
ultimate load (purely cohesive so0il) is a dimensionless

form of Eg. 4.5:

g - . S
d 1In qf“ Cld in B

(4.6)
where g is the.applied pressure, dg is the failure pressure
calculated from the bearin§ capacity theory, B is the
'footinq width, § is the settlement, and C1 is a constant.

The plot of q/qf versus §/B on a log/log scale con-
sists of an upper curved part and a lower part which is a
straight line (De Beer, 1970). The intersection of the
curved part and the straight line that represents the
smallesﬁ continuous wvalue of Cl, will be considered as the
ulgimate load (Fig. 6.61 of Chapter 6).

For some clays it is impossible to distinguish a
well-defined intersection point, then in such cases it is
better to determine an upper and a lower 1limit for the

ultimate load.

4,4 Calculations of the Bearing Capacity

4.4.1 General
The calculations of bearing capacity are generally

'
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based on plasticity theory, usually combined with some
simplifying assumptions. Speaking for simplicity about
plane problems oﬁly, one can determine the bearing capacity
when the shape and position of the critical rupture figure.
and the stress distribution along the different rupﬁure
lines are known.

However, the result will only be correct when the
‘critical rupture figure is statically and kinematicallf
admissible. Statically admissible means that all equili-
brium conditions should be fulfilled throughout the soil
mass, and that in all rupture zones and rupture lines the
shearing stresses should be equal to those defined by £he
failure condition, and finally, the shear stresses outside
the rupture zones and rupture lines must be smaller than
those in the rupture zones and rupture lines. 'Kineﬁatically
admissible means that the defdrmation mode (or velocity
field) must satisfy the velocity boundary conditions and
strain and velocity compatibility conditions.

Mathematiéally correct solutions have been obtained
in only a few very simple cases (usually for ¢ = 0 or
y = 0), therefore most existing methods are based on diffe-~
rent simplifying assumptions.

The most difficult part is the determination of the
shape of the actua. rupture figure, consequently,its general
shape is usually assumedfto.be a sﬁraight line, a cirxcle,

a logarithmic spiral or a combination of these.
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4.4.2 Methods of Analyses

The analyses of foundations can be made by employing

one of the following four methods:

(1) Slip Line Theory;
(2) Limit Equilibrium;
(3) Limit Analysis; and

(4) Finite Element.

Thé first three methods are generally used in associa-
tion with the stability problems where only the bearing
capacity is sought; If a settlement of foundation and a
stress distribution within the soil mass are of prime
interest, then the finite element method must be uéed.

Studies of the bearing capacity of foundations under
conditions of plane strain have been made by Terzaghi
(1943); Taylor (1948); and Meyerhof (1951) using limit
equilibrium methbds, by Brinch Hansen (1961); and Sokolcvskii
(1965) using slip line methods, by Shield (1954); and Chen
and Davidson (1973) using limit analysis methods, and many
others. Only a brief description of each procedure is
given in this thesis. More details on the first three
methods cah bé found in Brinch Hansen (1953); Hansep (1965),

Sokolovskii (1965); and Chen (1975), and on finite element

methods in Chapter 2.

4.4.2,1 Slip Line Method

This method involves a construction of a family of

shear or slip lines in the vicinity of the footing loads.
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These slip lines which represent the directions of the
maximum shear stresses form a netwofk known as a slip-line
field. The plastic slip—line field is bounded by regions
which are rigid.

For soluﬁion of a problem, assumptions_must be made

for:—

(1) Failure criterion:
(2) Equilibrium; and

(3) Boundary conditions.

For the special case of a plane strain problem, there are
two differential equations of equilibrium and éne yield
condition availablé for solving the three unknown stresses.

In assuming the yield criterion, recently, Bishop
(l966b)cor£ela£ed all possible failure criteria with experi-
mental data and concluded that the Mohr-Coulomb yiela

criterion best predicts soil failure.

4.4,2.2 Limit Equilibrium Method

This method, probably because of its simplicity and
reasonably good accuracy, is the most conventional method.
The method can be best described as an approximate approach
to the construction of a slip-iine field. For the-
solution of a problem, assumptions must be made for the
shape of the failure surface and the normal stress distri-
bution along such'a surfaces, which satisfies the yield
criterion and the equations of equilibrium. By considering

different failure surfaces it 1s possible to find the most
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critical failure surface which corresponds to the lowest

failure load.

4.4.2.3 Limit Analysis Method

This method, principally, is restricted to undrained
materials where no volume change can take place (¢ = 0).

Four basic conditions are needed in the solution,
namely, equilibrium, yield criterion, stress~strain
relations, and the compatibility which relates strain and
displacement. In contrast to slip line and limit equili-
brium methods, the limit analysis method considers the
stress—-strain relationship of the soil in an idealized
manner (i.e. eiastic—perfectly plastic). This idealization,
termed normality or the flow rule, establishes the limit
theorems on which limit analysis is based. The method
offers an upper and a lower bound to the true solution by
employing the plastic limit theorems of Drucker, Prager
and Greenberg (1952). |

The conditions required to establish an upper and a

lower bound solution are as follows:

(1) Lower Bound Theorem
The load, determined from a stress fieldﬁﬁhat
satisfies the stress boundary conditions, the
equilibrium equations, and nowhere violates the
yield criterion (termed a statically admissible
stress field), is equal to or less than the

true collapse load.
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It is clear that the lower bound theorem considers only
equilibrium and yield. It gives no consideration to soil

kinematics.

(2) Upper Bound Theorem
The load, determined by equating the external
rate of work to the internal rate of dissipation
in an assumed deformation field or velocity field
that satisfies the velocity boundary conditions
and strain and velocity compatibility conditions
(termed a kinematically admissible deformation
field or velocity field), is equal to or greater
than thé true collapse load. V
The upper bound theorem considers only velocity or failure
modes and energy dissipation. The stress distribqtion
need not be in equilibrium, and is only defined in the
deforming regioﬁs of the mode.

Classical plasticity theory assumes an associated
flow rule (normality) and this requires that ¢ = ¢ (¢ is
the equivalence of thé internal friction angle ¢ for the
velocity field that defines the relation between strain
rates during plastic failure, or the dilatancy behaviour),
stress and velocity characteristics then coinciding; As
mentioned by Davis (1967), only in thie case do the limit
theorems hold and a solution to any problem which is both
statically and kinematically admissibleiis the unique
solution. Unfortunately it seems certain that all real

granular materials, even at their densest and at peak
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strength, have a non-associated flow rule with values of Y
which are very much less than ¢ (Davis and Booker, 1971).
Thus the theory which allows y to take a value less than ¢.
as dictated by experimental evidence, suffers from the
drawback that an exact solution to a problem 1is, fram a
mathematical point of view, not necessarily unique (because
of lack of proof of the limit theorems in non-associated
flow rule where the normality does not hold, Dias, 1967).

However, by suitable choice of stress and velocity

fields, and the strong evidence (Booker, 1970) that the

range of collapse loads in the set of possible exact non-
unique solutions is likely to be insignificant in probiems
of practical interest, the two theorems give a lower value
and an upper value for the collapse load which are close
to the true collapse Load.

A comprehensive treatmeﬁt of the subject is given

by Chen (1975).

4.4.2.4 Finite Element Method

Definition and concept of the finite element method
have been considered in Chaptér 2, and its application has
been Adiscussed all through this thesis.

The finite element method is the only correct and
complete solution ior stability analyﬁis that makes possible
the calculation of settlement and stress distribution as

well as of the bearing capacity.
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4.4.3 Comments on the Methods of Analyses

The methods described earlier are related to each
other in a certain way. Most of the slip line solutions
give kinematically admissible velocity fields, thus they
can be considered as uppef bound solutions provided that
thé velocity boundary conditions are satisfied. If the
stress field within the plastic zone can be extended into
the rigid region so that the yield criterion and equilibrium
are sétisfied, then slip line solutions are also lower
bound solutions.

The limit equilibrium method considers the basic
philosophy of the upper bound rule, where a failure surface
is assumed and the least load is sought. However, it.
gives no consideration to soil kinematics and equilibrium
conditions are satisfied only in a limited sense, thus this
solution is not necessarily an‘upper or a lower bound.

But any limit analysis upper bound solution is a limit
equilibrium solution.

One other Weakneéé of the limit equilibrium method is
the neglect of the stress-strain relationship of the soil.
According to the mechanics of solids, a valid solution
requires satisfying the boundary conditions, equations of
equilibrium, equations of compatibility, and the stress-
strain relationship (Chen and Scawthorn, 1970). As the
stress-strain relationship connects equilibrium to com-
patibility and distinguishes elasticity from plasticity or

visco-elasticity theories, so a solution which neglects
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considering this relationship may not be a complete one.

On the other hand, limit analysis, within the frame-
work of the idealizations, 1s the more efficient method and
can be extended to solve more difficult footing problems.
Its capability of providing a means for bounding the true
solution is noteworthy. |

The finite element methodlusually gives a lowet
bound value for the collapse load, as it satisfies only

a statically admissible stress field.

4.5 Bearing Capacity of a Strip Footing on a General

c—¢—y Soil

It is no& generally understood that the bearing
capacity of footings depends not only on the mechanical
properties of the soil (cohesion ¢ and internal friction
angle ¢), but also on the physical characteristics of the
footing (width B and depth D).

The basic available solution for the bhearing capacity
problem that has been solved by the methods of the theory
of plasticity {Prandtl, 1920 and Reissner, 1924) indicates
that the failure pattern for a frictionless footing should
consist of three zones (Fig. 4.2). Wedge I is an active
Rankine zone which pushes the radial Prandtl zone II side-
ways and the passivevRankine zone IIT in an upward
direction. The boundary ACDE is composed of two straight
lines AC and DE, and a curved section CD. The shape of

this curve depends on the angle ¢ and on the ratio yB/qg.
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For a frictionless soil (¢ = 0) the curve is a circle.
For frictional weightlessvsoil (yB/g = 0) the curve becomes
a logarithmic spiral which for ¢ = 0 degenerates into a
circle. Finally, in the general case (y # 0) the curve
lies between a spiral and a circle, as long as ¢.# 0.
For the case of a wide rough footing the lines AC
and BC are not emanating from the edges. But, as mentioned
by Davis and Booker (1971), a wedge of rigid materials
moving with the footing may occur symmetrically about the
centre for a limiting width. At the remaining segments
out to the edges there is slip between soil and footing.
For kinematical reasons the lines AC and BC must either
pass through the edges, or must have horizontal tangents at
the foundation level (Hansen, 19655. Thus AC and BC
cannot be assumed to be straight lines. ’
Because of mathematical difficulties in the plasticity
methods, the bearing capacity of the footing has been calcu-
lated by a superpocsition method suggested by Terzaghi (1943),

which is represéhted by the following expression:

g = ¢ N, +q Nq + N (4.7)

where Nc’ Nq and NY are dimensionless bearing capacity

factors, defined by:

N, = AN o2 (n/4 + 4/2) (4.8)
1

Nc = (Nq-—l)cot¢ (4.9)
N = 2(N+1)tang (4.10)
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The numerical values of these factors are given in Table
4.1 and shown graphically in Fig. 4.3.

The first stage in Eq. 4.7 is essentially based on
an extension of the analytical work of Prandtl (1920) and
Reissner (1924), this assumes a welghtlegs material énd
gives the first part of the bearing capacity ch +<qu
in closed form expressions. The second stage takes the
weight of material (¢ = 0, g = 0) into account and gives

2

It is generally assumed that Terzaghi's bearing

the second part cof the bearing capacity By NY

capacity formula is conservative. Lundgren and Mortensen
(1953), and Hansen and Christensen (1969) mentioned tha£
the errors in this superposition are on the safe side, not
exceeding 20% for ¢ = 30° to 40°, while equal to zero for
6 = 0°. ’
However, as pointed outAby Ko and Scott (1973), the

' angle of internal friction determined from a triaxial test
is several degrees less than that determined under plane
strain conditions for ;ow confining pressure (Cornforth,
1964) . Therefore, if the ¢ value obtained from a triaxial
test is used in calculating the N factors, then a lower
bearing capacity will be predicted. But, if a plane'strain

angle of internal friction is used, then Terzaghi's equation

will be non-conservative.

4.6 General Bearing Capacity Formula

By considering the shape and depth of the footing,
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and inclination of the foundation load, the Terzaghi's

formula (Eq. 4.7) can be written as follows (Brinch Hansen,

1961):
9d¢ = € NC S & dc i + q Nq sq dq lq
By .
+ N s d i 4.11
2y Ty oy Ty ( )
where s's denote the foundation shape factors;

d's denote the foundation depth factors; and
i's denote the load inclination factors.
The following empirical expressions, suggested by

Brinch Hansen (1961), ma& be used to evaluate the factors.:

(1) Shape Factors

S, = 1+ (0.2 + tanf¢)B/L (4.12)
sq = s, for '¢ # 0 : (4.13)
sy = 1 for ¢ = 0 (4.14)
sY = %(3-—sc) ' (4.15)

where B is the footing width and L is the footing length

(z B).

(2) Depth Factors (after Brinch Hansen, 1970)

¥or D/B ¢ 1:

dq = 1 + 2tan¢(l - sin¢)?D/B (4.16)
- d
= -1-% :
d, d, N, -1 (¢ # 0) (4.17)

[oN
G
]
-
-4
o
i~
)
~
o2}
-
]
o

(4.18)
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For D/B > 1:

dq = 1 + 2tan¢ (1l -sin¢)2tan” ! (D/B) (4.19)

d

Il

c 1 4+ 0.4 tan~ ! (D/B) (¢ = 0) (4.20)

In both cases
a = 1 | S (4.1
v ( )
where D is the foundation depth below the ground surface.

(3) Inclination Factors

If the foundation area (of any shape) is eccentrically
loaded, the effective area (that its deduced imaginary
boundaries are radi&iy symmetric with the real outer boun-
daries and the resultant force acts on its centroid) will
be used.

For éhapes other than rectangle, the effective
foundation area may be determined as that cf the equivalent
rectangle, constructed so that its geometric centre coin-
cides with the load centre and that it follows as closely
as possible the adjacent contour of the actual base area.

A few exémples (éfter Brinbh Hansen, 1961) are shown in
Fig. 4.4.
Thus the inclination factors for a general case of

eccentric and inclined loading will be as follows:

. _ . H |
lq B [L v + A'.c.cot¢]2 (4.22)
: s 1 - ig : _

e T otq T - (p #0)  (4.23)
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26 4+ sin?2e

iC = 0.5 + R (?'= 0) (4.24)
For iY Sokolovskii (1965) gives:

i o= 1 2 (4.25)

Y q : .

where V and H are the vertical and horizontal components
of the load respectively, A' is the effective foundation

area, and 6 is defined in Fig. 4.9.

4.7 Scale and Soil Compressibility Effects

Scale effects have been known for a long time, but
the understanding of the reasons for their existence has
come only in recent years. The studies of shallow foun;
dations by De Beer (1965a and 1965b) and Kérisel (1967)
indicate that the average shear strength mobilized along a
slip line under the foundation decreases with foundation
size. Vesic (1973) gives three reasons for this reduction
in strength, namely, the curvature of Mohr envelope, pro-
gressive rupture along the slip line, and presence of zones
or seams of weakness in all soil deposits. Thus, there
will be a decrease in bearing capacity factors with size,
and the decrease in NY values with increased size of sur-
face footing on sand is remarkable.

As mentioned in the preceding sections, the bearing
capacity analysis assumes an incompressible soil thét has
a general shear failure mode. There existe a lack of
rational methods for analysing bearing capacity failures in

the two other modes characteristics for compressible soil.
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In order to consider the influence of soil com-
pressibility and scale effects, Vesic (1973) introduced
three compressibility factors z_ to be used in Eq. 4.11

as other factors. These factors are:

(3.07sin¢) (log, 42I.)

B
= — A - . —
gcq exp{(-4.4 0.6 L)tan¢ + 1 T sing 1}
(4.26)
: = ¢ - Lzfca (4.27)
cc cq Nq -1 '
For ¢ = 0
Toe = 0.32 + 0.12B/L+ 0.6 loglOIr (4.28)~
And for all practical purposes
z.. = & ' (4.29)

cy cq

where I.1is the rigidity indexb(Eq. 4.1).

The use of expressions 4.26 through 4.29 makes sense,
obviously, only as long as the compressibility factors
remain smaller than unity.

From Eq. 4.26 it is possible to get the values of
critical rigidity index for any angle ¢ and any particular
found=tion shape. For a particular footing, if thelrigidity
index (defined in Eq. 4.1) is less than the critical value,
it becomes necessary to reduce the bearing capacity because
of compressibility effects.  This critical rigidity index,

given by Vesic (1973), is:

(Ir)crit = 3 exp[(3.30 . 0.45 L) cot (45 2)] (4.30)
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Numerical values of Eq. 4.30 have been given in

Table 4.2 for B/L = 0 (strip) and°*B/L = 1 (square).

4.8 Effect of a Rigid Base underlying the Layer

The problem of bearing capacity of a layer of soil of
limited depth H resting over a lower layer of infinite
rigidity and strength has béen considered for the plane
strain case by Mandel and Salencon (1969). Their solution,
obtained by the method of charaqteristics under the assump-
tion of rigid-plastic behaviour, indicates that the presence
of a rigid layer below the bearing stratum results in an
increase of bearing capacity. Factors of increase Rb,'
analogous to other factors in Egq. 4.11, are presented in

Table 4.3.

4.9 Effects of Footing Roughness and Flexibility

The bearing capacity of a smooth footing on a purely.
cohesive soil was first examined by Prandtl (1920). Hill
(1949 & 1950) pgoposed an alternative failure mechanism,
first reported by Hencky (1923), for smooth footing on
purely cohesive soil, shown in Fig. 4.5, It has been
shown that these solutions for purely cohesive soilé—are
also valid if the footings arevperfectly rough (Davis énd
Booker, 1971).

Ko and Davidson (1973), from their experiments,

reported that the sand in footing tests with glass bottoms

(smooth) failed according to the Hill mechanism, but with



120

sandpaper bottoms (rough) the footings failed according to
the Prandtl mechanism.

On the basis of the Hill pattern, Meyerhof (1955)
suggested that the bearing capacity of a smooth footing on
the surface of a cohesionless soil should be only oné—half
of the bearing capacity of a rough footing.

Since, in almost every practical case the footing is
rough, the Hill pattern may never be realized beneath an
actual footing. This leads Vesic (1973) to conclude that
the stress and deformation pattern under an actual footing.
is such that it always leads to the formation of a singlg
wedge (Prandtl) mechanism. Thus, the footing roughneés in
a practical situation has little effect on bearing capacity
provided that the applied external loads remain vertical.

The footing flexibility has no effect on ultimate
bearing capacity, but it affedts the initiation of the
yield =zones. For a rigid footing, yield zones start from
the edgés, while for a flexible footing they probably start
from the centre’and atla point approximately 0.5B beneath

the surface (Hoeg et al, 1968).

4,10 The Bearing Capacity of a Strip Footing on Purélz

Cohesive Soils (¢ = 0)

4.10.1 Prandtl Equacion

The bearing capacify of a strip footing on purely

cohesive soil has been given by Prandtl (1920) as:

q; = {2+ mCy o (4.31)
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where Cu is the undrained shear strength of the soil.

In normally consolidated clays, usually, undrained
shear strength increases with depth, and for a particular
deposit, the ratio of undrained shear strength to the
effective overburden stress‘(Cu/p) is a constant. Skempton
(1948 & 1957) has given the following relationship which

relates this ratio to the plasticity index I, of the soil:-

C
=2 = 0.11 + 0.0037 T (4.32)

For some practical cases it is sufficiently accurate
to use some average of Cu as a constant for a ¢ = 0 bearing
capcity analysis, nevertheless, the variation of Cu with

depth has a significant effect on bearing capacity.

4.10.2 Effect of Increasing Strength with Depth on the

Bearing Capacity

Several investigations have been carried out for the
beariﬁg capacity of a strip footing on non-homogeneous soil.
Raymond (1967) and James et al (1969) treated this problem
by using the limit equilibrium method (slip circle) Which,
when ¢ = 0, only gives an upper limit to the correct
solution.

The exact solution for a strip fcoting, by using the
théory of plasticity, given by Davis and Bocker (1973);

Salencon (1974) and Salencon et al (1976).
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They have assumed a linear variation of C, with

depth according to the following equation:

Cu = Cuo +pz - .(4.33)

where Cuo,is the st;ength at ground surface, and o) ié the
rate of increase in strength with depth.

Davis and Booker (1973) have considered the bearing
capacity of both smooth and rough footings, and concluded
that the roughness has a small but significant effect in
increasing the bearing capacity in contrast to the homo-
geneous case for which roughness has no effect. Furthermore,
they found that the rate of increase in strength with dépth
plays the same role as density plays in the bearing capacity
of homogenéous cohesive—frictional soils.

For bearing capacity Davis and Booker (1973) suggested

the following expression:
ae = FL(2+ ™) Cyy + PB/4] (4.34)

where F is a diﬁensioniess factor depending only on the
ratio pB/CuO. Figure 4.6 shows the values of F (FR is for
a rough footing and F is for a smooth footing). |

Figure 4.7 (after Davis and Booker, 1973) shows the
stress fields for narrow and wide rough.footings. As
mentioned before, ior a wide footing there is slip between
footing and soil along some parts of the width where the

shear stresses are equal to the strength.
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4.10.3 Effects of Load Eccentricity and Inclination on the

Bearing Capacity

In applying bearing capacity thebry to cases of
eccentric loading it is usual to use a reduced foundation
width (Brinch Hansen, 1961). For a footing on clay of

uniform strength:-

de (2 + w)-cu.}?e ‘ (4.35)

C
and

Fec = 1 - 2e/B . (4.36)

where e is the distance at which the load acts from the
centre line. When the strength is non-homogeneous accord-

ing to Eq. 4.33, the bearing capacity will be:
ag = F.F_, (2 + m)Cy, + p-B-F /41 (4.37)

where F (defined in Eg. 4.34) depends on p(B-—Ze)/CuO.
For a central inclined load on clay of uniform strength

the failure pressure is:

g = (2+m Cy ig (4.38)

where ic is defined in Eq. 4.24,

cos26 = Tf/C = dg tana/Cu, and Te is the average

u

shear stress applied to the foundation surface. Horizontal

sliding occurs if the angle of load inclination, o = ®rit’
2

and tanacrit = m s For o = acrit’ qf = Cu' cota, oOr

iC = cotoa/(2+m).

If the clay has a linear increase in strength with
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depth, approximations must be made for anAinclined load,

and the failure pressure may be written:

cl

where Cul is an average strength obtained for vertical

loading from Egs. 4.31 and 4.34.

B

oy (4.40)

Cy; = F[Cuo +

Assuming cos26 = Th/C = dg tanu/Cuo and that an

uo
average strength operates which varies linearly with

(Vaughan et al, 1976):

26+sin26

ap = (2#mCy [l + (R-1)28) [o.5 4 2ZHSINZ0) (g 4y,
where R = éul/cuo‘ - )
From Egs. 4.29 and 4.41
ig, = iz + (1 - 5% (4.42)
% it is obtained as for ciay of uniform strength, and
for o 3 Oarit
iC1 = cota/t(2+w)R] | (4.43)

Figure 4.8 shows the plot of inclination factor against
load inclination. Finite element resvults will be discussed
in Chapter 6. . |

If the loading is both eccentric and inclined and
adhesive contact is still maintained over the full width
of the footing, then the horizontal component of the load

is distributed over the full width of the footing.  Thus,
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if an equivalent footing of reduced width is used to
produce the effect of eccentricity in bearing capacity
theory, the horizontal load carried by it must also be
reduced. A modified angle of load inclination o, must
be used, where tanot1 = tanoa Fe .

C

4.10.4 Rupture Figure

Figure 4.9 shows the rupture figure for inclined and
eccentric load on a strip footing, which consists 6f three
zones. Zone A'BC .is a rigid wedge which moves together
with the footing, and pushes the radial shear zone (BCD)
sideways and the passive'Ranki:: zone (BDE) in an upward
direction.

For'the eccentriceuuiinélined loading the line
rupture L (Fig. 4.9) is a circle arc, and its centré is the
ccmmon point of rotation for the footing and for the moving
rigid wedge (Brinch Hansen, 19533 and Hansen, 1965).

As mentioned by Hansen (1965), for large eccentricities
of the load (e/é 2 0.055) only a part of the footing, of
the width (B-2e), is in contact with the clay, and for
kinematical reasons the underside of the footing must be
tangeut to the line rupture L at the cormer of the.’
effective width. Therefore, the centre of the line rup-
ture L will always be on the vertical line passing through
this corner (Fig. 4.9). However, for small eccentricities
(e/B < 0.055) the line rupture L passes through the edge

of the footing.
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For the central inclined loading the rupture line
I. is a straight line, and the shape of the wedge ABC is
triangular (Sokolovskii, 1960; and Hansen, 1965). Murff
and Miller (1977}, in analysing the stability of the footing
on the non-homogeneous clay.by using the upper bound plasti-
city concept, mentioned thaﬁ for inclined centric loads on
strip footings the critical collapse loads occur as the
radius of the line rupture L (Fig. 4.9) becomes infinite.

A straight line rupture L is assumed in caléﬁlating
values of load inclination factors given in Fig. 4.8. The
failure pressure célculated from this figure, for a uniform
clay, is always lower than that given by Hansen (1965) which
assumes a circﬁlar line rupture L. For a load inclination
of 8 degrees, differences are approximately: 2% with no
eccentricity, 4% with e/B = 0.025, and 7% with e/B = 0.2.
However, the maximum difference is not greater than about 10%.

The rupture surface shown on Fig.4.9 is drawn by
using the following three steps.

1. the triangle A'C'B is drawn using the value of 8
calculated from Fig. 4.8;

2. the zone AA'CB is drawn by assuming that the line
rupture L ié a circular arc. The centre of this
circular arc is defined by the intersection of the
vertical line from A' (edge of the reduced width)
with the verpendicular bisector of A'C'. The point

. C is the intersection point of the circular arc A'C'
with line OB;

3. the radial shear zone BCD and the péssive Rankine

zone BDE are drawn.
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Table 4.1 Bearing Capacity Factors

¢ N, N, N,

0° 5.14 1.00 0.00
1 5.38 1.09 0.07
2 5.63 1.20 0.15
3 5.90 1.31 0.24
4 6.19 1.43 0.34
5 6.49 1.57 0.45
6 6.81 1.72 0.57
7 7.16 1.88 0.71
8 7.53 2.06 0.86
9 7.92 2.25 1.03
10 8.35 2.47 1.22
11 8.80 2.71 1.44
12 9.28 2.97 1.69
13 9.81 3.26 1.97
14 10.37 3.59 2.29
15 10.98 3.94 2.65
16 11.63 4.34 3.06
17 12.34 4.77 3.53
18 13.10 5.26 4.07
19 13.93 5.80 4.68
20 14.83 6.40 5.39
21 15.82 7.07 6.20
22 16.88 7.82 7.13
23 18.05 8.66 8.20
24 19.32 9.60 9.44
25 20.72 10.66 10.88
26 22.25 11.85 12.54
27 23.94 13.20 14.47
28 25.80 14.72 16.72
29 27.86 16.44 19.34
30 30.14 18.40 22.40
31 32.67 20.63 25.99
32 35.49 23.18 30.22
33 38.64 26.09 35.19
34 42.16 29.44 41.06
35 46,12 33.30 48.03
36 50.59 37.75 56.31
37 55.63 42.92 66.19
38 . 61.35 48.93 78.03
39 67.87 55.96 92.25
40 75.31 64.20 109.41
41 83.86 73.90 130.22
42 93.71 85.38 155.55
43 105.11 99.02 186.54
44 118.37 115.31 224.64
45 133.88 134.88 271.76
46 152.10 158.51 330.35
47 173.64 187.21 402.67
48 199.26 222.31 496.01
49 229.93 265.51 13.16
50 - 266.89 319.07 762.89




Table 4.2 Values cf Critical Rigidity Index
After Vesic (1973)
Angle of Critical Rigidity Index for:
Shearing
Resistance Strip foundation Square. foundation
) B/L = 0 B/L =1
0° 13 8
5 18 11
10 25 15
15 37 20
20 55 30
25 89 44
30 152 70
35 283 120
40 592 225
45 1442 486
50 4330 1258




Table 4.3

Coefficients R

Factors due to Presence of an Infinitely
Stiff Layer at Depth H below the Strip

Foundation of Width B '
After Mandel and Salencon (1969)

(upper number)
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Coefficients of Increase of Bearing Capacity

bc
qu (lower number)
) B/H - 1 2 3 4 5 6 8 10
0° R, =1 for .02)1.11] 1.21| 1.30f 1.40] 1.59] 1.78
B/H<1.41 .00{1.00}| 1.00} 1.00} 1.00l 1.00] 1.00
10° R, =1 for .1101.35] 1.62| 1.95] 2.33] 3.34] 4.77
B/H<1.12 .07|1.21) 1.37| 1.56{ 1.79] 2.39] 3.25
20° R, =1 for 1.0101.39]2.12]| 3.29| 5.17| 8.29 22.00/ 61.50
B/H<0.86 {1.01|1.33}1.95| 2.93| 4.52| 7.14| 18.70! 51.90
30° R, =1 for 1.1312.5016.36/17.40{50.20}150.00/1444.0{14800.0
B/H<0.63 |1.12{2.42|6.07|16.50{47.501142.00{1370.0(14000.0
Coefficients Rb
v
¢ B/H ~+ 2 3 4 | s 6 10
— -
0 RbY—-l for all B/H
10° Ry, =1 for B/H<4.07 1.01{1.04| 1.12[1.36
20° Ry, =1 for B/H<2.14 1.07{1.28[1.63)2.20| 4.41|9.82
30° RbY==l for B/H<1.30[1.20/2.07(4.23/9.90]|24.8(178.0[1450
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Fig, 4,1 Hodes of Bearing Capacity Fallure,
after Vesic(1963a) .
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Fig. 4.8 Tailure of footing with inclined and eccentric load,

“after Vaughan el. al,(1976).
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Fig. 4.9 .Rupture figure, inclined and eccentric load.
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CHAPTER 5

COMPUTER RUNS FOR STUDYING THE FOOTING BEHAVIOUR

5.1 General

This chapter considers the computer runs for analysing
the footing behaviour. The finite element results for the
footing will be discussed in the next chapter.

