IMPERIAL COL工EGE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF MATHEMATICS

THE LIMITING SEMIGROUP OF THE BERNSTEIN ITERATES: PROPERTIES AND APPLICATIONS

by

Manuel Rogério de Jesus da Silva

Thesis submitted
for the degree of

DOCTOR OF PHILOSOFHY
in the University of London

I owe thanis to many people in the mriting of this thesis.

To Dr. E. OPTIZ of Inperial College, for sugsesting the subject of this research rort and for his continual guidance and kind supervision.

To Pro:. R, IUMOS of DPorto University. :ithout his advice, encouragenent, and assistance this rasearch could not have been possible.

To Mr. G ARCE of Imperizl College, for his help on conputins matters.

To the Lonton Mathenatical Society, for a grant that made it possible for me to read sone of tia resuias contanad in this thenis at bein Durhan symposium on multivariete zpproximation.

To IHIC (Insituto Macional ie Investigaçã Científica - Iisboa Portural), for their finanoiaj support.

Finally, to my wife and chizaren, who have suffered through long勺nüs of nejloct.

ABSTRACT

Our main purpose in this thesis is to study the properties of the limiting semigroup of the iterates of the Bernstein polynomials as well as to give some applications.

Chapter l reviews some well-known results on the Bernstein approximation theory: connection with the translation semigroup, smoothing effects, variation diminishing properties, etc.; gives some apparently new interpretations of less well-knom results, naraly, the recursive calculation of the Bernstein polynomial and its ierivatives; and extenis the Bernstein construction to the approximation of continuous, multivariatき, real-valued and vector-valued functions.

Ghapter 2 offers a new approach to the nunerical condensation of a given multivariate polynomial P as a natural extension of Lanczos' telescoping technipue; gives sufficient conditions for the existence of condensed forms of P, and an algorithm for their step by step computation; anolies these considerations to Eernsteir-Eesinv approrimants, and gives several examples on the shape approximation problem in one and two dimensions.

In Chapter 3 the Bernstein operator is rega:-ded as a Iinear transfomation onto the space of algebruic polynonials with real coefficients and degree at most n, and the properties of its iterates of nonnegative
order are studied from a fairly elementary matrix analysis standpoint. These iterates are shown to be contractive, variation diminishing, convexity preserving, and convergent to a limiting operator which is explicitly given and shown to be totally positive.

Chapter 4 re-interprets the limiting results of Chapter 3 in the context of the operaton semigroup theory as an alternative approach to Karlin-Ziegler's identification and representation of the limiting semigroup of Bernstein iterates of nonnegative order. Me give here some new applications of this semigroup, namely, the approximation properites of two new operators of de Leeuw's and Micchelli's type and the characterization of the linear operators comuting with the bivariate Bernstein polynomials.

Finally, Chapter 5 parallels, for the Szász operators, the analysis carried out in Chapters 1,3 , and 4 for the Pernstein polynomials. We show that they are totally positive and give their saturation theory as another application of the operator semigroup method.

COMTETS

ABSTRACT 1
SYMBOLS AND NOTATION 7
INTRODUCTIOT. 8
CHAPTER 1. BERNSTETI APPROXTMATION TO CONTINUOUS, REAL-VALUED, AND YEGTOR-VALUED FUNCTIOIS 15
I. BERNSTEIN APPROXIMATION TO REAL-VAIUED FUNCTIONS 15

1. The convex hull property 16
2. Recursive gereration 16
3. THE BERISTEIN UITFORM APPROXIMATIOI THEOREM ALD TEE TEANSEATIOA SEMIGROUP 19
4. BERNSTETN APPROXTMATION TO CONTINUOUS, MULTIVARIATE FUNCTIONS 22
5. SMOOTHIMG PROPERTES OF THE BERNSTMIN OPERATOR 30
I. Derivatives of Bernstein polynomials 30
6. Variation dininishing properties 33
7. Polynomial interpolation at equidistant nodes 35
8. BERMSTEII APPROXIMATION TO VECTOR-VALUED FUNGCTIONS 36
9. Veotor-valuen Eernstain polynomials 35
10. Recursive generation and approximation properties of the Bernstein-Dézier operator 37
11. The convex hull property 38
12. Geometric construction of $\mathcal{A}_{n} \mathbb{P}$ and its derivatives 38
13. Variation diminishing properties 41
14. Iterates of the Bernstein-Rézier operator 43
15. Bernstein-Bézier methods for multivariate vector-valued functions4
CHAPTER 2. NUMERICAL CONDENSATTON OF MULTTVARIATE POLYNOMIALS. 46
16. comenisation in が $_{\mathrm{n}}$. 46
17. A sufficient condition for polynomial condensation 47
18. Implementation of the condensation process 48
19. COMDENSATION OF MULTEARIATE pOLYNOMIALS 51
20. Bivariate polynomial evaluation schemes 51
21. Smoothness indicators 54
22. Approximation of a multivariate polynomial by another polynomial of fewer variables 54
23. An algorithm for the condensation of multivariate polynomials. 55
24. NUERICAL CONDEMATION OF BERNSTEIN POLYMOMIALS 57
25. Condensation of $B_{n}(f ; x)$ 57
26. Numerical example 60
27. Numerical condensation of Bézier polynomials 62
28. Condensation of multivariate Eernstein-Bézier approximants 62
CHAPTER 3. ARETTEAPY TERATES OE BERISTAD DNTYOMTASS. 69
29. THE MATRIX FORM OF THE BERNSTEIN ITERATES. 69
30. THE TOTAL POSITTVITY OF B_{n} 72
31. THE POSITMITY OF $\mathrm{B}_{\mathrm{n}}^{\mathrm{r}}$. 75
32. THE LIMITIIG EEHAVIOUR OF B_{n}. 77
33. The case of n fixed and $r \rightarrow \infty$ 77
34. The case of $n \longrightarrow \infty$ and $r=r_{m} \longrightarrow t \in \mathbb{R}$, fixed, as $n \longrightarrow \infty$ independently of n. 80
35. The case of $r=r_{n} \longrightarrow \infty$ 83
36. CONVEXITY PRESERVING PROPERTIES OF $\mathrm{B}_{\mathrm{n}}^{\mathrm{r}}$ 87
CHAPTER 4. THE LIMITTMG SEMIGROUP $\left\{\mathcal{B}_{t} ; t \geq 0\right\}$ OF BERNSTEIN ITERATES 89
 85
37. Existence and characterization of \mathcal{S}_{t} acting on \varnothing_{M} 89
38. Spectral characteristics of \mathcal{S}_{t} 93
39. Integral representation of \mathcal{B}_{t} acting on C. 96
40. SMOOTHING EFRECTS OF $\mathcal{\beta}_{t}$ 100
41. APPLICATION OF \mathcal{H}_{t} 103
42. Saturation theory for the Eernstein agocorimation in C 103
43. Characterizations of convexity 105
44. Linear operators commuting with B_{n}. 106
45. Saturation theory for de Leeuw-like operators IC?
46. Approximation of smooth functions by polynomial operators of Micchelli's type 112
47. Iterates of multivariate Eernstein polynomials: Properties and applications 119
48. The bivariate Bernstein operator B_{n}^{*} acting on $\mathscr{N}_{\mathbb{N}, \mathrm{N}}$ 119
49. Iteration of B_{n}^{*} and the limiting semigroup $\left\{\mathcal{B}_{t}^{*} ; t \geqslant 0\right\}$. 122
50. Linear operators commuting with bivariate Bernstein polynomials. 130
CHADTER 5. ADDENDUR. 134
BERNSTEIN TYPE APPROXIMATION ON C $[0, \infty]$ 134
REFERENCES 140

SYMBOL	NEANITG
E	is, belongs to
\longrightarrow	implies
\Longleftrightarrow	iff, if and only if
\longrightarrow	approaches
\downarrow	approaches from above
4	approaches from belon
[]	larsest integer \leqslant
Ni	natural numbers
R	real numbers
R_{N}	N-dinensional Euclidean space
C	$C[0,1]$, continuous on that range
$C_{C}^{(n)}$	continuous with derivatives of order $\leqslant n$
I	identity operator
$\boldsymbol{\rho}$	alธ̃ebraic polynomials with real coefficients
ρ	algebraic polynomials with real coefficients and degree $\leqslant n$
$\delta_{n_{1}},$	multivariate algebraic polynomials with real coefficients
	and degree n_{i} in the variable x_{i}, $i=I(1) N$
TP	totally positive
STP	strictly TP
$\triangle \mathrm{TP}$	triansular and TP
$\triangle S T P$	triangular and STP

Ever since S. N. Bernstein introduced in 1912 his celebrated polynomials to give a constructive proof of the Weierstrass uniform approximation theorem, they have been the starting point of many investigations.

The fascinating approximation properties of the Bernstein polynomials and the fundamental works of S. Karlin on total positivity, of G. Lorentz and C. Micchelli on the Bernstein saturation problem, of I. Schoenberg on variation diminishing approxi-stion methods, and, above all, the pioneer work of R. Kelisky and T. Rivlin on the iterates of the Bernstein polynomials have had a decisive influence on this thesis.

Chapter 1 deals on the whole with properties and applications of the Bernstein approximation to continuous, real-valued and vector-valued functions.

The trivial observation that the Bernstein polynomial $\mathrm{B}_{\mathrm{n}} \mathrm{f}$ of a given f in C can be written as the product of n averasings or n forward linear shiftings (see Lemma 1.1) leads immediately to:
(i) The well-known conventional polynomial form of $B_{n} f$ and its interpolation properties (Section 1).
(ii) The recursive calculation of $B_{n} f$ and its derivatives $B_{n}(j) f_{f}$ (Sections 1 and 4).
 $j=0,1, \ldots$ as $n \longrightarrow \infty$ (Section 2).
(iv) An imnediate extension of the foregoirs results to the lidimensional Eernstein polynomials (Section 3).
(v) An elenentary and straightforward construction of the Bernstein approximation theory: Smoothing effects, variation diminishing properties, etc. (Section 4).
(vi) An easy extension to cover the Bézier nethods, namely, the recursive construction of Eézier curves and their derivatives, variation diminishing properties, Bézier iterates, etc. (Section 5).

Apparently, Lema 1.1 does not appear published any*here in the vast literature on Eernstein polynomials. Its main interest lies in the ease with which the semiclassical Bernstein approximation theory is generalized to the multivariate and parametric cases.

There is no new material in Section 2 , which connects $\mathrm{E}_{\mathrm{n}} \mathrm{f}$ with the translation semisroup in $C[0, \infty]$.
 polynomials and their convex hull and interpolation properties are

Since derivatives of Bernstein polynomials are also Sernstein polynomials (of another function!), then their recursive calculation and geometric representation, which Section 4 deals with, may also be seen as essentizily contained in Gordor and Rieseñeld (1974 a)).

The recursive construction of the matrix $A_{2 i+1}(n)$ reperesenting B_{n}
acting on \mathcal{P} and the observation that, thanks to the smoothing effects of B_{n}, any interpolating sequence at equidistant nodes can always be made uniformly convergent appear to be new.

The recursive construction of Bézier curves and surfaces, their convex hull and interpolation properties, the recursive calculation and geometric representation of derivatives of Bézier polynomials, which are dealt with in Section 5, are all, once again, essentially contained in Gordon and Riesenfeld (1974 a) b)).

Finally, following G.-Bonne and Sablonniere (1976), we exiend to the Bézier operator the variation diminishing properties of the Bernstein polynomial, which are due to Pólya and Schoenberg (1958).

In Chapter 2 :ie offer a new approach to the numerical problem of condensing (telescopinz) a given multivariate polynomial $P=P\left(x_{1}, x_{2}, \ldots, x_{M}\right)$ defined on the unit hypercube of $R_{I I}$, leading to a considerable simplification of the work recuired to perform it. (cf. E. Ortiz (1977) and E. Ortiz and M. da Silva (1978)). In particular, we try to avoid polynomial basis transformations, and practical aoriori tests for the existence of a condensed representation of P appear naturally as immediate extensions of the univariate case.

Section 1 offers a new algorithm for step by step computation of a condensed representation of a given $P \in \underset{n}{\mathcal{O}}$.

Section 2 extends this algori.thm to $P \in \mathcal{I}_{I_{1}}, I_{2}, \ldots, I_{N}$ (the Iinear SDare of multivariete polynomiale aith real coefficients and iosree I_{k} in $x_{k}, k=I(I) N$); uses the numbers s_{k} of condensation steps to measure
the smoothress of P in the x_{k}-directions, and to define the principal variables $0=P$; and deals with the problem of approximating a given multivariate polynomial by another polynomial of fewer variables.

Section 3 applies the above considerations to Bernstein-Bézier approximants and sives several numerical examples on the shape approximation problem in one and two dimensions.

The gneater part of the material of Chapter 3 is seeningly new. Ii has been largely inspired by Kelisky and Rivlin (1967), who were the first to study the convergence of the iterates of Bernstein polynomials $B_{n}^{r}(f ; x)$ as $r \rightarrow \infty$, both in the case that r is independent of n and, for polynomial f, when r is a function of n. They have treated only these convergence problems, ieavins, therefore, scope for more ionk, namely on properties and applications. We deduce here the properties of the Bernstein iterates of all orders using only elementam matrix methods. He show that the operators $B_{n}^{r}, r>0$, are contractive, variation dimjinishing, norm not increasing, and convergent to a limiting operator, which, in each of the following cases:
i) n fixed, $r \longrightarrow \infty$
ii) $n \longrightarrow \infty, r_{n} \longrightarrow t \in R$, fived, as $m \rightarrow \infty$ indeperdently of n
iii) $r=r_{n} \longrightarrow \infty$,
is explicitly given and shown to be totally positive.

Section 1 puts the Bernstein generalized iteration problem in the
 extensions of those of natural order, and these are simply reduced to matrix multiplications.

Section 2 offers the apparently new results that the matrix representation of B_{n} acting on \mathscr{P}_{N} and the triangle of Stirling numbers of the second kind are both totally positive.

Section 3 deals with the positivity of $B_{n}^{r}, r>0$, and shows that its matrix representation is column-stochastic for all sufficiently large r (Theorem 3.1).

Section 4 gives a neater and richer theory of the limiting behaviour of $B_{n}^{r}, r>0$, than that in Kelisky and Rivlin (1967). In particular, Theorem 4.1 throws light into the structural limiting properties of the matrix representation of $\mathrm{B}_{\mathrm{n}}^{\mathrm{r}}, r>0$, and Theorem 4.2 enlarges and gives more insight into the meaning of certain seemingly nontrivial identities first observed by those authors.

Finally, we discuss in Section 5 the convexity preservirs properties of the arbitrary Eernstein iterates. We show that B_{2}^{r} is convexity preserving for each real r and that B_{n}^{r} is convexity preserving or nearly so for all $r>0$ and $n>2$.

Sections 1 and 2 of Chapter 4 are essentially of conceptual value. We offer an alternative adproach to Karlin and Ziegler (1970)'s identification and representation of the limiting semigroup $\left\{\mathcal{B}_{t} ; t \geqslant 0\right\}$ of the Bernstein iterates of nonnegative order. Our approach does not rely on diffusion theory arguments as Karlin and Ziegler's but re-interprets the Iimiting theory of Chapter 3 in the context of the operator sem: group theory. Some results reproduce ran (in and Ziesler's, although in a noro straightforward fashion, and some extensions are shown possible with our approach.

The existence of the limit
its total positivity and semigroup properties, and the infinitesimal generator

$$
D P(x)=\lim _{n \rightarrow \infty} n\left(3_{n}-I\right) P(x)=\frac{1}{2} x(1-x) d^{2} P / d x^{2}
$$

all follow from the limiting theory of Chapter 3.

To extend \mathcal{H}_{t} to C we define $H(t, x)=\mathcal{O}_{t}(f ; x)$, are natually led to the classical difiusion problem

$$
\begin{aligned}
& \partial W / \partial t=D W, \quad W=W(t, x), \\
& \because(0, x)=f(x),
\end{aligned}
$$

and we find for $\mathcal{D}_{t}(f ; x)$ the integral representation

$$
\oiint_{t}(\tilde{i} ; x)=\int_{0}^{1} G(t ; x, y) f(y) d y \quad(f(0)=f(1)=0)
$$

with the kernel G expressed in terms of the shifted Jacobi orthogonal polynomials oí garameters (1,1).

A fundamental property of G is its total positivity, which implies that \mathcal{B}_{t} inherits from B_{n} its shape preserving properties. This appears to be new, thoush essentially contained in Karlin and McGregor (1960)

Section 3 reviens some known applications of $\mathcal{\beta}_{t}$, namely, the LorentzMicchelli's treatment of the Bernstein saturation problem, the rarlin-Ziegler-Micchelli's characterizations of convexity, and the Karlin-Ziegler's identification of the linear operators commuting with B_{n}, and offers some new applications of $\boldsymbol{\mathcal { B }}_{t}$, these are:
i) The saturation theory for the de Leeuw-like operators

$$
K_{n} \mathrm{f}=\sum_{\mathrm{k}=0}^{n} I_{\mathrm{nk}}^{*}(\mathrm{f}){q_{k}}_{\mathrm{k}},
$$

where $I_{n k}^{*}(f)$ are some linear functionals on f and $\left\{q_{k}\right\}_{k=0}^{n}$ is the Bernstein basis for \mathcal{P}_{n}. We show that $K_{n}^{\left[n^{t}\right]} f \longrightarrow \mathcal{B}_{t} f$ strongly for all f in C, and that K_{n} and B_{n} have exactly the same saturation properties.
ii) The approximation properties of a new Micchelli's type operator which takes into account the spectral characteristics of B_{n} and leaves \mathcal{P}_{n} intact.
iii) The generalization of cur construction to the multivariate setting to receive a number of results as natural extensions of the univariate case, e.g., the identification of the linear operators commuting with the bivariate Bernstein polynomizals.

Lastly, an example of the applicability of our technique is afforded by the Szasz operators. We show in Chapter 5 their total positivity by working on the lines set out in Chapters 1, 3, and 4. Their saturation proverties are $21 s 0$ ziven as an apolication of the iteration method, reproducing, however, results already given by Suzuki (1967) by a different methoc.

1. BERNSTETY APPROXTMATION TO REAL-VALUED FUNCTIONS

The $n^{\text {th }}$ desree Bernstein polynonial approximation to a real $f(x)$ defined on $\left.{ }^{-} 0,1\right]$ is given by

$$
\begin{align*}
& B_{n} f(x) \equiv B_{n}(f ; x)=\sum_{k=0}^{n} f_{k}\binom{n}{k} x^{k}(1-x)^{n-k}, \quad n \geqslant 1, \tag{1.1}\\
& B_{0} f(x)=f_{0}
\end{align*}
$$

where $f_{k}=f(k / n), k=0(1) n$. The polynomials

$$
\begin{equation*}
q_{k}=q_{k}(n, x)=\binom{n}{k} x^{k}(1-x)^{n-k}, \quad k=0(1) n, \tag{1.2}
\end{equation*}
$$

form the Bernstein basis for \mathscr{S}_{n} and are well-known to enjoy the following properties:
a) $\quad \mathrm{q}_{\mathrm{k}} \geqslant 0, \quad \mathrm{k}=\mathrm{O}(\mathrm{I}) \mathrm{n}$,
b) $\underset{i}{n} q_{k}=1$,
c) $\sum_{k=0}^{n} \frac{k}{n} q_{k} \equiv x$.

1.1. The convex hull property.

Owing to the properties (1.3), the graph of $B_{n} f$ develops within the convex hull of the points $\left\{\left(k / n, f_{k}\right)\right\}_{k=0}^{n}$. To be more precise, regarding the basic polynomials q_{k} as masses attached to the points $\left(k / n, f{ }_{k}\right)$, the center of mass of those mass points describes the graph of $H_{n} f$ as x traverses $[0,1]$.

This elegant interpestation of the Bernstein construction is due to Gordon and Riesenfeld (1974 a)).

1.2. Recursive generetion.

Making use of the fundamental operator in Finite Difference Calculus, namely, the forward shifting operator \mathbb{E} defined from

$$
E f_{k}=f_{k+1}, \quad k=0,1, \ldots,
$$

and the forward difference operator Δ given by

$$
\Delta f_{k}=f_{k+1}-f_{k}=(E-I) f_{k}, \quad k=0, I, \ldots,
$$

we may replace in (1.1) f_{k} with $E^{k^{k}} f_{0}$ to obtain

LEMMA 1.1. The Bernstein approximation to any given real-valued function f taking on the values f_{k} at the nodes k / n, $\mathrm{k}=\mathrm{O}(\mathrm{I}) \mathrm{n}$, is given by
a) $B_{n}(f ; x)=((I-x) I+x E)^{n_{f}}$
b) $\quad B_{n}(f ; x)=(I+x \Delta)^{n_{f}}$.

From a), B_{n} is the product of n averagings:

$$
\begin{equation*}
B_{x} f_{k}=(I-x) f_{k}+x f_{k+1}, \quad k=0(I) n-I ; \tag{1.4}
\end{equation*}
$$

while b) shows that B_{n} is the product of n forward linear shiftings:

$$
\begin{equation*}
\mathbb{B}_{x} f_{k}=f_{k}+x\left(f_{k+1}-f_{k}\right), \quad k=0(I) n-I . \tag{1.5}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
B_{n}(f ; x)=\mathbb{B}_{x}^{n} f_{0} \tag{1.6}
\end{equation*}
$$

As immediate consequences of Lemma 1.1 we have
i) a numerical procedure for the recursive generation of $B_{n}(f ; x)$. Indeed, given the $t=b l e\left\{k / n, f_{k}\right\}_{k=0}^{n}$, we construct the numerical triangle
f_{0}

f_{I}

$$
f_{n-1} \quad f_{n-2}^{(2)}
$$

$$
f_{n-1}^{(I)}
$$

f_{n}
with column entries $f_{i}^{(j)}$ given by

$$
\begin{align*}
& f_{i}^{(j)}=\mathbb{B}_{x} f_{i}^{(j-I)}, \quad j=I(I) n ; i=0(I) n-j, \\
& f_{i}^{(0)}=f_{i} \quad, \quad i=0(1) n, \tag{1.8}
\end{align*}
$$

and whose vertex $f_{0}^{(n)}$ is $B_{n}(f ; x)$ by (1.8) and (1.6);
ii) the conventional polynomial form

$$
\begin{equation*}
B_{n}(f ; x)=\sum_{k=0}^{n}\binom{n}{k} \Delta^{k} f_{0} x^{k} \tag{1.9}
\end{equation*}
$$

which in turn implies that if $f \in \mathcal{D}_{m}$ then $B_{n} f \in \mathcal{S}_{\min \{m, n\}}^{\mathcal{D}}$;
iii) since $\mathbb{B}_{0}=I$ and $\mathbb{B}_{1}=E$, then

$$
\begin{align*}
& B_{n}(f ; 0)=f_{0}=f(0) \\
& B_{n}(f ; 1)=E^{n_{f}} f_{0}=f_{n}=f(1), \tag{1.10}
\end{align*}
$$

the well-known result that $\mathrm{B}_{\mathrm{n}} \mathrm{f}$ interpolates to f at the endpoints of $[0,1]$.

2. THE BERNSTEIN UNIFORM APPROX IMATION THEOREM AND THE TRANSLATION SEMIGROUP

Let X be a Banach space endowed with norm $\|\cdot\|$ and let $\mathscr{T}=\left\{T_{t} ; t \geqslant 0\right\}$ be a one-parameter family of linear bounded transformations on X to itself with the property

$$
T_{s+t}=T_{s} T_{t}, \quad s, t \geqslant 0
$$

We then speak of $\mathscr{J}_{\text {as }}$ an operator semigroup.

THEOREM 2.1 (Kendall). If \mathscr{T} is continuous in the strong operator topology for $t \geqslant 0$, then

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left\|\left((I-t) I+t T_{I / n}\right)^{n} f-T_{t} f\right\|=0 \tag{2.1}
\end{equation*}
$$

for each f in X and each t in $[0,1]$, uniformly in t.

PROOF. See D.G. Kendall (1954).

Iet $X=0[0, \infty]$, the Banach space of real-valued, continuous, bounded functions on $[0, \infty]$ normed by

$$
\|f\|=\sup _{0 \leqslant x \leqslant \infty}|f(x)|,
$$

and let \mathscr{F} denote the semigroup of translations in $\mathrm{C}[0, \infty]$:

$$
T_{t} \hat{1}(x)=f(x+t) .
$$

In this case, (2.1) shows that, for $0 \leqslant t \leqslant 1$,

$$
\begin{equation*}
f(x+t)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{k} t^{k}(1-t)^{n-k} f\left(x+\frac{k}{n}\right) \tag{2.2}
\end{equation*}
$$

where the limit exists uniformly with respect to x in $[0, \infty]$ and t in $[0,1]$. In particular, for $x=0,(2.2)$ gives

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} B_{n}(f ; t)=f(t), \quad 0 \leqslant t \leqslant 1, \tag{2.3}
\end{equation*}
$$

the well-known Bernstein uniform approximation theorem.

REMARK 1.1. For each fixed but arbitrary integer $j \geqslant 0$, it follows from Lemma 1.1 b) that

$$
B_{n}^{(j)}(f ; x)=\lambda_{j}\left(n \Delta_{I / n}\right)^{j}\left(\tau \div x \Delta_{l / n}\right)^{n-j} f(0)
$$

with

$$
\lambda_{0}=1
$$

and

$$
\lambda_{j}=\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{j-1}{n}\right)=1-O(1 / n) .
$$

We recall that $n \Delta_{1 / n}=d / d x+O(1 / n)$ and observe that $\Delta_{1 / n} \sim \Delta_{1 / N}$, $\mathrm{N}=\mathrm{n}-\mathrm{j}$, in the sense that their effects on f , assumed differentiable in (0,1), have the same limit as $n \longrightarrow \infty$. Indeed,

$$
\begin{aligned}
\left(\Delta_{1 / N}-\Delta_{I / n}\right) f(x) & =f(x+I / N)-f(x+1 / n) \\
& =f(x+1 / n+j /(n N))-f(x+1 / n) \\
& =\frac{j}{n i f} f(y), \quad x+I / n<y<x+1 / N, \\
& =O\left(1 / n^{2}\right) .
\end{aligned}
$$

Therefore,

$$
\left(I+x \Delta_{I / n}\right)^{n-j} f(0) \sim\left(I+x \Delta_{I / N}\right)^{N} I(0)=B_{N}(f ; x) \longrightarrow f(x)
$$

and we have the well-known result that

$$
B_{n}^{(j)}(f ; x) \longrightarrow f^{(j)}(x) \text { as } n \longrightarrow \infty
$$

(cf. Lorentz (1953, p.12)) at each point $x \in[0,1]$ where $f^{(j)}(x)$ exists, the convergence being uniform provided $f(j)$ is continuous.

3. BERNSTEIN APPROXIMATION TO CONTINUOUS, MULTTVARIATE FUNCTIONS

The results in the preceding sections afford a straightformard generalization to continuous functions of more than one variable. Let $f \in C\left[S_{2}\right], S_{2}=\left\{(x, y) \in \mathbb{R}_{2}: 0 \leqslant x, y \leqslant I\right\}$, be given. Then $B_{n, m^{f}} f(x, y) \equiv$ $B_{n, m}(f ; x, y)$, the Bernstein polynomial of $n^{\text {th }}$ degree in x and $m^{\text {th }}$ degree in y associated with $f(x, y)$, may be obtained by applying twice the wellknown univariate Bernstein polynomial approximation formula. Regarding, for the moment, x as a parameter and y as the operational variable, we have

$$
f(x, y) \approx \mathbb{E}_{m} f(x, y)=\mathbb{E}_{y}^{m} f(x, 0)
$$

with

$$
\begin{aligned}
\mathbb{B}_{y} & =I+y \Delta_{k}, \quad k=I / m \\
& =(1-y) I+y \Xi_{k} .
\end{aligned}
$$

The same approximation formula, applied this time to the variable x, gives

$$
f(x, 0) \approx B_{n} f(x, 0)=\mathbb{B}_{x}^{n} f(0,0)
$$

with

$$
\begin{aligned}
B_{x} & =I+x \Delta_{h}, \quad h=I / n, \\
& =(1-x) I+x E_{h} .
\end{aligned}
$$

Thus we have

$$
f(x, y) \approx B_{n, m^{\prime}} f(x, y)=\mathbb{B}_{y}^{\mathbb{I}} \mathbb{B}_{x}^{n} f(0,0)
$$

Had we started with y as a parameter and x as the operational variable,
we would have ended up with

$$
f(x, y) \approx B_{n, n^{\prime}} f(x, y)=\mathbb{g}_{x}^{n} \mathbb{B}_{y}^{m} f(0,0)
$$

Therefore

$$
\begin{equation*}
B_{n, m^{\prime}} f(x, y)=\mathbb{B}_{x}^{n} \mathbb{B}_{y}^{m} f(0,0)=\mathbb{B}_{y}^{m} \mathbb{E}_{x}^{n} f(0,0) \tag{3.1}
\end{equation*}
$$

and we conclude that the bivariate Bernstein operator $B_{n, m}$ is simply the product of the comnutative univariate operators B_{n} and B_{m} (cf. Gordon and Riesenfeld (1974 a))).

