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_ABSTRACT _

Our main purpose in this thesis is to study the properties of the
limiting semigroup of the iterates of the Bernstein polynomials as well

as to give some applications.

Chapter 1 reviews some well-known results on the Bernstein approximation
theory: connection with the translation semigroup, smoothing effects,
variation dininishing propeéties, etc.; gives some apparently new
interpretations of less well-known results, namz2ly, the recursive
calculation of the Bernstein polynomial and its erivatives; ani extenis
the Bernstein construction to the épproximation of continuous, nulti-

variatz, real-valuasd and vector-valued functions.

Chapter 2 offers a new approach to the nunerical condensation of
a given multivariate polynomial P as a natural extension of Lanczos’
telescoping tachninue; gives sufficient conditions for the existence of
condensed forms of P, and an algorithm for their step by step computation;
andlizs thes2 considerations to EZsrnstein~Zz:l:sr approrimants, and gives
several examples on the shape approximation problem in one and two

dimensions.

In Chapter 3 the Bernstein operator is rega:-ded as a linear
transformation onto the space of algebraic polynonials with real coefficients

and degree at most n, and the propsrties of its iterates of nonnegative



order are studied from a fairly elementary matrix analysis standpoint.
These iterates are shown to be contractive, variation diminishing,
convexity preserving, and converzent to a limiting operator which is

explicitly given and shown to be totally positive.

.

Chapter 4 re-interprets the limiting results of Chapter 3 in the
context of the operator semigroup theory as an alternative zpproach to
Karlin~Ziegler's identification and representation of the limiting semi-
group of Bernstein iterates of nonnegative order. YWe give here some new

applications of this semigroup, namely, the approximation propertiss of

two new operators of de Leeuw’s and Micchelli’s type and the characterization

of the linear operators commuting with the bivariate Bernstein polynomials.

Finally, Chapter 5 parallels, for the Szdsz operators, the analysis
carried out in Chapiters 1, 3, and &4 for the Bernstein polynomials. Ye
show that they are totally positive and give their saturation theory as

another application cof the operator semigroup method.
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SYMBOLS AND NQTATION

SYMBOL MEANTING

e is, belongs to

p— implies

— iff, if and only if

—_—— aporoaches

l approaches frém above

T approaches from below

[ ] largsst integer <
N natural numbers
R real numbers

RN N-dimensional Zuclidean space
C C[O,l_] ,» continuous on that range

continuous with derivatives of order ¢ n

identity operator

algebraic polynomials with real coefficients

multivariate algebraic polynomials with real coefficients

I
Z? ) algzbraic polynomials with real coefficients and degree ¢ n
Nyye..,n

' and degree n. in the variable x,, i = 1(1)N
P totally positive

STP strictly TP

ANTP triangular and TP

ASTP triangular and STP



INTRODUCTION

Ever since S. N. Bernstein introduced in 1912 his celebrated
polynomials to give a constructive proof of the VWeierstrass uniform
avproximation theorem, they have been the starting point of many
investigations.

The fascinating approximation properties of the Bernstein polynomials
and the fundamental works of S. Xarlin on total positivity, of G. Lorentz
and C. Micchelli on the Bernstein saturation problem, of I. Schoenberg
on variation diminishirg approxi~ztion methods, and, above all, the
pioneer work of R. Kelisky and T. Rivlin on the iterates of the Bernstein

polynomials have had a decisive influence on this thesis.

Chapter 1 deals on the whole with properties and applications of the
Bernstein approximation to continuous, real-valued and vector-valued
functions.

The trivial observation that the Bernstein polynomial an of a given
f in C can be written as the product of n averazings or n forward linear

shiftings (see Lemma 1,1) leads immediately to:

(1) The well-known conventional polynomial form of an and its

interpolation properties (Section 1).

(3

(ii) The recursive calculation of an and its derivatives Bn

(Sections 1 and 4).



(3 ey
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(iii) The uniform convergence results that 2

j=0,1,... as n—»o (Section 2).

(iv) An immediate extension of the foregoirz resulits to the Ni-

dimensional Eernstein polynomials (Section 3).

(v) An elsmentary and straightforward consiruction 5% thz Bernstein
approximation theory: Smoothing effects, variation diminishing properties,

etc. (Section 4).

(vi) An easy extension to cover the Beézier mathods, namely, the
. - . . . . - .
recursive construction of Bezier curves and their derivatives, variation

diminishing properties, Bézier iterates, etc. (Section 5).

Apparently, Lemma 1.1 does not appear published anywhsre in the vast
literature on Zsrnstein polynomials. Its main inizrest lies in the ease
with which the semiclassical Bernstein approximation theory is generalized

to the muliivariate and parametric cases.

There is no new material in Section 2, which connects an with the

translation semigroup in C[p,aﬂ .

1)

In 3zction 2, the recursivs generation of multivarizte Bernstein

polynomizls and their convex hull and interpolation properties are

-, AT
~~ al /v

~ -
i

esenfaell {1

M

ezs2ntially coantzinzd in Gordon and R

Since derivatives of Bernstein polynomials are also Rernstein
polynomials {of another function!), then their recursive calculation
and geometric representation, which Section & deals with, may also be

~

211y contained in Gordon and Riesenfeld (1974 a) ).

e

seen a5 sssent

(O]

The recursive construction of the matrix AN+7(H) reoresenting Bn
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acting on 5% and the observation that, thanks to the smoothing effects
of Bn’ any interpolating sequences at equidistant nodes can always be made

uniformly convergent appear to be new.

The recursive construction of Bezier curves and surfaces, their convex
hull and interpolation properties, the recursive calculation and geometric
representation of derivatives of Bézier polynomials, which are dealt with
in Section 5, are all, once again, essentially contained in Gordon and
Riesenfeld (1974 a), b) ).

Finally, following G.-Bonne znd Sablonniere (1976), we extend to the
Bézier operator the variation diminishing properties of the Bernstein

polynomial, which are due to Polya and Schoenbers (1958).

In Chapter 2 we offer a new approach to the numerical problem of

condensing (telesconing} a given multivariate polynomial P = P(XI'XZ""'XN)

defined on the unit hypercube of R,, leading to a considerable simplification

i’
of the work required to perform it.(cf. E. Ortiz (1977) and E. Ortiz and
M. da Silva (1978)). In particular, we try to avoid polynomial basis
transformations, and practical apriori tests for the existence of a

condensed representation of P aprear naturally as immediate extensions

of the univariate case.

Section 1 offers a new algorithm for step by step computation of a

condensed representation of a given Pg -93

Section 2 extends this algorithm to Péja (the linear
Il,IZ,...,IN

stace of miltivariate polynomialz with real coefficients and dszree I,
. k

in Xy k = 1(1)5); uses the numtsrs S of condensation steps to measure
M Fs .
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the smoothness of P in the xk-directions, and to define the principal
variables of P; and deals with the problem of approximating a given

multivariate polynomial by another polynomial of fewer variables.

Section 3 applies the above considerations to Bernstein-Bézier
approximants and gives several numerical examples on the shape approximation

problem in one and two dimensions.

The greater part of the material of Chapter 3 is seemingly new. It
has been largely inspired by Kelisky and Rivlin (1967), who were the first
to study the convergence of the iterates of Bernstein polynomials Bi(f;x)
as r—»co, both in the casé that r is independent of n and, for polynomial
f, when r is a function of n. They have treated only these convergence
srovlems, 12aving, therefore, scopes for more work, namaly on properties
and applicztions. We deduce here the properties of the Bernstein iterates

of all orders using only elementarv matrix methods.e show that the operators

r . e . e e v . .
Bn y * >0, are contractive, variation diminishing, norm not increasing,

and convergant to a limiting operator, which, in each of the following

cases:
1) n fixed, r—» oo
ii T —— r —s te R, fixed, as n——mindependently of n
(owiN] m 5
iii) r = r —*co,

is explicitly given and shown to be totally positive.

Section 1 puts the Bernstein gensralized iteration problem in the

Tirad £ L2 - JOR, TR i PR +
24 TUTrCLLoNs. AXol LIOTY 1Lueraes are

Lde

mnedizte
extensions of those of natural order, and these are simply reduced to

matrix multiplications.
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Section 2 offers the apparently new results that the matrix

representation of Bn acting on and the triangle of Stirling numbers

of the second kind are both totally positive.

Section 3 deals with the positivity of Bi » >0, and shows that
its matrix representation is column-stochastic for all sufficiently large

r (Theorem 3.1).

Section 4 gives a neater and richer theory of the limiting behaviour
of Bfl , ¥>0, than that in Kelisky and Rivlin (1967). In particular,
Theorem 4.1 throws light into the structural limiting properties of the
matrix representation of Bi , >0, and Theorem 4.2 enlarges and gives

more insight into the meaning of certain seemingly nontrivial identities

first observed by those authors.

Finally, we discuss in Section 5 the convexity preservirz properties
of the arbitrary Bernstein iterates. Ve show that B; is convexity preserving
for each real r and that Bi is convexity preserving or nearly so for all

r>0 and n>2.

Sections 1 and 2 of Chapter 4 are essentially of conceptuai value,
We offer an alternative approach to Karlin and Ziegler (1970)'s identifi-
cation and representation of the limiting semigroup{JBt; t>0} of the
Bernstein iterates of nonnégative order. Our approach does not rely on
diffusion theory arguments as Karlin and Ziegler's but re-interprets the

limiting theory of Chapter 3 in the context of the operator sem’group

straightforward fashion, and some extensions are shown possible with our

approach.
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The existence of the limit

nt .
53+ 2(x) = 1im B "2(x) , Pe

n—o

Kn ,

T L
1

—

its total vositivity and semigroup properties, and the infinitesimal

generator

D2(x) = im (3, - I) 2(x) = 4 x(1~x) a%pfax®

N~—» O

all follow from the limiting theory of Chapter 3.

To extend ‘ét to C we defins U(t,x) =«9t(f;x), are naturally led

to the classical diffusion problem

I

Bt =DwW, uW=ultx),

7(C,x) = 7(x) ,
and we find for .3, (f;x) the intezral representation

1
Bz = [ olemy) £) ay ( £(0)=£(1)-0 )

0

with the kernel G expressed in terms of the shifted Jacobi orthogonal
polynomials of caramaters (1,1).

A fundamental property of G is its total positivity, which implies
that Jat inherits from Bn its shape preserving prorverties. This appears
to be new, though essentially contained in Karlin and McGregor (1960)

and Butzer and Izszel (1971).

Section 3 reviews some known applications of Jét’ namely, the Lorentz-
Micchelli’s treatment of the Bernstein saturation problem, the Xarlin-
Ziegler-Micchelli’s characterizations of convexity, and the Karlin-Ziegler's
identification of thz linear opsrators commuting with Bn’ and offers some

new applications of J3,, these are:
(W



1%

i) The saturation theory for the de Lesuw-like operators
n

*
¥ o - _p
I{nI %;;Ink(*) 9y

*
where lnk(f) are sone linear functionals on f and {qk}p is the Bernstein
k=0

basis for jg. We show that K&hé]f-——-JBtf strongly for all f in C, and

that Kn and Bn have exactly ths same saturation properties.

ii) The approximation properties of a new Micchelli's type operator
which takes into account the spectral characteristics of Bn and leaves

j? intact.

iii) The generalization of cur construction to the multivariate setting
to receive a number of results as natural extensions of the univariate
case, £.5., the identification of the linear operators commuting with

the bivariate Bernstein polynomizals.

Lastly, an example of the applicability of our technique is afforded
by the Szdsz operators. We show in Chapter 5 their total positivity by
working on the lines set out in Chapters 1, 3, and 4. Their saturation
prorerties are also ziven as an application of the iteration method,
reproducing, however, results already given by Suzuki (1967) by a different

mathod.
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_CHAPTER 1

BERNSTEIN APPROXIDMATION TO CONTINUQUS, REAL-VALUED, AND VECTOR=-

VALUZD FUNCTTONS

1. BERNSTETN APPROXIMATION TO REAL-VALUED FUNCTIONS

The nth degree Bernstein polynomial zpproximation to a real £(x)

defined on :0,1} is given by

B (£x) = St ME@=0™% ,  as1, (1.1)
n‘"’ <"k ‘k ’ Z )

an (x) -

ko

Bof(x) =T
where f, = f(kx/a), ¥x=0(1)n. The polynomials
= _ (ny k n-k
q, = g (n,x) = (Dx(1-=)"" ,  k=0(1)n, (1.2)

form the Bernstein basis for 5;)1 and are well-known to enjoy the following

properties:
a) 0, >0, k=0(1)n ,
-—rl.—\
b) Lok T L (1.3)
n
k =
c) Z 79 =% -



16

1.1. The convex hull propsrty.

Owing to the properties (1.3), the graph of B f develops within the

convex hull of the points {(k/h,fk)} . To be more precise, regarding

n
k=0
the basic polynomials 9, as masses attached to the points (k/h,fk), the
center of mass of those mass points describes the graph of B f as x

n

traverses [O,l] .

This elegant interpretation of the Bernstein construction is due

to Gordon and Riesenfeld (1974 a)).

1.2. Recursive zznerotion.

Making use of thes fundamental operator in Finite Difference Calculus,

namely, the forward shifting operator E defined from

BEf =f

k k1 ! k=0,1,... ,

and the forward difference operator A given by
Af, =f ., - T, =(B~-D)f , k=0,1,...,

k k+l

1
we may replace in (1.1) f, with Eﬁfo to obtain

IEMMA 1.1. The Bernstein approximation to any given real-valued

function £ taking on the values fk at the nodes k/h,

%=0(1)n, is givan by

a) Bn(f;x) = ((1~x)1 + xE)nfO



b) B (fix) = (I + xao“fo .
From a), Bn is thes product of n averagings:

B f, = (1-x)fk + xf k=0(1)n~1 ;

k+l *

while b) shows that Bn is the product of n forward linear shiftings:

B f, =*f

T = Ty ¥ x(f

k+1 fk) ’ k=0(1)n-1 .
Clearly,

_ ot

As immediate consequences of Lemma 1.1 we have

17

(1.4)

(1.5)

(1.6)

i) a numerical procedures for the recursive generation of Bn(f;x).

(1.7)

Indeed, given thea table {k/n,fk}n s We construct the numerical triangle
k=0

fO

(1)

o

(2)

fl ( fO

1) . . ‘

f1 . .
fz . .
ce - (n)
. Y : 'fo
fn'-z ’ . *

a -

fn-z ° .

(2)

fn‘l 1) fn-Z

1

fn—l
f
n

with column entries ng) given by
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fgj) =Bxf§j-l) . 3=(1)n ; i=0(1)n-j ,

(1.8)
L0 _ . |
i i , i=0(1)n ,
and whose vertex f(()n) is Bn(f;x) by (1.8) and (1.6);
ii)  the conventional polynomial form
Lony k. .k
B (fix) = > (2) &ty x (1.9)
k=0
which in turn implies that if £ \73 then an € jr’n)in{m,n} ;
1ii) since By = I and B = E, then
B (f;0) = £, = £(0)
(1.10)
=3 n = =
Bn(f,l) Bty =1, £(1) ,

the well-known result that an interpolates to f at the endpoints of

[0,1] .
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2. THE BERNSTEIN UNTFORM APPROXIMATION THEOREM AND THE TRANSLATION

SEMIGROUP

Let X be a Banach space endowed with norm [|.|| and let g- {Tt : t;;o}
be a one-parameter family of linear bounded transformations on X to itself

with the property

Toyp =TT+ Spt30 .

We then speak of -Srés an operator semigroup.

THEOREM 2.1 (Kendall). If I is continuous in the strong operator

topology for t>0, then

lim
n—s

((1-t)1 + tTl/n)nf -7 f}}= 0 (2.1)

t

for each f in X and each t in [0,1] , unifornly in t.

PROOF. See D.G. Kendall (1954).

i =  sup |f(x)l,
0xgw

and let 57(denote the semigroup of translations in C[p,ai]:

th(x) = f(x+t) .
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In this case, (2.1) shows that, for 0Lt«1,

ert) =l 3o (1) Q- £ X (2.2)
n—o k=0

where the limit exists uniformly with respect to x in [p,ai] and t in
[p,i]. In particular, for x = 0, (2.2) gives
lim Bn(f;t) =f(t), ogt£1, (2.3)
n—

the well~known Esrmstein uniform approximation thesorem.

REMARK 1.1. For each fixed but arbitrary integer j>0, it follows

from Lemma 1.1 b) that

B§j) (£5x) = Xj(néxl/n)j(f * Xlll/h)n-j £(0)

with

and

>
[

(1- %)(1-%)...(1— A';Ll) =1-0(1/n) .

