A thesis entitled
" ATOMTC AND IONIC ENERGIES AND ELECTRON DENSITIES "

submitted for the degree of
Master of Philosophy
in the
Jniversity of Iondon

by
M. Suleman Yusaf
of
Imperial College Iondon

1976

Abstract

Because of the central role of the hydrogenlike atoms in the socalled $1 / Z$ (Z the atomic number) expansion of atomic and ionic binding energies, the first part of this thesis presents results, both analytic and numerical, for
(a) the X-ray scattering factor
(b) the momentum density
for the case when up to and including hundred shells are filled.

As the number of shells filled gets large, contact is established with asymptotic results for scattering factor obtained from the ThomasFermi theory. The accuracy of this approximate method is critically assessed. In connection with (b) the kinetic energy density is calculated for several shells filled and is again compared with the ThomasFermi result which is proportional to the $5 / 3$ rd power of the electron density.

The second part of the thesis is concerned with the electron densities and energies of atoms and ions, within a self- consistent framework. Results of Boyd on radial electron densities are referred to, but the main emphasis here is the binding energy as a function of \mathbb{N} and N / Z (N the total number of electrons). Numerical data is used for this purpose, from Hartree and Hartree-Fock calculations. Specific results are given for the rave gas elements.

ACKNOWLEDGEMENTS

I would like to express my whole hearted gratitude to my supervisor, Professor N. H. March for his direction and encouragement throughout my studies.

I am also grateful to Dr. Peter Grout for his valuable guidance in the computer programming used in this work.

I am indebted to Southfields Trust for financial support during my studies.

CONTHENTS

Abstract

Acknowledgements
Introduction

(A) X-ray scattering factor

A.I Fourier transform of electron density.
A.II Fock's expression for scattering factor.
A. III Calculation of scattering factor for K, I and M shells from $\rho(x)$.
A.IV Thomas-Fermi scattering factor.
A. V Analytic solution of $G(K)$.
A.VI Numerical solution of Fock's general expression for scattering factor (for large n).
A.VII Plot of scattering factors.
(B) Momentum and kinetic energy densities.
B.I Momentum density.
B.II Kinetic energy density.
B. III Application to hydrogen like atoms.
B.IV Density at origin.
(C) Binding energies of atoms and ions.
C.I Binding energy expressions.
C.II $Z^{\frac{7}{3}}$ dependence from Bohr's formula.
C.III Relation between eigenvalue sum and binding energy.
C.IV Binding energy of ions by $1 / \mathrm{z}$ expansion.
C.V Behaviour of the coefficient of (\mathbb{N} / Z).
(D) Electron densities.
D.I Spatial dependence of TF charge density.

Conclusion

References

Appendices

Introduction

Our main objective in this thesis is to clarify the range of validity of the Thomas-Fermi (TF) approximation. This we have achieved by studying differint properties of atoms, for example X-ray scattering factors, binding energies, kinetic energy densities and charge densities. In each case we have finally made a comparison between the TF and the fully wave mechanical approach through Hartree-Fock-Slater calculations.

The outline of the thesis is as follows. Part A is about the X-ray scattering factor. Here we have made a detailed study of Fock's (1935) general expression for the electron density, and scattering factor and how it could be used to get results for increasing number of shells when only a pure coulomb field is considered. We have developed the $\mathbb{T F}$ scattering factor relation from the charge density and have solved for this scattering factor analytically as well as numerically. This can be represented by a universal curve independent of atomic number Z. Finally fully wave mechanical results are compared numerically with this TF result.

Part B is concerned with the momentum and kinetic energy densities. After giving a brief derivation of both the wave mechanical and the TF expressions we have applied these to hydrogenlike atomic systems. At the end of this part, we have put some emphasis on the electron density the athorigin since it can be used in conjunction with an exact relation between density and its gradient (Steiner, 1963). We have also demonstrated how $\varrho(0)$ is related to the density in momentum space when the momentum is sufficiently large.

In part C our interest is focussed on binding energies in atoms and ions. After out-lining the TF energy and $1 / Z$ expressions we discuss the physical interpretation of the different terms involved. A relation between the binding energy and the sum of eigenvalues is derived. We have also discussed some approximate analytic fits and how they may be refined.

Finally a brief study of self-consistent charge densities is made in part D. Here we have studied the TF universal form in comparison with some of Boyd's (1976) data.

(A) X-ray scattering factor.

Our aim here is to study in some detail the electron density in a neutral hydrogenlike system, always assuming closed shells, having nuclear charge $Z e$ and Z electrons. The reason for our interest in this problem is two-fold:
(i) The hydrogenic problem gives rise to the leading term in the so-called $1 / 7$ expansion for atoms, which we shall discuss in detail in the second half of thesis.
(ii) For large Z , this study will enable us to test the range of validity of the Thomas-Fermi statistical theory applied to the hydrogenlike problem.

Later in the thesis, we shall also comment on the relation between the Thomas-Fermi selfconsistent density and the approximate densities derived, from the Hartree-Fock equations (Boyd, private communication).

(A.I) Fourier transform of electron density.

In order to implement the above programme, in which we wish to study quite a large number of closed shells, we shell find it helpful to calculate the coherent X-ray scattering factor defined by

$$
\begin{equation*}
f(\underline{k})=\int e(\underline{r}) \cdot e^{i \underline{k} \cdot \underline{r}} \cdot d r, \tag{A.I.1}
\end{equation*}
$$

where $P(x)$ is the total electron density in the atomic system under consideration. Actually, below, we construct $P(x)$ by summing the density $\rho_{n}(\underline{x})$ for the nth closed shell over n^{\prime} closed shells i.e

$$
\begin{equation*}
e(\underline{x})=\sum_{n=1}^{n^{\prime}} e_{n}(\underline{x}) \tag{A.I.2}
\end{equation*}
$$

and correspondingly we define the scattering factor $f_{n}(\underline{k})$ for the nth closed shell by

$$
\begin{equation*}
f_{n}(\underline{k})=\int e_{n}(\underline{r}) \cdot e^{i \underline{k} \cdot \underline{r}} \cdot d r \tag{A.I.3}
\end{equation*}
$$

Since by Unsold's theorem $e_{n}(r)$ is spherical as long as the shell is fully closed, (see Pauling and Wilson, 1935) we can use Bauer's expansion of a plane wave in spherical waves, namely

$$
e^{i \underline{k} \cdot \underline{\underline{r}}}=\sum_{I} i^{I} \cdot(21+1) \cdot j_{1}(k x) \cdot P_{1}(\cos \theta),(A \cdot I \cdot 4)
$$

where j_{1} is the usual spherical Bessel function, P_{1} the Legendre polynomial of order 1 , and θ is the angle between \underline{k} and \underline{r}, to write

$$
f_{n}(k)=4 \pi \int_{0}^{\infty} \rho_{n}(r) \cdot \frac{\operatorname{Sin}(k r)}{k r} \cdot r^{2} \cdot d r \cdot(A \cdot I \cdot 5)
$$

(A.II) Fock's expression for scattering factor.

In what follows we shall use Fock's result (Fock, 1935) that the scattering factor $f_{n}(k)$ for the nth closed shell can be obtained in closed form in terms of Tschebyscheff polynomials and the Legendre polynomials already used above.

Fock's result is most compactly summaxized in terms of a new variable X defined by

$$
\begin{equation*}
x=\frac{4 p_{n}^{2}-k^{2}}{4 p_{n}^{2}+k^{2}} \tag{A.II.1}
\end{equation*}
$$

where p_{n}^{2} is mean square momentum for nth shell. It can be shown from the calculation of the momentum density that

$$
p_{n}^{2}=\frac{z^{2}}{n^{2}}
$$

we have derived this value in Appendix 1. Fock's expression is given by

$$
\begin{equation*}
F_{n}(X)=\frac{1}{4 n^{2}} \cdot T_{n}^{:}(X) \cdot(1+X)^{2} \cdot\left[P_{n}^{\prime}(X)-P_{n-f}^{1}(X)\right] \tag{A.II.2}
\end{equation*}
$$

where $T_{n}^{\prime}(X)$ denotes the derivative of the hischebyscheff polynomial while $P_{n}^{1}(X)$ is the derivative, of the Legendre polynomial of order n. This relation, it must be stressed, is valid for singly occupied levels and for a particular closed shell, when we are considering a pure coulomb field.

Before utilizing Frock's result for shells with larger n, it has been checked directly for the K,I and M shells. These are the only shells for which we have made explicit calculations of the electronic charge den-. sits $\ell_{n}(x)$. Calculations have been carried out from relations (A.I.5) and (A.II.2) separately and a comparison is thereby made.

(A.III) Calculation of scattering factor for K, L and M shells from

 electron density $P(x)$.Putting the corresponding values of $e_{n}(x)$ for the K, L and M shells into equation (A.I.5) and evaluating the integral is straight forward. We have given a general solution for the integration of this type in Appendix 2^{*}. We merely quote the final results below.

K-Shell

$$
f_{1}(k)=\frac{32}{\left(4+c^{2}\right)^{2}}
$$

L-Shell

$$
f_{2}(k)=\frac{4\left(2-3 c^{2}+c^{4}\right)}{\left(1+c^{2}\right)^{4}}
$$

M-Shell

$$
f_{3}(k)=\frac{2\left(9-48 E^{2}+72 E^{4}-28 E^{6}+3 E^{8}\right)}{\left(1+E^{2}\right)^{6}}
$$

where

$$
E=3 / 2 C: C=k / z
$$

in the last step atomic units (Bohr radius $a_{0}=1$) having been used.

* Solution is given for the integrals

$$
\begin{aligned}
& \text { (i) } \int_{0}^{\infty} \sum_{1} a_{1} \cdot x^{1} \cdot \sin (E x) \cdot e^{-x} \cdot d x \\
& \text { (ii) } \int_{0}^{\infty} t^{m} \cdot \sin (F t) \cdot e^{-t} \cdot d t
\end{aligned}
$$

Fock's results

Next we take Fock's general expression i.e equation (A.II.2). As the evaluation is fairly straight forward, we shall not give all the details, but merely a typical example.

The results we obtained are precisely half in magnitude of those we have given above using $\varphi(r)$. This is because, as we remarked already, Fock's expression is derived for singly occupied levels where-as the charge densities we have used in equation (A.I.5) for direct calculations have been normalized for doubly occupied levels. In Appendix 3 we summaxize the calculation of $f_{3}(k)$ from Fock's expression to show explicitly how the detail works out, even for $n=3$ the detail is quite lengthy.
(A.IV) Thomas-Fermi scattering factor.

Numerical evaluation of the Focks result is readily carried out with the aid of an electronic computer. But before going into details of this method it will be instructive to calculate the Thomas-Fermi (IFF) scattering factor for hydrogenlike atoms.

The TTF charge density for a pure coulomb field is defined as

$$
\varphi(x)=\left\{\begin{array}{l}
\frac{8 \pi}{3 h^{3}}(2 m)^{3 / 2} \cdot\left(\mathbb{E}_{f}+\frac{z e^{2}}{r}\right)^{3 / 2}, \text { for } r<\frac{Z e^{2}}{\left|E_{f}\right|} \\
0 \quad \text { otherwise, }
\end{array}\right.
$$

where h, m, e, Z, and r denote respectively Planck's constant, electron mass, electronic charge, atomic number and distance from nucleus. E_{f} being the total energy of the fastest electron.

The scattering factor for the total electron density $\rho(x)$ is already defined by equation (A.I.1) which has been modified to

$$
\begin{aligned}
f(k) & =\int_{0}^{r_{c}} \rho(r) \cdot \frac{\sin (k r)}{k r} \cdot 4 \pi r^{2} d r \\
\text { where } \quad & r_{c}=\frac{z e^{2}}{\left|E_{f}\right|} .
\end{aligned}
$$

Putting in the value of $P(r)$ from equation (A.IV.1) we get

$$
f(k)=\frac{32 \pi^{2}}{3 h^{3}} \cdot(2 m)^{3 / 2} \int_{0}^{r_{C}} r^{2}\left(E_{f}+\frac{z e^{2}}{r}\right)^{3 / 2} \cdot \frac{\operatorname{Sin}(k r)}{k r} d r
$$

Again substituting

$$
r=r_{c} \cdot s
$$

where r_{c} is the maximum atomic radius, we obtain

$$
f(k)=R \cdot \int_{0}^{1} s^{2}\left(E_{f}+\frac{z e^{2}}{r_{c} s}\right)^{3 / 2} \cdot \frac{\sin \left(k \cdot r_{c} \cdot s\right)}{k \cdot r_{c} \cdot s} r_{c}^{3} \cdot d s
$$

where

$$
R=\frac{32 \pi^{2}}{3 h^{3}}(2 m)^{3 / 2}
$$

Further simplification is possible if we put $k \cdot r_{c}=K \quad$ where k, we recall, is equal to $\frac{4 \pi \operatorname{Sin}(\theta / 2)}{\lambda}, \theta$ being the scattering angle for X-rays, and λ the X-ray wave length. Then we find

$$
f(K)=R \cdot r_{c}^{3} \int_{0}^{1}\left(E_{f^{+}} \frac{Z e^{2}}{r_{c} s}\right)^{3 / 2} \cdot \frac{\operatorname{Sin}(K s)}{K s} \cdot s^{2} d s
$$

But in a pure coulomb field

$$
\left|E_{f}\right|=\frac{z_{i} e^{2}}{r_{c}}
$$

Therefore, being more explicit we can write

$$
f(K)=R \cdot r_{c}^{3} \cdot\left|E_{f}^{3 / 2}\right|^{2} \cdot \int_{0}^{1}\left(\frac{1}{s}-1\right)^{3 / 2} \cdot \frac{\operatorname{Sin}(K s)}{K s} \cdot s^{2} \cdot d s
$$

Substituting value of r_{c} from above we get

$$
f(K)=R \cdot \frac{\left(Z e^{2}\right)^{3}}{\left|E_{\mathrm{Y}}\right|^{3 / 2}} \int_{0}^{1}\left(\frac{1}{s}-1\right)^{3 / 2} \cdot \frac{\sin (K s)}{K s} \cdot s^{2} \cdot d s
$$

which we can express in the form

$$
\begin{equation*}
f(K)=R \cdot \frac{\left(Z e^{2}\right)^{3}}{\left|E_{f}\right|^{3 / 2}} \cdot G(K) \tag{A.IV.2}
\end{equation*}
$$

where

$$
G(K)=\int_{0}^{1}\left(\frac{1}{s}-1\right)^{3 / 2} \cdot \frac{\operatorname{Sin}(K s)}{K s} \cdot s^{2} \cdot d s
$$

