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ABSTRACT

An investigation has been conducted on the flow-induced, in-
line vibrations of circular cylinders. Two-dimensional cylinders
immersed in a one-dimensional water stream were tested in the
laboratory. :

Detailed observation of cylinder and flow behaviour revealed
some novel characteristics of this type of excitation, such as a new
type of wake, variations of the mean drag coefficient and frequency
variations which reduced a variable mass coefficient to zero.

A new "non-dimensional frequency parameter' was obtained which
unlike the commonly used 'reduced velocity", unified the results of
previous researches and provided a precise definition of the insta-
bility regions; this allowed the avoidance of instability in engineering
problems at the design stage. :

In contrast with aerodynamic practice, it was here concluded
that density and damping should be considered separately. Density
was. found to determine the frequency response. Damping was divided
into hydrodynamic (included in the total hydrodynamic force) and exter-
nal (structural); the latter was represented by a modified "stability
parameter" which is independent of cylinder density and which was found
to determine the amplitude response. -

The identification and definition of the independent rdles
played by density and external damping, led to correlations which allowed
the prediction of the amplitude and frequency response and of the insta-
bility regions, for any two-dimensional cylinder-flow arrangement.

The hydrodynamic exciting, damping and added mass forces were
analysed leading to a theoretical model which represents the excitation
in terms of force coefficients and a phase angle; these parameters were
found to represent the hydrodynamic processes.

Frequency variations were attributed to a constant mass coeffi-
cient and variable drag forces; this led to a marked simplification of
the theoretical model in the second instability region, and to the
prediction of the force coefficients and the phase angle from knowledge
of flow characteristics and cylinder motion and geometry.

Good agreement was also found between the predictions of the -
model and the results of full-scale three-dimensional experiments.
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CHAPTER 1

INTRODUCT ION

1.1 Engineering Considerations

Flow induced vibrations are a problem of growing engineering
concern as structures exposed to fluid flow grow in size, number and
variety. Moreoever, as the design of these structures becomes more
refined, economic considerations demand that safety-margins be reduced
and consequently much of the material regarded as excessive for static
stability is being eliminated. The dynamic stability often suffers
as a result of these economies through a reduction of both damping and
the natural frequencies of the structure. Moreover, as the numbers
of marine and estuarine works multiply, more structures are exposed to
hydrodynamic action which in comparison with aerodynamic action is
associated with larger inertial forces and larger exciting forces

relative to the structural damping.

It is clear from these trends not only that more refined and
reliable engineering knowledge and methods should be developed, but
also that new types of vibration phenomena previously unknown or
neglected are assuming greater importance to the designer. One such

new source of flow-induced vibration is described below.

1.2 In-Line Vibrations Induced by a Steady Flow

In what follows only steady flows approaching structural members
will be consié;red although the results will be applicable to those
unsteady flows with scales and frequencies of unsteadiness which are
greatly different from the structure's scale and natural frequency, i.e.

small scale turbulence on the one hand and tidal flows on the other.

Except for cases such as ''galloping" and "flutter'" the most
important flow-induced excitations are associated with the periodic
shedding of eddies in the wake of a bluff body. This wake has normally
been thought to be of the Von Karmin type (Fig. 1), where in addition
to a steady drag force, the flow exerts a periodic force upon the body

with the same frequency as that of alternate eddies shed into the wake.
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If the body is at rest this wake frequency, fw’ is related to the
velocity of the flow, V, and the dimensions of the body in this case
its diameter, D, by the Strouhal number, S, i.e.:
s wa
\Y
In practical situations these periodic forces become significant
when the vibration amplitudes are dynamicélly magnified by a resonance
phenomenon when the forcing frequency coincides with a natural frequency
of the body. Thus for a given structural member there correspond
critical values of the flow velocity, given by the Strouhal relation-
ship and the.natural frequencies of the member,at which a resonance

could occur.

In some situations the vibration of the body is so large that
it interferes with and can even control the flow pattern. Under such
circumstances the fluid dynamic forces themselves can be magnified and
so through some interactive process the vibration of the body can be
increased still further. In this type of largely "self-excited"
vibration the dynamic characteristics of the body cause the frequency
of the wake to diverge from that predicted by the Strouhal relationship
{(a phenomenon sometimes termed "frequency lock-in") and so the range

of flow velocity over which vibration will be important is extended.

The forces associated with eddy shedding can produce vibrations
in the direction of the flow (in-line), or at right angles to it (cross-
flow). Research has so far been concentrated in studying the latter,
and until recently the weaker, in-line vibrations have not been detected
or have been ignored. In the last decade however, the structural
design trends mentioned above have brought to light examples of in-line
vibration which have necessitated expensive remedial work.  Auger
reports the in-line vibrations caused by a steady wind of the members
of an aluminium, tubular space-frame built for "Expo 68", which was
designed to avoid cross-flow vibration only. Vibrations absorbers

had to be installed on every member of the structure.

During the construction of a jetty at Immingham in 1967 (see
Sainsbury and King, Woottonet al), severe in-line vibrations occurred
in circular cross section piles subject to tidal currents. The

excitation occurred here at flow velocities both inside and outside the
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then known critical ranges. Moreoever there was evidence that some
of the vibrations were associated with the shedding of a_pair of
simultaneous eddies for each cycle of motion of the pile, rather than

with the usual alternate shedding of eddies (Fig. 2 and 4).

The experience of Immingham is important because it demonstrated
that excitation could occur at a considerably lower flow velocity than
was previously thought possible and that unforeseen combinations of
in-line and cross-flow motion can occur; in practical terms a designer
must now consider raising the lowest natural frequency of a lightly-
damped piled structure, by a factor of perhaps 3 over the value formerly
believed to be safe (see Chapter 6). The cost of the necessary stiffen-
ing to achieve this increase can be high, and so there is clearly a
need for greater understanding of in-line vibration if the demand

continues for berthing facilities in deeper and faster flowing water.

1.3 Previous Studies of In-Line Vibration

The Immingham vibration problem stimulated a series of investi-
gations into flow-induced, in-line vibrations of cylinders. Wootton et
al conducted a full-scale research at Immingham in the site where the
original problem arose and identified the type of vibration. Hardwick
and Wootton reproduced the same type of excitation using small-scale
two-dimensional cylinders in the laboratory and analysed excitation
mechanisms and flow patterns. Clark studied the amplitude and frequency
response of a small two-dimensional cylinder and investigated the possi-
bility of suppressing the motion with flow "spoilers'. King has
conducted several series of experiments mainly with cantilevered model
piles in the laboratory, has developed matrix methods for the represen-
tation of three-dimensional cylinder-flow arréngements and has analysed
-in-line and cross-flow excitation. Dickens has studied flow patterns
and excitation mechanisms of the first instability region of two-~
dimensional cylinders in various fluids. From these researches, the

following description of flow-induced, in-line vibration has emerged.

1.3.1 Cylinder-flow arrangements

Qualitatively similar characteristics have been identified in
the different modes of vibration of differing cylinder-flow arrange-
ments such as: encagtré-pinned pile in three-dimensional flow (Wootton

et al), cantilevered from the bed in one-dimensional flow (king),
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two-dimensional motion with one dimensional flow (e.g. Clark) etc:
(see also Hardwick and Wootton). As can be appreciated in Fig. 3 and
as will be shown later however, there are also marked differences for
example in the flow velocity and frequency response ranges, which
cannot be attributed merely to Reynolds number effects, and which

differences limit the applicability of the research results.

1.3.2 Flow patterns

Two main instability regions for in-line motion have been
jdentified in all the studies; the first region is associated with the
simultaneous shedding of a pair of eddies per vibration cycle and the
second with eddies alternately shed from each side of the cylinder at

the rate of one per vibration cycle (see Fig. 2).

There has however been difficulty in relating the flow patterns
to the mechanisms of excitation when, for example, the simultaneous
shedding appears to change to alternate shedding near the end of the
first instability region (e.g. Dickens2). Hardwick and Wootton moreover
have observed a rearrangement of the wake of the first instability
region into one of the Von Kidrmin type, and King reports an influence

of the Strouhal frequency throughout the first instability region.

1.3.3 Mechanism of excitation

Two explanations for the excitation of the cylinder have been
postulated: in the first instability region, Hardwick and Wootton
suggested that the narrowing and widening of the wake as the cylinder
crosses its central possition on its forward and backward strokes
respectively (fig. 4), indicated a force in phase with the cylinder's
velocity which does work on the cylinder and so overcomes the system'S

damping.

In the second instability region, the fluctuating forces associated
with the alternate shedding of eddies can conveniently be resolved into
two components (Fig. 4): the larger is perpendicular to the flow
direction and with the frequency of the wake, fh (the cross-flow compo-
nent), and the smaller acts in the direction and sense of the flow (the
in-line component) which when considered as a fluctuating force, acts

with twice the frequency of the cross-flow component.
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No satisfactory explanations have yet been put forward to account

for the beginning and the end of either instability region.

1.3.4 Velocity and frequency parameters

The '"reduced velocity" (V/ND}, has been used generally as a base
parameter for plotting amplitudes of vibration, although in some cases
the actual frequency of the vibration, £, has been used instead of the

natural frequency, N.

In-line vibration has been reported for reduced velocities
ranging from 0.8 to 3.8 but disagreement over the precise ranges for
the two instability regions (see Fig. 3) has complicated the interpre-
tation of the phenomena and reduces the usefulness and reliability of

the available information.

If the mechanism of excitation for the second instability region
given above is correct it should follow that an in-line resonance will
occur at a flow velocity, V, for which single eddies are shed with the
same frequency, fs’ as the natural frequency of the cylinder, N, i.e.
at:

- v _ 1 .
fS = N or Ww S 3§ ° 2.5
i wa fSD
since S = ~ = N 2. 0,2

But Fig. 3 indicates that precisely at (V/ND) = 2.5 large self-
excited amplitudes of motion have in some cases been suppressed and no
satisfactory explanation for this apparent contradiction has yet been

put forward.

Although in-line vibrations with similar characteristics have
been reported in the ranges of Reynolds number, (Re = VD/v), 10% to
108 for prototype studies and 103 to 10 for laboratory experiments,
theré also are unexplained differences between the two situations (see

Fig. 3) and the precise role played by the Reynolds number is not known.

For two-dimensional in-line motion, Clark and Dickens? have
reported a divergence of the vibration frequency, f, from the natural

frequency of the cylinder in still water, N, which is similar to that
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observed in cross-flow vibrations; for cantilevered or pinned cylinders
however, vibration frequencies have either been assumed constant or,
the very slight frequency variations observed have been attributed to
secondary factors specific to the particular situation studied (see

e.g. King).

1.3.5 1Influence of damping

The amplitudes of vibration are limited by damping processes
which dissipate the vibrational energy of a system. Maximum double
amplitudes, a, have been predicted as 0.22 D (Hardwick and Wootton) or
about 0.2 D (Dickens) for two-dimensional flow situations in the first
instability region. King reports maximum amplitudes of up to 0.3 D
at the free end of cantilevered piles. Maximum amplitudes for the

second instability region have not been previously predicted.

Damping has been treated in vafious ways in previous studies.
To facilitate model scaling, and following aerodynamic experience,
"structural' and '"fluid dynamic' damping expressed by logarithmic
decrements, §, have been combined with the mass of the cylinder, M,
and density of the fluid, Pgs into a "stability parameter', Eiggf
where L is the cylinder's length. This combination rests
on the assumptions that the frequency is constant, that the density has
no independent influence on the phenomenon and that damping is not
affected by vibration amplitude (see King, Vickery and Watkins). The
form of the stability parameter has been accepted by most research
workers but there is disagreement over the appropriate damping to be
used. Hydrodynamic damping has sometimes been extrapolated from still
to running water situations in spite of the radically different flow
patterns associated with the two cases (e.g. Dickens2). In other cases
damping has been attributed to the drag forces (e.g. King) arising
from the relative motion of fluid and cylinder, but in this case the
damping cannot strictly be included in the stability parameter because
the latter would not then represent the energy output of the system
(see Chapter 6).

1.3.6 Excitation forces

King obtained fluctuating drag coefficients based on the exci-

tation mechanism suggested by Hardwick and Wootton and on the assumptions
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that the frequencies did not change and that the forces were in phase
with the velocity of the cylinder. Frequency variations of as much

as 20% have nevertheless been reported by Clark, and Dickens? reports

a phase shift of the flow pattern (supposedly associated with the forces)
with respect to the cylinder motion, for different amplitudes of

vibration or reduced velocities.

1.4 Aims and Scope

The researches described above leave many questions unanswered
and the results of some appear to conflict with others. The results
of these researches moreover, tend to be applicable to specific situations
only, e.g.: prototype or laboratory; two or three-dimensional; restricted
in-line or free; circular cylinder or other cross section; in water

or air; etc.

In view of this, the aims of the present project can be summarised
as follows: (a) to improve the understanding and definition of in-line,
flow-induced vibration; (b) to clear some of the contradictions
apparently arising from the different types of research previously
conducted; and (c) to incorporate all the previous experiences in this
field with those of the present research into a general model of widest
applicability. Such a general model should represent all the basic
characteristics of this type of vibration which are common to all
situations, but the model should be adaptable to represent also specific
cases. It is moreoever intended that such an approach will permit a
reinterpretation of the previously reported behaviour of both proto-
types and laboratory models, so as to improve their agreement and thus
to increase the reliability and usefulness of modelling techniques for

this type of vibration problem.

More specifically, it is intended here to: (a) arrive at an
improved qualitative definition of flow-induced in-line vibration;
(b) find appropriate parameters to define the excitation; (c) correlate
cylinder behaviour with flow and cylinder densities, structural damping,
flow velocity, etc. leading to the prediction of instabilities from
data easily available to designers; (d) find limits in general to the
ranges of the excitation; and (e) investigate forces and phase rela-
tionships that would contribute to the explanation for the occurrence

and characteristics of the vibration.
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It is intended moreover that the results to be presented will
facilitate the solution of similar vibration problems (e.g. cross-flow
vibration) and will also lead to a greater understanding of interactions

between fluids and solids in general.

In the next chapter a discussion of the selected approach to
the problem is followed by a description of the experimental equipment
and method.

Chapter 3 is concerned with a correlation between flow patterns
and observed vibration response. On the basis of this correlation,
a parameter is described in Chapter 4 which appears to unify several
sets of independent experimental results, in addition to helping with

the organization and understanding of the data.

Chapter 5 presents a dimensional analysis and a study of most
of the main parameters which influence the excitation. The two most
important ones, density and damping however, are dealt with separately
in Chapter 6, leading to prediction of cylinder behaviour from charac-

teristics of cylinder and flow.

Chapter 7 arrives at a theoretical model of the excitation after
an analysis of added mass, hydrodynamic damping and the excitation
forces. The excitation mechanisms are analysed in more detail in
Chapter 8, allowing simplifications of the theoretical model and further

predictions of cylinder behaviour.

The subject of Chapter 9 is the consideration of the three-
dimensional factors which affected the results of the present research,
and the applicability of such results to prototype three-dimensional

situations. The thesis is concluded in Chapter 10.
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CHAPTER 2

Ekperimental Approach

The aims of this research as stated in the previous chapter,
together with practical and economic considerations dictated a labo-
- ratory investigation of flow-induced, in-line vibration of cylinders,
which when compared with prototype studies presents the advantages of
flexibility, independent control of variables and the possibility of

a less specific research of wider applicability.

The first section of this chapter (2.1) analyses different
alternative types of cylinder-flow arrangements previously used for
similar laboratory researches; this leads to a description in 2.2 of
the arrangement adopted for the present research. Section 2.3

presents a brief description of the experiments and their sequence.

2.1 Alternative Experimental Configurations
2.1.1 Two or three-dimensional

In the typical three-dimensional cylinder-flow arrangements
encountered in civil engineering practice, the characteristics of the
approaching flow change with location, and the amplitudes of vibration
of the cylinder change along its length according to different modal

deflection curves which are particular to every cylinder configuration.

Previous researchers (e.g. Hardwick and Wootton, Dickens) have
achieved a significant degree of similarity when reproducing such three-
dimensional situations in the laboratory, with rigid,two-dimensional
cylinder arrangements immersed in basically one-dimensional approaching

streams (see Fig. 3).

These experimental outcomes indicate that any flow-induced, in-
line vibration has basic chracteristics which are common to all situa-
tions; it should therefore be possible to represent any such excitation
by a simplified model as described above with the additional and separate
consideration of the particular three-dimensional characteristics
involved. More specifically, a three-dimensional situation can be

assumed to be made up of a series of two-dimensional components;
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consequently if the characteristics of a two-dimensional excitation
are known it is only necessary to know the interaction patterns of the
different two-dimensional components in order to obtain a three-dimen-

sional representation.

In contrast to this, the laboratory modelling of one specific
cylinder-flow arrangement would not only be incompatible with widening
the applicability of the experimental outcoﬁe, but it would also intro-
duce three-dimensional patterns which would obscure the more basic and

general characteristics of the excitation.

It was therefore decided to approximate as far as possible the
case of a rigid two-dimensional cylinder immersed in a one-dimensional

approaching stream,

2.1.2 Restricted in-line or free

Apart from torgional vibrations which are not important from a
fluidelastic point of view, the motion of a two-dimensional rigid
cylinder can be represented by two degrees of freedom namely, in-line
and cross-flow motion. The resonant character of the type of exci-
tation here dealt with moreover, implies that the control of the two
natural frequencies of vibration of the cylinder leads to the propi-

tiation or suppression of excitation in the corresponding direction.

In practice vibration can occur in both directions simultaneously
or worse, as cross-flow forces tend to be considerably larger, in-line
vibration is often but a detail of the mainly cross-flow motion. For
these reasons designers normally increase the cross-flow natural
frequency as far above the flow exciting frequency as is possible, in
order to restrict motion in that direction, but often neglect the possi-

bility of in-line vibration which in some cases occurred (see 1.2).

Hardwick and Wootton, Dickens and Clark have adopted a similar
measure in order not only to reproduce in the laboratory the prototype
vibration problem but also to maximise the possibility of in-line vibra-
tion for its study and to minimise any cross-flow interference which would
obscure the character of the in-line excitation. These researchers
have achieved a reasonably good degree of similarity in reproducing the
prototype excitation and have provided basic information which was not

reported in the studies of more complex situations.

King, who studied the behaviour of cylinders with equal natural
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freduencies in the two directions moreover, reports for the case of
light cylinders that the second instability region of in-line vibration
was severely distorted by cross-flow excitation, and that cross-flow
forced vibration could be detected in the first instability region of

in-line motion.

It was therefore decided to isolate in this case the in-1line
excitation process for its study by allowing the cylinder to vibrate in

that direction alone.

2.1.3 Choice of fluid

Dickens has shown that flow-induced in-line vibration can occur
in water, air or even in a polyvinyl alcohol solution. Significant
in-line vibration problems in civil engineering structures however, have
only been reported occurring in water. This is because the fluid
dynamic excitation forces are proportional to the density of the fluid,
and consequently the structural damping of the cylinder is more

effective in suppressing the vibration the lighter the fluid is.

The present objective of maximising in-line excitation for its
study thus favours the use of a heavier fluid, i.e., water instead of
air. The choice of water as the fluid to be used moreover,increased
the experimental flexibility and range by decreasing the lower limit
of the attainable ranges of both the cylinder/fluid density ratio, Prs
and the stability parameter, ks'

2.1.4 Cross-section and position of the cylinder

Clark has shown that circular as well as several non-circular,
cross section cylinders can be induced to vibrate in-line by steady
flows. A circular cross-section cylinder was chosen for the present
research however, because (a) it is most widely used due to structural
and économic advantages, (b) the cylinders of any practical in-line
vibration problem thus far reported had that shape, and (c) more prac-
tical and theoretical information exists for such cylinders than for any

other.

Previous researchers have shown that in-line excitation with
similar characteristics can be obtained with both vertical and horizontal
cylinders. For this research however, the cylinder was placed

horizontally to simplify its rigging and operation, and to avoid the
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specific problems caused by the flume's bottom boundary layer and by

the air water interface..

2.1.5 Externally driven or flow induced

Some research workers (e.g. Bishop and Hassan, Toebes and
Ramamurthy) have contributed to the understanding of cross-flow excita-
tion by forcing cylinders to oscillate in this direction and studying

the flow response to given cylinder motion characteristics.

This experimental method allows prediction of flow induced
behaviour but not its direct study. The method is consequently more
useful and practicable once a reasonable description of flow induced
behaviour exists, which allows confirmation and interpretation of
results and which reduces an otherwise extremely wide experimental range
to limited areas of interest. A research based on externally driven
cylinders moreover, requires complex apparatus and equipment, including
a two-degree-of-freedom transducer, and a considerably more elaborate
interpretation of results, all of which imply additional economic and

time expenditure.

Bearing in mind (a) the early stage of development of knowledge
of in-line exéitation when compared with the cross-flow case and tb) the
complexities and lack of understanding arising from the various types
"of in-line excitation and their interactions, it was decided to study
the flow induced behaviour by devising a cylinder, that would as far as
possible be acted upon by fluid forces alone, exception made of the
cylinder's mass, stiffness and structural damping forces whose influence

on the vibration is an integral part of the research.

An exception to the above decision was made for a short set of
preliminary tests involving an externally driven cylinder. Although
thése tests showed some qualitative characteristics of the wake for
various flow and motion conditions, they also revealed a multiplicity

of flow patterns which reinforced the above decision.

2.1.6 Measurement of forces

Bishop and Hassan, Toebes and Ramamurthy and others, have used
two-degree-of-freedom systems to measure the flow forces on their
externally driven, cross-flow vibrating cylinders. Except in the case

of pressure transducers (see e.g. Small) whose use would severely limit
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the experimental range of the present research, in a flow induced,
steady state vibration it is only possible to measure the resultant of
all the fluid forces. This force can also be inferred from the motion

of the cylinder itself, if the latter is rigged as a transducer.

For'analytical purposes and to facilitate useful correlations
such a force is usually divided by analytical methods into the added
mass and the excitation force components. In the case of cross-flow
vibration the order of magnitude of these two components can be the
séme; not so for in-line vibration however, where the added mass forces
are typically two orders of magnitude higher than the excitation or the
damping forces. Consequently the accuracy needed, complexity and cost
of the equipment needed are that much higher in the case of in-line

vibration than in the cross-flow case.

For these reasons and to avoid complications which would limit
the flexibility and range of the research, it was decided to infer the
flow forces from:(a) the cylinder motion, which was detected by strain
gauges attached to its supports and (b) the mass, stiffness and damping

of the cylinder which were measured in additional simple tests.

2.2 The Experimental Set-Up

The considerations outlined above led to the following experi-

mental arrangement (see Figs. 5, 6 & 7 and Appendix 1).

The variable density cylinders used were held horizontally and
perpendicular to the approaching stream by two long supporting arms of
variable stiffness and damping,so as to allow the cylinders to swing

in a quasi-linear motion in the direction of the flow only.

Two 33 cm long cylinders were used, one 3.38 cm diameter (dura-
pipe) and the other 2.5 cm diameter (aluminium). They were placed in
a glass walled flume 56 cm wide and 35 cm deep, between two large
stationary and transparent end plates which isolated the cylinders from

the large boundary layers of the flume's walls.

External damping could be controlled by a vertical plate attached
to the cylinder's supporting arms, which oscillated on its own planeand
immersed in different depths of a variable solution of syrup in water.
Density of the cylinders was varied by filling them with different

substances. Stiffness was controlled by adjusting the length of
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cantilevered spring leafs at the top end of the supporting arms. The
arrangement also permitted adjustment of cylinder submergence depth and

of the gaps which separated the cylinder from the end plates.

Other additions included a dye injection probe for flow visuali-
sation, a splitter plate (see Chapter 3), a displacement calibration

device, additive weights, etc.

The flexibility of the arrangement can be appreciated in Table

2.1, which gives the main variable's ranges covered during the experi-

ments.
Variable Dimensions Range Notes
\Y% cm/s 5-50 within the
instability
Re - 1700-17000 regions
D cm 2.5-3.38
N Hertz 1.5-2.8
L - 0.5-4.5
_ external damping,
ks -005-2.0 see Chapter 6
Table 2.1 Flexibility of the experimental arrangement

The motion of the cylinder was detected by four wire strain
gauges attached to the springs of the supporting arms and connected to
form a four active armWheatstone bridge. The signal was amplified
and recorded in ultra-violet, light-sensitive paper by a recorder which
provided marks on the paper at fixed time intervals. The traces
obtained provided information of amplitudes and frequencies of vibration

and of mean displacement of the cylinder.

Flow velocities were measured with a propeller meter and pulse
counter. Wake frequencies were obtained by counting the eddies in the

wake and with a stopwatch.

2.3 Experimental procedure

The experimental work consisted of a series of tests to investi-
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gate the response to different flow conditions, of cylinders with

different characteristics.

In a typical test, values of the natural frequency, N, of the
density, Prs and of the damping parameter, kéo’ were fixed. The
cylinder was then induced to oscillate by between 20 and 70 different
steady flow velocities covering the expected ranges of instability.
For each flow velocity flow patterns were observed by injecting dye in
the wake of the cylinder and measurements were made of amplitude and
frequency of vibration, mean cylinder displacement, wake frequency and

flow velocity.

Two sets of tests were conducted (see Appendix 2). In the
first set of (10) tests the 3.38 diameter ¢ylinder was used to investi-
gate the influence on the excitation of the natural ffequency, N,
stiffness, k, cylinder density, Pes reduced velocity, (V/ND) and
Reynolds Number, Re; these parameters were systematically varied
from test to test. For the second set of/(22)tests conducted with
the 2.5 cm diameter cylinder, external damping was controlled with a
viscous damper and the natural frequency of the cylinder was approxi-
mately the same for all the tests; more attention was concentrated
during the second set of tests on the mean displacement of the cylinder,
the wake frequency and external damping; the tests differed from one

another in the values of density and damping.

Two of the tests of the first set and nine of the second were
conducted with the splitter plate shown in Fig. 6; to eliminate the

influence of the alternate wake (see Chapter 3).

Before and after each test, transient oscillations of the
cylinder werelﬁroduced and recorded both in air and in water, as well
as with additional weights attached to the cylinder; from these, natural
frequencies, density and damping were measured. The transducer was
also calibrated before and after each test by comparing known displace-

ments of the cylinder with the recorded traces.

Besides the two main sets of tests, additional experiments were
conducted (Appendix III toV): (a) to measure the drag coefficient and
the Strouhal number for a stationary cylinder, (b) to verify the measure-
ments of k and 0L (c) to investigate the influence on damping of ampli-
tude and frequency of vibration, end gaps, supporting arms etc., (d) to

investigate the effects of flume's bottom, free water surface, etc.
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CHAPTER 3

KINEMATIC .BEHAVIOUR OF CYLINDER AND FLOW

3.1 Introduction

The results of observations of flow patterns and of recordings
of cylinder behaviour made throughout the tests described in the
previous chapter are presented here and a first attempt is made to
correlate them. This correlation will serve to identify initially
qualitatively the characteristics of in-line vibration which will

later be incorporated in a general theoretical model.

Flow patterns are described from visualization of the wakebehind
the cylinder, while cylinder behaviour is described in terms of the
following non-dimensional groups of recorded variables (see Fig. 8):
(a) double amplitude of vibration (afD), (b) frequency of vibration
(f/N), (c) frequency with which single eddies in the distant wake pass
a fixed position in the flume (fe/N), and (d) mean apparent drag

coefficient (CDA/CDO), given by:

N
DA épi_DLVZ (3.1)

where, k is the stiffness (see Appendix III), pgis the density of the
fluid and x is the mean displacement of the cylinder with respect to

its position when V = 0 (i.e. still water); C, . is the '"stationary

DO
cylinder equivalent" value that CDA would adopt at the same flow

velocity in the absence of vibration.

For want of a better alternative at this stage and following
current practice the "reduced velocity" (V/ND), where N is the {(constant)
natural frequency of the cylinder oscillating in still water, will be
used as a base parameter,both for plotting the variables and for the

sequence of the data presentation.

It is then argued that the reduced velocity is an unsatisfactory
parameter, and so only a qualitative description of the excitation can
be presented at this stage. In later chapters, chiefly 4 and 6, a

quantitative description will be given.
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In accordance with previous researches reported, two main and
distinct instability regions are identified and are dealt with separately
in 3.2 and 3.3. Although some characteristics are common to both
instability regions, emphasis is given to the uncommon features in 3.4
in an attempt to interpret the cylinder behaviour where the two regions

overlap.

After a brief note on the three-dimensional characteristics of
the flow patterns in 3.5, the most important observations of the

chapter are discussed in 3.6.

3.2 First Instability Region
3.2.1 General observation and description

In accordance with the conclusions of previous researches the
first instability region was associated with the shedding of a pair of
simultaneous eddies, one from each side of the cylinder, per cycle of

vibration.

There was a hint of a change of phase angle but essentially, a
pair of eddies first appeared as the cylinder approached its furthest
upstream position (see Fig. 9 and plate No 1); then onwards the eddies
grew drawing fluid from the wake; when the cylinder was near its mean
position in the downstream stroke, the eddies began to move towards
the rear of the cylinder, and were finally detached as the cylinder
decelerated towards the end of this stroke; as the eddies moved down-
stream into the wake, the free shear layers joining them with the cylinder
came closer together consequently narrowing the wake; this trend continued

approkimately_gntil the new pair of eddies appeared.

As the eddies entered the '"near' wake they appeared to undergo
a process of coalescence and reorganization (see Hardwick and Wootton,
Dickens )} in which many lost their identity; those that emerged to
enter the "distant" wake had the staggered form associated with the wake
from a stationary cylinder. The length of the near wake shrunk with »
increasing reduced velocity from a maximum of about 4D; for the highest
(V/ND) values the reorganization was nearly instantaneous and the

cylinder appeared to shed staggered eddies rather than pairs.

The interaction between the free shear layers on opposite sides

of the wake and subsequently the mutual influence of velocity fields
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of the resulting eddies are essential to the stability of a staggered
wake; a '"splitter plate" (see Fig. &) prevents this interaction
{Bearman, Clark) and was used in the present study to eliminate the
feed-back from the staggered wake, so that the process associated with
pairs of eddies could be isolated. The results of experiments using

this technique are presented below in Section 3.2.2.

On the basis of the rearrangement of the wake mentioned above,
three different sections of the instability region were identified (see
Fig. 10): (a) a central "rearrangement section' where the cylinder
sheds pairs of simultaneous eddies which were eventually rearranged into
a staggered wake, (b) "locked-in section" where the rearranged staggered
wake formed immediately behind the cylinder and its eddies had the
same frequency as the motion of the cylinder and (c) a '"double harmonic
excitation section'" where the frequency of the eddies in the rearranged
wake was equal to half the vibration frequency of the cylinder. These

sections are described in detail below in 3.2.3/4/5 respectively.

3.2.2 Splitter plate results

The use of a splitter plate eliminated the feed-back process

in which the distant wake influenced the excitation.

In agreement with the results of Clark, only one instability
region was identified in these experiments (see Fig. 11). In the (V/ND)
range between the beginning of the instability region and the point
of maximum amplitude of vibration, the wake presented the characteristics
described in Fig. 9, with laminar eddies [see plate 2a). As the
reduced velocity was increased from the onset of motion, an increase
- also was observed of (a) the size and strength of the eddies, (b) of
the widening and narrowing of the wake during each cycle, and (c) the
distance travelled by the points where the boundary layers separated

from the cylinder wall.

The amplitudes and frequencies of the cylinder'é vibration
increased with increasing reduced velocity as shown in Fig. 11; the
vibration was highly regular as can be seen in Fig. 12a. The apparent
drag coefficient, CDA (see 3.1) increased with an increase in (a/D),

when compared with its stationary cylinder value, C the latter was

DO’
in turn slightly lower than the equivalent value for a cylinder without

the splitter plate (see Appendix IV).
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As the reduced velocity was further increased and amplitudes
approached theéir peak values the eddies in the wake increasingly showed
signs of turbulence and their size and apparent strength changed from
cycle to cycle; at the same time the average amplitudes of vibration
decreased as shown in Fig. 11, while the amplitude-time traces became

increasingly irregular (Fig. 12b).

This situation continued until at some criticél value of the
reduced velocity the amplitudes of vibration were abruptly reduced by
approximately 60%, the level of turbulence in the wake increased
markedly and the separation points on the cylinder moved towards the
rear of the cylinder and oscillated comparatively less during each
cycle (see plate Zéﬁh- The value of Re at which this abrupt change

of flow pattern was observed to occur ranged between 3500 and 9500.

For further increases of the reduced velocity the vibration
amplitudes, which in this section were more regular (see Fig. 12c),
continued to decrease until they were so small that they could not be
distinguished from those resulting from turbulence in the oncoming
stream. For this reason it was impossible to identify the end of the

region of self-excitation.