We recall that né}l/n = d/dx + O(1/n) and observe that le/n“éll/ﬁ i

N = n=j, in the sense that their effects on f, assumed differentiable

in (0,1), have the same limit as n—co . Indead,
(AI/N - Al/n)f(x} = £(x + 1/N) = £(x + 1/n)
= £(x + 1/n + j/(aN)) - £(x + 1/n)

./
=L £(y) , x+1/ndydx +1/n,
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Therefore,

-3 N
(r + xAl/n)n Je(0)~(T + xAl/N)1 £(0) = By(£3x) —£(x) ,
and we have the well~known result that

Br(lj) (£3%) f(J)(x) as n—»m,

(cf. Lorentz (1953, p.12)) at each point XC[O,J_] where f(J)(x) exists,

the convergence teing uniform providad f(J) is continuous.
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3. BERNSTEIN APPROXIMATION TO CONTINUOQUS,MULTIVARIATE FUNCTIONS

The results in the precedinz sections afford a straightforward
generaliization to continuous functions of more than one variable. Let
fCC[SZ] 'y S, = {(x,y)C!HZ : 0<x,y<1}, be given. Then Bn'mf(x,y) =
Bn’m(f;x,y), the Bernstein polynomial of nth degree in x and mth degree
in y associated with f(x,y), may be obtained by appljring twice the well-
known univariate Bernstein polynomial approximation formula. Regarding,
for the moment, x as a parameter and y as the operational variable,
we have

£0ay) = B (xy) = 8] £(x,0) ,

m

with

&
]

I+y'Ak, k=1/n,

(1-y)I + y=,

The same approximation formula, applied this time to the variable x,

gives
£(x,0) = B £(x,C) = csz £(0,0) ,
with
fo=I+xAh, h=1/n,
= (1~x)I + XE, -

Thus we have

F(x,y) =~ Bn’mf(x,y) = rs? [B)r: £(0,0) .

Had we started with y as a parameter and x as the operational variable,
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we would have ended up with

£(x,y) = Bn’mf(x,y) = ta;’ BI; £(0,0) .
Therefore

. omil ot N R
Bn,mf(x,y) =B, By £(0,0) [By B, £(0,0) , (3.1)

and we conclude that the bivariate Bernstein operator Bn m 1S simply the
,
product of thz commutative univariate operators Bn and Bm (cf. Gordon

and Riessnfeld (1974 a))).

In order to extend this to higher dimensions we associate with each
£ in C[Sl\;‘ , 3, the unit hypercube of Ry, N1, the N-dinensional Bernstein

polynomial of degree o, in X5 1=1(1)N,

T oelyY = coaay) = 7 oLq . .
B,f() = B(fi8yx) ﬁnl,nz,...,nN(I’SN'XI’XZ"""‘N)
N ni
= I [ [BX f(.Q.) ’ (3-2)
i=1 i
where
By, ~I+x A (3.3)
1 ki .
with "

o 1
é&f(i) = ‘(Xl”"’xi—l’xiT'ﬁ'xi+1""’xN) - f(xl,...,xi,...,xN) ,

or, equivalentlyv,

B, = (1—x.1)1 +x; B (3.4)
i i
with
- 1
E f(z) = f(xl,...,xi_l,xi+-a-,xi+1,...,xN) .

1
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n
N n.
Bf(x)= 1L { 5 (jl) x. T A" f(O)}
o i=1 Ui =0 Y1 i
L
n n . .
1 B n J J J
N 1 N 1 N
- 5 2AGH D AL AT 2@y (329)
Jl= Iy 1 1 N . :
generalizsng (1.9) and implying that if
. . .\ Tas Toy sasy T
. by i, 1, 1y 1 2 N
Cuz—span X1 0 Xo 'y sevr Xy 0 -

1, o, 12=O, ceey iN=O

then Bgfcy;, m standing for min{nl,rl}, min{nz,rz}, cen y min{nN.rN}.

Similarly, using (3.2) and (3.4), we obtain

N - ns n.-Jj.
) = TL{ 20 ()
~ i=1 1

n . .

N n. n.~j. jl Ja
==yerer T {]—[(Jl) (1—xi) 1 l}x
0 30 1 i=1 Yi

x e
N 1 N
(3.6)
n n . h
1 N J J
Z Z 1 N
= s a0 f(——', LI ] ’_) q. (n ’x ).--q. (n ,x )
— — n n J-v 171 Juw NN
JI—O I 1 N 1 N
(3.7)
extending (1.1).

REMARK 3.1. Gordon’s mechanical interpretation of the univariate

Bernstein polynomial (see Subsection 1.1) affords an

easy extension to the multivariate setting. Indeed, setting

N
My = ;;E qik(nk[xk)
and
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i i
1 N
f, = f( n_l, = e » n“')

Jra

then, in view of the easily verified properties

I'Ii>O , ZML =1,

iy
Z—;;z-ii =%, kLN,

Zfi M_j__ = Bﬂf(.)ﬁ) ]

th . i = ay J = 3 = L.
e summations beinz assumed over iy O(l)nl, 12—O(l)n2, cee 1Nf0(l)nN,
the center of mass of the points (il/hl, ces iN Ny fi) with masses

M, describes the graph of Bﬁf(;) as X runs over Sy.

REMARK 1ty N

can be gensratad recursively by means of N triangular

.2. Being the product of n,+ n,+ ... + n, averagings, an(z)

=

schemes similar to (1.7).

By way of example, we take N = 2 and construct Bn mf(x,y). Two
?

numerical triangles have to be formed. The first,

f(ooY)
f(l)(O,y)
f( %al’) . ]
: : o 2(")(0,y)
f( En—le) ':
ASUE:=RY
f(l’.Y)

with column entries f(J>(—%3y) given by
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£ Ly =p DLy, a0,

0), i i .
£ Wiy =2ty , 0@,
having the vertex

p(x,y) = £M(0,y) = B, £(0,y) = B £(x,¥)

and the second,

P(x,0)
p¢1)(x,0)
P(x, =) o
: 2(")(x,0) ,
P(x, l%%l : .
p(D(y, Eﬁl)
P(x,1)

with

P(j)(x,—%) = ByP(j-l)(x’i%) ,  3=1(1)m ; 1=0(1)m-j ,

i

P00, ) - pe D), i-0(n

and

P(m)(x,o) = Bn’mf(x,y) .

REMARK 3.3. The N-dimensional Bernstein polynomial an(z) interpolates

to £ at the vexrtices of SN'

Taking again N = 2, we now have, from (3.1) and in correspondence

>
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with the interpolation results (1.10):

Bn,mf(0,0) = £(0,0)

n \
Bn'mf(l,o) = E £(0,0) = £(1,0)
0o
Bn,mf(o,l) = E. £(0,0) = £(0,1)
R o RN 1
Bn'mf(l,l) = By Ep £(0,0) = £(1,1) ,

i.e., Bn mf interpolates to £ at the four corners of SZ’ Moreover,

B _f(x,0) = mg £(0,0) = B_£(x,0)

n,n

Bn’mf(x,1)_= nﬁ Ei £(0,0) = Bi £(0,1) = B_£(x,1)
B, of(0ny) = B £(0,0) = B,£(0,y)

Bn’mf(l,y) = a? Eg £(0,0) = B? £(1,0) = B £(1,y) ,

i.e., the bivariate Bernstein polynomial approximation to £(%,y) raduces
to the appropriate univariate oné on each side of S2 (cf. Gordon and

Riesenfeld (1974 a))).

REIMARK 3.%4. Since Bn(f;SH;z) can be factored into N univariate Bernstein
polynomials, each of which converging uniformly in the

unit intexszl, then
Bg(f;SN;z)——*f(z) as p—r,
i.e., as n,—=co for i=1(1)N, uniformly in x in Sy

REMARK 3.5. The operators Bn(f;SN;g) are a particular case of the

following linear positive operators Ln(f;KNgg) introduced



by Schurer (19563) for the approximation of multivariate functions,
continuous on ths region KN of the first hyperquadrant of RN:

+
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-

. . GaFenot i
© @ 3y Iy (-1)"t NG Iy Jy
L (£:K5x) = >, .o D () . . ¢ %", ..x
n Ky j1= 2 ny ny Jpte--dyt 0 1 N
(3.8)
» f(x) as n—so uniformly in x in Ky s
where
Jite. ot 5,
. > 1 H
D) =2 ()
Bxl ...axN
and ¢n(_)g), called the generatinz function, is such that
o
a) B lec (1) ,
b) ﬁn(_o) =1,
Jyteeet 3y (s
C) (-1) H ¢I(Il)(2<‘)>0 ’ jls-O-th =0,1,... ; K_EKN ’
Wiy = o g%
4) A& =n g "1+ ani(z) b
where j - e; stands for jl’ ceo 9 ji~1’ ji -1, ji+1' cos ,jN and, for
i = 1(1)N, a, (x) —= 0 uniformly in x in K. if n. » .
i
If we take

N n.
¢p_(.>s.) = ;[;I::L(l-xi) T xeKy s

then
i

L j? n
)y . . |

Jll .eo JNE J &(j
1.__'

KD - (0™

1

i.e.,

B (1) F L,
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j ...+t ]

]T( ) () L E - ut ¢<.1>< ),

71 J3 Jl....JN

ard thus (3.6) is included in (3.8), i.e., the N-dimensional Bernstein

polynomial operators Bn are a particular instance of Schurer's Ln.

In the sequel we take, for simplicity, n, =m, i= l(l)N, and write

B:(f;zc_) = B (£355x)
S B g O e 09
by (3.5),
D il J“ ) oy (mx)eegy (mxy)  (3.10)
310 30
by (37).

N-dinsensional Bernstein polynomials may also b2 assoclated with

multivariats functions f(g) defined on other domains of BN’ €.8.,

= = O -+ -+ <.< -
Ty {g &1’%y ”.,§QCRN.xi2Q:ﬁ_xz.“+xNél,l~1~N}.

e e oy - - ’
<n ny ’nN 1....1 (n —ee lN)'

s >
1,2 (3.11)

11 L. n"'Ll"..-"lN

...XN (1-X1-...-XN) .

See Lorentz (1953, p.51) and Schurer (1962,1963). See also Stancu (1960

a), b)) for probabilistic interpretations of these generalized Bernstein
polynomials. See also Stancu (1963 a)) for a particularly nice approach

to defining bivariataz Bernstein polynomials on domains given by the

equations
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C

x=0,x=1, y~= ul(x), and y = uz(x) R
where u, and u

1 , are polynomials such that Oéul(x)éuz(x) for 0<x <1

leading to the problem of rational Bernstein type approximation.

L, SMOOTHING PROPERTIES OF THE BERNSTEIN OPERATOR

L.1. Derivatives of Bernstein polvnomials.

ixzad but arbitrary integer j>0 and any given £(x) defin=d

on [O,l] , 1t follows from lLemma 1.1 that

309 (£1x) = 2552001 + x8)™ e

‘C;E*)—‘ S‘) (n J)_\Jf X (l—x)n- 3=k , (4.1)

from which

o] B (Flix) »  3=0(1)n
n=71..

n!

ng)(f;x) _ (&.2)

y  J>n,

FY being such that

ek y_ Al - _s
F(n_j) AL, k=0(1)n-j>0 ,

(&4.3)
#(m)(0) = A", .

RZMARK L.1. Noting (4.2), the Jt derivative of the n°> degree

Bernstein polynomial of f is, apart from the coefficient



(n-3)1/n!, the (n—-j)th degree Bernstein polynomial of the fumction F9
derived from f according to (4.3). In view of this, not only B f but all
its derivatives as well afford a recursive generation and an easy geometric

construction, For details see Remark 5.2 below.

The following assertiéns ars easily seen to follow from (4.1):

ng)(f;o) =‘(H%)’!Ajfo |
(1) =0(1)n . (4.4)

(3)(p.7) = Bl AJ
P ) T T A e

Incidentally, (1.9) follows also at once from (4.4) and Taylor’s expansion

of Bn(f;x) about O

n ng)(f;O) 3 D, 0o A 3
Bn(f;x) = %;%————Tﬁ——~ xY = g;; (j)ﬁkfo xY .

(i1) Bn preserves most of the global characteristics of f, namely,
positivity, monotonicity, convexity, etc. (see Pdlya and Schoenberg (1958)

and Schoenberg (1959)).

(iii) If f is absolutely monotonic in [0,1], i.e.,

f(j)(x)ZO y  J=0,1,... ; 0£x<£1 , ‘ (4.5)

then, from (4.1), so is B _f. In narticnlar, for anwy inkezer j=0, the
] 1 n = ? ‘- k=] ]

monomial xY satisfies (4.5) and thus

. J .
J. = 1
Bn(t ix) ELO 255 X

vhere

=ay5(m) = (D) J—l/ntj' 20 (4.6)

2. .
+ =0



0 s 123
a,. = (&.7)
1J 3=3 g
ﬁn o535 0 0£igisn,
with
A = (?)i!/ni y i=0(1)n , (4.8)
Uﬂf". = 1 s
and
0 v 12>
o = (&.9)

1 4 (<1)i(E) .
= -1y (L) k0, igi=,2,...
11 k%b k =

The numbers aij ars called Stirlinz numbers of the second kind.They are

nonnegative (see (#.6)-(4.8)) and satisfy the following recurrence relation
= + i . .
% 541 oi-l,j io, (4.10)

The upprer triangular matrices

1 0

AN=(aij) » 113N <n, and Ay, = o a | (4.11)

N
given by (4.7) will play an important role in the sequel. It follows from
(4.7), (4.8) and {4.10) that the aij’s may also be generated recursively:

25,54 Tmey A Ay (4.12)

This, in turn, implies that the column sums of the matrices (4.11) are
all equal to 1, which is also a trivial consequence of the fact that

Bn(xJ;l) = 1. AN and AN+1 are said to be column-stochastic in the sense

()

A - PR S P aem 1 3 - 4
COZT TNTLY CoLumn S0m7Tlad A2 4. nonn2zative and sun to 1.



33

.2, Variation diminishinz properties.

Let v(f) denote the number (finite or infinite) of sign changes

of £(x) as x traverses [0,1], then, from (4.1),

v(3r) L v({f }) () (4.13)
v(B5) ¢ v({af}) <v(§)  (ir red?) (b1t)
v(87) vl {£5}) < (D) (if 2€c?) (4.15)

describing, respectively, the so=-called sign, monotonicityf and convexity
variation diminishing properties of the Bernstein construction (see Pdlya
and Schoenberg (1958) and Schosnbers (1959)) - the grash of an cannot
have more zeros, maxima and minima, and pcints of inflexion than the
corresponding numbers for the graph of £ - and giving a good deal of
information on the relative location and shape of the graphs of f and
an .

A more general description of the sign variation diminishing property

(4.13), also contained in the references given above, is as follows.

let L denote any given straight line with equation y = ax + b, and

v, (f) the number (finite or infinite) of intersections of f with IL, i.e.,

VL(f) = v(f(x) - ax-b) . o (4.16)

Then

v (BF) L v f) (4.17)



St1ll another important smoothing effect of Bn is that, contrary
to the commonly used interpolation and minimum norm approximation methods,

Bn is a contraction operator on the space of continuous functions of

bounded variation, as observed by Gordon and Riesenfeld (1974 a)), in

the sense that
V(an) L),

where V(f) denotes the total variation of f over [0,1], the equality

holding iff f is monotonic thexre (see Schoenberg (1959) and Karlin (1968)).

We end this Subsection with the well-known observation that an
possesses all the nice shape preserving properties referred to above at
the expense of having a notoriocusly slow rate of converzence (i.e. like

1/n) and the following

RAMARK 4.2. Being B (fix), fGC[SN], the product of N univariate
Bernstein polynomials (see (3.2)), then the foregoing
Schoenberg’s results concerning the variation diminishing properties of

Bn carry over into higher dimensions.
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4. 3. Polynomial internolation at scuidistant nodes.

Lagranzge's Zk and Bernstein’s 9y basic polynomials for interpolation
of a given T in C assuming the values f, at the nodes k/n, k = 0(1)n,

are related by
Bn(ﬁk;x) = qk(n’x) ’ k = 0(1)11 ’

from which it follows,.on multiplying both sides by fk and summing over

k = 0(1)n,, that
Bn(Lnf;x) = Bn(f;x) .

t is a well-known fact that L f = E fkﬁk does not converge

n
k=0
uniformly to f for every £ in C. However, the exceedingly good behaviour

of an near the endpoints of [0,1] compensates the bad behaviour of Lnf

in such a way that

B (L f;x)——*f(:{) as n———=w

uniformly in O<x<g1 for all £ in C. Thanks to these smoothing effects
of Bn’ every interpolaiing sequence at equidistant nodes can always be

made uniformly convergent.
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5. BIRNSTEIN APPROYTMATION TO VACTOR-VALUED FUNCTIONS

5.1. Vector-valued Bernstein polvnomials.

h

DEFINITION 5.1 (Gordon = Riesenfeld). The nt degree vector-valued

(parametric) Bernstein polynomial approximation to

a given continuous vector-valued (parametric) function

Fe0,l]—m , F(s) = (xl(s),...,xp(s))T , 0&s<1, p>l

(5.1)
is given, for n}»0, by
(,g
._'30?(5) = F(C)
('{ §n—1 k . .
VIO F(s) = 2 F(=-) qi(n,s) , nzl, the q's as in (1.2), (5.2)
k
R By ¥y i)
= , . qk(n’s) = . - (5'3)
Ir=0 . B .
= k . .
Xp(_ﬁf) Bn(xp’x>

For »p=l1 J%i = Bp. Ve take, therefore, p>1, the cases of principal

practical interest being those of p=2 and p=3.

REMARK 5.1. If we take the forward shifting operators E and A to

mean here that

-F,, i=0,1,2,...,

oA
!
n

B (Fis) = (=)T+sB)" F, , F_=F(k/), kO(la, (5.5)
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B (Fis) = (T +sA) ¥y ~ (5.5)

-3 () AR st

an nth degree polynomial in the parameter s with point-valued coefficients.

Noting (5.4) and (5.5), 55n is, like B , the product of n linear
averagings or n forward linear shiftings. Also, thanks to (5.3) and (2.3), -

gn(f;s)—o F(s) as n—— o uniformly in 0¢s(1.