We shall come back to the evaluation of $G(K)$ later but now we give attention to the other factors in equation (A.IV.2). Integration of equation (A.IV.1) over r and solving for E_{f} gives us

$$
\begin{equation*}
E_{f}=-\frac{z^{2}}{\mathbb{N}^{\frac{2}{3}}}: \frac{1}{18^{\frac{1}{3}}} \cdot \frac{e^{2}}{a_{0}} \tag{A.IV.3}
\end{equation*}
$$

(see, for example March, 1975) where N is total number of electrons present in the system. It is related to n^{\prime}, total number of closed shells in the system, by the following relation

$$
N=n^{\prime}\left(n^{4}+1\right)\left(2 n^{2}+1\right) / 3
$$

since $N=\sum_{n=1}^{n^{2}} 2 n^{2} \quad$,
n being the principle quantum number. Putting back the value of N in equation (A.IV.3) we get

$$
E_{f}=-\frac{z^{2} e^{2}}{a_{0}}\left(\frac{3}{n^{\prime}\left(n^{\prime}+1\right)\left(2 n^{\prime}+1\right)}\right)^{2 / 3} \cdot \frac{1}{18^{\frac{1}{3}}},
$$

and therefore

$$
\begin{equation*}
\left|E_{f}^{3 / 2}\right|^{3} \frac{3 z^{3} \cdot e^{3}}{n^{\prime}\left(n^{\prime}+1\right) \cdot\left(2 n^{\prime}+1\right) a_{0}^{3 / 2} \cdot 18^{\frac{1}{2}}} \tag{A.IV.4}
\end{equation*}
$$

Hence the TF scattering factor can be written, after putting (A.IV.4) in (A.IV.2), as

$$
f(K)=\frac{R \cdot\left(2 e^{2}\right)^{3} \cdot n^{1}\left(n^{1}+1\right)\left(2 n^{1}+1\right) 18^{\frac{1}{2}} 20_{3 / 2}^{3 / 2}}{z^{3} \cdot e^{3} \cdot 3} \cdot G(K)
$$

and after simplification we obtain

$$
f(K)=R \cdot \frac{n^{\prime}\left(n^{1}+1\right)\left(2 n^{1}+1\right)}{3} \cdot 18^{\frac{1}{2}} \cdot e^{3} \cdot a_{0}^{3 / 2} G(K)
$$

(A.IV.5)

Substituting for R and using atomic units, which we shall employ in most of the calculations, i.e $m=e=h=1$, equation (A.IV.5) is easily reduced to

$$
\begin{equation*}
f(K)=5.0928 \cdot \frac{n^{\prime}\left(n^{\prime}+1\right)\left(2 n^{\prime}+1\right)}{3} \cdot G(K) \tag{A.IV.6}
\end{equation*}
$$

We can get a universal form out of this expression if we divide both sides by $-N$. i.e

$$
\begin{equation*}
\frac{f(K)}{N}=5.0928 \cdot G(K) \tag{A.IV.7}
\end{equation*}
$$

where the right hand side is now independent of atomic number Z. A check
can be made by putting $K=0$ in equation (A.IV.7). Equation (A.I.1) for $K=0$ gives us

$$
\begin{equation*}
f(0)=\int_{0}^{\infty} f(r) \cdot d r=\mathbb{N} \tag{A.IV.8}
\end{equation*}
$$

provided $\varrho(r)$ is properly normalized for N electrons. Dividing both sides by N we get

$$
\frac{f(0)}{\mathrm{N}}=1
$$

$$
G(\sigma) \text { is evaluated and found equal to } 0.1963 \text {. Therefore from }
$$ equation (A.IV.7) we get

$$
\frac{f(0)}{N}=0.99971
$$

Since the results from equations (A.IV.7) and (A.IV.8) agree with each other we can safely assume that our numerical as well as analytical solutions are correct at least at $K=0$.

Numerically equation (A.IV.7) has been solved for different K's with the help of an electronic computer using Simpson's rule for numerical integration. We have listed the programme in Appendix 4. The results are recorded in Table I.

(A.V) Analytic solution of. $G(K)$.

Though we have evaluated the integral $G(K)$ numerically, yet it is of some interest to examine whether a useful analytic solution can be found. $G(K)$ is defined by equation (A.IV.2). Expanding $\operatorname{Sin}(K s)$ in powers of $K s$
then yields

$$
G(K)=\frac{1}{K} \int_{0}^{1} \sum_{m=1}^{1} \frac{(-1)^{m-1} \cdot K^{2 m-1}}{(2 m-1)!} \cdot s^{2 m-3 / 2} \cdot(1-s)^{3 / 2} \cdot d s \cdot
$$

In terms of the Beta function defined as

$$
\begin{aligned}
\beta_{(m+1, n+1)} & =\int_{0}^{1} t^{m} \cdot(1-t)^{n} \cdot d t \\
& =\frac{\frac{T(m+1) \cdot T(n+1)}{T(n+m+2)}}{}
\end{aligned}
$$

(see, for example, Bartlett and Fife, 1974) we can express $G(K)$ as

$$
G(K)=\frac{1}{K} \sum_{m=1}^{1} \frac{(-1)^{m-1} \cdot K^{2 m-1}}{(2 m-1)^{!}} \cdot \frac{T_{\left(2 m-\frac{1}{2}\right)} \cdot T_{(5 / 2)}}{T_{(2 m+2)}}
$$

We simplify the term

$$
\frac{T\left(2 m-\frac{1}{2}\right) \cdot T(5 / 2)}{T(2 m+2)}=\frac{3}{4(2 m+1)} \frac{T\left(2 m+\frac{1}{2}\right) \cdot T_{\left(\frac{1}{2}\right)}^{\left(2 m-\frac{1}{2}\right) \cdot T(2 m+1)}}{(2)}
$$

Since in general

$$
T_{(n+1)}=n \cdot P_{n}
$$

Therefore in terms of the Beta function we get

$$
\begin{equation*}
\frac{T_{\left(2 m-\frac{1}{2}\right)} \cdot T_{(5 / 2)}}{T_{(2 m+2)}}=\frac{3 \cdot \beta_{\left(2 m+\frac{1}{2}, \frac{1}{2}\right)}}{4(2 m+1) \cdot\left(2 m-\frac{1}{2}\right)} \tag{A.V.3}
\end{equation*}
$$

Using the identity

$$
\beta\left(n, \frac{1}{2}\right)=\beta(n, n) \cdot 2^{2 n-1}
$$

we can write

$$
\beta_{\left(2 m+\frac{1}{2}, \frac{1}{2}\right)}=\mathcal{E}_{(p, p) \cdot 2^{4 m},}
$$

where

$$
p \quad=\quad 2 m+\frac{1}{2}
$$

Equation (A.V.3) then becomes

$$
\begin{equation*}
\frac{\left.T_{(2 m-1}\right) \cdot T_{(5 / 2)}}{T_{(2 m+2)}}=\frac{3 \cdot P_{(p, p)} \cdot 2^{4 m}}{4(2 m+1)\left(2 m-\frac{1}{2}\right)} \cdot \tag{A.V.4}
\end{equation*}
$$

Again we can make use of the definition of the Beta function to write (A.V.4) in integral form. We have

$$
\mathcal{B}(p, p)=\int_{0}^{1}[s(1-s)]^{p-1} \cdot d s
$$

Putting $s=\sin ^{2} A$, therefore $d s=2 \sin A \cdot \cos A d A$ it follows that

$$
\begin{aligned}
s(1-s) & =\sin _{2}^{2} \cdot \cos A=\frac{1}{4} \sin ^{2}(2 A) \\
s & =0, \quad A=0 ; \text { and for } \quad s=1, A=\pi / 2
\end{aligned}
$$

For
therefore

$$
\beta(p, p)=\int_{0}^{\pi / 2}[\sin (2 A) / 2]^{2 p-2} \cdot \sin (2 A) \cdot d A
$$

Substituting back

$$
p=2 m+\frac{1}{2} \quad \text { we get }
$$

$$
\beta(p, p)=2^{-2\left(2 m-\frac{1}{2}\right)} \int_{0}^{\pi / 2} \sin ^{4 m}(2 A) \cdot d A
$$

Using recurrence relation for integration of $\operatorname{Sin}^{n} x$ we obtain

$$
\mathcal{B}(p, p)=2^{-4 m+1} \cdot \frac{4 m-1}{4 m} \cdot \int_{0}^{\pi / 2} \sin (2 A) \cdot d A
$$

We can carry on until, power $(4 m-c)=0$ whereby

$$
\int_{0}^{\pi / 2} \sin ^{0}(2 A) \cdot d A=\pi / 2
$$

c is arbitrary constant and has even values $2,4,6, \ldots \ldots 4 m$. Ultimately we arrive at the result

$$
P(p, p)=2^{-4 m+1} \cdot \frac{(4 m-1)(4 m-3) \ldots \ldots 5 \cdot 3 \cdot 1}{4 m(4 m-2)(4 m-4) \ldots 4 \cdot 2} \cdot \pi / 2
$$

Putting this back into equation (A.V.4) it follows that

$$
\frac{T\left(2 m-\frac{1}{2}\right) \cdot T(5 / 2)}{T_{(2 m+2)}^{T}}=\frac{3(4 m-1)(4 m-3) \ldots \ldots . \cdot 5 \cdot 3.1}{2} \frac{\pi / 2}{4 m(4 m-2) \ldots \ldots . .4 \cdot 2},
$$

which can be simplified to give

$$
\left.\frac{\left.T_{(2 m-1}^{2}\right) \cdot T_{(5 / 2)}}{T_{(2 m+2)}}=\frac{3}{2} \cdot \frac{(4 m-1)(4 m-3){ }^{2} \cdot\left(\begin{array}{c}
2 \\
2
\end{array}\right.}{(4 m)!(2 m+1)(2 m-1} \frac{1}{2}\right) \cdot \pi / 2
$$

Inserting this finally into $G(K)$ ie equation (A.V.2) we obtain the required analytic expression, namely

$$
G(K)=\sum_{m=1}^{1} \prod_{q=1}^{21} \cdot \frac{(-1)^{m-1} \cdot K^{2 m-2}}{(2 m-1)!} \cdot \frac{3}{2} \cdot \frac{(4 m-2 q+1)^{2}}{(4 m)!(2 m+1)\left(2 m-\frac{1}{2}\right)} \cdot \pi / 2
$$

$$
\ldots(A . V .7)
$$

This exact solution of $G(K)$ has been numerically solved for different values of K and 1. The results are given in Table I.

Table I

Numerical and analytical solution of the TF scattering factor.

K$\left(K=k \cdot r_{c}\right)$	G(K)				f / Z	
	Numerical	Analytical			Numerica	Analytical
		$1=6$	$1=19$	$1=30$		$1=30$
0.000	0.19627	0.19635	0.19635	0.19635	1.00000	0.99971
1.0	0.18972	0.19033	0.19033	0.19033	0.96621	0.96930
2.0	0.17289	0.17356	0.17356	0.17356	0.88048	0.88392
3.0	0.14877	0.14952	0.14952	0.14952	0.75766	0.76149
4.0	0.12191	0.12274	0.12271	0.12271	0.62087	0.62494
5.0	0.09652	0.09753	0.09732	0.09732	0.49154	0.49565
6.0	0.07540	0.07729*	0.07618	0.07618	0.38399	0.38798
7.0	0.05958		0.06034	0.06034	0.30344	0.30728
8.0	0.04858		0.04931	0.04931	0.24738	0.25114
9.0	0.04106		0.04181	0.04181	0.20912	0.21292
10.0	0.03565		0.03641	0.03641	0.18157	0.18544
11.0	0.03134		0.03212	0.03212	0.15962	0.16356
12.0	0.02887		0.02842	0.02842	0.14083	0.14475
13.0	0.02348		0.02522	0.02522	0.12461	0.12845
14.0	0.02180		0.02254	0.02254	0.11103	0.11479
15.0	0.01963		0.02035	0.02037	0.09999	0.10372
16.	0.01786		0.01839*	0.01860	0.09096	0.09473
17.0	0.01636		.	0.01710	0.08330	0.08709
18.0	0.01502			0.01577	0.07649	0.08030
19.0	0.01381			0.01455	0.07035	0.07411
20.0	0.01274			0.01347	0.06488	0.06858
21.0	0.01180			0.01252	0.06012	0.06376
22.0	0.01099			0.01170	0.05598	0.05960
23.0	0.01028			0.01099	0.05233	0.05599
24.0	0.00962			0.01037	0.04901	0.05283
25.0	0.00903			0.01010	0.04596	0.05145

[^0]We have examined the solution for three different values of 'I' when keeping $K_{\text {max }}$ constant at 25 .
(i) $1=6$: As shown in plot 1 curve is smooth and in agreement with numerical solution curve, up to $K \leqslant 5$. But from there onwards it starts rising rapidly. In this region we cannot rely on the analytic solution.
(ii) $I=19$: This time, the curve remains smooth and acceptable until $K \leqslant 16$ (see plot 1). After that the curve begins to fall rapidly (dotted curve).
(iii) $1=30$: Here we see that the solution remains acceptable over the whole range of K (plot 2).

We have also found that for odd values of 'I' the curve ultimately finishes up (where the behaviour becomes unacceptable) as a rapidly decreasing curve, whereas if ' 1 ' is chosen to be even the reverse is true. Table I allows us to draw one important conclusion about the analytic solution we have obtained.

To afford an acceptable solution we must take the value of 'I', total number of terms in the summation, more than the selected maximum value of K, otherwise the solution will start behaving differently before K becomes equal to $K_{\text {max }}$. This conclusion is demonstrated in the plots presented here.

(A.VI) Numerical evaluation of Frock's general expression for scattering

 factor.Now we come back to Fork's general expression for the atomic scattering factor given in equation (A.II.2). As mentioned earlier we shall examine it numerically for large n.