In order to extend this to higher dimensions we associate with each f in $C\left[S_{N}\right], S_{N}$ the unit hypercube of $\mathbb{R}_{N}, N \geqslant 1$, the N-dimensional Bernstein polynonial of degree n_{i} in $x_{i}, i=I(I) N$,

$$
\begin{align*}
\underline{B}_{\underline{n}}(\underline{x}) & =B_{\underline{n}}\left(f ; B_{N} ; \underline{x}\right)=B_{n_{1}}, n_{2}, \ldots, n_{N}\left(i ; S_{N} ; x_{1}, x_{2}, \ldots, n_{N H}\right) \\
& =\prod_{i=1}^{N} \mathbb{B}_{x_{i}}^{n_{i}} f(\underline{0}), \tag{3.2}
\end{align*}
$$

where

$$
\begin{equation*}
B_{x_{i}}=I+x_{i} \Delta \tag{3.3}
\end{equation*}
$$

with

$$
\underset{i}{\Delta} f(\underline{x})=f\left(x_{1}, \ldots, x_{i-1}, x_{i}+\frac{1}{n}, x_{i+1}, \ldots, x_{N}\right)-f\left(x_{1}, \ldots, x_{i}, \ldots, x_{N}\right)
$$

or, equivalently,

$$
\begin{equation*}
\mathbb{B}_{x_{i}}=\left(1-x_{i}\right) I+x_{i} \underset{i}{E} \tag{3.4}
\end{equation*}
$$

with

$$
\begin{aligned}
& \text { E } f(\underline{x})=f\left(x_{1}, \ldots, x_{i-1}, x_{i}+\frac{1}{n}, x_{i+1}, \ldots, x_{N}\right) . \\
& \text { It follows from (3.2) and (3.3) that }
\end{aligned}
$$

$$
\begin{aligned}
& B_{\underline{n}} f(\underline{x})=\prod_{i=1}^{N}\left\{\sum_{j_{i}=0}^{n_{i}}\left({ }_{j_{i}}^{n_{i}}\right) x_{i}^{j_{i}} \Delta_{i}^{j_{i}} f(\underline{0})\right\}
\end{aligned}
$$

generalizing (1.9) and implying that if

$$
f \in \underset{\underline{r}}{\mathscr{p}} \equiv \operatorname{span}\left\{x_{1} 1, x_{2}^{i_{2}}, \ldots, x_{N}^{i_{N}}\right\}_{i_{1}}^{i_{1}}=0, i_{2}^{r_{1}}, \quad r_{2}, \ldots, r_{N}, \ldots, i_{N}=0
$$

then $\underline{n}_{\underline{n}} f \in \mathcal{X}_{\underline{\underline{H}}}, \underline{m}$ standing for $\min \left\{n_{1}, r_{1}\right\}, \min \left\{n_{2}, r_{2}\right\}, \ldots, \min \left\{n_{N}, r_{N}\right\}$.
Similarly, using (3.2) and (3.4), we obtain

$$
\begin{align*}
& =\sum_{j_{1}=0}^{n_{1}} \cdots \sum_{j_{N}=0}^{n_{N}} f\left(\frac{j_{1}}{n_{1}}, \ldots, \frac{j_{N}}{n_{N}}\right)\left\{\prod_{i=1}^{N}\left[{ }_{j_{i}}^{n_{i}}\right)\left(1-x_{i}\right)^{n_{i}-j_{i}}\right\} x_{1}^{j_{1}} \ldots x_{N}^{j_{M}} \tag{3.6}\\
& =\sum_{j_{1}=0}^{n_{1}} \ldots \sum_{j_{N}=0}^{n_{N}} f\left(\frac{j_{1}}{n_{1}}, \ldots \ldots, \frac{j_{N}}{n_{N}}\right) q_{j_{1}}\left(n_{I}, x_{1}\right) \ldots q_{j_{N}}\left(n_{N}, x_{N}\right) \tag{3.7}
\end{align*}
$$

extending (1.1).

REMARK 3.1. Gordon's mechanical interpretation of the univariate Bernstein polynomial (see Subsection I.I) affords an easy extension to the multivariate setting. Indeed, setting

$$
\mathrm{M}_{\underline{i}}=\prod_{\mathrm{k}=1}^{\mathrm{N}} q_{i_{k}}\left(n_{k}, x_{k}\right)
$$

and

$$
f_{\underline{i}}=f\left(\frac{i_{l}}{n_{l}}, \ldots, \frac{i_{N}}{n_{N}}\right)
$$

then, in view of the easily verified properties

$$
\begin{aligned}
M_{\underline{i}} \geqslant 0, \sum M_{\underline{i}} & =1, \\
\sum \frac{i_{k}}{n_{k}} M_{\underline{i}} & =x_{k}, \quad k=1(1) N, \\
\sum f_{\underline{\underline{i}}} M_{\underline{i}} & =B_{\underline{n}} f(\underline{x}),
\end{aligned}
$$

the summations being assumed over $i_{1}=0(1) n_{1}, i_{2}=0(1) n_{2}, \ldots, i_{N}=O(1) n_{N}$, the center of mass of the points ($i_{1} / n_{1}, \ldots, i_{i N} / n_{N}, f_{\underline{i}}$) with masses

REMARK 3.2. Being the product of $n_{1}+n_{2}+\ldots+n_{N}$ averagings, $B_{\underline{n}} f(\underline{x})$ can be generated recursively by means of N triangular schemes similar to (1.7).

By way of example, we take $N=2$ and construct $B_{n, m} f(x, y)$. Two numerical triangles have to be formed. The first,

$$
\begin{array}{lll}
f(0, y) & & \\
& f^{(1)}(0, y) \\
& \\
f\left(\frac{1}{n}, y\right) & \vdots & \\
\vdots & \vdots & \\
f\left(\frac{n-1}{n}, y\right) & \vdots \\
& f^{(1)}\left(\frac{n-1}{n}, y\right) \\
f(1, y) & & \\
&
\end{array}
$$

with column entries $f^{(j)}\left(\frac{i}{n}, y\right)$ given by

$$
\begin{aligned}
& f^{(j)}\left(\frac{i}{n}, y\right)=\mathbb{B}_{x} f^{(j-1)}\left(\frac{i}{n}, y\right), \quad j=1(1) n ; i=0(1) n-j, \\
& f^{(0)}\left(\frac{i}{n}, y\right)=f\left(\frac{i}{n}, y\right), \quad i=0(1) n,
\end{aligned}
$$

having the vertex

$$
P(x, y)=f^{(n)}(0, y)=\mathbb{B}_{x}^{n} f(0, y)=B_{n^{\prime}} f(x, y)
$$

and the second,

$$
\begin{array}{ll}
P(x, 0) & \\
& P^{(1)}(x, 0) \\
P\left(x, \frac{1}{m}\right) & \cdot \\
\vdots & \cdot \\
P\left(x, \frac{m-1}{m}\right) & \cdot \\
& \cdot \\
& P^{(1)}\left(x, \frac{m-1}{m}\right) \\
P(x, 1)
\end{array}
$$

with

$$
\begin{aligned}
& P^{(j)}\left(x, \frac{i}{m}\right)=B_{y} P^{(j-1)}\left(x, \frac{i}{m}\right), \quad j=1(1) m ; \quad i=0(1) m-j, \\
& P^{(0)}\left(x, \frac{i}{m}\right)=P\left(x, \frac{i}{m}\right), \quad i=0(1) m,
\end{aligned}
$$

and

$$
p^{(m)}(x, 0)=B_{n, m^{f}}(x, y)
$$

REMARK 3.3. The N-dimensional Bernstein polynomial $\underline{B}_{\underline{n}} f(\underline{x})$ interpolates to f at the vertices of S_{M}.

Taking again $N=2$, we now have, from (3.1) and in correspondence
with the interpolation results (1.10):

$$
\begin{aligned}
& B_{n, m} f(0,0)=f(0,0) \\
& B_{n, m} f(1,0)=E_{h}^{n} f(0,0)=f(1,0) \\
& B_{n, m} f(0,1)=E_{k}^{m} f(0,0)=f(0,1) \\
& B_{n, m} f(1, I)=E_{h}^{n} E_{k}^{m} f(0,0)=f(1, I),
\end{aligned}
$$

i.e., $B_{n, n^{f}}$ interpolates to f at the four corners of S_{2}. Moreover,

$$
\begin{aligned}
& B_{n, m} f(x, 0)=\mathbb{B}_{x}^{n} f(0,0)=B_{n} f(x, 0) \\
& B_{n, m} f(x, 1)=\mathbb{B}_{x}^{n} E_{k}^{m} f(0,0)=\mathbb{B}_{x}^{n} f(0,1)=B_{n} f(x, 1) \\
& B_{n, m^{\prime}} f(0, y)=B_{y}^{m} f(0,0)=B_{m} f(0, y) \\
& B_{n, m^{\prime}} f(1, y)=\mathbb{B}_{y}^{m} E_{h}^{n} f(0,0)=\mathbb{B}_{y}^{m} f(1,0)=B_{m} f(I, y),
\end{aligned}
$$

i.e., the bivariate Bernstein polynomial approximation to $f(x, y)$ reduces to the appropriate univariate one on each side of S_{2} (cf. Gordon and Biesenfeld (1974 a))).

REMARK 3.4. Since $B_{n}\left(f ; S_{y} ; \underline{X}\right)$ can be factored into N univariate Bernstein polynomials, each of which converging uniformly in the
unit interrel, then

$$
\begin{array}{r}
B_{\underline{n}}\left(f ; S_{N} ; \underline{x}\right) \longrightarrow f(\underline{x}) \text { as } \underline{n} \longrightarrow \infty, \\
\text { i.e., as } n_{i} \longrightarrow \infty \text { for } i=I(1) N, \text { uniformly in } \underline{x} \text { in } S_{N} .
\end{array}
$$

REMARK 3.5. The operators $B_{n}\left(f ; S_{N} ; \underline{x}\right)$ are a particular case of the following linear positive operators $L_{\underline{n}}\left(f ; K_{N} ; \underline{x}\right)$ introduced
by Schurer (1906) for the approximation of multivariate functions, continuous on the region K_{N} of the first hyperquadrant of $\mathbb{R}_{\mathbb{N}}$:

$$
\begin{gather*}
L_{\underline{n}}\left(f ; K_{N} ; \underline{x}\right)=\sum_{j_{1}=0}^{\infty} \ldots \sum_{j_{N}=0}^{\infty} f\left(\frac{j_{1}}{n_{1}}, \ldots, \frac{j_{N}}{n_{N}}\right)\left\{\frac{(-1)^{j_{1}+\ldots+j_{N}}}{j_{1}!\ldots j_{N}!} \phi_{\underline{n}}(\underline{j})(x)\right\} x_{1}^{j_{1}} \ldots x_{N}^{j_{N}}, \tag{3.8}\\
\end{gather*}
$$

where

$$
\phi_{\underline{n}}^{(\dot{j})}(\underline{x})=\frac{\partial^{j_{1}+\ldots+j_{N}}}{\partial x_{1}} \dot{j}_{1} \ldots \partial x_{N}^{j_{M}} \phi_{\underline{n}}(\underline{x})
$$

and $\phi_{\underline{n}}(\underline{x})$, called the generating function, is such that
a) $\phi_{\underline{n}}(\underline{x}) \in C^{\infty}\left(\mathrm{K}_{\mathrm{N}}\right)$,
b) $\varnothing_{\underline{n}}(\underline{0})=1$,
c) $(-1)^{j_{1}+\ldots+j_{N}} \phi_{\underline{n}}^{(i)}(\underline{x}) \geqslant 0, j_{1}, \ldots, j_{N}=0,1, \ldots$; $x \in K_{N}$,
d) $-\phi_{\underline{n}}^{(\underline{i})}(\underline{x})=n_{i} \phi_{\underline{n}}^{\left(i-e_{i}\right)}(\underline{x})\left\{1+a_{n_{i}}(\underline{x})\right\}$,
where $i-e_{i}$ stands for $j_{1}, \ldots, j_{i-1}, j_{i}-1, j_{i+1}, \ldots, j_{N}$ and, for $i=I(1) N, a_{n_{i}}(\underline{x}) \longrightarrow 0$ uniformly in x in $K_{i f}$ if $n_{i} \longrightarrow \infty$.

If we take

$$
\emptyset_{\underline{n}}(\underline{x})=\prod_{i=1}^{N}\left(1-x_{i}\right)^{n_{i}}, \quad \underline{x} \in K_{N},
$$

then

$$
\phi_{\underline{n}}^{(\dot{j})}(\underline{x})=(-1)^{j_{1}+\ldots+j_{i i}} j_{1}!\ldots j_{N}!\prod_{i=1}^{I}\left(j_{i}\right)\left(1-x_{i}\right)^{n_{i}-j_{i}},
$$

i.e.,

$$
\prod_{i=1}^{N}\left(\begin{array}{l}
n_{i}
\end{array}\right)\left(1-x_{i}\right)^{n_{i}-j_{i}}=\frac{(-1)^{j_{1}+\ldots+j_{N}}}{j_{1}!\ldots j_{N}!} \phi_{\underline{n}}^{(i)}(\underline{x}),
$$

and thus (3.6) is included in (3.8), i.e., the N-dimensional Bernstein polynomial operators $B_{\underline{n}}$ are a particular instance of Schurer's $L_{\underline{n}}$.

In the sequel we take, for simplicity, $n_{i}=n, i=1(1) N$, and write

$$
\begin{align*}
B_{n}^{*}(f ; \underline{x}) & =B_{\underline{n}}\left(f ; S_{N} ; \underline{x}\right) \\
& =\sum_{j_{1}=0}^{n} \cdots \sum_{j_{N}=0}^{n}\left\{\binom{n}{j_{1}} \ldots\binom{n}{j_{N}} \Delta_{1}^{j_{1}} \cdots \Delta_{N}^{j_{N}} f(\underline{0})\right\} x_{1}^{j_{1}} \cdots x_{N}^{j_{N}} \tag{3.9}
\end{align*}
$$

by (3.5),

$$
\begin{equation*}
=\sum_{j_{1}=0}^{n} \ldots \sum_{j_{N}=0}^{n} f\left(\frac{j_{1}}{n}, \ldots, \frac{j_{N}}{n}\right) q_{j_{1}}\left(n, x_{1}\right) \ldots q_{j_{N}}\left(n, x_{N}\right) \tag{3.10}
\end{equation*}
$$

by (3.7).

N-dinensional Bernstein polynomials may also be associated with multivariate functions $f(\underline{x})$ defined on other domains of \mathbb{R}_{N}, e.g., $T_{N}=\left\{\underline{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in \mathbb{R}_{N}: x_{i} \geq 0, x_{1}+x_{2}+\ldots+x_{N} \leq 1,1 \leq i \leq N\right\}:$

$$
\begin{gather*}
\underline{\underline{n}}_{\underline{n}}\left(f ; T_{N} ; \underline{x}\right)=\sum_{i_{1}+\ldots+i_{N} \leq n} f\left(\frac{i_{1}}{n_{1}}, \ldots, \frac{i_{N}}{n_{N}}\right) \frac{n!}{i_{1}!\ldots i_{N}!\left(n-i_{1}-\ldots-i_{N}\right)!} \tag{3.11}\\
\\
x_{1} i_{1} \ldots x_{N}^{i_{n i}\left(1-x_{1}-\ldots-x_{N}\right)^{n-i_{1}-\ldots-i_{n}}} .
\end{gather*}
$$

See Lorentz (1953, ․ 51) and Schurer (1962,1963). See also Stancu (1960 a), b)) for probabilistic interpretations of these generalized Bernstein polynomials. See also Stancu (1963 a)) for a particularly nice approach to definire biveriate Bernstein polynomials on domains given by the equations

$$
x=0, x=1, y=u_{1}(x), \text { and } y=u_{2}(x)
$$

where u_{1} ani u_{2} are polynomials such that $0 \leq u_{1}(x) \leq u_{2}(x)$ for $0 \leq x \leq 1$, leading to the problem of rational Bernstein type approximation.

4. SMOOTHTMG PROPERTHS OF THE BERNSTEIN OPERATOR

4.1. Derivatives of Bernstein polvnomials.

For each fixed but arbitrany integer $j \geq 0$ and any given $f(x)$ defined on $[0,1]$, it follows from Lemma 1.1 that

$$
\begin{align*}
B_{n}^{(j)}(f ; x) & =\frac{n!}{(n-j)!} \Delta^{j}((1-x) I+x)^{n-j_{f}} \\
& =\frac{n!}{(n-j)!} \sum_{k=0}^{n-j}\binom{n-j}{k} \Delta^{j} f_{k} x^{k}(1-x)^{n-j-k} \tag{4.1}
\end{align*}
$$

from which

$$
\frac{(n-j)!}{n!} B_{n}^{(j)}(f ; x)= \begin{cases}B_{n-j}\left(F^{j} ; x\right), & j=0(I)_{n} \tag{4.2}\\ 0 & j>n\end{cases}
$$

F^{j} being such that

$$
\begin{align*}
& F^{j}\left(\frac{k}{n-j}\right)=\Delta^{j_{f_{k}}}, \quad \mathrm{k}=0(I) n-j>0 \\
& F^{(n)}(0)=\Delta^{n_{f_{0}}} . \tag{4.3}
\end{align*}
$$

REARA 4.1. Noting (4.2), the $j^{\text {th }}$ derivative of the $n^{\text {th }}$ degree Bernstein polynomial of f is, apart from the coefficient
$(n-j)!/ n!$, the $(n-j)^{\text {th }}$ degree Bernstein polynonial of the function F^{j} derived from f according to (4.3). In view of this, not only $B_{n} f$ but all its derivatives as well afford a recursive generation and an easy geometric construction. For details see Remark 5.2 below.

The following assertions are easily seen to follow from (4.1):

$$
B_{n}^{(j)}(f ; 0)=\frac{n!}{(n-j)!} \Delta^{j_{f_{0}}}
$$

$$
\begin{equation*}
B_{n}^{(j)}(f ; 1)=\frac{n!}{(n-j)!} \Delta_{f_{n-j}}^{j_{f}} \quad j=0(1) n \tag{i}
\end{equation*}
$$

Incidentally, (1.9) follows also at once from (4.4) and Taylor's expansion of $B_{n}(f ; x)$ about 0 :

$$
B_{n}(f ; x)=\sum_{j=0}^{n} \frac{B_{n}^{(j)}(f ; 0)}{j!} x^{j}=\sum_{j=0}^{n}\binom{n}{j} \Delta^{j_{£}} x^{j}
$$

(ii) B_{n} preserves most of the global characteristics of f, namely, positivity, monotonicity, convexity, etc. (see Pólya and Schoenbery (1958) and Schoenberg (1959)).
(iii) If f is absolutely monotonic in $[0,1]$, i.e.,

$$
\begin{equation*}
f^{(j)}(x) \geq 0, \quad j=0,1, \ldots ; 0 \leq x \leq 1, \tag{4.5}
\end{equation*}
$$

then, fron (4.1), so is $B_{n} f$. In Fexticulan, Fow ary integer $j \geq 0$, the monomial x^{j} satisfies (4.5) and thus

$$
B_{n}\left(t^{j} ; x\right)=\sum_{i=0}^{j} a_{i j} x^{i}
$$

where

$$
\begin{equation*}
a_{i j}=a_{i j}(n)=\left.\binom{n}{i} \Delta^{i}{ }_{I / n} t^{j}\right|_{t=0} \geq 0 \tag{4.6}
\end{equation*}
$$

$$
a_{i j}= \begin{cases}0, & i>j \tag{4.7}\\ \lambda_{i} n^{i-j} \sigma_{i j}, & 0 \leqslant i \leqslant j \leqslant n,\end{cases}
$$

with

$$
\begin{align*}
& \lambda_{i}=\binom{n}{i} i!/ n^{i}, \quad i=0(1) n, \tag{4.8}\\
& \sigma_{00}=1,
\end{align*}
$$

and

$$
\sigma_{\dot{i} j}= \begin{cases}0 & , \tag{4.9}\\ \frac{1}{i}>j \\ \frac{1}{i l} \sum_{k=0}^{i}(-1)^{i-k}\left(\frac{i}{k}\right) k^{j}, & i \leqslant j=1,2, \ldots\end{cases}
$$

The numbers $\sigma_{i j}$ are called Stirling numbers of the second kind. They are nonnegative (see (4.6)-(4.8)) and satisfy the following recurrence relation

$$
\begin{equation*}
\sigma_{i, j+1}=\sigma_{i-1, j}+i \sigma_{i j} . \tag{4.10}
\end{equation*}
$$

The upper triangular matrices

$$
A_{N}=\left(a_{i j}\right), \quad I \leqslant i \leqslant j \leqslant N \leqslant n, \quad \text { and } \quad A_{N+1}=\left[\begin{array}{ll}
1 & 0 \tag{4.11}\\
0 & A_{N}
\end{array}\right]
$$

given by (4.7) will play an important role in the sequel. It follows from (4.7), (4.8) and (4.10) that the $a_{i j}$'s may also be generated recursively:

$$
\begin{equation*}
a_{i, j+1}=\frac{i}{n} a_{i j}+\left(1-\frac{\dot{-l}}{n}\right) a_{i-l, j} \tag{4.12}
\end{equation*}
$$

This, in turn, implies that the column sums of the matrices (4.11) are all equal to 1 , which is also a trivial consequence of the fact that $B_{n}\left(x^{j} ; 1\right) \equiv 1 . A_{N}$ and A_{N+1} are said to be column-stochastic in the sense that than colun farios are all monojative and sun to 1 .

4.2. Variation diminishing oroperties.

Let $\mathrm{v}(\mathrm{f})$ denote the number (finite or infinite) of sign changes of $f(x)$ as x traverses $[0,1]$, then, from (4.1),

$$
\begin{aligned}
& v\left(B_{n}^{f}\right) \leqslant v\left(\left\{f_{k}\right\}\right) \leqslant v(f) \\
& v\left(B_{n}^{\prime} f\right) \leqslant v\left(\left\{\Delta f_{k}\right\}\right) \leqslant v(f) \quad\left(\text { if } f \in G^{\prime}\right) \\
& v\left(B_{n^{\prime}}^{\prime \prime}\right) \leqslant v\left(\left\{\Delta^{2} f_{k}\right\}\right) \leqslant v\left(f^{\prime \prime}\right) \quad\left(\text { if } f \in C^{2}\right) \\
& \cdot \\
& \cdot
\end{aligned}
$$

describing, respectively, the so-called sign, monotonicity, and convexity variation diminishing properties of the Bernstein construction (see Pólya and Schoenberg (1958) and Schoenberg (1959)) - the grash of $\mathrm{B}_{\mathrm{n}} \mathrm{f}$ cannot have more zeros, maxima and minima, and points of inflexion than the corresponding numbers for the graph of f - and giving a good deal of information on the relative location and shape of the graphs of f and $B_{n} f$.

A more general description of the sign variation diminishing property (4.13), also contained in the references given above, is as follows.
let L denote any given straight line with equation $\mathrm{y}=\mathrm{ax}+\mathrm{b}$, and $\mathrm{V}_{\mathrm{I}}(\mathrm{f})$ the number (finite or infinite) of intersections of f with I , i.e.,

$$
\begin{equation*}
v_{L}(f)=v(f(x)-a x-b) \tag{4.16}
\end{equation*}
$$

Then

$$
\begin{equation*}
v_{L}\left(B_{n}{ }^{\mathrm{f}}\right) \leqslant \mathrm{v}_{\mathrm{L}}(\mathrm{f}), \tag{4.17}
\end{equation*}
$$

Still another important smoothing effect of B_{n} is that, contrary to the commonly used interpolation and minimum norm approximation methods, B_{n} is a contraction operator on the space of continuous functions of bounded variation, as observed by Gordon and Riesenfeld (1974 a)), in the sense that

$$
V\left(B_{n} f\right) \leqslant V(f)
$$

where $V(f)$ denotes the total variation of f over $[0,1]$, the equality holding iff f is monotonic there (see Schoenberg (1959) and Karlin (1968)).

We end this Subsection with the well-known observation that $\mathrm{B}_{\mathrm{n}} \mathrm{f}$ possesses all the nice shape preserving properties referred to above at the expense of having a notoriously slow rate of convergence (i.e. like $1 / n$) and the following

RTMARK 4.2. Being $B_{n}(f ; \underline{x}), f \in C\left[S_{N}\right]$, the product of N univariate Bernstein polynomials (see (3.2)), then the foregoing Schoenbers's results concerning the variation diminishing properties of B_{n} carry over into higher dimensions.

4.3. Polynomial intergolation at anuidistant nodes.

Lagrange's ℓ_{k} and Bernstein's g_{k} basic polynomials for interpolation of a given f in C assuming the values f_{k} at the nodes $k / n, k=O(I) n$, are related by

$$
B_{n}\left(l_{k} ; x\right)=q_{k}(n, x), \quad k=0(I)_{n},
$$

from which it follows, on multiplying both sides by f_{k} and summing over $\mathrm{k}=\mathrm{O}(1) \mathrm{n}$, that

$$
B_{n}\left(L_{n} f ; x\right)=B_{n}(f ; x) .
$$

It is a well-known fact that $L_{n^{2}} f \sum_{k=0}^{n} f_{k} l_{k}$ does not converge uniformly to f for every f in C. However, the exceedingly good behaviour of $B_{n} f$ near the endpoints of $[0,1]$ compensates the bad behaviour of $L_{n} f$. in such a way that

$$
g_{n}\left(I_{n} f ; x\right) \longrightarrow f(x) \quad \text { as } n \longrightarrow \infty
$$

uniformly in $0 \leqslant x \leqslant l$ for all f in C. Thanks to these smoothing effects of E_{n}, every interpolating sequence at equidistant nodes can always be made uniformly convergent.

5. BERNSTETN APPROXTMATION TO VECTOR-VALUED FUNCTIONS

5.1. Vector-valued Bernstein dolynomials.

DEFIMTTION 5.1 (Gordon - Riesenfeld). The $n^{\text {th }}$ degree vector-valued (parametric) Bernstein polynomial approximation to a given continuous vector-valued (parametric) function

$$
\begin{equation*}
F:[0,1] \longrightarrow \mathbb{R}_{p}, \quad F(s)=\left(X_{1}(s), \ldots, X_{p}(s)\right)^{T}, 0 \leqslant s \leqslant I, p \geqslant I \tag{5.1}
\end{equation*}
$$

is given, for $n \geqslant 0$, by

$$
\begin{align*}
& S_{0} F(s)=F(0) \\
& \mathscr{\mathscr { P }}_{\mathrm{n}} \mathrm{~F}(\mathrm{~s})=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{~F}\left(\frac{\mathrm{k}}{\mathrm{n}}\right) \mathrm{q}_{\mathrm{k}}(\mathrm{n}, \mathrm{~s}), \mathrm{n} \geqslant 1 \text {, the } \mathrm{q}_{\mathrm{k}} \text { 's as in (1.2), } \tag{5.2}\\
& =\sum_{k=0}^{n}\left[\begin{array}{c}
X_{1}\left(\frac{k}{n}\right) \\
\vdots \\
X_{p}\left(\frac{k}{n}\right)
\end{array}\right] \underline{a}_{k}(n, s)=\left[\begin{array}{c}
B_{n}\left(X_{1} ; s\right) \\
\dot{~} \\
B_{n}\left(\dot{X}_{\underline{p}} ; x\right)
\end{array}\right] \text {. } \tag{5.3}
\end{align*}
$$

For $p=1 \mathcal{S}_{n}=B_{n}$. We take, therefore, $p>1$, the cases of principal practical interest being those of $p=2$ and $p=3$.

REMARK 5.1. If we take the forward shifting operators E and Δ to mean here that

$$
E F_{i}=F_{i+1}, \quad \Delta F_{i}=F_{i+1}-F_{i}, \quad i=0,1,2, \ldots,
$$

then Ie me 1.1 is reaily extombed to cover S_{n} :

$$
\begin{equation*}
\mathscr{O}_{\mathrm{n}}(F ; s)=((1-s) I+s E)^{n} F_{0}, \quad F_{k} \equiv F(k / n), \quad k=0(1) n, \tag{5.4}
\end{equation*}
$$

$$
\begin{align*}
\mathcal{\rho}_{n}(F ; s) & =(I+s \Delta)^{n} F_{0} \tag{5.5}\\
& =\sum_{k=0}^{n}\binom{n}{k} \Delta^{k} F_{0} s^{k}
\end{align*}
$$

an $n^{\text {th }}$ degree polynomial in the parameter s with point-valued coefficients.

Noting (5.4) and (5.5), \mathscr{P}_{n} is, like B_{n}, the product of n linear averagings or n forward linear shiftings. Also, thanks to (5.3) and (2.3), $\mathcal{S}_{n}(f ; s) \longrightarrow F(s)$ as $n \longrightarrow \infty$ uniformly in $0 \leqslant s \leqslant l$.

5.2. Recursive generation and aporoximation propexties of the BernsteinBézier overator.

DEFINITION 5.2 (Gordon - Riesenfeld). Let $n+1$ ordered points P_{0}, P_{1}, \ldots, P_{n} in \mathbb{R}_{p} be given and let $\mathbb{P}=\left\{P_{k}\right\}_{k=0}^{n}$ denote
the (open) polygon formed by joining successive points. The Bézier curve associated with the n-sided Bézier polygon \mathbb{P} is the parametric Bernstein polynomial

$$
\begin{equation*}
\hat{\vartheta}_{\mathrm{n}}(P ; s)=\sum_{k=0}^{n} P_{k} q_{k}(n, s) \tag{5.6}
\end{equation*}
$$

Here, the underlying vector-valued function is, of course, the polygonal function

$$
\begin{equation*}
F(s)=n\left[\left(\frac{k+1}{n}-s\right) P_{k}+\left(s-\frac{k}{n}\right) P_{k-1}\right], \frac{k}{n}\left\langle s \leqslant \frac{k+1}{n}, \quad k=0(1) n-1 .\right. \tag{5.7}
\end{equation*}
$$

5.2.1. The convex hull property.

Subsection 1.1 is clearly applicable to \mathcal{B}_{n}; that is, the graph of $\mathcal{S}_{n} \mathbb{P}$ develops in the convex hull of the vertices of \mathbb{P}. In particular, the Bernstein-Bézier operator associates to a given point and a given line segment in \mathbb{R}_{p} that point and that line segment themselves. It is also easily shown that the center of mass of the points P_{k} with masses q_{k} describes the graph of $\oiint_{n}(\mathbb{P} ; s)$ as s ranges from 0 to 1 (see Gordon and Riesenfeld (1974 a), b))).
5.2.2. Geometric construction of \mathbb{P} and its derivatives.

Noting (5.5) and (5.7),

$$
\begin{equation*}
\mathscr{O}_{n}(P ; s)=(I+s \Delta)^{n} P_{0}=B_{s}^{n} p_{0} \tag{5.8}
\end{equation*}
$$

and thus we can construct the Bézier curve (5.6) recursively. In correspondence with (1.7) and (1.8) we now have

$$
\begin{align*}
& P_{0} \\
& \mathrm{P}_{0}^{\mathrm{I}} \\
& { }_{3} \\
& \mathrm{P}_{1}^{1} \\
& \mathrm{P}_{2} \\
& \begin{array}{lllll}
\cdot & \cdot & \cdot & & P_{0}^{n} \equiv \mathcal{B}_{n}(\mathbb{P} ; s)
\end{array} \\
& \dot{p}_{n-2} \\
& P_{n-2}^{1} \tag{5.9}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{F}_{1}^{\mathrm{n}-1} \\
& z_{n-1} \quad P_{n-1}^{1} \\
& P_{n}
\end{aligned}
$$

where

$$
\begin{align*}
& P_{i}^{j}=\mathbb{B}_{s} P_{i}^{j-1}, \quad j=I(I) n ; \quad i=0(I) n-j, \\
& P_{i}^{0}=P_{i} \quad, \quad i=O(I) n, \tag{5.10}
\end{align*}
$$

The points P_{i}^{j} in the $j^{\text {th }}$ colunn of (5.9) are the vertices of a Bézier polygon \mathbb{P}^{j} of order $n-j$. We arrive at the point on the Bézier curve (5.8) corresponding to the parameter value s by constructing successive Bézier polygons of lower and lower degree (cf. Bézier (1972), Gordon and Riesenfeld (1974 a))).

