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ABSTRACT 

An investigation has been conducted on the flow-induced, in- 
line vibrations of circular cylinders. 	Two-dimensional cylinders 
immersed in a one-dimensional water stream were tested in the 
laboratory. 

Detailed observation of cylinder and flow behaviour revealed 
some novel characteristics of this type of excitation, such as a new 
type of wake, variations of the mean drag coefficient and frequency 
variations which reduced a variable mass coefficient to zero. 

A new "non-dimensional frequency parameter" was obtained which 
unlike the commonly used "reduced velocity", unified the results of 
previous researches and provided a precise definition of the insta-
bility regions; this allowed the avoidance of instability in engineering 
problems at the design stage. 

In contrast with aerodynamic practice, it was here concluded 
that density and damping should be considered separately. 	Density 
was.found to determine the frequency response. 	Damping was divided 
into hydrodynamic (included in the total hydrodynamic force) and exter-
nal (structural); the latter was represented by a modified "stability 
parameter" which is independent of cylinder density and which was found 
to determine the amplitude response. 

The identification and definition of the independent roles 
played by density and external damping, led to correlations which allowed 
the prediction of the amplitude and frequency response and of the insta-
bility regions, for any two-dimensional cylinder-flow arrangement. 

The hydrodynamic exciting, damping and added mass forces were 
analysed leading to a theoretical model which represents the excitation 
in terms of force coefficients and a phase angle; these parameters were 
found to represent the hydrodynamic processes. 

Frequency variations were attributed to a constant mass coeffi-
cient and variable drag forces; this led to a marked simplification of 
the theoretical model in the second instability region, and to the 
prediction of the force coefficients and the phase angle from knowledge 
of flow characteristics and cylinder motion and geometry. 

Good agreement was also found between the predictions of the 
model and the results of full-scale three-dimensional experiments. 
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LIST OF SYMBOLS 

a 	= vibration double amplitude (2x0) 

c 	= viscous damping constant or damping force coefficient 

CDA 	
= apparent drag coefficient 

CDO 	
= drag coefficient for a stationary cylinder 

Cf 	a force coefficient (undefined) 

CF 	= variable force coefficient 

CF 	= mean component of CF  

C' 	= amplitude of the fluctuating component of CF  

CI 	inertial coefficient [= (N/f)2(pr  + 1) - pr] 

CM 	
= mass coefficient 

CMS 
	

= mass coefficient in still water 

C. 	= variable mass coefficient 

d 	= water depth (or distance as defined in text) 

D 	= diameter 

Ep 	= energy ratio [= CDA fs/CDO fl  

Ew 	= energy ratio [= CDA fs/CDO fel 

f 	= vibration frequency 

f
e 	

= frequency of eddies in the distant wake 

f
s 	

= value of "fe 
for a stationary cylinder [= 2SV/D] 

= frequency of the wake behind a stationary cylinder [= fs/2] 

F 	= total drag force 

A 



F 	= mean hydrodynamic (drag) force 

F' 	= fluctuating drag force 

F
o 	

= amplitude of fluctuating drag force 

FI 	
= inertial, fluctuating hydrodynamic force 

FT 	
= total hydrodynamic force 

F
T 	

= fluctuating component of FT  

F
To 	

= amplitude of FT  

g 	= acceleration of gravity 

G 	= hysteretic damping parameter 

k 	= stiffness 

k' 	= equivalent stiffness per unit length 

k
s 	

= stability parameter [= c/pfD2Lf] 

k' 	= stability parameter for constant frequency [= 2MS/pfD2L] 

kso 	
= ks 

for f = N and (a/D) = 0.055 

= length (as defined in text) 

L 	= total length of cylinder 

L' 	= equivalent active length 

LI 	
= logarithmic increment 

= slope of curve 

M 	= mass 

M 	= added mass 
_a 

Mas 	
= added mass in still water (or when Cm  = 1) 

Mas 	
= added mass per unit length (Cm  = 1) 

M- 	= effective mass of cylinder 

M'ce 	
= equivalent mass of cylinder per unit length 
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M
T 	

= total mass (= Mc + Ma
) 

total mass in still water or when CM  = 1 (= Mc + Mas
) 

natural frequency in still water 

natural frequency in air 

natural frequency in vacuo 

total damping force 

hydrodynamic excitation force 

hydrodynamic damping force 

Reynolds number [= VD/v] 

S 	= Strouhal number [= fwD/V] 

t 	= time 

V 	= flow velocity 

Vr 	
= cylinder/flow, velocity ratio [= wxo/V] 

x 	= cylinder displacement 

x 	=- mean cylinder displacement 

x' 	= fluctuating cylinder displacement 

x
o 	

= amplitude of x' 

x and x= first and second derivatives of x with respect to t 

a 	= phase angle of C
F 
or Pe with respect to x' 

0 	= blockage correction factor for V 

= logarithmic decrement 

= phase angle of FT 
with respect to x' 

(I) = phase angle of F' with respect to x' 

of 	
= fluid's dynamic viscosity 

= fluid's kinematic viscosity 

= negative damping parameter 

-TS 
= 

N = 

Nay
, 

= 

Nv = 

Pd = 

Pe = 

P
hd 

= 

Re = 
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P
c 

P t  ce 

Pf  

Pr 

wn 

= 

= 

= 

= 

= 

= 

effective density of cylinder 

equivalent density of cylinder 

density of fluid 

density ratio P. Pc/Pf] 

vibration's circular frequency [= 27rf] 

natural circular frequency in still water [= 27rN] 

(1 + 0.25Vp/(1 + 0.75Vp 

Other variables as defined in text. 
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CHAPTER 1 

INTRODUCTION 

1.1 	Engineering Considerations 

Flow induced vibrations are a problem of growing engineering 

concern as structures exposed to fluid flow grow in size, number and 

variety. Moreoever, as the design of these structures becomes more 

refined, economic considerations demand that safety-margins be reduced 

and consequently much of the material regarded as excessive for static 

stability is being eliminated. The dynamic stability often suffers 

as a result of these economies through a reduction of both damping and 

the natural frequencies of the structure. Moreover, as the numbers 

of marine and estuarine works multiply, more structures are exposed to 

hydrodynamic action which in comparison with aerodynamic action is 

associated with larger inertial forces and larger exciting forces 

relative to the structural damping. 

It is clear from these trends not only that more refined and 

reliable engineering knowledge and methods should be developed, but 

also that new types of vibration phenomena previously unknown or 

neglected are assuming greater importance to the designer. 	One such 

new source of flow-induced vibration is described below. 

1.2 	In-Line Vibrations Induced by a Steady Flow 

In what follows only steady flows approaching structural members 

will be considered although the results will be applicable to those 

unsteady flows with scales and frequencies of unsteadiness which are 

greatly different from the structure's scale and natural frequency, i.e. 

small scale turbulence on the one hand and tidal flows on the other. 

Except for cases such as "galloping" and "flutter" the most 

important flow-induced excitations are associated with the periodic 

shedding of eddies in the wake of a bluff body. This wake has normally 

been thought to be of the Von nrman type (Fig. 1), where in addition 

to a steady drag force, the flow exerts a periodic force upon the body 

with the same frequency as that of alternate eddies shed into the wake. 
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If the body is at rest this wake frequency, fw, is related to the 

velocity of the flow, V, and the dimensions of the body in this case 

its diameter, D, by the Strouhal number, S, i.e.: 

f
w
D 

V 

In practical situations these periodic forces become significant 

when the vibration amplitudes are dynamically magnified by a resonance 

phenomenon when the forcing frequency coincides with a natural frequency 

of the body. Thus for a given structural member there correspond 

critical values of the flow velocity, given by the Strouhal relation-

ship and the natural frequencies of the member,at which a resonance 

could occur. 

In some situations the vibration of the body is so large that 

it interferes with and can even control the flow pattern. Under such 

circumstances the fluid dynamic forces themselves can be magnified and 

so through some interactive process the vibration of the body can be 

increased still further. 	In this type of largely "self-excited" 

vibration the dynamic characteristics of the body cause the frequency 

of the wake to diverge from that predicted by the Strouhal relationship 

(a phenomenon sometimes termed "frequency lock-in") and so the range 

of flow velocity over which vibration will be important is extended. 

The forces associated with eddy shedding can produce vibrations 

in the direction of the flow (in-line), or at right angles to it (cross- 

flow). 	Research has so far been concentrated in studying the latter, 

and until recently the weaker, in-line vibrations have not been detected 

or have been ignored. 	In the last decade however, the structural 

design trends mentioned above have brought to light examples of in-line 

vibration which have necessitated expensive remedial work. Auger 

reports the in-line vibrations caused by a steady wind of the members 

of an aluminium, tubular space-frame built for "Expo 68", which was 

designed to avoid cross-flow vibration only. Vibrations absorbers 

had to be installed on every member of the structure. 

During the construction of a jetty at Immingham in 1967 (see 

Sainsbury and King, Wootton et al), severe in-line vibrations occurred 

in circular cross section piles subject to tidal currents. 	The 

excitation occurred here at flow velocities both inside and outside the 
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then known critical ranges. Moreoever,there was evidence that some 

of the vibrations were associated with the shedding of a.pair of 

simultaneous eddies for each cycle of motion of the pile, rather than 

with the usual alternate shedding of eddies (Fig. 2 and 4). 

The experience of Immingham is important because it demonstrated 

that excitation could occur at a considerably lower flow velocity than 

was previously thought possible and that unforeseen combinations of 

in-line and cross-flow motion can occur; in practical terms a designer 

must now consider raising the lowest natural frequency of a lightly-

damped piled structure, by a factor of perhaps 3 over the value formerly 

believed to be safe (see Chapter 6). The cost of the necessary stiffen-

ing to achieve this increase can be high, and so there is clearly a 

need for greater understanding of in-line vibration if the demand 

continues for berthing facilities in deeper and faster flowing water. 

1.3 	Previous Studies of In-Line Vibration 

The Immingham vibration problem stimulated a series of investi-

gations into flow-induced, in-line vibrations of cylinders. Wootton et 

al conducted a full-scale research at Immingham in the site where the 

original problem arose and identified the type of vibration. Hardwick 

and Wootton reproduced the same type of excitation using small-scale 

two-dimensional cylinders in the laboratory and analysed excitation 

mechanisms and flow patterns. Clark studied the amplitude and frequency 

response of a small two-dimensional cylinder and investigated the possi- 

bility of suppressing the motion with flow "spoilers". 	King has 

conducted several series of experiments mainly with cantilevered model 

piles in the laboratory, has developed matrix methods for the represen-

tation of three-dimensional cylinder-flow arrangements and has analysed 

in-line and cross-flow excitation. Dickens has studied flow patterns 

and excitation mechanisms of the first instability region of two- 

dimensional cylinders in various fluids. 	From these researches, the 

following description of flow-induced, in-line vibration has emerged. 

1.3.1 Cylinder-flow arrangements 

Qualitatively similar characteristics have been identified in 

the different modes of vibration of differing cylinder-flow arrange-

ments such as: encastre-pinned pile in three-dimensional flow (Wootton 

et al), cantilevered from the bed in one-dimensional flow (king), 
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two-dimensional motion with one dimensional flow (e.g. Clark) etc. 

(see also Hardwick and Wootton). As can be appreciated in Fig. 3 and 

as will be shown later however, there are also marked differences for 

example in the flow velocity and frequency response ranges, which 

cannot be attributed merely to Reynolds number effects, and which 

differences limit the applicability of the research results. 

1.3.2 Flow patterns 

Two main instability regions for in-line motion have been 

identified in all the studies; the first region is associated with the 

simultaneous shedding of a pair of eddies per vibration cycle and the 

second with eddies alternately shed from each side of the cylinder at 

the rate of one per vibration cycle (see Fig. 2). 

There has however been difficulty in relating the flow patterns 

to the mechanisms of excitation when, for example, the simultaneous 

shedding appears to change to alternate shedding near the end of the 

first instability region (e.g. Dickens2). Hardwick and Wootton moreover 

have observed a rearrangement of the wake of the first instability 

region into one of the Von larman type, and King reports an influence 

of the Strouhal frequency throughout the first instability region. 

1.3.3 Mechanism of excitation 

Two explanations for the excitation of the cylinder have been 

postulated: in the first instability region, Hardwick and Wootton 

suggested that the narrowing and widening of the wake as the cylinder 

crosses its central possition on its forward and backward strokes 

respectively (fig. 4), indicated a force in phase with the cylinder's 

velocity which does work on the cylinder and so overcomes the system's 

damping. 

In the second instability region, the fluctuating forces associated 

with the alternate shedding of eddies can conveniently be resolved into 

two components (Fig. 4): the larger is perpendicular to the flow 

direction and with the frequency of the wake, fw  (the cross-flow compo-

nent), and the smaller acts in the direction and sense of the flow (the 

in-line component) which when considered as a fluctuating force, acts 

with twice the frequency of the cross-flow component. 
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No satisfactory explanations have yet been put forward to account 

for the beginning and the end of either instability region. 

1.3.4 Velocity and frequency parameters 

The "reduced velocity" (V/ND), has been used generally as a base 

parameter for plotting amplitudes of vibration, although in some cases 

the actual frequency of the vibration, f, has been used instead of the 

natural frequency, N. 

In-line vibration has been reported for reduced velocities 

ranging from 0.8 to 3.8 but disagreement over the precise ranges for 

the two instability regions (see Fig. 3) has complicated the interpre-

tation of the phenomena and reduces the usefulness and reliability of 

the available information. 

If the mechanism of excitation for the second instability region 

given above is correct it should follow that an in-line resonance will 

occur at a flow velocity, V, for which single eddies are shed with the 

same frequency, fs, as the natural frequency of the cylinder, N, i.e. 

at: 

V 
f = N 

or  ND = 2S = 2.5 

f
w
D 	f

sV 

 D 
since 	 2 - 0.2 

V  

But Fig. 3 indicates that precisely at (V/ND) = 2.5 large self-

excited amplitudes of motion have in some cases been suppressed and no 

satisfactory explanation for this apparent contradiction has yet been 

put forward. 

Although in-line vibrations with similar characteristics have 

been reported in the ranges of Reynolds number, (Re  = VD/v), 104  to 

106  for prototype studies and 103  to 104  for laboratory experiments, 

there also are unexplained differences between the two situations (see 

Fig. 3) and the precise role played by the Reynolds number is not known. 

For two-dimensional in-line motion, Clark and Dickens2  have 

reported a divergence of the vibration frequency, f, from the natural 

frequency of the cylinder in still water, N, which is similar to that 
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4s, 

observed in cross-flow vibrations; for cantilevered or pinned cylinders 

however, vibration frequencies have either been assumed constant or, 

the very slight frequency variations observed have been attributed to 

secondary factors specific to the particular situation studied (see 

e.g. King). 

1.3.5 Influence of damping 

The amplitudes of vibration are limited by damping processes 

which dissipate the vibrational energy of a system. Maximum double 

amplitudes, a, have been predicted as 0.22 D (Hardwick and Wootton) or 

about 0.2 D (Dickens) for two-dimensional flow situations in the first 

instability region. 	King reports maximum amplitudes of up to 0.3 D 

at the free end of cantilevered piles. Maximum amplitudes for the 

second instability region have not been previously predicted. 

Damping has been treated in various ways in previous studies. 

To facilitate model scaling, and following aerodynamic experience, 

"structural" and "fluid dynamic" damping expressed by logarithmic 

decrements, S, have been combined with the mass of the cylinder, M, 

and density of the fluid, p
f' into a "stability parameter", — 

2M6-2--- pfn 
where L is the cylinder's length. 	This combination rests 

on the assumptions that the frequency is constant, that the density has 

no independent influence on the phenomenon and that damping is not 

affected by vibration amplitude (see King, Vickery and Watkins). 	The 

form of the stability parameter has been accepted by most research 

workers but there is disagreement over the appropriate damping to be 

used. Hydrodynamic damping has sometimes been extrapolated from still 

to running water situations in spite of the radically different flow 

patterns associated with the two cases (e.g. Dickens2). In other cases 

damping has been attributed to the drag forces (e.g. King) arising 

from the relative motion of fluid and cylinder, but in this case the 

damping cannot strictly be included in the stability parameter because 

the latter would not then represent the energy output of the system 

(see Chapter 6). 

1.3.6 Excitation forces 

King obtained fluctuating drag coefficients based on the exci-

tation mechanism suggested by Hardwick and Wootton and on the assumptions 
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that the frequencies did not change and that the forces were in phase 

with the velocity of the cylinder. Frequency variations of as much 

as 20% have nevertheless been reported by Clark, and Dickens2  reports 

a phase shift of the flow pattern (supposedly associated with the forces) 

with respect to the cylinder motion, for different amplitudes of 

vibration or reduced velocities. 

1.4 	Aims and Scope 

The researches described above leave many questions unanswered 

and the results of some appear to conflict with others. The results 

of these researches moreover, tend to be applicable to specific situations 

only, e.g.: prototype or laboratory; two or three-dimensional; restricted 

in-line or free; circular cylinder or other cross section; in water 

or air; etc. 

In view of this, the aims of the present project can be summarised 

as follows: (a) to improve the understanding and definition of in-line, 

flow-induced vibration; (b) to clear some of the contradictions 

apparently arising from the different types of research previously 

conducted; and (c) to incorporate all the previous experiences in this 

field with those of the present research into a general model of widest 

applicability. 	Such a general model should represent all the basic 

characteristics of this type of vibration which are common to all 

situations, but the model should be adaptable to represent also specific 

cases. 	It is moreoever intended that such an approach will permit a 

reinterpretation of the previously reported behaviour of both proto-

types and laboratory models, so as to improve their agreement and thus 

to increase the reliability and usefulness of modelling techniques for 

this type of vibration problem. 

More specifically, it is intended here to: (a) arrive at an 

improved qualitative definition of flow-induced in-line vibration; 

(b) find appropriate parameters to define the excitation; (c) correlate 

cylinder behaviour with flow and cylinder densities, structural damping, 

flow velocity, etc. leading to the prediction of instabilities from 

data easily available to designers; (d) find limits in general to the 

ranges of the excitation; and (e) investigate forces and phase rela-

tionships that would contribute to the explanation for the occurrence 

and characteristics of the vibration. 
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It is intended moreover that the results to be presented will 

facilitate the solution of similar vibration problems (e.g. cross-flow 

vibration) and will also lead to a greater understanding of interactions 

between fluids and solids in general. 

In the next chapter a discussion of the selected approach to 

the problem is followed by a description of the experimental equipment 

and method. 

Chapter 3 is concerned with a correlation between flow patterns 

and observed vibration response. On the basis of this correlation, 

a parameter is described in Chapter 4 which appears to unify several 

sets of independent experimental results, in addition to helping with 

the organization and understanding of the data. 

Chapter 5 presents a dimensional analysis and a study of most 

of the main parameters which influence the excitation. 	The two most 

important ones, density and damping however, are dealt with separately 

in Chapter 6, leading to prediction of cylinder behaviour from charac-

teristics of cylinder and flow. 

Chapter 7 arrives at a theoretical model of the excitation after 

an analysis of added mass, hydrodynamic damping and the excitation 

forces. 	The excitation mechanisms are analysed in more detail in 

Chapter 8, allowing simplifications of the theoretical model and further 

predictions of cylinder behaviour. 

The subject of Chapter 9 is the consideration of the three-

dimensional factors which affected the results of the present research, 

and the applicability of such results to prototype three-dimensional 

situations. 	The thesis is concluded in Chapter 10. 
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CHAPTER 2 

Experimental Approach 

The aims of this research as stated in the previous chapter, 

together with practical and economic considerations dictated a labo-

ratory investigation of flow-induced, in-line vibration of cylinders, 

which when compared with prototype studies presents the advantages of 

flexibility, independent control of variables and the possibility of 

a less specific research of wider applicability. 

The first section of this chapter (2.1) analyses different 

alternative types of cylinder-flow arrangements previously used for 

similar laboratory researches; this leads to a description in 2.2 of 

the arrangement adopted for the present research. 	Section 2.3 

presents a brief description of the experiments and their sequence. 

2.1 	Alternative Experimental Configurations 

2.1.1 Two or three-dimensional 

In the typical three-dimensional cylinder-flow arrangements 

encountered in civil engineering practice, the characteristics of the 

approaching flow change with location, and the amplitudes of vibration 

of the cylinder change along its length according to different modal 

deflection curves which are particular to every cylinder configuration. 

Previous researchers (e.g. Hardwick and Wootton, Dickens) have 

achieved a significant degree of similarity when reproducing such three-

dimensional situations in the laboratory, with rigid,two-dimensional 

cylinder arrangements immersed in basically one-dimensional approaching 

streams (see Fig. 3). 

These experimental outcomes indicate that any flow-induced, in-

line vibration has basic chracteristics which are common to all situa-

tions; it should therefore be possible to represent any such excitation 

by a simplified model as described above with the additional and separate 

consideration of the particular three-dimensional characteristics 

involved. 	More specifically, a three-dimensional situation can be 

assumed to be made up of a series of two-dimensional components; 
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consequently if the characteristics of a two-dimensional excitation 

are known it is only necessary to know the interaction patterns of the 

different two-dimensional components in order to obtain a three-dimen-

sional representation. 

In contrast to this, the laboratory modelling of one specific 

cylinder-flow arrangement would not only be incompatible with widening 

the applicability of the experimental outcome, but it would also intro-

duce three-dimensional patterns which would obscure the more basic and 

general characteristics of the excitation. 

It was therefore decided to approximate as far as possible the 

case of a rigid two-dimensional cylinder immersed in a one-dimensional 

approaching stream. 

2.1.2 Restricted in-line or free 

Apart from torsional vibrations which are not important from a 

fluidelastic point of view, the motion of a two-dimensional rigid 

cylinder can be represented by two degrees of freedom namely, in-line 

and cross-flow motion. 	The resonant character of the type of exci- 

tation here dealt with moreover, implies that the control of the two 

natural frequencies of vibration of the cylinder leads to the propi-

tiation or suppression of excitation in the corresponding direction. 

In practice vibration can occur in both directions simultaneously 

or worse, as cross-flow forces tend to be considerably larger, in-line 

vibration is often but a detail of the mainly cross-flow motion. 	For 

these reasons designers normally increase the cross-flow natural 

frequency as far above the flow exciting frequency as is possible, in 

order to restrict motion in that direction, but often neglectthe possi-

bility of in-line vibration which in some cases occurred (see 1.2). 

Hardwick and Wootton, Dickens and Clark have adopted a similar 

measure in order not only to reproduce in the laboratory the prototype 

vibration problem but also to maximise the possibility of in-line vibra-

tion for its study and to minimise any cross-flow interference which would 

obscure the character of the in-line excitation. 	These researchers 

have achieved a reasonably good degree of similarity in reproducing the 

prototype excitation and have provided basic information which was not 

reported in the studies of more complex situations. 

King, who studied the behaviour of cylinders with equal natural 
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frequencies in the two directions moreover, reports for the case of 

light cylinders that the second instability region of in-line vibration 

was severely distorted by cross-flow excitation, and that cross-flow 

forced vibration could be detected in the first instability region of,  

in-line motion. 

It was therefore decided to isolate in this case the in-line 

excitation process for its study by allowing the cylinder to vibrate in 

that direction alone. 

2.1.3 Choice of fluid 

Dickens has shown that flow-induced in-line vibration can occur 

in water, air or even in a polyvinyl alcohol solution. 	Significant 

in-line vibration problems in civil engineering structures however, have 

only been reported occurring in water. This is because the fluid 

dynamic excitation forces are proportional to the density of the fluid, 

and consequently the structural damping of the cylinder is more 

effective in suppressing the vibration the lighter the fluid is. 

The present objective of maximising in-line excitation for its 

study thus favours the use of a heavier fluid, i.e., water instead of 

air. 	The choice of water as the fluid to be used moreover,increased 

the experimental flexibility and range by decreasing the lower limit 

of the attainable ranges of both the cylinder/fluid density ratio, or, 

and the stability parameter, ks. 

2.1.4 Cross-section and position of the cylinder 

Clark has shown that circular as well as several non-circular, 

cross section cylinders can be induced to vibrate in-line by steady 

flows. 	A circular cross-section cylinder was chosen for the present 

research however, because (a) it is most widely used due to structural 

and economic advantages, (b) the cylinders of any practical in-line 

vibration problem thus far reported had that shape, and (c) more prac-

tical and theoretical information exists for such cylinders than for any 

other. 

Previous researchers have shown that in-line excitation with 

similar characteristics can be obtained with both vertical and horizontal 

cylinders. 	For this research however, the cylinder was placed 

horizontally to simplify its rigging and operation, and to avoid the 
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specific problems caused by the flume's bottom boundary layer and by 

the air water interfaca.. 

2.1.5 Externally driven or flow induced 

Some research workers (e.g. Bishop and Hassan, Toebes and 

Ramamurthy) have contributed to the understanding of cross-flow excita-

tion by forcing cylinders to oscillate in this direction and studying 

the flow response to given cylinder motion characteristics. 

This experimental method allows prediction of flow induced 

behaviour but not its direct study. 	The method is consequently more 

useful and practicable once a reasonable description of flow induced 

behaviour exists, which allows confirmation and interpretation of 

results and which reduces an otherwise extremely wide experimental range 

to limited areas of interest. 	A research based on externally driven 

cylinders moreover, requires complex apparatus and equipment, including 

a two-degree-of-freedom transducer, and a considerably more elaborate 

interpretation of results, all of which imply additional economic and 

time expenditure. 

Bearing in mind (a) the early stage of development of knowledge 

of in-line excitation when compared with the cross-flow case and (b) the 

complexities and lack of understanding arising from the various types 

of in-line excitation and their interactions, it was decided to study 

the flow induced behaviour by devising a cylinder, that would as far as 

possible be acted upon by fluid forces alone, exception made of the 

cylinder's mass, stiffness and structural damping forces whose influence 

on the vibration is an integral part of the research. 

An exception to the above decision was made for a short set of 

preliminary tests involving an externally driven cylinder. 	Although 

these tests showed some qualitative characteristics of the wake for 

various flow and motion conditions, they also revealed a multiplicity 

of flow patterns which reinforced the above decision. 

2.1.6 Measurement of forces 

Bishop and Hassan, Toebes and Ramamurthy and others, have used 

two-degree-of-freedom systems to measure the flow forces on their 

externally driven, cross-flow vibrating cylinders. 	Except in the case 

of pressure transducers (see e.g. Small) whose use would severely limit 
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the experimental range of the present research, in a flow induced, 

steady state vibration it is only possible to measure the resultant of 

all the fluid forces. 	This force can also be inferred from the motion 

of the cylinder itself, if the latter is rigged as a transducer. 

For analytical purposes and to facilitate useful correlations 

such a force is usually divided by analytical methods into the added 

mass and the excitation force components. 	In the case of cross-flow 

vibration the order of magnitude of these two components can be the 

same; not so for in-line vibration however, where the added mass forces 

are typically two orders of magnitude higher than the excitation or the 

damping forces. 	Consequently the accuracy needed, complexity and cost 

of the equipment needed are that much higher in the case of in-line 

vibration than in the cross-flow case. 

For these reasons and to avoid complications which would limit 

the flexibility and range of the research, it was decided to infer the 

flow forces from:(a) the cylinder motion, which was detected by strain 

gauges attached to its supports and (b) the mass, stiffness and damping 

of the cylinder which were measured in additional simple tests. 

2.2 	The Experimental Set-Up  

The considerations outlined above led to the following experi-

mental arrangement (see Figs. 5, 6 & 7 and Appendix 1). 

The variable density cylinders used were held horizontally and 

perpendicular to the approaching stream by two long supporting arms of 

variable stiffness and damping, so as to allow the cylinders to swing 

in a quasi-linear motion in the direction of the flow only. 

Two 33 cm long cylinders were used, one 3.38 cm diameter (dura- 

pipe) and the other 2.5 cm diameter (aluminium). 	They were placed in 

a glass walled flume 56 cm wide and 35 cm deep, between two large 

stationary and transparent end plates which isolated the cylinders from 

the large boundary layers of the flume's walls. 

External damping could be controlled by a vertical plate attached 

to the cylinder's supporting arms, which oscillated on its own planeand 

immersed in different depths of a variable solution of syrup in water. 

Density of the cylinders was varied by filling them with different 

substances. 	Stiffness was controlled by adjusting the length of 
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cantilevered spring leafs at the top end of the supporting arms. The 

arrangement also permitted adjustment of cylinder submergence depth and 

of the gaps which separated the cylinder from the end plates. 

Other additions included a dye injection probe for flow visuali-

sation, a splitter plate (see Chapter 3), a displacement calibration 

device, additive weights, etc. 

The flexibility of the arrangement can be appreciated in Table 

2.1, which gives the main variable's ranges covered during the experi-

ments. 

Variable Dimensions Range Notes 

V cm/s 5-50 within the 
instability 
regions R

e 
- 1700-17000 

D cm 2.5-3.38 

N Hertz 1.5-2.8 

Pr 
- 0.5-4.5 

k
s 

- .005-2.0 
external damping, 
see Chapter 6 

Table 2.1 	Flexibility of the experimental arrangement 

The motion of the cylinder was detected by four wire strain 

gauges attached to the springs of the supporting arms and connected to 

form a four active armWheatstone bridge. The signal was amplified 

and recorded in ultra-violet, light-sensitive paper by a recorder which 

provided marks on the paper at fixed time intervals. 	The traces 

obtained provided information of amplitudes and frequencies of vibration 

and of mean displacement of the cylinder. 

Flow velocities were measured with a propeller meter and pulse 

counter. 	Wake frequencies were obtained by counting the eddies in the 

wake and with a stopwatch. 

2.3 	Experimental procedure 

The experimental work consisted of a series of tests to investi- 
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gate the response to different flow conditions, of cylinders with 

different characteristics. 

In a typical test, values of the natural frequency, N, of the 

density, pr, and of the damping parameter, k;0, were fixed. 	The 

cylinder was then induced to oscillate by between 20 and 70 different 

steady flow velocities covering the expected ranges of instability. 

For each flow velocity flow patterns were observed by injecting dye in 

the wake of the cylinder and measurements were made of amplitude and 

frequency of vibration, mean cylinder displacement, wake frequency and 

flow velocity. 

Two sets of tests were conducted (see Appendix 2). 	In the 

first set of (10) tests the 3.38 diameter cylinder was used to investi-

gate the influence on the excitation of the natural frequency, N, 

stiffness, k, cylinder density, pc, reduced velocity, (V/ND) and 

Reynolds Number, Re; 	these parameters were systematically varied 

from test to test. 	For the second set of (22)tests conducted with 

the 2.5 cm diameter cylinder, external damping was controlled with a 

viscous damper and the natural frequency of the cylinder was approxi-

mately the same for all the tests; more attention was concentrated 

during the second set of tests on the mean displacement of the cylinder, 

the wake frequency and external damping; the tests differed from one 

another in the values of density and damping. 

Two of the tests of the first set and nine of the second were 

conducted with the splitter plate shown in Fig. 6; to eliminate the 

influence of the alternate wake (see Chapter 3). 

Before and after each test, transient oscillations of the 

cylinder were produced and recorded both in air and in water, as well 

as with additional weights attached to the cylinder; from these, natural 

frequencies, density and damping were measured. The transducer was 

also calibrated before and after each test by comparing known displace-

ments of the cylinder with the recorded traces. 

Besides the two main sets of tests, additional experiments were 

conducted (Appendix III toV): (a) to measure the drag coefficient and 

the Strouhal number for a stationary cylinder, (b) to verify the measure-

ments of k and pr
, (c) to investigate the influence on damping of ampli-

tude and frequency of vibration, end gaps, supporting arms etc., (d) to 

investigate the effects of flume's bottom, free water surface, etc. 
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CHAPTER 3 

KINEMATIC.BEHAVIOUR OF CYLINDER AND FLOW 

3.1 	Introduction 

The results of observations of flow patterns and of recordings 

of cylinder behaviour made throughout the tests described in the 

previous chapter are presented here and a first attempt is made to 

correlate them. 	This correlation will serve to identify initially 

qualitatively the characteristics of in-line vibration which will 

later be incorporated in a general theoretical model. 

Flow patterns are described from visualization of the wake behind 

the cylinder, while cylinder behaviour is described in terms of the 

following non-dimensional groups of recorded variables (see Fig. 8): 

(a) double amplitude of vibration (a/D), (b) frequency of vibration 

(f/N), (c) frequency with which single eddies in the distant wake pass 

a fixed position in the flume (fe/N), and (d) mean apparent drag 

coefficient (CDA/CDO) ' given by: 

CDA = 	kx  
 iPiDLVz  (3.1) 

where, k is the stiffness (see Appendix III), pfis the density of the 

fluid and x is the mean displacement of the cylinder with respect to 

its position when V = 0 (i.e. still water); CDO  is the "stationary 

cylinder equivalent" value that CDA  would adopt at the same flow 
velocity in the absence of vibration. 

For want of a better alternative at this stage and following 

current practice the "reduced velocity" (V/ND), where N is the (constant) 

natural frequency of the cylinder oscillating in still water, will be 

used as a base parameter,both for plotting the variables and for the 

sequence of the data presentation. 

It is then argued that the reduced velocity is an unsatisfactory 

parameter, and so only a qualitative description of the excitation can 

be presented at this stage. 	In later chapters, chiefly 4 and 6, a 

quantitative description will be given. 

28 



In accordance with previous researches reported, two main and 

distinct instability regions are identified and are dealt with separately 

in 3.2 and 3.3. 	Although some characteristics are common to both 

instability regions, emphasis is given to the uncommon features in 3.4 

in an attempt to interpret the cylinder behaviour where the two regions 

overlap. 

After a brief note on the three-dimensional characteristics of 

the flow patterns in 3.5, the most important observations of the 

chapter are discussed in 3.6. 

3.2 	First Instability Region 

3.2.1 General observation and description 

In accordance with the conclusions of previous researches the 

first instability region was associated with the shedding of a pair of 

simultaneous eddies, one from each side of the cylinder, per cycle of 

vibration. 

There was a hint of a change of phase angle but essentially, a 

pair of eddies first appeared as the cylinder approached its furthest 

upstream position (see Fig. 9 and plate No 1); then onwards the eddies 

grew drawing fluid from the wake; when the cylinder was near its mean 

position in the downstream stroke, the eddies began to move towards 

the rear of the cylinder, and were finally detached as the cylinder 

decelerated towards the end of this stroke; as the eddies moved down-

stream into the wake, the free shear layers joining them with the cylinder 

came closer together consequently narrowing the wake; this trend continued 

approximately until the new pair of eddies appeared. 

As the eddies entered the "near" wake they appeared to undergo 

a process of coalescence and reorganization (see Hardwick and Wootton, 

Dickens) in which many lost their identity; those that emerged to 

enter the "distant" wake had the staggered form associated with the wake 

from a stationary cylinder. 	The length of the near wake shrunk with 

increasing reduced velocity from a maximum of about 4D; for the highest 

(V/ND) values the reorganization was nearly instantaneous and the 

cylinder appeared to shed staggered eddies rather than pairs. 

The interaction between the free shear layers on opposite sides 

of the wake and subsequently the mutual influence of velocity fields 
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of the resulting eddies are essential to the stability of a staggered 

wake; a "splitter plate" (see Fig. 6) prevents this interaction 

(Bearman, Clark) and was used in the present study to eliminate the 

feed-back from the staggered wake, so that the process associated with 

pairs of eddies could be isolated. 	The results of experiments using 

this technique are presented below in Section 3.2.2. 