The non-linear incremental elastic technique has been
used extensively in soll mechanics for the analysié of
deformation problems. It has the advantage of being a
well-tried techniqﬁe for which efficient programmes are
available. The programhe used in these studies and
simulation of the non—;inear soil properties were explained
in Chapter 2. The shear unloading and reloading modelling,

which was discussed in Appendix 2, will be catagoxised as

follows: -
Stage 1: shear unloading and reloading according to
Fig. 5.1.;,
Stage 2: ‘shear ﬁnloading and reloading according to

Fig. S.i.b,and
Stage 3: sheaf unloading and reloading according to
Fig. 5.1l.c.

The material non-linearity was dealt with using the
quasi Runge-Kutta fncremental method. 'To avoid over-
shooting the specified strength, small loading steps were
used in the analyses. The'question of how small the

increments should be was dealt with by considering the
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étress—strain curve. For the initial section of the curve
rather large increments were chosen, the size of the incre-
ments being reduced, with increasing shear stress. Near
the failure state very_small increments were used. After
adding each increment the overshooting was checked éo be
sure that the size of the increment was small enough.
Typically, overshooting did not exceed 2%, and simulation
of the loading of a strip footing to failure involved about
15 loading steps, and 10 minutes computation time on a CDC
6600 machine, with 1000 degrees of freedom.

In all cases of these analyses, the footing was
assumed to be strip, rough and stiff with Young's moduius.
equal to 4.2 x 107 KPa and Poisson's ratio equal to 0.2.
Typically, the differential settlement between the centre
and the edge for a footing Qith width équal to 120 m‘was
about 0.3 cm for a centre setﬁlement of 50 cm, which indi-
cates that the footing was essentially rigid.

The ground water table was assumed at the ground
surface for all the cases.

From the point of view of the use of drainéd or
undrained parameters, the cases are divided inté three
major groups, namely, a sand group, a clay group, ahd a

linear elastic group.

5.2 Cases for the Sand Group

In order to study the drained behaviour of the footing
on the sand, two cases were analysed in this group. The

soil propertics used in these cases have been taken from
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the paper by Frydman and Zeitlen (1969). @ Figures 5.2 and
5.3 show the shear strength, initial modulus and §tress—
strain curves used in the analyses for both cases, and they
are compared with the data from Frydman and Zeitlen (1969).
The Poisson's ratio for both cases was assumed to be 0.33.

Table 5.1 gummarizes the geometries and properties
used in these two cases.

For both cases, the applied load has not been increased
up to failure load. For case one, only 2% and for case
two, only 10% of failure load has been reached.

In both caseé, the initial stresses had zero values
at the ground surface, énd they were increased linearly.

with depth according to the unit weight and Ko of the soil.

5.3 Cases for the Clay Group

In this group the analyses were carried out for
undrained conditions (¢' = 0, v = 0.499). Bishop (1966a)
showed that Poisson's ratio is less than 0.5 in the undrained
state. Hamza (19276) investigated the effect of the use
of a Poisson's ratio vefy close to 0.5, and concluded that
by using 0.499 the error will be small and negligible.

From the point of view of the monotonic or cyclic
loading, the cases in this group are divided into two sub-

groups.

5.3.1 Monotoanic Loading

In order to study the undrained behaviour of the

footing on the clay, the cases tabulated in Table 5.2 were



140 .

considered in this subgroup. In almost all the cases, the
applied load was increased up to failure load. The speci-
fied initial stresses had zero values at the ground surface,
and they were increased linearly with éepth according to the

unit weight and K, of the soil.

5.3.2 Cyclic Loading

In this subgroup the analyses of footings under dead
weight loading and cyclic wave loading were considered in
order to study the behaviour of the off-shore structures.
As mentioned by Vauéhan et al (1976), clays, in beds of
modest thickness, may remain substantially undrained during
both dead weigﬁt loading and the critical design wave
loading, and thus the undrained loadihg of clays is likely
to be the critical design condition for the off-shore
structures.

The dead weight and‘wave load have been considered
as a combination of vertical load V, horizontal load H,
moment M, and. the weight of the wave at the ground level,
PO. The distribution of P may be approximated by the
triangles shown in Fig. 5.19.

As the cyclic loading involves unloading and reloading
of the foundation soil, the stage 3 of the shear unloading
and reloading modelling (see section 5.1) was used. A
problem arises during the application of the load cycles.
The horizontal component of the wave load reverses approki—

mately symmetrically. If a wave cycle equivalent to the
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design wave is simulated in the analysis the difference in
first loading and unloading-reloading soil behaviour
results in the footing developing a permanent displacement
in the direction of the first half of the loading cycle.

A larger returning force is required to bring the féoting
back level. In contrast, real waves, building up gradually,
would maintain approximate symmetry of displacement during’
cyclic loading. Reproduction of the gradualbbuild up of
the load in the analysis is not practical, and thus it is
necessary to develqp a technique to build up the cyclic
loads to their maximum values in as few cycles as possible,
while maintaining approximate symmetry of displacement |
(Vaughan et al, 1976).

This problem can be approximately overcome bf reducing
the first half of the loading cycle. A reduction factor
was multiplied to the loads. | This lcoad reduction factor
was worked out from the theory of modulus of subrade
reaction given by El-Ghamrawy (1978).

The cases'considered in this subgroup are given in
Table 5.3. The following assumptions are made for all
the cases:

1. The mesh is given in Fig. 5.133%

2. The stress-strain relationship is according to

Fig. 5..7 (exceptthelineaf case);

3. Initial stresses are:-—

g = 0 = PO + v.2Z

X0 ZO
where y = 20 KN/m® and R, = 1.
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Finally for all the cases the loading sequences are

as follows (positive directions: (| gﬂb y i

1. Vertical load V;

2. (M, H, and PO) x Load reduction factor;
3. -M, —-H, and —PO;

4. M, H, and PO; V

5. -M, -H, and —PO;

6. M, H, and PO;

7. -M, =-H, and —PO; and

8. M, H, and P _.
. o .

Values of loads and moments are given in Table 5.3,

and the value of the pressure PO is given in Fig. 5.19.

5.4 Cases for the Linear Elastic Group -

In order to investigate the effect of the variation

of modulus with ¢, on stresses, the two cases given in

3

Table 5.4 were considered.

For these cases the following assumptions are made:-

1. The behaviour is linear;

2. Poisson's ratio is 1/3;

3. ‘The coefficient of the earth pressure at rest,
Ko’ is equallto v/ (l=v) = 0;5;

4. The mesh is given in Fig. 5.7;

5. Initia; stresses increase linearly with depth

from zero values at the ground surface; and

6. The applied load is vertical.



Table 5.1 Cases for the Sand Group
. Coefficient Stage of the
Case .No Mesh gﬁgii.gf Cohesion TUonEatl of Shear Unloading Applied
| (Fig. No.) Resist;nge Wei_ht Earth Pressure and Reloading Load
o Yg at Rest (see Section 5.1)
60 KN /m?2 KN/m3 K,

1 5.4 37° 0 16.3 0.41 1 Vertical
2 5.5 37° 0 16.3 0.41 1 Vertical

1A



Table 5.2

Cases for the Clay Group, Monotonic Loading

Case Mesh Stage of**| Total |Coefficient|Undrained*| Initial | Stress- Applzgg Applied |Applied o, . .+
No. | (Fig.No.) [ the shear Unit of Earth Strength [ Modulus | Strain Load Load_ Load Stiff-
unloading &|Weight |Pressure at Ca B, . Curve Incli- | Eccen- | o ¢
Jz'selagaiégg y Rest | (Fig.No.) nai;l:on trlglty the

tion 5.1) | KN/m 3 KO KN /m2 KN /m2 arctan% Footing

3 5.5 1 17.3 1 50 70000 5.14 v 0 0 Rigid
4 5.6 1 20 2 30+3.75z 300C 5.15 \Y 0 0 Rigid
5 5.7 1 20 2 30+3.75z 300C 5.15 v,M,H 21.8° 0.05B | Rigid
6 5.7 1 20 1 30+3.75z 300C, 5.15 v,M,H 21.8° 0.05B | Rigid
7 5.7 1 20 2 30+3.75z 300C, 5.15 | V,M,H 2.86°] 0.083F Rigid.
8 5.7 1 0 - 30+3.75z 300C 5.15 V,M,H 2.86°| 0.083H Rigid
9 5.6 2 20 2 30+3.75z | 300C, 5.15 v 0 0 Rigid
10 5.7 2 20 2 30+3. 75z 300C, 5.15 V,M,H 2.86°] 0.0838 Rigid
11 5.8 2 20 2 30+3.75z | 300c, | 5.15 v 0 0 i Rigid
12 5.9 2 20 2 30+3.75z 3oocﬁ 5.15 v 0 0 Rigid
13 5.10 2 20 2 30+3.75z 300C 5.15 V,M,H 2.86°| 0.0838 Rigid
14 5.11 2 20 2 30+3.75z 300C, 5.15 v,M,H 2.86°| 0.0838 Rigid
15 5.7 2 20 1.5 30+3.75z 300C, 5.16 V,M,H 2.86° 0.0838 Rigid

PrT



Table 5.2

Continued
Case Mesh |Stage of**| Total Coeff%cient Undrained*| Initial | Stress- Applggg Applied |Applied ﬁelatiﬁ%
No. |(Fig.No.)|the shear | Unit of Earth Strength |Modulus | Strain Load Loaq Load SLiff-
unloadyx;& Weight |Pressure at Cu Ei Qurve ' Inc}l— chgn— ness of
reloading v Rest' (Fig.No.) nat%?n tr;c1ty the
(iizniii3 KN/m 3 e KN/m2 KN /m?2 ar;;;n%- © Footirg
16 5.12 2 20 1.5 30+3.75z 3OOCu 5.16 'V,M,H 2.86° 0.083B] Rigid
17 5.7 2 20 1.5 30+3.75z 3OOCu 5.16 V,M,H 2.86° 0.082B| Rigid
18 5.7 2 20 1 52.5 3OOCu 5.15 \Y% 0 -0 Rigid
19 5.7 2 20 1 52.5 3OOCu 5.15 vV, M 0 0.042B| Rigid
20 5.7 2 20 1 52.5 3OOCu 5.15 vV,M 0 0.083B| Rigid
21 5.7 2 20 1 52.5 3COCu 5.15 V,M 0 0.125Bf Rigid
22 5.7 2 20 1 52.5 3OOCu 5.15 V.,M 0 0;167B Rigid
23 5.7 2 20 1 30+3.75z 300Cu 5.15 \Y% 0 0 Rigid
24 5.7 2 20 1 30+3.75z so0c | 5.15 | v,m 0 0.042B| Rigid
25 5.7 2 20 1 30+3.75z 3OOCu 5.15 V,M 0 0.083B| Rigid
26 5.7 2 20 1 30+3.75z 3OOCu 5.15 V,M 0 0.125B] Rigid
27 5.7 2 20 1 30+3.75z 300¢u 5.15 vV,M 0 0.167B| Rigid
28 5.7 2 20 1 52.5 300C 5.15 v, H 20° 0 Rigid

v




Table 5.2 Continued
Do - i oient ined* i i -~ 4+ i ieq | ++
C§;e (Fily;e.bNho. ) ﬁﬁigih‘éi? %%tiatl CooefffElacrlter{l - Ugiizgiﬁ n]f:rgéﬁi]s_ Ssttrfasisn APijaided Aprcjal; ¢ Aprcjal; ¢ Rgi i;;‘_’e
‘lunloading &| Weight|Pressure at Cu Ei ;urve Inc}._l— Ec'ce‘n— ness of
xgsézacslégcg v Rest (Fig.No.) na’;:.:on trlce:lty th.e

tion 5.1) | KN/m 3 K KN/m2 KN/m?2 arctan?—, Footing

29 5.7 2 20 1 52.5 300C, 5.15 V,H 40° 0 Rigid
30 5.7 2 20 1 52.5 300C, 5.15 V,H 60° 0 . Rigid
31 5.7 2 20 1 52.5 300C, 5.15 V,H 80° 0 Rigid
32 5.7 2 20 1 30+3.75z 300C, 5.15 V,H 20° 0 Rigid
33 5.7 2 20 1 30+3.75z 300C, 5.15 V,H 40° 0 Rigid
34 5.7 2 20 1 30+3. 75z 300C, 5.15 V,H 60° 0 Rigid
35 5.7 2 20 1 30+3.75z 300C, 5.15 V,H 80° 0 Rigid
36 5.7 2 20 1 52.5 300C, 5.15 vV, H 10° 0 Rigid
37 5.7 2 20 1 30+3.75z 300C, 5.15 V,H 10° 0 Rigid
3o+ 5.13 2 20 1.5 100+3z 300C 5.17 V,M,H 14,04°1 0.083B 2.1
40 5.13 2 20 1.5 10043z 300C, 5.17 V,M,H 14.04° 0.083B| 16.8
43t 5.13 2 20 1 10043z, 300C, 5.17 0 0 Rigid
44 5.13 2 20 1 100 300Cy, 5.17 0 0 Rigid

9% T




Table 5.2 Continued
Case Mesh Stage of** Topal Coefficient|{Undrained*|Initial Stress- Appliga Applied |Applied Relativs
No. [(Fig.No.)| the shear Unit of Earth Strength |[Modulus | Strain Load Load Load SEiff-
unloading &|Weight|Pressure at Cu Ei Curve Incli~ | Eccen- ness of
reloading v Rest , (Fig.No.)| nation |tricity| & the
(see sec- . ' : “= b € Footin
tion 5.1) | KN/m3 %o KN/m2 | KN/m? arctan i coting
45 5.13 2 20 1 100+3z lOOOCu 5.18 Y 0 0 Rigid
46 5.13 2 20 1 100+3z 300Cu 5.18 \Y 0 0 Rigid
Notes: -
+ Cases 38 and 41 do not exist, and case 42 is included in cyclic loading subgroup.
++ Relative stiffness of the footing (after Boswell and Scott, 1975):
2
Ef 1-Vs t
= , 3 3 s
k. B T-v,7 (B/2) » k. < 10 flexible and k_ > 10 rigid
Where E is the Young's modulus, v is the Poisson's ratio, subscript £ denotes the
footing, subscript s denotes the soil, t is the footing thlckness, and B is the
footing width.
+ V = Vertical, H = Horizontal and M = Movement.
* z i, the depth from ground surface.
** For stage 2: E(Unloading) = E(Initial).
a

In case 17, vertical load has been applled first, and then moment and horlzontal
load have been applied.

Ly




Table 5.3 Cases for the Clay Group, Cyclic Loading
Case | Modulus Modulus™ | Undrained | Initial Load Load Load Overallt+
No. for for Strength |Modulus | Inclination | Eccentricity | Reduction |Factor of
Unloading | Reloading , Cu E, o e Factor Safety
E D t (see sec- against
u r KN/m?2 KN/m? tion 5.3.2)| Failure
42 3.5E; 3.5E, 100+3z 300C, 16.7° 0.083B 4.5/11 1.57
47 E, E, 100+3z 300C, 16.7° 0.083B 4.5/11 1.57
47,1 E, E, 100+3z 300C,, 16.7° 0.083B 0.5 1.57
48 3.58; 3.5, Linear | 30000 16.7° 0.083B 4.5/11 -
49 3.5E; 3.5E, 10043z 300C, 10.2° 0.083B 4.5/11 2.57
Notes: -
+ Ey is the tangential modulus.
o+ Applied loads: V = 2.40 x 10*KN/mrun, M = 24 x10*mKN/mrun and H =

(except Case 49 where H =

0.432 x 10*KN/mrun) .

0.72 x 10*KN/mrun

g8v1



Table 5.4 Cases for the Linear Elastic Group

149

Case No. Total Unit Weight Modulus E+
Y
KN/m3 KN/m?2
51A 20 100000
51B 20 100000+10003

Note: ¢, is the minor principal stress

3
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CHAPTER 6
STRESS ANALYSIS FOR SHALLOW FOUNDATIONS WITH

EMPHASIS ON UNDRAINED BEHAVIOUR

6.1 Introduction

The non-linear finite element programme, explained
in Chapter 2, was used to study the behaviour of shallow
foundations under monotonic and cyclic loadings. A main
aim of the work was to examine stress changes beneath
footings for use in laboratory stress-path testing work.
The different cases considered in this work, pius the
material properties and geometries used, were discussed in
Chapter 5. =~ In this chapter, the finite element results
are presented together with the discussion of these results.

Generally, it is easy to obtain a reasonable solution
for a geotechnical problem using the finite element method,
but it needs considerable checking to ensure that the solu-
tion is sﬁfficiently reliable. It is therefore important
to investigate the effectiveness of any finite eleﬁent
method by carrying out the calculation for a range of prob-
lems for which a reliable answer from other sources, such
as closed form solutions, is krown.

Therefore, in this chapter, the comparison of the
finite element results (both drained and undrained) is made
with the available closed form, or numerical, solutions,
to ensure the reliability of the technique.

In studying the undrained behaviour of shallow
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foundations under monotonic loading, the effects of two
different forms of.parameters, namely, the parameters which
affect the validity of the solution (such as: the layer
thickness, and the side boundaries); and parameters which
affect the solution itself (such as: the correct modeliing
of shear unloading), on stresses and displacements were
considered. Also, failure zones and rupture figures were
studied, and some of the geotechnical problems which have
no closed form solutions (such as: the inclined and eccen-
tric loading of a finite layer whose undrained modulus and
strength vary linearly with depth) were analysed.

Furthermore, the effect of the cyclic loading on
displacements and stresses was considered. Also, with
Cyclic loaaing, effects of different stress—-strain quels
on stresses, stress changes and displacements were ihvesti—
gated.

For drained behaviour of shallow foundations the
effect of stress level on displacements and stresses, and
also the effeCt’bf variation of Young's modulus with the
minor principal stress on stresses were studied.

The factor of safety used throughout this chapter,
is defined as the ratio between the failure load, caiculated
from the bearing capacity theories given in Chapter 4, and
the applied load. Table 6.1 gives the calculated failure
préssures d¢ for different cases, analysed and discussed in
this chapter (see also Chapter 5).

In all cases, the soil is assumed to be isotropic.
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The interface between the layer and the underlying rigid
base is pérfectly rough.

The presentation and discussion of the finite element
results are divided into two groups) namely, monotonic

loading and cyclic loading.

6.2 Finite Element Results, Monotonic Loading
6.2.1 Stresses

6.2.1.1 Contact Pressure Distribution

The pressure acting on the interface of a foundation
and the soil is the contact pressure. It is important in
the design of the foundation structure because it determines
shear and moment distribution. Also, the contact pressure
is importaht in studying local failure, and may also be
used in settlement calculations. '

Figures 6.1 to 6.12 show the contact pressures distri-
butions for different cases. The stresses considered in
these anaiyses are those given at the Gauss points. The
contact pressuré is assumed to be equal to the stress
corresponding to the average of four Gauss points stresses
at the elements just underneath the footing, minué the
initial vertical stresses at the same level. |

The equilibrium of stresses is approximately satis-
fied for all-cases, and the maximum error in the equilibrium
of stresses is less than 8%. For case 3 (Table 5.2;
Chapter 5), when the average of four Gauss points stresses

is assumed to be the contact pressure, the satisfaction of
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the stréss equilibrium is poor,especially for higher safety
factors (Fig. 6.3a). By assuming the average of two top
Gauss points stresses as the contact pressure (Fig. 6.3b),
the stress equilibrium is achieved; but the distribution
of contact pressure is scattered, as local failure ﬁas
started (for case 3, the first local failure occurred at a
safety factor equal to 1.66, Fig. 6.45b). However, by
considering that, in Fig. 6.3a, the maximum error in the
equilibrium of stresses is less than 8%, the contact
pressure distribution is smooth, and there is some small
amount of vertical stress which is distributed outside of
the loaded area, the average of four Gauss points stresses
1s assumed to be the contact pressure.

Discussion on the contact pressure results will be
conducted from the following points of view (note thét,

not all cases were considered for each result):-
1. comparison with available solutions (drained
and undrained);

2. stress level:(drained and undreined) ;

3. layexr thickness {(undrained);
4, side boundaries (undrained) ;
5. footing rigidity (undrained);
6. soil unit weight (undrained);
7. K (undrained) ;
. 8. shear unlcading modelling (undrained);
9. variation of E with o3 (drained);

10. stress—-strain relationship (undrained): and

11. nonhomogeneity (undrained).
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Comparison with available solutions Generally, the con-

' tact pressures distributions given by the finite element
analyses are in reasonably good agreement with those given
by other elastic solutions, prior to local failure (Fig.
6.1). In Fig. 6.1, the contact pressures from one drained
case (case 2, Table 5.1, Chaptexr 5) and omne undrained case
(case 3, Table 5.2, Chapter 5) at high values of thé safety
factors (for case 2, 230; and for case 3; 8.57) are com-—
pared with the contact pressures given by Sadowsky (1928),
Milovic et al (1970) and the "Method of division" using

12 strips (this method is explained in section 3.4.6 of
Chapter 3).

In comparing the result of the drained case 2 with
the elastic solutions (Fig. 6.1), it is clear that the
Sadowsky method gives smaller stresses (égcept near the
edge) than the result for case 2, as a semi-infinite layer
is assumed in the Sadowsky method. The contact pressure
from the Sadowsky method is 16% less than the contact
pressure for case 2, at the centre line. This difference
decreases toward the edge, and near the edge, the contact
pressure from the Sadowsky method is 25% greater than that
for case 2.

The method of division (using 12 strips) gives
stresses which are gréater (5% on the centre line and 20%
near the edge‘of.fhe footing) than those for case 2.
Hdwever, as discussed in section (3.4.6) of Chapter 3, the

validity of the method of division depends on the accuracy
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cf calculation of displacemént for each assumed small
flexible section of the footing and the ndmber of divisions.
The contact pressures given by Milovic et gl'(l970)
for v = 0.33, are greatexr than thosé for case 2; Thé maxi-
mum difference in stresses is 20% at a distance equal to
B/4 from the centre line. Toward the footing edge and
centre line the difference decreases, and near the edge,
the contact pressure given by Milovic et al (1970) is equal
to the contact pressure for case 2.
The results of undrained case 3 (Table.5.2, Chapter
5) are in good agreement.with those given by Milovic et al
(1970) for v = 0.5, except near the edge, due to material
non-linearity, the contact pressure for case 3 is about

70% of the contact pressure given by Milovic et al (1970).

Stress level As discussed’in section 3.4.5 of Chapter 3,

the increase in applied load causes progressive transition
of the lcocaded material from the state of elastic to the
state qf failurgf This transition influences the distri-
bution of contact pressﬁre by limiting its wvalue at the
point where local failure has occurred.

Figures 6.2 and 6.3 show the variation of contact
pressure distribution with the stress level. In Fig. 6.2,
the results for drained case 2 (Table 5:1, Chapter 5) are
_considered: At a safety factor equal to 230, the local
failure has not yet stérted, and the con£act pressure distri;
bution is similar to that given by the'elastic solutions

(e.g. the Sadowsky method). For case 2, the local failure



starts at a safety factor equal to 46 (see also Figs. 6.45a
and 6.55a).‘ After the first local failure, the contact
pressure is limited by the shear strength at the edges.

By increasing the applied load, the loéal failure region
becomes larger, and the amount of increase in contact
pressure near the edges gets smaller than that at the central
section of the footing (where failure has not yet occurred).
In Fig. 6.2, the ultimate failure load has not been reached.
However, at the safety factor equal to 9.2, the contact
pressure distribution is similar to a triangular shape {(the
contact pressure distribution. for NY term, Fig. 3.30 of
Chapter 3), which it should have become as the ultimate
failure was reached.

Figufe 6.3 shows the conﬁact pressure distribution
fof undrained case 3 (Table 5.2, Chapter 5). As diécussed
before, the average of four Gauss points stresses, minus the
initial vertical stress at the same level, as shown on Fig.
6.3a, is assumed to be the contact pressure.

For case 3; the ibcal failure starts at a safety
factor equal to 1.66 (see also Figs. 6.45b and 6.56a), which
is in good agreement with the value cof (n+2)fr = 1.64 given
by Davis and Poulos (1968) for KO equal to unity. 'Iﬁ Eig.
6.3a, before the start of local failure.(safety factors
equal to 8.57 and 2.57) the shape of contact pressure
distribution curve is similar to that given by the elastic
solutions (e.g. Milovic et al, 1970). However, near the

edge the contact pressure from the finite element analysis
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is smaller than that given by the elastic solutions (see
Fig. 6.1). This is due to the effect of material non-
linearity. As the state of stress near the footing edge gets
closer to the state of failure (the more severe non-linear
section of the stress-strain curve), the modulus decreases
and the amount of increase in contact pressure near the
edge becomes smaller than that at the central section of
the footing. This increase in the contact pressure
decreases very rapidly, and becomes equal to zero, as the
first local failure occurs (safety factor equal to 1.285,
Fig. 6.3a). When the u;timate failure is approached, the
shape of contact pressure distribution is similar to a

- rectangular shape (the contact pressure distribution for
Nc term, vFig. 3.30 of Chapter 3), see Fig. 6.3a, safety

factor equal to 0.988. _ -

Layer thickness Figure 6.4 shows the effect of layer
thickness on the contact pressure distribution for an
Ainclinea and eccentric }oad on undrained clay, whose strength
and modulus incfease linearly with depth (cases 15 and 16,
Table 5.2 of Chapter 5).

At the safety factor equal to two, the contact
pressure for case 15 (D = B) is greater than that fof case
16 (D = 2B) at the central section of the footing, and it
is smaller for case 15 than that for case 16 near the edges.
This effect is reversed for the séfety‘factbr equal to
unity. In other words, by decreasing the layer thickness,

the contact pressure distribution becomes more uniform.
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Side boundaries Three undrained cases 9, 11 and 12

(Table 5.2, Chapter 5) were considered to investigate the
effect of the side boundaries on the contact pressuré.
For all cases, undrained strength énd modulus increase
linearly with depth. The horizontal distances froﬁ the
centre line to the side boundaries are 2B for case 12,
4.17B for case 9, and 6B for case 11 (B is footing width).
Figure 6.5 shows the effect of the side boundaries on
the contact pressure. At the safety factor equal to 4.3,
the side boundaries have no effect on the contact pressure.
However, near the state of failure (safety factor = 1.08),
the contact pressure increases, by reducing the siae |
boundaries. The maximum value of the difference in con-
tact pressures from case 11 and case 12 is small and equal

to 4%.

Footing rigidity Two undrained cases 39 and 40 (Table

5.2, Chapter 5) were considered to study the effect of
footing rigidity cn the contact pressure. For both cases,
undrained strenéth and modulus increase linearly with
depth, and the applied load is inclined and eccentric.
Equation 6.1 (after Boswell and Scc£t, 1975) defines

the relative stiffness of the footing:-

I—:*—ﬁz(j;) (6.1)

where E is the Young's modulus, v is the Poisson's ratio,
subscript f denotes the footing, subscript s denotes the

soil, t and B are footing thickness and width. If kr
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is g;éater than 10, then the footing is assumed to be rigid,
and if kr.is less than 10, then the fdoting is assumed to
be flexible. The relative stiffness is 2.1 for case 39,
and it is 16.8 for case 40. |

Figure 6.6 shows the contact pressures distributions
for these two cases at different Values-of safety factor.
vaiously, the contact pressure distribution for case 39
(flexible footing) is more uniform than that for case 40
(rigid footing). Near the right hand side edge of the
footing, due to local failure, the contact pressure distri-
bution is scattered for both cases at the safety factors
equal to 0.95 and 0.88.

It has to be mentioned that for these two cases,.
local failure occurs at both edges (see Fig. 6.60), however,
the local failure region must be rather deep, in ordér to

influence effectively the contact pressure.

Scil unit weight Two undrained cases 7 and 8 (Table 5;2,

Chapter 5) were/studied in order to investigate the effect
of soil unit weight on the contact pressure. For both
cases, the shear strength and modulus increase linearly with
depth, and the applied load is inclined and eccentric. It
is obvious that the soil unit weight will affect thé
undrained behaviour, only, if K, is not equal to unity.
For case 7, the soil unit weight is 20 KN/m? and Ko is two,
while for case 8,-the soil unit weight is equal to zero.
Figure 6.7 shows the contact pressures for these two

cases at the safety factors equal to 4 and 1.3. Generally,
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omitting the soil unit weight from the analysis (like the
case with KO equal to unity which will be discussed later)
tends to increase the contact pressure at the central
section of the footing, and to decrease it near the edges.
In Fig. 6.7, the maximum differences between the coﬂtact
pressures from case 7 and case 8, aré near the edges and
equal to 8% at the safety factor equal to 4, and 20% at
the safety factor equal to 1.3.

Also, in Fig. 6.7 the results for case 8, at the
safety factor equal to 4, are compared with the results
given by Milovic et al (1970) which also assume zero unit
weight for thé soil. At the central section of the fdotihg,
the agreement between the finite element results and those
given by the elastic solution is good. The contact pressure
for case 8 is a maximum of 6% greater than the contact
pressure given by Milovic et él (1970), at the central
section of the footing. However, near the edges, due to
material non-linearity and local failure, the finite element
results are much smalle; than the results given by elastic

solution.

K Two undrained cases 5 and 6 (Table 5.2, Chapter 5) were
;;nsidered to study the effect of KO on the contact‘pressure.
Fcr both cases, the shear strength and moduius increase
linearly with depth, the applied load is inclined and
eccentric, and the shear unloading modulus is equal to the

tangent modulus at the same state of stress (see Fig. 5.1la

of Chapter 5). For case 5, the soil unit weight is equal
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to 20 KN/m3 and K, is two, while for case 6, the soil unit
weight is 20 KN/m3 and K, is one.

Figure 6.8 shows the contact pressures distributions

for these two cases. The contact pressure for case 6
(KO = 1) is greater than the contact pressure for case 5
(Ko = 2), for the central section of the footing. Near the

edges, the contact pressure for case 6 is less than that
for case 5. The maximum differences between the contact
pressures from these two cases are 6% at the safety factor
equal to 2, and 20% at the safety factor equal to unity.
By comparing the effects of soil unit weight and KO
on the contactvpressures, it is clear that the soil unit
weight has no effect on the undrained behaviour of shallow

foundations, provided that KO is equal to unity.

Shear unloading modelling For a shallow foundation, which

is loaded monotonically, the shear unloading can only occur
if KO is not equal to unity. This shear unloading occurs
in the early stages of loading.