For use in the computer programme, what we require are recurrence relations for the Tchebyscheff and Legendre polynomials. Therefore we first derive the required forms of these as follows :

$$
\begin{aligned}
& \text { Into the definition of } T_{n}(X) \text {, namely } \\
& \qquad T_{n}(X)=\operatorname{Cos}\left(n \operatorname{Cos}^{-1} X\right)
\end{aligned}
$$

let us substitute

$$
X \quad=\quad \operatorname{Cos} Y
$$

Therefore

$$
\begin{equation*}
\mathrm{T}_{\mathrm{n}}(\mathrm{X})=\operatorname{Cos}(\mathrm{nY}) \tag{A.VI.1}
\end{equation*}
$$

Evidently

$$
T_{n-1}(X)=\cos [(n-1) Y]
$$

Taking the derivative of (A.VI.1) we obtain

$$
T_{n}^{\prime}(X)=\frac{\partial T_{n}}{d Y} \cdot \frac{d Y}{d X}
$$

After substituting the values we get

$$
\mathbb{T}_{\mathrm{n}}^{1}(\mathrm{X})=\operatorname{Sin}(\mathrm{nY}) \cdot n \cdot \frac{1}{\left(1-\mathrm{X}^{2}\right)^{\frac{1}{2}}}
$$

Similarly we find

$$
\operatorname{Ti}_{n-1}^{1}(X)=\frac{\sin [(n-1) Y] \cdot(n-1)}{\left(1-X^{2}\right)^{\frac{1}{2}}}
$$

We now expand in the form

$$
T_{n-1}^{\mathrm{P}}(\mathrm{X})=\frac{(n-1)}{\left(1-X^{2}\right)^{\frac{1}{2}}} \cdot[\operatorname{Cos} Y \cdot \operatorname{Sin}(n Y)-\operatorname{Cos}(n Y) \cdot \operatorname{Sin}(Y)],
$$

which is readily rewritten as

$$
T_{n-1}(X)=\frac{(n-1)}{\left(1-X^{2}\right)^{\frac{1}{2}}} \cdot\left[X \cdot \sin (n Y)-T_{n}(X) \cdot \sin Y\right]
$$

more usefully

$$
\begin{equation*}
T_{n-1}^{P}(X)=\frac{(n-1) \cdot X \cdot \operatorname{Sin}(n Y)}{\left(1-X^{2}\right)^{\frac{1}{2}}}-(n-1) \cdot T_{n}(X) \tag{A.VI.4}
\end{equation*}
$$

since

$$
\sin Y=\left(1-X^{2}\right)^{\frac{1}{2}}
$$

Simplifying (A.VI.4) we find

$$
\begin{equation*}
\operatorname{Sin}(n Y)=\frac{T_{n-1}^{\prime}(X)+(n-1) \cdot T_{n}(X)}{(n-1) \cdot X} \cdot\left(1-X^{2}\right)^{\frac{1}{2}} \tag{A.VI.5}
\end{equation*}
$$

Going back to equation (A.VI.2) where

$$
T_{n-1}(X)=\cos ((n-1) Y)
$$

expanding it into Cosine and Sine terms we find

$$
T_{n-1}(X)=\cos Y \cdot \operatorname{Cos}(n Y)+\sin Y \cdot \operatorname{Sin}(n Y),
$$

which is equivalent to

$$
T_{n-1}(X)=X \cdot T_{n}(X)+\left(1-X^{2}\right)^{\frac{1}{2}} \cdot \sin (n Y)
$$

Solving this for $\operatorname{Sin}(\mathrm{nY})$ yields

$$
\begin{equation*}
\operatorname{Sin}(n Y)=\frac{\operatorname{Tn}-1(X)-X \cdot \mathbb{T}_{n}(X)}{\left(1-X^{2}\right)^{\frac{1}{2}}} \tag{A.VI.6}
\end{equation*}
$$

Comparing equations (A.VI.5) and (A.VI.6) we get

$$
\frac{T_{n-1}(X)-X T_{n}(X)}{\left(1-X^{2}\right)^{\frac{1}{2}}}=\frac{T_{n-1}^{1}(X)+(n-1) \cdot T_{n}(X)}{(n-1) X} \cdot\left(1-X^{2}\right)^{\frac{1}{2}}
$$

Sorting out the terms and multiplying both sides by a factor $\frac{(n-1) X}{\left(1-X^{2}\right)^{\frac{1}{2}}}$ we get

$$
T_{n-1}^{\prime}(x)=\frac{(n-1) x}{1-x^{2}} \cdot T_{n-1}(x)-T_{n}(x)\left[\frac{(n-1) x^{2}}{1-x^{2}}+(n-1)\right]
$$

Further simplification gives us

$$
\frac{T_{n}^{\prime}}{n-1}(X)=(n-1) \cdot \frac{X \cdot T_{n-1}(X)-T_{n}(X)}{1-X^{2}}
$$

Finally replacing ($n-1$) by n yields

$$
T_{n}^{\prime}(X)=n \cdot \frac{X \cdot T_{n}(X)+T_{n+1}(X)}{1-X^{2}}
$$

From this relation it is now easy to find $T_{n}^{1}(X)$ for an arbitrary order n.

Legendre polynomials

The procedure for the Legendre polynomials is essentially the same, and we merely quote the final recurrence relation.

$$
\begin{equation*}
P_{n}^{\prime}(X)=n \frac{X \cdot P_{n}(X)-P_{n-1}(X)}{\left(X^{2}-1\right)} \tag{A.VI.9}
\end{equation*}
$$

Putting values of $T_{n}^{\prime}(X)$ from equation (A.VI.8) and of. $P_{n}^{\prime}(X)$ from (A.VI.9) back in equation (A.II.2) we get the required general expression of Fock in recurrence form, suitable for use in the computer programme (see Appendix 4).

Table II summarizes the results of the computer calculations for different shells. The symbols used in the programe are presenting the following physical quantities:
$\mathrm{N} \quad$: the total number of shells considered at a time. It corresponds to n^{\prime} we have used above.

X : the parameter used in Fock's expression. Same as we have used above.

F : corresponds to f used above and represents the scattering factor for a particular shell, say the $n t h$, for different values of K, ADDF : the total scattering factor for all the shells is being added up in here up to the nth shell for different K's.
F / Z : the scattering factor per electron.
$A K$: corresponds to our $k=\frac{4 \pi \sin \theta / 2}{\lambda}$.
$B K$: corresponds to the K used in the IF theory.

ADCF
F / Z

$8 K$

$A K$

トートトゥトrufuñ

1.529

[^1]
1． 4404.73

	X	F	ADDF	$F / 2$	BK	AK
6	1．020939003 ： $9365{ }^{3} 9342$ － 834770 Ö 38 $-8939+296$ －60712－n 34 ． 530534937				$\begin{array}{r} 2.312262007 \\ 4.624524615 \\ 4.93678622 \\ 9.24948 .29 \\ 11: 56131093 \\ 13.875572644 \\ 16.135834052 \end{array}$	$50 c+000$ 150 35 3 0.0
7	1．0n305：nco －95923． 96 － $88230=42$ ：978682天25			1．Gu00u9030 － $625+8.3250$ － 300214318 － 103746597 144545436 -144543515 -093432430		
8						
9	1.00032007 － 99683045 －97234．739 － 92535751 －893デブー92 $.8581=931$ $: 775=54717$			1.003500030 $: 925647448$ -328397163 － 3555756453 19779 1642 － 15129.338 －095053089		
10	$1.00931=003$ －9812 ： $9608 \times 7 \times 93$ －9263 2×23 ： 981753073 ． 84 ： 7753595756			1. 		
11						

71

2	245672 ufe＋ 6
491． 971581222	－ 2457814 ＋ 46
5919：374745768	＊．251j533JE＋－ 6
7779．554351 +45	． $21826 \mathrm{~b} 52+36$
－297－01：533257	－＜u－73459E＋ 68
$4720.120: 5241$	＊－13j7513jE＋ 66
了24i：？ 245 Butc7	＊．15j744230＋16
$1972 \cdot 65784389$	．139J4977F＋06
1－44＊ 55535492	＊＊1973197E＋36
364.455315458	＊1220．36E7̇＋＊6
$24.44 \div 3824$ C8	83091．276457634
ј上． 573353 c 6	76259．339752197
35．423273079	66063．13C270 847
75.073021955	59229．375283312
134．7A16962́8	$53567 \cdot 542749683$
249.7534675	48695．755657034
256．355133177	44773． 39345126
212． 11211243	
139.332162534	38278.131371508

54．557593635 38595． 36979436

$134.43 j 3325427305.637540439$
130.7175754425435 .391471882
71.73053176823258 .505558067

－ $36038243 \mathrm{E}+06$
－99952r198
－ 96275 ن 654
－ 418527815
$-86,735850$
$: 792974974$
－714269321
643392154
+553127880
.50312089
$\begin{array}{r}4 \\ \cdot 436209742 \\ \hline\end{array}$
436209742
$\cdot 351121114$
－ 334345111
－ 234340101
245053042
-204211329
－ $23340 \leq 318$
233403318
$\cdot 213315536$ － 241555791
－1742123621
－162592112

83516348	3¢：ULubut
475424522	
9673＜64E	
95349144	9 ${ }^{\text {a }}$
265721と	－1L500E＋j3
E539\％	－1a，60eta3
566	－1j5cuta3
CL	15 L

(A.VII) Plot of scattering factor.

We have plotted f / Z, i.e the scattering factor per electron for the different methods, namely, Fock's and both coulomb and self-consistent results from the TF method, against K. Very good numerical agreement was found between the TF coulomb results and Fock's results for $n^{2} \geqslant 5$. We have also plotted results for $n^{\prime}=1$ (thin curve) . As n^{\prime} goes from 1 to 5 the curve approches the TF curve and for $n^{\prime}=5$ it coincides with it to graphical accuracy.

We have also plotted the self-consistent IF data of X-ray scattering (see, for example, Pirenne, 1945). Another important curve we have drawn here is from self-consistent Hartree and Hartree-Fock calculations given by Berghuis, IJbertha, Haanappel and Potters (1955). We have plotted results for $\mathbb{N e}$, which is the only example of a closed shell atom, given in the above reference.

Conclusion

The main conclusion drawn from the above calculations of the scattering factor is that for hydrogenlike atoms the results of Fock and the TF theory agree to graphical accuracy if $n^{\prime} \geqslant 5$ over quite a wide range of K. We expect however, since the TF density cuts off to zero at a finite radius, that the \mathbb{T} scattering factor will be in error at really large K .
(B) Momentum and kinetic energy densities.

In this section first we focus our attention on the momentum density, since it is directly related to the kinetic energy which we shall also study in some detail. Relationsfor wave mechanics and for the semiclassical TF theory are given along with the applications to hydrogenlike atoms and comparison is made between the results. Finally a relation is derived for the exact density at origin with comments on its relation to the momentum density for the limit of high momentum.

(B.I) The momentum density.

Here again we shall like to consider a pure coulomb field for evaluating the momentum density. We assume that $\Psi_{n, 1, m}(p)$ is the momentum wave function of an electron, $n, I_{\text {a }}$ and n are respectively, principle, orbital and magnetic quantum numbers defining the electron state. The offdiagonal momentum density for $h^{\text {the }}$ th closed shell is defined by

$$
\begin{equation*}
E_{n}\left(p^{i}, p\right)=\sum_{1 m} \psi_{n l m}^{*}\left(p^{i}\right) \cdot \psi_{n l m}(p) \tag{B.I.1}
\end{equation*}
$$

The diagonal form of this density matrix for a pure coulomb field is given by

$$
\begin{equation*}
\sum_{n}(p, p)=\frac{8 \cdot p_{n}^{5} \cdot n^{2}}{\Pi^{2} \cdot\left(p_{n}^{2}+p^{2}\right)^{4}} \tag{B.I.2}
\end{equation*}
$$

where p_{n}^{2} is the mean square momentum for principle quantum number n. This has been evaluated in Appendix 1. The off-diagonal form is given by

$$
\sum_{n}\left(p^{\prime}, p\right)=\frac{8 \cdot p_{n}^{5}}{\pi^{2}\left(p_{n}^{2}+\frac{2}{p}\right)^{2}\left(p_{n}^{2}+\frac{p}{p}\right)^{2}} \quad \frac{n \cdot \operatorname{Sin}(n Q)}{\sin Q}
$$

Our Q here is equivalent to Fock's ω (see Fock, 1935). The momentum space density matrix $\sum_{n}(\underset{\sim}{p}, \underline{\sim})$ can be related to $\underset{\sim}{r}$ space density $\sum_{n}(\underset{\sim}{r}, \underset{\sim}{r})$, essentially, through ${ }_{|c|}^{\text {Fourier }}$ transform. We then find the same angular dependence in r space. Here $\varrho_{n}(p, p)$ is normalized only for singly occupied levels inside the shell i.e

$$
4 \pi \int_{0}^{\infty} e_{n}(p, p) \cdot p^{2} \cdot d p=n^{2}
$$

If the system contains n^{\prime} closed shells then the total momentum density for the system is obviously

$$
e(p)=\sum_{n=1}^{n^{\prime}} e_{n}(p, p) .
$$

Using equation (B.I.2) we find

$$
\begin{equation*}
e(p)=\sum_{n=1}^{n^{\prime}} \frac{8 \cdot z^{5}}{\pi^{2} n^{3}\left[\frac{z^{2}}{n^{2}}+p^{2}\right]^{4}} \tag{B.I.3}
\end{equation*}
$$

where we have substituted

$$
p_{n}^{2}=\frac{z^{2}}{n^{2}}
$$

as given in Appendix 1. At $p=0$. the above relation (B.I.3) is simply written as

$$
e(0)=\frac{8}{\pi^{2} \cdot z^{5}} \cdot \sum_{n=1}^{n^{1}} n^{5},
$$

whereas at sufficiently large p, the explicit form of $\ell(p)$ becomes

$$
\left.P(p)\right|_{\text {Iarge } p} \sim \frac{1}{p^{8}} \cdot \frac{8 z^{5}}{\pi^{2}} \cdot \sum_{n=1}^{n^{1}} \frac{1}{n^{3}} \cdot ـ^{(B . I .4)}
$$

Equation (B.I.4) is related to $\sum(x=0)$ which we shall discuss later on.

(B.II) Kinetic energy density.

(i) Wave mechanical relation.