On the basis of the rearrangement of the wake mentioned above, 

three different sections of the instability region were identified (see 

Fig. 10): (a) a central "rearrangement section" where the cylinder 

sheds pairs of simultaneous eddies which were eventually rearranged into 

a staggered wake, (b) "locked-in section" where the rearranged staggered 

wake formed immediately behind the cylinder and its eddies had the 

same frequency as the motion of the cylinder and (c) a "double harmonic 

excitation section" where the frequency of the eddies in the rearranged 

wake was equal to half the vibration frequency of the cylinder. These 

sections are described in detail below in 3.2.3/4/5 respectively. 

3.2.2 Splitter plate results 

The use of a splitter plate eliminated the feed-back process 

in which the distant wake influenced the excitation. 

In agreement with the results of Clark, only one instability 

region was identified in these experiments (see Fig. 11). 	In the (V/ND) 

range between 	the beginning of the instability region and the point 

of maximum amplitude of vibration, the wake presented the characteristics 

described in Fig. 9, with laminar eddies (see plate 2a). 	As the 

reduced velocity was increased from the onset of motion, an increase 

also was observed of (a) the size and strength of the eddies, (b) of 

the widening and narrowing of the wake during each cycle, and (c) the 

distance travelled by the points where the boundary layers separated 

from the cylinder wall. 

The amplitudes and frequencies of the cylinder's vibration 

increased with increasing reduced velocity as shown in Fig. 11; the 

vibration was highly regular as can be seen in Fig. 12a. 	The apparent 

drag coefficient, CDA  (see 3.1) increased with an increase in (a/D), 

when compared with its stationary cylinder value, Cm; the latter was 

in turn slightly lower than the equivalent value for a cylinder without 

the splitter plate (see Appendix IV). 
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As the reduced velocity was further increased and amplitudes 

approached their peak values the eddies in the wake increasingly showed 

signs of turbulence and their size and apparent strength changed from 

cycle to cycle; at the same time the average amplitudes of vibration 

decreased as shown in Fig. 11, while the amplitude-time traces became 

increasingly irregular (Fig. 12b). 

This situation continued until at some critical value of the 

reduced velocity the amplitudes of vibration were abruptly reduced by 

approximately 60%, the level of turbulence in the wake increased 

markedly and the separation points on the cylinder moved towards the 

rear of the cylinder and oscillated comparatively less during each 

cycle (see plate 2cid). 	The value of Re  at which this abrupt change 

of flow pattern was observed to occur ranged between 3500 and 9500. 

For further increases of the reduced velocity the vibration 

amplitudes, which in this section were more regular (see Fig. 12c), 

continued to decrease until they were so small that they could not be 

distinguished from those resulting from turbulence in the oncoming 

stream. 	For this reason it was impossible to identify the end of the 

region of self-excitation. 

Vibration frequencies increased throughout the instability region 

independently of the amplitude of vibration or the characteristics of 

the wake (see Fig. 11). 	CDA  increased above its value for an equivalent 

static cylinder by an amount roughly proportional to a/D (see Fig. 11). 

The above observations describe cylinder and flow behaviour very 

similar to those observed in the first instability region, which allows 

the conclusion that the "pairs mechanism" is not seriously disrupted by 

the addition of a splitter plate. 	On the other hand the differences 

between the two situations clearly suggest the division of the total 

phenomenon into two component ones, the first associated with the 

patterns just described and the second with the staggered wake arrange-

ment observed. 

In the light of the above observations the behaviour of the 

cylinder on its own is described below. 

3.2.3 Rearrangement section 

The flow patterns in the "near" wake for (V/ND) values falling 
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in the central section of the first instability region (Fig. 10), were 

similar to those of the splitter plate case. 	The amplitude and 

frequency responses of the cylinder with and without splitter plate 

were also similar. 	In addition the CDA 
values were in this case also 

slightly higher than the corresponding stationary cylinder value, Cm  

(see Fig. 13). 

Further downstream from the cylinder however, the symmetrical 

wake produced by the shedding of pairs of simultaneous eddies rearranged 

itself into a staggered wake resembling that of Fig. 1 (see plate ' 6 ). 

The distance from the cylinder to the beginning of the rearranged wake 

was variable and in general shrank as (V/ND) increased. 	The eddies 

of the rearranged wake had a diffuse appearance and it was sometimes 

difficult to establish their frequency, fe 
but apart from certain 

exceptions fe  diverged from the Strouhal frequency, fs for an equiva- 

lent non-vibrating cylinder,typically by not more than 5%. 	An 

exception occurred for example when fe 
 3 

3 
= -f, i.e. where for every three 

eddies shed from one side of the cylinder there corresponded one eddy 

of the same rotational sense in the staggered rearranged wake. 	Such 

divergence has also been reported by King who, for a cylinder free to 

oscillate in both the in-line and the cross-flow directions, observed 

f
e 
increasing in discrete steps according to "preferred" values of the 

ratio(2N/fe) such as 4, 3.5, 3, 2.5 and 2. 

3.2.4 Lock-in section 

As the reduced velocity was increased beyond the limits of the 

previous section (see Fig. 10) the length of the early wake wherein 

the rearrangement was effected, shrank and from time to time there were 

bursts of distinctive, vigorous transverse flow across the wake imme- 

diately downstream of the cylinder. 	This transverse flow was associated 

with pairs of eddies of unequal strength where the stronger member of 

the pair was immediately integrated in the staggered wake, and the 

weaker member was swept inwards and either vanished or it was absorbed 

by the next large eddy of the corresponding rotational sense (see 

Fig. 15 and plate 	3). 	In the next cycle of cylinder vibration the 

positions of the stronger and the weaker eddies on opposite sides of 

the wake as well as the sense of the transverse flow were reversed. 

These bursts of transverse flow although short in duration were 
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associated with staggered eddies of obviously greater strength than the 

diffuse "rearranged" eddies of the previous section. 

As the reduced velocity was increased further, these bursts 

of transverse flow occurred more often and lasted longer until they 

dominated the flow pattern near the cylinder with only short bursts of 

pairs of large eddies of equal strength. The resulting staggered 

wake (see plate 7k) had all the appearances of the theoretical model 

described by Von Kaman (see Fig. 16) and was wider, stronger, clearer 

and more regular than either the wake from a stationary cylinder or a 

rearranged wake for the same boundary conditions. 	(See plates 6 ). 

As the rearrangement process was superseded by the strong 

transverse motion in the early wake (see Fig. 13), the frequency of the 

eddies in the wake, fe
, which had a value approximately equal to fs (or 

0.666 f, see 3.2.3), increased very rapidly with increasing reduced 

velocity, to match the vibration frequency,f. The resulting common 

frequency of cylinder and eddies, f = fe, was neither equal to the 

cylinder's natural frequency, N, nor to the Strouhal frequency, fs, 

being higher than both and apparently controlled by the cylinder's 

motion. 	This behaviour, known as "frequency lock-in", persisted to 

the end of the instability region, and the slope of the frequency res-

ponse curve with respect to (V/ND), was steepest in this locked-in 

condition. 

The amplitude response for the locked-in condition is indicated 

in Figs. 13 and 14b. 	Where the slope of the curve is negative instabi- 

lities in the wake were observed accompanied by irregularities in the 

amplitude vs time traces which became more obvious as the reduced 

velocity was increased. 	The apparent drag coefficient, CDA, increased 

markedly when the lock-in phenomenon appeared, after which it roughly 

followed the trends of (a/D) vs (V/ND). 	(See Fig. 13). 

As (V/ND) was increased further a point was reached where (a/D) 

fell abruptly in a similar way to that observed for a cylinder fitted 

with a splitter plate (see Fig. 13). 	The wake after this point and 

to the end of the instability region, still adopted the staggered shape 

immediately behind the cylinder, although it was narrower and weaker 

and with smaller eddies of more turbulent appearance (see plate 7b) whose 

frequency, fe, was still equal to the vibration frequency, f. 	A 

hysteresis loop was also observed for this instability (see Fig. 10). 
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Further increases of V/ND were accompanied by decreasing ampli-

tudes of vibration which eventually vanished among either those caused 

by random flow instabilities or those due to the second instability 

region. 	This fact made it impossible to establish the end of the 

first instability region in terms of the reduced velocity and of 

vibration amplitude observations. 

In this last part of the instability region the (a/D) vs time traces 

were moreriregular than those obtained before the abrupt drop of (a/D) 

(see Fig. 14). 	The synchronized frequencies of the eddies and of the 

cylinder continued to increase in the direction of the corresponding 

value of the Strouhal frequency, fs, for that velocity of flow (fig. 13). 

C
DA 

continued to decrease roughly following the trends of a/D as shown 

in Fig. 13 and finally approaching the corresponding value of the drag 

coefficient for a static cylinder, CDO. 	For further details of the 

end of the first instability region see 3.4. 

In this locked-in section of the instability region values of 

amplitude, frequency and drag coefficient reached the maximum recorded 

values of (a/D) = 0.248, f/N = 1.191 and (C
DA
/C
DO
) = 1.46. 	The 

values were averaged from records lasting one minute each or approxi-

mately 100-200 cycles of cylinder vibration and they were higher than 

any previously reported for this instability. 

3.2.5 Double harmonic excitation section 

For the lowest range of (V/ND) in the instability region and 

especially with light cylinders, a third type of cylinder-wake inter-

action gave rise to a local maximum of the amplitude response (Fig. 13). 

Analysis of the corresponding (a/D) vs time traces (Fig. 17a) revealed 

a non-sinusoidal motion (Fig. 18a) where two essential components could 

be identified with frequencies in the ratio 2:1 (Fig. 18b and c). 

Flow visualization revealed that a pair of eddies of apparently 

equal strength was generated during every cycle of cylinder vibration 

with period T (Fig. 18b). 	In addition, a process was observed in the 

wake immediately behind the cylinder in which four consecutive eddies 

of the same rotational sense coalesced to form one of the dominant eddies 

of the distant wake (plate 4 and Fig. 19). The period of these dominant 

eddies was 2T (Fig. 18c) indicating that the distant wake did not 

conform to the Strouhal relationship but it was instead controlled by 

34 



the motion of the cylinder according to: f = 2fe. A fluctuating 

transverse flow was observed at the back of the cylinder in association 

with the larger dominant eddies, although this flow appeared much 

weaker than that observed in the lock-in section of the instability 

region. 	The resulting distant wake presented characteristics similar 

to those of the wake observed in the second instability region (see 

3.3 and plates 8a and 8b). 

It was concluded (see Chapter 8) that the vibration in this 

section resulted from the combination of two excitation mechanisms, one 

associated with pairs of simultaneous eddies and the other with the 

transverse flow and the distant wake, which mechanisms acted on the 

two harmonic components of the cylinder's motion (b and c respectively 

in figure 18). 	This interpretation of the excitation thus suggests 

that the vibration should start when 2fs = N, i.e. when (V/ND) = (1/45). 

It should be noted that this type of excitation extends the 

first instability region beyond the minimum (V/ND) values of the splitter 

plate instability, and that high values of both cylinder's density or 

damping reduced or totally suppressed this type of instability. 	The 

minimum recorded values of (V/ND) for the commencement of the instability 

region thus ranged between 1.15 and 1.6. 

As the motion started (see Fig. 20) the average amplitudes of 

vibration increased rapidly towards a maximum accompanied by a sharp 

increase of C
DA
. 	f/N decreased only slightly while fe remained equal 

to f/2. 

As (V/ND) was increased further a point was reached where the 

rearranged wake moved away from the cylinder during intervals of a few 

cycles only. 	During these intervals, the wake was like that described 

in 3.2.3, with pairs of simultaneous eddies being shed and preserved in 

the wake near the cylinder. 	The corresponding a/D vs time traces 

(Fig. 17b) showed regular constant amplitudes which were smaller than 

the average amplitudes obtained with the double harmonic excitation. 

Vibration frequencies increased nearer to Nand CDA  decreased nearer 

to CDO. 	The frequency of the eddies of the distant rearranged wake, 

f
e
, seemed to be equal to fs, although it was difficult to measure it 

due to the short time available for eddy counting, combined with weak 

and confusing flow patterns. 	These intervals were longer and occurred 

more often as (V/ND) was increased further until the central 
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"rearrangement section" was reached. 

This harmonic excitation phenomenon explains the "hump" at the 

beginning of the (a/D) vs (V/ND) diagram observed by other researchers 

(e.g. Wootton et al) and it also offers an explanation for the initia-

tion of motion of lightly damped cylinders at (V/ND) = (1/4S). 

3.3 	Second Instability Region 

3.3.1 Introduction 

The second instability region was characterized by the shedding 

of alternately clockwise and anticlockwise eddies in the wake of the 

cylinder, at the rate of one per cycle of motion of the cylinder, in 

agreement with all previous reported observations. 

The ranges of the reduced velocity V/ND over which the second 

instability region extended were highly variable from test to test and 

in some cases values of (V/ND) as high as 6.3 were recorded. 	This is 

considerably higher than the (= 3.5) limiting values previously reported 

(King, Clark) and therefore the flow velocity ranges over which 

vibration can occur were extended significantly. 	It will be seen in 

Chapter 6 however, that although it is theoretically possible to obtain 

in-line excitation with even higher (V/ND) values than those achieved 

in the present laboratory research, practical considerations make this 

unlikely at full scale. 

Some novel flow patterns were observed in the wake, as shown in 

3.3.2, and the cylinder behaviour observed, as reported in 3.3.3, 

contrasted markedly with some previous reports (e.g. King, Clark). 

The growth of the vibration at the beginning of the instability region 

is discussed separately in 3.3.4 to facilitate the presentation. 

3.3.2 The wake 

Previous researchers have regarded the wake in the second 

instability region as being similar to that here described in connection 

with the "lock-in section" of the first instability region (see 3.2.4), 

i.e. a wake of the Von Kb.rman type commencing immediately downstream of 

the cylinder, with eddies of frequency, fe, locked-in to the vibration 

frequency. 	The wakes observed in the second instability region during 

the present research however, while commencing in the same area and 
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having the same lock-in frequency relationship with the cylinder, 

clearly did not resemble the Von Karmin model. 

The eddies in the wake over a distance of up to 15 diameters 

downstream from the cylinder, were all aligned in a single row (see 

plate 8b and Fig. 21), instead of being aligned in the two usual 

separate rows, according to their sense of rotation (see plate 6a and 

Fig. 1). 	It was impossible to say however if the wake would even- 

tually rearrange itself far downstream from the cylinder into a staggered 

one according to the Von Kaman model, because the flow patterns become 

indistinct in the region of 15 diameters from the cylinders. 

The eddy shedding process that characterised the second instability 

region can be described as follows (see Fig. 22 and Plate 5): 

(a) When the oscillating cylinder crossed its mean position 

in the upstream stroke, the interacting velocity fields of the cylinder 

and of the eddy formed during the previous cycle appeared to induce a 

transverse flow between the eddy and the cylinder, which deflected out-

wards the shear layer on which the eddy was formed and drew the oppo-

site shear layer towards the centreline of the wake. 

(b) When the cylinder reached its furthest upstream position, 

the drawn-in shear layer began to roll up to form a new eddy in the 

lee of the cylinder; the transverse flow appeared to have gained in 

strength at that point. 

(c) As the cylinder crossed its mean position in the down-

stream stroke, the new eddy had grown in strength and diameter and had 

taken up a position 180°  from the frontal stagnation point in the 

cylinder. 	The transverse flow seemed now to have weakened but by 

this time it appeared to have so distorted the longer of the two shear 

layers as to interrupt the flow of vorticity to the old eddy. 

(d) As the cylinder reached its furthest downstream position 

there was still an obvious transverse flow between the two eddies, but 

as yet no evidence of a transverse flow in the opposite direction 

between the new eddy and the cylinder. 	Immediately after this point 

the new eddy began to move downstream along the wake's centreline. 

3.3.3 Cylinder behaviour 

In contrast to previous observations of the second instability 
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region (e.g. Clark) where the a/D vs V/ND diagram had a peaked shape, 

the observations of the present research showed approximately constant 

amplitudes of vibration throughout the instability region (Fig. 23) 

except for a steeply rising limb (see 3.3.4). 	The corresponding 

a/D vs time traces were fairly regular (Fig. 24 a). 

The frequency of the eddies in the wake was locked-in to the 

frequency of vibration and the common frequency, f = fe, increased with 

(V/ND) above the value of the natural frequency,N,but remained below 

the value of the Strouhal frequency, fs  (Fig. 23). 

Contrary to the observations of previous research workers who 

observed only slight variations of frequency, the vibration frequencies 

observed in the present research, especially for light cylinders exceeded 

the natural frequency of the cylinder by as much as 75%. 

Another important observation concerned the behaviour of the 

apparent mean drag coefficient, CDA, which was here observed to increase 

markedly, reaching values up to 90% higher than the corresponding CDO, 

at the beginning of the flat top of the amplitude response curve. 

For higher (V/ND) values, CDA  decreased to a value only 40% or 50% 

higher than 
CDO 

 at the end of the instability region (Fig. 23). 

Towards the end of the instability region (a/D) decreased 

slightly with increases of (V/ND) until a point was reached where the 

(a/D) vs (V/ND) curve fell abruptly. 	This was associated with a large 

hysteresis loop as shown in Fig. 23. 

After the cylinder had ceased to vibrate the wake recovered its 

usual staggered shape, commencing some 1.5 diameters downstream of the 

cylinder beyond the formation region; the eddies in the wake adopted 

the Strouhal frequency, fs, and CDA  took on its static cylinder value 

CDO; • vibration frequencies were difficult to measure at this point 

owing to the random character of the resulting vibration (see Fig. 24c). 

At this point, if the cylinder was forced to oscillate and then was 

released, the rate of decay of the resulting transient was relatively 

low (Fig. 25a); but as (V/ND) was increased further, the decay rate 

could be so high that only 2 to 3 cycles of the transient were oberved 

(Fig. 25b). 

3.3.4 Growth of the instability.  

Self-excitation commenced for the second instability region in 
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the range 2.3 < (V/ND) < 3. 	Just after the commencement of self- 

excitation where (a/D) values were still small the frequencies f, N, 

f
e 
and f

s 
were all nearly identical and C

DA 
= C

DO (see Figs. 23 and 26). 

As (V/ND) was increased beating forms of vibration appeared 

(Fig. 24b), whose average amplitude increased with (V/ND) as shown in 

Fig. 26. 	The vibration frequency, f, was only slightly different 

from fe, and both these frequencies were greater than N, but less than 

f
s
. 	The mean displacement, x, and consequently CDA' increased by an 

amount roughly proportional to (a/D) as can be seen in Figs. 24b and 26. 

The corresponding flow patterns fluctuated between the Von Kaman 

type of wake and the one described in 3.3.2, being at times indistinct 

and badly correlated along the cylinder's length. (See plate 7b). 

As (V/ND) was increased further the beating motion gradually 

diminished and eventually disappeared as the flat top of the amplitude 

response curve was reached. 	The flow pattern thereafter became stable 

as described in 3.3.2. 

3.4 	Region Between First and Second Instability Regions 

For values of the reduced velocity between 2 and 3, it was often 

difficult to know exactly in which instability region a vibration 

belonged and so it was difficult to establish the limits of the two 

regions. 

This was because: (a) previous reports are inprecise and contra-

dicting in this area (see Fig. 3), (b) the ranges and values of 

(V/ND) in the present research were also found to vary from case to 

case, (c) the flow patterns in the wake at the end of the first insta-

bility region and at the beginning of the second were very similar 

as can be seen in Plates 7a, 7b & 8b, and (d) at the very low values 

of (a/D) found in this region, the correlation of the flow patterns 

along the cylinder's length was very poor (see 3.5); as a result of 

poor correlation visualization of flow patterns was more difficult, and 

the behaviour of the cylinder was erratic and difficult to analyse. 

However, with the aid of the knowledge of the behaviour of (f/N) 

and CDA 
described in 3.2 and 3.3 it was possible to make certain 

A 	observations as described below. 
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Fig. 27 presents an example of a selected portion of a long 

vibration record of a/D vs time obtained with (V/ND) = 2.59. 	It 

can be seen from the trace in Fig. 27. that the maximum amplitudes are 

only6.5% of the cylinder diameter, are irregular and show evidence of 

beats. 	However, significant differences can be identified between 

the various beating forms as follows: 

In parts (1) and (2) of Fig. 27b the frequencies 

are significantly higher than the natural frequency, N, 

than those in parts (3) and (4); the frequencies of (3) 

are only slightly higher than N. 	Moreover, in (1) and 

displacement of the trace during one cycle with respect 

reference point, x, is approximately constant, while in 

x seems to grow proportionally with (a/D). 

of vibration 

and also higher 

and (4) however 

(2) the average 

to a fixed 

(3) and (4) 

As can be seen in Figs. 13 and 26 the frequencies at the end of 

the first instability region are higher than N, while at the beginning 

of the second they are near the value of N. 	Figs. 13 and 26 also show 

the values of CDA and consequently of x decreasing towards the static 

cylinder values at the end of the first instability region, while at 

the beginning of the second, these values increased sharply, roughly 

in propotion to the increasing (a/D). 	It was thus concluded that (1) 

and (2) represented vibration typical of the first instability region 

while (3) and (4) represented the second. 

A possible explanation of this observation could be that the 

instability regions overlap and the form of the excitation can fluctuate 

between the first and the second types of instability at the same value 

of (V/ND). 	Alternately, or possibly in addition to the above, it 

could be that the self-excitation is highly sensitive to the unsteadi-

ness which is inevitable in the approaching flow. 

Quantitative considerations of the variables involved and 

comparison of different experimental results described in later chapters 

led to the conclusion that the instability regions did overlap and thus 

furnished another reason to question the value of using (V/ND) as the 

base parameter. 

3.5 	A Note on Flow Pattern Correlation 

During the tests conducted in this research it was observed that 
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reductions of vibration amplitude and frequency could occur associated 

with desynchronization or lack of correlation of the flow patterns in 

the wake along the length of the cylinder. 

When the cylinder remained stationary events of the eddy shedding 

process did not in general occur simultaneously in all parts of the wake 

along the cylinder, although it was often observed that these events 

were synchronized over half the length of the cylinder or more. 

When the cylinder vibrated shedding pairs of simultaneous eddies, 

the dependence of the shedding process on the motion of the cylinder 

and the symmetry of the wake ensured a perfect correlation along the 

entire length of the cylinder in the- near wake, although desynchronized 

events were often apparent in the distant reorganized wake. 

The symmetry of the wake in the second instability region com-

bined with the dependence of the shedding process on the motion of the 

cylinder, permitted either (a) a perfect correlation of the wake along 

the entire lengthcf the cylinder, or (b) half-cycle desynchronization 

of events in different points along the cylinder's length, i.e. when 

an eddy was being shed from one side of the cylinder along some portion 

of its length, another counter-rotating eddy could be shed from the 

opposite side of the cylinder in another portion of its length, with 

a wake discontinuity inbetween. 	Up to two of these discontinuities 

were observed in a given vibration condition; the discontinuities 

could move along the cylinder's length but they neither disappeared nor 

did additional ones appear once a steady state vibration was set in the 

second instability region. 

Similar discontinuities were also observed in the lock-in and 

double harmonic excitation sections of the first instability region. 

The correlation of the wake in the lock-in section was very variable 

due to the bursts of pairs of simultaneous eddies and consequently a 

perfectly correlated wake in this section was very difficult to achieve. 

3.6 	Summary and Conclusions 

In accordance with previous research reports, two different 

instability regions were identified in the experiments here conducted, 

although some further observations which in general were neglected in 

previous researches deserve special attention. 
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3.6.1 Interacting mechanisms in the first instability region 

Interpretations of the first instability region and predictions 

of the corresponding cylinder behaviour have been made previously (e.g. 

Dickens, King) on the basis of the one excitation mechanism characterized 

by the shedding of pairs of simultaneous eddies. 	The present work 

and especially the experiments with the splitter plate have shown 

however that the excitation of this instability region is a complex one 

and embraces in addition to the pairs mechanism one associated with an 

interaction between free shear layers leading to a more stable staggered 

wake. Therefore, any improvement in such interpretations or predictions 

should include these two mechanisms and their interaction. 	Two clear 

cases in point are the ranges of (V/ND) over which the instability 

region extends and the variations of CDA, both of which appear to be 

markedly influenced by interaction. 	Another important consequence of 

this interaction is the double harmonic excitation at the beginning of 

the instability which explains the local maximum of the (a/D) vs (V/ND) 

curve reported by previous researchers in this region. 	This type of 

excitation moreover, could be responsible for the initiation of the 

vibration, which should occur approximately when fs  = IN, i.e. at 

(V/ND) = 1/4S, although other factors such as damping and flow instabi- 

lities have to be considered. 	(See Chapters 6 and 9). 

On the other hand, the marked similarities between the cylinder 

behaviour in the first instability region and that observed when using 

a splitter plate, such as the shape of the (a/D) vs (V/ND) curve with 

the abrupt drop of (a/D) and the trends of (f/N), show the dominant 

influence of the "pairs mechanism". 	This is reinforced by the obser- 

vation of pairs of simultaneous eddies throughout the instability region 

even when a strong transverse flow occurs. Another consequence of 

this is that the abrupt decrease of (a/D) cannot be explained solely in 

terms of the presence of the second instability region as others have 

suggested. 

3.6.2 The wake of the second instability region 

The second instability region has previously been associated 

with a wake of the Von Kaman type, similar to that observed at the end 

of the first instability region; this has complicated the differentiation 

between the two types of instability. 	The present research showed 
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however, that when the cylinder was restricted to in-line motion only, 

the wake of the second instability region alone had charcteristics 

markedly different from those of a Von Kaman wake. These observations, 

besides showing a new and interesting type of wake, have provided a 

means for distinguishing between the two instability regions and their 

corresponding types of excitation. 

The difference between the two locked-in wakes of the two 

instability regions was attributed to a variation in the timing of the 

shedding of the eddies, with respect to the events in the wake repre-

sented by the transverse flow which sweeps the back of the cylinder. 

This suggested that in order to arrive at a better explanation of the 

phenomena involved, great importance should be attached to the phase 

relationships between the wake and the cylinder motion. 

3.6.3 Cylinder behaviour 

The careful and combined analysis of the variables that expressed 

the behaviour of the cylinder showed novel characteristics that even at 

this early stage have contributed significantly to the understanding 

of the :phenomenon. 

The approximately constant value of the amplitudes of vibration 

observed in the second instability region differed from previous 

reports and, as will be seen in later chapters, facilitated the theoretical 

analysis of the phenomenon. 

In contrast with previous research reports, frquencies of 

vibration were neither constant nor approximately constant; instead 

they increased with reduced velocity, reaching maxima of (f/N) = 1.19 

and (f/N) = 1.76 in the first and second instability regions respectively. 

Although these variations are less marked in practical situations (see 

Chapter 6), they eliminated the possibility of assuming constant 

frequencies and thus complicated the mathematical interpretation which 

is to follow. 	A study of frequency variations however has already 

shown valuable details such as the increases of (f/N) in the first 

instability being independent of (a/D), which suggests a trend progressing 

undisturbed as (V/ND) increases in spite of amplitude collapse. 	Knowledge 

offrequencyvariations also contributed to the distinction of the two 

instability regions from recorded vibration traces as shown in 3.4. 
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Analysis of the frequency of the eddies in the wake together 

with the frequency of vibration showed three areas of "frequency 

lock-in", namely, at the beginning and at the end of the first instability 

region and throughout the second, which confirmed the strong interaction 

between the flow behaviour in the wake and the cylinder vibration. 

This analysis also contributed to the identification and understanding 

of the "double harmonic excitation" of the first instability region. 

The variations of the apparent mean drag coefficient, CDA, here 

observed in both instability regions also contrasted with previous 

research reports in which it has been regarded as a constant (e.g. King). 

C
DA 

increased sharply whenever transverse flow was observed sweeping 

the back of the cylinder in both instability regions, and it reached 

values up to 90% higher than CDO. 	As is the case for the frequencies, 

the study of the behaviour of CDA  has:  already been fruitful, as for 

example in the first instability region where it contributed to the 

understanding of the interaction of the different excitation mechanisms, 

and in the area between the two regions where it allowed a better 

distinction of the two different phenomena involved. 

3.6.4 The reduced velocity (V/ND) 

The (V/ND) ranges over which the two instability regions occurred 

overlapped considerably, and they varied widely from test to test. 

Thus in the first region motion could commence in the range 

1.1 < (V/ND) < 1.7, and the sudden drop of (a/D) occurred at 

2.2 < (V/ND) < 3, while the (V/ND) value corresponding to the end of 

the instability could rarely be identified. 	The second region commenced 

and terminated in the ranges 2.3 < (V/ND) < 3 and 3.3 < (V/ND) < 6.3 

respectively. 	This lack of definition was even more marked when com- 

paring the present results with previous reports as shown in Fig -  3. 

This uncertainty in the ranges of the base parameter complicated the 

comparison of different results and made it impossible to study accurately 

the influence of other factors such as density and damping. 
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CHAPTER 4 

A NEW BASE PARAMETER 

In the last chapter it was found that all the experimental results 

in the present and previous studies of in-line vibration showed similar 

trends. 	It was also found that the reduced velocity (V/ND), failed 

to provide a satisfactory quantitative comparison of the results of 

widely differing experiments. 

It is intended in this chapter to present a more satisfactory 

base parameter which: (a) unified the results of different experiments 

into a general model which incorporates the underlying trends and 

characteristics of in-line vibration, (b) defines more precisely the 

instability regions, (c) helps to explain certain features of the 

excitation and (d) leads to further quantitative analysis of in-line 

vibration. 

Some previous authors have adopted an alternative form of the 

reduced velocity: this is analysed in 4.1 leading to the presentation 

in 4.2 of the new parameter whose characteristics and advantages are 

discussed in 4.3 

4.1 	An Alternative Form of the Reduced Velocity 

Some previous researchers (e.g. Dickens) have used an alternative 

form of the reduced velocity, namely (V/fD) where f is the actual 

vibration frequency instead of, as was the case in Chapter 3, the 

natural frequency in still water, N. 	Although (V/fD) is not directly 

proportional to V alone and is therefore not directly representative 

of flow velocity variations, it is more practical in situations such 

as the present one where f is not a constant. 	Arguments in support of 

this last statement and leading to a discussion of the theoretical 

implications of the use of (V/fD) as a base parameter are presented 

below. 

a 
Figure 28 shows vibration amplitudes and frAquencies plotted 

against (V/ND), recorded from three tests conducted with the same cylinder, 

in the same flume, with similar values of N and for similar flow velocity 

ranges, but with the cylinder loaded with different masses and with the 
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stiffness of the supporting arms adjusted to provide the same N. 	It 

is clear from the figure that when there was a large variation of f/N 

in the self excited range there was a corresponding wide variation of 

V/ND. This suggested that the (V/ND) range was influenced to some 

extent by f, and so any improved base parameter ought to contain infor-

mation about the vibration frequency. 

The reduced velocity can be interpreted as the distance travelled 

by the flow per cycle of motion of the cylinder, expressed in cylinder 

diameters. 	In the cases when f is not a constant this interpretation 

is valid only for (V/fD) and not for (V/ND), and (V/fD) is then propor- 

tional to the distance, 2 (see Fig. 1) 	in the direction of the flow, 

between consecutive eddies in the wake near the cylinder (or throughout 

the wake in the cases of lock-in). 	The distance between eddies has 

been shown by Von Kaman to be related to the stability of a staggered 

wake; and as was shown in Chapter 3, the staggered wake plays an impor-

tant part in the excitation. Moreover as will be seen in Chapter 8, 

the distance between consecutive pairs of simultaneous eddies may be a 

factor which determines the magnitude and timing of the exciting forces. 

Thus the interpretation of the reduced velocity as a distance ratio also 

suggests the use of (V/fD) instead of (V/ND). 	Indeed, when the results 

of Fig. 28 were plotted using (V/fD) as the abscissa (Fig. 29), the 

amplitude response curves coincided approximately, and it was concluded 

that (V/fD) was a better parameter than (V/ND) for unifying and compar- 

ing different experimental results. 	The use of V/fD as a base parameter 

was less successful when the results of the present and previous 

researches were compared, as can be seen in Fig. 30. 

4.2 	Derivation of the New Parameter 

The problems then arise of how to explain the differences 

between the curves of Fig. 30 and of how to account for these differences 

in an improved base parameter. 

It is clear from Fig. 29 that (V/fD) is a satisfactory base 

parameter for any one series of observations involving similar geo- 

metrical and dynamic conditions. 	The difficulty seems to arise when 

there are differences in these conditions such as Reynolds number, 

turbulence of the main stream, blockage and boundary effects, cylinder's 

surface roughness and measurement techniques and accuracy. 	Clearly 
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an improved base parameter would have to reflect these conditions to 

reduce the divergence of Fig. 30. 

Bishop and Hassan report that for each flow velocity, when a 

certain forced frequency of cross-flow oscillation of their externally 

driven cylinder was reached, a sudden decrease of the exciting force 

would occur accompanied by an equally abrupt shift of the phase angle 

between the force and the motion. 	They suggested the existence of one 

characteristic frequency of the flow corresponding to each flow velocity. 

In Chapter 3 it was shown that the tendency of the staggered wake to 

adopt the frequency for a constant Strouhal number was an important 

factor influencing the vibration and in particular the reduced velocity 

ranges.* Information about this frequency should therefore be consi-

dered for its inclusion in the base parameter. 

Moreover, the fact that the Strouhal number, S, is influenced 

by the same flow and cylinder characteristics mentioned above, namely: 

R
e 
(see Fig. 31), flow turbulence and cylinder surface roughness (see 

.c-% 
Fage & Warsap) blockage (see Rachter ), measurement techniques, etc., 

suggested that both S and the excitation might have features in common. 

If this were indeed correct, the inclusion of the Strouhal number in 

the base parameter could not only account for the Strouhal wake 

frequency of the flow but would also reflect the characteristics of 

cylinder and flow as mentioned above. 

The expression for the inverse of twice S: 

1 _ V 
2S - f

s
D 

suggested a direct ratio with the reduced velocity, thus: 

V/fD 	V 
V/f

s
D - 2 S TT;  = f

s  7- 

where (f
s
/f) is a new non-dimensional frequency parameter. 

This parameter is proportional to the reduced velocity (V/fD) 

if S is constant, which for a given situation and for the range 

103  < R
e 

< 3 x 105, is approximately the case (see Fig. 31); if the 

* For exqmple in the first instability region this tendency was associated 
with the onset of motion, with the rearrangement of the wake, with the 
lock-in phenomena and with the sudden drop of the (a/D) vs (V/ND) curve 
which occurred earlier when compared with the case of the splitter plate; 
while in the second instability region fs  appears to control the onset 
of motion. 

47 



frequency variations are not large moreover, (f
s
/f) is approximately 

proportional to (V/ND). 	Curves of amplitude and frequency response 

with (f
s/f) as abscissa should therefore be similar to those using the 

reduced velocity. 

The experiments represented in Fig. 29 were conducted with the 

same cylinder and with similar flow characteristics; therefore it can 

be said that the S vs R
e relationship was the same for all three tests, 

and hence the good agreement between the curves. 	Curves 2 and 3 

of Fig. 30, represent tests conducted with different cylinders and 

flows (see Appendix II); 	the disagreement between the curves moreover 

corresponds to the variation of S for the two cases (see Fig. 33). 

