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ABSTRACT 

When a superconductor S and a normal metal N are put into 

contact, the Cooper pairs which make up superconductivity in S can 

leak into N and induce superconductivity into N by proximity effects. 

We demonstrate that the order parameter at the outer surface of 

N, where the supercurrent is required to vanish, can take one of two 

possible values, This arbitrariness leads to two different modes for 

the superconducting in the sandwich, whose respective energies are 

differently affected by variation of the external conditions such as 

the temperature and the magnetic field. 

In this thesis, within the domain of validity of the local 

Ginzburg-Landau GL theory, we investigate the occurrence of first 

order phase transitions in superconducting-normal S/N sandwiches. 

Experimentally, such a phase transition has been observed as a response 

to the external magnetic field, whereby induced superconductivity in 

which the pair potential is finite throughout the N, gives way at and 

above a given field (the breakdown field, Hb) to a second mode for 

which the field penetrates into N and destroys the induced superconductivity. 

In the absence of a magnetic field, a first order phase transition 

(which has not yet been observed experimentally) is predicted due to 

competition between the two possible modes. 

In addition to the calculation of upper critical field of type 

II superconductors we study the extreme type II S in a magnetic field. 

The effective penetration depth and the barrier field are also evaluated. 
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It is shown that in the presence of a magnetic field, the S/N 

binary layers in limiting case for which GL parameters of S and N 

both are much smaller than unity, yield a first order phase change 

(due to the aforementioned arbitrariness of boundary conditions) as 

a function of the field, the temperature or the normal sample thickness. 

Thus the breakdown field effect is accounted for as a direct extension 

of the previous phase transition. 

This is compared with theoretical work and experiments carried 

out by the Orsay and the Imperial College groups. We conclude that 

all phase transitions in S/N binary layers can be simply and explicitly 

explained by the interplay of the two possible boundary conditions at 

the N-vacuum interface. 
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CHAPTER 1 

PHASE TRANSITIONS IN SUPERCONDUCTING-NORMAL SANDWICHES  

1.I Introduction:  

In (1950) Ginzburg and Landau (GL) established the theory of 

superconductivity, based on the pioneering work of Landau (1937) on 

second-order phase transitions. GL started their argument by introducing 

the quantity A(.) (called the "order parameter") to characterize the 

degree of superconductivity at various points in the material. The order 

parameter is defined so as to be zero for the normal phase for which 

the temperature T is greater than the critical temperature Tc  of the 

bulk material in zero magnetic field (now bearing the name of Tc) and non-

zero for the superconducting phase for which T < Tc. At T = Tc  a 

transition occurs from the normal phase to the superconductive phase. 

The superconductivity arises from an attraction (Fr8lich, 1952) 

electrons interacting via the lattice which results in the pairing of 

electrons in opposite spin and momentum states (Cooper pairs). This 

was proposed by Bardeen, Cooper and Schrieffer (BCS) in 1957 and is 

the starting point of the BCS microscopic theory. According to this 

theory, the strength of such attractive interaction is constant and is 

characterized by the magnitude of the interaction parameter V which is 

positive for a superconductor in the convention we adopt. The quantity 

V can be related to Tc  by kBTc  = 1.100t expf-1/N(0)V} for all weak-

coupling superconductors for which N(0)V « 1. cop  is the Debye cut-off 

frequency and N(0) is the density of states at the Fermi level for 

electrons of one spin. 



This chapter is devoted to general discussion of the occurrence 

of phase transitions in the binary system which consists of two metals 

one with higher critical temperature than the other. The one with lower 

critical temperature which is called "normal" metal (N) is placed in 

good electrical contact with the one with higher critical temperature 

(called superconductor (S)). A good electrical contact between these 

two materials does not allow inter—diffusion, or the formation of an 

intermetallic compound. The S/N sandwich is studied in the temperature 

range of TCN  4T Tcs, where Tci  is the bulk critical temperature of 

the sample in zero magnetic field. The subscripts (i = SIN) are used 

to refer to the superconductor and the normal samples respectively, 

throughout this thesis. 

By proximity effect, the Cooper pairs, from S, can leak into N 

(induced superconductivity) and the electrons, in N, penetrate into S 

to preserve the superconducting properties of S. This diffusion from 

both S and N side gives rise to the following consequences: 

(i) The superconducting properties of S/N are reduced with respect to 

the isolated S. This means that, the critical currents are lowered 

(Meissner, 1960) and also the critical temperature of the system TCSN 

will be smaller than T
CS
' In fact, the depression of the critical 

temperature, due to the proximity effect, strongly depends on the 

thickness of S (Smith et al, 1961, Simmons and Douglass, 1962). 

(ii) In the presence of a magnetic field, the screening currents which 

develop in S in the neighbourhood of the S/N interface are weaker than 

the currents which develop in the vicinity of the free surface of the 

bulk S. This results to an unscreened field in N which penetrates more 

deeply in the S side of the S/N system than in the isolated superconductor 

(De Gennes and Matricon, 1965). 



The existence of the induced superconductivity can be detected 

by the experiment of tunnelling effects on the N part, by measuring 

the Meissner effect in N and by the measurement of the micro-waves 

absorption in N. Moreover, the aforementioned'proximity effect 

measurements have often been used in an endeavour to determine whether 

or not N is superconductive, if it is, the value of its critical 

temperature. 

The range of the proximity effect, that is, the distance into 

N that the Cooper pairs from S leak into N is of the order of a few 

thousand angstroms. Consequently, in order to observe the proximity 

effects, it is necessary to work with rather thin films. Theoretically, 

all calculations are done for the case of a sharp boundary between two 

uniform metals, whereas, in practice, the boundary is likely to differ 

considerably from this and therefore the comparison of the experimental 

observations with the theoretical results will be dealt with 

difficultly. This can be improved by putting the two metals in good 

electrical contact (this point has already been discussed in this 

section). Fig. 1.1 shows schematically, the geometry of a S/N sandwich. 

The state of N (e.g. its free energy density given by (A.1)) 

due to induced superconductivity, strongly depends on external 

conditions such as temperature, magnetic field and normal sample 

thickness. In particular, these external conditions affect the value 

of the order parameter of N at free surface f(1N) (Fig. 1.1), where 

f and 1
N 

are the order parameter and the thickness of N in dimension- 

less units (see, Appendix A). Hook and Battilana (197E) have shown that f(1N) 

is monotonically decreasing function of 	when when there is no external 

magnetic field. 
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Figure 1.1: Qualitative behaviour of the order parameters (in reduced units) in S 
and N in the S/N binary layer. We note that the order parameter in S, at intermetallic 
interface, reduces due to the proximity effect. 



In the following section, it will be shown how these conditions 

affect the boundary of normal-vacuum interface (free surface of N). 

1.II The boundary condition at normal-vacuum interface:  

The probability amplitude of finding Cooper pair which is 

proportional to the order parameter (in homogeneous medium, the 

1 
proportionality coefficient v  is constant, i.e. position independent) 

is exponentially decreasing function of temperature (Hurault, 1966 

and De Gennes, 1969) and is maximum in the vicinity of intermetallic 

interface. This amplitude will be reduced to its minimum value at 

free surface of N. One expects to observe no Cooper pair on that 

surface (at any temperature and for any thicknesses). In other words, 

the probability amplitude of finding Cooper pair, and hence the order 

parameter at free surface, should vanish. But this does not always 

happen because for a given thickness, f(10 decreases smoothly as T 

increases and vanishes abruptly at a certain temperature T = 1* 

(Hurault,.1968). For T > T*I f(1N) will be always zero. Consequently, 

a first order phase change is predicted at T = T*. 

It is shown that the occurrence of this phase transition is due 

to competition between two boundary conditions imposed at normal-vacuum 

interface leading to two different configurations (modes) of the order 

parameter (Fig. 1.2), thus either 	f (1N) = 0, mode (I) or 

f(1N) = 0, mode (II). The above point can be verified by refering 

to free energies F1  and FII  (see, Appendix A) of modes (I) and (II) 

respectively. It can be seen that, even if (I) is the mode of lowest 

energy at sufficiently low temperatures, it is much more vulnerable 



than mode (II) to a rise in T. In fact, the variation of F
I 
with 

respect to T will be greater than the variation of FII  with respect 

to T, partly because of the quadratic term in f which is the only 

explicit function of T in the GL free energy. 

As was mentioned previously, the phase transition, in the absence 

of an external magnetic field, takes place for a certain value of 

thickness and temperature obtained by matching F1  and Fn. 

Moreover, in the presence of the external magnetic field, Hurault 

(1968) has demonstrated that at 1N  = IN where a first order phase 

transition could be observed, f(1N) practically sharply vanishes at a 

(Tp certain value of magnetic field called "breakdown field" hb  (Tp = 00 
°"a 

at 1N 
	N 
= 1* and h

a 
= hb,  where 

ha 
is the applied external magnetic 

field). This effect is again due to competition between two modes. 

For h
a 

< hb, G
I 
< G

II' 
where G

I 
and G

II 
are Gibbs' free energies of 

modes (I) and (II) respectively (see chapter 4). Therefore first mode 

would be more stable than the second one. On the other hand, for ha  > hb  

which implies GI  

than mode (I). It is, however, clear that hb  is defined by GI(hb) = 

G
II
(h
b
). The breakdown field has been observed by 'Burger et al (1965) 

using tunnelling characteristic on the normal side of a InBi/Zn double 

layer (InBi = S and Zn = N) and by the resonance frequency measurements. 

They have experimentally shown that, the slope of the tunnelling 

characteristic essentially returns to its normal value (see, Fig. 1 of 

Burger et al (1965)) at and above the breakdown field. 

> GII, mode (II) would be energetically more favourable 



1.III Conclusion: 

We conclude that the occurrence of a first order phase transition 

in S/N sandwiches placed in an external magnetic field parallel to the 

surface of N is an extension of the phase change previously mentioned 

(in zero field) which was due to arbitrariness of boundary conditions 

at N-vacuum interface (the phase transitions in the absence and in the 

presence of an external magnetic field will be studied in chapters 2 

and 4 respectively). Moreover, it has to be mentioned that the second 

penetration mode (II), appeared in the calculations done by Hurault 

(1968) and the Orsay Group (1966,1967), has been chosen for computational 

simplicity and is somewhat arbitrary although its general features can 

certainly be justified on physical grounds. But we believe that, the 

order parameter at free surface of N vanishes for certain values of the 

temperature, thickness of normal material and for a certain value of the 

magnetic field (the breakdown field, hb). Our belief relies on the fact 

that the super-current (see Appendix A) does not pass through the free 

surface of the sample. In other words, the super-current vanishes on that 

surface. The two boundary conditiOns (f = 0 and/or f = 0 at u = 1N), 

however, are necessary consequences of Ginzburg-Landau superconductivity, 

i.e. both conditions make the super-current (see, Appendix A) vanish on 

the free surface of N. Therefore the two possible configurations for the 

order parameter are actually expected (Fig. 1.2). 

This section is followed by applying the same boundary conditions 

to an isolated superconductor. It will be illustrated that for an isolated 

S, the second mode will have no physical significance. 



1.IV Outer surface condition for the isolated superconductor: 

We consider an isolated superconductor (S) in zero magnetic 

field and we let the thickness of S be d
S 
 (or 1

S 
 in reduced units, 

where all lengths are measured in units of x) and its geometry be 

of the form shown in Fig. 1.3. 

We discuss in a somewhat detailed manner the choice of the 

boundary condition of the order parameter at outer suface of the 

sample. The requirement of zero super-current at the free surface 

dA 
of the specimen leads to 	= 0 or A = 0 at that surface (see, 

ax 

Appendix A). The quantum mechanical state of a particle in an 

infinite potential well follows the latter condition. It will, 

however, be seen that, the second condition, for an isolated 

superconductor yields a minimum thickness below which no super-

conductivity can exist, whereas thinner superconductive films have 

been practically made which have very nearly the same critical 

temperatures as the bulk materials. This is because, the first 

Ginzburg-Landau (GL) equation is a non-linear differential equation 

(see, Appendix A) and the order parameter must find its own amplitude, 

whereas the quantum mechanical wave function is normalized. 

f(u) 
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Figure 1.3: The schematical representation of an isolated 
superconductor with thickness ds. This figure has been chosen for 

convenience to examine the boundary conditions. 
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This statement can be verified by solving the GL equation in 

the absence of the magnetic field, for a superconducting film with 

thickness 1 (Fig. 1.3 is chosen for convenience) and by examining 

both boundary conditions. Beside the above assertion, such a 

calculation suggests- that, A can not vary more rapidly than the 

coherence length S(T). 

Since we will investigate the problem in one dimensional space 

where the order parameter A depends only on x, the GL equation is 

given by (Appendix A); 

1(72f" = f(-1+f2) 

where 	f = A .(21( 	f, 	df Tu- , 	u = IT(  , and ASB  is the value 
A
SB 

' 

of e(x) for bulk material at equilibrium. K = - 	is called the GL 

parameter and is the ratio of the penetration depth x over the 

coherence length 

The first integration of (1.1) reads 

K-2f,2 i(1 _12)2 
	

(1.2) 

With no loss of generality, f(x) can be chosen symmetrical about 

u = 0, i.e. g lu:6° . This condition determines C; 

C = -i(1-f0
2 
)
2 	

where f
0 
 = f(u=0) 
	

(1.3) 

The equation (1.2) in connection with equation (1.3) must be solved 

exactly. By introducing a new variable 4), such that f = f0sinq (1.4) 

and using (1.3), equation (1.2) can be written in the following form: 

± 4) 1 /K - 	 0   (1-C./2  sin2  (p)2 	,
2 = f02/(2-f02) 

	
(1.5) 



10 

or K du = V2C1  

f
o  

dcp'  

(1-c1 2sin20 
(1.6) 

We are now at a position to test two boundary conditions. 

(I) f = 0 at u = ±1
s
/2 =>q = 0 : 

The equation (1.6) can be integrated, the result for the lowest 

free energy (with a fewest nodes) would be (Abramowitz and Stegun (AS), 

1972, P.569) 

is 
	12C1 

K( 
	
- IUD = 

	
F(,1C1 ) 	, 	= sin-1 { 	(1.7) 

f0 0 

where F is the incomplete elliptic integral of the first kind with 

modulus (parameter) Cl. The value of f0  is determined by an implicit 

relation obtained from (1.7) by setting u = 0, i.e. 

S 	
V2C 	i2C 	V2C, 

= 	1 	r 
F( 2.1C1 ) = 	K(C1) - 	m(i,i0;c1 ) 	(1.8) 

2 f0 	f0 	f0 
 

where K(C1) is a quarter period of the elliptic sine or cosine function 

(AS, P.569) and M is the hypergeometric function (AS, P.591). The 

right hand side of the equation (1.8) is a monotonically increasing 

function of f
0  and is always greater than (or equal to) 7r/2. It turns 

out that, 1sK/2 	7112 (the equality being reached for f0  = 0 which 

implies f(u) = 0, and hence the material never becomes superconductor) 

which means that the thickness is greater than a certain value 

d 3 dc  = 1,..,This result is incompatible with experiment which suggests 

that a superconductor with a thickness even thinner than the afore-

mentioned value can be made. Therefore the boundary condition f = 0 



at the surface is not valid for an isolated superconductor. The above 

derivation is due to Werthamer, 1969. 

The boundary condition f' = 0 at the surface which must produce 

f(u) = 1, however, has to be examined. 

(II) f' = 0 at u = ±ls 	=0 : 

We apply this condition to the equation (1.2) to determine C; 

C = - i(1-fb2)2 
	

(1.9) 

where f
b 
denotes the value of reduced order parameter at boundary, 

i.e. 	fb  = f(u=±ils). The comparison between equations (1.3) and (1.9) 

gives rise to 

f0  = f(u=0) = fb  E f(u=±ils) 

Thus, f(u) = 1 as we expected, the material can always be in super-

conducting state and there is no geometrical restriction to super- 

conductivity in this case. 	f(u) 

f(IN) 

0 	 N 

Figure 1.2: The two possible configurations for the order parameter 
f (in reduced units) of a S/N sandwich. Chain curve: the traditional 
mode (I); full curve: the new mode (II). 
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CHAPTER 2  

SUPERCONDUCTING SANDWICHES IN ZERO MAGNETIC FIELD 

2.1 Introduction: 

When a superconductor (S) is deposited on a normal metal (N), 

the superconductivity will be induced in N as a result of the leakage 

of Cooper pairs into it. Apart from giving information on the potential 

superconductivity of metals with hitherto inaccessible superconducting 

transition termperatures, the proximity effects could be used as a tool 

to study the properties of magnetic impurities which often display 

remarkable behaviour (Kondo effect, spin glass). The problem of making 

superconductivity and magnetic impurities coexist, that is finding a 

potential superconductor into which impurities are magnetic and which 

remains superconducting even at moderate impurity concentrations, is 

bypassed by inducing the superconductivity. In other words, if N is 

a magnetic metal induced superconductivity disappears in N very close 

to intermetallic interface and superconductivity may be completely 

quenched (Hauser et al 1966). Thus the coexistence of magnetism and 

superconductivity can be investigated by the proximity effects. 

Pioneering theoretical and experimental work has been devised to 

reveal and clarify this proximity effect over the past years (see for 

review, Deutscher and De Gennes, 1969). Theoretically the concepts 

have centred (with the simple exception of the McMillan model 

(tunnelling model) introduced for the proximity effect which can be 
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solved completely, McMillan 1968a, 1968b) on the generalized Ginzburg-

Landau (GL) equations of the microscopic theory derived by Gorkov (1959), 

usually in the dirty limit. Most of the field of proximity effect can 

be said to be qualitatively well understood. One exception is the 

occurrence of a first order phase transition as a response to an 

external magnetic field (Orsay Group 1966, 1967), whereby conventional 

induced superconductivity, in which the order parameter is finite 

throughout N (Fig. 2.1a) gives way at and above a given magnetic field 

(the breakdown field, Hb) to a second mode for which the field 

penetrates part of the N side of the S/N sandwich where superconductivity 

is entirely destroyed. The particular configuration chosen by the 

original investigators (Orsay Group 1966,1967), (Fig. 2.1b), appears 

to have been chosen for "computational simplicity" and is somewhat 

arbitrary, although its general features are certainly justifiable 

on physical grounds. Moreover, our colleagues at Imperial College have 

experienced considerable difficulties in interpreting on those lines 

several recent experiments (Adatia 1976, Tai and Park 1978). These 

reasons have compelled us to look at the problem afresh. We feel that 

the main reason for the occurrence of the first order phase transition 

is the interplay of the two possible boundary conditions at the free 

surface of N discussed below. 

This chapter is mainly concerned with the "complete" solutions 

of the generalized GL equations in zero external magnetic field leading 

to the occurrence of a "new first" order phase transition (as a function 

of temperature T and or normal slab thickness dN). Specifically, we 

shall investigate the situation in which the superconducting part of 

the S/N sandwich is infinite, and neglect the non-linear term in the 
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superconducting order parameter in the normal part of the sandwich. 

An analytic solution can be obtained in this case. 

First, however, we discuss in a somewhat detailed manner the 

possibility of the two boundary conditions of the order parameter at 

outer surface of N in S/N binary layers. 

,AM 

     

 

S 

 

N 

 

 

_______._-____________., 
••,.......... 

  

    

   

     

     

0 	 -"X 
	

dN 

Figure 2.1: The two configurations suggested in Orsay 

(1967) for the order parameter A of a S/N sandwich in 

a magnetic field. (a) Chain curve : H< Hb. (b) full 

curve : H >1-1
b 

(H
b 

is the breakdown field). 
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2.11 The boundary conditions: 

The GL equations, being local differential equation, must be 

solved by imposing certain boundary conditions on the order parameter 

A (r). Since we will be concerned with the solutions of the GL 

equations in one dimensional space where the order parameter A 

depends only on one coordinate ( A(x)), we use the boundary conditions 

at intermetallic interface derived by (De Gennes 1964) 

A 

N(0)V 

D dA 

V dx 

are continuous at intermetallic interface 	(2.1) 

where N(0) is the density of states at the Fermi level (per unit energy 

and per unit volume), V is electron-electron interaction and D is 

diffusion constant of a conduction electron. But the boundary 

condition at outer surface of N in S/N sandwich can be 

either dA = 0 

dx 	at outer surface of N 	(2.2). 

or 	A = 0 

for the following reasons: 

(i) These two conditions are necessary consequences of GL 

superconductivity (they make the superconducting current vanish at 

free surface of N, (Appendix A). The above conditions lead to two 

different configurations (modes) for the order parameter. The one 

with zero slope was called "mode(I)" and the one with zero order 

parameter at free surface was called "mode(II)" in the preceding 

chapter. 
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(ii) Blackburn et al (1975) have shown that, the order parameter in N 

decreases by increasing the temperature and does actually vanish at 

the free surface of N at a certain temperature and for a given normal 

sample thickness. 