Two undrained cases 4 and 9 (Table 5.2, Chapter 5)
were considered to investigate the effect of shear unléading
modelling on the contact pressure. For both cases, the
shear strength and modulus increase linearly with dépth,
applied load is vertical, the soil unit weight is 20 KN/m3
and KO is two. In case 4, the shear unloading path is on

the first loading curve (i.e. Eu = E see Fig. 5.1la of

.tl
Chaptef 5), while in case 9, the unloading modulus is equal

to the initial modulus (i.e. Eu = Ei’ see Fig. 5.1b of

Chapter 5). In both cases, the reloading curve is parallel
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to the first loading curve.

Figﬁre 6.9 shows the contact pressures distributions
for these two cases, at the safety factors equal to-2.15
and 1.08. At the safety factor equal to 2.15, the con-
tact pressure for case 9 is greater than that for case 4,
at the central section of the footing. Near the edge, the
contact pressure for case 9 is smaller than that for case
4. At the safety factor equal to 1.08, both cases give
the same contact pressures at the central section of the
footing. Near the edges, the contact pressure for case 9
is greater than that for case 4. The difference between
the contact pressufes from these two cases depends on KO'
and the non-linearity of the early éection of the stress-
strain cur&e. : -

For these two cases, as the early section of séress—
strain curve used is close to linearity (see Fig. 5.15.of
Chapter 5), therefore, the contact pressures differences
are small. The maximum difference is 7% at a distance
equal to B/12 fgom the edée, for the safety factor equal to
2.15{ Obviously, this difference decreases as the ultimate
failure is_approachea.

For case 4, lécal failure starts at the safet?vfactor
equal to 2.15 (see also Figures 6.45b and 6.57a). Case 9,
as discussed above, affects the stresses, but as this
effect is small for the cases considered, therefore, the

load required for the initiation of first local failure is

not affected by the correct modelling of the shear unloading.



181

Variaton of E with oj To investigate the effect of linear

variation of the Young's modulus with the minor principal
stress, two linear elastic cases 51A and 51B (Table 5.4,
Chapter 5) were considered. For case 51A, the modulus is
constant, while for case 51B, it increases linearly with
o3, and the rate of increase in modulus with o3 is modest
when compared with the modulus for o3 equal to zero (Table
5.4 of Chapter 5).

Figure 6.10 shows the contact pressures for these two
cases. The contact pressure for case 51B is greater than that
for case 51A, at the central section of the footing. Near
the edge, the contact pressure for case 51B is smaller than
that for case 51A. However, as the rate of increase in
modulus with o3, in case 51B, is small compared to the
modulus of case 51A, therefore, the difference between the

stresses from these two cases is small.

~

Stress—-strain relationship Three undrained cases 43, 45

and 46 (Table 5.2, Chapter 5) were considered to investigate

the efféct of the stress-strain relationship on the contact

pressure. For all three cases, the soil unit weight is

20 KN/m3, Ko is one, and the shear strength and modulus

increase linearly‘with depth. The stress-strain curves

used in these three cases are shown on Fig. 5.18 of Chapter 5.
Figure 6.11 shows the‘contact pressures for these

cases. At the safety factor equal to 3.56, and before the

local failure occurs (for these cases, local failure starts
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. at the safety factor equal £o 2.15, see aiso Fig. 6.51), the -
effect of stress-strain relationship on the contact pressures
is small. At a safety factor equa} to 1.09, the contact
pressure for case 45 (stiffer curve) is greater than that
for case 46 (softer curve), at the central section of the
footing. Near the edge, the contact pressure for case 45
is smaller thén that for case 46. The maximum difference
between the contact pressures for these cases, is 7% at a
distance equal to B/6 from the édge, at the safety factor

equal to 1.09.

Nonhomogeneity Two undrained cases 43 and 44 (Table 5.2,

Chapter 5) were considered to investigate the effect of the
nonhomogeneity on the contact pressure. For case 43, the
shear strength and modulus increase linearly with depth,
while for case 44, both are constant. For both cases, the
soil unit weight is 20 KN/m3 and K, is one.

Figure 6.12 shows the contact pressures for'these
two cases, at the safgty factors equal to 9.6, 2.4 and 1.12.
For'cése 43, local failure starts at the safety factor
equal to 2.15, while for case ;4,»local failure starts at
the safety factor equal.to 1.66 (see also Fig. 6.45c).

The form of the nonhomogeneity considered for case 43
results in stiffer soil than the uniform case 44. The
contact pressures for case 43 are greater than the contact
pressures for case 44, at the central section of the footing
(central 2/3 of the footing width). Near the edges, the
contact pressures for case 43 are smaller than those for

case 44,
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Figure 6.12 shows that the ratio‘EO/AB (see Eq. 3.10,
Chapter 3) has a markéd effect on the contact pressures.
On the footing centre line, the contact pressure for casé
43 (EO/AB = 0.28) is 12% more than £hat for case 44
(EO/AB = »), at the safety factor equal to 9.6. Neér the
edges, the contact pressure for case 43 (EO/AB = 0.28) is
19% less than that for case 44 (EO/AB ;‘w), at the safety
factor equal to 9.6. These differences increase as the
safety factors decrease, and their values are 18% and 39%
for a safety factor equal to 1.12, on the centre line and
near the edge, respectively.

Carrier and Christian (1973) have also showed thaf
the effect of EO/AD (D is footing diameter) on the stress
distribution er a circular.fobting is significant in
" producing more uniform contact stresses (see Fig. 3.33 of

Chapter 3).

6.2.1.2 Stress Distribution

Figures 6.13 to 6.27 represent the vertical and hori-
zontal stresses distributions for different cases. The
stresses in these figures are those corresponding to the
average of four Gauss points stresses, minus the inifial
stresses. ‘

Discussion on these results will be conducted from’
the following points of view (bearing in mind that some of
the comments on contact pressures,_discussed in section

6.2.1.1, are also valid for the stresses):
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1. Comparison with available solutions (drained

and undrained) ;

2. stress level (undrained);

3. layer thickness (undrained);

4. side boundaries (undrained);

5. shear unloading modelling (undrained) ;

6. variation of E with o3 (drained);

7. nonhomogeneity (undrained); and

8. K, (undrained). ' | : -

Comparison with available solutions Figures 6.13 and 6.14

show the vertical and horizontal stresses for drained case

1 (Table 5.1, Chapter 5), at the safety factor equal to

46, and compare the finite element for this case with the

results giﬁen by Poulos (1967) and Milovic et al (1970) for

v = 0,33." ’
Generally, the agreement between the drained results

from the finite element analysis, at the safety factor equal

to 46, and those given by the elastic solutions is good,

except for the Qértical stresses near the edges. Near the

footing centre line (Fig. 6.13), the vertical stresses at

great depths from the finite element analysis are almost

the same as those given by Poulos (1967) and Miloviésgg al(1970).

For shallow depths, the vertical stresses given by Poulos

(1967), for uniform loading, are greater than those from

the finite element analysis, and the vertical strésses given

by Milovic et al (1970) are smaller than those given by

the finite element analysis. The maximum difference in
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vertical strsses is near the ground surface, and the finite
element results are 10% less than the results given by
Poulos (1967), and they are 7% more than the results given
by Milovic et al (1970). However,.as the effect of material
non-linearity is to increase the stresses near the eentre
line (see Fig. 6.15), therefore, the difference between the
vertical stresses from the finite element analysis and Milovic
et al (1970) must be less than 7% at the higher safety
factors. Near the centre line, the horizontal stresses
from the finite element analysis are a maximum of 20% and 30%
greater than those given.by Milovic et al (1970) and Poulos
(1967) . |
Near the edges (Fig. 6.14), horizontal stresses from
the finite element analysis for great depths are almost the
same as those given by Poulos (1967); The vertical-stresses
from the finite element analysis are a maximum of 50% more
than those given by Poulos (1967) for a uniform loading.
Comparison of the results for undrained case 3 (Table
5.2, Chapter S)IVat the:safety factor equal to 5.14, and
the elastic solutions for.v = 0.5, is made in Figs. 6.15 and
6.16. Near the cehtre line, vertical stresses from the
finite element analysis are a maximum of 19% and 8%'emaller
than those given Sy Poulos (1967) and Milovic et glv(l970).
The horizontal stresses from the finite element analysis
are almost the same as those given by Milovic et glv(l970),
and they are a maximum of 40% greater than the Poulos
results, near the centre line. Near the edges, vertical

stresses from the finite element analysis are a maximum of
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50% greater than those given by Poulos (1967) for a uniform
loading, and the horizontal stresses at great depths are

almost the same as those given by Poulos (1967).

Stress level Tigures 6.15 and 6.16 show the effect of

stress level on the stress distribution for undrained non-
linear case 3 (Table 5.2, Chapter 5). By increasing the
applied load, vertical stress increases at the central
section of ﬁhe footing, and decreases near the edges. This
effect is a maximum near the ground surface, and decreases
with depth (Fig. 6.15).

By increasing the applied load, horizontal stress
increases in whole domain, except at very shallow depths
near the edges. At depths more than the footing width
near the centre line, the opposite occurs (sée Figs. 6.16

and 6.17).

Laver thickness Two undrained cases 15 and 16 (Table 5.2,

Chapter 5) were considered to investigate the effect of

layer thickness”pn the étresses. For both cases, the

shear strength and modulus increase linearly with depth,

and the applied load is inclined and eccentric. For case

15, the layer thickness is equal to the footing width, while

for case 16, the layer thickness is tWice the footing width.
Figures 6.17 and 6.18 show the stress distribution

for these two cases, at the safety factors equal to two and:

one. At the safety factor equal to two, by reducing the |

layer fhickness, vertical stresses increase at the central

section of the footing and decrease near the edges, while
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horizontal stresses inérease at great depths and decrease
at shallow depths. At the safety factor equal to one, by
reducing the layer thickness, vertical and horizontal

stresses decrease at shallow depths- and 1lncrease at great

depths.

Side boundaries Three undrained cases 9, 11 and 12 (Table

5.2, Chapter 5) were considered to study the effect of the
side boundaries on thelstresses. For all three cases, the
shear strength and modulus vary linearly with depth. The
horizontal distances from the footing centre line to the
side boundary are 2B for case 12, 4.17B for case 9, and 6B
for case 11.

Figures 6.19a and b show the stress distribution for
these cases. At the safety factor equal to 2.15 (Fig.
6.l9a),vthe side boundaries have no effect on the vertical
stresses, except at very shallow depths near the edge, where
by almost doubling the horizontal distance from the centre
line to the side boundaries, the vertical stress is reduced
about 4%. HbriZontal stresses are the same for all three
cases near the centre line, but they are on average 10%
greater for case 12 than for cases 9 and 11 for the rest
of domain. This effect is reduced a litile as failure is

approached (Fig. 6.19b).

Shear unloading modelling As discussed in the contact

pressure section, by monotonic loading of a footing, shear
unloading can only occur if KO is not equal to unity. For

- two undrained cases 4 and 9 (Table 5.2,vChapter 5), which
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were considered to investigate the effect of correct shear
unloading modelling on the stresses, the soil unit weight
is 20 KN/m3 and K is two. For both cases, the shear:
strength and modulus increase linearly with depth. In

case 4, E_ is equal to E

a N (see Fig. 5.1a), and in case 9,

E, is equal to E; (see Fig. 5.1lc).

The correct shear unioading quelling affects the
solution-itself; rather than affecting the validi;y of‘the
solution. Obviously, the value of KO and the initial
section of the stress-strain curve used in the analysis
influence this effect,

Figures 6.20a and b show the stress distribution for
these two cases. First, it may seem that the correct
shear unloading modelling does not affect the stresses, but,
by considering that the initial section of the stress—-strain
curve used in these cases (Fig. 5.15 of Chapter 5) is very
close to linearity, thereﬁore, this effect is small.
However, correct shear unloading modelling tends to increase
the vertical stress at the central section of the footing,
and to decrease it near the edges, and this process is
reversed as the failure is approached (see also Fig. 6.9).
Also, correct shear unloading modelling tends to decrease

the horizontal stresses.

Variation of E with o3 Two linear elastic cases 51A and

51B (Table 5.4, Chapter 5) were considered to study the
effect of the linear variation of E with ojon stresses.

All pvarameters are the same for both cases, except the
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modulus. For case 51A, the modulus is constant, while
for case 51B, it increases linearly with oj.

Figures 6.21 to 6.23 show the principal stresses for
these two cases. Near the footing centre line (Fig. 6.21),°
the principal stresses for case 51B are greater than those
for case 51A. For the majbr principal stress this diffe-
rence is 3%, and for the minor principal stress it is 2%.
These effects decrease toward the edges (Fig. 6.22), and
near the edges, the principal stresses for case 51A are a
maximum of 2% greater than those for case 51B. As dis-
cussed before in the contact preésure section, these effects
are small, because the rate of increase in E with o3 is

small compared to E itself.

Nonhomogenéity " In order to investigate the effect of the

linear variation of undrained strength and modulus with
depth, two undrained cases 43 and 44 (Table 5.2,‘Chapter 5)
were considered. All parameters are the same for both
cases, except the strength and the modulus. For case 44,
strength and modulus are constant, while for case 43, they
increase linearly with depth.

Figures 6.24 to 6.26 show the stressesifor these two
cases. Vertical stresses for case 43 are greatér (ét the
central secticn of the footing), and are smaller (near the
edges), than those for case 44, at all values of the safety
factors. The maximum differences between the stresses
from these two cases are near the centre line (18%) and

edges (39%), at very shallow depths for the safety factors
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equal to 1.12. They decrease as the depth or the safety
factor increase.

Horizontal stresses for case 43 are greater than
those for cacse 44, except at very shallow depths near the
edges, and at great depths. The average value of the

difference in horizontal stresses is 25%.

K, Two undrained cases 5 and 6 (Table 5.2, Chapter 5)
;;re considered to study the effect of KO on the stress
increases due to loading. All parameters are the same for
these two cases, except the value of Ko' For case 5, Ko
is two, and for case 6, it is one. |

Figures 6.27a and b show the stresses for these two
cases, at the safety factors equal to two and one. Vertical

stresses for case 6 (KO = 1) are greater'(at the central

section of the footing), and are smaller (near the edges),

than those for case 5 (KO 2). Horizontal stresses for
case 6 are greater than those for case 5, except at great
depths. These effects increase at shallcw depths and
decrease at greéﬁ depths for vertical stresses, and inqrease
at mid-depth for horizontal stresses, as the failure is
approached.

The maximum differences in vertical stress.chéﬁges
are 6% and 20% for the safety factors equal to two and one,
respectively. The average differences in horizontal stress

changes are 8% for the safety factors equal to two, and

15% for the safety factors equal to one.
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6.2.2 Displacements

Figures 6.28 to 6.44 show the displacements for
different cases. Discussion on these plots will be con-

ducted from the following points of view:-

1. stress level (drained);

2. layer thickness kundrained);

3. side boundaries (undrained);

4. shear unloading modelling (undrained);
5. footing rigidity (undrained); aﬁd

6. nonhomogeneity (undrained).

Comparison of the undrained results with available
solutions, and_the”effect of stress level on undrained
results are discussed during studies of the effect of

other parametres.

Stress level Figures 6.28 and 6.29 show the vertical and
horizontal displacements for drained case 1 (Table 5.1,:,4
Chapter 5). Figure 6.28 indicates that by reducing the
safety factor, vertical displacements concentrate at the
central~secti§n cf the footing. Figure 6.29 shows that
the maximum horizontal displacéments are around mid-depth,

and concentration of the horizontal displacements around

mid-depth increases, as the safety factor decreases.

Layer thickness Figure 6.30 shows the settlements profiles

for two undrained cases 15 and 16 (Table 5.2, Chapter 5)
at the safety factors equal to two. For both cases, the
shear strength and modulus increase linearly with depth,

and the applied load is inclined and eccentric. All
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parameters are the same for both cases, except the layer
thickness. For case 15, the layer thickness is egual to
the footing width, while for case 16, it i3 twice the
footing width.

By decreasing the layer thickness, settlement decreases
and heave increases (Fig. 6.30). ‘However, in this figure,
the heave for case 16 is greatefvthan that for case 15 near
the side boundaries, and this is due to ﬁhe increasing side
boundary effect. |

In Fig. 6.30, the finite element resulté are compared
with the results given by Milovic et al (1970) using an
average modulus. For case 15 (D=B), the settlement from
the finite element analysis is 8% less than that given by
Milovic et - al (1570). For case 16 (D=2B), the centre
settlements from both solutions are the same, but the tilt
from the finite element analysis is 25% more than that given

by Milovic et al (1970).

.

Side boundaries The effect of the side boundaries on the

settlement was éénsidered for both inclined and eccentric
loading and vertical loading. Figure 6.3la shows the
settlements profiles for three undrained cases 10, 13 and 14.
(Table 5.2, Chapter 5). In ail three cases, the aéﬁlied
load is inclined and eccentric, and all parameters are the
same, except the side boundary distance from the centre line,
H. For case 10, H is 2.5B, for case 13, H is 4B, and for
case 14, H is 1.5B.

Figure 6.31b shows the settlements profiles for three
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undrained cases 9,11 and 12 (Table 5.2, Chapter 5). In
all three cases, the applied load is vertical, and all
parameters are the same, except H. For case 9, H is 4.17B,
for case 11 , H is 6B, and for case’'12, H is 2B.

These two figures indicate that by decreasing the side
boundary distance from the centre line, the settlement
decreases and the‘maximum heave increases.

In Fig. 6.31a, the settlements for cases 10 and 13 are
the same, and the heave for case 13 is slightly iess than
that for case 10. This indicates that the more economical
distance from the centre line to the side boundaries is
equal to 2.5B. . |

In Fig. 6.31b,'the finite element results at the
safety factor equal to 2.15 are compared with the results
given by the elastic solutions using én average modulus.

The settlement for case 9 is 10% less than the settlement
given by Poulos (1967), using an average modulus and Eq. 3.17
of Chapter 3 for relating\the settlement of a rigid footing
to the settlement of a flexible footing. The settlement
given by Milovic et al (1970), using an average modulus,

is 40% more than that for case 9.

Shear unloading modelling In Fig. 6.32, settlements for

two undrained cases 4 and 9 (Table 5.2, Chapter 5) are shown.
All parameters are the same for these two cases, except the
unloading modulus. For case 4, the Eu is equal to Et (see"
Fig. 5.la), while for case 9, the E, is equal to E; (see

Fig. 5.1Db). For both cases, K, is two.
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Figure 6.32 indicates that the effect of correct shear
unloading modelling is to decrease both the settlement
" and the heave (provided that K, > 1).

Also, in Fig. 6.32, the finite element results are
compared with the results given by the elastic solutions
using an average modulus. The settlement for case 4 is
equal to that given by Poulos (1967) using an average modu-
lus, and Eq. 3.17 of Chapter 3 for relating the settlement
of a rigid footing to the settlement of a flexible footing.
The settlement given by Milovic et al (1970), using an

average modulus, is 30% more than that for case 4.

Footing rigidity Two undrained cases 39 and 40 (Table 5.2,

Chapter 5) were considered to investigate the effect of
footiﬁg rigidity on the settlement. For both cases, the
shear strength and modulus increase linearly with depth,
and the appliéd ioad is inclined and eccentric. The relaF
tive stiffness (see Eg. 6.1) for case 39 is 2.1, and for
case 40 is 16.8._

Figure 6.33 shows the settlements for these two cases
at the safety factors equal to<i.98 and 0.85. One impor-
tant feature of this figure 1s that, for the safety factor
equal to 1.98, the tilt is not affected by the footing
rigidity. But the effect of footing rigidity on the tilt
becomes significant as the failure is approached.

Also, Fig. 6.33 shows a good agreement between the
settlement given by the Milovic et al (1970) uSing an
average modulus, and the settlement for case 40 at a safety

factor equal to 1.98.
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Nonhomogeneity Figures 6.34 to 6.37 show displacements

for two undrained cases 43 and 44 (Table 5.2, Chapter.S).
For case 44, the undrained strength and modulus are constant,
while for case 43, they increase linearly with depth.

Figures 6.34 and 6.35 show that the effect of non-
homogeneity (case 43) is to.reduce both the settlement and
the heave (compared to uniform case 44). Figures 6.36 and
6.37 indicate that nonhomogeneity tends to decrease both
vertical and horizontal displacements. The effect on
horizontal displacements increases with depth, because the
modulus increases with depth (Fig. 6.37).

Also, in Fig. 6.34, the settlements fcr cases 43 and
44 at the safety factor equal to 9.6, are compared with
those given by the elastic solutions. For uniform case
44, the settlement given by Poulos (1967), using Eq. 3.17
of Chapter 3 for settlement of rigid footing, is 5% less
than the settlement from case 44, For the same case, the
result given by Milovic et al (1970) is 20% more than that
for case 44. |

Fdr nonhomcgeneous case 43, the settlement given by
Milovic et al (1970), usiné an average modulus, is 6%
greater than that for case 43. B

In Figures 6.38 to 6.44, scme typical displacements
vectors are given for drained case 2, and undrained cases
3 and 40 (Tables 5.1 and 5.2, Chapter 5). In Figures 6.38
to 6.42, the appiied load is vertical and a wedge of rigid
maferial, which is meving down with the footing, can be

seen clearly.
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The important feature of Figures 6.43 and 6.44 is to
show that the displacement vector field can be used to
evaluate the ultimate failure load, more aécurately. These
figures show displacements vectors for an inclined and
eccentric load at the safety factors equal to 0.89 and 0.88.
By comparing the settlements of the footings in these two
figures, it is clear that, at the safety factor equal to
0.88, there is a sudden change in the direction of the
displacement vector. Therefore, the ultimate failure for
this case mﬁst occur between these two loads (see also Fig.

6.61).

6.2.3 The Failure Load

6.2.3.1 Definition of the Failure Load

In Chapter 4, the failure load was»défined as the
load at which the slopé of the load-settlement curve first
reaches a steady minimum value. Also, it was mentioned
that iﬁvsome cases, this slope increases continuously, and
it is difficult to define the failure load more accurately.
In these cases, considefation of three different plots,

. namely, load-settlement cufﬁe, load—settlement curve in a
log-log scale, and displacementvvector field is recommended
for defining the failure load more accurately.

An example of the use of displaceﬁent vector fields
was shown in the previous section. In the follbwing

section the load-settlement curves will ke discussed.
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6.2.3.2 Load-settlement CurVes

Figures 6.45 to 6.51 represent some typical load-
settlement curves and the effect of different parameters
on them.

In Fig. 6.45a, the load-settlement curve for d?ained
case 2 (Table 5.1; Chapter 5) is given. In this case, as
mentioned in Chapter 5, the load was only increased up to
11% of the ultimate failure load. The first local failure
occurs at a safety factor equal to 46 (see also Fig. 6.55a).

Figure 6.45b represents the load-settlement curves
for two undrained cases 3 and 4 (Table 5.2, Chapter 5).
For case 3, undrained strength is constant, the initial.
modulus is 1400 Cu and KO is one. For case 4, undrained
strength increases linearly with depth,'Ei is 300 Cu and
Ko is two. Also, in Fig. 6.45b, the results from tﬁe
closed form solutions are giveﬁ, in order to compare them
with the finite element results.

By considering that, in principle, an incremental
elastic finite eiement solution predicts a lower bound to
the failure load, the comparison between the failure loads
from the finite element analyses, and those given by the
plasti~ity solutions is very good. :

In Fig. 6.45c, the load-settlement curves for two
undrained cases 43 and 44 (Table 5.2, Chapter 5) are given.
For case 44, the wundrained strength is constant and E.l is
300 Cu' while for case 43, undrained strength increases
linearly with depth, and E; is 300 €. ¥Yor both cases Ko

is one.
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Figures 6.45b and c indicate that the nonhomogeneous
céses 4 and 43 give higher values for the safety factors at
first local faiiure than the uniform cases 3 and 44. For
uniform cases 3 and 44, the local failure starts at the
safety factor equal to 1.66 (which is in.good agreement with
the value 1.64 given by Davis and Poulos, 1968, for KO equal
to 1}. For the nonhomogeneous cases 4 and 43, the local
failure starts at the safety factors equal to 2.15.

The safety factors at first local failure for two
nonhomogeneous cases 4 and 43 are coincidently equal.
However, this does not necessarily mean that the ratio Cuo/pB
(see Eq. 4.33, Chabter 4) has no effect on the value of'
safety factor at first local failure;

The éafety factor at first local failure is a function
of the ratio £ = (l—Ko)o;o/2Cu_(Davis and Poulos, 1968).

Its value is a minimum for £ equal to zero, and it increases
by increasing or decreasing the value of £. |

Figure 6.45d shows the load-settlement curves for two
undrained cases 9 and 23 (Table 5.2, Chapter 5). For both
cases, undrained strength and modulus increase linearly with
depth, and all parameters used are £he same, except a slight
difference in the grading of the meshes (see Table 5.2,
Chapter 5), and KO. The effect of the.difference in the
grading of the meshes on the value of safety factor at
first local failure, is negligible. For case 9, the soil
unit weight is 20 XN/m3 and K, is two, while for case 23,

the soil unit weight is 20 KN/m3 and KO is one. This
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figure indicates that, from the qualitativé point of view,
for nonhomogeneous clay, the ratio f has the sameveffect on
the safety factor at first local failure, as for the uni-
form clay.

For case 23 (Fig. 6.45d), the safety factor at first
local failure is 1.86, the ratio Cuo/pB is 0.67 and KO is
one, while for case 43 (Fig; 6.45c), the safety factor at
first local failure is 2.15, the ratio Cuo/pB is 0.28, and
KO is one. Therefore, from these results, it may be con-
cluded that by increasing the ratio Cuo/pB, the safety
factor at first local failure decreases, provided that the
ratio f is equal to zero. At the limit for Cuo/pB = o
(i.e. p = 0, uniform clay) the safety factor at first local
failure is-equal to (v+2)/n for £ = 0.

Figures 6.46a and b show that the éide boundaries and
the shear unloading modelling do not affect the magnitude
of the ultimate failure pressure, as should be the case.
However, the fixed side boundaries produce a confining
effect in the domain, and by moving the boundaries toward
the centre line the horizontal stresses increase (see Fig.
6.19a), resulting in a decrease in the value of safety
factor at first local failure (Haeg et al, 1968). The
same effect is shown in Fig. 6.46a, where load-settlement
curves for cases 9, 11 and 12 (Table S.é, Chapter 5) are
given. In these three undrained cases, all parémeters are
the same, except the side bdundary distances from the céntre

line, which are 4.17B, 6B and 2B for cases 9, 11 and 12,
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respectively. In this figure, the results for cases 9 and
11 are the same, but for case 12, the safety factor at
first local failure is slightly decreased.

The correct modelling of the éhear unlcading has not
affected'the value of the load required for the initiation
. of local failure (Fig. 6.46Db).

Also, Figures 6.47a and b show that the layer thickness
has no effect on the value of ultimate failure pressure.
But, as discussed in section (6.2.2), by increasing the
layer thickness, pre—-failure settlement 1s increaséd.

Smith (1976) showed that, in vertical loading, the
ultimate failure load for a rigid footing increases as the
thickness of the uniform clay foundation becomes smaller
than the footing diameter. Alsé, he showed that the ulti-
mate failure load for a "uniform stress" footing (céﬁpletely
flexible), on homogeneous clay, is lower than that for a
"uniform displacement" footing (COmpletély rigid), in verti-
cal loadihg.

The ultimate failure pressures predicted by the finite
element solutions are fouﬁd to be independent of the assumed
initial stresses (Figures 6.48 to 6.50). However, the
safety factor at first local failure is affected by‘éhe
assumed initial stresses as shown on Fig. 6.45d. Figures
6.48 to 6.50 also show that by decreacing the value of Ko’
or by omitting the soill unit weight from the analysis
(cﬁmpared to the case with KO equal to 2), settlements are

increased.
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However, as the undrained strength of a cohesive soil
varies with the rotation of principal stresses, and this
rotation is a function of both the stress changes due to
the applied load and the initial stresses in the ground,
therefore, the ultimate failure pressure will be dependent‘
on K (D'Appolonia and Lambé, 1970) .

Figure 6.51 shows the load-settlement curves for
three undrained cases 43, 45 and 46 (Table 5.2, Chapter 5).
In these three cases, all parameters are the same, except
the initial modulus and the strain at failure. The initial
modﬁli are 300 Cu’ 1000 Cu’ and 300 Cu’ and the strains at
failure are 1.0%, 0.53% and 3.0% for cases 43, 45 and 46,
respectively. "For all three cases, shear strength and
modulus increase linearly with depth, and KO is one.

This figure indicates that the ultimate failure
pressures and the safety factors at first local failure for
all three cases are equal. However, as the stress-—-strain
curve becomes softer, the‘settlement is ihcreased.

.-

6.2.4 Stress-Strain Curves

Undrained case 40 (Table 5.2, Chapter 5) is considered
to study the stress—-strain curve followed by the programme,
and to comapre that with the nominated stress-strain curve
as given to the computer. The shear strength and modulus,
for this case, increase linearly with depth, the soil unit
weight is 20 KN/m3? and K, is 1.5.

Figures 6.52 and 6.53 show the stress paths at two
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different points for this case. The coincidence between
the nominated stress-~strain curves as given to the computer
and the stress-cstrain curves followed by the programme is

excellent.

6.2.5 Effects of the Load Eccentricity and Inclination

on the Failure Load

In Chapter 4, the effects of load eccentricity and
inclination on the bearing capacity for both uniform and
nonhomogeneous clays were discussed.

The common practice for the.effect of load eccen-
tricity on the bearing capacity is to use a reduced footing
width in the analysis. The finite element results for
the vertical eccentric loading'on either uniform or non-
homogeneous clays are plotted on Fig. 6.54. Equivaient
eccentricity factors were deduéed from the failure loads
predicted by these calculations, by applying Equations
4.35 and 4.37 of Chapter 4. In this figure the eccentri-
city factors~fr6ﬁ the finite element analyses are compared
with the eccentricity facéor given by the reduced width
concept. The agreement between -the finite element results
and the reduced width concept is good. The eccentficity
factor from the finite element analysis_is 3% less than that
from the reduced width concept, at e/B equal to 0.083
for the uniform clay.