It thus seemed reasonable to conclude that the disagreement in the 

reduced velocity ranges of the various research reports is mainly due 

to the differences in the characteristics of the flow-cylinder system 

mentioned above, which, within the Re  ranges here covered, appear to 

affect both S and the vibration phenomenon in a similar manner. 

Figure 32 presents the data of Fig. 30, plotted this time 

against (fs/f) instead of (V/fD) and it shows a significant improvement 

in the collapse of the data from the various sources especially if 

compared with Fig. 3. 	Curve 1 of Fig. 32 moreover, shows good agree- 

ment with the other curves in spite of the relatively much higher Re  

values involved. 

On the strength of Fig. 32 it was argued that f
s
/f allowed a 

direct comparison of different and hitherto incompatible experimental 

results, provided that fs  is appropriate to the particular situation 

under consideration, rather than obtained from a S vs Re  relationship 

intended for general application. 	The unified diagram thus obtained 

shows the common characteristics of the excitation in a manner suitable 

for a generalised quantitative analysis. 

Further refinement of the various curves of Fig. 32 will be made 

in Chapter 6 and 9, where density, damping and three-dimensional factors 

are considered. 	The remainder of this chapter is concerned with the 

assessment of (f
s
/f) as a base parameter and with the analysis of its 

main characteristics. 

4.3 	Analysis of the Parameter 

The non-dimensional frequency parameter evidently provides a 
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basis for comparing different experimental results. 	It remains now 

to see if it is satisfactory for a quantitative definition of the 

instability regions and to discuss the practical implications of its 

use. 

4.3.1 Definition of the instability regions 

In comparison with Figs. 3 and 30 in which the reduced velocity 

is used as base parameter, Fig. 32 shows with far greater precision the 

trends and limits of the instability regions according to whether fs/f 

is less or greater than unity; i.e. the first instability is charac-

terised by vibration frequencies which are higher than the eddy frequency, 

f
s
, of a "Strouhal wake", while in the second instability, vibration 

frequencies are lower than fs. 

Fig. 32 also shows that no vibration occurs for:(a) fs/f values 

smaller than 0.5(except for curve 	1 , see Shapter 9), that is when 

V = 1 
ND 	4 S 

if f = N 

as observed in 3.2.5; and (b) for fs/f values above I, the signifi- 

cance of which will be discussed in Chapter 8. 	Thus the parameter 

fs/f defines quantitatively the two instability regions as follows: 

fs 
1st instability for 	; < 

f 	
1 

f 
2nd instability for 	1 < s  < 

4.3.2 Contributions of fs/f to the explanation of the phenomenon 

The interpretation of fs  as a flow characteristic or natural 

frequency suggests that a resonance should occur when (fs/f) = 1.0, but 

this is clearly not the case (see Fig. 32). 	Considering however that 

when (a/D) has a non-zero value the cylinder's motion interferes with 

the flow patterns, it can be then expected that the flow's "natural" 

frequency will change accordingly, and therefore fs  can only be said 

to be the "flow's natural frequency" when (a/D) = 0. 	This is in 

agreement with Bishop and Hassan who reported different characteristic 

flow frequencies corresponding to different amplitudes of vibration. 
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At the point where fs  passes from less than f to greater than f 

however, (a/D) is small and this interpretation of fs  suggests a 

change of phase lead, i.e. in the first instability the motion of the 

cylinder in some way leads that of the wake, while in the second the 

converse occurs. 	This is reinforced by the observations of Chapter 3, 

where a comparison of the eddy shedding process of the lock-in section 

of the first instability with that of the second instability, show a 

difference in the timing of the transverse flow that sweeps the back 

of the cylinder(which seems to depend on events of the wake) with 

respect to the shedding of the eddies(which can be associated with 

the motion of the cylinder)(see Figs. 15 and 22). 

A change of phase lead between the events in the wake and the 

motion of the cylinder may thus be associated with: (a) differences 

between the two instabilities; (b) the absence of significant vibra-

tions for (f
s/f) = 1 and (c) the decrease of (a/D) at the end of the 

first instability region on the one hand and the increase of (a/D) at 

the beginning of the second instability on the other, in spite of a 

similar type of wake having been observed in both situations. 

One of the advantages of identifying the threshold of instability 

by (fs/f) > 0.5 rather than by some fixed limiting value of (V/ND) is 

evident for conditions when Re < 103; in this range where S is decreas-

ing with decreasing Re  (Fig. 31), fs  decreases more rapidly than V, 

and so the limiting (V/ND) at the threshold of vibration cannot be a 

constant and must increase somewhat with decreasing Re. 	Another 

advantage of linking the characteristics of cylinder and wake through 

(f
s/f) suggests itself when attempting to explain the absence of in-line 

vibration reported by King when Re  < 1000 and by Dickens when Re  < 750. 

Although no specific experiments were conducted in the present study 

to confirm these values it seems likely that some disorganization of 

the distant wake, which is presumably responsible for the scattered 

Strouhal numbers when Re = 103  (Fig. 31), is also responsible for 

inhibiting the self-excitation process. 

4.3.3 Practical considerations 

Figure 32 on its own does not provide a designer with information 

about flow velocity and vibration frequency in the self-excited ranges, 

because the figure does not show the relationship between (f/N) and 
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either (f
s
/f) or (V/fD). 	The behaviour of (f/N) will be discussed in 

Chapter 6. 	The designer would also require a relationship between fs  

and V for the boundaries and conditions of flow under consideration. 

Figure 31 is an example of such a relationship which might be adequate 

for a preliminary estimate, but since the figure is applicable to 

smooth cylinders: in wide, one-dimensional, low turbulence approach 

flows, a correction to Fig. 31 may be necessary to account for the 

practical conditions of the design. 

In this respect it should be noted that the parameter (fs/f) 

permits the designer to arrive at more accurate predictions than is 

the case with the reduced velocities; this is because besides S vs Re 
relationships there is some information available in the literature 

on the influence that the other factors involved have upon the value of 

S, while to the knowledge of the author, no method exists to assess the 

influence that any of these factors have upon the reduced velocity 

ranges. 

As an illustration of the discrepancy between values of "S" shown 

in Fig. 31, and observed Strouhal numbers for flows more representative 

of practical situations, it is appropriate to cite the observations of 

the present study where an accurate estimate of S was essential. 

During the test programme it was found that the observed S and 

that predicted from Fig. 31 differed considerably (see Fig. 33) and it 

was concluded that the effect of blockage, three-dimensional effects 

and the difficulties of measuring low velocities were responsible for 

the discrepancies. 	Blockage corrections were complex and unreliable 

(see Appendix vi) and they alone were insufficient to overcome the 

discrepancy; so it was decided that since fs  for a stationary cylinder 

could be measured with greater confidence than the effective V, an 

empirical relationship between fs  and a respresentative V was obtained. 

The use of (fs/f) rather than the reduced velocity and the 

direct calibration of the flow meter with the actual value of fs thus 

avoided additional complications due to: (a) accurate measurement of 

the "true" value of V at the meter's location, involving independent 

calibration of the meter, and assessment of the flow characteristics at 

that point in relation to the flow in which the meter was calibrated; 

(b) knowledge of the relationship between this true value and a significant 
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one from the point of view of the excitation; (c) blockage corrections. 

In this case moreover, if it is assumed that the output of the flow 

meter is not significantly affected by the vibration of the cylinder 

and that it reasonably reflects the flow behaviour, accuracy depends 

then only on the repeatability of the combined behaviour of the flow 

and of the meter and on the technique used to measure the frequency of 

the eddies, independently of the accuracy of the meter to detect the 

"true" value of V. 
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CHAPTERS 

ANALYSIS OF VARIABLES 

Before proceeding to a more detailed analysis of in-line 

vibration it is opportune in this chapter to identify and briefly 

discuss certain variables which have a significant although indirect 

or secondary influence. 	The analysis of the variables will be based 

on the following considerations: (a) influence of the variable on the 

excitation, (b) likely range of the variable, (c) control, suppresion 

or avoidance of vibration and (d) economic and other practical consi- 

derations. 	Point (c) above embraces the three main methods of solv- 

ing a flow-induced vibration problem, namely: (i) avoiding the insta-

bility regions, (ii) increasing damping (energy dissipation) and (iii) 

modifying the cylinder's shape or the flow patterns. 

For convenience the chapter will be divided into sections con-

taining groups of variables relating to: cylinder behaviour (5.1), 

cylinder characteristics (5.2) and hydrodynamic forces and fs  (5.3). 

The analysis ends with the identification (in 5.4) of the most impor-

tant non-dimensional groups for use in subsequent chapters. 

5.1 	Cylinder Behaviour 

The behaviour of the cylinder can be represented by its displace-

ment,x, consisting of a mean, x, and a fluctuating component, x'. 

Assuming sinusoidal motion moreover (see Chapter 7), x' can be said to 

be a function of the maximum fluctuating displacement, x', the fregency, 

f, and the time, t, thus: 

x = function of (x, x(!), f, t) 	(5.1) 

Of these four variables, xL is perhaps the most important 

because it is an index of the magnitude of the strain reversals experienced 

by the structural member, and because it is often the largest contribu-

tion to the total strains. 

In contrast to cross-flow vibration the maximum total displace-

ments (and hence the maximum total strains) of an in- line vibrating 
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cylinder are obtained by the arithmetic sum of x and x(!)  and hence the 

importance of x. 	In Chapter 3 it was shown moreover that the mean 

drag force can be up to 90% higher for a vibrating cylinder than for 

a static one, and as will be shown later (see Chapter 8) in most 

practical cases, and especially with light cylinder, x can be equal to 

or larger than x:0. 

Besides determining the flow velocity ranges when vibration can 

occur, the vibration frequency, f, determines the possibilities of 

resonance with other members of the structure and,together with x.'0, it 

determines the Total fatigue stresses of the structure. 

The time, t, is not an important variable if all fluctuating 

variables are sinusoidal,but phase angles will be introduced (Chapters 

7 & 8) to relate motions, flow pattern and forces in time. 

5.2 	Cylinder Characteristics 

Newton's Second Law can be used to represent the motion of a 

solid induced by fluid forces (see e.g. Den Hartog) thus: 

FT = Mc x+cx+kx 

In this equation FT  represents all the fluid forces; Mc  is the mass of 

the cylinder given by its density, pc, and its dimensions D and L; 

k and c, are respectively the structural stiffness and damping of a 

cylinder in flexure or of the supports of a rigid one; and x and x are 

the 1st and 2nd derivatives of x with respect to time. 	Thus: 

FT = function of (D, L, pc, k, c, x) 	(5.2) 

or conversely: 

(x) = function of (D, L, pc, k, c, FT) 	(5.3) 

where D, L, pc, k and c are cylinder characteristics. 

The three variables k, D and L together with pc  and pf  (the fluid 

density) determine the value of the natural fi:-pency N, i.e. 

N 
1 v/r17-  
— — 
2R M

TS 
(5.4) 

where
MTS = 4- D2L(pc  + pf) (see Chapter 7) 

54 



- Although an independent correlation between N and the cylinder 

motion was not identified, N is important because it is a major factor 

in determining f, and consequently, through fs/f, it determines whether 

or not vibration will occur. 	In practical situations a vibration 

problem can be avoided more often by a modification of such structural 

variables as D, L, pc  and k than by enforcing some change of the flow's 

characteristics. 	For example through a decrease of fs  or an increase 

of f (or both) it is possible to ensure that (fs/f) is always so low 

that it never crosses the threshold of instability. 	On the other hand 

it is usually not prudent to design for a high value of (fs/f) outside 

the instability regions (see 4.3) because, among other considerations, 

of the possibility of exciting cross-flow motion or higher harmonics 

of in-line motion. 

A designer wishing to achieve low (fs/f) must consider many 

interelated factors. 

To decrease fs 
at constant V and S, the cylinder diameter should 

be increased with the consequent higher costs and also higher forces 

acting on the cylinder's supports which may further increase the costs. 

There is a second advantage in an increase of diameter through the 

consequent increase of f (through k and N); this increase of f leads 

to a further reduction of (fs
/f). 	An additional increase of f can 

sometimes be achieved through increased cylinder wall thickness or a 

stiffening of the supports, but these measures entail higher costs. 

Another method of increasing stiffness is through a decrease of cylinder's 

length although this is rarely practical. 	It should be noted that in 

contrast to increasing the damping, increasing stiffness reduces the 

mean deflection of piles which can be an important design factor. 

In the case of hollow piles full of water, pc  is difficult to 

modify owing to the large weight of the water inside the pile; the 

"added mass" moreoever, (see Chapter 7) makes it even more difficult 

to modify f via changes in 	for for example if it were intended to 

increase N by decreasing pc  with thinner cylinder walls, the resulting 

lowering of k would probably overrule the decrease of (pc  + pf) and 

consequently N would decrease instead of increasing. 

In the cases of cylinders vibrating in air or hollow empty 

cylinders vibrating in water however, the absence of the water inside the 

pile ancliin the first case,the relatively negligible density of the 
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"added mass" make the modification of pc  more significant. 	For example 

if the diameter of the cylinder were increased and the thicknesses were 

kept constant, pc  would be reduced significantly; as explained above 

moreover,increasing D would reduce fs  and k, and consequently reductions 

of (f
s
/f) would result from three different sources. 	A more detailed 

analysis of both density and damping is presented in the next chapter. 

It has sometimes been possible to reduce or eliminate self-

excitation, especially in aerodynamic situations, by intentionally 

altering the geometry of the cylinder by means of strakes, wires, grids, 

etc. (see Clark, Walshe & Wootton). 	In a marine environment however, 

the use of such devices is likely to increase risks and costs signi- 

ficantly owing to the growth of shell-fish, etc. 	Consequently this 

method of eliminating vibration may be satisfactory as a temporary 

measure only; in the long term, the avoidance of the instability regions 

appears to be the only practical solution. 

5.3 	Variables Influencing fs  and the Hydrodynamic Forces 

To complete the analysis of the variables which determine the 

motion of the cylinder, the flow forces, F, of equation 5.3 have to 

be considered. 	These forces are influenced by characteristics of the 

flow such as its velocity, V, its density, pf, and its dynamic viscosity, 

pp  which in engineering practice, are often environmental characteristics 

determined by such factors as local temperature and geography and are 

therefore difficult and expensive to modify. 	In laboratory situations 

however, their modification is often an essential feature in the test 

procedure. 

The importance of the flow velocity, V, has been discussed in 

Chapter 3 and 4 in connection with the reduced velocity and the parameter 

(f
s
/f), although it should also be noted that in most cases, the fluid 

forces are functions of V2  (see Chapter 7). 	The fluid density, pf, 

also contributes to the determination of the fluid forces, including 

those of the added mass and of hydrodynamic damping (see Chapter 8). 

In the next chapter it will be shown moreover that pf, when combined 

with pc  and c, forms two fundamental parameters for the determination of 

the phenomenon. 

The fluid forces do not however arise from those flow characteristics 

alone but from their interaction with the cylinder's shape and motion; 
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thus the drag force acting on a static cylinder depends on V and p
f 

as 

well as on D, L and CDO, in the expression: 

Drag =-11PfV2D LC
DO 
	 (5.5) 

Other fluid forces can similarly be expressed in terms of force 

coefficients, CF, and consequently: 

F = function of (V, pf, D, L, CF) 	(5.6) 

where CF 
is a function of flow characteritics and of the cylinder's 

shape and motion. 

The variables, V, pf  and pf, when combined with the diameter of 

the cylinder, affect the phenomenon through the Reynolds Number, 

Re = VD pf  /pf 
 this in turn, when combined with the shape of the cylinder, 

determines the values of the Strouhal Number, S, and of the drag coeffi-

cient, CDO, and consequently it determines fs 
and the mean drag force 

of a static cylinder. 

Owing to the impossibility of scaling both Re  and the dominant 

parameter f
s
/f, most laboratory experiments on in-line vibration of 

cylinders immersed in water flows, are conducted in the Re 
range 103- 105, 

where the values of CDO 
and S are approximately constant (see Fig. 31 

and 55) and consequently the importance of their relationship to Re  is 

not critical. 

For Re 
values below 103  both S and CDO 

change significantly and, 

as explained in Chapter 4, this marked variation may be the cause of the 

absence of vibration reported by previous authors at low Re  values. 

For Re  values greater than about 3 x 105  commonly found in proto-

type situations, Walshe and Wootton have reported values of S = 0.45 

for static cylindeisbut S = 0.2 for cylinders vibrating across the flow 

direction,and Wootton et al report S = 0.22 for cylinders vibrating in- 

line with the flow. 	As can be seen in Fig. 32 moreover, very similar 

cylinder responses can be obtained for Re  values as far apart as 

3 x 103  and 6 x 105. 	Thus it can be assumed that as far as the in-line 

vibration phenomenon is concerned, there appears to be no significant 

difference between laboratory and prototype observations due to Re. 

S 
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To the knowledge of the author there are no reports available 

on the behaviour of the mean drag coefficient of a cylinder vibrating 

in-line for R
e 
> 3 x 105. 	The similarities of the curves of Fig. 32 

and the marked resemblance of the flow patterns observed in the wake 

of models and prototype cylinders suggest that the force coefficients 

are also insensitive to R
e 
in the range 105  < R

e 
< 106. 	See also 

Chapter 8. 

As explained in Chapter 4 there are other secondary factors 

such as blockage effects, velocity profiles, boundary layers, turbulence, 

etc. which also affect the values of S, although their effects are 

relatively minor; this also applies to the drag coefficient C 	so 
DO' 

that: (see Chapter 9). 

S and C
00 

= function of (Re, secondary factors) 
	(5.7) 

These secondary factors arise mainly from the differences 

existing between a two-dimensional cylinder immersed in a one-dimensional 

approaching flow, and the three-dimensional situations encountered in 

practice; thus they are most relevant (a) when attempting to predict 

prototype behaviour from one or two-dimensional considerations, or (b) 

as in the present case, when trying to study the basic characteristics 

of in-line excitation from the observed behaviour of cylinder-flow 

arrangements which, even when intended to be two-dimensional, they 

present inevitable three-dimensional charactersitics. 	In general thte 

modification or elimination of these secondary factors is very limited, 

difficult and expensive. 

In previous chapters it was shown that the force coefficient CDA  

was affected both by the parameter fs/f and by the cylinder motion, x; 

thus for a vibrating cylinder: 

CF 
= function of (fs'  x, 

Re' secondary factors) 
	(5.8) 

In the last chapter it was also shown that the complicated and 

often inaccurate mathematical consideration of Re 
and the secondary 

factors, could sometimes be avoided if it were possible to measure 

directly the value of fs, and to correlate it with the output of the 

flow velocity meter used. 	This direct calibration method can also be 
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C
F 

= function of (fs, 
CDO, x) (5.9) 

(b)  

(c) 1,1 	2fff 

(d) pr =  pc/pf 

C
DA 	k x 
CDO , 

ipfV2DL  CDO 

ITS  = 27rf 	
D2L(pf+pc) 

used to obtain the values of CDO, which in turn, as is the case with 

f
s' can be included in non-dimensional groups of variables, in this 

case representing flow forces, such that 

Reynolds number effects and the influence of the other secondary 

factors are thus accounted for in equation 5.9 through CDO. 	This 

simplification however, is not always applicable as for example (a) 

when comparing the excitation forces with the inertial forces of the 

added mass, the second of which are not affected by Re  or the secondary 

factors, or (b) at the design stage when a direct calibration as 

described above is impossible. 	Consequently from equations 5.6/8/9: 

F = function of (V,p ,D,L,CDO,x,Re'secondary factors) 

(5.10) 

5.4 	Non-Dimensional Groups 

Combining equations 5.1, 5.3 and 5.10 an expression is obtained 

which contains all the identified variables: 

' x,x'o  f,t = function of (D,L,pc'k,c,V,pf'Re'
S,C

DO
,secondary factors) 

(5.11) 

On the basis of both previously reported experience and the observations 

of Chapters 3 and 4, it is possible to advantageously identify the 

following non-dimensional groups: 

2x' 
(a) 	a = D 	D 

0- 
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(e)  

(f)  

(g)  

ks  

Re  

ff  

= 

= 

p
f
D2 	f 

V D pf/pf 

2S -1-1  
fD 

Parameters a,b and c can describe the cylinder's motion as shown 

in Chapter 3. 	If Re  is included with the remaining secondary factors, 

the following expression is obtained: 

Cylinder motion = function of 
g

J 	
function of (p 

r  ,ks'—
s 
' 

Secondary 
CDO

f  factors) 

(5.12) 

(f
s
/f) was the subject of the previous chapter, pr 

and ks 
are the 

subject of Chapter 6. 
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CHAPTER 6 

DENSITY AND DAMPING 

In this chapter two important parameters, density and damping, 

are dealt with in detail. 	The role of density in determining ranges 

of vibration frequency, and consequently the (V/ND) ranges for 

instability, is presented first and then correlations and predictions 

of these frequencies are put forward. 

After a brief consideration of the influence of damping on both 

(f/N) and (a/D), it is concluded that density and damping, in contrast 

with aerodynamic practice, should here be considered separately. 

There follows a discussion of the various ways previously used to deal 

with damping which concludes with a definition of a parameter to describe 

the external damping of the cylinder. 	External damping is then 

correlated with both (a/D) and the (fs/f) ranges, thus rendering possible 

their prediction for two-dimensional cases. 	A general discussion 

closes the chapter. 

6.1 	Density 

During the tests conducted with the larger cylinder (D = 3.38 cm) 

it was observed that the ranges of variation of both (f/N) and V were 

modified by changes of the cylinder density (see Fig. 28) and so it was 

decided to conduct a systematic study of the influence that the density 

of the cylinder exerted upon its motion. 	For this purpose the two 

cylinders used were provided with removable ends so that they could be 

variously weighted internally so as to change their density. 	Tests 

were conducted with a total of seven different densities ranging from 

pr = 0.5 to pr 
= 4.4, where pr is the ratio of the effective mass of 

the vibrating system (or of its effective density, 	to to the mass 

displaced by the cylinder (or the fluid density, of), i.e. or 	oc/of. 

The values of or  were calculated before and after each test from 

repeated transients of the cylinder alone or with known additional 

weights, in air and in water; additional factors such as gravity and 

buoyancy forces, mass and added mass of the supports, the influence of 

gaps between cylinder and end plates, etc., were taken into consideration. 

(See Appendix III). 

M 
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6.1.1 Frequency ranges 

Fig. 34 presents vibration frequency variations with (fs/f) for 

the tests of Fig. 28 which were conducted with three different values 

of 	The The most important features of this figure are firstly that 

all the curves have similar shape, with the lighter cylinders reaching 

higher frequencies (f/N), and secondly that the maximum values of f, 

which occur at the end of the second instability region tend towards 

the value of the natural frequency of the same cylinder when oscillating 

in vacuo (Nv
). 

The implications of the first observation are that (f/N) is a 

function of f
s
/f and either pc 

or p
r 

and that, owing to the similarity 

of the various curves, it should be possible to represent them all by 

a single function. 	To make the implications of the second observation 

more explicit, the frequency Nv, in its non-dimensional form Nv/N, 

can be expressed in terms of stiffness and densities as follows: 

(see Chapter 7) 

1 ./ 	 

= 
N
v 	277 VPc Volume 	\)( PC + Pf 4-  

lim 	1 k 	Pc 
27r 1/(pc+pf) Volume 

+ 1 r 	(6.1) 
Pr 

i.e. 	(Nv
/N) is a function of pr alone. 

This conclusion is compatible with the first observation 

mentioned above provided (f/N) is a function of pr  rather than pc. 

The absence of the parameter (fs/f) in Equation 6.1 can be explained 

by the fact that these limiting frequency values were reached at the 

end of the second instability region only when they all tended towards 

a constant value of (fs
/f) = if (see Chapter 4). 

Equation 6.1 moreover suggests an explanation for the very slight 

and often neglected frequency variations reported in aerodynamic 

researches on oscillating cylinders where pr  is relatively much larger 

owing to the comparatively small air density. 

It was shown in Chapter 3 that the frequency, f, was larger 

than or equal to the frequency, N, in the two instability regions, 

f 
N 
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except for the "double harmonic excitation section" of the first 

instability region where the slight variations of f, below the value 

of N, were negligible; the limits of frequency variation can therefore 

be set as: 

P 	1 
1 't Irr 	<

P r 

On this basis Fig. 35 was plotted in terms of the upper limiting 

values of (f/N) achieved by cylinders of varying pr. 	It appears from 

the small scatter of Fig. 35 that f/N1lim is indeed uniquely determined 

by pr. 

The figure also shows that although only negligible frequency 

variations can be expected in most aerodynamic situations (say <5%, 

for pr  > 10), in water and especially under laboratory conditions, very 

large frequency variations can be achieved (i.e. 1 < f/N < 2, for 

pr  = 0.33); in practical hydrodynamic engineering situations, pr  values 

between 2 and 1 and frequency variations between 1 < f/N < 1.2 and 

1 < f/N < 1.4 would be typical. 

6.1.2 Flow velocity ranges 

When the instability regions have been defined in terms of 

f
s
/f (see Chapter 4), the ranges of frequency variation permit the 

definition of such regions in terms of the flow velocity, because 

fs 	f
s 

 V 
X 	 - N  = L

,  
a — 

ND (6.1a) 

On the basis of equation 6.1 and on the assumptions that f > N, 

and that 0.5 < fs
/f < V (see Chapter 4), Fig. 36 thus presents the 

maximum flow velocity ranges where vibration can occur in the form 

(f
s
/N) = (2S V/ND) and as a function of pr 

alone. 	If the relation- 

ship between fs  and V (or S and Re) is known, the stability diagram 

of Fig. 36 gives the ranges of V. 

The upper limit of the instability region of in-line vibration 

shown in Fig. 36 is evidently a function of pr  and it should be noted 

that for neutrally buoyant or lighter cylinders and when the natural 

frequencies in-line and cross-flow are similar, a mixed type of motion 

in the two directions is possible. 	This provides an explanation for 

• 

• 
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the previously reported extension of the cross-flow instability region 

below (V/ND) = 5 for light cylinders (see e.g. King). 	for the heavier 

cylinders it can be seen in the figure that the upper limit of (fs/N) 

tends towards ,/Y. 

Even though Fig. 36 is modified somewhat by damping and other 

factors as will be shown later,it should nevertheless be helpful to 

designers because it shows that self-excited vibration can be avoided 

if 

f
s = 2S-

y- < 0.5 
ND 

i.e. the still water natural frequency, N, of a pile should be designed 

such that: 

N > 4 SV 

When damping or other factors reduce the instability regions 

of (fs/f), a detailed relationship between (f/N) and (fs/f) is necessary 

in order to determine the precise instability regions in terms of 

(fs/N) or V. 

6.1.3 Frequency response in the first instability region 

The frequency response in the first instability region is illus-

trated in Figs. 34 and 37. 

Figure 34 shows higher (f/N) values corresponding to lower pr  

for a given (fs/f); this explains the increased overlap of the two 

instability regions of in-line vibration for lighter cylinders shown 

in Fig. 3. (See equation 6.1a). 

Fig. 37 represents several tests conducted with the same values 

of or  but with different levels of external damping; in this figure 

the curves in the first instability region do'not collapse on a 

single curve as successfully as those for the second instability region. 

It seems likely that the trends shown in the figure, which appear to 

reflect the changing vibration amplitude as the structural damping is 

varied, are the result of the complex mechanism of excitation discussed 
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m = 
(fs 	- 1 
f)maximum 

where r+1  
V Pr  

lov 

in Chapter 3. This conclusion is prompted by the observation that 

corresponding plots of frequency collapsed more successfully when the 

cylinder was fitted with a splitter plate to eliminate one source of 

excitation (see Fig. 38). 

6.1.4 Frequency response in the second instability region 

The (f/N) vs (fs/f) relationship of the second instability region shown 

in Fig. 34 appears to be a family of straight lines with a common 

origin at (f/N) = (fs/f) = 1.0, and this, together with equation 6.1 

suggests the following expression: 

fs 
= 	1 	- (m - 1) (6.2) 

    

Assuming: 

(fs/f)maximum = 1/Y 

 

 

VEX21. 
m = Pr  

VI - 

 

(6.3) 

If, for example, or  = 1, Eqn. 6.3 suggests that m = 1 and 

(f/N) = (fs/f), i.e.: the departure of f from N is equal to its 

departure from fs, as shown in Fig. 40. 

It should be noted that in the second instability region the 

cylinder and the eddies of the wake have a common locked-in frequency 

f = fe
, which reaches a compromise between the "natural frequencies" 

of both cylinder (N) and wake (fs) when the densities of cylinder and 

fluid are equal; otherwise this common frequency f = fe  will approach 

N for the heavier cylinders (m < 1) and fs  for,the lighter cylinders 

(m > 1). 	The case where m = 1,(or  = 1) can thus be regarded as a 

special or "natural" case. 

Fig. 39 presents experimental frequency variations from tests on 

the two cylinders with varying or  in comparison with equations 6.2 and 

6.3 
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Although the agreement is in general satisfactory extrapolation 

to maxima of (f/N) results in values slightly smaller than those of 

equation 6.1; this shortfall was probably due to a reduction of the 

exciting forces caused by boundary layers and other factors. 	(See 

6.3 and Chapter 9). 	The greatest deviation of the experimental . 

results from equation 6.2 occurs near the commencement of the second 

instability region just beyond (fs/f) = 1.0. 	The discrepancy here 

can perhaps be attributed to the practical difficulties of measuring 

small frequency variations and amplitudes of motion when beats are 

present and when the unsteadyness of the incoming flow is important. 

This wider scatter however does not modify the ranges of f/N or the 

upper limit of the instability region and it can therefore be said that 

the semiempirical relationship of equation 6.2 constitutes a satis-

factory description of the frequency response in the second instability 

region for practical purposes. 	In Chapter 8 however, an improvement 

to the relationship of equation 6.2 will be made after considering the 

hydrodynamic forces. 

6.2 	Damping 

6.2.1 The separate roles of density and damping 

Following aerodynamic practice and mainly to facilitate the 

modelling process the influences of density and damping have been 

treated in combination by previous researchers (e.g. King) and repre-

sented by the combined stability parameter: 

k; = f 

where M is the vibrating mass and (5 is the logarithmic decrement of 

the transient vibration of M due to damping. 	Yolkman (see King) 

suggests moreover that the correct separate scaling of density and 

damping is not important provided that the discrepancy for each is not 

more than 200% and provided that the combined parameter is correctly 

scaled. 

This approach seems to be incompatible with the observations of 

the previous section of this chapter, where it has been argued that pr  

is the only parameter besides (fs/f) which determines the frequency 

response, and consequently there may he any number of different 
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frequency responses corresponding to the same value of the combined 

parameter ks. 	It follows from this that density and damping must 

affect the behaviour of the cylinder in different and separate ways. 

The most likely explanation for this divergence between aero- 
e 	dynamic and hydrodynamic treatment is the very large difference that 

exists between the densities of air and of water, and the consequently 

negligible frequency variations observed for the former in comparison 

with the latter. 

In order to confirm the independent role played by the two 

variables density and damping, it was decided to conduct experiments 

where each variable was changed systematically and independently. 	For 

this purpose a viscous damping mechanism was devised, as shown in 

Fig. 5, for purposes of increasing the external damping of the cylinders. 

The variations of (f/N) with respect to (fs/f) observed in these 

systematic tests are presented in Figs. 37 and 38. 	In Fig. 37a, pr  

was held constant at an approximate value of 1.2 for five different 

levels of damping while Fig. 38a presents similar test results for the 

cylinder when fitted with a splitter plate. 	For the results shown in 

Figs. 37b and 38b the conditions were approximately the same except for 

an increased density pr  = 4.4. 

These figures show that the variations of frequency are not 

appreciably affected by changes in the external damping either in the 

second instability region or when the cylinder is fitted with a splitter 

plate, i.e. when either of the two main excitation mechanisms acts on 

its own. 	Although some slight frequency variations can be identified 

in the first instability region, corresponding to changes of damping, 

these variations can be attributed to the complex interaction between 

the two prevailing excitation mechanisms and the behaviour of the 

cylinder, and should therefore be considered separately (see Chapter 8). 

Previous researches (e.g. King, Dickens) have shown that the 

amplitude of flow induced in-line vibrations decreases with increasing 

levels of damping. 	This is confirmed by Figs. 41 and 42 which show 

the amplitude response for different levels of external damping corres- 

ponding to the tests of Figs. 37 and 38 respectively. 	Fig. 43 moreover 

reproduces curve 3 of Fig. 41a and curve 2 of Fig. 41b and thus 

provides a comparison of vibration amplitudes of two cylinders with 
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similar external damping but with considerably different densities; it 

is clear from this figure that pr  has no significant influence on the 

vibration amplitudes. 

It was concluded therefore that density and damping have 

different and independent effects on the motion of the cylinder, the 

former primarily affecting its frequency and the latter primarily affecting 

its amplitude, and that density and damping should henceforth be consi-

dered separately. 

6.2.2 Definition of damping 

Because of the many types and sources of damping involved in 

the field of flow-induced vibrations of structures, a precise and 

appropriate definition of damping is necessary to avoid incompatibilities 

and apparent contradictions with previously published data and also to 

facilitate useful comparisons. 

Damping forces are here understood to be those through which 

the vibrating cylinder dissipates energy, i.e. those forces acting in 

antiphase with the cylinder's oscillating velocity, k. 

Damping can be classified according to sources as follows: 

(a) Structural damping of the supports of the cylinder or of 

the cylinder itself in flexure under fluid action. 

(b) Damping provided by artificial or mechanical dampers. 

(c) Hydrodynamic damping of the supporting arms, end plates, 

etc. and in the gaps between cylinder and end plates. 

(d) Hydrodynamic normal and shear forces. 

(e) Inefficiency of the excitation flow forces, due to 

boundary layers, turbulence, uncorrelated flow patterns,etc. 

In a steady state vibration the addition of the damping forces 

from all these sources must necessarily be equal and opposite 

to the excitation forces. 	For a self-excited cylinder it is impossible 

to measure either the excitation forces or the hydrodynamic damping 

forces directly, because the cylinder experiences only the net force. 

The only damping which can be estimated with any certitude is therefore 

the damping from external sources (e.g. structural) which can be 

measured in independent experiments. 
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It is intended in the present research moreover to study the 

characteristics of a generalised model of flow-induced in-line vibrations, 

which can then be adapted to specific situations. 

It was therefore necessary to separate the measurable damping 

arising from the "external" sources which can vary from case to case 

(a,b,c & e, above) from the "internal" hydrodynamic damping (d, above) 

which was an integral part of the excitation mechanisms studied and 

which could not be directly measured. 

The similarities presented by reports of widely differing cases 

of in-line vibration, and curves such as those of Figs. 41 and 42 

suggest a self-regulating excitation process with invariant basic 

characteristics, which is influenced by the amount of energy extracted 

by external sources of damping. 

What follows is a more detailed study of the influence'of 

external damping on such an excitation process as reflected by the 

cylinder behaviour. 

6.2.3 Damping parameter 

It is intended in this section to find a suitable parameter for 

the representation of external damping which is independent of the 

relative density, pr. 