The momentum is related to the kinetic energy by the following relation.

$$
\begin{equation*}
T=\left\langle\frac{p^{2}}{2 m}\right\rangle \tag{B.II.1}
\end{equation*}
$$

where T is kinetic energy. Otherwise we can write it in terms of mean square momentum p_{n}^{2}, i.e

$$
T=\frac{n_{n}^{2}}{2 m}
$$

since

$$
<p^{2}>=\quad p_{n}^{2} \quad(\text { see Appendix } 1)
$$

We can also make use of Bohr's coulomb field energy relation and Virial theorem i.e

$$
2 T+V=0
$$

to write T as

$$
T=\frac{z^{2}}{2 n^{2}} \cdot \frac{e^{2}}{a_{0}}
$$

where all the parameters have their usual meanings. The wave mechanical form of the kinetic energy density can be obtained from equation (B.II.1)
by using the definition of the average square momentum, i.e

$$
\left\langle\frac{p^{2}}{2 m}\right\rangle=\int \psi^{*} \frac{p^{2}}{2 m} \psi d \tilde{l}
$$

Since the momenturn p in quantum mechanics is represented by the operator $\frac{\hbar}{i} \nabla$, we have

$$
<\frac{p^{2}}{2 m}>=-\frac{\hbar^{2}}{2 m} \cdot \int \psi^{*} \nabla^{2} \psi \quad \cdot d \tilde{l}
$$

which finally yields, by integrating by parts,

$$
T=\frac{\hbar^{2}}{2 m} \int|\nabla \psi|^{2} \cdot d \tilde{d} \quad \cdot \ldots \quad \text { (B.II.2) }
$$

The kinetic energy per unit volume is therefore given by

$$
t_{m}[\theta]=\frac{\hbar^{2}}{2 m} \cdot|\nabla \psi|^{2}
$$

We shall use this relation when we study the application to hydrogenlike atoms later.

(ii) ITP relation.

The TF approximation has its roots in statistical consideration of N free electrons moving in a volume \quad. The total kinetic energy in free electron theory is given by

$$
T \quad=N \cdot \int_{0}^{p_{f}} \frac{p^{2}}{2 m} \cdot \frac{4 \cdot \pi \cdot p^{2}}{4 / 3 \cdot \pi \cdot p_{4}^{3}} \cdot d p
$$

where $\frac{p^{2}}{2 m}$ is the kinetic energy of an electron with momentum p. The remainder of the integrand is simply the probability of an electron in the

Fermi gas having momentum of magnitude between p and $p+d p$. The first limitation of the IF theory, as is clear from the above argument is that it only holds for a system of non-intracting particles.

Integration of the above expression gives us the following result for T

$$
T=\frac{3}{5} \cdot N \cdot \frac{p_{f}^{2}}{2 m}
$$

i.e the mean kinetic energy per particle is $3 / 5$ of the Fermi energy \mathbb{F}_{f}. Thus from the above result the kinetic energy per unit volume, say t, is given by

$$
t=\frac{3}{5} \cdot \frac{N}{v} \cdot \frac{p_{f}^{2}}{2 m}
$$

Using the definition of phase space with occupied volume $\frac{4}{3} \pi p_{f}^{3}$, we can write electron density as

$$
O(x)=\frac{2}{h^{3}} \cdot \frac{4 \pi}{3} \cdot p_{f}^{3}(x)
$$

where h is Planck's constant, h^{3} being the volume of a basic cell in phase space which can hold 2 electrons with opposite spins. Using free electron relations locally we can write $0=N / v$, therefore

$$
p_{\mathrm{f}}=\left[\frac{N}{v} \cdot \frac{3 h^{3}}{8 \pi}\right]^{\frac{1}{3}}
$$

Putting it in equation (B.II.4), we obtain

$$
t=\left[\frac{N}{v}\right]^{5 / 3} \cdot \frac{3 h^{2}}{10 m} \cdot\left(\frac{3}{8 \pi}\right)^{\frac{2}{3}}
$$

or in an inhomogeneous electron gas

$$
5 / 3
$$

$$
t_{r}[\dot{\rho}]=C_{k} \cdot \rho(r)
$$

\qquad
where

$$
C_{k}=\frac{3 h^{2}}{10 m} \cdot\left(\frac{3}{8 \pi}\right)^{2 / 3}
$$

(see, for example, March 1975). The above TF $5 / 3$ rd relation between $t_{r}[0]$ and charge density $\quad(x)$ has evidently been obtained by using free electron relations locally.

We can add a comection term arising from the density gradient in the inhomogeneous electron gas. This can be motivated through the wave mechanical relation for the kinetic energy of a single particle. In this case, assuming the ground state wave function ψ to be real, we can write

Hence from (B.II.3) we have

$$
t_{r}[\theta]=\frac{\hbar^{2}}{8 m} \cdot \frac{(\nabla P)^{2}}{\rho} .
$$

This suggests the following type of comrection to the TF kinetic energy density, namely

$$
\begin{equation*}
t_{r}[\rho]=c_{k} \cdot \sum(x)+\lambda \cdot \frac{\hbar^{2}}{\delta m} \cdot \frac{(\nabla \rho)^{2}}{\rho} \tag{B.II.6}
\end{equation*}
$$

which was first proposed by Von Weizscker, with $\lambda=1$ as suggested by the above onemparticle example. We now know from the later work of Kirznitz that λ is, in fact, $1 / 9$.

The important thing is to compare equation (B.II.3) summed over occupied states and (B.II.5). This is done in the next section where we have applied each of these formulae to calculate the total kinetic energy for $K, K+I$ and $K+I+M$ shells of the hydrogenlike atoms.

(B.III) Appiication to hydrogenlike atomic systems.

(i) Wave mechanical results.

The normalized ground state wave functions for a system of Z electrons and nuclear charge Ze are taken from Pauling and Wilson (1935). The calculations needed to obtain the kinetic energy are straight forward. We need only the radial wave functions since we are considering the closed shell cases only. According to Unsold's theorem the angular parts of wave functions contribute either unity or a constant.

The exact relation (B.II.3) for the kinetic energy density is true for one particle only. But since we are interested in the closed shell contributions therefore we have to multiply it by a factor $2(21+1)$, total number of states in a shell, where 1 is the orbital quantum number to get the total contribution of the closed orbjtal. To take account of this fact we write equation (B.II.3) again as .

$$
t_{r}[\varrho]=\frac{\hbar^{2}}{2 m} \cdot 2(21+1) \cdot|\nabla \psi|^{2}
$$

We also require the contribution to the total kinetic energy of the atom from the shell under consideration. This is obtained by integrating the above expression over the whole volume. Results for the exact kinetic energy density for K, L, M she 11 s of a hydrogenlike system are summarized here.

$$
\begin{aligned}
& \text { K-shell } \quad 1 s^{2} . \quad t_{r}[\rho]=E \cdot \frac{2}{\pi} \cdot e^{-2 S} \\
& \text { I-Shell } \\
& 2 s^{2} \\
& =E \cdot\left(s^{2}-8 S+16\right) \cdot e^{-S} /(64 \pi) \\
& 2 p^{6} \\
& =E \cdot\left(s^{2}-4 S+4\right) 3 \cdot e^{-S} /(64 \pi)
\end{aligned}
$$

M-Shell $\quad 3 s^{2} \quad t_{r}=E \cdot\left(\frac{2}{3} s^{2}-10 s+27\right) \cdot e^{-\frac{2}{3} s} \cdot 2 /\left(81^{2} \cdot 3 \pi\right)$

$$
\begin{array}{ll}
3 p^{6} & =E \cdot\left(S^{2}-12 S+18\right)^{2} \cdot e^{-\frac{2}{3} S} \cdot 18 /\left(81^{2} \cdot 27 \pi\right) \\
32^{10} & =E \cdot\left(S^{2}-6 S\right)^{2} \cdot e^{-\frac{2}{3} S} \cdot 20 /\left(81^{2} \cdot 27 \pi\right)
\end{array}
$$

where $E=\frac{h^{2}}{2 m} \cdot A^{5}, \quad A=\frac{Z}{a_{0}}, \quad S=A \cdot r$
The increase in the total kinetic energy of the atom as we add K, I and M shells one by one is as follows:

K-Shell $\quad T_{K}=2 \cdot E=\frac{z^{2} e^{2}}{a_{0}}$
$K+I$. Shells $\quad T_{K+I}=4 \cdot E=2 \cdot \frac{Z^{2} e^{2}}{a_{0}}$
$K+I r+M$ Shells $T_{K+I+M}=6 \cdot E=3 \cdot \frac{Z^{2} e^{2}}{a_{0}}$

These results are in agreement with the virial theorem.
(ii) TF results.

According to the TF relation, the kinetic energy density in an atom is proportional to the $5 / 3$ rd power of the charge density, equation (B.II.5).

In using this relation we note that we shall use the exact density obtained from the wave functions after proper normalization and not the TF charge density. Using the exact density we shall naturally get the best results for the IF approximation to the kinetic energy density. Another
important point is that for the TF theory each shell is not treated separately as we did for the exact relation but rather all the shells present in the atom are treated together, since $\quad \varrho(r)$ in the $T F$ relation is the total charge density for \mathbb{N} electrons. We record below the normalized densities for different cases considered,
K Sheil $\quad 1 s^{2} \quad \Theta_{K}=A^{3} \cdot \frac{2}{\pi} \cdot e^{-2 S}$
$K+I$ Shells $1 s^{2}+2 s^{2}+2 p^{6}$

$$
e_{K+I}=A^{3} \cdot\left[2 e^{-S}+\frac{1}{16}\left((2-S)^{2}+S^{2}\right)\right] e^{-S} / \pi
$$

$\mathrm{K}+\mathrm{L}+\mathrm{M}$ Shells $\quad 1 s^{2}+2 s^{2}+2 p^{6}+3 s^{2}+3 p^{6}+3 \mathrm{~d}^{10}$

$$
\hat{\theta}_{K+I+M M^{\prime}}=\frac{A^{3}}{\pi} \cdot\left[e^{-S}\left[2 e^{-S}+\frac{1}{16}\left((2-S)^{2}+S^{2}\right)\right]+\frac{2}{81} 2 \cdot e^{-\frac{2}{3} S}\left[\frac{1}{3}\left(27-18 S+2 S^{2}\right)^{2}+2\left(6-S^{2} S^{2}+\frac{2}{3} S^{4}\right]\right] .\right.
$$

The general $\mathbb{T F}$ expression for the total kinetic energy in terms of variable S can be written as

$$
T=c_{k} \cdot \frac{1}{A^{3}} \int_{0}^{\infty} 4 \pi s^{2} \cdot e^{5 / 3}(S) \cdot d S
$$

Due to the lengthy expressions for the charge densities plus the $5 / 3$ power, numerical integration has been used, combining Simpson's rule with an electronic computer. Omitting the details we merely record the results for the three cases:

K Shell $\quad \mathrm{q}_{\mathrm{K}}=0.9179 \frac{\mathrm{z}^{2} \mathrm{e}^{2}}{\mathrm{a}_{\mathrm{o}}}$

K+I Shells $\quad \mathrm{T}_{\mathrm{K}+\mathrm{I}}=1.88855 \frac{\mathrm{z}^{2} e^{2}}{\mathrm{a}_{0}}$

K+I+M Shells $\quad T_{K+I+M}=2.87575 \frac{Z^{2} e^{2}}{a_{0}}$

General behaviour of exact kinetic energy density $t_{r}[巴]$.

Here we wish to comment on the general behaviour of the wave mechanical kinetic energy density. Hydrogenlike wave function has the form

$$
\psi_{n} \sim e^{-\frac{Z r}{n a_{0}}}
$$

which means that at low density $e \rightarrow 0$, kinetic energy density $t_{r} l e l$ will be dominated by the last closed shell and at sufficiently large r, the highest value of n will dominate. This will lead to a linear relation between $t_{r}[P]$ and $P(x)$ i.e

$$
t_{x}[\rho] \propto P(x)
$$

The constant of proportionality will depend on the potential, since it will involve the energy E_{n} of last closed shell.

At high density, there will be a maximum $P(x)$ (the value of the density at the nucleus) beyond which one cannot go.

Between these two extremes the intermediate part of $t_{r}[P]$ ought to go like $e^{5 / 3}$, the dependence we obtain from the TF theory when a local relation is assumed. Graphically $t_{r}[P]$ is expected to behave as shown in in the diagram on next page. We attempted to obtain this behaviour from the resufts for the K, L and M shells given above. But the number of shells are not sufficient to show the exact $e^{5 / 3}$ region. The result we obtained was in the region of the linear part of the plot show. To reach the intermediate region we would need to include more shells. But the density expressions already becoming quite complicated to deal with and therefore we did not proceed to include any higher shell.

Nevertheless from the above results for the K, L and M shells we can conclude that the MF approximation is a useful approximation to the exact kinetic energy of atoms, increasing in accuracy with the number of shells included.

(B.IV) Density at origin in hydrogenlike atoms.

