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STATIONARY AND REGENERATIVE MULTIVARIATE POINT PROCESSES 

by Mark Moses Berman 

ABSTRACT 

A multivariate point process is a stochastic process of point 

events of several types. Various aspects of the theory of stationary 

multivariate point processes are developed. These include some general 

theory, a few models for stationary multivariate point processes, and 

the statistical analysis of some of these models. 

First, some general relationships are derived for the counting 

and interval processes of stationary multivariate point processes under 

various initial conditions. Regenerative multivariate point processes 

are then defined. Some important properties of such processes are 

derived and these are used to analyse, in detail, three bivariate 

examples, that i4 examples where there are only two types of events. 

Tests- for discriminating between several different regenerative 

bivariate point process models are derived under two conditions: first, 

when both types of events are observable, and secondly, when the 

events of one type only are observable. The effect of assuming models 

which are either too general or too specific is then investigated. 

Finally, a problem involving a special type of regenerative multi-

variate point process is considered. This is the Markov renewal 

process. Specifically, consideration is given to some single server 

queues whose departure processes are Markov renewal processes. 

Necessary and sufficient conditions are found for the departure processes 

of these queues to be renewal processes. 
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CHAPTER 1: INTRODUCTION  

A multivariate point process is a stochastic process of point 

events of several types occurring in a one-dimensional continuum, 

usually time. The classification of the events may be by a qualitative 

variable attached to each event, or by their arising in a common time 

scale but in different physical locations. Multivariate point 

processes should not be confused with what are often termed multi-

dimensional point processes, that is events of one type occurring in an 

n dimensional continuum. It is, of course, possible to combine the 

two notions and consider multivariate multidimensional point processes, 

but this generalization will not be considered. 

Multivariate point processes arise in a variety of fields. In 

queueing theory, the joint properties of the input and output processes 

are sometimes of interest (Daley, 1968). On other occasions, it is 

useful to consider complicated input or output processes of queueing 

systems as multivariate point processes (Neuts, 1971). In neuro-

physiology, there is interest in the relationships between several 

neuronal spike trains, and these are sometimes modelled as multivariate 

point processes (Ten Hoopen and Reuver, 1965; Lawrence, 1970, 1971). 

In reliability, there is sometimes interest in relating the times of 

failure of various machine components; multivariate point process 

models have been proposed for analysing such events (Lewis, 1964, 1970). 

The occurrence of earthquakes also has been modelled as a multivariate 

point process (Vere-Jones, 1970). 

All the multivariate point processes mentioned above are stationary, 

that is, all joint and marginal distributions of the multivariate 

process are translation invariant. A more formal definition of 
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stationarity is given in Chapter 2. This thesis is solely concerned 

with stationary multivariate point processes. 

Various aspects of stationary multivariate point processes are 

considered. These include (a) general theoretical results, (b) the 

building of fairly general models which incorporate a variety of more 

specific models, and which are amenable to probabilistic and statistical 

analysis, and (c) the statistical analysis of some stationary multi-

variate point processes. 

Prior to the 1970's, there appears to have been little investigation 

into the general theoretical properties of stationary multivariate point 

processes; most of the earlier work is concerned with the probabilistic, 

and sometimes statistical, analysis of very specific models. A review 

of work done prior to that time and of most of the general results 

then known is given by Cox and Lewis (1972). In recent years, useful 

contributions to the general theory of stationary multivariate point 

processes have been made by Milne (1971), Wisniewski (1972) and Daley 

and Milne (1975). In Chapter 2, the results of Daley and Milne are 

extended. Some relationships are derived for the counting and interval 

processes of stationary multivariate point processes under various initial 

conditions. A few examples are given to illustrate some of these 

relationships. 

Not much consideration appears to have been given to deriving the 

properties of fairly general multivariate point process models which 

themselves incorporate a large variety of more specific models. The 

only general multivariate point process which appears to have been 

studied in great detail is the Markov renewal process; see cinlar (1969) 

for details. Many of the stationary multivariate point process models 

which have been proposed, including Markov renewal processes, have used 
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the idea of regeneration points. Any event which occurs prior to a 

regeneration point is statistically independent of any event which 

occurs after that point. The assumption of regeneration points usually 

leads to simplified probabilistic and statistical analysis of the 

process under study. In Chapter 3, many such stationary multivariate 

point process models are generalized by the consideration of what are 

called regenerative multivariate point processes. The central idea is 

that events of one type, say type 0 events, occur in a renewal process, 

i.e. that the intervals between successive type 0 events are independent 

and identically distributed random variables. Further, the numbers and 

positions of the events of other types occurring in any such "renewal 

interval" depend only on that interval and are independent of 

occurrences in other intervals. That is, type 0 events form regeneration 

points for the entire multivariate point process. Some important 

properties of such processes are derived in Chapter 3 including the 

joint probability generating function for numbers of events in an 

interval of fixed length and the asymptotic behaviour of the counts of 

such processes. The results of Chapter 2 are used to obtain some of 

the results under various initial conditions. 

In Chapter 4, three simple examples of regenerative bivariate point 

processes are considered, two of them apparently new, the third an 

example from neurophysiology, previously considered by Ten Hoopen and 

Reuver (1965) and Lawrance (1970, 1971). All three examples are 

considered in some detail and the results of Chapter 3 are applied. The 

first example, which is discussed in Section 4.2, is obtained by imbedding 

between successive events of a renewal process (type 0 events), a simple 

non-stationary point process - the inhomogeneous Poisson process (type 1 

events). The second example, discussed in Section 4.3, is obtained by 

imbedding, between successive events of a renewal process (type 0 events), 
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a simple stationary point process - another renewal process (type 1 

events). The neurophysiological example, discussed in Section 4.4, 

is presented to illustrate how easily the general theory of regenerative 

multivariate point processes leads to previously known and to new 

results. 

Chapter 5 is concerned with discriminating between the regenerative 

bivariate point processes of Sections 4.2 and 4.3. The problem is 

considered under two different conditions: first, when both the type 0 

and type 1 events are observed (and are identified as such), and 

secondly, when only the type 1 events are observed. When the events of 

both types are observed, we can condition on the occurrence times of the 

type 0 events. By the definition of a regenerative bivariate point 

process, the type 1 events can then be treated as a series of indepen-

dent realizations of the same underlying process. The problem of 

distinguishing between the two bivariate point processes is then a 

simple generalization of the problem of distinguishing between an 

inhomogeneous Poisson process and a renewal process. In Section 5.2, 

this problem is considered kriefly under various assumptions about the 

imbedded process. In Section 5.3, the more difficult problem of 

discriminating between the two processes when the type 0 events are 

unobserved is considered. It is shown that, in this case, some of the 

processes considered in Section 4.2 are almost indistinguishable from 

other processes, considered in Section 4.3, when the sample size is 

moderately large (say, about 100 type 1 events). The remainder of the 

section is concerned with finding a suitable restriction on the processes 

of Sections 4.2 and 4.3. so that they are distinguishable with moderately 

large sample sizes, and then deriving a test for discriminating between 

the two processes. The test is applied to several artificial sets of 

data. 
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In Section 5.2.4, very specific models, which involve a nuisance 

parameter, are assumed for both the inhomogeneous Poisson process and 

the renewal process. The theory of similar tests leads easily to a 

particular statistic which is used to condition out the effect of the 

nuisance parameter. However, a simple generalization of the models 

leads to a different conditioning statistic. The question then arises: 

what is the effect of assuming models which are either too general or 

too specific, and hence conditioning on the incorrect statistic? This 

problem, which has broad implications, is considered in detail in 

Chapter 6, where the problem is generalized to bivariate exponential 

families. A few particular examples of the general theory are given, 

including the example first mentioned in Section 5.2.4. 

Chapter 7 is concerned with a very special regenerative multivariate 

point process sometimes found in queueing theory and other branches of 

stochastic processes. This is the Markov renewal process. A number of 

single server queueing systems which have been discussed in the queueing 

literature have arrival processes which are Poisson processes and 

departure processes which are Markov renewal processes. This chapter 

is concerned with determining when the departure processes of such 

queues are also renewal processes. The general question of when the 

departure processes of queues are renewal processes is important in the 

theory of tandem queues, that is where there are several queueing systems 

and where the,departure process of one queue provides the arrival process 

of another queue. If all the departure processes (and hence all the 

arrival processes) are renewal processes, then the whole system is 

usually easier to model. In Chapter 7, some results are obtained for 

various types of Markov renewal processes and queueing systems, and 

these are combined to obtain necessary and sufficient conditions for 

the departure processes of some single server queues to be renewal 

processes. 
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After Chapter 7, there are four appendices. Appendices 1 and 2 

prove some results used in Chapter 4. Appendix 3 proves a result used 

in Chapter 5. Appendix 4 gives details of four artificial sets of 

data to which some tests are applied in Chapter 5. The times of all 

the events in the four data sets are given, as well as some of the 

theoretical properties of the underlying processes. 
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CHAPTER 2: SOME MULTIVARIATE GENERALIZATIONS OF RESULTS IN  

STATIONARY UNIVARIATE POINT PROCESSES  

2.1 Introduction  

The distributions associated with the counting and interval 

processes of stationary multivariate point processes are usually 

dependent on initial conditions, that is the method of choosing the 

time origin. One method is to choose the time origin independently 

of the multivariate process. This is often called asynchronous  

sampling. Another method is to choose the time origin to coincide 

with a random event of specified type. This is called here partially  

synchronous sampling. The terms synchronous and semisynchronous are 

commonly used instead of partially synchronous when discussing univariate 

and bivariate point processes respectively. For a detailed discussion 

of synchronous, semisynchronous and asynchronous sampling, see Cox and 

Lewis (1972), Sections 2.3 and 2.4. 

Daley and Milne (1975) have derived an equation for stationary 

multivariate point processes, which relates the distribution of numbers 

of events in intervals in the asynchronous case to those in the partially 

synchronous case. In this chapter, their equation is used to derive a 

number of generalizations of some well-known univariate results. 

2.2 Assumptions and definitions  

The definitions and assumptions which follow will be used throughout 

the thesis. It is assumed that there are m + 1 point processes on the 

real line, where m is some non-negative integer; the reason for using the 

number m + 1 rather than the number m will become clear in subsequent 
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chapters. Let Nr(A) (r = 0,1,...,m) be the number of type r events 

in the set A, where A is any set in the family IS of Borel sets on the 

real line. Then the vector 

N(.) = {No(*),...,Nm(01 	 (2.2.1) 

defines a multivariate point process, for which Nr(.) is the rth 

marginal point process. 

We shall be concerned only with multivariate point processes which 

are (completely) stationary, which means that the joint distributions 

of the random variables 

Ni. (A + t),...,N. 	+ 
0 	s 

0 
(2.2.2) 

for it e {0,...,m}, Ar e tg (r = 0,...,$),do not depend on t, where 

A + t = {(x + t) : x e A}. Often, the interest will be in the distribution 

of the numbers of events in an interval (t, x + t]. By stationarity, 

this depends only on x. Hence, for the numbers of events in such an 

interval we will usually write N(x) E (No(X),...,Nm(X)). 

It is assumed that the process is non-degenerate in the sense that 

PIN.1  (-03,0] = Ni  (0,00) = co, i = 0,...,m1 = 1. 	(2.2.3) 

The ith point process is said to be orderly if 

P{Ni(h) > 1} 
lim  	0. 	 (2.2.4)

h 
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It will be assumed throughout the thesis that each of the m + 1 point 

processes, taken separately, is orderly. Orderliness implies that two 

or more events cannot occur simultaneously. The univariate point 

process 

N(-) = N(.
) 

... ilm.(0 
	

(2.2.5) 

is called the superposition point process of all the marginals. If the 

superposition of the m + 1 point processes is orderly, then the multi-

variate point process is said to be strongly orderly. For the sake of 

economy and notational simplicity, it will be assumed in Sections 2.2 

to 2.5 that the process is strongly orderly. In Section 2.6, some of 

the results are generalized to the case where the process is not strongly 

orderly. 

Let the finite intensity of the ith marginal process be 

 

X. = lim 
h+0 

P{N. (h) > 0} 
1 (i = 	,m) (2.2.6) 

Let 

Q.(30221iraP{N tIllq.(-h,0]>01, (2.2.7) 
2 h+0 

r r 	r 

where j = (j0,...,j ), and 

m 
E X.Q.(x)  

i=0 

h 

(2.2.8) 
m 
E X. 

i=0 
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The stationarity assumption implies the existence of both the 

limits (2.2.6) and (2.2.7). We can think of Q.(x) as P{N (x ) < r r 	r 

r = 0,...,mItype i event at the origin}, and Q.(x) as P{Nr(xr) 

r = 0,...,mian event (of any type) at the origin). Write Q!(x) for 

the asynchronous (equilibrium) case analogous to the partially 

synchronous definition of (2.2.7), i.e. 

Q.(x) = PCNr  (xr  ) < jr, r = 0,...,m1. 1  
(2.2.9) 

By considering all possible events in the small interval (-h,0], 

dividing the subsequent equations by h, and letting h 0, Daley and 

Milne have shown for strongly orderly processes that 

m  
Q? (x) = 1 E X.[Q.(x + ul) - 	(x + ul)  du, 	(2.2.10a) 

 
0 i=0 

where e. is the (m + 1)-vector with units in the ith position and zeros 

elsewhere; x + ul = (x0  + u,...,xm 	Q3 
+ u); and .-e (x + ul) is set equal 

- -1 
to zero in the case where any coordinate of 1 - ei  is negative. 

Incidentally, in (2.10) and (2.11) of Daley and Milne, the sign on 

the right-hand side of both equations should be reversed. Using (2.2.8), 

one can easily rewrite (2.2.10a) as 

CO m 

Let 

Q
2 
	 = 	E X.{Q.(x + ul) - Q 	(x + ul) }du. 
2 - 	o i=o 	3-E. _ _1 

(2.2.10b) 

R.(x) = lim P{N 	) = jr r = 
2 - 	h+0 

r r 
(2.2.11) 
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and 

3 - 	r r 	r 	> 0). 	(2.2.12) 
10.0 

Then, using analogous derivations to that for Q.(x), it can be 

shown that 

R.(x) 

C.(x) 
2-  

= 

= 

co 	m  
5 	E 	AJR.(x + ul) - R. 	(x + ul) }du, 

3. 	3 	J-E. 
0 i=0 	1 

co 	m 
j 	E 	X.{G.(x + ul) 	- G. 	(x + ul) }du. 
o i=o 	3 	2-Ei  

(2.2.13) 

(2.2.14) 

Equations (2.2.13) and (2.2.14) will be used later to obtain other general 

results for stationary multivariate point processes. 

2.3 Some results for the counting process  

Let 

Oi(CPc) = E 	E Rj..(x)4 - 

i0 m 2 	
o

in 	

cm
m 

be the joint probability generating function (p.g.f.) of N(x). From 

(2.2.11) the following relation for p.g.f.'s is obtained: 

m 	co 

(1) e  (C;30=EX.0- - 4.J.)  5 4).3.  (4;x + ul)du. - - 	1 	- - 	- 
i=0 	0 

(2.3.2) 

Equation (2.3.2) is a generalization of a well-known result in 

stationary univariate point processes (Cox and Lewis, 1966, Section 4.3, 

equation (8)). It is not too difficult to show that, under fairly mild 

assumptions, ) R.(x + ul)du is uniformly bounded (independently of j). 
CO 

F i 

0 
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It then follows that, provided 0 < Cr  < 1 (r = 0,...,m), 
CO 

f 44 (C;x + ul)du is finite, and hence that the right-hand side of (2.3.2) 
O

•■■ 	 ■•• 

exists. However, from (2.2.11) and (2.3.1), it is seen that (1).1
(1;x) = 1, 

CO 

the (m + 1)-vector of ones, and hence f cli.
1
(1;x + ul)du is infinite. 

0 
Consequently, we cannot put Tir  = Cr  - 1 (r = 0,1,...,m) in (2.3.2) in 

order to obtain a relation between factorial moment generating functions 

(m.g.f.'s) and therefore (expanding about n = 0, the On + 1)-vector of - - 

zeros) relations between factorial moments. 

We can, however, proceed further easily in one special case. 

If all the xr's are equal (with common value x), then (2.3.2) becomes 

m 
(i) e(C;x) = 	E X. 	- Ci) f Oi(py)dy, 

i=0 
(2.3.3) 

where the "x" in e 
 (C;x) is shorthand for the vector xl. Now, from 

(2.2.11), note that 

	

R.(0) = 1, 	if j = 0 , 
3 - 	 (2.3.4) 

	

= 0, 	otherwise, 

whence, from (2.3.1) and (2.3.4), it follows that 

1 = cf)e(C;0) 

m 	 co 

=E
Aitl - 	0 y4;y)dy 

i=0   
(2.3.5) 

by (2.3.3). Then (2.3.3) and (2.3.5) give 

	

m 	 x 

	

(P e(C;x) = 1 + E 	(C. - 1) 	4). (4;y)dy. 
3. 3. 	o 1  - i=0 

(2.3.6) 
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Equation (2.3.6) is a very simple generalization of the univariate 

result. Because of the finite upper limit in the integral, the right- 

hand side of (2.3.6) will always exist for 0 < 	< 1 (r = 0,1,...,m). 

Then putting nr  = 	- 1 (r = 0,1,...,m) in (2.3.6), we obtain a relationr  

between the factorial m.g.f.'s which leads to the following relations 

between multivariate factorial moments. Let 

i 	
[jr] 

113 0c; = Ef 	( type i . 	Nr(x) 	'type i event at the origin), 
r=0 

where aEn] = a(a - 1)....(a - n + 1); a[0] 	1. 

Then we obtain from (2.3.6) 

m 	x 
e 	r i .60 = 	E X.j. j II. 	(y)dy, 11 	1 3. 	3-e. i=0 	0 - -1 

(2.3.7) 

(2.3.8) 

where u
i
(x) E 1 (i = 0,1,...,m;e), and ui e.(x) E 0, if any of the 

 - -1 
co-ordinates of j - e. is negative. 

1 

It will sometimes be more helpful to use the Laplace transform of 

(2.3.6), which can be expressed neatly in matrix notation. Denote the 

Laplace transform of any function L(*) defined on the non-negative real 

line by 

L*(s) = j e
-s x

L(x)dx. 	 (2.3.9) 
0 

Let X
T 

= (X0,...,Xm), § = 	I the (m+1) x (m+1) identity 

matrix, and (1)*(;s)
T 

= (4)*
0
(0s),...4*(c;s)). Then (2.3.6) becomes 

m 

sq(ps) = 1 + XT(E - I)0*(0s). 	 (2.3.10) 

Equations (2.3.6), (2.3.8) and (2.3.10) are the most useful results 

derived in this chapter and will be used in the examples of Section 2.5. 
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2.4 The interval process  

Let Sir) be the sum of the lengths of the first jr intervals of the 

rth point process (r = 0,1,...,m). Noting that Nr  (xr  ) > jr 
 is equivalent —  

to 
 Sir
(  ) < xr  and using the definition (2.2.12), it follows that 3  

(r) 
G.(x) = lim Pi S. 	< x r 	1,...,m1N.(-h,0) > 01. 

h+0 3 r 
(2.4.1) 

Hence (2.2.14) immediately gives the fundamental relationship between 

interval distributions. If it is assumed that each distribution function 

G.(x) has a corresponding probability density function (p.d.f.) g.(x), 
- 	 - 

the relations between joint p.d.f.'s follow easily: 

e(x) = 	E X. f {g3.-(x + ul) 	+ ul)}du, 	(2.4.2) 
- i=0 	0 2 - 	2-Ei 

which is a generalization of equation (10), Section 4.2, Cox and Lewis 

(1966). 

Again if all the xr's are equal (with common value x), then, using 

arguments similar to those used in the previous section, it can be 

shown that 

x 
e(x).--Ex.f{Gt(17)--GA101dy 	ti # 0) , 

o 3-e. 	2 
(2.4.3) 

Also note from (2.2.12) that 

G
0 
 (x) = 1 (a. = 0,...,m;e). 

Hence, from (2.4.3) or the (corrected version of) relation (2.10) of 

Daley and Milne (1975), it follows that 
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D+e (x) JG. 	(x) 	00) (j # 0), 
x 3 	i=0 1  2-ci 

(2.4.4) 

where D
x 
denotes a right-hand derivative with respect to x. This is 

another generalization of equation (10) Section 4.2, Cox and Lewis (1966). 

e 
NoticehoweverthatD

+
G.Wisnotthesameas. gi(x) except in the 
x 3  

univariate case. 

Equation (2.4.2) does not appear to give rise to simple moment or 

m.g.f. relations. 

2.5 Three examples  

2.5.1 	Markov renewal processes  

cinlar (1969) gives the equation for the partially synchronous joint 

p.g.f. of the counting process of a Markov renewal process (i.e. the 

number of visits to the different states in the interval (0,t] given 

that a transition to state j occurs at the origin). Assume that the 

process is strongly orderly with a state space of finite dimension m + 1. 

Let To  E 0, T1,T2,... be the epochs of jumps and define Xn to be 

the state into which the particle enters at epoch Tn. For j, k = 0,1,...,m, 

let 

F. (t) = P (X1  = k, T1  < 	0 	3 = j), f.k  (t) = d Icit{F3k  (t) } . 

For j = 0,1,...,m, let 

m 
B.3  (t) = 	E F . (t) , C. (t) = Bj  (0*) - B.

J 
 (t) . jk 	3  

k=0 

Let E(t), f(t), B(t) and C(t) be the respective corresponding matrices 

and vectors. The assumption of strong orderliness implies that 
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Fik(0+) = 0 (j ,k = 0,...,m). Let f*(s) and C*(s) be the matrices 

whose elements are the Laplace transforms of the corresponding elements 

of f(t) and C(t) respectively. Let 12(4;t)T  = {4)0 
 (Ft),...,4)

m 
 (;t)}. 

Then, in our notation, cinlar's equation (8.11), p.164, is 

t 
cf)(;t) = C(t) + f f(u)E0(;:t-u)du, 	 (2.5.1a) 

0 - 

whence, taking Laplace transforms and rearranging, one obtains 

0*(c;s) = {I - f*(s)0-10*(s). 	 (2.5.1b) 

In particular, if 13.(0)) = 1 	= 0,1,...,m), it is easily found that 

C* (s) = 	
r 

s 	f*(s)}1. 

Hence, 

()*(;•s) = 1 
	- f* (s)e}-1{I - f*(s)}1, 	 (2.5.1c) 

which is the multivariate generalization of a well-known result in renewal 

theory (Cox, 1962, Section 3.2, equation (4)). Then from (2.3.10) it is 

found that 

41(;:s) = 	+ X T ( - I ){I - f* (s)g}-10*(s )] 

(2.5.2) 

= 	+ 1 A T 	 f* (s)Wif 	 f * (s) 

if El.(..) = 1 (j = 0,1,...,m), where X is the vector of inverses of the 

mean recurrence times for the m + 1 states. This is a generalization of 

the univariate result (Cox, 1962, Section 3.2, equation (6))..  
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2.5.2 	Exchangeable processes  

By an exchangeable multivariate point process, we mean that any 

property of the process is invariant under arbitrary permutations of 

the indices defining the event types. For such processes, the Oi l s can 

be found from 0e which is sometimes more easily determined. In this case 

(assuming strong orderlihess), (2.3.6) becomes 

4,e(px) = 1 + o
{( E y - 	+ 1)) f cp0(52y)dy 
r=0 	0 

(2.5.3) 

or 
didx{0e(px)} 

.0(Px) 	m 
a0{ (Ey - (m + 1)1 

r=0 

As an example of (2.5.3), consider a special case of a bivariate 

point process discussed by Cox and Lewis (1972, Section 4). Suppose 

there is an unobservable main or generating Poisson process of rate u. 

Events from the main process are delayed (independently) by random 

amounts Y
0 
 with common distribution F0 

 (t) and superposed on a "noise" 

process which is Poisson with rate 	The The resulting process is the 

observed marginal process of type 0 events. Similarly, the events in the 

main process are delayed (independently) by random amounts with common 

distribution F1(t) and superposed with another independent noise process 

which is Poisson with rate vl. The resulting process is the observed 

marginal process of type 1 events. Cox and Lewis give the logarithm of the 

joint p.g.f. of the asynchronous bivariate counting process (see their 

equation (4.25)). If we take F0  (t)= F1(t) = F(t) (assuming F(0+) = 0 

to ensure strong orderliness), and vo  = vi  = v, then Ao  = u + v and their 

equation becomes 
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log 4e(px) = A0x(40  + Cl  - 2) 

(2.5.4) 

+ u (Co  - 1) 	- 1) t${F (y) }2dy + `{F (y+x) - F (y) }2dyl . 
0 	 0 

This equation can be used with (2.5.3) to obtain (Po  (and y. 

2.5.3 	The asymptotic covariance matrix of an asynchronous bivariate  

point process  

Under fairly general conditions, (2.3.8) can be used to obtain the 

asymptotic form of the asynchronous covariance matrix of a strongly 

orderly bivariate point process. Let N(q)(x) be the number of type r 

events in (t, x+t] given an event of type q at time t (q,r = 0,1). 