For the bearing capacity of a central inclined load

on either uniform or nonhomogenecus clays, the inclination
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factors are given on Fig. 4.8 of Chapter 4. For the
eccentric and inclined loading, a combination of the
eccentricity aﬁd inclination factors must be used, as dis-
cussed in Chapter 4, section (4.10.3).

The finite element results, for both central inclined
and eccentric and inclined loads on either uniform or non-
homogeneous clays, are plotted on Fig.'4.8 of Chapter 4,
and they are compared with the results given by Vaughan et
al (1976). In this figure, equivalent inclination and
eccentricity factors were deduced from the failure loads
predicted by these calculations, by applying Equations 4.35
to 4.39 of Chapter 4. Generally, the results from the .
finite element analyses are in good agreement with those
‘given by Vaughan et al (1975}, and the maximum diffefence

between these results is less than 10 per cent.

6.2.6 Failure Zones and Rupture Figures

Figures 6.55 to 6.64 represent some failure zones for
different cases, and compare them with the rupture figures
given by the closed form solutions.

Figure 6.55a shows the failure zone for drained case
2 (Table 5.1, Chapter 5). The applied load is vertical,
and it is increased up to 11% of the ultimate failure load.
Figure 6.55a shows that the local failﬁfe starts from the
edge of thé footing at a safety factor equal to 46. At
the safety factor equal to 9;2, the failure zone is slightly

expanded.
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In Figures 6.55b to e, the principal stress and strain
rotations are given for case 2 at the safety factors equal
to 15.3 and 9.2 (in these figures, the extension is marked
with an arrow). Although the applied load has not reached
the ultimate failure load, the principal stress and strain
rotations plots indicate thét a wedge of rigid soil is being
produced under the footing (Figures 6.55d and e).

Figures 6.56a and b show the failure zones for a
vertical load on uniform clay (case 3, Table 5.2, Chapter
5). In Fig. 6.56a,‘the failure zone starts from the foot-
ing edge at a safety factor equél to 1.66 (see also Fig.
6.45b, case 3), and by increasing the load it spreads
downward and téwards the footing centre line. At the
safety factor around 1.17 the failure zone has just_reached
the centre line. At this point the foofing and an adjacent
elastic wedge are separated by a band éf failed material
from the remainder of the unfailed zone. The spread of
the failure zone to the céntre line is usually coincident
with a sharp bkreak in the load-settlement curve (see Fig.
6.45b, load-settlement curve for case 3, q/qf‘= 0.86).-

By further incréase of the applied load the failure zone
continues to spread outward from the footing and upward
toward thé footing. Figure 6.56b represents the failure
zone at the safety factor equal to unity, and the planes
of maxiﬁum shear stress for case 3, which may be compared
with the Prandtl rupture figure.

An identical failure zone to one shown on Fig. 6.5§b,

at the safety factor equal to one, is reported by Smith
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(1978) for the vertical uniform loading on homogeneous clay.

Figure 6.56c shows the principal stress rotations at
failure, for case 3.

Figures 6.57a and b show the failure zones for a
vertical load on the clay layer whose undrained strength and
modulus increase linearly with depth (case 4, Table 5.2,
Chapter 5). In Fig. 6.57a, the failure zone starts from
the footing edge at the safety factor eqﬁal to 2.15 (see
also Fig. 6.45b, case 4). By increasing the applied pressure,
the failure zone spreads downward and toward the footing
centre line, and at the safety factor around 1.09 it reaches
the centre line. This safety factor corresponds to a sharp
break in the load-settlement curve (see Fig. 6.45b, load-
settlement  curve for case 4, q/qf = 0.92). |

Figure 6.57b represents the failure zone at the
safety factor equal to unity, and the planes of maximum
shear stress for case 4. The failure zone and these planes
may be compared with the typical rupture surfaces postulated
by Davis and Booker (1973).

In Fig; 6.58 the principal stress rotations at failure
are given for case 4. |

Figures 6.56 and 6.57 show that the failure zones in
both uniform clay and ndnhoﬁogeneous clay cases spread to
below the footing, and the boundary between the unfailed
rigid wedge and the failed clay does not pass through the
fodting edges (see also Fig. 6.59 for the contact shear
stresses for case 4). This suggests that, in order to

satisfy the basic condition of the kinematical admissibility
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‘(Hansen, 1965), the boundary between the unfailed rigid
wedge and the failed clay must be tangent to the footing
base, and cannot be a straight line (as discussed in Chapter
4, section 4.5). . . |
By comparing Figures 6.56 and 6.57, it is-clear that
the failure zone for case 4 (non-homogeneous clay) is
shallower than the failure zone for case 3 (uniform clay).
Figure 6.60 represents the failure zone for the
eccentric and inclined loading on a nonhomogeneous clay
(case 40, Table 5.2, Chapter 5). In this figure the |
applied load required to give a continuous failure zone
(at the safety'factor equal to 0.9) is 10% higher than the
calculated failure load (using Fig. 4.8, Chapter 4) given
in Table 6.1.
Figure 6.61 gives the load-settlement curve for case
40 (Table 5.2, Chapter 5), in a log-log scale, and indi-
cates that, for this case, the calculated failure load
(using Fig. 4.8, Chapter 4), given in Table 6.1, is 10%
less than the'uitimate failure load from the finite element
analysis. It has to be ﬁentioned that in calculating the
ultimate failure load using Fig. 4.8 of Chapter 4, it is
assumed that the adhesive contact is maintained overvtbq
full width of the footing (as the case for finite element
analysis), and the horizontal component of the load is
distributed over the full width of the footing. Thus a
reduced load inclination is used together with fhe reduced
width concept to reproduce the effect of load eccentricity

(see section 4.10.3, Chapter 4).
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Figure 6.62a represents the failure zone and the
planes of maximum shear stress for case 40, at the safety
factor equal to 0.88. The failure zone and planes of
maximum shear stress may be comparea with the rupture
figure given in Fig. 4.9 of_Chapter 4.

The principal stressvvalues and rotations for case
40, is given on Fig. 6.62b,at the safety factor equal to 0.9.

These results indicate that the failure zones and
the planes of maximum shear stress given by the finite element
analysis are in reasonéble agreement with the rupture figures.
given by Prandtl (1920) for uniform clay, Davis and Booker
(1973) for nonhomogeneous clay, and the rupture figure for
the eccentric and inclined loading given in Fig. 4.9 cf
:Chapter 4. However, in the failure zone given by the
finite element analysis for the case of eccentric and
inclined loading (Fig. 6.62a), the zone A'CB (Fig. 4.9,
Chapter 4) is not an elastic rigid wedge, and it is at the
state of failure. Also, the finite element results do
not produce the/complete failure zone which contains the
whole passive zone (see Figures 6.56b, 6.57b and 6.62a).
This indicates that, in the finite element analysis, the
rupture is produced by a local shear failure mode (Séc*ion 4.2)
of Chaptef 4), where tﬁe ultimate failure is achieved in a
load-settlement plot, but the rupture figure is not yet
completed (see Fig. 4.1 of Chapter 4).

'By using a stiffer stress-strain curve, the failure
zéne from the finite element analysis can be enlarged and

the general shear failure mcde (section 4.2 cf Chapter 4)
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can be achieved. Figure 6.63 shows the failure zones for
two undrained cases 45 and 46 (Table 5.2,-Chapter 5) at
safety factors equal to unity. This figure indicates
that the failure zone for case 45 (;tiffer stress—strain
curve) is laterally greater than the failure zone for case
46 (softer stress-strain curve). By further increase of
the applied load, the failure zone for case 46 expands
laterally, and at the safety factor equal to 0.94, the
lateral boundaries of the failure zones are the same for
both cases. However, for these two cases the stress—-strain
curves.were not stiff enough to produce a general shear |
failure mode.

Also, in Fig; 6.64, the failure zone from the finite
element analysis for an inclined and eccentric load on a
nonhomogenéous clay (case 7, Table 5;2, Chapter 5) is com-
pared with the rupture figure given in Chapter 4, section
(4.10.4). The agreement between this rupture figure and

the failure zone from the finite element analysis is good.

6.3 Finite Element Results, Cyclic Loading

6.3.1 General
This section is concerned with the finite elemept
results for cyciic loading. The cyclic loads may §ccur
rapidly (earthguakes, explosive loads etc.) or at slower
rates (wave loads) where dynamic effects are negligible.
From these, the latter form is considered in these studies.
In studying the behaviour of off-shore structures

under dead weight loading and cyclic wave loading, as.
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mehtioned by Vaughan et al (1976), clays, in beds of modest
thickness, may remain substantially undrained during both
dead weight loading and the critical design wave loading,
and thus the undrained loading of ciays is likely to_be the
critical design condition for the off-shore structures.

The progressive weakening of the soil properties due
to cyclic loading (as the effective stresses are decreasing)
is not considered in these analyses, and in all cases
studied, a stable rocking is achieved after a few cycles.

Figures 6.65 to 6.129 represent the finite element
results for the cyclic loading of the clay under undrained
conditions. In these figures, the numbers on the curves |
designate the loading stages, as discussed in Chapter 5,
section (5;3.2). Properties and geometries of the different
cases are given in Table 5.3 of Chapter 5. ﬂ

Discussion of the results is divided into two sub-
sections, namely, displacements and stresses. In each sﬁb—
section; the effects of cyclic loading, correct shear
unloading and reibadingrmodelling, non-linzarity, and an
increase in the overall safety factor against ultimate

failure on displacements and stresses are considered.

6.3.2 Displacements

Figures 6.65 to 6.82 represent the displacements for
different cases. For all cases, except the linear case 48
(Table 5.3, Chapter 5), undrained shear strength and modﬁ—

lus increase linearly with depth. For cases 42, 48 and 49,
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the shear unloading and reloading modelling is according
to Fig. 5.1c of Chapter 5, and both unloading and reloading
moduli are equal to 3.5 times the initial modulus. For
cases 47 and 47,1 both unloading ana reloading moduli are
equal to the tangent modulus at the corresponding stress
level (see also Fig. 5.1la of Chapter 5).

Discussion on‘the results will be presented frcm

case 42 to case 49,respectively.

Case 42 Figures 6.65 to 6.69 represent the displacement
plots for cése 42 (Table 5.3, Chapter 5). Figure 6.65
shows the vertical and horizontal settlements of the foot-
ing, under cyclic ioading, and compares them with those
given by Milovic et al (1970) using an average modulus.

For the fifst half cycle of the wave load, a load reduction
factor equal to 4.5/11 is used, which is calculated from
the theory of subgrade reaction (see section 5.3.2 of
Chapter 5). This figure indicates that the rocking of the
footing is stable after 1.5 complete load cycles.

Figure 6.65 also shows that the settlements and the
tilt given by Miiovic et al K1970), using an average modu-
lus, are greater than those for case 42. Fof the vertical
ioad, the difference in settlementsiis 7%. After ﬁhe
first half load cycle, the footing tilt given by Milovic
et al (1970) is almost three times the tilt for case 42.
This difference in footing tilt increases by furthef
rockiﬁg, because the shear unloading and reloading modeliing

of case 42 tends to decrease the tilt, before a stable
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situation is achieved, as the rocking is continued.

Figﬁre 6.66 shows the settlement and heave for case
42, and it indicates that the effect of cyclic loading is
to increase both settlement and heéve. After a stable
rocking is achieved, centre settlement is increased 15%,
and the maximum increase in heave is 40% compared to the
values at the end of previous cycle. These effects
decrease by depth as shown on Fig. 6.67.

The horizontal displacements for case 42 are shown
on Fig. 6.68. This figure indicates that the horizontal
displacements are stable after 1.5 complete cycles.

Figure 6.69 represents the centre horizontal and
vertical settlements plus the differential settlement between
two edges of the footing. This figure shows that, before
a stable rocking is achieved, the centre vertical séftlement
increases, the centre horizontal settlement and the diffe-
rential settlement between two edges decrease, as the rock-
ing continues. Obviously, this effect is due to a larger
unloading and réloading modulus, compared to the tangent

modulus.

Cases 47 and 47,1 For these two cases, unloading and

reloading paths are on the first loading curve (sée Fig.

5.1la of Chapter 5). All the parameters are the same for
both cases, except the load reduction factor used at the

first half loadiné cycle. For case 47, this reduction ‘
factor is 4.5/11, while for case 47,1 it is 0.5.

The rocking in these two cases is stable after the
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first complete load cycle (Figures 6.70 and 6.71). The
symmetry of displacements is achieved in case 47,1 (see
Fig. 6.71). Also,in Figures 6.70 and 6.71 the results for
case 47 and 47.1 are compared with.those given by Milovic
et al (1970), using an average modulus. After application
of the vertical load (like case 42), the settlement given
by Milovic gﬁ al (1970) is 7% greater than the settlements
for these two cases. The tilt of the footing given by
Milovic et al (1970) is almost twice that of thqse for case
47 and 47,1.

Figures 6.72 and 6.73 show the settlement, the heave,
and the horizontal displacement for case 47. Obviously,
as the unloading, reloading and loading moduli are equal,

a stable rocking is achieved after the first complete load
cycle. ’

Figure 6.74 represents the centre vertical and hori-
zontal settlements, and the differential settlement between
two edges, for case 47.

By comparing the results for case 42 (Figures 6.65 to
6.69) with the results for case 47 (Figures 6.70 to 6.74),
it can be concluded that the correct shear uﬁloading and
reloading modelling (caée 42) tends to:- |

1. increase the number of load cycles required for

the achievement of a stable rocking, and

2. decrease displacements and tilt of the footing.

Case 48 Figures 6.75 to 6.78 represent the displacements

for case 48 (Table 5.3, Chapter 5).  For this case, the
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behaviour is linear, bcth unloading and reloading moduli
are equal to 3.5 E,, and the load reduction factor, used
at the first half load cycle, is 4.5/11.

Figure 6.75 shows that the rocking is stable after‘
the first complete load cycle. Also, in this figure the
finite element results are cbmpared with those given by
Milovic et al (1970). After application of the vertical
load, the settlement given by Milovic et al (1970) is 25%
more than the settlement for case 48. | Afﬁer first half
cycle of the rocking, the footing tilt given by Milovic
et al (1970) is almost 5 times the tilt for case 48. By
further increase of the rocking, and before the achievement
of a stable sitﬁation, this difference in tilt increases.

Figures 6.76 and 6.77 give the settlement, the heave
and horizontal displacements for case'48; In both figures
the rocking is stable after the first complete cycle.
However, the interesting feature of Fig. 6.76 is that, at
the end of the first compiete cycle, the footing is almost
horizontal (zexo tilt).

Figure 6.78 gives values of‘centre vertical and hori-
zontal settlements, and the differential settlement between
two edges. This figure also indicates that the rocking is
stable after the first complete cycle, and at the end of
each complete cycle (loading stages 3, 5 etc.), the differen-
tial settlement between the two edges is zero.

By comparing the results for case 42 (Figures 6.65
to 6.69) with the results for case 48 (Figures 6.75 to 6.78),

for the effects of non-linearity on displacements, it can be



214

concluded that the non-linearity tends to increase the
number of cycles required for the achievement of a stable

rocking, and to increase the displacements.

Case 49 Figures 6.79 to 6.82 répresent displacements for
case 49 (Table 5.3, Chapter 5). All parameters for case
49 are the same as those for case 42, except the horizontal
load. The applied horizontal load for case 49 is 60% of
that for case 42, which results in an increase for the over—
all safety factor against ultimate failure from 1.57 to.
2.57 (see also Table 5.3 of Chapter 5). |

By comparing the results for case 49 (Figures 6.79
to 6.82) with those for case 42 (Figures 6.65 to 6.69), it
is clear that the overall behaviour is the same in both
cases, and 40% reduction in horizontal load dces not affect
the behaviour from the qualitative point of view. Therefore,
the conclusions for case 42 will also be valid for éase 49,

for displacements.

6.3.3 Stresses

Figufe 6.é8 shows the distribution of contact pressure,
contact shear stress, vertical stress and horizontal stress
given by Milovic et al (1970), using the same loading
. stages as for cases 42, 47, 43 and 49. These streéses will
be compared to those from the finite element analyses,
later in this section.

Discussion on the stresses from the finite element

analyses are divided into the following subsections: -



1. contact pressure and shear stress,
2. stress distribution,

3. stress changes and stress paths, and
4. mobilized shear stress.

6.3.3.1 Contact Pressure and Shear Stress

Figures 6.84 to 6.93 represent the contact preséures
and contact shear stresses for different cases. .The con-
tact pressures considered in these figures are equal to
the average of four Gauss points stresses, minus the
vertical initial stresses at the same level.

In Figures 6.84 and 6.85 the contact stresses for
case 42 (Table'5.3, Chapter 5) are given. For this case,
both unloading and reloading moduli are equal to 3.5 E;.
For these stresses, the rocking is stable after 1.5 com-
plete load cycles.

By comparing the contact stresses for case 42 with
those given by Milovic et al (1970) in Fig. 6.83, it is
clear that the contact pressures for case 42 are a maximum
of 10% gfeater than those given by Milovic et al (1970), on
the footing centre line. Near the edges, due to the non-
linearity effect in case 42, the contact pressures from the
finite element analysis are smaller than those given by
Milovic et al (1970). The contact shear stresses for case
42 are on average 10% less, on the centre line, and on
average 25% more, near the edges, than those given by

Milovic et al (1970).
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- Figures 6.86 to 6.89 represent the contact pressures
and the contact shear stresses for cases 47 and 47,1 (Table
5.3, Chapter 5); For these two cases, unloading and reload-
ing paths are on the first loading curve {see Fig. 5.la of
Chapter 5). All parameters are the same for both céseé,
except the load reduction factors, which are 4.5/11 for
case 47 and 0.5 for case 47,1. |

Figures 6.86 to 6.89 show that in these two cases,
stresses are stable after first complete cycle. For case
47,1, symmetry is achieved. »
| By comparing the r?sults for case 42 (Eu = Er = 3.5 Ei)
with the results for case 47 (Eu = Er = Et), Figuresv6.84

to 6.87, it is clear that correct unloading and reloading

modelling (case 42) tends to:-

1. increase the contact pressure at the centfal

section of the footing and decrease near the

edges,

2, increase the number of load cyclies required for
the échievement of the stable stresses, and

3. increase the contact shear stress in the loaded

half section of the footing, and decrease in

the other half.

Figures 6.90 and 6.91 give the contact pressures and
the contact shear stresses for case 48 (Table 5.3, Chapter
5). The beheviour is linear for this case, and both
unloading and reloading moduli are equal to 3.5 Ei’ These

figures show that the stresses are stable after first com-
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plete load cycle.
By comparing these figures with the results for case
42 (Figures 6.84 and 6.85), it is clear that the non-

linearity {(case 42) tends to:

1. increase the contact stresses at the central
section of the footing, and decrease near the
edges, and

2. increase the number of cycles required for the

achievement of the stable stresses.

In Figures 6.92 and 6.93 the contact pressures and
contact shear stresses for case 49 (Table 5.3, Chapter 5)
are given. All parameters used in case 49, are the saﬁe
as those for case 42, except the applied horizontal load,
which is 60% of that for case 42.

By comparing the results for case 42 (Figures 6;84
and 6.85) with the results for case 49 (Figures 6.92 and
6.93), it is clear that by 40% reduction in horizontal
load, the overall behaviour is not changed from the quali-
tative point of view, and for case 49 (like case 42) the
stable stresses are achieved‘after 1.5 complete load cycles.
However, obviously, the contact shear stresses are ;educed

for case 49.

6.3.3.2 Stress Distribution

Figures 6.94 to 6.106 represent the principal stress
distribution for different cases. The stresses considered

in these figures are equal to the average of four Gauss
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points stresses, minus the initial stresses at the samé
level.

Figures 6.94 to 6.96 represent the principal‘stresses
for case 42 (Table 5.3, Chapter 5). These figures indi- |
cate that the principal stresses become stable after 1.5
complete load cycles. Also, from these figures, it is
clear that the effect of rocking on stresses is a minimum
near the centre line, and it increases towards the edges
and outside the loaded area. The effect of rocking on
minor principal stresses decreases very rapidly with depth.

As the principal stress rotation is very small near
the centre line, therefore Fig. 6.94 can be compared with
Fig. 6.83c given by Milovic et al (1970). This comparison
indicates that the stresses from case 42 (at the end of
dead weight loading) are 12% more than the stresses given
by Milovic et al (1970), near the ground surface. At
great depths (e.g. near the underlying bedrock), the stresses
from case 42 (at the end bf dead weight loading )are 10%
smaller than those given by Milovic et al (1970){

Figures 6.97 to 6.99 show the principal stresses for
case 47 (Table 5.3, Chapter 5). These stresses are stable
after the first complete load cycle. The effect of rock-
ing on the stresses is a minimum near the footing centre
line, and it increases toward the edges and outside the
loaded area. For minor principal stresses, the effect of
roéking decreases very rapidly with depth.

By comparing the results for case 42 (Eu =E_ = 3.5 Ei)

r

with the results for case 47 (Eu = Er = Et), Pigures 6.94
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to 6.99, it is clear that the correct shear unloading and

re loading modelling (case 42) tends to:-

1. increase the number of load cycles required
for the achievement of stable stresses during
rocking,

2. decrease the minor principal stresses at shallow
depths, and .

3. increases the major principal stresses at the
central section of the footing, and decreasev

them near the edges and outside the loaded area.

Figures 6.100 to 6.103 represent the principai stresses
for linear case 48 (Table 5.3, Chapter 5). For this case,
both unloading and reloading moduli are equal to 3.5 Ei’
Stresses are stable after the first complete load cycle.
The effect of the rocking on stresses is minimum neaf the
footing centre line and increaées towards edges, ana out-
side the loaded area. The effect on the minor principal.
stresses decreases very rapidly with depth.

By comparihg the results for non-linsar case 42
(Figs. 6.94 to 5.96) with the results for linear caée 48
(Figs. 6.100 to 6.103), itvis clear that the non-linearity

(case 42) tends to:-

1. increase the number of load cycles required for
the achievement of the stable stresses,
2. increase the major principal stresses at the

central section of the footing, and decrease
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near the edges and outside the loaded area, and
3.  increase the minor principal stresses at shallow

depths and decrease at great depths.

Figures 6.104 to 6.106 represént the principal stresses
for case 49 (Table 5.3, Chapter 5). Stresses are stable
after first 1.5 coﬁplete load cycles. The affect of the
rocking on stresses is a minimum near the footing centre
line and increases toward the edges, and outside the loaded
area. The effect on the minor principal stresses decreases

very rapidly with depth.

6.3.3.3 Stress Changes and Stress Paths

Figures 6.107 to 6.111 represent the principal stress
changes and rotations during dead weight and cyclic loading,
for different cases. The stresses considered in these
figures are the stresses in one of the Gauss points minus
the initial stresses at the same level.

All these figures show large rotations of principal
stresses beneatﬂ and outside the loaded area. However,
toward the outside of the loaded area, these rctations
increase considerably. in all cases, large stress changes
occur just under the edge of the footing.

By comparing the results for case 42 (E = E_ = 3.5 Ei)

u r

and case 47 (Eu = E_=E Figures 6.107 and 6.108, it is

r £
clear that the correct unloading and reloading modelling
(case 42) leads to smaller principal stress rotations and
changes compared to the case without unloading and reload-

ing modelliing {case 47). Cutside the loaded area, the

(t]
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principal stress rotations for case 42 are almost half bf
those for case 47, when the cyclic loading causes a reduc-—
tion in shear stress below that caused by dead weight load-
ing (loading stages 2,4 etc. in these figures).

By comparing Figures 6.107 and 6.110 (cases.42 and
48), it is clear that the non-linearity (case 42) tends to
decrease the principal stress changes near the edges, and
to decrease the principal stress rotations beneath the foot-
ing and to increase them outside the loaded area. Outside
the loaded area, the principal stress rotation for case 42 is
almost twice the rotation for case 48 when the cyclic 1oading
causes a reduction in shear stress below that caused by the
dead weight loading (lcading stages 2,4 etc. in these figures).

By comparing Figures 6.107 and 6.111, it is clear
that, just outside the loaded area, the principal étress
rotations for case 49 (overall safety factor against ulti-
mate failure = 2.57, Table 5.3, Chapter 5) are a maximum of
50% more than those for case 42 (overall safety factor
against ultimate failure equal to 1.57, Table 5.3, Chapter
5), when the cyclic loading causes a reduction in shear
stress below that caused by the dead weight loading.

Figures 6.112 to 6.116 represent some total stress
paths for different cases. For all cases, the maximum
stress changes occur just under the footing edge.

These figures also indicate that the non-linearity
and the correct unloading and reloading modelling tends to

increase the shift in the stress paths per cycle. The
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linear case 48 gives greater deviatoric stresses than the
non-linear case 42.

Figures 6.112 and 6.116 show that the slope of cyclic
stress paths for case 42 (overall safety factor against
ultimate failure = 1.57, Table 5.3, Chapter 5) are less
than those for case 49 (ovefall safety factor against ulti-
mate failure = 2.57, Table 5.3, Chapter 5). In other
words, the change in deviatoric stress during rocking.is
greater for case 49 than that for case 42. Also, a_40%
reduction in the horizontal load (case 49) does not increase
the safety factor against local failure (see also Figures

6.126 and 6.129).

6.2.3.4 Mobilized Shear Stress

Figures 6.117 to 6.125 represent the contours of
mobilized shear stress ratio for different cases. In Fig.
6.117 the stress ratios after application of the vertical
load are shown. Figures\6.118 to 6.120 give the contours
of shear stress ratio for case 42. In Figures 6.121 and
5.122 these contours for case 47 are given. Finally, .
Figures 6.123 to 6.125 represent these contours for case
49 (for differences between cases, see Table 5.3, Chapter 5).

These figures indicate that the rocking tends to
increase the size of mobilized shear stress ratio contours,
before a stable situation is achieved. At shallow depths,
during rocking, the mobilized shear stress ratio contours
spread downward under the loaded edge of the footing, and
they spread sideways under the unloaded edge of the footing

(see Figures 6.117 to 6.125).
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6.3.4 Behaviour of the Solution

Figures 6.126 to 6.129 represent the stress-strain
curves for different cases. In all cases, the stress-—
strain curves followed in the programme coincide well with
the nominated stress-strain curves as given to the computer.

However, in Figures 6.126 and 6.1292, when the correct
unloading and reloading modelling is used, during reload-
ing, a small error in stress path,vdue té rather large load
increments, occurred. This error can be corrected by
using much smaller load increments, obviously, with higher

computer cost.

6.4 Application of the Analyses to Actual Structures

The real foundation problem is three-dimensional, and
non-linear finite element analyses in three dimensions
require very large computer capacities. It is thus desi-
rable to consider ways of applying the two dimensional
analysis to the three dimensional problem. The simplest
method, for stability analyses only and as used in bearing
capacity theory, is to deal with load eccentricity by
assuming an equivalent rectangle, to deal wiﬁh load incli-
nation and foundation variability by two dimensional theory
and to use an empirical shape factor to allow for three
dimensional effects. An alternative, sultchle for stress
analyses, is to establish an equivaleﬁt.rectangle for the.
actual foundation, and to perform a two-dimensional analysis
of a strip of the same width as the rectangle. A second

alternative is to use a linear elastic analysis, which can
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be performed more readily in three dimensions, to predict
the proportion of the load which 1is carried by the central
strip of the actual foundation, and to perform a non-linear
analysis using this proportion of the total load as the
load per unit length on a strip foundation with a width
the same as the central strip of the actual foundation
(Vaughan et al, 1976).

For cyclic loading, the results of three-dimensional
analysis could be deducted from the results of two-dimen-
sional analysis by using the proper coefficients, which are

(for a point) function of the zone (El-Ghamrawy, 1978).

6.5 Conclusions

The non-linear finite element technique was used to
study the undrained behaviour of shallow foundations under
monotonic and cyclic loadings.

vThe conclusions made from these studies will be con-
sidered in two groups, namely, monotonic loading and cyclic

loading.

6.5.1 Monotonic Loading

The finite element results were compared with thé
closed form solutions. Reasonable agreement was found
between the finite element results, priér to local failure
occurring, and the elastic solutions. The agreement was
good between the ultimate failure loads and the failure
zones from the finite element analyses (for both vertical,

and inclined and eccentric loading on either uniform clay
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or nonhomogeneous clay) with those from the plasticity
solutibns.

Effects of the layer thickness, the side boundaries
and footing rigidity on stresses, displacements and failure
loads were studied, and the same results as reported-in the
literature (e.g. Héég et al, 1968; and D'Appolonia and
Lambe, 1970) were found. Thus, soundness of the technique
used was confirmed.

The effect of the material non-linearity is to increase
the vertical stress at the central section of the footing
and to decrease it near the edges and outside the loaded
area; also, to increase the horizontal stresses, and dié—
placements.

| Corréect modelling of the shear unloading (with KO
greater than one) tends to decrease settlement and heave;
and to increase the vertical S£ress‘at the central section
of the footing and decrease it near the footing edges.
The effects on stresses are small, for the cases considered,
and decrease as the ultimate failure is approached.

The ratio EO/AB (nonhomogeneity) has a marked effect
on stresses and displacements. |

Tt was found that the side boundaries distance from
the footing centre line, layer thickness, initial stresses
and correct modelling of the shear unlbading have no effect
on the ultimate failure load. However, the safety factor
at first local failure is affected by the side boundary
distance from the centre line and by the assumed initial

stresses,
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The ratio Cuo/pB (nonhomogeneity) has a marked effect
on the ultimate failure load and the safety factor at first
local failure. It was found that by increasing the ratio
Cuo/pB, the safety factor at first iocal failure is
decreased, provided that the ratio £ = (1—Ko)olvo/2cu is
equal to zero.

From the qualitative point of view, the effect of
the ratio £ on the safety factor at first local failure of
a nonhomogeneous clay is-the same as for a uniform clay.

For a rigid footing with vertical load, on either
uniform clay or nonhomogeneous cléy, the failure zone starts
from the footing edge, and by increasing the applied 1oéd |
it spreads downwérd and toward the footing centre line.

The spread of the failure zone to the centre line is usually
coincident with a sharp break in the load—settlement’curve.
By further increase of the appiied load the failure zone
continues to spread outward from the footing and upward
toward the footing. For the nonhomogenecus clay, the
failure zone is shallower than the failure zone for unifofm

clay.

.

