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THE ROLE OF SURFACE SUSCEPTIBILITY IN THE THEORY OF ADSORPTION

Arpita Datta

ABSTRACT

Tn this thesis we are interested in meking a study of the
atom—surface interactions using a linear response theory
formalism. We approach this problem two different angles.

1. The first deals with a dynamic problem using a semi-
classical infinite square barrier model, SCISBM, and
involves the excitations of the core level adatom with

the metal substrate when subjected to X-ray photoemission -
(XPS). The calculations concern intrinsic satellites of the

system, a quantity that has been experimentally observed
through use of XPS, and also involve the physical concepts

of relaxation shifts, line shapes and infra-red divergence.

2. The second half of the thesis is concerned with the same
physical system but now approached from a magnetic point
of view. The object of interest is a localised static
surface spin susceptibility formed by the application of
a localised magnetic field in three dimensions for
itinerant paramagnets. This quantity is of importance in
some theories of chemisorption and catalysis and we use

the exact three-dimenional expressions for the non~interacting
electron susceptibility to calculated the localised surface

magnetization. We apply our results to a calculation of
binding energy of an adatom with the metal substrate.
The infinite square barrier model (ISBM) is used.

Our calculations are based on the RPA or time~dependant Hartree
approximation.




CHAPTER T

INTRODUCT ION

Generally speaking, progress in understanding the
behaviour at surfaces in Physics has lagged far behind
that in understanding the bulk properties of matter. The
reason for'this is partly due to theoretical difficulties.
A metal bounded by its surface loses the simplifications
due to translational invariance sfforded by bulk
crystalline sdlids. Furthermore, it is a region of
strong inhomogenity since the electron density reduces
from its bulk value to zero in a distance roughly comparable
to atomic dimensions. Another hindrance to the ranid
development of surface science was the lack of reliable
experimental data on the properties of surfaces. But
with the advance in ultra-high<vacuum technology during
the fifties and the development of new experimental
surface techniques which have enabled reasonably accurate
reproducible measurements, interest revived. This advance
combined with advances made in maﬁybody theory gave
the boost resulting in the recent boom of development
in surface physics.

Quantum theory lies of course at the véry core of
attempts to analyse and interprete the properties of
both bulk and surface matter. According to some,

there is little doubt amongst scientists (if not



philosophers) that the workings and properties of

ordinary matter can ultimately be reduced to electrodynamics

and quantum theory

Ideally, the information one seeks includes the
geometry and electronic structure of clean and adsorbate
covered surfaces and it also proves useful in understanding
some general properties associated with the surface,
preferably in the form of measurable physical quantities

e.g.

1. the work function. lﬂldefined as the minimum work
required to remove an electron from.the metal at
0°K i.e. the energy difference between an electron
at the FPermi level and the vacuum level. Tyvical
values for & of metals are 2-3ev for alkalies
or 4-5ev for transition metals.

2. the binding energy AE of an atom to the surface,
defined as the work required to remove an atom from
the surface. This is an important concept as it is
crucial in determining chemisorbed as opvosed to
physisorbed systems (A E Z 0.5 ev in the former
case whereas AE ¢ 0.3 ev in the latter case ).
Ideally, one would like to determine the binding
energy as a function of site gbsorption and the

.distance between the surface and adatom. |
Response functions play a key role in understanding
the properties of many-body systems. This is of course

quite natural due to the very method whereby experiments



are performed e.g. in a tyvical experimental set up

we apply a perturbation to the system under investigation
and measure the resulting response. The correlation

or linear response of the surface to some applied external
perturbation is often referred to as the generalized
susceptibi;ity of the system. This is the underlying
theme throughout this thesis in which the geometry of

the situation involves an atom adsorbed on the substrate
metallic surface. This response of the metal surface

to some perturbing potential is of fundamental importance
to thé weaker interaction of physical adsorption (which

is predominantly Van-der-Waal forces) as well as treatments
of the complex problem of covalent chemisorption. .Due to
the inherent complexities in the problem of adsorbate
systems and chemical reactions on metal surfaces,
simplified assumptions are necessary.

Newns (1970) and Beck and Celli (1970) independantly,
although in the same year, derive an expression for the
linear response of a metal to an external charge distribution
using the random phase approximation (RPA) or time-
dependant Hartree approximation, using a self-consistent
approach. The infinite square barrier model was considered.
Both are essentially equivalent.

Peukert (1971) considers interacting electrons confined
to a slab of finite thickness and uses a Green's function
technique (Kadsnoff - Baym, 1962, formalism - also used

by Zaremba, 1974, in his thesis which examines the magnetic



susceptibility for a bounded Fermi system).

One model which has been widely used to calculate
various properties of metal surfaces is the so - called
'jellium' or uniform planar background model, in which
the ion cores are spread out into a uniform distribution
of charge. In 1969, Lang made self - consistent calculations
for the electron density which instead of abruptly
stopping at the termination of the positive background,
spread out beyond this point into vacuum, forming a
transition region of atomic-dimension localised about the
background boundary. Lang and Kohn (1970) use a fully
self - consistent calculation to obtain numerical results
for various density distribution, potentials and surface
energies for differing metallic densities, L While
giving reasonable results for low density metals, results
upon higher density metals (rs:s 4) eg. aluminium,
differ significantly with experiment. Thus the jellium
modei seems inadequate for low values of ry and improvements
are possible by replacing the jellium by a pseudopotential
model of ions.

There exist excellent recent reviews on the chemisorption
theory eg. Grimley , (1975) ; Gomer, (1975) ; Muscat and
Newns (1977 ). Ying, Smith and Kohn (1975) first invoked
the density functional theory (introduced by Hohenberg, |
Kohn and Sham, 1964 and 1965) to obtain the linear

response of a planar jellium surface to a point charge



and they avplied the theory to the chemisorption of
hydrogen on tungsten. The actual electronic density
was found self - consistently by minimising the energy
functional and solving the resulting equatiqn with the
Poisson equation. The only parameter involved in the
calculation was Ty The work function was found to be
in good agreement with experiment, but the distance of
the image was too large compared with previous theory.

In 1975, Lang and Williams use a more sophisticated
theory and apply a self - consistent wave - mechanical
formulation of the density functional theory to Ying
et al's model by going beyond linear response theory.
Dipole moments and binding energies for the adsorption of
hydrogen, lithium and oxygen on an rg = 2 substrate
yielded encouraging agreement with experiment on
transition metals.

However, certain natural objections arise to this
idealised jellium approach in that it is too simplistic
to realistically represent the electronic structure of
a transition metal, by neglecting the different roles
played by the s-p and d- bands. But it does satisfy
the momentary need to explain the existence of vast
amount of data needing interpretation.

Another consequence of the atom-jellium model is the
restriction imposed by adatom penetration. Very

electronegative adatoms e.g. oxygen on aluminium,



which do in fact tend to penetrate the metal surface,
cannot be included in this theory. In 1976, Ying et al
conducted an ultra-violet photoemission study of oxygen
adsorbed on clean polycrystalline aluminium and measured
the energy of the oxygen 2p-resonance and the dipole
moment of the adatom, given by the change in work function.
In the former, experimental measurements were more than
three times larger and no change in work function was
measured, whercas.a significant dipole moment had been
predicted by theory (Lang et al, 1975). So the process
of absorption, a likelihood in practise is neglected in
the atom-jellium model in favour of pure adsorption alone.

A concept relatively new.to chemisorption theory is
the induced covalent band theory ICBT, which was initially
formulated by Schrieffer and Gomer in 1971.

This was to treat systems in which the intra-atomic
Coulomb interaction, U, on Eﬁe adsorbate is large compared
with the interaction strength between the adsorbate and
metallic substrate, and so the charge fluctuations are
so small that only neutral adsorbate states need be considered
to lowest order. The exchange interaction, J, between
the édatom and solid induces a spin density in the
vicinity of the adsorption site and this induced spin
cloud couples to the adatom spin through J to form a bond.
Their qualitative argument is as follows ¢

The energy required to create a spin S on a metal surface



atom is
T
A.E - %’"33) / 2 ’leoc,
where [-Ub = Bohr magjnd‘on_
and Ai.c is the local spin susceptibility of the

surface substrate atom.

If a full spin S = ¥ is induced on the metal surface atom,

a bend with the adsorbate can be formed, lowering the energy
by an amount Wm. However; if no spin were present i.e. S =0,
the adsorbate would experience an exchange interaction Wr
with the surface. Through a process of linear interpolation,

the net energy change may be written as a function of 8, thus:
AE(s) = Q‘LBSY'/Q,%L,,C ~ 28 (Wn+ W) + Wy

which satisfies the above requirements. Minimizing the above

equation with respect to 8, gives

2~
A = - 2SS ol Ly,
ad
where the term'wm’+ Wr may be interpreted as the
lowering of energ;pgue to the solid spin responding to
the exchange interaction J.
Paulson and Schrieffer (1975) study a quantitative
formulation of this theﬁry and consider hydrogen on a

tight-binding s-band solid. They calculate the binding

energy for different metal band-widths for both the

oy I b
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weak and strong interaction limits and obtain physically
reasonable results, showing binding curve minima for

reasonable value of band lengths.

Surface Plasmon

Now, surface plasmon excitation is of interest
to us and plays a tremendously important role in
connecting the interaction between s fast charged
particle and a metal surface. We begin by introducing

the concept of surface plasmon in the following way :

Consider a classical interface between a medium
of dielectric constant € (v) in the plane Z< 0 and
vacuum at 27 O. The surface is therefore at =z = 0.
(See Fig. 1.1). Now, in both the mediums, the
potential @ should satisfy Laplace's equation viz.

Vg =0 creecasesses (1.1)
If € is a two-dimensional Fourier wave vector, then a

solution of (1.1) is given by

g‘b:

which is continuous at the surface Eg = 0.

iQ.%X - 91zl
e ceea(1.2)

If E is the electric field and D the displacement
then from any standard book on Flectrodynamics e.g.
Jackson, 1962,

E Vg ceee(1.3A)
D

eE eeee(1.3B)

where £ 1s the dielectric constant proportional to
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the electric susceptibility of the medium. From
consideration of continuity of D at the surface, we
have

(W) + 1 = 0 ees (1.4)

But the classical expression for €(w) 1is given by

g(w) = 1 - o . (1.54)

2

where ooﬁl

(@17nef>/h, the plasma frequency...(1.5B)
n is the number of electrons / unit volume.
Substitute (1.5A) in (1.4) yields
s = -e. (1.8).
which is defined as the surface plasmon frequency

This expression (1.6) for s is in reasonably good
agreement with experimental calculations for free
electron-like materials e.g. Kloos and Raether, 1973,
obtain values of 7.1 ev and " 10.6ev _for magnesium and
aluminium respectively, while the theory predicts values
of 7.72eV and 11.2eV respectively. However for non-
free electron like material €.2. transition metals,
equation (1.5A) cannot be used for classical dielectric
function.

In 1957 , Ritchie was the first to theoretically
observe the importance of surface plasmon oscillation in
thin films using a dielectric treatment which he shows
is essentially equivalent to first order perturbation
theory. Their existence was first experimentally confimed
by Powell and Swan (1960) who made measurements of the

‘electron-energy-loss spectra of the free—electron—like-i
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metals, aluminium and magnesium. =~ = o

- eme L T oee - . . - 2

L vd . PO

Objective

Adatom resonances play a uniquely important part

in efforts to understand chemisorption and physisorption
becéuse they lead to readily identifisble structure in

the measured excitation spectra. One relatively new:
method for studying .electron-loss structure a2ssociated
with electrons travelling through solids is X-ray
photoemission (XPS). Here the X-ray beam penetrates
thousands of angstroms and . photoemiséion
occurs. OFf more theoretical interest, XPS provides a
possibility of observing intrinsic as well szs extrinsic
plasmon structure. Recent interest in the possibility

of observing intrinsic surface plasmon satellites in
free electron like metals by XPS (Bradshaw et al, 1976)
has inspired part of our present work which is concerned
with the excitation of the core state of an adsorbed

atom on the metal surface. The dynamics of the resulting
hole preparation and decay and the form of the excitation
spectrum of the density fluctuation determine the
intensities and positions of intrinsic satellites
(Harris, 1975) and give rise to the so-called extra-atomic
relaxation effects (CGadzuk, 1975) which incorporate

relaxation shifts, line shapes and shake-up spectra.



15

In the following chapters of this thesis we give . ‘

further details with the relevant references and so we

conclude this introduction here to avoid repetition.

A rough outline of this work may be made as follows :

A)

B)

The dynamic vroblem

In Chapter II, we define the surface response
function R for our semi-classical infinite square

barrier model (SCISBM) and express some of its

properties through the spectral function S, which is

found to obey certain general sum rules. We graphically
illustrate this S-function, sevarating out the contributions
due to the electron-hole and surface plasmon excitations.

In Chapter III, we apply the results of Chapter II
to célculate the intrinsic satellite spectrum N of the
core level of the adatom, separate out contributions -
due to transient and adisbatic responses and determine
the magnitude of the relaxation shifts; Graphs for
N are given, with a discussion on intrinsic and extrinsic
effects. Further intrinsic N are computed using data
from relevant papers. Our results are compared with
available experimental dsta.

This completes the first half of the thesis.
The static problem

The second half of this thesis deals with the

static spin susceptibility and magnetization of
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surface enhanced itinerant electrons in three
dimensions. The arguments promoted by Schrieffer
and Gomer in 1971 for the ICBT (given earlier on)
were the first to emphasise on the role played by

the local spin susceptibility in the theory of
chemisorption and provide our motivation for the
latter half work in this thesis. Chapter IV serves
as a self-contained introduction to this topic, while
Chapter V includes the results and discussions of our
infinite square barrier model (ISBM) which is used in

contrast to the previous SCISBM.
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CEAPTER I3

FORMULATION OF THE PROBLEM

Our main interest lies in the numerical calculation of
the intrinsic satellite spectrum N,(w) of an adsorbed atom
on a metal surface. As discussed in the previous
chapter, this is related to the probability of creating
an excitation of energy ho in an electron gas when s
charge localised on the atom 1s suddenly switched on
due to core hole creation by photoemission. It is
therefore of importance to study the response function
of the surface. What comes in (assuming the atom lies
outside the surface) is the density-density response
function when both the source and the probe lie outside
the surface. This response function has a spectral
density Sg(o) which is the main topic discussed in
this chapter.

The model of the surface of the electron gas used
here is a microscopic one since it is desired to take
into account effects such as finite screening length,
surface plasmon dispersion and damping and electron
hole excitations. The random phase approximation (RPA)
is used.

As svecifled previously, the next two chapters of
this thesis i1s relsted to the semi-classical infinite
square barrier model (SCISBM) for the dynamic case in

which our frequency « 1s finite. The SCISBM is a
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special case of the infinite square barrier model (ISBM),
the latter being used in Chapters IV and V for static
calculations involving the magnetization problem. It is

therefore relevant to discuss the ISBM at this stage.

PROPERTIES OF THE ISB MODEL.

A large proportion of the work on the theory of metal

surfaces has made use of the infinite barrier model which

was first introduced by Bardeen in 1936, As the name suggests,

this model assumes that the electrons are confined to
the surface by an infinitely high potential barrier

given by .
V(z)

@) ... Z £ 0

Co .. 2 720
agsuming a Cartesisn co-ordinate frame (x,y,z) associated
with the physical system such that the metal lies in the
region 20 and the metal surface is in the x-y plane,
z=0., The z-axis is thus verpendicular to the surface of
the metal, while the metal itself is a semi-infinite

system. Using Schrodinger's equation of motion viz.

H E

where H is the Hamiltonian of the system,

il

E is the total energy of the system
and ﬂP is the basic quantum - mechanical wave function,

We can write ﬂp for a given momentum quantum number

q/_ = CQ) cl,z_) as

. e e v
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'\.\)90 = /q/x '\‘“3 ’\Pz

(M sSde  The

L. X .
ol e_ smct,_z.... Z<£ 0 metad) |
O . . - * Z?o(Ou.GLd.L ‘I’ﬁ,!
m:.L'QL). '

where X = (x,¥). The electron density is given as a

function of z by

1
M
&

ﬂo*
2

‘l.ﬂ

P

where the triple integrsl is carried out in momentum
space over a sphere of radius kF, the Fermi- momentum.
This integration is easily verformed by converting to
spherical polar co-ordinates, whereby we obtain (see

Gradshtein and Ryshik), Bardeen's (1935) expression

(z) = R’ {14 3cm(@Red_ 35 (QW)}Q(—Z)
s (3)* (arez)* (2] (a.1)

where the first term is just the electron dénsity inside
the metal, while the last two oscillatory terms are the
Bessel Function J%h(2sz) or the spherical Bessel Function

34 (2kpz) and ® (z) is the ordinary Heavigide unit step
function given by

()Cz) 1 N Zvo

O Z <o
The very simplicity of the infinite barrier model provides

sufficient reason for its popularity. Many quantities can
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be expressed in terms of simple functions, so allowing
detalled anslyslis of the statistical behaviour of electrons
in the surface region. A simple model has many virtues
provided its limitetions are borne in mind when studying
a subject as complex as the inhomogeneous electron gas.
It is clear from the form of our wave function \Lq;(g)
and the electron density ‘P(z), that the placing of an
infinite barrier potential is equivalent to assuming
that all the electronic states are specularly reflected
at the boundary snd that the vprobability of finding an
electron within the positive z half-space is zero. A
finite potential barrier would be clearly more realistic
as it allows for quantum tunnelling effects into the
vacuum. The IBM confines electrons too strongly and
cannot account for questions concerning the evanescent
tails of metal wave functions. |

Another criticism, made by Lang (1973), is that

the only characteristic length which appeers is the

-1
. But for high values of metallic

Ferml wavelength «< kF

densities ( or low rs ), in the self-consistent calculations
= = /4u

the Fermi-Thomas screening length kFT tRe is expected

to play an important role. Leng's self-consistent

calculations for the electron density for L equals

5.0 using a planar uniform background model compares

well with the IBM. case except for the tail of the

profiles. Both densities disvlay a pronounced oscillatory

behaviour arising from quantum interference effects at

the boundary and extend far into the bulk. For r.= 2,0
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on the other hand the oscillations in the self-consistent
profile are diminished in amplitude and it resembles the
monotonic Fermi-Thomss profile more closely. Lang's
calculatlons were based upon the wave mechanical formulation
of the density functionsl theory and employed a local .
approximation for the surface exchange correlation
potential. Although this approximation is not beyond
criticlism, his density proflles are probably the most
rellable ones availgble at present.

