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ABSTRACT 

Non-linear finite element techniques are used to 

study the undrained behaviour of shallow foundations under 

monotonic and cyclic loadings, and the cracking of embank-

ment dam cores. A main aim of the work was to examine 

stress changes beneath footings for use in laboratory stress-

path testing work. 

Comparisons of the finite element results with the 

available closed form solutions, and with other numerical 

solutions, are made to investigate the reliability and effec- 

tiveness of the technique used. 	Good agreement was found. 

In studying the undrained behaviour of shallow foun-

dations under monotonic loading, the effects of non-linea-

rity, layer thickness, side boundaries, footing rigidity, 

initial state of stress, deformation properties and nonhomo-

geneity on stresses, displacements and failure loads are 

examined, and failure zones and rupture figures are studied. 

Some cases which have no closed form solution are analysed. 

It is shown that the nonhomogeneity has a major effect on 

stresses, displacements, failure loads and failure zones. 

The effect of cyclic loading on displacements and 

stresses is examined, and the effects of different stress-

strain models on stresses, stress changes and displacements 

during cyclic loading are investigated. 
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In studying the cracking of an embankment dam core, 

stresses and stress changes in an idealised core at the 

end of construction and after impounding are analysed. 

From these analyses, investigations are made of areas of 

low stress and the likelihood of crack formation. 	It is 

shown that the development of seepage pressures throughout 

the core during impounding reduces the risk of hydraulic 

fracture. 

During this study, it was found that some points 

within the core exhibit strain-softening behaviour during 

impounding. 	An iterative technique is developed and used 

for this strain-softening behaviour. 	In this technique, a 

modified form of the Newton-Raphson method, which enables 

the relevant deformation parameters for shear unloading to 

be assigned to every Gauss point in the domain in every 

iteration, was used where necessary. 
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CHAPTER 1 

INTRODUCTION 

1.1 	Outline of the Research Project 

In order to perform the stress analysis for a continuum, 

the governing equations must be solved. 	The enormous com- 

plexities encountered in soils can make analytical closed 

form approaches very difficult, and a large number of simpli-

fying assumptions are necessary to obtain such solutions. 

Fortunately, numerical techniques enable the governing 

equations of a complex problem to be solved approximately. 

The popularity and versatility of these techniques have been 

greatly enhanced by the availability of the large high-speed 

digital computers. 

The most widely used numerical technique in geotechnical 

engineering is the finite element method. 	This method is 

essentially a process through which a continuum with infinite 

degrees of freedom is approximated by an assemblage of sub-

regions, called finite elements, each with a specified but 

finite number of degrees of freedom. 	The fundamental pro- 

perty underlying the finite element method is that typical 

subregions can he studied for their behaviour independently 

of other elements. 	Once the behaviour of a typical element 

has been formulated in terms of behaviour of the nodes of 

the element, the complete model is then obtained by appropriate 

assembly of all the elements. 

Generally, it is easy to obtain a reasonable solution 

1 
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for a geotechnical problem using the finite element method, 

but it needs considerable checking to ensure that the 

solution is sufficiently reliable. 	Therefore, the effec- 

tiveness of the finite element programme must be investi-

gated by comparing finite element results with the results 

obtained from closed form or approximate solutions. 

In this research the finite element method is used to 

study the behaviour of shallow foundations, and cracking 

phenomenon of embankment dam cores. 

The finite element programme used is designed for 

two dimensional plane strain and axisymmetric geotechnical 

problems. 	It uses the displacement approach to the 8-noded 

isoparametric element with built-in reduced Gauss integration 

rule for numerical integration of the element characteristics. 

The solution of the banded symmetric matrix is achieved by 

the direct Gauss elimination method. 	The deformation is 

assumed not to change the overall geometry of the problem 

.(only small displacement and first order strain terms are 

considered). 

The programme can handle linear and non-linear material 

with a shear strength cut-off. 	Saturated undrained shear 

behaviour and non-dilatent drained shear behaviour can be 

modelled. 	Non-linearity is dealt with using either incre- 

mental or iterative methods, or a combination of the two. 

The incremental technique can be either the tangential 

method or the Quasi Runge-Kutta method. 	For the iterative 

technique either the constant stiffness method or the Newton.- 

Raphson method can be chosen. 
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During this research an iterative technique is 

developed and used in the programme for the hydraulic 

fracturing phenomenon which implies a strain-softening 

problem. 	A modified form of the Newton-Raphson method, 

which enables the relevant deformation parameters for shear 

unloading to be assigned to every Gauss point in the domain 

in every iteration, was used where necessary. 

In studying the behaviour of shallow foundations, 

first, a comparison between finite element results and 

available closed form or approximate solutions is made to 

ensure the reliability of the method. 	Then, effects of 

layer thickness, side boundaries, footing rigidity, soil 

unit weight and Ko, stress-strain curve, non-homogeneity, 

and an increase in the applied load on displacements and 

stresses are investigated. 	Also, failure zones and rupture 

figures in clay, are studied, and some of the geotechnical 

problems which have no closed form solutions, such as: 

inclined and eccentric loading of a finite layer whose un-

drained modulus and strength vary linearly with depth, are 

analysed. 

Furthermore, the effect of the cyclic loading on dis- 

placements and stresses is considered. 	Also, with cyclic 

loading, effects of different stress-strain models on stresses, 

stress changes, and displacements are investigated. 

In studying the behaviour of crack formation in the 

embankment dam core, stresses and stress changes in the core 

at the end of construction and after impounding are analysed. 

From these analyses, investigations are made of areas of 



low stress and the likelihood of crack formation. 	Also, 

from finite element results, it is shown that impounding 

tends to increase the average total stress (al  + 	and and 

so prevent cracking, as predicted by Vaughan (1976b). 

1.2 	Organization of the Thesis  

The thesis has been divided into three parts and two 

Appendices. 	Part one consists of one chapter (Chapter 2) 

which considers the finite element method of analysis. 	The 

purpose of stress analysis, methods of stress analysis, and 

basic assumptions of the finite element method are briefly 

explained. 	Also, in Chapter 2, the two different methods 

for non-linear solutions (incremental and iterative) are 

discussed. 	In the final section of Chapter 2, the non- 

linear finite element programme used in this research is 

explained. 

Part two, which consists of four chapters (Chapters 

3, 4, 5 and 6), considers the study of the behaviour of 

shallow foundations. 	Chapters 3 and 4 consist mainly of 

a literature review and contain the approximate theories 

developed during this research. 	Chapter 3 deals with the 

stress distribution, settlement analysis, and soil-foundation 

interaction. 	Chapter 4 considers the failure and bearing 

capacity of footings. 

In Chapter 5, the different cases for the footing 

studies made in this work are tabulated, including the 

material properties used. 	Chapter 6 contains the finite 

element results for monotonic and cyclic lnA_ding of the 
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footing, and discussion of these results. 	Also, in this 

chapter, comparison is made between the finite element 

results and available closed form solutions, in order to 

investigate the effectiveness of the programme. 

Part three consists of two chapters (Chapterg 7 and 

8), and studies stresses and stress changes in an idealised 

embankment dam core during construction and impounding. 

In Chapter 7 a brief review of cracking of embankment dam 

cores is presented, together with the phenomena of load 

transfer and hydraulic fracture in the core. 

Chapter 8 contains finite element results for studying 

stresses and stress changes in the core. 	The areas of low 

stress and the likelihood of crack formation in the core are 

investigated. 	Also, in this chapter, it is shown that 

impounding tends to increase the average total stresses. 

In Appendix one the flow chart of the programme is 

given. 	Appendix two consists of descriptions and algorithms 

for the principal parts of the programme specially written 

for this research. 

While analysing the behaviour of crack formation in 

the core, it was found that some points within the core 

exhibit strain-softening behaviour after impounding. 	The 

programme has been extended to deal with this behaviour. 

The algorithm for this is explained in Appendix two, and 

finite element results obtained after this modification are 

discussed in Chapter 8. 



PART I 

METHOD OF ANALYSIS  



CHAPTER 2 

THE METHOD OF ANALYSIS; FINITE ELEMENT TECHNIQUE 

2.1 	The Stress Analysis of a Continuum 

The study of the response of a real continuous struc-

ture to a given set of loading conditions can be done by 

performing an engineering stress analysis of that structure. 

From this study it is possible to obtain the information 

about the mechanism of behaviour; the magnitude and the 

direction of displacements, stresses and/or pore water 

pressure (directly or inferred) at selected points; and the 

stability (or the margin of safety) of the structure. ' Such 

analyses involve aknowledge of the applied loads; the rele-

vant material properties; and the geometry and appropriate 

boundary conditions. 

In the closed form solution of the stress analysis 

problems three conditions should be satisfied throughout the 

structure, Timoshenko and Goodier (1951). 	These conditions 

are (i) equilibrium of forces, (ii) compatibility of dis-

placements, and (iii) the material stress-strain laws. 

2.2 Methods of Stress Analysis  

There are two well-tried methods for solving a continuum. 

Firstly there is the model analysis, which involves the 

application of scaled values of the real applied loads to 

a model exhibiting all the features of the prototype structure. 

The response of the model is measured and used to interpret 

6 
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or predict the behaviour of the prototype. 	For this method 

a detailed knowledge of the material properties is not 

always necessary. 

The second method is the direct solution of the 

structure's governing equations. 	The enormous complexities 

encountered in the natural state of the geologic media can 

make analytical closed form approaches very difficult. 

Pioneering work by Terzaghi (1943) imparted scientific and 

mathematical bases to many aspects of these subjects, in 

these developments the solutions were often obtained on the 

basis of differential equations that were assumed to govern 

the physical systems, and a large number of simplifying 

assumptions were necessary to obtain the closed form solu- 

tions. 	Although this approach has provided useful solutions 

for many practical situations, it cannot yield realistic 

solutions for problems involving such complexities as non-

homogeneity, nonlinearity, in situ stress conditions, and 

many other factors imposed by geological characteristics. 

However, -numerical techniques enable the governing 

equations of a complex problem to be approximated by a system 

comprising a finite number of variables, whose solution 

provides an approximation to the true solution of the problem. 

The most widely used methods in geotechnical engineering 

are the finite element and finite differem-e methods. Before 

the era of the finite element method, the finite difference 

method was perhaps the main numerical technique employed in 

geotechnical engineering. 	Although the finite element 
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method possesses certain advantages over the finite 

difference method, the latter can be more suitable for 

certain classes of problems. 

The finite element method (FEM) is a particular 

numerical technique which can be used to approximate linear 

differential equations by a system of simultaneous equations, 

Zienkiewicz (1971). This approximation is the most impor-

tant and powerful feature of the method. 

2.3 Basic Assumptions of the Finite Element Method 

In the FEM a structure is approximated by an assem-

blage of elements of the structure, interconnected at a' 

finite number of joints or nodal points replacing infinite 

numbers of the element boundary points. 	This process is 

called idealisation or discretisation; it involves the 

evaluation of the element characteristics independently 

from the rest of the structure. 	Once the element charac- 

teristics are established, the general procedures of assem-

bly and solution will follow a pattern for which the struc- 

tural analogy provides a convenient basis. 	During the 

solution, the three conditions listed in section (2.1) are 

satisfied within each element and at the nodes, while in 

general only one of the first two conditions can be satisfied 

at the element interfaces depending on the approach followed. 

This satisfaction will allow the structure to be approximated 

by a finite set of primary variables inter-related by a 

system of simultaneous equations. 	These primary variables 



9 

always appear in pairs and are called the nodal variables. 

In the case of plane stress, plane strain, axisymmetric and 

three dimensional stress analysis they are the corresponding 

nodal components of force and displacement. 

Once the primary variables have been evaluated the 

secondary variables, strains and stresses are uniquely 

defined within each element using the definition of strains 

and the material stress-strain laws. 

As mentioned before, the finite element idealisation 

cannot in general satisfy fully both equilibrium and com- 

patibility at the element interfaces. 	The two most common 

idealisations satisfy either compatibility or equilibrium 

across each interface of a finite element. 	In this research, 

the formulation satisfying compatibility throughout is used, 

it is commonly referred to as the "displacement approach". 

Thus the unknown primary variables are the displacements at 

the nodes which are inter-related to the known nodal forces 

by a set of equations representing the stiffness of the 

structure. 	These equations can be obtained either by the 

virtual work principle or by minimising the strain energy 

of the finite element idealisation. 

The principle of virtual work or displacements does 

not depend on the mechanical properties of the material and 

is therefore valid for any state of the body such as solid, 

liquid, elastic or inelastic. 

Generally, the displacement approach of the finite 

element stress analysis of a continuum involves three basic . 

steps:- 
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1. From the applied loads, the equivalent nodal 

forces are calculated. 	These are called the known primary 

variables. 

2. From the element characteristics, the overall 

structural stiffness matrix is assembled. 	Inversion of 

the stiffness matrix solves for the displacements at the 

nodes. 	These are called the unknown primary variables. 

3. From the displacements at the nodes, the strains 

are calculated. 	Using the material stress-strain laws, 

the stresses are also calculated, thus the secondary variables 

are found. 

The more fundamental discussion of the steps involved 

in the finite element analysis can be found in the books by 

Zienkiewicz (1971), Desai and Abel (1972), and Cook (1974). 

2.4 The Isoparametric Elements  

The isoparametric element concept proposed by Irons 

and Zienkiewicz (1968) has proven to be a simple but elegant 

basis for element formulations. 	Its use permits incorpora- 

tion of curved boundaries and greatly facilitates such 

mathematical computations as integrations and differentia-

tions involved in an element formulation. 

The term isoparametric implies common (iso-) parametric 

description of the unknown displacement and geometry of the 

element. 	The basic idea is to express both the displacement 

and the geometry of the element by using the same shape 

functions. 	So, if the displacement of a point in the 
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element is defined in terms of displacements at the nodes 

by using the shape functions Ni, then the coordinates of a 

point in the element has to be defined in terms of the 

coordinates of the nodal points by using the same shape 

functions Ni. 

For Gauss quadrature, n sampling integration points 

are sufficient to integrate a polynomial of degree (2n - 1) 

exactly. 	For example if the shape functions are quadratic 

in X and Y directions, the polynomial of the stiffness 

matrix will be quartic and 3 Gauss points are needed to 

integrate the stiffness matrix correctly. 	But in some 

cases in which the element type used in this research is 

one, it was found, Nayak (1971) and Naylor (1974), that it 

is possible to improve the performance by using a reduced 

integration rule, say 2 instead of 3 Gauss points. - 

The 8-noded isoparametric element with 2 integration 

points implies a parabolic distribution of displacements 

across the X or Y direction. 	Thus the best approximation 

obtainable from an element is limited by this parabolic 

distribution. 

Strains are the first derivative of the displacements, 

hence, only a linear strain distribution across the element 

can be obtained. 	Therefore, if the strains are varying in 

a more complex distribution, the element will approximate 

that to a linear one. 

2.5 	The Stress-Strain Model used in this Research 

A rigorous stress-strain law should be able to describe 
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analytically the state of stress and state of strain, 

including the state of failure, in all three phases (solid 

particles, water and air), of an element of soil under any 

case of loading having satisfied all implied boundary con- 

ditions. 	A stress-strain law is needed together with com- 

patibility conditions and equilibrium equations, in order 

to solve a continuum problem. 

In the geotechnical engineering, the material non-

linearities, exhibited through variable material parameters, 

can be caused by a number of factors such as the state of 

the stress or strain, in situ stresses, previous geological 

and stress history, etc. 

For many years the solutions of linear elasticity and 

limit plasticity have been utilized in solving soil mechanics 

and foundation engineering problems, many simplifying assump-

tions being made due to the lack of more sophisticated 

solutions. 	In deriving the elastic solution, the soil is 

assumed to be a linear elastic body which can never fail; 

in the plasticity solution the soil is assumed to be a rigid-

plastic body usually covered by the Mohr-Coulomb failure 

criterion. 	The former predicts deformation only, the 

latter assesses stability only. 	Neither approach models 

the complete behaviour of a soil continuum under load. 

Recent developments in numerical techniques with the 

ability to predict deformations in soils (e.g. FEM) using 

complicated stress-strain laws, have focussed attention on 

the need to define soil stress-strain laws, the solution 
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techniques being limited by the availability of data on 

soil properties. 	Nevertheless, the literature on the sub- 

ject is full of stress-strain solutions for different soil 

types, using mainly two categories of soil models: 

1. those utilizing only the theory of elasticity, 

but with attempts made to account for the nonlinearity 

typically observed in soil stress-strain relationships 

including the failure stage; 

2. those utilizing theories of plasticity, which 

are dependent on the type and variation of yield function 

and flow rule used; this category is more varied than the 

first. 

It has to be mentioned that, at the failure stage, 

where an isotropic elastic model uses E 	0, the Poisson's 

ratio must be equal to 0.5 or very close to it, v = 0.499 

say, otherwise the model will produce very large volumetric 

strain. 

Hamza (1976), in a review of the assumptions and 

basic principles of the elastic and plastic stress-strain 

models, demonstrated that a wide diversity exists in these 

models, and there appeared to be more fundamental differences 

between the various plasticity models than between the 

elasticity models. 	Also, he has mentioned that the proof 

of the adequacy of most of the non-linear elastic approaches 

has come from the successful use of these models in analysis 

of observed field behaviour. 	But no proof has been 
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presented for the accuracy of most of the plasticity models. 

Only'the Roscoe and Burland (1968) plasticity model has 

been demonstrated to adequately simulate certain classes of 

soil behaviour observed in laboratory tests (Hamza, 1976). 

However, one fact is clear that more fundamental testing is 

needed to determine the most suitable model for soil 

behaviour. 

During the course of this research a logarithmic 

equation is used to represent the nonlinear stress-strain 

curve as shown on Fig. 2.1. 	The explicit form of the 

equation for axial strain is 

[1 l og (1 - abcrr) + 	a ] =
ab2

+b  
b r 	

(2.1) 

where Cr denotes the strain ratio = e/ee 
(a - a ),z 1 	3 t 

E. 

a r denotes the maximum shear stress mobilised = 
(a1  - a 3 ) 
(a - a ) 

1 	3_ f 

a,b denote constants to be determined from the test 

data. 

The equation is written in a dimensionless form, thus 

enabling a family of curves to be normalised to a single 

curve from which the two constants "a" and "b" can be deter- 

mined. 	Normalisation is achieved first by normalising 

against the shear strength, and then against the linear 

strain C . 

The strain at failure could be written in the form: 

ce 
denotes the linear strain 

and 
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1+b „ 	112T x  
of 	

J 
--- 	(1 - ab) 1 ma  

ab2 	b) E. (2.2) 

This strain may vary with the variation of u3  independently 

of 2T max/Ei by linking the constant"a" with the profile of 

strain at failure versus a3. 	In this case the constant 

at will be constant for single curve behaviour, but will 

vary for the family of curves. 

The above equation is fed into the computer in the 

following form: 

1 - ab  
Et = E. 1 +a crr  (2.3) 

which can be obtained by differentiating the original form. 

The latter form is more suitable for the non-linear algorithm 

adopted in the program used, and for any tangential stiff-

ness method. 

The initial tangent modulus Ei  may be varied either: 

1. Linearly with depth; 

2. Exponentially with a3  (Janbu, 1963); or 

3. Linearly with a3. 

The shear strength is defined by the Mohr-Coulomb or 

Tresca failure criteria, where the latter one may be varied 

with depth. 

2.6 	Non-Linear Solution Techniques 

In geotechnical engineering problems, two kinds of 

non-linearities exist. 	These are material non-linearity 

and gccmctric non-linearity. 	The work described in this 
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thesis is based on the assumption that displacements are 

sufficiently small for the problem geometry to be unchanged 

and that the theory of infinitesimal strains is valid. 

Thus the non-linearity is only due to material properties 

being dependent on the unknown required results. 

The available techniques used in solving non-linear 

problems can be classified in two main categories: 

1. Incremental Methods; and 

2. Iteration Methods using the residual force 

concept. 

The basis for classification is that the first cate-

gory does not give a measure of convergence or of error 

(it can be inspected manually after the solution), while 

the second category does give a measure of convergence. 

2.6.1 Incremental Methods  

In these methods the result after a pre-stated number 

of increments or steps is considered as a solution for the 

non-linear problem, where the number of increments are not 

determined during the marching of the solution as in the 

iteration methods. 	Thus the stresses and strains of the 

solution are not compatible with the nominated stress-strain 

law, although they can be a good approximation, bearing in 

mind the uncertainties involved in the selection of the 

basic material properties used in the analyses. 



2.6.1.1 The Tangential Stiffness Method  

The most commonly used algorithm of the incremental 

method is the tangential stiffness method. 	Its mathematical 

basis is the first order Euler-Cauchy step-by-step method, 

which can be explained geometrically for a single equation, 

Fig. 2.2, as an approximation of the curve by part of a 

polygon whose first side is tangential to the curve at the 

initial point and so on. 

The greater the number of increments, the closer is 

the approximation to the nominated stress-strain curve at 

the expense of more computer time. 

Over-shooting above the failure surface is expected 

with this method since the check on stress level is carried 

out at the start of the increment. 	However, this over- 

shooting can be reduced by using smaller increments near 

the failure state of the stress. 	Once a point of the 

domain is above the failure stress, a very small value is 

assigned to the deformation parameter (e.g. E nearly zero). 

Strain-softening cannot be modelled using this method 

because the overall stiffness matrix may tend to be non-

positive definite. 

2.6.1.2 The Quasi Runge-Kutta One-Step Method  

The method is an approximation to the fourth order 

Runge-Kutta method which uses for each step four auxiliary 

quantities to arrive at the solution. 	In this approxima- 

tion one auxiliary vector is used instead of four. 	It 

has a simple geometrical interpretation, for a single 
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equation, Fig. 2.3 , the curve is approximated by a straight 

line whose slope corresponds to the tangent of the curve 

at some intermediate point between the starting point and 

the final solution. 	The position of the intermediate 

point is arrived at by an iterative process to avoid over-

shooting. 

This technique has the same general limitation as the 

tangent method with regard to the post-peak modelling and 

stress-strain compatibility with the material law. 	This 

method has two main advantages:- 

1. The size of the increment does not influence the 

results greatly because the non-linearity is dealt with 

during the increment, thus closer reproduction of the 

nominated stress-strain curve is achieved for the same 

computer time. 

2. To avoid serious over-shooting the risk of local 

failure during any loading increment is examined by an 

iterative technique. 

The more general discussion of this method has been 

given by Hamza (1972 & 1976). 

From the comparison shown in Fig. 2.4 it is clear 

that the results of one step of Quasi Runge-Kutta is better 

than the results of two steps of the tangential stiffness method. 

Figures 6.52 and 6.53 (Chapter 6) , show how well the technique 

succeeded in following to failure the nominated stress-strain 

curve at two different points in a problem of about 1200 

degrees of freedom. 
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2.6.2 Iteration Methods Using the Residual Force Concept 

The iterative procedure consists of successive 

corrections to a solution until the equilibrium under the 

total load is satisfied. 	In other words, in an iteration 

technique an approximation to the true solution is arrived 

at for each iteration using a convenient stiffness matrix 

(which need not he the true one). 	The state of the struc- 

ture during this iteration is such that the displacement 

pattern is not in equilibrium with the external applied 

nodal forces because the stiffness matrix used is inappropriate. 

Thus the residual forces are those forces which if 

added to the external loads would exactly balance the inter- 

nal loads due to the incorrect state of stress in the struc- 

ture. 	The iteration process will try to relax the structure 

by giving successive additional increments of displacement 

so that the residual force becomes zero or negligible, ending 

with a correct displacement vector. 

In the above iterative procedure, a method has to be 

selected for the computation of the stiffness matrix. 	One 

choice is the Newton-Raphson method, which computes a 

different stiffness for each iteration, and that is the 

tangent stiffness at the end of the previous iterative step. 

The main disadvantage of this method is that in each iteration 

the tangential stiffness matrix for each element has to be 

calculated and the stiffness matrix for the whole structure 

has to be reassembled and inverted, which will result in a 

high computer cost. 
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The second choice is the Constant Stiffness method 

which, instead of computing a different stiffness for each 

iteration, utilizes only the initial stiffness. 	Obviously 

this method has a slower convergence than the Newton-Raphson 

method. 	The widely used initial stress and initial strain 

methods are variations of this concept. 

Figure 2.5 shows these two methods. 

2.6.3 Discussion on the Non-Linear Solution Techniques  

The incremental methods are applicable to nearly all 

types of the non-linear behaviour, with the exception of the 

strain-softening materials. 	One other advantage of this 

technique is.that it provides a relatively complete des-

cription of the load-deformation behaviour. 

On the other hand, for the incremental method, it is 

difficult to know in advance what increments of loads are 

necessary to obtain a good approximation to the exact 

solution. 

The iterative technique is applicable for the analysis 

of structures with strain-softening material properties. 

The principal disadvantage of the iterative method is that 

there is no assurance that it will converge to the exact 

solution. 

Because the mixed method combines the advantages of 

both the incremental and iterative procedures and tends to 

minimize the disadvantages of each, incremental-iteration 

is being utilized increasingly. 



	

2.1 	.. 

2.7 General Description of the Programme Used in this 

Research 

The programme is designed for two dimensional plane 

strain and axisymmetric geotechnical problems. 	It is a 

compact rather than a general purpose system. 	The programme 

uses the displacement approach to the 8-noded isoparametric 

element with built-in reduced Gauss integration rule for 

numerical integration of the element characteristics. 	The 

solution of the banded symmetric matrix is achieved by the 

direct Gauss elimination method. 	The deformation is assumed 

not to change the overall geometry of the problem (only 

small displacement and first order strain terms are retained). 

Boundary conditions are specified in terms of displace-

ment, in one or both of the vertical and horizontal directions, 

or by specifying a spring with constant stiffness. 	The 

prescribed displacement at the boundary could be prescribed 

to be free, a specific value of zero. 	(Prescribed dis- 

placement or springs could also be applied to nodes within 

the domain).' 

The programme can handle linear and non-linear material 

with a shear strength cut-off. 	Saturated undrained shear 

behaviour and non-dilatent drained shear behaviour 'can be 

modelled. 	Anisotropic linear elastic material is also 

available, provided that the axis of anisotropy coincides 

with the axis of geometry. 	In any problem the domain may 

be composed of non-linear isotropic, linear isotropic and/or 

linear anisotropic in terms of drained and/or undrained 



deformation and shear strength parameters. 	In case of 

undrained material properties, pore water pressure is 

evaluated using the pore pressure parameters A and B. 	For 

undrained loading if linear deformation parameters are used 

pore water pressure is evaluated using water compressibility. 

Types of loading include: Body forces to simulate 

gravity or horizontal or inclined forces due to earthquake, 

surface tangential and normal stresses, concentrated forces 

and seepage forces and internal straining of the domain 

(including volume change). 	The latter could simulate 

creep and has other useful applications. 	Forces may be 

applied in one step or in equal or non-equal increments or 

in selected stages. 

Non-linearity is dealt with using either incremental 

or iterative methods, or a combination of the two. 	The 

incremental technique can be either the tangential method 

or the Quasi Runge-Kutta method. 	For the iterative tech- 

nique either the constant stiffness method or the Newton-

Raphson method can be chosen. 

For the tangential method the material properties are 

selected at the start of each increment according to the 

current state of stress. 	If the state of stress is near 

or above the failure state, the point is given a very small 

value of deformation modulus and a value very close to 0.5 

for the Poisson's ratio. 	Obviously over-shooting is 

expected and can only be controlled by repeating the runs 

with more increments. 	The Quasi Runge-Kutta method uses 
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a pilot solution to determine the magnitude and direction 

of the stress increment. 	Therefore, the material proper- 

ties are assigned more closely to the nominated stress-strain 

curve. 	The pilot solution enables the relevant deformation 

parameters for loading, unloading and reloading to be 

assigned to every Gauss point in the domain. 

The output in terms of accumulated stresses and strains 

at the Gauss points and/or at the nodes and incremental 

displacements and residual forces of the nodes can be partly 

or totally printed or totally saved in a magnetic tape or 

permanent file for future reference. 	It can also be used 

for graphic plotting and as an input for further loading or 

increments. 

During this research an iteration technique has been 

developed and used in the programme for the hydraulic 

fracturing phenomenon which implies a strain-softening 

problem. 	A modified form of the Newton-Raphson or Constant 

Stiffness method which enables the relevant deformation 

parameters for unloading to be assigned to every Gauss point 

in the domain in every iteration, was used where necessary 

(see Appendix 2). 	The root mean squares of the residual 

forces at the nodes are used as the measure of convergence. 

A flow chart of the programme is given in Appendix 1. 

2.8 Modifications and Developments in the Programme  

The finite element programme used in this research is 

a modified form of the original programme developed by 

Hamza at Imperial College, 1972-74. 
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In the following section a list of the most important 

modifications has been given. 	Description and discussion 

of these modifications have been considered in Appendix 2. 

1. Shear unloading and reloading; 

2. Poisson's ratio varying with stress; 

3. Spring as the boundary condition; 

4. Applying the seepage forces; 

5. Iteration modified for shear unloading; and 

6. Strain-softening. 
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Fig. 2.1 	The stress-strain curve. 
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Fig. 2.2 One dimensional explanation of the Tangential 

Stiffness Matrix method. 
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Aoi=(Aol  )A1  =(E )A  A 

and so on. 

Fig. 2.3 The Runge-Kutta algoriLhm for one variable problem. 
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Fig. 2.4 Comparison between the Tangential method and the 

Quasi Runge-Kutta method for one variable. 
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PART II  

STABILITY ANALYSIS OF SHALLOW FOUNDATIONS  



CHAPTER 3 

STRESS DISTRIBUTION AND SETTLEMENT ANALYSIS 

3.1 	Introduction 

Generally, two considerations enter into the stability 

analysis of a foundation, namely, safety against failure by 

excessive settlement and safety against failure by shear. 

The idealised load-settlement curve for a footing on 

an elasto-plastic soil can be divided into three sections, 

Fig. 3.1: 

(1) Linear section, AB, where the settlement is 

proportional to the load; 

(2) Non-linear section, BC, which represents the 

region of contained failure; 

(3) Section CD, which represents the failure of 

the foundation at the ultimate bearing pressure. 

So, analysis of a foundation requires solutions to 

the three types of problems, namely, the linear phase, the 

contained failure, and the ultimate load. 	Elasticity, 

used as linear theory, deals with stress and deformation of 

the soil under the footing subjected to working load con-

ditions and mainly limited to the section AB of the curve 

in Fig. 3.1, where a linear relationship between stress and 

strain is assumed.to exist. 	The ultimate load analysis, 

on the other hand, deals with the condition at the first 

complete failure of the foundation. 	The theory of perfect 

plasticity is generally used to develop methods which are 
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capable of predicting the failure load. 	The intermediate 

between the elasticity and the ultimate load is the problem 

of contained plastic flow (D'Appolonia et al, 1971, defined 

this section as the region of local yielding), where the 

transition from the initial linear state to the final plas-

tic state takes place in the soil around the foundation. 

A method of analysis which considers contained plastic flow, 

such as the finite element method, is required to study 

this region. 

The point B, Fig. 3.1, is the boundary between the 

linear phase and the contained plastic flow region, and 

represents a state of stress within the soil mass, where 

the shear stresses induced in the soil will first reach the 

shear strength at some point, and local yielding will first 

occur (D'Appolonia et al, 1971). 	After this stage,"a 

further increase in the load will cause a redistribution of 

the stresses within the soil to ensure that the shear stresses 

nowhere exceed the shear strength. 	Then, the deformations 

at a point in the soil within the zone of local failure will 

no longer depend solely on the stresses at that point, but 

will be dependent on the state of stress within the entire 

soil mass. 

The purpose of this chapter is to summarise some of 

the more commonly used method of settlement prediction and 

to discuss the estimation of the stress distribution within 

the soil. 	This chapter is divided into three parts. 	The 

first deals with the determination of stress distribution, 

the second with settlement analysis, and the third with the 
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soil-foundation interaction. 	The section on settlement is 

subdivided into parts which deal with non-free drained and 

free drained soils. 

The problems of the contained failure and the ultimate 

pressure will be considered in Chapters4 and 6. 

3.2 	Stress Distribution  

3.2.1 General  

Determination of the stress distribution within a 

particular region is an important process of predicting 

the settlement due to the compressibility of a soil, and 

may also be important in certain stability problems. 

The most common method for determination of the stress 

distribution in a homogeneous soil beneath a foundation is 

linear elastic theory. 	The justification for this lies 

in both laboratory and field tests which have utilized 

in-situ pressure cells to measure the stresses. 	The 

results of a variety of small and large scale laboratory 

and field tests -with in-situ pressure measurements (Foster 

& Fergus, 1951 ; Morgan & Scala, 1968 ;and Bozozuk & 

Leonards, 1972) suggest that when the boundary conditions 

of the analytical model approximate the in-situ boundary 

conditions, the computed stress distribution will corres-

pond reasonably well to that interpreted from the field 

measurements. 
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3.2.2 Calculation of Stresses Imposed by a Point Load 

Boussinesq (1885) provided a solution to the distri-

bution of stresses within an isotropic linear elastic 

half-space under the influence of a surface point load 

(Fig. 3.2). 	The stresses at a point can be calculated by 

means of the following expressions: 

_3p z3  
- 2w R5  

P 3zr2  1-2v  ar = 	R(R+z)J 

_ 3p rz2  
Trz 	2u R5  

Toz 
= Tr0 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

where v is the Poisson's ratio and other quantities in the 

equations are defined in Fig. 3.2. 	These stresses are for 

a weightless medium, and pre-existing stresses due to the 

weight of the material must be superimposed upon these. 

As the vertical normal stress az is independent of 

v, the Eq. 3.1 can be written: 

az = IzB -22-  z (3.6) 

where IzB is an influence value which depends only upon 

the geometry: 

I - 3 [  1  T5/2 
zB 2 	(3.7) 21r 1 + (D 
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This influence value is plotted in Fig. 3.3. 

The Boussinesq formula for the vertical stress applies 

only for isotropic and homogeneous soil masses. 	When the 

soil is stratified, Westergaard (1938) worked out a limit-

ing solution on the assumption that the soil is restricted 

from horizontal deformation. 	The vertical stress according 

to Westergaard is: 

az = I zw z2  

I 	= 1[ 	1 	3/ 2 zw 	
Tr  1 + 2 (1) 2  

(3.3) 

(3.9) 

Izw is the influence value for Westergaard solution, and it 

has been plotted in Fig. 3.3. 

3.2.3 Calculation of Stresses Imposed by a Loaded Area  

By the principle of superposition, the point load 

results can be integrated over a finite area to produce the 

stress distribution resulting from a uniform stress applied 

to the surface. 

Janbu, Bjerrum and Kjaernsli (1956) have given a 

design chart (Fig. 3.4) for the values of the vertical 

stresses beneath the centre of a uniformly loaded flexible 

area of strip, rectangular or circular shape. 

For estimating the vertical stresses beneath flexible, 

uniformly loaded areas of irregular shapes the chart given 

by Newmark (1942) and shown in Fig. 3.5 can be used. 

The vertical stresses at any location under a loaded 

area can be calculated by using the principle of superposition 

and Figs. 3.4 and 3.5. 



35 

After determining the stress increments due to sur-

face loading at a variety of points within a medium, it is 

useful to draw these stresses graphically in relation to 

their points of action. 

3.2.4 Analysis of Layered Systems  

Natural soil deposits and fills are often composed 

of two or more layers with different properties. 	Concern 

about the potential influence of a layered system on the 

distribution of stresses and displacements has led to 

analysis of elastic systems consisting of layers of differ- 

ing elastic properties. 	Burmister (1943) developed 

expressions for stresses and displacements of 2- and S-

layer flexible elastic systems subjected to a uniform stress 

acting over a circular area of the surface. 	Numerical 

values of these results have been presented by Acum and Fox 

(1951); Burmister (1958, 1967); Jones (1962) and Peattie 

(1962). 

If there are more than three layers in the real system, 

similar layers can be grouped together and assigned average 

physical properties (Peattie, 1963) in order to reduce the 

number of layers to three. 

Figure 3.6 represents a typical stress distribution 

in which a uniformly loaded circular area is acting on the 

surface of a 2-layer elastic system. 	The vertical stress 

distribution under the centre of the loaded area is shown 

as a function of depth for various ratios of Young's moduli. 
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The results show that when the upper layer is much stiffer 

than the lower layer, the stress in the lower layer is sig- 

nificantly reduced. 	Conversely, the stress in a layer 

underlain by a very stiff layer is increased remarkably. 

Thus, the stresses in an elastic layer underlain by a stiff 

granular material or rock would be significantly higher than 

those predicted by Boussinesq theory for a homogeneous 

semi-infinite elastic layer. 	This difference is remarkable 

near the base of the elastic layer, where a concentration 

of stresses occurs. 

For natural soil deposits, the superficial layers 

are normally softer and weaker than those beneath, and the 

foundation soil or soils overlying bedrock may be considered 

to be a single compressible layer overlying an incompressible 

layer. 	If the upper layer is thick compared to the- 

lateral extent of the loaded area placed on its surface, it 

is reasonable to assume that the layer is semi-infinite. 

3.2.5 Influence of a Rigid Base below the Loaded Layer  

The problem of layered system has been discussed in 

the previous section. 	The simplest case of a layered 

system is that of an elastic layer overlying a rigid base. 

The interface between the layer and base can either be per- 

fectly rough or perfectly smooth. 	When the interface is 

perfectly smooth, surface settlement is independent of the 
(v=0.5, E0=0). 

layer thickness A(Awojobi, 1974). 	Tabulated results for 

the stresses and displacements in an elastic layer over-

lying a smooth rigid base and subjected to a uniformly 
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distributed load of rectangular shape have been given by 

Sovinc (1961). 