In correspondence with (4.1) and (4.2) we now have

$$
\begin{align*}
\frac{(n-j)!}{n!} \hat{\sigma}_{n}^{\prime}(j)(\mathbb{P} ; s) & =\sum_{k=0}^{n-j} \Delta j_{P_{k}} q_{k}(n-j, s) \tag{5.11}\\
& = \begin{cases}\hat{\sigma}_{n-j}\left(Q^{j} ; s\right), & j=0(1) n \\
0 & j>n\end{cases} \tag{5.12}
\end{align*}
$$

respectively, $Q^{j}=\left\{Q_{0}^{j}, Q_{l}^{j}, \ldots, Q_{n-j}^{j}\right\}, j=0(I) n$, being the $(n-j)$-sided Bézier polygon with vertices

$$
\begin{align*}
& Q_{k}^{j}=\Delta^{j_{P_{k}}}, \quad k=0(1) n-j \\
& Q^{0}=\mathbb{P} \tag{5.13}
\end{align*}
$$

REMARK 5.2. Remark 4.1 is applicable to \mathcal{F}_{n}; that is, apart from the coefficient $(n-j)!/ n!$, the $j^{\text {th }}$ derivative of an $n^{\text {th }}$ degree Eézier curve of Bézier polygon \mathbb{P} is a Bézier curve of degree $n-j$ whose Bézier polygon Q^{j} is derived from \mathbb{P} according to (5.13). Consesuently, a Eézier curve ani all its derivatives can be calculated recursively and afford an easy geometric construction. Furthermore,
there is no need to construct a "triangle" similar to (5.9), based on Q^{j}. Indeed, since

$$
\begin{align*}
\dot{S}_{n-j}\left(Q^{j} ; s\right) & =\mathbb{B}_{s}^{n-j}\left(\Delta^{j_{P_{0}}}\right)=\Delta^{j}\left(\mathbb{B}_{s}^{n-j_{P_{0}}}\right) \tag{5.14}\\
& =\Delta^{j_{P_{0}^{n}}^{n-j}}
\end{align*}
$$

differencing the entries in the $(n-j)^{\text {th }}$ column of (5.9) leads to $\mathcal{\beta}_{n}^{(j)}(\mathbb{P} ; s)$. In particular, there follows from (5.11) - (5.14), for $j=0$ and $s=0,1$:

$$
\begin{align*}
& \mathscr{B}_{n}(\mathbb{P} ; 0)=\mathbb{B}_{0}^{n} P_{0}=P_{0} \\
& \mathscr{B}_{n}(\mathbb{P} ; 1)=\mathbb{B}_{1}^{n} P_{0}=E^{n} P_{0}=P_{n} . \tag{5.15}
\end{align*}
$$

extending to \mathscr{F}_{n} the interpolation properties (1.10) of B_{n}; and, for $j=1$ and $s=0,1$:

$$
\begin{align*}
& \frac{1}{n} \hat{\Omega}_{n}^{\prime}(\mathbb{P} ; 0)=\Delta P_{0}=P_{1}-P_{0} \\
& \frac{1}{n} \dot{B}_{n}^{\prime}(\mathbb{D} ; 1)=\Delta\left(E^{n-1} P_{0}\right)=\Delta P_{n-1}=P_{n}-P_{n-1} \tag{5.16}
\end{align*}
$$

The relations (5.15) - (5.16) imply the tangency of the Bézier curve to the endsides at the endpoints of the corresponding Bézier polygon (cf. Gordon and Riesenfeld (1974 a))).

Figure 1 below illustrates the geometric construction of $\mathcal{A}_{3}(\mathrm{j})(\mathbb{P} ; \mathrm{s})$, for $j=0,1,2$, at the point $s=1 / 4$.

Figure 1

5.2.3. Variation diminishins propexties.

 a variation diminishing operator in the sense that each component $B_{n} X_{k}$ of San $_{n} \mathrm{~F}$ is at least as smooth as the corresponing component X_{k} of F, where smooth refers to the number of zeros, maxima and minima, points of inflexion, total variation, etc.

In analogy with (4.16) - (4.17) we may also describe the variation dininishing character of d_{n} with respect to a hyosmlane H with equation

$$
\begin{equation*}
\sum_{i=1}^{D} h_{i} x_{i}=(h, x)=c, \tag{5.17}
\end{equation*}
$$

where (.,.) denotes the inner product in \mathbb{R}_{p}. Defining

$$
\begin{equation*}
v_{H}(F)=v((h, F)-c), \tag{5.18}
\end{equation*}
$$

the number (finite or infinite) of intersections of F with H, we have

THEOREM 5.1 (G.-Bonne - Sablonnière).
a) $\mathrm{v}_{\mathrm{H}}\left(\mathcal{\mathcal { F }}_{\mathrm{H}} \mathrm{F}\right) \leqslant \mathrm{v}_{\mathrm{H}}(\mathrm{F})$
b) $\mathrm{v}_{\mathrm{H}}\left(\mathscr{\mathcal { S }}_{\mathrm{n}}^{\prime} \mathrm{F}\right) \leqslant \mathrm{v}_{\mathrm{H}}\left(\mathrm{F}^{\prime}\right) \quad$ for F in C^{I}, i.e., X_{k} in C^{I}, $\mathrm{k}=\mathrm{O}(\mathrm{I}) \mathrm{p}$.

PROOF. a)

$$
\begin{aligned}
& v_{H}\left(\mathcal{S}_{n} F\right)=v\left(\left(h, \mathcal{B}_{n} F\right)-c\right) \text {, by }(5.18), \\
&=v\left(\sum_{i=1}^{p} h_{i} B_{n} X_{i}-c\right), \text { by }(5.17) \text { and }(5.3), \\
&=v\left(B_{n}\left(\sum_{i=1}^{p} h_{i} X_{i}-c\right)\right), \text { because } B_{n} \text { is linear and } \\
& \text { preserves constants, } \\
& \leqslant v((h, F)-c), \text { by (4.13) and (5.17), } \\
&=v_{H}(F) \quad, \text { by }(5.18) .
\end{aligned}
$$

Part b) follows in much the same way.

REMARK 5.3. Paralleling the analysis carried out above with F in c^{2} and $c=0$ in (5.17) we get
c) $v_{H}\left(\beta_{n}^{\prime \prime} F\right) \leqslant v_{H}(F)$.

While a) and b) describe the sign and monotonicity variation diminishing properiies of $\left.\hat{S}_{n}, c\right)$ does not mean, however, that $\mathcal{S i m}_{n}$ dimishes the
convexity of F, since this depends in general on the vector product $F^{\prime} \wedge F^{\prime \prime}$.

RDMARK 5.4. If, instead of the polygon \mathbb{P} with vertices at $F(k / n)$, $\mathrm{k}=\mathrm{O}(1) \mathrm{n}$, we inscribe in the graph of F any other polygon $\gamma_{\text {with vertices at }} F\left(s_{k}\right)$, where $0=s_{0}<s_{1}<\ldots<s_{n}=1$, then

$$
v_{H}\left(\mathcal{B}_{n} \gamma\right) \leqslant v_{H}(\gamma)
$$

implying that polygonal (piecewise linear) approximation to continuous parametric functions is a variation dininishing approximation method (cf. Marsden and Schoenberg (1966)). This suggests the application of Schoenberg (1967)'s variation diminishing splines to the approximation of continuous parametric curves in $\mathbb{R}_{\underline{p}}$. In this connection, interesting results were given by Gordon and Riesenfeld (1974 b)) and, more recently, by Germain-Bonne and Sablonnière (1976, 1977).

5.3. Itexates of the Rernstein-Eézier operator.

Thanks to (5.3), the problem of iterating \mathcal{S}_{n} may naturally be reduced to p problems involving ordinary Bernstein iterates:

5.4. Berns ${ }^{\perp}$ ein-Bézier methods for multivariate, vector-valued functions.

Instead of the univariate, vector-valued function (5.1) let us consider the mapping

$$
F: \underline{x} \in S_{N} \subset \mathbb{R}_{1} \longrightarrow \mathbb{R}_{p}, \quad F(\underline{x})={ }_{i}\left(X_{1}(\underline{x}), \ldots, X_{p}(\underline{x})\right)^{T} \in \mathbb{R}_{p},
$$

with $\underline{x}=\left(x_{1}, \ldots, x_{N}\right), S_{N}=\left\{\underline{x} \in \mathbb{R}_{N}: 0 \leqslant x_{i} \leqslant 1, i=1(1) N\right\}$, and associate with F the Eernstein-Bézier operator

$$
\begin{align*}
\mathcal{B}_{\underline{n}}(F ; \underline{x}) & =\sum_{i_{1}=0}^{n_{1}} \ldots \sum_{i_{N}}^{N}{ }^{n_{N}} F_{\underline{\underline{i}}} q_{i_{1}}\left(n_{1}, x_{1}\right) \ldots q_{i_{N}}\left(n_{N}, x_{N}\right) \tag{5.19}\\
& =\left(B_{\underline{n}}\left(Y_{1} ; \underline{x}\right), \ldots, B_{\underline{n}}\left(x_{p} ; \underline{x}\right)\right)^{T} \tag{5.20}
\end{align*}
$$

with n denoting $n_{1}, n_{2}, \ldots, n_{1 N}$, \underline{i} denoting $i_{1}, i_{2}, \ldots, i_{N}$, and $F_{\underline{\underline{i}}}=F\left(i_{\underline{1}} / n_{1}, \ldots, i_{N} / n_{N}\right)$.

Cleariy, 身 $(F ; \underline{x}$) is a vector-valued (parametric) Bernstein polynomial of degree n_{i} in $x_{i}, i=1(1) N$, and extends \mathcal{H}_{n} to the N-dimensional setting. Incidentally, (5.19) gives, for $\mathrm{N}=2$ and $\mathrm{p}=3$, the basic formula in Bézier's irree-form surface design technique.

Host or what has been said for $\boldsymbol{\beta}_{\mathrm{n}}$ extends easily to $\boldsymbol{\theta}_{\underline{n}}$. Namely:
i) S $_{\underline{\underline{n}}}(F ; \underline{y})$ represents a p-dimensionel surface which develops within the convex hull of the points $\mathrm{F}_{\underline{i}}$, the vertices of an $n_{1} n_{2} \ldots n_{N}$ faced net of line segments which plays here a role analogous to that of the Bézier polygon, and the center of mass of the points F_{i} with masses

$$
y_{i}=\frac{n}{\frac{1}{k}=i} \tilde{j}_{j_{k}}\left(a_{k}, x_{k}\right)
$$

describes the graph of $\underline{S}_{\underline{n}}(F ; \underline{x})$ as \underline{x} runs over S_{F}.
ii) Since $B_{\underline{n}}$ is a smoothing operator, then, from (5.20), so is $\mathscr{B}_{\underline{n}}$.

Over the past several years, the methods of Bernstein-Bézier have attracted widespread attention, especially in connection with problems of computer-aided design and numerical control production of free-form curves and surfaces such as aeroplane fuselages, ship hulls, and automobile bodies. For detailed and intensely practical expositions we refer, e.g., to Rézier (1972), Barnhill and Riesenfeld (1974), and Forrest (1971, 1972).

CHAPTER 2

 HOMERICAL COIDENSATION OF MULTIVARIATE POLYNOMIALSPolynomial condensation, also referred to in the literature as telesconing or economization, is a numerical procedure aiming at reducing the computational effort required to evaluate a given polynomial P at a given pont of : 5 doman while allowing for a small osciliating error ε to be distributei over the domain where the condensed representation of P is sought. It was first conceived and applied to univariate problems of numerical mathematics by $\operatorname{Lanczos}(1938,1952,1956)$ and has recently been extended to the multivariate setting by Ortiz (1977).
1.

Let $P=P(x) \in \mathscr{S}_{n}, n \geqslant 1$, and $x \in K_{1}$, a compact of \mathbb{R}_{1}. We assume, once and for all, that

$$
P(x)=a_{n} x^{n}-a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, \quad a_{n} \neq 0, \quad x \in \xi_{1}, \quad \text { (1.1) }
$$

is evaluated at $x \neq 0$ by Horner's nested multiplication, i.e., by means
of the backiand recurrence scheme

$$
\begin{align*}
& P=b_{0}: \\
& b_{n}=a_{n} \\
& b_{r}=x b_{r+1}+a_{r}, \quad r=n-1(-1) 0, \tag{1.2}
\end{align*}
$$

alnays requiring n multiplications regardless of the number of vanishing a_{r} 's.

2ETHITTON 1.1. He say that $P_{\varepsilon}=p_{\varepsilon}(x)$ is an ε-condensed polynomial representation of P in K_{I} provided that

$$
\text { (i) } \partial P_{\varepsilon}<\partial P \text { and (ii) }\left\|P-P_{\varepsilon}\right\|<\varepsilon \text {, }
$$

∂ standing for 'degree of' and $\|$. $\|$ for the uniform norm in K_{1}.

1.1. A suficient condition for oolvnomial condensation.

Sufficient conditions for the existence of $p_{\varepsilon} \in \mathscr{O}_{n-s-1}, 0 \leqslant s<n$, in $K_{2}=[0,2]$ nay be obteined as follons.

Ve denote $b_{y} \mathrm{~m}_{\pi}^{*}(x)$ the $\pi^{\text {th }}$ Chebyshev polynonial of the first kine shirted to $[0,1]$ and recall that

$$
\begin{equation*}
x^{n}=2^{1-2 n} \sum_{j=0}^{n}\binom{2 n}{n-j} T_{j}^{*}(x), \tag{1.3}
\end{equation*}
$$

Where the wime indicates that the coefficient of T_{0}^{*} is to be halved. Using (1.3), Pmay be written in the form

$$
\begin{align*}
P(x) & =\sum_{j=0}^{n-1}: a_{j} x^{j}+a_{n} x^{n} \\
& =P^{1}(x)+2^{1-2 n} a_{n} T_{n}^{*}(x) \tag{1.4}
\end{align*}
$$

with

$$
\begin{equation*}
P^{1}(x)=\sum_{j=0}^{n-1} a_{j} x^{j}+2^{1-2 n} a_{n} \sum_{j=0}^{n-1}\left(a_{n-j}^{2 n}\right) T_{j}^{*}(x) . \tag{1.5}
\end{equation*}
$$

It is clear from (1.4) that the condition

$$
\begin{equation*}
\varepsilon_{0}=2^{1-2 n}\left|a_{n}\right|<\varepsilon \tag{1.6}
\end{equation*}
$$

implies that $P^{l} \in \mathscr{D}_{n-1}$ and $\left\|P-P^{1}\right\|<\varepsilon$; that is, P^{l} is an ε-condensed polynomial representation of P.

1.2. Inplementation of the condensation process.

Assuming that (1.6) holds, recalling that

$$
\begin{aligned}
& T_{0}^{*}(x)=1 \\
& T_{n}^{*}(x)=(-1)^{n}+\sum_{k=1}^{n}(-1)^{n-k} \frac{n}{k}\binom{n+k-1}{n-k} 2^{2 k-1} x^{k}, \quad n \geqslant 1,(1.7)
\end{aligned}
$$

and noting that
$\sum_{k=0}^{n-1}\binom{2 n}{n-k} T_{k}^{*}(x)=(-1)^{n-1}+\sum_{j=1}^{n-1} 2^{2 j-1} \sum_{k=j}^{n-1}(-1)^{k-j} \frac{k}{j}\binom{k+j-1}{k-j}\binom{2 n}{n-k} x^{j}$,

$$
\begin{equation*}
P^{I}(x)=\sum_{j=0}^{n-1} a_{j}^{I} x^{j} \tag{1.8}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
a_{0}^{1}=a_{0}+(-1)^{n-1} 2^{1-2 n} a_{n} \tag{1.9}\\
a_{j}^{1}=a_{j}+4^{j-n} a_{n} \sum_{k=j}^{n-1}(-1)^{k-j} \frac{k}{j}\binom{k+j-1}{k-j}\left(\begin{array}{c}
n-k
\end{array}\right), \quad j=I(1) n-I
\end{array}\right.
$$

We are nor ready for the condensation of P^{1}, i.e., for the second step in the condensation of P. This will be possible provided that

$$
\varepsilon_{1}=2^{1-2(n-1)}\left|a_{n-1}^{1}\right|<\varepsilon-\varepsilon_{0} .
$$

Assuming this true, we replace in (I.9) n with r-l and a_{j} with a_{j}, $j=O(1) n-2$, to obtain $2_{j}^{2}, j=O(1) n-2$, the coefficient vector of a condensed polynomial representation of P with a new tolerance parameter ε equal to $\varepsilon_{0}+\varepsilon_{1}$.

Setting $a_{j}^{C}=a_{j}, j=0(1) n$, the algorithn

$$
\left\{\begin{array}{l}
a_{0}^{m+1}=a_{0}^{m}+(-1)^{n-m-1} 2^{1-2(n-m)} a_{n-m}^{m} \\
a_{j}^{m+1}=a_{i}^{m}+4 j-n+m \\
a_{n-m}^{m} \sum_{k=j}^{n-m-1}(-1)^{k-j} \frac{k}{j}\binom{k+j-1}{k-j}\left(\begin{array}{c}
n-m-k
\end{array}\right), j=1(1) n-m-1,
\end{array}\right.
$$

is repeated for $\mathrm{n}=0(\mathrm{l}) \mathrm{s}, 0 \leqslant \mathrm{~s}<\mathrm{n}$, as long as

$$
\begin{equation*}
\sum_{m=0}^{s} \varepsilon_{\mathrm{n}} \quad, \quad \varepsilon_{\mathrm{m}}=2^{1-2(n-m)}\left|a_{n-m}^{m}\right| \tag{1.11}
\end{equation*}
$$

to give $z_{i}^{2+1}, \therefore=(1) n-s-1$, the coerfioient vactor of the conemsed polynomial form or P .

PEMARK 1.7. The number s+1 of condensation steps may be detemined apriori if we carry out the basis transformation

$$
\begin{aligned}
& P(x)=\sum_{r=0}^{n} a_{n-r} x^{n-r}=\sum_{m=0}^{n} c_{n-m}^{\prime} T_{m}^{*}(x), \\
& c_{n-m}=2^{1-2 n} \sum_{r=0}^{m} 4^{r}\binom{2(n-r)}{m-r} a_{n-r}, \quad m=0(1)_{n},
\end{aligned}
$$

and observe that

$$
\left|c_{n-m}\right|=\varepsilon_{m}, \quad m=0(I)_{s}
$$

Therefore, instead of (1.11), we can use

$$
\sum_{r=0}^{5} 4^{r} \sum_{m=r}^{s}\left(\begin{array}{l}
2(n-r) \tag{1.12}\\
m-r
\end{array}\left|a_{n-r}\right|<2^{2 n-1} \varepsilon, \quad 0 \leqslant s<n,\right.
$$

to predict the maxinum degree reduction ε allows (see also Ortiz (1977)).

2. CONDENSATIOM OF MULTIVARIATE POLYNOMIALS

2.1. Bivariate dolvnomial evaluation schemes.

Iet

$P=P(x, y)=\sum_{i=0}^{I} \sum_{j=0}^{J} a_{i j} x^{i} y^{j} \in \not D_{i v}, \quad a_{I J} \neq 0, \quad(x, y) \in K_{2}$,
where K_{2} is a compact of $\mathbb{R}_{2} \cdot A=\left(a_{i j}\right)$, the $(J+1) \times(I+1)$ coefficient matrix of $?$, is such that, for every i and $j, a_{i j}$ is the coefficient of $x^{i} y^{j}$ in P.

The writng of P as

$$
\begin{equation*}
p=\sum_{j=0}^{J} P_{j} y^{j}, \quad p_{j}=p_{j}(x)=\sum_{i=0}^{I} a_{i j} x^{i}, \quad j=0(1) \bar{J}, \tag{2.2}
\end{equation*}
$$

or

$$
\begin{equation*}
P=\sum_{i=0}^{T} y_{i}^{*} x^{i}, \quad p_{i}^{*}=p_{i}^{*}(y)=\sum_{j=0}^{J} a_{i j} y^{j}, \quad i=0(1) I, \tag{2.3}
\end{equation*}
$$

with $p_{j}\left(D_{i}^{*}\right)$ uninuely associated with the $j^{\text {th }}$ row ($i^{\text {th }}$ column) of A, makes the evaluation and condensation problems for $\mathrm{P}(\mathrm{x}, \mathrm{y})$ entirely analogous to thase referred to in Section 1. Indeed, the evaluation of P at a point $(x, y) \in K_{2}$ with nonzero co-ordinates is reduced to $\mathrm{J}+2$ or I+2. l-dimensional polynomial evaluation problems according to the representations (2.2) or (2.3) respectively, and carried out by means of two backward recurrence multiplication schenes similar to (1.2),

$$
\begin{array}{ll}
p_{j}=b_{0} \quad(j=0(I) J): & \\
& b_{I}=a_{I j} \\
& b_{r}=x b_{r+1}+a_{r j}, \quad r=I-1(-1) 0, \\
P=c_{0}: \quad & c_{J}=p_{J} \\
c_{r}=y c_{r+1}+p_{r}, \quad r=J-1(-1) 0 ;
\end{array}
$$

or

$$
\begin{array}{ll}
p_{i}^{*}=b_{0}(i=0(I) I): & \\
& b_{J}=a_{i J} \\
& b_{r}=y b_{r+1}+a_{i r}, \quad r=J-I(-I) 0, \\
P=c_{0}: & c_{I}=p_{I}^{*} \\
c_{r}=x c_{r+1}+p_{r}^{*}, \quad r=I-I(-1) 0 .
\end{array}
$$

In either case, the nunber of rilitiplications reguired is always ($\mathrm{I}+1)(\mathrm{J}+1)-1$, no matter how sparse A may be. As for the ε-condensation problem for $P(x, y)$ in $K_{2}=[0,1] \times[0,1]$ we now have, in correspondence with (1.12), the following existence conditions

$$
\begin{equation*}
\sum_{r=0}^{s} 4 \sum_{m=r}^{5}\binom{2(J-r)}{m-r}\left|p_{J-r}\right|<2^{2 J-1} \varepsilon, \quad 0 \leqslant s<J \tag{2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{r=0}^{S} 4 \sum_{m=r}^{s}\binom{2(I-r)}{m-r}\left|p_{I-r}^{*}\right|<2^{2 I-1} \varepsilon, \quad 0 \leqslant s<I \tag{2.5}
\end{equation*}
$$

according as P is given by (2.2) or (2.3) respectively.

The above bidimensional evaluation and condensation problems afford an immediate extension to the multivariate setting. Given

$$
\begin{equation*}
P=P\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\sum_{i_{1}}^{I_{1}} \sum_{i_{2}}^{I_{2}} \ldots \sum_{N=0}^{I_{N}}{ }^{a_{N}} i_{1} i_{2} \ldots i_{N} x_{1}{ }_{1} x_{2}^{i_{2}} \ldots x_{N}{ }_{N} \tag{2.6}
\end{equation*}
$$

with $a_{I_{1} I_{2}} \ldots I_{i i} \neq 0$ and $\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in X_{N}$, a given compect of $R_{i n}$, we write it in one of the following equivalent forms

$$
\begin{equation*}
P=\sum_{i_{k}=0}^{I_{k}} D_{i_{K}} x^{i_{i}}, \quad k=I(I) N \tag{2.7}
\end{equation*}
$$

with

$$
\begin{aligned}
p_{i_{k}} & =p_{i_{1}}\left(x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}\right) \\
& =\sum_{i_{1}=0}^{I_{1}} \ldots \sum_{i_{i-1}}^{I_{k-1}} \sum_{i_{k+1}}^{I_{k+1}} \sum_{i} \ldots \sum_{i_{1}=0}^{I_{1 i}} a_{i_{1}} i_{2} \ldots i_{1 i} x_{1}^{i_{1}} \ldots x_{k-1}^{i_{k-1}} i_{k+1}^{i_{k+1}} \ldots x_{N i} .
\end{aligned}
$$

To evaluate $P \equiv t$ a point $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ in K_{N} with nonzero co-ordinates we use N multiplication schemes similar to (1.2) and perform $\left(I_{1}+1\right)\left(I_{2}+1\right)$... ($\left.I_{i}+1\right)-1$ muItigécations; ε-oondensation of P in the unit hypercube of $R_{\text {N }}$ with respect to the variable x_{k} is possible if

$$
\begin{equation*}
\sum_{r=0}^{S_{k}} 4^{r} \sum_{m=r}^{s i k}\left(\underset{-k}{2\left(I_{r}-r\right)}\right)\left|\underline{p}_{I_{k}-r}\right|<2^{2 I_{k}^{-1}} \varepsilon, \quad k=I(I) N \tag{2.8}
\end{equation*}
$$

2.2. Smoothness indicators.

The numbers $s_{k}=s_{k}\left(x_{k}, \varepsilon\right)$ in (2.8) may serve as indicators of the following attributes of $P\left(x_{1}, x_{2}, \ldots, x_{1 N}\right)$, obviously related to each other to a certain extent:
(i) Smoothness - the larger s_{k} the smoother P in the x_{k}-direction;
(ii) Weight of x_{k} - the larger s_{k} the smaller the importance of the variable x_{k} in the representation of P.

This leads naturally to the definition of orincipal variables as those for which the s's are least and, then, to the following problem.

2.3. Approximation of a multivariate polynomial by another polynomial of fewer variables.

Clearly, the x_{k}-dependence can only be removed from the representation (2.6) of $P\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ if (2.8) holds for $s_{k}=I_{k}-1$, yielding the condition

$$
\begin{equation*}
\sum_{r=0}^{I_{k}-1}\left[1-4_{4}^{-\left(I_{k}-r\right)}\left(\frac{2\left(I_{k}^{k}-r\right)}{I_{k}^{-r}}\right)\right]\left|p_{I_{k}-r}\right|<\varepsilon, \quad 1 \leqslant k \leqslant N \tag{2.9}
\end{equation*}
$$

Assume (2.9) holds for $k=1$, say, and the left hand side of (2.9) equals $\varepsilon_{1}<\varepsilon$. Then $P \in \mathcal{P}_{I_{1}}^{\mathcal{D}}, I_{2}, \ldots, I_{N}$ may be replaced by $P_{1} \in \mathcal{D}_{I_{2}}, I_{3}, \ldots, I_{N}$,
 same reduction process. Let $\varepsilon_{2}<\varepsilon$ be the tolerance parameter within
which the variable x_{2}, say, may be eliminated from $P_{1} \in \mathcal{S}_{I_{2}}, I_{3}, \ldots, I_{N}$, yielding $P_{2} \in \mathscr{T}_{I_{3}}, I_{i}, \ldots, I_{\text {iN }}$ such that $\left\|P_{I}-P_{2}\right\|<\varepsilon_{2}$. Clearly, P_{2} may replace P provided $\varepsilon_{1}+\varepsilon_{2}<\varepsilon$. If we can do this k times, then we end up with $P_{k} \in \mathcal{P}_{I_{\bar{k}+1}, I_{z+2}}, \ldots, I_{N}$, an ε-condensed form of P with k fewer variables than P iもself.

2.4. An algorithn for the condensation of multivariate polynomials.

In this Eüsection we exterd algoritha (1.10) to the multivariate cass. The emphesis aill actually be on bivariate polynomials as there is no essential dieziculty in extendins what follows to higher dimensions.

Taking the polynomial (2.1) and parallelins the analysis carried out in Subsections 1.1 and 1.2, we have, from (2.2),

$$
\begin{align*}
P & =\sum_{j=0}^{J-1} P_{j} y^{j}+p_{J} y^{J} \\
& =P^{I}+2^{I-2 \cdot \bar{j}} P_{J} T_{J}^{*}(y) \tag{2.10}
\end{align*}
$$

where

$$
\begin{align*}
P^{I} & =\sum_{j=0}^{J-I} Y_{j} y^{j}+2^{I-2 J} P_{J} \sum_{j=0}^{J-I}\left(\begin{array}{l}
2 J-j
\end{array}\right) T_{j}^{*}(y) \tag{2.11}\\
& =\sum_{j=1}^{J-I} Y_{j}^{I},
\end{align*}
$$

with

$$
\left\{\begin{array}{l}
\underline{p}_{0}^{I}=p_{0}+(-1)^{J-1} 2^{1-2 J} p_{J} \tag{2.12}\\
p_{j}^{I}=p_{j}+4 j^{j-J} \underline{p}_{J} \sum_{k=j}^{J-I}(-1)^{k-j} \frac{k}{j}\binom{k+j-1}{k-j}\left(\begin{array}{c}
2 J-k
\end{array}\right), \quad j=I(1) J-I,
\end{array}\right.
$$

is an ε-condensed form of P provided that

$$
\varepsilon_{0}=2^{I-2 J}\left|p_{J}\right|<\varepsilon
$$

It should be noted that the elimination of the second term on the right hand side of (2.10) anounts to deleting the J th row of the coefficient matrix A of P and perturbing each of the other rows of A with the second term on the right hand side of (2.11).

Another condensation step will be possible if

$$
\varepsilon_{1}=2^{1-2(J-1)}\left|\frac{1}{J-1}\right|<\varepsilon-\varepsilon_{0}
$$

This ceing so, then we change in (2.12) J into $J-1, p_{j}$ into $p_{j}^{\prime}, j=0(1) J-2$, and start anew. The maximum number s_{y} of condensation steps is such that

$$
\sum_{m=0}^{s_{j}} \varepsilon_{m}<\varepsilon, \quad \varepsilon_{\mathrm{I}}=2^{1-2(J-m)}\left|p_{J-m}^{m}\right|
$$

(cf. (1.11)) ari may be predicted by the use of (2.4). We end up with

$$
\begin{aligned}
P^{s} y^{+1} & \text { in } \mathcal{S}_{I, J-s_{y}-1}, 0 \leqslant s_{y}<J: \\
P^{s_{y}^{+1}} & =\sum_{j=0}^{J-s_{y}-1} y_{j}^{s_{y}^{+1}} y^{j},
\end{aligned}
$$

$$
\left\{\begin{array}{l}
p_{0}^{m+1}=p_{0}^{m}+(-1)^{J-m-1} 2^{1-2(J-m)} p_{J-m}^{m} \\
p_{j}^{m+1}=p_{j}^{m}+4^{j-J+m} p_{J-m}^{m} \sum_{k=j}^{J-m-1}(-1)^{k-j} \frac{k}{j}\binom{k+j-1}{k-j}\left(\underset{J-m-k}{2(J-m)} \quad, \quad j=0(1) s_{J} \quad(2.13)\right.
\end{array}\right.
$$

where $\underline{p}_{j}^{0}=\underline{p}_{j}, j=O(1) J(c f .(1.10))$.
The condensation of $P(x, y)$ has been carried out with respect to the variable y (rows of A). Obviously, it could have been performed, in exactly the same way, with respect to the variable x (columns of A).