The calculition of the density at the origin is of interest because there is an exact relation between the density and its gradient at the origin even for many interacting electrons (see Steiner, 1963). It is helpful in testing the approximate many electron wave functions. The normalized eigen functions for hydrogen-like system as given by Pauling and Wilson (1935) are usually written as

$$
U_{n, I, m}(x, \theta, \phi)=R_{n, 1}(x) \cdot Y_{1, m}(\theta, \phi)
$$

The normalized radial wave function $R_{n, 1}(x)$ is expressed as

$$
R_{n, 1}(r)=-\left[\left(\frac{2 z}{n a_{0}}\right)^{3} \cdot \frac{(n-1-1)!}{2 n[(n+1)!]^{3}}\right]^{\frac{1}{2}} \cdot e^{-\frac{1}{2} \sigma} \cdot \sigma^{1} \cdot I_{n+1}^{21+1}(\sigma)
$$

where

$$
\sigma=\frac{2}{n} S=\frac{2}{n} \cdot \frac{Z}{a_{0}} r \quad \text { and } \quad L \cdot \text { denotes the associated Leguerre }
$$

polynomials. The angular part of the wave function is given explicitly by

$$
Y_{1, m}(\theta, \phi)=\frac{1}{(2 \pi)^{\frac{1}{2}}} e^{i m \phi\left[\frac{(21+1)(1+|m|)!}{2(1+|m|)!}\right]^{\frac{1}{2}} P_{1}^{m}(\cos \theta) .}
$$

It is assumed that the coordinate system has origin at the nucleus. But we know that the only functions which are nonzero at the nucleus have $1=0$. Hence for $r=0$ the radial wave function becomes

$$
R_{n, 0}(0)=-\left[\left(\frac{2 z}{n a}\right)_{0}^{3} \cdot \frac{(n-1)!}{2 n(n!)^{j}}\right]^{\frac{1}{2}} \quad I_{n}^{1}(0)
$$

We also have

$$
I_{n}^{1}(0)=(-1) \frac{(n!)^{2}}{(n-1)!}
$$

and rewriting the above expression leads to

$$
R_{n, 0}(0)=\frac{1}{2^{\frac{1}{2}}} \cdot\left(\frac{2 z}{n a_{0}}\right)^{3 / 2}
$$

Similarly the angular part reduces to

$$
Y_{0,0}=\frac{1}{(4 \pi)^{\frac{1}{2}}}
$$

Therefore the normalized total wave function at the origin for the hydrogenlike atoms is given by

$$
U_{n, 0,0}(0)=\frac{1}{2(2 \pi)^{\frac{1}{2}}} \cdot\left(\frac{2 z}{n a_{0}}\right)^{3 / 2}
$$

Since it is a real quantity the charge density is the square of $h^{\text {the }}$ wave function ie

$$
\mathrm{U}_{\mathrm{n}, 0,0}^{2}(0)=\frac{1}{8 \pi}\left(\frac{2 Z}{\mathrm{n} a_{0}}\right)^{3}
$$

The total electron density at the origin for an atom with n ' closed shells and with doubly occupied levels obviously becomes

$$
\rho(0)=2 \sum_{n=1}^{n^{\prime}} 0_{n, 0,0}^{2}(0)
$$

Simplification then yields the result

$$
\begin{equation*}
\rho(0)=\frac{2}{\pi} \frac{2^{3}}{a_{0}^{3}} \sum_{n=1}^{n^{\prime}} \frac{1}{n} \tag{B.IV.1}
\end{equation*}
$$

We can relate $\rho(0)$ to the momentum density $\rho(p)$ at large p. From equations (B.IV.1) and (B.I.4) it is easy to show that

$$
\begin{equation*}
\left.O(p)\right|_{\text {Large } p} \simeq \frac{4 z^{2}}{\pi p^{8}} O(0) \tag{B.IV.2}
\end{equation*}
$$

A more important relation, as we remarked earlier, is due to Steiner (1963) linking $\varrho(0)$ and $\left.\nabla \varrho(r)\right|_{r=0}$. Steiner derived this relation from the result of Kato (1957), namely

$$
\left.\frac{\partial \bar{\psi}}{\partial x_{n}}\right|_{x_{n}=0}=-z\left|\Psi\left(r_{1}, x_{2}, r_{3}, \ldots \ldots . r_{n}\right)\right|_{r_{n}=0}
$$

where ψ is the wave function of N electrons and $\bar{\psi}$ is given by

$$
\bar{\Psi}=\frac{1}{4 \pi} \int_{n} \psi\left(r_{1}, r_{2}, r_{3}, \ldots \ldots r_{n}\right) d \omega_{n},
$$

which represents the average of ψ over a sphere of radius r_{n}. Steiner's result is then

$$
\begin{equation*}
\left.\frac{\partial 仓}{\partial x}\right|_{r=0}=2 \cdot \frac{e(0)}{a_{0}} \tag{B.IV.3}
\end{equation*}
$$

Returning to equation (B.IV.1) we now analyze the term $\sum_{n=1}^{n^{2}} \frac{1}{n} 3$. For $n^{\prime}=1$ we get

$$
P(0)=\frac{2}{\pi} \quad \frac{z^{3}}{a_{0}^{3}}
$$

It is true for all the elements as long as the total number of electrons, N, present in the atom remain equal to 2. If n becomes 2 the value of electron density at origin increases $9 / 8$ times that of $n^{\mathbf{t}}=1$, i.e

$$
e_{K+L}(0)=e_{K}(0) \frac{9}{8}
$$

and holds always for $N=10$. Similarly for $n^{1}=3$ we get

$$
e_{K+I+M}(0)=e_{K}(0) \quad\left(1+\frac{1}{8}+\frac{1}{27}\right)
$$

where all the three shells are assumed to be closed. We can carry on for any number of shells by just following the above procedure.

We next make an estimate of the term $\sum_{n=1}^{n^{\prime}} \frac{1}{n} 3$ for large n^{\prime}. It is easy to show that for a large number of closed shells we can write, for neutral atoms only, that

$$
z \sim \frac{2 n^{13}}{3}
$$

(we shall discuss this in detail below). From the above relation we get imnediately

$$
\begin{equation*}
n^{\prime}=\left(\frac{3}{2} z\right)^{\frac{1}{3}} \tag{B.IV.4}
\end{equation*}
$$

Estimate of $\sum_{n=1}^{n^{\prime}} \frac{1}{n} 3$ is possible by finding the area under the curve for limits $m+\frac{1}{2}$ and $n!+\frac{1}{2}$ to take account of n^{\prime} shells

$$
\text { Area }=\int_{m+\frac{1}{2}}^{n^{1}+\frac{1}{2}} \frac{1}{n^{3}} d n
$$

and adding the sum of the first m terms of the series. In this way, the summation is found to be ~ 1.2, by taking $m \sim 20$.

The formula for the area beyond the mth term suggests a correction term to this value of $0\left(z^{-2 / 3}\right)$ for large Z, but we have not pursued the matter further.

(C.I) Binding energy expressions.

We shall give here the main outlines of the Thomas-Felmi binding energy relation, leaving out the details. We start with the TF charge density given already in part A when considering the $\mathbb{T F}$ scattering factor, for a pure coulomb field. But in general the TF relation for $P(r)$ is given by

$$
\varrho(r)= \begin{cases}\frac{8 \pi}{3 h^{3}}(2 m)^{3 / 2} \cdot\left(E_{f}-V(x)\right)^{3 / 2} & \text { for }|V(x)|>\left|E_{f}\right| \\ 0 \quad \text { otherwise, }\end{cases}
$$

E_{f} being the total energy of the fastest electron. Other parameters have their usual meanings. The usual substitution

$$
E_{f}-V(r)=\frac{z e^{2}}{r} \cdot \Phi(x)
$$

leads to a description of the potential field in the ion in terms of the dimensionless function $\Phi(x)$. The length r is also usefully expressed in deminsionless form by putting

$$
x \cdot b=r
$$

b being a constant of dimensions of length given by

$$
\begin{align*}
b & =\frac{1}{4}\left(\frac{9 \pi^{2}}{2 Z}\right)^{\frac{1}{3}} a_{0} \\
& =\frac{0.8853}{Z^{\frac{1}{3}}} \cdot a_{0} \tag{C.I.3}
\end{align*}
$$

From equations (C.I.1), (C.I.2) and (C.I.3) it follows that Φ satisfies
the dimensionless Thomas-Fermi equation

$$
\Phi^{\prime}=x^{-\frac{1}{2}} \cdot \Phi^{3 / 2},
$$

with the boundary conditions

$$
\Phi\left(x_{0}\right)=0 \quad, \quad \Phi(0)=1 \quad \text { and } \quad x_{0} \Phi^{\prime}\left(x_{0}\right)=-q=-\left(1-\frac{N}{Z}\right)
$$

where \underline{q} is the degree of ionization, while x_{0} measures the ionic radius r_{0} through $b \cdot x_{0}=r_{0} \quad($ see, for example, March 1975).

Now we proceed to the binding energy relations. The total energy I is evidently given by

$$
E=T+V \text {, }
$$

where T is the kinetic and V the potential energy. V as usual consists of the sum of electron-nucleus and electron-electron contributions. In the TF theory these three contributions are

$$
\begin{array}{r}
T=c_{k} \int \rho^{5 / 3}(r) \quad \underset{\sim}{r}, \quad V_{e n}=-z e^{2} \int \frac{P(r)}{r} \quad \frac{d r}{r} \\
\text { and } \quad V_{e e}=\frac{1}{2} \int \rho(r) \quad V_{e}(r) \quad \frac{d r}{\sim} \tag{C.I.4}
\end{array}
$$

where $V_{e}(r)$ is the electrostatic potential created by the electronic cloud $P(x)$. We recall that T given above has been derived by a local approximation, from the kinetic energy density of free electrons. Minimizing E with respect to variation in $\sum(r)$ subject to the normalization condition $\int P(r) \frac{d r}{\sim}=\mathbb{N}$, the total number of electrons, that is $\delta(E+\lambda N)=0$,
where λ is a Lagrange multiplier, it is straight forward to derive the
relation

$$
\begin{equation*}
\frac{5}{3} c_{k} e^{\frac{2}{3}}(r)=-(\lambda+V(r)) \tag{C.I.5}
\end{equation*}
$$

Comparing (C.I.1) and (C.I.5) we recognize that $\mathrm{E}_{\mathrm{f}} \equiv-\lambda$. We can also show from thermodynamics that λ is equivalent to chemical potential as well

$$
\begin{equation*}
\mu=\frac{\partial E}{\partial N}=-\lambda=-\frac{(Z-\mathbb{N})}{r_{0}} e^{2} \tag{C.I.6}
\end{equation*}
$$

since $P\left(r_{0}\right)=0$. We shall need this value of λ later. One way of proceeding to calculate energy is to find $\frac{d E}{d Z}$ at constant N / Z. Mathematically we have

$$
\begin{equation*}
\left.\left(\frac{\partial E}{d Z}\right)\right|_{I N / Z}=\frac{\partial E}{\partial N} \frac{d N}{d Z}+\frac{\partial E}{\partial Z} \tag{G.I.7}
\end{equation*}
$$

Using equation (C.I.4) and (C.I.6) in (C.I.7) we arrive at the result

$$
\left(\frac{\partial E}{\partial Z}\right)_{N / Z}=4\left(\frac{2}{9 \pi^{2}}\right)^{\frac{1}{3}}\left[\Phi^{\prime}(0)+\left(1-\frac{N}{Z}\right)^{2} \frac{1}{x_{0}}\right] z^{4 / 3} \frac{e^{2}}{a_{0}}
$$

where $\Phi^{\prime}(0)$ is the slope of $\Phi(x)$ at $x=0$. Integrating the above expression with respect to Z we get the required relation for the total energy E as a function of N and Z, that is

$$
\begin{equation*}
E(\dot{N}, z)=0.4841\left[\Phi^{\prime}(0)+\left(1-\frac{N}{Z}\right)^{2} \frac{1}{x_{0}}\right] \quad z^{\frac{7}{3}} \cdot \frac{e^{2}}{a_{0}} \tag{C.I.8}
\end{equation*}
$$

In general we can write

$$
E(N, Z)=Z^{\frac{7}{3}} f\left(\frac{N}{Z}\right) \frac{e^{2}}{a_{0}}
$$

where $f\left(\frac{N}{Z}\right)$ expresses the fact that $\Phi^{\prime}(0)$ and x_{0} depend only on N / Z.

A sketch of $f\left(\frac{N}{Z}\right)$ was given by March and White (1972), using available numerical solutions of the TF equation. They have plotted the function

$$
\frac{E(\mathbb{N}, Z)}{Z^{\frac{7}{3}}}\left(\frac{N}{Z}\right)^{\frac{2}{3}} \equiv\left(\frac{N}{Z}\right)^{\frac{2}{3}} f\left(\frac{N}{Z}\right)
$$

against $\frac{N}{Z} \geqslant .5$ with Z large. This was a more convenient form to plot than simply $f\left(\frac{\mathbb{N}}{Z}\right)$. The function itself has been calculated by different people: March and White (1972) used $1 / \bar{Z}$ expansion and worked out the energy coefficients $\epsilon_{0}(\mathbb{N}), \epsilon_{1}(\mathbb{N})$ and $\epsilon_{2}(\mathbb{N})$ for $2 \leqslant \mathbb{N} \leqslant 10$ range. In general they obtained

$$
\epsilon_{n}(\mathbb{N}) \sim a_{n} N^{n+\frac{1}{3}}
$$

for large N. : a_{o} ' has been calculated from first principle (Ballinger and March 1955), whereas a_{1} and a_{2} estimated by them by least-square fit of data on $\epsilon_{1}(\mathbb{N}) / \mathbb{N}$ and $\epsilon_{2}(\mathbb{N}) / \mathbb{N}^{2}$. Later on Dmitrieva and Plindov (1975) derived a_{1} and a_{2} from first principles. Recently March (1976) has proposed a modified value of the coefficient of $\left(\frac{N}{Z}\right)^{2}$ given by them, arguing that by doing so one can get the correct isolated atom limit as well as excellent numerical agreement with the correct results over the whole range $0 \leqslant \frac{N}{Z} \leqslant 1$ by neglecting all the higher order terms.

The complete expression after the modification of March (1976) for the binding energy of a heavy ion up to third order is

$$
E(N, Z)=-\left(\frac{3}{2}\right)^{\frac{1}{3}} N^{\frac{1}{3}} Z^{2} \frac{e^{2}}{a_{0}}\left(1-0.4236 \frac{N}{Z}+0.0951 \frac{N^{2}}{Z^{2}}\right) .
$$

We shall discuss this in more detail later and establish a connection between (C.I.9) and $1 / 2$ theory.
contains
Equation (C.I.9) h the TF neutral atom binding energy as we shall now show. In equation (C.I.8) if we put $\frac{N}{Z}=1$ and $\Phi^{\prime}(0)=-1.58805$ from the ITF solution for the isolated atom we get the binding energy as

$$
E(z, z)=-0.7687 \quad z^{\frac{7}{3}} \frac{e^{2}}{a_{0}} \quad \cdot \quad \ldots \quad \text { (C.I. 10) }
$$

This result was first obtained by Milne (1927).

(C.II) $\underline{2}^{\frac{7}{3}}$ dependence from Bohr's formula.