In soil mechanics problems, rough interface is more 

realistic than smooth one. 	Poulos (1967) has considered 

an elastic layer underlain by a rough rigid base, and he 

has given tabulated results for stresses and displacements. 

Figures 3.7 to 3.10 represent the influence factors Ist for 

the vertical stresses oz, under the edge of a strip load 

for four values of Poisson's ratio v (after Poulos, 1967). 

From Fig. 3.6 it has been mentioned that the stresses 

calculated from the Boussinesq solution for a semi-infinite 

layer is less than the true stresses in a finite layer. . 

In addition, the Poisson's ratio of the material has a more 

significant effect on the stress distribution in a finite 

layer than in a semi-infinite one (Poulos, 1967). 

3.2.6 Effect of the Loads acting within the Medium 

Terzaghi (1943) has observed that the stresses induced 

by a point load within a semi-infinite incompressible 

elastic solid (v = 0.5), are one half of the values due to 

the same load acting at the surface of the same medium. 

Mindlin(1936) and Mogami (1957) have solved for the stresses 

due to a vertical or horizontal point load acting within 

the semi-infinite medium, and tabulated results have been 

given in the second reference. 

For practical cases, stress changes required for 

settlement predictions for foundations at shallow depths 

may be computed using net foundation pressure and the 



solution for surface loading (Vaughan, 1973). 

3.2.7 Effect of the Non-homogeneity  

For many years the formulae, charts and tables used 

by engineers for problems of surface loading, based on the 

solution of Boussinesq's problem, have assumed the semi-

infinite soil medium to be isotropic and homogeneous. 

It is now generally understood that within the real 

soil strata, strength and moduli increase with depth, 

reflecting the increasing overburden pressure (Gibson, 

1974). 	The variation of E with depth may well be approxi- 

mated by a line as given in the following expression: 

Ez = Eo + Az 
	

(3.10) 

where Ez is the value of modulus at depth z; Eo 
is the value 

of modulus at ground surface; A is the rate of increase in 

E with depth; and z is the depth from soil surface. 

The variation of shear strength with depth will be 

considered in Chapter 4, and here it should be mentioned 

that the ratio of undrained modulus to undrained shear 

strength (Eu/Cu) is constant. 

Gibson (1967, 1968 & 1969) has given the expressions 

for the components of stress at any point within a non-

homogeneous elastic half-space, due to loading normal to 

its plane boundary, for any linear variation of E with depth. 

He suggested that the effect of non-homogeneity on the 

stress components may be small, and for a special case 
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(Eo 
= 0) the stress components are unaffected by the 

variation of E with depth. 	On the other hand, Carrier and 

Christian (1973) considered a smooth rigid circular plate 

at the surface of a non-homogeneous semi-infinite layer, 

and concluded that the ratio Eo/AD (D = plate diameter) has 

a marked effect on the stress distribution. 

With the advent of digital computers, there have been 

a very large number of influence charts developed which cover 

a wide range of variables, see Scott (1963); Poulos and 

Davis (1974); and Perloff (1975). 

3.3 Settlement 

3.3.1 General  

Prediction of settlement is important for different 

reasons. 	Probably the most important one is that the 

settlement of structures can result in structural damage 

or failure by causing redistribution of loads in structural 

members. 	It is known that, generally the differential 

settlement is more critical than the total settlement in 

this respect. 	A recent discussion of differential settle- 

ment is given by Grant et al (1974). 	Table 3.1 and Fig. 

3.11 represent typical guidelines concerning total and 

allowable settlements, and structural damage due to angular 

distortion. 

Settlement may be caused due to a number of reasons, 

Table 3.2 lists some of them and it may be noted that many 

of the causes are not amenable to quantitative analysis. 

The discussion described herein is restricted to consideration 
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of settlements resulting from change in vertical static load, 

although many of the principles may be applied to settle- 

ments due to other causes. 	It must be emphasized that 

settlements due to other causes, such as dynamic loads, 

change in moisture content, and the effect of nearby con-

struction may often be as significant as those due to 

static loads. 

In Chapter 6, the settlement due to cyclic loads will 

be considered. 

From the standpoint of the change in volume due to 

changes in loading, soil can be divided into two classes, 

namely, non-free drained and free drained soil. 

3.3.2 Settlement of Non-free Drained Soils  

It is generally recognized that settlement of non-

free drained soils due to change in vertical stress is made 

up of three components 

St  = 1 + + 
	 (3.11) 

where 	 the immediate 

or undrained settlement; Sc  is the consolidation settlement; 

and (5s is the creep or seconeary consolidation settlement. 

Although it is convenient to separate each of these 

components for analysis, it is important to recognize that 

in nature all three components occur to some extent simul-

taneously. 

Lambe (1973a) summarized some of the methods available 

for computing the above settlements (Table 3.3). 	Further 
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discussion of this problem is given by Moorhouse (1972); 

Simons (1974); and Sowers (1975). 

3.3.2.1 Immediate Settlement  

Immediate settlement is defined as: the settlement 

associated with the undrained shear deformation of the soil, 

under constant volume change, due to rapid application of 

the load to a deposit of saturated clay. 

The immediate settlement may be a very significant 

part of the total final settlement. 	However, immediate 

settlements are reduced if horizontal displacements of the 

foundation are constrained, and they become zero if there 

is total constraint. 

If the shearing stresses in a clay layer are small, 

it is reasonable to assume that the shear strain will be 

approximately proportional to them. Making this assumption 

and considering the independence of time, it is possible to 

compute the immediate settlement for the clay deposit from 

linear elastic theory. 

The linear elastic method used in computing the 

immediate settlement is based on the approach described by 

Davis and Poulos (1963 & 1968), and a similar approach by 

Kerisel and Quatre (1968) and Egorov et al (1957). 

The immediate settlement may be calculated either by 

summation of vertical strains beneath the foundation or 

directly by the use of elastic displacement theory: 
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(1) Elastic strain summation is based on a 3-dimen-

sional strain calculation and is useful for 

non-homogeneous or stratified soil deposits: 

Si = v 
E [az - vu (ax +ay )]611  
U 

(3.12) 

where Eu is the undrained Young's modulus of 

the soil; vu is the Poisson's ratio (for saturated 

soil, vu  = 0.5); ax, ay, az  are the stress 

increments; and 6h is the thickness of each 

stratum or layer. 

(2) Elastic displacement theory for calculating the 

immediate settlement based on the following ' 

general formula: 

Si 	gJL 
Eu  6 

(3.13) 

where 16 is the influence factor; B is the 

foundation width; and q is the applied stress. 

Many solutions are available for the influence factor, 

including: the classical solution of Boussinesq (1885) for 

loading on the surface of an elastic half-space; Burmister 

(1956), Davis and Taylor (1961), and Poulos (1967) for a 

layer underlain by a rigid base; and Ueshita and Meyerhof 

(1967) for a 3-layer elastic system. 

For computing the average immediate settlement of 

uniformly loaded, flexible areas, rectangular or circular 

in shape, Fig. 3.12 represents the chart given by Janbu et 

al (1956). 	The average settlement is obtained from Eq. 3.13 
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by putting Is  = po ul, and Poisson's ratio equal to 0.5. 

Recently, Christian and Carrier (1978) have improved 

the Janbu et al (1956) chart. 	Their improved version of 

the chart is composed of Giroud (1972) results for the effect 

of depth and Burland (1970) results for the effect of embed 

ment. 

The more comprehensive solutions for the influence 

factor are given by Poulos and Davis (1974). 

3.3.2.2 Effect of Local Yielding on Immediate Settlement 

One of the most important shortcomings of the linear 

elastic theory in computing the immediate settlement is in 

the evaluating of the strains after stress redistribution 

due to local yielding. 

Davis and Poulos (1968) have shown that the factor 

of safety against a bearing capacity failure at first local 

yield for normally consolidated clays is between 4 and 8, 

for slightly overconsolidated clays is 2 to 3, and for 

heavily overconsolidated clays is less than 2. 	Foundations 

for structures, on the other hand, may be designed with a 

factor of safety, against ultimate failure, of the order of 

21/2 to 3, thus, for normally consolidated clays the use of 

elastic method may well lead to underestimation of the 

immediate settlement. 

D'Appolonia.et al (1971) considered this problem, and 

proposed a correction factor to be used with the elastic 

method. 	Their modified elastic displacement is: 
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a B I 1 
Eu Sr 
	 (3.14) 

where Sr is the settlement ratio, and its value depends 

on the ratio of applied stress to ultimate stress (q/qu); 

ratio of layer thickness to foundation width (H/B); initial 

stresses in the deposit; and shear strength of the soil. 

Before local yield occurs, the value of Sr  is equal to one, 

and elastic displacement theory gives the proper settle- 

ment. 	After local yield, the value of Sr  becomes less 

than one, as the actual settlement is greater than that 

predicted from elastic theory. 	When the ultimate bearing 

capacity is approached, the value of Sr  becomes equal to 

zero. 

Figures 3.13 to 3.15 represent the values of Sr  at 

the centre of a uniformly loaded strip foundation on a 

homogeneous isotropic layer. 	The factor f used in these 

o) cr vo  figures is the initial shear stress ratio - (1-K 
2Cu 

where Ko is the coefficient of lateral earth pressure at 

rest; (/vo  is the initial vertical effective stress; and 

Cu is the undrained shear strength. 

The results for H/B = 1.5 are applicable for all values 

of H/B greater than 1.5. 

3.3.2.3 Effect of Foundation Rigidity and Roughness  

The settlement of a flexible load is riot uniform, 

and itsettles more at the centre than at the edges. 	A 

rigid foundation, in order to produce a uniform settlement, 
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must experience a decrease in pressure at the centre and an 

increase at the edges (Fig. 3.24). 

Since most foundations are neither truly rigid nor 

truly flexible, this becomes the classic soil-foundation 

interaction problem. 

Davis and Poulos (1968) give the following expressions 

relating rigid foundation settlements to flexible foundation 

settlements for a semi-infinite uniform elastic foundation:- 

For a circle: 

( 
rigid = -2(dcentre S 

edge flexible 

For a rectangle: 

1. + Brigid = V2dcentre corner) flexible 

For a strip: 

1 
Brigid = 2 (Scentre 

+ (S
edge)  flexible 

(3.15) 

(3.16) 

(3.17) 

Analysis of a rigid circular plate resting on a non-

homogeneous elastic half-space (Carrier and Christian, 

1973) showed that for most practical problems (with v ?. 0.3) 

roughness has no effect on the solution. 	Only when 

Eo/xD is large and v < 0.3 need the roughness be taken into 

account. 

3.3.2.4 Effect of Non-homogeneity and Anisotropy  

Generally, the use of an average value of Eu  may give 

a reasonable estimate of the average immediate settlement, 

but if it is necessary to predict the initial deflected 

shape, non-homogeneity and anisotropy must be taken into 
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account (Simons, 1974). 	For effects of non-homogeneity 

and anisotropy reference can be made to Lambe (1964); 

Gibson (1967); Davis and Poulos (1968); Gibson and Sills 

(1971); Burland, Sills and Gibson (1973); Carrier and 

Christian (1973); and Hopper (1974). 

Gibson (1967) has shown that the variation of modulus 

with depth has a marked effect on surface displacements 

which are concentrated within the loaded area for an incom-

pressible medium. 

Butler (1974) gives charts for the approximate 

settlement of the corner of a uniformly loaded, flexible 

rectangular area resting on the surface of a non-homogeneous 

elastic layer. 	It is assumed that the modulus increases 

linearly with depth. 	Butler's charts for immediate 

settlement are given in Figs. 3.16 and 3.17. 

The effects of non-homogeneity and anisotropy can be 

summarized by three important points: 

(1) Non-homogeneity localizes the settlement of the 

ground surface to the vicinity of the loaded 

area. 

(2) Horizontal modulus Eh has a marked effect on 

the vertical displacement. 

(3) The maximum settlement of a flexible loaded area 

is near the edge for Ev  = 0 at the surface and 

Ev increasing with depth, for anisotropic soil. 

The effect of non-homogeneity (Point No. 1) has been 

studied by Gibson (1967, 1968 & 1969) and Brown and Gibson 



47 

(1972). 	They assumed that the Young's modulus E increases 

linearly with depth according to Eq. 3.10. 	This effect has 

been represented for a uniformly loaded circular area and 

v = 0.5 in Fig. 3.18, which shows that by introducing non-

homogeneity the surface settlement at the outside of the 

loaded area becomes smaller, and finally for "Gibson Soil" 

(Eo = 0) the settlements are: 

(r) 	= 	S (0)= 2X 

8(r) = 0 

r R 

r > R 

where R is the radius or half-width of loaded area; r is 

the horizontal distance from the centre line of loaded 

area; 6(o)is the surface settlement at the centre; and 

S(r) is the surface settlement at distance r from the 

centre. 

The effect of anisotropy (points 2 and 3) have been 

given by Simons and Menzies (1975), and have been shown 

in Fig. 3.19 (after Rodrigues, 1975) for a uniformly loaded 

flexible circular footing resting on a wide deep elastic 

solid. 

3.3.2.5 Consolidation Settlement  

When foundation load is transmitted to cohesive sub-

soil, there is a tendency for volumetric strain which in 

the case of a saturated material is manifested in an 

increase in pore water pressure. 	With sufficient elapsed 

time, the excess pore water pressure dissipates, accompanied 
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by volumetric strains, which results in vertical settle- 

ments. 	When the dimensions of the loaded area are large 

relative to the thickness of the compressible layer, or 

when the compressible material lies between two stiffer 

soils, whose presence tends to reduce the magnitude of 

horizontal strains, it is reasonable to assume that there 

are only vertical strains. 

Based on this assumption, Terzaghi (1943) developed 

a method, known as "conventional one-dimensional method", 

which involves the numerical summation or integration of 

vertical strains beneath.the foundation. 	The resulting 

settlement will be referred to as 60ed, and is calculated 

as: 

Soed = Ymv- 6'az' 
	(3.20) 

where my  is the coefficient of compressibility; Acyz  is 

the increase in vertical stress at the centre of the layer; 

and z is the thickness of each layer. 

Alternative forms of Eq. 3.20, which is in terms of 

the compression index of the soil, are available (Perloff, 

1975). 

The 1-dimensional method assumes that: 

St = oed 
	 (3.21) 

which has been modified with the subsequent recognition of 

the immediate settlement to: 

Sc 	oed 
	 (3.22) 

At any time t after the application of the foundation 



load, the consolidation settlement is: 

ct = U c.(5 c 	 (3.23) 

where Uc is the rate of settlement; and Sc refers to 

ultimate consolidation settlement. 

3.3.2.6 Skempton and Bjerrum Method  

To take into account the effect of the 3-dimensional 

nature of the settlement process, Skempton and Bjerrum 

(1957), developed a semiempirical method which is based 

upon the following two assumptions: 

(1) Consolidation settlement Sc is expressed by: 

Sc = Ymv.Au.dz 
	 (3.24) 

where Au is the induced excess pore water pressure 

at each depth z due to an increment of stress 

applied at the surface, and other symbols are 

defined in Eq. 3.20. 

(2) The excess pore water pressure Au is given by 

the Skempton (1954) - Bishop (1954) equation 

for saturated soils: 

= Aa3 + A(Aa1  - Aa3) 	(3.25) 

where A is a pore pressure parameter, and Aa1, 

Aa3 are the major and minor principal stress 

increases. 

From these assumptions it is clear that even though 

the excess pore water pressure is from a 3-dimensional 

analysis, the settlement is still 1-dimensional. 

The consolidation settlement, based on pore pressure 

49 
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generated according to three dimensional theory, followed 

by one dimensional consolidation, is given by:- 

Sc = 11.6oed 
	 (3.26) 

= A + a(1-A) 	(3.27) 

and 
na3.8z 

a na1.8z  
(3.28) 

where I.! is the settlement coefficient, a function of A and 

the geometry of the problem. 	Figure 3.20 shows the values 

of v. 

The effect of 3-dimensional analysis also considered 

by Davis and Poulos (1968). 

3.3.2.7 Rate of Settlement  

The consolidation process involves expulsion of 

water from the soil being compressed. 	The preceding dis- 

cussion has been concerned with the calculation of ultimate 

consolidation settlement, where the excess pore water 

pressure has dissipated completely. 	At any time between 

application of load and the time at which essentially 

ultimate, or 100 per cent consolidation has occurred, 

the progress of settlement can be described by the rate of 

settlement, or degree of consolidation (Eq. 3.23). 

The rate of settlement can be determined from one- 

dimensional consolidation theory (Terzaghi, 1925). 	If 

accurate rates of consolidation are required, the use of 

3-dimensional consolidation theories is required (Davis 
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and Poulos, 1972). 

It should be mentioned that the observed rate of 

settlement is usually very much faster than that calculated 

using 1-dimensional consolidation theory. 	It is generally 

assumed that the reasons for this are the poor knowledge 

of drainage boundary conditions that exist at a site (Rowe, 

1968 and 1972), and variation of the coefficient of 

permeability and the coefficient of compressibility of the 

soil with depth (Schiffman and Gibson, 1964). 	Thin layers 

of drained soil (sand and silt) can be easily missed in a 

subsoil investigation but they have a significant effect 

on the overall rate of settlement. 

3.3.2.8 Secondary Consolidation Settlement 

The consolidation of a clay deposit may be divided 

into two fundamental parts: first, the compression which 

is controlled by the flow of the pore water from the soil, 

known as consolidation, and discussed in the preceding 

section; second,"the compression because of the inter-

granular viscosity effects (Zeevaert, 1972), which occurs 

at essentially constant effective stress, and is .known as 

secondary consolidation. 

Generally, the secondary consolidation starts simul- 

taneously with the 'rimary consolidation. 	After complete 

dissipation of the excess pore water pressure, the primary 

consolidation is completed, and the secondary consolidation 

continues at constant effective stress (Bjerrum, 1967). 
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In the majority of laboratory and field measurements 

it has been observed that the magnitude of secondary con-

solidation is approximately a linear function of the loga-

rithmic of time, after the primary consolidation has been 

completed (Fig. 3.21). 	The linear logarithmic relation- 

ship was reported for the first time by Buisman (1936) from 

laboratory and field observations. 

The secondary consolidation settlement may be approxi-

mately estimated by the following expression: 

as = csPg(t/tc) 
	

(3.29) 

where Cs is the slope of'the straight line, and known as 

the coefficient of secondary consolidation; tc  is the time 

corresponding to the 100 per cent primary consolidation and 

t is the time at which the magnitude of secondary consoli-

dation is required (see Fig. 3.21). 

Although much research has been conducted on secon-

dary consolidation, no reliable methods are available for 

calculating the magnitude and rate of consolidation. 	For 

a detailed discussion of secondary consolidation, reference 

may be made to Garlanger (1972), Zaretskii (1972), and 

Simons (1974). 

3.3.2.9 Other Methods of Predicting Settlement  

Some other methods of predicting settlement of struc-

tures are outlined below. 

(1) Elastic Method. 	The value of total settlement 
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may be calaculated either by Eq. 3.12 or by 

Eq. 3.13, and using the drained parameters (E', 

v') instead of undrained parameters. 

(2) Finite Element Method. 	Settlement may also be 

computed using the finite element method, which 

enables the analysis of any form of loading and 

boundary conditions. 	The finite element 

technique has been considered in Chapter 2, and its 

application to stress analysis and immediate settle-

ment calculation will be discussed in Chapter 6. 

(3) Stress Path Method. 	The principles of this 

method have been explained by Lambe (1964 & 1967). 

This method consists of four general steps: 

(a) selection of one or more points within the 

soil beneath the foundation; (b) estimation of 

the stress path for each of the selected points, 

i.e. the initial vertical and horizontal stresses 

and the stresses due to the foundation; (c) carry-

ing out laboratory tests in which the specimen 

is first consolidated under the initial in-situ 

stresses and then the stress increases are 

imposed. 	The undrained and consolidation verti- 

cal strains are measured; and (d) the settlement 

is estimated by integration of measured strains. 

There are some other methods of secondary importance, 

and reference may be made to Simons and Menzies (1975). 

Theoretical studies suggest that the classical method 
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of estimating total settlement based on the assumption of 

one-dimensional compression is surprisingly accurate both 

for normally consolidated and heavily overconsolidated clays 

(Burland and Wroth, 1974). 	Therefore, accurate estimates 

of settlement are much more dependent on correct measurement 

ofpanameterssuchasmand Cc than on sophisticated calcu-

lations using complex stress-strain laws. 

Usually, stresses are less sensitive to soil properties 

than settlements, so, it is better to estimate stresses, 

and calculate settlements from these stresses by using the 

linear elastic theory. 

3.3.3 Settlement of Free Drained Soils  

Some of the methods for settlement prediction dis-

cussed in the preceding section are applicable for the 

settlement of free drained soils. 

Generally, it is difficult to obtain undisturbed 

samples of cohesionless soils, and therefore settlement 

analysis based on laboratory tests are rarely performed. 

Instead, empirical correlations based on field tests are 

usually used. 	Table 3.4 represents some of the methods 

used for settlement prediction (after Lambe, 1973b). 

The total settlement of footings on cohesionless soil 

is small, however, differential settlement can approach the 

total settlement, and is the important parameter in settle- 

ment analysis of cohesionless soils. 	Bjerrum (1963) found 

that differential settlement is greater than 50% of the 

total settlement. 	Terzaghi and Peck (1948, 1967) suggested 
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a differential settlement of 75% of the estimated total 

settlement. 	Skempton and MacDonald (1956) have also shown 

from case studies that differential settlement is of the 

same order of magnitude as total settlement. 

The simplest and most widely used procedures for 

estimating settlement in cohesionless soils employe sound-

ings such as the Standard Penetration Test (SPT) and the 

Cone Penetration Test (CPT). 

3.3.3.1 Standard Penetration Test  

This technique, generally, correlates the driving 

resistance to observed settlement for plate load tests 

and actual structures. 	An example of the type of empirical 

correlation commonly used is given in Fig. 3.22, which was 

first published by Terzaghi and Peck (1948). 	The Terzaghi 

and Peck correlations were originally intended to provide 

a conservative basis for design, irrespective of the 

geological origin and environment of the cohesionless 

soil deposit. 

Meyerhof (1965) has suggested a different relation-

ship as follows:- 

where Aq is the allowable load (T/ft2 ); 

6 is the settlement (inches); 

N is the SPT Resistance; and 

B is the footing width (ft) 
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Other correlations have been suggested by D'Appolonia 

et al (1968); and Peck and Bazaraa (1969) which consider 

the effect of overburden pressure. 

3.3.3.2 Cone Penetration Test  

This technique is also used to predict settlement as 

an indirect method. 	A similar approach can be used with 

the Cone Penetration Test as is used with the SPT. 	The 

method is discussed in detail by De Beer (1948, 1965). 

Schmertmann (1970) has suggested that the elastic modulus 

needed in the settlement analysis by elastic theory can be 

approximated by the following expression: 

E = 2qc 	 (3.32) 

where qc  is the Cone Penetration Resistance. 

3.3.3.3 Plate Load Test  

Terzaghi and Peck (1948 & 1967) have developed an 

empirical relationship in order to predict the settlement 

of the prototype footing from plate load tests. 	Their 

expression is as follows:- 

= (  2  ) 
B1 

6 1 	1 + 
(3.33) 

where s is the settlement of prototype footing; 

(3 1  is the settlement of test plate; 

B is the smallest dimension of prototype footing; and 

B1  is the smallest dimension of test plate. 	The 

test plate is usually a 1 ft x 1 ft square plate. 

According to Bjerrum and Eggestad (1963), although 
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this relationship is approximately correct, there is a 

large amount of scatter (Fig. 3.23). 	In addition to the 

scale effect, correlation is also dependent upon soil 

density. 

There are also other methods for settlement analysis, 

e.g. stress path method (Lambe, 1964 & 1967). 	Reference 

may also be made to D'Appolonia et al (1968), Sutherland 

(1974), and Simons and Menzies (1975). 

3.3.4 Determination of the Soil Properties  

One of the most important difficulties in settlement 

analysis is the determination of the values of soil proper- 

ties E and v (both drained and undrained). 	The discrepan- 

cies between the in-situ values and those on which the 

design is based, may cause a large error in the proper 

design of a footing. 

The values of soil properties are usually determined 

from laboratory tests, or in-situ tests. 	In both cases 

some factors influence the measured values, such as sampling, 

sample size, anisotropy, type of test, rate of shearing, 

and non-homogeneity. 	A comprehensive discussion of the 

determination of soil properties and its difficulties has 

been given by Davachi (1974). 

3.4 	Soil-Foundation Interaction 

3.4.1 General  

In the preceding sections the problems of stress 
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distribution within a soil mass, and settlement of non-free 

drained and free drained soils resulting from a foundation 

load have been considered. 	In this section the subgrade 

reaction and distribution of contact pressure will be dis-

cussed. 

The most significant advantage of a soil-foundation 

interaction study lies in including the foundation struc- 

ture in the analysis. 	Almost all field and analytical 

studies have confirmed the importance of including both 

soil and foundation structure in the analysis (see De Jong 

et al, 1971). 

3.4.2 The Modulus of Subgrade Reaction  

Winkler (1867) represented the soil as a type of 

elastic springs under the loads imposed by the foundation, 

and introduced a linaer relationship between vertical 

stresses av and vertical settlement 6v: 

ks.  6 v 	 (3.34) 

The factor ks is called the "modulus of subgrade reaction". 

Terzaghi (1955) defined the subgrade reaction as the 

load per unit of area of the surface of contact between a 

loaded foundation and the subgrade on which it rests and 

on to which it transfers the load. 	The modulus of sub- 

grade reaction is the ratio between this contact pressure 

and the settlement due to the load at any point. 

ks 
cv 
S
y  

(3.35) 
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The modulus of subgrade reaction can be obtained by 

performing a plate load test and extrapolating results to 

the actual foundation. 	Empirically, Terzaghi (1955) 

proposed the following formula for cohesive soils when the 

contact pressure is less than one-half the ultimate bearing 

capacity. 

= 	k ks 	B sl (3.36) 

where ks and B are the value of subgrade modulus and footing 

width for actual foundation, and ksi  is the subgrade modulus 

using a square plate of 1 ft x 1 ft. 

For cohesionless soils the formula is: 

0+1)2 ks = ksl 2B J (3.37) 

Bond (1961) indicates that Eq. 3.37 overestimates the values 

of subgrade modulus for medium to dense sands. 

Terzaghi (1955) pointed out that the modulus is not 

a fundamental property. 	It depends on many things, such 

as the size of the loaded area and the length of time it 

is loaded. 	He proposed the following formulae for obtain- 

ing the modulus of subgrade reaction k
srl for a rectangular 

plate of dimensions 1 ft and m ft using the subgrade modulus 

of a square plate of 1 ft x 1 ft: 

For cohesive soils 

fm+0.5  ksrl =  ksl  1.5m) 
) 	

(3.38)  

For cohesionless soils 

ksrl 	ksl 	 (3.39) 
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Several proposals have been made to attempt to find 

a value of modulus of subgrade reaction using laboratory 

tests. 	Vesic (1961a & 1961b) proposed using the modulus 

of elasticity from laboratory triaxial tests. 	The value 

of ksB = kgB given by Vesic is: 

ksB = 0.6512  
E.B4  E s 	s  
Ef.I 1-vs2  (3.40) 

where Es and vs = modulus of elasticity and Poisson's 

ratio of soil; 

Ef 
= modulus of elasticity of footing; 

B = width of footing; 

I = moment of inertia of footing cross-section. 

There are several other methods of obtaining the 

modulus of subgrade reaction, including extrapolating from 

consolidation tests (Young, 1960), and extrapolating from 

CBR tests (Nascimento et al, 1957, Black, 1961). 

All these equations are applicable only to surface or 

near-surface conditions. 	The modulus of subgrade reaction 

would be expected to increase as a footing is placed at 

a greater depth in the ground. 	Bowles (1975) considered 

a footing of width B located at a depth D in a soil mass, 

and he gave the expression for subgrade modulus at depth 

ksd related to the subgrade modulus at ground surface k . ss 

ksd = kss 
 (1 + 113) 
	

(3.41) 

Bowles (1975) mentioned that it is doubtful for ksd  

to be much greater than 2kss when D/B ratios are larger 

than 0.5. 
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3.4.3 Problems Associated with Modulus of Subgrade Reaction  

The conventional Winkler elastic foundation assumes 

that the movement of any point is independent of the others. 

Thus, in Fig. 3.24(a) a load over region A causes settle- 

ment only under A and nowhere else. 	But, in reality, the 

surface would deform as in Fig. 3.24(b), so the Winkler 

theory may be seriously wrong. 	However, theoretical work 

by Gibson (1967) has shown that when the modulus of elasti-

city of a finite layer of soil or of a half-space increases 

with depth, for a special case (E0  = 0), the settlement 

behaves similarly to those in the Winkler theory. 

Brown and Gibson (1972) mentioned that the condition 

of compressibility of the soil is vital for obtaining a 

surface settlement behaviour similar to the Winkler model. 

They showed that the effect of the presence of a small 

degree of compressibility on the settlement profile is far 

more important than a further increase in compressibility. 

Furthermore, Brown and Gibson (1972) wrote that in 

the homogeneous case Poisson's ratio has no effect on the 

settlement profile, and the effect of introducing some 

compressibility remains quite small unless there is a con-

siderable degree of inhomogeneity. 

Carrier and Christian (1973) examined by means of a 

finite element analysis the effect of a modulus increasing 

with depth on the settlement of a smooth rigid circular 

plate (diameter D) at the surface of a semi-infinite half- 

space. 	Figures 3.25 and 3.26 represent the variation of 



62 

the settlement with Poisson's ratio, for a homogeneous and 

non-homogeneous (according to Eq. 3.10) cases, respecitvely. 

The results for various combinations of Eo and A have been 

given in Figures 3.27 and 3.28, where I and I' are the 

influence factors in the expressions for settlement. 	For 

E
o
/AD greater than 10, the solution is essentially the same 

as a homogeneous one, and for E0/AD less than 0.01, the 

result is essentially identical to the one with E0  = 0. 

Several improvements for Winkler theory have been 

developed (Vlasov and Leont'ev, 1966; Harr et al, 1969;and 

Klein and Duraev, 1971). 	Such improvements give an increased 

complexity which may not be necessary, and in many cases 

the Winkler theory may be reasonably valid. 

Other major problems associated with the concept of 

modulus of subgrade reaction are: 

(1) the soil is not elastic; 

(2) the soil stratification effect; 

(3) the depth and footing size effect; 

(4) the duplicating of in-situ conditions in the 

laboratory. 

3.4.4 Distribution of Contact Pressure  

There have been several investigations (theoretical 

and experimental) to evaluate the actual colltact pressure 

of the soil against the footing, such as: Cummings(1936); 

Borowicka (1936 & 1938); Krynine (1938); Casagrande and 

Fadum (1942); Benscoter (1944); Schultze (1961); Barden 

(1962); Sommer (196c); Ho and Lopes (1969); amd Timoshenko 

and Goodier (1970). 



a vstrip 
2111 - H 2 	b 

q 	 (3.43) 
x 2  
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Boussinesq (1885) and Sadowsky (1928) solved for the 

distribution of the contact pressure for the smooth rigid 

circular and strip footings on elastic half-space according 

to the following equations (given by Timoshenko and Goodier, 

1970). 

a
vcircle q (3.42) 

2\11 - in2-  42J 

where av is the contact pressure, 

q is the applied vertical stress, 

R is the footing radius, 

b is the footing half width = B/2, and 

x is the horizontal distance from centre line. 

For x = R (edge) the value of contact pressure is infinite, 

and for x = 0 (centre) it is q/2 for circle and 2qiir for 

strip. 

Borowicka (1936, 1938) considered the effect of the 

footing rigidity upon the distribution of contact pressure, 

and expressed the rigidity in terms of soil Poisson's 

ratio vs and modulus Es, footing Poisson's ratio v 

modulus Ef' thickness tf' and radius R as the following 

equation: 
2, 

	

1 	— 'Vs) 	Ef ,tf 113 

	

Kr =  -6- 	(1 —v 2 ) E 	R 
— (J (3.44) 
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where Kr = 0 represents the fully flexible footing with 

uniform contact pressure (a = q), and Kr  = 03 represents 

the fully rigid footing with non-uniform contact pressure. 

Figure 3.29 shows the Borowicka's curves for circular and 

strip footings for various rigidity factors. 	For strip 

footing the values of Kr  are also given by Eq. 3.44. 

Theoretically, the value of contact pressure at the 

edge is infinite, but in practice, because of the local 

failure, the contact pressure will be limited by the shear 

strength of the soil at the edge. 

As shown in Fig. 3,24, the settlement of a footing 

that exerts a uniform pressure on the soil is not uniform. 

The footing, therefore, must be flexible so that it can con- 

form to the settlement and keep the pressure uniform. 	When 

the footing is fully rigid, the settlement will be uniform, 

and the pressure will be greatest at the edges of the foot 

ing on an elastic soil (e.g. saturated clay) and greatest 

at the centre of the footing on a cohesionless soil, for 

safety factor close to unity (Fig. 3.24d), 

3.4.5 Distribution of Contact Pressure at Failure 

As mentioned at the beginning of this chapter, the 

increase of load on a footing causes progressive transition 

of the loaded matel.ial from the state of elastic to that 

of plastic flow. 	This transition influences the distri- 

bution of contact pressure by limiting its values at the 

points where plastic flow has been reached. 	By increasing 
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the footing load the yielded region becomes larger, and 

finally, when the load is equal to the ultimate bearing 

capacity, the distribution of contact pressure will be 

uniform as shown in Fig. 3.30. 

The contact pressure distribution of a shallow foot-

ing is trapezoidal with a maximum at footing centre, and 

consists of a uniform Nc component, two relatively small 

triangular Nq  components, and a triangular N component. 

By increasing the footing depth, 	and for (I) > 0 the Nq  

component increases more rapidly than Nc and N components, 

and at a great footing depth, where in practice the Nc  and 

N
Y 
 components can be neglected compared with the Nq  com-

ponent, the contact pressure will be uniform because the 

depth of the failure surface is small compared with the 

depth of the footing, Fig. 3.30(a). 

In Fig. 3.30(a), the distribution of the Nq  component 

is two small triangles because Meyerhof (1951) assumed an 

inclined equivalent free surface on which the stress yD 

increases from zero or a small value at the ground surface 

(which affects the stress at the centre of the footing) to 

a maximum at the footing edge. 	By assuming a horizontal 

equivalent free surface (Terzaghi, 1943) the distribution 

of N component will be uniform, Fig. 3.30(b). 

To obtain a truer distribution of contact pressure 

for any stage of applied load, Schultze (1961) and Smoltczyk 

(1967) proposed an elastic-plastic concept which considers 

a reasonable combination of the following two extreme 

cases: 
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(1) A load of low intensity acting on a rigid 

footing, and the Boussinesq and Sadowsky elastic 

solutions (Eqs. 3.42 and 3.43) give an estimate 

of the pressure distribution; 

(2) A load according to ultimate bearing capacity 

of the footing with a rectangular and triangular 

distribution (Fig. 3.30). 

Figure 3.31 (after Schultze, 1961) shows the distri-

bution of contact pressure for different safety factors Fs  

against ultimate load. 	In this figure the distribution is 

a combination of elastic and plastic states, and X1  repre-

sents the distance from centre line to the intersection 

between these two states. 

3.4.6 Effects of a Rigid Boundary underlying the Foundation  

on Contact Pressure Distribution  

The problem of distribution of contact pressure between 

a rigid footing and an elastic solid underlain by a rigid 

base has been treated by several investigators (Poulos, 

1968; Yamaguchi, et al, 1968; Brown, 1969; Milovic et al, 

1970). 

The ratio of layer thickness to footing radius H/R 

has a marked effect on the distribution of contact pressure 

except at the edge where the effect is small. 	By decreas- 

ing the ratio H/R the distribution becomes more uniform, 

Fig. 3.32. 

The results of Brown (1969 a & b) show that the 
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effect of the ratio H/R on contact pressure distribution 

decreases when the footing rigidity decreases. 

For a rigid strip footing Yamaguchi et al (1968) 

showed that when the ratio H/B (B = footing width) reaches 

1.5, the distribution becomes approximately equal to 

Sadowsky's distribution (Eq. 3.43). 	Furthermore, from 

their results it is possible to conclude that by using the 

Sadowsky's distribution for the case with ratio H/B = 1 the 

contact pressure will be underestimated, and the maximum 

.error is about 12% at the centreline. 

The effect of Poisson's ratio on contact pressure 

distribution is small and when the interface between the 

layer and rigid base is smooth it does not affect the 

distribution (Yamaguchi et a1,1968). 	The results of more 

recent analysis of a circular plate on non-homogeneous half-

space by Boswell and Scott (1975) indicate that the con-

tact pressure is almost independent of Poisson's ratio. 

Yamaguchi et al (1968) used the "method of division" 

in their analysis for contact pressure distribution, which 

assumes that, directly under a small section into which the 

width of rigid footing is divided, stress is uniformly 

distributed. 	Then by calculating the displacements at the 

centre of each small section, due to. its own load and other 

section's loads, and equating them to the displacement of 

the rigid footing, the distribution of contact pressure can 

be :acquired. 	In this method of computation, the validity 

of the solution depends on the accuracy of calculation in 
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displacement of each small flexible section of the footing. 

Milovic et al (1970) studied the problem of a rough 

strip on a finite layer underlain by a rough rigid base, 

and subjected to inclined and eccentric loading, using a 

finite element analysis. 