(iii) De Gennes (1964) has argued that, if the electron-electron 

interaction V
N 

in the normal metal is negligible, then A=0 at the 

outer surface of N. Therefore the second boundary condition can safely 

be used at least for the normal material with low BCS coupling constant 

N(0)V. In fact, De Gennes and Saint-James (1963), with the help of 

microscopic theory, have shown -that even if the normal sample thickness 

is very small 
(d  N" N 	

OS' SOS is the coherence length of S at zero 

temperature), no energy gap in the excitation spectrum will be detected 

in the tunnelling experiment, if V is negligibly small. In this 

situation, it turns out that the order parameter A=0 at free surface 

of N. The boundary conditions at the S/N interface (2.1), however, 

are not in contention here and are those derived by De Gennes (1964). 

See, however, Silvert (1975) for a critical discussion of (2.1). 

Throughout this thesis, the GL equations will be used which means that 

we stay within the domain of validity of the local GL superconductivity 

(discussed in Appendix A). 

We solve the linearized GL equations for N of finite thickness 

and the non-linear GL equation for S of infinite thickness. Having 

done that, we predict that a first-order phase transition should occur 

in a S/N sandwich, even in the absence of an external magnetic field. 

This is a new prediction which has not yet been observed experimentally. 

Moreover, the non-linear GL equations will be solved completely 

for both isolated S and N of finite thicknesses. 
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2.111 Complete solutions of the GL, .equations: 

Our sandwich has infinite transverse dimensions and we have a 

one dimensional problem that A depends on the longitudinal coordinate 

x only. Our starting point is the GL free energy in one dimensional 

space. For real A, it is given by (Appendix A); 

2 
dA 

F = fdx {C 	+ AA
2 
+ PA

4
} (2.3) 

This is formally valid for both S and N. The GL equation is obtained 

by minimizing F with respect to A; 

CA - AA - BA
3 

= 0 	 (2.4) 

where primed means the derivative of A with respect to x. It is more 

convenient to introduce the following quantities 

2 = 	 AlI 	M2a 	ri 	2 = 	C
, 	(2.5) A 0 

	B ' 	
f(x) - 

'A 0 
	

annu E 	IA   

where E is the GL coherence length. In a clean sample where the 

microscopic theory is valid, E and AO  are given by t  

E = EolT/Tc-10 	, A0  = 3.1kBTc11-T/Tc1 	(*) 

where 	Eo  = 0.13 ti vF/kBTc 	 (2.6) 

and v
F' 

T
C 
are Fermi velocity and critical temperature of the 

specimen respectively. 

t An asterisk labels the equations valid exclusively within the 

microscopic GL theory. The other equations can all accommodate 

phenomenological parameters. 
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The superconductivity will be induced from S into N, if T
CǸ  
	Tcs  

(the subscripts S and N are refered to superconductive and normal 

materials respectively), so that As  is naturally negative and AN  is 

positive. 

Using (2.5), (2.4) for S and N becomes 

2 	" 	3 
E
S 	

f
S 
 + f

S 
 - f

S  

, 2 c" 	c  3 
;11 	'N 	I 

c 
 N 	'N 

= 

= 

0 

0 

(2.7) 

(2.8) 

These non-linear GL equations for S and N can be solved and the solutions 

will be expressed in terms of elliptic functions. The problem will 

remain to find a matching combination of elliptic functions consistent 

with the boundary conditions. 

First integrations of the above equations will be 

2E5
2 
 fs

2 
 = fs

4 
- 2f5

2 
+ ks  

2 '2 
2EN  fN  = fN

4 
+ 2fN

2 
+ kN  

(2.9) 

(2.10) 

where k's are integration constants which are determined by appropriate 

boundary conditions. 

Assuming that the superconducting film extends from -d54 x‘ 0 

and the normal film from Os x, dN, where d and d
N 
are the thicknesses 

of S and N respectively, the above equations are solved separately. 

If we let aS  be the value of f at free surface of S, then by 
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requiring As  (x=-ds) = 0 we can evaluate ks, 

k
S 
 = a

S
2 (2-a

S
2 ) E a

S
2 b
S
2 
 

where as  = f(x=-ds) and bs2=2-as2 
	

(2.11) 

The final solution for (2.9) is, (Abramowitz and Stegun (AS), 1972, P.596-) 

fs(x) = a sn { 
bs  

(x0-x)Im} 	(2.12) 
/2Es  

where m is the parameter (modulus) of elliptic functions which here 

is  m = a
S
2/b

S
2 	

(2.13) 
 

The "extrapolation length" x0  (the distance from the interface 

x=0 at which the order parameter vanishes) is expressed in terms of 

d and K(m) (the complete elliptic integral, AS, P.569) by applying the 

condition dfs  = 0 at x = -d5  on (2.12). Thus x0  will be 

-aT 

	

= -d + EL 	
b
S  

/11  x0 	S 	y 	' 	TS - 

	

S 	 12 E
S  

(2.14) 

It is advantageous to return to the original order parameter A 

As(x) = As  sn(is(x0-x)1m) 	(2.15) 

where 	A
S 
 = A

S 
 (x=-d

S 
 ) 

A 	2 
and 	

IS = ES
1 
 OS 

IAS! 2 	S A = 
OS -7—  

S 

m  = N/A OS)2/(2-(A S/6'0S )2) 

	
(2.16) 
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x0  is given by (2.14) and the expression (2.11) has been used. (AOS is  

the order parameter for the same but isolated and uniform superconductor). 

The quantity As  will be determined by using the boundary conditions at 

metallic interface (2.1). The equation (2.15) is formally valid for 

both modes (I) and (II) (obtained from different boundary conditions 

(2.2)), but the matching parameter As  takes different values for (I) 

and (II), As, and Asii. 

We now solve equation (2.10) for the two aforementioned modes. 

(I) First mode:  
df
N 

The condition 	- 0 at x = d
N 

implies that k
N 

is negative
ax  

(from expression (2.10)). Assume that 

a
NI 

= f(x=d
N
) is the value of f

N 
at free surface of N, 

kNI  = - 
aN
2 

 I(aN
2 
 I+2) 

	
(2.17) 

and for the sake of simplicity 	b
2
NI 
 = a

2
NI

+2 

. df 
Having imposed the condition 	N = 0 at x=dN  on (2.10), the solution 

cCx 
will be (AS, P.596) 

f 
-1 	a

2 
+b
2 

NI NI
) 
	(dN-x) 1 mNI} NI nc 	( NI(x)  = 

a
NI 	 N 

1  
. where na(v1m)=cn(v1m) 	

and parameter mNI  here is 

mNI = b
2 

I (a
2 

+ b
2 

) 
NI 	NI 	NI 	NI 

(2.18) 

(2.19) 

Equation (2.18) in the conventional form would be 

ANI(x)  = ANI nc{YNI(dN-x)imNI} 

	
(2.20) 
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where 

A
NI 

is the value of A at x=d
N 
and 

ANT  2 

YNI = 	
fl +(1, 1.) } 	, 

ON 

A
NI 

ON 	'B
N 

 
(2.21) 

m
NI 

= 2 	( ANI/A0N)2 
 

(2.22) 

2{14.(AtiI/A0N
)2} 

 

Here A
NI 

is the parameter to be matched. 

In order to visualize our two solutions (2.15) and (2.20), we 

recall that an elliptic function is the intermediate between a circular 

(m=0) and hyperbolic (m=1) function (AS P.571). Thus, for (2.15) 

sn (vIm=0) = sin v 	sn (vIm=1) = tanhv 

whereas, for (2.20) 

nc (vIm=0) = sec v 	nc (v1m=1) = coshv 

Since some of the elliptic functions go through zero after a quarter 

period K(m), m can be directly related to the thickness of the 

sample (see, e.g. (2.14)). 

Making use of boundary conditions (2.1) produces two implicit 

expressions which determine As  and 4. 
NI* 

ASIcd( YSIdS 	= a'6NI nc(INIdN 
	

(2.23) 

where a is the ratio of coupling constants i.e. 

NSVS _ a - i- Ni  = N(0) , 	i = S,N 	(2.24) 

* Note; 	dn(v1m=0) = 1 
	

and 	dn(vlm=1) = sechv 
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and 

aSASIYSImSI 
sd(ysidsl m

SI) nd(Y SId I S mSI)  

= aNa6NIINI sc(YNIdNImNI) dc(YNIdNImNI) 	(2.25) 

where a is the normal state conductivity defined by a = 2e2ND 

m
SI 

= 1-mSI
. 

Clearly, equations (2.23) and (2.25) are implicit functions of 

As, and AN, and can not be solved analytically for unknown As, and ANI. 

(II) Second mode:  

We now solve equation (2.10) under the condition fN=0 at x=dN. 

This implies that kN  is positive in this case, 

2 '2 
k
NII 

= 2E
N 
f
NII

(x=d
N
) 

Under the above boundary condition, the solution of (2.10) will be 

fNII(x)  = aNII sc { 
b

NII (dm-x)I mNII} 
V2EN 	" 

(2.26) 

where a
NII 

is a quantity related to the gradient of order parameter 

at x=d
N 

by 

) = 
2 '2 

2§1 fNII(x=  
2 	 2 
NII‘

I
', -aNIII

A  

and 

here 

2 
= 

2 
bNII 2-aNII 

2 	2 
m
NII 

= 1-a
NII

/b
NII 

(2.27) 

(2.28) 

In terms of the order parameter, (2.26) reads, 

A  NII. ()x. = 	NII sc(iNII(dN-x) ImNII)  
(2.29) 



mNIT = 2 
1-(ANII/ON)  

2-(ANII/ ON)2  

2 

(2.31) 
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where ANTI is the parameter to be matched and 

A
NII 

2 
- 

1NII = 1 "I tr.-) 
(2.30) 

(Note again that; 

sc(vIm=0) = tanv 	and 	sc(vim.1) = sinhv 

(AS,P.571)). 

Having applied the conditions (2.1) (to determine 6s,, and ANI, for 

the present case) on (2.15) and (2.29), we obtain the following implicit 

relations between A. 	and A 	• 
311 	NII' 

DSII cd(YSIIdSlmSII )  = aANII sc(YNIIdNI mNII ) 
	

(2.32) 

aSASIIYSIImSII sd(YSIIdSlmSII) nd(YSIIdSlmSII )  = 

aNaANIIYNII dc(YNIIdNImNII) nc(YNIIdNI mNII) 
	

(2.33) 

where m
SII = 

 1-m
SII 	' 	

m
SII 

is given by (2.16). 

We have used (2.14) and changed the arguments of elliptic functions 

(AS, P.572) to find the above relationships. Unfortunately (2.32) and 

(2.33) are the implicit relations between matching parameters 
DSII 

 and 

ANTI. In other words, they are not analytically soluble; were they such 

we would be able to calculate the total free energies of the S/ N system 

defined by FT  = Fs  + FN  for both modes (although the required integral 

may be a formidable mathematical task too), where Fs  and FN  are given 

by (2.3). Then equating FTI  and FTI, could give rise to the prediction 
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of a new first order phase transition in the binary system of finite 

thickness in the absence of an external magnetic field, without any 

simplification of the GL equations. By restricting ourselves to a 

special case, in which (2.32) and (2.33) are analytically soluble, 

we can demonstrate this assertion. 

In the forthcoming section the GL equation will be solved in 

its general form for S of infinite thickness and AN(x) will be found 

from linearized GL equation for N with finite thickness. 

2.IV First order phase transition in S/N sandwiches:  

In section (2.III),we derived the variation of order parameters 

A (x) and A
N
(x) in S/N binary systems using the generalized one 

dimensional GL equations. Moreover, we concluded that a first order 

phase transition can be predicted by matching the total energies of 

the system FTI  and FTII  corresponding to the modes (I) and (II) 

respectively (section 2. III). To demonstrate this assertion we restrict 

ourselves to a special Case in this section. First, the GL equation 

will be solved for infinite S and for N with finite thickness dN, 

then we evaluate F
T 
s to predict a first order phase transition. 

2.IVa. The_solution of:the GL equation for infinite.S: 

Let the superconducting side of the sandwich have infinite 

thickness and occupy the whole region x<0 (Fig. 2.2). Then on the S 

side the solution of (2.4) would be 

A
S 
 (X) = A

SB 
 tanh {(x0 

 -x)/V2
S 
 (T)1 	, x<0 
	

(2.34) 
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where the conventional boundary condition (I) has been taken at 

x
0 
 is a length parameter to be matched (the equation (2.34) is the 

limit of (2.15) for m=1, AS, P.571). A
Se-  

AOS is the order parameter 
 

for the bulk S matter and Es(T) is the coherence length of S. These 

are given by (2.6); 

A
SB

(T) = 3.1kB T
CS 

 (1-T/T CS) 	(*) 
(2.35) 

&s(T) = ;Ds(1-TICS)-i  E 	
• 

= 0 1311v /k T 
OS 	FS B CS 

The parameter x0  will be determined later on by using the conditions (2.1). 

.L1X) 

dN  

Figure 2.2: The two possible configurations for 

the order parameter A of a S/N sandwich. Chain 

curve: the traditional mode (I); full curve: 

the new mode (II). 
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2.IVb The solutions of the linearized GL equation for-N: 

Let N side of the sandwich extend over a distance d
N 

(Fig. 2.2) 

and neglect on the normal side the nonlinear term in the GL equation (2.4). 

The theory is therefore of dubious validity when T = To, but should 

remain qualitatively valid in a reasonably wide range of temperature 

below TOS. On the N side, for either of the alternative modes (boundary 

conditions given by (2.2)) 

	

ANI(x) 
 = {ANI (0)/cosh(dN/EN(T))1 cosh {(dN-x)/EN(T)} 	(2.36) 

x>0 

	

ANII(x) 
 = CANII(0)/sinh(dN/EN(T))}sinh {(dN-x)/EN(T)1 	(2.37) 

Here AN(0) is the parameter to be matched and fiN(T) is the coherence 

length of N given by 

N(T) = EON(T/TCN-1)-1

(*)  
EON = 01311vFN/kBTCN 	(2.38) 

We are now at a position to calculate x0  and AN(0)'s by using 

boundary conditions at metallic interface (De Gennes 1964). These 

conditions are given by (2.1). The continuity of A at metallic 
NV 

-interface for either of the alternative modes leads to 

ASI(0) =aANI(0) 

'61SII(/3) =a6'NII(0)  

(2.39) 

where a is 

a = N
VS S (2.40) 

N
N
V
N 
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and 
	

A S (0) = A
SB 

tanh(X0/V2s) 
	

(2.41) 

It is more convenient to express the relations in terms of the quantity 

AS 
 (0) 

T  = 	- tanh(X0/1/2 s) 1 1 
A
SB 

(2.42) 

The second condition (2.1) obtains 

1 - T1
2 

= 2uTitanh u 	 (2.43) 

n 
1  - TIT

2 
= GPTIICOth u 	 (2.44) 

where 1.1 = aN S
(T) 

, u = d
NN

(T) 

v
,
2a 	 N

(T) 
S 

(2.45) 

a is normal state conductivity given by a =2e
2
ND, 11 is a monotonically 

increasing function of temperature between To  and 	and u is the 

normalized thickness. 

From (2.43) and (2.44) one obtains; 

TI  = - utanh u + (1+u2tanh2u) 
	

(2.46) 

T
II = - pcoth u + (1+112coth2u)1 
	

(2.47) 

Thus T1, 4 TI,  the equality being reached only when dN/EN(T) = .. 

In the Orsay papers (Orsay Group on Superconductivity 1966,-1967) 

TocA
N
(0) was taken to be the same for both modes and therefore so was 

the total free energy F in the absence of an external magnetic field 

so that the possible existence of this phase transition was overlooked. 

The parameter x0  in terms of T and dN  is given by (equation 2.42) 

(T) 
S 
	

In (1}.T)
x 
0- J 

,✓2 	1-T 
(2.48) 



Z8 

and from (2.39) and (2.42) 41(0) for both modes is 

ASB AN(0) = a 
(2.49) 

where T's are given by (2.46) and (2.47). Figure (2.3) shows the 

variation of AN(0) with the normalized thickness u, where 4s(0) is 

Figure 2.3:The variation of the order parameter 

for N at metallic interface AN(0) versus the 

normalized normal slab thickness u. 

the value of o (0) at u== and is given by (from (2.46) and (2.49)), 

A as(0) = 

A 
SB {- A- (l4.42)} 	(2.50) 
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2.IVc The calculation of total free energies: 

The total GL free energy given by (2.3) can be written as 

F=CA(x),P(x)1 0-ifdx.BA4(x) 	(2.51) 

where equation (2.4) has been used. The first term in (2.51) is 

evaluated at the S/N interface (its value is zero on the outer 

boundaries of either mode in N and for S). C depends on the material 

(Appendix A) but is independent of temperature, thickness and boundary 

conditions. On the N side, the second term is neglected to be consistent 

with the linear approximation in equation (2.4)). The total free energy 

of S/N systems FT  = FN  + Fs  is then given by 

FT  = -CNAN(0)AN(0) + CsAs(0)q(0) - 	dx BsAs4(x) 	(2.52) 

note x<0 for S side and x>0 for N side. 

In the above equation the first term is the total energy of N side FN  

and the last two terms are the total energy of S side. These two 

energies will be calculated separately: 

Es  = CsAs(0)q(g) - if0 co d 	
4 

2 _ X BsAs  (X) 

From equation (2.34) one deduces 

Fs  = Cses(0)q(0) + 
F50 

 - 413(-. 	+ T + 3T3) 

(2.53) 

(2.54) 

where (2.42) has been used, F50 = f-psAsB4dx is the free energy of 

the isolated superconducting material, and the parameter P is defined by 

P = (4/3)CsAs6
2
/v2 5(T) 
	

(2.55) 
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and 	As(0) = - 

A
SB 

(1-T2) AS  (0) = A SB 
T 

/2 ES 
 

Substituting these expressions into (2.54) gives 

FS 	
3 	 ,, 

FSO + Pfl - 	-2(1-T
2
/0 ) 	(2.56) 

In order to calculate F
N 
we might use either (2.36) or (2.37). From 

(2.36) one has 

A l(0) = - 1 	AN(0) tanh u 

N 

A  SB 
where AN(0), from (2.49) is 	AN(0) = 	T . The definition of 

a 

and equation (2.43) enable us to write 

A 
SB 	

a
S 	1 

) - 	(1-T2) 
a 'IN /2 

Now F
N 
becomes; 

A'( 
N 

F
N 

= 	P CN aN (i_T2)  T  

4 a2  Cs  aN  
(2.57) 

where (2..55) has been used. Since Ccc T 	(*) (Appendix A) where n 

is the number of conduction electrons per unit volume, it is more 

convenient to introduce a parameter a such that 

a = 1-(4/3)/••  - 2/3) 

EN 

(2.58) 

which is expressed in terms of a mismatch ratio Es/EN  where 

C = aT 
2
/nN

2
V
2
. Thus (2.57) becomes 

F
N 
= P(i + —

1
) (1-T

2
) T  

1-a 

(2.59) 
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Summing up Fs  and FN  given by (2.56) and (2.59) respectively gives 

the total energy of the S/N sandwich FT, formally valid for either 

mode and is 

	

FT  = FSO  + P {1 + T(a-T
2
)/(1-a)1 
	

(2.60) 

It is of interest to note that the limiting case a=1 	
S 	co 

 ) 
N 

corresponds to the fully linearized GL equation, on both N and S 

sides. It will be shown later on that for normal materials with 

extremely low critical temperature such as Copper the mismatch 

ratio be high, affd_hence the parameter a is nearly unity. 
-N 

2.IVd The first-order phase transition: 

So far we have evaluated the total free energy (2.60) of S/N 

binary layers. The total free energies for modes (I) and (II) 

respectively are (from 2.60); 

FTI = FS0 	Pfl 	TI(a-TI2)/(1-a)1  
(2.61) 

FTII = FS0 	Pli 	TII(a-TII2)/(1-a)1  

.A first order phase transition occurs when FTI 
 7 FTTI; i.e. when 

- 
2 
- 

TI 

	

 TI TI 	TI  
I 	I II 	 I 	

a) = -  0 

We have already pointed out that, 
if TI = T

II, the solution can be 

achieved only if the normal sample thickness is infinity i.e. 

dN/ N(T) = c° (see, equations (2.46) and (2.47)). Therefore for finite 

dN, the phase diagram obeys; 
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2 	2 
TI 	TITII 	TII = a  

(2.62) 

where T
I 
and T

II 
are given by (2.46) and (2.47) respectively. 

