
A thesis entitled 

" ATOMIC AND IONIC ENERGIES AND ELECTRON DENSITIES " 

submitted for the degree of 

Master of Philosophy 

in the 

University of London 

by 

M. Suleman Yusaf 

of 

Imperial College London 

1976 



1 

Abstract  

Because of the central role of the hydrogenlike atoms in the so-

called 0 (z the atomic number) expansion of atomic and ionic bindingener-

gies, the first part of this thesis presents results, both analytic and 

numerical, for 

(a) the X-ray . scattering factor 

(b) the momentum density 

for for the case when up to and including hundred shells are filled. 

As the number of shells filled gets large, contact is established 

with asymptotic results for scattering factor obtained from the Thomas 

Fermi theory. The accuracy of this approximate method is critically 

assessed. In connection with (b) the kinetic energy density is calcu-

lated for several shells filled and is again compared. with the Thomaq-

Fermi result which is proportional to the 53rd power of the electron 

density. 

The second part of the thesis is concerned with the electron 

densities and energies of atoms and ions, within a self- consistent 

framework. Results of Boyd on radial electron densities are referred to, 

but the main  emphasis here is the binding energy as a function of N 

and Nit (N the total number of electrons). Numerical data is used for 

this purpose, from Hartree and Bartree-Fock calculations. Specific 

results are given for the rare gas elements. 
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Introduction  

Our main objective in this thesis is to clarify the range of 

validity of the Thomas-Fermi (TF) approximation. This we have achieved 

by studying diffeilt properties of atoms, for example X-ray scattering 

factors, binding energies, kinetic energy densities and charge densities. 

In each case we have finally made a comparison between the TF and the 

fully wave mechanical approach through Rartree-Fock-Slater calculations. 

The outline of the thesis is as follows. Part A is about the 

X-ray scattering factor. Here we have made a detailed study of Pock's 

(1935) general expression for the electron density, and scattering factor 

and how it could be used to get results for increasing number of shells 

when only a pure coulomb field is considered. We have developed the TF 

scattering factor relation from the charge density and have solved for 

this scattering factor analytically as well as numerically. This can be 

represented by a universal curve independent of atomic number Z. Finally 

fully wave mechanical results are compared numerically with this TF result. 

Part B is concerned with the momentum and kinetic energy den-

sities. After giving a brief derivation of bothkwave mechanical and the 

TF expressions we have applied these to hydrogenlike atomic systems. At 

the end of this part, we have put some emphasis on the electron density 

origin since it can be used in conjunction with an exact relation bet-

ween density and its gradient (Steiner, 1963). We have also demonstrated 

how P(0) is related to the density in momentum space when the momentum 

is sufficiently large. 
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In part C our interest is focussed on binding energies in atoms 

and ions. After out-lining the TF energy and 0 expressions we discuss 

the physical interpretation of the different terms involved. A relation 

between the binding energy and the sum of eigenvalues is derived. We 

have also discussed some approximate analytic fits and how they may be 

refined. 

Finally a brief study of self-consistent charge densities is made 

In part D. Here we have studied the IT universal form in comparison with 

some of Boyd's (1976) data. 
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(A) X-ray scattering factor. 

Our aim here is to study in some detail the electron density in 

a neutral hydrogenlike system, always assuming closed shells, having 

nuclear charge Ze and Z electrons. The reason for our interest in this 

problem is two-fold: 

(i) The hydrogenic problem gives rise to the leading term 

in the so-called 0 expansion for atoms, which we shall discuss in detail 

in the second half of thesis. 

(ii) For large Z, this study will enable us to test the range 

of validity of the Thomas Fermi statistical theory applied to the hydro-

gen-like problem. 

Later in the thesis, we shall also comment on the relation bet-

ween the Thomas Fermi selfconsistent density and the approximate densities 

derived, from the Favtree-Fock equations ( Boyd, private communication). 
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(A.I) Fourier transform of electron density. 

In order to implement the above programme, in which we wish to 

study Quite a large number of closed shells, we shell find it helpful to 

calculate the coherent X-ray scattering factor defined by 

	

S.;f (0 = 	P 	. e41.21  . dr , 	( A.I.1) 

where 4)(s) is the total electron density in the atomic system under 

consideration. Actually, below, we construct 4)(E) by summing the density 

A(r) for the nth closed shell over n closed shells i.e 

	

(10 = 	 (E.) 	(A.I.2) 
n = 1 

and correspondingly we define the scattering factor fn(h) for the nth 

closed shell by 

	

fn  (k) = 	.eik.r . dr. 	(A.I.3) 

Since by Unsold's theorem Pn(r) is spherical as long as the shell 

is fully closed, (see Pauling and Wilson,1935) we can use Bauer's expansion 

of a plane wave in spherical waves, namely 

ik.r e-- it . (21 + 1) . j1(kr) . P1(Cos e) , 
	(A.1.4) 

where ji  is the usual spherical Bessel function, P1  the Legendre 

polynomial of order 1, and 6 is the angle between k and r , to write 
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CO 

f(k) = 47S Pil(r) • Sink 
 (kr)  
 r 	r2 dr 	(A.I.5) 

(A.II) Pock's expression for scattering factor. 

In what follows we shall use 	Pock's result (Pock, 1935) that 

the scattering factor fn(k) for the nth closed shell can be obtained in 

closed form in terms of Tschebyscheff polynomials and the Legendre poly-

nomials already used above. 

Pock's result is most compactly summarized in terms of a new 

variable X defined by 

2 2 4 P _k2  
	 (A.II.1) 

 

4 
, 2 
P k2  

where p2 is mean square momentum for nth shell. It can be shown from the 

calculation of the momentum density that 

2 	Z
2 

pn 

we have derived this value in Appeals-lilt-  1. Pock's expression is given by 

pn(x) 	. 	. (1 + 1)2. Ipiti(x) Vx)] 
	(A.II.2) 

CA.70..• 
where Tt(Z) denotes the derivative ofITschebyscheff polynomial while 

PI(X) is the derivative, of the Legendre polynomial of order n. This 

relation, it must be stressed, is valid for singly occupied levels and for 

a particular closed shell, when we are considering a pure coulomb field. 

0 
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Before utilizing Fock's result for shells with larger n, it has 

been checked directly for the K,L and M shells. These are the only shells 

for which we have made explicit calculations of the electronic charge den-.. 

sity Pr(r). Calculations have been carried out from relations (A.I.5) 

and (A.II.2) separately and a comparison is thereby made. 

Calculation of scattering factor for K, L and 11 shells from 

electron density P(r). 

Putting the corresponding values of p (r) for the K, L 
n 

and M shells into equation (A.I.5) and evaluating the integral is straight 

forward. We have given a general solution for the integration of this type 

in Appendix 2*. 

K-Shell 

L -Shell 

We merely quote 

f1 
 (k) 

f2(k) 	= 

f
3
(k) 	= 

the final results below. 

32 

3 E8) 

( 4 + 02)2  

4 ( 2 - 3 C2+ C4) 
(1 + C2)4 

2(9 - 48 E2  + 72 E4- 28 E6+ 

( 1 +E2)6 

where 	E = 3/2 C : 	C 	= 	, 

in the last step atomic units (Bohr radius a0=1) having been used. 

Solution is given for the integrals 

"
1 	-x (±) 	. x . Sin (E 	. e 	. dx 

( 0 w 
(ii) 

 

0 
tm 	Sin (Ft) . e-t  . dt 
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Pock's results  

Next we take Pock's general expression i.e equation (A.II.2). 

As the evaluation is fairly straight forward, we shall not give all the 

details, but merely a typical example. 

The results we obtained are precisely half in magnitude of those 

we have given above using )(r). This is because, as we remarked already, 

Pock's expression is derived for singly occupied levels where-as the charge 

densities we have used in equation (A.I.5) for direct calculations have 

been normalized for doubly occupied levels. In Appendix 3 we summarize the 

calculation of f
3
(k) from Pock's expression to show explicitly how the 

detail works out, even for xi = 3 the detail is quite lengthy. 

(A.IV) Thomas-Fermi scattering factor. 

Numerical evaluation of the Focksresult is readily carried out 

with the aid of an electronic computer. But before going into details of 

this method it will be instructive to calculate the Thomas Fermi (TF) 

scattering factor for hydrogenlike atoms. 

The TF charge density for a pure coulomb field is defined as 

1 81T (2m)3/2.  (Ef .1.  Z r  e2)3/2, for r<  Z e2 

0 ( r) 	= 	3 h 	 I Ef I 
0 	otherwise, 	(A.IV.1) 

where h, m, e, Z, and r denote respectively Planck's constant, electron 

mass, electronic charge, atomic number and distance from nucleus. Ef  being  

the total energy of the fastest electron. 



f (k) = R . 

0 

32112(2m)3/2 

3 h3  

1 

	Z 
 e
2 3/2 

s2(E.,+ 	) . 	Sin (k.r .$) -3  ds 
1 	rc s 	k.rc.s 	

'c ' , 
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The scattering factor for the total electron density ()(r) is 

already defined by equation (A.I.1) which has been modified to 

rc 
Sin (kr) . 47r x? dr,  

0 	kr 

where 
Ze2 rc IEfl 

Putting in the value of P(r) from equation (A.IV.1) we get 

2 
f  (k) = 321T . 

3 h3  

rc 
)3/2 r2 (Ef 

 Z
r 
 
e2  e2  )3/2 Sin (kr) dr. ` 	kr 

0 

Again substituting 	r = T 	S 

. .. 

where re is the maximum atomic radius, we obtain 

where 

Further simplification is possible if we put k . rc = IC 	where 

k,we recall, is equal to _427 Sin (0/2) 	, 0 	being the scattering 

angle for X-rays, and X the X-ray wave length. Then we find 

f (K) 	= R.r3 	(E 	Z e2 )/2 	
Sin (ES) 

 c Ks 	. s2 ds . 

0 

But in a pure coulomb field 

IEfI 
	

= ze2 

rc 



Therefore, being more explicit we can write 

1 

f(K) = R . r3  .1E3(2. 	( 	
/2 
	Sin (KS   K s 

0 
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. s2. ds. 