5.2. Recursive seneration znd apnroximation properties of the Bernstein-

Bézier overator.

DEFINITION 5.2 (Gordon - Riesenfeld). Let n+l ordered points PO,

. . - n
Pl,...,Pn in RP be given and let P {Pk}k denote

the (open) polygon formed by joining successive points. The Bezier
curve associated with the n-sided Bezier polygon P is the parametric

Bernstein polynomial

n

~

7 (Pss) = PR NCOE (5.6)

Here, the underlying vector-valued function is, of course, the polygonal

function

F(s) = n[ki”l -s) P+ (s -2 ?Rﬂ], = s¢EL, k(1)1 . (5.7)
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5.2.1. The convex hull propsriy.

Subsection 1.1 is clearly applicable to JEL ; that is, the graph
of Jén P develops in the convex hull of the vertices of P. In particular,
the Bernstein-Bézier operator associates to a given point and a given
line segment in BP that poinﬁ and that line segment themselves. It is
also easily shown that the center of mass of the points Pk with masses

e describes the graph of Séh(E;s) as s ranges from 0 to 1 (see Gordon
and Riesenfeld (1974 a), b) )).

3 < . .
5.2.2. Geonmetric construction of .ﬁ% P and its derivatives.

Noting (5.5) and (5.7),
B (®is) = (1+sA) z =l 2y, (5.8)

and thus we can construct the Bezier curve (5.6) recursively. In

correspondence with (1.7) and (1.8) we now have

0 1
PO
2, ;%
1
Pl .
.. Pn--l
Py ) ) 0
) o Pg = Jé (P;s)
. n
n-1
I
P, 1
n- ) .
et , .- (5.9)
n=-2 o Lo
“n-1 P2
pl .
n-1
P
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where
J_ J-1 i . e -
Py =B_ Py ", =1(1)n ; 1=0(1)n-j,
(5.10)
0 _ .
P, =P, ! 0(1)n .

The points Pg in the jth colunn of (5.9) are the vertices of a
Bezier polygon Pj of oxder n-j. We arrive at the point on ths Bezier
curve (5.8) corresponding to the parameter value s by constructing successive
Bézier polygons of lower and lower degree (cf. Bézier (1972), Gordon and

Riesenfeld (1974 a) )).

In correspondence with (4.1) and (4.2) we now have

_._T__(n;?)!}j’gj)(w;s) = A“P g, (n=3,s) (5.11)

|
IME

J:‘zn_ 5(@%5s) 4 §0()n
= (5.12)
0 s J>n
respectively, QJ —H{QJ Qg, e s QJ }, 5=0(1)n, being the (n-j)-sided

Bézier polygon with vertices

o) = A%, x=0()n-j ,
(5.13)

REﬂARK 5.2. Remark 4.1 is applicable to Jéh ; that is, apart
from the coefficient (n-j)!/n!, the jth derivative of
an nth degree Bézier curve of Bezier polygon P is a Bezier curve of degree
n-j whose Bézier polygon Qj is derived from P according to (5.13).
Conzequsntly, a 2ezier curve ani all iis derivatives can be calculated

recursively and afford an easy geometric construction. Furthermore,
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there is no need to construct a "triangle" similar to (5.9), based on

QJ. Indeed, since

_f%n_j(Qj;S)

8279 (ade) = AIER) (5.14)

I

AJPg'J ,

differencing the entries in the (n—-j)th column of (5.9} leads to Jaﬁj)(P;s).

In particular, there follows from (5.11) - (5.14), for j = 0 and s = 0,1:

,,'én(@;o) = Bg Py = Py
(5.15)

Il
&=
HJ

I

ﬁn(xP;l) 1 P E“PO=P ,

n

extending to Jén the interpolation properties (1.10) of Bn; and, for j=1

and s = 0,1:

. &7
Th(Bi0) = ARy = P - Py
L . (5.16)
= n= = = -
an([P,l) =A®E"r) =Ap_, =2 -2
The relations (5.15) - (5.16) imply the tangency of the Bézier curve to

the endsides at the endpoints of the corresponding Bezier polygon (cf.

Gordon and Riesenfeld (1974 a) )).

Figure 1 below illustrates the geometric construction of Jégj)(w;s),

for 3 = 0,1,2, 2%t the point s = 1/4.
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Figure 1

-5.2.3. Variation diminishing provexrties.

Notinzg (5.3) and (2.13) - (%.15), Jén can be said to be, like B ,

a variation diminishing operator in the sense that each component

f( : - -
ank of .S%F is 2t least as smooth as the corresponding component xk of

F, where smooth refers to the number of zeros, maxima and minima, points

of inflexion, total variation, etc.

In analogy with (4.16) - (4.17) we may also describe the variation

Nz 21 = with weszect to 2 hyrvernlane H with equation
y 3

X = = (5.17)
.i“-"l 11



where (.,.) denotes the inner product in Rp. Defining

VH(F) = V( (hsF) -c ), (5.18)

the number (finite or infinite) of intersections of F with H, we have

THZOREM 5.1 (G.-Bonne - Sablonniere).
a) vy(BF)  vy(F)

v A 1. 1
b) VH(JgnF) < VH(F) for F in C7, i.e., X, in C7,

k=0(1)p.

PROQF. a)

vH(.ELF) = v (h,JéhF) -c ), by (5.18),

D
=v( S nBX -¢c), by (5.17) and (5.3),

= v(B_( ;fa h.X. - ¢)) , because B_ is linear and
nt by 1d A ¢
presexrves constants,

< V( (hsF) - C ) y DY (h-lj) and (5'17):
= vy(F) -, by (5.18).

Part b) follows in much the same way.

REMARK 5.3. Paralleling the analysis carried out above with F in

-

¢® and ¢ = 0 in (5.17) we get
7 Y
c) VH(JggF) < VH(F5 .

While 2) and b) dsscribe the sign and monotonicity variation diminishing

o G e e
properties of uﬁn, ¢) does not mean, however, that dth diminishes the
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convexity of F, since this depends in general on the vector product F;\Fﬁ

REMARK 9.%. If, instead of the polygon P with vertices at F(k/n) ,
k=0(1)n, we inscribe in the graph of F any other

polygon ngith vertices at F(sk), where 0 = so<:sl<:... <sn = 1, then

VH(_‘gnr) Lol

implyinz that polygonal (piecewise linear) approximation to continuous
parametric functions is a variation diminishing approximation method

(cf. Marsden and Schoenberz (1966)). This suggests the application of
Schoenberg (1967)°’s variation diminishing splines to the approximation

of continuous parametric curves in BD. In this connection, interesting
results were given by Gordon and Riesenfeld (1574 b) ) and, more recently,

by Germain-Bonne and Sablonniere (1976, 1977).

5.3, Tterates of the Rernstein-Bszier operator.

Thanks to (5.3), the problem of iterating jéh may naturally be

reduced to p problems involving oxrdinary Bernstein iterates:

d 7
B; £y(s)
BB e (BFE) .on ) =B 6(s) =
B, %, (s)

{v
)]



5.4, Bernstein-Bezier methods for multivariate, vector-valued functions.

Instzad of the univariate, vector-valued function (5.1) 1let us

consider the mapping

hn] : - ~ 3\ T
F i x€5,CRy— &, » F(x) = (%) ---» xp(z)) ER,

with x = (x, ... %)y Sy ={ xERy : 0<x;<K1, 1=1(1)N}, and associate

with F the Bernstein-Bezier operator

n

n
N
ii:O... iZ::O F}- qil(nl'xl) veee qiN(nN'xN) (5‘19)
1 N

I

552(1“;5)

= (B 0ty m)s ee s B X)) (5.20)

with n denoting 0, Doy eees e i denoting il’ i2, ceay iN’ and

Fy = F(il/'nl, cees iN/nN).

Clearliy, Jé%(?;z) is a vector-valued (parametric) Bernstein polyrnomial
of degrze n, in Xss 1=1(1)N, and extends Jéh to the N-dimensional setting.
Incidentally, (5.19) gives, for N =2 and p = 3, the basic formula in

Bezier’s free-form surface design technique.
ilost of what has been said for JEL extends easily to Jé%. Namely:

i) j%ﬂ(?;;) reoresents a p-dimension2l surface vwhich develops within
the convex hull of the points Fﬁ, the vertices of an nlnz...nN—faced net
of line sezments which plays here a role analogous to that of the Bezier

polyzon, and the center of mass of the points F.1 with masses

H
:1 = '11 (-1;.::"~y<)
I

describes the graph of ~2%(F;§) as x runs over S.
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ii) Since B is a smoothing operator, then, from (5.20), so is.Jé%.

Over the past several years, the methods of Bernstein-Bezier have
attracted widespread attention, especially in connection with problems
of computer~aided design and numericzl control production of frge-form
curves and surfaces such as aeroplane fuselages, ship hulls, and
automobile bodies. For detailed and intensely practical expositions we
refer, e.g., to Bezier (1972), Barnhill and Riesenfeld (1974), and

Forrest (1971, 1972).
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_CHAPTER 2

_NUMERICAL COIDENSATION OF MULTIVARTATE POLYNOMTAIS

Polynomial condensation, also referred to in the literature as

telescopine or econonization, is 2 numerical procedure aiming at reducing

the computational effort required to evaluate a given polynomial P at

a z'ven mint of iz Jomuin while a2llowing Tor a small oscillatirg errar
€ to be distributed over the domzin where the condensed representation
of P is sought. It was firsht concsived and applied to univariate problems
of numerical mathematics by Lanczos (1938, 1952, 15656) and has recently

been extended to the multivariate setting by Ortiz (1977).

1 P el
. Aiad e - et

o]

Iet P = P(x)E Sr? » n»1, and x€K , a compact of R;. We assume, once

and for all, that
P(x) - a X ~a ¥ oo Tax tag, a # 0, XEH (1.1)

is evaluated at x # O by Horner’s nested multiplication, i.e., by means
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of the backwzrd recurrznce scheme
P==5, :
0
b =a
n n
= =n-1(~ 1.2
br Xbr+1 +a , r=n-1(-1)0 , (1.2)
always reguiring n multiplications regardless of the number of vanishing
a's .
T
DSFPINITION 1.1, We say that P P (x) is an E-condensed polynomizl
representation of P in Kl provided that
(1) ®R<®P and  (ii) “P - P |<e,
O standing for ‘degree of' and | !*‘or the uniform norm in Kl .
1.1. A sufficient condition for volvnomial condensation.
Sufficient conditions for the existence of PE € 5’5 —em1 ! 0Ls<n ,
in &, = {2,7] may be obtained as follows.
e ¥ th . . . . -
w2 denote by L_J(X) the = Chebyshev polynoaial of the first king
hifted to |V l_j and recall that
n 1-2n <, 2ny ¥
x =2 > (=5) Ti(x) (1.3)
1= o J
j=0
*
wherae the trime indicates that the coefficient of T. is to be halved.
\J
Usinz (31.%), 2 may be written in the form



P(".)= ST a x3+axn
390
- *
= P(x) + 287" T (x) (1.4)
with
n=1 . n-1
=2 / 2 *
Pl(x) = a. xd + 21 ma (n_r}) T.(x) . (1.5)
(= n J; 3773

It is clear from (1.4) that the condition

€ = p1=2n lani << (1.6)

implies that Ple .5'2_1 and IIP - Pl” < E; that is, Pl is an E-condensed

polynomial representation of P.

1.2. Inplementation of the coniensation process.

Assuming that (1.8) holds, recalling that

T;(x) =1
¥ (x) =<-1>n+gjl (-1)7k B (el 2Lk o1, (1)

and no’c; ing that

n-1
27 G T = e B B (g oty
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1(1) 2:; al %9 (1.8)
= J
J
with
1 -1 .12
ay =ag *+ (-1)07+ 2=7en a

(1.9)

2t 23 + a 2{: (-1 )R_J L3 (kTJ‘l)(

3 s F1(1)n-1 .
k=]

We are now ready for the condensation of Pl, i.e., for the second

step in the condensation of P. This will be possible provided that

51 - p1-2(n-1) lai_ll <é- & -

Assuming this trus, we replace in (1.9) n with r=-1 and a.j with a§ s

3=0(1)n-2, %5 ox:ain ai , 3=C{1)n-2, the coefficient vector of a condensed
J

polynomial reprasentation of P with a new tolerance parameter £ equal to

Eo+ & .

Setting 2 = a, , 5=0(1)n , the algorithm

N+l ag . (_1)n-m-1 2l—2(n-—m) 0

0 n-m
(1.10)
n+l R, pd-rmom nm=l k-3 k (k+vj=1y,2(n-m)
aj = aj s L n_,.n Z ( 1) ' ( 1;{__ )( n=n-k ) ’ J_l(l)n-n-]-!
is repeated for n=0(1)s, OgLs<n, as long as
s
1-2{n-m
D& o g2 (n-n)lan 1, (1.11)

da
[75)

on
9
v
Y

polynonizal form of P.
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RCMARK 1.1. The number s+l o condensation steps may be determined

apriori if we carry out the basis transformation

n ner n, *
a X = c T (%) ,
n-r . n-m m
r= n=

e = pl-2n E:g“r 2l-T)y . o),

P(x)

n-r % -z
and observe that

lcn_ml = ém , n=0(1)s .

Therefore, instead of (1.11), we can use

Efgqr Z(ﬂ-*)\ an-rl < zzn"lg,, os«gn , (1.12)

to predict the maximum degree reduction g allows (see also Ortiz (1977)).
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2. CONDENSATION OF MULTIVARTIATE POLYNOMTALS

2.1. Bivariate polvnomial evaluation schemes.

I.. -.d s
P-2Coy) =3 Sla.xtyie P, a0, €k, ,

where K, is a compact of R,. A = (a.ij), the (J+1)x(I+1l) coefficient

(2.1)

matrix of P, is such that, for every i and j, aij is the coefficient of

xlyJ in P.

The writng of P as

<
(3] . -

. o - ) = 2 o 4 7
p {{:"?j VAN Pj PJ() % aij X j=0(1)J ,
J= 1
oxr
—-— % i * * g, 3 .
P=22 %+ p=p(y)= >, TR i=o(1)1 ,
1=t J'_’U

Lo (ith column) of A,

with p. (p:) unisuely associated with the j
makes £he evaluation and condensation problems for P(x,y) entirely
analogous to those referred to in Section 1. Indeed, the evaluation of
P at a point (x,y)EEKz with nonzero co-ordinates is reduced to J+2 or
I+2 l-dimensional polynomial evaluation problems according to the

representations (2.2) or (2.3) respectively, and carried out by means

of two backward recurrence multiplication schemes similar to (1.2),

(2.2)

(2.3)
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'

= b, (5=0(1)J) :

J
br = 215
= +a_. = I-1(-1)0
b =xb_ ., 35 r = I-1(-1)0 ,
P = g ¢
;T Pg
= + = J=-1(-1)0 ;
e, =y gy tp. » T=1J 1(-1)
or
* -
p, = by (i=0(1)1)
by =255
b =yb y ta r = J-1(-1)0 ,
2= Cq *
_*
°r 7 P1
= + = 7-1(~1)0
C.=Xc g t 2., r = I-1{(~- .

In either case, the nunber of nultiplications reguired is. always
(1+1)(J+1)-1, no matter how sparse A may be. As for the £-condensation
problem for P(x,y) in K, = [O,l]x[O,l] we now have, in correspondence

with (1.12), the following existence conditions

s 5 )
> DI b <277E o<s<y (2.4)
r=0 n=r

or

‘ ,2I-1

S - S
MDA
r= n=r

according as P is given by (2.2) or (2.73) respectively.

£, 0gs<T (2.5)
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Th2 above bidimensional evaluzation and condensation problems afford

an immediate extension to the multivariate setting. Given

I IN
jii i, i i
P(x I SR ) > 1 2 N
1772 N =0 15 Zay' E;O Byipee el X 7Ry Xy (2.6)

- A\ - PO
r * 0 and (xl,xz,...,xNjélﬁN, a given compact of BN’ we

with a, .
Lilgee- Iy
write it in onz of the following equivalent forms
I, ik
P- 5 p xS, k=10, (2.7)
i=0 '
k
with
pik = nl& K7""'Xk-1'xk+l""’xﬁ)
I 1 1 1. X . . .
N ol . B R o0 B 5 R

]
M -1
r—-—l
S)J

=
}
it
C

ﬁ—l

To evaluate P a2t a point (xl,xz,.. ) in KF with nonzero co-ordinates
we use N multiplication schemes similar to (1.2) and perform (Ilrl)(I +1)
(I #41)-1 multizlications; €-cordensation of P in the unit hypsrcube

of R,, with respact to the variable Xy is possible if

S 21,-1
k= 1(1)N . (2.8)

IZZL:'I‘Z (2<I‘~r ' <2 £,

n=r




2.2. Smoothness indicators.

The numbers s, = sk(xk,é) in (2.8) may serve as indicators of the

following attributes of P(xl,xz,...,xq), obviously related to each other

I

to a certain extent:

(1) Smoothness - the larger Si the smoother P in the xk-direction;

(11) Weight of x, = the larger Sy the smaller the importance of the

k

variable Xp in the representation of P.

This leads naturally to the definition of principal variables as

those for which the s’s are least and, then, to the following problem.

2.3. Approximation of a multivariate polynomial by another polvnomial

of fewer variables.