We can obtain the $Z^{\frac{7}{3}}$ dependence in equation (C.I.10) from Bohr's formula for the energy level spectrum. The energy levels for principle quantum number n are given by

$$
E_{n}=-\frac{z^{2}}{2 n^{2}} 2 \frac{e^{2}}{a_{0}}
$$

since a closed shell of quantum mumber n can hold $2 n^{2}$ electrons, the sum of the eigenvalues becomes

$$
E_{n t h}=-z^{2} \frac{e^{2}}{a_{0}}
$$

For an atomic system of n^{\prime} closed shells the total eigenvalue sum E_{s} is obviously given by

$$
\begin{equation*}
E_{s} \quad=-z^{2} n^{\prime} \frac{e^{2}}{a_{0}} \tag{C.II.2}
\end{equation*}
$$

Now we must relate E_{S} to N , the total number of electrons. It is possible through n^{1}, since we have

$$
\begin{equation*}
N=\sum_{n=1}^{n^{\prime}} 2 n^{2}=\frac{n^{\prime}\left(n^{\prime}+1\right)\left(2 n^{\prime}+1\right)}{3} \tag{C.II.3}
\end{equation*}
$$

If n ' is large, as for heavy ions and atoms, it follows from equation (C.II.3) that

$$
N \simeq \frac{2 n^{3}}{3}
$$

the result we used in the earlier calculation of the density at the origin when $Z=\mathbb{N}$. Writing (C.II.4) more exactly by adding the next order we find

$$
N=\frac{2 n^{13}}{3}+n^{1^{2}}
$$

and using (C.II.4) in the correction term we obtain

$$
N=\frac{2 n^{3}}{3}+\left(\frac{3}{2} N\right)^{\frac{2}{3}}
$$

This yields the required relation between n ' and N i.e

$$
n^{!}=\left(\frac{3}{2} \mathbb{N}\right)^{\frac{1}{3}}\left[1-\left(\frac{3}{2}\right)^{\frac{2}{3}} \mathbb{N}^{-\frac{1}{3}}\right]^{\frac{1}{3}} \cdot \ldots \text { (C.II.5) }
$$

Putting (C.II.5) back in (C.II.2) we find

$$
\mathrm{E}_{\mathrm{S}}=-z^{2}\left(\frac{3}{2} \mathbb{N}\right)^{\frac{1}{3}}\left[1-\left(\frac{3}{2}\right)^{\frac{2}{3}} \mathbb{N}^{-\frac{1}{3}}\right]^{\frac{1}{3}} \frac{e^{2}}{a_{0}}
$$

For the neutral atom case $\mathbb{N}=\mathrm{Z}$ it follows that

$$
\begin{equation*}
E_{s}(z, z)=-\left(\frac{3}{2}\right)^{\frac{1}{3}} z^{\frac{7}{3}} \quad\left[1-\left(\frac{3}{2}\right)^{\frac{2}{3}} z^{-\frac{1}{3}}\right]^{\frac{1}{3}} \frac{e^{2}}{a_{0}} \tag{C.II6}
\end{equation*}
$$

Here we have considered only the over simplified case for n ' closed shells in a neutral atom under the assumption of a pure coulomb field.

The coefficient of the leading term in (C.II.6) only involves the nuclear coulomb field felt by Z electrons. But the corresponding coefficient in the TF self consistent equation (C.I . 10) obviously involves the screening effect of the electron distribution as well. Expanding
equation (C.II.6) we get

$$
E_{s}=-\left(\frac{3}{2}\right)^{\frac{1}{3}} z^{\frac{7}{3}} \frac{e^{2}}{a_{0}}+z^{2} \frac{e^{2}}{2 a_{0}}
$$

\qquad
where E_{S} has the $Z^{\frac{7}{3}}$ dependence of Milne's result but with a different coefficient. In addition to that we have got here a term proportional to z^{2} which we shall regard as correction term $\triangle E$.

March (1976) obtained $Z^{\frac{7}{3}}$ exactly from the TF charge density ie equation (C.I.1). Thus, using

$$
\int e(x) d r=N
$$

to find E_{f} as

$$
\begin{equation*}
E_{f} \quad=-\frac{z^{2}}{N^{\frac{2}{3}}} \cdot \frac{1}{18^{\frac{1}{3}}} \cdot \frac{e^{2}}{a_{0}}, \tag{C.II.8}
\end{equation*}
$$

We have from equation (C.I.6)

$$
-\mathrm{E}_{\mathrm{f}} \quad=\frac{\partial E}{\partial N}
$$

and therefore

$$
\frac{d E}{d N} \quad=\quad \frac{z^{2}}{N^{3}} \cdot \frac{1}{18 \frac{1}{3}} \cdot \frac{e^{2}}{a_{0}}
$$

Integrating this with respect to \mathbb{N} yields

$$
E_{T F}(Z, \mathbb{N})=-\left(\frac{3}{2}\right)^{\frac{1}{3}} z^{2} \frac{\mathbb{N}^{\frac{1}{3}}}{e^{2}} \frac{e_{0}}{a_{0}}
$$

For the neutral atom case it follows immediately that

$$
E_{T F}(z, z)=-\left(\frac{3}{2}\right)^{\frac{1}{3}} z^{\frac{7}{3}} \frac{e^{2}}{a_{0}}
$$

which is the leading term of equation (C.II.7) .

(C.III) Relation between eigenvalue sum and binding energy.

We now go back to the IT binding energy expression (C.I.9) and form the sum of eigenvalues like (C.I.7). Equation (C.I.9) i.e selfconsistent TT binding energy has been derived from

$$
E=\int t_{r}[\rho] \frac{d r}{\sim}+\int e(r) \cdot \nabla_{\mathbb{N}} \cdot d r+\frac{1}{2} \int \varrho(r) \cdot \nabla_{e} \cdot d r
$$

whereas the sum of the eigenvalues is defined as

$$
\begin{equation*}
\left.E_{s}=\sum_{i} \epsilon_{i}=\int t_{r} \perp \varrho\right] d r+\int \varrho \cdot\left(V_{N}+V_{e}\right) \cdot d r \tag{C.III.2}
\end{equation*}
$$

From (C.III.1) and (C.III.2) we can easily find that

$$
\begin{align*}
E_{s} & =E+\frac{1}{2} \int \rho \cdot V_{e} \cdot \frac{d r}{\sim} \\
& =E+V_{e e} \cdot \tag{C.III.3}
\end{align*}
$$

We can derive another relation between E_{S} and E if the atomic system is neutral and $Z \rightarrow \infty$. Using the relation

$$
V_{\mathrm{en}}=-7 V_{\mathrm{ee}}
$$

(see March, 1975) we obtain

$$
V_{1}=-6 V_{\mathrm{ee}}
$$

Substituting this in equation (C.III.3) and making use of the virial theorem it is easy to derive

$$
\begin{equation*}
\mathrm{E}_{\mathrm{s}}=\frac{2}{3} \mathrm{E} \tag{C.III.4}
\end{equation*}
$$

Putting in the value of E for the TF theory from equation (C.I.10) and
transferring it to Rydberg units gives us

$$
E_{S}=-1.025 z^{\frac{7}{3}} \quad \text { Rydbergs, }
$$

which does not contain the correction term but this can be added for relatively light atoms. Here we assume that $\triangle \mathrm{E}$ will have the z^{2} dependence as found earlier using Bohr's formula ie equation (C.II.7). This will be investigated below.

With this, our analysis of the leading term in the energy expression is complete. It is essentially due to the coulomb field inside the atom between the electrons and the nucleus.

Study of correction term ΔE.

We go back to the equation (C.II.7), where we have concluded that the correction term in the sum of eigenvalues is proportional to z^{2}. If we take the Rydberg as the unit of energy, then the constant of proportionality becomes unity. Therefore the above arguement implies that a plot of $\triangle E$ against Z^{2} shouldbe a straight line with a slope 1 .

To test this we must calculate $\triangle \mathrm{E}$. Modifying equation (C.III.5) for relatively light atoms by adding the correction term $\triangle \mathrm{E}$ we obtain

$$
E_{S}=-1.025 Z^{\frac{7}{3}}+\Delta E
$$

Thus

$$
\Delta \mathrm{E}=\mathrm{E}_{\mathrm{S}}+1.025 \mathrm{Z}^{\frac{7}{3}}
$$

\square (C.III.6)
where E_{s} is negative and available in the Hartree's calculations. Herman and Skillman (1963) have calculated Hartree-Fock-Slater self-consistent
field results for energy eigenvalues and charge densities, normalized for each electron at each level. For our calculations we have to take sum of eigenvalues for all the electrons present in the level.

The results are not very different for either neutral atoms, or for singly or doubly ionized atoms. But since we are restricted to neutral atoms for the present calculations we have naturally used only neutral atom results from Herman and Skillman's numerical data. We have carried out numerical calculation up to $Z=84$, The plot for this is shown below(Fig. 4). Fxcept for N^{60} all the others lie more or less on a straight line of slope 0.94, We have also drawn the straight line with a slope of 1 as expected; the percentage error from the predicted slope being only 6%.

Thus we conclude that the Hartree-Fock-Slater numerical results are satisfactorily in agreement with the theoretically predicted result that $\triangle \mathrm{E} \propto \mathrm{Z}^{2}$.

We have also examined ionization potentials, since these are useful in determining the binding energies of ions and atoms as previously shown by Foldy (1951), namely

$$
E_{b}=\frac{1}{2} z^{12 / 5} \frac{e^{2}}{a_{0}}+\sum_{Z=2}^{Z} I_{Z}-1.278 \frac{e^{2}}{2 a_{0}} \cdot
$$

However, the plot of \ln I.P versus $\ln Z$ which we have given below(Fig. 5) shows a periodic variation and statistical arguments are obviously not applicable here.

(C.IV) Binding energies of atoms and ions by $1 / Z$ expansion.

Kato (1951) gave the total energy of an ion with Ze as nuclear charge and \mathbb{N} electrons, so called the $1 / Z$ theory, given by

$$
E(Z, N)=Z^{2}\left(\epsilon_{0}+\frac{1}{Z} \epsilon_{1}+\frac{1}{Z^{2}} \epsilon_{2}+\ldots . .\right)
$$

\square
with the condition that Z is quite large. N dependence is contained in the coefficients ϵ_{m}. Exchange and correlation effects both occur in ϵ_{1}, but the presence of correlation in ϵ_{1} indicates a degenerate zero order state (Imitrieva and Plindov, 1975). Coefficients ϵ_{n} in (C.IV.1) have been calculated by a number of groups for the ground states from $\mathbb{N}=2$ to 10 and one such table has been given by March and White(1972). According to them the general asymptotic form of coefficients is given, for large \mathbb{N} and Z, by

$$
\frac{1}{Z^{\mathrm{Ta}}} \epsilon_{m}(\mathbb{N}) \quad \propto Z^{\frac{1}{3}}\left(\frac{\mathbb{N}}{Z}\right)^{m+\frac{1}{3}} \quad \text { (C.IV.2) }
$$

They argue that we can obtain Foldy's result, that for a relatively small Z the dependence is $Z^{12 / 5}$ rather than $Z^{\frac{7}{3}}$ as predicted by the TF theory. If we put $m=0$ and plot $\ln \epsilon_{m}(\mathbb{N})$ against $\ln \mathbb{N}$ it will be found that the slope is nearer $2 / 5$ than $1 / 3$. This then will give us the leading term in the energy expression as approximately proportional to $z^{12 / 5}$, a result given earlier by Foldy. "Thus \mathbb{N} is never large enough to yield the characteristic asymptotic dependence graphically", (March and White, 1972). Here we can find, at least in principle, the relation between the $\mathbb{T F}$ and $1 / \bar{Z}$ theory. We stress that as $\frac{\mathbb{N}}{Z} \rightarrow 1$ for a large Z the $\mathbb{T} F$ theory is indeed giving $u s$ an approximate sumation to all orders of the $1 / 2$ expansion. It is useful to modify the expression (C.IV.1) and rewrite it in the following
form

$$
\begin{equation*}
\frac{E(Z, N)}{Z^{2} \epsilon_{0}(\mathbb{N})}=1+\frac{\epsilon_{1}}{\mathbb{N} \epsilon_{0}}\left(\frac{\mathbb{N}}{Z}\right)+\frac{\epsilon_{2}}{\mathbb{N}^{2} \epsilon_{0}}\left(\frac{\mathbb{N}}{Z}\right)^{2}+ \tag{C.IV.3}
\end{equation*}
$$

The left hand side is a ratio of $E_{\text {exact }}$ and $E_{\text {coulomb }}$ which we simply denote by $\phi\left(N, \frac{N}{Z}\right)$. It is interesting to compare this expression with the asymptotic expression (C.I.9) we have given earlier. The coefficient $\epsilon_{0}(\mathbb{N})$ is obviously equivalent to $-\left(\frac{3}{2}\right)^{\frac{1}{3}} \mathbb{N}^{\frac{1}{3}}$ which is also obtained if we use (C.IV.2) and put $m=0$. But we must not forget that (C.I.9) is an asymptotic case of Z and N, whereas (C.IV.3) is a general expression for any value of Z and $\mathbb{N}(Z \geqslant \mathbb{N})$. If we put $\mathbb{N}=Z$ in the asymptotic form we get back the result of the TF theory for neutral atom i.e (C.I.10), the correlation between the TF and $1 / Z$ theory we described earlier. In brief it follows that $f\left(\frac{\mathbb{N}}{Z}\right)$ of the $T F$ corresponds to $\phi\left(\mathbb{N}, \frac{N}{Z}\right)$ of $1 / Z$ theory. Rewriting equation (C.IV.3) as

$$
\phi\left(\mathbb{N}, \frac{\mathbb{N}}{Z}\right)=1+\frac{\epsilon_{1}}{\mathbb{N} \epsilon_{0}}\left(\frac{\mathbb{N}}{Z}\right)+\frac{\epsilon_{2}}{\mathbb{N}^{2} \epsilon_{0}}\left(\frac{\mathbb{N}}{Z}\right)^{2}+
$$

and using table 2 of March and White, (1972) we can obtain a set of equations each corresponding to each value of N. Physical study of the coefficients in this expression is also important. The coefficient of $\frac{N}{Z}$ term is simply the slope at the origin and it comesponds to $\Phi^{\prime}(0)$ quoted already in the TF theory. As long as we strictly follow the $1 / 2$ theory, we can calculate any coefficient by the general expression (C.IV.2). But here we would like to consider a different technique for the evaluation of the coefficient of $\left(\frac{N}{Z}\right)^{2}$.