Vibration frequencies increased throughout the instability region
independently of the amplitude of vibration or the characteristics of
the wake (see Fig. 11). CDA increased above its value for an equivalent
static cylinder by an amount roughly proportional to a/D (see Fig. 11).

The above observations describe cylinder and flow behaviour very
similar to those observed in the first instability region, which allows
the conclusion that the "pairs mechanism'" is not seriously disrupted by
the addition of a splitter plate. On the other hand the differences
between the two situations clearly suggest the division of the total
phenomenon into two component ones, the first associated with the
patterns just described and the second with the staggered wake arrange-

ment observed.

In the light of the above observations the behaviour of the

cylinder on its own is described below.

3.2.3 Rearrangement section

The flow patterns in the "near'" wake for (V/ND) values falling
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in the central section of the first instability region (Fig. 10), were
similar to those of the splitter plate case. The amplitude and
frequency responses of the cylinder with and without splitter plate
were also similar. In addition the CDA values were in this case also
slightly higher than the corresponding stationary cylinder value, C

(see Fig. 13).

Do

Further downstream from the cylinder however, the symmetrical
wake produced by the shedding of pairs of simultaneous eddies rearranged
itself into a staggered wake resembling that of Fig. 1 (see plate 6 ).
The distance from the cylinder to the beginning of the rearranged wake
was variable and in general shrank as (V/ND) increased. The eddies
of the rearranged wake had a diffuse appearance and it was sometimes
difficult to establish their frequency, fe, but apart from certain
exceptions fe diverged from the Strouhal frequency, fg for an equiva-
lent non-vibrating cylinder,typically by not more than 5%. An
exception occurred for example when fe = %—f, i.e. where for every three
eddies shed from one side of the cylinder there corresponded one eddy
of the same rotational sense in the staggered rearranged wake. Such
divergence  has also been reported by King who, for a cylinder free to
oscillate in both the in-line and the cross-flow directions, observed
fe increasing in discrete steps according to 'preferred' values of the
ratio(ZN/fe) such as 4, 3.5, 3, 2.5 and 2.

3.2.4 Lock-in section

As the reduced velocity was increased beyond the limits of the
previous section (see Fig. 10) the length of the early wake wherein
the rearrangement was éffected, shrank and from time to time there were
bursts of distinctive, vigorous transverse flow across the wake imme-
diately downstream of the cylinder. This transverse flow was associated
with pairs of eddies of unequal strength where the stronger member of
the pair was immediately integrated in the staggered wake, and the
weaker member was swept inwards and either vanished or it was absorbed
by the next large eddy of the corresponding rotational sense (see
Fig. 15 and plate 3). In the next cycle of cylinder vibration the
positions of the stronger and the weaker eddies on opposite sides of"
the wake as well as the sense of the transverse flow were reversed.

These bursts of transverse flow although short in duration were
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associated with staggered eddies of obviously greater strength than the

diffuse '"rearranged'" eddies of the previous section.

As the reduced velocity was increased further, these bursts
of transverse flow occurred more often and lasted longer until they
dominated the flow pattern near the cylinder with only short bursts of
pairs of large eddies of equal strength. The resulting staggered
wake (see plate:ég) had all the appearances of the fheoretical model
described by Von Karmin (see Fig. 16) and was wider, stronger, clearer
and more regular than either the wake from a stationary cylinder or a

rearranged wake for the same boundary conditions. (See plates 6).

As the rearrangement process was superseded by the strong
transverse motion in the early wake (see Fig. 13), the frequency of the
eddies in the wake, fe’ which had a value approximately equal to fS (or
0.666 f, see 3.2.3), increased very rapidly with increasing reduced
velocity, to match the vibration frequency,f. The resulting common
frequency of cylinder and eddies, f = fe’ was neither equal to the
cylinder's natural frequency, N, nor to the Strouhal frequency, fs’
being higher than both and apparently controlled by the cylinder's
motion. This behaviour, known as '"frequency lock-in", persisted to
the end of the instability region, and the §1ope of the frequency res-
ponse curve with respect to (V/ND), was steepest in this locked-in

condition.

' The amplitude response for the locked-in condition is indicated
in Figs. 13 and 14b. Where the slope of the curve is negative instabi-
lities in the wake were observed accompanied by irregularities in the
amplitude vs time traces which became more obvious as the reduced
velocity was increased. The apparent drag coefficient, Chas increased
markedly when the lock-in phenomenon appeared, after which it roughly
followed the trends of (a/D) vs (V/ND). (See Fig. 13).

As (V/ND) was increased further a point was reached where (a/D)
fell abruptly in a similar way to that observed for a cylinder fitted
with a splitter plate (see Fig. 13). The wake after this point and
to the end of the instability region, still adopted the staggered shape
immediately behind the cylinder, although it was narrower and weaker
and with smaller eddies of more turbulent appearance (see plate 7b) whose
frequency, fe’ was still equal to the vibration frequency, f. A

hysteresis loop was also observed for this instability (see Fig. 10).
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Further increases of V/ND were accompanied by decreasing ampli-
tudes of vibration which eventually vanished among either those caused
by random flow instabilities or those due to the second instability
region. This fact made it impossible to establish the end of the
first instability region in terms of the reduced velocity and of

vibration amplitude observations.

In this last part of the instability region the (a/D)'vs time traces
were morefregular than those obtained before the abrupt drop of (a/D)
(see Fig. 14). The synchronized frequencies of the eddies and of the
cylinder continued to increase in the direction of the corresponding
value of the Strouhal frequency, fs, for that velocity of flow (fig. 13).
CDA continued to decrease roughly following the trends of a/D as shown
in Fig. 13 and finally approaching the corresponding value of the drag

coefficient for a static cylinder, CD For further details of the

end of the first instability region sge 3.4.

In this locked-in section of the instability region values of
amplitude, frequency and drag coefficient reached the maximum recorded
values of (a/D) = 0.248, £/N = 1.191 and (CDA/CDO) = 1.46. The
values were averaged from records lasting one minute each or approxi-
mately 100-200 cycles of cylinder vibration and they were higher than

any previously reported for this instability.

3.2.5 Double harmonic excitation section

For the lowest range of (V/ND) in the instability region and
especially with light cylinders, a third type of cylinder-wake inter-
action gave rise to a local maximum of the amplitude response (Fig. 13).
Analysis of the corresponding (4/D) vs time traces (Fig. 17a) revealed
a non-sinusoidal motion (Fig. 18a) where two essential components could

be identified with frequencies in the ratio 2:1 (Fig. 18b and c).

Flow visualization revealed that a pair of eddies of apparently
equal strength was generated during every cycle of cylinder vibration
with period T (Fig. 18b). In addition, a process was observed in the
wake immediately behind the cylinder in which four consecutive eddies
of the same rotational sense coalesced to form one of the dominant eddies
of thedistant wake (plate 4 and Fig. 19). The period of these dominant
eddies was 2T (Fig. 18c) indicating that the distant wake did not

conform to the Strouhal relationship but it was instead controlled by
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the motion of the cylinder according to: f = Zfé. A fluctuating
transverse flow was observed at the back of the cylinder in association
with the larger dominant eddies, although this flow appeéred much
weaker than that observed in the lock-in section of the instability
region. The resulting distant wake presented characteristics similar
to those of the wake observed in the second instability region (see

3.3 and plates 8a and 8b).

It was concluded (see Chapter 8) that the vibration in this
section resulted from the combination of two excitation mechanisms, one
assoclated with pairs of simultaneous eddies and the other with the
transverse flow and the distant wake, which mechanisms acted on the
two harmonic components of the cylinder's motion (b and ¢ respectively
in figure 18). This interpretation of the excitation thus suggests
that the vibration should start when 2fS = N, i.e. when (V/ND) = (1/48).

It should be noted that this type of excitation extends the
first instability region beyond the minimum (V/ND) values of the splitter
plate instability, and that high values of both cylinder's density ox
damping reduced or totally suppressed this type of instability. The
minimum recorded values of (V/ND) for the commencement of the instability

region thus ranged between 1.15 and 1.6.

As the motion started (see Fig. 20) the average amplitudes of
vibration increased rapidly towards a maximum accompanied by a sharp
increase of CDA' f/N decreased only slightly while fe remained equal
to £/2.

As (V/ND) was increased further a point was reached where the
rearranged wake moved away from the cylinder during intervals of a few
cycles only. During these intervals, the wake was like that described
in 3.2.3, with pairs of simultaneous eddies being shed and preserved in
the wake near the cylinder. The corresponding a/D vs time traces
(Fig. 17b) showed regular constant amplitudes which were smaller than
the average amplitudes obtained with the double harmonic excitation.
Vibration frequencies increased nearer to N and C_, decreased nearer

to CDO' The frequency of the eddies of the distgﬁt rearranged wake,
fe’ seemed to be equal to fs’ although it was difficult to measure it
due to the short time available for eddy counting, combined with weak
and confusing flow patternms. These intervals were longer and occurred

more often as (V/ND) was increased further until the central

35



"rearrangement section" was reached.

This harmonic excitation phenomenon explains the "hump'" at the
beginning of the (a/D) vs (V/ND) diagram observed by other researchers
(e.g. Wootton et al) and it also offers an explanation for the initia-

tion of motion of lightly damped cylinders at (V/ND) = (1/4S).

3.3 Second Instability Region
3.3.1 Introduction

The second instability region was characterized by the shedding
of alternately clockwise and anticlockwise eddies in the wake of the
cylinder, at the rate of one per cycle of motion of the cylinder, in

agreement with all previous reported observations.

The ranges of the reduced velocity V/ND over which the second
instability region extended were highly variable from test to test and.
in some cases values of (V/ND) as high as 6.3 were recorded. This is
considerably higher than the (= 3.5) limiting values previously reported
(King, Clark) and therefore the flow velocity ranges over which
vibration can occur were extended significantly. It will be seen in
Chapter 6 however, that although it is theoretically possible to obtain
in-line excitation with even higher (V/ND) values than those achieved
in the present laboratory research, practical considerations make this

unlikely at full scale.

Some novel flow patterns were observed in the wake, as shown in
3.3.2, and the cylinder behaviour observed, as reported in 3.3.3,
contrasted markedly with some previous reports (e.g. King, Clark).
The growth of the vibration at the beginning of the instability region

is discussed separately in 3.3.4 to facilitate the presentation.

3.3.2 The wake

Previous researchers have regarded the wake in the second
instability region as being similar to that here described in connection
with the "lock-in section" of the first instability region (see 3.2.4),
i.e. a wake of the Von Kirmin type commencing immediately downstream of
the cylinder, with eddies of frequency, fe’ locked-in to the vibration
frequency. The wakes observed in the second instability region during

the present research however, while commencing in the same area and
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having the same lock-in frequency relationship with the cylinder,v

clearly did not resemble the Von Kirmin model.

The eddies in the wake over a distance of up to 15 diameters
downstream from the cylinder, were all aligned in a single row (see
plate 8b and Fig. 21), instead of being aligned in the two usual
separate rows, according to their sense of rotation (see plate 6a and
Fig. 1). It was impossible to say however if the wake would even-
tually rearrange itself far downstream from the cylinder into a staggered
one according to the Von Karman model, because the flow patterns become

indistinct in the region of 15 diameters from the cylinders.

The eddy shedding process that characterised the second instability
region can be described as follows (see Fig. 22 and Plate 5):

(a) When the oscillating cylinder crossed its mean position
in the upstream stroke, the interacting velocity fields of the cylinder
and of the eddy formed during the previous cycle appeared to induce a
transverse flow between the eddy and the cylinder, which deflected out-
wards the shear layer on which the eddy was formed and drew the oppo-

site shear layer towards the centreline of the wake.

(b) When the cylinder reached its furthest upstream position,
the drawn-in shear layer began to roll up to form a new eddy in the
lee of the cylinder; the transverse flow appeared to have gained in

strength at that point.

(c) As the cylinder crossed its mean position in the down-
stream stroke, the new eddy had grown in strength and diameter and had
taken up a position 180° from the frontal stagnation point in the
cylinder. The transverse flow seemed now to have weakened but by
this time it appeared to have so distorted the longer of the two shear

layers as to interrupt the flow of vorticity to the old eddy.

(d) As the cylinder reached its furthest downstream position
there was still an obvious transverse flow between the two eddies, but
as yet no evidence of a transverse flow in the opposite direction
between the new eddy and the cylinder. Immediately after this point

the new eddy began to move downstream along the wake's centreline,

3.3.3 Cylinder behaviour

In contrast to previous observations of the second instability
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region (e.g. Clark) where the a/D vs V/ND diagram had a peaked shape,
the observations of the present research showed approximately constant
amplitudes of vibration throughout the instability region (Fig. 23)
except for a steeply rising limb (see 3.3.4). The corresponding

a/D vs time traces were fairly regular (Fig. 24 a).

The frequency of the eddies in the wake was locked-in to the
frequency of vibration and the common frequency, f = fe’ increased with
(V/ND) above the value of the natural frequency,N,but remained below

the value of the Strouhal frequency, fs (Fig. 23).

Contrary to the observations of previous research workers who
observed only slight variations of frequency, the vibration frequencies
observed in the present research, especially for light cylinders exceeded

the natural frequency of the cylinder by as much as 75%.

Another important observation concerned the behaviour of the

apparent mean drag coefficient, C which was here observed to increase

DA’
markedly, reaching values up to 90% higher than the corresponding CDO’
at the beginning of the flat top of the émplitude Tesponse curve.

For higher (V/ND) values, CDA
higher than CDO at the end of the instability region (Fig. 23).

decreased to a value only 40% or 50%

Towards the end of the instability region (a/D) decreased
slightly with increases of (V/ND) until a point was reached where the
(a/D) vs (V/ND) curve fell abruptly. This was associated with a large

hysteresis loop as shown in Fig. 23.

After the cylinder had ceased to vibrate the wake recovered its
usual staggered shape, commencing some 1.5 diameters downstream of the
cylinder beyond the formation region; the eddies in the wake adopted
the Strouhal frequency, fs, and CDA took on its static cylinder value
CDO; vibration frequencies were difficult to measure at this point
owing to the random character of the resulting vibration (see Fig. 24c).
At this point, if the cylinder was forced to oscillate and then was
released, the rate of decay of the resulting transient was relatively
low (Fig. 25a); but as (V/ND) was increased further, the decay rate
could be so high that only 2 to 3 cycles of the transient were oberved

(Fig. 25b).

3.3.4 Growth of the instability.

Self-excitation commenced for the second instability region in
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the range 2.3 < (V/ND) < 3. Just after the commencement of self-
excitation where (a/D) values were still small the frequenéies f, N,

fe and fS were all nearly identical and C (see Figs. 23 and 26).

oA = Cpo
As (V/ND) was increased beating forms of vibration appeared
(Fig. 24b), whose average amplitude increased with (V/ND) as shown in
Fig. 26. The vibration frequency, f, was only slightly different
from fe’ and both these frequencies were greater than N, but less than
fs' The mean displacement, x, and consequently CDA’ increased by an

amount roughly proportional to (a/D) as can be seen in Figs. 24b and 26.

The corresponding flow patterns fluctuated between the Von Karman
type of wake and the one described in 3.3.2, being at times indistinct

and badly correlated along the cylinder's length. (See plate 7b).

As (V/ND) was increased further the beating motion gradually
diminished and eventually disappeared as the flat top of the amplitude
response curve was reached. The flow pattern thereafter became stable

as described .in 3.3.2.

3.4 Region Between First and Second Instability Regions

For values of the reduced velocity between 2 and 3, it was often
difficult to know exactly in which instability region a vibration
belonged and so it was difficult to establish the limits of the two

regions.

This was because: (a) previous reports are inprecise and contra-
dicting in this area (see Fig. 3), (b) the ranges and values of
(V/ND) in the present research were also found to vary from case to
case, (c) the flow patterns in the wake at the end of the first insta-
bility region and at the beginning of the second were very similar
as can be seen in Plates 7a, 7b § 8b, and (d) at the very low values
of (a/D) found in this region, the correlation of the flow patterns
along the cylinder's length was very poor (see 3.5); as a result of
poor correlation visualization of flow patterns was more difficult, and

the behaviour of the cylinder was erratic and difficult to analyse.

However, with the aid of the knowledge of the behaviour of (£f/N)
and CDA described in 3.2 and 3.3 it was possible to make certain

observations as described below.
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Fig. 27 presents an example of a selected portion of a long
vibration record of a/D vs time obtained with (V/ND) = 2.59. It
can be seen from the trace in Fig. 27 that the maximum amplitudes are
only 6.5% of the cylinder diameter, are irregular and show evidence of
beats. However, significant differences can be identified between

the various beating forms as follows:

In parts (1) and (2) of Fig. 27b the frequencies of vibration
are significantly higher than the natural frequency, N, and also higher
than those in parts (3) and (4); the frequencies of (3) and (4) however
are only slightly higher than N. Moreover, in (1) and (2) the average
displacement of the trace during one cycle with respect to a fixed
reference point, X, is approximately constant, while in (3) and (4)

X seems to grow proportionally with (a/D).

As can be seen in Figs. 13 and 26 the frequencies at the end of
the first instability region are higher than N, while at the beginning
of the second they are near the value of N. Figs. 13 and 26 also show
the values of CDA and consequently of x decreasing towards the static
cylinder values at the end of the first instability region, while at
the beginning of the second, these values increased sharply, roughly
in propotion to the increasing (a/D). It was thus concluded that (1)
and (2) represented vibration typical of the first instability region

while (3) and (4) represented the second.

A possible explanation of this observation could be that the
instability regions overlap and the form of the excitation can fluctuate
between the first and the second types of instability at the same value
of (V/ND). Alternately, or possibly in addition to the above, it
could be that the self-excitation is highly sensitive to the unsteadi-

ness which is inevitable in the approaching flow.

Quantifative considerations of the variables involved and
comparison of different experimental results described in later chapters
led to the conclusion that the instability regions did overlap and thus
furnished another reason to question the value of using (V/ND) as the

base parameter.

3.5 A Note on Flow Pattern Correlation

During the tests conducted in this research it was observed that
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reductions of vibration amplitude and frequency could occur associated
with desynchronization or lack of correlation of the flow patterns in

the wake along the length of the cylinder.

When the cylinder remained stationary events of the eddy shedding
process did not in general occur simultaneously in all parts of the wake
along the cylinder, although it was often observed that these events

were synchronized over half the length of the cylinder or more.

When the cylinder vibrated shedding pairs of simultaneous eddies,
the dependence of the shedding process on the motion of the cylinder
and the symmetry of the wake ensured a perfect correlation along the
entire length of the cylinder in the - near wake, although desynchronized

events were often apparent in the distant reorganized wake.

The symmetry of the wake in the second instability region com-
bined with the dependence of the shedding process on the motion of the
cylinder, permitted either (a) a perfect correlation of the wake along
the entire length o the cylinder, or (b) half-cycle desynchronization
of events in different points along the cylinder's length, i.e. when
an eddy was being shed from one side of the cylinder along some portion
of its length, another counter-rotating eddy could be shed from the
opposite side of the cylinder in another portion of its length, with
a wake discontinuity inbetween. Up to two of these discontinuities
were observed in a given vibration condition; the discontinuities
could move along the cylinder's length but they neither disappeared nor
did additional ones appear once a steady state vibration was set in the

second instability region.

Similar discontinuities were also observed in the lock-in and
double harmonic excitation sections of the first instability region.
The correlation of the wake in the lock-in section was very variable
due to the bursts of pairs of simultaneous eddies and consequently a

perfectly correlated wake in this section was very difficult to achieve.

3.6 Summary and Conclusions

In accordance with previous research reports, two different
instability regions were identified in the experiments here conducted,
although some further observations which in general were neglected in

previous rescarches deserve special attention.
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3.6.1 Interacting mechanisms in the first instability region

Interpretations of the first instability region and predictions
of the corresponding cylinder behaviour have been made previously (e.g.
Dickens, King) on the basis of the one excitation mechanism characterized
by the shedding of pairs of simultaneous eddies. The present work
and especially the experiments with the splitter plate have shown
however that the excitation of this instability region is a complex one
and embraces in addition to the pairs mechanism one associated with an
interaction between free shear layers leading to a more stable staggered
wake. Therefore, any improvement in such interpretations or predictions
should include these two mechanisms and their interaction. Two clear
cases in point are the ranges of (V/ND) over which the instability

region extends and the variations of C both of which appear to be

)
markedly influenced by interaction. 2ﬁother important consequence of
this interaction is the double harmonic excitation at the beginning of
the instability which explains the local maximum of the (a/D) vs (V/ND)
curve reported by previous researchers in this region. This type of
excitation moreover, could be responsible for the initiation of the
vibration, which should occur approximately when f_ = iN, i.e. at
(V/ND) = 1/4S, although other factors such as damping and flow instabi-

lities have to be considered. (See Chapters 6 and 9).

On the other hand, the marked similarities between the cylinder
behaviour in the first instability region and that observed when using
a splitter plate, such as the shape of the (a/D) vs (V/ND) curve with
the abrupt drop of (a/D) and the trends of (f/N), show the dominant
influence of the 'pairs mechanism". This is reinforced by the obser-
vation of pairs of simultaneous eddies throughout the instability region
even when a strong transverse flow occurs. Another consequence of
this is that the abrupt decrease of (a/D) cannot be explained solely in
terms of the presence of the second instability region as others have

suggested.

3.6.2 The wake of the second instability region

The second instability region has previously been associated
with a wake of the Von Karman type, similar to that observed at the end
of the first instability region; this has complicated the differentiation

between the two types of instability. The present research showed
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however, that when the cylinder was restricted to in-line motion only,
the wake of the second instability region alone had charcteristics
markedly different from those of a Von Karman wake. These observations,
besides showing a new and interesting type of wake, have provided a
means for distinguishing between the two instability regions and their

corresponding types of excitation.

The difference between the two locked-in wakes of the two
instability regions was attributed to a variation in the timing of the
shedding of the eddies, with respect to the events in the wake repre-
sented by the transverse flow which sweeps the back of the cylinder.
This suggested that in order to arrive at a better explanation of the
phenomena involved, great importance should be attached to the phase

relationships between the wake and the cylinder motion.

3.6.3 Cylinder behaviour

The careful and combined analysis of the variables that expressed
the behaviour of the cylinder showed novel characteristics that even at
this early stage have contributed significantly to the understanding

of ‘the ‘phenomenon. . ..

The approximately constant value of the amplitudes of vibration
observed in the second instability region differed from previous '
reports and, as will be seen in later chapters, facilitated the theoretical

analysis of the phenomenon.

In contrast with previous research reports, frgquencies of
vibration were neither constant nor approximately constant; instead
they increased with reduced velocity, reaching maxima of (f/N) = 1.19
and (f/N) = 1.76 in the first and second instability regions respectively.
Although these variations are less marked in practical situations (see
Chapter 6), they eliminated the possibility of assuming constant
frequencies and thus complicated the mathematical interpretation which
is to follow. A study of frequency variations however has already
shown valuable details such as the increases of (f/N) in the first
jnstability being independent of (a/D), which suggests a trend progressing
undisturbed as (V/ND) increases in spite of amplitude collapse. Knowledge
of frequency variations also contributed to the distinction of the two

jnstability regions from recorded vibration traces as shown in 3.4.
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Analysis of the frequency of the eddies in the wake together
with the frequency of vibration showed three areas of "frequency
lock-in", namely, at the beginning and at the end of the first instability
region and throughout the second, which confirmed the strong interaction
between the flow behaviour in the wake and the cylinder vibration.
This analysis also contributed to the identification and understanding

of the '"double harmonic excitation' of the first instability region.

The variations of the apparent mean drag coefficient, C here

DA’
observed in both instability regions also contrasted with previous
research reports in which it has been regarded as a constant (e.g. King).

C
DA
the back of the cylinder in both instability regions, and it reached

increased sharply whenever transverse flow was observed sweeping

values up to 90% higher than C As is the case for the frequencies,

DO”

the study of the behaviour of CDA

example in the first instability region where it contributed to the

has. already been fruitful, as for

understanding of the interaction of the different excitation mechanisms,
and in the area between the two regions where it allowed a better

distinction of the two different phenomena involved.

3.6.4 The reduced velocity (V/ND) .

The (V/ND) ranges over which the two instability regions occurred
overlapped considerably, and they varied widely from test to test.
Thus in the first region motion could commence in the range
1.1 < (V/ND) < 1.7, and the sudden drop of (a/D) occurred at
2.2 < (V/ND) < 3, while the (V/ND) value corresponding to the end of
the instability could rarely be identified. The second region commenced
and terminated in the ranges 2.3 < (V/ND) < 3 and 3.3 < (V/ND) < 6.3
respectively. This lack of definition was even more marked when com-
paring the present results with previous reports as shown in Fig - 3.
This uncertainty in the ranges of the base parameter complicated the
comparison of different results and made it impossible to study accurately

the influence of other factors such as density and damping.
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CHAPTER 4

A NEW BASE PARAMETER

In the last chapter it was found that all the experimental results
in the present and previous studies of in-line vibration showed similar
trends. It was also found that the reduced velocity (V/ND), failed
to provide a satisfactory'quan;itativecomparison of the results of

widely differing experiments.

It is intended in this chapter to present a more satisfactory
base parameter which: (a) unified the results of different experiments
into a general model which incorporates the underlying trends and
characteristics of in-line vibration, (b) defines more precisely the
instability regions, (c) helps to explain certain features of the
excitation and (d) leads to further quantitative analysis of in-line

vibration.

Some previous authors have adopted an alternative form of the
reduced velocity: this is analysed in 4.1 leading to the presentation
in 4.2 of the new parameter whose characteristics and advantages are

discussed in 4.3

4.1 An Alternative Form of the Reduced Velocity

P

Some previous researchers (e.g. Dickens) have used an alternative
form of the reduced velocity, namely (V/fD) where f is the actual
vibration frequency instead of, as was the case in Chapter 3, the
natural frequency in still water, N. Although (V/fD) is not directly
proportional to V alone and is therefore not directly representative
of flow velocity variations, it is more practical in situations such
as the present one where f is not a constant. Arguments in support of
this last statement and leading to a discussion of the theoretical
implications of the use of (V/fD) as a base parameter are presented

below.

e
Figure 28 shows vibration amplitudes and faguencies plotted
against (V/ND), recorded from three tests conducted with the same cylinder,
in the same flume, with similar values of N and for similar flow velocity

ranges, but with the cylinder loaded with different masses and with the
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stiffness of the supporting arms adjusted to provide the same N. It
is clear from the figure that when there was a large variation of £/N
in the self excited range there was a corresponding wide variation of
V/ND, This suggested that the (V/ND) range was influenced to some
extent by f, and so any improved base parameter ought to contain infor-

mation about the vibration frequency.

The reduced velocity can Be interpreted as the distance travelled
by the flow per cycle of motion of the cylinder, expressed in cylinder
diameters. In the cases when f is not a constant this interpretation
is valid only for (V/fD) and not for (V/ND), and (V/fD) is then propor-
tional to the distance, & (see Fig. 1) in the direction of the flow,
between consecutive eddies in the wake near the cylinder (or throughout
the wake in the cases of lock-in). The distance between eddies has
been shown by Von Kirmin to be related to the stability of a staggered
wake; and as was shown in Chapter 3, the staggered wake plays an impor-
tant part in the excitation. Moreover as will be seen in Chapter 8,
the distance between consecutive pairs of simultaneous eddies may be a
factor which determines the magnitude and timing of the exciting forces.
Thus the interpretation of the reduced velocity as a distance ratio also
suggests the use of (V/£D) instead of (V/ND). Indeed, when the results
of Fig. 28 were plotted using (V/£D) as the abscissa (Fig. 29), the
amplitude response curves coincided approximately, and it was concluded
that (V/fD) was a better parameter than (V/ND) for unifying and compar-
ing different experimental results. The use of V/fD as a base parameter
was less successful when the results of the present and previous
researches were compared, as can be seen in Fig. 30.

4.2 Derivation of the New Parameter

The problems then arise of how to explain the differences
between the curves of Fig. 30 and of how to account for these differences

in an improved base parameter.

It is clear from Fig. 29 that (V/fD) is a satisfactory base
parameter for any one series of observations involving similar geo-
metrical and dynamic conditions. The difficulty seems to arise when
there are differences in these conditions such as Reynolds number,
turbulence of the main stream, blockage and boundary effects, cylinder's

surface roughness and measurement techniques and accuracy. Clearly
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an improved base parameter would have to reflect these conditions to

reduce the divergence of Fig. 30.

Bishop and Hassan report that for each flow velocity, when a
certain forced frequency of cross-flow oscillation of their externally
driven cylinder was reached, a sudden decrease of the exciting force
would occur accompanied by an equally abrupt shift of the phase angle
between the force and the motion. They suggested the existence of one
characteristic frequency of the flow correéponding to each flow velocity.
In Chapter 3 it was shown that the tendency of the staggered wake to
adopt the frequency for a constant Strouhal number was an important
factor influencing the vibration and in particular the reduced velocity
ranges.* Information about this frequency should therefore be consi-

dered for its inclusion in the base parameter.

Moreover, the fact that the Strouhal number, S, is influenced
by the same flow and cylinder characteristics mentioned above, namely:
R (see Fig. 31), flow turbulence and cylinder surface roughness (see
Fage & Warsap) blockage (see ﬁ&chtev ), measurement techniques, etc.,
suggested that both S and the excitation might have features in common.
If this were indeed correct, the inclusion of the Strouhal number in
the base parameter could not only account for the Strouhal wake
frequency of the flow but would also reflect the characteristics of

cylinder and flow as mentioned above.

The expression for the inverse of twice S:

1 v

28 £fD
s

suggested a direct ratio with the reduced velocity, thus:

vED - *S® <

where (fs/f) is a new non-dimensional frequency parameter.

This parameter is proportional to the reduced velocity (V/£D)
if S is constant, which for a given situation and for the range

103 < Re < 3 x 10%, is approximately the case (see Fig. 31); if the

* For exqmple in the first instability region this tendency was associated
with the onset of motion, with the rearrangement of the wake, with the
lock-in phenomena and with the sudden drop of the (a/D) vs (V/ND) curve
which occurred earlier when compared with the case of the splitter plate;
while in the second instability region fg appears to control the onset
of motion.
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frequency variations are not large moreover, (fs/f) is approximately
proportional to (V/ND). Curves of amplitude and frequency response
with (fs/f) as abscissa should therefore be similar to those using the

reduced velocity.

The experiments represented in Fig. 29 were conducted with the
same cylinder and with similar flow characteristics; therefore it can
be said that the S vs Re relationship was the same for all three tests,
and hence the good agreement between the curves. Curves 2 and 3
of Fig. 30, represent tests conducted with different cylinders and
flows (see Appendix II); the disagreement between the curves moreover
corresponds to the variation of S for the two cases (see Fig. 33).

It thus seemed reasonable to conclude that the disagreement in the
reduced velocity ranges of the various research reports is mainly due
to the differences in the characteristics of the flow-cylinder system
mentioned above, which, within the Re ranges here covered, appear to

affect both S and the vibration phenomenon in a similar manner.

Figure 32 presents the data of Fig. 30, plotted this time
against (fS/f) instead of (V/fD) and it shows a significant improvement
in the collapse of the data from the various sources especially if
compared with Fig. 3. Curve 1 of Fig. 32 moreover, shows good.agree—
ment with the other curves in spite of the relatively much higher R,

values involved.

On the strength of Fig. 32 it was argued that fs/f allowed a
direct comparison of different and hitherto incompatible experimental
results, provided that fs is appropriate to the particular situation
under consideration, rather than obtained from a S vs Re relationship
intended for general application. The unified diagram thus obtained
shows the common characteristics of the excitation in a manner suitable

for a generalised quantitative analysis.

Further refinement of the various curves of Fig. 32 will be made
in Chapter 6 and 9, where density, damping and three-dimensional factors
“are considered. The remainder of this chapter is concerned with the
assessment of (fs/f) as a base parameter and with the analysis of its

main characteristics.

4.3 Analysis of the Parameter

The non-dimensional frequency parameter evidently provides a
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basis for comparing different experimental results. It remains now
to see if it is satisfactory for a quantitative definition of the
instability regions and to discuss the practical implications of its

use.

4.3.1 Definition of the instability regions

In comparison with Figs. 3 and 30 in which the reduced velocity
is used as base parameter, Fig. 32 shows with far greater precision the
trends and limits of the instability regions according to whether fs/f
is less ot greater than unity; i.e. the first instability is charac-
terised by vibration frequencies which are higher than the eddy frequency,
fs, of a "Strouhal wake', while in the second instability, vibration

frequencies are lower than fs.