The phase diagram in the (u,u) or (dN,T) plane is given by eliminating 

T1  and T11  from equations (2.46), (2.47) and (2.62). Since T-

we introduce the following quantities 

T1  = r cos w 

where 44 IT/4 	(2.63) 

TIT = 
r sin w 

and 	(t) = sines cosw 
	

• 

Therefore (2.62) gives 

r= 
a 	

(2.64) 
.1+4, 

w can be written as (2.63); 

sinw = {1-/(1-42-11i 

	

(2.65) 

2 

substituting these two expressions into (2.63) to obtain Tip  

'II = {i(a/(1+0)•(1-1(1-4(1)2))}1 
	

(2.66) 

We have to evaluate cp in terms of a and 4112. From (2.43) and (2.44) 

one can write 

2 	1,1 • 2N 
(1-TII )/211T

II = 2pTy/ki-TI  ) 

This expression produces a quadratic equation in cp by using (2.63) 

and (2.64). Its solutions are 
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s = {a-2+41.12a±aPp2-1)2-4(1-ai]ll /p(a2+1-4112ad 	(2.67) 

The phase diagram in the (u01) or (dN,T) plane, therefore is given 

by (equation 2.44) 

u = coth
-1 
 {(1-TI,

2 
)/2PTIO 

By introducing the quantity; 

2x 
H = (I1 -TII "inLPTII 

(2.68) 

(2.69) 

we can show that u is a logarithmic function of u via, 

u = 	ln(1 + 	) 	 (2.70) 

where H, T1, and s are respectively given by (2.69), (2.66) and (2.67). 

The phase diagram depends solely on the parameter a. Since 

ES/EN 
	0 and p 	0, physically, one is restricted to a 	3 or 0 4 a 4 1. 

However we have found a solution (2.70) to equations (2.46), (2.47) 

and (2.62) and thus a phase transition is only in the region 0 4 a < 1, 

namely if 

 

4
2 

?, a/3 - 2 + 3/a for 0 	a < a 
` C 

and 

4p2  1 + 247; for aC 
 `< a < 1 

with 	ac  = 	(V13 - 3) = 0.908 

The quantity (1)  (equation 2.67) is double-valued in the region 

a
C 
 `< a < 1 and 

1 +2 	<4u a/3 - 2 + 3/a 
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wherein u is a double-valued function of the temperature. Outside, only 

the minus sign solution for (1) is physical and the phase diagram is 

single-valued. 

The phase diagram in the (u,p) plane is plotted in figure (2.4). 

We recall that to have a phase transition, the parameter a must lie 

between 0 and 1. As can be seen in table (2.1), several of the 

sandwiches commonly investigated have a outside this range. In this 

region the conventional mode (I) has then the lowest free energy and 

the standard theory is applicable in this case, in zero magnetic field. 

Since u = d
N
/E
N
(T) we use (2.38) to write the interphase as 

2d /p NON = (T/T0-1)-11n{1+2/(H-1)} (2.71) 

where (2.70) has been used. We note that from (2.6) and (2.45), p as 

a function of temperature would be 

v
FN 	

T
CN {T/TCN 

- 1 

1.1 	 1 	(*) 	(2.72) 

	

/2c 	 T 	1 - T/T 

	

c:r 	v
FS 	CS 	CS 

The equation (2.71) has been used to plot the phase diagram of dN  and 

T, with the parameters relevant to a PbZn sandwich (*) in figure (2.5). 

It turns out that for a given thickness and at a temperaure much below 

Tcs, the mode (I)' is energetically more favourable than mode (II) i.e. 

FTI 4 
 FTII* By increasing T, the mode (I) still remains stable till the 

temperature reaches a certain value (on phase diagram) at which the 

phase transition occurs, namely when F-.= FTII 
 and the order parameter 

at outer surface of N falls down to zero. We now again increase T but 
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still below T
CS
' It is seen that in this range of temperature the mode 

(II) would be more stable than mode (I),i.e. FTI, < FT, until T attains 

to T
CS 
 at and above which the whole system of S/N becomes normal. It is 

of interest to note that the region (II), where mode (II) is 

energetically more favourable than mode (I), is broadened by increasing 

the thickness of normal specimen. 

The phase diagram has the following salient features: 

(i) As 	4112 	-, i.e. as T 	
TCS 

1 
u = a-1  (1-a)(2u)

-1 
+ 0( —2- ) 

411 

or, within the microscopic Ginzburg-Landau-GoAov Theory 

(2.73) 

d
N 	_ 1-a 	

D
S  NN 

T

CS (1-TCN/TCS)-
1
(l-T/Tcs) 	(*) (2.74) 

EOS 	V(2a) DN 
 Ns TCN 

The scale of the d
N 

axis is therefore the coherence length of the 

superconducting metal %s  at T=0, enhanced if TCN/TCS 
 is either very 

small or very close to one. The former is the case of all the Cu 

sandwiches (even though aN/ Gs» 1) and the latter that of InTl. The 

phase transition may then be too close to the critical temperature Tcs  

of the whole sandwich to be observable for all except the thickest 

sandwiches. 

(ii) As 4 112  4.4p 
2 

= —
3 

(1-a/3)
2
, u diverges logarthmically (expression 

co 	a 

(2.70): 

u = 	In 14 u2  - 4 u21 + 0(1) 	(2.75) 

2 
411.  and thus the corresponding temperature T decreases with 

increasing a. 
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Figure 2.4: The phase diagram of a S/N sandwich for several 

values of the parameter a. u = dN/EN(T) is proportional to 

the thickness d
N 

of the normal material, and 4u
2
cc(T-TCN )/TCS  -T) 

(*) to the temperature. Note the change of scale in the abscissa. 

0.1 

4 	5 	6 	71- 11K) 
0 

Figure 2.5: The same in terms of dN  and T, with the parameters 

relevant to a PbZn sandwich (*). 
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Table 2.1 Predicted occurrence of first-order phase transition  

Data from equations (2.75) and (2.76) and from Kittel (1971). 

N 

s 	(TCN)  

Pb Sn 	In Ti Ga Zn Cd Cu 

(TCS) 
(7.2) (3.7) 	(3.4) (2.4) (1.1) 0.85) (0.56) (0.015?) 

0.75 0.90 0.81 0.91 1.0 

Nb(9.2) No No 	No 8.2 8.2 6.2 7.2 7.8 

7.2 7.5 

0.51 0.83 0.63 0.83 1.0 
Pb(7.2) No 	No 

6.2 5.7 4.0 4.5 4.9 

4.5 

0.51 0.83 0.63 0.83 1.0 
Sn(3.7) No 

3.6 3.3 2.7 2.9 3.0 

2.8 

0.52 0.83 0.63 0.83 1.0 
In(3.4) 3.3 3.2 2.7 2.8 2.9 

2.8 

0.26 0.29 1.0 
11(2.4) 2.3 

No 
2.0 1.3 

1.2 

a 0.99 
Ga(1.1) voK) No No 0.44 

Tmin(°K) 
0.41 

003 0.99 
Zn(0.85) 

0.85 0.65 

0.62 

0.99 

Cd(0.56) 0.33 

0.32 
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(iii) As 4u
2 
+ 4umin  = 1 + 2(1-a) , when a 	ac, u approaches a 

turning point; 

2 
(4u

2 
 - 4umin) = Q(u-umin)

2 (2.76) 

Both umin  and Q are complicated but monotonic functions of a: 

umin,qiin andthecorrespondingTmin decrease and Q increases with 

increasing a. umin(ac) =m  , Q(ac) = 0, whereas umin(1) = 0, Q(1) =- ; 

the interphase is linear. 

To fix the respective scales, these are the conversion formulae 

between (u,u) and (dN,T) in the microscopic theory: 

1-T/Tcs 
 = (1-TCN/TCS )/{1+2(D

s/DN)
2
(Tcs/TcN)u

2 
 } 	(*) 

(2.77) 

dN/Eos = (Tcs/To)(NN/Ns)(T/TcN-1)-lu 
	

(*) 

where equations (2.6) and (2.45) have been used. 

Since the interphase never reaches TCN  (see table 2.1) 

T/TCN  >> 1, the second expression of (2.77), in a good approximation 

can be written as 

d N OS 
	

(Tcs/TcN)iu 

It turns out that for a normal specimen with thickness greater than 

or of order of the coherence length of N, N) i.e. u N 1, the 

temperature of the phase transition is roughly independent of the 

thickness. This means that the difference between free energies is 

a very weak function of temperature and the two modes become 

indistinguishable. Consequently, the relevant thickness to investigate 
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the phase transition are those within 

0 4 d" 
N 	(TCS' -

/T 
 CN )  "' 

r 
OS 

2.V Conclusion:  

We predict, within the local GL theory, the occurrence of a 

first order phase transition in several superconducting sandwiches 

(in the absence of an external magnetic field), due to the competition 

between two configuration modes for the order parameter compatible 

with local Ginzburg-Landau superconductivity. This phase transition 

occurs only if the mismatch parameter 
ES/EN 

is large enough: 

where 	E =aT 
2
/nN

2
V
2 

It can be seen in table (2.1) that several, but not all, the 

sandwiches hitherto studied experimentally do not exhibit this phase 

transition and have the conventional configuration. This may be the 

reason why the phase transition has not so far been observed 

experimentally. Moreover, it may be difficult to observe if the normal 

material is too thick since the latent heat involved in the transition 

goes to zero as the normalized thickness u tends to infinity. 

The same energetic arguments can be extended to indude the 

effect of an external magnetic field. The conventional mode (I) is 

indeed more vulnerable to the application of a magnetic field on the 

normal side of the sandwich than mode (II) and should give way to the 

latter through a first-order phase transition at some finite breakdown 

field below the critical field of the superconductor. 
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The effect of an external magnetic field will be studied in the 

forthcoming chapter. 

The phase transition predicted here should also affect the 

behaviour of Josephson junctions S/N/S which can be viewed as our S/N 

sandwich with its mirror image juxtaposed. At sufficiently high 

temperatures and for thick enough MOs) normal material, the order 

parameter is in the mode (II) which is antisymmetrical across the 

junction. There is thus a phase shift of Tr. 

Finally, by reducing the electronic mean free path, i.e. aN, 

in the normal side of the sandwich, the parameters S
/C
N 
and a are 

increased and a phase transition from mode (I) to mode (II) can be 

induced in the sandwich at a fixed temperature and thickness, as 

indicated in figure (2.4). 
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CHAPTER 3  

SUPERCONDUCTOR IN AN EXTERNAL MAGNETIC FIELD  

3.1 Introduction:  

In earlier chapters, we restricted ourselves to the study of the 

systems such as S/N sandwiches in the absence of an external magnetic 

field. This restriction clearly excludes the consideration of most of 

the outstanding properties of an isolated superconductor, i.e. those 

occuring in an external magnetic field. In this chapter we treat these 

properties. 

3.11 Upper critical field of the superconductors:  

When a superconducting sample is placed in a uniform and 

sufficiently high magnetic field, the superconductivity will be 

destroyed and the microscopic field will be homogeneous and equal 

to h
a 

(h
a 

is applied magnetic field in reduced units) throughout 

the superconductor. We now decrease ha  until the superconductivity 

begins to appear. This value of ha  is called the upper critical field 

and is denoted by hc2. It will be shown that hc2  is quite different 

from the thermodynamic critical field hc  and it can be either. • 

greater or smaller than hc  depending on the type of the material. 

In the vicinity of 'Iv, the order parameter is so small that 

the non-linear terms in f (in GL equations) can be ignored and the 

linearized GL equations could be used to determine hC2. Since all 
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screening effects due to supercurrents are proportional to h' = dh 

(see Appendix A) and therefore to f
2
, the resulting modifications to 

the field could safely be ignored in linear approximation. This 

enables us to assume that the microscopic field is equal to ha. Then 

the coupled GL equations (Appendix A) become, 

K 2f = f(-1+a
2
) 

(3.1) 
a = 0 

df 
where f' = 

au 
and h = a' = 

da 
. Now if we use the following boundary 

du 

condition, 

a = 0 	, at some position u = uo 	(3.2) 

then the second equation of (3.1) will be 

a = h
a
(u-u

0
) 	 (3.3) 

and the first one becomes, 

-2 d
2 

{-K —2. 	h
a  2

(u-u
0  )
2
}f = f 

du 
(3.4) 

This is formally identical to a Schrodinger equation for the motion 

of a particle in a uniform magnetic field, or bound in a harmonic 

oscillator potential. This problem is analogous to the problem of 

finding the eigen-states of a charged particle in ha, leading to the 

so-called Landau levels. The frequency w of the harmonic oscillator 

(3.4) and its eigen-energy c are, here 

2h 
= 	a , 	E = 1 	(3.5) 
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In general the harmonic oscillator eigen-energies are given by, 

c
n 
= (n+i)hw ; 

Using (3.5), we obtain 	h = 	K  
a —271-7 

(3.6) 

(3.7) 

The highest field for which the superconductivity begins to 

appear (i.e. f # 0) will be determined by setting n=0 in equation (3.7). 

Thus 

hC2 = K 	
in dimensionless units 

(3.8) 

and is, 	H
C2 

= /2 KH = 	in in conventional units • 

27rE 

(The thermodynamical critical field Hc  has been defined and determined 

in Appendix A). 

The derivation of the upper critical field, Hc2, is valid for 

all values of K. Evidently, for type I superconductor for which 

K < 11/21 the upper critical field is smaller than Hc, whereas for 

type II material (K > 11/2), Hc2  exceeds Hc; Hc2  = Hc  for the specimen 

with K = 1/)/2. De Gennes (1966) has commented that, in bulk type II 

superconductor, the condensed phase (f 	0) will appear for any 

Ha  < Hc2. Since a complete Meissner effect is not energetically 

faVoured at any applied field higher than Hc, this phase can not 

coincide with a perfect exclusion of the magnetic flux. On the other 

hand, in bulk type I material a perfect Meissner effect occurs at 

Hc, greater than H. 

Saint-James et al (1969) have determined the field Hn  for 
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nucleation of superconductivity. Since expression (3.8) gives Hr, for 

an infinite sample and the edge effect makes no contribution to it, 

they have shown that nucleation, for finite specimen, occurs at a 

nucleation field HC3 
> H

C2 
and on the surfaces of the sample parallel 

to H
a 

(H
a i

s the applied external magnetic field in conventional units). 

In other words, very close to these surfaces, a superconducting sheath 

exists and the rest of the material remains in normal state. 

It has to be mentioned that the determination of HC2  in three 

dimensional space which leads to the same result, yields a three 

dimensional solution for the order parameter corresponding to an 

eigen-value which is highly degenerate (Saint-James et al (1969)). 

Many authors, Abrikosov (1957), De Gennes (1966), Saint-James (1969) 

and Tinkham (1975) have used this property to obtain the Abrikosov 

vortex structure of the type II superconductor close to HC 
 2. 

We have, however, used a very simple quantum mechanical method 

to evaluate H
C2 

for superconduftors of any type. 

3.111 Magnetic field effects on superconductors:  

One of the interesting features of the bulk superconductor with 

K ti  1 (K is the Ginzburg-Landau (GL) parameter) when placed in an 

external magnetic field, is the extension of the magnetic perturbation 

well over the size of a Cooper pair. On the other hand, the extension 

of the magnetic perturbation, in the materials with K < 1, is less than 

the size of a Cooper pair. As usual, the GL parameter K is defined by: 

K = 
T 

- 
	
, where AT  and 	are the penetration depth and the coherence 

T  
 

length. It is of great importance to notice that the penetration depth 



45 

depends on the applied magnetic field Ha. In fact, the calculations 

carried out by GL (1950) show that the effective penetration depth 

x
eff 

is seven percent higher than the penetration depth in zero 

magnetic field, xT, for the superconductor with :K = 1/12  and for 

H
a 
 = H

C 
 (H

C 
 is the thermodynamid critical field of the bulk material). 

In forthcoming sections Xeff  will be calculated for the extreme type 

II superconductor (K -+ co), placed in an external magnetic field 

parallel to the surface of the superconductor. It will be shown 

that x
eff 

= /2x
T 
for the extreme type II superconductor of infinite 

thickness, by using the GL equations. 

The type II superconductor, in a low external magnetic field 

Ha, displays a complete Meissner effect. The specimen will remain 

in the Meissner state, even if Ha  is higher than the bulk lower 

critical field. H
Cl 

(H
Cl 

was first calculated by Abrikosor, 1957, and 

is given by HCl 
 = 727 

H
C (lnK + 0.08) . This means that the vortex 

line can not enter into the specimen, even if Ha  > HC1' The reason 

is that, a vortex line near the surface of the sample interacts with 

the external field and the associated screening currents. This 

leads to a surface barrier effect impeding the entry of the flux 

lines into an ideal specimen. It turns out that the Meissner state 

can subsist up to a certain field Hs'(the barrier field) above H01. 

The surface barrier effect first was predicted independently by 

Bean and Livingston and by De Gennes and Matricon (1964). The 

resulting delayed flux entry has been observed by Joseph and Tomasch 

(1964), De Blois and De Sorbo (1964), Boato et al (1965) and Bobel 

and Ratto (1965). Moreover, De Gennes (1966) has commented that, 

although a vortex line gains the energy, and hence reaches the deep 
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inside of the sample, when H
S 

> H
a 

> H
C1' 

nonetheless there is a 

barrier near the surface of the sample, and the line will not enter the 

surface of the sample if the surface is clean. 

The calculations done by Bean and Livingston (1964), for the 

bulk superconductors with lc» 1, show that Hs  = HC/✓2 which is not in 

agreement with the experiments carried out by De Blois and De Sorbo 

(1964) on NbTa alloys which give Hs  = Hc. Furthermore, the Orsay 

Group On Superconductivity (1966), by using the London equation, has 

calculated H for the bulk superconductor with K » 1 and the result 

has been the same as the result due to Bean and Livingston (1964). 

The discrepancy between the aforementioned theories and the experiments 

of De Blois and De Sorbo (1964) is due to the fact that the London 

equation is valid only in low fields, i.e. Ha  « Hc  (Saint-James et al 

1969). In particular, the London penetration depth is taken to be 

field independent. 

Fink (1966) has reported that the surface barrier effect can 

be predicted for the superconductors of arbitrary K, if the thickness 

of the sample is much larger than the coherence length 	We We restrict 

ourselves to the limit K4. (the GL parameter of an extreme type II 

superconductor.) By using the GL equations, it will be shown that the 

barrier field H is exactly equal to the bulk thermodynamic critical 

field H (for an extreme type II superconductor with infinite thickness), 

i.e. H = H which is in excellent agreement with the experimental 

result of De Blois and De Sorbo (1964). 

In the GL theory, Hs  plays the role of the boundary for superheating 
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of the superconducting phase. In fact, when H
a 

is increased above H , 

the metastable state occurs in the superconductor. This is accounted 

for as superheating (Burger and Saint-James, 1969). Therefore, according 

to our previous discussion about Hs, in this section, the superheating 

is pictured as the permanence of the Meissner effect above the 

corresponding critical field. This means that the type II material 

remains in the Meissner state instead of going to the mixed state at 

Ha  = Hs  (what we called the barrier field). Consequently Hs  is the 

maximum field up to which the superconductor remains in the metastable 

state. 

Within the domain of validity of the GL theory, we calculate 

the effective penetration depth Aeff  and the barrier field (the 

superheating field) H for the extreme type II superconductors 

(K + co). It will be shown that the order parameter is reduced 

considerably near the surface of the sample, when Ha  is of the order 

of Hc. 

3.IV The GL equations for an extreme type II superconductor: 

The advantage of the London equation used by many authors 

(Orsay Group, 1966 and Bean and Livingston,1964) in explaining the 

surface barriers, is that it gives us a tool to study the nucleation 

process. When H
a 

is of the order of H
C' 

the super-current (or the 

order parameter) is considerably lowered even when a vortex has not 

yet appeared (Orsay Group, 1966). Therefore the London equation, 

with a constant penetration depth xT, can be used everywhere, except 

for the hard cores of the vortices (the hard core radius is 	this this 

disregards the sensitivity of Hs  to the coherence length ET  (De Gennes 
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1965). Thus the London equation is not applicable whenever Ha  is high. 

Since the GL equations are applicable even when Ha  is of the order Hc, 

they will be used to determine Hs. It will be shown, by using the GL 

equations, that for an infinite type II superconductor with 	co, 

H
S 
 = H

C 
 which is in good agreement with the experimental results of 

De Blois and De Sorbo .(1964). 

This section, using the GL equations, is devoted only to the 

derivation of a differential equation for the magnetic vector potential 

(for an extreme type II material) which will be used everywhere 

throughout this chapter. It is mentioned that this chapter deals 

only with the high K limit. 

Since no vortex has yet appeared, we can use the GL equations 

in one-dimensional space in the limiting case K » 1. The GL equations 

in dimensionless forms are (Appendix A), 

m 

2f = f(-1+f
2
+a
2
) 

a
u 
= f

2
a 

In the limit K » 1 equation (3.9) takes the form 

f(-1+f
2
+a
2
) = 0. 

(3.9) 

(3.10) 

(3.11) 

This implies that either f = 0, which describes the normal state of the 

system, or 

f
2
+a
2 

= 1 
	

(3.12) 

Since in our present work, the order parameter f extends over a 

distance approximately equal to the penetration depth i.e. f ti f, then 
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the neglected terms are of order K-2. 

The order parameter f as given by equation (3.12) does not 

generally satisfy the boundary condition f = 0 at the surface of the 

sample but this does not have a great significance in the case of the 

specimen with K » 1. However, it has been proven by the Orsay Group 

On Superconductivity (1966) that the correction to f in equation (3.12) 

needed in order to satisfy the above boundary condition, is of order 

of K-2  which can be neglected in the limit K » 1. 