These failure zones, in both uniform and honhomogenééus\
clays, spread to the underneath of footing, and the bbundéry
between the unfailed rigid wedge and thg failed zone does
not pass throuch tha footing edges. fhis suggests that,
in order to satisfy the basiq condition of the kinematical
admissibility,the boundéry between the unfailed rigid wédge
and the failed clay must be tangent tc the footing base, and

cannot be a straight line.
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These studies indicate that the results are highly
sensitive to soil modulus, strength and in-situ stresses.
Therefore, in a stress analysis the greatest attention
must be given to the correct selection of the parameters
used, in order to obtain results as close to the reality

as possible.

6.5.2 Cyclic Loading

The effects of the cyclic ldading, correct shear
unloading and reloading modelling (Fig. 5.1c, Chapter 5)}
- and the material non-linearity on stresses and displacements
were studied, using the finite element method. Findings
from these studies are as follows:-

The effects of rocking (before a stable situation is

achieved) are to:

1. increase both settlement and heave, but
decrease the footing tilt, and
2. increase the size of the mobilized shear stress

ratio c¢ontours.

Also, it was found that the effect of rocking on the
principal stress changeé is considerable near the footing
edges, and the effect on the principal stress rotations is
congiderable outside the loaded area.

The effects of correct unloading and reloading
modelling (compared to case without unloading and reloéding

modelling) are to:
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increase the number of load cycles required

for the achievement of a stable rocking,

decrease displacements and tilt of the footing,
decrease the minor principal stresses at shallow
depths, and increase the major principal stresseé
at the central section of the footing and
decrease £hem near the edgés and outside the
loaded area, and

decrease the principal stress rotation.

The effects of material non-linearity (compared to the

linear case) are to:-

1.

increase the number of load cycles required for

“the achievement of a stable rocking,

increase displacements,

increase the major principal stresses at the
central section of the footing and decrease them
near the edges} and outside the loaded area,
increase the minor principal stresses at shallow
depths and decrease them at great depths, and
decrease the principal stress rotations beneath
the footing and increase them outside the loaded

area.
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Table 6.1 Values of Failure Pressures (from theoxry)
Case No. ;ﬁ:!gﬁﬁz Reference Case No. ;?2;;5?; Reference
KN/M? KN/M?
1 46300 Eg. 4.7 25 170 Eq. 4.37
2 4630 Eq. 4.7 26 149 Eg. 4.37
3 257 Eg. 4.31 27 129 Eg. 4.37
4 215 Egq. 4.34 28 144 Eg. 4.38
5 77.1 Egq. 4.39 29 62.6 Eq. 4.38
6 77.1 Eg. 4.39 30 30.3 Eq. 4.38
7 160 Eq. 4.39 31 9.3 Eq. 4.38
8 160 Eq. 4.39 32 81.7 Eq. 4.39
9 215 Eq. 4.34 33 35.8 Eq. 4.39
10 160 Eq. 4.39 34 17.3 Eq. 4.39
11 215 Eq. 4.34 35 5.3 Eq. 4.39
12 215 Eq. 4.34 36 212 Eq. 4.38
13 160 Eq. 4.39 37 133.5 Eq. 4.39
14 160 Eq. 4.39 39 356 Eq. 4.39
15 160 Eq. 4.39 40 356 Eq. 4.39
16 160 Eq. 4.39 42 315 Eq. 4.39
18 270 Eq. 4.31 43 890 Eq. 4.34
19 247 Eq. 4.35 44 514 Eq. 4.31
20 225 Eq. 4.35 45 890 Eq. 4.34
21 202.5 | Eq. 4.35 46 890 Eq. 4.34
22 180 Eq. 4.35 47 315 Eq. 4.39
23 215 Egq. 4.34 49 427.5 Eg. 4.39
24 192 Eq. 4.37 |
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CHAPTER 7

CRACKING OF EMBANKMENT DAM CORES

7.1 Introduction

The function of an embankment dam, namely the retention
of water with acceptable leakage and without shear failure

or sliding, leads to the following stability considerations:-—

1. Stability of slopes and foundations and é
reserve against failure by sliding.

2. Internal stability.of the embankment so0ils when
their particles are subjected to drag forces

as seepage from the reservoir occurs.

The internal stability can be ensured by the proper
design of transitions from one material to another, but a
special problem arises when cracks form in the core of a
dam.

In this chapter a brief review of the cracking, load

transfer, and hydraulic fracture is given.

7.2 Brief Description of Cracking

7.2.1 General

It is now generally known that apart from overtopping
by flood water, internal erosion by seepage is the most
common cause of the catastrophic failures of embankment
dams. As a large portion of seepage failures are due to
piping which has been initiated by cracks in the embankment

(Sherard et al, 1963), cracking is seen to be one of the
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main causes of failure in embankment dams.

A crack is considered to be an opening in the fill;
and it is formed wheh the tensile strength of the soil 1is
exceeded. This tensile stfength is éenerally small, and
its value may depend on negative pore pressure which will
be destroyed by seepage. The crack remains open if the
water pressure in it equals the total pressure on the plane
of the crack (Nonveiller and Anagnosti, 1961).

As the formation of a crack results in a redistribution
of stresses and strains in the vicinity of the crack (Vaughan,
1970), therefore, once a crack has formed the damage cannot
necessarily be undone by returning the loads on the struc-

ture to the state they were in before the crack occurred.

7.2.2 Causes of Cracking

Cracks can occur during construction and operation
of an embankment dam due to a number of causes, such as,
differential foundation settlement, irregularitiesvin a
rigid foundation, arching of the core, differences in the
properties of core material, shrinkage, and hydraulic
fracture. In Table 7.1 a selection of the mechanisms which
are considered to cause cracking have been tabulated, and
for each case a sketch and a brief descripticn of the crack-
ing mechanism is given. The names of a few dams for which.
these mechanisms have been observed (or postulated) to be
the cause of cracking, are also given as examples.

Table 7.1 considers separately the transverse and the
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longitudinal cracking. The transverse cracks are likely
to constitute a greater threat to the safety of an embank-
ment dam than longitudinal cracks, for they may provide a
path for leakage through the impermeable core which could
result in a piping failure.

A more general discussion of the causes of cracking
has been given by Truscott (1977).

It has to be mentioned that the existence of cracks
through the core of a dam does not necessarily mean that
the performance of the dam is adversely affected. The
soil around the crack may either swell or collapse to seal
it, or, with effective filter and transition zones, material
may be deposited in the c¢rack to heal it. In fact, it is
suspected that a considerable number of dams may have cracked
and subsequently sealed themselves without anyone's knowledge.
However, as cracks are one of the main causes of disastrous
failures in embankment dams, efforts must be made either +to
prevent their occurrence or to minimize their effects.

The ASCE Committee on Earth and Rockfill Dahs (1967)
has given the basic defensive and construction procedures
to protect aéainst the cracking and the resultant hazards

-0of the piping as follows:-

1. Use of a wide transition zone, or of properly
graded filter zones of adequate width. |

2. Special treatment of foundation and abutment
conditions to reduce sharp differential

settlement.
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3. Arching the dam horizontally between steep
abutment slopes.

4. Adjustment of_construction seéuence for the
different zones or sections.

5. Requiring special placement méthods for
questionable materials. |

6. Thorough compaction of rock shells to avoid
inducing tensile stresses in adjacent core

material.

7.2.3 Mechanism of Cracking

Typically, stresses within an ideal homogeneocus
embankment in plane strain will always be compressive, and
there will be no cracks during i1ts construction. However,
the minor principal stresses within the fiil will generally
be less than the maximum seepage pressure which-may occur,
and thus there is a potential risk of cracks forming by
hydraulic fracture when the reservoir is filled (Vaughan,
1974).

Furthermore, the stresses within dam cores will
generally depart from the ideal case, due to differences in
stiffness of the different fill types in non-homogenous dams
and due to discontinuities in the geometry of the dam section
in both the transverse and the longitudinal directions.

In some cases the stresses may reduce sufficiently to form
the cracks.

The load transfer and hydraulic fracture will be

considered later, but first it is necessary to consider the
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situation in which cracks can form and remain open.

This section considers (1) cracks under "dry" condi-
tions i.e. cracks which»form above reservoir level and
which contain air, and (2) cracks undér "wet" conditions,
below reservoir level during impounding, which cont;in water.,

Vaughan (1976b) has given four situations for crack |
formation (Fig. 7.1):-

(1) Dry cracks, formed by undrained failure. Such
cracks are likely only during construction. A substantial-
negative pore pressure is implied. The undrained cracking
is only likely in fills of very low permeability. The
presence of negative pore pressure may give a fine'grained
soil a substantial tensile strength, which must be overcome
before tensile cracking occurs.

(2) Dry cracks, formed by drained failure. | hAgain,
they are likely only during construction. A negative pore

ressure may exist, maintained by capilliary effects at
exposed seepage boundaries, and the tensile strength in

terms of total stress, which must be overcome before cracking
can occur, will dependvoﬁ the magnitude of the negative

pore pressure and the grading of the soil. Such cracks can
form in most soils, if the tensile strength in terms of

total stress is sufficient for the crack to be stable and
remain open.

(3) Wet cracks, formed by undrained failure. Such
cracks can only form during or after impounding of the

reservoir. If the seepage pressure is applied rapidly
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within some initial crack or imperfection then tensile
failure may occur by undrained failure.

(4) Wet cracks, formed by drained failure. Such
cracks may form during or after impouﬁding, when there is
a general increase in seepage pressure in the core.  The
tensile strength to be overcome will be negligeably small
in mos£ instances. Generally, tensile failure must be
preceded by shear failure.

If dry cracks form during construction, they are
unlikely to be closed by the increasing water load on the
dam, and thus they will eventually be subjected to seepage

flow through them.

7.3 Arching of the Core and Load Transfer

If the material of the core is more compressible than
that of the adjacent shells or abutments, the differential
settlement across the boundaries between these zones is
likely to inhibit the settlement of the core, transferring
load from the core to the shells or abutments. Hence the
vertical stresses in the core are reduced and those in the
shells or abutments are increased until the difference
reaches the shear strength of the weaker material. This
reduction in the stresses in the core is known as the arch-
ing or load transfer and may cause transverse cracks.

Various modes of arching and load transfer and changes
in modes may occur iﬁ an earth and rockfill embankment
during its lifetime. Load transfer may exert a significant

nfluence on the characteristics of embankment behaviour
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which are the displacements and the strains as well as the
earth pressure and the pore water pressure that are observed.
The effects of load transfer on the dam behaviour are a
function of the compressibiiity of the core materials in
conjunction with the settlement characteristics éf'the

shell materials. The width of the core has also some
effects on the degree of load transfer.

A comprehensive discussion of the different modes of
load transfer has been given in a paper by Squier (1970).

Pressure cell measurements have revealed a significant
reduction in both vertical and horizontal stresses at |
depth in thin cores of several rockifill dams. This was
attributed to greater compressibility of the core with
respect to the shells. The lower than expected settlements
~and pore water pressure of puddled clay core in Selset Dam
were attributed to the greater downward movement of the
core with respect to the shells and transfer of load from
the core to the shells (Bishop and Vaughan, 1962).

In the papers by Vaughan (1970 & 1972), Vaughan et al
(1970), and Kjaernsli and Torblaa (1968) developments of
serious cracks in the cores of two dams, Balderhead Dam
and Hyttejuvet Dam, have been reported. In both cases the
cause of cracking has been attributed to a combination of
two mechanisms: arching at the core-shoulder boundaries, and
a form of hydraulic fracturing due to the pressure of the
impounded water.

If the zoned dam has a soft shell and a stiff core,
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then the load transfer occurs from the shell onto the core.
This mode of load transfer could cause a local over-stress
in the core leading generally to additional resistance to
cracking.

Kulhawy and Gurtowski (1976) analysed the phenomenons
of load transfer and hydraulic fracturing using‘the finite
element method. Their conclusions for the effect of soil

properties and dam's geometry on the arching are as follows:-

(1) A dam with a dense shell, regardless of geometry,
will exhibit a large load transfer.

(2) As the core becomes wetter, the load transfer
increases.

(3) For core compacted dry of optimum, the load
transfer is nearly constant for the central 2/3 to 3/4
.heigh£ of the core. But for core compacted at optimum
water content or wet of optimum, the greatest load transfer
from the core to the shells occurs near the base of the dan.
This load transfer decreases with increasing height until
near the crest where the load is transferred from the shells
onto the core.

(4) A higher dam will exhibit slightly less load
transfer.

(5) Steeper side slopes to the core will cause more
load transfer.

(6) The effects of transition zone's properties and
thickness are very minor in all respects in influencing

cracking.
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Thinner (steeper) vertical core leads to more

Equivalent vertical and sloping core dams

exhibit eéSentially the same effect.

(9)

A thinner sloping core leads to more arching.

From these effects Kulhawy and Gurtowski (1976) con-~

¢luded that the dam with less cracking potential will be

one with:~

(1)
(2)
(3)
(4)
(5)

Medium dense shells;

flatter side slopes;

a thicker core (with flatter core slopes);
a core compacted drier than optimum; and
a sloping core (a vertical core leads to greater

potential for hydraulic fracturing).

7.4 Hydraulic Fracture

7.4.1 General

—_—

In recent years, cracking leading to excessive loss

of drill water in the cores of a number of embankment dams

has been attributed to the phenomenon of hydraulic fracturing;

that is, a condition leading to the creation and propagation

of a crack in a soil whenever the hydraulic pressure exerted

on a surface of the soil exceeds the stress on that surface

and the tensile strength of the soil.

7.4.2 Mechanism of Hydraulic Fracture

Hydraulic fracture may either occur under undrained

or drained conditions.
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7.4.2.1 Undrained Hydraulic Fracture

Undrained cracking can only occur if the seepage or
swelling face has only penetrated a small distance into
the core at the time the reservoir pressure reaches the
value required for hydraulic fracture. Thus the reservoir
level must rise very rapidly relative to the rate of advance
of the seepage or swelling front. This form.of cracking
is unlikely, as the rate of impounding in relation to the
permeability of the core will almcst always ensure that
there is a general increase in seepage pressure in at least
the upstream side of the core before cracking can occur.

Thus, the cases where undrained hydraulic fracture
is considered a serious possibility are adjacent to bore-
holes and in small rapidly filled flood control dams where
both f£illing and through going cracks occur in a matter of
hours (Vaughan, 1972).

Hydraulic fracture could also occur due to the water
penetrating preferentially into the core via some irregularities

such as a crack or more pervious layer (see next section).

7.4.2.2 Drained Hydraulic Fracture

For drained hydraulic fracturing, the seepage or
swelling face must have advanced a significant distance
into a low stressed area ofvthe core before the reservoir
reaches the level at which undrained fracturing would have
occurred.

Drained hydraulic fracture is considered to have
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occurred at Hyttejuvet Dam (Kjaernsli and Torblaa, 1968);
Balderhead Dam (Vaughan et al, 1970); and Teton Dam (Report
of the Independent Panel on Failure of Teton Dam, 1976).

A comprehensive discussion of drained hydraulic
fracture is given by'Vaughan (1970, 1976a and 1976b), and
the remainder of this section is derived from his analysis.

Drained hydraulic fracture is iliustratéd in Fig. 7.2.
The critical feature is the changes in stress which must
accompany increasing seepage pressures. Figure 7.2 shows
potential stress changes at a typical point Z within a core
if the reservoir first applies a water load to the upstream
face of the core and the seepage pressure within the core
builds up slowly. The total stresses (A) before impounding
are assumed to be compressive but less than the eventual
seepage pressure. There will be a small increase in
stress (A-B) due to the water load on the upstream side of
the core. There will then be a reduction in effective
stress (B'-C') as the seepage pressure increases, which
~might well produce a further increase in total stress (B-C).
When the effective stresses are reduced to C' shear failure
must occur. To cause tensile failure at D' there must be
a reduction in shear stress and substantial deformation of
the soil, which will modify the total stress, and probably:
increase it (C-D). Such an increase may prevent tensile
fracture occurring. Thus a critical situation is likely
only if this increase is insufficient to prevent fracture.

Drained hydraulic fracture is complicated by the
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difficulty in predicting the stress changes due to shear
failure induced by an increasing pore pressure. However,
a simple elastic model (shown on Fig. 7.3) can be considered
to study this effect (Vaughan, 1976b).

From this analysis, Vaughan (1976b) has given
two conclusioné, which are likely to be Valid'fdr the real
situation. Firstly, hydraulic frdcture will only occur if
the pore pressure due to seepage increases to a value equal
to or greater than the average total stress before impound-
ing. Secondly, the effects of the water load (ignored in
Fig. 7.3) and of swelling are likely to increase the avérage
total stress and so prevent cracking. It further follows
that soils with a low swelling potential present the greatest
risk of hydraulic fracture.

As shear failure results in redistribution of total
stress and an increase in minimum stress, so it can be con-
cluded that hydraulic fracture is more likely when the
initial stresses in the core at the end of construction are
very non-uniform, and low stress zones are local. Then
fracture may occur locally, before general.éhear'failure and
the stress redistribution accompanying it are induced |

(Vaughan, 1976b).



Table 7.1 Some Causes

(from Laing,
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of Cracking in Embankment Dams

1971)

Sketch of Mechanism

Description of Mechanism

Cxample
Dams *

Part I: Transverse Cracks

Varying Embankment Height

Variations in the embankment
height due to varying foundation
level and/or steep abutments
causes differential settlement
and cracks

WN OJg W

(-

Varying Depth of Compressible
Foundation

Differential Settlement of the
foundation causes transverse
cracks in the dam

11
14

Uneven Abutments

Uneven and overhanging areas of
the abutments develop localized
differential settlements causing
cracks to form

Arching of the Core

Greater compressibility of the
core than of the shells reduces
the stresses in the core suffi-
ciently to form cracks

* These numbers refer to
given mechanisms. Th

dams which have cracked due to the

e dams are listed in Part III.
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Sketch of Mechanism

Description of Mechanism

Example
Dams

5 _ Water
° Pregssure

Differential Crest Deflection

The crest initially deflects
upstream due to saturation, and
then the centre of the crest
deflects downstream due to the
water load. This causes trans-—
verse cracks near the abutments.

Poor Construction Procedures

Poor Construction may cause
differential settlements and
cracks. For example, a rapidly
built closure section settles
more than the remainder of the
dam, causing cracks.

15

Highly
compressible
soil

x/luf
Soil of low

compressibility

Localized Foundation Discontinuity

For example, a local lense of
highly compressible soil in the
foundation, or a stiff rolled-
£fill cutoff trench through a com-
pressible foundation cause dif fe-
rential settlements and cracks

16

Part II: Longitudinal
Cracks

8.

Settlement of Shells

Greater compressibility of the
shells than of the core develops
longitudinal cracks at the dam
crest, over the edges of the
core.

10
13
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saturation on first filling
developing longitudinal cracks
at the crest

Sketch of Mechanism Description of Mechanism Example
‘ Dams
9. Collapse of Upstream Shell on
Saturation
The upstream shell settles due 3

10.

P!

Collapse of Foundation Soils on
Saturation

Settlement of the foundation soils
due towetting starts at the up-
stream toe of the dam and pro-
gresses downstream as the foun-
dation becomes saturated on first
filling. This rotates the up-
stream shell about the core and
develops longitudinal cracks

° Water
Pressu

Downstream Crest Deflection

The reservoir water pressure
deflects the embankment down-
stream, causing longitudinal
cracks to form at the crest

13

12.

Spreading of a Soft Foundation

The soft foundation deforms
laterally, forming a vertical
crack in the base of the embank-
ment

17

Note: Part IIXII, which lists the example dams, is on the

following page.
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Table 7.1 Continued

Part III: The Dams given as examples above
No Name of Dam ° References
1. Balderhead Dam : Vaughan (1965), (1967),
(1970); Vaughan et al (1970);
Kennard, Knill and Vaughan
(1967); Kennard, Penman and
Vaughan (1967)
2. Cherry Valley Dam Sherard et al (1963)
3. Cougar Dam‘ Pope (1967)
4. East Braneh Dam Bertram (1967)
5. El Infiernillo Dam - Marsal and de Arellano (1967)
6. Hyttejuvet Dam Kjaernsli and Torblaa (1968)
7. Leobardo Reynoso Dam Marsal (1959)
8. - Marte R. Gomez Dam Marsal (1959)
9. Miguel Aleman Dam Marsal (1959)
10. Mud Mountain Dam Sherard et al (1963)
11. Portland Dam Leonards and Narain (1963)
12. Rector Creek Dam Leonards and Narain (1963)
13. Round Butte Dam ' Patrick (1967)
14. Shek Pik Dam Carlyle (1965)
15. Wister Dam Bertram (1967)
16. Woodcrest Dam Leonards and Narain (1963)
(17.) (Sea Embankments on the Bishop (1966c), Toms (1954)
North Kent Coast)
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CHAPTER 8
STRESS ANALYSTS OF EMBANKMENT DAM CORE WITH

EMPHASIS ON HYDRAULIC FRACTURE

8.1 Introduction

In Chapter 7 a brief review of cracking of embankment
dam cores was presented, together with the phenomena of
load transfer and hydraulic fracture in the core.

The stresses and stress changes in the core at the
end of construction and after impounding can be analysed
using the non-linear finite element method. From these
analyses it is possible to investigate the areas of low
stress and the likelihood of crack fqrmation.

The main purpose of this chapter is to demonstrate that
‘the development of seepage pressures throughout the core
during impounding reduces the risk of hydraulic fracture (as
predicted by Vaughan, 1976b). Therefore, the analyses
carried out in this chapter, consider the stresses and the
stress change in an idealised core with vertical sides at
the end of construction and during impounding. For impound-
ing three differenf forms of seepage Were simulated, namely,
flooding (with hydrostatic water pressure gradient every-
where), transient flow (with horizontal and vertical head
gradients), and local flow (with horizontal head gradient
only in a 1océl layer). Of these three forms of impound-
ing the latter two are much closer to reality than the first

one. The flooding is a fictitious form of impounding, and



it is simulated to study the effect of the hydrostatic
water pressure gradient on stresses and stress changes in
the core. |

In the analyses pérformed, both undrained and drained
soil properties were considered. Where undrained proper-
ties were assumed, stresses at the end of construction only
were analysed, and with drained properties, both construc-
tion and impounding were modelled. Both undrained and
drained results at the end of construction were compared

to the results given by closed form plasticity solutions.

8.2 The Finite Element Mesh

In order to minimize the computer cost and tb concen-
trate more elements in those areas of the dam which are of
prime interest for cracking and hydraulic fracture, only
the core of the dam was considered in the analyses. Effects
of shells on the core were modelled by applying springs at
the_side boundaries.

Figure 8.1 shows the finite element mesh used in the
analyses. The effects of the shells are modelled by apply-
ing springs horizontally and fixed vertically at the side
boundaries. For all cases considered, the spring stiffness
was assumed to be eqgual to 4 x 103 KPa. This value was
calculated from the theory of subgrade reaction by assuming
that if a force equal to 200 XN/mrun is applied to the
spring, a displacement equal to 0.05 m will be produced.
This is probably less stiff than typical embankment shells

but was adopted to ensure that arching would occur.
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8.3 Cases Considered in the Analyses

Three main cases were considered in these analyses,
together with two minor cases for the side boundary con-
ditions. Table 8.1 gives the soil properties used in the
main cases. The soil properties used in the minor cases
are given in section (8.6). | |

The first major case considered (case Ul, Table 8.1)
was undrained and the construction only was modelled. Two
values for the undrained shear strength (Cu = 60 KPa and
30 KPa) were used, together with the non-linear stress—_
strain curve shown on Fig. 8.2. The comparison was made
between the results of this case and those given by closed
form plasticity solutions, which will be discussed in
section (8.7.1). |

Two cases D1 and ST1 (Table 8.1) were drained and
modelled the construction together with the following
impounding. For both cases, the pore water pressure at the
end of construction was assumed to be equal to zero. Figure
8.3 shows the family of non-linear stress-strain curves used
for case D1. Also, for case D1, the tangential Poisson's
ratio was assumed to vary with the state of stress as given
in Table 8.1

In order to simplify the analysis and to minimize the
computer cost, the bi-linear stress-strain curves (Fig. 8.4)
were used for case ST1. Poisson's ratio was constant
(equal to 0.2) before the failure, and it was equal to 0.499

at failure.
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'For case D1, the unloading modulus and the4reloading
bmodulus were the same and equal to the initial modulus
(Eu = Er-= Ei’ see Chaptexr 5, Fig. 5.1c). For case ST1,
the unloading modulus was equal to the initial modulus and
the reloading modulus was equal to the tangent modulus at
i’ “r

‘the same state of stress (Eu = E;, E,. = E., see Chapter 5,

Fig. 5.1.b).

8.4 Analysis Procedures

For accurate analyses of the embankment dams, it is
necessary to simulate the placement of successive layers of
the embankment dam material. Clough and Wooaward (1967)
have examined the usefulness of both "layered" finite
element analyses (in which the placement of successive
layers was simulated) and "single-~1ift" finite element
analyses (in which the gravity body forces were applied to
the entire structure in one step). Their studies, for
homogeneous embankmentidams with linear elastic materiai
properties, indicate that the "single-1lift" analyses provide
reasonable stress distributions, but displacement patterns
are different from those calculated by means of "layered"
analyses and measured in real embankments.

Hamza (1976) showed that the material non-linearity
amplifies these differences in deformations.

However, by considering that in these analyses the
stresses are of prime interest, and the undrained shear

strength is not a function of the state of stress, for
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undrained case Ul (Table 8.1) single-lift analysis was
employed for construction. The material non-linearity was
dealt wiﬁh using the incremental quasi Runge-Kutta method
(explained in Chapter 2).

For drained cases D1 and ST1 (Table 8.1), as the
drained shearlstrength is a function of the state of stress,
so layered analyses were simulated for both construction
and impounding. As the result of this technique, the
probable progressive build up in stress due to placing the
layers causes gain in strength which closely simulates the:
actual sequence of construction.

The material non-linearity was dealt with using the
incremental quasi Runge—-Kutta method for case D1, and a
combination of the incremental tangential method and the
Newton-Raphson iterative method (explained in Chapter 2

and Appendix 2) for case ST1, in each layer.

8.5 Loading Seguences

The loading sequences employed in the analyées, were
construction and impounding. Impounding could have three
different forms, namely, flooding, transient flow and local
flow. 1In the following section these loading sequences are

discussed.

Construction . In simulating the construction of an embank-

ment dam, the loads applied due to placing a layer represent
the weights of the added elements. The weight of each

element is distributed equally among its nodes, in accordance
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with the usual procedures for applying body forces (soil
unit weight). In drained analyses, for each step of placing
a layer, drained soil properties were used for the new
layer, with zero weight and small stiffness (E = 5 KPa)
assumed for the layers above.
A more general discussion of simulating the cénstruc—
tion in layers using this technique is given by Hamza (1976).
For undrained case Ul, where single-lift analysis
was employed, the undrained soill properties were used for

the whole domain.

Flocoding In simulating the appliéatioh of water loads to
the embankment dam, the loads are cbnsidered in two forms -
buoyancy forces (due to flooding) and seepace forces (due
to transient and local flows). The buoyancy forces are
equal to the unit weight of water multiplied by the area of
the submerged elierentes. These forces act vertically
upward, and are distributed equally among the nodes of each
element, in the same manner as the body forces. ‘In the
programme the gradients of water pressures due to these
buoyancy forces were calculated and then applied as body
forces (see Appendix 2). Drained soil properties were

used for all layers and in all steps.

Transient Flow In simulating the transient flow, seepage

forces were calculated from a flow net which consists of
postulated horizontal flow lines, in order to simplify the

calculation of the pore water pressure. Figure 8.5 shows
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this flow net. In the analyses, water pressures were calcu-
lated from this flow net and input a£ thé nodes. In the
programme the gradients of these water pressures were calcu-
lated and applied as body forces (see Appendix 2). Drained

soil properties were used for all layers and in all steps.

Local Flow If the reservoir is filled very quickly, the

core remains under undrained conditions. By supposing

that there is a local layer which is much more permeable
than the rest of the core, then water penetrates into the
core at this layer. It has been postulated in Chapter 7
that this local flow or drainage can be more critical in
producing hydraulic fracture (see also section 8.7.2.1).

In simulating the local flow, the following assumptions were
made:

1. Full reservoir height at the upstream side.

2. Water penetrates into the core generally at the
upstream face to a slight extent, which was
modelled by a column of thin elements at the
upstream side (see Fig. 8.1).

3. One layer in the core (in this study layer number
7 from the bottom, Fig. 8.1) is affected by
seepage. The water pressure varies linearly
from the reservoir height at the upstream side

to zero at the downstream side, across this layer.

By these assumptions, the water pressures were calcu-
lated and input at the nodes. In the programme gradients

of these pressures were calculated and applied as body
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forces (see Appendix 2). Drained soil properties were
"used for whole domain. '

Flooding and transient flow were simulated in layers
after the embankment has reached its full height. Local
flow was simulated in increments after cémpletion of the

construction sequence.

8.6 Effects of the Side Boundary Conditions on the

Stresses |

The requirement of zero vertical deformations at the
core sides imposed by the side boundary conditions shown
in Fig. 8.1, has a tendency to magnify the load transfer
effects compared to a real situation. The amountrof load
transfer from the core to the side supports (shells) can
be reduced by decreasing the shear strength of the core
material to produce a zone of failed soil at the side
boundaries between the core and supports (this effect will
be discussed in sections 8.7.1 and 8.7.2).

In order to make a preliminary study of the effects
éf the side boundary conditions assumed for these analyses
(see Fig. 8.1) on the stresses and stress paths, two minor
cases (cases A and B) were considered. In both cases, a
linear material with E = 50000 KPa and v = 0.33 was used.
The so0il unit weight was equal to 20KN/m3, and the water
unit weight was assumed to be equal to 10 KN/m3. The
construction was followed by transient flow, and layered
analyses were simulated. Both construction and impounding

were completed in 15 layers for the full height of 30 m.
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Figure 8.1 shows the mesh used for both cases, except
for the side boundary conditions. For case A, tﬁe side
bouﬁdaries were free vertically and fixed horizontally.

Case B had the same side boundary conditions as shown on
Fig. 8.1

Eigures 8.6 to 8.8 show the stress paths for these
two cases. From these figures the following observations
are made:-

Case B produces large negative average effective
stresses at the upstream side at the end of impounding
(transient flow), which may result in zero or negative shear
strength for drained non-linear analyses. The negative
average effectivevstress at the end of transient flow is
about 1.5 times the average stress at the end of construction,
near the base of the core. This value is approximately
constant for about.2/3 of the core height, then it decreases
towards the top of the core.