Fig. 32 also shows that no vibration occurs for:(a) fs/f values

smaller than 0.5(except for curve 1, see Shapter 9), that is when

1 . _
ND —4—§ lff—N
as observed in 3.2.5; and (b) for fs/f values above /5; the signifi-
cance of which will be discussed in Chapter 8. Thus the parameter
fs/f defines quantitatively the two instability regions as follows:

f

1st instability for 1 < <1

S
£
£
+ <72

2nd instability for 1<

4.3.2 Contributions of fs/f to the explanation of the phenomenon

The interpretation of fs as a flow characteristic or natural
frequency suggests that a resonance should occur when (fs/f) = 1.0, but
this is clearly not the case (see Fig. 32). Considering however that
when (a/D) has a non-zero value the cylinder's motion interferes with
the flow patterns, it can be then expected that the flow's 'matural"
frequency will change accordingly, and therefore fs can only be said
to be the "flow's natural frequency'" when (a/D) = O. This is in
agreement with Bishop and Hassan who reported different characteristic

flow frequencies corresponding to different amplitudes of vibration.
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At the point where fs passes from less than f to greater than f
however, (a/D) is small and this interpretation of fs suggests a
change of phase lead, i.e. in the first instability the motion of the
cylinder in some way leads that of the wake, while in the second the
converse occurs. This is reinforced by the observations of Chapter 3,
where a comparison of the eddy shedding process of the lock-in section
of the first instability with that of the second instability,show a
difference in the timing of the transverse flow that sweeps the back
of the cylinder(which seems to depend on events of the wake) with
respect to the shedding of the eddies(which can be associated with

the motion of the cylinder) (see Figs. 15 and 22).

A change of phase lead between the events in the wake and the
motion of the cylinder may thus be associated with: (a) differences
between the two instabilities; (b) the absence of significant vibra-
tions for (fs/f) = 1 and (c) the decréase of (a/D) at the end of the
first instability region on the one hand and the increase of (a/D) at
the beginning of the second instability on the other, in spite of a

similar type of wake having been observed in both situations.

One of the advantages of identifying the threshold of instability
by (fs/f) > 0.5 rather than by some fixed limiting value of (V/ND) is
evident for conditions when Re < 103; in this range where S is decreas-
ing with decreasing Re (Fig. 31), fS decreases more rapidly than V,
and so the limiting (V/ND) at the threshold of vibration cannot be a
constant and must increase somewhat with decreasing Re' Another
advantage of linking the characteristics of cylinder and wake through
(fs/f) suggests itself when attempting to explain the absence of in-line
vibration reported by King when Re < 1000 and by Dickens when Re < 750.
Although nc specific experiments were conducted in the present study
to confirm these values it seems likely that some disorganization of
the distant wake, which is presumably responsible for the scattered
Strouhal numbers when Re = 103 (Fig. 31), is also responsible for

inhibiting the self-excitation process.

4.3.3 Practical considerations

Figure 32 on its own does not provide a designer with information
about flow velocity and vibration frequency in the self-excited ranges,

because the figure does not show the relationship between (f/N) and
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either (fs/f) or (V/fD). The beliaviour of (£/N) will be discussed in
Chapter 6. The designer would also require a relationship between fS
and V for the boundaries and conditions of flow under consideration.
Figure 31 is an example of such a relationship which might be adequate
for a preliminary estimate, but since the figure is applicable to
smooth cylinders’ in wide, one-dimensional, low turbulence approach
flows, a correction to Fig. 31 may be necessary to account for the

practical conditions of the design.

In this respect it should be noted that the parameter (fs/f)
permits the designer to arrive at more accurate predictions than is
the case with the reduced velocities; this is because besides S vs . Re
relationships there is some information available in the literature
on the influence that the other factors involved have upon the value of
S, while to the knowledge of the author, no method exists to assess the
influence that any of these factors have upon the reduced velocity - -

ranges.

As an illustration of the discrepancy between values of "S" shown
in Fig. 31, and observed Strouhal numbers for flows more representative
of practical situations, it is appropriate to cite the observations of

the present study where an accurate estimate of S was essential.

During the test programme it was found that the observed S and
that predicted from Fig. 31 differed considerably (see Fig. 33) and it
was concluded that the effect of blockage, three-dimensional effects
and the difficulties of measuring low velocities were responsible for
the discrepancies. Blockage corrections were complex and unreliable
(see Appendix vI) and they alone were insufficient to overcome the
discrepancy; so it was decided that since fS for a stationary cylinder
could be measured with greater confidence than the effective V, an

empirical relationship between fS and a respresentative V was obtained.

The use of (fs/f) rather than the reduced velocity and the
direct calibration of the flow meter with the actual value of fS thus
avoided additional complications due to: (a) accurate measurement of
the "true'" value of V at the meter's location, involving independent
calibration of the meter, and assessment of the flow characteristics at
that point in relation to the flow in which the meter was calibrated;

(b) knowledge of the relationship between this true value and a significant
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one from the point of view of the excitation; (c) blockage corrections.
In this case moreover, if it is assumed that the output of the flow
meter is not significantly affected by the vibration of the cylinder
and that it reasonably reflects the flow behaviour, accuracy depends
then only on the repeatability of the combined behaviour of the flow
and of the meter and on the technique used to measure the frequency of
the eddies, independently of the accuracy of the meter to detect the

“"true" value of V.
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CHAPTER 5

ANALYSIS OF VARIABLES

Before proceeding to a more detailed analysis of in-line
vibration it is opportune in this chapter to identify and briefly
discuss certain variables which have a significant although indirect
or secondary influence. The analysis of the variables will be based
on the following considerations: (a) influence of the variable on the
excitation, (b) likely range of the variable, (c¢) control, suppresion
or avoidance of vibration and (d) economic and other practical consi-
derations. Point (c¢) above embraces the three main methods of solv-
ing a flow-induced vibration problem, namely: (i) avoiding the insta-
bility regions, (ii) increasing damping (energy dissipation) and (iii)

modifying the cylinder's shape or the flow patterns.

For convenience the chapter will be divided into sections con-
taining groups of variables relating to: cylinder behaviour (5.1),
cylinder characteristics (5.2) and hydrodynamic forces and fs (5.3).
The analysis ends with the identification (in 5.4) of the most impor-

tant non-dimensional groups for use in subsequent chapters.

5.1 Cylinder Behaviour

The behaviour of the cylinder can be represented by its displace-
ment,x, consisting of a mean, x, and a fluctuating component, x'.
Assuming sinusoidal motion moreover (see Chapter 7), x' can be said to
be a functionhéf the maximum fluctuating displacement, xé, the freqency,

f, and the time, t, thus:
x = function of (x, xé, f, t) (5.1)

0f these four variables, xé is perhaps the most important
because it is an index of the magnitude of the strain reversals experienced
by the structural member, and because it is often the largest contribu-

tion to the total strains.

In contrast to cross-flow vibration the maximum total displace-

ments (and hence the maximum total strains) of an in-line vibrating



cylinder are obtained by the arithmetic sum of X and xé and hence the
importance of x. In Chapter 3 it was shown moreover that the mean
drag force can be up to 90% higher for a vibrating cylinder than for

a static one, and as will be shown later (see Chapter 8) in most
practical cases, and especially witli light cylinder, X can be equal to

or larger than x(').

Besides determining the flow velocity ranges when vibration can
occur, the vibration frequency, f, determines the possibilities of
resonance with other members of the structure and,together with xé, it

determines the local fatigue stresses of the structure.

The time, t, is not an important variable if all fluctuating
variables are sinusoidal,but phase angles will be introduced (Chapters

7 & 8) to relate motions, flow pattern and forces in time.

5.2 Cylinder Characteristics

Newton's Second Law can be used to represent the motion of a

solid induced by fluid forces (see €.g. Den Hartog) thus:
F. = M. X + cx + kx

In this equation F_ represents all the fluid forces; M. is the mass of

c
the cylinder givenTby its density, G and its dimensions D and L;
k and c, are respectively the structural stiffness and damping of a
cylinder in flexure or of the supports of a rigid one; and x and x are
the 1st and 2nd derivatives of x with respect to time.  Thus:

FT = function of (D, L, Peo k, ¢, x) (5.2)

or conversely:
(x) = function of (D, L, 0o k, c, FT) (5.3)

where D, L, s k and ¢ are cylinder characteristics.

The three variables k, D and L together with P and og (the fluid

e .
density) determine the value of the natural fgguency N, i.e.

1 /x
N = =— /—
2n Vg
(5.4)

where Mg = z—DZL(pc + pf) (see Chapter 7)
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Although an independent correlation between N and the cylinder
motion was not identified, N is important because it is a major factor
in determining f, and consequently, through fs/f, it determines whether
or not vibration will occur. In practical situations a vibration
problem can be avoided more often by a modification of such structural
variables as D, L, e and k than by enforcing some change of the flow's
characteristics. For example through a decrease of fs or an increase
of f (or both) it is possible to ensure that (fs/f) is always so low
that it never crosses the threshold of instability. On the other hand
it is usually not prudent to design for a high value of (fs/f) outside
the instability regions (see 4.3) because, among other considerations,
of the possibility of exciting cross-flow motion or higher harmonics

of in-line motion.

A designer wishing to achieve low (fs/f) must consider many

interelated factors.

To decrease fS at constant V and S, the cylinder diameter should
be increased with the consequent higher costs and also higher forces
acting on the cylinder's supports which may further increase the costs.
There is a second advantage in an increase of didmeter through the
consequent increase of f (through k and N); this increase of f leads
to a further reduction of (fs/f). An additional increase of f can
sometimes be achieved through increased cylinder wall thickness or a
stiffening of the supports, but these measures entail higher costs.
Another method of increasing stiffness is through a decrease of cylinder's
length although this is rarely practical. It should be noted that in
contrast to increasing the damping, increasing stiffness reduces the

mean deflection of piles which can be an important design factor.

In the case of hollow piles full of water, o. is difficult to
modify owing to the large weight of the water inside the pile; the
"added mass' moreoever, (see Chapter 7) makes it even more difficult
to modify f via changes in 0 for example if it were intended to
increase N by decreasing e with thinner cylinder walls, the resulting
lowering of k would probably overrule the decrease of (pc + pf) and

consequently N would decrease instead of increasing.

In the cases of cylinders vibrating in air or hollow empty
cylinders vibrating in water however, the absence of the water inside the

pile aﬁd,in the first case,the relatively negligible density of the
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"added mass" make the modification of p. more significant.  For example
if the diameter of the cylinder were increased and the thicknesses were
kept constant, Pe would be reduced significantly; as explained above
moreover,increasing D would reduce fs and k, and consequently reductions
of (fs/f) would result from three different sources. A more detailed

analysis of both density and damping is presented in the next chapter.

It has sometimes been possible to reduce or eliminate self-
excitation, especially in aerodynamic situations, by intentionally
altering the geometry of the cylinder by means of strakes, wires, grids,
etc. (see Clark, Walshe § Wootton). In a marine environment however,
the use of such devices is likely to increase risks and costs signi-
ficantly owing to the growth of shell-fish, etc. Consequently this
method of eliminating vibration may be satisfactory as a temporary
measure only; in the long term, the avoidance of the instability regions

appears to be the only practical solution.

5.3 Variables Influencing fs and the Hydrodynamic Forces

To complete the analysis of the variables which determine the
motion of the cylinder, the flow forces, F, of equation 5.3 have to
be considered. These forces are influenced by characteristics of the
flow such as its velocity, V, its density, pg, and its dynamic viscosity,
s which in engineering practice, are often environmental characteristics
determined by such factors as local temperature and geography and are
therefore difficult and expensive to modify. In laboratory situations
however, their modification is often an essential feature in the test

procedure.

The imbortance of the flow velocity, V, has been discussed in
Chapter 3 and 4 in connection with the reduced velocity and the parameter
(fs/f), although it should also be noted that in most cases, the fluid
forces are functions of V2 (see Chapter 7). The fluid density, Pg s
also contributes to the determination of the fluid forces, including
those of the added mass and of hydrodynamic damping (see Chapter 8).

In the next chapter it will be shown moreover that P e when combined
withpC and c, forms two fundamental parameters for the determination of

the phenomenon.

The fluid forces do not however arise from those flow characteristics

alone but from their interaction with the cylinder's shape and motion;
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thus the drag force acting on a static cylinder depends on V and pe as

well as on D, L and CDO’ in the expression:
= 1 2
Drag = 2pr DLCDO (5.5)

Other fluid forces can similarly be expressed in terms of force
coefficients, Cp, and consequently: '

F = function of (V, p., D, L, C (5.6)
f

)

where CF is a function of flow characteristics and of the cylinder's

shape and motion.

The variables, V, Pe and Hes when combined with the diameter of
the cylinder, affect the phenomenon through the Reynolds Number,
Re = VDpf/pf this in turn, when combined with the shape of the cylinder,
determines the values of the Strouhal Number, S, and of the drag coeffi-
cient, CDO’ and consequently it determines fs and the mean drag force

of a static cylinder.

Owing to the impossibility of scaling both Re and the dominant
parameter fs/f, most laboratory experiments on in-line vibration of
cylinders immersed in water flows, are conducted in the Re range 103- 10°,
where the values of CDO and S are approximately constant (see Fig. 31
and 55) and consequently the importance of their relationship to Re is

not critical.

For Re values below 103 both S and C_. change significantly and,

DO
as explained in Chapter 4, this marked variation may be the cause of the

absence of vibration reported by previous authors at low R, values.

For R, values greater than about 3 X 10° commonly found in proto-
type situatioﬁs, Walshe and Wootton have reported values of S = 0.45
for static cylindemsbut S = 0.2 for cylinders vibrating across the flow
direction,and Wootton et al report S = 0.22 for cylinders vibrating in-
line with the flow. As can be seen in Fig. 32 moreover, very similar
cylinder responses can be obtained for R, values as far apart as
3 x_103 and 6 x 10°, Thus it can be assumed that as far as the in-line
vibration phenomenon is concerned, there'appears to be no significant

difference between laboratory and prototype observations due to Re.
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To the knowledge of the author there are no reports available
on the behaviour of the mean drag coefficient of a cylinder vibrating
in-line for R, > 3 x 105, The similarities of the curves of Fig. 32
and the marked resemblance of the flow patterns observed in the wake
of models and prototype cylinders suggest that the force coefficients
are also insensitive to Re in the range 105_< Re < 108, See also

Chapter 8.

As explained in Chapter 4 there are other secondary factors
such as blockage effects, velocity profiles, boundary layers, turbulence,
etc. which also affect the values of S, although their effects are
relatively minor; this also applies to the drag coefficient C

that: (see Chapter 9).

DO’ SO

S and CD = function of (Re,‘secondary factors) (5.7)

0
These secondary factors arise mainly from the differences

existing between a two-dimensional cylinder immerséd in a one-dimensional

approaching flow, and the three-dimensional situations encountered in

practice; thus they are most relevant (a) when attempting to predict

prototype behaviour from one or two-dimensional considerations, or (b)

as in the present case, when trying to study the basic characteristics

of in-line excitation from the observed behaviour of cylinder-flow

arrangements which, even when intended to be two-dimensional, they

present inevitable three-dimensional charactersitics. In general thte

modification or elimination of these secondary factors is very limited,

difficult and expensive.

In preQious chapters it was shown that the force coefficient CDA
was affected both by the parameter fs/f and by the cylinder motion, Xx;

thus for a vibrating cylinder:

CF = function of (fs, X, Re’ secondary factors) (5.8)
In the last chapter it was also shown that the complicated and
often inaccurate mathematical consideration of Re and the secondary
factors, could sometimes be avoided if it were possible to measure
directly the value of fs, and to correlate it with the output of the

flow velocity meter used. This direct calibration method can also be
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used to obtain the values of CDO’ which in tu}n, as is the case with
fs’ can be included in non-dimensional groups of variables, in this
" case representing flow forces, such that

C. = function of (fs, C (5.9)

F po’ X

Reynolds number effects and the influence of the other secondary
factors are thus accounted for in equation 5.9 through CDO' This
simplification however, is not always applicable as for example (a)
when comparing the excitation forces with the inertial forces of the
added mass, the second of which are€ not affected by Re or the secondary
factors, or (b) at the design stage when a direct calibration as

described above is impossible. Consequently from equations 5.6/8/9:

F = function of (V,pf,D,L,CDo,x,Re,secondary factors)
’ (5.10)

5.4 Non-Dimensional Groups

Combining equations 5.1, 5.3 and 5.10 an expression is obtained

which contains all the identified variables:

-, _ .
x,xo,f,t function of (D,L,pc,k,c,V,pf,Re,S,CDO,secondary factors)
(5.11)

On the basis of both previously reported experience and the observations
of Chapters 3 and 4, it is possible to advantageously identify the

following non-dimensional groups:

a _ 2xp
(a) D )
) Cpa _ k x

DA XX

Cpo . 2p¢V°DLCpq

— l

yE L g Mrs L, . 7 D°Llog*e.)
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(&) kg = pD’LE

(8) R, = VDo /ug
£

(@ 5 . 5%
T £D

Parameters a, b and ¢ can describe the cylinder's motion as shown
in Chapter 3. If Re is included with the remaining secondary factors,

the following expression is obtained:

C f
Cylinder motion = function of (%, -15-, EP-A—) = function of (pr,ks,—fs—_, Secondary
DO factors)

(5.12)

(fs/f)i was the subject of the previous chapter, Py and kS are the
subject of Chapter 6.
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CHAPTER 6

DENSITY AND DAMPING

In this chapter two important parameters, density and damping,
are dealt with in detail. The role of density in determining ranges
of vibration frequency, and consequently the (V/ND) ranges for
instability, is presented first and then correlations and predictions

of these frequencies are put forward.

After a brief consideration of the influence of damping on both
(£/N) and (a/D), it is concluded that density and damping, in contrast
with aerodynamic practice, should here be considered separately.
There follows a discussion of the various ways previously used to deal
with damping which concludes with a definition of a parameter to describe
the external damping of the cylinder. External damping is then
correlated with both (a/D) and the (fs/f) ranges, thus rendering possible
their prediction for two-dimensional cases. A general discussion

closes the chapter.

6.1 Density

During the tests conducted with the larger cylinder (D = 3.38 cm)
it was observed that the ranges of variation of both (f/N) and V were
modified by changes of the cylinder density (see Fig. 28) and so it was
decided to conduct a systematic study of the influence that the density
of the cylinder exerted upon its motion. For this purpose the two
cylinders used were provided with removable ends so that they could be
variously weighted internally so as to change their density. Tests
were conducted with a total of seven different densities ranging from
S 0.5 to Pr = 4.4, where oy is the ratio of the effective mass of
the vibrating system (or of its effective density, pc) to the mass
T pc/pf'

The values of . were calculated before and after each test from

displaced by the cylinder (or the fluid density, pf), i.e. p

repeated transients of the cylinder alone or with known additional
weights, in air and in water; additional factors such as gravity and
buoyancy forces, mass and added mass of the supports, the influence of
gaps between cylinder and end plates, etc., were taken into consideration.

(See Appendix III).
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6.1.1 Frequency ranges

Fig. 34 presents vibration frequency variations with (fs/f) for
the tests of Fig. 28 which were conducted with three different values
of Py The most important features of this figure are firstly that
all the curves have similar shape, with the lighter cylinders reaching
higher frequencies (f/N), and secondly that the maximum values of f,
which occur at the end of the second instability region tend towards
the value of the natural frequency of the same cylinder when oscillating

in vacuo (Nv).

The implications of the first observation are that (f/N) is a
function of fs/f and either P, OT o and that, owing to the similarity
of the various curves, it should be possible to represent them all by
a single function. To make the implications of the second observation
more explicit, the frequency Nv’ in its non-dimensional form Nv/N’
can be expressed in terms of stiffness and densities as follows:

(see Chapter 7)

N __].'_.____k_._.~.._ +
f v _ 2m\{pe Volume _ Pe ¥ Pg
il -).FJ_ —_——

1im

1 k
21 Y(petpg) Volume

i.e. (NV/N) is a function of Pr alone.

This conclusion is compatible with the first observation
mentioned above provided (f/N) is a function of Py rather than Pe-
The absence of the parameter (fs/f) in Equation 6.1 can be explained
by the fact that these limiting frequency values were reached at the
end of the second instability region only when they all tended towards

a constant value of (fs/f) = Y2 (see Chapter 4).

Equation 6.1 moreover suggests an explanation for the very slight
and often neglected frequency variations reported in aerodynamic
researches on oscillating cylinders where Py is relatively much larger

owing to the comparatively small air density.

It was shown in Chapter 3 that the frequency, f, was larger

than or equal to the frequency, N, in the two instability regions,
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except for the "double harmonic excitation section'" of the first
instability region where the slight variations of f, below the value
of N, were negligibleﬁ the limits of frequency variation can therefore

be set as:

(=1
~n
2
A

On this basis Fig. 35 was plotted in terms of the upper limiting
values of (f/N) achieved by cylinders of varying P It appears from
the small scatter of Fig. 35 that f£/N lim is indeed uniquely determined
by Py

The figure also shows that although only negligible frequency
variations can be expected in most aerodynamic situations (say <5%,
for Py > 10), in water and especially under laboratory conditions, very
large frequency variations can be achieved (i.e. 1 < f/N < 2, for
pp = 0.33); in practical hydrodynamic engineering situations, oL values
between 2 and 1 and frequency variations between 1 < f/N < 1.2 and
1 < £f/N < 1.4 would be typical.

6.1.2 Flow velocity ranges

When the instability regions have been defined in terms of
fs/f (see Chapter 4), the ranges of frequency variation permit the

definition of such regions in terms of the flow velocity, because

f
TS X = = = g5 (6.1a)

On the basis of equation 6.1 and on the assumptions that f > N,
and that 0.5 < f_/f < V2 (see Chapter 4), Fig. 36 thus presents the
maximum flow velocity ranges where vibration can occur in the form
(fS/N) = (2S V/ND) and as a function of Pr alone. If the relation-
ship between f5 and V (or S and Re) is known, the stability diagram

of Fig. 36 gives the ranges of V.

The upper limit of the instability region of in-line vibration
shown in Fig. 36 is evidently a function of Py and it should be noted
that for neutrally buoyant or lighter cylinders and when the natural
frequencies in-line and cross-flow are similar, a mixed type of motion

in the two directions is possible. This provides an explanation for
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the previously reported extension of the cross-flow instability region
below (V/ND) = 5 for light cylinders (see e.g. King). For the heavier
cylinders it can be seen in the figure that the upper limit of (fs/N)
tends towards v2.

Even though Fig. 36 is modified somewhat by damping and other
factors as will be shown later,it should nevertheless be helpful to
designers because it shows that self-excited vibration can be avoided
if

i.e. the still water natural frequency, N, of a pile should be designed
such that:

When damping or other factors reduce the instability regions
of (fs/f), a detailed relationship between (f/N) and (fs/f) is necessary
in order to determine the precise instability regions in terms of
(fS/N) or V.

6.1.3 Frequency response in the first instability region

The frequency response in the first instability region is illus-

trated in Figs. 34 and 37.

Figure 34 shows higher (£/N) values corresponding to lower P
for a given (fs/f); this explains the increased overlap of the two
instability regions of in-line vibration for lighter cylinders shown

in Fig. 3. (See equation 6.la).

Fig. 37 represents several tests conducted with the same values

of Py but with different levels of external damping; in this figure

the curves in the first instability region do not collapse on a

single curve as successfully as those for the second instability region.
It seems likely that the trends shown in the figure, which appear to
reflect the changing vibration amplitude as the structural damping is

varied, are the result of the complex mechanism of excitation discussed
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in Chapter 3. This conclusion is prompted by the observation that
corresponding plots of frequency collapsed more successfully when the
cylinder was fitted with a splitter plate to eliminate one source of

excitation (see Fig. 38).

6.1.4 Frequency response in the second instability region

The (f/N) vs (fs/f) relationship of the second instability region shown
in Fig. 34 appears to be a family of straight lines with a common
origin at (f/N) = (fs/f) = 1.0, and this, together with equation 6.1

suggests the following expression:

f fs
N M"F - (m-1) (6.2)
where pr+l
-1
o o= VPr
f |
(B
£ /maximum
Assuming:
(fs/f)maximum = 2
prtl
m = vV Pr (6.3)
2 - 1

1, Eqn. 6.3 suggests that m = 1 and

I1f, for example, I
(£/N) = (fs/f), i.e.: the departure of f from N is equal to its

departure from fs’ as shown in Fig. 40.

It should be noted that in the second instability region the
cylinder and the eddies of the wake have a common locked-in frequency
f = fe, which reaches a compromise between the 'matural frequencies"
of both cylinder (N) and wake (fs) when the densities of cylinder and
fluid are equal; otherwise this common frequency f = fe will approach
N for the heavier cylinders (m <.1) and fs for .the lighter cylinders
{m > 1). The case where m =‘1,(pr = 1) can thus be regarded as a

special or ''matural' case.

Fig. 39 presents experimental frequency variations from tests on
the two cylinders with varying Py in comparison with equations 6.2 and

6.3
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Although the agreement is in general satisfactory extrapolation
to maxima of (f/N) results in values slightly smaller than those of
equation 6.1; this shortfall was probably due to a reduction of the
excifing forces caused by boundary layers and other factors. (See
6.3 and Chapter 9). The greatest deviation of the experimental
results from equation 6.2 occurs near the commencement of the second
instability region just beyond (fs/f) = 1.0. The discrepancy here
can perhaps be attributed to the practical difficulties of measuring
small frequency variations and amplitudes of motion when beats are
present and when the unsteadyness of the incoming flow is important.
This wider scatter however does not modify the ranges of f/N or the
upper limit of the instability region and it can therefore be said that
the semiempirical relationship of equation 6.2 constitutes a satis-
factory description of the frequency response in the second instability
region for practical purposes. In Chapter 8 however, an improvement
to the relationship of equation 6.2 will be made after considering the

hydrodynamic forces.

6.2 Damping
6.2.1 The separate roles of density and damping

Following aerodynamic practice and mainly to facilitate the
modelling process the influences of density and damping have been
treated in combination by previous researchers (e.g. King) and repre-

sented by the combined stability parameter:

M6
Pg

where M is the vibrating mass and 8§ is the logarithmic decrement of
the transient vibration of M due to damping. Xolkman (see King)
suggestsmoreover that the correct separate scaling of density and
damping is not important provided that the discrepancy for each is not
more than 200% and provided that the combined parameter is correctly

scaled.

This approach seems to be incompatible with the observations of
the previous section of this chapter, where it has been argued that oL
is the only parameter besides (fs/f) which determines the frequency

response, and consequently there may be any number of different
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frequency responses corresponding to the same value of the combined
parameter ké. It follows from this that density and damping must

affect the behaviour of the cylinder in different and separate ways.

The most likely explanation for this divergence between aero-
dynamic and hydrodynamic treatment is the very large difference that
exists between the densities of air and of water, and the consequently
negligible frequency variations observed for the former in comparison

with the latter.

In order to confirm the independent role played by the two
variables density and damping, it was decided to conduct experiments
where each variable was changed systematically and independently. For
this purpose a viscous damping mechanism was devised, as shown in

Fig. 5, for purposes of increasing the external damping of the cylinders.

The variations of (f/N) with respect to (fs/f) observed in these
systematic tests are presented in Figs. 37 and 38. In Fig. 37a, I
was held constant at an approximate value of 1.2 for five different
levels of damping while Fig. 38a presents similar test results for the
cylinder when fitted with a splitter plate. For the results shown in
Figs. 37b and 38b the conditions were approximately the same except for

an increased density oL = 4.4,

These figures show that the variations of frequency are not
appreciably affected by changes in the external damping either in the
second instability region or when the cylinder is fitted with a splitter
plate, i.e. when either of the two main excitation mechanisms acts on
its own. Although some slight frequency variations can be identified
in the first instability region, corresponding to changes of damping,
these variations can be attributed to the complex interaction between
the two prevailing excitation mechanisms and the behaviour of the

cylinder, and should therefore be considered separately (see Chapter 8).

Previous researches (e.g. King, Dickens) have shown that the
amplitude of flow induced in-line vibrations decreases with increasing
levels of damping. This is confirmed by Figs. 41 and 42 which show
the amplitude response for different levels of external damping corres-
ponding to the tests of Figs. 37 and 38 respectively. Fig. 43 moreover
reproduces curve 3 of Fig. 4la and curve 2 of Fig. 41b and thus

provides a compariscn of vibration amplitudes of two cylinders with
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similar external damping but with considerably different densities; it
is clear from this figure that Py has no significant influence on the

vibration amplitudes.

It was concluded therefore that density and damping have
different and independent effects on the motion of the cylinder, the
former primarily affectingits frequency and the latter primarily affecting
its amplitude, and that density and damping should henceforth be consi-

dered separately.

6.2.2 Definition of damping

Because of the many types and sources of damping involved in
the field of flow-induced vibrations of structures, a precise and
appropriate definition of damping is necessary to avoid incompatibilities
and apparent contradictions with previously published data and also to

facilitate useful comparisons.

~

Damping forces are here understood to be those through which
the vibrating cylinder dissipates energy, i.e. those forces acting in

antiphase with the cylinder's oscillating velocity, X.
Damping can be classified according to sources as follows:

(a) Structural damping of the supports of the cylinder or of

the cylinder itself in flexure under fluid action.
(®) Damping provided by artificial or mechanical dampers.

(c) Hydrodynamic damping of the supporting arms, end plates,

etc. and in the gaps between cylinder and end plates.
(d) ~Hydrodynamic normal and shear forces.

(e) Inefficiency of the excitation flow forces, due to

boundary layers, turbulence, uncorrelated flow patterns,etc.

In a steady state vibration the addition of the damping forces
arising~ from all these sources must necessarily be equal and opposite
to the excitation forces. For a self-excited cylinder it is impossible
to measure either the excitation forces or the hydrodynamic damping
forces directly, because the cylinder experiences only the net force.
The only damping which can be estimated with any certitude is therefore
the damping from external sources (e.g. structural) which can be

measured in independent experiments.
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It is intended in the present research moreover to study the
characteristics of a generalised model of flow-induced in-line vibrations,

which can then be adapted to specific situations.

It was therefore necessary to separate the measurable damping
arising from the "external" sources which can vary from case to case
(a,b,c § e, above) from the "internal' hydrodynamic damping (d, above)
which was an integral part of the excitation mechanisms studied and

which could not be directly measured.

The similarities presented by reports of widely differing cases
of in-line vibration, and curves such as those of Figs. 41 and 42
suggest a self-regulating excitation process with invariant basic
characteristics, which is influenced by the amount of energy extracted

by external sources of damping.

What follows is a more detailed study of the influence 'of
external damping on such an excitation process as reflected by the

cylinder behaviour.

6.2.3 Damping parameter

It is intended in this section to find a suitable parameter for
the representation of external damping which is independent of the

relative density, pr

The four parameters most commonly used to represent damping are:
(a) the viscous damping constant, c; (b) the hysteretic damping parameter
G; (c) the logarithmic decrement, §; and (d) the stability parameter,
k;. Any of these parameters can have constant values when (£/N), (a/D),
the stiffness, k, and the total mass of the cylinder, MT (including the
added mass), remain sensibly constant. This is not so in the present

case however, and consequently each parameter will be discussed in turn.

(a) The viscous damping constant, c, is the simplest mathematical
representation of damping. It expresses the damping forces per unit
velocity, %X, and consequently it has the disadvantage of being
dimensional; ¢ is a constant for viscous damping only, as is the case
with the damping mechanism devised for the present research, but
structural damping on the other hand is a function of the frequency and

amplitude of vibration together with structural stiffness, and
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consequently c would have to be a variable to represent damping in
this case, It should be noted however that c¢ contains no information
about the fluid or the cylinder's geometry and it is therefore not

suitable for a generalized representation of this interactive process.

(b) The hysteretic damping parameter, G, is non-dimensional and more
appropriate to represent structural damping although it is mathematically
more complicated. The parameter G represents the ratio of the damping
forces to the stiffness forces, i.e., it is a structural parameter
containing no information about the fluid and is therefore inappropriate

for the present purposes.

In cases where f = N = constant (i.e. heavy cylinders) the
stiffness forces are approximately equal in magnitude to the inertial
forces of both cylinder and added maés, and consequently, if the variations
of G with (a/D) can also be neglected and if most of the external damping ’
is structural, this parameter can remain nearly constant and can

therefore be useful.

In the present research however, G was observed to vary both with
(£f/N) and (a/D) (see Appendixf?V ), and it was clearly unsuitable to

represent the additional viscous damping applied by the damping device.

(c) The logarithmic decrement, &, is defined as the natural logarithm
of the ratio of the amplitudes of two consecutive cycles of a decaying

transient.

When the vibration frequency is equal to the natural frequency
of the system, § represents the ratio of the damping forces to the

inertial forces (including the added mass if any), i.e.

cwnxo 2 C
s = W Uy - = i (6.4)
MTSwnXO o pr LN (pr+1)

Although & includes information of the fluid, it also includes
the parameter o, and is therefore unsuitable for the representation

of damping independent of relative density.