In the SCISBM .the electron density is :

Z) = (~ oo (e
Pz (3" & (- =)

1.e. constant and equsl to the bulk value within the
metal and zero outside. This apﬁroximation to the IBM
by smoothing out of the Friedel-type'oscillations will
be under consideration in our calculations in thise chapter
and the next. This is more of a mathematical model
chosen for convenience rather than s physical model
chosen for realism, slthough it does in fact glive
reasonsble dynamical préperties. But we must keep in
mind that this model does . violate Heisenberg's
uncertalnty principle in quantum mechsnics from which
we expect the density to die dowm gradually to zero in =
distance_of the order of atomic dimensions viz. ’K//F;.
The electron densities given by (2.1) and (2.2)
are drawn in Fig. (2.1) and compared with Lang's self-

consistent density profiles.
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DFRIVATION OF AN EXPRESSION FOR THE LINEAR RESPONSE

IN THE SCISBM.

To begin with, we wish to calculate the linear
resvonse of the system to a perturbing potential V(g,t)
in the Hamiltonian. Assume the existence of an external
time-dependant potential e.g. an external charge at a
distance 4 from the surface of the semi-infinite metal,
say at the point (0,0,d) in the Cartesian framework
system. We also éssume translational invariance in the
X = (x,y) plane. Let U(g,t) be the source potential due
to the external charge distribution and ¢ (r,t) the
potential in the metal due to the charge density. Then

the self-consistency reads _
V(e €) UCe ,8) » $Cc,6) . . @3
while the RPA gives the response ST by

E | .
Sf (s,t) = fdt’fd:’ R(c,ban' e )V (e e'). .. (2-4)

]

where the response function R is defined by (Kubo, 1957):

R(etete)= ([ plete), p (e, )], Y0-¥) (2:5)

where {q%) is the time-independant Heisenberg ground state
of the unperturbed system,

Ond JD(CJQ is a density overator which may be defined in
terms of creation and destruction operators

corresponding to the one particle wave functions

of the unperturbed system.
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We assume a summation over spin indices in (2.5) coming
from the density ornerators and that the perturbation is
switched on at time t = O. Atomic units are used throughout.

Define the Fourier Transform of a function g(t) as

3(@) = j Q_-uot 3(t) dt L (2_.6)
Using (2.6) in (2.3) and (2.4) gives us
V(e,@) = U(e, @) + ¢(, ) o (e
Sp e - [ar RGEEOVES L G
Now define the Fourier Cosine Transform of a function f(r) as
L. X
by = [de e T em@erfe) L (29
and use in (2.7), (2.8) to give
V(g, o = U (g, + ¢ (3. - (209
S:P (1, W) = qué R@%q; (D) \/5"1,2-' () . .. (2w
where
P .G %) ,
R“?‘h‘h’ (&) = d(x"‘)d‘idlﬁ Ces(zci,)coo(iﬁ{)ﬁ(n,r', w)
N CH Y

Equation (2.12) incorporates into it the translational
invariance in the x-y plane.

Consider the operator O = &LQ'K Cae@zz) VZ .. (.‘l. 13)
Apply O to the left hand-side of the scalars in equation (2.7)

and integrate over a volume +r of the electron gas. Utilise

Green's theorem (as stated in Appendix A) to obtain
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2/ Q2 QX
~/ . _ YAV (Q. Coo(clzz)) de 4—[6— Cm(%E)YV.Ol_S
[Bv ac - J J
v
- [Ve(ethga).s @
S

A
where d8 = (0,0,k)dxdy is the unit vector in the positive
z-direction that is, normal to the surface. Consequently

the only non-zero term arising from the dot product VV. ds

is 9V Now,
22

vz(ei_g_)_( ) _ ._(@14_ ;j Q«Q-l‘ 3 - | )2_ KX )
6sq:2) T @fed) = — 131 el

The second surface integral is zero at z = 0. We have

from (2.14) the result

VIV o= - l91*Vg 4 Vo' ... @)

As we assume the source charge distribution lies outside

the electron gas, we have from Poisson's equation that

4r Sy = =131y 4+ Ve . L (2w
Now in the region 0« z<¢d we have
cﬁ?(i) = Q_Qz 4>,? (0)
(z-4) .
U?(z) = QQ U ‘?(d) ‘

Hence using (2.7),

\/‘9 (0) = Cbs; (o) + US; (0)
\fg'(c) = -9 439(0) + QU‘S(O)
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Substitute in (2.15) gives

\/g‘(o) = igplz\/ao + 4 SJJ%
= _9Vgl9) + 2§ Uge) - - (2

Put (2.11) in (2.17) gives

\30\2' \/g"(o% .. 4"ﬂ'jd1;_ R.?1 1} ) = -—(S)Vg(o\

Rewriting, -+ 2‘?0‘?(0)
f CL;. E*g%zclz \/91 = - @Vg (0) + Q.Q U?(O) . (Q,Jgﬁ)

where the matrix E is given by
) 9929

. . *
E?%z%, (‘Q) = IQPI Scl"cl/"' + 4 R’?ﬂ,zcl,z' (o) .- _.(2.!88

From (2.184) we have in matrix notstion,
\/% = 9 Z Eq.c‘ﬂ;«l (fl Ugto) - Ve (o}) .- (2
9. |

- —i
Now, eg '(u}) - @ “ZE’ E_? L X
and applying (2.9) to (2.19) we have

439 (G) v? (0> — US) (o)

| — E?(“')) Ug (o)
|+ (o)

1

This is the gquantum analogue of the classical image
theorem for & semi-infinite dielectric medium which
states that the ratio of the induced potential in the
external region to the reflection of the source potential

in the surface is weighted by the factor R (&) where

S
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1 - €96 . : 2.20
f(9(35) _ b -) . ( J
1+ 2
Newns (1970) has given a detailed derivation of R§1$v1a-0a)

(in equation(2.18B)) for non-interacting electrons in

the IBM and we quote his result in the form

K?‘T,z‘ia.' (@) = :D@clﬂ(uﬂ 8‘121’1 - A‘S"Mz' (w)- . - (a.zm)

where the diagonal terms D c‘(m) are related to the bulk
RPA dielectric function thus:

e (0 - (L+ 472ma) . @aw
g,
and the off-diagonal elements A@%ﬂﬁm) are more complex
but obey the sum rule
S Asny (9 = Do (D L . @ad

92!

However for our SCISBM, these off-diagonal terms are

neglected, and so
}

8«3"(@) - @ 7, ( (lgp\i-\- b Dy, 11} 3q, cl%> (222

o
Put equation (2.21B) in (2.22) and we get
- a9 J , .o (2.23)
863 (Q) = @1_‘_1% ) E’ap(ng"

.as in Ritchie and Marusak s 1966 paper. Thus the

equations (2.20) end (2.23) give us our linear response

function for the system in a well-defined mathematical form.,
We now have a digression in which we define a slightly

different retarded response function which ensbles us to
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calculate some sum rules in g fairly simple way.

AVOTHER DEFINITION OF THE RT¥SPONSE - FUNCTION : INTRODIICTION

TO THE DYNAMIC FORM FACTOR.

Another form for the surface response function for
8 semi-infinite medium, assuming the existence of an
external time-dependant potentisl which is applied as s

perturbation to the system is defined as

* Re(®) - Q%—;L QW< $g, ?4}_9@)]1_07 . (2.24)

where Q is a wave - vector varallel to the surface of

the metal,

439 . ZL;{ &LQ.J_Q*- Pz

t=t

&%@g is 2 density operator in the Heisenberg

representation,

|©% 1is the ground state of the unperturbed

metal surface and
<ol 10> meaning the expectation value with

respect to the ground state of the system.
Physically, the first $ in (2.24) corresponds to the
perturbation while the second is linked to the probe

into the system. We can rewrite (2.24) sas
. - — 3 L et F 91‘( ; 92-' A
Rg (e-¢) | @“_ O t)fdze_ -:lz& <°/[ﬁg(z,t),
ﬁg (i)t')-]lo> L - (2. 2,5'/\)

where

fg('g) = 'Ze_—m"zi S(z- %) ... (2358)

% See Apvendix D2 for relating to (2.20)
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We now make a definition of the svectrsl density function
of RQ(w) , (written in the Fourier representation) sas
being proportionsl to the imaginery part of R?(w) as

follows:

From (2.25A) snd (2.26) we have

o ® o ' e + €o—
Sg(d) = %E ’j‘;dz [ —J;di e gS(J E)x
<Oljig (7_)‘0.7<n.|j3@ (2') 1o - . .. (2.1:_7)

where |n is the excited state of the metal and surface
with energy £, .

The S‘?(“) is our two-dimensionsl fregquency-dependent
dynamic form factor corresponding to similar guantities
defined for bulk systems (see, for exsmple, Nozieres
and Pines,1966). It is, in more physicsl terms, the
coupling strength for solid excitations of frequency W
responding to an external perturbation of the form
In Lehmann repres;ntation we can write

R?(O) - fdu:‘ Sg () __L__.‘-.__ - _J__._— .. .(2.22}
5 w=~w+ed W+ elS
where § o0
Using the stsndard result,
Qun, [ f(—i—:—; - LT S(x—aB
15 o xX-a +L7

in (2.28) immedistely gives

ImRe(d) = - T { S (w) — 39(-w)}

i.e. Iqu(ca) is sn odd function.

il
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So far we have complete analogy with bulk systems aé

considered by Nozleres and Pines, 1966.
Moments

We define the nH“ moment of the system to be

fa () = [ 6% Sgla) do . (a29)

where the specisl cases n =-1 corresponds to the perfect
screening sum rule, and n = +1 corresponds to thé f—-sum

rile. Put & =0 in (2.28) gives
fdw‘ 92(@.‘) = —-_;: R,g(c) .. @-30)
wl

=]
By utilising the quantum analogue of the classical image
theorem (see equation (2.20)) in the long wavelength limit

L_,,\, K?(O) = - i

§=x°

@s in the clsssical theory. Hence (2.30) becomes

f de' 9 (")

wl

o, as O>o . _.(:2.3,)

Now consider the surface f-sum rule, or the case

n =+1 in (2.29)

M (9) wa«z@ d @

Z AT fd?_ e fdi She <0U39(2)H/’9(z)

o C Hp, pge) ey - - - (2.32)
(frc’m (Q.Q.H))

W\

e — ez .
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where H is the Hamiltonian of the system, taken for

simplicity to be of the form

.2 .
H = Z: v 2 Z L V/
L Am ¢ Zm
where p1 is the momentum of the i"" particle of mass m
and V = V(z, , r,) 1s a position-dependent potential

We csn rewrite (2.32) as

/Jw (?) = %;L Z(gn’&)(OI"l-g [a <rLl"'[¢Io7...(Q.33A)
where — 1. ‘;‘*’QZL . -
e - Z;* 5 X | o (2.338)

Hence

A (9) = é‘—‘——<0f [ M-g, W] Me]lo> .- (234

Since ”[9 can be replaced by "l_? without &lteration of
symmetry of the problem. We make use of the Lemma in
Appendix A2to write (2.34) e&s

' LD X+ P2, X+ D2
(M = gy Cl2 AT gty

= i%) ?(ole.wa(ig + é‘?) (-159*@@)’0)

where ﬁ is the unit vector perpendicular to the metal

surface.

Lople) = e 2 <ol & oy

But J‘)(i): <ol_ZS(z~2L)l°7 is the substrate electron density
[

at z

o 204
> [«‘(G}) = gfgfe?fﬁi)di ... (235
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As Q@ » 0, we can approximate to 8 uniform charge density
and obtain the limiting form
Jar [u.(ny) = “_}\L_ = W ... (R39
g~ o
where n= the number of electrons per unit volume,
s = Cr/iz
WCp is the bulk plasma frequency.
Substitute the Ansatz,

SS) (@) = C gCLJ——LJ'o) . X . (2_3:“4)

for the expressions éll:(ukzin’(2'51)’ (2.36) gives

L So(o) = & Sle -3 ... (g
¢> o 2
which immediately shows that if there is only s single

excitation, then this excitation must be identified with
the surface plssmon coupling intensity. Physicaslly this
means that the collective resonance is the only excitation
in the system which can be detected outside the surface by
an external probe situated at a distence large compared to
the screening length.

Our results so far are extremely general and willr
therefore apply to any model of the electron system.
The work is consistent with Gumhalter (1976, thesis).

s
In this thesis we are interested in calculating

numerically the surface resvonse function for the

SCISBM.
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EXPLICIT FORMULAE FOR THE DYNAMIC FORM FACTOR IN THE SCISBM.

Our work involves calculations within the RPA which is
wellknown to yield good results in the high density regime
( small values of re ). We initially wish to calculate
the dynamic structure factor S?(w) which is rich in
" information about our system. In genersl, Sg(uﬁ contains
contributions from single guasiparticle - quasihole pair
excitation, from multinair excitations and from longitudinal
collective modes (the plasmons). For moderate to large
values of Q in tresnslationally invarianf systems, the
contributions from different modes of excitation cannot
be disentsngled and Sg(“) is spread more or less uniformly
over the excitation freguencies. However for the long
wavelength 1imit ( @0 ) it is possible to clesrly view
the results of different excitations, as we shall see in
the ensuing analysis.

From our previous formalism (equation 2.2%) we have

for the SCISEBM
dg:

v
RICE J &) (g9

= -‘ﬁj‘ (81 —<€) dq,
T J *52)(33*%)

Q
where é;%@g) is the bulk dielectric function of the three-

- (2. 39)

dimensionsl wave vector ¢-= (9,1;] and €, = Ea(?;w-x); € - ea,(%:“’)
are Lindhard's dielectric function éiven by (Nozieres and
Pines, 1966, correcting by a factor of % part of their

expression for EQ,(%,hQ) .



5’0(%.@) = 1 +_3'-1 Y + FF ((w*q’f’) Iog/w WF*"T’/Z/
1 @pe) __W+1PF+$/2

(- VR)" 1) w- Y-Vl /]
(o3 L)j/w*‘if-‘t/z -Gz

For ’1, < 2PF R

€1(3)) = T{%\:pp)” SRR B R P
(- 1‘/2.}} ‘-6» 1 SW-9pr <9, So‘jga
41 f (3pe) A a50
o) e Y w2 gp +‘12_ =73
For 172}1?) ‘
€rlgw) = TNpeSg_ (w‘-‘?«/z]} 4{_ ?’PF ¢$i1fifp
1#13 (‘L[’P)" " 2
kX8
O . -+ oHerwise 77 I

The Greek letters at the end of the expression for 62_(% u) (2.3q5
indicate the different regions for « bounded by the

functional forms of q. This is 1llustrsted in Fig. (2.2).

For fixed s - values Ez is non-zero within a finite range

say qu, qp where dg ¥ qx¢ In fact

Ya = - P+ 4/?5* + A

s = Pe "[}Pz -+ 2
We work throughout in atomic units i.e. R=zm - 1 X

Y I Qgr’-/PFz = Hpey (ri,,mc[:e,’::c.‘:goms s«;.-m;j
TP PR axemab (g butk plasnon freguancy)

: (He Fermi - Thomes  momeakbun
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where rg is the metallic density lying realistically

in the range -8 < ¢ < S.6.

In equation (2.20) we have shown thst the linear response

function R‘?(@) valid for small perturbations may be written

as
‘R_g (ul) = Eg—‘ (L) - . . (3 .4—0)
G'?" (3 + |
which using (2.26) =znd (2.38) give
Ea ‘
- _ - 2 —_— ..
gg (u\) = = { (E|+')z+ E;.} w Yy o
_ (2.41)
_ O - - . olRerwise
h .2
were By _T}Q !(. 1eer)(§ *11)&1 1 IR
Esa = — 29 €2 dg. . .. (a.428
T !(&1_‘_ ezl)(g)l"i%ﬂ ( )

We note that for small oY -values,via & logarithmic expansion,

kS
gl —> i + /7/2,
and & EJ—"I%?"’ i (actually 1 -—Exg), i.e. for large
w
vaelues of the freguency, the real part of the Lindhard's

dielectric function approaches unity. Also
‘ .
e, Ig 1 . o(/cv’-)
In (2.42B) the infinite integrsl in E , cen be replaced
by a finite one since €, vanishes for large g values.
In the zero frequency limit but for finite Q we have
(see Apprendix B2)

Sg' o) = — £ (++ 299~ ‘°3C )

Tf" \*
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which can be (and indeed is) used as a check on our work.