Combining equations (3.12) and (3.10), we obtain an equation 

of motion given by: 

a • - a + a
3 

= 0 
	

(3.13) 

which is the equation of motion of the standard (I)
4 
field theory. This 

is equivalent to the equation of motion of a particle of mass unity in a 

potential 

V(a) 	ia4  - ia2 	 (3.14) 

where the "time" and "position" have been replaced by u and a 

respectively, (Fig. 3.1). The corresponding energy of the particle (E) 

is obtained by the first integral of (3.13) which is given by 

ia t2  + V(a) = E = constant 	(3.15) 

All the solutions of this equation are elliptic functions which are all 

oscillatory, except for one (a solitary wave), which corresponds to E = O. 

In this case, it takes an infinite time for the particle to reach to the 

apex point 0 (Fig. 3.1). There are two other possible solutions of 
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E=E+  >0 
E=Eb =0 
E=E_ 

Fig. 3.1: Potential well of a particle with mass unity (we note 
that the abscissa is a). This is the solution of (3.14). The 
particle is bound to move in the physical regions where 
lal .1 1, 1 	f ?. 0 (equation (3.12)). The corresponding energy 
E of the particle can be either positive E or zero E

o 
or negative 

E. 

(3.15) which correspond to E < 0 and E > 0. All the possible solutions 

(corresponding to E = 0, E < 0 and E > 0) will be investigated 

separately. Moreover, we will use mechanical arguments in analogy with 

the motion of a particle in the potential well (Fig. 3.1) to obtain the 

physically acceptable regions at which the solutions of (3.15) are such 

that lal 	1 and f 	0; we recall that, since the reduced order 

parameter 0 	f 	1, from equation (3.12), the absolute value of the 

magnetic vector potential a, for the physical regions, must be less 

than one, i.e. lal 	1. The regions at which a exceeds unity are not 

accepted on physical grounds (Fig. 3.1). 

In view of the analogy of the magnetic energy h
2
/2 (we note that 

the gradient of the vector potential at any point is the magnetic field) 
,'2 

of an extreme type II superconductor with the kinetic energy v2T- of a 

particle with mass unity moving in the potential well (Fig. 3.1), it 

seems useful to discuss 'mechanically' the three possible solutions of 
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a'2  
particle 77  = E - V). The three possible solutions of (3.15) which 

correspond to E = 	> 0, E = E0  = 0 and E ..E_ < 0 (see Fig. 3.1) are 

discussed as follows: 

(1) When the energy of the particle is 	and at some time which 

corresponds to the point a = 1 (where the potential V(a) is minimum), 

the kinetic energy of the particle (or accordingly the magnetic energy 

a
'2 

h
2 

of the specimen) is maximum and is given by --T- = 	= 	+ 	In our 

present investigation of an extreme type II material, this dives the 

maximum allowed field, h
S 

= (2E
+ 
+ i)1, the barrier field in reduced 

units. (From Appendix A, the bulk thermodynamic critical field hc  = 1/12. 

Therefore h
S 
 > h

C 
 when E = 	> 0, which means that the superconductor 

remains in the Meissner state even when the field is greater than the 

bulk thermodynamic critical field. In other words, the interaction 

between the vortex line with the external field or with the surface of 

the sample reduces considerably the energy of the vortex such that it 

can not enter in the superconductor). At later times (a < 1), when the 

particle moves towards the maximum value of V(a), its kinetic energy is 

decreased (the magnetic field is lowered) and it takes some definite 

time for the particle to reach to the point V(a) = 0 at a = 0. At this 

a'2  h2  
point the particle has its minimum kinetic energy —2— = -27  = El.. This 

means that the magnetic field h does not vanish in the case when 

E = E
+ 

> 0 and in the physical region (a 	1, f 	0 from (3.12)). 

Therefore, when E > 0, the minimum field at which (3.15) has an 

acceptable solution in the physical region of interest (a .1 1) is given 

by h = /Or-  Clearly E is determined by the appropriate boundary 
+' 

condition. Since Vla) is symmetric with respect to a, the above 

arguments hold for negative a. We notice that the solution of (3.15), 

(3.15). The magnetic energy of such a superconductor, from (3.15), is 

h
2 
—
2 

= E - V (which is equivalently the kinetic energy of the above 
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for E > 0, is oscillatory and goes beyond the point where lal = 1 

(unphysical region) at some applied field. 

(2) When the particle has zero energy, i.e. E = E0  = 0 (Fig. 3.1) and 

is at the point a = 1 (say zero time), its kinetic energy is maximum 

and is given by a
'2 

= i. At later times, its energy is reduced such 

that it takes an infinite time for the particle to have zero kinetic 

energy (when it reaches the apex point 0 at which the potential 

V(a) vanishes, Fig. 3.1). Consequently, in this case, i.e. E = 0, the 

maximum admissible field, for which lal .1 1 and 0 f f 	1 are satisfied, 

is h = 1/12 = h
C
' This means that the barrier field, in this case 

(E = 0), is exactly equal to the bulk thermodynamid field. It is clear 

that when h
S 
 = h

C) 
 (a = 1), the order parameter vanishes at the point 

where the magnetic field is applied (at the surface of the sample). The 

same arguments can be applied for negative a, since V(a) is invariant 

under the sign transformation of a. We note that the solution of 

(3.15) is not oscillatory (E = 0) and, at some applied field, it goes 

beyond the point where lal = 1 (unacceptable region). 

(3) The third possible solution of (3.15) is the one in which E = E_ < 0. 

Assume that the particle is, at some specific time (say zero), at the 

point where a = 1 (for a = 1, the potential is minimum, i.e. V(1) = -i). 

The kinetic energy of the particle, at this point, is maximum and is 

given by a12/2 = E_ + 	(Correspondingly the maximum permissible field 

ish=(2E+)whichisobviouslylessthan 	= - 1/12, since E 	0. 

This means that the superconductor remains in the Meissner state for 

the field less than the bulk thermodynamic critical field, contrary to 

the case where E is positive). At later times (as a decreases towards 

zero) the kinetic energy reduces and vanishes at some point. The value 
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of a at which the particle has no kinetic energy is calculated from 

ia
4 
- ia

2 
= -E . For a less than the value determined from the above 

equation (later time) the kinetic energy will be negative. Therefore 

the particle has to oscillate between a = 1 and the positive value of 

a
m 

obtained from the above equation. This means that when E = E_ < 0, 

the solution of (3.15) is not physically acceptable for lad < lam', 

since the magnetic energy will be negative in this region. However, 

the solution of (3.15) is oscillatory and it goes beyond the point 

Ia! = 1 (unphysical region), at some applied field. 

In this section we discussed the three possible solutions of 

(3.15) corresponding to the cases where E > 0, E = 0 and E < 0, by using 

the mechanical arguments of the motion of a particle in a potential well. 

The equation (3.15) will be solved for all the above cases in the 

forthcoming sections which will enable us to determine hs  in each case. 

It will be shown that h depends strongly on the thickness of the 

superconductor of finite thickness. We note again that all the 

sections will deal with high K. 

3.IV.a Semi-infinite superconductor with high K: 

We consider a semi-infinite sample which occupies the half-space 

u 	0. The external magnetic field ha  (in reduced units) is applied 

at u = 0 and the other boundary conditions are, 

1 
a = 0 and a = constant = 0 say,at u = 

	
(3.16) 

Applying these conditions to equation (3.15) gives E = 0 and then 

equation (3.15) becomes 
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a
'2 

= a
2 
- a

4
/2 	 (3.17) 

The solution of this equation is simply given by 

a(u) = 12 sech(u+u0), 	 (3.18) 

where u
o 

is the parameter to be determined by using the following 

condition: 

h= 
da 
 = ha  at 	u = 0. 	 (3.19) 

The variation of the magnetic field,however, is given by 

h(u) = 12 sech(u+uo)tanh(u+uo) 
	

(3.20) 

Therefore u
o 
is related to h

a 
by 

h
a 

= 12 sech u
o 

tanh u
o 
	 (3.21) 

Since in reduced units (Appendix A) any magnetic field is measured 

in the units of V2H
C 
 (H

C 
 being the critical magnetic field for the 

bulk sample in conventional units). So, equation (3.21) in terms of 

conventional units is 

or 

H
a 

= 2 sech u
o 

tanh u
o
, 

"C 

sinh u
o =171-) 

	{(g-C)2- 1 }21 
 

a 	a 

(3.22) 

(3.23) 

Hence the possible existence of a solution only when Ha/HC  .1 1 is 

evident. Nevertheless, we mention that for all u 	0, the solution 

must remain "physical" (from expression (3.12), lal z‹. 1); obviously this 

is not possible for all the oscillatory solutions of the equation (3.13). 

(We note that the solution of (3.13) is not oscillatory for E = 0, section 
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3.111). This means that, they all go beyond the point where lal = 1 at 

some applied field. For semi-infinite specimen, the maximum permissible 

value of H
a 
is H (corresponding to sinh u

o 
= 1) and the only acceptable 

solution is the one in which the condition u
o 	

sinh
-1

(1) is satisfied 

(Fig. 3.2), so that a(u 	0) .1 1. 

Superconductor Vacuum 

sech Lig  

	 u(4-,time) 
0 0 

Figure 3.2: Vector potential distribution in the extreme type 
II superconductor (K » 1). (Solution of the equation 3.18). 
Note that the slope a l  = -h is the field to be matched at 
the boundaries of the sample. 

Since for the field H
a 

> H
C' 

the surface barrier disappears and hence 

the vortices enter into the specimen, the GL equations must be solved 

in two dimensional space. We must conclude that the solutions which 

are functions of y as well must be the only solutions of the GL 

equations for Ha  > Hc. The system which is studied in two dimensional 

space buckles, which leads to the creation of the vortices. 

The one dimensional solution of the GL equation for the material 

with high K however, carries further interesting results which can be 

obtained by resorting to the field distribution and the variation of 

order parameter in the sample. 



Solid line for H
a 

= H
C 

Dashed line for H
a 	

H
C 

Combining equations (3.18) and (3.12), we get 

f
2
(u) = 2tanh

2
(u + 	- 1 
	

(3.24) 

Using expression (3.22), the value of f at u = 0, in terms of field, 

becomes 

H
a 2 

f
2
(0) = {1 - (71--) } 

"C 
(3.25) 

Therefore, for Ha 
	C 
= H'

' 
 the order parameter at the surface i.e. f(0) 

falls down to zero and hence we are in fact dealing with a situation of 

strong field effects near the surface (strongly metastable states, 

section 3.111). De Blois and De Sorbo (1964) and Joseph and Tomasch 

(1964) have experimentally shown that these metastable states can be 

preserved for a considerable time. This means that the one dimensional 

solution (in the present work) always corresponds to a local minimum 

of the thermodynamic potential for Ha  < Hc. Figure (3.3) shows the 

field distribution in a sample with high K for various values of Ha  

in metastable states before penetration of vortices (Ha  > HCl ). 

Figure 3.3: Distribution of the field in an extreme type II 
superconductor for different applied fields (Ha  > HCl). 
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The distribution of the current J in the sample, for Ha  = Hc, 

is of a particular interest. Since the current is proportional to 

dh 
du = -a = a

3 
- a. it vanishes at the surfaces of the sample (for a = 1, 

f = 0 and for a = 0, f = 1, see (3.12)) and has a maximum, Jm, at a 

distance u
m = ln()2 + 1 

+ VS) - 0.663 from the origin. At this point 

H
a = 3 

V5 
H
C' 

a = a
m 

= 1/4 and f = f
m 
= 1(2/3). J

m 
is the same as the 

conventional critical current for a thin film (see for a review, De 

Gennes, 1966 and Grassie, 1975). As is shown in Fig. (3.4), the 

current close to the surface is small. First it increases up to Jm, 

u = u
m 
and then decreases to zero by increasing u from u = u

m 
to u = co. 

The variation of order parameter is plotted in Fig. (3.5) for 

the same conditions (Ha  = Hc  ; K 	m ). Since the vector potential 

at the surface a(0) = /2 sech uo  is unity for Ha  = Hc, the slope of f 

at that point is infinity. This slope is said to remain finite for 

finite K (Orsay Group On Superconductivity, 1966). 

3.IV.b The barrier field; 

Another remarkable result obtained from the solution of the GL 

equations is the highest field Hs  for which the Meissner state can 

subsist. In type II superconductor, this means that the specimen 

remains in the Meissner state instead of going to the mixed state at 

Ha 	
H
Cl' HS 

 is indeed "the barrier field" which opposes the entry of 

the vortex line or more precisely, it is the maximum field less than 

which the sample remains in the metastable state. 

The problem now is to calculate Hs  for semi-infinite materials 

with high K. 



J 

Jrn  
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um Li 

Figure 3.4: Current distribution for a metastable state of an 
extreme type II superconductor (K » 1) for Ha  = Hc. 

f co A 

1 

um 1.653 
	

Li 

Figure 3.5: Variation of the order parameter f for the same 
conditions for K - c°. 
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Combination of first integrations of equations (3.9) and (3.10) 

gives us (for arbitrary K ): 

a
'2 

= h
2 

= -K
2
f
'2 

+ f
2
(-1 + f

2
/2 + a

2
) + c 
	

(3.26) 

The integration constant c is determined by imposing the following 
1 	 1 

boundary conditions, h = -a = 0, a = constant = 0, say, f = 1 and f = 0 

at u = co which will be c = 	Substituting the value of c into 

expression (3.26) and using equation (3.9) we obtain 

h
2 

= i(1 - f
4
) + (f/K)

2 d!
.,1nf 	 (3.27) 

du 

This is valid for all values of K (for semi-infinite materials). For 

an extreme type II superconductor (K » 1) one gets 

h
2 a gl - f4) 
	

(3.28) 

We note that expressions (3.20) and (3.24) satisfy this equation. 

Since h = ha, f = f(0) Efo  at the surface i.e. at u = 0; then h can 

be replaced by ha  if 

h  a 	- fo4  ) 
a 

(3.29) 

The maximum applied field h
a
)
max 

E h
S 

is the one which makes f
o 

zero. 

Therefore the barrier field is 

h = 1/12 	in dimensionless units, or 

H
S 
 = H

C 	
in conventional units. 

This is comparable to the barrier field obtained by Joseph and Thomasch 

(1964). They used "London 	equation" and showed that Hs  = Hc/i2. 

But the experiment carried out by De Blois and De Sorbo (1964) shows 

that H = 320 Oe for the NbTa alloys with H = 310 Oe. Moreover, 

Matricon and Saint-James (1967) have numerically calculated Hs  from 
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equations (3.9) and (3.10), for all values of the GL parameter . It 

has been pointed out that 

Hs  = (0/2)-1Hc 	for low K 

H =H 
5 	C 

for K + 0* 

The result of their calculation is plotted in Fig. (3.6). 

Hs/Hc  

2. 

1 	 
0 

 

1 

Figure 3.6: Variation of Hc  versus K for semi-infinite 
superconductor (Matricon and Saint-James, 1967). 

3.IV.c The effective penetration depth in semi-infinite superconductors: 

We have already mentioned in section (3.III) that the penetration 

depth of the magnetic field in superconducting material depends 

strikingly on the applied field, what we call "effective penetration 

depth" denoted by xeff. We now proceed to calculate xeff  for semi-

infinite materials for the aforementioned conditions. In the present 

case it is defined by 

1 ... 
Jeff = 	du 
eff n

a 0 in reduced units. 	(3.30) 

da 
Since we defined the field h = - -E, where a is the vector potential 

in reduced units; equation (3.30) gives 
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_ a(0)  
xeff - h

a 	, 	a(0) = a(u = 0). 

(The condition a = 0 at u = . has been used). We make use of expressions 

(3.18) and (3.20) to write xeff  as 

x
eff 

= coth u
o 
	 (3.31) 

and using equation (3.21), this quantity (in dimensionless units) can 

be related to the applied field by 

Xeff  = {2/(1 + ;1=2;aill 	(3.32) 

Equation (3.32), in conventional units, is given by 

Xeff/AT = (2/(1  "1" 4  - (Ha/HC)2)33 	
(3.33) 

This leads to: 

(i) 
Xeff/XT  ÷ 1 as Ha/HG  -+ 0 as expected (De Gennes and Matricon (1965) 

and Matricon (1966)). 

(ii) xeff/xT  = ✓2 for Ha/Hc  = 1, 	 (3.34) 

Figure (3.7) presents the variation of the penetration depth for 

different applied magnetic fields. 

We conclude that the penetration depth increases from xT  to ✓2XT  

as the applied field increases from zero to Hc  which is equal to the 

barrier field. (Note that at Ha  = Hs  = Hc, the order parameter falls 

down to zero at the surface of the sample). 
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/1
T 

   

1 

   

0 
	

I 
	Ha/Hc 

Figure 3.7: The effective penetration depth as a function 
of applied magnetic field for a semi-infinite superconductor 
with high K. 

3.V Superconductor with high K and finite thickness: 

In the previous section, we showed that Hs  is exactly equal to 

H for semi-infinite superconducting materials (for K 	co). For the 

sample with finite thickness in parallel field , the results are quite 

different. We now proceed to study such thin films. The thickness of 

the specimen is assumed to be ds  in physical units or 1, = S in 
T 

reduced units. We will deduce different results depending on whether 

the magnetic field is applied only on one side or on both sides of the 

sample. 

3.V.a Thin film with zero field on one side and Ha  on the other side: 

The problem is to solve the equation (3.13) for the following 

boundary conditions, 

h = —
da 
 = 0 

du 
at u = 0 

(3.35) 
h  = da = h  

-ail 	a 
at u = 1 
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Since the only allowable solution is the one which satisfies lal 4 1, 

then from equations (3.14) and (3.15) in conjunction with the above 

boundary conditions, it is inferred that E < 0 (equation (3.15)). The 

equation (3.15) becomes 

'2 2 2 2 2 
a 	= i(a - ao)(bo  - a ) (3.36) 

where a
o 

= a(u = 0) is the value of vector potential at origin and 

b=2-8, 
 2

, 
= 2 - 4 	E = iao

2 
 (ao
2  
- 2) 

'o 
(3.37) 

We note that 0 	a
o 	

1 and 1 	b
o 
4 12. A solution of equation (3.36) 

is (Abramowitz and Stegun, (AS), 1972, p. 596): 

b 
a(u) = aond(7Fm) 	 *(3.38) 

where nd is the reciprocal of do (elliptic function) and m is the 

"parameter" of the elliptic function, defined here as 

m = 1 - a
2
/b
2 

o o 
(3.39) 

Using hda =-E and equation (3.12) to deduce the magnetic field h and 

the order parameter f, we get 

abm bu bu 
o2o i_ 

h(u) = ---v— 
s  a( 	im)cd(9.-Im), 	*(3.40) 

2 2 

 

bu 
	i 

f(u) ='{1 - aond (7-Elm)} 	 *(3.41) 

The value of the order parameter f(0) = (1 	a2)1  is generally less than 

unity, except for the semi-infinite sample for which m = 1 (which 

suggests ao  = 0 and the problem must be solved by the same method as used 

* We note that (AS, p. 571): 

nd(vIm) = 1 

= coshv 
cdWmO = cosy 

. 1 

and 
sd(vIm) = isin2■.3 

= sinhv 

for m = 0 

for m = 1 
for m = 0 
for m = 1 



in the section 3.IV.a) giving f(0) = 1. The variation of the vector 

potential a with respect to u (equation 3.38) is presented in the figure 

(3.8). The physical regions within which the whole specimen must be 

combined, are those at which lal .1 1 and also f 	0 (see equation 

(3.12)). 

1 

0 time) 

Figure 3.8: The distribution of the vector potential in thg 
superconductor with high K (solution of 3.38). The slope a = h 
is the field to be matched at the boundary of the sample. The 
heavy line on the u axis shows the physical region within which 
the whole specimen must be combined. 

We make use of the boundary conditions (3.35) to find an 

implicit equation which determines a
o
. It is, from equation (3.40) 

a,b 	b,, 	
411 
b , 

ha  - w2°  sd( vij  Im)cd(1m) 	(3.42) 

and 

1)0  = (2 - a(23)1 	, 	m = 2(1 - a20)/(2 - 

where equations (3.37) and (3.39) have been used. 

The mechanical arguments of the motion of a particle in the 
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potential well (Fig 3.1) discussed in the section (3.IV) for E < 0 (see, 

equation (3.37) implies that the maximum permissible field hs  is less 

than h
C' 

for finite thickness of an extreme type II material. This 

means that, the order parameter does not fall down to zero at the 

surface of the sample, i.e. at u = ls, when ha  = hs. 

The barrier field h depends on the thickness 1 (equation 

(3.42)) such that as 1 tends to infinity, h
S 
 approaches h

C 
 (hc  is 

 • 

the bulk critical field of the superconductor in reduced units) which 

is compatible with the result of the last section. For finite ls, 

h
S 
 (1
S 
 ) can not be found explicitly. This field, however, can be 

evaluated for a very thin film ls  « 1. 

