
THE ROLE. OF 

SURFACE SUSCEPTIBILITY IN 

THE THEORY OF ADSORPTION' 

ARPITA DATTA 

DEPARTMENT OF MATHEMATICS 

A thesis submitted for the degree of Doctor of Philosophy of 
the University of London and the Diploma of Imperial College. 

1977 



TO 

BABI 

S 



" Where the mind is without fear 

and the head is held high ; 

Where knowledge is free ; 

Where the world has not been broken up 

into fragments by narrow domestic walls ; 

Where words come out from the depth of truth ; 
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Where the mind is led forward by thee 
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THE ROLE OF SURFACE SUSCEPTIBILITY IN THE THEORY OF ADSORPTION 

Arpita Datta 

ABSTRACT  

In this thesis we are interested in making a study of the 
atom-surface interactions using a linear response theory 
formalism. We approach this problem two different angles. 

1. The first deals with a dynamic problem using a semi-
classical infinite square barrier model, SCISBM, and 
involves the excitations of the core level adatom with 
the metal substrate when subjected to X-ray photoemission 
(XPS). The calculations concern intrinsic satellites of the 
system, a quantity that has been experimentally observed 
through use of XPS, and also involve the physical concepts 
of relaxation shifts, line shapes and infra-red divergence. 

2. The second half of the thesis is concerned with the same 
physical system but now approached from a magnetic point 
of view. The object of interest is a localised static 
surface spin susceptibility formed by the application of 
a localised magnetic field in three dimensions for 
itinerant paramagnets. This quantity is of importance in 
some theories of chemisorption and catalysis and we use 
the exact three-dimenional expressions for the non-interacting 
electron susceptibility to calculated the localised surface 
magnetization. We apply our results to a calculation of 
binding energy of an adatom with the metal substrate. 
The infinite square barrier model (ISBM) is used. 

Our calculations are based on the RPA or time-dependant Hartree 
approximation. 
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CHAPTER I 

INTRODUCTION 

Generally speaking, progress in understanding the 

behaviour at surfaces in Physics has lagged far behind 

that in understanding the bulk properties of matter. The 

reason for this is partly due to theoretical difficulties. 

A metal bounded by its surface loses the simplifications 

due to translational invariance afforded by bulk 

crystalline solids. Furthermore, it is a region of 

strong inhomogenity since the electron density reduces 

from its bulk value to zero in a distance roughly comparable 

to atomic dimensions. Another hindrance to the rapid 

development of surface science was the lack of reliable 

experimental data on the properties of surfaces. But 

with the advance in ultra-highL'vacuum technology during 

the fifties and the development of new experimental 

surface techniques which have enabled reasonably accurate 

reproducible measurements, interest revived. This advance 

combined with advances made in manybody theory gave 

the boost resulting in the recent boom of development 

in surface physics. 

Quantum theory lies of course at the very core of 

attempts to analyse and interprete the properties of 

both bulk and surface matter. According to some, 

there is little doubt amongst scientists (if not 
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philosophers) that the workings and properties of 

ordinary matter can ultimately be reduced to electrodynamics 

and quantum theory 

Ideally, the information one seeks includes the 

geometry and electronic structure of clean and adsorbate 

covered surfaces and it also proves useful in understanding 

some general properties associated with the surface, 

preferably in the form of measurable physical quantities 

e• g• 

1. the work function. /defined as the minimum work 

required to remove an electron from the metal at 

0°K i.e. the energy difference between an electron 

at the Fermi level and the vacuum level. Typical 

values for X of metals are 2-3ev for alkalies 

or 4-5ev for transition metals. 

2. the binding energy AE of an atom to the surface, 

defined as the work required to remove an atom from 

the surface. This is an important concept as it is 

crucial in determining chemisorbed as opposed to 

physisorbed systems (A E 	0.5 ev in the former 

case whereas Q  E \-< 0.3 ev in the latter case ). 

Ideally, one would like to determine the binding 

energy as a function of site absorption and the 

distance between the surface and adatom. 

Response functions Play a key role in understanding 

the properties of many-body systems. This is of course 

quite natural due to the very method whereby experiments 



are performed e.g. in a typical experimental set up 

we apply a perturbation to the system under investigation 

and measure the resulting response. The correlation 

or linear response of the surface to some applied external 

perturbation is often referred to as the generalized 

susceptibility of the system. This is the underlying 

theme throughout this thesis in which the geometry of 

the situation involves an atom adsorbed on the substrate 

metallic surface. This response of the metal surface 

to some perturbing potential is of fundamental importance 

to the weaker interaction of physical adsorption (which 

is predominantly Van-der-Waal forces) as well as treatments 

of the complex problem of covalent chemisorption. Due to 

the inherent complexities in the problem of adsorbate 

systems and chemical reactions on metal surfaces, 

simplified assumptions are necessary. 

Newns (1970) and Beck and Celli (1970) independantly, 

although in the same year, derive an expression for the 

linear response of a metal to an external charge distribution 

using the random phase approximation (RPA) or time- 

dependant Hartree approximation, using a self-consistent 

approach. The infinite square barrier model was considered. 

Both are essentially equivalent. 

Peukert (1971) considers interacting electrons confined 

to a slab of finite thickness and uses a Green's function 

technique (Kadanoff - Baym, 1962, formalism - also used 

by Zaremba, 1974, in his thesis which examines the magnetic 



susceptibility for a bounded Fermi system). 

One model which has been widely used to calculate 

various properties of metal surfaces is the so - called 

'jellium' or uniform planar background model, in which 

the ion cores are spread out into a uniform distribution 

of charge. In 1969, Lang made self - consistent calculations 

for the electron density which instead of abruptly 

stopping at the termination of the positive background, 

spread out beyond this point into vacuum, forming a 

transition region of atomic dimension localised about the 

background boundary. Lang and Kohn (1970) use a fully 

self - consistent calculation to obtain numerical results 

for various density distribution, potentials and surface 

energies for differing metallic densities, rs. While 

giving reasonable results for low density metals, results 

upon higher density metals (rs  4) eg. aluminium, 

differ significantly with experiment. Thus the jellium 

model seems inadequate for low values of rs  and improvements 

are nossible by replacing the jellium by a nseudopotential 

model of ions. 

There exist excellent recent reviews on the chemisorption 

theory eg. Grimley , (1975) ; Gomer, (1975) ; Muscat and 

Newns (1977 ). Ying, Smith and Kohn (1975) first invoked 

the density functional theory (introduced by Hohenberg, 

Kohn and Sham, 1964 and 1965) to obtain the linear 

response of a planar jellium surface to a point charge 
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and they applied the theory to the chemisorption of 

hydrogen on tungsten. The actual electronic density 

was found self - consistently by minimising the energy 

functional and solving the resulting equation with the 

Poisson equation. The only parameter involved in the 

calculation was rs. The work function was found to be 

in good agreement with experiment, but the distance of 

the image was too large compared with previous theory. 

In 1975, Lang and Williams use a more sophisticated 

theory and apply a self - consistent wave - mechanical 

formulation of the density functional theory to Ying 

et al's model by going beyond linear response theory. 

Dipole moments and binding energies for the adsorption of 

hydrogen, lithium and oxygen on an rs  = 2 substrate 

yielded encouraging agreement with experiment on 

transition metals. 

However, certain natural objections arise to this 

idealised jellium approach in that it is too simplistic 

to realistically represent the electronic structure of 

a transition metal, by neglecting the different roles 

played by the s-p and d- bands. But it does satisfy 

the momentary need to explain the existence of vast 

amount of data needing interpretation. 

Another consequence of the atom-jellium model is the 

restriction imposed by adatom penetration. Very 

electronegative adatoms e.g. oxygen on aluminium, 



which do in fact tend to penetrate the metal surface, 

cannot be included in this theory. In 1976, Ying et al 

conducted an ultra-violet photoemission study of oxygen 

adsorbed on clean polycrystalline aluminium and measured 

the energy of the oxygen 2p-resonance and the dipole 

moment of the adatom, given by the change in work function. 

In the former, experimental measurements were more than 

three times larger and no change in work function was 

measured, whereas a significant dipole moment had been 

predicted by theory (Lang et al, 1975). So the process 

of absorption, a likelihood in practise is neglected in 

the atom-jellium model in favour of pure adsorption alone. 

A concept relatively new ,to chemisorption theory is 

the induced covalent band theory ICBT, which was initially 

formulated by Schrieffer and Gomer in 1971. 

This was to treat systems in which the intra-atomic 

Coulomb interaction, IT, on the adsorbate is large compared 

with the interaction strength between the adsorbate and 

metallic substrate, and so the charge fluctuations are 

so small that only neutral adsorbate states need be considered 

to lowest order. The exchange interaction, J, between 

the adatom and solid induces a spin density in the 

vicinity of the adsorption site and this induced spin 

cloud couples to the adatom spin through J to form a bond. 

Their qualitative argument is as follows : 

The energy required to create a spin S on a metal surface 



atom is 

ab 
	s)1 to. 

where 1kb = 51=Ir m41"-11°R. 

and 	%lac_ is the local spin susceptibility of the 

surface substrate atom. 

If a full spin S = Li is induced on the metal surface atom, 

a bend with the adsorbate can be formed, lowering the energy 

by an amount Wm. However, if no spin were present i.e. S =0, 

the adsorbate would experience an exchange interaction Wr 

with the surface. Through a process of linear interpolation, 

the net energy change may be written as a function of S, thus 

AE. (5) 	= QUe. S)Y9_, "j( 	(w,„ -+ CF.) -I- 'a, 

which satisfies the above requirements. Minimizing the above 

equation with respect to S, gives 

ar„ 	 lac_ 

/U 

 -1. 

where the term Wm + Wr may be interpreted as the 
ltAa  

lowering of energy due to the solid spin responding to 

the exchange interaction,J. 

Paulson and Schrieffer (1975) study a quantitative 

formulation of this theory and consider hydrogen on a 

tight binding s-band solid. They calculate the binding 

energy for different metal band-widths for both the 

i; 
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weak and strong interaction limits and obtain physically 

reasonable results, showing binding curve minima for 

reasonable value of band lengths. 

Surface Plasmon 

Now, surface plasmon excitation is of interest 

to us and plays a tremendously important role in 

connecting the interaction between a fast charged 

particle and a metal surface. We begin by introducing 

the concept of surface plasmon in the following way : 

Consider a classical interface between a medium 

of dielectric constant e(c.3) in the plane 	< 0 and 

vacuum at 170. The surface is therefore at z = 0. 

(See Fig. 1.1). NQW, in both the mediums, the 

potential 0  should satisfy Laplace's equation viz. 

'VL  = 0   (1.1) 

If 	is a two-dimensional Fourier wave vector, then a 

	

solution of (1.1) is given by 	

(1.2) 
1:4)S 

which is continuous at the surface 2. = 0. 

If E is the electric field and D the displacement 

then from any standard book on Electrodynamics e.g. 
Jackson, 1962, 

E = ....(1.3A) 

D = EE 	....(1.3B) 

where C' is the dielectric constant proportional to 
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the electric susceptibility of the medium. From 

consideration of continuity of D at the surface, we 

have 

e(03) 	+ 	1 	= 	0 	... (1.4) 

But the classical expression for E(c.3) is given by 

e_ ( 	- ) 	= 	1 	2- 	... (1.5A) 
(-0 

where 	Cor'-  = (47nel-1/m, the plasma frequency... (1.5B) 

n_ is the number of electrons / unit volume. 

Substitute (1.5A) in (1.4) yields 

	

035 = 	cs-5/1FL 	0110 (1.6). 

which is defined as the surface plasmon frequency 

This expression (1.6) for (as is in reasonably good 

agreement with experimental calculations for free 

electron-like materials e.g. Kloos and Raether, 1973, 

obtain values of 7.1 ev and "10.6ev .for magnesium and 

aluminium respectively, while the theory predicts values 

of 7.72eV and 11.2eV respectively. However for non-

free electron like material e.g. transition metals, 

equation (1.5A) cannot be used for classical dielectric 
function. 

In 1957 , Ritchie was the first to theoretically 

observe the importance of surface plasmon oscillation in 

thin films using a dielectric treatment which he shows 

is essentially equivalent to first order perturbation 

theory. Their existence was first experimentally confimed 

.by Powell and Swan (1960) who made measurements of the 

electron-energy-loss spectra of the free-electron-like 
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metals, aluminiuth and magnesiuth. 

Objective  

Adatom resonances play a uniquely important part 

in efforts to understand chemisorption and physisorption 

because they lead to readily identifiable structure in 

the measured excitation spectra. One relatively new• 

method for studying.electron-loss structure associated 

with electrons travelling through solids is X-ray 

photoemission (XPS). Here the X-ray beam penetrates 

thousands of angstroms and 	photoemission 

occurs. Of more theoretical interest, XPS provides a 

possibility of observing intrinsic as well as extrinsic 

plasmon structure. Recent interest in the possibility 

of observing intrinsic surface plasmon satellites in 

free electron like metals by XPS (Bradshaw et al, 1976) 

has inspired part of our present work which is concerned 

with the excitation of the core state of an adsorbed 

atom on the metal surface. The dynamics of the resulting 

hole preparation and decay and the form of the excitation 

spectrum of the density fluctuation determine the 

intensities and positions of intrinsic satellites 

(Harris, 1975) and give rise to the so-called extra-atomic 

relaxation effects (Gadzuk, 1975) which incorporate 

relaxation shifts, line shapes and shake-up spectra. 



In the following chapters of this thesis we give 

further details with the relevant references and so we 

conclude this introduction here to avoid repe,tition. 

A rough outline of this work may be made as follows : 

A) The dynamic Problem  

In Chapter II, we define the surface response 

function R for our semi-classical infinite square 

barrier model (SCISBM) and express some of its 

properties through the spectral function S, which is 

found to obey certain general sum rules. We graphically 

illustrate this 8-function, separating out the contributions 

due to the electron-:hole and surface plasmon excitations. 

In Chapter III, we apply the results of Chapter II 

to calculate the intrinsic satellite spectrum N of the 

core level of the adatom, separate out contributions 

due to transient and adiabatic responses and determine 

the magnitude of the relaxation shifts. Graphs for 

N are given, with a discussion on intrinsic and extrinsic 

effects. Further intrinsic N are computed using data 

from relevant papers. Our results are compared with 

available experimental data. 

This completes the first half of the thesis. 

B) The static problem  

The second half of this thesis deals with the 

static spin susceptibility and magnetization of 
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surface enhanced itinerant electrons in three 

dimensions. The arguments promoted by Schrieffer 

and Gamer in 1971 for the ICBT (given earlier on 

were the first to emphasise on the role played by 

the local spin susceptibility in the theory of 

chemisorption and provide our motivation for the 

latter half work in this thesis. Chapter IV serves 

as a self-contained introduction to this topic, while 

Chapter V includes the results and discussions of our 

infinite square barrier model (ISBM) which is used in 

contrast to the previous SCISBM. 



15 
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OFAPT'RR II  

FORMULATION OF THE PROBLEM 

Our main interest lies in the numerical calculation of 

the intrinsic satellite spectrum N+(w) of an adsorbed atom 

on a metal surface. As discussed in the previous 

chapter, this is related to the probability of creating 

an excitation of energy 1(.4 in an electron gas when a 

charge localised on the atom is suddenly switched on 

due to core hole creation by photoemission. It is 

therefore of importance to study the response function 

of the surface. What comes in (assuming the atom lies 

outside the surface) is the density-density response 

function when both the source and the probe lie outside 

the surface. This response function has a spectral 

density 89(0) which is the main topic discussed in 

this chapter. 

The model of the surface of the electron gas used 

here is a microscopic one since it is desired to take 

into account effects such as finite screening length, 

surface plasmon dispersion and damping - and electron 

hole excitations. The random phase approximation (RPA) 

is used. 

As specified previously, the next two chapters of 

this thesis is related to the semi-classical infinite 

square barrier model (SCISBM) for the dynamic case in 

which our frequency 0 is finite. The SCISBM is a 
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special case of the infinite square barrier model (ISBM), 

the latter being used in Chapters IV and V for static 

calculations involving the magnetization'problem. It is 

therefore relevant to discuss the ISBM at this stage. 

PROPERTIES OF THE ISB MODEL.  

A large proportion of the work on the theory of metal 

surfaces has made use of the infinite barrier model which 

was first introduced by Bardeen in 1936. As the name suggests, 

this model assumes that the electrons are confined to 

the surface by an infinitely high potential barrier 

given by 

V (7-) = 	0 	Z. < o 

Oo 	Z. '7 o 

assuming a Cartesian co-ordinate frame (x,y,z) associated 

with the physical system such that the metal lies in the 

region z4.43 and the metal surface is in the x-y plane, 

z=o. The z-axis is thus perpendicular to the surface of 

the metal, while the metal itself is a semi-infinite 

system. Using Schrodinger's equation of motion viz. 

where H is the Hamiltonian of the system, 

E is the total energy of the system 

and 4 is the basic quantum - mechanical wave functions  
We can write 1,1) for a given momentum quantum number 

al LT. (1i)  Gk) 	cLS 
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(in 5 col c. 	/Cu, Z < 
metal.) 

Z -7 0 	if-LJ 

mctak).  

 

0 

where X = (x,y). The electron density is given as a 

function of z by 

pco  
1,KF 

.e 	su)201,71 do 

where the triple integral is carried out in momentum 

space over a sphere of radius kF, the Fermi- momentum. 