We may a@lso make sn expansion of the spectral density

-

function in ascending powers of « for small Q,« values:

fim  Sgla) o awr 4 bo* 4 o() ... (240
o;«u?r
where - 2}\ \/)
& - )‘*p T ( (°j< *
b= - 2
' TA> ‘,FL

‘0. is easily obtained from (2.43) while b may be.
calculated by consideration of S;(o). The above equation
shows the linear behaviour of 89( W) for small values of
(&< Qpp )

Since we are concerned with the small Q-behaviour, let us

for interest meske an expansion of Eé'(w) of the form

ES) _(ubﬁ = 9~o(u>) -+ (o.. (w) + Lla.(m)) ? R (‘.’2.45)

ignoring terms of O(g") and higher. Then using (2.40)

and (2.26) we have '
i 3:» Eo~ (u.)) -1
Sgq () = - ow Eg" (o) + 1

- 29 b6
T (14 aday+ ald9)* 4 (b ‘“’)@)

SR CONY

Comparing the real and imaginery parts of equations (2.38)
and (2.45) yields

oo
€, (o,w)
2 |dqe 27 — :
Ll C@) = - 'T"r'_' (6.210,u>)*"€: (°!“’)> CL;L . @’ 4‘63)
and oy Elo ")) Q ~
@, (-“‘J) = % \re 2(o,0) + 51(0103) A‘i’i T (Q'A%C)

7
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e i
and Ko ((-0) = (l _—E ) - ——q')_ .o (2.1-}-63)) i

Substitute (2.46D) into (2.46A) gives

- z Llﬁd <’ 2“32'2
fin Sty = - R mlCto o - :
w ¥> Ppr [ (20wt s ai(w) q(m*.u)f’)) + (B.ty(m’-aﬁ)ﬂ

@ fuk
In fact e, (w) is the Hilbert Transform of b, (w):see

(2.7

Appendix C2. Thus in (2.47) we have obtained a simplified
form of our dynemic structure factor for values of the
frequency higher then our cut-off frequency Q,pF. For
lower vslues of » we snticipste the linesr behaviour
(equation (2.44)). We also note that as wy Ws: %;’ ,the
surface plasmon, exsmination of the denominastor in (2.47)
(ignoring the Q" terms ) shows a shooting up of 89 (»),
indicating & delta-function type of behaviour as Q->0O:see
our Ansstz for S?(u}) in (2.37B).

Our (2.47) equstion also clesrly indicates
Lm
& wop Se(w) = o . (2.49) .

We make use of the sum rules on hand throughout to

provide checks on our ensuing calculations (Equations 2.30
and 2.36).

DYNAMIC FORM FACTOR IN THE SCISEM: NUMERICATL, RESULTS

AND DISCUSSION

We have plotted several graphs of SQ((A) as a function of &
for various values of Q (0.25 Dps 0.5Dp, Pps 1.5 Dpp, 2.ODF)
for two values of the metallic density ry = 3.0, 5.0

(Figs. 2.3 - 2.7). The Simpson's rule summation procedure

used for the integrals, was seen to provide good convergent
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results. For E, in (2.42B) we had a finite integration

range (0,A) where

A - /\/-?.P:'ﬁ- 20 — Qz-l- 3[’; f\“’r"-t—ﬂd

We split the integrel E, in equation (2.424) into two parts,

(0, Uplim), and (Uplim, %) where Uplim>> 2pp (we actually

took Uplim = 12.0). The second integral was anslytically
handled, using asymptotic expansions for €,, €3 in the large
9: limit. The "plasmon region" where €, snd €, simultaneously
vanish (see Fig. 2.2) had to be carefully dealt with to
prevent our integrals from blowing up. To prevent this from
happening, we included a small 's' correction to &2 +€.*
in the denominator of the integral (twice) and then extra-
polated back linearly to obtain the correct integral.
Parabolic extrapolations were attempted and compared with no
significant difference to our results, showing that the linesr
spproximation was sufficient for our purposes.
For small Q-values, there are three distinctive features

of our spectral density curve SQ(o:s):

(I) The intial linear behaviour for small o values. We

notice a slight 'kink' occurring around the value t=wy= Qp,
before the curve shoots up at the surface plasmon and
attribute this to the negative coefficient of o occurring
in our expansion for SQ(oA) in equation (2.44). Thus we have
in the low frequency limit oqw¢ Qp. s the spectral function
behaving linearly in ¢ ; this relatively rapid rise st small
leads to the well known result that a great many electron

hole pairs can be excited near the Fermi level by a localised
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perturbation giving rise to singularbehaviour in the
gatellite spectra (Nozieres and Pines, 1966). Gumhslter

and Newns (1975) have used the Ansatz

= w/ubm

Sg») = S@‘ (0)we

in this region.

(2) We note the sharp peak occurring around thé surface
plasmon s . This corresponds to the S - function type of
behaviour for 5’9(@)( * S(w-uk)) . Due to the finiteness of
our Q- vslues, the actual value of W where the maximum
occurs is slightly shifted to the right, giving us, quite
naturally , the surface-plasmon dispersion vhich is discussed
in the next section. These relations are plotted .for
both r, = 3.0 snd 5.0 in Figs. (2.94 and B).

(3) Another feature in evidence is the sharp dip or
'antiresonance' occurring in the region W=pe This also
oceurs in e recent work by Barton (1976) whb emphasizes on
separsting out the different contributions due to 'bullk and
surface plasmons. This is of course in expected agreement
with our approximated version of SQ(&) ) given by (2.47)

which we rewrite as
S)g (0 = Ky(ﬁ) (? - QI’:L) “

where KQ(o)) is finite as | w-> Op .

Griffin and Zaremba (1973) have derived anexpression for
Sq(w) for inelastic sceterring in the Born approximation,
applying a semi-classical 1imit of the quantum-mechanical

RPA to a system of fermions bounded by infinite potential



38

barriers. But their form involves a peak at W= Wp as
well as w=0s, for a system of electrons confined to a
thick film. It would be interesting to see how their
general expression for SQ(QJ) given by their equation
(4.14) would compare with ours.

This phenomenon of antiresonance in the bulk plasmon
demonstrates clearly the importance of the surface plasmon
in our model and shows thet our function Sp( ) is
dominated by surface excitetions but is "orthogonal®
to bulk excitations. Physically this result is plausible
since the spectral density belongs to the response function
when both the source and probe are outside the surface.

We also note that in the small Q regime, good agreement
was found numerically for our 'exact' SQ(UD) and ‘'sporoximate’
Sq(t>) given by (2.47). At Q = ¥pp the two curves are so
close that it is difficult to distinguish between them.

For W77 Wpy We are left with a tail region dying off

slowly to zero.

For lesrger values of Q (=pF » 1.5p_ , 2.0p_ ), S?(w) is
plotted in Figs.2.5 and 2.7 (for r = 3.0,5.0 respectively)
and we notice a change from the pesked characteristic to a
more uniformly spresd out behaviour. The dip at W, has
disappeared at these higher wave-vector values. Hence we

clesrly see that the main contribution to S _(w) occurs for

b

Qgo
T F
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Table (2.1) shows the results of our numerical checks vis
the two sum rules previously discussed. To check for [A_,

the graph -V,Re¢lo)~§ was plotted, in Fig, (2.8) where

Re(s) =  Real | Exﬁ_‘_']
E?—'(o) -\

'Elz + E:.z -1
(E..‘tl)l -~ E-t}_ W

Of course the numbers are rather subjective, depending

|

on where the cut-off is taken in each case but we are
nevertheless encouraged by the results. The numerically
computed and theoretical figures sre in satisfactory order

of sgreement. Introduction of the approximation to SQ(QJ)

gave the sum rules to within 90% accuracy for @ ~_ © ( Vu PF)
at high metallic densities.
Before proceeding to the next chapter, we write a

short section on surface plasmon dispersion relations below.

A COMMENT ON THE SURFACE PLASMON DISPERSTON RELATION

Generslly spesking, the presence of surfaces intro-
duces new modes of plasma oscillations, in addition to the
bulk one, with different properties snd, in particulsr,
different dispersion relstions. The first theoretical
observation of surface plasma oscillations were made by

Ritchie (1957 ),

The‘semiéinfinite’eléctron gas with a perfectly‘
reflécting boundary is one model of a metal surface
which has been-used in many calculstions involving
the RPA and"hydrodynamicaIJOr quasiclassical RPA
(i.e. thet which ﬁeglécté'the quanturm interference

terms in the RPA ). Feibelman (1971) has shown the importance |
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of the electron density vrofile at the surface in the
dispersion relationship. He was also the first to show
within the RPA that in the long wavelength 1limit @q-o,
the surface plasmon frequency s = C@Qﬁ; holds for a
semi-infinite electron gas, independant of the exéct
electron density variation. The only assumption he
made about the density was that it be self-consistent.

The imaginary part of the surface plasmon frequency
Gh(g) is directly related to a Landau-type of damping
originating in the decay of a surface plasmon into a
particle hole pair (Newns, 1970) and may be partly’due
to inhomogeneities in the neighbourhood of the surface
e.g. surface roughness (Raether, 1968; Ritchie, 1973)
although it occurs for flat clean surfaces as well.
Curves showing the variétion of a~§ have been given by
Ritechie and Marusak (1966) who use the same SCISBM as we
do, and Beck (1971) who uses the IBM ie. the full quantum
mechanical treatment.

In our model we are concerned with the real part

of the dispersion. Let us assume an expansion of the form:

]

QS(?) do + dn@ -+ dz@z—\-...

Ritchie (1963) used a semi-classical hydrodynamical
aporoach to the problem which yielded a linear term

in his resulting equation. Ritchie and Marusak (1966)
give graphs of Ws (§) ~Q for the real part as a function

of Q/:ZPF and obtain-a linearity in behaviour.
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It has been suggested (Ritchie, 1973) that the
Q-dependance of g could be tapped in a potentially
interesting and useful manner to give us information
regarding the surface dynamic response function. For
our SCISBM we give in Figs. (2.94 & B) two graphs
illustrating our surface plasmonic dispersion relations
for rg = 3.0, 3.0 respectively. We see that for small
Q (&K 1p) our dispersion curve follow a decidedly
linesar behaviour with 40 although they assume a
quadngtic behaviour outside this Q-range. As expected,
this linearity is in agreement with that predicted by
Ritchie (1963) and Ritchie and Marusak (1966), the latter
using exactly the same model ss we do. But our results
differ from those by Beck (1971) who in his pure
quantum mechanical approach ends up with both the linear
and quadratic terms in his disversion formula for the
same Q-range values. Some data from these three models
discussed is displayed in Table (2.2) for comparative
purposés.

Thus we see that our results for the Q-coefficient
in the dispersion is in good order of agreement with
Ritchie & Maruszk, as expected, rather than Beck. The
main reason we give for this is that the surface
plasmon dispersion Pfelation is sensitive to the electron-
density profile at the surface (Bennett, 1970) although
in any case for Q@ —> 0 it goes to d%k‘. In our
quasiclassical calculations (same as Ritchie and Marusak's,

1966) the density has a definite jump at the boundary,
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whereas for the semi-infinite quantum mechanical RPA
cése, the electron density goes smoothly down to zero.
Krane and Raether (1976) have experimentally’
observed surface plasmon dispersion using high
energy electron 1OSSISpectroscopy on aluminium
and the results are notable for the initial dip
occurring in the graph of U~ § 1indicating that
o, < 0. This was earlier predicted by Bennett (1970)
through a hydrodynamic approach, and later by Beck
and Celli (1972) and Feibelman (1973) through a more
realistic finite barrier model. Beck and Celll use a
variational method while Feibelman incorporates
self-consistent jellium values of the work function
together with a surface diffuseness parameter, a, and
illustrates the sensitivity of the dispersion to a .
In the limiting case a0, his results extrapolate

back to those by Beck and Celli.

For interest we examine the perfect screening
sum rule given by (2.30) using our small
Q-approximation for Sg(w)

i.e.
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% _appro ,
f 59 gy = =Y Rel) - -y {E&—'—@_l } from (240)
) e ¢ro0 €§‘(o)+1
= =Y O-n(o)d?—- 1 whace A4 IS
2 Q.(o)'g) + 1 } deflu_cl n (2.46(‘.)
‘/2, ( 1 - a,(o) 9) 2
= Y, ( | — 2a(e) § + o(gz))
o
e, = 2§ Jds bilw) o —20.09
i g w(('+a°(‘°)+a'(“)<¥)1+(5,(¢)93)’) /z e
:Fcf Smell @ ~ values. , M (2,,4-‘3)

The L.H.S. of the above equation can be quite easily ehecked
to give consistent results Vfor the zeroth-order term in Q,
by calculating the residue near ®s (actually given by the
dispersion relation). We can rewrite the L.H.S. gporoxi-

mately as
@D

- 29 L (w5 f"_l“ ((DP“/“)
i

W 2_ .2 2 2 2 27
o [(u.)s © +%°_f a.@) *(f* l,‘@)]
which has residues occurring at '

.w —~ I WJs (i -+ '/4_ Q (o_':i-_ L‘),))) L:j oo bucmoad

expansion,
where a,, b, are evaluated at w = Uk, - @5
Taking an appropriate contour in the upper half of the com-

plex plane and calculating the two residues at = X w;(| +‘/,,.6}(a,+;,g,
and using Cauchy's Integral formula gives the required answer

of ¥ to be the value of our integral.
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The equation (2.50) is the éame as that given by Newns (1970)
in his equation (91). To relate the Q-coefficient viz.

in RQ(O) to physical aquantities, consider a static point
charge (e = 1) spplied at the point (0,0,d) outside the
surface of the metal. Then the response of the system will
be such as to produce an image charge equsal .in magnitude but
opposite n'sign at the mirror pvoint (0,0,-d) inside the metal.
This is in accordance with classical Physics and is velid
provided 4 is larger than the characteristic screening

length of the metal, which is of the order of the inverse

Fermi-Thomas wave-vector - Take the virtual image charge

density to be of the form

pe(x,2) = ¥ S

Now the potential due to the charge satisfies Poisson's
equation:
v* )

which solves to give the potentisl of the image charge to bve

~9iz+dl

4)1,“ (z.0) = %—T < Ry (w)

Take 0 =0 limit and the exponential form for Rq(m),
4 9z -9 (d.+2a()
¢‘u~n (2.) 0\ —_— ﬁ e e

Qecd SP

The "effective surface" is seen to be &t z = -a,(0). Thus
in the case of adsorption where d is microscopic, the simple
classical formula may be used as a first approximastion for
adsorbed species of relatively large radius e.g. adsorbed

caesium, provided d is interpreted as the distance from an
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effective image plane. In our model for:rs = 3.0,from

gradient measurements of 1ogR9(o)~Q we obtain oa,(o)=l-lba.u.= 0.6! A
(since la.u. = 0.520R) in excellent sgreement with Newns

(1970) grsoh in his Fig.7 which is & plot of d~r; for

the truncated electron gas. A point of interest is to

note thst & change of sign of the Q-coefficient in Rg(o)

results in a similsr change in sign of the Q-coefficient

in the dispersion relationship. The numerical results in

our cslculation for r g = 3.0,5.0, give a‘(O) = 1.2,1.5,

a‘(wQ = 4.4, 6.0 which strongly suggests the relation

@, (0) = Q, (035) '

of dlsl;anu of CFFuth- _9- COCff\curJ: of
tmege rl-m\ﬂ- f‘cm Ha tHha S’u.cho. ploomon
J’u.ch.Q_ ol P{_rn an {orn uJo.

This gives some information to us connecting the surface

.plasmon dispersion relationship from a purely sbstract

formulas to a concrete physical concevt involving the static
surface response function. It is of interest to note that

_this argument accounts for the sign of the surface plasmon
dispersion eg. in the ISBM and jellium models both = (0O)

and a‘(bg) are positive ana‘negative respectively (NeWﬁs,FIQVV).
‘We' leave this'éé“a.fentative'Suggeétion:rathéi than an

-

' obvious statement of fact.

" With this we conclude Chaptér I. We believe our graphs
-of 8g(®) to be the first of its kind to be published, which
naturally leaves iittie or no'sc0pé %or diféd% comparisdn“

with other work. In the ﬁext'Chapter we proéeed'to discuss
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the intrinsic satellite-spect?um of an adsorbed atom,
a quantity which can be directly compared with
experimental data rspidly emerging from various -
lasboratories scattered in different parts of the

world at the present time.
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APPENDIX A2

) & . . v‘. .
@ maae o LR ] = 2T
whece J £, 9 Qe fmcﬁons o} POSl“cn alone .

PRCOF: Let '\}4 be a wavefunction depending upon position

<—.... co-ordinate slone, and let
¢ = Z g, -%D 3]
L\)L
cVv =

- R 9 - G fiqe- Gupi¥ e 3V § )b
- ( Po V" (ged) = V> (gt
R e - 5 o)

Using the standard result that

V*(ab) = @V'b + bVie + 2Va.Vb

for scalsrs a,b, gives

O = - ARG - R D - g TR
TRV (gt - e Y - g Ty
+ S ¢ VJ-’-I.";_ + 29« V\]fw v *4,}
Now 1 = j, otherwise £V =0

ey = 2 (Vepo. Vi (ew- eV fe. i)

-—
-

2V.f (1/7; Je + G Vo) - 29, V[ vy
Now i = k, otherwise again Gy =0.

ey = 2V[f. V‘.j;

as r83 l).lrecl-
This result is used in equstion (2.34)



48

(ﬂ) Statement of Greeﬁ's second identity or symmetrical

theorem (one version).

If £ and g are scaler functions of position with
continuous derivatives of at least second order, and

V is the volume enclosed by a closed surface S, then :

INGERFAOLE (levs- 3794

V S
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APPENDIX B2

See. (ﬂ . 4.])

(W) = - 3{ =
Sg (w Ly (E"")i-#E.;_"

é’_'_s_f:’(us\ _ - __2: le... ,)1+ E;”}de%d _ Ez/Z(Et*DdE%LH' ziszg/d) .
do> T ((El'!‘l)"-!— Ez")’“

But at ¥ =0, E,= O

[ - t 1!
Qg (o) = Z AR . (82.1)
T (l + E')l =0 . .
We use the Fermi-Thomas approximation that
Ren
7\2
8%1 (o) - 1 a:' /lq,l‘z

—~ tnorwa E%:
E |(°) - ;"‘ @14_1_11.) €%.(°) Z?,c ¢:.F3 order %

ré_rm.s whech

_9?
Noraa

?1. 2
20 ¢
A
Now 5
£, wro - 29 j ﬂé—f‘%‘(%
¥ —_ T (92_(_1%1) 0

[~}

2

* d
.A— ’)109 ——‘—’i'i—/— )
T TP Z @y e

since
E.(0) = _THMo

2 PF_ (-?2 + C‘ 12.)312‘

and tasking 2pF as our cut-off.

