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ABSTRACT 

Our main purpose in this thesis is to study the properties of the 

limiting semigroup of the iterates of the Bernstein polynomials as well 

as to give some applications. 

Chapter 1 reviews some well-known results on the Bernstein approximation 

theory: connection with the translation semigroup, smoothirg effects, 

variation diminishing properties, etc.; gives some apparently new 

interpretations of less well-known results, namely, the recursive 

calculation of the Bernstein polynomial and its derivatives; and extends 

the Bernstein construction to the approximation of continuous, multi-

variate, real-valued and vector-valued functiono. 

Chapter 2 offers a new approach to the numerical condensation of 

a given multivariate polynomial P as a natural extension of Lanczos' 

telescoping technirvle; gives sufficient conditions for the existence of 

condensed forms of P, and an algorithm for their step by step computation; 

applies these considerations to Bernstein-arLier approyimants, and gives 

several examples on the shape approximation problem in one and two 

dimensions. 

In Chapter 3 the Bernstein operator is rega::ded as a linear 

transformation onto the mace of algebraic 11.o3ynomials with real coefficients 

and degree at most n, and the properties of its iterates of nonnegative 
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order are studied from a fairly elementary matrix analysis standpoint. 

These iterates are shown to be contractive, variation diminishing, 

convexity preserving, and convergent to a limiting operator which is 

explicitly given and shown to be totally positive. 

Chapter 4 re-interprets the limiting results of Chapter 3 in the 

context of the operator semigroup theory as an alternative approach to 

Karlin-Ziegler's identification and representation of the limiting semi-

group of Bernstein iterates of nonnegative order. We give here some new 

applications of this semigroup, namely, the approximation properties of 

two new operators of de Leeuw's and Micchelli's type and the characterization 

of the linear operators commuting with the bivariate Bernstein polynomials. 

Finally, Chapter 5 parallels, for the Szgsz operators, the analysis 

carried out in Chapters 1, 3, and 4 for the Bernstein polynomials. We 

show that they are totally positive and give their saturation theory as 

another application of the operator semigroup method. 
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SYMBOLS AND NOTATION  

SYMBOL 	lEANING 

is, belongs to 

implies 

iff, if and only if 

approaches 

approaches from above 

approaches from below 

[ ] 	largest integer 

natural numbers 

real numbers 

N 	 N-diMensional Euclidean space 

C[P,1], continuous on that range 

C(n) 
	

continuous with derivatives of order < n 

I 	identity operator 

95 	algebraic polynomials with real coefficients 

'n 	algebraic polynomials with real coefficients and degree < n 

multivariate algebraic polynomials with real coefficients 

and degree ni  in the variable xi, i = 1(1)N 

TP 	totally positive 

ST? 	strictly TP 

zyip 	triangular and T2 

LSTP 	triangular and STP 



INTRODUCTION  

Ever since S. N. Bernstein introduced in 1912 his celebrated 

polynomials to give a constructive proof of the Weierstrass uniform 

approximation theorem, they have been the starting point of many 

investigations. 

The fascinating approximation properties of the Bernstein polynomials 

and the fundamental works of S. Karlin on total positivity, of G. Lorentz 

and C. Nicchelli on the Bernstein saturation problem, of I. Schoenberg 

on variation diminishing approximation methods, and, above all, the 

pioneer work of R. Kelisky and T. Rivlin on the iterates of the Bernstein 

polynomials have had a decisive influence on this thesis. 

Chapter 1 deals on the whole with properties and applications of the 

Bernstein approximation to continuous, real-valued and vector-valued 

functions. 

The trivial observation that the Bernstein polynomial Bnf of a given 

f in C can be written as the product of n averagings or n forward linear 

shiftings (see Lemma 1.1) leads immediately to: 

(i) The well-known conventional polynomial form of Bnf and its 

interpolation properties (Section 1). 

(ii) The recursive calculation of B
nf and its derivatives B(j)f 

(Sections 1 and 21). 

8 



(iii) The uniform convergence results that 3(j)(f;x)----.-f(j)(x) 

j = 0,1,... as n---4,-op(Section 2). 

(iv) An immediate extension of the foregoing results to the 

dimensional Bernstein polynomials (Section 3). 

(v) An elementary and straightforward construction of the Bernstein 

approximation theory: Smoothing effects, variation diminishing properties, 

etc. (Section 4). 

(vi) An easy extension to cover the B4zier methods, namely, the 

recursive construction of Bezier curves and their derivatives, variation 

diminishing properties, Bezier iterates, etc. (Section 5). 

Apparently, Lemma 1.1 does not appear published anywhere in the vast 

literature on Bernstein polynomials. Its main interest lies in the ease 

with which the semiclassical Bernstein approximation theory is generalized 

to the multivariate and parametric cases. 

There is no new material in Section 2, which connects B
n
f with the 

translation semigroup in C [0, on] 

In Section 3, the recursive generation of multivariate Bernstein 

polynomials and their convex hull and interpolation properties are 

e,snti=lly 	in Gordon and. RiesenfelL (1.974  a) ). 

Since derivatives of Bernstein polynomials are also Bernstein 

polynomials (of another function!), then their recursive calculation 

and geometric representation, which Section 4 deals with, may also be 

seen an essentially contained in Cordon and Rlesenfeld (1974 a) ). 

The recursive construction of the matrix A
2ii-1(n) representing Bn 
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acting on 	and the observation that, thanks to the smoothing effects 

of B
n, any interpolating sequence at eouidistant nodes can always be made 

uniformly convergent appear to be new. 

The recursive construction of B4zier curves and surfaces, their convex 

hull and interpolation properties, the recursive calculation and geometric 

representation of derivatives of Bezier polynomials, which are dealt with 

in Section 5, are all, once again, essentially contained in Gordon and 

Riesenfeld (1974 a), b) ). 

Finally, following G.-Bonne and Sablonniere (1976), we extend to the 

Bezier operator the variation diminishing properties of the Bernstein.  

polynomial, which are due to POlya and Schoenberg (1958). 

In Chapter 2 we offer a new approach to the numerical problem of 

condensin9; (telescopin:2;) a given multivariate polynomial P = P(xl,x2,...,xN) 

defined on the unit hypercube of BIT, leading to a considerable simplification 

of the work required to perform it (cf. E. Ortiz (1977) and E. Ortiz and 

M. da Silva (1978)). In particular, we try to avoid polynomial basis 

transformations, and practical atriori tests for the existence of a 

condensed representation of P appear naturally as immediate extensions 

of the univariate case. 

Section 1 offers a new algorithm for step by step computation of a 

condensed representation of a given 

Section 2 extends this algorithm to PE.91) 	(the linear (th I I 	' 2'"' N 

sPace of multivariate polynomial: -.:nth real coefficients and degree L. 

in x , k = 1(1)N); uses' the numbers s, of condensation steps to measure 



the smoothness of P in the xk-directions, and to define the principal  

variables of P; and deals with the problem of approximating a given 

multivariate polynomial by another polynomial of fewer variables. 

Section 3 applies the above considerations to Bernstein-Be'zier 

approximants and gives several numerical examples on the shape approximation 

problem in one and two dimensions. 

The greater part of the material of Chapter 3 is seemingly new. It 

has been largely inspired by Kelisky and Rivlin (1967), who were the first 

to study the convergence of the iterates of Bernstein polynomials Brri(f;x) 

as 	both in the case that r is independent of n and, for polynomial 

f, when r is a function of n. They have treated only these convergence 

7:roblems, leaving, therefore, scope for more work, namely on properties 

and applications. We deduce here the properties of the Bernstein iterates 

of all orders using only elementary matrix methods.We show that the operators 

Br , r>0, are contractive, variation diminishing, norm not increasing, 

and convergent to a limiting operator, which, in each of the following 

cases: 

i) n fixed, 	co 

to CR, fixed, 	m 	as independently of n 

iii) r = rn---*oo, 

is explicitly given and shown to be totally positive. 

Section 1 puts the Bernstein generalized iteration problem in the 

corte:-t of --1:r1--val!loa fvncrAo-s. Arlot---y It-rotes are imndi PPtc. 

extensions of those of natural order, and these are simply reduced to 

matrix multiplications. 
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Section 2 offers the apparently new results that the matrix 

representation of Bn 	1, acting on .9 T  and the triangle of Stirling numbers 

of the second kind are both totally positive. 

Section 3 deals with the positivity of Bn , r,>0, and shows that 

its matrix representation is column-stochastic for all sufficiently large 

r (Theorem 3.1). 

Section 4 gives a neater and richer theory of the limiting behaviour 

of Br  , r>0, than that in Kelisky and Rivlin (1967). In particular, 

Theorem 4.1 throws light into the structural limiting properties of the 

matrix representation of Brn  , r>0, and Theorem 4.2 enlarges and gives 

more insight into the meaning of certain seemingly nontrivial identities 

first observed by those authors. 

Finally, we discuss in Section 5 the convexity preserving properties 

of the arbitrary Bernstein iterates. We show that B2 is convexity preserving 

for each real r and that Br  is convexity preserving or nearly so for all 

r> 0 and n>2. 

Sections 1 and 2 of Chapter 4 are essentially of conceptual value. 

We offer an alternative approach to Karlin and Ziegler (1970)'s identifi-

cation and representation of the limiting semigroupiA; t-.>.01. of the 

Bernstein iterates of nonnegative order. Our approach does not rely on 

diffusion theory arguments as Karlin and Ziegler's but re-interprets the 

limiting theory of Chapter 3 in the context of the operator sere.group 

theory. Some results reproduce 	and Ziegler's, although in a more 

straightforward fashion, and some extensions are shown possible with our 

approach. 



The existence of the limit 
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nt 
;5, pr(x) = lim Bn ~B(x_ ) , PC .2;3; 	, 

 

its total positivity and semigroup properties, and the infinitesimal 

generator 

D P(x) = lim n(Bn - I) P(x) = x(1-x) d2P/dx2 , 
n 

all follow from the limiting theory of Chapter 3. 

To extend
/t to C we define W(t,x) =,; t" (fx) are naturally led 

to the classical diffusion problem 

aVat, = D W , 	W = W(t,x) , 

= f(x) , 

and we find for.,1(f;x) the integral representation 

1 
..8t(f;x) =.)(G(t;x,y) f(y) dy 	( f(0)=f(1)=0 ) 

0 

with the kernel G expressed in terms of the shifted Jacobi orthogonal 

polynomials of parameters (1,1). 

A fundamental property of G is its total positivity, which implies 

that J5t inherits from Bn its shape preserving properties. This appears 

to be new, though essentially contained in Karlin and McGregor (1960) 

and Butzer 	:easel (1;71). 

Section 3 reviews some known applications of A
' namely, the Lorentz-

Micchelli's treatment of the Bernstein saturation problem, the Karlin-

Ziegler-Micchelli's characterizations of convexity, and the Karlin-Ziegler's 

identification of the linear operators commuting with B
n, and offers some 

new applications of a, these are 



i) The saturation theory for the de Leeuw-like operators 

* Knf = 
u 
J,1nkU 	ac_s) _k  

where 1
nk(f) are some linear functionals on f and {a In  is the Bernstein- k =0  

basis for. We show that KMf---e. 
tf strongly for all f in C, and 

that K
n and Bn have exactly the same saturation properties. 

ii) The approximation properties of a new Micchelli's type operator 

which takes into account the spectral characteristics of Bn  and leaves 

intact. 

iii) The generalization of our construction to the multivariate setting 

to receive a number of results as natural extensions of the univariate 

case, e.g., the identification of the linear operators commuting with 

the bivariate Bernstein polynomials. 

Lastly, an example of the applicability of our technique is afforded 

by the SzAz operators. We show in Chapter 5 their total positivity by 

working on the lines set out in Chapters 1, 3, and 4. Their saturation 

properties are also given as an application of the iteration method, 

reproducing, however, results already given by Suzuki (1967) by a different 

method. 
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CHAPTER 1 

BERNSTEIN APPROXIMATION TO CONTINUOUS REAL-VALUED AND VECTOR- 

VALUED FUNCTIONS 

1. BERNSTEIN APPROXIMATION TO REAL-VALUED FUNCTIONS  

The nth degree Bernstein polynomial approximation to a real f(x) 

defined on 0,11 is given by 

5 f (Indxko....x)n-k Bnf(x) 2 Bn(f;x) = 	k 	n>1., (1.1) 
k=0 

B f(x) = f 0 	0 ' 

where fk = f(k/n), k=0(1)n. The polynomials 

qk = (n ' 
x) = (n)xk(i_x)n-k k=0(1)n , 	(1.2) 

form the Bernstein basis for 5n  and are well-known to enjoy the following 

properties: 

a) 	gk> , 	k=0(1)n , 

ns  
b) ^k  = 1 = k=0 

n  
c) > s

k qT  X 
k=b " 

(1.3) 
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1.1. The convex hull property. 

Owing to the properties (1.3), the graph of Bnf develops within the 

convex hull of the points /(kin,f,) n  . To be more precise, regarding 
}k=0 

the basic polynomials ok  as masses attached to the points (k/n,fk), the 

center of mass of those mass points describes the graph of Bnf as x 

traverses [0,1] . 

This elegant interpretation of the Bernstein construction is due 

to Gordon and Riesenfeld (1974 a)). 

1.2. Recursive generation. 

Making use of the fundamental operator in Finite Difference Calculus, 

namely, the forward shifting operator E defined from 

	

Efk = fk+1 
	

k=aillpoos p 

and the forward difference operator A given by 

	

-  
Afk = fk+1 	fk = (E 	i)fk , 	

k=0,1,... , 

we may replace in (1.1) fk with E
kf0  to obtain 

LEMMA 1.1.  The Bernstein approximation to any given real-valued 

function f taking on the values fk  at the nodes kin, 

k=0(1)n, is given by 

	

a) 	Bn(f;x) = ((1-x)I 	xE)nfo 

16 



b) 	Bn(f;x) = (I + xAtOnfo  . 

From a), Bn  is the product of n averagings: 

xfk = (1 -x)fk xfk+l ' 
	k=0(1)n-1 ; 

while b) shows that B
n is the product of n forward linear shiftings: 

xfk = fk + x(fk+1 - fk) , 	k=0(1)n-1 . 	 (1.5) 

Clearly, 

Bn(f;x) = (113 1c  fo  . 	 (1.6) 

As immediate consequences of Lemma 1.1 we have 

i) a numerical procedure for the recursive generation of Bn(f;x). 

Indeed, given the table ikin,fkr , we construct the numerical triangle 
k=0 

f 0 

f1 

f2 

f(1) 
0 

f(1) 
1 

f(2) 
-0 
' 	• 

• 

• 
:f (n) (1.7) 

fn-2 

f(1) " n-2 	. 

fn-1 	
f(2)
n-2 

f(1) 
n-1 

f 

17 

with column entries ff3)  given by 
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) 	0-1) 

	

f. 	= f. 	j=1(1)n ; i=0(1)n-j , 

	

1 	x 

(0) 

	

f. 	= f. 

	

1 	1 	i=0(1)n , 

and whose vertex fo
(n)  is Bn(f;x) by (1.8) and (1.6); 

ii) the conventional polynomial form 

	

Bn(f;x) = 	(I.1) ZLf•0  xk   ' k=0 

(1.8) 

(1.9) 

which in turn implies that if fE: (1?1  then Bnf Eltnim,n1 

iii) since [Bo  = I and 031  = E, then 

Bn(f;°) f0 = f(°)  
(1.1o) 

Bn(f;1) = Enfo  = fn  = f(1) , 

the well-known result that Bnf interpolates to f at the endpoints of 



2. THE BERNSTEIN UNIFORM APPROXIMATION THEOREM AND THE TRANSLATION 

SEMIGROUP 

Let X be a Banach space endowed with norm 114 and let g= ITt  ; t>01- 

be a one-parameter family of linear bounded transformations on X to itself 

with the property 

Ts = TsTt , 	. 

We then speak of ."as an operator semigroup. 

THEOREM 2.1 (Kendall). If .,J is continuous in the strong operator 

topology for t;›-0, then 

19 
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n OD 

11 ((1-t)I + tT1/n)nf - Tt  f = 0 (2.1) 

for each f in X and each t in [0,]] uniformly in t. 

PROOF. See D.G. Kendall (1954). 

Let X = CLO,crj , the Banach space of real-valued, continuous, bounded 

functions on E0,6fl,  nonmed by 

= 	sup 	I f(x)I, 
0<sx4co 

and let 	denote the semigroup of translations in C[0,01: 

T f(x) = f(x+t) . 



In this case, (2.1) shows that, for 0<t‘1, 

n  
f(x+t) = lim > (n

k

) tk(i_t)n-k f(x+  11.1) 
n—pco k=0 

where the limit exists uniformly with respect to x in [9,0:::] and t in 

[PO]. In particular, for x = 0, (2.2) gives 

lim B 
n
(f;t) = f(t) , 	0<t41 , 

n 	 co 

the well-known Bernstein uniform approximation theorem. 

(2.2) 

(2.3) 

REMARK 1.1. For each fixed but arbitrary integer j.'„?..0, it follows 

from Lemma 1.1 b) that 

3
(
j)  (f; x) = yna lin)i(T 	 f(0) 

o = 1 

xj  = (14)(14 ... (1- -14%) - 1 - 0(1/n) . 

We recall that n411/n  = d/dx + 0(1/n) and observe that Alle.Lii/N  

N = n-j, in the sense that their effects on f, assumed differentiable 

in (0,1), have the same limit as n---4-00. Indeed, 

	

(A 1/N 	) ( ) 

	

1/N 	1/n-f-x-  = f(x + 1/N) - f(x + 1/n) 

= f(x + 1/n + j/(nN)) - f(x + 1/n) 

nzi f(y) , 	x + 1/ny<x + 	, 

= 0(1/n2) . 

20 
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and 
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Therefore, 

(I + x%11/n)n3  f(0)--(I + xAl/N)N  f(0) = BN(f;x)----wf(x) , 

and we have the well-known result that 

B(j)  (f,x)-f(j)(x) as 

(cf. Lorentz (1953, p.12)) at each point x(=[0,1] where f(j)(x) exists, 

the convergence being uniform provided f(J) is continuous. 



3. BERNSTEIN APPROXIMATION TO CONTINUOUS,MULTIVARIATE FUNCTIONS  

The results in the preceding sections afford a straightforward 

generalization to continuous functions of more than one variable. Let 

fE=CN, S2  = i(x,y)CR2  04x,y41}, be given. Then Bh,mf(x,y) a 

Bn,m(f;x,y), the Bernstein polynomial of n
th degree in x and mth degree 

in y associated with f(x,y), may be obtained by applying twice the well-

known univariate Bernstein polynomial approximation formula. Regarding, 

for the moment, x as a Parameter and y as the operational variable, 

we have 

f(x,y) N Bmf(x,y) = Bin f(x,0) 

with 

By =I+ yL\ 
k ' k = 1/M , 

gives 

= (l-y)I + yEk  

The same approximation formula, applied this time to the variable x, 

f(x,0) 	Bilf(x,0) = B131(  f(0,0) , 

with 

Bx = I + x•Ah 
	h = lin , 

= (l-x)I + xEh  . 