3.4,7 Effect of Soil Non-homogeneity on Contact Pressure  

Distribution  

It has been mentioned previously that, for E0  = 0, 

E = Az and v = 0.5; the surface displacement of a uniform 

load of any shape or size is uniform beneath the load and 

is zero just outside the loaded are (Gibson, 1967, 1968 & 

1969). 	Conversely, a rigid plate may result in a uniform 

contact pressure, which has been confirmed for a rigid 

circular plate (E = Az and v = 0.5) by Zaretsky and 

Tsytovich (1965). 

Figure 3.33 (after Carrier and Christian, 1973) repre-

sents the distribution of contact pressure for a smooth 

rigid circular plate resting on a non--homogeneous half-space 

with Eo/AD = 0.1 and 1, and indicates that the effect of. 

heterogeneity on distribution of contact pressure is 

remarkable. 

Figure 3.33 and results given by Boswell and Scott 

(1975) suggest that non-homogeneity leads to more uniform 

distribution of contact pressure. 
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3.4.8 Effects of Footing Roughness and Repeated Loading  

upon Contact Pressure Distribution  

The effect of footing roughness on contact pressure 

distribution has been studied by Parkes (1956), Yamaguchi 

etal (1968); and Schiffman (1969) for a homogeneous half-

space, 

 

 and it has been shown that, for Poisson's ratio equal 

to 0.5, the contact pressures are the same for rough and 

smooth footings. 	For smaller values of Poisson's ratio 

there is a slight difference between the contact pressures 

for rough and smooth footings. 

For the case of a non-homogeneous half-space, Carrier 

and Christian (1973) showed that for most practical prob-

lems (Poisson's ratio greater than or equal to 0.3) the 

solution for a rough plate is the same as for a smooth 

plate. 

Ho and Lopes (1969) considered the effect of repeated 

loading upon the distribution of contact pressure of a 

rigid circular footing resting on the surface of and embedded 

in sand. 	They concluded that the effect of repeated load- 

ing, for both surface and embedded footings, is important 

in the first two cycles of loading, provided that the maxi-

mum load in subsequent cycles js not larger than that of 

the first cycle, and after two cycles of repeated loading 

the settlement and contact pressure distribution are 

stabilized. 

For more general discussion of the effect of repeated 

loading on the contact pressure distribution, the reader is 

referred to Chao et al (1965); and. Ho and Burwash (1968). 



Table 3.1 	Allowable Settlement 

Type of Movement Limiting Factor Maximum 
Settlement 

Total settlement Drainage 6-12 in 
Access 12-24 in 
Probability of nonuniform 
settlement: 

Masonry walled structure 1- 2 in 
Framed structure 2- 4 in 
Smokestacks, silos, mats 3-12 in 

Tilting Stability against over- Depends on 
turning height and 

width 
Tilting of smokestacks, 
towers 0.0041 
Rolling of trucks, etc. 0.011 
Stacking of goods 0.011 
Machine operation-cotton 
loom 0.0031 
Machine operation- 
turbogenerator 0.00021 
Crane rails 0.0031 
Drainage of floors 0.01-0.021 

Differential High continuous brick walls 0.0005-0.0011 
movement One-story brick mill 

building, wall cracking 0.001-0.0021 
Plaster cracking (gypsum) 0.0011 
Reinforced-concrete 
building frame 0.0025-0.0041 
Reinforced-concrete 
building curtain walls 0.0031 
Steel frame, continuous 0.0021 
Simple steel frame 0.0051 

From Sowers (1962) 

Note: I = distance between adjacent columns that settle 
different amounts, or between any two points that 
settle differently. 	Higher values are for regular 
settlements and more tolerant structures. 	Lower 
values are for irregular settlements and critical 
structures 
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Table 3.2 Causes of Foundation Settlement 

From: Sowers (1975) 

Structural Load 

Mechanism Amount of Settlement Rate of Settlement 

Deformation 
(change in shape 
of soil mass) 

Compute by Elastic 
Theory from modulus of 
elasticity of plate load 
test or lab test 

Rapid 

Consoli- 
dation: 
Change 
in void 
Ratio 
under 
stress 

Initial Stress-void ratio curve • Rapid - from time 
curve 

 Primary Stress-void ratio curve Compute from 
Terzaghi Theory 

Secondary Compute from log time- 
settlement 

Compute from log 
time settlement 

Environmental Load 

Mechanism Amount of Settlement Rate of Settlement 

Consolidation due 
to fill weight 

Compute from stress- 
void ratio and stress 

Compute from 
Terzaghi Theory 

Consolidation due 
to water table 
lowering 

Compute from stress- 
void ratio and stress 
change 

Compute from Terzaghi 
theory and water 
table change 

Shrinkage due to 
drying 

Estimate from stress- 
void ratio or moisture- 
void ratio and moisture 
loss limit-shrinkage 
limit 

Equal to rate of 
drying, 
Seldom can be 
estimated 
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Table 3.2 
	

Continued 

Environmental-continuing process 

Mechanism Amount of Settlement Rate of Settlement 

Biochemical Decay Estimate susceptibility Erratic,.often 
decreases with time, 
increases with water 
table changes 

Chemical Attack Estimate susceptibility Erratic, depending on 
chemical diffusion 

Mass Distortion, 
Shear, creep or 
landslide in slope 

Compute susceptibility 
from stability analysis 

Erratic: catastrophic 
to slow creep 

Expansion-Frost, 
clay expansion 
chemical attack 
(Resembles 
Settlement 

Estimate susceptibility 
sometimes limiting 
amount ' 

Erratic: 	increases 
with wet weather, 
temperature changes 

Environmental-sudden settlement 

Mechanism Amount of Settlement Rate of Settlement . 

Reposition par- 
ticles and densi- 
fication by shock, 
vibration,blasting 
and earthquakes 

Estimate limit from rela- 
tive density (up to 
60-70% 

. 

Erratic: depends on 
shock, relative den-
sity, water; can be 
catastrophic 

Liquefaction from 
pore pressure 
increase upon 
densification 

Shear failure - 
large and erratic 

Catastrophic in 
saturated cohesion-
less fine sands 

Structural 
collapse - Loss of 
Bonding (Satura- 
tion,thaw•ing,etc) 

Estimate susceptibility 
and possibly limiting 
amount 

Begins with environ-
ment change - rate 
erratic but sudden 
changes 

Revelling,Erosion 
into openings, 
cavities 

Estimate susceptibility 
but not amount 

Erratic: gradual or 
catastrophic, often 
increases with time 

Mass Collapse -• 
collapse of sewer, 
mine, cave 

Estimate susceptibility Likely to be cata-
strophic 

Tectonic Fault 
Displacement 
accompanying 
earthquake 

Possibly estimated from 
accumulating strains in 
earthquake-prone areas 

Catastrophic 
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Table 3.3 Methods of Predicting Settlement of Cohesive Soils 

After Lambe (1973a) 

Type of Deformation Method Reference 

Initial Settlement Elastic Displacement 

Elastic Strain 
Summation. 
Modified Elastic 
Displacement. 
Finite Element 

Janbu, Bjerrum and 
Kjaernsli 	(1956) 
and Skempton and 
Bjerrum 	(1957) 
Davis and Poulos(1968) 

D'Appolonia et al. 
(1971) 	--- 

Total Settlement One-dimensional 
Skempton-Bjerrum 

Elastic Displacement 
Elastic Strain 
Summation. 
Finite Element 

Terzaghi 	(1943) 
Skempton and Bjerrum 
(1957) 
Davis and Poulos(1968)1 
Davis and Poulos 	(1968P 

Rate of Settlement 1-D strain and 
drainage, 
average my  and cy  

1-D strain and 
drainage, 
distributed m 	and c v 	v 

Terzaghi 	(1943) 

Schiffman and Gibson 
(1964) 
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Table 3.4 Methods of Predicting Settlement of Cohesionless 

Soils 

After Lambe (1973b) 

Predicted Method Parameter 
Selection of
Parameter 

Total 
settlement 

Based on SPT 

Blowcount N 
from SPT 

Must use judge--
ment because 
gravel affects 
N values 

- Terzaghi & 
Peck 

- Peck & Bazaraa 
- Meyerhof 
- D'Appolonia 

Based on CPT 

Static cone 
penetration 
resistance 

Difficult or 
impossible to 
apply in dense 
soil because 
exceed capacity 
of penetrometer 

- Schmertmann 
- Others 

Plate load 
test 

Settlement 
of standard 
plate 

Plate loading 
test is not repre-
sentative for large 
mat because only 
the surface soil 
properties are 
measured 

Wave velocity 
measurements or 
other dynamic 
test 

Shear modulus 
and Young's 
modulus 

Requires corre-
lation to adjust 
for strain level 

Differential 
settlement 

Empirical rule Type of soil. 
and building 

Difficult to apply 
experience in 
judging relation-
ship between 
differential 
settlement and 
foundation 
stiffness 

Subgrade 
reaction 

Elastic theory 

Modulus of 
subgrade 
reaction 

Elastic moduli 

Many assumptions 
and judgements 
must be made 
because total 
settlement cannot 
even be predicted 
well 
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Fig. 3.2 Stresses in an elastic half-space due to 
a point load at the surface. 
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CHAPTER 4 

BEARING CAPACITY OF SHALLOW FOUNDATIONS 

4.1 	Introduction 

The purpose of this chapter is to discuss methods of 

estimating the bearing capacity associated with stability 

problems. 	The next two chapters are concerned with the 

non-linear finite element solutions which give answers 

mainly to the contained plastic flow problems. 

In Chapter 3, the ultimate load was defined as the 

load at the first complete failure of the foundation. 

This bearing capacity failure occurs usually as a shear.  

failure of the soil supporting the footing. 	In some cases 

there is not a complete rupture, and it is difficult to 

recognize the exact failure load. 

Before any discussion of the computation of ultimate 

load, two important subjects, namely, modes of shear failure 

and ultimate load definition will be considered. 

4.2 	Modes of Failure 

It is .known that rupture underneath a footing may be 

produ'ed by a general shear failure (Caquot, 1934; Buisman, 

1935; and Terzaghi,.1943), by local shear failure (Terzaghi, 

1943; and De Peer dnd Vesic, 1958), or by punching shear 

failure (De Beer and Vesic, 1958; and Vesic, 1963a). 

Figure 4.1, after Vesic (1963a), represents these 

three modes of failure. 	For general shear failure there 

is a well-d-fined failure pattern consisting of a continuous 

100 
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slip surface from one edge of the footing to the ground 

surface. 	In this failure mode a tendency for bulging of 

adjacent soil exists on both sides of the footing, but the 

final soil collapse occurs only on one side. 

Local shear failure has a failure pattern which is 

clearly defined only immediately below the foundation. 

The slip surfaces end somewhere in the soil mass, and they 

appear at the ground surface only after a large post-failure 

vertical displacement of the footing. 	There is a small, 

but visible, tendency of soil bulging on the sides of the 

footing. 

In punching shear failure, there is no well-defined 

failure pattern, and as the load increases, the vertical 

movement of the footing (which is made possible by vertical 

shear around the footing perimeter) is accompanied by com- 

pression of the soil immediately underneath. 	The soil 

outside the loaded area has practically no movement. 

The appearance of one of these failure modes depends 

on a number of factors, such as: relative compressibility, 

overburden pressure, transient or dynamic loading, layered 

soil and rate of the loading. 	Of these factors the most 

important is probably the relative compressibility of the 

soil in particular geometrical and loading conditions. 

For a practically thcompressible soil which has a finite 

shear strength, failure will be a general shear. 	In con- 

trast, if the soil is very compressible for its strength, 

it will fail in punching shear. 
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A footing on saturated, normally consolidated clay 

will fail in general shear if it is loaded so that no 

volume change can take place, while it may fail in punching 

shear if loaded slowly enough for volume change to take 

place in the soil under the load (Vesic, 1973). 

At present, there is no general numerical criterion 

which can be used for prediction of the mode of shear 

failure of soils loaded by footings. 	Vesic (1963 & 1965) 

has given the rigidity index Ir, for evaluation of relative 

compressibility of the soil mass under the load, defined 

as: 

Ir = + 
G  

 qtampc (4.1) 

where G is'the shear modulus and c and are strength 

parameters of the soil. 	To take into account the average 

volumetric strain A in the plastic zone, Vesic (1965) 

suggested that the value given by Eq. 4.1 should be 

reduced to: 

and 

I = rr 	v r 

1  
1 + Ir.A 

(4.2) 

(4.3) 

The rigidity index is a function of the stress level and 

the character of loading, and a high value of it (> 250) 

represents a relatively incompressible soil mass, whereas 

a low value (< 10) implies a relatively compressible soil 

mass (Vesic, 1965). 
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4.3 	Ultimate Bearing Capacity Criterion  

From the previous comments it is apparent that in the 

case of the general shear failure the ultimate load corres-

ponding to the failure is well defined and is the peak load 

in a load-settlement plot. 	In the two other failure modes, 

local and punching shear failure, the ultimate load is not 

clearly defined (Fig. 4.1). 

The ultimate load criterion can be based on a settle- 

ment value or a load-settlement curve. 	In the first case 

an ultimate settlement will be defined as the settlement of 

the footing needed to mobilize the ultimate load. 	Obser- 

vations in saturated clays (Skempton, 1951) indicate that 

these settlements may be about 3% to 7% of the footing 

width for surface footings. 

In the second case, the ultimate load is defined as 

the point at which the slope of the load-settlement curve 

first reaches zero or a steady minimum value. 	This 

criterion has an important disadvantage; that when the 

failure mode is not a general shear failure, there will be 

a continuous increase of the load against settlement. 

Brinch Hansen (1963) has defined the ultimate load 

as the load for which the ultimate settlement is twice the 

settlement at a 10% lower load. 

Now, if the load per unit width and settlement are 

represented by q and S respectively, then the Brinch Hansen 

(1963) criterion will be: 
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AE = 1 A6 
qf 	5 f  

In general Eq. 4.4 may be written as: 

(4.4) 

	

d ln q = C. d ln S 	(4.5) 

where C is a characteristic value depending on the stiff-

ness (clay), or relative density (sand). 

The criterion used in this research to predict the 

ultimate load (purely cohesive soil) is a dimensionless 

form of Eq. 4.5: 

	

d In qf = C •d in 	 (4.6) 

where q is the applied pressure, qf  is the failure pressure 

calculated from the bearing capacity theory, B is the 

footing width, (5 is the settlement, and C1  is a constant. 

The plot of q/qf  versus S/B on a log/log scale con-

sists of an upper curved part and a lower part which is a 

	

straight line (De Beer, 1970). 	The intersection of the 

curved part and"the straight line that represents the 

smallest continuous value of C1, will be considered as the 

ultimate load (Fig. 6.61 of Chapter 6). 

For some clays it is impossible to distinguish a 

well-defined intersection point, then in such cases it is 

better to determine an upper and a lower limit for the 

ultimate load. 

4.4 	Calculations of the Bearing  Capacity 

4.4.1 General 

The calculations of bearing capacity are generally 
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based on plasticity theory, usually combined with some 

simplifying assumptions. 	Speaking for simplicity about 

plane problems only, one can determine the bearing capacity 

when the shape and position of the critical rupture figure 

and the stress distribution along the different rupture 

lines are known. 

However, the result will only be correct when the 

critical rupture figure is statically and kinematically 

admissible. 	Statically admissible means that all equili- 

brium conditions should be fulfilled throughout the soil 

mass, and that in all rupture zones and rupture lines the 

shearing stresses should be equal to those defined by the 

failure condition, and finally, the shear stresses outside 

the rupture zones and rupture lines must be smaller than 

those in the rupture zones and rupture lines. 	Kinematically 

admissible means that the deformation mode (or velocity 

field) must satisfy the velocity boundary conditions and 

strain and velocity compatibility conditions. 

Mathematically correct solutions have been obtained 

in only a few very simple cases (usually for cp = 0 or 

y = 0), therefore most existing methods are based on diffe-

rent simplifying assumptions. 

The most difficult part is the determination of the 

shape of the actuate rupture figure, consequently,its general 

shape is usually assumed)to be a straight line, a circle, 

a logarithmic spiral or a combination of these. 
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4.4.2 Methods of Analyses  

The analyses of foundations can be made by employing 

one of the following four methods: 

(1) Slip Line Theory; 

(2) Limit Equilibrium; 

(3) Limit Analysis; and 

(4) Finite Element. 

The first three methods are generally used in associa-

tion with the stability problems where only the bearing 

capacity is sought. 	If a settlement of foundation and 	a 

stress distribution within the soil mass are of prime 

interest, then the finite element method must be used. 

Studies of the bearing capacity of foundations under 

conditions of plane strain have been made by Terzaghi 

(1943); Taylor (1948); and Meyerhof (1951) using limit 

equilibrium methods, by Brinch Hansen (1961); and Sokolovskii 

(1965) using slip line methods, by Shield (1954); and Chen 

and Davidson (1973) using limit analysis methods, and many 

others. 	Only a brief description of each procedure is 

given in this thesis. 	More details on the first three 

methods can be found in Brinch Hansen (1953); Hansen (1965), 

Sokolovskii (1965); and Chen (1975), and on finite element 

methods in Chapter 2. 

4.4.2.1 Slip Line Method  

This method involves a construction of a family of 

shear or slip lines in the vicinity of the footing loads. 
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These slip lines which represent the directions of the 

maximum shear stresses form a network known as a slip-line 

field. 	The plastic slip-line field is bounded by regions 

which are rigid. 

For solution of a problem, assumptions must be made 

for:- 

(1) Failure criterion: 

(2) Equilibrium; and 

(3) Boundary conditions. 

For the special case of a plane strain problem, there are 

two differential equations of equilibrium and one yield 

condition available for solving the three unknown stresses. 

In assuming the yield criterion, recently, Bishop 

(1966b)correlated all possible failure criteria with experi-

mental data and concluded that the Mohr-Coulomb yield 

criterion best predicts soil failure. 

4.4.2.2 Limit Equilibrium Method 

This method, probably because of its simplicity and 

reasonably good accuracy, is the most conventional method. 

The method can be best described as an approximate approach 

to the construction of a slip-line field. 	For the 

solution of a problem, assumptions must be made for the 

shape of the failure surface and the normal stress distri-

bution along such a surfaces, which satisfies the yield 

criterion and the equations of equilibrium. 	By considering 

different failure surfaces it is possible to find the most 
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critical failure surface which corresponds to the lowest 

failure load. 

4.4.2.3 Limit Analysis Method 

This method, principally, is restricted to undrained 

materials where no volume change can take place (4) = 0). 

Four basic conditions are needed in the solution, 

namely, equilibrium, yield criterion, stress-strain 

relations, and the compatibility which relates strain and 

displacement. 	In contrast to slip line and limit equili- 

brium methods, the limit analysis method considers the 

stress-strain relationship of the soil in an idealized 

manner (i.e. elastic-perfectly plastic). 	This idealization, 

termed normality or the flow rule, establishes the limit 

theorems on which limit analysis is based. 	The method 

offers an upper and a lower bound to the true solution by 

employing the plastic limit theorems of Drucker, Prager 

and Greenberg (1952). 

The conditions required to establish an upper and a 

lower bound solution are as follows: 

(1) Lower Bound Theorem 

The load, determined from a stress field that 

satisfies the stress boundary conditions, the 

equilibrium equations, and nowhere violates the 

yield criterion (termed a statically admissible 

stress field), is equal to or less than the 

true collapse load. 
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It is clear that the lower bound theorem considers only 

equilibrium and yield. 	It gives no consideration to soil 

kinematics. 

(2) Upper Bound Theorem 

The load, determined by equating the external 

rate of work to the internal rate of dissipation 

in an assumed deformation field or velocity field 

that satisfies the velocity boundary conditions 

and strain and velocity compatibility conditions 

(termed a kinematically admissible deformation 

field or velocity field), is equal to or greater 

than the true collapse load. 

The upper bound theorem considers only velocity or failure 

modes and energy dissipation. 	The stress distribution 

need not be in equilibrium, and is only defined in the 

deforMing regions of the mode. 

Classical plasticity theory assumes an associated 

flow rule (normality) and this requires that 11) = ¢ (41 is 

the equivalence of the internal friction angle ¢ for the 

velocity field that defines the relation between strain 

rates during plastic failure, or the dilatancy behaviour), 

stress and velocity characteristics then coinciding. 	As 

mentioned by Davis (1967), only in this case do the limit 

theorems hold and a solution to any problem which is both 

statically and kinematically admissible is the unique 

solution. 	Unfortunately it seems certain that all real 

granular materials, even at their densest and at peak 
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strength, have a non-associated flow rule with values of 4) 

which are very much less than 40 (Davis and Booker, 1971). 

Thus the theory which allows 	to take a value less than sb 

as dictated by experimental evidence, suffers from the 

drawback that an exact solution to a problem is, from a 

mathematical point of view,not necessarily unique (because 

of lack of proof of the limit theorems in non-associated 

flow rule where the normality does not hold, Dias, 1967). 

However, by suitable choice of stress and velocity 

fields, and the strong evidence (Booker, 1970) that the 

range of collapse loads in the set of possible exact non-

unique solutions is likely to be insignificant in problems 

of practical interest, the two theorems give a lower value 

and an upper value for the collapse load which are close 

to the true collapse load. 

A comprehensive treatment of the subject is given 

by Chen (1975). 

4.4.2.4 Finite Element Method  

Definition and concept of the finite element method 

have been considered in Chapter 2, and its application has 

been discussed all through this thesis. 

The finite element method is the only correct and 

complete solution or stability analysis that makes possible 

the calculation of settlement and stress distribution as 

well as of the bearing capacity. 
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4.4.3 Comments on the Methods of Analyses  

The methods described earlier are related to each 

other in a certain way. 	Most of the slip line solutions 

give kinematically admissible velocity fields, thus they 

can be considered as upper bound solutions provided that 

the velocity boundary conditions are satisfied. 	If the 

stress field within the plastic zone can be extended into 

the rigid region so that the yield criterion and equilibrium 

are satisfied, then slip line solutions are also lower 

bound solutions. 

The limit equilibrium method considers the basic 

philosophy of the upper bound rule, where a failure surface 

is assumed and the least load is sought. 	However, it. 

gives no consideration to soil kinematics and equilibrium 

conditions are satisfied only in a limited sense, thus this 

solution is not necessarily an upper or a lower bound. 

But any limit analysis upper bound solution is a limit 

equilibrium solution. 

One other weakness of the limit equilibrium method is 

the neglect of the stress-strain relationship of the soil. 

According to the mechanics of solids, a valid solution 

requires satisfying the boundary conditions, equations of 

equilibrium, equations of compatibility, and the stress- 

strain relationshiE_ (Chen and Scawthorn, 1970). 	As the 

stress-strain relationship connects equilibrium to com-

patibility and distinguishes elasticity from plasticity or 

visco-elasticity theories, so a solution which neglects 



112 • • 

considering this relationship may not be a complete one. 

On the other hand, limit analysis, within the frame-

work of the idealizations, is the more efficient method and 

can be extended to solve more difficult footing problems. 

Its capability of providing a means for bounding the true 

solution is noteworthy. 

The finite element method usually gives a lower 

bound value for the collapse load, as it satisfies only 

astatically admissible stress field. 

4.5 	Bearing Capacity of a Strip Footing on a General  

c-(1)-y Soil 

It is now generally understood that the bearing 

capacity of footings depends not only on the mechanical 

properties of the soil (cohesion c and internal friction 

angle q), but also on the physical characteristics of the 

footing (width B and depth D). 

The basic available solution for the bearing capacity 

problem that has been solved by the methods of the theory 

of plasticity (Prandtl, 1920 and Reissner, 1924) indicates 

that the failure pattern for a frictionless footing should 

consist of three zones (Fig. 4.2). 	Wedge I is an active 

Rankine zone which pushes the radial Prandtl zone II side-

ways and the passive Rankine zone III in an upward 

direction. 	The boundary ACDE is composed of two straight 

lines AC and DE, and a curved section CD. 	The shape of 

this curve depends on the angle (1) and on the ratio yB/q. 
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For a frictionless soil (4) = 0) the curve is a circle. 

For frictional weightless soil (yB/q = 0) the curve becomes 

a logarithmic spiral which for (1) = 0 degenerates into a 

circle. 	Finally, in the general case (y / 0) the curve 

lies between a spiral and a circle, as long as cp / 0. 

For the case of a wide rough footing the lines AC 

and BC are not emanating from the edges. 	But, as mentioned 

by Davis and Booker (1971), a wedge of rigid materials 

moving with the footing may occur symmetrically about the 

centre for a limiting width. 	At the remaining segments 

out to the edges there is slip between soil and footing. 

For kinematical reasons the lines AC and BC must either 

pass through the edges, or must have horizontal tangents at 

the foundation level (Hansen, 1965). 	Thus AC and BC 

cannot be assumed to be straight lines. 

Because of mathematical difficulties in the plasticity 

methods, the bearing capacity of the footing has been calcu-

lated by a superposition method suggested by Terzaghi (1943), 

which is represented by the following expression: 

Nc  c N + q N + 	N of  = 	q 	y (4.7) 

where Nc, Ng  and N are dimensionless bearing capacity 

factors, defined by: 

Nq  = eTrtan(1) tan2(ff/4 + (1)/2) 	(4.8) 

Nc = (Nq  - 1) cot(j) 	 (4.9) 

Ny  = 2 (N + 1) tang) 	(4.10) 
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The numerical values of these factors are given in Table 

4.1 and shown graphically in Fig. 4.3. 

The first stage in Eq. 4.7 is essentially based on 

an extension of the analytical work of Prandtl (1920) and 

Reissner (1924) , this assumes a weightless material and 

gives the first part of the bearing capacity cNc q Nq  

in closed form expressions. 	The second stage takes the 

weight of material (c = 0, q = 0) into account and gives 

the second part of the bearing capacity 2  NY. 

It is generally assumed that Terzaghi's bearing 

capacity formula is conservative. 	Lundgren and Mortensen 

(1953), and Hansen and Christensen (1969) mentioned that 

the errors in this superposition are on the safe side, not 

exceeding 20% for 	= 30°  to 40°, while equal to zero for 

= o°. 

However, as pointed out by Ko and Scott (1973), the 

angle of internal friction determined from a triaxial test 

is several degrees less than that determined under plane 

strain conditionS for low confining pressure (Cornforth, 

1964). 	Therefore, if the cp value obtained from a triaxial 

test is used in calculating the N factors, then a lower 

bearing capacity will be predicted. 	But, if a plane strain 

angle of internal friction is used, then Terzaghi's equation 

will be non-conservative. 

4.6 	General Bearing Capacity Formula  

By considering the shape and depth of the footing, 
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and inclination of the foundation load, the Terzaghi's 

formula (Eq. 4.7) can be written ,as follows (Brinch Hansen, 

1961): 

c NC c s c c i +qNq  sq  dq  iq 
 + 

+Nsdi 
2 YYYY 

(4.11) 

where 	s's denote the foundation shape factors; 

d's denote the foundation depth factors; and 

i's denote the load inclination factors. 

The following empirical expressions, suggested by 

Brinch Hansen (1961), may be used to evaluate the factors. 

(1) Shape Factors 

sc = 1 + (0.2 + tan6(p)B/L 
	

(4.12) 

sq  = Sc 	for 	cp / 0 
	

(4.13) 

sq  = 1 	for 	= 0 
	

(4.14) 

Si 	= 	1/2(3 - sc) 
	

(4.15) 

where B is the footing width and L is the footing length 

(2) Depth Factors (after Brinch Hansen, 1970) 

Por D/B 	1: 

dq  = 1 + 2tan01-simp)2D/B 

1 dc = dq 	N -
dq  
1 	(4) / 0) 

dc  = 1 + 0.4 D/B 	(c = 0) 
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For D/B >1: 

dq  = 1 + 2tan4 (1 - sined)2tan-1(D/B) 	(4.19) 

dc = 1 + 0.4 tan-l(D/B) 	(I) = 0) (4.20) 

In both cases 

d = 1 	 (4.21) 
I 

where D is the foundation depth below the ground surface. 

(3) 	Inclination Factors 

If the foundation area (of any shape) is eccentrically 

loaded, the effective area (that its deduced imaginary 

boundaries are radially symmetric with the real outer boun-

daries and the resultant force acts on its centroid) will 

be used. 

For shapes other than rectangle, the effective 

foundation area may be determined as that of the equivalent 

rectangle, constructed so that its geometric centre coin-

cides with the load centre and that it follows as closely 

as possible the adjacent contour of the actual base area. 

A few examples (after Brinch Hansen, 1961) are shown in 

Fig. 4.4. 

Thus the inclination factors for a general case of 

eccentric and inclined loading will be as follows: 

	12 [1 	V + At•c.cotcp-' (4.22) 

is 
1 - iq 
Ng  - 1 

(q) / 0) 	(4.23) 



- 0.5 + 26 + sin20  
2 + TT 

(4) = 0) 	(4.24) 
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For i Sokolovskii (1965) gives: 

3 
i = 3/2  q (4.25) 

where V and H are the vertical and horizontal components 

of the load respectively, A' is the effective foundation 

area, and A is defined in Fig. 4.9. 

4.7 	Scale and Soil Compressibility Effects  

Scale effects have been known for a long time, but 

the understanding of the reasons for their existence has 

come only in recent years. 	The studies of shallow foun- 

dations by De Beer (1965a and 1965b) and Kerisel (1967) 

indicate that the average shear strength mobilized along a 

slip line under the foundation decreases with foundation 

size. 	Vesic (1973) gives three reasons for this reduction 

in strength, namely, the curvature of Mohr envelope, pro-

gressive rupture along the slip line, and presence of zones 

or seams of weakness in all soil deposits. 	Thus, there 

will be a decrease in bearing capacity factors with size, 

and the decrease in N values with increased size of sur-

face footing on sand is remarkable. 

As mentioned in the preceding sections, the bearing 

capacity analysis assumes an incompressible soil that has 

a general shear failure mode. 	There exists a lack of 

rational methods for analys.i.ng bearing capacity failures in 

the two other modes characteristics for compressible soil. 



In order to consider the influence df soil com-

pressibility and scale effects, Vesic (1973) introduced 

three compressibility factors 	to be used in Eq. 4.11 

as other factors. 	These factors are: 

cq 

CC 

For 

cc 

And 

cy 

4 	= 

= 

for 

= 

cq 

0 

0.32 

all 

 r 

(3.07sinfl(logio2Ir) 
+ 0.6 1:])tancp + exp{(-4.4 [ 

1  "cq 

1/ 1 + sink 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

Nq  - 1 

+ 0.12 B/L+ 0.6 	logioir  

practical purposes 

where Ir is the rigidity index (Eq. 4.1). 

The use of expressions 4.26 through 4.29 makes sense, 

obviously, only as long as the compressibility factors 

remain smaller than unity. 

From Eq. 4.26 it is possible to get the values of 

critical .rigidity index for any angle (I) and any particular 

found?tion shape. 	For a particular footing, if the rigidity 

index (defined in Eq. 4.1) is less than. the critical value, 

it becomes necessary to reduce the bearing capacity because 

of compressibility effects. 	This critical rigidity index, 

given by Vesic (1973), is: 

(Ir)crit = 	exp[(3.30 - 0.45 ) cot(45°  - L))] (4.30) 
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Numerical values of Eq. 4.30 have been given in 

Table 4.2 for B/L = 0 (strip) and•B/L = 1 (square). 

4.8 Effect of a Rigid Base underlying the Layer  

The problem of bearing capacity of a layer of soil of 

limited depth H resting over a lower layer of infinite 

rigidity and strength has been considered for the plane 

strain case by Mandel and Salencon (1969). 	Their solution, 

obtained by the method of characteristics under the assump-

tion of rigid-plastic behaviour, indicates that the presence 

of a rigid layer below the bearing stratum results in an 

increase of bearing capacity. 	Factors of increase Rb, 

analogous to other factors in Eq. 4.11, are presented in 

Table 4.3. 

4.9 	Effects of Footing Roughness and Flexibility  

The bearing capacity of a smooth footing on a purely 

cohesive soil was first examined by Prandtl (1920). 	Hill 

(1949 & 1950) proposed an alternative failure mechanism, 

first reported by Hencky (1923), for smooth footing on 

purely cohesive soil, shown in Fig. 4.5. 	It has been 

shown that these solutions for purely cohesive soils are 

also valid if the footings are perfectly rough (Davis and 

Booker, 1971). 

Ko and Davidson (1973)., from their experiments, 

reported that the sand in footing tests with glass bottoms 

(smooth) failed according to the Hill mechanism, but with 

119 



120 

sandpaper bottoms (rough) the footings failed according to 

the Prandtl mechanism. 

On the basis of the Hill pattern, Meyerhof (1955) 

suggested that the bearing capacity of a smooth footing on 

the surface of a cohesionless soil should be only one-half 

of the bearing capacity of a rough footing. 

Since, in almost every practical case the footing is 

rough, the Hill pattern may never be realized beneath an 

actual footing. 	This leads Vesic (1973) to conclude that 

the stress and deformation pattern under an actual footing 

is such that it always leads to the formation of a single 

wedge (Prandtl) mechanism. 	Thus, the footing roughness in 

a practical situation has little effect on bearing capacity 

provided that the applied external loads remain vertical. 

The footing flexibility has no effect on ultimate 

bearing capacity, but it affects the initiation of the 

yield zones. 	For a rigid footing, yield zones start from 

the edges, :•chile for a flexible footing they probably start 

from the centre and at a point approximately 0.5B beneath 

the surface (HOeg et al, 1963). 

4.10 The Bearing Capacity of a Strip Footing on Purely  

Cohesive Soils (4)  = 0) 

4.10.1Prandt1 Equacion  

The bearing capacity of a strip footing on purely 

cohesive soil has been given by Prandtl (1920) as: 

of = (2 + TOCu 	(4.31) 
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where C
u is the undrained shear strength of the soil. 

In normally consolidated clays, usually, undrained 

shear strength increases with depth, and for a particular 

deposit, the ratio of undrained shear strength to the 

effective overburden stress (Cu/p) is a constant. 	Skempton 

(1948 & 1957) has given the following relationship which 

relates this ratio to the plasticity index II)  of the soil:- 

Cu — = 0.11 + 0.0037 I 
p 	 p (4.32) 

For some practical cases it is sufficiently accurate 

to use some average of Cu  as a constant for a cp = 0 bearing 

capcity analysis, nevertheless, the variation of Cu  with 

depth has a significant effect on bearing capacity. 

4.10.2 Effect of Increasing Strength with Depth on the  

Bearing Capacity  

Several investigations have been carried out for the 

bearing capacity of a strip footing on non-homogeneous soil. 

Raymond (1967) and James et al (1969) treated this problem 

by using the limit equilibrium method (slip circle) which, 

when (I) = 0, only gives an upper limit to the correct 

solution. 

The exact solution for a strip footing, by using the 

theory of plasticity, given by Davis and Booker (1973); 

Salencon (1974) and Salencon et al (1976). 



They have assumed a linear variation of Cu  with 

depth according to the following equation: 

= C110 + p z 
	(4.33) 

where C uo is the strength at ground surface, and p is the 

rate of increase in strength with depth. 

Davis and Booker (1973) have considered the bearing 

capacity of both smooth and rough footings, and concluded 

that the roughness has a small but significant effect in 

increasing the bearing capacity in contrast to the homo- 

geneous case for which roughness has no effect. 	Furthermore, 

they found that the rate of increase in strength with depth 

plays the same role as density plays in the bearing capacity 

of homogeneous cohesive-frictional soils. 

For bearing capacity Davis and Booker (1973) suggested 

the following expression: 

of 
= F[(2 + 'r)Cuo  + pB/4] 
	

(4.34) 

where F is a dimensionless factor depending only on the 

ratio pB/Cuo. 	Figure 4.6 shows the values of F (FR  is for 

a rough footing and Fs  is for a smooth footing). 

Pigure 4.7 (after Davis and Booker, 1973) shows the 

stress fields for narrow and wide rough footings. 	As 

mentioned before, tor a wide footing there is slip between 

footing and soil along some parts of the width where the 

shear stresses are equal to the strength. 
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4.10.3 Effects of Load Eccentricity and Inclination on the  

Bearing Capacity  

In applying bearing capacity theory to cases of 

eccentric loading it is usual to use a reduced foundation 

width (Brinch Hansen, 1961). 	For a footing on clay of 

uniform strength: 

qf  = 	(2 + -,T)•Cu. Fec 
	 (4.35) 

and 

Fec 	1 - 2e/B 	 (4.36) 

where e is the distance at which the load acts from the 

centre line. When the strength is non-homogeneous accord-

ing to Eq. 4.33, the bearing capacity will be: 

qf  = F.Fec  [(2 + Tr)Cuo  + p.B. Fec/41 	(4.37) 

where F (defined in Eq. 4.34) depends on p(B-2e)/Cuo. 

For a central inclined load on clay of uniform strength 

the failure pressure is: 

qf  = 	(2 + Tr) Cu  is 	(4.38) 

where is is 
defined in Eq. 4.24, 

cost 0 = Tf/Cu = qf  tana/Cu, 
and Tf is the average 

shear stress applied to the foundation surface. 	Horizontal 

sliding occurs if the angle of load inclination, 

2 	
a  = acrit' 

and tanacrit 
= (2+w ) ' 	acrit' For a 	of 	C .cota, or = 

is = cota/(2+w). 

If the clay has a linear increase in strength with 



depth, approximations must be made for an inclined load, 

and the failure pressure may be written: 

qf 	ul C 	(2 + Tr) ic1 (4.39) 

where Cul  is an average strength obtained for vertical 

loading from Eqs. 4,31 and 4.34. 