Case B gives smaller deviatoric and average effective
stresses than case A, both at the end of construction and
impounding, except near the top of the core where the
deviatoric stresses for case B are greater than for case A.
This reduction in stress is due to the arching effect in
case B. Also, it suggests that near the top of the core,
reduction in major principal stress due to the arching
effect is much greater than the reduction in minor principal
stress. |

Values of the average effective stresses at the end

of construction for case B are about 6% (near the »nase of
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the core), about 10% (around the core mid-height) and about
38% (near the top.of the core) of the average effective
stfesses at the end of construction for case A. These
values indicate a large‘arching effect in case B. However,
as will be discussed later in this chapter (sections 8.7.1
and 8.7.2), the‘amount of load transfer from the core to
the side supports'decreases if a proper strength is consi-
dered for the soil. |

For case A, impounding tends to decrease the values
of the average effective stresses. The average effecti?e
stresses, near the upstream side, at the end of tranSient
flow are between 50%, near the top of the core, and 55%,
near the base of the core, of the average stresses at the
end of construction. Near the downstream side of the core,
these values are between 95%, near the base, and 99% near
the top of the core. |

For caée B, transient flow tends to decrease the
average effective stresses near the upstream side and to
increase them near the downstream side of the core. The
average effective stresses, near the upstream side, at the
end of transient flow are between-150%, near the base, and
15%, near the top of the core of the average effective
stresses at the end of construction. Near the downstream
side of the core, the average effective stresses at the end
of transient flow are between 2 times, near the top, and 3
times, near the base of the core, of the average stress at
the end of construction,

It has to be mentioned that the values of the average
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effective stresses (at the end of construction and impound-
ing) for case B are almost constant for about 2/3 of the
core height.

Froﬁ these parametric studies, it is clear that the
side boundary conditions used in case B are more critical
than those used in case A, from the point of view of the
arching and hydraulic fracture. As the side boundary con-
ditions used in case B are closer to reality than those
used for case A, and also, they model effects of the shells
in the analyses, for the main analyses of this chapter,'the

side boundary conditions shown on Fig. 8.1 are used.

8.7 The Finite Element Results and Discussion

8.7.1 Results for Undrained Construction

Undrained analysis is used to get the stresses at the
end of construction. These stresses are useful in study-
ing the hydraulic fracture phenomenon.

Nobari and Duncan (1972), and Kulhawy and Gurtowski
(1976) determined the end of construction stresses by
undrained analyses. Nobari and Duncan showed that the
stress on a horizontal plane through the core at the end of
construction was not significantly affected by impounding
and postulated that hydraulic fracture would occur if the
reservoir pressure exceeded this stress. Kulhawy and
Gurtowski assumed that the intermediate principal stress
would not change on impounding and postulated hydraulic

fracture when the reservoir pressure exceeded this stress.
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However, as it will be discussed ih seétion (8.7.2),
drained impounding tends to increase’the total stresses and
so reduce the risk of hydraulic fracture.

For undrained construction, only one case (case Ul,
Table 8.1) with two values for the undrained shear strength
(Cu = 60 KPa and 30 KPa) was considered.

As mentioned in section (8.6), the requirement of zero
vertical deformation at the core sides imposed by the side
boundary conditions shown on Fig. 8.1 magnifies the amount
of the load transfer from the core to the side supports
(shells). This arching effect on stresses can be reduced
by decreasing the shear strength of the core material.

When the shear strength is reduced enough to produée a zone
of failed soil at the sides between the core and supports
(see Fig. 8.9a), then the vertical stress in the core
becomes equal to about half of that due to the full weight
of the soil. Figure 8.9b shows the values of vertical
stresses at the end of undrained construction, at the core
centre line, for two different values of the shear strength.
This figure indicates that by reducing the shear strength

of the core material from 60 KPa to 30 KPa the amount of
load transfer from the core to the side supports is_decreased
almost three times.

Bishop (1952), and Nonveiller and Anagnosti (1961)
have given the values of vertical stresses in the core,
using the theory of plasticity. In Fig. 8.9b, comparisons

are made between the values of vertical stresses from the
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non-linear finite element analysis (Cu = 30 KPa) and those
given by Bishop (1952), and Nonveiller and Anagnosti (1961).
Note that equation (2.19) for the values of vertical
stresses in the Nonveilier and Anagnosti paper was wrong.
This has been corrected and used for calculating the verti-
cal stresses.

Generally, the agreement between the results from the
non-linear finite element analysis and those given by the
plasticity solutions is good for Cu = 30 KPa. The reason
why the non—linear.elastic finite element analysis gives
results which are in good agreement with those given by the
plasticity solution, is that the non-linear finite element
analysis satisfies the equilibrium conditions, and near the
centre line the principal stress rotations are very small.

For the shear strength equal to 30 KPa, the results
from the finite element analysis are a maximum of 30% greater,
near the top of the core, and a maximum of 8% smaller, near
the base of the core, than the results given by Nonveiller
and Anagnosti (1961). Bishop's results are a magimum of
15% greater than the results given by the finite element
analysis, for Cu = 30 KPa.

For Cu = 60 KPa, the Nonveiller and Anagnosti method
gives the values of vertical stresses equal to zero.
Bishop's method gives a constant value for the vertical
stress which is not a function of the depth. This value
of the vertical stress is equal to 25 KPa (for no tension

crack) . For this strength the plasticity solutions are
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clearly invalid, as negligible shear failure occurs.

8.7.2 Results for Drained Conditions

Two drained cases (cases D1 and ST1, Table 8.1) were
considered in the analyses. vFor case D1, the solution
technique was not adequate to deal with the strain-softening
behaviour. For case ST1, the programme was extended to
deal with the strain-softening behaviour (see Appendix 2).

The construction and impounding were simulated with
layered analyses. In case D1, two different numbers of.
layers (2 and 15 layers) for the full height of 30 m were
used. In case ST1l, 5 layers for the full height of 10 m

were modelled.

8.7.2.1 Drained Case before Strain-Softening Modelling

Only one case (case D1, Table 8.1) was analyzed in
this subgroup. The values of vertical stresses at the
core centre line from the finite element analysis, at the
end of drained construction, are given on Fig. 8.10. For
simulating the construction, both 9 and 15 layers were used.
With a 9-layered analysis, the first three layers consisted
of one row of elements and subsequent layers consisted of
two rows of elements.

By comparing the 9- and 15-layered analyses (Fig.
8.10), it is clear that the 15-layered analysis gives a
much smoother curve for the vertical stress distribution
ihan the 9-layered analysis. The 9-layered analysis gives

smaller stresses for the lower half of the core, and greater
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stresses for the upper half of the core. The maximum
difference in stresses is just above the core mid-height,
where the vertical stress from 9-layered analysis is 25%
less than the veftical étress from 15-layered analysis.

Also, the values of vertical stresses from 9-layered
analysis are scattered around the core mid-height. This
is due to the large'size<3fthe layers around the core mid-
height which cause overshooting of the shear strength in
some Gauss points.

As the vertical stresses from 15-layered analysis
are not scattered, therefore, the 15-layered analysis has
been used for modelling of the construction and impounding
in this section. |

In Fig. 8.10 the vertical stresses at the core centre
line from the non-iinear finite element analysis, at the
end of drained construction, are compared with the vertical
stress given by Nonveiller and Anagnosti (1961). The agree?
ment between the finite element results and results given
by the plasticity solution is very good. The vexrtical
stresses from the finite‘element analysis are 2% more than
the vertical stresses from the plasticity solution for the
lower 1/3 of the core height.

Figure 8.11 represents zones of the soil at failure
at the end of construction, flooding and transient flow for
case Dl1. At the end of construction, existence of the
zone of failed material at the sides between the core and

supports results in the proper amount of the load transfer
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from the core to the side supports, shown on Fig. 8.10.

At the end of flooding, the zone of failed soil is changed
a little. The transient flow concentrates the zone of
failed material at the u?stream side of the core.

Figures 8.12 and 8.13 show the distribution of the
average stress with depth for case D1, at the end of con-
struction and flooding. The average stresses (total and
effective) at the end of construction are less than the
eventual water pressure due to flooding, except near the
top section of the core, where these stresses are greater
than the eventual water pressure. But, as shown on Figs.
8.12 and 8.13, impounding tends to increase the average
total stresses prior to fracture, and so reduce thé risk of
hydraulic fracture occurring (as predicted by Vaughan, 1976b).
The average total stress at the end of flooding near the
core sides at a depth between 6 to 8 m (Fig. 8.13) is equal
to the eventual water pressure, and if the tensile strength
of the core material is ignored, there is a possibility of
drained hydraulic fracture in this area.
| In Figs. 8.14 to 8.16 some stress paths for the con-
struction followed by flooding (case Dl) are given. Point
A represents the total and effective stresses at the end of
construction. There is a small increase in stress (A-B)
due to the application of the water pressure to the zone
beneath the point considered (this stress path is both
total and effective). As the water pressure continues to

increase (after flooding reaches the point considered) there
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will then be a reduction in average effective stress (B-D'),
and an increase in average total stress (E—D). Such an
increase in average total stress may prevent drained
hydraulic fracture occurring. Thus, a critical situation
is likely only if this increase is insufficient to prevent
fracture. Such a critical area was shown on Fig. 8.13, at
depth between 6 to 8 m, where the average total stress at
the end of impounding is equal to the eventual water pressure.

In the effective stress path during flooding (Figs.
8.14 to 8.16), when the effective stress is reduced to C',
shear failure must occur. Obviously, post-failure stress
vath must be on the failure envelope. However, as will
be discussed later in this chapter (section 8.7.2.2),due to
shortcomings of the incremental non-linear methods used,
the post-failure stresses in these figures followed hori-
zontal paths.

Figures 8.17 and 8.18 show the distribution of the
average stress for construction followed by transient
flow (case D1). Near the core centre line, the éverage
stress at the end of construction is greater than the even-
tual seepage pressure. Transient flow tends to decrease
the average effective stress in the top 1/3 section of the
core, and to increase the average total stress.

Figure 8.18 gives the average stress distribution
near the upstream side of the core. The average stress
at the end of construction (total and effective) is less
than the eventual seepage pressure for the lower 2/3 of

the core height. This does not necessarily mean fhat there



412.

is a possibility of drained hydraulic fracture in this area,
like the case of flooding, transient flow leads to greater
average total stress than those at the end of construction,
and so reduces the risk of cracking.

A more detailed discussion of ﬁhe stress changes due
to impounding, shown on Figs. 8.17 and 8.18, is givén in
section 8.8. |

By comparing Figs. 8.13 and 8.18, it is clear that
reduction in the average effective stress at the end of
impounding (compared to the stresses at the end of con-
struction) due to flooding is greater than that due to h
transient flow.

In Figs. 8.19 and 8.20 the stress paths for constuc-
tion followed by transient flow are given. Point A is
the end of construction (total and effective). Like the
case of flooding, impounding increases the average total
stress. Again, in these figures, the post-failure stress
paths are horizontal, instead of laying on the failure
envelope. Also, in Figs. 8.19 and 8.20, the construction
stress path shows some overshooting of the shear strength.

The overshooting during construction is due to the
incremental non-linear method used, as this method (unlike
the interative method) is not able to prevent overshooting,
unless very small load increments are applied.

During impounding, the average effective stress in
the core decreases. In general, this decrease (unloading)

can occuxr from any state of stress including the state of
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failure, and it will be accompanied by a drop in strength.
If this stress péth induced softening (or strain-softening)
is not modelled correctly, a stress path which violates
the failufé criterion will be followed.,

In Fig. 8.21 the p'-qg and g-e¢; stress paths for a
typical point which should exhibit strain—softening.behaviour
are given. From this figure, it is clear that when the
stress path reaches the failure envelope, as there is no
shear unloading, so it maintains a horizontal path on the
gq-e; and p'—-q plots,while due to the reduction in average effec-
tive stress,it should be loosing strength, resulting in an
overshooting which is increasing as impounding continues.

The ihcremental non-linear solution techniques are
inadequate to model the post-failure behaviour. So, in
analyses presented in this section, the strain-softening
behaviour due to an increasing pore pressure is not repro-
duced. As a result, in Figs. 8.14 to 8.16 and 8.19 to
8.21, when the effective stress path has reached the failure
envelope during impounding, it has followed a horizontal
path.

As discussed in Appendix 2, the programme was extended
to deal with this strain-softening behaviour. The stress
analysis of the core was then continued, as discussed in
section 8.7.2.2.

Also, in this section, the stress analysis and the
possibility of hydraulic fracture occurring in a core due

to local flow are considered.
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Shear failure transfers stress from areas of high
stress to those of low stress, and results in an averaging
of the stresses in the core and an increase in stress in the
critical zones. Therefore, as postulated in Chapter 7,
hydraulic fracture is most likely when the initial stresses
in the core at the end of construction are very non-uniform,
and low stress zones are local. Then fracture may occur
locally, before general shear failure and the stress redistri-
bution accompanying it are induced (Vaughan, 1976b). Such
a critical situation for hydraulic fracture may occur due
to the water penetrating preferentiallythUDthe core via
some irregularities such as a crack or more pervious layer.

Figures 8.22 and 8.23 (note that for these two
figures Ei = 1000Tmax) show distribution of the average
effective stress in the core for construction followed by
local flow (layer 7 from the bottom in Fig. 8.1 is the
assumed drained layer). After impounding, the average
effective stress increases except in the drained layer, where
a large reduction in average effective stress has occurred.
The local drainage, due to the existence of these low stress
areas, can be more critical for hydraulic fracture occurring
than a fully drained core. As in a fully drained core,
general shear failure and swelling result in redistribution
of stress and an increase in low total stress, so reducing

the risk of cracking.
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8.7.2.2 Drained Case after Strain-Softening Modelling

8.7.2.2.1 Modelling of the strain-softening behaviour

In many geotechnical problems, the stress-strain
curves exhibit strain-softening behaviour. Considering
this post-failure behaviour in the finite element analysis
is one of the problems which has not yet (1977) been
solved with complete satisfaction, although some promising
starts have been made. In the case of non-linear elastic
models using'the tangent modulus approach in the incremental
scheme, the required modulus becomes negative once peak
strengﬁh is passed. _

Girijavallabhan and Reese (1968), and Hoyaux and
Ladanyi (1970) have introduced an approach for the‘non—
linear elastic models which used the secant modulus instead
.of the tangent modulus.

Many efforts have been made to model the strain-
softening behaviour using the plasticity concepts. Hoeg
(1972) attempted to model undrained strain-softening of
clays. Nayak and Zienkiewicz (1972) have presented a
generalization of existing elasto-plastic constitutive
relations including strain-softening. More recently,
Prevost and Hoeg (1975a, b and c¢) have used the theory of
plasticity to model the strain-softening behaviour in geo-
technical problems.

Desai (1974) has presented a hypothesis for defining
the softening behaviour after peak and a numerical proce-
dure based on iterative relaxation scheme of the Newton-

Raphson type. The distinguishing feature of the Desail
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approach is that the strain-softening phenomenon is viewed
as a‘process of modification (reduction) in the strength
of the material rather than as a change in the moduli com-
puted as gradients of tﬁe stress—-strain curves, as is done
in other strain-softening studies. This technique was
used by Desai (1977) to study the behaviour of deep
foundations.

In these analyses, to prevent overshooting during
construction, and to model the strain-softening behaviour
encountered in this research, the iterative solution using
the Newton-Raphson method was utilized. During analysis,
it was found that in some iterations, for some of the Gauss
points the behaviour is shear unloading, bearing iﬁ mind
that the overall behaviour can be loadiﬁg (e.g. construction).
The iterative technique uses the tangent modulus, which can
result in large strains for points near or at the failure,
if they are shear unloaded. These large strains can cause
numerical problems resulting in non-convergence of the
solution (see Fig. A.3, Appendix 2).

As discussed in Appendix 2, the Newton-Raphson
iterative technique was modified to deal with the shear
unloading. Also, in Appendix 2, the form of the strain-
softening behaviour encountered in this research and the
development in the programme to deal with this behaviour
are explained.

The typical stress path for strain-softening is shown
in Fig. A.5 of Appendix 2: as the point a-A is at failure,

£o a horizontal path is continued to point b-B, then at
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this point the shear stress level is checked with the shear
strength, and as this shear stress is greater than the
shear strength, so the point is brought down to the failure
envelope (point c¢-C) by keeping the average effective
stress and the principal stress rotation constant. The
excess stress is transferred to other points that have not

reached failure in the following iterations.

8.7.2.2.2 Drained Case Results

Only one drained case (case STl,-Table 38.1) was
analysed after extending the programme to deal with thé
shear unloading during iteration and the strain-softening
behaviour. In this analysis, only five layers (héight
equal to 10 m) of the mesh shown on Fig. 8.1 were considered,
in order to cut the computer time and cost. The con-
struction and following transient flow were simulated in 5
layers (for the full height of 10 m), using the layered
analysis.

Figures 8.24 and 8.25 show zones of the failed soil
'at the end of construction and impounding. By comparing
these two figures, it is clear that the transient flow
leads to the concentration of the failed soil at the
upstream side of the core. This is due to the horizontal
gradient of the water pressure and the higher water pressure
at the upstream side. Alsd, comparison of these two
figures indicates that, at the end of transient flow the
size of the failed soil zone has been reduced. This effect
is due to the shear unloading of some of Gauss points from

the state of failure (that was reached at the end of construc-
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tion) during impounding, which results in the state of pre-
failure for these points at the end of impounding. However,
some of the Gauss points may remain at the state of failure at
the end of transient flow, even if they are shear unloaded.

As discussed in the section (8.7.2.1) and Appendix 2,
some of the Gauss points exhibit strain-softening béhaviour
(or stress path induced softening) during impounding.

Figure 8.26 shows zone of the points exhibiting strain-
éoftening behaviour at the end of transient flow. It 1is
obvious that, for the points which are not included'in this
figure, the behaviour is shear unloading during impounding,
and at the end of impounding they are still at the state
of failure.

Also, Fig. 8.24 indicates that a thin zohe of failed
soil has been produced at the sides between the core and
supports, which results in proper load transfer from the
core to the supports at the end of construction (see Fig.
8.34).

Figures 8.27 to 8.33 give the stress paths for some
of the points exhibiting strain-softening behaviour. For
Figs. 8.27 to 8.29 and 8.33, point A represents the total
and effective stresses at the end of construction.
Application of the water pressure tends to decrease the
average effective stress (A-B'), and to increase the average
total stress (A-B). When the effective stress is reduced
to B', shear failure occurs. As the water pressure increases,

the average effective stress and the shear stress decrease
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(B'-C'), which cause the redistribution of stresses and an
increase in the total stress (B-C). In the corresponding
g-¢; plots (Figs. 8.27 to 8.29 and 8.33),; point a is the
end of construction. By increasing the water pressure,
the shear stress decreases. The early section of the
stress path during impounding .shows shear unloading'(a—b).
After shear failure has occurred, the stress path shows
strain-softening (b-c).

In Figs. 8.30 to 8.32, point A is the end of con-
struction (total énd effective). There is a small increase
in stress (A-B) due to the application of the water load to
elements lower than these points. As the seepage pressure
increases, the avérage effective stress decreases (B'-C')
and the average total stress increases (B-C). When the
effective stess path is_reached to the failure envelope
(point C'), shear failure occurs, except for the effective
stress path on Fig. 8.31, where the state of failure is
reached at the end of construction. By further increase
in the water load, the average effective stress decreases’
(C'-D') and the average total stress increases (C-D). In’
the g-¢; plots (Figs. 8.30 to 8.32), the behaviour is load-
ing from a to b, it is shear unloading from b to ¢, and it
is strain-softening from c to 4.

During the strain-softening path, volumetric strains
are zero, as Poisson's ratio is assumed to be 0.499 at the
state of failure.

Figure 8.34 shows the distribution of the average
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stress in the core at the end of construction and after
transient flow. Near the upstream side of the core, the
average stress.at the end of construction is less than the
eventual seepage pressure for the lower half of the core
height. Thisdoesno£ necessarily mean that there will be
hydraulic fracture in these areas after impounding,.as
impounding increases the average total stress and reduces

the risk of cracking.

8.8 Effects of the Strain-softening Modelling on the

Stresses

In order to investigate the effects of the Strain—
softening modelling on the stresses, two cases D1 and ST1
must be compared. Direct comparison of these two cases,
due to different geometries, is not possible. However, the
major effect of the strain-softening modification is to
correct the stress path. For case D1, post-failure stress
paths are horizontal lines resulting in overshooting of
the specified strengths (Figs. 8.14 to 8.16 and 8.19 to
8.21). For case ST1l, there is no overshooting which
results in a redistribution of stresses, and therefore,
increase in strésses at those Gauss points that have
not reached failure (Figs. 8.27 to 8.34). Also, this
redistribution of stress may increase the size of the zone
of failed soil.

For both cases D1 and ST1, impounding tends to. increase

average total stresses. For case D1, near the upstream
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side of the core, the average effective stress at the end of
transient flow is on average 89% of the average stress at
the end of construction (Fig. 8.18). While for case ST1,
near the upstieam side 6f the core, the average effective |
stress at the end of transient flow is on average 60% of the
average stfess at the end of construction (Fig. 8.34).

Near the upstream side of the core, for case D1 (Fig. 8.18)
the mean stress at the end of construction is, on average,
45% of the mean total stress at the end of transient flow.
For case ST1 (Fig. 8.34) this becomes 60% near the core
centre line, for case D1 (Fig. 8.17), the average efféctive
stress at the end of transient flow is greater for the lower
2/3 of the core height( and is smaller for the upper 1/3

of the core height than the average stress at the end of
construction. For case ST1 (Fig. 8.34), near the core
centre line, the aVerage effective stress at the end of
transient flow is smaller than the average stress at the end
of construction, for the core's full height.

For case D1, near the upstream side of the core, the
mean effective stress at the end of flooding is, on average,
65% of the mean stress at the end of construction, and the
mean stress at the end of construction is, on average, 52%
of the mean total stress at the end of flooding (Fig. 8.13).
Near the core centre line, these percentages are 64% and
56% respectively (Fig. 8.12).

From comparison of these results, it is clear that

for case D1, where the strain-softening behaviour is not
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modelled, the flooding is more critical than the transient
flow, from the point of view of drained hydraulic fracture.
However, after correct modelling of the Sfrain—softening
behaviour; the transient>flow can be more critical than

flooding for drained hydraulic fracture to occur.

8.9 Conclusions

The non-linear finite element programme (explained in
Chapter 2) was used to analyse the stresses and stress
changes in an idealised vertical core. The effects Of.
the shells on the core were modelled by using the side
boundary conditions shown on Fig. 8.1.

From these studies it is concluded that:

1. The special side boundary conditions used in these
analyses tends to magnify the amount of load transfer from
the core to the side supports (shells). This arching
effect can be reduced by decreasing the shear strength of
the core material to produce a zone of failed soil at the
sides between the core and supports.

2. Generally, the agreement between values of vertical
stresses from the finite element analysis (undrained and
drained) and those given by plasticity solutions is good,
provided that failure has occurred.

3. At the end of undrained construction, the finite
element results for Cu = 30 KPa are a maximum of 30%
greater near the top of the core, and a maximum of 8%

smaller near the base of the core, than those given by
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Nonveiller and Anagnosti (1961). Results given by Bishop
(1952) are a maximum of 15% greatexr than the finité element
resuits for Cu = 30 KPa.

4, At the end of draihed construction, the finite ele-
ment results are about 2% more than those given by Nonveiller
and Anagnosti (1961) for the lower 1/3 of the core height.
For the upper 2/3 of the ccre height, both solutions give
the same value for the vertical stress.

5. There is a‘possibility of drained hydraulic fracture
for areas where the average total stress at the end of
construction is less than the eventual seepage pressure.
However, impounding tends to increase the total stress prior
to hydraulic fracture and so reduce the cracking risk (as
predicted by Vaughan, 1976h). Thus a critical situation is

likely only if this increase is insufficient to prevent

fracture.
6. During impounding, stress predictions show stress
paths exhibiting strain—-softening behaviour. If this

behaviour is not modelled correctly, a stress path which
viélates the failure criterion will be followed.

7. Correct modelling of the strain-softening behaviour
results in the redistribution of stresses. This stress

redistribution reduces the risk of cracking.



Table 8.1 Main Cases for the Embankment Dam Core
Case Stress-| Soil | Water Soil Properties
NG train | Unit Unit Loading Poisson's¥® Strength Initial
: Curve |Weight|{Weight Sequences Ratio El Modulus
(Fig.No.) Ye Yo v
KN/M3 | KN/M3
Ul 8.2 20 10 Construction 0.499 C_ =60 KPa Ei = 300 Cu
&
=30 KPa
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D1 8.3 20 10 Construction _ . _
followed by vy = 0.2 C!' = 1&0 Kpa .Ei =300 Tnax
impounding V=V (1-0’r)+0.50'r ' = 250
STl 8.4 20 10 Construction 0.2 C'=20 KPa E, =300 =<
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APPENDIX ONE

FLOW CHART OF THE PROGRAMME !

A brief description of the function of the SUBROUTINES

appearing in the flow chart is given in the following section:-

GINPUT, MIDNOD: Read geometrical, material properties

and boundary conditions. Store the input
in the relevant disc and memory storage.

SHAPEF, SFR, AUX: Calculate shape function and its deriva-

tives for each element using numerical

integration and store them in disc file.
SINPUT: Reads the initial stresses and strains

from cards and/or magnetic tape. Converts

the initial stresses to nodal forces, and

stores them in the memory.

ELSTIF, NLELAS, SPRING: Calculate the stiffness matrix for

each element according to its state of
stress and the stiffness of the boundary
spring, and store it in disc file.
LINPUT: Reads the loading pressure and forces.
Converts the loads into nodal forces and
stores them in the memory.
SOLVE: Assembles the overall stiffness matrix

and reduces it by elimination.

RESOLV: Modifies the new R.H.S5., and reduces the
stiffness matrix by elimination.

BSUB: Obtains the displacement vector.



SELECT:

RESID:

ITSLCT:

ITELAS:

STRAIN:

CORSTN:

STRESS:

NODOUT:

STOUT:

MAGOUT;

459

Selects the state of stress for the first
solution of the Quasi Runge-Kutta method.
Calculates the nodal forces corresponding
to the tdtal state of stress, and compares
with the external applied loads{_

Performs thepilot iteration, and records
the number of the points which are shear
unloaded.

Calculates the increment of stress corres-
ponding to the increment of strain using
Euler-Cauchy method. Also, treats the
points with the strain-softening behaviour.
Calculates strains from the displacements
of the nodes,

Corrects the values of strains due to the
use of the dense liquid technique for
layering analysis.

Calculates stresses from strains.

. Outputs the values of the residual forces,

boundary springs stiffnesses, and displace-
ments at the nodes.

Outputs stresses and strains at the
required elements and points.

Stores the values of stresses and strains
in disc file or magnetic tape for graphics

and/or future reference.
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Flow Chart of the Programme,
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APPENDIX TWO

DISCUSSION ON THE MODIFICATIONS AND DEVELOPMENTS IN THE

PROGRAMME

In Chapter 2, a list of the principal parts of the
programme specially written for this research is given.
In the following section descriptions and algorithms of

these parts are considered.

Al Shear Unloading and Reloading

In the first solution of the Quasi Runge-Kutta non-
liﬁear method (Chapter 2, Fig. 2.3), it is established
whether the shear.stress will increase or decrease, and the.
Gauss points at which a decrease will occur are identified.
For these points a linear modulus is adopted during the
second solution of.this method.

The previous maximum shear stress at the end of each
increment is recorded for checking the shear reloading.

For a Gauss point if the shear stress increases after
unlcading or reloading, and the maximum shear stress from
the previous increment is less than the previous maximum
shear stress, a linear modulus is adopted during the second
solution of the Quasi Runge-Kutta method. The unloading
modulus may or may not be equal to the reloading modulus.

In the programme it is possible to select whether
both the unloading modulus and reloading modulus or only

one of them, in the second solution, will be linear or will
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follow the first loading stress-strain curve (see Fig. 5.1,

Chapter 5).

The algorithm for choosing the shear unloading and

reloading‘moduli is as follows:-

In subroutine RESID (see Appendix one for descriptions

of subroutines and the flow chart of the programme) the

maximum shear stress (01—03)/2 is checked at the end of

each increment with the previous maximum shear stress and

the greater one is saved.

First solution (subroutines ELSTIF and NLELAS)

Enter element loop.
Read stresses correspohding to the end of thé previous
increment or initial values (subroutine ELSTIF).

Enter Gauss point loop.

Look up the previous maximum shear stress (subrouting
ELSTIF). |

Calculate principal stresses and the shear strength
for stresses from (a.l), (subroutines NLELAS).
Calculate the maximum shear stress and the mobilized
shear stress ratio[zlégi and(gfggf)f

from (a.l), (subroutine NLELAS).

] for stresses

(i) If the maximum shear stress is less than the
previous maximum shear stress, then take the
unloading modulus, (RETURN), (subroutine NLELAS).

(11) If the mobilized shear stress ratio is greafer

than or equal to unity, then give a very small
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value for modulus, (RETURN), (subroutine NLELAS).
(iii) If the mobilized shear stréss ratio is less than
unity, then take the tangent modulus (equation
2.3, Chapter 2), or, if this ratio is greater than
0.95, take half of the tangent modulus, (RETURN),
(subroutine NLELAS) .
End oerauss point loop.

End of element loop.

Second solution (subroutines SELECT, ELSTIF and NLELAS)

Enter element loop.

Read stresses corresponding to the start of the
increment (subroutine ELSTIF).

Enter Gauss point loop.

Look up the previous maximum shear stress (subroutine
ELSTIF) .

Retrieve the stress vector corresponding to half of
the displacement increment obtained in the first
solution (subroutine SELECT).

With the initial stresses corresponding to the start
of the increment (step b.l), repeat steps (a.3) and
(a.4), (subroutine NLELAS).

Multiply the stresses from step (b.3) by a factor ¥
(for the start of the second solution I' is equal to
unity) . The output is, say, Ac* (subroutine NLELAS).
Add Ac* to the initial stresses at the start of the

increment (subroutine NLELAS).
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Calculate the principal stresses and the shear

strength for the stresses resulting from (b.6),

(subroutine NLELAS).