Assume that (i) the bivariate point process is strongly orderly, 

(ii) a strong law of large numbers applies to both marginal processes, 

and (iii) the Laplace transform of E{N(q)(x)1 (denoted by Er
* 
,q

(s)) can 

be represented as 

E* (s) = rs
-2 

+ rqs
-1 

+ vrq + 0(1) r,q 
as s 	0+. 	(2.5.5) 

( 
Assumption (ii) is necessary for E{Nr

q)  (x)1 = rx + o(x) as x co, 

independently of q (Cox and Lewis, 1966, Section 4.3), whence the leading 

term in (2.5.5). Putting j = (1,0) or (0,1) in (2.3.8), for example, 
••• 

it is easily found that 

( 	, E{Nr
e)  (x)1 = X

r
x, (2.5.6) 

as one would expect. Then, we have, for instance 

x 	t  
( var{yre)  (x)} = 2Ar  E{N;ri(y)lay + Arx - Ar2x2 

0 
(2.5.7) 
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by (2.3.8) and (2.5.6). Taking Laplace transforms of (2.5.7): 

V*(s) = 2X E* r  (s)s
-1 
 + Xrs

-1 
 - 2Xr

2 s-3 
r r, 

X (2wrr  + 1)s
-2 

+ 2X 
r  v  rrs

-1 
+ o(s

-1
) as s + 0+. (2.5.8) 

by (2.5.5). Under fairly general conditions (Widder, 1946, Section 5.4), 

one can invert (2.5.8) to obtain 

( var{Nr
e)  (x)} = X (2wrr  + 1)x + 2X vrr 

 + o(1) 	as x 	co. 
r 	r  

The asymptotic covariances can be obtained similarly. The asymptotic 

asynchronous covariance matrix is then 

var{N
(e)(x)} = xr + A + o(1) as x 	ce, 	(2.5.9) 

where 

[ 

r = 	
X0 
(2w00  + 1) 	X

0
w
10 

+ X
1
w
01 

X
0
w
10 

+ X
1
w
01 	

X
1
(2w11 

+ 1) 

[i 

A  = 	2X0v00 	
X
0
v
10 

+ X1v01

- 

 

X
0
v
10 

+ X
1
v
01 	

2X1v11 

This establishes a very general asymptotic relation between mean 

values in the various semisynchronous processes and second moments in 

the asynchronous process. 
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2.6 Multivariate point processes which are marginally, but not  

strongly, orderly  

Some of the results given in previous sections of this chapter can, 

in principle, be extended easily to multivariate point processes which 

are marginally, but not strongly, orderly. One means of doing this is 

by using the analogue of (2.2.10a) for processes which are not strongly 

orderly (this equation is derived by Daley and Milne (1975)) and proceeding 

in an analogous manner. However, we will use here another method, which 

illustrates the relationship between point processes which are strongly 

orderly and those which are not. The results require more complex 

notation; consequently general results will not be given here. Instead, 

the approach will be demonstrated by considering the simplest case: 

bivariate point processes which are not strongly orderly. We can think 

of such a process as a trivariate strongly orderly point process, the 

three types of events being (i) type 0 events occurring alone (henceforth 

called type a events), (ii) type 1 events occurring alone (type b events), 

and (iii) type 0 and type 1 events occurring simultaneously (type c 

events). Then 

No  (x) = Na  (x) + Nc  (x) 

Ni  (x) = Nb(x) + Nc(x). 

(2.6.1) 

Before proceeding further, it must be shown that the stationarity 

of {No(-), N1(•)} implies the stationarity of {Na(.), 	Nc(.)}. 

The stationarity of (N0(.), N1(-)}, the finiteness of X0  and X1, and the 

strong orderliness of {Na(-), Nb(.), Nc(.)} imply, for instance, that 

lPfNc(y,y + h] > 01 
lim  	lim 
11+0 	 11+0 

P{Nocy,y hi > 0, Ni(Y/Y hi > 01 
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exists, is finite, and is independent of y. Similar results follow for 

all other joint and marginal probabilities involving Na, Nb  and Nc. We 

now use arguments similar to those used by, amongst others, Leadbetter 

(1971) and Oakes (1972). If A + y is an interval (y,y + x], we can 

divide A + y into n equal subintervals Ani 
+ y, i = 1,...,n, and write 

Xni  = 1 if Nc(Ani  + y) > 1, Xni = 0 otherwise. Let En  (y)= 	Xni m/. 
i=1 

Then E
n
(y)47: En+1(y)  and so, by orderliness, PrfNc

(A + y) > m} = 

Pr{lim E
n
(y)} = lim Pr{En

(y)}. However, since all the joint and marginal 

probabilities involving Na, Nb 
and Nc 

in "small" intervals are asymptotically 

independent of y, it follows that lim Pr{En(y)}, and hence PrtNc(A + y) > m}, 

is independent of y. Analogous arguments prove the stationarity of 

(Na"' Nb(*), Nc(*)).  

Because the stationarity of (No(*), N1(•)} implies the stationarity 

of the strongly orderly process {Na(.), Nb(.), Nc(.)}, one can use earlier 

results and (2.6.1) to generalize to point processes which are not strongly 

orderly. For instance, using notation analogous to that used previously, 

a simple heuristic argument can be used to obtain the analogue of (2.3.6). 

For i = a,b,c,e, we have (by (2.2.11) and (2.3.1)): 

NO  (x) N
1 
 (x) 

4)i( 0'1;x)  = E{% 	1 	
'type i event at the origin} 

Na (x)Nb(x) 	Nc  (x) 

= EfC0 	Ci 	(1C2) 	'type i event at the origin) 

= .3.(0, 1,W1;x) , 
	 (2.6.2) 

where the 4)i  on the right-hand side of (2.6.2) is the joint p.g.f. of a 

trivariate strongly orderly point process. Substituting (2.6.2) into 

(2.3.6), the following relation for the bivariate non-strongly orderly 

point process is obtained: 
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x 	 x 

1
;x) = 1 + X0 	

0 
-1) j c)a (40 ,C1;Y)dy + Xc(C1-1) f k(Co.C1

;y)dy 
a 	 0 - 

+ xc ( 0C1 -1) f c(C01sY)dy • 
0 

(2.6.3) 

The extension of (2.3.8) is in general more complex. However, the 

results of Section 2.5.1 are easily extended. Firstly, note from (2.6.1) 

that 

var{No(x)} = var{Na(x)} + var{Nc(x)} + 2 covfNa(x), Nc(x)) 
	

(2.6.4) 

and 

covfNo (x), N1(x)) = covfNa(x), Nb(x)) + covfNa(x), Nc(x)) 	
(2.6.5) 

+ covfNb(x), Nc(x)) + var{Nc(x)}. 

The results of Section 2.5.3 can be applied to Na, Nb  and Nc  and 

combined (using (2.6.4) and (2.6.5)) to obtain the asymptotic asynchronous 

second moments of a non-strongly orderly bivariate point process. Under 

the assumptions of (and using notation analogous to) that subsection, 

these are N  

var{Ne
0 
 (x)} = 2{Xa

(waa + w ca 2 
+ 14 + X (wcc 

 + w 
ac  + 2 

1) 1x c  (2.6.6) 

+ 2{Xa
(v

aa 
+ v

ca
) + X (v cc 

 + vac)1  + o(1) 	as x co, 
c  

covfNe0 
	1 '
(x) Ne(x)} = {Xa(wba + wca) + Xb(wab 

+ wcb) + X (2w cc 
+w 

 ac
+w + 1))x 

c   

+ {Xa(vba + vca) + Xb
(vab  + vcb

) + X (2vcc  + vac 
+ vbc))  + o (1) 

c  

as x 4- co. 	(2.6.7) 

Similarly, var{NI(x)} can be obtained. 
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CHAPTER 3: REGENERATIVE MULTIVARIATE POINT PROCESSES  

3.1 Introduction  

This chapter is concerned with a special class of multivariate point 

processes. The central idea is that events of one type, the type 0 

events say, occur in a renewal process, i.e. the intervals between 

successive type 0 events are independent and identically distributed 

random variables. Further the numbers and positions of the events of 

other types occurring in any such "renewal interval" depend only on that 

interval and are independent of occurrences in other renewal intervals. 

That is, the type 0 events form regeneration points for the whole process 

(Smith, 1955) and hence such a multivariate point process will be called a 

regenerative multivariate point (r.m.p.) process. 

The interest of such processes partly arises from the possibility of 

obtaining some general properties and partly because quite a number of 

special processes studied in connection with queueing theory, reliability 

theory, neurophysiology and other fields are special cases (Gauer, 1963; 

Ten Hoopen and Reuver, 1965; Lawrance, 1970,1971; Neuts, 1971; Rudemo, 

1972; Rohde and Grandell, 1972; Grandell, 1976, Section 2.3). In 

particular, Markov renewal processes are a very special case of r.m.p. 

processes; for the general theory of Markov renewal processes, see 

cinlar (1969). 

In this chapter, some of the general properties of r.m.p. processes 

are examined. In Chapter 4, three bivariate examples of such processes 

are studied, two apparently new and one an application of the general 

results to the work of Ten Hoopen and Reuver (1965) and Lawrance 

(1970, 1971). 
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3.2 Assumptions and definitions  

Again assume that there are m + 1 point processes (where m is a 

positive integer, which we label {0,1,...,m}. Let l'okt be the complete 

history of the multivariate process at time t, i.e. the full specification 

of occurrences in (-oo,t]. Then the formal definition of a regenerative 

multivariate point process is: 

Given a type 0 event at t, then for all u > 0, the joint distribution 

of {N
0 
 (t,t+u],...,Nm(t,t+u]) is independent of g*

t and depends only on 

u, and not on t. 

The immediate consequences of the definition of the r.m.p. process 

are that, firstly, the type 0 events marginally, i.e. on their own, form 

a renewal process; and secondly, conditional on two successive type 0 

events occurring at s and t (s < t), the joint distribution of 

{N1(s,t),...,Nm(s,t0 is independent of N's  and is a function of t - s 

only. It further follows from the definition that r.m.p. processes are 

completely stationary. 

For simplicity, assume that the intervals between successive type 0 

events have an absolutely continuous distribution with p.d.f. f(') and 

survivor function C1-(.),with '(0+) = 1. Because of the staticnarity 

assumption, one can, as in Chapter 2, write N(x) E {N0  (x),...,Nm  (x)} 

for the numbers of events in an interval of length x. 

In the following sections of this chapter we will often, for simplicity, 

write formulae when m = 1 or 2, so that there are two or three types of 

events in all, but all the results can be given for general m. 

In studying the properties of, for example, the numbers of events in 

given intervals, the specification of initial conditions is important. 

These will be indicated by an appropriate subscript or superscript. The 

letter "Or" will be used to denote any specified initial conditions. Of 

particular interest will be the asynchronous and partially synchronous 
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cases; as in Chapter 2, the letter "e" will be used for the asynchronous 

(equilibrium) case, and the number "i" when a type i event occurs at the 

origin. 

3.3 The distribution of numbers of events in a fixed interval 

Some general relations can be obtained for the Laplace transform of 

the joint p.g.f. of N(x) for any specified initial conditions. It is 

convenient to obtain these for m = 1, writing M = M(x) = No(x), 

N = N(x) = N
1
(x), with joint p.g.f. 

4)  Y4 
(Cfrux) = E(C M  Icor) . 	 (3.3.1) 

Let LQ(x,dx) denote the event that the first type 0 event after 

the origin is in (x,x+dx]. Then let 

(71;x) = lim EinNIR(x,Sx),01-1.irfli,(x,c3x)130  IP  
01, 

 
Sx4O 	

6x 
(3.3.2) 

determine the distribution of the number of type 1 events in (0,x] given 

that the interval ends with the first type 0 event after the origin. Then, 

a familiar renewal argument gives that 

x 

0 	(irl;x) = (1) 	(D,n;x) + 	
0 

1p 	(11;1)00(C,n;x-y)dy, 
YV  

(3.3.3) 

where cpo  denotes a p.g.f. for an interval starting with a type 0 event. 

Taking Laplace transforms of (3.3.3) one obtains 

4)* (c;ms ) = e (00;s) + c** (n;s)0*( ,ms). 	 (3.3.4) 
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In particular, for an interval starting with a type 0 event, one 

obtains from (3.3.4) 

0(S(0,n;s) 
cPs:;(,n;s) = 1 -0 ;(n;s) • 

Finally, substituting (3.3.5) into (3.3.4): 

;01,(11; s )0 t)  (0, s) 
0*. (;,n1s) = 0* (0,n7s) + 	  

54' 	1 - 11; (n ; s ) 

(3.3.5) 

(3.3.6) 

The Laplace transform of the marginal p.g.f. of N(x) is then obtained 

by putting ; = 1 in (3.3.6). Putting n  = 1 in (3.3.6), one obtains the 

Laplace transform of the p.g.f. of type 0 events, i.e. the p.g.f. of a 

(modified) renewal process. This will agree with Cox (1962), Section 3.2, 

equation (5), if we note that *or(1;x) is the p.d.f. of the time from 

the origin to the first type 0 event (by (3.3.2)), and that 

se (10,1;s) = 1 - **01, (0,1;s) (by (3.3.1) and (3.3.2)). 
04.  

An important special case, covering the three examples of Chapter 4, 

is when the type 0 events form what will be called a strongly Poisson  

process, of rate p, say. Strongly Poisson processes are characterized 

by the property that the probability of a type 0 event occurring at any 

time x is a constant independent of x, the complete history of the 

bivariate point process prior to x. Then for any specified initial 

conditions 

ILA (11;x) = 	p0 (0,n ; x) , 
54" 

whence (3.3.6) becomes 

04(0,n;s) 

She 	 1 - po tS(0,n;s) • (3.3.7) 
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If m > 1, we have in all the above formulae only to replace n  by a 

vector n = (ni,...,nm). 

Equation (3.3.6) shows that 0 ,PV (C,n;x) is dependent on 0 , (0,n;x), 

*4(n;x), 00(0,n;x) and 00(n;x) only. These generating functions must 

be determined for the specified initial conditions. Usually, interest 

will be in the m + 2 cases 4 = 0,1,...,m;e. As we have seen in Chapter 2, 

knowledge of 00*  (0,n;x) for A = 0,1,...,m enables us to determine 

0 (0,n;x); if it is assumed that the r.m.p. process is strongly orderly 

(a property possessed by all three examples of Chapter 4) this is done by 

putting C = (0,n) in (2.3.6) or (2.3.10). Using this result in (3.3.6), 

one can obtain a similar relationship between the asynchronous and 

partially synchronous *is: 

m 
s**(n;s) = x0{1 - 11)*(n;s)} + I X.(n.1  - 1)**1(n;s), 0 -    

i=1 	
- 

(3.3.8) 

where Xi
-1 

is the mean interval length between successive type i events; 

exact formulae for Xi 
are given in Section 3.4. Equations (2.3.6) and 

(3.3.8) will be used later for the bivariate examples of Chapter 4 to 

obtain 0 (C,n;x) and * ,
OV  (

n;x) under certain initial conditions. 

Analogous formulae to (2.3.6) and (3.3.8) exist when the r.m.p. 

process is not strongly orderly; see Section 2.6. 

3.4 Moments of the counting process  

The Laplace transforms of the factorial moments (both marginal and 

joint) of N(x) can be obtained, in principle, by differentiating (3.3.6) 

the appropriate number of times and putting C = n = 1. These transforms 

will not be given here because they are generally rather complicated 

expressions, apparently providing little constructive information. 

However, some useful results concerning moments can be obtained. Again, 
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= S xLf(x)dx, (3.4.3) 
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it is convenient to obtain these for m = 1 as this does not restrict the 

generality of the results. First, some additional notation is required. 

For given initial conditions 4, let 

() H
t 	(x) = E[{N(x)}!initial conditions 5 and first type 0 event 

V()(x) = var{N(x)`linitial conditions 54' and first type 0 event 
after origin is at x}. 	(3.4.2) 

Note that H 14')00 is a non-negative, non-decreasing function of x for 

all positive integers 2. Assume that H PIO (0-0 = 0. When t = 1, we shall 

drop the subscript; when 94r = 0, i.e. a type 0 event occurs at the origin, 

(91) (x) and v(54.) , we shall drop the superscript in both H
z 	00. Let 

after origin is at x], 	(3.4.1) 

K
t 

= 5 H
t
(x)f(x)dx. 

0 
(3.4.4) 

The quantity list  is the £th moment of the interval length between 

successive type 0 events, while Kt  is the 2.th moment of the number of 

type 1 events between successive type 0 events. 

Using simple probabilistic arguments (or the asymptotics of 

Section 3.5), it is found that in the asynchronous case, the means are 

E{M(e)(x)} = X
0 
 x =

1
-1
x, E{N

(e)(x)} = X1x = K
1
x/11l' where the superscript 

"e" denotes equilibrium (asynchronous) initial conditions. When m > 1, 

there are analogous formulae which give the Xi's required in (2.3.6) or 

(3.3.7). 

A useful inequality is now given. It shows that the variance to 

mean ratio of N(x) in a renewal interval is enlarged in an r.m.p. process. 
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Theorem 3.4.1:  Suppose that there exists an a > 0 such that, for given 

initial conditions 5k, 

V(4)(x) > aH(k)(x), 

V (x) > aH (x) . 

almost everywhere (a.e.) in {x: 11'(x) > 0}. Then, for all x > 0 

var{N(4)(x)} > aE{N*)(x)). 	 (3.4.7) 

Proof: Suppose that in the interval (0,x] there are k type 0 events 

situated at tk  = (ti,...,tk) (ti  < ti+1, i = 1,2,...,k-1; t1  > 0, tk  < x). 

Then by the definition of an r.m.p. process given in Section 3.2, and 

(3.4.5) and (3.4.6), it follows that var{N(9)(x)1k,t0 > aE{N(911)(x)1k,tkl, 

for all k and tk. Hence 

• k) vartho" (x)} = Ek,t k [var{N
( 	(x) lk,t1}) + var 	[EftiOr) (x) k,tic  

•  > E
k, 
 [varif N(4)  (x)ik,!kl] 
tk  

cgEk,tkEE{N(4)(x)l ki?kil  

r  = ctEiN (Al( 	(x).r. 

3.5 Asymptotics  

The processes Ni(t), i = 0,1,...,m are all examples of cumulative  

processes (Smith, 1955, Section 5). His asymptotic results can be 

particularized to r.m.p. processes to obtain Theorem 3.5.1, which, in turn, 

can be used to obtain some useful asymptotic moment inequalities for 

regenerative multivariate point processes. 



Theorem 3.5.1: If p1 
< = and K

1 
< °*, then as x = 

(i) E{Ni  (x) } = Xix 	o (x) , 

(ii)limNi(x)/x=X.with probability one, 
x4= 

where A
0 

= 111
-1
' 

X
1 
= K

1
11
1
-1 
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First, we note that all the asymptotic results for cumulative 

processes are independent of the initial conditions. Hence, initial 

conditions are not specified for any results given in this section. 

Again it is convenient to obtain results for m = 1 for the time being, 

although later it will be assumed that m = 2 when considering the 

asymptotic covariance of two subsidiary counting processes of a r.m.p. 

process. we do, however, require additional notation. Let 

CO 

= f xH(x)f(x)dx, 	 (3.5.1) 
0 

where H(x) is the mean number of type 1 events between successive type 

0 events which occur at times t and t + x respectively. The quantity 

W -
1
K
1 
is then the covariance of the interval length between successive 

type 0 events and the number of type 1 events in that interval. Using 

Theorems 7 to 10 of Smith, we find 

If, in addition, u2  < = and K2  < co, then as x 

(iii) cov{Ni(x), Nj(x)} = aiix o(x), 

3, 	2 	-3 
Il2  K 	

2 
where 	), 	= 	( 	+ 	- 2v

1
K
1
01), 

aCO 
= 	c 

1 /12 
- 111 	all 	l 2 	2K1 

, 
a01 = 1

-3 
 LP  2K1 - 1

w). 

(iv) {N(x) - xX}/x
1/2 converges in distribution to a normal distribution 

with zero mean and covariance matrix E = (a,.
13

), where N(x) = {M(x), N(x)} 

and X = (X0' X1 
 ). 

The asymptotic results of Theorem 3.5,1 extend immediately to the 

case m > 1, even when the asymptotic covariance of two subsidiary counting 
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processes of an r.m.p. process is required. This last quantity is 

obtained by using the results of Theorem 3.5.1 on the superposition of 

two subsidiary point processes and then "breaking up" the result into its 

component parts. The result is given in Theorem 3.5.6. 

The results of Theorem 3.5.1 give rise to a few other results which 

now follow. 

Theorem 3.5.2: Assume u2  < cm and K2  < cm. Let 

CO 

Then 

V(x)f(x)dx 

0 - 	 

H(x)f(x)dx 
0 

(3.5.2) 

var{N(x)}  
l
x 

	

	0, 	 (3.5.3) 
E{N (x) } 

the equality holding if and only if H(x) is proportional to x a.e. on the 

support of f. 

Proof: By Theorem 3.5.1(i) and (iii) 

lim x 
1 
 (var{N(x)} - E{N(x)}] = 1.11 -3, 2 K - $1( )2K1

2 
- 2u1K10 

,1/2 	,2 	r  1/2, 	,1/2 
= 111 Llti1 UK2 - 1:5K1 	

-
2
K
1
I 	24

1
K
1
11.1

2 	tiK 2  - 	- ual 

(3.5.4) 

after rearranging. Now using the Cauchy-Schwarz inequality on (3.5.1), 

it follows by (3.4.3), (3.4.4) and (3.5.2) that 

W 	
1/2 	1/2 

< /12 	(K2 - f3K1) 	• 
(3.5.5) 
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Therefore, substituting (3.5.5) into (3.5.4), we conclude that 

- 1 
lim x (var{N(x)} - E{N(x)}] > 0, which is equivalent to (3.5.3). 
x+03 

For equality to hold, it is necessary that the Cauchy-Schwarz 

inequality (3.5.5) is an equality. This is true if and only if H(x) is 

proportional to x a.e. on the support of f. For the sufficiency, it must 

be shown that the first expression on the right-hand side of (3.5.4) is 

zero when H(x) = vx a.e. on the suppose of f, for some v > 0. If this is 

true, it follows, by (3.4.3), (3.4.4) and (3.5.2) that K1  = vul  and 

, 
K2  = v2u2  +v$111, whence ul(K2  - $K1)

1/2 
 - u2

1/2
K1  = 0; and so the 

sufficiency of the equality is proved. 

Theorem 3.5.2 says approximately that the asymptotic variance to mean 

ratio of N(x) is greater than or equal to the ratio of the "average" 

variance to the "average" mean of the number of type 1 events between 

successive type 0 events. The equality holds if and only if the dependence 

between the type 0 and type 1 events is very weak in that H(x) is 

proportional to x a.e. on the support of f. 

Theorem 3.5.2 leads to a corollary which is the asymptotic equivalent 

of Theorem 3.4.1. 

Corollary 3.5.3:  Assume u2  < co and K2  < co. If V(x) > aH(x) for some 

constant a a.e. on the support of f, then 

var{11(x)}  lim  
EiN (x), 
	> a. 

 
}C4co 

CO 	 CO 

Proof: Now V(x) > aH(x) implies f V(x)f(x)dx > of H(x)f(x)dx. The result 
0 	0 

then follows by a proof similar to that for Theorem 3.5.2. 

If H(x) is differentiable with derivative h(x), then h(x)dx can be 

interpreted as the probability of a type 1 event in the interval (xi xi-dx) 

given that the last type 0 event occurred at the origin. Therefore, if 
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h(x) is an increasing function of x, then the occurrence of type 0 events 

acts as an inhibitor of type 1 events, and so we would expect M(x) and 

N(x) to be negatively correlated; conversely, if h(x) is a decreasing 

function of x, one would expect M(x) and N(x) to be positively correlated. 

This can be shown at least for the asymptotic covariance (a01x) given in 

Theorem 3.5.1. We first, however, require the following lemma, which is 

itself quite interesting. For simplicity of the proof, assume an 

absolutely continuous distribution. The result however holds for all 

distributions defined on the positive real line. 

Lemma 3.5.4: Let f(x) be the p.d.f. of an absolutely continuous 
of, 

distributiondefinedon[10,'").LetIli=fxif(x)dx.Supposell3  .<c° 

Then 

M W 

W. • (x) E 5 5 (p
i
zj-1 	

1 - .z
i-1

)f (z)dzdy 
1/3 

	

	
13 

x y 

(1.1.zj-1 	
11
.zi-1

)(z - x)f(z)dz 
x 1 	

3 

(3.5.6a) 

(3.5.6h) 

is non-negative for all x > 0 and i = 1,2,...,j-1. 

Proof: Because i.  (and hence pi) is finite, we can interchange the order  

of integration in (3.5.6a) to obtain (3.5.6b). Let r = (pi/pi) 
1/j-1 

 

(where the positive root is taken). If x > r, it follows that z > x implies 

that,PI  .z
j-1 

- p.
3
z
i-1 > 0, and hence, by representation (3.5.6b), 

i-1 
W. (x) > 0. If 0 < x < r, then by (3.5.6a) , Isn (x) = p.xj-1  - .x 	< 0, ..._ 	1 , j 	1 	P3  

and so W. ,(x) is concave in [0,r]. Hence, for all x in [0,r], W. ,(x) > 1,3 	 lfJ 	- 
minNi,j (0), W. (r)}. It has already been shown that W. (r) > 0, and 

Ifj 	— 

it is easily shown that W
irj 

 (0) = 0. Hence the lemma is proved. 

O 
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We now proceed to the theorem concerning the asymptotic covariance 

of M(x) and N(x). 

Theorem 3.5.5: Assume that H(x) is twice differentiable on the support 

of f, and that p2  < co, K2  < =. If H"(x) > 0 a.e. on the support of f, 

then a01 
 < 0, the inequality being reversed if H"(x) < 0. 

Proof: By (3.4.3), (3.4.4), (3.5.1) and Theorem 3.5.1(iii), one obtains 

co 
u
1
3a
01 

= 	(p
2 
- p

1
x)f(x)H(x)dx 

0 
(3.5.7) 

ee  

= 	f W 	(x)Hff(x)dx 
0 

1
'
2 

after a double integration by parts, where W1,2(x) is given by (3.5.6). 

By Lemma 3.5.4, W12 (x)  
> 0, all x > 0, and hence, by (3.5.7),

01 has 

the opposite sign to H"(x). 

At this point it is convenient to assume m = 2 because we are 

interested in the behaviour of the asymptotic covariance of two subsidiary 

counting processes of an r.m.p. process. Extensions of earlier 

definitions are required. Let H (x) be the lith moment of the number 

of type i events between successive type 0 events at times 0 and x 

respectively. Let 

co 
K
241. 

= f H
t 
 (x)f(x)dx, 

0 'i  
(i = 1,2) 

00 

w 	=I 	 (x)f(x)dx. 

	

0 	' 

S(x) = E{N1(x)N2(x)Isuccessive type 0 events at 0 and x}, 

CO 

T = 	S(X)f(X)C1X . 
0 
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Then, using Theorem 10 of Smith (1955) or using Theorem 3.5.1 on 

the superposition of N1  and N2, we obtain 

Theorem 3.5.6: If u2 < co, K2;1 < co and <2;2 
< co, then as x 	co 

cov1N1(x) N2(x)1 = c12  (x)+ o(x) 

where 

-3, 2 c12  = 	tp T-1-11K 	K 	- 11(WK 	+WK 	)1. 
12 	1 	1 	2 1;1 1;2 	1 1 1;2 	2 1;1 

The random variables M(x), N1(x) and N2(x) are also asymptotically 

jointly normally distributed. In fact Theorem 3.5.1 (iv) extends to 

general m in an obvious fashion. 