Cul = F[C uo 
.B  

4(2 + ) (4.40) 

Assuming cos20= Th/Cuo = of tana/Cuo  and that an 

average strength operates which varies linearly with 0 

(Vaughan et al, 1976): 

40 	20+sin20  qf  = 	(2.1-7)Cuo[1 + (R-1).7] [0.5 + 2 	] 	(4.41) 

where R = C /C . ul uo 

From Eqs. 4.29 and 4.41 

1 	1,40 
ic[R. 1-  (1  - TO }  (4.42) 

a crit is obtained as for clay of uniform strength, and 

for a 	a crit 

Cl 
	cota/[(2-hr)R] 

	
(4.43) 

Figure 4.8 shows the plot of inclination factor against 

load inclination. 	Finite element results will be discussed 

in Chapter 6. 

If the loading is both eccentric and inclined and 

adhesive contact is still maintained over the full width 

of the footing, then the horizontal component of the lead 

is distributed over the full width of the footing. 	Thus, 
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if an equivalent footing of reduced width is used to 

produce the effect of eccentricity in bearing capacity 

theory, the horizontal load carried by it must also be 

reduced. 	A modified angle of load inclination a1 
 must 

be used, where tana1 
 = tana F. 

4 .10 . 4 Rupture Figure  

Figure 4.9 shows the rupture figure for inclined and 

eccentric load on a strip footing, which consists of three 

zones. 	Zone A'BC is a rigid wedge which moves together 

with the footing, and pushes the radial shear zone (BCD) 

sideways and the passive Rankl= zone (BDE) in an upward 

direction. 

For the eccentric and inclined loading the line 

rupture L (Fig. 4.9) is a circle arc, and its centre is the 

ccmmon point of rotation for the footing and for the moving 

rigid wedge (Brinch Hansen, 1953; and Hansen, 1965). 

As mentioned by Hansen (1965), for large eccentricities 

of the load (e/B 	0.055) only a part of the footing, of 

the width (B-2e), is in contact with the clay, and for 

kinematical reasons the underside of the footing must be 

tangent to the line rupture L at the corner of the 

effective width. 	Therefore, the centre of the line rup- 

ture L will always be on the vertical line passing through 

this corner (Fig. 4.9). 	However, for small eccentricities 

(e/B < 0.055) the line rupture L passes through the edge 

of the footing. 
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For the central inclined loading the rupture line 

L is a straight line, and the shape of the wedge ABC is 

triangular (Sokolovskii, 1960; and Hansen, 1965). 	Murff 

and Miller (1977), in analysing the stability of the footing 

on the non-homogeneous clay by using the upper bound plasti-

city concept, mentioned that for inclined centric loads on 

strip footings the critical collapse loads occur as the 

radius of the line rupture L (Fig. 4.9) becomes infinite. 

A straight line rupture L is assumed in calculating 

values of load inclination factors given in Fig. 4.8. 	The 

failure pressure calculated from this figure, for a uniform 

clay, is always lower than that given by Hansen (1965) which 

assumes a circular line rupture L. 	For a load inclination 

of 8 degrees, differences are approximately: 2% with no 

eccentricity, 4% with e/B = 0.025, and 7% with e/B = 0.2. 

However, the maximum difference is not greater than about 10%. 

The rupture surface shown on Fig.4.9 is drawn by 

using the following three steps. 

1. the triangle A'C'B is drawn using the value of 0 

calculated from Fig. 4.8; 

2. the zone AA'CB is drawn by assuming that the line 

rupture L is a circular arc. 	The centre of this 

circular arc is defined by the intersection of the 

vertical line from A' (edge of the reduced width) 

with the Perpendicular bisector of A'C'. 	The point 

C is the intersection point of the circular arc A'C' 

with line OB; 

3. the radial shear zone BCD and the passive Rankine 

zone BDE are drawn. 



Nc  Ng  NY  

oo 5.14 1.00 0.00 
1 5.38 1.09 0.07 
2 5.63 1.20 0.15 
3 5.90 1.31 0.24 
4 6.19 1.43 0.34 
5 6.49 1.57 0.45 

6 6.81 1.72 0.57 
7 7.16 1.88 0.71 
8 7.53 2.06 0.86 
9 7.92 2.25 1.03 
10 8.35 2.47 1.22 

11 8.80 2.71 1.44 
12 9.28 2.97 1.69 
13 9.81 3.26 1.97 
14 10.37 3.59 2.29 
15 10.98 3.94 2.65 

16 11.63 4.34 3.06 
17 12.34 4.77 3.53 
18 13.10 5.26 4.07 
19 13.93 5.80 4.68 
20 14.83 6.40 5.39 

21 15.82 7.07 6.20 
22 16.88 7.82 7.13 
23 18.05 8.66 8.20 
24 19.32 9.60 9.44 
25 20.72 10.66 10.88 

26 22.25 11.85 12.54 
27 23.94 13.20 14.47 
28 25.80 14.72 16.72 
29 27.86 16.44 19.34 
30 30.14 18.40 22.40 

31 32.67 20.63 25.99 
32 35.49 23.18 30.22 
33 38.64 26.09 35.19 
34 42.16 29.44 41.06 
35 46.12 33.30 48.03 

36 50.59 37.75 56.31 
37 55.63 42.92 65.19 
38 61.35 48.93 78.03 
39 67.87 55.96 92.25 
40 75.31 64.20 109.41 

41 83.86 73.90 130.22 
42 93.71 85.38 155.55 
43 105.11 99.02 186.54 
44 118.37 115.31 224.64 
45 133.88 134.88 271.76 

46 152.10 158.51 330.35 
47 173.64 187.21 403.67 
48 199.26 222.31 496.01 
49 229.93 265.51 613.16 
50 266.89 319.07 762.89 

Table 4.1 	Bearing Capacity Factors 
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Table 4.2 Values of Critical Rigidity Index 

After Vesic (1973) 

Angle of 
Shearing 
Resistance 

cb 

Critical Rigidity Index for: 

Strip foundation 

B/L = 0 

Square foundation 

B/L = 1 

0°  13 8 

5 18 11 

10 25 15 

15 37 20 

20 55 30 

25 89 44 

30 152 70 

35 283 120 

40 592 225 

45 1442 486 

50 4330 1258 
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Table 4.3 Coefficients of Increase of Bearing Capacity 

Factors due to Presence of an Infinitely 

Stiff Layer at Depth H below the Strip 

Foundation of Width B 

After Mandel and Salencon (1969) 

Coefficients 	Rbc (upper number) 

Rbq (lower number) 

(i) B/H 	--,- 1 2 3 4 5 6 8 10 

=1 for 
B/H<1.41 

1.02 
1.00 

1.11 
1.00 

1.21 
1.00 

1.30 
1.00 

1.40 
1.00 

1.59 
1.00 

1.78 
1.00 

10°  Rb  =1 for 1.11 1.35 1.62 1.95 2.33 3.34 4.77 
B/H<1.12 1.07 1.21 1.37 1.56 1.79 2.39 3.25 

20°  Rb  =1 for 1.01 1.39 2.12 3.29 5.17 8.29 22.00 61.50 
B/H<0.86 1.01 1.33 1.95 2.93 4.52 7.14 18.70 51.90 

30°  Rb  =1 for 1.13 2.50 6.36 17.40 50.20 150.001444.0 14800.0 
B/H<0.63 1.12 2.42 6.07 16.50 47.50 142.001370.0 14000.0 

Coefficients Rb  
y 

(I) B/H -4- 1 	2 3 4 5 6 8 ]0 

0° Rby = 1 for all B/H 

10o Rby = 1 for B/H<4.07 1.01 1.04 1.12 1.36 

20°  Rby  =1 for B/H<2.14 1.07 1.28 1.63 2.20 4.41 9.82 

30° R 	=1 for B/H<1.30 Rb 1.20 2.07 4.23 9.90 24.8 178.0 1450 
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Fig. 4.1 Modes of Bearing Capacity Failure, 
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Fig.4.2 Rupture Figure, Prandtl Mechanism. 
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Equivalent and effective foundation 
areas;  after Brinch Hansen■1961). Fig. 4.4 



Fig. 4.5 Rupture Figure, Hill Mechanism. 
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Fig. 4.6 Correction factors for rough and smooth footingsp  
after Davis and Booker(1973), 

Fig. 4.7 ':Stress fields;  after Davis and Booker(1973). 



Fig. 4.8 Failure of footing with inclined and eccentric load, 
after Vaughan et. al.(1976). 
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Fig. 4.9 Rupture figure, inclined and eccentric loads 
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CHAPTER 5 

COMPUTER RUNS FOR STUDYING THE FOOTING BEHAVIOUR 

5.1 	General  

This chapter considers the computer runs for analysing 

the footing behaviour. 	The finite element results for the 

footing will be discussed in the next chapter. 

The non-linear incremental elastic technique has been 

used extensively in soil mechanics for the analysis of 

deformation problems. 	It has the advantage of being a 

well-tried technique for which efficient programmes are 

available. 	The programme used in these studies and 

simulation of the non-linear soil properties were explained 

in Chapter 2. 	The shear unloading and reloading modelling, 

which was discussed in Appendix 2, will be catagorised as 

follows:- 

Stage 1: shear unloading and reloading according to 

Fig. 5.1.a, 

Stage 2: shear unloading and reloading according to 

Fig. 5.1.b,and 

Stage 3: shear unloading and reloading according to 

Fig. 5.1.c. 

The material non-linearity was dealt with using the 

quasi Runge-Kutta Incremental method. 	To avoid over- 

shooting the specified strength, small loading steps were 

used in the analyses. 	The question of how small the 

increments should be was dealt with by considering the 
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stress-strain curve. 	For the initial see-Lion of the curve 

rather large increments were chosen, the size of the incre- 

ments being reduced, with increasing shear stress. 	Near 

the failure state very small increments were used. 	After 

adding each increment the overshooting was checked to be 

sure that the size of the incrementwas small enough. 

Typically, overshooting did not exceed 2%, and simulation 

of the loading of a strip footing to failure involved about 

15 loading steps, and 10 minutes computation time on a CDC 

6600 machine, with 1000 degrees of freedom. 

In all cases of these analyses, the footing was 

assumed to be strip, rough and stiff with Young's modulus 

equal to 4.2 x 107  KPa and Poisson's ratio equal to 0.2. 

Typically; the differential settlement between the centre 

and the edge for a footing with width equal to 120 m was 

about 0.3 cm for a centre settlement of 50 cm, which indi-

cates that the footing was essentially rigid. 

The ground water table was assumed at the ground 

surface for all the cases. 

From the point of view of the use of drained or 

undrained parameters, the cases are divided into three 

major groups, namely, a sand group, a clay group, and a 

linear elastic group. 

5.2 	Cases for the Sand Group  

In order to study the drained behaviour of the footing 

on the sand, two cases were analysed in this group. 	The 

soil properties used in these cases have been taken from 
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the paper by Frydman and Zeitlen (1969). 	Figures 5.2 and 

5.3 show the shear strength, initial modulus and stress-

strain curves used in the analyses for both cases, and they 

are compared with the data from Frydman and Zeitlen (1969). 

The Poisson's ratio for both cases was assumed to be 0.33. 

Table 5.1 summarizes the geometries and properties 

used in these two cases. 

For both cases, the applied load has not been increased 

up to failure load. 	For case one, only 2% and for case 

two, only 10% of failure load has been reached. 

In both cases, the initial stresses had zero values 

at the ground surface, and they were increased linearly. 

with depth according to the unit weight and Ko  of the soil. 

5.3 	Cases for the Clay Group  

In this group the analyses were carried out for 

undrained conditions (4)1  = 0, v = 0.499). 	Bishop (1966a) 

showed that Poisson's ratio is less than 0.5 in the undrained 

state. 	Hamza (1976) investigated the effect of the use 

of a Poisson's ratio very close to 0.5, and concluded that 

by using 0.499 the error will be small and negligible. 

From the point of view of the monotonic or cyclic 

loading, the cases in this group are divided into two sub-

groups. 

5.3.1 Monotonic Loading  

In order to study the undrained behaviour of the 

footing on the clay, the cases tabulated in Table 5.2 were 
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considered in this subgroup. 	In almost all the cases, the 

applied load was increased up to failure load. 	The speci- 

fied initial stresses had zero values at the ground surface, 

and they were increased linearly with depth according to the 

unit weight and Ko  of the soil. 

5.3.2 Cyclic Loading  

In this subgroup the analyses of footings under dead 

weight loading and cyclic wave loading were considered in 

order to study the behaviour of the off-shore structures. 

As mentioned by Vaughan et al (1976), clays, in beds of 

modest thickness, may remain substantially undrained during 

both dead weight loading and the critical design wave 

loading, and thus the undrained loading of clays is likely 

to be the critical design condition for the off-shore 

structures. 

The dead weight and wave load have been considered 

as a combination of vertical load V, horizontal load H, 

moment M, and the weight of the wave at the ground level, 

P. 	The distribution of Po may be approximated by the 

triangles shown in Fig. 5.19. 

As the cyclic loading involves unloading and reloading 

of the foundation soil, the stage 3 of the shear unloading 

and reloading modelling (see section 5.1) was used. 	A 

problem arises during the application of the load cycles. 

The horizontal component of the wave load reverses approxi- 

mately symmetrically. 	If a wave cycle equivalent to the 
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design wave is simulated in the analysis the difference in 

first loading and unloading-reloading soil behaviour 

results in the footing developing a permanent displacement 

in the direction of the first half of the loading cycle. 

A larger returning force is required to bring the footing 

back level. 	In contrast, real waves, building up gradually, 

would maintain approximate symmetry of displacement during 

cyclic loading. 	Reproduction of the gradual build up of 

the load in the analysis is not practical, and thus it is 

necessary to develop a technique to build up the cyclic 

loads to their maximum values in as few cycles as possible, 

while maintaining approximate symmetry of displacement • 

(Vaughan et al, 1976). 

This.  problem can be approximately overcome by reducing 

the first half of the loading cycle. 	A reduction factor 

was multiplied to the loads. 	This load reduction factor 

was worked out from the theory of modulus of subrade 

reaction given by El-Ghamrawy (1978). 

The cases considered in this subgroup are given in 

Table 5.3. 	The following assumptions are made for all 

the cases: 

1. The mesh is given in Fig. 5.13; 

2. The stress-strain relationship is according to 

Fig. 5.17 (except the linear case); 

3. Initial stresses are:- 

axo . azo = Po + y.z 

where y = 20 KN/m3  and Ko  = 1 . 
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Finally for all the cases the loading sequences are 

as follows (positive directions: I .-  

1. Vertical load V; 

2. (M, H, and Po) x Load reduction factor; 

3. -M, -H, and -Po; 

4. M, H, and Po; 

5. -M, -H, and -Po; 

6 	M, H, and Po; 

7. -M, -H, and -Po, and 

8. M, H, and Po. 

Values of loads and moments are given in Table 5.3, 

and the value of the pressure Po  is given in Fig. 5.19. 

5.4 	Cases for the Linear Elastic Group 

In order to investigate the effect of the variation 

of modulus with Q3  on stresses, the two cases given in 

Table 5.4 were considered. 

For these cases the following assumptions are made:- 

1. The behaviour is linear; 

2. Poisson's ratio is 1/3; 

3. The coefficient of the earth pressure at rest, 

Ko, is equal to v/(1-v) = 0.5; 

4. The mesh is given in Fig. 5.7; 

5. Initial stresses increase linearly with depth 

from zero values at the ground surface; and 

6. The applied load is vertical. 



Table 5.1 Cases for the Sand Group 

Case No. Mesh 
(Fig. 	No.) 

Angle of 
Shearing 
Resistance 

Cohesion 

c' 

Total 
Unit 

Weight 
Y 

Coefficient 
of 

Earth Pressure 
at Rest 

Stage of the 
Shear Unloading 
and Reloading 

(see Section 5.1) 

Applied 
Load 

(1)10 KN/m2  KN/m3  Ko 

1 5.4 37o 0 16.3 0.41 1 Vertical 

2 5.5 37°  0 16.3 0.41 1 Vertical 



Table 5.2 Cases for the Clay Group, Monotonic Loading 

Case 
No. 

Mesh 
(Fig.No.) 

Stage of** 
the shear 
unloadires, 
reloading 
(see sec- 
tion 5.1.) 

Total 
Unit 
Weight 

Y 

KN/m 

Coefficient 
of Earth 

Pressure at 
Rest 
K 

 

Undrained* 
Strength 

Cu 

KN/m 2  

Initial 
Modulus 

E. 1 

KN/m 2  

Stress- 
Strain 
Curve 

(Fig.No.) 

A 	ltle-gi 
Toad 

Applied 
Load 
Incli- 
nation 

CG = 
arctan v

H 

Applied 
Load 
Eccen- 
tricity 

e 

++ 
 

Stiff- 
ness 	o.l. 
the 

Footing 

3 5.5 1 17.3 1 50 70000 5.14 V 0 0 Rigid 

4 5.6 1 20 2 30+3.75z 300Cu 5.15 V 0 0 Rigid 

5 5.7 1 20 2 30+3.75z 300Cu 5.15 V,M,H 21.8°  0.05B Rigid 

6 5.7 1 20 • 1 30+3.75z 300Cu 5.15 V,M,H 21.8°  0.05B Rigid 

7 5.7 1 20 2 30+3.75z 300Cu 5.15 V,M,H 2.86°  0.083E Rigid. 

8 5.7 1 0 - 30+3.75z 300Cu 5.15 V,M,H 2.86°  0.083' Rigid 

9 5.6 2 20 2 30+3.75z 300Cu 5.15 V 0 0 Rigid 

10 5.7 2 20 2 30+3.75z 300Cu 5.15 V,M,H 2.86°  0.083 Rigid 

11 5.8 2 20 2 30+3.75z 300Cu 5.15 V 0 0 	Rigid 

12 5.9 2 20 2 30+3.75z 300Cu 5.15 V 0 0 Rigid 

13 5.10 2 20 2 30+3.75z 300Cu 5.15 V,M,H 2.86°  0.083; Rigid 

14 5.11 2 20 2 30+3.75z 300Cu 5.15 V,M,H 2.86°  0.083B Rigid 

15 5.7 2 20 1.5 30+3.75z 300Cu 5.16 V,M,H 2.86°  0.083B Rigid 



Table 5.2 	Continued 

•Case 
No. 

Mesh 
(Fig.No.) 

Stage of** 
the shear 
unloading& 
reloading 
(see sec- 
tion 5.1) 

Total 
Unit 
Weight 

Y.  
KN/M 3  

Coefficient 
of Earth 

Pressure at 
Rest 

K
o 

Undrained* 
Strength 

Cu 

KN/m2  

Initial 
Modulus 

E. 1 

KN/m2  

Stress- 
Strain 
Curve 

(Fig.No.) 

+++ 
 Applied t47-11; 

Load 

Applied 
Load 
Incli- 
nation 

a = H arctan Ti 

Applied 
Load 
Eccen- 
tricity 

e  

V Relative 
Stiff-
ness of 

the 
Footing 

16 5.12 2 20 1.5 30+3.75Z 300Cu 5.16 'V,M,H 2.86°  0.083B Rigid 

17a 5.7 ' 	2 20 1.5 30+3.75z 300Cu 5.16 V,M,H 2.86°  0.083B Rigid -, 

18 5.7 2 20 1 52.5 300Cu  5.15 V 0 0 Rigid 

19 5.7 2 20 1 52.5 300Cu 5.15 V,M 0 0.042B Rigid 

20 5.7 2 20 1 52.5 300Cu 5.15 V,M 0 0.083B Rigid 

21 5.7 2 20 1 52.5 3C0Cu 5.15 V,M 0 0.125B Rigid 

22 5.7 2 20 1 52.5 300Cu 5.15 V,M 0 0.167B Rigid 

23 5.7 2 20 1 30+3.75z 300Cu 5.15 V 0 0 Rigid 

24 5.7 2 20 1 30+3.75z 300Cu 5.15 V,M 0 0.042B Rigid 

25 5.7 2 20 1 30+3.75z 300Cu 5.15 V,M 0 0.083B Rigid 

26 5.7 2 20 1 30+3.75z 300Cu 5.15 V,M 0 0.125B Rigid 

27 5.7 2 20 1 30+3.75z 300Cu 5.15 V,M 0 0.167B Rigid 

28 5.7 2 20 1 52.5 300Cu 5.15 V,H ' 	20°  0 Rigid 



Table 5.2 	Continued 

Case Mesh ' 
(Fig.No.) 

Stage of** 
the shear 
unloadire& 
reloading 
(see sec- 
tion 5.1) 

Total 
Unit 
Weight 

Y 
KN/m 

Coefficient 
of Earth 

Pressure at 
- 	Rest 

K
o 

Applied  .N 
 Undrained* 

Strength 
Cu 

KN/m2  

Initial 
Modulus 

E. 1 

KN/m2  

Stress- 
Strain 
Curve 

(Fig.No.) 

lt+A ie 
Load 

Applied 
Load 
Incli- 
nation 

a = 
arctan vII  

Applied l  
Load 
Eccen-
tricity 

e 

, 	++ Relative elative 
Stiff- 
ness of 

the 
Footing 

29 5.7 2 20 1 52.5 300Cu 5.15 ' 	V, H o 40 .. 0 Rigid 

30 5.7 2 20 1 52.5 300Cu 5.15 V,H 60°  0 	. Rigid 

31 5.7 2 20 1 52.5 300Cu 5.15 V,H 80°  0 Rigid 

32 5.7 2 20 1 30+3.75z 300Cu 5.15 V,H 20°  0 Rigid 

33 5.7 2 20 1 30+3.75z 300Cu 5.15 V,H 40°  0 Rigid 

34 5.7 2 20 1 30+3.75z 300Cu 5.15 V,H 60°  0 Rigid 

35 5.7 2 20 1 30+3.75z 300Cu 5.15 V,H 80°  0 Rigid 

36 5.7 2 20 1 52.5 300Cu 5.15 V,H 10°  0 Rigid 

37 5.7 2 20 1 30+3.75z 300Cu 5.15 V,H 10°  0 Rigid 

39 5.13 2 20 1.5 100+3z 300Cu 5.17 V,M,H 14.04°  0.083B 2.1 

40 5.13 2 20 1.5 100+3z 300Cu 5.17 V,M,H 14.04°  0.08313 16.8 

43+  5.13 2 20 1 100+3z, 300Cu 5.17 V 0 0 Rigid 

44 5.13 2 20 1 100 300Cu  5.17 V 0 0 Rigid 



Table 5.2 	Continued 

Case 
No. 

Mesh 
(Fig.No.) 

Stage of** 
the shear 
unloading& 
reloading 
(see sec- 
tion 5.1) 

Total 
Unit 
Weight 

KN/m -' 
Y 

 .z 

Coefficient 
of Earth 

Pressure at 
Rest 

K 
 

Undrained* 
Strength 

Cu 

KN/m 2  

Initial 
Modulus 

E i 

KN/m2  

Stress- 
Strain 
Curve 

(Fig.No.) 

Load 
 

Applied Applied Load 
Incli- 
nation 

a- 
arctan-H V 

Applied 
Load 
Eccen- 
tricity 

e 

Relative   Stiff-
ness of 

the 
Footing 

45 5.13 2 20 1 100+3z 100.13 Cu 5.18 • V 0 0 Rigid 

46 5.13 2 20 1 100+3z 300Cu 5.18 V 0 0 Rigid 

Notes:- 

	

+ 	Cases 38 and 41 do not exist, and case 42 is included in cyclic loading subgroup. 

	

++ 	Relative stiffness of the footing (after Boswell and Scott, 1975): 

Ef 1 - vs 2 	
t 

kr 	V f  Es  1 - 	2  r 
	
3>2) 

kr < 10 flexible and kr > 10 rigid 

Where E is the Young's modulus, v is the Poisson's ratio, subscript f denotes the 
footing, subscript s denotes the soil, t is the footing thickness, and B is the 
footing width. 
V = Vertical, H = Horizontal and M = Movement. 
z L.-, the depth from ground surface. 

	

** 	For stage 2: E(Unioading) = E(Initial). 

	

a 	In case 17, vertical load has been applied first, and then moment and horizontal 
load have been applied. 



Table 5.3 	Cases for the Clay Group, Cyclic Loading 

Case 
No. 

Modulus 
for 

Unloading 
E
u 

Modulus+ 
for 

Reloading 
E 	. 
r 

Undrained 
Strength 

Cu 

KN/m2  

Initial 
Modulus 

E. 1 

KN/m2  

Load 
Inclination 

a 

Load 
Eccentricity 

. 	e 

Load 
Reduction 
Factor 

(see sec 
tion 5 .3 .2) 

Overall 
Factor of 
Safety 
against  
Failure 

42 3.5E. 1 3.5E. 100+3z 300Cu 16.7°  0.083B 4.5/11 1.57 

47 Et Et 100+3z 300Cu 16.7°  0.083B 4.5/11 1.57 

47,1 E t Et 100+3z 300Cu 16.7°  0.083B 0.5 1.57 

48 3.5E.I  3.5E. Linear 30000 16.7°  0.083B 4.5/11 - 

49 3.5E. 3.5E. 100+3z 300Cu  10.2°  0.0833 4.5/11 2.57 

Notes:- 
Et 

is the tangential modulus. 

++ 	Applied loads: V = 2.40 x 104KN/mrun, M = 24 x104mKN/mrun and H = 0.72 x 104KN/mrun 

(except Case 49 where H = 0.432 x 104KN/mrun). 
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Table 5.4 	Cases for the Linear Elastic Group 

Case No. Total Unit Weight 
•Y 	, 

KN/m3  

Modulus E+ 

KN/m2  

51A 20 100000 

51B 20 100000+10003 

Note: a3 is the minor principal stress 



(a) 
	

(b) 
	

(c ) 

Fig.5.1 Stress-strain models. 
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Stress-Strain Curve, (Plane Strain). Fig. 5.14 
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Fig. 5.15 Stress-Strain Curves, (Plane Strain). 
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Fig. 5.16 Stress-Strain Curveso  (Plane Strain). 
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Fig. 5.18 Stress-Strain Curves, (Plane Strain). 

Fig. 5.19 Sea bed pressure due to the weight of the wave. 



CHAPTER 6 

STRESS ANALYSIS FOR SHALLOW FOUNDATIONS WITH 

EMPHASIS ON UNDRAINED BEHAVIOUR 

6.1 	Introduction 

The non-linear finite element programme, explained 

in Chapter 2, was used to study the behaviour of shallow 

foundations under monotonic and cyclic loadings. 	A main 

aim of the work was to examine stress changes beneath 

footings for use in laboratory stress-path testing work. 

The different cases considered in this work, plus the 

material properties and geometries used, were discussed in 

Chapter 5. 	In this chapter, the finite element results 

are presented together with the discussion of these results. 

Generally, it is easy to obtain a reasonable solution 

for a geotechnical problem using the finite element method, 

but it needs considerable checking to ensure that the solu.7! 

tion is sufficiently reliable. 	It is therefore important 

to investigate the effectiveness of any finite element 

method by carrying out the calculation for a range of prob-

lems for which a reliable answer from other sources, such 

as closed form solutions, is known. 

Therefore, in this chapter, the comparison of the 

finite element results (both drained and undrained) is made 

with the available closed form, or numerical, solutions, 

to ensure the reliability of the technique. 

In studying the undrained behaviour of shallow 

168 
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foundations under monotonic loading, the effects of two 

different forms of parameters, namely, the parameters which 

affect the validity of the solution (such as: the layer 

thickness, and the side boundaries), and parameters which 

affect the solution itself (such as: the correct modelling 

of shear unloading), on stresses and displacements were 

considered. 	Also, failure zones and rupture figures were 

studied, and some of the geotechnical problems which have 

no closed form solutions (such as: the inclined and eccen-

tric loading of a finite layer whose undrained modulus and 

strength vary linearly with depth) were analysed. 

Furthermore, the effect of the cyclic loading on 

displacements and stresses'was considered. 	Also, with 

cyclic loading, effects of different stress-strain models 

on stresses, stress changes and displacements were investi-

gated. 

For drained behaviour of shallow foundations the 

effect of stress level on displacements and stresses, and 

also the effeCt of variation of Young's modulus with the 

minor principal stress on stresses were studied. 

The factor of safety used throughout this chapter, 

is defined as the ratio between the failure load, calculated 

from the bearing capacity theories given in Chapter 4, and 

the applied load. 	Table 6.1 gives the calculated failure 

pressures of  for different cases, analysed and discussed in 

this chapter (see also Chapter 5). 

In all cases, the soil is assumed to be isotropic. 
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The interface between the layer and the underlying rigid 

base is perfectly rough. 

The presentation and discussion of the finite element 

results are divided into two groups, namely, monotonic 

loading and cyclic loading. 

6.2 	Finite Element Results, Monotonic Loadin•  

6.2.1 Stresses  

6.2.1.1 Contact Pressure Distribution  

The pressure acting on the interface of a foundation 

and the soil is the contact pressure. 	It is important in 

the design of the foundation structure because it determines 

shear and moment distribution. 	Also, the contact pressure 

is important in studying local failure, and may also be 

used in settlement calculations. 

Figures 6.1 to 6.12 show the contact pressures distri- 

butions for different cases. 	The stresses considered in 

these analyses are those given at the Gauss points. 	The 

contact pressure is assumed to be equal to the stress 

corresponding to the average of four Gauss points stresses 

at the elements just underneath the footing, minus the 

initial vertical stresses at tIne same level. 

The equilibrium of stresses is approximately satis7 

fied for all cases, and the maximum error in the equilibrium 

of stresses is leSs than 8%. 	For case 3 (Table 5.2, 

Chapter 5), when the average of four Gauss points stresses 

is assumed to be the contact pressure, the satisfaction of 
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the stress equilibrium is poor,especially for higher safety 

factors (Fig. 6.3a). 	By assuming the average of two top 

Gauss points stresses as the contact pressure (Fig. 6.3b), 

the stress equilibrium is achieved, but the distribution 

of contact pressure is scattered, as local failure has 

started (for case 3, the first local failure occurred at a 

safety factor equal to 1.66, Fig. 6.45b). 	However, by 

considering that, in Fig. 6.3a, the maximum error in the 

equilibrium of stresses is less than 8%, the contact 

pressure distribution is smooth, and there is some small 

amount of vertical stress which is distributed outside of 

the loaded area, the average of four Gauss points stresses 

is assumed to be the contact pressure. 

DiscUssion on the contact pressure results will be 

conducted from the following points of view (note that, 

not all cases were considered for each result):- 

1. comparison with available solutions (drained 

and undrained), 

2. stress level. (drained and undrained); 

3. layer thickness (undrained); 

4. side boundaries (undrained); 

5. footing rigidity (undrained); 

6. soil unit weight (undrained); 

7. Ko (undrained), 

8. shear unloading modelling (undrained); 

9. variation of E with a3 (drained); 

10. stress-strain relationship (undrained); and 

11. nonhomogeneity (undrained). 
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Comparison with available solutions Generally, the con- 

tact pressures distributions given by the finite element 

analyses are in reasonably good agreement with those given 

by other elastic solutions, prior to local failure (Fig. 

6.1). 	In Fig. 6.1, the contact pressures from one drained 

case (case 2, Table 5.1, Chapter 5) and one undrained case 

(case 3, Table 5.2, Chapter 5) at high values of the safety 

factors (for case 2, 230; and for case 3, 8.57) are com- 

pared with the contact pressures given by Sadowsky (1928) 

Milovic et al (1970) and the "Method of division" using 

12 strips (this method is explained in section 3.4.6 of 

Chapter 3). 

In comparing the result of the drained case 2 with 

the elastic solutions (Fig. 6.1), it is clear that the 

Sadowsky method gives smaller stresses (except near the 

edge) than the result for case 2, as a semi-infinite layer 

is assumed in the Sadowsky method. The contact pressure 

from the Sadowsky method is 16% less than the contact 

pressure for case 2, at the centre line. 	This difference 

decreases toward the edge, and near the edge, the contact 

pressure from the Sadowsky method is 25% greater than that 

for case 2. 

The method of division (using 12 strips) gives 

stresses which are greater (5% on the centre line and 20% 

near the edge of .the footing) than those for case 2. 

However, as discussed in section (3.4.6) of Chapter 3, the 

validity of the method of division depends on the accuracy 
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of calculation of displacement for each assumed small 

flexible section of the footing and the number of divisions. 

The contact pressures given by Milovic et al (1970) 

for v = 0.33, are greater than those for case 2. 	The maxi- 

mum difference in stresses is 20% at a distance equal to 

B/4 from the centre line. 	Toward the footing edge and 

centre line the difference decreases, and near the edge, 

the contact pressure given by Milovic et al (1970) is equal 

to the contact pressure for case 2. 

The results of undrained case 3 (Table 5.2, Chapter 

5) are in good agreement.with.those given by Milovic et al 

(1970) for v = 0.5, except near the edge, due to material 

non-linearity, the contact pressure for case 3 is about 

70% of the contact pressure given by Milovic et al (1970). 

Stress level 	As discussed in section 3.4.5 of Chapter 3, 

the increase in applied load causes progressive transition 

of the loaded material from the state of elastic to the 

state of failure, 	This transition influences the distri- 

bution of contact pressure by limiting its value at the 

point where local failure has Occurred. 

Figures 6.2 and 6.3 show the variation of contact 

pressure distribution with the stress level. 	In Fig. 6.2, 

the results for drained case 2 (Table 5,1, Chapter 5) are 

considered. 	At a safety factor equal to 230, the local 

failure has not yet started, and the contact pressure distri-

bution is similar to that given by the elastic solutions 

(e.g. the Sadowsky method). 	For case 2, the local failure 
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starts at a safety factor equal to 46 (see also Figs. 6.45a 

and 6.55a). 	After the first local failure, the contact 

pressure is limited by the shear strength at the edges. 

By increasing the applied load, the local failure region 

becomes larger, and the amount of increase in contact 

pressure near the edges gets smaller than that at the central 

section of the footing (where failure has not yet occurred). 

In Fig. 6.2, the ultimate failure load has not been reached. 

However, at the safety factor equal to 9.2, the contact 

pressure distribution is similar to a triangular shape (the 

contact pressure distribution.for N1  term, Fig. 3.30 of 

Chapter 3), which it should have become as the ultimate 

failure was reached. 

Figure 6.3 shows the contact pressure distribution 

for undrained case 3 (Table 5.2, Chapter 5). 	As discussed 

before, the average of four Gauss points stresses, minus the 

initial vertical stress at the same level, as shown on Fig. 

6.3a, is assumed to be the contact pressure. 

For case 3, the local failure starts at a safety 

factor equal to 1.66 (see also Figs. 6.45b and 6.56a), which 

is in good agreement with the value of (Tr+2)/r = 1.64 given 

by Davis and Poulos (1968) for Ko  equal to unity. 	In Fig. 

6.3a, before the start of local failure.(safety factors 

equal to 8.57 and 2.57) the shape of contact pressure 

distribution curve is similar to that given by the elastic 

solutions (e.g. Mi.lovic et al, 1970). 	However, near the 

edge the contact pressure from the finite element analysis 
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is smaller than that given by the elastic solutions (see 

Fig. 6.1). 	This is due to the effect of material non- 

linearity. 	As the state of stress near the footing edge gets 

closer to the state of failure (the more severe non-linear 

section of the stress-strain curve), the modulus decreases 

and the amount of increase in contact pressure near the 

edge becomes smaller than that at the central section of 

the footing. 	This increase in the contact pressure 

decreases very rapidly, and becomes equal to zero, as the 

first local failure occurs (safety factor equal to 1.285, 

Fig. 6.3a). 	When the ultimate failure is approached, the 

shape of contact pressure distribution is similar to a 

rectangular shape (the contact pressure distribution for 

Nc 
term, Fig. 3.30 of Chapter 3), see Fig. 6.3a, safety 

factor equal to 0.988. 

Layer thickness Figure 6.4 shows the effect of layer 

thickness on the contact pressure distribution for an 

inclined and eccentric load on undrained clay, whose strength 

and modulus increase linearly with depth (cases 15 and 16, 

Table 5.2 of Chapter 5). 

At the safety factor equal to two, 	the contact 

pressure for case 15 (D = B) is greater than that for case 

16 (D = 2B) at the central section of the footing, and it 

is smaller for, case 15 than that for case 16 near the edges. 

This effect is reversed for the safety factor equal to 

unity. 	In other words, by decreasing the layer thickness, 

the contact pressure distribution becomes more uniform. 
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Side boundaries Three undrained cases 9, 11 and 12 

(Table 5.2, Chapter 5) were considered to investigate the 

effect of the side boundaries on the contact pressure. 

For all cases, undrained strength and modulus increase 

linearly with depth. 	The horizontal distances from the 

centre line to the side boundaries are 2B for case 12, 

4.17B for case 9, and 6B for case 11 (B is footing width). 

Figure 6.5 shows the effect of the side boundaries on 

the contact pressure. 	At the safety factor equal to 4.3, 

the side boundaries have no effect on the contact pressure. 

However, near the state of failure (safety factor = 1.08), 

the contact pressure increases, by reducing the side 

boundaries. The maximum value of the difference in con-

tact pressUres from case 11 and case 12 is small and equal 

to 4%. 

Footing rigidity Two undrained cases 39 and 40 (Table 

5.2, Chapter 5) were considered to study the effect of 

footing rigidity on the contact pressure. 	For both cases, 

undrained strength and modulus increase linearly with 

depth, and the applied load is inclined and eccentric. 

Equation 6.1 (after Boswell and Scott, 1975) defines 

the relative stiffness of the footing:- 

E
f 

1 - vs 2 r2t)3 
Ls 1 - vf2  B (6.1) 

where E is the Young's modulus, v is the Poisson's ratio, 

subscript f denotes the footing, subscript s denotes the 

soil, t and B are footing thickness and width. 	If kr 



177 

is greater than 10, then the footing is assumed to be rigid, 

and if k is less than 10, then the footing is assumed to 

be flexible. 	The relative stiffness is 2.1 for case 39, 

and it is 16.8 for case 40. 