The non-dimensional parameter, §, is easy to measure and

consequently widely used.

In the present research ¢ could not be estimated from transients
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in still water because of the difficulties of either deducing the hydro-
dynamic damping of flowing water measurements (see Chapter 7), or
accurately estimating the still water damping to calculate the structural

damping.

Values of § obtained from transients in air on the other hand
can be used provided that aerodynamic damping be estimated and discounted
from the total and provided also that (i) f is a constant, or (ii) c is
a constant, or (iii) damping is hysteretic and there are no excitation
forces which can modify the frequency (i.e. (f/N) = 1). In cases where
as in the present research none of the requirements (i) to (iii) above
are met, values of 8§ measured from transients in air can only be used

to calculate ¢, G or ks.

{d) The non-dimensional stability parameter, k;, has been widely
used in previous work concerned with flow induced vibrations in both
air and water, to correlate damping with vibration amplitudes and to

determine instability regions.

Vickery and Watkins present the stability parameter:

2M6
k! = —o+ (6.5)
S fD L

)
as a combination of two parameters namely, a mass ratio (M/przL), and

a damping parameter,§.

This interpretation of k; suggests that heavier cylinders should
have a higher value of k; and consequently they should vibrate with

lower amplitudes (see e.g. King).

1f ké is expressed in terms of ¢ rather than § however, from

§ = ¢/2MN it follows that:

C

k{ = PN (6.6)

i.e. k; is independent of the density of the cylinder. Fig. 43
moreover shows approximately equal values of (a/D) corresponding to
cylinders with equal values of the stability parameter but for widely

differing cylinder densities.

The stability parameter expressed in terms of c can therefore
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be seen not as a combination of a mass ratio and a damping parameter,
but rather as the ratio (multiplied by ©2/2) of the external damping
forces (cwxo) to the inertial forces of the added mass alone (Maswzxo).
1t should be noted that this definition is only valid if the "mass
coefficient" is constant and equal to one (see Chapter 7), and if the

frequency N of Eqn..6.6 is replaced by f to account for frequency

variations. The stability parameter ks, results thus:
N c
= T =
ks ks f prsz (6.7)

The parameter kS will be adopted here because (a) it is non-
dimensional, (b) it is independent of e and (c) it relates external

damping to characteristics of the flow.

Although it can be seen in equation 6.7 that ks is independent
of p. it should be noted that in specific cases the density of the
cylinder can affect kS indirectly. This occurs when frequency variations
are significant because Py influences (f/N) which in turn, and depending
on the value of N, influences: (a) the value of f and consequently from
equation 6.7 the value of ks’ or (b) the value of c and consequently
kS when the hysteretic damping is important. Confusion can arise
moreover if changes of kS are attributed to Py when the mass of the
cylinder is increased but N is kep constant or increased; in this specific
case the increases of kS arise from the increase of ¢ that accompanies
the necessary stiffening of the supports of the cylinder; this increase
of ¢ however as well as the value of N and the hysteretic nature of
damping mentioned in (a) and (b) above, are all dependent on structual
characteristics of a spécific.cylinder arrangement, and dre nol directly
related :to the general characteristics of the interaction between.-cylinder
and flow whi¢h are the .concern of ‘this work.. . .Thus it was felt that kS
was most appropriate for a general representation of the independent

influence of external damping on the excitation process.

It should be noted that ké is constant only when c¢ is a constant
(viscous damping), and that for kS to be constant, the ratio c/f has to
be invariant rather than the more usual hysteretic condition where cf

is constant.

The parameter kS can also be expressed in terms of G; in the
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present case however, it was expressed in terms of c owing to the complex

nature of the damping used and to avoid further mathematical complications.

Although the viscous part of ¢ could be maintained constant for
a given test, the structural part of ¢ was observed to vary with both
(£/N) and (a/D), and several additional experiments had to be conducted
to investigate these variations for each cylinder arrangement and for

each test as follows: (see also Appendix V ).

For a given test the length of the cantilevered springs of the
cylinder supports were fixed and the viscous damping device was
adjusted as needed; the cylinder was then made to oscillate in air with
various additional known masses attached to it so as to cover the
frequency range expected for that test; damping was measured for various
amplitudes of vibration from the decay of the resulting recorded
transients, and correlations were gbtained of ¢ against (a/D) and (f/N).
Aerodynamic damping and damping due to the supporting arms, gaps, etc.
were also taken into account (see Appendix V ). In this mamner, values
of kS were calculated for every vibration condition from knowledge of

the appropriate values of (a/D) and (£/N).

To simplify the presentation and analysis of data a standardized,
constant value of k; was also obtained for each test, for (a/D) = 0.055
and for f = N, which is here denominated k;o. The variations of kS
with respect to k;o occurring in a typical test are plotted against
(fs/f) in Fig. 44.

6.2.4 Vibration amplitude

Vibration amplitude reductions corresponding to increases of
k;o are shown in Figs. 21 and 42. Fig. 44 shows however that (ks/k;o)
can vary as much as 27% , and consequently the plots of Figs. 41 and
42 are not constant damping curves. The use of kS instead of a
constant stability parameter allowed important observations and con-

clusions as indicated below:

Variations of (a/D) with respect to ks, for various values of
(fS/f) in the first and second instability regions are presented in
Figs. 45a and 45b respectively; the data correspond to the five tests
of Figs. 37a and 4la conducted with approximately the same 0 value

but for five different levels of external damping.

* Fig. 44 refers to a cylinder with 0. = 1.2; variations of more than
50% were calculated for the lightest cylinders tested.
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Fig. 45b shows a distinct trend in the second instability region,
towayds a common maximum value of (a/D) as ks tends to zero, for all
values of fs/f. This indicates that in the undamped condition the
amplitude response curve for the second instability region has a filat

top; slight deviations from this occurring as ks increases.

It should be noted that this trend was deduced previously from
observation of the amplitude response curves presented in Chapter 3,
although a slight increase of (a/D) was also observed as (fs/f) increased
(see e.g. Figs. 28 and 29); this slight increase of (a/D) however can
be attributed to decreases of ks which are due to increasing (f/N).

These observations permitted the approximate assumption that (a/D) is
invariant in the second instability region when ks is constant, which
assumption greatly simplifies the mathematical representation of the

excitation process, as will be shown in Chapter 8.

Although the common trend shown in Fig. 45b is not apparent from
the curves of Fig. 45a for the first instability region, the curves of
‘this figure appear to have similar shapes. Indeed if the data of
figure 45a are replotted (Fig. 46) as a propotion of the maxima obtained
from Fig. 45a by extrapolation to kS = 0, a common trend is apparent in

the response of (a/D) to ks for most values of (fS/f).

These trends permit an extrapolation to the undamped condition
(kg = 0), to predict maximum vibration amplitudes for each value of
fs/f in the first instability region or for all values\of (fS/f) in the
second. Such maxima are plotted in Fig. 47 as a function of fS/f and

they represent the amplitude response of an undamped cylinder.

It was then concluded from Figs. 45b and 46 that the vibration
amplitudes for a given (fS/f) value in either instability region,
decreased from their maxima corresponding to the undamped condition
(Fig. 47) according to a function of ks alone; this function was

approximately the same for all (fs/f) values in each instability region.

From the above observations and conclusion it follows that the
maximum amplitude of vibration in the first instability region should
occur at a fixed value of (fs/f), if the cylinder were subjected to a
constant external damping ks; Fig. 41 suggests moreover that this value
is about 0.9, although this is only a limited approximation because

such maxima are slightly displaced along the fs/f axis by the variations
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of ks along each curve, by the instabilities of the excitation and by

the hysteresis phenomena.

If the maxima of (a/D) in the first instability region for
different tests are nevertheless assumed to occur when (fs/f) has the
same Yalue, the trends of (a/D) vs ks referred to above are further
confirmed by Figs. 48a and 48b; these figures are plots of the maximum
amplitudes recorded for each of the two instability regions and they

include all the tests for which damping data were available.

Exceptions to these common trends of (a/D) vs ks can be seen in
Figs. 45 to occur at the extremes of both instability regions where

double harmonic excitation, beats or hysteresis occur.

In agreement with reports by King the reductions of (a/D) due

to damping here observed were different in the two instability regions,
especially if amplitudes (a/D) smallef than 5% were considered. Although
the (a/D) vs ks curves in both instability regions showed a discontinuity
for ks ~ 0.6 (Fig. 45), for higher levels of damping (ks) the values of
(a/D) in the first instability region could be as high as 4% while those
in the second were negligible. Nevertheless, if vibration amplitudes
smaller than 4% can be neglected, the common value of ks = 0.6 where the
said discontinuities occur indicates an approximate practical threshold

for in-line instability.

No systematic tests were conducted for ks values higher than 0.7,
because it was felt that the corresponding vibrations with amplitudes
(a/D) < 4% were not very important. It should be noted however, that
when conducting auxiliary tests to investigate S and CDO’ (a/D) was

smaller than 1% for values of kS > 1.2,

Finally it should be noted that thc expression of ks in terms of
¢ (Eqn. 6.7) rather than § (Eqn. 6.5), together with the threshold value
of kS identified above, clearly indicate that in-line vibrations.in
practice are more likely to arise from hydrodynamic excitation, when

the large e yields a low ks’ rather than from aerodynamic excitation.

6.2.5 Instabilify regions

Figure 41 shows reductions of the ranges of (fs/f) in which
instability occurs, corresponding to increases of the external damping

parameter k' .
SO
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As explained in 6.2.4 these plots are not constant damping curves
because of the variations of (ks/k;o) with (fs/f) (e.g. Fig. 44), and
are therefore unsuitable for further quantitative analysis. Fig. 49
however, presents these (fs/f) instability ranges as a function of ks;
the figure was obtained by calculating the kS values corresponding to
the maximum and minimum values of (fs/f) for which vibration was
recorded, in each instability region and for each one of the tests of

Figs. 37 and 41 as well as for two additional tests (see TableiI—Z).

At the threshold of instability in Fig. 49 values of kS of about_
0.6 and 0.65 can be identified for the first and the second instability
regions respectively, if\amplitudes smaller than 0.05 can be ignored.
The instability regions shrink with increasing external damping, about
their respective 'central' values of (fs/f) in an approximately
symmetrical shape. An exception to this occurs for the lowest values
of (fs/f) where the double harmonic excitation mechanism is operative. A
-slight trend of theinstability regions of the heavier cylinders to be
narrowerféan also be seen in this figure; this narrowing arises perhaps
because it is more difficult for a heavier cylinder to respond to the
excitation at the extremes of the instability regions where hysteresis

effects occur and where the excitation mechanism tends to break down.

Figure 49 together with the relationships between (f/N) and (fs/f)
{equation 6.2) and between fS and V (e.g. Fig. 31) determine the ranges
of flow velocity for which instability occurs. Such velocity ranges
are influenced by both o and ks, although in different ways, i.e. Py
affects the (£/N) ranges but not the (fs/f) ranges, while the converse
applies to ks. As explained in 6.2.3 however, in cases where frequency
variations are significant, P, can affect the (fs/f) ranges indirectly
via modifying f, which not only changes kS directly but it can also

affect ¢ and consequently kS and the (fs/f) ranges.

In contrast with aerodynamic situations wherethe flow velocity
ranges for instability often depend on the stability parameter alone,Table
6.1 Below shows that in hydrodynamic situations a higher maximum value
of (V/ND) can be reached with a lighter cylinder (lower pr), in spite
of its higher value of the stability parameter (kéo or ks), although
it can be seen in the same table that the maximum value of fs/f for this

lighter cylinder is in fact lower than that for the heavier cylinder.

It was thus concluded that the possibility of vibration is
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Run No maximum values of: kS
M 1
V/ND fs/f £/N Pr approx. kso
80 3.59 1.367 1.083 4.22 0.26 0.275
102 4.08 1.346 1.254 1.21 0.49 0.502

Table 6.1 Comparison of Experimental Results

determined by the stability parameter ks’ while the flow velocity ranges
in which instability can occur are also influenced by Ppe On the other
hand the stability parameter ks determines the vibration amplitudes
while Py determines the frequency variations. These dependence rela-
tionships and the indirect influences of py OR kS referred to in 6.2.3

are illustrated in Fig. 50.

6.3 Discussion of Results
6.3.1 Efficiency of excitation forces

The hydrodynamic damping and excitation forces can be reduced by
factors such as boundary layers, badly correlated flow patterns along
the cylinder's length and turbulence. This provides an explanation
for the differences existing between the maximum values of (£f/N) and
(fS/f) obtained from an extrapolation of the recorded data to the
undamped condition on the one hand, and the respective theoretical values

[/“”(pru)/pr] and v2 on the other. (Figs. 39 and 49).

The vibration amplitudes are determined by the balance between
hydrodynamic excitation forces and the (predominantly hydrodynamic)
damping forces (see Chapter 7) and consequently are also affected by
the boundary layers etc. as mentioned above. Because of the influence
of these factors on both excitation and damping it is not feasible
merely to apply some increment to kS to obtain a representative damping
parameter and it is therefore more difficult to estimate maximum

amplitudes.

A case illustrating the influence of the factors mentioned above
is shown in Fig. 41b where the (a/D) curves 1 and 3 overlap with curves

2 and 4 in the second instability region; this overlapping occurs because
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of discontinuities seen in the flow patterns of the wake (see 3.5) for
the tests of curves 1 and 3. This situation should be compared with
the uniformly spaced curves of Fig. 4la, where special care was taken
in the tests to maintain well correlated flow patterns in the wake,

throughout the second instability region.

A comparison of Fig. 41b with Fig. 37b shows moreover, that the
relatively lower points of the (f/N) vs (fs/f) curves correspond to
the relatively low amplitudes occurring in association with the observed

discontinuities in the wake.

6.3.2 Comparison of results

The possibilities of quantitatively comparing the results of the
present research with previously published data are severely limited by
complexity and differences in presentation, incomplete data and diversity
of situations. Qualitative comparisons however are possible as shown

below.

Frequency variations have been reported by Clark, Dickens and
Wootton? for two and three-dimensional situations. From the data of
Dickens it is clear moreover that higher (£/N) values correspond to
lower oL values, although this information is limited to the first
instability region and often strongly influenced by hydrodynamic damp-
ing. King neglects the frequency variations of his cantilvered cylinders,
although his Fig.9.8(b) shows (£/N) vs (V/ND) trends which are similar
to those here observed. The frequency variations reported by Wootton?
are more significant because they occurred in a full-scale three-dimen-

sional situation.

Although similar vibration amplitude curves have been presented
in all in-line vibration reports, little information on damping has
been presented. King and Dickens extrapolate hydrodynamic damping from
still water transients to flowing water steady-state conditions. The
values of "ks" so obtained by King moreover, do not always correlate
with the amplitudes (presented as bending moments) of his cantilevered

cylinders oscillating in-line.

Dickens bases his analysis and complex stability parameters on
hydrodynamic damping, which is here not considered part of external

damping. The (a/D) vs kS curves here presented however, resemble

78



those obtained by Wootton from tests of free-ended model stacks
oscillating across the flow in a wind tunnel; the similarities of the
curves in spite of the great disimilarities of the two situations can

be attributed to the negligible effects of both the aerodynamic damping
and the added mass of air, relative to the respective structural damping
and cylinder mass. These conditions in this aerodynamic case made the
constant kS extrapolated from still air tests, more appropriate to repre-

sent the stability of the system.

In addition to the need for damping data, a comparison of (fS/f)
ranges is possible only if either precise S or fs are known. Dickens
and Clark do not report their S values; while King, Hardwick and Wootton,
and Wootton et al do not provide sufficient damping data for a more
meaningful comparison of the (fS/f) ranges .than that of the curves of
Fig. 32. The base bending moment vs (V/ND) curves presented by King
however, show a general reduction of the (fs/f) ranges corresponding to
decreasing bending moment responses, and thus presumably corresponding
also to decreasing vibration amplitudes; his work is thus in agreement
with the trends presented in Figs. 41. It should be noted moreoever
that the comparison of (fS/f) ranges of different cylinder-flow arrange-
ments is complicated by the vibration amplitudes which, in three-dimensional
situations, change with the cylinder's length, and which when combined
with hysteresis phenomena, beats or double harmonic excitation, may

further modify the limiting values of fS/f for the two instability regions.

6.3.3 Practical considerations

The analysis presented in this chapter suggests that it should
be possible to predict the dynamic behaviour of a cylinder in a two-
dimensional arréngement oscillating in the direction of the flow in
terms of (a/D), (£/N) and (fS/f) from knowledge of Py and ks'

The parameters p, and kS as interpreted here could be more
readily determined at the design stage than the "combined stability
parameter" which depends on hydrodynamic damping and which does not
provide reliable predictions of (a/D), (£f/N) or of the ranges of (fs/f).

When damping data are to be obtained from transients in still
or in slowly flowing water (fs/f < 1) however, it becomes necessary to

calculate the appropriate hydrodynamic damping. For still water
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situations, the researches of Bramley and of King provide useful
information, For slowly running water there is, to the knowledge of
the author, no reliable method to calculate the hydrodynamic damping
which depends not only on the reduced velocity but it also depends

markedly on vibration amplitudes (see Chapter 8).

When dealing with the three-dimensional situations more often
encountered in practice, the data here presented cannot in general be
used directly, although the curves of Fig. 32 and the data of the full-
scale tests at Immingham provided by Wootton? indicate that very simi-
lar variations of (f/N) and ranges of (fs/f) result in both two and
three-dimensional situations. Prediction of the variable amplitudes
of a three-dimensional cylinder can only be made after considering flow
forces and energy exchanges along the cylinder's length. (See

remaining chapters).

Nevertheless, the analysis here conducted for two-dimensional
situations identifies causes of cylinder behaviour and results in
successful correlations of this behaviour with flow and‘cylinder para-
meters; this approach could perhaps be adapted to the more practical

three-dimensional situations.

Especially important from a practical point of view is the con-
firmation of (fs/f = 1) as a lower limit for excitation, which arises
from the following observations: (a) no vibrations in-line have been
reported for (fs/f) < 0.5 *; (b) increases of both Py and kS tend to
increase this threshold value; .(c) this limiting value has been
approached only by extremely light and lightly damped cylinders which
are not common in practice; (d) suppression of the double harmonic exci-
tation increases this limit; and (e) although f values have been recorded
which are slightly smaller than N and which reduce the flow velocity
threshold value below (fs/N) = }, these departures are not considered

to be of practical importance.

* This assumes that curve 1 of Fig. 32 represents average values of a
variable fs/f (see Chapter 9).
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CHAPTER 7

HYDRODYNAMIC FORCES

A simple theoretical model is presented in section 7.1 which
permits the analysis of the hydrodynamic forces of the added mass and
damping in sections 7.2 and 7.3 respectively. A constant mass
coefficient is adopted and it is concluded that hydrodynamic damping
cannot be extrapolated from still water tests because it depends on

the mean drag forces of flowing water.

Section 7.4.1 then considers all the hydrodynamic forces
leading to a theoretical model of the excitation. Sections 7.4.2 and
7.4.3 support the validity of this model to represent the two main
excitation mechanisms, with a brief analysis of the flow patterns
observed in association with the hydrodynamic forces predicted by the

model.

7.1 Analysis of Forces

Newton's Second Law can be used to relate the total hydrodynamic
forces, F
5), thus:

T to the cylinder's characteristics and motion (see Chapter

F =MCSE+c5<+kx (7.1)

where MC, ¢ and k represent respectively mass, external damping and
stiffness of the cylinder and its supports and x, x and x represent
respectively the displacement, velocity and acceleration of the
cylinder with respect to its supports. Most of the ultra-violet
recorder traces of the cylinder's displacement, x, were sinusoidal and

consequently the cylinder's motion can be represented by:
X = X + X, sin wt (7.2)
where X is the mean displacement,w = 27f, and X, is the amplitude of

the vibration. The sinusoidal motion of the cylinder indicates that

the excitation forces are either very small or are themselves
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sinusoidal functions. It was observed in Chapter 3 moreover that
events in the wake near the cylinder occurred periodically with the
same frequency, f, of the vibration. Thus the total hydrodynamic

forces can be represented by:

-— 1
,FT = F + FTo sin(wt + g) | (7.3
where F = kx (7.3a)
1
is the mean force; FTo is the amplitude of the fluctuating component,
t - 1
Frs and ¢ is the phase angle between FTo and X Equations 7.2 and

7.3 represent a solution for equation 7.1 (see Den Hartog) which then
describes the motion of a cylinder oscillating in vacuo and acted

upon by the addition of all the hydrodynamic forces, F Figure 51

T
illustrates the forces of Eqn. 7.1 vectorially; it can be shown from
a resolution of the forces parallel and at right angles to X, that:

(see Appendix vIT)

F. = k xo\/[l— (Ni)Z]Z +

To 512 7.4
v

C
[ZnM N (ﬁ”
cC Vv Vv

tan ¢ = (7.5)

where NV is the natural frequency of the cylinder oscillating in vacuo,
i.e.:
N = — (7.6)

It was observed in Chapter 5 that the hydrodynamic forces
depended not only on flow characteristics, but also on an interaction
between the motion of the cylinder and the flow patterns which result
in self excited vibration. In Chapter 6 it was shown that the
excitation mechanisms responded to changes of both Py and ks; while
both external damping and cylinder density are indeed characteristics

of the cylinder, it should be noted that they influenced excitation

indirectly through their influence on cylinder motion which in turn
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modified the flow pattern.

~ The present chapter is concerned with the hydrodynamic features
of the excitation which are applicable to all in-line vibration
situations; it is therefore intended to identify parameters which
represent the purely hydfodynamic features of the excitation and which
are independent of cylinder characteristics such as density, stiffness

or damping.

1 ]
FT is the only directly measurable fluctuating hydrodynamic
force, but if obtained from equations 7.4 and 7.5, it depends on Mc’k

and ¢ and is consequently inappropriate for the present purposes.
1

T
related to those variables associated with the flow and cylinder motion

Theoretically however, F.. can be divided into components which can be

only. These components are discussed in the following sections.

7.2 Added Mass
7.2.1 The coefficient of added mass

It is common practice to analyse fluctuating forces into: (a) those
associated with the relative acceleration of the cylinder and flow
(inertia forces), and (b) those associated with the relative velocity

of the cylinder and flow (drag forces), so that:

F = F + F (7.7)

This division is convenient for still water situations when
forces are predominantly inertial or in moving water at high Reynolds
numbers when drag forces predominate. In still water moreover, the
hydrodynamic inertial forces, like the inertial forces of the cylinder's

own mass, are proportional to the acceleration, x.

It is a mathematical advantage to represent the inertial forces

in terms of an "added mass', Ma’ thus
F. = Ma X (7.8)

such that the mass, Ma,can be added directly to the cylinder's own
mass, Mc, to form a "total mass", M;. It is then possible to repre-
sent the vibration of a cylinder of mass MT excited solely by drag forces

1
F by
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1
]

MT'{c + cx + kx! (7.9)

t 1

and F Fo sin{wt + ¢) (7.10)

t
where Fo is the amplitude of the fluctuating drag force and ¢ is the
phase angle with respect to the cylinder's displacement, X, » as shown
in the phase diagrams of Fig. 52. The natural frequency of such

vibrating system will then depend on the value of M, -

The added mass can be related to the mass of fluid displaced
by the cylinder, so that:

M, = 7 D?LgfGy | (7.11)

where CM is usually termed the '"mass coefficient".

Potential flow theory (see e.g. Lamb ) indicates that for an
infinitely long circular cylinder oscillating in an inviscid and other-

wise still fluid:

Cus = 1

and (7.12)
= T p2

Mas 4 D Lpf
where the subscript 's" indicates "still water". The practical
experiments in still water reported in Appendix III as well as numerous
research reports (e.g. King, Bramley) confirm this theoretical prediction
of CMS'

given by:

In still water the natural frequency, N, of the cylinder is

1 - k [ Pr
N = == ————e = N — T 1 . (7'13)
2n MC+Mas v oy + 1

For the conditions of flowing water on the other hand the appropriate
coefficient for added mass is not obvious. Even if the hydrodynamic
force on a cylinder could be reliably measured it would not be possible
to separate the inertia force of the added mass from other forces. To
make progress therefore it is necessary to assign, somewhat arbitrarily,
a value or values to CM; in the following two subsections alternative

methods of treating added mass are discussed.

84



7.2.2 A variable mass coefficient

It would not be unreasonable to attribute variations of vibration
frequency solely to variations of the inertial forces of the added
mass. If such a variable mass is assumed it follows that the exci-
tation force, F;, will ?ave a constant phase angle ¢ = 900, and a
magnitude, cWX s i.e. F represents only the forces providing the

necessary energy to sustain the vibration (see Fig. 52a).

The resulting variable mass coefficient, CMV’ can be obtained
by expressing the vibration frequency, f, in terms of a variable mass

such that:

1 \/ k
2r \/ T p2 '
£V 7 Dhee(o,Cyy)

- = = (7.14)
N 1 k
21 \[ 7 D?Lop(p +1)
and consequently:
N
Cy = (?)2 (o + 1) - o, (7.15)

It should be noted that (£f/N) is a function of (fs/f) and oL
only (see Chapter 6) and consequently CMv is independent of ks.
Equations 7.15 and 6.1 in addition to the assumption (see Chapter 6)

that:

Ny
N * N F 1

indicates that: 0 ¢ 1. This can be seen in Fig. 53, which

<
Cyv < A
presents the results of several tests with various values of o and

ks; the values of C,., were deduced from equation 7.15. It should be

MV

noted that the values of CMV

double harmonic excitation section of the first instability region where

slightly higher than one correspond to the

f was slightly lower than N (e.g. see Fig. 20). Figure 53 shows in
addition that Cyy varies little with p_ and appears to be independent

of.ks; the scatter of the experimental data moreover can be attributed
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to three-dimensional considerations and secondary factors (see Chapter
9). At first sight it would appear that a variable CMV could be
helpful in determining the exciting forces and the frequency variations

in instability regions for two-dimensional situations.

It is difficult however to explain the physical behaviour of
CMV’ especially when CMV = 0, i.e. absence of inertial forces, or to
explain the constancy of the angle ¢ = 900; calculations using this
model moreover are complicated by a variable value of the natural

frequency.

For the reasons just given (see the next subsection) the variable

mass coefficient C ., was not adopted for this analysis of the excitation.

MV
The characteristics of Fig. 7.2 however suggested that CMV was
a useful parameter to represent frequency varitaions. It should be

noted moreover that equation 7.15 also represents the vectorial
addition of the stiffness and inertial forces of the cylinder alone,
divided by the inertial forces of the added mass in still water (see

Appendix VII), 1i.e.

@92f0r+1) T (7.15a)

It will be clear later in the thesis that this force ratio is very
useful not only to represent frequency variations but also to simplify
analysis and calculations in general. For these reasons and to avoid
future confusion this force ratio will be henceforth referred to as

the "inertial coefficient", C,, i.e.

I,
c. = (2. +1) -0 (7.15b)
I f T r '

where 0 < CI < 1, and is approximately independent of oy and ks (see

Fig. 53).

7.2.3 A constant mass coefficient

An alternative way to treat CM is to assume that its still water
value of 1.0 is applicable to flowing water situations and is unaffected
by variations of flow pattern. This implies that the acceleration of

the cylinder, X, will always be opposed by a force which is proportional

86



both to the acceleration and to the mass of fluid displaced by the
cylinder. A value of CM = 1 seemed appropriate for the following

reasons:

(a) A value of CM = 1 was observed in slowly flowing water, i.e.
when (£ /f) < 0.5 (see Appendix III). When (£ /f) > Y2, strong
fluctuating drag forces (see 7.3) made any independent measurement of
CM impossible.

(b) It was argued that CM = 1 from a process of superposition of
component flow patterns and a consideration of their respective effects
on the cylinder. Fundamental to this argument is the assumption that
the basic potential flgw pattern which leads to CMS = 1 in still water -
persists in flowing water and still depends on the acceleration x, in

spite of other patterns being superimposed on it.

(c) If it is assumed that CM = 1, ¢ must be variable and the
1
fluctuating drag force, F, is responsible for the variations of (f/N)

(see Fig. 52b). In the previous section where a variable CMV was
postulated, there was difficulty in providing a physical explanation
for C

M
seemed more reasonable to argue that as(fS/f) +~ V2, ¢ » 180° and the

+ 0, as (fS/f) + V2. Here, where CM is assumed constant it

fluctuating drag force approached the value of the inertial forces of
the added mass (see Fig. 52b); in the limit the only hydrodynamic
loading on the cylinder would be two equal and opposite forces and
consequently the vibration frquency would tend to the in-vacuo natural

frequency, Nv’“

(d) The fact that the excitation frequency, £, is different from the
characteristic or natural frequencies of both the cylinder (N) and the
flow (fs)’ suggests that there should be phase variations as (fs/N)

changes, rather than a constant ¢ = 90°.

(e) If CM = 1, the stabi;ity parameter, ks’ then represents the
ratio of the external damping forces to the inertial forces of the added
mass in both still and flowing water (see Chapter 6). Similarly by
the adoption of CM = 1, the inertial coefficient, CI (see 7.2.2) then

becomes the vectorial addition of the stiffness and inertial forces of
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the cylinder alone divided by the inertial forces of the added mass, both

in still and in flowing water.

(£) By the adoption of CM = 1, the natural frequency of the cylinder
then remains constant and equal to its still water value, N; measure-

ment and calculations are thereby facilitated.

The above arguments indicated many advantages in adopting a
constant CM = 1, and consequently this will be assumed henceforth in
this thesis.

A resolution of the forces of Fig.52b for Cy = 1, and the
inclusion of the parameters CI and ks result in the equations:

(see Appendix VII)

- 2 _ 124 (2 2
FO = Masm XOV/(CI 1)=+ (Ez'ks) (7.16
and 2 ks
tan ¢ = m}'—_———l)- (7.17)

where 90° ¢ ¢ < 180°, if 1 3 C; > 0.

7.3 Hydrodynamic Damping
7.3.1 Still water damping

The rate of decay of transients obtained outside the instability
regions (see Figs. 25 and 54) indicates the presence of hydrodynamic
damping forces which are considerably larger than the forces due to

external damping.

Previous authors (e.g. Dickens, King) have measured hydrodynamic
damping from transients in still water and have then extrapolated such
measurements to steady state vibrations in flowing water. This
procedure will not be adopted in the present research for the following

reasons:

(a) In slowly flowing water, i.e. 0 < (fs/f) < 0.5, the value of
the logarithmic decrement, &, of transients was observed to increase
with fs/f for large amplitudes of vibration, and to decrease with fs/f

for small vibration amplitudes (see Fig. 54).
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(b) Transients recorded for fS/f > ¥2 show much larger & values than

those obtained in still water (see Fig. 25).

(c) The flow patterns are very different in still and flowing water;
in still water the relative velocity of the flow with respect to the
cylinder, (V - X), alternately changes from positive to negative, while
in flowing water, the maximum predicted and recorded values of the
velocity ratio V. = (uwx/V) of about 0.35, ensure that (V - x) is

always positive.

(d) In still water, and especially with the small '"size numbers"
(ND2/v) of the present research (see e.g. Bramley), the hydrodynamic
damping forces are mainly due to viscous friction, i.e. proportional

to the velocity, while in flowing water situations and assuming

Re > 103 (see Chapter 5), the viscous friction forces represent only a
small fraction (< 12%) of the total forces, which are predominantly
pressure forces, i.e. proportional to the square of the velocity.
Figure 55 illustrates the small influence of viscous friction at the
higher Reynolds numbers for a stationary circular cylinder; at least in
terms of orders of magnitude, the diagram is probably applicable to

vibrating cylinders.

7.3.2 Flowing water damping

If it is assumed that the hydrodynamic damping and the excitation

forces were predominantly pressure forces, these could be represented

by:

F = gprLVZ(l - V_cos mt)ZCf (7.18)

where ‘V = 5

v - Vrcoswt) is the relative velocity of the flow with respect to

the cylinder and Cf is a force coefficient.

Three components can be identified in this equation when it is

expanded, i.e.:

(a) = ip DLVZCf(1-+ %vi) (7.19)

Fmean f
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is the mean drag force.

(b) Fvariable ==}

;¥DLv2cf(2vrcosmt) (7.20)

is clearly a damping force in antiphase with x and is intended to
include both pressure and friction hydrodynamic damping forces; and

(c) F = ip DLVZCf[évicos(Zwt)] (7.21)

2w f
has twice the frequency of the vibration and consequently does not work
on the system. This force in the experiments moreoever, never

exceeded 9% of F_ . and is thus neglected.
variable

If the second term of equation 7.19 is neglected, equation

7.20 can be written:

Fiariable = ~ Fnean(%Vpcosut) (7.22)

From this approximate relationship it can be seen that F__ .
variable

is of the same order of magnitude as the mean drag force(and is

considerably larger than the external damping forces wab) and would

thus account for the strong damping forces observed for (fs/f) > /2.