3.V.a.I Calculation of the barrier field for thin film: 

It is shown that for very thin sample, i.e. ls  « 1, the barrier 

field varies linearly with thickness. We expand the elliptic functions 

which appear in the equation (3.40) up.to u3, giving 

h(u) = (a0  - a30){1 + (1 - 34)u2/6}u, 

Since h(u) = ha  at u = ls, then 

h 	(a - a
3)

{1 + (1 - 3a
2
)1
2
/6}1 

a 	o o 	o S S 

u < 1 	(3.43) 

(3.44) 

for 1 « 1. This yields 

h
a 	

(a
o 
 - a

3
) 1 	

1S << o 	S 
	1. 

For a given thickness (1s), the maximum value of the above field, i.e. 

h is such that the condition (d/dao)h
a 

= 0 is satisfied, this implies 

	

a
o 
= 1/V3. Hence h

S 
= h

a
)
max 

- 
	

i
s 

in reduced units, or in 



eff 
ds  

T 
for d

S 
«x

T 
(3.47) 
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conventional units 

H
S 	/2,  

3/2 d
S  

= t21 	71. 
C 

d « AT. 
T' 

(3.45) 

It is seen that the current density is uniform within ds  « X T  and this 

agrees with the conventional critical current (Ginzburg, 1958 and 

Ginzburg and Landau, 1950). 

3.V.a.II The effective penetration depth for thin film: 

We are now in a position to calculate the effective penetration 

depth A eff  for a thin film placed in the applied field. ' xeff  is 

111' defined, generally, by (3.30). By using h = 
	

(3.42) and (3.38), 

we obtain 

? 	 1 	
o
1
S 

X
eff b 

=-----ds(
bo1S  
-z--Im)dc(

b
i=lm).(nd(

b 
 v2  Im) - 1) 

o
m 

*(3.46) 

in units of XT. The above equation indicates that Aeff 
 depends strongly 

on the thickness of the sample ls. For a very thin film (ls  « 1) the 

elliptic functions in (3.46) can be expanded and by truncating the 

expansion series after the first two terms, xeff' 
in the physical units, 

will be 

We conclude that the effective penetration depth for this particular 

case is less than the zero field penetration depth, i.e.'Aeff  < AT. 

*We recall that (AS, p. 571):,  

ds(v1m)dc(v1m) = 	1  
sinvcosv 

and 
nd(v1m) = 1 	for m = 0 

= coshv for m = 1 

 



67 

3.V.b Films in the symmetrical fields: 

We now consider the case in-which the sample with finite 

thickness 1 is placed in a symmetrical magnetic field. The field h
a 

is applied symmetrically at both surfaces of the sample and the origin 

is at the mid-point of the specimen. In other words 

h(ils) = ha  = h(-ils). 	 (3.48) 

This field symmetry implies that the vector-potential a(1.11 is an odd 

function of u. i.e. 

a(0) = 0. 	 (3.49) 

This boundary condition in :conjunction with the equation (3.15) gives 

h
2 	

h
2
(0) = 2E (where h

o 
is the value of h at origin) which means 

E > 0 and hence the particle with mass unity moving in the potential 

V(a) = ia2(a2  - 2), will have enough energy to reach lal = 1. At 

la1.1, the magnetic field will be (from equation (3.15)) 

1 
h 72-0 + 2hD 	+ 4E)i. (3.50) 

Since, from (3.12), a z1, the field at which lal = 1 is in fact the 

maximum admissible field, that is h5, so here where E > 0, Hs/Hc  > 1 and 

therefore the order parameter f is destroyed at the sample surfaces. 

We now solve equation (3.15) for the boundary conditiOns -  given 

by expressions (3.48) and (3.49). Equation (3.15) can be written in 

the following form, 

(t)
2 

= i(a
2 
- a

2
)(a2 + b

2
) 
	

(3.51) 



68 

where 

a - b = 2 
o o 

a
2
b
2 

= 4E = 2h
o
2  

o o 

The solution of equation (3.51) is (AS, p. 596): 

a(u) = ao(1 - m)lsd{)/(4)  - 1) ulm} 

the parameter m is 

m = a/2(a - 1). 
o o 

(3.52a) 

(3.52b) 

*(3.53) 

(3.54) 

The figure (3.9) shows the variation of the vector potential a with 

respect to u. The heavy line on the u axis in the figure (3.9) 

represents the physical region within which the whole sample must be 

combined. 

a 
We note that the magnetic field h = du vanishes when a = ao  

and in this specific case ao  ?,V2. The field at origin 110  depends on 

the sample thickness. It is immediately seen from expression (3.52b) 

that a
o 

is thickness dependent. It turns out that a(u) can go beyond 

its maximum allowed value i.e. la(u)I = 1; for instance, at the point 

where h = 0, a would be a(u) = ao  -)/2 and is therefore unphysical 

(f
2 

< 0 from equation (3.12)). In the region where lal exceeds one, 

the two dimensional solutions of the GL equation are required. The 

solutions which are function of x and y buckle which lead to the 

creation of the vortices. 

da 
The magnetic field h = 17.1  and the order parameter f = (1 - a

2
) 

are derived from equation (3.53), 

	

*We note that: sid(v1 m) = sin v 
	

for m = 0 

	

= sinh v 
	

for m = 1 
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2 

h(u) = ao(e - 1)2  cd{(4)  - 1)Zulm}nd{(a20  - 1)1u1m} (3.55) 

f(u) 	= {1 	- 4(1 	- m)1  sd2((a20  - 1)1 Im)}2  (3.56) 

The quantity ao  is obtained by imposing the boundary condition given by 

the equation (3.48) on expression (3.55). It is then given by the 

implicit relation, 

A 

lic 
h
a 
 = a 

o 
 (a2/2 - 	cd{(a2  - 1)2  'Im}nd{(a2  - 1)2  '1m}. 

0 	o 	0 	"— (3.57) 

4.-4trne) 

Figure 3.9: The variation of the vector potential in an 
extreme type II superconductor placed in a symmetrical field 
(the solution of (3.53)). The slope a' = h is the field to 
be matched at the boundary of the specimen. 

3.V.b.I The barrier field for the thin specimen in the symmetrical  

fields: 

As in the case (3.IV.b), the barrier field is produced when the 

order parameter vanishes, i.e. f = 0 on the surface of the specimen, 

which means f = 0 at u = ±2 ls. This corresponds to a = 1 at u ==ils. 

In other words 

a0(.1 	m)1  sd{(a
o
2 
 - 1)

1.
2-
2
S
Im} = 1, (3.58) 

or equivalently, 



70 

1 	 1 
i S 	2 i 	2 	S , 

cn{(ao  - 1) -rim} = (1 - --) 	and 	dn{
-
la
° 

- 1) rim} = 

ao 	a - 2 

(--i°2---)1  
a
o 

- 1 

Inserting these quantities into equation (3.57), we get 

a
2 

- 1 
hs  -- -  -° in dimensionless units 711 

H
S  /HC 	o 

= a
2 

	1 
	

in conventional units. 

*(3.59) 

(3.60a) 

(3.60b) 

Since a
o 	

12, then HS ' > H
C 
 and the equality is for the case when the 

sample has infinite thicknesss, which agrees with the case (3.IV.b).. 

From equations (3.59) and (3.60b) we have 

dS  Hc  _1 	Hc/Hp - 1 
7-r  = 2(n.74) 2 

 cn (HS/HC 
	

ilm), 
nC  

where m as a function of H
S 
 /H

C 
 is 

m = i{1 + (4) 
nC 

(3.61a) 

(3.61b) 

For an infinite sample for which .30  = /2, (or m = 1), Hs  turns out to 

be equal to the bulk critical field Hc  as expected, which is exactly 

what was obtained in section (3.III.b). Plotting the variations of 

H and H versus u and thickness, requires the numerical evaluation of 

quantities appearing in the equations (3.55) and (3.61a). Fig. (3.10) 

indicates the distribution' of field in film placed in the symmetrical 

applied fields expressed above. The curve (C) represents a specific 

solution for a
o 

= (1 + /5)i. At point M, a = 0 and f = 1, then a 

increases from zero to lal = 1 at point N (the outer surface of the 

specimen) as u increases from zero to u = Os, whereas the order 

*The elliptic functions are intermediate between circular and hyperbolic 
functions (AS, p. 571), i.e. 

cn(vIm) = cosy 	
and 	

dn(vlm) = 1 	for in = 0 
= sechv 	= sechy 	for m = 1 
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parameter f decreases from unity at point M to zero at N. In other 

words f falls down to zero at the sample surfaces. The dotted curve 

corresponds to the unphysical region for which the vector potential a 

goes beyond Ia! = 1,(f2  < 0). 

1 

H/Hc 

  

  

(C) 

(D)  
HS/HC 

 

0 	 1 	 u For H , u= x/xT  
d'S/2 AT for Hs 

Figure 3.10: The distribution of the field in an extreme type 
II superconductor placed in a symmetrical field. The curve (C) 
is a particular solution of (3.55) for ao  = (1 + 1/5)i and is 
physically meaningful up to the point N where the vector potential 
a = 1 and hence the order parameter f = 0 (we note that at the 
point N, the field is maximum). The barrier field Hs as a 
function of the film thickness ds (curve (D)) is the locus of 
the maxima of different solutions of H obtained by varying ds. 

2 
a, 

Since the value of the field at the origin h
o 
 = a 

o 
 (I, 
2 	

- 1)1  

depends strongly on.the thickness of the material as well as ao, 

different solutions for H can be deduced as thickness (or a
o
) is 

varied. It follows that the maximum allowed value of H i.e. H 

decreases with increasing is. Therefore Hs  is the "locus" of the 

maxima of different solutions for H. Moreover, the barrier field H S ' 
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for very thin film, is much larger than the bulk critical field Hc. 

In particular, such a thin film remains in the metastable state as the 

applied field is increased to a value above Hs  (it is maintained in the 

superconducting state (in the mixed state)). 

The thickness dependence of ao  will become clearer by expanding 

the expression (3.59) up to second order. Indeed, we find 

1 
(1 - 2 
	

= 1 - (ao
2 
 - 1 	 + 0(1s

4  
). 

For 1 < 1 we keep only the first two terms and obtain, 

32 
a
2 
- 1 = i{-1 + (1 + -7) }, 

4 	
1
S 
 < 1

" 
S 

(3.62) 

Clearly ao  is a decreasing function of thickness is  (in our reduced 

units). The left hand side of the above expression is just H /H 
S C' 

in physical units (equation (3.60b)), 

H5 = i{-1 + (1 + - 32 ) } 	, 	1
S 

< 1. 
1s 

This can be written as 

T V2 
d
S H

S = V8-- 
d
s 
+ (32 A

T 

— - ), 	1 < 1. (3.63) 

This is in good agreement with the calculations done by De Gennes (1965). 

The above bracket could be a correction to his result. Nevertheless 

for an extremely thin sample this bracket can safely be neglected, so 

one has 

ST  = 118— 
T 	

when d
S 
« A

T
. 

C 

2 

This is to be dimensionally compared with the upper critical field H11 
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of a thin type I superconductor with ds/ET  < 1 as well as ds/xT  < 1. 

Abrikosov (1952) and Rickayzen (1965) have shown that 

xT 
H
11
/H

C 
= V24 m- 

uS 

But H and H
11 

given by the above expression refer to quite differnt 

situations. In our present case, the thin film is maintained in the 

superconducting state (it remains in the metastable state) as the 

applied field is increased to a value above Hs  (De Gennes, 1965), 

whereas the thin film of the type I material remains in the superconducting 

state as the applied field is lowered to a value below H11 . 

3.V.b.II The effective penetration depth of symmetrical fields: 

In the -last section, we showed that Hs  is larger than Hc, when 

an extreme type II material is placed in the symmetrical fields. Since 

Hs  > Hc, the effective penetration depth xeff  is not expected to be 

large. This can be experimentally verified by noticing that the 

sample remains superconducting as Ha  is increased to a value greater 

than H
S
. The effective penetration depth however, can reach its 

maximum value I2x
T 
for the superconductor with infinite thickness, as 

expected. xeff  is defined generally by (3.30). In the present case, 

we use h =-
da 

and (3.49) to obtain 
du 

1 A 
eff h

a 
in reduced units 	(3.64) 

where the condition a(u = ils) = 1 has been implied. The equation 

(3.57) changes the above expression formally to 

ilc -; 	
0 	

2 	11S 
Aeff = Oa°

4 
 - ao

2 
 ) 	dc{(a - 	dn{(ao  - 1)2--1m} 

*We note again that (AS, p. 571): 

dc(vim) dn(vim) = secv 
	

for m = 0 
= sechv 
	

form= 1 
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A straightforward simplification of this expression with the aid of 

equations (3.59) will give 

A
eff 

=2/(a
() 
 - 1) 
	

in unit of A
T' 

and conventionally 

Jeff/AT = 
 /2/(a

2 
- 1); 

Since a
o
2  
 - 1 = HS /H

C' 
 from equation (3.60b), then this becomes 

S -1 
Jeff/ A

T  = V2 (-
"
) . 

(3.65) 

(3.66) 

For very thin films for which Hs/Hc  » 1, the effective penetration 

depth would be much smaller than AT  i.e. Aeff/AT  .« 1. Two limiting 

cases can immediately be seen: 

(i) Aeff/AT 	0, as ls  -* 0 which implies Hs/Hc  

(ii) Aeff/AT 
 -* /2, as ls  -4-Cx corresponding to Hs/Hc  + 1. 

By substitution of the right hand side of equation (3.66) into the 

expression (3.61a), we arrive at the general functional dependence of 

A
eff 

on thickness d
S' 

A. 	/V2A ) — d
S 	effli , -11 - ( eff 	T  im  

2A
T 	

gif57) '11 	1 + (A
eff

/V2A
T
)Im  

X  
here m = i(1 + - A

eff  
). In the limit ds  « AT, equation (3.67) can be 

T • 
reduced to the simple form 

Aeff d
S for d

S «  AT. (3.68) 

T 	
2X

T 

 

This implies that for very thin films, Aeff  is much smaller than AT. 

Accordingly Hs  is higher than Hc  and hence the vortices can not enter 

into the sample, if the applied field is less than H. The variation 

of A
eff 

with respect to d is shown in Fig. (3.11). 

(3.67) 
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A 

Aeff/xT 

YL 

dy2xT  

Fig. 3.11: The variation of the effective penetration depth 
of a superconductor with high K placed in the symmetrical 
fields with respect to the thickness of the sample (solution 
of (3.67)). 

3.VI Conclusion: 

Apart from the complete solutions of the one dimensional dependence 

of the GL equations for the extreme type II superconductors,we studied 

the surface barrier effects in such materials. It was shown that the 

value of the barrier field, in comparison with the bulk Critical 

field, depends strongly on the applied field geometry and the thickness 

of the specimens. This argument was used to determine the effective 

penetration depth for different cases. We now mention the most 

interesting results: 

(i) For semi-infinite or infinite type II superconductors with K >> 1, 

the barrier field Hs  is exactly equal to Hc. The same results are 

produced for different field geometries. In other words. if one 

applies the magnetic field only on one side of the sample one will 

obtain the same result as if one applies Ha  on both sides of an 

infinite sample. Moreover, the effective penetration depth, at 

Ha 	
H
C' 
 is X

eff  = i2xT' 
which is larger than the penetration depth in 

the absence of the magnetic field, xT. 
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(ii) When we apply Ha  only on one side of a sample of finite thickness, 

then H will be smaller than H and the order parameter f at the sample 

surface does not drop to zero, contrary to the preceding case, Under 

the above circumstances, Xeff  is smaller than XT. 

(iii) If we apply equal fields on both sides of the superconductor 

with finite thickness, then H
S 
 > H

C 
 and x

eff 
< i2X

I' 
But the order 

parameter f at the surfaces vanishes and when H
a 
reaches a value above 

H
S' 

the film remains superconducting (see, the section 3.V.b.I). 

It is of great importance to notice that our argument about 

surface barriers does not involve flux trapping. In fact, 

experimentally, in order to observe H
S' 

one must avoid any source of 

trapped flux in the initial states when the specimen has finite 

thickness (De Gennes, 1965). 
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CHAPTER 4  

THE S/N SYSTEM IN AN EXTERNAL MAGNETIC FIELD  

4.1 Introduction: 

In chapter two we studied S/N binary layers in zero magnetic 

field. The overall conclusion was the prediction of a first-order phase 

transition due to two possible configurations of the order parameter A 

of a S/N system. As an extension of previous work (in the absence of 

a magnetic field), in this chapter, the magnetic properties of S/N 

sandwiches are studied in the framework of the local GL approximation 

in the limit K
N 	

1 for the normal material and K « 1 for the 

superconductor. We find, as a function of the magnetic field, 

temperature or thickness of the normal sample, a first order phase 

transition between two possible configurations of the matching order 

parameter. 

This is shown to be due to the arbitrariness of the boundary 

conditions of the outer surface of the normal specimen. As was 

pointed out in chapter one, both an order parameter with zero slope 

and a vanishing order parameter will make the super-current vanish at 

that point. Either one or the other boundary condition leads to a 

matching configuration of lesser energy in definite regions of magnetic 

field, temperature and normal slab thickness. 

The study of a S/N double layer in an applied magnetic field 

parallel to the S/N interface leads us to the following remarkable 
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effects.(Deutscher and De Gennes, 1969): 

(i) In low field and under specific conditions, N exhibits a Meissner 

effect. On the other hand, in rather high fields, the superconductor 

properties induced in N by the proximity of S are destroyed. Hook 

(1974) has shown that the proximity effect in N disappears with 

increasing field, even at temperatures below TCN. Practically, this 

disappearance takes place in fields significantly smaller than Hcs  

(Hc  is the bulk critical field of the sample). As a corollary this 

destruction, therefore, could give valuable information about the 

superconductive properties of N to experimentalists. 

(ii) Hcs  and alsq in the case of type II material, the upper critical 

field of S; i.e. Hc2s  could be modified by the proximity effect. 

As was mentioned in the first chapter, the electrical contact 

between S and N must be very good, otherwise N will be partially 

oxidized at the S7N interface. For instance, Van Gurp (1963) observed 

no proximity effects in Sn/A1 and In/A1 (the critical temperature of 

S/N system was not changed in his experiments). This might be due to 

partial oxidation of Al. 

The second point to be emphasized here is that the atoms of S 

and N must not migrate to each other. Rose-Innes and Serin (1961) have 

experimentally shown that a small concentration of N in S depresses 

T
CS' Although this will not be a very strong effect if N is a non-

magnetic material, it will become really catastrophic if N is magnetic. 

The atomic migrations in superimposed films can influence the 

superconductive properties of the system. This seems to be probably 

the most serious effect for the S/N systems with non-magnetic normal 

metals. Therefore the atomic migrations must be minimized. Among all 
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S and N metals, the metals which are not miscible and do not form 

intermetallic compounds such as In/Zn and Pb/Al, are those which 

minimize the migration effects. Moreover, the insensitivity of 

"dirty" S and N to a small diffusion of one to another leads to use 

dirty S and N specimens. Nevertheless we will be concerned with "pure" 

unmiscible samples, assuming that these materials are not too sensitive 

to the interatomic diffusion. 

Under the above circumstances, the GL parameter K is constant 

(temperature and position-independent). On the other hand in the 

dirty limit, since the penetration depth x depends on temperature and 

on position (Orsay Group On Superconductivity, 1966), K varies with 

the aforementioned parameters such that KN  tends to zero as 

T T
CN 

and approaches infinity as T TOS. For the intermediate T, 

the temperature-dependence of KNdepends on the boundary conditions at 

the S/N interface. Orsay Group (1966) have argued that, if To  is not 

very low, then at T > To, KN  will be smaller than unity. This 

assertion has been confirmedfor the InBi/Zn system where Zn has been 

taken as the normal metal with T
CN 

= 0.9 (Burger et al, 1965). 

It has been discussed by the Orsay Group On Superconductivity 

(1966) that, for K
N 

> 1, even a weak magnetic field applied (on the 

N side) parallel to the S/N interface, penetrates freely in N up to 

the S/N interface. It turns out that the field will not be essentially 

screened in N and hence N does not exhibit the Meissner effect if 

KN > 1. On the other hand, if KN  « 1 (the penetration depth is much 

smaller than the coherence length) the field will be screened by N. 

The applied magnetic field Ha  does not perturb the order parameter 

(associated with the "first" penetration mode (I)) until it reaches a 
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certain value H
a 

= Hb (the so called "breakdown field") when the mode 

(II) becomes energetically more favourable than the mode (I) (see 

chapter 1). At Ha  = Hb a first-order phase transition occurs. The 

study of this phase transition is the main purpose of this chapter. 

This will be qualitatively compared with the calculations done by 

Orsay Group (1967). Moreover the perfect Meissner effect is studied 

for the S/N sandwiches with KS  .(‹ 1 and KN  « 1. 

4.11 The solutions of GL equations in the presence of the field: 

The pair of the GL equations for both S and N sides in one 

dimension are given by (A.11), 

-  
K 2f = f(±1 + f

2 
+ a

2
) 

where 

H 
= f2 a 	a 

T > T
C' 
 positive sign 

T < T
c
, negative sign 

and the magnetic field is applied parallel to the surface of N. 