Figure 6.6 shows the contact pressures distributions 

for these two cases at different values of safety factor. 

Obviously, the contact pressure distribution for case 39 

(flexible footing) is more uniform than that for case 40 

(rigid footing). 	Near the right hand side edge of the 

footing, due to local failure, the contact pressure distri-

bution is scattered for both cases at the safety factors 

equal to 0.95 and 0.88. 

It has to be mentioned that for these two cases, 

local failure occurs at both edges (see Fig. 6.60), however, 

the local failure region must be rather deep, in order to 

influence effectively the contact pressure. 

Soil unit weight Two undrained cases 7 and 8 (Table 5.2, 

Chapter 5) were studied in order to investigate the effect 

of soil unit weight on the contact pressure. 	For both 

cases, the shear strength and modulus increase linearly with 

depth, and the applied load is inclined and eccentric. 	It 

is obvious that the soil unit weight will affect the 

undrained behavioUr, only, if Ko  is not equal to unity. 

For case 7, the soil unit weight is 20 KN/m3  and Ko  is two, 

while for case 8, the soil unit weight is equal to zero. 

Figure 6.7 shows the contact pressures for these two 

cases at the safety factors equal to 4 and 1.3. 	Generally, 
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omitting the soil unit weight from the analysis (like the 

case with Ko equal to unity which will be discussed later) 

tends to increase the contact pressure at the central 

section of the footing, and to decrease it near the edges. 

In Fig. 6.7, the maximum differences between the contact 

pressures from case 7 and case 8, are near the edges and 

equal to 8% at the safety factor equal to 4, and 20% at 

the safety factor equal to 1.3. 

Also, in Fig. 6.7 the results for case 8, at the 

safety factor equal to 4, are compared with the results 

given by Milovic et al (1970) which also assume zero unit 

weight for the soil. 	At the central section of the footing, 

the agreement between the finite element results and those 

given by the elastic solution is good. 	The contact pressure 

for case 8 is a maximum of 6% greater than the contact 

pressure given by Milovic et al (1970), at the central 

section of the footing. 	However, near the edges, due to 

material non-linearity and local failure, the finite element 

results are much smaller than the results given by elastic 

solution. 

Ko Two undrained cases 5 and 6 (Table 5.2, Chapter 5) were 

considered to study the effect of Ko  on the contact pressure. 

For both cases, the shear strength and modulus increase 

linearly with depth, the applied load is inclined and 

eccentric, and the shear unloading modulus is equal to the 

tangent modulus at the same state of stress (see Fig. 5,1a 

of Chapter 5). 	For case 5, the soil unit weight is equal 
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to 20 KN/m3  and Ko is two, while for case 6, the soil unit 

weight is 20 KN/m3  and Ko  is one. 

Figure 6.8 shows the contact pressures distributions 

for these two cases. 	The contact pressure for case 6 

(Ko = 1) is greater than the contact pressure for case 5 

(Ko = 2), for the central section of the footing. 
	Near the 

edges, the contact pressure for case 6 is less than that 

for case 5. The maximum differences between the contact 

pressures from these two cases are 6% at the safety factor 

equal to 2, and 20% at the safety factor equal to unity. 

By comparing the effects of soil unit weight and Ko  

on the contact pressures, it is clear that the soil unit 

weight has no effect on the undrained behaviour of shallow 

foundations, provided that Ko  is equal to unity. 

Shear unloading modelling For a shallow foundation, which 

is loaded monotonically, the shear unloading can only occur 

if Ko is not equal to unity. 	This shear unloading occurs 

in the early stages of loading. 

Two undrained cases 4 and 9 (Table 5.2, Chapter 5) 

were considered to investigate the effect of shear unloading 

modelling on the contact pressure. 	For both cases, the 

shear strength and modulus increase linearly with depth, 

applied load is vertical, the soil unit weight is 20 KN/m3  

and Ko is two. 	In case 4, the shear unloading path is on 

the first loading curve (i.e. Eu  = Et, see Fig. 5.1a of 

Chapter 5), while in case 9, the unloading modulus is equal 

to the initial modulus (i.e. Eu  = Ei, see Fig. 5.1b of 

Chapter 5). 	In both cases, the reloading curve is parallel 
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to the first loading curve. 

Figure 6.9 shows the contact pressures distributions 

for these two cases, at the safety factors equal to 2.15 

and 1.08. 	At the safety factor equal to 2.15, the con- 

tact pressure for case 9 is greater than that for case 4, 

at the central section of the footing. 	Near the edge, the 

contact pressure for case 9 is smaller than that for case 

4. 	At the safety factor equal to 1.08, both cases give 

the same contact pressures at the central section of the 

footing. 	Near the edges, the contact pressure for case 9 

is greater than that for case 4. 	The difference between 

the contact pressures from these two cases depends on Ko  

and the non-linearity of the early section of the stress-

strain curve. 

For these two cases, as the early section of stress-

strain curve used is close to linearity (see Fig. 5.15 of 

Chapter 5), therefore, the contact pressures differences 

are small. The maximum difference is 7% at a distance 

equal to B/12 from the edge, for the safety factor equal to 

2.15. 	Obviously, this difference decreases as the ultimate 

failure is approached. 

For case 4, local failure starts at the safety factor 

equal to 2.15 (see also Figures 6.45b and 6.57a). 	Case 9, 

as discussed above, affects the stresses, but as this 

effect is small for the cases considered, therefore, the 

load required for the initiation of first local failure is 

not affected by the correct modelling of the shear unloading. 
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Variaton of E with a3 To investiaate the effect of linear 

variation of the Young's modulus with the minor principal 

stress, two linear elastic cases 51A and 51B (Table 5.4, 

Chapter 5) were considered. 	For case 51A, the modulus is 

constant, while for case 51B, it increases linearly with 

a3, and the rate of increase in modulus with a3 is modest 

when compared with the modulus for a3 equal to zero (Table 

5.4 of Chapter 5). 

Figure 6.10 shows the contact pressures for these two 

cases. 	The contact pressure for case 51B is greater than that 

for case 51A, at the central section of the footing. 	Near 

the edge, the contact pressure for case 51B is smaller than 

that for case 51A. 	However, as the rate of increase in 

modulus with a3, in case 51B, is small compared to the 

modulus of case 51A, therefore, the difference between the 

stresses from these two cases is small. 

Stress-strain relationship Three undrained cases 43, 45 

and 46 (Table 5.- 2, Chapter 5) were considered to investigate 

the effect of the stress-strain relationship on the contact 

pressure. 	For all three cases, the soil unit weight is 

20 KN/m3 , Ko 
is one, and the shear strength and modulus 

increase linearly with depth. 	The stress-strain curves 

used in these three cases are shown on Fig. 5.18 of Chapter 5. 

Figure 6.11 shows the contact pressures for these 

cases. 	At the safety factor equal to 3.56, and before the 

local failure occurs (for these cases, local failure starts 
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at the safety factor equal to 2.15, see also Fig. 6.51), the 

effect of stress-strain relationship on the contact pressures 

is small. 	At a safety factor equal to 1.09, the contact 

pressure for case 45 (stiffer curve) is greater than that 

for case 46 (softer curve), at the central section of the 

footing. 	Near the edge, the contact pressure for case 45 

is smaller than that for case 46. 	The maximum difference 

between the contact pressures for these cases, is 7% at a 

distance equal to B/6 from the edge, at the safety factor 

equal to 1.09. 

Nonhomogeneity Two undrained cases 43 and 44 (Table 5.2, 

Chapter 5) were considered to investigate the effect of the 

nonhomogeneity on the contact pressure. 	For case 43, the 

shear strength and modulus increase linearly with depth, 

while for case 44, both are constant. 	For both cases, the 

soil unit weight is 20 KN/m3  and Ko  is one. 

Figure 6.12 shows the contact pressures for these 

two cases, at the safety factors equal to 9.6, 2.4 and 1.12. 

For case 43, local failure starts at the safety factor 

equal to 2.15, while for case 44, local failure starts at 

the safety factor equal to 1.66 (see also Fig. 6.45c). 

The form of the nonhomogeneity considered for case 43 

results in stiffer soil than the uniforth case 44. 	The 

contact pressures for case 43 are greater than the contact 

pressures for case 44, at the central section of the footing 

(central 2/3 of the footing width). 	Near the edges, the 

contact pressures for case 43 are smaller than those for 

case 44. 
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Figure 6.12 shows that the ratio E0/X13 (see Eq. 3.10, 

Chapter 3) has a marked effect on the contact pressures. 

On the footing centre line, the contact pressure for case 

43 (E0/AB = 0.28) is 12% more than that for case 44 

(E
o
/

A
B = 03), at the safety factor equal to 9.6. 	Near the 

edges, the contact pressure for case 43 (E0/x13 = 0.28) is 

19% less than that for case 44 (Eo/xEi = co), at the safety 

factor equal to 9.6. 	These differences increase as the 

safety factors decrease, and their values are 18% and 39% 

for a safety factor equal to 1.12, on the centre line and 

near the edge, respectively. 

Carrier and Christian (1973) have also showed that 

the effect of Eo
/XD (D is footing diameter) on the stress 

distribution for a circular footing is significant in 

producing more uniform contact stresses (see Fig. 3.33 of 

Chapter 3). 

6.2.1.2 Stress Distribution  

Figures 6.13 to 6.27 represent the vertical and hori- 

zontal stresses distributions for different cases. 	The 

stresses in these figures are those corresponding to the 

average of four Gauss points stresses, minus the initial 

stresses. 

Discussion on these results will be conducted from 

the following points of view (bearing in mind that some of 

the comments on contact pressures, discussed in section 

6.2.1.1, are also valid for the stresses): 
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1. Comparison with available solutions (drained 

and undrained); 

2. stress level (undrained); 

3. layer thickness (undrained); 

4. side boundaries (undrained); 

5. shear unloading modelling (undrained); 

6. variation of E with a3  (drained); 

7. nonhomogeneity (undrained); and 

8. Ko (undrained). 

Comparison with available solutions Figures 6.13 and 6.14 

show the vertical and horizontal stresses for drained case 

1 (Table 5.1, Chapter 5), at the safety factor equal to 

46, and compare the finite element for this case with the 

results given by Poulos (1967) and Milovic et al (1970) for 

v = 0.33. 

Generally, the agreement between the drained results 

from the finite element analysis, at the safety factor equal 

to 46, and those given by the elastic solutions is good, 

except for the vertical stresses near the edges. 	Near the 

footing centre line (Fig. 6.13), the vertical stresses at 

great depths from the finite element analysis are almost 

the same as those given by Poulos (1967) and Milovic et al(1970). 

For shallow depths, the vertical stresses given by Poulos 

(1967), for uniform loading, are greater than those from 

the finite element analysis, and the vertical stresses given 

by Miloic et al (1970) are smaller than those given by 

the finite element analysis. 	The maximum difference in 
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vertical strsses is near the ground surfade, and the finite 

element results are 10% less than the results given by 

Poulos (1967), and they are 7% more than the results given 

by Milovic et al (1970). 	However, as the effect of material 

non-linearity is to increase the stresses near the centre 

line (see Fig. 6.15), therefore, the difference between the 

vertical stresses from the finite element analysis and Milovic 

et al (1970) must be less than 7% at the higher safety 

factors. 	Near the centre line, the horizontal stresses 

from the finite element analysis are a maximum of 20% and 30% 

greater than those given.by MiloVic et al (1970) and Poulos 

(1967). 

Near the edges (Fig. 6.14), horizontal stresses from 

the finite'element analysis for great depths are almost the 

same as those given by Poulos (1967). 	The vertical stresses 

from the finite element analysis are a maximum of 50% more 

than those given by Poulos (1967) for a uniform loading. 

Comparison of the results for undrained case 3 (Table 

5.2, Chapter 5), at the safety factor equal to 5.14, and 

the elastic solutions for v = 0.5, is made in Figs. 6.15 and 

6.16. 	Near the centre line, vertical stresses from the 

finite element analysis are a maximum of 19% and 8% smaller 

than those given by Poulos (1967) and Milovic et al (1970). 

The horizontal stresses from the finite element analysis 

are almost the same as those given by Milovic et al (1970), 

and they are a maximum of 40% greater than the Poulos 

results, near the centre line. 	Near the edges, vertical 

stresses from the finite element analysis are a maximum of 
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50% greater than those given by Poulos (1967) for a uniform 

loading, and the horizontal stresses at great depths are 

almost the same as those given by Poulos (1967). 

Stress level 	Figures 6.15 and 6.16 show the effect of 

stress level on the stress distribution for undrained non- 

linear case 3 (Table 5.2, Chapter 5). 	By increasing the 

applied load, vertical stress increases at the central 

section of the footing, and decreases near the edges. 	This 

effect is a maximum near the ground surface, and decreases 

with depth (Fig. 6.15). 

By increasing the applied load, horizontal stress 

increases in whole domain, except at very shallow depths 

near the edges. 	At depths more than the footing width 

near the centre line, the opposite occurs (see Figs. 6.16 

and 6.17). 

Layerthickness Two undrained cases 15 and 16 (Table 5.2, 

Chapter 5) were considered to investigate the effect of 

layer thickness on the stresses. 	For both cases, the 

shear strength and modulus increase linearly with depth, 

and the applied load is inclined and eccentric. 	For case 

15, the layer thickness is equal to the footing width, while 

for case 16, the layer thickness is twice the footing width. 

Figures 6.17 and 6.18 show the stress distribution 

for these two cases, at the safety factors equal to two and 

one. 	At the safety factor equal to two, by reducing the 

layer thickness, vertical stresses increase at the central 

section of the footing and decrease near the edges, while 
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horizontal stresses increase at great depths and decrease 

at shallow depths. 	At the safety factor equal to one, by 

reducing the layer thickness, vertical and horizontal 

stresses decrease at shallow depths-and increase at great 

depths. 

Side boundaries 	Three undrained cases 9, 11 and 12 (Table 

5.2, Chapter 5) were considered to study the effect of the 

side boundaries on the stresses. 	For all three cases, the 

shear strength and modulus vary linearly with depth. The 

horizontal distances from the footing centre line to the 

side boundary are 2B for case 12, 4.17B for case 9, and 6B 

for case 11. 

Figures 6.19a and b show the stress distribution for 

these cases. 	At the safety factor equal to 2.15 (Fig. 

6.19a), the side boundaries have no effect on the vertical 

stresses, except at very shallow depths near the edge, where 

by almost doubling the horizontal distance from the centre 

line to the side boundaries, the vertical stress is reduced 

about 4%. 	Horizontal stresses are the same for all three 

cases near the centre line, but they are on average 10% 

greater for case 12 than for cases 9 and 11 for the rest 

of domain. 	This effect is reduced a little as failure is 

approached (Fig. 6.19b). 

Shear unloading modelling As discussed in the contact 

pressure section,.by monotonic loading of a footing, shear 

unloading can only occur if Ko  is not equal to unity. 	For 

two undrained cases 4 and 9 (Table 5.2, Chapter 5), which 
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were considered to investigate the effect of correct shear 

unloading 'modelling on the stresses, the soil unit weight 

is 20 KN/m3  and Ko is two. 	For both cases, the shear 

strength and modulus increase lineai.ly with depth. 	In 

case 4, Eu  is equal to Et  (see Fig. 5.1a), and in case 9, 

Eu is equal to E
i  (see Fig. 5.1c). 

The correct shear unloading modelling affects the 

solution itself, rather than affecting the validity of the 

solution. 	Obviously, the value of Ko and the initial 

section of the stress-strain curve used in the analysis 

influence this effect. 

Figures 6.20a and b show the stress distribution for 

these two cases. 	First, it may seem that the correct 

shear unloading modelling does not affect the stresses, but, 

by considering that the initial section of the stress-strain 

curve used in these cases (Fig. 5.15 of Chapter 5) is very 

close to linearity, therefore, this effect is small. 

However, correct shear unloading modelling tends to increase 

the vertical stress at the central section of the footing, 

and to decrease it near the edges, and this process is 

reversed as the failure is approached (see also Fig. 6.9). 

Also, correct shear unloading modelling tends to decrease 

the horizontal stresses. 

Variation of E with a3  Two linear elastic cases 51A and 

51B (Table 5.4, Chapter 5) were considered to study the 

effect of the linear variation of E with .a3on stresses. 

All parameters are the same for both cases, except the 
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modulus. 	For case 51A, the modulus is constant, while 

for case 51B, it increases linearly with a3. 

Figures 6.21 to 6.23 show the principal stresses for 

these two cases. 	Near the footing centre line (Fig. 6.21), 

the principal stresses for case 51B are greater than those 

for case 51A. 	For the major principal stress this diffe- 

rence is 3%, and for the minor principal stress it is 2%. 

These effects decrease toward the edges (Fig. 6.22), and 

near the edges, the principal stresses for case 51A are a 

maximum of 2% greater than those for case 51B. 	As dis- 

cussed before in the contact pressure section, these effects 

are small, because the rate of increase in E with a3  is 

small compared to E itself. 

Nonhomogeneit 	In order to investigate the effect of the 

linear variation of undrained strength and modulus with 

depth, two undrained cases 43 and 44 (Table 5.2, Chapter 5) 

were considered. 	All parameters are the same for both 

cases, except the strength and the modulus. 	For case 44, 

strength and modulus are constant, while for case 43, they 

increase linearly with depth. - 

Figures 6.24 to 6.26 show the stresses for these two 

cases. 	Vertical stresses for case 43 are greater (at the 

central section Of the footing), and are smaller (near the 

edges), than those for case 44, at all values of the safety 

factors. 	The maximum differences between the stresses 

from these two cases are near the centre line (18%) and 

edges (39%), at very shallow depths for the safety factors 
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equal to 1.12. 	They decrease as the depth or the safety 

factor increase. 

Horizontal stresses for case 43 are greater than 

those for case 44, except at very shallow depths near the 

edges, and, at great depths. 	The average value of the 

difference in horizontal stresses is 25%. 

Ko 
Two undrained cases 5 and 6 (Table 5.2, Chapter 5) 

were conSidered to study the effect of Ko  on the stress 

increases due to loading. 	All parameters are the same for 

these two cases, except the value of Ko. 	For case 5, Ko 

is two, and for case 6, it is one. 

Figures 6.27a and b show the stresses for these two 

cases, at the safety factors equal to two and one. 	Vertical 

stresses for case 6 (Ko 
= 1) are greater (at the central 

section of the footing), and are smaller (near the edges), 

than those for case 5 (K0  = 2). 	Horizontal stresses for 

case 6 are greater than those for case 5, except at great 

depths. 	These effects increase at shallow depths and 

decrease at great depths for vertical stresses, and increase 

at mid-depth for horizontal stresses, as the failure is 

approached'. 

The maximum differences in vertical stress changes 

are 6% and 20% for the safety factors equal to two and one, 

respectively. 	The average differences in horizontal stress 

changes are 8% for the safety factors equal to two, and 

15% for the safety factors equal to one. 
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6.2.2 Displacements  

Figures 6.28 to 6.44 show the displacements for 

different cases. 	Discussion on these plots will be con- 

ducted from the following points of view:- 

1. stress level (drained), 

2. layer thickness (undrained); 

3. side boundaries (undrained); 

4. shear unloading modelling (undrained); 

5. footing rigidity (undrained); and 

6. nonhomogeneity (undrained). 

Comparison of the undrained results with available 

solutions, and the effect of stress level on undrained 

results are discussed during studies of the effect of 

other parametres. 

Stress level 	Figures 6.28 and 6.29 show the vertical and 

horizontal displacements for drained case 1 (Table 5.1, 

Chapter 5). 	Figure 6.28 indicates that by reducing the 

safety factor, vertical displacements concentrate at the 

central section of the footing. 	Figure 6.29 shows that 

the maximum horizontal displacements are around mid-depth, 

and concentration of the horizontal displacements around 

mid-depth increases, as the safety factor decreases. 

Layer thickness 	Figure 6.30 shows the settlements profiles 

for two undrained cases 15 and 16 (Table 5.2, Chapter 5) 

at the safety factors equal to two. 	For both cases, the 

shear strength and modulus increase linearly with depth, 

and the applied load is inclined and eccentric. 	All 
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parameters are the same for both cases, except the layer 

thickness. 	For case 15, the layer thickness is equal to 

the footing width, while for case 16, it is twice the 

footing width. 

By decreasing the layer thickness, settlement decreases 

and heave increases (Fig. 6.30). 	However, in this figure, 

the heave for case 16 is greater than that for case 15 near 

the side boundaries, and this is due to the increasing side 

boundary effect. 

In Fig. 6.30, the finite element results are compared 

with the results given by Milovic et al (1970) using an 

average modulus. 	For case 15 (D=B), the settlement from 

the finite element analysis is 8% less than that given by 

Milovic et. al (1970). 	For case 16 (D=2B), the centre 

settlements from both solutions are the same, but the tilt 

from the finite element analysis is 25% more than that given 

by Milovic et al (1970). 

Side boundaries The effect of the side boundaries on the 

settlement was considered for both inclined and eccentric 

loading and vertical loading. 	Figure 6.31a shows the 

settlements profiles for three undrained cases 10, 13 and 14.  

(Table 5.2, Chapter 5). 	In all three cases, the applied 

load is inclined and eccentric, and all parameters are the 

same, except the side boundary distance from the centre line, 

H. 	For case 10,.11 is 2.5B, for case 13, H is 4B, and for 

case 14, H is 1.5B. 

Figure 6.31b shows the settlements profiles for three 
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undrained cases 9,11 and 12 (Table 5.2, Chapter 5). 	In 

all three cases, the applied load is vertical, and all 

parameters are the same, except H. 	For case 9, H is 4.17B, 

for case 11 , H is 6B, and for case*12, H is 2B. 

These two figures indicate that by decreasing the side 

boundary distance from the centre line, the settlement 

decreases and the maximum heave increases. 

In Fig. 6.31a, the settlements for cases 10 and 13 are 

the same, and the heave for case 13 is slightly less than 

that for case 10. 	This indicates that the more economical 

distance from the centre line to the side boundaries is 

equal to 2.5B. 

In Fig. 6.31b, the finite element results at the 

safety factor equal to 2.15 are compared with the results 

given by the elastic solutions using an average modulus. 

The settlement for case 9 is 10% less than the settlement 

given by Poulos (1967), using an average modulus and Eq. 3.17 

of Chapter 3 for relating the settlement of a rigid footing 

to the settlement of a flexible footing. 	The settlement 

given by Milovic et al (1970), using an average modulus, 

is 40% more than that for case 9. 

Shear unloading modelling 	In Fig. 6.32, settlements for 

two undrained cases 4 and 9 (Table 5.2, Chapter 5) are shown. 

All parameters are the same for these two cases, except the 

unloading modulus. 	For case 4, the Eu  is equal to Et  (see• 

Fig. 5.1a), while for case 9, the Eu  is equal to Ei  (see 

Fig. 5.1b). 	For both cases, Ko  is two. 
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Figure 6.32 indicates that the effect of correct shear 

unloading modelling is to decrease both the settlement 

and the heave (provided that Ko  > 1). 

Also, in Fig. 6.32, the finite element results are 

compared with the results given by the elastic solutions 

using an average modulus. 	The settlement for case 4 is 

equal to that given by Poulos (1967) using an average modu-

lus, and Eq. 3.17 of Chapter 3 for relating the settlement 

of a rigid footing to the settlement of a flexible footing. 

The settlement given by Milovic et al (1970), using an 

average modulus, is 30% more than that for case 4. 

Footing rigidity 	Two undrained cases 39 and 40 (Table 5.2, 

Chapter 5) were considered to investigate the effect of 

footing rigidity on the settlement. 	For both cases, the 

shear strength and modulus increase linearly with depth, 

and the applied load is inclined and eccentric. 	The rela- 

tive stiffness (see Eq. 6.1) for case 39 is 2.1, and for 

case 40 is 16.8. 

Figure 6.33 shows the settlements for these two cases 

at the safety factors equal to 1.98 and 0.85. 	One impor- 

tant feature of this figure is that, for the safety factor 

equal to 1.98, the tilt is not affected by the footing 

rigidity. 	But the effect of footing rigidity on the tilt 

becomes significant as the failure is approached. 

Also, Fig. 6.33 shows a good agreement between the 

settlement given by the Milovic et al (1970) using an 

average modulus, and the settlement for case 40 at a safety 

factor equal to 1.98. 
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Nonhomogeneity Figures 6.34 to 6.37 show displacements 

for two undrained cases 43 and 44 (Table 5.2, Chapter 5). 

For case 44, the undrained strength and modulus are constant, 

while for case 43, they increase linearly with depth. 

Figures 6.34 and 6.35 show that the effect of non-

homogeneity (case 43) is to reduce both the settlement and 

the heave (compared to uniform case 44). 	Figures 6.36 and 

6.37 indicate that nonhomogeneity tends to decrease both 

vertical and horizontal displacements. 	The effect on 

horizontal displacements increases with depth, because the 

modulus increases with depth (Fig. 6.37). 

Also, in Fig. 6.34, the settlements for cases 43 and 

44 at the safety factor equal to 9.6, are compared with 

those given by the elastic solutions. 	For uniform case 

44, the settlement given by Poulos (1967), using Eq. 3.17 

of Chapter 3 for settlement of rigid footing, is 5% less 

than the settlement from case 44. 	For the same case, the 

result given by Milovic et al (1970) is 20% more than that 

for case 44. 

For nonhomogeneous case 43, the settlement given by 

Milovic et al (1970), using an average modulus, is 6% 

greater than that for case 43. 

In Figures 6.38 to 6.44, some typical displacements 

vectors are given for drained case 2, and undrained cases 

3 and 40 (Tables 5.1 and 5.2, Chapter 5). 	In Figures 6.38 

to 6.42, the applied load is vertical and a wedge of rigid 

material, which is moving down with the footing, can be 

seen clearly, 
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The important feature of Figures 6.43 and 6.44 is to 

show that the displacement vector field can be used to 

evaluate the ultimate failure load, more accurately. 	These 

figures show displacements vectors for an inclined and 

eccentric load at the safety factors equal to 0.89 and 0.88. 

By comparing the settlements of the footings in these two 

figures, it is clear that, at the safety factor equal to 

0.88, there is a sudden change in the direction of the 

displacement vector. 	Therefore, the ultimate failure for 

this case must occur between these two loads (see also Fig. 

6.61). 

6.2.3 The Failure Load  

6.2.3.1 Definition of the Failure Load  

In Chapter 4, the failure load was defined as the 

load at which the slope of the load-settlement curve first 

reaches a steady minimum value. 	Also, it was mentioned 

that in some cases, this slope increases continuously, and 

it is difficult to define the failure load more accurately. 

In these cases, consideration of three different plots, 

namely, load-settlement curve, load-settlement curve in a 

log-log scale, and displacement vector field is recommended 

for defining the failure load more accurately. 

An example of the use of displacement vector fields 

was shown in the previous section. 	In the following 

section the load-settlement curves will be discussed. 
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6.2.3.2 Load-settlement Curves  

Figures 6.45 to 6.51 represent some typical load-

settlement curves and the effect of different parameters 

on them. 

In Fig. 6.45a, the load-settlement curve for drained 

case 2 (Table 5.1, Chapter 5) is given. 	In this case, as 

mentioned in Chapter 5, the load was only increased up to 

11% of the ultimate failure load. 	The first local failure 

occurs at a safety factor equal to 46 (see also Fig. 6.55a). 

Figure 6.45b represents the load-settlement curves 

for two undrained cases 3 and 4 (Table 5.2, Chapter 5). 

For case 3, undrained strength is constant, the initial 

modulus is 1400 Cu and Ko is one. 
	For case 4, undrained 

strength increases linearly with depth, Ei  is 300 Cu  and 

Ko is two. 	
Also, in Fig. 6.45b, the results from the 

closed form solutions are given, in order to compare them 

with the finite element results. 

By considering that, in principle, an incremental 

elastic finite element solution predicts a lower bound to 

the failure load, the comparison between the failure loads 

from the finite element analyses, and those given by the 

plasti^ity solutions is very good. 

In Fig. 6.45c, the load-settlement curves for two 

undrained cases 43 and 44 (Table 5.2, Chapter 5) are given. 

For case 44, the undrained strength is constant and Ei  is 

300 Cu, while for case 43, undrained strength increases 

linearly with depth, and Ei  is 300 Cu. 	For both cases Ko 

is one. 
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Figures 6.45b and c indicate that the nonhomogeneous 

cases 4 and 43 give higher values for the safety factors at 

first local failure than the uniform cases 3 and 44. 	For 

uniform cases 3 and 44, the local failure starts at the 

safety factor equal to 1.66 (which is in good agreement with 

the value 1.64 given by Davis and Poulos, 1968, for Ko equal 

to 1). 	For the nonhomogeneous cases 4 and 43, the local 

failure starts at the safety factors equal to 2.15. 

The safety factors at first local failure for two 

nonhomogeneous cases 4 and 43 are coincidently equal. 

However, this does not necessarily mean that the ratio Cuo  /pB 

(see Eq. 4.33, Chapter 4) has no effect on the value of 

safety factor at first local failure. 

The safety factor at first local failure is a function 

of the ratio f = (1-K_)40/2Cu  (Davis and Poulos, 1968). 

Its value is a minimum for f equal to zero, and it increases 

by increasing or decreasing the value of f. 

Figure 6.45d shows the load-settlement curves for two 

undrained cases 9 and 23 (Table '5.2, Chapter 5). 	For both 

cases, undrained strength and modulus increase linearly with 

depth, and all parameters used are the same, except a slight 

difference in the grading of the meshes (see Table 5.2, 

Chapter 5), and Ko. 	The effect of the.difference in the 

grading of the meshes on the value of safety factor at 

firSt local failure, is negligible. 	For case 9, the soil 

unit weight is 20 KN/m3  and Ko  is two, while for case 23, 

the soil unit weight is 20 KN/m3  and Ko  is one. 	This 
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figure indicates that, from the qualitative point of view, 

for nonhomogeneous clay, the ratio f has the same effect on 

the safety factor at first local failure, as for the uni-

form clay. 

For case 23 (Fig. 6.45d), the safety factor at' first 

local failure is 1.86, the ratio Cuo/pB is 0.67 and Ko  is 

one, while for case 43 (Fig. 6.45c), the safety factor at 

first local failure is 2.15, the ratio Cuo  /pB is 0.28, and 

Ko is one. 	
Therefore, from these results, it may be con- 

cluded that by increasing the ratio Cuo/pB, the safety 

factor at first local failure decreases, provided that the 

ratio f is equal to zero. 	At the limit for C uo/pB = 

(i.e. p = 0, uniform clay) the safety factor at first local 

failure is equal to (7T+2)/7 for f = 0. 

Figures 6.46a and b show that the side boundaries and 

the shear unloading modelling do not affect the magnitude 

of the ultimate failure pressure, as should be the case. 

However, the fixed side boundaries produce a confining 

effect in the domain, and by moving the boundaries toward 

the centre line the horizontal stresses increase (see Fig. 

6.19a), resulting in a decrease in the value of safety 

factor at first local failure (Hoeg et al, 1968). 	The 

same effect is shown in Fig. 6.46a, where load-settlement 

curves for cases 9, 11 and 12 (Table 5.2, Chapter 5) are 

given. 	In these three undrained cases, all parameters are 

the same, except the side boundary distances from the centre 

line, which are 4.17B, 6B and 2B for cases 9, 11 and 12, 
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respectively. 	In this figure, the results for cases 9 and 

11 are the same, but for case 12, the safety factor at 

first local failure is slightly decreased,, 

The correct modelling of the shear unloading has not 

affected the value of the load required for the initiation 

of local failure (Fig. 6.46b). 

Also, Figures 6.47a and b show that the layer thickness 

has no effect on the value of ultimate failure pressure. 

But, as discussed in section (6.2.2), by increasing the 

layer thickness, pre-failure settlement is increased. 

Smith (1976) showed that, in vertical loading, the 

ultimate failure load for a rigid footing increases as the 

thickness of the uniform clay foundation becomes smaller 

than the footing diameter. 	Also, he showed that the ulti- 

mate failure load for a "uniform stress" footing (completely 

flexible), on homogeneous clay, is lower than that for a 

"uniform displacement" footing (completely rigid), in verti-

cal loading. 

The ultimate failure pressures predicted by the finite 

element solutions are found to be independent of the assumed 

initial stresses (Figures 6.48 to 6.50). 	However, the 

safety factor at first local failure is affected by the 

assumed initial stresses as shown on Fig. 6.45d. 	Figures 

6.48 to 6.50 also show that by decreasing t:le value of Ko, 

or by omitting the soil unit weight from the analysis 

(compared to the case with Ko  equal to 2), settlements are 

increased. 
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However, as the undrained strength of a cohesive soil 

varies with the rotation of principal stresses, and this 

rotation is a function of both the stress changes due to 

the applied load and the initial stresses in the ground, 

therefore, the ultimate failure pressure will be dependent 

on Ko (D'Appolonia and Lambe, 1970). 

Figure 6.51 shows the load-settlement curves for 

three undrained cases 43, 45 and 46 (Table 5.2, Chapter 5). 

In these three cases, all parameters are the same, except 

the initial modulus and the strain at failure. 	The initial 

moduli are 300 Cu' 1000 Cu' 
and 300 Cu, and the strains at 

failure are 1.0%, 0.53% and 3.0% for cases 43, 45 and 46, 

respectively. 	For all three cases, shear strength and 

modulus increase linearly with depth, and Ko  is one. 

This figure indicates that the ultimate failure 

pressures and'the safety factors at first local failure for 

all three cases are equal. 	However, as the stress-strain 

curve becomes softer, the settlement is increased. 

6.2.4 Stress-Strain Curves  

Undrained case 40 (Table 5.2, Chapter 5) is considered 

to study the stress-strain curve followed by the programme, 

and to comapre that with the nominated stress-strain curve 

as given to the computer. 	The shear strength and modulus, 

for this case, increase linearly with depth, the soil unit 

weight. is 20 KN/m3  and Ko  is 1.5. 

Figures 6.52 and 6.53 show the stress paths at two 
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different points for this case. 	The coincidence between 

the nominated stress-strain curves as given to the computer 

and the stress-strain curves followed by the programme is 

excellent. 

6.2.5 Effects of the Load Eccentricity and Inclination  

on the Failure Load 

In Chapter 4, the effects of load eccentricity and 

inclination on the bearing capacity for both uniform and 

nonhomogeneous clays were discussed. 

The common practice for the effect of load eccen- 

tricity on the bearing capacity is to use a reduced footing 

width in the analysis. 	The finite element results for 

the vertical eccentric loading on either uniform or non- 

homogeneous clays are plotted on Fig. 6.54. 	Equivalent 

eccentricity factors were deduced from the failure loads 

predicted by these calculations, by applying Equations 

4.35 and 4.37 of Chapter 4. 	In this figure the eccentri- 

city factors from the finite element analyses are compared 

with the eccentricity factor given by the reduced width 

concept. 	The agreement between -the finite element results 

and the reduced width concept is good. 	The eccentricity 

factor from the finite element analysis.is 3% less than that 

from the reduced width concept, at e/B equal to 0.083 

for the uniform clay. 

For the bearing capacity of a central inclined load 

on either uniform or nonhomogeneous clays, the inclination 
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factors are given on Fig. 4.8 of Chapter 4. 	For the  

eccentric and inclined loading, a combination of the 

eccentricity and inclination factors must be used, as dis-

cussed in Chapter 4, section (4.10..3). 

The finite element results, for both central inclined 

and eccentric and inclined loads on either uniform or non-

homogeneous clays, are plotted on Fig. 4.8 of Chapter 4, 

and they are compared with the results given by Vaughan et 

al (1976). 	In this figure, equivalent inclination and 

eccentricity factors were deduced from the failure loads 

predicted by these calculations, by applying Equations 4.35 

to 4.39 of Chapter 4. 	Generally, the results from the 

finite element analyses are in good agreement with those 

given by Vaughan et al (1976), and the maximum difference 

between these results is less than 10 per cent. 

6.2.6 Failure Zones and Rupture Figures 

Figures 6.55 to 6.64 represent some failure zones for 

different cases, and compare them with the rupture figures 

given by the closed form solutions. 

Figure 6.55a shows the failure zone for drained case 

2 (Table 5.1, Chapter 5). 	The applied load is vertical, 

and it is increased up to 11% of the ultimate failure load. 

Figure 6.55a shows that the local failure starts from the 

edge of the footing at a safety factor equal to 46. 	At 

the safety factor equal to 9.2, the failure zone is slightly 

expanded. 
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In Figures6.55b to e, the principal stress and strain 

rotations are given for case 2 at the safety factors equal 

to 15.3 and 9.2 (in these figures, the extension is marked 

with an arrow). 	Although the applied load has not reached 

the ultimate failure load, the principal stress and strain 

rotations plots indicate that a wedge of rigid soil is being 

produced under the footing (Figures 6.55d and e). 

Figures 6.56a and b show the failure zones for a 

vertical load on uniform clay (case 3, Table 5.2, Chapter 

5). 	In Fig. 6.56a, the failure zone starts from the foot- 

ing edge at a safety factor equal to 1.66 (see also Fig. 

6.45b, case 3), and by increasing the load it spreads 

downward and towards the footing centre line. 	At the 

safety factor around 1.17 the failure zone has just reached 

the centre line. 	At this point the footing and an adjacent 

elastic wedge are separated by a band of failed material 

from the remainder of the unfailed zone. 	The spread of 

the failure zone to the centre line is usually coincident 

with a sharp break in the load-settlement curve (see Fig. 