Theorem 3.5.6 enables us to obtain conditions for the asymptotic 

covariance of two subsidiary counting processes of an r.m.p. process to 

be non-negative or non-positive. 

Theorem 3.5.7: Assume that H1;1(x)  and  H1;2(x)  are both twice 

differentiable in {x: (x) > 0} and that p2  < co, K2;1 < c° and <
2;2  < co. 

Let 

CO 

d = J {S(x) - H1a(x)H1;2(x)}f(x)dx. 	(3.5.8) 
0 

(i) If d > 0, and H"1;1 1  (x) and H";2  00 are either both non-negative or 

both non-positive a.e. in {x: (x) > 0}, then al2  > 0; 

(ii) If d < 0, and H"
1;1 

 (x) < 0 < H"
;2  (x) a.e. in {x: (x) > 0}, then — — 1 

a12 < 0. 12  

Proof: Using (3.5.8) and Theorem 3.5.6, one finds after a double 

integration by parts that 
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co 
u1
3a12 = d + 

	H"1 
 (x)B(x)dx , 
;2 

0 
(3.5.9) 

where 

B (x) = p
1
2
a01 + p1H1;1

(z) - K
1;1

z}f(z)dzdy. 

It can be shown by arguments similar to, but more involved than, 

those of Lemma 3.5.4 that if H1,1  (x) > 0 a.e. in {x: 1(x) > 0}, then 

B(x) > 0, all x > 0; the inequality is reversed if HL1(x) < 0. The 

various results of the theorem then follow easily from (3.5.9). 

Theorems 3.5.5 and 3.5.7 together state, for instance, that under 

conditions which ensure that N1
(x) and N2(x) are both positively correlated 

with M(x) when x is large, N1(x) will also be positively correlated with 

N2(x) if their "average" conditional covariance taken between two 

successive type 0 events, d, is also positive. 

3.6 The intervals between successive events of subsidiary processes  

Knowledge of the Laplace transform of the joint p.g.f. of N(x) 

(and hence of the marginal p.g.f. of Ni(x), i = 0,1,...,x) enables us, 

in principle, to determine the properties of the interval process of 

type i events. The interval properties of the type 0 events are just 

those of a renewal process and will not be given here. Again, for 

convenience, we assume that m = 1 and obtain results for the process of 

type 1 events; results for other processes when m > 1 are analogous. 

General methods for determining the properties of the interval 

process of a stationary univariate point process from its counting 

process are given in Cox and Lewis (1966), Chapter 4. However, because 

of the structure of (3.3.6), many results for the interval process give 

••••■ 
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rise to very complicated expressions which will not be reproduced 

here. For given initial conditions *, let X be the time from the 

origin to the first type 1 event after the origin. Some of the 

properties of X,
OV 
 , in particular E (X ), E(X

szt- 
2
) and 

x (s) = E{exp(-sX
Y 
 ) }, the m.g.f. of X

Ok 
 , are not too complicated 

ccr   

to derive and are given below. From (3.3.5) and (3.3.6) one easily 

finds 

x (s) = 1 — s0* (0,0;s) - ** (0;s){1 - xo(s)}, 	
(3.6.1) 

gV 

where 

s*V0,0;s) 
X0  (s) = 1 

1 -. *(1;(07s) 
(3.6.2) 

is the m.g.f. of 	the the interval between a type 0 event and the first 

type 1 event after it, and where 04  and * are given by (3.3.1) and 

(3.3.2) respectively. Then it follows that 

E(X ) = 0* (0,0;o) + ** (0;0)E(Xo) 	
(3.6.3) 

fV 	Ok,  

where 

41)(0,0;0) 
E(X

o
) - 	 

1 - 41(0;0) 
(3.6.4) 

In particular, note that E(X1) = 711
-1 
 = pi/Ki, where Xi  is the 

interval between successive type 1 events, and pi  and K1  are given by 

(3.4.3) and (3.4.4) respectively. Second moments are given by 

E(X ) = 2(s/ , (0) +,
94- 

 (0)E(xo)} + 1p* (0;0)E (x0 
2
) , 

54-  (3.6.5) 

where 
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2{2
o
(0) +

o
(0)E(X

o
)1 

E(X 
2 
0 
) = 

1 - *8(0;0) 
(3.6.6) 

and S2 (s) = -dids 0*, (0,07s), II ,(s) = -dids IP* (0;s). 
911' 

In particular (Cox and Lewis, 1966, Section 4.2, equation (5)) 

E(X
1
2
) = 2E(X1  )E(Xe  ) 

= 2u
1 
 {0*(0,0;0) + 4,*(0,0,0)E(X0))/K 
	

(3.6.7) 

where Xe is the time to the first type 1 event when the process is in 

statistical equilibrium, i.e. the asynchronous case. 
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CHAPTER 4: THREE SIMPLE EXAMPLES OF REGENERATIVE BIVARIATE POINT  

PROCESSES  

4.1 Introduction  

In this chapter, three simple examples of regenerative bivariate 

point processes are considered, two of them apparently new, the third 

having been previously studied by Ten Hoopen and Reuver (1965), and 

Lawrance (1970, 1971). Since all the examples are bivariate point 

processes, we shall use the notation of Chapter 3 with m = 1. The 

events of the renewal process (which are regeneration points for the 

bivariate point process) will again be called type 0 events. 

All the examples discussed in this chapter are particularly 

amenable to treatment using the theory of r.m.p. processes, because in 

each of the three cases, the process of type 0 events forms what will 

be called a strongly renewal process. Such processes are characterized 

by the property that the probability of a type 0 event occurring at any 

time t is dependent on the past history of the whole bivariate point 

process only through the time to the previous type 0 event. This 

property makes the calculation of certain quantities, which are useful 

in r.m.p. processes, relatively easy in many cases. 

With each example discussed, we shall give the generating functions 

(1) (0,n;x) and 1p  (n;x) for initial conditions4 = 0, 1 and e (see 
AV 

(3.3.1) and (3.3.2)), as well as H(x) and V(x), the mean and variance 

respectively of the number of type 1 events between two successive type 

0 events which are a distance x apart (see (3.4.1), (3.4.2) and the 

following discussion). With these quantities one can obtain the Laplace 

transform of the joint p.g.f. of M(x) and N(x) (see Section 3.3) as well 

as the interval properties of the process of type 1 events (see Section 

3.6); they also enable us to use results in Sections 3.4 and 3.5 to 
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obtain properties specific to each of the three processes. For each 

of the three examples, we consider conditions under which either the 

bivariate point process or just the marginal point process of type 1 

events is a member of another class of point processes (e.g. Poisson 

process, bivariate Markov renewal process). 

4.2 Imbedding an inhomogeneous Poisson process  

In this example, we imbed, between successive events of a renewal 

process (type 0 events), an inhomogeneous Poisson process (type 1 events) 

whose rate function is a function of the time to the previous type 0 

event. More formally, the bivariate point process can be defined by 

Pftype 0 event in [x,x+dx)I0x  and previous type 0 event at y < x} 

= f (x-y) dx + o(dx), 	
(4.2.1) 

Pftype 1 event in [x,x+dx)Ifi'x  and previous type 0 event at y < x} 

= X(x-y)dx + o(dx). 

Here f(•) (and 11 (•)) are assumed to satisfy the conditions given 

in Section 3.2, while X(•) is assumed to be a finite, non-negative, 

deterministic function with at most a countable number of discontinuities. 

Note the following: 

(i) If X(x) = X, all x e {x: 5'(x) > 0}, the process of type 1 

events is a homogeneous Poisson (A) process and is independent of the 

process of type 0 events; 

(ii) the process of type 1 events forms a doubly stochastic Poisson 

(d.s.P.) process; see Cox and Lewis (1966, Section 7.2) or Grandell 

(1976) for results concerning d.s.P. processes. If v(x) is the stochastic 
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rate function at time x of the process of type 1 events (considered as a  

d.s.P. process), then given the last type 0 event prior to x was at y, 

we have the relation (from (4.2.1)): 

v(x) = 	- y); 	 (4.2.2) 

(i1.1.). P3(C) E P{N(t,x+t] = jisuccessive type 0 events at t and x + t} 

	

-A(x) CA(x)li 	= e 	= P. 01(x)1, 	j = 0,1,2,..., 	(4.2.3) .1 3- 

where A(x) = j X(y)dy. 
0 

It is easily found that the conditional mean and variance of (4.2.3) 

are 

H (x) = V (x) = A (x) 	 (4.2.4) 

whence by (3.4.4) and (3.5.1) 

co 

K
1 
 = f A (x) f (x)dx , 

0 

CO 

K
2 
 = f A(x){1 + A(x)}f(x)dx , 

0 

CO 

5 xA (x)f (x)dx. 
0 

(4.2.5) 

We now derive (f)(0,n,x) for s4- = 0, 1 and e. By definition of the 
Yor 

process, the probability that there are no type 0 events and j type 1 

events in (0,x), given that a type 0 event occurs at the origin, is just 

1-WaD
3 
 JA(x)}, by (4.2.3). Hence, using (3.3.1), one obtains 

(1)0(0,n;x) = 1(x) exp{A(x)(n - 1)1. 	(4.2.6) 
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For the equilibrium process, we argue in the following way. The 

joint probability that the last type 0 event prior to the origin was 

in [-y, -y+dy) and that there are no type 0 events in (0,x] is easily 

seen to be p1-11(x+y)dy. Conditional on these events, the probability 

thattherearejtypeleventsin (x+y) - A(y)1. 

Multiplying these two probabilities, integrating over all possible y's 

and using (3.3.1), we have 

° Oe(0,n;x) = pi 1 II f J(c+y)exp[{A(x+y) - Acymn-indy. 
0 

(4.2.7) 

One can derive c1)1(0,n;x) from first principles or using (2.3.6). It is 

01(0,71rx) = K1-1  Pf(x+y)X(y)exp[{11(x+y) - A(y)}(n-1)]dy. 
	(4.2.8) 

In each of the above cases, 4,4,(n;x) (which is derived in an 

analogous fashion), is the same as 4)(0,n;x) except that whenever tS(*) 

appears in 54.(0,n;x), it is replaced byf(.) in *01,(n;x). 

Using (4.2.6) to (4.2.8), one can obtain a number of the counting 

and interval properties of the process; using (4.2.5) and Theorem 

(3.5.1), one can obtain the asymptotic counting properties. Then, 

assuming u2 < co and K2 < =, and using the results of Sections 3.4 and 

3.5, it is easy to prove the following results for the process: 

Theorem 4.2.1: (i) For all initial conditions A and all x > 0, 

var{N (94 ) (x) } > E{N 	) (x) 1. 

var{N(x)}  
(ii) 

x+co  
lim 	> 1, 

E{N (x) 	— 

the equality holding if and only if A(x) is proportional to x a.e. on 

the support of f. 
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(iii) Assume that X(x) is differentiable on the support of f. 

If X(x) is non-decreasing a.e. on the support of f, then aol  < 0 

(where a01 
is given in Theorem 3.5.1 (iii)). The inequality is 

reversed if X(x) is non-increasing. 

Proof!' Part (i) can be proved for various initial conditions 4 by 

appealing to Theorem 3.4.1. However, it can be more directly and more 

generally proved by noting the fact that d.s.P. processes (of which 

this process is one) are never underdispersed. From (4.2.4), it is 

seen that 0 of (3.5.2) is equal to 1, and hence part (ii) follows from 

Theorem 3.5.2. Part (iii) is merely a restatement of Theorem 3.5.5. 

Part (ii) of Theorem 4.2.1 implies that a necessary condition for 

the process of type 1 events to be a Poisson process is that 

A(x) = Xx, some X > 0, a.e. on the support of f. In fact we can 

obtain the following stronger result. 

Theorem 4.2.2: The process of type 1 events is a Poisson process if and 

only if there exists a X > 0 such that X(x) = X a.e. in {x: jS" (x) > 0}. 

Proof: This follows from the easily proved fact (Kingman, 1964) that 

a stationary d.s.P. process is a Poisson process if and only if 

V(x) = X for all x, and the fact that the process discussed here is a 

d.s.P. process with v(x) given by (4.2.2). 

As an example of the above results, consider the case when 

f(x) = pe-", p > 0, x > 0 (i.e. the process of type 0 events is strongly 

Poisson), and X(x) = ye Px, y > 0, x > 0. We give below some of the 

most important marginal properties of the process of type 1 events. 

Using (3.3.7), Theorem 3.5.1, (3.6.7), (4.2.5) to (4.2.8), and equations 

(5) and (7) of Cox and Lewis (1966), Section 4.6, we obtain 
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EfN(1)  (x)} = 2 yfx + -17  (1 - e-"x) 1; 	 (4.2.9) 

4{7r(a)(a+e a) - a + e-a  + 11  E(x ) 	2/y; var(X ) = 	 ; 	(4.2.10) 
1 	1 	y2(a+e-a- 1) 

E(x1)fai - E(x )1 pi = corr(X1;j, X1;j+1  .) 	var(X ) 1 	
, i = 1,2, 	(4.2.11) 

where X
1;j 

 is the jth interval in the process of type 1 events, 

aft:L[7(a) - 1] + 1 - e-a}{1 - e-a}  a1 - y{a + e-a  - 1}2  
(4.2.12) 

3 1 -a 	 1 2 
[7(a)- — + —e (3+a)] 	[7(a)(2-e

-a(2+2a+ -a ))+1-e-a(1+a)] a 	2 2 	 2  
a2 y - 	 + 

[a + e
-a 

- 1] 	[a + e-a  - 1]
2 

(4.2.13) 

7(a)(1 - e
-a

(1+a)]2  

[a + e
-a 

- 1]
3 

(1 - e-ay)  
7(a) = C + log a - Ei(-a) = 	Y, 	(4.2.14) 

0 

where a = y/p, and where C = .5772 is Euler's constant. 

A numerical example of the above results is given in Section 5.3.2 

in order to show the similarity of the process to another one whose 

properties are given at the end of Section 4.3. Note, from (2.5.7), 

, (1) 
that there is a one-to-one correspondence between EtN (x)1 and 

var{N
(e)(x)1, so that EN 

(1)  (x)1 is a second order property of the 

counting process. 
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4.3 Imbedding an ordinary renewal process  

In this example, we imbed, between successive events of a renewal 

process (type 0 events), an ordinary renewal process (type 1 events); 

see Cox (1962), Section 2.1. Formally, we define the process in the 

following way: 

Pftype 0 event in [x, x+dx)*x  and previous type Oevent at y < x} 

= f(x-y)dx + o(dx), 	 (4.3.1) 

1,f-type 1 event in [x, x+dx)1114-x, previous type 0 event at y1  < x, and 

previous type 1 event at y2  < xl = g(x - max(yi,y2))dx + o(dx). 

Equations (4.3.1) imply that each type 0 event generates a series 

of subsidiary events, the intervals between successive subsidiary 

events (including the interval between a type 0 event and the first 

subsidiary event after it) being independent and identically distributed 

random variables with p.d.f. g(*). Each type 0 event generates these 

subsidiary events until the next type 0 event occurs, at which point 

the previous type 0 event ceases generating its "cluster" of subsidiary 

events, and the latest type 0 event begins generating its cluster. The 

superposition of these subsidiary events forms the process of type 1 

events, and it is easily seen that the resulting bivariate point process 

is a regenerative one. 

The model here is similar to one discussed by Bartlett (1963) and 

Lewis (1964) (the so-called "Bartlett-Lewis" process) and generalized 

by Lewis (1970), where each type 0 event generates s following subsidiary 

events as an ordinary renewal process. The Bartlett-Lewis process, 

however, is not a regenerative process with respect to its cluster centres, 

because overlapping of the clusters is allowed. 
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Note that, for the process defined by (4.3.1), if g(x) = Xe-fix, 

the process of type 1 events is a Poisson (X) process and is 

independent of the process of type 0 events. 

Before determining the properties of this regenerative bivariate 

point process, we shall require some additional assumptions and 

notation. Assume that g(.) is the p.d.f. of an absolutely continuous 

distribution with survivor function 	(s), and that (i(0+) = 1. 

Then it follows from general renewal theory that H(x) (the mean number 

of type 1 events between successive type 0 events which are a distance 

x apart) is the renewal function associated with the density g(.) and 
00 

is differentiable a.e. (with derivative h(x)). Let $ = xg(x)dx. 
0 

Assume that 0 < $ < co. Also assume that there exists a c > 1 such 

that 5 {g(x)}cdx < co. Then it is known that lim h(x) = 6-1  (Smith, 
0 	 x-K0 

1954, Theorem 12). 

The properties of H(x), H2(x) and V(x) (see (3.4.1), (3.4.2) and 

the following discussion) are readily available from Cox (1962), 

Sections 4.1 and 4.5. 	In particular 

H*(s) - 	g*(s)  
s{1 - g* (s) 

(4.3.2) 

H2(x) = H(x) + 2 5 H(x - y)h(y)dY, 	 (4.3.3) 
0 

V(x) = H(x){1 - H(x)} + 2 f H(x - y)h(y)dy. 
	(4.3.4) 

0 

The quantities K1, K2  and w (see (3.4.4) and (3.5.1)) required for 

asymptotic first and second moments of the counting process can then be 

found using (4.3.2) and (4.3.3). 

We now briefly derive 44(0,n;x) for A = 0, 1 and e. We however 

first require the following. Let 6(n;x) be the p.g.f. of the number of 



1 	
'S OD,n;x) = K1-18(niX) 	
(x y)h(y)dy. 

O 
(4.3.7) 
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events in the interval (0,x1 of the ordinary  renewal process whose 

interval lengths have common p.g.f. g(.). Then we have (Cox, 1962, 

Section 3.1, equation (4)) 

1 - g* (s)  
e*(n;s) = r s{1 - ng*(s)1 • 

(4.3.5) 

The probability that there are no type 0 events and j type 1 events 

in (0,x], given that a type 0 event occurs at the origin is just 

11(x) .P3(x), where p.(x) is the probability that j events of the above-

mentioned ordinary renewal process occur in (0,x]. Hence, using (3.3.1), 

one obtains 

00  (0, n;x) = 	(x) 6 (n7x) . 	 (4.3.6) 

If there is a type 1 event at the origin, we need to condition on 

the time of occurrence of the last type 0 event before the origin. 

Using arguments similar to those used in deriving (4.2.7), one obtains 

For4 = 0 and 1, 1,(), (n;x) is the same as 0 (0,n;x) except that 
RV 

whenever 1(-) appears in 054(0,n;4, it is replaced by f(.) in 

11)_, (n;x). For A = e,e 	' (0,x) and IPe(n;x) can be obtained via the Yir 	
11- 

bivariate forms of (2.3.6) and (3.3.8) respectively; the resulting 

formulae do not appear to simplify considerably. 

Using (4.3.5) to (4.3.7), one can obtain a number of the counting 

and interval properties of the process; using (4.3.2), (4.3.3) and 

Theorem 3.5.1, one can obtain the asymptotic counting properties. Then, 

assuming that 112  < = and K2  < =, we can use the results of Sections 3.4 
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and 3.5 to obtain some interesting results. Some of those which follow 

require results given in Appendices 1 and 2. We also require the 

following definition given by Barlow and Proschan (1975): G(=1 -S ) 

is said to be New Worse than Used (NWU) if for non-negative x and y 

(x 	y) 
	

(x) s (y) . 	 (4.3.8) 

If the inequality is reversed, G is said to be New Better than Used 

(NBU). For some discussion of NWU and NBU distributions and their 

relations with other types of distributions, see Appendix 2. We have 

Theorem 4.3.1:  (a) If h(x) is non-increasing or (b) G is NWU, then 

for all x > 0, varCN4)(x)} > E{N(4)(x)1, for 	= 0, 1 and e. 

Proof: Using definitions (3.4.1) and (3.4.2), observe that if either 

(a) or (b) is satisfied, then (by Theorems A2.3 and A2.2 respectively) 

V(x) > H(x) and V
(1)

(x) > H
(1)(x), x > 0; and that if either (a) or 

(b) is satisfied, then (by Theorems A1.1 and A2.1 respectively) 

V
(e)

(x) > H
(e)(x), x > 0. The theorem then follows from Theorem 3.4.1. 

As a simple example of the last theorem consider the case where 
-a1x 	

-a
2
x 

g(x) = Gale 	+ (1 - 6)a2e 	, x > 0; 0 < e < 1; al, a2  > 0 (i.e. 

the mixture of two exponentials). Using (4.3.2) (or its equivalent) 

one finds that 10(x) = -6(1 - 8) (al  - a2)
2 
 exP{-[(1 - 6)al 	6a23xl, 

and so h(x) is decreasing; it can also be shown that G is NWU, although 

the details will not be given here. Hence, by Theorem 4.3.1, 

var{N(*)(x)} > EfN(4)(x)}, all x > 0, for 54, = 0, 1 and e. Further, 

by Theorem 3.5.5, cov{M(x), N(x)} is asymptotically positive. Both 

these results hold independently of f(*), the p.d.f. of the interval 

lengths of the process of type 0 events. 
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4.3.1 	When is the process a bivariate Markov renewal zrocess? 

As mentioned in Section 3.1, Markov renewal (or semi-Markov) 

processes are r.m.p. processes. The essential property of bivariate  

Markov renewal processes is that the distribution of the time from 

either a type 0 event or a type 1 event to the next event is independent 

of the past history of the process. In the process of Section 4.3, 

this property (of independence of the past) is possessed by type 0 

events; it is also possessed by type 1 events conditional on the next  

event also being a type 1 event. Therefore there are similarities 

between the process of Section 4.3 and bivariate Markov renewal processes. 

Hence, it is interesting to ask the question: which processes belong to 

both classes of bivariate point processes? This question is answered in 

the following theorem. 

Theorem 4.3.2: The bivariate point process of Section 4.3 is a bivariate 

Markov renewal process if and only if the intervals of the process of 

type 0 events have a survivor function of the form 

(x) = 0  (x) 	x < 6 , 	
(4.3.9) 

(6)eP(x-0 , x 	6 (some p> 0), 

where 

6 = inf{x: c 00 < 11 , 	
(4.3.10) 

x > 0 

and 0  (x) is any survivor function with 5' 0  (6) > 0. 



58 

Proof: Necessity: For the process discussed in Section 4.3, we 

have that 

P(first event after origin is of type 1 and occurs in [x, x+dx) 

'type 0 event at origin) = 	5.(x)g(x)dx 	+ o(dx), 	(4.3.11) 

P(first event after origin is of type 1 and occurs in [x, x+dx), 

second event after origin is of type 0 and occurs in 

[x+y, x+y+dy) type 0 event at origin) 

= f(x+y)g(x) 	(y)dxdy + o(dx x dy), 
	

(4.3.12) 

P(first event after x is of type 0 and occurs in [x+y, x+y+dy) 

'type 1 event at x) = 11)1(0;y)dy + o (dy) (by (3.3.2)) 

co 

= K 
1 	

(y) f f(z+y)h(z)dzdy + o(dy) 	 (4.3.13) -1g 	
0 

by (4.3.5), (4.3.7) and the following discussion. 

However, if the process is a bivariate Markov renewal process, we 

must have the left-hand side of (4.3.12) equalling the product of the 

left-hand side of (4.3.11) and the left-hand side of (4.3.13), that is 

CO 

f (x+y)g(x) (y) = K1-1 1 (x)g(x) (y) 5 f(y+z)h(z)dz 

0 

or 

co 

f(x+y) = 
K
1 	

f 
f(z+y)h(z)dz 

T(x) 
0 

(4.3.14) 

provided g(x) > 0 and S (y) > 0. 
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The right-hand side of (4.3.14) is independent of x, and so 

f (x+y) / (x) must also be independent of x, provided g (x) > 0 and 

c(3) > 0. These conditions are found to be equivalent to 

r-(x) 	:10(0e-p(x-6), x e [6,2e] 	(some p > 0), 	(4.3.15) 

where 

= sup {x:q(x) > 0}, 
x>401 

and S is given by (4.3.10). 

It is easily seen that for all bivariate Markov renewal processes, 

there is a positive probability of n type 1 events lying between any two 

successive type 0 events, for all positive integers n. By considering 

n-fold generalizations of the above probability relations (for each 

positive integer n), we find that the upper limit in (4.3.15), 2e, 

must be extended to infinity, in order to satisfy the n-fold analogue 

of (4.3.14) and its accompanying proviso. This gives (4.3.9). 

Sufficiency: By the definition of r.m.p. processes, the time from a 

type 0 event to the next event is independent of everything before that 

event. For type 1 events: given that a type 1 event has occurred 

(at time x, say), we know by (4.3.10) that no type 0 events have 

occurred in (x-S, x]. Hence, by (4.3.9), the time from x to the next 

type 0 event is exponentially distributed, and so "lacks a memory". 

Therefore, the time from a type 1 event to the next event is independent 

of everything before that event and so the bivariate point process is a 

Markov renewal process. 
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If a multivariate point process is a Markov renewal process then 

it is easily seen that each marginal point process is a renewal 

process. Hence, in the bivariate point process of Section 4.3, if the 

process of type 0 events has a survivor function of the form (4.3.9), 

then the process of type 1 events is a renewal process irrespective of 

g('). Of particular interest is the case when S = 0, in which case the 

distribution in (4.3.9) is exponential. The renewal process of type 1 

events then has some interesting properties. These are derived in the 

following section. 

4.3.2 	Properties of the type 1 events when the type 0 events form  

a Poisson process  

Assume that the type 0 events have an interval p.d.f. f(x) = pe-Px, 

x > 0, p > O. We will be particularly interested in relating the 

properties of the marginal renewal process of type 1 events to those 

of the imbedded renewal process. To distinguish between the imbedded 

renewal process (with p.d.f. g(-) and renewal density h(-)) and the 

resulting marginal process of type 1 events, we shall use the same 

notation for the latter process as for the former one, except that we 

will use the subscript "m" (e.g. gm(-) and hm(*)). Then using the lack 

of memory property of the Poisson process, and standard renewal arguments, 

one obtains 

x 
hm(x) = e-Pxh(x) 	e-"h(y)dY, 

0 
(4.3.16) 

or, taking Laplace transforms, 

sh:1(s) = (p + s)h*(p + s) • 	 (4.3.17) 



61 

If h(x) is differentiable, then, from (4.3.16) 

h' (x) = e Pxhi(x), 
m 

(4.3.18) 

so that if h(x) is non-decreasing or non-increasing, hm(x) exhibits the 

same behaviour. This interesting fact will be used later. Using 

(4.3.17) and (4.3.2) (which holds for 11(s) and gg(s) also since the 

formula is a general one for renewal processes), we obtain the relations 

between p.d.f.'s and survivor functions: 

(p + s)g*(p + s)  
41(s)  pg* (p + s) + S 

it 	* (p + s)  (s) — 
1 - p 	(p 	s)  • 

(4.3.19) 

(4.3.20) 

Then the mean and second moment of the interval length distribution 

of the process of type 1 events are given by 

g *(P) 	1 - g* (p )  
E(X

1
) - 

1 - pg*(p) 	Pg*  (P) ' 

(4.3.21) 
2 	-2d/dp g *(p)  

E(X1  ) - 

{1 Pg*(P)}
2 

In Theorem 4.3.1, we obtained conditions under which the process of 

type 1 events is overdispersed. With the Poisson assumption for the 

process of type 0 events, we can obtain analogous conditions under which 

the process of type 1 events is underdispersed. The results are given 

in the next two theorems. 