This integration is easily performed by converting to 

spherical polar co-ordinates, whereby we obtain (see 

Gradshtein and Ryshik), Bardeen's (1936) expression 

f3(x) = 	f 1 3c00 (2kF -  3Su/(20)-kD(-Z) 
(air 	 (211tf z)1 	G2kr Zi  

where the first term is just the electron density inside 

the metal, while the last two oscillatory terms are the 

Bessel Function J312.(2kpz) or the spherical Bessel Function 

j1(2krz) and 0(z) is the ordinary Heaviside unit step 

function given by 

G 	= 	 Z. o 

0 
	 <o 

The very simplicity of the infinite barrier model provides 

sufficient reason for its popularity. Many quantities can 
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be expressed in terms of simple functions, so allowing 

detailed analysis of the statistical behaviour of electrons 

in the surface region. A simple model has many virtues 

provided its limitations are borne in mind when studying 

a subject as complex as the inhomogeneous electron gas. 

It is clear from the form of our wave function 	AtI(r) 

and the electron density 13CE), that the placing of an 

infinite barrier potential is equivalent to assuming 

that all the electronic states are specularly reflected 

at the boundary and that the probability of finding an 

electron within the positive z half-space is zero. A 

finite potential barrier would be clearly more realistic 

as it allows for quantum tunnelling effects into the 

vacuum. The IBM confines electrons too strongly and 

cannot account for questions concerning the evanescent 

tails of metal wave functions. 

Another criticism, made by Lang (1973), is that 

the only characteristic length which appears is the 

Fermi wavelength ac kr-1. But for high values of metallic 

densities ( or low rs ), in the self-consistent calculations 

the Fermi-Thomas screening length kFT  = 1/41 is expected 
Tr 

to play an important role. Lang's self-consistent 

calculations for the electron density for rs  equals 

5.0 using a planar uniform background model compares 

well with the IBM.case except for the tail of the 

profiles. Both densities display a pronounced oscillatory 

behaviour arising from quantum interference effects at 

the boundary and extend far into the bulk. For rs- 2.0 
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on the other hand the oscillations in the self-consistent 

profile are diminished in amplitude and it resembles the 

monotonic Fermi-Thomas profile more closely. Lang's 

calculations were based upon the wave mechanical formulation 

of the density functional theory and employed a local 

approximation for the surface exchange correlation 

potential. Although this approximation is not beyond 

criticism, his density profiles are probably the most 

reliable ones available at present. 

In the SCISBM_the electron density is 

kr 3  
(3n )a 

i.e. constant and equal to the bulk value within the 

metal and zero outside. This approximation to the IBM 

by smoothing out of the Friedel-type oscillations will 

be under consideration in our calculations in this chapter 

and the next. This is more of a mathematical model 

chosen for convenience rather than a physical model 

chosen for realism, although it does in fact give 

reasonable dynamical properties. But we must keep in 

mind that this model does violate Heisenberg's 

uncertainty principle in quantum mechanics from which 

we expeet the density to die down gradually to zero in a 

distance of the order of atomic dimensions viz. 1 f;IF 
The electron densities given by (2.1) and (2.2) 

are drawn in Fig. (2.1) and compared with Lang's self- 

consistent density profiles. 
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DERIVATION OF AN EXPRESSION FOR THE LINEAR RESPONSE  

IN THE SCISBM.  

To begin with, we wish to calculate the linear 

response of the system to a perturbing potential V(r,t) 

in the Hamiltonian. Assume the existence of an external 

time-dependant potential e.g. an external charge at a 

distance d from the surface of the semi-infinite metal, 

say at the point (0,0,d) in the Cartesian framework 

system. We also assume translational invariance in the 

X = (x,y) plane. Let U(r,t) be the source potential due 

to the external charge distribution and / (r,t) the 

potential in the metal due to the charge density. Then 

the self-consistency reads 

V 	t) 	= 	r.1 3  0 -yr 	96 (FL 	 . (2.3) 

while the RPA gives the response gy by 

C 	PLC 	GLE I  R, 	, t  r. 1,  t 1) V (r', el) . . . (2.4) 
0 

where the response function R is defined by(Kubo, 1957); 

R,(E' &) 12 I, 	L  < bo([ 	E.)) 	(f: 3  0j1 >04 	 (2 • 5) 

where (0 is the time-independant Heisenberg ground state 
of the unperturbed system, 

Ovid J3(0) is a density operator which may be defined in 

terms of creation and destruction operators 

corresponding to the one particle wave functions 

of the unperturbed system. 
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We assume a summation over spin indices in (2.5) coming 

from the density onerators and that the perturbation is 

switched on at time t = 0. Atomic units are used throughout. 

Define the Fourier Transform of a function g(t) as 

3(t'3) 	= 	J e_--`"3E y.t.)d t • (2. 0 

Using (2.6) in (2.3) and (2.4) gives us 

	

iSI ( 1-: ) ui) 	= 	al: 4  R- &:., '2 ', (.1) V 0:1 , ‘,..) 	. . (.a) 

Now define the Fourier Cosine Transform of a function f(r) as 

I a E Q- 	coo (la e),F (c) • (2.9) 

and use in (2.7), (2.8) to give 

V( , 0) = 	 . 	(.2.10) 

(.3) 	= 	vv.  (.3) Vs,„1„... (co) 	- • (2- ") 

where 

2st) 
kiltv  () 	 42(x 	ay. 	e 	cos(z,) coo ( 21c0 P-(r- '2% GO 

. . .(..a) 
Equation (2.12) incorporates into it the translational 

invariance in the x-y plane. 

Consider the operator 0 = 	6.=$1) V2- (2.13) 

Apply .6 to the left hand-side of the scalars in equation (2.7) 
and integrate over a volume -0-of the electron gas. Utilise 

Green's theorem (as stated in Appendix A4 to obtain 
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f o'v dr f v 	(e_̀  *1c̀..4r7)) a 	fe- -1:0, (1,z) Vv. 
-v- 

where dS = (0,0,k)dxdy is the unit vector ;n the positive 

z-direction that is, normal to the surface. Consequently 

the only non-zero term arising from the dot product C7v.dS 

is 'V Now, 

	

VI(e-‘*-)10z41,1z)) 	(V4' 	e-  c'(k,z7-) 	= - t 	ze` 'IL  (0) 

The second surface integral is zero at z = 0. We have 

from (2.14) the result 

V2  v 	- 	I 2*  V41 -4- VS) ( 0) 
	

(a. 15) 

As we assume the source charge distribution lies outside 

the electron gas, we have from Poisson's eoustion that 

4Tr St./31 	1111(ct  -+ V,v` (0) 	. 	(2.10 
Now in the region 04 z <d we have 

- 

	

95, 9 (e) 	€- 	(°) 

e!( d)U (2.) `) 

Hence using (2.7), 

= 	/ 

= 	49  (0) 	u(s(0) 
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Substitute in (2.15) gives 

v to) 	 + 	Spt  

	

= — (S) Vtc),  -t- 	(C1 L.)? (o) 

Put (2.11) in (2.17) gives 

4-trictli,.. R,Tec;) 

Rewriting, 

—9Vs(o) 
2..eR u i (o) 

	

jack'. 	v9v(w) = - vs  (o) -t- 2 9 (.)4 (a) 	(2.1.R A) 

where the matrix E 	is given by 

E1  ciAlt, (0) = 1 c0 2-  SHWV 	4.7 Ken, (1,2 	. 	Ise 

From (2.18A) we have in matrix notation, 

	

V 	= 	E9, 3101.1 ( 2 Us)(0) — V4(0) 	• . 	(2.19 

Now
' 	Efi  ("1) 7: 	I  

le 
and applying  (2.9) to (2.19) we have 

Vs, (Q) 	(,) 

= 	— 	(-3) 	U9  Co) 
4- 

This is the quantum analogue of the classical image 

theorem for a semi-infinite dielectric mediuml which 

states that the ratio of the induced potential in the 

external region to the reflection of the source potential 

in the surface is weighted by the factor R (0) where 
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1 — E5,60.) 	 2-0) 
€.36-z3 

Newns (1970) has given a detailed derivation of Rcs34,1,v (,.-3) 

(in equation(2.18B)) for non-interacting electrons in 

the IBM and we quote his result in the form 

= 	ck 	gc14,11  — 	c .V 	- • - 	2'18) 

where the diagonal terms D (4)) are related to the bulk 

RPA dielectric function thus: 

P-PA 
(ct 	= 	 raes,‘ 	. . . 

11  

and the off-diagonal elements A
91, 

 (c.3) are more complex 
4a 

but obey the sum rule 

Asci,t11 	= 

However for our SCISBM, these off-diagonal terms are 

neglected, and so 

Put equation (2.21B) in (2.22) and we get 

0 
as in Ritchie and Marusak's 1966 paper. Thus the 

equations (2.20) and (2.23) give us our linear response 

function for the system in a well-defined mathematical form. 

We now have a digression in which we define a slightly 

different- retarded response function which enables us to 

Qo 

21 r Eci 	 R.PA 
1r J %)14-(12.) 	(.10.9 
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calculate some sum rules in a fairly simple way. 

ANOTHER DEFINITION OF THE PvSPONSE - FUNCTION : I1TTPOD7CTION 

TO THE DYNAMIC FORM FACTOR.  

Another form for the surface response function for 

a semi-infinite medium, assuming the existence of an 

external time-dependant potential which is applied as a 

perturbation to the system is defined as 

R.si(t) = 	eco<01[4.43.(0)) ?Ds 9 (03 1 0> • - 

where Q is a wave - vector Parallel to the surface of 

the metal, 

4)  = 
L = 

fie) is a density operator in the Heisenberg 

representation, 

10 is the ground state of the unperturbed 

metal surface and 

<01[ 	10> meaning the expectation value with 

respect to the ground state of the system. 

Physically, the first $ in (2.24) corresponds to the 

perturbation while the second is linked to the probe 

into the system. We can rewrite (2.24) as 

(.2.24) 

I) 	
0 

° 	7- 	94` - L') = 	c2TrL 0 (t — 	
9 fax' e- <0/ 

..... co 

j39 	)1 10) 	. - 	- 	25 A) 

where 

S( z . 	(.2.25.8.) 

See Appendix D2 for relating to (2.20) 
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We now make a definition of the spectral density function 

of Vo),(written in the Fourier representation) as 

being proportional to the imaginery part of R4(w) as 

follows: 

s5 c‘,-) = — 	G(co) K1(-) 	26) 

From (2.25A) and (2.26) we have 

(tz) = 	f 	e_ 	e_cP2S(63--f-L- En) x 
0 4f. 

(7--) I (0<(1. I j‘)ly e2.1) 	• • 	' (2.2'3) 

where In) is the excited state of the metal and surface 
with energy E,. 

The MO is our two-dimensional frequency-dependent 

dynamic form factor corresponding to similar quantities 

defined for bulk systems (see, for example, Trozieres 

and Pines,1966). It is, in more physical terms, the 

coupling strength for solid excitations of frequency (J.) 

responding to an external perturbation of the form 

In Lehmann representation we can write 
co 

0 
where S.) o 

Using the standard result, 

_ LT g(%. ct) 
- a -+ L. 1 

in (2.28) immediately gives 

(t.3) 	— -Tr 	Ss) (La) — 	L.)) 
i.e. ImR (o) is an odd function. 
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a 
Now consider the surface f-sum rule, or the 

1/2., 	as 	o - • (2.31) 

case 

28 

So far we have complete analogy with bulk systems as 

considered by Nozieres and Pines, 1966. 

Moments 

We define the n moment of the system to be 
00 

0' S5(.1) au, 
O 

where the special cases n =--1 corresponds to the perfect 

screening.sum rule, and n = +1 corresponds to the f-sum 

rule. Put GI =0 in (2.28) gives 
00 

c„.3f 
0 

By utilising the quantum analogue of the classical image 

theorem (see equation (2.20)) in the long wavelength limit 

fiLtg (0) 	- 1 
9 ° 

as in the classical theory. 
CO 

Hence (2.30) becomes 

( S) 
(.2. 2 9) 

. . (2.30) 

n = +1 in (2.29) 

eat S W s g Go) d am, 
c, 0 cEi Z-1 	fdi e_Q4f e. <0  
9 

if CO hip (4 -9 j 9 

Ce)PT (t2) 	— • (2.  32) 
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where H is the Hamiltonian of the system, taken for 

simplicity to be of the form 

PL z" 
24,1_ 

where pi  is the momentum of 

and V = V(r, , 	r,) is a 

with 	= 	tzi.), 	i = 

We can rewrite (2.32) as 

V 
+IL the i particle of mass m 

position-dependent potential 

I, ... 	N. 

v 

QTr. _ 	‹. /1.1 	<rt.1 71910> 	(2-334 ) 
ti 

where 	 -4- 	 . (1.330 
Pit 	= 
	1-4 c 

Hence 
eCti 63) 	<o 1 	J, It 	1 0 > 

9 
. (2.34 

Since 11  can be replaced by l_1  without alteration of 

symmetry of the problem. We make use of the Lemma in 

Appendix Atto write (2.34) as 

= TI7 r ‹ol e(s  i- i co (-L1 44601G> m_51 
where k is the unit vector perpendicular to the metal 

surface. 

But 	(z) 	4S(E-2i.) is the substrate electron density 

at z 
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As Q-.0, we can approximate to a uniform charge density 

and obtain the limiting form 

11r4. 	zut  ( T) = 63-s  

o  
where n= the number of electrons per unit volume, 

(.3's = 	63F/45- 

9:1 is the bulk plasma frequency. 

Substitute the Ansatz, 

. 	. 3 0 

(,;) 	 (‘A.T — (.0-0 	. 	(2, 3g A) 

for the expressions 	(2.31), (2.36) gives 

1-5,0 
which immediately shows that if there is only a single 

excitation, then this excitation must be identified with 

the surface plasmon coupling intensity. Physically this 

means that the collective resonance is the only excitation 

in the system which can be detected outside the surface by 

an external probe situated at a distance large compared to 

the screening length. 

Our results so far are extremely general and will 

therefore apply to any model of the electron system. 

The work is consistent with Gumhalter (1976, thesis). 

- 

In this thesis we are interested in calculating 

numerically the surface response function for the 

SCISBM. 
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EXPLICIT FORMULAE FOR THE DYNAMIC FORM FACTOR IN THE SCISBM. 

Our work involves calculations within the RPA which is 

wellknown to yield good results in the high density regime 

( small values of r ). We initially wish to calculate 

the dynamic structure factor 89(0) which is rich in 

'information about our system. In general, Si(0 contains 

contributions from single quasiparticle - quasihole pair 

excitation, from multipair excitations and from longitudinal 

collective modes (the plasmons). For moderate to large 

values of Q in translationally invariant systems, the 

contributions from different modes of excitation cannot 

be disentangled and Ss(w) is spread more or less uniformly 

over the excitation frequencies. However for the long 

wavelength limit ( 	) it is possible to clearly view 

the results of different excitations, as we shall see in 

the ensuing analysis. 

From our previous formalism (equation 2.23) we have 

for the SCISBM 

.3) 

CO 

CA-Ct z  
1 e172114  (fs3) CTI  + 

 

 

r 	cult  
(eix-E2.2)(92-4-111-) 

- 	381) 

RAA 
where C06,40 is the bulk dielectric function of the three-

dimensional wave vector cir--.(S)1z) and Si = Ei (v...1); ez  = EL, C0 
are Lindhard's dielectric function given by (Nozieres and 

Pines, 1966, correcting by a factor of 1 part of their 

expression for 
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- pp2-/4. x 0.52,1  xts  1   (sr' 

SCr Gani.". 

121.3  r (c.3- 	)10 ce/2.1  
clpF  i,"z  

463-- ce-hr _ 
c5:5-"z 

11 to  I  (AY- 
 7,r  viz J . 2, 3919 

and 
p F  

Tr i2 	cT 21,3  p  F 

71-:-X=Ef 	- 6s- ce/211. 
4 ce 

•Air 	ittpF — 	of 

a 	 Air 	÷c2.  
For 	Zpr 

e Olt L-3) (0---1-a/2y 
(ctp102- 

ct D 	 ci,PF 

",< 	8x  kx 
0 	 0 	r 1.0 S 

The Greek letters at the end of the expression for C.z.(1)6.) (20 3915 
indicate the different regions for (.1 bounded by the 
functional forms of q. This is illustrated in Fig. (2.2). 
For fixed 	- values Ea.  is non-zero within a finite range 
say qA, qB  where qB  ) qA. In fact 

= Pr 4.  

6:1/ 13  PP -÷ 	ypz -•- 

We work throughout in atomic units i.e. 	-R = rn 

- r'rPte/ ( t&L 	F er 	()Aar; 
Li  

C.13 co.) c. 	1)C-do r) 

KA.6 wUc. pLasin on. 

Iffv- 	Fe 	- 	in-curt en hem 

3 ca-F3-/pF2- 



where Et 
Tr 

0 

00 

el 
(e, 	ez2- (9114.,-) 

coq 

co 
c 	E2, ctIt 

Tr %.2 (e t4Ez1)(9'.4/11) 
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where re is the metallic density lying realistically 

in the range 	1 - $1 < C'., SS. 	. 

In equation (2.20) we have shown that the linear response 

function Ri(o) valid for small perturbations may be written 

as 

I 
-f 

Ca;') 4. I 

which using (2.26) and (2.38) give 

~E,f IY E 

(.Q .11-o) 

0..41) 

We note that for small a7values,via a logarithmic expansion, 

1 

and 	el ILLartr i 	(actually 1 -2.1t11, i.e. for large 

values of the frequency, the real part of the Lindhard's 

dielectric function approaches unity. Also 

e 1 (1•_._` 	0 ( 

In (2.42B) the infinite integral in E 2, can be replaced 

by a finite one since EL vanishes for large q values. 