6.45b, load-settlement curve for case 3, q/qf  = 0.86). 

By further increase of the applied load the failure zone 

continues to spread outward from the footing and upward 

toward the footing. 	Figure 6.56b represents the failure 

zone at the safety factor equal to unity, and the planes 

of maximum shear stress for case 3, which may be compared 

with the Prandtl rupture figure. 

An identical failure zone to one shown on Fig. 6.56b, 

at the safety factor equal to one, is reported by Smith 
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(1978) for the vertical uniform loading on homogeneous clay. 

Figure 6.56c shows the principal stress rotations at 

failure, for case 3. 

Figures 6.57a and b show the failure zones for a 

vertical load on the clay layer whose undrained strength and 

modulus increase linearly with depth (case 4, Table 5.2, 

Chapter 5). 	In Fig. 6.57a, the failure zone starts from 

the footing edge at the safety factor equal to 2.15 (see 

also Fig. 6.45b, case 4). 	By increasing the applied pressure, 

the failure zone spreads downward and toward the footing 

centre line, and at the safety factor around 1.09 it reaches 

the centre line. 	This safety factor corresponds to a sharp 

break in the load-settlement curve (see Fig. 6.45b, load-

settlement-curve for case 4, q/qf  = 0.92). 

Figure 6.57b represents the failure zone at the 

safety factor equal to unity, and the planes of maximum 

shear stress for case 4. 	The failure zone and these planes 

may be compared with the typical rupture surfaces postulated 

by Davis and Booker (1973). 

In Fig. 6.58 the principal stress rotations at failure 

are given for case 4. 

Figures 6.56 and 6.57 show that the failure zones in 

both uniform clay and nonhomogeneous clay cases spread to 

below the footing, and the boundary between the unfailed 

rigid wedge and the failed clay does not pass through the 

footing edges (see also Fig. 6.59 for the contact shear • 

stresses for case 4). 	This suggests that, in order to 

satisfy the basic condition of the kinematical admissibility 
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(Hansen, 1965), the boundary between the unfailed rigid 

wedge and the failed clay must be tangent to the footing 

base, and cannot be a straight line (as discussed in Chapter 

4, section 4.5). 

By comparing Figures 6.56 and 6.57, it is clear that 

the failure zone for case 4 (non-homogeneous clay) is 

shallower than the failure zone for case 3 (uniform clay). 

Figure 6.60 represents the failure zone for the 

eccentric and inclined loading on a nonhomogeneous clay 

(case 40, Table 5.2, Chapter 5). 	In this figure the 

applied load required to give a continuous failure zone 

(at the safety factor equal to 0.9) is 10% higher than the 

calculated failure load (using Fig. 4.8, Chapter 4) given 

in Table 6.1. 

Figure 6.61 gives the load-settlement curve for case 

40 (Table 5.2, Chapter 5), in a log-log scale, and indi-

cates that, for this case, the calculated failure load 

(using Fig. 4.8, Chapter 4), given in Table 6.1, is 10% 

less than the ultimate failure load from the finite element 

analysis. 	It has to be mentioned that in calculating the 

ultimate failure load using Fig. 4.8 of Chapter 4, it is 

assumed that the adhesive contact is maintained over the 

full width of the footing (as the case for finite element 

analysis), and the horizontal component of the load is 

distributed over the full width of the footing. 	Thus a 

reduced load inclination is used together. with the reduced 

width concept to reproduce the effect of load eccentricity 

(see section 4.10.3, Chapter 4). 



207 

Figure 6.62a represents the failure zone and the 

planes of maximum shear stress for case 40, at the safety 

factor equal to 0.88 	The failure zone and planes of 

maximum shear stress may be compared with the rupture 

figure given in Fig. 4.9 of Chapter 4. 

The principal stress values and rotations for case 

40, is given on Fig. 6.62b,at the safety factor equal to 0.9. 

These results indicate that the failure zones and 

the planes of maximum shear stress given by the finite element 

analysis are in reasonable agreement with the rupture figures 

given by Prandtl (1920) for uniform clay, Davis and Booker 

(1973) for nonhomogeneous clay, and the rupture figure for 

the eccentric and inclined loading given in Fig. 4.9 of 

.Chapter 4. 	However, in the failure zone given by the 

finite element analysis for the case of eccentric and 

inclined loading (Fig. 6.62a), the zone A'CB (Fig. 4.9, 

Chapter 4) is not an elastic rigid wedge, and it is at the 

state of failure. 	Also, the finite element results do 

not produce the complete failure zone which contains the 

whole passive zone (see Figures 6.56b, 6.57b and 6.62a). 

This indicates that, in the finite element analysis, the 

rupture is produced by a local shear failure mode (Sec4- ion 4.2) 

of Chapter 4), where the ultimate failure is achieved in a 

load-settlement plot, but the rupture figure is not yet 

completed (see Fig. 4.1 of Chapter 4). 

By using a stiffer stress-strain curve, the failure 

zone from the finite element analysis can be enlarged and 

the general shear failure mode (section 4.2 of Chapter 4) 
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can be achieved. 	Figure 6.63 shows the failure zones for 

two undrained cases 45 and 46 (Table 5.2, Chapter 5) at 

safety factors equal to unity. 	This figure indicates 

that the failure zone for case 45 (stiffer stress-strain 

curve) is laterally greater than the failure zone for case 

46 (softer stress-strain curve). 	By further increase of 

the applied load, the failure zone for case 46 expands 

laterally, and at the safety factor equal to 0.94, the 

lateral boundaries of the failure zones are the same for 

both cases. 	However, for these two cases the stress-strain 

curves were not stiff enough to produce a general shear 

failure mode. 

Also, in Fig. 6.64, the failure zone from the finite 

element analysis for an inclined and eccentric load on a 

nonhomogeneous clay (case 7, Table 5.2, Chapter 5) is com-

pared with the rupture figure given in Chapter 4, section 

(4.10.4). 	The agreement between this rupture figure and 

the failure zone from the finite element analysis is good. 

6.3 	Finite Element  Results, Cyclic Loading  

6.3.1 General  

This section is concerned with the finite element 

results for cyclic loading. 	The cyclic loads may occur 

rapidly (earthquakes, explosive loads etc.) or at slower 

rates (wave loads) where dynamic effects are negligible. 

From these, the latter form is considered in these studies. 

In studying the behaviour of off-shore structures 

under dead weight loading and cyclic wave loading, as, 
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mentioned by Vaughan et al (1976), clays, in beds of modest 

thickness, may remain substantially undrained during both 

dead weight loading and the critical design wave loading, 

and thus the undrained loading of clays is likely to be the 

critical design condition for the off-shore structures. 

The progressive weakening of the soil properties due 

to cyclic loading (as the effective stresses are decreasing) 

is not considered in these analyses, and in all cases 

studied, a stable rocking is achieved after a few cycles. 

Figures 6.65 to 6.129 represent the finite element 

results for the cyclic loading of the clay under undrained 

conditions. 	In these figures, the numbers on the curves 

designate the loading stages, as discussed in Chapter 5, 

section (5.3.2). 	Properties and geometries of the different 

cases are given in Table 5.3 of Chapter 5. 

Discussion of the results is divided into two sub- 

sections, namely, displacements and stresses. 	In each sub- 

section, the effects of cyclic loading, correct shear 

unloading and reloading modelling, non-linearity, and an 

increase in the overall safety factor against ultimate 

failure on displacements and stresses are considered.• 

6.3.2 Displacements 

Figures 6.65 to 6.82 represent the displacements for 

different cases. 	For all cases, except the linear case 48 

(Table 5.3, Chapter 5), undrained shear strength and modu- 

lus increase linearly with depth. 	For cases 42, 48 and 49, 
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the shear unloading and reloading modelling is according 

to Fig. 5.1c of Chapter 5, and both unloading and reloading 

moduli are equal to 3.5 times the initial modulus. 	For 

cases 47 and 47,1 both unloading and reloading moduli are 

equal to the tangent modulus at the corresponding stress 

level (see also Fig. 5.1a of Chapter 5). 

Discussion on the results will be presented from 

case 42 to case 49,respectively. 

Case 42 	Figures 6.65 to 6.69 represent the displacement 

plots for case 42 (Table 5.3, Chapter 5). 	Figure 6.65 

shows the vertical and horizontal settlements of the foot-

ing, under cyclic loading, and compares them with those 

given by Milovic et al (1970) using an average modulus. 

For the first half cycle of the wave load, a load reduction 

factor equal to 4.5/11 is used, which is calculated from 

the theory of subgrade reaction (see section 5.3.2 of 

Chapter 5). 	This figure indicates that the rocking of the 

footing is stable after 1.5 complete load cycles. 

Figure 6.65 also shows that the settlements and the 

tilt given by Milovic et al (1970), using an average modu- 

lus, are greater than those for case 42. 	For the vertical 

load, the difference in settlements is 7%. 	After the 

first half load cycle, the footing tilt given by Milovic 

et al (1970) is almost three times the tilt for case 42. 

This difference in footing tilt increases by further 

rocking, because the shear unloading and reloading modelling 

of case 42 tends to decrease the tilt, before a stable 
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situation is achieved, as the rocking is continued. 

Figure 6.66 shows the settlement and heave for case 

42, and it indicates that the effect of cyclic loading is 

to increase both settlement and heave. 	After a stable 

rocking is achieved, centre settlement is increased 15%, 

and the maximum increase in heave is 40% compared to the 

values at the end of previous cycle. 	These effects 

decrease'by depth as shown on Fig. 6.67. 

The horizontal displacements for case 42 are shown 

on Fig. 6.68. 	This figure indicates that the horizontal 

displacements are stable after 1.5 complete cycles. 

Figure 6.69 represents the centre horizontal and 

vertical settlements plus the differential settlement between 

two edges of the footing. 	This figure shows that, before 

a stable rocking is achieved, the centre vertical settlement 

increases, the centre horizontal settlement and the diffe-

rential settlement between two edges decrease, as the rock- 

ing continues. 	Obviously, this effect is due to a larger 

unloading and reloading modulus, compared to the tangent 

modulus. 

Cases 47 and 47,1 	For these two cases, unloading and 

reloading paths are on the first loading curve (see Fig. 

5.1a of Chapter 5). 	All the parameters are the same for 

both cases, except the load reduction factor used at the 

first half loading cycle. 	For case 47, this reduction 

factor is 4.5/11, while for case 47,1 it is 0.5. 

The rocking in these two cases is stable after the 
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first complete load cycle (Figures 6.70 and 6.71). 	The 

symmetry of displacements is achieved in case 47,1 (see 

Fig. 6.71). 	Also,in Figures 6.70 and 6.71 the results for 

case 47 and 47.1 are compared with those given by Milovic 

et al (1970), using an average modulus. 	After application 

of the vertical load (like case 42), the settlement given 

by Milovic et al (1970) is 7% greater than the settlements 

for these two cases. 	The tilt of the footing given by 

Milovic et al (1970) is almost twice that of those for case 

47 and 47,1. 

Figures 6.72 and 6.73 show the settlement, the heave, 

and the horizontal displacement for case 47. 	Obviously, 

as the unloading, reloading and loading moduli are equal, 

a stable rocking is achieved after the first complete load 

cycle. 

Figure 6.74 represents the centre vertical and hori-

zontal settlements, and the differential settlement between 

two edges, for case 47. 

By comparing the results for case 42 (Figures 6.65 to 

6.69) with the results for case 47 (Figures 6.70 to 6.74), 

it can be concluded that the correct shear unloading and 

reloading modelling (case 42) tends to:- 

1. increase the number of load cycles required for 

the achievement of a stable rocking, and 

2. decrease displacements and tilt of the footing. 

Case 48 	Figures 6.75 to 6.78 represent the displacements 

for case 48 (Table 5.3, Chapter 5). 	For this case, the 
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behaviour is linear, both unloading and reloading moduli 

are equal to 3.5 Ei, and the load reduction factor, used 

at the first half load cycle, is 4.5/11. 

Figure 6.75 shows that the rocking is stable after 

the first complete load cycle. 	Also, in this figure the 

finite element results are compared with those given by 

Milovic et al (1970). 	After application of the vertical 

load, the settlement given by Milovic et al (1970) is 25% 

more than the settlement for case 48. 	After first half 

cycle of the rocking, the footing tilt given by Milovic 

et al (1970) is almost 5 times the tilt for case 48. 	By 

further increase of the rocking, and before the achievement 

of a stable situation, this difference in tilt increases. 

Figures 6.76 and 6.77 give the settlement, the heave 

and horizontal displacements for case 48. 	In both figures 

the rocking is stable after the first complete cycle. 

However, the interesting feature of Fig. 6.76 is that, at 

the end of the first complete cycle, the footing is almost 

horizontal (zero- tilt). 

Figure 6.78 gives values of centre vertical and hori- 

zontal settlements, and the differential settlement between 

two edges. 	This figure also indicates that the rocking is 

stable after the first complete cycle, and at the end of 

each complete cycle (loading stages 3, 5 etc.), the differen-

tial settlement between the two edges is zero. 

By comparing the results for case 42 (Figures 6.65 

to 6.69) with the results for case 48 (Figures 6.75 to 6.78), 

for the effects of non-linearity on displacements, it can be 
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concluded that the non-linearity tends to increase the 

number of cycles required for the achievement of a stable 

rocking, and to increase the displacements. 

Case 49 	Figures 6.79 to 6.82 represent displacements for 

case 49 (Table 5.3, Chapter 5). 	All parameters for case 

49 are the same as those for case 42, except the horizontal 

load. 	The applied horizontal load for case 49 is 60% of 

that for case 42, which results in an increase for the over-

all safety factor against ultimate failure from 1.57 to 

2.57 (see also Table 5.3 of Chapter 5). 

By comparing the results for case 49 (Figures 6.79 

to 6.82) with those for case 42 (Figures 6.65 to 6.69), it 

is clear that the overall behaviour is the same in both 

cases, and 40% reduction in horizontal load does not affect 

the behaviour from the qualitative point of view. 	Therefore, 

the conclusions for case 42 will also be valid for case 49, 

for displacements. 

6.3.3 Stresses  

Figure 6.68 shows the distribution of contact pressure, 

contact shear stress, vertical stress and horizontal stress 

given by Milovic et al (1970), using the same loading 

stages as for cases 42, 47, 43 and 49 	These stresses will 

be compared to those from the finite element analyses, 

later in this section. 

Discussion on the stresses from the finite element 

analyses are divided into the following subsections:- 
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1. contact pressure and shear stress, 

2. stress distribution, 

3. stress changes and stress paths, and 

4. mobilized shear stress. 

6.3.3.1 Contact Pressure and Shear Stress  

Figures 6.84 to 6.93 represent the contact pressures 

and contact shear stresses for different cases. 	The con- 

tact pressures considered in these figures are equal to 

the average of four Gauss points stresses, minus the 

vertical initial stresses at the same level. 

In Figures 6.84 and 6.85 the contact stresses for 

case 42 (Table 5.3, Chapter 5) are given. 	For this case, 

both unloading and reloading moduli are equal to 3.5 Ei. 

For these stresses, the rocking is stable after 1.5 com-

plete load cycles. 

By comparing the contact stresses for case 42 with 

those given by Milovic et al (1970) in Fig. 6.83, it is 

clear that the contact pressures for case 42 are a maximum 

of 10% greater than those given by Milovic et al (1970), on 

the footing centre line. 	Near the edges, due to the non- 

linearity effect in case 42, the contact pressures from the 

finite element analysis are smaller than those given by 

Milovic et al (1970). 	The contact shear stresses for case 

42 are on average 10% less, on the centre line, and on 

average 25% more, near the edges, than those given by 

Milovic et al (1970). 
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Figures 6.86 to 6.89 represent the contact pressures 

and the contact shear stresses for cases 47 and 47,1 (Table 

5.3, Chapter 5). 	For these two cases, unloading and reload- 

ing paths are on the first loading Curve (see Fig. 5.1a of 

Chapter 5). 	All parameters are the same for both cases, 

except the load reduction factors, which are 4.5/11 for 

case 47 and 0.5 for case 47,1. 

Figures 6.86 to 6.89 show that in these two cases, 

stresses are stable after first complete cycle. 	For case 

47,1, symmetry is achieved. 

By comparing the results for case 42 (Eu  = Er  = 3.5 Ei) 

with the results for case 47 (Eu = Er = Et), Figures 6.8.4 

to 6.87, it is clear that correct unloading and reloading 

modelling (case 42) tends to:- 

1. 	increase the contact pressure at the central 

section of the footing and decrease near the 

edges, 

9. 	increase the number of load cycles required for 

the achievement of the stable stresses, and 

3. 	increase the contact shear stress in the loaded 

half section of the footing, and decrease in 

the other half. 

Figures 6.90 and 6.91 give the contact pressures and 

the contact shear stresses for case 48 (Table 5.3, Chapter 

5). 	The behaviour is linear for this case, and both 

unloading and reloading moduli are equal to 3.5 Ei. 	These 

figures show that the stresses are stable after first cam--; 
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plete load cycle. 

By comparing these figures with the results for case 

42 (Figures 6.84 and 6.85), it is clear that the non-

linearity (case 42) tends to: 

1. increase the contact stresses at the central 

section of the footing, and decrease near the 

edges, and 

2. increase the number of cycles required for the 

achievement of the stable stresses. 

In Figures 6.92 and 6.93 the contact pressures and 

contact shear stresses for case 49 (Table 5.3, Chapter 5) 

are given. 	All parameters used in case 49, are the same 

as those for case 42, except the applied horizontal load, 

which is 60% of that for case 42. 

By comparing the results for case 42 (Figures 6.84 

and 6.85) with the results for case 49 (Figures 6.92 and 

6.93), it is clear that by 40% reduction in horizontal 

load, the overall behaviour is not changed from the quali-

tative point of view, and for case 49 (like case 42) the 

stable stresses are achieved after 1.5 complete load cycles. 

However, obviously, the contact shear stresses are reduced 

for case 49. 

6.3.3.2 Stress Distribution  

Figures 6.94 to 6.106 represent the principal stress 

distribution for different cases. 	The stresses considered 

in these figures are equal to the average of four Gauss 
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points stresses, minus the initial stresses at the same 

level. 

Figures 6.94 to 6.96 represent the principal stresses 

for case 42 (Table 5.3, Chapter 5).• 	These figures indi- 

cate that the principal stresses become stable after 1.5 

complete load cycles. 	Also, from these figures, it is 

clear that the effect of rocking on stresses is a minimum 

near the centre line, and it increases towards the edges 

and outside the loaded area. 	The effect of rocking on 

minor principal stresses decreases very rapidly with depth. 

As the principal stress rotation is very small near 

the centre line, therefore Fig. 6.94 can be compared with 

Fig. 6.83c given by Milovic et al (1970). 	This comparison 

indicates that the stresses from case 42 (at the end of 

dead weight loading) are 12% more than the stresses given 

by Milovic et al (1970), near the ground surface. 	At 

great depths (e.g. near the underlying bedrock), the stresses 

from case 42 (at the end of dead weight loading )are 10% 

smaller than those given by Milovic et al (1970). 

Figures 6.97 to 6.99 show the principal stresses for 

case 47 (Table 5.3, Chapter 5). 	These stresses are stable 

after the first complete load cycle. 	The effect of rock- 

ing on the stresses is a minimum near the footing centre 

line, and it increases toward the edges and outside the 

loaded area. 	For minor principal stresses, the effect of 

rocking decreases very rapidly with depth. 

By comparing the results for case 42 (Eu  = Er  = 3.5 Ei) 

with the results for case 47 (Eu  = Er  = Et), Figures 6.94 
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to 6.99, it is clear that the correct shear unloading and 

reloading modelling (case 42) tends to:- 

1. increase the number of load cycles required 

for the achievement of stable stresses during 

rocking, 

2. decrease the minor principal stresses at shallow 

depths, and 

3. increases the major principal stresses at the 

central section of the footing, and decrease 

them near the edges and outside the loaded area. 

Figures 6.100 to 6.103 represent the principal stresses 

for linear case 48 (Table 5.3, Chapter 5). 	For this case, 

both unloading and reloading moduli are equal to 3.5 Ei. 

Stresses are stable after the first complete load cycle. 

The effect of the rocking on stresses is minimum near the 

footing centre line and increases towards edges, and out- 

side the loaded area. 	The effect on the minor principal 

stresses decreases very rapidly with depth. 

By comparing the results for non-linear case 42 

(Figs. 6.94 to 6.96) with the results for linear case 48 

(Figs. 6.100 to 6.103), it is clear that the non-linearity 

(case 42) tends to:- 

1. increase the number of load cycles required for 

the achievement of the stable stresses, 

2. increase the major principal stresses at the 

central section of the footing, and decrease 
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near the edges and outside the loaded area, and 

3. 

	

	increase the minor principal stresses at shallow 

depths and decrease at great depths. 

Figures 6.104 to 6.106 represent the principal stresses 

for case 49 (Table 5.3, Chapter 5). 	Stresses are stable 

after first 1.5 complete load cycles. 	The effect of the 

rocking on stresses is a minimum near the footing centre 

line and increases toward the edges, and outside the loaded 

area. 	The effect on the minor principal stresses decreases 

very rapidly with depth. 

6.3.3.3 Stress Changes and Stress Paths  

Figures 6.107 to 6.111 represent the principal stress 

changes and rotations during dead weight and cyclic loading, 

for different cases. 	The stresses considered in these 

figures are the stresses in one of the Gauss points minus 

the initial stresses at the same level. 

All these figUres show large rotations of principal 

stresses beneath and outside the loaded area. 	However, 

toward the outside of the loaded area, these rotations 

increase considerably. 	In all cases, large stress changes 

occur just under the edge of the footing. 

By comparing the results for case 42 (Eu  = Er  = 3.5 Ei) 

and case 47 (Eu  = Er  = Et), Figures 6.107 and 6.108, it is 

clear that the correct unloading and reloading modelling 

(case 42) leads to smaller principal stress rotations and 

changes compared to the case without unloading and reload- 

ing modelling (case 47). 	Outside the leaded area, the 
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principal stress rotations for case 42 are almost half of , 

those for case 47, when the cyclic loading causes a reduc-

tion in shear stress below that caused by dead weight load-

ing (loading staaes 2,4 etc. in these figures). 

By comparing Figures 6.107 and 6.110 (cases 4-2 and  

48), it is clear that the non-linearity (case 42) tends to 

decrease the principal stress changes near the edges, and 

to decrease the principal stress rotations beneath the foot- 

ing and to increase them outside the loaded area. 	Outside 

the loaded area, the principal stress rotation for case 42 is 

almost twice the rotation for case 48 when the cyclic loading 

causes a reduction in shear stress below that caused by the 

dead weight loading (loading stages 2,4 etc. in these figures). 

By comparing Figures 6.107 and 6.111, it is clear 

that, just outside the loaded area, the principal stress 

rotations for case 49 (overall safety factor against ulti-

mate failure = 2.57, Table 5.3, Chapter 5) are a maximum of 

50% more than those for case 42 (overall safety factor 

against ultimate failure equal to 1.57, Table 5.3, Chapter 

5), when the cyclic loading causes a reduction in shear 

stress below that caused by the dead weight loading. 

Figures 6.112 to 6.116 represent some total stress 

paths for different cases. 	For all cases, the maximum 

stress changes occur just under the footing edge. 

These figures also indicate that the non-linearity 

and the correct unloading and reloading modelling tends to 

increase the shift in the stress paths per cycle. 	The 
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linear case 48 gives greater deviatoric stresses than the 

non-linear case 42. 

Figures 6.112 and 6.116 show that the slope of cyclic 

stress paths for case 42 (overall safety factor against 

ultimate failure = 1.57, Table 5.3, Chapter 5) are less 

than those for case 49 (overall safety factor against ulti- 

mate failure = 2.57, Table 5.3, Chapter 5). 	In other 

words, the change in deviatoric stress during rocking is 

greater for case 49 than that for case 42. 	Also, a 40% 

reduction in. the horizontal load (case 49) does not increase 

the safety factor against local failure (see also Figures 

6.126 and 6.129). 

6.3.3.4 Mobilized Shear Stress  

Figures 6.117 to 6.125 represent the contours of 

mobilized shear stress ratio for different cases. 	In Fig. 

6.117 the stress ratios after application of the vertical 

load are shown. 	Figures 6.118 to 6.120 give the contours 

of shear stress ratio for case 42. 	In Figures 6.121 and 

6.122 these contours for case 47 are given. 	Finally, 

Figures 6.123 to 6.125 represent these contours for case 

49 (for differences between cases, see Table 5.3, Chapter 5). 

These figures indicate that the rocking tends to 

increase the size of mobilized shear stress ratio contours, 

before a stable situation is achieved. 	At shallow depths, 

during rocking, the mobilized shear stress ratio contours 

spread downward under the loaded edge of the footing, and 

they spread sideways under the unloaded edge of the footing 

(see Figures 6.117 to 6.125). 
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6.3.4 Behaviour of the Solution 

FigUres 6.126 to 6.129 represent the stress--strain 

curves for different cases. 	In all cases, the stress- 

strain curves followed in the programme coincide well with 

the nominated stress-strain curves as given to the computer. 

However, in Figures 6.126 and 6.129, when the correct 

unloading and reloading modelling is used, during reload-

ing, a small error in stress path, due to rather large load 

increments, occurred. 	This error can be corrected by 

using much smaller load increments, obviously, with higher 

computer cost. 

6.4 	Application of the Analyses to Actual Structures  

The real foundation problem is three-dimensional, and 

non-linear finite element analyses in three dimensiohs 

require very large computer capacities. 	It is thus desi- 

rable to consider ways of applying the two dimensional 

analysis to the three dimensional problem. 	The simplest 

method, for stability analyses only and as used in bearing 

capacity theory, is to deal with load eccentricity by 

assuming an equivalent rectangle, to deal with Load incli-.  

nation and foundation variability by two dimensional theory 

and to use an empirical shape factor to allow for three 

dimensional effects. 	An alternative, suithie for stress 

analyses, is to establish an equivalent xectangle for the 

actual foundation, and to perform a two-dimensional analysis 

of a strip of the same width as the rectangle. 	A second 

alternative is to use a linear elastic analysis, which can 
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be performed more readily in three dimensions, to predict 

the proportion of the load which is carried by the central 

strip of the actual foundation, and to perform a non-linear 

analysis using this proportion of the total load as the 

load per unit length on a strip foundation with a width 

the same as the central strip of the actual foundation 

(Vaughan et al, 1976). 

For cyclic loading, the results of three-dimensional 

analysis could.  be deducted from the results of two-dimen-

sional analysis by using the proper coefficients, which are 

(for a point) function of the zone (El-Ghamrawy, 1978). 

6.5 	Conclusions  

The non-linear finite element technique was used to 

study the undrained behaviour of shallow foundations under 

monotonic and cyclic loadings. 

The conclusions made from these studies will be con-

sidered in two groups, namely, monotonic loading and cyclic 

loading. 

6.5.1 Monotonic Loading  

The finite element results were compared with the 

closed form solutions. 	Reasonable agreement was found 

between the finite element results, prior to local failure 

occurring, and the elastic solutions. 	The agreement was 

good between the ultimate failure loads and the failure 

zones from the finite element analyses (for both vertical, 

and inclined and eccentric loading on either uniform clay 



or nonhomogeneous clay) with those from the plasticity 

solutions. 

Effects of the layer thickness, the side boundaries 

and footing rigidity on stresses, displacements and failure 

loads were studied, and the same results as reported in the 

literature (e.g. Hoeg et al, 1968; and D'Appolonia and 

Lambe, 1970) were found. 	Thus, soundness of the technique 

used was confirmed. 

The effect of the material non-linearity is to increase 

the vertical stress at the central section of the footing 

and to decrease it near the edges and outside the loaded 

area; also, to increase the horizontal stresses, and dis- 

placements. 

Correct modelling of the shear unloading (with Ko  

greater than one) tends to decrease settlement and heave; 

and to increase the vertical stress at the central section 

of the footing and decrease it near the footing edges. 

The effects on stresses are small, for the cases considered, 

and decrease as the ultimate failure is approached. 

The ratio Eo/XB (nonhomogeneity) has a marked effect 

on stresses and displacements. 

It was found that the side boundaries distance from 

the footing centre line, layer thickness, initial stresses 

and correct modelling of the shear unloading have no effect 

on the ultimate failure load. 	However, the safety factor 

at first local failure is affected by the side boundary 

distance from the centre line and by the assumed initial 

stresses. 

225 
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The ratio Cuo  /pB (nonhomogeneity) has a marked effect 

on the ultimate failure load and the safety factor at first 

local failure. 	It was found that by increasing the ratio 

Cuo /pB, the safety factor at first local failure is 

decreased, provided that the ratio f = (1-K0) 40/2cu is 
equal to zero. 

From the qualitative point of view, the effect of 

the ratio f on the safety factor at first local failure of 

a nonhomogeneous clay is the same as for a uniform clay. 

For a rigid footing with vertical load, on either 

uniform clay or nonhomogeneous clay, the failure zone starts 

from the footing edge, and by increasing the applied load 

it spreads downward and toward the footing centre line. 

The spread'of the failure zone to the centre line is usually 

coincident with a sharp break in the load-settlement curve. 

By further increase of the applied load the failure zone 

continues to spread outward from the footing and upward 

toward the footing. 	For the nonhomogeneous clay, the 

failure zone is shallower than the failure zone for uniform 

clay. 

These failure zones, in both uniform and nonhomogeneous 

clays, spread to the underneath of footing, and the botndary 

between the unfailed rigid wedge and the failed zone does 

not pass throuah th.. footing edges. 	This suggests that, 

in order to satisfy the basic condition of the kinematical 

admissibility,the boundary between the unfailed rigid wedge 

and the failed clay must be tangent to the footing base, and 

cannot be a st-raighf. 
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These studies indicate that the results are highly 

sensitive to soil modulus, strength and in-situ stresses. 

Therefore, in a stress analysis the greatest attention 

must be given to the correct selection of the parameters 

used, in order to obtain results as close to the reality 

as possible. 

6.5.2 Cyclic Loading  

The effects of the cyclic loading, correct shear 

unloading and reloading modelling (Fig. 5.1c, Chapter 5), 

and the material non-linearity on stresses and displacements 

were studied, using the finite element method. 	Findings 

from these studies are as follows:- 

The effects of rocking (before a stable situation is 

achieved) are to: 

1. increase both settlement and heave, but 

decrease the footing tilt, and 

2. increase the size of the mobilized shear stress 

ratio contours. 

Also, it was found that the effect of rocking on the 

principal stress changes is considerable near the footing 

edges, and the effect on the principal stress rotations is 

considerable outside the loaded area. 

The effects of correct unloading and reloading 

modelling (compared to case without unloading and reloading 

modelling) are to: 
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1. increase the number of load cycles required 

for the achievement of a stable rocking, 

2. decrease displacements and tilt of the footing, 

3. decrease the minor principal stresses at shallow 

depths, and increase the major principal stresses 

at the central section of the footing and 

decrease them near the edges and outside the 

loaded area, and 

4. decrease the principal stress rotation. 

The effects of material non-linearity (compared to the 

linear case) are to:- 

1. increase the number of load cycles required for 

the achievement of a stable rocking, 

2. increase displacements, 

3. increase the major principal stresses at, the 

central section of the footing and decrease them 

near the edges, and outside the loaded area, 

4. increase the minor principal stresses at shallow 

depths and decrease them at great depths, and 

5. decrease the principal stress rotations beneath 

the footing and increase them outside the loaded 

area. 
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Case No. Failure 
Pressure 

KN/M2  

Reference 

1 46300 Eq. 	4.7 
2 4630 Eq. 	4.7 

3 257 Eq. 	4.31 
4 215 Eq. 	4.34 
5 77.) Eq. 	4.39 
6 77.1 Eq. 	4.39 
7 160 Eq. 	4.39 
8 160 Eq. 	4.39 
9 215 Eq. 	4.34 

10 160 Eq. 	4.39 
11 215 Eq. 	4.34 
12 215 Eq. 	4.34 
13 160 Eq. 	4.39 
14 160 Eq. 	4.39 
15 160 Eq. 	4.39 
16 160 Eq. 	4.39 
18 270 Eq. 	4.31 
19 247 Eq. 	4.35 
20 225 Eq. 	4.35 
21 202.5 Eq. 	4.35 

22 180 Eq. 	4.35 
23 215 Eq. 	4.34 
24 192 Eq. 	4.37 

Case No. Failure 
Pressure  

KN/M2  

Reference 

25 170 Eq. 	4.37 
26 149 Eq. 	4.37 

27 129 Eq. 	4.37 
28 144 Eq. 	4.38 
29 62.6 Eq. 	4.38 
30 30.3 Eq. 	4.38 
31 9.3 Eq. 	4.38 
32 81.7 Eq. 	4.39 
33 35.8 Eq. 	4.39 
34 17.3 Eq. 	4.39 
35 5.3 Eq. 	4.39 
36 212 Eq. 	4.38 
37 133.5 Eq. 	4.39 
39 356 Eq. 	4.39 
40 356 Eq. 	4.39 
42 315 Eq. 	4.39 
43 890 Eq. 	4.34 
44 514 Eq. 	4.31 
45 890 Eq. 	4.34 
46 890 Eq. 	4.34 
47 315 Eq. 	4.39 

49 427.5 Eq. 	4.39 
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f Case 7 

Case 811  

Case 7 : y = 20kN/m2 , Ko = 2 

Case 8 : y = 0 

q
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is given in Table 6.1 
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Fig. 6.49 	Effect of the Soil Unit Weight on the 
Load-Settlement Curve (Eccentric and 
Inclined Load) 
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Fig. 6.63 	Effect of the Stress-Strain Relationship on the Failure Zone 
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Fig. 6.64 	Failure Zone (Inclined and Eccentric Load on the Non—homogeneous Clay) 
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Fig. 6.65 	Surface Horizontal and Vertical Displacements 

Numbers denote loading stages (see Chapter 5, Section 5.3.2 and Table 5.3) 
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Fig. 6.66 	Surface Settlement Distribution (Depth - 0) 

Numbers denote the loading stages (see Chapter 5, section 5.3.2 and Table 5.3) 
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Numbers denote ibading stages (see Chanter 5, section 5.3.2 and Table 5.3) 
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Numbers denote loading stages (see Chanter 5, section 5.3.2 and Table 5.3) 
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Numbers denote loading stages (see Chao-ter 5, section 5.3.2 and Table 5.3) 
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Fig. 6.74 	Displacements 	Numbers denote loading stages (see Chapter 5, section 5.3.2 and 
Table 5.) 
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Fig. 6.75 	Surface Horizontal and Vertical Displacements 

Numbers denote loading stages (see Chapter 5, section 5.3.2 and Table 5.3) 
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Fig. 6.78 	Displacements 	Numbers denote loading stages (see Chapter 5, section 5.3.2 
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Numbers denote loading stages (see Chanter 5, section 5.3.2 and Table 5.3) 
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Numbers denote loading stages (see Chanter 5, section 5.3.2 and Table 5.3) 
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Fig. 6.84 	Contact Pressure 

lumbers denote loading stages, 
(see Section 5.3.2). 
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Fig. 6.85 	Contact Shear Stresses 

Numbers denote loading stages, 
(see Section 5.3.P). 
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Fig. 6.87 	Contact Shear Stresses 
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Numbers denote loading stages, 
(see Section 5.3.2). 
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Fig. 6.91 	Contact Shear Stresses 

Numbers denote loading stages,, 
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(see Section 5.3.2). Fig. 6.96 	Principal Stress Changes 
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Fig. 6.100 	Principal Stress Changes 
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Fig. 6.103 	Principal Stress Changes 
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Fig. 6.104 	Princinal Stress Changes 
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STUDY OF HYDRAULIC FRACTURE  



CHAPTER 7 

CRACKING OF EMBANKMENT DAM CORES 

7.1 	Introduction  

The function of an embankment dam, namely the retention 

of water with acceptable leakage and without shear failure 

or sliding, leads to the following stability considerations:- 

1. Stability of slopes and foundations and a 

reserve against failure by sliding. 

2. Internal stability of the embankment soils when 

their particles are subjected to drag forces 

as seepage from the reservoir occurs. 

The internal stability can be ensured by the proper 

design of transitions from one material to another, but a 

special problem arises when cracks form in the core of a 

dam. 

In this chapter a brief review of the cracking, load 

transfer, and hydraulic fracture is given. 

7.2 	Brief Description of Cracking 

7.2.1 General 

It is now generally known that apart from overtopping 

by flood water, internal erosion by seepage is the most 

common cause of the catastrophic failures of embankment 

dams. 	As a large portion of seepage failures are due to 

piping which has been initiated by cracks in the embankment 

(Sherard et al, 1963), cracking is seen to be one of the 
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main causes of failure in embankment dams. 

A crack is considered to be an opening in the fill, 

and it is formed when the tensile strength of the soil is 

exceeded. 	This tensile strength is generally small, and 

its value may depend on negative pore pressure which will 

be destroyed by seepage. 	The crack remains open if the 

water pressure in it equals the total pressure on the plane 

of the crack (Nonveiller and Anagnosti, 1961). 

As the formation of a crack results in a redistribution 

of stresses and strains in the vicinity of the crack (Vaughan, 

1970), therefore, once a crack has formed the damage cannot 

necessarily be undone by returning the loads on the struc-

ture to the state they were in before the crack occurred. 

7.2.2 Causes of Cracking  

Cracks can occur during construction and operation 

of an embankment dam due to a number of causes, such as, 

differential foundation settlement, irregularities in a 

rigid foundation, arching of the core, differences in the 

properties of core material, shrinkage, and hydraulic 

fracture. 	In Table 7.1 a selection of the mechanisms which 

are considered to cause cracking have been tabulated, and 

for each case a sketch and a brief description of the crack- 

ing mechanism is given. 	The names of a few darns for which 

these mechanisms have been observed (or postulated) to be 

the cause of cracking, are also given as examples. 