Theorem 4.3.3:  If h(x) is differentiable and non-decreasing, then for 

	

all x > 0, var{N )(x)) < E{N )(x)} for 	= 1 and e. 
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Proof: By (4.3.18), if h(x) is non-decreasing, so is hm(x). But 

hm
(x) is the renewal density of a renewal process. The result then 

follows immediately from Theorems A1.1 and A2.3. 

Theorem 4.3.4: If G is NBU, then 

var{N(x)}  lim 	1 
E{N(x)} 	— 

Proof: As the process of type 1 events is a renewal process, it is 

well known that lim{var N(x)}/E{N(x)} = var(X1)/{E(X1)}2. Hence the 

result to be proved is equivalent to E(x1
2) < 2{E(x1)}2. Consider now 

two independent non-negative random variables, U and V, with respective 

survivor functions e Pu  and 	(v). Let W = min(U,V). Then 

P (W > w) = e-Pwc(w). Further 

CO 

E(W) = f e-Pwi(w)dw = E(X1){1 - p(;*(p)), 
O 

(4.3.22) 

E(W2) = 2 f we-Pw (w)dw = E(X1
2)
{1 - pS*(p)}

2 

0 

by (4.3.21). Now, by (4.3.8), G is NBU implies e-P(x+Y)  (x+y) < 

-av,, 
e-PX  (x) .e " (y) i.e. P (W > x+y) < P (W > x) . P (W > y) and therefore 

W also has an NBU distribution. Hence, using Theorem A2.2 on the 

renewal process whose interval distribution is the same as that of W, 

and letting x co, we obtain var (W)/{B(W)}2  < 1, or E(W2) < 2{E(W)}2. 

The result of the theorem then follows by applying (4.3.22). 

We briefly consider two examples. First, let g(x) = a
2
xe
-ax

, 

x > 0, a > 0. This is the p.d.f. of a Gamma (2,a) variable. Using 

(4.3.2), it can be shown that h(x) = 
1
a(1 - e-tax)  which is an 

increasing function of x; Barlow and Proschan (1975, Section 3.5) 

X+ce 
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show that the Gamma (2,a) distribution is also NBU. Hence, by Theorem 

4.3.3, varLf  N (A) 	 r (x)s < 	(A)  (x)] for A = 1 and e. Using (4.3.17) 
and (4.3.19) it can also be shown that 

a
2fe-Bx 

- e
-Ax

} 
gm(x) A - B 

where 

	

1 	1 2 	1/2 
2 

	

A,B = a + — 	2
. p ± 	+ 4ap, 

and 

a
2  

+ 2ct 
	e— +2CC) 

hm(x) = 

As a second example, we return to the example considered. just 

-alx 	
-a

2x 
before Section 4.3.1, i.e. with g(x) = ()ale 	+ (1 - 8)a2e 

x > 0; 0 < 8 < 1; al,a2  > 0. It was shown that, for this process, 

f csik 	(s4-) var{ N 	(x)1 > E{N 	(x)1, all x > 0, for 4 = 0, 1 and e. With the 
added assumption of f(x) = pe-px, we find by (4.3.19) that 

-Elx 	-E2x  
gm  (x)= wile 	+ (1 - w)E2e (4.3.23) 

where 

EVE = 1 
— {al + a2  + p ± Al 	(EI  > E2), 2  

{(26 - 1)(al-  a2) - p + A) 
(4.3.24) 

 

 

,1/2 A = 	- a2)2 + p2 + 2p(1 - 28) (al 	a2)] 	. 
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It can be shown after some manipulation that Cl, C2  > 0 and 0 < w < 1. 

Hence, by imbedding a renewal process whose interval length distribution 

is a mixture of exponentials between the type 0 events, the resulting 

marginal renewal process of type 1 events has an interval length 

distribution which 

it is easily found 

	

E (X
1
) E x 	= 

Using 	(4.3.23) 	in 

r 	(1) , 	. 1 
H 	(X) 	E EtN 	tx1 m, 

is still a mixture of exponentials. 

that 

w 	(1-0 	2 	(4 	(1-(4) 

Using 	(4.3.23), 

(4.3.25) + 	, E (xi  ) = 2 	--2- + 	2  
4-2 41 	 El 	E2 

(4.3.2), one obtains 

w(1-4)( 1-E2)
2{1.-exp(--E1E  x) }. 

X (4.3.26) = 	+ 
Px 	(C1E2PX)

2 

Note the structural similarity of (4.3.26) to (4.2.9). The interval 

lengths of the process are of course uncorrelated. A numerical example 

of the above results is given in Section 5.3.2 in order to show the 

similarity of this process to the process whose main properties are 

given at the end of Section 4.2. In that process, the type 0 events 

form a Poisson process of rate p; between the type 0 events is imbedded 

-px 
an inhomogeneous Poisson process with rate function X(x) = ye . 

4.4 Selective interaction of a Poisson process and a renewal process  

Ten Hoopen and Reuver (1965) have studied the following process: 

the type 0 events form a renewal process with interval length p.d.f. 

f(.). The type 1 events form a Poisson (X) process except that the 

first event of the Poisson process after each type 0 event is deleted; 

if no Poisson events occur between successive type 0 events, then the 

process is unaltered. It is easily seen that the type 1 events satisfy 
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the conditions necessary for the bivariate process to be an r.m.p. 

process. Ten Hoopen and Reuver derived only the Laplace transform of 

the p.d.f. of the interval length between successive type 1 events; 

Lawrance (1970, 1971) derived many more results for both the interval 

and counting processes. Some of the results of these authors can be 

obtained more simply using the general theory of r.m.p. processes, 

notably the Laplace transforms of both the p.g.f. of N(x) (when the 

process is in statistical equilibrium) and the interval length p.d.f., 

as well as the asymptotic mean and variance of N(x). The general theory 

also easily leads to several results not given by the above authors. 

By the definition of the process it is easily seen that 

pi  . 00 E P{N(t, x+t] = jisuccessive type 0 events at t and x + t} 

-Xx = e 	(1 + Xx), j = 0, (4.4.1) 

e-ax (Xx)j+1  0.1.1)! 
	

' j = 1,2,..., 

whence, using the notation of (3.4.1), (3.4.2) and the following 

discussion 

- Xx H(x) = e 	+ Xx - 1 , 

H2(x) = (Xx)
2 - H(x) , 

V(x) - H(x) = 1 - nxe
-ax 

 - e
-nx 
 > 0, x > O. 

(4.4.2) 

(4.4.3) 

(4.4.4) 

Hence, by (3.4.3), (3.4.4), (3.5.1), (4.4.2) and (4.4.3) 



01(0,n;x) 
= AKl-leAx(n-1) r  tt. j J(X+y)(1 - e-XY)dy. 

0 
(4.4.7) 
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K1  = ulX - 1 + f* (X) 

K
2 = 112

X2 
- K1, 	 (4.4.5) 

= p2X - 111 - d/dX{f*(X)}. 

We now derive 4)0 (0,n;x) for A = 0, 1 and e. By definition of the 

process, the probability that there are no type 0 events and j type 1 

events in (0,x], given that a type 0 event occurs at the origin is just 

11(x)p.60,where. 103  (x) is given by (4.4.1). Hence, using (3.3.1), one 

obtains 

4)0(0,n;x) = 1-(x){e-Ax(1 - 
n-1) 	n-leXx(n-1)1. 	(4.4.6) 

If there is a type 1 event at the origin, we need to condition on 

the time of occurrence of the last type 0 event before the origin. The 

joint probability that the last type 0 event prior to the origin was in 

[-y, -y+dy) and that there are no type 0 events in (0,x] is easily seen 

to be 111
-115-(x+y)dy. Conditional on these events, the joint probability 

of a type 1 event in [0,dx) and j type 1 events in [dx, x+dx) is 

{X(1 - e- XY)e
-Xx  (Xx)

j  /j!ldx while the marginal probability of a type 1 

event in (0,dx) is just (K141)dx (see Section 3.4). Combining these 

probabilities appropriately, integrating over all possible y's and using 

(3.3.1), one obtains 

We can then derive ,t,e(0,n;x) from (2.3.6) or first principles. It is 

Oe(0,n;x) = p1 
-1 f '(y)feXx(n-1) 	(T1 -1  - 1)(e 	- 1)e-Xy)dy. 	(4.4.8) 
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In each of the above cases IP, (n;x) is the same as (I) (0,n;x) 
Yor 

except that whenever /*(.) appears in 4(0,n;x), it is replaced by 

f(•) in IP 	 (n;x). 

With 4)_,
yit 

 (0,n;x) and 11), (n;x), we have, in principle, the Laplace 
yr 

transform of the joint p.g.f. of M(x) and N(x), through (3.3.6), for 

31* = 0, 1 and e. Lawrance (1970) gives the Laplace transform of the 

p.g.f. of N(x) when the process is in statistical equilibrium (i.e. 

= e) in his equation (2.6); we note its "structural" similarity to 

our equation (3.3.6), when g = 1; in fact, Lawrance's functions al, 

a2, B, and B2  are equivalent to our $0, c o, tP e  and cf)e,respectively. 

Similarly, using (3.6.1), (4.4.6) and (4.4.7), we can find the Laplace 

transform of the p.d.f. of the interval length between successive 

type 1 events, as given by Ten Hoopen and Reuver (1965, p.290). 

By substituting (4.4.5) into the appropriate parts of Theorem 

3.5.1, one can obtain the asymptotic mean and variance of N(x) (X1x 

and a
11

x respectively); in particular, note that the asymptotic variance 

of N(x) is the same as the first term in equation (3.3) of Lawrance 

(1970), except that his symbols differ from ours (his v, v2, p and 

IP*(11) are replaced in our formulae by pi, p2, X and f*(X) respectively). 

Using the results of Chapter 3 and this section, we can obtain some of 

Lawrance's other results for the counting and interval processes. 

Assuming that p2  < co and K2  < co, we can also obtain the following 

additional results for the process. 

Theorem 4.4.1: var{N )(x)} > E{N(914)(x)]., all x > 0, forS4—= 0 and 1. 

Proof: By (4.4.4), V(x) > H(x), all x > 0, and so, by a modification 

of Theorem 3.4.1, var{N
(0)(x)} > E{N

(0) 
 (x)), all x > 0. If there is a 

type 1 event at the origin 	= 1), and if there are no type 0 

events in (0,x], then N(x) has a Poisson (ax) distribution; hence 



68 

V
(1)

(x) = H
(1)

(x). Therefore, by (4.4.4) and a modification of 

Theorem 3.4.1, we have var{N(1)(x)} > ECN(1)(x)), all x > 0. 

yam-{N(x)} 
Theorem 4.4.2: (i) l

x 
	> 1. 
E{N(x) 

(ii) a
01 

< 0. 

Proof: Part (i) follows by a modification of Corollary 3.5.3, as 

V(x) > H(x), all x > 0 (by (4.4.4)). If we differentiate (4.4.2), we 

find that H"(x) = X
2
e
-Xx which is positive for all x > 0. Part (ii) 

then follows from a modification of Theorem 3.5.5. 

An immediate corollary of the above theorems is that the type 1 

events can never form a Poisson process. The results of the above 

theorems are intuitively reasonable as the occurrence of type 0 events 

causes the deletion of some events of a Poisson process; this would 

increase the variance of N(x) relative to its mean; also, the greater 

the number of type 0 events in (0,x], the greater the number of 

deletions from the Poisson process, which suggests that M(x) and N(x) 

ought to be negatively correlated. 
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CHAPTER 5: TESTS FOR DISCRIMINATION BETWEEN TWO CLASSES OF  

REGENERATIVE BIVARIATE POINT PROCESSES  

5.1 Introduction  

Discrimination between alternative point process models by the 

analysis of empirical data is notoriously difficult. Although no 

thorough study will be attempted, this chapter illustrates some of 

these difficulties by considering two alternative classes of regenerative 

bivariate point processes. In the first class, the process of type 1 

events is formed by- imbedding a Poisson process, usually inhomogeneous, 

between the type 0 events. In the second, the process of type 1 events 

is formed by imbedding an ordinary renewal process between the type 0 

events. Full details concerning the two classes are given in Sections 

4.2 and 4.3 respectively. Note that if the imbedded Poisson process 

were homogeneous, or the ordinary renewal process were a Poisson process, 

the two models would be identical and the whole process of type 1 events 

would be a Poisson process. 

There are two distinct forms in which the data may be available. 

In the first, both types of events are observed. Assume that the type 0 

and type 1 events can be distinguished from each other. Then, 

conditionally on the time of occurrence of the type 0 events, we have 

so far as the type 1 events are concerned, a series of independent 

realizations of variable length to be examined for consistency with the 

above models. In the second and clearly more difficult situation, the 

type 0 events are not observed. These two situations are discussed 

separately, in Sections 5.2 and 5.3 respectively. 

In both situations, it appears very difficult to obtain reasonably 

powerful general tests for discriminating between the two classes of 

point processes. Therefore, in both Sections 5.2 and 5.3, emphasis is 
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placed on discrimination in the presence of suitable restrictions 

on one or other of the two classes. In Section 5.2, it is assumed that 

the imbedded Poisson process has a monotone trend; in Section 5.3, it 

is assumed that the imbedded renewal process has local behaviour of a 

particular form. 

5.2 Type 0 events observed  

5.2.1 	Introduction  

This section is concerned with discriminating between the two classes 

of regenerative bivariate point processes mentioned in Section 5.1 when 

both the type 0 and type 1 events are observed. it is assumed that the 

type 0 events can be distinguished from the type 1 events. Then, by 

the theory of r.m.p. processes, the process of type 1 events can be 

broken up into a series of independent realizations of the same 

"mechanism". Hence, simple generalizations of well-known tests for 

Poisson and/or renewal processes can be used to discriminate between 

the two classes. Such tests are thoroughly discussed by Cox and 

Lewis (1966, Chapters 3 and 6), and there seems little point in most 

cases in giving the details of the relevant generalizations here, 

because they are mostly very simple extensions of the original argument. 

Therefore, in this section, there is only a brief outline of some 

methods of discrimination under several different restrictions on the 

classes of processes involved. In Section 5.2.2, the only assumption 

is that the imbedded process is either an inhomogeneous Poisson process 

or that it is a renewal process. In Section 5.2.3, it is assumed that 

the inhomogeneous Poisson process has a monotone rate function. In 

Section 5.a,11., it is assumed that the inhomogeneous Poisson process has 

a monotone rate function of a specific parametric form, and that the 
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renewal process is a homogeneous Poisson process. 

The following notation and assumptions will be required. Assume 

that the type 0 and type 1 events are observed in the interval (0,T), 

that, for simplicity, there is a type 0 event at the origin and that 

there are M - 1 type 0 events in (0,T) (4 > 1). Denote the time of 

the ith type 0 event by-xi  (i = 1,2,...,M-1). For notational 

convenience,definex0 E0andNET.Letn.be the number of type 1 

eventsin(x
1
.
-11
,x.),andlet YI3  be the occurrence times of these 

events. 

5.2.2 	Some general aspects of model discrimination  

The problem of discriminating between a renewal process and an 

inhomogeneous Poisson process is rather difficult if no extra assumptions 

are made about the latter process. It would appear natural to use the 

intervals between successive events because, under the renewal hypothesis, 

they are independent and identically distributed. However, the class 

of inhomogeneous Poisson processes contains processes whose intervals 

behave in a large variety of ways. It is difficult to incorporate 

this variety into one model for the intervals. In such a case it 

appears preferable to consider counts in preassigned intervals, 

especially when the expected number of type 1 events between successive 

type 0 events is reasonably large. One method of utilizing counts is 

via a generalization of the well-known dispersion statistic. 

Before this statistic is given, some further notation is required. 

For notational ease, assume that the interval lengths between successive 

typeOevents,z.= xi  - xi_i  (i = 1,...,M), decrease in size as i 

increases. There is no loss of generality in this assumption, because 

thetypeOeventsareobserved.Let(w.,j = 0,...,L) be an arbitrary 
3 
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set of increasing constants with Wo  E 0 and L = sup(j: Wj  < z1). 

Let r
i 	

N[x. 	+ W. 	x 	+ W.). Then a possible statistic for 
j 	1-1 3-1' i-1 3 

testing the general hypothesis that the imbedded process is an 

inhomogeneous Poisson process is 

L 	9.j 	(r., - 7,7.)2  
D = E E 	

3.3 	3  

	

j=1 i=l 	r . 
3 

(5.2.1) 

where L. is the number of intervals for which W. < z., and r. = 

	

3 	 — 1 	1 13 3 

If the imbedded process is an inhomogeneous Poisson process with 

rate function X(-), and if A(x) = X(y)dy, then 
0 

r13 
.. ft,  Poisson{A(W. - W. )}. 	 (5.2.2) 3-1 

In particular, the parameter of the Poisson distribution in (5.2.2) is 

independentofi.F=ther,ifi#3.',r. i3 andr
i'
.are independent of 

eachother.Hence,providedther.'s are not too small, it follows 

that D is well approximated by a chi-squared distribution with 

	

q = E(1C.
3 	

1) degrees of freedom. Rao and Chakravarti (1956) mention 

that the chi-squared approximation will generally be satisfactory if 

I
. 

r.
3 
 is greater than 3. Consequently, the W.'s should be chosen to 

satisfy this criterion. However, this will inevitably lead to the 

discarding of the end bits of some intervals since the zi's are usually 

variable.Inmanycases,itoughttobepossibletochoosetheW.'s 

astutely, so that the above criterion is satisfied and also so that 

only an insignificant proportion of the data is discarded. 

Suppose now that the imbedded process is a renewal process with 

finite interval mean and variance denoted by v and T2, respectively. 

Let C = T/V. Some calculations concerning the asymptotic power of the 

dispersion test have been made; the details will not be given. The 
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general conclusion is that the asymptotic power of the test is an 

increasing function both of IC - 1j and q, the degrees of freedom of 

the test. However, the power of the test is low in comparison to the 

tests of the following two sections, where more specific assumptions 

are made. 

5.2.3 	Testing for trend  

It is now assumed that the imbedded inhomogeneous Poisson process 

has a trend, that is an increasing or decreasing rate function. For 

the moment, no assumptions are made about the form of G(-), the 

distribution function of the intervals under the alternative hypothesis 

of an imbedded renewal process. In this case, perhaps the most obvious 

approach is to regress the lengths of the intervals between successive 

type 1 events (which lie in the same type 0 interval) on some other 

independent variable. Let V
ij 
 = y

ij  - 1 
y.,j-1 (j = 1,...,n.; 

i = 1,...,M) be these interval lengths (where y.lo 
 E xi-1) and let Eij 

betheirideperldertvariable-UsuallYEii = j,  Y1. ,j-1 

Typically, a model of the following form is assumed: 

or —(1.71. 2 	,j-1 Y. 1, .). ) 

Is( 	) = 	(3 E .  
Vij 	0 + 1 i3 + e 13 (5.2.3) 

where T(V) is some monotonic function of V, and e..
13 
 is the error term. 

Often F(V) = log V since this ensures that V is always positive. 

Because under the renewal hypothesis, the interval lengths are independent 

and identically distributed, the E..
ij

1 S are usually assumed to be 

independent with common variance under both hypotheses. These 

assumptions are certainly not true under the hypothesis of a Poisson 

process with a trend. If normality approximations are made, testing 
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for trend (i.e. Bl  = 0) leads to standard t tests. Elaborations and 

variations of regression analysis are given in Cox and Lewis (1966, 

Sections 3.2(i) and 3.3(ii)); they often make Poisson assumptions, 

but many of their arguments still hold approximately without this 

assumption. 

Note that in the regression model (5.2.3), the 'censored" intervals 

at the end of each of the M independent series (i.e. xi  - y. 	) have 

been discarded. If the expected number of type 1 events between 

successive type 0 events is reasonably large, very little is lost by 

doing this. However, if this is not the case, the censored intervals 

should be incorporated into the analysis via methods commonly used 

for censored data. The details will not be given here. 

If some assumptions about the form of G(.) are made, more specific 

techniques are sometimes available (Cox, 1972). In Section 5.2.4, 

this is illustrated with the assumption that G(x) = 1 - e-/x, x > 0 

(i.e. the imbedded process is a homogeneous Poisson process). 

5.2.4 	Trend analysis for Poisson processes  

It is assumed that between each successive pair of type 0 events, 

the same, possibly inhomogeneous, Poisson process is imbedded with 

common rate function X(u) = exp(a + 8u). We wish to test whether the,  

imbedded process has a trend (i.e. 8 = 0). Cox and Lewis (1966, 

Section 3.3(i)) discuss this problem in detail for the case M = 1 

(i.e. a type 0 event at the origin and no type 0 events in (0,T)), 

while Cox (1972, Section 4) discusses the case M > 1. A test statistic 

is easily obtained for these very specific hypotheses. Power approxi-

mations are also straightforward, and are the main concern of the 

present section. For this reason, the derivation of the test statistic 

will be outlined briefly and some of its properties obtained under the 
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null and alternative hypotheses. Let u.. = y.. - xi_i  be the times 13 	13 

of the type 1 events as measured from the previous type 0 event. Then 

the likelihood of the data is easily found to be 

M 	M n. 	M $z. 

1,(11)=exp{aEri.. 4- $ E 	
EI u.. 	ea 	(e  1 

1)/$}, 	(5.2.4) 
i=1 1 
	13 

1=1 j=1 	i=1 

wherez.1  =x.1  - xi-1  is the length of the interval between the (i - 1)st 

andithtypeOeventsin(0,T)withx-70.LetN=En.and S = E. .u.. 

	

0 	1 	1,3 1j 

Suppose that a test is required of the null hypothesis Ho.. B= 0 against 

the one-sided alternative Hi: B < 0, say. Since a is a nuisance • 

parameter, the theory of similar tests states that the uniformly most 

powerful (UMP) similar test of the above hypothesis is obtained by 

considering the null distribution of S conditional on N, the minimal 

sufficient statistic for a when a is known. 

Some comments follow regarding the conditional distribution of S 

under both the null and alternate hypotheses. Consider first the 

distributionofs.=Z.0
i3 
 conditional on n., where the u..'s are the 

1 	3  

times of events from an inhomogeneous Poisson process with, for the 

moment, a general rate function X.(u). Then it is easily shown that 

1/1 r 
sample from the distribution with density g(u) = X(u) )

i  X(v)dv 
0 

(0<u<z.).Therefores.1 
 is the sum of n.I 

 independent and identically ....   

distributed random variables (i.i.d.r.v.'s) with p.d.f. g(u). Now, 

because of the Poisson nature of the process, it is easily seen that, 

conditional on N, the vector n = (n1,...,nm) has a multinomial 

distribution with parameters N and p = (p1,...,p14), where 

p.1  = e0  (z.)/z.e0  (z.) (i = 1,...,M), and 1 3   

the uij's,conditionalonn 	1 n., 	the n. order statistics of a random 1  

z 
e J  (z) = 	uiX(u)du. 

0 
(5.2.5) 



Eo 	E(SIN, $ = 0) = N 	 2T 

m 2 
I z. 

 

i=1 
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Using these two conditional distributions, it is easily shown that 

S conditional on N is asymptotically normally distributed with mean and 

variance 

M 	M 
E 81(zi) 	E 82(zi) 

N i=l 	i=1 	{E(S 
E(SIN) = N 	, var(SIN) = N M  M 	

N N)}2 

 
. 	(5.2.6) 

e (z . )- 
i=1 

0 
E 8 (z.) 

i=1 0 1 

In particular, under the null hypothesis (i.e. X(u) = ea), 

M  

I z.
3 

I z. 

Vo E var(S1N, $ = 0) = N 1
=1 
3T 	2 

1 	i=1 2) 

2 

T 1  

Therefore, the test statistic is 

S - Eo  
Z - 	 

V 1/2 ' 
O 

 

(5.2.7) 

(5.2.8) 

Under the null hypothesis, the distribution of Z should tend fairly 

rapidly to the standard normal form, because, conditional on ni  at least, 

si  is the sum of ni  i.i.d.r.v.'s from a uniform distribution on (0,z.). 

Under the alternative hypothesis (i.e. X(u) = exp(a + $u)), it 

follows from (5.2.6) that 

M 	$ z. 
N E fl + e 1($zi  - 1)} 

E
s 
E E(S1N,$) = 	i=1  

M 	$z 	
, 	(5.2.9) 

, 
$ E (e 1  - 1) 
i=1 



Eo  - E0  - ZyV01/2  
0 	 Paft, 	1/2 

V
$  ( 

(5.2.10) 
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M 	$z. 
2N 	{e 1(1- $2zi  2  - Oz + 1) - 1} 	E 2 

i=1 	
2 	

$ 
 

Hence, if we have a one-sided alternative H1: $ < 0, and we use 

theasylriptotictest:rejeCtI10:13= 0 if Z < -Z y, where Zy 
is the upper 

y point of the standard normal distribution, then the asymptotic power 

of this test is 

V E var(S1N,$) = M 
$2 Z (e 1  - 1) 

i=1 

as N =, where 0(-) is the cumulative distribution function of the 

standard normal distribution. 

The results of this section are now applied to two artificial sets 

of data. These data sets are numbered (i) and (ii) in Appendix 4, 

where full details concerning the data sets can be found. The imbedded 

process of data set (i) is an inhomogeneous Poisson process with rate 

function X(u) = 10e-u  (i.e. a = log 10, $ = -1); the imbedded process 

of data set (ii) is a homogeneous Poisson process. For both sets the 

period of observation, T, is 20, while M (the number of type 0 events 

in (0,T)) is 14. For data set (i), N = 94, while for data set (ii), 

N = 100. For data set (i), Z = -4.85, which indicates strong rejection 

of the null hypothesis. This is not surprising, since the power of a 

.05 lower-tail test is, for a = -1, approximately 0(4.8) i 1.00, by 

(5.2.10). For data set (ii), a value of Z = 1.21 was obtained, which 

indicates acceptance of the null hypothesis. 