Thus we have 

f(x,y) 	Bn,mf(x,y) = B; 037(  f(0,0) . 

22 

Had we started with y as a parameter and x as the operational variable, 



we would have ended up with 

f(x,y) 	Bn,mf(x,y) = On  Biny 
 f(0,0) . x  

Therefore 

Bn,mf(x,y) = B
nx  Biny 

 f(0,0) = Bf x  Bn  f(0,0) , 	(3.1) 

and we conclude that the bivariate Bernstein operator Bn,m is simply the 

Product of the commutative univariate operators Bm  and Bm  (cf. Gordon 

and Riesenfeld (1974 a))). 

In order to extend this to higher dimensions we associate with each 

f in C[Sisil, SN  the unit hypercube of RN, N>1, the N-dimensional Bernstein 

polynomial of degree ni  in xi, i=1(1)N, 

Bnf(x) = B n  (f;SN  ;x)  nl,n2,...,nN  

N n. 
= J L Bxl  f(Q) P 

1=-1 1 
where 

LB 	= I + x. 

	

X. 	1 

	

 1 	1 . 

with 

zaf(x) = f(x1,...,x. 

	

1-1' 	n'x i+1,.•.,xN) - f(xl,".P xi  1P••.PXN) 

or, equivalently, 

Bx. =(1-x.)1 + x. E 

	

1 	1 
with 

E f(x) = f(x 	.+— l'""x  1-1 x  ' 	n 'x i+1'""xN) 

It follows from (3.2) and (3.3) that 

(3.2) 

(3.3) 

(3.4) 
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n. N 	2. n. 
x
i- j. 

B f(x) = IT { I: (.1) x.,6,1  f(0)1 

	

a 	-... 	. , J 	1 .  
1=1 j..---() 1 	1 

1 

n 	n, IT n, 	j, iN 
= > 	> 	-( 1).A 	f(2) 	...44N, 	(3.5) 

JN 1 
il=b  jN=6  31  

generalizing (1.9) and implying that if 

,A 	i1 i2 	'NI 

	

r1, r2, 	rN  

f(- E span xi  , x2  , 	xN  
il-°' i2=0' "" le°  

	

then B n 	standing for minini,ril, 	, mininN,rNI. 

Similarly, using (3.2) and (3.4), we obtain 

ni  n. 	n.-j. j. j. 
B nf(x) = 	>7 (.1) (1-xi) 1 1  x.1  E 1  f(0)} 

i=1 j.=0 Ji 	. 1 

rim  
= 	.. . Ni \  ft ( 

i ___,.. ., LIT) {_I n  L( 1) (/_x. 1
n 

 I 
j.  
11 1  1 x1

j 

'..xN 
1 	

ill N 	.  

—b jN=b 
n1  n j. N i=1 	11 

(3.6) 
n1 N ." 	f(---,'... , 	) q. (n x )...q. (n ,x ) J1 

nN1 l' 1 	JN  N N 
j1=b 	ON 40 -1  

extending (1.1). 

REMARK 3.1. Gordon's mechanical interpretation of the univariate 

Bernstein polynomial (see Subsection 1.1) affords an 

easy extension to the multivariate setting. Indeed, setting 

ri 
N. = J L q. (n. x ) 

k=1k 	k 

(3.7) 

24 

and 
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i1 	iN 
f. = f( 1--.71 • • • p n  ) , 1 

then, in view of the easily verified properties 

M. 0, 	= 1 , 

nk 	
= 
xk 
	k=1(1)N , 

7f.= B nf(x) , 

the summations being assumed over i =0(1)n i =0(1)n 	' N i =0(1)n 1 	l' 2 	2' 	N' 
the center of mass of the points (ii/ni, 	, iN/nN, fi) with masses 

N. describes the graph of B -f(x) as x runs over SN. 

REMARK 3.2.  Beira-  the product of n1+ n2+ ... + nib  averagings, Bnf(x) 

can be generated recursively by means of N triangular. 

schemes similar to (1.7). 

By way of example, we take N = 2 and construct Bnmf(x,y). Two ,  

numerical triangles have to be formed. The first, 

f(0,y) 

f(1)(0,y) 

f( 1 v) 

• 

•: 	• 	. 
f
(n)

(OpY) 

f( 
` n " 

f(1,y) 

• . 	• 
f(1)( n-1,v)  

` n " 

(3)/ i with column entries f 	k --,37.) given by 



f(j)( ,y) = f(j-1)(1.,-") 	j=1(1)n ; i=0(1)n-j n  

26 

f(0)( 4,3r)  =f( 4,Y) , 	i=0(1)n , 

having the vertex 

P(x,y) = f(n)(0,y) = B: f(0,y) = Bnf(x,y) , 

and the second, 

P(x,0) 

p(1) x,o) 

(m) • P(x,0) 

P(x, m-1) 	. • 
p(1),x  m1.

► m  ) 

P(x,1) 

P(x, 

p( i )(x,41)= Bypo-1)(x,4) , 	j=1(1)m ; i=0(1)m-j , 

P(°)(x, 4--1) = P(x, 	, 	i=0(1)m , 

with 

and 

P(m)(x,0) = Bn,mf(x,y) 

REMARK 3.3.  The N-dimensional Bernstein polynomial Bnf(x) interpolates 

to f at the vertices of SIT. 

Taking again N = 2, we now have, from (3.1) and in correspondence 



with the interpolation results (1.10): 

B n,mf(0,0) = f(0,0) 

Bn,mf(1,0) = En  f(0,0) = f(1,0) 

Bn,mf(0,1) = En  f(0,0) = f(0,1) 

Bn,mf(1,1) = Enh  En  f(0,0) = f(1,1) , 

i.e., Bn,mf  interpolates to f at the four corners of S2' Moreover, 

Bn,mf(x,0) = oBn f(0,0) = Bn
f(x,0) 

Bnmf(x,1) = 0;ic  EZ f(0,0) = [B13/:c  f(0,1) = Bnf(x,1) 

Bn,mf(0,y) = By f(0,0) = Bm
f(0,y) 

Bn,mf(1,y) = Eny  Enh  f(0,0) = On f(1,0) = Bmf(1,y) , 

i.e., the bivariate Bernstein polynomial approximation to f(x,y) reduces 

to the appropriate univariate one on each side of Sz  (cf. Gordon and 

Riesenfeld (1974 a))). 

REMARK 	Since Bn(f;SN;x) can be factored into N univariate Bernstein 

Polynomials, each of which converging uniformly in the 

unit interval, then 

B n(f ;S 	f(x) as n 	, 

i.e., as 	for i=1(1)N, uniformly in x in SN. 

REMARKa2.  The operators Bn(f;SN;x) are a particular case of the 

following linear positive operators Ln(f;KN;x) introduced 

27 
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by Schurer (1963) for the approximation of multivariate functions, 

continuous on the region KN  of the first hyperquadrant of RN: 

00 	OD 	j1 	j N r-1) 1  
j +...+ j 

N n4(d)f 1 il 	iN LP(f;KN;x) = 	E ... 	Ek f( -E-,..., nN) 	p 	kin, xl  ...xN  , 
j1=° 	jN=- 	1 	il'---itiL  Li  

(3.8) 

 

f(x) as n--.03 uniformly in x in 

 

where 

jN 
0(j)(x) - 	

1 	

ju 011(14) 

3x1 —xN- 

and 0 (x), called the generating function, is such that n — 

a) 011(x)  (=e)  (KN) 

b) 0n(0) = 1 , 

j 
c) (-1) 1  (d) Yin  6.i)>0  j1,jN = "— ; 25. EKN  

d) --01(ii)(x) = ni  On  el( x_) i 1 + ah. (z.) 
1 

where - ei  stands for j1, 	, ji_i, ji  - 1, 	,jN  and, for 

i = 1(1)N, an.  (x) 	0 uniformly in x in K. if ni 	oa. 
- 	 -

1  

If we take 

N 	n. 

	

On(I) = J[(1-xi) 1  , 	LEK/I  * 
1=1 

then 

J 
	j- 	N n. 	nj. 

0(41)(x) - (-1) 1 	
alt 
	jii* 	L(j ) (1 -i)  

1 
— i=1 
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N  n. 	
j
1
+...+ j

N 1. 
ni-ji _ 	 (-1)  

J L(.1) (1-xi) 	oN)(x) , j E ...j 	n 	— 
i=1 Ji 	1 	N' 

and thus (3.6) is included in (3.8), i.e., the N-dimensional Bernstein 

polynomial operators Bn 
are a particular instance of Schurer's L. 

In the seauel we take, for simplicity, ni  = n, i = 1(1)N, and write 

B n(f;x) = B n(f:S -x) 

= 
 J1 	j -0 

N j  /n 
'k ) 

1 d ---xN (3.9) 
3N 1 

by (3.5). 

	

. 4:1"n • 
	jiN 

	

... 77 	n  ) q. (n,x )...q. (npx ) 	(3.10) 

	

31=° jN
0 	31 1 311  N 

by (3.7 

N-dimensional Bernstein polynomials may also be associated with 

multivariate functions f(x) defined on other domains of CRN' e.g., 

TN  ={2c_ = (x1, x2, ..., xN)E=RN  : 	x1+ x2+...+ 

iN 	n!  
(f;T;x) = 	

, i1 
fk. --.- - -1 r n. 	.0 	i1.i.....+ i

N
<1.n 	n1 	

r ..i r(n-i -...-id! III 	l' ' 	N' 	1 

i
k> 0 (3.11) 

11 n-11- N 
x1 ...xN1N) 

See Lorentz (1953, p.51) and Schurer (1962,1963). See also Stancu (1960 

a), b)) for probabilistic interpretations of these generalized Bernstein 

polynomials. See also Stancu (1963 a)) for a particularly nice approach 

to definir biva_iate Bernstein polynomials on domains given by the 

equations 



x = 0, x = 1, y ul(x), and y = u2(x) , 

where ul  and u2  are polynomials such that 04=u1(x)4.-u2(x) for 0<x<1, 

leading to the problem of rational Bernstein type approximation. 

4. SMOOTHING PROPERTIES OF THE BERNSTEIN OPERATOR  

4.1. Derivatives of Bernstein polynomials. 

For each flzad but arbitrary integer j>0 and any given f(x) defined 

on [0,11, it follows from Lemma 1.1 that 

B(j)(f;x) - (nni  j)L 2'11((1-x)I 	xE)njfo 

n!   (n-j),Nf  xk(i_x)n-j-k , 	(4.1) 
= (n-j): k=6 k I 	k 

from which 

n- .(Fj;x) , 	j=0(1)n 
(n-01  B(j)lf.x  = 	j 

n! 	n 	" 
0 	j>n ,  

(4.2) 

Fj  being such that 

Fj( 
n-
k
j 
 ) = Ajfk ' k=0(1)n-j > 0 , 

(4.3) 
F(n)(0) = Qnfo  . 

th REMARK 4.1. Noting ,(4.2), the j derivative of the nth degree 

Bernstein polynomial of f is, apart from the coefficient 
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(n-j)l/nt, the (n-j)th degree Bernstein polynomial of the function F3 

derived from f according to (4.3). In view of this, not only Bnf but all 

its derivatives as well afford a recursive generation and an easy geometric 

construction. For details see Remark 5.2 below. 

The following assertions are easily seen to follow from (4.1): 

(j) Bn (f;0) 

(j)t B 	kf;li 

A j,. 
-Lo 

_ n! Ajg  
7:75.'n-j 

j=0(1)n . (4.4) 

Incidentally, (1.9) follows also at once from (4.4) and Taylor's expansion 

of Bn(f;x) about 0: 

(i)t 	) n B kf;0/  
B(f;x) = > 	n 	 x3  = >  (n.) A)fs x3  . n  

i=e 	iL 	j=O 
	

0 

(ii) Bn preserves most of the global characteristics of f, namely, 

positivity, monotonicity, convexity, etc. (see Pólya and Schoenberg (1958) 

and Schoenberg (1959)). 

(iii) If f is absolutely monotonic in [0,1], i.e., 

	

f(J)(x)71,10 , 	j=0,1,... ; 0<x <1 , 	(4.5) 

then, from (L1-.1), so is Bn.f. In -particular, for any integer j>0, the 

monomial xj  satisfies (4.5) and thus 

Bn(tj;x) = 5: a.. xi  i=6 J 

where 

a.. = a. .(n) = C.) Al 1/n ti 13 	/3 	1  

  

>0 
t=0 

(4.6) 
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0 

a.. -1 10 
X. n1-3 a., 	0 ‘,.!L ej 	, ij 

(4.7) 

with 

and 

X.3_ = (11)itini 	
i=0(1)n , 

= 1 , nn.  

(4.8) 

0 

ij 
1 (-1)i-k* ki  , 

i >j 
(4.9) 

The numbers a. . are called Stirling numbers of the second kind.They are 
nonnegative (see (4.6)-(4.8)) and satisfy the following recurrence relation 

a. 	. 	= 	a 	+ 	0. 
3
. 

1,3+1 	i-1,j 	1 

The upper triangular matrices 

All = (aij) 	, 	, 	and N  ANia  = 
1 

0 

0  

AN  

(4.10 

(4.11) 

given by (4.7) will play an important role in the sequel. It follows from 

(4.7), (4.8) and (4.10) that the a..'s may also be generated recursively: 

a. 	= -- ia 	(1)a. i,j+1 n j 	n 1-1,j (4.12) 

This, in turn, implies that the column sums of the matrices (4.11) are 

all eaual to 1, which is also a trivial consequence of the fact th.o. 

B n'  (xj.1) a 1. AN  and ANil  are said to be column-stochastic in the sense 

that thr colu7In 	:11.3 all nonn-3zatLvo and sun to 1. 



4.2. Variation diminishing properties. 

Let v(f) denote the number (finite or infinite) of sign changes 

of f(x) as x traverses [0,1], then, from (4.1), 

v(Bn1) C  v({f k})  <v(f ) 	 (4.13) 

v(Binf) < v( le.f0) (v(f) 	(if fE:C1) 	(4.14) 

v(B"f ) < v( 142fict ) < v(f) ( if f C C2  ) 	(4.15) 

describing, respectively, the so-called sign, monotonicity, and convexity 

variation diminishing properties of the Bernstein construction (see Paya 

and Schoenberg (1958) and Schoenberg (1959)) - the graph of Bnf cannot 

have more zeros, maxima and minima, and points of inflexion than the 

corresponding numbers for the graph of f - and giving a good deal of ' 

information on the relative location and shape of the graphs of f and 

Bnf. 

A more general description of the sign variation diminishing property 

(4.13), also contained in the references given above, is as follows. 

let L denote any given straight line with equation y = ax + b, and 

VT(f) the number (finite or infinite) of intersections of f with L, i.e., 

33 

Then 

vL(f) = v(f(x) - ax-b) . 

vi,(Bnf) 4 vL(f) 



34 

Still another important smoothing effect of Bn  is that, contrary 

to the commonly used interpolation and minimum norm approximation methods, 

B
n is a contraction operator on the space of continuous functions of 

bounded variation, as observed by Gordon and Riesenfeld (1974 a)), in 

the sense that 

V(Bnf) 4 11(f)  , 

where V(f) denotes the total variation of f over [0,1], the equality 

holding iff f is monotonic there (see Schoenberg (1959) and Karlin (1968)). 

We end this Subsection with the well-known observation that Bnf 

possesses all the nice shape preserving properties referred to above at 

the expense of having a notoriously slow rate of convergence (i.e. like 

1/n) and the following 

R2MARK 4.2. Being Bn(f;x), fECN, the product of N univariate 

Bernstein polynomials (see (3.2)), then the foregoing 

Schoenberg's results concerning the variation diminishing properties of 

B
n carry over into higher dimensions. 



4.3. Polynomial inte-r-Dolation at equidistant nodes. 

Lagrange's ik  and Bernstein's qk  basic polynomials for interpolation 

of a given f in C assuming the values fk  at the nodes kin, k = 0(1)n, 

are related by 

Bn(Ok;x) =qk  (n,x) 2 
	k = 0(1)n , 

from which it follows,,on multiplying both sides by fk  and summing over 

k = 0(1)n,,that 

Bn
(L

n
f;x) = B

n
(f;x) . 

It is a well-known fact that Lnf = )7f 
k=6 

does not converge 

uniformly to f for every f in C. However, the exceedingly good behaviour 

of Bnf near the endpoints of [0,1] compensates the bad behaviour of Lnf 

in such a way that 

En(Lnf ;x)  --o- f (x) 	as n —4- co 

uniformly in 0,,;-x<.-:1 for all f in C. Thanks to these smoothing effects 

of En, every interpolating sequence at equidistant nodes can always be 

made uniformly convergent. 
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5. BERNSTEIN APPROXIMATION TO VECTOR-VALUED FUNCTIONS  

5.1. Vector-valued Bernstein polynomials. 

DEFINITION 5.1  (Gordon - Riesenfeld). The nth  degree vector-valued 

a given continuous vector-valued 

F : [0,1].L% 

is given, for n;?.-0, 

X01, 	= F(C) 

n 
v) F(s) 

=11E-=.6 
 F( 

(parametric) 

, 	F(s) 

by 

k  

Bernstein 

(Parametric) 

= (Xl(s),...,Xp(s))T  

, 

ak' (n s) 	= 

polynomial 

function 

, 

the qk's 

B n(X -s • 

Bn(XD;x)  _ 

approximation to 

04s(.1 , 
(5.1) 

as in (1.2), 	(5.2) 

(5.3) 

) qk(n,$) 

( 	) n 

X ( 	) p 	n 

For p=1 	= B. We take, therefore, p>l, the cases of principal 

practical interest being those of p=2 and p=3. 

REMARK 5.1.  If we take the forward shifting operators E and A to 

mean here that 

EFi = 	, 	- Fi  , 

then Leima 1.1 is feadily extend to cover ,-;."„n 

3 

2n(F;s) = ((l-s)I sE)n  F0  , 	F - F(kin) , 	k=0(1)n , 	(5.4) 



F;s) = (I sA)n  FO  

	

= 	(n)  AkF sk 
	 ‘ki 	0 

an nth degree polynomial in the parameter s with point-valued coefficients. 