1 TR A.-jtw w'<ci/|°r-'q’l/2/
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We can rewrite E sas

2p,
£, "Zeo M9 é.f 4.

2pe dh L g forige
Now use the substitution
§ =L —-“-i‘ - 2
Vgt gy
“4ppt
. Ea = SO\ d jn 45
2’); dA. k“' L
= USX i [ 1 (oj (/J_ﬁ" “+ K’\) ]
wpedh Laygre Y (Wgtn - kv
where
K = 2pe
'ch’-‘-q.f’:.
This reduces exactly to ‘
3 Ve w9 2kg”

4 pe <91+x‘) (>« A - KXY

- (¢ <an?) («/@&x‘- + KA )J
A(¢? +\) Af@rerr — KA

Expanding out the logsrithmic term snd making suitable

approximations (for smell Q<K A, K=1) we obtain

Lo E, = ‘J'Q 1 ; 21 ‘FhfF _ [
W o | 2’fi—' 11. Oj( 9 ) 2}"-{-8]3 >)
Substituting back into (B2.1) we get
Sg (o) = - 2eg § — “”‘1 ")
3 T‘r ?\“ (:L N J ‘9 Nt hp

as required.
Using A« QPF, this reduces to

Sg (0) = %’\z (i + Qicﬁg —_ Qtoj(ik))

as in Gumhelter (1976)
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APPENDIX C2

-t
We assume an expansion for &£g(s) of the form

8g—‘ (u:) - (O-o “+ Q;@ -+ O.agz....... ) “ L(l:°+ L‘@i-{:,_@"*.“)

E, + (Eq .. e2.)

Using the standard Kramer's Kronig relation (see Ichimaru's

or Messiah's book),

E (g, &) = 4 - ;'l__ fdo‘ Ex(8 c-"')P( :o_d) .. (ca.2q)
ta@e) = A (ao{E@@)-1}P (1) )

Since we have split E‘, EL into a series of sscending
powers in Q, we equate the relevant co-efficients of @

(assuming this can be done) to obtain

Or(a) = 1 - L [as'be(o)p (-‘_—; . (e2-3R)
L‘. (..33 = _1'? fd;o' (O_‘_(Qu‘) _13 P (——i—)——:—;},) D (C,Q..BB)

V ‘l"=0132

e.j a2 |
G.o((b) = w /((D; _ ®?2.> 1 ] (C),-‘\-HB
be (&) = T w®

‘2Lar

{ S(a-w) - Slovap}| .. (c2u8)

can easily be seen to satisfy (C2.3)
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[~
€,
We know @H(._,;> = _I_%- J‘( le,|:;: %)dct%
‘ ° z

= (c2.54)
To obtain b,(w), we have
o
R €2 d
T Sewo) « b g - - B oo
9.05‘, - g 9
ignoring S(c:m-wr) since we are concerned with oreterms.
> Le = —gﬁj’ Cadgy & Qﬁ.gs(a-@r)J i
T Jer @ eg) 0T A I CHRE )
oo Lem _ 2 3 T 3 - Ea
8-”0 B«(m) = ;_r__ (2151;8(&' ““f) |e_|‘—> d% . (CQ..SB)
: = .

Inspection of (C2.5A) end (C2.5B) show them to be Hilbert
Transforms of each other. When 4w, by definition §(w-wp)=0.
But around the plasmon frequency (C2.5B) holds . One can

replace the delta function by a function q)‘h(u: -Gr) e

(o) —= L o PR
2407 9,

which is a Gaussisn or normal probsbility function with

the properties

o

J dle-epas oL

- GO

[ w(b (ur-«.z)]ﬁ(w)d\:r = :fCus)
Lo [ 4o r

(see Butkov's 'Mathematical Physies' p. 231).
The first part of the integral in (C2.5B) then becomes

S s indicating the singcularity at 4, .
'Fr'wf (¢.s~or)°~ f
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APPENDIX D2

AIM : To relate the Kubo formula for RQ(Q) given by

equation (2.5) with the exvression in (2.24).

Method : We know from the image theorem that

N (2, )
UQ Lz_ w) z2=0

{ j’d“- ¥ Spyl2,) 2w el
g <

From equation (2.11), using appropriate Fourier transform

it

RS)(‘EQ

(X>Q) we have

Ret = %‘T’_j fdz“ de ¥ "R@ (2,2 o)

- O

Substitute in the commutator expression for R (Z',z",«)

¢
(see 2.5) and we get

Rets) = 9’“ fdz e fdi [- P @\ | qucz" @]

where ._PQ (=) - % e_—t-Q..__'- S (2-%5.)

as in (2.25) and assuming

,P(—YJ = _28(2 ~5)
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Curve (Q) P W= Cf/&"/z_ + 9 Pe
Corve (L) s ANPE Vo 9 Pe
- Coeve () W o= 4P — GL‘/Z

ILLOSTLA Tion 0F  THE D IFF ERENT
op VALIaT 0N Fot £, (ap. w)  AS

gy (2.2q8)

REGioNS

GLUEwW
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Fia Q. 3)

SJg (u)) x lO"

T
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Fie 2.4 .
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w.o b T
2.0
0, &
t?o
G.o
4,0
2.0
t ' A 1 ————
Q.2 0.4 0.6 0.2 (WO
od (O..u.) .
Te = 3.0 -
S' b 9 - 9‘5 PF'
A Pro~ oF TvE :D\-'Mﬁpl;c, oL m
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’F\@(Q. 5)

Sg(w)x 0%

@) §= P

3.0.
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Fle (2.6)

o
by
A—

trv—

s Wy oy A oy ity v gy PN Ly okt pp Ly A gy W gy N

—— w we o

)
; | ..IM
0. 0% 0.0% o o.le 0.20 O, 24 0.2 0.3
- — g k- 0' s PF' .
1\5 - So O
A PLoT oF THE :qum{ac_ Folan
FAactok (629 A FumcTo OFw W

(9\ocq Gj Q‘Lu-) )
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Fie, (a. 8)

A Pror+ OF THE StTanc

RespPonse FONCTIo AS A

Foncron o <I€ .
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Fie Cﬂ.q\
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CHAPTFR T1II

THE XPS SPECTRA OF PHYSISORRBRTD ATOMS

The 2im of this chapter is to discuss and give numerical
calculations of the intrinsic satellite svectrum N+(u3)
for the core level of an adsorbed atom residing on a metal
surface. Gadzuk (1975) has given an informative review
on the electronic and geometrical properties of surfaces
with adsorbed gas monolayers using both field and photoemission
theory ( FEED, XPS, TIPS ).

We are mainly concerned with X-ray photoemission
spectroscopy (XPS) as opposed to ultra-violet photoelectron
spectroscopy (UPS). The photoemission of electrons
occurs when a solid is irradiated by photons with energy

o > § where $ is the work-function, some of which

are consequently emitted from the solid. The energy
distribution of the ejected electron is related to‘the
electronic states of the so0lid both before and after

photon absorption (and hence hole creation). Now the XPS
method is an experimental technique which is being

rapidiy developed for probing the electronic structure of
adgsorbed species. The experimentally measured spectral
density curves are closely related to the spectral densities
of adsorbate orbitals.

In particular, we focus our attention on the excitation
of the core level of the adsorbed atom. In photoemission

where an electron is swiftly ejected from the orbital,
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a screening effect is caused by the interaction of the
hole left behind with the substrate electrons, causing
readjustment and giving rise to subsequent relaxation effects
appearing in the measured spectra. The concept of the
relaxation shift (i.e. the characteristic shift of the
adsorbate energy levels relative to the gas-phase
levels) may be understood by considering the very slow
or 'adiabatic' removal of an electron from the core. Its
energy level then suffers an upward shift that is relative
to the gas phase level, and this is termed the relaxed
level. It is an inherent consequence of energy conservation,
since the Coulomb interaction between the hole charge and
remaining polarized electrons effectively lowers the
total energy of the ionized system. Hence the ejected
electron must emerge with a greater energy than would be
inferred by a 'frozen' electron picture.

On the other hand, intrinsic satellites make an
appéarance for the sudden removal of the electron. Thus
we can essentially summarise as follows ¢
a) The relaxation shift is due to the static response

of the electron gas to the core hole potential,

wheras
b) The 'shake-up' or satellite effects occur due to the

dynamic response.
These two processeé, far from being independant,.are connected
through the Krémers-Kronig relation given by (2.30), rewriting
as

;{s,(o) C ‘j\ifnw. Rolsd gy
‘ Y
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To zero-order, this adsorbate screening energy is just
the guantum mechanical generalisation of &z classical image
votential shift viz. v = é?;;, which is the work needed

to remove an electron adiabatically to infinity.

Before proceeding on to the mathematical formalism of
our problem, let us briefly distinguish between the terms
' intrinsic' and 'extrinsic' as follows :

1) The intrinsic satellite structure (or shake up effect
as it is sometimes called ) is the result of the
screening of the suddenly created core hole by the
éonduction or valence electrons,
whereas

2) The extrinsic structure arises from the energy loss
of the escaping electron via plasmon excitation.

For high energies of_the escaping electrons these two

processes become independant. The coupling of fast

photoelectrons to substrate excitations is inversely
proportional to their velocity and thus one expects that
the effects of the intrinsic interactions to be dominant

( Harris, 1975) in the observed spectra. Mathematically

we can distinguish between these two types of spectra by

a factor of the inverse frequency, af', where the intrinsic

loss spectrum contains an additional factor of !

relative to the extrinsic spectrum. This is in accordance
with Ballu, Lecante and Newns (1976) (note the &* |
appearing in the denominator of the forthcoming equation

3.16). Thus although intrinsic and extrinsic plasmon emission

yields satellite at the same energies, their relative contribution
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or intensity is different, thus permitting their

separation.

MATHEMATICAL FORMALISM

Basically we wish to derive an expression for the
imaginary part of the Green's function in our model which
is directly related to the density of states N*(w) of an

adsorbate orbital as follows:
Ni (W) = - -1{_-.3"\, €& Cu:r—L'vD o .@a)

where G is the core Green's function in the representation
and GL is infinitesimally positivef For simplicity the
absorbed orbltal is taken to be spherical with centre
located at ( 0,0,d ) outside the surface. We focus

our attention on the spectral density of weakly bound
adsorbates involving finite screening length, relaxation
shifts, line asymmetries and shake—u@ effects. Our
calculations are believed to be applicable to long
lifetime adsorbate levels of physisorbed species such as

rare gas atoms e.g. Xenon (Xe) and Neon (Ne).

Let us write the Familtonian in the form :

H = CeNo o4 Hy + e,rtcfp(d) ... @.24)
where the index c denotes the core level of the adatom, Hy
denotes the Hamiltonian for the metal, n =dﬁc where c*,c; are
creation and destruction operators e.g. c destroys an electron
with energy €_ in the core state |c). Assume the metal and
adatoﬁ densities and wave-functions do not overlap. So the

only coupling between them is electrostatic in nature (given

by the third term in (3.2A) where e is the charge
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on the adatom. This represents the Coulomb interaction
between the adatom electron and metal electrons. n_.
commutes with H“but $GQ does not, since H contains
terms involving kinetic energy.

Let r4 = (0,0,d) denote the position of our adatom

and r; be the position of the 1™ electron in the metal

substrate. Then $) can be written as
A
P(d =

where N ig the total number of electrons in the metal

M,
E —
i
o

-

¢ =

and e = 1.
Due to the orientation of the Cartesian framework system,
we can drop the modulus :sign and rewrite in Fourier

transform notation as

R P - L%.(Li-ﬁ
O N ohere 4=
(e Z,L‘L |
N Q. (% - % 19, (d- &)
= 7 [age? o y‘i‘h&‘l(
LFT"- L=y (@2*111)

By conﬁerting to polar coordinates we can show that the

integral over g, becomes (Gradshtein and Ryshik)

N Q. (Xd-%) —@ld-20
A (L % 7 [arg £ TH N
Cp ( > b L= ‘9

= L fd*@ CJ{;?e,'N
aT

using the definition of $? given in (2.24) and since X&:=h%°>

Now use ) .
jd’wp — 4 Z,
A9

where A is the unit ares.
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- QﬁZ$€Qd
.o ﬁb (CL) ? -—_fgr-__—

This now gives us a well defined Hamiltonian in (3.24).

We define Green's function for the adatom core
orbital as

G. = =— <ol Tc) C )0y - .. (3.3A)

where 107 is the ground state of the full Hamiltonian H,
and T is the time ordering operator (from any standard
many-body book e.g. Abrikosov et al, 1963).
Use the equation of motion for the operator c(t)

de/ae = L [e,u]
For convenience, tske € = O in H in (3.2A), then by

taking e = 1, we have

c(d) = Le Z<2£) e Py

Sooeld = ) exfi 2 —— _%lj P, (b)gu,-} .. (3.38)

Substitute (3.3B) in (3.3A) gives

Ge = - i@(b)<olexp{‘»;' Z, e f‘lb(t)dt aog ,
3.3

using the proverties of the fermion operators c, c+.
Suppose first of all that 4@ has the property of a

Bose displacement operator. This seems to be equivalent
to the RPA in the present problem. We use the theorem
stating that <exp(i(o(b + oz*b"'))> = exp (- 0(0(*7
where b, b+ are Boson operators with coefficients X, 0(*

respectively (proof found in standard quantum mechanics

text books e.g. Messiah).



71

Hence we can rewrite (3.3C) as

Gie = - L @) exp {ca:)} wheee 2
| aahd
c(v) = -3 52}' @%—% Jd J de, £ ¢ (e ¢ ,(bbj(?» :3D)

and the -vBOk) in front of G is Green's function for the

non-interacting electron. Using the property that

£t 13 Ey

I s dt.dt, F(E‘x b’) = 2 B 'tzsjdbl ‘Y dl:g,F (t.) lT:.)
provided £ (t,, t,) = £ (t_, t,), and writing C#L,Q' = ﬂ,. S¢¢f
and

| 2r) -29d L (B
Vot = Z(F)< . (
oe® = ("“) Ve fdhjdh Oe-t) L) L
- e - (3. Sﬁ)

Recall definition (2.24) for the linear response RQ(t)
The time representation of the surface response function is

Lokt

R,QI(E.) (‘,1_) = R.g (E\—(:-L) = ..i.@(t\ 1.) d@S( ) e

o

. o ¢ (.u 2
- L@(tz-t\)fdm S?(O)QQ t E)

Substituting in (3.5A) and utilising the time ordering effects

gives us

C () = - 2—& ch J dt, J de, | do S?(u)) _LQ (e
... (3.58)

i

—~ Voo [ da Se (1- &F 4 .
% ] j . -5;3—'( < “'39'--(3 5¢)
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Rewrite (3.5C) as

0, B ___' Z: V‘?’- y do Sg(@) {C’.,(@) + C:Jo)}...(s.sﬁ)) ¢
q =

where

Cilw) = (\ - e’-L@t) /"31

Calw) = ““‘b/u.\

Our method is similar to that by Doniach and Sunjic
(1969). Methods for the derivation of an expression
for N, (c) have been given via Feynmann diagram techniques,
discussed in detail by Nozieres and Dominicis (1969},
subsequently by Langreth (1970) , -~ Gumhalter (Thesis,
1976) - 'and"Btehig'(1975).
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Then the first part of the integral involving chﬁ) describves
the transient or instantaneous response of the substrate
electrons to the applied perturbstion i.e. if a& hole is
created in the adatom orbital and then the interaction
Hamiltonian H' is suddenly switched off, this term describes
the readjustment of the system in the asbsence of the localised
perturbation. This ci&p) term thus gives rise to relaxation
or shake-up satellites whére in this sudden limit the wave
functions of the electrons in the ion core are 2 continuous
function of time viz. they do not change with the perturbation.
The second term involving cz(a) in the integral (3.5D) is the
adiabatic (or 'long time ') response of the substrate electrons
to the avplied perturbastion.

Now from equations (3.1, 3.5A, 3.5C) we have

> (‘-’3 u"'.'ll)b G.‘Ct:)
L [ -+
((Q — —_ _L KQ&L dE e_
PQ+ ) = — JD

- Gen)

i

1 w

where Z ng Sdms (@1
S

—

_ i Z:Vegl R.Q(Q) lLS&,nS e J:erfub o °(3.bB)
= 2 g

S(reuwn Sam Shule
In the classicel limit v = e;ga(this is for small @~ or large
d-approximation). This is the static interaction energy of

a point charge at the adatom with the surface.

C'(t) is just C(t) as in (3.5D) without the adiabstic term Cp(w)ie.