Finally, note that the model which has been used in this section is 

an unusual one. Because of the regenerative nature of the process, there 

are M independent Poisson processes each with the same rate function 

X(u) = exp(a + $u). A more common situation might be M independent 
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Poisson processes, the ith process having a rate function 

X(u) = exp(ai  + eu), where e is common to all M processes, and the 

ai's are unknown and possibly different. In this case, a = (al,...,am) 

are the nuisance parameters when $ is the parameter of interest. The 

theory of similar tests then leads one to the conclusion that the 

appropriate statistic on which to condition is n, and not N. It is 

therefore interesting to consider the effect of conditioning on n 

whenallthea.'s are equal, and conversely the effect of conditioning 

onNwhenthect.'s are not all equal. This question is considered in 

greater generality in Chapter 6. 

5.3 Type 0 events unobserved  

5.3.1 	Introduction  

This section is concerned with discriminating between the two 

classes of regenerative bivariate point processes mentioned in Section 

5.1 when the type 0 events are unobserved. This is a very difficult 

problem, even when the sample sizes are moderately large (say about 

100 type 1 events). Some of the problems of discrimination are 

illustrated in Section 5.3.2 where a specific example of each of the 

two classes of processes is considered and the properties of their 

type 1 processes are compared. Discrimination may be made easier by 

restricting the behaviour of one or other of the two classes in a 

suitable manner. One possible form of restriction is on the local 

behaviour of the process of type 1 events of one of the two classes. 

In the present section, the examination of the local behaviour of the 

two classes of processes leads to a test for discriminating between the 

two classes under suitable restrictions. The test is applied to four 

artificial sets of data. 
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5.3.2 	A comparison of two stationary univariate point processes  

In Table 5.1 below, some of the marginal properties of the process 

of type 1 events are given for two quite different regenerative 

bivariate point processes. 

Process (a) is a numerical case of the example at the end of 

Section 4.2: the type Orevents form a Poisson process of rate p; the 

type 1 events are generated by imbedding, between successive type 0 

events, an inhomogeneous Poisson process with rate function 

X(x) = Xe-Px. The particular parameter values used are p = 1, X = 10. 

The results given in Table 5.1 are based on equations (4.2.9) to 

(4.2.14). 

Process (b) is a numerical case of the example at the end of 

Section 4.3: the type 0 events form a Poisson process of rate p, the 

type 1 events are generated by imbedding, between successive type 0 
-a
1
x 

events, an ordinary renewal process with p.d.f. g(x) = Bale 
a2X 

(1 - e)a2e 	
. The particular parameter values used are p = 1; 

1 	1 e ya + 17/40-6); al, a2  = iy(23 464"). The results given in 

Table 5.1 are based on equations (4.3.23) to (4.3.26). 

In Table 5.1, the following quantities are given for the two 

processes: U(x) E E{N
(1)(x)), the expected number of type 1 events in 

(0,x] given that a type 1 event occurs at the origin; E(X1) and var(X1), 

the mean and variance, respectively, of the interval lengths between 

successive type 1 events; pl  and p2, the first two serial correlation 

coefficients of the intervals of the process of type 1 events. For the 

interval properties, results are given correct to 4 decimal places. 

Many of the properties of the interval lengths of process (a) 

appear extremely difficult to determine. Hence, only the mean, variance 

and first two serial correlation coefficients have been given in Table 5.1. 
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Table 5.1 Some properties of the type 1 process for two 

regenerative multivariate point processes 

Process 	(a) 

U(x) 5{x + 2((1 - e-2x)} 

E(X1) _ 	.2000 

var(X
1  ) 

.0880 

P1  
.1009 

P2 .0363 

Process (b) 

5{x + 6-(1 - e-2x)} 

.2000 

.1067 

.0000 

.0000 

The function U(x) E E{N
(1)

(41 will be called the synchronous  

mean function. For renewal processes, U(x) is called the renewal 

function. Note, from Table 5.1, that processes (a) and (b) have 

identical synchronous mean functions. This implies, by (2.5.7), that 

the two processes also have identical asynchronous variance functions. 

Hence, the first and second order counting properties of the two 

processes are identical. 

It has been shown in Section 4.3.1 that process (b) is a renewal 

process and hence all its serial correlation coefficients are zero. 

The first two serial correlation coefficients of process (a) are, to 

two decimal places, .10 and .04 respectively. Serial correlation 

coefficients of lag greater than 2 have not been given, because they are 

difficult to determine theoretically; however, they are undoubtedly 

even smaller. For a sample size of 100 type 1 events, it appears 

difficult to distinguish process (a) from a renewal process. For 

instance,ifis the sample serial correlation coefficient of lag j 

and if the process is a renewal process, it is known that (3 (17-7 has 
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asymptotically a standard normal distribution as N, the sample size, 

approaches infinity. A test based on p1  will not be very powerful when 

pl  = .10 and when the sample size is about 100. Other more general tests 

for renewal processes, such as those based on the spectrum of intervals 

(see Cox and Lewis, 1966, Section 6.4), will only be appreciably more 

powerful if the serial correlation coefficients die away very slowly; 

this appears unlikely in the case of process (a), since the type 0 

events form a Poisson process. 

The ratio of the two interval variances is .1067/.0880 = 1.21. 

Since this is so close to one, it would be difficult to distinguish 

between the variances of the two processes with sample sizes of about 

100. 

Thus, it is difficult to distinguish between processes (a) and (b) 

when the sample size is about 100. It is conceivable that there might 

be other processes belonging to the classes discussed in Sections 4.2 

and 4.3 which are difficult to distinguish with moderately large sample 

sizes. The implication of this is that one or other of the two classes 

should be restricted in a manner which makes their discrimination 

somewhat easier. One possible restriction is on the local behaviour of 

one of the two classes. 

5.3.3 	The local behaviour of some stationary univariate point  

processes.  

This section is concerned with the local behaviour of two functions 

useful in stationary point processes: the distribution function of the 

interval lengths which will be denoted by B(x), and the synchronous 

mean function, defined in Section 5.3.2 and denoted by U(x). It is 

easily shown that 
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CO 

U(x) = B(x) + E Pr{N(1) 	5 n}. 	 (5.3.1) 
n=2 

For many point processes with little long term dependence, it can be 

shown that the series on the right-hand side of (5.3.1) is negligible 

compared with B(x) when x is small. Hence, for such processes, 

U(x) 	B(x). In particular, if B(x) = $xY  o(xY) as x 0 ($ > 0, 

y > 0), then, for many processes, U(x) = P.xY  o(XY) as x 0, and 

vice versa. 

It can be shown that for each of the two classes of processes 

being considered in this chapter, U(x) exhibits the same local behaviour 

as B(x). The details, however, are somewhat involved and will not be 

given here. For both classes, the local behaviour of only one of 

U(x) and B(x) will be derived. 

(a) Doubly stochastic Poisson processes  

As was pointed out in Section 4.2, the process of type 1 events 

s< discussed in that section (i.e. an inhomogeneous Poisson processes 

imbedded between the type 0 events) is a doubly stochastic Poisson 

(d.s.P.) process. In the present section, the local behaviour of 

stationary d.s.P. processes is investigated. Apart from the general 

assumptions of Chapter 2, the following definitions and assumptions are 

made. Let v(•) be the stationary stochastic rate function of the d.s.P. 

process. Let v, a2 and p(x) be, respectively, the mean, variance and 

autocorrelation function of v(•); both v and a
2 are assumed finite. 

Suppose that p(x) is continuous at and in the neighbourhood of the 

origin, so that p(x) = 1 - 0(1) as x 0. Cox and Lewis (1966, 

Section 7.2, equation 3) give, for stationary d.s.P. processes, the 

following equation for VI(x) E didx[varIN
(e)

(x)}1: 
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V1  (x) = v + 202  j p (u)du. 
0 

Differentiating (2.5.7) and equating it to (5.3.2), one obtains 

2 x a  
U(x) = vx + — f p(u)du. 

0 

(5.3.2) 

(5.3.3) 

Equation (5.3.3) has two immediate consequences. First, because of 

the assumed behaviour of p(u) about zero, we have 

2 	2 /..% 
U(x) = (v 	 0 (X) = 	V-11  E{v(u) } 1  x + o (x) 

	
(5.3.4) 

as x 4'0, that is U(x) = 8xY  + o(xY) as x 0, where y =  1 and a >  v, 

the equality holding if and only if 0
2  = 0, i.e. the process is a  

homogeneous Poisson process. The second consequence, which will not be 

used but which is interesting nevertheless, is obtained by differentiating 

(5.3.3). Since U(x) is a non-decreasing function of x, its derivative 

is non-negative. This leads to the inequality 

p(x) > -v2/02 	 (5.3.5) 

for all x. Equation (5.3.5) is vacuous unless a > v. 

For completeness, we use (5.3.4) to derive the local behaviour of 

the process of type 1 events in Section 4.2. Using the notation of 

that section, we have 

Pr{v(x) = X(y)} = Pr{last type 0 event prior to x was in [x-y, x-y+dy)} 

= - pi  VOdY o(dy). 
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Therefore 

03 

E(vi(x)) = 1.11  -1 	'S(y) Xi  (y)dy, 

and hence, by (5.3.4) 

CO 

f 	(D-X2  (Y) dY 

U (x) = 

I 1(Y)X(Y)dY 
0 

x + o(x) 	 (5.3.6) 

as x 0. It can be shown, more tediously, that, for the class of 

processes considered in Section 4.2, B(x) exhibits the same local 

behaviour as U(x). 

Equation (5.3.4) allows us, in principle, to distinguish stationary 

d.s.P. processes from those point processes whose local behaviour is 

U(x) = 6xY  + o(xY) as x 0 with either (i) y # 1 or (ii) y = 1 and 

6 < v, where v is the mean occurrence rate of the process (i.e. the 

reciprocal of the mean interval length). Process (a) in Section 5.3.2 

is an example of the class of processes considered in Section 4.2, and 

hence satisfies (5.3.4) and (5.3.6). This can be verified from the 

first line of Table 5.1, where U(x) E EN
(1)

(x)} is given. However, 

Table 5.1 also shows that processes (a) and (b) in Section 5.3.2 have 

identical synchronous mean functions, U(x), and hence the local behaviour 

of U(x) (and also B(x)) is identical for the two processes. Therefore, 

the two processes cannot be distinguished by their local behaviour. 

However, as we are about to see, there are many processes in the class 

considered in Section 4.3 which can be distinguished from stationary 

d.s.P. processes by applying criteria (i) and (ii) above. 
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(b) The regenerative bivariate point process with an imbedded  

renewal process  

In this section, the local behaviour of B(x) and U(x) is derived for 

the process of type 1 events considered in Section 4.3. In this process, 

the type 0 events form a renewal process with distribution function 

F(.). The process of type 1 events is formed by imbedding between 

successive type 0 events an ordinary renewal process with distribution 

function G(.) and p.d.f. g(*). There are a number of ways of 

determining the local behaviour of B(x) and U(x). For instance, one 

can differentiate (3.3.6) to obtain the Laplace transform of U(x), 

expand as s ce, and invert the transform to find the behaviour of 

U(x) as x 0. Such an approach however may be very complicated. 

A simpler heuristic approach is given here. 

Suppose that G(x) = ax7  + o(xY) as x 0 (8,y >0). Now, it is 

easily seen that the process considered in Section 4.3 is strongly 

orderly, and hence a type 0 event and a type 1 event cannot occur 

simultaneously. Therefore, as x 0, 

B(x) = P(at least one type 1 event in (0,0 a type 1 event at 0) 

rk,  P (at least one type 1 event and no type 0 events in (0,x]la type 

1 event at 0) 

P (at least one type 1 event in (0,41 no type 0 events in (0,x], 

a type 1 event at 0) 

x ti7(no type 0 events in (0,x]ia type 1 event at 0). 

The first probability in the above product is just 

G(x) = $xl  + o(xY); the second probability is easily shown to be 

1 - o(1). Hence multiplying the two probabilities, one obtains 

B(x) = 8xY  + o(x1) 	 (5.3.7) 
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as x 0. Note that this is the same as the local behaviour of G(x) 

and is independent of F(.), the distribution function of the intervals 

between successive type 1 events. It can be shown also that 

U(x) = axY  + o(XY) as x 0. 

Equations (5.3.6) and (5.3.7) together indicate that, if the type 0 

events are unobserved, one can, in principle, distinguish between the 

process considered in Section 4.2 and the process considered in 

Section 4.3 by examining the local behaviour of the two processes, 

provided that the process considered in Section 4.3 does not have a 

G(•) of the form G(x) = ax + o(x) as x + 0 with a > (mean interval 

length)
-1
. As we shall see in the next section, a test based on the 

local behaviour of B(x) gives a general method for distinguishing 

between the two processes when the sample size is moderately large 

provided the constraint just mentioned is satisfied. 

5.3.4 	A test for discriminating between the local behaviour of  

some stationary univariate point processes  

A test based on the local behaviour of B(x) is now derived for 

discriminating between stationary d.s.P. processes (including the 

processes of Section 4.2) and those stationary point processes which 

satisfy the constraint mentioned at the end of Section 5.3.3. With 

modifications which will become obvious, the test might be used for 

distinguishing between other classes of processes. Assume that the 

stationary point process being investigated has an interval distribution 

function of the form B(x) = axY  + o(xY) as x 0 and that U(x) ti vx 

as x + =. There are two things we wish to test: first, whether y = 1, 

and if so, whether a > v. 

Suppose that there is some number A such that, for 0 < x < A, the 

approximation B(x) = axY is a reasonable one; later, we shall discuss a 



L 	1 2 	1 2 
Yj T X2L,/2 j=1 

Y. <IFX2L,1-a/2  or 
j=1 

(5.3.8) 
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method of choosing A from the data. Let X be an interval of the 

stationary point process. Then, approximately, Pr(X < )(IX < A) = 

(x/A)Y, independently of 8, or writing Y = log(d/x) given X < A, we 

find that Y has approximately an exponential distribution with mean 

y 1. Suppose we observe a stationary point process over the interval 

(0,T] and observe N events in this interval (and hence N - 1 intervals 

between successive events). If the process is a renewal process, and 

if there are L intervals whose length X. (j = 1,...,L) is less than A, 

then the (approximate) maximum likelihood estimator of y is 

A 
y -.WEY.=V-1,whereY.=log(A/X.). This is also the obvious 

estimator even if the process is not renewal. In fact for processes 

exhibiting the behaviour B(x) = 8x1  + o(xY) as x 0, it is easily 

shown that lim E{log(A/X)IX < AI = y-1. If the process is a renewal  
A4•0 

process, then 2yZYj  has approximately a chi-squared distribution with 

2L degrees of freedom. Hence, reject the hypothesis H : y = 1 at the 

a level if 

where x2L,a   is the upper a point of the chi-squared distribution with 2L 

degrees of freedom. If the process is not a renewal process, the first 

few sample serial correlation coefficients for the transformed data 

the Y.'s) should be calculated. If these are not appreciable, 

the test (5.3.8) should still be used. If, however, there are some 

appreciable estimated serial correlation coefficients, these can be used 

toalterthevarianceofEY.and adjust the chi-squared test accordingly; 

details will not be given here for the sake of brevity and because all 

four data sets considered later are either renewal processes or 

indistinguishable from them. 
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If one accepts the hypothesis H : y = 1, the hypothesis H8: f3 >%) 

must then be tested. This involves estimating both 0 and v and 

testing their difference. The obvious estimator of v is .v).  = N/T. 

A 
Provided that T is reasonably large, the variance of v will, in 

general, be small compared with the variance of the estimator of 8, 

A 

and so v can be treated as being a fixed constant. This will be 

assumed in what follows. If the process is a renewal process, then, 

conditional on N, L is binomial with parameters N - 1 and (if the 

hypothesis y = 1 is accepted) approximately 8A. The approximate 

maximum likelihood estimator of a is 1 = L/{(11 — 1)A} and one obtains 

an immediate test of the null hypothesis. If N is large enough, a 

normal approximation can be used; H is rejected at less than the a 

level (as under the null hypothesis the exact value of $ is unspecified) 

if 

L - (N-1).;.A 	< -Z , 
{(N-1).■;A(140}1/' 	

a (5.3.9) 

where Z
a 

is the upper a point of the standard normal distribution. 

If the process is not a renewal process, then the first few sample 

serialcorrelationcoefficientsfortheuntransformedX.'s should be 

calculated. If the first k of them are appreciable, and if we define 

theindicatorvariableW.by W. = 0 if X. < A, and W. = 1 if X. > A, 

then the Wi's form approximately a two state kth order Markov chain 

with stationary probabilities (8k, 1 - $A). Testing the hypothesis 

H $ > v is then equivalent to testing the stationary probabilities of 

a two state kth order Markov chain with unspecified transition probabili-

ties. This problem is discussed by Billingsley (1961); the special case 

of the two state 1st order Markov chain is discussed extensively by 

Klotz (1973). 
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Suppose that Hy:  y = 1 is rejected at the ay  level, and that, 

conditional on accepting H, H : 6 > v is rejected at less than the a 
Y 8 	 $ 

level. Then it is easily seen that the significance level obtained by 

combining the two tests into one is less than ay  + (1 - ay)a13. 

However, it would be misleading to use only this significance level as 

a method of testing the-combined hypothesis. This is because the 

significance level is conditional on a nested hypothesis, i.e. there 

is some preassigned region where H y = 1 is rejected regardless of 

the estimated value of a. It seems best to carry out the two tests 

separately, and to make an intelligent qualitative conclusion based on 

their separate results. 

There now remains the question of a suitable choice for A, the 

number such that, for 0 < x < A, the approximation B(x) = ax1  is a 

reasonable one. The equation B(x) = axY will usually only be an 

approximation to the true distribution except in the case of the power 

function distribution where the equation is exact. In general, the 

approximation becomes poorer as x increases. As the sample size 

increases, B(x) can be estimated more precisely, and hence, in general, 

A ought to be.a decreasing function of the sample size. Trying to 

estimate A by eye from a plot of the empirical distribution function, 

B
N 
 (x) gives an estimate which is much too large, as do various tests 

of fit that have been tried; such estimates use observations which 

swamp the local behaviour of the distribution. A more conservative 

approach which appears to work quite well is based on the following idea. 

Assume that U(x) exhibits the same local behaviour as B(x). If we have 

reasonable estimates of B(x) and U(x), respectively, for a set of data, 

these estimates should be equal, or almost equal, in the same region 

that B(x) = U(x) = 8x1  is a reasonable approximation. The obvious 

estimator of B(x) is the empirical distribution function BN(x). An 



90 

obvious estimator of U(x) also exists. Let yi,...,yN  be the times of 

the N events observed in (0,T]. Let K(x) (< N) be the number of 

events such that yi  + x < T (i = 1,...,K(x)). Then the obvious 

estimator of U(x) is 

K (x) 
E N(yi,yi+x] 

U (x) = i=1  
K (x) 

(5.3.10) 

Because K(x) is a random variable, U(x) is a biased estimator of 

U(x). However, for fixed x, U(x) will be asymptotically unbiased as 

T ea.  for all stationary point processes. If x is sufficiently small, 

then N(yi,yi  + x] will be either 0 or 1 for all i. It then follows 

that, in this region, U(x) equals BK(x)
(x), the empirical distribution 

function based on the first K(x) intervals. It also follows from the 

definitions of BK(x)
(x) and U(x) that these two functions are equal if 

and only if x < min(Xi  + Xi+1, i = 1,...,N-2). Hence, a suggested 

choice of A is A = min(Xi 
+ X1+1,  i = 1,...,N-2). This suggestion is 

undoubtedly conservative, but it is probably prudent to err on the side 

of conservatism. For this choice of A, it can be shown that, for a 

renewal process, E(L) " {Nv/(4a)}1/2, var(L) rt,  N(1 - v/4) /a as N +.co, 

where L is the number of intervals whose length is less than A, and 

a = {r (y + 1) }2/r 	+ 1). Hence lim var(L)/{E(L)}2  = (4/v) - 1 and 
N+.00 

so the asymptotic distribution is non-normal. A heuristic derivation 

of the asymptotic mean and variance of L (when the process is renewal) 

is given in Appendix 3. As an example, if N = 100 and y = 1, then the 

mean and standard deviation of L are approximately 12.5 and 6.6, 

respectively. 

Even though the suggested choice of A is precisely defined, there 

should be some flexibility in its choice. For instance, there is a 

small probability that the jth and (j+l)st intervals are the two 
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shortest intervals, in which case A = X. + Xj4.1. There is also a 

small probability that Xi  > A, all i # j or j + 1. Then L = 2. In 

such a case it might be appropriate to let A = + X. )
N-2 

1 	1+1 i=1,i#j* 

5.3.5 	Results for some artificial data  

The test suggested-in Section 5.3.4 is now applied to four 

artificial sets of data. Full details concerning these data sets can 

be found in Appendix 4. Data sets (i) and (ii) are examples of the 

regenerative bivariate point process considered in Section 4.2 and so 

both have y = 1 and a > v = (mean interval length)-1. In fact data 

set (ii) is a homogeneous Poisson process and hence a = v. Data sets 

(iii) and (iv) are examples of the regenerative bivariate point process 

considered in Section 4.3. As can be seen from Table Al in Appendix 4, 

data set (iii) is generated by a process with y = 2, whiledata set 

(iv) is generated by a process with y = 2. The sample sizes for all 

four data sets are between 86 and 100. Data sets (ii), (iii) and 

(iv) are all renewal processes;  data set (i) is indistinguishable from 

a renewal process with its sample size of 94. 

For each data set, the results of the suggested test are 

summarized in Table 5.2. In each case, the table gives: N, the 

sample size; P.1 
- 1, the standardized sample serial correlation 

coefficient of lag 1 (under a renewal hypothesis this has asymptotically 

a standard normal distribution);  A, the number below which a power 

function approximation is used for the distribution function; L, the 

number of intervals whose length is less than A; the true value of y;  

and the suggested estimates of Y,v and $. For each data set, two 

tests were carried out: a test of Hy: y = 1, and (assuming y = 1) a 

A 

test of H$: $ > v. A double asterisk above the value of a or y indicates 

rejection of the null hypothesis at a level less than .01, and a single 
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asterisk indicates rejection at a level between .05 and .01. 

Table 5.2 shows that the test of Hy: y = 1 is more powerful 

against alternatives HA: y = 1 - 6 than alternatives HA: y = 1 + 6. 

For instance, for L = 20, the acceptance region of a .05 equal-tailed 

test is y e (.68, 1.67). For the values y = .5, 1.5, 2.0, the power 

of this test takes the values .91, .35, .82 respectively. It is 

fortuitous, however, that for many distributions with y > 1, 

B(x) < vx for small x; this behaviour is shown, for instance, by all 

Gamma and Weibull distributions with y > 1. In such cases, 

E($) = E(L/NA) = B(A)/A < v. This behaviour is opposite to that of 

stationary d.s.P. processes, so that even if the hypothesis Hy: y = 1 

is accepted (when in fact y > 1), there is a reasonable chance that the 

hypothesis Ha: a > v will be rejected. This is illustrated by data 

set (iv); the hypothesis Hy: y = 1 is just accepted at the .05 level, 

but not at the .01 level; however, the hypothesis Ha: $ > v is 

decisively rejected. 

On the basis of the two tests, the correct conclusion is reached 

for data sets (i), (iii) and (iv). For data set (ii), the homogeneous 

Poisson process, the hypothesis H y = 1 is strongly accepted. 

However, there is some doubt about the hypothesis Ha: a > v. This is 

possibly due to an atypical realization of the Poisson process. 
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Table 5.2 Results of a test applied to four sets of data 

Data Set No. 

(i) (ii) (iii) 	 (iv) 

N 	94 100 91 	86 

11-7 	.41 -.26 -.62 	.43 

a 	 .05 .05 .01 	.09 

L 	21 17 20 	17 

y 	(true value) 	1 1 .5 	2 

Y
* 	-- -1 
= Y 	1.06 .68 .54** 	1.71 

.) = N/T 	4.70 5.00 4.55 	4.30 

#0. = L/(N -1)A 	4.52 3.43* 22.22 	2.24** 

Footnote to Table 5.2: Data sets (i) and 	(ii) are d.s.P. processes; 

data sets (iii) and (iv) are not d.s.P. processes. 
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CHAPTER 6: THE EFFECT OF CONDITIONING ON STATISTICS WHICH ARE NOT  

MINIMAL SUFFICIENT 

6.1 Introduction  

In this chapter, a generalization of the problem mentioned at the 

end of Section 5.2.4 is considered, that is the problem of conditioning 

on statistics which are not minimal sufficient. 

Suppose that M independent but not necessarily identically 

distributed bivariate random variables (s
1
.,t.

1
)(i = 1,...,M) are observed 

with the following exponential family distribution: 

f(s.,t.1) = exp{a.1
t.
1 
 + as. + a (s.,t.) + b.(a.,a)}. 	(6.1.1) 

1 	1 	1 1 

Note that a is common to the M distributions, while each distribution 

has a possibly different ai. Typically si  and ti  will themselves be 

the sums of other, perhaps identically distributed, random variables. 

The ranges of si  and ti  are unspecified but we assume them to be 

independent of the parameters ai  and a. 

It is desired to test Ho: 	= $0  against H1: a < ao  (or Hi: s > 00). 

The vector of parameters a = (al,...,am) is then a nuisance parameter. 

From (6.1.1), the joint likelihood of the 2M random variables (si,ti) - 

(i = 1,...,M) is 

M 	M 	M 	M 
L(s,t) = exp{ E aiti + $ E si  + E ai(si,ti) + E bi(ai,S)}. _ ..  

i=1 	i=1 	i=1 	i=1 

(6.1.2) 

By the theory of similar tests, the uniformly most powerful (UMP) 

similar test of H
o
: a = so against H1: S < o 

is obtained by considering 
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thenulldistributionofS=Es.conditional on the minimal sufficient 

statisticforawhen6isknown.Ifallthea.'s are taken to be 

unequal, then this statistic is t = (tl,...,tM),by (6.1.2). If, 

however, all the ai's are treated as being equal then, from (6.1.2), 

the minimal sufficient statistic is T = Eti. 