In the zero frequency limit but for finite Q we have 

(see Appendix B2) 

C(2.1--  P2: ( j 	— Ss. (0) 	— 
.x.2. 	 /4-1'" 2- 

(2.4 3) 
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which can be (and indeed is) used as a check on our work. 

We may also make an expansion of the spectral density 

function in ascending powers of 0:5" for small Q, Gr values: 

LAN, 	515 (u3) 	= 	111.3.2.T. 	w2"  + 0( Cs-') 	. . 	, 44) 
«A 

43' 
where 

er-r 

F 

--OL. is easily obtained from (2.43) while b may be 

calculated by consideration of S;(o). The above equation 

shows the linear behaviour of S9(c...)) for small values of tx3 

63.  < CZPF ) 
Since we are concerned with the small Q-behaviour, let us 

■.1 
for interest make an expansion of E.G.)) of the form 

E9  Gs) 	 r.; 	ea..„(,) 	(c1.1 (,..) 	'LL I G.3)) 	. . 

ignoring terms of ()(q) and higher. Then using (2.40) 

and (2.26) we have 

5'13 (us) 	 Tr 
ins, gi-'(„,) 

IMMO,  
m11.* 

i G.)) 
ir (I+ 00(0)+ at(u)9)2- 	e (co),Ty- 	• • (2.. 46i9 

Comparing the real and imaginery parts of equations (2.38) 

and (2.45) yields 

Li Co) = 	
sciv 

. . . (2.4,68) 

  

cb 
()) 0_ .... 

12.(0)ta 4  el(0,,o) 
7r 

0 

 

and 

  

0 
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and 0.0 ( 	
( I 	LI 	

2 
E 1  )  

(A)7. 	
(2.463 !) 

(.4.) 2  — 
Li3r 

Substitute (2.46D) into (2.46A) gives 

•0•44-  Arm 513(u)) 	
3, ) (to  2- orz)z 

6.1)) Ter 	 zoz- (of-. a, (c.)96,SI_off-4- (L, q) 62-4 
-F4A44- 

In fact ai(o) is the Hilbert Transform of b1(0):see 

Appendix C2. Thus in (2.47) we have obtained a simplified 

form of our dynamic structure factor for values of the 

frequency higher than our cut-off frequency Qpp. For 

lower values of 0 we anticipate the linear behaviour 

(equation (2.44)). We also note that as u.)--“Ost.  .S.2 ,the 
41 

surface plasmon, examination of the denominator in (2.47) 

(ignoring the e terms ) shows a shooting up of 
9
S (w), 

indicating a delta-function type of behaviour as Q=0.0:see 

our Ansatz for S9(0) in (2.37B). 

Our (2.47) equation also clearly indicates 

6,) 
(AV C) 	 - 	(214) 

5)4 X 
We make use of the sum rules on hand throughout to 

provide checks on our ensuing calculations (Equations 2.30 

and 2.36). 

DYNAMIC FORM FACTOR IN THE SCISBM: NUMERICAL RESULTS 

AND DISCUSSION 

We have plotted several graphs of SQ(0) as a function of a")  

for various values of Q (0.25 pp, 0.5pp, pp, 1.5 pp, 2.0-op) 

for two values of the metallic density re  = 3.0, 5.0 

(Figs. 2.3 - 2.7). The Simpson's rule summation procedure 

used for the integrals, was seen to provide good convergent 
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results. For E2 in (2.42B) we had a finite integration 

range (0,A) where 

A = 	 2(z - 	12'f drI'L-k-2u) 

We split the integral E1  in equation (2.42A) into two parts, 

(0, Uplim), and (Uplim, .e)  where Upltm) 2pF  (we actually 

took Uplim = 12.0). The second integral was analytically 

handled, using asymptotic expansions for ei, E2 in the large 

limit. The "plasmon region" where E, and El simultaneously 

vanish (see Fig. 2.2) had to be carefully dealt with to 

prevent our integrals from blowing up. To prevent this from 

happening, we included a small 's' correction to e +ea"-  

in the denominator of the integral (twice) and then extra-

polated back linearly to obtain the correct integral. 

Parabolic extrapolations were attempted and compared with no 

significant difference to our results, showing that the linear 

approximation was sufficient for our purposes. 

For small Q-values, there are three distinctive features 

of our spectral density curve SQW: 

(I) The intial linear behaviour for small 0 values. We 

notice a slight 'kink' occurring around the value (...1=(.1„4. q?D 
iF 

before the curve shoots up at the surface plasmon and 

attribute this to the negative coefficient of c occurring 

in our expansion for SQ(W) in equation (2.44). Thus we have 

in the low frequency limit o463<c9N, the spectral function 

behaving linearly in w, this relatively rapid rise at small L.) 

leads to the well known result that a great many electron 

hole pairs can be excited near the Fermi level by a localised 
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perturbation giving rise to singular behaviour in the 

satellite spectra (Nozieres and Pines, 1966). Gumhalter 

and Newns (1975) have used the Ansatz 

Es, ) 	 ZS) ( CZ 	 3/1.° crt  

in this region. 

(2) We note the sharp peak occurring around the surface 

plasmon Os. This corresponds to the ' - function type of 
behaviour for Sq(c.3)(IsSiw-ws)„ Due to the finiteness of 

our Q- values, the actual value oft.) where the maximum 

occurs is slightly shifted to the right, giving us, quite 

naturally , the surface-plasmon dispersion *doh is discussed 

in the next section. These relations are plotted .for 

both rs  = 3.0 and 5.0 in Figs. (2.1N and B). 

(3) Another feature in evidence is the sharp dip or 

antiresonance occurring in the region tozo:y. This also 

occurs in a recent work by Barton (1976) who emphasizes on 

separating out the different contributions due to bulk and 

surface plasmons. This is of course in expected agreement 

with our approximated version of Si)ci(G 	given by (2.47) 

which we rewrite as 

;(a')  = 	
K9 GO (tAz - G)1.) 

where K (63) is finite as 63=, aT 

Griffin and Zaremba (1973) have derived an expression for 

SQ(63) for inelastic scaterring in the Born approximation, 

applying a semi-classical limit of the quantum-mechanical 

RPA to a system of fermions bounded by infinite potential 
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barriers. But their form involves a peak at 0= 	 as as 

well as (4=03, for a system of electrons confined to a 

thick film. It would be interesting to see how their 

general expression for R (c3) given by their equation 

(4.14) would compare with ours. 

This phenomenon of antiresonance in the bulk plasmon 

demonstrates clearly the importance of the surface plasmon 

in our model and shows that our function S(c.3) is 

dominated by surface excitations but is "orthogonal" 

to bulk excitations. 'Physically this result is plausible 

since the spectral density belongs to the response function 

when both the source and probe are outside the surface. 

We also note that in the small Q regime, good agreement 

was found numerically for our 'exact' SQ(L3) and 'aporoximatel  

SQ(G3) given by (2.47). At Q = *pp the two curves are so 

close that it is difficult to distinguish between them. 

For (,.3.7-7 	 we we are left with a tail region dying off 

slowly to zero. 

For 1 rger values of Q (=pv  1.5p v  , 2.0pv  ), 8i3(co) is 

plotted in Figa.2.5 and 2.7 (for r = 3.0,5.0 respectively) 

and we notice a change from the peaked characteristic to a 

more uniformly spread out behaviour. The dip at (.0c. has 

disappeared at these higher wave-vector values. Hence we 

clearly see that the main contribution to S (0 occurs for 

Q“) 



39 

Table (2.1) shows the results of our numerical checks via 

the two sum rules previously discussed. To check for 

the graph-101(0).i was plotted, in Fig, (2.8) where 

ki(0) 	= 	Real [ Eq ' to) -   
Egi"(0) 

tL12 -1- 	- 1  

on where the cut-off is taken in each case but we are 

nevertheless encouraged by the results. The numerically 

computed and theoretical figures are in satisfactory order 

of agreement. Introduction of the approximation to SQ(,„)) 

gave the sum rules to within 90% accuracy for CI 	( 1/44 pp) 

at high metallic densities. 

Before proceeding to the next chapter, we write a 

short section on surface Plasmon dispersion relations below. 

A COMMENT ON THE SURFACE PLASMON DISPERSION -RELATION  

Generally speaking, the presence of surfaces intro-

duces new modes of plasma oscillations, in addition to the 

bulk one, with different properties, and, in particular, 

different dispersion relations. The first theoretical 

observation of surface plasma oscillations were made by 

Ritchie (1957 ). 

The semi-infinite electron gas with a perfectly 

reflecting boundary is one model of a metal surface 

which has been-used in many calculation's involving 

the RPA and hydrodynamical -or quasiclassical RPA 

(i.e.' that which neglects the quantuM interference 

02- 	f_,, 	.,„ 
Of course the numbers are rather subjective, depending 

terms in theRPA ). Feibelman- (1971) ha's shown the importance 
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of the electron density nrofile at the surface in the 

dispersion relationship. He was also the first to show 

within the RPA that in the long wavelength limit q.4.0, 

the surface plasmon frequency as= 43r/a holds for a 

semi-infinite electron gas, independant of the exact • 

electron density variation. The only assumption he 

made about the density was that it be self-consistent. 

The imaginary part of the surface plasmon frequency 

0,460 is directly related to a Landau-type of damping 

originating in the decay of a surface plasmon into a 

particle hole pair (Newns, 1970) and may be partly due 

to inhomogeneities in the neighbourhood of the surface 

e.g. surface roughness (Raether, 1968; Ritchie, 1973) 

although it occurs for flat clean surfaces as well. 

Curves showing the variation of 61•2;vq have been given by 

Ritchie and Marusak (1966) who use the same SCISBM as we 

do, and Beck (1971) who uses the IBM ie. the full quantum 

mechanical treatment. 

In our model we are concerned with the real part 

of the dispersion. Let us assume an expansion of the form: 

cs) 	c(c, + c i 9 	0(2. df- 	. 

Ritchie (1963) used a semi-classical hydrodynamical 

approach to the problem which yielded a linear term 

in his resulting equation. Ritchie and Marusak (1966) 

give graphs of asCO ,̂9 for the real part as a function 

of Q/pfr:  and obtain a linearity in behaviour. 
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It has been suggested (Ritchie, 1973) that the 

Q-dependance of as  could be tapped in a potentially 

interesting and useful manner to give us information 

regarding the surface dynamic response function. For 

our SCISBM we give in Figs. (2.9A do B) two graphs 

illustrating our surface plasmonic dispersion relations 

for rs  = 3.0, 3.0 respectively. We see that for small 

Q (<c 1p) our dispersion curve follow a decidedly 

linear behaviour with A17c) although they assume a 

quadniiie behaviour outside this Q-range. As expected, 

this linearity is in agreement with that predicted by 

Ritchie (1963) and Ritchie and Marusak (1966), the latter 

using exactly the same model as we do. But our results 

differ from those by Beck (1971) who in his pure 

quantum mechanical approach ends up with both the linear 

and quadratic terms in his dispersion formula for the 

same Q-range values. Some data from these three models 

discussed is displayed in Table (2.2) for comparative 

purposes. 

Thus we see that our results for the Q-coefficient 

in the dispersion is in good order of agreement with 

Ritchie (3: Marusak, as expected, rather than Beck. The 

main reason we give for this is that the surface 

plasmon dispersion relation is sensitive to the electron-

density profile at the surface (Bennett, 1970) although 

in any case for Q 	0 it goes to aeir- ta, . 	In our 

quasiclassical calculations (same as Ritchie and Marusak's, 

1966) the density has a definite jump at the boundary, 
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whereas for the semi-infinite quantum mechanical RPA 

case, the electron density goes smoothly down to zero. 

Krane and Raether (1976) have experimentally' 

observed surface plasmon dispersion using high 

energy electron loss spectroscopy on aluminium 

and the results are notable for the initial dip 

occurring in the graph of ZsCfp,...,(;)  indicating that 

al < 0. This was earlier predicted by Bennett (1970) 

through a hydrodynamic approach, and later by Beck 

and Celli (1972) and Feibelman (1973) through a more 

realistic finite barrier model. Beck and Celli use a.  

variational method while Feibelman incorporates 

self-consistent jellium values of the work function 

together with a surface diffuseness parameter, a, and 

illustrates the sensitivity of the dispersion to a . 

In the limiting case a-4.0, his results extrapolate 

back to those by Beck and Celli. 

For interest we examine the perfect screening 

sum rule given by (2.30) using our small 

Q-approximation for S4(c) 

i.e. 
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etpte re c,(.) _1,,,K9(a) 	_ vz  { 4 CO —1  	From (Q.40 
0 G.) 	9-)0 	 6,1(0) + I 

= 	1/2 	 t.„. lute, e 	a, 	IS 
Gi eft ...set 	n (.2 . 440 Co) 	t 

1/2- ( 1- - 61.1(0) 9)1 

= 	(l 	Za, (0) (s) -+ 0( ts)z)) 

Cb 

Vt. 	ac cfciLaLl(0.) 

1T 0 (1-1.(1+ao(b))4-ailbi)cpy".-01.(w)02) 

Scar 	Sn,atL 	- values. 

....2a1(0)(s) 
e_ 

. 	. 4 9) 

The L.H.S. of the above equation can be quite easily ehecked 

to give consistent results for the zeroth-order term in Q, 

by calculating the residue near Os (actually given by the 
dispersion relation). We can rewrite the L.H.S. approxi-

mately as 
Gb 	4 

— 	 (631'44)  
Tr 	tzL(tosz- W ÷ SL-6:1.1 02- 	19)21/ 0 	4 	4 which has residues occurring at 

gtri Coltal 7.3-S ( I -- 	(a., 	6,) 	L3  0, ) 
e Xi) CU" S., 0 

where al' bI are evaluated at G) = Ws. 	
• 	@.50 

Taking an appropriate contour in the upper half of the com-

plex plane and calculating the two residues at Urm±t03(11-94.T6 

and using Cauchy's Integral formula gives the required answer 

of ; to be the value of our integral. 
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The equation (2.5o) is the same as that given by Newns (1970) 

in his equation (91). To relate the Q-coefficient viz. 

in R(0) to physical quantities, consider a static point 

charge (e = 1) applied at the point (0,01d) outside the 

surface of the metal. Then the response of the system will 

be such as to produce an image charge equal.in magnitude but 

opposite in,sign at the mirror point (0,0,-d) inside the metal. 

This is in accordance with classical Physics and is valid 

provided d is larger than the characteristic screening 

length of the metal, which is of the order of the inverse 
Fermi-Thomas wave-vector 	. Take the virtual image charge 

density to be of the form 

( x z) = 	5.  (7 °t)  
Now the potential due to the charge satisfies Poisson's 

equation: 

v2  # 
which solves to give the potential of the image charge to be 

air - 
(1)Z Ca La) 	 QL 	R (4,3) 9 

Take to =0 limit and the exponential form for R ( 4), 

_ 	— (1) (d 
C1)„, (z, 

<4. 

The "effective surface" is seen to be at z = -a l(0). Thus 

in the case of adsorption where d is microscopic, the simple 

classical formula may be used as a first approximation for 

adsorbed species of relatively large radius e.g. adsorbed 

caesium, provided d is interpreted as the distance from an 
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effective image plane. In our model for rs  = 3.0,from 

gradient measurements of logRW-,-Q we obtain ct.,(0).1.160..u..::: 0.61A' 

(since la.u. = 0.529A) in excellent agreement with Newns 

(1970) graph in his Fig.? which is a plot of a---v-3  for 

the truncated electron gas. A point of interest is to 

note that a change of sign of the Q-coefficient in R (0) 

results in a similar change in sign of the Q-coefficient 

in the dispersion relationship. The numerical results in 

our calculation for r s  = 3.0,5.0, give a1(0) = 1.2,1.5, 

a (w) = 4.4, 6.0 which strongly suggests the relation 

Q- (o) 	4*-1<7 	at (c'.3-1) 

or 	dm tat e& oF effecruo 
fr 	

_ 	 of  
( ,e3c 	

9
SVrfaci. p Laom 

1i.Lr pc- c..e. 	 du) tr *Ad 10 CM JC.. 

This gives some information to us connecting the surface 

,,plasmon dispersion relationship from a purely abstract 

formula to a concrete physical concept involving the static 

surface response function. It is of interest to note that 

this argument - adcounts'for the sign of 'the Surface - plasmon 

dispersion eg. in the ISBM and jellium models both a l(0) 

and al(as) are positive and negative respectively (Newns, 1977). 

"We'leave this asa.tentative'Suggetion. rather than an 
- 

obvidUs statement of fact. 

With this we conclude Chapter I. We believe our graphs 

-of S (w) to be the first of its kind to be pilblished, which 

naturally leaves little or no scope for diredi comparison 

with other work. In the next -Chapter we proceed to discuss 
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the intrinsic satellite-spectrum of an adsorbed, atom, 

a quantity which can be directly compared with 

experimental data rapidly emerging from various 

laboratories scattered in different parts of the 

world at the present time. 



(i) LEMMA:  
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APPENDIX A2 

,—  2 74— V‘ 

01- posAton 0-re. 

PROOF: Let 4 be a wavefunction depending upon position 
co-ordinate alone, and let 

— ,fc 	— 	 5K JCL)14)  = 	( 	c (5e_ 	— 7,12" (P-1%4- At• 

Using the standard result that 

ci 	0720. 	'cir6 

for scalars a,b, gives 

t SK * 	2itc. 