The four parameters most commonly used to represent damping are: 

(a) the viscous damping constant, c; (b) the hysteretic damping parameter 

G; (c) the logarithmic decrement, d; and (d) the stability parameter, 

k'. 	Any of these parameters can have constant values when (f/N), (a/D), 

the stiffness, k, and the total mass of the cylinder, MT  (including the 

added mass), remain sensibly constant. 	This is not so in the present 

case however, and consequently each parameter will be discussed in turn. 

(a) 	The viscous damping constant, c, is the simplest mathematical 

representation of damping. 	It expresses the damping forces per unit 

velocity, k, and consequently it has the disadvantage of being 

dimensional; c is a constant for viscous damping only, as is the case 

with the damping mechanism devised for the present research, but 

structural damping on the other hand is a function of the frequency and 

amplitude of vibration together with structural stiffness, and 
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(6.4) 

consequently c would have to be a variable to represent damping in 

this case. 	It should be noted however that c contains no information 

about the fluid or the cylinder's geometry and it is therefore not 

suitable for a generalized representation of this interactive process. 

(b) The hysteretic damping parameter, G, is non-dimensional and more 

appropriate to represent structural damping although it is mathematically 

more complicated. The parameter G represents the ratio of the damping 

forces to the stiffness forces, i.e., it is a structural parameter 

containing no information about the fluid and is therefore inappropriate 

for the present purposes. 

In cases where f = N = constant (i.e. heavy cylinders) the 

stiffness forces are approximately equal in magnitude to the inertial 

forces of both cylinder and added mass, and consequently, if the variations 

of G with (a/D) can also be neglected and if most of the external damping 

is structural, this parameter can remain nearly constant and can 

therefore be useful. 

In the present research however, G was observed to vary both with 

(f/N) and (a/D) (see Appendix?), and it was clearly unsuitable to 

represent the additional viscous damping applied by the damping device. 

(c) The logarithmic decrement, IS, is defined as the natural logarithm 

of the ratio of the amplitudes of two consecutive cycles of a decaying 

transient. 

When the vibration frequency is equal to the natural frequency 

of the system, (3 represents the ratio of the damping forces to the 

inertial forces (including the added mass if any), i.e. 

Although (S includes information of the fluid, it also includes 

the parameter or, and is therefore unsuitable for the representation 

of damping independent of relative density. 

The non-dimensional parameter, (3, is easy to measure and 

consequently widely used. 

In the present research (5 could not be estimated from transients 
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in still water because of the difficulties of either deducing the hydro-

dynamic damping of flowing water measurements (see Chapter 7), or 

accurately estimating the still water damping to calculate the structural 

damping. 

Values of S obtained from transients in air'on the other hand 

can be used provided that aerodynamic damping be estimated and discounted 

from the total and provided also that (i) f is a constant, or (ii) c is 

a constant, or (iii) damping is hysteretic and there are no excitation 

forces which can modify the frequency (i.e. (f/N) = 1). 	In cases where 

as in the present research none of the requirements (i) to (iii) above 

are met, values of S measured from transients in air can only be used 

to calculate c, G or ks. 

(d) 	The non-dimensional stability parameter, k;, has been widely 

used in previous work concerned with flow induced vibrations in both 

air and water, to correlate damping with vibration amplitudes and to 

determine instability regions. 

Vickery and Watkins present the stability parameter: 

2M6 
k' = s 	pfD L 

(6.5) 

as a combination of two parameters namely, a mass ratio (M/pfD2L), and 

a damping parameter,S. 

This interpretation of k; suggests that heavier cylinders should 

have a higher value of lq and consequently they should vibrate with 

lower amplitudes (see e.g. King). 

If k' is expressed in terms of c rather than S however, from 

S = c/2MN it follows that: 

k' = pfDLLN 
(6.6) 

i.e. k' is independent of the density of the cylinder. 	Fig. 43 

moreover shows approximately equal values of (a/D) corresponding to 

cylinders with equal values of the stability parameter but for widely 

differing cylinder densities. 

The stability parameter expressed in terms of c can therefore 
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be seen not as a combination of a mass ratio and a damping parameter, 

but rather as the ratio (multiplied by 1r2/2) of the external damping 

forces (cwxo
) to the inertial forces of the added mass alone (4as

w2x
o
). 

It should be noted that this definition is only valid if the "mass 

coefficient" is constant and equal to one (see Chapter 7), and if the 

frequency -N of Eqn:.6.6 is replaced by f to account for frequency 

variations. 	The stability parameter ks, results thus: 

k
s 

- k' 	- 	 
s f 	pf11) 21, f (6.7) 

The parameter ks  will be adopted here because (a) it is non-

dimensional, (b) it is independent of or  and (c) it relates external 

damping to characteristics of the flow. 

Although it can be seen in equation 6.7 that ks  is independent 

of pr, it should be noted that in specific cases the density of the 

cylinder can affect ks  indirectly. 	This occurs when frequency variations 

are significant because or  influences (f/N) which in turn, and depending 

on the value of N, influences: (a) the value of f and consequently from 

equation 6.7 the value of ks, or (b) the value of c and consequently 

ks 
when the hysteretic damping is important. 	Confusion can arise 

moreover if changes of ks  are attributed to or  when the mass of the 

cylinder is increased but N is kep constant or increased; in this specific 

case the increases of ks 
arise from the increase of c that accompanies 

the necessary stiffening of the supports of the cylinder; this increase 

of c however as well as the value of N and the hysteretic nature of 

damping mentioned in (a) and (b) above, are all dependent onstructual 

characteristics of a specific ,c3ilinder arrangement, and are not directly 

related to the general characteriStics of the interaction-  between. cylinder 

and flow.which are the.concern -of-  this work.. Thus it was felt that ks 
was most appropriate for a general representation of the independent 

influence of external damping on the excitation process. 

It should be noted that 10 is constant only when c is a constant 

(viscous damping), and that for ks  to be constant, the ratio c/f has to 

be invariant rather than the more usual hysteretic condition where cf 

is constant. 

The parameter ks  can also be expressed in terms of G; in the 
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present case however, it was expressed in terms of c owing to the complex 

nature of the damping used and to avoid further mathematical complications. 

Although the viscous part of c could be maintained constant for 

a given test, the structural part of c was observed to vary with both 

(f/N) and (a/D), and several additional experiments had to be conducted 

to investigate these variations for each cylinder arrangement and for 

each test as follows: (see also Appendix V ). 

For a given test the length of the cantilevered springs of the 

cylinder supports were fixed and the viscous damping device was 

adjusted as needed; the cylinder was then made to oscillate in air with 

various additional known masses attached to it so as to cover the 

frequency range expected for that test; damping was measured for various 

amplitudes of vibration from the decay of the resulting recorded 

transients, and correlations were obtained of c against (a/D) and (f/N). 

Aerodynamic damping and damping due to the supporting arms, gaps, etc. 

were also taken into account (see Appendix V ). 	In this manner, values 

of ks 
were calculated for every vibration condition from knowledge of 

the appropriate values of (a/D) and (f/N). 

To simplify the presentation and analysis of data a standardized, 

constant value of k' was also obtained for each test, for (a/D) = 0.055 

and for f = N, which is here denominated k' . 	The variations of ks so 
with respect to kL3,  occurring in a typical test are plotted against 

(fs/f) in Fig. 44. 

6.2.4 Vibration amplitude 

Vibration amplitude reductions corresponding to increases of 

k' are shown in Figs. 41 and 42. 	Fig. 44 shows however that (k /k' ) 
so 	 s so 
can vary as much as 27% , and consequently the plots of Figs. 41 and 

42 are not constant damping curves. 	The use of ks  instead of a 

constant stability parameter allowed important observations and con-

clusions as indicated below: 

Variations of (a/D) with respect to ks, for various values of 

(f
s
/f) in the first and second instability regions are presented in 

Figs. 45a and 45b respectively; the data correspond to the five tests 

of Figs. 37a and 41a conducted with approximately the same or  value 

but for five different levels of external damping. 

* Fig. 44 refers to a cylinder with or  = 1.2; variations of more than 
50% were calculated for the lightest cylinders tested. 
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Fig. 45b shows a distinct trend in the second instability region, 

towards a common maximum value of (a/D) as ks 
tends to zero, for all 

a 
	 values of fs/f. 

	This indicates that in the undamped condition the 

amplitude response curve for the second instability region has a flat 

top; slight deviations from this occurring as ks  increases. 

It should be noted that this trend was deduced previously from 

observation of the amplitude response curves presented in Chapter 3, 

although a slight increase of (a/D) was also observed as (fs/f) increased 

(see e.g. Figs. 28 and 29); this slight increase of (a/D) however can 

be attributed to decreases of ks which are due to increasing (f/N). 

These observations permitted the approximate assumption that (a/D) is 

invariant in the second instability region when ks is constant, which 

assumption greatly simplifies the mathematical representation of the 

excitation process, as will be shown in Chapter 8. 

Although the common trend shown in Fig. 45b is not apparent from 

the curves of Fig. 45a for the first instability region, the curves of 

this figure appear to have similar shapes. 	Indeed if the data of 

figure 45a are replotted (Fig. 46) as a propotion of the maxima obtained 

from Fig. 45a by extrapolation to ks  = 0, a common trend is apparent in 

the response of (a/D) to ks  for most values of (fs/f). 

These trends permit an extrapolation to the undamped condition 

(ks 
= 0), to predict maximum vibration amplitudes for each value of 

fs
/f in the first instability region or for all values of (fs

/f) in the 

second. 	Such maxima are plotted in Fig. 47 as a function of fs/f and 

they represent the amplitude response of an undamped cylinder. 

It was then concluded from Figs. 45b and 46 that the vibration 

amplitudes for a given (fs/f) value in either instability region, 

decreased from their maxima corresponding to the undamped condition 

(Fig. 47) according to a function of ks  alone; this function was 

approximately the same for all (fs/f) values in each instability region. 

From the above observations and conclusion it follows that the 

maximum amplitude of vibration in the first instability region should 

occur at a fixed value of (fs
/f), if the cylinder were subjected to a 

constant external damping ks; Fig. 41 suggests moreover that this value 

is about 0.9, although this is only a limited approximation because 

such maxima are slightly displaced along the fs/f axis by the variations 
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along each curve, by the instabilities of the excitation and by 

the hysteresis phenomena. 

If the maxima of (a/D) in the first instability region for 

different tests are nevertheless assumed to occur when (f
s
/f) has the 

same value, the trends of (a/D) vs k
s 

referred to above are further 

confirmed by Figs. 48a and 48b; these figures are plots of the maximum 

amplitudes recorded for each of the two instability regions and they 

include all the tests for which damping data were available. 

Exceptions to these common trends of (a/D) vs ks  can be seen in 

Figs. 45 to occur at the extremes of both instability regions where 

double harmonic excitation, beats or hysteresis occur. 

In agreement with reports by King the reductions of (a/D) due 

to damping here observed were different in the two instability regions, 

especially if amplitudes (a/D) smaller than 5% were considered. 	Although 

the (a/D) vs k
s 

curves in both instability regions showed a discontinuity 

for k
s = 0.6 (Fig. 45), for higher levels of damping (ks) the values of 

(a/D) in the first instability region could be as high as 4% while those 

in the second were negligible. 	Nevertheless, if vibration amplitudes 

smaller than 4% can be neglected, the common value of ks  = 0.6 where the 

said discontinuities occur indicates an approximate practical threshold 

for in-line instability. 

No systematic tests were conducted for ks  values higher than 0.7, 

because it was felt that the corresponding vibrations with amplitudes 

(a/D) < 4% were not very important. 	It should be noted however, that 

when conducting auxiliary tests to investigate S and Cal, (a/D) was 

smaller than 1% for values of ks 
> 1.2. 

Finally it should be noted that the expression of ks  in terms of 

c (Eqn. 6.7) rather than 6 (Eqn. 6.5), together with the threshold value 

of ks 
identified above, clearly indicate that in-line vibrations in 

practice are more likely to arise from hydrodynamic excitation, when 

the large pf  yields a low ks, rather than from aerodynamic excitation. 

6.2.5 Instability regions 

Figure 41 shows reductions of the ranges of (fs/f) in which 

instability occurs, corresponding to increases of the external damping 

parameter kf . 
so 

•■• 
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41. 

As explained in 6.2.4 these plots are not constant damping curves 

because of the variations of (k ss  
/k' 

o) with (fs/f) (e.g. Fig. 44), and 

are therefore unsuitable for further quantitative analysis. 	Fig. 49 

however, presents these (fs/f) instability ranges as a function of ks; 

the figure was obtained by calculating the ks  values corresponding to 

the maximum and minimum values of (fs/f) for which vibration was 

recorded, in each instability region and for each one of the tests of 

Figs. 37 and 41 as well as for two additional tests (see TableJI-2). 

At the threshold of instability in Fig. 49 values of ks  of about 

0.6 and 0.65 can be identified for the first and the second instability 

regions respectively, if 'amplitudes smaller than 0.05 can be ignored. 

The instability regions shrink with increasing external damping, about 

their respective "central" values of (fs/f) in an approximately 

symmetrical shape. 	An exception to this occurs for the lowest values 

of (fs
/f) where the double harmonic excitation mechanism is operative. A 

slight trend of the instability regions of the heavier cylinders to be 

narrower can also be seen in this figure; this narrowing arises perhaps 

because it is more difficult for a heavier cylinder to respond to the 

excitation at the extremes of the instability regions where hysteresis 

effects occur and where the excitation mechanism tends to break down. 

Figure 49 together with the relationships between (f/N) and (fs/f) 

(equation 6.2) and between fs  and V (e.g. Fig. 31) determine the ranges 

of flow velocity for which instability occurs. 	Such velocity ranges 

are influenced by both pr  and ks, although in different ways, i.e. pr  

affects the (f/N) ranges but not the (fs/f) ranges, while the converse 

applies to ks. 	As explained in 6.2.3 however, in cases where frequency 

variations are significant, or  can affect the (fs/f) ranges indirectly 

via modifying f, which not only changes ks  directly but it can also 

affect c and consequently ks  and the (fs/f) ranges. 

In contrast with aerodynamic situations where the flow velocity 

ranges for instability often depend on the stability parameter alone,Table 

6.1 belowshows that in hydrodynamic situations a higher maximum value 

of (V/ND) can be reached with a lighter cylinder (lower pr), in spite 

of its higher value of the stability parameter (k;0  or ks), although 

it can be seen in the same table that the maximum value of fs/f for this 

lighter cylinder is in fact lower than that for the heavier cylinder. 

It was thus concluded that the possibility of vibration is 

76 



• 

• 

Run No. 
maximum 

V/ND 
values 

f/f 
of: 
f/N 

k 
 10 s Pr approx. so 

80 3.59 1.367 1.083 4.22 0.26 0.275 

102 4.08 1.346 1.254 1.21 0.49 0.502 

Table 6.1 Comparison of Experimental Results 

determined by the stability parameter ks, while the flow velocity ranges 

in which instability can occur are also influenced by 	On On the other 

hand the stability parameter ks  determines the vibration amplitudes 

while pr  determines the frequency variations. These dependence rela-

tionships and the indirect influences of pr  on ks  referred to in 6.2.3 

are illustrated in Fig. 50. 

6.3 	Discussion of Results 

6.3.1 Efficiency of excitation forces 

The hydrodynamic damping and excitation forces can be reduced by 

factors such as boundary layers, badly correlated flow patterns along 

the cylinder's length and turbulence. 	This provides an explanation 

for the differences existing between the maximum values of (f/N) and 

(fs/f) obtained from an extrapolation of the recorded data to the 

undamped condition on the one hand, and the respective theoretical values 

[i(pr+1)/pr] and / on the other. 	(Figs. 39 and 49). 

The vibration amplitudes are determined by the balance between 

hydrodynamic excitation forces and the (predominantly hydrodynamic) 

damping forces (see Chapter 7) and consequently are also affected by 

the boundary layers etc. as mentioned above. 	Because of the influence 

of these factors on both excitation and damping it is not feasible 

merely to apply some increment to ks  to obtain a representative damping 

parameter and it is therefore more difficult to estimate maximum 

amplitudes. 

A case illustrating the influence of the factors mentioned above 

is shown in Fig. 41b where the (a/D) curves 1 and 3 overlap with curves 

2 and 4 in the second instability region; this overlapping occurs because 
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of discontinuities seen in the flow patterns of the wake (see 3.5) for 

the tests of curves 1 and 3. 	This situation should be compared with 

the uniformly spaced curves of Fig. 41a, where special care was taken 

in the tests to maintain well correlated flow patterns in the wake, 

throughout the second instability region. 

A comparison of Fig. 41b with Fig. 37b shows moreover, that the 

relatively lower points of the (f/N) vs (fs/f) curves correspond to 

the relatively low amplitudes occurring in association with the observed 

discontinuities in the wake. 

6.3.2 Comparison of results 

The possibilities of quantitatively comparing the results of the 

present research with previously published data are severely limited by 

complexity and differences in presentation, incomplete data and diversity 

of situations. 	Qualitative comparisons however are possible as shown 

below. 

Frequency variations have been reported by Clark, Dickens and 

Wootton2  for two and three-dimensional situations. 	From the data of 

Dickens it is clear moreover that higher (f/N) values correspond to 

lower or  values, although this information is limited to the first 

instability region and often strongly influenced by hydrodynamic damp- 

ing. 	King neglects the frequency variations of his cantilvered cylinders, 

although his Fig.9.8(b) shows (f/N) vs (V/ND) trends which are similar 

to those here observed. 	The frequency variations reported by Wootton2  

are more significant because they occurred in a full-scale three-dimen-

sional situation. 

Although similar vibration amplitude curves have been presented 

in all in-line vibration reports, little information on damping has 

been presented. 	King and Dickens extrapolate hydrodynamic damping from 

still water transients to flowing water steady-state conditions. 	The 

values of "ks" so obtained by King moreover, do not always correlate 

with the amplitudes (presented as bending moments) of his cantilevered 

cylinders oscillating in-line. 

Dickens bases his analysis and complex stability parameters on 

hydrodynamic damping, which is here not considered part of external 

damping. 	The (a/D) vs ks  curves here presented however, resemble 
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those obtained by Wootton from tests of free-ended model stacks 

oscillating across the flow in a wind tunnel; the similarities of the 

curves in spite of the great disimilarities of the two situations can 

be attributed to the negligible effects of both the aerodynamic damping 

and the added mass of air, relative to the respective structural damping 

and cylinder mass. These conditions in this aerodynamic case made the 

constant ks 
extrapolated from still air tests, more appropriate to repre 

sent the stability of the system. 

In addition to the need for damping data, a comparison of (fs/f) 

ranges is possible only if either precise S or fs  are known. Dickens 

and Clark do not report their S values; while King, Hardwick and Wootton, 

and Wootton et al do not provide sufficient damping data for a more 

meaningful comparison of the (fs/f) ranges than that of the curves of 

Fig. 32. 	The base bending moment vs (V/ND) curves presented by King 

however, show a general reduction of the (fs/f) ranges corresponding to 

decreasing bending moment responses, and thus presumably corresponding 

also to decreasing vibration amplitudes; his work is thus in agreement 

with the trends presented in Figs. 41. 	It should be noted moreoever 

that the comparison of (fs/f) ranges of different cylinder-flow arrange-

ments is complicated by the vibration amplitudes which, in three-dimensional 

situations, change with the cylinder's length, and which when combined 

with hysteresis phenomena, beats or double harmonic excitation, may 

further modify the limiting values of fs/f for the two instability regions. 

6.3.3 Practical considerations 

The analysis presented in this chapter suggests that it should 

be possible to predict the dynamic behaviour of a cylinder in a two-

dimensional arrangement oscillating in the direction of the flow in 

terms of (a/D), (f/N) and (fs/f) from knowledge of er  and ks. 

The parameters tor  and ks  as interpreted here could be more 

readily determined at the design stage than the "combined stability 

parameter" which depends on hydrodynamic damping and which does not 

provide reliable predictions of (a/D), (f/N) or of the ranges of (fs/f). 

When damping data are to be obtained from transients in still 

or in slowly flowing water (fs/f < 1) however, it becomes necessary to 

calculate the appropriate hydrodynamic damping. 	For still water 
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situations, the researches of Bramley and of King provide useful 

information. 	For slowly running water there is, to the knowledge of 

the author, no reliable method to calculate the hydrodynamic damping 

which depends not only on the reduced velocity but it also depends 

markedly on vibration amplitudes (see Chapter 8). 

When dealing with the three-dimensional situations more often 

encountered in practice, the data here presented cannot in general be 

used directly, although the curves of Fig. 32 and the data of the full-

scale tests at Immingham provided by Wootton2  indicate that very simi-

lar variations of (f/N) and ranges of (fs/f) result in both two and 

three-dimensional situations. 	Prediction of the variable amplitudes 

of a three-dimensional cylinder can only be made after considering flow 

forces and energy exchanges along the cylinder's length. 	(See 

remaining chapters). 

Nevertheless, the analysis here conducted for two-dimensional 

situations identifies causes of cylinder behaviour and results in 

successful correlations of this behaviour with flow and cylinder para-

meters; this approach could perhaps be adapted to the more practical 

three-dimensional situations. 

Especially important from a practical point of view is the con-

firmation of (fs/f = i) as a lower limit for excitation, which arises 

from the following observations: (a) no vibrations in-line have been 

reported for (fs/f) < 0.5 *;(b) increases of both or  and ks  tend to 

increase this threshold value;.(c) this limiting value has been 

approached only by extremely light and lightly damped cylinders which 

are not common in practice; (d) suppression of the double harmonic exci-

tation increases this limit; and (e) although f values have been recorded 

which are slightly smaller than N and which reduce the flow velocity 

threshold value below (fs/N) = I, these departures are not considered 

to be of practical importance. 

* This assumes that curve 1 of Fig. 32 represents average values of a 
variable fs/f (see Chapter 9). 

• 
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CHAPTER 7 

HYDRODYNAMIC FORCES 

A simple theoretical model is presented in section 7.1 which 

permits the analysis of the hydrodynamic forces of the added mass and 

damping in sections 7.2 and 7.3 respectively. 	A constant mass 

coefficient is adopted and it is concluded that hydrodynamic damping 

cannot be extrapolated from still water tests because it depends on 

the mean drag forces of flowing water. 

Section 7.4.1 then considers all the hydrodynamic forces 

leading to a theoretical model of the excitation. 	Sections 7.4.2 and 

7.4.3 support the validity of this model to represent the two main 

excitation mechanisms, with a brief analysis of the flow patterns 

observed in association with the hydrodynamic forces predicted by the 

model. 

7.1 	Analysis of Forces 

Newton's Second Law can be used to relate the total hydrodynamic 

forces, FT, to the cylinder's characteristics and motion (see Chapter 

5), thus: 

F
T
=Mc x+cx+kx 
	

(7.1) 

where M
c
, c and k represent respectively mass, external damping and 

stiffness of the cylinder and its supports and x, k and X represent 

respectively the displacement, velocity and acceleration of the 

cylinder with respect to its supports. 	Most of the ultra-violet 

recorder traces of the cylinder's displacement, x, were sinusoidal and 

consequently the cylinder's motion can be represented by: 

x = x + x0 
sin wt 
	

(7.2) 

where x is the mean displacement,w = 27f, and xo  is the amplitude of 

the vibration. 	The sinusoidal motion of the cylinder indicates that 

the excitation forces are either very small or are themselves 

OF 

40. 

81 



sinusoidal functions. 	It was observed in Chapter 3 moreover that 

events in the wake near the cylinder occurred periodically with the 

same frequency, f, of the vibration. 	Thus the total hydrodynamic 

forces can be represented by: 

F + F
To 

 sin(wt + g) 	(7.3) 

where 	F = kx 	 (7.3a) 

is the mean force; FTo 
is the amplitude of the fluctuating component, 

FT; and c is the phase angle between FT°  and xo
. 	Equations 7.2 and 

7.3 represent a solution for equation 7.1 (see Den Hartog) which then 

describes the motion of a cylinder oscillating in vacuo and acted 

upon by the addition of all the hydrodynamic forces, FT. 	Figure 51 

illustrates the forces of Eqn. 7.1 vectorially; it can be shown from 

a resolution of the forces parallel and at right angles to xo  that: 

(see Appendix VII) 

FTo 	 '21 
= k x  V/  [1- (1711t)2]2 	

1.M
c 
 N 	) -1 

I112 (7.4) "" 
c v v 

tan = 

f 
c 

v  

2TrM N [1 - (N) 2]c v 	Nv 

(7.5) 

where N
v 
is the natural frequency of the cylinder oscillating in vacuo, 

fk- N = 1  
v 2ff Mc  

(7.6) 

It was observed in Chapter 5 that the hydrodynamic forces 

depended not only on flow characteristics, but also on an interaction 

between the motion of the cylinder and the flow patterns which result 

in self excited vibration. 	In Chapter 6 it was shown that the 

excitation mechanisms responded to changes of both pr  and ks; while 

both external damping and cylinder density are indeed characteristics 

of the cylinder, it should be noted that they influenced excitation 

indirectly through their influence on cylinder motion which in turn 

if 
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modified the flow pattern. 

The present chapter is concerned with the hydrodynamic features 

of the excitation which are applicable to all in-line vibration 

situations; it is therefore intended to identify parameters which 

represent the purely hydrodynamic features of the excitation and which 

are independent of cylinder characteristics such as density, stiffness 

or damping. 

FT 
is the only directly measurable fluctuating hydrodynamic 

force, but if obtained from equations 7.4 and 7.5, it depends on Mc,k 

and c and is consequently inappropriate for the present purposes. 

Theoretically however, FT  can be divided into components which can be 

related to those variables associated with the flow and cylinder motion 

only. 	These components are discussed in the following sections. 

7.2 	Added Mass 

7.2.1 The coefficient of added mass 

,•• 

It is common practice to analyse fluctuating forces into: (a) those 

associated with the relative acceleration of the cylinder and flow 

(inertia forces), and (b) those associated with the relative velocity 

of the cylinder and flow (drag forces), so that: 

F
T 

= F
I 

+ F 
	

(7.7) 

This division is convenient for still water situations when 

forces are predominantly inertial or in moving water at high Reynolds 

numbers when drag forces predominate. 	In still water moreover, the 

hydrodynamic inertial forces, like the inertial forces of the cylinder's 
• • 

own mass, are proportional to the acceleration, x. 

It is a mathematical advantage to represent the inertial forces 

in terms of an "added mass", Ma, thus 

F
I 

= M
a 
x 
	

(7.8) 

such that the mass, Ma,can be added directly to the cylinder's own 

. 
	mass, Mc' 

to form a "total mass", MT. 	
It is then possible to repre- 

• 
	sent the vibration of a cylinder of mass MT 

excited solely by drag forces 

F by 
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1 	
N 	

Pr 
N = (7.13) 

40,  

/ 4 

= MT x 	
(7.9) c + kx' 

t 	1 
and 	F 	= F

o 
sin(wt + 4)) 
	

(7.10) 

where F0 
is the amplitude of the fluctuating drag force and (I) is the 

phase angle with respect to the cylinder's displacement, x0  , as shown 

in the phase diagrams of Fig. 52. The natural frequency of such 

vibrating system will then depend on the value of Ma. 

The added mass can be related to the mass of fluid displaced 

by the cylinder, so that: 

M = 4 ID2L Cm  
Ma . 	Pf  '(7.11) 

where Cm  is usually termed the "mass coefficient". 

Potential flow theory (see e.g. Lamb ) indicates that for an 

infinitely long circular cylinder oscillating in an inviscid and other-

wise still fluid: 

CMS = 1 

and 	 (7..12) 

M
as 

= 	D2L pf  

where the subscript "s" indicates "still water". 	The practical 

experiments in still water reported in Appendix III as well as numerous 

research reports (e.g. King, Bramley) confirm this theoretical prediction 

of C. 	In still water the natural frequency, N, of the cylinder is 

given by: 

44. 

For the conditions of flowing water on the other hand the appropriate 

coefficient for added mass is not obvious. 	Even if the hydrodynamic 

force on a cylinder could be reliably measured it would not be possible 

to separate the inertia force of the added mass from other forces. 	To 

make progress therefore it is necessary to assign, somewhat arbitrarily, 

a value or values to Cm; in the following two subsections alternative 

methods of treating added mass are discussed. 
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7.2.2 A variable mass coefficient 

It would not be unreasonable to attribute variations of vibration 

frequency solely to variations of the inertial forces of the added 

mass. 	If such a variable mass is assumed it follows that the exci- 

tation force, F
o' 

will have a constant phase angle (f) = 900, and a 
1 

magnitude, cwx0, i.e. .F represents only the forces providing the 

necessary energy to sustain the vibration (see Fig. 52a). 

The resulting variable mass coefficient, Cmv, can be obtained 

by expressing the vibration frequency, f, in terms of a variable mass 

such that: 

k 1 
f 	2Tr 	

4 
D2L 

 vf '
n
r 

r  +c 
MV) 	_ 	pr  + 1 y   

N 	 Pr  + CMV 

2Tr.  7_ \/1  D21, 
4 	Pf(Pr+1) 

(7.14) 

and consequently: 

CMV = (NT) 2  (Pr  + 1) - Pr 	 (7.15) 

It should be noted that (f/N) is a function of (fs/f) and pr  

only (see Chapter 6) and consequently CMV  is independent of ks. 

Equations 7.15 and 6.1 in addition to the assumption (see Chapter 6) 

that: 

N 
 

-1\F - 1 

indicates that: 0 	CMV  < 1. 	This can be seen in Fig. 53, which 

presents the results of several tests with various values of pr  and 

k s' 
• the values of CMV 

 were deduced from equation 7.15. 	It should be 

noted that the values of CMV 
 slightly higher than one correspond to the 

double harmonic excitation section of the first instability region where 

f was slightly lower than N (e.g. see Fig. 20). 	Figure-53 shows in 

addition that Caw  varies little with pr 
and appears to be independent 

of.ks'  the scatter of the experimental data moreover can he attributed 
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to three-dimensional considerations and secondary factors (see Chapter 

9). 	At first sight it would appear that a variable CMV  could be 

helpful in determining the exciting forces and the frequency variations 

in instability regions for two-dimensional situations. 

It is difficult however to explain the physical behaviour of 

CMV, especially when CMV  = 0, i.e. absence of inertial forces, or to 

explain the constancy of the angle c = 900; calculations using this 

model moreover are complicated by a variable value of the natural 

frequency. 

For the reasons just given (see the next subsection) the variable 

mass coefficient C
MV 

 was not adopted for this analysis of the excitation. 

The characteristics of Fig. 7.2 however suggested that CMV  was 

a useful parameter to represent frequency varitaions. 	It should be 

noted moreover that equation 7.15 also represents the vectorial 

addition of the stiffness and inertial forces of the cylinder alone, 

divided by the inertial forces of the added mass in still water (see 

Appendix VII), i.e. 

k x - M to2x c 0 
p +1) - pr  

Mw x 
as o 

(7.15a) 

It will be clear later in the thesis that this force ratio is very 

useful not only to represent frequency variations but also to simplify 

analysis and calculations in general. 	For these reasons and to avoid 

future confusion this force ratio will be henceforth referred to as 

the "inertial coefficient", CI, i.e. 

CI = f) 2 (pr + 1) - pr 
	 (7.15b) 

where 0 < C
I" 
< 1, and is approximately independent of or and ks 

(see 

Fig. 53). 

7.2.3 A constant mass coefficient 

An alternative way to treat CM  is to assume that its still water 

value of 1.0 is applicable to flowing water situations and is unaffected 

by variations of flow pattern. 	This implies that the acceleration of 

the cylinder, R, will always be opposed by a force which is proportional 
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both to the acceleration and to the mass of fluid displaced by the 

cylinder. 	A value of CM  = 1 seemed appropriate for the following 

reasons: 

(a) A value of CM  = 1 was observed in slowly flowing water, i.e. 

when (fs/f) < 0.5 (see Appendix III). 	When (fs/f) > VY, strong 

fluctuating drag forces (see 7.3) made any independent measurement of 

Cm  impossible. 

(b) It was argued that CM  = 1 from a process of superposition of 

component flow patterns and a consideration of their respective effects 

on the cylinder. 	Fundamental to this argument is the assumption that 

the basic potential flow pattern which leads to CMS 
 = 1 in still water 

persists in flowing water and still depends on the acceleration x, in 

spite of other patterns being superimposed on it. 

(c) If it is assumed that CM  = 1, 4) must be variable and the 

fluctuating drag force, F, is responsible for the variations of (f/N) 

(see Fig. 52b). 	In the previous section where a variable CMV  was 

postulated, there was difficulty in providing a physical explanation 

for CM  ÷ 0, as (f
s
/f) 	VT. 	Here, where Cm  is assumed constant it 

seemed more reasonable to argue that as(fs/f) 	VY, 	180°  and the 

fluctuating drag force approached the value of the inertial forces of 

the added mass (see Fig. 52b); in the limit the only hydrodynamic 

loading on the cylinder would be two equal and opposite forces and 

consequently the vibration frquency would tend to the in-vacuo natural 

frequency, N. 

(d) The fact that the excitation frequency, f, is different from the 

characteristic or natural frequencies of both the cylinder (N) and the 

flow (fs
), suggests that there should be phase variations as (fs/N) 

changes, rather than a constant 4) = 90°. 

(e) If CM  = 1, the stability parameter, ks
, then represents the 

ratio of the external damping forces to the inertial forces of the added 

mass in both still and flowing water (see Chapter 6). 	Similarly by 

the adoption of CM  = 1, the inertial coefficient, CI  (see 7.2.2) then 

becomes the vectorial addition of the stiffness and inertial forces of 
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the cylinder alone divided by the inertial forces of the added mass, both 

in still and in flowing water. 

(f) 	By the adoption of CM  = 1, the natural frequency of the cylinder 

then remains constant and equal to its still water value, N; measure-

ment and calculations are thereby facilitated. 

The above arguments indicated many advantages in adopting a 

constant CM  = 1, and consequently this will be assumed henceforth in 

this thesis. 

' A resolution of the forces of Fig.52b for CM  = 1, and the 

inclusion of the parameters CI  and k
s 
result in the equations: 

(see Appendix VII) 

Fo = M
as
w2X(C

I 
- 1)2+  (4 ks)2 
	

(7.16 

and 2 ks  
(7.17) tan (I) = 

4 	 W2(CI - 1) 

where 90° 	< 180°, if 1 > CI  > O. '  

110 

7.3 	Hydrodynamic Damping 

7.3.1 Still water damping 

The rate of decay of transients obtained outside the instability 

regions (see Figs. 25 and 54) indicates the presence of hydrodynamic 

damping forces which are considerably larger than the forces due to 

external damping. 

Previous authors (e.g. Dickens, King) have measured hydrodynamic 

damping from transients in still water and have then extrapolated such 

measurements to steady state vibrations in flowing water. 	This 

procedure will not be adopted in the present research for the following 

reasons: 

(a) 	In slowly flowing water, i.e. 0 < (fs/f) < 0.5, the value of 

the logarithmic decrement, d, of transients was observed to increase 

with f
s
/f for large amplitudes of vibration, and to decrease with fs

/f 

for small vibration amplitudes (see Fig. 54). 
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(b) Transients recorded for fs/f > 12- show much larger (5 values than 

those obtained in still water (see Fig. 25). 

(c) The flow patterns are very different in still and flowing water; 

in still water the relative velocity of the flow with respect to the 

cylinder, (V - ic), alternately changes from positive to negative, while 

in flowing water, the maximum predicted and recorded values of the 

velocity ratio Vr  = (w)b/V) of about 0.35, ensure that (V - 3c) is 

always positive. 