Substituting value of rc  from above we get 

1 

f(K)= R  (ZE72.)33 	( 
	) 

/2. 	_1,3/2.  Sin  (Ks) . s2. ds 
0 	K s 

2 

which we can express in the form 

Im  2\3  

/2 f(K) 	R . klj e  ) 	. G(K) 	, 715 
	(A.IV.2) 

where 

1 G(K) = 	( 	1)
3/2 	

Sin (Ks)  . s2. ds 
s 	K s 

We shall come back to the evaluation of G(K) later but now we 

give attention to the other factors in equation (A.IV.2). Integration of 

equation (A.IV.1) over r and solving for Ef  gives us 

2 Z, 	1 	e2  
Ef = 	• 	• 	(A.IV.3) 

N3 	183 	a  

(see, for example March, 1975 ) where N is total number of electrons 

present in the system. It is related to nt, total number of closed shells 

in the system, by the following relation 

N = 	1) (2nt+ 1) / 3 

ni 

since N = ;57  2 n2  
n = 1 
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n being the principle quantum number. Putting back the value of N in 

equation (A.TV.3) we get 

2/3 1  
Ef 	

- Z
2e2 	3  

)• 
ao 	n' (n1+ 1) (2n1+1) 	183  

and therefore 

1 E3 
 

f( = 
3 Z3. e3  	(A.IV.4) 

n'(n'+ 1).(2n1+ 1) a3/! 1 

Hence the TF scattering factor can be written, after putting (11-1-V•4) 

in (A.IV.2), as 

	

R. (Z e2)3. n1(n1 	+ 1)(2n1  + 1) 182  ao  3/2  
f(K) - 

	

	 . G(K) 
Z3. e3. 3 

and after simplification we obtain  

f(K) = R . 	11'(n1  + 1)(2111+ 1)  . 181. e3. a32G(K) 	. 
3 	 0 
	 (A.17.5) 

Substituting for R and using atomic units, which we shall employ in most 

of the calculations, i.e m = e = h = 1 , equation (A.IV.5) is easily 

reduced to 

n1(n1  + 1)(2/11+  1)  
f(K) = 5.0928 	 . G(K) 

	

3 	(A.Iv.6) 

We can get a universal form out of this expression if we divide 

both sides by N, i.e 

f(K)  = 5.0928 . G(K) 
N 	(AsIVA7) 

where the right hand side is now independent of atomic number Z. A check 
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can be made by putting K = 0 in equation (A.IV.7). Equation (A.I.1) 

for K = 0 gives us 

coo 

f(0) = 	 2(r) . dr = 	(A.IV.8) 
0 

provided p(r) is properly normalized for N electrons. Dividing both 

sides by N we get 

f(0) 	1 
N 

00) is evaluated and found equal to 0.1963. Therefore from 

equation (A.IV.7) we get 

f(0) = 0.99971 . 
N 

Since the results from equations (A.IV.7) and (A.IV.8) agree with each 

other we can safely assume that our numerical as well as analytical solu-

tionsare correct at least at K = 0. 

Numerically equation (A.IV.7) has been solved for different K's 

with the help of an electronic computer using Simpson's rule for numerical 

integration. We have listed the programme in Appendix 4. The results are 

recorded in Table I. 

(A.V) Analytic solution of G(K). 

Though we have evaluated the integral G(K) numerically, yet it is 

of some interest to examine whether a useful analytic solution can be found. 

G(K) is defined by equation (A.IV.2). Expanding Sin(Ks) in powers of Ks 
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then yields 

1 
m-1 2m-1 S 1 	2m-3/2 	3/2 

G(K) = .1 	2: (-1) . K 	 . s 	. (1 - s) 	. ds . 
K (2m - 1)1 0 m=1 	(A.V. 1) 

In terms of the Beta function defined as 

1 

(3(m+1,n4.1) = tm  . (1 - t)n. dt 

0 

-1-(; 1) :1—(. 1) 

171. m 4. 2) 

(see, for example, Bartlett and Fyfe, 1974) we can express G(E) as 

G(K) = (-1)m-1  .K.2311-1 	172m4) . T(73/2)•
1 
r  m=1 	(2m - 1)! 

We simplify the term 

T(2m ÷ 2) 
(A.V.2) 

Vam--k) . 75/2)  _ 	3 	T(2m4e) . 76)  
TT2m+2) 	

4(2/114-1) 	(2m-i) - It2m+1) 

Since in general 

171/4n + 1) = n . fin  • 

Therefore in terms of the Beta function we get 

	

1(2m2) • 1/2)  _ 		3 .r(2m14, i) 

1(2m+2) 	4(2m+1).(2m2) 

Using the identity 

( n , 2  ) 	= 	n. , n ) . 22n-1  

	(A-11.3) 
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we can write 

(2 m + 	, 	= e(p , p) . 24Ia  

where 	p 	= 	2 m + 1". 2 

Equation (A.V.3) then becomes 

	

77(2m47) 75/2) _ 	3 .e(p,p) . 242  . 	(A.V.4) 
1(2m+2) 	4 (2m 1) (2m - i) 

Again we can make use of the definition of the Beta function to write 

(A.V.4) in integral form. We have 

1 

e(p,p) 	= 	s (1 - s) 1P-1. ds 
0 
2 

Puttire 	Sin A 	, therefore ds = 2 Sin A . Cos A dA 

it follows that 

2 	
2 	

2 
s(1 - s) = 	A. Cos A = 	Sin 2A ) 

For 	s = 0 	A = 0 ; and for s = 1 , A = TT/2 

therefore 

-5/2 

e(p,p) = 	Sin (2A. )/2 FP-2. Sin (2A) . dA 

Substituting back 	p = 2m + 2  we get 

IT/2 
4m 

Si (2A ) . dA e(p,p) 
	2

-2(2m 2) 	n  

0 

n 
Using recurrence relation for integration cf Sin x we obtain 
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TY2  - 
9(1),13) = 	

24m+1. 	4m - 1 
4 m 	

Sin (2A ) . dA 
4m2 

0 

We can carry on until power 	(4 m - c) = 0 whereby 

11/2 
0 

Sin (2 A) . dA 	= 7/2 

0 

c is arbitrary constant and has even values 	2,4,6, 	 4m . 

Ultimately we arrive at the result 

e(p

,p) = 24M+1. 	(4M 1)(4M  3) 	 5  3.1 . TT/2 . 
4m (4m - 2)(4m - 
	(A.v.5) 

Putting this back into equation (A.V.4) it follows that 

72m--127) . (5/2)  _ 
IT 

(Pm+2) 

which can be simplified to give 

(4m 1)(4m-3) 	5  3.1 	7/2 
4m (4m-2) 	4.2 	(2m+1)(2m-i) 
	(A.V.6) 

2 	2 	2 2 
23114) • 175/2)  _ 	• (4m-1)(4m-3)..3.1 	. 11/2 
T(2m+2) 	(4m)! (2m+1)(2m-i) 

Inserting this finally into G(K) i.e equation (A.V.2) we obtain the 

required analytic expression, namely 

21  1 
G(K) = 2: I 

	(-1)m-1. K2m-2 

** . 	
(4m-2q4.1)2 	. Tr/2 . 

m=1 q=1  ' (2m-1)! 	(4170! (2m4-1)(2m-4') 
	(A.V.7) 

This exact solution of G(K) has been numerically solved for different 

values of K and 1. The results are given in Table I. 
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Table I 

Numerical and analytical solution of the TF scattering factor. 

K G(K) f/Z 
(K = k. Numerical Analytical Numerical Analytical 

1 = 6 1 = 19, 1 = 30 1 =30 
0.000 0.19627 0.19635 0.19635 0.19635 1.00000 0.99971 

1.0 0.18972 0.19033 0.19033 0.19033 0.96621 0.96930 

2.0 0.17289 0.17356 0.17356 0.17356 0.88048 0.88392 

3.0 0.14877 0.14952 0.14952 0.14952 0.75766 0.76149 

4.0  0.12191 0.12274 0.12271 0.12271 0.62087 0.62494 

5.o 0.09652 0.09753 0.09732 0.09732 0.49154 0.49565 

6.0 0.07540 0.07729* 0.07618 0.07618 0.38399 0.38798 

7.0 0.05958 0.06034 0.06034 0.30344 0.30728 

8.0 0.04858 0.04931 0.04931 0.24738 0.25114 

9.0 0.04106 0.04181 0.04181 0.20912 0.21292 

10.0 0.03565 0.03641 0.03641 0.18157 0.18544 

11.o 0.03134 0.03212 0.03212 0.15962 0.16356 

12.0 0.02887 0.02842 0.02842 0.14083 0.14475 

13.0 0.02348 0.02522 0.02522 0.12461 0.12845 

14.0 0.02180 0.02254 0.02254 0.11103 0.11479 

15.0 0.01963 0.02035 0.02037 0.09999 0.10372 

16. 0.01786 0.01839* 0.01860 0.09096 0.09473 

17.0 0.01636 , 0.01710 0.0833o 0.08709 

18.0 0.01502 0.01577 0.07649 0.08030 

19.0 0.01381 0.01455 0.07035 0.07411 

20.0 0,01274 0.01347 0.06488 0.06858 

21.0 0.01180 0.01252 0.06012 0.06376 

22.0 0.01099 0.01170 0.05598 0.05960 

23.0 0.01028 0.01099 0.05233 0.05599 

24.0 0.00962 0.01037 0.04901 0.05283 

25.0 0.00903 0.01010 0.04596 0.05145 

* Beyond these values the soIutioisbehaviour becomes unacceptable 

for that particular value of 1. 
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We have examined the solution for three different values of 111  

when keeping Kmax 
 constant at 25. 

(i) 1 = 6 : 	As shown in plot 1 curve is smooth and in 

agreement with numerical solution curve, up to 	1:4 5. But from there 

onwards it starts rising rapidly. In this region we cannot rely on the 

analytic solution. 

(ii) 1 = 19 : This time, the curve remains smooth and acceptable 

until K 45.:16 (see plot 1). After that the curve begins to fall rapidly 

( dotted curve ). 

(iii) 1 = 30 : Here we see that the solution remains acceptable 

over the whole range of K ( plot 2). 