) = - T[4 B (1)

Making the approximation

.. (Rl

C !

e = L + cC
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in equation (3.6A) we have
e-v-tn)t

N = - J?Rtjdbe' Ci+ ')

Dl

W=Vt | ©

= - <
L Re

+ ()

L,(uo-v—wl) m
oo Ne (W) = 8(&3—-\/) + U(ua) .- @"Q’))
where
> v(w-v 1‘)& v ( ) el
- L Cld=N=R)C, o 1So() (, _&*
T(W) = LRe jdt e Z..Vej‘*"’ ._9_‘_1(« e
- CO ? o (w)
Interchanging the order of summation and integration,
A : co o
IR T AT <o
TE = - LRe 2V [ St [ae & P )
A ? o (ml)z o

o0

g Tas - ]
- ?lr_’Re'%.‘v-‘-:?-J —9—-[ ndo- (R.¢8)

(') W= v -im W=V -t

Thus from (3.6D), (3.6E)

. 2 |
N (&} wi’l" Z Vg Sg('m—u.) P o = - 5(3#) -
N T8 w-v)? | |
since the term 5—-_:%:‘;’1 only has non-zero imaginary vart

for o equals v from the standard result that

b = P(S"_‘;) .: T 5(«.5—0')

1> o '13—\J'i5-'7t

Now consider the case w-v>0, To obtain an analyticsl form

for N (&) we make use of the Ansatz for SQ(w')

Sg(ub\ = (.JQ..— Vo Sgl(o) . .. -(3.8)

which is valid for wW{w, , Where Oy-= P"/D.d_ . Put (3.8)
in (8.6C) gives
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Co .
C'e) = - ZVg S e do(i-gt) e Ve
? ? w
<
= -Zs’l03 (1~ i.obmt) . ~_ ..3an)
where — o ‘
'K = Z_« VQ SQ (o) . - - '(5."(8)
b}
and we have made use of Frullani's Integral which states
o
legt = j s e:xb) dx 'LF +e (£) > o
3 J >y
Substituting (3.9A) in (3.64) we get
< -
' ac eTM* ~ - (3o
Nylo) = 5= = ‘

2T Mo (l -+ Lu),,,t)x

This can be evaluated exactly via a contour integration

(gsee Appendix A3) to yield

’ - (& ~VYirm -1+
N, () &7 Q_C 4 CJ -v) K@(w—v') P (3.@
p(r) Wa¥
where ,
¥ o= g IO fearpe)

and [(s) is the Gamma Function. (Gumhalter and Newns, 1975)
For convenience we have taken the unverturbed adatom energy €
equal to zero

Substituting (3.4) for v@" in (3.7) and using

;Z: s J- 2@ do

gives co

AT 4V | : - 294 ‘
Nety =T o dge  Sgla-v) . | (33

which 1is our perturbational result for the density of occupied
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states of the sdatom in the Born approximation. Thus for

values of the frequency away from v, this is Jjust the
Lsplace Transform with resvect to the spctral density of
states Sg(d). Examination of (3.11) shows an expected

sharp ecut-off of the density sround «@ =v. This divergence_
is called the infra-red catastrophe and arises as an
inherent consequence of the 'Anderson Orthogonality Block'
which occurs whenever a large system responds to & transient
localised perturbation (Anderson,1967). For very large
values of 4,

Lo ¥ (L)

d = o

i

O

which indicates a delta function type of behaviour experienced
by our spectral density near s =v. Around the electron-
hole continuum we can easily calculate the first moment

contribution to N+(¢) around the line o =v i,e,
" f(w NS

_ dw
((.L. - > F(s‘) (th
= ¥ Om
= Lo leg (nFTR) NS

/lf( thus depends on the distance 4 and the Fermi-Thomas
wave vector %-, alone. This static type of behaviour

is in order as we are concerned here with the spectrsl
density behaviour in the static limit viz. &> 0. Now

the sudden (or irreversible) approximation for switcﬁing

on the core ﬁole, appropriate for our intrinsic satellites,.

gives the 'zero work' sum rule which states that the first
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moment of the coré XPS spectrum lies &t the gas-phase

position of the core level. This 1ls easily seen from (3.7):

o

V- ce- (D

"

Alternstively if we use the Ansatz for S (v) sppropriate

around the surface plasmon
Sg () = Vo w5 S(w —ws)

in (3.12) and integrate over W from zero to infinity,

1§4ds « . (:3.!5)

which gives us the strength of the satellite peak due to the

j?bL,LQD do

gsurface plasmen relative to the elastic peak in Born
approximation (we take w =0 to be the elastic threshold).
This is & good check which we make use of in our ensuing
numerical calculationé of n*(a). Our results apply to
electron propagstors. Similar results invdlving minor
modifications -(change of sign in t) can be made for hole
propagators to calculate the density of unoccupied deep
states (Langreth,1970; Gumhalter,1976). We do not elasborate
further on this.



78

NUMERICAL PROCTDITRE AND RESULTS

We work in the region W 7 O. From the previous section

we summarise the formula used for N+@Q) as follows:

Nel = @ (' 6 con
F(K) L
P L (3.8)
‘/&foug S - wyan

where we havé taken, for simplicity,

¥ o= -V ?‘VSZ Rele) = o

which involves just e shift of the origin for ©. Wyis

our 'cut-off' frequency equal to ﬂ%Li which separates

the electron-hole continuum from the plasmon region and

the ¥ parsmeter has been previously defined (see equation
(3.11)). In the region W<w, we use the spproximate
version of N*(&) obtained by use of a simple exponentisl
Ansatz for Sq(d), while for larger values of & , the
problem reduces to simply evaluating the Laplace Transform
of Sg(w). The behavioar-of the spectral density function,
Sg(o), was plotted for different rg and Q values in

Chapter I. To facilitate computer calculations we used

the small Q-approximation for sg(a) given by equation (2.47)
in equation (3.16) above, which is valid upto values of the
bulk plasmon frequency LA?. We do not extend our calculations
beyond this value of the frequency. As we are mainly
interested in the behaviour around the surface plasmon,

this justifies our approximation used.

We have carried out the numerical evaluation of N*(G)
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given by equation (3.16) for the values of the metallic

densities r_ = 3.0, 5.0 and two values ofthe adatom radius

s

d = 2.5, 4.0. The graphs are plotted in Figs. (3.3), (3.4)

as functions of increassing frequency « where 8ll quantities

are in atomic‘units. The small d-values and the low electron
densities considered are in effect to maximise the non-
classical behaviour of the system in which we are

interested. Two distinct features of interest arise in

our curves:

(1) The small ¥ -behaviour or the divergence occurring in
as w0, This is a non-classical phenomenon and is
basically the infra-red singularity of power law
type ;ﬁfr (since ¥< 1 within the range of metallic
densities r = 1 to 8 end 4 = 1 to 8, from Gumhalter's
thesis, Table 1). For small ¥ , N (w)~ %s . This

divergence in the Born approximation 1iﬁit is due
to the linearity of Sg(w) for small w -values (as
previously discussed in Chapter II). Suppose that
in a general model |

ssz(wﬁ = a vt

where a is a constant and n>» 0. Then by considering
the ' non-shift ' part of the integral in N (o) i.e.
that involving c,(«) in equation (3.5D) we find that

for n<1 the integral diverges at the origin giving

an infinite contribution whereby the problem is
insoluble,and we call this a 'super catastrophe'. TFor

-i_.values of n)> 2 the low frequency modes give 1ittle conteibution
and so we have no catastrophe. But for n = 1, the

integral is convergent and logarithmic in behaviour

LR -

T oeem o T
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and results in the infra-red catastrophe. Mahan
(1967) sugzested that the X-ray spectra of metals
should be singular near the threshold according

to the power law cﬁ'qwhere 3'13 a dimensionless
'coupling parameter describing the interaction
bétween the conduction electrons snd deep hole

left behind. He did this by svproximeting & series
to an exponential and calculating the first terms

of a perturbation expansion, which gsve & power

law rather than a logarithmic singularity. Nozieres
et 81 (1969) confirmed Mshan's prediction of
threshold singularity within a2 more accurate many-
strength 3 may lead to a zero amplitude at the
threshoid instesd of 2 divergence through a broadening
of the spectrsl density function. We are,however,
concerned with the weak coupling limit.

In 1970, Doniasch and Sunjic discussed the photo-
emission scattering cross-section which, in sn
asymptqtic limit for long times, reduced to an
expression provportional to -1;'::'* where d £ 1 is
related to the phase shift for scattering of conduction
electrons from the hole potential. In practics,
one cannot see the small W -divergence due to the
Tinite lifetime of the core hole except as an asymmetry
in an otherwise symmetrical lineshave of the 'elastic
peak'.

In our computer curve calculstions in this small
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w-region we obtained excellent agreement with the
Ansstz approximation for NTQJ) and our aprroximation
for N (w) (using the Sg(uﬁ approximation) as well as
with the N, (w) calculated using the "exact" form of
Ss(w) given by equstion (2.41) in the last chapter.
Around the surface plasmon region far too much
computer time was being wasted to obtain adequate
convergence using the "exact" Sq(u) , hence our resort
to the simplified version for Se(@).
The second distinctive feature of the graphs is the
behaviour at the surface plasmon, which we see by
noting the change of scale applied is a remarkably
narrow satellite with width only of the order of 0.1W3g
It is interesting to see the resulting asymmetry- |
occurring in the surface plasmon vesk. This is due
to the positive surface plasmon dispersion in this
model as discussed in the last chapter, so that the
surface plasmon resonance lies in the region S T Ig
The form of the pesk of N+OA) for wyws is approximetely
exponential, a result predicted by Harris (1975),
although our curve contains information on the

damping and intensity fall-off effects.

Checks were made on the calculations throughout by

evalusting the srea under the surface plasmon peak in N;(u),

and cxN+(w9 by a Simpson's rule procedure and the results
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are éet out in the comperative tsble 3.1. From this table
we see that 55-70% of the classical intensity ¥, is found
in the calculsted satellite (p‘) although of course the
cut-offs taken are entirely subjective (tail corrections
are not allowed for). The area under the surface plasmon
peak involved in the first moment of N+(w) given by‘p:~

in the tsble glves about 57-76% of our numerical estimates

of v.

As d increases we note that‘the peak of the curve
shifts down as expecied and there is a tendency for the
pesk to narrow down l.e. the surface plasmon width seems
to have some inverse power relationship with the sdatom
radius d. Referring to equation (3.16) we see from
the factor Q:Qéhthat as d increases, Q correspondingly
decreases snd so thc frequency dispersion relation

cbq approaches the surface plasmon frequency «s , thus

narrowing the satellite.
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CALCULATION OF XPS SATELLITES FOR TRANSITION METALS VIA

A WAVE-INDEPENDANT PICTURE

Let us assume that Sq(m) = S(w) i.e. that the spectral
density is independant of the wave-vector Q. Then from
(3.16) we have

Tahrwse

Na(o) =  @des) - 5¢)
| 2 9w —t— F] SN CHY

E:I:} |+ €(w)

which is just the linearised form of (3.16) in the limit
Q>0 but at finite & « In their 1976 vaper, Ballu et al

plot a graph of the extrinsic Q; :%‘(£+£u§> ~ W for
molybdenum and draw attention to the surface plasmon peak
occurring around & = 1,35eV or 0.045a.u. This should be
an dbscrvab1e<satellitc in the XPS gpectra from core levels
of suiteble adsorbed atoms.

Using the data on the dielectric function from
Weaver et al (1974) we have made a plot of Ni() ~ W
given by equation (3.1?), for molybdeénum and tantalum in
Figs. 3.5A and 3,6A, taking d = 4.0 au. For molybdenum
we notice the surface plasmon peak at w = 0,045 au. ,
(1.23 e¥) and other weaker peaks at = 0.34 au., 0.72 au.
(i.e. 9.25 eV and 19.6 eV respectively) which agrees well
with experimental results where peaks are observed at
1.35 eV, 10.1 eV and 19.0 eV (Ballu et al, 1976). An
estimation of the area under the main surface plasmon peak

is 0.11, using cut-offs at « = 0.02 and 0.10 which are
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purely subjective. This is an encouraging result as we
expect that for xenon on molybdenum this satellitez shoul
about 10% of the total area under the curve. The area
under this peak in a plot of NI~ 1is about 0.05
which is approximately 80% of the classically expected
result 1

44 .
Examination of Fig. (3.6A) for xenon on tantalum

( = 0.0625 for 4 = 4.0).

shows a surface plasmon peak occurring at & = 0.062 au.
(1.68 eV) and other weaker peaks at w = 0.27 au.,
0.46 au. and 0.58 au. (7.34 eV, 12.5 eV and 15.8 eV
respectively. The area occurring under the main peak
is 0.09 between the cut-offs ¢d = 0.03 and 0.11. Again
the 10% of the total area under the curve occurring in
the main satellite is encouraging.

Fig. (3.7) gives a similar plot for the intrinsic
spectrum of silver with 4 still equal to 4.0 au. The
data for S(w) is taken from the 1962 paper by Ehrenreich

and Phillips where the real and imaginary parts of the

d be

dielectric constant for silver are plotted. The surface

plasmon peak is pronouncedly sharper than that observed
in the calculations for molybdenum and tantalum in Figs.
(3.54) and (3.6A). and occurs at w = 8.5 au. (231 eV)
An snalytical areal estimation under this peak gives a
result of 0.19 which is rather'high compared with the

previous two cases above.
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For the three cases just discussed, subjective
difficulties occurred in accurate estimation of the
data from the small graphs in the various papers as w >0

and so we avoild going too near this vpdint.

Next we convolute the expression for N.(w) given

by equation ( 3.17 ) as follows :

e A ‘:@N () N COe-
NeCp) = 7 (F”:’)l* a* )
and further define
f
N, (P = NS Y A NN CET)Y
+ F + P + T C_A,—*' F:.) (

where the A parameter is measured from the paper by
Kai Siegbahn et al (19 ) as the width of their intensity
curve at half the maximum for xenon 3ds,
A = 0.55 eV (0.02 au.). We evaluate the integral in
(3.18) numeriéally, using a suitable uvper limit («:10‘A)
which should give sufficient accuracy. By using the
already computed data points for Nf(w) for molybdenum
in Fig.(3.5A) we can plot out results for N:(P) and
Ni(p) as a function of p in PFigs. (3.5B) and (3.5C).
We notice that the first surface plasmon peak present.
for molybdenum in N.(w) still appears in N:(p) but is
wiped out in Ni(p) by simply adding on of the Lorentzian,
although the weaker pegks do still appear.

Similar calculations were done with the tantalum

data giving the same results (which are not displayed).
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Generally speaking, the'expcrimental XPS spectra
do not agree with the predictions of Intrinsic plasmons.
In 1975, Pardee et al carried out an analysis of the
surface and bulk plasmon contributions accompanying
core level X-ray photoemission and found negligible
intrinsic plasmon production for aluminium and magnesium
28 lines but did find dominant extrinsic plasmon lines.

Yates and Erikson (1974)'have made an experimental
XPS study of Xenon (d=>~2.5 a.u. ) physisorbed on tungsten
(111) at temperature 120°K. Their results show possibly
the first observed surface plasmon satellites in the
XPS adatom spectra, which occurs approximately atd,=0.15a.u.

' In 1976, Bradshaw et al report on the first clear

observation of the coupling of a surface plasmon to an
adsorbate core level for oxygen ( d~1.38a.u.) on aluminium
(100) (rsc'2.07). The satellite occurs at 10. 9 eV or
0.4 a.u. corresponding to the aluminium surface plasmon.
A similaf‘surface plasmon satellite was observed for
oxygen adsorbed on polycrystalline magnesium_( rsz-S.O)
at 7. 8eV or 0. 29 a.,u. They present a theory which
separates out the extrinsic, intrinsic and interference
effects and find a value of 0. 4eV2~0.,015 a.u. for the
rélaxation shift, which is small compared with ours :
See table 3.1, v = 0.06, but it must be remembered that
this is for rgy = 3.0 whereas for aluminium Ty = 2.0%.

Tt is difficult to make any further comparison
due to lack of clarity and blurring effects in the .

available data. In our results the surface plasmon
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peak is remarkable for the apbeafing asymmetry and

also for the narrowness of the satellite. Unfortunately,
none of these festures have been clearly observed
experimentally. However, perhaps too much emphasis
should not be placed on this asymmetric behaviour as

the model has neglected many 1mportént interactions
which may act so as to obscure this asymmetry e.g.

the internsl excitations of the atom snd the vibrational

degrees of freedom, Gadzuk (1976).

At the first glance, our model may appear to be
deceptively simple. But it is important to realise
that the three items viz.

1. small &> -behaviour (infra-red divergence),
2. surface plasmon excitation,

3. relaxation shifts

are woven together to create a rich and intricate

fabric within N+(a). ,
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APPENDIX A3

Equation (3.10) may be evaluated exactly by considering
the closed contour §3 in the complex t-plane as illustrated
in Fig. (3.1). The point of singularity in equation (3.10)
occurs at t = Qéh\which is taken outside jZ by considering
the cuts given by L,, L.. «g;,gz are arcs of the semi-
circle of radius R, «33 is a circle of radius f and
centre (0, i/.) and L,is a diagonal of the A circle
passing through the real t-axis.

Cauchy's Integral Theorem states that for a complex

function f(z),
o L

= L&)

provided there are no poles inside the contour. It

can easily be shown that as R-» 2, pre the integrals
around ,Xk,Jﬁx, ,83 are equal to zero. This léaves us
with the integrals over L,, L, Lb. But the integrsl
over L3 is just the one we wish to evaluate. Taking

the real parts,

Put t = ir along L,,
t = ire™" along L,

gives : ' | P
Y(Dm

Bk E
— (D= , - (w-\,)e-a. 20
Le- CL"‘ “+ Le < A.(‘

ILS = - Re &f G- an)® (\— ¥©n )¢

co
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2wy <
Put xem' = 1-ro>,,,eim in the second integral.

2we (1-¥) jad - (w-\l)(“")/wm

O 1L3 = + dn e X € —
—_co X
Substitute x = - (L':—\Dj
oo
x :—m,o -¥) (- u)/w,“ _\, ’
.‘. I'L3 = (‘) < d’j
(.Dn\r

This integral is just [T (1-¥). We use the relation

3 = 1@prC-9

SnTY
to get - (o “')/GN- ¥ —1
& I = 2n e (’-D"V) - (A?"‘)
3 x
\1(1)
as required.
0 O—

AIM : To show T = 105;(1-5":! f/\d,})/gd."f?;

We know D,(G\) = ?Z VSL S?‘ (°>
from equation (3.9B). We use the approximation
Se'te) = . @ - at 1_2\_) . (AD
7 P TP A ( Cj(q))
(See Apvendix B2) o
S si‘f@dQ 3 & Wgdg) L. (a3
5(d) = G ) g 9 D
Put (A3.2) in (A3.3) and integrate by parts to get
W = -1 (3/1 6= log (teol)\))

25 Pe N d
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[ =]
- X
vhere £ = e log dx
o
which reduces to the required form using an aporoximation

for s .
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FIG.3.1

THE CLOSED CONTOUR USED TO EVALUATE THE COMPLEX INTEGRAL
IN EQUATION (3.10) - SEE APPENDIX A3
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Fia =.4

See Eqo.Gw)
N+ (@)

——e d= 4.0 a.w

—_—— d = 2.8 a.u.