In this chapter, the effect of assuming that the ai's are unequal 

(and hence conditioning on t),when in fact they are equal, is investigated, 

as well as the effect of assuming that the ai's are equal (and hence 

conditioning on T), when in fact they are unequal. It is assumed that si  

and.t . are each the sum of ni  random variables. Let N = En.. It is 

further assumed that, under both forms of conditioning, the conditional 

distribution of s is asymptotically normal as N co (whether the ai's 

are equal or not, and under both the null and alternative hypotheses). 

This assumption will allow us to obtain simple quantities for measuring 

the asymptotic effect of making an incorrect assumption about the ai's. 

In Section 6.2 some useful general theory is given. In Section 6.3, 

three examples illustrate various aspects of the general theory. 

6.2 General theory  

From (6.1.1), it follows that the marginal distribution of ti  and 

theconditionaldistributionofs.given t. are, respectively, 

f(t.) = exp{a.t. + b.(a.,6) + c.(t.,6)1, 1 1 

- c. 1 	1 1 

where 

c.3. 	 1 (t.,$) = log 	exp{e.s. + a.(s.,t.)}ds.. 
3. 	3. 	1 (6.2.3) 
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Here and elsewhere, a sum is used rather than an integral if the random 

variables are discrete. Then the cumulant generating function of si  

conditionalont.has the usual exponential family form 

	

log E{exp(zsi)Iti} = ci(ti,8+z) - 
	 (6.2.4) 

whence, as in the usual theory for the exponential family, the conditional 

meanandvarianceofs.for any particular 8 are 

a 	 2 
 

	

var(silt.,0 = 	c. (t. , 	= 	E(s. It ,$). a 1 3_ 1 	 aB 	i 
a f3

2 

(6.2.5) 

Hence, because of independence, it follows that 

E(Slt,0) = 
M 9 	 3 Z c(t,$), var(Slt,$) = 	E(Slt,f3). Df3 	i i 	313 
i=1 

(6.2.6) 

From (6.1.2), it is not too difficult to show that the joint 

distribution of S and T is 

M 
f(S,T) = exp{8S + akT + A(S,T;6) + E 

where 6 = (a2  - al'... aM  - aM-1 
 ), and A(S,T;6) is defined by 

M 
exp{- E b,(a.,8)1 = if exp{8S + akT + A(S,T;(5)}dSdT. 

i=1 

(6.2.7) 

(6.2.8) 

Note that the vector 6 is the zero vector if and only if all the ai's 

are equal. Equation (6.2.7) has a similar form to (6.1.1) and hence 

similar arguments to those above can be used to show that 
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a 
E (sIT,B) =L-c(T,i3;i5), varcsIT,0 	— = 	E(sIT,a), (6.2.9) 

where 

C(T,$;6) = log f exp{$S + A(S,T;O}dS. 	(6.2.10) 

Notefrom(6.2.1)thatc.(t.,$)appearsinf(t.). Hence, by 

(6.2.5), knowledge of the marginal p.d.f. of ti  is enough to determine 

the mean and variance of si  conditional on ti. Similarly, knowledge of 

the marginal p.d.f. of T is enough to determine the mean and variance 

of S conditional on T. 

6.2.1 	Conditioningcmtwhenthect.'s are equal 

When the a. is are equal (with a common value a, say), the vector t 

is, for given $, still sufficient for a, even though it is not minimal 

sufficient. Hence the conditional distribution of S given t is 

independent of a and so provides a similar test of $ with a mean and 

variance which are known under the null hypothesis. The test will 

however be either identical to or less powerful than the test based on 

the distribution of S conditional on T which will be UMP similar. 

Hence, the asymptotic local power of the two tests (as N + m ) can be 

compared by considering the asymptotic relative efficiency (ARE) of 

the two tests. 

Let U1 and U2 both be the random variable S but conditional on t 

and T respectively. Now in the definition of the ARE, the alternative 

hypothesis approaches the null hypothesis as N m. Hence, t and T 

(suitably standardized) will, with probability one, approach their null 

expected values. Using this fact together with (6.2.6) and (6.2.9), it 
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follows that the ARE of U
1 
 to U

2 is 

[var(Sit,  R0) -  
= lim E 

174.. 
 
var(SIT, $0) 

(6.2.11) 

where the expectation in (6.2.11) is for t and T under the null hypothesis. 

Note that if two statistics U1 and U2 are both unbiased estimates of $, 

then their ARE would be the inverse of the ARE in (6.2.11). 

Since var(S1T,$) = E{var(Slt,$)IT} + varfE(Sit,$)1T1, it follows 

from (6.2.11) that < 1, which reflects the fact that U2  is the statistic 

giving rise to the UMP similar test. Finally, note that if 

E(silti, $0) = 7rti  (i = 1,...,M) where 1r is independent of i, then it 

follows easily that E = 1, which says that asymptotically no local 

power is lost by conditioning on t instead of T. The loss in small 

samples could in principle be investigated. 

6.2.2 	Conditioning on T when the ai's are unequal 

Ifthe. al's are unequal, then T is not, for given $, sufficient for 

a. Hence the conditional distribution of S given T will depend on a; 

in fact it depends on d, the vector of differences between the ai's. 

9 	 a2 
Let u(p = 7  C(T,$;(5) and a

2(6) = --TC(T,$;d), both expressions being 
 a$ 

evaluated at $ = $0. If the false assumption is made that the ai's are 

equal, then the asymptotic null distribution of the statistic 

S - 11(0) 
(6.2.12) 

a(0) 

is normal, not with zero mean and unit variance, but with mean 

{u (d) - p(0)}/a(0) and variance a2(d)/a2(0). Hence, one meaningful 

measure of making an incorrect assumption about the ai's in this case 

would be to calculate the actual asymptotic size of a test based on the 
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mistaken assumption that Z is asymptotically normal with zero mean 

and unit variance. Consider the one-sided test: 

reject H0: .a = ao 	if Z < -Z y, 	 (6.2.13) 

where Z is the upper y point of the standard normal distribution. In 

general, C(T,(30) = 0(N) for all S and hence, if p(S) - 11(0) is not 

asymptotically zero (i.e. E(SIT,60) is not asymptotically independent 

of a), E(ZIT,130) = O(✓N) and var(ZIT,130) = 0(1) as N 	00. In such a 

case, the asymptotic size of the test (6.2.13) would be either zero or 

unity depending on the sign of p(S) - p(0). However, in the case that 

P(S) - u(0) ÷ 0 as N =, the asymptotic size of the test (6.2.13) is 

actually 0(-Z E), where 0(-) is the cumulative distribution function of 

the standard normal distribution and E = lim a(0)/ a(d). Note that if 
114-oo 

E(silti,SO) 	= 1,...,M), where Tr is a constant independent of i, 

then E(SIT,P,o
) is independent of a. Therefore p(S) = u(0), whence the 

asymptotic size of the test is, in general, neither zero nor unity. 

6.3 Three examples  

6.3.1 	Testing the common variance of independent normal samples  

with possibly different means  

Suppose that M independent data sets are observed. The ith data 

set contains n. observations (x.., j = 1,...,n.) which are each 

independently normally distributed with mean pi  and variance a
2 

(which 

is independent of i). The parameters a2; and u = 41.11/ .......,um) are all 

unknown. It is desired to test H0: a
2 
= a
02 

against the alternative 

H1: a2 > ao
2
. The likelihood of the data is 

n. 	n. 
M 	M 

L(X) = (27a
2
)
-N/2

exp{- 
1 
 -a
-2 

 ( E 	E X 	- 2 E p. EXij 	E h.P.
2
) }. 

i=1 j=1 	i=1 j=1 	1=1 

(6.3.1) 
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1 
where N = Eni. In the notation of (6.1.2), ai  = pi  a

2
, 	= - -2- a-2  , 

S = EEXij2,. ti  = EjXij  = niXi, and T = EEXij  = NX.. . 

For the moment, assume that the pi's are all equal. Then using 

well-known normal theory it can show that, in the notation of Section 6.2, 

var(Slt, 
0 
 )/var(SIT,B

0 
 ) = (N-M)/(N-1), which is independent of t and T. 
 

For simplicity, assume now that the ni's are all equal with common value 

n. Then N = nM. If we fix M, and let n increase to infinity, then we 

obtain t = 1. Therefore, for large sample sizes, little power is lost 

by assuming that the pi's are unequal when in fact they are equal. 

However, if we fix n and let M increase to infinity, then we obtain 

= 1 - n. Hence, if there are many samples with small sample sizes, 

appreciable local power can be lost by assuming that the 	are are 

unequal when in fact they are equal. Both these conclusions are easily • 

interpreted in terms of the degrees of freedom of the relevant estimates 

of the variance. 

Now assume that the pi's are unequal. Again using normal theory, it 

2)  = 
is easily shown that E(S17.., a2) = 	+ Eni(pi  - 

where p = En.p./N. Excluding the degenerate case a
2  = 0, E(SIX..,a2  ) 

is independent of the pi's if and only if all pi's are equal. Hence, 

by the remarks of Section 6.2.2, the test. (6.2.13) will always have an 

asymptotic size of zero or unity. 

6.3.2 	Trend analysis for Poisson processes  

Suppose that M, possibly inhomogeneous, Poisson processes are 

observed. The ith process is observed over a time zi  during which ni  

events are observed (i = 1,...,M). Let the occurrence times of the 

events of the ith process, as measured from the beginning of the period 

Specifically, 
13 

assume that the ith process has a rate function X(u) = exp(ai  + (3u). 
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This situation was studied in some detail in Section 5.2.4, except 

that there it was known a priori that all the ai's, were equal. 

Testing for the existence of a general trend in the M data sets 

is equivalent to testing the null hypothesis B = 0; the ai's are then 

nuisance parameters. The likelihood of the data is 

M 	 M n 	M ai  azi  
L(u) = exp{ i:aini + $ E 	u.. - 	e 1(e 	- 1)/0. 	(6.3.2) 

1 
 

i=1 j=1 ] 	i=1 

In the notation of (6.1.2), ai  = aif $ = 5, si  = Ejuii, ti  = n.. 

tulertheraalllYpothesis(i-e-a= 0),thetintesuid(j= 1,—,11.),  

conditional on ni' 
are the order statistics from a uniform distribution 

on [0,zi]. Therefore, si  is the sum of ni  i.i.d.r.v.'s from a 

uniform distribution on [0,zi]. Hence, if n = (ni,...,nm), then 

1 
i E(SIn, 	

1 
= 0) = 	E n.z., var(SIn, a = 0) = — E n.z

2
. 	(6.3.3) 

2 	 12  
i=1 	 i=1 

Let N = Eni  and Y = Ezi. Now because of the Poisson nature of the 

process, it is easily seen that under the null hypothesis and conditional 

on N, the vector n has a multinomial distribution, with parameters N 
ai 	a. 

and p = m), where pi  = z.e /E.z.e 3; note that if all the 3 3 

ct.
3
'sareequal,theri pi  =z.3./Ez.. Then 

M 
E(SIN, a = 	= 2 —N E p.z., 

(6.3.4) 

1 
var(SIN, $ = 0) = N{-

1 	
E p z.

2 
 -,(7F E pizi*

2 
3 

i=1 	i=1 

Nowassumethatallthea.'s are equal. Then, using (6.3.3) and 

(6.3.4), it is found that 



102 

var(Sln, S = 0) 	Eqiri
2 

var(SIN, S = 0) 	4Er.3-3(Eri2)
2 ' 

(6.3.5) 

where qi  = ni/N and ri  = zi/Ezi. Note that ail.  = Eri  = 1. The 

expression (6.3.5) will be unchanged as N . if we fix M and let the 

ni 4...withtheproportions. ql  fixed, and will be independent of N. 

Under the null hypothesis, E(qi) = ri, so that, taking expectations of 

(6.3.5), one obtains the following ARE: 

Zr.
3 
1 

(6.3.6) 
4Er.3  - 3(Zr.

2
)
2 

The quantity f is never greater than unity. Note that 

1 
E(si lni) = 1- nizi, so that, by a remark in Section 6.2.1, if all the 

z.'s(andhenceallther.'s) are equal, then f = 1 (as can be 

verified from (6.3.6)). As an example of (6.3.6), consider data set 

(i), full details of which are given in Appendix 4. When the type 0 

events are observed, the type 1 events can be broken up into 14 

independent Poisson processes, each with the same rate function 

1(u) = exp(a + 8u). In Section 5.2.4, a test of a = 0 was carried 

out using the correct model for 1(u). If the incorrect model, 

1(u) = exp(ai  + 8u) for the ith process, is assumed, then, using (6.3.6), 

it is found that the resulting test is only 72% asymptotically efficient. 

It is interesting to find a lower bound for 	for each M. The 

method of solution is quite complicated but involves the use of 

Lagrange multipliers and the temporary assumption that M is a 

continuous parameter; the details will not be given here. However, the 

solution is that the minimum value of E is achieved when one of the 

proportions, say r1, assumes a particular value R, and the other M - 1 

proportions all assume the value (1 - R)/(M - 1), where R has one of the 

two values R1 = DA 	2{11(M - 1)}1/2  cos(1- 0)]-1, or 3 



(1 - R)
3 + (k - 1)

2
R
3 

min 	- 
f(1 - R)

2 
+ (k - 1)R

2
1
2 

(6.3.7) 
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, 	1 	 r 	1, 
R2  = 	- 2(M (M - 1)/1/2  COS("1sff I 8)]-1  , and 	= cos-1( (1 - 	1/

f. 

Of the two values, R is chosen to be the one which minimizes (6.3.6). 

It then follows that for each fixed M 

For M = 2, 3 and 4, (R, mine ) are correct to two decimal places 

(.79, .75), (.68, .65) and (.61, .59) respectively. If we choose, say, 

ri =(4 - 1)-1/2 andr.=(1  - r1  )/(k - 1) (i = 2,...,k), then 
from 

(6.3.6) an expression is obtained which approaches zero as M 00. 

Hence, the universal infimum of f must be zero. 

The conclusion is that, if the ails are assumed to be unequal 

when in fact they are equal, appreciable local power can be lost, 

especially if M is large. However, when all the zi's are equal (with 

a common value z), si  is under the null hypothesis and conditional on 

ni, the sum of ni  i.i.d.r.v.'s from a uniform distribution on [0,z], 

andhenceS=Esi  is the sum of N i.i.d.r.v.'s from the same distribution. 

The distribution of 8, therefore, depends on n through N only, and so 

conditioning on n and N will produce identical tests. Consequently, 

no power at all is lost in this case by assuming that the ails are 

unequal when in fact they are all equal. 

Now assume that the a 's are unequal. As can be seen from (6.3.4), 

E(SIN, S = 0) will usually depend on the ails. Hence, a test such as 

(6.2.13) based on the incorrect assumption that the ai's are equal will 

usually have an asymptotic size of zero or one. However, if all the 

z.'s are equal, the argument of the preceding paragraph can be repeated 

(because it is independent of the values of the ails), so that, in this 

special case, conditioning on n and N still produces identical tests, 

with identical power functions, which are independent of the values of 

the a.1's. 



E (si lti , S = 0) = var(s.lt., a = 0) - 
ni 	1 3. 

n.
2
(n. - 1) 

t . 1 1 
t. (n. -t . ) 2, . (n.-t. ) 
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6.3.3 	Binary regression  

Suppose that M sets of independent binary random variables 

(Y13. .,j=1,....,ni)areobserved,wheren.1 
 is the number of observations 

in the ith data set. Without loss of generality, assume that the Y. 13 

are alleitherzeroorone.CorrespondingtoeachY..ip 
 there is also 

an explanatory variable; x
ij
, which also only takes the values zero or 

me.Fortheithdataset,supposethatt.ofthexij's equal one, and 

the remaining (ni-Li) xij's equal zero. Assume the following logistic 

relationshipbetweentheYij'sandxij's : 

(6.3.8) log 
P(Y..

13 
 = 0) 

= a.
1 
 + $x

1
..
3 
 , 

=P (Y 	1) 11  

where8(whichiscommontoallthedatasets)andthea.1's are all 

unknown. It is required to test whether the distribution of the Y13
..'s 

dependsonthex..'s,thatiswhether$=0.Thea.s are then nuisance 
13 	 1 

parameters. The likelihood for the data is 

M ni 	M n. 
exp( E ai  E1  Yi. + a E 	E1  x..Y..) 

n L(Y) = 
M 

i=1 	j=1 	3 	i=1 j=1 13  7 .  (6.3.9) 

II 	111  {1 + exp(ai  + 8:xij)} 
i=1 j=1 

	

In the notation of (6.1.2), ai  = ai.S = a, si 	zixijyii, 

ti  = Z.Y... The quantity ti  is just the number of observations in the 
3 13 

ith data set with Yij  = 1, while si  is the number of observations with 

bothx..and Y. equal to 1. Hence, under the null hypothesis 
13 

(i.e. a = 0), si  conditional on ti  has a hypergeometric distribution. 

Therefore 

(6.3.10) 
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Note that if the ratio 2,i/n. = Tr, a constant independent of i, then 

E(si lti,f3=0)=fft.1  (i = 1,...,M). Therefore, by the remarks of 

Section6.2.1,ifallthea.'s are equal, no asymptotic local power 

will be lost if we assume them to be unequal. Further, if the ai's 

are unequal, and we mistakenly assume them to be equal, the actual 

asymptotic size of the test (6.2.13) will not, in general be zero, 

unity or y; the actual size will be investigated later when M = 2. 

Now assume that all the ai's are equal. Then, by similar arguments 

to those previously, S = Esi  conditional on T = Eti  has a null distribution 

which is hypergeometric with 

E(SIT, S = 0) = 1/11  , var(SIT, 5 = 0) - TI(72-(2()N-L)  , 	(6.3.11) 1   

whereL=E9—,N = En
1.. Also, as both t.1 

 and T have, under the null 
 

hypothesis, binomial distributions, it is easily seen that the null 

distribution of t. conditional on T is also hypergeometric with 

Tni 	T(N-T)ni(N-ni) 

I 	 ' 
E(t.pr, a 	0) 	, var(t IT 	= 0) - 	 

N2(N - 1) 
. (6.3.12) 

Therefore, if we let Tri  = ii/ni  and qi  = ni/N, and if the fti's, 

nIs and N are allowed to go to infinity with the proportions Tr., q. 1 

and M fixed, then the ARE is 

r 1 Eq1.w.(1 - wi ) 

EgiTri (1 - Eqiwi ) 
(6.3.13) 

The quantity C is never greater than unity, but by an earlier 

remark will be equal to unity if the ITi's are all equal (but not all 

equal to either zero or one). For each M, the minimum attainable 

valueofeiszero.ThisoccursIgherisomeoftheTr.' 
1 s, but not all M 
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of them, equal zero (i.e. ti  = 0) and the rest of the Tri's equal one 

(i.e. L. = n). This is intuitively reasonable because it says that, 

in each data set, all the explanatory variables have the same value 

and so no data set by itself has any information about a. However, 

thefactthatthe7r.'s are not all zero or one implies that information 

about $ can be obtained by pooling the M data sets and treating them 

as one data set. 

Now assume that the a.'s are unequal. By the remarks of Section 

6.2.2, the asymptotic size of the test (6.2.13) will usually be either 

zero or unity. However, by a previous remark, this will not be so if 

the Ir.'s are all equal. The mathematics which follows is useful in 

finding the asymptotic size of the test (6.2.13) in this special case. 

Because the argument is quite complicated, we restrict ourselves to 

the case M = 2. As we are only concerned with the size of the test, 

we shall henceforth assume that a = 0. 
ai 	a. 

Let 7 = 71  = Tr2, and pi  = e /(1 + e 1) (i = 1, 2). Now it 

follows directly from (6.3.10) that E(Slt, a = 0) = E(alT, a = 0) = T, 

where t = (ti,t2) and T = t1  + t2. However, var(SIt, S = 0) is much 

more difficult to obtain. Since t1 and t2 have independent binomial 

distributions (T is only binomially distributed if p1  7 p2), the 

conditional distribution of t1 or t2 
given T is found easily. Using 

this fact and (6.3.10), it follows that 

Tr 	(1-Tr) 
nie

a
fD(ni-1,n2,T-1,d)-e

s
D(211-2,n2,T-2,01 

{ 

var(SIT, 8=0) - D(n1,n2,T,6) 

+n
2fp(nn2-1'T-1'(S)-D(n1  ,n2 " -2 T-2 01 

(6.3.14) 
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where 

T (n1) (n2 
D(ni,n2,T,6) = E . 	e67 

j=0 3  1-3  
(6.3.15) 

ni+n 

T and 6 = al  - a2. When 6 = 0, D(n1,n2,T,0) = 
(2) 

and the variance 

in (6.3.11) is obtained,. The equations (6.3.14) and (6.3.15) do not 

give any insight into the asymptotic behaviour of var(SIT, = 0) 

when 6 # 0. We need therefore an asymptotic form for D(n1,n2,T,6) as 

nl, n2  and T approach infinity. First, note the following: 

P(T = t) = exp{a2t + B(a2,6) + C(t;6)}, 	(6.3.16) 

where 

6+a2 	a 
B(a2' 6) = -n1 log(l+e 	)-n2 log(l+e 

2
); exp{C(t76)} = D(nn2,T,6). 

(6.3.17) 

The quantity C(t;6) is the same as that in (6.2.10) in the special case 

8 = 0. Assume that nl, n2  and T approach infinity together in fixed 

proportions. Then, modifying the approach of Daniels (1954), we can 

obtain asymptotic expansions of functions of the form (6.3.15), where 

T=E17i  +EW3.,thelli'sbeingi.i.d.r.v.'s,theW.3
's being i.i.d.r.v.'s 

andalltheV.'sandW.
3
's being independent of each other. The 

 

following asymptotic expansion can then be obtained for exp{C(t;6)}: 

exp{C(t;6)} ti 	
exp{-at - B(c1,6)}  

a2 	1/2 ' 
{-27r 	B(a,6) 	} 

Da 	I a=a 

(6.3.18) 

where a is the solution of 
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- -a B(a,S) = t. 
as 

(6.3.19) 

Substituting (6.3.17) into (6.3.18) and (6.3.19), it is found that 

v2
-T

(l+v ) 1(1 + v2) 
n
2 

1 
D(n1,n2,T,6) (6.3.20) 

1:2 ' 

(l+v1 )
2 

(l+v2)
2 

1. 11,.

11 	
n
2
v
2  

where 

  

[{(ni-T)+e
6(n2-T)1

2+4e6T(nl+n2-T)]
1/2 

- (nl
-T)-e(n2-T) 

(6.3.21) v1 - 2e(n1
+n2

-T) 

 

 

and v2 = e
6
v
1
. If 6 = 0, then the asymptotic expansion obtained is 

D(n1,n2
,T,O) N 

N 
N+— 

2 

1 

2 
(27) 	T 

1 
T+-- 2 

(N-T) 

1 
N -T+-- 2 

(6.3.22) 

which is also obtained using Stirling's formula on N = nl  + n2, T 

and N - T. Note that if nl, n2  and T approach infinity in fixed 

proportions, then vi  is asymptotically the same whether we use 

(n1, n2, T) or, say (nl  - 1, n2, T - 1). Then substituting (6.3.20) 

and (6.3.21) into (6.3.14), it follows that 

v. 	v.y 
7(1-7) 

var(SIT, $ = 0)N 	T(n-T) + 2n.T 	- n.N ( 	vl } , (6.3.23) 
ni 	3 	1+vi 

	l+ vi  

where (i,j) = (1,2) or (2,1). If we incorrectly assume that the ai's 

are all equal, then, from (6.3.11) and noting that 7 = L/N, the test 

(6.2.13) becomes: reject H0: $ = 0 if 
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(N-1)
1/2

(S-711)  Z = 

	

	1/0 < -z 
{(1-TOT(N-T))-/'

y  (6.3.24) 

The actual asymptotic size of this test can then be determined 

from (6.3.23) (as, by a previous remark, E(SIT) = ITT, even if the ai's 

are unequal). However, one final adjustment needs to be made. As 

nl, n2  and T approach infinity, T/N converges with probability one to 

E(T/N) = (nip).  + n2p2)/N, and this should be substituted in (6.3.21), 

(6.3.23) and (6.3.24) for T/N when calculating the asymptotic size of 

the test. When this substitution is carried out, it turns out that 

vi/(1 + 	= p2, so that after some manipulation, we obtain 

q
1
p
1
(1-p

1
) + q2p2  (1-p2) 

var(ZIT, 	= 0) 	E
-2 

- 
{q1P1+q2P2}{q1(1-P1)+q2(1-132))  

(6.3.25) 

as n1, n2  -+ co with qi 
	1 
= ni/N fixed. The actual asymptotic size of the 

test (6.3.24) is then 0(-ZyE). Note that if ID].  = p2, then the right-

hand side of (6.3.25) is 1, so that the asymptotic size of the test 

(6.3.24) is y. This is in fact the maximum possible asymptotic value 

for var(ZIT, B = 0). The minimum possible value is zero which is 

attained when pl  = 0, p2  = 1, or vice versa; this is equivalent to the 

degenerate case S = 2.2  with probability one. Therefore, since 

var(ZIT,. = 0) always lies in [0,1], it follows that for all possible 

values of pl  and p2, the actual size of the test (6.3.24) lies in the 

interval [0,y]. 
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6.4 Conclusions  

The general theory and examples show that, for exponential 

families, much power can be lost by assuming that the nuisance parameters 

are unequal when in fact they are all equal. Conversely, if the nuisance 

parameters are unequal, the assumption of equality will, in general, 

lead to inconsistent tests. However, the theory and examples also show 

that if the samples are "balanced" in the sense that E(si lti, 60) is 

proportionaltot.I
,it matters very little (and sometimes not at all - 

see Section 6.3.2) whether the nuisance parameters are assumed equal 

or not. This conclusion is similar to that of Welch (1937) in relation 

to the Behrens-Fisher problem. In this problem, it is desired to test 

the difference between the means of two normal samples which have 

. unknown and possibly unequal variances. Welch investigated the effect 

of assuming that the two population variances are equal (and so using 

a pooled estimate of the variance), when in fact the two variances are 

unequal (implying that each variance should be estimated separately). 

His broad conclusion was that, provided the two sample sizes are equal, 

no great harm is done by ignoring the inequality of the variance. 