F___. moreoever, increases with V_ and consequently with x . In
variable T o
addition it has been shown (Chapter 3) that Fmean also increases with
X, and so
a
Fvariab le (XJ

where a > 1. The heavy damping represented by this power law could
be an 1mportant factor in imposing an upper limit to the maximum

vibration amplltude even when Cux * 0.

7.4 Excitation Forces
7.4.1 A theoretical model of the excitation

To sustain a steady state vibration a strong exciting force is
required to counter the hydrodynamic damping of equatién 7.18 in which

the force coefficient is as yet undefined.
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The flow patterns observed in the two instability regions
suggested that the force coefficient undergoes variations with the
same frequency as the motion of the cylinder; the sinusoidal character
of this motion suggested moreover that all the forcing functions were

also sinusoidal. Consequently the force coefficient could be expressed

by:

— 1 .
CF = CF + CF sin (wt + a) (7.23)

where C and C are the mean and fluctuating parts of C respectively
and o is the phase angle of C with respect to X, Thls expression

of CF can be substitued for Cf in equation 7.18, which then becomes:

— ?
F = %prLVZ(l - Vrcosmt)z[CF + CFsin(mt+a)] (7.24)

Equations 7.23" and 7.24 represent the excitation in terms of

CF’ These equations can be solved for the components of F, which are
given by:
F = F + B (7.25) -
R )
where from equation 7.10, F' = Fosin(mt + ¢); solving thus:

(see Appendix VII)

1]
F = |1 2 ly2y € - 3
F o= }oDLV2[(1 + }V2) Tp - V Cpsina] (7.26)
and
S = 1 2 12
Focos ¢ = §1¥DLV 1+ 7 r)C cos o (7.27)
. 1 ) 1 o0t
F051n ¢ = §1¥DLV (1 + Z-Vr)CF51na
Cl
Loz - v Esin o)2v T (7.28)
f 4 'r < r F :
Cp
the R-H,S, of

It should be noted that the second term of,equation 7.28 is always
negative because both Vr and C% are always positive and because the
negative term inside the parenthesis is always smaller than 0.1 ; the

1
second term of equation 7.28 thus opposes F_ sin ¢, which in turn is
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in antiphase with the external damping force, Cux (see Fig. 52a),
it then follows that this term of equation 7.28 represents a hydro-
dynamic damping force, phd’ which is in antiphase with the velocity

x, i.e.

—
-

‘ _ 1 2¢1 - 1
P, ,cosuwt = pDLV- (1 4Vr

hd 72 e 51na)2VrCFcoswt (7.29)

ol |0

F
The first term of equation 7.28 and equation 7.27 clearly
represent the two components of an excitation force, P., which is in
1

phase with the fluctuating force coefficient, C., i.e.

F

. 1 1 o n' .
P_sin(wt+a) = 5pDLV A1 + &-vf‘)cF sin (wt+a) (7.30)

' F;sinzb must be positive (in phase with x) to sustain the vibration
and FO cos ¢ must be negative (in antiphase with x) if f > N (see Fig.
52b); it then follows from equation 7.27 and 7.28 that sina must be
positive while, cosa must be negative, i.e. Pe must be in the 2nd
quadrant of the phase diagram. This can be seen in Fig. 56 where the

: 2
hydrodynamic forces Pe’ Phd and Masw

§)and their phase relationships
are shown together with the cylinder inertial, stiffness and external

damping forces.

The excitation process is thus expressed in terms of forces which
are functions of CF’ flow characteristics, cylinder motion and geometry;
it is now necessary to correlate CF with the above parameters in order
to confirm that Pe and Phd are indeed hydrodynamic parameters, and that
they are independent of cylinder characteristics such as Py and ks'

This will be attempted in the next chapter.

1

To obtain such correlations however, E%, CF and o must be

calculated from the measurable characteristics and behaviour of the
cylinder and flow. From a resolution of the forces of Fig. 56 and from
equations 7.3a, 7.9 and 7.26 to 7.30 (see Appendix VII) thus:
C., +V C' sin a

r F

c, = 2 (7.31)

' AV 5 29 = V 2
fD iy

(7.32)
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_ 2y “F 1D S
tan a = +Z CI — (7.33)
where 1
v o= 7, & 1 (7.34)
1+Z-VT

It should be noted (equation 7.31) that the mean force coefficient

E% is different from CD and hence the latter's name, 'apparent drag

A
coefficient".

The theoretical model just developed shows the hydrodynamic forces
and energies to be significantly larger than those due to external
damping. The excitation thus appears to depend on a delicate balance
between relatively large forces which tolerates only small energy

outputs.

In contrast with the model of Fig. 52a and equations 7.16 and
7.17, the model of Fig. 56 does not neglect the influence of CDA on
the excitation process and in this way it opens an additional source

of available data.

As will be shown later, the maximum ¢ variation of 90° (Eqn.
7.17) corresponds to only 45° of o variation, which indicates that the
excitation is also very sensitive to phase angle variations. Bearing
in mind the self-excited character of the vibration, this sensitivity
is more obvious if « is not only regarded as indicating the phase angle
between force and cylinder motion, but also as an indicator of the
phase relation between the cyclic power supply to the wake near the

cylinder and the motion of the wake itself.

Before proceeding to a detailed analysis (in Chapter 8) of the
excitation mechanisms, it is opportune here to make a preliminary
assessment of the validity of the model just described to represent the
excitation, This assessment is presented in the next two subsections,
in the form of a brief analysis of the patterns of behaviour of cylinder
and flow, which have been observed to occur in association with the

variations of the forces predicted by the model.
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7.4.2 The pairs mechanism

The excitation in the first instability region which occurred in
association with pairs of simultaneous eddies ("pairs mechanism') was
first assessed by Hardwick and Wootton. They suggested that when the
wake was narrowest as the cylinder moved upstream through its central
position (see Fig. 9), the flow pattern resembled the wake behind a
Do = 0.35

only (see Figs. 9 § 55); and consequently a lower value of the force

stationary cylinder when R, > 5 x 105 , for which case C

coefficient of the vibrating cylinder should occur at this moment.
When the cylinder moved downstream through its central position, the
wake was widest and resembled that occurring behind a stationary flat

plate placed perpendicular to the flow, for which case C__ = 2.05; an

DO
increase of the force coefficient of the vibrating cylinder was likely

at this stage. The two conditions were represented thus:

D — - ' .

F+ F' = %%PL(CF + C(V - mx0)2 (downstream stroke)

1

= - = 2

F - F!' 2ptDL(CF CF)(V + mxo) (upstream stroke)
Subttacting:

FI 1 2 __V
W = Cp(1+ V2) - 2TV, (7.35)

where the first term in the right hand side is the excitation force and

the second is the hydrodynamic damping.

With the aid of this model Hardwick and Wootton predicted a

maximum amplitude for the first instability region.

This model implies that the excitation forces are always in
phase with the cylinder's vibration velocity, i, but it was argued in
section 7.2 that this can only be true when f =N, of if CM is assumed
to vary, none of which criteria is here applicable. There is an
additional deficiency in that both Hardwick and Wootton and later King
using the same model, have assumed E% to be constant and equal to its
stationary cylinder value, CDO; but it was shown in Chapter 3 that CDA
was variable, especially when the two excitation mechanisms there

identified were observed to interact.

94



In the present study an attempt was made to improve Hardwick
and Wootton's model by incorporating a variable phase angle, a, between
the fluctuating force coefficient C; and the cylinder displacement, X
and introducing also a variable mean force coefficient, CF' This led

to equations 7.23 and 7.24.

7.4.3 The "transverse flow mechanism"

In the second instability region (and in the lock-in sections
of the first) the excitation can be associated with the strong periodic
transverse flow observed in the wake near the cylinder (see Chapter 3)

rather than with a widening and narrowing of the wake.

It was suggested in Chapter 3 that this transverse flow was
associated with the velocity field of the strong eddy just downstream
of the cylinder, as shown schematically in Fig. 57. It was evident
from flow visualization that the major part of the‘transverse flow was
supplied by water flowing in a streamtube of some width, b (Fig. 57),
which is turned through 90° from the original direction of the approach-
ing flow to the transverse direction. What follows is an attempf to
express the force required to turn the flow in this streamtube and thus

change its momentum.

The flow velocity (relative to the cylinder) in the streamtube
of width b will be somewhat larger than V because of the constriction

imposed by the cylinder and could thus be represented by:

YV - x)

where y is a coefficient whose value is likely to be in the range 1.0-2.0.

The mass flow rate through the streamtube of width b and length

parallel to the cylinder axis L, will be:
oeb LY (V - x) _ (7.36)

As the transverse flow velocity fluctuates in each cycle between
some maximum and zero, the horizontal (Fig. 57) component of the
velocity of the flow in the streamtube, immediately downstream of the
cylinder, fluctuates between zero and y(V - X). Assuming a sinusoidal

variation, the horizontal velocity component can be represented by:

95



Y(V- - x) § [1 + sin(ut + £)] (7.37)

where £ is the phase angle between this component and X,

A periodic force acting on the cylinder in the direction of the
flow can thus be associated with the loss of momentum in that direction
experienced by the flow in the streamtube. This force is given by

equations 7.36, 7.37 and the momentum equation, i.e.
F = [pbeY(v-i)][Y(v-i) 1 {1 + sin(wt +a)}] (7.38)

where the first factor in the right hand side represents the mass flow
rate through the stream tube, and the second represents the variation
of the loss of velocity in the direction of the main stream experienced
by such flow; it should be noted that instead of changing the sign of
sin(wt + £), the angle £ has been replaced by

a = & + 180°

which is the phase angle between F and Xy

If it is now assumed that:

b 2 _
pY = CF

an expansion of equation 7.38 results in three components, namely:

(see Appendix vII)

1
(1) F, = %prLVZCF(l + gvg - V_sina) (7.39)

is a constant force which indicates that in this type of excitation an
increase of the mean force occurs which is of the same order of magni-
tude as the excitation force; this is in agreement with the observed

behaviour of CDA in the second instability region (see Chapter 3).
.
(2) F, = -%QEDLVZCF(I - }V_sina)2V_cosut | (7.40)

is a damping force in antiphase with x, and
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' ,
(3) F, = %prLVZCF(l + },V%)sin(mt + ) (7.41)

is an excitation force of amplitude Pe- (See equation 7.30).

It should be noted moreoever that if the equality:
+ C (7.42)

is assumed, the force F of equation 7.26 results from the addition of

the forces F1 of equation 7.39 and Fm of equation 7.19; similarly

ean
the force Phd of equation 7.29 results from the addition of the

amplitudes of the forces F, of equation 7.40 and F of equation

7.20.

variable

The addition of the forces obtained from this model and those
obtained from the model developed in 7.3 in connection with hydrodynamic
damping thus result in the same forces F, P, and Phd of 7.4.1 and
7.4.2.

It can then be concluded that the model presented in 7.4.1 can

represent the two main excitation mechanisms.
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CHAPTER 8

EXCITATION MECHANISMS

In this chapter the excitation mechanisms of the two instability
regions are considered separately and with the help of the models

developed in Chapter 7.

An analysis of the second instability region leads to a simpli-
fication of the model of the excitation which permits predictions of

cylinder behaviour.

The same success is not achieved for the first instability
region owing to the complex nature of the excitatiom. Some insight
into the excitation is gained however from a qualitative analysis of
the predominant '"pairs excitation mechanism'" and of its influence in

the various sections of the first instability region.

8.1 The Second Instability Region
8.1.1 Phase relationships

The behaviour of the phase angle a can be predicted qualitatively
from consideration of the flow patterns in the following way. The
variations of the hydrodynamic force .coefficient in the second instability
region were associated in 7.4.3 with periodic variations of the trans-
verse flow at the back of the cylinder which constituted an integral
part of the kinetic field of a newly shed eddy (see Fig. 58a). The
variation with time of the kinetic field of such eddies has been investi-
gated by Schaefer § Eskinazi for the staggered wake behind a stationary
cylinder and can be represented by the curves of Fig. 58b. The figure shows
the. tangential velocity, v, at a point in the field as a function of
the distance between this point and the centre of the eddy; v is the
kinematic, viscosity and t is the time. The curves suggest that eddies
behave as free vortices, except for a core which behaves as a forced
vortex. The figure shows moreover that the maximum velocity at any

instant occurs at increasing radius, say r,, as t increases.
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If the eddies in the wake of the second instability region
follow the trends of Fig. 58b, the maximum value of v which can probably
be associated with the maximum of the fluctuating force, will occur at
the back of the cylinder when the eddy is at a distance, T, from that
point (see Fig. 58a). Fig. 58b indicates that this distance is
likely to decrease with increasing frequency (i.e. decreasing vt).
It follows that even if the distance away from the cylinder travelled
by an eddy in a given portion of a cycle were independent of frequency,
the distance, ry, should then be reached by an eddy somewhat earlier in
a cycle, the higher the frequency. Consequently and bearing in mind
that frequency increases with fS/f » the leading phase angle, a, of the
excitation force should not decrease as fS/f increases, but if anything,

a should in this case increase with fS/f.

Owing to the symmetry of the wake however it is likely that the
translatory velocity of the eddies will eventually reach the flow's
velocity, V, and consequently, the distance between consecutive eddies
in the distant wake will be equal to (V/fD). Observations of the wake
about three diameters downstream of the cylinder moreover, showed
increases of the distance between eddies roughly proportional to (V/£D).
It is therefore also likely that the distance away from the cylinder
travelled by an eddy in a given portion of a cycle, will be proportional
to (V/fD) and therefore to (fs/f), since (fs/f) = (SV/£D). Like the
argument of the previous paragraph, these observations also suggest
that the distance, r;, will be:reached by an eddy earlier in the cycle
the larger (fs/f), and consequently they suggest that o should increase
with (fs/f).

This trend of o is also suggested by the interpretation of fs
as a natural or characteristic frequency at which events in the wake
tend to occur (see Chapters 4 § 6). It should be noted that the above
arguments assumed that the eddies were released at a fixed point in
the cycle. The above interpretation of fs suggests however that as
fs increases above and apart from f (i.e. as fs/f increases) events in
the shedding process should tend to occur faster or earlier in a cycle

and consequently o should tend to increase with (fs/f).

Increases of a with (fs/f) can be seen in Fig. 59 which presents
results from several experiments with different values of ks and G

the values of a were obtained from the recorded behaviour of the
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cylinder and flow and with the aid of equation 7.33. This figure also
shows, that, unlike the phase anglev¢,(see equation 7.17 and Fig. 52b)
the angle a is not significantly affected by either P, OF ks, and it
was considered satisfactory as a generalized hydrodynamic parameter of

the excitation applicable to any cylinder in two-dimensional flow.

A general trend of o increasing from 90° towards approximately
130° for,(fs/f) = ¥2 can also be seen in this figure. It will be
shown in Chapter 9 moreoever that consideration of boundary layers,
flow pattern correlation, etc., modifies this trend towards 135° when

(fs/f) = /2 for an ideal two-dimensional case.

8.1.2 E% and hydrodynamic damping

The above observations suggest tan a =-1 when (fs/f) = /5, for
the ideal two-dimensional situation; under these circumstances moreover,
CI = 0, and from equation 7.33:

ﬁ%- U] [E% %%-f ks] = constant = 1 (8.1)

for all values of Py and ks; and (V/fD) is constant since (fs/f) = /2.

In Chapter 6 it was argued that in the second instability regionm,
for every value of ks there corresponded a unique value 6f (a/D) (see
Fig. 45). If CF is assumed to be a hydrodynamic parameter which is
independent of C and ks’ it then follows that Cp should be a function

of (a/D). (Since ¢ in equation 8.1 is approximately constant).

Fig. 60 presents values of (Ef/CDO) calculated with the aid of
equations 7.31/2/3, from a series of tests with various values of k;o
and plotted against (f /f); the figure shows for 1 < (f /£) < V2, that
C decreases both with decrea51ng (a/D) or with increasing (f /£) which
suggests that the product (CF fD) is a function of (a/D). This
product is thus plotted in the form: (—567?) against (a/D) in Fig. 61
for all values of [f /f) in the second instability region; the data are
the result of tests with different values of P and P . It is clear
from this figure that that product and consequently also (CF fD) are
functions of (a/D) only.

It was confirmed in Chapter 6 moreover that for a given value

of k,, the vibration amplitudes were comstant in most of the second
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instability region, i.e. there was a flat top to the (a/D) vs (f;/f).
diagram. Therefore, if equation 8.1 is valid when fs/f = ¥2 and for
any value of ks’ the same equality should also apply for any value of
(fs/f) within the flat top of the (a/D) vs (fs/f) diagram.

Equation 8.1 can also be written as follows: (see Appendix VII).

hﬁ — = ﬁ__ng_ = constant = 1 (8.2)
asw le) asw o]

where Pd is the total damping force. This equation indicates that
independently of cylinder characteristics or motion, the total damping
forces are equal in magnitude to the inertial forces of the added mass

throughout the flat top of the second instability region.

t
8.1.3 CF and the excitation forces

Equation (8.2) suggests that Masm2

xo could be valuable as a
common denominator for all the forces involved. The ratio of the
excitation forces to the inertial forces of the added mass results '

thus in absolute terms:

P c. g1+ 1v2) £,
S = (D (8.3)
M w%x 21T SV f :
as (o]

The velocity ratio Vr is directly related to the magnitude and
time distribution of the vorticity generated at the cylinder's wall,
and it is therefore also related to the strength of the eddies, whose
kinetic field constitutes the transverse flow associated with the
fluctuating force. Fig. 62 shows moreover that in the second instability
region C decreases with decreasing (a/D) or with increasing values of
(f /£), i. e ,~it behaves similarly to V since Vr = nS(a/D)(f /f)
Therefore C should be a function of V Fig. 63 presents values of
C plotted agalnst 2728V /(1 + 0. 25V2) from several tests with various
values of kéo' It can be seen in this figure that in the flat top of
the (a/D) ys (fs/f) diagram, the data approximately follow the relationship:

_ 725 V
CF = 2 if171§2 (8.4)

T
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8.1.4 A two-dimensional model

Equations 8.1 and 7.33 lead to:

tan @ = —1 (8.5)

csca /1+(C; - 1)? (8.6)
i.e. a is independent of Py and ks. Experimental results (see Fig. 64),
show only a slight disagreement with equation 8.6 which will be discussed
in Chapter 9, in connection with three-dimensional and other secondary
factors.

In contrast with equations 7.31, 7.32 and 7.33, equations 8.4 -~
and 8.5 together with figures 53 and 61 provide relationships between

€
F,
only on the other, thus confirming that CF can represent the excitation

t .
CF and o, on the one hand and flow and cylinder motion parameters

independently of the cylinder characteristics, Py and ks.

The experimental confirmation of Eqn. 8.4 shown in Fig. 63,
indicated that the excitation force, Pe (Eqn. 7.30) in common with the
force, Phd (Eqn. 7.29) and all other time varying forces on the cylinder
(see Fig. 56), was proportional to (a/D); it was argued therefore that

the model could be simplified through the elimination of (a/D), by

dividing all forces by Masmzxo. Thus from equations 8.3 and 8.4:
Pe fs
M_ w?x - F (8.7)
as "o

This ea;étion together with 7.15a, 7.15b and 8.2 provide the
force ratios resulting from the simplification. The corresponding

phase diagram is shown in Fig. 65.

It should be noted that when any one of the following three
conditions are met, namely (a) N < f < Nv i.e. 0 < CI < 1;
(b) 1 < (fs/f)< v2 and (c) 90° < ¢ < 1350; the model then predicts the

other two.

From the diagram of Fig. 65, moreover
fs
csca = & (8.8)

This equation is compared with experimental data in Fig. 64.
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It was concluded that in an ideal, two-dimensional situation,
the phase angle of the excitation forces depends only on the ratio of
the excitation frequency, f, to the characteristic or "natural" frequency
of the flow, fs, thus indicating that, as Bishop and Hassan have
suggested, the excitation can be treated as a dynamic system with its

own independent characteristics.

8.1.5 Prediction of cylinder behaviour
(a) Vibration frequeng@s

It can be seen from the diagram of Fig. 65 that for the ideal

two~dimensional case CI is a function of (fs/f) only, i.e.

c; = 1- JE/HI-T (8.9)

CI values obtained from this equation are compared in Fig. 66
with data from several experiments conducted with different values of

oL and ks. It should be noted that because of the good agreement

between the frequency responses of cylinders having the same 3 but

different kS (see Fig. 37), only representative average values of CI

are plotted in Fig. 66 for these cases

Equation 8.9 when combined with 7.15b, results in the expression:

1 -1
c [(£/D)2 - 1]
£ e (8.10)
T

which gives the frequency response from knowledge of I and (fs/f).
When compared with the linear relationship 6.2, equation 8.10 improves
the agreement between predicted and experimental data, for the lower

values of fs/f (see Figs. 37 § 67).

should be noted that because of the good agreeme een

the frequency respons cylinders havi € same p, but different

ks (see Fig. 37), only rerage values of (£/N) are

plotted in¥ig. 67 for thesc cases.

" The disagreement between predicted and experimental data which
can be observed in Figs. 66 and 67 for the higher (f_/f) values, can
be attributed to three-dimensional and other secondary factors (sec

Chapter 9).
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(b) Vibration amplitudes

An approximate interpolation of the data of Fig. 61 lead to the’

following expression:

|-

£ ; _
+ = 1 + 2.5(a/D) (8.11)

po

this relationship when combined with Eqn. (8.1) results in:

e
DO .2S 1o
-_nTZ—g— (—:'D—O ks + 1 + 2.5(3/0) ] - 1 (8'12)

which gives (a/D) as a function of ks alone, if C S and ¢ are

’
constant. Given the marked difference between tgg magnitudes of ks

and (—% %%J however, the values of (a/D) obtained from this equation
will be very sensitive to variations of CDO’ S and ¢. A first
approximation can be made nevertheless, assuming the average value of
(CDO/S) for the whole instability region and the minimum value of ¥, i.e.

b .= -
min 1 + 0.83(a/D)*

(8.13)

where fs/f is assumed to be constant and equal to one, in order to

obtain the maximum values of (a/D). Fig. 68 shows that the (a/D) values
obtained from equations 8.12 and 8.13 present some similarities with

the corresponding experimental data from Fig. 45b,both quantitatively

and qualitatively. The marked influence of C S and ¢y indicates

DO’
however, that in order to obtain more accurate predictions of (a/D), by
this method, the following is needed: (1) a very high accuracy of
measurement, (2) very close resemblance to the ideal two-dimensional

case and (3) a more accurate relationship that that of equation 8,11.

. The small scatter of the data of Fig. 61 indicates however that
for the present research, (%gb %?J depends on a/D only, in spite of the
slight three-dimensional and other secondary factors involved; conse-

quently, if the values of C S and ¢ can be fixed for a given situation,

Do’
an estimated value of the maximum amplitudes (a/D) for the case when

k, =0 (e.g. Fig. 47) would lead to a value of the right hand side of
equation 8.12 different from one, which would in turn allow an improved

prediction of the (a/D) v ks variation.
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(c) Speculation concerning the ranges of (fs/f)

The model of Fig. 65 does not indicate any limit to (fs/f), (£/N)
or o that would predict the end of the instability region, although it
shows the coincidence of the conditions (fs/f) = /§§ f= Nv and a = 135°,
The reason for the breakdown of the excitation as (fs/f)-+/§-may be

related to the following processes:

1) VThe phase lead of the angle,a, can also be thought to
represent the phase lag of the periodic supply of vorticity or power
to the wake (associated with Vr and thus with the cylinder's motion),
with respect to the periodic fluctuations of the kinetic or pressure
fields of the wake (associated with the force, Pe). This interpretation
suggests that the wake or the excitation mechanism are very sensitive
to phase changes, tolerating only 45° variations of a. It is therefore
likely moreover, that as (fs/f) tends towards either one or V2, the
excitation becomes less stable and tolerates progressively smaller
extractions of energy (external damping). The above then constitutes
a possible explanation for the reduction of the ranges of (fs/f) as ks

increases from zero.

(ii) The end of the instability region can also be attributed
to decreasing values of Vr as (fs/f) increases (since Vr = nS(a/D)f/fs),
which not only reduced the supply of vorticity to the wake, but also
make such supply more uniform; the vorticity in the wake consequently

becomes more diffuse and the eddies are weakened.

(iii) It should be noted that the same type of wake as that
obtained for (fs/f)=/§; with the same geometrical proportions and
frequency and for the same velocity of flow, could also be produced with
a cylinder of diameter, D' = /ZD; this larger diameter would decrease
the value of fs to (fs//i) and consequently (fs/f)' would be equal to
one. If the power supply to the wake per cycle is proportional to the
drag force multiplied times (V/f), then the power supply of the larger
cylinder would be twice as much as that of the smaller. This is because
the power is proportional to D and CDA’ and CDA = /2 for the smaller
cylinder while CDA = 2 for the larger one. The increased power supply
can be explained by the larger bluffness, wall surface and velocity

ratio, Vr’ in the case of the larger cylinder, which would result in an
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increaseéd and more markedly periodic vorticity supply to the wake.

The 2:1 ratio of power supply between the two cases then suggests a
likely range within which this type of wake can be produced, and conse-
quently a possible reason for the end of the instability region when
(fs/f) = /2, It should finally be noted that the above argument is
also compatible with the observed reductions of the limiting value of
(fs/f) = /E; which occurred in association with power outputs, i.e.
when kS # 0.

It is more difficult to explain the onset of the instability.
The traces of the beating vibrations indicate however, that the
frequency of the excitation is different from the vibration frequency,
f, which itself varied even though the flow velocity was constant.
The values of (fS/f) > 1 also suggest that the frequency of Pe is larger
than f and consequently the phase angle a is constantly increasing, so
that when, 0 < a < 1800, the vibration grows, and it decays when
180° < a < 360°.

It can therefore be assumed that the delay in terms of (fS/f)

of the start of the instability depends on the force ratio:

P651na - (Pd + cwxo)

L =T

Z
I MTSw xo + Pecosa

i.e. the"logarithmic increment" of the beating vibration. Assuming

Pecos a to be negligible when a = 90° and dividing both the numerator
3 2 .
and the denominator by Masw X s LI becomes:
fs . 2. = V
- T sine - HlChgy + K]
L, = w
I p_+ 1
T

For unsteady conditions, the second term in the numerator is not

= V

constant but ( F ) depends on (a/D) according to Fig. (8.5). Therefore

D
LI will increase with fS/f or decrease with increases of Py k5 or (a/D).
It should be noted however that for a given value of LI’ the
number of cycles needed for the cylinder to reach its final amplitude

and thus a steady state vibration, should not exceed the number of
cycles taken by a to move from 0° to its final value, ag, as given by

Equation 8.8. If the frequency of Pe is assumed to be approximately
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equal to fs’ when (a/D) = 0, this number of cycles is likely to bé

proportional to:

Although ag can be assumed to be proportional to (fs/f) (see Fig.
64), it should be noted that the few cycles gained or lost through
variations of g caused by fs/f changes, are the most important because
ag = 90° and sin o is near its maximum; consequently the number of

cycles mentioned above is likely to be proportional to:

(£s/E)" £/t
fs.f-_f 1 - £
fS

where n > 1. Therefore as the value of (fs/f) increases, the number
of cycles available for the vibration to grow to its final steady state
amplitude will increase, and the corresponding necessary value of LI

will decrease.

The above argument thus indicates that the lower the Pp and ks,
the lower the (fs/f) is required to achieve a given amplitude of steady
state vibration. These trends are shown by the experimental data of
Fig. 49.

(d) Mean amplitude and energy output

Although not vital to the arguments of these subsection, it is
interesting and oportune to consider the mean displacement of the cylinder

and the energy extracted by it from the stream.

If the cyclinder were to be dragged through still water, the ratio
of the energy per cycle of the wake needed to drag a vibrating cylinder

to that needed to drag a non-vibrating one, is given by:

C.. £
E, = = o (8.14)
DO e

The non-vibrating cylinder has been chosen as a reference point because

in this case the same type of wake persists through a very wide range
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of Re; consequently this wake can be regarded as a characteristic or

"natural” flow pattern for given values of V and D.

E,

appears to depend on (a/D) only, as shown in Fig. 69, which is a plot

like the similar parameter involving E% (see Fig. 61) also

of Ew against (a/D) in the second instability region, for various values
of k;o. This figure shows that E - = 2 when (a/D) = 0.2 and that

the slope of the curve flattens for (a/D) > 0.13, i.e. for the ampli-
tudes observed in the second ihstability region. Consequently it is
not unreasonable to assume: Ew = 2, i.e. the energy per cycle of the
wake needed to drag a vibrating cylinder in the second instability
region is approximately twice the amount needed to drag a non-yibrating
one. This can also be seen in Fig. 70, which plots Ew against fs/f

in the two instability regions, from the results of the tests of Fig. 69.

The approximation E, = 2 greatly simplifies the prediction of
the maximum values of x, as follows: from equation 3. 1, 7.12 and 7.13:
2
- to DLVZC), M_ +M_ _ Con 2 (E)2
k M, o+ Mas SSénd(pr+1) N Mf

if the maximum of X occurs when (fs/f) = ¥2, i.e. when

£ _ Py +1
N~ p
T
then:
& . Smo1
D’ max 47°8 Pr
Assuming: “E, = 2, Cpo * 1; S = 0.2 and (fs/f) = V2
_yx . 0.28
(ﬁamax - Pl ?8-15)

Equation 8.15 thus provides an estimate of the maximum value of
(x/D) from knowledge of LI alone. Further refinements can be made if
the values of S and CDO are known. This equation indicates moreover,
that for a common steel pipe full of water where G 1.5, (x/D) can be
as high as 0.18, i.e. approximately equal to the maximum double ampli-

tude of vibration, (a/D),in the second instability region.
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8.2 First Instability Region
8.2.1 The "pairs excitation mechanism"
(a) Influence of vibration amplitudes

When the excitation was characterised by the shedding of pairs
of simultaneous eddies ('"'pairs mechanism'), both in the reorganization
section of the first instability region and in the vibration of the
cylinder with a splitter plate, the calculated fluctuating force

coefficient, C roughly followed the same trends as those exhibited

F
by (a/D) (see Figs. 41,43,62 and 71. This dependence of C; on (a/D)

is explained below.

For a given value of (fs/f), the velocity ratio of cylinder and
flow, Vr’ is determined by (a/D).

The vorticity generated in the boundary layer of the cylinder in.
the upstream stroke increases with increasing Vr. On the other hand
the translational velocity of the small eddies generated in the boundary
layers during the upstream ’ . stroke decreases as Vr increases.

It would appear that the confirmation of these trends leads to improved
organization of the small eddies within the large eddies which dominate
the wake; the large eddies are thus strengthened as Vr increases. As
shown in Chapter 3, the large eddies do not appear to roll up until the
cylinder accelerates downstream (i.e. after its mean position in the
upstream stroke) and the eddies, which are still growing, accelerate
together with it. It is towards the end of this stage that the cylinder
together with the large eddies, presents a ''bluffer" shape to the
uncoming flow, than is the case with a stationary cylinder; this
results in a decrease of the base pressure and a consequent increase

of the drag force with respect to the corresponding values for a

stationary cylinder.

It should be noted that during the first half of the cylinder's
downstream stroke, the higher the acceleration (which is proportional
to a/D) the further upstream the eddies will be with respect to the
cylinder, and consequently the bluffer the shape presented to the
uncoming flow. This shape is also made bluffer by the upstream flow
which results from the previous upstream motion of the cylinder and
which is diverted towards the eddies by the back of the cylinder. This
upstream flow tends to displace the eddies upstream and away from the
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typical "F5ppe1 vortices!" arrangement (see Goldstein), which can be

observed with non-periodic acceleration, or with very low Re values.

The above arguments thus suggest that larger amplitudes of
vibration should be accompanied by larger increases of the drag force

in the downstream stroke of the cylinder.

As the cylinder decelerates in its downstream stroke, the fluid
immediately behind the cylinder tends, by its own inertia, to maintain
its downstream translation. The low pressure thus generated just
downstream of the cylinder induces an onward flow from outside the wake
which is apparent from the narrowing of the wake. In addition the
separation points move towards the rear of the cylinder. The two
effects promote a recovery of pressure in the wake and hence a reduced

drag.

The downstream displacement of the separation points is thus
associated with the relative downstream acceleration of the fluid in
the boundary layers with respect to the upstream accelerating cylinder,
which assists the fluid in the boundary layers to overcome the friction

forces that cause the separation.

(b) Influence of (fs/f)

The above description of the excitation also indicates a strong
influence of (fs/f), which determines the velocity ratio, Vr and the

acceleration ratio.

