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ABSTRACT 

The thesis begins with a review of the stability require-

ments in the Merrison Rules for stiffened plates in box girders, 

and identifies particular aspects that need further research. The 

rest of the thesis is devoted to theoretical and experimental 

investigations into the collapse behaviour of box girder compress-

ion flanges and to their design. The special features of the 

stiffened flange are identified, and several recently proposed 

design methods are critically examined for their treatment of these 

features. From the non-linear behaviour of its various components, 

an analysis model of the whole flange is assembled. The large-

deflection plate theory is used to obtain the influence of initial 

imperfections and welding stresses on the behaviour of plate panels 

up to their collapse. The orthotropic response of the whole stiff-

ened flange is quantified by extending the large-deflection theory 

to orthotropic plates. The effect of varying axial load due to 

bending moment gradient is derived from energy considerations of a 

Fourier Series deflected shape of stiffener. Eccentricity of 

axial loading, transverse loading and random patterns of imperfect-

ions in adjacent spans, are analysed from the moment-rotation com-

patibility of continuous beam-columns. Limitations to avoid prem-

ature torsional buckling of flat stiffeners are derived from plate 

theory, and extended to cover other types of stiffeners, flexural 

restraint from the flange plate, and a non-uniform stress distribut-

ion over the depth of the stiffeners. 

A series of box girder tests at Imperial College is des-

cribed and complete details are given for four tests related to 

failure of the compression flange. Good correlation is obtained 

between measured and predicted longitudinal welding stresses. Com-

plete behaviour of the models and their critical components up to 

the ultimate load and the post-peak unloading characteristics are 

described and explained. 

Using measured dimensions, properties, imperfections and 

residual stresses, the collapse loads of the boxes are calculated 

by the theory developed in this thesis, and are shown to compare 
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very satisfactorily with test observations. Further verification 

of the theory is provided by its application to thirty six tests 

on single-span stiffened panels of a wide range of geometries con-

ducted at Manchester. Good correlation with regard to not only 

collapse loads, but also in-plane and out-of-plane deformations in 

these tests confirm the various hypotheses developed in this thesis. 

Finally, simple rules are given for design of stiffened com-

pression flanges, and compatible fabrication tolerances on imper-

fections of plates and stiffeners are also recommended. These 

design rules and tolerances have been adopted as the basis of the 

relevant clauses in the new British Standard Specifications for 

steel bridge design. 
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NOTATION  

a 	- length of plate 

a 	- distance of shear centre of stiffener from connected 

edge 

A 	- area of cross-section 

A 	- amplitude of plate deflection 

A
e"
A
g 	

- effective and gross area of strut respectively 

Ao,AR 	- amplitude of initial imperfection of stress-free and 

welded plates respectively 

A
s 	

- area of stiffening rib; (A
seAsy 

relate to ribs in 

x-x and y-y direction) 

A 	

- 

area of weld 

b 	- width of plate or spacing of stiffener 

b / 	- width of flange of tee stiffener 

B - width of orthotropic plate 

B - width of compression flange between webs 

- coefficient of weld shrinkage force 

C1,C2,C3 	- design coefficient for varying axial load 

d - depth of tee stiffener 

D - flexural rigidity of isotropic plate 

D
x 
 ,D 
y 
 ,D,D

xy 
 - bending rigidities of orthotropic plate 

- strain 

E - Young's modulus 

F 	- Airy stress function 

F 	- effective eccentricity factor for continuous struts 

F1,F2,F3 	- coefficients for torsional buckling critical stress 

G - Coulomb's modulus 

H - twisting rigidity of orthotropic plate 

I 	- second moment of area 
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Ip  

J
x,y 

- second moment of area of effective and gross section 

respectively 

- polar moment of inertia 

- St. Venants' torsion constant in x-x and y-y 

7. 

directions 

Ks 	- secant stiffness 

s

• u 

	
- secant stiffness of plate at its ultimate load 

K
t 	

- tangent stiffness 

- half-wave length 

L - span of stiffener 

m.02 	- no. of half-waves of critical buckling 

m 	- magnification factor for initial imperfection 

M 	- bending moment 

N - no. of stiffeners 

P - axial load 

P
e 	

- Euler critical load for struts 

q - distributed axial load per unit length 

✓ - radius of gyration 

✓ - residual stress parameter U
R
/a

ys 

r
e 	

- radius of gyration of effective section 

R 	- radius of curvature 

S - slenderness parameter of plate -k 

t 	- thickness of flange plate 

NA s  
to 
	

- smeared thickness of flange = t  
B 

t13 t2 
	- thickness of flange and web respectively of tee 

stiffener 

T 	- total potential energy 



T
b 
	- potential energy of bending 

u,V 	- displacement in x-x and y-y directions respectively 

u - stability parameter 
L 

El 

- strain energy 

- strain energy of bending and membrane forces 

respectively 

tv 	- deflection of plate 

tv 	- leg length of fillet weld 

W 	- warping constant 

- co-ordinate directions 

Yo  'Yp 	
- initial and final deflections 

z 	- co-ordinate direction normal to plane of plate 

Z 	- section modulus 

- offset of stiffener centroid with respect to axial 

force 

0 
	 - initial imperfection parameter 

= --- for flange plate 
A  

A 
= -2-72  for flat outstand 
a a ys 

AR 
R 	

- imperfection parameter for welded flange plate = 

A 	- total stiffener eccentricity 

A 	- initial imperfection of plate 

-  As 	initial imperfection of stiffener 

A sx  , A sy 	- initial imperfection of stiffener perpendicular and 

parallel to plane of flange plate respectively 

Ti 	 - ratio of width of yielded strip to thickness of 

welded plate 
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- imperfection factor in Perry's strut equation 

A 
sx . 

- 	 times maximum fibre distance 
r 

 

0 	- slope of unloading curve in plate behaviour 

0 	- slope of continuous beam-columns at support 

b 	
- factor against elastic critical buckling 

V 	- Poisson's ratio 

U. 	- direct stress 

Cra, 	- applied stress or nominal stress 

aaU 	- ultimate stress for plate in direct compression 

a 	- elastic critical stress cr 

acr 	- elastic critical stress of orthotropic panel 

aeq 	- Hencky-Mises equivalent stress 

E 	- Euler critical stress for struts 

R 	- welding residual compressive stress 

asu 	- ultimate stress on strut 

aea 	- stresses in X-X and y-y directions 

a 
s 	

- yield stress 

T 

Y 

- shear stress 

T
a 	

- applied shear stress 

T
u 	

- ultimate stress in shear 

TyS 
 

- shear yield stress = a
Ys 

 gY 

- aspect ratio 

4)(u) 	- stability function, 
3 
u [ 

1 	1 ] 
Sin 2u 2u 

W(u) 	- stability function, 3 [1 	
1 	I 

2u 2u tan 2u 
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CHAPTER 1 

BACKGROUND AND A REVIEW OF THE STABILITY CLAUSES  

IN THE MERRISON RULES 

1. 	BACKGROUND 

Following the collapses of three steel box girder bridges 

during construction (The Danube Bridge on 6 November, 1969, the 

Milford Haven Bridge on 2 June, 1970, and the West Gate Bridge on 

15 October, 1970), the Merrison Committee of Enquiry was set up in 

December 1970 to investigate into the design and construction of such 

bridges. Another steel box girder bridge collapsed during these 

investigations, viz. the Koblenz Bridge on 10 November, 1971. This 

Committee produced an Interim ReportDJ in September 1971 and a Final 

Report
[2] 

in February 1973. These reports were accompanied by a very 

comprehensive set of rules[3] for checking and designing steel box 

girder bridge construction. It was assumed in the development of these 

rules that initial geometrical imperfections and welding residual 

stresses have very significant influence on the unserviceability and 

collapse strength of stiffened plate construction. However, the 

Committee discovered that sufficient theoretical and experimental evid-

ence did not exist at that time regarding the quantitative influence of 

these imperfections, particularly in regions of complex stress patterns; 

hence these rules had to be based on various assumptions and hypotheses. 

This Committee also initiated a comprehensive programme of experimental 

investigations involving collapse tests on stiffened panels, support.  

diaphragms, quarter-scale models of box girders, and also two almost 

full-scale models of box girder bridges. The immediate objective of 

this programme was to validate or improve the various assumptions and 
hypotheses made in the design rules. The results of this extensive 

testing programme could not, however, be fully analysed in the time . 

that was available before the final report of the Merrison Committee. 

Subsequently, a Working Group on Long-Term Research in Steel Box Girders 

was set up by the Department of Transport (then the Department of the 

Environment). The brief of this Working Group was to sponsor a further 

programme of theoretical and experimental research, including complete 

analysis of the results already available. The author was personally 
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associated with this Working Group, and on its behalf undertook an 

independent review of the stability clauses of the Merrison Rules as a 

first step towards identifying the most important areas for further 

research. 

This review was completed in 1973 and its results are described 

in the following section of this chapter. Some of the observations may 

now appear out-of-date, as several gaps identified as then existing in 

the understanding of stiffened plate behaviour have since been covered 

by the extensive research in several institutions which followed from 

this review. In the subsequent stage the author had to perform the 

dual role of 

(i) sponsoring and managing research in various areas of stiffened 

plate construction in various institutions on behalf of the 

Working Group, and 

(ii) undertaking an in-depth investigation into the behaviour of 

stiffened compression flanges, which formed the subject of 

this thesis. 

2. 	BASIC DESIGN CRITERIA USED IN THE MERRISON RULES 

The Merrison Rules[3] stipulate that the adequacy of the whole 

structure is to be checked by examining the adequacy of its component 

parts. These parts have been identified for this purpose as: 

(a) individual plate panels, i.e. areas of plate bounded by 

stiffeners or other stiff members capable of preventing out-of-

plane movement of the plate panel edges, 

(b) stiffened panels, i.e. areas of stiffened plates bounded by 

diaphragms, cross-frames and/or other walls of the box, each 

capable of preventing out-of-plane movement of the stiffened 

panel edges. 

The component parts are to be checked for the two limit states of 

unserviceability and collapse. The unserviceability limit state need 

not, however, be checked for stocky plate panels that are capable of 

developing their full squash strength as per the criteria given; 

otherwise, unserviceability is deemed to occur when, due to applied 

edge stresses and the presence of initial imperfections, yield stress 

is reached over a localised area. 
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3. 	PLATE PANELS 

	

3.1 	Plate Panels Subjected to Uniaxial Compression  

3.1.1 Calculation of unserviceability and collapse limit states - 

Unserviceability: The unserviceability criterion is calculated using 

a method based on the large-deflection theory of plates. The maximum 

surface stress occurring in the plate, which is assumed to have initial 

out-of-plane deformations in the critical buckling mode, is estimated 

using this approach. When this stress causes yield the limit of 

unserviceability is reached. Although the unserviceability limit state 

is not the controlling design criterion for all plate panels, (the 

collapse criterion for the plate panel and adequacy of the entire 

stiffened panel being usually more critical), large-deflection analysis 

is also involved in the calculation of collapse strength of the plate 

panel as explained in the next paragraph. 

Collapse: The correct collapse strength of a plate panel can be 

assessed analytically only by large-deflection elasto-plastic analysis. 

Because tools for such analysis were not available to cover the range of 

initial geometric imperfections, welding residual stresses and various 

boundary conditions normally met in practice, the Merrison Rules 

resorted to the following formula: 

a 
Ys  

Feu 
= &au

ecr 

where a
eu 

= ultimate equivalent stress due to applied edge loading, 

a
YS 

= yield stress, 

a
ecr 

= elastic critical buckling value of a
eu

, 

the value of a
eu 

causing local yielding in the plate 

a 
Y s 

The value of the factor a above is obtained from graphs based on the 

results of elastic large-deflection analysis of plates, and hence is 

dependent on plate slenderness, imperfections, and boundary conditions. 

This equation is very similar in form to the strut formula, 

given below, which was recommended by the American Column Research 

Council
[4] 

for hot-rolled wide-flange sections of low to medium slender- 

(1) 
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ness ratio (L/r), for which it was shown that the effects of residual 

stress due to differential cooling were as important in considering 

column strength as those due to initial curvatures or accidental 

eccentricities. It would further appear to reflect the narrower margin 

observed between measured and calculated strengths for plates of inter-

mediate slenderness than is the case for columns of intermediate slender-

ness. This it attempts to do by the use of the term 8a rather than 4 in 

the denominator. For comparison, the relevant column formula is: 

c = ays 	4crE  su 

The effects of welding residual stresses in the plate panel are 

allowed for in the Merrison Rules by: 

(a) adding the welding residual compressive stress to the applied 

stresses, or 

(b) assuming an increased out-of-flatness of the plate panel from 

the given equations. 

The second alternative had been adopted in the Part II Design 

Rules, and has also been used later in this chapter. This empirical 

manner of dealing with welding residual stresses has not been quanti-

tatively verified by any theoretical or experimental work. 

3.1.2 Validity of the empirical method for calculating panel collapse 

strength - It can be seen from the above that the assessment of 

the collapse strength of plate panels was empirically based. The 

research programme commissioned by the Merrison Committee did not 

include tests on individual plate panels. In this report test results 

obtained by MoxhamDJ on "exceedingly flat" plate panels with various 

magnitudes of welding residual stresses are compared with the results 

predicted by the use of the Merrison Rules, Part III, for ideally flat 

plates with the same magnitudes of welding residual stresses. 

The unloaded longitudinal edges of the plate panel both in 

Moxham's tests and in the Merrison calculations have been taken as 

unrestrained against rotation and in-plane movement. The comparison, 

shown in Fig. 1, shows two important features: 
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(a) For a typical value of n = 3 (nt being the width of tensile 

yielded strips), the Merrison Rules under-estimate the ulti-

mate strength of the plate panels by approximately 15 per 

cent, 

(b) Moxham's tests indicate a significant fall in ultimate 

strength with increase in welding residual stresses, whereas 

the results calculated using the Merrison Rules are relatively 

insensitive to the magnitude of welding residual stresses. 

(This aspect will be examined in more detail in Section 3.1.3.) 

No test results could be traced for plate panels with unloaded 

edges either restrained fully against in-plane movement, or constrained 

to remain straight though free to pull in. In the absence of test 

results, Merrison values may be compared with those obtained by other 

theoretical methods. Though theoretical results based on large-deflect-

ion elasto-plastic analysis are now available, it was found at that time 

that only Ractliffe's work was relevant. Ractliffe[6] developed a 

theoretical method for plates with unloaded edges free to pull in but 

constrained to remain straight, allowing for initial out-of-flatness in 

the preferred buckling mode and also for welding residual stresses. 

Results theoretically obtained by Ractliffe have been compared with those 

predicted by the Merrison Rules, Part III, for initial out-of-flatness up 

to b/1000 in Fig. 2. It can be seen that, 

(a) Values predicted by the Merrison method are higher than those 

predicted by Ractliffe by approximately 20 -'30 per cent for 

out-of-flatness equal to b/1000; the comparable Merrison toler-

ance for out-of-flatness varies from approximately b/320 for 12 

mm plate to b/600 for plates 25 mm thick and over; 

(b) Ractliffe's method indicates a fall in the strength of plate 

panels with increase in plate imperfection, whereas results from 

Merrison Rules are insensitive to plate out-of-flatness of this 

order. 

Although it was not possible to come to any general conclusion 

from this limited study, it is worth noting that the Merrison empirical 

method does not predict the fall in strength due to increase in welding 

residual stresses that has been exhibited in the Moxham tests, and also 

the fall due to increased out-of-flatness and/or welding stresses 
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predicted by the theoretical methods developed by both Ractliffe[6] and 

Moxham[7]. For this reason, and also because there are important 

implications with regard to tolerances, it was considered essential to 

investigate the imperfection sensitivity of panel strength as given by 

the Merrison Rules. 

3.1.3 Imperfection sensitivity given by Merrison Rules - Part III of 

the Merrison Rules has been used to assess the sensitivity of ultimate 

strengths and unserviceability limit loads for plate panels, the unload-

ed edges of which are (i) free to pull in, and (ii) constrained to 

remain straight. The results are shown in Figs 3 and 4. It can be 

noticed, that for plates with in-plane restraints on the edges, Fig. 3, 

the ultimate stress is not adversely affected by increase in the level 

of imperfections; in fact the strength seems to improve, though margin-

ally, for slender plates beyond a critical b/t ratio; for unrestrained 

plates the fall in the ultimate stress is only marginal. The fall in 

the unserviceability limit loads, Fig. 4, is by comparison bigger for 

both boundary conditions, but for restrained panels there is in fact 

substantial improvement with bigger initial imperfections beyond the 

critical b/t ratio. Thus it would seem that if the Merrison Rules are 

accepted as a valid basis for calculating the strength of plate panels, 

then so far as ultimate stress is concerned, strict limitations on out-

of-flatness tolerances and the requirement to allow for welding residual 

stresses may be superfluous. 

The accuracy with which the attainment of first surface yield 

can be calculated by the method adopted in the Merrison Rules is very 

much open to question, particularly as the maximum stress is calculated 

on the assumption that the initial out-of-flatness is in the most 

critical buckling mode and also because of the empirical nature of the 

treatment of the welding residual stresses as described in Section 3.1.1. 

The relevance of such a criterion may also be questioned as, at the stage 

where first surface yield is reached no significant change in behaviour 

was discernible in much of the recent testing - certainly no visible dam-

age necessitating major repair was seen to occur. 

3.1.4 Summary of study on compression plate panels - This pilot investi-

gation into the Merrison Design Rules for plates in uniaxial compression 

leads the author to the following important observations, viz.: 



(a) A main underlying presumption of the Merrison Rules is that 

initial geometric imperfections and welding residual stresses 

play a significant part in the strength of plate panels. 

Despite this, when the Merrison Rules, Part III, are applied 

to investigate the sensitivity of plate panel strengths to 

initial imperfections, the results seem to indicate that the 

strength of a panel in compression is practically insensitive 

to the variation in panel tolerances and residual stresses. 

(b) There were, however, experimental and other theoretical evid-

ences, available at the time when the Merrison Rules were pro-

duced, to suggest that plate panel strength was more sensitive 

to imperfections than the Merrison Rules predict. 

(c) Unserviceability limit loads, as defined in the Merrison Rules, 

were found to be more significantly affected by plate panel 

imperfections. 

3.2 	Plate Panels in Pure Shear 

3.2.1 Calculation of unserviceability and collapse limit states - In 

the Merrison Rules the collapse strength and the unserviceability limit 

load for plate panels in shear are calculated in much the same way as 

panels in compression. However, an empirical formula has been given for 

calculating the factor a in equation (1), and hence the maximum plate 

stress due to initial imperfections; this formula was derived from the 

results of a number of elastic large-deflection analyses[8] of initially 

imperfect plates subject to various combinations of applied shear and 

longitudinal stresses. 

The validity of the extension of the collapse strength formula 

referred to in Section 3.1.1 to plates subjected to shear is not 

obvious. Moreover, this empirical formula has been used to cover both 

plates with in-plane edge restraints and plates without such edge res-

traints, on the basis that the incorporation of the factor a (see 

Section 3.1.1) will account for the difference in strength of unres-

trained and restrained panels. It is further postulated in Part III of 

the Rules that this calculated difference in strength constitutes the 

reserve of strength due to tension field action. (In the context of 

the Merrison Rules, full in-plane restraint is synonymous to edges con-

strained to remain straight.) 
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3.2.2 Comparison of Merrison predicted tension field strength for 

fully restrained webs with that given by other theories — To 

investigate this postulation the results for plates subjected to pure 

shear, as given by the Merrison Rules, have been compared with those 

given by other theories of tension field action in webs, viz. 

Rockey[9]* et al. and Ostapenko[10] et al. 

Edge Restraints: In the Merrison approach and also in the tension 

field model suggested by Rockey[9], the flexural stiffness of the 

horizontal boundary members on the top and bottom edges of the web 

plate panel provide the necessary in-plane restraint, whereas in the 

tension field model suggested by Ostapenko the in-plane restraint to 

the panel edges is assumed to be provided by the flexural stiffness of 

the vertical stiffeners. The flexural stiffness of the horizontal 

boundary members in the plane of the web therefore determines the 

degree of in-plane restraint and consequently the magnitude of diagonal 

tension in both the Merrison and the Rockey approach. But the flexural 

stiffness of neither vertical stiffeners nor horizontal boundary 

members play any part in the calculation of diagonal tension in the 

Ostapenko approach; presumably it was assumed in the latter that inter-

mediate vertical stiffeners, with substantial width of web plates acting 

in conjunction, would invariably have almost infinite flexural stiffness 

in the plane of the web. The additional contribution of vierendeel 

frame action between flanges and vertical stiffeners has been ignored in 

this study when both the Rockey[9] and the Ostapenko
[10] 

methods are 

used. 

Fully Restrained Edges: In the Merrison and the Rockey approach, for 

box girders as opposed to plate girders, there still remains the un-

certainty of exactly what constitutes the horizontal boundary member 

and what are the forces to which it is subjected. In order to eliminate 

this uncertainty from the scope of the present study, the webs are first 

considered to be "fully restrained" in their plane at the horizontal 

edges (without worrying at this stage about how this restraint is 

The Rockey theory referred to in this review is the earlier Rockey-
Skaloud model of diagonal tension; the various discrepancies between 
this and the Ostapenko model identified in this review were largely 
removed in a unified diagonal tension model that has since been 
proposed by Rockey[11]. 
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achieved), and secondly, to be completedly unrestrained in their plane 

at the horizontal edges. The out-of-plane (i.e. flexual) restraint on 

the edges of the web is ignored in this study on all edges. For 

"fully restrained" webs, Fig. 5 gives the comparison between the values 

calculated by the Merrison and the Rockey methods. It can be seen that 

the empirical method of the Merrison Rules under-estimates the ultimate 

shear capacities of fully restrained webs as given by the full tension 

field in the Rockey modelPA by 10 - 20 per cent throughout the common 

b/t and a/b ratios. 

Unrestrained Edges: For webs completely unrestrained in plane along 

their horizontal edges, the Rockey model limits the ultimate strength 

to the elastic critical value, whereas the Merrison Rules, Part II, 

limit it to 80 per cent of the elastic critical value. Merrison Rules, 

Part III, however, allow the ultimate strength to be as high as the 

elastic critical value. The stated reason for limiting the ultimate 

strength to 80 per cent of the elastic critical value is to avoid the 

situation where both the local web panels and the overall stiffened 

webs reach their critical stresses simultaneously[12]. Theoretical 

studies[12] have indicated that in such cases the actual stresses in 

the stiffener increase very substantially when the applied loading 

approached the critical loading. However, the separation of local and 

overall buckling of a stiffened web can be achieved with more economical 

use of steel if the web plate is utilised to its full critical buckling 

strength and the stiffeners increased in size. 

One other interesting feature of the study on webs unrestrained 

in their plane on longitudinal edges is that the Ostapenko model which 

does not depend on flexural stiffness of the horizontal boundary members 

still provides an alternative tension field mechanism to carry very sig-

nificantly higher shear. Figures 6a and 6b show that the Merrison 

values are only 25 - 50 per cent of the Ostapenko values for b/t ratios 

in the region of 120 - 180. 

3.2.3 Sensitivity of ultimate shear strength to initial imperfections -

The Merrison Rules stipulate tolerances on web panel initial out-of-

flatness and also require the calculation of welding residual stresses 

in such panels. The Part II rules are only applicable when the welding 

residual compressive stresses are less than 10 per cent of the yield 



stress. The sensitivity of plate strengths in pure shear as given by 

the Part III rules for various assumed values of initial imperfections 

and welding stresses are studied in this section. The results are 

shown in Figs 7 and 8. Within the imperfection range stated no change 

in strength or unserviceability loads was observed for restrained 

panels, and a very small variation was found for the unserviceability 

limit load of unrestrained web panels for low b/t's. 

These results support the frequently stated view that initial 

out-of-flatness or welding residual stresses do not affect shear carry-

ing capacity of web panels. The various tension field theories take no 

account of these imperfections and are still reported to produce satis-

factory estimates of ultimate shear strength. It has been observed in 

tests at Imperial College[13] and at Cardiff[ll'9,14] that there was 

no significant variation in shear capacity of comparable panels des-

pite the presence of different magnitudes of welding stresses and 

out-of-plane deformations. This can be attributed to the fact that 

initial geometric imperfections are highly unlikely to follow the 

preferred buckling mode in shear. 

3.2.4 Summary. of study on shear plate panels - The following points 
emerged from the pilot study of shear plate panels: 

(a) The Merrison Rules method for estimating the strength of plate 

panels in shear under-estimates the strength of a fully res-

trained panel compared to other tension field theories by as 

much as 20 per cent. 

(b) The Merrison Rules can be used to show that both the collapse 

and unserviceability limit state loads are almost insensitive 

to the level of initial out-of-plane deformations and residual 

stresses. 

3.3 	Plate Panels Subjected to Complex Patterns of Edge Stresses  

3.3.1 Calculation of collapse loads - The previous sections of this 

review have referred to the problems of using an empirical formula for 

collapse strength for plates subjected to the simple stress pattern of 

uniaxial compression or pure shear. Though, at the time this review 

was undertaken, test data or theoretical work on the strength of plates 

subjected to complex or combined stress patterns, i.e. compression plus 
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shear, were not available for comparison with results calculated from 

the Merrison method, one can assume that the degree of uncertainty will 

be at least as much as, if not more than, that for the simple compress-

ion or shear case. 

3.3.2 Sensitivity of limit loads to imperfections - Another diffi-

culty is encountered in attempting to assess the effects of various 

levels of imperfections on the ultimate strength of these complex or 

combined stress cases. It has already been noted that, according to 

Moxham[7]  and Ractliffe[6], strength of plates in pure compression are 

likely to be susceptible to initial imperfections, but test results 
 

indicate that plates in pure shear are not. Though Merrison rules govern-

ing tolerances are based on the assumption that all plate strengths are 

dependent on initial imperfections, calculations using Merrison rules 

rather surprisingly indicate a general insensitivity to levels of imper-

fection. Tension field theories of Rockey[9] and Ostapenko
[10) 

have been 

extended to cover combined shear and bending stresses on webs without 

longitudinal stiffeners; and similar theoretical work is in progress 

for horizontally stiffened webs. But such theories cannot predict any 

sensitivity on initial imperfections of the strength of plate panels 

subject to these complex stresses. However, this review has subsequently 

led to the development of powerful elasto-plastic large-deflection com-

puter programs[15,16],  which have since been used to study this problem. 

	

4. 	STIFFENED PANELS 

	

4.1 	Stiffened Compression Flanges 

4.1.1 Calculation of limit state loads - The method for checking the 
adequacy of stiffened panels in the Merrison Rules is based on a con-

sideration of the individual stiffeners and associated widths of flange 

plate. The formulae given in Part III for calculating maximum stresses • 

are derived from the well-known strut formula: 

P PA 
Max. stress in the strut = 	

sx 	cr  

A 	Z P - P 
cr 

where P = axial load at ends 

P = elastic critical load 
cr 
A = area 

(3) 



Z = section modulus 

Asx 
= initial imperfection and/or end eccentricity. 

Pr
P 	p The ratio P 	, which can also be expressed as 	(when A

b 
is - 	 XAb-1 cr 

the factor by which the applied stresses must be increased to cause 

elastic critical buckling), is to be calculated for: 

(a) the whole orthotropic stiffened panel containing the stiffen-

er, when the stiffening system and the loading pattern is 

fairly regular (e.g. flanges), taking into account coexistent 

shear, transverse compression, etc., or 

(b) the individual stiffener, but taking into account the destab-

ilising effects of shear or transverse compression on the 

flange plate, when the stiffening system or the loading 

pattern is irregular, e.g. in diaphragms. 

Failure Criteria: The resultant stress in the stiffener outstand is 

limited to either the yield stress or two-thirds of the elastic 

critical torsional buckling stress of the outstand. The resultant 

mean stress in the flange plate is limited to that value that would 

cause onset of surface yield in the plate panel, as obtained from 

graphs based on large-deflection analysis of initially imperfect 

flange plate panels. These graphs are based on the same elastic large-

deflection analysis of plates that were used for obtaining the a-values 

referred to in the preceding sections. The reason for not going beyond 

the stage of first surface yield in flange plate initiated failure is 

that the load-end deformation behaviour of plate panels in the post-

elastic range had not at that time been established for the various 

combinations of geometric imperfections, welding residual stresses and 

boundary conditions met in actual practice. 

4.1.2 A study of the Merrison failure criterion for flange initiated 

failure - It would appear to be quite justified to limit the 

strength of the stiffener in the case of outstand initiated failure to 

the value corresponding to attainment of yield stress on the stiffener 

outstand, as the flexural stiffness of the whole stiffener will fall 

very sharply in the post-elastic range. A similar failure criterion 

has been used successfully for the collapse of columns for many years, 

viz. the Perry-Robertson approach. However, the use of the first sur- 
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face yield criteria for flange initiated failure, when the stresses 

deemed to cause surface yield include the local stresses due to bend-

ing of the plate panel caused by panel out-of-plane movement, seems 

questionable. With the onset of surface yield on the flange plate, 

the tangent stiffness (i.e. slope of the load-end deformation behav-

iour) of the flange plate panel, and so the flexural stiffness of the 

stiffened section as a whole, should not fall dramatically. With 

respect to the flange panel alone, the margin between the load that 

causes first surface yielding and that causing collapse of the flange 

panel may be quite substantial in the higher b/t range. In the 

Merrison approach for flange initiated failure for stiffeners this 
margin is ignored. 

To calculate the reserve capacity left in the plate in the 

post-elastic range, a knowledge of the post-elastic load-end shorten-

ing behaviour of the plate is essential. Theoretical work done by 

Moxham 	in this field is not strictly applicable to this particular 

problem, as Moxham analysed only plates with unloaded edges free to 

pull in - whereas in stiffened flanges having several longitudinal 

stiffeners, in-plane restraint is a more appropriate boundary condit-

ion for the panels between the stiffeners. However, computer programs 

for elasto-plastic analysis of plate panels have been developed 

recently at the Transport and Road Research Laboratory, Crowthorne
[15] 

and also at Imperial College[16,17],  which can provide the necessary 

information. Before these data were available a preliminary study was 

made, based primarily on an extension of the method currently contained 

within the Merrison Rules. The following is an outline of the method 

adopted for this study: 

Method Used to Calculate Capacity Beyond First Yield: Using the 

Merrison Rules for stiffeners, the value of the axial load, and the 

total mean plate stress (i.e. applied stress and flexural stress due to 

stiffener buckling) have been calculated for the first onset of yield 

in the plate, signifying the end of the elastic phase. Beyond this 

stage hypothetical load-end shortening graphs for the plate panel of 

the type shown in Fig. 9 have been used. The stress range for this 

elasto-plastic phase has been taken as the difference between the coll-

apse strength of the plate panel as given by the Merrison Rules for 

plate panels (taking account of the initial imperfections in the pres- 
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cribed manner) and the total mean plate stress at the end of the 

elastic phase. Different values of the total end shortening - from 

the end of the elastic phase to the peak collapse stress - have been 

tried, as shown by the three curves, by taking different values of the 

index T in the equation given in Fig. 9. The steep curve given by 

T = 1.25 is intended to represent a 'brittle' type of plate behaviour, 

likely to be typical for plates with low residual stresses and of 

slenderness ratio in the region of ✓ 	 , the curve given by 'P = 3 
ays  

represents a 'ductile' type of plate behaviour, possibly with a grad-

ual reduction in the load carried after the peak load has been reached; 

and the curve given by 'P = 6 represents a very stable type of load-end 
deformation behaviour with a wide flat plateau. An incremental type of 

analysis was adopted. The reduced plate effectiveness, given by the 

slope of the assumed load-deformation graphs, was calculated at certain 

intervals of the total mean plate stress; the actual applied mean 

longitudinal stress at the ends of the stiffener that would produce 

this particular total mean plate stress was calculated by successive 

approximation, making allowance for the reduced stiffener properties 

when calculating the flexural stresses. 

Results of Pilot Study: Figure 10 shows the variation in stiffener 

collapse stress in a particular stiffener design (plate b/t = 40) due 

to the different assumed post-elastic load-end shortening graphs. It 

can be noticed that in each case the maximum stiffener stress a was 
su 

reached before the calculated plate collapse stress of 295 N/mm2  was 

reached in the plate; this is due to the accelerated reduction in 

stiffener inertia caused by the reduced plate effectiveness Kt. It 

can be noted that the 'brittle' type of load-deformation behaviour 

= 1.25, see also Fig. 9) enables a higher stiffener stress a
su 

 to 

be reached, because the plate stiffness K
t 

is maintained at higher 

values for most of the elasto-plastic phase; but after the maximum 

stiffener load Esu  is reached, the fall in the load is more drastic 

with such 'brittle' plate behaviour. In this example the maximum 

stiffener applied stress achieved is 8 per cent higher with 'P = 1.25, 
and 11/2 per cent lower with 'P = 6, compared with the value obtained 

for 'P = 3. This difference is not considered quantitatively signifi-
cant, and hence for the rest of the exercise the load-deformation 



graph given by T = 3 was used. The purpose of this preliminary exer-
cise was to indicate the salient features that govern the behaviour 

of the stiffener in the post-elastic phase of the flange response. 

4.1.3 Sensitivity of stiffener strength to plate imperfections - A 

previous study by Edwards
[18] 

indicated that according to the Merrison 

Rules, stiffener strengths are very sensitive to flange plate out-of-

flatness. (This would follow from conclusion (c), Section 3.1.4, and 

the failure criteria discussed in Section 4.1.1.) In this section a 

number of stiffener designs of various combinations of plate panel 

slenderness, ratio of stiffener to plate area and stiffener slender-

ness are examined. This study covered the behaviour up to the elastic 

limit in accordance with the Merrison Rules, and was extended into the 

post-elastic phase of the flange panel in accordance with the method 

outlined in Section 4.1.2. The results of this examination are seen 

in Figs lla to lld to confirm Edward's findings. However, it was felt 

that this sensitivity of stiffener behaviour to flange panel out-of-

plane deformations and welding residual stresses, would be less pro-

nounced if the post-elastic behaviour of the flange plate panel were 

taken into account in the assessment of stiffener strength. The 

graphs in Figs 11a to 11d confirm this conjecture. 

4.1.4 Outstand initiated failures - For outstand initiated failure 

of stiffeners the sensitivity of stiffener strength to welding resid-

ual stress can be estimated using an exact column analysis of the 

type used in the Imperial College[19] and Cambridge[2o] studies of 

stiffened flanges. The likely nature and magnitude of the residual 

stress at the tip of the outstand due to welding are still not fully 

understood. If this stress is tensile, which may be the case in some 

situations due to the eccentricity of the weld position with respect 

to the effective stiffener cross-section, then residual stress may in 

fact increase the stiffener strength! On the other hand, compressive 

residual stresses will reduce the capacity of the flange in outstand 

initiated collapse. 

4.2 	Stiffened Webs  

No systematic examination of the design of such elements was 

made within this study. However, the following observations on the 

existing rules may be made. 
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At the time of this review little was known about the large-

deflection behaviour of stiffened web systems subjected to shear and 

longitudinal stresses. Very recently some theoretical work
[21] 

has 

become available, and some experimental work is also now in pro-

gress in Cardiff. The treatment of longitudinal web stiffeners in 

the Merrison Rules is basically similar to that of the compression 

flange longitudinal stiffeners, and hence the comments made on the 

latter in the earlier section also apply. For the vertical web stiff-

eners, the Merrison Rules specify that they must be designed for axial 

compression caused by any assumed tension field action in the web 

panels. This stipulation is considered to be satisfactory in principle. 

But the fact that only 32 times the web thickness is allowed to act in 

conjunction with the stiffeners, whereas the compressive forces in the 

stiffener arise from a wider tension field in the web, leads to very 

heavy vertical stiffeners, when these are placed on only one side of 

the web. The only practical way to cope with the prescribed eccentric-

ity of this loading on the assumed strut section is to provide stiffen-

ing area as near to the plane of the web as possible, viz. an angle 

section turned the "wrong" way round, with one leg attached to the 

plate (as used to be the practice in rivetted construction). This 

problem appeared to demand further investigation. As a result of these 

observations, further studies were subsequently commissioned to invest-

igate into the behaviour of vertical web stiffeners. 

5. 	CONCLUSIONS OF STUDY ON MERRISON RULES 

(1) Although the requirements for estimating welding residual 

stresses and for the construction tolerances on plate panels 

in the workmanship clauses of the Merrison Rules presuppose 

that initial imperfections affect the strength of plate panels 

significantly, application of the rules governing panel 

strength suggest that plate panel strengths are almost insens-

itive to imperfections. 

(2) There are both theoretical and experimental evidences to 

suggest that plate panel strength in compression is more sens-

itive to initial imperfection of welding residual stresses and 

out-of-flatness than the Merrison Rules indicate. 



(3) The limit of unserviceability, when defined as the attainment 

of first surface yield is, however, relatively sensitive to 

the level of imperfections in a plate panel subjected to com-

pression. 

(4) As the failure criterion used for the collapse of stiffened 

panels in compression is the attainment of first surface yield, 

it follows from conclusion (3) that the collapse of compression 

flanges due to plate initiated failure is also sensitive to 

plate panel imperfections. 

(5) The results of this study suggest that the present out-of-

plane tolerances required by the Merrison Rules are needed 

almost entirely to satisfy the restrictions implied by defin-

ing unserviceability as the attainment of first surface yield 

in the case of plate panels and using a collapse criteria for 

stiffened flanges which is too conservative. 

(6) A procedure which extends the Merrison elastic column approach 

for stiffened compression panels beyond the range where first 

surface yield in the plate panel occurs, shows that the exist-

ing design method is conservative (by as much as 13 per cent 

with slender plate panels), and that furthermore, it exagger-

ates the sensitivity of stiffened flange collapse to plate 

panel imperfections. 

(7) The arguments used for the retainment of the definition of 

unserviceability quoted above, are that it represents the 

maximum degree to which current knowledge can be reliably 

extended. However, it is highly doubtful if the current pro-

cedures used to predict surface yield could be accurate in 

view of the degree of empiricism introduced in the method, 

i.e. it is doubtful if the calculated unserviceability loads 

bear any relation to the actual loads causing first surface 

yield. Moreover, the attainment of first surface yield in a 

plate has little obvious effect on the overall behaviour of 

the plate panel. 

(8) There is a definite need to improve the design procedure for 

stiffened compression flanges as the failure criteria used 

for plate initiated failure is clearly too conservative in 

many cases. 
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(9) The existing rules can be used to show that both the unservice-

ability and collapse limit states for web plate panels are in-

sensitive to plate panel imperfections. 

(10) The strength of fully restrained shear web panels as predicted 

by the Merrison Rules are significantly less (up to 80 per 

cent) than those predicted by tension field theories. 

(11) For unrestrained web panels under shear, the Ostapenko tension 

field model predicts a substantially higher shear capacity than 

the Merrison Rules. 

6. 	FURTHER RESEARCH 

The above review of the stability clauses of the Merrison Rules 

established the need for further research in the behaviour of both 

stiffened compression flanges and stiffened webs of box girders. 

However, it was felt that priority should be given to the compression 

flange, rather than the web, as a larger proportion of the total 

material requirement is used here. 

The main part of the research carried out by the author and 

reported in this thesis was thus devoted to the behaviour of stiffened 

compression flanges of box girders. 



CHAPTER 2 

BOX GIRDER COMPRESSION FLANGES  
INTRODUCTION AND LITERATURE SURVEY 

	

1. 	GENERAL 

This chapter reviews most of the methods recently developed 

for the design of box girder compression flanges. Because of the wide 

scope of some of these approaches it has not been possible to include 

all the necessary design formulae here; instead, this chapter concen-

trates on the basic principles underlying each of the methods and dis-

cusses their scope and limitations. All of the methods attempt to 

determine the ultimate load carrying capacities of compression flanges, 

even though in many cases the basic theory on which they are founded is 

non-linear elastic theory. 

	

1.1 	Flange Layout  

Compression flanges of stiffened steel box girders are usually 

comprised of a steel flange plate stiffened longitudinally by either 

open (i.e. flat, bulb-flat, tee or angle), or closed (i.e. trough, vee) 

stiffeners spanning between transverse frames. In small or medium 

span bridges, the top flange is often covered with structural reinforced 

concrete decking which, after hardening, acts compositely with the steel 

flange through shear connectors. Typical details of a box girder com-

pression flange are illustrated in Fig. 12. 

	

1.2 	Stress Systems  

Such compression flanges may be subjected to the stress systems 

described below and shown in Fig. 13: 

(a) Longitudinal stresses associated with overall bending moment 

and axial force on the box girder caused by applied vertical 

and horizontal loading; these stresses may vary across the 

width of the box girder due to shear lag, and also along the 

length of the flange following the gradient of the bending 

moment diagram; additional longitudinal stresses may be 

caused by restrained warping of the box girder. 
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(b) In-plane shear stresses in the flange plate; these may be due 

partly to the applied torsion on the box girder, and partly to 

the vertical and horizontal shear force associated with the 

overall bending moment gradients. 

(c) Top flange bending stresses caused by locally applied wheel 

loading; these stresses are the cumultative stresses due to 

local plate bending and flexure of the longitudinal and trans-

verse stiffeners. 

(d) Other in-plane transverse stresses in the flange plate may be 

caused by distortion of the box cross-section due to 

asymmetrical loading, or in-plane bending of diaphragms in the 

vicinity of piers or abutments. 

2. 	SPECIAL PROFILFMS FOR ANALYSIS AND DESIGN 

A stiffened compression flange is often idealised as a series 

of disconnected pin-ended struts spanning between transverse frames 

and subjected to combined axial and transverse loads. This simple 

idealisation may not adequately cope with the following complications: 

(a) The stiffened cross-section is unsymmetrical about the horiz-

ontal centroidal plane - the centroid usually being considerably 

nearer the flange plate than the stiffener tip. For a given 

out-of-plane deflection the compressive flexural stress will be 

much higher when the deflection is towards the plate rather 

than towards the stiffener. For stiffeners with high slender-

ness ratio L/r, failure may be initiated by tensile yielding at 

the outstand tip rather than by the maximum compressive stress. 

Hence not only the magnitude of the deflection, but also its 

direction is important in determining the ultimate load of the 

strut. 

(b) Stiffeners are normally continuous over transverse frames. 

Though continuity generally tends to improve the behaviour of 

the stiffeners, in some cases there may be weakening effects, 

e.g. an inward deflection produces hogging moment over the 

transverse supports and because of (a) above the compressive 

stresses produced in this region may be higher than those at 

midspan. 
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(c) Adjacent stiffeners are connected in real flanges and do, 

therefore, interact. Transverse continuity between stiffeners 

has a restraining effect on the deflections of heavily loaded 

individual stiffeners; the entire flange between the box 

girder webs will act as an orthotropic plate supported on its 

longitudinal edges by the webs and transversely by the inter-

mediate cross-frames provided they are adequately stiff. 

(d) In the region of significant gradient in the overall bending 

moment the axial loading on the stiffeners will vary along 

their length; the magnitude of this variation may be signifi-

cant even within one span between the transverse frames. 

(e) Because of the overall curvature of the box girder in the 

vertical plane the axial load will tend to act eccentrically 

with respect to the centroid of the stiffener section, i.e. 

higher applied stresses on the flange plate than at the stiff-

ener tip. 

(f) In-plane shear stresses T and transverse stresses Cr which are 

present in the flange plate and discussed in Section 1.2(b) 

and (d), may reduce the load at which first yield occurs in 

the flange plate, and also reduce the resistance of the flange 

to longitudinal destabilising forces. 

-(g) There are four independent buckling modes associated with 

stiffened compression flanges of normal layout, viz., 

(i) local buckling of the flange plate panels between the 

longitudinal stiffeners; 

(ii) local buckling of the outstand of an open stiffener or 

of the walls of a closed stiffener; 

(iii) buckling of the longitudinally stiffened plate between 

transverse frames; 

(iv) overall buckling of the orthogonally stiffened flange 

between the girder webs. 

The possibility of the fourth mode occurring is often elimin-

ated by designing the transverse frames to be sufficiently 

stiff to act as non-deflecting supports. 



Any two or all of the above buckling modes may interact with 

each other. 

(h) For flanges of normal proportions the elastic critical 

buckling loads for each of the above modes are usually much 

higher than the highest factored design loads; very often 

they are also higher than the squash loads, i.e. loads required 

to produce uniform yield stress in an ideally perfect structure. 

However, structures invariably have initial geometrical imper-

fections, and when these imperfections have a significant com-

ponent in any one or more of the above buckling modes the 

behaviour of the structure will be influenced by the level of 

the initial geometric imperfections right from the onset of 

loading. The stiffness of the structure will gradually reduce 

with Ilicrcesing applied load until the maximum load is attained 

when the stiffness reduces to zero. 

(i) Locked up residual stresses present in the structure may pro-

duce early yielding in certain regions and consequently an 

acceleration in loss of stiffness. Since the compression 

flange is primarily subjected to compressive applied stresses, 

which are superimposed over the residual stresses, both the 

magnitude and the distribution of compressive residual 

stresses are important. While the nature and the level of 

residual stresses caused by handling, fabrication and trans-

portation are not clearly understood, some data are available 

for residual stresses caused by rolling and welding processes. 

3 . 	RECENT DEVELOPMENTS 

Several accidents during construction of steel box girder 

bridges in the last six years have led to a considerable amount of 

experimental and theoretical research into the behaviour of stiffened 

steel box girders, and as a result several methods are now available 

for the analysis and design of the stiffened compression flanges. A 

brief description will be given here of the following published 

methods, followed by a discussion on the main features of each method. 

Finally, the scope of the methods with regard to the various problems 

referred to in Section 2 is summarised in Table 1. 

31. 



32. 

	

4. 	MERRISON RULES[3] 

	

4.1 	Description 

In this method, plate panels between the stiffening ribs are 

assumed to have initial geometrical imperfections A (i.e. out-of-

flatness) in the elastic critical buckling mode. The magnitude of 

the assumed imperfections for analysis is related to the specified 

fabrication tolerances, but account has been taken of the unlikeli-

hood of all adjacent plate panels having equal and alternately up and 

down imperfections at a particular cross-section. The longitudinal 

stiffeners (composed of the stiffening ribs and an effective width of 

the flange plate) are also assumed to have initial out-of-straightness 

Asx in the elastic critical buckling mode, i.e. a sinusoidal pattern 
alternating in direction in adjacent spans. 

An approximate elastic analysis of the non-linear behaviour 

of an initially imperfect plate panel subjected to longitudinal com-

pression has been used to produce the following: 

(i) the ratio of average stress to edge stress called the secant 

stiffness Ks; 

(ii) the ratio of incremental average stress to incremental edge 

stress called the tangent stiffness Kt; and 

(iii) the level of edge stress 
BL 

in the initially imperfect plate 

that produces yielding on the surface of the plate. 

The secant stiffness Ks is used to calculate the associated plate 

width of the stiffener for all purposes except as mentioned later. 

For this analysis of the plate panel, the internal longitudinal edges 

of all panels have been assumed to remain straight but free to pull 

in, but the longitudinal edge of an outer panel adjacent to the girder 

web has been assumed to be free to pull in without any restriction. 