We have also found that for odd values of 111  the curve ultimate-

ly finishes up (where the behaviour become unacceptable) as a rapidly 

decreasing curve, whereas if 111  is chosen to be even the reverse is true. 

Table I allows us to draw one important conclusion about the analytic 

solution we have obtained. 

To afford an acceptable solution we must take the value of 11/, 

total number of terms in the summation, more than the selected maximum value 

of K, otherwise the solution will start behaving differently before K 

becomes equal to K . This conclusion is demonstrated in the plots 

presented here. 
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(A.VI)  Numerical evaluation of Pock's general expression for scattering 

factor. 

Now we come back to Pock's general expression for the atomic 

scattering factor given in equation (A.II.2). As mentioned earlier we 

shall examine it numerically for large n. 

For use in the computer programme, what we require are recurrence 

relations for the Tchebyscheff and Legendre polynomials. Therefore we first 

derive the required forms of these as follows : 

Into the definition of T
n
(X), namely 

Tn(1) = Cos (n Cos X) 

let us substitute 

X 	= 	Cos Y 

Therefore 

Tn(1) = Cos (n1) 	. 	(A.VI.1) 

Evidently 

Tn_1(X)= Cos [(n-1) Y] 	. 	(A.VI.2) 

Taking the derivative of (A.VI.1) we obtain 

dT 	ffr TI!).(X) = 	-afa • 

After substituting the values we get 

TI!)(X) = Sin(nY). n . 

Similarly we find 

1 
(1—x2 )2 

Te
n
(X) 	= 
-1 

Sin [(n-1) 	. (11-1) 

(1 - X2)i 

	(A.VI.3) 
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We now expand in the form 

TI 	I 	= -11(=1 - 	[ Cos Y . Sin (n1) - Cos (nY). Sin ("Y) I, n-1` 	(1-X2A • 

which is readily rewritten as 

mt (x) - In=11  [ X .Sin (nY) - Tn(X). Sin Y] 1  n-1`  
(1-X }2 

more usefully 

TI (x) = (n-1).X.Sin(hY) 

(1-X2)2 
	- (n-1). Tn(X) 

	 (A.vI.4) 

since 

Sin Y = (1 - X2)2  

Simplifying (A.VI.4) we find 

Sin (nY) - 
	TL-1(I) + (n 1).Tn(X) 	(1 x2y2 

(n - 1) . X 	 (A.VI.5) 

Going back to equation (A.VI.2) where 

Tn1(X) = Cos ((n-1)-0 

expanding it into Cosine and Sine terms we find 

n-1(X) = Cos Y . Cos(nY) + Sin Y . Sin (nY) 

which is equivalent to 

Tn_1(X), = X . Tn(X) + (1 - X2A. Sin (nY) 	. 
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Solving this for Sin (nY) yields 

Tn-1(X) - X . Tr(X) 	(A.VI.6) 
(1 - X2)i 

Comparing equations (A.VI.5) and (A.VI.6) we get 

Tn_1(X) - X Tn(X) -1 	, 
in-lkX) + (n-1).T,(X) . (1 - X2)--  . 

1 = 
(1 - X2)2 	(n-1) X 

	(A.171.7) 

Sorting out the terms and multiplying both sides by a factor 	
(n-1) X  
(1-X2)2 

we get 

Til
-
1(X) = 	1 (n-1) X . Tn_i (x) - Tn

(x) (.111--2)x 	+ (n-1)] 2  

Further simplification gives us 

Ux) 1) . X . T/1_100 - Tn
(X) 

1 - X2  

Finally replacing (n-1) by n yields 

X . Tn(X) + TriA100 
TI(X) = n .   	(A.VI.8) n 	 1 - X2  

From this relation it is now easy to find Tn(X) for an arbitrary order 

n. 

Legendre polynomials  

The procedure for the Legendre polynomials is essentially the 

same, and we merely quote the final recurrence relation. 

Sin (nY) - 



Piti(X) 	= 
x . pri(x) - pn_i (x) 

(x2- 1) 
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	(A.VI.9) 

Putting values of Titi(X) from equation (A.VI.8) and of. P:1(1) 

from (A.VI.9) back in equation (A.II.2) we get the required general 

expression of Fock in recurrence form, suitable for use in the computer 

programme (see Appendix 4). 

Table II summarizes the results of the computer calculations for 

different shells. The symbols used in the programme are presenting the 

following physical quantities: 

N : the total number of shells considered at a time. It corresponds 

to n' we have used above. 

X 	: the parameter used in Pock's expression. Same as we have used 

above. 

F 	corresponds to f used above and represents the scattering 

factor for a particular shell, say the nth, for different values of K, 

ADM' : the total scattering factor for all the shells is being added 

up in here up to the nth shell for different K's. 

FA : the scattering factor per electron. 

AK : corresponds to our k = 417Sin 
 9/2  

BK : corresponds to the K used in the TF theory. 
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N 	 x 	F 	ADCF 	F/Z 	8K 
	

AK 

1 
1.771526 
1.285333 
.319200 
.5,1.;),31 
.3&458:: 
.134349 

1.ozco.: 
.682352 
.6 JJ3 
.230:1 

-.384615 

2.303 
1.771626 .685513 2.080083 

	

1.260c:JJ 	4.1EL167 
.51,c2.K .46930,3 5.243251 
.53.,J3.., .25.1330 3.32J335 

	

.304560 	.152290 15.460419 

.189349 .094674 12.485502 

1.630330 

3. 
4•I'LL11•30 
5. uut.,Jy0 
6•96CuOU 

2 	1.0.3'033: 
.98C193 
.9236-76 
.834362 
.7241.4'7 
.6000j:, 
.47558€ 
.34223_ 
.21951_ 
.1134972 

-.01502: 
-.18032; 
-.256531.  

3 	1.6603:J: 
..99427L. 
.9773:J. 
.94964.: 
.91219: 
.866111 
.812718 
.753424 
.63965: 
.622768 
.554013 
.484497 
.41516: 
.34678-i 

.215268 

.15294.: 

.Z93254 

.636351 
-.617897 
-.i)66667 

6.030309 
7.5723)3 
6.433596 
4.92.-4255 
3.414464 
2.15244i4 

4C)24374 

.27J72„) 

.03=-264 

27313 
-.,-227566 
-.01534i 

18.5336 
17.423491 
15.747,7.-; 
1334,:2L.44 

7. 87993 
5.248475 
3.2'55352 
1. 776176 
.79:703) 
.225347 

-.L., 33433 
-.1,37517 
-.L59395 
.013495 
.1741541 
.173655 
.222.:76 
.245934 
.249)77 
.236674 

1J.du"2:;a 
9.562946 
8.3941% 
0.378214 
5.263596 
3.922)26 
2.116596 
2.212267 
1.757,49 
11_467384 
1.213' 33 
1.151L74 
1..535,;6 
.972343 

28.00u,;00 
27.3607'38 
25.571.393 
22.9,10469 
14.744395 
16.498599 
13.46493, 
10.935868 
6.345577 
7.284442 
6.145791 
5.331974 
4.741932 
4.295656 
3.935521 
3.623577 
3,339244 
3.373376 
2.322358 
2.587793 
2.371108 

1.?.30:106 
.956294 
.339419 
.683820 
.526359 
.5922r2 
.291j59 
.221226 
.17571)4 
.146736 
.128030 
.115157 

.597N4 

1.21644E 
2.432833 
3.649321 
4.865761 
6.082201 
7.298642 
8.515082 
9.731523 
10.947963 
12.1E4403 
13.385844 
14.5-37254 
15.813725  

0 
1.33;i400 
2.6i,u0tiO 

4. ',- 0600 
5. 30.;i.u0 
6.0L.L..00 
7.00Luvil 
8.30J,347 
9.1,0‘6311 

1C.L.LCA400 
11.1:30C:40 
12.0!UL33U 
13.!-J,;0660 

/.146.306 
2..,u01.00 
S.r.,Jacu0 4. f:,.30 
5.EL;0C1.10 
6.663.:01) 
7.I.LCGJO 

9.L66J0J 
1E.162333 
11.1,60350 
12.1:LJuJO 
13.06.4366 
14.00.0,41. 
15.,.,60600 
16.660000 
17.JU6uj0 
18.055560 

2C. 50.1535 

1.000000 
.97i366 	.8E3054 
.913246 1.726158 
.817673 2.589163 
.785156 3.452217 
.589235 4.315271 
.461563 5.176326 
.389321 6.1.41360 
.515913 6.9r-J4434 
.260156 7.767469 
.219528 3.636543 
.190427 1.493598 
.169353 13.356652 
.153423 11.219706 
.143554 12.632761 
.129413 12.54581.5 
.119258 13.8)6669 
.1:49752 14.671924 
.103798 15.534978 
.592421 16.7:5'333 
.354682 17.2E1637 

4 
.99776: 
.99115. 
.98019? 
.96533: 
.94594: 
.92307-: 
.8967.37 

.634962 

.

▪ 

76277 
.724137 
.6831it 
.6423.;1: 

. .5573J: 
.513877 
.4'70542 
.427436 
.36461: 
.34228.: 
.3,:d57e 
.25962: 
.2195__ 
.18C327 
.1421:41 
.164972 

32.33:331 
71. 313322 

26.274133 
2.483117 

18.285u11 

10.2234J 
6.6975'16 
4.275369 
2.271J21 
.45'55i 
.191i57 
-.155392 
-.21--'3 3  

.277529 

.437)12 

.544i85 

.591765 

.587,,33 

.541537 

.45923 

.36,475 

.24431, 

.21J315 

.136393 

54.173766 .986229 .669432 
56.77.232 .545303 1.333665 
53..346976 .634149 2.1.4,73298 
43.37517,) .6.75586 2.677771 
3.044951 .11/41 3.347154 
77.566646 .625444 4.86597 
32.317436 .575523 4.6360.35 
27.557977 .45,4464 5.355463 
23.326314 .788766 6.1'24896 
11.84.7.5 .33,567 6.6'7.4323 
17..;85207 .283920 7.363762 
14.337939 .247299 8.3..33195 
13.142553 .219342 3.7..2528 
1.1.333331 .197327 9.372061 

.1.,...35J 10.641494 
9.462937 	.165,149 16.71.4927 

.154372 11.38636L 
6.602355 	.143373 12."49793 
8.011.152 	.i535,42 12.71922E 
7.454711 	.12.245 13.388559 
6.432275 	.115037 14.(-58"J'31 
5.444:)34 	14.727524 
.)•493G91 	.99384 15.85957 
5.532740 	.29.3334 16.66635J 
5.213.351 	.065869 16.775823 
4.33529 	.331432 17.4,5256 
4.598131 	.,./363::, 16.074689 

0 

6 •1, 
7• 133 	Ju 

9. 
J11 

1106:::.ja 

13.6.40,430 

15.06,0 
16.L.,L36 

19.i.Le:so 

21. L!37J 
22•,:LC.23u 
23. 

25.ni3,C311 

27.LL6.03 

5 	1.31 

.911763  

.79176: 

.