Now i = j, otherwise _c4 =0 

C,  4 	2 ( 	. 	(5,10 — 5Kv-r— c7 

9. 	(-1.) v, 	-I- 5,14 vi. /4) — 	v, 

Now i = k, otherwise again 0. =0. 
Q s r e4 aire cl 

This result is used in equation (2.34) 
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0) Statement of Green's second identity or symmetrical  

theorem (one version).  

If f and g are scaler functions of position with 

continuous derivatives of at least second order, and 

V is the volume enclosed by a closed surface 8, then : 

THO 725  vz0v 



.. 	G9' (0) = 	
11- 	0 4- t:,) 

We use the Fermi-Thomas approximation that 

— Ot 

2. 
= 0 
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APPENDIX B2 

Ss (w) 	
a 

See. (4. /4- 0 
(E, 	.4. E2., 

dS9G0  = - z 	02+ E2)tE4y _ 	 2„dEak) 
cu 

 

But at 	=0, Ez= 0 

(qi 	-P Ez2.) 

aen 

2Ac4,12- 
00 

E I  Co) 	e-`- 	2.9 1  (114 	L.9 ner`l 
J 

tirms 
cz't 

CO 

.•••• 
■IMMD 

(SY3-  /12-  X1) 

x 

Ti 
 f 

01 41t7-) el2" 

ifis et 

.PF 	(S24141 4 )‘1)14F---  " .1,11-.  

Now 
1.1- 4 o 

since 

e 2. ( to) = 4.) 

92+1.2Y`z 

N2/2, 

and taking  2p as our cut-off. 
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We can rewrite E as 
ar, 

fc1. c't 1. 	(92.,12.4.  x) 

Now use the substitution 

c 92- -e 
otj  

(Taz,v) _ 
0 

= W sxr 	 	 0.7 4,, ct>. 	 ( (T4AI — Kx) 
where 

= fF  
14T2-4(4.3- 

This reduces exactly to 

1J40 	6.3-19 	42. k Z.  

(5)2  + XL) (V--t- 

*2- XI)  Lc) 	-0"  -1- 

A%•(sia+X3-) 	 — K X 
Expanding out the logarithmic term and making suitable 

approximations (for small Q<<) , it=t-1) we obtain 

a '9 	_ 	1.030"_ F)—  — 100  2" 	)) 
.2,fF 	efft 

Substituting back into (B2.1) we get 

(0) = 

as required. 

.\) — 	f.2103 — ) 41V- Tirf   

Using X<< Dip  , this reduces to 

s (0) 	= 	 to 	— 	toj (2 x) 

as in Gumhelter (1976) 

Ex 
	1.1-1 0 
	Q 

E2. 
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APPENDIX C2  

We assume an expansion for t.(13() of the form 

Es3-'  (,a) 	0-1 (S) -A- Q-2. 	+ 	) 	( c) 	1;) 	 . • • ) 

E , -t- 	E z 	 (e 2..1) 

Using the standard Kramer's Krpnig relation (see Ichimaru's 

or Messiah's book), 

E 2. CI:3), ca) dual  Ei (1i)(01) -  13 P 	) 

Since we have split E19 132,  into a series of ascending 

powers in Q, we equate the relevant co-efficients of Q 

(assuming this can be done) to obtain 

I' cLot G41' 
-Cd c.%) —c3` 

. (c2.3A} 

ht. 
-rr 

P 

V = o i l, 2, . 

(c2..4-A) 

L. ( S 
_ ((AY 	 SGY't 

•• • (C.2 .4-8) 

can easily be seen to satisfy (C2.3) 



(c .58) 

- tar) c3.0.1.• 
—co 

4-, G., 	co) 
la" 0 

, indicating  the singularity at I.% 
4.7"71.(as-ki)j 

The first part of the integral in (02.5B) then becomes 
wz 

• 
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We know a., CL.) = 
_ ao 

te_12- 	clov.  
. . . (C.Z.6A) 

To obtain bi  (0) we have 

C(' 	I  ((i) 	-Er 	tee-  (43.L.
V 

 $1:4) atar 	
0 

ignoring aca-i-Gyr) since we are concerned with 01-aterms. 
cc co 

. sc,,ar)  'It%  
0 

itkz 	 D.Ar?  0 
.:0 

 L 1(1-Tr  4  S(ta--cs0 - iciz) Li (w) 	 e„. 

O 

Inspection of (C2.5A) and (02.5B) show them to be Hilbert 

Transforms of each other. When .umarf , by definition S(tz-ar)=0. 
But around the plasmon frequency (02.5B) hold.. One can 

replace the delta function by a function 011,t6..T-4-.,0 

zrri- 
which is a Gaussian or normal probability function with 
the properties 

• 

(see Butkov's 'Mathematical Physics' p• 231). 
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APPENDIX D2 

AIM : To relate the Kubo formula for R„((2) given by 

equation (2.5) with the expression in (2.24). 

Method : We know from the image theorem that 

R GA) vd
1 
 (s) (0)  

U4 Ca, EA) 1 e_,E2, 

2ir -Ta 
-(-1)  

From equation (2.11), using appropriate Fourier transform 

(X4Q) we have 

(4' -W 

	

: 21E 	 e_ 	(e) e ) 

Substitute in the commutator expression for 144(zcz",4) 

(see 2.5) and we get 

	

ZrL 	 L (3.2,0) JD = 	 J 'A 	3  

where 	Pi C) 	 (-1-1-L) 
as in (2.25) and assuming 

(L') 	17- 	g Cr- -1.-) • 

*0 	0 



1 

00. 	 0.■.• 	 0...■••■•*,,,■•■ /0101,  -•■•• 
0.0000.  

.0* 

•

\ 
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FIG1 	s) 
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CHAPTER III  

THE XPS SPECTRA OF PHYSISORTM ATOMS 

The aim of this chapter is to discuss and give numerical 

calculations of the intrinsic satellite spectrum N.1.(.:3) 

for the core level of an adsorbed atom residing on a metal 

surface. Gadzuk (1975) has given an informative review 

on the electronic and geometrical properties of surfaces 

with adsorbed gas monolayers using both field and photoemission 

theory ( FEED, XPS, UPS ). 

We are mainly concerned with X-ray photoemission 

spectroscopy (XPS) as opposed to ultra-violet photoelectron 

spectroscopy (UPS). The photoemission of electrons 

occurs when a solid is irradiated by photons with energy 

where 4. is the work-function, some of which 

are consequently emitted from the solid. The energy 

distribution of the ejected electron is related to the 

electronic states of the solid both before and after 

photon absorption (and hence hole creation). Now the XPS 

method is an experimental technique which is being 

rapidly developed for probing the electronic structure of 

adsorbed species. The experimentally measured spectral 

density curves are closely related to the spectral densities 

of adsorbate orbitals. 

In particular, we focus our attention on the excitation 

of the core level of the adsorbed atom. In photoemission 

where an electron is swiftly ejected from the orbital, 
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a screening effect is caused by the interaction of the 

hole left behind with the substrate electrons, causing 

readjustment and giving rise to subsequent relaxation effects 

appearing in the measured spectra. The concept of the 

relaxation shift (i.e. the characteristic shift of the 

adsorbate energy levels relative to the gas-phase 

levels) may be understood by considering the very slow 

or 'adiabatic' removal of an electron from the core. Its 

energy level then suffers an upward shift that is relative 

to the gas phase level, and this is termed the relaxed 

level. It is an inherent consequence of energy conservation, 

since the Coulomb interaction between the hole charge and 

remaining polarized electrons effectively lowers the 

total energy of the ionized system. Hence the ejected 

electron must emerge with a greater energy than would be 

inferred by a 'frozen' electron picture. 

On the other hand, intrinsic satellites make an 

appearance for the sudden removal of the electron. Thus 

we can essentially summarise as follows : 

a) The relaxation shift is due to the static response 

of the electron gas to the core hole potential, 

wheras 

b) The 'shake-up' or satellite effects occur due to the 

dynamic response. 

These two processes, far from being independant,,are connected 

through the Kramers-Kronig relation given by (2.30), rewriting 

SS 

E.9 Co) 
	

R49(0) czt,z- 



67 

To zero-order, this adsorbate screening energy is just 

the quantum mechanical generalisation of a classical image 

potential shift via. v = e.,/,44, which is the work needed 

to remove an electron adiabatically to infinity. 

Before proceeding on to the mathematical formalism of 

our problem, let us briefly distinguish between the terms 

' intrinsic' and 'extrinsic' as follows : 

1) The intrinsic satellite structure (or shake up effect 

as it is sometimes called ) is the result of the 

screening of the suddenly created core hole by the 

conduction or valence electrons, 

whereas 

2) The extrinsic structure arises from the energy loss 

of the escaping electron via plasmon excitation. 

For high energies of the escaping electrons these two 

processes become independant. The coupling of fast 

photoelectrons to substrate excitations is inversely 

proportional to their velocity and thus one expects that 

the effects of the intrinsic interactions to be dominant 

( Harris, 1975) in the observed spectra. Mathematically 

we can distinguish between these two types of spectra by 

a factor of the inverse frequency, c , where the intrinsic 

loss spectrum contains an additional factor of 	6Y_
1 

 

relative to the extrinsic spectrum. This is in accordance 

with Ballu, Lecante and Newns (1976) (note the 	c312- 

appearing in the denominator of the forthcoming equation 

3.16). Thus although intrinsic and extrinsic plasmon emission 

yields satellite at the same energies, their relative contribution 
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or intensity is different, thus permitting their 

separation. 

MATHEMATICAL FORMALISM 

Basically we wish to derive an expression for the 

imaginary part of the Green's function in our model which 

is directly related to the density of states Ni  (0) of an 

adsorbate orbital as follows: 

N, 	 GI cup- 	 -(2-1) 
where G is the core Green's function in the representation 

and 1 is infinitesimally positive. For simplicity the . 

absorbed orbital is taken to be spherical with centre 

located at ( 0,0,d ) outside the surface. We focus 

our attention on the spectral density of weakly bound 

adsorbates involving finite screening length, relaxation 

shifts, line asymmetries and shake-up effects. Our 

calculations are believed to be applicable to long 

lifetime adsorbate levels of physisorbed species such as 

rare gas atoms e.g. Xenon (Xe) and Neon (Ne). 

Let us write the Familtonian in the form : 

= 	ECG c_ 	Lim -I- 	(a) • 4. • 

where the index c denotes the core level of the adatom, 

denotes the Hamiltonian for the metal, n =Ol e where c,c: are 

creation and destruction operators e.g. c destroys an electron 

with energy ec  in the core state ic. Assume the metal and 

adatom densities and wave-functions do not overlap. So the 

only coupling between them is electrostatic in nature (given 

by the third term in (3.2A) where e is the charge 



69 

on the adatom. This represents the Coulomb interaction 

between the adatom electron and metal electrons. nc  
, 

commutes with H but (1)(a) does not, since H ti  contains 

terms involving kinetic energy. 

Let ra = (0,0,d) denote the position of our adatom 

and 	be the position of the I 	electron in the metal 

substrate. Then ib(a) can be written as 

g0 (a) = 2 	Ira-rd 

where N is the total number of electrons in the metal 

and e = 1. 

Due to the orientation of the Cartesian framework system, 

we can drop the modulus.sign and rewrite in Fourier 

transform notation as 
r crgt-1.7.:) 

(a) 

=  
r  (Qt-tle') 

By converting to polar coordinates we can show that the 

integral over qv.  becomes (Gradshtein and Ryshik) 

2rr 

Qd 

(P e" 

using the definition of tit)  given in (2.24) and since X.I.-=(0)0 

Now use 

I ax 	
4i1-1_ 74. 
A ci) 

where A is the unit area. 
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c/7 (&) = 	7: 4, efcict 

This now gives us a well defined Hamiltonian in (3.2A). 

We define Green's function for the adatom core 

orbital as 

C. 
	 <01 -r c ct) c.:00) )0-7 	. . 0.3A) 

where 10) is the ground state of the full Hamiltonian H, 

and T is the time ordering operator (from any standard 

many-body book e.g. Abrikosov et al, 1963). 

Use the equation of motion for the operator c(t) : 

For convenience, take 	0 in H in (3.2A), then by 

taking e = 1, we have 

c CO = 	Le  

. 	

J 	I 

C CO 	.=. 	c..(6) ex'  1 C 24.  1-  el (Pi CO stE-] . . 0.3E6 

Substitute (3.3B) in (3.3A) gives 

using the properties of the fermion operators c, ct. 

Suppose first of all that 4 has the property of a 

Bose displacement operator. This seems to be eauivalent 

to the RPA in the present problem. We use the theorem 

stating that <exp(i(o(b + cetii- ))'› = exp c-1 

where b, bt  are Boson operators with coefficients o() 

respectively (proof found in standard quantum mechanics 

text books e.g. Messiah). 

0 <0 I ex Z+edf4 voallo) 
(.3 39 
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Hence we can rewrite (3.3C) as 

c. 	= 	- i. e co ecce tc(0.1 , 	,,6„. 
	111 

cco 	= 	i  itt Cary;  eza""ifcte,fal  < t(o cl ,( t 3> - 9.. Tv 4,3431 	0 	. 
and the ..i..0(c) in front of G is Green's function for the 

non-interacting electron. Using the property that 
C t 	 te.■ 

2, c)(, --t1)id17:1 	01.E2_ (e i , E2) 

J 
(3.31) 

o 	 0 

	

provided f (t,, t2) = f (t2., t1 ), and writing 	cts.R1 = top soe 
and 

C(e)  

cs) Ca
l
)

sed 
e- 	. . . (3.4) t, 

— 	(11r) 	Ai fait 0 &■-L.) < +.9(t) chip(t 
0 o 	 . . (3.10 

Recall definition (2.24) for the linear response R(1Z(t) 
 

The time representation of the surface response function is 
cn 

R-9 (t% 	— LG(e% --  Et)jrcz S9(,0 
0 

G 	Ed2(e..,)E!,--AL•. —E2) 

0 

Substituting in (3.5A) and utilising the time ordering effects 

gives us 

C (t) 	— oibt abi 
(3.50 

ev 
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Rewrite (3.50) as 	
Co 

C(0 	= -- 274 vi2- 	
c2.(1...(3.53) 

0 

where 

= 

Our method is similar to that by Doniach and Sunjic 

(1969). Methods for the derivation of an expression 

for Ni. (c,3) have been given via Feynmann diagram techniques, 

discussed in detail by Nozieres and Dominicis (1969), 

subsequently by Langreth (1970) 	- Gumhalter (Thesis, 

1976), 	and -Brenig (1975). 
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Then the first part of the integral involving c1(c.) describes 

the transient or instantaneous response of the substrate 

electrons to the applied perturbation i.e. if a hole is 

created in the adatom orbital and then the interaction 

Hamiltonian H' is suddenly switched off, this term describes 

the readjustment of the system in the absence of the localised 

perturbation. This ciW term thus gives rise to relaxation 

or shake-up satellites where in this sudden limit the wave 

functions of the electrons in the ion core are a continuous 

function of time viz. they do not change with the perturbation. 

The second term involving c2(a) in the integral (3.5D) is the 

adiabatic (or 'long time ') response of the substrate electrons 

to the applied perturbation. 

Now from equations (3.1, 3.5A, 3.5C) we have 
0 

N, CLA) Reca. f at 	 eict) 
m- 	 - • (.3.6A) 

where v432,  Scit.s,a) 
9 

R63(0) 	 sreqszct 
2.. c9 	 Strta_ntAl  

3.‘13) 

In the classical limit v.= e i,,,t(this is for small Q- or large 

d-approximation). This is the static interaction energy of 

a point charge at the adatom with the surface. 

C'(t) is just C(t) as in (3.5D) without the adiabatic term Cz(o)Le. 

o 	 , 	. 

Making the approximation 
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+ T(03) 
4A3A-,r-,1)t 

- 	Re e- 

in equation (3.6A) we have 
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where 
o 	03 
s 	(w -v 	e 	IS L S (GO ( Z.4 V9 463- ..1--- 

T(L11) 	 (=411" 0 
Interchanging the order of summation and integration, 

0 	 0 iC~-Y- 	EN - e lr 	
S'D 	(63 ) - J 

CO 

= 	\Itt atz'Si(4-0 r ( 	_ 
ca_vaot _. (3.6 

Thus from (3.6D), (3.6a) 

Z' Vs' (3(3.,1- u) 
(A*3- - v-)2. 

since the term 	 -------- only has non-zero imaginary part 

for 1.3 equals v from the standard result that 

qv, 0 10 -0- "+: 

Now consider the case .13.-1,40. To obtain an .analytical form 

for 7+ (co) we make use of the Ansatz for S (tx) -  

— .`"/<=1,,, use_ 	591 (0) 

which is valid for 0.<i-oil , where (AK= Pr/2A . Put (3.8) 

in (3.6C) gives 

xr) -/- 	tris S cs - tr) 



- - 	to) 
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GO 
c: (e) 	-= 	-- 2:: Ni 2' S I (o) d? .42? 0 - c:'-'9 — 4̀'4A'm e_ 

i) / i. co . 

.9 F) 

where 	
s, (co 	_ _ .(3.90 

and we have made use of Frullani's Integral which states 
03 

f -t-e_ CE.) 7 0 

Substituting (3.9A) in (3.6A) we get 

i.(cz-v)b e_ + Q -t- Lczin  e)Ir  
This can be evaluated exactly via a contour integration 

(see Appendix A3) to yield 

_C'—ArYtze, 
--10-4  're 

rt (r) con,r.  