The Gibbs' free energy of N in reduced units would be (Fetter 

& Walecka, 1971): 

G = fdu(F - 2 h h
a
) 

specimen 

where h
a 

is the applied magnetic field in reduced units and 

F = K
;2

f
'2 

+ f
2
(+1 + if

2 
+ a

2
) + h

2 	
, 	h = 

du 

(4.2) 

is the Helmholtz' free energy density. Replacing the second term of F 
_
2 
 u 

by K ff (from 4.1a), gives 
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- 
G = KN

2 
 ff 	+

4 
+ h

2 
- 2h ha)du 

pecimen specimen 
(4.3) 

The S is assumed to have infinite thickness and occupies the 

entire region x < 0, whereas N has finite thickness dN  and extends 

over the distance 0 	x 	dN. Emphasis should be made here that the 

thickness of S, i.e. ds  plays a very important role in S/N binary layers. 

This means that the transition temperature of S/N system T
CSN 

 strongly 

depends on ds  (Chapter 1). For instance, if S is infinitely thick, 

TCSN will be very close to Tcs  for any value of dN. Werthamer (1963) 

has demonstrated that for a given dN, 
TCSN 

 decreases with decreasing 

the thickness of the superconductive sample. Of course 
TCSN 

 depends 

on dN  as well. It is depressed by increasing dN  (Jacob and Ginsberg, 

1968). We shall discuss the importance of thickness dependent of 

TCSN in somewhat more detailed fashion at the end of this chapter. It 

will be argued that the appropriate interpretation of the phase 

transition of S/N sandwiches can be done by resorting to thickness 

dependent of the transition temperature of the sandwiches. 

d 
Now in reduced units the thickness of N would be 1 = 

AN(T) 

and (4.3) could be written in the following convenient form: 

	

1 	1 

	

G
N 
 + lh

2 
= KN2ff 	- if0 
	

a 
f
4
du + h

2 
I 

(1 - h/h
a
)
2
du 	(4.4) 

This equation formally holds for either penetration mode. The first 

term on the right hand side of (4.4) is computed at the S/N interface 

(its value is zero on the outer boundaries of either mode in N). 

We used a Taylor expansion of fs(u) and fN(u) about the 

outer boundaries to get, from (4.1a): 

f (u) = 1 
	

(4.5a) 
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f
N 
 (u) = f

o 
 = constant 
	

(4.5b) 

fNII(u)  = foci - u/l) 	 (4.5c) 

where the terms of the order K
2 
 in the expansions have been 

neglected, since K << 1, the boundary conditions f (u) = 0 at 

outer surfaces has been used for S and mode (I), whereas fNII(u)  has 

been obtained for the mode (II) using the condition fN(u) = 0 at u = 1 

	

1 
A
SB 	

A
N and fo  = 'AoN = 	see, Appendix A) has been calculated by using 

	

ON 	N 
the continuity of fiv  at the interface of S/N. The other boundary 

D de 
condition, i.e. the continuity of 	at the interface of S/N, need 

v ax 

not be imposed here. It is an identity for mode (I), and can not be 
N V 

NS 
 
VS  

satisfied for mode (II). Moreover a - 	is the ratio of the 
lAi 

N
N
V
N 

coupling constants and A
SB BS 

= 

	

	is the bulk value of A for superconductiVe 
S 

matter. By using the expression esB  and eoN  (Appendix A), fo  can be 

written as 

f = 1  TCS 
o a 1—  

CN 
(4.6) 

The figure (4.1) indicates the two possible configurations for the 

order parameter A of a S/N sandwich (with KS  and KN  much less than unity). 

Since at H
a 

= H
b 

no effect is observed on S side (Kratzig and 

Schreiber, 1973) the following boundary conditions will be used to 

solve (4.1b): 

h = h
a 	

at 	u = 1 
	

(4.7) 

h = 0 	at 	u = 0 	 (4.8) 
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S N 
SSB 

. 	
. — -- .--.— -- 
--. 

iLSE3 
a 

0 	•-•-30 X 
	

N 

Figure 4.1: The two possible configurations for the order 
parameter a of a S/N sandwich. 	Chain curve: the traditional 
mode (I); full curve: the new mode (II). 

4.111 The magnetic field distribution in N: 

By combining (4.1b.) and (4.5b), one can derive the variation of 

the vector potential a and the magnetic field h in N for the mode (I); 

a
I
(u) = h

a
coshf

o
u/f

o
sinhf

o
1 
	

(4.9) 

h
I
(u) = h

a
sinhf

o
u/sinhf

o
1 
	

(4.10) 

where the conditions (4.7) and (4.8) have been used. In order to 

solve (4.1b) for the mode _(II) we make the following substitution 

Z = zoci - 	, zo  = 1/27 
	

(4.11) 

into (4.1b). With the aid of (4.5c), we obtain 

d
2
a Z

2
d n  —2' 

dZ 
(4.12) 

The solution of this differential equation is the Parabolic Cylinder 

function which can be written in terms of Confluent Hypergeometric 

(Kummer's) function F (Abramowitz and Stegun, (AS), 1972, p. 686); 

-1Z
2 

a
II
(Z) = e 4  {C

1
F(i;i;Z

2
/2) 	C

2
ZF(i;3/2;Z

2
/2)1 (4.13) 
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where C
1 
 and C

2 
are constants to be determined by the boundary 

conditions given by (4.7) and (4.8). Since the field is h = 	then 

from (4.13), we obtain 

2 Ci  

hII(Z) = h
a  e 	fm- 

2 

 

F(5/4;3/2;Z2/2) F(i*Z2/2) 

 

--F(7/45/2;Z
2 
 /2) - 	F(i;3/2;Z

2
/2) + F(4 ;Z2  /2) 

Z2 	 3 3 
2 % ' 

} (4.14) 

 

where (4.7) has been imposed on h after differentiation and 

2 
= -lh

a
/Z
o 
	Z

o 
= (2f

o
1)i 
	

(4.15) 

Using (4.8), the constant C1  is given by 
2 

lh
a
( F(7/4;5/2;Z2/2) - F(i;3/2;4/2) + 	F(i;3/2;Z0/2)1 

C
1 	

o.  	(4.16) 

The expressions (4.13) and (4.14) in conjunction with (4.15) and 

(4.16) are general forms of the distribution of the vector potential 

and the field, for the second penetration mode (II) respectively. 

The total Gibbs' free energy of the S/N sandwich is the sum of 

total Gibbs' free energies of S and N parts, i.e. GT  = Gs  + GN. As was 

pointed out in chapter one, for any applied field Ha  less than a certain 

field Hb  (what we called the breakdown field) GTI < GTII and consequently, 

the mode ZI) would be more stable than the mode (II). On the other 

hand, when Ha  exceeds Hb, then GTI, < GTI and hence the second 

penetration mode (II) would be energetically more favourable than the 

first one (I). Clearly Hb  is the field at which G-.= GTII' where a 

first order phase transition takes place. Therefore the problem 

remains to calculate G's. It is evident that the total Gibbs' free 

energy GT  must be minimum. The analytical calculations done by Orsay 

F(5/4;3/2;4/2) - F(i;i;Z20/2) 
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Group (1967) and also the numerical computations carried out by Hook 

(1970) neglect Gs  in GT. The disagreement of the Orsay Group's 

results with the tunnelling experiments done by Martinet, 1966 is 

believed to be partly due to neglecting the total Gibbs! free energy 

of S side. Although Hook (1970) has mentioned that the effect of 

can be included in some effective boundary conditions at the S/N 

interface, nevertheless there is no evidence how this modification 

can be done. 

In the present work, since fs(u) is constant (equation 4.5a) 

and is the same for both modes, then Gs, 	Gs,,. Hence only GN  can 

safely be minimized. GN  given by (4.4) is easily evaluated for the 

mode (I) but GNI'  can not be analytically exactly calculated due to 

complexity of hii(u). Had it not been so, we would have been able to 

find a first order phase transition in general for the S/N sandwiches, 

in the limiting case for which KS  and KN  are much smaller than unity. 

However, G
NII 

can be well approximated for the limiting cases. 

4.III.a The distribution of h
II
(Z) in N for lfKK 1: _ 

The equation (4.14) can be expanded for the limiting case when 
d
N 	 

iZ
2 
«1. Since lf . ----VI - T/T 	(A 	is the penetration depth at 

0 A
ON 	

CS ON 

T = 0) and from equation (4.11), it can be seen that iZ
2 

would be much 

smaller than unity throughout the normal sample for the following cases: 

(a) dN  > XON and T close to Tcs. 

(b) dN 	
XON 

 and T takes any value, TCN 	T 	Tos. 

(c) If dN  > XON and for any T, the hypergeometric function F can be 

expanded in the vicinity of the free surface of N, i.e. u ti 1. For 

any other values of dN  and T, the argument of F i.e. 1Z2  is greater than 

one and it will be more convenient to work with the asymptotic solution 
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of (4.12). It will be shown that, if g2 	which requires taking 

semi-infinite N and working at the temperatures not too close to TOS, 

h
II 

will vary linearly with u in the neighbourhood of the S/N 

interface with vanishingly small slope. 

We use series expansion of F's (AS, p.504) 

, 	2 
F(ct,a,x) = 1  + 	 + 	X 	 (a) 	 + 	n x S

x 
+ 
0 + 1 21-  

where (a)n  = a(a + 1)(a + 2) 	 (cc + n - 1) , (a )0  = 1 

in (4.14) up to Z3  to get 

hII(Z) = ha (4.17) 

  

   

where the boundary conditions (4.7) and (4.8) have been used, or from 

(4.11): 

 

- (1 - u/1)7 

 

h
II

(u) = ha ll  (4.18) 

  

This is the distribution of the magnetic field for the second mode of 

penetration (II) in the limiting case when g
2 

= f01(1 - u/1)
2 
« 1 and 

is in a good agreement with the numerical integrations of the GL 

equations done by Hook (1970). The slope of hir(u), from (4.18), at 

the S/N interface is 3ha . It turns out that, if the conditions (a) 

hold, this slope will be small and approaches zero as 1 	-. The same 

argument can be made for h1(u). The equation (4.10) gives the slope of 

hI
(u) at u = 0 which is f

o
h
a
/sinhf

o
1. Thus when 1 	h

I
(u) tends to 

zero at the S/N interface much faster than hu(u). This means that the 

field h
I 
is screened by N further from the S/N interface. The complete 

screening of III  by N will be investigated later on (perfect Meissner 

effect in S/N binary layers). 
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The variations of two magnetic fields corresponding to the two 

possible configurations of the order parameter A of a S/N sandwich with 

K. " 1 (i = S,N) is shown in figure (4.2). 

S 
ASB 

_-• ...• 

N 

Q58. 
i 

i 
: 

/ 

a 

0 --0.• X dN 

Figure 4.2: The two possible configurations for the order 
parameter t,  of a S/N sandwich with Ki " 1 in a magnetic 
field. Chain curve: H < Hb,  mode I; full curve: Ha > Hb; 
mode II, for (lfb  « 17. 

4.III.b The distribution of 
hII 

 in N for lf
o 
 » 1: 

For the case when the expansion parameter 2Z
2 
» 1, the appropriate 

solution of (4.12) can be written in terms of Whittaker's function 

(AS, p. 687) 

172 	2 
U(0;Z) = a

II
(Z) = CVTi2-4e-4L (F (i*Z ) 	V2ZF(1;3/2;1Z2)  

r(3[4) 	r(i) 	
1 	(4.19) 

where C is a constant'to be determined by the boundary condition (4.7) 

and Z is given by (4.11). 

The asymptotic expansion of (4.19) is (AS, p.689) 

a
II
(Z) 	Z 2e-iZ2{1 + 0(Z-2)} 	, 	Z 	 (4.20) 

which does not diverge to this order. This shows that at the S/N 

Ha 
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interface (u = 0, Z = Zo) when Zo  = V(21f0) 	., the magnetic field 

vanishes and therefore the boundary condition (4.8) is satisfied. 

Z 
da 

du Since, by definition h = du = 
	

o 
1-- 	

' the magnetic field h 
 

can be evaluated from (4.19) and with the aid of the following recurrence 

relation (AS, p. 688 ); 

T2U(0,Z) = -i{ZU(0,Z) 	U(1,Z)1 

which with the help of (4.7), hu  becomes: 

2 
h11(Z) = h

a
e-iZ  fF(i;i;g2) - V" T/  )4)  l(c/4;3/2;g2) - r i 

F(;i;g2) Z
2 

- 7—f(i;3/2;iZ
2
)1 (4.21) 

   

This is the field distribution for the case when iZ
2 
» 1. It can be 

seen that, at a large distance from the S/N interface, h has a linear 

behaviour in u and when lf
o 	

, its slope will be vanishingly small. 

This implies that h, for the computational simplicity can be taken 

zero at the point u = uo  (which will be determined later on). The 

assumption that hii(u) is taken zero, can be made safely, if N is not 

too thick. It might have the rather important consequences in the 

stability for semi-infinite N. It will be shown, however, that hb  

is too small when N is infinitely thick (Fig. 4.5).At the other side 

of the normal sample i.e. close to u = 1, the condition iZ
2 
» 1 is no 

longer valid, but iZ
2 
« 1. Thus the variation of hii.for the case 

when lf
o 	

1 is reminiscent of (4.17) in the region Z' 	Z 	0 where 

Z' = Z
o
(1 - u

o
/1), and hence 

h
II
(Z) = h

a
{1 	 (Z)3} , 

Z' 
Z' 	Z s 0 	(4.22) 
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or 

1 -  
hII(u) 	

u  
= ha(1 	(-1 - u

/1
/1 )

3 
 } 	u

o 	
u s 1 0  

and from (4.20), 

(4.23)-  

-Z/4 5/2 
h
II
(u) e 

2 
o Z

o 
u/1 , 0 u uo 	(4.24) 

The distribution of the field in the case for which lf
o 
» 1 is 

indicated in figure (4.3). 

Ha 

Figure 4.3: The same as figure (4.2) but for lf
o 
» 1. Note 

u
o 

= x
o
/A
N
(T) by a priori definition. 

In order to compute Z' = Z0(1 - u0/1) we adjust the curvature of 

the approximate solution (4.23) and the exact solution (4.14) of h(u) 

at u = 1. Equation (4.23) yields, 

h
II 

(u) = 6h
a
/(1 - u

o
)
3 
= constant , V,u 
	

(4.25) 

and from (4.12) one has 

Z A 

hiii (U) = 	aII(u) 

At u = 1, (Z = 0), this reads 

h"'(u)I 	-12r  (5/4)  (Z°)3  II 	u=1 	r 	ha (4.26) 
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where equations (4.19) and (4.21) determined the constant C appearing 

in a
II
(u). Equating (4.25) and (4.26) gives Z' 

,71 1/3 Z' = Zo(1 - %/I) = 13/2 r(i)/r(5/41 	= 1.80 (4.27) 

4.IV Calculation of Gibbs' free energies for lfo  « 1:  

The Gibbs' free energy associated with the first mode of 

penetration (I) is obtained by (4.4), using the expression (4.10) for 

the field, which is: 

 

3 	3 cothlf
o - 

coth
2
lf 	2 	 

0 A- 	. IToo 

 

GNI + lh
2 

= -flf
4 
+ lh

2 
- o 	a (4.28) 

   

V,1f0  

This is valid for all normal specimen,  thicknesses and temperatures. 

For lf
o 

< 1, (4.28) is converted to 

GNI 	
1 	7  + lha

2 	
-ilfo

4 
 + 1ha

2 
 fs  + 

 180(lfo)2} , lfo < 1  (4.29) 

The Gibbs' free energy associated with the second penetration mode (II) 

is calculated by substituting (4.5c) and (4.18) into (4.4); 

2 	 2 -1 	1 	1 
GN 	+ lh =K 1 f

2 
 - 	lf

4 
 + lh

2  
II 	a 	N 	o 	o 7 a , lfo  < 1  

(4.30) 

In order to compare GNI  and GNII, it is more convenient to introduce 

the quantities GI and GII. 

-5 4 
GI = -(KN2 1

-1 
 fo
2 
 + -51%) 

G 	-1h2{4  + 7(1 %) 	
2 

	

II = 
	} 

	

- 	a 	
180 

lfo  < 1 
(4.31) 

(4.32) 

such that G
NI 
 - G 	= G' - G' 
 NII 	I 	IF 
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So G' and G' are both negative. The former is independent 

of the applied field, whereas the latter is a quadratic function of 

ha. The field dependence of the G' 's is shown in figure (4.4). The 

breakdown field h
b 

is the field at which GI 
	II' 

G 	It is seen, from 

figure (4.4), that for ha  < hb  the first mode (I) with lower energy 

than the mode (II) is more stable than the second mode. For h
a 

> hb, 

on the other hand, GNI'  < GNI  and hence the mode (II) with lower 

energy will be more favourable than (I). Moreover, it is inferred 

from figure (4.4) that the breakdown field hb  decreases as the 

thickness of the normal matter 1 increases. 

hb(12) hb(11 ) 	 ha  

Figure 4.4: The variation of the G' 's with respect to ha  
for two different thicknesses, 12  > 1 1 . 

4.V The calculation of the breakdown field for lf « 1: 

The breakdown field hb is the field at which GI 	
G
I 	

From 
I' 
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(4.31) and (4.32) and for lf
o 
« 1, we obtain, in dimensionless units: 

h
b 
 /5—n-  „S.4 	49 	

0
2 

7fgri  lf
o 
« 1 (4.33) 

This implies that for a very thin N, the breakdown field, at low 

temperature is high and varies linearly with the inverse of the thickness 

of the normal specimen. 	At temperatures close to Tcs, on the 

other hand, hb  is very low and vanishes at T = Tcs, where fb  = 0 

(equation 4.6). At T = Tcs, the superconductivity in S is completely 

destroyed, and hence the S/N sandwich turns suddenly normal (a 

transition from superconducting state to normal state occurs). 

Consequently, in order to observe the breakdown field effect, the 

applied field must not be higher than Hcs  (the thermodynamic critical 

field of the bulk S). (See Fig. 4.6). We note that at T = T 	
HCS CS 

vanishes (see Appendix A). 

Since h = 2 X  H (H is the magnetic field in conventional units), 

the equation (4.33) takes the following form: 

Hb  - -a—( 
C
l  

- 	1 - T/T )1{1 - C d
2
(1 - T/T )} 

CS 	2 N 	CS 	(*) 	(4.34) 
N 

where the expression (4.6) and the follOwing quantities have been used: 

(T) 	d 	
T 	1N- 	 , 

KN 	
N
CO' 1 = A

N 
(T)' EN(T) = 	

f 	
" ' "10

T
" =A0N(T— - 1)-1  

N 
 

N 	CN 	CN 

AL(0) 
and AON -  /2  

(*) 	(4.35) 

(where A L(0)= (mc
2
/41Tne2)1  is the London penetration depth in the pure 

metal at zero temperature (De Gennes, 1966, p.223).and n is the total 

number of conduction electrons per cubic centimeter) and 

Tr. 
C1  = iTES.  ' " H (0) 	0.13t 

VFN 	(*) 
1 	CN 	' EON = 

CN 	k
B
T
CN 

(4.36) 
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H
CN
(0) is the thermadynamic critical field of N at T = 0 (see Appendix 

A) 

49  
C - 
2 	240 

T
T
CS 1 

a TEN AL (C))  
2 

(4.37) 

    

By neglecting  the term 0(1f0)2  in (4.33), the equation (4.34) becomes 

C
l  

Hb  = 	(1 - T/T '1  
b -a- 	CS) 

This expression shows clearly the variation of the breakdown field 

with respect to the normal sample thickness dN  and the temperature T. 

Figure (4.7) indicates the variation of Hb  versus T. In order to 

interpret the diagram (4.7) which has been plotted for a given 

thickness, we take a temperature below Tcs  and we increase the field. 

For any field less than Hb, no phase transition takes place and the 

mode (I), with lower Gibbs' free energy, is more stable than the mode 

(II). When the field reaches H
b 

(on diagram 4.7), the order parameter 

at the free surface of N vanishes and the transition from mode (I) to 

mode (II) occurs, i.e. G
NI  
	G 
= 

the field is greater than Hb, the mode (II) is energetically favoured. 

It will be shown that the domain of existence of H
b 

is restricted to 

the certain values of d
N 

and T. This means that not for all d
N 

and T 

can the breakdown field be observed. 