Noting (5.4) and (5.5), .56n is, like Bn, the product of n linear 
averagings or n forward linear shiftings. Also, thanks to (5.3) and (2.3), 

An(f;s)---4. F(s) as n---•co uniformly in 04,s41. 

5.2. Recursive generation and approximation properties of the Bernstein-

Bezier operator. 

DEFINITION 5.2 (Gordon - Riesenfeld). Let n+1 ordered points Po' 

P1,...,Pn in Rp  be given and let P = k
n denote 
k=0 

the (open) polygon formed by joining successive points. The Bezier 

curve associated with the n-sided Bezier polygon 2 is the parametric 

Bernstein polynomial 

	

,.: 1(P;s) = 	Pk  qk(n,$) . 	(5.6) 
k=0 

Here, the underlying vector-valued function is, of course, the polygonal 

function 

F(s) = n[( k+1 	 k . k1 s) Pk + (s - —k ) 	, , 	 k=1:.(1)n-1 . (5.7) n 	mol 
	n 	n 
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5.2.1. The convex hull property. 

Subsection 1.1 is clearly applicable to 4 ; that is, the graph 

of 	2 develops in the convex hull of the vertices of P. In particular, 

the Bernstein-Bezier operator associates to a given point and a given 

line segment in R that point and that line segment themselves. It is 

also easily shown that the center of mass of the points Pk  with masses 

qk describes the graph of 56 (P;s) as s ranges from 0 to 1 (see Gordon 
and Riesenfeld (1974 a), b) )). 

5.2.2. Geometric construction of .Z 2 and its derivatives. .n 

Noting (5.5) and (5.7), 

n(P;s) = (I + sA)n p0 = 
Bn 0 
	

(5.8) 

and thus we can construct the Bezier curve (5.6) recursively. In 

correspondence with (1.7) and (1.8) we now have 

Po  

P1  

P2 	 • PO 

	

P1 	 n-1 

I1• 
n-2 

P
n-2  

	

1 

	
• 	 - n'

( 
 n-1 

	PO = 
	Ip;s) 

(5.9) 

-n-1 
1 
P
n-1 

 

P n-2 
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n 



where 
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Pi  = Bs  P -1  , 	j=1(1)n ; i=0(1)n-j, 

(5.10) 
0 P. = P. 1 1 i=0(1)n 

The points Pi in the jth  column of (5.9) are the vertices of a 

Bezier polygon Pi of order n-j. We arrive at the point on the Bezier 

curve (5.8) corresponding to the parameter value s by constructing successive 

Bezier polygons of lower and lower degree (cf. Bezier (1972), Gordon and 

Riesenfeld (1974  a) )). 

In correspondence with (4.1) and (4.2) we now have 

n-j 
(n-nj)1*)(P 	fr' vs) = 1,7 	Pk qk(n-j's) 4 . (5.11) 

d,e' - n-j 	s  ' (Qi' ) 	j=0(1)n '  
(5.12) 

0 	 I j>n 

respectively, Qj = {Qg, 	 , ." Qj 	, Qj -j' - i=0(1)n, being the (n-j)-sided 

	

1 	n  
Bezier polygon with vertices 

= 'k 	-k ' 

Q0 = P . 

k=0(1)n-j , 

(5.13) 

REMARK 5.2. Remark 4.1 is applicable to 	; that is, apart 

from the coefficient (n-j)!/n!, the jth derivative of 

an nth degree Bezier curve of Bezier polygon P is a Bezier curve of degree 

n-j whose Bezier polygon Q3  is derived from P according to (5.13). 

Con:ie-_,u-,,mtly, a Bezier curve and all its derivatives can be calculated 

recursively and afford an easy geometric construction. Furthermore, 
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there is no need to construct a "triangle" similar to (5.9), based on 

Q3. Indeed, since 

:A3n_ j(Qj;s) = BS i(A40) = Ai(EaTipo) 	 (5.14) 

= zs)pri 

differencing the entries in the (n-j)th  column of (5.9) leads to 0)(p;.$). 

In particular, there follows from (5.11) - (5.14), for j = 0 and s = 0,1: 

✓ n  (12;0) = Bn 
	

o 

:4(2;1) = B11 Po  = ZIP°  = Pn  , 
(5.15) 

extending to 	the interpolation properties (1.10) of B
n; and, for j = 1 

and s = 0,1: 

(2;0) = AP = P - P 0 1 0 
(5.16) 

n n(aD;1)  
= A 4..0n-1 = Pn - Pn-1 r01  

The relations (5.15) - (5.16) imply the tangency of the Bezier curve to 

the endsides at the endpoints of the corresponding Bezier polygon (cf. 

Gordon and Riesenfeld (1974 a) )). 

Figure 1 below illustrates the geometric construction of ,V VP VP;s), 

for j = 0,1,2, at the point s = 1/4. 



Figure 1 

, 7r i(p;10  = A ,2 	 2 	2 
"1'0 rl - 20 

66 
 3(.24) 	

0 
,A2p1 _ (.01

2 pi) - 	- 1 	Oi  
1 

5.2.3. Variation diminishing properties. 

Noting (5.3) and (4.13) - (L.15), jjn  can be said to be, like Bn, 

a variation diminishing operator in the sense that each component 

BnY.k  of ..fn7 is at least as smoo7h as the corresponding component Xk  of 

F, where smooth refers to the number of zeros, maxima and minima, points 

of inflexion, total variation, etc. 

In analogy with (4.16) - (4.17) we may also describe the variation 

cha-acter of'res-;ect ta a hyt.erTyl 	Tane H with euation 
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E h.x. = (h,x) = c , 	 (5.17) 
i=1 



where (.,.) denotes the inner product in Ei . Defining 

vH(F) = v( (h,F) 	c ) , 	 (5.18) 

the number (finite or infinite) of intersections of F with H, we have 

THEOREM 5.1 (G.-Bonne - Sablonniere). 

a) vH( fF) < vii(F)  

b) vH(-8nF) 	vH(F) 	 i for F in CI, i.e., Xk  in Cl, 

k=0(1)p. 

PROOF. a) 

va(),anF) = v( (h, 	F) - c ) , by (5.18), 

	

= v( 	h.B X. - c) , by (5.17) and (5.3), 
f=1 n 

= v(Bn 
.X. - c)) , because B is linear and 1 1 

preserves constants, 

v( (h 7) 
	

) , by (4.13) and (5.17), 

= vH(F) 	, by (5.18). 

Part b) follows in much the same way. 

REMARK 5.3. Paralleling the analysis carried out above with F in 

C2  and c = 0 in (5.17) we get 

c) fF) 	vH(F5 . 

'Mile a) and b) describe the sign and monotonicity variation diminishing 

properties of -e,:4, c) does not mean, however, that 4
'11 

diminishes the 

42 
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ii convexity of F, since this depends in general on the vector product F,\F . 

REMARK 5.4. If, instead of the polygon IP with vertices at F(k/n) , 

k=0(1)n, we inscribe in the graph of F any other 

polygon °with vertices at F(sk), where 0 = 	= 1, then 

vHCAri  < , 

implying that polygonal (piecewise linear) approximation to continuous 

parametric functions is a variation diminishing approximation method 

(cf. Marsden and Schoenberg (1966)). This suggests the application of 

Schoenberg (1967)'s variation diminishing splines to the approximation 

of continuous parametric curves in RID. In this connection, interesting 

results were given by Gordon and Riesenfeld (1974 b) ) and, more recently, 

by Germain-Bonne and Sablonni'ere (1976, 1977). 

Iterates of the Be-rnstein-B4zier operator. 

Thanks to (5.3), the problem of iterating Ah  may naturally be 

reduced to p problems involving ordinary Bernstein iterates: 

r- 
Br  X1  (s\ n 	' 

An(..4( 	(.01811F(s)) 	)) 	F(s) 

Br  X 
p
(s) n  



n 

. 1.,(F;a) 

414- 

5.4. Bernstein-B4zier methods for multivariate, vector-valued functions. 

Instead of the univariate, vector-valued function (5.1) let us 

consider the mapping 

:N 
F : 2LEESNCRN---+-ap 	F(x) =,(K1(2), 	XpLU)

T 
 EiRp  

with x = (xl, 	,xN), SN  =ILE% : 04xi41, i=1(1)N1, and associate 

with F the Bernstein-B4zier operator 

q. (n x ) 	q. (n x ) 
1 l' 1 	' 	N N' N (5.19) 

(5.20) = (B a (X11 .x), ... , B n(X .x))T  

with n denoting nl, n2, ..., 

Fi  = F(ii/ni, 	iN/nN). 

n 	i denoting il' i2' 	
, and 

—  

Clearly, 	(F;x) is a vector-valued (parametric) Bernstein polynomial 

ofdegreeni inx.,i=1(1)N, and extends n  to the N-dimensional setting. 

incidentally, (5.19) gives, for N = 2 and p = 3, the basic formula in 

Belier's free-form surface design technique. 

Most of what has been said for 	extends easily to 	Namely: 

i) 	represents a p-dimensional surface which develops within 

theconvexhullofthepointsF.,the vertices of an nina...nN-faced net 

of line segments which plays here a role analogous to that of the Bezier 

polygon, and  the center  of mass of the points F. with masses 

-T—r- 

describes the graph of 41(F;x) as x runs over S - 
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ii) Since B
n 
is a smoothing operator, then, from (5.20), so is 

Over the past several years, the methods of Bernstein-Bezier have 

attracted widespread attention, especially in connection with problems 

of computer-aided design and numerical control production of free-form 

curves and surfaces such as aeroplane fuselages, ship hulls, and 

automobile bodies. For detailed and intensely practical expositions we 

refer, e.g., to BAier (1972), Barnhill and Riesenfeld (1974), and 

Forrest (1971, 1972). 



CHAPTER 2 

NUMERICAL CONDENSATION OF MULTIVARIATE POLYNOMIALS  

Polynomial condensation, also referred to in the literature as 

telescoping or economzation, is a. numerical procedure aiming at reducing 

the computational effort required to evaluate a given polynomial P at 

a given point of its domain while allowing for a small oscillating error 

E to be distributed over the domain where the condensed representation 

of P is sought. It was first conceived and applied to univariate problems 

of numerical mathematics by Lanczos (1938, 1952, 1956) and has recently 

been extended to the multivariate setting by Ortiz (1977). 

Let P = P(x) E 5.)  , n>1, and x€K1, a compact of ai1' We assume, once 

and for all, that 

P(x) = an
xn 	,n-1 - a x + 	an 

- 	, (1.1) n_y 
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is evaluated at x X 0 by Horner's nested multiplication, i.e., by means 



of the backward recurrence scheme 

vo  

bn = an 

br = xbr+1 
+ ar , 	

r=n-1(-1)0 , 	(1-2) 

always reeuiring n multiplications regardless of the number of vanishing 

ar . 

DEFINITION 1.1. We say that Pe  = 11(x) is an E-condensed polynomial 

representation of P in K1  provided that 

and 	(ii) 	P 	Pe 11 <6  ' 

a standing for 'degree of and p.1.1 for the uniform norm in K1 . 

1.1. A sufficient condition for polynomial condensation. 

Sufficient conditions for the existence of PE 	-s-1 56 	, 0<s<n , n 

in H, = 71' '1 	obtained as follows. 

Ve denote by T
m(x) the m

th 
Chebyshev polynomial of the first kind 

% - 
shifted to - 

	
and recall that 

xn  = 2
1-2n 	

r/ 2n) T.
* 
(x) , 	 n-j 

wher,  the 	,Idiernt,,  that the coei-Ficient of T. is to be halved. 

Usin (7  5), 2 nay be written in the form 

(1.3) 

47 



n-1 
P(x) = 	a. x) anxn 

j=0  

_ P1(x) 	21-2na 
n  T*n'

(x) 	 (1.4) 
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with 
n-1 1, \ 	i 	1-2n 

P kx) = 2 	a. x-  2 	an 
j=6  

n2 ) T*.(x) . 	(1.5) j j 

It is clear from (1.4) that the condition 

1 
E0 = 2

-2n Ian I 
< E (1.6) 

implies that P1( ..1  and IP - P11.<6; that is, P1  is an s-condensed 

 

polynomial representation of P. 

1.2. Implementation of the condensation process. 

Assuming that (1.6) holds, recalling that 

Tp(x) = 1 

T:(x) = (-1)n 	(..1)n-k 	(n+k-1) 22k-1 k x , 	11„-;>1 , (1.7) k n-k k=1 

and noting that 

1  
	 (n2 ) T;(x) 	(-1)n-1  
k=0 	j=1 	k=j 

n-1 2j-1 37 (..1)k-j k (k+j-1)(  2n) xj 
j 	k-j i'n-k1  

we 
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with 

j P1 (x) = )11-1  a.1  x 
j=6  

(1.8) 

a10. = ao  + (...1 )n-1 21-2n a  

(1.9) 
n-1  

al a. 4j-n a  \ (_,)k-j 4(k;i-j-.1\( 2n)  
J 	J 	n k=j 	` A-3 1̀ n-k' j=1(1)n-1 . 

We are now ready for the condensation of P1, i.e., , .e., for the second 

step in the condensation of P. This will be possible provided that 

,1-2(n-1) 
1 an-11 < - 60 ' 

 

Assuming this true, we replace in (1.9) n with n-1 and aj  with a. , 

j=0(1)n-2,t,00-ctaina2..,j=0(1)n-2, the coefficient vector of a condensed 

polynomial representation of P with a new tolerance parameter E equal to 

EE 0 	• 

Setting a.
J 
 = a. , j=0(1)n , the algorithm 

m+1 1 n-m-1 21-2(n-m) m a0  = 	- 	am 

(1.10) 

n-m 	j k-j J`n-m-k 

n-m-1  k-j k ki-j-1)(2(n-m)N ara+1  = pm  hi-n+m  am 	> 	(-1) ) j=1(1)n-m-1, 
k=j 

is repeated for n=0(1)s, 0<s<n, as long as 

   

= 21-2(n-m) 
111  a

m 
n-m ( n ) 

   

, 	, th, coefficint vector of the con! used 

Dolynonlal form of P. 
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REMARK 1.1. The number s+1 of condensation steps may be determined 

apriori if we carry out the basis transformation 

p(x) = 
n il  

an-r xn-r  = > Acn-m Tm(x) m=u 

c 	= 21-2n n-m 
(2(n-r)) a

n-r m-r m=0(1)n , 

and observe that 

l

cn-m = m 	M=0(1)S 

Therefore, instead of (1.11), we can use 

2(n-r)N  
111-T / an-r I 

< 22n-1 , 	0<s‹ n , 	(1:12) 
r= m=r 

to predict the maximum degree reduction a allows (see also Ortiz (1977)). 



2. CONDENSATION OF MULTIVARIATE POLYNOMIALS, 

2.1. Bivariate polynomial evaluation schemes. 

Let 

I J 
P = P(x,Y) = 7 

i=6 j= aIJ 	0, 0 	(x,Y)CK2  , 	(2.1) 

where K2 is a compact of R2. A = (aij), the (J+1)x(I+1) coefficient 

matrix of 10, is such that, for every i and j, a13  . . is the coefficient of 

xiyi  in P. 

The writng of P as 

P = 	P.J  Yi  - J=0(1)J , 	(2.2) 

or 
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P= 
*, , 

Pi = Pi(y) = a.. yj , i=0(1)I 	(2.3) 

th 	..th with -p.(p.)uni,:uely associated with the j row 0. column) of A, 

makes the evaluation and condensation problems for P(x,y) entirely 

analogous to those referred to in Section 1. Indeed., the evaluation of 

P at a point (x,y)EK2  with nonzero co-ordinates is reduced to J+2 or 

1+2 1-dimensional polynomial evaluation problems according  to the 

representations (2.2) or (2.3) respectively, and carried out by means 

of two backward recurrence multiplication schemes similar to (1.2), 

3 



= b0  (j=0(1)J) : 

b 	a . I 	Ij 

br = xbr+1 a r
. , 	r = I -1( -1)0 , 

P = 0  : 

z__ cJ  pj  

cr  = ycr+i  pr  , 	r = J-1(-1)0 ; 

or 

p. • = b

• 	

0  (1=0(1)1) : 

b= aij  

 

 

P = co : 

b = ybr+1 
4- air  , 

C = I --  

c = xc r+1 + Pr ' 

r = J-1(-1)0 , 

= I-1(-1)0 . 

In either case, the nunber of multiplications required is. always 

(14-1)(J+1)-1, no matter how sparse A may be. As for the 6-condensation 

problem for P(x,y) in IC.2  = L0,1]x [0,1] we now have, in correspondence 

with (1.12), the following existence conditions 

• 3 4. 	 4., 	( ko -ri \ 
PT / 	 M-r 	 -r r=0 m=r 

< 22J-16 , 

 

0<s<(J , 	(2.4) 
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or 

41(2(I-17 ))1p*  
ra-r 	I 

i=0 m-r 

   

 

< 22I-18  0<s<I (2.5) 

    

according as P is given by (2.2) or (2.3) respectively. 
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The above bidimensional evaluation and condensation problems afford 

an immediate extension to the multivariate setting. Given 

171  I2 IN 
. 	i1 i2 	1N  P = P(x Y ... 7 ) = L l''2"T 	. 	... 	a. . 

1 =0 i---=0 	=0 1112— iN  xl  x2  ...xN 	(2.6) 
1 2 N 

with a 	 . 2d 0 and (x x 	..,x )4' K , a given compact of (RN, we l' 2' 	/1 	N 1 ' 	.T 7 

write it in one of the following equivalent forms 

with 

Ii  
i. 
K P =-x 	, 	k = 1(1)N , 

=b ik  (2.7) 

. xs.) D- 	= P; 	' , - 1T  
K 

11 	IN 	ik-1 K+1 	 'N a•  • 	. x ..x 	x 1 

i 	21-20 	i =0  1112  . . ilk  1 	k-1 ' 
?;-1 	k+1 	-n 

To evaluate P at a point (xl,x2,...,x1 ) in KN  with nonzero co-ordinates 

we use N multiplication schemes similar to (1.2) and perform (I
1+1)(I2+1) 

...(I+1)-1 m,41ti.p1Lcations; E-conden7ation of P in the unit hypercube 

of RI;  with respect to the variable xk is possible if 

2(IT -r) 
)1PT -r 

-k 

21k-1 
< 2 	£ 

 

k = 1(1)N 	(2.8) 

  



2.2. Smoothness indicators. 

The numbers sk = sk(xk'
6) in (2.8) may serve as indicators of the 

following attributes of P(x1,x2,...,x1i), obviously related to each other 

to a certain extent: 

(i) Smoothness - the larger sk  the smoother P in the xk-direction; 

(ii) Weight of xk  - the larger sk  the smaller the importance of the 

variable xk 
in the representation of P. 