(d) In still water, and especially with the small "size numbers" 

(ND2/v) of the present research (see e.g. Bramley), the hydrodynamic 

damping forces are mainly due to viscous friction, i.e. proportional 

to the velocity, while in flowing water situations and assuming 

Re > 103 
 (see Chapter 5), the viscous friction forces represent only a 

small fraction (< 12%) of the total forces, which are predominantly 

pressure forces, i.e. proportional to the square of the velocity. 

Figure 55 illustrates the small influence of viscous friction at the 

higher Reynolds numbers for a stationary circular cylinder; at least in 

terms of orders of magnitude, the diagram is probably applicable to 

vibrating cylinders. 

7.3.2 Flowing water damping 

If it is assumed that the hydrodynamic damping and the excitation 

forces were predominantly pressure forces, these could be represented 

by: 

F = i ofDLV2(1 - Vrcos wt)2Cf 	(7.18) 

where 
w3Co 
V 

V(1 - Vr
coswt) is the relative velocity of the flow with respect to 

the cylinder and Cf  is a force coefficient. 

Three components can be identified in this equation when it is 

expanded, i.e.: 

(a) 	F
me
an = 	 pf  I DLV2Cf(14- IVP 2  (7.19) 
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is the mean drag force. 

(b) F
variable =-IpinV2Cf(2Vrcoswt) 
	

(7.20) 

is clearly a damping force in antiphase with x and is intended to 

include both pressure and friction hydrodynamic damping forces; and 

(c) F2w = loEDLV2Cf[iV;cos(2wt)] 	(7.21) 

has twice the frequency of the vibration and consequently does not work 

on the system. 	This force in the experiments moreoever, never 

exceeded 9% of F variable and is thus neglected. 

If the second term of equation 7.19 is neglected, equation 

7.20 can be written: 

F variable 	- F
mean

(2Vrcoswt) 
	

(7.22) 

From this approximate relationship it can be seen that F 
variable 

is of the same order of magnitude as the mean drag force(and is 

considerably larger than the external damping forces cwxo) and would 

thus account for the strong damping forces observed for (fs/f) > V. 

moreoever, increases with Vr and consequently with xo. 	In Fvariable 
addition it has been shown (Chapter 3) that Fmean 

also increases with 

xo and so 

a F 	
ec variable 

where a > 1. The heavy damping represented by this power law could 

be an important factor in imposing an upper limit to the maximum 

vibration amplitude even when cwxo  0. 

7.4 	Excitation Forces 

7.4.1 A theoretical model of the excitation 

To sustain a steady state vibration a strong exciting force is 

required to counter the hydrodynamic damping of equation 7.18 in which 

the force coefficient is as yet undefined. 
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The flow patterns observed in the two instability regions 

suggested that the force coefficient undergoes variations with the 

same frequency as the motion of the cylinder; the sinusoidal character 

of this motion suggested moreover that all the forcing functions were 

also sinusoidal. 	Consequently the force coefficient could be expressed 
tr.  

by: 

C
F 

= CF  + CF sin (wt + a) 
(7.23) 

where
_ 
CF and C

F 
are the mean and fluctuating parts of CF respectively 

and a is the phase angle of CF  with respect to xo. 	This expression 

of C
F 

can be substitued for C
f 
in equation 7.18, which then becomes: 

	

F = IrOLV2(1 - Vrcoswt)2[EF  + CFsin(wt+a)] 	(7.24) 

Equations 7.23' and 7.21- represent the excitation in terms of 

CF. 	
These equations can be solved for the components of F, which are 

given by: 

F = F + F' 	 (7.25) 

where from equation 7.10, F' = Fosin(wt + 0; solving thus: 

(see Appendix VII) 

	

ipfDLV2[(1 + 11/;) CF  - VrcFsina] 	(7.26) 

and 
1 	1 2 

Focos 	= 	pFDLV2  (1 + 	Vr)CFcos a 	(7.27)  

1 	1 
Fusin 	= TpiDUV2 	4 (1 + V- )C

F 
 sin a 

CF 1 	1 - 	pfDLV2(1 - 747Vr  — sin a)2VI:C-F  (7.28) 
CF 

1-he R.fI,5. of 
It should be noted that the second term ofAequation 7.28 is always 

negative because both Vr  and CF  are always positive and because the 

negative term inside the parenthesis is always smaller than 0.1 ;the 

second term of equation 7.28 thus opposes Fo 
sin (IS, which in turn is 

91 



CF  
C
DA 

+ Vr
C
F 
sin a 

1 + 11/.  
(7.31) 

114 

in antiphase with the external damping force, cwxo; (see Fig. 52a), 

it then follows that this term of equation 7.28 represents a hydro-

dynamic damping force, Phd, which is in antiphase with the velocity 

x, i.e. 

CF 
hdcos wt = - —

1 pf  DLV2  (1 - 4  Vr  — sina)2Vr
-C-
F
cos wt 2 	— 

CF 

(7.29) 

The first term of equation 7.28 and equation 7.27 clearly 

represent the two components of an excitation force, Pe, which is in 

phase with the fluctuating force coefficient, CF, i.e. 

11 2 P
e
sin(wt+a) = -2-pfDLV 2(1 + -LT  vr)cF  sin (wt+a) (7.30) 

Fosing) must be positive (in phase with x) to sustain the vibration 1 

and Fo cos (1) must be negative (in antiphase with x) if f N (see Fig. 

52'0; it then follows from equation 7.27 and 7.28 that sina must be 

positive while, cos a must be negative, i.e. Pe  must be in the 2nd 

quadrant of the phase diagram. This can be seen in Fig. 56 where the 

hydrodynamic forces Pe, Phd  and M as o w2  x and their phase relationships 

are shown together with the cylinder inertial, stiffness and external 

damping forces. 

The excitation process is thus expressed in terms of forces which 

are functions of CF, flow characteristics, cylinder motion and geometry; 

it is now necessary to correlate CF  with the above parameters in order 

to confirm that Pe and Phd are indeed hydrodynamic parameters, and that 

they are independent of cylinder characteristics such as or  and ks. 

This will be attempted in the next chapter. 

To obtain such correlations however, t CF and a must be 

calculated from the measurable characteristics and behaviour of the 

cylinder and flow. 	From a resolution of the forces of Fig. 56 and from 

equations 7.3a, 7.9 and 7.26 to 7.30 (see Appendix VIII thus: 

 fD 
- 1)2  + [ T2(CF 	k + s)J 2 

(7.32) 

	

1 
	77  2v 

	

C
F 	V 

(1 + 
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where 

V 
CF 	ks 

	

2* 	 "le 

	

tan a = .7172- 	ci  - 1 (7.33) 

11) 

1 + 4  -
V2  r  

1 + V2  4 r 

1 	 (7.34) 

It should be noted (equation 7.31) that the mean force coefficient 

CF  is different from C
DA 

and hence the latter's name, "apparent drag 

coefficient". 

The theoretical model just developed shows the hydrodynamic forces 

and energies to be significantly larger than those due to external 

damping. 	The excitation thus appears to depend on a delicate balance 

between relatively large forces which tolerates only small energy 

outputs. 

In contrast with the model of Fig. 52a and equations 7.16 and 

7.17, the model of Fig. 56 does not neglect the influence of C
DA on  

the excitation process and in this way it opens an additional source 

of available data. 

As will be shown later, the maximum c  variation of 90°  (Eqn. 

7.17) corresponds to only 45°  of a variation, which indicates that the 

excitation is also very sensitive to phase angle variations. 	Bearing 

in mind the self-excited character of the vibration, this sensitivity 

is more obvious if a is not only regarded as indicating the phase angle 

between force and cylinder motion, but also as an indicator of the 

phase relation between the cyclic power supply to the wake near the 

cylinder and the motion of the wake itself. 

Before proceeding to a detailed analysis (in Chapter 8) of the 

excitation mechanisms, it is opportune here to make a preliminary 

assessment of the validity of the model just described to represent the 

excitation. 	This assessment is presented in the next two subsections, 

in the form of a brief analysis of the patterns of behaviour of cylinder 

and flow, which have been observed to occur in association with the 

variations of the forces predicted by the model. 

• 

• 
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7.4.2 The pairs mechanism 

The excitation in the first instability region which occurred in 

association with pairs of simultaneous eddies ("pairs mechanism") was 

first assessed by Hardwick and Wootton. They suggested that when the 

wake was narrowest as the cylinder moved upstream through its central 

position (see Fig. 9), the flow pattern resembled the wake behind a 

stationary cylinder when Re  > 5 x 105  , for which case CD0  = 0.35 

only (see Figs. 9 & 55); and consequently a lower value of the force 

coefficient of the vibrating cylinder should occur at this moment. 

When the cylinder moved downstream through its central position, the 

wake was widest and resembled that occurring behind a stationary flat 

plate placed perpendicular to the flow, for which case CD0  = 2.05; an 

increase of the force coefficient of the vibrating cylinder was likely 

at this stage. 	The two conditions were represented thus: 

F' = IcIDL(jF  + CF  )(V - wxo
)2  (downstream stroke) 

f  

F - F' = ippiL(EF  - cow wx0)2  (upstream stroke) 

Subtracting: 

ip 	 = CF
(1 + LV2 	

- FVr p 
(7.35) 

where the first term in the right hand side is the excitation force and 

the second is the hydrodynamic damping. 

With the aid of this model Hardwick and Wootton predicted a 

maximum amplitude for the first instability region. 

This model implies that the excitation forces are always in 

phase with the cylinder's vibration velocity, x, but it was argued in 

section 7.2 that this can only be true when f = N, or if Cm  is assumed 

to vary, none of which criteria is here applicable. 	There is an 

additional deficiency in that both Hardwick and Wootton and later King 

using the same model, have assumed CF  to be constant and equal to its 

stationary cylinder value, CD0; but it was shown in Chapter 3 that CDA  

was variable, especially when the two excitation mechanisms there 

identified were observed to interact. 
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In the present study an attempt was made to improve Hardwick 

and Wootton's model by incorporating a variable phase angle, a, between 

f 
	 the fluctuating force coefficient CF  and the cylinder displacement, xo, 

and introducing also a variable mean force coefficient, CF. 	This led 

to equations 7.23 and 7.24. 

7.4.3 The "transverse flow mechanism" 

In the second instability region (and in the lock-in sections 

of the first) the excitation can be associated with the strong periodic 

transverse flow observed in the wake near the cylinder (see Chapter 3) 

rather than with a widening and narrowing of the wake. 

It was suggested in Chapter 3 that this transverse flow was 

associated with the velocity field of the strong eddy just downstream 

of the cylinder, as shown schematically in Fig. 57. 	It was evident 

from flow visualization that the major part of the transverse flow was 

supplied by water flowing in a streamtube of some width, b (Fig. 57), 

which is turned through 90°  from the original direction of the approach- 

ing flow to the transverse direction. 	What follows is an attempt to 

express the force required to turn the flow in this streamtube and thus 

change its momentum. 

The flow velocity (relative to the cylinder) in the streamtube 

of width b will be somewhat larger than V because of the constriction 

imposed by the cylinder and could thus be represented by: 

y(V - ;c) 

where y is a coefficient whose value is likely to be in the range 1.0-2.0. 

The mass flow rate through the streamtube of width b and length 

parallel to the cylinder axis L, will be: 

pfb L y (V - x) 	 (7.36) 

•■• 

As the transverse flow velocity fluctuates in each cycle between 

some maximum and zero, the horizontal (Fig. 57) component of the 

velocity of the flow in the streamtube, immediately downstream of the 

cylinder, fluctuates between zero and y(V - x). 	Assuming a sinusoidal 

variation, the horizontal velocity component can be represented by: 
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y(V - 	[1 + sin(wt + 
	

(7.37) 

where E is the phase angle between this component and xo. 

A periodic force acting on the cylinder in the direction of the 

flow can thus be associated with the loss of momentum in that direction 

experienced by the flow in the streamtube. 	This force is given by 

equations 7.36, 7.37 and the momentum equation, i.e. 

F = [pfbLy(V-X)][1(v4c) z  {1 + sin(wt + a)}] 	(7.38) 

where the first factor in the right hand side represents the mass flow 

rate through the stream tube, and the second represents the variation 

of the loss of velocity in the direction of the main stream experienced 

by such flow; it should be noted that instead of changing the sign of 

sin(wt+E), the angle E has been replaced by 

a = E + 180°  

which is the phase angle between F and xo. 

If it is now assumed that: 

b 2 _ 
/71  y 	- CF 

an expansion of equation 7.38 results in three components, namely: 

(see Appendix VII) 

(1) F1  = I  Pf DLV2CF(1 + IV2r  - Vr  sina) 
	

(7.39) 

is a constant force which indicates that in this type of excitation an 

increase of the mean force occurs which is of the same order of magni-

tude as the excitation force; this is in agreement with the observed 

behaviour of C
DA 

in the second instability region (see Chapter 3). 

(2) F2 = - I2 pf DLV2CF(1 - IVrsina)2Vrcoswt 
	

(7.40) 

is a damping force in antiphase with x, and 
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a 

(3) 	F3 = 	pf 
 DLV`CF (1 + IV2)sin(wt + a) (7.41) 

is an excitation force of amplitude Pe. (See equation 7.30). 

It should be noted moreoever that if the equality: 

= Cf + CF 
	 (7.42) 

is assumed, the force F of equation 7.26 results from the addition of 

the forces F1 
 of equation 7.39 and Fmean of equation 7.19; similarly 

the force Phd 
of equation 7.29 results from the addition of the 

amplitudes of the forces F2  of equation 7.40 and Fvariable of equation 

7.20. 

The addition of the forces obtained from this model and those 

obtained from the model developed in 7.3 in connection with hydrodynamic 

damping thus result in the same forces T, Pe  and Phd  of 7.4.1 and 

7.4.2. 

It can then be concluded that the model presented in 7.4.1 can 
• represent the two main excitation mechanisms. 

lo• 
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• CHAPTER 8 

EXCITATION MECHANISMS 

In this chapter the excitation mechanisms of the two instability 

regions are considered separately and with the help of the models 

developed in Chapter 7. 

An analysis of the second instability region leads to a simpli-

fication of the model of the excitation which permits predictions of 

cylinder behaviour. 

The same success is not achieved for the first instability 

region owing to the complex nature of the excitation. 	Some insight 

into the excitation is gained however from a qualitative analysis of 

the predominant "pairs excitation mechanism" and of its influence in 

the various sections of the first instability region. 

8.1 	The Second Instability Region 

8.1.1 Phase relationships 

The behaviour of the phase angle a can be predicted qualitatively 

from consideration of the flow patterns in the following way. The 

variations of the hydrodynamic force _coefficient in the second instability 

region were associated in 7.4.3 with periodic variations of the trans-

verse flow at the back of the cylinder which constituted an integral 

part of the kinetic field of a newly shed eddy (see Fig. 58a). 	The 

variation with time of the kinetic field of such eddies has been investi-

gatedby Schaefer &Eskinazi for the staggered wake behind a stationary 

cylinder and can be represented by the curves of Fig. 58b. 	The figure shows 

the tangential velocity, v, at a point in the field as a function of 

the distance between this point and the centre of the eddy; v is the 

kinematic, viscosity and t is the time. 	The curves suggest that eddies 

behave as free vortices, except for a core which behaves as a forced 

vortex. 	The figure shows moreover that the maximum velocity at any 

instant occurs at increasing radius, say rl, as t increases. 
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If the eddies in the wake of the second instability region 

follow the trends of Fig. 58b, the maximum value of v which can probably 

be associated with the maximum of the fluctuating force, will occur at 

the back of the cylinder when the eddy is at a distance, r1, from that 

point (see Fig. 58a). 	Fig. 58b indicates that this distance is 

likely to decrease with increasing frequency (i.e. decreasing vt). 

It follows that even if the distance away from the cylinder travelled 

by an eddy in a given portion of a cycle were independent of frequency, 

the distance, r1, should then be reached by an eddy somewhat earlier in 

a cycle, the higher the frequency. 	Consequently and bearing in mind 

that frequency increases with fs/f , the leading phase angle, a, of the 

excitation force should not decrease as f
s
/f increases, but if anything, 

a should in this case increase with f
s
/f. 

Owing to the symmetry of the wake however it is likely that the 

translatory velocity of the eddies will eventually reach the flow's 

velocity, V, and consequently, the distance between consecutive eddies 

in the distant wake will be equal to (V/fD). 	Observations of the wake 

about three diameters downstream of the cylinder moreover, showed 

increases of the distance between eddies roughly proportional to (V/fD). 

It is therefore also likely that the distance away from the cylinder 

travelled by an eddy in a given portion of a cycle, will be proportional 

to (V/fD) and therefore to (fs/f), since (fs/f) = (SV/fD). 	Like the 

argument of the previous paragraph, these observations also suggest 

that the distance,r1, will be reached by an eddy earlier in the cycle 

the larger (fs/f), and consequently they suggest that a should increase 

with (f
s/f). 

This trend of a is also suggested by the interpretation of fs  

as a natural or characteristic frequency at which events in the wake 

tend to occur (see Chapters 4 F4  6). 	It should be noted that the above 

arguments assumed that the eddies were released at a fixed point in 

the cycle. 	The above interpretation of fs  suggests however that as 

fs increases above and apart from f (i.e. as fs/f increases) events in 

the shedding process should tend to occur faster or earlier in a cycle 

and consequently a should tend to increase with (fs/f). 

Increases of a with (fs/f) can be seen in Fig. 59 which presents 

results from several experiments with different values of ks  and pr; 

the values of a were obtained from the recorded behaviour of the 
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cylinder and flow and with the aid of equation 7.33. 	This figure also 

shows. that, unlike the phase angle q,(see equation 7.17 and Fig. 52b) 

the angle a is not significantly affected by either pr  or ks, and it 

was considered satisfactory as a generalized hydrodynamic parameter of 

the excitation applicable to any cylinder in two-dimensional flow. 

A general trend of a increasing from 90°  towards approximately 

130°  for,(fs/f) = 12- can also be seen in this figure. 	It will be 

shown in Chapter 9 moreoever that consideration of boundary layers, 

flow pattern correlation, etc., modifies this trend towards 135°  when 

(f
s
/f) = Ili for an ideal two-dimensional case. 

8.1.2 CF  and hydrodynamic damping 

The above observations suggest tan a =-1 when (fs/f) = 12-, for 

the ideal two-dimensional situation; under these circumstances moreover, 

C
I 

= 0, and from equation 7.33: 

.._ 
V [CF 	= constant = 1 	(8.1) 

for all values of pr  and ks; and (V/fD) is constant since (fs/f) = /Z. 

In Chapter 6 it was argued that in the second instability region, 

for every value of ks  there corresponded a unique value of (a/D) (see 

Fig. 45). 	If CF  is assumed to be a hydrodynamic parameter which is 

independent of pr  and ks, it then follows that CF  should be a function 

of (a/D). (Since * in equation 8.1 is approximately constant)..  

Fig. 60 presents values of (CF/CDO) calculated with the aid of 

equations 7.31/2/3, from a series of tests with various values of k's0, 

and plotted against (fs/f); the figure shows for 1 < (fs/f) < II, that 

CF  decreases both with decreasing (a/D) or with increasing (f /f) which 

suggests that the product (CF  jii) is a function of (a/D). 	This 

product is thus plotted in the form: ft 111.9 against (a/D) in Fig. 61 
"DO 1  

for all values of (fs
/f) in the second instability region; the data are 

the result of tests with different values of pr  and ks. 	It is clear 
— V 

from this figure that that product and consequently also (CF  Tid are 

functions of (a/D) only. 

It was confirmed in Chapter 6 moreover that for a given value 

of ks' 
the vibration amplitudes were constant in most of the second 
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instability region, i.e. there was a flat top to the (a/D) vs (fs/f) 

diagram. Therefore, if equation 8.1 is valid when fs/f = /2-  and for 

any value of ks, the same equality should also apply for any value of 

(fs/f) within the flat top of the (a/D) vs (fs/f) diagram. 

Equation 8.1 can also be written as follows: (see Appendix VII). 

P
hd 

+ cwx
o 	

P
d 

M
as

w2x
o 	

= --2-- = constant = 1 (8.2) 
Mases xo 

where P
d 
is the total damping force. This equation indicates that 

independently of cylinder characteristics or motion, the total damping 

forces are equal in magnitude to the inertial forces of the added mass 

throughout the flat top of the second instability region. 

8.1.3 C
F 

and the excitation forces 

Equation (8.2) suggests that Masw2x0  could be valuable as a 

common denominator for all the forces involved. The ratio of the 

excitation forces to the inertial forces of the added mass results 

thus in absolute terms: 

Pe 
NT072-x 
as o 

C,(1 + iVr2) f 
2v2S V

r 	f 
 

(8.3) 

The velocity ratio Vr  is directly related to the magnitude and 

time distribution of the vorticity generated at the cylinder's wall, 

and it is therefore also related to the strength of the eddies, whose 

kinetic field constitutes the transverse flow associated with the 

fluctuating foice. 	Fig. 62 shows moreover that in the second instability 

region CF  decreases with decreasing (a/D) or with increasing values of 

(fs/f), i.e., it behaves similarly to Vr, since Vr  = TrS(a/D)(fs/f) . 

Therefore C
F 

should be a function of V
r
. 	Fig. 63 presents values of 

C
F 

plotted against 27r2SVr
/(1 + 0.25V2r

)
' 
 from several tests with various 

values of ks
o
. 	It can be seen in this figure that in the flat top of 

the (a/D) vs  (fs/f) diagram, the data approximately follow the relationship: 

CF = 2 
1T2S VT  

F 	1'+ 0V
r 

(8.4) 
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8.1.4 A two-dimensional model 

Equations 8.1 and 7.33 lead to: 

tan a = 	1  
CI - 1 

(8.5) 

or 

csca = 	+ (CI  - 1)2 	(8.6) 

i.e. a is independent of pr  and ks. 	Experimental results (see Fig. 64), 

show only a slight disagreement with equation 8.6 which will be discussed 

in Chapter 9, in connection with three-dimensional and other secondary 

factors. 

In contrast with equations 7.31, 7.32 and 7.33, equations 8.4 :-

and 8.5 together with figures 53 and 61 provide relationships between 

CF, CF 
and a, on the one hand and flow and cylinder motion parameters 

only on the other, thus confirming that CF  can represent the excitation 

independently of the cylinder characteristics, pr  and ks. 

The experimental confirmation of Eqn. 8.4 shown in Fig. 63, 

indicated that the excitation force, Pe  (Eqn. 7.30) in common with the 

force,Phd (Eqn. 7.29) and all other time varying forces on the cylinder 

(see Fig. 56), was proportional to (a/D); it was argued therefore that 

the model could be simplified through the elimination of (a/D), by 

dividing all forces byMasw2  x
o. 	Thus from equations 8.3 and 8.4: 

Pe 	
fs 

M tozx as o 
(8.7) 

This equation together with 7.15a, 7.15b and 8.2 provide the 

force ratios resulting from the simplification. 	The corresponding 

phase diagram is shown in Fig. 65. 

It should be noted that when any one of the following three 

conditions are met, namely (a) N < f < Nv  i.e. 0 < CI  < 1; 

(b) 1 < (fs
/f)< If and (c) 90°  < a < 135°; the model then predicts the 

other two. 

From the diagram of Fig. 65, moreover 

fs csca =  f 
(8.8) 

This equation is compared with experimental data in Fig. 64. 

102 



It was concluded that in an ideal, two-dimensional situation, 

the phase angle of the excitation forces depends only on the ratio of 

the excitation frequency, f, to the characteristic or "natural" frequency 

of the flow, fs, thus indicating that, as Bishop and Hassan have 

suggested, the excitation can be treated as a dynamic system with its 

own independent characteristics. 

8.1.5 Prediction of cylinder behaAriour 

	

(a) 	Vibration frequencies 

It can be seen from the diagram of Fig. 65 that for the ideal 

two-dimensional case C
I is a function of (fs/f) only, i.e. 

CI  = 1 - V(fs/f)2  - 1 	(8.9) 

CI values obtained from this equation are compared in Fig. 66 

with data from several experiments conducted with different values of 

	

or and ks. 	It should be noted that because of the good agreement 

between the frequency responses of cylinders having the same or  but 

different k
s (see Fig. 37), only representative average values of CI 

are plotted in Fig. 66 for these cases 

Equation 8.9 when combined with 7.15b, results in the expression: 

  

[ (fs/f)2  - 111—  
-1 

2 

 

f 1 (8.10) N pr 1 

  

      

• 

which gives the frequency response from knowledge of or  and (fs/f). 

When compared with the linear relationship 6.2, equation 8.10 improves 

the agreement between predicted and experimental data, for the lower 

values of fs/f (see Figs. 37 FT  67). 

should be noted that because_ of the good agreeme 	een 

the frequency respons 	linders ha 	e same o
r but different 

k
s (see Fig. 37), only 	entati 	rage values of (f/N) are 

plotted i 	g. 67 for these cases. 

The disagreement between predicted and experimental data which 

can be observed in Figs. 66 and 67 for the higher (fe/f) values, can 

be attributed to three-dimensional and other secondary factors (see 

Chapter 9). 
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CDO f = 
CF s 1 + 2.5 (a/D) (8.11) 

(b) 	Vibration amplitudes 

An approximate interpolation of the data of Fig. 61 lead to the 

following expression: 

1 I • 

this relationship when combined with Eqn. (8.1) results in: 

*CDO 2S 
LCDO -s 

1 + 2.5(a/D)11 = 1 	(8.12) 

which gives (a/D) as a function of ks  alone, if Cm, S and * are 

constant. Given the marked difference between the magnitudes of ks  
V and (CF IT) however, the values of (a/D) obtained from this equation 

will be very sensitive to variations of CDO, S and 4'. 	A first 

approximation can be.  made nevertheless, assuming the average value of 

(CDO
/S) for the whole instability region and the minimum value of tp, i.e. 

1  
*min = 1 + 0.83(a/D)2  (8.13) 

where fs/f is assumed to be constant and equal to one, in order to 

obtain the maximum values of (a/D). 	Fig. 68 shows that the (a/D) values 

obtained from equations 8.12 and 8.13 present some similarities with 

the corresponding experimental data from Fig. 45b,both quantitatively 

and qualitatively. The marked influence of CDO, S and IP indicates 

however, that in order to obtain more accurate predictions of (a/D), by 

this method, the following is needed: (1) a very high accuracy of 

measurement, (2) very close resemblance to the ideal two-dimensional 

case and (3) a more accurate relationship that that of equation 8.11. 

The small scatter of the data of Fig. 61 indicates however that 

for the present research, (:-C-E, -11-) depends on a/D only, in spite of the 
L'DO 

slight three-dimensional and other secondary factors involved; conse- 

quently, if the values of Cm, S and 4'  can be fixed for a given situation, 

an estimated value of the maximum amplitudes (a/D) for the case when 

ks 
= 0 (e.g. Fig. 47) would lead to a value of the right hand side of 

equation 8.12 different from one, which would in turn allow an improved 

prediction of the (a/D) v ks  variation. 
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(c) 	Speculation concerning the ranges of (fs/f) 

The model of Fig. 65 does not indicate any limit to (fs/f), (f/N) 

or a that would predict the end of the instability region, although it 

shows the coincidence of the conditions (fs/f) = IT; f = Nv  and a = 135°. 

The reason for the breakdown of the excitation as (fs/f)44-1 may be 

related to the following processes: 

(i) The phase lead of the angle,a, can also be thought to 

represent the phase lag of the periodic supply of vorticity or power 

to the wake (associated with Vr and tilts with the cylinder's motion), 

with respect to the periodic fluctuations of the kinetic or pressure 

fields of the wake (associated with the force, Pe). 	This interpretation 

suggests that the wake or the excitation mechanism are very sensitive 

to phase changes, tolerating only 450  variations of a. 	It is therefore 

likely moreover, that as (fs/f) tends towards either one or V, the 

excitation becomes less stable and tolerates progressively smaller 

extractions of energy (external damping). The above then constitutes 

a possible explanation for the reduction of the ranges of (fs/f) as ks 
increases from zero. 

(ii) The end of the instability region can also be attributed 

to decreasing values of Vr  as (fs/f) increases (since Vr  = nS(a/D)f/fs), 

which not only reduced the supply of vorticity to the wake, but also 

make such supply more uniform; the vorticity in the wake consequently 

becomes more diffuse and the eddies are weakened. 

(iii) It should be noted that the same type of wake as that 

obtained for (f /f)=)/Y, with the same geometrical proportions and 

frequency and for the same velocity of flow, could also be produced with 

a cylinder of diameter, D' =in); this larger diameter would decrease 

the value of fs to (fs/1/27
) and consequently (fs/f)' would be equal to 

one. 	If the power supply to the wake per cycle is proportional to the 

drag force multiplied times (V/f), then the power supply of the larger 

cylinder would be twice as much as that of the smaller. 	This is because 

the power is proportional to D and CDA, and CDA  = if for the smaller 
cylinder while CDA  = 2 for the larger one. The increased power supply 

can be explained by the larger bluffness, wall surface and velocity 

ratio, Vr, in the case of the larger cylinder, which would result in an 
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= LI  

-f—s- sin a - —2- f 	 + ks] 

pr + 1 LI = 

2 — V 

increased and more markedly periodic vorticity supply to the wake. 

The 2:1 ratio of power supply between the two cases then suggests a 

likely range within which this type of wake can be produced, and conse- 
. 

quently a possible reason for the end of the instability region when 

(f
s
/f) = V. 	It should finally be noted that the above argument is 

also compatible with the observed reductions of the limiting value of 

(f
s
/f) = ii, which occurred in association with power outputs, i.e. 

when k
s 

0. 

It is more difficult to explain the onset of the instability. 

The traces of the beating vibrations indicate however, that the 

frequency of the excitation is different from the vibration frequency, 

f, which itself varied even though the flow velocity was constant. 

The values of (f5/f) > 1 also suggest that the frequency of Pe  is larger 

than f and consequently the phase angle a is constantly increasing, so 

that when, 0 < a < 180°, the vibration grows, and it decays when 

180
o 

< a < 360
o
. 

It can therefore be assumed that the delay in terms of (fs/f) 

of the start of the instability depends on the force ratio: 

P
e
sina- (P

d 
+ cwxo) 

MTsw2x0  + Pecosa 

i.e. the "logarithmic increment" of the beating vibration. Assuming 

P
e
cos a to be negligible when a = 90

o and dividing both the numerator 

and the denominator by Mas
w2x

o' 
L
I 
becomes: 

For unsteady conditions, the second term in the numerator is not 
V 

constant but (C
F R

d depends on (a/D) according to Fig. (8.5). Therefore 

LI will increase with fs
/f or decrease with increases of pr' 

k
s 
or (a/D). 

It should be noted however that for a given value of LI, the 

number of cycles needed for the cylinder to reach its final amplitude 

and thus a steady state vibration, should not exceed the number of 

cycles taken by a to move from 0°  to its final value, af, as given by 

Equation 8.8. 	If the frequency of P
e 

is assumed to be approximately 
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equal to fs, when (a/D) = 0, this number of cycles is likely to be 

proportional to: 

o
f 

f - f 
f 

Although af  can be assumed to be proportional to (fs/f) (see Fig. 

64), it should be noted that the few cycles gained or lost through 

variations of o
f 
caused by f

s
/f changes, are the most important because 

o
f 

= 90
o and sin a is near its maximum; consequently the number of 

cycles mentioned above is likely to be proportional to: 

(fc/f)n 	(fs/f)
n-1 

f - f 	J.  , 	f 
••• - 

f 	 fs 

where n > 1. 	Therefore as the value of (f
s
/f) increases, the number 

of cycles available for the vibration to grow to its final steady state 

amplitude will increase, and the corresponding necessary value of LI  

will decrease. 

The above argument thus indicates that the lower the pr  and ks, 

the lower the (f
s
/f) is required to achieve a given amplitude of steady 

state vibration. 	These trends are shown by the experimental data of 

Fig. 49. 

(d) 	Mean amplitude and energy output 

Although not vital to the arguments of these subsection, it is 

interesting and oportune to consider the mean displacement of the cylinder 

and the energy extracted by it from the stream. 

If the cyclinder were to be dragged through still water, the ratio 

of the energy per cycle of the wake needed to drag a vibrating cylinder 

to that needed to drag a non-vibrating one, is given by: 

C
DA 

f
s 

E
w 

ADO f
e 

(8.14) 

• 	 The non-vibrating cylinder has been chosen as a reference point because 

in this case the same type of wake persists through a very wide range 
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of Re; consequently this wake can be regarded as a characteristic or 

"natural" flow pattern for given values of V and D. 

Ew' 
like the similar parameter involving CF  (see Fig. 61) also 

appears to depend on (a/D) only, as shown in Fig. 69, which is a plot 

of Ew 
against (a/D) in the second instability region, for various values 

of k' . This figure shows that Ew = 2 when (a/D) = 0.2 and that 
so 

the slope of the curve flattens for (a/D) > 0.13, i.e. for the ampli- 

tudes observed in the second instability region. 	Consequently it is 

not unreasonable to assume: Ew 
= 2, i.e. the energy per cycle of the 

wake needed to drag a vibrating cylinder in the second instability 

region is approximately twice the amount needed to drag a non-vibrating 

one. 	This can also be seen in Fig. 70, which plots Ew  against fs/f 

in the two instability regions, from the results of the tests of Fig. 69. 

The approximation Ew  = 2 greatly simplifies the prediction of 

the maximum values of i, as follows: from equation 3. 1, 7.12 and 7.13: 

3 = 
ipfDLV2CDA  Mc 

 + Mas 	
C
DA _ 	 rf)2 (fa)2

k M
c 
+ Mas 	

8STr3(p +1) 'N)  

if the maximum of x occurs when (fs
/f) = VT, i.e. when 

f 	P + 

N 	pr 

then: 
CDA 1 
47682 p

r  

Assuming: 	-Ew  = 2, CDD  = 1; S = 0.2 and (fs/f) = 

(D)  max
= 0.28 

Pr 
(8.15) 

Equation 8.15 thus provides an estimate of the maximum value of 

(i/D) from knowledge of pr  alone. 	Further refinements can be made if 

the values of S and CDO 
are known. 	This equation indicates moreover, 

that for a common steel pipe full of water where pr  = 1.5, (x/D) can be 
a 

as high as 0.18, i.e. approximately equal to the maximum double ampli-

tude of vibration, (a/D),in the second instability region. 
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8.2 	First Instability Region 

8.2.1 The "pairs excitation mechanism" 

(a) 	Influence of vibration amplitudes 

When the excitation was characterised by the shedding of pairs 

of simultaneous eddies ("pairs mechanism"), both in the reorganization 

section of the first instability region and in the vibration of the 

cylinder with a splitter plate, the calculated fluctuating force 

coefficient, CF  , roughly followed the same trends as those exhibited 

by (a/D) (see Figs. 41,43,62 and 71. 	This dependence of CF  on (a/D) 

is explained below. 

For a given value of (fs/f), the velocity ratio of cylinder and 

flow, Vr, is determined by (a/D). 

The vorticity generated in the boundary layer of the cylinder in, 

the upstream stroke increases with increasing Vr. On the other hand 

the translational velocity of the small eddies generated in the boundary 

layers during the upstream 	stroke decreases as Vr increases. 