It is assumed that the energy expression behaves reasonably even if we take only the first three terms. Therefore, we have only two unknown coefficients. The first of these is the eoefficient of $\frac{\mathbb{N}}{Z}$ which is usually
taken from the $1 / Z$ theory, whereas the next order coefficient,i.e of $\frac{N^{2}}{Z}$, is to be evaluated for the neutral atom case since the exact value of $\phi\left(\mathbb{N}, \frac{N}{Z}\right)$ is often known . In general we have

$$
\phi\left(\mathbb{N}, \frac{\mathbb{N}}{Z}\right)=1+\frac{\varepsilon_{1}}{\mathbb{N}} \epsilon_{0}\left(\frac{\mathbb{N}}{\mathrm{Z}}\right)+b_{2}(\mathbb{N})\left(\frac{\mathbb{N}}{\mathrm{Z}}\right)^{2}
$$

where $b_{2}(N)$ is unknown. Substituting $N=Z$ and simplifying the equation we obtain

$$
b_{2}(\mathbb{N})=\phi(\mathbb{N}, 1)-1-\frac{\epsilon_{1}}{\mathbb{N} \epsilon_{0}}
$$

It follows that when $\mathbb{N} \neq Z$ for other cases, $\phi\left(\mathbb{N}, \frac{N}{Z}\right)$ can be easily determined. The general expression, so called analytic fit, for any N and Z $(Z \geqslant \mathbb{N})$ is given by

$$
\begin{aligned}
& \phi\left(\mathbb{N}, \frac{N}{Z}\right)=1-\frac{\epsilon_{1}}{N}\left(\frac{N}{Z}\right)+\left[\phi(\mathbb{N}, 1)-1-\frac{\epsilon_{1}}{N}\right] \quad\left(\frac{N}{Z} \epsilon_{0} .\right. \\
& \text { (C.IV.4) }
\end{aligned}
$$

In what follows we shall give some of the results due to the $1 / 2$ theory and to the analytic expressions worked out from (C.IV.4), the refined method expression which we have described above.

Atomic systems with $\mathbb{N}=2$.

Weiss (1961) has given numerical results of $\mathrm{E}_{\text {exact }}$ for atomic systems with $\mathbb{N}=2$. We have recorded these and corresponding values of $\phi\left(2, \frac{N}{2}\right)$ in Table III.A below. One may fit the results with good accuracy by the following expression

$$
\phi\left(2, \frac{N}{Z}\right)=1-0.30272\left(\frac{N}{Z}\right)+0.02865\left(\frac{N}{Z}\right)^{2} .
$$

\qquad (C.IV.5)

But it does not exactly match the experimental values of $\phi\left(2, \frac{N}{Z}\right)$ given in Table III. For example the expression gives us $\phi\left(2, \frac{1}{2}\right)=0.8558$, whereas the experimental value given in table III is 0.8535 . The

Table III

Values of $\mathrm{E}_{\text {exact }}$ for different isoelectronic sequences.

Z	$N=2$ Weiss (1961)	Onello (1974)	Perkins (1976)	Weiss (1961)
3	-7.27991		-7.47807	
4	-13.65557	-14.32479	-14.66741	
5	-22.03097	-23.42145	-23.42471	-24.34915
6	-32.40625	-34.77316	-34.77573	-36.53524
7	-44.78145	-48.37492	-48.37728	-51.22358
8	-59.15660	-64.22672	-64.22917	-68.41332
9	-	-82.32858		
10		-102.68048		
11		-125.28242		
12		-150.13439		
13		-177.23639		
14		-206.58800		

improved analytical expression for $N=2$ due to the refined method is as follows

$$
\begin{equation*}
\phi\left(2, \frac{N}{Z}\right)=1-0.31250\left(\frac{N}{Z}\right)+0.03843\left(\frac{N}{Z}\right)^{2} . \tag{c.Iv.6}
\end{equation*}
$$

In Table IV.A we have given all the three sets of results i.e experimental (Weiss, 1961), analytic fits (C.IV.5) and (C.IV.6).

$$
\begin{gathered}
\operatorname{Table}(I V \cdot A) \\
\phi\left(2, \frac{N}{Z}\right) \text { values for } \mathbb{N}=2 \text { from different methods. }
\end{gathered}
$$

N / Z	Experimental		Analytical	
	Weiss ' result	(C.IV.5)	(C.IV.6)	
1	0.72593	0.72593	0.72593	
$2 / 3$	0.80888	0.81092	0.80874	
$1 / 2$	0.85347	0.85580	0.85335	
$2 / 5$	0.88124	0.88349	0.88114	
$1 / 3$	0.90017	0.90227	0.90010	
$2 / 7$	0.91391	0.91584	0.91385	
$1 / 4$	0.92432	0.92611	0.92427	

We can see from the above Table (IV.A) that the improved method is working satisfactorily for the analytic expressions of $\phi\left(\mathbb{N}, \frac{N}{Z}\right)$, since the results are matching up to the third significant figure.

Atomic systems with $N=3$.
J. F Perkins (1976) has provided the results of $E_{\text {exact }}$ for the three electron systems for atomic numbers 3 to 8 . We have calculated the cormesponding values of $\phi\left(3, \frac{N}{Z}\right)$ and recorded $h^{\text {them }}$ Table (IV.B) as experimental values. Another set of values for such a system has been worked out by Onello, (1974) up to $Z=14$ (see Table III.B). But we would like to work with Perkins' data which is more recent.

The anslytic fit we have found by the above method, suitable for three electron system and matches the Perkins' results, is given by

$$
\begin{equation*}
\phi\left(3, \frac{N}{Z}\right)=1-0.30305\left(\frac{N}{Z}\right)+0.04165\left(\frac{N}{Z}\right)^{2} \tag{C.IV.7}
\end{equation*}
$$

Results for this expression are recorded below in Table(IV.B).

Table (IV.B)

N / Z	Experimental	Analytical
1	0.7386	0.7386
$3 / 4$	0.7958	0.7961
$3 / 5$	0.8329	0.8332
$3 / 6$	0.8587	0.8589
$3 / 7$	0.8775	0.8779
$3 / 8$	0.8921	0.8922

Atomic systems with $N=4$.

Procedure is essentially the same. We just give the expression for the analytical fit and record the results in Table (IV.C).

$$
\phi\left(4, \frac{N}{Z}\right)=1-0.31186\left(\frac{N}{Z}\right)+0.04523\left(\frac{N}{Z}\right)^{2} .
$$

Table IV.C

N / Z	Experimental	Analytical
1	0.73337	0.73337
$4 / 5$	0.77917	0.77946
$4 / 6$	0.81189	0.81219
$4 / 7$	0.83630	0.83656
$4 / 8$	0.85516	0.85537

From the above three cases it seems that our improved method for analytic fits of $\phi\left(N, \frac{N}{Z}\right)$ for different atomic systems is working very well. But unfortunately for the time being there is not enough experimental data, specially below $\frac{N}{Z}=.5$, for larger values of N and Z to find the range of validity of our method.

Plot between $\phi\left(\mathbb{N}, \frac{\mathbb{N}}{\mathrm{Z}}\right)$ and N / Z.

We have sketched $\phi\left(\mathbb{N}, \frac{N}{Z}\right)$ against \mathbb{N} / Z for $N=2,3$ and 4 from the above tables. It is obvious that at $\frac{\mathbb{N}}{Z}=0, \phi\left(\mathbb{N}, \frac{N}{Z}\right)$ is always unity. At the other end (where $\frac{N}{Z}=1$) we see that the curves have diverged from each other and we get a pencil of curves for all values of N.

For $N \rightarrow \infty$ the value of $\phi(\infty, 1)$ is found to be 0.674 and the coefficient of $\left(\frac{N}{Z}\right)$ term for $N \rightarrow \infty$ has been given by Imitrieva and Plindov, 1975, as -0.4236 , which is the slope at the origin. The analytic fit for asymptotic case is therefore found to be

$$
\phi(\infty, N / Z)=1-0.4236\left(\frac{N}{Z}\right)+0.0976\left(\frac{\mathbb{N}}{Z}\right)^{2}
$$

which is very close to the $f(N / Z)$ of the TF theory, (compare equation (C.I.9)). For comparison with other cases we have plotted this curve on the same graph, Fig. 6.
(C.V) Behaviour of the coefficient of $\left(\frac{N}{Z}\right)$.

Before we close our discussion of the binding energies of atoms and ions we shall study briefly the behaviour of the coefficient of $\left(\frac{\mathbb{N}}{\mathrm{Z}}\right)$, i.e $\frac{\epsilon_{1}(\mathbb{N})}{\mathbb{N} \varepsilon_{0}(\mathbb{N})}$, as N becomes large.

This has been calculated by different people with different methods. We have plotted the results from March and White, and Imitrieva and Plindov. These are shown in Fig. 7.

One striking feature of this plot which we observe is that for \mathbb{N} equal to $2,10,28$ and 60 the values from different methods almost coincide to the graphical accuracy. These values of N corresponds to the closed shell cases, in which we are particularly interested.

The general behaviour of the coefficient when $N>10$ appears to be oscillatory. As \mathbb{N} becomes larger the oscillations seem to die away and the value approaches the asymptotic value -0.4238 . But it is far from realistic case because for $Z=60$ the value is $\quad-0.45$ which is somewhat different.

Earlier when $\mathbb{N} \leqslant 10$ the sharp decrease in the value of the coefficient is quite understandable. Since we know that this coefficient corresponds to the slope of the potential function Φ in the $\mathbb{T F}$ theory, and because the filling of the second shell shields the outer electrons, the potential dies away, which gives rise to sharp decrease in slope.

(D) Electron densities.

Since the electron density is playing a major role in the $T F$ approximation, we shall now examine this more closely by comparison with the wave-mechanical data of Boyd. We shall also refer to the analytic fit recently supplied by Boyd (private communication). Finally a few remarks will be made on the study of $\varrho(x)$ we carried out for the rare gas elements from Herman and Skillman's data for Hartree and Hartree-Fock calculations.

(D.I) Spatial dependence of TF charge density.

The TF charge density has already been defined in equation (C.I.1). An equivalent form is

$$
\begin{equation*}
P(r)=\frac{8 \pi}{3 h^{3}}(2 m)^{3 / 2} E_{f^{3}}^{3 / 2}\left[1-\frac{V(r)}{E_{f}}\right]^{3 / 2} \tag{D.I.1}
\end{equation*}
$$

We recall that it only holds in the region where ${\frac{V}{E_{f}}}^{T_{f}}$. Beyond this region $O(r)$ is assumed to be zero (though wave mechanically wave function can leak through to the classically forbidden region). This TF relation gives a semi-classical approximation to the procedure of solving for the one-electron wave functions ψ_{i} in the self-consistent field and then forming the sum of the squares of these wave functions over the occupied levels, i.e

$$
e(r)=\sum_{i} \psi_{i}^{2}
$$

We have summarized above the details how the TF density is calculated from the TW differential equation, namely

$$
\frac{d^{2} \Phi}{d x^{2}}=\frac{\Phi^{3 / 2}}{x^{\frac{1}{2}}}
$$

for which the asymptotic solution for large x is given by

$$
\begin{equation*}
\Phi(x)=\frac{144}{x^{3}} \tag{D.I.2}
\end{equation*}
$$

(see March, 1975). But this solution does not satisfy the boundary conditron $\Phi(0)=1$. Therefore the relation between $\rho(r)$ and r which we are going to derive will hold only for large r. From equation (C.I.2) we have

$$
\begin{equation*}
E_{f}-V(r)=\frac{Z e^{2}}{r} \Phi . \tag{D.I.3}
\end{equation*}
$$

Inserting value of \oint from (D.I.2) in here and after simplification we get

$$
\left(1-\frac{V}{E_{f}}\right)^{3 / 2}=\left[\frac{Z e^{2}}{r} \frac{144}{x^{3}} \frac{1}{E_{f}}\right]^{3 / 2}
$$

In terms of r defined as $r=b . x$, where $b=\frac{0.8853}{Z^{\frac{1}{3}}} a_{0}$, we can write

$$
\begin{equation*}
\left(1-\frac{V}{E_{f}}\right)^{3 / 2}=\left[\frac{144 b^{3} z e^{2}}{E_{f}} \frac{1}{r^{4}}\right]^{3 / 2} \tag{D.I.4}
\end{equation*}
$$

Using this result in equation (D.I.1) we get

$$
\begin{equation*}
e(x)=\frac{8 \pi}{3 h^{3}}\left(2 m \cdot 144 \cdot b^{3} \cdot z e^{2}\right)^{3 / 2} \frac{1}{r^{6}} \tag{D.I.5}
\end{equation*}
$$

Which precisely gives

$$
e(x) \quad \propto \quad \frac{1}{x^{6}}
$$

If we take log of equation (D.I.5) we have

$$
\begin{equation*}
\ln P(x)=\ln A-6 \ln x, \tag{D.I.6}
\end{equation*}
$$

\qquad
where

$$
A=\frac{8 \pi}{3 h^{3}}\left(2 m \cdot 144 b^{3} z e^{2}\right)^{3 / 2}
$$

Thus the important result we got here is that the TF charge density for heavy atoms and at large r goes like r^{-6}. This is true for all atomic numbers, since A becomes independent of Z if we substitute the value of b. We have investigated this universal result numerically. We examined data from two available sources of the wave mechanically derived charge density for different elements.

(i) Boyd's results.

Recently Boyd has made detailed calculations of wave mechanical charge densities. In particular he has provided numerical data for $D(r)$, defined as

$$
D(x)=4 \pi r^{2} \cdot \rho(x)
$$

He has also obtained an analytic fit of his data for $D(r)$, in the form

$$
D(r)=\sum_{i} c_{i} \cdot r^{n_{i}} \cdot e^{-Z_{i} r}
$$

(Boyd, private communication). This expansion can be used to calculate various one-electron properties.

His numerical data for $D(r)$ is available for the elements up to $Z=54$. We have studied the cases $\mathrm{Kr}^{36}, \mathrm{Zr}^{40}, \mathrm{Ag}^{47}$ and Xe^{54} to make comparison with the TF result (D.I.5). It is obvious that if $\rho(x)$ has dependence r^{-6}, then $D(r)$ behaves as r^{-4}. Therefore we sketched the function r^{-4} asainst r and then plotted $D(r)$ for the four elements given above on the same diagram. It was found that just before $D(x)$ begins to decay exponentially which is always true after $r>r_{c}, r_{c}$ being the atomic radius, there ex-ists a region where the behaviour of $D(x)$ becomes comparable with the r^{-4} curve. It also turns out that the extent of
this region is related to the atomic number and also that it moves towards larger r as Z increases.

(ii) Herman and Skillman calculations.

The second source of imformation about the charge density is that of Herman and Skillman. Results are available up to $Z=104$, but we have restricted ourselves to the rare gas elements.

After the proper normalization check over the charge density given, we have plotted $\ln \left(P(r)\right.$ against $\ln r$ for Rn^{86}, Xe^{54} and $\mathrm{Kr}{ }^{36}$. It is shown below for Rn^{86}, Fig 8. At large r we find the expected region, the average of the last four points yielding a slope of almost -6.

CONCLUSION

It is well known that the TF theory is only valid for heavy ions (and is also, of course, non-relativistic, in the form used in this thesis).