Although this problem does not fit into the theoretical framework 

of Section 6.2, it is interesting to note the similarity of the 

conclusions in relation to "balanced" samples. 
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CHAPTER 7: ON SINGLE SERVER QUEUES WITH MARKOV RENEWAL  

DEPARTURE PROCESSES 

7.1 Introduction  

In this chapter, we study a number of single server queues, all of 

which have a Poisson arrival process, and a departure process which is 

a Markov renewal process; as was mentioned in the introduction to 

Chapter 3, the Markov renewal process is a very special r.m.p. process. 

The relatively simple structure of the departure process is, in all the 

queues we shall study, partly a consequence of the even simpler structure 

of the arrival process. The aim of this chapter is to find necessary 

and sufficient conditions for the departure process of such queues to 

be a renewal process. The solution of this problem has general 

importance in the modelling of tandem queueing systems, that is, where 

several queues occur in series, the departure process of any queueing 

system providing the arrival process for the following queueing system. 

If the departure processes are renewal, then the modelling of tandem 

queueing systems will, in general, be greatly simplified. In this 

chapter, we develop a general approach which applies to all the 

examples, and leads to results, some of which are well known and others 

which are apparently new. 

In Section 7.2,we introduce the various queueing systems considered 

in this chapter and briefly discuss previous work on the structure of 

their departure processes. In Sections 7.3 and 7.4, we prove some 

results concerning a special type of Markov renewal process and a 

special type of queue. These are used to analyse several queueing 

departure processes. Finally, in Section 7.5, we mention some possible 

developments of the work in this chapter. 
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7.2 Some single server queues with Markov renewal departure processes  

Throughout this chapter, it will be assumed that all the queueing 

systems being studied are stationary. In general, this corresponds to 

the mean effective service time being less than the mean inter-arrival 

time. 

Probably the best known single server queue is the M/G/1 queue. 

Its arrival process is a homogeneous Poisson process (with mean inter-

arrival time X
-1

), while its service times are independent (of each 

other and of the arrival process) and identically distributed (with 

arbitrary distribution function G(.)). It is known that the departure 

process of the queue is Markov renewal in both the finite and infinite 

capacity cases (Neuts, 1965). The capacity of the queue is just the 

maximum number of customers allowed to wait for service at any one 

time (excluding the customer being served); if the queueing capacity 

is K, we speak of the M/G/1/K queue. The M/G/1/K queue in which the 

service times are identically zero and the M/G/1/O queue (i.e. no 

customers allowed to wait for service) are trivially seen to have 

renewal departure processes, the latter because it is a Markov renewal 

process with one state (which is a renewal process by definition); we 

assume that neither of these conditions holds. 

Burke (1956) and Reich (1957) showed that the departure process of 

the M/M/1/= queue (i.e. negative exponential service times and infinite 

capacity) is a Poisson process with the same rate as the arrival process. 

Finch (1959) studied the M/G/1/K queue (1 < K < CO) with service time 

distributions possessing a continuous second derivative. He proved 

that the departure process is a renewal process if and only if G = M 

and K = =. King (1971) showed that the M/D/1/1 queue (i.e. the service 

times are constant and the queue has capacity 1) has a renewal departure 
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process; of course, the service time distribution is not then twice 

differentiable. Using Markov renewal methods, Disney, Farrell and 

de Morais (1973) showed that the two cases WM/1/03 and M/D/1/1 

exhaust the possibilities for renewal departure processes from non-

trivial M/G/1/K systems. 

The other queueing system to be considered is a special single 

server queue with state-dependent feedback; its properties have been 

studied extensively by Davignon and Disney (1976). It is like an 

M/G/1/0,  queue, except that customers after being served either 

immediately join the queue again with some probability or depart 

permanently with the complementary probability. Such a probability is 

conditioned upon whether or not the previous unit fed back, upon the 

increments in the queue length between two consecutive service 

completions, and upon the length of service received. Davignon and 

Disney (see their Theorem 6.2.1) show that the departure process for 

this queue is a Markov renewal process, although the stationary 

transition probabilities of the departure process are in general 

rather difficult to write down explicitly. The general problem of 

finding when the Davignon-Disney queue has a renewal departure process 

appears difficult, mainly because the probability of feedback is 

conditioned upon a variety of things. By limiting the nature of this 

dependence, necessary and sufficient conditions are found for the 

departure process to be a renewal process. 
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7.3 A special Markov renewal process  

In this section, we prove-a useful result concerning a special 

Markov renewal process. First, however, a few definitions and 

assumptions are required. Suppose that the Markov renewal process 

has state space (0,1,...,m). We can think of this process as a 

multivariate point process with m + 1 event types; it is a special 

type of r.m.p. process because each of the m + 1 event types act as 

regeneration points for the entire multivariate process. All the 

results that follow in this section apply whether m is finite or 

infinite. Let T
0 
 s 0, TT2'... be the transition times of the process 

and define Xt to be the state into which the particle enters at time 

Tr  Then the Markov renewal process is defined by the transition 

probabilities 

(7.3.1) 

Let 

co 

 

 

r — st f*k  (s) = ) e 	F
jk

(dt) 
j 	0 

(7.3.2) 

and let F(s) be the (m+1) x (m+1) matrix whose (j,k)th element is 

f*
k 
 (s). Assume that Pr(T

1
< ) = 1 and that the Markov renewal process 

j 

is stationary; conditions under which the process is stationary will 

not be given here as they are not used directly, but such conditions 

can be found, for instance, in Pyke (1961) and Pyke and Schaufele 

(1966). 

Associated with the Markov renewal process is a Markov chain with 

transition matrix P E F(0). Assume that the Markov chain is both 
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ergodic (i.e. aperiodic and positive-recurrent) and irreducible. Then 

it is known (Feller, 1968, Section XV.7) that there exists a unique 

equilibrium probability vector 7
T 

= (Tr0
,...,7m) with 

.115117)=7J,¶111.=1,anc17.>0(i = 0,1,...,m). Note also that 

Pl = 1. 

Let 

1)*(s) = E
TF(s)].. 	 (7.3.3) 

This is easily seen to be the Laplace transform of the p.d.f. of 

the interval between two successive transitions of the Markov renewal 

process (without regard to the types of transition). By considering 

the joint distribution of n successive intervals of the Markov renewal 

process, it is easily seen that a necessary and sufficient condition 

for the Markov renewal process to be a renewal process is that 

Tr T 	F (s . )1 = 	II p* Cs . )  II - 
i=1 	i=1 

(7.3.4) 

foralls.>0 (i = 1,...,n), and all n > 1. The left-hand side of 

(7.3.4) represents the joint distribution of n successive intervals of 

a Markov renewal process, while the right-hand side represents the 

joint distribution of n successive intervals of a renewal process. 

In general, (7.3.4) is not easy to solve for F(s); the number of 

solutions appears to increase with the size of the state space. 

However, by imposing certain restrictions (which are satisfied by all 

our queueing examples), it is possible to solve (7.3.4). With these 

restrictions there are only two possible solutions: the distribution 

of T1  is independent either of X0  or of X1. This is proved in 

Theorm7.3.1whichfcalows.LetA.(t) = ZkFjk(t) E P(T1  ItlX0  = j) 
3 

(j = 0,1,...,m). 
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Theorem 7.3.1: Suppose that (i) P(X1  = IOC°  = j) = 0 	< j-2, 

j = 2,...,m); 	(ii) P(xl  = j-11X0  = j) > 0 	= 1,...,m); and 

(iii) A1  (t) = A2(t) = 	= Am(t). Then the Markov renewal process 

is a renewal process if and only if either (a) AO(t) = Al(t), or 

(b) P(X1  = k, Tl  < t) = P(X1  = k). P(Ti  < t) (k = 0,1,...,m). 

In terms of Laplace transforms the above conditions are 

respectively equivalent to (i) ftk  (s) = 0((k < 	j = 2,...,m); j 

(ii) ft 	(s) # 0 (j = 1,...,m); (iii) a1(s) = a2(s) = 	= a (s), j,j-1 

where F(s)1 = {a0(s),...,am(s)1; (a) F(s)1 = p*(s)1; and 

(b) TF(s) = p*(s)rT 

Proof: Although the theorem can be proved probabilistically, it is 

simpler to do so analytically. The proof is straightforward, although 

the details are somewhat involved. Consequently, only an outline will 

be given here. The sufficiency is trivial and is proved by substituting 

the alternative forms of (a) and (b) in (7.3.4). Let r
T
F(s) 

= {bo(s),...,bm(s)}. For the necessity, note first that (7.3.4) is 

true when n = 1 by definition (i.e. equation (7.3.3)). When n = 2, 

it is found after some manipulation that (7.3.4) is true if and only 

if either a0(s) = a1(s) (which is easily seen to be equivalent to 

condition (a)) or if b0  (s)= rop*(s). For the remainder of the proof, 

we assume that condition (a) does not hold and we proceed by induction. 

Assume that (7.3.4) is true for n = 1,2,...,L, where L < m (if m is 

finite)andthatb.(s) = Trip* (s) (i = 0,...,L-2). Then further 

manipulation shows that (7.3.4) is satisfied for n = L+1 if and only 

if bL-1(s) = 7L-1
p*(s). The necessity of condition (b) is then obvious. 

The first part of the proof of Theorem 7.3.1 is also enough to 

prove 
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' Corollary 7.3.2: A two state Markov renewal process is a renewal 

process if and only if either (a) P(X1  = 0, Tl  < t) = F(X1  = 0).P(T1  < t), 

or (b) P (X0  = 0, T1  < t) = P (X0  = 0).P(Ti  < t). 

For two state Markov renewal processes, m = 1 (i.e. the two states 

are 0 and 1). Hence, conditions (i) and (iii) of Theorem 7.3.1 are 

redundant in this case.-  Condition (ii) is only used in the induction 

part of theorem 7.3.1. This part is not needed to prove corollary 

7.3.2, as the conditions (7.3.3) and b0(s) = Trop*(s) immediately imply 

b1(s) = (1 - Tr0 
 )p*(s) for a two state Markov renewal process, that is, 

condition (b). 

In the single server queues which will be studied, the states of 

the Markov renewal departure process are the number of customers 

waiting for service just prior to or just after a departure. At each 

transition (i.e. a departure), the queue size can be reduced by at 

most one customer. In Theorem 7.3.1, this fact is reflected in 

condition (i). The probability in condition (ii) is the probability 

that no customers entered the queue between two successive departures 

given that the queue size at the beginning of this interval was 

j (> 1); this will always be positive and independent of j in all the 

examples. Condition (iii) reflects the fact that, in all the examples, 

the service time distribution is independent of the queue size at the 

beginning of the service. This last fact implies a more specific 

transition matrix than that considered in Theorem 7.3.1. This more 

specific matrix will be used in Section 7.4 where some queues with 

infinite capacity are considered. However, Theorem 7.3.1 will be 

sufficient for the following finite capacity example, although it should 

be stressed that the conclusions of that theorem also apply to queues 

with infinite capacity. 
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7.3.1 	The M/G/1/K queue  

We assume that 1 < K < co, and we use the notation of Section 7.2. 

It is easily seen that the departure process is a Markov renewal 

process with state space (0,1,...,K) (Disney, Farrell and de Morais, 
CO 

1973, Theorem 2.4). Let g*(s) 	j e 	estG(d,  ) where G(*) is the 
0 

distribution function of the service times. Then the entries of F(s) 

are 

cl— 

x (_x)k dk 

X+s lc! dXk 
g*(X+s); j = 0; k = 0,1,...,K-1; 

(k+1-j):k+1-j g*(X+s); j = 1,2,...,K; k = j-1,...,K-1; 

f*k  (s) = 	0; j = 2,3,...,K; k = 0,1,...,j-2; 3 (7.3.5) 

K-1 

A+s g* (s ) - I f*Ok  (s); j = 0; k = K; 
k=0 

K-1 
g*(s) - I f* (s); j = 1,2,...,K; k = K. 

k=0 3k  

Therefore from (7.3.3) and (7.3.5), one obtains 

F(s)1 = g*(s)01(X+s), 1,1,...,11T; p*(s) = g*(s){1 - 7r0s/(X+s)}. 

(7.3.6) 

Assumptions (i), (ii) and (iii) of Theorem 7.3.1 are satisfied. 

However, for condition (a) to be satisfied, it is necessary that 

X/(X+s) = 1 for all s > 0 (by (7.3.6)),.which is clearly not possible. 

Therefore the process is a renewal process if and only if condition (b) 

is satisfied. At this point, we consider the cases K = 1 and K > 1 

(-X) 	a k+1-j k+1-j 
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separately. 

When K = 1, one finds from (7.3.5) that 7TF(s) = p*(s).(g*(X+s)/g*(s), 

1 - g*(X+s)/g*(s)} so that condition (b) is true if and only if 

-Cs -1 
g*(X+s) = 7

0 
 g*(s), i.e. g*(s) = e 	, where C = -X 	log 70' which 

says that the service time is a constant, C. In fact any positive 

constant, C, will satisfy condition (b) of Theorem 7.3.1 (i.e. 

7TF(s) = p*(s)7T) as can be verified by putting s = 0 in this equation, 

and solving for 7
0 
 to obtain r

0 
 = e-CX  . 

When K > 1, it is necessary to write down only the first two 

equations of the K + 1 equations 7TF(s) = p*(s)7T. Using (7.3.5) and 

(7.3.6), these are 

g* (x+s) {ri 	roxi ( x+s )  = 0P* (s) 
	

(7.3.7) 

Tr2g*(X+s) -X — g*(X+s){71 + 7X/(X+s)} = 71p*(s). 
	(7.3.8) 

Equations (7.3.7) and (7.3.8) are identical to equations (3.1) 

and (3.2) respectively of Disney, Farrell and de Morais (1973), except 

for the notation. These authors manipulate the two equations to show 

that G must be exponential and that 71  = 70(1 - 70). It is not too 

difficult to solve the Markov chain equilibrium equation, 7TP = 7T 

when G is exponential; see, for instance, Finch (1958). The solution 

is that, if G has mean p-1, then 

(1 - p)p  
- 	, if p 	A ; 	i = 0,1,...,N+1, 	(7.3.9) 

1 - pK+1 

= 1/(K + 1), 	if p = X; 
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where u = X/p. It is easily seen that 71  = 70(1- 70) is never 

satisfied by (7.3.9) when K is finite. Hence, we have shown that, 

for 1 < K < co, the M/G/1/K queue has a renewal departure process if 

and only if K = 1: and the service time is a constant. The case K = = 

will be considered in the next section. 

7.4 Some queues with infinite capacity  

In this section, two main results are proved, one a special example 

of Theorem 7.3.1 for Markov renewal processes with infinitely many states, 

the other a very general result about the departure processes of certain 

types of queues. We combine these two results to find when the departure 

processes of some queues with infinite capacity are renewal processes. 

First, we have the theorem concerning Markov renewal processes. 

Theorem 7.4.1: Suppose that we have a stationary Markov renewal process 

with infinitely many states and that the elements of F(s) are of the 

form 

?LT
k
(s) 

X+s 
j = 0; k = 0,1,2,... ; 

ft (s) = 3k 
(7.4.1) 

Tk+1-j (s); j = 1,2,...; k = j-1,j,...; 

0; j = 2,3,... ; k = 0,1,...,j-2; 

03 

andthatT
0 

 (s) 	0. Let c()(s;z)=ET.(s)z
i. Then the process is a 

i=0 
renewal process if and only if 

(s;z) - (X+s)p*(s)()(0;z)(z-1)  (1)  s{(1) (0;z) - 1) + X(z-1) ' 
(7.4.2) 
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where 

P* (s) = 10 (s;1){1 Tros/(X+s)} 	 (7.4.3) 

CO 

and 7 	= 1 — 	i E ta(0;Z)/az)z=1 • 0 	
i=0 

, Proof: From (7.4.1), we see that F(s)1 = 0(s;1) .(A/(14-s), 1,1,....}T . 

Assumptions (i), (ii) and (iii) of Theorem 7.3.1 are satisfied. It 

follows immediately that condition (a) can never be satisfied. Therefore, 

by Theorem 7.3.1, the process is a renewal process if and only if 

rTF(s) = P*(s)1T. It is easily seen from (7.4.1) that p*(s) is given 

by (7.4.3). 

Because of the special form of F(s), the equation Tr
TF(s) = p*(s)TrT 

is easy to solve. The simplest method uses generating functions; Cox 

and Miller (1965, example 3.19) solve this equation when s = 0 for Tr 
CO 

intermsofP(EF(0)).Let11(z)=ETr.zi. After some manipulation, 
i=0 

one obtains the condition 

7

0()
0(s;z)[1-Xz/(X+s)) 

11(z) =  	 (7.4.4) (s;z) - p*(s)z 

The above equation is'a defining equation for 11(z) when s = 0. 

Substituting the right-hand side of (7.4.4) with s = 0 into the left-hand 

side of (7.4.4) leads to (7.4.2). The value of Tr
o 

given above is 

obtained by Cox and Miller, Section 3.8, equation (122); they also 
CO 

show that the associated Markov chain is ergodic if and only if E iTi (0)<1. 
i=0 

In each of the examples we shall consider, the function Ti (s) used 

in (7.4.1) is the Laplace transform of the joint probability that the 

effective service time (i.e. the time between successive departures) 
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is in it, t+dt) and that during this service time there are i arrivals. 

The quantity Ti(0) then is just the probability that there are i 

arrivals during a service. 

We next give a useful result concerning the departure processes of 

certain types of stationary queues, but first we must define the input 

process of a queue. The input process of a queue (as distinct from 

the arrival process) is the set of arrival times of the customers who 

actually receive service. In some queues, where all customers receive 

service, the arrival and input processes are identical; in other queues, 

such as queues with finite capacity, some customers are turned away and 

so the arrival and input processes are different. 

The result, given as Theorem 7.4.2, applies to those queues whose 

input process is (i) a renewal process and (ii) whose interval length 

distribution is uniquely determined by its moments, all of which are 

assumed to be finite. Conditions under which a distribution is uniquely 

determined by its moments are given, for instance, in Feller (1971, 

Section VII.6). For the sake of brevity, only an outline of the proof 

of the theorem will be given; the arguments used can be justified by 

the conditions of the theorem. 

Let NI
(x) and ND

(x) be the number of customers who respectively 

enter and depart (after service) from a queueing system in the interval 

(0,x]. Let W(x) = N I  (x) - ND(x). 

Theorem 7.4.2: Suppose that (i) the input process of a stationary 

queueing system is a renewal process whose interval length distribution, 

Q(*), is uniquely determined by its moments, all of which are assumed 

to be finite. Further, suppose that (ii) for some initial conditions, 
d 

W(x) 	W as x =, where W is a random variable, finite with 

probability one. Then a necessary condition for the departure process 
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to be a renewal process is that its interval length distribution is 

also Q(•). 

Proof: Smith (1959) has shown that if the first n interval moments of 

a renewal process are finite, then the first n cumulants of the counting 

process, N(x), are all asymptotically proportional to x as x co. He 

also showed implicitly that there is a one-to-one correspondence between 

the set of interval moments and the set of asymptotic cumulants of the 

counting process. For a renewal process satisfying the conditions of 

the theorem, this result can be summarized using generating functions. 

Using Wald's lemma, Cox (1962, Section 4.6) has shown that 

lim log Vexp{zN(x)}] 	a(z),  

x+0.0
x  (7.4.5) 

where a(z) is the unique solution for a of 

-log q*(e) = z 	 (7.4.6) 

co 
and q*(e) = 	e

-A x
Q(dx). In particular, if Q(.) is uniquely determined 

0 
by its moments, Q(x) and a(z) uniquely determine each other. This applies 

by assumption to Ni(x). Now, for all positive integers k 

E[expfzNp(x)11 = E[exp{z(NI(x) - W(x)))] 

Pr{IW(x)I < k}. E(exp{z(NI(x) - W(x))111W(x)I < k] 

> Pr{IW(x)I < k}.E(exp{zNi(x)}11W(x)1 < k]e
zk. 	(7.4.7) 

Taking logs of both sides, dividing by x and letting x co, one 

obtains 



124 

log E(exp{zNp(x))) 	log E[exp{zN (x)}11W(x)I < k] 
lim inf 	 > lim inf

x  
X440 	 X4')* 

(7.4.8) 

for all positive integers k. Because W(x) W, a finite random 

variable, as x -* co, it follows, by (7.4.5), that the limit of the 

right-hand side of (7.4.8) as k co is just a(z). Hence 

lim inf log EiexpCzNp(x)11 
> cr (z). 	 (7.4.9) 

X440 
	 x 

A similar argument holds if we interchange NI(x) and Np(x). Then 

we obtain 

lim sup 
x÷ce 

log E(exp{zNp(x)}l 
< a(z). (7.4.10) 

x 

Equations (7.4.9) and (7.4.10) together give 

log Etexp{zNp(x)}] 
lim 	 = c(z). 	 (7.4.11) 
x+co 

x 

Therefore, if the departure process is a renewal process, then, by 

previous remarks and assumptions, there is only one interval length 

distribution which can give rise to an asymptotic cumulant generating 

function of the form (7.4.11). This distribution is Q(*). 

Condition (ii) is satisfied by many queueing systems. For systems 

which must at some time become idle with probability one, we can choose 

the initial condition that the system is idle. Then W(x) is the number 

of customers being served or waiting for service at time x. Hence, for 

single-server queues, the existence of a stationary distribution for 

queue size will often be enough to satisfy condition (ii). 

Theorems 7.4.1 and 7.4.2 lead to the following useful corollary. 
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Corollary 7.4.3: Suppose we have an infinite capacity queue whose 

input process is a Poisson process with mean interval length X
-1. 

Further, suppose that the departure process is a Markov renewal process 

satisfying the conditions of Theorem 7.4.1 and that condition (ii) of 

Theorem 7.4.2 is satisfied. Then the departure process is a renewal 

process if and only if 

(s;z) - X0(0:z)(z-1)  
 s{(1)(0;z) - 1} + X(z-1) • 

(7.4.12) 

The departure process is a Poisson process with mean inter-

departure times 1
-1  (i.e. p*(s) = X/(X+s)) and 0(s:1) = p/(p+s), where 

p = X/(1-1T0). 

The proof of the above corollary involves a simple combination of 

Theorems 7.4.1 and 7.4.2, after noting that condition (i) of Theorem 

7.4.2 is satisfied by the Poisson process. 

Two examples of Corollary 7.4.3 are now given. 

7.4.1 	The M/G/1/02 queue  

We use the notation of Section 7.2. The M/G/l/m queue is stationary 

if and only if the mean service time is less than X
-1, the mean inter-

arrival time. It is easily seen that the departure process of this 

stationary queue is a Markov renewal process with infinite state space 

(Disney, Farrell and de Morais, 1973, Theorem 2.4). In particular the 

process satisfies the conditions of Theorem 7.4.1 with 

T 	(-X)k  dk  
k 	k! 	k (s) = 	g*(X+s). 



Pr{Yk = vlYk-1 
= u, Z

k-1 
= 	Zk  = j, Sk  = Y} = r  (2,;17) if u+i > 0; 

uv 

r
Ov(j;y) if u+i = 0, 

(7.4.13) 
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Hence (1)(s;z) = g*(s+X(1-z)) and p*(s) = g* (s) {1 - Iros/(X+s)} 

by (7.4.3). Since the arrival process (which in this case is identical 

to the input process) is a Poisson (X) process, it follows from 

Corollary 7.4.3 that a necessary condition for the process to be 

renewal is that (D(s;1) = g*(s) = p/(p+s); in this case (1)(s;z) = 

P/(p+s+X(1-z)). It is easily shown that this form does indeed satisfy 

(7.4.12). The stationarity assumption is equivalent to p > X. We 

have therefore shown that the M/G/1/= queue has a renewal departure  

process if and only if the service time is exponentially distributed  

with parameter p > X; the departure process is then Poisson with mean  

inter-departure time X
-1
. 

7.4.2 	The Davignon-Disney feedback queue  

We again use the notation of Section 7.2, where a brief outline 

of the process is given. More formally, let Sk  be the length of the 

kth service time. Each service time is assumed to be independent of 

everything else that happens in the system. Let Zk  be the number 

queueing for service just after the end of the kth service (excluding 

the customer currently being served). Without loss of generality, assume 

that a customer who is fed back after a service goes to the front of the 

queue and immediately receives service again; this assumption makes no 

difference to the departure process but it simplifies the algebra. Let 

1 if the customer feeds back after the kth service, 
Yk = 

0 if the customer departs after the kth service. 

Yk is a random variable defined by the following switching rules: 
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where 2. = j+l-u-i; for u,v = 0,1; i,j = 0,1,2,... . Note that 

r
u0
(j;y) + r

ul
(j;y) = 1. 

We exclude trivial and degenerate cases, such as zero probability 

of either departing or feeding back; the latter case is just the 

M/G/1/00 queue again. Davignon and Disney give conditions for the 

system to be stationary (Theorem 3.2.4). When this is so, they show 

that both the output process (i.e. the times when a service ends) and 

the departure process are both Markov renewal processes (Theorems 5.2.1 

and 6.2.1 respectively). While the transition probabilities of the output 

process are simple to write down, those of the departure process are not, 

because of the complicated dependence on (i) the number of feedbacks a 

customer undergoes before departing the system and (ii) the number of 

customers who arrive during each of his services. However, after some 

reflection, it can be seen that the departure process has a transition 

matrix F(s) of the form given in Theorem 7.4.1. The Davignon-Disney 

queue also has a Poisson input process. Hence, Corollary 7.4.3 can be 

applied to determine when the departure process is a renewal process. 

This is done now for two special forms of ruv(j;y). 

(a) Feedback dependent only on length of last service  

Here the probability of feeding back is independent of whether or 

not the previous unit fed back and the number of customers who arrived 

during the service just completed. Hence we can write rui(j;y) = r(y), 

r
u0
(j;y) = 1 - r(y), Cu = 0,1; j = 0,1,2,...). In this case, the 

effective service time of each customer is independent of everything 

else that happens in the system. Hence it is just a special case of 

the M/G/1/= queue in the previous example. Let g(y) be the service 

time density, let R(y) = r(y)g(y) and let g*(s) and R*(s) be their 

respective Laplace transforms. Then the Laplace transform of the 
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effective service time is given by 

CO 

{g*(s) - R*(s)1 	E {R*(s)}k  = 
k=0 

g* (s) - R* (s)  
1 - 	(s) 	• 

(7.4.14) 

By the example in Section 7.4.1, the departure process is a renewal 

process if and only if the expression in (7.4.14) equals p/(p+s), where 

p > X. This equation is easily solved to give the result 

p j g(t)dt 

1 - r(y) = 	y 	- 	p  g(y) 	failure rate 
(7.4.15) 

The right-hand side of (7.4.15) is a probability if and only if the 

failure rate is not less than p for all y for which the failure rate is 

defined. Two simple examples are (i) g(y) = ve-vY, y > 0, v > p, in 

which case r(y) = 1 - p/v, a constant; and (ii) g(y) = 1, 0 < y < 1, 

p < 1, in which case r(y) = 1 - p(1-y), 0 < y < 1. Example (i) was 

noticed by Davignon and Disney, although they did not find the general 

form (7.4.15). 