Calculate the maximum shear stress (°1~03)/2 and the

mobilized shear stress ratio

0,~04 ]
To. =07 corresponding
9179’ ¢ ,

to step (b.7), (subroutine NLELAS).

(1)

(i)

(iid)

(iv)

(v)

(vi)

If thé maximum shear stress from (b.8) is less
than the maximum shear stress from (b.4), then
choose unloading modulus, (RETURN), (subroutine
NLELAS) .

If the maximum shear stress from {(b.8) is greater
than the maximum shear stress from (b.4), and the
maximum shear stress from (b.4) is less than the
previous maximum shear stress, then choose
reloading modulus, (RETURN), (subroutine NLELAS).
With the results from (b.4) repeat steps a.5(i)
and a.5(ii), (subroutine NLELAS).

If the mobilized shear stress ratio from (b.8)

is léss than unity, then the modulus is calculated
from equation (2.3), and, if this ratio is greater
than 0.95, take half of this modulus, (RETURN),
(subroutine NLELAS).

If the mobilized shear stress ratio from (b.8)

is eqﬁal to unity, then choose a very small value
for modulus, (RETURN), (subroutine NLELAS).

Tf the mobilized shear stress ratio from (b.8) is
more than unity, then set factor F equal to 0.5F

and (GO TO) step (b.5), (subroutine NLETAS).
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End of Gauss point loop.
End of element loop.
Step b.9(vi) is the start of an iterative process
which is performed for each Gauss point. Steps b.9(iv)
to b.9(vi) ensure that there is no significant overshooting
if the stresses are near failure, which would otherwise

occur in a one-step, non-iterative method.

A.2 Poisson's Ratio Varying with Stress

The value of the Poisson's ratio in a non-linear
stress analysis may be expressed as a function of the con-
fining pressure, and during shear it would be a function
of axial strain. In order to have zero volume change
during failure, the Poisson's ratio must be equal to 0.5
at failure.

For many soils, the value of initial Poisson's ratio
vy (at zero shear strain) has been reported to decrease as
the confining pressure is increased. Based on experimental

data, Kulhawy et al (1969) suggested the following equation

for the variation of vy with Ogi-

V. = M- N loglo(%‘g‘)

a (A.1)

where M is the value of v, at a confining pressure of one
atmosphere, P, is the atmospheric pressure, and N is a
parameter representing the rate of decrease in vy with
increasing Og-

During shear, the following equation is used for the
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variation of the tangential Poisson's ratio VeiT

Ve = vi(l - or) + 0.50r (A.2)
where
cir = —(-—"'__———'5—' (A.3)
0y ~03)¢ _
Thus Ve = V4 under isotropic stress and Ve = 0.5 at failure.

In the programme (subroutines NLELAS and ITELAS)
the Poisson's ratio is selected and modified for each loading
increment according to equations (A.l1) to (A.3) and the

state of stress.

A.3 Spring as the Boundary Condition

The programme is modified to deal with the spring
boundary condition. The springs are only possible in the
horizontal and/or vertical directions with constant stiff-
nesses, and they could also be applied to nodes within the
domain.

In the programme (subroutines ELSTIF and SPRING) the
stiffness of the spring at a node is added only to the
corresponding diagonal term in the stiffness matrix. At
the end of the increment, in subroutine RESID, the nodal
force at a point with the spring is equated to the product

of the corresponding displacement and spring stiffness.

A4 Applying the Seepage Forces

The programme is modified to consider the effect of

dissipating an increment of pore water pressure (either
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after an interval of time or after the steady state is
achieved) on the state of stress of fhe soil skeleton, by
using the pore water pressure increment as the case of
loading, as follows:-

The general equation of equilibrium of an element of
soil in x direction is:

Xe] -BTX 9T

X vy Xz _
9X + Y + 22 + X 0 (A.4)

There are two other similar equations for y and z directions.

In equation (A.4), X represents the total body force per

unit gross volume of the material. But: -
Oy O + u (A.5)
Thus: -
9c_ " 9T 9T
- X s X X2 x -2Yy L 0 (a.6)
9X Y A 0X

This equation is identical in form to the equation (A.4),
but the body force terms have now been changed by the

amount:
]

jor

|

- = = and ~

@
L
[e53

z
in the appropriate directions, and the analysis can be
carried out after converting the gradient of the pore water
pressure into an equivalent body force. The values of
pore water pressures are input at the nodes (subroutine
LINPUT), and, in the programme, their gradients are calcu-

lated and applied as body forces.
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The soll parameters used during these analyses are
the effective stfess parameters E', v', and they may be
non-linear, in which case E' and v"ére related to Ad; or
(Ao + Ao;) and (Ao; = Ac,) by a family of curves.

The procedure described above is valid whether the
dissipation is consolidation or swelling. In the case of
consolidation, the soil skeleton will exhikit a decrease
of volume due to an increase in the compressive effective
stress; in the case of swelling, the soil skeleton will
increasé in volume due to the decrease in the compressive
effective stress, thus the volume change and the causative
stresses have the same sign, and so the analysis for swell-
ing does not imply v' > 0.5. But it must be rointed out
that the swelling process i1s an unloading one in terms of
- volumetric stresses, so unloading parameters should be used

in the analysis; also, in some cases, it may exhibit

strain-softening.

A.5 Iteration Modified for Shear Unloading

The programme is extended for cases which need an
iterative or incremental—-iterative solutlion technique.
The Newton-Raphson or the Constant Stiffness methods are
used. The root mean squares of the residual forces at
the nodes are used as the measure of con&ergence, which
should decrease and become very small as the iteration
proceeds. The iteration is terminated when the root mean

square reaches a pre-set value, or when a pre-set number
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of iterations have been performed.

The programme, if terminated at an arbitrary residual
error, will result in a situation where the stresses are
in agreement with the stress—strain curve but the finite
element structure is not in equilibrium with the applied
loads. In this situation, the engineering significance
of the errors is difficult to evaluate.

The analyses were carried out for the footing on
undrained clay with 826 degrees of freedom (case 3, Table
5.2, Chapter 5), using both the Newton-Raphson and the
Constant Stiffness methods. Figure A.l shows the plots
of the maximum residuals and the root mean square of the
residuals. From this figure it is clear that, fof the
same computer time, the Newton-Raphson method gives better
results than the constant stiffness method. The root
mean square of the residual and the maximum residual from
the Newton-Raphson method at t = 4280 secs are about 75
per cent of those from the constant stiffness method.

The same analyses were carried out with the incre-
mental-iterative technique, using both the Newtoh~Raphson
and the Constant stiffness methods. Figqure A.2 shows
the plots of the maximum residuals and the root.mean square
of the residuals for the same load as Fig. A.1, but it
was applied in 3 increments (note that for increment one
the residuals were zero).

Comparison of Figs. A.l and A.2 indicates that the
incremental-iterative technique gives much better results

than the iterative method for about half of the computer
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time used by the lterative method. The root mean square
of the residual and the maximum resiaual from the incre—
mental-iterative method (3 increments) at t = 2000 secs
are about 5% (for the Néwton—Raphsonrmethod) and 14% (for
the constant stiffness method) of those from the iterative
method.

Again, for the incremental-iterative method, the
Newton—-Raphson method is better than the constant stiffness
method. The root mean square of the residual and the
maximum residual from the Newton-Raphson method at t = 2000
secs are about 20% of those from the constant stiffness
method.

However, the problems which include the shear
unloading cannot be handled using these iterative methods,
as they cause numerical trouble due to the use of the
tangential stiffness, which predicts large strains fox
the unloaded region at the state of stress close to, or
at, failure.

The programme 1is extended to deal with the shear
unleoading by introducing a pilot solution for eéch iteration.
During this pilot iteration, the tangential stiffnesses are
assumed for the whole region.

The stresses derived from this first solution (iteration)
are calculated to correspond to the full displacement
vector obtained from the pilot iteration. These stresses
are stored in a local disc and are not added to the initial

stresses from the start of the iteration. By using these
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stresses, it is established whether the shear stresses will
increase or decrease, and the number of the unloaded Gaués
points are recorded. If the unloading counter is zero,
then this solution (iteratibn) is treated as the correct
one and stresses are added to initial stresses from the
start of the iteration.

If the unloading counter is nct zero, then the
iteration is repeated, and stresses from the pilot solution
are used to identify the unloaded Gauss points, andva linear
modulus is adopted for these points during the second
solution (iteration).

For reloading, the first loading stress—-strain curve
is followed.

The algorithm of this procedure is as follows:-

Set unloading counter IUCF equal to zero.

a. Pilot iteration (subroutines ITSLCT and ITELAS).

Enter element loop.

a.l. Read stresses corresponding to the start of iteration
(subroutine ITSLCT) .
Enter Gauss point loop.

a.2. Choose the tangent modulus corresponding to the
state of stress at the start of iteration. Solve,
and get displacements.

a.3. Get strains from displacements, and calculate stresses
from strains using the modulus from step (a.2).
Add these stresses tovthe stresses from step (a.l)

and save the results on a local file. These final
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stresses correspond to the end of pilot iteration,
(subroutine ITELAS).
If the maximum shear stress frOﬁ stresses corres-
ponding to step (a.3) is less than the maximum shear‘
stress from step (a.l), then set IUCF = IUCF + 1
(subroutine ITELAS). '

End of Gauss point loop.

End of element loop.
If IUCF is equal to zero, (RETURN). Results from
step (a.3) are the final results for this iteration
and no second iteraticn is required (i.e. iteration
has only one solution).
If IUCF is not equal to zero, then enter second
solution (iteration), storing the stresses from the

first solution (iteration).

Second iteration (subrocutines ELSTIF, NLELAS, SOLVE,

BSUB and RESID).

Enter element loop.

Read stresses corresponding to the start and end of
the pilot iteration (subroutine ELSTIF).

Enter Gauss point loop.

With stresses from (b.l), and according to the
algorithm explained in the second solution of the
Quasi Runge-Kutta method (section A.l1), choose the
correct modulus (subroutine NLELAS).

Solve and get displacements, strains, and stresses

using the modulus from (b.2), (subroutines SOLVE,
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BSUB, RESID and ITELAS). These displacements,
strains, and stresses correspond to the end of second
iteration.

End of Gauss ?oint loop.

End of element loop.

Figures A.3 and A.4 show the values of the maximum
residuals and root mean square of the residuals for case
STl (Table 8.1, Chapter 8) with 294 degrees of freedom.

In Fig. A.3, three layers of the core of the dam were
considered, where each layer had 3 increments, except layer
one which had one increment. In each incremént the Newton-
Raphson method (without modification for shear unloading)
was used. In Fig. A.4, five layers of the core of the
dam (same problem) were considered, where each layer had
4 increments, except layer one which had one increment.

In each increment this modified form of the Newton-Raphson
method was used (which considers the shear unloading and
adopts a correct modulus for each Gauss point).

Comparison of these two figures indicates that the
iterative method without the shear unloading modification
does not converge. This i1s due to the numerical trouble
caused by the use of the tangential stiffness, which predicts
large strain for the unloaded Gauss points with state of

stress at, or close to, failure.

A.b Strain—-Softening

In many geotechnical problems (e.g. dams, tunnels,
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retaining walls and rocking footings) stress predictions

show stress paths exhibiting shear or an average effective
stress reduction (unloading) during construction and/or
operation. In general, this unloading can occur from any
state of stress including the state of failure. In case

of shear unloading, from or near the failure, the soil

will suddently grossly increase its stiffness, a condition
which, if not modelled correctly, may cause very large errors
or even numerical break-down of the solution. Alternatively,
if the failure state persists while the average effective
stress is reducing, a drop in the strength will occur. If
this stress path induced softening is not modelled correctly,
a stress path which violates the failure cirterion will be
followed. A combination of both conditions may occur in
reality.

Available non-linear solution techﬁiqués are inade-
quate to cover these groups of prcblems. Incremental
methods can only model the shear unloading which has been
discussed in section (A.1). From the iterative solution
techniques, the Newton-Raphson method was selected and
modified to deal with both cases of the shear unloading
and the stress path induced softening. The shear unload-
ing modification and its importance have been discussed in
section (A.S). The modification for the stress path
induced softening is discussed in the following section.

The form of the strain-softening behaviour encountered
in this research (see Chapter 8) is shown on Fig. A.5.

In the Newton-Raphson iterative method, the modulus becomes
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very small at the state of failure. Post-failure stress
path, if there is no shear unloading, will follow an almost
horizontal path. By decreasing the average effective
stress, the shear strength decreases,'and this horizontal
stress path, if not modelled correctly, will violate the
failure criterion. |

In order to have a stress path which does not violate
the failure criterion, in the programme (subroutine ITELAS),
at the end of each iteration and for each Gauss point the
maximum shear stress, (01-03)/2, is compared with the
corresponding shear strength. If, for a point, the maxi-
mum shear stress exceeded the shear strehgth and the .
average effective stress, (014-05)/2, at the end of itera-
tion is less than the average effective stress at the start
of iteration, then the point is brought doWn to the failure
envelope by keeping the average effective stress and the
principal stress rotation constant (see Fig. A.5). For a
point with no strain-softening behaviour, if the maximum
shear stress exceeded the shear strength, then the
point is brought back to the failure envelope, on the same
stress path that it was following, by reducing both the
maximum shear stress and the average effective stress.

The algorithm of this strain-softening behaviour
modification is as follows:-

At the end of each iteration (subroutine ITELAS)

Enter element loop.
1. Read stresses corresponding to the start and end of

this iteration,
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“Enter Gauss point loop.

2. Calculate the shear strength,rfhe maximum shear stress
and the average effective stress corresponding to
the stresses at the end of this iteration.

3. - Calculate the average effective stress corresponding
to stresses at the start of this iteration.

4. If the average effective stress from step (2) is less
than the average effective stress from step (3),; and
the maximum shear stress from step (2) is greater
than the shear strength from step (2) ,then deal with
strain-softening by following steps (5) to (7).
Otherwise RETURN (i.e. no strain-softening).

5. Assume that the average effective stress andrthe
principal stress rotation from step (2) remain
constant.

6. By using this average effective stress and the shear
strength from step (2), calculate the principal
stresses.

7. By using these principal stresses and the principal
stress rotation from step (2), calculate the stresses.

End cf Gauss point loop.
End cf element loop.
As shown on Figs. 8.27 to 8.33 (Chapter 8), this
modification results in stress paths which do not violate

the failure criterion.



477

500 1 e s S e s Y B B E B
B o Newton-Raphson Method CASE 3 - No. of degrees of freedom=826
x Constant Stiffness Method Applied load =150 KPa at 1 inc.
200 -]
'IOOH: i
g?x\k‘-ﬁ@__ w " Max. Res. ]
S0ke o — —
N\ x
\@Ne-o O romeesd /t"l-1
_ t=4280 sec
10} -
k_. —
H_‘ —4
?i-{.g‘x'.'x\}’\ _
5 ) K s o ]
t % .‘—_Q“'XMY N
'\ R.M.S. of Res. ’ ’
\ —-1.x_‘
"0 e e G
2 _
Res. = Residual
RiM.S.= Root Mean Square
1 I | | | | ! ! | | | | l ! l |
0 60 120 180 240 360 360 420 £80
No: of iterations
Fig. A.l Comparison of Newton—-Raphson Method with

Constant Stiffness Method



increment No. 2

40 ] ] g I

| | ] |

Case3

Applied load =150 KPa at 3incs

1

No. of degrees of freedom=826

| I

301 ¢
\x For increment 1, Res.=0
u; X
& 201~ i "\)\ _
3 o \
= X t=2000sec
L X\x\
1on _“’\ t22000sec X x ’ i
X = s S !
i\ N
ﬂ x\ 9\9\0\-3
L e R TOR A (SRR VSN AN NN N N SUN L]
1 | ] i 1 | ] i | i | 1 | | ] 1
b
I |
g
: NG
w— X ] X
o 3%_ I \x\‘x
vo3 —_— -
= Q X % x
§§ N . c\{,___.a“-e
0! Kot 3 et | | 3 ! | | | ] ] ] ! ]
0] 20 0] 20 L0 60 80 100 120 140 160

No. of iteration

Comparison of the Newton-Raphson Method with Constant

Stiffness Method

8L



CASE ST1,

of degrees of freedom =294,

3 layers of the core

., body faorce ,

Max. Res.

i

&=

I ! i |

O

)
i

1

R.M.S. of Res,
N
1

aad

g

Fig. A.3

5

% 0 5 10 15 0
No. of iterations

3

No. of increments

No. of layers
(Layer 1 has only 1 increment)

The Newton-Raphson Method without the Shear Unloading Modification

t=2400sec

o

YA



CASE ST1, No. of

degrees of freedom =294, S5 layers of the core . body force, t=4200 sec

] | L | ! ! 1 _ ] 1 i 1 i 1 i i i ]
6l L B i i i i T TL Lt L
w
& ¢ '}
SEA - - — = - — -~ - = - -
G
=
3r — — — — — . - — - — 18
b | - - ‘]’_ | | L . - L 2N
| %
0 ; 1 | ! ‘L_\,C L | | [ LS L‘ |
w081 B — B — — — — ~ — i~ ﬁg —
o
[n ot 9
s 061 — — — — — - — — — — i -
i
< 0L - | - - L L | . L i i_
i
024 — — — - — - :
) | l
o1 ! LR L L N L E& | & LS I AN | ol
0 0 0 i00 10 0 100 M0 100 100 100 00 WO 1060 16 0 1000 100 10O 100 10
No. of iteration
i 1 2 3 4 2 3 1 2 1 3 4
No. of increment
1 2 3 L 5
No. of layers
(Layer 1 has only 1increment}
Fig. A.4 The Newton-Raphson Method with the Shear Unloading Modification

08V



(0; - 03)

// <

T
(g + oa) €y
2

{——\\
e,
r—-._N

Fig. A.5 Idealised Strain-Softening Behaviour

C18Y



482.

REFERENCES

ACUM, W.E.A., and FOX, L. (1951). "Computation of load
stresses in a thfee—layer elastic system'".
Geotechnique, Vol. 2, No. 4.

A.S.C.E. (1967). "Problems in design and construction of
earth and rockfill dams". Progress Report, Committee
on Earth and Rockfill Dams. Proc. A.S.C.E., Vol. 93,
SM3, pp 129-136.

AWOJOBI, A.0. (1974). "The invariance of Gibson's Law for
a stratum on a frictionless base". Geotechnique,'
Vol. 24, No. 3, pp 359-366.

BARDEN, L. (1962). "Distribution of contact pressure under
foundations”. Geotechnique. Vol. 12, No. 3.

BENSCOTER, S.V. (1944). "A symmetrically loaded base slab
on an elastic foundation". Transactions, A.S.C.E.,
vVol. 109, pp. 763-798.

BERTRAM, G.E. (1967). "Experieﬁce with seevage control
measures in earth and rockfill dams". Transactions
9th ICOLD Congress, Istanbul, Vol. 3.

BISHOP, A.W. (1952). "The stability of earth dams". Ph.D.
Thesis, University of London.

BISHOP, A.W. (1954). "The use of pore-pressure coefficients
in practice". Geotechnique, Vol. 4.

BISHOP, A.W. (1966a). "Solils and soft rocks as engineering
materials". Inaugural Lecture, Imperial College,

University of London.



483

BISHOP, A.W. (1966b). "The strength of soils as engineering
materials". The Sixth Rankine.Lecture. Geotechnique,
Vol. 16, pp 89-130.

BISHOP, A.W. (1966c¢). "ﬁiscussion on Shek Pik Dam". Proc.
I.C.E., Vol. 35 (Sept.).

BISHOP, A.W., and VAUGHAN, P.R. (1962). "Selset Reservoir".
Design and performance of embankments. Proc. I.C.E.,
Vol. 21, pp 326-329.

BJERRUM, L. (1963). Discussion on "Interaction between
structures and soils". Proc. European Conf. Soil
Mech. and Found. Engg. (Wiesbaden), Vol. 2, pp 135-137.

BJERRUM, L. (1967). "Engineering geology of Norwegian
normally-consolidated marine clays as related to
settlements of buildings". 7th Rankine Lecture,
Geotechnique, Vol. 17, pp 81-118,. |

BJERRUM, L. and EGGESTAD, A. (1963). "Interpretation of
loading test on sand". Proc. European Conf. Soil
Mech. and Found. Engg. (Wiesbaden), Vol. 1, pp 199-203.

BLACK, W.P.M. (1961). "The calculation of laboratory and
in-situ values of California Bearing Ratio from
bearing capacity data"”. Geotechnique, Vol. 11,
op 14-21.

BOND, D. (1961). "The influence of foundation size on
settlement". Geotechnique, Vol. 11, No. 2, pp 121-143.

BOOKER, J.R. (1970). "Applications of theories of plasticity
to cohesive frictional soils". Ph.D. Thesis, University

of Sydney, Australia.



484

BOROWICKA, H. (1936). "Influence of rigidity of a circular
foundation slab on the distribution of pressure
over the contact surface”". Proc. lst I.C.S.M.F.E.,
Vol. 2, pp 144-149.

BOROWICKA, H. (1938). "The distribution of pressure under
a uniformly loaded elastic strip resting on elastic-
isotropic ground”. 2nd Congress, International Assoc.
of Bridge and Structural Engineers, Final Report,
Berlin.

BOSWELL, L.F. and SCOTT, C.R. (1975). "A flexible circular
plate on a heterogeneous elastic half-space: influence
coefficients for contact stress and settlement".
Geotechnique, Vol. 25, No. 3, p 604. -

BOUSSINESQ, M.J. (1885). "Application des potentiels, a
l'etude de l'equilibre et du movement des solides
elastiqueé"; Gauthier-villard, Paris.

BOWLES, J.E. (1975). "Spread footings" and "Combined and
special footings". Foundation Engineering Handbook,
Editors: Winterkorn, H.F. and Fang, H.Y. Van Nostrand
Reinhold, pp 481-503, and pp 504-527.

BOZOZUK, M. and LEONARDS, G.A. (1972). "The Gloucester test
fill". Proc. A.S.C.E. Specialty Conf. on Performance
of Earth and Earth-supported Structures, Vol. 1,

Part 1, pp 299-317.

BRINCH HANSEN, J. (1953). "Earth pressure calculation".
Danish Technical Press, Copenhagen.

BRINCH HANSEN, J. (1961). "A general formula for bearing
capacity". Danish Geotechnical Institute, Bulletin

" No. 11.



485

BRINCH HANSEN, J. (1963). "Discussion on hyperbolic stress-
strain response: cohesive soiis".-Proc. A.S.C.E.,
J. S.M.F.D., Vol. 89, No. SM4, pp 242-243.

BRINCH HANSEN, J. (1970). "A revised and extended formula
for bearing capacity". Danish Geotechnical Institute,
Bulletin No. 28.

BROWN, P.T. (1969a). "Numerical analysis of uniformly loaded
circular rafts on elastic layers of finite depth".

Geotechnique, Vol. 19, No. 2, pp 301-306.

BROWN, P.T. (1969b). "Numerical analysis of uniformly loaded

circular rafts on deep elastic foundations. Geotechnique,

Vol. 19, No. 3, pp 399-404. '

BROWN, P.T. and GIBSON, R.E. (1972). "Surface settiement
of a deep elastic stratum whose modulus increases
linearly with depth". Canadian Geotechnical Journal,
Vol. 9, oo 467-476.

BUISMAN, A.S.K. (1935). "De weerstand van paalpunten in zand".
De Ingenieur 50, pp Bt. 25-28, 31-35.

BUISMAN, A.S.K. (1936). "Results of long duration settlement

| tests". Proc. 1lst I.C.S.M.F.E., Vol. 1, pp 103-106.

BURLAND, J.B. (1970). Discussion, Session A. Proc. Conf. on
In-situ Investigations in Soils and Rocks. B.G.S.,
London, pp. 61-62.

RURLAND, J.B., SILL53, G.C. and GIBSON, R.E. (1973).
"A field and theoretical study of the influence of
non-homogeneity on settlement". Proc. 8th I.C.S.M.F.E.,

Mogscow, Vol. 1, pp 39-46.



486

BURLAND, J.B. and WROTH, C.P. (1974). "Settlement of buildings

and associated damage". Review Paper: Session V, Proc.
"Conf. on Settlement of Structures, Cambridge.

BURMISTER, D.M. (1943). "The theory of stresses and displaée—
ments in layer systems and application to design of
airport runways". Highway Research Board, vol. 23,
rp 126-148.

BURMISTER, D.M. (1956). "Stress and displacement charac-
teristics of a two-layer rigid base soil system:
Influence diagrams and practical applications”.

Highway Research Board, Vol. 35, po 773-814.

BURMISTER, D.M. (1958). "Evaluation of pavement systems of
the WASHO road test layered system methods”.
Highway Research Board Bulletin, No. 177.

'BURMISTER, D.M. (1967). "Applications of dimensicnal analyses
in the evaluation of asphalt pavement performances".
Paper for presentation at 5th Paving Conf., Albuguerque,
New Mexico.

BUTLER, F.G. (1974). "Heavily over-consolidated clays".

Proc. Conf. on Settlement of Structures, Cambridge.
General Report and State-of-the-Art Review, Session 3.

CAQUOT, A. (1934). "Equilibre des massifs a frottement
interne”. Gauthier-villard, Paris, pp 1-91.

CARLYLE, W.J. (1965). "Skek Pik Dam". Proc. I.C.E., Vol. 30
(Maxrch) .

CARRIER, W.D. and CHRISTIAN, J.T. (1973). "Rigid circular
plafe resting on a non-homcgeneous elastic half~space".

Geotechnique, Vol. 23, No. 1, pvp 67-84.



487

CASAGRANDE, A. and FADUM, R.E. (1942). "Application of soil
mechanics in designing buildihg foundations".
Proc. A.S.C.E., Vol. 68, pp 1487-1520.

CHAE, Y.S., HALL, J.R. and RICHART, F.E. ‘(1965). "Dynamic
pressure distribution beneath a vibrating footing".
Proc. 6th I.C.S.M.F.E., Vol. 2, pp 22-26.

CHEN, W.F. (1975). "Limit analysis and soil plasticity".
Elsevier Scientific Publishing Co.

CHEN, W.F. and DAVIDSON, H.L. (1973). "Bearing capacity
determination by limit analysis". Proc. A.S.C.E.,
J.S.M.F.D., Vol. 99, No. SM6, pp 433-449,.

CHEN, W.F. and SCAWTHORN, C.R. (1970). "Limit analysis and
limit equilibrium solutions in soil mechanics".
Soills and Foundations. Vol. X, No. 3, pp 13-49,

CHRISTIAN, J.T. and CARRIER, W.D. (1978). "Janbu, Bjerrum
and Kjaernsli's chart reinterpreted". Canadian Geot.
J., Vol. 15, pp 123-128.

CLOUGH, R.W. and WOODWARD, R.J. (1967). "Analysis of
embankment stresses and deformations". Proc. A.S.C.E.
J. S.M.F.D., Vol. 93, sM4, pp 529-549.

COOK, R.D. (1974). "Concepts and applications of finite
element analysis". John Wiley and Sons, Inc.
CORNFORTH, D.H. (1964). "Some experiments on the influence
of strain conditions on the stréngth of sand".

Geotechnique, Vol. 14, pp 143-167.

CUMMINGS, A.E. (1936). "Distribution of stresses under a

foundation". Transactions A.S.C.E., Vol. 101, pp

1072-1133.



488

D'APPOLONIA, D.J., D'APPOLONIA, E. and BRISSETTE, R.F. (1968).
"Settlement of spread footings on sand". Proc. A.S.C.E.,
J. S.M.F.D., Vol. 94, SM3, pp 735-760.

D'APPOLONIA, D.J. and LAMBE, T.W. (1970). "Method of predi¢t~
ing initial settlement". Proc. A.S.C.E., J. S.M.F.D.,
Vol. 96, SM2, pp 523-544.

D'APPOLONIA, D.J., POULOS, H.G., and LADD, C.C. (1971)
Initial settlement of structures on clay. Proc.
A.S.C.E., SM and FDn., Vol. 97, SM10, n» 1359.

DAVACHI, M.M. (1974). "Some precblems in bearing capacity-
and settlement of shallow foundations". M.Sc. Report,
Imperial College, University of London.

DAVIS, E.H. (1967). "A discussion of theories of piasticity
and limit analysis in relation to the failurs of soil
masses". Proc. 5th Australian-New Zealand Conf. Soil
Mech. and Fdn. Engng., pp 175-182.

DAVIS, E.H. and BOOKER, J.R. (1971). The bearing capacity
of strip footings from the standpoint of plasticity
theory". Proc. of the 1lst Australian-New Zealand
Conf. on Geomechanics. Vol.1l,Melbourne, pp 276-282.

DAVIS, E.H. and BOOKER, J.R. (1973). "The effect of increas-
ing strength with depth on the bearing capacity of
clays". Geotechnique, Vol. 23, No. 4, pp 551-563.

DAVIS, E.H., and POULOS, H.G. (1963). "Triaxial testing and
3—-dimensional settlement analysis". Proc. 4th Australian-
New Zealand Conf. S.M. and F.E., Adelaide, pp 233-243.

DAVIS, E.H. and POULOS, H.G. (1968). "The use of elastic
theory for settlement prediction under 3-dimensional

conditions!. Geotechnique, Vol. 18, No. 1, pp 67-91.



489

DAVIS, E.H. and POULOS, H.G. (1972). "Rate of settlement

under 2- and 3-dimensional conditions". Geotechnique,

Vol. 22, No. 1.

DAVIS, E.H., and TAYLOR, H. (1961). "The surface displace-

DE

DE

DE

DE

DE

DE

ment of an elastic layer due to horizontal and vertical

surface loading". Proc. 5th I.C.S.M.F.E., Vol. 1.

BEER, E.E. (1948). "Settlement records on bridges founded
on sand". Proc. 2nd I.C.S.M.F.E., Rotterdam, Vol. 2,
p. 111.

BEER, E.E. (1965a). "Bearing capacity and settlement of
shallow foundations on sand”. Symposium on Bearing
Capacity and Settlement of Foundations, Dukg Univ. ,
pp 15-33.

BEER, E.E. (1965b). "The scale effect on the phenomenon
of progressive rupture in cohesionless soils. Proc.
6th I.C.S.M.F.E., Vol. 2, pp 13-17.