Individual stiffeners are analysed as a single span strut, 

with the initial stiffener imperfection 
Asx 

 assumed to be magnified 

under an applied stress a
s 

to a value 

Q*  cr  
A
SX * a -a 

cr a 
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where 0 is the elastic critical buckling stress of an orthotropic cr 
plate bounded by the girder webs and the transverse stiffeners. In 

calculating U:r  the gradually reducing longitudinal stiffness of the 

associated plate panel is taken into account by using the tangent 

stiffness K in calculating the effective width of the flange plate. 

The reason for using Kt, instead of Rs, is that the instantaneous 

flexural stiffness of the orthotropic plate, valid for the particular 

level of applied stresses, was considered more appropriate for calcul-

ating the magnified deflection of the strut. Since the orthotropic 

plate a  is always higher than the isolated strut critical stress the cr 
method does, therefore, recognise some of the beneficial effects of 

plate continuity. 

The effect of coincident in-plane shear stress T and trans-

verse stress a in the flange plate is accounted for by using a reduced 

elastic critical stress for the individual plate panels when calculat-

ing Ks, Rt  and aBE, and in addition a reduced effective yield stress 

calculated from the Mises-Hencky yield criterion has been used. The 

stiffened flange critical stress, ecr, is also reduced to allow for the 

destabilising effects of these stresses. 

Formulae are given for calculating longitudinal residual com-

pressive stresses in the flange caused by welding the stiffeners and 

the girder webs to the flange plate. These stresses are added to the 

stresses due to applied loading. However, when checking the local 

strength of the flange plate these residual stresses may be neglected, 

or a reduced value taken, if the width-thickness ratio of the flange 

plate between stiffeners is less than 20, or between 20 - 40 respect-

ively. This is intended to reflect the diminishing influence of 

residual stress on the local strength of plate panels as they become 

more stocky. 

The total stresses occurring in the mid-plane of the flange 

plate and the outstand tip due to the combined effects of applied 

stress 6a, welding compressive stresses, flexure of the flange both 

due to magnification of the initial imperfection and initial eccen-

tricity of flange loading due to overall curvature of the whole girder, 

are respectively limited to the following: 
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(i) aBL, i.e. the average stress in the effective flange plate that 

produces yielding on the surface. 

(ii) Yield stress, or two-thirds of the elastic critical torsional 

buckling stress, calculated for a combined half wave length of 

buckling of the open-type stiffener outstand and the plate panel 

between stiffeners. 

The above theory has been used to produce tables of coefficients 

and graphs, from which the limiting applied stress asu  for any stiffened 

panel geometry and stress pattern can be obtained directly. 

It is assumed that shear lag effects and secondary stresses due 

to restrained warping, etc. can be ignored in the calculation of ulti-

mate strength, owing to the likely plastic redistribution of longitudin-

al stresses, except when torsional buckling of the outstand is critical. 

In checking the unserviceability limit state (which has been taken to 

occur with the spread of yielding over an area of sides equal to 5 times 

the plate thickness), due account must be taken of shear lag and second-

ary stresses. (Different load and material factors have been specified 

for the ultimate and the unserviceability limit states.) 

When the applied longitudinal stresses vary along the length of 

the flange, the maximum value within the middle-third has to be used as 

the average stress for checking the stiffener as a strut, and the end 

at which the maximum stress occurs also has to be checked to ensure 

that local buckling or yielding does not limit the flange strength. An 

empirical formula discussed in Section 3, Chapter 1, has been used to 

obtain the local buckling strength of plate panels. 

For locally applied wheel loading, flexural stresses calculated 

for this loading only are magnified by a factor * cr
and superim- 

acr as 
posed on the stresses due to longitudinal loading. 

For ultimate strength calculations it is permissible to redis-

tribute the applied longitudinal stress over the width of the flange in 

such a manner that the stiffener subjected to high local bending moment 

carries less or no longitudinal stress. 
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4.2 	Discussion  

(a) The Merrison Rules cover all the special features of stiffened 

compression flanges discussed in Section 2; indeed, most of 

these features were first identified and defined in the earlier 

version of the Merrison appraisal rules[54]. As has already been 

noted in Chapter 1, Section 4.1.2, the main defect of the rules 

relating to the design of stiffened flanges is the criterion 

chosen for flange plate initiated failure of a stiffened plate. 

Failure is assumed to occur when the surface of the plate panel 

yields as predicted by an approximate elastic large-deflection 

analysis of initially imperfect plates. The stated reason for 

not going beyond the stage of surface yield was that the 

behaviour of plates in the post-elastic range had not been 

fully established at the time the rules were formulated. 

Recent large-deflection elasto-plastic studies show that there 

is no sudden fall-off in stiffnesses K
s or Kt 

on reaching sur-

face yield; rapid deterioration in stiffness only occurs after 

yield is reached on the longitudinal edges. These studies 

show that the margin between the load causing surface yield and 

the load causing yield on the edges may be substantial. 

(b) This method involves the use of both the secant and the tangent 

effective width factors Ks and Kt of the flange plate panels. 

In Chapter 3 the theoretical justification for the use of both 

of these factors will be examined in the light of a non-linear 

analysis from the first principles of an initially imperfect 

strut made up of materials having non-linear stress-strain res-

ponse. 

(c) Another shortcoming of the Merrison Rules is their complexity 

for design office use. Even the simplified version of the 

Rules given in Part II and related to specific fabrication 

tolerances of Part IV, also involves the use of several tables 

and graphs, for a particular check. 
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5. 	LIEGE METHOD 

	

5.1 	Description  

This method
[22] takes account of initial geometrical imperfect-

ions and of large deformations. The non-linearity of the material is 

considered by using a collapse criterion, which extends fictitiously 

the elastic range. Extensional and flexural rigidities, including 

shear rigidity and out-of-plane torsional rigidity are considered. 

Effects of stiffener eccentricities with respect to the mid-plane of 

the flange sheet are accounted for by modifying the flexural rigidities. 

The design is carried out in two steps. 

In the first step, the rigidities are uniformly spread to 

obtain a substitute orthotropic plate, bounded by the webs and the 

transverse frames, the latter being sufficiently rigid to constitute 

nodal lines for buckling. This orthotropic plate is assumed to have a 

sinusoidal pattern of initial geometrical imperfections in both direct-

ions. The edges are all assumed to be simply supported and, in addit-

ion, the loaded ones are assumed to be deformed uniformly whilst the 
unloaded edges adjacent to the webs are assumed to be free to pull in. 

The generalised non-linear (large-deflection) equations for 

orthotropic plates are solved and lead to a magnification of the init-

ial imperfections due to applied longitudinal compression load and to 

a non-uniform distribution of longitudinal stresses on the loaded 

edges, with a maximum membrane stress at the edges adjacent to the 

webs. The ultimate strength of the orthotropic plate is assumed to 

be reached when the mean membrane longitudinal stress along the unloaded 

edges is equal to the yield stress cgs; this constitutes the collapse 

criterion. It is then possible to define an efficiency of the sub-

stitute orthotropic plate as the ratio: 

mean longitudinal stress over the loaded edge  
Pt 	mean stress along the longitudinal edge 

(Ys 
 at collapse) 

In the second step, allowance is made for the discontinuous 

character of the stiffening which is reflected by a loss of efficiency 

of the isotropic plate of breadth b between longitudinal stiffeners. 

For this purpose, use is made of the following effective width factor, 

proposed originally by Winter
[23] for thin walls of light-gauge cold- 



formed members (see equation (4), Section 7), and later slightly mod-

ified by Faulkner
[24] to provide the best fit to experimental results 

on welded stiffened plates: 

	

be 2t 	E t 2  E 

b 	b 	a
e b2 ae 

where be is the effective width 
E the Young's modulus 

t the thickness of the isotropic plate 

ae 
the maximum stress at the edge of the plate panel. 

In the above formula, e is taken as the already calculated 

value of p
t 
a
ys 

which represents a mean stress, and is the same for 

all the panels. Finally, the partial efficiency is calculated as: 

b t +As _ 
b t + As 

A being the area of one longitudinal stiffener. 

The global efficiency is given by the product of the two above 

efficiencies: 

P=P  P' 

and thus, the ultimate average stress of the whole flange is given by: 

a = p a 
su 	Ys 

In fact, there is a progressive loss of efficiency of the 

plate between the panels with increase in loading, so that, to be 

rigorous, an incremental procedure would be needed. A computer pro-

gram has been developed to increment loading and to substitute for 

Faulkner's formula, more theoretically exact values taking account of 

initial imperfections of the plate panels and residual stresses and 

considering, for the evaluation of the partial efficiency, all the 

panels separately with their own stress distribution. Numerical sim-

ulation shows, however, that the use of Faulkner's formula is justi-

fied for current values of imperfections and residual stresses and 
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that there is close agreement between values of the global efficiency 

obtained by the direct or by the incremental procedure. 

The value of the average ultimate stress is meaningful only 

if the ultimate strength of the webs is not reached before that of 

the compressed flange and the flange stiffeners do not collapse prem-

aturely by local instability. 

5.2 	Discussion  

(a) This is the first method to deal with the orthotropic behaviour 

of the entire stiffened flange panel in a comprehensive manner, 

and is particularly suitable for flanges where orthotropic 

behaviour is dominant, viz., stiffeners with high slenderness 

ratio. 

(b) In the compression flange of practical box girder construction, 

longitudinal stiffeners usually have low to medium slenderness 

ratio between the transverse frames - in order to make an 

efficient use of the steel material. In such construction 

orthotropic behaviour of the whole flange contributes very 

little to the strength of the flange and hence this design 

method is unsuitable. 

(c) The only failure criteria used is a limit on the average mid-

plane longitudinal stress along the edges to the yield stress; 

the possibility of failure by outstand yielding or buckling is 

ignored. Neither the combined effect of the mid-plane stresses 

and additional flexural stresses in the stiffeners due to 

further deflections is considered. 

(d) In this method no recognition is made of the nature of the 

initial stiffener imperfections and the mode of buckling, i.e. 

whether the imperfections/buckling mode is inwards, i.e. pro-

ducing additional compression in the flange plate, or outwards, 

producing additional compression in the stiffener outstand. It 

has been found experimentally
[13]

that the direction of the 

stiffener imperfections has a significant influence on the 

buckling behaviour of stiffened compression flanges. 

-(e) In the direct method orthotropic plate stiffnesses are calcul-

ated for the total plate and stiffener cross-section. No 
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allowance is made, therefore, for reduction in plate width 

for slender plate panels. However, any effective width that 

might be adopted at this stage of calculation could only be a 

first guess, as the stresses in the plate are not known_ 

Theseguessed effective widths would then have to be verified 

after the stresses are known. 

(f) The formula relating the mean edge stress of the orthotropic 

flange to the magnification factor of the initial imperfection 

is an equation involving the third power of the magnification 

factor. Hence solution of this equation in the absence of 

charts or tables is time-consuming in design. 

	

6. 	CAMBRIDGE METHOD 

	

6.1 	Description 

In this method[25] individual stiffeners are checked as isol-

ated struts. A modified version of the Perry formula given below has 

been used to represent the proposed European column curves:- 

39. 

(ays - a su  ) (aE - a su) = n aE asu 

where a
Ys 

 = yield stress 

aE = Euler stress 

asu = collapse stress of strut y A 
= an imperfection parameter 	sx  

fibre distance. 
r2 

(2) 

, when y is the maximum 

Dwight recommended the following formula for n: 

n = 0 when
L  
r 5

v/ 
 a 
Ys 

FL
r 5a  

Tr/E 	7 	L /7-  
= a 	- - 	I when 

r
- > 	

a Lr  L_ 	ys 	Ys 

Curves generated by using the following a-values correspond to 

the European column curves applicable to the particular types of 

struts described below: 

(3) 



a = .0020 for hollow sections and universal beams bending 

about major axis 

a = .0035 for universal beams bending about minor axis and 

universal columns bending about major axis 

a = .0055 for universal columns bending about minor axis. 

In addition, a = .0015 has been proposed specifically for use with 

stiffened plating. 

Stiffeners have to be checked for buckling in two different 

modes, i.e. inward failure of the stiffener between transverse frames, 

with collapse occurring when the stress in the plate panel reaches a 

limiting value for local buckling, and outward column failure trigger-

ed by compressive yield at the tip of the outstand. In the former 

mode, ays  in the above equation is replaced by (Tau, the local plate 

buckling stress; whereas, in the latter modectys  = yield stress of 

the outstand. The plate strength Uczu  has been derived partly from 

tests and partly from the elasto-plastic large-deflection analysis 

developed by Moxham. Two sets of plate strengths have been given, one 

for plates with continuously welded stiffeners and the other for plates 

with intermittently welded stiffeners. The appropriate set of column 

curves to be used for the strut check depends primarily upon a cross-

sectional parameter, viz. the ratio of maximum fibre distance to the 

radius of gyration of strut section; the value of a that defines the 

column curve is higher for higher values of this ratio. The effect of 

shear is allowed for by assuming a reduced effective yield stress when 

obtaining Y. Orthotropic action of the entire flange between the 

webs and the transverse stiffeners is catered for assuming a slightly 

reduced effective length of the strut in using the column curves. 

Torsional buckling of the outstand is prevented by limiting the geo-

metrical proportions of the cross-section; but these limits have not 

been specified. When the flange is subjected to a varying moment the 

applied stress at a distance 0.4 x effective length from the heavily 

stressed end is used for the column check, whereas the maximum load at 

one end must be checked against E (a 
au 

 bt 	As) where A
s 

is the area 
ys  

of an individual stiffening rib. Shear lag effects are ignored for 

flanges with up to three longitudinal stiffeners. For flanges with a 

higher number of stiffeners the maximum stress is calculated in a plate 
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panel adjacent to the web, taking shear lag into account, but using 

reduced load factors appropriate to the limit state of unservice-

ability. This stress should not exceed the local buckling stress 

au 
of the plate. 

6.2 	Discussion  

(a) This method is less demanding on design time than the prev-

ious two methods and is simple to comprehend. 

(b) In this method the buckling behaviour of a slender welded 

flange plate is taken into account by substituting its ulti-

mate strength for yield stress in the Perry formula. But no 

account is taken of the loss of axial stiffness of the flange 

plate at its ultimate strength, which is reached at an axial 

strain significantly higher than the ratio aau/E would indi-

cate. This loss of axial stiffness of the flange plate causes 

reduction in the flexural stiffness of the flange plate/stiff-

ener assembly, and the high strain involved may cause yielding 

of the outstand near its connected edge. This method is thus 

likely to over-estimate the buckling strength of the stiffener 

on these accounts. 

(c) The plate strength curves have been derived partially from 

test results and partially from the theoretical work by Moxham. 

Both the tests and the theoretical work relate to plate panels 

free to pull in at the unloaded edges. In a stiffened flange 

with many longitudinal stiffeners, all the internal panels are 

likely to behave like a plate with unloaded edges restrained 

to remain straight and subjected to a net force in the trans-

verse direction over a half-wave length of buckling equal to 

zero. Thus on this account this method is likely to be some-

what conservative for plate initiated failure of the stiffen-

ers. 

(d) The European column curves and the modified Perry-type formula 

adopted in this method to represent these curves do not allow 

for a situation when failure of an unsymmetrical strut may 

actually be triggered by tensile yielding on the extreme fibre 

of the outstand. Such situations can develop when the distance 
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of the extreme tensile fibre is several times the distance of 

the extreme compression fibre and the slenderness ratio of the 

strut is high. 

	

7. 	KARLSRUHE METHOD 

	

7.1 	Description  

This method[26] is basically an elastic large-deflection 

analysis of an initially imperfect plate-stiffener assembly under 

uniform compression. The pattern of both initial and final out-of-

plane deflections is assumed to be sinusoidal along the length, but 

the transverse distribution pattern may be varied and is solved for 

minimum total potential energy; hence several possible transverse 

patterns of the deflected shape are investigated and the critical one 

established. Bending in both directions, twisting of the flange plate, 

and membrane forces in the longitudinal direction are taken into 

account in the energy calculations; the torsional stiffness of stiff-

eners, membrane shear stress and transverse stress are ignored. 

In the calculation of the stiffener properties, an effective 

width of the plate between the stiffeners, given by Winter[23] and 

quoted below, is taken into account: 

be 	
t 	2 t jE 

= - (i - 0.95 —1 --) , if 0.95 — 	< 1 
b 	 b e 	b a  

(4) 
t i/E 

= / , if 0.95— 	> 1 
b ae 

ae being the average value of the edge stresses of all the plate 

panels. 

The method involves calculating three basic non-dimensional 

parameters from the properties of the stiffened panel, viz.: 

a stiffness parameter 
bt3  * _ a - _  

B 	12(1-v2) le 
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a stress parameter 
B 

7 E 
an imperfection parameter, u = 

/
- 
2L 	• Asx G

B  

where /
'e 

is the second moment of area of one effective stiffener 

section 

G
B 

is the stress along the longitudinal edges which in the 

first instance may be assumed to be the yield stress. 

From the given graphs, and using the above three parameters, 

the efficiency factor p, additional deflection of the stiffened panel 

and the variation of the membrane longitudinal stress across the 

width of the stiffened flange may be obtained. From these, the 

stresses in the extreme fibres of the central longitudinal stiffener 

due to membrane compression and flexure can be calculated. The aver-

age ultimate stress on the effective compression flange is then ()GB, 

provided the extreme fibre stresses do not exceed a limiting value, 

e.g. yield stress. Otherwise another lower value of G
B 

has to be 

assumed and the process repeated. 

7.2 	Discussion  

This method is similar to the Liege Method in the basic 

approach, i.e. it is an elastic large-deflection analysis of stiffened 

plates. The main difference between the two are as follows: 

(a) The Karlsruhe Method takes into account discreet stiffeners 

acting in conjunction with the continuous flange plate, 

whereas in the Liege Method stiffener properties are 'smeared' 

over the entire width to produce an idealised orthotropic 

plate. 

(b) The Karlsruhe Method has not been extended to closed longitud-

inal stiffeners, as torsion of the stiffeners is neglected in 

the energy formulation. 

(c) The method includes a separate failure criterion on the basis 

of the maximum fibre stress of central stiffeners, and is thus 

more comprehensive than the Liege Method. However, this check 



a' 
1 + (1 + n) / 4 ays  

2 

 

a' 

a 
Ys 

(5) 

 

involves a series of cycles of trial and error, -solving for 

orthotropic action first and then checking for yielding at 

extreme fibres of stiffeners or at edges of stiffened panel; 

this cycle to be repeated till maximum stress equals yield 

stress. 

(d) A reduced effective width of flange is assumed for stiffener 

properties; but as it depends upon the edge stresses of 

individual panels, it has to be a trial value at first, to be 

checked later with the calculated stresses. 

	

8. 	,MONASH METHOD 

	

8.1 	Description  

In this method
[27] 

the flange stiffeners are analysed as 

individual single-span struts in the classical Perry manner, but allow-

ance is made for loss of effectiveness of flange plate panels between 

stiffeners. If the elastic critical buckling stress Cr
cr of the plate 

panels is less than the Euler buckling stress CrE of the strut, then a 
reduced effective width of the flange plate panel is taken for the 

effective cross-section of the strut. The shift in the centre of 

gravity of the effective section relative to that of the gross section 

is expressed as an additional initial eccentricity Ar as follows: 

o-cr (AS + bt) 
aE  (As  bet) 

where A is the shift of centroid 

ai is the Euler stress of the effective strut. 

This additional initial eccentricity is added algebraically to 

the tolerance of out-of-straightness of the stiffener to obtain the 

maximum axial stress from the Perry formula: 

44. 

A 1 

a' 	 a' 
su / r 

	

= 
2 
— 1 / 	(1 	n) 

a 
Ys 	

L 	ys 
a  



where n 
yt 

(Asx f A') sx 
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(p  ) 2 

a' and e are the ultimate axial stress and Euler stress of su 
the effective stiffener 

y l 

	

= maximum fibre distance from the centroid of effect- 

ive section 

r' 	= radius of gyration of effective section. 

The ultimate stress
su  on the gross section is given by: 

A 4- b t 
a = a 

s e  
su 	su As bt 

It is pointed out
[59] 

that although theoretical non-linear 

elastic analysis is available for initially imperfect residual-stress-

free compression plate panels with the unloaded edges either free to 

pull in or restrained to remain straight, test results are only avail-

able for plates with unloaded edges free to pull in. For plates with 

stress-free longitudinal edges a formula relating the average stress to 

the maximum longitudinal membrane stress along the unloaded edge is 

given. By assuming the ultimate load to be reached when this maximum 

edge stress equals yield stress an expression is given for the ultimate 

stress a in terms of an initial imperfection parameter: aU 

= a  [cTY311/2  t 	a cr 

where A = initial geometrical imperfection in the critical mode 

a 	 Tr
2 Et2 

= cr 	3(1-v2) b2  

a = a coefficient for imperfections. 
The value of the coefficient a is then determined from avail-

able test results for such plates; it is found that a = 0.4 gives 

good correlation between the theoretical and the lower bound test 

results for welded plates, whereas a = 0.3 provides a good comparison 

with the median of the scatter of test results. An expression is 

developed for the average plate stress 
Eau  on a plate with edges held 

L 
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straight, such that the membrane stresses in the two directions on the 

longitudinal edge just reach the Tresca yield criterion. By using the 

value of the imperfection coefficient a = 0.4, a curve is drawn for 

the ratio 
au 	ys 
— against 	. The effective width is then given by: 
Ys cr 

a 
b 

cru 
= e a 

Ys 

For combined axial and bending loading specific design rules 

have not been given due to lack of sufficient experimental evidence, 

but the following recommendations are offered: 

(i) If the local lateral loading produces compression on the out-

stand, gross section may be used for stiffener properties. 

(ii) If the local loading produces tension on the outstand, then a 

reduced effective width of the flange plate should be taken 

when the plastic neutral axis of the cross-section, taking 

into account axial and flexural stresses, lies within the 

outstand. 

It is suggested that if there is any tensile zone in the plate, 

it will stabilise the plate against buckling. 

(iii) Extreme fibre yield due to axial forces, applied bending moment 

and magnified deflections may be adopted as the failure criter-

ion. 

8.2 	Discussion  

(a) This method is simple to use and comprehend. 

(b) It assumes that the flange plate panel is fully effective, i.e. 

it is capable of resisting a compressive force of bt a 
Ys

, if 

its elastic critical buckling stress
cr 

 is higher than the 

Euler buckling stress GE  of the strut. According to the Perry 

formula, the maximum axial load on the strut for flange plate 

initiated collapse occurs with the attainment of yield stress 

in the flange plate, whatever is the actual value of the Euler 

stress. Hence if a
cr 

 > GE' this method implies that the 

flange plate, irrespective of its width/thickness ratio, is 

capable of resisting its squash load bt G . This assumption 
YS 
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must be optimistic, and contradicts the strength/effectiveness 

graph of plates incorporated in the method. A more rational 

approach would be to use in all cases an effective width of 

the plate given by the above graph. 

	

9. 	MANCHESTER NE HOD 

	

9.1 	Description  

This method
[28] 

analyses flange stiffeners as axially loaded 

individual single-span struts in the Perry manner, with an allowance 

made for loss of effectiveness of the flange plate panels. Secant 

effective width factor Ks is defined as the ratio of mean stress to 

longitudinal stress at the unloaded edges and is derived from a large-

deflection elastic analysis of plates with initial geometrical imper-

fections in the critical buckling mode. The longitudinal edges of the 

plate are assumed to be held straight, with zero net transverse stress 

over a half-wave length. 

It is assumed that the plate reaches maximum strength when the 

longitudinal membrane stress on the unloaded edges equals yield 

stress, and graphs are given for Ks  at maximum plate strength for 

various levels of initial imperfections. The levels of this imperfect-

ion A to be taken for this purpose is given by: 

1 	b //a 
= (A

m —2 At ) 

	

	 (6) 
30t 245 

where Am is the measured imperfection in the plate panel 

At is the fabrication tolerance for out-of-plane imperfection 

of the plate panel given in the Merrison Rules[3] 

a 
s 

is in N/mm2. 
y 

The part 
2 
— At 

 above is meant to cover the following aspects 

that are ignored in the derivation for Ks: 

(a) residual stresses due to welding, etc., 

(b) onset of plasticity due to flexural stresses, 

(c) influence of transverse membrane stresses on yielding at 

longitudinal edges. 



With the above effective width of flange, the strength of the 

strut is then calculated from the Perry formula (see equation (2) 

Section 6.1), but with the following modifications: 

(a) 1.2 times the shift of centroidal axis of the effective section 

relative to that of the gross section is added to initial out-

of-straightness of the strut. 

(b) The total out-of-straightness of the strut is then reduced by 

L-L0  
a factor - , in order to avoid any reduction in the strength 

E 
of a strut of very low L/r' ratio, where L = 7 - r VC:7== and r' 

Ys 
is the radius of gyration of the effective cross-section. 

(c) For plate initiated failure, the maximum stress is calculated 

at the mid-plane of the plate instead of the outer surface. 

9.2 	Discussion 

(a) The method deals with the mode of stiffener failure initiated 

by flange plate in compression only, though it would appear 

quite simple to extend it to cover the other modes, i.e. stiff-

ener outstand reaching yield stress either in compression or in 

tension, by taking in the Perry equation: 

(i) the distance of the tip of the outstand from the 

centroidal axis; 

(ii) algebraic sum of the stiffener out-of-straightness and 

the shift of centroidal axis. 

(b) The empirical treatment for welding residual stresses in the 

flange plate, i.e. adding half of the plate imperfection 

tolerance in equation (6), does not take any account of the 

level of the welding stresses. This treatment is also res-, 

tricted by being related to the Merrison tolerance on plate 

flatness which may be changed in future rules. 

(c) It is not clear whether the values of A and A to be used 

in equation (6) are those measured over twice the half-wave-

length of critical buckling (which is the procedure for 

measuring imperfections in the Merrison Rules), or whether 

the values measured in this fashion should be reduced to some 

equivalent values effective over the half-wave-length. 
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(d) The ratio TaT incorporated in equation (6) substantially 

alters the initial imperfection magnitude; it is reduced 
b for plates with -t- ratio less than 30, and increased for 

> 30. Since the plate strength/stiffness curves are 
t 
derived from sophisticated large-deflection analyses, such 

arbitrary and drastic alteration in the most important para-

meter is open to question. 
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Aspects of Stiffened Compression 
Flange, Covered in the 

Different Methods 

Method 
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1. Asymmetry of cross-section about 
horizontal axis 

✓  _ ✓  

2. Buckling of plate between stiffeners ✓  ✓  ✓  ✓  ✓  ✓  

3. Torsional buckling of stiffener outstand ✓  - - - - - 

4. In-plane transverse stresses in flange plate ✓  - - - - - 

- 5. In-plane shear stresses in flange plate ✓  - ✓  - - 

6. Locally applied lateral loading ✓  - - - ? - 

7. Varying axial load ✓  - ✓  - - - 

8. Overall curvature of box girder ✓  - - - - - 

9. Orthotropic behaviour of flange ? ✓  ? ✓  - - 

10. Continuity over transverse frames - - - - - - 

11. Welding residual stresses ✓  - ✓  - - ✓  

12. Other residual stresses _ - - - - - 

13. Shear lag ✓  - ✓  - - - 

14. Composite action of concrete ✓  - - - - - 

TABLE 1 
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CHAPTER 3 

MN-LINEAR BEHAVIOUR OF STIETTNER COMPONENTS 

	

1. 	INTRODUCTION 

	

1.1 	The stiffened compression flange of a box girder can be 

visualised in a simplified form as a series of unconnected parallel 

struts each made up of one stiffening rib and half the width of the 

flange plate panel on either side. Though the stress-strain 

behaviour of the materials will be assumed to be linearly elastic up 

to the yield stress and ideally plastic afterwards, the load-end 

shortening behaviour under longitudinal compression of each of these 

two individual components may not be linear, due to initial geometric 

imperfections and welding residual stresses, etc. 

	

1.2 	The stress analysis of such a strut will thus have to deal 

with the following two separate and distinct non-linear effects: 

(i) the non-linear response of the whole strut due to initial 

geometric imperfections of the nature of an overall bow or an 

eccentricity of applied loading at the ends or both; 

(ii) the non-linear response of the individual components, viz. 

the flange plate or the stiffener outstand, due to the 

presence of residual stresses and/or out-of-flatness. 

	

1.3 	The buckling analysis of a perfectly straight and concentric- 

ally loaded strut made of perfectly elastic material was first done 

by Euler (1744). This concept of critical buckling was extended to 

the Double Modulus and the Tangent Modulus theories by Considere (1889), 

Engesser (1895) and Shanley (1947), in order to deal with perfect 

concentrically loaded struts made of inelastic materials. The 

stress analysis of initially imperfect struts made of perfectly 

elastic material was carried out by many investigators; the well- 

known Perry Formula for concentrically loaded sinusoidally crooked 

struts and the Secant Formula for eccentrically loaded initially 

straight struts belong to this category of strut analysis. The 

present author has not been able to locate any suitable set of 

explicit formulae for the combination of an overall bow (and/or end 



eccentricity) and non-linear material response. Several computer 

programs are, however, available[19,29] for the analysis of such 

struts; these programs are based on dividing the length of the 

strut into a large number of segments and establishing equilibrium 

between the internal stresses and applied forces and moments for 

each of these segments. In this chapter explicit equations will be 

derived, linking stresses and applied longitudinal loads for such 

struts, and a design method will be developed from these basic 

equations. 

2. 	BASIC EQUATIONS FOR COMPOSITE STRUTS OF NON-LINEAR MATERIALS 

First consider a beam-column of any arbitrary cross-section, 

which is symmetrical about the plane of bending and is made up of a 

series of horizontal strips of different materials like F-F shown in 

Fig. 14(a) - each strip possessing different non-linear stress-strain 

characteristics as shown typically in Fig. 14(b). Assuming plane 

cross-sections remain plane and normal to the longitudinal axis after 

bending, the strain e of any fibre FG,under the action of axial force 

P and bending moment Mat any cross-section, is equal to y/R, when R 

is the radius of curvature and y is the distance of the fibre from 

the neutral plane MM, i.e. the plane of zero strain. 

If the actual non-linear stress-strain behaviour of a strip 

like FF is as shown typically by the thick continuous line in Fig. 

14(b) (and not the linear material behaviour shown by the dotted 

line) the stress at fibre FF is given by 

a = eEK3 = EKy/R 

where Ks is the ratio a/eE corresponding to strain e, obtained from 

Fig. 14(b). Let Ksb be called the effective width of any strip of 

actual width b. 

P= I a bdy = I R bKsydy 

= 	[first moment of all the effective strips in the 
cross-section about MM] 

= -- A y 
R e o 
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where A
e 
= the total effective area of the cross-section = I K

s
bdy 

yo  = the distance of the centroid of the effective area 

from neutral plane MM. 

In equation (1) y may be replaced by (y yo), where y is 

the distance of the fibre from the centroid of the effective area, 

with all distances taken as positive downwards. Hence, 

-
R 
K
s 
(y y

o
) 

= K 	4- 117  
s R A 

, from (2) 	 (3) 

We shall now take P to be acting through the centroid of the 

effective section and adjust the magnitude of M to allow for any 

offset between this centroid and the actual line of action of the 

axial force. This adjusted value of M will be given by: 

M =fa• y b dth 

yEK 
=1--s ybdx, from (1) 

R 

R
E 

(y+y
o
)K

s 
 ybdx 

E 
= R 
- [I u -2 K b dth y

o 
I K

S 
b dx] -s 

= -
E 
[I
e 
 + zero], 

R  

where I
e 
is the second moment of area of the effective section about 

its centroidal axis. 

Hence —M   = 
1
e 

(4) 

and, from (3) 

a = K
s 

p 
I A 

_ e 	e_ 

53. 



In the above expression for stress a at any fibre, KS must 

correspond to the calculated stress a at the fibre, and the cross-

sectional properties 1
-e and Ae of the effective section must be cal-

culated by taking effective widths of each strip in the cross-section 

appropriate to the calculated stress there. 

3. 	APPLICATION OF THE BASIC EQUATIONS TO A STIFFENED FLANGE 

The stiffened compression flange of box girders between cross-

frames consists of two components, i.e. the flange plate panel and the 

stiffening rib. Hence the Ks-factors under consideration are related 

to the load-shortening behaviour of these two components. However, 

due to the various reasons explained in Chapter 9, the geometric pro-

portions on the cross-section and the tolerances on initial imperfect-

ions of the stiffening ribs may be chosen such that there is no sig-

nificant non-linearity in the load-shortening behaviour of the stiff-

ening ribs. Thus in applying expression (4) to the stiffened flange 

problem, only one Ks, i.e. that of the flange plate panel need to be 

considered in this formulation. Thus from (4) 

P My 
K S

LA B 
 I  
  e 

( 5 ) 

P 	o a = — 0 

where a 	= stress in the mid-plane of the flange plate 

	

o 	= stress at any point on the stiffening rib 

yp o ,y‘ = distance of the mid-plane of the flange plate and of 

the point on the stiffening rib from the centroid of 

the effective section comprising the stiffening rib and 

Ks-times the actual width of the flange plate 

	

Ks 	= the effectiveness factor of the-flange plate relating 

to stress p, which is obtained from the load-shorten-

ing curve of the flange plate. 

It should be noted that the formulae in (5) are valid only if 

a0 does not exceed yield stress at any point on the outstand. 

54. 
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4. 	A STRUT DESIGN APPROACH FOR A STIFFENED FLANGE 

Formula (5) may be used to analyse stresses for given values 

of P and M by the method of successive approximations. A value of 

617, say CT1, may be assumed at first; with an appropriate value of Ks  
corresponding to this assumed value of 6p, another value of P, say 

G2, may be calculated from (5) and compared with 61; this process may 

be repeated until a2  = al. This iterative method of successive 

approximations will be time-consuming and cannot be considered suit-

able for design purposes. It should, however, be noted that: 

(i) if o > CT1, the first assumed value of-K
s 

is too high and the 

correct value Cr will be higher than 62; 

(ii) if a2  < al, the first assumed value of K
s 

is too low and the 

correct value of p will be less than 62. 

Based on the above observations it is possible to derive a 

safe design method that will not require a series of successive 

approximations. One point from the load-shortening curve of the flange 

plate panel may be chosen, and the design method will be aimed to pro-

duce in the plate panel, when subjected to the design loading, the con-

ditions of stress and shortening represented by this point. This point 

should normally correspond to the peak stress in the load-shortening 

curve as shown in Fig. 15(a); but if there is no clear peak, or if the 

peak occurs at a strain much higher than yield strain, the point may 

have to correspond to an arbitrarily set strain limit as indicated in 

Fig. 15(b). The object of setting such a limit in the latter case is 

to avoid excessive deformation of the stiffener as a whole and also to 

prevent strains on the upper part of the stiffening rib greatly exceed-

ing yield strain and thus producing premature lateral instability. 

Also, if the load-shortening behaviour indicates a sharp fall-off after 

the peak load, the design point should be chosen well below the peak in 

order to avoid a very unstable state. For the chosen point on the load- 

shortening curve of the flange plate letdenote the stress and K au 	 su 
Gau/nays  denote the effectiveness factor. 'Hence, from equation (5), the 

design of the stiffener can now be checked to satisfy the following con-

ditions: 
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— 	a  
P M 

A
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 ej 

a K = p 	su 

(6) 

P  =—+ 	a o  y 
A 	

s 
e 

It may be argued that when the plate stress p, calculated 

from equations (6), is significantly less than 
au
a , e.g. when the 

bending moment M produces tension in the plate, the adopted effective 

width of the flange plate is unduly low. But in such a situation, 

the design is not sensitive to the effective width of the flange plate, as 

the stress in the plate is obviously not critical, and the maximum com- 

pressive stress in the stiffening rib is slightly overestimated by any 

conservative assumption regarding flange plate effective width. 

In the above design approach one can identify two effective- 

ness factors, i.e. 

(1) 	a strength effectiveness factor = 6otu/0
ys' 

and 

(ii) a stiffness effective width factor K which reduces with 

increase in the stress level and which is equal to clau/nia 
Ys 

when the limiting stress cc
au 

is reached at strain nu Ys/E. 

K has been termed the secant:effective width factor in the 

Merrison Interim Design Rules for Box Girders. 

A further simplification of the design method is possible 

when n = 1, i.e. either the peak stress ocfurs at a strain of U 
Ys 

or the stress corresponding to this strain is arbitrarily chosen as 

a limit for the plate. In this case the two effectiveness factors are 

equal, i.e. K u = aau/ays, and the design method will simply consist s 
of taking one effective width of flange equal to K  	for an effect- 

ive

sub 

 strut section and then checking that the yield stress is not 

exceeded anywhere on this effective section. Such a simple effective 

width approach has been the basis for many of the recommended methods 

for compression flange design, but strictly speaking this approach is 

theoretically correct only when. n = 1, i.e. the peak stress occurs or 

is assumed to occur, at yield strain. 
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5. 	FACTORS INFLUENCING THE BUCKLING OF THE STRUT 

It has been shown in Section 2 that when a composite beam-

column of non-linear materials is subjected to axial load and flexure, 

the magnitude of the bending moment and the curvature at any section of 

the beam-column is related by equation (4), i.e. /Vie  = E/R, where le is 

the second moment of area of the effective cross-section about its 

centroidal axis, in which an effective width of all the strips equal to 

b has been taken - K being related to the stress in the particular 

strip at this cross-section calculated from equation (4). The bending 

moment M is calculated with respect to the centroid of this effective 

cross-section. For small deflections the reciprocal of R can be approx-

imately taken as dye/dx2  when y represents deflections due to flexure, 

and with the sign convention of downward deflection and sagging bending 

moment positive, we get for any cross-section, 

MX = - EI e ds2  

Consider now the case of an initially imperfect composite strut 

subjected to a longitudinal load P applied eccentrically at its ends. 

If yo  and y represent the initial and the final deflected shapes of the 

centroidal axis of the effective section Ae respectively, then at any 

cross-section, 

M =- El 
d2  - y 0 ) 

 

x e dx2 

Equating this internal moment to the externally applied moment at the 

section, leads to: 

d2(y - yo) ,6 - El 
dx2  

where 6 is the distance of the centroid of the effective section Ae in 

its deflected position measured normal to and from the line of action 

of p. This is the governing equation for the deflected shape of the 

strut. 

(7) 
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Equation (7) is identical to that for an initially imperfect 

and eccentrically loaded strut of a perfectly elastic material, except 

that I
e 
replaces the constant second moment of area. For the box 

girder stiffened flange problem I
e 
depends upon K and hence the stress 

in the flange plate. The total stress in the flange plate is the sum 

of that due to the axial load P and that due to the bending moment x, 

and as M varies along the length of the strut,
e 
is not theoretically 

constant. If the bending stresses are small compared to the axial 

stress, then the variation in. K
S 
will not be large. Moreover, any 

change in K
s 

causes a comparatively small variation in I
e' 

as can be 

seen from the following expressions for I
e
: 

I
e 
= I 

A 4. K bt 
s 	s 

In this expression Ao  and 1.0  are the first and the second 

moments of area about the flange mid-plane of the stiffening rib section 

A , and b and t are the width and thickness of the flange plate. Taking 

as an example a 300 mm x 12 mm flange plate stiffened by a 200 mm x 15 mm 

rib, the ratio of the second moment of area of the effective section I
e 

to that of the gross section / are given below for different values of 

K
s
: 

K
s 

I
eg 

1.0 

1.0 

0.8 

0.93 

0.6 

0.85 

0.5 

0.8 

Furthermore, the effect of increased second moment of area away 

from the mid-span has comparatively little effect on the deflected shape 

of the strut. This can be illustrated by taking the example of a simple 

beam of sinusoidally varying second moment of area, the minimum being at 

the mid-span, and subjected to a sinusoidal bending moment pattern with 

maximum value at mid-span. If the maximum deflection is calculated 

with the assumption of uniform second moment of area equal to the minimum 

value, it will be overestimated, compared with the exact value, by only 

41/2% and 1111% for the ratio of minimum to maximum second moment of area 

equal to 0.75 and 0.5 respectively. 

A 2  0 
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From the above considerations it is reasonable, and safe, to 

assume a constant value of I
e 

corresponding to the maximum stress in the 

flange plate. In Section 7 of this chapter, the bending moment express-

ion in equation (7) is used in conjunction with an assumed initial 

deflection pattern, to obtain the solution for the final deflections and 

bending moments along the length of the strut. This solution, i.e. 

equation (10) is very similar to the design equation given in the 

Morrison Rules[3], except that in the latter, for critical buckling 

stress, /.e is calculated on the basis of the tangent stiffness Kt 
 of the 

flange plate (i.e. the slope of the tangent to the load-shortening 

behaviour of the plate at the appropriate stress level), instead of the 

secant stiffness K, as derived in Section 2. The author understands 

that this approach in the Morrison Rules owes its origin to the theories 

of inelastic buckling of straight struts, i.e. the Tangent-modulus 

theory of Engesser or the Double-modulus theory of Considere, in which 

the buckling stress of straight struts of inelastic material is derived 

in terms of the slope of the tangent to the stress-strain curve at the 

appropriate point: To explain this anomaly the origin of the tangent 

modulus concept will be traced back by reference to its use in the 

inelastic buckling of straight struts, and its validity to the analysis 

model adopted in the Merrison Rules examined in the following section. 

6. 	INELASTIC BUCKLING OF STRAIGHT STRUTS 

Consider a straight composite strut compressed by an applied 

load P without any deflection. If e is the uniform axial strain, 

stress a at any strip is equal to K Ee
p'  Ks 

and hence a may vary from 
s  

strip to strip, depending upon the shape of the stress-strain curve of 

the strips. 

P.= f ,  K Ee
p 
 b'dy = Ee

p 
f K

s
bdy = Ee

p
A
e s  

where A
e 

is the effective area consisting of strips of effective widths 

Sb. It is obvious that for no flexure P must act through the centroid 
of the effective area A

e
, i.e. the line of action of P must change with 

the magnitude of P. 
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Now apply a very small deflection to the strut. In every 

cross-section there will be one axis MM perpendicular to the plane of 

bending in which the stress and the strain developed prior to deflect-

ion does not change. See Fig. 16. 

On the concave side of this line the compressive stresses will 

be increased, the relationship between the incremental stress to 

incremental strain being da/de = EK
t' 

when K
t 
is the slope of the 

tangent to the load-shortening diagram at stress a. On the convex side 

of the line the compressive stresses will be reduced by flexure and as 

unloading follows a linear relationship between stress and strain with 

constant modulus E, du/de = E. 

Denoting the incremental strains and stresses due to flexure 

	

at distance y from tyffl1 by eb  and 	and and noting that eb  = y/R, we get: 

a
b 
= EK

t
e
b = EKt R 

on the concave side; 

a
b 

Ee
b 

E 2-on the convex side. 

As these additional stresses do not alter the total axial 

load, 

j
Y c 	rYt 

2- EKt R 	- 	Ebdy =0 

or, 

ye rYt 
j Ktbydy - 	bydy = 0 
0 	 0 

Imagine a tangent effective area Aet, with Ktb for each strip 

on the concave side and the actual widths of strips on the convex side 

of the line MM. Since from the above equation the first moment of 

area of this section about MM is zero, MM must be the centroidal axis 

of this section A
et
. 

The bending moment M
X 
at the cross-section is given by: 



61. 

	

flje 	rYt 
M = j EK 2- bydy j 	E bydy 

t R o 

Ye 	• 
E r 	

rYt 
- j Ktby2dy j by2dy 

0 	 0 

R 
_r
e t 

where /
'et is the second moment of area of the tangent effective section 

Denoting the deflection of the centroidal axis of A
et 

by y, and Act' 
noting that for small deflections 1/R = - d2y/dx2,  we get: 

d2y  
- 

EIet  dx2 
PV 	 (8) 

Equation (8) represents the differential equation of the 

centroidal axis of a composite strut in the state of unstable equil-

ibrium and is of the same form as that for the deflected shape of a 

perfectly elastic strut. Thus, for a simply supported strut of com-

posite section and length L we can get the smallest buckling load Per  

by following the approach of the Double-modulus theory: 

72E  et
P - 
cr 	r2 

According to the Tangent Modulus theory, the ratio of incre-

mental stress and strain is taken as EK
t 
for the whole cross-section 

and not just on the concave side, and thus Iet  is calculated for a 

tangent-effective section in Which the actual widths of all the strips 

are.multiplied by corresponding Kt. 

It can be seen that 

(i) equation (7), involving secant stiffness Ks, relates to the 

equilibrium condition for the deflected position of an init-

ially imperfect composite strut; 

(ii) equation (8), involving tangent stiffness Kt, relates to the 

position of an initially straight composite strut when sub-

jected to a small lateral disturbance.. 

Thus the tangent stiffness Kt  is the appropriate factor for 

the analysis of inelastic buckling of composite straight struts. It 

(9) 
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will also be appropriate for an incremental analysis of initially imper-

fect composite struts, i.e. for its complete load-shortening behaviour. 

But the secant stiffness K is appropriate for the effective cross-

sectional properties in the single-step design approach developed in 

Section 4. 

7. 	IMPERFECTIONS AND A DESIGN METHOD FOR BOX GIRDER STIFFENED 

COMPRESSION FLANGES 

For the design of box girder compression flange stiffeners, it 

will be assumed that they may have both initial misalignments and 

eccentricity of applied load as shown in Fig. 17(a). Equation (7) 

governs the deflected shape: 

d2  (y -  yo
) 	

po 
- El

e 

As explained in Section 5, yo  and y represent the initial and 

the final position of the centroid of the effective section Ae; d is 

the offset of the- deflected centroid of the effective section from the 

line of action of P; and I
e 
shall be taken as constant. Denoting the 

eccentricity of applied loading at each end with respect to the 

centroid of the effective section by el, we gets = el  + y, and 

d2  (y - y 0) 
- EI 	 P(e 	y) 

e  dx2  

Assuming the initial shape to be given by yo  = e2  sin ffx/L, 

the solution to the above differential equation is: 

sin ux 	sin u(L - x) 	Tr2 	TrX . 
y = - 

 

	

e1 	e 	 e2 	 sin 

	

 
1 	1 	sin uL 	1.2 	2L2  7 	- 2,1 

where u2 = - The bending moment at any section is then: 
EI % 

M = P(e1 	
sin ux 4-  sin (L - x) 

X 	
y) = P Ce l 	sin uL

u 
 

2 
-1 7X 

e2 	sin 7  
TT2 - 2L2 

dx2  



The maximum bending moment occurs at the centre and is given 

by: 

pE  

	

M =P 	 sec TIT  / 75—P 	✓ e2  p 	  

7r2 EI 
where PE  = 	2 

e 
- Euler load of an elastic strut of section Ae and 

	

L 	length L between hinged ends. 

In the Merrison Rules Section 20, the tangent effective width 

factor Kt is stipulated for the effective cross-section for the purpose 

of calculating the Euler load PE  and the bending moment due to initial 

imperfection; subsequently, however, the secant effective width factor 

K
s is used to calculate the stresses in the cross-section due to the 

axial force and the bending moment. But from the derivations in this 

and the previous sections it should be apparent that the secant effect-

ive width factor Ks is theoretically more appropriate for the entire 

analysis of an initially imperfect inelastic strut; this conclusion 

also leads to considerable simplification in the strut analysis as only 

one effective width factor for the plate is involved. 