This leads naturally to the definition of principal variables as 

those for which the s's are ledst and, then, to the following problem. 

2.3. Approximation of a multivariate 1 nodal by another polynomial 

of fewer variables. 

Clearly, the xk-dependence can only be removed from the representation 

(2.6) of P(x1,x2,...,xN) if (2.8) holds for sk  = Ik-1, yielding the 

condition 

Ik-r 
Fl - /1-(Tk-r)  (2qk-V5.] p 	l< 6, 
L r=0 

1<k‹N . 	(2.9) 

Assume (2.9) holds for k = 1, say, and the left hand side of (2.9) 

equals 614e. Then PE.° may be replaced by P .95  1E  vry..., 

- 2, 	- 	of co=-,,, subt P1  to t:7173 
J- 

same reduction process. Let e2<  6 be the tolerance parameter within 
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which the variable x2, say, may be eliminated from P1Es95 

yielding P2€ ,9?. ,I; 	such that 11P1 - 	p211< e:, . Clearly, P2 may 
3 

replace P provided El +~2 E. If we can do this k times, then we end 

WO with PkEM 	, an E-condensed form of P with k fewer 
k+1';:+2""'IN 

variables than P itself. 

2.4. An algorithm for the condensation of multivariate polynomials. 

Tn this 	we extend algol-ithm (1.10) to the multivariato 

case. The emphasis will actually be on bivariate polynomials as there 

is no essential difficulty in extending what follows to higher dimensions. 

Taking the 7)olynomial (2.1) and Tarallelin-z. the analysis carried 

out in Subsections 1.1 and 1.2, we have, from (2.2), 

J-1 
P= 

j=0 
; Y." 	Pj Yj 

= P
1 
+ 

2l-2J 
 p TJ(y) J 

where . 

	

-1 	J-1 
pl = \ 	„11 21-2J 	

) JT Y)  PJ 2L, kjii JTY/ 

	

i=0 	j=0 

(2.10) 

(2.11) 

 

with 



Dlo_ = p0 4.  (...1 )J-1 21-2J pj  
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(2.12) 
J-1  + 

p
1
=p

J
_ 
	D   k\  ■ 	

(kkj- 
1)(jJk) =3 

 j = 1(1)J-1 , 

is an £-condensed form of P provided that 

= 21-2J pJ < E . 

   

   

It should be noted that the elimination of the second term on the 

right hand side of (2.10) amounts to deleting the Jth row of the coefficient 

matrix A of P and perturbing each of the other rows of A with the second 

term on the right hand side of (2.11). 

Another condensation step will be possible if 

= 	 I D1  
-J-1 < E - 60  

 

This being so, then we change in (2.12) J into j-1, p. into -  , j = 0(1)J-2, Pj 

and start anew. The maximum number s of condensation steps is such that 

	 7‹ M = 21-2(1 m 
m=0 	 Pj-m l  

(cf. (1.11)) ani may be predicted by the use of (2.4). We end up with 

s +1 
P 3' in 25 	0<s  

I,J-s -1 ' 	y 

J-5 -1 s +1 = 
	

s 
Y 
 +1 . 

J Y , P. y , 
j=0 -3 

with 



m+1 	m, ,NJ-m-1 21-2(J-m) m 
PO = p0 + k-1) D  - -m 
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m+1 	m D. 	= D. 	4- 	 M  D 

J 	-J 	-J-m 

m = 0(1)s 	(2.13) 
J-m-1 

(-1)k-j4(k±ij1)(2(jmm)) , 	j = 1(1)J-m-1 , 
J 	J--k k=j 

where D.
J 
 = D.

J 	
j = 0(1)J (cf. (1.10)). 

The condensation of P(x,y) has been carried out with respect to the 

variable y (rows of A). Obviously, it could have been performed, in 

exactly the same way, with respect to the variable x (columns of A). 

3. NUMERICAL CONDESATION OF BERNSTEIN POLYNOMIALS  

Bernstein approximants are applied in those numerical apprcximation 

problems referred to at the close of Chapter 1, where shape preservation 

is more important than closeness of fit. Being slowly convergent, fairly 

high degree approximants are required. However, a considerable reduction 

of degree nay be achieved through condensation of the Bernstein approximants 

to a given f in C, under fairly weak smoothness conditions on f, keeping 

their shape approximating properties only slightly changed (see also 

Ortiz and M. da Silva (1978)). 

3.l.Coridensation of B
n
(f;x). 

1Em4- 4  3.1. The Bernstein operator Bn  maps the whole class of functions 

f taking on the values f
k  at the nodes k/n, k = 0(1)n , 
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into one and the same polynomial Bn
f. In particular, if P(7155  is the 

polynomial which interpolates the table (k/n,fkIn  , we have 
k=0 

n k k Bn(P;x) 	 / 
B
n
(f;x) = 	)fx 

k=0 k 
A 

 
(3.1) 

and thus conditions under which En
f may be condensed can always be stated 

in terms of P. 

REMARK 9.2. Recalling that 

n 	*„ 
B
n 

;x ) = Anxn 
+ 	= cnTn 	

+ 

with 

	

n-1 	P21, 

n 
An  = 	

L 
L 	r , 	nn)] 21_„  

	

k=1 	k=1 

the prime indicating that the product is to be doubled when n is even 

( see Subsection L.1 of Chapter 1), and 

2-3n c
n 
= 21-2n 	< 2 	, 

■ 

we see that the Bernstein approximants are particularly suitable for 

numerical conden7_tiln. 

Let us then assume that, in the process of approximating to the 

shape of a given curve, there is given a tolerance parameter 6 related 

to the accuracy to which variations in shape cease to be detectable or 

relevant for the problem in hand. Let 

be such that P(k/n) = fk , k = 0(1)n , then 



n(P;x) b.B n(xj;x) 

5:1 

n 	n  
= I( > :a..b.) xi 

1=0 	13 J 
(3.2) 

with 

	

a.. 	A. ni-j Q. . 

	

1J 	1 	1J 

given by (4.7) - (4.9) of Chapter 1. Equating coefficients of like powers 

of x in (3.1) and (3.2), 

(n) Alf0  = > :a. .b j  
j=1 

i = 0(1)n , 	(3.4) 

giving, for i = n 

Anf0  = A n  b n = n!  n bn n 

and leading to the following sufficient conditions on the smoothness of 

f for the i-condensation of Bnf from 95  to Z75 1  (see (1.0): 

(i) In terms of the leading coefficient of Bnf (see (3.1)): 

zfu  < 22n-1 e . 

  

(ii 	In terms of the leading coefficient of P: 

22n-1 n n 	. 
n: 	. 

From (3.4), 

fn I a . 
13 	 co  

3-1  
0-5) 

where 



n  
max 	r. , 	r. = > 1  a.. , . . 	1 13 op 	0 ‹. 3_ 0<n 1 	2. 	

..3=1 
(3.6) 

N = 	max 	lb .1 
0 ...‹j n 

6o 

and 

the matrix A = (a..) being, as seen in Subsection 4.1 of Chapter 1, upper 
ij 

triangular and column-stochastic. Therefore, an s-step condensation process 

to reduce B n  f(1.575  to (Bnf)EaLs_l
, 0,5;s<n, requires that (see (1.12)) 

s 	 i 	2n-1 22(n-1) 
> 141 s- (2(n-i)) <  2 

	

i=0 j=0 	N AL 

be satisfied. Assuming this true, then algorithm (1.10) enables a step 

by step computation of (Bnf) . 

It should be noted that,in asserting that 11A11  <2, use was made co 
of the facts that r0  = a00  = 1 and that the leading terms in the row sums 

(T ri (3.6) are 11 	1 	1 1+1 )/n, both >0 and <1, hence ,  

1.<2 , i = 0(1)n . 

3.1.1. Numerical example. 

By way of illustration we consider the shape approximation problem 

of the nolygonal function f with vertices (0,0), (.2, .6), (.6,.8), (.9,.7), 

and (1,0) by a single polynomial of a fairly low degree. 

T If we consider the approximant 310  and ta,ce 6= 3.5.10 J, 

-2 
7.0.10 -, and 	_5 2..10 as admissible condensation parameters, 



then it is possible to condense Blof to polynomial representations of 

degree 6, 5, and 4 respectively without exceeding those error bounds. 

In each of the figures 2, 3, and 4 below we show the graph of f, 

B
10f, the condensed representation P of B10f to degree r, and Brf for 

r = 4, 5, and 6 respectively. We can appreciate in Figure 3 that for 

r = 5 the adjustment between Blof and its condensed form is fairly 

close. 

Figure 2 
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4 



3.1.2. Numerical condensation of 343ier polynomials. 

As seen in Section 5 of Chapter 1, the B4zier operator 	associates 

with a given parametric function 

F : [0,1J 	IR , 	F(s) = (X1(s),X2(s),...,Xp(s))T  , 	O. s<1 , 	pal , 

the parametric curve in R 

Al(F;s) = (Bn(Xl;s), Bn(X2;s), 	, Bn(ys))T  . 

The process of numerical condensation we have discussed for Bn  extends 

trivially to .55n  . We say that 

F = (B
ra  X"

„ B X,, 	, T 

E 

is a condensed representation of nF provided that 

Br /.c  X, < n , 	k= 1(1)p , 
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and 

  

 

F -.;71 F I 	= 	max 	 1BnXk  - B Xk l 
1<k4p I 

	
r 

  

  

3.2. Condensation of multivariate Bernstein-E4zier approximants. 

Let f = f(x,y)ECN, S2  the unit (x,y)-square of E2  . Referring 

to Section 3 of Chapter 1, 

3nm f;x,y) = 	 a.. x 
Y' 

J F6 '3 

with 
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a.. = (r.1)()4Ni 	LS:5 	f(0,0) 
13 1 j (x,l/n) (y,l/m) 

As an application of the material developed in Section 2, we find 

the following smoothness conditions on f for projecting Bn,mf onto a 

proper subspace of 65 m 
 without introducing an error greater than 6 

in the numerical values assumed by B f over S2: nm 

(I) 

where 

2(m-r) 	2m-1 
k ) Pm-r < 2  

0..<sy<m , 
k 

Pm-r Pm-r(x) i=0a. 
	x , 

if the condensation of Bn,mf  is to be carried out with respect to the 

variable y; or 

s 	s-r 
(ii) 	7  4r 	2(n-r))  

r=o 

   

-n-r 
< 22n-1 04sx<n , 

    

where 

n-r = Pn-r(Y) = 	 an_r,j y -  
i=0  

if Bn,mf  is to be projected onto ..95  n-s-1,m x   

Use may be made of algorithm (2.13) for step by step computation 

of condensed forms (B n,m  f) of Bn,mf. 

Figures 5, 7, 6, and 8 below represent 310,10f - (B101011' 

	

315,15E - (1415,15 	
and the corresponding contour maps respectively, - q,  

	

Itn 4= . 1 and f 	= sin0c).cosy).exp 	). 



'etiO: 
1111:44.17:4:4:;4°P.4417441;Sto-14114%110-1440' 4#4, lg.*  S.  4 W. 4 to I -. , .- •-, 0 . -. . .■ VA% 1  i k wy ,_,. 4,..,........„..-4%,..... 'it 11.111 -  wwipre,..16.,-•■•ZAlt,•■•■■,,,.- 

' 	ti  * 4 	Adrir- _-1::=--_.,..--Z.,.•••■ lOPIP' 

0% 	.0■ -2-1-1,:" a•  ••4°'  „ tik* 

h*ri ili1 olivo, \I\  
t,),_ 

B10,10f 	(B10,10f)6 	
E= .01 , 	 z

max 
= .0019 

f = sin(x).cos(y).exp(-x2-y2) 
	 zmin  --,0023 

Figure  
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Figure 6  : Contour map of z = B 
10f  - (B 	f) 	6= .01 

1010 	10,10 e  , 

f - sin(x).cos(y).exp(-x2-y2) 

zuax =.0019,zmin --.0023 

contour step = 
(zmax-z /25 m.n. ) 





0 
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Figure 8  : Contour map of z  = B15 1 f 	(B15,15f)E, , E.= .01 , 

f = sln(x).cos(y).exp(-x2-y2) 

zmax = .0029 ,  `min = -.0032 ,  

contour step = i  . )/25 max mn 
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Bearing in mind what has been said in Section 2 on the multivariate 

Polynomial condensation problem, it is a simple matter to extend what 

has been done forn,m 
to multivariate Bernstein polynomials B.n(f;x), 

fEEC[
Sd, S, the unit hypercube of EN, and to Bezier hypersurfaces in R : Li 	1, 

n(F ;2i) = ( Bn(X2;20, Bn(X2;25.), • 	Bn(X.D;x) )T  

where 

F : S11—E , 	F(x) = ( 	X2(1), 	, Xp(x) )T  

(see Sections 3 and 5.4 of Chapter 1) . 



CHAPTER 3 

ARBITRARY ITERATES OF BERNSTEIN POLYNOMIALS  

1. THE MATRIX FORM OF. THE BERNSTEIN ITERATES  

As seen before, the nth degree Bernstein polynomial approximation 

to a given real f(x) defined on [0,1] is given by 

where 

with 

B 

qk  = qk(n,x) 

C.  

r. 
(f ;x) = 	f, 	o. (n,x.) 	, 	f 	f, 	= 	(kin) n 3720 

n = (k) xk  (1-x)ri-k  = 
i= 	

cik 	,x 

0 	 i<k 

(_1)i-k (n) (i) 	04k<i<n . ■ii ■k" 

, 

k=0(1)n , 

(1.1) 

(1.2) 

(1.3) 

Bernstein iterates of natural order are defined recursively: 

Br(f;x) = B n(B lf;x) , r>1 . 

Owing to the facts that if fE. 1.n.  then BnfC minim,n}and  that Bn 
replaces f E C with a polynomial, it is no restriction, for r>l, to take 

f in ,nr 	--Zzz. N./ •  n Actually, since ring. = 1, for all n in 	we may take for 

domain (and range) of Bn  the linear subspace 6;34  = ix 5,_-1)  of polynomials 
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of degree GIN vanishing at 0. 

It follows from (1.1) - (1.3) that 

Bn(xj;x) = 
n (k )j E (...1)i-kq)q.c) xi 

n k=1 	i=k 

. n 
= n-J 	 (in){E (-1)i-k(1) ki }xi 

i=1 	k=1 

a.. xi , 	14j.‹N , 	(1.4) 

where (cf. Subsection 4.1 of Chapter 1) 

with 

a. . = 13 

0 	i> j 

A.n~ 	 1<i te.j Cti ij 

(1.5) 

and 

Xi = X. (n)= (;1_)11./n1 , 

= 

 

(1.6) 

0 1>i 

 

= 
lj 	i , >7 (-1)i-k*ki , . k=1 

(1.7) 

For a given 

70 

P(x) = 

T 	2 	 NT where X = (x,x 	x ) and p = (n1 
- 

p 	 , ye have - 	D
2
, ...1 

- 



B (P;x) = 	D. B (xj;x) 
j=1 	n  

N 
p . 	ai; x

i 
 , by (1.4) , 

j=1 1=1 4  

Id 

E a. . p. ) xi  
i=1 j=i 13  
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, 

with AN = (a..ij) given by (1.5 
	

1.7). Therefore, 

Br(P;x) = XTArN  p  ' r = 1,2,... . 	(1.8) 

It is clear that (1.8) continues to hold for polynomials from ,fii54  
XT  D. , namely, p0  + X D. 	have only to replace X by (1,X), p by (110,p), and AN  by 

[1 0 
AN+1 = 0 AN  

Noting that all the eigenvalues of AN  lie in (0,1], then equation 

(1.8) defines the iterates of arbitrary order rER of the Bernstein 

operator acting on y),, . 
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2. THE TOTAL POSITIVITY OF B n 

Let G = (g..) be an nth  order real matrix. The k
th order minors of 

G formed from rows 1102‹...<ik  and columns j1<j2‹...<jk  , 1(k 40 , 

will be denoted by 

G 

ii.,57••••tik r. det(glmJm m=1 

g. • ... g. 
1131 	11k 

g..  
'kJ].  

k'k 

(2.1) 

    

    

We say that G(ETP (or is TP totally positive) or that GESTP (or 

is STP - strictly totally positive) if all minors of G are nonnegative 

or strictly positive respectively. 

If G is a lower (upper) triangular matrix, the minors (2.1) for which 

im)jm  (im(jm) for 1.4.1m‘k are called the nontrivial minors of G. The 

remaining minors of G, the trivial minors, are obviously eaual to 0. We 

say that GELTP or GEASTP when the nontrivial minors of G are all non-, 

negative or strictly positive respectively. 

The minors (2.1) for which im=jm  , 	, are termed the principal  

minors of G. 

Being Bn  a bijection in 5% for any given 

P(x) = 	 D. xj = XTp 
i=6 -s3  

n k (1 ) 

==0 
( 
j=0 0 	

) 
k) 

where al, \ . 
• " 	P 	 I 

) 
is given oY ( 

n  
p(x) =(B 1p;x) = >  B-1  (P;kin) 	(n,x) n n k=6 n 	qk 

, we may writa 

n,x)  = QTc-lp  



to obtain 
 I! -/ 	/ 

(C-1p) = 	
( ) 

(3/) 
	= B 1  0;k/n) , 	k=0(1)n . 

k j_o  -3 n 
. 
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REMARK 2.1. If Z (f) denotes the number of real zeros of f(x) 
(a,b) 

in the indicated range, then, since: 

v(P) < Z (p) = Z (qTc-ip) 	( T(n
k
)(c- pi.„

)k),  zk, z = x/(1-x) / 
(0,1) 	(0,1) 	(0,co) k=0 

4: v(C 1p) = v(1Bni(P;kin)Ilic_0) 

<v(Bn1P) ; ".•  

this being valid for all P in ..911, we may replace in these inequalities 

P by BnP (p by AN+ip) to receive 

v(BnP) 4 Z (B P) = Z (qTC-1AN+1p) 
(0,1) n 	(0,1) 

Qi(C-1AN+1p) = v(iP(kin)In  ) k=0 

<v(P) 

and we get the well-known Schoenberg's result that the transformation 

nP (n--•-AN+1-  n) is variation diminishing while its inverse, P---*Bn
-1  P 

(D--,AN+ 1 1- n) is variation increasing. 

LEMMA 2.1. 

AN C ASTP . 

7F:7  Th2 re=alt follows ':lmediately from ;lotzkin's theoren on 

variation diminishing matrix transformations (see, e.g., 

Schoenberg and Whitney (1951)) and the observation that the principal 



minors of A_ are all positive. 

COROLLARY. 

s = ( j) ersaip . 

PROOF. Using (1.5) and the homogeneity property of the determinant, 

we have 

k 

AN N . 4 	

4 	= X. X. 	n M=1  

31"2"."Jk 	11 12 	1k.  