This influence is clearly illustrated below the self-excited range
i.e. fs/f << 0.5 when for a given a/b, Vr is large (say Vr approaching
unity). In this case there can be a periodic :reversal of the flow in
the boundary layers, leading to the formation of smaller eddies of the
opposite rotational sense, similar to those observed when the cylinder
oscillates in still water. The resulting wake disruption and the
extremely low relative velocity of the flow in the downstream stroke,
cause increases of the drag force which are too small to overcome the
much larger hydrodynamic damping forces. This phenomenon was reflected
in the increases of the logarithmic decrement of small amplitude

transients, which were observed as fs/f was decreased below the value 0.5.

The influence of fs/f on the excitation is also illustrated by

the ratio of the energy extracted from the stream by the vibrating
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cylinder per pair of eddies shed, to the energy extracted from the same
stream by the stationary cylinder per eddy shed. This ratio, Ep, is
given by:

v

E - N (8.15)

P jopiv2c (1) Cpo *f B
S

{pDLV2C

For given values of V, D and (a/D) therefore, lower (fs/f)
values indicate relatively shorter periods of the vibrating cylinder,

and since C = constant it follows that less energy is -given to .the

pA’ o
eddies and their strength is consequently limited.

The stationary cylinder case has been used as a reference point
because the same type of wake with only secondary changes can be

observed over a very wide range of flow velocities.

(c) Geometrical considerations

The understanding of the excitation can be advanced by consider-
ing geometrical parameters such as the distance between consecutively
shed eddies, which, if expressed in cylinder diameters is proportional
to (v/fD) or (fs/f).

Consider for the sake of argument the extreme situation where
this distance is very small (i.e. fs/f is small). If it is assumed
moreover that the furthest upstream position reached by the eddies on
the cylinder wall is about 90° from the frontal stagnation point (see
Fig. 73a), the proximity of consecutive eddies and the wall of the
cylinder would inhibit the expansion and contraction of the wake; in
addition these wake fluctuations would not reach the back of the cylinder
where pressure variations are most effective. If on the other hand
the eddies were formed well downstream of the 90° position so as to
improve the effectiveness of the wake fluctuations (see Fig. 73b), the
eddies would then be less effective in increasing the bluffness of the
combined cylinder-eddies' shape. A small "distance" (V/fD) thus
indicates low values of C while the position of the eddies on the
cylinder's wall indicates whether the increase of bluffness (and of CF)
with respect to the stationary cylinder case is larger than its reduction

or vice versa,

It is interesting to note that the proximity of the values of
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CDK;aﬁd CDO recorded in the reorganization section of the first
instability region suggest, that the average of the fluctuating bluffness
(presumably associated with the fluctuating drag) is equal to the bluff-
ness in the case of a stationary cylinder. This contrasts with the
ekcitation mechanism of the second instability region, where practi-
cally the entire variations of the drag force occur above the value

of the drag force for a stationary cylinder.

It should be noted moreover that the smaller the '"distance"
(V/£D), the lower the vibration amplitudes which will be possible without

interference between consecutive eddies,

When (V/fD) is very large, the free shear layers joining the
separation points with the previously shed eddies are very long, unstable,
they tend to roll up to form additional large eddies, and, in the
absence of a splitter plate, they as well as the members of a pair of
eddies also tend to interact. These instabilities are aided by the
higher values of (fs/f) (equation 8.15).

These instabilities reflect themselves in the behaviour of the
cylinder with the splitter plate (see Chapter 3) for large ‘increasing
values of (V/£fD), when the shear layers and the eddies gradually become
more turbulent. With further increases of (V/fD) beyond the point
where (a/D) is suddenly reduced, the apparent separation points move
somewhat to the rear of the cylinder, while the wake narrows and becomes
completely turbulent. This transition thus resembles that of the wake

behind a stationary cylinder for R, = 3 x 10° (see Figs. 42 and 55).

These observations suggest that this transition is not determined
solely by Re,criteria as in the case of a stationary cylinder; what
appears to be the important criteriot is the fluctuating ratio of the
inertial to viscous forces in the flow which is strongly influenced by
the fluctuatihg accelerations and velocities of the cylinder, especially

in the boundary layers.

It is significant that for approximately constant kg values, the
experimental results suggest that the sudden drop of the (a/D) vs (fs/f)
curve was independent of Re' This applied throughout the range
covered by the experiments, i.e. 3500 < Re < 9500, at the (a/D) instabi-
lity. The fact that a corresponding sharp fall of vibration amplitude
was observed at Immingham with Re = 106 supports the argument that R

€
is not an important factor.
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Finally it should be noted that the larger (V/fD), the larger
the distance travelled downstream by an eddy in a given portion of an
oscillation period; or conversely, the smaller portion of the period
taken by an eddy to occupy the same position relative to the cylinder.
The narrowing of the wake is therefore likely to occur earlier in the
cycle as V/fD increases and this would explain the increase of o with
fs/f shown in Figs. 59 § 72.

(d) Quantitative considerations

A quantitative analysis of the excitation is complicated by four
identifiable types of instability associated with the "pairs mechanism":
(a) the small amplitude vibration for high ks or low (fs/f); (b} the
large amplitude vibration for low ks and for (fS/f) values before
irregularities appear; {c) the unstable peak amplitude vibration leading
to the sudden (a/D) drop; and (d) the turbulent wake, low amplitude

vibrations occuring at the end of the instability region.

Another difficulty arises from the relatively small variations
of (CDA/CDO) which as shown in equations 7.29 § 7.31 determines the
balance of external and hydrodynamic damping. In the work with the
splitter plate experimental problems such as the thickness, motion,
drag and damping of the plate, and inaccuracies in obtaining the values
of x caused by electronic equipment, also added to the difficulties

mentioned above.

The main quantitative characteristics of this excitation mecha-

nism however, can be summarised as follows:

Fig.rc74. presents values of (E%/CDO) against (a/D) from a series
of experiments using the splitter plate, with approximately equal Py but
with widely differing ks values. An approximately linear relationship
between CF and (a/D) can be identified in the figure, if the results
of one of the experiments are neglected. In contrast with the second
instability region of the bare cylinder where (E% V/fD) was a function
of (a/D) only, in this case the identifiable relationship of Fig. 74
suggests a different ks vs (a/D) relationship for every value of
(V/£fD) or (f /£).

Fig. 75, which presents the C values corresponding to the tests
of Fig. 74, shows an approximately 11near relationship between C and

V_, although the difficulties mentioned above did not permit
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the identification of more consistent correlations. The maximum
1
recorded value of CF for the splitter plate tests was equivalent to
0.75 CDO'
Fig. 72 suggests that a is a function of (fs/f) only, in spite

of the wake transition referred to in (c) above.

8.2.2 Rearrangemenfkand lock-in sections

The influence of the staggered wake in the first instability
région, which is characterized by a strong transverse flow immediately
behind the cylinder, can either reinforce the excitation due to the
"pairs mechanism' and lead to the peak amplitudes of the instability,
or it can oppose such excitation and promote a sudden drop of the
vibration amplitude at a lower value of fs/f in compar;son with the

results for the splitter plate.

As can be seen in the frequency diagram of Fig. 13b, the inter-
action of the excitation mechanisms is prompted by the mutual proximity
of the values of f and fs, which allows the staggered wake to modify

its eddy frequency, f = fs, to match that of the vibrating cylinder,

e
f, and thus to influence the excitation more significantly as the:
transverse flow reaches the back of the cylinder. The onset of this

lock-in section appears more or less consistently when fs/f== 0.85.

In contrast to this, the sharp fall of (a/D) is not well defined
in terms of (£ /f). A probable reason for this is that the amplitude
response .curves are not only determined by the ''distance" (V/fD),
which as pointed out in 8.2.1c, increases the instability of ‘the free
shear layers; but as in the case of the splitter plate, the value of
(fs/f) where the mentioned (a/D) reduction occurs is also modified by
(a/D) itself, which contributes to the organization and stability of
the wake. Thus the abrupt reduction of (a/D) occurs earlier in terms
of fs/f’ the smaller the values of (a/D) for given (fs/f) values.

(see Fig. 41). If ks controls the vibration amplitudes moreover, this
could explain the reduced (fs/f) ranges of the instability region,

corresponding to higher values of kS (see Fig. 49).

The interaction of excitation mechanisms can be seen also in

1 —_
the behaviour of CF’ CF and o.

Fig. 59 shows two different trends of a vs (fs/f) according to
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whether (a/D) is large (before the sharp fall) or émall (after the
sharp fall). The curve representing the latter case seems to be
roughly proportional to fs/f and tending towards o = 135° for fs/f =
while the other curve indicates slightly lower values of a and a less

definite relation with f /f.

Fig. 62 shows the behaviour of C vs (fg /f) to be f0110w1ng

g VS (a/D),
however did not lead to any clear correlation. The absence of a flat

approximately the trends exhibited by (a/D), a plot of C

top in the (a/D) vs (fs/f) curve of the first instability region which
led to different (a/d) vs k_ correlations for every value of (fs/f),
(Fig. 45a), suggested the C
values of (fs/f).

p Vs (a/D) plots of Fig. 76 for constant

This figure shows: (a) similar shape for all the curves; (b)
different numerical values for each curve, and (¢) two different trends
in every curve. Points (a) and (b) above, result from the different
maximum amplitudes corresponding to different values of fs/f, while

point (c) reflects the changes in the excitation process.

It should be noted that because of the addition of the interacting

)
excitation mechanisms, CF

instability region than those observed in the splitter plate case.

and (a/D) reached higher values in the first

!
Thus CF can be higher than CDO although it is always smaller than the

mean force coefficient E%.

The mean force coefficient E% is more noticeably affected by
the type of excitation, as shown in Fig. 60. In general CF follows
the patterns of CDA (see Fig. 13), increasing when the mechanism associated
with the transverse flow dominates the excitation; under these circum-
stances, increéses of E%Acorrespond to increases of (a/D). In the
" rearrangement section of the instability region however, larger (a/D)
values indicate more stable pairs of eddies which tend to suppress the
interaction of the excitation mechanisms and the consequent increase
of CF’ thus in this section E% is often smaller for higher values of
(a/D).

The interaction between the mechanisms of excitation can also
be appreciated in Fig. 70 which shows the behaviour of Ew (see 8.1.5d)
with respect to (fS/f). A marked contrast in the scatter of the points
in the two instability regions can be seen in the figure. In the

second instability region the slight variations of Ew can be associated
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with a/D (or ks)’ variations. In the first instability region however,
although Ew increases with (a/D) in the lock-in section, it decreases
with higher (a/D) values in the rearrangement section where Ew remains

at a value of one approximately for the two cases of highest amplitude.

8.2.3 Double harmonic excitation section

In this section of the first instability region the shedding
frequency of pairs of eddies coincided with the vibration frequency.
In addition, the amplitude of vibration was observed to increase in
alternate cycles, i.e. with a frequency equal to that of the distant
wake or the transverse flow just downstream of the cylinder. It was
concluded from these observations that two mechanisms of excitation
were again operating one associated with the pairs of eddies and one

with the transverse flow.

Observation of the transient vibrations of the cylinder with a
splitter plate, obtained with (fs/f) values lower than those of the
corresponding instability region, resulted in the curves of Fig. 54;
the curves represent qualitatively the behaviour of the logarithmic
decrement, §, of the transients with respect to (a/D) and (fs/f). It
can be seen in the figure that as (fs/f) increases from zero the slope
of the curves increasess but the vertical axis intercepts decrease.
This trend continued until at (fs/f) values within the instability
region & became negative, i.e. excitation occurred. When the cylinder
without a splitter plate was externally excited at low (a/D) and with
(fs/f) 2 0.5, the flow patterns in the wake showed a marked similarity
to those observed with the splitter plate for equivalent (a/D) and
(fs/f). - ’

These observations suggested that the balance of hydrodynamic
energy inputs and outputs associated with the '"pairs mechanism", changes
as (fs/f) increases; for example, when (fs/f) = 0 the excitation forces
are absent, while when (fS/f) reaches the instability region of the
cylinder with a splitter plate, these excitation forces are large enough
to oppose the hydrodynamic damping at low (a/D) and thus to sustain a

vibration.

The double harmonic excitation section moreover, commenced with
(fs/f) values which were only slightly lower than those of the splitter

plate instability region; this indicates that only a small energy input
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is necessary, in addition to that due to the pairs mechanism, to over-

come the damping and thus to cause the vibration.

The 2:1 ratio of the frequencies f and fe maintained throughout
this section of the instability region, further suggested that the
additional energy required was provided by the excitation mechanism

associated with the transverse flow and with the distant wake.

Since energy inputs can only be caused by forces acting in
phase with the vibration velocity and consequently with the same vibra-
tion frequency, the resulting non-sinusoidal motion, x (Fig. 77) can
thus be said to be produced by the double excitation of: (a) its second
harmonic component, X5 by a force Fl, of frequency f, associated with
the shedding of pairs of eddies, and (b) of its fundamental component,

x2, by a force Fz’ of frequency fe, associated with the distant wake.

A factor that confirmed the influence of the transverse flow and
the distant wake in this type of excitation, was a corresponding sharp

increase of C similar to that observed in the lock-in section of

DA’
3.2.4 (see Fig. 13).

Since the frequencies of the excitation and of the cylinder's
motion were synchronised, it would be possible to refer to a frequency
lock-in if the former were controlled by the latter. That this was so
was confirmed by the departure of the eddy frequency from the value fs,

which that frequency would have otherwise adopted.

From the above interpretation of the excitation it follows that
the energy inputs due to the mechanism associated with the transverse
flow, will increase with an increase of the amplitude x, (see Fig. 7 7).
As the excitation frequency fe is considerably smaller than N, there is
practically no dynamic magnification in this component of the motion,

and therefore:

2
—— = constant
kx2

or, for a given size of cylinder:
F2

X2 = mx constant

i.e. for given values of F, and N, the amplitude x, will decrease as p_
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‘increases, consequently reducing the energy input via this excitation
mechanism. This effect of P is reflected in: (a) the smaller values
of (a/D) at the onset of the first instability region of curve 1 in
Fig. 41b , when compared with curve 2 of Fig. 4la , in spite of a
slightly higher value of kS for the latter; or (b) in the slight
reduction of the fs/f ranges of the first instability region which

correspond to higher values of e in Fig. 49.

1t should be noted that the model described in equation 7.25
does not strictly apply in this section because the vibration is non-
sinusoidal, but since the pairs mechanism predominates in the excitation,

some qualitative observations are worth noting.

. \J
Curve 1 of Fig. 62 shows a peak of the value of Cp in this

section which is notably more marked than the smoother transition of

the corresponding (a/D) vs (fs/f) curvel of Fig. 4la. This is because
the hydrodynamic damping forces in this section are larger than those

of the adjacent reorganization section, as illustrated by the behaviour
of C in Fig. 60. It should be noted however that the value of C; in
the double harmonic excitation section of Fig. 62 is significantly
higher than a value extrapolated from the adjacent reorganization section;
the difference between the two values is not due to the energy input via
the transverse flow mechanism alone, which was argued above to be weak.
The pairs mechanism is predominantly responsible for the increase of
(a/D), which is in turn associated with increases of C;. These obser-
vations clearly show the self-excited nature of the pairs mechanism and

the amplitude controlling action of the mean drag force.
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CHAPTER 9

THREE-DIMENSIONAL CONSIDERATIONS

The previous chapters have been primarily concerned with two-
dimensional cylinders free to vibrate only in the flow-direction of a
one~-dimensional stream. For these situations, cylinder behaviour can
be predicted from the empirical relationships of Chapter 6, or for the
second instability region, from the theoretical model developed in
Chapters 7 and 8.

The first part of this chapter is concerned with the discre-
pancies between truly two-dimensional flow-cylinder arrangements and
the results of the present study where small three-dimensional effects

were unavoidable.

In practical situations, three-dimensional effects are likely
to be more pronounced than in the present study; the second part of
this chapter is concerned with the applicability of the material of
Chapter 4 § 6 to 8, to full-scale situations where the flow velocity
and vibration amplitude are variable along the length of a pile for

example.

9.1 Influence of Three-Dimensional Effects on the Results of the

Present Research

Although the experiments of this research were designed to
approximate the ideal case of a two-dimensional cylinder immersed in a
one-dimensional stream, the unavoidable imperfections of the experi-
mental models were responsible for a departure of the experimental

results from the predictions based on two-dimensional models.

Except for the effects of "blockage' (see Appendix VI ) the most
important factor contributing to these discrepancies was the approaching
flow's velocity distribution along the cylinder's length, especially in
the boundary layers near the end plates where the magnitude and the

correlation of the hydrodynamic forces, Pd and P, were altered.

The irregularities of the approaching stream often resulted in

flow patterns which were not correlated along the cylinder's length and
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which caused reductions of (a/D) or (£f/N), as shown in Chapter 6,

presumably due to a weakening of the total excitation forces.

Reductions of these hydrodynamic forces could also be attributed
to other factors (turbulence of the approaching stream, roughness of
the cylinder's surface, etc.) but these reductions were small (say < 3%)

and were not felt to be important.

It should be noted that the inerﬁhl forces of the added mass
have been assumed to be a function of cylinder geometry and motion only
and were therefore independent of the factors mentioned above. This
assumption allows the use of MasiuzxO as a common denominator for the

force analysis which follows.

Owing to the complexities and inaccuracies involved in the assess-
ment of the three-dimensional factors here dealt with, this illustrative
analysis will for convenience concentrate on the second instability
region, and it will refer mainly to the results of run 99 (see Table II-2).

For further details of this analysis please see Appendix VI,

9.1.1 Damping forces

The damping forces depend on the mean force coefficient, E%,
which in the present research was affected by the additional drag forces
caused by the supporting arms of the cylinder; these forces were not
included in external damping for the reasons given in Appendix V.

The consequent increase of CF

coefficient for the arms (see Appendix V ) of say Cp = 1.5, and an

can be calculated by assuming a drag

average drag coefficient for the cylinder of say 1.5. Considering the
reduced moment arm of the resultant force and the ratio of the areas
presented to the flow by the cylinder and by its supports. The contri-

bution of the supports to the total mean force results about 1.5%.

The ratio of the total damping forces to the inertial forces of
the added mass (see Eqns. 8.1 & 8.2) was observed to depart from the
value of one predicted by the two-dimensional model by an amount which
appeared to be proportional to E%, i.e. 4% for E% = 1.4 to 7% for E% = 2,
This variation was probably due to blockage effects (see Appendix VI ).

The measurements of velocity made for this research were not
affected by blockage because they were made about six diameters upstream

from the cylinder. If the effect of blockage is to increase the local
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flow velocities and consequently the hydrodynamic forces above the
values they would adopt in an infinite stream, it then follows that
any hydrodynamic force coefficient calculated from the measured values

of V will be overestimated accordingly.

It can be shown (see Appendix VI) that the product (E% V/£D)
which predominates in the numerator of Eqn. 8.1 is approximately

proportional to vi-3

If Masmzx0 is assumed to be unaffected by
blockage or three-dimensaionl effects and if B is the increase of V due

to blockage effects, an approximate correction for Pd results:

v
Con G mly = 1+ 1.38
(Py) - vy )
d’d (EF_fﬁ)b

where "m" indicates measured or calculated from the measured values of
V, and "b" indicates calculated considering the increased values of

V due to bloékage. Combining this correction with a linear variatiom
of Pd/(Masmzxo) with respect to C., based on the values given above,
and assuming g to be small, the correction for the velocity due to

blockage will be: (see Appendix VI).

L G
26
When E% = CDO (i.e. stationary cylinder), this expression results

in an 8% correction for the drag force, which is a not unreasonable

value for the cylinder/flume area ratio of about 7%.-

When (f_/f) = V2, E% = 1.4 and B-'= 5%; considering the additional

drag due to the supporting arms:

(Pd)b/cyl.

. 2 = V .

i.e. the actual value of Pd/(Masw xo) or CF 0 excluding the
drag of the supports is about 8% lower than the corresponding measured
value. When (f_/f) = Y2, the measured value of Pd/(Masmzxo)was =~ 1.04,
and consequently the actual total damping forces acting on the cylinder

alone are about (8-4) = 4% below the model's.prediction of one (Eqn. 8.2).

121



This can be attributed mainly to boundary layers, which result of a
thickness of about 0.7 cm (2% of L), if considered as an equivalent
step function of vZ (see Fig. 78). This is not an unreasonable estimate

considering the short length of the end plates upstream of the cylinder.

C, £
=

_E
Cpo £
neither by boundary layers nor by the additional drag of the supports

It should be noted that the factor of Fig. 61, is affected

because as explained in Chapter 5, both E% and C, are affected equally

by these factors. The product is nevertheless affected by blockage

effects which influence E}, and £_ in slightly different ways.

C
DO
Consideration of these effects (see Appendix yI ) suggests that this
product may be overestimated by 3% to 7% (depending on the value of E%)

with respect to the actual drag force acting on the cylinder alone.

9.1.2 Excitation forces
1

F
blockage. It can be shown (Appendix VI ) that:

The excitation forces depend on C_ which in turn is affected by

(CF)m

= 1 + 38

- The ratio Pe/(Masmzxo) (Eqn. 8.3) depends in addition on VZ
(Eqn. 7.30) which is affected by blockage; consideration of these
effects when (fs/f) = V2, and assuming Masmzxo to be constant, leads to:

(see Appendix VI )

®),

e 1.045
(Pe)b

i.e. the calculation of Pe/(Masmzxo) overestimated it by about 4.5%
when (f/f) = ¥2, due to blockage effects.

Extrapolation of CI in Fig. 66 to fs/f = ¥2, for the case here
considered (Run 99), leads to CI = 0,09  instead of the predicted zero.
This is illustrated in the phase diagram of Fig. 79 where all the hydro-
dynamic forces are shown divided by Masmzxo; three different vectors
are drawn for each force, namely (1) the measured value, m, calculated

from the measured values of V; (2) the actual value, b,corrected for
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(3)

the effects of blockage; andAthe ideal value, 2-D, predicted by the two-

dimensional model.

It can be seen in Fig. 79 that the ratio of the ideal (2-D) to

the actual (b) values of the excitation force is approximately:

rtpe) 2-D
),

v(1.04)%+ (1.09)7 = 1.07

i.e. the actual value of P, is likely to be about 7% below the two-
dimensional model prediction. It should be noted that this percentage
is higher than the corresponding one for the damping forces, which can
be explained by (1) the excitation forces being more sensitive than the
mean drag force to disturbances in the correlation and timing of the
flow patterns along the cylinder's length, and (2) by the additional
disturbances of the wake caused by the supporting arms of the cylinder.
Therefore if C' is more sensitive than C_ to three-dimensional and

F F
secondary effects, it follows that: (see Fig. 79)

(1-c¢) < 1 when (fs/f)= V2

It can then be concluded that three-dimensional and secondary
effects are responsible for the failure of (£f/N) and CI to reach the
values of (NV/N) and zero respectively, predicted by the two-dimensional

model.

' Fig. 79 further shows that when (f_/f) = Y2 the measured value
of CF is about (7 - 43) = 21 % below the ideal value predicted by the
thre?-dimensiogal model. As (fs/f) tends to one, the calculated value
of CF depends increasingly on'CF(V/fD], which is itself progressively
overestimated; consequently CF should also be progressively greaE?r
than (ZHZSY;)/(I + %%f) as Vr increases, since Vr = wS(a/D)&;/f) .

This trend can be observed in Fig. 63.

9.1.3 Phase angle

Fig. 79 shows that although the prediction, csca = fs/f (Eqn. 8.8),
was approximated by the hydrodynamic model used for this research, it
was not actually achieved. The proximity of the actual value of (a)b
to that predicted by the two-dimensional model suggests however, that

in the central portion of the cylinder outside the boundary layers,
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a = 135°.  The total excitation force shown in Fig. 79 could then be
divided into two components: (a) one with a = 135° Tepresenting most

of the excitation, and (b) the other (or a series of them) with a phase
angle smaller than (a)b and representing the smaller and lagging
excitation in the boundary layers. It is however impossible to
predict with any certainty from the results here presented, whether o
would be determined by equation 8.8 in the case for example of a signi-
ficantly sheared velocity profile. This question can only be answered
by further research specifically concerned with this problem and which
would probably require a more complex transducer and a controlled three-

dimensional flow.

9.2 Engineering Applications of the Results of the Present Research

The typical flow-induced vibration problem encountered in engineer-
ing practice cannot strictly be repreéented by a two-dimensional model.
The most important divergences between prototype structures and models
of the type considered here, are: (a) the significant variations of
flow velocity, flow direction and vibration amplitude along the length
of a three-dimensional cylinder,and (b) the degrees of freedom in proto-
type structures which permit both in-line and cross-flow motion on the

one hand and the excitation of higher harmonics on the other.

A potential vibration problem can sometimes be avoided at the
design-stage by ensuring that the prototype never enters an instability
Tegion. If an instability region cannot be avoided a designer would
attempt to predict the levels of excitation and if necessary modify the

"structural charactersitics to reduce the vibration. In the subsections
which follows these two approaches are discussed in relation to the

results of the present work.

9.2.1 Avoidance of the instability regions

Given the possibility in three-dimensional situations of cross-
flow motion and excitation of higher harmonics, the avoidance of
instability can only be achieved with (V/ND) values below those of the
instability regions. The threshold of instability was identified as
(fs/f) = 0.5 (Chapter 4) and was shown to be influenced by oL and ks
(Chapter 6); the effect of these factors however, was to increase the

threshold value.
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It was shown in previous chapters that the vibration in the
fist instability region commenced with a double harmonic excitation
which led to a local peak of the amplitude response, and which occurred
for (fs/f) values greater than 0.5. This local peak can be identified
in most published amplitude response curves as shown in Fig. 32. The
full-scale experiments conducted at Immingham (see Wootton et al)
moreover, showed lissajous figures representing the -vibration patterns
in this section of the first instability region, which had a 4:1 ratio
- of the in-line to cross-flow vibration frequencies. Such evidence seems
to be in accord with the description of the double harmonic excitation
(see 8.2.3); the influence of the transverse flow associated in the
present study with the distant wake, can be seen in the small amplitude

cross-flow motion of the full-scale pile.

The results of the experiment at Immingham provided by Wootton 2
moreover, confirmed the observation of Chapter 6 that the vibration
frequency is nearly equal to the natural frequency, N, at the onset of

the first instability region. ’ g

Consequently the only condition necessary to avoid instability
is:
Voo L

—_ <

ND as (9.1)

It should be noted that the curve representing the experiments
conducted at Immingham in Fig. 32, commences with fs/f values smaller
than 0.5; this might be attributed to flow velocity variations along
the cylinder's length, bearing in mind the small additional energy
inputs which are necessary to sustain the self-excited vibration for
these values of fs/f (see 8.2.3). This interpretation also explains
the gradual increase of that amplitude response curve in contrast with
all the others which represent cases of uniform flow velocity profiles;
the sharp (a/D) increase of these curves suggests an eXxcess of energy,
for (a/D) values below the steady state amplitude reached at that
particular threshold value of (fs/f).

Thus in order to ensure stability in cases of irregular flow
velocity profiles, the maximum velocity should be considered in equation
(9.1).

It should be noted that in-line vibration can in some cases
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reduce the threshold values of (fS/f), for cross-flow instability.
This is because the excitation mechanisms associated with transverse
flow and an alternate wake, induce forces in both directions (see
Bishop and Hassan). Thus when Py is small, the second instability
region of in-line vibration can extend near to or within the insta-
bility region of cross-flow motion (see Chapter 6); this may resultiin
considerable extensions of the cross-flow instability region towards

the lower (V/ND) values. (See e.g. King).

The interaction of in-line and cross-flow excitation could be
observed during the present research in the traces of vibration in the
second instability region of the lightest cylinders; in one case,
alternate increases of (a/D) of as much as 80% in every second cycle
of oscillation were recorded. As shown in 81.5d the mean displace-
ment of the cylinder, X, is an approximate function of Py only, con-
squent ly when p,. Was lowest the supporting arms of the cylinder were
not perpendicular to the flow direction because (x + xo) was largest;
this permitted a component of the cross-flow force to excite the
cylinder. The supports of the arms had to be slightly turned to avoid
this problem. The large increases of amplitude compared with the
small component of the cross-flow force (slope of the arms about 1:20)
indicated that in-line motion can cause large cross-flow forces, even
for (fS/f) < /2 instead of the commonly observed (fS/f) > 2.

9.2.2 Prediction of cylinder behaviour

The two-dimensional models of Chapter 8 showed that all the
hydrodynamic forces depend on (a/D) and/or (fS/f). Consequently in
cases where these two parameters vary along the cylinder's length,

— t
the coefficients CF and CF and the angle a should vary accordingly.

For a typi¢al flexible pile in a marine or estuarine environment
moreover, the stiffness, structural damping and inertial forces of the
cylinder itself act over the entire length of the cylinder; the
inertial forces of the added mass however act only over that portion
of the cylinder's length which is immersed in the fluid. The hydro-
dynamic damping and excitation forces, although acting over the entire
immersed length of the pile can vary considerably with the changing
flow velocity and with the variable flow patterns along the cylinder's

length, especially in the quasi-static portions near the supports or
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in the boundary layers.

To account for these variations in the prediction of cylinder
behaviour a three-dimensional cylinder might be assumed to consist of
a series of short two-dimensional cylinders, each subjected to hydro-
dynamic forces as predicted by the two-dimensional model from the local
flow and cylinder motion characteristics. This assumption neglects
the interaction between flow patterns corresponding to adjacent rings;
the errors arising from this interaction are likely to diminish with
decreasing gradients of either the displacement x, or the flow velocity
V, with respect to the pile length L; i.e. for long piles vibrating

in their first normal mode.

(a) Vibration amplitudes

A flexible pile with one or more fixed points of support can
vibrate with amplitudes varying along its length from zero to some
maximum value. For this reason it is necessary to know the relation-
ship between the net excitation forces and (a/D), over the whole range

of the latter in order to calculate the amplitude response of the pile.

The curves of Fig. 45 can be useful if the values of ks are

multiplied by Maswzx to give plots of the net excitation force,

0,
EwX = (—cwxo) with (a/D), where € is the net excitation or negative
damping coefficient. Figure 80 presents such curves for various (fs/f)

values.

The steady-state self-excited experiments of the present research
however, did not provide all the information required because of the
discontinuous nature of the excitation mechanisms, hysteresis phenomena,
beatings, etc. Observation of the unstable behaviour of the cylinder
and analysis of Figs. 80 and 41 however, led to an approximate shape of
the (ewxo vs (a/D)) curves, as shown in Fig. 81 and to a tentative

hysteresis diagram (Fig. 82).

The curves of Fig. 81 can be assumed to represent the variation
of the excitation force along the length of a hypothetical '"pinned-free"
rigid cylinder immersed in a one-dimensional stream whose amplitudes of
vibration are proportional to the distance from the pinned end. For
such a simplified system, the curves can be replotted in the form:

(e—c)wxo vs (a/D) , (see Fig. 83); the resulting positive and negative
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areas under the curve, which represent the energy input and output of
the system respectively, should be equal in order to sustain a steady
state vibration. It should thus be possible to estimate the vibration

amplitudes of such a system.

Similar curves could be drawn for piles whose vibration ampli-
tudes vary with length in a non-linear manner and interpolations could
be made between the curves for the cases where fs/f varies along the

cylinder's length.

Although time did not permit the experimental confirmation of
the above procedure, it should be noted that in general the portions
of the cylinder whose vibration amplitude is small contribute little
to the total energy exchange, since energy is in this case proportional
to (a/D)?. The trends of Figs. 82 and 83 thus provide a likely explanation
for the partial suppressSionof the second instability region in the case
of the "pinned-encastre" piles studied by Wootton et al (see Fig. 32);
the piles' maximum (a/D) may have fallen inside the negative area ("a"
in Fig 84) and the piles thus became sensitive to e reductions occurring
for lower(a/d) ("b" in Fig. 84) as fs/f increased. In contrast are the
cylinders investigated by King, which were cantilvered from the bottom of
the flow channel; almost all the energy exchange in these cases took place
near the water level where the maximum amplitudes occurred due to the
type of deflection curve of the cylinders; consequently these were not
very sensitive to e reduction, for low (a/D) ("b'" in Fig. 84) and the
second instability region was extended beyond the limits of curve 1 of

Fig. 32.

(b) .Vibration frequencies

For the prediction of frequency response, the variations of (a/D)
along the cylinder's length are not as important as in the case of ampli-
tude'response predictions; this is because when CM is assumed equal to
one, both the excitation forces and the inertial forces are in general
proportional to (a/D) for a given value of (fs/f). However, the inter-
action between different portions of a cylinder whose vibration amplitude
changes along its length, depend on energy exchanges which are proportional
to (a/D)2.

One procedure for an approximate prediction of frequency response
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is described below and is based on the assumptions of equations 8.2 and
8.8.