M can be written as M = P m (e2  f —in m el), 

/ P where m = p  P
E 

p and ml  = sec -2- T. 

The ratio m'/m for different values of P/P
E is shown in the 

following table. For compression flange stiffeners, factored applied 

load is not expected to be more than two-thirds of the Euler load PE, 

and hence for the sake of simplicity it is reasonable to take the ratio 

m'/m equal to unity. 

P/PE 0.2 0.4 0.6 0.8 0.9 

ml/m 1.048 1.099 1.154 1.212 1.242 
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Thus the maximum bending moment in the strut is given by: 

M=P  • (ee ) 2 P - P ' 
E 

 

(10) 
71.2 EI 
	- 
L2 	

(e1 	e2) (n? — 1) 

It should be noted that el  is the eccentricity of applied 

loading with respect to the centroid of the effective section Ae; 

hence if the actual eccentricity is given with respect to the centroid 

of the gross cross-section, the shift of the centroid of the effective 

section must be allowed for in calculating el. 

In a steel box girder it is difficult to identify the exact 

distribution of stresses in the various stiffened elements at differ-

ent cross-sections of the girder, since plates are liable to buckle 

between longitudinal stiffeners, which in their turn are liable to 

buckle between the transverse stiffeners. It is, however, reasonable 

to assume that a global analysis based on linear elastic theory will 

predict satisfactorily the stress distribution on the box girder cross-

section at the locations of adequately designed cross-frames. The 

loading pattern at the ends of each span of longitudinal compression 

flange stiffeners can be obtained by applying Engineers' Bending 

Theory, in conjunction with shear lag effective width ratios, to the 

gross cross-section of the box girder and the calculated girder bend-

ing moment at the section. The end loading for the compression flange 

stiffeners will thus be represented by a stress gradient on their 

gross cross-section, as shown in Fig. 17(b). 

The stress block shown shaded, acting on the flange stiffener 

can be represented by superimposing an axial force P and a bending 

moment M, given by: 

P = A
ga 

M
e 

.--.. stress gradient = 
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where A is the gross area of cross-section of the stiffener 

as 
is the stress calculated by Engineers' Bending Theory at the 

centroid of the gross stiffener section 

/ is the second moment of area of the gross stiffener section 

h is the distance between the centroid of the gross stiffener 

section and the neutral axis, i.e. the level of zero stress, 

of the box girder. 

Instead of a momentM
e
and a force P acting through the centroid 

of the gross section, we can take P acting with an eccentricity el with 
respect to the centroid of the gross section, given by: 

M 	I
CI 	

r2 
a  

e - 	_ _ g 
P h Ag aa 

where r is the radius of gyration of the gross-section. 

To apply equation (10) for the maximum bending moment on the 

flange stiffener, the shift ell' of the centroid of the effective section 

must be added algebraically to e1'; eri'.  is given by: 

. 1 	1  
e" = A 0 5 	K bt A + bit] s s s  

where As = area of the stiffening rib 
Ao = the first moment of area of the stiffening rib about the 

mid-plane of the flange plate. 

e in equation (10) is therefore given by: 

e = e' 	e" 

r2 	1 	1  = 	+ A h 	o[As 	s K bt As + bt 

8. 	STIFFENED COMPRESSION FIANGE DESIGN AND THE EUROPEAN STRUT 

CURVES 

Extensive theoretical studies and corroboration with test 

data
PO]

, undertaken on behalf of the European Convention for 

Constructional Steelwork, on the flexural buckling of axially loaded 

65. 
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struts of compact cross-sections, with initial imperfections, residual 

stresses and variable yield stresses in the strut have led to a set of 

three basic European column curves. The selection of a particular curve 

for a specific column depends upon section geometry, axis of buckling 

and the process of fabrication, i.e. as-rolled, welded, annealed, flame-

cut edges, etc. Unfortunately, the stiffened compression flange of box 

girders has certain features that have not been adequately covered in 

this study. These are: 

(i) Though the investigation covered welded box sections and tee 

sections separately, the stiffened compression flange has a 

combination of the worst features of both, i.e. the adverse 

geometry of the tee section buckling with the web on the con-

cave side and the unfavourable welding residual stress pattern 

of fairly uniform compression in the flange plate. 

(ii) The flange plate and the outstand may be more slender than the 

limits of compactness of cross-section, and hence local buckling 

can be critical. 

(iii) The European column curves were based on an assumed sinusoidal 

initial bow of 1/1000 of the column length. Though it was 

shown that any eccentricity of applied loading of up to 1/20 

times the radius of gyration was likely to be covered by the 

assumed initial bow, it was considered unnecessary to cover the 

possibility of a combination of a bow and an eccentricity of 

these magnitudes in the case of ordinary struts. As shown in 

the previous section, the loading on the stiffened compression 

flange acts with an end eccentricity which depends upon the 

geometry of not only the stiffened flange but the whole box. 

Dwight
[31] 

has shown that these European column curves can be 

represented by the well-known Perry strut formulae: 

a 	
2 

= 	{a 	(fl 	1) a
E
} - 	lays  4- 01 11- 1) aE1 2  - ays  aE  su 	ys 

where o
Su = ultimate axial stress 

E 
= Euler stress 

- A
sx 

y
f  

fl  
r
2 
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Asx = amplitude of a sinusoidal initial bow 

yf  = maximum compressive fibre distance from the centroidal 

axis. 

The theoretical basis of the Perry formula is that the maximum 

load on the strut is attained when the total compressive stress due to 

axial load and flexure reaches yield stress at the extreme fibre. 

Robertson expressed the imperfection parameter n as C-L/r; and by taking 

different values for C for different column types and introducing a lower 

limit of L/r below which n may be taken as zero, the three European 

column curves can be fairly accurately represented by the Perry equation. 

It can be easily shown that the Perry equation is analogous to 

equating the maximum compressive stress either in the flange or in the 

outstand to the limiting values, in the same way as done in equations 

(6), with the bending moment calculated from equation (10). Because of 

the reasons already advanced, no assumptions shall be made regarding the 

Perry factor n or the Robertson constant C, but instead a calculated 

value for the eccentricity el  and a tolerance limit for the initial bow 

e2  shall be used in equation (10). CY and K u  in equation (6) shall be au 	s 
derived from the load-shortening behaviour of the flange plate for which 

initial out-of-flatness and welding residual stresses in the plate shall 

be taken into account. 



CHAPTER 4 

ELASTIC INITIAL AND POST-BUCKLING 	VIOUR OF 
FLAT ORUHOTROPIC PLATES 

1. 	INTRODUCTION 

In this chapter the elastic buckling behaviour of initially 

flat orthotropic plates under uniaxial in-plane compression, including 

post-buckling behaviour, will be analysed. Following from this 

analysis, the next two chapters will deal with the buckling behaviour 

of initially imperfect isotropic and orthotropic plates, leading res-

pectively to: 

(a) the load-end shortening characteristics of flange plate panels 

between the stiffening ribs, which can be incorporated in the 

stress analysis of flange stiffeners as indicated in Chapter 3; 

(b) the influence of adjacent longitudinal stiffeners on each other, 

i.e. the orthotropic action of the entire stiffened flange 

between girder webs. 

The differential equation for equilibrium at any point in an 

isotropic plate is: 

D4id 2eld ew t 	a2w pw 	2w 
~ a 2 2 	- 	+ a x Dy 	D Lt 	x axe ay '517 

4- 2T
xy 3x3y 

where t 

D 
is the thickness of the plate 

is the flexural rigidity of the plate, given by Eta 
 12(1-v2) 

is the intensity of lateral loading per unit area at (x,y) 

tJ 	is the deflection at (x,y) 

s 
a _Oa 

y are the tensile membrane stresses in the respective direct-

ions at (x,y) 

xy is the shear stress in x-y plane at (x,y) 

The above equation was originally derived by St. Venant (1883) 

for small deflections of isotropic plates in which the membrane stresses 

were due entirely to applied in-plane loads on the edges and were not 

affected by the plate deflections. This equation may also be used for 

larger deflections of isotropic plates, provided changes in the membrane 

stresses at different points caused by the stretching of the mid-plane 

are taken into account, and also provided the deflections are still small 
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enough compared to the length of the sides to justify the conventional 

approximation that curvature is equal to the second derivative of the 

deflection. Further assumptions involved are: 

(a) the thickness of the plate is small compared to the sides; 

hence stresses between adjacent horizontal layers in the plate 

are negligible, and also the effect of vertical shearing 

stresses on deflection of the plate is negligible; 

(b) plane sections remain plane and normal to the neutral surface. 

Similar equations have been derived by several authors for 

anisotropic plates; because of the.different assumptions made by them 

regarding the flexural rigidities, the basic properties relevant to our 

case and a suitable form of the equilibrium equation are given below 

for the convenience of the reader. 

An anistropic plate has different elastic properties, and hence 

flexural rigidities, in different directions. Assuming three planes of 

symmetry with respect to elastic properties, and taking them as the co-

ordinate planes, the following five extensional constants are involved 

in the analysis of an 'orthotropic' (i.e. orthogonally anistropic) plate 

in plane stress: 

E
X 
= ratio of stress to strain in x-direction when there is no 

stress in the y-direction 

E = ratio of stress to strain in y-direction when there is no 

stress in the x-direction 

V
x 

= - E
X 
times the strain in x-direction due to unit stress in 

y-direction, with no stress in x-direction 

vy  = - E times the strain in y-direction due to unit stress in 

x-direction, with no stress in y-direction 

G = shear modulus. 

From Hooke's Law of elasticity the relationship between stresses 

and strains in an orthotropic plate are: 

e = —
1 

(a - v a ) x Ex  x x y 

1 
ey E 

= — (a
y 
 - v 

y
a
x 

 ) 

= 
1 

e 	T 
xy G xy 
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From Maxwell's reciprocal theorem, the strain in x-direction 

due to unit stress in y-direction must be equal to the strain in y-dir-

ection due to unit stress in x-direction. Hence, from the above defin-

itions of the elastic constants: 

V v x 
E E 
x y 

An ideal orthotropic plate is defined to be such that the var-

iation in flexural rigidities in the orthogonal directions is due 

entirely to the varying extensional elastic properties, and that the 

geometry is uniform in all directions, i.e. it is a plate of uniform 

thickness throughout. 

Taking the curvature in each direction as the partial second 

derivative of the deflection and integrating the stresses over the 

thickness, it can be shown that the bending and twisting moments per 

unit length at any section are given by: 

32w  
M -  = — 	a21 

x 3x2+ D 1 -57 

2W 	 2T 
My  = [Dy aye 4- DI  

a2w  
M = 

Myx 
= + 2D

xy axay 

where the bending rigidities D , Dy, 	
x 

, D and 
D y 

are defined as: x  

E t3  
D — 	 
x 12(1—v

x  vy 
 ) 

E t3 

D — 	Y  
y 	12(1—v 

x 
 v ) 
y 

D =vD =vD 1 	y x 	x y 

Gt3  D
xy
— 
 12 

Taking H = 2D + — (v D + V D ), the modified form of St. 
x 2 y xy yx 

Venant's equilibrium equation for an orthotropic plate takes the form: 

(2)  

(3)  
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a4w 	n4m 	n4m 	a2w 	
a2W D 

 Dx4 
+ 2H " 	 D 	- q a

xt axe y Dy4 	ayt aye ax2ay2 

a2w  
2T
xy
t 
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2. 	ELASTIC CRITICAL BUCKLING OF ORPI TROPIC PLATES IN UNIAXIAL 

COMPRESSION 

The elastic critical buckling stress for orthotropic plates in 

uniaxial compression has been derived by many authors in various differ-

ent ways. As its magnitude is an important factor in the post-buckling 

behaviour of ideally flat plates and also in the whole behaviour of an 

initially imperfect plate, a technique (originally due to Timoshenko) 

for calculating it will be presented here for the convenience of the 

reader as an introduction. Figure 18 shows such a plate. 

In this method the plate is given a very small lateral deflect-

ion, consistent with its edge conditions, at various levels of applied 

compressive forces. Consider the increment of strain energy of bending 

AU
b 
due to this small deflection and the increment of work AT

b 
done by 

the forces due to the in-plane movement of the loaded edges as a conse-

quence of this small lateral deflection. At a critical level of ax
, 

AU
b 
and AT

b 
will be equal and the plate will be in neutral equilibrium. 

The lowest critical load obtained by equating AU
b 

and AT
b 
for all poss-

ible modes of lateral deflection is the elastic critical buckling load. 

In the case of uniaxial compression, as a very small deflection 

is being considered, ax  may be considered to be constant everywhere in 

the plate and equal to the applied edge stress a
a
; and q = a = Txy 

 = 0. 

Hence the equilibrium equation (4) reduces to: 

94W 	a4w 	a2W 
D 	-I- 2H 

ax2ay
2  D 	4  - at axe

ax Y Y 

The boundary conditions for deflection are: 

a 
(i) w = 0 when x = ± - and also when y = - 

2 	2 

We shall assume that the plate is free to rotate at all the edges; 

hence, 

(ii) M = 0 when x = ± 
2 

(iii) M = 0 when y = ± 
2
- 

(4)  

(5)  



The above boundary conditions are satisfied if we assume the deflected 

shape as: 

w  = A cos mix cos  my.  
a 

aye are
axe 
	@ 

since both W and the second derivatives 	and 	are zero when 
w 

either x = ±Tor y = ± . 

If the effects of shear forces and stretching of mid-plane are 

neglected, then the bending strain energy stored in any element of the 

plate dx by dy is the sum of the work done by the bending moments Mxdy 

and M dx, and by the twisting moments M
xydy 

 and 14 dx. 
 yx 

Hence, from (2) 

d(AUb) = 
pp 

L(1x2)2   vy  ayw ax2 j 
 
 dxdy 

r-  n 2 2 
▪ D C'2-47) v 	dxdy 
2 y y2 	x 	ay2 

- PL.)—  ▪ 2pixy - Dx@y_ 
2 

drily 

Using equation (6) and integrating d(AUb) over the whole area, 

one gets: 

1 74712 r 	b 	1 	m21 
 .... 	(7) D n4 	H AUb - 	 

4  1_2 D m

4 

a3 2 y 	b3 	ab 

The work ATb  done by the applied forces can be obtained by con- 

sidering the amount by which the 

from simple geometry this amount 

3x 
Dw  
— greater than 2 are neglected. 

loaded edges approach each other; 
W 2  

is equal to j-- 	dx, if powers of 
Dx 

Hence: 

(4.b/2 ra/2 1 w  2 
AT
b 
= a

a
t j 	7 (5i) dxdy . 
-b/2 -a/2 

Substituting for w gives: 

AT 	1 	2 2 b 
T b 	at W2M  A   
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a2za  

(8) 



Equating (7) and (8), the critical value of as  is obtained as: 

22 

	

W2 [, 
x 

M 2, 	n4 a2 

	

- — 	D 	--- Nind 0' 

	

cr tb2 	a 	y m b2  

It is obvious that acr  will be minimum when n=1, i.e. there 

will be only one halfwave across the width b. 

Taking qb = a mb ' 

W2 D x a 	- 	--- 4- D 043,2  4- 2H 
tb2 11:1

2 y cr 

dci 
For minimum value of a

cr
, 
 d(11)

cr - 0, i.e. le = 	. Hence, the 

critical value of the longitudinal stress is given by: Y 

a 	P-17---D--  d 

	

cr tb2 	x y 

and the half wave length of buckling, in the longitudinal direction, is 

given by: 

= = byb =b 
-D -44  

D 
Y! 

 

 

Et-v2) 
3  For long isotropic plates Dx  = Dy 	12(1 = H - 	, and equations 

(10) and (11) reduce to the well-known Bryan's (1891) formula: 

4Tr 2E  (
t 

N 2  
cfcr - 12(1-v2) s'bi  

and (I) = 1, i.e. Z= a= b . 
rn 

The stiffened compression flange of a box girder differs from an 

ideal orthotropic plate in that discrete stiffeners are connected to the 

surface of the flange plate. However, equation (10) for critical stress 

may still be used as a good approximation, provided the flexural rigid-

ities Dx  , Dy  and H are calculated taking the stiffening into account in 

the following manner: 

From equations (2), considering curvature in one direction only 

at a time and smearing the rigidities uniformly, 

El 	EI  El 
and D - 	, 

b' 

73. 

(9)  

(10)  

(12) 
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where /X is the second moment of area of longitudinal stiffeners taking 

an effective width of flange plate equal to b' Ks; - KS being 

the secant effective width factor of the flange plate discussed 

in Chapter 3, 

I is the second moment of area of transverse stiffeners taking an 

effective width of flange plate equal to L, 

b' and L are the spacing of longitudinal and transverse stiffeners 

respectively as shown in Fig. 19. 

From the definitions V
x 

and V given in Section 1, they may be 

assumed as follows: 

b it  x- v b't 4- A 

Lt  
V - V Lt A 

where Asx  and ASH  are the area of each stiffening rib in the x and y 

direction respectively. 

For the ideal orthotropic plate of uniform and continuous thick- 

ness t, the rigidity H is given by: 

3 1 H= Gt
6 2yx 2xy 

In a stiffened compression flange, however, the plate has dis- 

crete stiffeners, and the contribution of flexural rigidities Dx and D 

towards the torsional rigidity H is not certain; so it is safe to 

ignore the latter two terms. The first term is equal to half the 

torsional rigidity of the orthotropic plate; hence we may add half the 

torsional rigidities of the stiffening ribs in each direction, thus 

resulting in the following expression for H for stiffened flanges: 

Gt3 GJ GJ 
H - — --2-c  -- 

S 2b' 2L 

where J
x 

and J are the torsional constraints of the stiffening rib 
y 

sections in x and y direction respectively and are given by: 

sx 

sy 
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3  dt 
(1) E 	for open type sections, when d and t are the width and 

thickness of each element in the section; 

4A2 
2 

(ii) 	for closed type sections, when Aen  is the area enclosed 

Et 	by the middle planes of the elements, and d and t are 

as defined above. 

However, for the following reasons, it is recommended that the 

transverse stiffeners should be designed to be sufficiently stiff so as not 

to buckle before the longitudinal stiffeners: 

(i) Transverse stiffeners often form part of the internal cross-

frames of box girders resisting angular distortion of the box 

section when subjected to torsion; 

(ii) interactive buckling between longitudinal and transverse stiff-

eners will be highly sensitive to initial imperfections
[32,33]

; 

(iii) top flange transverse stiffeners must support lateral loading on 

the deck. 

Thus, for such designs, instead of overall buckling of the whole 

flange involving one or more transverse stiffeners in one half-wave-

length, local buckling of the flange between adjacent transverse stiff-

eners is going to be a more important consideration. In this case the 

orthotropic plate is represented by the longitudinally stiffened panel 

between the cross-frames. Since the transverse stiffeners do not con-

tribute to the flexural rigidities Dx  , Dy  and H in this mode of buckling, 

these can be taken as follows: 

EI 
Dx = 

b' 

Et3  
D 	12(1-v2) 

Gt3 	1 	1 	Oral 
H - --+ —vD -7vD x 

6 2yx zxy 2b' 

where t is the thickness of the flange plate, 

b't  

	

vx - v  bit A 	' sx 



I , J and A are as defined above for longitudinal stiffeners, x x 	sx 

v = v. 
y 

For an ideal orthotropic plate,V
yDx 	x D H. In the case of a 

discretely stiffened compression flange between transverse stiffeners, 

D will be much smaller than Dx and this equality will not usually be 

satisfied. Moreover, as argued before, contribution of Dx towards 
torsional rigidity H is uncertain. Hence, it will be prudent to take 

Gt3  H - 	+ 	
Gj 

v D 6 	x y + 2bx  • 

From equation 

entire compression flange 

P 	a 	Bt cr 	cr 

The average 

(9), replacing 

is given 

71.2 rDx 
 

b by B, 

by: 

2  + 2H 

on the 

total 

flange 

critical load on the 

is then: 

— + D 
D  Le 	Y  

critical stress 

Tit [D
X - a

cr  B2te 7
15-2

+ D
H 

2 	2h] 

NA 
where t = t + 	- smeared thickness of flange. e 	B  

From equation (11), the natural half-wave-length of buckling 

should be B
xy 	x 

)1/4; but as DJD will be very large, the actual half- 

wave-length  will be limited to the spacing L between transverse stiffen-

ers; hence, (I) must be taken as L/B, leading to: 

1T 
2 [ D

X 
 D E2  2111 

y  a =  
to 
 L

2 + 	+ — cr 
B4 

B2 

provided 
D 	4 X (EA 
D 	Bi  
y 

For torsionally weak longitudinal stiffeners, i.e. open stiffen- 

ers, D and H are negligible compared to Dx for buckling between trans- EIu  
verse stiffeners. For overall buckling H is negligible but D = 	 

L • 

76. 

(13) 
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The minimum value of the second moment of area I 'of transverse stiff-

eners, necessary to ensure that overall buckling is not more critical 

than local buckling, may be obtained by using equations (10) and (13), 

i.e.: 

2n2 
	D 

t
e
B2 	x y t

e 
L2 

leading to: 

B4Ix  

4b'L 
3 

The above result is only true for elastic critical buckling of 

ideally flat stiffened panels; however, if I is only just above this 

limiting value, interactive buckling between the local and the overall 

modes is likely to render the system highly sensitive to initial imper-

fections, and buckling, when it occurs, will be characterised by a 

sudden unloading
[32,33]

. Hence, I should be several times the above 

theoretical value in order to ensure that overall buckling involving 

deflection of transverse stiffeners will not be as critical as buckling 

of longitudinal stiffeners between the transverse stiffeners, i.e. that 

the latter may be assumed to provide non-deflecting support to the 

former. Hereafter it shall be assumed that transverse stiffeners shall 

always be designed to satisfy the above requirements. 

3. 	POST-BUCKLING BEHAVIOUR OF ORTHOTROPIC PLATES IN UNIAXIAL 

COMPRESSION 

In Section 2, the critical stress for initial elastic buckling 

of flat orthotropic plates in uniaxial compression has been derived. 

The plate can, however, continue to carry higher stresses in a buckled, 

but still stable form, due to the stretching of the middle plane of the 

plate. In this section the post-buckling behaviour of orthotropic plates 

will be analysed by generally following the method given by Bulson[34] 

for isotropic plates. 

If u, v and w denote the three components of displacements, in 

the longitudinal, transverse and lateral directions respectively, of any 
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point in the neutral plane of the plate, then the following relationships 

between strains and displacements can be derived by geometry: 

	

Du 	1 fawx 2  

	

e
x = T; 	v51-  

	

aV 	1 aW 2  ey  = ay  4.  2 

	

Du 	3/) 	3w 3w 
e 	"5"--  xyyxxy 

By differentiating these expressions, the following compatibility 

condition between strains and deflection can be obtained: 

a2e
x  

a2e
y a te 
 xy 

ra22J 2 a2w  a2w  

aye  3x2  axay 3x2  aye  

Considering a small element dx by dy of the plate and the membrane 

forces acting on it, the following partial differential equations of 

equilibrium can be obtained: 

ao aT 
0 aXX + ay 

aU 	aT 

ay = 0 ax 

We shall use Airy's stress function F, such that: 

32F a __
x aye ' 

a2F 
aX 2  j 	T 

xy 
a2F 
axay 

 

(15) 

 

where 	, Cr -and T
xy  are the membrane stresses 

function automatically satis- 

fies 	

at (x,y). x y 

It can easily be shown that such a 

 the above membrane equilibrium conditions. 

Using Hooke's Law relationships of equations (1), the compatib- 

ility condition for orthotropic plates takes the following form: 

/ a 4F 	1 34F 	vx 	D4,  n2w i a2w  32x  

- 
_ _ 

,s  ay'+ 	 E .ax4 LG 	Ey  Dx2Dy 2 	Laxayj 	3x2 • ay 2 

(14) 

(16) 



79. 

This compatibility equation and the equilibrium equation (4) 

govern the elastic behaviour of orthotropic plates. These are fourth 

order non-linear equations and few rigorous solutions exist for the 

various stress patterns and boundary conditions. Marguerre and Trefftz 

(1937) analysed the post-buckling behaviour of flat rectangular isotropic 

plates under uniaxial compression by the Rayleigh-Ritz procedure, i.e. 

first assuming a pattern of deflections and then using the extremum 

principle of minimum total potential energy - an extremely powerful con-

cept introduced into the theory of elasticity originally by Kirchhoff 

(1850). This method shall now be extended to orthotropic plates in uni-

axial compression. 

In the previous section it was shown that the critical buckling 

mode of an orthotropic plate in uniaxial compression is given by: 

w = A Cos Trx  -- Cos 

where b is the width, and 

Z is the natural half-wave-length of buckling. 

We shall now assume that when the applied stress C
a 

exceeds the 

critical value car,   the plate buckles in the above mode with an ampli-
tude A which is no longer very small. 

The objective is to obtain a relationship between the deflection 

amplitude A and the applied stress Ca  when Ca  > 	Bending energy of 

the plate may be obtained either from equation (7), taking m = n = 1 and 

a = Z, or from a definition of the critical stress which states that a 

deflected shape with any value of the amplitude A is possible under the 
action of Car. Ub is thus equal to G crbt times the average shortening 

of the longitudinal strips due to deflection W. Shortening of any strip 

is given by: 

+1/2 / 9w 2  

-Z/2 

Average shortening over the width b is thus given by: 

+b/2 +1/2 
/ f 	 / aw 2 

7 	dthdy 
-b/2 -1/2 

(17) 



= 1 A27i2  
8 Z on substitution from equation (15). 

80. 

Hence, bending energy: 

A2n2 
V
b 
= acrbt 

8Z 

After buckling the pattern of membrane stressesG and T x y 	xy 
will no longer remain the same. These membrane stresses and the strain 

energy due to them depend upon the in-plane boundary conditions along the 

edges (in addition to the out-of-plane boundary conditions which we 

already assumed to be free to rotate about the supported edges). In the 

following two sections, two different types of in-plane boundary condit-

ions along the longitudinal edges will be examined. 

4. 	POST-BUCKLING BEHAVIOUR - LONGITUDINAL EDGES HELD STRAIGHT 

For the first set of possible boundary conditions, we shall 

assume that all the edges remain straight and the plate retains its 

rectangular outline as it deflects. For the stress function F, an 

expression similar to the one Bulson[34] used for isotropic plates may 

be used, as follows: 

* 
2  

anlY 	7 (Ye
2 
 32 {EX 	2  Cos  

2  Ey b 
(1) Cos 21 

where Gm  and an are two constant values in units of stress. 

The left-hand side of the compatibility equation (16) becomes: 

n4 A
2  

2b212 {Cos Cos LTY-b  * Cos tr.r.$), 
z 

Using  equation (17), the right-hand side of the compatibility 

equation (16) can also be shown to be the same and hence the assumed 

stress function satisfies the condition of compatibility at all points 

in the plate. The membrane stresses ax, lay  and Txy  at any point (x,Y) 

can then be obtained from equations (15) by differentiating F, as 

follows: 

(18) 
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a2F 	a 	ExA2b2 271. 2 	krry  

a
x 

	

	 Cos 
aye m 3212  b 

a2F 	EA212  [2]2 	2Trx 
a 	- a 	

u 	
Cos ---- 

axe  32b2  b 

T = a2F
= 0 

	

xy 	3xay 

+b/2 	4-1/2 

Since j 	Cos -1-n41  dy = J 	Cos aux 
	

= 0, we can note the  dx 

	

-b/2 	-1/2 

following interesting,features of the stress field in the plate frOm 

the above expressions: 

(a) - am  is the average compressive stress in the x-direction over 

width b and hence must be identical with the applied loading aa; 

(b) an is the average tensile stress in the y -direction over length 

1; 

(c) a
x 
depends only on y, and not on x, and hence is constant along 

any longitudinal strip; 

(d) a depends only on x, and not on y, and hence is constant along 

any transverse strip; 

(e) T
xy  is zero everywhere in the plate. 

If we now assume one more boundary condition of no net transverse 

force along the longitudinal edges, i.e. an  = 0, the stress function F 

becomes: 

F = - 4- a y2  + 	{E A2  Cos 2T1--EL Ey  (t)2  Cos airrx_d 2 a 	32 x 1 	
.. (20) 

Strain energy Um  due to membrane stresses is given by: 

+//2 +b/2 

U = 
2 
- 

	

	(ae
x 
 -Fu

YeY 
4-T

xy  e  xy) dxdy m   
-1/2 -b/2 

+1/2 4-b/2 

-t- f 
2 

.L1/2 -b/2 

 

a 2 	a 2 	
Ivx V \ TXy

2. 

d
thdy --- -L. 

E
x 	

x
CT 
 y E 

4- 
	G 

x y 

(19) 
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Substitution from equation (19), and noting that the integrat-

ion of the third and the fourth terms are both zero, leads to: 

a
a 	x 

m 

2blt 7r4.A'
h  
bit E E 

	

U_ 	. f. 	

Total internal energy U is the sum of the strain energy due to 

bending and membrane stresses. Hence from equations (18) and (21): 

x 	
. (22) 

b m 	
a 	 4. 	4- 	 

E 1 
d =d = 	

cr  

Z4  

Tr2A27„ta 	a 2blt Tr4A4Nt 

Si 	256 2E 	256 

Potential energy T of the applied loads is the negative product 

of the external forces and the displacements of_their points of applic-

ation in the direction of the forces; the negative sign arises from the 

principle of conservation of energy, i.e. any work done by the forces 

causes a reduction in their potential energy. 

From equations (1) and (14): 

au 	v 	[ al  2 
X 	X y  1 

2" 
 axE

X 
E
x 

@x 

Substitution for W from equation (17), for ax and a from 

equations (19) with Gm  = as  and an  = 0, and integrating over length 1, 

total change of length AZ is obtained as: 

4-1/2 
Du 	

a
a
Z 	IT2A2  

DZ = 	-57  clx =, - 
-Z/2 	

E
x 
 81 

where negative sign indicates shortening. 

It is evident that the total shortening of the longitudinal 

strips does not depend on y, i.e. loaded edges are displaced uniformly. 

Similarly, it can be shown that the total shortening a of the trans- 
R2A2 

verse strips is also uniform and is equal to 	
8b 

. Hence: 

Gal 71.2A2  
T = (- ) (-aaht)[  

E _Si 
x 

 

a
a
2lbt 72A2a

a
bt 

= - 

Ex 	
8Z 

(21) 
256 Z4  b4  2Ex- 

(23) 
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From the principles of stationary total potential energy, for 

stable equilibrium, the first derivative of total potential energy (11+T) 

with respect to the unknown deflection parameter A must be zero, i.e. 

from equations (22) and (23): 

Tr2Abta 
r  	 s 71.411311E E Tr2Aa

a
bt 

c  0 
41 	64 14 7,4 41 

or 

n2A212 11E E 

(aa acr)  = 
16 	14  b4  

Apparent longitudinal strain ea  is given by: 

Al a
a 

w2,A 2 

e = - 	= —6 + 
a / EX 81

2 
• 

(24) 

For an isotropic plate the natural half-wave-length of buckling 

1 is equal to b and Ex  = 
E. 

For an ideal orthotropic plate of uniform 

thickness, the orthotropy is due to varying Young's modulus in the 

orthogonal directions; using equations (11) and (3) the natural half-

wave-length of buckling I is given by: 

D 	E 
Z = b 	= b _  

y 	y 

Hence, in either of the above two cases, apparent compressive longitud-

inal strain is: 

Al 1 
ea = ----= 	(ua - 	51 

E 
u 

 a 	cr 
x L 

1 
= 	 2 (u - a --11a + a 	)] E cr 	cr 

This shows that the post-buckling stiffness of an isotropic or 

ideally orthotropic plate is half of that of the unbuckled plate. This 

(25) 
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is in agreement with results obtained by Marguerre and Trefftz[35] 

Yamaki[36], and Stein
[37]. The relationship between applied stress and 

deflection can be obtained from equation (24) as 

Tr2A2i2  E 
	 x 

CT = a 
a 	

-I- 
cr 

16 i4  b4  

71.2A  2E 

= a 
cr 812 

for isotropic or ideally orthotropic plate. The longitudinal stresses 

at any point are given from equations (19) and (24) by: 

w2A2/2 E E 	Tr 2A 2E 	airy 
- a := a + 	 x 	

x 
	Cos 

x cr 
16 /4 b4 812 

1 w2A2Ei 	2 
=a 	4.- 	1 -Cos 

cr 8Z2 	b 

for isotropic or ideally orthotropic plates. 

5. 	POST-BUCKLING BEHAVIOUR - LONGITUDINAL EDGES FREE TO PULL-IN 

The boundary condition for longitudinal edges completely free 

for in-plane displacement, i.e. a = 0 when y = ±b/2, is much more 

difficult to solve, as a simple form of stress function satisfying the 

equilibrium and compatibility conditions everywhere and boundary con-

ditions on the edges is not available. Hemp
[35]

, Coan
[39]

, Yamaki
[36] 

and Cox
[40] 

solved the case of square isotropic plates, and Massonnet 

and Maquoi
[22] 

(1973) solved the general case of an orthotropic p[17..,t:;]  

but these solutions are too complex for design purposes. Walker

4 

 

produced approximate explicit functions relating deflections to applied 

edge loading for isotropic square plates. 

In order to obtain a simple approximate solution applicable to 

both isotropic and orthotropic plates, it shall be assumed that a is 

zero everywhere in the plate and not just on the longitudinal edges; 
this assumption is borne out by some experimental evidence as well[43] 

From equilibrium equations for membrane forces and from the con-

dition that shear stresses along the edges are zero, it follows from this 
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assumption that Txy 
 is also zero everywhere and Cl is constant along any 

longitudinal strip. Falconer and Chapman
[44] 

analysed the large-deflect-

ion behaviour of an infinitely long orthogonally stiffened panel with the 

assumptions of zero transverse and shear stresses everywhere in the panel. 

They, however, took the half-wave-length of buckling 'Z' in the longitud-

inal direction to be a variable quantity; the "gravest" half-wave-length 

was calculated by minimising the average compressive force Oa  with 

respect- to Z. This, however, led to a series of rather complicated 

expressions. As has already been explained in Section 2, if the stiffen-

ed panel is provided with substantial transverse stiffeners then the 

critical half-wave-length of buckling will be the spacing L between such 

transverse stiffeners. In the following analysis the post-buckled 

deflected shape is assumed to be the same as the mode of critical 

buckling, i.e.: 

w = A Cos nx — Cos 

It is now necessary to establish the relationship between deflect-

ion amplitude A and applied stress Cl. The bending strain energy will be 

given by equation (18), i.e.: 

A2w2 Ub acrbt  8Z 

Since a and T
xy 

 are assumed zero everywhere, strain energy 

due to membrane forces will be given by: 

+b/2 +Z/2 a 2  

	

U = f 	
x rixdy  

m 2 -b/2 -1/2 x  

4-b/2 
it 	U 2  dy 

= 	
I  

2
x--b/2 

since Clx  is independent of x. Total strain energy U = U
b 
+ U. 

Rate of change of U with respect to deflection amplitude A is 

given by 

4-b/2 do 

= a bt LL-1241 	f 	x ,7
Y  

	

cr 	
a
x  x -b/2 	dA dy (26) 



From equations (1) and (14), since G = 0: 

Du a = x _ 1 
2 ax x 7 ax 

	

Tr 	a 2A2 "TX 	Try 
= x / — Sine  — Cos2  — 
Ex 6  12 

Total change of length AZ is: 

	

+Z/2 au 	
a Z  A2n2 	Ry 

AZ = I 	x dx - 	Cos2  — 	 (27) 

	

-Z/2 ax 	EX 	4Z 

Potential energy T of applied loads = (-) work done by loads: 

4-b/2 

tdy AZ 
-b/2 a x 

t1 4.b/2 A2ir2t  +b/2 'fry 
= - —

f 
	a  2 	

f 

„T„ 4.  	a Cos2  --. dy 
EX  -b/2 	

x '-'" 	x 
41 -b/2 	b 

Rate of change of T with respect to deflection amplitude A is 

given by: 

Hence 

dT - _ 	t1 
dA 	- E

X 	Lb/2 

An2t 

+b 
f 

/2 	as 	A2ir2t 

2a 	dy 	J —P-3 	4- 
r+b/2  Da 

--E 
aA 

dy 

aa 
x 

',Ty 
Cos2  ---dg 

b 

dzy  

(28) 

x 4 	
41 	-b/2 

+b/2 

a
x 

 Cos2 
2?-671/ /2 

E A 2Tr 2 	Try 
x Cos2 

---- 

	

2Z 	
-b 

	

From 	(27): 

AZE 

	

- 	x 
x 	Z 

4-b/2 
ti 	f 
E 	a 

-b/2 

4Z2  

a 	+b/2 

t AZ 4 
	-a5; 

x @A -2 	. 
-b/2 

tA2w2 	(-11)/2 

41 	
-b/2  
J 	aA

Cos2 

86. 
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The loaded edges are assumed to approach each other uniformly. 

Hence, AZ is not a function of y. Taking AZ outside the integral sign, 
the first integral above is the change in the total applied load, which 

is zero. 

The second term above is identical to the second term in 

equation (28). The third term in equation (28): 

Aw2t +b/2. AZE x ----- 4- 
2Z -b/2 Z 

EAN 2  x uy 
Cost  

uy 
Cos2  dy 

4Z2  

Aet AZE b E' A272  
X 	3 

	

. 	X   

21 	Z 2 	422  8  

Hence: 

dT- ( +b/2 dcr Aet 
 T

J 	a  __ILdry  
T dA 	x -b/2 	dA 	2Z 

Alb 

21 	12  32.1 

E EA2eb 3 
x x   

(29) 

From the principle of minimum total potential energy: 

d • (U T) =61[1 dT 
dA dA  - u 

Hence from (26) and (29): 

.... 
Air e 	.Arr2t AlbE 	E A2 rr2b x x  3 

	

a bt --- 4- 	4. cr 

	

 4Z 2Z 2Z 	12 32 

wherefrom: 

	

Z 	3 A211.2  -AZ =   cr Ex 16 Z 

Substituting for AZ from (30) in (27): 

3 
ExA2u2  E A2u2 	Try 

ax = acr 	 Cost  — 
16 12 	4Z2 

the negative sign for 6
x 

indicating compression. 

- 0 

(30) 



m. = in cr 16 12 

A27r 2  
1 

E 
 x 

6
a 
 = a

cr 
 4. 

16 
Z2  

1 A272  Ex  
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Maximum longitudinal stress occurs at y = ± b/2 and is given by: 

= 
3 E427r2 

a 	a max cr 16 12 

Minimum longitudinal stress occurs at y = 0 and is given by: 

Integrating over width b, the average longitudinal stress is 

given by: 

(31) 

This equation gives the relationship between applied load and deflect-

ion of the plate. 

The apparent strain: 

Al a
cr 	3 

A271.
2 max

ea  = 
	_ 

E 
 

E
x x 16 12 

a 

Er
r  

From (31) and (32), denoting 	by e : 
E
X 	

cr 

E 
(a
a 
- a

cr
) =

3 
 (ea - e ) cr 

i.e. the post-buckling stiffness of the plate is one-third of that of 

the unbuckled plate. 

The above fairly simple expressions are valid for both isotropic 

and orthotropic plates and their derivation has been possible because of 

the simplifying assumption of a as zero everywhere in the plate. More 

exact solutions have been obtained for isotropic plates[36,38,40]; these 

indicate that the post-buckling stiffness is 0.41 times that of the 

unbuckled plate. Hence the simpler solutions given above are conservative. 

(32) 



CHAPTER 5 

BUCKLING BEHAVIOUR OF AN INITIALLY IMPERFECT PLATE CONSTRAINED  

TO REMAIN STRAIGHT ALONG LONGITUDINAL EDGES - ITS  

APPLICATION TO PLATE PANEL BEHAVIOUR  

1. 	PLATES WITH INITIAL GEOMETRIC IMPERFECTIONS 

We shall assume both initial and final deflections to be in the 

preferred buckling mode of the orthotropic plate, i.e. 

Initial deflection Wo 
= Ao cos -- 

WX  
- cos 

Final deflection 	
WX 

= A cos --- cos IT Y- 1 

where Z is the natural half wave length of the elastic critical buckling 

mode. 

The flexure of the plate will be associated with the change of 

shape given by: 

(A - Ao) cos 
WX 
— cos 
-1 

Hence equation (18) of Chapter 4 must be modified as given below for the 

bending energy Ub: 

Tr2  
Ub  — 6cr 	8Z 

bt — (A - Ao) 2  

The relationships between strains, displacements and stresses 

given in equations (1) and (14) of Chapter 4 for flat plates become: 

au 	DLI  2 	aw  2 

ex  = _ 147_2) = 	— 
2 	2 	Ex  x 	x y ) 

ax 	ax 	3x 

y 
2 	

2 	2 71) 	aW 
= ...1.1 	

3 
-1- 2 I 2‘ 1 1 
ay 	ay 	Dy 	y 

Du Dv Dw Dw Dw 3w 
e 	____ 	o o 
xy 

ay ax 3x 3y ax ay 

The compatibility equation (16) of Chapter 4 becomes: 

89. 

(2)  

(3)  
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1 

E 

a4F 1 

E 

a4F 
____ 

3 

G 

_ 	_ 
v
_E. 

E 
x 

v] a4F 

(4) 
By4  ax4  E 	30:2  

y 
• ay2  

a2w i2 	[a2w i2 	a2w 	a2w  a2w 	a2w  

0 	• 	4. 	0 • 	0 

Dray DxDy 3x2  aye  ax2  aye  

For individual flange plate panels between the stiffening ribs it 

shall be assumed that the net transverse force along the longitudinal 

edges is zero; then the stress function F given by equation (20), 

Chapter 4, is modified as follows: 

	

A2  - A
o
2 	27y 	

i x(b) 	
27Tx 

1 	2 E (-)2  cos — E k--) cos F = -[- y 
g a 	x 	y b 

32 

(5)  

Similarly, the strain energy Um  due to membrane stresses will be 

given by the following: 

2bZt 	(A2  - Ao2) 2  74  bit E 	E 
U
m 
- 

a 	 x 

	

256 	Z4  b4_ 2E 	256 
 

The total internal energy U will be the sum of (2) and (6). 

From equation (3): 

au ax v
x
a
y 1 [9w-2  1 [ 42011 2  

— = — 	- 
2 	2 ax Ex  E

X 	
ax 	@x 

x 
and Cr may be obtained by differentiating F; substituting these 

expressions we get: 

Shortening AZ = 
1'4'1/2 

au  dx = - 
a 
 - 2--

2 
 (A2  - A 2) 

-1/2 ax 
	Ex  8Z 	0 

(6)  

	

a 2  bZt 	(A2  - A02) aabt 
and potential energy T = aabt • Al = - a 	 

Ex 	82 

(7) 

a 
From the condition TA (U t T) = 0, 

72  (A - A ) bt a 	e bit E 	E 	
112 A abt 

	

o 	
x cr,  	(A2  - A 2) A 	

a 
 =0 

	

41 	64 	1.4 	b4  4Z 

(8) 
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The above equation gives the final deflection amplitude A for any 

given initial deflection amplitude Ao  and applied stress Ga. 

For a long isotropic plate Ex  = Ey  = E and / = b. Taking A = mAo, 

when m is the magnification factor A/A0  of the deflections, equation (8) 

reduces to: 

1\ 
e EA 2 

as = cr (1 - 	
0 

(n2 1)  

8b2  

The stress function F given in equation (5) reduces to the follow-

ing for isotropic plates: 

1 	2 
[ 	

( n2 _ 1)  A o 
2 E 1 	211.y  

F = - 7 as 	4- y cos — 4- cos 
32 	

---- 
b 	

27rx )1 

b 

Differentiating F in accordance with equations (15), Chapter 4: 

92 	n2  EA 2  2lry 
a
x  = 
	

= - acr (1  - 4-)÷ 	
o  (m2  - 1) (1 - cos — ).] 

3y2 	8b 	b 

a2E 	n2 (m2 - 2) A 
o 	
2E 	2nx 

= 	cos 
3x2 	8b2 

T = 0 
xy 

The above results are summarised by the following equations: 

A ] 
i  , 	1\ 	3 f, Average stress, - 0

a = Gcr (
1  _ 	4. 77 k 	1)2) a 

cr 
 _a 	(712 - 1) 

u  

A ]2  
Longitudinal edge stress, - G

e = Gcr 	
. 1 	3 

	

(1 - m 
	

-7 (1 - v2) a
cr  -9- (m2  - 1) 

t 
g  

A

° 

 2 (11) 
A / 

(
1 1 

m
\ 3 	

f 

Apparent strain, - ea 	
Z 

=-- E acr (1 - 	(1 - v2)  G cr — vn2  - 1) 

e 
= 

E 

Average stress  Secant stiffness, K = 
s Apparent strain X E 

(9) 

(10) 



1 + 
8 

A i2  

- v2 )[-g- 	m on + 1) 

1 + 3 -4 (1 - v) 	— 2. [
A
a
r 

 m(m + 1) 

da
ax 1 . 

do
a 	

dm 	
1 

Tangent stiffness Kt  = — 
t d  (14) E dm  4,7---(1. 

x  
) 

1 	3- 
4 

- v2 ) 
11,-,1 2  

L -1 m3  

1 +
2 

(1 A 	2  - v2 ) [l m3  

From equation (10) it may be noticed that the transverse stresses 

vary from maximum tensile at x = 0 to maximum compressive at x = ± b/2, 

these maximum values being: 

u2 onz - 1) A 2E 	
A 1 2  

8b2  

	

0 	3 

8 
- 	cr (1 - v

2 	0 
) — 	(n2  - 1) 	... (12) 

Using the Hencky - von Mises formula for equivalent stress, i.e. 

a
2 = G 2 G 2 - G G 	3 T2 

eq 	x 	y 
 

x y 

and neglecting flexural stresses, the maximum equivalent stress Ge  
-max  

in the mid-plane of the plate will occur at x = 0, y = ± b/2, and is given 

by: 

2 

	

2 	 A  2 2 
a
eq 	

= [a 
cr 

 (1 - 	 (/ - v2) a
cr

( 
t
° ) (m2 - 1)] 

max 

2 	

A 2  .1

a (1 - 	v2) a P1 	- 

	

cr 	m 4 	cr. t 

A 2 	12 

• [8 a  cr (1  - v2)  ( -gt")  ( m2  - 1 )] 

A 2  
• a 

cr 
 (1 -  m)1 8 acr (1 - v2) ( -f-) (m2  - 1) 

A 2  
+ 4  -3- • 

8 
[a
cr 

(.1 - v2 ) (-°-) (m2  - 1)12 

92. 



93. 

	

12 	A 2  
/ 	 2 

= (CT (/ 
m
—) 	{(1 - V2 ) am,  —) 

JJJ t(i• (712 	1)} {/96 + :4 + ;2 } cr 

A .2 
+ 2a ( 1 - 7-7-1 )f

- v2) 
acr ( -1-ta  ) (m2  - 1)  t 

4 
 # cr 

2 

= 10- 
r 
 (i — 	

2 	

) a ( t(i — v2) cr 	(ms  - 1) 
Aff)2 

 

A 2  
15 • 2a (/ - )(/ - v2) cr 	m 	a  cr ( t ) (m2 - 7) 

 16 

15 	I-67 
Since — 

16 	8 	 --ci 
and — are approximately equal to one, a„

max 
can be 

conservatively approximated as: 

, 
a ( 1 - — ) + 	(1 -v2) 	`

7772 	1)  

cr 	cr 	t  

It shall now be assumed that the plate behaves elastically until 

reaches the yield stress (5 , i.e. eqmax 	 Ys 

A] 2  
a 
cr 

 ( / - 	) a
cr 

 (1 - v
2 
 )[--t 	(Ve2 - / ) =ads 

	

m 	 s e 

	

A0] 2 	a 	A 2  
U  or, 	0.91 	m e2 	I = - rt-7 	s  ÷ 0.91 	° 	- 1 

e cr 	

] 

 
where m

e 
is the magnification of initial deflections at the limit of the 

primarily elastic phase, and 

v is taken as 0.3. 