.s  

for 1kN , 14i14`i24:— Ic‹„N , and the result is manifestly at 
j1<, j2 4:- • <ik 
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hand.. 



3. THE POSITIVITY OF Br  

THEOREM 3.1. AN is column-stochastic for each real r
..)..N-1. 

PROOF. Following Rosenbloom (1967)'s divided difference approach 

to defining matrix-valued functions, we have 

k-i-1 

(AN)ik = 1ik 	Ai + [ 	E ki .aik 	
1 	' 

,... A1. Arc] Ar 	j=1 iti - <.. 4i 411 	11  

.a. a. 	. a. 
131111.2—  "It'  

1<i <k 	. (3.1) 

Observing that, for 1<j<1.,k-i and r)k-i, 

75 

dj+1 
,...,A. 1. k] -3" (t) 1 11 	(j+1)?. dA 

  

A=o 
= ( .r1  )8r-j-1  >0 3+ 

  

for some OE:(Ak,Xi), it follows that 

rax i(ArN)ik> 0 , 	. 	(3.2) 

LetV=V14(n)=(v.)denote the eigenmatrix of Al normalized so ij 

thatvii = 1, 1<i<N, and let the elements of V-1 be vt. 1 . The matrices 3 

V and V-1 are both upper triangular, and it is shown in Kelisky and Rivlin 

(1967) that the first row of V 1  consists of all l's and that the column 

sums of V are all 0, except the first which is 1. 

From the spectral representation 

Ar  = V ArV 1  

where A = diag(Ai), and the properties of V and V
I referred to above, 

we obtain 
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N ik i=1 
v.vt Ar  i=i j=i  lj jk 

 

14.k4N , rEIR . (3-3) 

That Air  is column-stochastic for each real r;,0-1 follows now readily 

from properties (3.2) and (3.3). 

COROLLARY. Like B , Br  (r11-l) is a linear positive 
n 	 ;>n 

operator of unit uniform norm. 

We shall see in the next section how the condition r>/i-1 can be 

relaxed to /..0 and yet implying that Bfl  is either TP or nearly TP in 

the sense that the matrix representing it is either TP or replaceable, 

elementwise and arbitrarily closely, by a TP matrix. 



4. THE LIMITING BEHAVIOUR OF Brn  

4.1. The case of n fixed and r 	ao 

THEOREM 4.1.  

1 , 	1<k<N , 

0, 	2<i<k<N . 

PROOF. Bearing in mind (3.1) and (3.2), recalling that, 1̀ = 1, 

O< <l for 	and that 

k 
- 'Ara  1 	= 

k 	i =1 

Arm  

mi)  

k 
n(A) = J L (A-16 ) , (4.1) 

1=1 	i 

then part b) follows immediately. As for part a), 

(4)11 = 

(A)1k 
alk k-2  --- 

1-Ak  j=1 1<i 

 

a . a. . ...a..k  11 1 1 1 2 	1  

k 	(1-A. )(1-X. )...(1-Ak) 11 

n-1 
a. 

.r 1=1 	 = 1 , 	2<k‹..."N . 
m=2 (1-Ai ) 

COROLLARY 1 (Kelisky - Rivlin). For r = rneM p 

L /1 E =  
0 

1]  

77 



PROOF. This is obviously contained in a) and b), which not only 

hold for rEIR but enlighten the structural limiting properties 

of Ai . 

COROLLARY 2. For each f in C 

Brn(f;x)---A:(f;x) a Bi(f;x) 

uniformly in 0.4x...5.:;1. 

PROOF. We may replace f with Ln(f;x) = XTp , the interpolating 

polynomial for f at the nodes kin, k=0(1)n. Since 

Ar = 1 0 , then, for n = N, Theorem 4.1 gives 
1 

 

[° 

Ar 	[1 0] 
n+1 

A
n+l 1 E 

Therefore, 

Br(f;x) = ' r 
n+11)  

T cmw,  An+ip = p,
u 
 +(f 

1  
p.) x = f(0) + (f(1) - f(0)) x . 

Van der Steen, Sikkema (1966), and Kelisky and Rivlin (1967) have 

proved Corollary 2, only for r = rnENN, by different methods. 

COROLLARY 3. Let Kbe the (n+l)x(n+l) matrix representing Bn: 

when we take for .0 the Bernstein basis {(1-k 	, i.e., 
k=0 

Bnqj QT1tie 	J--0(1)n, e being the (n+1)-component vector with 1 in 

j 	else-,.here. Then 
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Kr,  Kc°  

1 - 0/n 0 ... 0 0/n 

1 - l/n 0 ... 0 l/n 

1 - 2/n 0 ... 0 2/n 
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1 - n/n 0 ... 0 n/n 

OD 
PROOF. This follows from Corollary 2 and the observation that in IC 

• 
aa 

corresponding. to Bn , the k
th column of K consists of 

oo 
the coefficients of Bn qk : 

n 
Br a ---..gn  q0  = 1-x = 77(1  - j/n) q n   j=0 

Brn  a -k 
 ----4.gn  

D  q
k 
 = 0 , 	k=1(1)n-1 , 

_r 	co 
a =x = 

n n 	n -n 

Nielson, Riesenfeld, and Weiss (1976) have offered a proof of 

Corollary 3, only for r = me N, using probabilistic arguments. 



1<1<11 
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4.2. The case of 	co and r = 	tE IR, fixed, as m--co  

inde-Dandentiv of n. 

t. 
The analysis of the limiting behaviour of the matrix AN0), where 

t is a fixed real, N a fixed natural, and 	is considerably 

simplified if we observe that 

1 
aii  = 	= 	— 

() 
--- 4 	

_2
'0(n ) 

• 	

1<i<N, 

(i+1) 

ai,i+1 a
i 2  + ()(n-2) 	l<i<N , 

n 

a. 
 =0 (nt-k) 	

• 	

1<i‹k‹N . 

Tn 	of this we have the following 

LEMMA L-.1. 

1 	- a) A
N 

I n CN +°(n 2) 

1 
= eriCN u )  -2, 

1 

= e
-T7(CN  +0(n 1)) 

where CN is the bidiagonal matrix whose nonzero entries are given by 

b)  

c)  

1,75ththecoriveritiontilatL=0 if i< , and 0(n ) denotes an 

k NxN upper triangular matrix whose nonzero entries are [f (n ). 



REMARK 4.1. For the monomial xi  it follows that 

n[Bn(xi;x) - xi] = XTFAN  - 

# 
—..XTC e = 14. xj-1 - 	xi  = x(1-x) (x3) . 

	

N j 	J 

/. Owing to the linearity of the operators Bn and d
2  fax2  and to the 

.05 co 
facts that IIB = 1 and 	U 4 is dense in C, we then get the 

N=O'' 

Voronovskaya's result that 

lim
Ln 	 2 (f;x) - f(x)1 = x(i-x) f(x) 

n.cr, 

provided that f has a second derivative at xE.D41, the convergence 

being uniform in 0<x<11 whenever f( x) is continuous. 

COROLLARY 1. 
CN i)  lim AN = e 

n••-••03 

[1  
= lim AN = etCN ii) lit AN 	 . 

PROOF. Part i) is immediate. The first equality in ii) follows 

from the fact that nt,.....[nt] and the second follows from i). 

REMARK 4.2. Since each element of the sequence {A N  }, t>0, is 
column-stochastic and L.STP, then so is the limit 

exp(tCN). It is also clear that for t>0 and n sufficiently large, ALI.t  

is either ASTP or replaceable, elementwise and arbitrarily closely, by 

a STP matrix, namely AN  . 
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COROLLARY 2.  Let r = rm 	
fixed, as m---0-09independently 

of n, then 

rm 
lim AN = I . (4.2) 

PROOF. 

lim 	A 	= ( lim AB )t  = I . n , m 	n—.00 

REMARK 4.3.  For t>0 and n sufficiently large Aij  is either LSTP 

or can be approximated, elementwise and arbitrarily 

closely, by a LSTP matrix, namely, exp(4-CN). Indeed, from c) and b) 

of Lemma 4.1, 

t 0  

A
t =e n N ti(n ) . 

REMARK 4.4.  In correspondence with (4.2) we have, for each PE:".g 

and rm.teR, 

L 
lim Bn

m 
 (P;x) = P(x) 
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uniformly in 0<x<1. Being f6dense in C and, for rm>0, 
rm Bn = 1' then, 

  

for each f in C, 

r 
lim Bn

m 
 (f;x) = f(x) 

uniformly in 0<x<1. For rm---0.1 we recover the Bernstein uniform 

approximation theorem. 



a.. a. . 
112 	ai .k 

m=1 
0. -)0A. -A ) 
im 	k 

r A
.1
n 

m 

4.3.The  case of r =  

Since the eigenvalues of AN  are all positive, then 

. - r 	r 
li
m:, n lim n  •  

rn 	n—.ca
n 	CN n---co n 

lim AN = ( lim AnN  ) 	= ( e ) 
n --p.m 	n--.00 

tCw  

	

exists iff lint r /n exists- Let r /n.----ihtEDR, then AN  --1. 	if a column- n. • 	n • • 	N 

stochastic LISTP matrix provided t>0. 

REMARK 4.5. Referring to (3.1) and (4.1), the coefficients of Ain  , 

ern , 	, and Ak in 
m 

[ A

itAi  ,...,Ai  pAk 	. a. 
15 	lil 

a i
li9—  aijk =  1 	i  (A1.-11  ) j 	(A A k As  m i- i)  
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a11.. a. . 	a. 
1 1112 

	

a.. a. . 	aik  

	

111 1112 
	

r  
*
A 
k 

(Ak-Ai) si(Ak-Ai 

	

m=1 	m 

are easily seen to have numerators 0(link-i), denominators ()(1/ni+1) 

and thus all tend to 0 as n--.cc, except when j = k-i-l. Therefore, 

tc 	-pit 
t) a (e N) 	= e 	6.T 	liM Lr,\ 	 ,A. 	a. . ... a bik( .1 

12{ 	1K 	-1 	k-1 A 
An 

1,1+1 	k-1,k 

, 
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and we recover, after some manipulation, the result by Kelisky and Rivlin 

(1967) that 

-74.44t 
bik(t) = 	e 	1<i<k<N ; 	, 	(4.3) 

J=1 

with 

= (-1  

1”20) j-i 	(J 1  
k (2,1-2\fk+j-1\ 

3-11' 2j-1/  

1<i<j<k . (4.4) 

In particular, 

r 
rn/n 	0 .7....:*A N

n 
	I 	and 

rn 
rn/n f cc, 	AN 	E - 

The coefficientsik,j,k  satisfy the following sets of seemirl-r  

nontrivial identities:  

THEOREM 4.2. 

= 0 	(i 	, 
'JP" 

b) 	57,Si,j,k /kJ' 	0 	 , 	. 

j'i 

PROOF. Referring to the representation 

tC.r  
T + (4.5) 

M="-  

we see that the property that the column sums of exp(tCN) are all equal 

to 1 is equivalent to the vanishing of the column sums of CI , 

rnm .)12et 7u1'"-elo- -2-v--91% that 	= 0 for k>i+m , m)0 , ik 

and thus, from (4.5), 
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bik( t) = 
m= 

Niik 
tin , 	1<i <k , 	(4.6) 

showing that the functions bik(t) , l<i.<k , have t = 0 as a zero of 

multiplicity k-i. On the other hand, from (4.3), 

(4.7) 

and part b) follows. 

Comparing like powers of t in (4.6) and (4.7) leads to 

k 

(Culi)ik = 	m  (-1)   j=i i,j,k tj 
1<L<k , 

The vanishing of the column sums of CT , m;>1 , implies that 

.=2 ( ?=pi, ,k )/4r1 = 0 	k ..>„2 	M>0 , 

and part a) follows from the arbitrariness of m. 

REMARK 4.6. The set of identities a) and that corresponding to m = 0 

in b) were first observed by Kelisky and Rivlin (1967). 

With the change of variable x = e
-t the range [0,0:] is transformed 

into [0,1] and the functionsbik(t ) may be written as polynomials in x: 

bik(t) = 	= - 	•t( i 
x 	, j,k 

showing that x = 0 (t =00) is a zero of bik(bik)  of multiplicityfri  . 

Being x = 1 (t = 0) a zero of 1"bik  (bik) of multiplicity k-i, then 
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we have the following 

THEOREM  

i. 	.k-i 
S (x) x 

P 
 0.-x) 	D. 

ik 

	

Pik (x) 

 Pik in rrl!/  , s = (4041).41M= (k-i)(k+i-3) , having every 

coefficient positive. 

 

s 

PROOF. The coefficients c. 
	J 	- 

D
l  

= C:(i,k) of 	.
k 
 (X) = 1_, C Xi  

j=0 j  

may be determined by equating coefficients of like powers 

of x in 

j=ii,j,  xi° /1  k 	= (1-x)D
ik(x) 

 , v= k-i . (4.8) 

Assuming thatPik
(x 	 Pik(  

) has w sign variations, then (1-x) 	x) will 

have at least (.0-1-v (see P6lya and Szegii (1976, Probl. 30, p. 40)). On 

the other hand, by (4.4) and (4.8), the latter has precisely',  variations. 

Hencew=0,i.e.,allc.'s have the same sign. But pik(x);>0 for x>0 

and therefore c?-0 , 04:„"j<s . 



5. CONVEXITY PRESERVING PROPERTIES OF Br  

There is a sharply contrasting behaviour between Blrl  and B7 r>0 : 

i) While Br  , having no eigenvalue >1, is contractive, variation 

diminishing, and. norm not increasing, Bnr  is a variation increasing 

dilatation which increases the norm unboundedly as r —• co. 

ii) For r:-.>0 and n>.2 the transformation Br  is convexity preserving 

or nearly so inasmuch as the matrix Ar(n) representing it is TP or 

replaceable, elementwise and arbitrarily closely, by a TP matrix. In 

contrast, B r  has no such property, as shown by the example 

n - 

	

a (n,x) = xn  = Bn(Bn
-1 xn  ;x) = 	 B (xn 	ak  ;k/n) 	(n,x) , 

	

k=6 n1 

	
- 

which implies, by the linear independence of the arc's, that 

0 , 	k=0(1)n-1 , „ 
Bn-(x-;k/n) = 1 , 	k=n . 

Therefore, while xn  is convex on [0,1], 

- 3-
n
1(xn 	J 1  

	

.k/n)  = L  x- k/n  = nn 	
' 	

n-1) 
' k=0 (1 - 1c/n 	n. 	r 	n 

oscillates n times about zero. 

REMARK 5.1. B2 is convexity preserving for each real r. 

.7rIle!, let 	f 	dafined and convex on 

. The ordinates fk  = f(k/2), k=0,1,2, satisfy tho-,70.  Let 
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P(x) = B7(f;x) = B2(L2f;x) = f0  + 20f0  x + 2,12f0  x2  . 

r- 

88 

Then 

1 0 0 

 

(5.1) 

21-r 

  

  

rf '  
B2  (f.x) = 	-V-x) = 2 	' X X

21 

=""0 Pifo  + (1 - 21-r)Af
0lx 21-rigf0  x2 

is manifestly convex for each real r. 

B2 i It should be noticed that 132  is convexity preserving for every 

real 	whereas the 7x"1 mat-ix 'In (5.1) is not positive for r<1 , 

much less TP. 
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CHAPTER 4 

THE LIMITING SEHIGROUP {:3~; t}'O} OF BERNSTEIN ITERATES 
· V 

1. ZX TSTSITG, CrL~-qACTERTZATION t AND REPRESENTATiON . OF .at 

1.1. Existe:1ce ~nd characterization of ~t acting on { . 

r 
In Chapter J the n main object of stud.y was the 8atrix AN+1 

r 
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re ?resenting w n t· 
.:J ac ... ::.ng on 

n ~. In the terminology Qf t he operator semi-

s8:nigroup of ?OS~_ t i ve m.atrices. This . semi-

group was shm.rn to converge to the semigroup of TP matrices {exp(tCN+1 ; t.>o I 
Hhere 

C"r+' 1. -l.. 

OXD(~ n '\ '"' __ c.. ·v , :' -LI / 
1 1 I 

lim 
rl-ce 

l im. 
n_co 

In vi ew of this, 1: we cal l 

.,..JA, - r) 
"~ V N+l . 

lim 
n_oo 

., 
1: . \ -. ) 

. n--..oo n-CC 

7 
' f -

I 

I 

I 

------.-~~-- .~~- -~~ ---~- - --- - .--.---

.• ~---j 
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where p denotes the coefficient vector of PEu and X
T 

= (1,x,x
2
,...,x

N
), c5  

that limit exists for any t.;>0 and all PE~N , i.e., there exists a 

totally positive semigroup { t; t 0 on ,5t)li to itself, with 4 = I 

and such that,for each t;>0 and all Pe?" , 

lim 
Enti 
Bn 

p 

"i6tP = 0 . 

   

r 
Furthermore, the operators Bn 

(and likewise B
n 
, r >0) have norm 

1 since they are positive and preserve the unit function. Therefore 

t3.?...01 is a totally positive, strongly continuous,contraction 

semigroup on 	, {exp(tCN+1); 	being its matrix representation 
 

iT when we take for SI: the usual basis {x
k
}N k=0 

The infinitesimal generator D of the semigroup 	is defined as 

D xk = lim (n(x ;x) - xk)/t 	k = 0(1)N , 	(1.1) 

= 	/7.(exp(tC11+1 - i)/t).ek 

tl 0 

= X
T 

CN+1 ek 

k-1 	k 	(k) 
rk x 	/ k x 	/1- ' 'k ‘2' ' 

= Z x(1-x)(xk) , 

i • e • , 

t 
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D is a linear differential operator acting on(D) = C
2, and CN+1 

is the matrix representation of the restriction of D to N 

Invoking the result of Voronovskaya (see Remark 4.1 in Chapter 3) 

we also have 

D xk 	lim n(Bn(x
k  ;x) - xk) , 	k = 0(1)N , 

n-+ CO 

hence 

D = lim n(Bn - I) . 
	 (1.2) 

co 

The foregoing results on the existence and characterization of the 

semigroup 	t3,30 }are contained in the theorem of Trotter(1958) on 

the convergence of the iterates of contractive mappings on Banach spaces. 

In what follows, however, there will be no need of the full strength of 

Trotter's result. 

Introducing the notation 

Wk(t,x) E t(xk;x) = lim 
BnEnt3  

(x
k 
 ;x) , 	k = 1(1)N , 

k 
- XT exp(tCN) ek = >  bik (t) xi  (1.3) 

and using the semigroup property of vtt  

h71(Wk(t+h,x) - Wk(t,x)) = 	- I) Wk(t,x) , 	h>0 

and, similarly, 

h-l(Wk(t,x) - Wk(t-h,x)) = h-1(6611  - I)2t_h(xic;x) 	0 <14:a . 