" ' L̀')/(g az  FPI) 

AD- 

where 

I 

 

and F00 is the Gamma Function. (Gumhalter and Yewns, 1975) 

For convenience we have taken the unperturbed adatom energy La 
equal to zero 

Substituting (3.4) for Va. in (3.7) and using 

21.1-3 gip 

gi4es 	 00 

tNi+  Ct.)) J ct9 e" S9" 0 
(3.12  

which is our perturbational result for the density of occupied 
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states of the adatom in the Born approximation. Thus for 

values of the frequency away from v, this is just the 

Laplace Transform with respect to the spctral density of 

states S (0). Examination of (3.11) shows an expected 

sharp cut-off of the density around cJJ =v. This divergence 

is called the infra-red catastrophe and arises as an 

inherent consequence of the 'Anderson Orthogonality Block' 

which occurs whenever a large system responds to a transient 

localised perturbation (Anderson,1967). For very large 

values of d, 

( 
	

0 
-ar CO 

which indicates a delta function type of behaviour experienced 

by our spectral density near -0- =v. Around the electron-

hole continuum we can easily calculate the first moment 

contribution to N+(0) around the line 0 =v i.e. 
cr. 
f (to — 	el C"'-‘134.5`r* 0La 

ttLi 	= 
11 Or)  

4~1d2 
(.O 3 (1.59 ad) 
	

3. 13) 

4(11° thus depends on the distance d and the Fermi-Thomas 

wave vector 'X , alone. This static type of behaviour 

is in order as we are concerned here with the spectral 

density behaviour in the static limit viz. as-,>0. Now 

the sudden (or irreversible) approximation for switching 

on the core hole, appropriate for our intrinsic satellites4. 

gives the 'zero work' sum rule which states that the first 
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moment of the core XPS spectrum lies at the gas-phase 

position of the core level. This is easily seen from (3.7): 

00  

S ((,.1 -v) 	(-3) a.) 
	

V2 	Vs -  R cs (c) 

. (3.114-) 

Alternatively if we use the Ansatz for S (La) appropriate 

around the surface plasmon. 

yews 	— t.Js 

in (3.12) and integrate over W from zero to infinity, 
60 

Gs) J.0 	.1Ycos 	. • 0, r5) 
0 

which gives us the strength of the satellite peak due to the 

surface plasmon relative to the elastic peak in Born 

approximation (we take 0'=0 to be the elastic threshold). 

This is a good check which we make use of in our ensuing 

numerical calculations of N*  (d). Our results apply to 

electron propagators. Similar results involving minor 

modifications (change of sign in t) can be made for hole 

propagators to calculate the density of unoccupied deep 

states (Langreth,1970; Gumhalter,1976). We do not elaborate 

further on this. 
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NUMERICAL PROCEDTTRE AND RESULTS  

We work in the region W7 0. From the previous section 

we summarise the formula used for N (kz) as follows: Jr- 
-47- I 

14 4. (..t,•-.) 	( to) 	. 	(„1 
11 CI) 0:„T 

Y3%  faq 	 "i'(''") 	- • (...) 7 (3.1 

0 
where we have taken, for simplicity, 

- V2, 22,vsz Rs  (o) 	0 
9 

which involves just a shift of the origin 501-43. (Als 

our 'cut-off' frequency equal to '/ j  which separates 

the electron-hole continuum from the plasmon region and 

the t parameter has been previously defined (see equation 

(3.11)). In the region C< AH  we use the approximate 

version of Ni.(a) obtained by use of a simple exponential 

Ansatz for S (0) while for larger values of 0 , the 

problem reduces to simply evaluating  the Laplace Transform 

of S ((4). The behaViaar2of the spectral density function, 

89(0), was plotted for different rs  and Q values in 
Chapter I. To facilitate computer calculations we used 

the small Q-approximation for S (0 given by equation (2447), 

in equation (3.16) above, which is valid upto value's of the 

bulk plasmon frequency 01?. We do not extend our calculations 

beyond this value of the frequency. As we are mainly 

interested in the behaviour around the surface plasmon, 

this justifies our approximation used. 
We have carried out the numerical evaluation of N (0) 



79 

given by equation (3.16) for the values of the metallic 

densities rs  = 3.0, 5.0 and two values ofthe adatom radius 

d = 2.5, 4.0. The graphs are plotted in Figs. (3.3), (3.4) 

as functions of increasing frequency 0 where all quantities 

are in atomic units. The small d-values and the low electron 

densities considered are in effect to maximise the non-

classical behaviour of the system in which we are 

interested. Two distinct features of interest arise in 

our curves: 

(1) The small -0-behaviour or the divergence occurring in 

as 0-“). This is a non-classical phenomenon and is 

basically the infra-red singularity of power law 

type 1.4!,..r  (since If< 1 within the range of metallic 

densities r = 1 to 8 and d = 1 to 8, from Gumhalter's 

thesis, Table 1). For small y 	1174,r . This 

divergence in the Born approximation limit is due 

to the linearity of St3(0) for small -tar-values (as 

Previously discussed in Chapter II). Suppose that 

in a general model 

where a is a constant and /1).0. Then by considering 

the ' non-shift ' part of the integral in Nt(o) i.e. 

that involving ci(0) in equation (3.5D) we find that 

for n<1 the integral diverges at the origin giving 

an infinite cmOribution whereby the problem is 

insoluble, andwe call this a 'super catastrophe'. For 

_.values of n> 2 the low frequency modes give little 0Qntribqtiop 

and so we have no catastrophe. But for n = 
1, the 

intearal is convergent and logarithmic in behaviour 
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and results in the infra-red catastrophe. Mahan 

(1967) suggested that the X-ray spectra of metals 

should be singular near the threshold according 

to the power law Ga where 	is a dimensionless 

coupling parameter describing the interaction 

between the conduction electrons and deep hole 

left behind. He did this by annroximating a series 

to an exponential and calculating the first terms 

of a perturbation expansion, which gave a power 

law rather than a logarithmic singularity. Nozieres 

et al (1969) confirmed Mahan's prediction of 

threshold singularity within a more accurate many-

body approach and suggest that a large coupling 

strength 4 may lead to a zero amplitude at the 

threshold instead of a divergence through a broadening 

of the spectral density function. We are,however, 

concerned with the weak coupling limit. 

In 1970, Doniach and Sunjic discussed the photo-

emission scattering cross-section which, in an 

asymptotic limit for long times, reduced to an 

expression proportional to - where 04.41 is 

related to the phase shift for scattering of conduction 

electrons from the hole potential. In practice, 

one cannot see the small ix-divergence due to the 

finite lifetime of the core hole except as an asymmetry 

in an otherwise symmetrical lineshape of the 'elastic 

peek'. 

In our computer curve calculations in this small 
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ti--region we obtained excellent agreement with the 

Ansatz approximation for N1(4,3) and our approximation 

for N (w) (using the 	approximation) as well as 

with the Nt(w) calculated using the "exact" form of 

SI( a) given by equation (2.41) in the last chapter. 

Around the surface plasmon region far too much 

computer time was being wasted to obtain adequate 

convergence using the "exact" Sq(Q) , hence our resort 

to the simplified version for 89(a). 

(2) The second distinctive feature of the graphs is the 

behaviour at the surface plasmon, which we see by 

noting the change of scale applied is a remarkably 

narrow satellite with width only of the order of 0.1(Als 

It is interesting to see the resulting asymmetry 

occurring in the surface plasmon peak. This is due 

to the positive surface plasmon dispersion in this 

model as discussed in the last chapter, so that the 

surface plasmon resonance lies in the region (33 	. 

The form of the peak of N4.(.3) for c.171..rs  is approximately 

exponential, a result predicted by Harris (1975), 

although our curve contains information on the 

damping and intensity fall-off effects. 

Checks were made on the calculations throughout by 

evaluating the area under the surface plasmon peak in N.t.(0), 

and uff*(14 by a Simpson's rule procedure and the results 
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are set out in the comparative table 3.1. From this table 

we see that 55-70% of the classical intensity 0X.35  is found 

in the calculated satellite (pt ) although of course the 

cut-offs taken are entirely subjective (tail corrections 

are not allowed for). The area under the surface plasmon 

peak involved in the first moment of N(,a) given by pa.  

in the table gives about 57-76% of our numerical estimates 

of v. 

As d increases we note that the peak of the curve 

shifts down as expected and there is a tendency for the 

peek to narrow down i.e. the surface plasmon width seems 

to have some inverse power relationship with the adatom 

radius d. Referring to equation (3.16) we see from 

the factor e_ that as d increases, Q correspondingly 

decreases and so the frequency dispersion relation 

tibci  approaches the surface plasmon frequency eas , thus 

narrowing the satellite. 
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CALCULATION OF XPS SATELLITES FOR TRANSITION METALS VIA 

A WAVE-INDEPENDANT PICTURE  

Let us assume that S (0 = SO....)) i.e. that the spectral 

density is independant of the wave-vector Q. Then from 

(3.16) we have 

ki+ Com) 
SG), 

= 	
a D.,  	@.vT) 

which is just the linearised form of (3.16) in the limit 

but at finite 0 . In their 1976 raper, Ballu et al 

plot a graph of the extrinsic -171---art.e: 	"%of 0 	for 

molybdenum and draw attention to the surface plasmon peak 

occurring around G.N = 1.35eV or 0.045a.u. This should be 

an observable satellite in the XPS spectra from core levels 

of suitable adsorbed atoms. 

Using the data on the dielectric function from 

Weaver et al (1974) we have made a plot of N..k.6.4 

given by equation (3.17), for molybdenum and tantalum in 

Figs. 3.5A and 3.6A, taking d = 4.0 au. For molybdenum 

we notice the surface plasmon peak at t...N = 0.045 au. 

(1.23 eV) and other weaker peaks at 	= 0.34 au., 0.72 au. 

(i.e. 9.25 eV and 19.6 eV respectively) which agrees well 

with experimental results where peaks are observed at 

1.35 eV, 10.1 eV and 19.0 eV (Ballu et al, 1976). An 

estimation of the area under the main surface plasmon peak 

is 0.11, using cut-offs at (.3 = 0.02 and 0.10 which are 
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purely subjective. This is an encouraging result as we 

expect that for xenon on molybdenum this satellite. should be 

about 10% of the total area under the curve. The area 

under this peak in a plot of GoN4.(4A_L,3 is about 0.05 

which is approximately 80% of the classically expected 

result 1 	( = 0.0625 for d = 4.0). 
4d. 

Examination of Fig. (3.6A) for xenon on tantalum 

shows a surface plasmon peak occurring at GI = 0.062 au. 

(1.68 eV) and other weaker peaks at (,.1 = 0.27 au., 

0.46 au. and 0.58 au. (7.34 eV, 12.5 eV and 15.8 eV 

respectively. The area occurring under the main peak 

is 0.09 between the cut-offs c3 = 0.03 and 0.11. Again 

the 10% of the total area under the curve occurring in 

the main satellite is encouraging. 

Fig. (3.7) gives a similar plot for the intrinsic 

spectrum of silver with d still equal to 4.0 au. The 

data for s(W) is taken from the 1962 paper by Ehrenreich 

and Phillips where the real and imaginary parts of the 

dielectric constant for silver are plotted. The surface 

plasmon peak is pronouncedly sharper than that observed 

in the calculations for molybdenum and tantalum in Figs. 

(3.5A) and (3.6A). and occurs at CZ = 8.5 au. (231 eV), 

An analytical areal estimation under this peak gives a 

result of 0.19 which is rather high compared with the 

previous two cases above. 
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For the three cases just discussed, subjective 

difficulties occurred in accurate estimation of the 

data from the small graphs in the various papers as 0.3-40 

and so we avoid going too near this point. 

Next we convolute the expression for N4((.3) given 

by equation ( 3.17 ) as follows : 

rcIL.)  Nf  CA)  
Ci—Q) 	642.  

and further define 

Ct; Hr 	 
T.  (W- 4- F'-) 

where the A parameter is measured from the paper by 

Kai Siegbahn et al (19 	) as the width of their intensity 

curve at half the maximum for xenon 38.5,2_ 
= 0.55 eV (0.02 au.). We evaluate the integral in 

(3.18) numerically, using a suitable upper limit (,--,1041) 

which should give sufficient accuracy. By using the 

already computed data points for agul) for molybdenum 

in Fig.(3.5A1 we can plot out results for N:(13) and 

/ N NiI.( p)  as a function of p in Figs. (3.5B) and (3.5C). 

We notice that the first surface plasmon peak present 

for molybdenum in N.,.(o) still appears in N+(p) but is 

wiped out in N+(p) by simply adding  on of the Lorentzian, 

although the weaker peaks do still appear. 

Similar calculations were done with the tantalum 

data giving the same results (which are not displayed). 

N: CO = 
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Generally speaking, the experimental XPS spectra 

do not agree with the predictions of intrinsic plasmons. 

In 1975, Pardee et al carried out an analysis of the 

surface and bulk plasmon contributions accompanying 

core level X-ray photoemission and found negligible 

intrinsic plasmon production for aluminium and magnesium 

2s lines but did find dominant extrinsic plasmon lines. 

Yates and Erikson (1974) have made an experimental 

XPS study of Xenon (d::-2.5 a.u. ) physisorbed on tungsten 

(111) at temperature 120°K. Their results show possibly 

the first observed surface plasmon satellites in the 

XPS adatom spectra, which occurs approximately atas=0.15a.u. 

In 1976, Bradshaw et al report on the first clear 

observation of the coupling of a surface plasmon to an 

adsorbate core level for oxygen ( dcr1.38a.u.) on aluminium 

(100) (rsc.2.07). The satellite occurs at 10. 9 eV or 

0.4 a.u. corresponding to the aluminium surface plasmon.  

A similar surface Plasmon satellite was observed for 

oxygen adsorbed on polycrystalline magnesium ( r5 . 3.0) 

at 7. 8eV or 0. 29 a.u. They present a theory which 

separates out the extrinsic, intrinsic and interference 

effects and find a value of 0. 4eV=0.015 a.u. for-the 

relaxation shift, which is small compared with ours : 

See table 3.1,,T= 0.06, but it must be remembered that 

this is for rs = 3.0 whereas for aluminium rs 
= 2.0Y. 

It is difficult to make any further comparison 

due-  tolack of clarity and blurring effects in the 

available data. 	In our results the surface plasmon 
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peak is remarkable for the appearing asymmetry and 

also for the narrowness of the satellite. Unfortunately, 

none of these features have been clearly observed 

experimentally. However, perhaps too much emphasis 

should not be placed on this asymmetric behaviour as 

the model has neglected many important interactions 

which may act so as to obscure this asymmetry e.g. 

the internal excitations of the atom and the vibrational 

degrees of freedom, Gadzuk (1976). 

At the first glance, our model may appear to be 

deceptively simple. But it is important to realise 

that the three items viz. 

1. small ur -behaviour (infra-red divergence), 

2. surface plasmon excitation, 

3. relaxation shifts 

are woven together to create a rich and intricate 

fabric within N+(A). 
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APPENDIX A3 

Equation (3.10) may be evaluated exactly by considering 

the closed contour .a in the complex t-plane as illustrated 

in Fig. (3.1). The point of singularity in equation (3.10) 

occurs at t = 	which is taken outside go by considering 

the cuts given by L I, La. lit )  dg2, are arcs of the semi-

circle of radius R, ..,43 is a circle of radius jo and 

centre (0, ii/0.,) and L3is a diagonal of the I circle 

passing through the real t-axis. 

Cauchy's Integral Theorem states that for a complex 

function f(z), 

S +S 
1-3 	it I 	I— 	 La- 	/off  

0 
provided there are no poles, inside the contour. It 

can easily be shown that as R.4°4°, j)40 the integrals 

around 4.11  )a J 	are equal to zero. This leaves us 

with the integrals over L t , La, L. But the integral 

over L3 is just the one we wish to evaluate. Taking 

the real parts, 

— 	_ELL) 
Put t = it along L I , 

t = ire 	along La  

o, 	 • 24,-Z. 
Yon, 	 _ - Pt' e-- 

I a  — Re- 	
_ ciz-v) r 

f  e.  
co 	6-1^Yf 	

-t- Le- 	dr" 

gives 
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ar t. 
Put xe = 1 -rome._ 	in the second integral. 

( 7r) fc) 	- (w•-•0 --x)t.or., 
• + 3 en  e._ 	fix e_ Ls 

Substitute x = - ( 121---)j 

•• 
urto-r) _ 

( 
0 

This integral is just 1 (1- ). We use the relation 

I t  

S kr% T '(  

 

to get 

as required. 

— ((•• —‘4)4>r, 	11--( 
(cz 

oeNT  ror) 
(A-3. 

	o 	 

AIM : To show toi, (1 . 59  Ad VE p F2-  

01.-) = 	z vs2- 	(o) 

 

We know 

from equation (3.9B). We use the approximation 

691  (o) 	( 1- alai* 
9<<X 	'Tr fp 

(See Appendix B2) 	Co 

• 

71) 	ciq' 
Z-€2`9as?(0) 

Put (A3.2) in (A3.3) and integrate by parts to get 

CA 3. 3) 

cid " 

312_ 6— (460i IS 	= 
2v 

PF 
x7- e 
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where _ 
e_ 	I 03(x) dx 

which reduces to the required form using an approximation 

for 	6-. 
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THE CLOSED CONTOUR USED TO EVALUATE THE COMPLEX INTEGRAL 
IN EQUATION ( 3.10) - SEE APPENDIX A3 

L 
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CHAPTER IV 

THE STATIC SPIN SUSCEPTIBILITY AND MAGNETIZATION OF 

SURFACE ENHANCED ITINERANT ELECTRONS 

A General Introduction  

As mentioned in the introduction, the latter half 

of this thesis concerns itself with properties involving 

the static spin susceptibility of a metal surface, for 

a nearly magnetic exchange enhanced material. Initial 

interest in this particular susceptibility with respect 

to the surface was stimulated by Beal-Monod et al in 

1972 and subsequent work has yielded interesting results 

in the one-dimensional analysis so far carried out e.g. 