It is further postulated that the ultimate strength of the plate 

is reached when the average mid-plane equivalent stress at the edges 

y = ± reaches yield stress. Transverse stresses a vary from tension 
2 

to compression and the average value in either the tensile or the com- 

pressive zone is: 

1 'ff 
-
2 	 A 2  

4h 2  
(max value) - 	

(
772  - 1) Ao2 E = 

7 4
a
Cr t 	• 
 (1 - v2 ) (m2  - 1) 

In the tensile zone of transverse stress the average equivalent 

stress is given by the square root of: 

	

A 2 	2 

	

/ 	r 3 
acr2(1 	) + 	

cycr  (i — V2) (0)  ) (M2  - 

(13) 
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A 2 

+ 2a
cr 	m 4 

(1 - 1)1  a 
cr 

 (1 - v2)[2.2-d (m2  - 1) 

A

t  2 

 
▪ [--3- a 

cr 
 ( --(2 ) (1 - v2) (m2  -1)J 2  47  

A 2  

[▪ CrCr (1  - 	1.  Ger 
(1 - v2) ( ) (m2  - 1)] 

A 2  
aar  L-te- (/ - V2) (M2  - /)] 

• 

In the compressive zone of transverse stress the average equiv-

alent stress is given by the square root of the same expression except 

that the last term is negative. 

As an approximation, the average equivalent stress along the whole 

edge may be taken as the square root of the above expression but ignoring 

the last term, i.e. square root of: 

A 2 	2 

a
cr 	m 

2  ( / - )2  f  [-3- 4 cr 	
- v2) ( 	(m2  - 1)] 

A 2  
/ 3  

4. 	
2. 	2 _ 1) 

2a  cr( 	17.1 ) 74 cr 	- 	t 	
..777 

 

A 2 	2 

[
3 

• 47 a  cr ( 	) (1  - V2) (M2  - 1)] 

A 2 	2 
2  

cr 	
F 

= 	2  ( 1  - / 
	

Lam' 	(/ 	v2)(m2 	1) 0.787  

A 2 

+ 2a  cr 1  1
-m 
)0.75  acr 	- v2) ( ,--°-) (m2 - 2) 

Since 0.787 is approximately equal to 0.75, the average equivalent 

stress on the edge may be further simplified to: 

A 2  
= a (1 - -/ )4- 0 .77 a 	- v2) (p) (m2 - /) 

e

• 

gav 	Cr 	cr 

Equating the above to yield stress and denoting the magnification 

factor at the ultimate state by m
u
, the expression needed to calculate the 

ultimate strength is: 

A 2  
a ( 1 - 

m 
 + 0.77 0cr 	 t 

(1 - v2) _ 	(mug 
2 

cr 	u 	
inu - 1) = Ys 



or, taking V = 0.3, 

A 2 , a 	A 2  i ON 	2_ / ..32.  0. 	0) ....1  
0.7 (, F- 1 mu 	77-7- 	a 	+ 	

1 	t 1  
U 	C2'' 

By solving the cubical equations (13) and (14), me  and mu  can be 

evaluated. Using these values for m the average stresses aae 
and  0

au
, 

and apparent strains eae  and eau, for the elastic limit and ultimate 

states respectively may be obtained from equations (11). However, because 

of the gradual spread of plasticity after reaching me, it shall be post-

ulated that in the post-elastic phase, i.e. when the average stress 

increases from acre to Uau
, the apparent strain will increase at twice the 

rate predicted by the above elastic theory, i.e. apparent strain at the 

ultimate stage will be increased by (eau eae) 
 to a value (2eau eae). 

The above postulations were verified against results of elasto-

plastic plate analysis based on a finite difference/dynamic relaxation 

method
[17] 
▪ For the following examples of mild steel plates 

(a = 245 N/mm2), stresses and deformations are calculated using the 
Y8  

above theory and shown in the table below: 

b/t Alt m
e 

aae/ays Eeae/ays 
m
u 

aau/ays 
Eeau/ays 

20 .167 1.1422 .96 .98 1.1444 .9765 1.0176 

30 .375 1.2768 .83 .9316 1.2985 .883 1.0556 

40 .667 1.3116 .656 .863 1.3595 .743 1.1110 

60 1.5 1.2217 .47 .7877 1.2726 .580 1.1723 

95. 

(14) 

TABLE 1: 

When the two 

- representing the 

are plotted on the 

STRESSES AND STRAINS OF PLATES AT ELASTIC 
LIMIT AND ULTIMATE STATE (u = 245 N/mm2) 

Ye 

[ 	

Eeae 	au 
 Ee au  

, crucial points a

• e 

 —, ---- and —, 
U U 	U 	U  
ye 	Y8 	Ys 	ys 

elastic limit and the ultimate state respectively -

load-shortening curves obtained by Frieze, et a1.
[17j 

as shown by points (1) and (2) in Figs 20a to 20d, very close agreement 

is found. This comparison illustrates good correlation between the 

approximate theory just presented and the more rigorous elasto-plastic 

theory. 
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Solution of the cubic equations (13) and (14) for m involves 

successive approximation. The right hand side of the equations can be 

evaluated for the given data of plate dimensions and the magnitude of 

initial imperfection Ao. If the right hand side is designated J, then: 

dJ 	A
o

2 	1 	dJ 	2 

dm
e 	

. 8 2 ( 	) 	
A 	1 

- 1 m 	; cim  - 1 . 4 ( -2  ) m  
t 	m

e 	
t u m

u
2 

For any guessed value of me, say mel, the left hand side of the 

dJ  
equation (13) and d dj  m  , say J1  and 	 respectively, can be calculated. 

	

e 	el  
The The next approximation for m

e 
is given by: 

J1  - 
m m = 
e2 	el dJ/dm 	 , and so on. 

 el 

Similarly for mu. Normally close agreement is obtained between J 

and J
n 

within three or four cycles. 

2. 	EFFECTS OF WELDING RESIDUAL STRESSES 

Experimental and analytical work at Cambridge by Dwight and 

others[45) (1960-70) has shown that residual stresses in a plate caused 

by welding longitudinal stiffeners can be represented by a stress 

pattern of the type shown in Fig. 21, which consists of one fairly uni-

form compressive zone in the middle, flanked by two tensile yielded 

strips adjacent to the stiffness. From equilibrium considerations, the 

width nt of each tensile yielded strip is given by: 

nt - 	
a
R 	b  

R 
a
ys 2 

where U
R is the compressive residual stress in the middle zone. 

For analytical purposes, we can replace this pattern by a combin-

ation of: 

(i) uniform compression
R 

over the whole width b, and 

(ii) fictitious tensile stress of magnitude (a
Ys 

 + GR) in two 

edge strips. 

(15) 
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It is now postulated that aR  can simply be added to the applied 

uniform compressive stresses Cra  for the analysis of the plate behaviour 

described in Section 1, and that since the tensile blocks are adjacent 

to the supported edges of the plate they do not affect its stability. 

However, after the full strength of the plate is reached under the action 

of (aa + 0R) (which is assumed to occur when the average equivalent stress' 

on the edge reaches yield stress), the tensile blocks near the edges con-

tinue to resist further applied compressive forces till compressive yield 

is reached there. This additional compressive force is obviously given 

by: 

2nt2  (cis  + aR)= tbaR, from equation (15) 

During this stage the middle part of the plate will not offer any 

resistance though it will continue to be strained along with the edge 

strips. The strain absorbed in this phase is equal to T (0
ys 

aR). 

Thus from equation (11): 

A
o 
 2 

(a + aR) = acr  ( 1 - ) +  (1 - v2) a m 	T 	v cr (-t-) (m2  - 1)  

Or 

A 2  

°a = a  cr (1 - 7-17 )  
1  + 3  (1 - v2) a cr  ( -- t°  ) (m2  - 1)  - 	. (16) 

where CYa and aR are applied average compressive stress and residual com-

pressive stress in the mid-portion of the plate respect-

ively. 

The value of Ao relates to the initial imperfection in a stress-

free state. If the initial imperfection AR is given for the welded con-

dition, then Ao < AR and from equation (11) they are related as follows: 

	

Ao 	3 	AR2 - Aa2 

	

a - a ( 1 - - 	- (1 - v2) a R cr 	8 	cr t2 

By rearranging, 

(17) Ao 
acr b212 

2 EAR 	
+ AR2 + (dl - aR) 

ir2E 	1 
cr 

1-2 EAR 

cr  8b2 2  4a b2  
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From equations (11), the apparent strain eat under the action of 

(a + aR  ) is given by: 

A 2  
r 	 3 

eat = L(aa + 	+ I' (1  v2)  acr (  7) (m2  1)1 
The apparent strain ear  due to residual stress aR 

alone is given 

by: 

A 2 

ear = 	P.R -I- 	(1  - v2) acr ( t ) (mr2  - 1)] 
A
R 

where m =  r A 
0 

Hence the apparent strain ea 
due to applied stress alone is given 

by: 

A
o 

2  
3 ea = eat - e 	E ear 	a = — [ a 	— (1 - 2) Crcr t 

) (m  2 m  2 )] 

A 2  

E 
[0. 

cr 
( 	

m ' 8 
( -v2) 0. 

cr t 
( 	( 2m  2 	m  2 	0.R1 

`  

(18) 

by substitution for aa  from equation (16). 

We shall retain our postulation that the ultimate strength of 

the plate is reached when the average mid-plane equivalent stress on the 

edges y = ± -w is equal to
Ys
;  but this phase will be followed by 

further squash of the tensile yielded edge strips. The magnification M 

will still, therefore, be given by equation (14). 

Knowing m
u
, the values of 

as 
and ea 

can be calculated by equations 

(16) and (18) respectively. 

In order to estimate the additional load that can be carried by 

the tensile yielded strips, it must be examined whether the substantial 

additional strain of -E-, (ays  + aR) can be absorbed by the remainder of the 
plate without shedding off some of the load it is already carrying. 

Residual-stress-free plates of certain geometries and certain levels of 

initial imperfections show a stable and horizontal load-shortening curve 

after the peak load is reached, whereas certain other plates show a fall-

ing load-shortening behaviour after the peak load. From the extensive 
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computer studies of plates available
[17], the following approximate 

pattern of post-peak behaviour can be established for residual-stress-

free plates with initial imperfection amplitude Ao of the order of 

40
1
0 	10 10 

to ---- times the plate width b: 

0 = 0, 	when 	S < 0.7 : 

0.2 GS - 0.7)., 	I, 	0.7 < S < 1.4 ; 

0.14, 	tr 	S > 1.4. 

where 0 is the downward slope of the graph, of average stress- 

apparent strain times E, after peak load. 

S is the slenderness parameter of the plate given by: 

b rs  
E 

Thus the nett additional load carried during the squash stage 

of the yielded strips is: 

1 bt 6R - -E (Cf
ys 

aR E O bt 

i.e. an average stress of aR - 0 (aY  + aR) s 

The entire behaviour of the plate can thus be split into two 

distinct phases: 

(i) 'A predominantly elastic phase up to the attainment of mu of 

the magnification factor, given by equation (14), i.e. 

A

t  
2 	2  , a 

/
A

t  
0 \ 	2 	/ 	 + 0.  7  ( o , 	/ 	(14) . O. — ) m 	- u 	a 	-  u cr 

The average stress a
ae 

and apparent strain eae at the end of 

this stage are respectively given by equations (16) and (18), 

i.e. 

/ 	3 	Ao  2 
(S
ae 

= cr (1 - 	(/ - v2) acr ( -7) (777
u

2  - 	- aR 

A 2  
eae = 

1  
cr 1 -2-) 3  + 	(- v2) a  

cr` 
I 
	OmU 2 

r22 	-  CYR] 

(20) 

(19) 
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(ii) A squash stage of the yielded strips, at the end of which are 

reached the ultimate stress aati  and apparent strain eau  given 
by the following equations: 

(Yam  = aae aR - 0 (aY 
 4- aR) s 

(A 

t  

)2  on

u 

 2 1)  _ 0  (ays  aR) )4. A (1 - v2) acr 
= a  (1 - 	8 cr 	

1 
 

e = e 	(a 	crR) au ae E ys 

2 
3 f 	2N 	

Ao
t 	u 	r 
 (2m 2 m  2 /) + ay  = P 	■ 

(1  - er 	g 	- V)  acr 

(21) 

where 0 is given in equation (19). 

The following interesting aspects emerge from a study of the 

above equations as well as from the exact curves of reference [171: 

(i) If 0 is zero, i.e. if the load-shortening behaviour of a residual-

stress-free plate does not show any fall-off after peak load, the 

ultimate strength aau of a welded plate will be identical to the 

ultimate strength of a residual-stress-free plate with the same 

dimensions and initial geometric imperfections. 

(ii) Comparing equation (21) for eau  with the equation (14), and noting 

that mr  is only marginally above unity for moderate values of UR, 

eau is only marginally below 2aYs  ; that is, the ultimate strength 

of a welded plate is reached at approximately twice the yield 

strain. 

(iii) The initial elastic phase of the plate behaviour ends when the 

applied average stress reaches the ultimate stress for a residual-

stress-free plate minus UR. 

(iv) The squash stage of the yielded strips is characterised by a 

linear relationship between average stress and apparent strain, 

the gradient being equal to: 

E, 	aR  

aR ays 
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(v) Since the departure from linearity is not found to be very con-

siderable in the initial elastic phase, the entire load-shorten-

ing behaviour of a welded plate may be described by two straight 

lines, i.e. a bi-linear relationship stretching between the origin 

and the points (aae ,  eae ) and (Cl,au eau ), as shown in Fig. 22. 

3. 	FORMULAE FOR LOAD-SHORTENING CURVES OF PLATE PANELS 

An examination of the formulae given in the previous section will 

indicate that the following are the three vital parameters: 

/37; (1) S = b  --- t E 

AR  
(ii) S

R t 
 , = — 	where AR is the amplitude of initial imperfection of 

the welded plate. 

aR 
(iii) r '  where aR  is the compressive welding residual stress.  ys 

Taking Poisson's ratio V = 0.3, the relevant formulae can be 

expressed as follows: 

(a) 	Plates with residual stresses, i.e. r > 0: 

Equation (17): 

6 A = o = 5/.4652\2  
So 	t 	6 	J 	OR2  -I- 2.9304 - 0.8106 r S '2 	1.4652

R 	 6R 

6R m = — 
R 6 

0 

Equation (14): 

0.7 6 2m  2- 1 — = 0.2766 S2  4. 0.7 6 2  - 1 
o u in 

Equation (20) for point A, Fig. 26: 

a
ae 	3.6152  /1 - 1 \ + 1.2337  6  2 (in 

 2 - 	- r  
Cs S' 	mu 	o u s 	 S2  

Eeae - aae ▪ 1.2337 2 
(M 2  - m 2) 

Y• e ci 	
2 r 
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a 	a K  _ ae .  Ys  
se ss Eeae 

Equation (19): 

0 = 0, 

= 0.2 	(S - 0.7), 

0.14, 

when 
11 0.7 < 

S < 

S < 

S > 

0.7 

1.4 

1.4 

Equation (21) for point B, Fig. 26: 

a
au Cl 
-r - 0 (1 r) a 

Ys Ys 

Ee 	Eeae au 	1 r a 	a 
Ye 	Ys 

K= su a Ee ys au 

(b) 	Plates without residual stresses, i.e. r = 0: 

Equation (13) : 

1 0.91 609  m - — 	+ 0.2766 S2  0.91 6o2  - 1 e
2 

m e 

Equation (11): 

a
au 

Cl
ys 

Eae 3.6152 (1- 	1 1 +  2.4674 6  
a
Ys S2  me S2 

2 677  2 _ 1) 
o 
(m  e 

Equation (14): 

1 0.7 8 2  m 2 - ---= 0.2766 S2 	0.7 6 2  - 1 o u mu 	o  

Equation (11): 

Clau = 3.6152 (1 	1 14.  1.2337  6  2 071  2 	1) 

arts 	 u/ 	0 u 

	

s 	S2 	S2 

Ee ] Ede au aau 1.2337  
- 2 [---- 	6 2  hn 2  - 1) 

a 	a 	s2 	0 	u 	Cl  

	

Ys 
	ads 	 Ys 

K 	
aau 

Cl
ys  

su a
ys 

Ee  
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4. IMPLICATIONS OF THE PLATE BEHAVIOUR ON FLANGE STIFFENER DESIGN 

For welded flanges, stress and strain for either point A or point 

B of Fig. 22, or any intermediate point between them, may be used for the 

analysis of the flange stiffener comprised of the flange plate and the 

stiffening rib in accordance with Chapter 3. As the strain for point B 

is nearly equal to twice the yield strain, part of the stiffening rib 
near its attachment with the flange plate will also have to undergo a 

strain higher than yield, to develop in the flange plate the stress corres-

ponding to point B. Hence the formulae for stresses given in Chapter 3 

will not strictly be valid when using point B, as they are based on the 

assumption that yield strain is not exceeded in the outstand. The exact 

solution can only be obtained by assuming trial strain patterns over the 

whole section and equating the resultant moment and axial load to the 

applied values. An approximate solution may, however, be to ignore the 

calculated stresses above yield stress over the area of the outstand under-

going higher than yield strain. For example, in Fig. 23, the amount to be 

deducted from the axial load is equal to: 

I 
—/ ht (a - 	) = t 	- a )

2 
2 s t ys 2 s t ys M 

where I
e 

is the moment of inertia of the effective section, and 

M is the bending moment at the section. 

5. LEVELS OF WELDING STRESSES AND INITIAL IMPERFECTIONS 

5.1 	Welding Stresses  

The compressive welding residual stress 
aR 

 in the flange plate may 

be calculated from the following formula developed in Cambridge
[45] 

(1960 - 

70): 

c Aw 
aR  - 	 

cAw 
A - ---- 

g a ys 

where A is the area of the weld 
IJ 

A is the area of the plate-stiffener assembly 

is a coefficient for shrinkage force in the weld. 
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c has been experimentally found[46] to vary from 7.7 kN/mm2 for 

manual welding to 12.5 kN/mm2  for submerged arc welding, and hence may 

be taken as-10 kN/mm2  as a mean value for design rule purposes. 

A may be taken approximately as 0.6 W2 when W is the leg length 
of fillet weld. For intermittent welding on each face of the stiffening 

rib, the above formula reduces to: 

°]?? 	1 

Sys 	(1,1( _E)(t5)
2
(
L
m 	

L
w 12000 `t/-1 	bt 	Lw 	) 	1  

where Lm and L are the missed and the welded lengths respectively shown 

in Fig. 24. 

In practical stiffened compression flanges of box girders stiffen- 

er welding is usually intermittent and aR hardly ever exceeds 0.1 G . ys 

This is also illustrated in the following table showing calculated 

welding compressive stresses for a few compression flange geometries with 

intermittent welding and ratio Lm/Lw  = 2. These geometries are the 

extreme examples of the practical range so far as welding stress level is 

concerned. For higher values of b/t ratio, equation (22) clearly shows 

that aR will be less than for the examples included in the table. 

b/t 
t 
mm 

b 
mm 

Stiffener 
size mm As/bt w  mm w/t 

aR/ays for 

245 	himm2  

a 	= ys 
355 N/nre 

12 192 150 x 6 0.33 4.5 0.375 .121 .080 

16 18 288 150 x 8 0.23 6.0 0.33 .101 .068 

25 400 150 x 10 0.15 8.0 0.32 .100 .067 

40 640 225 x 18 0.16 10.0 0.25 .058 .040 

12 240 125 x 8 0.35 5.0 0.417 .118 .078 

20 
18 360 150 x 8 0.185 6.0 0.333 .083 .056 

25 500 150 x 10 0.12 8.0 0.320 .081 .054 

40 800 225 x 18 0.13 10.0 0.25 .047 .032 

TABLE 2: CALCULATED WELDING STRESSES IN TYPICAL 
GEOMETRIES OF BOX GIRDER COMPRESSION 
FLANGES 

(22) 
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It is suggested that an assumed value for aR  equal to 10% of ays  

will cover almost all design situations for compression flanges. 

The condition that the compressive residual stress a
R 
does not 

exceed 0.1 a 
Y8 

 can be then conveniently expressed as: 

a 	c A
w  

0.1 
a
ys 

a
ys 

A
g 
- c A

w 

Oro 

p f 0.91 x 10 3  a 
ys 

say, 	1 x 10
3 
a 
Ys 

where p is the percentage of weld volume to steel volume in the stiff-

ened compression flange. 

5.2 	Geometrical Imperfections  

Merrison fabrication tolerance A for out-of-flatness of flange 

plates is given by: 

A = G  (1 
p 30t 	5000 L25j 

measured over a gauge length of G = 2b; the term within the brackets [ ] is 

applicable only when t > 25. (All dimensions are in mm.) 

The related design amplitude for imperfection AR  is given by: 

b 	1  1/3 ti 
AR 

	1 4- 
 25t 	5000 	+ 1 	_25 j 

where N is the number of longitudinal stiffeners in the compression 

flange between girder webs, and as before the term within the 

brackets [ ] is applicable when t > 25. 

It can be seen that the design amplitude has been taken to be: 

1.2
‘  1 
	\i/3  

N÷ 1 

times the fabrication tolerance, when both are related to the same 

measuring length. The first factor 1.2 is a safety factor to allow for 

inaccuracies in measurement; the second factor involving N is a reduct-

ion factor to allow for the fact that parallel flange plate panels 

(23) 
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between stiffening ribs are not likely to have initial imperfections in 

complete phase with each other, i.e. at any cross-section alternately 

up and down across the width and at the adjacent cross-sections at a 

distance b, alternatively down and up again across the width. 

If imperfection measurements for individual flange panels do 

not satisfy the tolerance 

for calculating effective 

panels, but this time the 

p, Merrison gives a complicated procedure 
imperfections from measurements on adjacent 

. 
tolerance is reduced by the factor / 1/3 . N4-1 

Extensive measurements of imperfections on existing bridges and 

their analysis
[47] 

suggest that: 

(i) calculation of effective imperfections is an unduly arduous,  

task; 

(ii) effective imperfections can sometimes be more critical than the 

criterion for individual panel measurements, particularly when 

the imperfection mode in adjacent panels is similar to the 

natural buckling mode, i.e. sinusoidally up and down, and 
/ 
1 because of the factor (AN---)1r3 ; and 

(iii) it is more difficult to satisfy the fabrication tolerances for 

thicker plates than for thinner plates. 

To meet these criticisms it is proposed that: 

(i) tolerance levels could be increased for thicker plates; and 

(ii) the concept of effective imperfection can be discarded for 

tolerance requirements. 

The following expressions for fabrication tolerances and design 

imperfection are therefore suggested to be appropriate: 

G 	ys 
Fabrication tolerance 

p  
A 	

250 245 ' 
= 	measured over 

gauge length G = 2b 	 (24) 

AR  

Imperfection parameter SR  = —= 200t 	0.145 S ... (25) 
2435 -  

i4Y--  b v 
E
s 

where S is the slenderness parameter t  

and a
ys 
 is in N/mm2. 



CF 
Introduction of the factor

245 
enables one set of curves to 

be used for plates of all yield stresses. A comparison between the 

magnitudes of Merrison fabrication tolerances and of those suggested 

in (24) above is given below for mild steel plates. It is clear from 

this table that the suggested tolerance levels should be more easily 

acceptable to steel fabricators than the Merrison tolerances. This com-

parison will be still more favourable to the newly suggested tolerances 

for higher grades of steel. Considerable simplicity is achieved in 

relating the tolerance to the gauge length only for any given quality of 

steel. The measurement procedure does not entail the recording and 

analysis of measurements on adjacent panels, and so should reduce the 

cost of measurements significantly. 

b 

mm 

G 

777171 

t 

MM 

Merrison 
A
P  mm 

Suggested Ap for 
mild steel 

mm 

10 1.39 

200 400 12 1.16 1.60 

15 0.92 

12 2.40 

15 1.92 
400 800 

20 1.44 
3.20 

25 1.15 

12 3.73 

20 2.24 
600 1200 4.80 

30 1.79 

40 1.79 

15 4.12 

20 3.09 
800 1600 

30 2.47 
6.40 

40 2.47 

TABLE 3: 	COMPARISON BETWEEN MERRISON AND PROPOSED 
TOLERANCES FOR PLATES 

107. 
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6. 	SENSITIVITY OF PLATE STRENGUI TO INITIAL IMPEREEMICUIEVELS 

Es  1/3  b 
E
s -- For chosen values of the plate slenderness parameter S = — ' 

	

a au 	
t 

plate strength ratio 157--- may be calculated for various values of 6_. 

	

Ys 	 craU 
However, mu must be obtained by solving a cubic equation before u---can be Ys 

By substituting So  from equation (14), equation (11) may be 

written as: 

Q
a au 	1.8528  , 	1 - —)-1- 0.4875 a 
Ys 	S2 	mu 

We have already concluded in Section 5, equation (25), that 6 
may be taken as a simple function of S, i.e. 

A 

o t 
= o = c, s  

where C' is a coefficient for imperfection; its exact value will give 

the magnitude of initial imperfection to be assumed in design. 

A tentative value of C' = 0.145 was found to be more advantageous for 

fabrication tolerances than the Merrison Rules. Substitution for 6 con-

verts the equation (14) to: 

[0.3951 	1.4286 	11/2 
C 1  = 

mu2  - / 	S2  M
U 
 (MU  11-  /)i 

For any particular value of S, pairs of values of strength ratio 

and imperfection coefficient C' may be obtained from equations (26) a s  a au and (27), through a range of values of mu, thus enabling a graph of a 
ys against C' to be drawn. 

Such graphs are shown in Fig. 25 for three values of S = 0.7, 
1.3, 1.9, corresponding to b/t ratio of 20.2, 37.6 and 55.0 for mild 
steel (ads  = 245 N/Mm2 ) and 16.8, 31.2 and 45.7 for high yield steel 
(a

Ys 
= 355 N/mm2) respectively. 

The governing equations for the strength of residual stress-free 

plates are given in Section 3 of this chapter. 

calculated. An alternative method is described below. 

(26)  

(27)  

aau 

For the purpose of choosing the optimum value of C', i.e. optimum 

tolerances, these graphs must be complemented by data for cost of fabric- 
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ation to various levels of tolerances. Edwards
[18] 

carried out such a 

study; he used the empirical equations in the Merrison Rules for the 

plate strengths. Cost data obtained by Edwards from the fabricators 

related to Merrison tolerances, and twice and half of Merrison toler-

ances. The tolerances now being suggested are higher than Merrison 

values, but, as can be seen from the table in Section 5, they are not 

in a particular proportion for all geometries. Hence it is not poss-

ible to extend Edwards' cost data to the present exercise. 

Reliable cost data could not be obtained from the industry at 

the present time. However, an examination of Fig. 25 will indicate that 

the strength starts to fall rather sharply around the suggested imper-

fection levels for S = 0.7 and 1.3. For S = 1.9, i.e. very slender 

plate not often used in compression flanges, there is a very sharp fall 

in strength for very small imperfections, followed by a continuous 

steady fall around the suggested imperfection level. Hence it would 

appear that the chosen imperfection levels are reasonable. 

7. 	DESIGN DATA FOR PLATE PANEL BEHAVIOUR 

From the equations in Section 3 plate curves can be drawn for 

initial imperfection parameter 6R equal to 0.145 8, and residual stress 

parameter r equal to either zero or 0.1. 

For r = 0.1, the design of the combined plate-stiffening rib 

assembly may be checked by taking the plate stress and secant stiffness 

corresponding to either point A or point B of Fig. 22. However, as 

explained in Section 4, if the values for point B are chosen the axial 

load must be reduced to allow for the high strains in the stiffening 

rib. The gradient of the portion A-B of Fig. 22 is (0.09-0). Since 

this gradient is rather small and can even be negative, and in order to 

avoid the complications of reducing the calculated load, a simple design 

approach is postulated by taking the relevant values for point A only. 

The following table and the graphs in Figs 26a and 26b give the two 

required parameters for plate behaviour related to point A, i.e. 

aau (i) 	the maximum stress parameter a 	; 
Y8 



a 
au .  (ii) the secant stiffness parameter K = su G Ee

Y8  
Ys 	au 

/a  both against slenderness parameter b/t 	Y3  

For plates without residual stresses only point A is relevant; 
aau 

it is found that K values are marginally smaller than 	but they 
su 	 Y3 

are close enough to justify only one graph. Thus the values for Ksu  

were plotted against b/t /13  to give both the parameters of maximum 

stress and secant stiffness, i.e. 	and K . The concept of a single su jus 
effective width of plate for an effective stiffener section, with 

stresses calculated for the effective section limited to yield stress, 

is thus valid for residual-stress-free stiffeners. 

Such a simple concept is, however, not strictly valid for 

welded stiffeners, as the residual stresses produce a bi-linear load-

shortening pattern of the flange plate. The first part of this pattern 

ends with a stress level less than the maximum stress of a residual-

stress-free plate by the magnitude of the residual compressive stress, 

but with the secant stiffness virtually the same as for the latter. 

The second part is characterised by very high strains and the secant 

stiffness at the peak of this part is less than half the secant stiff-

ness of a residual-stress-free plate at its maximum stress. Hence it 

is suggested that the two separate parameters for maximum stress and 

secant stiffness be retained for welded flanges. 
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b  /77 
S = 	-El i- 

bit  for ays  welded plates Residual-stress-free 
a 

E 355 
Nhnin2 

245 a /a 
au 	Ys  

K 
 

su plates; 	aau  and R8  
Ys N/trun2  

0.5 12.01 14.46 .8965 .9960 .9875 

0.7 16.82 20.25 .8905 .9935 .9935 

1.0 24.03 28.93 .8779 .9783 .9648 

1.3 31.24 37.60 .8503 .9499 .9221 

1.6 38.45 46.28 .7976 .8946 .8463 

1.9 45.66 54.96 .7272 .8199 .7562 

2.2 52.87 63.64 .6617 .7501 .6797 

2.5 60.08 72.32 .6099 .6946 .6225 

2.8 67.29 80.99 .5706 .6523 .5803 

TABLE 4: 	PLATE PANEL PARAMETERS FOR DESIGN OF STIFFENED FLANGE 
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CHAPTER 6 

BUCKLING BEHAVIOUR OF INITIALLY IMPERFECT ORTHOTROPIC PLATES  

WITH LONGITUDINAL EDGES FREE TO PULL-IN - ITS APPLICATION 

TO OVERALL FLANGE BEHAVIOUR 

1. 	APPROXIMATE SOLUTION 

It is assumed that the longitudinal edges are completely free 

to move in-plane, i.e. C = 0 when y = ± b/2. The further simplifying 

assumption, originally proposed in Ref. [44], and made in Chapter 4, 

for post-buckling behaviour of initially flat plates, i.e. a , and hence 

Txy, are zero everywhere in the plate, shall also be retained. The 

initial and the final deflections w
o and z respectively are assumed to 

follow the critical buckling mode, i.e. 

wo = Ao Cos 
7X 	2E Cos B  

7X W = A Cos 7- Cos B  

where Z is the natural half-wave-length of elastic critical buckling of 

the orthotropic plate in the x-direction, and 

B is its width. 

Since flexure of the plate is associated with the change of shape given 

by (t0 - W0), the bending energy Ub  will now be given by the following 

equation, instead of (18) of Chapter 4: 

Ub  = acr  Bt --B-T(A(A- A0)2 ,  

*
r 
i where ac
s the critical buckling stress of the orthotropic plate. 

Since 0 and T are zero and ax is independent of 
x, the strain xy 

energy Um  associated with the membrane forces is given by: 

U- It r
+B/2 

a 2 dy  
in 2E j 

-B/2 

The total strain energy U = Ub  + U. 

(1) 

The rate of change of total strain energy with respect to ampli-

tude of deflection is given by: 
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dU * n2 
) lt B/ 2

a 
dcrx 

= acr Bt  -47" 	- A 	dy 	 (2) 

	

0 E
X 	x dA 

- 4/2 

From equations (1) and (14), Chapter 4, since 0-  is zero: 

a  
aw  2 

9u = 
E
x 

x _ 
Z 
1 Dzin2 # / 	\ 

ax 	 ax ) 	2 ax 

The total change of length AZ is given by: 

+1/2 
Al = f 

-Z/2 

a 	n2 (42 A  2) 

@x 
	0  aU 	X dx = 	Cos2 a ... (3) 

x 	4Z 

The potential energy T of applied loads = (-) work done by 
applied loads, i.e. 

(42 - A  2) w2 t  #B/2  T  _ ti r+B/2 

	

a
x 

 2 d, 	0  
E j 

41 
f cos2 dy 

x 
—B/2 	 —B /2 

The rate of change of T with respect to A is: 

dT 	2t1 +B/2 	da 	(A2  - A
o2) 72  t 

dA x 	
dy 

 
-B/2 	

dA 
	41 

4B/2 da 
Cos2  dy 	2 A 72

1  t 
 .113/2  ax Cos2  B dy 

dA  
—B/2 	 —B/2 

(4) 

From (3): 

ax = 	 cos 
AZ. E

X  EX 	(d42  - 
A 	n2 

412 
	2 ITy 	

(5) 

Following the procedure in Chapter 4, it can be shown that: 

	

+8/2 	da 	IT2 - AZ E
X 	B E

X 
(42  - A 2)¶2  B dT 	tZ 	a 	d x 	 o 	3 — y A t 

dA 	EX 	x dA 	21  L 2Z 	Z2 	3.2_1 -B/2 
(6) 
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(10) 
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Taking A = m A0, and applying the condition (dU/dA t dT/dA) = 0 

for minimum total potential energy, leads to: 

(m2 	1) A  2 w2 

- a = a 	- 1\4.  3 ` 	'  
cr 	m ./ 16 

Putting this in (5): 

E (m2  - 1) A
o
2 e E (m2 	1) A 2 71.2 

 
-Cl 
. a* t m - 1%  - 3 x 	x 	/  X 
x cr m 16 	12 	4/2  

Cos2  

 

(8) 

 

(The negative sign for ax  indicating compression.) 

The mean longitudinal compressive stress 
as 

can be obtained by 

integrating over width B; thus 

E 	 772 _ 1) w2 A  2 
a  .0.* t m- 	x ■  

l+ a cr m 16 	12 

The above equation embodies the important relationship between 

the applied compressive stress a
s 

and the amplitude of the final 

deflected shape m A . 

The maximum and the minimum longitudinal stresses occur at 

y = ± b/2 and y = 0 respectively and they are: 

Cl 	= a* f m - 1 \ 	3 Ex (1712  -- 1)  n2  Ao2  
max er m 16 	12 

	

* / m - 1 \ 	1 EX (7772  - 	71-2 A02  = Cl 	a 
min cr m ) 16 	Z2 

It may be noted from equations (7) and (10) that Clmax  is equal 

to - AZ • Ex/I. 

For given magnitudes of initial perfection A0  and applied 

average stress a
a
, the equations (8) to (10) will give the variation of 

longitudinal stress across the width and also the deflected shape. 

Equation (9) is a cubic equation, and hence a successive approximation 

method such as one described below will have to be used to obtain m: 

(7) 

(9) 



daa 
a 
er g  

Ex  72 A02 in 

dm 
m2 812 

daa  
For a trial value of m, say ml , calculate am  and 	 from  

"*-1' 
equations (9) and (11) respectively. A suitable next approximation for 

m is: 

(aa clad  dO•a m = m 

	

	and so on. 1 
 

dm1 
 

The bending moments in the orthotropic plate per unit width 

are given by: 

	

a2 00 

- 

w 

\ 	a2 0.17  wol 

=— 	
01  

M  [D  1 
Dx2 	

D 	
3y2 

a2 (-
W 

- w

0 )  

a2 Ow wol 

	

M = — [D D 	 
ay2 3x2  

where D1  =Vy  Dx  =Vx  Dy  for an ideal orthotropic plate. 

For buckling of the stiffened flange between transverse stiffen-

ers, from Section 2, Chapter 4: 

D
x
= 

b' 

where _Tx  is the second moment of area of longitudinal stiffener, and 

b' is its spacing. 

E  

	

D = 	
t3 

 
Y 	12(1 - v2) 

where t is the flange plate thickness. 

Since D is very small compared with D
x
, both DI  and D may be 

neglected, giving: 

ET u2 

	

= 	

S  

On - 1) A
o 

Cos 1--:L"  Cos ILL 
b' L2  

The maximum bending moment in any stiffener at distance y from 

the longitudinal centre-line of the orthotropic panel is given by: 
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EI e 
	 On 1) A

o 
Cos a 

L2 

The highest bending moment will occur at the mid-span of a 

stiffener along or nearest to the longitudinal centre-line, and is 

given by: 

EI 7272 

L 
	 On 1) A

o 

Stiffeners near the longitudinal edges will have very little 

bending moment as they will hardly deflect. 

Equation (13) is identical in form to the expression for bend-

ing moment in an initially imperfect or eccentrically loaded isolated 

strut, i.e. equation (10) in Chapter 3. 

Hence the orthotropic action of the whole stiffened flange can 

be taken into account in checking individual stiffeners by: 

(a) taking the applied longitudinal stress on the stiffener from 

equations (8), i.e. less than the average stress on a central 

stiffener, but a higher value on an edge stiffener; 

(b) calculating the bending moment due to buckling on the basis of 

a magnification factor m for the entire orthotropic plate 

obtained from equation (9). 

2. 	INITIAL IMPERFECTIONS 

As discussed in Chapter 3 for isolated struts, the equivalent 

initial imperfection in the orthotropic plate may be due to: 

(i) an initial bow in the buckling length I, 

(ii) an eccentricity of applied loading due to the curvature of the 

whole box girder, and 

(iii) an eccentricity of applied loading due to loss of stiffness of 

a slender flange plate. 

Imperfection (ii) and (iii) will be uniform across the whole 

width B of the flange. Imperfection (i) can also be the maximum permitted 

tolerance Asx on all or most of the stiffeners. Hence the worst pattern 
of initial imperfection at a cross-section may not be the sinusoidal 
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type W
0 
 = A

o 
Cos B 

ny  
, assumed in the preceding analysis of the orthotropic 

plate, but a constant value of say A
c 

across the whole width B. 

A
c can be represented by a Fourier Series, i.e. 

A = 	A
n  Cos nB 

n=1 

2A fIgB/2 	7  
where A

n 
- 0 
	

Cos rady 

-B/2 

It can be shown that the even terms A2, A41  A6, etc. are zero, 

4A 	4A4A 	4A 
and A — 

7 	
A
3 
 = - 
3m A s + 	P

t- 

	

57 	- 

•-•2- 	r! 
. 

Taking the first term of the Fourier Series, the initial imper-

fection pattern may be taken as: 

4  
w
0 W 

= --Ac 	BCos 	Cos 

i.e. the amplitude of the assumed double sinusoidal initial imperfection 

shape should be taken as 1-times the maximum imperfection of an individ-

ual stiffener. 

3. 	COMPARISON WITH MORE DCACT THEORY 

It has already been explained that the derivation of the fairly 

simple equations (8) to (10) has been possible only because of the 

simplifying assumption of zero transverse membrane stress everywhere in 

the plate. Maquoi[48]  found that for his assumed stress function F, the 

assumed deflection shape given by equations (1) did not exactly satisfy 

the equilibrium equation (4) in Chapter 4. He adopted an approximate 

variational procedure, due to Bubnov-Galerkin, to obtain the amplitude 

of additional deflection w by stipulating that the error represented by 

the inequality of the two sides in equation (4), Chapter 4, must be 

orthogonal to W. 

His solution may be considered to be more exact, although it can 

be criticised for being far too complex for design purposes. The relat-

ionship between the average longitudinal stress a
e 

along the unloaded 

edges and the magnification m of initial deflections that Maquoi obtained 

can be expressed as: 



where So
Thickness t 

Initial Deflection Ao 
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a

a
e m  1 	 2

ra - Q' (m2 — 1) o  cr 
(14) 

Q' is a dimensional property of the stiffened panel, derived by 

a series of very lengthy computations. 

The equation (10) for the maximum longitudinal membrane stress, 

occurring along the unloaded edges, may also be expressed exactly as 

equation (14), with the dimensional factor Q' being given by: 

n2  E
X 

t2  
Qt  = 16  * 2 	 (15) 

a 
cr 

The values of Q' obtained by applying Maquoi's method and the 

above formula (15) are compared below for the three box models 2, 4 and 

8 tested at Imperial College under constant bending moment and reported 

in detail in Chapter 10. Very close agreement between the two sets of 

values of Q' is obtained. 

Box No. 
Value of Q' 

Maquoi Equation (T5) 

2 

4 

8 

0.02224 

0.01577 

0.03354 

0.02160 

0.01539 

0.02982 

Maquoi defined the efficiency pt  of the orthotropic plate as 

the ratio of the mean stress Ga to the maximum membrane stress Ge along 

the edges y = ± b/2. His expression for pt  can be transformed to: 

1 
p
t
=/ 

    

BE2  a*  cr  

Tr2 m (r77 + 1) A
o  2  E 

  

(16) 

  

where Q" is a dimensional property of the stiffened panel. 



Pt 
= 1 	 

8L2 ah 
cr 
	 + 2.5 
X12  E

x 
m (m + 1) A

o
2  

(17) 

Using equations (9) and (10), the efficiency pt  can also be 

expressed as: 

1 
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The second term in the denominator, i.e. Q" or 1.5, is usually 

much smaller than the first term within the brackets [**], and hence 

the two expressions for pt  are very similar. For example, for the 

geometry of the box models 2, 4 and 8, Q" worked out, after a lengthy 

series of computations, as 1.544, 1.537 and 2.537 respectively. The 

first two values agree closely with the value 1.5 derived in equation 

(17). Though agreement for the value of Q" for box 8 was not so close, 

the term within bracket [**] worked out, for the most critical case, to 

be 46 (see Chapter 10). Since this is much larger than Q", the value 

of the efficiency pt  was almost identical from the two equations. 

The close agreement between the formulae derived from the 

simplified analysis in this chapter and the more accurate theory devel-

oped by Maquoi confirms the usefulness of the present analysis for 

design rule purposes. 



CHAPTER 7 

EFFECT OF BENDING MOMENT GRADIENT IN BOX GIRDER ON 

STRENGTH OF COMPRESSION FLANGE 

1. INTRODUCTION 

The applied axial stress in a longitudinal stiffener in the 

compression flange of a box girder varies according to the shape of 

the bending moment diagram of the box girder. When the gradient of 

the bending moment diagram is steep, e.g. near an intermediate support 

of a continuous box girder, the applied longitudinal stress at the two 

ends of a flange stiffener span may differ considerably from each 

other, and it may be too conservative to design the stiffener on the 

basis of a uniform axial stress equal to the higher end stress. The 

Merrison Rules
[2] and Dwight

[25] stipulated that such a stiffener may 

be checked, first, as a uniformly compressed strut with an applied 

axial stress equal to that occurring at a certain distance from the 

heavily stressed end (0.33 L according to Merrison, 0.4 L according to 

Dwight); secondly, the load at the heavily stressed end should not be 

more than that to cause squashing of the stiffener cross-section. 

Though the basis of the second check is quite obvious, that of the 

first one is believed to be mainly intuitive. In this chapter the 

basis of the first check will be examined by means of a theoretical 

analysis of the behaviour of a non-uniformly compressed strut. 

2. ANALYSIS OF A. NON-UNIFORMLY COMPRESSED STRUT 

The strut will be assumed to be pin-ended and subjected to a 

linearly varying axial load, as shown in Fig. 27. The axial compress-

ive force on the strut is P at one end and (P+ qL) at the other, the 

difference between these two values being balanced by a distributed 

axial loading of magnitude q per unit length. This loading pattern 

will be assumed to be invariable, i.e. P and qL will be in identical 

proportion throughout the loading history. 

In any deflected state of the strut, statical equilibrium will 

require vertical reactions V at each pinned end given by: 

V =g. 	y dx 
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where y is the deflection of the strut at distance x as shown in 

Fig. 27. 

The critical buckling load and the natural buckling mode of the strut 

will be obtained by applying the Ritz[49]  method in conjunction with the 

energy method due to Timoshenko
[50]

. In this procedure, we shall 

assume a small deflection of the strut given by the first two terms of 

the Fourier Series: 

. 2  y = 81  Sin 
L

- S2  Sin L7rx  

In the above equation (51  and 1S2  are two free parameters that 

will produce an unsymmetrical deflected shape of the type intuitively 

expected from the unsymmetrical axial loading on the strut. By equat-

ing the strain energy due to bending AU to the work done by the 

external loads AT due to movement arising from this flexure, an express-

ion for the critical buckling value of the loads can be obtained in 

terms of the parameters 61  and d2. Finally, the relative magnitudes of 

8 and (3 2 are determined for the minimum values of the critical load, 

i.e. from the conditions: 

DP 	DP 
cr 	cr 0 	_ 0 

asl a62 

Thus both the minimum critical buckling load and the natural buckling 

mode of the strut are obtained. 

Since only two terms of the Fourier Series are included in 

equation (2), it is necessary to check the accuracy of the results; 

this is done by comparing the bending moments at several sections cal-

culated (a) from the second derivative of the deflection equation (2), 

and (b) by simple statics, with respect to the derived deflections of 

the strut. 