Nete Scale chgr\j e e (A, B-l
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CEAPTER TV

THE STATIC SPIN SUSCFEPTIBILITY AND MAGNETIZATION OF

SURFACE ENHANCED ITINERANT ELECTRONS

A CGeneral Introduction

As mentioned in the introduction, the latter half
of this thesis concerns itself with proverties involving
the static spin susceptibility of a metal surface, for
a nearly magnetic exchange enhanced material., Initial
interest in this particular susceptibility with respect
to the surface was stimulated by Beal-Monod et al in
1972 and subsequent work has yielded interesting results
in the one-dimensional analysis so far carried out e.g.
Zaremba and Griffin, 1973 and 1975 ; Muscat et al 1975
and 1976 ; Schiach 1976, Perdew 1977. Indeed the magnitude
of the surface spin susceptibility is significant in some
treatments in the theory of chemisorption and catalysis
(Schrieffer and Gomer 1971 ; Suhl et al 1970). More detsils
of the work done over the 1ést five years is given in the
next section.

Let us commence by making a general classification
for the three magnetic states in a system viz. diamagnetic,

paramagnetic and ferromagnetic as follows :

1. Diamagnetic materials have a negative magnetic susceptibility
of the order 10f6 which is temperature independant e.g.

inert gases, hydrogen, many metals and organic compounds «
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It tends to occur in materials with closed shells.

All substances have a basic diamagnetism term which
is nearly alwsys wesk and very often overshadowed by a much
larger |
paramagnetic susceptibility, in which the response
is positive e.g. the alkali: metals, most gases,
soluble sslts of iron and oxygen.

In the least complicated case of the alkali
elements e.g. Li, Na, K, Rb and Cs, is seen a
temperature independant weak paramagnetic susceptibiiity.
The explanation is due to the essentially non-temperature
dependance of the well known free electron gas (which
has a parabolic density of states) Pauli susceptibility

given by
L’X«? = 2[‘*6}- r\( (E{:)

where Z“s is the Bohr magneton and
N(er) is the density of states at the Fermi level.
However, for most transition metals (characteriséd
by incomplete 3d-shells) and rare earth metals
(characterised by incomplete 4f-ghells) are much more
strongly baramagnctic than the alkali metals with

a significant temperature-dependant susceptibility.

'Experimcnts on nalladium yield an enhancement factor

of approximately 12 to the Pauli susceptibility.

This is due essentially to the electron-electron
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interaction (exchange and correlation) which was
neglected in the flp calculation. These enhanced
systems may also show a temperature dependance (as
indeed palladium does). It is also thought that
orbital angular momentum may have some contribution
to the susceptibility and hence enhancement (RKubo
et al, 1956).

Where there is a temperature dependance of the
susceptibility in paramagnetic materials, it tends
to follow the inverse temperature Curie law e.g.
for rare earth metals.

3, ferromagnetism occurs for positive values of the
susceptibility and for temperatures below Curie
point, the Curie-Weiss law for susceptibility applies.
For higher temperature, paramagnetism prevails.

Examples are nickel and iron.

Further details and references may be found in Crangle,1976;
Heck, 1074; Culitty, 1972; White 1970; Wohlfarth, 1976.

In experiments it is important to distinguish
between various contributions to the susceptibility,
although ;th;s.is often a difficult task. In 1964,
Clogston et al have shown how the total susceptibility K &,
for platinum may be thought of as a sum of separate
susceptibilities due to the various contributions via

spin paramagnetism and diamagnetism due to the core.
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The d-electrons are considered in a tight-binding
approximation, and it is this effect which is dominaﬁt
in the total susceptibility, the s-spin contribution
being smaller partly due to the smaller density of
states, The cxchqngé interactions act appreciably on the
 spin part of the susceptibility which justifies our
forthcoming involvement with this.

Just how a system of interacting electrons respond
to a magnetic field is & many body problem with all its
attendant difficulties. One model which has been much
used is the Hubbard model which in the single band

approximation has & Hamiltonian of the form:

.

5 t e W I Y
Ho=  Zabyogcy, « BT 4N g
by

vl
where tls is the hopping'term between electrons at sites i,j,
d; is a creation operator for a Wannier state,
c- is a2 destruction operztor for a Wannier state.

\g
(Hubbard,1963).

The second term represents the electron-electron interaction,
where I is the intra-atomic Coulomb integral. Calculations

in the Hartree-Fock approximation yield (Izuyama =t a1,1963)

XK Ke /(1_— I N (ee))

showing én enhanced type of Pauli susceptibility previously

mentioned. Divergence occurs when I = IN(€F) = 0. This
condition for ferromagnetic instability is the Stoner
criterion. We are concerned in this thesis with paramagnetic
materials with I < 1.

Our study is concerned with itinerant electron

behaviour as opposed to a localised model. The latter
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agsumes that the particles reside on lattice sites with =z
well defined loczl spin S. The well-known Heisenberg
model works well for rare earth metals (White,1970) whose
localised moments are due to.partially filled f-shells
which are tightly bound to the atomic nucleus.

However transition metals are better characterised
by an itinerant electron model in & description of their
magnetic properties. This is clear from the saturation
moments which correspond to non-integral numbers df spins
per atom eg. for the ferromagnetic metals iron,cobalt and
nickel these are 2.2, 1.72 & 0.61 respectively. Also the
properties of observed large electronic specific heats
and d-electron contributions to the electrical conductivity
indicate the supremacy of the itinerant over the localised
model for transition metals (Herring, 1966, Chapter V).

Systems in which there occurs a strongly enhanced
static spin susceptibility are often labelled 'exchange
enhanced' or 'almost ferromagnetic' systems. Our interest
in the second half of this thésis lies in the stﬁdy of the
paramagnetic properties of bounded Permi systems
characterised by a strongly enhanced static spin
susceptibility. Examples of nearly ferromagnetic systems
are liquid heliums (the only Fermi liquid found in nature),
palladium, and éertain transition metal alloys eg.
palladium-rhodium and rhodium-nickel. It should be

emphasised that the exchange interaction is of quantum
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mechanical origin tied up with the concept of the
indistinguishability of identical gquantum particles

and the antisymmetry requirement for the state function

of an assembly of fermions eg. electrons. In other words
the Pauli exclusion princivle is manifested in the
interaction (and higher order mechanisms). These concepts
were first develoved bv Heisenberg,1928; and formed the

basis of subsequent theoretical work.

Let us now conclude this very general introduction

and proceed to discuss recent work that is of immediate

significance to our problem.
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A REVIEW OF RECENT. WORK . - Introduction to our

particular problem.

We now discuss recent work done that is directly
relevant to our problem. It is only over the last
five years that interest has sbounded in the examination
of surface effects on the magnetic response of an
itinerant electron gas. Mills, Beasl-Monod and Veiner
in 1972, (hereafter referred to as MBW)first drew -
attention to the fact thet the behaviour of itinerant
electron materials that are strongly parsmsgnetic
(due to large exchange enhancement or the temperature
being nesr the magnetic ordering temperature) differ
near the surface to that in the bulk. They showed
that in the RPA Tor an exchange-enhanced paramagnet
the surface susceptibility does not display the
enhancement found in the bulk, by using ah gpproximation
to the non-interacting spin susceptibility in the
presence of a surface. This consists of replacing
the bare susceptibility of the bulk materisl plus terms
due to the reflection of electrons from the surface,
by the bare bulk susceptibility alone. A further -
approximation was then used for this bare bulk susceptibility
which d4id not yleld a surface enhancement.

In 1973, WBM (ie. Weiner et al as above) included

the effects of the reflection terms through an osciliatory
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| approximation and found an additional enhancement near
the surface greater than that in the bulk. In both thése
papers a tight binding model of electrons was used. WBM
find a divergence susceptibility for values of the interaction
I less than or equal to unity i.e. the RPA calculation of
the surface susceptibility results in a surface phase transition
occurrence before the bulk phase trénsition. Some doubt
however has been cast upon their choice of parameters
used as corresponding to an unphysical situation (Newns,
1977).

Weiner (1973, Boston Conference) found the susceptibility
of the surface to diverge for T‘<14 almost universally
as a function of crystal structure, surface orientation
and Fermi energy. He predicted a surface magnetic phase
transition while the bulk is still paramagnetic for I = ©-9
a value for which the RPA is quite reliable in the bulk.

In 1972, Beal-Monod, Kumar and Suhl conducted a
numerical investigation of the surface magnetization as
a function of both the interaction I and distance from
the surface of the metal for different widths of thin
metallic films. They findrthe surface magnetization
undergoing enhancement to the same degree as the bulk
magnetization when using the exact expression for the
susceptibility at zero interaction, , obtained from the
free electron bands and which includes the surface
oscillatory’terms. Their results are notable for the
large peak in the magnetization occurring at the value

2ppz = 4.5. It is found that as I-»1, this peak grows
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faster than (1--f)“I which is avparently related to the fact that
the.free pasrticle.spin sh;ceptibility is larpgest at the
position of this peak.

The three different approaches observed above show
that the results: are extremely sensitive to the ways in
which the surface contributions are taken care of.

In his thesis (1974), Zaremba mekes a study of the
variation in susceptibility for the free electron model of
bounded Fermi systems using g finite ranée of interaction
of the form

T() = Ix

4 o)

~xic|

as opposed to the zero-range (%> &) interactions so far
considered. His results which apply to metallic films
predict the occurrence of a surface phase transition at Ls:©.985
but they are extremely sensitive to thé value of the finite
range 1> i , taken (confirmed analytically by Muscat,1975).
In particular, the large quantum oscillations found by
previous Workers are significantly reduced in magnltude,
in fact almost washed. aut, when 1 is of the order of the
Fermi-Thomas screening lengthland the anomalous surface
phaese transition does not occur for T < 1.

Muscat et al (1975) re-exsmine the degree of enhancement
of the spin susceptibility near the surface of a2 nearly magnetic
exchange enhanced metal when a uniform - field end a field

localised near the surface are applied, using a zero-
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range. interaction and free electron model. Their results
show 2 strongly enhanced magnetization near the surface
as compared with the bulk and vredict the existence of
ferromagnetic instability for values of the electron -
electron interaction for which the bulk is still
paramagnetic, i.e. f; =0,985, in agreement with Zaremba's
1974 work. The large peak at 2sz=4.5 is present as in
Beal-Monod et al (1972).

Muscat (1976) performed numerical calculations of a
paramagnetic metal within a finite barrier potentisal (V)
model of the metallic surface in contrast to the ISBM
discussed above. For large values of V(~2) he finds
that there is still an enhancement of the magnetization
near the surface although the large peak is shifted from
2szcr4.5 for V =0 to 2p, 2=3.5 for V = 2,0. Consequently
there is ferromagnetic instability at the surface occurring
at values 0.985 < I, <1 which are V-dependant. For
smaller values of V, no surface instability can be estimated.

The most recent work we know of relating to surface
magnetization calculation of itinerant paramagnets is by
Schiach (1976) who coﬁsiders the surface response to a
uniform static magnetic field, by using approximations for
the non-interacting electron susceptibility,‘Xf\ and a
finite range exchange interaction as Zaremba and Griffin
(1973). The first approximation used is to neglect the

non-diagonal terms in o’ and simplify the remsining
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disgonal ones, while the second involves a simplifying
of the off-diagonal terms by a sevparable non-oscillating
scheme (also considered by Muscat et sal, 1975). The
result is that like MBW, no quantum oscillations are
observed in the magnetization - there is no surface
phase transition.

So far all the work done on this problem of surface
enhanced magnetization has been limited to the static
and one-dimensional cases given by & = 0 and Q = O.

To conclude this section, we give a brief scan of
the present situstion. The importance of the oroverties
of the stetic spin susceptibility of varamagnets via the
exchange coupling parameter T has become increasingly
clear over the last few years. Work has been carried out
on the varistion of the surface susceptibility in metallic
films using various anproximationslfor.the-non-interacting
electron susceptibility.. Some approximations give a
Smaller surface’than bulk enhancement (MBW, 1972). However
exact RPA calculdtions for the ISBM (as.well as:the finite
votential barrierumodel) find that a surface phaée”transition
existe for'fi<1 at which- the surfade suseceptibility diverges.
This has also been shown through use: of a tight binding
model ' (Weiner, 1973)..
Aim and Motivation

Our concern for the second half of this thesis is to
extend the work discussed'above to a more realistic

gsituation in three dimensions i.e. for finite g and =0,
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Only the instability at @ equals zero has been studied
so far. As noted by Ying et al (1976), although for a
simple band structure the bulk instability always occurs
first at'g = Q, this is not necessarily the case for the
surface region which requires a separate study}

A prime motivation for the study is the importance
of the localised static surface susceptibility in
chemisorption problems (Schrieffer and Gomer, 1971).

Here the spin of an atom adsorbed on the surface is
assumed to be coupled to the spin fluctuations of the
solid via a short range exchange interaction. In this
problem the perturbing field is not only localised near
the surface but also localised about a point in the
surface plane and so the localised susceptibility
discussed by Muscat et al (1975) is only an approximation.

Thrsgh simple qualitative arguments (as well as further
detailed analysis), Schreiffer and Gomer arrive at an
expression for AE, the strength of the induced co&alent
bond, formed by the coupling of an induced spin density
in the so0lid in the bonding region to the adatom spin.

AE takes the form

2
AE < = j(x \ocalised .

where J 1s the exchange interaction between the adatom

and single metal atom ( for further-details see Chapter I).

-
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To date (within our knowledge)-Schiach (1976) .alone
has calculated this A E as a function of adatom.vosition,
using approximation schemes for 3@. We expand his calculations

by using the exact RPA expression.

DESCRIPTION OF OUR MODEL WITH ITS MATHEMATICAL PROPERTIES

The geometry of the situation is still that of a
semi-infinite metal with its surface in the x-y plane
and the z-axis being pervendicular to this surface. In
the real space co-ordinate system r = (z,z) maps on to
g = (9,q,) within the Fourier space framework. We now
work with the infinite square barrier model in which the
density profile of the electrons varies as a function of
z given by equation (2.1) i.e, it has a Friedel oscillatory
behaviour. We use the Fourier cosine transform of a function
f(r) as defined in equation (2.9).

Now the magnetization for a paramagnetic system in the

presence of a magnétic fiéid H(r,t) is generally defined by

m (o, t) = J’X,(E,.C',t,t') H(x', £') de' ae! N )

where the transverse suscentibility is given by the Kubo-like
formula:

N (e, b)) = L@C-)K[S7E 0, §7(,e)]y .. @D

where S+(g,t) is the spin-raising overator,
S'(g,t) is the spin-lowering operator at position
r and time t and

(® 1is the ordinary step-function.
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Due to translational invariance in 2ll co-ordinates
excepting the ones perpendicular to the surface we

use the following trsnsformation

X (8,929 ) = jfjf d"()_(—g(_’)d((:-t'>dzdz' Ke,e ‘ZE')

Lo (E-E")

X o 5006111)‘0"‘(3;29 Lo @'-29

where X=(x,y), Q = (qx,qs)-

_It is of importance to realise that paramagnetic susceptibility
of a system of electrons is the same as the response

function involving the dielectric constant i.e. eqﬁation
(4.3)is identical to (2.12) when there is no electron -
electron interaction. Now for the case of a non-interacting
degenerste electron gas,Newns (1970), (Beck and Celli in an
equivalent formalism in the same year) has shown in detailed

analysis that in the ISBM :
cX«O (Q) %1—) %%,)03) = :Dg ’tth("D) S‘GL%(L%I — A?ﬂi'%‘t‘ (@) L. (L‘_. 4&3;

i.e. as a sum of diagonal (q,=.q)) and non-diagonal (q,# a)

elements which obey the sum rule
(D(gﬂ% (&) = J A9.q. 9. dq,’ C @-48)

This is physically feasible since the electronic wavefunctions

vanish at z = 0 and so

j%o (‘?) Yo C[/t'; "5) dctz' = O - - Qt-.#L)

For the static case w = 0O in which we are interested, we
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use Newns's exvoressions (1970) for Dgq, 8nd Agq.q,Written in

a non-dimensional form as follows =

Dy @ =~ Lz30 i) (- 42)

& gl - '%‘I
where we have replaced 92 —> ﬁ'%/Q-PF
{
qs — Y /ap.
This is the usual Lindhard function for an infinite medium.

The correction due to the presence of the surfasce is given

@ f W <9

AQ%;%{ (o) = O ] 4 %' > 1+ j}.
A R R A el
.- ,@ \..c‘li<%-z < H-C‘/z ///

1. . Yo Re(a- §%)%qa <192 52
Vo
o Q2 < Re “9[(‘ " 63)/63%]

T Ea LAl h ]
'F Ct:,_ < Yo Re (Y- (9)/1

et e g ENg SRS ;%3:

(@) 18 9e 7 9 the

A +G% = A\Q a!ﬂﬁ -
%99 1 _-_(4.14-E)
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This is the corrected version of the formula given by
Newns (1970). It comes from the guantum mechanical
interference between impinging and reflected electrons
and is strongly dependant on the assumed propertieé of
the surfacé. Gréphs illustrating the various regions

of Agiﬁﬁ ags written in equation (4,4E) are given in

Figs. (4.1 A,B,C} for clarity.