In a quarter of a vibration cycle the work done against the
- spring and the excitation force, Pecosa, must be equal to the work done
. in the same quarter of a cycle by the inertial forces of the cylinder

and the added mass, i.e.

t 242 t 2.2 = 12 2
{,Mcew x2dL + {,Masw xodL {’kexodL + {'PecosadeL
(9.2)

where Mée’ M;s and ké are the equivalent values of the mass» added

mass and stiffness of the cylinder per unit length.

It should be noted that the active length of the pile, L', where
the excitation forces are applied is not necessarily equal to either the
full pile's length, L, or the immersed length, d; consequently the

equivalent cylinder mass Mée can be given by:

12 2 2 241 _ 2 22
| [ D pX2dL + /D ppx2dL [ D pXdL
R ! d L'
ce - 3 (9.3)
x2dL
L%

i.e. Mée considers all the masses falling outside the active length,
L', as if they were distributed within that length. The equivalent

stiffness and added mass can be given by:

/ kxg dL
ke = L 9.4
1= (9.4)
€ [ x2 dL :
Lt °
;s - %'ngf (9.5)
where
v - 2 (Mt
ké = (2wN) (Mce + MéS) | (9.6)
and .
. ' - _te 9.7
Pre ” (9.7)
as
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Dividing equation 9.2 by Mésmz and with the aid of equations 9.6 and
9.7, and Fig. 65:

f \ [ e f ké(q€+1)xg
p! x4dL + | x4dL = —_—— — dL +
T T T W BT
P cosa )
] L
{, M o?x_ o dl
as "o
i.e.
(! +1) [ x2dL - (p! + 1)[-1‘-‘-)2 [ x34dL =
o Te Lt © Te f L ©
= [ @-cHx2aL
LY I""o
hence:

2 IL' a - cI)xgdL
1 - (?) = (9.8)
(ol *+ 1) fL'xgdL

If the flow velocity profile is known, (fs/f) can be calculated
or an initial value of it can be estimated for an iterative process;
(fs/f) together with the data of Fig. 53 or equation 8.9 give values
of CI for equation 9.8; knowledge or an estimate of the pile's
deflection curve then leads to the frequency response.

The active length, L', should in general be equal to the immersed
length of the pile, d, although in some cases it may be convenient to
reduce it so as to consider only the portions of the pile which make
the greatest contribution to the excitation; for example in cases when
the flow velocity profile presents very marked three-dimensional charac-
teristics, or when simplified estimates of the frequency response are

needed.

Finally it should be noted that when the direction of the
approaching stream varies along the cylinder's length, excitation in
some portions of the cylinder may arise from a component of the cross-
flow force (see 9.2.1).
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Figure 85 shows a comparison of equation 8.9 with CItvalues
calculated from the data provided by Wootton2and corresponding to the
full scale three-dimensional experiments conducted at Immingham. To

calculate C., the variable values of (fs/f) along the cylinder's

I’
length were averaged arithmetically; S was assumed equal to 0.23, and
an equivalent mass of the pile was obtained with the aid of an equation

similar to 9.3 (see Wootton et al?).

The figure shows that although the trend of the experimental
data agrees with that of equation 8.9, there is a divergence similar to
that observed in the data of the present research (Fig.. 66 ) which was
here attributed mainly to boundary layers and uncorrelated flow. In
the case of Fig. 85 therefore, the divergence can be attributed mainly
to (a) uncorrelated flow patterns; (b) turbulence; (c) piles surface
roughness; (d) the arithmetic average value of (fs/f) used, and (e) the
variations of the direction of the flow along the pile's length which,
as indicated in 9.2.1 can have a marked influence on the vibration,

by allowing a mixed, cross-flow and in-line excitation.
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CHAPTER 10

SUMMARY AND CONCLUSIONS

An experimental and analytical study has been conducted on the
flow-induced, in-line vibration of a two-dimensional, circular cylinder

in approximately one-dimensional flow.
10.1 The Non-Dimensional Frequency Parameter

In agreement with previous research reports, two instability
regions and two different excitation mechanisms ("pairs' and
"transverse flow") were here identified. It was observed however
that the first instability region could not be associated with the
pairs mechanism alone; the interacting patterns of the two excitation
mechanisms led to the identification of three distinct sections in this

instability region.

The commonly-used base parameter, (V/ND), was found unsatisfac-
tory, both for a quantitative representation of the excitation and
for comparing the reported behaviour of different cylinder-flow arrange-

ments.

The large frequency variations here observed suggested that the
vibration frequency, f, should appear in a more satisfactory base
parameter. Moreover, the marked influence of the alternate distant
wake and its tendency to adopt the Strouhal frequency suggested that
the Strouhal number S should also be represented. This reasoning led
to the development of a non-dimensional frequency parameter (fs/f)
which related the actual frequency of the vibrating cylinder to the
eddy frequency which results from the interaction of the particular

flow and (stationary) cylinder considered.

The non-dimensional frequency parameter: (a) produced a markedly
improved agreement of the curves representing the response of widely
differing cylinder-flow arrangements; (b) provided a simple quantitative
definition of and differentiation between the two instability regions;
(c) defined the flow velocity threshold of instability and could thus
be helpful for avoiding vibration problems at the design stage; (d)
permitted a quantitative analysis of the excitation which led to a
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method for predicting the ranges and characteristics of the excitation
(Chapters 6 and 9); (e) permitted a simplified theoreticél model for
the second instability region where for example (fs/f) represented
{csca) or(Pe/Maswzxo); and (f) provided likely explanations for

example for the reported absence of in-line vibration when Re < 103,

The use of (fs/f) rather than (V/ND) suggested moreover that Re
and other secondary factors such as turbulence, surface roughness, etc.,
affected the excitation only through changes in S. The results of the
Immingham full-scale experiments however, suggested that in-line
vibration was not affected by the marked increase of S reported for a
stationary cylinder when R, = 3 x 10° (see e.g. Walshe and Wootton),
but it appeared that for a vibratingcylinder S has an approximately
constant value independent of Re. In this context moreover, the
experiments with the splitter plate showed a sharp fall of the (a/D) vs
(fs/f) curve at'which point the wake narrowed slightly and became fully
turbulent; this behaviour which resembled that of a stationary cylinder
and its wake when Re = 3 x 105, occurred at a fixed value of (fS/f) for

given ks and independently of Re'

It thus appeared that for R, 3 103 the excitation is not signi-
ficantly affected by Re but rather by the fluctuating inertial and
viscous flow forces; these forces seemed to be strongly influenced by
the ratios of the fluctuating velocities and accelerations of the flow

with Tespect to those of the cylinder, and such ratios are determined
by (a/D) and (fs/f), rather than Re £see—erg—Appenrdix—HI=

Some novel characteristics of in-line vibration were observed
which, in addition to (fs/f) contributed to the definition of and dis-
tinction between the instability regions. For examples: (a) the new
type of wake (Plates 8a and 8b) observed in the second instability
region or in the double harmonic excitation section of the first, was
different from the Von Karman form (Plate 6a) previously thought to
prevail in those circumstances; the Von Karman form however was observed
.to prevail in the wake of the lock-in section (Plate 7a) or in the
distance wake of the rearrangement section (Plate 6b) of the first
instability region; (b) the marked increascs observed in CDA/CDO
(previously assumed = 1.0) associated with the transverse flow excita-

tion mechanism; (c) an observed increase of f/N (was larger than any
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previously reported)starting from 1.0 at the onset of both instability
regions and reaching (NV/N) in the second; (d) a relationship between
f and fe has been identified which showed "frequency lock-in'" in two
sections of the first instability region and throughout the second;

and (e) the non-sinusoidal vibration observed at the onset of the first
instability region, the analysis of which led to the association of the
corresponding peak of the (a/D) vs (fs/f) curve with a '"double harmonic

excitation'.

10.2 Density and Damping

From an analysis of density and damping it was concluded that
they affected the cylinder behaviour independently and in different
ways: p, determined the frequency response and kS the amplitude response,
while for given values of (fs/f), oL did not affect (a/D) nor did kS
affect (f/N).

The ranges of flow velocity where instability could occur however
were determined by both LI and ks' The stability parameter kS was
found to determine the instability ranges in terms of (fs/f) (Fig. 49),
but the same ranges in terms of flow velocity [say in terms of (V/ND) =
(fs/f)(f/N)/ZS] were also affected by (£/N) and consequently by G
the density, P thus determines the relationship between the instability
ranges in terms of (fs/f) and the same ranges in terms of the flow

velocity.

The different and independent réles played by density and damping
thus indicate that in contrast to aerodynamic practice, where they are
often considered together and where frequency variations are negligible,
for flow-induced, in-line vibration in water, density and damping should

be considered separately.

Consideration of the most common parameters used to represent
damping led to a redefinition of the stability parameter, ks’ in terms
of ¢ and f rather than § and N; the newly defined kS was independent of
Py and was therefore suited to represent the independent influence of

external damping on the excitation.

In contrast with previous research reports where external and
hydrodynamic damping have been considered together and extrapolated

from still water measurements, only external damping (mainly structural)
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was here considered for the determination of ks; this was done because
it was felt that hydrodynamic damping formed an integral part of the
total hydrodynamic forces and so should be dealt with separately.

The clearer definition of density and external damping, and of
theirindependent influence on the excitation, thus led to correlations
(the first for in-line vibration to the knowledge of the author) between
(1) oy and (f/N); {ii) kS and (a/D); and (iii) kS and the ranges of
(fs/f) where instability can occur. These correlations and a knowledge
of f/f, I and ks provided a technique for predicting whether in-line
vibration could occur, and if so, for predicting the ranges and
characteristics of the motion for two-dimensional cylinder-flow arrange-

ments.

Novel characteristics were identified in connection with the
frequency response of the cylinder.  For example: (a) the frequency in
the second instability region tended to the value of the natural frequency
in air (or in vacuo Nv); (b) (£/N) varied approximately linearly with
(fs/f) and the slope of the curve was a function of LI alone; (c) the
high (£/N) values corresponded to (V/ND) values larger than 6.

In association with (a/D), the following was observed: (a) there
existed a unique value of (a/D) for every value of ks independently of
(fs/f) over most of the second instability region; (b) in the first
instability region different values of (a/D) corresponded to each
(fs/f) when ks remained constant, although all the (a/D) vs ks curves
had similar shapes; (c) the damped (a/D) relative to its undamped value
for the same (fs/f) in the first instability region however, was found
to generate a unique relationship with ks for all values of (fs/f)
(Fig. 46). T

The empirical correlations mentioned above were applicable to
two-dimensional stituations only. To improve the understanding of
this type of vibration and to widen the applicability of the results of
this research, hydrodynamic forces were then considered. Hydrodynamic
parameters were sought which should be independent of cylinder charac-
teristics such as Py and ks’ for purposes of developing a theoretical
model which would incorporate the hydrodynamic characteristics of the

excitation.
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10.3 Hydrodynamic Forces

To facilitate its analysis the measurable total hydrodynamic
force was divided into components: added mass, hydrodynamic damping

and excitation forces.

A variable mass coefficient which would be responsible for the
frequency variations was considered and rejected because it was
difficult to explain : (a) the absence of intertial forces when f = Nv’

and (b) the constancy of the phase angle of the excitation force.

A constant mass coefficient was adopted because (a) it permitted
the attribution of frequency variation to the fluctuating drag forces
and their phase relationships; (b) a value of CM = 1.0 was confirmed
for (fs/f) < 0.5; (c) a constant mass coeffficient allowed for a
variable phase angle which was suggested by the difference between the
characteristic frequencies fs and N;and (d) it facilitated further
analysis of the excitation leading to the simplification of the theore-

tical model for the second instability region.

It was argued that hydrodynamic damping could not be extrapolated
from measurements in still water because (a) it was observed to vary
with (fs/f) and (a/D) ,for (fs/f) < 0.5; (b) the flow patterns appeared
very different in the two situations; and (c) in still water the damping
was mainly viscous while in flowing water it was mainly due to pressure

forces associated with separated flow.

Hydrodynamic damping was thus expressed in terms of the mean

drag force which included both pressure and friction forces.

To represent the excitation forces, the total drag force-was:
expressed in terms of a force coefficient, consisting of a mean and
a fluctuating part; to generate the frequency variations a variable
phase angle between the fluctuating force coefficient and the cylinder
motion was introduced, and to reproduce the behaviour of X, the mean

part was also allowed to vary.

The resulting model (Eqns. 7.23 and 7.24) represents the exci-
tation in terms of (a) flow parameters; (b) cylinder motion and geo-
metry; and (c) force coefficients and a phase angle which are indepen-

dent of cylinder characteristics such as o and ks.
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For the second instability region, the flat top of the (a/D) vs
(fs/f) diagram permitted a significant simplification of the theoretical
model for two-dimensional cases. For this simplified model: (a) the
total damping force is equal in magnitude to the inertial force of the
added mass; (b) the excitation force, Pe, is equal to the inertial
- force of the added mass multiplied by (fs/f); (c) the cosecant of the
phase angle, o, is equal to (fs/f); (d) the produ?t[(CF/CDo)(fs/f)] is a
function of (a/?) only, and (e) the coefficient CF is directly propor-
tional to Vr (CF = 4Vr)'

The hydrodynamic forces and their phase relationship in the
second instability region are thus determined by MaswzxO and (fs/f)
only, which further confirmed the usefulness of the adoption of (fs/f)
and of (CM = 1), The force coefficients and the phase angle on the
other hand were found to be independent of P and kS and this confirmed

the validity of the theoretical model to represent the excitation.

The model also resulted in equation 8.9 which gives Cpasa
function of (fs/f) only and which permits a more accurate and theoreti-
cally more sound prediction of the frequency response in the second
instability region. Although the amplitude response could also be
predicted, the accuracy obtained was not good enough to improve the

empirical relations of Chapter 6.

When any one of the conditions: (a) N < £ < N3 (b) 1 < (f/f) < V2
or (¢) 90° < o < 1350, was given, the model predicted the other two,
although the model itself did not predict the limits of the excitation.

It was thought that these limits may arise mainly from the sensitivity
of the wake to variations in the magnitude, frequency and timing of its

power (or vorticity) supply.

The complex excitation mechanisms of the first instability
region did not allow either a simplification of the theoretical model
or any accurate prediction of cylinder response. The behaviour of the
hydrodynamic forces as predicted by the model however, permitted a

qualit ative analysis which improved the understanding of the excitation.

From the experiments conducted with the splitter plate, it was
concluded that for the 'pairs mechanism" the variation of the drag force
depended on: (a) Vr through its influence on the magnitude and time

distribution of the vorticity supply to the wake (and hence eddy-strength};
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(b) the motion of the separation points and the fluctuating width of
the wake, which were themselves determined by the acceleration ratio
(a/D)(fs/f)—z; (¢c) the energy extracted from the stream per vibration
.cycle, which is approximately proportional to (fS/f); and d) the
distance between consecutively shed eddies which is proportional to
(fs/f). The phase angle, a, appeared to be determined by the distance

between consecutively shed eddies and hence by (fs/f).

The results of these experiments however did not provide precise
correlations except for the angle, o, which appeared to be a function
of (fs/f) alone.

Similar trends could be observed without the splitter plate in
the rearrangement and lock-in sections of the first instability region,
although in these latter cases the interaction between excitation
mechanisms influenced the behaviour of Eﬁ, C; and o as follows: (a) two
slightly different a vs (fs/f) trends appeared before and after the
a?rupt fall of the corresponding (a/D) vs (fs/f) curves; (b) different
CF vs (a/D) curves, showing two distinctive trends each, corresponded
to every (fs/f) value, although all the curves had similar shape (Fig.
76); (c) in general CF increased when the transverse flow mechanism was
most effective, i.e. with low (a/D) values in the rearrangement

section or with high (a/D) values in the lock-in section (Fig. 60).

The transition between these two séctions of the first
instability region occurred consistently when (fs/f) = (,85. In con-
trast to this the sharp fall of (a/D) occurred earlier in terms of
(fs/f) the smaller the (a/D); this was attributed to the lower Vr values
due to low (a/D), which resulted in a more uniform (less organized)
vorticity supply to the wake; in consequence the wake itself became more
turbulent. Since (a/D) reductions were caused by increased ks, the
above argument explained the reduction of the instability regions with
increasing k.

The small local peak of the (a/D) vs (fs/f) curve at the
beginning of the first instability region was here attributed to the
excitation of the two harmonic compohents of a non-sinusoidal motion.
These components of excitation were supplied by the "pairs" and the
"transverse flow" excitation mechanisms.as was evident from: (a) the
observation of both pairs and transverse flow in the near wake;

(b) marked increases of CDA which occurred elsewhere in association with
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the transverse flow mechanism; (c) the coincidence of the frequency of
pairs of eddies with the main vibration frequency of the cylinder; and
(d) the coincidence of the frequency of single eddies in the distant
wake with the frequency of increase of (a/D) in alternate vibration

cycles.

The 2:1 frequency ratioliere observed suggested a 4:1 ratio
between the frequency of the main, in-line motion and the frequency of
a fluctuating cross flow force associated with the transverse flow
mechanism; this explained the lisajous figures representing the motion
of the full scale Immingham piles for (fs/f) = 0.5, which exhibited

the same frequency ratio.

10.4  Practical Applications and Conclusion

Analysis of the results of the experiments here conducted showed
that these were only slightly affected by three-dimensional and other
secondary factors. Consideration of such factors moreover, reinforced
the assumptions made and the conclusions arrived at in the analytical.
work; for example consideration of boundary layers and blockage
provided a reasonable explanation for the differences between predicted
and recordéd values of f/N (and consequently of V/ND). The correlations
and models obtained here can thus be considered to represent the

excitation in two-dimensional cylinder-flow arrangements.

The characteristics of the excitation observed in the two-
dimensional arrangements moreover, appeared to be common to all situations;
this was illustrated by the improved agreement between the amplitude
response curves of different two and three-dimensional arrangements when
plotted against (fs/f) rather than (V/ND); by. the predicted frequency
response of the Immingham piles; or by the resemblance of the (a/D) vs kS
curves here obtained to those obtained by Wootton for three-dimensional

model stacks.

The arguments and prediction procedures of Chapters 6 and 9 have
further shown that full scale, three-dimensional vibration problems can
be represented and predicted by the two-dimensional models here
developed, if the appropriate values of (fs/f), Py and ks, and the

specific three-dimensional and secondary factors are considered.

It can thus be concluded that the outcome of this research:
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(a) Provides a designer attempting to avoid vibration with a more
accurate and reliable flow velocity threshold-value than has hitherto
been available.

(b) Provides designers and engineers with the means to make preliminary
“predictions of amplitude and frequency response, mean deflections and
the flow velocity ranges where instability can occur, in any case of

flow-induced in-line vibration of circular cylinders.

(c¢) Allows engineers faced with existing vibration problems to make a
better interpretation of an observed vibration than was hitherto possible,
for example by expecting (£f/N) and (CDA/CDO) to vary rather than to
remain constant, or by having additional ways to define more precisely

the type of the observed instability, etc.

(d) Allows a researcher or engineer dealing with two-dimensional

cylinder-flow arrangements to predict fully the in-line excitation.

(e) Correlates the observations of previous researches and thus

increases their usefulness.

(f) Increases the reliability, flexibility and usefulness of modelling
techniques in this field by showing that quantitative similarity does
exist between two-dimensional laboratory models and three-dimensional
prototypes, and by improving the similarity criteria, e.g.: (fs/f)
rather than (V/ND) and R, or p_ and k_ rather than (2M6/pr2L).

(g) Permits a clearer definition and an improved understanding of the

characteristics and limits in general of this type of excitation.

Finally, the present work has indicated areas for further study:
(a) the interaction of excitation mechanism in the first instability
region; (b) a more precise investigation of the influence of three-
dimensional and secondary factors on the excitation; (c) the development
of a similar theoretical model for cross-flow vibration; (d) studies
of.therwake in the second instability region and the wake of a cylinder
with a splitter plate; and (e) interactions between in-line and cross-

flow excitation.
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APPENDIX I

APPARATUS AND EQUIPMENT DETAILS

(a) Flow velocity measurements
9] Propeller meter: KENT-LEA, Miniflo-probe 265-3, Low speed.

(2) Pulse counters: Novar, Stream Flow. Kent, Mini-Flowmeter

Dekatron Counter unit, type 176-2.

(3) Range: 4 cm/s to 150 cm/s.

(b) Vibration amplitude and frequency measurements

(1) Strain gauges: four wire, Post Yield, gauges, type YL-10
(Tokio Sokki Kenkyujo Co. Ltd.).

(2) Transducer-amplifier: Peekel, Strain gauge instrument
type 581 DNH.

(3 Recorder: S.E., Oscillograph 3006;and.U.V. Recorder
Type 1185, Mark 2, (New Electronic product Ltd.).

4) Ranges: Amplitude magnification factors greater than
500 available; trace paper speeds up to 25 cm/s, with up

to 10 reference marks per second.

(c) Wake frequency measurements

(1)  Dye: Potasium permanganate.

(2) Cronometer: Jonghans 0.1 sec/Smiths 0.2 sec.

(3) -Range: up to 3 eddies/second could be reliably measured.
(d) Gaps measurement

@9 Moore & Wright, Feeler gauge 492.

(2)  Range: 0.004 cm to 0.2 cm.

(e) Viscous damping
0 Solution of Lyle's Golden Syrup.in water.

(2) Range: K;O values of up to5 were obtained.
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APPENDIX II
EXPERIMENTAL DATA

The tests of the first set were conducted with the larger
cylinder (D = 3.38 cm, L = 33 cm); the damping mechanism was not used
in these tests; the depth of water was kept greater than 30 cm; the
gaps between the ends of the cylinder and the end plates were of
approximately 0.5-2 mm. The most important data of these tests are

given in Table II-1.

The tests of the second set were conducted with the smaller
cylinder (D = 2.5 cm, L = 33 cm); the water depth was kept above
33.5 cm; the distance from the cylinder to the channel's bottom, z , was
kept constant at 13 cm; in general the gaps between the ends of the
cylinder and the end plates were smaller than one millimeter. For
the second set of tests a constant head tank was installed at the
entrance of the channel (Fig. 7 ); the variations of the resulting
flow velocity profiles did not exceed +3% of the average anywhere in-
the cross section of the flume at the cylinder's location, except at
the boundary layers (10 sec averages considered). The most important

data of these tests are given in Table 1I-2,

Besides calibration of the transducer measurements were made of
P Nair’ c, Ma, L and N before and after every test. Each test
comprised measurements of Vv, f, a, x and fe for 20 to 70 different values
of V. The flow was allowed to settle for 3-15 min; V was measured
over 1 to 15 min; f was obtained from records lasting 50-100 sec and
(a/D) and X from records lasting 1 to 3 minutes; fe was obtained from

several counts each lasting about one minute.
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(a) (b) (b) (c)

Run 2 cylinder (b) Kt g?) air N z |splitter
No. (cm) filling Py S0 W (Hertz) | (Hertz)| (cm) plate
18 8.0 air 0.495| 0.025| 0.163 5.20 2.80 | 17.3 No
22 | 12.0 air 0.495{ 0.016| 0.150 '3.95 2.15 | 13.1 No
30 § 16.0 air 0.492| 0.013| 0.190 3.31 1.80 | 17.3 No
34 8.0 water | 1.049 - 0.120 3.45 2.40 | 17.0 No
36 | 12.0 water | 1.084 - 0.106 2,76 .1.91 13.2 No
39| 9.9 | water | 1.046| - | 0.110| 3.09 2.13 | 15.2 No
44 | 16.0 water | 1.042 = 0.140 2.33 1.57 15.0 No
49 9.0 sand 1.460 | 0.015| 0.087 2.84 2.10 | 16.1 No
58 9.0 sand 1.529 - - 2.78 2.08 |16.0 Yes
60 | 12.0 air 0.529 - 0.170 3.80 2.13 13.0 Yes
Table I1I-1 Experimental data for the first set of tests (D = 3.38cm)
Notes: (a) 2 = free length of cantilevered springs

(b) measured with splitter plate when applicable

() z = distance from cylinder's centre-line to channel's

bottom
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(ay (c) (b) (b)
(a) . M) | . c ) |y N
Run . cxllqﬂer 0 air 0 k;o 5 air splitter
No. filling r | gr-s | gr-s W |Hertz|Hertz| plate
(cm) cm cm
73* |12.80| air [0.634[0.0239|0.0285/0.0557|0.1565(4.148{2.429| No
77* | 9.70 gigzs 1.805(0.0388{0.0492(0.1030|0.1098{2.945(2.272| No
80* | 6.35 ;g::; 4.224(0.1127(0.1235|0.2749/0.0780|2.417|2.139] No
84* 4.398|0.1156|0.1500(0.3378{0.0860(2.387[2.112| Yes
85" 4.455|0.5879|0.5987|1.3316/0.2030(2.418(2.138] No
86 4.372|0.2035/0.2143[0.4768|0.1018|2.416{2.140] No
87 4.423|0.2298]|0.2406{0.5350|0.1082{2.419(2.140] No
88 4.432]0.2643/0.2752(0.6118/0.1183|2.419(2.140| No
89 4.467)|0.1896{0.2240[0.5007|0.1055[{2.405]|2.128| Yes
90 . 14.429(0.3037|0.3381]0.7550| 0.1345|2.405|2.130| Yes
91 4.457/0.1610|0.1954]0.4361|0.0969(2.399/2.131| Yes
92" | | \ 4.462|2.3710/2.4050{5.3510|0.7150]2.414[2.138| Yes
99* [12.5 Pigizgc 1.222|0.0214[0.0292(0.0632| 0.1284|3.118]2.193| No
101 "~ 11.229/0.1281{0.1359(0.2945/0.1930{3.129/2.196| No
102 1.209]0.2246(0.2324|0.5024] 0.2509(3.122{2.199| No
103" 1.224{0.7070[0.7179{1.5574|0.5710|3.116{2.192| No
104 1.213{0.2659(0.2737]0.5906| 0.2738|3.125{2.202] No
105 1.207|0.3217{0.3294|0.7104| 0.3070|3.127/2.206| No
107 : 1.279]0.3230|0.3544|0.7754| 0.3190(3.055(2.174| Yes
108 1.249{0.2328|0.2642|0.5780] 0.2745]3.061[2.174| Yes
109" ~|1.253/0.5389|0.5703| 1.2470| 0.4580| 3.065{2.175| Yes
110* 1.253[0.0239/0.0553|0.1207( 0.1369| 3.065/2.179| Yes
111 1.253]0.0721]0.1035] 0.2264|0.1667|3.053[2.174] Yes
12 | | | 1.253/0.1637|0.1951(0.4274|0.2217|3.057[2.171| Yes

Table I1I-2 Experimental data forthe second set of tests (D = 2.5 cm)

Notes: (a) % = free length of cantilevered springs
(b) measured with splitter plate and additional damping if any

(c) for £ = N; (a/D) = 0.055; includes the hydrodynamic
damping of the splitter plate if any

(d) includes additional damping if any but excludes hydrodynamic
damping of the splitter plate

* no additional external damping
(a/D) < 0.05
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APPENDIX III
ADDED MASS, DENSITY AND STIFFNESS

Before and after each test the cylinder was made to oscillate
in air, on its own and with known weights added, as well as in still
water. This permitted calculation of added mass, equivalent density

and equivalent stiffness as outlined below.

If the subscript (1) indicates cylinder on its own and the

subscript (2) indicates cylinder with additional:masses, AM:

k k
- 1. = [—2 -
21rN1 = Mc and 21rN2 Mc (I11-1)
1 ’ 2
where '
k2 = k1 + Ak (111-2)
M = M + MM (11I-3)
<, ! ‘

Ak is the increment of k due to gravitational forces, and can
be calculated from the formula of the natural frequency of a pendulum,

Np’ i.e. (see e.g. Den Hartog)

where g is the acceleration of gravity and R is the length of the

pendulum. This formula can also be expressed as:

where Mp is the pendulum mass and kp is the equivalent "stiffness" of

the pendulum, given by

g
k = =M
P R'p
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Thus an increment of M corresponds to a proportional increment of k,

since g and R are constants; therefore

= £
Ak = R AM

From equations III-1/2/3:

1 £
k1 M * R AM
M, ¥ M = 1
1 : (21rN2)2

dividing by AM and introducing (ZHNI) from equation(III-1):

Mc-

C
Moo (2nN1)2 -t %
(217N2)7—
~ solving for M, :
1
1 - ey
: (ZWNz) R
M, = M (I11-4)
! (N1/N2)?2 - 1 :

The value of R can be estimated approximately by assuming the
deflection curve of the spring to be given by:

w

Y = Yo(l - cos 37

Z)
i.e. a quarter sinusoid where Y indicates deflections; Y, is the
maximum deflection (at the tip); Z is the distance from the clamp

along the undeflected cantilever; and 2 is the total cantilever's length.

It can be assumed that the radius of curvature of the oscillation
path of the canitlever's tip, is given by (& - b); where b is the Z
axis intercept of the tangent at Z = &; the tangent of the angle,6, at

Z =2 is
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_ o dy T
tan 8 = 17 Yo T sin 7% A
= U
(tane)z=2 Yo 28
hence
: Y
22
(2-b) = —2 - = =
(tane)z=2 ™

The equivalent pendulum length of the cylinder, R, is then
given by

where d is the length of the stiff portion of the supporting arms
(see Fig. 5).

Equation(III-4) above cannot be used to calculate the equiva-
lent density of the cylinder because this density should also include

the additional added mass of the supporting arms and of the end gaps,

which cannot be included in Mas if CM =1,

_ If N; in equation (III-4) is replaced by the natural frequency
in still water N, and the additional mass, AM, by the total added mass,
MaT’ equation (III-4) can bé:written.thus:

(N, /N2 - 1

aT [
VL1 TR .

(I111-6)

Values of MaT obtained from this equation resulted about 4%
higher than the product of g and the volume of the cylinder alone;
this applied both to still water and slowly flowing water in the range

0 < (fs/f) < 0.4.

To investigate the influence of the supporting arms, end gaps,
free water surface and channel's bottom on MaT’ the cylinder was
allowed to oscillate in still water at different depths and with
different water levels, end gaps and frequencies which covered the

ranges of the flow-induced vibration tests.
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In general MaT

the free water surface and to increase as the cylinder approached the

was observed to decrease as the cylinder approached

channel's bottom. No variations of Mas greater than #2% were observed
(a) when the cylinder was more than 2.5 diameters above the channel's
bottom and more than 4.5 diameters below the water surface, or (b) when

the end gaps were varied between 0.01 cm and 0.5 cm.

Although these experiments showed all these influences to be
small within the ranges of the main tests, their results did not suggest

any values for the contributions to MaT of the arms and of the end gaps.

It was decided to assume CM = 1 in order to facilitate further
calculations, and thus to attribute the slight increases of MaT above

(nDZLQf/4) to the added mass of the arms and of the end gaps.

The density ratio p, could then be calculated from:
Mc + MaT

p_ +1 = ;—l-—-—- (111-7)

= D2%Lp

4 f

- - - - - T
where M, ¢ MaT MTS' If CM 1, MTS M, + Mas where Mas 7 Dlo g

and M =M p .
c as'r

The stiffness could then be calculated from:
kK = MTscan)2 (II1-8)

The values of k obtained through this dynamic approach were
compared with direct static measurements made by pulling the cylinder
horizontally with a string, which after passing around a pulley, held
known weights. The displacement of the‘cylinder was measured with
either a travelling microscope or from the traces of the U.V. recorder.
The travelling microscope readings showed a wide scatter with an
average value of k about 10% higher than the one obtained from equation
I1I-8. The U.V. recorder readings were less scattered and showed k
values about 2% higher than those of equation (III-8). As these
methods were static however, it was felt that the dynamic method of
equation (III/8) was more representative of the vibrating conditions

and was therefore adopted.
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APPENDIX IV

MEASUREMENT OF S AND CDO

iAuxillary experiments covering the entire V range of the main
tests, were conducted to investigate the behaviour of S and CDO when
the cylinder remained stationary. For this purpose the cylinder was
heavily damped (kS > 1.0) so as to avoid vibration but to allow the

displacement, %, due to the drag forces.

Knowedge of x and of k and V led to the values of CDO’ while
the values of S were obtained from a count of the eddies in the wake
in a given period of time. The resulting values of S and CDO are

shown in Figs 33 and 86.

It should be noted that these values of C_. are affected by the

DO
additional drag of the supporting arms (see Appendix V) and by the
reduced drag in the boundary layers (see 9.1) and that both S and CDO
are affected by blockage effects, surface roughness, flow velocity

measurement technique, etc. (see Chapters 5 and 9 and Appendix VI).