, recalling 	..J in Jnapter 3 and using (1.1) 

we are led to the following initial value problern(Cauchy problem) 
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arg/ot = D Wk 	Wk  = Wk(t,x) , 

K
(0,x) = xk  , Wk(03,x) = x 

Wk(t,0) = 0 , Wk(t,l) = 1 

(1.4) 

of which (1.3) is the unique solution on 

 

 

-a= {(t ,x) Ett2  : 0.4x41, 04t Loot. (1.5) 

REMARK 1.1. We recall, for clarity sake, that the end condition 

Wk(anx) = x corresponds to the fact 

OD 	

r k (x
k 
 ;x) = lim(xk  ;x) = lint Bn

n  (x ;x) = B1(x
k;x) = x 

t---* 	n CO 

iff lim rn/n = co , whereas the side conditions Wk(t'0) = 0 and Wk(t'1) = 1 

correspond to the interpolating properties Bn(xk;0) = 0 and Bn(xk;1) = 1 

respectively. 



1.2. Spectral characteristics of v t  

From Chapter 3 (see Section 3 and Lemma 4.1 a)) 

CN = lim n(AN(n) - I) 

= lim n(VN(n)AN(n)1(n) - I) 

= lim VN(n). lim n( AN(n) - I). lim 

	

= UN. diag(-/A.
J 	N
). U-1  . 

Instead of evaluating the eigenmatriUNij  of CN as UN = lim 

VN(n) as in Kelisky and Rivlin (1967), we take advantage of the simple 

structure of CN and use the equation 

CNUN  = UN  diag(-1) , 

with UN normalized so that its diagonal elements are equal to 1, to obtain 

)44  4-1 
u . = — 	U. 

/j 1+1,j , 	i <j = 2(1)N 

- 
= (-1)-11 

j-1  -Ir1+1  
n1=i Nt4j /Lim. 

0 

= 	1 
	

i=j ; i,j = 1(1)N , 

(j)2 

L 
(1)j-1-1._ Nil  

j g 
\ 

	<j 

- 	- 
REMARK 1.2. The matrix UN1 	1 

3. = (u*..) = lim V (n) is obtained in a like j n Gc 
manner. We  use the equation 

93 
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1 	 \ 1 
UN  CN  = 	UN  

to get 

 t - 	k  u 	u*. jk 	j,k-1 ' 

= 2111 	 

m=j)t )14'j 

j<5.1k = 2(1)N , 

0 

1 

(k)2 
J 	‘JI  
k 
(
k+j-1

) 
' 

k-j 

j> k 

j = k ; 	j,k = 1(I)N , 

j <k 

 

and we recover, once again, the Kelisky and Rivlin's result referred to 

in Remark 4.5 of Chapter 3 : 

k  
t) a (exp(tCN))ik  = 	uij u*jk e j  = 	/1,j,k e  

bik( 
j=i 	J=1 

Iteration of 

where 

leads to 

Bn  v. 	v . 	1 	, 

v. = v.(n,x) = 	v. ,(n) xi , 
J 	i=1 IJ 

t  %,(
t  u = el Li  u. , j  

(1.6) 

where 
0\2 

3.1  u. = u.(x) = 	v.(n,x) = > (-1)i-i 5: 	. 	x.  . 
n---,co J 	i=1 	j 	(232 \ 

j_ii 

Clearly, u.(0) = 0 and, owing to the vanishing of the column sums 

of VN  (n) 	u.(1) = 0 as  well. Thus, all the polynomials 11  -(x), j.„=„ 2, 
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have the common factor x(x-1). These polynomials are the only eigenfunctions 

of ,()?>, with associated eigenvalues exp(-/k.J
t). We also note that 1 and x 

are eigenfunctions associated with the common eigenvalue 1. 

It follows from (1.7) that 

t 

	

21- (c." - I)  u. 	t 	° - 1) u. 
t 	/ j  

and, letting ti 0, 

D ui  = 	ui 	 (1.8) 

x(1-x) 	j(j-1) u .(x) = 0 . 

But,for 

J-12( 	
ox) = x(x-1) 4 .(x), , j  

th where 0.(x) is a j degree polynomial with leading coefficient 1, due 

to the way we have normalized the matrix Vii(n). Therefore 

s //, • 
x(1-x) 0 -04 	2(2x-1) 0  .(x) j(j-3) cpi(x) = 0, 

giving 

(,)(= 
pc1,1)(2x-1) / (2,1+2) , 

.th where P 	(x) aenotes the j degree Jacobi polynomial of parameters 

(1,1) normalized in the usual way, i.e., so that Bc1'1)(1) = (3+1) = j+1. 

03(x) is an orthogonal polynomial system on [0,13 with respect 
0 	 co 

to the weight function x(1-x). Hence ti.(x)- is also an orthogonal 
2 

Polynomial system on that interval with respect to the weight function 

(x(1-x))-1. 
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1.3. Integral representation of 8t,  acting on C. 

Being 	bounded 	 S(D) dense in C, then a can be extended 

to all of C; that is, 

(rit) 
W(t,x) -e. 	f(x) = lim Bn  f(x) 

n.co 
exists for each f in C, and we set out to work out an explicit represen- 

tation for Af. To begin with, we assume that fE....q(D). 

because 4.5,7Df = De%6t 	dt f =-(71- (66 f) (see, e.g. , Butzer and  t 

Then so isAtf 

Berens (1967.p.9)) 

and we set up, as in Subsection 1.1, the following Cauchy 

given by (1.5) : 

r bW/6t = D W 	W = W(t,x) 

7(0,x) = f(x) 	W(cm,x) = B1  f(x) 

[W(t,0) = f(o) 	w(t ,1) = f(1) 

problem on 1.1 

(1.9) 

(see Remark 1.1 on the end and side conditions). 

With problem (1.4) as a guide, we expand W(t,x) into the eigen- 
co 

function system iu.(x)I , with coefficients which are functions of t : 
0 

CO 

W(t,x) = 	 c.(t) u.(x) . 
J=O  

The differential equation in (1.9) now separates into the ordinary 

differential ecuation 

cl.(t)
JJ  
Al.c.(t) = 0 

which is solved -cy 



cj(t) = ej e 

Our problem is now reduced to the determination of the coefficients F. . 

Making use of the initial condition in (1.9), 

f(x) = :5-
6 	

u.(x) 
j=  

op 

= -60 6
1
x 	 u.(x) . 

j=2 J 
(1.10) 

Recalling that, for 1,>2, uj(0) = u.(1) = 0, we obtain 

= f(0) and -63.  = f(1) - f(0). 

Defining 

7(Y) = f(Y) - f(0) - (f(1) - f(0)) Y 

= f(Y) - Bl  f(Y) 	 (1.11) 

we have 

CO 
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f(Y) = >  6. u-(Y) • 
j=2 

Multiplying both sides of (1.12) by uk(y)/(y(1-y)), k?).2, and 

integrating from y = 0 to y = 1, gives 

k 	h 	y(1 -y) 	 dy , 	k,),2 , 

0 
where 

1  
u/c
2  

	

(y) 	k-1 
“k  

	

A1-Y) 	k(2k-1) f2212  
0 	` k 

1 
f(Y) uk(Y) = 

(1.12) 



Finally, we obtain 

W(t,x) = f(0) + (f(1) - f(0)) x 

or, which is the same, 

1(Y) ui(Y) dy  
11. J(  Y(1-Y) 
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t f(x) = B1  f(x) + fG(t;x,y) (1(y) - B1  f(y)) dy , 
0 

where 

OD, • kt 
1 / 

G(t;x,y) 	\,  -2 	u.(x) u.(y) 
Y(1-Y) 	nj 

(1.13) 

too _A. t yr2 1 	F. e 	(1,1) 	,N  (1,1) x(x-1) - 	P. 	(2x-1) Y(Y-2')  P. 	(2y-1) 
Y(1-Y)  j=0 

h 	
 

(
2j+2

) 
 3 

i 
	(2j+2) 

 4 ) j  
J 

with 

co  
= x(1-x) 	 H. e 	Pi(x) P;(y) , 

j=0 

H. - (i+2)(2.1+3)  
J 	j+1 

(1.14) 

0+1)0+2)  
= t4..3+2  = 	2 

(1,1) 
-13*.(x) = P. 	(2x-1) . 

The restriction that f should be inc6(D) can now be removed as the 

representation (1.13) is clearly valid for each f in C. 

, 
f(0) and 	f(1) = f(1), there is no loss in 

generality in assuming that f(0) = f(1) = 0. In this case 



f(x) = 
1 

f G(t;x,y) f(y) dy . 
0 
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REMARK 1.3. For any t>0 and all f in C, the function A f(x) is analytic 

on 04x41. Indeed, consulting (1.14), the factor exp(nt) 

makes convergent not only the infinite sum representing G(t;x,y) but all 

its derivatives of arbitrary order, with respect to t or x, for all t>0 

and 04x41. 
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2. SMOOTHING Elq.z.,.CTS OF .,(/6 

LEMMA 2.1. For each fixed nonnegative t, the kernel G(t;x,y) of the 

transformation t is strictly positive in the interior 

of the unit square S2  = i(x,y)EPRz: 04.:;x,y<1 . 

PROOF. Using the orthogonality of the shifted Jacobi polynomials 

appearing in (1.14) we see that 

1 
.1-1G(s;x,11) G(t;y1,y)  dyi  = G(s+t;x,y) . 

0 

(2.1) 

It is also easy to show that , for 

G(t;x,y 

1 1 	1 t  

= 	j  (- G( Tc-Tvx,y 

0 0 0 
''7.1;YVY2)* "' 

(2.2) 

.G( Tivyk,y) dyidyz...dyk  . 

The kernel G(t;x,y) is clearly continuous on S2 and, along the 

diagonal x=y, it is everywhere positive except at the endpoints. Hence, 

there exists a neighbourhood of the diagonal, say Oe  = Rx,y):1x-y14 

in which G(t;xpy);0.0. Now, for any point (x,y) in Sz, there is a finite 

set yvyz,...,yk  such that all points (x,y,), (yi,y2),...,(yk,y) lie in 

Oe  . The strict positivity of G(t;x,y) for any t_>0 and all (x,y) in S2  

except at the corners x=0 and x=1 follows now readily from (2.2). 

We have borrowed this elegant idea from Karlin and i%fcGregor (1960). 

r each J l 	.,;) 13 	str_ctly totally positive 

in the sense that if m is any positive integer, 

x2,-... xm<1, and 001<iy2<!...<ym‹,1, then 



G (s+t; 

Yi l .. - .Ym )
Xi,meopXm  

101" 

G (t; 

5r1,--- 93rm 

G(t;x1,y1) 	G(t;x191,m) 

G(t;xm,yi) 	G(t;x
M. 
 ,y ) 

 la 

>O. 

   

PROOF.In terms of the determinantal polynomials 

   

(
nr • • • prim) 

xl,...,xm  

P:1(x

1

) 	P: 

1

(xm) 

• • 

• • 

Pn (xl) 	Pn (xm)  m 	 m  

0 <sn1 < <nm  , 

"*.-- 

   

   

there is a representation 

G 
xl,...,x_ 

LE: H 
n
I ...H

n 
. 

	

m 	= x
1
(1-x

1

) ... x
m
(1-xm). 

	

Yl,...,Ym 	
04 	

m 

n1‹....chm  

e

-(a

nl

+ ... +an  )t * ni,...,n
M 
 * n/,...,nm   

M P 	
p 

 
x1 a Yr-am 

analogous to (1.14). In correspondence with (2.1) we also have 

1 	1 

...f G 	Xl"•"xm) G (t; 

z •...,z Y .•-amm
0 	0 

. dz

1

...dz

m ' 

Using this and repeating the argument we used when dealing with the 

case m=1 it follows that G(t;x,y) is strictly totally positive on the 

unit hypercube except at the corners where xi=0, i=1(1)m, at which 



THEOREM 2.1. The semigroup /A; t)01 is variation diminishing. 

PROOF. For singular integrals, variation diminishing and total 

positivity are equivalent properties (see Butzer and Vessel 

(1971, p. 150). 

REMARK 2.1. As an immediate consequence of this result, all the 

shape preserving properties of the Bernstein operators 

carry over to the semigroup 	. In other words, the graphs of f and 

t
f have the same shape. In particular, if f is monotone or convex, so 

is Stf. 

54of 

REMARK 2.2. An immediate consequence of (1.13) is the invariance 

)undert. From this and the positivity of 1  

ijat; t.:›0,1 it follows that pi i  = t  1 II = 1, just like Bn  and its 

iterates of nonnegative order. 
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3. APPLICATIONS OF  

3.1. Saturation theory for the Bernstein approximation in C. 

The Bernstein saturation problem is to determine a positive, non- 

increasing function 0n (the saturation order) with the property that 	0 

as n-.co and to characterize two classes S (the saturation class) and T 

(the trivial class) of functions f in C such that 

Bn(f;x) f(x) =()(0n) 	iff 	f E S 

and 

Bn(f;x) f(x)  = of rd 
	

iff 	f E T . 

The class S consists of all functions f in C optimally approximated 

by B
nf, i.e., no higher order of approximation than 0n can occur except 

for T, which B
n leaves intact. 

K. de Leeuw (1959) was the first to solve this problem following 

the Voronovskaya's result that the boundedness of f on [0,1] and the 

existence of f at a point xE [0,1] implies 

Bn(f ;x) - f(x) 	x(2nx)  1/(x) + o(l/n) 	(3.1) 

and the Lorentz' (1953, D. 22) conjecture that the relation 

Bn(f;x) - f(x) = o(l/n) 

cannot be true for all xE [a,b]C. 1.0,1) unless f is a linear polynomial 

on Ca,b3 . 

An improved solution (in the sense that the behaviour of the saturation 

order near the endpoints of [0,1] is taken into account) was given by 

Lorentz (1966, p. 102) through an involved, functional-analytic technique. 

103 
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There are two alternatives to Lorentz' approach to the theory of 

saturation of linear positive algebraic polynomial approximation operators, 

these are : 

a) The parabola technique of Bajsanski and Bojanic (1964) where 

asymptotic relations of Voronovskaya's type (3.1) play a major role. See 

e.g., DeVore (1972), Lorentz and Schumaker (1972), and Berens (1972) for 

further developments and applications. 

b) The operator semigrouo method, first applied by Karlin and Ziegler 

(1970) and Micchelli (1973). Here,the idea is to derive from a given 

sequence RI of linear approximation operators a continuous semigroup 
rn  

{lit; t>0} by taking limits of appropriate iterates of Ln, namely, Ln  , 

where rn n 	t>0 as n---1.02, n being the saturation order. The saturation 

properties of fTtj are shown to be the same as those of .{1.,n and saturation 

for a continuous semigroup is well established in Butzer and Berens (1967). 

THEOREM 3.1 (Lorentz-Micchelli). For f in C the following statements 

are equivalent : 

(i) If(x) - Ay)14MIx - yl , 

(ii) iBn(f;x) - f(x)1.<417Tx(1-x) , 	n;>1 	0<x<1 

(iii)IA(f;x) - 	x(1 -x) , 	t:;00 	0(x4.1 . 

Moreover, 

Bn(f;x) - f(x) = o(x(1-x)/n) 	iff fE 'f . 

Zee .,-,. Lorentz (1;-,6d, o. 102) nor the equivalence of (i) and 

(ii) of which the last assertion is an immediate consequence, 

and C. Micchelli (1973) for the equivalence of (ii) and (iii) and (iii) 



and (i). 

To sum up, the Bernstein approximation procedure is saturated with 

order x(1-x)/n, trivial class .573_, and saturation class S consisting of 

all functions f in C for which f exists and belongs to the classical 

Lipschitz class Lip 1. 

3.2. Characterizations of convexity. 

THEOREM 3.2 (Karlin-Ziegler-Micchelli). The following are necessary 

and sufficient conditions for f to be convex on (0,1]: 

(i) Bn(f;k/n);of(kin) , 	k = 0(1)n ; 	; 

(ii) Bn(f;x);>f(x) , 	n;.1 ; 	0<x‹.1 ; 

(iii) St(f;x);,?..f(x) , 	t,?0 ; 	04:x.41 . 

PROOF. See S. Karlin and Z. Ziegler (1970) and C. Micchelli (1973). 

The next result involves convexity and monotonicity. 

THEOREM 3.3.  let fec then f is convex on [0,1] iff, for all 0<x4.1 
and 0<s‹..t, 

Af(x)::,„ 	(x) . 	 (3.2) 

1=ROCiF. If f is convex and t>s, then, by part (iii) of Theorem 3.2 
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t-sf(x)> f(x) , 	0,<x41 , 

and the necessity part follows upon application of .8s  to both sides of 

this inequality. 

The sufficiency part follows at once from (3.2) on letting si 0 and 

using part (iii) of Theorem 3.2 once again. 

3.3. Linear olnrators  commuting with Bn. 

Let T be a linear operator mapping C into itself and commuting with Bn  

TB
n 
= B

n
T . 

The characterization of such a transformation was first given by 

Konheim and Rivlin (1968). It was given later by Karlin and Ziegler (1970) 

as an application of the iteration method. 

Defining W = T (I - B1), then Karlin and Ziegler's result is that 

Wf(x) = a + bx + cf(x) + df(1-x) , 

where a and b are linear functionals on f and c and d constants depending 

on Bn. 

See Subsection 3.6.3 for a detailed extension of this result to 

functions of two independent variables. 

1c6 



3.4. Saturation theory for de Leeuw-like operators. 

We call de Leeuw-like operators the following polynomial approximation 

operators defined for f in C by 

Kn(f;x) = 	i(f) qk(n,x) 

with 

f(0) 	, 	k = 0  
±1/(2n) 

1*k  (f) = n Jr 	f(k/n + t)dt, k = 1(1)n-1 , n 

-1/(2n) 
f(1) 	, 	k = n . 

Knf generalizes Bnf, which corresponds to the point evaluation 

* „ 
functionals lnk(f) = f(k/n), and has been introduced by de Leeuw (1959) 

in his treatment of the Bernstein saturation problem. Actually, de Leeuw's 

definition is slightly different,viz 

n-1 * 
1 (f) C1T • nk k=1 

He has shown, through a number of lemmas, that these operators possess 

the same saturation properties as those of Bn  and we show here, as another 

application of the iteration method, that the same result holds for the 

operators Kn. 

LEMMA 1.1. For each f in C 

K
n(f;x)-L-i-f(x) as 	OD 

un4+"flrnly in 0<::71. 