H
b 
must not exceed the thermodynamic critical field of the 

superconductor Hcs. Fischer et al (1965) have experimentally reported 

that at H
a 

= H
CS' 

the bulk of the superconductor suddenly becomes 

normal, and therefore the whole S/N system turns suddenly normal. This 

is indeed a second-order phase transition which is not related to the 

breakdown field effect. It can be inferred from figure (4.6) that, for 

a given dN  and at rather high temperature GNI  < GNII' for Ha  < Hcs  and 

(4.38) 

Finally, in the region for which 
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Fig. 4.5: Variation of the breakdown field 
with the inverse of the normal sample thick-
ness (solution of the equation 4.45) in 
Pb/A1 sandwich. (Note Pb has infinite 
thi ckness. 
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Fig. 4.6: The breakdown field versus 
temperature T for two different thickness 
of N•---..—for dN = 	— for 
dN = 2E0N and 	 the bulk critical 
field 	of Pb. 
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Fig. 4.7: The breakdown field HI, 
versus temperature T in Pb/A1 bikary 
layer for dN  = 1.1g0N (note Pb is 
infinitely thick. 
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the magnetic field penetrates gradually into N as if it was an 

ordinary type I superconductor until the magnetic field reaches Hcs  

at which a second-order phase transition occurs (Krazig and Schreiber, 

1973). This process remains the same till the temperature is lowered 

to a certain value T = T at which H
b 
 = H

CS
. At lower temperatures 

the magnetic field penetrates abruptly into N at the breakdown field 

Hb  < Hcs, i.e. a first-order phase transition takes place (KrEtzig and 

Schreiber, 1973). 

4.VI The calculation of Gibbs' free energies for 1f0  » 1: 

The Gibbs' free energy associated with the mode (I), for all 

lf
o 
is given by (4.28). In the limiting case where lf

o 	
1, it 

becomes 

GNI + 1h
2 

= -ilf
4 
+ lh

2
(1 - 3/21%) , lf

o 
» 1 

 a 	o 	a 
(4.39) 

where exp(-1f0) has been neglected. For this limit, GNI, (the Gibbs' 

free energy of the mode (II)) is calculated by (4.4). Using (4.5c), 

(4.11), (4.15), (4.23) and (4.27), Gmi, becomes 

2 	- 	1 	1 8 
GNII 	lh

a = KN2 1-1 fir)
2 
 - -rulfb

4 
 + —:---/V(21f0) 	, 	lfo  » 1 	(4.40) 

As in section IV, we introduce the following quantities: 

-2 -1 2 	
21f4) GI  = -(KN  1 fo  + 151f0) 

,2,, 	3 	1.8  
G
II = -Maki 	21f

o 	
7V21f

o 

(4.41) 

(4.42) 

, lf
o 
» 1 

1 
such that G

NI 
- G

NII 
= G

I 
- G

II' 
Both G and GII 

are negative. The 

former is independent of ha, whereas the latter varies quadratically 
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1 	1 
with the field h

e 
G
I 
and G

II 
have been schematically plotted against 

h
a 

for two different thicknesses, i.e. 1
2 

> 1
1 
(Fig 4.4) and lf

o 	
. 

1 	1 
It is seen that the breakdown field h

b 
(the field at which G

I 
= G

II 

and a first-order phase transition occurs) decreases as the thickness 

of the nornal sample 1 increases. 

4.VII The breakdown field for lf » 1: 

By equating the equations (4.41) and (4.42), we obtain the following 

dimensionless expression for the breakdown field hb, for the limit 

lf
o 
» 1: 

hb  =/2"-Ni20(1 + -1(V1-2(02)(1 + 30  + .9/71/21f0) + 0(1-3f-03) (4.43) 

Since K
N 
 << 1, the above equation can be approximately written as 

- 	- hb  = 1(2/5)f02  (1 + -41(N2 1-2 fo
2 
 ) lf » 1 (4.44) 

7 
The expression h = 2 0,E H (Appendix A) and the equations (4.6) and 

(4.35) transform the above equation to its physical form: 

2 
H /H (0) = 
b CN • 75 

	

1 
T
CS 	T 	5

(E0N/dN)
2 

	

(—
a 
7—)

2 
 0 -r—) 7r 

CN 	CS 
(4.45) 

   

is given by HcN(0) - 27,2A
So 

N 	(Appendix A), where xoN  and SON 

are the penetration depth and ON  coherence length of N (at T = 0) 

respectively which, in the microscopic GL theory, are given by (4.35) 

and (4.36). The equation (4.45) explicitly shows that the breakdown 

field H
b 

decreases as the thickness of the normal specimen increases 

and tends to a constant value independent of dN  (the first term in the 

expression 4.45) with zero slope as dN/EON approaches infinity (Fig. 

4.5). 

H
CN
(0) is the thermodynamic critical field of N at absolute zero which 
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The full phase diagram, in three dimensional space of H, T and 

d
N 
has been plotted in figure (4.8) for the simplest case which we 

have been studying so far (S has infinite thickness and Ki « 1). In 

this figure, the broken curve represents the thermodynamic critical 

field of the bulk superconductor given by the well known expression 

HCS (T) = H
CS 

 (0)11 - (T/T
CS  )

2
1 and the full curve is H

b. 
Figure 

(4.8) enables us to discuss the ingredients in a somewhat more 

detailed manner: 

(1) At a constant temperature T where Hb  is a function of dN  only: 

As the thickness of the normal sample dN  is increased, the breakdown 

field H
b 
decreases (Fig. 4.5). This is qualitatively in a good 

agreement with the experiments done by Tai and Park,I1978) measuring the 

change of the ultrasonic attenuation in N part of the S/N sandwiches 

(Pb/Cu and Pb/Ag). We note that, if N is very thin, no breakdown 

field effect will be observed, since Hb  > HCS  in this case. 

(2) For a fixed dN  where Hb  varies only with T: 

By increasing T, Hb  decreases and vanishes at T = Tcs  (Fig. 4.7). 

(3) H = 0: 

It can be seen from Chapter 2 that, in the limiting case, where Ki<< 1, 

the total free energy associated with the mode (I) is always less than 

the one associated with mode (II). Therefore there is no phase 

transition in this case and (I) is always more stable than (II) for any 

T and d
N' 
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4.VIII The maximum T below which a first-order phase transition occurs: 

(a) As was mentioned in the section (4.VII), the breakdown field effect 

can be observed for certain values of d
N 
and T. Therefore, for a 

given d
N 

there is a maximum temperature T* below which the transition 

from the mode (I) to the mode (II) takes place. Clearly T* is a 

function of dN. In order to visualize this characteristic temperature 

T*(dN) we take a constant dN  (in Fig. 4.8). For a given temperature, 

the breakdown field is less than H
CS 
 and hence the transition from (I) 

to (II) is expected. By increasing T, this process is maintained up to 

a certain temperature for which Hb  = HCS. We denote this temperature 

by T*. At T > T*, the field H
b 
 > H

CS 
 and no phase transition occurs. 

This means that, in this region, the mode(II) with lower energy is 

favoured. Finally at T = T
CS' 

 the superconducting properties of the 

S/N system are completely destroyed leading to the occurrence of a 

second-order transition in the whole S/N binary layer, from the 

superconductive phase to the normal phase. The intersection of Hb  

and H
CS' 

 in figure (4.8), is marked by a cross (x) and the projection 

of this point on the (T,d
N
) plane is marked by empty circle (0). It 

is of great importance to notice that, for a given dN, as T is 

lowered below T*, the transition from (I) to (II) becomes sharper, as 

the applied field parallel to the surface of N is increased. The 

measurements of the initial amplitude of the tunnelling characteristic 

done by Martinet (1966) on the InBi/Zn system (Fig. 4.9) reveals clearly 

the sharpness of the transition at T and below T* (for a given dN). 

Moreover, from figure (4.9), it follows that there is no transition 

from (I) to (II) for T > T* in the presence of the magnetic field. 

(b) For a given dN  and at constant T, the low applied magnetic field 
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penetrates gradually into N up to the S/N interface. This means that 

for the low fields, the mode (I) is more stable than the mode (II). We 

now increase the field. At H
a 
= Hb, the field destroys the 

superconductivity at the free surface of N and hence (II) will be 

energetically favoured at and above Hb  (Fig. 4.8). 

(c) Now let us fix T and increase dN. For small dN, there is no a 

phase transition, since Hb  is much higher than Hcs  (Fig. 4.8). By 

increasing dN, Hb  decreases and for a certain value of dN  for which 

the corresponding T* is greater than or equal to the fixed T, a first-

order phase transition from (I) to (II) occurs. This transition takes 

place by further increase in dN. As is indicated in Fig. (4.8), as 

d
N 

is increased
, 
H
b 

decreases and T*, which is the projection of the 

point at which Hb  = Hcs  on the (T,dN) plane, approaches Tcs  such that 

T* = TSS  as the thickness of N tends to infinity. Joining the empty 

circles in Fig. (4.8) which have been obtained by projecting the 

intersections of Hcs  and Hb  for different dN's, on the (T,dN) plane, 

produces Fig. (4.10). This figure determines the region at which the 

mode (I), by increasing the field, changes to the mode (II) (under 

the curve 	in Fig. (4.10)). The solid curve indicates the 

variation of T* (the maximum temperature above which no first-order 

phase transition in the presence of the field is observed) with dN. 

In the region above the curve, the mode (II) will be more stable than 

(I) for any T less than Tc5. At and above Tc5  the superconducting 

properties of the S/N system are completely quenched. 

The most important consequence of the breakdown field effect is 

attributed to Fig. (4.10) as it shows the domain of the existence of a 

first-order phase change due to the arbitrariness of the boundary 

conditions at the N-vacuum interface. This figure which has been plotted 
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for the parameters relevant to Pb/A1 double layer obeys the following 

explicit relation between dN  and T* 

dN  = (1 - t*)-  1-W + (W2  + 1/C2)11 	(4.45*) 

H (0 
CS 	

(1 + t*),Cl  an where t* = 
T*/TCS' W  ZU C) 1 

	t* 	C and C2  are given by (4.36)  12 
and (4.37) respectively. HCS(0) is the bulk critical field of .S at 

absolute zero. It has to be mentioned that the above phase diagram is 

Fig. 4.8: The typical three dimensional phase diagram (H,T,dN) 
of the breakdown field effect in a S/N system where S has 
infinite thickness, 	 the bulk critical field of S, 
	 the breakdown field and 0 shows the maximum T below 
which a first-order phase transition occurs. 

Aroitrary 
Units 	Tr.°K 

1.28 	 

dp4=4750I 
TINS = 2,84 

  

0 
	

50 
	

100 
	

(G) 

Fig. 4.9: The initial slope of the tunnelling 
characteristic measurements on normal side of 
InBi/Zn as a function of the applied field parallel 
to the metallic interface (Martinet, 1966). Note 
that for T > T* no breakdown field effect is 
observed. 
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for the case when S has infinite thickness and is derived by equation 

(4.34) and HCS  given by Hcs(T) = HCS(0)1 1 	(T/TCS)71 .  

(d) The values of Hb  calculated from (4.38) for Pb/A1, for different 
•• 

T and dN, are higher than the experimental results of Kratzig and 

Schreiber (1973). As an example, at T = 7.1°K and for dN  = 3000 A, we 

obtain Hb  =250G for Pb/A1, whereas, for the same dN  and Hb, they have 

measured T = 1.9°K. Therefore the present work predicts T* higher than 

the corresponding experimental observation. We recall that our 

calculation of H
b 

is valid only when S has infinite thickness and 

•• 

Kr <K 1 (in the experiment of Kratzig and Schreiber, 1973, ds  = 2500 A 

and K
N 

varies with temperature.) Therefore the comparison between 

our result with their measurements can hardly be made, since in their 

experiment S is finite and KN  varies with T. Taking infinite S, 

however, causes two problems: 

(1) T* is too high; (2) T* does not go down for large dN. Martinet 

(1966) has measured T*(dN) for InBi/Zn superimposed films, by using 

the tunnelling effect (Fig. 4.11). According to his result T* 

increases first by increasing dN  and then decreases as dN  is sufficiently 

increased. In the next section, it will be shown how T*, in our 

present work, can be modified by taking the thickness dependence of the 

critical temperature of the S/N double layer T
CSN 

 into account. 

4.IX Generalization to finite thickness of S: 

In the earlier section we studied the breakdown field effect in 

the S/N superimposed films where S had infinite thickness. The most 

important result was Fig. (4.10) which could clearly determine the 

domain of the existence of a first-order phase transition. In this 

0 
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section we generalize the previous investigations to the case when S 

has finite thickness d S. 

TCSN' for a given dN, is depressed by decreasing ds  (Hauser et 

al, 1964) and since the energy gap is proportional to the critical 

temperature, it is significantly smaller than the BCS gap (Guyon et 

al, 1966). Thus the thickness dependence of the critical temperature 

must be taken into account. Werthamer (1963) has used the Gor'kov 

self-consistent equation to derive T
CSN 

 (in zero field). He has 

arrived at the following formulae which we shall use: 

2 d9_1  

TCSN = T CSN 	
CS 1 + w  (4.46) 

Therefore the critical temperature of the S/N sandwich T
CSN 

 decreases 
d
N 7 as 	is increased. This means that the S/N system becomes normal 
S 

at T
CSN 

 lower than T
CS 
 for finite d and dN. Since the critical 

temperature appears in the critical field of S which is given by (see, 

for example Lynton, 1971) 

Hcs(T)  = Hcs(0)IT  - (T/Tcs) 	, for the bulk 	(4.47) 
superconductor 

where Hcs(0) is related to the energy gap of S, i.e. 20os  at T = 0 by 

(Fetter and Walecka, 1971): 

HCS(°)  = 14TrNs(0) Aos 
	

(4.48) 

and N
s
(0) is the density of states of S at Fermi level, the thickness 

dependence of T
CSN 

 affect the critical field. In other words, Hcs, for 

finite d
S' 

is lower than the critical field of the bulk S. Therefore 

in order to generalize the problem which we studied in the preceding 

section, we must scale Hcs  and Hb  due to finite thickness of S. There 

are two ways of scaling: 
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(i) Scaling the whole phase diagram (4.8) by the law of corresponding 

states (BCS, 1957). This law states that all superconductors have 

identical properties when these properties are expressed in reduced 

units, for example, the critical curve Hc(T)/Hc(0) is a universal 

function of the reduced temperature T/Tc  (see, (4.49)) such that it is 

maximum at T = 0 and vanishes at T = Tc. Moreover, according to that 

law 2,6,0s/kBTcs  = 3.5. We substitute this expression into (4.48) (we note 

that (4.48) is derived by the law of the corresponding states, BCS, 1957) 

to obtain H
CS 

 (0) = 3.51uN
S 
 (0)11kB T

CS
' Setting T

CS 
 = T

CNS 
 given by (4.46) 

only for the case when dN/ds  » 1, we arrive at the following equation for 

the critical field of the S/N system: 

HCSN (T)/HCSN(°)  = 1 1  - (T/TCSN)  

where HcsN(0) = 3.5 7rN...(0)-  
b 	1 1(BICSN.  

for d
N
/d
S 
» 1 (4.49) 

  

This enables us to scale the thermodynamic critical field by using 

(4.49). It is evident that H
CSN 

 (0) decreases as 
dN/dS 

is increased. 

(ii) Scaling the T-axis only. This is applied for scaling Hb, since 

H
b 

is a matter of the boundary conditions at normal-vacuum interface and 

it should not be much affected by ds. 

With the above scaling for the thermodynamic critical field and 

Hb, the phase diagram (4.8) will be generalized for a given ds  (Fig. 

4.12). It is seen, from this diagram that, for a fixed T and by increasing 

the dN, T* which is again the projection of the cross over point of Hb  

and HcsN  on the (T,dN) plane, first increases up to a certain value of dN  

and then decreases as d
N 
is increased further. The turning point gives 

the maximum value of T* for a given d5. If we increase dN  further, T* 

will decrease (Fig. 4.12). As was pointed out in the last section, the 
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breakdown field effect can be observed for the certain values of T 

and dN. The domain of existence of this effect is determined by equating 

H
b 

and the thermodynamic critical field of S which gives a relation 

between T E T* and dN. But the breakdown field, for finite d
S' 

must be 

calculated exactly and is no longer given simply by (4.34) and (4.45) 

which were derived for infinite S. The calculation of H
b 

for finite d 

requires the complete solutions of the GL equations for both S and N. 

This is a formidable mathematical task (as well as the evaluations of the 

Gibbs' free energies). So the quantitative comparison with the experiments 

can not be made. Nonetheless, the qualitative comparison of the present 

work with the experiments can easily be made by resorting to Fig. (4.12). 

In other words, from this figure, it is seen that, T* is not too high (for 

finite d ) and has a maximum for a certain d
N 

which is qualitatively in 

agreement with the experiments of Martinet (1966) (tunnelling and 

permeability measurements, see Fig. 4.11). 

In order to understand the difference between calculated/measured 

T*, it seems useful to point out the following remarks which are concerned 

with both experiments and theory: 

(1) Our calculations are based on the assumption that the transmission 

coefficient is unity. The existence of even a very thin oxide layer at 

the S/N interface does actually reduce the transmission coefficient 

leading to lowering T* experimentally. 

(2) T* can be very sensitive to any trapped flux. In particular, 1.* is 

lowered due to the presence of trapped flux (Deutscher et al, 1969). 

(3) The occurrence of some diffusion at the S/N interface is expected 

(Orsay Group, 1967). This leads to a local DN  ( diffusion coefficient of 

N) somewhat higher than the one which is directly measured. 

(4) The expansion of A. in the power series (equation 4.5) of ASB  is valid 

only at high temperatures. In fact, we are dealing with rather low temp-

eratures. So the saturation effect can take place and can reduce T*. 
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Fig. 4.10: The maximum temperature T* below 
which a first-order phase transition takes 
place in Pb/A1 binary layer (Pb has infinite 
thickness) due to breakdown field effect 
versus the reduced thickness of Al i.e. 
dN/coN (from equation 4.45*). 

Fig. 4.11: The same as Fig. 4.10, but for InBi/Zn 
superimposed films where InBi is 2u thick (the 
tunnelling and permeability measurements of Martinet, 
1966). 

Fig. 4.12: The typical three dimensional phase diagram (H,T,dN) 
of the breakdown field effect in a S/N sandwich where S has 
finite given thickness. 	 the scaled critical field of S, 
	 the scaled breakdown field, 0 shows the maximum temp- 
erature T* below which a first-order phase transition can be 
observed and the heavy curve represents the variation of the 
critical temperature of the S/N system TCSN  (for a given ds) 
with respect to dN  (from equation 4.46). 
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(5) Finally, in the limiting case Ki « 1, we matched GNI  and 

G
NII' 

as  G
SI 

and G
SII 

(the Gibbs' free energies of S side of the 

system for (I) and (II) respectively) were equal. For larger Ks, 

GSI # G
SII and hence the total Gibbs' free energy GT  = GN  + Gs  must 

be minimized. The contribution of G
S 

to G
T 
certainly modifies T*. 

4.X Perfect Meissner effect in N: 

The case K
N 
« 1 is of particular interest as it is associated 

with the study of the Meissner effect in the S/N binary layers like 

Pb/Ag, and with the determination of To, (if N is intrinsically 

superconductor), of Ag or other noble metals. 

We assume that, for the low external magnetic field for which 

the first penetration mode (I) is energetically favoured, N does 

not give way to the field to enter. This means that the microscopic 

field is zero everywhere inside N. For rather high field for which 

(II) is more stable than (I), N does not screen the field at all, 

that is, the applied field Ha  is assumed to penetrate uniformly into 

N up to the S/N interface. This is the simplest case of the investigation 

of the breakdown field effect which confirms the preceding studies. In 

the above circumstances, it will be shown that, the breakdown field in 

this case H
bM 

is less than Fi
b 

calculated in section (4.V). 

Our starting point is the calculation of the Gibbs' free energy 

(4.4) for both configuration (I) and (II), using the following 

conditions: 

h
I 
 = 0 
	

everywhere inside N for (I) and 	

(4.50) 
h
II 

= h
a 

. 	everywhere inside N for (II). 
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We recall that all quantities are given in dimensionless units (see 

Appendix A) and ha  is the external field applied on the N part parallel 

to the S/N interface. Using (4.5) and (4.50), GNI  and GNII, from 

(4.4), read 

G
NI 

= -ilf
o
4  

G
NII 

= -2 -142 	1 	4 	2 
N. 1 	.0  - 	

14.
- lha  

(4.51) 

(4.52) 

where K
N 

is the GL parameter of N, 1 is the thickness of N in 

reduced units and f
o 
is given by (4.6). It is seen from (4.51) and 

(4.52) that GNI  is independent of ha, whereas GNI, is quadratically 

a decreasing function of ha. Furthermore, the breakdown field h
bM' 

which is determined by equating GNI  and GNII, decreases as the 

thickness of N is increased. The breakdown field hbM  is the field at 

which G
NI 
	

GNi = NII' Thus 

hbM  = f2  bM 0 
1  

2 , 
' (lf K.)2  

o  
(4.53) 

   

which is valid for all 1. It is more convenient to introduce the 

following quantities: 

X' = +/UV% 

H = H f2 
0 	CN 0 

(4.54) 

Then (4.53) in terms of physical units becomes (we recall that 

h = 
o 

271
x
N  gN 

 H in the conventional units and H
CN 	

2Tra 1■1X14 
- 	' Appendix A): 

-4" 	x2" 
H
bM 

= H
o 3 4. (r)  (4.56) 

This equation yields two asymptotic expressions for HbM  where dN  « X 

and d
N 
» X: 
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H
bM 

H
o
X/d

N 
	d

N 
«:X 
	

(4.57) 

 7 4HbM 	6 - 01 4;(;)!] 

	
d
N
›» X 
	

(4.58) 

The expression (4.57) is exactly the same result obtained by the 

Orsay Group (1967) which has been confirmed by experiment and a good 

agreement within 10% has been found. Since the above derivations 

are for the case that S has infinite thickness, the expression (4.58) 

differs from the results of the Orsay Group obtained for finite S. 