The main objective here has been to understand more precisely the range of validity of the theory. This has been tackled by giving a lot of attention to the pure coulomb field case, for which the wave-mechanical solution is, of course, known exactly.

The most interesting result is that the X-ray scattering factor for the coulomb field case is accurately represented by the TF theory with a relatively small number of closed shells. This statement needs qualifying, in that, at large k, the TF scattering factor has spurious oscillations, arising from the cut-off of the electron density.

Some comparison of the self-consistent IF density with Hartree calculations is also made. The region of validity of the behaviour of $\rho(r)$ as r^{-6} is thereby clarified; it is useful in heavy atoms before one reaches the region of exponentially decaying wave functions.

In addition to these studies, some approximate analytic formulae are given for the binding energies of systems with a small number of electrons and an attempt is made again to relate these results to $1 / Z$ expansions, and thereby to the TT theory.

References

Ballinger,R.A. and March,N.H (1955) Phil. Mag. 46, 246.
Bartlett,B,R. and Fyfe, D.J (1974) "Hand book of mathematical formulae" Denny publishers, London.

Berghuis, J., IJbertha,M.H, Potters,M. and others. (1955) Acta. Cryst. 8, 478.
Boyd,R.J. (1976) J.Phys.B 2, NO.5. I69.
Dickinson,W.C. (1950) Phys.Rev. 80, 563.
Dmitrieva, I.K. and Plindov,G.I (1975) Phys.Letters, A55, 3.
Fermi, E. (1928) Z.fur Phys. 48, 73.
Feynman, R.P. (1939) Phys.Rev. 56, 340.
Foldy, L.I. (1951) Phys.Rev. 83, 397.
Fock, V. (1935) Z.fur. Phys. 98. 145.
Herman, F. and Skillman,S. (1963) Atomic structure calculations (Hnglewood. Cliffs, N, J; Prentice-Hall)

Kato,T. (1957) Commun. Pure AppI.Math.10, 151; (1951) J.Fac.Sci.Tokyo Univ. 16, 145.

March, N.H. (1976) J.Phys.B. 2, L_ ${ }_{1}$
March, N. H. and Murray,A.M. (1961) Proc.Roy. Soc. A261, 119.
March, N.H. and White,R.T. (1972) J.Phys.B. 2, 466.
Milne,F.A. (1927) Proc.Camb.Phil.Soc. 23, 794.
Miranda,C. (1934) Men.Acc.Italia. 2, 283.
Onello, J.S, Ford, I and Dalgarno, A. (1974) Phys.Rev. A10, 9.
Pauling, I. and Wilson,E.B. (1935) Introduction to quantum mechanics (New york: McGraw Hill).

Pirenne, M.H (1946) The diffraction of X-rays and electrons by free molecules (Combridge university press).

Perkins,J. ${ }^{\text {F (1976) Phys.Rev. A13, } 915 . ~}$
Schiff, I.I. (1955) Quantum Mechanics, 2nd edition (New York: McGraw Hill).
Steiner, E. (1963) J.Chem.Phys. 39, 2365.
Stoddart,J.C. and March,N.H. (1967) Proc.Roy.Soc. A292, 279.
Thomas,I.H. (1926) Proc.Comb.Phil.Soc. 23, 542.
Weiss, A.W. (1961) Phys.Rev. 122, 1326.

Appendix 1

Calculation of mean square momentum.

Definition of average square momentum is given by

$$
\left\langle p^{2}\right\rangle=\frac{\int \psi^{*} p^{2} \psi d \tau}{\int \psi^{*} \psi d \tau}
$$

where ψ is momentum wave function of an electron in nth shell. Simplification yields

$$
\begin{equation*}
\left\langle p^{2}\right\rangle=\frac{\int p^{4} e_{n}(p, p) d p}{\int p^{2} e_{n}(p, p) d p} \tag{App.1.1}
\end{equation*}
$$

Momentum density $\ominus_{n}(p, p)$ is given already in equation (B.I.2). If we substitute $\frac{p^{2}}{p_{n}^{2}}=q^{2}$, we obtain

$$
\begin{aligned}
\int_{0}^{\infty} p^{2} e_{n}(p, p) d p & =\frac{8 n^{2}}{\pi^{2}} \int_{0}^{\infty} \frac{q^{2}}{\left(1+q^{2}\right)^{4}} d q \\
& =\pi / 32
\end{aligned}
$$

an

$$
\begin{aligned}
\int_{0}^{\infty} p^{4} e_{n}(p, p) d p & =\frac{8 n^{2}}{\pi^{2}} p_{n}^{2} \int_{0}^{\infty} \frac{q^{4}}{\left(1+q^{2}\right)^{4}} d q . \\
& =p_{n}^{2} \cdot \pi / 32
\end{aligned}
$$

Using (App.1.2) and (App,1.3) in (App.1.1) we get

$$
\left\langle p^{2}\right\rangle=p_{n}^{2}
$$

From the virial theorem we have $T=-\mathbb{E}$ therefore
$\frac{\left\langle p^{2}\right\rangle}{2 m}=\frac{z^{2}}{2 n^{2}} \frac{e^{2}}{a_{0}} \quad$.

From where we obtain

$$
p_{n}^{2}=\frac{z^{2}}{n^{2}} \frac{m e^{2}}{a_{0}}
$$

Since we are using atomic units in our most of the calculations therefore we can write

$$
p_{n}^{2}=\frac{z^{2}}{n^{2}}
$$

Appendix 2

General solution of the integrals involved in our scattering factor

calculations.

General form of the integrals we deal with, in scattering factor calculations, is given by

$$
I=\int_{0}^{\infty} \sum_{1=1}^{n} a_{1} \cdot x^{1} \cdot \operatorname{Sin}(E x) \cdot e^{-x} \cdot d x
$$

which we can write as

$$
=-i \operatorname{mag} \sum_{1=1}^{n} a_{1} \int_{0}^{\infty} x^{1} \cdot e^{-(i \#+1) x} \cdot d x
$$

Since

$$
e^{-i E x}=\operatorname{Cos}(E x)-i \operatorname{Sin}(E x)
$$

Integration gives us

$$
I=-\operatorname{imag} \sum_{1=1}^{n} a_{1} \frac{I!}{(1+i E)^{1+1}}
$$

Multiplying and dividing by $(1-i E)^{1+1}$ on right hand side yields

$$
I=-\operatorname{imag} \sum_{n=1}^{n} a_{1} \cdot \frac{1^{\prime}}{\left(1+E^{2}\right)^{1+1}} \cdot(1-i E)^{1+1}
$$

Expanding $(1-i E)^{1+1}$ for different values of 1 and choosing the imaginary terms only we obtain

$$
\begin{aligned}
& (1-i E)^{2}=2 E \\
& (1-i E)^{3}=3 E-E^{3} \\
& (1-i E)^{4}=4 E-4 E^{3} \\
& (1-i F)^{5}=5 E-10 E^{3}+E^{5}
\end{aligned}
$$

$$
(1-i E)^{6}=6 E-20 E^{3}+6 E^{5}
$$

etc.
Therefore solution of the integral I is given by

$$
\begin{array}{r}
I=\frac{a_{1}(1!)}{\left(1+E^{2}\right)^{2}} \cdot 2 E+\frac{a_{2}(2!)}{\left(1+E^{2}\right)^{3}} \cdot\left(3 E-E^{3}\right)+\frac{a_{3}(3!)}{\left(1+E^{2}\right)^{4}} \cdot \\
\left(4 E-4 E^{3}\right)+\frac{a_{4}(4!)}{\left(1+E^{2}\right)^{5}} \cdot\left(5 E-10 E^{3}+E^{5}\right)+\ldots
\end{array}
$$

Appendix 3

Application of Fock's scattering factor expression to M-shell of hydrogen-like atom.

In the general expression of Pock for the scattering factor if we put $n=3$, for $M-$ shell, we get

$$
\begin{equation*}
F_{3}(X)=\frac{1}{36} \cdot T_{3}(X) \cdot(1+X)^{2} \cdot\left[P_{3}^{\prime}(X)-P_{2}^{\prime}(X)\right] \tag{App.3.1}
\end{equation*}
$$

where Tshebysheff polynomial $T(X)$ is defined as

$$
T_{n}(x)=\operatorname{Cos}\left(n \operatorname{Cos}^{-1} x\right)
$$

For $n=3$ we get

$$
I_{3}(x)=x\left(4 x^{2}-3\right)
$$

since $\quad \operatorname{Cos} 3 A=\operatorname{Cos} A \cdot\left(4 \operatorname{Cos}^{2} A-3\right)$
where A corresponds to $\cos ^{-1} X$.
Derivative of $\mathbb{T}_{3}(X)$ yields

$$
T_{3}(X)=12 X^{2}-3
$$

Now take the Legendre polynomial from mathematical tables where

$$
P_{3}(X)=\frac{15}{2} X^{2}-\frac{3}{2}
$$

and

$$
P_{2}^{\prime}(X)=3 X
$$

Putting the values back in equation (App.3.1) we obtain

$$
\begin{equation*}
F_{3}(\dot{X})=\frac{1}{8}\left(4 x^{2}-1\right)(1+X)^{2} \cdot\left(5 X^{2}+2 X-1\right) \tag{app.3.3}
\end{equation*}
$$

X is defined as

$$
x=\frac{4 p_{n}^{2}-k^{2}}{4 p_{n}^{2}+k^{2}}
$$

where

$$
p_{n}^{2}=\frac{z^{2}}{n^{2}}
$$

For $\mathrm{n}=3$ we get

$$
x=\frac{4 z^{2}-9 k^{2}}{4 z^{2}+9 k^{2}}
$$

It would be more convenient if we put

$$
\frac{\mathrm{k}}{\mathrm{Z}}=\frac{2}{3} \cdot \mathrm{E}
$$

so that

$$
X=\frac{1-E^{2}}{1+E^{2}}
$$

Therefore

$$
\begin{equation*}
(1+X)^{2}=\left(\frac{2}{1+E^{2}}\right) \tag{App.3.5}
\end{equation*}
$$

Substituting (App.3.4) and (App.3.5) in equation (App.3.3) we get the final result

$$
F_{3}(X)=\frac{1}{\left(1+E^{2}\right)^{6}} \cdot\left(9-48 E^{2}+72 E^{4}-28 E^{6}+3 E^{8}\right)
$$

If we put $\mathrm{E}=0$ or $\mathrm{X}=1$ we get the expected normalization condition, ie

$$
F_{3}(x)=9,
$$

since Pock's expression is true for singly occupied levels. Above result is in agreement with the one obtained by using the charge density for M-shell and solving the Fourier transform, equation (A.I.1).

Appendix 4

Programmes used for different calculations involved in our work.

We provide the copies of different programmes used for the numerical calculation of different expressions. First we give $G(K)$, the function involved in the IT scattering factor. It is solved from two different expressions. We have used Simpson's rule of numerical integration for equation (A.IV.7) and for the integrals involved in the calculation of kinetic energy for the hydrogenlike atoms. First of the following programmes corresponds to the evaluation of equation (A.IV.7) whereas the second one for the equation (A.V.7).

Programme 1

Programme 2

We also like to give details about the computer programe used for the calculation of Fock's general expression of scattering factor. Function 'DERT' in the programe represents equation (A.VI.8), the recurrence relation for Tschebyscheff polynomials. Whereas the derivative of Legendre polynomial, equation (A.VI.9) is denoted by 'DERLN'. With these simplification the recurrence relation for Fock's expression (A.II.2) is given by

$$
\begin{gathered}
F=2.0 * \text { DERT } *(1-X) * * 2 *(\text { DERTIN } 1-\text { DERUN } 2) / \\
(4.0 * \text { AN } * * 2)
\end{gathered}
$$

Factor of 2 is included in the above expression to make the relation true for doubly occupied levels.

We have used DO LOOP 3 to generate different values of M which corresponds to n^{\prime}, and of $T Z$ which corresponds to atomic number Z. DO LOOP 1 is generating different values of k and K. Once the values of Z and k is fixed by the above do-loops we need to determine scattering factor . But Fock's relation determine F only for one shell at a time therefore we need to have a do-loop which carry on adding all Fl^{\prime} s till \mathbb{N} become equal to M . This is done by do loop2. As soon as $N=M$ we have asked to print the values of $X, F, A D D F$, FRATIO, $B K, A K$ and N. Execution time for this programme was 25 seconds.

Computer programme for Fock's general expression of scattering

factor.

PIUENSIU T(110), P(11)

$114 x^{\prime} \mathrm{S}^{\prime}=1,101$
$T Z=\operatorname{LO}(A 1+1.0) *(2,0 * A(1+1, \cdot) / 3 . a$
333
FORTMT10B3)
$\frac{1 F}{\operatorname{IF}(M, L T: S), G Q T O T O}$

23. IHT= 5
$\frac{11}{G 0}=6 \geq 11$
$30 . \quad$ IN $1=15$

$\mathrm{EK}=A K(1 \pm 3,3 / T Z)=(1,0 / 5.01)$

$\mathrm{Z}=2 \mathrm{C}=\mathrm{S}=(\mathrm{AH}+\alpha 2)$
$X=\left(4+U^{*}\left(P 1^{+}+2\right)-\left(A K^{*} 2\right)\right) /\left(4.0^{+}+\left(P N^{+}+2\right)+(A K+2)\right)$
$x=x^{-a} 2$

- Is fLOATING pOINT EQUALITY TÓ BE EXPECTEO

CALL GOP (T, X,N+1)
CALL LEP (PAX:N)
DERT=AN ($\left.x^{+}+(x+1)-T(N+2)\right)(1 \times 0-x 2)$
DERLHE $A W(X+P i N+1)-P(N) ;(X)$

$\left.-0)^{+(x} p(1)-p(N-1)\right) /\left(x_{2}-1.0\right)$

1010
AOOF $\operatorname{FADAF}+F=A D D F / T Z$
$\mathrm{NHI} I=11-1$

222 FORMAT (IXX,F11. $9.5 \mathrm{X}, \mathrm{F} 15.3,5 \mathrm{X}, \mathrm{F} 15.9,5 \mathrm{X}, \mathrm{F} 12.9,5 \mathrm{X}, \mathrm{F}: 2.9,5 \mathrm{X}, \mathrm{F} 12.91$

[^0]: * Beyond these values the solutions behaviour becomes unacceptable for that particular value of 1 .

[^1]: 1.9312
 .9745
 .971762
 .7917 .3
 .63754