3. MUSERTCAL COMDE:SATIOM OF BEDMSTETN POLYMOMTALS

Pernstein approximants are applied in those numerical apgronination proolems referred to at the close of Chapter 1 , where shape preservation is zo:e inportant than closeness of fit. Being slowly convergent, fairly high degree approximants are required. However, a considerable reduction of desree may be achievad through condensation of the Bernstein approximants to a given f in C, under fairly weak smoothness conditions on f, keeping their shape approxinating properties only slightly changed (sea also Ortiz and M. da Silva (1978)).
3.1. Condensation O E $B\left(\frac{f ; x)}{}\right.$.
230.32 3.1. The Eernstein operator B_{n} naps the whole class of functions f taking on the values f_{k} at the nodes $k / n, k=0(l) n$,
into one and the same polynomial $B_{n} f$. In particular, if $P \in \mathcal{P}_{n}$ is the polynomial which interpolates the table $\left\{\mathrm{k} / \mathrm{n}, \mathrm{f}_{\mathrm{k}}\right\}_{\mathrm{K}=0}^{\mathrm{n}}$, we have

$$
\begin{equation*}
B_{n}(P ; x) \equiv B_{n}(f ; x)=\sum_{k=0}^{n}\binom{n}{k} \Delta^{k} f_{0} x^{k}, \tag{3.1}
\end{equation*}
$$

and thus conditions under which $\mathrm{B}_{\mathrm{n}} \mathrm{f}$ may be condensed can always be stated in terms of P.

RDMARK 3.2. Recalling that

$$
B_{n}\left(t^{n} ; x\right)=\lambda_{n} x^{n}+\ldots=c_{n} T_{n}^{*}(x)+\ldots
$$

with

$$
\lambda_{n}=\prod_{k=1}^{n-1}\left(1-\frac{k}{n}\right)=\frac{[n / 2]}{\prod_{k=1}^{1}}\left[\frac{k}{n}\left(1-\frac{k}{n}\right)\right] \leqslant 2^{1-n},
$$

the prime indicating that the product is to be doubled when n is even (see Subsection 4.1 of Chapter 1), and

$$
c_{n}=2^{1-2 n} \lambda_{n} \leqslant 2^{2-3 n}
$$

we see that the Eernstein approximants are particularly suitable for numerical condensziion.

Let us then assume that, in the process of approximating to the shape of a given curve, there is Eiven a tolerance parameter $\boldsymbol{\varepsilon}$ related to the accuracy to wich variations in shape cease to be detectable or relevant for the problem in hand. Let

$$
z=z(x)=\sum_{j=}^{n} z \cdot x^{j}
$$

be such that $P(k / n)=f_{k}, k=O(I) n$, then

$$
\begin{align*}
E_{n}(p ; x) & =\sum_{j=0}^{n} b_{j} B_{n}\left(x^{j} ; x\right) \\
& =\sum_{i=0}^{n}\left(\sum_{j=i}^{n} a_{i j} b_{j}\right) x^{i} \tag{3.2}
\end{align*}
$$

with

$$
\begin{equation*}
a_{i j}=\lambda_{i} n^{i-j} \sigma_{i j} \tag{3.3}
\end{equation*}
$$

given by (4.7) - (4.9) of Chapter 1. Equating coefficients of like powers of x in (3.1) and (3.2),

$$
\begin{equation*}
\binom{n}{i} \Delta^{i} f_{0}=\sum_{j=i}^{n} a_{i j} b_{j}, \quad i=0(1) n \tag{3.4}
\end{equation*}
$$

giving, for $i=n$,

$$
\Delta^{n} f_{0}=\lambda_{n} b_{n}=\frac{n!}{n^{n}} b_{n}
$$

and leading to the following sufficient conditions on the smoothness of f for the ε-condensation of $B_{n} f$ from \mathcal{D}_{n} to \mathcal{D}_{n-1} (see (1.6)):
(i) In terms of the leading coefficient of $B_{n} f$ (see (3.1)):

$$
\left|\Delta^{n} f_{0}\right|<2^{2 n-1} \varepsilon
$$

(ii) in terms of the leading coefficient of P :

$$
\left|b_{n}\right|<\frac{2^{2 n-1} n^{n}}{n!} \varepsilon
$$

From (3.4),

$$
\left(\left.\begin{array}{l}
n_{i} \tag{3.5}\\
i
\end{array} \Delta^{i} \sum_{0}\left|<\sum_{j=1}^{n} i_{j}\right| b_{j} \right\rvert\, \leqslant n\left\|_{A}\right\|_{\infty}\right.
$$

where

$$
M=\max _{0 \leqslant j \leqslant n}\left|b_{j}\right|
$$

and

$$
\begin{equation*}
\|A\|_{\infty}=\max _{0 \leqslant i \leqslant n} r_{i}, \quad r_{i}=\sum_{j=i}^{n} a_{i j} \tag{3.6}
\end{equation*}
$$

the matrix $A=\left(a_{i j}\right)$ being, as seen in Subsection 4.1 of Chapter 1 , upper triangular and column-stochastic. Therefore, an s-step condensation process to reduce $B_{n} f \in \mathscr{P}_{n}$ to $\left(B_{n} f\right)_{\varepsilon} \in \mathcal{D}_{n-s-1}, O_{\leqslant} \leqslant n$, requires that (see (1.12))

$$
\sum_{i=0}^{s} 4^{i} \sum_{j=0}^{s-i}\binom{2(n-i)}{j}<\frac{2^{2 n-1}}{M\|A\|_{\infty}}<\frac{2^{2(n-1)}}{M} \varepsilon
$$

be satisfied. Assuming this true, then algorithm (1.10) enables a step by step computation of $\left(B_{n}^{f}\right)_{\varepsilon}$.

It should be noted that, in asserting that $\|A\|_{\infty}<2$, use was made of the facts that $r_{0}=a_{00}=I$ and that the leading terms in the row sums r_{i} in (3.6) are $a_{i i}=\lambda_{i}$ and $a_{i, i+1}=\lambda_{i}\binom{i+1}{2} / n$, both >0 and <1, hence $r_{i}<2, i=O(1) n$.

3.1.1. Iumerical examole.

By way of illustration we consider the shape approximation problem of the polygonal function f with vertices $(0,0),(.2, .6),(.6, .8),(.9, .7)$, and (1,0) by a single polynomial of a fairly low degree.

> If we consider the approximant B_{1} fi and take $\varepsilon=3.5 \times 10^{-3}$, $\varepsilon^{\prime}=7.0 \times 10^{-3}$, and $\varepsilon^{\prime \prime}=2.5 \times 10^{-2}$ as admissible condensation parameters,
then it is possible to condense $B_{10} f$ to polynomial representations of degree 6, 5, and 4 respectively without exceeding those error bounds.

In each of the figures 2, 3, and 4 below we show the graph of f, $B_{10^{f}}$, the condensed representation P_{ε} of $B_{10^{f}}$ to degree r, and $B_{r} f$ for $r=4,5$, and 6 respectively. We can appreciate in Figure 3 that for $r=5$ the adjustment between $B_{10^{f}}$ and its condensed form is fairly close.

Figure 2

Fivice 3

Figure 4

3.1.2. Numerical condensation of Zézier nolynomials.

As seen in Section 5 of Chapter 1 , the Bézier operator \mathcal{S}_{n} associates with a given parametric function
$F:[0,1] \longrightarrow \mathbb{R}_{\underline{p}}, \quad F(s)=\left(X_{1}(s), X_{2}(s), \ldots, X_{p}(s)\right)^{T}, \quad 0 \leqslant s \leqslant 1, \quad p \geqslant 1$, the parametric curve in \mathbb{R}_{p}

$$
\beta_{n}(F ; s)=\left(B_{n}\left(X_{1} ; s\right), B_{n}\left(X_{2} ; s\right), \ldots, B_{n}\left(X_{p} ; s\right)\right)^{T} .
$$

The process of numerical condensation we have discussed for B_{n} extends trivially to δ_{n}. We say that

$$
\dot{S}_{\varepsilon_{\varepsilon}} F=\left(B_{r_{\varepsilon}} X_{I}, B_{r_{\varepsilon}} X_{2}, \ldots, B_{r_{\varepsilon}} X_{D}\right)^{T}
$$

is a condensed representation of $\mathcal{S}_{\mathrm{n}}^{\mathrm{F}}$ provided that

$$
\partial B_{\varepsilon} X_{k}<n, \quad t=I(1)_{p},
$$

and

$$
\left\|\mathcal{\beta}_{\mathrm{n}} F-\oiint_{r_{\varepsilon}}\right\|_{R_{p}}=\max _{1 \leqslant k \leqslant p}\left\|\left.\right|_{n} X_{k}-B_{r_{\varepsilon}} X_{k}\right\|<\varepsilon .
$$

3.2. Condensation of multivariate Bernstein-Eézier aoproximants.

Let $f=f(x, y) \in C\left[S_{2}\right], S_{2}$ the unit (x, y)-square of \mathbb{R}_{2}. Referring to Section 3 of Chapter 1,

$$
3_{n, m}(i ; x, y)=\sum_{i=0}^{i} \sum_{j=0}^{m} a j x^{i} y^{j}
$$

$$
a_{i j}=\binom{n}{i}\binom{m}{j} \Delta_{(x, I / n)}^{i} \Delta_{(y, I / m)}^{j} f(0,0)
$$

As an application of the material developed in Section 2 , we find the following smoothness conditions on f for projecting $B_{n, m} f$ onto a proper subspace of $\mathcal{P}_{\mathrm{n}, \mathrm{m}}$ without introducing an error greater than ε in the numerical values assumed by $B_{n, m} f$ over S_{2} :
(i) $\quad \sum_{r=0}^{s y} 4^{r} \sum_{k=0}^{s^{-r}}\binom{2(m-r)}{k}\left|p_{m-r}\right|<2^{2 m-1} \varepsilon, \quad 0 \leqslant s_{y}<m$,
where

$$
p_{m-r}=p_{m-r}(x)=\sum_{i=0}^{n} a_{i, m-r} x^{i}
$$

if the condensation of $B,{ }_{n} \mathrm{~m}^{f}$ is to be carried out with respect to the variable y; or

$$
\begin{equation*}
\sum_{r=0}^{s_{x}} 4^{r} \sum_{k=0}^{s_{x}^{-r}}(\underset{k}{2(n-r)})\left|p_{n-r}^{*}\right|<2^{2 n-1} \varepsilon, \quad 0 \leqslant s_{x}<n \tag{ii}
\end{equation*}
$$

where

$$
p_{n-r}^{*}=p_{n-r}^{*}(y)=\sum_{j=0}^{m} a_{n-r, j} y^{j}
$$

if $B_{n, m^{\prime}}$ is to be projected onto $\mathcal{P}_{n-s_{x}-1, m}$.
Use may be made of algorithm (2.13) for step by step computation of condensed forms $\left(B_{n, m} f\right)_{\varepsilon}$ of $B_{n, m} f$.

Figures 5, 7, 6, and 8 below represent $B_{10,10^{f}-\left(B_{10}, 10^{f}\right)}^{\varepsilon}$, ${ }^{3} 15,15^{f}-\left({ }^{\mathrm{g}} 15,15^{\hat{f}}\right)$, and the cormesponding contour maps respectively,

Figure 5 : Contour map of $z=B_{10,10^{f}-\left(B_{10,10^{f}}\right)}^{\varepsilon}$, $\varepsilon=.01$

$$
f=\sin (x) \cdot \cos (y) \cdot \exp \left(-x^{2}-y^{2}\right)
$$

$$
z_{\max }=.0019, z_{\min }=-.0023
$$

$$
\text { contour step }=\left(z_{\max }-z_{\min }\right) / 25
$$

Figure 8 : Contour map of $z=B_{15,15^{f}-\left(B_{15,15^{f}}\right)}$, $\mathcal{E}=.01$,

$$
\begin{aligned}
& f=\sin (x) \cdot \cos (y) \cdot \exp \left(-x^{2}-y^{2}\right) \\
& z_{\max }=.0029, z_{\min }=-.0032, \\
& \text { contour step }=\left(z_{\max }-z_{\min }\right) / 25
\end{aligned}
$$

Bearing in mind what has been said in Section 2 on the multivariate polynomial condensation problem, it is a simple matter to extend what has been done for $B_{n, m}$ to multivariate Bernstein polynomials $B_{\underline{n}}^{\prime}(f ; x)$, $f \in C\left[S_{i}\right]$, S_{i} the unit hypercube of \mathbb{R}_{N}, and to Bézier hypersurfaces in \mathbb{R}_{F} :

$$
\mathcal{S}_{\underline{n}}(F ; \underline{x})=\left(B_{\underline{n}}\left(X_{1} ; \underline{x}\right), B_{\underline{n}}\left(X_{2} ; \underline{x}\right), \ldots, B_{\underline{n}}\left(X_{\underline{p}} ; \underline{x}\right)\right)^{T},
$$

where

$$
F: S_{N} \longrightarrow Q_{p}, \quad F(\underline{x})=\left(X_{1}(\underline{x}), X_{2}(\underline{x}), \ldots, X_{p}(\underline{x})\right)^{T}
$$

(see Sections 3 and 5.4 of Chapter 1).

1. THE MATREX FORM OF THE BERNSTEIN ITERATES

As seen before, the $n^{\text {th }}$ degree Bernstein polynomial approximation to a given real $f(x)$ defined on $[0,1]$ is given by

$$
\begin{equation*}
B_{n}(f ; x)=\sum_{k=0}^{n} f_{k} \sigma_{k}(n, x), \quad f_{k}=f(k / n), \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{k}=q_{k}(n, x)=\binom{n}{k} x^{k}(I-x)^{n-k}=\sum_{i=k}^{n} c_{i k} x^{i}, \quad k=0(I) n \tag{1.2}
\end{equation*}
$$

with

$$
c_{i k}= \begin{cases}0 & , \quad i<k \tag{1.3}\\ (-1)^{i-k}\binom{n}{i}\left(\frac{i}{k}\right), & 0 \leqslant k \leqslant i \leqslant n .\end{cases}
$$

Bernstein itarates of natural omien are defined recursively:

$$
B_{n}^{r}(f ; x)=B_{n}\left(B_{n}^{r-1} f ; x\right), \quad r>l
$$

Owing to the facts that if $f \in \mathcal{D}_{m}$ then $B_{n} f \in \mathscr{D}_{\min \{m, n\}}$ and that B_{n} replaces $f \in C$ with a polynomial, it is no restriction, for $r>l$, to take f in $\mathscr{S}, \mathrm{N} \leqslant \mathrm{n}$. Actually, since $\mathrm{Z}_{\mathrm{n}}{ }^{2} \equiv 1$, for all n in N , we may tate for domain (and range) of B_{n} the linear subspace $\gamma_{\mathrm{l}}=\left\{\begin{array}{l}\mathcal{P}_{N-1}\end{array}\right\}$ of polynomials
of degree $\leqslant N$ vanishing at 0 .

```
It follows from (1.1) - (1.3) that
```

$$
\begin{align*}
B_{n}\left(x^{j} ; x\right) & =\sum_{k=1}^{n}\left(\frac{k}{n}\right)^{j} \sum_{i=1}^{n}(-1)^{i-k}\binom{n}{i}\left(\frac{i}{k}\right) x^{i} \\
& =n^{-j} \sum_{i=1}^{n}\binom{n}{i}\left\{\sum_{k=1}^{i}(-1)^{i-k}\left(\frac{i}{k}\right) k^{j}\right\} x^{i} \\
& =\sum_{i=1}^{j} a_{i j} x^{i}, \quad 1 \leqslant j \leqslant N \tag{1.4}
\end{align*}
$$

where (cf. Subsection 4.1 of Chapter 1)

$$
a_{i j}= \begin{cases}0, & i>j \tag{1.5}\\ \lambda_{i} n^{i-j} \sigma_{i j}, & 1 \leqslant i \leqslant j \leqslant N\end{cases}
$$

with

$$
\begin{align*}
\lambda_{i} & =\lambda_{i}(n)=\binom{n}{i} i!/ n^{i}, \quad 1 \leqslant i \leqslant N, \tag{1.6}\\
& =\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{i-1}{n}\right),
\end{align*}
$$

and

$$
\sigma_{i j}=\left\{\begin{array}{lll}
0 & , & i>j \tag{1.7}\\
\frac{1}{i!} \sum_{k=1}^{i}(-1)^{i-k}\left(\frac{i}{k}\right) k^{j}, & 1 \leqslant i \leqslant j .
\end{array}\right.
$$

For a given

$$
P(x)=\sum_{j=1}^{N} p_{j} x^{j}=x^{T} p
$$

where $x^{T}=\left(x, x^{2}, \ldots, x^{M}\right)$ and $p=\left(p_{2}, p_{2}, \ldots, p_{n}\right)^{T}$, we have

$$
\begin{aligned}
B_{n}(P ; x) & =\sum_{j=1}^{N} p_{j} B_{n}\left(x^{j} ; x\right) \\
& =\sum_{j=1}^{N} p_{j} \sum_{i=1}^{j} a_{i j} x^{i}, \text { by (1.4) } \\
& =\sum_{i=1}^{N}\left(\sum_{j=i}^{N} a_{i j} p_{j}\right) x^{i} \\
& =X^{T} A_{N} P
\end{aligned}
$$

with $A_{\mathrm{N}}=\left(a_{i j}\right)$ given by (1.5) - (1.7). Therefore,

$$
\begin{equation*}
B_{n}^{r}(P ; x)=X^{T} A_{N}^{r} D \quad, \quad r=1,2, \ldots \tag{1.8}
\end{equation*}
$$

It is clear that (1.8) continues to hold for polynomials from $\dot{\mathcal{N}}$, namely, $p_{0}+X^{T} p$. We have only to replace X by $(1, X), p$ by ($\left.p_{0}, p\right)$, and A_{1} by $A_{N+1}=\left[\begin{array}{ll}1 & 0 \\ 0 & A_{N}\end{array}\right]$.

Noting that all the eigenvalues of A_{N} lie in (0,1$]$, then equation (1.8) defines the iterates of arbitrary order $r \in \mathbb{R}$ of the Bernstein operator acting on γ_{N}.

2. THE TOTAL POSTTIVITY OF B_{n}

Let $G=\left(g_{i j}\right)$ be an $n^{\text {th }}$ order real matrix. The $k^{\text {th }}$. order minors of G formed from rows $i_{1}<i_{2}<\cdots<i_{k}$ and columns $j_{1}<j_{2}<\cdots<j_{k}, l \leqslant k \leqslant N$, will be denoted by

$$
G\binom{i_{1}, i_{2}, \ldots, i_{k}}{j_{I}, j_{2}, \ldots, j_{k}}=\operatorname{det}\left(g_{i_{m}} j_{m}\right)_{m=1}^{k}=\left|\begin{array}{ccc}
g_{i_{1}} j_{1} & \cdots & g_{i_{1}} j_{k} \tag{2.1}\\
\vdots & & \vdots \\
g_{i_{k} j_{1}} & \cdots & \delta_{i_{k}} j_{k}
\end{array}\right|
$$

We say that $G \in T P$ (or is $T P$ - totally positive) or that G ESTP (or is STP - strictly totally positive) if all minors of G are nonnegative or strictly positive respectively.

If G is \mathfrak{G} lower (upper) triangular matrix, the minors (2.1) for which $i_{m} \geqslant j_{m}\left(i_{m} \leqslant j_{m}\right)$ for $l \leqslant m \leqslant k$ are called the nontrivial minors of G. The remaining minors of G, the trivial minors, are obviously equal to 0 . We say that $G \in \triangle I P$ or $G \in \triangle S T P$ when the nontrivial minors of G are all non negative or striatly positive respectively.

The minors (2.1) for which $i_{m}=j_{m}, 1 \leqslant m \leqslant k$, are termed the principal minors of G.

Being B_{n} a bijection in \mathscr{D}_{n}, for any given

$$
\begin{aligned}
P(x) & =\sum_{j=0}^{n} p_{j} x^{j}=x^{T} p \\
& =\sum_{k=0}^{n}\left(\sum_{j=0}^{k} \frac{\binom{k}{j}}{\binom{n}{j}} p_{j}\right) q_{k}(n, x)=Q_{0}^{T} C^{-1} p,
\end{aligned}
$$

$$
\begin{aligned}
\text { where } g^{n} & =\left(0, q_{1}, \ldots, n_{n}\right) \text { and } a\left(a_{i k}\right) \text { is siven by (1.3), we may writa } \\
P(x) & =3_{n}\left(B_{n}^{-1} P ; x\right)=\sum_{k=0}^{n} B_{n}^{-1}(p ; k / n) q_{k}(n, x)
\end{aligned}
$$

to obtain

$$
\left(C^{-1} p\right)_{k}=\sum_{j=0}^{k} \frac{\binom{k}{j}}{\binom{n}{j}} p_{j}=B_{n}^{-1}(P ; k / n), \quad k=0(1) n
$$

REMARK 2.1. If $\underset{(a, b)}{Z}(f)$ denotes the number of real zeros of $f(x)$ in the indicated range, then, since:

$$
\begin{aligned}
v(P) & \leqslant \underset{(0, I)}{Z}(P)=\underset{(0,1)}{Z}\left(Q^{T} C^{-1} p\right)=\underset{(0, \infty)}{Z}\left(\sum_{k=0}^{n}\binom{n}{k}\left(\mathbf{c}^{-1} p\right)_{k} z^{k}\right), z=x /(1-x) \\
& \leqslant v\left(C^{-1} p\right)=v\left(\left\{B_{n}^{-1}(P ; k / n)\right\}_{k=0}^{n}\right) \\
& \leqslant v\left(B_{n}^{-1} P\right) ;
\end{aligned}
$$

this being valid for all P in \mathscr{S}_{n}, we may replace in these inequalities P by $B_{n} P\left(p\right.$ by $\left.A_{N+1} p\right)$ to receive

$$
\begin{aligned}
v\left(B_{n} P\right) & \leqslant \underset{(0,1)}{Z}\left(B_{n} P\right)=\underset{(0,1)}{Z}\left(Q^{T} C^{-1} A_{N+1} p\right) \\
& \leqslant v\left(C^{-1} A_{N+1} p\right)=v\left(\{P(k / n)\}_{k=0}^{n}\right) \\
& \leqslant v(P)
\end{aligned}
$$

and we get the well-known Schoenberg's result that the transformation $P \longrightarrow B_{n} P\left(p \longrightarrow A_{N+1} p\right)$ is variation diminishing while its inverse, $P \longrightarrow B_{n}^{-1} P$ $\left(p \longrightarrow A_{N+1}^{-1} p\right.$) is variation increasing.

LEMMA 2.I.

$$
A_{N} \in \triangle S T P
$$

 variation diminishing matrix transformations (see, e.g., Schoenberg and Whitney (1951)) and the observation that the principal
minors of A_{N} are all positive.

COROLLARY.

$$
S=\left(\sigma_{i j}\right) \in \triangle S T P
$$

PROOF. Using (1.5) and the homogeneity property of the determinant, we have

$$
A_{N}\binom{i_{1}, i_{2}, \ldots, i_{k}}{j_{1}, j_{2}, \ldots, j_{k}}=\lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{k}} . n \sum^{\sum_{m=i^{\prime}}^{k}\left(i_{m}-j_{m}\right)} . S\binom{i_{1}, i_{2}, \ldots, i_{k}}{j_{1}, j_{2}, \ldots, j_{k}}
$$

for $1 \leqslant k \leqslant N, \quad I \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant N$, and the result is manifestly at hand.

3. THE POSITIVITY OF $\mathrm{B}_{\mathrm{n}}^{\mathrm{x}}$

THEOREM 3.1. A_{N}^{r} is column-stochastic for each real $r \geqslant N-1$.

PROOF. Following Rosenbloom (1967)'s divided difference approach to defining matrix-valued functions, we have

$$
\begin{gather*}
\left(A_{N}^{r}\right)_{i k}=\lambda_{i}^{r} \delta_{i k}+\left[\lambda_{i}, \lambda_{k}\right]_{\lambda r} \cdot a_{i k}+\sum_{j=1}^{k-i-1} i_{i<i_{1}<\ldots<i_{j}<k}\left[\lambda_{i}, \lambda_{i_{1}}, \ldots, \lambda_{i_{j}}, \lambda_{k}\right]_{\lambda^{r}} \\
. a_{i i_{1}} a_{i_{1} i_{2}} \ldots a_{i_{j} k}, \quad 1 \leqslant i \leqslant k \leqslant N . \quad \text { (3.1) } \tag{3.1}
\end{gather*}
$$

Observing that, for $1 \leqslant j<k-i$ and $r \geqslant k-i$,

$$
\left[\lambda_{i}, \lambda_{i_{1}}, \ldots, \lambda_{i_{j}}, \lambda_{k}\right]_{\lambda^{r}}=\left.\frac{1}{(j+1)!} \frac{d^{j+1}}{d \lambda^{j+1}}\left(\lambda^{r}\right)\right|_{\lambda=\theta}=\left(\begin{array}{c}
r+1
\end{array}\right) \theta^{r-j-1}>0
$$

for some $\theta \in\left(\lambda_{\mathrm{K}}, \lambda_{i}\right)$, it follows that

$$
\begin{equation*}
r \geqslant k-i \Longrightarrow\left(A_{N}^{T}\right)_{i k}>0, \quad 1 \leqslant i \leqslant k \leqslant N . \tag{3.2}
\end{equation*}
$$

Let $V=V_{N}(n)=\left(v_{i j}\right)$ denote the eigenmatrix of A_{N} normalized so that $v_{i i}=1,1 \leqslant i \leqslant i$, and let the elements of V^{-1} be $v_{i j}^{*}$. The matrices V and V^{-1} are both upper triangular, and it is shown in Kelisky and Rivlin (1967) that the first row of V^{-1} consists of all 1 's and that the colum sums of V are all 0 , except the first which is 1 .

From the spectral representation

$$
A_{N}^{r}=V \Gamma^{r} V^{-1}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{i}\right)$, and the properties of V and V^{-1} referred to above, we obtain

$$
\begin{align*}
\sum_{i=1}^{k}\left(A_{V}^{r}\right)_{i k} & =\sum_{i=1}^{k} \sum_{j=i}^{k} v_{i j} v_{j k}^{*} \lambda_{j}^{r} \\
& =\sum_{j=1}^{k}\left(\sum_{i=1}^{j} v_{i j}\right) v_{j k}^{*} \lambda_{j}^{r} \\
& =\sum_{j=1}^{k} \delta_{l j} v_{j k}^{*} \lambda_{j}^{r} \\
& =v_{1 k}^{*} \\
& =1, \quad 1 \leqslant k \leqslant N, \quad r \in \mathbb{R} . \tag{3.3}
\end{align*}
$$

That A_{N}^{r} is column-stochastic for each real $r \geqslant N-1$ follows now readily from properties (3.2) and (3.3).

> COQOIEARY. Like $B_{n}: \gamma_{\mathrm{H}} \longrightarrow \gamma_{\mathrm{i}}, \mathrm{B}_{\mathrm{n}}^{r}(\mathrm{r} \geqslant \mathrm{H}-1)$ is a linear positive operator of unit uniform norm.

We shall see in the next section how the condition $r \geqslant N-1$ can be relaxed to $r \geqslant 0$ and yet implying that B_{n}^{r} is either TP or nearly TP in the sense that the matrix representing it is either TP or replaceable, elementwise and arbitrarily closely, by a TP matrix.
4. THE LTMITING BEHAVIOUR OF B_{n}^{r}
4.1. The case of n fixed and $r \longrightarrow \infty$.

THEOREM 4.1.
a) $\left(\mathrm{A}_{\mathrm{N}}^{\mathrm{r}}\right)_{1 \mathrm{k}} \nmid 1, \quad 1 \leqslant \mathrm{k} \leqslant \mathrm{N}$,
b) $\left(A_{N}^{r}\right)_{i k} \downarrow 0, \quad 2 \leqslant i \leqslant k \leqslant N$.

PROOF. Bearins in mind (3.1) and (3.2), recalling that $\lambda_{1}=1$, $0<\lambda_{i}<1$ for $2 \leqslant i \leqslant N$, and that

$$
\left[\lambda_{\mathrm{m}_{1}}, \lambda_{\mathrm{m}_{2}}, \ldots, \lambda_{\mathrm{m}_{\mathrm{k}}}\right]_{\lambda^{r}}=\sum_{i=1}^{k} \frac{\lambda_{m_{i}}^{I}}{\Pi_{1}^{\prime}\left(\lambda_{\mathrm{m}_{i}}\right)}, \quad \Pi(\lambda)=\prod_{i=1}^{k}\left(\lambda-\lambda_{m_{i}}\right), \quad \text { (4.1) }
$$

then part b) follows immediately. As for part a),

$$
\begin{aligned}
\left(A_{N}^{r}\right)_{I I} & =1 \\
\left(A_{N}^{r}\right)_{I k} & \uparrow \frac{a_{I k}}{1-\lambda_{k}}+\sum_{j=1}^{k-2} \sum_{1<i_{1}<\cdots<i_{j}<k} \frac{a_{1 i_{1}} a_{i_{1} i_{2}} \cdots a_{i} k}{\left(1-\lambda_{i_{1}}\right)\left(1-\lambda_{i_{2}}\right) \ldots\left(1-\lambda_{k}\right)} \\
& =\prod_{m=2}^{k}\left[\left(\frac{\sum_{i=1}^{m-1} a_{i m}}{\left(I-\lambda_{m}\right)}\right)=I, \quad 2 \leqslant k \leqslant N .\right.
\end{aligned}
$$

COROLLARY 1 (Kelisky - Rivlin). For $r=r_{n} \in \mathbb{N}$,

PROOF. This is obviously contained in a) and b), which not only hold for $r \in \mathbb{R}$ but enlighten the structural limiting properties of A_{N}^{r}.

COROLLARY 2. For each f in C

$$
B_{n}^{r}(f ; x) \longrightarrow B_{n}^{\infty}(f ; x) \equiv B_{1}(f ; x)
$$

uniformly in $0 \leqslant x \leqslant 1$.

PROOF. We may replace f with $L_{n}(f ; x)=X^{T} p$, the interpolating polynomial for f at the nodes $k / n, k=0(1) n$. Since $A_{N+1}^{r}=\left[\begin{array}{cc}1 & 0 \\ 0 & A_{N}^{r}\end{array}\right]$, then, for $n=N$, Theorem 4.1 gives

$$
A_{n+1}^{r} \longrightarrow A_{n+1}^{\infty}=\left[\begin{array}{ll}
1 & 0 \\
1 & E
\end{array}\right]
$$

Therefore,

$$
\begin{aligned}
B_{n}^{r}(f ; x) & =X^{T} A_{n+1}^{r} p \\
& \longrightarrow X^{T} A_{n+1}^{\infty} p=p_{0}+\left(\sum_{i=1}^{n} p_{i}\right) x=f(0)+(f(1)-f(0)) x
\end{aligned}
$$

Van der Steen, Sikkema (1966), and Kelisky and Rivlin (1967) have proved Corollary 2, only for $x=r_{n} \in \mathbb{N}$, by different methods.