It would appear that the confirmation of these trends leads to improved 

organization of the small eddies within the large eddies which dominate 

the wake; the large eddies are thus strengthened as Vr  increases. As 

shown in Chapter 3, the large eddies do not appear to roll up until the 

cylinder accelerates downstream (i.e. after its mean position in the 

upstream stroke) and the eddies, which are still growing, accelerate 

together with it. 	It is towards the end of this stage that the cylinder 

together with the large eddies, presents a "bluffer" shape to the 

uncoming flow, than is the case with a stationary cylinder; this 

results in a decrease of the base pressure and a consequent increase 

of the drag force with respect to the corresponding values for a 

stationary cylinder. 

It should be noted that during the first half of the cylinder's 

downstream stroke, the higher the acceleration (which is proportional 

to a/D) the further upstream the eddies will be with respect to the 

cylinder, and consequently the bluffer the shape presented to the 

uncoming flow. This shape is also made bluffer by the upstream flow 

which results from the previous upstream motion of the cylinder and 

which is diverted towards the eddies by the back of the cylinder. This 

upstream flow tends to displace the eddies upstream and away from the 
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typical "Fiippel vortices!' arrangement (see Goldstein), which can be 

observed with non-periodic acceleration, or with very low R
e values. 

The above arguments thus suggest that larger amplitudes of 

vibration should be accompanied by larger increases of the drag force 

in the downstream stroke of the cylinder. 

As the cylinder decelerates in its downstream stroke, the fluid 

immediately behind the cylinder tends, by its own inertia, to maintain 

its downstream translation. The low pressure thus generated just 

downstream of the cylinder induces an onward flow from outside the wake 

which is apparent from the narrowing of the wake. 	In addition the 

separation points move towards the rear of the cylinder. The two 

effects promote a recovery of pressure in the wake and hence a reduced 

drag. 

The downstream displacement of the separation points is thus 

associated with the relative downstream acceleration of the fluid in 

the boundary layers with respect to the upstream accelerating cylinder, 

which assists the fluid in the boundary layers to overcome the friction 

forces that cause the separation. 

(b) 	Influence of (fs/f) 

The above description of the excitation also indicates a strong 

influence of (f
s
/f), which determines the velocity ratio, Vr and the 

acceleration ratio. 

This influence is clearly illustrated below the self-excited range 

i.e. fs/f « 0.5 when for a given a/D, Vr  is large (say Vr approaching 

unity). 	In this case there can be a periodic.reversal of the flow 	in 

the boundary layers, leading to the formation of smaller eddies of the 

opposite rotational sense, similar to those observed when the cylinder 

oscillates in still water. 	The resulting wake disruption  and the 

extremely low relative velocity of the flow in the downstream stroke, 

cause increases of the drag force which are too small to overcome the 

much larger hydrodynamic damping forces. This phenomenon was reflected 

in the increases of the logarithmic decrement of small amplitude 

transients, which were observed as fs/f was decreased below the value 0.5. 

The influence of fs/f on the excitation is also illustrated by 

the ratio of the energy extracted from the stream by the vibrating 
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cylinder per pair of eddies shed, to the energy extracted from the same 

stream by the stationary cylinder per eddy shed. 	This _ratio, E , is 

given by: 

loDLV2CDA(i) 	

= 

c f DA s 
 E 	CDO f 2c 	11_ ) P 	ipDLV Do(kf 

(8.15) 

For given values of V, D and (a/D) therefore, lower (fs/f) 

values indicate relatively shorter periods of the vibrating cylinder, 

and since CDA/CDO 
= constant it follows that less energy is -given to the 

eddies and their strength is consequently limited. 

The stationary cylinder case has been used as a reference point 

because the same type of wake with only secondary changes can be 

observed over a very wide range of flow velocities. 

(c) 	Geometrical considerations 

The understanding of the excitation can be advanced by consider-

ing geometrical parameters such as the distance between consecutively 

shed eddies, which, if expressed in cylinder diameters is proportional 

to (v/fD) or (fs/f). 

Consider for the sake of argument the extreme situation where 

this distance is very small (i.e. fs/f is small). 	If it is assumed 

moreover that the furthest upstream position reached by the eddies on 

the cylinder wall is about 90°  from the frontal stagnation point (see 

Fig. 73a), the proximity of consecutive eddies and the wall of the 

cylinder would inhibit the expansion and contraction of the wake; in 

addition these wake fluctuations would not reach the back of the cylinder 

where pressure variations are most effective. 	If on the other hand 

the eddies were formed well downstream of the 90°  position so as to 

improve the effectiveness of the wake fluctuations (see Fig. 73b), the 

eddies would then be less effective in increasing the bluffness of the 

combined cylinder-eddies' shape. 	A small "distance" (V/fD) thus 

indicates low values of CF' 
while the position of the eddies on the 

cylinder's wall indicates whether the increase of bluffness (and of CF) 

with respect to the stationary cylinder case is larger than its reduction 

or vice versa. 

It is interesting to note that the proximity of the values of 
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Cm:and Cm  recorded in the reorganization section of the first 

instability region suggest, that the average of the fluctuating bluffness 

(presumably associated with the fluctuating drag) is equal to the bluff-

ness in the case of a stationary cylinder. This contrasts with the 

excitation mechanism of the second instability region, where practi-

cally the entire variations of the drag force occur above the value 

of the drag force for a stationary cylinder. 

It should be noted moreover that the smaller the "distance" 

(V/fD), the lower the vibration amplitudes which will be possible without 

interference between consecutive eddies. 

When (V/fD) is very large, the free shear layers joining the 

separation points with the previously shed eddies are very long, unstable, 

they tend to roll up to form additional large eddies, and, in the 

absence of a splitter plate, they as well as the members of a pair of 

eddies also tend to interact. 	These instabilities are aided by the 

higher values of (fs/f) (equation 8.15). 

These instabilities reflect themselves in the behaviour of the 

cylinder with the splitter plate (see Chapter 3) for large increasing 

values of (V/fD), when the shear layers and the eddies gradually become 

more turbulent. With further increases of (V/fD) beyond the point 

where (a/D) is suddenly reduced, the apparent separation points move 

somewhat to the rear of the cylinder, while the wake narrows and becomes 

completely turbulent. This transition thus resembles that of the wake 

behind a stationary cylinder for Re  m 3 x 105  (see Figs. 42 and 55). 

These observations suggest that this transition is not determined 

solely by Re  criteria as in the case of a stationary cylinder; what 

appears to be the important criterion is the fluctuating ratio of the 

inertial to viscous forces in the flow which is strongly influenced by 

the fluctuating accelerations and velocities of the cylinder, especially 

in the boundary layers. 

It is significant that for approximately constant ks  values, the 

experimental results suggest that the sudden drop of the (a/D) vs (fs/f) 

curve was independent of Re. This applied throughout the range 

covered by the experiments, i.e. 3500 < Re  < 9500, at the (a/D) instabi- 

lity. 	The fact that a corresponding sharp fall of vibration amplitude 

was observed at Immingham with R
e 

= 106  supports the argument that R
e 

is not an important factor. 
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Finally it should be noted that the larger (V/fD), the larger 

the distance travelled downstream by an eddy in a given portion of an 

oscillation period; or conversely, the smaller portion of the period 

taken by an eddy to occupy the same position relative to the cylinder. 

The narrowing of the wake is therefore likely to occur earlier in the 

cycle as V/fD increases and this would explain the increase of a with 

fs
/f shown in Figs. 59 & 72. 

(d) 	Quantitative considerations 

A quantitative analysis of the excitation is complicated by four 

identifiable types of instability associated with the "pairs mechanism": 

(a) the small amplitude vibration for high ks  or low (fs/f); (b) the 

large amplitude vibration for low ks and for (fs/f) values before 

irregularities appear; (c) the unstable peak amplitude vibration leading 

to the sudden (a/D) drop; and (d) the turbulent wake, low amplitude 

vibrations occuring at the end of the instability region. 

Another difficulty arises from the relatively small variations 

of (CDA/CD0) which as shown in equations 7.29 & 7.31 determines the 

balance of external and hydrodynamic damping. 	In the work with the 

splitter plate experimental problems such as the thickness, motion, 

drag and damping of the plate, and inaccuracies in obtaining the values 

of x caused by electronic equipment, also added to the difficulties 

mentioned above. 

The main quantitative characteristics of this excitation mecha-

nism however, can be summarised as follows: 

Fig.r,:74 presents values of (CF/CD0) against (a/D) from a series 

of experiments using the splitter plate, with approximately equal pr  but 

with widely differing ks  values. An approximately linear relationship 

between CF  and (a/D) can be identified in the figure, if the results 

of one of the experiments are neglected. 	In contrast with the second 

instability region of the bare cylinder where (CF  V/fD) was a function 

of (a/D) only, in this case the identifiable relationship of Fig. 74 

suggests a different ks  vs (a/D) relationship for every value of 

(V/fD) or (fs/f). 
1 

Fig. 75, which presents the CF 
 values corresponding to the tests 

of Fig. 74, shows an approximately linear relationship between CF  and 

V r, although the difficulties mentioned above did not permit 
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the identification of more consistent correlations. The maximum 

recorded value of C
F 
for the splitter plate tests was equivalent to 

0.75 Cm. 

Fig. 72 suggests that a is a function of (fs/f) only, in spite 

of the wake transition referred to in (c) above. 

8.2.2 Rearrangement and lock-in sections 

The influence of the staggered wake in the first instability 

region, which is characterized by a strong transverse flow immediately 

behind the cylinder, can either reinforce the excitation due to the 

"pairs mechanism" and lead to the peak amplitudes of the instability, 

or it can oppose such excitation and promote a sudden drop of the 

vibration amplitude at a lower value of fs/f in comparison with the 

results for the splitter plate. 

As can be seen in the frequency diagram of Fig. 13b, the inter-

action of the excitation mechanisms is prompted by the mutual proximity 

of the values of f and fs' which allows the staggered wake to modify 

its eddy frequency, fe  = fs, to match that of the vibrating cylinder, 

f, and thus to influence the excitation more significantly as the 

transverse flow reaches the back of the cylinder. The onset of this 

lock-in section appears more or less consistently when fs/f= 0.85. 

In contrast to this, the sharp fall of (a/D) is not well defined 

in terms of (fs/f). 	A probable reason for this is that the amplitude 

response .curves are not only determined by the "distance" (V/fD), 

which as pointed out in 8.2.1c, increases the instability of the free 

shear layers; but as in the case of the splitter plate, the value of 

(fs
/f) where the mentioned (a/D) reduction occurs is also modified by 

(a/D) itself, which contributes to the organization and stability of 

the wake. 	Thus the abrupt reduction of (a/D) occurs earlier in terms 

of fs
/f, the smaller the values of (a/D) for given (fs/f) values. 

(see Fig. 41). 	If ks  controls the vibration amplitudes moreover, this 

could explain the reduced (fs/f) ranges of the instability region, 

corresponding to higher values of ks  (see Fig. 49). 

The interaction of excitation mechanisms can be seen also in 

the behaviour of CF' CF and a. 

Fig. 59 shows two different trends of a vs (fs/f) according to 
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whether (a/D) is large (before the sharp fall) or small (after the 

sharp fall). The curve representing the latter case seems to be 

roughly proportional to fs/f and tending towards a = 1350  for fs/f = 1, 

while the other curve indicates slightly lower values of a and a less 

definite relation with fs/f. 

Fig. 62 shows the behaviour of CF  vs (fs/f) to be following 

approximately the trends exhibited by (a/D); a plot of CF  vs (a/D), 

however did not lead to any clear correlation. The absence of a flat 

top in the (a/D) vs (fs/f) curve of the first instability region which 

led to different (a/d) vs k correlations for every value of (fs/f), 

(Fig. 45a), suggested the CF  vs (a/D) plots of Fig. 76 for constant 

values of (fs/f). 

This figure shows: (a) similar shape for all the curves; (b) 

different numerical values for each curve, and (c) two different trends 

in every curve. 	Points (a) and (b) above, result from the different 

maximum amplitudes corresponding to different values of fs/f, while 

point (c) reflects the changes in the excitation process. 

It should be noted that because of the addition of the interacting 

excitation mechanisms, CF  and (a/D) reached higher values in the first 

instability region than those observed in the splitter plate case. 

Thus C
F 

can be higher than CDO 
although it is always smaller than the 

mean force coefficient 

The mean force coefficient CF is more noticeably affected by 

the type of excitation, as shown in Fig. 60. 	In general CF  follows 

the patterns of CDA 
(see Fig. 13), increasing when the mechanism associated 

with the transverse flow dominates the excitation; under these circum- 

stances, increases of CF  correspond to increases of (a/D). 	In the 

rearrangement section of the instability region however, larger (a/D) 

values indicate more stable pairs of eddies which tend to suppress the 

interaction of the excitation mechanisms and the consequent increase 

of CF; thus in this section CF  is often smaller for higher values of 

(a/D). 

The interaction between the mechanisms of excitation can also 

be appreciated in Fig. 70 which shows the behaviour of Ew  (see 8.1.5d) 

with respect to (fs/f). 	A marked contrast in the scatter of the points 

in the two instability regions can be seen in the figure. 	In the 

second instability region the slight variations of Ew  can be associated 
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with a/D (or ks
), variations. 	In the first instability region however, 

although Ew  increases with (a/D) in the lock-in section, it decreases 

with higher (a/D) values in the rearrangement section where Ew  remains 

at a value of one approximately for the two cases of highest amplitude. 

8.2.3 Double harmonic excitation section 

In this section of the first instability region the shedding 

frequency of pairs of eddies coincided with the vibration frequency. 

In addition, the amplitude of vibration was observed to increase in 

alternate cycles, i.e. with a frequency equal to that of the distant 

wake or the transverse flow just downstream of the cylinder. 	It was 

concluded from these observations that two mechanisms of excitation 

were again operating one associated with the pairs of eddies and one 

with the transverse flow. 

Observation of the transient vibrations of the cylinder with a 

splitter plate, obtained with (fs/f) values lower than those of the 

corresponding instability region, resulted in the curves of Fig. 54; 

the curves represent qualitatively the behaviour of the logarithmic 

decrement, 6, of the transients with respect to (a/D) and (fs/f). 	It 

can be seen in the figure that as (fs/f) increases from zero the slope 

of the curves increasess but the vertical axis intercepts decrease. 

This trend continued until at (fs
/f) values within the instability 

region 6 became negative, i.e. excitation occurred. 	When the cylinder 

without a splitter plate was externally excited at low (a/D) and with 

(fs
/f) < 0.5, the flow patterns in the wake showed a marked similarity 

to those observed with the splitter plate for equivalent (a/D) and 

(fs/f )- 
These observations suggested that the balance of hydrodynamic 

energy inputs and outputs associated with the "pairs mechanism", changes 

as (fs
/f) increases; for example, when (fs

/f) = 0 the excitation forces 

are absent, while when (fs/f) reaches the instability region of the 

cylinder with a splitter plate, these excitation forces are large enough 

to oppose the hydrodynamic damping at low (a/D) and thus to sustain a 

vibration. 

The double harmonic excitation section moreover, commenced with 

(fs
/f) values which were only slightly lower than those of the splitter 

plate instability region; this indicates that only a small energy input 
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is necessary, in addition to that due to the pairs mechanism, to over-

come the damping and thus to cause the vibration. 

The 2:1 ratio of the frequencies f and fe  maintained throughout 

this section of the instability region, further suggested that the 

additional energy required was provided by the excitation mechanism 

associated with the transverse flow and with the distant wake. 

Since energy inputs can only be caused by forces acting in 

phase with the vibration velocity and consequently with the same vibra-

tion frequency, the resulting non-sinusoidal motion, x (Fig. 77) can 

thus be said to be produced by the double excitation of: (a) its second 

harmonic component, xl, by a force F1, of frequency f, associated with 

the shedding of pairs of eddies, and (b) of its fundamental component, 

x2, by a force F2, of frequency f
e
, associated with the distant wake. 

A factor that confirmed the influence of the transverse flow and 

the distant wake in this type of excitation, was a corresponding sharp 

increase of CDA' 
 similar to that observed in the lock-in section of 

3.2.4 (see Fig. 13). 

Since the frequencies of the excitation and of the cylinder's 

motion were synchronised, it would be possible to refer to a frequency 

lock-in if the former were controlled by the latter. That this was so 

was confirmed by the departure of the eddy frequency from the value fs, 

which that frequency would have otherwise adopted. 

From the above interpretation of the excitation it follows that 

the energy inputs due to the mechanism associated with the transverse 

flow, will increase with an increase of the amplitude x2  (see Fig. 77). 

As the excitation frequency fe  is considerably smaller than N, there is 

practically no dynamic magnification in this component of the motion, 

and therefore: 

F2 
= constant 

kx2 

or, for a given size of cylinder: 

F2 
x2

x constant 
(p + 1)N r   

i.e. for given values of F2  and N, the amplitude x2  will decrease as pr  
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increases, consequently reducing the energy input via this excitation 

mechanism. This effect of pr  is reflected in: (a) the smaller values 

of (a/D) at the onset of the first instability region of curve 1 	in 

Fig.41b , when compared with curve 2 of Fig. 41a , in spite of a 

slightly higher value of ks  for the latter; or (b) in the slight 

reduction of the fs
/f ranges of the first instability region which 

correspond to higher values of pr  in Fig. 49. 

It should be noted that the model described in equation 7.25 

does not strictly apply in this section because the vibration is non-

sinusoidal, but since the pairs mechanism predominates in the excitation, 

some qualitative observations are worth noting. 

• 
Curve 1 of Fig. 62 shows a peak of the value of CF  in this 

section which is notably more marked than the smoother transition of 

the corresponding (a/D) vs (fs/f) curve 1 of Fig. 41a. This is because 

the hydrodynamic damping forces in this section are larger than those 

of the adjacent reorganization section, as illustrated by the behaviour 

of CF  in Fig. 60. 	It should be noted however that the value of CF  in 

the double harmonic excitation section of Fig. 62 is significantly 

higher than a value extrapolated from the adjacent reorganization section; 

the difference between the two values is not due to the energy input via 

the transverse flow mechanism alone, which was argued above to be weak. 

The pairs mechanism is predominantly responsible for the increase of 

(a/D), which is in turn associated with increases of CF. 	These obser- 

vations clearly show the self-excited nature of the pairs mechanism and 

the amplitude controlling action of the mean drag force. 
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CHAPTER 9 

THREE-DIMENSIONAL CONSIDERATIONS 

The previous chapters have been primarily concerned with two-

dimensional cylinders free to vibrate only in the flow-direction of a 

one-dimensional stream. 	For these situations, cylinder behaviour can 

be predicted from the empirical relationships of Chapter 6, or for the 

second instability region, from the theoretical model developed in 

Chapters 7 and 8. 

The first part of this chapter is concerned with the discre-

pancies between truly two-dimensional flow-cylinder arrangements and 

the results of the present study where small three-dimensional effects 
were unavoidable. 

In practical situations, three-dimensional effects are likely 

to be more pronounced than in the present study; the second part of 

this chapter is concerned with the applicability of the material of 

Chapter 4 & 6 to 8, to full-scale situations where the flow velocity 

and vibration amplitude are variable along the length of a pile for 

example. 

9.1 	Influence of Three-Dimensional Effects on the Results of the 

Present Research 

Although the experiments of this research were designed to 

approximate the ideal case of a two-dimensional cylinder immersed in a 

one-dimensional stream, the unavoidable imperfections of the experi-

mental models were responsible for a departure of the experimental 

results from the predictions based on two-dimensional models. 

Except for the effects of"blockage" (see Appendix VI ) the most 

important factor contributing to these discrepancies was the approaching 

flow's velocity distribution along the cylinder's length, especially in 

the boundary layers near the end plates where the magnitude and the 

correlation of the hydrodynamic forces, Pd  and Pe were altered. 

The irregularities of the approaching stream often resulted in 

flow patterns which were not correlated along the cylinder's length and 
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which caused reductions of (a/D) or (f/N), as shown in Chapter 6, 

presumably due to a weakening of the total excitation forces. 

Reductions of these hydrodynamic forces could also be attributed 

to other factors (turbulence of the approaching stream, roughness of 

the cylinder's surface, etc.) but these reductions were small (say < 3%) 

and were not felt to be important. 

It should be noted that the inertal forces of the added mass 

have been assumed to be a function of cylinder geometry and motion only 

and were therefore independent of the factors mentioned above. This 

assumption allows the use of Masw2x0  as a common denominator for the 

force analysis which follows. 

Owing to the complexities and inaccuracies involved in the assess-

ment of the three-dimensional factors here dealt with, this illustrative 

analysis will for convenience concentrate on the second instability 

region, and it will refer mainly to the results of run 99 (see Table 11-2). 

For further details of this analysis please see Appendix VI. 

9.1.1 Damping forces 

The damping forces depend on the mean force coefficient, C. 

which in the present research was affected by the additional drag forces 

caused by the supporting arms of the cylinder; these forces were not 

included in external damping for the reasons given in Appendix V. 

The consequent increase of CF  can be calculated by assuming a drag 

coefficient for the arms (see Appendix 	V ) of say CD  = 1.5, and an 

average drag coefficient for the cylinder of say 1.5. 	Considering the 

reduced moment arm of the resultant force and the ratio of the areas 

presented to the flow by the cylinder and by its supports. The contri-

bution of the.supports to the total mean force results about 1.5%. 

The ratio of the total damping forces to the inertial forces of 

the added mass (see Eqns. 8.1 F 8.2) was observed to depart from the 

value of one predicted by the two-dimensional model by an amount which 

appeared to be proportional to CF, i.e. 4% for CF  = 1.4 to 7% for CF  = 2. 

This variation was probably due to blockage effects (see Appendix VI ). 

The measurements of velocity made for this research were not 

affected by blockage because they were made about six diameters upstream 

from the cylinder. 	If the effect of blockage is to increase the local 
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flow velocities and consequently the hydrodynamic forces above the 

values they would adopt in an infinite stream, it then follows that 

any hydrodynamic force coefficient calculated from the measured values 

of V will be overestimated accordingly. 

It can be shown (see Appendix VI) that the product (EF, V/fD) 

which predominates in the numerator of Eqn. 8.1 is approximately 

proportional to V-1.3. 	If Masw2xco is assumed to be unaffected by 

blockage or three-dimensaionl effects and if a is the increase of V due 

to blockage effects, an approximate correction for Pd  results: 

) 
(Pd)m 	fDJ m 

 - 1 +1.30 V ) (Pd)b 
TUJ b 

where "m" indicates measured or calculated from the measured values of 

V, and "b" indicates calculated considering the increased values of 

Ardue to blockage. 	Combining this correction with a linear variation 

of Pd/(Masw2xo)  with respect to CF, based on the values given above, 

and assuming p, to be small,the correction for the velocity due to 

blockage will be: (see Appendix VI). 

CF  

26 

When CF  = CDO (i.e. stationary cylinder), this expression results 

in an 8% correction for the drag force, which is a not unreasonable 

value for the cylinder/flume area ratio of about 7%. 

When (fs/f) = I, CF  = 1.4 and 0 = 5%; considering the additional 

drag due to the supporting arms: 

(Pd)m  

(Pd)b/cyl. 
= 1.08 

i.e. the actual value of P
d/(Masw2xo)  or F fDIf-excluding the 

drag of the supports is about 8% lower than the corresponding measured 

value. 	When (fs/f) = )1'2, the measured value of Pd/(Masw2xo)was = 1.04, 

and consequently the actual total damping forces acting on the cylinder 

alone are about (8-4) = 4% below the model's prediction of one (Eqn. 8.2). 
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This can be attributed mainly to boundary layers, which result of a 

thickness of about 0.7 cm (2% of L), if considered as an equivalent 

step function of V2  (see Fig. 78). 	This is not an unreasonable estimate 

considering the short length of the end plates upstream of the cylinder. 
fs 

It should be noted that the factor 	-
7 
-of Fig. 61, is affected 

'DO 
neither by boundary layers nor by the additional drag of the supports 

because as explained in Chapter 5, both CF  and CDO  are affected equally 

by these factors. The product is nevertheless affected by blockage 

effects which influence CF, CDO and fs 
in slightly different ways. 

Consideration of these effects (see Appendix VI ) suggests that this 

product may be overestimated by 3% to 7% (depending on the value of F) 

with respect to the actual drag force acting on the cylinder alone. 

9.1.2 Excitation forces 

The excitation forces depend on CF  which in turn is affected by 

blockage. 	It can be shown (Appendix VI ) that: 

(CF) 
	m 	1+35  
(CF)b  

-The ratio Pe/(Masw2xo) 
 (Eqn. 8.3) depends in addition on V2  

(Eqn. 7.30) which is affected by blockage; consideration of these 

effects when (fs/f) = 1ff, and assuming Masw2xo 
to be constant, leads to: 

(see Appendix VI ) 

(Pdm 1.045 
(Pe)b 

i.e. the calculation of Pe/(
Masw2xo)  overestimated it by about 4.5% 

when (fs/f) = V, due to blockage effects. 

Extrapolation of CI  in Fig. 66 to fs/f = II, for the case here 

considered (Run 99), leads to CI 
= 0.09 :instead of the predicted zero. 

This is illustrated in the phase diagram of Fig. 79 where all the hydro-

dynamic forces are shown divided by Ma s w2xo' three different vectors 

are drawn for each force, namely (1) the measured value, m, calculated 

from the measured values of V; (2) the actual value, b,corrected for 
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(3) 
the effects of blockage; andAthe ideal value, 2-D, predicted by the two- 

dimensional model. 

It can be seen in Fig. 79 that the ratio of the ideal (2-D) to 

the actual (b) values of the excitation force is approximately: 

(Pe) 2-D 

(Pe)b 
- V(1.04) 2  + (1.09)2  = 1.07 

i.e. the actual value of Pe is likely to be about 7% below the two- 

dimensional model prediction. 	It should be noted that this percentage 

is higher than the corresponding one for the damping forces, which can 

be explained by (1) the excitation forces being more sensitive than the 

mean drag force to disturbances in the correlation and timing of the 

flow patterns along the cylinder's length, and (2) by the additional 

disturbances of the wake caused by the supporting arms of the cylinder. 

Therefore if CF 
is more sensitive than CF to three-dimensional and 

secondary effects, it follows that: (see Fig. 79) 

(1 - CI) < 1 	when (fs/f)= 

It can then be concluded that three-dimensional and secondary 

effects are responsible for the failure of (f/N) and CI  to reach the 

values of (N
v
/N) and zero respectively, predicted by the two-dimensional 

model. 

Fig. 79 further shows that when (fs/f) = 1-2- the measured value 

of C
F 
is about (7 - 41) = 21 % below the ideal value predicted by the 

three-dimensional model. 	As (fs
/f) tends to one, the calculated value 

of CF  depends increasingly on
r
,(V/fD), which is itself progressively 

overestimated; consequently CF  should also be progressively greater 

than (27r 2SV)/(1 + 1V2) as Vr increases, since Vr = 7rS(a/D)(f/f) 
1 
 . 

This trend can be observed in Fig. 63. 

9.1.3 Phase angle 

Fig. 79 shows that although the prediction, csca = fs/f (Eqn. 8.8), 

was approximated by the hydrodynamic model used for this research, it 

was not actually achieved. 	The proximity of the actual value of (a)b  

to that predicted by the two-dimensional model suggests however, that 

in the central portion of the cylinder outside the boundary layers, 
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a = 135°. 	The total excitation force shown in Fig. 79 could then be 

divided into two components: (a) one with a = 135°  representing most 

of the excitation, and (b) the other (or a series of them) with a phase 

angle smaller than (a)b  and representing the smaller and lagging 

excitation in the boundary layers. 	It is however impossible to 

predict with any certainty from the results here presented, whether a 

would be determined by equation 8.8 in the case for example of a signi-

ficantly sheared velocity profile. This question can only be answered 

by further research specifically concerned with this problem and which 

would probably require a more complex transducer and a controlled three-

dimensional flow. 

9.2 	Engineering Applications of the Results of the Present Research 

The typical flow-induced vibration problem encountered in engineer-

ing practice cannot strictly be represented by a two-dimensional model. 

The most important divergences between prototype -structures and models 

of the type considered here, are: (a) the significant variations of 

flow velocity, flow direction and vibration amplitude along the length 

of a three-dimensional cylinder,and (b) the degrees of freedom in proto-

type structures which permit both in-line and cross-flow motion on the 

one hand and the excitation of higher harmonics on the other. 

A potential vibration problem can sometimes be avoided at the 

design-stage by ensuring that the prototype never enters an instability 

region. 	If an instability region cannot be avoided a designer would 

attempt to predict the levels of excitation and if necessary modify the 

structural charactersitics to reduce the vibration. 	In the subsections 

which follows these two approaches are discussed in relation to the 

results of the present work. 

9.2.1 Avoidance of the instability regions 

Given the possibility in three-dimensional situations of cross-

flow motion and excitation of higher harmonics, the avoidance of 

instability can only be achieved with (V/ND) values below those of the 

instability regions. 	The threshold of instability was identified as 

(fs
/f) = 0.5 (Chapter 4) and was shown to be influenced by pr and ks 

(Chapter 6); the effect of the'se factors however, was to increase the 

threshold value. 
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It was shown in previous chapters that the vibration in the 

fist instability region commenced with a double harmonic excitation 

which led to a local peak of the amplitude response, and which occurred 

for (fs
/f) values greater than 0.5. 	This local peak can be identified 

in most published amplitude response curves as shown in Fig. 32. 	The 

full-scale experiments conducted at Immingham (see Wootton et al) 

moreover, showed lissajous figures representing the vibration patterns 

in this section of the first instability region, which had a 4:1 ratio 

• of the in-line to cross-flow vibration frequencies. Such evidence seems 

to be in accord with the description of the double harmonic excitation 

(see 8.2.3); the influence of the transverse flow associated in the 

present study with the distant wake, can be seen in the small amplitude 

cross-flow motion of the full-scale pile. 

The results of the experiment at Immingham provided by Wootton 2  
moreover, confirmed the observation of Chapter 6 that the vibration 

frequency is nearly equal to the natural frequency, N, at the onset of 

the first instability region. 

Consequently the only condition necessary to avoid instability 

is: 

V 	1  
ND 	

(9.1) 9.1) 
 I. 

It should be noted that the curve representing the experiments 

conducted at Immingham in Fig. 32, commences with fs/f values smaller 

than 0.5; this might be attributed to flow velocity variations along 

the cylinder's length, bearing in mind the small additional energy 

inputs which are necessary to sustain the self-excited vibration for 

these values of fs
/f (see 8.2.3). 	This interpretation also explains 

the gradual increase of that amplitude response curve in contrast with 

all the others which represent cases of uniform flow velocity profiles; 

the sharp (a/D) increase of these curves suggests an excess of energy, 

for (a/D) values below the steady state amplitude reached at that 

particular threshold value of (fs/f). 

Thus in order to ensure stability in cases of irregular flow 

velocity profiles, the maximum velocity should be considered in equation 

(9.1). 

It should be noted that in-line vibration can in some cases 
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reduce the threshold values of (fs/f), for cross-flow instability. 

This is because the excitation mechanisms associated with transverse 

flow and an alternate wake, induce forces in both directions (see 

Bishop and Hassan). 	Thus when or  is small, the second instability 

region of in-line vibration can extend near to or within the insta-

bility region of cross-flow motion (see Chapter 6); this may resultin 

considerable extensions of the cross-flow instability region towards 

the lower (V/ND) values. (See e.g. King). 

The interaction of in-line and cross-flow excitation could be 

observed during the present research in the traces of vibration in the 

second instability region of the lightest cylinders; in one case, 

alternate increases of (a/D) of as much as 80% in every second cycle 

of oscillation were recorded. 	As shown in 8.1.5d the mean displace- 

ment of the cylinder, x, is an approximate function of or  only, con-

squently when or  was lowest the supporting arms of the cylinder were 

not perpendicular to the flow direction because 	+ xo) was largest; 

this permitted a component of the cross-flow force to excite the 

cylinder. The supports of the arms had to be slightly turned to avoid 

this problem. 	The large increases of amplitude compared with the 

small component of the cross-flow force (slope of the arms about 1:20) 

indicated that in-line motion can cause large cross-flow forces, even 

for (fs/f) < I instead of the commonly observed (fs/f) > 2. 

9.2.2 Prediction of cylinder behaviour 

The two-dimensional models of Chapter 8 showed that all the 

hydrodynamic forces depend on (a/D) and/or (fs/f). 	Consequently in 

cases where these two parameters vary along the cylinder's length, 

the coefficients F and CF 
and the angle a should vary accordingly. 

For a typical flexible pile in a marine or estuarine environment 

moreover, the stiffness, structural damping and inertial forces of the 

cylinder itself act over the entire length of the cylinder; the 

inertial forces of the added mass however act only over that portion 

of the cylinder's length which is immersed in the fluid. The hydro-

dynamic damping and excitation forces, although acting over the entire 

immersed length of the pile can vary considerably with the changing 

flow velocity and with the variable flow patterns along the cylinder's 

length, especially in the quasi-static portions near the supports or 
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in the boundary layers. 

To account for these variations in the prediction of cylinder 

behaviour a three-dimensional cylinder might be assumed to consist of 

a series of short two-dimensional cylinders, each subjected to hydro-

dynamic forces as predicted by the two-dimensional model from the local 

flow and cylinder motion characteristics. This assumption neglects 

the interaction between flow patterns corresponding to adjacent rings; 

the errors arising from this interaction are likely to diminish with 

decreasing gradients of either the displacement x, or the flow velocity 

V, with respect to the pile length L; i.e. for long piles vibrating 

in their first normal mode. 

(a) 	Vibration amplitudes 

A flexible pile with one or more fixed points of support can 

vibrate with amplitudes varying along its length from zero to some 

maximum value. For this reason it is necessary to know the relation-

ship between the net excitation forces and (a/D), over the whole range 

of the latter in order to calculate the amplitude response of the pile. 

The curves of Fig. 45 can be useful if the values of ks  are 

multiplied by Masw2xo' 
 to give plots of the net excitation force, 

ewxo 
= (-cwxo) with (a/D), where 

E is the net excitation or negative 

damping coefficient. 	Figure 80 presents such curves for various (fs/f) 

values. 

The steady-state self-excited experiments of the present research 

however, did not provide all the information required because of the 

discontinuous nature of the excitation mechanisms, hysteresis phenomena, 

beatings, etc. 	Observation of the unstable behaviour of the cylinder 

and analysis of Figs. 80 and 41 however, led to an approximate shape of 

the (cwxo 
vs (a/D)) curves, as shown in Fig. 81 and to a tentative 

hysteresis diagram (Fig. 82). 

The curves of Fig. 81 can be assumed to represent the variation 

of the excitation force along the length of a hypothetical "pinned-free" 

rigid cylinder immersed in a one-dimensional stream whose amplitudes of 

vibration are proportional to the distance from the pinned end. 	For 

such a simplified system, the curves can be replotted in the form: 

(e-c)wx0  vs (a/D) , (see Fig. 83); the resulting positive and negative 
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areas under the curve, which represent the energy input and output of 

the system respectively, should be equal in order to sustain a steady 

state vibration. 	It should thus be possible to estimate the vibration 

amplitudes of such a system. 

Similar curves could be drawn for piles whose vibration ampli-

tudes vary with length in a non-linear manner and interpolations could 

be made between the curves for the cases where fs/f varies along the 

cylinder's length. 