Clearly, the xk-dependence can only be removed from the representation

(2.6) of P(x ..yxy) if (2.8) holds for s, = I -1, yielding the

1%z k
condition
I, -1 .
X -(T,-r) 2(1,-r) )
Sl B R CMx T e < €, lgkgN . (2.9)
é;q) [ Ik—r ] ‘ Ik—r ‘ NG

Assume (2.9) holds for k = 1, say, and the left hand side of (2.9)

equals &;< €. Then P€ -715 I 7 may be replaced by Pleji I r s
fyrgrec sty 2riqree iR

whdinh fs shich fhad f T o 2 !' = s misw OB ENES guhnit P tn tho

Mo LI = S J o - T h o k- l ‘! 1_,1- & L S Y = SRS Ty IR L -l i Wiz

same reduction process. let 62<:5 be the tolerance parameter within
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which the variable x,, say, may bs eliminated from P, € ,
2 1 12,13,...,IN

. . 2] .
yielding Pze_JIB,IU.“,IN such that ItPl - PZ'l<:&2 . Clearly, P, may
replace P provided 51 + 52<< E. If we can do this k times, then we end

up with P, € P - , an g-condensed form of P with k fewer
) R s LA

variables than P itself.

2.4, An alzorithan “or the condensation of multivariazte polvnomials.

Tn this Subsscilon we exierd algorithm (1.10) to the multivariate
case. The emphasis will actually be on bivariate polynomials as there

is no essential diZ7iculty in extending what follows to higher dimensions.

Taking the polymomial (2.1) and paralleling the analysis carried

out in Subsections 1.1 and 1.2, we have, from (2.2),

J=1 : I
P= 2 2,y tpry
=0~

=P + 27~ o5 TJ(y) (2.10)
where
-1 J=1
1 s 1-2J 12T N *
P = 2,y +2 p. >, (30 T.(y) (2.11)
3=0 J J 3=0 J=J J
&
— -D. P =
=
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i

ok b + ()71 1729 |

0 J
(2.12)
A O T
P]: = P + LI'J JPJ Z (—1):{ J%(({kfj )(E“I{) » j = l(l)J_l »
SRS & . .

is an E-condensed form of P providad that

0 PJ"< £.

It should bs noted that the elimipation of the second term on the
right hand side of (2.10) anounis to deleting the TP row of the coefficient
matrix A of P and perturbing each of the other rows of A with the second
term on the right hand side of (2.11).

Another condensation step will be possible if

_ 51=2(J~-1)
€ =2

nal< e-¢-

5
This teing so, then we chanze in (2.12) J into J-1, ps into pg y J = G(1)J-2,

and start anew. The maximum number sy of condensation steps is such that

m

J=-m| ’

S
L __1-2(J3-m)
%;% &m<26 R &h =2 o)

(ef. (1.11)) arni may be predictsd by the use of (2.4). We end up with

Sy+l "(/6
P in I,J-sv-l , Og;sy<:J :
- -]
s Ty s a
pYy = e yJ ’
=0 7



57

e
O
!
'd
o8
+
’\
;_n
~r

J—m

= 0(1)sv (2.13)

J=m=1 ¢
mtl _ j=J+n _m _ Jk 1 3-1 2(J=m) . .
Dy =Dk D1y k§=j: (-1)* AP B I TCOL e S R
wher pg =D 3 =001)J (ef. (1.10)).

The condensation of P(x,y) has been carried out with respect to the
variable v (rows of A). Obviously, it could have been performed, in

exactly the same way, with respect to the variable x (columns of A).

3. NUMZRTCAL COMDENSATION OF BE2NSTEIN POLYNOMIALS

-

Eexrnstein approximants are applied in those numerical aprrcximztion
proodlems referred to at the close of Chapter 1, where shape preservation

is mors important irhan closensss of fit. Being slowly convergent, fai irly
high degree approximants are required. However, a considerable reduction

of degree may be achieved through condensation of the Bernstein approximants
to a given f in C, under fairly weak smoothness conditions on f, keeping
their shape approxinating properties only slightly changed (sse also

Ortiz and M. da Silva (1978)).

ZopaL 3.1, The Bernstein operator Bn naps the whole class of functions

f taking on the values f, at the nodes k/m, k = 0(1)n ,



53

into one and the same polynomial 3 f. In particular, if’E’ejg_is the

polynomial which interpolates the table {k/n,fk

}n , we have
k=0

Iil
tJ
~
Hh
3
p —
|

Bn(P;x) = ji (n)ZBFfO o . (3.1)

and thus conditions under which an may be condensed can always be stated
in terms of P.
REMARK 3.2. Recalling that
B (tn°x) =2x"+ ... =c T*(x) + ...
n* 7 n : nn

with

n =1 k=1

N

the prime indicating that the product is to be doubled when n is even

( see Subsection 4.1 of Chapter 1), and

1-2n | ~2-3n

c_ =2 A, £ »

we see that the Bernstein approximants are particularly suitable for

on.

Fae

2 A - o~ amm = L
numerical condenz=t

Let us then assume that, in the process of approximating to the
shape of a given curve, there is given a tolerance parameter & related
to the accuracy to which variations in shape cease to be detectable or

relevant for the problem in hand. Iet

n .
T = ?(z) = Z:b, YJ



\n
O

n n :
= }:( Zai.b.) X (3.2)
with
A (3.3)

given by (4.7) - (4.9) of Chapter 1. Equating coefficients of like powers

of x in (2.1) and (3.2),

(D At = s i=o@n, (3.4)
= i PR
giving, for i = n,
'
n, _ u_ N
Afy = Anbn i bn ’

and leading to the following sufficient conditions on the smoothness of
f for the £-condensation of B f from-&? to Jg-l (see (1.6)):

(1) 1In terms of the leading coefficient of B_f (see (3.1)):

n

I P
EALUJ<Z B

211-1 e

(ii) 1In terms of the leadinz coefficient of P:

22n—1 r11’1
b [< e

From (3.4),

. n
(Blale | ¢ Yo dotenfla]l (3.5)

where
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M=  nax )b.‘
0<in
and
n
l\A" = max  r; , r, = EE: 255 (3.6)
o 0Lign i

the matrix A = (aij) being, as seen in Subsection 4.1 of Chapter 1, upper
triangular and column-stochastic. Therefore, an s-step condensation process

to reduce anE‘_ﬂ?l to (an)& 6_‘73 0g s<n, requires that (see (1.12))

n-s~1’
s . s=i . 2n-1 2(n-1)
Zu’l (2(1’1‘1)) < 2 < 2
i=0 370 J M |A]l M

be satisfied. Assuming this true, then algorithm (1.10) enables a step

by step computation of (anZE .

It should bs noted that,in asserting that llAI! < 2, use was nade
(2]
of the facts that T T 2g T 1 and that the leading terms in the row sums

i+l
3 2 o = A = 1 + o
r; in (3.6) are 253 Ai and a.’. )‘i ( 2 )/n, both >0 and «< 1, hence

r.<2,1i= 0(1)n .

3.1.1. lunerical example.

By way of illustration we consider the ghape approximation problem
of the polygonal function f with vertices (0,0), (.2,.6), (.6,.8), (.9,.7),

and (1,0) by a sinsle polynomial of a fairly low degree.

-t
If ve consider ths approxinmant 3, f and take £ = 3.5<1C 7,

Vd -2 L4 -
£=7.0<10 7, and &= 2.5«10 2 as admissible condensation parameters,
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then it is possible to condense Blof to polynomial representations of

degres 6, 5, and 4 respectively without exceeding those error bounds.

In sach of the figures 2, 3, and 4 below we show the graph of f,
Blof, the condensed repressentation Eé of Blof to degree r, and Brf for
r==4, 5, and 6 respectivaly. We can appreciate in Figure 3 that for
r = 5 the adjustment between Blof and its condensed form is fairly

close.

o
m
NN

Byof

Figure 2




- ’ > >
3.1.2. Numerical condensation of 2szier polvnomials.

As seen in Section 5 of Chapter 1, the Bézier operator;alassociates

with a given parametric function
P s [0,1]——+lap . F(s) = (Xl(s),XZ(s),...,Kp(s))T ,  O<s<l, p>1
the parametric curve in R

B (Fis) = (B,(xg38), B (Ky58), ... B (X 58))" .

The process of numerical condensation we have discussed for Bn extends

trivially to Jén . Ye say that

T
B_F = (B Xy, B_X,y ooe » B_X)

is a condensed representation of J%%F nrovided that
2B X, < n, k=1(1)p,
and

! i i !
ABr-Br| - IBx. - B_ X ‘ LE.
“ n 1‘& Ilap lgix<p I"n"k 1"6 k l

3.2. Condensation of nultivariate Bernstein-Eezier approximants.

let £ = f(x,y)éﬁC[Sé}, S, the unit (x,y)-square of R, . Referring

to Section 3 of Chapter 1,

Lt
=
—
Fiy
x
<
N
]
[\r I

with



N i (G J £(0,0) .
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As an application of the material developed in Section 2, we find

the following smoothness conditions on f for projecting Bn mf onto a
’

proper subspace of 5% - without introducing an error greater than &
?

in the numerical values assumed by Bn mf over SZ:
?

5 Sz =1
@ 3w 5 CG, | <P e, ogean,

vhere
= = i
Pher Pm-r(x) EZ;)ai,m-r e

if the condensation of Bn mf is to be carried out with respect to the
4

variaktls v; or

(ii) i}; u S:i_z (2(§°r))

where

"Rk e Vo

¥*
D
“n-r

* * 9 3
Py ™ P (¥) = Jg_; Bper, 3 V7 0

if B_. _f is to be projected onto Jb g
n,mn . n-sx-l,m

Use may be made of algorithm (2.13) for step by step computation

of condensed forms (Bn,mf)g of B, .f.

Tigures 5, 7, 5, ani 8 below represent Blu'lof - (Blo,luf%:,
3 - (B )y 2 rresponding contour ma tivel
15,15f ( 15,15 %, nd the corresponiing i ps respectively,

>
s Y ’ &5 £
3+ . T~ d S ]
with é= .01 apd Lo,y = sin{x;.cos\yj.exp(=x =y ).
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Byg,10f = (Bro,10T)g + €7 0L

.0019

max

z:

Znin "+ 0023

2 2

f = sin(x).cos(y).exp(-x -y )
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Z x . G019, Zmin = -,0023

contour step = (zmax—zmin)/25
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Bearing in mind what has been said in Section 2 on the multivariate
polynomial condensation problem, it is a simple matter to extend what
has bzen done for Bn 0 to multivariate Bernstein polynomials B;I(f;t_c_),

2! -—

fGC[SH], S}* the unit hypercube of lRN, and to Beézier hypersurfaces in BP

By Fix) = (30050 B () e s Bl )

where

+
i

PSR, Rl = (), K, e 2 @)

(see Sections 3 and 5.4 of Chapter 1) .
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CHAPTER

(5

ARBITRARY TTERATES OF BERNSTEIN POLYNOMTALS

1. THE MATRIX FORM OF THE BSRNSTEIN ITERATES

As seen before, the nth degree Bernstein polynomial approximation

to a given real f(x) defined on [0,1] is given by

n
B (fix) = > £ oo (nx), £ =1k, (1.1)
k=0
where
n .
_ _ (n k _, n-k - i _
a,. = qp(n,x) = (1) x (1-x) l;k cip X »  k=0(1)n, (1.2)
with
0 , i<k

Cip = e s (1.3)
17 () (), ogkgign . -

Bernstein itsrates of natural oxder are defined recursively:

Bi(f;x) =B (Br—lf;x) , r>1.

Owing to the facts that if féyns1 then ang ymsin{m’n}and that Bn

replaces £€C with a polynomial, it is no restriction, for r>1, to take
T in Jr{, H<n. Aciually, since Enl =1, for all n in W, we may take for
¥

domain (and range) of B the linear subspace ?)g = {x ylé"-l} of polynomials



of degree ¥ vanishing at O.

It follows from (1.1) - (1.3) that

Bn(xJ;X)

i=1

= i .
—.gaijx y 1IN,

where (cf. Subsection 4.1 of Chapter 1)

0 - y 1>
a,, =
ij _
Ant Ve, ., 1L KGN
1]
with
- = (M.} i .
A; = A (n) (i)l./n y  1LigN,
_ 1 2 i-1
= (1 -I'l')(l -;1')(1 =/
and
0 » 1>
g. . =
1J

For a given

N .

'd
e
3

T 2 N
where X° = (x,x°,..., ¥') and D = (pl’ Doy vens

S S (@)FEME) o
k=1 Ai=k

EBWON kgl, -G w

i . ..
= > COYRCRT, 1 -

» we have
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(1.4)

(1.5)

(1.6)

(1.7)
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Bn(P;x) =

I
‘g
e
{os)
~~
~
o
be
~—

Il
ol
)
'—l
b
'_ln
o’
<
~~
’—l
-
p

Bn(P;x) =X'Ay D , r=1,2,.... (1.8)

It is clear that (1.8) continues to hold for polynomials from 53 .
namely, D, + XTp. e have only to replace X by (1,X), p by (po,p), and A; by
1 0
Ayra =

0 AN

toting that all the eigenvalues of AN lie in (O,i], then equation

(1.8) defines the iterates of arbitrary order r& R of the Bernstein

operator acting on I&.
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2. THE TCTAL POSITIVITY OF B
Il

let G = (gi") be an n-th order real matrix. The kt,h order minors of
o

G formed from rows '11< i2<...<ik and columns jl<j2<... <jk » 1k Ly,

will be denoted by

g. - * e g- -
S S A Y , k 19 119k
£ = det(g. T e . i (2.1)
Jl'.j7',.‘..,jk : mvm/m= x E .
A 3 gi‘kjl ceee & o
Tk

We say that GETP (or is TP - totallv positive) or that G €STP (or

is STP - strictly totally positive) if all minors of G are nonnegative

or strictly positive respectively.

If G is a lower (upper) triangular matrix, the minors (2.1) for which

im>jm (im\<.jm) for lémék are called the nontrivial minors of G. The

remaining minors of G, the trivial minors, are obviously 'equal to 0. Ve
say that GEATP or GEASTP when the nontrivial minors of G are all non=
negative or strictly positive respectively.

The minors (2.1) for which i =3, » 1gmgk , are termed the principal

m

minors of G.

Being Bn a2 bijection in .‘7;-1’, for any given

=]

P(x) = p.xJ=XTp
L
K ,
n k )
- 5" % J A T.~1
p. ) a.(nx) =Q°¢Cp,
= % G K

™

el ) . \ L N . . - . s
where O = (1., 9y, «eep ) and g = (f;i,{) is given by (1.3), we may write

P() = 3,(5Tpin) = 3L BN Pikn) ay(nn)



73

to obtain

k
)
&

Jp, - B;I(P;k/n) , k=0(1)n .
j

(€7p)y = 5 D
J=0

REMARK 2.1. If Z (f) denotes the number of real zeros of f(x)

(2,b)

in the indicated range, then, since:

' = Tely) = by el 25, z = x/(1-x
(®) € (0%1)(1*) (ofl)(czc p) (O%m)( k;j)(k)(c P2 ) /(1=x)

< V(C—lp) =’v({ﬁ;l(P:k/n)}§=o)
< V(E;IP) ;

this being valid for all P in 5?, we may replacs in these inequalities

P by B P (p by A, D) to receive

N+1

v(B?) £ (O%l)(Bnp) (o%l)(QTc’lAN+lp)

(€ g p) = v({ R/}l )
<v(®) ;

and we get the well-known Schoenberg’s result that the transformation

P—» B P (p—=Ay, D) is variation dininishing while its inverse, P—sB_ P
(p-——»A&ilp) is variation increasing.
LEMMA 2.1.

Ay €ASTP .

e e e et AT et as - i o
2003, The rezult follows Inmmsdiaitely from lotzkin's theoren on

variation diminishing matrix transformations (see, e.g.,

Schoenberg and Whitney (1951)) and the observation that the principal
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minors of A, are all positive.
i

COROLLARY,

S = (aij)CASTP .

PROOF. Using (1.5) and the homogeneity property of the determinant,

we have
y )
. . . (i -3 .. .
R (11’12""'1k) NN 5 n mz;i m “n ; (11’12""’1k)
¥y . o . T TS D ' * . - .
Jl’JZ""DJk 172 k Jl.JZ,..-'Jk

<il<12<... Gy
T3¢ 3y e Gy

1

for 1{kKE

“a
-

<N , and the result is manifestly at

hand.
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3. THZ POSITIVITY OF Bi

THEOREM 3.1. A§ is column~stochastic for each real r» N-1.

PROOF. Following Rosenbloom (1967)'s divided difference approach

to defining matrix-valued functions, we have

' T " k=i=1
(AE).. = X5, + [A. .A] La., + [x.,x. beserhe o)
N7ik iik 1 k \T ik j=1 i<il§...<ij<k 1771, is k T
.ai.ll i1, aijk , 1_414R4N . (3.1)

Observing that, for 1 j<k-i and rxk-i,

[ 2 dj+1 r T\ rJ-1
AusAe 5eeesis .A] - — () = (X )e >0
1771 ik . ! Jt1 J+1
+
1 3 AT (3¥1)L dx A=8
for some § € (,\k,ki), it follows that
ryk-i= (ay);, >0, 1LiLk<H . (3.2)

Let V = VN(n) = (Vij) denote the eigenmatrix of A, normalized so
that v, =1, 15K, and let the elenents of vL pe v¥;. The matrices
V and V-1 are both upper triangular, and it is shown in Kelisky and Rivlin
(1967) that the first row of V ' consists of all 1’s and that the column

sums of V are all O, except the first which is 1.
From the spectral representation
AL = vVt

where A = diag(ki), and the properties of V and vl referred to above,

we obtain
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* £k
r _ T
;i;(AH)ik = > >, Vi VEA

i=1 j=i
k ] r
=1 \i=1 J
= 8. vE NS
= 15 " Jk%
= ik
=1, 1{k{N., TER. (3-3)

That A§ is column-stochastic for each real r>N-1 follows now readily

from properties (3.2) and (3.3).