Table 7.1 considers separately the transverse and the 
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longitudinal cracking. 	The transverse cracks are likely 

to constitute a greater threat to the safety of an embank-

ment dam than longitudinal cracks, for they may provide a 

path for leakage through the impermeable core which could 

result in a piping failure. 

A more general discussion of the causes of cracking 

has been given by Truscott (1977). 

It has to be mentioned that the existence of cracks 

through the core of a dam does not necessarily mean that 

the performance of the dam is adversely affected. 	The 

soil around the crack may either swell or collapse to seal 

it, or, with effective filter and transition zones, material 

may be deposited in the crack to heal it. 	In fact, it is 

suspected that a considerable number of dams may have cracked 

and subsequently sealed themselves without anyone's knowledge. 

However, as cracks are one of the main causes of disastrous 

failures in embankment dams, efforts must be made either to 

prevent their occurrence or to minimize their effects. 

The ASCE Committee on Earth and Rockfill Dams (1967) 

has given the basic defensive and construction procedures 

to protect against the cracking and the resultant hazards 

of the piping as follows:- 

1. Use of a wide transition zone, or of properly 

graded filter zones of adequate width. 

2. Special treatment of foundation and abutment 

conditions to reduce sharp differential 

settlement. 
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3. Arching the dam horizontally between steep 

abutment slopes. 

4. Adjustment of construction sequence for the 

different zones or sections. 

5. Requiring special placement methods for 

questionable materials. 

6. Thorough compaction of rock shells to avoid 

inducing tensile stresses in adjacent core 

material. 

7.2.3 Mechanism of Cracking 

Typically, stresses within an ideal homogeneous 

embankment in plane strain will always be compressive, and 

there will he no cracks during its construction. 	However, 

the minor principal stresses within the fill will generally 

be less than the maximum seepage pressure which may occur, 

and thus there is a potential risk of cracks forming by 

hydraulic fracture when the reservoir is filled (Vaughan, 

1974). 

Furthermore, the stresses within dam cores will 

generally depart from the ideal case, due to differences in 

stiffness of the different fill types in non-homogenous dams 

and due to discontinuities in the geometry of the dam section 

in both the. transverse and the longitudinal directions. 

In some cases the stresses may reduce sufficiently to form 

the cracks. 

The load transfer and hydraulic fracture will be 

considered later, but first it is necessary to consider the 
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situation in which cracks can form and remain open. 

This section considers (1) cracks under "dry" condi-

tions i.e. cracks which form above reservoir level and 

which contain air, and (2) cracks under "wet" conditions, 

below reservoir level during impounding, which contain water. 

Vaughan (1976b) has given four situations for crack 

formation (Fig. 7.1):- 

(1) Dry cracks, formed by undrained failure. 	Such 

cracks are likely only during construction. 	A substantial 

negative pore pressure is implied. 	The undrained cracking 

is only likely in fills of very low permeability. 	The 

presence of negative pore pressure may give a fine grained 

soil a substantial tensile strength, which must be overcome 

before tensile cracking occurs. 

(2) Dry cracks, formed by drained failure. 	Again, 

they are likely only during construction. 	A negative pore 

pressure may exist, maintained by capilliary effects at 

exposed seepage boundaries, and the tensile strength in 

terms of total stress, which must be overcome before cracking 

can occur, will depend on the magnitude of the negative 

pore pressure and the grading of the soil. 	Such cracks can 

form in most soils, if the tensile strength in terms of 

total stress is sufficient for the crack to be stable and 

remain open. 

(3) Wet cracks, formed by undrained failure. 	Such 

cracks can only form during or after impounding of the 

reservoir. 	If the seepage pressure is applied rapidly 
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within some initial crack or imperfection then tensile 

failure may occur by undrained failure. 

(4) Wet cracks, formed by drained failure. 	Such 

cracks may form during or after impounding, when there is 

a general increase in seepage pressure in the core. 	The 

tensile strength to be overcome will be negligeably small 

in most instances. 	Generally, tensile failure must be 

preceded by shear failure. 

If dry cracks form during construction, they are 

unlikely to be closed by the increasing water load on the 

dam, and thus they will eventually be subjected to seepage 

flow through them. 

7.3 Arching of the Core and Load Transfer  

If the material of the core is more compressible than 

that of the adjacent shells or abutments, the differential 

settlement across the boundaries between these zones is 

likely to inhibit the settlement of the core, transferring 

load from the core to the shells or abutments. 	Hence the 

vertical stresses in the core are reduced and those in the 

shells or abutments are increased until the difference 

reaches the shear strength of the weaker material. 	This 

reduction in the stresses in the core is known as the arch-

ing or load transfer and may cause transverse cracks. 

Various modes of arching and load transfer and changes 

in modes may occur in an earth and rockfill embankment 

during its lifetime. 	Load transfer may exert a significant 

ThfluenCe on the characteristics of embankment behaviour 
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which are the displacements and the strains as well as the 

earth pressure and the pore water pressure that are observed. 

The effects of load transfer on the dam behaviour are a 

function of the compressibility of the core materials in 

conjunction with,the settlement characteristics of the 

shell materials. 	The width of the core has also some 

effects on the degree of load transfer. 

A comprehensive discussion of. the different modes of 

load transfer has been given in a paper by Squier (1970). 

Pressure cell measurements have revealed a significant 

reduction in both vertical and horizontal stresses at 

depth in thin cores of several rockfill dams. 	This was 

attributed to greater compressibility of the core with 

respect to the shells. 	The lower than expected settlements 

and pore water pressure of puddled clay core in Selset Dam 

were attributed to the greater downward movement of the 

core with respect to the shells and transfer of load from 

the core to the shells (Bishop and Vaughan, 1962). 

In the papers by Vaughan (1970 & 1972), Vaughan et al 

(1970), and Kjaernsli and Torblaa (1968) developments of 

serious cracks in the cores of two dams, Balderhead Dam 

and Hyttejuvet Dam, have been reported. 	In both cases the 

cause of cracking has been attributed to a combination of 

two mechanisms: arching at the core-shoulder boundaries, and 

a form of hydraulic fracturing due to the pressure of the 

impounded water. 

If the zoned dam has a soft shell and a stiff core, 
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then the load transfer occurs from the shell onto the core. 

This mode of load transfer could cause a local over-stress 

in the core leading generally to additional resistance to 

cracking. 

Kulhawy and Gurtowski (1976) analysed the phenomenons 

of load transfer and hydraulic fracturing using the finite 

element method. 	Their conclusions for the effect of soil 

properties and dam's geometry on the arching are as follows:- 

(1) A dam with a dense shell, regardless of geometry, 

will exhibit a large load transfer. 

(2) As the core becomes wetter, the load transfer 

increases. 

(3) For core compacted dry of optimum, the load 

transfer is nearly constant for the central 2/3 to 3/4 

.height of the core. 	But for core compacted at optimum 

water content or wet of optimum, the greatest load transfer 

from the core to the shells occurs near the base of the dam. 

This load transfer decreases with increasing height until 

near the crest where the load is transferred from the shells 

onto the core. 

(4) A higher darn will exhibit slightly less load 

transfer. 

(5) Steeper side slopes to the core will cause more 

load transfer. 

(6) The effects of transition zone's properties and 

thickness are very minor in all respects in influencing 

cracking. 
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(7) Thinner (steeper) vertical core leads to more 

arching. 

(8) Equivalent vertical and sloping core dams 

exhibit essentially the same effect. 

(9) A thinner sloping core leads to more arching. 

From these effects Kulhawy and Gurtowski (1976) con-

cluded that the dam With less cracking potential will be 

one with:- 

(1) Medium dense shells; 

(2) flatter side slopes; 

(3) a thicker core (with flatter core slopes); 

(4) a core compacted drier than optimum; and 

(5) a sloping core (a vertical core leads to greater 

potential for hydraulic fracturing). 

7.4 	Hydraulic Fracture 

7.4.1 General  

In recent years, cracking leading to excessive loss 

of drill water in the cores of a number of embankment dams 

has been attributed to the phenomenon of hydraulic fracturing; 

that is, a condition leading to the creation and propagation 

of a crack in a soil whenever the hydraulic pressure exerted 

on a surface of the soil exceeds the stress on that surface 

and the tensile strength of the soil. 

7.4.2 Mechanism of Hydraulic Fracture 

Hydraulic fracture may either occur under undrained 

or drained conditions. 
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7.4.2.1 Undrained Hydraulic Fracture  

Undrained cracking can only occur if the seepage or 

swelling face has only penetrated a small distance into 

the core at the time the reservoir pressure reaches the 

value required for hydraulic fracture. 	Thus the reservoir 

level must rise very rapidly relative to the rate of advance 

of the seepage or swelling front. 	This form of cracking 

is unlikely, as the rate of impounding in relation to the 

permeability of the core will almost always ensure that 

there is a general increase in seepage pressure in at least 

the upstream side of the core before cracking can occur. 

Thus, the cases where undrained hydraulic fracture 

is considered a serious possibility are adjacent to bore- 

holes and in small rapidly filled flood control dams where 

both filling and through going cracks occur in a matter of 

hours (Vaughan, 1972). 

Hydraulic fracture could also occur due to the water 

penetrating preferentially into the core via some irregularities 

such as a crack or more pervious layer (see next section). 

7.4.2.2 Drained Hydraulic Fracture  

For drained hydraulic fracturing, the seepage or 

swelling face must have advanced a significant distance 

into a low stressed area of the core before the reservoir 

reaches the level at which undrained fracturing would have 

occurred. 

Drained hydraulic fracture is considered to have 
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occurred at Hyttejuvet Dam (Kjaernsli and Torblaa, 1968); 

Balderhead Dam (Vaughan et al, 1970); and Teton Dam (Report 

of the Independent Panel on Failure of Teton Dam, 1976). 

A comprehensive discussion of drained hydraulic 

fracture is given by Vaughan (1970, 1976a and 1976b), and 

the remainder of this section is derived from his analysis. 

Drained hydraulic fracture is illustrated in Fig. 7.2. 

The critical feature is the changes in stress which must 

accompany increasing seepage pressures. 	Figure 7.2 shows 

potential stress changes at a typical point Z within a core 

if the reservoir first applies a water load to the upstream 

face of the core and the seepage pressure within the core 

builds up slowly. 	The total stresses(A) before impounding- 

are assumed to be compressive but less than the eventual 

seepage pressure. 	There will be a small increase in 

stress (A-B) due to the water load on the upstream side of 

the core. 	There will then be a reduction in effective 

stress (B'-C') as the seepage pressure increases, which 

might well produce a further increase in total stress (B-C). 

When the effective stresses are reduced to C' shear failure 

must occur. 	To cause tensile failure at D' there must be 

a reduction in shear stress and substantial deformation of 

the soil, which will modify the total stress, and probably. 

increase it (C-D). 	Such an increase may prevent tensile 

fracture occurring. 	Thus a critical situation is likely 

only if this increase is insufficient to prevent fracture. 

Drained hydraulic fracture is complicated by the 
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difficulty in predicting the stress changes due to shear 

failure induced by an increasing pore pressure. 	However, 

a simple elastic model (shown on Fig. 7.3) can be considered 

to study this effect (Vaughan, 1976b).' 

From this analysis, Vaughan (1976b) has given 

two conclusions, which are likely to be valid for the real 

situation. 	Firstly, hydraulic fracture will only occur if 

the pore pressure due to seepage increases to a value equal 

to or greater than the average total stress before impound- 

ing. 	Secondly, the effects of the water load (ignored in 

Fig. 7.3) and of swelling are likely to increase the average 

total stress and so prevent cracking. 	It further follows 

that soils with a low swelling potential present the greatest 

risk of hydraulic fracture. 

As shear failure results in redistribution of total 

stress and an increase in minimum stress, so it can be con-

cluded that hydraulic fracture is more likely when the 

initial stresses in the core at the end of construction are 

very non-uniform, and low stress zones are local. 	Then 

fracture may occur locally, before general shear failure and 

the stress redistribution accompanying it are induced 

(Vaughan, 1976b). 
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, Table 7.1 SOp.le Causes of Cracking in Embankment Dams 

(from Laing, 1971) 

Sketch of Mechanism 

Part I: Transverse Crack 

1 • 

2. 

3. 

4. 

Description of Mechanism 

Varying Embankment Height 

.-.. --:-1 
~xample 

Dams* 

Variations in the embankment 3 
height due to varying foundation 7 
level and/or steep abutments 9 
causes differential settlement 12 
and cracks 13 

Varying Depth of Compressible 
Foundation 

Differential Settlement of the 11 
foundation causes transverse 14 
cracks in the dam 

Uneven Abutments 

Uneven and overhanging areas of 
the abutments develop localized 
differential settlements causing 
cracks to form 

Arching of the Cor~ 

4 

Greater compressibility of the 1 
core than of the shells reduces 6 
the stresses in the core suffi­
ciently to form cracks 

* These numbers refer to dams which have cracked due to the 
given mechanisms. The dams are listed in Part III. 
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Table 7.1 Continued 

Sketch of Mechanism Description of Mechanism Example 
Dams 

' 

HAIM 

Water 
'ressure 

‘ 

Differential Crest Deflection 

12 
5 

The crest initially deflects 
upstream due to saturation, and 
then the centre of the crest 
deflects downstream due to the 
water load. 	This causes trans- 
verse cracks near the abutments. 

6. 

, 

Poor Construction Procedures 

15 Poor 	Construction may cause 
differential settlements and 
cracks. 	For example, a rapidly 
built closure section settles 
more than the remainder of the 
dam, causing cracks. 

-/, 

ti 

., 
/ 

Highly 7. 

sol4 
compressible 

, 
v d 

Localized Foundation Discontinuity 

For example, a local lense of 
highly compressible soil in the 
foundation, or a stiff rolled-
fill cutoff trench through a com-
pressible foundation cause diffe-
rential settlements and cracks 

16 
-t\IIIIIIIIIIpllpr "■,- 

r  4, . ,gelw„, , 	,. 	.--, 
Soil of low 
compressibility 

Part II: Longitudinal 

Settlement of Shells 

2 
10 
13 

Cracks 

I
crest, 

8. 

Greater compressibility of the 
shells than of the core develops 
longitudinal cracks at the dam 

over the edges of the 
core. 
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Sketch of Mechanism 

9. 

10. 

l , 

11. 
~vater 

Pressu ... 
• .. 

---Doo .. 
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Description of Mechanism 

Collapse of Upstream Shell on 
Saturation 

Example 
Dams 

The upstream shell settles due 3 
saturation on first filling 
developing longitudinal cracks 
at the crest 

Collapse of Foundation Soils on 
Saturation 

Settlement of the foundation soils 8 
due to wetting starts at the up- 11 
stream toe of the dam and pro­
gresses downstream as the foun­
dation becomes saturated on first 
filling. This rotates the up-
stream shell about the core and 
develops longitudinal cracks 

Downstream Crest Deflection 

The reservoir water pressure 
deflects the embankment down­
stream, causing longitudinal 
cracks to form at the crest 

Spreading of a Soft Foundation 

13 

The soft foundation deforms 17 
laterally, forming a vertical 
crack in the base of the embank-
ment 

Note: Part III, which lists the exam·ple dams, is on the 
following page. 



Table 7.1 	Continued 

Part III: 	The Dams given as examples above 

No Name of Dam References 

1.  Balderhead Dam Vaughan 	(1965), 	(1967), 
(1970); 	Vaughan et al 	(1970); 
Kennard, Knill and Vaughan 
(1967); Kennard, Penman and 
Vaughan 	(1967) 

2.  Cherry Valley Dam Sherard et al 	(1963) 

3.  Cougar Dam Pope 	(1967) 

4.  East Branch Dam Bertram (1967) 

5.  El Infiernillo Dam Marsal and de Arellano (1967) 

6.  Hyttejuvet Dam Kjaernsli and Torblaa (1968) 

7.  Leobardo Reynoso Dam Marsal 	(1959) 

8.  Marta R. Gomez Dam Marsal 	(1959) 

9.  Miguel Aleman Dam Marsal 	(1959) 

10.  Mud Mountain Dam Sherard et al 	(1963) 

11.  Portland Dam Leonards and Narain 	(1963) 

12.  Rector Creek Dam Leonards and Narain (1963) 

13.  Round Butte Dam Patrick 	(1967) 

14.  Shek Pik Dam Carlyle 	(1965) 

15.  Wister Dam Bertram 	(1967) 

16.  Woodcrest Dam Leonards and Narain 	(1963) 

(17.) (Sea Embankments on the Bishop 	(1966c), Toms 	(1954) 
North Kent Coast) 

391 



01 	Cq 
Un drained 03  < to  Drained 03 < tud 

03E 

—I—  q 

Drained oc); < t' Undrained 03E < tu  [or pw>031 

WET CRACKS 

PW 

DRY CRACKS 

03  

water 
pw  

JCS  ..0"/C.c)•  • 

302 .  

Fig. 7.1 	Idealised Stresses Causing Cracking 
(from Vaughan, 1976b) 
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Fig. 7.2 	Stress Changes Leading to Drained Hydraulic Fracture 

(from Vaughan, 1976b) 
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Fig. 7.3 	Simplified Calculations of Stress Changes 
due to Increasing Pore Pressure 
(from Vaughan, 1976b) 
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CHAPTER 8 

STRESS ANALYSIS OF EMBANKMENT DAM CORE WITH 

EMPHASIS ON HYDRAULIC FRACTURE 

8.1 	Introduction 

In Chapter 7 a brief review of cracking of embankment 

dam cores was presented, together with the phenomena of 

load transfer and hydraulic fracture in the core. 

The stresses and stress changes in the core at the 

end of construction and after impounding can be analysed 

using the non-linear finite element method. 	From these 

analyses it is possible to investigate the areas of low 

stress and the likelihood of crack formation. 

The main purpose of this chapter is to demonstrate that 

the development of seepage pressures throughout the core 

during impounding reduces the risk of hydraulic fracture (as 

predicted by Vaughan, 1976b). 	Therefore, the analyses 

carried out in this chapter, consider the stresses and the 

stress change in an idealised core with vertical sides at 

the end of construction and during impounding. 	For impound- 

ing three different forms of seepage were simulated, namely, 

flooding (with hydrostatic water pressure gradient every-

where), transient flow (with horizontal and vertical head 

gradients), and local flow (with horizontal head gradient 

only in a local layer). 	Of these three forms of impound- 

ing the latter two are much closer to reality than the first 

one. 	The flooding is a fictitious form of impounding, and 
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it is simulated to study the effect of the hydrostatic 

water pressure gradient on stresses and stress changes in 

the core. 

In the analyses performed, both undrained and drained 

soil properties were considered. 	Where undrained proper- 

ties were assumed, stresses at the end of construction only 

were analysed, and with drained properties, both construc- 

tion and impounding were modelled. 	Both undrained and 

drained results at the end of construction were compared 

to the results given by closed form plasticity solutions. 

8.2 The Finite Element Mesh  

In order to minimize the computer cost and to concen-

trate more elements in those areas of the dam which are of 

nrime interest for cracking and hydraulic fracture, only 

the core of the dam was considered in the analyses. 	Effects 

of shells on the core were modelled by applying springs at 

the side boundaries. 

Figure 8.1 shows the finite element mesh used in the 

analyses. The effects of the shells are modelled by apply-

ing springs horizontally and fixed vertically at the side 

boundaries. 	For all cases considered, the spring stiffness 

was assumed to be equal to 4 x103  KPa. 	This value was 

calculated from the theory of subgrade reaction by assuming 

that if a force equal to 200 KN/mrun is applied to the 

spring, a displacement equal to 0.05 m will be produced. 

This is probably less stiff than typical embankment shells 

but was adopted to ensure that arching would occur. 
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8.3 	Cases Considered in the Analyses  

Three main cases were considered in these analyses, 

together with two minor cases for the side boundary con- 

ditions. 	Table 8.1 gives the soil properties used in the 

main cases. 	The soil properties used in the minor cases 

are given in section (8.6). 

The first major case considered (case Ui, Table 8.1) 

was undrained and the construction only was modelled. Two 

values for the undrained shear strength (Cu  = 60 KPa and 

30 KPa) were used, together with the non-linear stress- 

strain curve shown on Fig. 8.2. 	The comparison was made 

between the results of this case and those given by closed 

form plasticity solutions, which will be discussed in 

section (8.7.1). 

Two cases D1 and ST1 (Table 8.1) were drained and 

modelled the construction together with the following 

impounding. 	For both cases, the pore water pressure at the 

end of construction was assumed to be equal to zero. 	Figure 

8.3 shows the family of non-linear stress-strain curves used 

for case Dl. 	Also, for case D1, the tangential Poisson's 

ratio was assumed to vary with the state of stress as given 

in Table 8.1 

In order to simplify the analysis and to minimize the 

computer cost, the bi-linear stress-strain curves (Fig. 8.4) 

were used for case ST1. 	Poisson's ratio was constant 

(equal to 0.2) before the failure, and it was equal to 0.499 

at failure. 
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For case D1, the unloading modulus and the reloading 

modulus were the same and equal to the initial modulus 

= Er  = E.1, see Chapter 5, Fig. 5.1c). 
	For case ST1, 

the unloading modulus was equal to the initial modulus and 

the reloading modulus was equal to the tangent modulus at 

'the same state of stress (Eu  = Ei, Er  = Et, see Chapter 5, 

Fig, 5.1.b). 

8.4 	Analysis Procedures  

For accurate analyses of the embankment dams, it is 

necessary to simulate the placement of successive layers of 

the embankment darn material. 	Clough and Woodward (1967) 

have examined the usefulness of both "layered" finite 

element analyses (in which the placement of successive 

layers was simulated) and "single-lift" finite element 

analyses (in which the gravity body forces were applied to 

the entire structure in one step). Their studies, for 

homogeneous embankment dams with linear elastic material 

properties, indicate that the "single-lift" analyses provide 

reasonable stress distributions, but displacement patterns 

are different from those calculated by means of "layered" 

analyses and measured in real embankments. 

Hamza (1976) showed that the material non-linearity 

amplifies these differences in deformations. 

However, by considering that in these analyses the 

stresses are of prime interest, and the undrained shear 

strength is not a function of the state of stress, for 
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undrained case Ul (Table 8.1) single-lift analysis was 

employed for construction. 	The material non-linearity was 

dealt with using the incremental quasi Runge-Kutta method 

(explained in Chapter 2). 

For drained cases D1 and ST1 (Table 8.1), as the 

drained shear strength is a function of the state of stress, 

so layered analyses were simulated for both construction 

and impounding. 	As the result of this technique, the 

probable progressive build up in stress due to placing the 

layers causes gain in strength which closely simulates the 

actual sequence of construction. 

The material non-linearity was dealt with using the 

incremental quasi Runge-Kutta method for case D1, and a 

combination of the incremental tangential method and the 

Newton-Raphson iterative method (explained in Chapter 2 

and Appendix 2) for case ST1, in each layer. 

8.5 	Loading Sequences 

The loading sequences employed in the analyses, were 

construction and impounding. 	Impounding could have three 

different forms, namely, flooding, transient flow and local 

flow. In the following section these loading sequences are 

discussed. 

Construction In simulating the construction of an embank-

ment dam, the loads applied due to placing a layer represent 

the weights of the added elements. The weight of each 

element is distributed equally among its nodes, in accordance 
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with the usual procedures for applying body forces (soil 

unit weight). 	In drained analyses, for each step of placing 

a layer, drained soil properties were used for the new 

layer, with zero weight and small stiffness (E = 5 KPa) 

assumed for the layers above. 

A more general discussion of simulating the construc-

tion in layers using this technique is given by Hamza (1976). 

For undrained case Ul, where single-lift analysis 

was employed, the undrained soil properties were used for 

the whole domain. 

Flooding In simulating the application of water loads to 

the embankment dam, the loads are considered in two forms - 

buoyancy forces (due to flooding) and seepage forces (due 

to transient and local flows). 	The buoyancy forces are 

equal to the unit weight of water multiplied by the area of 

the submerged elementes. 	These forces act vertically 

upward, and are distributed equally among the nodes of each 

element, in the same manner as the body forces. 	In the 

programme the gradients of water pressures due to these 

buoyancy forces were calculated and then applied as body 

forces (see Appendix 2). 	Drained soil properties were 

used for all layers and in all steps. 

Transient Flow 	In simulating the transient flow, seepage 

forces were calculated from a flow net which consists of 

postulated horizontal flow lines, in order to simplify the 

calculation of the pore water pressure. 	Figure 8.5 shows 
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this flow net. 	In the analyses, water pressures were calcu- 

lated from this flow net and input at the nodes. 	In the 

programme the gradients of these water pressures were calcu- 

lated and applied as body forces (see Appendix 2). 	Drained 

soil properties were used for all layers and in all steps. 

Local Flow If the reservoir is filled very quickly, the 

core remains under undrained conditions. 	By supposing 

that there is a local layer which is much more permeable 

than the rest of the core, then water penetrates into the 

core at this layer. 	It has been postulated in Chapter 7 

that this local flow or drainage can be more critical in 

producing hydraulic fracture (see also section 8.7.2.1). 

In simulating the local flow, the following assumptions were 

made: 

1. Full reservoir height at the upstream side. 

2. Water penetrates into the core generally at the 

upstream face to a slight extent, which was 

modelled by a column of thin elements at the 

upstream side (see Fig. 8.1). 

3. One layer in the core (in this study layer number 

7 from the bottom, Fig. 8.1) is affected by 

seepage. 	The water pressure varies linearly 

from the reservoir height at the upstream side 

to zero at the downstream side, across this layer. 

By these assumptions, the water pressures were calcu- 

lated and input at the nodes. 	In the programme gradients 

of these pressures were calculated and applied as body 
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forces (see Appendix 2). 	Drained soil properties were 

used for whole domain. 

Flooding and transient flow were simulated in layers 

after the embankment has reached its full height. 	Local 

flow was simulated in increments after completion of the 

construction sequence. 

8.6 	Effects of the Side Boundary Conditions on the  

Stresses  

The requirement of zero vertical deformations at the 

core sides imposed by the side boundary conditions shown 

in Fig. 8.1, has a tendency to magnify the load transfer 

effects compared to a real situation. The amount of load 

transfer from the core to the side supports (shells) can 

be reduced by decreasing the shear strength of the core 

material to produce a zone of failed soil at the side 

boundaries between the core and supports (this effect will 

be discussed in sections 8.7.1 and 8.7.2). 

In order to make a preliminary study of the effects 

of the side boundary conditions assumed for these analyses 

(see Fig. 8.1) on the stresses and stress paths, two minor 

cases (cases A and B) were considered. 	In both cases, a 

linear material with E = 50000 KPa and v = 0.33 was used. 

The soil unit weight was equal to 20KN/m3, and the water 

unit weight was assumed to be equal to 10 KN/m3. 	The 

construction was followed by transient flow, and layered 

analyses were simulated. 	Both construction and impounding 

were completed in 15 layers for the full height of 30 m. 
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Figure 8.1 shows the mesh used for both cases, except 

for the side boundary conditions. 	For case A, the side 

boundaries were free vertically and fixed horizontally. 

Case B had the same side boundary conditions as shown on 

Fig. 8.1 

Figures 8.6 to 8.8 show the stress paths for these 

two cases. 	From these figures the following observations 

are made:- 

Case B produces large negative average effective 

stresses at the upstream side at the end of impounding 

(transient flow), which may result in zero or negative shear 

strength for drained non-linear analyses. The negative 

average effective stress at the end of transient flow is 

about 1.5 times the average stress at the end of construction, 

near the base of the core. This value is approximately 

constant for about 2/3 of the core height, then it decreases 

towards the top of the core. 

Case B gives smaller deviatoric and average effective 

stresses than case A, both at the end of construction and 

impounding, except near the top of the core where the 

deviatoric stresses for case B are greater than for case A. 

This reduction in stress is due to the arching effect in 

case B. 	Also, it suggests that near the top of the core, 

reduction in major principal stress due to the arching 

effect is much greater than the reduction in minor principal 

stress. 

Values of the average effective stresses at the end 

of construction for case B are about 6% (near the :case of 
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the core), about 10% (around the core mid-height) and about 

38% (near the top of the core) of the average effective 

stresses at the end of construction for case A. 	These 

values indicate a large arching effect in case B. 	However, 

as will be discussed later in this chapter (sections 8.7.1 

and 8.7.2), the amount of load transfer from the core to 

the side supports decreases if a proper strength is consi-

dered for the soil. 

For case A, impounding tends to decrease the values 

of the average effective stresses. 	The average effective 

stresses, near the upstream side, at the end of transient 

flow are between 50%, near the top of the core, and 55%, 

near the base of the core, of the average stresses at the 

end of construction. 	Near the downstream side of the core, 

these values are between 95%, near the base, and 99% near 

the top of the core. 

For case B, transient flow tends to decrease the 

average effective stresses near the upstream side and to 

increase them near the downstream side of the core. 	The 

average effective stresses, near the upstream side, at the 

end of transient flow are between-150%, near the base, and 

15%, near the top of the core of the average effective 

stresses at the end of construction. 	Near the downstream 

side of the core, the average effective stresses at the end 

of transient flow are between 2 times, near the top, and 3 

times, near the base of the core, of the average stress at 

the end of construction. 

It has to be mentioned that the values of the average 
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effective stresses (at the end of construction and impound-

ing) for case B are almost constant for about 2/3 of the 

core height. 

From these parametric studies, it is clear that the 

side boundary conditions used in case B are more critical 

than those used in case A, from the point of view of the 

arching and hydraulic fracture. 	As the side boundary con- 

ditions used in case B are closer to reality than those 

used for case A, and also, they model effects of the shells 

in the analyses, for the main analyses of this chapter, the 

side boundary conditions shown on Fig. 8.1 are used. 

8.7 The Finite Element Results and Discussion  

8.7.1 Results for Undrained Construction  

Undrained analysis is used to get the stresses at the 

end of construction. 	These stresses are useful in study- 

ing the hydraulic fracture phenomenon. 

Nobari and Duncan (1972), and Kulhawv and Gurtowski 

(1976) determined the end of construction stresses by 

undrained analyses. 	Nobari and Duncan showed that the 

stress on a horizontal plane through the core at the end of 

construction was not significantly affected by impounding.  

and postulated that hydraulic fracture would occur if the 

reservoir pressure exceeded this stress. 	Kulhawy and 

Gurtowski assumed that the intermediate principal stress 

would not change on impounding and postulated hydraulic 

fracture when the reservoir pressure exceeded this stress. 
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However, as it will be discussed in section (8.7.2), 

drained impounding tends to increase the total stresses and 

so reduce the risk of hydraulic fracture. 

For undrained construction, only one case (case Ul, 

Table 8.1) with two values for the undrained shear strength 

(Cu  = 60 KPa and 30 KPa) was considered. 

As mentioned in section (8.6), the requirement of zero 

vertical deformation at the core sides imposed by the side 

boundary conditions shown on Fig. 8.1 magnifies the amount 

of the load transfer from the core to the side supports 

(shells). 	This arching effect on stresses can be reduced 

by decreasing the shear strength of the core material. 

When the shear strength is reduced enough to produce a zone 

of failed soil at the sides between the core and supports 

(see Fig. 8.9a), then the vertical stress in the core 

becomes equal to about half of that due to the full weight 

of the soil. 	Figure 8.9b shows the values of vertical 

stresses. at the end of undrained construction, at the core 

centre line, for two different values of the. shear strength. 

This figure indicates that by reducing the shear strength 

of the core material from 60 KPa to 30 KPa the amount of 

load transfer from the core to the side supports is decreased 

almost three times. 

Bishop (1952), and Nonveiller and Anagnosti (1961) 

have given the values of vertical stresses in the core, 

using the theory of plasticity. 	In Fig. 8.9b, comparisons 

are made between the values of vertical stresses from the 
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non-linear finite element analysis (Cu  = 30 KPa) and those 

given by Bishop (1952), and Nonveiller and Anagnosti (1961). 

Note that equation (2.19) for the values of vertical 

stresses in the Nonveiller and Anagnosti paper was wrong. 

This has been corrected and used for calculating the verti-

cal stresses. 

Generally, the agreement between the results from the 

non-linear finite element analysis and those given by the 

plasticity solutions is good for Cu  = 30 KPa. 	The reason 

why the non-linear elastic finite element analysis gives 

results which are in good agreement with those given by the 

plasticity solution, is that the non-linear finite element 

analysis satisfies the equilibrium conditions, and near the 

centre line the principal stress rotations are very small. 

For the shear strength equal to 30 KPa, the results 

from the finite element analysis are a maximum of 30% greater, 

near the tot,  of the core, and a maximum of 8% smaller, near 

the base of the core, than the results given by Nonveiller 

and Anagnosti (1961). 	Bishop's results are a maximum of 

15% greater than the results given by the finite element 

analysis, for Cu  = 30 KPa. 

For Cu = 60 KPa, the Nonveiller and Anagnosti method 

gives the values of vertical stresses equal to zero. 

Bishop's method gives a constant value for the vertical 

stress which is not a function of the depth. 	This value 

of the vertical stress is equal to 25 KPa (for no tension 

crack). 	For this strength the plasticity solutions are 
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clearly invalid, as negligible shear failure occurs. 

8.7.2 Results for Drained Conditions  

Two drained cases (cases Di and ST1, Table 8.1) were 

considered in the analyses. 	For case D1, the solution 

technique was not adequate to deal with the strain-softening 

behaviour. 	For case Sri, the programme was extended to 

deal with the strain-softening behaviour (see Appendix 2). 

The construction and impounding were simulated with 

layered analyses. 	In case D1, two different numbers of 

layers (9 and 15 layers) for the full height of 30 m were 

used. 	In case sri, 5 layers for the full height of 10 m 

were modelled. 

8.7.2.1 Drained Case before Strain-Softening Modelling 

Only one case (case DI, Table 8.1) was analyzed in 

this subgroup. 	The values of vertical stresses at the 

core centre line from the finite element analysis, at the 

end of drained construction, are given on Fig. 8.10. 	For 

simulating the construction, both 9 and 15 layers were used. 

With a 9-layered analysis, the first three layers consisted 

of one row of elements and subsequent layers consisted of 

two rows of elements. 

By comparing the 9- and 15-layered analyses (Fig. 

8.10), it is clear that the 15-layered analysis gives a 

much smoother curve for the vertical stress distribution 

than the 9-layered analysis. 	The 9-layered analysis gives 

smaller stresses for the lower half of the core, and greater 



409 

stresses for the upper half of the core. The maximum 

difference in stresses is just above the core mid-height, 

where the vertical stress from 9-layered analysis is 25% 

less than'the vertical stress from 15-layered analysis. 

Also, the values of vertical stresses from 9-layered 

analysis are scattered around the core mid-height. This 

is due to the large size of the layers around the core mid-

height which cause overshooting of the shear strength in 

some Gauss points. 

As the vertical stresses from 15-layered analysis 

are not scattered, therefore, the 15-layered analysis has 

been used for modelling of the construction and impounding 

in this section. 

In Fig. 8.10 the vertical stresses at the core centre 

line from the non-linear finite element analysis, at the 

end of drained construction, are compared with the vertical 

stress given by Nonveiller and Anagnosti (1961). 	The agree- 

ment between the finite element results and results given 

by the plasticity solution is very good. The vertical 

stresses from the finite element analysis are 2% more than 

the vertical stresses from the plasticity solution for the 

lower 1/3 of the core height. 

Figure 8.11 represents zones of the soil at failure 

at the end of construction, flooding and transient flow for 

case Dl. 	At the end of construction, existence of the 

zone of failed material at the sides between the core and 

supports results in the proper amount of the load transfer 
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from the core to the side supports, shown on Fig. 8.10. 

At the end of flooding, the zone of failed soil is changed 

a little. The transient flow concentrates the zone of 

failed material at the upstream side of the core. 

Figures 8.12 and 8.13 show the distribution of the 

average stress with depth for case D1, at the end of con- 

struction and flooding. 	The average stresses (total and 

effective) at the end of construction are less than the 

eventual water pressure due to flooding, except near the 

top section of the core, where these stresses are greater 

than the eventual water pressure. 	But, as shown on Figs. 

8.12 and 8.13, impounding tends to increase the average 

total stresses prior to fracture, and so reduce the risk of 

hydraulic fracture occurring (as predicted by Vaughan, 1976b). 

The average total stress at the end of flooding near the 

core sides at a depth between 6 to 8 m (Fig. 8.13) is equal 

to the eventual water pressure, and if the tensile strength 

of the core material is ignored, there is a possibility of 

drained hydraulic fracture in this area. 

In Figs. 8.14 to 8.16 some stress paths for the con- 

struction followed by flooding (case D1) are given. 	Point 

A represents the total and effective stresses at the end of 

construction. 	There is a small increase in stress (A-B) 

due to the application of the water pressure to the zone 

beneath the point considered (this stress path is both 

total and effective). 	As the water pressure continues to 

increase (after flooding reaches the point considered) there 
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will then be a reduction in average effective stress (B-D'), 

and an increase in average total stress (B-D). 	Such an 

increase in average total stress may prevent drained 

hydraulic fracture occurring. 	Thus, a critical situation 

is likely only if this increase is insufficient to prevent 

fracture. 	Such a critical area was shown on Fig. 8.13, 	at 

depth between 6 to 8 m, where the average total stress at 

the end of impounding is equal to the eventual water pressure. 

In the effective stress path during flooding (Figs. 