COROLLARY 3. Let K be the $(n+1) x(n+1)$ matrix representing $B_{n}: \mathscr{D}_{n} \rightarrow \mathscr{D}_{n}$ when we take for ϕ_{n} the Bernstein basis $\left\{a_{k}\right\}_{k=0}^{n}$, i.e., $B_{n}{ }^{2} j=0^{T} K e_{j}, j=0(1) n, e_{j}$ being the $(n+1)$-component vector with 1 in the f^{t+} oostian art O elserheme. Tnen

$$
K^{r} \rightarrow K^{\infty}=\left[\begin{array}{cccccc}
1-0 / n & 0 & \ldots & 0 & 0 / n \\
1 & -1 / n & 0 & \ldots & 0 & 1 / n \\
1 & - & 2 / n & 0 & \ldots & 0 \\
\ldots & 2 / n \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1-n / n & 0 & \ldots & 0 & n / n
\end{array}\right]
$$

PROOF. This follows from Corollary 2 and the observation that in K^{∞} corresponding to B_{n}^{∞}, the $K^{\text {th }}$ column of K^{∞} consists of the coefficients of $B_{n}^{\infty} q_{\text {I }}$:

$$
\begin{aligned}
& B_{n}^{r} q_{0} \longrightarrow B_{n}^{\infty} q_{0}=1-x=\sum_{j=0}^{n}(1-j / n) q_{j} \\
& B_{n}^{r} q_{k} \longrightarrow B_{n}^{\infty} q_{k}=0, \quad k=1(1) n-1, \\
& B_{n}^{r} q_{n} \longrightarrow B_{n}^{\infty} q_{n}=x=\sum_{j=0}^{n}(j / n) q_{j} \cdot
\end{aligned}
$$

Nielson, Riesenfeld, and Weiss (1976) have offered a proof of Corollary 3, only for $r=r_{n} \in \mathbb{C}$, using probabilistic arguments.

4.2. The case of $n \longrightarrow \infty$ and $r=r \longrightarrow t \in \mathbb{R}$, fixed, as $m \longrightarrow \infty$

 indesencently of n.The analysis of the limiting behaviour of the matrix $A_{N}^{t}(n)$, where t is a fixed real, N a fixed natural, and $n \longrightarrow \infty$, is considerably simplified if we observe that

$$
\begin{array}{ll}
a_{i i}=\lambda_{i}=1-\frac{\left(\frac{1}{2}\right)^{\prime}}{n}+O\left(n^{-2}\right), & 1 \leqslant \leqslant^{i}, \\
a_{i, i+1}=\lambda_{i} \frac{\binom{i+1}{2}}{n}+O\left(n^{-2}\right), & 1 \leqslant i<N \\
a_{i k}=O\left(n^{i-k}\right) & 1 \leqslant<^{k} \leqslant N .
\end{array}
$$

In viev of this $w=$ have the following

LEMAS:
a) $\quad A_{N}=I+\frac{I}{n} C_{N}+O\left(n^{-2}\right)$
b) $\quad=e^{\frac{1}{n} C_{N}}+O\left(n^{-2}\right)$
c) $\quad=e^{\frac{1}{n}\left(C_{N}+O\left(n^{-1}\right)\right)}$,
where C_{N} is the bidiagonal matrix whose nonzero entries are given by

$$
\begin{array}{ll}
\left(c_{N}\right)_{i i}=-\mu_{i}, & 1 \leqslant i \leqslant 1 \\
\left(c_{i}\right)_{i, i+1}=\mu_{i+1}, & 1 \leqslant i<N
\end{array}
$$

With the usiai convention that $\left(\frac{1}{j}\right)=0$ in $i<j$, and $O\left(n^{-k}\right)$ denotes an NixN upper tiangular matrix whose nonzero entries are $O\left(n^{-k}\right)$.

REMARK 4.I. For the monomial x^{j} it follows that

$$
\begin{aligned}
n\left[B_{n}\left(x^{j} ; x\right)-x^{j}\right] & =x^{T}\left[n\left(A_{N}-I\right)\right] e_{j} \\
& \longrightarrow x^{T} C_{N^{e}}{ }_{j}=\mu_{j} x^{j-1}-\mu_{j} x^{j}=\frac{1}{2} x(1-x)\left(x^{j}\right)^{\prime \prime} .
\end{aligned}
$$

Owing to the linearity of the operators B_{n} and $d^{2} / d x^{2}$ and to the facts that $\left\|B_{n}\right\|=I$ and $\mathcal{P}={\underset{N}{N}=0}_{\infty}^{\infty} \mathcal{D}_{N}$ is dense in C, we then get the Voronovskaya's result that

$$
\lim _{n \rightarrow \infty} n\left[B_{n}(f ; x)-f(x)\right]=\frac{1}{2} x(1-x) f^{\prime \prime}(x)
$$

provided that f has a second derivative at $x \in[0,1]$, the conversence being uniform in $0 \leqslant x \leqslant 1$ whenever $f^{\prime \prime}(x)$ is continuous.

COROLLARY I.

$$
\begin{aligned}
& \text { i) } \quad \lim _{n \rightarrow \infty} A_{N}^{n}=e^{C_{N}} \\
& \text { ii) } \quad \lim _{n \rightarrow \infty} A_{N}^{[n t]}=\lim _{n \rightarrow \infty} A_{N}^{n t}=e^{t c_{N}}, \quad t \geqslant 0 .
\end{aligned}
$$

PROOF. Pant i) is immediate. The first equality in ii) follows from the fact that $n t \sim[n t]$ and the second follows from i).

REMARK 4.2. Since each element of the sequence $\left\{A_{N}^{[n t]}\right\}, t>0$, is column-stochastic and $\triangle S T P$, then so is the limit $\exp \left(t C_{N}\right)$. It is also clear that for $t>0$ and n sufficiently large, $A_{N}^{n t}$ is either \triangle STP or replaceable, elementwise and arbitrarily closely, by a \triangle STP matrix, namely $A_{N}^{[a t}$.

COROLLARY 2. Let $r=r_{m} \longrightarrow t \in \mathbb{R}$, fixed, as $m \rightarrow \infty$ independently of n, then

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} A_{N}^{x_{m}}=I \tag{4.2}
\end{equation*}
$$

PROOF.

$$
\lim _{n, m \rightarrow \infty} A_{N}^{A_{n}}=\left(\lim _{n \rightarrow \infty} A_{N}\right)^{t}=I .
$$

REMARK 4.3. For $t>0$ and n sufficiently large A_{N}^{t} is either $\triangle S T P$ or can be approximated, elementwise and arbitrarily closely, by a $\triangle S T P$ matrix, namely, $\exp \left(\frac{t}{n} C_{N}\right)$. Indeed, from $\left.c\right)$ and $\left.b\right)$ of Lemma 4.1,

$$
A_{N}^{t}=e^{\frac{t}{n} C_{N}}+O\left(n^{-2}\right)
$$

RפMARK 4.4. In correspondence with (4.2) we have, for each $P \in P_{N}$ and $r_{m} \rightarrow t \in \mathbb{R}$,

$$
\lim _{n, m \rightarrow \infty} B_{n}^{n}(P ; x)=p(x)
$$

uniformiy in $0 \leqslant x \leqslant 1$. Being Sidense in C and, for $r_{m}>0,\| \|_{n} r_{m} \|=1$, then, for each I in C,

$$
\lim _{n, m \rightarrow \infty} B_{n}^{r_{m}}(f ; x)=f(x)
$$

uniformly in $0 \leqslant x \leqslant l$. For $r_{m} \longrightarrow I$ we recover the Bernstein uniform approximation theorem.

4.3. The case of $r=r_{n} \longrightarrow \infty$.

Since the eigenvalues of A_{N} are all positive, then
 stochastic $\triangle S T P$ matrix provided $t>0$.

REMARK 4.5. Referring to (3.1) and (4.1), the coefficients of λ_{i}^{r}, $\lambda_{i_{m}}^{r_{n}}, l \leqslant m \leqslant j<k-i$, and $\lambda_{k}^{r_{n}}$ in
$\left[\lambda_{i}, \lambda_{i_{I}}, \ldots, \lambda_{i_{j}}, \lambda_{k}\right]_{\lambda^{n}} \cdot a_{i i_{1}}{ }^{a_{i_{1} i_{2}}}, \cdots a_{i_{j} k}=\frac{a_{i i_{1}}{ }^{a_{i_{1}} i_{2}} \cdots a_{i_{j} k}}{\left.\left(\lambda_{i}-\lambda_{k}\right)\right]_{m=1}^{j}\left(\lambda_{i}-\lambda_{i_{m}}\right)} \cdot \lambda_{i}^{r_{n}}$

$$
+\frac{a_{i i_{1}}^{a_{i} i_{2}} \cdots^{a_{i} k}}{\left.\left(\lambda_{k}-\lambda_{i}\right)\right]_{m=1}^{j}\left(\lambda_{k}-\lambda_{i_{m}}\right)} \cdot \lambda_{k}^{r}, \quad 1 \leqslant j<k-i
$$

are easily seen to have numerators $O\left(1 / \mathrm{n}^{\mathrm{k}-\mathrm{i}}\right)$, denominators $O\left(1 / \mathrm{n}^{\mathrm{j}+1}\right)$, and thus all tend to 0 as $n \longrightarrow \infty$, except when $j=k-i-1$. Therefore,

$$
b_{i k}(t) \equiv\left(e^{t C_{N}}\right)_{i k}=e^{-\mu_{i} t} \delta_{i k}+\lim _{n \rightarrow \infty}\left[\lambda_{i}, \lambda_{i+1}, \ldots, \lambda_{k-1}, \lambda_{k}\right]_{\lambda} r_{n} \cdot a_{i, i+1} \cdots a_{k-1, k}
$$

and we recover, after some manipulation, the result by Kelisky and Rivlin (1967) that

$$
\begin{equation*}
b_{i k}(t)=\sum_{j=i}^{k} \phi_{i, j, k} e^{-\mu_{j} t}, \quad 1 \leqslant i \leqslant k \leqslant N ; \quad t \geqslant 0 \text {, } \tag{4.3}
\end{equation*}
$$

with

$$
\begin{equation*}
{\underset{\beta}{i, j, k}}=(-1)^{j-i} \frac{i}{k} \frac{\binom{k}{j}^{2}\binom{j}{i}^{2}}{\binom{j-2}{j-i}\binom{k+j-1}{2 j-1}}, \quad 1 \leqslant i \leqslant j \leqslant k \tag{4.4}
\end{equation*}
$$

In particular,

$$
r_{n} / n \downarrow 0 \Rightarrow A_{N}^{r_{n}} \rightarrow I \quad \text { and } \quad r_{n} / n \uparrow \infty \Rightarrow A_{N} \rightarrow E
$$

The coefficients $\oiint_{i, j, k}$ satisfy the following sets of seeminaly nontrivial identities:

THEOREM 4.2.
a) $\quad \sum_{i=1}^{j} \oiint_{i, j, k}=0, \quad 2 \leqslant j \leqslant k$,
b) $\quad \sum_{j=1}^{k} \phi_{i, j, k} \mu_{j}^{m}=0, \quad 1 \leqslant i \leqslant k, \quad 0 \leqslant m<k-i$.

PROOS. Refoming to the representation

$$
\begin{equation*}
e^{t C_{n}}=I+\sum_{m=1}^{\infty} \frac{t^{m}}{m!} C_{N}^{m} \tag{4.5}
\end{equation*}
$$

we see that the property that the column sums of $\exp \left(\mathrm{tC}_{\mathrm{N}}\right)$ are all equal to 2 is equivalent to the vanishing of the column sums of $c_{N}^{m}, m \geqslant 1$.
 and thus, from (4.5),

$$
\begin{equation*}
b_{i k}(t)=\sum_{m=k-i}^{\infty} \frac{\left(C_{N}^{n}\right)_{i k}}{m!} t^{m}, \quad 1 \leqslant i<k \tag{4.6}
\end{equation*}
$$

showing that the functions $b_{i k}(t), ~ I \leqslant i<k$, have $t=0$ as a zero of multiplicity $\mathrm{k}-\mathrm{i}$. On the other hand, from (4.3),

$$
\begin{equation*}
b_{i k}(t)=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!}\left(\sum_{j=1}^{k} p_{i, j, k} \mu_{j}^{m}\right) i^{m}, \tag{4.7}
\end{equation*}
$$

and part b) follows.

Comparing like powers of t in (4.6) and (4.7) leads to

$$
\left(c_{N}^{m}\right)_{i k}=(-1)^{m} \sum_{j=i}^{k} \not \phi_{i, j, k} \mu_{j}^{m}, \quad 1 \leqslant i<k, \quad m \geqslant 0 .
$$

The vanishing of the colunn sums of $C_{i i}^{m}, m \geqslant l$, implies that

$$
\sum_{j=2}^{k}\left(\sum_{i=1}^{j} \not P_{i, j, k}\right) \mu_{j}=0, \quad k \geqslant 2, \quad m \geqslant 0
$$

and part a) follows from the arbitrariness of m.

REMARK 4.6. The set of identities a) and that corresponding to $m=0$ in b) were first observed by Kelisky and Rivlin (1967).

With the change of variable $x=e^{-t}$ the range $[0, \infty]$ is transformed into $[0,1]$ and the functions $b_{i k}(t)$ may be written as polynomials in x :

$$
v_{i k}(t)=\tilde{b}_{i k}(x)=x^{\mu_{i}} \sum_{j=i}^{k} \mathscr{P}_{i, j, k} x^{\mu_{j}-\mu_{i}},
$$

showing that $x=0(t=\infty)$ is a zero of $\tilde{b}_{i k}\left(b_{i k}\right)$ of multiplicity μ_{i}. Being $x=1(t=0)$ a zero of $\tilde{b}_{i k}\left(b_{i k}\right)$ of multiplicity $k-i$, then
we have the following

THEOREM 4.3.

$$
\tilde{b}_{i k}(x)=x^{\mu_{i}}(1-x)^{k-i} p_{i k}(x), \quad 1 \leqslant i \leqslant k,
$$

with $p_{i k}$ in $\mathcal{D}_{s}, \quad s=\left(\mu_{k}-\mu_{i}\right)-(k-i)=\frac{1}{2}(k-i)(k+i-3)$, having every coefficient positive.

PROOF. The coefficients $c_{j}=c_{j}(i, k)$ of $p_{i k}(x)=\sum_{j=0}^{S} c_{j} x^{j}$ may be determined by equating coefficients of like powers of x in

$$
\begin{equation*}
\sum_{j=i}^{k} \not \oiint_{i, j, k} x^{j}{ }^{i}-\mu_{i}=(1-x)^{\nu} p_{i k}(x), \quad \nu=k-i \tag{4.8}
\end{equation*}
$$

Assuming that $p_{i k}(x)$ has ω sign variations, then $(1-x)^{\nu} p_{i k}(x)$ will have at least $\omega+\nu$ (see Pólya and Szegö (1976, Probl. 30, p. 40)). On the other hand, by (4.4) and (4.8), the latter has precisely ν variations. Hence $\omega=0$, i.e., all c_{j} 's have the same sign. But $p_{i k}(x)>0$ for $x>0$ and therefore $c_{j}>0,0 \leqslant j \leqslant s$.

5. CONVEXITY PRESERVING PROPERTIES OF B B_{n}^{r}

There is a sharply contrasting behaviour between $\mathrm{B}_{\mathrm{n}}^{r}$ and $\mathrm{B}_{\mathrm{n}}^{-r}, r>0$:
i) While B_{n}^{r}, having no eisenvalue >1, is contractive, variation diminishing, and norm not increasing, $\mathrm{B}_{\mathrm{n}}^{-r}$ is a variation increasing dilatation which increases the norm unboundedly as $r \longrightarrow \infty$.
ii) For $r>0$ and $n>2$ the transformation B_{n}^{r} is convexity preserving or nearly so inasmuch as the matrix $A^{r}(n)$ representing it is $T P$ or replaceable, elementwise and arbitrarily closely, by a TP matrix. In contrast, B_{n}^{-r} has no such property, as shown by the example

$$
q_{n}(n, x)=x^{n}=B_{n}\left(B_{n}^{-1} x^{n} ; x\right)=\sum_{k=0}^{n} B_{n}^{-1}\left(x^{n} ; k / n\right) a_{k}(n, x),
$$

which implies, by the linear independence of the ${ }_{\mathrm{q}}^{\mathrm{k}}$'s, that

$$
B_{n}^{-1}\left(x^{n} ; k / n\right)= \begin{cases}0, & k=0(1) n-1, \\ 1, & k=n .\end{cases}
$$

Therefore, while x^{n} is convex on $[0,1]$,

$$
B_{n}^{-1}\left(x^{n} ; k / n\right)=\prod_{i}^{n}=0,1\left(\frac{x-k / n}{1-k / n}\right)=\frac{n^{n}}{n} x\left(x-\frac{1}{n}\right) \ldots\left(x-\frac{n-1}{n}\right)
$$

oscillates n times about zero.

REMARK 5.1. B_{2}^{r} is convexity preserving for each real r. Fnèed, let the functom f ve devinct and correx on $[0, I]$. The ordinates $f_{k}=f(k / 2), k=0,1,2$, satisfy $\Delta^{2} f_{0} \geqslant 0$. Let

$$
P(x)=B_{2}(f ; x)=B_{2}\left(L_{2} f ; x\right)=f_{0}+2 \Delta f_{0} x+\Delta^{2} f_{0} x^{2} .
$$

Then

$$
\begin{align*}
B_{2}^{r}(f ; x) & =B_{2}^{r-1}(p ; x)=\left[1, x, x^{2}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
& 1 & 1-2^{1-r} \\
& \\
2^{1-r}
\end{array}\right]\left[\begin{array}{c}
f_{0} \\
2 \Delta f_{0} \\
\Delta^{2} f_{0}
\end{array}\right] \tag{5.1}\\
& =f_{0}+\left[2 \Delta f_{0}+\left(1-2^{1-r}\right) \Delta_{f_{0}}^{2}\right] x+2^{1-r} \Delta^{2} f_{0} x^{2}
\end{align*}
$$

is manifestly convex for each real r.

It should be noticed that B_{2}^{r} is convexity preservins for every real r, whereas the 3×3 matrix in (5.1) is not positive for $r<1$, much less TP.

CHAPTER 4

THE LIMITING SEMIGROUP $\left\{\mathcal{W}_{t} ; t \geqslant 0\right\}$ OF BERTSTEIN ITERATES

1. EXISTEICE, GHARACTERIZATION, AND REPRESENTATION OF \boldsymbol{B}_{t}

1.1. Existence and characterization of \mathcal{W}_{t} acting on \mathcal{N}.

In Chapter 3 the main object of stuay was the matrix $A_{\mathbb{N}+1}^{n_{n}}$ representing $B_{n}^{r_{n}}$ acting on $\mathscr{D}_{\mathbb{N}}$. In the terminology of the operator semigroup theory $\left\{\hat{A}_{n} ; n_{n} \geqslant 0\right\}$ is a semigroup of positive matrices. This semigroup was shown to converge to the semigroup of $T P$ matrices $\left\{\exp \left(t C_{N+1} ; t \geqslant 0\right\}\right.$ where

$$
c_{N+1}=\lim _{n \longrightarrow \infty} n\left(A_{N+1}-I\right)
$$

iff $x_{n} / n \rightarrow$ as $n \rightarrow \infty$. Unaer this condition, it was shown that

$$
\exp \left(t C_{N+1}\right)=\lim _{n \rightarrow \infty} A_{N+1}^{A_{n}}=\lim _{n \rightarrow \infty} A_{N+1}^{[n t]}
$$

In view of this, if we call

$$
\begin{aligned}
\alpha_{t} p(x) & =\lim _{n \rightarrow \infty} 3_{n}(x)=\lim _{n \rightarrow \infty}[n] p(x) \\
& =x^{T} \exp \left(t 0_{n+1}\right) p,
\end{aligned}
$$

where p denotes the coefficient vector of $P \in S_{N}$ and $X^{T}=\left(1, x, x^{2}, \ldots, x^{N}\right)$, that limit exists for any $t \geqslant 0$ and all $P \in \mathscr{S}_{N}$, i.e., there exists a totally positive semigroup $\left\{\mathcal{B}_{t} ; t \geqslant 0\right\}$ on \mathscr{P}_{N} to itself, with $\mathcal{S}_{0}=I$ and such that, for each $t \geqslant 0$ and all $P \in \mathcal{P}_{\text {if }}$,

$$
\lim _{n \rightarrow \infty}\left\|B_{n}^{[n t]} p-\mathcal{S}_{t} p\right\|=0
$$

Furthermore, the operators B_{n} (and likewise $B_{n}{ }_{n}, r_{n} \geqslant 0$) have norm l since they are positive and preserve the unit function. Therefore $\left\{\mathscr{S}_{t} ; t \geqslant 0\right\}$ is a totally positive, strongly continuous, contraction semigroup on $\mathcal{P}_{\mathrm{N}},\left\{\exp \left(t C_{\mathrm{N}+1}\right) ; t \geqslant 0\right\}$ being its matrix representation when we take for \mathscr{P}_{N} the usual basis $\left\{\mathrm{x}^{\mathrm{k}}\right\}_{\mathrm{k}=0}^{\mathrm{N}}$.

The infinitesimal generator D of the semigroup $\left\{\mathscr{S}_{t}\right\}$ is defined as

$$
\begin{aligned}
D x^{k}= & \lim _{t \downarrow 0}\left(S_{i}\left(x^{k} ; x\right)-x^{k}\right) / t, \quad k=0(I) N \\
= & \lim _{t} \ell_{0}^{T} \cdot\left(\exp \left(t C_{N+I}-I\right) / t\right) \cdot e_{k} \\
& =x^{T} C_{N+I} e_{k} \\
= & \mu_{k} x^{k-I}-\mu_{k} x^{k}, \quad \mu_{k}=\binom{k}{2}, \\
= & \frac{1}{2} x(I-x)\left(x^{k}\right)^{\prime \prime},
\end{aligned}
$$

i.e.,

$$
D=\frac{1}{3} x(1-x) d^{2} / d x^{2}
$$

D is a linear differential operator acting on $\mathscr{D}(D)=C^{2}$, and C_{N+1} is the matrix representation of the restriction of D to \mathscr{D}_{N}.

Invoking the result of Voronovskaya (see Remark 4.1 in Chapter 3) we also have

$$
D x^{k}=\lim _{n \rightarrow \infty} n\left(B_{n}\left(x^{k} ; x\right)-x^{k}\right), \quad k=0(1) N
$$

hence

$$
\begin{equation*}
D=\lim _{n \rightarrow \infty} n\left(B_{n}-I\right) \tag{1.2}
\end{equation*}
$$

The foregoing results on the existence and characterization of the semigroup $\left\{\mathcal{B}_{t} ; t \geqslant 0\right\}$ are contained in the theorem of Trotter(1958) on the convergence of the iterates of contractive mappings on Banach spaces. In what follows, however, there will be no need of the full strength of Trotter's result.

Introducing the notation

$$
\begin{align*}
W_{k}(t, x) & \equiv \oiint_{t}\left(x^{k} ; x\right)=\lim _{n \rightarrow \infty} B_{n}^{[n t]}\left(x^{k} ; x\right), \quad k=I(I) N \\
& =x^{T} \exp \left(t C_{N}\right) e_{k}=\sum_{i=1}^{k} b_{i k}(t) x^{i}, \tag{1.3}
\end{align*}
$$

and using the semigroup property of \mathcal{S}_{t},

$$
h^{-1}\left(W_{k}(t+h, x)-W_{k}(t, x)\right)=h^{-1}\left(\delta_{h}-I\right) W_{k}(t, x), \quad h>0
$$

and, similarly,

$$
h^{-1}\left(W_{k}(t, x)-W_{k}(t-h, x)\right)=h^{-1}\left(\mathscr{B}_{h}-I\right) \mathcal{B}_{t-h}\left(x^{k} ; x\right), \quad 0<h<t
$$

Letting is V , racalling Renark -.5 in Ghapter 3 and using (1.1) we are led to the following initial value problem(Cauchy problem)

$$
\left\{\begin{array}{l}
\partial W_{k} / \partial t=D W_{k}, \quad W_{k}=W_{k}(t, x) \tag{1.4}\\
W_{k}(0, x)=x^{k}, W_{k}(\infty, x)=x, \\
W_{k}(t, 0)=0, W_{k}(t, 1)=1
\end{array}\right.
$$

of which (1.3) is the unique solution on

$$
\begin{equation*}
\Omega=\left\{(t, x) \in \mathbb{R}_{2}: \quad 0 \leqslant x \leqslant 1, \quad 0 \leqslant t \leqslant \infty\right\} . \tag{1.5}
\end{equation*}
$$

REMARK 1.1. We recall, for clarity sake, that the end condition

$$
\begin{gathered}
W_{k}(\infty, x)=x \text { corresponds to the fact } \\
S_{\infty}\left(x^{k} ; x\right)=\lim _{t \rightarrow \infty} \mathscr{S}_{t}\left(x^{k} ; x\right)=\lim _{n \rightarrow \infty} B_{n}^{r_{n}}\left(x^{k} ; x\right)=B_{1}\left(x^{k} ; x\right)=x
\end{gathered}
$$

iff $\underset{n \rightarrow \infty}{\lim } r_{n} / n=\infty$, whereas the side conditions $W_{k}(t, 0)=0$ and $W_{k}(t, I)=I$ correspond to the interpolating properties $B_{n}\left(x^{k} ; 0\right)=0$ and $B_{n}\left(x^{k} ; 1\right)=I$ respectively.

1.2. Soectral characteristics of \mathcal{S}_{t}.

From Chapter 3 (see Section 3 and Lemma 4.1 a))

$$
\begin{aligned}
C_{N} & =\lim _{n \rightarrow \infty} n\left(A_{N}(n)-I\right) \\
& =\lim _{n \rightarrow \infty} n\left(V_{N}(n) \Lambda_{N}(n) V_{N}^{-1}(n)-I\right) \\
& =\lim _{n \rightarrow \infty} V_{N}(n) \cdot \lim _{n \rightarrow \infty} n\left(\Lambda_{N}(n)-I\right) \cdot \lim _{n \rightarrow \infty} V_{N}^{-1}(n) \\
& =U_{N} \cdot \operatorname{diag}\left(-\mu_{j}\right) \cdot U_{N}^{-1} \cdot
\end{aligned}
$$

Instead of evaluating the eigenmatrix $U_{N}=\left(u_{i j}\right)$ of C_{N} as $U_{N}=\underset{n \longrightarrow \infty}{\operatorname{Iim}}$ $V_{N}(n)$ as in Kelisky and Rivlin (1967), we take advantage of the simple structure of C_{N} and use the equation

$$
C_{N} U_{N}=U_{N} \operatorname{diag}\left(-\mu_{j}\right),
$$

with U_{N} normalized so that its diagonal elements are equal to l, to obtain

$$
\begin{aligned}
& u_{i j}=-\frac{\mu_{i+1}}{\mu_{j}-\mu_{i}} u_{i+1, j}, \quad i<j=2(1) N \\
& =(-1)^{j-i} \frac{j-1}{m=\frac{1}{i}}\left(\frac{\mu_{m}}{\mu_{j}-\mu_{m}}\right) \\
& =\left\{\begin{array}{lll}
0 & , & i>j \\
1 & , & i=j ; i, j=l(l) N \\
(-1)^{j-i} \frac{i}{j} \frac{\binom{j}{j}^{2}}{\binom{j-2}{j-i}} & , & i<j .
\end{array}\right.
\end{aligned}
$$

REMARK 1.2. The matrix $U_{N}^{-1}=\left(u^{*}{ }_{i j}\right)=\lim _{n \rightarrow \infty} V^{-1}(n)$ is obtained in a like manner. We use the equation

$$
U_{N}^{-1} C_{N}=\operatorname{diag}\left(-\mu_{j}\right) U_{N}^{-1}
$$

to get

$$
\begin{aligned}
u_{j k}^{*} & =\frac{\mu_{k}}{\mu_{k}-\mu_{j}} u_{j, k-1}^{*}, \quad j<k=2(1) N \\
& =\prod_{m=j}^{k-1}\left(\frac{\mu_{m+1}}{\mu_{m+1}-\mu_{j}}\right) \\
& = \begin{cases}0 \quad, & j>k \\
1 \quad & j=k \quad j, k=I(I) N \\
\frac{j}{k} \frac{\binom{k}{j}}{\binom{k+j-1}{k-j}}, & j<k\end{cases}
\end{aligned}
$$

and we recover, once again, the Kelisky and Rivlin's result referred to in Remark 4.5 of Chapter 3 :

$$
b_{i k}(t) \equiv\left(\exp \left(t c_{N}\right)\right)_{i k}=\sum_{j=i}^{k} u_{i j} u_{j k}^{*} e^{-\mu_{j} t}=\sum_{j=i}^{k} \not A_{i, j, k} e^{-\mu_{j} t}
$$

Iteration of

$$
\begin{equation*}
B_{n} v_{j}=\lambda_{j} v_{j} \quad, \quad 1 \leqslant j \leqslant N \leqslant n \tag{1.6}
\end{equation*}
$$

where

$$
v_{j}=v_{j}(n, x)=\sum_{i=1}^{j} v_{i j}(n) x^{i}
$$

leads to

$$
\begin{equation*}
\mathscr{S}_{t} u_{j}=e^{-\mu_{j} t} u_{j} \tag{1.7}
\end{equation*}
$$

where

$$
u_{j}=u_{j}(x)=\lim _{n \rightarrow \infty} v_{j}(n, x)=\sum_{i=1}^{j}(-1)^{j-i} \frac{i}{j} \frac{\binom{j}{i}^{2}}{\binom{2 j-2}{j-i}} x^{i}
$$

Clearly, $u_{j}(0)=0$ and, owing to the vanishing of the column sums of $V_{N}(n), u_{j}(1)=0$ as well. Thus, all the polynomials $u_{j}(x), j \geqslant 2$,
have the common factor $x(x-1)$. These polynomials are the only eigenfunctions of \mathcal{B}_{t} with associated eigenvalues $\exp \left(-\mu_{j} t\right)$. We also note that 1 and x are eigenfunctions associated with the common eigenvalue 1.