HbM, using (4.56), can be plotted against 1/dm  which has the 

similar behaviour as the figure (4.5). This means that HbM  goes to 

infinity with the slope unity as dm/EN  -3- 0, for a given T, and 

approaches 2H0/15 with zero slope as dm/EN 	. Moreover, making use 

of (4.36) and substituting (4.54) and (4.55) into (4.38) converts 

the breakdown field Hb  (4.38) to Hb  = /1;72T HoX/dm, therefore 

Hb  = 	
H
bM (HbM is given by 4.57). This implies that excluding the 

field out of the'N in mode (I) has been the main cost in energy. 

4.XI Conclusion: 

In this chapter, within the domain of validity of the GL 

equations, we showed that all phase transitions in S/N binary layers 

(placed in an external magnetic field parallel to the intermetallic 

interface) with the GL parameter much smaller than unity could be 

simply and qualitatively explained by the interplay of the two different 

boundary conditions on the order parameter A at the normal-vacuum 

interface. In particular, we demonstrated that a first order phase 

transition in a S/N sandwich could be observed, at a certain field (the 

breakdown field), even if the normal sample was very thick. 
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The two different boundary conditions mentioned above are 

locally associated with the exchange stability of the field, i.e. they 

have different values in the field. This provides the simplest 

reason for the phase transition (of course, since we have non-linear 

equations, there is no reason why the simplest answer should provide 

the truth). This is the attraction of the problem presented in this 

thesis. 

The domain of existence of the above transition T*(d
N
) which is 

the projection of the cross over points of the thermodynamic critical 

field and the breakdown field on the (T,dN) plane makes the most 

comprehensible link with the experiment. 

We have a problem, qualitatively and quantitatively, with the 

case in which the superconductor has infinite thickness. Thus we 

had to wave somewhat our hands (using the result of Werthamer, 1963, 

i.e. thickness dependence of the critical temperature of S) to 

generalize our phase diagram to the case of finite ds. The results 

are meant to show a trend (how the phase diagram is modified by a 

finite d ) and have not been put forward in order to be fitted to 

experiment. This being said, we believe that the general qualitative 

and quantitative agreement is fairly satisfactory. 
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GENERAL CONCLUSION: 

This thesis was mainly devoted to the investigation of the phase 

transitions in the superconductive-normal binary layers in the 

framework of the local GL theory of superconductivity. We presented 

the simplest reason for the occurrence of the phase changes in the 

superimposed materials; that is, the only two possible boundary 

conditions of the order parameter at the normal-vacuum interface 

provide the simplest reason for a phase transition. 

In chapter two, we predicted a first-order phase transition in 

the S/N sandwiches which has not so far been observed experimentally, 

in the absence of an external magnetic field. 

As a direct extension of the aforementioned phase change, in 

chapter four, we studied the S/N double layer in the presence of an 

external field for the limiting case where the GL parameters of both 

S and N sides were much smaller than unity. It was concluded that a 

first-order phase transition takes place at a certain field (the 

breakdown field) again due to the competition between the two 

possible configurations of the order parameter and 

we could achieve to a reasonable qualitative agreement with the 

experiment. 

In general, in the GL equations, two things matter. One is the 

boundary conditions and the other is the nonlinearity of the equations. 

It is quite true that nonlinearity can cause the phase transition or 

other collective behaviour even if the boundary conditions remain 

unaltered. Nonetheless, we think that it is interesting that the 
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simple reason can, in principle, accommodate observed and hitherto 

unobserved phase transitions. 

We realize that, as one progresses through the thesis, although 

the situation becomes more general (addition of a field, etc.), the 

assumptions and the approximations needed to solve the mathematical 

problems become more and more drastic, so that it can be argued that 

our case for interplay of the two boundary conditions becomes weaker 

rather than stronger as one reads along. We feel, however, that it is 

unlikely that the qualitative results have been forced by the 

approximations needed to obtain an analytical solution. Moreover, 

we were compelled to proceed to a sufficient trend of 	generality 

and complexity (Ha  0) by the varied experimental situations. 
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APPENDIX A  

THE GINZBURG-LANDAU GL EQUATIONS AND THE GAUGE TRANSFORMATION 

A.I Introduction: 

The (GL) equations are derived by minimizing the free energy of 

the superconducting state with respect to the pair potential and the 

magnetic vector potential. 

The free energy density, FSH, of the superconducting state is 

given by (De Gennes, 1966) 

FNO 	AI A I 2 	 71/1 1 4  + Cl(-iv- e )A1 
*A 2 H2  

FSH = 	 rc-- 	
.87r  , 	(A.1) 

e* = 2e 

where F
NO 

is the free energy density of the normal state, A is vector 

potential related to magnetic field H, by H = vXA, A, B and C are given 

(in BCS approximation, De Gennes 1966) by t 

A = N(0)11-T/Tcl 

C = N(0)E0  

B = 0.098N(0)/(kBTc)
2 

livF 
	

(A.2) 

E
o 
= 0.13 — 	(*) 

k T 
B C 

Eo  is the coherence length at absolute zero and N(0) is the density of 

states at the Fermi level for electrons of one spin. 

t An asterisk labels the expressions valid exclusively within the 

microscopic GL theory. The other expressions can all accommodate 

phenomenological parameters. 
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In view of the analogy of the superconducting order parameter 

with the wave function of ordinary quantum mechanics (one of the GL 

equations is a non-linear Schrodinger equation), we set 

i 
e(r) ={-- 

h2  
---} 	tp(r) 
2m*C (A.3) 

112 A  
a = 

2m* C 

f
2 2 

B a = (----) —, and 
2m* C` 

	

H2 = 4n a
2
/5 is the bulk critical field 	, m*=2m 

C 

Hence F
SH 

could be written in the following form: 

2 

FSH  = F 	
+ _1,12 + ialiol4 4. 	1 1(...rhy, ei1;11)02 + 	L 	

(A.4) 
SH - NO 	`41w 	

2m* 	8.7 

It is more convenient to work with dimensionless units forms 

of the GL equations. First we derive them in one dimensional space 

with the geometry shown in Fig. (A.1). 11) is assumed to be real (choice 

of the gauge, see below) and to depend only on x. The z-axis is taken 

along the uniform applied magnetic field Ha, so P = (O,O,H). 

Z A 

0Y 

Figure A.1: Schematical representation of a superconductor 
placed in an external magnetic field Ha. The induction field H 
is equal to Ha  at x = 0. 
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Now there is considerable freedom in the choice of gauge for A . 

It is assumed to be directed along y-axis (asymmetric gauge); 

A = (O,Hx,O) 	 (A.5) 

which means the vector potential depends only on x (we have made two 

assumptions so far: (1) the gauge is irrelevant, (2) i  and 	are are 

functions of x only). 

An alternative would be (-Hy,0,0) , and indeed any linear 

combination of this equation with (A.5) would serve too. However all 

these choices satisfy the "London gauge" i.e. 

	

= 0 and 
	

H= vw1 

The physical quantities such as Hc2  (the upper critical field, 

see chapter 3) are independent of the choice of the gauge). 

As has been pointed out in chapter 3, the assumption that 1p 

and A are functions of x only is inadequate for type II superconductors 

with high K and untenable for H>Hc  (Hc  is the thermodynamic critical 

field). Even for H
Cl

<H<HC (HCI is the lower critical field), 

individual vortices are nucleated into the superconductor whose state 

is no longer described by this assumption. 

Under the above circumstances, by introducing the following 

dimensionless quantities 

u= 1(. 	= 	- 	, 	f= L and 	11 - 27-231.11 	(A.6) 
cb
0 0 	

(1) 
0 
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ch  
where (1)

0 	
is a quantum of flux and tpo

2 
 = 

lal 
ze  

for position, vector potential, order parameter and magnetic field 

respectively, (A.4) becomes: 

HC  FSH  = F 	+ 	
(4.f2+if44K-2f,24.f2a2+a,2) 

SH NO 4v 

where 
	

H. 	a2 	
and 	

{ T>T,, positive sign 

4v 	
T<T

C' 
negative sign 

wenotethat— 
da 

and the GL parameter ivis defined, as usual, 

by K  = AA 

where 

t12 
E = 	-14 	is the coherence length (*) and 

2m* lal 

2 
x 	

a 

2 	
l 

P I } 	is the penetration depth, so the critical field 
4ve* 	Ia  

4)0 	
• for the bulk material would be Hr  

27/2XE 

It is more convenient to measure the energy density in units of 

Hc
2
/47, then equation (A.7) reads 

FSH 'NO 
= 	(,..F24.if4+K-2f,2+f2a24.a ,2)  

(A.9) 

where V.  = F/Hc2/47. The expression (A.9) is the free energy density 

of superconducting state. 

A.II Equilibrium (GL) equations in one dimensional space:  

We must now minimize the free energy with respect to the order 

parameter and the magnetic field distribution, or a. Since the free 



a. FSH 
sa = 0 

aa' 

a F
SH 

Sf = 0 
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energy density (A.9) is an explicit function of two variables, i.e. f 

and -a', the equilibrium (GL) equations are the Euler-Lagrange equations 

for f and 1, namely 

SH - a ( 
g'sH, 	n  

= 
af 	au af' 

(A.10) 

9FSH 	- 
	a 
	

a''
SH) = 0 

aa 
	

au aa' 

Hence 

K 
 -2

f
,, 

= f(±1+f
2
+a
2
) 

a" = f2a 

	 (A.11) 

These are the GL equations in dimensionless units. Dimensionless 

(reduced) units correspond to measuring lengths, magnetic fields, 

the vector potential, the order parameter and the energy density 

in the units of x, i2H0
' 
 V2H

C 
 x, 1 11,01 and H 2/47 respectively. 

The GL equations are a pair of non linear, second order 

differential equations, linking the order parameter and the magnetic 

vector potential. These equations must be supplemented with the 

appropriate boundary conditions at the free surface of the sample. 

The Euler-Lagrange equations, i.e. (A.10) are derived in such a way 

that the following conditions are satisfied; 

af' 
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Since the vector potential and the magnetic field are always fixed at 

the surface of the specimen, the condition (A.12) is always satisfied. 

Using (A.9) the condition (A.13) becomes; 

f'sf = 0 	at the surface 

This implies that either f = 0, and hence 0 = 0 or f' = 0 at the 

surface. The former condition corresponds to vanishing the wave 

function (in ordinary quantum mechanics) at the boundary. As was 

shown in chapter one the condition f = 0 (at the free surface of 

the superconductor) is not valid for an isolated superconductor, but 

f' = 0. 

This argument does not hold for a S/N system (see, chapter 2), 

i.e. the order parameter at N.-vacuum interface vanishes for a given 

thickness of the normal sample and at high temperatures, whereas at 

low temperatures the gradient of the order parameter vanishes at 

normal-vacuum interface. 

It has to be mentioned that, both conditions f = 0 and f' = 0 

are necessary consequences of GL superconductivity (they make the 

super-current vanish at the free surface of the sample). This point 

will be discussed in section A.III . 

A.III Equilibrium (GL) equations in three dimensional space: 

So far we have derived GL equations in one dimensional space. 

The second equation in (A.11) is not adequate to talk generally about 

vanishing supercurrent at the surface of the sample, even though it 
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dh 
is proportional to a' 	li. Therefore it is essential to calculate GL 

equations in general forms. The prescription of deriving these equations 

is the same as before (Euler-Lagrange equations will be used). 

Since p  is generally complex, we can minimize FSH  (equation (A.4)) 

with respect to ** (or p) and A. So the Euler- Lagrange equations for 

p* and A are 

;FSH a 	
aF
SH  

0 	(A.14) 

	

axk 	
a(vke) 

aF
SH 	

aF 
E 	a SH  

} = 0 	(A.15) 
6A. 	k 

a 
 xk 	(aAi/axk) ,1 

where v
k
tp* is the component of the gradient in the direction k and A. 

1 

is the component of A in the ith direction. 

By using (A.4), the equation (A.14) gives 

e* 
alp + 81V1

2
11, + 	(-itiv- —

c 
A)-4) = 0 

2m* 
(A.16) 

This is called the first GL equation in general form and is in fact 

the non linear Schrddinger equation of a particle with mass m*=2m and 

charge e*=2e. It is clear that the minimization of FSH  with respect 

to * rather than p* yields the complex-conjugate equation of (A.16). 

We must now minimize F
SH 

with respect to variation of the 

magnetic vector potential A (equation (A.15)). For the sake of 

simplicity we split (A.15) to its three components. The x-component 

of the first and the second terms of (A.15) are 
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aF
SH 	 #3,0,2 1 	fit4f,*v 	_Tpv el 4: 	Axi4)12 

2m* c x x 	
C ;.; 3 A

x  

(A.17) 

and 

 

a 
a FSH  

3 (a  %cia xk )  

1 
(v
2
A -v v.A) 4r 	x (A.18) 

 

k 

 

respectively, where (A.4) has been used and vxtp (for example) denotes 

the partial differentiation of p  with respect to x. The similar 

equations can easily be obtained for the other components. 

Since II = curl A, expression (A.18) is just the x-component of 

- -Sic, where J is the super-current related to the magnetic field via 
71- 4 

Maxwell's equation, i.e. curl H = •E- J. 

The full expressions for the first and second terms of (A.15) are 

a F
SH 	 2  e* E 	

1 	. 	(evil) -tpvti)* ) 	2e* 
2 	31 IP I 2 

} 
i 	2m* 	- c 

and 	a 	
5F
SH = - 

iE 
E 
k a xk a  	xk )  

respectively. Substituting these two expressions into (A.15) leads to 

the celebrated second GL equation 

	

itie* 	e*2 	• -4-  
J = 	(ip*v* - 	 ip*Ip8 

	

2m* 	m*c 
(A.19) 

which holds for a general gauge. 

The first term of (A.19) has exactly the form of the conventional 

quantum-mechanical current for a particle (of mass m*=2m and of charge 
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e*=2e) with a wave function *(r) and the second term represents a 

response of a superconductor. In fact these two terms are related by 

a gauge transformation. 

If we set * = *0e
1e/ti

, where *0  and e are real, then (A.19) 

becomes; 

e* ,0 
 2 

	e* 
) 

	

U = " 

M

-• 	rt  ( V VI 

*  

By introducing the following gauge transformation 

	

A c 	
(A.20) 

e* 

the above expression would be 

e* 	2 ', 

; = 4'0 A  (A.21) 

So the first and second terms of (A.19)are related by (A.20). 

The coupling between matter and electromagnetic.field is only 

effected through the gradient in the free energy, FSH, (minimal gauge 

coupling) and this yields the standard expression for the current. 

(It also implies the gauge invariance, Josephson effect, collective 

modes with a gap, etc.). 

There is of course one basic difference for which p  (in the 

present investigation) is not normalized, on contrast to the wave 

function in quantum mechanics. This is clearly due to using different 

mass and charge, i.e. m* and e*. Moreover, (A.19) is a "local" 
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expression for the London type, i.e. 1(r) is given by the values of 

v; and A at the point r. 

For a "pure" superconductor (the electronic mean free path is 

greater than the coherence length ) the range of validity of the 

theory is that of the expansion in powers of i, and the temperature 

has to be close to the critical temperature of the bulk material T .  

For a "dirty" specimen for which the electronic mean free path is 

much less than 	on the other hand, a local theory is adequate even 

if * is large, and the temperaure need not be restricted to the 

neighbourhood of Tc. 

As was stated previously, the equation (A.16), apart from the 

nonlinear term, has the form of a Schr8dinger equation for Cooper 

pairs with eigen-energy - a (note that for superconductive state, 

a is negative). The fact that, 0 turns out to be as uniformly as 

possible in space (in addition to the kinetic energy term (v*)
2
) 

is due to the contribution of the nonlinear term in (A.16). Tinkham 

(1975) has pointed out that the uniform distribution of i  in space 

is due to action of the nonlinear term as a repulsive potential of 

i on itself. 

So far we have derived GL equations. These two equations must 

be supplemented with the appropriate boundary conditions at the free 

surface of the specimen. As usual, the Euler-Lagrange equations, i.e. 

(A.14) and (A.15) are obtained by requiring the following expressions: 

aF
SH 
 SA = 0 

DM) — 

(A.22) 
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aF
SH 

se = 0 
	

(A.23) 
a(ve) 

These are indeed the integrands of the surface integrals appearing 

in minimization of total free energy I FSHd3r 	when A and e 

all space 

are varied by (SA and se respectively. With help of (A.4) the 

expression (A.22) takes the following form; 

aF SH 	4. 
= (curl A XS,A).h = 0 

3(74) 

(A.24) 

where li is the unit vector perpendicular to the sample surface. The 

surface integral of this quantity at infinity where the magnetic field 

has dropped to zero, will be zero.(Grassie, 1975). A and H = curl/ 

are always fixed at the surface so that (A.24) is always satisfied. 

(A.4) also transforms (A.23) into 

- 	i)ip (Se = 0 , at the free surface 	(A.25) 

The calculus of variations formalism usually is carried out with the 

subsidiary condition e=0, and hence 84)*=0 at the surface. It was 

proved in chapter one, that the order parameter can not be zero at 

free surface of an isolated superconductor, even though the condition 

e=0 is sufficient to make the supercurrent (A.19) vanish at the free 

surface. So the appropriate boundary condition at an insulating 

surface which assures that no supercurrent passes through the surface 

would be 

- 	= 0 	(A.26) 
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Now if we set J.n = 0 (from (A:19)), we would not obtain the above 

condition, but only 

- 	-A)* = it)* 	 (A.27) 

where b is a real constant and depends on the nature of the material 

to which contact is made. De Gennes (1966) has discussed that (A.27) 

is applicable for a superconductor-normal metal junction. We have, 

however, demonstrated (see chapter 2) that above conditions have had 

important implications in the onset of superconductivity. 

A.IV The gauge transformation of GL equations:  

It is more convenient to work with dimensionless units forms 

of GL equations. For this purpose we use (A.6) in three dimensional 

space (for example v=ip(r)) to convert (A.16) and (A.19) to: 

-f + 	= 0 	 (A.28) 

9 	 -1  
curl curl 1.  + tf1 -1.  + 	(f*f - ff*) = 0 	(A.29) 

c 
—47.;  where the Maxwell's equation J - 	curl H has been used and here 

all differentiations are taken with respect to the quantity u = 	. 

We now introduce f = f0 e
ie 

where f0  is the modulus and 
a is the 

phase of f to simplify (A.29) to 

curl curl a + f
0
2 
 (a - K

-1 
Ve) = 0 
	

(A.30) 

Performing a gauge transformation 

-4- a0  = a - -1 ve (A.31) 
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converts (A.28) and (A.30) to 

-f0  + f03  + (-ii(-1  -10)2f0  = 0 
	

(A.32) 	• 

curl curl 1
0 
 + f

0  2
1
0 
 = 0 
	

(A.33) 

where the magnetic field is given by Ti = curl 10. 

With the help of London gauge 7 1.0  = 0 and (A.33) we can show that 

(A.32) is simply given by 

-2 2 	2 	2 
-K V f0 	f0(-1+f0 jra0 ) = 0 

and (A.33) becomes 

2 
-v
2 
 a
0 
 + I

0  a0 
 = 0 

(A.34)  

(A.35)  

where the identity curl curl a0  = grad div a0  - v
2
a0  has been used. 

The above equations are a couple of nonlinear differential equations 

(GL equations in reduced units) in three dimensional space and are a 

direct generalization of (A.11), where both f and a were assumed to be 

functions of x only (section A.I). 

It is of interest to apply the above expressions for the extreme 

type II superconductor (K»1). For this limiting case (A.34) and (A.35) 

become; 

f 	
2 

a
0 
 - 1 = 0 02 +  

v2a
0 
 - f

o
2 a

0 
 = 0 

(A.36)  

(A.37)  

which are general forms of (3.10) and (3.12). Here again 1a01 has to 

be less than unity in the physical regions of superconductivity. 

Solving the above equations for a0, we deduce; 

v2a0  - (1-a 02)a0 
02 

)a0 = ° 

	
(A.38) 
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This is a vector differential equation in three dimensional space and 

is the general form of (3.13). A complete solution of (A.38) for an 

arbitrary geometry has not been obtained up to now, in contrary to 

the solution of (3.13). If we could solve it completely and without 

making any assumption we would have been able to study the structure 

of Abrikosov vortices for an extreme type II material. 

The equation (A.38) is a generalized London equation. Indeed, 

curl curl ao  + (1-a02  )a0  = 0 
	

(A.39) 

Since the first term is proportional to current in reduced units, 

then (A.39) would be general form of London equation for the materials 

with high K. 

However, equation (A.38) can be expected to be solved for a 

particular geometry of specimen and for certain direction of the 

magnetic field or vector potential ao  (chapter 3). 
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