PROOF. Let us compute Kn(fi;x), fi  = xi  , i = 0,1,2. 
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-1/(2n) 

0 	, 	k = 0 

1*  (f2 	n ) = 	()2  + -2 	, 2  --- 	k = 1(1)n-1 nk 	-1-S- 	
12n  

1 	t 	k = n . 

lnk(f1) = nf 	(k/n + t) dt = k/n , k = 0(1)n ; 

* lnk(f0) = 1 , 	k = 0(1)n ; 

+1/(2n) 
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Therefore, 

K n (f0' .x) = >:  a (n,x) = 1 ; 
k=0 

Kn  (f .x) = (n,x) = x ; 

n-1 k Kn  • 2'x) = 	2 	1 2) a (n,x) + xn 
!Z=1 12n -k 

= Bn(f2;x) + 1  2  (1 - xn - (1 - x)n) 
12n 

	

2  . X(1-X) 	= x 	
2 

(1 	xn 	(1  ... x)n) 
12n  

---* x2 , uniformly, as n--••co, 

and the result follows on appealing to the theorem of Korovkin (1960) 

on the convergence of sequences of linear positive operators on C. 

We turn next to the limiting semigroup of the iterates of the 

operators Kn. 

1171.1Y=t 5.2.  or t..›0 and f in C, 

Ent] 
Kn f J5 f l im = 0 
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PROOF. For g in C2 

+1/(2n) 
n-1 

	

Kn(g;x) Bn(g;x) = >  ( of 	(g(k/n + t) - g(k/n)) dt) qk(n,x) 
k=1 -1/(2n) 
n_i 	+1/(2n) 

	

= ;TT  ( of 	(g(k/n +t)-g(k/n)-g(k/n)t) dt) qk(n,x) 
k=1 -1/(2n) 

  

14 	 ) +1/(2n 

	

, 	n-1 
4,774,( of 	t-  dt ) E qfr(n x) 

-1/(2n) 	k=1 - 

24n 

 

Kn(g;x) - Bn(g;x) 

  

whence 

MKng B ngl1=0(1/n2) . -  

Making use of the identity 

k -2 	k-1, u - vk  = (u - v) ( uk-1 uk-2v + 	+ uv 	+v 

and of the fact that both Kn and Bn have unit norm, we conclude that 

 

11Kng - Bngl 
I
Kng - B g 

 

  

= O (k/n2) . 

For k = rntj , 	, this gives 

K 	_ 
tg lim 

n 
= 0 

for each g in C. But C-  is dense in C and the result follows. 



The next result shows that Kn and Bn have exactly the same 

saturation properties. 

THEOREM 3.4. For f in C the following statements are equivalent: 

(i) ALin 134 [0,1) 

(ii) n 1Kn(f;x) - f(x) 41-x(1-x) + 0(1) 

where o(1)i 0 uniformly in 0,<x41 as 

Moreover, 

Kn(f ;x) - f(x) = o (1/n) iff f E5;).  . 

PROOF. (i) 	 (ii). We follow the analysis in Lorentz(1966, p. 102) 

to obtain 

I
f(x) 	f(y) - f(x)(x-y) 

 

4-1(x-y)2. 

  

Let y be fixed but arbitrary. Being Kn  a linear positive operator which 

preserves 1 and x, then 

I
f(x) - Kn(f;x) 

 

<22-1  Kn((x-302;x) 

  

2n (x(1-x) 	12n gn(x))  ---  
with 

gn(x) = 1 - xn  - (1 -x)n  

and (ii) follows since 00n(x)..‘1 for all n;,),1 and 0<x<1. 

(ii) 	>(i). Since 

);x) --. (1 - 1/n) x(i-v) - 1 	, ( ) 
12n °I1  

4:2,2  x(1-x) , 	A2  = 1 - l/n , 
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then 
m  r-q.  4 

422- 	Kqy(1-y) + o(1);x) --2n 	n j=0 
Kr(f ;x) f(x) 

and, for r in N, 

111 

r-1  
Krri(f;x) - f(x) = 	KJ( Kn  f-f;x) , j=0  n  

) x( 1-x) + 	o(1) . 2 	2 	2n 

Taking r = [nt], t,o0, n--.• on and using Lemma 3.2, gives 

At(f;x) - f(x) <1;1  x(1 -x) , 
I 

and (i) follows by Theorem 3.1. 

The last assertion is equivalent to 

K
n
(f;x) - f(x) <En/n 

  

with en 0 as n--.co , then fe Lip 1  [0,11 , and since en> 0 is arbitrary, 
e n 

f is constant. 



3.5. f 

Micchelli's tv-ne. 

LEMMP3.3.  Let f be defined and nonnegative on [0,1] then 

Ba(47 ; x) <111Bn(f;x) . 

PROOF. 

Bn(Nr±:  ; x) =  	cik(h,x) 
	

fk = f(k/n) , 

= : 
k
3>
=  
± (f, q,(n,x))1  (q

k 
 (n,x))1  . 

0 "  

Employing the ineauality of Cauchy-Schwarz we may write 

Bn(Nr-f-  ; x)((tl: fk  qk(n,x)Y 1 	qk(n,x)Y1  
k=0 	k=0 

1 
</(B n(f;x)) 2  . 

Let w(f;o) be the modulus of continuity of fEC, i.e., 

w(f;(5) = 	sup 	f(y) - f(x)1 , 	8 >O. 
04gx,y4(1 

The subadiitivity of w(f;6) as a function of S implies that 

co (f ;X5) (1+X) co (f ; a) 

for all \,5 > 0 (see Lorentz (1966, p.44)). 

Micchelli ('973) states without ??roof the following 

(3.3) 
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then 

1
(Bn  - 1)N f(x) (B17111  - I) f(x)1 . 

LEMMA 3.4.  For f in C and N in N, 

(Bn  - I)N1(x) <1- (2N  - 	w(f ;n-i) . 

PROOF. Since 

N  
(Bn  - I)N  f(x) = f(x) + >  (-1)m  0 B17.(f;x) - (1-1)N  f(x), 

113 

For x,yE [0,1] and S> 0 we have 

I
f(y) 	f(x)1.0)(f;Iy-xl) = w(f;ITI4S) 

(1 + P3r-x I) w(f.'iL) 	by (3.3)• 

In this inequality we assume that x is fixed but arbitrary. Since B: 

is a positive operator which preserves constants, we obtain 

I
BT,(f(y);x) - f(x) <(1  + 1 

n B ( y—x1;x)) ca(f;S) S  

 

<(1 	--1-1) W(f1 45) , 

2b n2  

. after observing that ly-xl = 4(y-x)2  and using Lemma 3.3. Therefore, 

N 
(Bn 	1)N  f(x) 11(?; (V) (1 	1  i )"(f;S) 

m 2bnz 

1 
and the result follows upon taking S = n 2. 

FEMA? K 3.1.  :?or N = 1, Lemma 3.=l contains the PoDoviciu's result that, 

for each f in C and n in IN, 
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1B
rif-f 11 	w(f ; r -1) 

This inequality has been sharpened by Sikkema (1961) and Schurer and 

Steutel (1976,1977), who have determined the best possible constant for 

f in C and f in Cl  respectively. 

Micchelli (1973) has introduced and studied the approximation 

properties of the operators 

Tn,N = I - (I - Bn
)N , 	n,NEIN 

Along the same lines, we introduce and study the operators 

Un,N+1= I + A (Bn) , 

where 

N  A(Bn) = TI (Br, -;\ki)  ' k=-0 

X0 = X1 = 	= 1 -)ukIll  (1(n 1 
) 	= (2) , 

the )k's being the eigenvalues of the matrix AN+l representing Bn acting 

on -.0  N 

Unlike Micchelli's, our operator preserves .5N  75  Indeed, for each 

P(x) = XTp in .515  N ' 

A(Bn) P(x) = XT  A(AN+1) p = 0 

by Cayley-Hamilton theorem. 

N Having the fact that A(Bn) = (Bn  - I)N+1  + o(l) and Lemma 3.4 in 

mind, it appears that Un,N+1f provides no better an approximation to any 

f in C than Bnf itself. However, this is not the case for sufficiently 

shoot n functions. Indeed, for f in C- 	, it follows Troia (1.2) that 



+1 (Bn),TE
N 

 (D 	= 0 (D) 
k=0 

as 	co and thus 

lim n11+1 (Un,N41 - I) f(x) =11(D)f(x) . 

Therefore, the order of approximation of feC
2N+2 by Un,N1f  is (pain

N1 
 ), 

whereas that of f by Bnf cannot be improved beyond 0(1/n), no matter 

how smooth f may be. 

The above condition that feC2N+2  may be slightly relaxed. To this 

end, let K denote the subset of C consisting of functions f such that 

fd,...,f(2N-÷1)c C and f(2N±1)  LiD 1 on r0,11 . 

THEOREM 3.5.  For f in K, 

nN+1 (U ,141.1(f;x) - f(x)) = 0(1) 

uniformly in 0<x41. 

PROOF. This follows from the observation that 

nN1Ll(Bn) f(x) = (n(Bn  - I) + 0(1))N+1  f(x) 

and the fact that 

nk(Bn  - I)k  f(x) = 

for every k in SN, uniformly in 04x‘....1 (see Theorem 4.4 in Nicchelli (1973)). 

THEOREM 3.a.  Let 	and N -ce a nonnegative integer. If 

nN+1 Un,N1(f;x) - f(X) 41,a(1-x) + 0(1) 
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with 
N 	 N  

A(Br) ' IL(Br  )f I) and S=_ILS 
n  k=0 n 	 k=0 k  

116 

uniformly in 04!x<1, then f, f 	
f(2N+1)E.0 and (j 	L(D +1,-kI))f 

k=1 	1 
has a continuous extension to [0,11 whose derivative is in Lip m  . 

PROOF. Since, for r in PST, 

Br  - 	= Sk(Bn  - ak  I) , k = 0(1)N , 

with 
j 	. 1  

Sk  Sk(n,r) = )__ A Br-3-  , 
j=0 k n 

then 

(Brn ) = s A(B 

Setting v2  = v2(x) = x(x-1), then 

S2 v2 = r ),r2-1  v2  

- lr  2 -14.-  S.   v2  , 	k2, I< 2 )1/42  Ak   

N  2  S v2 = r )% 1  TT( 	- 	) v 2 	 'XT 	2 k=42.. 2 A 
k2 

(BD f(x) 1< I sA(Bn) f(x) 

Nr „\r-1 N
ff  2  L 2  

2n 	k=0 nO2 - k
) x(1-x} 0(1/0+1) 

- For r = rn = 	, t 3;.. 0, 	co , 

and 



r Am-1  2  n 	t e = t - o(t) as t 

-/Azt 	—Act - e 	- e  t + o(t) , 	k562 , 
n(X2  - ›,k) 	tz Pk  - 

and 

with 

(.8t) f(x)141(x(i —x) 0(1)) 

(‘ ) = — t k=0  t 

That f enjoys the differentiability properties stated in the theorem 

follows now from this ineauality if we let 0<a<x-4;be_1, define 

et(x) 	fL(A)- f(s) 
0+1 	Isu_s)  ds , 

a 

and follow the lines of the argument used in the proof of Theorem 4.5 

in Micchelli (1973). 

COROLLARY.  Let f be a real-valued function defined on [0,13 and N 

a nonnegative integer. If 
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nN+1 ;x) f(x) Un,a+1(f =0(1) 

   

uniformly in 0<c,:x<1, then f is a linear polynomial on 

177V-'fr"-.7  For any 

rN+1en / N+1 n  A(Bn) f 111(B) f 
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with E
n 
i 0 as n ... —1. co . Choosing r = rn  so that rn/n ---o-  co and (r

n
/n) en1  0, 

N 
lim ZX(B1-71) f = (B1  - I)Z B

N-1
1f = 0 , 

n--• co 

from which it follows, by the idempotency of B1, that f = B1f, i.e., 

f is a linear polynomial on [0,1] . 



3.6.Iterates of multivariate Bernstein polynomials: 

Properties and applications. 

3.6.1. The bivariate Bernstein operator Bn acting on  11-  
c/) 
NN-.  

The generation and approximation properties of N-dimensional Bernstein 

polynomials Bn(f;S -x) for f in CFS,1 have been considered in Section 3 

of Chapter l.In this Subsection emphasis will be on the bivariate Bernstein 
* , 

operator BnP(x,y) = Bnn(P;S2;x,y) acting on 51,N  as most of the 2-dimen- 

sional results extend to any finite number of dimensions without essential 

difficulty. 

The bivariate polynomial 

P = P(x,y) => 	
i y  j 	

Cb 

i,J=0 	
1 . x
3  

can be written in matrix notation simply as 

P = X 13 Y 

where XT = (1,x,x2,...,x
N 
 ), IT  = (1,y,y

2
,...,y ), and p =(p. .), i,j=0(1)N, 

is the (N+1)x(N+1) coefficient matrix associated with P. In this compact 

notation we have the following 

LEMMA 3.5. For P as above 

T Bn P = X ANil  (n) p ATN+1  (n) Y . 

PROOF. 
x-, 	j 
Bnkx y ;x,y) = 3n(x;x).Bn(Ay) 

„ T 
= X -AN+l(n)  e..Y ANil  (n) e. 
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B(xiyj;x,y) = XTAN1(n) M..ij ATN+1 (n) Y, 

T i 

	

where M.. - e.e. 	s, of course, the (N+1)x(N+1) zero matrix with a 1 ij 	j 

in the (i,j) position. Owing to the linearity of B:, the result follows 

on multiplying both sides of this equation by pij  and summing over i 

and j: 

B* P = XTA 	\N  0) ( 2 • 	) N+1 	pij Mij A 	N+1(n) Y 
i ,j=0 

. 	T = X
T  AN1.1 z1) p AN1(n) Y . 

LEMMA 9.6.  For P in LO N,N 

lim , * n P - P) = DAP n 
with 

	

2 	
?'

2 

D*  = lx(1-x) .) 2  + ly(1-y) 2  . 

	

6x 	aY 

PROOF. A simple computation reveals that 

ANia.(n)M..ij  AT(n)-. 141j =(AN+1(n) - I) M.lj (AN+1 (n) - I)T  + N+1  

. (AN+1(n) - I) M. + M..(A 	(n) - I) T lj 	N+1 

and that 

lim n(AN4.1(n) Mij  AT1+1(n) - Mij) = 	Mij  + Mij  CNia  . 

Now 

	

,. 	
j vT0  T 	N+1  ei,  X .N+1 I

4ij Y y A , 
 

2 
= 	(xiyj) . 

6x 

( 3 .4 ) 



Multiplying both sides by pij  and summing over i and j yiels 

N qr
2
P XTCN+1 p Y = 2x(1-x) - 

6x
2  

In like manner, 

XTM.CT +1  Y = Y
TCN+1 M.. X N 	31 

= xi  YTCN41 ej 

= -1  - PiYi)  
. .

2 

. 
= 1.7(1-Y)---7(x Y

j 
 ) 

and 

62 
XT p C ,11.1 	= iy (1-y) 	2  6Yp . 

 

The result follows now readily on performing the foregoing operations 

on the left side of (3.4) and appealing to Lemma 3.5. 

* 	* 
REMARK 3.2.  Owing to the linearity of the operators Bn and D and 

to the facts that 11B 

	

* 	co fil 
n 1= 1 and U 0' N  is dense in C2 

 [S2] , 
N=0 N'  

, 	, 	* , 
lim n(B

* 
 fkx,y) - f(x,y)) = D fkx,y) 

n an n  

uniformly in S2  . 

(3.5) 

This should be confronted with the result of Stancu (1963 b),1964) 

that 

* t 	x(1-x)  -1/ 	y(1-y) 
 2kx,
„ Bn f(x,y) - f(ic,y) 	I 2,Y) 	2n "f 	77)  

	

x 	 y 2n 

x(1-x) y(1-y)  
2 

	f
2  

(iv) 
2 (E'n)  x y 

t,nc(0,1) 

121 



122 

3.6.2. Iteration of Bn and the limiting semigroup IS'  • t>01  . 

Using Lemma 3.5 and the results obtained in Section 4.3 of Chapter 3 
rn  

on the matrix A ' (n) it follows that N+1' 

* r 

1̀ 't 	lim  (Bn) 
n 

 n—p-a) 

exists as a linear positive contraction operator on vN,N to itself iff 

rn 	t>0 as n---pco. 

4-6 
For any P in N,N let p be its coefficient matrix. Then 

rn (A* 
av
t  P= X

T. 	( 	f 
rn m 	p 	Y AN+, 	‘Airiakn) 

co 

= XT exo(tCNia.) p (exp(tCN+I))T  Y . (3.6) 

If t=0 then, clearly, 

vJo 	= P , i.e., 	0  = I . 	 (3.7) 

If t 	cr then 

T A lim 	-0 - 	n 	, 	Pc.11N° )T -N+1 (-) = (A (r)) 	p ( +1 

77  4-- Dn.! 
j=1 

1 	. 

0 
D P-n 	.. . . -1) 

i=1 	1,3=1 ' 

0 

n—p,so 

- p00 

P(0,1)-P(0,0) 
O 

P(1,1)+P(0,0)-P(0,1)-P(1,0): 

i 1 

0 



and 

* r / 	n ..47) Pkx,y) = lim (Bn) 	P(x,y) 
CD 

= P(0,0) + [13(1,0)-P(0,01x +{P(0,1)-P(0,0) + 

[P(1,1)+P(0,0)-P(0,1)-P(1,0)]xly 

= P(0,0)(1-x)(1-y) + P(0,1)(1-x)y + P(1,0)x(1-y) + P(1,1)xy 

= B1  P(x,y) ' 

the bilinear polynomial interpolating P at the four corners of the unit 

sauare. 

It follows from (3.6) that 

c 41" P = X (e (s+t)CN1 	
(s+t)C, 	T  

s-rt 	[e 	
g+1] 

xT{eSCtCN+1 p (etCN+1)1(esCN+1T }y 

ekx. We have, in the right brackets, the coefficient matrix of t  P and, in 

braces, that of .56:(4 P). Therefore, 

's+t P = 4,evrit  2 • 	 (3.8) 

and 

It is also easy to see that 

lim 	
tCN+1 T 1r_ toN÷1.0 (e 	) 	= CN+1  P p u

N+1 
t4.0 

lin 	(St  - I) P = XT(CN+1 	N p p CT
+1  )Y  

t C 

 

 

= D*P . (3.9) 
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With the results (3.5) - (3.9) and Remark 3.2 in mind, we may assert 

the existence of a totally positive, strongly continuous, contraction 

( c-4;* semigroupt4t  ; t,301 on C[S2d with infinitesimal generator D acting 

- on O21S2i and such that, for any f in cr-s21 and all t;?..0, 

*, 
lim 	(Bn) 	f = w f . 

n 

We now proceed to determine an explicit representation for 	f, 

fEEO[S,] by working on the lines set out in Subsection 1.4 and omitting 

the details. 