Although time did not permit the experimental confirmation of 

the above procedure, it should be noted that in general the portions 

of the cylinder whose vibration amplitude is small contribute little 

to the total energy exchange, since energy is in this case proportional 

to (a/D)2. 	The trends of Figs. 82 and 83 thus provide a likely explanation 

for the partial suppresionofthe second instability region in the case 

of the "pinned-encastre" piles studied by Wootton et al (see Fig. 32); 

the piles' maximum (a/D) may have fallen inside the negative area ("a" 

in Fig 84) and the piles thus became sensitive to e reductions occurring 

for lower(a/d)("b" in Fig. 84) as fs/f increased. 	In contrast are the 

cylinders investigated by King, which were cantilvered from the bottom of 

the flow channel; almost all the energy exchange in these cases took place 

near the water level where the maximum amplitudes occurred due to the 

type of deflection curve of the cylinders; consequently these were not 

very sensitive to E reduction, for low (a/D) ("b" in Fig. 84) and the 

second instability region was extended beyond the limits of curve 1 of 

Fig. 32. 

(b) 	Vibration frequencies 

For the prediction of frequency response, the variations of (a/D) 

along the cylinder's length are not as important as in the case of ampli-

tude response predictions; this is because when Cm  is assumed equal to 

one, both the excitation forces and the inertial forces are in general 

proportional to (a/D) for a given value of (fs/f). 	However, the inter- 

action between different portions of a cylinder whose vibration amplitude 

changes along its length, depend on energy exchanges which are proportional 

to (a/D)2. 

One procedure for an approximate prediction of frequency response 
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(9.5) 

(9.6) 

is described below and is based on the assumptions of equations 8.2 and 

8.8. 

In a quarter of a vibration cycle the work done against the 
4 

spring and the excitation force, Pecosa, must be equal to the work done 

in the same quarter of a cycle by the inertial forces of the cylinder 

and the added mass, i.e. 

5 mtce 	o 
w2x2m, 	M' w2x2di, = LI lo

e o 
x2di, f P

e
cosax2dL LI 	L, as 	o L'  

(9.2) 

where M' , M' and k' are the equivalent values of the mass' added 
ce as 

mass and stiffness of the cylinder per unit length. 

It should be noted that the active length of the pile, L', where 

the excitation forces are applied is not necessarily equal to either the 

full pile's length, L, or the immersed length, d; consequently the 

equivalent cylinder mass MCe  can be given by: 

M' = 
ce 

L 
4 

pc o 
x2dL + j D2 p

fo  x2dL - j D2 p,x2dL 
dL' 	r o 

(9.3) 

 

x2dL 
L' 

i.e. M'
ce 

 considers all the masses falling outside the active length, 

L', as if they were distributed within that length. The equivalent 

stiffness and added mass can be given by: 

5 kx2dL 

k' = L 	 (9.4) 
f x2  dL 
L' ° 
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Dividing equation 9.2 by MLw2  and with the aid of equations 9.6 and 

9.7, and Fig. 65: 

k' pi +1 x2  
r  re f p' x2dL + f x2dL = f 	dL + 

LI  re o 	M' e 
	

+ 1)  
L' ° 	L' as 	re 

P
e 	
cosa 

f 	x2  dL M' w2x 
L' as o 

i.e. 
(N j  2 (p' + 1) f x2dL - (p' + 1)t.  j 	x2dL = 

L' re 	re 	L' o 

= f (1 - C
Io  
)x2  dL 

L' 

 

hence: 

N 2  
IL,  (1 - C

Io  
)x2dL 

1 f) (9.8) 

VP,  

 

(p 	+ 1) f x2dL re 	
L' ° 

 

If the flow velocity profile is known, (fs/f) can be calculated 

or an initial value of it can be estimated for an iterative process; 

(fs/f) together with the data of Fig. 53 or equation 8.9 give values 

of C
I 
for equation 9.8; knowledge or an estimate of the pile's 

deflection curve then leads to the frequency response. 

The active length, L', should in general be equal to the immersed 

length of the pile, d, although in some cases it may be convenient to 

reduce it so as to consider only the portions of the pile which make 

the greatest contribution to the excitation; for example in cases when 

the flow velocity profile presents very marked three-dimensional charac-

teristics, or when simplified estimates of the frequency response are 

needed. 

Finally it should be noted that when the direction of the 

approaching stream varies along the cylinder's length, excitation in 

some portions of the cylinder may arise from a component of the cross- 

. 	flow force (see 9.2.1). 
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Figure 85 shows a comparison of equation 8.9 with Ci -values 

calculated from the data provided by Wootton2and corresponding to the 

full scale three-dimensional experiments conducted at Immingham. To 

calculate C
I' 

the variable values of (fs/f) along the cylinder's 

length were averaged arithmetically; S was assumed equal to 0.23, and 

an equivalent mass of the pile was obtained with the aid of an equation 

similar to 9.3 (see Wootton et al2). 

The figure shows that although the trend of the experimental 

data agrees with that of equation 8.9, there is a divergence similar to 

that observed in the data of the present research (Fig. 66 ) which was 

here attributed mainly to boundary layers and uncorrelated flow. 	In 

the case of Fig. 85 therefore, the divergence can be attributed mainly 

to (a) uncorrelated flow patterns; (b) turbulence; (c) piles surface 

roughness; (d) the arithmetic average value of (fs/f) used, and (e) the 

variations of the direction of the flow along the pile's length which, 

as indicated in 9.2.1 can have a marked influence on the vibration, 

by allowing a mixed, cross-flow and in-line excitation. 

• 
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CHAPTER 10 

SUMMARY AND CONCLUSIONS 

An experimental and analytical study has been conducted on the 

flow-induced, in-line vibration of a two-dimensional, circular cylinder 

in approximately one-dimensional flow. 

10.1 The Non-Dimensional Frequency Parameter 

In agreement with previous research reports, two instability 

regions and two different excitation mechanisms ("pairs" and 

"transverse flow") were here identified. 	It was observed however 

that the first instability region could not be associated with the 

pairs mechanism alone; the interacting patterns of the two excitation 

mechanisms led to the identification of three distinct sections in this 

instability region. 

The commonly-used base parameter, (V/ND), was found unsatisfac-

tory, both for a quantitative representation of the excitation and 

for comparing the reported behaviour of different cylinder-flow arrange-

ments. 

The large frequency variations here observed suggested that the 

vibration frequency, f, should appear in a more satisfactory base 

parameter. Moreover, the marked influence of the alternate distant 

wake and its tendency to adopt the Strouhal frequency suggested that 

the Strouhal number S should also be represented. 	This reasoning led 

to the development of a non-dimensional frequency parameter (fs/f) 

which related the actual frequency of the vibrating cylinder to the 

eddy frequency which results from the interaction of the particular 

flow and (stationary) cylinder considered. 

The non-dimensional frequency parameter: (a) produced a markedly 

improved agreement of the curves representing the response of widely 

differing cylinder-flow arrangements; (b) provided a simple quantitative 

definition of and differentiation between the two instability regions; 

(c) defined the flow velocity threshold of instability and could thus 

be helpful for avoiding vibration problems at the design stage; (d) 

permitted a quantitative analysis of the excitation which led to a 

AIM 
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method for predicting the ranges and characteristics of the excitation 

(Chapters 6 and 9); (e) permitted a simplified theoretical model for 

the second instability region where for example (fs/f) represented 

(csca) or(Pe/Masw2x0); and (f) provided likely explanations for 

example for the reported absence of in-line vibration when Re  103. 

The use of (fs
/f) rather than (V/ND) suggested moreover that Re 

and other secondary factors such as turbulence, surface roughness, etc., 

affected the excitation only through changes in S. The results of the 

Immingham full-scale experiments however, suggested that in-line 

vibration was not affected by the marked increase of S reported for a 

stationary cylinder when Re  = 3 x 105  (see e.g. Walshe and Wootton), 

but it appeared that for a vibrating cylinder S has an approximately 

constant value independent of Re. 	In this context moreover, the 

experiments with the splitter plate showed a sharp fall of the (a/D) vs 

(fs
/f) curve at which point the wake narrowed slightly and became fully 

turbulent; this behaviour which resembled that of a stationary cylinder 

and its wake when Re 
= 3 x 105, occurred at a fixed value of (fs

/f) for 

given ks  and independently of Re. 

It thus appeared that for Re  ?. 103  the excitation is not signi-

ficantly affected by Re  but rather by the fluctuating inertial and 

viscous flow forces; these forces seemed to be strongly influenced by 

the ratios of the fluctuating velocities and accelerations of the flow 

with respect to those of the cylinder, and such ratios are determined 

by (a/D) and (fs/f), rather than Re  

Some novel characteristics of in-line vibration were observed 

which, in addition to (fs
/f) contributed to the definition of and dis- 

tinction between the instability regions. 	For examples: (a) the new 

type of wake (Plates 8a and 8b) observed in the second instability 

region or in the double harmonic excitation section of the first, was 

different from the Von 'Carman form (Plate 6a) previously thought to 

prevail in those circumstances; the Von Kaman form however was observed 

to prevail in the wake of the lock-in section (Plate 7a) or in the 

distance wake of the rearrangement section (Plate 6b) of the first 

instability region; (b) the marked increases observed in CDA
/CDO 

(previously assumed = 1.0) associated with the transverse flow excita-

tion mechanism; (c) an observed increase of f/N (was larger than any 
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previously reported)starting from 1.0 at the onset of both instability 

regions and reaching (Nv/N) in the second; (d) a relationship between 

f and fe has been identified which showed "frequency lock-in" in two 

sections of the first instability region and throughout the second; 

and (e) the non-sinusoidal vibration observed at the onset of the first 

instability region, the analysis of which led to the association of the 

corresponding peak of the (a/D) vs (fs/f) curve with a "double harmonic 

excitation". 

10.2 Density and Damping 

From an analysis of density and damping it was concluded that 

they affected the cylinder behaviour independently and in different 

ways: pr  determined the frequency response and ks  the amplitude response, 

while for given values of (fs/f), pr  did not affect (a/D) nor did ks  

affect (f/N). 

The ranges of flow velocity where instability could occur however 

were determined by both pr  and ks. The stability parameter ks  was 

found to determine the instability ranges in terms of (fs/f) (Fig. 49), 

but the same ranges in terms of flow velocity [say in terms of (V/ND) = 

(fs/f)(f/N)/2S] were also affected by (f/N) and consequently by pr; 

the density, pr, thus determines the relationship between the instability 

ranges in terms of (fs/f) and the same ranges in terms of the flow 

velocity. 

The different and independent r6les played by density and damping 

thus indicate that in contrast to aerodynamic practice, where they are 

often considered together and where frequency variations are negligible, 

for flow-induced, in-line vibration in water, density and damping should 

be considered separately. 

Consideration of the most common parameters used to represent 

damping led to a redefinition of the stability parameter, ks, in terms 

of c and f rather than 6 and N; the newly defined ks  was independent of 

pr
, and was therefore suited to represent the independent influence of 

external damping on the excitation. 

In contrast with previous research reports where external and 

hydrodynamic damping have been considered together and extrapolated 

from still water measurements, only external damping (mainly structural) 
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was here considered for the determination of ks; this was done because 

it was felt that hydrodynamic damping formed an integral part of the 

total hydrodynamic forces and so should be dealt with separately. 

The clearer definition of density and external damping, and of 

theirindependent influence on the excitation, thus led to correlations 

(the first for in-line vibration to the knowledge of the author) between 

(i) pr and (f/N); (ii) ks and (a/D); and (iii) ks and the ranges of 

(fs/f) where instability can occur. These correlations and a knowledge 

of fs/f, pr  and ks  provided a technique for predicting whether in-line 

vibration could occur, and if so, for predicting the ranges and 

characteristics of the motion for two-dimensional cylinder-flow arrange-

ments. 

Novel characteristics were identified in connection with the 

frequency response of the cylinder. 	For example: (a) the frequency in 

the second instability region tended to the value of the natural frequency 

in air (or in vacuo Nv); (b) (f/N) varied approximately linearly with 

(fs/f) and the slope of the curve was a function of pr alone; (c) the 

high (f/N) values corresponded to (V/ND) values larger than 6. 

In association with (a/D), the following was observed: (a) there 

existed a unique value of (a/D) for every value of ks  independently of 

(fs/f) over most of the second instability region; (b) in the first 

instability region different values of (a/D) corresponded to each 

(fs/f) when ks remained constant, although all the (a/D) vs ks curves 

had similar shapes; (c) the damped (a/D) relative to its undamped value 

for the same (fs/f) in the first instability region however, was found 

to generate a unique relationship with ks  for all values of (fs/f) 

(Fig. 46). 

The empirical correlations mentioned above were applicable to 

two-dimensional stituations only. 	To improve the understanding of 

this type of vibration and to widen the applicability of the results of 

this research, hydrodynamic forces were then considered. Hydrodynamic 

parameters were sought which should be independent of cylinder charac-

teristics such as pr and ks' for purposes of developing a theoretical 

model which would incorporate the hydrodynamic characteristics of the 

excitation. 
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10.3 Hydrodynamic Forces 

To facilitate its analysis the measurable total hydrodynamic 

force was divided into components: added mass, hydrodynamic damping 

and excitation forces. 

A variable mass coefficient which would be responsible for the 

frequency variations was considered and rejected because it was 

difficult to explain : (a) the absence of intertial forces when f = Nv, 

and (b) the constancy of the phase angle of the excitation force. 

A constant mass coefficient was adopted because (a) it permitted 

the attribution of frequency variation to the fluctuating drag forces 

and their phase relationships; (b) a value of CM  = 1.0 was confirmed 

for (fs
/f) < 0.5; (c) a constant mass coeffficient allowed for a 

variable phase angle which was suggested by the difference between the 

characteristic frequencies fs  and N;and (d) it facilitated further 

analysis of the excitation leading to the simplification of the theore-

tical model for the second instability region. 

It was argued that hydrodynamic damping could not be extrapolated 

from measurements in still water because (a) it was observed to vary 

with (fs/f) and (a/D) ,for (fs/f) < 0.5; (b) the flow patterns appeared 

very different in the two situations; and (c) in still water the damping 

was mainly viscous while in flowing water it was mainly due to pressure 

forces associated with separated flow. 

Hydrodynamic damping was thus expressed in terms of the mean 

drag force which included both pressure and friction forces. 

To represent the excitation forces, the total drag force-mas: 

expressed in terms of a force coefficient, consisting of a mean and 

a fluctuating part; to generate the frequency variations a variable 

phase angle between the fluctuating force coefficient and the cylinder 

motion was introduced, and to reproduce the behaviour of x, the mean 

part was also allowed to vary. 

The resulting model (Eqns. 7.23 and 7.24) represents the exci-

tation in terms of (a) flow parameters; (b) cylinder motion and geo-

metry; and (c) force coefficients and a phase angle which are indepen-

dent of cylinder characteristics such as pr  and ks. 
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For the second instability region, the flat top of the (a/D) vs 

(f5/f) diagram permitted a significant simplification of the theoretical 

model for two-dimensional cases. 	For this simplified model: (a) the 

total damping force is equal in magnitude to the inertial force of the 

added mass; (b) the excitation force, Pe, is equal to the inertial 

force of the added mass multiplied by (fs/f); (c) the cosecant of the 

phase angle, a, is equal to (fs/f); (d) the productRyCD0)(fs/f)] is a 

function of (a/D) only, and (e) the coefficient CF  is directly propor-

tional to Vr  (CF = r). 

The hydrodynamic forces and their phase relationship in the 

second instability region are thus determined by Masw2x0  and (fs/f) 

only, which further confirmed the usefulness of the adoption of (fs/f) 

and of (CM  = 1). The force coefficients and the phase angle on the 

other hand were found to be independent of or  and ks  and this confirmed 

the validity of the theoretical model to represent the excitation. 

The model also resulted in equation 8.9 which gives CI  as a 

function of (fs/f) only and which permits a more accurate and theoreti- 

r 
	 cally more sound prediction of the frequency response in the second 

instability region. 	Although the amplitude response could also be 

predicted, the accuracy obtained was not good enough to improve the 

empirical relations of Chapter 6. 

When any one of the conditions: (a) N < f < Nv; (b) 1 < (fs/f) < 

or (c) 90°  < a < 135°, was given, the model predicted the other two, 

although the model itself did not predict the limits of the excitation. 

It was thought that these limits may arise mainly from the sensitivity 

of the wake to variations in the magnitude, frequency and timing of its 

power (or vorticity) supply. 

The complex excitation mechanisms of the first instability 

region did not allow either a simplification of the theoretical model 

or any accurate prediction of cylinder response. The behaviour of the 

hydrodynamic forces as predicted by the model however, permitted a 

qualitative analysis which improved the understanding of the excitation. 

From the experiments conducted with the splitter plate, it was 

concluded that for the "pairs mechanism" the variation of the drag force 

depended on: (a) Vr  through its influence on the magnitude and time 

distribution of the vorticity supply to the wake (and hence eddy-strength); 
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(b) the motion of the separation points and the fluctuating width of 

the wake, which were themselves determined by the acceleration ratio 

(a/D)(fs/f)
-2; (c) the energy extracted from the stream per vibration 

cycle, which is approximately proportional to (fs/f); and d) the 

• distance between consecutively shed eddies which is proportional to • 
(fs/f). 	

The phase angle, a, appeared to be determined by the distance 

between consecutively shed eddies and hence by (fs/f). 

The results of these experiments however did not provide precise 

correlations except for the angle, a, which appeared to be a function 

of (fs/f) alone. 

Similar trends could be observed without the splitter plate in 

the rearrangement and lock-in sections of the first instability region, 

although in these latter cases the interaction between excitation 

mechanisms influenced the behaviour of CF, CF and a as follows: (a) two 

slightly different a vs (fs/f) trends appeared before and after the 

abrupt fall of the corresponding (a/D) vs (f s/f) curves; (b) different 

CF vs (a/D) curves, showing two distinctive trends each, corresponded 

to every (fs/f) value, although all the curves had similar shape (Fig. 

76); (c) in general CF  increased when the transverse flow mechanism was 

most effective, i.e. with low (a/D) values in the rearrangement 

section or with high (a/D) values in the lock-in section (Fig. 60). 

The transition between these two sections of the first 

instability region occurred consistently when (fs/f) = 0.85. 	In con- 

trast to this the sharp fall of (a/D) occurred earlier in terms of 

(f
s
/f) the smaller the (a/D); this was attributed to the lower Vr values 

due to low (a/D), which resulted in a more uniform (less organized) 

vorticity supply to the wake; in consequence the wake itself became more 

turbulent. 	Since (a/D) reductions were caused by increased ks, the 

above argument explained the reduction of the instability regions with 

increasing ks. 

The small local peak of the (a/D) vs (fs/f) curve at the 

beginning of the first instability region was here attributed to the 

excitation of the two harmonic components of a non-sinusoidal motion. 

These components of excitation were supplied by the "pairs" and the 

"transverse flow" excitation mechanisms.as was evident from: (a) the 

observation of both pairs and transverse flow in the near wake; 

(b) marked increases of CDA 
which occurred elsewhere in association with 
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the transverse flow mechanism; (c) the coincidence of the frequency of 

pairs of eddies with the main vibration frequency of the cylinder; and 

(d) the coincidence of the frequency of single eddies in the distant 

wake with the frequency of increase of (a/D) in alternate vibration 

cycles. 

The 2:1 frequency ratio here observed suggested a 4:1 ratio 

between the frequency of the main, in-line motion and the frequency of 

a fluctuating cross flow force associated with the transverse flow 

mechanism; this explained the lisajous figures representing the motion 

of the full scale Immingham piles for (fs/f) = 0.5, which exhibited 

the same frequency ratio. 

10.4 Practical Applications and Conclusion 

Analysis of the results of the experiments here conducted showed 

that these were only slightly affected by three-dimensional and other 

secondary factors. 	Consideration of such factors moreover, reinforced 

the assumptions made and the conclusions arrived at in the analytical. 

work; for example consideration of boundary layers and blockage 

provided a reasonable explanation for the differences between predicted 

and recorded values of f/N (and consequently of V/ND). 	The correlations 

and models obtained here can thus be considered to represent the 

excitation in two-dimensional cylinder-flow arrangements. 

The characteristics of the excitation observed in the two-

dimensional arrangements moreover, appeared to be common to all situations; 

this was illustrated by the improved agreement between the amplitude 

response curves of different two and three-dimensional arrangements when 

plotted against (fs/f) rather than (V/ND); by_ the predicted frequency 

response of the Immingham piles; or by the resemblance of the (a/D) vs ks  

curves here obtained to those obtained by Wootton for three-dimensional 

model stacks. 

The arguments and prediction procedures of Chapters 6 and 9 have 

further shown that full scale, three-dimensional vibration problems can 

be represented and predicted by the two-dimensional models here 

developed, if the appropriate values of (fs/f), pr  and ks, and the 

specific three-dimensional and secondary factors are considered. 

It can thus be concluded that the outcome of this research: 

• 
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(a) Provides a designer attempting to avoid vibration with a more 

accurate and reliable flow velocity threshold-value than has hitherto 

been available. 

• 

• 

(b) Provides designers and engineers with the means to make preliminary 

predictions of amplitude and frequency response, mean deflections and 

the flow velocity ranges where instability can occur, in any case of 

flow-induced in-line vibration of circular cylinders. 

(c) Allows engineers faced with existing vibration problems to make a 

better interpretation of an observed vibration than was hitherto possible, 

for example by expecting (f/N) and (CDA
/C
DO
) to vary rather than to 

remain constant, or by having additional ways to define more precisely 

the type of the observed instability, etc. 

(d) Allows a researcher or engineer dealing with two-dimensional 

cylinder-flow arrangements to predict fully the in-line excitation. 

(e) Correlates the observations of previous researches and thus 

increases their usefulness. 

(f) Increases the reliability, flexibility and usefulness of modelling 

techniques in this field by showing that quantitative similarity does 

exist between two-dimensional laboratory models and three-dimensional 

prototypes, and by improving the similarity criteria, e.g.: (fs/f) 

rather than (V/ND) and Re' or pr 
and ks 

rather than (2Md/of
D2L). 

(g) Permits a clearer definition and an improved understanding of the 

characteristics and limits in general of this type of excitation. 

Finally, the present work has indicated areas for further study: 

(a) the interaction of excitation mechanism in the first instability 

region; (b) a more precise investigation of the influence of three-

dimensional and secondary factors on the excitation; (c) the development 

of a similar theoretical model for cross-flow vibration; (d) studies 

of-the-Wake in the second instability region and the wake of a cylinder 

with a splitter plate; and (e) interactions between in-line and cross- 

flow excitation. 

140 



APPENDIX I 

• 

MI6 

APPARATUS AND EQUIPMENT DETAILS 

(a) 	Flow velocity measurements 

(1) Propeller meter: KENT-LEA, Miniflo-probe 265-3, Low speed. 

(2) Pulse counters: Novar, Stream Flow. Kent, Mini-Flowmeter 

Dekatron Counter unit, type 176-2. 

(3) Range: 4 cm/s to 150 cm/s. 

(b) 	Vibration amplitude and frequency measurements 

(1) Strain gauges: four wire, Post Yield, gauges, type YL-10 

(Tokio Sokki Kenkyujo Co. Ltd.). 

(2) Transducer-amplifier: Peekel, Strain gauge instrument 

type 581 DNH. 

(3) Recorder: S.E., Oscillograph 3006;and U.V. Recorder 

Type 1185, Mark 2, (New Electronic product Ltd.). 

(4) Ranges: Amplitude magnification factors greater than 

500 available; trace paper speeds up to 25 cm/s, with up 

to 10 reference marks per second. 

(c) 	Wake frequency measurements 

(1) Dye: Potasium permanganate. 

(2) Cronometer: Jonghans 0.1 sec/Smiths 0.2 sec. 

(3) Range: up to 3 eddies/second could be reliably measured. 

(d) 	Gaps measurement 

(1) Moore & Wright, Feeler gauge 492. 

(2) Range: 0.004 cm to 0.2 cm. 

(e) 	Viscous damping 

(1) Solution of Lyle's Golden Syrup.in water. 

(2) Range: K;c:,  values of up to 5 were obtained. 
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APPENDIX II 

EXPERIMENTAL DATA 

The tests of the first set were conducted with the larger 

cylinder (D = 3.38 cm, L = 33 cm); the damping mechanism was not used 

in these tests; the depth of water was kept greater than 30 cm; the 

gaps between the ends of the cylinder and the end plates were of 

approximately 0.5-2 mm. 	The most important data of these tests are 

given in Table II-1. 

The tests of the second set were conducted with the smaller 

cylinder (D = 2.5 cm, L = 33 cm); the water depth was kept above 

33.5 cm; the distance foam the cylinder to the channel's bottom, z, was 

kept constant at 13 cm; in general the gaps between the ends of the 

cylinder and the end plates were smaller than one millimeter. 	For 

the second set of tests a constant head tank was installed at the 

entrance of the channel (Fig. 7 ); the variations of the resulting 

flow velocity profiles did not exceed ±3% of the average anywhere in 

the cross section of the flume at the cylinder's location, except at 

the boundary layers (10 sec averages considered). The most important 

data of these tests are given in Table 11-2. 

Besides calibration of the transducer measurements were made of 

pc' Nair'  c, Ma' p
r and N before and after every test. 	Each test 

comprised measurements of V, f, a, x and fe  for 20 to 70 different values 

of V. 	The flow was allowed to settle for 3-15 min; V was measured 

over 1 to 15 min; f was obtained from records lasting 50-100 sec and 

(a/D) and X from records lasting 1 to 3 minutes; fe  was obtained from 

several counts each lasting about one minute. 
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a 

Run 
No. 

(a) 

2, 

(cm) 

cylinder 
filling 

(b) 

pr 
k' 
so 

(b) 
S
w 

(b) 
Nair 

(Hertz) 

(b) 

N 
(Hertz) 

(c) 

z 
(cm) 

splitter 
plate 

18 8.0 air 0.495 0.025 0.163 5.20 2.80 17.3 No 

22 12.0 air 0.495 0.016 0.150 3.95 2.15 13.1 No 

30 16.0 air 0.492 0.013 0.190 3.31 1.80 17.3 No 

34 8.0 water 1.049 - 0.120 3.45 2.40 17.0 No 

36 12.0 water 1.084 - 0.106 2.76 1.91 13.2 No 

39 9.9 water 1.046 - 0.110 3.09 2.13 15.2 No 

44 16.0. water 1.042 - 0.140 2.33 1.57 15.0 No 

49 9.0 sand 1.460 0.015 0.087 2.84 2.10 16.1 No 

58 9.0 sand 1.529 - - 2.78 2.08 16.0 Yes 

60 12.0 air 0.529 - 0.170 3.80 2.13 13.0 Yes 

	

Table II-1 	Experimental data for the first set of tests (D = 3.38cm) 

	

Notes: (a) 	2. = free length of cantilevered springs 

(b) measured with splitter plate when applicable 

(c) z = distance from cylinder's centre-line to channel's 

bottom 
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Run 
No. 

(a) 

k 

(cm) 

cylinder 
filling 

(b) 

Pr 

(4)Y 
c  
air 

gr-s 

(c) 

c o 
gr-s 

1q0  
(c) 

sw 

(b) 

Nair 
Hertz 

(b) 
N 

Hertz 
splitter 

plate 
cm cm 

73* 12.80 air 0.634 0.0239 0.0285 0.0557 0.1565 4.148 2.429 No 
77*  9.70  glass 

bids 1.805 0.0388 0.0492 0.1030 0.1098 2.945 2.272 No 

80* 6.35 iron  
scrap 4.224 0.1127 0.1235 0.2749 0.0780 2.417 2.139 No 

84* 4.398 0.1156 0.1500 0.3378 0.0860 2.387 2.112 Yes 
85+  4.455 0.5879 0.5987 1.3316 0.2030 2.418 2.138 No 
86 4.372 0.2035 0.2143 0.4768 0.1018 2.416 2.140 No 

87 4.423 0.2298 0.2406 0.5350 0.1082 2.419 2.140 No 

88 4.432 0.2643 0.2752 0.6118 0.1183 2.419 2.140 No 

89 4.467 0.1896 0.2240 0.5007 0.1055 2.405 2.128 Yes 

90 4.429 0.3037 0.3381 0.7550 0.1345 2.405 2.130 Yes 

91 4.457 0.1610 0.1954 0.4361 0.0969 2.399 2.131 Yes 

92+  v 4.462 2.3710 2.4050 5.3510 0.7150 2.414 2.138 Yes 

99* 12.5 plastic 
scrap 1.222 0.0214 0.0292 0.0632 0.1284 3.118 2.193 No 

101 1.229 0.1281 0.1359 0.2945 0.1930 3.129 2.196 No 

102 1.209 0.2246 0.2324 0.5024 0.2509 3.122 2.199 No 

103+  1.224 0.7070 0.7179 1.5574 0.5710 3.116 2.192 No 

104 1.213 0.2659 0.2737 0.5906 0.2738 3.125 2.202 No 

105 1.207 0.3217 0.3294 0.7104 0.3070 3.127 2.206 No 

107 1.279 0.3230 0.3544 0.7754 0.3190 3.055 2.174 Yes 

108 1.249 0.2328 0.2642 0.5780 0.2745 3.061 2.174 Yes 

109+  1.253 0.5389 0.5703 1.2470 0.4580 3.065 2.175 Yes 

110* 1.253 0.0239 0.0553 0.1207 0.1369 3.065 2.179 Yes 

111 1.253 0.0721 0.1035 0.2264 0.1667 3.053 2.174 Yes 

112 y  1.253 0.1637 0.1951 0.4274 0.2217 3.057 2.171 Yes 

	

Table 11-2 	Experimental data forthe second set of tests (D = 2.5 cm) 

	

Notes: (a) 	2..= free length of cantilevered springs 

(b) measured with splitter plate and additional damping if any 

(c) for f = N; (a/D) = 0.055; includes the hydrodynamic 
damping of the splitter plate if any 

(d) includes additional damping if any but excludes hydrodynamic 
damping of the splitter plate 

no additional external damping 

(a/D) < 0.05 
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APPENDIX III 

ADDED MASS, DENSITY AND STIFFNESS 

Before and after each test the cylinder was made to oscillate 

in air, on its own and with known weights added, as well as in still 

water. 	This permitted calculation of added mass, equivalent density 

and equivalent stiffness as outlined below. 

If the subscript (1) indicates cylinder on its own and the 

subscript (2) indicates cylinder with additional masses, AM: 

2 	
k 

\l/ 	

k2 1 nNi  = m 	and 	27N2  = 
/M

C 2 
C 
1 

where 

k
2 	

= k
1 
 + Ak 	 (III-2) 

M
c 	

= M
c 
+ AM 	 (III-3) 

2 

Ak is the increment of k due to gravitational forces, and can 

be calculated from the formula of the natural frequency of a pendulum, 

Np, i.e. (see e.g. Den Hartog) 

1 v g7 
N = - R  

where g is the acceleration of gravity and R is the length of the 

pendulum. 	This formula can also be expressed as: 

where M is the pendulum mass and k is the equivalent "stiffness" of 

the pendulum, given by 

kp  =M 
R p 

• 
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Thus an increment of M corresponds to a proportional increment of k, 

since g and R are constants; therefore 

Ak = 

From equations 111-1/2/3: 

M
cl 

+ AM = 

k 
M, 

+ AM 
1 mc

c

i  

(2 7rN )2  

dividing by AM and introducing (2.011) from equation(III-1): 

Mc - 
1 = 

AM 

Mc; 
(201 )4 	+ 

AM R  

(271N2)2  

solving for Mci: 

1 - 	g  — 12;1707R 
M = AM 	 
ci (N1/N2)2  - 1 

The value of R can be estimated approximately by assuming the 

deflection curve of the spring to be given by: 

Y = Yo  (1- cos 	z) 

i.e. a quarter sinusoid where Y indicates deflections; Yo  is the 

maximum deflection (at the tip); Z is the distance from the clamp 

along the undeflected cantilever; and t is the total cantilever's length. 

It can be assumed that the radius of curvature of the oscillation 

path of the canitlever's tip, is given by (t - b); where b is the Z 

axis intercept of the tangent at Z = $; the tangent of the angle,O, at 

Z = 2 is 

an. 
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dY 	w si tan 	= 	= Y
t, 
 n -- 2w —  

dZ 	o 21 Z  

(tane) 	= Y 
z=t 	o 2t 

hence 

(t-b) = Yo 	
= 22.  -- 

(tanO)z=t  

The equivalent pendulum length of the cylinder, R, is then 

given by 

R = d+
2SC  

Where d is the length of the stiff portion of the supporting arms 

(see Fig. 5). 

Equation(III-4) above cannot be used to calculate the equiva-

lent density of the cylinder because this density should also include 

the additional added mass of the supporting arms and of the end gaps, 

which cannot be included in M
as 

if Cm  = 1. 

If N2  in equation (III-4) is replaced by the natural frequency 

in still water N, and the additional mass, AM, by the total added mass, 

M
aT' 

equation (III-4) can be :writtenthus: 

M
aT 

M 
c {1 + 	g  

.(27N)LR 

=  

Values of MaT 
obtained from this equation resulted about 4% 

higher than the product of pf  and the volume of the cylinder alone; 

this applied both to still water and slowly flowing water in the range 

0 < (f
s
/f) < 0.4. 

To investigate the influence of the supporting arms, end gaps, 

free water surface and channel's bottom on MaT' 
the cylinder was 

allowed to oscillate in still water at different depths and with 

different water levels, end gaps and frequencies which covered the 

ranges of the flow-induced vibration tests. 

(N1/N)2  - 1 
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In general MaT  was observed to decrease as the cylinder approached 

the free water surface and to increase as the cylinder approached the 

channel's bottom. No variations of Mas 
greater than ±2% were observed 

(a) when the cylinder was more than 2.5 diameters above the channel's 

bottom and more than 4.5 diameters below the water surface, or (b) when 

the end gaps were varied between 0.01 cm and 0.5 cm. 

Although these experiments showed all these influences to be 

small within the ranges of the main tests, their results did not suggest 

any values for the contributions to MaT  of the arms and of the end gaps. 

It was decided to assume CM  = 1 in order to facilitate further 

calculations, and thus to attribute the slight increases of MaT 
above 

(0214f/4) to the added mass of the arms and of the end gaps. 

The density ratio pr  could then be calculated from: 

Mc + MaT 
n  4: 1 =  	 (III-7) Fr  

ir D2Lpf  

where Mc 	
MaT MTS* 

If Cm  = 
1, MTS = Mc M

as  where Mas  = 4- D2  Lpf  
=  

and M
c 

= M
as

p
r 

The stiffness could then be calculated from: 

k = MTs(27rN)2 	 (III-8) 

The values of k obtained through this dynamic approach were 

compared with direct static measurements made by pulling the cylinder 

horizontally with a string, which after passing around a pulley, held 

known weights. The displacement of the cylinder was measured with 

either a travelling microscope or from the traces of the U.V. recorder. 

The travelling microscope readings showed a wide scatter with an 

average value of k about 10% higher than the one obtained from equation 

111-8. 	The U.V. recorder readings were less scattered and showed k 

values about 2% higher than those of equation (III-8). 	As these 

methods were static however, it was felt that the dynamic method of 

equation (III/8) was more representative of the vibrating conditions 

and was therefore adopted. 
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APPENDIX IV 

• 

MEASUREMENT OF S AND C
DO 

Auxiliary experiments covering the entire V range of the main 

tests, 'Were conducted to investigate the behaviour of S and CDO  when 

the cylinder remained stationary. For this purpose the cylinder was 

heavily damped (ks  > 1.0) so as to avoid vibration but to allow the 

displacement, TC, due to the drag forces. 