Taking the origin at end A, as shown in Fig. 27, bending moment 

at distance x is given by: 

MX = P.y Ix  q 	(y - n) + V.x 

where y = 81  Sin L - 82  Sin 2.7 
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= 6 Sin - o 	• 271.  
2  Sin 

fL 	2 
V= 	dx T- 61 q 

0 

Substitution of the above and integration leads to: 

M = 1 

- 62 

Rx 	L 
L P Sin 72 4- q (x Sin 7 	4.  X 	L - Cos s  

P Sin ILF 	Sin L
L
TE 4. I

R 
cos  2 q (x 	. 	_ L 7x 

2x.) 
--71 

_ 
L ) 

2 2 

(3) 

The bending strain energy AU is given by: 

M 2 

AU = 2E1 dx  
0 

The square of the expression in equation (3) contains a very 

large number of terms involving first or second powers of: 

	

Trx 	wx 	2Rx 	2Rx 

	

x, Sin L — 	Cos--' Sin — and Cos 

Though integration of some of the terms will vanish because of 

the orthogonality relationship between the Fourier series terms, the 

equation (4) will still contain a large number of terms. Working 

through all these terms leads finally to: 

EI(AU) = 0.25 612  P2  L 4- 0.25 6 12  P q L2  + 0.06569 612  q2  L3  

+ 0.28145 8162  P q L2  + 0.14072 6162  q2  L3  

+ 0.25 622  P2  L + 0.25 (S2 2  P q L2  + 0.11816 .522  q2  L3  

(5) 

The work AT done by the axial loads during flexure of the 

strut will be calculated next. Assuming the end B of the strut to 

remain in its original position, the displacement u of concentrated 

load P at end A is given by: 

u  _ l_r(y )2  
- 2 	dx ) 

dx 

(4) 

0 
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Substitution for y from equation (2) and integration leads to 

the following result: 

n2 
u 

4Z (
8
1
2 4- 4 622) = - 

Work done by the load P is given by: 

2p 

(AT)p  = P.0 - - 
7T4L (6

1 2 	4 622) 

For the work done by the distributed axial loading of intensity 

q per unit length, consider a small element ds at a distance x, as shown 
in Fig. 27. Due to the inclination of this element the load qx will 

move by a magnitude: 

(ds - dx) = ( cc-1?x-)2  dx 

Hence the work done: 

x  '22\ d  2  _-2-x - q ( dr  ) 

The total work done by the distributed load due to flexure of the 

whole strut is: 

(AT)q= 	2 qx 
	2 

Substitution for y from equation (2) and integration leads to: 

e 2  

(AT)q = 
1 	ul 

11. 2  6 22  E 	6 
q 	4 	9 	1 2 

Adding expressions (6) and (7), the total work done by the 

applied axial loads is given by: 

AT = 2.4674 6 1 -
9  P

4-  1.2337 6 1 2  q 	2.2222 6
1 
6
2 
q 

	

4-  9.8696 6
22 P  

- 4.9348 622  q 	 (8) 

For the critical condition of buckling: 

AU = AT 

(6)  

(7)  
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Equating 

P r is obtained as: c 

P 	El 
cr 

expressions 

62 

B1 

(5) and (8) and 

/621
2 

B2 + ( c) 	03 

rearranging, 

62 
T-  

2 
i'2\ 

a2 	y6--) a3 

the value of 

(9) 

01  

B2 

03 

= 

= 

= 

2  = 0.25 0.25 gf--, + 0.06569 (10 

_0.28145+0.14072( 2j)2  

= 0.25 0.25 P4- 0.11816 ( )2  

2.4674 4- 1.2337 

2.2222 g--L  

9.8696 4. 4.9348 IL- 

where a1  

et3 

The minimum value for P will occur when: cr 

= 661 	
0 

 

ap cr  _ 0  0 M 2 

@P cr 
(10a) 

(lob) 

Partial differentiation of expression (9) with respect to 61  

and 62  leads to the following relationship: 

26/B1 	62132  
26161  6262  

61 13
2 
 + 262133 

61a2 262a3 

This can be expressed in quadratic form as: 

, 62 N2 	62 

(T-) (603 - 63132)  2 al  (603 - 601) (602 - 601) = 0 



Its solution is: 

62 a B 1 	3 - a3131 j a1133 - a3s1y a201 - a la2 
a2.03 - a302 L\ (12°3 	a3°2 a203 - a302 

It is obvious that the strut will deflect more in the heavily 

stressed half of the span; hence for positive values of P and qL, from 

equation (2) and Fig. 27, only the positive value for (S2/61), i.e. the 

+ve sign in equation (11), needs to be considered. If, however, qL is 

negative, i.e. tensile in nature, then from the same reasoning, the 

negative value for (S2A1) from equation (11) is valid. For any given 

ratio of (qL/P), the coefficients al, ai, a3, 0,, 13 2 , and 03  can be 

calculated from the expressions given in (9); the critical deflection 

ratio (62/61) can then be obtained from equation (11). Substitution of 

these values in equation (9) will yield the minimum critical value of P; 

the coexisting critical value of distributed axial load qL for this com-

bination of loading is obviously in the given ratio of (qL/P). Equations 

(9) and (11) are valid for all cases when P and q are both greater than 

zero. For the limiting cases when either P or q is zero the following 

adjustments are necessary: 

	

(a) 	When P = 0, obtain al , f31  etc. by taking the numerical coeffic- 

ient of the last terms only, e.g. al  = 0.06569, PI = 1.2337, etc. 

The ratio (-61) works out to be 0.07129, and by equating express-

ions (5) and (8): 

(18.706) . ger = EI — L3  

	

(--) (b) 	When q = 0, from symmetry ez--) is obviously zero, and 
1 

	

EI 131 	2 EI P 	= 	, 

	

cr 
L2 al 	L2  

the well-known Euler load. 

3. 	ACCURACY OF THE APPROXIMATE THEORETICAL RESULTS 

As only the first two terms of the Fourier Series have been 

included in the deflection equation (2), the accuracy of the results 
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is verified by comparing the bending moments at several positions of 

the span calculated first from the curvature of the deflected shape, 

i.e. 

d2U  MX = - 	- 	[6 Sin . - 462 Sin 
27x]  ---- ... 	(12) 

dx2 	L2 	
IE 

and secondly, from statics, by equation (3). 

Three loading patterns are investigated as follows: 

(i) P = 0 (i.e. a triangular axial load pattern) 

(ii) P = qL 

(iii) P = 2qL. 

For each case, bending moments are calculated from the two 

formulae at three sections, i.e. two quarter-points C and E, and mid-

span D, as shown in Fig. 27. 

m' EI SI 
Denoting the bending moments M

X 
as 	

L2 	
, where the coeffic- 

ient m' is equal to ml when formula (12) is used and m; when formula 

(3) is used, the results are given in the following table: 

Loading 
Pattern 

BM 
Coefficients 

Sections 
C D E 

P = 0 m'1  9.7932 9.8696 4.1644 

m' 2 9.8995 9.7775 4.4189 

P= qL m' 7.9594 9.8696 5.9982 

m2 7.9602 9.8474 6.0257 

P ''' 2qL re 1 7.5702 9.8696 6.3874 

m2 7.5679 9.8617 6.4000 

It can be seen that the agreement between m; and m; is very 

good - within 1% in eight cases out of nine; in the ninth case, i.e. 

point E when P = 0, the agreement is within 6%; but as the bending 

moment at this section is not actually critical, this discrepancy may 

be discounted. 
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Thus it can be concluded that the deflection expression (2) 

using only two terms of the Fourier Series adequately represents the 

behaviour of struts subjected to linearly varying axial loads. 

4. 	INITIALLY IMPERFECT STRUT CARRYING VARYING AXIAL LOAD 

The initial and the final shapes of the deflection curve, yo  

and y respectively, are assumed to occur in the critical buckling mode 

obtained for the particular loading pattern in accordance with Section 

2 of this chapter, viz. 
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where 

Yo  = 610  Sin 2E  - S20  Sin L 	20 7-72   

Sin L 
27rx y (5 Sin 

P 	122 	
IE L — 6 2p 7•  

20 62p 

610 -71.-/-2 

(13) 

It shall also be assumed that the magnification of the initial 

deflections will be given by the same expression as for an axially 

loaded strut, i.e. 

P cr 
Yp = Yo P

cr 
 - P 

The bending moment at any section will then be given by: 

2  m = - Er—d 2 CyP - y ) 
dx 

	

, 	n 0. 7X 	46  20 	271-X] .... (14) 

	

= EI  	— n — - 	Sin -- P 	- P 	10  L2 

[ o.z. L cr 	io 

The fibre stress in the cross-section of the strut is then: 

P qx. 7r2  El d 	P 
lo  	Sin n - Trx  4620Sin  2nx 

	

A 	L2  Z 	P - P 	Z - 	810  cr 
(15) 

where A is the area, and 

Z is the relevant section modulus of the cross-section of the 

strut. (Z should be taken as positive on the concave side of 

cr — 
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the cross-section and negative on the convex side, i.e. -ve 

for tensile flexural stress.) 

For maximum fibre stress: 

da Fcc  = 0, i.e. from equation (15) 

m" P 	8 W 620 	m"P 71' 	
Irx 	M" P   167 

A4. P - P 	L 610 
+ 	 Cos Per - P L . 	L P -PL 

x  

cr 	 cr 

7r-20  6 	2 'ITX 7E- Cos 	= 0 
10 

where m" - 
El 72 610 

L2  Z 

This is a quadratic equation in Cos y , the solution of which 
gives the position of the section for maximum stress. Though the maxi-

mum stress is generally expected to be compressive and occurs on the 

concave side, in some situations the stress on the convex side can be 

tensile and even larger than the maximum compressive stress on the con-

cave side. 

Substituting: 

A =  m'I   r  167 620  
cr-P L d10 

m," P  7 B - P - P L cr 

C = 	m" P  8Tr 620 
A P - P L cr 	10 

the solution of the quadratic equation reduces to: 

7x  Cos L B ± /82 
2A 
 4AC  - 

Of the two solutions, one given by the -ve sign is valid for 

+ve values of P and qL, as x in this case must be greater than L/2; 

the other solution given by the +ve sign is valid if qL is -ve, i.e. 

tensile. 

(16) 
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Equation (16) indicates that x, i.e. the position of the section 

for maximum fibre stress differs for maximum compressive and possible 

maximum tensile stress, and also that it depends on the ratio VP cr' 
i.e. the level of applied loading with respect to the elastic critical 

loading. 

If a Perry-Robertson type design approach is envisaged for 

struts subjected to variable axial loading, with maximum fibre stress 

equal to the yield stress for the ultimate strength of the strut, then 

the above approach will be rather complicated for design office use. 

An alternative simpler method is therefore suggested in which 

two cross-sections of the strut should be checked for maximum fibre 

stress, viz, one cross-section subjected to maximum bending moment and 

the other cross-section subjected to maximum axial loading. This 

approach will theoretically be marginally non-conservative, but should 

be adequate for design purposes. The second cross-section will 

obviously be at the heavily stressed end where bending moment is zero. 

For the position of the first cross-section, from equation (14): 

d M 
71-2 	P 	[Tr = El 	Cos — - -4c31911  Cos ---- - 0 dx 	1O L2  Pr - P L 	L 	610  L c 

7x 	n- 
or, 	Cos — = 86 62-  2 Cost 	- 1 

10_ 

The relevant solution of the above quadratic equation is: 

7x Cos - L 	32 (S101) 

When both P and qL are +ve, (i.e. compressive) x must be larger 

than L/2, and hence the solution given by taking the -ve sign is valid. 

When, however, qL is -ve, (i.e. tensile) x must be less than L/2, and 

the solution given by taking the +ve sign is valid. 

5. 	DESIGN RULES FOR STRUTS WITH VARYING AXIAL LOAD 

5.1 	Basis for a Design Method 

The basis for a design method can now be developed from the 

results of the previous sections as follows: 

1 ± 	512 (62/(31)2  
(17) 
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(a) For any given ratio of the applied axial stresses at the ends 

P/(P f qL), the maximum bending moment due to imperfection and 

further buckling is given by: 

M 	- 
n2  EI A 

 On - 1) C2 max 	L2 

where m = 

W2  EI 
 CI 

L2  - 
2 EI  C, - 	qL) 
L2  

(18) 

C 

 

1 P+qL 

 

K a 	K2  
131 32 1024  

„ K 	
+ 

K2  
al u  32 a2 	1024 a3 

3 
TF 2 

  

      

K = 32 (S2/ S1), with (82/61) given by equation(11) 

Trx K 
-
8  Sin 

27x  C2  = Sin —
L - S-7-n 	, with x given by: 

Cos 
__ T 7x  - _ 1 _ 	4.  K- 

K2 2-  

A 	is the design tolerance on straightness of the strut. 

Coefficients C2 and C3 have been plotted against the ratio 

of axial stresses at the two ends in Fig. 28 and can be used 

directly to obtain M 	from equation (18). 

(b) The co-existent axial load P at the cross-section with the 

maximum bending moment is given by: 

= P C1  qL 

where C =
L' 
 and 

Tr 
L 
 x 1 K /1 x 	

2 2 
is given by Cos ---= - v — 2- . 

A-  

Coefficient C1  has been plotted in Fig. 28 against the axial 

stress ratio P/(P qL). 

(19) 



(c) The strut cross-section should be checked for maximum fibre 

stress due to the combined effect of bending moment Meas  and 

axial load P
X
. 

(d) The strut cross-section should also be checked for squashing 

due to the maximum axial load at its end, i.e. (P 4. qL). 

5.2 	A Simplified Design Approach  

The design basis developed in Section 5.1 was further explored 

to examine if an alternative simplified design approach of treating the 

strut as subjected to an equivalent constant axial force would be 

reasonably safe as well as economic. Three formulae for the magnitude 

of this equivalent constant axial force P
ieq 

were tried, viz. the value 

at a section at 

I 	Mid-span, i.e. P
ect 

= P 	qL, 

II 0.4 L from the heavily stressed end, 

suggested by Dwight[25], 

- i.e. Peq =.Pt 0.6 qL 

III 0.33 L from the heavily stressed 

end, as stipulated in the Merrison 

RulesEA , i.e. P
eq 

= P t 0.67 qL 

In this simplified approach the maximum bending moment in a 

strut with sinusoidal initial out-of-alignment would be given by: 

2 	A 
EI  

lapp 
- 

L
2 

P
eq  

W
2 
 EI P

e 
L2 
	eq 
 

 

(21) 

 

The ratios of the approximate and the more exact values of 

(i) the bending moments, given by equations (21) and (18) respectively, 

and (ii) the co-existent axial forces, given by equations (20) and (19) 

respectively, i.e. 

M 

r  

(i) 	and (ii) 
771 

pp  

max 	
P 
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	(20) 

are shown in Figs 29a to 29c for different values of end stress ratios. 



132. 

The bending moment ratio depends on the slenderness of the strut, i.e. 

the factor of safety against elastic critical buckling; Fig. 29a 

shows this ratio for a very stocky strut with a-very large factor of 

safety against elastic critical buckling, and Fig. 29b shows this ratio 

for a very slender strut with a factor of safety against elastic 

critical buckling equal to 1.33. (Smaller values were not considered 

as they seldom occur in practice and bending moments tend to get very 

high.) 

It can be noted from Figs 29a to 29c that none of the simplified 

approaches satisfies the dual criteria of safety and economy in the 

entire range of the slenderness of the struts and the ratio of end 

stresses. However, of the three methods, method II, i.e. the equivalent 

constant axial force equal to the value at a distance of 0.4 L from the 

heavily stressed end, is to be preferred. In the case of slender struts 

subjected to a substantial variation in the applied end stresses, it is 

obvious that the use of the design basis given in Section 5.1 will lead 

to significant economy. 



CHAPTER 8 

EFFECT OF CONTINUITY ON STRENGTH OF FLANGE STIFFENERS 

1. 	INTRODUCTION 

In the previous chapters the flange stiffeners have been 

treated as single-span pin-ended struts. The behaviour of each span 

of a continuous multi-span strut will not differ much from that of a 

single-span pin-ended strut, when 

(i) the strut cross-section is symmetrical about the centroidal 

axis normal to the plane of flexure; 

(ii) the initial geometrical imperfections are equal, and in the 

sinusoidal alternately up and down mode, in all the spans; 

(iii) the axial load is uniform and constant throughout all the 

spans and is applied through the centroidal axis. 

In a continuous strut of the above description, first surface 

yield, followed soon by formation of a plastic hinge, will occur 

simultaneously at the centre of all the spans. No bending moment will 

develop over any intermediate support on account of the exact anti-

symmetry on the two sides of these supports and hence plastic hinges 

do not form at these locations. 

However, in the compression flanges of box girders, the strut 

cross-section, consisting of the flange plate panel and the stiffener, 

is not symmetrical about the centroidal axis perpendicular to the plane 

of flexure. It is also improbable that initial geometrical imperfect-

ions will be equal in magnitude and opposite in sign in adjacent spans. 

For design purposes, however, the ,  worst possible situation with imper-

fections in this natural buckling mode must be considered. The magni-

tude of the applied axial load is fairly uniform in adjacent spans in 

the sagging moment zone of a continuous box girder bridge, but varies 

sharply in the hogging moment zone over piers. Due to the curvature 

of the box girder, the applied axial load acts on the flange stiffener 

with an eccentricity causing higher stress on the flange plate. This 

aspect has already been discussed in Chapter 3, Section 7. Hence the 

effects of continuity on the behaviour of longitudinal stiffeners in 
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the compression flange of box girders needs further consideration. 

This chapter deals with this problem. 

2. 	ANALYSIS OF A CONTINUOUS BEAM-COLUMN 

Timoshenko(50]derived the three-moment equation for continuous 

beam-columns, with each span having a constant axial force and constant 

flexural rigidity, though these quantities may vary from span to span. 

Let 1, 2, 3 	 denote the consecutive supports; M1, M2, M3, 	 

the corresponding bending moments; LI, £2, £3, 	 the span lengths. 

Consider any two consecutive spans between the supports n - 1, n, and 

n f 1, as shown in Fig. 30. The bending moments at the supports are 

assumed positive when they cause compression on the top of the beam, 

i.e. sagging; the angles of rotation at the supports are also taken as 

positive when they are in the same direction as the positive bending 

moments. The three-moment equation can be written as: 

M 	(u ) 	
L I n  n-1 (u)] 

s-1 4) 	n-1  IL 2Idn
[ 'I' (u

n- 11 	L n-1 I 	
7.2 

n 

Ln 	6 E 1 
n-I 	ru  ) = - 	n-I (0 	0,) 

Mn4-1 L 	T(  ni 	n 	nl  n-I n 	n-1 

(1) 

	

7 	L  irIT 

	

where u is the parameter - 	= - — for any span, 2 P
E 2 EI 

Ln  /Pn  
i.e. u

n = —2-- E1n 

(u) and T (u) are stability functions given by: 

3 

	

 
(u) - 	

1 	11 
u LL Sin 2u 2u 

	

T (u) = 	1 	1  
2u 2u tan 2u 

Wis the angle of rotation at support n of span n - 1, when 

this span is considered as simply supported at both ends 

On  is the angle of rotation at support n of span n, when this 

span is considered simply supported at both ends. 

134. 



135. 

	

3. 	CONTINUOUS STRAIGHT COLUMN CARRYING ECCENTRICALLY APPLIED 
MAD 

	

3.1 	Five-Span Continuous Beam-Column  

The continuous longitudinal stiffeners in the flange of a box 

girder shall be analysed first as a continuous perfectly straight 

beam-column of five equal spans, of constant geometrical cross-section, 

subjected to an eccentric constant axial load throughout the five spans, 

as shown in Fig. 31a. 

The end slopes On  of a simply supported beam-column subjected to 

an eccentric axial load is derived by Timoshenko[50] as: 

PeL - —[2 	Cu) 4- 4) (u)] On 
6E1 

The mid-span bending moment Mf  of such a simply supported beam-

column is given by: 

Mf  = P.e sec u 	 (3) 

From equations (1) and (2), the three-moment equations for 

this continuous beam are then: 

4 M2  T (u) + M3  0 (u) = - 2 Pe [2 T (u) 	4 Cu)] 

M2  0 (u) 	M3  [4 T (u) 	(1) (u)] = - 2 Pe [2 T (u) 4- (1) (u)] 

(4)  

The bending moments M2  and M3  at the respective supports are 

due to the continuity effect. For total bending moments over the 

supports the applied bending moment Pe must be added to these values. 

Additional mid-span deflections y12, y 23  and y34  in the spans 1-2, 
2-3 and 3-4 due to the support moments can be obtained from Timoshenko's 

formula as: 

Y12 
M2  [Sin 

- p 

M2  4. 

u 	1] 
Sin 

M3  

2u 	2 

ESin u 	/I 

Y23 (5)   p Sin 2u 	2  

2M3  

Y34  P 

Sinu 	11 

Sin 2u 	2  

(2) 



Additional mid-span bending moments due to continuity are: 

142 + , 	Sin u  
lt, 

 
M
12 = — 2 

7" r.y12 = M2 Sin 2u , 
from (3) 

M +M 	Sin u 
M 	=  2 	

3 	P.y 23 = (42 + P ) 	 , from (3) 	... (6) 23 2 	 Sin 2u 

M34 = M3 
+ P.y = M 	, from (3) 

34 	3 	34 	3 

2Sin u 

 Sin 2u 

	

J 

For total mid-span bending moments, these quantities are to be 

added to the free mid-span bending moment Mf  given in equation (3). 

Effectiveness factor F for any section of the continuous beam-column 

may be defined as the ratio: 

S.M. at a particular section in continuous beam-column  
Max. B.M. in the simply supported beam-column 

Thus if P12, F23  and F34  represent the effectiveness factors for mid-

span sections in spans 1-2, 2-3 and 3-4 respectively, and if F2  and F3  

represent the effectiveness factors over supports 2 and 3, then: 

M + M 	Pe +M 
F12 = 

 12 	f 	F 	2  ; 	2 - 	, etc. 
M
f 	

Mr 

Solving the two simultaneous equations (4) for M2  and M3  leads 

to: 

8'Y2  (u)- e(U) ,  (u) [¢ 2  (u) + 4Y' (u) flu)] Cos u  
F12 - 	 - 

D 	 D 

p

23 

_ .-- 2T(u) • q5(u)  , F 3 = 
(1) 2 0,0 Cos u ... (7) 

D 	D 

F 	_ (1)2(2)  
34

D  

where 	D = 4Y' (u) [4Y' (u) + (Hu)] - e(u) 

The value of u can range from 0 tocorresponding to the 
7T 2 T 

value of axial load from 0 to the Euler load ---
E
-, however, when u 

L2  
approaches --2- the flexural stiffness of the beam-column reduces to 

zero and the deflections tend to infinity. For various values of u 

in this range, the different effectiveness factors are given in the 

following table: 

136. 



u 

Effectiveness Factors 

P/P
E 

in mid-span over supports 

12 Fie F23 23 34 F34 
F 
2 

F 
3 

o 0.3684 -0.1053 0.0526 -0.2632 0.0526 0 

0.1 0.3681 -0.1055 0.0528 -0.2624 0.0525 0.0041 

0.25 0.3666 -0.1064 0.0539 -0.2585 0.0522 0.2530 

0.5 0.3608 -0.1102 0.0580 -0.2444 0.0509 0.1013 

0.75 0.3498 -0.1172 0.0661 -0.2199 0.0484 0.2280 

1.0 0.3308 -0.1289 0.0807 -0.1828 0.0436 0.4053 

1.25 0.2974 -0.1403 0.1084 -0.1277 0.0342 0.6333 

1.5 0.2314 -0.1840 0.1691 -0.0380 0.0120 0.9119 

1.57 0.2000 -0.1998 0.1996 - - 0.999 

TABLE 1: CONTINUITY EFFECT IN A FIVE-SPAN BEAM-COLUMN 

It can be seen that the bending moments in the continuous 
7 	 5 beam-column vary between + 
19  to, i.e. + 0.3684 to - 0.2632 

times the maximum bending moment in a single-span beam-column, except 

the extreme ends where the bending moment is obviously Pe. (In the 

compression flange of box girders, extreme ends do not carry any axial 

load, bending moment on the girder being zero.) It may, however, be 

noted that the bending moments in the interior regions changes from 

sagging to hogging, though the analysis of a simple span beam-column 

will not indicate any change in the sign of the bending moment. 

If, however, the design rules for longitudinal stiffeners in 

the compression flange are based on the analysis of a single-span, the 

effective eccentricity should then be taken as + 0.3681 to - 0.2624 

times the actual eccentricity e, shown in Fig. 31a, and due to overall 

curvature of the box girder and the shift of centroid of the effective 

strut section as discussed in Chapter 3, Section 7. 

3.2 	Influence of the Number of Spans  

137. 

To get an idea of the effect of the total number of spans on the 

results obtained above, a three-span and a two-span continuous perfectly 



straight beam-column of constant inertia and subjected to uniform 

axial load were analysed in a similar manner. The range of effect-

iveness factors obtained for the two cases, except at the extreme 

ends, are: 

+ 0.4 to - 0.3333 for three-span system 

+ 0.25 to - 0.5 	for two-span system. 

3.3 	Influence of Variation in Axial Load in Adjacent Spans  

To find the effect of variation of axial load, a three-span 

constant section beam-column was analysed, in which the axial loads 

in the end spans were assumed to be half of that of the central span, 

as shown in Fig. 31b. 

The three-moment equation for the continuous beam-column is: 

E 2M2  [T(-14-) 	U/ (u)] 	M3  (1)(u) = - 
6
L
1 
 (0

21 
02r) 	(8) 

and 	M2 = 13 

where 0
27. 

and 0
2r 

are the angles of rotation of the right end of 

span 1-2, and the left end of span 2-3 respectively, 

each span being considered simply supported at its ends; 

021 and  02r are given by: 

PeL  -  2Z 	12E12 
T( u 	(1)(  u 

	

VY 	Y6 

0
2r 6E1 

= PeL 2 T (u) 	(u) 

Substitution of the above in equation (8) leads finally to: 

[U/(u/V- ) 	 (u/ 75) 	2W (u) 	(1)(u)] 
= - P.e  	.... 	(9) 

2T(u/iY) 	2T (u) 	(f)(u) 

The additional mid-span deflection y23  in span 2-3 due to the 

support moments is given by: 

2M2  [Sin u  - 
223 	P Sin 2u 2  
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M2  + P• e M
23 	

Mf 
F23 = 	M

f 
F2R 	Mf  

The additional mid-span bending moment M23  due to continuity 

is given by: 

M23 =M2 + P.y23 = M2 sec u, from (10) 

Effectiveness factors for mid-span section in span 2-3 and a 

section just on the right of support 2 are given by: 
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where Mf  is the mid-span bending moment in span 2-3, considered as 

a simple span, i.e. Mi. = P.e sec u. 

Substituting for Mf, M23  and M2  leads to: 

41(u/15) - 4)(u/72) 
F 23 = 

2T(4/175) + 2V(u) + (I)(u) 
(12) 

41(u/in- 22r gud4/5) 

F2R 
. 	Cos u 

2T(u/VY) + 2T (u) 	flu) 

The maximum value of the effectiveness factors F23 and F2R for 

the whole range of 0 < u <-; is + 0.1. 

3.4 	Simple Rules for Continuous Beam-Column  

From the above results it is clear that in a multi-span con-

tinuous perfectly straight beam-column subjected to an eccentrically 

applied longitudinal load, the bending moment changes sign and the 

effective eccentricity is less than the actual eccentricity so far as 

the maximum bending moment is concerned. This change of sign of the 

bending moment cannot, however, be predicted from the analysis of a 

single span. From the cases considered, a simple design rule may be 

suggested: a continuous perfectly straight but eccentrically loaded 

strut may be treated as a single-span straight strut for design 

purposes, provided the effective eccentricity of the applied loading 

is taken as half the actual eccentricity; if the strut cross-section 

is not symmetrical about the centroidal axis normal to the plane of 

flexure, it shall be assumed that the effective eccentricity may occur 

on either side of the centroidal axis. 
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4. 	INITIAL OUT-OF-STRAIGHTNESS IN CONTINUOUS BEAM-COLUMNS 

When the initial out-of-straightness imperfections in a multi-

span continuous strut do not follow the natural buckling pattern of 

sinusoidal alternatively up and down mode in adjacent spans, their 

effects on the buckling of the continuous strut can be analysed by 

applying the three-moment equations (1). 

Consider a three-span strut subjected to a uniform axial load. 

The effects on the bending moments in the central span due to initial 

imperfections in the central span only and in the end spans only will 

be separately analysed. It may be assumed that the initial imperfect-

ions further away from the span under consideration in a multi-span 

system will not have a very significant effect. 

Imperfections in any particular span will be assumed to follow 

a sine curve with maximum amplitude cSo. For applying the three-moment 

equations (1), the end-slopes of a simply-supported span with this 

pattern of imperfection under the action of compressive load P is 

given by: 

n So 
P
E  

L PE - P 

Following the same method as discussed in Section 3.1, it can 

be shown that: 

(a) for the case shown in Fig. 32a, i.e. only the central span 

having initial imperfections, the effectiveness factor F23  for 

mid-span moment in span 2-3 and factor F2  for support moment 

can have maximum values of + 0.618 and - 0.382 respectively; 

(b) for the case shown in Fig. 32b, i.e. the adjacent spans having 

initial imperfections but the central span being straight, F23  

ranges from - 0.382 to - 0.667 for 0 4 u 4 	, with a value of 

approximately 0.5 for u = 1.11 (i.e. P = - P). The maximum 

value of F2 is - 0.382; 

(c) when all the three spans have initial imperfections in the 

same directions and of equal magnitude, i.e. a "hungry horse" 

pattern, the value of F23  ranges from + 0.236 to - 0.259 

within the range 0 4 u 4 1.5, the negative values occurring 



for u > 1.14, i.e. for P > 0.53 PE. The maximum value of F2  

is - 0.764. 

It is not straight-forward to provide a simple formula for 

effective imperfection in a span in terms of the imperfections in the 

particular span and in the adjacent ones, as the maximum values of the 

different effectiveness factors occur at different values of u. 

However, if we assume that the load P is not expected to be greater 

than -g Pi, then the following approximate formula may be suggested: 

1 	1 	1 
dneq

= -  4  dn-i ± S
n 
 - S

n+i4 2 

where d
n 
 is the equivalent imperfection in span n. 
eq 

It should be noted that S
n
, etc. must be taken with their 

correct signs, i.e. say +ve when sagging This formula is very similar 

to the one suggested for this purpose in the Merrison Rules(31 , but the 

necessity for the ± sign for Sn  was not recognised there. This ± sign 

for Sn must, however, be taken in order to provide for the changing 

sign of the bending moment from the mid-span to the support regions 

due to continuity. 

	

5. 	LOCAL TRANSVERSE LOADING ON CONTINUOUS BEAM-COLUMN 

A continuous beam-column subjected to axial and local transverse 

loads can be analysed by the application of the three-moment equations 

(1). A three-span beam-column of constant section subjected to some 

local loading at the central span and a constant axial load throughout, 

as shown in Fig. 33a, is considered first. 

	

5.1 	The basic equation for the three-span beam column is: 
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(13) 

4 M2  W (u) + M2  4) Cu) = 
6E1 
L 2r 

 

(14) 

 

where 0
2r is the slope on the right hand side of support 2 of the 

span 2-3 of the beam-column, when this span is considered 

simply supported. 

02r may be assumed to be approximately given by: 



A - L P
E 
- Pl 	4T (u) 	(u) 

62r 6EI[ P  
(15) 
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where 021, is the slope due to local loads at support 2 of span 2-3, 
assumed simply-supported and without any axial loading in 

the span. 

Hence: 

The additional mid-span deflection in span 2-3 caused by the 

continuity moments at supports 2 and 3 is given by: 

Sin u S2 
2 2 	 
p Sin 2u 

Hence total mid-span moment M23  is given by: 

2 	[Sin u 	11 ix 	E  4.-M 	P "23 	s P
E 
- P 	2 	P L Sin 2u 2J 

PE 	2 Sin u 

8 PE - 4" Sin 2u M2 

where MS  = mid-span moment in a simple span 2-3 due to wheel load, 

without any axial load 

M2  = support moment at 2, given by equation (15). 

Similar expressions can be developed for the two-span beam-

column shown in Fig. 33b; these are: 

1142 =- 
6E1 PE 5

2L 

 

L P
E 

- P 4T (u) 

 

       

P
E 	Sin u 

M 	= S r7-, 1W2 12 	
E-P 

Sin 2u 
 

where
2L 

and /7/ are the slope at support 2 and mid-span moment in 

span 1-2 due to local loading, when the span is considered 

simply-supported and without any axial load. 

(16)  

(17)  
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Formulae (15), (16) and (17) were applied for both single con-

centrated load and uniformly distributed load in span 2-3 of Fig. 33a 

and 1-2 of Fig. 33b respectively for the range of 0 u 1.5, and the 

results are shown in Table 2. 

5.2 	It may be noticed that, for a given magnitude of the local load- 

ing W, as the ratio P/Pi increases, the span moments M23  (Fig. 33a) and 

M12  (Fig. 33b) increases rapidly, but the support moments Pc increases 

only marginally. For example, when P/PE  increases from zero to 0.6333, 

the span moments increase by between 103 and 140 per cent, but the 

support moments increase by between 20 and 30 per cent. When the wheel 

loads produce significant bending stress, the ratio P/P0  is not expected 

to be higher than 0.4; hence the following simple design rules ==y Le 

suggested: 

(i) Calculate bending moments in the mid-span regions and over 

the supports of the continuous beam due to local loads, 

ignoring the axial load. 

(ii) Take design span moments as the moments calculated in step (i), 

PE  
multiplied by the ratio pE  p 

(iii) Take design support moments as the moments calculated in 

step (i). 

The above simple design rules are likely to over-estimate the 

span moments and under-estimate the support moments by not more than 15 

per cent and hence can be considered satisfactory. It should be noted 

that the Merrison Rules stipulate multiplying both the span and the 
PE 

support moments by the ratio 	 , and hence over-estimate the PE - P 
support moments. 

6. 	FAILURE CRITERION FOR CONTINUOUS STRUTS 

In any theory for strength of single-span struts, the first 

yielding of an extreme fibre is generally taken as the criterion for 

failure. In a continuous multi-span strut, complete failure can only 

occur when sufficient numbers of plastic hinges at mid-spans and/or 

supports form a mechanism. However, it can be argued that the flexural 

stiffness of the continuous strut will fall at an accelerated rate once 



u 0 0.1 0.25 0.5 0.75 1.0 1.25 1.50 

P/PE  0 .0041 .0253 .1013 .2280 .4053 .6333 .9119 

3-Span 
Beam-Column 
Fig. 33a 

Conc. 
Load 

M2/WL 

Mr23AL 

M23/M23u=0 

-.0750 

+.175 

1.0000 

-.0751 

+.1755 

1.0029 

-.0755 

+.1786 

1.0206 

-.0769 

+.1906 

1.0891 

-.0795 

+.2152 

1.2300 

-.0836 

+.2656 

1.5177 

-.0897 

+.3973 

2.2703 

-.0992 

+1.4353 

8.2017 

Dist. 
Load 

M2/WL 

Mr23AL 

M23/M23u=0 

-.0500 

+.075 

1.0000 

-.0500 

+.0753 

1.0040 

-.0503 

+.0763 

1.0173 

-.0513 

+.0806 

1.0747 

-.0530 

+.0895 

1.1933 

-.0557 

+.1071 

1.4280 

-.0598 

+.1522 

2.0293 

-.0661 

+.4844 

6.4587 

2-Span 
Beam-Column 
Fig. 33b 

Cone. 
Load 

M2/WL 

M12/WL 

M12/M12u=0 

-.0937 

+.2031 

1.00 

-.0939 

+.2038 

1.0034 

-.0946 

+.2077 

1.0226 

-.0972 

+.2228 

1.0970 

-.1019 

+.2542 

1.2516 

-.1097 

+.3189 

1.5702 

-.1225 

+.4875 

2.4003 

-.1448 

+1.8142 

8.9325 

Dist. 
Load 

M2/WL 

Mr12Al 

M12/M12u=0 

-.0625 

+.0937 

1.00 

-.0626 

+.0941 

1.0037 

-.0630 

+.0957 

1.0208 

-.0648 

+.1022 

1.0901 

-.0679 

+.1155 

1.2277 

-.0732 

+.1424 

1.5189 

-.0817 

+.2113 

2.2539 

-.0965 

+.7368 

7.8592 

TABLE 2: BENDING MOMENTS IN CONTINUOUS BEAM-COLUMNS 
CARRYING LATERAL AND AXIAL LOADS 
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yielding starts at any cross-section, and hence even for continuous 

struts first yielding may be assumed to be a criterion for failure. 

The concept of effectiveness factors derived in this chapter, i.e. the 

ratio of maximum bending moment in a continuous strut to that in a 

single span strut with identical eccentricity, is dependent upon the 

validity of this assumption. To check this, twelve three-span straight 

continuous struts subjected to eccentrically applied longitudinal load 

were analysed for ultimate load by: 

(i) applying the three-moment theorem as described in this chapter, 

in conjunction with first yield as failure criterion, and 

(ii) an elasto-plastic computer program
[19], which divides the spans 

into a large number of segments and maintains compatibility of 

deformations and stresses in all the segments as increments of 

load are applied. This program can thus be considered to pre-

dict the true ultimate load. 

The values of the main parameters in these twelve examples 

largely cover the range of practical geometries generally used in stiff-

ened compression flanges, and are given below: 

(i) 	Three geometries with 

(a) 
Stiffener area  

Flange plate area 
• • • 	 • • • ... 0.35, 0.60, 0.90 

Extreme fibre distance to stiffener tip  
(b) 

	

	 3.25, 4.40, 6.80 
Extreme fibre distance of flange plate 

(ii) Slenderness ratio 7; 	 50, 80 • • • • • • 	 • • • 

Span  
(ill) 

Eccentricity of applied loading 
• • • ... 500, 1000 

The ultimate load obtained by the application of the three-moment 

theorem as described in this chapter, in conjunction with first yield as 

the failure criterion, were found to lie between 0.96 to 0.99 times the 

values given by the computer program. This comparison validates the 

hypothesis that first yield at any cross-section is a suitable failure 

criterion for continuous struts. 



CHAPTER 9 

TORSIONAL BUCKLING OF STIFFENER OUTSTANDS  

1. 	INTRODUC11ON 

In Section 3 of Chapter 3 it has been stated that the geometry 

of the stiffener outstands and the tolerances on initial lateral mis-

alignments of the stiffeners should be subjected to such restrictions 

as to ensure negligible non-linearity in the axial load-shortening 

behaviour of the stiffener outstands. There are several reasons for 

this cautionary approach and these are discussed below: 

(a) If both the flange plate panel and the stiffening rib are 

slender, then due to interactive buckling the combined strut 

will be highly sensitive to initial imperfections, and the 

load-shortening curve of this strut will show a violent fall-

off after the peak load. This phenomenon has been demon-

strated by, amongst others, Koiter
[32] 

and Thompson[33] from 

theoretical considerations, and Horne and Narayanan[51] 

experimentally. 

(b) With increasing axial load on the combined stiffener, as the 

flexure of the stiffener increases, the pattern of longitud-

inal stress on the stiffener outstand changes from a generally 

uniform one over the whole depth to a linearly varying one. 

The maximum stresses occur at the tip of the outstand if the 

flexure is towards the flange plate, or at the flange plate if 

the flexure is towards the stiffener tip. Thus, for a theoret-

icaly analysis for the combined stiffener, load-end shortening 

characteristics of a slender outstand will be required for a 

wide range of stress pattern. This will present some formid-

able difficulties in any theoretical analysis method, particul-

arly when the stiffener outstand is other than a flat section, 

i.e. an angle or a bulb flat or tee. 

(c) For the load-shortening behaviour of the flange plate panels, 

large-deflection plate theory has been utilised on the assumpt-

ion that the longitudinal edges of the plate are held against 

out-of-plane deflection. This is not striotly true in reality, 
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since flexure of the whole stiffener between transverse 

supports indicates that the longitudinal edges of the plate 

panel are not fully held against out-of-plane deflection. 

This assumption will be still more optimistic if the stiffener 

outstand geometries are made so slender as to significantly 

reduce the effective flexural rigidity of the combined strut. 

(d) 	Longitudinal stiffeners in box girders are often attached to 

flange plating by intermittent welding. Tests at Manchester[517 

have indicated that these gaps between welding, if too large, may 

have a damaging effect both on the magnitude of the maximum load 

and also on the behaviour of the stiffener at or past the maximum 

load, i.e. a sudden and drastic fall-off in the load. This type 

of failure was initiated by gross lateral deformation of the out-

stand in the region of the weld gaps, followed by a bursting of 

the welds. This phenomenon was found to be more serious with 

slender outstands. By ensuring a compact section of the stiffener 

outstands it is hoped that this undesirable effect of intermittent 

welding on the performance of stiffener outstands shall be removed. 

In the Merrison Rules a safeguard against torsional buckling of 

the stiffener outstand has been incorporated in the form of a restrict-

ion that the maximum calculated stress in the stiffener outstand, due 

to applied longitudinal loading and flexure due to initial imperfect-

ions, end eccentricity, etc., must not exceed two-thirds of the elastic 

critical torsional buckling stress of the outstand. There are also 

certain tolerances on initial lateral imperfections of the stiffeners, 

but these tolerances are not theoretically related to the above stress 

limitation. 

In the following sections this problem of torsional buckling of 

the stiffener outstand will be investigated in the following analytical 

sequences: 

(a) Large-deflection plate theory will be used to examine the sens-

itivity of strength and stiffness of plate outstands with res-

pect to initial lateral imperfections. 

(b) Single large-deflection theory cannot be readily used for other 

types of open-type stiffener outstands, i.e. angles, tees and 

bulb flats, a suitable criterion will be developed for compact- 
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ness of outstand geometry based on elastic critical buckling 

stress only, but derived from the application of large-deflect-

ion theory to flat stiffeners. 

(c) Rotational restraint offered by the flange plate panels to the 

stiffener outstand will be examined. 

(d) The effect of variation of the longitudinal stress pattern over 

the depth of the stiffener outstand, due to the flexure of the 

combined strut section consisting of the flange plate and the 

stiffener outstand, will be investigated. 

No explicit allowance for residual stresses shall be made in 

this analysis of stiffener outstands, as the magnitude, pattern and 

even the sign of the residual stresses due to welding of these stiffen-

ers to the flange plate cannot be predicted with any degree of certainty. 

Field measurements[52] have shown that residual stresses in the outstand 

seem to depend on the method of handling, assembling for fabrication and 

sequence of operations, etc., and thus they vary considerably in differ-

ent fabricated panels. 

	

2. 	LARGE-DEFLECTION PLATE THEORY APPLIED TO PLATE STIFFENER 

OUTSTAND 

The St. Venant equation for equilibrium at any point in an 

isotropic plate is, from Section 1 of Chapter 4: 

ew 2ew  ew 	 w  _ t 	a a2'2 4.  a 
a2 
— 2T a2w  

ax``ax2  aye 	ay4 D  t 	X 2 	Y Dy2 	xy asay  

where all the terms are as defined in Section 1, Chapter 4. 

The elastic critical buckling stress of an ideally flat out-

stand subjected to uniaxial compression shall be evaluated first, then 

the post-buckling behaviour of the initially flat outstand, and 

finally the behaviour of an initially imperfect plate outstand, i.e. a 

plate with initial out-of-plane deflections, investigated. 

	

2.1 	Elastic Critical Buckling Stress of a Flat Outstand  

This has been derived by several authors and Bulson
[34] 

gives 

a resume of the various methods adopted for this purpose. The same 
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energy method as already used in Chapter 4, and due originally to 

Timoshenko, will be used here, mainly to form the foundation for the 

subsequent sections of this Chapter. In this method the plate is 

given a very small out-of-plane deflection consistent with its edge 

conditions, at various levels of applied compressive forces. The 

increment of strain energy AUb  due to this small deflection is equated 

to the increment of work done ATb  due to the in-plane movemenr of the 

loaded edges as a consequence of the small deflection. Figure 34 

shows the geometry of the plate. 

Since the deflection considered is very small, (i) as  is con-

stant everywhere in the plate, and (ii) q = 6y  = Txy  = 0; this 

reduces the St. Venant equation to: 

a4w 	2a4w 	a4w  

ax4 	ax2 aye 	ay4 

a
a
t a2w 

D ax2  

 

(1) 

 

The out-of-plane boundary conditions are: 

At y = 0: (i) 	w = 0; (ii) M = D 	v a2w] =0 
aye 	aX2  

Aty= b: (iii)M =D 	= 0; 
aye 	aX2  

a3w 

[ 	

a3w  I 
(iv) Shear V=D  — + (2-v) 	=0 

ay3 	ax2  ay 

	

a2w 	aurAt x = 0: (v) 	W = 0; (Vi) M = D 	v 	-0 
ax2 	ay2 

a2w 	a2w  
At x = a: (vii) w = 0; (Viii) M = D — v — = 0 

x 	
aX2 	ay2  

All the above boundary conditions, except (iii) and (iv), are 

satisfied if we assume the deflected shape to be: 

w = AY- Sin 717x  , when A is very small 
a 

n2 e.nirx 
Aty= b,M = -DvA 

a2 
Sin 

a 

A n2  7 
 Sin 
. 
n a 

mrx V = - D (2-v) 
77 a2 

(2) 



work done ATb  by the external forces is: 

h 2  I 	, 
 dxdy 
o o 

Hence the 

AT,
19 
= a

a 
 t 

a b 
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From boundary conditions (iii) and (iv), the above two express-

ions should have been zero. Later on in this section, it will be found 

that, for critical buckling, n = 1. The length of the plate a is 

normally many times the width b and since the maximum amplitude of 

deflection A is small compared with b, these apparent reactive forces 

at the free edge for the above deflected shape will actually be very 

small. (This has also been numerically demonstrated in Section 4 of 

this chapter.) Hence the assumed deflected shape given by equation (2) 

will be retained. 

The bending strain energy d(AUb) in any element dx.dy is the 

sum of the work done by the bending moments M
X 
dy and M dx, and by 

the twisting moments M dy and M 
x 
 dx. The work done by each of these 

xy 	y 
moments is 	moment x angle of distortion. Using equations (2) of 

Chapter 4, it can be shown that for isotropic plates: 

2 

[ 

460 ) = 2- D (-9----w  ) 
b 2 axe 

2 	D2w  2 	n2 	, 2 
+ (—) 	+ 2v ,̀ i4. -a ÷ 2 

ay2 	@x2  aye  

22 
(1-v)(=2--')  

3say 

2 
) dxdy 

b a 
and 	LXUb  = I f d(Aub ) 

0-  0 

Using equation (2) and integration over the whole plate leads 

to: 

2 2  D A
ab
ne  7/ 	2 1. 2  b2  

AU - 	(1-vd 
b 2  

6a2  

The loaded edges approach each other by an amount: 

a 1 aw
) 
2  

f ( dx 

(3) 

Using equation (2) leads to: 

1 
ATb  = -;o.

a
t A

2 n2Tr2b 
6a (4) 



Equating LUb  = ab, the critical stress is given by: 

6Et2 	1727.2b2 
Q = 	 (1-v)] 
cr 

12(1-v2) b2  6a2  

Obviously acr  will be minimum when n = 1. 

Hence: 

a  4/ 4.  6(1-1 Tr2E 	ttN2  
cr 02 	W2  12(1-v2) bl 

where 0 = = aspect ratio of the plate. 

If a is very large compared to b, i.e. a long plate of narrow width, 

then 7-  0, and 

E 	t 2 	2 
a - 
cr 	2(1v)b1 - G (.,t) 

2.2 	Post-buckling Behaviour of an Ideally Flat Outstand  

The post-buckled deflected shape shall be assumed to be in the 

elastic critical buckling mode, i.e. 

w = A b Sin 
a 

where A is no longer very small. 

The boundary condition for the longitudinal edges completely 

free for in-plane displacement is a = 0 when y = 0 and b. A simple 

form of stress function satisfying the equilibrium and compatibility 

conditions everywhere, i.e. equations (4) and (16) respectively of 

Chapter 4 simplified for an isotropic plate, and also all the boundary 

conditions on the edges, is not known to exist. In order to obtain an 

approximate solution, it shall be assumed that a is zero everywhere 

in the plate, and not just on the longitudinal edges. From equilibrium 

equations for membrane forces, i.e. 

as 	aT 
sY   

3x 	Dy 
- 0 

Da 	aT 
YX 	 — 0 

Dy 	ax 
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(5a)  

(5b)  

(6) 



and from the condition that shear stresses along the edges are zero, 

it follows that T
xy 

 is also zero everywhere and ax is constant along 

any longitudinal strip. The relationship between the deflection 

amplitude A and the average applied stress aa  will be derived from 

the principle of minimum total potential energy. 