▪ 

5119.3: 

33. 53344.1 .13. 006305 1.U6,I3,10 
,, 65.55'49) 67.744,26 .797072 2.774827 

8.327235 46.688795 .44-443 5.469055 

	

-.274.16 26.423,3; 	.2462,19 5.2,442 
.0311-13 17.944767 	.161!134 13. 979310 

	

.9Ju447 13.178499 	.1.1991 4 13.6/4137 
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6 

7 

g 

9 

10 

.11 

1.000163100 
.956560142 
.947306167 
.894773738 
.8139p2926 
.73963'3927 
.63702E-m34 
.566554939 

1.onc92:n0o 
.992217999 
.95923E769 
.932675472 
.88255.2°41 
.822664657 
.7534:61t558 
.67869425 
.63662r1 30 

1.0001:C^00 
.99523E'576 
.95195'3.634 
.95766,_997 
.925952751 
.896602435 
.842734131 
.71936,9804 
.733422193 
.674149167 

1.0000:6100  
.996863565 
.9876-839 
.97234...799 
.95135-751 
.925)12493 
.89377%492 
.85817:931 
.819633'34 
.7756.64719 
.732377472 

1.0E033:11 00 
.9371.33q39 
.99163_2294 
.9912.:7793 
.966427013 
.943646117 
.9268-'029 
.9017611_77 
.8735)725 
.842633655 
.639273773 
.773755656 

1.G 	00 	303 
.39152+747 
.9941L:n 25 
.996736162 
.97664627 
.96374,151 
.946210711 
.91616_526 
.909747292 
.99712092 
.88247-119 
.615T;3945 
.8377741.55 
.77813%567 

F 

72.0130101330 
59.454315152 
19.6234426E3 
1.311'31498 
-.423+01159 
1.533961779 
.93736...644 
.00123461E6 

99.3).113636 
77.71116g759 
16.476673380 
6.941.665493 
-.756697740 
1.36633.279 
2.135%364733 
.773523454 
-.124247656 

129.003313000 
130.453512386 
56.7923336E6 
17.713)23294 
.3432103E3 
.66,436533 
2.934243784 
2.4169.5322 
.532459715 
-.137639543 

162.0333)3200 
139. 36,395654 
66.3573653E9 
74.306104812 
5.113.5364E4 
-1.224139E16 
2.344159736 
3.33322E7E9 
2.33122-616 
.264112241 

-.218441752 

236.03.131000 
176.433636634 
116.9+7364552 
6.962244176 
14.931332421 
-.73::+45710 
.1127634c4 
4.15:469171 
4.559241817 
2.113356353 
.606564333 
-.13662387 

217.65.3671275 
156.372311510 
35.21;--22421 
. 432'152698 

-1.7133)6653 
2.6/143437 
5. 3L :3229„7 
4.3343 .353 
1.762'331131 
-.2163)'543 
-.1366334:.:5 
.9 i2,:46..)59 

ADDF 

182.000003040 
154.532452451 

'33. 650375120 
56.763632433 
36.99535i 774 
27.724732349 
21.248732349 
16.734523717 

28).036003645 
247.525297260 
176.136932934 
128.7,6146239 
69.920435546 
51.449':47187 
40.472735960 
92.1318E4217 
26.161330278 

403.330303000 
370.544210135 
201.449797574 
133.392953768 
123.57,477701 
98.63499145 
63.812261377 
56.538516237 
46.161961493 
38.635224183 

573.306372200 
527.619345442 
422.2174,39352 
301.186342856 
264.353353761 
145.411663425 
112.743E56693 
92.32::914688 
76.491512454  
61.647315266 
54.539964526 

770.10=600 
722.715771556 
631.639713447 
451.421741499 
321.51566237e 
223.6:4621 977 
174.355117167 
142.155'316999 
114.230626937 
163.646322463 
85.57427972g 
74.237256325 

1012...J4003369C 
951.464413557 
122.227635765 
644.6794+36 7 0 

343.561515350 
261.36,227627 
213.6E3521616 
176.98,923237 
151.055 	13374 
12.9.354129251 
111.757613416 
99.293257759 
97.932771684 

i.t7200J0;)0 
.849354134 
.544235578 
.311915563 
.263273905 
• 152533529 
.11b751112 
.091783125 

1.000000000 
.684013883 
.625443250 
.906214918 
.249715341 
.183746597 
.144545486 
.114649515 
.093432430 

1.01:3306030 
.938196569 
.689127935 
.461747428 
.392368818 
.217252430 
.171123189 
.133697344 
.113142062 
.394694177 

1.000360030 
.925647448 
.74C480769 
.328397163 
.359576663 
.255234497 
.197792642 
.161366473 
.134194338 
.112312957 
.295685099 

1.2140603001 
.933617885 
.78;532119 
.566791492 
.416253977 
.297525743 
.126694944 
.164616919 
.154316164 
.133657562 
.111135418 
.591)476956 

1.331001000 
.949602454 
.812476159 
.697375023 
.47212j542 
.342452486 
.258953990 
.269366720 
.174146248 
.149283611 
.127329245 
.111432718 
.637127735 
.2869'09353 

BK 	AK 

	

2.312262007 	5.C,2050000 
4.624524215 10.'3:, 6.06004 
6.936786022 15.036L:10030 
9.2490146629 20.1.4uuJC,0C 

11.5E1310137 25• :03330 C3C 
13.373572544 36.c u b L,0J00 
16.135834052 OF5 

	

0 	 0 

	

2.002971773 	5.665330036 
4.0E5943545 113.63,30331 
6.005915319 15.n63.30300 

	

8.111887096 	25.0LU4.Cu.100 

	

10.414353863 	25.k.u0334.000 
12.617330635 31.boG0600 

	

14.624.4(,241;8 	35.06, 0360605 
16.623774181 40.343131,t,002 

	

0 	0 

	

1.7E6746007 	5.66,3436600 
3.533492013 12.3336E0363 

	

5.340238020 	15.k:6,2361206 

	

7.066984426 	26.“1,,.36006 
8.833731033 25.7,00100000 
10.620476339 30.63u050J0G 
12.367222246 35.33,312663 
14.133568E53 42.036036326 
15.966714059 45.620000200 

	

0 	0 

	

1.586408005 	5.666336406 

	

3.1608/60/0 	10.365660306 

	

4.741224615 	15.63,3.0262 

	

6.371612022 	20.3403010020 

	

7.932045626 	25.13E210100 

	

9.4,42449361 	93.266363420 

	

11.0E2456336 	35.04363260,7, 

	

12.643254341 	14.402232000 
14.223572646 45.r 31433403 

	

15.864382451 	50.636L60330 

0 

	

1.429652861 	5.20633.3600 

	

2.859365722 	16.6,4633400 

	

4.2E9958592 	15.3630,012 

	

5.719511443 	23.0,3.62363 

	

7.148264364 	25.2341060C 

	

3.577917165 	66.,603.3444 

	

16.0;7577026 	35.63,330602 
11.477222886 40.L0.33000 

	

12.8E69757g 	45.166330066 

	

14.296528609 	50.436243303 

	

15.726131469 	55.`137,0000 

0 

	

1.325170759 	5.000600302 

	

2.613341517 	11.1.1_,,636666 

	

3.915512276 	15.6363.4260 

	

5.226683135 	215.t,,..30202 

	

6.525453793 	25.236360660 

	

7.8310:245!2 	36.643330630 

	

9.134195311 	35.03E631366 

	

10.4-13675 	40.C6u,,6C21 

	

11.746536326 	45.366633600 

	

13.651/07537 	50.0'606306.60 

	

14.3568783L6 	55.333340330 

	

15.6E2E49134 	60.660060200 

	

16.9E7219E63 	65.,66,60323 
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(A.VII) Plot of scattering factor. 

We have plotted f/Z , i.e the scattering factor per electron 

for the different methods, namely, Pock's and both coulomb and self-consis-

tent results from the TP method, against K. Very good numerical agreement 

was found between the TP coulomb results and Pock's results for 10,?..t5. We 

have also plotted results for n' = 1 (thin curve) . As n' goes from 1 to 

5 the curve approches the TF curve and for n' = 5 it coincides with it to 

graphical accuracy. 

We have also plotted the self-consistent TP data of X-ray scatter-

ing (see, for example, Pirenne, 1945). Another important curve we have 

drawn here is from self-consistent Hartree and Hartmee-;Fock calculations 

given by Bergbuis„IJbertha, Haanappel and Potters (1955). We have plotted 

results for Ne, which is the only example of a closed shell atom, given in 

the above reference. 
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Conclusion  

The main conclusion drawn from the above calculations of the 

scattering factor is that for hydrogenlike atoms the results of Fock and 

the TF theory agree to graphical accuracy if 2.0 3 5 over quite a wide 

range of K. We expect however, since the TF density cuts off to zero at 

a finite radius, that the TF scattering factor will be in error at really 

large K. 
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(B) Momentum and kinetic energy densities. 

In this section first we focus our attention on the momentum 

density, since it is directly related to the kinetic energy which we shall 

also study in some detail. Relationsfor wave mechanics and for the semi-

classical TF theory are given along with the applications to hydrogerlike 

atoms and comparison is made between the results. Finally a relation is 

derived for the exact density at origin with comments on its relation to 

the momentum density for the limit of high momentum. 