COROTIARY. Like B_ : 5@5——¢.52,, Bﬁ (r=1-1) is a linear positive

It

operator of unit uniform norm.

We shall see in the next section how the condition r>N-1 can be
relaxed to r>0 and yet implying that Bi is either TP or nearly TP in
the sense that the matrix representing it is either TP or replaceable,

elementwise and arbitrarily closely, by a TP matrix.



L, THT LIMITING REHAVIOUR OF Bi

L 1. The case of n fixed and r——@.

THEOREM 4.1.

N’/1k

a) (At T l .

77

1<kl ,

r |
) (i Voo, 2cicken .

PROOF. Beari

0<CA, <1 for 2LiLN, and that

x
’A | AL ) = A——l—_——-,
[Aml i) Amk])‘r 1%1[ {eD)

ng in mind (3.1) and (3.2), recalling that /\l =1,

k
ne) =TT 04 )0 @)

then part b) follows immediately. As for part a),

a,. a. .
1i.71

PR
: k
1 1tz 13

r =
(ap)yp =1
a k=2
r 1k =
(AN)lk I S + %— 5 L. Z . .
L=n =1 1<1<.- .<1j<.{
D a.
£— “im
— =1 2<kY .
m= (1-A)

COROLLARY 1 (Kelisky - Rivlin). For

(1=, )(1—)\i )...(1ﬁkk)
1 2

= rné'_ o,
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PROOF. This is obviously contained in a) and b), which not only

hold for r€R but enlighten the structural limiting properties

COROLLARY 2. For each £ in C
B (£3x) — B (£3x) = B, (£x)
n n il

uniformly in O{x<1.

PROOF. We may replace f with‘Ln(f;x) = XTp , the interpolating

polynomial for f at the nodes k/n, k=0(1)n. Since

A = i , then, for n = N, Theorem 4.1 gives
Nti r
]

0 4

b @D 1 O
A ....._.A =

+ +

n+l n+l [l E]

Therefore,

r s
Bn(f,x) = X'A_qD

T
— XA P T Py

%)x=ﬂ®+(ﬂﬂ—f®Dx.

l=

Van der Steen, Sikkema (1966), and Kelisky and Rivlin (1967) have

proved Corollary 2, only for r = rne,W, by different methods.

COROLIARY 3. Let K be the (n+l)x(n+l) matrix representing B : 9%———»5%

when we take for 52 the Bernstein basis {qk}n I
=0

5 3

Bnqj =9 I\ej , $=0(1)n, e; being the (n+l)-component vector with 1 in
+

tes 37 oaogition and O eisevhere. Than

PR
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1-0/n0...00/m

i/n0 ... 01/n

=
i

2/n0 ... 02/n 1| .

'-
il
b=
]

K—

s s eBseceeesns Ve .

Ll

n/n0 ... 0 n/n

PROOF. This follows from Corollary 2 and the observation that in KQo

th

correspénding, to B: , the k*° column of KcID consists of

the coefficients of Bo:: q :

n
B 95— B: qy = 1-x = j};(l - 3/n) a
BC B: q =0, k=111,
r o d o
3. 9B, 9, %= j; (3/n) a; -

Nielson, Riesenfeld, and Weiss (1976) have offered a proof of

Corollary 3, only for r = rné 87, using probabilistic arguments.
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4.2. The case of n—mand r = rm———+'t€lﬁ, fixed, as m——= @

indezanéantlvy of n.

The analysis of the limiting behaviour of the matrix A;(n), where
t is a fixed real, N a fixed natural, and n-— oo, is considerably

simplified if we obsexrve that

G-

, -2 | .
a;; = A =1- - +0@™) ,  1gigy,
(i"'l )
a = 2+ C)(n-z) 1g il
i,itl i n ' = ’
i~k .
a, =0@™) ,  lLickgN .
In viev of this ws have the following

IEMMA 2.1,

-2
2) AN=I+—i'CN+0(n )

lec

b) e ™ V™)

_ F e+ 0@

c)

1
where CN is the bidiagonal matrix whose nonzero entries are given by

(Cplys =% »  IKiKH ]
? /(j = (g) [
O e AR S

with thes usual conveation that (3') =0 if i<, and €7 (n" ) denotes 2n

Nxl upper iriangular matrix whose nonzero entries are Of{n ).
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REMARK 4.1. For the monomial xY it follows that
n|B (xj'x) - xj = XT n(A, - I)le
n ! N J

T - =1 J
= - = = l-x X
— oo, pxd = 3 x0) G) -

Owing to the lineé,i'ify:‘o'f the operators B and dz/clx2 and to the

N

facts that “BnH =1 a,ndvy5 U 75 is dense in C, we then get the
. N"O'

Voronovskaya’s result that -

llim nl:Bn(f;x) - f(x)] = 1 x(1-x) f//(x)

N—ex

providad that f has a second darivative at x& [O,]J , the convexrgerncs

7,
being uniform in 0Lx<1 whenever f(x) is continuous.

COROLLARY 1.
n CN
i) 1lim ‘A'N = e
Ne—es@
- [r’ ::’ . nt tCN
ii) 1im AN = 1lim AN = e ’ t>0 .
n—eco n—eoo

PROOF. Paxt i) is immediate. The first equality in ii) follows

from the fact that nt~ [nt] and the second follows from i).

- -4

REMARK 4.2. Since each element of the sequence {AN }, t>0, is
column~-stochastic and ASTP, then so is the limit

nt

N

is either ASTP or replaceable, elementwise and arbitrarily closely, by

exp(tCN). It is also clear that for t>0 and n sufficiently large, A

B
a ACZTP matrix, namely Ay -
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COROLIARY 2., Iet r = rm——-tGIR, fixed, as m—w» o independently

of n, then

rm
lin Ay =1I. (4.2)
n,n—=om
PROOR.

T ,

lin a2 = ( 1lin %‘ﬁ =71,

ny,M—eaxm n-?—-go

REMARK 4.3. For t>0 and n sufficiently large Aﬁ is either ASTP

or can be approximated, elementwise and arbitrarily
. , t ‘
closely, by a ASTP matrix, namely, exp(—n- CN)‘ Indeed, from c) and b)

of lemma 4.1,

Le
n

A§=e N+0(n-2) .

REMARX 4.4. In correspondsnce with (4.2) we have, for each Péb%

and rm—._.telR,

e B (Pix) = 2(x)

. nyn—e
|om
i"n

uniformly in 0gLx<1. Being isnse in C and, for rm>0, = 1, then,

for each f in C,

ho
lim Bnm(f;x) = £(x)
n,n—

uniformly in Ogx<1. For rm—al we recover the Bernstein uniform

approximation theoresm.
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4.3.The case of ¢ = r /.

Since the eigenvalues of AN are all positive, then

.. rn * rn
lim —— lim ——
r : n;ocnn C, Il ———>
lim A" =( 1lim AL ) =(e")
N N .
N—v n-——=o .
e .o T, ;tCN )
exists iff 1lim rn/n_ exists.. Let rn/ni—f» tER, then AN —>e. ., a2 columne

N—-»co

stochastic ASTP matrix provided t>0.

T
REMARK 4.5. Referring to (3.1) and (4.1), the coefficients of )‘in ,

r oy
/\in y lgmg j<k~1 , and /\,{n in
n !
a,. 8. . ... @
11, 11, lj{ ’\rn
[Aiykilio--’Aij’Ak]Arn . aiilailig-.' a.ijk = A ) . - i
(- k)j_g-('\i_/\i )
= m
e . . eee A.
. 11,441, ljk -
+ 50 AR
= s i
n m D= m ;)
pFm
s B2 . ees 3.
‘ 111 1112 ik rn
+ . /\k , 1<i<hi ,

A A) ;:E(,\k-,\im)

are easily seen to have numerators O(l/nk-l), denominators O(l/nJ+l),

and thus all tend to 0 as n—s=cc, except when j = k~-i-1. Therefore,

¥y Pyt
. = ey = ..t i .9 A .e
blk(t) (e )lk e 61k n:fimw[)l’x-l--‘-l’. '/‘k-l,Ak]r . ai’i+l.-. aI{.l’k
/\—n



and we recover, after some manipulation, the result by Kelisky and Rivlin

(1967) that
_/.[.t
b'k(”‘i?i eeld IR 20, .3)
1 =i 1 Je
with
P ar(15)5 ()2
)Bi.j.Ic:('l)J-l T Zj-.% kij-l o ISR - (&.4)
( j-i)( Zj"l)

In particular,

e r
rn/n 1 0 —_—;ANn-—-.I and rn/n T o =,ANn_....E E

At

The coefficilents 791 3.k satisfy the following sets of seemirsl
s

nontrivial identities:

THEQREM 4.2,

i=1 '
k mo_ .

b) Z 1,3,k /‘J . 1<1<k s Om<k-1 .
J=i

PROTT. Referring to the rspresentation

m
- A
HL;’ l"‘N ? (‘*’5)

we see that the property that the column sums of exp(tGN) are all equal

to 1 is eauivalent to the vanishing of the column sums of CII{; y M21.

it Il -~ B R T = 7~ = - 1, =
Dirset gulbialicatlion zwvaals that \Z‘H)lk 0 for x>i+m , 30,

and thus, from (4.5),



85

Tl
o (Cﬁ ik n b6
bik(t) = m;-i mL t lél<k ’ ( - )

showing that the functions bik(t) ’ 15;i<:k , have t = 0 as a zero of

multiplicity k-i. On the other hand, from (4.3),

(o]

bik(t)‘.-‘:.,;ng -1)" <Z;?l,3,k/‘a) ’ (5.7)

and part b) follows.

Comparing like powers of t in (4.6) and (4.7) leads to

& n < m

( N)ik = (-l) ;ﬁl,j,k /l-(j [ lél<k » m?O -
The vanishing of ths coluan sums of C? » n>1 , implies that

(s

k>2 0

S (S Ase)f-or w2 w0,

and part a) follows from the arbitrariness of m.

REMARX 4.6. The set of identities a) and that corresponding tom = 0

in b) were first observed by Kelisky and Rivlin (1967).

¥ith the change of variable x = e" the range [0, is transformed

into [0,1] and the functions bik(t) may be written as polynomials in x:
: oy S T
;5 (t) = by (%) = x jgfi,-j,k X '

showing that x = 0 (t =) is a zero of by, (bik) of multiplicitylﬁi .

Being x =1 (t =0) a zero of %ik (bik) of multiplicity k-i, then



we have the following

THEQR=ZM 4.2.
B (k) = x (1) o () ) lgigk

with p,, m? , (/-lk ’i‘) (icd)= % k—1)(k+1-3) , having every

coefficient positive.. . .

PROOF. The coefficients c. = c.(i,k) of p.,.(x) = 2_, c. x9
a— J J ik 50 I

nay be determined by equating coefficients of like powers

of x in

¥ AR V)
Y 2 I A S s
j_ii)gi,j,k X (1 X) pik(x) ’ 14 k-1 . (L}.B)

Assuming that pik(x) has w sign variations, then (l-x)u pik(x) will
have at least w+v (see Pdlya and Szegd (1976, Probl. 30, p. 40}). On
the other hand, by (4.4) and (4.8), the latter has precisely v variations.
Hence w= 0, i.e., all cj’s have the same sign. But pik(x)>0 for x>0

and therefore cj>0 y 0Ki<Ls .
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5. CONVEXITY PRESERVING PROPERTIES OF Bﬁ

There is a sharply contrasting behaviour between Bﬁ and B;r y >0 ¢

i) While Bﬁ , having no eigenvalue > 1, is contractive, variation

fsos s . < r . < s . .
diminishing, and norm not increasing, Bn is a variation increasing

dilatation which increases the norm unboundedly as r— .

ii) For r>0 and n>2 the transformation Bi is convexity preserving
or nearly so inasmuch as the matrix Ar(n) representing it is TP or
replaceable, elementwise and arbitrarily closely, by a TP matrix. In

contrast, B;r has no such property, as shown by the example

n
.« S -ln oy 2 zz: ~l,.n,
qn(n,X) =X = BH(B‘& X !X) - = BH (X 'k/n) qk(n,X) )

which implies, by the linear independence of the qk's, that

S 0, k=0(1)n-1 ,
Bn*(x“;k/n) = {

1, =n .

Therefore, while x" is convex on [Q,i],

n=1
B;l(xn;k/n) =]—[(£_l{irl_‘) = _%f X(X-—%_—).._(x- n;l)

x=0\1 - &/n

oscillates n times about zero.

REMARX 5.1. B; is convexity preserving for each real r.

“w sl Tat t"‘c Typaat A P T AalivaS 1 A ran
nisad, let the Tunstlon £ Te dzfinzd and c¢orvax on

. - 2
[C,1]. The ordinates f, = £(k/2), k=0,1,2, satisfy A1 0. Let

k
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2. 2
P(x) = B,(£5x) = B,(L,f5x) = £y + 2Af5 x + A'fy x .

Then
_ S
1 0 o £,
BE(£5%) = B;l(}?;x) = [1,x,x2] 1 12177 2Af, (5.1)
2177 | | Kg,

= fo' +[2Afo + (1 - Zl'r)AZfo]x + Zl-rAzfo *Z

is manifestly convex for each real r.

It should te noticed that Bg is convexity preserving for every

real r, wharzas the =x2 matrix in (5.1) is not rositive for r<2 ,

much less TP.
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CHAPTER 4

THE LTMITING SEMIGROUP{-B ; £>0} OF BERNSTEIN ITERATES

ot

1. ZXISTEICZ, CHARACTERIZATION, AND REPRESENTATION OF Jat

1.1. Existence and characterization of B, actinz on P

r
S o5 : ol . . a n
In Chapter 3 the main object of study was the matrix AN+1
. n . Sﬁ 2% . P . »
representing Br acting on ~. In the terminology of the operator semi-
: it 5
a1 Fhan “n v ¥ PP $ o ) L . KOS, e = s
grou 207y { Syt _p}:d is a semigroup of positive matrices. This semi-

group was shown to converge to the semigroup of TP matrices {exp(tCN 13 t;;O}

+
where
% = 7 { -
S 1im n‘AN+l I)
N—s a2
T o i Thy 3 L o " B 2 2s pesew alig P
Tz jn—s a5 n—waw ., Unier Lhis conditlion, 1t was shown that
I
T, [nﬂ
exnt+l Y. & T3im A £ 3
XD qux+1/ Llim n?+1 1im AN+1 .
n— oo © n—s
In view of this, if we call
i T
" [t ]
w2l Lim B Vo= lin. B " 2(x)
w.i-— L1 o - L Ao (“_ A P & Ladik - A - A
n—son n—<oe




where p denotes the coefficient vectér of P€5bN and XT = (l,x,xz,...,xN),
that limit exists for any t>0 and all P€ j:)N s l.e., there exists a
totally positive semigroup {‘%t; t>0 } on jJN to itself, with 530 =T

and such that,for each t2>0 and 211 P EjJN ’

[nt] o
1lim B P~ /2P =0,
n t

Ne—e O

r
Furthermore, the operators B (and likewise Bnn . rn>0) have norm
1 since they are positive and preserve the unit function. Therefore

{‘%t; t;o} is a2 totally positive, strongly continuous,contraction

semigroup on .75 ’ {exp(tc ); t,)O} being its matrix representation
N N+l N

when we take for jJN the usual basis {xk;;@o .

The infinitesimal generator D of the semigroup gj?jt} is defined as

D x = lin (jg%(xk;x) -, k=o@)N, (1.1)
tio .

= 1lia AT.(exp(tCN_'_l - I)/t).ek
t*O0

|
S
=
><
1
r
a5
=
o
I

/4
= 4 x(1-x)(x*) ,
i.e.,

5= 2 x(1-x) 1% /a2 .
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p 2
D is a linear differential operator acting onéé(lﬁ =C7, and CN+1

is the matrix representation of the restriction of D to ‘53 .

Invoking the result of Voronovskaya (cee Remark 4.1 in Chapter 3)

we also have

D x° = lim n(Bn(xk;x) - xk) ] k = 0(1)N ,
n—cm
hence
D" =+ 2 n(Bn - I) . (1.2)
N0

The foregoing results on the existence and characterization of the
semigroup{ Jé%; 130 }are contained in the theorem of Trotter(1958) on
the convergence of the iterates of contractive mappings on Banach spaces.

In what follows, however, there will be no ns=ed of the full strzngth of

Trotter's result.