The bending strain energy Ub  will be given by equation (3), 

with n = 1, which becomes, on simplification: 

w2A2 
U
b 
= acr bt 12a 

i.e. critical load times shortening. 

The strain energy Um  due to membrane forces will be given by: 

b a 
2  dxdy U =— 

2E 	x 
1 f a m 
o o 

ta _ 	r 0. 2 d„ 
2E ' 	x 

since a
x 

is a function of y only. 

Total strain energy U = Ub  + Um. 

The rate of change of U with respect to deflection amplitude 

A is given by: 

dU 	 2. 	b 9a 
dA  = acr  bt- 

ta 

	

6a 	E f ax a4
x d 

Y 
0 

From equations (1) and (14), Chapter 4, since a = 0 

Du 
ax 1 '

ax/ DX = E 	‘ax/ 

2 ax 1 pryA  7TX = 	— — 	 u Os  

	

E 2 ab 	a 

using equation (6). 

The total change of length Aa is: 

axa Aa = 	.dth = 
71. 

f
a Du 	2y2A2 

 ax 	E0  
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(7)  

(8)  
4b2a 
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The potential energy T of applied loads = (-) work done by the 

loads: 

b 
= - f axt Aa dy 

.1. 
= - 

E 	x 
f a 2dY+ n 	

2A2
` P

b 

Cl  y2 dy 
a 	4b2a o x  

on substitution for Aa from (8). 

The rate of change of T with respect to deflection amplitude A 

is given by: 

dT 	
-2 Eta Da

x 	HA 2, IT b 
f  

f @ax 

axy 2 	-1 dy 

2 j  

b  
tA21.2 3a:x f y2 

(9)  

(10)  

dA = 
o E 

From (8): 

AaE 	A2y27r2E 

dy 
2b2 a 

A271-2t 

4b2a 

as 
Aa.t -571E 

3A 

4 

a
x 

_ 
a 

ta 
fbax  

4a2b2  

dy 	f = E 
Hen ce 

o 4b2a 

We shall assume at this stage that the loaded edges approach 

each other uniformly; hence Aa is not a function of y and can be taken 

outside the integral sign of the first term. The first integral on the 

right hand side then becomes the change in the total applied load, 

which must be zero, since we are investigating the buckled shape under 

a particular magnitude of the applied load. The second integral on the 

right hand side above is identical to the last term of equation (9). 

Hence 

dT  - /31 
a
x
ta Da 

x 	
A 2, b 

dy 	f axy2  dy 
o 

dA 	E DA 
2b 2ao 

From the principle of minimum total potential energy: 

d(U+T) 	dU 
-7-  
, dT 
 0 a   

(9a) 



Hence from equations (7) and (9a) 

2 b 
a rbt 6a 

4. ATr t f  axy2 	= 0  2A 
c 

2b2  a o 

Substitution for a
x 

from equation (10) leads to: 

aerb3 _ fb [AaEy2  A207r2E  dy 	AaEb3  EA2ir2b5  

3 	o 	a 	4a2b2 	3a 	20 a2b2  

1 	371.2 A2 
Or, 	- Aa = a cr 	a a 4. 

29  

Putting this in equation (10): 

= 3 u2EA2 	L,A  Lai2 2 2 - ax 	4- 20 a2 	
y  

cr 20 2 a 	4a2b2  

the negative sign for ax  indicating compression. 

Mean longitudinal compressive stress 0
a 
is given by: 

= 2_ i5( _ x) dy = a
cr 15 

1 ETr2A2  
a b a2 

From equation (11), apparent compressive strain ea  is given 

by: 

e = - — = e f 37r
2 A2  a 	a 	cr 20 a2 

where e cr = acr/E 

Err 2A 	
9 

2 	4 
Hence 	(32  - a

cr 
 ) - 	= 	(ea  - ecr  ) 15a2  

i.e. the post-buckling stiffness of the plate is 4/9 times that of the 

unbuckled plate. 

2.3 	Buckling Behaviour of an Initially Imperfect Flat Outstand  

The in-plane boundary conditions are that the longitudinal 

edges are completely free for in-plane movement, i.e. a = 0 when y = 

0 and b. The further simplifying assumption, made in Section 2.2 of 

154. 

(12) 
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of this chapter for post-buckling behaviour of initially perfect flat 

outstand, that a, and hence Tom, are zero everywhere in the flat out-

stand, shall also be retained. The initial and the final deflections 

shall be assumed in the natural buckling mode, i.e. 

Initial deflection 

Final deflection 

wo = A 	Sin —.ffth  o b 	a 

w = A Sin 1-r-E a 

(13) 

Since flexure of the plate is associated with the change of 

shape given by (w - w0), bending energy lib , will now be given by: 

71-2 (A - A0)2 
Ub = acrbt  

where CYcr is the elastic critical buckling stress. 

Since a and T are zero everywhere and ax is independent of xy 
x, strain energy Um  due to membrane forces is given by: 

u = —ta f
b 

 2  dy m 2E  x 

Total strain energy U = Ub  Um ; and rate of change of total 
strain energy with respect to amplitude of deflection is given by: 

6a 	E 	x a4  

From equations (1) and (14), Chapter 4, since Cr = 0 

2 

al/ 	ax
- 
 1 I  aw 	1 

ax E 

ax 	1 (A2 
	

Ao
2) y2ff2 

COS2  E 2 	2/2 	a a D 

using equation (13). 

The total change of length Aa of a is: 

12a 

dU 	
ff2  (A - Ao) 

	

b 	as
cl4  = acrbt 	 ta 	a 	

x dy (14) 

Aa = f
a 

	dx 
ax 

axa 
	(A2  - 

 A  2) y 271.2 

  

(15) 

  

4b2a 

  



The potential energy T of applied loads = (-) work done by 

load: 

b 
= f a

x
t Aa. dy 

b 	(42  - A
o 	
2) et b 

_ au r a  2 d, 	f axy2  dy 
E 0.1 	x 

4b2a 

Rate of change of T with respect to A is: 

dT 
 b -2a ata a a- 	Aet b 

dA 	
x 	x dy 	f  axy2 

= 	
dy 

o 	E 	a4 	2b2a o 

(42  - A
o
2) 	b Da 

f --E. y2  dy 
4b2a 	o a4 

From equation (15): 

(A2 - Ao
2)  y2eE 

= Aa.E +  
x 	a 	4a2b2  

Following the procedure in the previous section, it can be 

shown that: 

dT_ f
b a

x 	x 
rata as 	ATr 2 t b 

, 
aY 	f a Y2  dy 	(18) dA 

o E DA 	2b2a o 

From the principle of minimum total potential energy: 

dU dT 
-c-i-A -f cT-A = 0 

Hence from equations (14) and (18), and taking A = mAo: 

Tr2A (n-1) 	mA et b 
a bt 	° 	4-  o 

	f asy2 dy  . 0  
cr 

6a 	2b2a o 

or, 
a b 
cr 	

(n.-1) 	m f ay2  dy = 0 
3 

Substituting for oVx  from equation (17), and integration leads 
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(16)  

(17)  

to: 



cr 15 
a 	a2 

72 
EA
o
2m (714-1) 

a b3  (m-1) cr 	ra.E b
3  A  02  (1712-1)  Tr2E b55] 

- m 	. 

3 	a 	3 	4a2b2  

37.2A  2 (m2-1 ) 
Hence - Aa = a 	(m-1) 

cr 	mE 

Putting this in equation (17): 

3w2EAo
2  (M2-1) 	72E (m2-1)  A

o
2y2 

- a
x 

= a M-1  
cr m 

20a2 	4a2b2  

(20)  

the negative sign for a
x 

indicating compression. 

Mean longitudinal compressive stress Cr
a
is given by: 

p 
as =b  j( - a ) dy 

m 	72 E:40
2 (m2-1)

= a 
cr m 	15 a2 

Maximum longitudinal compressive stress occurs at y = 0, and is 

given by: 

m_i 	3n2  EA02 (m2-1) 
a 	= a 
max 	cr m 	20 

a2 

From equation (19),the apparent compressive strain ea  is given 

by: 

e = 
-Ea 	m-1 

37'2A
o
2  (m2-1) 	max  

a a 
= a

cr mE 
20a2  

The secant stiffness K defined as the ratio of average stress 

to E times apparent strain, is given by: 
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20a 
(19) 

(21)  

(22)  

(23)  

K - a 
3 a 

    

(24) 

    

a + 
cr 

3,02 EA o2m (m+1) 

20 
a2 
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For plates simply supported on all four edges and subjected to 

longitudinal compression, maximum membrane stresses occur at the longi-

tudinal edges, and in Chapter 5 it has been found that a satisfactory 

criterion for the ultimate strength of the plate is the attainment of 

membrane yield stress on these edges. For plates simply supported on 

three edges only, and subjected to longitudinal compression, it shall 

similarly be assumed that the ultimate strength of the plate is reached 

when the membrane stress on supported longitudinal edge reaches yield 

stress, i.e. from equation (22): 

m-1 	3-2 E4o2 	(7712-1)  
aMax 

= a 	- a 
cr m 	20 Y3 a2 ' 

For long plates, i.e. when a >> b, Ucr  may be obtained from equation 

(5b) . 

Hence the above stipulation leads. to: 

Et2  (n-1) 	3Tr2EA
o
2  (7722-/) 

- 1 
2.6 a 

8
b 2m 	20 a a2  

Y 	Y3  

a 
b 
T _Es _ 

s  
Taking  a slenderness parameter 

a 
o 	E - , an imperfection parameter 

Y s 
the above equation may be expressed as: 

3.849 S2 So2 m2  - 1 = 2.6 S2 	3.849 S2
0
2  - / 	(25) 

and equations (21) and (24) for mean stress a
s 

and secant stiffness 

s for ultimate state may be expressed as: 

aau m - K = — 	1 	
0.658 (3 2  ( 112-1) su ays 2.6 S m 

For any plate of given slenderness parameter S and initial 

imperfection parameter So, the magnification factor m at its ultimate 

load may be obtained from equation (25), and then the secant stiffness 

K , 	strength parameter a or the strth rameter — , may be obtained from equation (26). 
su 	

tau 
 
Ys 

A 

(26) 
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Equation (25) is cubical in terms of m and hence its solution will 

require a successive approximation approach. The right hand of the 

equation can be calculated from the given data; calling this J, the 
dJ 

derivative 	may be obtained for an assumed value of m, say ml, from: 

dJ
0 m 	

1 
T1. = 7.698 8262 1 	m  2 

1 

For this assumed value of m11  the left hand side of equation (25) may 

be calculated as J1  say. Next approximation for m is: 

M = m1 
1 	(dJ/dthl) 

and so on. 

3. 	SENSITIVITY OF STRENGTH/STIFFNESS OF FLAT OUTSTAND TO INITIAL 

IMPERFECTIONS 

Equations (25) and (26) have been used to draw curves of 

aau K 	(= 	against slenderness parameter S (= t
- /1577g), for three 

su a 	 Ys Ys 	 Ao  
values of initial imperfection parameter So (= —

a 
1E-Tc—r) of 0.2, 0.1 

Y8  

and 0.05. These values of 6 relate to design limits of lateral mis- 

alignments 	
a 

 approximately equal to T-
a 
 -50- , .355- and 600 respectively for 

steel of yield stress 245 N/mm2. These curves are shown in Fig. 35. 

It shall now be postulated that the secant stiffness K
su 

 or 

strength parameter 9-.41-11 shall not be allowed to drop to any value less a 
Ys 

main 0.975, i.e. a maximum fall in stiffness or strength of 2.5% shall 

be taken to be the limit for assuming a linear load-shortening 

behaviour of the outstand. 

From the graphs in Fig. 35, the maximum permihted values of 

the slenderness parameter S then works out as.follows for the three 

initial imperfection parameters So: 
0 

S
o 

0.2 0.1 0.05 

Smaz 0.3 0.425 0.525 
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max
= 0.3 is too severe a design restriction, as --ratio has to be 

limited to 8.7 and 7.2 for steel of yield stress 245 and 355 N/mm2  

respectively. The other extreme of S max 
= 0.525 will, however, have 

m 
to be accompanied by a design tolerance of ikon lateral misalign-
ment which is considered too severe for fabrication in the light of 

the Merrison fabrication tolerances, which can be as high as 	 of 
175 

the gauge length. Hence as a compromise, it seems that the best solut-

ion is to take the initial imperfection parameter (S
0 
 = 0.1, coupled 

with a restriction on the slenderness parameter S as not more than 0.425. 

From equation (5b), S .1 0.425 leads to a factor of safety against 

elastic critical buckling of not less than 2.13, i.e. 

2.13 
a 
s 

Rounding up this figure to 2.25, it shall now be postulated that for any 

type of open stiffener outstand, i.e. angles, bulb flats, tees or flats: 

(i) the ratio of elastic critical buckling stress acr  to the 

applied stress is  on the outstand at ultimate load shall not 

be less than 2.25; 

(ii) the fabrication tolerance on lateral misalignment of stiffener 

outstands shall be taken as 2/3 of the design limit on initial 

imperfection, i.e. 

a 
A
o  t 
	-1Y-f- 
450 	E
-1--1 	times the gauge length 

The above limitations are stricter than the Merrison Rules as 
acr the latter prescribes a minimum factor of 1.5 only for the ratio 	, 
ua 

and also the Merrison ratios of fabrication tolerance to gauge length 

of measurements are higher than the values stipulated here. But in 

view of the above results of the application of the large deflection 

plate theory to flat outstands, these stricter limitations are consid-

ered necessary and more rational. 

4. 	BOUNDARY CONDITIONS AT THE FRED EDGE 

It has already been noted in Section 2.1 that the assumed 

deflected shape does not satisfy the boundary condition that M is 

a 
cr 



zero at the free edge y = b. The maximum value of h/ at this edge 

occurs at x = a/2 and is equal to: 

M = - D V (m-1) A 0 E l 

 a
2 

and the maximum fibre stress due to this moment is given by: 

E v t  
(m-1) A p 

	

	
El 

- 
J 	2(1-v2) 	

0 
a
2 

	

114-7ff- 	Y3 

	

With the notations (5 = A -2- u— and S = k 	 17  
o a 	E 

, 6 may be f 

	

Ys 	t 
 

expressed as: 

-  7
2 V 	o b 

(m-1) 	- a 
J 	2(1-v2) 	

S a ys 

It has already been decided that So  shall not exceed 0.1. With 

S
o 
= 0.1, the magnification factor m for different values of S works 

out from equation (25) as follows: 

S 0.4 0.5 0.6 

m 1.68 2.50 3.87 

m-1 
1.7 3.0 4.8 

S 

Thus the factor (m-1.  

value of S has already 

factor 
fm-1% 

 works out 

the outstand is of the 

increases with higher 

been taken as 0.425.
b  

as 2.0. The ratio -a- 
/ 

order of --5-  . Hence 

values of S. The limiting 

For this value of S, the 

, i.e. width to span of 

, taking V = 0.3, the maxi- 

mum possible value of of  will be of the order of: 

2 7 V  
(0.02) a = 0.033 a 

2(i-V2) 	YS 	YS 

This value is considered small enough to justify the validity 

of the solutions derived from an assumed deflected shape which did not 

fully satisfy two out of the total eight boundary conditions. 

161. 



162. 

	

5. 	ELASTIC CRITICAL BUCKLING OF KEh-TYPE OUTSTAND 

Bleich
[53] 

and Timoshenko
[50] 

have given the solution for 

elastic critical stress for torsional buckling of Tee-type stiffener 

outstands attached to a thin sheet of plating. In the simplest case, 

the flexural rigidity of the plate is ignored. The problem of stiff-

eners unsymmetrical about the vertical plane, i.e. angle type of 

stiffeners, is dealt with by Timoshenko, but the correct solution is 

too complicated for simple design rules. 

	

5.1 	Outstand of Tee-Section  

For Tee-type stiffeners shown in Fig. 36, the critical stress 

for torsional buckling is given by the following expression, when 

flexural rigidity of the flange plate is ignored: 

/ 	 2 
Ir
2 

a = 	EW
n 	

El a2  --- GJ 
cr 	

L2 	L2  

where 1-  = polar moment of inertia of outstand about its attachment 

to flange plate 0 

W = warping constant of outstand section 

I = second moment of area of outstand section about Y-Y axis 

a = distance between the shear centre of the outstand section 

and its attachment to flange plate 0 

J = St. Venant torsional constant of outstand section 

L = span of stiffener between adjacent transverse supports. 

For Tee-section: 

t1  b1 	t2' d3 
W - 	  

144 	36 

t1 b 1 3  

I = 	 

12 

a =d 

, ignoring the small contribution from the web 

, since shear centre coincides with the intersect-

ion of the centre-line of the web and the flange 

of the outstand 

d t2' 	b1  t13 
J - 	 

(27) 

3 
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f 	(x2  + y2) d A 4- f 	(s2  y2) d A 
P web 	fig 

where dA is a small elemental area in the web or the flange at a 

distance of x and y from 0 along the respective axes. 

Hence 

t2 d3 	t1 b1 3  

	

Ip  -     t1 b1 d2  3 	12 

For a flat section, all the above terms apply, except that 

and t1  may be taken to be zero, and a = 2 , since the shear centre 

coincides with the centroid of the flat section. 

Taking t1  = K1  t2, and bl  = K2  d, the critical buckling stress 

acr given by equation (27) can be expressed as follows: 

a 	[t 
2 
 2 F 

1 	4. 
d2 v  

1 cr 
L' 
n 	

t212 

where F = 
1 	12 	3 4 + K1 K23  + 12 K1 K2 

K1 K23  

	

F2 = n2 		 

F3 = 1.5385 
1 	K1 3  K2 

4 K1 K 3  12 K K 
2 

 
1 2 

Graphs for F1, F2  and F3  are given in Fig. 37. 

6. 	EFFECT OF FLEXURAL RESTRAINT PROVIDED BY THE FLANGE PLATE 

Assuming n numbers of half-waves of bUckling in the length L 

between transverse supports, the differential equation of equilibrium 

at the critical buckling state has been given by Bleich[53]as follows: 

0  
(GJ - aIp  ) " 22n2 
	

Y 
- 	 0 	E (W a2 

 / 7/.4 
) 	 00  4- CO = 0 

1, 	L4

n4  

n2 
4 	K1 3  K23  

4 K1 K23 	12 K1 K2 

4- { E F3  — (28)  

(29)  

(30) 



where 0
o 

is the amplitude of rotation about point 0, Fig. 36 

C = flexural stiffness of the flange plate measured in terms 

of bending moment applied per unit length of stiffener 

for unit rotation at 0 

all the other terms are as defined in Section 5. 

Flexural stiffness C of the flange plate may be derived by 

assuming alternately up and down deflection of the flange plate in the 

adjacent panels, conforming to the buckling mode, as shown in Fig. 38. 

Bending moment M on the flange plate on either side of each 

stiffener and the change of slope 0 over each stiffener area related 

by: 

M b 0 = 

where I is the second moment of area of the flange plate per unit 

length. 

Taking Poisson's effect into account, EI may be taken as 

Et
V2) 
3  

22(2 
D - 	where tis the thickness and D is the flexural rigidity of 

the flange plate. Total bending moment on one stiffener is equal to 

2M, and hence 

2M 4E1 4D 
• 

0 	b 
= b 

The above has been derived from the consideration of flexure 

only of the flange plate. When the flange plate is subjected to longi-

tudinal in-plane compression as well, buckling due to the latter will 

reduce the flexural stiffness of the flange plate. It shall now be 

assumed that the above expression for C is valid when the longitudinal 

compressive stress a on the flange plate is zero, but that C will 

reduce linearly from the above value to zero as the longitudinal com- 

pressive stress as reaches the elastic critical buckling stress a 	of crp 
the flange plate, i.e. 

C - 4D 
acrp - a 

b a crp 
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2E1 

4 72 D  
where a crp b2  t 
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Applying the above to equation (30): 

[n2 n2 
E(w a2 I  ) n4 n4 Gj  2 n2 

 a 	 
L + 	L2 	L2 	7  

Wherefrom the critical value of a is given by: 

E(W a2 Iy)RA 4  4_ GJ R2 n2 4D 

Lk 	L2 

cr 	72 n2 p 
 bt 

L2 	72  

The lowest value of acr  shall be obtained by equating 
da cr -271--= 0. 

Equation (31) is of the form AB , where A is the numerator and B is 

the denominator of the expression in (31): 

dacr 	1 [n  dA 	
=. 

 dB 	n  
411 

dn B2 dn dn
] 

So the lowest value of cr  shall be given by: 

N  74  4 n3  2 n 
E(W 4,  a2  I ) 	4- GJ 

72 
 

A dA/dn= 	
Y L4 	L2 

acr - B - dB/dn 2 R2  n I 
P 

L 2  

2E(W a2  p) 72  n 
	 T- 

I L2 	

GJ 

 

where n is given by: 

dA 	dB 
B -Tn  - A  dn =n  ' 

72 n2 bt 	4 74 	72 
or, 	

[2- 	 L 

] [E(w a2  ) GJ 
P  L 	 4

n3 	2 

 ni 

n4 n  4 	72  n2 
 4- 	

2 [ 	72  

L 4 	L 2 	L2 
= [E(W a2  I ) 	GJ 

 

which, on simplification, leads to: 

6 4 	2 w2  bt E(W a2  I ) n2  
/ E(W a2  I 	

n 
) 	-   bt GJ - 4 7x2 	D  = 0 

Y 	L4 	L2 	 /9  17 

(31)  

(32)  
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This is a quadratic equation in n2. Ignoring the negative solution, the 
valid solution for this equation is: 

n2 = L2  bt [L4  b2t2 	4 DL4  	bt GJ L4 	1/2 

n4 	ne 2 	n4 Eb(w a2  I.)n6  El (W f a2  I) 

Taking V = 0.3, this leads approximately to: 

bt L2 	2 bt2 L4 
+ 0.00376 	t3  L4  n2  = - 0.0/ 	+ 0.0001 bt 

 P 	1 	 I 2 	b(W + a2  ) 
P  

1/2  
- 0.0004 	bt J L4  ... 	(33) 

/
P 	

/ (W + a2  )] 
Y 

The theoretically correct method for obtaining acr  will be: 

(i) Take a positive integer value of n nearest to the exact value 

of n from equation (33); 

(ii) Calculate acr  from equation (31) by substituting this positive 
integer value of n. 

However, equation (32) is much simpler than equation (31) and 

will always give a slightly conservative value for acr, since even 

fractional values of n are admitted for approximation purposes. Hence 
equation (32) is adopted. 

If equation (33) produces a value of n less than 1, we can con-

clude that the effect of the flexural stiffness of the flange plate on 

the torsional buckling critical stress of the outstand is small, as the 

buckling half-wave-length is not altered; hence in this situation we 

can take for acr  the critical buckling stress of the outstand assumed 

hinged to the flange plate, i.e. from equation (27). We shall get an 

identical result if it is stipulated that in using equation (32), n2  
shall not be taken less than half. Equation (32) is very similar to the 

equation (27) for hinged outstand, except that the first two terms in 

equation (32) are multiplied by 2n2. 

If the dimensional coefficients Fl, F2  and F3  given in equation 

(29) are made use of, then equation (32) can be expressed as: 

d 2  / 2 2 1 a cr 	E, 
= m E Fi  m E F2  v7-7) 	E F3  kT) 

2  (34) 



2 n2  t22  1 where in = 	[{a2 	40a - 4yj1/2  - a, ,50 
£2  
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where a = 

but not less than (t2/L)2  ; 

bt t22  

I 
p (35) 

S 	
bt (t12 	t24  

P = A
s 	d2  r 2  

Y = 
A I 2 2 As pdr 

r = radius of gyration of outstand about Y-Y axis 

As = area of outstand 

I = I f I . p x y 

In equation (34) the three terms are respectively the con-

tributions of the warping constant W, the lateral flexural inertia I 

and the St. Venant torsion constant J. It may be noted by comparing 

equations (28) and (34) that the third term is unaffected by the 

flexural restraint provided by the flange plate. 

	

7. 	OTHER TYPES OF STIFFENER OUTSTANDS 

	

7.1 	Bulb-flat Outstared  

Equation (34) is valid for tee-type stiffeners, and also for 

flat stiffeners as already discussed. Bulb-flat stiffeners may be 

assumed to be equivalent to a tee-section of the same overall depth, 

web thickness and flange width, with the flange thickness assumed to 

be the same as the average thickness of the bulb as indicated in Fig. 39a. 

	

7.2 	Angle Outstared  

Equation (34) is strictly not valid for angle sections, due to 

asymmetry about the Y-Y axis, as discussed in Section 5. Since the 

correct solution given by Timoshenko for angle sections hinged to the 

flange plate is too complicated for design office use, it is recommended 

that equation (34) is used also for angle sections, except that / and 

r are taken for an equivalent tee-section of the same flange dimensions. 

t24  bt 
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8. 	VARIATION OF STRESS IN THE DEPTH OF THE STIFFENER OUTSTAND 

If the longitudinal loading on the stiffened compression flange 

is applied through its centroid, then the flange stiffener will have 

uniform compressive stress over its entire depth. But any eccentricity 

of this applied loading with respect to the centroid of the combined 

stiffener section, or flexure of the stiffener between its adjacent 

transverse supports due either to any locally applied transverse loading 

or to any initial out-of-straightness of the stiffener, will cause a 

variation of the longitudinal stress in its depth, with higher compress-

ive stresses on the concave side and lower compressive stresses on the 

convex side of the deflected shape of the stiffener. 

The previous sections of this chapter deal with a uniform com-

pressive stress pattern over the entire stiffener. In this section, 

suitable modifications will be derived for application to the results 

of the previous sections, to allow for the variation of the longitudinal 

stress in the depth of the stiffener. 

	

8.1 	Flat Stiffener  

For a flat stiffener outstand, hinged to the flange plate, the 

elastic critical buckling stress for uniform applied compressive stress 

on the flat section has been derived in Section 2.1 of this chapter. 

Consider the case when the applied compressive stress varies from a maxi-

mum value at the tip of the outstand to zero at its attachment to the 

flange plate, as shown in Fig. 40. The elastic critical magnitude of 

this linearly varying stress pattern will be derived here by applying 

the same principles as in Section 2.1. The deflected shape will be 

assumed to be given by equation (2). The bending strain energy AUb  will 

be identical to equation (3). The applied longitudinal stress ax  varies 

with y, i.e. 

a = 
b b 

where a
b 

is the maximum stress at y = b. 

Hence the work done ATb by the external forces is: 

1 
ATb 2  

--tf
b
f
a 
 a
x ax 
02)2 dX dy

o o 
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b a 	2 2 2 / 

	

= 
2 
- t orb  f f 	n 

 2  
A2  Y 	Cos2  marx  dth dy 

	

o o 	b2 a  

Integration over the plate leads to: 

AT .,_. A2 n2 n2 a  tb 
b 16a 

Equating IXUb  = ATb, the critical value of oh  is given by: 

8  u2  E. 	 rt` 	n2 7 ,,2 	/ - V  a
ber 

=  
12(1-v2 ) 73')  6a2 	Tr2 

The minimum value of 
Aber 

 will occur when n = 1 and is given 

by: 

	

W2  E 	(t)2[ 4b2 	6(1-v)  
a
her 

- 

	

12(1-v
2 b  
) 	3a2 W2 

If a is very large compared with b, 
b
-÷ 0, and 
a 

4. 2 	2 

a = 
	

N  2E  (,, = 4- 4 
bar 	3(1+v) 	3 

G 
 '131 

4 This is 
.J
-times the value obtained in equations (5a) and (5b) 

for the elastic critical buckling value for uniform compressive stress 

on the flat outstand. 

The total stress on the stiffener outstand consists of a uni-

form pattern due to the centroidally applied longitudinal load and a 

linearly varying pattern due to the bending moment associated with the 

flexure. The centroid of the combined stiffener section is usually 

very near the inner surface of the flange plate and hence the two 

stress components may be approximately represented as in Fig. 41. 

Assuming a linear interaction between the two stress components 

for critical buckling, which is the worst possible type of interaction, 

the factor A
b 

against elastic critical buckling for a flat stiffener 

outstand hinged to the flange plate is given by: 

A
b as 	

A
b 
a
b  

- 1 
t 2 	4 

-3- 
 t 2  

G(E) 	G(L) 

(37)  

(38)  
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or X
b 

t)2 	Oat 

-̀ P Sat 4- aa 

  

(39a) 

   

at 

  

where cit  = a
s 

(37.=stress at stiffener tip. 

   

This is equivalent to multiplying 
acr 

by the factor 

 

4at  

Sat  + a
a  

and comparing this modified value of acr  with 6t. 

  

(39b) 

  

8.2 	Tee, Bulb-flat and Angle Stiffeners  

The elastic critical buckling stress for uniformly compressed 

tee-type stiffener outstand flexurally restrained by the flange plate 

is given by equation (34), in which the three terms are respectively 

the contributions of the cross-sectional properties W, / and J. As 

discussed in the previous section, the stress gradient over the depth 

is allowed for, if the share contributed by the web towards these 

properties, and hence to G , is increased by the ratio given in (39b). cr 
But the shares contributed by the flange should not be increased, as 

the flange is subjected to the full value of at. The contribution of 

the web towards / is negligible. But both the web and the flange 

contribute towards W and J, and so both the first and the third terms 

may be increased by a factor less than the value given in (39b). 

As an approximation, it is suggested that only the third term 

is increased by the full value of the above factor in (39b), thus lead-

ing to: 

2
t2,2 	4ut a 

r 
 =mEF 1  -kmEF2  (77-) 4-EF3  k aj 	3a +a 	... (40) c  2 	t a 

where F1, F2 and F3 are given in Fig. 37, and 

m is given by equation (35). 



d F 3 
t2  ' 2.25 at  t2  2 

d 2 (T) Fi  - (I) 	F2  
E 

4at  
Sat  as 

 

1/2 
(42) 
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9. 	DESIGN REQUIREMENTS FOR STIFFENER OUTSTANES 

It has been concluded in Section 3 that ab, i.e. her/at should 
not be less than 2.25. 

	

9.1 	As a conservative first approximation, if only the third term 

in equation (40) is taken, then the span L and the number of half-waves 

will not influence this approximate value of a
cr

,  , and the following 

slenderness limit for the web of the stiffener may be stipulated: 

d 
t 2 1  

E F 3 

2.25 / 3 vi a
t 

- a
a
) 

,3 
As a further safe approximation k•-• a 	- a) may be taken as , 

4 	4 a 
the maximum stress in the stiffener CY

max
.  Noting that F3  = 0.385 for 

flat section and 0.181 for equal-legged angles, this leads to: 

(a) for flats: 
2 
t 0.414 )1 E/0

771ax 

(b) for equal-legged angles: 	4' 0.284 V E/amax  
2 

or 	D — 4' 0.5 + 0.284 E/a
M ax t2 

where D is the overall width, and 

t2is the thickness of the legs. 

9.2 	When the torsional rigidity of the section is not adequate to 

satisfy (41), then the first and the second terms of equation (40) must 

be included; in this situation as a safe conservative approach m may 
,t2,2  

be taken as k-EJ , which corresponds to neglecting the restraint 

offered by the flange plate. This approximation leads to: 

1/2  
(41) 

9.3 	When equation (42) is also not satisfied, then the restraint 

offered by the flange plate may be invoked by using the full equation 

(40), which leads to: 



• • • (45) 

1/2 
F3 	4a

t  

2.25 a
t d 	

Sat  4-  as 
 

E 	mF1  -mF 
2  t2 

 ) 

where m is given by equation (35). 

9.4 	In equation (43) at  and act  may be conservatively taken as the 
maximum stress in the stiffener a . For flat section: 

max 

t2 
I = t d3  and r = — , p 	2 	

2/-3- 

hence 
ti 3 	 4. 

= 3  d ) 	4.'42 
t
2 

3 

( bt2)(b 
t2  6  

= 12 (
t 

d  

5  
(
t 
2) ( bt 

y = 12 	
‘t 

2 

Substitution of the above in equation (35) leads to: 

t 2 	2 	

2 
d 3 	

t 
2 2 

(E) = 5.21 m (--E  t2 
 -d(T) 	0.625 m -- 

/ 
fa (Tr) 	(44) 

2 

For a flat section, F1  = n2/12, F2  = 0, F3  = 0.385; taking 
E = 205000 N/mm2, equation (43) leads to: 

m = 13.35 x 106 max 	
0.4682 

 2)2 

Hence when the torsional rigidity of the flat section is not 

big enough to produce its own contribution to the elastic critical 

stress equal to 2.25 cam, i.e. when 
max 

d 
 > 0.414 ✓  

2 	a

E  

max 

then the required value for m can be calculated from equation (45), 
/bN 

and the upper limit for the y ratio of the flange plate can be cal-
culated from equation (44). This will then ensure that the flexural 
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(43) d 
t2 
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restraint provided by the flange plate will be adequate to satisfy the 

criterion: 

acr 2'25  aMax 

Taking a 
ax 

as the yield stress, suitable graphs have been 
m 

drawn in Fig. 42 giving the slenderness limitations of flat outstands 

for a 
s 
= 245 and 355 N/mm2. 

Y 

9.5 	In addition to the above slenderness requirements of the web of 

the stiffener outstand, two further requirements should be stipulated, 

viz. 

(i) Slenderness of the flange of the tee-type stiffener outstand; 

the requirement for this can be taken to be the same as for a 

flat stiffener outstand. Neglecting warping rigidity EW, this 

requirement is shown in Section 9.1 to be: 

4 0.414 Wumax 2t1  

where b and t are shown in Fig. 36 

a
max 

is the maximum calculated stress in the flange of 

the stiffener outstand. 

(ii) Slenderness of the web of the stiffener outstand when the 

denominator of the first term within the square-root sign in 

equations (42) or (43) is negative. In this case con-

tributions of the warping rigidity EW and of the flexural 

rigidity EI to G cr, i.e. the sum of the first two terms in 

equation (40) is larger than 2.25 	We We can thus conclude 

that the dimensions of the flange of the outstand are large 

enough to give adequate support to the bottom edge of the 

web of the outstand against any tendency for lateral displace-

ment. The slenderness requirement for the web of the outstand 

should then be the same as for the web of closed-type 

stiffeners derived in Section 10. 

b 1  
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10. 	LOCAL BUCELING OF CLOSED TYPE STIFFENERS 

When the flange plate is stiffened by 'trough' type of stiff-

eners, the geometrical proportions of such stiffeners must be such as 

to produce negligible non-linearity in the axial load-shortening 

behaviour of such stiffeners. As pointed out in Section 1, residual 

stresses are rather unpredictable in either open or closed types of 

stiffeners, and hence no explicit allowance shall be made for residual 

stresses in the method given here. 

10.1 Application of Large-Deflection Plate Theory  

It is proposed that tolerances for out-of-plane imperfections 

in the walls of the trough-type stiffeners shall be the same as already 

suggested for flange plate panels. Hence the graph for strength and 

stiffness of residual-stress-free plates, i.e. Fig. 26b of Chapter 5, 

may be examined in order to obtain the dimensional limitations for the 

walls of closed stiffeners. It was observed that a slenderness limit-

ation of: 

S = 	 (±FiY-Q t 1.2 E 

produces a maximum fall in the strength/stiffness of 4.6% and also 

ensures a factor against elastic critical buckling of not less than 

2.5. This fall in the strength/stiffener of 4.6% is higher than the 

2.5% limit adopted for open type stiffeners. Frieze[17  has shown 

that the load-shortening graphs of plates with all edges simply 

supported and with slenderness parameter S 4  1.2 indicate a stable 

type of behaviour after the peak load is reached. However, tests at 

Manchester
[51] 

have shown that stiffened panels with slender flat 

stiffeners exhibit a violent fall-off of load after the peak stress 

is reached. In view of this stable behaviour of walls of closed type 

stiffeners it is considered that a maximum 4.6% fall in the strength/ 

stiffness is acceptable and hence the flange of the trough stiffener, 

i.e. the horizontal bottom wall should satisfy the limitation b1/t1 t 
1.2 VE/a , when a max 

is the maximum calculated compressive stress in 
max 	m 

the bottom wall at ultimate load. 

(46) 
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10.2 	Effect of Variation of Stress in the Cross-Section  

For the webs of the trough stiffener some allowance may be 

made for the fact that, due to flexure, the compressive stress may 

vary in the depth of the web. Assuming, as before, that the centroid 

of the combined stiffener section consisting of the trough stiffener 

and the girder flange plate is near the inner surface of the latter, 

the stress pattern on the trough may be assumed to be a combination 

of a uniform stress as and a triangularly varying stress with the 

maximum value at the mid-plane of the bottom flange ab,'as shown 

in Fig. 43. 

The factor Xb  against critical buckling is given by the follow-

ing approximate interaction relationship: 

1
.  

1 ]2  X
b a  
(a +

2  ab 	b 
) [A • -- a 

2 b  
=1 

4a 	24a24a
o  

2 	
t 2  

Tr   
where a

o 
= 	

E 
 ( 2) 

12(1-v2) d  

The solution for A
b 

of the above quadratic equation is: 

b 
 

a 4. a 	 7 4. 	a  i 2 [ ab 2 

 

2 
b 2 b  /  a 2-  b 	b I 

0 	o 
4a
o 	
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2 r  a  b  2 

L 
48a 

 

Taking the first two terms of the Binomial series, 

/ 

	

 
Caa 2 	

2 

abl  	12 
as2 ab  1 [ ab  

2 	

4a
o  

4a 

	

-o 	
24a

o 	
4a
o 	

2 24a 
01 	+ -.1  a 

a z b 

and hence 

b 
 

1 
a
s + —2 ab 

o 

i.e. for critical buckling a uniform compressive stress of (a
a 
+ Ta

b) 
may be assumed on the web. 



176. 

Aiming for the same factor of safety against critical buckling 

in the web as in the bottom flange of the trough, i.e. 2.5, 

4c1  	2.5  

a  
a 2

a 
 b 

which, after substituting for ao  leads to: 

d f 1.7 	t2 	a + aa 

where at is the stress at the outer edge of the web. 

When the web of the trough stiffener is sloping, d must be 

taken as the actual width of the sloping web. 
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CHAPTER 10 

BOX GIRDER TESTS FOR BEHAVIOUR OF STIFFENED COMPRESSION FLANGES 

1. INTRODUCTION 

An experimental programme of investigation into steel box girder 

behaviour was already under way, in the Engineering Structures Laborator-

ies of Imperial College, at the time the Government appointed the 

Committee of Investigation into the Design and Erection of Steel Box 

Girder Bridges following the tragic events at Milford Haven and the Lower 

Yarra Crossing. It was almost immediately incorporated within the large-

scale experimental programme established by the Committee of Investigat-

ion and was subsequently greatly extended beyond its original scope. The 

objective of this new programme was to collect as much experimental data 

on as many aspects of box girder behaviour as was possible within the 

limited amount of time available. The tests are, therefore, by no means 

an exhaustive study of all aspects of box girder behaviour but give some 

answers to the many questions which were posed by the Committee, and 

results of these tests were used to substantiate or modify the basis of 

certain of the methods contained within the clauses of the Committee's 

earlier appraisal
[54] 

rules and the final design documents[3] 

2. DESCRIPTION OF TESTS 

2.1 	Outline of Test Types  

The tests were generally of two types: central point load tests 

on simply supported sections of box girders which simulated the condit-

ions of high moment and shear which occur near the support region of a 

continuous structure, and pure moment tests which represent, in an ideal-

ised way, the conditions in the span region of a continuous girder. Of 

the eight models tested, three were of the pure moment type, four were 

centrally point loaded beam tests, and one was a modification of the 

latter type in which the model was subjected to both flexure and torsion. 

As this thesis deals with the behaviour of the compression flange 

only, only those tests are described here in which the stiffened compress-

ion flange was critical, i.e. boxes 1, 2, 4 and 8. For ease of reference 

this original numbering of the boxes has been retained in this thesis. 
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These tests were conducted in 1971-72, when imperial units were 

still being used in the laboratory. In order to avoid redrafting of many 

drawings and graphs, imperial units of tonf for jack loads and inches for 

construction drawings and measured deflections have been retained. 

[1 tonf = 9.964 KN; 1 inch = 25.4 mm.] 

	

2.2 	Description of Models  

The models were approximately one quarter the size of those used 

in practice. Although the materials and fabrication procedure were 

representative of those used in full size box girder bridges, the relative 

sizes of welds were somewhat larger than would normally be employed. The 

material, mild steel similar to SS 4360, grade 43A, showed considerable 

scatter in its properties as derived from tensile test specimens. Tables 

la and lb show the dimensions, properties and the relevant parameters of 

the critical components of these models. 

	

2.3 	Instrumentation 

Deflections, including initial out-of-plane deformations and 

deflections under load, were measured on each model by a series of 

electrical deflection transducers. These were mounted on an inverted U-

frame which straddled each girder and traversed the length of the models 

on a pair of rails. The rails, which were supported at three points on 

the flange, had fixed at regular intervals along their length a series 

of balls which were accurately levelled so that their uppermost points 

generated a plane under the weight of the U-frame. These balls also 

located the U-frame accurately at each of the sections chosen for measure-

ments. 

Weld-induced residual strains were measured over 2 in. and 4 in. 

gauge lengths between fixed points on the plate surface using a demount-

able mechanical Demec strain gauge. Recordings were taken at three 

stages of the fabrication: after cutting and butt welding of the compon-

ent full length plates, after welding of the stiffeners to the plates, 

and after welding the stiffened plate components together to form the 

final model. Measurements were taken on both surfaces in order to obtain 

the mean strain, and temperature corrections were done by reference to 

gauge points marked on an unstressed plate. 

I 



Model 
No. 

Cross-section of model 
dimensions, in. 

Component sizes and material properties 

Component Nominal size, in. t, mm vis, N/Mm2  E, kN/mm2  

1 

I  

0) 

- CF 
TF 
W 
LS 
S 

3/16 
3/16 
1/8 

2 x 5/8 x 3/16L 
3 x 2 x 1/4L 

1/4 

4.95 
4.95 
3.38 
- 
- 
- 

247 
247 
273 
329 
314 
255 

201 
201 
215 
201 
195 
199 

I 	‘ 	I 	I 

. 

- 	-.9 

D 
 4 	)t 

2 

CF 
TF 
W 
LS 
TS 

3/16 
3/16 
1/8 

2 x 5/8 x 3/16L 
3 x 2 x 1/4L 

4.88 
4.88 
3.38 
- 
- 

298 
298 
212 
276 
310 

208 
208 
216 
192 
196 

	

--t. 	I 	L 	L 
_ 

, 

I 	I 	I 	I 

4 .9 fr) 

tr- CF 
TF 
W 

LS 	(CF), LS. (W) 
LS 	(TF) 
TS 

3/16 
3/16 
3/16 

2 x 5/8 x 3/16L 
2 x 1/4 plate 

.4 x 21/2 x 1/4L 

5.03 
4.95 
4.98 
- 
- 
- 

221 
216 
281 
287 
304 
304 

207 
208 
215 
199 
207 
201 

1.1tIlt 	tit 

. 	. 

- 	- 

8 

CF 
TF 
W 
LS 
TS 

3/16 
3/16 
1/8 

11/2 x 1/4 plate 
3 x 1/4 plate 

4.72 
4.67 
3.17 
- 
- 

276 
366 
252 
312 
294 

208 
208 
216 
210 
208 

11.111' 1 1 

- 	' _ 
. 	. 
- 	. 

TF Tension flange 	. CF Compression flange LS (CF) Longitudinal stiffener on compression flange 
W Web LS Longitudinal stiffener LS (TF) Longitudinal stiffener on tension flange 
D Diaphragm TS Tranverse stiffener LS (W) Longitudinal stiffener on web 

TABLE la: DIMENSIONS OF MODELS AND PROPERTIES OF MATERIALS 



Model 	• 	Region of bridge Critical components Relevant parameters Other features 

1 	Intermediate 
support 

(a) Largest web panels 
(b) Compression flange plate 

panels 

(a) b/tw  = 135 
(b) b/tf. = 49 

Flange stiffener Ur = 49; 	designed for 
simultaneous collapse of web and flange 

2 	Mid-span Compression flange plate 
panels 

b/t
f 

= 51 Flange stiffener l/r = 50 

4 	Mid-span Compression flange 
stiffeners 

l/r 	= 45 
b/tf  = 24 

8 	Mid-span Compression flange 
stiffeners 

h/r 	= 115 
b/tf  = 26 

Light transverse flange stiffeners given 
initial sinusoidal imperfections = span/310 
and span/430 

co 
TABLE lb: CRITICAL COMPONENTS OF MODELS AND RELEVANT PARAMETERS 

	 0 
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Some 400 electrical resistance strain gauges, of rosette, cross 

and linear type, were used on each model to record the strains under 

load. The layout of the gauges and other relevant information on the 

instrumentation for each model are given in a series of reports[551 

	

2.4 	Test Pigs  

The central point load tests were carried out by applying 

hydraulic jack loading at one end of the model, providing the central 

reaction by means of bearings mounted on an overhead cross-beam, and 

resting the far end of the girder on bearings supported by concrete 

blocks on the laboratory floor. Thus the box was in the upside-down 

position in relation to the conditions at the support of a continuous 

girder. This position, Fig. 44, was adopted for ease of testing and 

observation of the critically compressed box components. Models so 

tested were fixed against longitudinal movement at the centre by means 

of stops each side of the radiused bearings. 

Pure bending tests were carried out by applying jack loads to 

the extreme ends of special loading arms welded to each end of the box 

sections, Fig. 45. The arms were held down against vertical displace-

ment at their junctions with the model. These holding down bolts had 

spherical bearing attachments which allowed rotation of the models in 

all directions. Although the system was self-stabilising, longitudinal 

and transverse movements of the girders were restricted by flexible 

stays anchored at one end to the loading arms and at the other end to 

the laboratory floor. 

	

2.5 	Material Properties  

Yield stress and Young's Modulus for the critical components of 

the box were determined from tensile tests on coupons cut from surplus 

material. Straight, parallel-sided specimens 3/4 in. wide x 22 in. 

long were cut and prepared according to BS18. A 10 ton Amsler testing 

machine calibrated in accordance with BS1610 and conforming to grade A 

classification was used. Each test was conducted with a constant strain-

ing rate of approximately 300 micro-strains per minute. Thus the yield 

stresses obtained were the dynamic tensile yield stress values and are 

given in Table la. 
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In paragraph 3.3 of this chapter the collapse load of a box 

girder specimen is defined as the highest sustained value of the load 

reached in the whole test. Hence for correlation with this 

definition of the collapse load, static compressive yield stress values, 

rather than dynamic tensile values, should be used. Recent investigat-

ions
[56] 

have indicated that the ratio between the dynamic and the static 

tensile yield values is of the order of 1.04, when the dynamic test is 

conducted at approximately 300 micro-strains per minute, and the latter 

is taken as the lowest sustained value obtained after stopping the cross-

heads for two minutes in the plastic phase. The investigations also 

indicated that the compressive yield stress can be expected to be approxi-

mately 5% higher than the tensile yield stresses, when both are conducted 

at the same strain rate. 