(B.I) The momentum density. 

Here again we shall like to consider a pure coulomb field for 

evaluating the momentum density. We assume that n,101
(p) is the momen-

tum wave function of an electron, nl  1. and m are respectively, principle, 

orbital and magnetic quantum numbers defining the electron state. The off-

diagonal momentum density for !nth closed shell is defined by 

    

Pn(p' lla) = lm nlm (P T) • 

 

 

   

The diagonal form of this density matrix for a pure coulomb field is given 

by 

5 	2 

Pn(P/P) = 	8  • Pn • n 

TI2•  
 (B.I.2) 

where pn is the mean scipare momentum for principle cipartum number n. This 

has been evaluated in Appendix 1. The off-diagonAl form is given by 
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en(P'113) - 8  • Pn n . Sin(nQ)  
Sin Q 	• Tr (-2  + ,?'? (-2  ■vn  PI kiin  

Our Q here is equivalent to Pock's CO (see Fock, 1935). The momentum space 

density matrix 4? (pe,p) can be related to r space density n(re,r), 

essentially, through Fourier transform. We then find the same angular 

dependence in r space. Here Q110.(p,p) is normalized only for singly occupied 

levels inside the shell i.e 

4TT 	QII(P,P) • p2. dp = n2  
•o 

If the system contains ne closed shells then the total momentum density 

for the system is obviously 

nt 
(p) 	IL 	Qr(.P,P) 

n=1 

Using equation (B.I.2) we find 

ne 
P(P) = 

n=1 	Tr2 11;t 	p2]4 
n 

where we have substituted 

2Z2 
pn = 

as given in Appendi7 1. At p = 0. the above relation (B.I.3) is simply 

written as 

8 	
nt 

	 . 	n5 
• 	n=1 

• 

8. Z5 

 

(o) 

whereas at sufficiently large p, the explicit form of ()(p) becomes 



e(P)I 	.-4 	1 	8 Z5  . 	• >nt 
	

1 
large p p 	TT 	n=1 	n  
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(B.I.4) 

 

Equation (B.I.4) is related to e(r=0) which we shall discuss later on. 

(B.II) Kinetic energy density. 

(i) Wave mechanical relation. 

The momentum is related to the kinetic energy by the following 

relation. 

2 
= P  

\  2m 

 

(B.II.1) 

 

where T is kinetic energy. Otherwise we can write it in terms of mean 

soinnve momentum pn
2   , i.e 

T 
	 P

2 

am 
since 

<p2>  = 	2 (see Appenaiir 1). pn 

We can also make use of Bohr's coulomb field energy relation and 

Virial theorem i.e 

2 T + V = 0 

to write T as 

Z2 . e
2 

2 n2 	ao 

where all the parameters have their usual meanings. The wave mechanical 

form of the kinetic energy density can be obtained from equation (B.II.1) 
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by using the definition of the average square momentum, i.e 

  

P
2 

  

p2 

2 m 

  

di 

 

2 m 

 

   

   

Since the momentum p in quantum mechanics is represented by the operator 

, we have 

 

i* 2 i2 • 	-i-1  V 
2 m 

 

2
2 

2 m <--> = .dl 

 

which finally yields, by integrating by parts, 

= 	15.2 W 12 
T 	 . di 

2 m 

The kinetic energy per unit volume is therefore given by 

	(B.II.2) 

 

ti2 .Iv 
2 
	(B.II.3) 

 

2 m 

 

  

We shall use this relation when we study the application to hydrogenlike 

atoms later. 

(ii) TF relation. 

The TF approximation has its roots in statistical consideration of 

N free electrons moving in a volume v. The total kinetic energy in free 

electron theory is given by 

T 
sPf  

N . 
0 

p
2 

4-TT.p
2 
	. dp 2 m • 4/3-rr.14 

2 i where 	D 	is the kinetic energy of an electron with momentum p. The 
2 m 

remainder of the integrand is simply the probability of an electron in the 
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Fermi gas having momentum of magnitude between p and p+dp. The first 

limitation of the TF theory, as is clear from the above argument is that 

it only holds for a system of non-i4.actirg particles. 

Integration of the above expression gives us the following result 

for T 

Pf 
2 

• N • 
2 m 

i.e the mean kinetic energy per particle is 3/5 of the Fermi energy Ef  

Thus fromNove result the kinetic energy per unit volume, say t, is given 

by 	
2 

t 
	3 

5 	• 2m 

	

Pf 	(B.II.4) 

Using the definition of phase space with occupied volume 	.Tr Pf3  we 

can write electron density as 

(r) . 

h

2 47 3(,)

•
pf‘-, 

3  3 

where h is Planck's constant, h3  being the volume of a basic cell in 

phase space which can hold 2 electrons with opposite spins. Using free 

electron relations locally we can write () = NA, therefore 

Pf = 3 h3 
v 8 rr 

• 

Putting it in equation (B.II.4), we obtain 

t = r 11
5/3 	3 h2 	( 3 

L ir..1 	• 	10m 	`877/ 

or inaninhomogeneous electron gas 

5/3 
t4g. Ck.P (r) 

where 

C - 3 h
2  ( 3 )2/3 

10 m • `8TTi  

	 (B.II.5) 

T 
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(see, for example, March 1975). The above TF 5/3rd relation between tr[P] 

and charge density P(r) has evidently been obtained by using free electron 

relations locally. 

We can add a correction term arising from the density gradient 

in the inhomogeneous electron gas. This can be motivated through the wave 

mechanical relation for the kinetic energy of a single particle. In this 

case, assuming the ground state wave function to be real, we can write 

2 

Hence from (B.II.3) we have 

tr[p] 	= 	
h2 

. (vP)
2 

 

This suggests the following type of correction to the TF kinetic energy 

density, namely 

5/3 
112 	( vp)2  Ck  .0(r) +X.zrir . 
	(B.II.6) 

which was first proposed by Von Weizscker, with X = 1 as suggested by the 

above one particle example. We now know from the later work of Kirznitz 

that N is, in fact, 1/9. 

The important thing is to compare equation (B.II.3) summed over 

occupied states and (B.II.5). This is done in the next section where we have 

applied each of these formulae to calculate the total kinetic energy for 

K, K+L and KEL-EM shells of the hydrogenlike atoms. 

= 
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(B.III) Application to hvdrogenlike atomic systems. 

(i) Wave mechanical results. 

The normalized ground state wave functions for a system of 

Z electrons and nuclear charge Ze are taken from Pauling and Wilson (1935). 

The calculations needed to obtain the kinetic energy are straight. forward. 

We need only the radial wave functions since we are considering the. 'closed. 

shell cases only. According to Unsold's theorem the angular parts of wave 

functions contribute either unity or a constant. 

The exact relation (B.II.3) for the kinetic energy density is 

true for one particle only. But since we are interested in the closed shell 

contributions therefore we have to multiply it by a factor 2(21+1), total 

number of states in a shell, where 1 is the orbital quantum number to get 

the total contribution of the closed orbital. To take account of this fact 

we write equation (B.II.3) again as 

2 
tr[01 = 	2(21+1) . 	Lt1 

2m 

We also require the contribution to the total kinetic energy of the atom 

from the shell under consideration. This is obtained by integrating the 

above expression over the whole volume. Results for the exact kinetic 

energy density for K,I,11 shells of a hydrogenlike system are summarized 

here. 

K-shell 	1s2 

L-Shell 	252 

2 trip] = E . TT  . e -2S  

= E . (S-
2  
85+16) . e 	64TT) 

2  
2P

6 , 	-S 
/ l 
„ E . (S-484-4)3 • e 	64 7) 

2 
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NIShell 	3s
2 tr 	

= E . (2 s2-10 s + 27) . e g S. 2/(812.3TT) 

3p6 	= E . (52-125+18)2. e 2S. 18A812.277) 

3410 = E . (S2-65)2. e 2S.  20A812. 27TT) 	, 

h2 A5  where 	E 	2 m • - , A a  
S = A . r 

The increase in the total kinetic energy of the atom as we add K, L and 

M shells one by one is as follows: 

K-Shell 	Ti 	2 . E ao 

Z2 e2 
K+12 Shells 	TK+L = 	4 . E 	= 2 . ao 

Z2 e2 
K+L+M Shells 	TK+M = 	6. E 	

= 3  ao 

These results are in agreement with the virial theorem. 

(ii) TF results. 

Accor9ing to the IF relation, the kinetic energy density in an 

atom is proportional to the 5/3rd power of the charge density, equation 

(B.11.5). 

In using this relation we note that we shall use the exact density 

obtained from the wave functions after proper normalization and not the TF 

charge density. Using the exact density we shall naturally get the best 

results for the TF approximation to the kinetic energy density. Another 

Z2  e2 



K Shell TK 	0.9179 ao  

Z2  e2 
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important point is that for the TF theory each shell is not treated separately 

as we aid for the exact relation but rather all the shells present in the 

atom are treated together, since 4)(r) in the TF relation is the total 

charge density for N electrons. We record below the normalized densities 

for different cases considered, 

K Shell 1s2 = A3 2 e-2S 
K 	TT 

K+1, Shells 1s21-2s242p6 

4)K+1, 
= A3. 	[2e-

+ 1 ((2_s)2+ 
S2 )  jeSirr 

K+LM Shells 
	

1s24.2s2-I-2p6+3s2-1-3p64-3d10 

:3]'Ec-Firie-  TT e  
A3 [ -Sr_ -S 1 //- -.2 2)] 2 -4Sri S[ 2e +7717711/4z-o) 	LTA27-18S+232)21-2(6-S3S2 234] 
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The general TF expression for the total kinetic energy in terms of variable 

S can be written as 

co 
1 3 
	

2 	5/3 
A k C  T = 	• - 	4 IT S . c (S) . dS • 

0 

Due to the lengthy expressions for the charge densities plus the 5/3 power, 

numerical integration has been used, combining Simpson's rule with an 

electronic computer. Omitting the details we merely record the results for 

the three cases: 

K-1-11 Shells 
1K1-1, = 	1.88855 Z

2 e2 

ao 
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K+11+M Shells 	Tx
:4-
1411 = 	2.87575 

General behaviour of exact kinetic energy density trip] 

Here we wish to comment on the general behaviour of the wave mecha-

nical kinetic energy density. Hydrogenlike wave function has the form 

Zr 

n 	e na 

which means that at low density 	, kinetic energy density tilt)] will 

be dominated by the last closed shell and at sufficiently large r, the 

highest value of n will dominate. This will lead to a linear relation 

between trf P and 41 ( r ) i.e 

tr[ oc (r) 

The constant of proportionality will depend on the potential, since it will 

involve the energy En  of last closed shell. 