Introducing the notation

W (t,x) = fé»t(xk;x) = 1im B!Enuj(xk;x) A =0

n—zw

K
T - i
X" exp(tCy) e = iz=i bl (e (1.3)

and using the semigroup property of é"t ’

h

h-l(wk(t+h,x) - Wk(t,x)) h-l(:fah - I) W.(t,x) , RS

and, similarly,

h'l(wk(t.x) - ‘-:Ik(t-h,x)) h“l(ﬁh - I)«%t_h(xk;x) ] 0<h<t .

lsiling nv U, racalling Resark ~.5 in Jhapter 3 and using (1.1)

we are led to the following initial value problem(Cauchy problem)
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r

Il

DwW_

D’z.fk/bt I

W, = wk(t,x) ’

xk ’ Wk(aa,x) =x, (1.%4)

I

{ NR(O,X)

wk(t,o) =0 , Wk(t,l) =1

of which (1.3) is the unique solution on

Q= {(t,x)€R, : 0&x41, 04t <oal. (1.5)

REMARK 1.1. We recall, for clarity sake, that the end condition
Wk(o:,x) = x corresponds to the fact
4 ‘ r
N (xk;x) = lim.jé (xk;x) = 1lim B ™ (xk;x) =B (xk;x) =x
o) t n 1
t— ) N —s O

iff 1lim rn/n = , whereas the side conditions Wk(t,o) = 0 and Wk(t,l) =1
n— oo

correspond to the interpolating properties Bn(xk;O) = 0 and Bn(xk;l) =1

respectively.



1.2. Spectral characteristics of 5%% .

From Chapter 3 (see Section 3 and Lemma 4.1 a))

@]
il

lim n(AN(n) - 1)

n—»co

N

]

lin n(Vy(n) Ay(a)ViH(a) = 1)

n—>co

lin V(n). lin n(Ay(n) - I). lin viH(n)

nN——r n—00 N —co

. -1
Uy dla.g(-flj). Uy -

Instead of evaluating the eigenmatrix Ug = (ui.) of Cyas Uy = lim
J n—s,saK

VN(n) as in Kelisky and Rivlin (1967), we take advantage of the simple

structure of CN and use the equation

CyUy = Uy diagl=j5) o

with UN normalized so that its diagonal elements are equal to 1, to obtain

., . _—u, . . .
i3 Hs5 4 i+l,3 , i<Lj =2(1)N

mn=1i /m
0 . i
|
=<‘ 1 ’ i=j 11.5:1(1)N ’

| (9)?
C(ep)Jmid i i<
,L ( l) 3(2‘)_2) ’ 1<.) .

J=-i

REMARK 1.2. The matrix U&l = (w*;,) = lin v"(n) is obtained in a like
n—-ac
nanner. We use the equation
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1. _ .- -1
Uy Oy = diag( /.Lj) Uy

Hx

ut = —1 %

Fo F
==.f:ﬁ(/um+l
/

m=j Ul

5kl j<k = 2(1)N ’

o)

p

=41 ’ J=k ; j,k=l(l)N ’

kn2
,OGE
& (k+3-1) J<k

k=j

and we recover, once again, the Kelisky and Rivlin’s result referred to

in Remark 4.5 of Chapter 3

k —fﬁt —/St ‘
= = * = .
bi(t) = (exn(tCy))y ng Usg Wik © )—— 1,5,k ©
teration of
B, Vs =lj vi s 1<i<N<n, (1.6)
where
S
v. =v.(n,x) = > v..n)x ,
J i=1
leads to
By uy el
Vo ug e Uy (l-?)
ez j R ¢ SR
u, =u.(x) = lin v.n,x) = > (1)t - FH—1
j P = NG

-Clearly, uj(O)

of VN(n) , uj(l)

-1

= 0 and, owing to the vanishing of the column sums

= 0 as well. Thus, all the polynomials uj(x), ix2,
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have the common factor x(x=1). These polynomials are the only eigenfunctions
of J%% with associated eigenvalues exp(jﬂjt). We also note that 1 and x

are eigenfunctions associated with the common eigenvalue 1.

It follows from (1.7) that

-f%t

1 o L1 T
—'E (ﬁt - I) uj = t (e 1) uj
and, letting t+ 0,
Pus =y, (1.8)

i.e.,

x(1=x) ug(x) + j(j-1) uj(x) =0.
But,for j>O0,
uj+2(x) = X(X-l) ng(x)i

vwhere Qj(x) is a jth degree polynomial with leading coefficient 1, due

to the way we have normalized the matrix VN(n). Therefore

2

|// , -/, \ t 7 .
x(1=x) Q5(x) = 2(2x-1) 0,(x) + 3(373) 94(x) = 0,
giving

6,x) = 2t (axn) / (B3,

(1'1) +
where P 3 (x) Zenotes the jbh degres Jacobi polynomial of parameters

(1,1) normalized in the usual way, i.e., so that P§1'1)(1) = (J;I) = j+l1.

fo o)
{¢j(x)} is an orthogonal polynomial system on.[O,lJ with respect
0 oo
to the weight function x(1-x). Hence {uj(x)} is also an orthogonal
. 2
polynomial systen on that interval with respect to the weight funciion

(x(1-x))"t.
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1.3. Integral revnresentation of éé% acting on C.

Being Jet bounded and4£§(D) dense in C, then J%& can be extended
to all of C; that is,
B {nt]
tf(x) = lim B (x)

n—aoao

w(t,x)

il

exists for each f in C, aﬁd we set out to work out an explicit represen-

tation for jétf' To begin with, we assume that fééj(D). Then so is:Zétf,
because JékDf . DJé%f =-%%(5%%f) (see, e.g., Butzer and Berens (1967,%.9))
and ﬁe set up, as in Subsection 1.1, the following Cauchy problem on L)L

given by (1.5) :

[ DAt =DUW , W=W(t,x) ,

|

<, #(0,x) = £(x) , W(@,x) =B £(x) , (1.9)
[w(t,o) =f(0) , Wt ,l)=f(1)

(see Remark 1.1 on the end and side conditions).

With problem (1.4) as a guide, we expand W(t,x) into the eigen-
o=l
function system {uj(x)f » With coefficients which are functions of t
0

«©

W(t,x) = :E: c.(t) u.(x) .
r=o R

The differential equation in (1.9) now separates into the ordinary

differential equation
ch(t) + Me.(t) =0
J J J

whnich is solivad Ty
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cj(t) = Cj e .
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Our problem is now reduced to the determination of the coefficients T .

Making use of the initial condition in (1.9),

(22

f(x) = Z T. u.(x)

u.
=0 JJd
=T, c.x + T. u, .
Ty * ey _S_ S uJ(x)
Recalling that, for j>2, uj(O) = uj(l) = 0, we obtain

c. = f(0) and T, = £(1) - £(0).

0
Defining
£(y) = £(y) - £(0) = (£Q2) - £(0)) ¥
= £(y) - B; £(y) ,
we havz
y) = i ¢, u.(y) .

Multiplying both sides of (1.12) by uk(y)/(y(l-Y)). k>2, and

integrating from vy = 0 to y = 1, gives

1.
_ 2(y) u (y)
Cx = _h;{ 7(1-y) dy , kx2 ,
0
where
12
. / uk(}’) k-1
by T STy Y T T B
k 5 y(1-y) k(Zk—l) (2.’{1{“)2

(1.10)

(1.11)

(1.12)



98

Finally, we obtain

[2=)

Z;f‘j" ) u,(v) 4
W(t,x) = £(0) + (£(1) - £(0)) x + ZY uJ-(X)[ y(l_y) '
J=2 7] 0

or, which is the same,

l .
B, f(x) + f G(tsx,y) (£(y) - B, £(y)) dy , (1.13)
0

B, £(x)

where
\ -f&t

Q
1 e J ‘
G(t3%,y) - §j=2' p us(x) us(y)

o =Mt
= : S . x(x-1) P(.l'l)(zx-l). y(y-1) (.l'l)(zy-l)
y(1-y) 30 P2 (2342 J (2372 J
J J
-t N _
= x(1~x) éid H e Y Pj(x) Pj(y) , (1.14)
j=0

with

g = (372)(25+3)
3 1

J+1)(J+2) _

(1,1)

Pj (2x-1) .

: P;f(x)

The restriction that f should be in:éé(D) can now be removed as the

representation (1.13) is clearly valid for each f in C.

Since ”’t 1) = £{0) and £££ £(1) = £(1), there is no loss in

generality in assuming that £(0) = £(1)

0. In this case
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1
By 1) = [ cleixy) 20 ay

REMARK 1.3. For any t>0 and all f in C, the function U(ét f(x) is amalytic
on 0xg1. Indeed, consulting (1.14), the factor exp(-mjt)

makes convergent not only the infinite sum representing G(t;x,y) but all

its derivatives of a.rbitra.ljy order, with respect to t or x, for all t>0

and 0Cx <1,
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2. SMOOTHING EFFECTS OF &ét

LEMMA 2.1. For each fixed nonnegative t, the kernel G(t;x,y) of the

transformation jét is strictly positive in the interior

of the unit square S, = { (x,y) €R,: OLx,y1} -

PROOF. Using the orthogonality of the shifted Jacobi polynomials
appearing in (1.14) we see that

1

S etsixayy) Gltsyyy) @y = a(sttin,y) - (2.1)
¢}

It is also easy to show that , for k1,

G(tix,y) = flfl--- f

t
G YY) dy,dy,-..dy; -

1

[

it T
( E—T:]—_;x’yl)'c"' m;yl,yz). 800

The kernel G(t;x,y) is clearly continuous on S, and, along the
diagonal x=y, it is everywhere positive except at the endpoints. Hence,
there exists a neighbourhood of the diagonal, say g =5 {(x,y): jx =¥y« e} o
in which G{t;x,y) > O. Now, for any point (x,y) in S,s there is a finite
set Ys¥pse+»¥, such that all points (x,yl), (yl,yz),...,(yk.y) lie in
J¢ . The strict positivity of G(t;x,y) for any t>0 and all (x,y) in S

2
except at the corners x=0 and x=1 follows now readily from (2.2).

We have borrowed this elegant idea from Karlin and lcGregor (1960).
T R s g ! e T e e b Ty R
Ma 2.2, For each $30, G{Lix,y) 4s  atricstly totally positive
in the sense that if m is any positive integer,

O(xl<"x2(...<:_xm<l, and Q<y1<-:y2 <...<ymg1, then
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’G(t;xl.yl) .es G(t;xl'ym)

XqpeeesX . .
G(t; 1 my = ) . >0 .
ylv-OODym

G(t;xm.yl) ces G(t;xm,ym)

PROOF.In terms of the determinantal polynomials

B (xl) ... P (xm)
% [Dyreeesn M. y
P m) = - ’ ’ Oén].(... <nm,
XypeeosXy : :
P:m(xl) ces P:m(x,l)

there is a representation

G (t; xlhmx‘“) = %y (1mxy) oo x(1-x))- z H ...H .

coo 1 m
Fyoee-¥p Ogn -y
-(a + .. +an )t % nl'-'- ,nm ¥ nl,-..,nm
e M m P P
) Xl,...,]{m yl’oo-’ym

analogous to (1.14). In correspondence with (2.1) we also have

1 1
X pesesX X peeearX Br peenyl
G(sﬂ',; 1 m) - f f G(s; 1 m G(t; L “‘)
yl,...’ym 0 O Zl,---,zm yl'...’ym

. dz dz
m

1..-

Using this and repeating the argument we used when dealing with the
case m=1 it follows that G(t;x,y) is strictly totally positive on the
unit hypercube except at the corners whexe xi=0, i=1(1)m, at which

o~

L ee e ] araa?
SN vy s VROLLIDSS,
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THEOREM 2.1. The semigroup /3, ; t» O} is variation diminishing.

PROOF. For singular integrals, variation diminishing and total

positivity are equivalent properties (see Butzer and Nessel

(197].' P 150).

REMARK 2.1. As an iﬁmediate consequence of this result, all the
shape preserving properties of the Bernstein operators
carryrover to the semigroup {éétf . In other words, the graphs of f ard
Jatf have the same shape. In particular, if f is monotone or convex, so

is .Btf.

REMARX 2.2. An immediate consequence of (1.13) is the invariance

of 513 under 9. From this and the positivity of
{8,5 t>0} it follows that||3,
iterates of nonnegative oxder.

| = ”uﬁt 1|l =1, just like B_and its
i li n
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3. APPLICATIONS OF fa‘t

3.1. Saturation theory for the Bernstein approximation in C.

The Bernstein saturation problem is to determine a positive, non=

increasing function ¢n (the gsaturztion order) with the property that ¢£¢ 0

as n—o and to characterize two classes S (the saturation class) and T

~

(the trivial class) of functions £ in C such that

B (fix) - £(x) =0(g )  iff fes
arnd

B (fix) = £(x) = o(;én) iff feT.

The class S consists of all functions f in C optimally approximated
by an, i.e., no higher order of zpproximation than ¢1 can occur except

for T, which B_ leaves intact.

K. de Leeuw (1959) was the first to solve this problem following
the Voronovskaya’s result that the boundedness of f on [0,1] and the

/
existence of f'at a point x € [0,1) implies

4

Bn(f;x) - f£(x) =i(—21-§x—)- f(x) + o(1/n) (3.1)

and the Lorentz’ (1953, p. 22) conjecture that the relation
Bn(f;x) - f(x) = o(1/n)

cannot be true for all x¢€ [a,b]C iC,1] unless f is a linear polynomial
on [a,b]

An improved solution (in the sense that the behaviour of the saturation
order near the endpoints of [O,l] is taken into account) was given by

Lorentz (1966, p. 102) through an involved, functional-analytic technique.
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There are two alternatives to Lorentz’ approach to the theory of
saturation of linear positive algebraic polynomial approximation operators,

these are

a) The parabola technique of Bajsanski and Bojanic (1964) where

asymptotic relations of Voronovskaya’s type (3.1) play a major role. See
e.g., DeVore (1972), Lorentz and Schumaker (1972), and Berens (1972) for

further developments and applications.

b) The overator semigzrouv method, first applied by Karlin and Ziegler

(1970) and Micchelli (1973). Here,the idea is to derive from a given
sequence {Lh} of linear approximation operators a continuous semigroup

{Tt; t>>0} by taking limits of appropriate iterates of Ln’ namely, LG,
wnere rnﬁd-—’ t>0 as ne—sa, ﬁn being the saturation order. The saturation

properties of {T,} are shown to be the same as those of /L } and saturation
t n

for a continuous semigroup is well established in Butzer and Berens (1967).

THEOREM 3.1 (Lorentz-Micchelli). For f in C the following statements

are equivalent :

(1) |£6) - £ ¢ufx - v . ogxygl s

(ii) an(f;x) - f(x)lg—g—n-x(l-x) sl , Osgegl ;
(113)| By(£ix) = £() <5 x(1x) » €30, 0Lx< .

Moreover,

Bn(f;x) - £(x) = o(x(1-x)/n) iff fc 5:? .

e A

D327, Sze G. Loxeabz (1586, p. 132) for the equivalence of (i) and
(i1) of which the last assertion is an immediate consequence,

and C. Micchelli (1973) for the equivalence of (ii) and (iii) and (iii)
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and (i).

To sum up, the Bernstein approximation procedure is saturated with
order x(1-x)/n, trivial class SD, and saturation class S consisting of
7
all functions f in C for which f exists and belongs to the classical

Lipschitz class Lip 1.

3.2. Characterizations of convexity.

THEOREM 3.2 (Karlin-Ziegler-Micchelli). The following are necessary
and sufficient conditions for f to be convex on [0,1]:

(1) Bn(f;k/n)}f(k/n) y, k=0(1)n; nxl ;
(ii) Bn(f;x);f(x) , nzl ; 0Lx Ll 5

(111) B (£x)p£(x) , t30; 0gx<L .
PROOF. See S. Karlin and Z. Ziegler (1970) and C. Micchelli (1973).

The next result involves convexity and monotonicity.

THEOREM 3.3. Iet f€C then f is convex on [0,1] iff, for all O0LxK1

and Osgssgt,

B,e(x) 3 Brx) (3.2)

ZROUE. If £ is convex and t>s, then, by part (iii) of Theorea 3.2
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B, F»£) , ogx<l,

and the necessity part follows upon application of J%s to both sides of

this inequality.

The sufficiency part follows at once from (3.2) on letting s {0 and

using part (iii) of Theorem 3.2 once again.

3«3. Linear overators commutineg with Bn'

Let T be a linear operator mapping C into itself and commuting with Bn :

TB =BT.
n n

The characterization of such a transformation was first given by
Konheim and Rivlin (1968). It was given later by Karlin and Ziegler (1970)

as an application of the iteration method.
Defining # =T (I - Bl), then Karlin and Ziegler’s result is that
we(x) = a + bx + cf(x) + af(1~x) ,

where a and b are linear functionals on f and ¢ and d constants depending

on B .
n .

See Subsection 3.6.3 for a detailed extension of this result to

functions of two independent variables.
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3.4. Saturation theory for de Leeuw-like orverators.