It may be noted that the margin of error involved in using 

dynamic tensile yield stress values is not more than 1 per cent, and is 

considered acceptable. 

	

3. 	TESTING PPOCEDURE 

	

3.1 	Initial Measurements  

Spot checks were made on residual strains before testing to 

ascertain if any redistribution of these strains had occurred during 

transportation and installation of the models. Initial out-of-plane 

deformations of the compression flanges and the webs were also measured 

and recorded at this stage. Subsequently, the actual dimensions of the 

model as fabricated, including the thicknesses of the component plates, 

were carefully recorded for use in the analysis of the test results. 

	

3.2 	Tests in Elastic Range 

The first loading cycle in the testing of each model was 

restricted to loads well within the estimated ultimate capacity of the 

girder and was intended to provide information on the elastic behaviour 

of the model. 

	

3.3 	Tests to Collapse  

Following the initial test in the elastic range, each model was 

loaded incrementally to collapse. During the early stages, loading was 
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controlled by predetermined increments of applied load while, in later 

stages, the applied deflections were increased incrementally by a strain 

control device located within the loading system. When each girder was 

nearing or beyond the collapse state, the load applied by the jacks for 

a constant overall girder deflection dropped from an instantaneous value 

to a lower sustained value over a period of time varying up to 45 min. 

This load fall-off was caused by the spread of plasticity and growth of 

buckles in critically stressed areas of the model. The instantaneous 

value of the load depended on the rate of load application as well as the 

imposed deformation; but the sustained value depended only on the latter. 

The highest value of the sustained load recorded in the whole test was 

taken to be the ultimate load of the model. After this load was reached, 

further increments of deflection were applied to each model to study its 

unloading characteristic. In some cases, it was possible to strengthen 

the girder after collapse had occurred in a particular element and re-test 

it until failure was reached in one or other of the remaining elements. 

	

4. 	INITIAL IMPERFECTIONS 

	

4.1 	Out-of-Plane Deformations  

Longitudinal and transverse initial deflection profiles of the 

compression flange and the webs of each girder were deduced from the trans-

ducer readings. For each girder the appropriate profiles of the compress-

ion flange are given separately at later sections. 

It was noted that, in general, the longitudinal stiffeners bowed 

towards their outstand between transverse stiffeners, but that in some 

cases, notably in end bays, they deflected in the opposite direction. 

Plate panels were also generally deflected towards the surface to which 

the stiffeners were welded. The maximum curvature in the longitudinal 

direction occurred in the vicinity of the transverse stiffener welds. 

Away from these regions, the longitudinal profiles of the plate panels 

often showed small ripples superimposed on an otherwise gentle curve. 

Table 2 gives the maximum values of measured transverse bows in 

the plate panels and the longitudinal stiffeners of the compression 

flange. Plate panel initial bows were not measured in models 4 and 8. 

Though the fabrication tolerances for prototype structures are not dir- 



Model 

Initial plate panel bow*, effective over 
half-wave-length b 

Initial stiffener bow measured over stiffener 
span L 

from maximum 
observed value 

from proposed 
tolerance in 
Chapter 5 

from 
Merrison 

tolerance 
Panel 

Average value 
in a panel i 

Maximum 
value in 
a panel 

Merrison 
tolerance 

1 b/38o b/25o b/136 

B-D -L/12400 

+L/1550 

-L/1630 

+L/900 

-L/1200 

D-I' +L/3100 

1,-Q -L/7150 

0-Q +L/15500 

2 b/330 b/250 b/136 

A-c -L/2000 

+L/2280 

-L/1450 

c-1 -L/5280 

1-o -L/3200 

o-u -L/9250 

u-w -L/1680 

4 -- b/250 b/139 

A-C -L/1050 

+L/690 

-L/510 

c-1 +L/1950 

I-0 +L/2280 

o-u +L/4920 

u-W -L/660 

8 -- b/250 b/139 

A-E +L/1770 +L/930 

-L/610 

E-I +L/1500 

I-M -L/950 

+ the value indicated inward bow, i.e. towards the outstand 
- the value indicated outward bow, i.e. away from the outstand 

TABLE 2: SUMMARY OF MEASURED IMPERFECTIONS 
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ectly valid for smaller scale laboratory models, it can be seen from 

the table that the maximum plate panel bows were well within the toler-

ances proposed in Chapter 5. The Merrison Rules expression for plate 

tolerance includes the plate thickness in the denominator, i.e. 

A  = 2h [1 	b 
p 30t 5000 

all dimensions in mm. 

As the models were made with rather thin plates compared to 

actual box girders, this expression leads to rather high values. 

It may, hoWever, be noted that the maximum observed stiffener 

bows sometimes exceeded the Merrison tolerance, but the average bows in 

individual stiffened panels consisting of 4 or 9 stiffeners were well 

within the tolerances. 

4.2 	Residual Strains  

A typical distribution of longitudinal compressive residual 

strains in the flange plate panels of model 2 is shown in Fig. 46a. 

Superimposed on the recorded distribution is the idealised residual 

strain pattern of the type assumed in Chapter 5 - a distribution which 

incidentally implies a discontinuity of strains. However, the assumpt-

ion of a constant distribution of longitudinal compressive strains over 

the centre portion of the panel may be seen to be reasonable. 

Figures 46b to 46d show typical distributions of average longi-

tudinal compressive residual strains in the plate panels at correspond-

ing cross-sections of models 2, 4 and 8. The only significant differ-

ence between the models was that there were twice as many stiffeners in 

the compression zone of models 4 and 8 compared with that in model 2. 

This difference is reflected in the increased magnitude of compressive 

residual strains in the former, consequent to the increased amount of 

welding. The residual strains measured in the webs suggest that both 

the level and distribution are governed to a large extent not only by 

the position, size and type of welds, but also by the sequence in which 

the stiffened flanges and webs are welded together. 

In models 1 and 8 both longitudinal and transverse strains were 

measured near the central diaphragm and a transverse stiffener respect-

ively, but in models 2 and 4 longitudinal strains only were measured 

away from any transverse welding. 
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Measured values of transverse strain were so irregular in dis-

tribution that no pattern could be established. Figure 46e shows the 

extent of variation in the readings in different strain gauges placed 

near one another in model 8. 

5. 	WELDING RESIDUAL STRESSES 

Average longitudinal compressive welding residual stresses in 

the compression flanges were calculated from an average value of the 

measured strains from one of the following two formulae as appropriate: 

(a) where both longitudinal and transverse strains, ex and e res-

pectively are vailable: 

(e 	ye ) 
R - 1 - v2  x 

(b) where only longitudinal strains e are available: 

R 
= Ee

x 

 

(lb) 

 

Theoretical values of compressive welding residual stresses 

were also calculated from the weld details and cross-section geometries 

of the compression flange. Manual intermittent welding was used to 

connect the longitudinal stiffeners to the flange plate, and MIG weld-

ing was used for the box corner welds; the coefficient for shrinkage 

force C for both welding was taken as 7.7 KN per sq. mm of weld area. 

The actual area of weld was estimated from several sections cut out 

from the relevant parts of the box after the completion of testing. 

The formulae used for calculating the theoretical residual stresses and 

the releVant data are given in Table 3, which also includes the experi-

mental average values of the residual stresses obtained from the meas-

ured strains. It can be seen that the formula for predicting welding 

stresses, with the above value of the coefficient C for shrinkage 

force, is quite satisfactory. As only single-pass welds were used in 

the models, this validation of the formula should be considered to be 

limited to single-pass manual welds only. 

(la) 
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Unit Model No. 

1• 2 4 	8 

Total flange area, 	Ag  

Stiffener weld area, 	W
S 

Stiffener weld length to gap ratio, ri  

No. of flange stiffener, 	N 

Box corner weld area, 	W
C 

Ratio of web to flange thickness, 	r2  

Yield stress of flange plate, 	6
Y3  

mm2  

mm2 

- 

- 

mm2 

- 

kN/mm2  

7226 

9.5 

0.5 

4 

15.8 

0.68 

0.247 

7118 

11.0 

0.5 

4 

15.8 

0.69 

0.298 

8787 

11.0 

0.5 

9 

25.8 

0.99 

0.221 

7922 

11.0 

0.5 

9 

19.4 

0.67.  

0.276 

Shrinkage force, F, due to 
stiffener welds, fr

s
om formula 

below 
kN 195.1 225.9 508.2 508.2 

Shrinkage force, Fc, due to box 
corner welds, from formula below kN 144.8 114.0 199.7 178.9 

Longitudinal welding compressive 
stress: 

(a) predicted value, 	from from 
formula below 

(b) average experimental value, aR, 
obtained from measured strains 
from formula (1) 

N/mm2  

N/mm2  

52.1 

58.4 

57.2 

52.2 

103.7 

122.9 

108.2 

107.0 

r 1 
F= 	2C 	kN 

weld 

N/inm2  

SN 1 +r 1 s  

F2C W kN C 	
= 	

C 	1 +r2 

C 	= 	7.7 	kN/mm2, for manual 

F
S 

x 103 	F 	x 103  
c a

R 	
- 	+ 

F' 	F 
A 	- 	A s 	c 
g 	a

ys 	g 	ays 

TABLE 3: COMPARISON BETWEEN PREDICTED AND 
MEASURED WELDING STRESSES 



188. 

	

6. 	TEST DEM= OF INDIVIDUAL IIDDFIS 

	

6.1 	Model 1  

The construction details of the model are shown in Figs 47a to 

47c. Before testing, the initial geometrical imperfections of the 

plates and the stiffeners were determined at selected cross-sections 

shown in Fig. 48; the imperfection profiles at these cross-sections 

and the contour plots of the whole compression flange are given in 

Figs 49a to 49c. 

While loading model 1 incrementally to collapse, the plate 

panels between longitudinal stiffeners in the compression flange began.  

to show signs of buckling, just to one side of the central diaphragm, 

at a central point load of 90.0 tonf. At a load of 120.0 tonf, that is 

an average web shear stress, Ta, of 97 N/mm2, the largest plate panels 

in the end web bays buckled in shear without any significant amplificat-

ion of flange plate panel buckles. With little increase in load the 

middle web panels of the end bays also began to buckle and testing was 

terminated. Figure 50 shows diagramatically the location of buckles in 

the web. 

The fact that the web buckled in the area of least bending 

moment, rather than at the centre where the combined shear and direct 

stresses were greater, may be attributed to the combined effect of the 

stabilising influence of longitudinal tensile direct stresses upon 

shear buckling in the latter region, the relatively small in-plane res-

traint afforded by the end post compared with that due to continuity at 

the boundaries of the inner bays, and the presence of bearing stresses 

at the ends of the model. 

At a load of 120.0 tonf in the second test, after strengthen-

ing the end bays, buckles were again visible in the largest of web 

plate panels but on this occasion of the intermediate web bays, Fig. 50. 

At a load of 132.0 tonf, that is nominal mid-plate flange stress, aa, 

of 201 N/mm2, the compression flange plate panels also showed signifi-

cant buckling. With the application of the next load increment all 

four intermediate web bays collapsed and the load fell to a sustained 

value of 123.2 tonf. The intermediate bays were strengthened and the 

model was tested again. 
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In the third test at a maximum central point load of 128.0 

tonf, that is 0'
a 
= 195 N/mm2 and T

a = 103 N/mm
2 failure occurred 

simultaneously in the flange on one side of the central diaphragm and 

in the web on the opposite side (Fig. 51). On the flange, the failure 

section was about one-third panel distance between the central diaphragm 

and the next transverse stiffener, near the former. 

The entire loading history of the model during the three tests 

is shown in Fig. 52. Up to a central point load of approximately 90 

tonf in the first test and 80 tonf in the second and the third test, 

the observed deflections were marginally less than those predicted by 

theory, when for the latter allowance is made for deflection caused by 

shear from the following equation: 

f shear stress x shear strain X dV = EPA 

where the left hand integral is extended over the whole volume of the 

box walls, and 

P and A are the applied loads, and shear deflections at the 

location and in direction of the applied loads. 

There was a small loss in the stiffness between 80 and 120 tonf central 

load in the second and the third tests, but a sharp fall-off of load 

occurred after the maximum load was reached in both these tests. The 

growth of load, curve 1, and of selected local and overall strains, 

curves 2 to 8, with overall deflection during this third test are shown 

in Figs 53a and 53b. 

On the flange failure side the stiffeners failed at the same 

section at which plate collapse occurred by buckling in the direction of 

the outstand, namely, inwards. This caused flange stiffeners in the 

adjacent spans to move in the opposite direction and produced local 

lateral failure of the outstands near the transverse stiffeners. This 

latter phenomenon occurred only with loading beyond the peak value. 

The smallest web panels also buckled in line with the distorted flange 

panels causing the web-flange corners to collapse. 

The webs on the opposite side of the diaphragm collapsed in a 

manner similar to that encountered in the two earlier tests. As further 

deformations were applied to the model beyond the ultimate load, bound- 
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aries of the web plate were pulled in as diagonal tension forces in the 

web panels became pronounced. 

Figures 53a and 53b show that in the final test the overall 

load-deflection relationship, curve 1, was approximately linear up to 

a 120.0 tonf central load. Over this range the observed deflections 

were slightly less than those predicted using ordinary elastic beam 

theory in which allowance was made for shear deflections. The drooping 

nature of the relationship beyond peak load may be mainly attributed to 

the average stress-strain relationship of the compression flange after 

collapse. Curves 2, 3 and 4 of Fig. 53a show that stiffener collapse 

was precipitated almost immediately by plate panel collapse. Figure 

54 confirms this by showing that longitudinal stiffeners buckled 

inwards at the same cross-section where flange plate panels failed. 

Curves 5 and 6 of Fig. 53b show how strain in the longitudinal 

web stiffeners remained linear with load until the peak value was 

reached, whereas the out-of-plane deformation of the largest web panel 

was growing non-linearly with load from a relatively early stage. It 

is interesting to note that these web movements did not appear to 

affect the overall web stiffness. It was only after the peak load was 

reached that a significant increase in stiffener strains and movements 

occurred, thus confirming that collapse of the web was due to collapse 

of the individual panels. The growth of strains in the stiffeners 

beyond the ultimate load may be attributed to the axial compression 

arising from tension field action in the web panels, combined with the 

loss of effectiveness of the plate panels acting compositely with the 

stiffeners. As further deformations were applied to the girder the 

effect of these diagonal in-plane tensile forces was to exaggerate the 

rotations of the longitudinal stiffeners imposed by the buckling of 

adjacent panels in alternate directions. 

6.2 	Model 2  

Model 2 was nominally of the same cross-section as model 1 

(Tables la and lb). The geometrical details of this model are shown 

in Figs 55a and 55b. The reference grid for initial deflection 

measurements and the longitudinal and transverse deflection profiles 

are given in Figs 56 to 57b. It may be noticed that the initial 
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deflections of longitudinal stiffeners between the cross frames were 

generally outwards, and were also of greater magnitude in the end 

bays A-C and U-W. While loading the model to collapse, buckling 

occurred in the flange plate panels between stiffeners adjacent to the 

welded transverse end frame at a jack load of 64.5 tonf, that is aa  = 

206 N/mm2. All flange panels, except for an internal one, deformed 

inwards (Fig. 58) while the adjacent web panels at the failed section 

buckled in a mode which maintained the angle between both elements. 

The longitudinal stiffeners of this end bay deflected away from the 

outstands while the adjacent bay moved in the opposite direction - a 

mode of buckling which conformed to that of the averaged initially 

deflected shape of the stiffeners. Figure 59 shows the gradual devel-

opment of stiffener buckles in the end and the adjacent bays. Upon 

unloading significant residual buckles were observed, as shown in Fig. 

59. 

Subsequent examination of measured out-of-plane deflections 

indicated that those at several other sections had increased signifi-

cantly at the measured peak load. Application of further deformations 

to the model caused a fall in sustained load. The end bay was stiffen-

ed as shown in Fig. 60 and the model was re-tested. 

The growth of overall deflection and strains during the second 

test is shown in Fig. 61. At the same maximum nominal flange plate 

stress of a
s 

= 206 N/mm2  flange plate buckling between stiffeners 

occurred at the centre of the stiffened bay adjacent to that which had 

previously collapsed (Figs 62a and 62b). As in the first test all the 

flange plate panels, except one, collapsed inwards, as shown in Fig. 

63a, while the compression web panels at the same section again deformed 

in a compatible mode. Almost simultaneously with the visible formation 

of plate panel buckles, the longitudinal stiffeners deflected inwards 

with a hinge forming midway between transversals in line with the posit-

ion of plate collapse, see Fig. 63b. As further deformations were 

applied a fall-off in sustained load occurred. Loss of stiffness in 

the bay in which the hinge formed caused the adjacent bays to introduce 

restraining moments at the transverse supports. Consequently, consider-

able compression was developed in the outstands of the longitudinal 

stiffeners at this location and they underwent local lateral buckling, 

see Fig. 63b. 
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During the first test the proximity of the flange plate buckles 

to the transverse fillet welds between flange plate and transverse end 

frame would suggest that the welds might have had a weakening effect on 

flange plate strength. One other possibility is that poor fit-up 

between the flange plate and that of the loading arm might have intro-

duced a local eccentricity of loading in the plate. However, the 

results of the second test suggest that such effects were insignificant. 

The onset of local flange plate buckling occurred at 63.0 tonf jack 

load, that is aa 201 N/mm2, as may be seen from curves 2A, 2B, 2C and 

2D of Fig. 61, whereas failure occurred at a stress of 206 N/mm2; the 

corresponding plate panel deflections were of the order of plate thick-

ness. '(The elastic critical buckling stress, U 
cr

, of this panel was 

300 N/mm2.) 

Longitudinal stiffener deflections, curve 3B, were small for 

loads up to those at which plate panel buckling commenced but increased 

at a faster rate beyond that point. Deformations applied to the model 

beyond this stage caused a fall-off in load similar to that encountered 

in the first model. 

Load-deflection graphs for the two tests are shown in Figs 64a 

and 64b; Fig. 64a shows the deflection at the centre of the model over 

a length of 3.943 m observed during the first test, whereas Fig. 64b 

shows the central deflection over a length of 2.375 m observed during 

the second test. Also indicated in these figures are: 

(i) the theoretical deflections predicted by the simple bending 

theory taking the whole cross-section of the model as fully 

effective; and 

(ii) the deflection predicted by the simple bending theory, but 

ignoring the tensile yielded strips near the welds in the 

tension flange for calculating moment of inertia. 

It would appear from these two figures that deflections can 

be predicted with reasonable accuracy by the simple beam theory taking 

full cross-sectional areas as effective. 

6.3 	Model 4  

The slenderness ratio of the plate panels in the compression 
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flange of model 4 was made nominally half of that of models 1 and 2, 

by increasing the number of longitudinal stiffeners. The geometrical 

details are shown in Figs 65a and 65b. Details of the reference grid 

for deflection measurements are given in Fig. 56 and the initial 

deflection profiles in Figs 66a and 66b. Because of the close spacing 

of longitudinal stiffeners in the compression flange, it was difficult 

to measure the out-of-flatness of the flange plate panels; these data 

were not considered essential in view of the rather stocky proportions 

of the plate panels. 

• During the testing of this model, at a stage when the jack load 

reached 63.0 tonf, it was discovered that the amplifiers in the circuits 

of strain gauges and transducers had stopped functioning. Hence the 

model was unloaded, the amplifiers replaced and testing resumed again at 

a later date. 

Buckling of the longitudinal stiffeners between transversals was 

first noticed at a jack load of 87.0 tonf, that is mid-plane flange 

plate stress Ga  = 216 N/mm2. After applying further deformations to the 

model, collapse occurred at jack load of 92.5 tonf and flange plate 

stress of 230 N/mm2. The collapse mode was similar to the elastic 

critical buckling mode, namely, alternate bays deflecting in opposite 

directions between transverse stiffeners, see Fig. 67a, but it also 

followed closely the pattern of average stiffener initial deflections. 

In the end bays the longitudinal stiffeners deflected outwards, in con-

formity with the initial shape; at higher loads, the stiffener out-

stands consequently suffered lateral displacements, see Fig. 67b. 

Failure of the stiffened panels occurred without any noticeable 

buckling of the flange plate panels between the stiffeners. The grad-

ual growth of the stiffener deflections, which closely followed the 

classical buckling mode throughout the test, is shown in Figs 68a to 

68c. 

The growth of transverse mid-plate strains up to collapse, 

curves 4A and 5A, Fig. 69, is consistent with the growth of Poisson's 

strains associated with the longitudinal strains, curves 2 and 3, in a 

laterally unrestrained plate. The transverse strains are approximately 

0.3 times the longitudinal values, confirming that no significant large 

deflection or post-buckling effect was mobilised before reaching 
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collapse. However, it is interesting to note that the growth of 

longitudinal mid-plane strains at the centre of the flange plate 

panels, curves 4B and 5B, did deviate from linearity before any 

noticeable movement of the stiffeners, curve 6, occurred. Presumably, 

this was due to plastic redistribution of strains within the plate 

panels when the sum of the applied stress and the residual compress-

ive stress present in the panels reached yield, and was directly res-

ponsible for the increasing loss in overall girder stiffness recorded 

beyond this stage. 

The load-deflection graph for the model, Fig. 70, shows a 

stable plateau at peak load and indicates the model's capacity to 

sustain its collapse moment while undergoing further rotation. The 

maximum moment achieved was approximately 85% of the calculated plastic 

moment based on contributions from both web and flange, or 113% measured 

in terms of the flange capacity alone. 

6.4 	Model 8  

All the models which previously failed by collapse of the com-

pression flange had relatively stocky flange stiffeners even though in 

models 1 and 2 the flange plate panels were relatively slender. 

Therefore, model 8 was designed to study the failure of compression 

flanges in which both longitudinal and transverse stiffeners were 

slender while the plate panels were kept compact (see Tables la and lb). 

Figures 71a and 71b show the construction details of this model. 

In order to study the influence of initial imperfections on the behav-

iour of the transverse stiffeners, those at cross-sections E and I 

(Fig. 72) were predished; though the original intention was to impose 

a sinusoidal equal and opposite initial deflection pattern at those 

two cross-sections, the predishing actually achieved was towards the 

outstand at both the locations, of maximum magnitude of span/310 and 

span/430 at E and I respectively and of nearly sinusoidal pattern 

across the flange, as shown in Fig. 73b. 

Figures 72 to 73b show the reference grid lines and the trans-

verse and longitudinal initial deflection profiles. 



6.4.1 Observations During Test 

Referring to Fig. 74, up to a jack load of 31.0 tonf, that is 

mid-plane flange plate stress a = 88 N/mm2, measured strains agreed 

satisfactorily with simple beam theory and measured girder deflections 

were marginally less than those similarly calculated. As the jack load 

and :nominal flange stress increased to 46.0 tonf and 131 N/mm2  res-

pectively over the next two increments, only a slight loss of overall 

stiffness was noticeable although a marked departure of the recorded 

strains from simple beam theory values occurred at several locations. 

The next increment of deflection, which raised the jack load and the 

nominal flange stress to 51 tonf and 145 N/mm2, produced significant 

out-of-plane deformations of both the longitudinal stiffeners and the 

transverse stiffener E, see Figs 75a and 75b. It can be seen, by com-

paring Fig. 73a with Figs 75a and 75b, that the buckling mode followed 

closely the initially deflected shape of the compression flange. Con-

siderable spalling of mill scale from the longitudinal stiffeners was 

observed in bay I-M, and the recorded strains confirmed that yielding 

of the stiffener outstands had occurred in this bay. The next incre-

ment produced the peak load of 55.5 tonf, that is as  = 158 N/mm2, and 
further magnified the already pronounced flange buckles. On complet-

ion of the test, local lateral buckling of the longitudinal stiffener 

outstand was observed to have occurred in bay I-M. Figures 76a and 

76b show the deformed shape of the box at the completion of testing. 

It can be shown that the load required to produce a nominal 

stress, as calculated by simple bending theory, at the centroid of the 

compression flange equal to the elastic critical buckling stress of 

the flange, is 55.4 tonf. This is almost identical to the maximum 

load sustained,i.e.55.5 tonf. Therefore, in spite of the presence of 

large compressive residual stresses in the plate panels and pronounced 

initial deflections of the flange stiffeners, the flange not only sus-

tained a load equal to the elastic critical load but also continued to 

maintain it, without fall-off, even when overall girder deflections 

were twice those producing flange buckling. It is clear, therefore, 

that there was a significant post-buckling (large deflection) contrib-

ution as the loads approached ultimate conditions. This behaviour is 

reflected in the growth of transverse strains, curves 4, 5, 6 and 7, 

Fig. 74. When the values of transverse strain are compared with 
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measured longitudinal strains, curves 2 and 3, it will be seen that up 

to a jack load of 46.0 tonf these strains were merely the transverse 

Poisson's strains associated with those applied longitudinally. 

Beyond that load, buckling of the stiffeners in panel I-M produced a 

fall-off in longitudinal strain, curve 3, but an increase in transverse 

strain, curve 5, at this section. This reflected the growth in trans-

verse tensile stresses due to orthotropic behaviour of the flange, as 

the deflections of the stiffened flange bay became large. The 

effect of these transverse stresses was to restrict the growth of 

buckling in the failed panels. The more or less uniform distribution 

of longitudinal strains in the compression flange changed at the 51.0 

tonf load level to a typical plate post-buckling distribution, that is, 

the stresses at the edges were higher than those measured in the centre 

of the flange. 

Although it appears (Fig. 76a) that the flange may have coll-

apsed by buckling over a wave length equal to that of the two bays A-E 

and E-I, it was in fact triggered by collapse of the stiffener out-

stands in compression in bay I-M. The longitudinal stiffeners in the 

two other bays were moving inwards in relation to the transverse stiff-

ener E, but because this stiffener had a large initial deflection it 

was loaded by the vertical component of the in-plane compression of the 

longitudinal stiffeners framing into it. The vertical component of 

load on this stiffener was some 31/2 times that on the transverse stiff-

ener I. This loading eventually caused the transverse stiffener at 

section E to collapse when deformations beyond those causing overall 

buckling were applied. 

Figure 77 shows the load-deflection behaviour of the box 

observed during the test; also shown in this figure are the theoret-

ical graphs based on (i) the whole of the girder cross-section taken 

as fully effective, and (ii) the yielded strips near welds in the 

tension flange taken as ineffective for computation of girder moment 

inertia; the observed deflections can be seen to fall within these two 

theoretically derived graphs. 

The load deflection behaviour of the girder (see Fig. 77) 

showed onset of significant non-linearity at approximately 46 tons of 

jack load. The very slight kink in the load-deflection graph at a 
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jack load of 20 tons could possibly be attributed to the unavoidable 

experimental errors associated with the measurements of the transducers. 

6.4.2 Reduction in Girder Stiffness due to Flange Stiffener Buckling 

Because of the fairly high slenderness ratio of the flange 

stiffeners, it was considered probable that buckling of the compression 

flange stiffeners might have increased the girder deflections. So 

corrections were made to the deflections calculated by the conventional 

engineering beam theory, by incorporating a reduction factor K for the 

effective compression flange area, given by: 

aL/E 
K 

aL/E ¶ 2  6 2/4L 

where a = centroidal applied stress on stiffener 

L = span of stiffener between transverse stiffeners 

6 = deflection of stiffeners due to jack load P, given by: 

6 p = 6oP cr P e[sec 	- 1] - 	cr cr 

where 6 = initial deflection of stiffeners 

P r = jack load to produce elastic critical stress at centroid c 
of stiffener 

= eccentricity of loading applied on the stiffener 

r2 = r  

where r = radius of gyration of stiffener, and 

h = distance of stiffener centroid from girder neutral axis. 

The above correction was found to be practically insignificant 

up to jack load of, say 30T; beyond this loading non-linearity of 

jack load vs. theoretical deflection started to develop, the slope 

finally being almost horizontal as the jack load approached Per. The 

theoretical value of Per  was found to be 55.4T when the whole cross-

section was considered fully effective, and 53.7T when the yielded 

strips in the tension flange were considered ineffective. By this 

approach it was possible to predict theoretically large girder deflect- 

ions as the applied jack load gradually approached P. The agreement cr 
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between the observed deflections and the theoretical deflections cal-

culated in this manner is good. At low loading and also at loading 

approaching collapse load, observed deflections compared very satis-

factorily with the theoretical ones calculated on the basis of the 

whole cross-section remaining effective; but in the intermediate 

loading stages the observed deflections were closer to the theoretical 

ones calculated with yielded strips on the tension flange taken as 

ineffective. It should, however, be mentioned that, as the measured 

yield stress of the tension flange plate was considerably higher than 

that of the compression flange and the web plates, the calculated loss 

of the effective tension flange area due to yielding at the welds was 

comparatively less than was the case with the other experimental boxes, 

and so the two graphs for the theoretical calculated deflections were 

quite close to each other. 

6.4.3 Behaviour of Intermediate Transverse Stiffeners on Compression 

Flange 

Measured initial transverse deflections of the compression 

flange at different cross-sections along the length of the box girder 

are shown in Fig. 73b. The deflection patterns at the intermediate 

transverse stiffener locations E and I were almost sinusoidal across 

the flange. The theoretical basis for the formula of effective loading 

on the cross-frames in Clause 2.9.2 of the Merrison Appraisal Rules
[54] 

as discussed in Appendix I of the Rules, is the assumption of sinusoidal 

initial deflection across the flange at all cross-sections, and the 

further assumption that alternate cross-frames have upwards and down-

wards initial deflections of equal magnitude. In spite of the depart-

ure of the initial deflections across the compression flange in spans 

A-E and I-M from the theoretical sinusoidal pattern (see Fig. 73b), it 

was considered reasonable to retain the assumption of sinusoidal deflect-

ion across the flange at all cross-sections for calculation of loads, 

etc., in the transverse stiffeners, with a maximum ordinate of 0.155 in. 

at section E and 0.110 in. at section I. In the longitudinal direction, 

however, as the initial deflections at the end cross-sections A and M 

were much smaller, and also as the deflections at E and I were not 

opposite in sign to each other, effective alternate up and down deflect-

ions were calculated for the two cross-frames at E and I separately, so 
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as to produce the same vertical component of force at the respective 

cross-frames due to longitudinal loading on the flange. These effect-

ive deflections were 0.05625 in. and 0.01625 in. respectively for 

cross-frames E and I, as shown in Fig. 78. Stresses at the tip of the 

outstand of the transverse stiffeners were calculated from the loading 

obtained from the formula in Clause 2.9.2. In using this formula some 

allowance was made for the notches in the transverse stiffener in cal-

culating its effective moment of inertia. This method of treatment of 

the cross-frames is called Method 1, and the calculated and observed 

stresses are shown in Fig. 79. It can be seen that the agreement is 

extremely good for the critical cross-frame E, but not so good for the 

other cross-frame I, where actual stresses were 2 - 3 times the 

theoretical stresses. The comparison of calculated and observed 

further deflections of the cross-frame E due to applied load is also 

very good at higher loads, but for lower loads for this cross-frame 

and for the entire loading range for the cross-frame I, comparison is 

not realistic because of the likely margin of error in measuring the 

very small deflections involved. 

In view of the very good agreement obtained for the critical 

cross-frame E in the above method, in spite of the assumptions involved, 

another variation of the same principles of cross-frame analysis as 

given in Appendix I of the Merrison Rules
[54] 

was tried. In this 

method, here called Method 2, the assumption of sinusoidal initial 

deflection across the flange at all cross-sections is retained; but 

instead of deriving effective alternate up and down deflections at 

successive cross-frames of a series of infinite number of frames, the 

actual measured magnitudes at locations A, E, I and M are retained, 

and also the theoretical flexural stiffnesses of a three-span system 

of longitudinal stiffeners are used. 

The theoretical stresses at the tip of the outstand obtained 

from this method for the two cross-frames at E and I are also shown in 

Fig. 79; these stresses are very similar to the ones already calcul-

ated by Method 1, previously described, thus confirming the validity 

of the assumptions in the latter. 



As already mentioned, agreement between the observed and the 

theoretical stresses is very satisfactory for cross-frame E, but 

observed stresses are considerably higher than theoretical stresses 

for cross-frame I. 
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CHAPTER 11 

COMPARISON OF EXPERIMENTAL OBSERVATIONS WITH THEORY  

	

1. 	IMPERIAL COLLEGE BOX TESTS 

	

1.1 	General  

The observed collapse loads of box models 1, 2, 4 and 8 shall 

be compared with the values that can be predicted by application of the 

theory developed in the preceding chapters. The following general 

principles were adopted for applying the theory to the box tests: 

1. An idealised bilinear plate stress-strain behaviour of the 

pattern shown in Fig. 22 was derived from the measured data of 

plate geometrical imperfections, welding residual compressive 

stress, yield stresses and Young's Moduli, with the help of the 

formulae given in Section 3 of Chapter 5. 

2. From measured data of individual stiffener geometric imperfect-

ions between transverse supports, the average imperfection in 

each stiffened panel was calculated as shown in Table 2, 

Chapter 10, and the effective value of stiffener imperfection 

was then calculated from formula (13) in Chapter 8. For this 

purpose the test length of the models was assumed to be con-

tinued into the loading arms (see Fig. 45); but as imperfect-

ions were not measured in the loading arms they were taken as 

zero. 

3. The additional eccentricity effects on flange stiffeners due 

to curvature of the whole box and the shift of centroid due to 

reduced effectiveness of flange plate were taken into account 

in accordance with Section 7 and 3.4 of Chapters 3 and 8 res-

pectively. 

4. Different Young's Modulus values in the various components of 

a box were allowed for by multiplying the appropriate dimension 

of each component by the ratio of its Young's Modulus to that 

of the compression flange plate; stresses calculated for the 

resultant effective sections had to be multiplied by the same 

ratio again to get true stresses. 
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5. When a box was subjected to several tests, i.e. several load-

ing cycles, relaxation of welding residual stresses were 

investigated and taken into account for predicting its subse-

quent behaviour. Similarly, residual permanent deflections 

after a loading cycle were adopted as initial imperfections 

in the next loading cycle. 

6. No shear lag effect was taken into account for collapse load 

calculations. 

7. Reserve capacity in the web plate to resist further bending 

moment, after the compression flange stiffeners reached their 

predicted capacity, was approximately calculated and allowed 

for in the predicted strength of the whole box. This calcul-

ation was done on the basis of a linear stress distribution 

in the web, with yield stress on its edge attached to the com-

pression flange. 

1.2 	Results of Application of Theory  

The collapse load computations for the individual models high-

lighted some interesting features regarding their behaviour. These 

are described below. 

1.2.1 Box 1 - The worst flange plate panel imperfection was observed 

at section G and was approximately b/640, measured over a half-wave-

length of b, i.e. the width of the plate panel. The flange stiffeners 

had also the worst inward imperfections in span D-I, near section G; 

the effective value of this imperfection was approximately L/4630, L 

being the span. The fact that the worst flange plate and flange 

stiffener imperfections coincided at section G explains why the flange 

buckled inwards at section G, causing the collapse of the box. 

The first test of the box up to a jack load of 120 tonf could 

not have caused significant relaxation of residual stress in the com-

pression flange, as the sum of the applied and the residual compress-

ion stress did not exceed yield stress. 

The predicted jack load for collapse of flange plate panel 

near the central support, based on point B of the plate behaviour, 

(Fig. 22), and formulae given in the design rules in Section 3, 
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Chapter 5, is 132 tonf, which compares with the observed collapse loads 

of 132 tonf and 128 tonf in the second and the third tests respectively. 

The lower value in the third test may be attributed to larger residual 

deformations left after the second test. Operating on point A of the 

plate behaviour (Fig. 22) would have underestimated the strength by 11%. 

The mid-span regions of the flange stiffeners were not predicted to be 

critical from the theory, due to the sharp fall-off of bending moment. 

The web could not contribute any further to the bending resistance as 

the web buckled due to combined bending and shear. 

1.2.2 Box 2 - The end panels of this box were strengthened after the 

first test. Among the inner panels, the worst effective stiffener 

imperfection was inwards and equal to L/3350 in span C-I before the 

first test, and L/429 in span O-U as the residual imperfection after 

the first test. This latter figure was obtained as an average from 

deflection profiles of stiffeners S3 and S4 shown in Figs 80a and 80b; 

such profiles were not recorded for the other flange stiffeners. The 

average imperfections in the plate panels in span O-U varied from 

b/444 at section 0 to b/1091 mid-way between 0 and U; an average 

value of b/640 was adopted for calculation. No significant relaxation 

of residual compressive stresses could have occurred after the first 

test, for the same reason as given for Box 1 above. The stresses 

corresponding to points A and B of the plate behaviour in Fig. 22 were 

very close and hence point A was adopted for calculations. The pre-

dicted jack load for collapse was calculated to be 68.7 tonf and 64.5 

tonf in the first and the second tests respectively, initiated by com-

pression in flange plate. The lower value for the second test is due 

to the larger stiffener imperfection left after the first test. These 

results compare satisfactorily with the observed collapse loads of 

64.5 tonf in both the tests. Failure in the first test occurred near 

the butt-welded transverse joint at the end of the experimental sect-

ion of the box, which cannot, however, be predicted by the theory 

developed in the preceding chapters. The failure in the second test 

agrees with the prediction with respect to the magnitude of load and 

also the location and nature of the failure. Span I-0, which had an 

outward initial effective stiffener imperfection, was not predicted 

to be critical, but this span moved outwards as failure progressed 



inwards in the adjacent span O-U. There was no reserve left in the 

web to sustain further bending moment, due to the lower yield stress 

of the web. 

1.2.3 Box 4 - Before the final collapse test reported in Chapter 10 

was performed, this model was actually subjected to an earlier test 

with the jack load increasing up to 63 tonf. This test had to be 

terminated and the model unloaded, as the amplifiers in the circuits 

of strain gauges and transducers became faulty and gave incorrect read-

ings on the data logger. No reliable data for strains and deflections 

could be obtained for this loading cycle. However, the jack load of 

63 tonf represented an applied compressive stress in the flange plate 

of .708 
Ys

. As the flange plate had initial residual compressive 

stress of .556 OAS, this loading cycle must have produced considerable 

relaxation of the welding residual stresses; it can be shown that 

this will be reduced from 0.556 
s 	Y 
 to 0.292 a 

s 
 after the first load- 

ing  cycle. Residual permanent imperfections of flange stiffeners 

after the first cycle could not be measured, but as the load in this 

cycle was not more than 0.68 times of the collapse load in the second 

test and as the stiffeners were not slender (L/r = 45), they could not 

have deflected substantially. Flange plate imperfections could not be 

measured at all, due to the close spacing of longitudinal stiffeners; 

from visual examinations it was evident that the flange plate imper-

fections were very small. 

The effects of these small imperfections on such stocky plates 

(b/t=24.3) must be very small. Hence it was deemed reasonable to 

ignore plate out-of-plane imperfections altogether, but to allow for 

the reduced welding residual stresses. 

Outstand-initiated failure of the stiffeners was predicted by 

the formulae to be more critical than plate initiated failure, with 

effective outward initial imperfection of stiffeners in span U-W equal 

to L/1235. Because of the substantial difference in the stresses 

represented by points A and B of the plate behaviour, Fig. 22, viz. 

0.292 a , it was considered to be too conservative to adopt point A 
Ys 

for plate secant stiffness and limiting stress. But adopting point B 

for plate behaviour for failure initiated by outstand in compression 

will also be too penalising; it will unduly reduce the plate effect- 
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ive width. This is because the plate will not be subjected to its com-

pressive yield stress in this mode of buckling of the stiffener. Hence 

a trial method was adopted by using various points between A and B of 

the plate behaviour till agreement between the initially assumed and 

finally calculated stress values in the flange plate was obtained. The 

jack load corresponding to this mode of failure of the flange stiffener 

was calculated to be 82.2 tonf. In view of the higher yield stress of 

the web material, additional bending resistance of the compressive part 

of the web was approximately calculated to be 6.1 tonf, giving a total 

predicted jack load of 88.3 tonf for collapse of the box. Jack load to 

produce failure in the tension flange was calculated to be 83.1 tonf, 

possibly augmented by another 3.5 tons reserve capacity in the tensile 

half of the web; giving a total of 86.6 tonf. Actual failure load was 

observed to be 92.5 tonf. This higher observed value, compared with 

the predicted values, is almost certainly due to the spread of yielded 

zones in the web. 

1.2.4 Box 8 - For the same reasons as given for Box 4, plate panels 

between the longitudinal stiffeners were assumed to have no initial out-

of-plane imperfections; the measured welding residual compressive 

stress of 0.388 a 
s 
 was, however, allowed for in the plate behaviour 

Y 
curve of Fig. 22. Because of the high slenderness ratio of the flange 

stiffeners, (L/r = 115), the Euler buckling load is the most important 

parameter in their strength as struts. Hence it was quite natural that 

calculations based on point A of the plate behaviour (Ks  = 1.0) predict-

ed higher strut strengths than values based on point B. Failure init-

iated by outstand in compression, with effective initial outward 

deflection of L/1444 in span I-M, was predicted by the formulae to be 

most critical; this was caused by a predicted jack load of 44.5 tonf. 

Additional moment capacity in the web was calculated to be 7.4 tonf, 

giving a total predicted failure jack load of 51.9 tonf. 

Box 8 was further examined for benefit from orthotropic action 

in the flange. Due to orthotropic action, edge stiffeners carry more 

longitudinal stress than the central stiffeners, but are not subjected 

to additional flexural stresses due to buckling. In this instance the 

central stiffeners were found to be more critical, with a predicted 

jack load of 46.5 tonf for collapse, i.e. an improvement of 4.5% over 
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the collapse load of 44.5 tonf calculated for discrete struts. Taking 

the additional reserve of 7.1 tonf in the web into account, the total 

predicted jack load at failure is 53.6 tonf. This compares with 55.4 

tonf observed. 

1.3 	Summary of Comparison  

The results of the comparison between the predicted and the 

observed collapse loads for the four boxes are summarised below: 

Box No. Ratio 
Predicted: 	Observed Loads 

1 1.000 

2 1.000 

4 0.955 

8 0.967 

	

2. 	COMPARISON WITH OTHER EXPERIMENTAL RESULTS 

	

2.1 	General  

A series of compression tests on single-span stiffened plate 

panels was done in Manchester, covering a wide range of slenderness 

and geometric imperfections of the flange plate, the stiffener out-

stand and the combined strut section; different levels of welding 

residual stresses were also covered by having otherwise identical 

pairs of specimens fabricated by intermittent and continuous welding. 

In some specimens high magnitudes of geometric imperfections were 

artificially produced. These geometric imperfections and residual 

stresses were measured and recorded, and also the axial shortening and 

growth of deflections of the specimen during loading tests. These 

tests have been fully reported in Reference [51]. 

The behaviour of these stiffened panels was predicted with 

respect to the ultimate strength, and also longitudinal shortening and 

deflection at the theoretical ultimate load, by applying the theory 

developed in the previous chapters. 
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The idealised bilinear load-shortening behaviour of the flange 

plate was derived from the formula in Section 3, Chapter 5, for the 

measured geometric imperfections and welding stress. For slender 

stiffener outstands, their loss of effectiveness was also calculated 

from the formula in Section 2, Chapter 9. For nominally flat flange 

plate panels, 5/8 of the actual measured maximum out-of-plane imper-

fections over a gauge length equal to the panel width was assumed as 

the amplitude of an equivalent idealised sinusoidal pattern over all 

the flange panels and along their entire lengths. For torsional 

imperfection of the stiffener outstands, the amplitude of the idealised 

critical mode of a single sinusoidal half-wave was taken as A 
sy 

• L/G 

when A
sy  was the measured imperfection over a gauge length G, and L was 

the span. In the tests the point of application of the axial load was 

initially adjusted to produce no flexural stresses at very low load. 

It was assumed in the analysis that the point of application of axial 

load throughout the tests was through the theoretical centroid of the 

strut section at no load; it should be noted that this point is 

different from the centroid of the gross section, as an initially 

imperfect flange plate or slender outstand will have secant stiffness 

less than unity even at zero load - see formula (11), Chapter 5, and 

formula (24), Chapter 9. The shift of centroid of the effective 

section at higher loads was taken into account in predicting the strut 

behaviour; however, the modification factor of ± 1/2 proposed to 

allow for continuity effects in multi-span struts was not used, as the 

test panels were single span. In many of the specimens, the eccen-

tricity of applied loading due to the shift of centroid was much greater 

than the actual initial bow. Generally satisfactory correlation between 

predicted and observed deflections of these specimens at ultimate load 

proves the importance of this shift of centroid in the analysis of 

stiffened struts. Table 1 summarises the results of this comparison. 

Good agreement was found between the predicted and observed strengths. 

Axial shortening at ultimate load is sensitive to the axial stiffness of 

the combined cross-section; satisfactory agreement between the predict-

ed and observed shortening prove the validity of the concept of bilinear 

load-shortening behaviour of the welded flange plate. A single effect-

ive width factor for both strength and stiffness of the flange plate 

will not be able to satisfactorily predict the amount of axial shorten-

ing. 



208. 

Deflection at ultimate load is very sensitive to the magnitude 

of the initial strut imperfection and eccentricity of axial loading. 

This factor, and the fact that the strut is in a very unstable and 

gradually growing plastic state at the ultimate load, pose consider-

able difficulty in predicting the deflection at maximum load. In spite 

of these difficulties, the agreement between the observed and the pre-

dicted magnitudes is quite satisfactory, except for a few specimens; 

the reasons for the less than satisfactory correlation for these speci-

mens are given in Section 2.3. 

Satisfactory correlation of predicted and observed behaviour of 

specimens 3, 5, Bil, B12, B22 and C3, which had slender stiffener out-

stands and low overall slenderness, prove the validity of the theory 

for strength of flat stiffener outstands developed in Chapter 9. 

	

2.2 	Method of Strut Analysis  

The basic method adopted for the strut analysis was to first 

assume a point on the load-shortening curve of the flange plate, and 

calculate the strength of the strut based on plate stress and strain 

represented by this point; failure initiated by compression in either 

the flange plate or the outstand tip, or by tension in the outstand 

tip was investigated. For many specimens this point on the load-short-

ening curve was quite obvious, i.e. point A when the portion between A 

and B had a negative or a small positive slope, or point B when AB had 

a significant positive slope; but for slender struts it was sometimes 

necessary to investigate intermediate points between A and B, to get 

the maximum strength of the strut. For specimens with slender stiff- 
, 

eners, the analysis was restricted to longitudinal strain not exceeding 

yield strain of outstand, as the outstand would shed load dramatically 

beyond this strain. 

	

2.3 	Detailed Comments on Comparison with Test Results  

(i) For the specimens for which point at or near A of the load-

shortening behaviour of flange plate was appropriate, i.e. 

specimens 4, 8, 11, D22, B21, B22, A22 and A23, the axial 

shortening and deflection were somewhat underestimated by the 

theory though the strength prediction was very good. The 
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reason is that the actual load-shortening behaviour of the 

flange plate is likely to be rounded, rather than have a sharp 

corner, at A, as the welding residual stresses in the plate 

would not strictly conform to the idealised rectangular pattern 

assumed in the theory. 

(ii) For specimens with high overall slenderness and continuous weld-

ing, i.e. specimens E21, E22 and E23, the theory underestimates 

the strut strength by 15 - 20%. This is due to the fact that 

the stress in the flange plate falls rapidly from the mid-span 

to the ends, as stress due to flexure of the strut is quite 

substantial in such slender struts. Hence the assumption in the 

theory of a single secant stiffness of the flange plate along 

the entire length of the strut leads to conservative prediction 

of the strut behaviour. 