It follows from (1.7) that

$$
\frac{1}{t}\left(\mathscr{3}_{t}-I\right) u_{j}=\frac{1}{t}\left(e^{-\mu_{j} t}-1\right) u_{j}
$$

and, letting $t \nmid 0$,

$$
\begin{equation*}
D u_{j}=-\mu_{j} u_{j} \tag{1.8}
\end{equation*}
$$

i.e.,

$$
x(1-x) u_{j}^{\prime \prime}(x)+j(j-1) u_{j}(x)=0
$$

But,for $j \geqslant 0$,

$$
u_{j+2}(x)=x(x-1) \oint_{j}(x)
$$

where $\varphi_{j}(x)$ is a $j^{\text {th }}$ degree polynomial with leading coefficient 1 , due to the way we have normalized the matrix $V_{N}(n)$. Therefore

$$
x(1-x) \dot{i}_{j}^{\prime \prime}(x)-2(2 x-1) \hat{y}_{j}^{\prime}(x)+j(j+3) \dot{q}_{j}(x)=0,
$$

givins

$$
\dot{\varphi}_{j}(x)=P_{j}^{(1,1)}(2 x-1) /\binom{2 j+2}{j}
$$

where $P^{(1,1)}(x)$ denotes the $j^{\text {th }}$ degree Jacobi polynomial of paraneters $(1,1)$ normalized in the usual way, i.e., so that $p_{j}^{(1,1)}(1)=\binom{j+1}{j}=j+1$.
$\left\{\oint_{j}(x)\right\}_{0}^{\infty}$ is an orthogonal polynomial system on $[0,1]$ with respect to the weight function $x(1-x)$. Hence $\left\{u_{j}(x)\right\}_{2}^{\infty}$ is also an orthogonal polynomial system on that interval with mespect to the reight function $(x(1-x))^{-1}$.

1.3. Integral renresentation of B_{t} acting on C.

Being \mathcal{B}_{t} bounded and $\mathscr{\infty}(D)$ dense in C, then \mathscr{S}_{t} can be extended to all of C; that is,

$$
W(t, x) \equiv \dot{\mathcal{B}}_{t} f(x)=\lim _{n \rightarrow \infty} B_{n}^{[n t]} f(x)
$$

exists for each f in C, and we set out to work out an explicit representation for $\mathscr{B}_{t} \mathrm{f}$. To begin with, we assume that $\mathrm{f} \in \mathscr{\mathscr { S }}(\mathrm{D})$. Then so is $\mathscr{B}_{t}{ }^{\mathrm{f}}$. because $\mathscr{S}_{t} D f=D \mathscr{B}_{t} f=\frac{d}{d t}\left(\mathscr{S}_{t} f\right)$ (see, e.g., Butzer and Berens (1967.p.9)) and we set $u \underline{D}$, as in Subsection 1.1, the following Cauchy problem on Ω given by (1.5) :

$$
\left\{\begin{array}{l}
\partial W / \partial t=D W \quad, \quad W=W(t, x) \tag{1.9}\\
W(0, x)=f(x), \quad W(\infty, x)=B_{1} f(x) \\
W(t, 0)=f(0), W(t, 1)=f(1)
\end{array}\right.
$$

(see Remark 1.1 on the end and side conditions).

With problem (1.4) as a guide, we expand $W(t, x)$ into the eigenfunction system $\left\{u_{j}(x)\right\}_{0}^{\infty}$, with coefficients which are functions of $t:$

$$
W(t, x)=\sum_{j=0}^{\infty} c_{j}(t) u_{j}(x)
$$

The differential equation in (1.9) now separates into the ordinary differential equation

$$
c_{j}^{\prime}(t)+\mu_{j} c_{j}(t)=0
$$

which is soiver by

$$
c_{j}(t)=\bar{c}_{j} e^{-\mu_{j} t}
$$

Our problem is now reduced to the determination of the coefficients \bar{c}_{j} Making use of the initial condition in (1.9),

$$
\begin{align*}
f(x) & =\sum_{j=0}^{\infty} \bar{c}_{j} u_{j}(x) \\
& =\bar{c}_{0}+\bar{c}_{1} x+\sum_{j=2}^{\infty} \bar{c}_{j} u_{j}(x) . \tag{1.10}
\end{align*}
$$

Recalling that, for $j \geqslant 2, u_{j}(0)=u_{j}(1)=0$, we obtain

$$
\bar{c}_{0}=f(0) \quad \text { and } \quad \bar{c}_{1}=f(1)-f(0)
$$

Defining

$$
\begin{align*}
\tilde{f}(y) & =f(y)-f(0)-(f(1)-f(0)) y \\
& =f(y)-B_{1} f(y) \tag{1.1I}
\end{align*}
$$

พล have

$$
\begin{equation*}
\tilde{f}(y)=\sum_{j=2}^{\infty} \bar{c}_{j} u_{j}(y) \tag{1.12}
\end{equation*}
$$

Multiplying both sides of (1.12) by $u_{k}(y) /(y(1-y)), k \geqslant 2$, and integrating from $y=0$ to $y=1$, gives

$$
\bar{c}_{k}=\frac{1}{h_{k}} \int_{0}^{1} \frac{\tilde{f}(y) u_{k}(y)}{y(1-y)} d y, \quad k \geqslant 2
$$

where

$$
h_{k}=\int_{0}^{1} \frac{u_{k}^{2}(y)}{y(1-y)} \cdots=\frac{k-1}{k(2 k-1)\binom{2 k-2}{k}^{2}}
$$

Finally, we obtain
$W(t, x)=f(0)+(f(I)-f(0)) x+\sum_{j=2}^{\infty} \frac{e^{-\mu_{j} t}}{h_{j}} u_{j}(x) \int_{0}^{I} \frac{\tilde{f}(y) u_{j}(y)}{y(1-y)} d y$,
or, which is the same,

$$
\begin{equation*}
\mathscr{B}_{t} f(x)=B_{1} f(x)+\int_{0}^{I} G(t ; x, y)\left(f(y)-B_{1} f(y)\right) d y . \tag{1.13}
\end{equation*}
$$

where

$$
\begin{align*}
G(t ; x, y) & =\frac{1}{y(1-y)} \sum_{j=2}^{\infty} \frac{e^{-\mu_{j} t}}{h_{j}} u_{j}(x) u_{j}(y) \\
& =\frac{1}{y(1-y)} \sum_{j=0}^{\infty} \frac{e^{-\mu_{j+2} t}}{h_{j+2}} \cdot \frac{x(x-1)}{\left(\sum_{j}^{2 j+2}\right)} P_{j}^{(1,1)}(2 x-1) \cdot \frac{y(y-1)}{(\underset{j}{2 j+2})} P_{j}^{(1,1)}(2 y-1) \\
& =x(1-x) \sum_{j=0}^{\infty} H_{j} e^{-\alpha_{j} t} P_{j}^{*}(x) P_{j}^{*}(y), \tag{1.14}
\end{align*}
$$

with

$$
\begin{aligned}
H_{j} & =\frac{(j+2)(2 j+3)}{j+1} \\
\alpha_{j} & =\mu_{j+2}=\frac{(j+1)(j+2)}{2}, j=0,1,2, \ldots, \\
P_{j}^{*}(x) & =P_{j}^{(1,1)}(2 x-1) .
\end{aligned}
$$

The restriction that f should be in $\varnothing(D)$ can now be removed as the representation (1.13) is clearly valid for each f in C.

$$
\text { 3nse } \ddots_{i} f(0)=f(0) \text { and }{\tilde{v_{t}}}_{t} f(1)=f(1) \text {, there is no loss in }
$$

generality in assuring that $f(0)=f(1)=0$. In this case

$$
\mathscr{B}_{t} f(x)=\int_{0}^{1} G(t ; x, y) f(y) d y .
$$

REMARK 1.3. For any $t>0$ and all f in C, the function $\mathscr{S}_{t} f(x)$ is analytic on $0 \leqslant x \leqslant 1$. Indeed, consulting (1.14), the factor $\exp \left(-\alpha_{j} t\right)$ makes convergent not only the infinite sum representing $G(t ; x, y)$ but all its derivatives of arbitrary order, with respect to t or x, for all $t>0$ and $0 \leqslant x \leqslant 1$.

2. SMOOTHING EFFECTS OF \mathcal{B}_{t}

IEMMA 2.1. For each fixed nonnegative t, the kernel $G(t ; x, y)$ of the transformation \mathscr{B}_{t} is strictly positive in the interior of the unit square $S_{2}=\left\{(x, y) \in \mathbb{R}_{2}: 0 \leqslant x, y \leqslant l\right\}$.

PROOF. Using the orthogonality of the shifted Jacobi polynomials appearing in (1.14) we see that

$$
\begin{equation*}
\int_{0}^{I} G\left(s ; x, y_{1}\right) G\left(t ; y_{1}, y\right) d y_{I}=G(s+t ; x, y) . \tag{2.1}
\end{equation*}
$$

It is also easy to show that, for $k \geqslant 1$,

$$
\begin{array}{r}
G(t ; x, y)=\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} G\left(\frac{t}{k+1} ; x, y_{1}\right) \cdot C\left(\frac{t}{k+1} ; y_{1} ; y_{2}\right) \ldots \tag{2.2}\\
. G\left(\frac{t}{k+1} ; y_{k}, y\right) d y_{1} d y_{2} \ldots d y_{k}
\end{array}
$$

The kernel $G(t ; x, y)$ is clearly continuous on S_{2} and, along the diagonal $x=y$, it is everywhere positive except at the endpoints. Hence, there exists a neighbourhood of the diagonal, say $\vartheta_{\epsilon}=\{(x, y):|x-y|<\epsilon\}$, in which $G(t ; x, y)>0$. Now, for any point (x, y) in S_{2}, there is a finite set $y_{1}, y_{2}, \ldots, y_{k}$ such that all points $\left(x, y_{1}\right),\left(y_{1}, y_{2}\right), \ldots,\left(y_{k}, y\right)$ lie in ϑ_{ϵ}. The strict positivity of $G(t ; x, y)$ for any $t \geqslant 0$ and all (x, y) in S_{2} except at the corners $x=0$ and $x=1$ follows now readily from (2.2).

We have borrowed this elegant idea from Karlin and WcGregor (1960).
 in the sense that if m is any positive integer, $0<x_{1}<x_{2}<\cdots<x_{m}<1$, and $0 \leqslant y_{1}<y_{2}<\cdots<y_{m} \leqslant 1$, then

$$
G\left(t ; \begin{array}{ccc}
x_{1}, \ldots, x_{m} \\
y_{1}, \ldots, y_{m}
\end{array}\right)=\left|\begin{array}{ccc}
G\left(t ; x_{1}, y_{1}\right) & \ldots & G\left(t ; x_{1}, y_{m}\right) \\
\dot{\cdot} & & \vdots \\
G\left(t ; \dot{x}_{m}, y_{1}\right) & \ldots & G\left(t ; \dot{x}_{m}, y_{m}\right)
\end{array}\right|>0 .
$$

PROOF. In terms of the determinantal polynomials

$$
P^{*}\binom{n_{1}, \ldots, n_{m}}{x_{1}, \ldots, x_{m}}=\left|\begin{array}{ccc}
P_{n_{1}}^{*}\left(x_{1}\right) & \ldots & P_{n_{1}}^{*}\left(x_{m}\right) \\
\vdots & & \vdots \\
\vdots & & \vdots \\
P_{n_{m}}^{*}\left(x_{1}\right) & \ldots & P_{n_{m}}^{*}\left(x_{m}\right)
\end{array}\right|, 0 \leqslant n_{1}<\ldots<n_{m}
$$

there is a representation

$$
\left.\begin{array}{rl}
G\left(t ;{ }^{x_{1}}, \ldots, x_{m}\right. \\
y_{1}, \ldots, y_{m}
\end{array}\right)=x_{1}\left(1-x_{1}\right) \ldots x_{m}\left(1-x_{m}\right) \quad \sum_{0 \leqslant n_{1}<\cdots<n_{m}} H_{n_{1}} \ldots H_{n_{m}} .
$$

analogous to (1.14). In correspondence with (2.1) we also have

$$
\begin{aligned}
& G\left(s+t ; \begin{array}{l}
x_{1}, \ldots, x_{m} \\
y_{1}, \ldots, y_{m}
\end{array}\right)=\int_{0}^{I} \ldots \int_{0}^{1} G\left(s ; \begin{array}{l}
x_{1}, \ldots, x_{m} \\
z_{1}, \ldots, z_{m}
\end{array}\right) G\binom{\mathrm{t}_{1}, \ldots, z_{i n}}{y_{1}, \ldots, y_{m}} \\
& \text { - } d z_{1} \ldots d z_{m} \text {. }
\end{aligned}
$$

Using this and repeating the argument we used when dealing with the case $m=1$ it follows that $G(t ; x, y)$ is strictly totally positive on the unit hypercube except at the corners where $x_{i}=0, i=I(1) m$, at which

THEOREM 2.1. The semigroup $\left\{\mathcal{\beta}_{t} ; t \geqslant 0\right\}$ is variation diminishing.

PROOF. For singular integrals, variation diminishing and total positivity are equivalent properties (see Butzer and Nessel (1971, p. 150).

REMARK 2.1. As an immediate consequence of this result, all the shape preserviñ properties of the Bernstein operators carry over to the semisroup $\left\{\mathcal{S}_{t}\right\}$. In other words, the graphs of f and $\boldsymbol{B}_{t} f$ have the sane shape. In particular, if f is monotone or convex, so is $\mathcal{\beta}_{t} f$.

REMARX 2.2. An immediate consequence of (1.13) is the invariance of \mathscr{O}_{1} under \mathscr{S}_{t}. From this and the positivity of $\left\{\mathscr{\theta}_{t} ; t \geqslant 0\right\}$ it follows that $\left\|\rho_{i}\right\|=\left\|\mathcal{S}_{t} I\right\|=1$, just like B_{n} and its iterates of nonnegative order.

3. APDLICATIONS OF \mathcal{B}_{t}

3.1. Saturation theory for the Bernstein approximation in C.

The Bernstein saturation problem is to determine a positive, nonincreasing function ϕ_{n} (the saturetion order) with the property that $\phi_{n} \downarrow 0$ as $n \rightarrow \infty$ and to characterize two classes S (the saturation class) and T (the trivial class) of functions \hat{I} in C such that

$$
B_{n}(f ; x)-f(x)=O\left(\phi_{n}\right) \quad \text { iff } \quad f \in S
$$

and

$$
B_{n}(f ; x)-f(x)=o\left(\phi_{n}\right) \quad \text { iff } \quad f \in T .
$$

The class S consists of all functions f in C optimally approximated by $B_{n} f$, i.e., no higher order of \equiv pproximation than ϕ_{n} can occur except for T, which B_{n} leaves intact.
K. de Leeuw (1959) was the first to solve this problem following the Voronovskaya's result that the boundedness of f on $[0,1]$ and the existence of $f^{\prime \prime}$ at a point $x \in[0,1]$ implies

$$
\begin{equation*}
B_{n}(f ; x)-f(x)=\frac{x(1-x)}{2 n} f^{/ \prime}(x)+o(1 / n) \tag{3.1}
\end{equation*}
$$

and the Lorentz' (1953, p. 22) conjecture that the relation

$$
B_{n}(f ; x)-f(x)=o(I / n)
$$

cannot be true for all $x \in[a, b] \subseteq[0,1]$ unless f is a linear polynomial on $[a, b]$.

An improved solution (in the sense that the behaviour of the saturation order near the endpoints of [0,1] is taken into account) was given by Lorentz (1966, p. 102) through an involved, functional-analytic technique.

There are two alternatives to Lorentz' approach to the theory of saturation of linear positive algebraic polynomial approximation operators, these are :
a) The parabola technique of Bajsanski and Bojanic (1964) where asymptotic relations of Voronovskaya's type (3.1) play a major role. See e.g., DeVore (1972), Lorentz and Schumaker (1972), and Berens (1972) for further developments and applications.
b) The operator semigroup method, first applied by Karlin and Ziegler (1970) and Micchelli (1973). Here, the idea is to derive from a given sequence $\left\{I_{n}\right\}$ of linear approximation operators a continuous semigroup $\left\{T_{t} ; t>0\right\}$ by taking limits of appropriate iterates of L_{n}, namely, $L_{n} n^{n}$, where $x_{n} \phi_{n} \longrightarrow t>0$ as $n \longrightarrow \infty, \phi_{n}$ being the saturation order. The saturation properties of $\left\{T_{t}\right\}$ are shown to be the same as those of $\left\{L_{n}\right\}$ and saturation for a continuous semigroup is well established in Butzer and Berens (1967).

THEOREM 3.1 (Lorentz-Micchelli). For f in C the following statements are equivalent :
(i) $\left|f^{\prime}(x)-f^{\prime}(y)\right| \leqslant M|x-y|, \quad 0 \leqslant x, y \leqslant 1$;
(ii) $\left|B_{n}(f ; x)-f(x)\right| \leqslant \frac{M}{2 n} x(1-x), \quad n \geqslant 1, \quad 0 \leqslant x \leqslant 1$;
(iii) $\left|\beta_{t}(f ; x)-f(x)\right| \leqslant \frac{M t}{2} x(1-x), \quad t \geqslant 0, \quad 0 \leqslant x \leqslant 1$.

Moreover,

$$
B_{n}(f ; x)-f(x)=o(x(1-x) / n) \quad \text { iff } \quad f \in \mathscr{O}_{1} .
$$

Dach. Dee G. Lorantz (1960, p. 102) for the equivalence of (i) and (ii) of which the last assertion is an immediate consequence, and C. Micchelli (1973) for the equivalence of (ii) and (iii) and (iii)
and (i).

To sum up, the Bernstein approximation procedure is saturated with order $x(1-x) / n$, trivial class \mathcal{D}_{1}, and saturation class S consisting of all functions f in C for which f^{\prime} exists and belongs to the classical Lipschitz class Lip 1.

3.2. Characterizations of convexity.

```
THEOREM 3.2 (Karlin-Ziegler-iticchelli). The following are necessary and sufficient conditions for \(f\) to be convex on \([0,1]\) :
(i) \(B_{n}(f ; k / n) \geqslant f(k / n), \quad k=0(I) n ; n \geqslant 1 ;\)
(ii) \(B_{n}(f ; x) \geqslant f(x), n \geqslant 1 ; 0 \leqslant x \leqslant 1\);
(iii) \(\mathcal{B}_{t}(f ; x) \geqslant f(x), \quad t \geqslant 0 ; 0 \leqslant x \leqslant l\).
```

PROOF. See S. Karlin and Z. Ziegler (1970) and C. Micchelli (1973).

The next result involves convexity and monotonicity.

THEOREM 3.3. Let $f \in C$ then f is convex on [0,1] iff, for all $0 \leqslant x \leqslant 1$ and $0 \leqslant s \leqslant t$, $\mathscr{S}_{t} f(x) \geqslant \mathscr{S}_{s} f(x)$.

ZROUR. if if is convex and $t>s$, then, by part (iii) of theorea 3.2

$$
\mathcal{B}_{t-s^{\prime}} f(x) \geqslant f(x), \quad 0 \leqslant x \leqslant l,
$$

and the necessity part follows upon application of \vec{c}_{s} to both sides of this inequality.

The sufficiency part follows at once from (3.2) on letting $s \downarrow 0$ and using part (iii) of Theorem 3.2 once again.

3.3. Linear overators commuting with B_{n}.

Let T be a linear operator mapping C into itself and commuting with B_{n} :

$$
T B_{n}=B_{n} T
$$

The characterization of such a transformation was first given by Konheim and Rivlin (1968). It was given later by Karlin and Ziegier (1970) as an application of the iteration method.

Defining $\mathrm{N}=\mathrm{T}\left(\mathrm{I}-\mathrm{B}_{1}\right)$, then Karlin and Ziegler's result is that

$$
V f(x)=a+b x+c f(x)+d f(1-x)
$$

where a and b are linear functionals on f and c and d constants depending on B_{n}.

See Subsection 3.6.3 for a detailed extension of this result to functions of trio independent variables.

3.4. Saturation theory for de Leeum-like oderators.

The call de Leeur-like operators the following polynomial approximation operators defined for f in C by

$$
K_{n}(f ; x)=\sum_{k=0}^{n} I_{n k}^{*}(f) q_{k}(n, x)
$$

with

$$
I_{n k}^{*}(f)= \begin{cases}f(0) & k=0 \\ n \int_{f(1)^{-I /(2 n)}}^{+1 /(2 n)} f(k / n+t) d t, & k=I(I) n-I\end{cases}
$$

$\mathrm{K}_{\mathrm{n}} \mathrm{f}$ generalizes $\mathrm{B}_{\mathrm{n}} \mathrm{f}$, which corresponds to the point evaluation functionals $I_{n k}^{*}(\vec{z})=f(k / n)$, and has been introduced by de Ieeuw (1959) in his treatment of the Bernstein saturation problem. Actually, de Leeuw's definition is slightly different,viz

$$
\sum_{k=1}^{n-1} I_{n k}^{*}(f) q_{I}
$$

He has show, through a numjer of lemas, that these operators possess the same saturation properties as those of B_{n} and we show here, as another
 operators K_{n}.

LEMMA 3.1. For each f in C

$$
K_{n}(f ; x) \longrightarrow f(x) \text { as } n \longrightarrow \infty
$$

unifomiy in $0 \leqslant x \leqslant 1$.

PROOF. Let us compute $K_{n}\left(f_{i} ; x\right), f_{i}=x^{i}, i=0,1,2$.

$$
\begin{aligned}
& I_{n k}^{*}\left(f_{0}\right)=I, \quad k=0(1) n ; \\
& I_{n k}^{*}\left(f_{1}\right)=n \int_{-I /(2 n)}^{+1 /(2 n)}(k / n+t) d t=k / n, \quad k=0(1) n ; \\
& I_{n k}^{*}\left(f_{2}\right)= \begin{cases}0 & k=0 \\
\left(\frac{k}{n}\right)^{2}+\frac{I}{I 2 n^{2}}, & k=I(I) n-I \\
I & k=n .\end{cases}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
K_{n}\left(f_{0} ; x\right) & =\sum_{k=0}^{n} q_{k}(n, x)=1 ; \\
K_{n}\left(f_{1} ; x\right) & =\sum_{k=0}^{n} \frac{k}{n} q_{k}(n, x)=x ; \\
K_{n}\left(f_{2} ; x\right) & =\sum_{k=1}^{n-1}\left(\left(\frac{k}{n}\right)^{2}+\frac{1}{12 n^{2}}\right) q_{k}(n, x)+x^{n} \\
& =B_{n}\left(f_{2} ; x\right)+\frac{1}{12 n^{2}}\left(1-x^{n}-(1-x)^{n}\right) \\
& =x^{2}+\frac{x(1-x)}{n}+\frac{1}{12 n^{2}}\left(1-x^{n}-(1-x)^{n}\right)
\end{aligned}
$$

$\longrightarrow x^{2}$, uniformly, as $n \rightarrow \infty$,
and the result follows on appealing to the theorem of Korovkin (1960) on the convergence of sequences of linear positive operators on C.

We turn next to the limiting semigroup of the iterates of the operators K_{n}.

Erize 2. Tor $t \geqslant 0$ and i in C,

$$
\lim _{n \rightarrow \infty}\left\|K_{n}^{[n t]} f-\mathcal{P}_{t} f\right\|=0
$$

PROOF. For 5 in C^{2},

$$
\begin{aligned}
& K_{n}(g ; x)-B_{n}(g ; x)=\sum_{k=1}^{n-1}\left(n \int_{-1 /(2 n)}^{+1 /(2 n)}(g(k / n+t)-g(k / n)) d t\right) q_{k}(n, x) \\
&=\sum_{k=1}^{n-1}\left(n \int_{-1 /(2 n)}^{+1 /(2 n)}\left(g(k / n+t)-g(k / n)-g^{\prime}(k / n) t\right) d t\right) q_{k}(n, x) \\
&\left|K_{n}(g ; x)-B_{n}(g ; x)\right| \leqslant \frac{\left\|g^{\prime \prime}\right\|}{2}\left(n \int_{-1 /(2 n)}^{+1 /(2 n)} t^{2} d t\right) \sum_{k=1}^{n-1} q_{k}(n, x) \\
& \leqslant \frac{\left\|s^{4}\right\|}{24 n^{2}},
\end{aligned}
$$

whence

$$
\left\|K_{n} g-B_{n^{g}}\right\|=O\left(1 / n^{2}\right)
$$

Making use of the identity

$$
u^{k}-v^{k}=(u-v)\left(u^{k-1}+u^{k-2} v+\ldots+u v^{k-2}+v^{k-1}\right)
$$

and of the fact that both K_{n} and B_{n} have unit norm, we conclude that

$$
\left.\begin{array}{rl}
\left\|K_{n}^{k} g-B_{n}^{k}\right\|
\end{array}\|\leqslant k\| K_{n} g-B_{n} g \|\right\}
$$

For $k=[n t], t \geqslant 0, n \longrightarrow \infty$, this gives

$$
\lim _{n \rightarrow \infty}\left\|K_{n}[n]_{g}-\mathscr{B}_{t} \delta\right\|=0
$$

for each $\tilde{\delta}$ in C^{2}. Eut C^{2} is dense in C and the result follows.

The next result shows that K_{n} and B_{n} have exactly the same saturation properties.

THEOREM 3.4. For f in C the following statements are equivalent:
(i) $f^{\prime} \in \operatorname{Lip} \frac{1}{M}[0, I]$
(ii) $n\left|K_{n}(f ; x)-f(x)\right| \leqslant \frac{M}{2} x(l-x)+o(l)$
where $o(1) \downarrow 0$ uniformly in $0 \leqslant x \leqslant 1$ as $n \rightarrow \infty$.
Moreover,

$$
K_{n}(f ; x)-f(x)=0(I / n) \quad \text { iff } \quad f \in \mathscr{P}_{I}
$$

PROOF. (i) \Rightarrow (ii). We follow the analysis in Lorentz(1966, p. 102) to obtain

$$
\left|f(x)-f(y)-f^{\prime}(x)(x-y)\right| \leqslant \frac{M}{2}(x-y)^{2}
$$

Let y be fixed but arbitrary. Being K_{n} a linear positive operator which preserves I and x, then

$$
\begin{aligned}
\left|f(x)-K_{n}(f ; x)\right| & \leqslant \frac{M}{2} K_{n}\left((x-y)^{2} ; x\right) \\
& \leqslant \frac{M}{2 n}\left(x(1-x)+\frac{1}{12 n} g_{n}(x)\right)
\end{aligned}
$$

with

$$
g_{n}(x)=1-x^{n}-(1-x)^{n}
$$

and (ii) follows since $0 \leqslant s_{n}(x) \leqslant l$ for all $n \geqslant 1$ and $0 \leqslant x \leqslant 1$.
(ii) $\Longrightarrow(i)$. Since

$$
\begin{aligned}
\left.x_{n}^{\prime} f(1-y) ; x\right) & =(1-1 / n) x(1-x)-\frac{1}{12 n^{L}} 5_{n}(x) \\
& \leqslant \lambda_{2} x(1-x), \quad \lambda_{2}=1-1 / n
\end{aligned}
$$

and, for r in N,

$$
K_{n}^{r}(f ; x)-f(x)=\sum_{j=0}^{r-1} K_{n}^{j}\left(K_{n} f-f ; x\right)
$$

then

$$
\begin{aligned}
\left|K_{n}^{I}(f ; x)-f(x)\right| & \leqslant \frac{M}{2 n} \sum_{j=0}^{r-1} K_{n}^{j}(y(1-y)+o(1) ; x) \\
& \therefore \\
& \leqslant \frac{M}{2}\left(1-\lambda_{2}^{r}\right) x(1-x)+\frac{M r}{2 n} o(1) .
\end{aligned}
$$

Taking $r=[n t], t \geqslant 0, n \longrightarrow \infty$, and using Lemma 3.2, gives

$$
\left|\mathcal{B}_{t}(f ; x)-f(x)\right| \leqslant \frac{M t}{2} x(1-x)
$$

and (i) follows by Theorem 3.1.

The last assertion is equivalent to

$$
\left|K_{n}(f ; x)-f(x)\right| \leqslant \epsilon_{n} / n
$$

with $\epsilon_{n} \nmid 0$ as $n \longrightarrow \infty$, then $f \in \operatorname{Lip}{\underset{\epsilon}{1}}_{1}^{\epsilon_{n}}[0,1]$, and since $\epsilon_{n}>0$ is arbitrary, f^{\prime} is constant.

3.5. Adproximation of smooth functions by nolunomial onerators of

 Micchelli's troe.IEMA3.3. Let f be defined and nonnegative on $[0,1]$ then

$$
B_{n}(\sqrt{f} ; x) \leqslant \sqrt{B_{n}(f ; x)}
$$

PROOF.

$$
\begin{aligned}
B_{n}(\sqrt{f} ; x) & =\sum_{k=0}^{n} \sqrt{f_{k}} q_{k}(n, x), \quad f_{k}=f(k / n), \\
& =\sum_{k=0}^{n}\left(f_{k} q_{k}(n, x)\right)^{\frac{1}{2}}\left(q_{k}(n, x)\right)^{\frac{1}{2}} .
\end{aligned}
$$

Employing the inequality of Cauchy-Schwarz we nay write

$$
\begin{aligned}
B_{n}(\sqrt{f} ; x) & \leqslant\left(\sum_{k=0}^{n} f_{k} q_{k}(n, x)\right)^{\frac{1}{2}}\left(\sum_{k=0}^{n} q_{k}(n, x)\right)^{\frac{1}{2}} \\
& \leqslant\left(B_{n}(f ; x)\right)^{\frac{1}{2}}
\end{aligned}
$$

Let $\omega(f ; \delta)$ be the modulus of continuity of $f \in C$, i.e.,

$$
\omega(f ; \delta)=\sup _{0 \leqslant \begin{array}{c}
x, y \leqslant 1 \\
|x-y| \leqslant \delta
\end{array}}|f(y)-f(x)|, \quad \delta>0
$$

The subaditivity of $\omega(\hat{i} ; \delta)$ as a function of δ implies that

$$
\begin{equation*}
\omega(f ; \lambda \delta) \leq(1+\lambda) \omega(f ; \delta) \tag{3.3}
\end{equation*}
$$

for all $\lambda, \delta>0$ (see Lorentz (1966, p.44).).

```
Micchelli (2973) stetes without proof the following
```

IPMMA 3.4. For f in C and N in \mathbb{N},

$$
\left|\left(B_{n}-I\right)^{N} f(x)\right| \leq \frac{3}{2}\left(2^{N}-I\right) \omega\left(f ; n^{-\frac{1}{2}}\right)
$$

PRCOF. Since

$$
\left(B_{n}-I\right)^{N} f(x)=f(x)+\sum_{m=1}^{N}(-1)^{m}\left(\frac{N}{N}\right) B_{n}^{m}(f ; x)-(1-1)^{N} f(x)
$$

then

$$
\left|\left(B_{n}-I\right)^{N} f(x)\right| \leq \sum_{m=1}^{N}\binom{N}{\pi}\left|\left(B_{n}^{m}-I\right) f(x)\right| .
$$

For $x, y \in[0,1]$ and $\delta>0$ we have

$$
\begin{aligned}
|f(y)-f(x)| & \leq \omega(f ;|y-x|)=\omega\left(f ; \frac{|y-x|}{\delta} s\right) \\
& \leq\left(1+\frac{1}{\delta}|y-x|\right) \omega(f ; \hat{s}), \quad \text { by (3.3). }
\end{aligned}
$$

In this inequality we assume that x is fixed but arbitrary. Since $\mathrm{B}_{\mathrm{n}}^{\mathrm{m}}$ is a positive operator which preserves constants, re obtain

$$
\begin{aligned}
\left|B_{n}^{m}(f(y) ; x)-f(x)\right| & \leq\left(1+\frac{1}{\delta} B_{n}^{\text {in }}(|y-x| ; x)\right) \omega(f ; \delta) \\
& \leq\left(1+\frac{1}{2 \delta n^{\frac{1}{2}}}\right) \omega(f ; \delta),
\end{aligned}
$$

after observing that $|y-x|=+\sqrt{(y-x)^{2}}$ and using Lemma 3.3. Therefore,

$$
\left|\left(B_{n}-I\right)^{N} f(x)\right| \leq\left(\sum_{m=1}^{N}\binom{N}{m}\left(1+\frac{1}{2 \delta n^{\frac{1}{2}}}\right) \omega(f ; \delta)\right.
$$

and the result follows upon taking $\delta=n^{-\frac{1}{2}}$.