Zaremba and Griffin, 1973 and 1975 ; Muscat et al 1975 

and 1976 ; Schiach 1976, Perdew 1977. Indeed the magnitude 

of the surface spin susceptibility is significant in some 

treatments in the theory of chemisorption and catalysis 

(Schrieffer and Gomer 1971 ; Suhl et al 1970). More details 

of the work done over the last five years is given in the 

next section. 

Let us commence by making a general classification 

for the three magnetic states in a system viz. diamagnetic, 

paramagnetic and ferromagnetic as follows : 

1. Diamagnetic materials have a negative magnetic susceptibility 

of the order 10-6  which is temperature independant e.g. 

inert gases, hydrogen, many metals and organic compounds. 
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It tends to occur in materials with closed shells. 

All substances have a basic diamagnetism term which 

is nearly always weak and very often overshadowed by a much 

larger 

2. paramagnetic susceptibility, in which the response 

is positive e.g. the alkali metals, most gases, 

soluble salts of iron and oxygen. 

In the least complicated case of the alkali 

elements e.g. Li, Na, K, Rb and Cs, is seen a 

temperature independant weak paramagnetic susceptibility. 

The explanation is due to the essentially non-temperature 

dependance of the well known free electron gas (which 

has a parabolic density of states) Pauli susceptibility 

given by 

t'ke,-X- 	(Eft 

where /411 is the Bohr magneton and 

tt(E.r) is the density of states at the Fermi level. 

However, for most transition metals (characterised 

by incomplete 3d-shells) and rare earth metals 

(characterised by incomplete 4f-shells) are much more 

strongly paramagnetic than the alkali metals with 

a significant temperature-dependant susceptibility. 

Experiments on palladium yield an enhancement factor 

of. approximately 12 to the Pauli susceptibility. 

This is due essentially to the electron-electron 
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interaction (exchange and correlation) which was 

neglected in the r.")tp calculation. These enhanced 

systems may also show a temperature dependance (as 

indeed palladium does). It is also thought that 

orbital angular momentum may have some contribution 

to the susceptibility and hence enhancement (Kubo 

et al, 1956). 

Where there is a temperature dependance of the 

susceptibility in paramagnetic materials, it tends 

to follow the inverse temperature Curie law e.g.. 

for rare earth metals. 

3. ferromagnetism occurs for positive values of the 

susceptibility and for temperatures below Curie 

point, the Curie-Weiss law for susceptibility applies. 

For higher temperature, paramagnetism prevails. 

Examples are nickel and iron. 

Further details and references may be found in Crangle,1976; 

Heck, 1974; Culitty, 1972; White 1970; Wohlfarth, 1976. 

In experiments it is impokant to distinguish 

between various contributions to the susceptibility, 

although 'this.is often a difficult task. In 1964, 

Clogston et al have shown how the total susceptibility 9C 
for platinum may be thought of as a sum of separate 

susceptibilities due to the various contributions via 

spin Paramagnetism and diamagnetism due to the core. 



103 

The d-electrons are considered in a tight-binding 

approximation, and it is this effect which is dominant 

in the total susceptibility, the s-spin contribution 

being smaller partly due to the smaller density of 

states. The exchange interactions act appreciably on the 

spin part of the susceptibility which justifies our 

forthcoming involvement with this. 

Just how a system of interacting electrons respond 

to a magnetic field is a many body problem with all its 

attendant difficulties. One model which has been much 

used is the Hubbard model which in the single band 

approximation has a Hamiltonian of the form: 

Cf.  C 	112 1 2:: n,‘  - • 	ti `c• 

where tt:1  is the hopping term between electrons at sites i,j, 

c is a creation operator for a Wannier state, 

cab is a destruction operator for a Wannier state. 

(Hubbard,1963). 

The second term represents the electron-electron interaction, 

where I is the intra-atomic Coulomb integral. Calculations 

in the Hartree-Fock approximation yield (Izuyama et a1,1963) 

showing an enhanced type of Pauli susceptibility previously 

mentioned. Divergence occurs when I = IN(EF) = O. This 

condition for ferromagnetic instability is the Stoner 

criterion. We are concerned in this thesis with paramagnetic 

materials with I.4. 1. 

Our study is concerned with itinerant electron 

behaviour as opposed to a localised model. The latter 
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assumes that the particles reside on lattice sites with a 

well defined local spin S. The well-known Heisenberg 

model works well for rare earth metals (White,1970) whose 

localised moments are due to partially filled f-shells 

which are tightly bound to the atomic nucleus. 

However transition metals are better characterised 

by an itinerant electron model in a description of their 

magnetic properties. This is clear from the saturation 

moments which correspond to non-integral numbers of spins 

per atom eg. for the ferromagnetic metals iron,cobalt and 

nickel these are 2.2, 1.72 & 0.61 respectively. Also the 

properties of observed large electronic specific heats 

and d-electron contributions to the electrical conductivity 

indicate the supremacy of the itinerant over the localised 

model for transition metals (Herring, 1966, Chapter IV). 

Systems in which there occurs a strongly enhanced 

static spin susceptibility are often labelled 'exchange 

enhanced' or 'almost ferromagnetic' systems. Our interest 

in the second half of this thesis lies in the study of the 

paramagnetic properties of bounded Fermi systems 

characterised by a strongly enhanced static spin 

susceptibility. Examples of nearly ferromagnetic systems 

are liquid helium
3 (the only Fermi liquid found in nature), 

palladium, and certain transition metal alloys eg. 

Palladium-rhodium and rhodium-nickel. It should be 

emphasised that the exchange interaction is of quantum 
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mechanical origin tied up with the concept of the 

indistinguishability of identical quantum particles 

and the antisymmetry requirement for the state function 

of an assembly of fermions eg. electrons. Im other words 

the Pauli exclusion principle is manifested in the 

interaction (and higher order mechanisms). These concepts 

were first developed by Heisenberg,1928; and formed the 

basis of subsequent theoretical work. 

Let us now conclude this very general introduction 

and proceed to discuss recent work that is of immediate 

significance to our problem. 
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A REVIEW OF RRCENT WIRK—  	Introduction to our 

particular problem.  

We now discuss recent work done that is directly 

relevant to our problem. It is only over the last 

five years that interest has abounded in the examination 

of surface effects on the magnetic response of an 

itinerant electron gas. Mills, Beal-Monod and Weiner 

in 1972, (hereafter referred to as MBW)first dreW 

attention to the fact that the behaviour of itinerant 

electron materials that are strongly paramagnetic 

(due to large exchange enhancement or the temperature 

being near the magnetic ordering temperature) differ 

near the surface to that in the bulk. They ahowed 

that in the RPA for an exchange-enhanced paramagnet 

the surface susceptibility does not display the 

enhancement found in the bulk, by using an approximation 

to the non-interacting spin susceptibility in the 

presence of a.surface. This consists of replacing 

the bare susceptibility of the bulk material plus terms 

due to the reflection of electrons from the surface 

by the bare bulk susceptibility alone. A further 

approximation was then used for this bare bulk susceptibility 

which did not yield a surface enhancement. 

In 1973, WBM (ie. Weiner et al as above) included 

the effects of the reflection terms through an oscillatory 



107 

approximation and found an additional enhancement near 

the surface greater than that in the bulk. In both these 

papers a tight binding model of electrons was used. WBM 

find a divergence susceptibility for values of the interaction 

I less than or equal to unity i.e. the RPA calculation of 

the surface susceptibility results in a surface phase transition 

occurrence before the bulk phase transition. Some doubt 

however has been cast upon their choice of parameters 

used as corresponding to an unphysical situation (Nevins, 

1977). 

Weiner (1973, Boston Conference) found the susceptibility 

of the surface to diverge for I <1, almost universally 
as a function of crystal structure, surface orientation 

and Fermi energy. He predicted a surface magnetic phase 

transition while the bulk is still paramagnetic for ft= 0.9  
a value for which the RPA is quite reliable in the bulk. 

In 1972, Beal-Monod, Kumar and Suhl conducted a 

numerical investigation of the surface magnetization as 

a function of both the interaction I and distance from 

the surface of the metal for different widths of thin 

metallic films. They find the surface magnetization 

undergoing enhancement to the same degree as the bulk 

magnetization when using the exact expression for the 

susceptibility at zero interaction, 	obtained from the 

free electron bands and which includes the surface 

oscillatory terms. Their results are notable for the 

large peak in the magnetization occurring at the value 

2pFz = 4.5. It is found that as Y-=>1, this peak grows 
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faster than (1-!) which is apparently related to the fact that 

the.;free- particle_spin susceptibility is largest at the 

position of this peak. 

The three different approaches observed above show 

that the results are extremely sensitive to the ways in 

which the surface contributions are taken care of. 

In his thesis (1974), Zaremba makes a study of the 

variation in susceptibility for the free electron model of 

bounded Fermi systems using a finite range of interaction 

of the form 

44r1121 

as opposed to the zero-range (1(-2,0b) interactions so far 

considered. His results which apply to metallic films 

predict the occurrence of a surface phase transition at is-- 00-9aSe  

but they are extremely sensitive to the value of the finite 

range 1-9k , taken (confirmed analytically by Muscat,1975). 
In particular, the large quantum oscillations found by 

previous workers are significantly reduced in magnitude, 

in fact almost washed, out, when 	is of the order of the 

Fermi-Thomas screening length and the anomalous surface 

phase transition does not occur for i< 1. 
Muscat et al (1975) re-examine the degree of enhancement 

of the spin susceptibility near the surface of a nearly magnetic 

exchange enhanced metal when a uniform field and a field 

localised near the surface are applied, using a zero- 
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range. interaction and free electron model. Their results 

show a strongly enhanced magnetization near the surface 

as compared with the bulk and predict the existence of 

ferromagnetic instability for values of the electron -

electron interaction for which the bulk is still 

paramagnetic, i.e. I. .0.985, in agreement with Zaremba's 

1974 work. The large peak at 21v=4.5 is present as in 

Beal-Monod et al (1972). 

Muscat (1976) performed numerical calculations of a 

paramagnetic metal within a finite barrier potential (V) 

model of the metallic surface in contrast to the ISBM 

discussed above. For large values of V(---2) he finds 

that there is still an enhancement of the magnetization 

near the surface although the large peak is shifted from 

2przez4.5 for V =co to 2p&ze.73.5 for V = 2.0. Consequently 

there is ferromagnetic instability at the surface occurring 

at values 0.985 4 Ts 41 which are V-dependant. For 

smaller values of V, no surface instability can be estimated. 

The most recent work we know of relating to surface 

magnetization calculation of itinerant paramagnets is by 

Schiach (1976) who considers the surface response to a 

uniform static magnetic field, by using approximations for 

the non-interacting electron susceptibility,'",e, and a 

finite range exchange interaction as Zaremba and Griffin 

(1973). The first approximation used is to neglect the 

non-diagonal terms in c;le2  and simplify the remaining 
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diagonal ones, while the second involves a simplifying 

of the off-diagonal terms by a separable non-oscillating 

scheme (also considered by Muscat et al, 1975). The 

result is that like MBW, no quantum oscillations are 

observed in the magnetization - there is no surface 

phase transition. 

So far all the work done on this problem of surface 

enhanced magnetization has been limited to the static 

and one-dimensional cases given by ur = 0 and Q = O. 

To conclude this section, we give a brief scan of 

the present situation. The importance of the properties 

of the static spin susceptibility of paramagnets via the 

exchange coupling parameter I has become increasingly 

clear over the last few years. Work has been carried out 

on the variation of the surface susceptibility in metallic 

films using various approximations for the non-interacting 

electron susceptibility.. Some apprbximations give a 

mallet surface' than bulk enhancement (MBW,.1972). However 

exact RPA calculations -for the- ISBM-(as_well as:the finite 

potential barrier-.model) find that a surface phase transition 

exists for'T <1 at which-the surt'a'ae susceptibility -  diverges. 

This has also been shown 'through Use: of a tight binding 

model (Weiner, 1973).. 

Aim and Motivation 

Our concern for the second half of this thesis is to 

extend the work discussed above to a more realistic 

situation in three dimensions i.e. for finite Q and c,7= 
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Only the instability at g equals zero has been studied 
so far. As noted by Ying et al (1976), although for a 

simple band structure the bulk instability always occurs 

first at g = 0, this is not necessarily the case for the 
surface region which requires a separate study. 

A prime motivation for the study is the importance 

of the localised static surface susceptibility in 

chemisorption problems (Schrieffer and Gomer, 1971). 

Here the spin of an atom adsorbed on the surface is 

assumed to be coupled to the spin fluctuations of the 

solid via a short range exchange interaction. In this 

problem the perturbing field is not only localised near 

the surface but also localised about a point in the 

surface plane)and so the localised susceptibility 

discussed by Muscat et al (1975) is only an approximation. 

Through simple qualitative arguments (as well as further 

detailed analysis), Schreiffer and Gomer arrive at an 

expression for LIE, the strength of the induced covalent 

bond, formed by the coupling of an induced spin density 

in the solid in the bonding region to the adatom spin. 

AE takes the form 
7- 

AE 
	

3.9( 
where J is. the exchange interaction between_the adatom 

and single metal atom.( for further-details see Chapter I). 
• 
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To date (within our knowledge)-Schiach -(1976).alone 

has calculated this A E as a function of. adatom-position, 
Using approximation- -schemes for T. We expand his calculations 

by using the exact RPA expression. 

DESCRIPTION OF OUR MODEL WITH ITS MATHEMATICAL PROPERTIES 

The geometry of the situation is still that of a 

semi-infinite metal with its surface in the x-y plane 

and the z-axis being perpendicular to this surface. In 

the real space co-ordinate system r = (X,z) maps on to 

q.= (g,q2.) within the Fourier space framework. We now 

work with the infinite square barrier model in which the 

density profile of the electrons varies as a function of 

z given by equation (2.1) i.e. it has a Friedel oscillatory 

behaviour. We use the Fourier cosine transform of a function 

f(r) as defined in equation (2.9). 

Now the magnetization for a paramagnetic system in the 

presence of a magnetic field H(r,t) is generally defined by 

where the transverse susceptibility .given by the Kubo-like 
formula: 

) ■ t I ) 	Cb-t0< [s+(r., 	s-  01', en 
where S(r,t) is the spin-raising operator, 

S(r,t) is the spin-lowering operator at position 

r and time t and 

cD is the ordinary step-function. 

9) 
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Due to translational invariance in all co-ordinates 

excepting the ones perpendicular to the surface we 

use the following transformation 

9. (R ) iz ' 	= jiff cel  - 2_< 61, (E EI) ot/' 
ZA4 	t') 

where X=(x,y), a= (qx03). 
It is of importance to realise that paramagnetic susceptibility 

of a system of electrons is the same as the response 

function involving the dielectric constant i.e. equation 

(4.3)is identical to (2.12) when there is no electron -

electron interaction. Now for the case of a non-interacting 

degenerate electron gas,Newns (1970), (Beck and Celli in an 

equivalent formalism in the same year) has shown in detailed 

analysis that in the ISBM : 

(Q ) c1:1w) Z(3'`■t()Scifq*1 ASIA*(w) (4.46  

i.e. as a sum of diagonal (qt=. qa9 and non-diagonal (q.a4 

elements which obey the sum rule 

2:0(341(A 	= 	A 9,  cl,t clAf  

This is physically feasible since the electronic wavefunctions 

vanish at z = 0 and so 

fxc 1) (-3) all' 

For the static case co = 0 in which we are interested, we 



114 

use Newns")s expressions (1970) for Dg  and .A.944written in 

a non-dimensional form as follows : 

(si 

 

-- I 	I 	09 I il)  

til 	t 	,) 

where we have replaced 
	

1t 	9,1//p, 

V/u1), 

This is the usual Lindhard function for an infinite medium. 

The correction due to the presence of the surface is given 

by : 

CT) lc- 

A cct, 	( 0) 	= 

c11101 
243 

O. • ft 	 Gt,11.? 

of( +co -I (-1)11 

1 	(lit' 4 	cv 

• . 

	

	 R.e.-(Y4-fr< 	gfe"" 

c3ts  ctel  < Re. q(i -9,i -6t)Ad32.1i1/2-  

. 	. 	< %)2.- Re (Y4 -eh' 

ate- Re_ 431! -1:-(s)/(s.-.42•‘ 	< I -1. 

(T-) 	l 	41,t 	ctft' 

A.9,-.1t  ( t(  
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This is the corrected version of the formula given by 

Newns (1970). It comes from the quantum mechanical 

interference between impinging and reflected electrons 

and is strongly dependant on the assumed properties of 

the surface. Graphs illustrating the various regions 

of 	as as written in equation (4,4E) are given in 

Figs.(4.1 A,B,Cl for clarity. 

For interest we plot the behaviour of 9C°  given in (4.4A). 

Fig. (4.2) shows the variation of D6111(0) with ch 

given by equation (4.4D) for two values of Q differing 

by a factor of ten viz. Q = 0.04 and Q = 0.4. But the 

maximum difference between the two curves is by about 

5% (which occurs as qi-> 0) and there is negligible 

difference for large values of c/ (q,, 2). 