(b) Feedback dependent only on number of arrivals during last service  

Here the probability of feeding back is independent of whether or 

not the previous unit fed-back and the length of the service just 

completed. Hence we can write rui(j;y) = rj, ruo(j;y) = 1 - rj  

(u = 0,1; j = 0,1,2,...). This case is not a special example of the 

M/G/1/00 queue; we use the result of Corollary 7.4.3 to show that the 

departure process is a renewal process if and only if the service time  

distributicmisexponential(withmeanvsay)andallther.'s are equal  

(to r, say); we require v(1-r) > X for stationarity. This case is 

equivalent to example (i) of case (a). 



To(S) E MS;0) - 	 + S(1 - T ) 0 

XT
0  (7.4.16) 
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The proof is by induction. Let Tk  E Tk(0). From the definition 

of cD(s;z) and (7.4.12) we have 

Now T0  (s) 
is the Laplace transform of the joint probability that 

the time between successive departures is in Et, t+dt) and that there 

are no arrivals during this time. Hence 

(1-ro
)g*(s+X) 

TO  (s)= (1-r0)g*(s+X) k 0 
{r.og*(s+X)}

k 
 = 1-r0 

 g*(s+X) 
=  

(7.4.17) 

Equating (7.4.16) and (7.4.17) and replacing s + X by s, one 

obtains easily the necessary condition that g*(s) = v/(v+s), where 

v = XT
0 
 /(1-r0 

 )(1-T0 
 ). Differentiating (7.4.12) k times and putting 

s = 0, one obtains the form 

E w s
i 

i=0 k 

k
(s) - 

{X + s(1 - To)}
k+1 

(7.4.18) 

WheretheWk,i  arellrispecifiedconstants.110wassWeelatr.7 
=r 

(j = 0,1,2,...,k-1). Then knowing that g(s) = v/(v+s) and by considering 

all possible ways in which k customers can arrive during the effective  

service time, it can be shown that 

(r-
rk

) (X+s) 

k(s) =
k 	(1-r)  

, 
{X+v(1-0+s}k+1 (X+v+s)

k
fX+v(1-r)+sl

2 
(7.4.19) 

It is easily seen that this can only be of the form (7.4.18) if 

rk  = r. It follows therefore that a necessary condition for the 

departure process to be a renewal process is that all the rd's are 

equal. That this is also a sufficient condition follows from example 

(i) of case (a). 
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7.5 Developments  

The work of this chapter raises the possibility of some interesting 

developments. In Theorem 7.3.1, we have found, under restrictive 

assumptions, necessary and sufficient conditions for a Markov renewal 

process to be a renewal process. In Corollary 7.3.2, necessary and 

sufficient conditions Were given for a two state Markov renewal process 

to be a renewal process, without any restrictive assumptions. That 

these conditions are sufficient for Markov renewal processes with any 

number of states is easily shown using (7.3.4). However, they are not 

necessary conditions when there are more than two states; this is not 

too difficult to show for a Markov renewal process with three states. 

It would be of interest to find necessary and sufficient conditions 

for any Markov renewal process to be a renewal process; this might 

possibly be done using (7.3.4). 

An interesting unsolved problem concerns when the GI/G/1/0,  queue 

has a renewal departure process. The GI/G/1/0,  queue has a renewal 

arrival process with arbitrary interval distribution; i.i.d. service 

times with arbitrary distribution, possibly different from the inter-

arrival time distribution, and independent of the arrival process; 

and infinite capacity. Until recently, the'only two non-trivial such 

queues which were known to have renewal departure processes were the 

WM/1/03 (mentioned previously) and the queue with constant service 

time, C, and an inter-arrival time which is with probability 1 greater 

than or equal to C. However, U. ZAhlq has shown, in an as yet 

unpublished paper, that there are at least two more GI/G/1/00 queues 

with renewal departure processes. In the first queue, the inter-arrival 

time and the service time both have negative exponential distributions, 

but each is displaced to the right by the same constant amount. ZAhle's 

second example is the discrete analogue of the first: the inter-arrival 
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time and service time both have displaced geometric distributions. 

Daley (1971, Section 5) has speculated that a useful first step 

in finding necessary and sufficient conditions for the GI/G/l/° 

queue to have a renewal output might be to show that if the departure 

process is a renewal process, then its interval distribution must be 

the same as that of the arrival process. This has been shown to be 

true in Theorem 7.4.2 under the assumption that the inter-arrival 

time distribution is uniquely determined by its moments (assumption 

(i)). However, Theorem 7.4.2 has not so far enabled me to obtain the 

necessary and sufficient conditions even under the restriction of 

assumption (i) of that theorem. Finally, it would be useful to obtain 

the result of Theorem 7.4.2 without the constraint of assumption (i); 

it appears that the asymptotic argument used in the proof of that 

theorem will be insufficient to do this. 
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Appendix 1: A Property of Stationary Univariate Point Processes  

In this appendix and Appendix 2, we prove a number of results 

which are used to prove Theorems 4.3.1, 4.3.3 and 4.3.4. In this 

appendix, we make use of equation (2.5.7) to obtain a simple, but 

useful, result for a wide class of stationary univariate point 

processes. Let N
(0)

(x) and N
(e)

(x) be the number of events in the 

interval (0,x] in the synchronous and asynchronous cases respectively. 

, Let H(x) = EtN(0)  (x)) and let EtN
(e) 

 (x)1 =
-1
x, o < a < -. Assume 

that H(x) is differentiable a.e. with derivative h(x), and that 

lim h(x) =
-1
. These assumptions are satisfied by a wide class of 

x402 
stationary univariate point processes. Then we have 

Theorem A1.1: If h(x) is non-decreasing, then for all x > 0 

r (e) 	1 	r (e) var{N 	(x)/ < EtN 	(x)/. (A1.1) 

The inequality is reversed if h(x) is non-increasing. 

Proof: Assume that h(x) is non-decreasing; the proof for non-increasing 

h(x) is analogous. Then, for all x > 0, h(x) < 5-1  and hence 

H(y)dy < x2/213. Then, using (2.5.7), we obtain (A1.1). 
0 
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Appendix 2: Some Properties of Renewal Processes  

In this appendix, we obtain some useful results for renewal 

processes. We use the same notation and make the same assumptions 

as in Appendix 1. we also require the following notation and 

assumptions. Let g(•) and p.) be the p.d.f. and survivor function 

respectively of the inter-event times of the renewal process. Then 
CO 

it is known that lim h(x) =
-1 

(Smith, 1954, Theorem 12). 
x÷ce 

The function a(x) = g(x)/S(x) is usually called the failure rate  

function. If a(x) is an increasing function of x, we say that 

G(=1 -S ) is IFR (increasing failure rate), while if a(x) is 

decreasing, we say that G is DFR (decreasing failure rate). 

G is said to be New Better than Used (NBU) if for all non-negative 

x and y 

s (x+y) < c(x) 	(y). 	 (A2.1) 

If the inequality is reversed, G is said to be New Worse than Used 

(am). G is said to be New Better than Used in Expectation (ME) if 

for all non-negative x 

CO 

5 S (y)dy < Rs (x) . 	 (A2.2) 
x 

If the inequality is reversed, G is said to be New Worse than Used 

in Expectation (RME). The above terminology is in common use in 

reliability theory. Barlow and Proschan (1975, Section 6.2) give the 

implications 

from the theory of renewal processes, it follows that B = 5 xg(x)dx. 
0 

Assume that there exists a c > 1 such that 5 [g(x)]cdx < co. Then 
0 
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IFR => NBU => NBUE , 
(A2.3) 

DFR => NWU => NWUE . 

Barlow and Proschan also give a number of results for renewal 

processes when G has some of the above properties. These lead to the 

following useful results. 

Theorem A2.1: If G is NBUE, then for all x > 0 

var{N(e)(x)} < E{N(e)(x)1. 	 (A2.4) 

The inequality is reversed if G is NWUE. 

Proof: Assume that G is NBUE; the proof is Analogous if G is NWUE. 

By Theorem 3.15(b), p.171, of Barlow and Proschan (1975), if G is NBUE, 

then H(x) < a lx, and so f H(y)dy < x2/2$, whence we obtain (A2.4) 
0 

using (2.5.7). 

Theorem A2.2: If G is NBU, then for all x > 0 

var{N
(0)

(x)} < H(x) <
-1x. 	 (A2.5) 

The inequalities are reversed if'G is NWU. 

Proof: This is just a combination of Theorems 3.14(b), p.171, and 

3.19, p.174, of Barlow and Proschan (1975), and (A2.3). 

Theorem A2.3: If h(x) is non-decreasing, then for all x > 0 

, (0) var{N 	(x)} < H(x) < $
-1

x. (A2.6) 

The inequalities are reversed if h(x) is non-increasing. 
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Proof: Assume that h(x) is non-decreasing; the proof for non-increasing 

h(x) is analogous. We have from (4.3.4) 

var{N (0) (x) - H (x) = 2 f  CH (x-y) - H (y) (y) dy 
0 

x/2 
= 2 f fH(x-y) - H(y)}{h(y) - h(x-y))dY, 

	(A2.7) 
0 

after breaking up the integral into two and a change of variable. Now 

0 < y < x/2 implies y < x-y which implies (a) H(x-y) - H(y) > 0 

(as H (x) is always non-decreasing), and (b) h (x-y) - h (y) > 0 (as we 

have assumed that h(x) is non-decreasing). Using these two facts and 

(A2.7), we obtain the left-hand inequality of (A2.6). The right-hand 

inequality follows easily since h(x) < $
-1

, for all x > 0. 

Since renewal processes are stationary point processes, it follows 

that Theorem A1.1 applies to renewal processes, and so it is interesting 

to note that h(x) non-decreasing or non-increasing give rise to the 

same inequalities concerning var{N(x)} and E{N(x)} as do G is NBU or NWU, 

respectively, in both the synchronous and asynchronous cases; 

compare Theorems A1.1 and A2.3 with Theorems A2.1 and A2.2, respectively. 

Note, however, that G is NBU does not imply h(x) is non-decreasing. 

1 
For instance, let g(x) = --a3 x

2 e-ax , x > 0, a > 0. This is the p.d.f.. 
- 2 

of a Gamma (3,a) variable. Barlow and Proschan (1975, Section 3.5) 

show that this distribution is IFR, and hence (by (A2.3)) is NBU. 

However, Cox (1962, Section 4.3, equation (9)) gives H(x) for this 

distribution. Differentiating this twice we obtain 

(x) 	h' (x)
2  a2 exp 3x)  sin  ,Cfax 2 	1  2 	'1 
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which can be either positive or negative (depending on x). Hence 

h(x) is neither non-decreasing nor non-increasing. Whether G is 

NWU implies h(x) is non-increasing is apparently unknown. However, 

recently Brown (1978) has proved that G is DFR implies h(x) is 

non-increasing. 



r (21 + 1) 	• a - 
{r(1 + 1)}2 

(A3.4) 
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Appendix 3: The Asymptotic Mean and Variance of a Random Variable  

Used in Section 5.3  

Suppose we observe n consecutive intervals of a renewal process 

whose interval p.d.f. and survivor function are given by b(.) and 

d3 (•) respectively. Assume that LO (x) = 1 - 8xY  + o(xY) as x -+ 0 

(13 > 0, y > 0). Denote the ith interval by Xi  (i = 1,...,n), and let 

A=min{X. +X.1+1'  i=1,-...,n-1}.LetLbethenumberof 1 	
less 

than A. Both L and A are used in a test described in Section 5.3.4. 

In this appendix,a heuristic derivation of the asymptotic mean and 

variance of is given. Now 

n-1 
R(A > x) = P{ rA (x, 	 xi+1 	x)} 

i=1 
(A3.1) 

n-1 
= P(X1 + X2 > x). 	II P(X. + X.1+1 > xIX.1-1 + X. > x) 

i=2 

by the renewal assumption. Then it follows easily that 

E 	2 (x) 	1 	02ax2a + 0 (x2y P (X i  + X2  > x) 

x 
(x) 	f b (y) {63 (x-y) }2ax 

0  
P(X.+X. 	> xIX, 	+ X. > x) - 

I 1+1 	1-1 1 	£ 2 (x)  

= 	eax2Y  + o(x2Y ) 

as x 0, where 

(A3.2) 

(A3.3) 
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Then, combining (A3.1) to (A3.3), and using a standard technique 

for determining asymptotic extreme value distributions, one obtains 

P(0 > x/ f 62a (n-1) 11/2Y) 4' exp{-x2Y} as n+ = , or 

P (A > x) ti  exp{-132a (n-i)x2Y} 	 (A3.5) 

as n i c°. 

Now suppose that A = x = Xj  + Xj+1. Then Xj  < x, Xj+i  < x, 

X. + X.1+1 > x, all i j, and L > 2. The distribution of L conditional 

on A = x will be asymptotically independent of j. Hence, assume 

without loss of generality that j = n - 1. If we define the indicator 

variable Wi  by Wi  = 0 if Xi  < A, and Wi  = 1 if Xi  > A (i = 1,...,n-2), 

then, conditional on A = x, it is easily seen that the Wi's form a 

two state first order Markov chain and that L - 2 is the number of 

times that Wi 
= 0. The transition probabilities of this Markov chain 

are given by 

1 - po(x) E P(Wi  = 11Wi_i  = 0, A = x) 

= 13(C1  . > ,c1 	
< x, X 	+ X

1  
. > x, X.1  + X.1 	

> x) 
Xi-1 — 	i-1 	+1 

	a2 (x)  6  (x){1  - 6 (x)} 	 
x 

{ (x) + f b (y) (x-y) aof 632 (x) - 63 (4) 
0 

= 1 - 63 r  + o(XY) 	 (A3.6) 

as x > 0; 
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P1 (x) :4 P (Wi = 1 IWi-1 = 1, A  = x)  

= P(X. > x(Xi-1 > x, X.1-1 	 Xi+1 + X. > x, X. + 	> x) 

_ 63 (x) 
767j 

= 1 - OxY  + o(xY) 	 (A3.7) 

as x + 0. Note from (A3.6) and (A3.7) that as p0  (x) and 1 - pi  (x) are 

both $xY  + 0(xY) as x -4- 0, the W 's are approximately Bernouilli random 

variables for small x. Hence, conditional on A = x, L - 2 behaves 

approximately like a binomial random variable with parameters n - 2 and 

$xl  as x 0. Now, by (A3.5), the unconditional mean of L as n co is 

E(L) N 2y$
2
a(n-1) 5 E(LIA = x).x2y-1 exp{-$2a(n-1)x2Y  }dx. 	(A3.8) 

0 

Making the substitution y = x2y, we see that the above integral is 

a Laplace transform with parameter $
2
a(n-1). By a well-known Abelian 

theorem (Widder, 1946, Section 5, Corollary la) the asymptotic 

behaviour of E(LIA = x) for small x determines the asymptotic behaviour 

of E(L) for large n. Hence, putting the asymptotic binomial 

approximation for E(L'A = x) in (A3.8), one obtains E(L) ti {nn/(4a)} 1/2  

as n co. By a similar argument, it can be shown that var(L) ti n(1-714)/a 

as n 	oo. 
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Appendix 4: Four Sets of Data  

In this appendix details are given concerning the four artificial 

sets of data to which tests discussed in Chapter 5 are applied. In 

Table Al some of the theoretical marginal properties of the process 

of type 1 events are given for the four processes. In Table A2, the 

actual occurrence times of the type 0 and type 1 events generated by 

simulating the four processes are listed. 

Each of the four processes is an example of a regenerative bivariate 

point process. Processes (i) and (ii) are both examples of the process 

considered in Section 4.2; processes (ii), (iii) and (iv) are all 

examples of the process considered in Section 4.3. For all four 

processes, the process of type 0 events was generated by a Poisson 

process of rate 1 (i.e. f (x) = e x, x > 0). Process (i) was obtained 

by imbedding between successive type 0 events an inhomogeneous Poisson 

process with rate function X(x) = 10e-x, x > 0. Process (ii) was 

obtained by imbedding between successive type 0 events a homogeneous 

Poisson process of rate 5 (i.e. g(x) = 5e
-5x, x > 0). Process (iii) 

was obtained by imbedding between successive type 0 events an ordinary 

renewal process with p.d.f. g(x) = exp(-x/.44)/(.447rx)1/2, x > 0 

(i.e. a Gamma (.5, (.44)-1) distribution). Process (iv) was obtained 

by imbedding between successive type 0 events an ordinary renewal 

process with p.d.f. g(x) = 100x -1°x, x > 0 (i.e. a Gamma (2,10) 

distribution). 

Beside each quantity in Table Al, a section reference is given. 

This gives the section where the notation is initially defined. For the 

interval properties, results are given correct to 4 decimal places. 

The synchronous mean function, 
r (1) 

(x)} is not given for process 

(iii) as it is too long and complicated to put in the table. The 
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asymptotic form of var N(x) is readily obtained from E{N(1)(x)) 

using equations (2.5.5) and (2.5.9). For processes (ii), (iii) and 

(iv), these are more easily obtained another way. Since all three 

processes have imbedded processes which are renewal processes and 

since in each case the process of type 0 events is a Poisson process, 

we know by Theorem 4.3.2 that the process of type 1 events forms a 

renewal process. Hence varfN(x)1 N var(X1)x/{E(X1)}
3 as x co. 

Further the serial correlation coefficients for these three processes 

are all zero. Note that process (i) is the same as process (a) in 

Section 5.3.2. As in Table 5.1 of that section, only the first two 

serial correlation coefficients have been given as, for process (i), 

the theoretical correlation coefficients of lag greater than 2 are very 

complicated. 

In Table A2, we list the actual occurrence times of the type 0 

and type 1 events generated by simulating the four processes. For all 

four processes, data were generated over the interval [0,20]. 

Each of the four processes simulated used the same realization for the  

process of type 0 events. Each process had a type 0 event at the 

origin and 13 type 0 events in (0,20] (i.e. M = 14). Let xi  be the 

time of the ith type 0 event in (0,20] and define x0  E 0 and xm  E T. 

In Table A2(j) (j = i,ii,iii,iv), on the ith line is given: ni, the 

number of type 1 events in [xi_i,xi); 
xi-1; 

 and the times of the type 1 

eventsin[xi_i,xi).Atthebottortiofthen.column is N = E.n., the 

number of type 1 events in [0,20]. All times are given correct to 

3 decimal places, except where two consecutive type 1 events are less 

than 10
3 apart; in this case, times are given to as many decimal places 

as are necessary to distinguish the times of the two events. 



Table Al Some properties of the type 1 process for four regenerative multivariate point processes 

Section Ref. 	Process (i) 
	

Process (ii) 
	

Process (iii) 	Process (iv) 

RN 
(1)  (x) 1 	

1 	-2x 	 100 	-21x, 

21
2 3.1, 3.2 	5{x + -- 	 ---121x-l+e 

6 (1-e )) 	5x  
, 

" (for small x) 	6.6667x + o(x) 	5x 	1.7011x1/2 + o(x
1
(
2 
 ) 	50x2 + our2  ) 

5.0000 . lim var{N(x)}/x 	3.1 	13.3333 	5 	9.1667 	2.6023  
x.+00 
E(X1) 	3.5 	.2000 	.2000 	.2000 	.2100 

var(X1) 	3.5 	.0880 	.0400 .0733 	.0241 

.0000 4.1 	 .0000 p1 	41 	.1009 	.0000 

P2 	4.1 	.0363 	.0000 	.0000 	.0000 



Table A2(i) The times of events generated by process (i) 

n. Type 0 Events Type 1 Events 

1 10 0.000 .030, 	.140, 	.178, 	.271, 	.281, 	.394, 	.512, 	.527, 1.463, 1.468; 

2 3 2.588 2.687, 	3.177, 	3.209; 

3 12 3.380 3.419, 	3.854, 	3.989, 4.067, 4.072, 4.199, 4.286, 4.322, 4.889, 5.074, 5.211, 5.286; 

4 8 5.346 5.373, 	5.404, 	5.584, 	5.739, 	5.873, 	5.882, 	6.001, 6.193; 

5 1 6.777 6.836; 

6 6 7.028 7.153, 	7.233, 7.907, 8.340, 9.101, 9.170; 

7 6 9.302 9.612, 9.680, 9.737, 10.383, 10.417, 11.005; 

8 6 11.599 11.605, 11.672, 11.704, 12.125, 12.175, 12.435; 

9 7 12.704 12.768, 12.948, 13.149, 13.181, 13.505, 13.611, 14.021; 

10 8 15.643 15.853, 16,006, 16.227, 16.345, 16.386, 16.487, 16.514, 16.764; 

11 9 16.830 16.878, 	16.883, 16.966, 17.017, 17.134, 17.312, 17.699, 17.830, 17.927; 

12 7 17.928 17.960, 	18.009, 18.074, 18.096, 18.133, 18.278, 18.395; 

13 1 18.500 18.611; 

14 10 18.718 18.727, 18.742, 18.830, 18.967, 19.076, 19.254, 19.439, 19.871, 19.878, 19.978. 

94 



Table A2(ii) The times of events generated by process (ii) 

i n. Type 0 Events Type 1 Events 

1 11 0.000 .019, 	.040, 	.097, 	.119, 	.530, 	.820, 	.937, 	1.299, 	1.361, 1.647, 	2.262; 

2 3 2.588 2.672, 	2.773, 	2.844; 

3 9 3.380 3.550, 	3.677, 	3.823, 4.265, 	4.437, 	4.562, 4.716, 	4.916, 	5.346; 

4 10 5.346 5.798, 	5.892, 	5.977, 6.106, 6.112, 6.300, 6.372, 	6.511, 6.728, 	6.734; 

5 0 6.777 

6 15 7.028 7.149, 7.153, 	7.801, 7.868, 7.942, 8.211, 8.361, 	8.364, 	8.750, 	8.761, 	9.007, 9.178, 

9.233, 9.240, 	9.286; 

7 13 9.302 9.484, 9.485, 9.614, 9.696, 9.835, 10.047, 10.327, 	10.449, 10.606, 10.845, 11.218, 
11.486, 11.526; 

8 5 11.599 11.635, 11.708, 11.821, 11.892, 12.363; 

9 18 12.704 12.847, 12.922, 13.678, 13.943, 	14.087, 14.132, 14.155, 14.238, 14.242, 	14.445, 
14.455, 14.689, 14.762, 15.003, 15.244, 15.369, 15.451, 15.520; 

10 3 15.643 15.814, 16.598, 16.747; 

11 4 16.830 17.253, 17.472, 17.507, 	17.669; 

12 0 17.928 

13 2 18.500 18.532, 18.688; 

14 7 18.718 18.831, 19.115, 19.372, 19.469, 19.491, 19.571, 	19.950. 

100 



Table A2(iii) The times of events generated by process (iii) 

i n. 	Type 0 Events Type 1 Events 

1 7 0.000 .003, 	.663, 	.948, 	2.430, 	2.491, 	2.540, 	2.550; 

2 2 2.588 2.623, 2.788; 

3 18 3.380 3.481, 	3.565, 	3.570, 3.5832, 	3.5834, 	3.593, 	3.786, 	3.852, 	3.96488, 	3.96490, 4.056, 
4.059, 4.098, 4.279, 5.082, 5.144, 5.145, 5.285; 

4 4 5.346 5.848, 	6.283, 	6.311, 	6.686; 

5 3 6.777 6.781, 6.785, 	6.924; 

6 16 7.028 7.054, 7.078, 7.163, 7.414, 7.474, 7.492, 7.8006, 7.8012, 	7.885, 8.640, 8.802, 	8.807, 
8.815, 	9.232, 	9.252, 9.261; 

7 9 9.302 9.761, 10.659, 10.692, 	10.894, 10.897, 11.110, 11.214, 11.563, 11.595; 

8 5 11.599 11.599, 11.679, 11.7320, 11.7324, 12.544; 

9 11 12.704 12.934, 13.020, 13.027, 13.041, 13.847, 14.301, 14.358, 15.280, 15.281, 	15.562, 15.620; 

10 4 15.643 16.300, 16.302, 16.322, 16.403; 

11 4 16.830 16.917, 16.921, 	16.994, 17.132; 

12 3 17.928 17.935, 17.985, 	18.234; 

13 2 18.500 18.58783, 18.58787; 

14 3 18.718 18.834, 19.839, 19.863; 

91 
UI  



Table A2(iv) The times of events generated by process (iv) 

i ni  Type 0 Events Type 1 Events 

1 12 0.000 .339, 	.842. 	1.026, 1.192, 1.211, 1.279, 1.404, 1.619, 	1.913, 	2.080, 	2.408, 	2.586; 

2 2 2.588 2.652, 	3.035; 

3 7 3.380 3.806, 	3.981, 4.087, 4.395, 4.667, 4.880, 	5.208; 

4 5 5.346 5.654, 5.901, 6.136, 6.435, 6.703; 

5 0 6.777 ; 

6 17 7.028 7.089, 	7.141, 	7.480, 	7.512, 7.688, 	7.768, 	7.793, 7.982, 8.152, 8.242, 8.276, 8.587, 
8.887, 	8.932, 9.036, 9.101, 9.212; 

7 10 9.302 9.555, 9.863, 9.904, 10.053, 	10.197, 10.532, 10.782, 10.876, 11.225, 11.312; 

8 6 11.509 11.875, 11.904, 12.160, 12.477, 12.539, 12.635; 

9 8 12.704 13.059, 13.576, 13.993, 14.134, 14.352, 14.690, 14.812, 15.462; 

10 5 15.643 15.867, 16.103, 16.355, 	16.651, 16.819; 

11 4 16.830 17.326, 17.495, 	17.722, 17.830; 

12 3 17.928 18.055, 18.199, 18.232; 

13 1 18.500 18.634; 

14 6 18.718 19.095, 19.249, 19.615, 	19.677, 19.787, 19.968. 

86 
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