REMPK 3.1. To工 $i=1$, Lema 3.4 contains the Popoviciu's result that, for each f in C and n in \mathbb{N},

$$
\left\|B_{n} f-f\right\| \leqslant \frac{3}{2} \omega\left(f ; n^{-\frac{1}{2}}\right) .
$$

This inequality has been sharpened by Sikkema (1961) and Schurer and Steutel (1976,1977), who have determined the best possible constant for f in C and f in C^{1} respectively.

Micchelli (1973) has introduced and studied the approximation properties of the operators

$$
T_{n, N}=I-\left(I-B_{n}\right)^{N} \quad, \quad n, N \in \mathbb{N}
$$

Along the same lines, we introduce and study the operators

$$
U_{n, N+1}=I+\Delta\left(B_{n}\right),
$$

where

$$
\left.\Delta\left(B_{n}\right)=\right]_{k=0}^{N}\left(B_{n}-\lambda_{k} I\right),
$$

$\lambda_{0}=\lambda_{I}=I, \lambda_{k}=I-\mu_{k} / n+o\left(n^{-1}\right), \quad \mu_{k}=\binom{k}{2}$,
the λ_{k} 's being the eigenvalues of the matrix A_{N+1} representing B_{n} acting on \mathscr{P}_{N}.

Unlike Micchelli's, our operator preserves \mathscr{N}_{N}. Indeed, for each $\mathrm{P}(\mathrm{x})=\mathrm{X}^{\mathrm{T}} \mathrm{p}$ in $\underset{N}{\mathscr{N}}$,

$$
\Delta\left(B_{n}\right) P(x)=x^{T} \Delta\left(A_{N+1}\right) p=0
$$

by Cayley-Hamilton theorem.
Having the fact that $\Delta\left(B_{n}\right)=\left(B_{n}-I\right)^{N+1}+o(1)$ and Lemma 3.4 in mind, it appears that $U_{n, N+1}$ provides no better an approximation to any f in C than $B_{n} f$ itself. However, this is not the case for sufficiently smooth Eunctions. Inteed, for f in $\mathrm{c}^{2 i \div 2}$, it follows fron (1.2) that

$$
n^{N+1} \Delta\left(B_{n}\right) \longrightarrow \prod_{K=0}^{N}\left(D+\mu_{k} I\right)=\Delta(D)
$$

as $n \longrightarrow \infty$ and thus

$$
\lim _{n \rightarrow \infty} n^{N+1}\left(U_{n, N+1}-I\right) f(x)=\Delta(D) f(x)
$$

Theresore, the order of approximation of $f \in C^{2 N+2}$ by $U_{n, N+1} f$ is $O\left(1 / n^{3+1}\right)$, whereas that of f by $B_{n} f$ cannot be improved beyond $O(1 / n)$, no matter how smooth f may be.

The above condition that $f \in C^{2 N+2}$ may be slightly relaxed. To this end, let K denote the subset of C consisting of functions f such that $f, f^{\prime}, \ldots, f^{(2 N+1)} \in C$ and $f^{(2 N+1)} \in \operatorname{Lip} 1$ on $[0,1]$.

TREOREA 3.5. For f in K ,

$$
n^{N+1}\left(U_{n, N+1}(f ; x)-f(x)\right)=O(1)
$$

uniformly in $0 \leqslant x \leqslant 1$.

PROOF. This follows from the observation that

$$
n^{N+1} \Delta\left(B_{n}\right) f(x)=\left(n\left(B_{n}-I\right)+O(1)\right)^{N+1} f(x)
$$

and the fact that

$$
n^{k}\left(B_{n}-I\right)^{k} f(x)=O(1)
$$

for every k in \mathbb{N}, uniformly in $0 \leqslant x \leqslant 1$ (see Theorem 4.4 in Micchelli (1973)).

Theonen 3.5. Let $f \in C$ and it be a nonnegative integer. If

$$
n^{N+1}\left|U_{n, N+1}(f ; x)-f(x)\right| \leqslant \frac{1}{2} M x(1-x)+o(1)
$$

uniformly in $0 \leqslant x \leqslant 1$, then $f, f^{\prime}, \ldots, f^{(2 N+1)} \in C$ and $\left(\prod_{k=1}^{N}\left(D+\mu_{k} I\right)\right)_{f}$ has a continuous extension to $[0,1]$ whose derivative is in $\operatorname{Lip} \frac{1}{n}$.

PROOF. Since, for I in \mathbb{N},

$$
B_{n}^{r}-\lambda_{k}^{r}: I=S_{k}\left(B_{n}-\lambda_{k} I\right), \quad k=O(I) N,
$$

with

$$
S_{k}=S_{k}(n, r)=\sum_{j=0}^{r-1} \lambda_{k}^{j} B_{n}^{r-j-1}
$$

then

$$
\Delta\left(B_{n}^{r}\right)=S \Delta\left(B_{n}\right)
$$

with

$$
\Delta\left(B_{n}^{r}\right)=\prod_{k=0}^{N}\left[B_{n}^{r}-\lambda_{k}^{r} I\right) \text { and } S=\prod_{k=0}^{N} S_{k}
$$

Setting $v_{2}=v_{2}(x)=x(x-1)$, then

$$
\begin{aligned}
& S_{2} v_{2}=r \lambda_{2}^{r-1} v_{2} \\
& S_{k} v_{2}=\frac{\lambda_{2}^{r}-\lambda_{k}^{r}}{\lambda_{2}-\lambda_{k}} v_{2}, \quad k \neq 2, \\
& s v_{2}=r \lambda_{2}^{r-1} \prod_{\substack{k=6 \\
k \neq 2}}^{N}\left(\frac{\lambda_{2}^{r}-\lambda_{k}^{r}}{\lambda_{2}-\lambda_{k}}\right) v_{2}
\end{aligned}
$$

anç

$$
\begin{aligned}
\left|\Delta\left(B_{n}^{r}\right) f(x)\right| & \leq\left|S \Delta\left(B_{n}\right) f(x)\right| \\
& \leq \frac{\operatorname{irr} \lambda_{2}^{r-1}}{2 n} \prod_{\substack{k=0 \\
k \neq 2}}^{N}\left(\frac{\lambda_{2}^{r}-\lambda_{k}^{r}}{n\left(\lambda_{2}-\lambda_{k}\right)}\right) x(1-x)+o\left(1 / n^{N+1}\right)
\end{aligned}
$$

For $r=r_{n}=\left[n i_{j}, i \geqslant 0, n \longrightarrow \infty\right.$,

$$
\begin{aligned}
& \frac{r \lambda_{2}^{r-1}}{n} \rightarrow t e^{-t}=t-o(t) \text { as } t \downarrow 0 \\
& \frac{\lambda_{2}^{r}-\lambda_{k}^{r}}{n\left(\lambda_{2}-\lambda_{k}\right)} \rightarrow \frac{e^{-\mu_{2} t}-e^{-\mu_{k} t}}{\mu_{2}-\mu_{k}}=t+o(t), \quad k \neq 2,
\end{aligned}
$$

and

$$
\left|\Delta\left(\mathcal{F}_{t}\right) f(x)\right| \leqslant \frac{M t^{\mathrm{I}+1}}{2}(x(1-x)+o(1))
$$

with

$$
\Delta\left(\mathscr{\mathcal { S }}_{t}\right)=\prod_{k=0}^{N}\left(\mathscr{\theta}_{t}-e^{-\mu_{k}^{t}} I\right) .
$$

That f enjoys the differentiability properties stated in the theorem follows no: from this inequaitity if we let $0<a \leqslant x \leqslant b<1$, define

$$
g_{t}(x)=\frac{1}{t^{N+1}} \int_{a}^{x} \frac{\Delta\left(\mathcal{F}_{t}\right) \cdot f(s)}{\frac{1}{2} s(1-s)} d s
$$

and foilow the lines of the argument used in the proof of Theorem 4.5 in Micchelli (1973).

COROLIARY. Let f be a real-valued function defined on $[0,1]$ and N a nonnegative integer. If

$$
n^{N+1}\left|U_{n, N+1}(f ; x)-f(x)\right|=o(1)
$$

uniformy in $0 \leqslant x \leqslant 2$, then E is a linear polynomial on 0,1$]$.

$$
\begin{aligned}
& \left\|\Delta\left(B_{n}^{r}\right) f\right\| \leqslant\left\|_{1}^{S}\right\|\left\|\Delta\left(B_{n}\right) f\right\| \leqslant r^{N+1} \epsilon_{n} / n^{N+1},
\end{aligned}
$$

with $\varepsilon_{n} \nmid 0$ as $n \longrightarrow \infty$. Choosing $r=r_{n}$ so that $r_{n} / n \rightarrow \infty$ and $\left(r_{n} / n\right) \varepsilon_{n} \not{ }_{n}$,

$$
\lim _{n \rightarrow \infty} \Delta\left(B_{n}^{r}\right) f=\left(B_{I}-I\right)^{2} B_{I}^{N-1} f=0,
$$

from which it follows, by the idemotency of B_{1}, that $f=B_{1} f$, i.e., f is a linear polynomial on $[0,1]$.

3.6. Iterates of multivariate Bernstein polynomials:

Properties and anplications.

3.6.1. The bivariate Bernstein operator $\mathrm{B}_{\mathrm{n}}^{*}$ acting on \mathscr{N}, N.

The generation and approximation properties of N-dimensional Bernstein polynomials $B_{\underline{n}}\left(\underline{I} ; S_{N} ; \underline{X}\right)$ for f in $C\left[S_{N_{2}}{ }^{\dagger}\right.$ have been considered in Section 3 of Chapter l. In this Subsection emphasis will be on the bivariate Bernstein operator $\mathrm{B}_{\mathrm{n}}^{*} \mathrm{P}(\mathrm{x}, \mathrm{y})=\mathrm{B}_{\mathrm{n}, \mathrm{n}}\left(\mathrm{P} ; \mathrm{S}_{2} ; \mathrm{x}, \mathrm{y}\right)$ acting on $\mathscr{P}_{\mathrm{N}, \mathrm{N}}$ as most of the 2-dimensional results extend to any finite number of dimensions without essential difficulty.

The bivariate polynomial
can be written in matrix notation simply as

$$
P=X^{T} p Y,
$$

where $X^{T}=\left(1, x, x^{2}, \ldots, x^{N}\right), Y^{T}=\left(1, y, y^{2}, \ldots, y^{N}\right)$, and $p=\left(p_{i j}\right), i, j=0(1) N$, is the ($N+1$) $x(N+1)$ coefficient matrix associated with P. In this compact notation we have the following

LEMMA 3.5. For P as above

$$
B_{n}^{*} P=X^{T} A_{N+1}(n) p A_{N+1}^{T}(n) Y
$$

PROOF.

$$
\begin{aligned}
\bar{B}_{n}^{*}\left(x^{i} y^{j} ; x, y\right) & =\Xi_{n}\left(x^{i} ; x\right) \cdot B_{n}\left(y^{j} ; y\right) \\
& =x^{T} A_{N+1}(n) e_{i} \cdot Y^{T} A_{N+1}(n) e_{j}
\end{aligned}
$$

$$
B_{n}^{*}\left(x^{i} y^{j} ; x, y\right)=x^{T} A_{N+1}(n) M_{i j} A_{N+1}^{T}(n) Y
$$

where $M_{i j}=e_{i} e_{j}^{T}$ is, of course, the $(\mathbb{N}+1) x(N+1)$ zero matrix with a 1 in the (i, j) position. Owing to the linearity of B_{n}^{*}, the result follows on multiplying both sides of this equation by $p_{i j}$ and summing over i and j :

$$
\begin{aligned}
B_{n}^{*} P & =X^{T} A_{N+1}(n)\left(\sum_{i, j=0}^{N} p_{i j} M_{i j}\right) A_{N+1}^{T}(n) Y \\
& =X^{T} A_{1+1}(n) p A_{N+1}^{T}(n) Y .
\end{aligned}
$$

IEMMA 3.6. For P in $\mathscr{S}_{\mathrm{N}, \mathrm{N}}$

$$
\lim _{n \rightarrow \infty} n\left(B_{n}^{*} P-P\right)=D^{*} P
$$

with

$$
D^{*}=\frac{1}{2} x(1-x) \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} y(1-y) \frac{\partial^{2}}{\partial y^{2}}
$$

PROOF. A simple computation reveals that

$$
\begin{aligned}
A_{N+1}(n) M_{i j} A_{i j+1}^{T}(n)-M_{i j}= & \left(A_{N+1}(n)-I\right) M_{i j}\left(A_{N+1}(n)-I\right)^{T}+ \\
& \left(A_{N+1}(n)-I\right) M_{i j}+M_{i j}\left(A_{N+1}(n)-I\right)^{T}
\end{aligned}
$$

and that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(A_{N+1}(n) M_{i j} A_{N+1}^{T}(n)-M_{i j}\right)=C_{N+1} M_{i j}+M_{i j} C_{N+1}^{T} \tag{3.4}
\end{equation*}
$$

Now

$$
\begin{aligned}
X^{T} C_{N+1} H_{i j} Y & =y^{j} X^{T} C_{N+1} e_{i} \\
& =y^{j}\left(/_{i} x^{i-l}-/ i^{i}\right) \\
& =\frac{1}{2} x(1-x) \frac{\partial^{2}}{\partial x^{2}}\left(x^{i} y^{j}\right) .
\end{aligned}
$$

Multiplying both sides by $p_{i j}$ and summing over i and j yiels

$$
X^{T} C_{N+1} p Y=\frac{1}{2} x(1-x) \frac{\partial^{2} P}{\partial x^{2}}
$$

In like manner,

$$
\begin{aligned}
X^{T} M_{i j} C_{N+1}^{T} Y & =Y^{T} C_{N+1} M_{j i} X \\
& =x^{i} Y^{T} C_{N+1} e_{j} \\
& =x^{i}\left(\mu_{j} y^{j-1}-\mu_{j} y^{j}\right) \\
& =\frac{1}{2} f(1-y) \frac{\partial^{2}}{\partial y^{2}}\left(x^{i} y^{j}\right),
\end{aligned}
$$

and

$$
x^{T} p C_{N+1}^{T} y=\frac{1}{2} y(1-y) \frac{\partial^{2} p}{\partial y^{2}}
$$

The result follows now readily on performing the foregoing operations on the left side of (3.4) and appealing to Lemma 3.5.

REMARK 3.2. Owing to the linearity of the operators B_{n}^{*} and D^{*} and

$$
\begin{align*}
& \text { to the facts that }\left\|B_{n}^{*}\right\|=1 \text { and } \bigcup_{N=0}^{\infty} \mathscr{N}_{N, N} \text { is dense in } C^{2}\left[S_{2}\right], \\
& \lim _{n \rightarrow \infty} n\left(B_{n}^{*} f(x, y)-f(x, y)\right)=D^{*} f(x, y) \tag{3.5}
\end{align*}
$$

uniformly in S_{2}.
This should be confronted with the result of Stancu (1963 b),1964) that

$$
\begin{aligned}
B_{n}^{*} f(x, y)-f(x, y)= & \frac{x(1-x)}{2 n} f_{x^{\prime \prime}}^{2}(\xi, y)+\frac{y(1-y)}{2 n} \cdot f_{y^{\prime \prime}}(x, \eta)+ \\
& \frac{x(1-x) \frac{y(1-y)}{4 n^{2}} f_{x^{2} y^{2}}^{(1 v)}(\xi, \eta), \quad \xi, \eta \in(0,1) .}{}
\end{aligned}
$$

3.6.2. Iteration of B_{n}^{*} and the limiting semigroup $\left\{\hat{S}_{t}^{*} ; t \geqslant 0\right\}$.

Using Lemma 3.5 and the results obtained in Section 4.3 of Chapter 3 on the matrix $A_{N+1}^{r_{n}}(n)$, it follows that

$$
S_{t}^{*} \equiv \lim _{n \rightarrow \infty}\left(B_{n}^{*}\right)^{r_{n}}
$$

exists as a linear positive contraction operator on $\mathscr{P}_{\mathrm{N}, \mathrm{N}}$ to itself iff $r_{n} / n \longrightarrow t \geqslant 0$ as $n \longrightarrow \infty$.

For any P in $\mathscr{P}_{N, N}$ let p be its coefficient matrix. Then

$$
\begin{align*}
\mathscr{S}_{t}^{*} P & =X^{T} \cdot \lim _{n \longrightarrow \infty}\left[A_{N+1}^{r_{n}}(n) p\left(A_{N+1}^{r_{n}}(n)\right)^{T}\right] \cdot Y \\
& =X^{T}\left[\exp ^{T}\left(t C_{N+1}\right) p\left(\exp \left(t C_{N+1}\right)\right)^{T}\right] Y \tag{3.6}
\end{align*}
$$

If $t=0$ then, clearly,

$$
\begin{equation*}
\boldsymbol{S}_{0}^{*} P=P, \text { i.e., } \mathscr{S}_{0}^{*}=I . \tag{3.7}
\end{equation*}
$$

If $t \longrightarrow \infty$ then

$$
\lim _{n \rightarrow \infty} \hat{A}_{n+1}(n) \geqslant\left(A_{\mathrm{i}+1}(n)\right)^{T}=A_{i+1}^{\infty} \quad\left(A_{i N+1}^{\infty}\right)^{T}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc:c}
p_{00} & \sum_{j=1}^{N} p_{0 j} & \\
\sum_{i=1}^{N} p_{i 0} & \sum_{i, j=1}^{N} p_{i, j} & 0 \\
\hdashline & 0 &
\end{array}\right] \\
& =\left[\begin{array}{cc:c}
P(0,0) & P(0,1)-P(0,0) & 0 \\
F(1,0)-P(0,0) & P(1,1)+P(0,0)-P(0,1)-P(1,0) & 0 \\
\hdashline 0 & 0
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\dot{S}_{\infty}^{*} P(x, y)= & \lim _{n \rightarrow \infty}\left(B_{n}^{*}\right)^{I} n P(x, y) \\
= & P(0,0)+[P(1,0)-P(0,0)] x+\{P(0,1)-P(0,0)+ \\
& {[P(1,1)+P(0,0)-P(0,1)-P(1,0)] x\} y } \\
= & P(0,0)(1-x)(1-y)+P(0,1)(1-x) y+P(1,0) x(1-y)+P(1,1) x y \\
= & B_{1}^{*} P(x, y)
\end{aligned}
$$

the bilinear polynomial interpolating P at the four corners of the unit square.

It follows from (3.6) that

$$
\begin{aligned}
\delta_{s+t}^{*} P & =X^{T}\left\{e^{(s+t) C_{N+1}} p\left[e^{(s \div t) C_{N+1}}\right]^{T}\right\} Y \\
& =X^{T}\left\{e^{s C_{N+1}}\left[e^{t C_{N+1}} p\left(e^{t C_{N+1}}\right)^{T}\right]\left(e^{s C_{N+1}}\right)^{T}\right\} Y .
\end{aligned}
$$

We have, in the right brackets, the coefficient matrix of $9_{t}^{*} P$ and, in braces, that of $\mathcal{S}_{s}^{*}\left(\mathcal{S}_{t}^{*} P\right)$. Therefore,

$$
\begin{equation*}
\forall_{s i t}^{*} 3=3_{s}^{*} B_{t}^{*}= \tag{3.8}
\end{equation*}
$$

It is also easy to see that

$$
\lim _{t \downarrow 0} \frac{1}{t}\left[e^{t C_{N+1}} \underline{p}\left(e^{t C_{N+1}}\right)^{T}-T\right]=C_{N+1} p+p C_{N+1}^{T}
$$

and

$$
\begin{align*}
\lim _{t: C} \frac{I}{t}\left(\mathcal{S}_{t}^{*}-I\right) P & =X^{T}\left(C_{N+1} p+p C_{N+1}^{T}\right) Y \\
& =D^{*} P \tag{3.9}
\end{align*}
$$

With the results (3.5) - (3.9) and Remark 3.2 in mind, we may assert the existence of a totally positive, strongly continuous, contraction semigroup $\left\{\sigma_{t}^{*} ; t \geqslant 0\right\}$ on $C\left[S_{2}\right]$ with infinitesimal generator D^{*} acting on $\mathrm{C}^{2}\left[\mathrm{~S}_{2}\right]$ and such that, for any f in $\mathrm{C}\left[\mathrm{S}_{2}\right]$ and all $\mathrm{t} \geqslant 0$,

$$
\lim _{n \rightarrow \infty}\left(B_{n}^{*}\right)^{[n t]} \underset{f}{ }=\mathcal{F}_{t}^{*} f .
$$

We now proceed to determine an explicit representation for $\mathcal{3}_{t}^{*} f$, $f \in C\left[S_{2}\right]$, by womkins on the lines set out in Subsection 1.4 and omitting the details.

Introducing the notation

$$
W_{k m}(t, x, y)=\mathscr{P}_{t}^{*}\left(x^{k^{m}} ; x, y\right)
$$

we are led to the Cauchy problem

$$
\left\{\begin{array}{rl}
\frac{\partial}{\partial t} W_{k m}(t, x, y) & =D^{*} W_{k m}(t, x, y) \\
W_{k m}(0, x, y) & =x^{k} y^{m}
\end{array} \quad k, m=0(1) N\right.
$$

whose solution is

$$
\begin{aligned}
\#_{k m}(t, x, y) & =X^{T} e^{t C_{N+1}} n_{k m}\left(e^{t C_{N+1}}\right)^{T} Y \\
& =\left(\sum_{i=0}^{k} b_{i \hbar}(t) x^{i}\right)\left(\sum_{j=0}^{M} b_{j m}(t) y^{j}\right) .
\end{aligned}
$$

Now let

$$
\begin{equation*}
g_{\mathrm{km}}=g_{\mathrm{km}}(\mathrm{x}, \mathrm{y})=\mathrm{u}_{\mathrm{k}}(\mathrm{x}) \cdot \mathrm{u}_{\mathrm{m}}(\mathrm{y}), \quad \mathrm{k}, \mathrm{~m}=0(1) \mathrm{N} \tag{3.10}
\end{equation*}
$$

Thon

$$
\Im_{t}^{*}\left(g_{k n} ; x, y\right)=\mathscr{S}_{t}\left(u_{k} ; x\right) \cdot \mathscr{S}_{t}\left(u_{m} ; y\right)
$$

$$
\begin{align*}
& =e^{-\mu_{k}{ }_{u_{k}}(x) \cdot e^{-\mu_{m} t} u_{m}(y)} \\
& =e^{-\left(\mu_{k}+\mu_{m}\right) t} g_{k m}(x, y) \tag{3.11}
\end{align*}
$$

and

$$
D^{*} g_{\mathrm{km}}=-\left(\mu_{\mathrm{k}}+\mu_{\mathrm{m}}\right) g_{\mathrm{km}}
$$

Setting

$$
W(t, x, y)=\mathcal{B}_{t}^{*}(f ; x, y), \quad f \in \mathscr{D}\left(D^{*}\right),
$$

we find the Cauchy problem

$$
\left\{\begin{aligned}
\frac{\partial}{\partial t} W(t, x, y) & =D^{*} W(t, x, y) \\
W(0, x, y) & = \pm(x, y)
\end{aligned}\right.
$$

which can be solved in much the same way as in the l-dimensional case. We have, successively:

$$
\begin{aligned}
& W(t, x, y)=\sum_{k, m=0}^{\infty} c_{k n}(t) g_{k n n}(x, y) \\
& =\sum_{k, m=0}^{\infty} \bar{c}_{k m} e^{-\left(\mu_{\mathrm{k}}+\mu_{\mathrm{m}}\right) t} \mathrm{~g}_{\mathrm{km}}(\mathrm{x}, \mathrm{y}) ; \\
& f(x, y)=\sum_{k, m=0}^{\infty} \bar{c}_{k=n} \xi_{k M}(x, y) \\
& =\bar{c}_{C O}+\bar{c}_{10} x+\bar{c}_{01} y+\bar{c}_{11} x y+\sum_{k, m=2}^{\infty} \bar{c}_{k m} g_{k m}(x, y) \\
& =f(0,0)(1-x)(1-y)+f(1,0) x(1-y)+f(0, I) y(1-x)+f(1, I) x y \\
& +\sum_{k, m=2}^{\infty} \bar{c}_{k m} g_{k m}(x, y) \\
& =B_{1}^{*} f(x, y)+\sum_{k, m=2}^{\infty} \bar{c}_{k m} E_{k m}(x, y) ;
\end{aligned}
$$

$$
\begin{aligned}
\tilde{f}(\xi, \eta) & =f(\xi, \eta)-B_{1}^{*}(f ; \xi, \eta) \\
& =\sum_{k, m=2}^{\infty} \bar{c}_{k m} g_{k m}(\xi, \eta) ; \\
\bar{c}_{k m} & =\frac{1}{h_{k} h_{\eta}} \int_{S_{2}} \tilde{f}(\xi, \eta) \frac{u_{k}(\xi)}{\xi(1-\xi)} \frac{u_{m}(\eta)}{\eta(1-\eta)} d \xi d \eta, \quad \mathrm{k}, \mathrm{~m} \geqslant 2 ; \\
\mathcal{S}_{t}^{*}(f ; x, y) & =B_{I}^{*}(f ; x, y)+\int_{S_{2}} G(t ; x, \xi) G(t ; y, \eta) \tilde{f}(\xi, \eta) d \xi d \eta .
\end{aligned}
$$

The analysis carried out above can be easily extended to the N dimensional case yielding the following

THEOREM 3.7. There exists a semigroup $\left\{\mathcal{S}_{t}^{*} ; t \geqslant 0\right\}$ of class $\left(c_{0}\right)$ on $\mathrm{C}^{-} \mathrm{S}_{\mathrm{H}}^{-}$such that

$$
\lim _{n \longrightarrow \infty}\left(B_{n}^{*}\right)^{r} n=\oiint_{t}^{*} f
$$

Af $\lim _{n \rightarrow \infty} r_{n} / n \rightarrow t \geqslant 0$. The semigroup $\left\{\mathcal{B}_{t}^{*}\right\}$ is totally positive, contractive, generated by the linear differential operator

$$
D^{*} \equiv \sum_{i=1}^{N} \frac{1}{2} x(1-x) \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

which is such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(B_{n}^{*} f(\underline{x})-f(\underline{x})\right)=D^{*} f(\underline{x}) \tag{3.12}
\end{equation*}
$$

uniformly in x in s_{N} provided that $f \in C^{2}\left[S_{N}\right]$, and given by

$$
\dot{\mathscr{S}}_{t}^{*}(f ; \underline{x})=B_{1}^{*}(f ; \underline{x})+\int_{S_{N}} K(t ; \underline{x}, \underline{y})\left(\hat{I}(\underline{y})-B_{1}^{*}(f ; \underline{y})\right) d y
$$

$$
K(t ; \underline{x}, \underline{y})=\prod_{i=\bar{i}}^{N} G\left(t ; x_{i}, y_{i}\right),
$$

and

$$
G\left(t ; x_{i}, y_{i}\right)=\frac{I}{y_{i}\left(I-y_{i}\right)} \sum_{k=2}^{\infty} \frac{e^{-\mu_{k} t}}{h_{k}} u_{k}\left(x_{i}\right) u_{k}\left(y_{i}\right),
$$

with the u 's and h 's as in Subsection 1.4. $\mathrm{B}_{1}^{*}(\overline{\mathrm{I}} ; \underline{\mathrm{x}})$ is the multilinear polynomial interpolating $f(\underline{x})$ at the vertices of S_{N} and is such that

$$
\lim _{n \rightarrow \infty}\left(B_{n}^{*}\right)^{r_{n}} f=B_{l}^{*} f \quad \text { iff } \quad \lim _{n \rightarrow \infty} r_{n} / n=\infty
$$

COROLLARY 1. For f in $C\left[S_{N}\right]$

$$
B_{n}^{*} f(\underline{x})-f(\underline{x})=o(I / n) \Longrightarrow f=B_{1}^{*} f .
$$

PROOF. The left side of the implication means that $B_{n}^{*} f-f=\epsilon_{n}^{\prime} / n$ with $\epsilon_{n} \downarrow 0$ as $n \rightarrow \infty$. Let $\left\{r_{n}\right\}$ be a sequence of nonnegative integers such that $r_{n} / n \longrightarrow \infty$ and $r_{n} \epsilon_{n} / n \downarrow 0$ as $n \longrightarrow \infty$. Then

$$
\left\|B_{I}^{*} f-f\right\|_{n \rightarrow \infty}=\lim _{n \rightarrow B_{n}} \|\left(B_{n} r_{n}-f\left\|\leqslant \lim _{n \rightarrow \infty} r_{n}\right\| B_{n}^{*} f-f \|=0\right.
$$

In other words, the trivial class of B_{n}^{*} is $\mathcal{S}_{1,1, \ldots, 1}$, the subspace of li-dimensional polynomials linear in each variable.