Figs. (4.3) to (4.5) illustrate graphically the non-

uniform part Aq$,I,V ql(for fixed Q, qe  valuqgiven by 

equation (4.4E). This is important only in giving a 

correct description for perturbations in the surface 

region. In Fig. (4.3) we take Q = 0.1 and let (la  run 

over the values 0.0, 0.5,0.9,1.0,1.02 and 2.0. The 

behaviour is in good agreement with graphs by Muscat et 

al (1975) who in fact consider the limit Q = 0. We note 

the points of singularity are (0,1).'and (1,0) and it is 

this singular behaviour which is responsible for dominant 

Friedel oscillations in the surface response function 

(Beck and Celli, 1970). 

Similar curves are drawn in Fig. (4.4) for Q = 0.5 
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and we note the change in behaviour for g4= 0.9, 1.0, 

1.02 as q>0. 

In Fig. (4.5), we take Q = 1.0 and again see a 

noticeable change in behaviour with all the curves 

shrinking in height by as much as 50% in some cases 

(q4= 0.5, 0.9). The dotted curve on this figure is for 

Q = 2.0 and qz= 0.0, showing that for this and higher 

values of the Fourier wave-vector contributions from 

Avol becomeless and less important. Physically this 

means that the further away from the surface we go, the 

contributions to the Friedel-type of oscillations dwindle 

down (see Fig. 2.1). 

0 
Physical Significance of )6  

0 
The non-interacting response matrix X  as defined 

in (4.0.  can be interpreted physically through the schematic,  

diagrams in Fig.(4.6 i, ii, iii, iv) which translates 

the effects into real space. The first sketch illustrates 

the direct propagation of an electron at r and a hole at r. 

This arises from the diagonal term D which is identical 

to the well-known response function of a non-interacting 

Fermi gas subject to periodic boundary conditions. If this 

were not so, the effect of the boundary would be to modify 

the response deep within the gas, which is not expected 

even in the absence of any Coulomb interactions between 

the particles. 
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In fact the total effect of a disturbance at r giving 

rise to a response at r just below the surface can be 

regarded as a sum total of the different multiple reflections 

involved at the boundary : these are sketched in Fig.(4.6ii 

iii, iv) and the quantum mechanical treatment of the 

dynamics of particles impinging on and reflecting from 

the surface is displayed in the quantum interference 

effects in 'Xfwhich are inherent in its non-diagonal 

part A (Beck and Celli,1970) and gives rise to the 

oscillatory behaviour in i(2 . This same oscillatory 

property is reflected in the electron density profile 

given in Fig.(2.1). 

These high momentum transfer processes through the 

multiple reflections on the bounding surface are essential 

features in a study of the magnetization near the surface. 

Let us conclude this section by a description of some 

properties of 9C°  . From (4.4) it is easily seen that 

is invariant under interchange of its arguments qt, 

X° 
since the non-diagonal terms A are symmetric with respect 

to qi, q:. In real space, this takes over as : 

x 1 I ') 	Cx,  
In fact this symmetricity readily extends to the complete 
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response 	, by writing the Bethe-Salpeter equation 

for 2(... (see equation (4.6). in the next section) in 

matrix notatikl'as : 

=-- "X°  VI ex 	(t—X L)cx° 

6 
	ev,  T 
	

1  

since 7.9  = 7F where T denotes the transpose of the matrix. 

Thus assuming (I- -)Or) is symmetric i.e. I = IT, and that 

(1- 9C 	exists, we have : 

Also, for film geometry if 1 is the width of the film, 

= 	)c,° (x) 	3  11/4:— -0 

ex- (x , a, 	 L- 

which just reflects the inversion symmetry about the mid-

plane of the film. 
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Derivation of the RPA Integral Equation for the  

Static Magnetization.  

We now wish to derive an RPA integral eauation for 

the magnetization of the form : 

in, C 	m°(r) 	 fe)c° 	) ert CE 	f 	. (4.5A) 

where the static limit 61- = 0 is assumed throughout and 

the electron-electron exchange interaction is of the 

form : 

s (s. — Cosa) 

between electrons at sites B1 , 	 i.e.gL 	we take a zero- 

range form for the interaction, and I is assumed to be 
non-dimensional, 

and 	
fyl(c) 	S eX° Cr i r l )(~') art 	- - (4. stc-) 

is the magnetization at zero interaction. All auantities 

are made dimensionless by factoring out N(4), the density 

of states at the Fermi level e.g. 	AN(EF ). 
One possible path of procedure is to start with the 

definition of in equation (4.2) and by use of a suitable 

Hamiltonian in second quantized form derive the eauation 

of motion of the system through evaluation of relevant 

commutators. Then by using a standard procedure in RPA, 

we can linearize this equation of motion by replacing 

pairs of creation and destruction operators by their 
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expectation values which then results in a truncated 

equation of motion which will assume the form : 

s'X,(r_ i kf I  LAI) 

using (4.5B). 

This is the method used by MBW (1973) in their tight-

binding model. Substitution of (4.6) in (4.1) would 

give us the required form of (4.5A). For present 

Purposes we shall give only the simplest derivation of 
the RPA integral-dquation.for-the magnetization m(r) in 
terms • of m (r)- 	see equation 4,-5C-. 

The interacting electron problem 

= TO' cl-r"2C(E)f:,3)X(c",e,u3) 

reduces essentially to the previous non-interacting 

electron problem discussed in Chapter II with the interaction 

entering :via an 'effective' field as follows. 

In the RPA, the response 	to a system is given by 

6 

	

faelf 	
' `)Co Cr 111 , el) V(1:', 	• . . (4- i) 

which is the same as equation (2.4). Through the application 

of an appropriate Fourier transform defined in (2.6), we 
can write 

crt (c Lo) 

	

far' 	Ccir',,A) 	L.1,) 	. 	A) 

where the index denotes the response for up-spin 

electrons . Similarly, we can write 
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But the magnetization of a system is defined as the 

difference between the total number of un-spin and 

down-spin electrons. Hence by subtracting (4.8B) from 

(4.8A), we arrive at the local magnetization at the 

point r : 

rn_ t r ba) _vj 

We now introduce the concept of a molecular field which 

postulates that for paramagnets in general, there exists 

a molecular field proportional to the intensity of 

magnetization acquired. So we can regard an effective 

field h eff as the sum of the external field h(r) and 

the internal field, written as an integral over the 

magnetization multiplied by the exchange interaction : 

Leff 	 J 	3:1) rn Cc')  ar) 

ti cc) -I- s SCE) 	 . . (4. 10) 

using the zero-range interaction defined in (4.5B). 

rake the limit 0= 0 throughout. We can replace the 

terms 114.— 4 in (4.9) by our h„ff(r) in (4.10) to get 

rtv 
	

(-X-° r• 	Cs_A) (11021V 

4 
ak.° 	I. I ar 4X7 r 

which isis the required equation (4.5). 
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This is the RPA integral equation we wished to 

derive. Despite the somewhat naive simplicity of the 

local molecular field method, it has led us to the 

correct result and so justifies its own use. Recourse 

to this method avoids many complications resulting from 

more rigorous methods. Equation (4.5) is the basic 

equation under scrutinisation in the following chapter 

which gives the results and discusses the solutions 

of our three-dimensional model. 
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Piet qi...1) 

= 0.04. 

9 

0-5 1.0 1.51  A• a 

1.0 

o-s 
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CHAPTER V 

SOLUTION OF THE RPA INTEGRAL EQUATION IN THE THREE 

DIMENSIONAL ISBM  

In the previous chapter we have derived an RPA 

equation for the static surface spin magnetization 

which obeys the Bethe-Salpeter equation. In this 

chapter we shall be concerned with the variation of this 

surface magnetization in three-dimensional real space 

when there is an applied magnetic field h(r) due to 

an atom adsorbed on the surface. We recall,equation 

(4.5A) written in the non-dimensional form : 

06
0 
	) 	CI) 	- • 5.0 

This is an integral equation of the Fredbolm type with 

a complicated kernel containing oscillatory terms due 

to the presence of the surface (given in Fourier transform 

by (4.4)). 

Multiply (5.1) by C. ca) and integrate over r, 

o 	 1.1.1 

rh-(11)) 	= 	(R. c)  4- T. 	a E=  Goskv--) ()CC s) *AL) 

M."  (-) ciA) ÷ 	dl 	(i Ct% ) 	rn (1) . 

by interchanging the order of integration. Replace 

m(s) by its Fourier cosine transform in (5.2) and use 

the property of translational invariance. This yields 
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m. CS)  , 	= nto (d? $0 4-  S 41,1  r (ql Alt (819,0 
. (s.3) 

0 
where the response matrix cX.(414-00has been given in 

terms of the diagonal and non-diagonal elements Dnt  and 

A 	( respectively, for the ISBM in the last chapter- 

see see equation (4.4). 

Thus.-(5.3) is an integral equation for the magnetization 

in Fourier space with the kernel containing a 'non-uniform' 

part due to the surface. The only possible 'exact' way 

i.e. without resorting to any approximations, to solve 

the equation for the magnetization is by a numerical 

method which is given in a forthcoming section. We 

actually wish to convert (5.3) back to real space as 

follows: 

r) = 	OS- 	= ISI d'263 	Cscr4 	(( t) 

Convert to polar-coordinates and use 0121.4012de to obtain 
co c 

( )  

oo 

I 63) cos  (co< cas  &) co s 	0, 63, c) ci(c ote do . 

O ■••Ti 

as the imaginary part of the integral is zero. 

From Gradshtein and Ryshik's Integral Tables, 

S cos (tsx cos de- 

-11 

aTC (10() 

where J0  is the zero order Bessel function. Hence, 
co 

m( X , 	= Dic 	 tt_ct, (1, 	0.(0 	(s.40 

0 
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The magnetic field h is taken to be of the mathematically 

where r.= (0, 0, z0), for simplicity; as X400 this is of a 

-function form. 

It can be shown by converting to polar co-ordinates that the 

Fourier cosine transform of (5.5) can be reduced to : 
00 

cq, ci,t) 	S 
it x` 

ccs 6/1z) ckE 
Ars7t7iu 

co.) =  xZ f 200.5 	e_ • . . (5.0 
+ 	Kt. 

When z = 0, this reduces to the well-known form 0 

Surface Phase Transition 

The problem here deals with a localised situation 

near the surface and the aim is to examine the surface 

phase transition in the three-dimensional situation. 

This corresponds to whether or not there exists a 

solution to the equation 

e., 

e, 
 

CO S 	Okt• 4"- 	cos Ca,-t)at. x2- 	- 	 , 
v;77,i- 

0 

 Cyt KL  
e.  

2(9L-k-1,-,- xl) 
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00 

(q, 	ack' -..CS--) 
O 

when I equals Is<1. 

For the one-dimensional Q = 0 case, (5.7) can be easily 

solved numerically by using a suitable cut-off and 

replacing the integral by a summation over et. By using 

the same number, n, of corresponding values for gond 

taking all the terms over on to one side we can build up 

a system of nxn simultaneous equations which will have a 

unique solution provided thedeterminant formed by the 

co-efficients of m(Q, qs) is equal to zero. We do this 

and find fs = 0.985 thus verifying the result by Muscat et 

al (1975) through this different method. For the three-

dimensional case Q # 0 the situation is more complicated 

and we resort to another method described in the next 

section to determine Is  (which in principle should be the 

same, although the type of-singularity occurring at the phase 

transition may:differ). 

Let us now consider an analytic approach to the problem 

using an operator and eigenvalue technique. In standard 

Dirac notation using bras and kets we. can rewrite-(5.7) is 

=a-.7•5(,° . 
	

1 (n) 	 • (5-- .E.  
where the kernel `X. is regarded as an operator which can be 

expanded in terms of a complete set of normalised eigenfunctions 

op.> with corresponding-eigenvalues V belonging to the 

hOMogeneous equation.  (5.8A) i.e. 
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(s.se) 

From (4.6) and (5.8B) with some algebraic manipulation 

we can easily show that 

(.5.ac) 

and hence 

 

in 	4(11 
Imp  

n 	n - I: 

which is evident from equation (4.1). 

But if h is a magnetic field localised near the surface 

and I is very close to Is  we have 

I NI .) IS)<S1  as J: -4 I; 

=s 
For the one-dimensional case, out ens (-4.) = <517) and we 

obtain 

n't.. (a) 	= 	rns Ce) 	ms 

JE, - 

as in Muscat et al (1975). We make use of equation (5.9) 

as a check on our numerical calculations in three 

dimensions as Q.40. 

Numerical Procedure  

The method of attack used is to transform the 

integral equation given by (5.3) to a matrix eouation, 

thus : 

_ (5.93 
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amle) gctfct 	-t-  &slid rev (s4, 	nl° 	(5-10) 

where for convenience we write q, ql instead of a 	q -at 	 , 

and sum q/ from 1 to n, say. Now take a further step and 

let q run over these same values from 1 to n. A suitable 

cut-off used for the upper limit of the integral in (5.3) 

was q,„,c, = 3.0, which corresponds to a value of 6p r, 

where 

 

L 

 

if we regard the process of summation over a film of 

length 1. 

Equation (5.10) may be written in matrix notation as 

frl ° 

where B = 	) 	for i, j = 	n, 

M, M°  are column vectors of size n, 

and bi:j  =1Agc! 	i 4 j 
_ 	(s. a es) 

= (1-fpq 	IA64$ 
Hence M = B 1 M

. 
 

and the solution of the integral equation (5.3) reduces 

to the evaluation of the inverse of the matrix B. 

Writing the matrix equation (5.12A) in full to see 

the structure more clearly, we have 



IA1 
_ _ 

f A 23 	 — 1 2.4. 1. " _ 

An, 	Z Ana_ 	L-1.Too-rA 

m i° 

O 
2, 

MA 

• 
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Instead of taking the bulk Lindhard's logarithmic function 

for D 	we use the discrete sum 

A9 9 et) 
cV 

cutting off at q" = 3.0 and of course multiplying by 

the step length in q'considered for computer calculations. 

The following three checks were made to ensure our 

programme was working correctly: 

(1) Initially we took 140 and found m in close agreement 

with the computed non-interacting magnetization ie. 

(2) We use the Muscat et al (1975) version for the magnetic 

tield viz. h(z) = sinz/z and examine the magnetization 

as a function of z for Q = 0.0001 and I = 0.95, 0.98 

and 0.983. The graphs are displayed in Fig(5.0A) and 

are in very goad agreement with their Q = 0 results. 
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However we notice that the magnetization should actually 

be negative for this choice of the magnetic field, a fact 

unnoticed in their paper, but can be verified analytically 

if we consider the variational function for the magnetization, 

given by 

••••0010 

  

2. 

 

where p is a constant (usually small). 

Substitute (5.13A) for ms(z) in (5.9) yields 

(ms — f)n-) () 	_pe _ 	(1^ an 	
10 

	
i3 

Since Ts > f, the above equation clearly shows the 

negative behaviour of the magnetization for a localised 

field of the form sinz/z. 

(3) Thus encouraged by our previous two checks, we 

returned to our Yukawa form for h given by (5.5) 

and computed the magnetization curves for Q = 0.0001, 

= 0.95, 0.98, 0.983 ; x, = 1.0, z = 0.0. These 

graphs are given in Fig. (5.0B). The behaviour of 

the curves are similar to those discussed above 

with the highest peaks occurring at z = 4.5. 

The ratios of the peak heights are tabulated in 

Table (5.1) and compared with the corresponding ones 

obtained from Fig. (5.0A). These are in good 

agreement showing that the ratio of the enhancement 

being independant of the type of magnetic field applied. 
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In Fig. (5.0C) and (5.0D) we plot the inverse 

of the magnetization peaks obtained in checks (2) 

and (3) at z = 4.5 as a function of I and note the 

linear behaviour. Extending the lines to cut the 

Y-axis gives an intercept Is  in both cases such 

that 0.985 < Y540.986. This is the point of divergence 

of the magnetization in good agreement with results 

by Zaremba (Thesis 1974) and Muscat et al (1975) 

who obtained a value of 0.985 for Tsin the case 

Q = 0. Our slightly higher value is due to the 

finiteness of Q. 

Now the aim is to proceed ahead with calculations 

for the magnetization for further finite Q-values upto 

an appropriate range, sum over these values and finally 

examine the variation of the magnetization in three-

dimensional space. 

Results For Our Model in Three Dimensions.  

The resultant graphs computed for the local magnetization 

as a function of z are given in Figs. (5.1A, 5.2A, 5.3 

and 5.4) for the following values of X, X. , z : 

Fig. (5.1A) : X = 0.0, X= 1.0, z =0.0. 

Fig. (5.2A) : X = 0.1, X.= 1.0, z = 3.0. 

Fig. (5.3) : X = 5.0, %.= 1.0, z = 1.0. 

Fig. (5.4) -  : X = 5.0, K.= 0.5, z = 1.0. 
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In each figure the four curves displayed correspond 

to the values of Z between 0.95 and 0.988. For values 

of 	0.985 we obtained excellent convergence to within 

1% by inverting a 20 x 20 B-matrix ( see equation 5.12c ) 

and performing a summation over 10 Q - steps. A maximum 

upper limit of 3.0 for q and 1.0 for Q ( corresponding 

to 6pp, 2pp  respectively ) were found to be sufficient 

since negligible contributions arose by increasing 

these values. However for f'20.985, most stens are 

required to obtain good convergence viz. 80q x 10Q was 

applied. 