For interest we plot the behaviour of‘X? given in (4.44).

Fig. (4.2) shows the variation of Dgﬂz(O) with q,
given by equation (4.4D) for two ﬁalues of Q differing
by a factor of ten viz. Q = 0.04 and Q = 0.4. But the
maximum difference between the two curves is by about
5% (which occurs: as q,” 0) and there is negligible
difference for large values of q, (a,> 2).

Figs. (4.3) to (4.5) illustrate graphically the non-
uniform part A*WP14~ qi&or fixed Q, qé‘value@ given by'
equation (4.4E), This is important only in giving a
correct description for perturbations in the surface
region. In Fig. (4.3) we take Q = 0.1 2nd let q, run
over the values 0.0, 0,5,0.9,1.0,1.02 and 2.0. The
behaviour is in good agreement with graphs by Muscat et
al (1975) who in fact consider the limit Q@ = 0. We note
the points of singularity are (0,1) and (1,0) and it is
this singular behaviour which is responsible for dominant
Friedél oscillations in the surface response function
(Beck and Celli, 1970).

Similar curves are drawn in Fig. (4.4) for Q = 0.5
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and we note the change in behaviour for qé: 0.9, 1.0,
1.02 as qé—) 0.

In Fig. (4.5), we take Q@ = 1.0 and again see a
noticeable change in behaviour with all the curves
shrinking in height by as much as 50% in some cases
(qaz 0.5, 0.9). The dotted curve on this figure is for
Q = 2.0 and qQ,= 0.0, showing that for this and higher
values of the Fourier wave-vector contributions from
Agﬁﬁibccome less and less important. Physically this
means that the further away from the surface we go, the
contributions to the Friedel-type of oscillations dwindle

down (see Fig. 2.1).

[+]
Physical Significance of 3[

The non-interacting response matrix "'Xoa-s defined
in (4.4} can be interpreted physically through the schematic
diagrams in Fig.(4.6 i, ii, iii, iv) which translates |
the effects into real space. The fiprst sketch illustrates
the direct propagation of an electron at r and & hole at ;L
This arises from the diagonal term D which is identical
to the well-known response function of a non-interacting
Fermi gas subject to periodic boundary conditions. If this
were not so, the effect of the boundary would be to modify
the response deep within the gas, which is not expected
even in the absence of any Coulomb interactions between

the particles,
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In fact the total effect of a disturbance at glgiving
rise to a response at r just below the surface can be
regarded as a sum total of the different multiple reflections
involved at the boundary : these are sketched in Fig.(4.6ii ’
1ii, iv) and the quantum mechanical treatment of the
dynamics of particles impinging on and reflecting from
the surface is displayed in the quantum interference
effects in 3Lowhich are inherent in its non-diagonal
part A (Beck and Celli,1970) and gives rise to the
oséillatory behaviour in ﬁX? « This same oscillatory
property is reflected in the electron density profile
given in Fig.(2.1).

These high momentum transfer processes through the
multiple reflections on the bounding surface sre essential

features in a study of the magnetization near the surface.

Let us conclude this section by a description of some
properties of ‘X° . From (4.4) it is easily seen that X°

is invariant under interchange of its arguments q,, q; i.e.

X (?‘%%‘CL?J). = (X—O(Q,ﬂﬂ_" CL?_)
since the non-diagonal terms A are symmetric with respect

to qQ, qg. In real space, this takes over as :

j(o ()(, z ,’2{) X° (:K) ZJ) EE)

In fact this symmetricity readily extends to the complete

d
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response "X. s by writing the Bethe-Salpeter equation
for ?(, (see equation (4.6) in the next section) in

matrix notstien-as :

K o= X+ LI NX 5 K = (L—OCI)"‘X"

ST L X I 3 T - ot (a-xX°T)

f
since ’Xfo =X where T denotes the transpose of the matrix.
Thus assuming (;\.-‘70’3:) is symmetric i.e. I = I-‘,- and that
o - .
(1= 9% I) exists, we have

X

Also, for film geometry if 1 is the width of the film,

T

ps

i

~° (x) z, z') x (%, L-= L'—%D

X (X) 2 2{) = 'X,(X, L-z, L—ZD

which just reflects the inversion symmetry zbout the mid-
- plane of the film.



119

Derivation of the RPA Integral Equation for the

Static Magnetization.

We now wish to derive an RPA integral equation for

the magnetization of the form :

rYL(_Q) - m°(r_> + fj‘%ocf;f')m(z'ydg'

where the static limit & = O is assumed throughout and
the electron-&lectron exchange interaction is of the

form :
I(Q’SJ-) = f S(S_.—_S_-z__) - .

between electrons at sites 8, 8,1.e. we take a zero-

range form for the interaction, and I is assumed to be .

non-dimensional,

m>(e) = f%°(:,s') h(=") de! S

and

is the magnetization at zero interaction. All quantities
are made dimensionlesg by factoring out N(&:), the density
of states at the Fermi level e.g. h <> HN(&:).

One possible path of procedure is to start with the
definition of in equation (4.2) and by use of a suitable
ﬁamiltonian in second quantized form derive the equation
of motion of the system through evaluation of relevant
commutators. Then by using & standard procedure in RPA,
we can linearize this equation of motion by replacing

pairs of creation and destruction operastors by their

...sA

C4.5 8)

- &.59
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expectation values which then results in a truncated

equation of motion which will assume the form :

c,c',us) ) A CRIN ]:de“ (2 ct0) X(" 2o .. (2-0)

using (4.5B).
This is the method used by MBW (1973) in their tight-~
binding model. Substitution of (4.6) in (4.1) would
give us the required form of (4.5A). For present
purposes we shall give only the simplest derivation of
the RPA integral ‘€quation. for the magnetization m(r) in
terms of m (r):~~ see equation 4,5C,

N The interacting electron problem
reduces essentially to the previous non-interacting
electron problem discussed in Chapter II with the interaction
entering via an 'effective' field as follows.

In the RPA, the response S? to a system is given by
€
gf(g’t) = fdt‘jdg'% (o2 ) V(e y) . (at)
o)

which is the same as equation (2.4). Through the application

of an avpropriate Fourier transform defined in (2.6), we

can write
Sprle,0) = [d Kesha) Vi(s1w) . Gsa)

where the index % denotes the resvonse for up-spin

electrons . Similarly, we can write

stb (e N—*’S = jdg' ‘X.Q (e, E', w}\/\; (E‘,@) - (4-~88)

for down-spin electrons.
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But the magnetization of 2 system is defined as the
difference between the total number of up-spin and
down-spin electrons. Eence by subtracting (4.8B) from
(4.8A), we arrive at the local magnetization at the

point r :

m.(':,m) = fdg‘?@(g,g',@)(vf_vJ .-.(L(..ct)

We now introduce the concept of a molecular field Which‘
postulates that for paramagnets in general, there exists
a molecular field proportional to the intensity of
magnetization acquired. So we can regard an effective
Tield hege @s the sum of the external field h(r) and
the internal field, written as an integral over the

magnetization multiplied by the exchange interaction :

k.e@(.‘(:-\ = hle) + fl'(‘—‘-‘f'sl"‘(ﬁ') ole!

H

h(c) + I ml(c) ..« (4.0)

using the zero-range interaction defined in (4.5B).
Take the 1limit w= 0 throughout. We: can replace the

terms Vp- V, in (4.9) by our hege (r) in (4.10) to get

jdg‘ wx Ct,ﬁ'){h(c‘)-» im(r‘)}

m ()
Soom(e) = e . Ejd‘g“x"(c.c') m (')

which is the required equation (4.5).
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This is the RPA integral equation we wished to

derive. Despite the somewhat naive simplicity of the
local molecular field method, it has led us to the
correct result and so justifies its own use. Recourse
to this method avoids many complications resulting from
more rigorous methods. Equation (4.5) is the basic
equation under scrutinisation in the following chapter
which gives the results and discusses the solutions

of our three-dimensional model.
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CHAPTER V

SOLUTION OF THE RPA TINTEGRAL EQUATION IN THE THREE .

DIMENSIONAL TISBM

In the previous chapter we have derived an RPA
equation for the static surface spin magnetization
which obeys the Bethe-Salpeter equation. In this
chapter we shall be concerned with the variation of this
surface magnetization in three-dimensional resl space
when there is an applied magnetic field h(r) due to
an atom adsorbed on the surface. We recall eguation

(4.5A) written in the non-dimensional form : _
m () = m® () & J‘:j%°(s,§)m(;)ag---@'-0

This is an integral equation of the Fredholm type with

a complicated kernel containing oscillatory terms due

to the presence of the surface (given in Fourier transform
by (4.4)).

8K
Multiply (5.1) by e Coo%L,Z) and integrate over r,

D’\,(Q, ‘L-'b> = m LQ: 1?.) + I S‘d,o Sds 6 c,os@‘ t)')é(p S)m(S)

= (%) +ffag K (8 92,8) m(s) . ..G5.2)

by interchanging the order of integration. Replace
m(s) by its Fourier cosine trsnsform in (5.2) and use

the property of translational invsriance. This yields
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w(g 3) = ™€) « T XK Qen(ggd)
(5.3)
where the response matrix ’X«O(Q,V‘q’;)has been given in
terms of the diagonal and non-diagonal elements qu’t and
AQ% 11 respectively, for the ISBM in the lazst chapter-
see equation (4.4).
Thus-(5.3) is an integral equation for the magnetization
in Fourier space with the kernel contsining & 'non-uniform'
part due to the surface. The only possible 'exact' way
i,e, without resorting to any approximations, to solve
the equation for the magnetization 1s by a numerical
method which is given in 2 forthcoming section. Wq
actually ';vish to convert (5.3) back to real space as

followa:

m(e) =m(X,2) - ﬁf‘f‘? ‘*‘L;e— fm(‘}z")m(@.@z)
Convert to polsr-coordinates snd use d*Q=Qd9dé to obtain

o - QX
2 ¥ ( %, z) - f e cor (CP%S m (9, 1.},) @ d¢ cLGclc‘ﬂ

b-—‘\'\'o

[ Sv YQ cos (Qx0s6) 03 (4:2) 0 (3,92) dQ o6 g,

—-ﬂ
as the imaginary part of the integral is zero.

From CGradshtein and Ryshik's Integrsl Tables,

T
jws (Qx cos8) d& = 22 I, (QX)
-8

where Jo is the zeroﬂ"

m(X,2)

order Bessel function. Hence,

2w jd@ ¢ (§X) J‘dch m(qlcb) Cooqtz) . ()

Q
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The magnetic field h is taken to be of the mathematically

convenient Yukawa form :

N —xic -5l .. . (5.5)

h(x) = &

b ic - ¢,

where 1, = (o, O, zc), for simplicity; as X*»a this is of a
$ -function form.
It can be shown by converting to volar co-ordinates that the

Fourier cosine transform of (5.5) can be reduced to :
F —geex I2-

h (8§, 9:) = X le cos 6132) dz
v ?2*’ ) S o 2 ' co r__
L - 1§ -)
- X jé Jge-(-2) “\e
- 3 cos (q,ﬁ\ da cos (cb_t‘t)d.?;.
AQTx x> p d
sQ- (’\ ( Q\ %{\ = ______X-L { iw-s (%t%) — P (5~6)
¢+ Gt~ K
' - ‘?'l_‘_)g\.
When z = O, this reduces to the well-known form e

2(g*+qsr <)

Surface Phase Transition

The problem here deals with a localised situation
near the surface and the aim is to examine the surface
phase transition in the three-dimensional situation.

This‘corresnonds to whether or not there exists a

solution to the equation ¢
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m(8,9:) = if %c(‘?’ﬂt)%a‘)“<‘?'14> dgat ... (53)

when I eqguals i;<1.
For the one-dimensionsl Q = O case, (5.7) can be easily
solved numericslly by using a suitable cut-off and |
replacing the integral by a summation over qi. By using
the same number, n, of corresponding values for qzand
taking all the terms over on to one side we can build up
a system of nxn simultaneous equations which will have a
unique solution provided the“determinant formed by the
co-efficients of m(Q, q,) is equal to zero. We do this
and find Ig= 0.985 thus verifying the result by Muscat et
al (1975) through this different method. For the three-
dimensional case Q # O the situation is more.oomolicated
and we resort to another method described in the next
section to determine Is (which in principle should be the
same,;althoughrjhe type of-singularity occurring ap the phase
transition may. difier) | -

Let us now consider an analytic aporoach to the problem

using an operator and eigenvalue technique. In standard

Dirac notation using bras and kets we. can rewrite (5.7) as

TH AmY = Amy .. (53A)
where the kernel €L is regarded as an operator which can- be
expanded in terms of a complete set of normalised eigenfunctions
\ny W1th corresponding eigenvalues I belonging,to the

homogeneous equatiQn'(sng) 1}?'-0 . : )
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fa> <l . . (5.88)
N N .

n Ia

From (4.6) and (5.8B) with some algebraic manipulation

we can easily show that

V) _ 2 lav<Lal CoL G-S‘C)
n I.-XI
and hence
la > <nlhY
n Ea-I

- .. (5.3D)

fn> =

which is evident from equation (4.1).
But if h is a magnetic field localised near the surface

and I is very close to Ig we have

\Sf><i$* h>  as Lo I

)

lm > =

: Is - I
For the one-dimensional case, out mg(z)= <sl27 and we
obtain
ms(2 2)h(z . ..(s.
m (;g) _ s(‘) ms ( )‘L ) d=z . (- ﬁ)
I-T
as in Muscat et al (1975). We make use of equation (5.9)

as a check on our numerical calculations in three

dimensions as Q= 0.

Numerical Procedure

The method of attack ucsed is to transform the

integral egquation given by (5.3) to a matrix eguation,
thus :
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Z [(L - ’J)%) Sqq) + T Agw]m(g.q;) = m°(§.9) . .(5-10)
Y |

where for convenience we write q, q'instead of a,» q;,
and sum q’from 1 'to n, say. Now take a further step and
let q run over these same values from 1 to n. A suitable
cut-off used for the uvper limit of the integral in (5.5)
was qﬂmw# = 3.0, which corresponds to a value of 6pF,

where

( _ (2n + DT L (5
1 e [} |

if we regard the process of summation over a film of
length 1.

Equation (5.10) may be written in matrix notation as

B M Me B

I

where B = (bkj) for i, j = 1l,¢0e. 1,
M, M° are column vectors of size n,
and by =iA9%¢ 1473
b = (1-fchL)* +"T-chw }

Hence M = B M°

- C%.ulea

and the solution of the integral equation (5.3) reduces
to the evaluation of the inverse of the matrix B.
Writing the matrix equation (5.124) in full to see

the structure more clesrly, we have
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. _ _ mr _ -
rl-— f’\D‘ -“_I-A\ll IA‘Q— e T IA](\ M\ m.o
T Awu \L_:_E(-Dn_*-f-Aﬁl .. hd Azn Maq l:'l;

! ) ~ : 1 !

1 ,

0 ~ : ¢ \

i N . ' — i

! * i

" ' ]

' i . '

, I : ;

] \‘ H ' E
| LA TAw . . ... 4-TOpTAy™ [ ™)

... (529

Instead of taking the bulk Lindhsrd's logarithmic function

for in' we use the discrete sum = -

cutting off at g/ = 3.0 and of course multiplying by

the Stcp length in q’ considered for computer calculations.

The following three checks were made to ensure our

programme was working correctly:

(1) Initislly we took I> O and found m in close agreement
with the computed non-interacting magnetigation me

_(2) We use the Muscat et al (1975) version for the magnetic

| field viz. h(z) = sinz/z and examine the magnetization

._ as a function of z for Q = 0,0001 and I = 0.95, 0.98

snd 0.983, The graphs are displayed in Fig(5.0A) and

are in very goad agreement with their Q@ = O results.
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However we notice that the magnetization should actually

be negative for this choice of the magnetic field, a fact
unnoticed in their paver, but can be verified analytically

if we consider the variational function for the magnetization,

given by

- b=z
@_P — S0z ... Gz
F4

oy (7) =

where (3 is a constant (usually small).
Substitute (5.184) for m_(z) in (5.9) yields
_ ‘ -pz - \
T = - 2 AT\, (5-138
(Is— :c)m(a) S (e- 5::;__ <Yonj5 . ( )
Since Ig > I, the above equation clearly shows the
negative behaviour of the magnetization for & localised

field of the form sinz/z.

(3) Thus encouraged by our previous two checks, we
returned to our Yukawa form for h given by (5.5)
and computed the magnetization curves for Q = 0.0001,
I = 0.95, 0.98, 0,983 ; K = 1.0, z = 0.0. These
graphs are given in Fig. (5.0B). The behaviour of
‘the curves are similar to those discussed above
with the higheét peaks occurring at z = 4.5.
The ratios of the peak heights are tabulated in
Table (5.1) and compared with the corresponding ones
obtained from Fig. (5.0A). These are in good
agreement showing that the ratio of the enhancement

being independant of the type of magnetic field applied.
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In Fig. (5.0C) and (5.0D) we plot the inverse
of the magnetization peaks obtained in checks (2)
and (3) st z = 4.5 as a function of I and note the
linear behaviour. Extending the lines to cut the
T-axis gives an intercept Tg in both cases such
that O.985<CTS<O.986. This is the point of divergence
of the magnetization in good agreement with results
by Zarembs (Thesis 1974) and Muscat et al (1975)
who obtained a value of 0.985 for Igin the case
Q = 0. Our slightly higher value is due to the

finiteness of Q.

Now the aim is to proceed ahead with calculations
for the magnetization for further finite Q-values upto
an avpropriste range, sum. over these values and finally
examine the variation of the magnetization in three-

dimensionsl space.

Results For Our Model in Three Dimensions.