Knowedge of x and of k and V led to the values of CDO, while 

the values of S were obtained from a count of the eddies in the wake 

in a given period of time. The resulting values of S and CDO 
are 

shown in Figs 33 and 86. 

It should be noted that these values of CDO are affected by the 

additional drag of the supporting arms (see Appendix V) and by the 

reduced drag in the boundary layers (see 9.1) and that both S and CDO 

are affected by blockage effects, surface roughness, flow velocity 

measurement technique, etc. (see Chapters 5 and 9 and Appendix VI). 

For the larger cylinder (D = 3.38 cm), CDO  could not be measured 

because the damping mechanism was not yet devised when these tests were 

conducted; values of S were obtained by reducing to zero the gaps at 

the ends of the cylinder so as to avoid its motion. 
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APPENDIX V 

DAMPING 

The values of the external damping parameter ks  to be used in 

flowing water, were obtained from the records of transients in air (see 

6.2.3d);- consequently the following sources of damping had to be 

considered: (1) structural, (2) viscous damping mechanism, (3) aero- 

dynamic, (4) gaps between the ends of the cylinder and the end plates, 

(5) supporting arms, and (6) splitter plates. 

Each one of these is considered below separately and leading 

to a corresponding value of c (calculated with data from run 99). 

The contributions of all these sources to the total damping are consi- 

dered in V-7. 

V-1 Structural Damping 

For every fixed length of the cantilevered springs of the cylinder's 

supports, the cylinder was made to oscillate in air Iwith different 

weights added to it, so as to vary its frequency over the entire range 

predicted for flow induced vibration. The values of cair  were obtained 

fromthelogarithmicdecrement.5air  
of the recorded transients and from 

the formula: 

=  
cair 	

26 
air  N  air 

 (M + AM) 
c 

where M
c 

was obtained as indicated in Appendix III; AM is the additional 

mass, and Nair is the natural frequency in air of the cylinder with the 

additional mass if any. 	Care was taken to place the additive masses 

at the same height as the centre line of the cylinder. 	Additional 

experiments with heavy masses placed near the springs (about 1/3 of the 

distance from the clamp of the springs to the cylinder) showed no signi-

ficant difference in the behaviour of cair  with respect to (a/D) or (f/N). 

These experiments resulted in the relationships of Figs. 87 and 

88 which are applicable to Runs 73 to 111 (see Table II-1) and where 

the values of 
cair  include aerodynamic damping (see V-3 and V-7). 

IMP 
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and: 

K' = 2 
4  

N . D2  air 
v air 

4  
NairD2  

vair 

AO 

• 

Figure 87 which presents cair  variations with (a/D), was obtained from 

measurements of Sa at different amplitudes but for constant frequency; 

corrections were made to allow for noise in the recorded signal. 

Figure 88 which presents cair  variations with (f/N), was obtained from 

measurements of 8a at the same amplitude of vibration but for different 

frequencies. The approximate inverse relation between cair  and (f/N) 

(Fig. 87) suggested hysteretic damping; a better approximation to 

(cw/k) = constant was obtained when the gravitational effects were 

excluded from k. These gravitational effects however, together with 

the variations of cair  with (a/D) and especially the viscous damping 

of the mechanism made the term (cw/k) irrelevant for the present research. 

V-2 Damping Mechanism 

Experiments were also conducted to investigate the behaviour of 

the viscous damping parameter, c v, which represented the contribution 

of the damping mechanism. No significant variations of c v  with either 

(a/D) or (f/N) were observed; in addition c v was approximately constant 

for up to 16 hours. 

V-3 Aerodynamic Damping 

Bramley has shown that for small "size numbers" (ND2/v) the fluid 

dynamic damping force on a cylinder oscillating in a still fluid can be 

give by: 

-a 	X 
o 

w-ero 

where: 

Ma aero 2nN K' caero 	air 

■•■ 

Assuming: vair= 0.15 cm2/s and pail= 1.23 x 10-6gr-s2/cm4  

D=2.5cm;andN.=
alr 

 3.123 c.p.s. (Run 99): 
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caero = 0.0008 gr/cm/s. 

V-4 End Gaps 

To estimate the damping in still water due to the gaps between 

the cylinder and the end plates, viscous friction drag forces can be 

estimated from a consideration of the flow, between two parallel flat 

plates, due to the motion of the plates as follows (see Schlichting): 

The flow velocity in the direction of the cylinder motion can 

be represented by: 

U = Uo A sin (wt + 

where: 
	

U
o 
= wxo 

A = (B/C)2  

B = cosh (2Ky) - cos (2Ky) 

C = cosh (2Kh) - cos (2Kh) 

y is the coordinate perpendicular to the end plates; h is the width of 

the gap and 

K = (wi2v) 

(wt + ) is not a function of y (see Schlichting), therefore: 

au =  Dy 	uo a y 
2
A sin (wt + ) 

aA 	- I 311 i(BC) 2  

DB = 2K[sinh (2Ky)] + 2K[sin(2Ky)] 
3y 

AO• 
hence: au = 2KU sinhT2Ky) + sin(2Ky)  sin (wt + ¢) 

ay 	
0 

2ART 
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At the surface of the cylinder end, y = h, and '13 = C; assuming 

sin(wt + E) = 1, the maximum gradient is: 

ay..1
y=h max 

sinh(2Kh) + sin(2Kh)  
= Kwx

o [cosh(2Kh) - cos(2Kh)' = Kwxo
A 

   

eg. 

the drag force then results 

au 
= 4 

7 D2  - - 

	

Drag = p x Area x ay 	pfvKwxoA  

and the damping constant results 

c
gap 	

Drag 	7 2 
- - D poTA 

0.1 xo  

for gaps larger than 0.03 cm in water A = 1; the value of gaps for two 

gaps in water results: 

r- 
cgaps = 0.28 x 10-3  D21ff 	(gr/cm/s) 

Assuming D = 2.5 cm and f = 2.2 c.p.s. (Run 99): 

cgaps 
= 0.0026 	(gr/cm/s) 

An analysis of the recorded transients of the cylinder oscillating 

in still water, with various sizes of gaps ranging between 0.02 cm and 

0.5 cm, revealed no significant differences in the logarithmic decrement 

	

for frequencies above 2 c.p.s. 	In flowing water and for fixed values 

of (fs/f), pr and ks
, no significant variations of (a/D) were observed 

when the gaps were varied. 

V-5 Supporting Arms 

The damping arising from the additional drag forces exerted by 

the flow on the supporting arms of the cylinder was not included in 

external damping because these forces (a) were part of the actual drag 

force, (b) contributed to the mean displacement, I, (c) varied 
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approximately as the mean drag force of the cylinder (proportionally to 

V2) rather than as the other external damping forces (proportionally to 

wxo), (d) were difficult to calculate precisely, and (e) compensated 

part of the loss of drag due to boundary layers, uncorrelated flow 

patterns, etc., which was not deducted  from the values of CDC  and CDA. 

It was thus felt more important to know the actual value of the total 

drag force which could be measured and to consider the drag of the 

supports together with three-dimensional factors separately. 

For flowing water these drag forces were calculated by assuming 

a drag coefficient for the arms of CD  = 1.5 (and their area presented 

to the flow); the forces were reduced by a third becuase their resul-

tant was- applied at a distance from the clamped end of the supports, 

approximately equal to two thirds of the total length of the arms. 

Assuming an average value of CDA  = 1.5: 

(Drag)
arms 	(2 PfV2) x 2 x (20 x 0.1) x 1.5 	2  

To calculate the damping forces due to the arms in still water, 

a similar argument to that of V-4 leads to: 

Drag = pe x Area x Kwy 

where A = 1; and x2, is the displacement of the cylinder at a distance, L, 

along the arms from the clamp. The area of the tapered arms used for 

the 2.5 cm cylinder is given by: 

Area = 111 = 2,(3 - 0.062,) 

and the displacement of the arms in the direction of motion at a 

distance, £, from the clamp is given by: 

x 
 0 

xi = 40 - 

where 40 is the distance in cm from the clamp to the cylinder. The 

moments at the clamp due to the drag forces are 

	  X y = 1.5% (Drag)
cyl. 	(2ce2) x (33 x 2.5) x 1.5 

M = Drag x 
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and 

wx 
dM = [pfvK 715] d[t3(3 - 0.06t)] 

4 

therefore: 

40 cox 
M 	= [pfvK 4c(1)] 	 (92,2  - 0.240)dt 

20 

i.e. only 20 cm of the arms are immersed in water; M then results. 

wx 
M = [pfvK -101 24 x 103  

The damping constant, carms' for the two sides of the two arms, 

is given by 

4M  
c
arms 	40wxo 

Assuming K = 26 (Run 99) and v = 0.01cm2/s, 

c 	= 0.0159 (gr/cm/s) 
arms 

V-6 Splitter Plate 

The same formula used in V-4 for the gaps at the cylinder's ends 

can be used to estimate the damping due to the splitter plate; assuming 

the gap between the two plates (Fig. 6) to be greater than 0.04 cm, 

A = 1; hence: 

c
spl.pl. 

= 2bLpen 

c
spl .pl 	

0.0245 
	

(gr/cm/s) 

This value can be compared with c = 0.0237 obtained from the difference 

between c values calculated from the recorded behaviour of the cylinder 

in still water, with and without a splitter plate; this last method 

was adopted to measure a fixed value of Cspl.pl. 
which was then added 

to external damping (see V-7). 
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V-7 Total Damping 

To calculate the total external damping of the cylinder, it 

should be noted that the aerodynamic damping (which should be sub- 

ti 	tracted from cair) is small relative to the structural damping, but 

of the same order of magnitude as the hydrodynamic damping due to the 

gaps (which should be added to cair). 	It was thus decided to neglect 

these two sources of damping on the assumption that their effects, 

which were in any event small, tended to cancel each other. 

The total external damping could be calculated by (i) measuring 

structural damping in air (see V-1) without the damping mechanism, 

(ii) connecting the damping mechanism and measuring the difference for 

the same (a/D) and (f/N) and (iii) calculating the total damping from 

the c vs (f/N) and c vs (a/D) relationships obtained in (i) above, in 

addition to the constant values of c due to the damping mechanism 

a 
	 (ii above) and the splitter plate if needed (V-6). 

To calculate external damping from transients in still water 

(see 6.3.3), hydrodynamic damping must be subtracted from the total. 

For the samll size numbers and vibration amplitudes involved in the 

present research the expressions given in V-3 can be used to calculate 

hydrodynamic damping (see Bramley). 	With v = 0.01 cm /s; 

pf  = 0.00102 gr-s2/cm4; D = 2.5 cm and N = 2.2 c.p.s. (Runs 99 to 105), 

thus: 

chyd  = 0.141 gr/cm/s 

The total value of C
sw 

in still water should result from the 

addition of 

air 	caero.+ arms 
+ C

gaps 
+ chyd. 

This results in csw 
 = 0.18 gr/cm/s, which is smaller than the 

measured cSw 
= 0.207 gr/cm/s. The difference is perhaps due mainly 

to an underestimation of chyd., which results from applying Stokes method 

for (a/D) > 0.05 (see Bramley). 

It should be noted that c w 
 leads to k sw = 0.459 which is signifi-

cantly canny larger than the corresponding k sio= 0.0632 here used. 
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APPENDIX VT 

BLOCKAGE EFFECTS 

When the transverse or "shadow area", As, that the cylinder 

presents to the oncoming flow is a significant proportion of the cross 

sectional area of the flow channel, Af, there is an increase in the 

local flow velocities over those that would occur in an infinitely 

large channel (blockage effects). 

Semiempirical methods mainly from wind tunnel experience (e.g. 

Maskell) are available for the correction of measured flow velocities 

to account for blockage effects, although their validity and accuracy 

is difficult to assess when dealing with vibrating bodies (and fluctua-

ting wakes) immersed in a stream of water with a free surface. 

In the present research the flow velocity measurements were not 

affected by blockage because they were made outside the area of 

influence of the cylinder (Fig. 5 ); consequently the measured values 

of V (and the calculated Re) are underestimated with respect to the 

more relevant flow velocities at the cylinder location, which were 

affected by blockage. 

As explained in Chapter 4, S and CD()  were not obtained from 

published data intended for cylinders in an infinite stream, but they 

were calculated from direct measurements of fs' x and V; in the case of 

a stationary cylinder this procedure avoided the need to consider the 

effects of blockage, turbulence, surface roughness, etc. 	Assuming that 

blockage effects were the same for a stationary and a vibrating cylinder, 

the values of S and CDO 
were included in other non-dimensional groups 

to avoid the need for blockage corrections, for example (fs/f = SV/fD) 

instead of (V/fD), or (CDA/CDO
) instead of CDA, etc. 

As mentioned in Chapter 9 however, it appeared that blockage 

effects increased (i.e.. more underestimated) when the cylinder vibrated; 

consequently any force coefficient for the vibrating cylinder will be 

somewhat overestimated, even when expressed in the form (CF/CDO). 

In what follows the subindex, b, will indicate corrected for 
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blockage effects, while the subindex, m, will indicate as measured or 

calculated from the measured values of V. 

The correction for the flow velocity can be given by: 

• 
Vb = 	- 1 > 0 

m 
(VI-1) 

if 0 is small moreover: 

(1 + On  = 1 + nO 

(a) 	CF 
and Pd 

From equation 7.31, approximately 90% of the value of Zr  is 
 

determined by CDA  and 10% by (CFVrsina); moreover, 

(CDA)m 	
Vm 

Vb
_2 = (1 + 0)2  = 1 + 20 

(CDA)b 

and (see section (d) below) 

p 

(VrCFsina)m = 
Vm
-5 

-5 
(VrCF

sina)b 	Vb 
 

1 + 50 

hence: 

(ffF)m 
	0.9(1 + 28) + 0.1(1 + 50 = 1 + 2.38 	(VI-2) 

(CF)b 

From equations 8.1 & 8.2 (Pd/Masw2xo) 
 is approximately propor-

tional to the product (CF  V/fD); hence from equation VI-2: 
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('d)m 	(CF -km 	(:7F)m  vb - 1 + 1.38 
(Pd)b 	65F 	( F)1) Vm 

(VI-3) 

since Masw2xo is not affected by blockage. 

To correct the product z— 
fs

, it should be noted that: 
DO 

CDO 
m x 

where x was measured from the stationary cylinder, and is consequently 

proportional to the square of the velocity, Vs, which was affected by 

the blockage of the stationary cylinder, hence: 

(CDO)m 	
Vb2 	

v 2 v 2 
b m (VI-4) 

 

CC 	 = 

   

    

(C ) 	V 2 	v 2 v 2 
DO b 	m s 

(CDO)m - (1 + 0)2(1 - 80)2  = 1 + 2(8 - So) 

where So  = (Vs/Vm) - 1. 	By a similar argument and assuming S 

unaffected by blockage: 

(f ) s m  - 1 - a 
	So 

(fs)b 

hence from equations VI-2/4/5: 

(VI-5) 

f 

CDO DO 	m  

CF fsi 
C 	f 
DO 	b 

(1 	2.38)(1 _ a 4. ao) 
1 - .78 + 300  

1 + 	- So) 

and the calculated values of this product will be overestimated by 

(C ) DO b 
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between 3% and 7% depending on the value of CF  (see equation VI-6 below). 

(b) 	A blockage correction 

The simplest blockage correction assumes that the increase of V 

is solely due to the constriction of the area of the flow channel, made 

by the cylinder, i.e.: 

V
m 	D 

where d is the depth of water. 	If increments of C
F 

are assumed to be 

equivalent to an increase of the cylinder diameter, an equivalent 

expression is obtained, i.e. 

V 
= 1 - (CF x const.) V

b 

If (T
F 
x const.) is small the last expression can be written as: 

V 

V 
	1 + (CF  x const.) 

or introducting 8: 

8 = CF x const. 

It was observed (Chapter 9) that the ratio of Eqn. VI-3 increased 

by 0.03 as TF  increased from 1.4 to 2.0; consequently and assuming no 

blockage effects when CF  = 0 (see Fig. 89) 

1.35 = 0006 
C
F 

• 

l■ 

ti 
hence 

3 
C
F 

26 
(VI-6) 
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(c) 	C
F 

and Pe  

From equations 7.32 and VI-3, and considering the 1.5% increase 

of C
F 

due to the drag of the supporting arms: 

C
F 

= V
- 2 
/(C-1)

2
+ const. x 

(V-1.3 
x 1.015)

2 

The first term inside the radical is independent of blockage and 

varies between 0 and 1 as (f
s
/f) varies between 1 and /; the second 

term is approximately equal to 1 (Eqn. 8.1) and represents between 

50% and 100% of the value of the radical; hence: 

(C
F
)
m  

= (1 + 28)/+ 	' 
1.3G + 0.015)2  
(2) to (1) ) 

therefore: 

1 + 2.650+0.0075 < (CF)m< 1 + 3.38 + 0.015 	(VI-7) 

(CF)b 

correspondS to 	> (fs/f) > 1. 	When (fs/f) = )12-, moreover: 

(C
F
)
b 

Yr 

(CF)m  

1 	 - 1 + 30 
(CF)b  

(VI-8) 

From equation 7.30: 

M
as
wzx

o 

and from equation VI-7 for (fs/f) = IY and CF  = 1.4: 

(Pe)m  
- (1 - 20)(1 + 2.650) + 0.0075 

(P ) 
e b 

i.e. 

)„ 
e 	 - 1.045 

(Pe)b 

P
e 	

V2C; cc  
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(d) 	a and (V
r

s in a) 

From equation 8.8 

sin a = 
f 1 

f
s 

V 

hence: 

(sina)
m 

(sina)b 

For (fs/f) = Ii, from this equation and equation VI-8: 

(VrCFsina)m  

- (1 + (3)(1 + 30)(1 + f3) 
(V
r
C
F
sina)

b 

(V
r
C
F
sina) 

	m - 1+55 
	

(VI-9) 

(V
r
C
F
sina)

b 
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APPENDIX VII 

DEDUCTION OF EQUATIONS 

Deduction or expansion of some of the equations presented in 

the text is given in more detail in this appendix, as indicated in 

the table below: 

Appendix 

Address 

Equation 

Numbers 

Text Address 

Chpt./Sect. Page 

VII - 1 7.4 & 7.5 7.1 82 

VII - 2 7.15a .7.2.2 86 

VII - 3 7.16 &"7:17 7.2.3 88 

VII - 4 7.26/7/8 7.4.1 91 

VII - 5 7.31/2/3/4 7.4.1 92 

VII - 6 7.39/40/41 7.4.3 96 

VII - 7 8.2 8.1.2 101 

VII-1 (see 7.1) 

From the diagram of Fig. 51: 

To cos? = kx
o 

- M (02x c o 

dividing by kxo  and from equation 7.6 

FTo  cost 1 - I- 
N 
 )2 

kx
o 	v 

similarly: 
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4.1 

a 

therefore c 	f ) 
27rMcNONv)  tanA) = (7.5) 
1.- (j--)2 Nv  

.:.  k 	M
C
w2 

kxo  - M c  w2xo 	 MTS 	MTS  . 

M w2x 	
Masw2 as o 	 MTS 

FTo  sinr = cwx 

FTosirg 

kxo 	2nM N c v v 
a 
-OW 

solving now for FTo  and 

FTo = V(FTo  cos0 	Tz + (F' osinO2  

therefore 

f  FTo = kxo\/[1 - —N )2  ] 2  + [
114 

c 	fl 2 (7.4) 
21 cNv ( Nv  

and: 
F
To 

sing 
tan (1) - 	, 

FTo  cost 

VII-2 (see 7.2.2) 

where: 

MTS 
= Mc + m 

as 
= m as (p

r 
 + 1) 

■ 
and 

MTS 
= (2nN)2  

a 

1.• 
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• 

• 

and 

hence: 

P, 
kx

o 
- M C  w2x 0 	

(271.1%1) 2 	w2  

2
Pr+1  

M WZX 
as 0 

kx
o 
- M w2x 

c 0 _ 
 (N)

2 
	+ 1) _ (Pr ij Pr (7.15a) 

Mwzx 
as o 

r
+ 1 

VII-3 (see 7.2.3) 

From the diagram of Fig. 52b 

F
o 
cos (I) = kx

o 
- M C  w2x0  - Masw2xo 

since cos cp is negative; dividing by 
Masw2xo' 

 and from equation 7.15a: 

F
o 
 cosh 

C
I 
- 1 

M
as
wzx

o 

also from Fig. 52b 

F
o 
sin 	cwx 

dividing by 
M
as 632xo and from the definition of ks  given in 6.2.3.d: 

F
o 

sincp 
2 

==- —7 k
s M. w2x 

as o 

hence: 
( 

F
o 

= M 
as  w

2x
o 
 \/(CI 
	

2 
- 1)2  + 	ks  ) 2  (7.16) 

and 
F
o 

sin(1) 	2k
s  

tan (I) =  
11-1-(C, - 1) 

F
o 

cos(1) 

(7.17) 
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VII-4 (see 7.4.1) 

From equations 7.25 and 7.10, F can be given by: 

t 
= "P.  + Fo sing) coswt + F

o 
cos 4) sinwt 

Expanding now the right hand side of equation 7.24 and replacing all 

squared and cubed trigonometric functions with the respective functions 

of twice and three times the argument: 

1 F   Cr  
- 	[1 + 2 V

2 	 .1, 
sinal + 

ceLV2-C-F 	
r r 

F 

1 9 
CF T — cos a +  V- — cos a] 	+ 

C
F 
	

4 r 

+ [ C—
F 
 sin a + —

3 
r 
V2 —

F 
sin a - 2V

r
]cos wt + 

CF 	
4  

C
F 

C'" F 
2 

+ [-
1 V2

r  - Vr — 
sin a ] cos 2wt - — 

CF 

CF 
- [V — cosa ]sin 2wt + 

r 

- - —
1r 
V2 —

F 
cos a ] sin 3wt 

4  c  

C, 1 
+ [-

4 
V
r
2 r  sin a]cos 3wt 
CF 

It is clear from this expression that the first group of terms 

which is invariant, constitutes the mean force F (Eqn. 7.26.); the 

second and third groups of terms are clearly in phase with Focoscp and 

F
o
sing) respectively (Eqns. 7.27 and 7.28), the remaining terms were 

neglected because they have frequencies which are multiples of wt,and 

• 
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consequently they do no work on a vibration characterized by x = xosinwt; 

the terms in (3wt) moreover are negligibly small. 

It should be noted however, that in the double harmonic exci-

tation section of the first instability region where the motion can be 

given by: 

x = x sinwt + x2sin(2wt + y) 

the terms in (2wt) which arise from the excitation mechanism associated 

with the transverse flow, may contribute to increase (a/D) and to the 

slight decrease of (f/N) observed (see also VII-6). 

VII-5 (see 7.4.1) 

From equations 3.1 and 7.3a: 

kx 	 l = 	p DLV2  - 2 f 	CDA 

and from equation 7.26 

C
DA 

= (1 + iNT2
r

)-C
F 
 - V

r  CF 
 Sin a 

hence: 

10 

CF  
CDA 

+ VrCF
sina 

1 + iVr  
(7.31) 

From Fig. 56 and Eqns. 7.15a and 7.29: 

P cos a = kxo - (Mc 
+ Mas)to2xo e 

1 
2pfDLV2(1 + IVpCFcos a = Masw2x0(C, - 1) 

• 
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:hence: cos a = V fft  (1 + iVpC; 
(VII-5.1) 2 

V
r 	

(C I - 1) 

/1. 

Vr (
V F5- CF + ks)  

sin a = 2 	IP 

V (1 1V)C f13 	4 r F  
(VII-5.2) 

hence: 
m 

as 
w2x

o 	(C/  - 1) 

cos a = ipfDLVz (1 ± tVpq 

	

m
as

032x
o 	4 D2L p

f 
 (27f) 2xo 	

Vr 

	

pfDLVz 	pfDLVz 	
- 	-v 

Yr) 

but 

From Fig. 56, from the definition of ks  (see 6.2.3d) and from 

equations 7.29 and 7.30: 

Pe 
sin a = Phd + cwxo 

ipfDLV2(1 + /V1JC;sin a = ipfDLV2(2V1TF) + cwxo  

hence: 

sin a= 

m w2x 	CwX0 ) 

	

2Vr.
+

(2 
as 	o) 

F 	p f 	as OLV2)  M (1)2x 
0

)  

  

(1 4' 1V)C r F 

where 

(7.34) 

• 

From, costa + sin2a = 1, and from equations VII-5.1 and VII-5.2: 

CF 	V 	

Vr 	172(c _1)]2 + [211); 	+ ksA2
fD

(1 + 1Vr) 
fD 	 (7.32) 

and from tan a = sin a/cos a 
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- 	+ ks) F fD  
tan a 

Ire  (C1  - 1) 
(7.33) 

VII-6 (see 7.4.3) 

Substituting CF  for b12/D, and Vrcoswt for k/V, in equation 

7.38: 

1 
F = iceLV2CF(1 - V coswt)2[1 + sin(wt + a)] 

expanding: 

F  
1 9EDLV2C 

= [1 +-i•  V2r  - Vr
sina] .g 

+ [sinwtcosa + coswt sina 

4 0 sinwtcosa + 1V2coswtsina] 4 r  

- [2Vrcoswt] 

-,V sin2wtcosa 

- Vr
cos2wtsina + 1V2cos2wt 

+ V2sin3wt:cosa 4 

+ 1V2cos3wt sina 4 r  

Neglecting all terms in 2wt and 3wt which do no work on a 

sinusoidal motion, x = xosinwt: 

• 
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F 	
= [1 + iV; - Vrsina] 

pfDLV2CF  

+ [sin(wt + a) + 1V2sin(wt + a)] 

- (2Vrcoswt - iV2sinacoswt] 

The three groups of terms in the R.H.S. of this equation clearly 

lead to equations 7.39, 7.41 and 7.40 respectively. 

VII-7 (see 8.1.2) 

From the diagram of Fig. 56: 

Phd + CuiXo = Pesin 	(VII-7.1) 

and from equations 7.29 and 7.30 

POLV2;2Vr  -ipfDLV'CF11q.-.sina + cwxo  = 90DLI2(1+1VpCFsin a 

(VII-7.2) 

hence: 

ifoliDLV2(2Vr) 	+ cwxo  = IpiDLV2(1 +1V;)4sin a 	(VII-7.3) 

multiplying this equation by 4  (see Eqn. 7.34), the Right Hand Side 

becomes Pesina as in the R.H.S. of Eqn. (VII-7.2), therefore: 

Phd + cwxo  = 	
p
f 
 DLV2(2Vr

)e
F 

+ ccux
o
] 

dividing by Masw2x0 

+ cw Phd 	
xo

r 
m
as
w

0 	
s 

2 1, 	pOLV2wxo  	] 
= 	L Tr-2".  - 	p D2 LW 2 X V 2 x 

 4 

hence: 

M
2 	V hd 

w

+

x 

CWXo 
= 	—2- [k

s 
 + CF  Tbl] _ 

- 
z  as 0 

1 
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a 

b 
	

ci 

Plate 1 	Shedding of pairs of simultaneous eddies in the reorganization 

section of the first instability region. 	Selection of photographs 

taken at random during many cycles. 	(a) Upstream stroke, cylinder near 

mean position; wake near its narrowest; (b) cylinder near the furthest 

upstream position; new pair of eddies begins to form; (c) downstream 

stroke, cylinder near mid position; eddies growing near their furthest 

upstream position with respect to the cylinder; wake near its widest for 

that value of (fs/f); (d) cylinder near the furthest downstream position; 

eddies move downstream and the wake narrows. 	(fs/f) = 0.67; 

(a/D) = 0.11; f = 1.66 c.p.s.; D = 3.38 cm. 
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Plate 2 	Wake behind a cylinder fitted with a splitter plate. 

(a) and (b) laminar eddies; (fs/f) = 0.96; (a/D) = 0.18; 

D = 2.5 cm; f = 2.12 c.p.s. 

(c) and (d) turbulent eddies; (fs/f) = 1.13; (a/D) = 0.08 

D = 2.5 cm; f = 2.59 c.p.s. 
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f 

Plate 3 	The near wake in the lock-in section of the first instability 

region. 	Selection of photographs taken at random during many cycles. 

(a) A pair of eddies is being shed; the lower (counter-clockwise) member 

of the pair rapidly moves downwards and downstream, near and below the 

lower member of the previously shed pair; (b) and (c) the two lower 

eddies coalesce into a larger eddy which moves downstream to take its 

position in the staggered wake; the downwards transverse flow associated 

with the kinetic field of the larger eddy, displaces the upper eddy 

downwards to the centreline of the wake; (d) a new pair of eddies is 

being shed; the upper member of the new pair coalesces with the upper 

eddy of (b) and (c); (e) and (f) the lower member of the new pair is swept 

upwards by the transverse flow; the next pair of eddies can just be seen 

in (f). 	(fs/f) = 0.9; (a/D) = 0.22; D = 3.381 cm; f = 1.829 c.p.s.; 

N = 1.66 c.p.s. 
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a 	 d 
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.r  

f 

Plate 4 	Developments of the near wake in the double harmonic excitation 

section of the first instability region. 	Selection of photographs taken 

at random during many cycles. 	Four consecutively shed, upper (clockwise) 

eddies can be seen joining to form one of the large eddies of the distant 

wake as follows: (a) Eddy No 4 of one such group moves rapidly away from 

the cylinder to join the amalgamated eddies Nos 1,2 and 3 (centre of 

picture); (b) eddy No 1 of the next group is only appearing and is 

clearly visible in (c); (d) eddy No 1 has moved downwards due to the 

transverse flow and is about to be joined by the newly shed eddy No 2; 

(e) the transverse flow has ceased; eddies 1 and 2 have joined together 

to form a larger eddy, and eddy No 3 is just being formed; (f) eddies 

Nos 1, 2 and 3 have joined to form a larger eddy and begin to move down- 

stream. 	Similar developments can be seen for the lower (counter-clock- 

wise) eddies. 	(fs/f) = 0.56; (a/D) = 0.056; D = 3.38 cm; f = 1.65 c.p.s. 
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Plate 5 The near wake in the second instability region. 	Selection 

of photographs taken at random during many cycles.(a) cylinder near 

its downstream position; an eddy has just been shed but is still 

connected to the cylinder by the upper shear layer; upwards transverse 

flow commences; (b) cylinder approaching its upstream position; the 

previous (clockwise) eddy moves downstream along the wake's centre line 

probably still supplied of vorticity by the upper shear layer; the new 

(counterclockwise) eddy starts to form; transverse flow dies down; (c) 

and (d) approximate mirror images of (a) and (b). (fs/f) = 1.15; 

(a/D) = 0.17; D = 3.38 cm; f = 1.93 c.p.s.; N = 1.66 c.p.s. 
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Plate 6  - a - Von /Carman wake behind a stationary cylinder. 

R
e 

= 2300; D = 3.38 cm 

- b - Wake in the rearrangement section of the first instability 

region. 	(fs/f) = 0.65; (a/D) = 0.096; D = 3.38 cm; 

f = N = 1.66 c.p.s. 
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a 

Plate 7 - a - Wake in the lock-in section of the first instability region. 

(fs/f) = 0.9; (a/D) = 0.202; D = 3.38; f = 1.83 c.p.s.; 

N = 1.66 c.p.s. 

- b - Undefined shape of the wake behind a cylinder oscillating 

between the two instability regions. 	0.93 2  (fs/f) < 1.03; 

(a/D) < 0.05; D = 3.381 cm; pr  = 1; 1.66 c.p.s. < f< 1.83 c.p.s. 

N = 1.66 c.p.s. 
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Plate 8 - a - Wake in the double harmonic excitation section of the 

first instability region. (fs/f) = 0.56; (a/D) = 0.05; 

D = 3.38 cm; pr  = 1; f = N = 1.66 c.p.s. 

- b - Wake in the second instability region. (fs/f) = 1.15; 

(a/D) = 0.173; D = 3.38 cm; f = 1.916; N = 1.66. 
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Fig. 1 Typical Von Orman wake behind a bluff body and its main characteristics (from Scruton) 
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Fig. 2 	Typical amplitude response curve of a lightly damped pile, with 

equal in-line and cross-flow natural frequencies 
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Fig. 4 	Schematic representation of the basic forces and flow patterns 

associated with eddy shedding: (a) simultaneous shedding (pairs); 

(b) alternate shedding, showing frequency ratio of in-line and 

cross-flow forces 
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(a) down stream position - a pair of eddies 
has just been shed, separation points 
move back and f.s.l. come closer together 

(b) mean position moving upstream - separation 
points at their rearmost position, f.s.l. 
at their closest and the wake is narrowest, 
flow inside the wake starts :to move 
upstream 

(c) upstream position - new eddies have 
started to grow on the sides of the cylinder 
at or near the separation points which are 
moving upstream; upstream wake flow feeds 
the eddies 

(d) mean position moving downstream - eddies 
are markedly grown; the main flow approach-
ing the cylinder behaves as if it encountered 
a larger cylinder or a bluffer body, eddies 
start to move downstream 

separation points 

Fir. 9 	Flow patterns of the "pairs mechanism"' 

(see also Plate 1), Note: 	free silear layer 
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Fig. 12 	Samples of (a/D) vs time traces of a cylinder fitted with a splitter plate (from Run 111) 
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Fig. 14 	(a/D) vs time traces in the first instability region, corresponding to the sections 

marked a, b and c in Fig. 13 
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Fig. 15 	Flow patterns in the lock-in section of ,the first instability 

region showing both the transverse flow and a pair of 

simultaneous eddies (see also Plate 3) 
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Fig. 16 Potential flow representation of a Von Kaman wake 
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Fig. 17 	a/D vs time trace at the end of the double harmonic excitation section showing 

(a) double harmonic excitation and (b) excitation by the "pairs mechanism" alone 
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Fig. 18 Dominant harmonic components of the vibration in the "double 

harmonic excitation section" of the first instability 

region (Note: T = f-1) 
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Fig. 19 	Eddy organization and transverse flow direction in consecutive 

cycles of the near wake, in the double harmonic excitation 

section of the first instability region (see also Plate 4) 
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Fig. 21 	Potential flow representation of the second peak wake 
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Fig. 22 	Shedding process in the second instability region 

(see page 37 and Plate 5) 
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( c) (a) 

Fig. 24 	(a/D) vs time traces in the second instability region: (a) main, constant-amplitude section; 

(b) growth section; (c) random vibration for (V/ND) values beyond the instability region 

No /etraces not" a t-  -fAe samo scale 



Fig. 25 	Recorded transients: (a) for (fs/f) < tib, and 
(b) for (fs/f) > VT 
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Fig. 26 Cylinder and wake behaviour in the region 'between instability 

regions: (o and X) =. first; (+) = second. 	From run 99. 
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Fig. 31 	Dependence of the Strouhal number for a stationary circular 

cylinder, on the Reynolds number (from Raudkivi and Callander) 
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Fig. 47 Extrapolated maximum amplitude response 
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Fig. 51 	Phase diagram showing the total hydrodynamic force 
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Fig. 85 	Frequency response of the Immingham piles in terms of CI  (from Wootton2  and Eqn. 7.1Sb) compared 

with equation 8.9: (o) V increasing, (x) V decreasing 
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