At high density, there will be a maximum 4)(r) (the value of the 

density at the nucleus) beyond which one cannot go. 

to go like 	 /3, the dependence we obtain from the TF theory when a local 

relation is assumed. Graphically trip) is expected to behave as shown in 

in the diagram on next page. We attempted to obtain this behaviour from 

the resins for the K,L and M shells given above. But the number of shells 

are not sufficient to show the exact 0/3  region. The result we obtained 

was in the region of the linear part of the plot shown. To reach the inter-

mediate region we would need to include more shells. But the density expre- 

ssions already becoming quite complicated to deal with and therefore we did 

not proceed to include any higher shell . 

Z2  e2

ao 

Between these two extremes the intermediate part of trM ought 



tr 

intermediate part where 

tr[P1 cc P
5/3 

Linear part 	tr oC 
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o 	 0(o) 

Nevertheless from the above results for the K, L and N shells we 

can conclude that the TF approximation is a useful approximation to the 

exact kinetic energy of atoms, increasing in accuracy with the number of 

shells included. 

(B.IV) Density at origin in hydrogenlike atoms. 

a, 
The calculion of the density at the origin is of interest because 

there is an exact relation between the density and its gradient at the 

origin even for many interacting electrons (see Steiner, 1963). 	It is 

helpful in testing the approximate many electron wave functions. The normal-

ized eigen functions far hydrogen-like system as given by Pauling and 

Wilson (1935) are usually written as 
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untltm(r,19,0 
	

En,l(r) . Yl,m(e,4) 

The normalized radial wave function R121(r) is expressed as 

4 0 1 21+1 
Rn21(r) 	

= - [(2Z0)3. I 	-2-   
• e 	Ln+1 (CP) 

where 
2 c, 	2 Z 6' = 	0 = 

n ao  and L denotes the associated Leguerre 

polynomials. The angular part of the wave function is given explicitly 

by 
yi,m(,43) 	= 	eimclo[  (212+0+(101-117:)!  

PM, (Cos A) 

It is assumed that the coordinate system has origin at the nucleus. But 

we know that the only functions which are non-zero at the nucleus have 

1 = 0. Hence for r = 0 the radial wave function becomes 

R ( n20 0)  
2 Z 3  = - [(17a-)• 2n  

2 . , 	1 
Ln(0) 

• 

We also have 

L1(0) = (-1) 
k
,(119 
n-1 . 

and rewriting the above expression leads to 

ri(0)  = 	(n Z )3/2  t20 	a0  

Similarly the angular part reduces to 

00 
= 	1 

(47)2  

Therefore the normalized total wave function at the origin for the hydrogen-

like atoms is given by 

1 	,2 Z N3/2 
Unp0,0(0)- 2(2TTA • 

	.717-4O) 
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Alks_ 
Since it is a real quantity the charge density is the square ofpraveRawbion 

i.e 

U2 	(ON 	= 	1 	(2 Z 

	

n,010‘ / 	an-  `n ao)  

The total electron density at the origin for an atom with n' closed shells 

and with doubly occupied levels obviously becomes 

n1 	2 

	

p(o) 
	= 2 	II n 0,0(0) 

1 

Simplification then yields the result 

2 	Z3 	
it 

	

(o) = —a3 		 n • Tr o n=1 

 

(B.IV.1) 

 

We can relate ()(0) to the momentum density 4)(p) at large p. From 

equations (B.IV.1) and (B.I.4) it is easy to show that 

tP(PA 
aarge p 

4 Z2 
Tr p8 

‘)(o) 	 (B.1V.2) 

A more important relation, as we remarked earlier, is due to Steiner (1963) 

linking P(0) and N7rp(r)i_o. Steiner derived this relation from the 

result of Kato (1957), namely 

a LP 	z "P 	r ) (r1tr2,ry 	n. r  =0 a rn  

where LP is the wave function of N electrons and qJ is given by 

4rr 
	

/j(rl/
r2'r3' 	rn) dcon  

which represents the average of g) over a sphere of radius rn. Steiner's 

result is then 

ao 	2 °(()) 	 (B.IV.3) a r I r=0 a 

irn=0 n 
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n' 1 Returning to equation (B.IV.1) we now analyze the term 1->_: - 
n
3 . For 

n=1 
= 1 we get 

• 2 	Z.37  (0) - 
TT 

itnt 
It is true for all the elements as long as total number of electrons, N, 

present in the atom remain equal to 2. If n1  becomes 2 the value of 

electron density at origin Increases 9/8 times that of n1=1, i.e 

61K+L(0)  = PK(0) 98 

and holds always for N = 10 . Similarly for n1 = 3 we get 

PK+L+m(0) = PK(0) (144-*) 

where all the three shells are assumed to be closed. We can carry on for 

any number of shells by just following the above procedure . 

1 We next make an estimate of the term 	 —3 for large n' . 
n.1 n  

It is easy to show that for a large number of closed shells we can write, 

for neutral atoms only, that 

2 n13  
3 

(we shall discuss this in detail below). From the above relation we get 

immediately 

n1 
	(2 z)* . 	 (B.17.4) 

nt 
Estimate of :E: 	is possible by finding the area under the curve for 

n=1 

limits Te4and n14 to take account of nt shells 

n14 

Area = 	
1 —3 do 

m+2 
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and adding the sum of the first m terms of the series. In this way, 

the summation is found to be r-J1.2, by taking 'mr•-• 20. 

The formula'for the area beyond the mth term suggests a 

correction term to this value of 0(Z-2/3) for large Z, but we have 

not pursued the matter further. 
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(C) 	Binding energies of atoms and ions. 

(C.I) Binding energy expressions. 

We shall give here the main outlines of Thomas -Fermi binding 

energy relation, leaving out the details. We start with the TF charge 

density given already in part A when considering the TF scattering factor, 

for a pure coulomb field. But in general the TF relation for 0(r) is given 

by 

8 77 	 3/2  (am1 
0(r) = 3 113  ` / 	• ( Ef-V(r) )3/2 	for IV(r)1 >dEfl 

0 	otherwise, 	(C.I.1) 

E
f 

being the total energy of the fastest electron. Other parameters have 

their usual meanings. The usual substitution 

Z 2 Ef  V(r) 	e (x) 

leads to a description of the potential field in the ion in terms of the 

dimensionless function )(x). The length r is also usefully expressed 

in deminsionless form by putting 

x.b = r 

b being a constant of dimensions of length given by 

_ 	9  ( 17T-  a 
7  4 ‘2 z 	0 

0.8853  

Zi 

From equations (C.I.1), (C.I.2) and (C.I.3) it follows that 44? satisfies 

b 

ao 
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the dimensionless Thomas Fermi equation 

with the boundary conditions 

41(3:0) = 0 	, 4(0) = 1 	and 	xo  (xo  ) = -q = -(14 

where 	is the degree of ionization, while xomeasures the ionic radius 

ro through b xo = ro ( see, for example, March 1975). 

Now we proceed to the binding energy relations. The total energy 

E is evidently given by 

E = T + V 

where T is the kinetic and V the potential energy. V as usual consists of 

the sum of electron-nucleus and electron-electron contributions. In the 

TF theory these three contributions are 

S 5/3 
T = Ck  4)(r) dy , Ven 

= -Z e2 Lr) 	dr 
r 

and
_ 1 

Vee - —2 p(r) 	ve(r) 	a..T 

	(C.I.4) 

where e(r) is the electrostatic potential created by the electronic 

cloud 4)(r). We recall that T given above has been derived by a local 

approximation, from the kinetic energy density of free electrons. Minimiz-

ing E with respect to variation in 4)(r) subject to the normalization 

condition 	P(r) dr = N , the total number of electrons, that is 

6(E+AN) = o 

where X is a Lagrange multiplier, it is straight forward to derive the 
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relation 
2 

3  C 
	er) = 	( A + V(r) ) . 	(C.I.5) k 

Comparing  (C.I.1) and (C.I.5) we recognize that 	Ef -.A. We can 

also show from thermodynamics that A is equivalent to chemical potential 

as well 

C)E  aN 
— 

_ 	(Z 
 
N) e2 9 	(C.I.6)  

since )(r0) = 0 . We shall need this value of A later. 

One way of proceeding  to calculate energy is to find 11 at 

constant N/Z . Mathematically we have 

dE aE CAN aE 
.7) az 	 ,(C.1.7) dZ 

Using  equation 

N/Z - 	aN 

(C.I.4) 	and 	(C.I.6) in 	(C.I.7) 	we arrive at the result 

	

= 4(eii2) [6(0) (1 -142 	0/3 
a
e2 

N/Z xo 	0 

where V(0) is the slope of C(x) at x = O. Integrating  the above expre-

ssion with respect to Z we get the required relation for the total energy 

E as a function of N and Z, that is 

E(N,Z) = 0.4841 L9(0) + 	-h
2 

	

X 
1 1 	2 

. Z' o a o 
	(C.I.8) 

In general we can write 

e2 E(N,Z) = Z-  f(Z)   ao  

.N. where f(Z) expresses the fact that (1) (0) and xo depend only on N/Z. 

dE 
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A sketch of f(+) was given by March and White (1972), using 

available numerical solutions of the TF equation. They have plotted the 

function 

2 

11E 	
f( 11-z ) 

4 
()—

fs  

z 

against 	with Z large. This was a more convenient form to plot 

than simply f(4--). The function itself has been calculated by different 

people: March and White (1972) usedek, 1/Z expansion and worked out the 

energy coefficients co(N), e1(N) and c2(N) for 2‹.-:N-4-.:10 range. In gene-

ral they obtained 

en(N) 	an  Nn+-1. 

for large N. 2%1  has been calculated from first principle ( Ballinger 

and March 1955), whereas a1  and a2  estimated by them by least-square fit 

of data on e1(N)/N and e2(N)/N2  . Later on MmitriNa and Plindov (1975) 

derived a1 and a2 from first principles. Recently March (1976) has 

proposed a modified value of the coefficient of (Z)2  given by them, argu-

ing that by doing so one can get the correct isolated atom limit as well 

as excellent numerical agreement with the correct results over the whole 

range 04:: z  1 by neglecting all the higher order terms. 