We call de leeuw-like operators the following polynomial approximation

operators defined for f in C by

N«
K (£ix) = géé 1, (£) g, (n,x)

with
=0
(0) +1/(2n) .
i:k(f) = {n £f(k/m + t)at, k = 1(1)n-1 ,
-1/(2 '
£(1) 1/(zn) , k=n.

an generalizes an, which corresponds to the point evaluation
*
functionals lnk(f) = f(k/n), and has been intraduced by de Leeuw (1959)
in his treatment of ths Bernstein saturation problem. Actually, de Leeuw’s

definition is slightly different,viz

n-1

*
2. 1 .(f) q .
k=i ok TR

He has shown, through a number of lemmas, that these operators possess
the same saturation properties as those of Bn and we show here, as another
application of ths iteration method, that the same result halds for the

b7

operators Ko

IEMMA 3.1. Tor each f in C

Kn(f;x)-'—--f(x) as n—» @

unifornly in 0«41,

PROOF. Let us compute Kn(fi;x), £, = x*, i=0,1,2.
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. %
lnk(fo) =1, k=01Q)n ;
+1/(2n)
>*
1.(f) =n (k/n+t)dt =%k/n, k=002)n;
-1/(2n)
O ? k = O
* k \2 1
1 (£,) =4 (=) + , k=1(1)n-1
nk‘* 2 n 12n2
1 . k=n,
Therefore,

n
K(fgix) = > q

n
&k s
(1) = 3 T a(mex) =x

k=0

n-1 7
K (£,5x) = > ((£)%+2 ) a,(n,x) +x"
nv 2 F—t n 2 k

=1 12n

1 n n
= B (f,;x) + 1-x =-(@-x))
n‘ 2 12n2

- x2 B x(1-x) + T
n

-0 - x)B
5 a (1 - )"

—_— XZ » uniformly, as n—sco,
and the result follows on appealing to the thearem of Xorovkin (1960)

on the convergence of sequences of linear positive operators on C.

We turn next to the limiting semigroup of the iterates of the

operators Kn.

Loiia 3.2. For t>»0 and T in G,

(nt]
lin K f-a’%tfH=o.
nn—o0
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PROOF. For g in Cz.

el +1/(2n)

Ko = Byles) = > (nf (gl + t) - e(i/n)) at) gy ()
~  -1/(2n)
el +1/(2n)

=2 (nf (el #)-s(e/n)gle/a)t) a8) qln,x)
= S/(en)

1 +1/(2n)

lell 2 n-l
K (g5x) = B (gix)|< ( n t7dt ) ), q(n,x)
k=1
sl
< ’
24n
whence
“K g~ 3B gu=0(1/n2) .
n®-" “n
Making use of the identity
- - - -1
uk-vk=(u-v)(uk1+uk2v+... +uvk2+vk‘)

and of the fact that both Kn and Bn have unit norm, we conclude that

I - ot < e -2

= O(k/nz) .
For k = [nt], t>0, n— o, this gives

lim “Kn[“*]o - -%tg “ =0

Ne—s»co

. . 2 . 2. . .
for eacn 3 in C7. Zut C7 is dens2 in C and the result follows.
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The next result shows that Kh and Bn have exactly the same

saturation properties.

THEOREM 3.4. For f in C the following statements are equivalent:
/
(1) felip 5 [0,1)
(11) n |K (£ix) = £(x)|<5 x(1x) + o(1)

where o(l)l 0 uniformly in 0x(1l as n—sco.
Moreover,

K (£ix) - £(x) = o(1/n) iff fe R .

PROOF. (i) =>(ii). We follow the analysis in Lorentz(1966, ». 102)

to obtain
£(x) - £(y) - fI(X)(x-y)‘é—g- (x=y)°.

Let y be fixed but arbitrary. Being Kn a linear positive operator which

preserves 1 and x, then

| 260 - (i) [ B K (o))

L (x(1x) + 3= 8,(x))
with

g (x) =1 - x" = (1x)"

and (ii) follows since Oggn(x)él for all n31 and 0<x<1.
(11)==(1). Since

2y (mydix) = (1 = 1/a) x(1-x) = === 3 (%)



111

and, for r in N,

r-1 .
Ki(f;x) - f(x) = 320 Kg( an-f:X) '
then

=2n ‘j=0

-1
K(e) = 20|75 2 KROLy) + o(1)ix)
, o
< (1-4) x(1mx) +5E o(1) -
Taking r = [nt], t30, n—> @, and using Lemma 3.2, gives

-gt(f;x) - £(x) é%t'-x(l-x) ,

and (i) follows by Theorem 3.1.
The last assertion is equivalent to

Kn(f;x) - £(x) éen/n

with en‘; 0O as n——so , then f¢ Lip :eL [0,1] » and since en>0 is arbitrary,
n
" is constant.



3.5. Apnroximation of smooth functions bv volvnomizl operators of

Micchelli’s tvoe.

LEMILP?.:}. Let T be defined and nonnegative on [0,1] then

B (V£

x) L Y B (fix) |

e

PROCF,

Bn(\[; 3 x) = kio\]f‘k qk(n,x) I £(k/n) ,
= % (£ 2 (nx))2 (g, (n,x))2 .

Employing the inequality of Cauchy-Schwarz we may write

n

B (VT s x)<

&5 fk qk(nvx))z (I; qk(nlx))z

<(Bn(f;x))% .

let w(f;8) be the modulus of continuity of f€G, i.e.,

w(£38) =  sup |f(y) - f(x)| , &>0.
O0«Lx,y<£1 i
Ix=y| 8
The subaddizivity of w(f;é) as a2 function of § implies that
@ (£8) < (1+N) w(£;5)

for all)\s > O (see Lorentz (1966, p.44)).

Micchelli (1973) states without nroof ths following

112

(3.3)
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IEMMA 3.4, For £ in C and N in N,

(3, - D60|<3 @ - Datea™

PRCOF, Since
N
(3, - DV £(x) = £(x) + > 1) () B(x) - @D 2(x),
then

N
|<Bn - DV 2| <3 Q] - ) 26

For x,y€ [0,1] and & > O we have
!f(y) - f(X)[Sw(f;[y-xl) = w(f;'-%ﬂ:g)
I
<(1 +5lyx]) o(£53) , by (3.3).

In this inequality we assume that x is fixed but arbitrary. Since Bﬁ

is a positive operator which preserves constants, we obtain

<Q1 +-‘:5L—B§(iy-XI;X)) w(f;8)

B2 (£(y)ix) - £(x)

g(l + . _1_) “(fi5) ’
26n2

after observing that 3y—-x| = +#(y-x)2 and using Lemma 3.3. Therefore,

N
(3, - DY £ !_gcg_l M) @+ L Y u(e;8)

26nz

-l
and the result follows upon taking 6§ =n 2.

i =1, Lemma 3.~ contains the Povoviciu’s result that,

for each f in C and n in N,



=
I~
=

“an-f “ é—g-w(f;n'%) .

This inequality has been sharpened by Sikkema (1961) and Schurer and
Steutel (1976,1977), who have determined the best possible constant for

f in C and f in Cl respectively.

Micchelli (1973) has introduced and studied the approximation

properties of the operators

_ N
Tay =L (1 - Bn) , n,NEW .

Along the same lines, we introduce and study the operators

Uy = I+ A(Bn) ’

where

N
A(Bn) =:'lj% (Bn ')\kI) ’

AO = kl =1, Ak =1 -/ﬁaﬁl*‘O(n—l) s (g) ’

the Ak's teing the eigenvalues of the matrix AN+1 representing Bn acting
on ¢ .

Unlike Micchelli’s, our operator preserves 5? . Indeed, for each

= y% -
a(B,) B(x) =x" A(Ag,;) p=0
by Cayley-Hamilton theorenm.
e oo _ N+1 .
Having the fact that z&(Bn) = (Bn - 1) + o(1) and Lemma 3.4 in

nind, it appears that Un 1t provides no better an approximation to any
?

f in C than an itself. However, this is not the case for sufficiently

e
,—-‘--A‘ Y —

smooth functicas. Indsed, for £ in C » 1t follows from (1.2) that
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A" a(3)— T (0 +pD) = 4(0)

k=0

as n— o and thus

. N+l - +) =A
lim n (Un,N+1 1) £(x) (D)e(x) .
N —p 0
. .. + R
Thersfore, the order of approximation of f€ 22 by U pof is 0(1/n H-l) .
?

whereas that of f by an cannot be improved beyond O(l/n), no matter

how smooth f may be.
- 2N+2 . .
The abtove condition that f£C™ may be slightly relaxed. To this

end, let X denote the subset of C consisting of functions f such that

f(2N+1) €C and f(2N+1)

Ty yenny €Lip 1 on [0,1] .

THEOREM 3.3. For f in K,
N+l ) =
nn (U g (F3%) = £(x)) = 0(1)

uniformly in Ox 1.

PROCF. This follows from the observation that
A TA(B) £(x) = (a(3 - 1) + 0(1))" £(x)
and the. fact that |
nk(Bn - I)k f(x) = 0(1)

for every k in N, uniformly in 0<x<1 (see Theorem 4.4 in Micchelli (1973)).

THE03EN 3.5. Let £€C and N Te a nonnegative integer. If

A U, g (£3%) = £(x) &5 Mx(1x) + o(1)
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. : v (2m+1) S
uniforaly in 0&x«£1, then f, £, ... , T €C and (]—[(D / kI))f
k=1 .

has a continuous extension to [O,l] whose derivative is in Lip n -

PROOF, Since, for r in NN,

r ro. _ -
B - )k.:I = Sk(Bn - Ak 1), k=o()N,

n
with
=1 ]
-j=1

Sy = Si(n,x) = ‘JZO _lk B, U

then
r =

A(Bn) SA(Bn)

with

. 4
A(B§)=I—E(B§->\il) and s=:|—[sk.

1

Setting v, = vz(x) = x(x=1), then

S, v

2 2=r)~§-lv

r T
sz"rkg-lﬁ(‘iz——zk') ) v,
k=G. 2 X
k#2
and
A £t <|sA@,) £
e n2=1 TN\
' A N AL -
2 2k N+L
<—=— [ [ =5 x(1~=) + o1/ ) .
20 %5 (n(."z - kk))
%2
For r =1, = int,, t»0, n—>cc,
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> Ar-l .
= 2 —»tet =t -o(t) as tio
);-Xi e-/‘(zt—e}ikt ( )
— =t +o(t), k#2,
nOg -3 fo - A

and
ary HFL
L (x(1-x) + 0(2))

lA(ﬁt) £(x)
with

N -4 %

A(:ét)=g<ﬁt-e/"k .

That f enjoys the differentiability properties stated in the theorem

follows now from this inequality if we let O0LaLx«£b <1, define

A(B,) £(s)

%s(l-s) ds ,

1
g,(x) = N

a

and follow the lines of the argument used in the proof of Theorem 4.5

in Micchelli (1573).

COROLIARY. Let f be a real-valued function defined on [0,1] and N

a nonnegative integer. If

TR, e (Ei%) = £(0) | = o(2)

o~ 3 ooe . . ~ =
unifornly in OLx 2, then £ is & linear polynomizl on O,1/.

/ nN*i

N+1
r € ,

o) sl <] <

n
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with znlO as n —a. Choosing r = r, so that rn/n——rooand (rn/n) :nlo,
1im AR £ = (3, - 1)? Bir-lf =0,
ni—> o n

from which it follows, by the idempotency of Bl’ that £ = Blf, il.e.,

f is a linear polynomial on [0,1].
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3.6.Iterates of multivariate Bernstein polynomials:

Propaerties and applications.

. . *
3.6.1. The bivariate Bernstein onerator Bn acting on N
N

The generation and approximaiion properties of N-dimensional Bernstein

polynomials Bn(f;SN;g) for £ in C[Sﬁ] have been considered in Section 3

of Chapter 1.In this Subsection emphasis will be on the bivariate Bernstein
t B*P( ) = ( ) ; P t the 2-di

operator B Plx,y) = Bn,n P,Sz,x,y acting on NN as mnost of the Z-dimen-

sional results extend to any finite number of dimsnsions without essential

difficulty.

The bivariate polynonial

K
P=2(y) = 20 by
1,5 '

i3 D
XY €¥y,n

can bz writien in matrix notation simply as

T 2 N T 2 N . s
where X~ = (1vxrx poesyX )’ i = (IIYsy yeeesy )9 and p =(Pij)' 1;J=0(1)N:
is the (N+1)x(N+1) coefficient mairix associated with P. In this compact

notation we have the following

" IEMMA 3.5. For P as above

* T T
B P=X AN+1(n) P AN+1(n) Y.

PROQF.

i

o e : :
3,(x"y7ix,y) = 3 (x7ix).B (y5y)

T T
=X AN+1(n) e;.¥ AN+1(n) e



*o i d, =
Bn(x Y ’X’Y) N+1(n) ” N+l(n) Y!

where Hij = eiag 'is, of course, the (N+1)x(N+l) zero matrix with a 1
*
in the (i,j) position. Owing to the linearity of Bn, the result follows

on multiplying both sides of this equation by Pij and summing over i

and j:
N
* T T
B P=X AN+1(n) (_1 Ej=0 P; 3 Mij) AN+1(n) Y
, _

LT
4 K AN+l(n) D ! V+1(n) Y.

IEMMA 3.6. For P in

N,N
* *
lim n(B. P~ P) =DP
N ~— O n
with
2 2
* o) )
D = $x(1-x) S5 + fy(1-y) 2 .
ox oy

PROOF. A simple computation reveals that

T _ T
AN+I(n) Mij ANﬂ(n) - Mij = (ANﬂ(n) - I)M,. (AN+l(n) -I) +

ij
T
(ANﬂ(n) - I) mij + M.lj(Ah,ﬂ(n) - 1)
and that
lim n(A, .(n) M AT (n) -M..)=¢C M, . + M., CE (3.4)
o UNHL 1j “neL ij N+L ij 0 Tij UN+L .
Now

i S 3
KiCyy Hy; Y =y? x7C

2
= —-X(l-X)— (xiyd) .
ax



Multiplying both sides by p.. and summing over i1 and j yiels

1)
. 2
T - 1(7-w) O P
XCuy 2 Y Ix(1-x) axz .
In like manner,
T, AT = I
X ‘lijCI\H-l Y=Y CN+lei X
R R
=x" Y CN+1 ej
= 3 (™ - uyd)
/uJ /q.)
2 J
= %y(l-y) (x ¥)
3y°
and
2
T T = 27{7 9P
X 1Y C\I‘?'l = 2«)’(-‘- y) ayz b

The result follows now readily on performing the foregoing operations

on the left side of (3.4) and aprezaling to Lemma 3.5.

* *
REMARK 3.2. Owing to the linearity of the operators Bn and D and

* TDhH A2
to the facts that ||B {|=1and U is dense in C [S] R
n N=0 N,N 2

lin n(B, £(x,y) = £(x,3)) = D't(x,7) (3.5)

n— m

uniformly in S2 .

' This should be confronted with the result of Stancu (1963 b),1964)

that

x(l ~<)

8, £(xy) - £(c,y) - o) + LG ) +
y

- ) V)
x(1-x) é(l Y) l (Ev’l) , £,ne(0,1) .

Ln x
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3.6.2. Iteration of Bn and the limiting semigroup Jét . t>0} .

Using Lemma 3.5 and the results obtained in Section 4.3 of Chapter 3

r
, n
on the matrix A

iy (), it follows that

* % T
-"ét = lim (Bn) n
n

— D

P

exists as a linear positive contraction operator on N
’

N to itself iff

rn/n—> t>0as n—w.

For any P in 55

vy Leb p be its coefficient matrix. Then
N,l

&* T .. Tn Th 7
O P =X n}imm AN-i-l(n) D (AN+1(n)) .Y

XT[exp(tCm_l) D (e:<p(tCN+l))T:lY . (3.6)

If t=0 then, clearly,

0

B -5, ie., 3; =1, (3.7)

If t—— = then

r r
. , n \ . (s D1 T_*° @ T
lin “H+1(n/ 2 ““Nfl(n>) AN+1 D (AN+1)
n——sw
P = :
00 << Poj |
J= ;
’ -
f
N N_‘ i 0
= | 2 Pg 2Py |
i=1 1,= |
e e e e e
0]
- D
P(0,0) P(0,1)-2(0,0) :
¢+ 0
t

= P(1,0)-2(0,0) P(1,1)+p(0,0)-2(0,1)~P(1,0)
e e e e e e o — - — = J——

B 0




=t
N
D

and

J%iiP(x,y) = n{ETDO(Bz)rn P(x,y)
= p(0,0) + [P(l,O)-P(0,0i]x + {P(O,l)-P(0,0) +
[P(l,l)+P(0,0)-?(0,1)-?(1,0)]x}y
= P(0,0)(1~x)(1~y) + 2(0,1)(1-x)y + P(1,0)x(1-y) + P(1,1)xy

¥*
= B, P(x,¥)

the bilinear polynomial interpolating P at the four corners of the unit

square.

It follows from (3.8) that

: T
A * _ T (s+£)Cxp (s£)Cyy
Lot P = Ple Y
sC tC tC sC
- XT{e N+1[e N (g N+1)T](e N*i)T}.Y )

0.3
We have, in the right brackets, the coefficient matrix of Jat P and, in

A%, A%
braces, that of d?s(jét P). Therefore,

~<% * %
v:s+t ? = J%gJﬁt z . (3.8)

It is also easy to see that

tC
N+1.T
(e T . T

tC
17 Cya _
t° D ] “Cpa P TP Oy

1im
t 4o

\.

and

. 1 % T T
ll!m ':E' (V’at - I) P=X (CN+1 P + P CN+1)Y
t*C
*

=DP. (3.9)
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With the results (3.5) - (3.9) and Remark 3.2 in mind, we may assert
the existence of a totally positive, strongly continuous, contraction

% . . * .
semigroup{i@t H t;;O} on C[S J with infinitesimal generator D acting

2
on C° [52] and such that, for any f in C[S, | and 2ll t30,

nt
lim (B:;) ]f = -3: T .

n——»co

(%
We now proceed to determine an explicit representation for jat f,
fEC[S,)] » - by working on the lines set out in Subseciion 1.4 and omitting

the details.