For the larger cylinder (D = 3.38 cm), CDO could not be measured
because the damping mechanism was not yet devised when these tests were
conducted; values of S were obtained by reducing to zero the gaps at

the ends of the cylinder so as to avoid its motion.
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APPENDIX V

DAMPING

The values of the external damping parameter ks to be used in
flowing water, were obtained from the records of transients in air (see
6.2.3d); consequently the following sources of damping had to be
considered: (1) structural, (2) viscous damping mechanism, (3) aero-
dynamic, (4) gaps between the ends of the cylinder and the end plates,

(5) supporting arms, and (6) splitter plates.

Each one of these is: considered below separately and leading
to a correspondinglvalue of ¢ {calculated with data from run 99).
The contributions of all these sources to the total damping are consi-
dered in V-7.

V-1  Structural Damping

For every fixed length of the cantilevered springs of the cylinder's
supports, the cylinder was made to oscillate in air “with . different
weights added to it, so as to vary its frequency over the entire range
predicted for flow induced vibration. The values of C,ip WeTe obtained
from the logarithmic decrement 6air of the recorded transients and from

the formula:

. = 26 . N .
Cair air air

(M, + aM)

where MC was obtained as indicated in Appendix III; AM is the additional
mass, and Nair is the natural frequency in air of the cylinder with the
additional mass if any. Care was taken to place the additive masses

at the same height as the centre line of the cylinder. Additional
experiments with heavy masses placed near the springs (about 1/3 of the
distance from the clamp of the springs to the cylinder) showed no signi-

ficant difference in the behaviour of Cair with respect to (a/D) or (£f/N).

These experiments resulted in the relationships of Figs. 87 and
88 which are applicable to Rums 73 to .11l (see Table II-1) and where
the values of Cair include aerodynamic damping (see V-3 and V-7).
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L]

Figure 87 which presents SQir variations with (a/D), was obtained from
measurements of sa at different amplitudes but for constant frequency;
corrections were made to allow for noise in the recorded signal.

Figure 88 which presents c%ir variations with (£/N), was obtained from
measurements of Ga at the same amplitude of vibration but for different
frequencies. The approximate inverse relation between Clir and (£/N)
(Fig. 87) suggested hysteretic damping; a better approximation to
(ow/k) = constant was obtained when the gravitational effects were
excluded from k. These gravitational effects however, together with
the variations of C;

ir
of the mechanism made the term (cw/k) irrelevant for the present research.

with (a/D) and especially the viscous damping

V-2  Damping Mechanism

Experiments were also conducted to investigate the behaviour of
the viscous damping parameter, ¢, which represented the contribution
of the damping mechanism. No significant variations ofc:v with either
(a/p) or (f/N) were observed; in addition.cv was approximately constant

for up to 16 hours.
V-3  Aerodynamic Damping

Bramley has shown that for small "size numbers" (ND2/v) the fluid

dynamic damping force on a cylinder oscillating in a still fluid can be

give by:
c X
“aero ? %o
where:
c = 2nN . K
~aero Uma)aero air
and:
4
Kt = 2 + N2
air
TS
air

P - 2 - =6 o2 famlt
Assuming: Vs 0.15 cm®/s and P57 1.23 x 10 “gr-s4/cm

D =2.5 cm; and Nai; 3.123 c.p.s. (Run 99):
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caero = 0.0008 gr/cm/s.

V-4  End Gaps

To estimate the damping in still water due to the gaps between
the cylinder and the end plates, viscous friction drag forces can be
estimated from a consideration of the flow, between two parallel flat

plates, due to the motion of the plates as follows (see Schlichting):

The flow velocity in the direction of the cylinder motion can

be represented by:

U = U Asin(ut + &)
where: U0 = WX
: 1
A = (B/C)?
B = cosh (2Ky) - cos (2Ky)
C = cosh (2Kh) - cos (2Kh)

y is the coordinate perpendicular to the end plates; h is the width of
the gap and

K = (m/Z\))%

(wt + £€) is not a function of y (see Schlichting), therefore:

2_1)17 - uog-‘)‘?sin (wt + &)
B et 2
g%. = 2K[sinh (2Ky)] + 2K[sin(2Ky)]
hence: gg, = 2K sinh(2Ky) + sin(2Ky) sin(wt + ¢)
2/BC
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At the surface of the cylinder end, y = h, and B = C; assuming
sin(wt + £) = 1, the maximum gradient is:

sinh(2Kh) + sin(2Kh)

U
) cosh(2Kh) - cos(2Kh)

3y = Kwx [

o

] = waox

y=h max

the drag force then results

- U _ T
Drag = u x Area x 5y - & D (%vmwxok

and the damping constant results

Drag _ 7 .2
Cgap wx, 4 D pevK A

for gaps larger than 0.03 cm in water X = 1; the value of Cgaps for two

gaps in water results:

0.28 x 107 °D2/F (gr/cm/s)

It

cgaps
Assuming D = 2.5 cm and f = 2.2 c.p.s. (Run 99):

'cgaps = 0.0026 (gr/cuw/s)

An analysis of the recorded transients of the cylinder cscillating
in still water, with various sizes of gaps ranging between 0.02 cm and
0.5 cm, revealed no significant differences in the logarithmic decrement
for frequenciés above 2 c.p.s. In flowing water and for fixed values
of (fs/f), Py and ks’ no significant variations of (a/D) were observed

when the gaps were varied.

V-5  Supporting Arms

The damping arising from the additional drag forces exerted by
the flow on the supporting arms of the cylinder was not included in
external damping because these forces (a) were part of the actual drag

force, (b) contributed to the mean displacement, x, (c) varied
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approximately as the mean drag force of the cylinder (proportionally to
V2) rather than as the other external damping forces (proportionally to
wxo), (d) were difficult to calculate precisely, and (e) compensated
part of the loss of drag due to boundary layers, uncorrelated flow

DO and CDA'
It was thus felt more important to know the actual value of the total

patterns, etc., which was not deducted from the values of C

drag force which could be measured and to consider the drag of the

supports together with three-dimensional factors separately.

For flowing water these drag forces were calculated by assuming
a drag coefficient for the arms of CD = 1.5 (and their area presented
to the flow); the forces were reduced by a third becuase their resul-
tant was’ applied at a distance from the clamped end of the supports,
approximately equal to two thirds of the total length of the arms.

Assuming an average value of CDA = 1.5:
14 V2
(Drag)arms i (z pr ) x 2 x (20 x 0.1) x 1.5 g 2 L e
(brag) .., (3oV2) x (35 x 2.5) x 1.5 3

To calculate the damping forces due to the arms in still water,

a similar argument to that of V-4 leads to:
Drag = pev X Area x Kmxnx

where A = 1; and X, is the displacement of the cylinder at a distance, £,
along thearms from the clamp. The area of the tapered arms used for

the 2.5 cm cylinder is given by:

Area = bg = 2(3 - 0.06%)

and the displacement of the arms in the direction of motion at a

distance, &, from the clamp is given by:

xo
X, = 40 *

where 40 is the distance in cm from the clamp to the cylinder. The

moments at the clamp due to the drag forces are

M = Drag x £
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and

wX
aM = [ppvK 7ﬂ§q a[e3(3 - 0.06%)]
therefore:
ox, 40
Moo= oK 5] [ (922 - 0.2423)ds
20

i.e. only 20 cm of the.arms are immersed in water; M then results.

. mxo
M= [pvK 557 24 x 103

The damping constant, Carms’ for the two sides of the two arms,

is given by

c . M
arms 4wao

Assuming K = 26 (Run 99) and v = 0.01cm?/s,

Corms = 0-0159  (gr/cm/s)

V-6  Splitter Plate

The same formula used in V-4 for the gaps at the cylinder's ends
can be used to estimate the damping due to the splitter plate; assuming
the gap between the two plates (Fig. 6) to be greater than 0.04 cm,

A = 1; hence:

2bLp vKA

cspl.pl. f

cspl.pl? 0.0245 (gr/cm/s)

This value can be compared with ¢ = 0.0237 obtained from the difference
between ¢ values calculated from the recorded behaviour of the cylinder
in still water, with and without a splitter plate; this last method

was adopted to measure a fixed value of Cspl.pl. which was then added
to external damping (see V-7).

155



V-7 Total Damping

To calculate the total external damping of the cylinder, it
should be noted that the aerodynamic damping (which should be sub-
tracted from cair) is small relative to the structural damping, but
of the same order of magnitude as the hydrodynamic damping due to the
gaps (which should be added to Cir
these two sources of damping on the assumption that their effects,

). It was thus decided to neglect

which were in any event small, tended to cancel each other.

The total external damping could be calculated by (i) measuring
structural damping in air (see V-1) without the damping mechanism,
(ii) connecting the damping mechanism and measuring the difference for
the same (a/D) and (£/N) and (iii) calculating the total damping from
the ¢ vs (£f/N) and c vs (a/D) relationships obtained in (i) above, in
addition to the constant values of ¢ due to the damping mechanism

(ii above) and the splitter plate if needed (V-6).

To calculate external damping from transients in still water
(see 6.3.3), hydrodynamic damping must be subtracted from the total.
For the samll size numbers and vibration amplitudes involved in the
present research the expressions given in V-3 can be used to calculate
hydrodynamic damping (see Bramley). With v = 0.01 cm /s;
Pe = 0.00102 gr-s2/cm*; D = 2.5 cm and N = 2.2 c.p.s. (Runs 99 to 105),
thus:

chyd = 0.141 gr/cm/s

The total value of C-sw in still water should result from the

addition of

C_. c + ¢ + c +
air aero.  arms gaps chyd .

This results in ¢, = 0.18 gr/cm/s, which is smaller than the
measured Couw = 0.207 gr/cm/s. The difference is perhaps due mainly
to an underestimation of chyd , which results from applying Stokes method

for (a/D) > 0.05 (see Bramley).

It should be noted that Cor leads to ksw = 0.459 which is signifi-

cantly larger than the correspondingl:;o= 0.0632 here used.
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APPENDIX VI

BLOCKAGE EFFECTS

When the transverse or '"shadow area", As, that the cylinder
presents to the oncoming flow is a significant proportion of the cross
sectional area of the flow channel, Af, there is an increase in the
local flow velocities over those that would occur in an infinitely

large channel (blockage effects).

Semiempirical methods mainly from wind tunnel experience (e.g.
Maskell) are available for the correction of measured flow velocities
to account for blockage effects, although theirMQalidity and accuracy
is difficult to assess when dealing with vibrating bodies (and fluctua-

ting wakes) immersed in a stream of water with a free surface.

In the present research the flow velocity measurements were not
affected by blockage because they were made outside the area of
influence of the cylinder (Fig. 5 ); consequently the measured values
of V (and the calculated Re) are underestimated with respect to the
more relevant flow velocities at the cylinder location, which were

affected by blockage.

As explained in Chapter 4, S and CDO were not obtained from
published data intended for cylinders in an infinite stream, but they
were calculated from direct measurements of fs, x and V; in the case of
a stationary cylinder this procedure avoided the need to consider the
effects of blockage, turbulence, surface roughness, etc. Assuming that
blockage effects were the same for a stationary and a vibrating cylinder,
the values of S and CDO were included in other non-dimensional groups
to avoid the need for blockage corrections, for example (fs/f = SV/£D)

instead of (V/£D), or (CDA/CDO) instead of CDA’ etc.

As mentioned in Chapter 9 however, it appeared that blockage
effects increaseéd (i.e. more underestimated) when the cylinder vibrated;
consequently any force coefficient for the vibrating cylinder will be

somewhat overestimated, even when expressed in the form (CF/CDO).

In what follows the subindex, b, will indicate corrected for
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blockage effects, while the subindex, m, will indicate as measured or

calculated from the measured values of V.

The correction for the flow velocity can be given by:
B = |2 - 1> o NG SY
if B is small moreover:
(1+8)" = 1+n8

(a) CF and Pd

From equation 7.31, approximately 90% of the value of E% is

1
determined by CDA and 10%2 by (CFVrsina); moreover,

-2
(C..) \)

DA'm _ vﬂ_z = (1 +8)2 = 1+ 28
(Cpadp b -

and (see section (d) below)

' -5
(V_C_sina) A
T ? mo m.5 = 1+ 5B
(VrCFsma)b Vb
hence:
€,
— = 0.9(1 + 28) + 0.1(1 +58) = 1+ 2.38 (Vi-2)
Cpy,

From equations 8.1 & 8.2 (Pd/Masmzxo) is approximately propor-
tional to the product (E% V/fD); hence from equation VI-2:
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— Vv —
d)m - (CF fﬁam - ( F)m

Y
—
(Pady Cr b €y Vp

(P

= 1 +1.38 (VI-3)

since Maswzxo is not affected by blockage.

c. f
To correct the product EE' 7;" it should be noted that:
DO

x
Cho {,Z

where X was measured from the stationary cylinder, and is consequently
proportional to the square of the velocity, Ve, which was affected by

the blockage of the stationary cylinder, hence:

(€. v, 2 v,2v?2
DO'm bz - b2 m2 7 (VI-4)
(CDO)b vs vm vs '
(Cye)
—DOR 1+ g)2( - B2 = 1+ 2(8 - B)
where Bo = (Vs/Vm) -1, By a similar argument and assuming S

unaffected by blockage:

(£.)

_s'm
(fs)b

hence from equations VI-2/4/5:

= 1-8+8, (VI-5)

G £

C f (1 +2.38)(1 - 8+ 8)

-:gﬂl___f_lﬂ = O -« 1 -8+ 38,
G i, 1+ 268 - B)

%0 f b

and the calculated values of this product will be overestimated by
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between 3% and 7% depending on the value of E% (see equation VI-6 below).

(b) A blockage correction

The simplest blockage correction assumes that the increase of V
is solely due to the constriction of the area of the flow channel, made

by the cylinder, i.e.:

‘mo ., _D
Vb d

where d is the depth of water. If increments of E% are assumed to be
equivalent to an increase of the cylinder diameter, an equivalent

expression is obtained, i.e.

A
m _ —
V;' = 1 - (CF x const.)

If (E%><const.) is small the last expression can be written as:

\'

b = C
Vm 1+ (CF x const.)

or introducting B:

B = CF x const.

It wasxobserved (Chapter 9) that the ratio of Eqn. VI-3 increased

by 0.03 as C_ increased from 1.4 to 2.0; consequently and assuming no

F
blockage effects when E% = 0 (see Fig. 89)
0.03 =
1:38 = 756 O
hence E%
= — VI-6
B TS ( )
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{c) CF and P,

From equations 7.32 and VI-3, and considering the 1.5% increase

of CF due to the drag of the supporting arms:

F

-1.3

C, = V-2¢/(CI-1)2+ const. x (V x 1.015)2

The first term inside the radical is independent of blockage and

varies between 0 and 1 as (fs/f) varies between 1 and /E} the second
term is approximately equal to 1 (Eqn. 8.1) and represents between
'50% and 100% of the value of the radical; hence:

(Cg)

F'm 1.38 + 0.015y5
(C,) = (1 + zs)/ 1+ ETRE )

F’b

therefore:
1
(CF)m

1 + 2,658+ 0.0075 < 7 <1+ 3,38 + 0.015 (Vi-7)

corresponds: to V2 > (fs/f) > 1. When (fs/f) = 2, moreover:

),

(Cp),

= 1 + 38 ‘ (VI-8)

From equation 7.30:

P
e

1
¢ 2
——— =« V4C
Masw X, F

and from equation VI-7 for (f_/f) = Y2 and C. = 1.4:

F
(P,).
: = (1 - 28)(1 + 2.658) + 0.0075
[<]
1.€.
()
e ™ -~ 1,045
(Pe)b
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\J
(d) a and (VrCFsincﬂ

From equation 8.8

sina = £l
fs Vv
hence:
(sina)
-(S_i;l-(;)in-: 1+B
b

For (fs/f) = /2, from

\
(VrCF51na)m

1]

—rF m
(v, Cpsina)y

)
(VrCFsma)m

R

_—_—
(VrCFsma)b

this equation and equation VI-8:

1 +8) + 38)(1 + B)

1 + 58
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APPENDIX VII

DEDUCTION OF EQUATIONS

Deduction or expansion of some of the equations presented in
the text is given in more detail in this appendix, as indicated in

the table below:

Appendix Equation Text Address
Address Numbers Chpt./Sect. Page
VII -1 7.4 § 7.5 7.1 82
VII - 2 7.15a .7.2.2 86
VII - 3 7.16 §'7.17 7.2.3 88
VII - 4 7.26/7/8 7.4.1 91
VII - 5 7.31/2/3/4 7.4.1 92
VII - 6 7.39/40/41 7.4.3 96
VII - 7 8.2 8.1.2 101

VII-1 (see 7.1)

From tﬁg>diagram of Fig. 51:

1
° = X - 2
FTo coSz kxo Mcm xo

dividing by kxo and from equation 7.6

'

FTo COSC £

= =12
. = ! (g
o] v

similarly:
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FTo sing = cCwx
' »
FT051nC ) c Gfﬂ
kx T 2rM N N
o cv v

solving now for FTo and z:

- 1 yi Py
Fro /(FTocos;) + (Fy sing)
therefore
' f c f
F, = kx \/[1 - (22 + e (912 (7.4)
To o Nv ZnMch NV
- L
and: FT° sing
tan ¢ = —
FT° cosg
therefore c Pfﬂ
tan ¢ = Zﬂ!kﬁﬁL%i! (7.5)
1- ()
N
v
VII-2 (see 7.2.2)
2
o k Mcw
- 2 -
kxo Mcw *o _ MTS MTS
- Y4
Maswzxo M, ¥
MTS
where:
MTS = Mc * as Mas (pr + 1)
and
k. (27N)2
Mrs
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hence:

and

kxo - Mcw2x° N
M aZs (B2, + 1 -0, (7.152)
as 0 .

VII-3 (see 7.2.3)

From the diagram of Fig. 52b

t
= - 2 - 2
F0 cos ¢ kx0 Mcw Xy Masw X,
since cos ¢ is negative; dividing by Masmzxo, and from equation 7.15a:

1

F_ cos¢

L o = ¢ -1

M  wex I
as ‘o

also from Fig. 52b
' - -
F051n ¢ = cwxo

dividing by M__ w2x0 and from the definition of k_ given im 6.2.3.d:

F_ sin¢

.o L 2 X

M w?2x_ 7% s

Tas o
hence:

! 2
- 2 _ 132 2

Fy = M, _w?x \/(CI 1)2 + (7 k) (7.16)
and F. sin¢ 2K

tan ¢ = —————— = —pg——r (7.17)

F < (C, - 1)
o cos¢ I
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VIi-4 (see 7.4.1)

From equations 7.25 and 7.10, F can be given by:
. — Y [
F = F + F6 sin ¢ coswt + Fo cos ¢ sinut
Expanding now the right hand side of equation 7.24 and replacing all

squared and cubed trigonometric functions with the respective functions

of twice and three times the argument:

]
C
————-l%;:— = [1+ %—Vi - V. :;- sina] +
} o DLVZCp, Cp
c. c.
o+ 1 _—;icosa + %V;’{ _-_i cos alsingt +
Cr Cr
C' C'
+ [_—Fsina + %V% _—Fsina - 2Vr]cos wt +
Cr Cr
"}
1 .0 Cp .
+ [5 Vr -V, — sina Jcos 2wt -
Cr
c!
- [Vr :F— cosa ]sin 2wt +
Cr
Cl
) [% Vi —_—E cosa ]sin 3wt +
Cr
- :
+ [%-V% :ﬁ-sin>a]cos 3wt
Cr

It is clear from this expression that the first group of terms
which is invariant, constitutes the mean force F (Eqn. 7.26.); the
sc'econd and third groups of terms are clearly in phase with F;coscp and
Fosincp respectively (Eqns. 7.27 and 7.28), the remaining terms were

neglected because they have frequencies which are multiples of wt,and
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consequently they do no work on a vibration characterized by x = xosinwt;

the terms in (3wt) moreover are negligibly small.

It should be noted however, that in the double harmonic exci-
tation section of the first instability region where the motion can be
given by:

X = xlsinwt + x,sin(2wt + ¥Y)

2

the terms in (2wt) which arise from the excitation mechanism associated
with the transverse flow, may contribute to increase (a/D) and to the
" slight decrease of (£/N) observed (see also VII-6).

VII-5 (see 7.4.1)

From equations 3.1 and 7.3a:

F = kx = %prLVZCDA

and from equation 7.26

1
= wwaye - s
CDA (1 + 2Vr)CF VrCF51na

hence:

t
C + V C_sino
T, = DA TF (7.31)

o 1+ %Vr

From Fig. 56 and Eqns. 7.15a and 7.29:

P cosa

- 2
g kx, - (M + M Juix

1
2 1y2 = 2 -
i;?DLV (1 + {Vv2)Cpcos a Masw xo(CI 1)
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2 -
Masm X, (CI 1) e

hence: cos a V4 . VEYall
} pr}V 1+ TVI,)CF
2 T ne 2
but M w?x 7 D2L pg (27 £) *x . XE
1 p DLVZ } o DLVZ B v
X x v
. v (CI -1
. ‘hence: cos o = w2 (VII-5.1)

r _ -+
v w2y e
m A+ VRG

From Fig. 56, from the definition of ks (see 6.2.3d) and from
equations 7.29 and 7.30:

Pe sin o = Phd + cmxo

- 1
2 ay2 3 = 1 2 red
QQEDLV (1 +:§VE)CFSIH o 2prLV (ZVTCF) + CuX

hence:
M w?x cwX

= as_ "o 0 )
2V, Cp +(%;¥DLV2)(MaSm2xo)

sin a S
3
(1 + ‘vr)cp

V —
(fﬁ Cp * ks)

4
1+ {V%)CF

[}
[y
Eﬂ<|H5

(VII-5.2)

sin o

where

v o2 — (7.34)

From, cos?a + sinZa 1, and from equations VII-5.1 and VII-5.2:

\
L T - V
s TR \/IwZ(cI-l)]z + [20(Cp g5 * k12
D Uy (7.32)

and from tan a = sin a/cos a
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= V
ZW(CF Wt ks)

nz(CI - 1)

(7.33)

tan a

VII-6 (see 7.4.3)

'
Substituting Cg for by2/D, and V_coswt for x/V, in equation

7.38:
t
F = Q;EDLVZCF(I - Vrcoswt)z[l + sin(wt + a)]
expanding:
) F = [1 +-4V2 - V_sina]
J pDLVZC] eVe - Vp

+ [sinwtcosa + coswt sina

+ £V§ Sinwtcosa-rivicoswtsina]

[ZVrcoswt]

.VrSinZwtcosa

V cos2utsina + %V%cosZwt

+

}V%sinSwt;cosa

+

iV%cosSwt sino.

Neglecting all terms in 2wt and 3wt which do no work on a

sinusoidal motion, x = xosinwt:
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F

———— = [1+ V2 - V_sina]
} 0.DLV2C T
¢ F

+ [sin(wt + a) + {V%sin(wt +a)]

- (2V_cosut - %V%sinacoswt]

The three groups of terms in the R.H.S. of this equation clearly
lead to equations 7.39, 7.41 and 7.40 respectively.

VII-7 (see 8.1.2)

From the diagram of Fig. 56:

Py + ax = Ppsinag (VII-7.1)

hd

and from equations 7.29 and. 7.30

} 0.DLVZC_2V_ - ip Iv2c 1v2sine + cux_ = } pDLv?(1+}—.v2)c'sin a
% Fo'r 2 fD F2z'r o f r’~F
(VII-7.2)

hence:

— . - )
4 prLVZ(zvr)cF + Cux = %prLVZ(l +3;v1%)chin o (VII-7.3)

multiplying this equation by ¢ (see Eqn. 7.34), the Right Hand Side
becomes Pesina as in the R.H.S. of Eqn. (VII-7.2), therefore:

P, + cux_ = ¢ [4 pDLVZ(zvr)EF + cux ]

hd o T

- . - 2
dividing by Masw X,

P + cwX .
hd [ 2 ! peDLV2wx =
s ] U= Sl
as® "o T o D?Lw?x V
gt o
hence:
P + CwX
hd 0 2 = V _
Maswzxo =¥ 12 [ks * CF fD] = 1
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Plate 1  Shedding of pairs of simultaneous eddies in the reorganization
section of the first instability region. Selection of photographs
taken at random during many cycles. (a) Upstream stroke, cylinder near
mean position; wake near its narrowest; (b) cylinder near the furthest
upstream position; new pair of eddies begins to form; (c) downstream
stroke, cylinder near mid position; eddies growing near their furthest
upstream position with respect to the cylinder; wake near its widest for
that value of (fs/f); (d) cylinder near the furthest downstream position;
eddies move downstream and the wake narrows. (fs/f) = 0.67;

(a/D) = 0.11; f = 1.66 c.p.s.; D = 3.38 cm.
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Plate 2

Wake behind a cylinder fitted with a splitter plate.

(a) and (b) laminar eddies; (fs/f) = 0.96; (a/D) = 0.18;
D=2.5cm f£f=2.12 c.p.s.

(¢) and (d) turbulent eddies; (fs/f)
D=2.5¢cm f=2,59 c.p.s.

]

1.13; (a/D) = 0.08

175



Hat
RS

i

Plate 3 The near wake in the lock-in section of the first instability
region. Selection of photographs taken at random during many cycles.
(a) A pair of eddies is being shed; the lower (counter-clockwise) member
of the pair rapidly moves downwards and downstream, near and below the
lower member of the previously shed pair; (b) and (c) the two lower
eddies coalesce into a larger eddy which moves downstream to take its
position in the staggered wake; the downwards transverse flow associated
with the kinetic field of the larger eddy, displaces the upper eddy
downwards to the centreline of the wake; (d) a new pair of eddies is
being shed; the upper member of the new pair coalesces with the upper
eddy of (b) and (c); (e) and (f) the lower member of the new pair is swept
upwards by the transverse flow; the next pair of eddies can just be seen
in (f). (fs/f) =~ 0.9; (a/D) = 0.22; D = 3.381 cm; f = 1.829 c.p.s.;
N = 1.66 c.p.s.
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Plate 4 Developments of the near wake in the double harmonic excitation

section of the first instability region. Selection of photographs taken
at random during many cycles. Four consecutively shed, upper (clockwise)
eddies can be seen joining to form one of the large eddies of the distant
wake as follows: (a) Eddy No 4 of one such group moves rapidly away from
the cylinder to join the amalgamated eddies Nos 1,2 and 3 (centre of
picture); (b) eddy No 1 of the next group is only appearing and is
clearly visible in (c¢); (d) eddy No 1 has moved downwards due to the
transverse flow and is about to be joined by the newly shed eddy No 2;
(e) the transverse flow has ceased; eddies 1 and 2 have joined together
to form a larger eddy, and eddy No 3 is just being formed; (f) eddies

Nos 1, 2 and 3 have joined to form a larger eddy and begin to move down-
stream. Similar developments can be seen for the lower (counter-clock-
wise) eddies. (fs/f) = 0.56; (a/D) = 0.056; D= 3.38 cm; £ = 1.65 c.p.s.
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Plate 5 The near wake in the second instability region. Selection

of photographs taken at random during many cycles.(a) cylinder near
its downstream position; an eddy has just been shed but is still
connected to the cylinder by the upper shear layer; upwards transverse
flow commences; (b) cylinder approaching its upstream position; the
previous (clockwise) eddy moves downstream along the wake's centre line
probably still supplied of vorticity by the upper shear layer; the new
(counterclockwise) eddy starts to form; transverse flow dies down; (c)
and (d) approximate mirror images of (a) and (b). (fS/f) = 1.15;

(a/D) = 0.17; D= 3.38 cm; f = 1.93 c.p.s.; N=1.66 c.p.s.
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Plate 6 - a - Von Karm3dn wake behind a stationary cylinder.
Re = 2300; D = 3.38 cm

- b - Wake in the rearrangement section of the first instability
region. (fs/f) = 0.65; (a/D) = 0.096; D = 3.38 cm;
f ~N=1.66 c.p.s.
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Plate 7 - a - Wake in the lock-in section of the first instability region.

(fs/f) = 0.9; (a/D) = 0.202; D = 3.38; f = 1.83 c.p.s.;

N =1.66 c.p.s.

- b - Undefined shape of the wake behind a cylinder oscillating

between the two instability regions.

(a/D) < 0.05; D = 3.381 cm; o_

N =1.66 c.p.s.
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Plate 8 - a - Wake in the double harmonic excitation section of the

first instability region. (fs/f) = 0.56; (a/D) = 0.05;
D = 3,38 cm; pr = 1; f = N=1.66 c.p.s.

- b - Wake in the second instability region. (fs/f) = 1.15;
(a/D) = 0.173; D = 3.38 cm; £ = 1.916; N = 1.66.
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Fig. 1  Typical Von Karmin wake behind a bluff body and its main characteristics (from Scruton)



vibration amplitude

in line cross flow velocity

Fig. 2 Typical amplitude response curve of a lightly damped pile, with

equal in-line and cross-flow natural frequencies

183



[y
€]
&Y

. ¢ ' ’ ‘ v ty .
0+3 — No. | Symbol Reference oL Re/10° S Obs.
} | emvemem | Wootton® | 1.66 | 200-700 | 0.23 | 3p 9t
scale
2 ——— - Run 22 0.50 3-15 Fig.33 2D lab.
[=]
D 3 Run 73 0.63 1.7-7.2 " "
4 — b — Run &0 4,22 2-4.8 " "
5 — e Clark 1.57 { 2.7-7.2 0.20 t
A 6 e | King (R22) 1.2? 8-24 0.20 3D Lab. x
[
0-2 — . ¥ maximum arplitudes
e e i — N
ST —
* o s » , °a, . ’
o.' ’;
i l
®
. |
]
’
: \
0-1 — K
{
/
J/
0
. i | i
ND

Fig. 3  Amplitude response of different cylinder-flow arrangements vlotted against (V/ND)




—_— ‘ I

v
— ——f= F+AF F—aF
k\\\\jj*\\\\\;::> (51) ~\\\\<:::>
downstream stroke upstream stroke
wide wake narrow wake
//:;:)
v
—_

(b) '

Fig. 4 Schematic representation of the basic forces and flow patterns
associated with eddy shedding: (a) simultancous shedding (pairs);
(b) alternate shedding, showing frequency ratio of in-line and

cross~flow forces
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Fig. 7  Schematic side view of the flume and of the stilling tank
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Period =1

|
x

Posifion of cyliader when V=0 1

Fig. 8 Schematic (a/D) vs time trace of cylinder vibration for V # 0,

showing definition of x_, X, a and f
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v (a) down stream position - a pair of eddies
—— | : has just been shed, separation points
move back and f.s.l. come closer together

4

(b) mean position moving upstream - separation
points at their rearmost position, f.s.l.

v at their closest and the wake is narrowest,
flow inside the wake starts :to move
upstream

/ {c) upstream position - new eddies have
started to grow on the sides of the cylinder
Vv S~ ~at or near the separation points which are
B moving upstream; upstream wake flow feeds
- e the eddies

start to move downstream

—r- (d) mean position moving downstream - eddies
,,////4 __’,///T::> are markedly grown; the main flow approach-
d ing the cylinder behaves as if it encountered
v 5 a larger cylinder or a bluffer body, eddies
___N\\\\& '~\\\\\:::>

St

D

{e) as in (a)

v
—_> free shaar layers
frontal ‘\)
stagnation
point

separation points

Fir. 9 Flow patterns of the '"pairs mechanism'

(see also Plate 1), fofe: £5. [, < free shear layer
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(c)

(a)

Samples of (a/D) vs time traces of a cylinder fitted with a splitter plate (from Run 111)

Fig. 12
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(c)
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(a)

(a/D) vs time traces in the first instability region, corresponding to the sections

Fig. 14

13

marked a, b and ¢ in Fig,



R

Fig. 15 Flow patterns in the lock-in section of fthe first instability
' region showing both the transverse flow and a pair of

simultancous eddies (sce also Plate 3)
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(@) | (b)

Fig. 17 a/D vs time trace at the end of the double harmonic excitation section showing

(a) double harmonic excitation and (b) excitation by the "pairs mechanism' alone
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Fig. 18 Dominant harmonic components of the vibration in the "double
harmonic excitation section' of the first instability

region (Note: T = £ h
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19 Eddy organization and transverse flow direction in consecutive
cycles of the near wake,in the double harmonic excitation

section of the first instability region (see also Plate 4)
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Potential flow representation of the second peak wake
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Shedding process in the second instability Tegion

(see page 37 and Plate 5)
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(a) for (£,/£) 5 V2, and

Recorded transients:
(b) for (£_/£f) > V2

Fig. 25

S
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Fig. 29

Replotting the amplitude

response curves of Fig. 28, against (V/£fD)
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Fig. 31 Dependence of the Strouhal number for a stationary circular

cylinder, on the Reynolds number (from Raudkivi and Callander)
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Fig. 66  Behaviour of CI in the second ihstability region compared
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Fig. 87 Variation of '"¢" with vibration amplitude (see Fig. 88)
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