The complete expression after the modification of March (1976) 

for the binding energy of a heavy ion up to third order is 

3 	e 	N2  E(NZ) = - ()3  N- Z
2 a2 ( 1 - 0.4236 --- + 0.0951-22 ). 

o 
	(0.1.9) 

We shall discuss this in more detail later and establish a connection 

between (0.1.9) and 0 theory. 
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c0,44;AAs 

Equation (C.I.9)Lthe TF neutral atom binding energy as we shall 

now show. In equation (C.I.8) if we put lir. = 1 and 6(0) = -1.58805 from 

the TF solution for the isolated atom we get the binding energy as 

7 
E(Z,Z) = - 0.7687 Z3 

e2 

a 
	(0.1.10) o  

This result was first obtained by Milne (1927). 

7 
(0.II) Z3  dependence from Bohr's formula. 

7 
We can obtain the Z3  dependence in equation (C.I.10) from 

Bohr's formula for the energy level spectrum. The energy levels for 

principle quantum number n are given by 

Z2 e2 

since a closed shell of quantum number n can hold 2n2 electrons, the sum 

of the elgenvalues becomes 

2 
Enth 	Z2 e 	(C.II.1) ao 

For an atomic system of n' closed shells the total eigenvalue sum Es  is 

obviously given by 

e2  E
s 	= - Z2 n1  ao • 	(0.11.2)  

Now we must relate E
s 
to N, the total number of electrons. It is possi-

ble through n', since we have 

n1  n1(n1+1)(2n1 1) N 	== 	2 n2 = 	4-  . :57 
n=1 	3 
	(0.11.3) 

En 2 n2  ao  

• 
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If n' is large, as for heavy ions and atoms, it follows from equation 

(0.II.3) that 

N 	2 ni3  
3 

 

	(c.II.4) 

 

the result we used in the earlier calculation of the density at the origin 

when Z = N . Writing (C.II.4) more exactly by adding the next order we 

find 

N - 
23n13  ni2 

and using (0.11.4) in the correction term we obtain 

N 	 2 n13 	,3 = 	+ 	. 
3 

This yields the required relation between nt and N i.e 

7 
n1  = (1-N )s [i - 

3 	N 4- 	. 	(C.II.5) 

Putting (C.II.5) back in (0.11.2) we find 

Es = - Z2  (-÷N )
3 
 [ 1 (4)*  N4  

For the neutral atom case N = Z it follows that 

e2 
ao  • 

Es(Z,Z) = 	
( 3  )1  72   [1 - 3  )1i 	] 3 

2.  
e2 

2 	 a 
	(C.II 6) 

Here we have considered only the over simplified case for n' closed 

shells in a neutral atom under the assumption of a pure coulomb field. 

The coefficient of the leading term in (C.II.6) only involves 

the nuclear coulomb field felt by Z electrons. But the corresponding 

coefficient in the TF self consistent equation (C.I .10) obviously involves 

the screening effect of the electron distribution as well. Expanding 



equation (C.II.6) we get 

z37-  :2  + 	e2 
 

E
s 	

Z zao 
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	(C.I1.7) 

7 
where Es has the Z3  dependence of Milnets result but with a different 

coefficient. In addition to that we have got here a term proportional to 

Z2 which we shall regard as correction term A.E. 

7 
Narch (1976) obtained Z3  exactly from the TF charge density 

i.e equation (C.I.1). Thus, using 

4)(r) 11.-F 
	N 

to find E as 

2 	1 Z _ __a e
2 

0 • 18u ao 

We have from equation (C.I.6) 

dE — Ef 	dN 

	(c.II.8) 

and therefore 

dE 	Z2 1 e2 _1. 
dN 	NT 18S ao 

Integrating this with respect to N yields 

3 	Z2  N3 ao ETF  (z,N). — (—T  )3  z N3a e  o • 

For the neutral atom case it follows immediately that 

2  E (Z'  Z) 	(—L)i 	e  TF 	2 	al) 

which is the leading term of equation (C.II.7) . 



Es 3 
	(c.II1.4) 

2 E 
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(0.III) Relation between eigenvalue sum and binding energy. 

We now go back to the TF binding energy expression (0.1.9) and 

form the sum of eigenvalues like (0.1.7). Equation (0.1.9) i.e self-

consistent TF binding energy has been derived from 

E 	WI dr + gr). VM . 	iS 4)(r) • Ve . qy 
	 (c.III.1) 

whereas the sum of the eigenvalues is defined as 

Es = 75, E4 	= !J 41: + 	6)..( Vn. + Ve ) . dr . 
i 
	(0.111.2) 

From (C.III.1) and (0.111.2) we can easily find that 

E
s 	

1 E + 	.ve . dr 

E + Vee 	(0.111.3) 

We can derive another relation between Es and E if the atomic 

system is neutral and Z-->oc. Using the relation 

Ven = - 7 Vee 

(see March, 1975) we obtain 

-6 Vee 

Substituting this in equation (0.111.5) and making use of the virial theorem 

it is easy to derive 

Putting in the value of E for the TF theory from equation (C.I.10) and 
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transfesImg it to Rydberg units gives us 

7 
Es 	- 1.025 Z3 	Rydbergs, 

which does not contain the correction term but this can be added for rela-

tively light atoms. Here we assume that AE will have the Z2 dependence 

as found earlier using Bohr's formula i.e equation (C.II.7). This will be 

investigated below. 

With this, our analysis of the leading term in the energy expre-

ssion is complete. It is essentially due to the coulomb field inside the 

atom between the electrons and the nucleus. 

Study of correction termL1E.  

We go back to the equation (0.11.7), where we have concluded that 

the correction term in the sum of eigenvalues is proportional to Z2. If 

we take the Rydberg as the unit of energy, then the constant of propor=-

tionality becomes unity. Therefore the above arguement implies that a 

plot of AE against Z2  shouldle a straight line with a slope 1. 

To test this we must calculate L E. Modifying equation (0.111.5) 

for relatively light atoms by adding the correction termLsE we obtain 

- 1.025 iS 

Thus 
7 

	 E 	= E 	1.025 Z3  	(0.111.6) 

where Es is negative and available in the Hartreels calculations. Herman 

and Skillman (1963) have calculated Hartree-Fock-Slater self-consistent 
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field results for energy eigenvalues and charge densities, normalized for 

each electron at each level. For our calculations we have to take sum of 

eigenvalues for all the electrons present in the level. 

The results are not very different for either neutral atoms, or 

for singly or doubly ionized atoms. But since we are restricted to neutral 

atoms for the present calculations we have naturally used only neutral atom 

results from Herman and Skillman's numerical data. We have carried out 

numerical calculation up to Z = 84, The plot for this is shown below(Fig. 

4). Except for Nd60 all the others lie more or less on a straight line 

of slope 0.94. We have also drawn the straight line with a slope of 1 as 

expected; the percentage error from the predicted slope being only 6 %. 

Thus we conclude that the 172rtree—Fock-Slater numerical results 

are satisfactorily in agreement with the theoretically predicted result 

that A E oC Z2. 

We have also examined ionization potentials, since these are use-

ful in determining the binding energies of ions and atoms as previously shown 

by Foldy (1951), namely 

2 2  
E) 	Z12/5 :0 	Iz  — 1.278 2e at)  • 

However, the plot of In I.P versus In Z which we have given below(Fig. 5) 

shows a periodic variation and statistical arguments are obviously not 

applicable here. 
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(C.IV) Binding energies of atoms and ions by 1/Z expansion. 

Kato (1951) gave the total energy of an ion with Ze as nuclear 

charge and N electrons, so called the 1/Z theory, given by 

E (Z,N) 	= 	Z2  ( 60+---21-61+42 62+ 	
 
) 
	

(C.IV.1) 

with the condition that Z is quite large. N dependence is contained in the 

coefficients cm. Exchange and correlation effects both occur in E1
, 

but the presence of correlation in E
1 
indicates a degenerate zero order 

state (Dmitrieva and Plindov, 1975). Coefficients 	E. in (C.IV.1) have 

been calculated by a number of groups for the ground states from N = 2 to 

10 and one such table has been given by March and White(1972). According 

to them the general asymptotic form of coefficients is given, for large N 

and Z, by 

1 	1 
E (N) oC 	( N  

Zm  m 	-Z- 

 

(C.IV.2) 

 

They argue that we can obtain Foldy's result, that for a relatively small 
7 

Z the dependence is Z12/'5 rather than Z3  as predicted by the TF theory. 

If we put m=0 and plot In Em(N) against in N it will be found that 

the slope is nearer 2/5 than 1/3. This then will give us the leading term 

in the energy expression as approximately proportional to Z12/ , a result 

given earlier by Foldy. "Thus N is never large enough to yield the charac-

teristic asymptotic dependence graphically", (March and White, 1972). Here 

we can find, at least in principle, the relation between the TF and 1/Z 

theory. We stress that as 4---)-1 for a large Z the TF theory is indeed 

giving us an approximate summation to all orders of the 0 expansion. It 

is useful to modify the expression (C.IV.1) and rewrite it in the following 
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form 

E (Z,E)  
Z2  60(N) - 1  rt-(-T) + N

2  60 
(Z )2   " • • 	 • 

	(C.IV.3) 

The left hand side is a ratio of Eexact and Ecoulomb which we simply 

denote by 4)(N4). It is interesting to compare this expression with the 

asymptotic expression (C.I.9) we have given earlier. The coefficient o(N) 

i 3 Y is obviously equivalent to - ( )- N3  which is also obtained if we use 2 

(C.IV.2) and put m = 0. But we must not forget that (C.I.9) is an asympto-

tic case of Z and N, whereas (C.IV.3) is a general expression for any 

value of Z and N ( Z N). If we put N = Z in the asymptotic form we 

get back the result of the TF theory for neutral atom i.e (C.I.10), the 

correlation between the TB' and 1/Z theory we described earlier. In brief 

it follows that f(-4-) of the TF corresponds to C1(N4) of 1/Z theory. 