The value X = 0.0 was chosen to examine the variation 

of the magnetization in the plane through the point (0,0,z0) 

about which the magnetic field is localisedi and it is 

expected that in this plane lies the highest intensity 

of the variation. We note the constant uniformity of 

shape of the magnetization curves, with the highest peaks 

occurring at z = 4.5, the second smaller peak occurring 

at z = 10.5 and the third even smaller peak at z = 17.5, 

in agreement with the work by Beal - Monod et al (1972 ), 

Zaremba (thesis 1974 ) and Muscat et al ( 1975). The 

largest effect of the magnetization is therefore felt 

nearest to the surface, with oscillations gradually 

diminishing in height and tending towards zero further 

away from the boundary. This oscillatory behaviour is 

essentially due to the inclusion in our calculations 

of the surface correction terms Awe,  defined in (4.4E) i.e. 
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due to use of the ISBM as opposed to the previous 

SCISBM which neglected these terms and dealt with the bulk 

term D cti alone. Recall the behaviour of the electron- 

density profiles plotted in Fig.(2.1)for both the models 

(but note that z40 is taken to be the metal region 

there, as opposed to z'?0 which we are now considering). 

This same argument is reflected there, with the maximum 

peak in the Friedel oscillations occurring nearest to 

the plane z = 0 in the ISBM. 

Fig. (5.1A, 5.2A, 5.3) show the effect of varying zo  

upon the magnitude of the oscillations. This is significant 

e.g. the difference in the heights of the curves for zo= 0.0, 

3.0 is by a factor of about ten. 

Fig. (5.3, 5.4) reflect the effect of the range /1= 14x 

which appears in magnetic field. Increasing the range 

• from = 1.0 to = 2.0 gives an increase in magnitude 

of the curves for different values of Y. 

We examine the lateral behaviour of the magnetization 

in Figs. (5.1B, 5.2B) by fixing a value of z (equals 4.5) 

and plotting m(X)^-X. Due to transitional invariance 

assumed throughout in the problem, this varies as a 

function of modX i.e. the points on the graph represent 

values of the magnetization on concentric circles, 

centre (0,0,z) and radius X. As expected, the graphs 

show a smooth fall-off of the magnetization with increasing 

X. It indicates the long range behaviour as I increases 
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in value unto 0.988. However for Smatter values of I 

(= 0.0, 0.5) indicated by the dashed curves show the 

short-range behaviour for these values. 

The next step is to examine at what value of I a 

surface phase transition occurs and as in the one- 

dimensional treatment (see equation (5.9)) we plot 

the inverse of the magnetization height at z = 4.5 as a 

function of I in Figs. (5.1C), (5.2C). In contrast to 

the one-dimensional cases (Figs. 5.0C, 5.0D), these curves 

are now non-linear and extrapolate to zero for a value 

Is  r 0.989. Although only two graphs showing this Is 

are displayed at the end of this chapter, further calculations 

were carried out to consistently give this same value for 

Is. Our numerical calculations confirmed this conclusion 

as they were non-convergent for I 	0.99. Thus we conclude that 

for .1s=0.989 theesurface region has a distinct tendency of 

becoming ferromagnetic-. The discrepandy between the values 

obtained for Is  inthe cases Q=0 and Q40 is most likely to be 

numerical. 

It is only at i = 0, where the magnetization vanishes for 

-all values,of -I, where na enhancement is felt. This is consistent 

with the theory : multiply each side of (5.3),. by cos-(qZ) and 

integrate over dq, 
ryk..  (cR, 	m ° 	1.) 	ISaci/  Tall; 04:0-114 A9cky)m691i) 

cos Cci,$) 

Interchanging the order of the integrals and putting z =0, 
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m. CS) ) 0) = 
	 I act,' %sci,  —faii,40;3 

x rn. C Gin 

m (es , 0) = 	m° C9, c) 

since k 1= 0 from the sum rule given by (4.4B). 

We conclude this chapter with a comment and calculation 

of the binding energy AE for cwiadatom pertinent to our 

system. 

THE BINDING.  ENERGY 

Schiach (1976) has examined the second order contribution 

to the binding energy of an ad-spin i.e. he calculates 

to the lowest non-vanishing order the energy change 

in the system due to the extra coupling from a fixed local 

spin S at R. In his model he considers a finite range 

electron-electron interaction of the Yukawa type (similar 

to Zaremba and Griffin, 1973, 1975) to avoid the possibility 

of a surface phase transition and a similar type of exchange 

interaction V(R-r) with S, with the same range parameter 

(for simplicity), but a different strength of interaction. 

The extra binding energy E is given by 

A E 	oCf d.: far: V(11.-12) %Cc, r')  \i( r. 
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where the constant of proportionality is of the form 

—I 00' s(s-+) 	where 0( is the ratio of the strengths 
2 
of the two exchange-interactions. In his calculations 

he uses two approximations : 

(1) by ignoring the Asqqi terms in 	and approximating 

Dsq. This is identical to the approximation used by 

Zaremba and Griffin, 1975, and physically corresponds 

to treating the surface scattering as specular and 

classical. 

(2) by including the effects of.Avqq1  through a separable 

symmetric approximation. 

His results for AE, normalized with respect to its 

bulk value, are plotted in Fig. (5.5A) for I = 0.9, 0.99. 

The dashed curves are due to approximation (1) while the 

solid lines come from use of approximation (2). 

This is the quanLIty we wish to calculate in our model )  

avoiding any approximation and using the exact expression 
^40 

for "JL. For simplicity let us assume that our extra 

coupling due to an adatom at re = (0,0,20) and the 

substrate metal electrons comes from a finite range 

exchange interaction of the form 

V ( — fs.) X2  

it-Tr 	I — (al 

(5. I 

i.e. same as the magnetic field h('P) given. by equation 
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(5.5). Translating this into equation (5.14) and 

absorbing all constants into h(r) we have 

E (K )  = fat rn (c) 	- 

i.e. 	LiE is a function of X, Z. alone. 

Now Parseval's theorem states that if f(x), g(x) 

are two functions with corresponding Fourier Transforms 

F(q), G(q) then 

S F(I) 6i (-1,) ctif  = fiCx) 3C x) ckx 

Using this theorem in three dimensions with the fact that 

h(q) = h(-q) (see 5.6), we get 

(X) 7-.°) 	rn (6?) c($) 11(g )  It)  446214  

For calculation purposes, we choose X = 1.0 and 

compute AE as a function of Z0. The graphs are plotted 

in Fig. (5.5B) for I = 0.0, 

0.5 

0.95 

0.98 

0.983 

After an initial rise at 	Z. = 4.5 , the oscillatory 

behaviour smooths out relatively quickly compared with 

the magnetization profiles, approaching steady constant 

values for different I values as we go deeper into the 
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bulk. The behaviour is reminiscent of the electron 

density profile for the ISBM in Fig. (2.1). 

As expected, our A, EA-z, curves using the exact 

expression for 'X differs with respect to Schiach's 

approximate versions. In contrast ours is oscillatory 

in character, but similarly it tends to a constant 

levelling-off value far away from the surface. At 

the boundary our curves go exactly to zero (as expected 

from the form of our magnetization curves using the 

exact expression for %° ) whereas his /1E extends 

slightly into the negative region for z - outside the 
0 

surface. 

From the form of 

a plot of A Ee,,log(Is  - 

suggestive of a linear 

Taking Is= 0.989, this 

to the maximum peak in 

in Fig. 5.5C and show an excellent tendency towards a 

straight line. Further checks were made by varying za  

and confirming this conclusion. This is an encouraging 

result although it might be unwise at this stage to read 

too much meaning into it. 

our LE function (equation 5.16A) 

I) for a fixed value of z seems 0 

behaviour (Newns & Edwards, 1977). 

was done for z 0= 4.5 corresponding 

4E. The results are illustrated 
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A word should be said at this stage on the 

experimental situation. Experiments have been performed 

with the high density fluid of liquid helium3  and the 

evidence does suggest that it behaves as an itinerant 

ferromagnet near the surface (Ahonen et al, 1976). They 

examine the low temperature magnetic susceptibility of 

normal and superfluid helium3  bounded in a narrow slab 

geometry and obtain a field dependant enhancement of 

the pure helium3  magnetic susceptibility over the bulk 

Fermi liquid value. The excess susceptibility follows 

a Curie-Weiss law which is consistent with the assumptions 

that there exists a quasi-two-dimensional sheet of 

itinerant ferromagnetic high density liquid helium 

between the first few layers of solid helium3  and the 

bulk paramagnetic liquid, as pointed out by Beal-Monod 

and Doniach, 1977. However further future experiments 

with nearly ferromagnetic materials in confined geometries 

would be welcome. 

In conclusion, let us recall that our free electron 

model with an infinite square surface barrier is a highly 

idealised onewhich would in effect be unrealistic in 

describing properties of strongly paramagnetic transition 

metals such as palladium and platinum. However, even 

our simple model cannot be discarded as it does contain 

interesting information on phenomena like magnetic 

phase transitions at surfaces which have been predicted 

by a more appropriate tight-binding model (Weiner, 1973). 
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Simple as the model is, the formula for the magnetization 

involving 	c)C)((p)  ci,z ,i0 given by equation (4.4) is 

far from easy to deal with. Thus there seems to be 

little hope that one can solve the integral equation for 

the magnetization for a realistic model without an 

extensive programme of numerical studies. 

Our calculations have involved use of the RPA and 

based on the molecular field approximation. But the 

bounded surface problem presents a dimensionality d 

somewhere between 2cd< 3 and therefore imposes the 

questionability of such an approximation in handling 

surface problems in a meaningful way. The RPA is valid 

for low momentum transfers (Pines, 1964), but in our 

surface problem where high momentum transfers become 

appreciable one should perhaps go over and beyond the 

RPA to calculate the system properties. 
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XPS SATELLITE SPECTRA FOR ADSORBED ATOMS 
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The surface plasmon and electron-hole satellite spectra in core-level XPS of a large adsorbed atom are calculated 
for an idealised model of a metal surface. 

In XPS spectra of core levels of adsorbed atoms, 
satellite structure on the low kinetic energy side of 
the core line is expected. For a sufficiently fast out-
going election [1], this satellite structure should be 
dominantly intrinsic, i.e. due to the sudden appea-
rance of the localised core hole. Methods of separating 
out the intrinsic and extrinsic effects have been con-
sidered by Bradshaw et al. [2] for the case of 0 and 
Al. For a large radius physisorbed atom such as Xe, 
the intrinsic core CPS satellite spectrum should ap-
proximate that for a point charge just outside the 
surface. Its interest lies in its action as a probe of the 
surface excitation spectrum at moderately large wave-
vectors. 

The sudden approximation for switching on of the 
core hole, appropriate for intrinsic satellites, gives the 
"zero-work" sum rule that the first moment of the 
core XPS spectrum lies at the gas-phase position of the 
core level [3]. The elastic threshold of the adsorbate 
core XPS spectrum is however shifted towards the 
high kinetic energy side by the "relaxation shift" v. 
In our approximation v is the static interaction energy 
of a point charge at the adatom with the surface. For 
an adatom of radius d the classical image theorem 
would give v e2/4d for a metal. If the satellite spec-
trum is dominated by a single peak at the surface 
plasmon frequency ws  (taking elastic threshold as 
energy zero), then the "zero work" sum rule gives 
p = v/ws  for the strength p of the satellite peak rela-
tive to elastic peak in Born approximation. 

Our aim here is to calculate the intrinsic satellite 
spectrum N+(w) taking into account within a simple 
model microscopic properties of the electron gas 
such as finite screening length, surface plasmon disper-
sion and damping and electron-hole excitations. In 
Born approximation N+(w) is given by 

e2 "' 
N+(w) 	f e-2QdsQ( c.) ) d 

(42 0  (1) 

Here w, taken as >0, is frequency measured away from 
elastic threshold, Q is wavevector parallel to surface, 
and d = distance of core from surface. SQ(w) is the 
surface spectral density, defined as SQ(w) = —(1/a) 
X ImRQ(w), where the image response function 
RQ(w) may be defined by 

RQ(co) = q n  (w)lq Q(co) . 	 (2) 
In eq. (2), g Q(0.) is the (Q, CJ) Fourier transform of 
a charge outside the surface, qim being the image of 
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Fig. 1. Surface spectral density SQ(w) for rs  = 3, Q = pF14. 

326 



Volume 59A, number 4 

1 
r5  = 5  
d .2.5au 

20 

PHYSICS LETTERS 	 13 December 1976 

Table 1 
Relaxation shifts, satellite intensities and asymmetry parameters. 

rs  ws(au) d a(au) vb(au) 	v/ws 	P calc. 

3 0.24 4.0 0.049 0.21 0.125 0.03 
2.5 0.069 0.29 0.16 0.06 

5 0.11 4.0 0.045 0.41 0.30 0.08 
2.5 0.062 0.54 0.35 0.14 

N+ (w) 

• 12 	.13 	.14 	•15 
w (au) -"- 

Fig. 2. Intrinsic satellite intensity N+(w) at energy w below 
elastic threshold [note scale change]. 

q in the surface from which d is measured. The classi-
cal image theorem gives limQ,0  R Q(0) = -1. 

The solid is here treated as an electron gas, and 
the surface approximated by the "Semi-Classical 
Infinite Barrier Model" (SCIBM), which unrealistically 
has a step-function electrpn density at the surface 
but reasonable dynamical properties [4]. In this 
model [4] RQ(w) = [1 - eQ  (w)] J  [1+ eQ (w)] , where 

eQ(w) Tr 0 q2 col  
1 	2 Q :f  dqz  

Here q = -1(4 + Q2  and e (q , w) is the Lindhard dielec-
tric function. An approximation to (3) is 

1  
e (2p)  a (w) + 2 Q(ai(co)+ ith(co)) , 	(4) 

leading to 

S (w) 	
_ 	Q (6.32 4)2 	 (5) 

• 
[co2 	+ 1G02 cop 2 + w1p2 wiz)] 2 

From eq. (5), we see that SQ(w) should have a peak 
at w ,--11 cos(1+-1 Qui  ) of width -Q P I  cos/2, and mi-
nimum at w = wp  =Nficos, the bulk plasma frequency. 

a) d measured from edge of substrate electron density. 
b) v is calculated from u =- 2  e217RQ(0)e-2QddQ. 
c) Relative area under surface plasmon satellite - see text. 

In fig. 1 we illustrate the spectral density SQ(w) 
for an electron density of rs  = 3 and with Q at one 
quarter the Fermi wavevector. Calculations using 
(3) directly or the approximation (5) agree quite 
well. Both the peak• at co, and the bulk plasmon 
"antiresonance" are in evidence; the latter feature 
also appears in a recent work of Barton [5]. Also 
visible in fig. 1 is the electron-hole structure, approxi-
mately linear in CO at small w. This is responsible 
for the "infra-red divergence" in the XPS spectrum 
at small w [6]. 

In fig. 2 is illustrated the XPS satellite spectrum 
calculated from eq. (1). Results calculated using (3) 
with numerical integration or (5) are found to agree 
rather well. Of course the total spectrum also con-
tains an elastic peak given by a delta function at the 
origin. Note that d may be roughly estimated as the 
adatom atomic radius, the values for Ne and Xe 
being about 3 and 4 au respectively. The case chosen 
(r = 5, d = 2.5 au) for illustration involves small d 
and low electron density in order to maximise the 
non-classical effects under discussion here. The sur-
face plasmon peak is seen in fig. 2 to be asymmetric, 
due to the positive surface plasmon dispersion in this 
model, so that the surface plasmon resonance lies 
in w > cos. The resultant approximately exponential 
form was predicted by Harris [1], though our result 
contains also the damping and intensity fall-off effects. 
Perhaps most remarkable is the narrowness of the 
satellite, whose width is only ^ 0.1 cos. Effectively, 
for the relatively large d concerning us here, the 
Q-values brought in via (1) appear to be small enough 
to approach the classical behaviour SQ(w) = 

cos 5(co - cos). The area under the surface plasmon 
satellite, from threshold to about 0.9 wp, is compared 

(3) 
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in table 1 with the classical result p = olws. It is 
found that only about 55-70% of the classical in-
tensity v/cos  is found in the calculated satellite, 
though the upper cut-off of the latter is rather sub-
jective. 

A non-classical phenomenon appearing in fig. 2 
is the divergence at w -► 0. This is basically the 
infra-red divergence discussed for this problem by 
Gumhalter and Newns [6]. Eq. (5) of ref. [6] goes 
over, as the asymmetry parameter y becomes small, 
to N+(w) = 7/co for small co. This is the Born appro-
ximation limit, and fig. 2 shows this (4.)-1  divergence 
at small w. In fact for small co and rs  = 3 our present 
result agrees quite well with eq. (5) of ref. [6], per-
haps justifying the Q-independent cut-off taken in 
ref. [6]. In practice one cannot see the small-co di-
vergence, due to finite lifetime of the core hole, 
but only an asymmetry in the otherwise symmetrical 
lineshape of the "elastic peak" [7]. In experimental 
work on XPS from substrate core levels attempts 
have been made to extract the 7-parameters [8]. 
Accordingly estimates of y from the formula of 
ref. [6] are included in table 1. The results show 
that y is significant only for low electron density 
substrates. 

In conclusion, we have carried out a simple theo-
retical treatment of the intrinsic XPS satellite struc-
ture for a large physisorbed atom on a free-electron 
like substrate. The surface plasmon satellite is the 
dominant feature and is quite well described by the  

simple classical picture based on a single non-dispers-
ing mode. Bulk plasmons contribute negligibly to the 
spectrum provided the atom lies outside the surface. 
The electron-hole excitations contribute divergent 
small-co behaviour which, in the presence of a finite 
core lifetime, gives an asymmetry to the core peak 
characterised by the quantity y. The asymmetry 
seems likely to be measurable only for low electron 
density substrates and perhaps non-free-electron type 
substrates. 
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