As an immediate consequence of the fact that B_{n}^{*} is a positive operator which leaves $\mathscr{\oiint}_{1,1, \ldots, 1}$ invariant we have the following

COROLLARY 2. If f in $C\left[\mathrm{~S}_{\mathrm{N}}\right]$ is convex on S_{N} then
(i) $B_{n}^{*} f(\underline{x}) \geqslant f(\underline{x}), \quad n \geqslant 1, \quad \underline{x} \in S_{N}$;
(ii) ${\underset{\mathscr{y}}{t}}_{*}^{f}(\underline{x}) \geqslant \tilde{i}(\underline{x}), \quad t \geqslant 0, \quad \underline{x} \in S_{N}$.

PROOF. Let y in S_{N} be fixed but arbitrary then there are real constants $c_{I}, \ldots, c_{\text {iN }}$ such that

$$
f(\underline{x}) \geqslant f(\underline{y})+\sum_{i=1}^{N} c_{i}\left(x_{i}-y_{i}\right), \quad \underline{x}, y \in S_{N} .
$$

Applying B_{n}^{*} to both sides of this inequality gives

$$
B_{n}^{*}(f(\underline{x}) ; \underline{y}) \geqslant f(\underline{y}), \quad \text { all } \underline{y} \text { in } S_{N},
$$

and this, under iteration, yields (ii).

REMARK 3.3. If $D^{*} f=0$ on some subset F of S_{N} then, clearly,

$$
B_{n}^{*}(f ; \underline{x})-f(\underline{x})=o(I / n)
$$

and it is interesting to note the following consequences of this fact:
(i) The only solution of $D^{*} \tilde{A}=0$ with continuous second derivatives on S_{N} has the form $3_{1}^{*} f$.
(ii) The local saturation class theorem that, for each $g(x)$ in C and $0<a<x<b<1$,

$$
E_{n}(\tilde{5} ; x)-\tau(x)=0(1 / n) \Longrightarrow \sigma=B_{1} \text { g on }[a, b]
$$

(see de Leeuri (1959) and Bajsanski and Bojanic (1954)) is not true for B_{n}^{*}; that is,

$$
B_{n}^{*}(f ; \underline{x})-f(\underline{x})=o(I / n) \not \Longrightarrow f=B_{1}^{*} f \quad \text { on } F,
$$

whenever F is a closed subset of S_{N}. Indeed, if $g_{1}=g_{1}(x)$ and $g_{2}=g_{2}(y)$ are sone nonlinear trice continuously differentiable functions satisfying

$$
D\left(g_{1} ; x\right)=g_{1}(x) \text { on } 0<a \leqslant x \leqslant b<1
$$

and

$$
D\left(g_{2} ; y\right)=-g_{2}(y) \quad \text { on } \quad 0<c \leqslant y \leqslant d<1,
$$

then

$$
f=f(x, y)=g_{1}(x) \cdot g_{2}(y) \neq B_{1}^{*} f
$$

and yet

$$
D^{*} f=0 \quad \text { on } \quad F=[a, b] \times[c, d] .
$$

COROLLARY 3. For f in $C^{2}\left[S_{2}\right]$ the following statements are equivalent:

$$
\begin{aligned}
& \text { (i) }\left|D^{*} f(\underline{x})\right| \leqslant i f\left(\underline{x} \in S_{N} ;\right. \\
& \text { (ii) } n\left|B_{n}^{*} f(\underline{x})-f(\underline{x})\right| \leqslant M+o(1), \quad \underline{x} \in S_{N} ; \\
& \text { (iii) }\left|g_{t}^{*} f(\underline{x})-f(\underline{x})\right| \leqslant M t \quad, \quad \underline{x} \in S_{i}, t \geqslant 0 .
\end{aligned}
$$

PROOF. (i) \Longrightarrow (ii). Imnediate from (3.12).

$$
(\mathrm{ii}) \Longrightarrow(\mathrm{iii}) \text {. For } r \in \mathbb{N},
$$

$$
\left|\left(B_{n}^{*}\right)^{r} f(\underline{x})-f(\underline{x})\right| \leqslant r\left|B_{n}^{*} f(\underline{x})-f(\underline{x})\right| \leqslant H r / n+o(I / n),
$$

and (iii) follows upon taking $r=r_{n}=[n t], t \geqslant 0, n \longrightarrow \infty$. (iii) $\Longrightarrow(i)$. Immediate from the fact that $D^{*} f=\underset{t \downarrow 0}{\lim }\left(\mathscr{S}_{t}^{*} f-f\right) / t$.

3.6.3. Iinear onerators commuting with bivariate Bernstein polynomials.

Let T be a linear operator mapping $C\left[S_{2}\right]$ into itself and commuting with B_{n}^{*} :

$$
T B_{n}^{*}=B_{n}^{*} T
$$

Owing to the density of the space of bivariate polynomials in $c\left[S_{2}\right]$, it suffices to require this to hold for polynomials.

Iet $f \in C\left[S_{2}\right]$ and (θ, ζ) be any of the points $(0,0),(0,1),(1,0),(1, I)$. We show first that

$$
B_{1}^{*} B_{n}^{*}=B_{n}^{*} B_{1}^{*}
$$

Indeed,

$$
B_{n}^{*} B_{1}^{*} f(x, y)=B_{1}^{*} f(x, y)
$$

as $\oiint_{1, I}$ is left invariant under B_{n}^{*}, and

$$
\begin{aligned}
B_{1}^{*} B_{n}^{*} f(x, y)=B_{n}^{*} f(0,0)(1-x)(1-y) & +B_{n}^{*} f(1,0) x(1-y)+B_{n}^{*} f(0,1)(1-x) y \\
& +B_{n}^{*} f(1,1) x y
\end{aligned}
$$

$$
=B_{1}^{*} f(x, y)
$$

since $\xi_{n}^{*} \tilde{I}(\theta, \zeta)=f(\theta, \zeta)$.
It is now easily seen that the linear operator

$$
W=T\left(I-B_{1}^{*}\right)
$$

has the followina goperties:

$$
\begin{equation*}
W B_{n}^{*}=B_{n}^{*}{ }_{n} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta \mathrm{I}(\theta, \zeta)=0, \tag{3.14}
\end{equation*}
$$

which imply that N anihilates $\mathscr{S}_{I, I}$. Indeed, if $g \in \mathscr{S}_{1,1}$, then $\mathrm{Wg}=$ $W B_{n}^{*} g=B_{n}^{*} H g$, ie., Vg is left invariant under B_{n}^{*} and thus $W g \in \mathscr{P}_{1,1}$. Property (3.14) now implies that $W=0$ and, since g is arbitrary in $\phi_{1,1}, \sin _{1,1}=0$.

Iteration of $\mathrm{S}_{\mathrm{n}}^{*}$ in (3.13) leads to

$$
B \mathcal{G}_{t}^{*}=\mathcal{G}_{t}^{*} w, \quad t \geqslant 0
$$

and application of W to both sides of

$$
S_{i}^{*} E_{i j}=e^{-\left(\mu_{i}+\mu_{j}\right) t} g_{i j}
$$

where $g_{i j}=g_{i j}(x, y)=u_{i}(x) \cdot u_{j}(y)$ are, for $i, j \geqslant 2$, the only common eigenfunctions of $\mathcal{\beta}_{t}^{*}$ corresponding to the eigenvalues $\exp \left(-\left(\mu_{i}+\mu_{j}\right) t\right.$) (see (3.10) and 3.11)), gives

$$
\mathcal{Z}_{t}^{*}\left(\mathrm{Wg}_{i j}\right)=e^{-\left(\mu_{i}+\mu_{j}\right) t}\left(\mathrm{Wg}_{i j}\right)
$$

whence

$$
\mathrm{K}_{i j}=c_{i j} s_{i j}, \quad i, j \geqslant 2,
$$

for sone constants $c_{i j}$. Recalling from Subsection 1.3 that

$$
u_{i}(1-x)=(-1)^{i} u_{i}(x), \quad i \geqslant 2,
$$

we find

$$
\begin{aligned}
B_{3}\left(u_{i} ; x\right) & =3 u_{i}(1 / 3) x(1-x)^{2}+3 u_{i}(2 / 3) x^{2}(1-x) \\
& = \begin{cases}-3 u_{i}(1 / 3) u_{2}(x), & \text { if i even }, \\
6 u_{i}(1 / 3) u_{3}(x), & \text { if i odd },\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& B_{3}^{*} W g_{i, j}(x, y)=c_{i j} B_{3}\left(u_{i} ; x\right) \cdot B_{3}\left(u_{j} ; y\right) \\
& =\left\{\begin{aligned}
9 g_{i j}(1 / 3,1 / 3) c_{i j} g_{22}(x, y), & \text { if } i \text { even, } j \text { even, } \\
-18 g_{i j}(1 / 3,1 / 3) c_{i j} s_{23}(x, y), & \text { if } i \text { even, } j \text { odd, } \\
-18 s_{i j}(1 / 3,1 / 3) c_{i j} g_{32}(x, y), & \text { if } i \text { odd, } j \text { even, } \\
30 \delta_{i j}(1 / 3,1 / 3) c_{i j} g_{33}(x, y), & \text { if } i \text { odd, } j \text { odd, }
\end{aligned}\right.
\end{aligned}
$$

On the other hand

Use of classical properties of the shifted Jacobi polynomials of parameters $(1,1), P_{n}^{*}(x)$, shows that $P_{n}^{*}(1 / 3) \neq 0$ for all n. From this we infer that $g_{i j}(1 / 3,1 / 3) \neq 0$ for all i and j, and therefore

$$
c_{i j}= \begin{cases}c_{22}, & \text { iñ } i \text { even, } j \text { even }, \\ c_{23}, & \text { iñ } i \text { even, } j \text { odd }, \\ c_{32}, & \text { if } i \text { odd }, j \text { even, } \\ c_{33}, & \text { if } i \text { odd }, j \text { odd } .\end{cases}
$$

Iet $f(x, y)$ bs any polynomial. Ne may express it in the form

$$
f(x, y)=B_{1}^{*} f(x, y)+\sum_{i, j \geqslant 2} a_{i j} g_{i j}(x, y)
$$

Then we have

$$
\widetilde{I}(x, y) \equiv f(x, y)-B_{I}^{*} f(x, y)=\sum_{i, j \geqslant 2} a_{i j} g_{i j}(x, y)
$$

and

$$
\begin{aligned}
W_{I}(x, y) & =\tilde{W}(x, y)=\sum_{i, j \geqslant 2} \alpha_{i j W S_{i j}}(x, y) \\
& =c_{22} \Sigma_{00}+c_{23} \Sigma_{01}+c_{32} \Sigma_{10}+c_{33} \Sigma_{11},
\end{aligned}
$$

$\Sigma_{00}, \Sigma_{01}, \Sigma_{10}$, and Σ_{11} standing for the summations over i and j even, i even and j odd, i odd and j even, and i and j odd respectively.

Owing to the symmetry properiies of the basic functions $g_{i j}$, these sumations are given by

$$
\begin{aligned}
& \Sigma_{00}=\frac{1}{4}\{\tilde{f}(x, y)+\tilde{f}(1-x, y)+\tilde{I}(x, 1-y)+\tilde{f}(1-x, 1-y)\} \\
& \Sigma_{01}=\frac{1}{4}\{\tilde{f}(x, y)+\tilde{f}(1-x, y)-\tilde{I}(x, 1-y)-\tilde{f}(1-x, 1-y)\} \\
& \Sigma_{10}=\frac{1}{4}\{\tilde{f}(x, y)-\tilde{f}(1-x, y)+\tilde{I}(x, 1-y)-\tilde{f}(1-x, 1-y)\} \\
& \Sigma_{11}=\frac{1}{4}\{\tilde{f}(x, y)-\tilde{f}(1-x, y)-\tilde{I}(x, 1-y)+\tilde{f}(1-x, 1-y)\} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& f(x, y)= \\
& C_{00}(1-x)(1-y)+C_{C I}(I-x) y+C_{10} x(1-y)+C_{11} x y+ \\
& \bar{C}_{00} f(x, y)+\bar{C}_{01} f(1-x, y)+\bar{C}_{10} f(x, 1-y)+\bar{C}_{11} f(1-x, 1-y),
\end{aligned}
$$

where $C_{00}, C_{01}, C_{10}, C_{11}$ are linear functionals on f and $\bar{C}_{00}, \bar{C}_{01}, \bar{C}_{10}$, $\bar{C}_{I I}$ constants depending on B_{n}^{*}.

CHAPTER 5

ADDENDM

BERAETETI TYPE APPROXIMATTON ON C[0, ∞]

Let $c[0, \infty]$ denote the subspace of $c[0, \infty)$ consisting of continuous real-valued functions f on $[0, \infty)$ for which $t \xrightarrow{\lim } f(t)$ exists.

It is well known that $c[0, \infty]$ is a separable Banach space normed by

$$
\|f\|=\sup _{0 \leqslant t \leqslant \infty}|f(t)|
$$

and spanned by $\left\{e^{-n t} ; n=0,1,2, \ldots\right\}$. We also note that the transformation $x=e^{-t} \operatorname{maps} C[0, \infty]$ on $C[0,1]$.

An approximation process on $C[0, \infty]$ closely related to the Bernstein construction is the following.

In correspondence with a given $f \in C[0, \infty]$, exhibiting at most polynomial growth aiso, let u consider the following sequence of operators

$$
\begin{equation*}
S_{n}(f ; x)=e^{-n x} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} f(k / n) \tag{I}
\end{equation*}
$$

commonly referred to as the Szász operators. An analysis paralleling the one carried out in Ejction 1.2 of Chapter 1 to express $\mathrm{B}_{\mathrm{n}}(\mathrm{f} ; \mathrm{x})$ in terms of finite differences shows that

$$
\begin{align*}
S_{n}(f ; x) & =\exp (n \times \Delta / / n) f(0) \tag{2}\\
& =\sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} \Delta_{l / n}^{k} f(0), \tag{3}
\end{align*}
$$

a replica of Taylor's expansion except that derivatives are replaced by differences.

The result of Szász that

$$
\begin{equation*}
S_{n}(f ; x) \longrightarrow f(x) \text { as } n \longrightarrow \infty \tag{4}
\end{equation*}
$$

uniformly in every finite interval $0 \leqslant x \leqslant a$ (see, e.g., Cheney and Sharma (1964)) is an imnediate consequence of the so-called first exponential formula of semigroup theory (see, e.g., Hille and Phillips (1974, p.302),

$$
\lim _{h \downarrow 0}\left\|T_{t}{ }^{\mp}-\exp \left(t D_{h}\right) f\right\|=0, \quad D_{h} \equiv\left(T_{h}-I\right) / h,
$$

applied to the semigroup $\left\{T_{t} ; t \geqslant 0\right\}$ of translations in $C[0, \infty]$, i.e..

$$
\begin{equation*}
T_{t} f(x) \equiv f(x+t)=\lim _{h \nmid 0} \exp \left(t D_{h}\right) f(x) \tag{5}
\end{equation*}
$$

the limit existing uniformly with respect to x in $[0, \infty]$ and with respect to t in every finite inteival $[0,3]$. In fact, taking $h=I / n$ and $x=0$ it follows from (5) that

$$
f(t)=\lim _{n \rightarrow \infty} \exp \left(\operatorname{tn} \Delta_{1 / n}\right) f(0)
$$

and (4) follows from this and (2).

As we shall see, most of the Bernstein approximation properties pass on to the Szaisz oferators. Honely,
a) S_{n} is again an interpolation operator in the sense that the values
of the argument function at a certain finite number of points determine the result of operating on that function.
b) The operator S_{n} is linear and positive as follows at once from the definition (1).
c) That S_{n} maps $\mathscr{S}_{N}, n \geqslant N$, onto itself and leaves \mathscr{S}_{1} invariant follows immediately from the representation (3). Also,

$$
\begin{equation*}
S_{n}\left(t^{2} ; x\right)=x^{2}+\frac{x}{n} \tag{6}
\end{equation*}
$$

Regarded as a linear operator in \mathscr{D}_{N}, the matrix $\boldsymbol{\sim}_{\mathrm{N}+1}(\mathrm{n})$ representing S_{n} when we take for ϕ_{N} the basis $\left\{x^{k}\right\}_{\mathrm{k}=0}^{\mathrm{N}}$ may be obtained as follows.

$$
\begin{aligned}
S_{n}\left(t^{j} ; x\right) & =\left.\sum_{i=0}^{\infty} \frac{n^{i}}{i!} \Delta_{l / n}^{i} t^{j}\right|_{t=0} x^{i} \\
& =\sum_{i=0}^{j} \sigma_{i j} n^{i-j} x^{i} \\
& =\sum_{i=0}^{j} \frac{a_{i, j}}{\lambda_{i}} x^{i}
\end{aligned}
$$

showing that

$$
\begin{equation*}
A_{N+1}(n)=\Lambda_{N+1}^{-1}(n) A_{N+1}(n) \tag{7}
\end{equation*}
$$

where $A_{N+1}(n)=\left(a_{i j}\right), 0 \leqslant i \leqslant j \leqslant N \leqslant n$, is the $(N+1) \times(N+1)$ matrix repiesentation of $B_{r_{1}}$ acting on \mathscr{P}_{N} and $\Lambda_{N+1}(n)=\operatorname{diag}\left(\lambda_{i}\right), i=0(1) N$, with $\lambda_{i}=a_{i i}$.

Being the procuct of two TP matrices,
d) $A_{N+1}(n)$ is TP and therefore S_{n} is variation diminishing. As a result, all those shape preserving properties we have studied for the

Bernstein polynomials carry over to the Szász operators.

We now take up the task of iterating S_{n} proceeding in much the same way as when dealing with B_{n}. Since, by Lemma 4.1 a) of Chapter 3,

$$
A_{N+1}(n)=I+\frac{I}{n} C_{N+I}+O\left(I / n^{2}\right)
$$

(7) gives

$$
A_{1+1}(n)=\Lambda_{N+1}^{-1}(n)+\frac{1}{n} \Lambda_{N+1}^{-1}(n) C_{N+1}+O\left(1 / n^{2}\right)
$$

and

$$
\begin{align*}
& \lim _{n \rightarrow \infty} n\left(\hat{A}_{N+1}(n)-I\right)=\lim _{n \rightarrow \infty} n\left(\Lambda_{N+1}^{-1}(n)-I\right)+\lim _{n \rightarrow \infty} \Lambda_{N+1}^{-1}(n) C_{N+1} \tag{8}\\
& =\operatorname{dias}\left(\mu_{j}\right)+C_{N+1}, \quad j=0(1) N, \tag{9}\\
& =\left[\begin{array}{ccccc}
0 & \mu_{1} & & & 0 \\
& & & & \\
& & \mu_{2} & & \\
& & \ddots & \ddots & \\
& & \ddots & \ddots & \\
& & & \ddots & \mu_{N} \\
& & & \ddots & \\
& 0 & & & \\
& & & &
\end{array}\right] .
\end{align*}
$$

Let $\left\{r_{n}\right\}$ be a sequence of nonnegative reals such that $r_{n} / n \longrightarrow t$ as $n \longrightarrow \infty$. Let $\left(s_{i k}(t)\right), 0 \leqslant i \leqslant k \leqslant v$, be the matrix representing the limiting operator

$$
\mathcal{A}_{t}=\lim _{n \rightarrow \infty} S_{n}^{r_{n}}
$$

acting on \mathcal{P}_{N}. Clearly,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} A_{i+1}^{r_{n}}(n) & =\lim _{n \rightarrow \infty} A_{n+1}^{-r_{n}}(n) \cdot \lim _{n \rightarrow \infty} A_{n+1}^{A_{n}}(n) \\
& =2 \dot{\operatorname{ag}\left(e^{\mu_{i} t}\right) \cdot e^{t C_{N+1}}, \quad i=0(1) N,}
\end{aligned}
$$

giving the following explicit representation for the entries of the limiting matrix

$$
s_{i k}(t)=\sum_{j=i}^{k} \not \beta_{i, j, k} e^{-\left(\mu_{j}-\mu_{i}\right) t}
$$

with $\not \varnothing_{i, j, k}$ given by (4.4) of Chapter 3.
An analysis paralleling the one carried out for the semigroup $\left\{\mathcal{S}_{t} ; t \geqslant 0\right\}$ shows the existence of a totally positive semigroup $\left\{\mathscr{\mathcal { S }}_{t} ; t \geqslant 0\right\}$ of class $\left(c_{0}\right)$ on $c[0, \infty]$ given by

$$
\mathscr{e}_{t} f=\lim _{n \rightarrow \infty} S_{n}^{[n t]} f
$$

and generated by the linear differential operator $\frac{1}{2} \times d^{2} / d x^{2}$ with domain $c^{2}[0, \infty]$ 。

As a last application of the iteration method we give the saturation theory for the Szasz operators.

THOQREM. Let $f \in C[0, \infty]$ exhibit at most polynomial growth at ∞ then the following statements are equivalent:
(i) $f \in \operatorname{Lip} \frac{1}{M}[0, \infty)$;
(ii) $\left|S_{n}(\bar{i} ; x)-I(x)\right| \leqslant \frac{M x}{2 n}, \quad n \geqslant 1, \quad x \geqslant 0$;
(iii) $\left|\mathscr{L}_{i}(f ; x)-f(x)\right| \leqslant \frac{M x}{2} t, t \geqslant 0, x \geqslant 0$.

Moreover,

$$
S_{n}(n ; x)-f(x)=0(\pi / n) \Longleftrightarrow E \in X_{1}
$$

PROOF. That $(i) \Longrightarrow$ (ii) follows immediately from the inequality

$$
\left|f(x)-f(y)-f^{\prime}(x)(x-y)\right| \leqslant \frac{M}{2}(x-y)^{2},
$$

the positivity of S_{n}, and (6).
That (ii) \Rightarrow (iii) is an immediate consequence of the positivity of S_{n} and of the invariance of x under S_{n}. Indeed, since

$$
S_{n}^{k}(f ; x)-f(x)=\sum_{j=0}^{k-l} S_{n}^{j}\left(S_{n} f-f ; x\right)
$$

then

$$
\left.\left|S_{n}^{k}(f ; x)-f(x)\right| \leqslant \sum_{j=0}^{k-1} S_{n}^{j}\left(\mid s_{n} f-f\right\} ; x\right) \leqslant \frac{i K K}{2 n} x
$$

and (iii) folloss upon taking $k=[n t], t \geqslant 0, n \longrightarrow \infty$.

Finally, wंe show that (iii) \Longrightarrow (i) by showine that it is true on every closed interval $[a, b] \subset[0, \infty)$. This follows upon letting $0<a \leqslant x \leqslant b$ $<\infty$, defining

$$
g_{t}(x)=\frac{1}{t} \int_{2}^{x} \frac{\left(\mathcal{Q}_{t}-I\right) f(s)}{\frac{s}{2}} d s
$$

and following the lines of the argument used in the proof that (iii) \Longrightarrow (i) in Theorem 3.2 in Micchelli (1973).

The last assertion follows at once from the equivalence of (i) and (ii).

1. B. BAJSANSKY and R. BOJANIC (1964), A note on approximation by Bernstein polynomials, Bulletin Amer. Math. Soc. 70, 675-677.
2. R. E: BARNHILL and R. F. RIESENFELD (1974), Computer aided geometric design, Academic Press, N. Y.
3. H. BERENS (1972), Pointwise saturation of positive operators, J. Approx. Theory 6, 135-146.
4. P. BéZIER (1972), Numerical control-mathematics and applications, transl. by A. R. Forrest and A. F. Parkurst, Hiley, I. Y.
5. R. G.-BONNE and P. SAELONNIERE (1976), Comparaison des formes de courbes paramétrées et de leurs approximants-spline, Publication 76 de l'Université de Lille.
6. R. G.-BONE and P. SABLONNTERE (1977), Propriétés de diminution de la variation et de la forme pour approximants-spline, Seminaire 263 d'Analyse Numerique de Lille.
7. P. L. BUTZER and H. BERENS (1967), Semigroups of operators and approximation, Springer-Verlaç, I. Y.
8. P. L. BUTZER and R. J. NESSEL (1971), Fourier analysis and approximation Vol. I, Birkhauser Verlag, Basel.
9. E. W. CHENEY and A. SHARMA (1964), Bernstein power series, Canadian J. of Math. 16, 241-252.
10. R. A. JITOR (1972), The aproximation of continus functions by positive linear operators, Lecture Hotes in Mathematics Vol. 293, Springer-Verlag, I. Y.
11. A. R. FORREST (1971), Coons' surfaces and multivariable functional interpolation, Cambridge CAD Group Doc. 38.
12. A. R. FORPEST (1972), Interactive interpolation and approximation by Bézier polynomials, The Comp. J. 15, 71-79.
13. W. GORDON and R. F. RIESPRETD (1974 a)), Bernstein-Bézier methods For the computer aided design of free-form curves and surfaces, J. of the A. C. M. 21, 293-310.
14. W. GORDON and R. F. RTESENFETD (1974 b)), B-spline curves and surfaces, Proceedings 2., 95-126.
15. E. HILLE and R. PHILLIPS (1974), Functional Analysis and Semigroups, Amer. Nath. Soc. Colloquium Publ.XXXI, Providence.
16. S. KARLIM (1968), Total Positivity, Vol. 1, Stanford University Press, Stanford.
17. S. KARLTM and i. :GGRGOR (1960), Classical diffusion processes and total positivity, J. of Math. Anal. and Appl. 1, 163-183.
18. S. KARLIN and J. MCGREGOR (19́́2), On a genetics model of Horan, Proceedings of the Camb. Phil. Soc. 58, 299-311.
19. S. KARLIIf and 2 . ETEGIER (1970), Iteration of positive approximation operators, J. of Approx. Theory 3, 310-339.
20. R. P. EETTS:Y and T. J. RIVII: (1967), Iterates of Eernstein polynomials, Pacific J. of Math. 21, 511-520.
21. D. G. KMidAIL (19fr), Eernstein polynonials and semisroups of operators, Math. Scand. 2, 185-186.
22. A. G. KONGEIM and T. J. RIVLİ (1968), The bounded linear operators that commute with the Bernstein polynomials, Bulletin Amer. Nath. Soc. 74, lll-114.
 Hindustan Publishing Co., Delhi.
23. C. IANCZOS (1938), Trigonometric interpolation of empirical and analytical functions, J. Math. Phys. 17, 129-199.
24. C. LAHCZOS (1952), Introduction, in Tables of Chebyshev Polynomials $S_{n}(x)$ and $C_{n}(x)$, National Bureau of Standards, Appl. Maths. Series, pp. V-XXIX.
25. C. LANCZOS (1956), Applied Analysis, Prentice Hall, New Jersey. 27. K. de ineur (1959), On the degree of approximation by Bernstein polynomials, J. d'Anal. Math. 7, 89-104.
26. G. G. LORENTZ (1953), Bernstein polynomials, University of Toronto Press, Toronto.
27. G. G. LORENTZ (1966), Approximation oî functions, Holt, Rinehart and Wiston, iv. Y.
28. G. G. LOREMZ and L. L. SCHMAKer (1972), Saturation of positive overators, J. Approx. Theory 5, 413-424.
29. K. MARSDEM ard I. J. SCHOEMERG (1966), On variation diminishing spline approximation methods, Nath. (ciuj) ©, 61-32.
30. C. A. MICCHELII (1973), The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory 8, 1-18.
31. G. M. HEISON, R. F. RESEMFELD, and N. A. WEISS (1976), Iterates of Markov operators, J. Apymox. Theory 17, 221-331.
32. 2. L. ORTIZ (1977), Polynomial condensation in one and several variables with apelications, in Sopies in mumerical Analysis III, ed. by J. J. H. Miller.
1. E. L. ORTIZ and if. R. da SIIVA (1978), Polynomial approximation of shapes based on condensed representations of Bernstein polynomials in one and several variables, to be Ghickul by thenton Kun So.
2. G. Poiva and I. J. SCHOEMBers (1958), Remarks on de la Vallée Poussin azens and onvex conforma? maps of the circle, Eacific
J. Of Math. 8, 295-334.
3. G. PÓLYA and G. SZEGÖ (1976), Problems and Theorens in Analysis, Vol. II transl. by C. E. Billigheimer, Springer-Verlag, N. Y.
4. P. C. ROSEMBIOOM (1967), Bounds of functions of matrices, The Amer. Math. Monthly 74, 920-926.
5. I. J. SCHOETBERG (1959), On variation dininishing approximation methods, in On Nunerical Approximation, ed. by R. E. Ianger, 249-274.
6. I. J. SCHOENBERG (1967), On spline functions, in Inequalities, ed. by 0. Shisha, 255-291, Âcademic Press, N. Y.
7. I. J. SCHOEMBERG and A. WHITMEY (1951), A theorem on polygons in n dimensions with applications to variation-diminishing and cyclic variation-diminishing linear transformations, Comp. Hath. 9, 141-160.
8. F. SCHUEER (1962), On the oncer on approximation with generalized Bernstein polynomials, Indag. Hath. 24, 484-488.
9. F. SCHURER (1963), On the approximation of functions of many variables with linear positive operators, Indag. Math. 25, 313-327.
10. F. SCHUPER and F. W. STEUTGI (1976), On an inequality of Lorentz in the theory of Bernstein polynomials; Lecture Notes in Matheratics 501, pp. 332-338, Springer-Ve-lag, II. Y.
11. F. SCHURER and F. W. STEUTEL (1977), The degree of local approximation of functions in $\sigma_{1}[C, I]$ by Bernstein polynomials, J. Approx. Theory 19, 69-82.
12. P. C. SIKMPM (1951), Der wert einiger konstanten in der theorie der approximation mit Bernstein-polynomen, Numer. Math. 3, 107-116.
 operatoren, Math. (Cluj) 8, 173-180.
13. D. D. STANCU (1960 a)), Some Bernstein polynomials in two variables and their applications, Sov. Math. 1, 1025-1027.
14. D. D. STAYCU (1960 b)), On some polynomials of Bernstein type (Rumanian with Russian and French summary), Acad. Rep. Pop. Rom. Fil. Yasi, Stuc. Cerc. St. Hat. 11, 221-233.
15. D. D. STAiFCU (1963 a)), A method for obtainins polynomials of Bernstein type of two variables, Amer. Math. Monthly 70, 260-264.
16. D. D. STAICU (1963 b)), Evaluation of the remainder term in approximation formulas by Bernstein polynomials, Math. Comp. 17, 270-273.
17. D. D. STAMCU (1964) The remainder of certain linear approximation formulas in two variables, SIAf J. Numer. Anal. 1, 139-163.
18. Y. SUCURI (1967), Saturation of local aporoximation by linear positive operators of Bernstein type, Tôhoku hath. J. 19, 429-453. 54. H. F. TROTTER (1958), Approximation of seai-stoups of operators, Pacific J. Math. 8, 887-919.