8.14 to 8.16), when the effective stress is reduced to C', 

shear failure must occur. 	Obviously, post-failure stress 

path must be on the failure envelope. 	However, as will 

be discussed later in this chapter (section 8.7.2.2),due to 

shortcomings of the incremental non-linear methods used, 

the post-failure stresses in these figures followed hori-

zontal paths. 

Figures 8.17 and 8.18 show the distribution of the 

average stress for construction followed by transient 

flow (case DD. 	Near the core centre line, the average 

stress at the end of construction is greater than the even-

tual seepage pressure. Transient flow tends to decrease 

the average effective stress in the top 1/3 section of the 

core, and to increase the average total stress. 

Figure 8.18 gives the average stress distribution 

near the upstream side of the core. The average stress 

at the end of construction (total and effective) is less 

than the eventual seepage pressure for the lower 2/3 of 

the core height. This does not necessarily mean that there 
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is a possibility of drained hydraulic fracture in this area, 

like the case of flooding, transient flow leads to greater 

average total stress than those at the end of construction, 

and so reduces the risk of cracking. 

A more detailed discussion of the stress changes due 

to impounding, shown on Figs. 8.17 and 8.18, is given in 

section 8.8. 

By comparing Figs. 8.13 and 8.18, it is clear that 

reduction in the average effective stress at the end of 

impounding (compared to the stresses at the end of con-

struction) due to flooding is greater than that due to 

transient flow. 

In Figs. 8.19 and 8.20 the stress paths for constuc- 

tion followed by transient flow are given. 	Point A is 

the end of construction (total and effective). 	Like the 

case of flooding, impounding increases the average total 

stress. 	Again, in these figures, the post-failure stress 

paths are horizontal, instead of laying on the failure 

envelope. 	Also, in Figs. 8.19 and 8.20, the construction 

stress path shows some overshooting of the shear strength. 

The overshooting during construction is due to the 

incremental non-linear method used, as this method (unlike 

the interative method) is not able to prevent overshooting, 

unless very small load increments are applied. 

During impounding, the average effective stress in 

the core decreases. 	In general, this decrease (unloading) 

can occur from any state of stress including the state of 
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failure, and it will be accompanied by a drop in strength. 

If this stress path induced softening (or strain-softening) 

is not modelled correctly, a stress path which violates 

the failure criterion will be followed., 

In Fig. 8.21 the p'-q and q-61  stress paths for a 

typical point which should exhibit strain-softening behaviour 

are given. 	From this figure, it is clear that when the 

stress path reaches the failure envelope, as there is no 

shear unloading, so it maintains a horizontal path on the 

q-el and p'-q plots,while due to the reduction in average effec- 

tive stress,it should be loosing strength, resulting in an 

overshooting which is increasing as impounding continues. 

The incremental non-linear solution techniques are 

inadequate to model the post-failure behaviour. 	So, in 

analyses presented in this sections  the strain-softening 

behaviour due to an increasing pore pressure is not repro- 

duced. 	As a result, in Figs. 8.14 to 8.16 and 8.19 to 

8.21, when the effective stress path has reached the failure 

envelope during impounding, it has followed a horizontal 

path. 

As discussed in Appendix 2, the programme was extended 

to deal with this strain-softening behaviour. 	The stress 

analysis of the core was then continued, as discussed in 

section 8.7.2.2. 

Also, in this section, the stress analysis and the 

possibility of hydraulic fracture occurring in a core due 

to local flow are considered. 
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Shear failure transfers stress from areas of high 

stress to those of low stress, and results in an averaging 

of the stresses in the core and an increase in stress in the 

critical zones. 	Therefore, as postulated in Chapter 7, 

hydraulic fracture is most likely when the initial stresses 

in the core at the end of construction are very non-uniform, 

and low stress zones are local. 	Then fracture may occur 

locally, before general shear failure and the stress redistri- 

bution accompanying it are induced (Vaughan, 1976b). 	Such 

a critical situation for hydraulic fracture may occur due 

to the water penetrating preferentially into the core via 

some irregularities such as a crack or more pervious layer. 

Figures 8.22 and 8.23 (note that for these two 

figures Ei  = 1000Tmax) show distribution of the average 

effective stress in the core for construction followed by 

local flow (layer 7 from the bottom in Fig. 8.1 is the 

assumed drained layer). 	After impounding, the average 

effective stress increases except in the drained layer, where 

a large reduction in average effective stress has occurred. 

The local drainage, due to the existence of these low stress 

areas, can be more critical for hydraulic fracture occurring 

than a fully drained core. 	As in a fully drained core, 

general shear failure and swelling result in redistribution 

of stress and an increase in low total stress, so reducing 

the risk of cracking. 
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8.7.2.2 Drained Case after Strain-Softening Modelling  

8.7.2.2.1 Modelling of  the strain-softening behaviour  

In many geotechnical problems, the stress-strain 

curves exhibit strain-softening behaviour. 	Considering 

this post-failure behaviour in the finite element analysis 

is one of the problems which has not yet (1977) been 

solved with complete satisfaction, although some promising 

starts have been made. 	In the case of non-linear elastic 

models using the tangent modulus approach in the incremental 

scheme, the required modulus becomes negative once peak 

strength is passed. 

Girijavallabhan and Reese (1968), and Hoyaux and 

Ladanyi (1970) have introduced an approach for the non-

linear elastic models which used the secant modulus instead 

of the tangent modulus. 

Many efforts have been made to model the strain- 

softening behaviour using the plasticity concepts. 	H6eg 

(1972) attempted to model undrained strain-softening of 

clays. 	Nayak and Zienkiewicz (1972) have presented a 

generalization of existing elasto-plastic constitutive 

relations including strain-softening. 	More recently, 

Prevost and Hoeg (1975a, b and c) have used the theory of 

plasticity to model the strain-softening behaviour in geo-

technical problems. 

Desai (1974) has presented a hypothesis for defining 

the softening behaviour after peak and a numerical proce-

dure based on iterative relaxation scheme of the Newton-

Raphson type. The distinguishing feature of the Desai 



416 .  

approach is that the strain-softening phenomenon is viewed 

as a process of modification (reduction) in the strength 

of the material rather than as a change in the moduli com-

puted as gradients of the stress-strain curves, as is done 

in other strain-softening studies. This technique was 

used by Desai (1977) to study the behaviour of deep 

foundations. 

In these analyses, to prevent overshooting during 

construction, and to model the strain-softening behaviour 

encountered in this research, the iterative solution using 

the Newton-Raphson method was utilized. 	During analysis, 

it was found that in some iterations, for some of the Gauss 

points the behaviour is shear unloading, bearing in mind 

that the overall behaviour can be loading (e.g. construction). 

The iterative technique uses the tangent modulus, which can 

result in large strains for points near or at the failure, 

if they are shear unloaded. 	These large strains can cause 

numerical problems resulting in non-convergence of the 

solution (see Fig. A.3, Appendix 2). 

As discussed in Appendix 2, the Newton-Raphson 

iterative technique was modified to deal with the shear 

unloading. 	Also, in Appendix 2, the form of the strain- 

softening behaviour encountered in this research and the 

development in the programme to deal with this behaviour 

are explained. 

The typical stress path for strain-softening is shown 

in Fig. A.5 of Appendix 2: as the point a-A is at failure, 

a horizontal path is continued to point b-B, then at 
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this point the shear stress level is checked with the shear 

strength, and as this shear stress is greater than the 

shear strength, so the point is brought down to the failure 

envelope (point c-C) by keeping the average effective 

stress and the principal stress rotation constant. The 

excess stress is transferred to other points that have not 

reached failure in the following iterations. 

8.7.2.2.2 Drained Case Results  

Only one drained case (case ST1, Table 8.1) was 

analysed after extending the programme to deal with the 

shear unloading during iteration and the strain-softening 

behaviour. 	In this analysis, only five layers (height 

equal to 10 m) of the mesh shown on Fig. 8.1 were considered, 

in order to cut the computer time and cost. The con-

struction and following transient flow were simulated in 5 

layers (for the full height of 10 m), using the layered 

analysis. 

Figures 8.24 and 8.25 show zones of the failed soil 

at the end of construction and impounding. 	By comparing 

these two figures, it is clear that the transient flow 

leads to the concentration of the failed soil at the 

upstream side of the core. 	This is due to the horizontal 

gradient of the water pressure and the higher water pressure 

at the upstream side. 	Also, comparison of these two 

figures indicates that, at the end of transient flow the 

size of the failed soil zone has been reduced. 	This effect 

is due to the shear unloading of some of Gauss points from 

the state of failure (that was reached at the end of construc- 
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tion) during impounding, which results in the state of pre-

failure for these points at the end of impounding. However, 

some of the Gauss points may remain at the state of failure at 

the end of transient flow, even if they are shear unloaded. 

As discussed in the section (8.7.2.1) and Appendix 2, 

some of the Gauss points exhibit strain-softening behaviour 

(or stress path induced softening) during impounding. 

Figure 8.26 shows zone of the points exhibiting strain- 

softening behaviour at the end of transient flow. 	It is 

obvious that, for the points which are not included in this 

figure, the behaviour is shear unloading during impounding, 

and at the end of impounding they are still at the state 

of failure. 

Also, Fig. 8.24 indicates that a thin zone of failed 

soil has been produced at the sides between the core and 

supports, which results in proper load transfer from the 

core to the supports at the end of construction (see Fig. 

8.34). 

Figures 8.27 to 8.33 give the stress paths for some 

of the points exhibiting strain-softening behaviour. 	For 

Figs. 8.27 to 8.29 and 8.33, point A represents the total 

and effective stresses at the end of construction. 

Application of the water pressure tends to decrease the 

average effective stress (A-B'), and to increase the average 

total stress (A-B). 	When the effective stress is reduced 

to B', shear failure occurs. 	As the water pressure increases, 

the average effective stress and the shear stress decrease 
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(B'-C'), which cause the redistribution of stresses and an 

increase in the total stress (B-C). 	In the corresponding 

q--c1 plots (Figs. 8.27 to 8.29 and 8.33), point a is the 

end of construction. 	By increasing the water pressure, 

the shear stress decreases. 	The early section of the 

stress path during impounding.shows shear unloading (a-b). 

After shear failure has occurred, the stress path shows 

strain-softening (b-c). 

In Figs. 8.30 to 8.32, point A is the end of con- 

struction (total and effective). 	There is a small increase 

in stress (A-B) due to the application of the water load to 

elements lower than these points. 	As the seepage pressure.  

increases, the average effective stress decreases (B'-C') 

and the average total stress increases (B-C). 	When the 

effective stess path is reached to the failure envelope 

(point C'), shear failure occurs, except for the effective 

stress path on Fig. 8.31, where the state of failure is 

reached at the end of construction. 	By further increase 

in the water load, the average effective stress decreases 

(C'-D') and the average total stress increases (C-D). 	In' 

the q-s1 plots (Figs. 8.30 to 8.32), the behaviour is load-

ing from a to b, it is shear unloading from b to c, and it 

is strain-softening from c to d. 

During the strain-softening path, volumetric strains 

are zero, as Poisson's ratio is assumed to be 0.499 at the 

state of failure. 

Figure 8.34 shows the distribution of the average 
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stress in the core at the end of construction and after 

transient flow. 	Near the upstream side of the core, the 

average stress at the end of construction is less than the 

eventual seepage pressure for the lower half of the core 

height. This does not necessarily mean that there will be 

hydraulic fracture in these areas after impounding, as 

impounding increases the average total stress and reduces 

the risk of cracking. 

8.8 Effects of the Strain-softening Modelling on the 

Stresses  

In order to investigate the effects of the strain-

softening modelling on the stresses, two cases D1 and ST1 

must be compared. 	Direct comparison of these two cases, 

due to different geometries, is not possible. 	However, the 

major effect of the strain-softening modification is to 

correct the stress path. 	For case D1, post-failure stress 

paths are horizontal lines resulting in overshooting of 

the specified strengths (Figs. 8.14 to 8.16 and 8.19 to 

8.21). 	For case ST1, there is no overshooting which 

results in a redistribution of stresses, and therefore, 

increase in stresses at those Gauss points that have 

not reached failure (Figs. 8.27 to 8.34). 	Also, this 

redistribution of stress may increase the size of the zone 

of failed soil. 

For both cases D1 and ST1, impounding tends to. increase 

average total stresses. 	For case Dl, near the upstream 
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side of the core, the average effective stress at the end of 

transient flow is on average 89%,of the average stress at 

the end of construction (Fig. 8.18). 	While for case ST1, 

near the upstream side of the core, the average effective 

stress at the end of transient flow is on average 60% of the 

average stress at the end of construction (Fig. 8.34). 

Near the upstream side of the core, for case D1 (Fig. 8.18) 

the mean stress at the end of construction is, on average, 

45% of the mean total stress at the end of transient flow. 

For case srl (Fig. 8.34) this becomes 60% near the core 

centre line, for case D1 (Fig. 8.17), the average effective 

stress at the end of transient flow is greater for the lower 

2/3 of the core height, and is smaller for the upper 1/3 

of the core height than the. average stress at the end of 

construction. 	For case ST1 (Fig. 8.34), near the core 

centre line, the average effective stress at the end of 

transient flow is smaller than the average stress at the end 

of construction, for the core's full height. 

For case Dl, near the upstream side of the core, the 

mean effective stress at the end of flooding is, on average, 

65% of the mean stress at the end of construction, and the 

mean stress at the end of construction is, on average, 52% 

of the mean total stress at the end of flooding (Fig. 8.13). 

Near the core centre line, these percentages are 64% and 

56% respectively (Fig. 8.12). 

From comparison of these results, it is clear that 

for case D1, where the strain-softening behaviour is not 
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modelled, the flooding is more critical than the transient 

flow, from the point of view of drained hydraulic fracture. 

However, after correct modelling of the strain-softening 

behaviour, the transient flow can be more critical than 

flooding for drained hydraulic fracture to occur. 

8.9 	Conclusions  

The non-linear finite element programme (explained in 

Chapter 2) was used to analyse the stresses and stress 

changes in an idealised vertical core. 	The effects of 

the shells on the core were modelled by using the side 

boundary conditions shown on Fig. 8.1. 

From these studies it is concluded that: 

1. The special side boundary conditions used in these 

analyses tends to magnify the amount of load transfer from 

the core to the side supports (shells). 	This arching 

effect can be reduced by decreasing the shear strength of 

the core material to produce a zone of failed soil at the 

sides between the core and supports. 

2. Generally, the agreement between values of vertical 

stresses from the finite element analysis (undrained and 

drained) and those given by plasticity solutions is good, 

provided that failure has occurred. 

3. At the end of undrained construction, the finite 

element results for Cu = 30 KPa are a maximum of 30% 

greater near the top of the core, and a maximum of 8% 

smaller near the base of the core, than those given by 
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Nonveiller and Anagnosti (1961). 	Results given by Bishop 

(1952) are a maximum of 15% greater than the finite element 

results for Cu = 30 KPa. 

4. At the end of drained construction, the finite ele-

ment results are about 2% more than those given by Nonveiller 

and Anagnosti (1961) for the lower 1/3 of the core height. 

For the upper 2/3 of the core height, both solutions give 

the same value for the vertical stress. 

5. There is a possibility of drained hydraulic fracture 

for areas where the average total stress at the end of 

construction is less than the eventual seepage pressure. 

However, impounding tends to increase the total stress prior 

to hydraulic fracture and so reduce the cracking risk (as 

predicted by Vaughan, 1976b). 	Thus a critical situation is 

likely only if this increase is insufficient to prevent 

fracture. 

6. During impounding, stress predictions show stress 

paths exhibiting strain-softening behaviour. 	If this 

behaviour is not modelled correctly, a stress path which 

violates the failure criterion will be followed. 

7. Correct modelling of the strain-softening behaviour 

results in the redistribution of stresses. 	This stress 

redistribution reduces the risk of cracking. 



Table 8.1 Main Cases for the Embankment Dam Core 

Case 
No. 

Stress- 
Strain 
Curve 

(Fig.No.) 

Soil 
Unit 
Weight 

yt  

KN/M3  

Water 
Unit 
Weight 
lw  

KN/M3  

Loading 
Sequences 

Soil Properties 
Poisson's* 

Ratio 
v 

Stren gth Initial 
Modulus 

Ul 8.2 20 10 Construction 0.499 Cu = 60 KPa 

Cu = 30 KPa 

E. =300 Cu 

Dl 8.3 20 10 Construction 
followed 	by 
impounding 

v1. =0.2 

vt 	1  =v.(1-ar)+0.5a r 

C' =10 KPa 
& . 

T , =25o 

E. =300 	T i 	max 

ST1 8.4 20 10 Construction 
followed 	by 
impounding 

0.2 

At Failure 0.499 

C'=20 KPa 

q' =32°  

E. =300 	T 1 	max 

* ar = (al - a3)/(al 	a3)f 
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Fig. 8.1 	The mesh used for the embankment core 
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Fig. 8.4 	The Stress-Strain Curve (Plane Strain) 
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APPENDIX ONE 

FLOW CHART OF THE PROGRAMME 

A brief description of the function of the SUBROUTINES 

appearing in the flow chart is given in the following section:- 

GINPUT, MIDNOD: 	Read geometrical, material properties 

and boundary conditions. 	Store the input 

in the relevant disc and memory storage. 

SHAPEF, SFR, AUX:  Calculate shape function and its deriva-

tives for each element using numerical 

integration and store them in disc file. 

SINPUT: 	Reads the initial stresses and strains 

from cards and/or magnetic tape. 	Converts 

the initial stresses to nodal forces, and 

stores them in the memory. 

ELSTIF, NLELAS, SPRING: Calculate the stiffness matrix for 

each element according to its state of 

stress and the stiffness of the boundary 

spring, and store it in disc file. 

LINPUT: 	Reads the loading pressure and forces. 

Converts the loads into nodal forces and 

stores them in the memory. 

SOLVE: 	Assembles the overall stiffness matrix 

and reduces it by elimination. 

RESOLV: 	Modifies the new R.H.S., and reduces the 

stiffness matrix by elimination. 

BSUB: 	Obtains the displacement vector. 
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ITSLCT: 

ITELAS: 

STRAIN: 

CORSTN: 

STOUT: 

MAGOUT: 
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Selects the state of stress for the first 

solution of the Quasi Runge-Kutta method. 

Calculates the nodal forces corresponding 

to the total state of stress, and compares 

with the external applied loads. 

Performs the pilot iteration, and records 

the number of the points which are shear 

unloaded. 

Calculates the increment of stress corres-

ponding to the increment of strain using 

Euler-Cauchy method. 	Also, treats the 

points with the strain-softening behaviour. 

Calculates strains from the displacements 

of the nodes. 

Corrects the values of strains due to the 

use of the dense liquid technique for 

layering analysis. 

Calculates stresses from strains. 

Outputs the values of the residual forces, 

boundary springs stiffnesses, and displace-

ments at the nodes. 

Outputs stresses and strains at the 

required elements and points. 

Stores the values of stresses and strains 

in disc file or magnetic tape for graphics 

and/or future reference. 

SELECT: 

RESID: 

STRESS: 

NODOUT: 
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APPENDIX TWO 

DISCUSSION ON THE MODIFICATIONS AND DEVELOPMENTS IN THE 

PROGRAMME 

In Chapter 2, a list of the principal parts of the 

programme specially written for this research is given. 

In the following section descriptions and algorithms of 

these parts are considered. 

A.1 	Shear Unloading and Reloading 

In the first solution of the Quasi Runge-Kutta non-

linear method (Chapter 2, Fig. 2.3), it is established 

whether the shear stress will increase or decrease, and the 

Gauss points at which a decrease will occur are identified. 

For these points a linear modulus is adopted during the 

second solution of this method. 

The previous maximum shear stress at the end of each 

increment is recorded for checking the shear reloading. 

For a Gauss point if the shear stress increases after 

unloading or reloading, and the maximum shear stress from 

the previous increment is less than the previous maximum 

shear stress, a linear modulus is adopted during the second 

solution of the Quasi Runge-Kutta method. 	The unloading 

modulus may or may not be equal to the reloading modulus. 

In the programme it is possible to select whether 

both the unloading modulus and reloading modulus or only 

one of them, in the second solution, will be linear or will 
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follow the first loading stress-strain curve (see Fig. 5.1, 

Chapter 5). 

The algorithm for choosing the shear unloading and 

reloading moduli is as follows:- 

In subroutine RESID (see Appendix one for descriptions 

of subroutines and the flow chart of the programme) the 

maximum shear stress (a1-a3)/2 is checked at the end of 

each increment with the previous maximum shear stress and 

the greater one is saved. 

a. 	First solution (subroutines ELSTIF and NLELAS) 

Enter element loop. 

a.l. Read stresses corresponding to the end of the previous 

increment or initial values (subroutine ELSTIF). 

Enter Gauss point loop. 

a.2. Look up the previous maximum shear stress (subrouting 

ELSTIF). 

a.3. Calculate principal stresses and the shear strength 

for stresses from (a.1), (subroutines NLELAS). 

a.4. Calculate the maximum shear stress and the mobilized 

	 ) shear stress ratio( 	 and(G 
	

j for stresses 2 	1-G3)f 
from (a.1), (subroutine NLELAS). 

a.5, (i) If the maximum shear stress is less than the 

previous maximum shear stress, then take the 

unloading modulus, (RETURN), (subroutine NLELAS). 

(ii) If the mobilized shear stress ratio is greater 

than or equal to unity, then give a very small 
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value for modulus, (RETURN), (subroutine NLELAS). 

(iii) If the mobilized shear stress ratio is less than 

unity, then take the tangent modulus (equation 

2.3, Chapter 2), or, if this ratio is greater than 

0.95, take half of the tangent modulus, (RETURN), 

(subroutine NLELAS). 

End of Gauss point loop. 

End of element loop. 

b. 	Second solution (subroutines SELECT, ELSTIF and NLELAS) 

Enter element loop. 

b.1. Read stresses corresponding to the start of the 

increment (subroutine ELSTIF). 

Enter Gauss point loop. 

b.2. Look up the previous maximum shear stress (subroutine 

ELSTIF). 

b.3. Retrieve the stress vector corresponding to half of 

the displacement increment obtained in the first 

solution (subroutine SELECT). 

b.4. With the initial stresses corresponding to the start 

of the increment (step b.1), repeat steps (a.3) and 

(a.4), (subroutine NLELAS). 

b.5. Multiply the stresses from step (b.3) by a factor F 

(for the start of the second solution F is equal to 

unity). 	The output is, say, Ao* (subroutine NLELAS). 

b.6. Add Au* to the initial stresses at the start of the 

increment (subroutine NLELAS). 
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b.7. Calculate the principal stresses and the shear 

strength for the stresses resulting from (b.6), 

(subroutine NLELAS). 

b.8. Calculate the maximum shear stress (01-u3) /2 and the 
a _ 3 mobilized shear stress ratio 	corresponding 

(a11Ma)f 
to step (b.7), (subroutine NLELAS). 

b.9. (i) If the maximum shear stress from (b.8) is less 

than the maximum shear stress from (b.4), then 

choose unloading modulus, (RETURN), (subroutine 

NLELAS). 

(ii) If the maximum shear stress from (b.8) is greater 

than the maximum shear stress from (b.4), and the 

maximum shear stress from (b.4) is less than the 

Previous maximum shear stress, then choose 

reloading modulus, (RETURN), (subroutine NLELAS). 

(iii) With the results from (b.4) repeat steps a.5(i) 

and a.5(ii), (subroutine NLELAS). 

(iv) If the mobilized shear stress ratio from (b.8) 

is less than unity, then the modulus is calculated 

from equation (2.3), and, if this ratio is greater 

than 0.95, take half of this modulus, (RETURN), 

(subroutine NLELAS). 

(v) If the mobilized shear stress ratio from (b.8) 

is equal to unity, then choose a very small value 

for modulus, (RETURN), (subroutine NLELAS). 

(vi) If the mobilized shear stress ratio from (b.8) is 

more than unity, then set factor F equal to 0.5F 

and (GO TO) step (b.5) , (subroutine NLELAS). 
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End of Gauss point loop. 

End of element loop. 

Step b.9(vi) is the start of an iterative process 

which is performed for each Gauss point. 	Steps b.9(iv) 

to b.9(vi) ensure that there is no significant overshooting 

if the stresses are near failure, which would otherwise 

occur in a one-step, non-iterative method. 

A.2 	Poisson's Ratio Varying with Stress 

The value of the Poisson's ratio in a non-linear 

stress analysis may be expressed as a function of the con-

fining pressure, and during shear it would be a function 

of axial strain. 	In order to have zero volume change 

during failure, the Poisson's ratio must be equal to 0.5 

at failure. 

For many soils, the value of initial Poisson's ratio 

v. (at zero shear strain) has been reported to decrease as 

the confining pressure is increased. 	Based on experimental 

data, Kulhawy et al (1969) suggested the following equation 

for the variation of vi  with 03:- 

v. = M - N log10  G-3-) 
a (A.1) 

where M is the value of vi  at a confining pressure of one 

atmosphere, Pa  is the atmospheric pressure, and N is a 

parameterrepresentingtherateofdecreasein v.with 

increasing 03. 

During shear, the following equation is used for the 



variation of the tangential Poisson's ratio vt:- 

t 	v.(1 - ar ) + 0.5a r 
	 (A.2) 

where 
al - a3 

ar = ( 	
(A.3) 

a 3 ) f 

Thus vt = vi 
under isotropic stress and vt = 0.5 at failure. 

In the programme (subroutines NLELAS and ITELAS) 

the Poisson's ratio is selected and modified for each loading 

increment according to equations (A.1) to (A.3) and the 

state of stress. 

A.3 Spring as the Boundary Condition  

The programme is modified to deal with the spring 

boundary condition. 	The springs are only possible in the 

horizontal and/or vertical directions with constant stiff-

nesses, and they could also be applied to nodes within the 

domain. 

In the programme (subroutines ELSTIF and SPRING) the 

stiffness of the spring at a node is added only to the 

corresponding diagonal term in the stiffness matrix. 	At 

the end of the increment, in subroutine RESID, the nodal 

force at a point with the spring is equated to the product 

of the corresponding displacement and spring stiffness. 

A.4 Applying the Seepage Forces 

The programme is modified to consider the effect of 

dissipating an increment of pore water pressure (either 
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after an interval of time or after the steady state is 

achieved) on the state of stress of the soil skeleton, by 

using the pore water pressure increment as the case of 

loading, as follows:- 

The general equation of equilibrium of an element of 

soil in x direction is: 

Dax aTxy  aT 

3x 	ay 	az
XZ  x = 0 	(A.4) 

There are two other similar equations for y and z directions. 

In equation (A.4), X represents the total body force per 

unit gross volume of the material. 	But:- 

(A. 5) 

Thus:- 
aa 	aT 	aT xy 	xz 	3u 

+ (X) = 0 (A.6) ax 	ay 	az 	ax 

This equation is identical in form to the equation (A.4), 

but the body force terms have now been changed by the 

amount: 

au 	au 
ax ' 	ay 

in the appropriate directions, and the analysis can be 

carried out after converting the gradient of the pore water 

pressure into an equivalent body force. 	The values of 

pore water pressures are input at the nodes (subroutine 

LINPUT), and, in the programme, their gradients are calcu-

lated and applied as body forces. 



468 

The soil parameters used during these analyses are 

the effective stress parameters E', v', and they may be 

non-linear, in which case E' and v' are related to Aci3  or 

(Aal + Aup and (oil  - Aa3) by a family of curves. 

The procedure described above is valid whether the 

dissipation is consolidation or swelling. 	In the case of 

consolidation, the soil skeleton will exhibit a decrease 

of volume due to an increase in the compressive effective 

stress; in the case of swelling, the soil skeleton will 

increase in volume due to the decrease in the compressive 

effective stress, thus the volume change and the causative 

stresses have the same sign, and so the analysis for swell- 

ing does not imply v' > 0.5. 	But it must be Pointed out 

that the swelling process is an unloading one in terms of 

volumetric stresses, so unloading parameters should be used 

in the analysis; also, in some cases, it may exhibit 

strain-softening. 

A.5 	Iteration Modified for Shear Unloading 

The programme is extended for cases which need an 

iterative or incremental-iterative solution technique. 

The Newton-Raphson or the Constant Stiffness methods are 

used. 	The root mean squares of the residual forces at 

the nodes are used as the measure of convergence, which 

should decrease and become very small as the iteration 

proceeds. 	The iteration is terminated when the root mean 

square reaches a pre-set value, or when a pre-set number 
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of iterations have been performed. 

The programme, if terminated at an arbitrary residual 

error, will result in a situation where the stresses are 

in agreement with the stress-strain curve but the finite 

element structure is not in equilibrium with the applied 

loads. 	In this situation, the engineering significance 

of the errors is difficult to evaluate. 

The analyses were carried out for the footing on 

undrained clay with 826 degrees of freedom (case 3, Table 

5.2, Chapter 5), using both the Newton-Raphson and the 

Constant Stiffness methods. 	Figure A.1 shows the plots 

of the maximum residuals and the root mean square of the 

residuals. 	From this figure it is clear that, for the 

same computer time, the Newton-Raphson method gives better 

results than the constant stiffness method. 	The root 

mean square of the residual and the maximum residual from 

the Newton-Raphson method at t = 4280 secs are about 75 

per cent of those from the constant stiffness method. 

The same analyses were carried out with the incre-

mental-iterative technique, using both the Newton-Raphson 

and the Constant stiffness methods. 	Figure A.2 shows 

the plots of the maximum residuals and the root mean square 

of the residuals for the same load as Fig. A.1, but it 

was applied in 3 increments (note that for increment one 

the residuals were zero). 

Comparison of Figs. A.1 and A.2 indicates that the 

incremental-iterative technique gives much better results 

than the iterative method for about half of the computer 
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time used by the iterative method. 	The root mean square 

of the residual and the maximum residual from the incre-

mental-iterative method (3 increments) at t = 2000 secs 

are about 5% (for the Newton-Raphson method) and 14% (for 

the constant stiffness method) of those from the iterative 

method. 

Again, for the incremental-iterative method, the 

Newton-Raphson method is better than the constant stiffness 

method. 	The root mean square of the residual and the 

maximum residual from the Newton-Raphson method at t = 2000 

secs are about 20% of those from the constant stiffness 

method. 

However, the problems_ which include the shear 

unloading cannot be handled using these iterative methods, 

as they cause numerical trouble due to the use of the 

tangential stiffness, which predicts large strains for 

the unloaded region at the state of stress close to, or 

at, failure. 

The programme is extended to deal with the shear 

unloading by introducing a pilot solution for each iteration. 

During this pilot iteration, the tangential stiffnesses are 

assumed for the whole region. 

The stresses derived from this first solution (iteration) 

are calculated to correspond to the full displacement 

vector obtained from the pilot iteration. 	These stresses 

are stored in a local disc and are not added to the initial 

stresses from the start of the iteration. 	By using these 
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stresses, it is established whether the shear stresses will 

increase or decrease, and the number of the unloaded Gauss 

points are recorded. 	If the unloading counter is zero, 

then this solution (iteration) is treated as the correct 

one and stresses are added to initial stresses from the 

start of the iteration. 

If the unloading counter is not zero, then the 

iteration is repeated, and stresses from the pilot solution 

are used to identify the unloaded Gauss points, and a linear 

modulus is adopted for these points during the second 

solution (iteration). 

For reloading, the first loading stress-strain curve 

is followed. 

The algorithm of this procedure is as follows:-

Set unloading counter IUCF equal to zero. 

a. 	Pilot iteration (subroutines ITSLCT and ITELAS). 

Enter element loop. 

a.l. Read stresses corresponding to:the start of iteration 

(subroutine ITSLCT). 

Enter Gauss point loop. 

a.2. Choose the tangent modulus corresponding to the 

state of stress at the start of iteration. 	Solve, 

and get displacements. 

a.3. Get strains from displacements, and calculate stresses 

from strains using the modulus from step (a.2). 

Add these stresses to the stresses from step (a.1) 

and save the results on a local file. 	These final 
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stresses correspond to the end of pilot iteration, 

(subroutine ITELAS). 

a.4. If the maximum shear stress from stresses corres-

ponding to step (a.3) is less than the maximum shear 

stress from step (a.1), then set IUCF = IUCF + 1 

(subroutine ITELAS). 

End of Gauss point loop. 

End of element loop. 

a.5. If IUCF is equal to zero, (RETURN). 	Results from 

step (a.3) are the final results for this iteration 

and no second iteration is required (i.e. iteration 

has only one solution). 

a.6. If IUCF is not equal to zero, then enter second 

solution (iteration), storing the stresses from the 

first solution (iteration). 

b. 	Second iteration (subroutines ELSTIF, NLELAS, SOLVE, 

BSUB and RESID). 

Enter element loop. 

b.l. Read stresses corresponding to the start and end of 

the pilot iteration (subroutine ELSTIF). 

Enter Gauss point loop. 

b.2. With stresses from (b.1), and according to the 

algorithm explained in the second solution of the 

Quasi Runge-Kutta method (section A.1), choose the 

correct modulus (subroutine NLELAS). 

b.3. Solve and get displacements, strains, and stresses 

using the modulus from (b.2), (subroutines SOLVE, 
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BSUB, RESID and ITELAS). 	These displacements, 

strains, and stresses correspond to the end of second 

iteration. 

End of Gauss point loop. 

End of element loop. 

Figures A.3 and A.4 show the values of the maximum 

residuals and root mean square of the residuals for case 

ST1 (Table 8.1, Chapter 8) with 294 degrees of freedom. 

In Fig. A.3, three layers of the core of the dam were 

considered, where each layer had 3 increments, except layer 

one which had one increment. 	In each increment the Newton- 

Raphson method (without modification for shear unloading) 

was used. 	In Fig. A.4, five layers of the core of the 

dam (same problem) were considered, where each layer had 

4 increments, except layer one which had one increment. 

In each increment this modified form of the Newton-Raphson 

method was used (which considers the shear unloading and 

adopts a correct modulus for each Gauss point). 

Comparison of these two figures indicates that the 

iterative method without the shear unloading modification 

does not converge. 	This is due to the numerical trouble 

caused by the use of the tangential stiffness, which predicts 

large strain for the unloaded Gauss points with state of 

stress at, or close to, failure. 

A.6 Strain-Softening 

In many geotechnical problems (e.g. dams, tunnels, 
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retaining walls and rocking footings) stress predictions 

show stress paths exhibiting shear or an average effective 

stress reduction (unloading) during construction and/or 

operation. 	In general, this unloading can occur from any 

state of stress including the state of failure. 	In case 

of shear unloading, from or near the failure, the soil 

will suddently grossly increase its stiffness, a condition 

which, if not modelled correctly, may cause very large errors 

or even numerical break-down of the solution. 	Alternatively, 

if the failure state persists while the average effective 

stress is reducing, a drop in the strength will occur. 	If 

this stress path induced softening is not modelled correctly, 

a stress path which violates the failure cirterion will be 

followed. 	A combination of both conditions may occur in 

reality. 

Available non-linear solution techniques are inade- 

quate to cover these groups of problems. 	Incremental 

methods can only model the shear unloading which has been 

discussed in section (A.1). 	From the iterative solution 

techniques, the Newton-Raphson method was selected and 

modified to deal with both cases of the shear unloading 

and the stress path induced softening. 	The shear unload- 

ing modification and its importance have been discussed in 

section (A.5). 	The modification for the stress path 

induced softening is discussed in the following section. 

The form of the strain-softening behaviour encountered 

in this research (see Chapter 8) is shown on Fig. A.5. 

In the Newton-Raphson iterative method, the modulus becomes 
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very small at the state of failure. 	Post-failure stress 

path, if there is no shear unloading, will follow an almost 

horizontal path. 	By decreasing the average effective 

stress, the shear strength decreases, and this horizontal 

stress path, if not modelled correctly, will violate the 

failure criterion. 

In order to have a stress path which does not violate 

the failure criterion, in the programme (subroutine ITELAS), 

at the end of each iteration and for each Gauss point the 

maximum shear stress, (a 1 -0- 3)/2, is compared with the 

corresponding shear strength. 	If, for a point, the maxi- 

mum shear stress exceeded the shear strength and the 

average effective stress, (al+ a;)/2, at the end of itera-

tion is less than the average effective stress at the start 

of iteration, then the point is brought down to the failure 

envelope by keeping the average effective stress and the 

principal stress rotation constant (see Fig. A.5). 	For a 

point with no strain-softening behaviour, if the maximum 

shear stress 	exceeded 	the shear strength, then the 

point is brought back to the failure envelope, on the same 

stress path that it was following, by reducing both the 

maximum shear stress and the average effective stress. 

The algorithm of this strain-softening behaviour 

modification is as follows:- 

At the end of each iteration (subroutine ITELAS)  

Enter element loop. 

1. 	Read stresses corresponding to the start and end of 

this iteration. 
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Enter Gauss point loop. 

2. . Calculate the shear strenath,, the maximum shear stress 

and the average effective stress corresponding to 

the stresses at the end of this iteration. 

3. Calculate the average effective stress corresponding 

to stresses at the start of this iteration. 

4. If the average effective stress from step (2) is less 

than the average effective stress from step (3), and 

the maximum shear stress from step (2) is greater 

than the shear strength from step (2),then deal with 

strain-softening by following steps (5) to (7). 

Otherwise RETURN (i.e. no strain-softening). 

5. Assume that the average effective stress and the 

principal stress rotation from step (2) remain 

constant. 

6. By using this average effective stress and the shear 

strength from step (2), calculate the principal 

stresses. 

7. By using these principal stresses and the principal 

stress rotation from step (2), calculate the stresses. 

End of Gauss point loop. 

End of element loop. 

As shown on Figs. 8.27 to 8.33 (Chapter 8) , this 

modification results in stress paths which do not violate 

the failure criterion. 
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