BEER, E.E. (1970). "Experimental determination of the
shape factors and the bearing capacity factors of
sand". Geotechnique, Vol. 20, No. 4, pp 387-411.

BEER, E.E., and VESIC, A.S. (1958). "Etude expérimentale
de la capacité portante du sable sous des fondations
directes établies en surface". Annales des Traveaux
Publics de Belgique 59, No. 3, pp 5-58.

JONG, J. and MORGENSTERN, N.R. (1971). "The influence
of structural rigidity on the foundation loads of
the CN Tower, Edmonton". Canadian Cet. J. Vol. 8,

No. 4, pp 527-537.



490

DESAI, C.S. (1974). "A cénsistent finite element technique
for work-softening behaviour". Proc. of the Int. |
Conf. on Computational Methods in Nonlinear Mechanics,
Austin, Tex., pp 969-978. |

DESAI, C.S. (1977). "Deep foundations". Chapter 7, Numerical .
Metheds in Geotechnical Engineering, ed. C.S. Desai
and J.T. Christian, McGraw-Hill Bock Co.

DESAIL, C.S. and ABEL, J.F. (1972). "Introduction to the
finite element method. A numerical method for engineer-
ing analysis"”. Van Nostrand Reinhold Company, London.

DIAS, J.L. (1967). "An isotropic frictional theory for a
granular medium with and without cohesion“. Ph.D.
Thesis, Applied Mathematics, Brown University.

DRUCKER, D.C., PRAGER, W.,and GREENBERG, H.J. (1952).
"Extended limit design theorems for continuous media”.
Quarterly of Applied Mathematics, Vol. 9, pp 381-389.

EGOROV, K.E., KUZMIN,.P.G., and POPOV, B.P. (1957). "The
observed settlements of buildings as compvared with
preliminary calculation". Proc. 4th I.C.S.M.F.E.,

Vol. 1, p 291.

EL-GHAMRAWY, M. (1978). Ph.D. Thesis, Imperial College,
University ovaondon, under preparation.

FOSTER, C.R. and FERGUS, S.M. (1951). "Stress distribution
in a homogéneous soil". Highway Research Board,
Research Report No. 12-F.

FRYDMAN, S. and ZEITLEN, J.G. (1969). "Some pseudo-elastic
properties of granular medié". Proc. 7th Int. Conf.

SM and F Eng., Vol. 1, 1969, pp 135-141.



491 -

GARLANGER, J.E. (1972)}. "The consolidation of soils exhibit-
ing creep under constant effective stress". Geotechnique,
Vol. 22, No. 1, pp 71-78.

GIBSON, R.E. (1967). "Sdme results concerning displacementé
and stresses in a non-homogeneous elastic half-space."”
Geotechnique, Vol. 17, No. 1, pp 58-67. |

GIBSON, R.E, (1968). "Correspondence: some results.concerning
displacements and stresses in a non-homogeneous elas-
tic half-space". Geotechnique, Vol. 18, No. 2, pp
257-276.

GIBSON, R.E. (1969). "Correspondence: some results concerning
displacements and stresses in a non-homogeneous elas-
tic half-space”. Geotechnique, Vol. 19, No. 1, pp
160-161.

GIBSON, R.E. (1874). "The analytical method in soil mechanics®™.
14th Rankine Lecture. Geotechnique, vVol. 24, No. 2,
pp 115-140.

GIBSON, R.E. and SILLS, G.C. (1971). "Some results concerning
the plane deformation of a non-homogeneous elastic
half-space". Proc. Roscoe Memorial Conf. on Stress-
strain behaviour of soils, pp 564-572.

GIRIJAVAIL.ABHAN, C.V. and REESE, L.C. (1968). "Finite-element
method for problems in soil mechanics". Proc. A.S.C.E.,
J. S.M.F.D., Vol. 94, sSM2.

GIROUD, J.-P. (1972). "Settlement of rectangular foundation
on soil layer”. Proc., A.S.C.E., J.S.M.F.D., Vol. 98§,

Ne. SM1, pp 149-~154.



492 .

GRANT, R., CHRISTIAN, J.T. and VANMARCKE, E.H. (1974).
"Differential settlement of buildings". Proc. A.S.C.E.,
Vol. 100, No. GT9, po 973-991.

HAMZA, M.M. (1972). "Certain problems with nonlinear finite
elements. Part I: Acceleration techniques. Part II:
Studies on an earth dam". M.Sc. Thesis, University
of Wales, Swansea.

HAMZA, M.M. (1976). "The analysis of embankment dams by non-
linear finite element method". Ph.D. Thesis, Univ.
of London.

HANSEN, B. (1965). "A theory of plasticity for ideal friction-
less materials". Teknisk Forlag, Copenhagen.

HANSEN, B., and CHRISTENSEN, N.H. (1969). "Discussion on
theoretical bearing capacity of very shallow footings".
Proc. A.S.C.E., J. S.M.F.D., Vol. 95, No. SM6, pp
1568-1572.

HARR, M.E., DAVIDSON, J.L., HO, D., POMBO, L.E., RAMASWAMY,
S.V., and ROSNER} J.C. (1969). "Euler beams on two
parameter foundation meodels". Proc. A.S.C.E., J.S.M.F.D.,
Vol. 95, No. SM3, pp 933-948.

HENCKY, H. (1923). "Uber einige statisch bestimmte Falle
des Gleichgewichts in plastischen Korpern". Zeitschrift
angew. Math. und Mech. Vol. 3, pp 241-246.

HILL, R. (1949)."The plastic yielding of notched bars under
tension”. Quarterly Journal of Mechanics and Applied
Mathematics, Vol. 2, pp 40-52.

HILL, R. (1950). "The mathematical theory of plasticity".

Oxford University Press.



HO,

HO,

493

M.M.K. and BURWASH, W.J. (1968). "Vertical vibration
of a rigid foundation resting on sand". Proc. Svm.
on Vibration effects of earthquakes on soils and
foundations. A.S.T.M., STP-450, pp 197-232.
M.M.K. and LOPES, R. (1969). "Contact pressure of a
rigid circular foundation". Proc. A.S.C.E., J. S.M.F.D.,

Vol. 95, SM3, pp 791-802.

H6EG, K. (1972). "Finite element analysis of strain-softening

clay. Proc. A.S.C.E, J. S.M.F.D., Vel. 928, No. SMl1,

pp 43-58.

HéEG, K., CHRISTIAN, J.T. and WHITMAN, R.V. (1968).

"Settlement of strip load on elastic-plastic soil".

Proc. A.S.C.E., J. S.M.F.D., Vol. 94, SM2, pp 431-445,

HOOPER, J.A. (1974). "Analysis of a circular raft in adhe-

sive contact with a thick elastic layer". Geotechnique,

vol. 24, No. 4, pp 561-580.

HOYAUX, B., and LADANYI, B. (1970)."Gravitational stress

field around a tunnel in soft ground". Canadian Geot.

J., Vol. 7, No. 1.

IRONS, B.M. and ZIENKIEWICZ, O.C. (1968). "The isoparametric

finite element system - a new concept in finite ele-
ment analysis". Proc. Conf. Recent Advances in Stress

Analysis, Royal Aerxo. Soc.

JAMES, C.H.C., KRIZEK, R.J. and BAKER, W.H. (1969). "Bearing

capacity of purely cohesive soils with a non-homogeneous
strength distribution". Highway Research Record No.’

282, pp 48-56.



494

JANBU, N. (1963)."Soil compressibility as determined by
oedometer and triaxial tests". Proc.lst European Conf.
on SM and F. Engng. Wiesbaden, Vol. 1, pp 19-25.

JANBU, N., BJERRUM, L., and KJAERNSLI, B. (1956). "Veiledning
ved Lgsning av Fundamenteringsoppgaver”. N.G.I.
Publication No. 16.

JONES, A. (1962). "Tables of stresses in 3-layer elastic
systems". Highway Research Board Bulletin, No. 342.

KENNARD, M.F., KNILL, J.L., and VAUGHAN, P.R. (1967). "The
geotechnical properties and behaviour of carboniferous
shale at the Balderhead Dam". Quarterly J. Eng.
Geology, Vol. 1, No. 1.

KENNARD, M.F., PENMAN, A.D.M., and VAUGHAN, P.R. (i967).
"Stress and strain measurements in the clay core
at Balderhead Dam". Trans. 9th ICOLD Congress, Vol.

3, Istanbul.

KéRISEL, J. (1967). "Scaling laws in soil mechanics". Proc.
3rd.Panamerican Conf. SMFE, Caracas, Vol. 3, op
69-92.

RERISEL, J., and QUATRE, M. (1968). "Settlements under
foundations". Civ. Eng. and Pub. Wks. Review, May,
June.

KJAERNSLI, B., and TORBLAA, I. (1968). "Leekage through
horizontal cracks in the core of Hyttejuvet Dam".
Norwegian Geot. Institute. Pub. No. 80.

KLEIN, G.K., and DURAEV,.A.E. (1971). "The effects of the
increase of modulus of deformation of the soil with
increasing depth for calculation of beams on a

continuous foundation"”. (in Russian), Gidrotekniskoie



495

Stroitelstro, June, pp 19-21.

KO, H.Y.,and DAVIDSON, L.W. (1973). ﬁBearing capacity of
footings in plane strain”. Prbc. A.S.C.E., J. S§.M.F.D.,
Vol. 99, SM1l, pp i—23.

KO, H.Y.,and SCOTT, R.F. (1973). "Bearing capacity by
plasticity theory". Proc. A.S.C.E., J. S.M.F.D.,
vVol. 99, SMl, pp 25-43.

KRYNINE, D.P. (1938). "Pressures beneath a spread foundation".
Transactions, A.S.C.E., Vol. 103, pop 827-877.

KULHAWY, F.H., DUNCAN, J.M. and SEED, H.B. (1969). "Finite
element analysis of stresses and movements in embank-
ments during construction". Report No. TE-69-4 to
U.S5. Army Engineers, Waterways Experiment Sﬁation.
Dept. of Civil Eng.,University of California, Berkeley.

XKULHAWY, F.H., and GURTOWSKI, T.M. (1976). "Load transfer
and hydraulic fracturing in zoned dams". Proc. A.S.C.E.,
Vol. 102, No. GT9, pp 963-974.

LAING, J.M. (1971). "A finite element method for investi-
gating cracking in embankment dams". Ph.D. Thesis,
University of London.

LAMBE, T.W. (1964). "Methods of estimating settlement".

Proc. A.S.C.E., J. S.M.F.D., Vol. 90, SM5,

LAMBE, T.W. (1967). "Stress path method". Proc. A.S.C.E.,
J. S.M.F.D., Vol. 93, SMe6.

LAMBE, T.W. (1973a). "Predictions in soil engineering”.
13th Rankine lLecture. Geotechnique, Vol. 23, No. 2,

pp 149-202.



496 .

LAMBE, T.W. (1973b). "Soil parameters for predicting defor-

mations and stability". Proc. 8th I.C.S.M.F.E.,
-Vol. 3, pp 3-25.

LEONARDS, G.A., and NARAIN, J. (1963). "Flexibility of clay
and cracking of earth dams". Proc. A.S.C.E., J. S.M.F.D.,
Vol. 89, No. SM2. ‘

LUNDGREN, H., and MORTENSEN, K. (1953). "Determination by
the theory of plasticity of the bearing capacity of
continuous footings on sand". Proc. 3rd I.C.S.M.F.

E., Vol. I., pp 409-412, |

MANDEL, J., and SALENCON, J. (1969). "Force portante d'un
sol sur une assise rigide". "The bearing capacity of
sclils on a rock foundation®. Proc. 7th I.C,S.M.F.E.,
Vol. 2, pp 157-164.

‘MARSAL, R.J. (1959). "Barth dams in Mexico". Proc. lst
Panamerican Conf. on S.M.F.E., Vol. 3, Mexico.

MARSAL, R.J., and DE ARELLANO, L.R. (1967). "Performance of
El Infiernillo Dam”. Proc. A.S.C.E., J. S.M.F.D.,

Vol. 93, No. SM4.

MEYERHOF, G.G. {1951). "The ultimate bearing capacity of
foundations". Geotechnique, Vol. 2, p. 302.

MEYERHOF, G.G. (195%). "Influence of roughness of base and
ground water conditions on the ultimate bearing
capacity of founcations". Geotechnique, Vol. 5, p 227.

MEYERHOF, G.G. (1965). "Shallow foundations". Proc. A.S.C.E.,
J. S.M.F.D., Vol. 91, SM2, pp 21-31.

MILOVIC, D.M., TOUZOT, G. and TOURNIER, J.P. (1970). "Stresses

and displacements in an elastic layer due to inclined



497

and eccentric load over a rigid strip". Geotechnique,
Vol. 20, No. 3, vp 231-152.

MINDLIN, R.D. (1936). "Forces at a point in the interior
of a semi-infinite solid". Physics, Vol. 7, No. 5,
pp 195-202. .

MOGAMI, T. (1957). "Numerical tables for calculatién of
stress components induced in a semi-infinite elastic
solid when a force 1s applied at a point in the
interior of the body". Kajima Construction Technical
Research Institute, Tokyo, Japan.

MOORHOUSE, D.C. (1972). "Shallow foundations". Proc.
Specialty Conf. on Performance of Earth and Earth-
supported Structures, A.S.C.E., Purdue Univ. Lafayette,
Indiana, Vol. 2, pp 71-109.

MORGAN, J.R. and SCALA, A.J. (1968). "Flexible pavement
behaviour and application of elastic theory - a review".
Proc. 4th Conf. Australian Road Research Board,
Melbourne, Vol. 4, part 2, p 1201.

MURFF,J.D. and MILLER, T.W. (1977). "Foundation stability

| on Nonhomogeneous clays". Proc. A.S.C.E., Vol. 103,
No. GT10, pp 1083-1095.

NASCIMENTO, U. and SIMOES, A. (1957). "Relation between
CBR and modulus of strength". Proc. 4th I.C.S.M.F.E.,
Vol. 2, pp 166-168.

NAYAK, G.C. (1971). "Plasticity and large deformation
problems by the finite element method". Ph.D. Thesis,

University of Wales, Swansea.



498.

NAYAK, G.C., and ZIENKIEWICZ, O.C. (1972). "Elasto-plastic
stress analysis. A generalisation for various con-
stitutive relations including strain~softening”.

Int. J. for Num. lMethods in Engng, Vol. 5, pp 113-135.

NAYLOR, D.J. (1974). "Stresses in nearly incompressible
materials by finite elements with applicatioﬁs to
the calculation of excess pore pressure". Int. Journ.
for Num. Meth. in Engng, Vol. 8, pp 443-460.

NEWMARK, N.M. (1942). "Influence charts for computation of
stresses in elastic foundations". Univ. of Illinois
Engineering Experiment Station, Bulletin No. 338,
pp 5-25. _

NOBARI, E.S., and DUNCAN, J.M. (1972). "Effect of reservolir
filling on stresses and movements in earth and rock-
fill dams". U.S. Corps of Engineers, Report No. S-72-2.

NONVEILLER, E.,and ANAGNOSTI, P. (i961). "Stresses and
deformations in cores of rockfill dams". Proc. 5th
I.C.s.M.F.E., Paris, Vol. 2, vp 673-680.

PARKES, E.W. (1956). "A comparison of the contact pressures
beneath rough and smooth rafts on an elastic medium".
Geotechnique, Vol. 6, No. 4, pp 183-189.

PATRICK, J.G. (1967). "Post-construction behaviour of Round
Butte Dam". Proc. ASCE, J. S.M.F.D., Vol. 93, No. SM4.

PEATTIE, K.R. (1962). "Stress and strain factors for 3-layer
elastic systems". Highway Research Board Bulletin,

No. 342,
PEATTIE, K.R. (1263). "A fundamental approach to the design

of flexible pavements". Proc. Int. Conf. on the



499

Structural Design of Asvhalt Pavements, University
of Michigan, pp 403-411.

PECK, R.B., and BAZARAA, A.R. (1969). Discussion: Settlement
of spread footings cn sand. Proc. A.S.C.E., Vol. 95,
No. SM3.

PERLOFF, W.H. (1975). "Pressure distribution and settlement".
Foundation Engineering Handbook, Winterkorn, H.F.
and Fang, H.Y., (eds.), Van Nostrand Reinhold, New York,
pp 148-196.

POPE, R.J. (1967)."Evaluation of Cougar Dam Embankmént ver-
formance". Proc. A.S.C.E., J. S.M.F.D., Vol. 93, No.
SM4.

POULOS, H.G. (1967). "Stresses and displacements in an
elastic layer underlain by a rough rigid base".
Geotechnique, Vol. 17, pp 378-410.

POULOS, H.G. (1968). "The behaviour of a rigid circular
plate resting on a finite elastic layer". Civil Eng.
Trans. Instn. of Engrs., Aust., Vol. CEl10, pp 213—219;

POULOS, H.G., and DAVIS, E.H. (1974). "Elastic solutions
for soil and rock mechanics". John Wiley and Sons, Inc.

PRANDTL, L. (1920). "Uber die Harte plastischer Korper".
Nachrichten von der Koniglichen Gesellschaft der
Wissenschaften zu Gottingen. Mathematisch - physikalische
Klasse Berlin, p. 74-85.

PRéVOST, J.-H., and HOEG, K. (1975a). "Soil mechanics and
plasticity analysis of strain softening”. Geotechnique,
Vol. 25, No. 2, pp 279-297.

PREVOST, J.-H., and HOEG, K. (1975b). "Effective stress-
strain-strength model for soils". Proc. A.S.C.E.,

Vol. 101, No. GT3, pp 259-278.



500

PREVOST, J.-H., and HOEG, K. (1975c). "Analysis of pressure-
meter in strain-softening soii”. Proc. A.S.C.E.,
vol. 101, No. GT8, pp 717-732.

RAYMOND, G.P. (1967). "The bearing capacity of large footings
and embankments on clays". Geotechnique, Vol. 17,
pp 1-10.

REISSNER, H. (1924). "Zum Erddruckproblem”. Proc. 1st Int.
Congress for Applied Mechanics, Delft, The Netherlands,
pp 295-311.

REPORT OF THE INDEPENDENT PANEIL ON FAILURE OF TETON DAM (1976).
Report to U.S. Dept. of the Interior and State of
Idaho. Idaho Fallg, Idaho.

RODRIGUES, J.S. (1975). "The development and appliéation of
a finite element program for the solution of geo-
technical problems”. Ph.D. Thesis, University of
Surrey.

ROSCOE, K.H., and BURLAND, J.B. (1968). "On the generalized

stress-strain behaviour of wet clay". Engineering

]

blasticity. Ed. J. Heyman and F.A. Lecku, Cambridge
University Press. pp 535-609.

ROWE, P.W. (1968). "The influence of geclogical features
of clay deposits on the design and performance of
sand drains". I.C.E. Proc. Sup. Paper 70585, London.

ROWE, P.W. (1972). "The relevance of soil fabric to site -
investigation practice”. The 12th Rankine Lecture,
Gectechnique, Vol. 22, ppn 195-300.

SADOWSKY, M. (1928). %. Angew. Math. Mech., Vol. 8, o. 107,



501

SALENCON, J. (1974). "Bearing capacity of a footing on a
¢ = 0 soil with linearly varying shear strength".
Geotechnique, Vol. 24, No. 3, p 443.

SALENCON, J., FLORENTIN, P. and GABRIEL, Y. (1976)."Capacité
vportante globale d'une fondation sur un sol non-
homogéne". Geotechnique, Vol. 26, No. 2, p 351.

SCHIFFMAN, R.L. (1969). "The influence of adhesion on the
stresses and displacements in an elastic half-space".
Highway Research Record, No. 282, pp 17—é4.

SCHIFFMAN, R.L. and GIBSON, R.E. (1964). "Consolidation of
nonhomogeneous clay layers". Proc. A.S.C.E., J. SM and
FD, Vol. 90, No. SM5, Sept. pp 1 - 30.

SCHMERTMANN, J.H. (1970). "Static cone to compute settlement
over sand". Proc. A.S.C.E., J. S.M.F.D., Vol. 96, |
No. SM3.

SCHULTZE, E. (1961). "Distribution of stress beneath a rigid
foundation". Proc. 5th I.C.S.M.F.E., Vol. 1, vp 807-813.

SCoTT, R.F. (1963). "Principles of soil mechanics". Addison-
Wesley Publishing Company, Inc.

SHERARD, J.L., WOODWARD, R.J., GIZIENSKI, S.F., and
CLEVENGER, W.A. (1963). "Earth and earth-rock dams".
John Wiley and Sons, Inc.

SHIELD, R.T. (1954). "Stress and velocity fields in soil
mechanics". Journal of Mathematics and Physics.

Vol. 33, pp 144-156.

SIMONS, N.E. (1974). "Normally consolidated and lightly
over-consolidated cohesive materials". Conf. oﬁ
Settlement of Structures, Session 2, Cambridge,

England.



502

SIMONS, N.E., and MENSIES, B.K. (1975). "A short course in
foundation engineering”. IPC Science and Technology
Press.

SKEMPTON, A.W. (1948). "Vane tests in the alluvial plain
of the River Forth near Grangemouth". Geotechnique,
Vol. 1, No. 2, pp 111-124. |

SKEMPTON, A.W. (1951). "The bearing capacity of clays".
Building Research Congress, I.C.E. Div. 1, P 180.

SKEMPTON, A.W. (1954). "The pore-pressure coefficients A
and B". Geotechnique, Vol. 4, po 143-147.

SKEMPTON, A.W. (1957). "Discussion on the planning and dasign
of the new Hong Kong airport”. Proc. ICE, vVol. 7,
op 305-307.

SKEMPTON, A.W. and BJERRUM, L. (1957). "A contribution to.
the analysis of foundation on clay". Geotechnique,
Vol. 7, No. 4, p 168.

SKEMPTON, A.W. and McDONALD, D.M. (1956). "The allowable
settlement of buildings"”. Proc. ICE, Vol. 5, Part 3,
rp 727.

SMITH, I.M. (1976). "Aspects of the analysis of gravity
offshore structures". Num. Meth. in Geomechaniqs,
A.5.C.E., Vol. 2, pp 957-978, Blacksburg, Virginia.

SMITH, I.M. (1978). "Computer predictions in difficult soil’
conditions". Chapter 4 in Foundation Engineering in
Difficult Ground,ed. F.G. Bell,Newnes—Butterworths,London.

SMOLTCZYK, H.U. (1967). "Stress computation in scil meéié".
Proc. A.5.C.E., J. S.M.F.D., Vol. ‘93, No. SHM2,

pp 101-124,



503

SOKOLOVSKII, V.V. (1960). "Statics of soil media". Butterworth,
London.

SOKOLOVSKII, V.V. (1965). "Statics of granular media".
Pergamon Press Ltd;, New York. .

SOMMER, H. (1965). "A method for the calculation of settle-
ments} contact pressures, and bending moments in a
foundation including the influence of the flexural
rigidity of the superstructure". Proc. 6th I.C.S.M.F.E.,
Montreal, Vol. 2, pp 197-201.

SOVINC, TI. (1961). "Stresses and displacements in a limited
layer of uniform thickness, resting on a rigid base,
and subjected to an uniformly distributed flexible
load of rectangular shape". Proc. 5th I.C,S;M.F.E.,
Vol. 1, vp 823-827.

SOVINC, I. (1969). "Displacements and inclinations of rigid
footings resting on a limited elastic layer of uni-
form thickness". Proc. 7th I.C.S.M.F.E., Vol. 1,
pp 385-389.

SCWERS, G.F. (1962). "Shallow foundations". Foundation
rEngineering, ed. G.A. Leonards, McGréw«Hill, New York.

SOWERS, G.F. (1975). "Analysis and design of lightly-loaded
foundations". Proc. Conf. Analysis and Design in
Geotechnical Engineering, A.S.C.E., June 9-12, Vol. 2,
pp 49-78.

SQUIER, L.R. (1970). "Load transfer in earth and rockfill
dams". Proc. A.S.C.E., J. S.M.F.D., Vol. 96, SM1,

pp 213-233.



504

SUTHERLAND, H.B. (1974). "Granular materials". General
report. Session 1, Proc. Conf. on Settlement of
Structures, Cambridge, pp 473-499.

TAYLOR, D.W. (1948). Fundamentals of soil mechanics". John
Wiley and Sons, New York.

TERZAGHI, K. (1925). "Erdbaumechanik auf Bodenphysika -
lischer Grﬁndlage“.fﬂ Deuticke, Vienna.

TERZAGHI, K. (1943). "Theoretical s0il mechanics”. John
Wiley and Sons, Inc.

TERZAGHI, K. (1955). "Evaluation of coefficients of subgrade
reaction”. Geotechnique, Vol. 5, pp 297-326.

TERZAGHI, K., and PECK, R.B. (1948). "Soil mechanics in
engineering practice". John Wiley and Sons,inc.

TERZAGHI, K., and PECK, R.B. (1967). "Soil mechanics in
engineering practice”. 2nd Edition. Wiley International
Edition. John Wiley and Sons, Inc., New York.

TIMOSHENKO, S.P. and GOODIER, J.N. (1951). "Theory of
elasticity”". 2nd ed. McGraw-Hill.

TIMOSHENKO, S.P. and GOODIER, J.N. (1970). "Theory of
elasticity". 3rd ed. McGraw-Hill. International
Student Edition.

TOMS, A.H. (1954). Discussion given at the Conf. on the
North Sea Floods of 31 January/l February 1953.

The I.C.E., pp 103-105,

TRUSCOTT, E.G. (1977). "Behaviour of embankment dams".
Ph.D. Thesis, Univesrity of London. |

UESHITA, K., and MEYLERHOF, G.G. (1967). "Deflection of
multilayer soil systems". Proc. A.S.C.E., Vol. 93,

No. SM5, pp 257-282.



505

VAUGHAN, P.R. (1965). "Field measurements in earth dams".
Ph.D. Thesis, University of London.

VAUGHAN, P.R. (1967). "Discussion on Question No 34 - The
behaviour and detefioration of dams". Transactions
9th ICOLC Congress, Vol. 6, o 434, Istanbul.

VAUGHAN, P.R. (1970). "Cracking of clay cores of dams”.
Surveyor {(London), Jan. 30, pp 32-34, and
Proc. Inst. Civil Eng., May, pp 115-117.

VAUGHAN, P.R. (1972). Discussion. Proc. 5th European Conf.
S.M.F.E., Madrid, Vol. 2, pp 72~75.

VAUGHAN, P.R. (1973). "M;Sc. Foundations course notes".
Imperial College, University of London.

VAUGHAN, P.R. (1974). "M.Sc. Embankment dams course notes".
Imperial College, University of London.

VAUGHAN, P.R. (1976a). "Stress changes in an element of
soll subject to an increase in pore pressure and a
very simple confining system. Unpublished.

VAUGHAN, P.R. (1976b). "Cracking of embankment dam cores
and the design of filters for their protection”.
Lecture given in Madrid onl June 1976. To be pub~
lished in the Bulletin of: Sociedad Espanola de
Mechanica del Suelo y Cimentaciones.

VAUGHAN, P.R., DAVACHI, M.M., EL-GHAMRAWY, M.K., HAMZA, M.M.
and HIGHT, D.W. (1976). "Stability analysis of large
gravity structures". Proc. Conf. Behaviour of Off-shore
Structures, Trondheim, Vol. 1, op 467-487.

VAUGHAN, P.R., KLUTH, D.J., LEONARD, M.W., and PRADOURA, H.H.M.

{1970). "Cracking and erosion of the rolled clay core



506

of Balderhead Dam and the remedial works adopted for
its repair". Transacticns 10th Congress Large Dams,
Vol; 1, pp 73-93.

VESIé, A.S. (1961a). "Beams on elastic subgrade and Winkler's
hypothesis". Proc. 5th I.C.S.M.F.E., Paris, pp 845-850.

VESIé, A.S. (1961b). "Bending of beams resting on isotropic
elastic solid". Proc. A.S.C.E., J. E.M.D., Vol. 87,

No. EM2, pp 35-53.

VESIé, A.S. (1963a). "Bearing capacity of deep foundations
in sand". National Academy of Sciences, National
Research Council, Highway Research Record, Vol. 39,
pp 112-153.

VESIé, A.S. (1963b). "Theoretical studies of cratering
mechanisms affecting the stability of cratered slopes”.
Final Report, Project No. A-655, Engineering Experiment
Station, Georgia Institute of Technology, Atlanta,
Georgia, pp 1-67.

VESIé, A.S. (1965). "Bearing capacity and settlement of
foundations". Proc. Symposium on Bearing Capacity and
Settlement of Foundations; Duke University, Durham.

VESIC, A.S. (1973). "Analysis of ultimate loads of shallow
foundations". Proc. A.S.C.E., J. S.M.F.D., Vol. 99,

No. SM1, pp 45-73.

VLASOV, V.Z., and LEONT'EV, U.N. (1966). "Beams, plates and
shells on elastic foundations". (original in Russian),
Translated under Israel Program for Scientific

Translations, Jerusalem.



507

WESTERGAARD, H.M. (1938). "A problem of elasticity suggested'
by a problem in soil mechanics: soft material rein-
forced by numerous strong horizontal sheets”.

Stephen Timoshenko 60th Anniversary Volume, MacMillan
and Co.

WINKLER, E. (1867). "Die Lehre von Elastizitat und Festigkeit"..
Prague, po 182-184.

YAMAGUCHT, H., KIMURA, T., and KONNO, H. (1968). "On the
contact pressure distribution between rigid loads
and an elastic solid underlain by a rigid boundary"
Soils and Foundations, Vol. 8, No. 3, po 46-62.

YONG, R.N.Y. (1L960). "A study of settlement characteristics
of model footings on silt". Proc. 1lst Pan—Aﬁerican
Conf, on S.M.F.E., Mexico, D.F., pp 492-513.

ZARETSKIT, Yu., K. (1972). "Theory of soil ccnsolidation“.
Israel Program for Scientific Translations.

ZARETSKIT, Yu., K. and TSYTOVICH, N.A. (1965). "Consideration
of heterogeneity and non-linear deformation of the
base in the design of rigid foundations". Proc. 6th
I.C.8.M.F.E., Montreal, Vol. 2.

ZEEVAERT, L. (1972). "Foundation engineering for difficult
subsoil conditions". Van Nostirand Reinhold Co.

ZIENKIEWICZ, 0.C. (1971). "The finite element method in
engineering science"”. 2nd Edition, McGraw-Hill,

London.