Introducing the notation
. - R* KR
W (by) = Ay (Y ik, y)

we are led to the Cauchy problen

o , *
= W_(t,x,y) =D W_(t,x,y)
dt "km . km k,m=0(1)N ,
W (0,x,y) = xy"
km
whose solution is
£C,. tC
w e v ,T _UHHL N4L\T
‘.!I‘G_nku,‘(,y} X 5] ‘IIGE (e ) Y
L. 3 N :
= (22 05, (8) %) ( (8 ¥7)
i=0 j=0 9°
Now let
8 = Bpoy) =y (). (v) ,  km=0Q2)N . (3.10)

Thon

Bila,xy) = B (uix). B sy)
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lu

Mt -Ut
e ' E uk(x).e F um(y)

~(u +M )t
=e Gt 8 (K0¥) (3.11)

and

D'y, = ~(f Mg, .
km /&c/m km

Setting
*
W(t»x’y’) = éz(f;xvY) ’ on?),(D ) ’

we find the Cauchy problem

{—'g"{'w(t:xv}’) = D*I"I(tvxv}") .

W(O,x,y) = f(xv}’) ’

which can be solved in much the same way as in the l-dimensiomal case.

Ve have, successively:

o

> e (t) g (6y)

k,m=0

@ =M, )t
- S e TR () s
k,m=0

u(t,x,y)

(5]

$Gay) = D B, (o)

k,ET:J
@

=G0 TGt T Co¥ T T kzm=2 S By (%r¥)
»

= £(0,0)(1~x)(1~y) + £(1,0)x(1-y) + £(0,2)y(1-x) + £(1,1)xy

x
+ Z_ Cpp Epen (X0 )
kym=2

[} (e s

* —
= Bl f(x,y) + RE;-;:: ckm gkm(x’y) H
- ’ —



F(&,m) = £(g,m) - B, (£3£,7)

= Z EIGTL gkm(E'n) H

k,m=2
L e w® ) -
T =TE[“‘E"’)su—z) e A fenz2
-,

3:(f;x.y) = B;(f;x,y) +f G(tix,£) G(tsy,n) T(&,n) at an .

Sy

The analysis carried out above can be easily extended to the N=

dimensional case yielding the following

il 3
THEOREM 3.7. There exists a semigroup {f’f‘)n i t>0} of class (CO)

on C'S, such that

r
lin (B:) Do g

n—-o

*
iff 1lin r /n—st%O0. The semigroup {A, } is totally positive, contractive,
—scc

generated by the linear differential operator

N 2
* .
D= 3o ax() &5

i=1" Byz

i
which is such that
* *

lin n(B £(x) - £(x)) = D £(x) (3.12)

n—o®

uniformly in x in S’N provided that fe 02 [SN] » and given by
i

B, (£3x) = 3] (£3x) +f K(tixx) (£(n) - B(£5y)) ay

[
[l

. N
with
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H
K(ti?L’X) = n G(tixityi) ’

i=1
and

1 = ~rkt
- = — e
i=1(1)w,

*
with the u’s and h’s as in Subsection 1.4. Bl(f;z) is the multilinear
polynomial interpolating f(;) at the vertices of SN and is such that
* T *
lin (B)) Tf =B f iff linm r /o=,

1

n—o Il o

COROLLARY 1. For f in C[SN}

B £(x) - £(x) = o(1/n) => 1 = B;' £ .

' *
PROCF., The left side of the implication means that Bn f-1f = er'l/n

with enl 0as n—»o . Let {rnl be a sequence of nonnegative
integers such that rn/n——-»ao and rnen/nl 0 as n—>o. Then
B £-f£f= 1i_m“(B*)rn s-1l| ¢lin r I'B* f-f£l=0
I | (B) D E TR E By £ O

t
N—co | N~

.
GO
7

¥
In other words, the trivial class of Bn is ‘1 1 * the subspace

,1,-.0,

of li~dimensional polynomials linear in each variable.

¥
As an immediate consequence of the fact that Bn is a positive operator
which leaves Jf 1 1 invariant we have the following
? prrey .
COROLLARY 2. If f in C[SN'{ is convex on Sy then
. *
(1) B £(x)yf(x)y np1, =xesy;

Lay r* o
(11) Z, £(x)>2(x), 30, x¢5;




PROOF. Let y in S, be fixed but arbitrary then there are real

N

constants CyseeesCy such that
_\_Il
£(x) >E(g) + iéi_ci(xi-yi) y XX ESy -

*
Applying Bn to both sides of this inequality gives
* -
B (£(x)sx) »£(z), 2ll x in Sy,

and this, under iteration, yields (ii).

*
REMARX 3.3. If D f = O on some subset F of SN then, clearly,
*
B (fix) - £(x) = o(1/n)
and it is interesting to note the following consequences of this fact:

*
(1) The only solution of D £ = O with continuous second derivatives

*
on SN has the form 31 f.

(ii) The local saturation class theorem that, for each g(x) in C

and 0<a<x<b<1,

It

E (5:5%) - g(x) = o(L/u) => &

n Blg on ia,bJ

L
(see de Leeuw (1959) and Bajsanski and Bojanic (1954)) is not true for

*
B ; that is,
n

I
P

f on F ,

B:(f;a) - £(x) = o(1/n) b £

vhenever F is a closed subset of SN. Indeed, if g~ gl(x) and g,= gZ(y)

~

are sone nonlineexr %vice continuously differsntiable functions satisfying

D(gl;x) = gl(x) on 0<agx£b<1



and
D(g,sy) = -8,(y) on 0Leydl,
then
£ = £(x,y) = g, (x).8,(y) £ B £
and yet

Df=0 on F= [a,b]x[c,d} .

COROLIARY 3. For f in cz[szj the following statements are equivalent:

W ||, xesys

(11) n |3, £() - 2(x) |<H + (1) , xSy s

(111) | @] £(x) - £(@) | Lt . x€S,;, t30.

PROOF. (i)=—=3(ii). Immediate from (3.12).

(i1)=(iii). For ré&n,

B 20 - 1| <= |3, 2@) - £ [giiz/n + o/n)

and (iii) follows upon taking r = r, = [nt] , t20, n—v s .

(iii)==>(i). Inmediate from the fact that D f = %iné (3: f-1)/t.



3.6.3. Linear overators commuting with bivariate Bermstein polynomials.

Iet T be a linear operator mapping CE321 into itself and commuting

*
with B
n
3 *
TB =BT .
n n
Owing to the density of the space of bivariate polynomials in c[szj, it

suffices to require this to hold for polynomials.

et fec[sﬂ{ and (6,¢) be any of the points (0,0),(0,1),(1,0),(1,1).

~

We show first that

5 R
1" “n~1°

Indeed,
* _* N
B B f(x,y) = B; £(x,y)
*
as Vv is left invariant under B_, and
1,1 n
*

By B, £(x,7) = B, £(0,0)(1-x)(1-y) + B £(1,0)x(1-y) + B, £(0,1)(1-x)y

+ B: £(1,1)xy

~
since 3 (6,¢) = £(6,¢) .

It is now easily seen that the linear operator

w=T(I-B:)

* %
1 = %
WB_ =Bl (3.13)
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and

we(0,¢) =0, (3.14)

I3

which imply that W anihilates 5’31 | - Indeed, if g¢ 72 L+ then Vg =
’ ?
* * . . . . * 95
VB g = B g, i.e., Wg is left invariant under B_ and thus Ug¢ .
n n n 1,1
Property (3.1%4) now implies that W3 = O and,since g is arbitrary in

o R
Jl,l’ &'h/l’l = 0,

*
Tteration of B in (3.13) 1leads to
A* L3
‘{jt=‘é.tw' t>01

and application of W to both sides of

~(u.+M4.)t
57 & =p(fpl/’3)g
N Tt B 1j o
vhere 815~ gij(x,y) = ui(x).uj(y)‘are, for 1,j>»2, the only common eigen-

% .
functions of :5t corresponding to the eigenvalues exp(-gﬂq+f§)t) (see

(3.10) and 3.11)), gives

-u+u)t

JJ.t(Ug ) = / - /J (ngj) ?
whence
ngj = Cijgij ’ i’j>2 ’

for so=m=s constants Cij' Recalling from Subsection 1.3 that

uy(1ex) = (D), sz,

we find

By(u; %) = 3, (1/3)x(1-%)% + 3w, (2/3)%(1%)
-3 (1/3uy(x) ,  if i even

6ui(1/3)u3(x) , if i odd ,
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and

B; ngj(x,y) = ¢ 3(u 3x).B (u 3y)

-

9gij(l/3’l/3>°ijg22(x’y> + 1if i even , J even,

if i even , j odd ,

if 1 odd , j even,

~185; :(1/3,1/3)e; 5845 (x,¥)

%gij(l/s.l/s)cingB(x,y> , if i odd , jodd ,

On the other hand

e

9gij(l/3,1/3)022g22(x.y) y, if i even , j even,

. —18sij'(1/3.-1/3)023823(x.y) , if i even, jodd ,
¥ Bag, 5(x,y)= ﬁ

[TY

‘18gij(l/3»1/3)c32g32(x1Y) » if i odd , even,

36gij(1/3,1/3)033833(X,y) , if 1 0dd , jodd .

Use of classical properties of the shifted Jacobi polynomials of parameters
* ¥*
(1,1), P (x), shows that Pn(1/3) # 0 for all n. From this we infer that

gij(l/B,l/B) # 0 for all i and j, and therefore

Cos if i even, J even,

23 , if i even, J odd ,

c. .
1
032 y 1if 1 odd , j even,
{ 033 , if 1 odd , J odd .
Tet £(x,y) bs any polynomial. Ve may exprass it in the form

f(x,y) = BJ; £(x,y) + Z 8; (x,y)

1,522 J



Then we have

Toay) = £0ay) - By £lay) = D ar. g :(6y)
. = J°ij
i,j>22
and
We(eyy) = WE0or) = 2 xi3we; (%, 7)
ey J
1132
= -+ +
2 Zgp * 23 2oy F Cqp Zyg t O35 297 0
200, 201, ElO’ and Ell standing for the summations over i and j even,

i even and j odd, i odd and J even, and i and j odd respectively.

Owing to the symmetry properties of the basic functions gij' these

sumnations are given by

3-

ZOO =f%{%(x,y) + %(l—x,y) E(le’Y) + E(l—x,l—y)

——

E( 1-x,1~y )

E(X!I'Y)

e

_fx ~o
201 D f(x!Y) + f(l ‘{’y)

N’

210 =-%{§(x,y) - F(1=x,y) + £(x,1~y) - F(1-x,1-y)

\q,—-‘

2, =%—;—{E(x,y) - Fa-x,y) - T(x,1-y) + F(1-x,1-y)} -
Therefore,
() = Coo(1-x)(1y) + Coy(Imx)y + Cqx(1-y) + Cpyxy +
Ebof(x,y) + Eblf(l-x,y) + Elof(x,l-y) + Eilf(l-x,l-y) ,

vhere COO’ COl’ ClO’ Cll are linezr functionals on f and COO’ COl’ ClO’

*
Cll constants depending on Bn .



CHAPTER

ADDENDUM

BERNSTE ] TYPE APPROXTMATION ON cl0,:0]

Let C[O,oo_-_]i denote the subspace of C[O, @) consisting of continuous
real-valued functions f on _I:O,Co) for which t]_.}zlzoof(t) exists.

It is well known that C {r_b,oo] is a separable Banach space normed
by |

lif“ = sup ‘f(t)l
O0LtL™

and spannad by {e_n"; n=0,1,2,...}. We also note that the transformation

X = e  maps CE),@; on C[-O,lqg.
- — P -

An approximation process on C[O-,CO] closely related to the Bernstein

construction is the following.

In corresrondenzes with a given f€ C[O,CD:] » exhibiting at most polynomial

growih at o , l2t uz consider thz following sequence of operatsrs

— X
Sn(f;x) = e-nx Z, (mf{z f(k/n) ’ (1)

one carrizld oul in Zzction 1.2 of Chapter 1 %o express Bn(f;x) in terms

of Tinite differences shows that
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Sn(f;x) = exp(n.xal/n) £(0) (2) |

- j{: (nX)

a replica of Taylor's expansion except that derivatives are replaced by

£(0) , (3)

differences.
The result of Szdsz that
(£3%) —=F(x) as N—s @ (4)

uniformly in every finite interval O0g&x(a (see, e g., Cheney and Sharma

(1964)) is an immediate consequence of the so-called first exponential
ps (1574, p.302),

formula of semigroup theory (see, e.g., Hille and Phill
. Im o o nota -
ilflo léTt‘ eX:r\oDh)fI O, Dh = (Th - I)/h ’

> } of translations in CE) oo:! y l.e.,
(5)

applied to the semigroup {
exp(ch)f(x) ’

T f(x) = f(x+t) = 1im
hio

the 1limit existing uniformly with respect to x in [O cn] and with respect
to t in every finite interval {0,2‘] In fact, taking h = I/p and x = 0

it follows from (5) that |
lim exn(tnAi/ ) £(0)

f£(t) =
n—»3o

and (4) follows from this and (2)
As we shall see, most of the Bernstein approximation properties pass

5 the Szasz omzrators.
is again an interpolation operator in the sense that the values

on +

a) S,



of the argument function at a certain finite number of points determine

the result of operating on that function.

b) The operator Sn is linear and positive as follows at once from

the definition (1).

c) That 5, maps g%, n> W, onto itself and leaves 5‘3 invariant
follows immediately from the representation (3). Also,
J"2- = 2 -Lz.
Sn(u ;X) X * n . (6)

Regarded as a linear operator in \75 » the matrix \PIN +1(n) representing

Sn when we take for -7% the basis {xk}N may be obtained as follows.

k=0
2
5,(8%) = 2_ oyt %
! i=Cc ** /% jt=0
5o o at
= g. . X
i=0 J
3. . .
= i] 1
i=0 “i
showing that
-1
JN.*.I(H) = AN_*.l(n) AN+1(n) ’ (7)

where AN+1(n) = (aij)’ 01 i&Ngn, is the (N+1 )x(¥+1) matrix

representation of B_ acting on f/?\‘ and AN+1(n) = dia.g()\i), i=o{1)N,

with A, = a..
i il
Being the procuct of two TP matrices,

d) V#N+1(n) is TP and therefore S  is variation diminishing. As

a result, all thoszs shape preserving properties we have studied for the
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Bernstein polynomials carry over to the Szdsz operators.

We now take up the task of iterating Sn proceeding in much the same

way as when dealing with B . Since, by Lemma 4.1 a) of Chapter 3,

_ 1
AN+1(D) =1+ = uﬁ_l + O(l/n ) ’
(7) gives
_ -1 2
A () = M)+ 4 A () gy + 0(/n%)
and
Lin o Ao (@) = 1) = Lin n( ApL (n) = 1) + Lin Ap;(n) Gy, (8)
D=0 N—r n—ox
= diag(ps) + Cyyy » JOQN, (9)
0 Hl o
0
NE:
-_ \\\ \\‘ L4
\\ ‘\
| FN
O \O
L A
Tlet {rn} b2 a s=quence of noanegative reals such that rn/h——~>t as

n—-s . Let (sik(t)), 0L i< k<X, be the matrix representing the limiting

operator

acting on 5%. Clearly,

=T kY

n _ . A n . n
n—s @ ¢ R de
Pt tC
= aiag(e * ).e M s=o()N,
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giving the following explicit representation for the entries of the

limiting matrix

k | -(R.~HF )t
Si(t) = .Z.:/Bi,j,k Nk fs
=i
with }é K ziven by (4.4) of Chapter 3.

An analysis paralleling the one carried out for the semigroup {Et ;t}O}
shows the existence of a totally positive semigroup { ’Jt H t;O} of class
(CO) on C[O,CO] given by

[nt]

,J.tf = lin S

and generated by the linear differential operator -]i-x cl‘?'/cbc'2 with domain

5
c? [O,ooj, )

As a last application of the iteration method we give the saturation

theory for the Szdsz operators.

THIOREM. et £€C[0,00] exhibit at most polynomial growth ate then

the following statements are equivalent:

|-

(1) fe€Lip 4 [o,) ;

.. ’ o Mx
(11_) lsn\I ;X) - I(X) gl—zﬁ ’ n;l y x>0 ;

£

(1ii) lgit(f;x) - f(x)! < —gi , 120, xx0.
Moreover,

50550 = 700 = o(e/a) e 1€ B |
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PROOF. That (1) —> (ii) follows immediately from the inequality
/4 M 2
£(x) = £(y) - £ Gy) | 7 Gv)7

the positivity of S , and (6).

That (ii)—> (iii) is an immediate consequence of the positivity

of Sn and of the invariance of x under Sn' Indeed, since

k-1 .
'[_- %
s™(fix) - £(x) = E SJ(S f~f5x) ,
n 555 n'n
then

Si(f;x) - £(x)

kel J(l ff'.)<_1.\@£
< g;% Splopt=tix) § 7%
and (iii) follows upon taking k = [nt] y 120, n—s .

Finally, we show that (iii)—> (i) by showing that it is true on
every closed interval [a,b} C E),oo). This follows upon letting 0<La<x b

<o , defining

yCei - Ij (s)
gy(x) = -1—[ — as
a 2

and following the lines of the argument used in the proof that (iii)==>(i)

in Theorem 3.2 in Micchelli (1973).

The last assertion follows at once from the equivalence of (i) and (ii).
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