(iii) For specimens with slender stiffener outstand and very slender 

flange plate connected by intermittent welding, i.e. specimens 

All and Al2, the gap of 300 mm between adjacent weld attachments, 

which was twice the depth of the stiffener, caused sudden burst-

ing of these attachments, and probably caused early failure. 

This must be the reason why these specimens failed at a lower 

load than the identical specimens with continuous welding. The 

theory, which does not allow for this phenomenon, overestimated 

the strength by approximately 10% and underestimated the short-

ening and deflection of these specimens. 

(iv) Tensile yielding of the outstand was predicted for specimen D23, 

and confirmed in the tests by the absence of any buckles either 

in the flange plate or in the outstand in the photograph of the 

failed specimens. For specimens D21, E21 E22 and E23 failure 

was predicted to be initiated simultaneously by tensile yielding 

of outstand while the flange plate stresses were beyond point A 

of the load-shortening behaviour. For specimens D11, D12 and 

E12, the predicted load for failure initiated by tensile yield-

ing of the outstand was approximately only 12% higher than the 

predicted load for failure initiated by compression in the flange 

plate. These predictions of failure mechanism are supported by 

the presence of only moderate buckling of the flange plate panels 

at the collapse state of these specimens. 



(v) The failure of specimen 9 was predicted to be initiated by 

buckling of the flange plate, but it actually failed by 

torsional buckling of the stiffeners. This weakening of the 

stiffeners might have been caused by the gaps between the 

intermittent welds. 

(vi) SpecimensC2 and A21 were predicted to fail at a load 25 and 

35% less than actually observed. The high observed strengths 

are difficult to explain, particularly as they are even higher 

than that of C3, which is a much shorter strut of otherwise 

identical cross-section, and of A23, which had much smaller 

flange plate out-of-plane imperfection and also smaller over-

all stiffener bow, compared with C2 and A21 respectively. 

(vii) Agreement with respect to the axial shortening, magnitude of 

deflection and mode of buckling is very good for the remaining 

20 out of the total 36 specimens. 

(via) Agreement with respect to the collapse load is very good for 

most of these specimens; the mean and the standard deviation 

of the ratio 

predicted strength  
observed strength 

was 0.961 and 0.09 respectively for the 36 specimens tested. 
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3. 	COMPARISON OF RECOMMENDED DESIGN RULES WITH EXPERIMENTAL 

RESULTS 

	

3.1 	Experimental collapse strengths of stiffened panels were 

collected from one hundred and five tests reported in various pub-

lications. These results were compared with the values that can be 

predicted from the design rules recommended in Chapter 12 and devel-

oped in the earlier chapters of this thesis. In many cases full 

details were not available regarding actual initial geometric imper-

fections and welding residual stresses in the models. The design 

rules, however, make some allowance for these imperfections, and the 

predicted strengths are thus the values that a designer will use for 

a practical design of similar geometric proportions. These tests 

cover 12 box girder tests, 48 stiffened panels with simply supported 

longitudinal edges and 45 stiffened panels with unsupported longitud-

inal edges. They also include 79 single-span tests and 26 tests on 

multi-span stiffeners. For the single-span tests, the proposed 

effectiveness factor of ± 0.5 for initial eccentricity on a contin-

uous beam-column (see Section 3 of Chapter 8) has not been used for 

obvious reasons. The models in the Manchester series that had very 

high artificially imposed initial deformations have been excluded 

from this comparison, as the fabrication tolerances associated with 

the design rules were exceeded. The relevant details of these tests 

and a comparison between the observed and the predicted strengths 

are given in Table 2. 

	

3.2 	The mean and the standard deviation of the ratio of predicted 

to observed strengths are found to be 0.917 and 0.134 respectively 

for these 105 tests. These results are considered satisfactory and 

thus the proposed design rules are fully validated. These results 

are slightly inferior to those obtained by applying the basic theory 

to the whole Manchester series of tests (c.f. 0.961 mean and 0.09 

standard deviation), but this can only be expected, as in the latter 

case the actual measured imperfections and welding stresses are 

taken into account. 

	

3.3 	In many of these specimens, the amount of welding, and the 

consequent residual compressive stresses, were considerably higher 
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than the magnitudes explicitly allowed for in the development of the 

design rules (see Section 5.1 of Chapter 5). In spite of this depart-

ure, satisfactory agreement was obtained over the whole series of 105 

tests, and the predicted results were mostly on the safe side. This 

can be explained by the fact that the strength of welded plates, 

represented by point B in Fig. 22, is not sensitive to the actual 

level of welding compressive stress, when the latter is more than say 

10 - 15 per cent of the yield stress. Hence it can be safely stated 

that the proposed design rules are valid for all welded stiffened 

compression panels, irrespective of the actual amount of welding. 
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6 10 II  9.5 N .874 .923 .947 2.52 2.29 o 

811 10 70 16 D .630 .631 .999 1.63 1.86 Z 

B12 10 n 16 N .686 .654 1.048 1.62 1.86 
B21 10 n 16 D .598 .670 .892 1.71 2.62 .0 
B22 10 n 16 N .621 .619 1.003 1.68 2.40 o 

C3 11 46 16 N .787 .772 1.019 1.43 1.53 
. 

7 39 48 9.5 N .817 .792 1.030 1.73 1.48 5.74 5.9 
8 39 II  9.5 'N .844 .852 .991 1.10 1.47 0.40 3.6 
9 44 n 16 N .829 .780 1.063 1.09 1.20 0.69 1.2 
10 44 n 16 0 .653 .720 .906 0.87 1.09 1.18 3.7 
11 39 n 9.5 0 .776 .793 .979 1.07 1.20 1.34 3.0 
12 39 n 9.5 0 .772 .793 .973 1.63 1.64 6.44 6.5 
13 39 n 9.5 D .740 .751 .985 1.64 1.48 4.63 4.2 
14 39 II  9.5 D .763 .832 .916 1.62 1.80 4.77 4.7 
15 44 " 16 T .639 .682 .936 0.92 0.98 0.99 1.9 

All 41 70 16 D .604 .546 1.107 1.49 1.96 1.17 11.5 
Al2 41 n 16 N .614 .569 1.081 1.41 1.75 1.70 6.5 
A21 41 II  16 D .416 .643 .646 1.31 2.29 2.79 9.0 
A22 41 " 	' , 16 0 .560 .564 .992 1.23 1.91 3.77 7.4 
A23 41 n 16 N .621 .618 1.004 1.38 2.84 3.87 5.4' 
C2 45 46 16 N .654 .870 .752 1.23 1.47 2.45 5.3 

Dll 94 46 6.7 D .606 .632 .958 1.03 1.20 6.59 6.5 
D12 94 II  6.7 N .674 .647 1.043 0.86 0.82 5.99 6.0 
D21 94 n 6.7 D .534 .573 .932 1.21 1.53 11.23 10.0 
D22 94 n 6.7 N .617 .596 1.034 0.76 0.87 3.11 6.0 
023 94 n 6.7 0 .406 .432 .940 0.61 0.76 9.54 11.5 

Ell 88 70 6.1 D .461 .468 .985 1.15 1.20 7.14 10.5 
E12 88 n 6.1 N .475 .474 1.003 1.14 1.09 10.30 6.5 
E21 88 II  6.1 D .377 .440 .855 1.40 1.34 16.20 13.5 
E22 88 n 6.1 0 .277 .334 .829 0.98 1.42 14.77 15.0 
E23 88 n 6.1 N .364 .446 .816 1.40 1.20 16.94 11.5 

TABLE 1: COMPARISON OF MANCHESTER TEST RESULTS WITH THEORY 

213. 



(1) 
	

(2) 
	

(3) 
	

(4) 	(5) (6) 	(7) 
	

(8) 	(9) 	(10) 	(11) 	(12) 
	

(13) . 	(14) 
	

(15) 
	

(16) 
	

(17) 
	

(18) 
	

(19) 
	

(20) 

S
ou
rc
e
  

Model 
. 

L 

mm 

B 

mm 

• 
m 
i_i 

• 
w 
,.4 

Plate Stiffener 

r 

mm 

0
Y8 

 oa 
814 

Observed 
N/mm2  

SU Ratio 
Pred./obs. 
Strength 

b 

mm 

t 

mm 

2 i  
o 
.a co 

d 

mm 

dcg 
mm 

As 
mm2 

I
o 

MM 
2 

Plate 
N/mm2  

Stiffen. 
N/mm2  

Aver. 
N/mm2  

a pa 
Observed 

M
a
n
c
h
e
s
t
er

[
5
1
]
 

4 
6 
3 
8 
7 
9

B12 
B22 
C3 
Al2 
A23 
E12 
E23 
D12 
D22 
C2 

914 
u 
II 

1829 
I, 
11 

914 
u 
II 

1829 
u 
II  
u 

" 
Ir 
n 

1524 
,, 
II 

" 
n 
II 
" 
n 
II 
" 
n 
II 
n 
It 
.1 
11 

S 
" 
u 

" 
n 
11 
" 
n 
II 
" 
in 
II 
n 
II 
11 
11 

F 
II 
I, 

" 
II 
II 
" 
,, 
II 
" 
II 
II 
H 
II 
II 
II 

457 
n 
n 
n 
II 
11 
u 
II 
II 
It 
II 
II 
u 
n 
n 
II 

9.52 
II 
II 
n 
II 
II 

6.35 
II 

9.52 
6.35 

II 
II 
II 

9.52 

H 

F 
II 
n 
n 
11 
II 
" 
II 
" 
" 
II 
II 
n 

" 

II 

152.5 
11 
II 
n 
11 
n 
II 
II 
II 
11 
fi 

76.2 
u 
n 
n 

152.5 

76.2 
II 
II 
n 
II 
n 
11 
11 
H 
II 
II 

38.1 
n 
II 
,, 

76.2 

2419 
11 

1451 
2419 

II 
1451 

II 
II 
n 
II 
II 
968 
n 
II 
" 
1451 

4,682,604 
,, 

2,808,087 
4,682,604 

II 
2,808,087 

II 
II 
11 
II 
If 

468,260 
n 

n 

2,808,067 

46.9 
It 

41.5 
46.9 

 II 
41.5 
45.2 

11 
41.5 
45.2 

II 
21.0 
n 

19.2 

41.5 

t 
260 

H 
" 
262 
255 
262 
349 
352 
283 
349 
334 
335 
330 
234 
244 
263 

264 
II 

270 
261 
268 
277 
333 
344 
292 
355 
324 
378 
369 
352 
287 
292 

261 
11 

263 
262 
260 
266 
344 
349 
285 
351 
331 
346 
340 
255 
252 
270 

235 
241 
225 
223 
206 
207 
225 
216 
220 
200 
209 
164 
152 
159 
151 
236 

.899 

.923 

.857 

.852 

.792 

.779 

.655 

.618 

.772 

.570 

.632 

.474 

.447 

.623 

.599 

.874 

0.960 
0.937 
0.979 
0.878 
0.924 
0.946 
1.098 
1.168 
1.069 
0.958 
0.893 
0.919 
0.993 
0.976 
0.940 
0.832 

77 
"... -a 
o 

o 
a 

5 . 
u 
p. 

TPA1 
2 
3 
4 

TPB1 
2 
3 
4 

TPC1 
2 
3 
4 

1143 
" 
" 
I, 

" 
" 
" 
" 
" 
" 
" 
" 

1321 
" 
" 
It 
" 
" 
" 
" 
" 
" 
" 
n 

C 
" 
" 
11 
" 
" 
" 
" 
" 
" 
" 
,, 

S 
" 
" 
11 
" 
" 
" 
" 
" 
" 
" 
n 

254 
317.5 
254 
317.5 
254 
317.5 
254 

317.5 
210 
254 
317.5 
210 

6.38 
6.10 
6.32 
6.68 
6.40 
6.27 
6.40 
6.30 
6.17 
6.25 
6.25 
6.30 

b 
" 
F 
" 
b 
" 
F 
" 
b 
" 
" 
" 

127 
It 
" 
II 
n 

" 
" 
u 
n 
u 
n 
u 

78 
II 

63.5 
., 

78 
II 

63.5 
n 

78 
n 
n  
11 

1226 
II 

1210 
II 

1226 
11 

1210 
u 

1226 
n 
n 
II 

1,968,775 
II 

1,626,340 
II 

1,968,775 
II 

1,626,340 

1,968,775 
n 
n 
I, 

48.1 
46.8 
40.8 
39.0 
48,1 
46.8 
40.8 
39.4 
49.3 
48.3 
46.7 
49.3 

279 
312 
291 
285 
280 
325 
313 
298 
282 
287 
280 
293 

251 
211 
245 
208 
247 
228 
248 
216 
265 
251 
221 
263 

.900 

.676 

.842 

.730 

.882 

.702 

.792 

.725 

.940 

.875 

.789 

.898 

.897 
1.047 
0.960 
1.039 
0.914 
1.007 
1.020 
1.019 
0.839 
0.912 
0.929 
0.931 

I
.C
.
  

(L
o
n d
o
n
)
 

 [
1
3
]
 

1 
2 
4 
8 
9 
10 

787 
n 

" 
1321 
1574 

II 

1219 
n 

" 
" 
2438 

81 

C 
n 

" 
" 
" 
H 

S 
n 

" 
" 
" 
II 

244 
n 

122 
,, 

215 
It 

4.95 
4.88 
5.03 
4.72 
4.88 
4.93 

b 
" 
" 
F 
" 
" 

51 
If 
n 

38 
70 
,, 

29.5 
II 
n 

19.0 
34.9 

11 

295 
It 
,, 

242 
554 
II 

74,962 
II 
n 

29,266 
225,064 

II 

14.6 
14.7 
17.6 
11.6 
21.4 

247 
298 
221 
277 
334 
335 

329 
276 
304 
312 
286 
286 

263 
294 
235 
287 
317 
318 

201 
224 
202 
155 
280 
250 

.764 

.762 

.860 

.540 

.883 

.786 

0.893 
0.845 
0.893 
0.670 
0.589 
0.659 

kie
g

e[
22

, 4
9
]
 

I 
II 
III 
4 
5 
6 

1920 
n 
II 
H 

960 
n 

1600 
n 
11 
11 
" 
n 

C 
II 
II 
11 
" 
n 

S 
11 
II 
II 
" 
n 

200 
11 
II 
n 
u 
II 

4.20 
II 
II 
II 
n 
II 

L 
11 
II 
II 
n 
II 

45 
65 
75 
100 
45 
" 

28.7 
39.6 
53.7 
65.9 
28.4 
28.5 

327 
470 
706 
1144 
345 
341 

66,255 
202,018 
392,898 

1,179,145 
69,431 
68,797 

15.8 
23.6 
32.1 
42.0 
15.8 
" 

401 
387 
388 
398 
397 
u 

377 
418 
392 
386 
374 
n 

394 
385 
337 
393 
351 
387 

197 
246 
269 
330 
302 
322 

.500 

.640 

.800 

.840 

.860 

.830 

0.476 
0.736 
0.743 
0.824 
0.660 
0.654 

Table 2: Comparison of Design Rules with Experimental Data 
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5 is u ii u 610 6.43 " 116.0 78.6 1008 1,376,410 37.0 252 235 249 176 .708 0.698 

6 1219 " " " " 6.32 " 76.2 48.4 492 293,020 18.4 261 246 259 125 .482 0.994 

7 1524 " " " " 6.30 " 115.1 78.2 975 1,305.579 36.6 293 310 298 185 .621 0.739 
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(13) 
	

(14) (15) 
	

(16) 
	

(17) 
	

(18) 
	

(19) 
	

(20) 
.--. 

1 3450 740 S F 460 7.00 Tr 198 128.2 3370 14,298,300 76.3 470 431 455 244 .537 0.998 

2 " " " " m m IV II .1 II II m 480 437 463 242 .523 1.029 

3 II II II II 11 11 II II 11 II 11 II 469 428 453 250 .552 0.975 

4 4920 " " " m m m m II II II II 395 385 391 200 .511 1.268 

5 m II II II II II II I/ H II II II 11 11 II 198 .506 1.281 

6 6396 " " " m II II H II II 11 II 311 348 326 159 .488 0.910 

7 3628 600 C " 400 10.00 250 157.8 4320 29,084,567 96.3 388 403 394 327 .829 0.894 

8 m m S " m II II II II 11 11 403 391 398 320 .804 0.924 

7.7 9 1814 300 " " 200 5.00 125 78.6 1098 1,845,872 48.1 394 382 389 289 .743 0.999 

`.° 10 " 700 " " m m m m m m 389 377 384 276 .718 1.036 

.;7' 11 4920 740 " " 210 7.00 150 95.7 2180 5,256,536 59.6 465 421 445 205 .461 1.119 

cli 12 m m m m m m m m m m 459 415 439 215 .490 1.067 

.0 13 m m m " " " m ,, II II 11 458 421 441 203 .460 1.126 

(1  14 2640 " " " m m m m 11 H H 396 394 395 312 .790 0.975 

,T,/  15 " 883 " " 533 10.00 L 152 92.6 1405 3,258,269 48.1 434 427 432 268 .620 0.947 

M 16 2600 740 " " 460 7.00 160 96.9 1461 3,760,737 57.0 459 436 451 242 .537 1.001 

17 " " " m m m m H II II 11 II II 440 452 248 .548 0.978 

18 m m II H II II H II II II H II 462 II 454 253 .557 1.052 

19 4960 " " " m m H II II H 11 m 304 334 315 183 .581 0.809 

20 3450 " " " 210 " " 110 69.5 1111 1,310,880 43.3 460 431 447 206 .461 0.907 

21 m II II 11 II II II II 11 II II H 466 432 450 200 .444 0.937 

22 m H II II II II II II II II H H II 430 449 214 .476 0.868 

23 2640 " " " m " " " m m 11 11 398 390 394 278 .705 0.818 

Notations: 

L.S Longitudinal structural arrangement; 
S stands for single span, C for spans 
continuous over several transverse stiffeners. 

L.E. Longitudinal edge condition; S stands for 
edges simply supported against out-of-plane 
movement, F for free edges. 

dCg Depth of centroid of stiffening rib from 
the connected edge. 

• Second moment of area of stiffening rib 
0 about its own centroid. 

• Radius of gyration of the gross stiffener 
section, consisting of the stiffening rib 
and the flange plate. 

a
Y8 	

Yield stress, (Yuan  and 0 yss relating to plate and 
stiffening rib respectively. 

bt a
Ysr) 

+ A
8 
ays8  

a
yea 

hverage yield stress = 
ht + A 

d Stiffener overall depth 

F 	Flat 

B Bulb flat 

L Angle 

T 	Tee 

Tr Trough 

Table 2: 	Contd. 	 3 



CHAPTER 12 

DESIGN RULES AND TOLERANCES FOR IANGITUDINAL  

STIFFENERS IN BOX GIRDER COMPRESSION FLANGES 

	

1. 	INTRODUCTION 

A method of design for longitudinal stiffeners in compression 

flanges of box girders is given in the previous chapters, taking into 

account the effects of various initial geometrical imperfections and 

welding residual stresses. An alternative simplified and conservative 

method of design is given here for the cases that satisfy the follow-

ing limitations: 

(a) Fabrication tolerances given in Section 8 are met. 

(b) The geometrical restrictions given in Section 7 to prevent 

local instability of stiffeners are met. 

	

1.2 	Section 2 describes the simplified design method for longitud- 

inal flange stiffeners, in a zone of approximately uniform bending 

moment of the box girder, treated as isolated struts. The effects of 

variation in the bending moment on the box girder and the effects of 

orthotropic action of the entire flange between webs of box girders 

and transverse flange stiffeners may be taken into account in accord-

ance with Sections 3, 4 and 5. The effect of locally applied trans-

verse loading directly above the stiffener may be allowed for in 

accordance with Section 6. 
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(iii) 83 is the additional eccentricity due to overall curvature of 
r2  the box girder and is given by ± a where r is the radius of 

gyration of the gross stiffener section, and h is the distance 

between the centroid of the gross stiffener section and the 

neutral plane of the gross box girder cross-section calculated 
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2. 	FLANGE STIFFENERS IN AN APPROXIYMELY UNIFORM BENDING MO= 
ZONE, TREATED AS ISOLATED STRUTS 

	

2.1 	The method described in this section is applicable to struts 

carrying uniform axial stress along their length. 

From the bending moment and axial force, if any, due to fact-

ored loads acting on the gross section of the box girder, the longi-

tudinal stress aa acting at the centroid of the gross stiffener sect-

ion is obtained. 

The gross stiffener section is defined to consist of the area 

of a stiffening rib As, and the flange plate of width b between the 

ribs, and thickness t. 

	

2.2 	Initial effective eccentricity of the applied longitudinal 

loading will be taken as: 

A = 61 	62 4-  83 4- 84 , 

where 

(i) 6 = 750 ' being the spacing of transverse supports. 

(ii) 62  is the additional eccentricity caused by the shift of the 

centroid due to the loss of stiffness of the flange plate, 

and is given by: 

t' 
= + 

A
o [1 _ 1 

2 	2 Ae  A
l  g  

where Ag  is the gross area of the stiffener = A
s 

bt 

A
e 

is the effective area of the stiffener = A
s 

Kbt 

where K is given in Figs 26a and 26b for welded and stress 

free plates respectively 

A
o 

is the moment of the area of the stiffening rib A
s 

about 

the mid-plane of the flange plate. 
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by taking both the bending moment and the axial force, if any, 

on the girder. 

(iv) 64  is the additional eccentricity due to any specified camber 

or curvature in the flange. 

(S4  will be taken as ±0.5 times the maximum offset, measured 

from a base line of length L between adjacent transverse 

supports. 

2.3 	The stiffener should be checked in accordance with Clauses 2.4 

to 2.6, taking 

(i) P = axial force on the stiffener = as Ag 
(ii) M = maximum bending moment on the stiffener 

IT2 
=
L 
 E /

e 	
(m - 1) , 

where Ie is the moment of inertia of an effective stiffener section 

consisting of the area of the stiffening rib A
s 

and an 

associated area of flange width equal to K.b, and 

1 m - 
PL2  

W2  EI
e 

2.4 	The maximum stress 
Pm 

 at the mid-plane of the flange plate 

and tom  at the tip of the stiffener outstand should be calculated 

from: 

KP KM (i) a = A— ÷ — P e Z
p 

P M (ii) = 	- nom A Z 
e 0 

where K is given in Figs 26a and 26b 

Zp, Zo are the section moduli, with respect to the mid-plane 

of the plate and the tip of the stiffener outstand res-

pectively, of an effective stiffener section consisting 

of the area of the rib A
s and an associated area of flange 

width equal to K.b. 
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2.5 	Plate-initiated failure of the stiffener will be checked by 

taking the maximum +ve value of A in Clause 2.2, and pa 
m 
 shall not 

exceed: 

Vf( 	2 - 3T 2) 
ys  

Ys 

a 
Qwhere the -ratio 3-- is given in Figs 26a and 26b, and 
ys - 

T is the shear stress in the flange plate due to torsion on 

the box girder, and 

	

2.6 	Outstand initiated failure of the stiffener shall be checked 

by taking both max +ve and -ve values of A in Clause 2.2, and neither 
the tensile nor the compressive value of C

om  shall exceed Cys
. 

(Note: aom  is tensile when negative.) 

	

2.7 	Composite Steel-Concrete Compression Flange  

When the structural concrete slab is itself designed adequately 

for the applied longitudinal stresses, and is adequately shear connect-

ed to the steel flange of the box girder, the resultant composite strut 

section does not require any further checks. The slenderness limitat-

ions on stiffener outstands given in Section 7 shall, however, be 

observed. 

The bare stiffened steel flange will be checked in accordance 

with these rules for the loading applied to it before composite action 

is effective. 

	

2.8 	To satisfy the requirements given in Clauses 2.3 to 2.6 for 

flange stiffeners in an approximately uniform bending moment zone, not 

subjected to any locally applied transverse loading, and treated as 

isolated struts, suitable graphs are given in Figs 82a and 82b, which 

may be used in accordance with the following clauses to obtain directly 

the limiting values
su 

 for the different modes of failure of the 

stiffener. The applied longitudinal stress Ca  defined in Clause 2.1 

shall not exceed the lowest of these limiting values C . 
su 
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2.8.1 For the effective stiffener section consisting of the area of 

the stiffening rib A
s 

and the associated area of the flange = 

calculate: 

(i) re 
= radius of gyration about a horizontal axis through the 

centroid of the effective section. 

(ii) y and y0  = distances of the mid-plane of the flange plate 

and of the tip of the outstand respectively from the centroid 

of the effective section. 

2.8.2 Failure initiated by plate in compression  

(a) 	From the graphs in Fig. 26 obtain: 

/ aau ./ a
P 
 = K 	 v(a

Ys 
- 3T2) 

a s  Y 

where T is defined in Clause 2.5. 

(b) Calculate: 

(i) A = 
r 	

-C-j2- 	and 
e 

E 

YDA  
(ii) fl = 	, taking the highest positive value of A from 

r
e 	Clause 2.2. 

(c) 	From the graphs in Fig. 82a, obtain R. 

A 
(d) 	Calculate a =Ra 

su 	p A 

2.8.3 Failure initiated by outstand in compression  

(a) Calculate: 

(i) 	= L  / and r
e 	

E ' 

, taking the highest negative value of A from 
r
e 	Clause 2.2. 

Note: n will be positive, as A is negative. 

oA 
2 



(ii) 	1f- EI A On — 1) C 2 
L2  e 

(b) From the graphs in Fig. 82a, obtain R. 

A 
(c) Calculate C =

R 
a 

su 	ys A 
g 

2.8.4 Failure initiated by outstand yielding in tension  

(a) Calculate: 

(i) = L 	ays,  
r
e 

Y° (ii) = - o , taking the highest positive value of A from 
2 

(b) From the graphs in Fig. 82b obtain R. 

A 
(c) CalculateC = Rc --g 

su 	ys A 

	

3. 	FLANGE STIFFENERS IN A VARYING MOMENT ZONE, TREATED AS 
ISOLATED STRUM 

	

3.1 	The method given here is applicable to flange stiffeners sub- 

jected to a linearly varying longitudinal compressive stress pattern. 

When the variation is not linear and/or when there is tension 

at one end, the same method may be applied by drawing a straight line 

envelope to the stress diagram avoiding any tension, as shown in Fig. 

83. 

0
A 

and C
B denote the higher and lower compressive longitudinal 

stresses at the two ends of the stiffener span L. 

	

3.2 	The stresses p
m 

and aim  will be calculated in accordance with 
Clause 2.4 for each of the following two combinations of P and M: 

(a) 	(i) P = CA  [C1 —
B  (1 - CO] 

Ag 
 

A 

222. 

r
e 	Clause 2.2. 

g 



where m - 
1 

223. 

  

1 °A Ag  L2 
C3 W2  Ele 

and C1, C2 and C3 are coefficients given in Fig. 28. 

aB 
Where 0.75 < — < 1.0, P and M may be approximately taken as: UB 

 

FCIB 	" A A
g 	L2 e  

and —7r2 
2 	

EI A (m -  1) 
L  

respectively, with m = 

(b) 	( i ) 	P = aA Ag 

1 
(a4  aB)  Ag L

2 

1 
27r2  EI C  

(ii) M = aA 
A
g 

2(S2  63), taking only +ve values of 62 and 

(5 3  . 

	

3.3 	The failure of the stiffener will be checked in accordance 

with Clauses 2.4 to 2.6, except that T shall be taken as (T1  + T2), 

where T is the shear stress in the flange plate due to torsion on 

the box girder, and T2  is the maximum shear stress in the flange 

plate at the junction of the flange and the web of the box, due to 

shear force on the box girder. 

	

4. 	FLANGE STIFFENERS IN AN APPROMMELY UNIFORM BENDING/1)N= 
ZONE, TREATED AS AN ORTHOTROPIC SYSTEM 

	

4.1 	The elastic critical buckling stress in longitudinal compress- 

ion, acr, of the orthotropic plate supported by the webs of the box 

girder and by the transverse stiffeners at spacing L, is given by: 

cr 	

ir 2 [DX * - 	 

	

t  IVAs L2 	y B4 	B2 

B 

	
L2 2H 

where N is the number of stiffeners in the orthotropic plate 

A
s 

is the area of each stiffening rib 

B is the width between the box girder webs 



EI
e 

D
x 
- b  , where 1

e 
is defined in Clause 2.3 and b is the 

spacing of stiffeners 

Et3  
D - 
u 	12(1 - v2) 

= 

Gt
3 

a.  x 	V bt  
E  6 2b A 4. bt 	' 

where 
x

is the St. Venant 

torsion constant of the stiffener and is equal to: 

3  alt 
(i) for open section, and 

4A2  
(ii) for closed sections 

where d and t are width and thickness of component walls, 

and A is the area enclosed by the middle planes of the 

walls. 

4.2 	The following equation will be used to obtain the magnificat- 

ion m: 

acr EA2  2 a = G
cr 
 - m 	(m - /) , a  

where a
a 

and A have been defined in Clauses 2.1 and 2.2. 

A convenient procedure for getting m is as follows: 

	

Assume the first trial value for m = ml  = 	 
a - Ga cr 

a 	2E A2  m 
Calculate

m 
= 

cr 

	

2 	L2 

a = a*  - 
a
cr EA2  

al 	cr 	177 	
0771 2 - /) 1 	L2  

a - a 

	

a: 	a 
Next approximation for m is m2 = M 1

7/ 
and so on. 

4.3 	The longitudinal stresses Cr
c 

and ae along the centre-line 

and the edge respectively of the orthotropic plate shall be obtained 

224. 
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from: 

(i) a
* 
- a

* 
-
acr EA2  (n2 _ 1)  

c cr m L2 

(ii) a
e 

= a 	
acr ▪ 3EA2  (n2 - 1) cr m L2 

	

4.4 	A stiffener along the centre-line and a stiffener near the 

longitudinal edge of the orthotropic plate shall be checked separately 

in accordance with Clauses 2.4 to 2.6 for the following forces and 

moments: 

(a) Central Stiffener (i) 	P = a
c 

• 

A
g 

4ff 
(ii) M = 

L2 
— EI A (m - 1) 

e  

(b) Edge Stiffener 	(i) 	P = a 

• 

A 
e g 

(ii) M =
e 

• 

A
g 

	

5. 	FLANGE STIFFENERS IN A. VARYING MOMENT ZONE, TREATED AS AN 

ORTHOTROPIC SYSTEM 

	

5.1 	The stresses CA and 
CB 

shall be obtained in accordance with 

Clause 3.1. 

	

5.2 	The following equation shall be used to obtain the magnificat- 

ion m: 

C3 acr  EA2  2 * 
a = C a 	+ 	On - 1) , A 	3 cr 	m 	

£2 

where a
cr 

 is defined in Clause 4.1 

C3 is given in Fig. 28. 

(See Clause 4.2 for a convenient procedure for getting m.) 

	

5.3 	The longitudinal stress Cc  in the mid-span region of the 
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central stiffener shall be obtained from: 

Cc 
= C3 

3 cr 1 

C a 
3 cr  EA2  (m2 1) 	C + 

a
B (1 - Ci) 

L2 	
1 a

A  

and the central stiffener shall be checked in accordance with Clauses 

2.4 to 2.6, taking 

4 
P=a  

e 
- A

g 

.ff M= 	C2 £2   

where m is obtained from Clause 5.2, and 

C1-and C2 are given in Fig. 28. 

5.4 	The longitudinal stress a
e 

at the heavily stressed end of a 

stiffener near the edge of the orthotropic plate shall be obtained 

from: 

4 

a = C a - 
C
3 
a
cr  3

E
A2 (m2 	1)  

cr 3 cr £2 

The stiffener will be checked in accordance with Clauses 2.4 to 2.6 

for each of the following two combinations of P and M, taking T = 

(T1  4* 4 T2), where T1  and T2 are defined in Clauses 3.3: 

(a) (i) 	P =
e 

• 

A
g 

(ii) M = ae 

• 

A
g 

2(6
2 
+ 63  ) taking only +ve values of 62  and 63. 

(b) (i) P = a 
4 
A C 	— 

B 
(1 - C1 ) 

e g 1  a-
A 	

1 

a
B 

14 =
* 
 Ag   [C

1 	
--- (1 - C1)] AC2 

A 
e 	0 

where m is obtained from Clause 5.2, and 

C1  and C2  are given in Fig. 28. 
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6. EFFECT OF LOCALLY APPLIED TRANSVERSE LOADING ON FLANGE 

6.1 	When loads are applied locally over a stiffened flange caus- 

ing local transverse bending moment on one or a few of the stiffeners 

acting as beams between transverse supports, the methods given in 

Clauses 2.1 to 2.6 of Section 2, and Sections 3 to 5 may be applied, 

subject to the following modification. 

6.2 	Bending moments M77  and MS in support and mid-span regions 

respectively in individual stiffeners due to locally applied loading 

should be calculated, taking into account lateral distribution of the 

load between adjacent stiffeners, continuity, etc., but ignoring the 

in-plane longitudinal loading on the flange. These moments shall be 

taken as positive when causing compression in the flange and tension 

in the outstand, and vice versa. The bending moment M in the stiffen-

ers due to the effects of eccentricity of longitudinal loading, given 

in the previous sections, will then be increased or decreased by add-

ing algebraically to it either the amount Mil  or the amount Als.m, 

where m is the magnification factor defined in the previous sections. 

The maximum stresses will then be checked in accordance with Clauses 

2.4 to 2.6. 

6.3 	It is permissible to redistribute the applied longitudinal 

stress 6a over the entire width of the stiffened flange in such a 

manner that the stiffener subjected to high local bending moment 

carries a smaller proportion of the longitudinal applied stress, and 

thus the optimum strength of the entire width of the flange may be 

obtained. 

7. SLENDERNESS LIMITATIONS ON STIFFENER COMPONENTS 

7.1 	Open type stiffeners, i.e. Flats, Bulb Flats, Tees, Angles: 

Notations - 

t2, b, t are shown in Fig. 36 

aom - maximum compressive stress at tip of stiffener outstand 

.(see Clause 2.4) 

aoa - average compressive stress on effective stiffener 

section ( = A 
, see Clause 2.4) 
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I - polar moment of inertia of stiffener rib about its point 

of attachment with the flange plate; 	= /r 4.
Y, 

when 

the latter are the second moments of area of the stiffen-

er rib about x-x and y-y axes respectively shown in Fig. 

36'.  

r - radius of gyration of the stiffener rib about y-y axis 
J - St. Venant torsion constant of the stiffener rib and is 

/ 
approximately 7  t23  d (1 f K13ly; (see Fig. 36 for K1  

and A) 

F1,F2,F3 - coefficients given in Fig. 37 for various ratios of 

K1  and K2 shown in Fig. 36 

bt t22 	bt (t)2 	t2 
a = Abl d2 r  2 p s ̀

  

bt J  t2 
4 

 

As p  
I d2  r 2  

7.1.1 (a) The ratio — of the attached leg of the stiffener shall 
• t2 

not exceed: 

om 
2.25 a

om  2  
in [F1  4- F2  VT-1 j 	3 a 

, \ 

om oa E 	 2 

f where m = 	[ka2  40(3 - 4y)2  - c'd, but not less than P 
50  

If, however, the denominator within the root sign in the above 

expression for limiting -4- is negative, then 	shall not exceed: t2  

1.7 E 
a 4- aoa om 

7.1.1 (b) For plain flat sections the above formula leads approx-

imately to: 

- 0.83 
t2  

E  
3 aom a

oa 

F3 x 
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7.1.1 	(c) For the purpose of this check, (i) a bulb flat may be 

assumed to be equivalent to a tee section with flange of uniform thick-

ness and of equal width and area to those of the bulb, and (ii) an 

angle section may be assumed to be equivalent to a tee section with 

flange dimensions identical to those of the unattached leg. 

7.1.2 For the outstanding flange of a tee or an angle section, the 

width of outstand  
ratio 	shall not exceed 0.415 V E  . 

thickness 	 a om 

7.2 	Closed Type Stiffeners  

The slenderness ratio of individual walls of closed type stiff-

eners shall satisfy the following requirements (see Fig. 43): 

(a) Bottom flange: 
bi 	\I E — t 1.20 
t1 	om 

(b) Side walls: J T 1.70 \I 	 
2 	

C
om 

C
oa 

where a and aoa are defined in Clause 7.1. om 

	

7.3 	In Clauses 7.1 and 7.2, CT and G
oa 

may both be conservatively 
om 

taken as the yield stress of the outstand a 
s
. 

Y 

	

8. 	FABRICATION TOLERANCE FOR STIFFENED COMPRESSION FLANGE 

	

8.1 	Stiffeners  

(a) Asx is the geometrical imperfection of a stiffener measured in 

the vertical plane over the span L between transverse supports. 

Asx t 900 

(b) A is the geometrical imperfection of the tip of the outstand sy 
of 'open' type stiffeners, measured in a horizontal plane over 

the gauge lengths E l  defined below: 

L A sy 450 245 

where ads  is the characteristic yield stress in N/mm2. 



A sy  shall be separately measured and checked from the above 

formula for two values L' equal to L and 2b, where b is the 

spacing between the stiffeners. 

8.2 	Plate Panels  

(a) Initial imperfection A of a plate panel between longitudinal 

supports is measured over a gauge length G = 2 X width of the 

plate panel between the longitudinal supports, along the longi-

tudinal centre line of the panel. 

A S 
p • 250 245 

where Ups  is the characteristic yield stress in N/mm2. 

(b) For closed type of stiffeners the above tolerance applies to 

each individual wall and G = 2 X width of the wall concerned. 

230. 



231. 

CHAPTER 13 

CONCIDSIONS  

	

1. 	GENERAL 

	

1.1 	A complete analysis for the ultimate load behaviour of 

stiffened compression flanges, and a simple method for their design, 

have been developed. In this method of analysis and design, the 

various complex features associated with the stiffened compression 

flange have been satisfactorily dealt with. 

	

1.2 	It is shown in Chapter 3 that the longitudinal stiffeners 

can be treated as initially imperfect and/or eccentrically loaded 

struts, the cross-section of which consists of the stiffening section 

and the associated flange plate. But the influence of initial out-

of-flatness and welding residual stresses on the behaviour of the 

flange plate must be taken into account in the following manner: 

a reduced effective width of the flange plate, representing 

the reduction in its axial stiffness, must be taken for the 

sectional properties of the strut; 

(ii) the material yield stress of the flange plate must be 

replaced by its reduced compressive strength. 

	

1.3 	The load-shortening behaviour of the flange plate between 

adjacent stiffeners is obtained in Chapters 4 and 5 by applying the 

large-deflection theory for thin plates, in conjunction with an 

idealised residual stress pattern caused by welding. It is shown 

that this behaviour can be represented by two straight lines, one 

for the elastic phase and the other the post-elastic phase. The 

reduction coefficients for stiffness and strength, appropriate to 

the levels of out-of-flatness and welding stresses, are derived for 

incorporation in the strut analysis as described in the previous 

paragraph. 

	

1.4 	The restraining influence of the entire orthotropically 

stiffened flange on the buckling behaviour of the individual stiffeners 

is accounted for in the strut analysis by using an appropriate express- 



ion for the magnification of the initial out-of-straightness of the 

strut. In Chapter 6 this expression is derived from the large-

deflection theory for flexure of orthotropic plates. It has thus 

been possible to retain the simplicity of the concept of an isolated 

strut, at the same time making use of the additional restraint from 

orthotropic action. 

	

1.5 	The benefit of reduction in longitudinal stress in zones of 

rapidly falling bending moment on the box girder is quantified in 

Chapter 7. The simple device of taking the applied stress at 0.4 L 

from the heavily stressed end of the stiffener span is shown to be 

satisfactory, though over-conservative in certain situations. For 

more economical results, suitable coefficients are given for incorp-

oration in the analysis for uniformly compressed struts. 

	

1.6 	The benefit of continuity of the flange stiffeners over trans- 

verse supports is studied in Chapter 8 by applying the three-moment 

theorem for beam-columns. When the initial imperfections in the 

adjacent spans are not in the alternately up and down sinusoidal mode, 

their influence on the buckling behaviour of a continuous strut is 

shown to be considerably less than in the case where the initial 

imperfections are in the critical buckling mode. Suitable reduction 

coefficients are derived for effective values of these imperfections. 

It is also shown that such hon-sympathetic'imperfection pattern may 

cause a change in the sign of the bending moment within a stiffener 

span - a phenomenon that cannot be predicted by analysing only one 

span. It may be unsafe if this aspect is ignored in the design of 

continuous struts of unsymmetrical cross-sections, such as the longi-

tudinal stiffeners in a box girder flange. 

	

1.7 	The analysis of the flange stiffeners presented in this thesis 

requires that premature local buckling of the stiffener outstand is 

prevented. Geometrical limitations are derived in Chapter 9 for this 

purpose. It is also shown that slender stiffener outstands may need 

flexural restraint from the flange plate, which must be stocky enough 

for this purpose; suitable criteria are developed in this chapter. 
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1.8 	In Chapters 10 and 11 the analytical theories developed in the 

preceding chapters have been comprehensively verified with available 

test data, and have also been used to explain in detail the entire 

behaviour of four box girders tested to collapse. 

	

1.9 	Chapter 12 provides simple design rules and related workman- 

ship tolerances developed from these theories. A comprehensive com-

parison of results from these rules with test data from various sources 

confirm the reliability and economy of these rules. 

	

2. 	FURTHER WORK 

This investigation does not deal with (i) the effect of shear 

lag on the ultimate strength of box girders, (ii) the design of trans-

verse stiffeners in the compression flange, and (iii) the evaluation 

of local bending moments due to wheel loads. 

It is, however, considered that further theoretical work based 

on the application of non-linear elasto-plastic methods to stiffened 

plates, and supported by suitable experiments, would be useful for 

evaluating the influence of the following aspects on the post-elastic 

behaviour of stiffened compression flanges: 

(i) the effects of shear lag; 

(ii) the interaction of axial compression and local wheel loading; 

(iii) the non-linear torsional buckling behaviour of stiffener out-

stands. 
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Fig.22 Load-shortening behaviour of welded flange plate 
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Fig.25 Sensitivity of plate strength to imperfection 

0.4 
5R  •AR _ C' 	Oys 	c's 

0 
0.4 	0.5 0.6 	0.7 	0.8 

C 
0.1 	 0.2 	0.3 

1.0 

Cfci u 

cys 

0. 9 

0.8 

0.7 

0.6 

0.5 



Fig.26a: Curves for welded plates 
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Fig. 26b 	Curve for residual stress-free plates 
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Fig.27 Strut subjected to varying axial load 
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Fig. 29b. Accuracy of a simplified approach 
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276 

Mn-i 	 ctMn 	 Mn 

Pn -1 

In-,  	 n+ 

Ln 

Fig.30 	Continuous beam-column 

2 
	

3 
	

4 
	

5 
	

6 

(a)  

P/2 	P/2 	 P/7  

l
e 

1 	2 	3. 	4 

(b)  

Fig.31 	Continuous beam - column 
subjected to eccentric axial load 



p 

   

P 

277 

1 	 2 

 

3 	 4 

 

    

    

 

SPAN 1 SPAN 2 SPAN 3 

  

   

      

      

L 

  

L  

(a)  

L 

 

     

     

1 2 3 4 
(b)  

Fig_32 Continuous beam - column with random imperfections 

w 
P 	Y 1 

 

1.  

      

L 

 

2 

L L 

       

(a) 
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Fig.36 	Torsional buckling of tee-type outstand. 
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Fig.38 Restraint by flange plate 
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Fig.44 Diagram of rig used for point toad tests 
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Fig. 51 	Model 1 - showing buckling of the compress- 
ion flange and the web near the central 

point load position. 
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Fig. 54 	Model 1 - an inside view of the model 
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MODEL 	 LOADING 
ARM 

U 

CU 

a. Test 1, 55-5 tonf 	 c. Test 2, 59.0 tonf 
b. Test 1, 60.5 tont d. Test 2, 60.5 tonf 

Fig.58 Model 2. Development of compression flange plate panel 
buckles during the two collapse load tests :the dashed 
tines indicate outward deflections, the full lines inwards. 
The load referenced against each deformation 
indicates the levet at which it first developed. 
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Fig. 60 Model 2 - showing buckles in the compression flange 
after the second collapse test. After first 
collapse in the panel adjacent to the end cross-
frame, this bay was stiffened as shown. Stiffener 
locations are indicated by dashed lines. 
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CURVE 1 OVERALL LOAD-DEFLECTION RELATIONSHIP 
CURVE 2A MID- PLANE STRAIN AT LOCATION 2. 
CURVE 28 INNER SURFACE STRAIN AT LOCATION 2. 
CURVE 2C OUTER SURFACE STRAIN AT LOCATION 2. 
CURVE 20 PLATE PANEL OUT-OF-PLANE DEFORMATION AT LOCATION 2. 
CURVE 3A MID-PLANE STRAIN AT LOCTION 3. 
CURVE 3B STIFFENER OUT-OF- PLANE DEFLECTION AT LOCATION 3. 

Note 	DATUM LOAD WAS 4.0 tont. THUS TOTAL LOAD ON MODEL 15( P+ 4)tonf 

Fig.61 	Growth of deflections and strains with load -Model 2. Test.2. 
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Fig 62b Test 2-Measured longitudinal deflections. Model 2. 



Fig. 63a Model 2 - a close-up view showing the mid-
span regions of the compression flange and 
north web, after second test. 
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4- 
	L. 

Fig. 63b Model 2 - showing the interior of the model 
(from end C) after collapse. Note the 
lateral buckling of longitudinal stiffeners 
close to the transversals, in the bay 
adjacent to the critical one. 
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Fig. 67a Model 4 - showing Dart of the compression 
flange after the test to failure. 
Stiffener locations are indicated by 
dashed lines. 



Fig. 67b Model 4 - an interior view of the model 

after failure. 
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CURVE 1 OVERALL LOAD -DEFLECTION RELATIONSHIP 
CURVE 2 MID-PLANE STRAIN AT LOCATION 2. 
CURVE 3 MID-PLANE STRAIN AT LOCATION 3. 
CURVE 4A TRANSVERSE MID-PLANE STRAIN AT LOCATION 4. 
CURVE 4B MID-PLANE STRAIN AT LOCATION.4. - 
CURVE 5A TRANSVERSE MID-PLANE STRAIN AT LOCATION 5. 
CURVE 5B MID-PLANE STRAIN AT LOCATION 5. 
CURVE S STIFFENER OUT-OF-PLANE DEFLECTION AT LOCATION 6. 

Note: DATUM LOAD WAS 3 tonf. THUS TOTAL LOAD ON MODEL IS ( P+3)tonf 

FIG. 69 Growth of deflections and strains with toad-Model 4. 
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Fig. 70 Load- deflection curve - Model 4. 
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Fig. 76a Model 9 - showing overall buckled shape 
of the flange after the collapse test. 
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Fig. 76b Model 8 - showing the inside of the model 
(from end M) after failure. The compress- 
ion flange is at the top of the picture. 
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Fig.77 	Load-deflection behaviour - Model. 8 
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Fig 83. 	Varying axial load in flange stiffener 