The resultant graphs computed for the local magnetization
as a function of z sre given in Figs. (5.1A, 5.2A, 5.3
and 5.4) for the following values of X, X , z :

Fig, (5.14)

X = 0.0’ K»: 1.0, Z =0.0o

E_i_.g- (5.2A) : X = 001, X_= 1.0, z = SoOQ
Fig., (5.3) : X =5.0, *x=1.0, z = 1,0.
. X = 5.09 x,= 005’ zZ = 1.0-

Fig. (5.4)"

¥
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In each figure the four curves displayed correspond
to the values of:i.between 0.95 and 0.988., For values
of ii< 0.985 we obtained excellent convergence to within
1% by inverting a 20 x 20 B-metrix ( see eguation 5.12c )
and performing a summation over 10 Q - steps. A maximum
upper limit of 3.0 for g end 1.0 for Q ( corresponding
to 6pF’ 2PF respectively ) were found to be sufficient
since negligible contributions arose by increasing
these values. However for I 0.985, most stevs are
required to obtain good convergence viz. 80g x 10Q was
applied.

The velue X = 0.0 was chosen to examine the variastion
of the magnetization in the plane through the point (0,0,z )
about which_the magnetic field is localised,and 1t 1s
expected that in this pléne lies the highest intensity
of the variation. We note the constant uniformity of
shape of the magnetization curves, with the highest peaks
occurring at z = 4.5, the second smaller peak occurring
at z = 10.5 and the third even smaller pesk at z = 17.5,
in agreement with the work by Beal - Monod et al (1972 ),
Zaremba ( thesis 1974 ) end Muscat et al ( V19'75). The
largest effect of the magnetization is therefore felt
nearest to the surface, with oscilletlons gradually
diminishing in height and tending towards zero further
away'from the boundary. This osclllatory behaviour 1s
‘essentially due to the inclusion in our calculations

of the surface correction terms Ag1€ defined in (4.4E) i.e.
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due to use of the ISBM as opposed to the previous
SCISBM'Which neglected these terms and dealt with the bulk
term DQ%'alone. Recall the behaviour of the electron-
density profiles plotted in Fig.(z.l)for both the models
(but»note that z£ 0 is taken to be the metal region

there, as opposed to z 70 which we are now considering).
This same argument is reflected there, with the maximum
peak in the Friedel oscillations occurring nearest to

the plane z = 0 in the ISBM.

Pig. (5.1A, 5.2A, 5.3) show the effect of varying z,
upron the magnitude of the oscillations. Tﬁis is significant
e.g. the difference in the heights of the curves for z = 0.0,
3.0 is by =a factér,of about ten.

Fig. (5.3, 5.4) reflect the effect of the range 7= Yx.
which appears in magnétic field. Increasing the range
from 1 = 1.0 to4 = 2.0 gives an increase in magnitude

of the curves for different wvalues of'f.

We examine the lateral behaviour of the magnetization
in Figs.‘(5.1B, 5.2B) by fixing a value of z (equals 4.5)
and plotting m(X)~ X. Due to transitional invariance
assumed throughout in the problem, this varies as a
function of modX i.e. the points on the graph represent
values of the magnetization on concentric circles,
centre (0,0,z) and radius X. As expected, the graphs
show a smooth fall-off of the magnetization with increasing

X. It indicates the long range behaviour as T increases
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in vslue upto 0.988. However for smaller values of I

= 0.0, 0.5) indicated by the dashed curves show the
short-range behaviour for these values.

The next step is to examine at what value of T a

surface phase transition occurs and as in the one-
dimensional treatment (see e§uation (5.9)) we plot

the inverse of the magnetization height at 2 = 4.5 as e
function of I in Figs. (5.1C), (5.2C). In contrast to

the one-dimensional cases (Figs. 5.0C, 5.0D), these curves

are now non-linear and extrapolate to zero for a value
I, = 0.989. Although only two graphs showing this Ig

are disvlayed at the end of this éhapter, further calculations
were carried out to consistently give this same wvalue for
TS. Our numerical caiculations confirmed this conclusion
as they Wefe non-convergent for I 7 0.99. Thus we conclude that
for TS=O.989 theFSurfacelregioh has a distinct tendency of
becoming ferromégnetica The discrépandy betwéen the‘values
obtained for fs'in the cases Q=0 and Q40 is most likely to be

numerical. L - R - . e

It is only at z = O, where the magnetization vanishes for
-allfvalués»of:f, where no_éghancementvis felt. This is consistent

“with the theory : multiply each side of (5.3). by cos(az) and

integrate over daq, _ |
m (9, %) = m°(8,2) + deq/fdct‘ (Poq Sy - Aagq)m9))
% cos (g2)

Interchanging the order of the integrals and putting z =0,
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n(ge) =m0+ T dy{ng ‘f‘*‘t“%ﬂi}
x m(q, ﬁ})

2 m (% ’ 03 m® (gy Q)

since {:§= 0 from the sum rule given by (4.4B).

We conclude this chapter with a comment and calculation
of the binding energy AE for a, adatom pertinent to our

system,

THE BINDING ENERGY

Schiach (1976) has examined the second order contribution
to the binding energy of an ad-spin i.e. he calculates
to the lowest non—vanishing order the enercy change
in the system due to the extra coupling from a fixéd local
spin 8 at R. In his model he considers a finite range
electron-elecéron interaction of the Yukawa type (similar
to Zaremba and Griffin, 1973, 1975) to avoid the possibility
of a surface phase transition and a similar type of exchange |
interaction V(R-r) with S8, with the same range parameter
(for simplicity), but a different strength of interaction.

The extra binding energy E is given by

ae o fus fag' V(R-c) (e, =) Voo
G
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where the constant of proportionality is of the form
--_‘i d‘S(S‘*q where o is the ratio of the strengths
of the two exchange-interactions. In his calculations

he uses two approximations :

@) by ignoring the Agga’ terms in ‘)fjand approximating
ng. This is identicsel to the approximstion used by
Zaremba and Griffin, 1975, and physically cqrresponds
to treating the surface scattering as speculsr and
classicsal.

@& by including the effects ovaqqq' through a separabie

symmetric approximation.

His results for AE, normalized with respect to its
bulk value, are plotted in Fig. (5;5A) for I = 0.2, 0.99.
The dashed curves are due to approximstion (1) while the
solid linés come from use of spproximation (2).

This is the quantity we wish to calculate in our model
avoiding any approximatioh and using the exact expression
for CXf. For simplicity let us assume that our extra
coupling due to an adatom 8t & = (0,0,Z,) and the
substrate metal electrons comes from a finite range
exchange ihtcraction of the form

-xle-vl
V(e-8) = X ! C L (5a8)

4w - Gl

i.e. same as the magnetic field h( ) given by equation
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(5.5). Translating this into eguation (5.14) and

absorbing all constants into h(r) we have

A e (%, %) fd‘; m () h(e) o (5-(5-‘5
i.e. AE is a function of X, Z, slone.

Now Parseval's theorem states that if f(x), g(x)
are two functions with corresponding Fourier Transforms

F(q), G(q) then

f F(Q) G(-9)dq = J;o& 9(0 dx

Using this theorem in three dimensions with the fact thaf

h(q) = h(-q) (see 5.6), we get

A (=3 (X, Z\-,) B = ‘Q“— f@ m (Q) %—t) h(@J C‘,t) on[‘ti "'(5"%5)

For calculation purposes, we choose X = 1.0 and
compute AE as a function of Z,. The graphs are plotted
in Fig. (5.5B) for T = 0.0,

0.5

0.95

0.98

0.983
After an initial rise at Z = 4,5 , the oscillatory
behaviour smootps out relatively quickly compared with
the magnetization profiles, approaching steady constant

values for different I values as we go deeper into the
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bulk. The behaviour is reminiscent of the electron
density profile for the ISBM in Fig. (2.1).

As expected, our A E~ z_ curves using the exact
expression for X° differs with respect to Schiach's
approximate versions. In contrast ours is oscillatory
in character, but similarly it tends to a constant
levelling-off value far away from the surface. At
the boundary our curves go exactly to zero (as expected
from'the form of our magnetization curves using the
exact expression for‘Xf ) whereas his AE extends
slightly into the negative region for z_- outside the
surface.

From the form of our AE function (equation 5.16A)
a plot of AE~log(I, - I) for a fixed value of z_ Seems
suggestive of a linear behaviour (Newns & Edwards, 1977).
Taking I, = 0.989, this was done for z = 4.5 corresponding
to the maximum peak in AE. The results are illustrated
in Fig. 5.5C and show an excellent tendency towards a
straight line. Further checks were made by varying Zq
and confirming this conclusion. This is an encouraging
result although it might be unwise at this stage to read

too much meaning into it.
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A word should be said at this stage on the
exverimental situation. Experiments have been verformed
with the high density fluid.of ligquid helium® and the
evidence does suggest that it behaves as an itinerant
ferromagnet near the surface (Ahonen et al, 1976). They
examine the low temperature magnetic susceptibility of
normal and superfluid helium® bounded in a narrow slab
geometry and obtain a field dependant enhancement of
the pure helium® magnetic susceptibility over the bulk
Fermi ligquid value. The excess susceptibility follows
a Curie-Weiss law which is consistent with the assumptions
that there exists a quasi-two-dimensional sheet of
itinerant ferromagnetic high density ligquid helium

5 and the

between the first few layers of solid helium
bulk paramagnetic liquid, as pointed out by Beal-Monod
and Doniach, 1977. However further future experiments
with nearly ferromagnetic materials in confined geometries
would be welcome.

In conclusion, let us recall that our free electron
model with an infinite square surface barrier is a highly
idealised onewhich would in effect be unrealistic in
describing proverties of strongly paramagnetic transition
metals such as palladium and p;atinum. waever, even
our simple model cannot be discarded as it does contain
interesting information on phenomena like magnetic

phase transitions at surfaces which have been predicted

by a more appropriate tight-binding model (Weiner, 1973).
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Simple as the model is, the formula for the magnetization
involving °® (9, %z » qft') given by equation (4.4) is
far from easy to deal with. Thus there seems to be
little hope that one can solve the integral equation for
thé magnetization for a realistic model without an
extensive programme of numerical studies.

Our calculations have involved use of the RPA and
based on the molecular field approximation. But the
bounded surface problem presents a dimensionality 4
somewhere between 2¢ d< 3 and therefore imposes the
questionability of such an avpproximation in handling
surface problems in a meaningful way. The RPA is valid
for low momentum transfers (P%nes, 1964), but in our
surface problem where high momentum transfers become
appreciable one should perhaps go over and beyond the

RPA to calculate the system properties.
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The surface plasmon and electron-hole satellite spectra in core-level XPS of a large adsorbed atom are calculated

for an idealised model of a metal surface.

In XPS spectra of core levels of adsorbed atoms,
satellite structure on the low kinetic energy side of
the core line is expected. For a sufficiently fast out-
going election [1], this satellite structure should be
dominantly intrinsic, i.e. due to the sudden appea-
rance of the localised core hole. Methods of separating
out the intrinsic and extrinsic effects have been con-
sidered by Bradshaw et al. [2] for the case of O and
Al For a large radius physisorbed atom such as Xe,
the intrinsic core CPS satellite spectrum should ap-
proximate that for a point charge just outside the
surface. Its interest lies in its action as a probe of the
surface excitation spectrum at moderately large wave-
vectors.

The sudden approximation for switching on of the
core hole, appropriate for intrinsic satellites, gives the
“zero-work” sum rule that the first moment of the
core XPS spectrum lies at the gas-phase position of the
core level {3]. The elastic threshold of the adsorbate
core XPS spectrum is however shifted towards the
high kinetic energy side by the “relaxation shift” v.

In our approximation v is the static interaction energy
of a point charge at the adatom with the surface. For
an adatom of radius d the classical image theorem
would give v ~ e2/4d for a metal. If the satellite spec-
trum is dominated by a single peak at the surface
plasmon frequency w (taking elastic threshold as
energy zero), then the “zero work’ sum rule gives

P =vfw, for the strength p of the satellite peak rela-
tive to elastic peak in Born approximation.

Our aim here is to calculate the intrinsic satellite
spectrum V, (w) taking into account within a simple
model microscopic properties of the electron gas
such as finite screening length, surface plasmon disper-
sion and damping and electron-hole excitations. In
Born approximation NV, (w) is given by
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o0

2
N+(w)=% [ e-20ds5,(w)dgQ. 6
0

Here w, taken as >0, is frequency measured away from
elastic threshold, O is wavevector parallel to surface,
and d = distance of core from surface. S (w) is the
surfage spectral density, defined as So(w)=—(1/m)

X Im R (w), where the image response function
Rg(w) may be defined by

Ro(@) =g (w)/gg(w). )

In eq. (2), gg(w) is the (@, w) Fourier transform of
a charge outside the surface, g™ being the image of

s =3
Q=PR/4
01—
Sg (w)
Loy 0y g
o1 2 3:4-:5-6 789 101

Fig. 1. Surface spectral density SQ(w) forrg =3, Q0 =pr/4.
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Fig. 2. Intrinsic satellite intensity N,(w) at energy w below
elastic threshold [note scale change].

q in the surface from which d is measured. The classi-
cal image theorem gives limQ_,ORQ(O) =-1.

The solid is here treated as an electrongas, and
the surface approximated by the “‘Semi-Classical

Infinite Barrier Model” (SCIBM), which unrealistically

has a step-function electron density at the surface
but reasonable dynamical properties [4]. In this
model [4] Ry (w) = [1- eg(@)]/[1+ ep(w)], where

20 7%
T qu 2e(q,w) @

Here g =+/q? + Q? and e(g, w) is the Lindhard dielec-
tric function. An approximation to (3) is

—GQEOJ) ~ (10((-0) + ZQ(QI (w) + iBl (w)), )

leading to

—7~16,0(w? - w})?

~ w2 w2+ Qoy(@?— )2+ (08 @ — w2

From eq. (5), we see that S (w) should have a peak
at w ~ w(1+10ay) of w1dth QB w/2, and mi-

nimum at w = Wy =/2 2wy, the bulk plasma frequency.
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Table 1

‘ Relaxation shifts, sateilite intensities and asymmetry parameters.

rs wg(au) d3au) wbaw) v/ws pgalc. v

3 024 4.0 0.049 0.21 0.125 0.03
25 0.069 0.29 0.16 0.06

5 0.11 4.0 0.045 041 0.30 0.08

25 0.062 0.54 0.35 0.14

) d measured from edge of substrate electron density.
b) 4 is calculated from v =— ezjo Rp(0) e-2Qd4Q.
©) Relative area under surface plasmon satellite — see text.

In fig. 1 we illustrate the spectral density Sp(w)
for aa electron density of r¢ = 3 and with Q at one
quarter the Fermi wavevector. Calculations using
(3) directly or the approximation (5) agree quite
well. Both the peak' at wg and the bulk plasmon
“antiresonance’’ are in evidence; the latter feature
also appears in a recent work of Barton [5]. Also
visible in fig. 1 is the electron-hole structure, approxi-
mately linear in w at small w. This is responsible
for the “infra-red divergence” in the XPS spectrum
at small w [6].

In fig. 2 is illustrated the XPS satellite spectrum
calculated from eq. (1). Results calculated using (3)
with numerical integration or (5) are found to agree
rather well. Of course the total spectrum also con-
tains an elastic peak given by a delta function at the
origin. Note that d may be roughly estimated as the
adatom atomic radius, the values for Ne and Xe
being about 3 and 4 au respectively. The case chosen
(ry=5,d = 2.5 au) for illustration involves small 4
and low electron density in order to maximise the
non-classical effects under discussion here. The sur-
face plasmon peak is seen in fig. 2 to be asymmetric,
due to the positive surface plasmon dispersion in this
model, so that the surface plasmon resonance lies
in w > w,. The resultant approximately exponential
form was predlcted by Harris [1], though our result '
contains also the damping and intensity fall-off effects.
Perhaps most remarkable is the narrowness of the
satellite, whose width is only ~ 0.1 w,. Effectively,
for the relatively large d concerning us here, the
Q-values brought in via (1) appear to be small enough
to approach the classical behaviour SQ(w) =
% w 8(w — wy). The area under the surface plasmon
satellite, from threshold to about 0.9 Wp» is compared
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in table 1 with the classical result p = vfwg. It is
found that only about 55—70% of the classical in-
tensity v/w, is found in the calculated satellite,
though the upper cut-off of the latter is rather sub-
jective.

A non-classical phenomenon appearing in fig. 2
is the divergence at w — 0. This is basically the
infra-red divergence discussed for this problem by
Gumbalter and Newns [6]. Eq. (5) of ref. [6] goes
over, as the asymmetry parameter ¥ becomes small,
to Ny(w) = y/ew for small w. This is the Born appro-
ximation limit, and fig. 2 shows this w™! divergence
at small w. In fact for small w and ry = 3 our present
result agrees quite well with eq. (5) of ref. [6], per-
haps justifying the Q-independent cut-off taken in
ref. [6]. In practice one cannot see the small-w di-
vergence, due to finite lifetime of the core hole,
but only an asymmetry in the otherwise symmetrical
lineshape of the “elastic peak™ [7]. In experimental
work on XPS from substrate core levels attempts
have been made to extract the y-parameters [8].
Accordingly estimates of v from the formula of
ref. [6] are included in table 1. The results show
that v is significant only for low electron density
substrates.

In conclusion, we have carried out a simple theo-
retical treatment of the intrinsic XPS satellite struc-
ture for a large physisorbed atom on a free-electron
like substrate. The surface plasmon satellite is the
dominant feature and is quite well described by the
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simple classical picture based on a single non-dispers-
ing mode. Bulk plasmons contribute negligibly to the
spectrum provided the atom lies outside the surface.
The electron-hole excitations contribute divergent
small-w behaviour which, in the presence of a finite
core lifetime, gives an asymmetry to the core peak
characterised by the quantity . The asymmetry
seems likely to be measurable only for low electron
density substrates and perhaps non-free-electron type
substrates.
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