Introducing the notation 

W (t,x,y) = t k ym ;x,y) km 

we are led to the Cauchy problem 

a --- W " (t x y) = DEW km  

WkmOtx,Y) = xkYm  

vx ,Y) 
k,m=0(1)N , 

whose solution is 

to 
Wkm(t,x,Y) = XT  -,,tC11+1  Mkm  (e 

 N+1
)
T 

- 	 n‘ 
(LI bik(t)  xl) ( 	 13  

	

, 	- (t) Yj) 
i=0 	j=0 JT 

Now let 

g 	= g (x,y) = uk  (x) um 	, (y) 	k,m=0(1)N . km km  

Tin 

(3.10 

,ret(gkm;X,y) =t (uk' *x 	um;Y) 



— 
= e r  uk(x).e 

Ant 
um(Y) 
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411-11Ntidtg (x  y) = e •  

and 

D  gr = -V,414m 
 )g,_ 

Setting 

W(ttx,Y) 	:/:(fix,Y) 	f E45(D*) 

• 

(3.11) 

we find the Cauchy problem 

at 	

, 	, 
Wkt,x,y) = D Wkt,x,y) 

W(0,x,y) = f(x,y) , 

which can be solved in much the same way as in the 1-dimensional case. 

We have, successively: 

co 

W(t,x,y) = 	 c (t) g 
m
(x,y) 

km 	k 

e
-(Pk-V4111)t ( 

co 

- gkm‘XIY) ; 

OD 

f(X,Y) = 	 akm  gkm(x,Y) 

k,m=0 

coo 

= 6
00 
 + 10x + U

0
ly +

11
xy + 	 Ekm  gkm(x,Y) 

k,m=2 

= f(0,0)(1-x)(1-y) + f(1,0)x(1-y) + f(10,1)y(1-x) + f(l,l)xy 

co 

+  	gkm(x'Y) 
k,m=2 

• B
*

1 
 f(x y) +  	

km 
 g (x y) • 
km  

k,m=2 

k,ra=0 



n-4.00 n  

if lira rn/n--•- t>,0. The semigroup 

*.rn 	(-4* 
lim (B )  f = t f 

F(E,n) = f(to) - *f;Z,n) 

- 	 ckm  gion( 07) ; 
k,m=2 

1 	uk() um n) 
F 	- 1.-Tr f   77(1_

(
7i) 	dn , 

k m 
k,m 72 ; 

S2 

T(f;x'  y) = B1 "(f--K'Y ) 	G(t;:,0 G(t;y0) 1“,n) dt do  t  

S2 

The analysis carried out above can be easily extended to the N-

dimensional case yielding the following 

rA* 
=OEM 3.7.  There exists a semigroup 	. ; t.,30 of class (G0) 

on CSNi such that _ 

is totally positive, contractive, 
OD 

generated by the linear differential operator 

2 
D E 	1-X(1"x) U  2 ' 1=1 

which is such that 

( * f(x) 	 ( ) 	* ( lim n,Bn ) - f,x), = D 	) fa, 
n co 

uniformly in x in E I  provided that f E C2 
LSNI, 

 and given by 

;;.1) = B: (f;x) 	K(t;aa) (f(y) - B1.(f;y)) dy 

oN  

(3.12) 
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with 



In other words, the trivial class of Bn is 

1
= o. 

, the subspace 

 

limII(B*)rn  f - f 11% n B,*  f - f 

  

rn 

c7$ 

IB*n  f - 

K(t;x,y) = 	G(t;xi tyi) , i.1 
and 

0.  -Nt 
e  G(t;xi,yi) =  	uk(xi) uk(yi) , yi(1-yi) 	 hk  

i=1(1)N, 

with the u's and h's as in Subsection 1.4. B:(f;2s) is the multilinear 

polynomial interpolating f(x) at the vertices of SN  and is such that 

* rn  

	

lin (Bn) f = B1 f 	iff 	lim rn/n =co . n 

COROLLARY 1. For f in CISN] 

* 	, 
Bn  f(x) - f(x) = 0(1/n) 	> f = B1  f . 

PROOF. The left side of the implication means that Bn  f - f = 

	

with En1 0 as 	. Let irn  I be a sequence of nonnegative 

integers such that rn/n---)-co and rnen /nl 0 as n---4-01D. Then 
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of N-dimensional polynomials linear in each variable. 

As an immediate consequence of the fact that Bn is a positive operator 
r5 

which leaves 4/.: 	invariant we have the following 
1p1.1.2.,1 

COROLLARY 2. If f in C[SN7 is convex on SN  then 

(i) B: f(x) f(x), 	LESH  ; 

ov* 
(ii) f(x);: (.t), t:30, 	X ESN 



PROOF. Let y in SN  be fixed but arbitrary then there are real 

constants cl,...,cN  such that 

f 	(z) + 	 i(x i y i) 
1=1 

x, ESN  

Applying Bn  to both sides of this inequality gives 

B:(f(x);z):›f(z), all z in SN, 

and this, under iteration, yields (ii). 

REMARK 3.3. If D f = 0 on some subset F of SN then, clearly, 

B:(f;20 - f() = o(l/n) 

and it is interesting to note the following consequences of this fact: 

(i) The only solution of D f = 0 with continuous second derivatives 

on SN has the form 31 f. 

(ii) The local saturation class theorem that, for each g(x) in C 

and 0<a<x<b<11, 

• 
Bn(g;x) - g(x) = o(l/n)=_->g = B1  g on ra b7 

(see de Leeuw (1959) and Bajsanski and Bojanic (196k)) is not true for 

B
n; that is, 

B:(f;2s) - f() = o(i/n)--/->f  = B4; f 	on F , 

whenever.  F is a closed subset of SN. Indeed, if gi= g1(x) and g2= g2(y) 

are sone nonlinear -t.'.ice continuously differentiable functions satisfying 

D(g1;x) = g1(x) on 0 ‹a4x4b<1 
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and 

D(g2;y) = -g2(y) on 0 <c .<7‘d <1  , 

then 

f = f(x,y) = gi(x).g2(y) B*1  f 

and yet 

D f = 0 on F = [a,b]x[c,dil . 

- COROLLARY 3.  For f in C2
2] the following statements are equivalent: 

, D f (x) /1 	x ESN ' • 

B: f(a) f(10 

5 f(x) - f(x) - 

+ o(1) , x ESN  ; 

 

  

 

0 

   

PROOF.  (i) 	>(ii). Immediate from (3.12). 

For rC1.11, 

(B:)r  f(z) - f(z) 4r Bn  f(x) - f(x) 14Nrin + o(l/n) , 

and (iii) follows upon taking r = rn  = [ntj , 	n—.. co . 

(iii)(i). Immediate from the fact that D f = lim ( 
t4-0 

f - f)it . 
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3.6.3.  Linear operators commuting with bivariate Bernstein polynomials. 

Let T be a linear operator mapping C[S
4
,1 into itself and commuting 

with Bn 

* 	* 
TBn = BnT . 

Owing to the density of the space of bivariate polynomials in Cp2], it 

suffices to reouire this to hold for polynomials. 

Let feCp21 and (0,) be any of the points (0,0),(0,1),(1,0),(1,1). 

We show first that 

* * * * 
Bl Bn = Bn Bl . 

Indeed, 

Bn B1  f(x,y) = B1 f(x,y) 

c5  
as 1,1 is left invariant under Bn, and 

* * 	, 	* 	* 
B1  Bn  f(x y) = Bn f(0,0)(1-x)(1-y) + Bn f(1,0)x(1-y) + Bn f(0,1)(1-x)y 

* „ + Bn f(l,l)xy 

* „ 
= B1  f(x,y) ' 

, 
since 3n fk0,6 = f(0,0 . 

It is now easily seen that the linear operator 

W=T(I- B1)  

ha-; the Followir7 Drop,ertiez: 

* * 
WB
n 
 = B

n
W (3.13) 



and 

Wf(0,0 = 0 

which imply that W anihilates vi;10.  . Indeed, if ge 4,1, then WE = 

WBng = BnWg, i.e., Wg is left invariant under Bn  and thus 1,1* 

Property (3.14) now implies that Wg = 0 and since g is arbitrary in 

e6 
1,1, 	= 0 1,1 	0. 

Iteration of Bn in (3.13) leads to 

(3.14) 

(4* w 66t  , 

and application of W to both sides of 

Gij 	e / 11 
	

gli 

where gij  = gij(x,y) = ui(x).uj(y) are , for i, j7>.-2, the only common eigen-

functions of ,Igr  corresponding to the eigenvalues exp(-(Y.+i  4 )t) (see 

(3.10) and 3.11)), gives 

—CL4.4.4.)t , 	J ) e 	(Wg..) ij 
whence 

Tz. . . — c. 	. p  '13 	13°13 

for some constants c... Recalling from Subsection 1.3 that 

u.(1-x) = (-1)iu.(x) , 	2 , 1 

we find 

B3(ui;x) = 3ui(1/3)x(1-x)2  + 3ui(2/3)x2(1-x) 

= -3ui(1/3)u2(x) 
	

if i even , 

6ui(1/3)u3(x) , 	if Todd, 

131 



and 

B3 	1 
Wg.

3 	
= c.. B3 u.;x 	().B

3 
 (u.;y) 13   

9gij. .(113,1/3)c.43 22  (x,y) , if i even , j even, lj  

-18gij(1/3,1/3)cijg23(x,y) , if i even , j odd , 

-18g..(1/3,1/3)c..g32  (x,y) , if i odd , j even, ij  

36g..(1/3,1/3)c..g33  (x,y) , if i odd , j odd , ij  

On the other hand 
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W B
* 	y)= 
3'13 ' 

9gij(1/3,1/3)c 22-22 (x,y) , if i even , j even, 

-18gij(1/3.1/3)c23g23(x,y) , if i even , j odd , 

-18g. .(1/3,1/3)c v (x,y) , if i odd , j even, lj 

36gij(1/3,1/3)c33g33(x,y) , if i odd , j odd . 

Use of classical properties of the shifted Jacobi polynomials of parameters 
, 

(1,1), Pn(x), shows that Pn
* 
 (1/3) 	for all n. From this we infer that 

g..(1/3,1/3) 0 for all i and j, and therefore 

 

c22  , if i even, j even, 

c23 , if i even, j odd , 

c32  , if i odd , j even, 

c33  , if i odd , j odd 

C.. = 
13 

 

Let f(x,y) be any polynomial. We may express it in the foci 

f(x,y) = B1  f(x,y) + 	, a.. g..(x,y) ij lj 



Then we have 

T(x,y) = f(x,y) - B1    a1  f(x,y) = 	a.. g. j(x,y) i 

and 

Wf(x,Y) = W5(x,Y) 
11.) 2 

= c22 I00 + c23 Z01 + c3210 + c3311 , 

00' 01' 10' and  X11 standing for the summations over i and j even, 

i even and j odd, i odd and j even, and i and j odd respectively. 

Owing to the symmetry properties of the basic functions g.., these ij 
summations are given by 

00 	'Y  =-)i(x ) i(1-x,y) 4  1(x,1-y) + 1-x,1-y)1 4  

=-W(x,Y) F(1-x,Y) - -E(x,1-y) - f(1-x,1-4 

Z10 =/3-45(x'Y)f(1-x,Y) + F(x,1-y) - 

Zli  =0(x,Y) - i(1-x,Y) - f(x,1-Y) 1(1-x,1-4* 

Therefore, 

Wf(xpY) = C00(1-x)(1-Y) + C01(1-x)y + C10x(1-y) 

f(x y) + 	f(1-x,y) + 	f(x,1-y) 00 ' 	01 	10 	+ '11f(1-x,1-y) 

where C00, 	linear functionals on 	Zr 	TT 	TT ow 01, C10,  11 	 oo, 	EP 
C11  constants depending on Bn . 
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CHAPTER 5 

ADDENDUM 

BERNSTEIN TYPE APPROXIMATION ON C[0,6]  

r 
Let C[t),d denote the subspace of CLO, Go) consisting of continuous 

real-valued functions f on [O,OD) for which ,lim COf(t) exists. 

It is well known that C[9,c01 is a separable Banach space normed 

by 

' = 
	sup 	If(t) 

 0 -Ct<on 

and spanned by le nt
; n=0,1,2,...t. We also note that the transformation 

x = e-t maps C 1 0,coi on C1r  0,1:. 

An approximation process on CD 00] closely related to the Bernstein 

construction is the following. 

In correspondence with a given fE C [0,031 , exhibiting at most polynomial 

growth at 	, 	us consider the following sequence of operators 

k  s
n
(f;x) = e-nx 	 (nx)  f(kin) 

k=0  ( ) 

commonly referred to as the Sz4.sz operators. An analysis paralleling the 

one carried out in 3ection 1.2 of Chapter 1 to express Bn(f;x) in terms 

of finite differences shows that 

1 _3 4 
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Sn(f;x) = exp(nx61/n) f(0) 

nx)k  k (  
k! 

6, 
 1/n f(0) k=0 

a replica of Taylor's expansion except that derivatives are replaced by 

differences. 

The result of SzHsz that 

Sn(f;x)---.1(x) 	as n-4. co 
	(4) 

uniformly in every finite interval 04,x4a (see, e.g., Cheney and Sharma 

(1964)) is an immediate consequence of the so-called first exponential 

formula of semigroup theory (see, e.g., Hille and Phillips (1974, p.302), 

h 1.0 
TtI - exp(tDh  )f = 0, 	Dh =-_- (Th - I)/h , 

  

applied to the semigrou-p iTt; t>„.01 of translations in C P,0:11 , i.e., 

Ttf(x) = f(x+t) = lim exp(tDh)f(x) , h 0 
(5) 

the limit existing uniformly with respect to x in [O,col and with respect 

to t in every finite interval 	In fact, taking h = l/n and x = 0 

it follows from (5) that 

f(t) = lim exp(tn61/ ) f(0) 
n--wco 	in  

and (4) follows from this and (2). 

As we shall see, most of the Bernstein approximation properties pass 

on to the Szrlsz 

a) Sn is again an interpolation operator in the sense that the values 
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of the argument function at a certain finite number of points determine 

the result of operating on that function. 

b) The operator Sn 
is linear and positive as follows at once from 

the definition (1). 

c) That Sn 	 1 maps *7.5u, n;.?..N, onto itself and leaves 675  invariant 

follows immediately from the representation (3). Also, 

n 	;x) = x 2 	2 x 	 (6) 

Regarded as a linear operator in *, the matrix4N±/(n) representing 

Sn when we take for 	the basis .{x1N  may be obtained as follows. 
k=0 

c, 	• 

S (t3;x) = 	24-61  t3 	x
i 

i=c 	lin t=0 

= 	a.. n1-j xi 

i=0 13  

aii  

i- 1 	 X. - 

showing that 

04
N+1

(n) = AN-F.1(n) AN+l(n)  , 
	 (7) 

where AN+l(n) = 	045-4j..N4n, is the (N-1-1)x(N-F1) matrix 

representation of Br  acting on .1. and AN4a(n) = diag(X.), i=0(1)N, 

with X. = a.. . 1 	11 

Being the product of two TP matrices, 

d) L,4N+1(n) is TP and therefore Sn is variation diminishing. As 

a result, all those shape preserving properties we have studied for the 



Bernstein polynomials carry over to the Szgsz operators. 

We now take up the task of iterating Sn  proceeding in much the same 

way as when dealing with Bn. Since, by Lemma 4.1 a) of Chapter 3, 

AN1(n) I + — nN+1', C 	0(1/n2) , 

(7) gives 

N1(n) = A-N+1 (n) + 	V-1  ( ) 	0 (1/n2) 1 	n  ' N41  n, C11+1  + 

and 
1 
1N11 lim n(v4N+1(n) - I) 	AN +1(n) n( A-+  (n) - I) + lim A-  (n) CN+1  (8) +  

= 	 CN+l 
	j=0(1)N , 	(9) 

0 0 

o p2  

‘`, 

o 0 

	

Let irn} be a sequence of nonnegative reals such that rn 	as 

Let (sik(t)), 04i4,,k‹,N, be the matrix representing the limiting 

operator 
r 

AY: = lim S 
n 
n n—'-co 

acting on N. Clearly, 

r 	-r 
lim ,4  1  (n) = lim A 11+1 	• 

n(n) 	lim A 11+  n1  (n) :1+  n 	n --co 

lit tCN+l 
alas(I).e  

=  i=0(1)N 
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giving the following explicit representation for the entries of the 

limiting matrix 

s = 	 ik(t)  
" 

i  i, j,k e  

with 	,j,k  given by (4.4) of Chapter 3. 

An analysis paralleling the one carried out for the semigroup ij8t;t>01 

shows the existence of a totally positive semigroup IRA; t;01 of class 

(C0) on CF?,4given by 

[ll] 
,f= lim Sn f 

n 

and generated by the linear differential operator 1 x  d2  /dx2  with domain 

C2 [0, 	. 

As a last application of the iteration method we give the saturation 

theory for the Sza:sz operators. 

THEOREM. Let f(=C[0,00.] exhibit at most polynomial growth at then 

the following statements are equivalent: 

(i)  

(ii)  

(iii)  

f ELip N1  

Sn(f ;x) - 

kil.,(f;x)  

,co) 	; 

f(x) 

f(x)Il  

< ---, , 

t 

nil, 

, t>o , 

; 

x .,>0 

2n 

2 

Moreover, 

_ j•f;xi 	= 0(::/n ) 	 C 	- S 	- 
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PROOF. That (i)==>(ii) follows immediately from the inequality 

f(x) - f(Y) - f(x)(x-Y)1 	2 (x-Y)2  N,  

the positivity of Sn, and (6). 

That (ii)) (iii) is an immediate consequence of the positivity 

of Sn and of the invariance of x under Sn. Indeed, since 

then 

S-(f;x) 	f(x) = 
k-1 . 

SJ(S f-f;x) , 
j=0  n n 

	 s3( 5 f_fl. 	Mk 
7 	/1'1  n I

SIrci(f;x) - f(x) 

 

  

   

and (iii) follows upon taking k = 	n---.no. 

Finally, we show that (iii) 	> (i) by showing that it is true on 

every closed interval 	C Doan). This follows upon letting 04.a<ic,_<ja 

<co , defining 

1 	cgt  r 	- 
I) 	

f(s) 
et(x) = 	 ds 

and following the lines of the argument used in the proof that (iii)==*(i) 

in Theorem 3.2 in Micchelli (1973). 

The last assertion follows at once from the equivalence of (i) and (ii). 
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