Rewriting equation (C.IV.3) as 

dP (N4) = 1 + 
N  c
l ( N  ) + -752  ( N  )2+ .... 
co Z 	N co Z 

amu using table 2 of March and White, (1972) we can obtain a set of equa-

tions each corresponding to each value of N. Physical study of the coeffi-

cients in this expression is also important. The coefficient of 11*- term 
+/ 

is simply the slope at the origin and it corresponds to q3(o) quoted already 

in the TF theory. As long as we strictly follow the 1A theory, we can 

calculate any coefficient by the general expression (C.IV.2). But here le 

would like to consider a different technique for the evaluation of the 

coefficient of (i)2  

It is assumed that the energy expression behaves reasonably even 

if we take only the first three terms. Therefore, we have only two unknown 

coefficients. The first of these is the eoefficient of 	which is usually 
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V2 taken from the 1/Z theory, whereas the next order coefficient,i.e of Z2,  

is 	to be evaluated for the neutral atom case since the exact value of 

(110(N4) is often known . In general we have 

dp(11; = 1 N c o (4) 	b2(N)   `
N)2 

where b2(N) is unknown. Substituting N =Z and simplifying the equation 

we obtain 

b2(N) = 4(N,1) - 1 - N co  

It follows that when N Z for other cases, 4)(N-11) can be easily deter- 

mined. The general expression, so called analytic fit, for any N and Z 

( Z N ) is given by 

c(N 'Z 
	N co  Z = 	-=1- (-1T-) 	[cID(N,1) - 1 - elo] 	(41-)2. 

	(C.IV.4) 

'  

In what follows we shall give some of the results due to the 1/Z 

theory and to the analytic expressions worked out from (C.IV.4), the refined 

method expression which we have described above. 

Atomic systems with N = 2. 

Weiss (1961) has given numerical results of Eexact for atomic 

systems with N = 2. We have recorded these and corresponding values of 

4(24) in Table III.A below. One may fit the results with good accuracy 

by the following expression 

4)(2&) = 1 — 0.30272 	+ 0.02865(Z)2 . 	(0.IV.5) 

But it does not exactly match the experimental values of 43(24) given 

in Table III. For example the expression gives us 4(2,2) = 0.8558, 

whereas the experimental value given in table III is 	0.8535 . The 
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Table III  

Values of Eexact for different isoelectronic sequences. 

Z 

N= 2 

Weiss 
(1961) 

N = 3 N= 4 

Weiss 
(1961) 

Onello 

(1974) 

Perkins 
(1976) 

2 - 2.90372 

3 - 7.27991 - 7.47807 

4 -13.65557 -14.32479 -14.66741 

5 -22.03097 - 23.42145 -23.42471 -24.34915 

6 -32.40625 - 34.77316 -34.77573 -36.53524 

7 -44.78145 - 48.37492  -48.37728 -51.22358 

8 -59.15660 - 64.22672 -64.22917 -68.41332 

9 - 82.32858 

10 -102.68048 

11 -125.28242 

12 -150.13439 

13 -177.23639 

14 -206.58800 



65 

improved analytical expression for N = 2 due to the refined method is as 

follows 

`N ( 24) = 1 - 0.31250 (Z 0.03843 *2  

	(c.Iv.6) 

In Table IV.A we have given all the three sets of results i.e experimental 

( Weiss, 1961), analytic fits (C.17.5) and (C.IV.6). 

Table(I.V.A) 

lip (2, -Nz--) values for N = 2 from different methods. 

N/z  tmimental 
result 

Analytical 
(C.IV.5) (C.IV.6) 

1 0.72593 0.72593 0.72593 

2/3 0.80888 0.81092 0.80874 

1/2 0.85347 0.85580 0.85335 

2/5 0.88124 0.88349 0.88114 

1/3 0.90017 0.90227 0.90010 

2/7 0.91391 0.91584 0.91385 

1/4 0.92432 0.92611 0.92427 

We can see from the above Table (IV.A) that the improved method is working 

satisfactorily for the analytic expressions of CID(NI-2)7  since the results 

are matching up to the third significant figure. 
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Atomic systems with N = 3. 

J.F Perkins (1976) has provided the results of 
Eexact for the 

three electron systems for atomic numbers 3 to 8. We have calculated the 
laic & 

corresponding values of 4)(34) and recorded kin Table (IV.B) as experi- 

mental values. Another set of values for such a system has been worked 

out by Onello,(1974) up to Z = 14 (see Table 	But we would like 

to work with Perkins' data which is more recent. 

The analytic fit we have found by the above method, suitable for 

three electron system and matches the Perkins' results, is given by 

01)(34) = 1-- 0.30305 A 0.04165 iJIA2  

Results for this expression are recorded below in Table (IV.B). 

Table (IV.B) 

N / Z Experimental Analytical 

1 0.7386 0.7386 

3/4 0.7958 0.7961 

3/5 0.8329 0.8332 

3/6  0.8587 0.8589 

3/7 0.8775 08779 

3/8  0.8921 0.8922 

(C.IV.7) 
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Atomic systems with N = 4. 

Procedure is essentially the same. We just give the expression 

for the analytical fit and record the results in Table (IV.0). 

4(44) = 1 - 0.31186 (Z 	0.04523 (Z 2  . 

Table IV.0 

N/Z , 	EXperimental Analytical 

1 0.73337 0.73337 

4/5 0.77917 0.77946 

4/6 0.81189 0.81219 

4/7 0.83630 0.83656 

4/8 0.85516 0.85537 

From the above three cases it seems that our improved method 

for analytic fits of CID(N
'Z
I) for different atomic systems is working 

very well. But unfortunately for the time being there is not enough expe-

rimental data, specially below -ff-= .5, for larger values of N and Z to 

find the range of validity of our method. 
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Plot betweenC04) and N/Z. 

We have sketched CO(N4) against NA for N = 2,3 and 4 from the 

above tables. It is obvious that at -2 = o , al(N;E) is always unity. At 

the other end (where-2-. 1) we see that the curves have diverged from each 

other and we get a pencil of curves for all values of N. 

For 1TH>co the value of dD(a),1) is found to be 0.674 and the 

N\ coefficient of (Z} term for N- co has been given by Dmitrisva and Plindov, 
1975, as - 0.4236, which is the slope at the origin. The analytic fit for 

asymptotic case is therefore found to be 

4(00,NA) = 1 - 0.4236 	+ 0.0976 *2  

which is very close to the f(N/Z) of the TF theory,(compare equation (C.I.9)). 

For comparison with other cases we have plotted this curve on the same graph, 

Fig. 6. 

(C.V) 	Behaviour 	of the coefficient of  (Z). 

Before we close our discussion of the binding energies of atoms 

and ions we shall study briefly the behaviour of the coefficient of (1), 

i.e N  el())  , as N becomes large. (N 

This has been calculated by different people with different methods. 

We have plotted the results from March and White, and Dmitrieva and Plindov. 

These are shown in Fig. 7. 

One striking feature of this plot which we observe is that for 

N equal to 2,10,28 and 60 the values from different methods almost coincide 

to the graphical accuracy. These values of N corresponds to the closed 

shell cases, in which we are particularly interested. 
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The general behaviour of the coefficient when N>10 appears to 

be oscillatory. As N becomes larger the oscillations seem to die away 

and the value approaches the asymptotic value - 0.4238. But it is far 

from realistic case because for Z = 60 the value is 	- 0.45 which is 

somewhat different. 

Earlier when N=ii:10 the sharp decrease in the value of the coeffi-

cient is quite understandable. Since we know that this coefficient corres- 

ponds to the slope of the potential function 4? in the TF theory, and 

because the filling of the second. shell shields the outer electrons, the 

potential dies away, which gives rise to sharp decrease in slope. 
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(D) Electron densities. 

Since the electron density is playing a major role in the TF 

approximation, we shall now examine this more closely by comparison with 

the wave-mechanical data of Boyd. We shall also refer to the analytic fit 

recently supplied by Boyd (private communication). Finally a few remarks 

will be made on the study of 47(r) we carried out for the rare gas elements 

from Herman and SkillmanTs data for Hartree and Hartree-Fock calculations. 

(D.I) Spatial dependence of TF charge densit -.. 

The TF charge density has already been defined in equation (C.I.1). 

An equivalent form is 

P(r) = 8 TT  
3 11.--

,  
3/2 

)3/2 Ef3A [ i  3,-.(2111 
Ef  

	(D.I.1) 

We recall that it only holds in the region where 	< 1 . Beyond this 

region PM is assumed to be zero (though wave mechanically wave func-

tion can leak through to the classically forbidden region). This TF rela-

tion gives a semi-classical approximation to the procedure of solving for 

the me-electron wave functions t-kin  the self-consistent field and then 

forming the sum of the squares of these wave functions over the occupied 

levels, i.e 

2 
(r) 

We have summarized above the details 	how the Ti? density is 

calculated from the TF differential equation, namely 
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63/2  — ---r 
X2 

for which the asymptotic solution for large x is given by 

11,(x) = 144 
x3 

(see March, 1975). But this solution does not satisfy the boundary condi-

tion i?(0) = 1. Therefore the relation between P(r) and r which we are 

goirg to derive will hold only for large r. From equation (C.I.2) we have 

2 
Ef  - V(r) = 

Z e 	(D.I.3) 1;)  

Inserting value of 	from (D.I.2) in here and after simplification we 

d2d/1  

d x2 

get 
v )3/2 2 
Ef  

Z e2 1 1 13/  
r x3 Ef 

0.8853  
In terms of r defined as r = b.x , where 	b - 	1 	ao , we can Z5 
write 

( 1 - 	)3/2  [ 144 b3 Z  e2 1 -3/2  
Ef 	Ef 	

74- 	• 
	(D.1.4) 

  

Using this result in equation (D.I.1) we get 

  

8 TT 	(2m. 144. b3„ z e2)3/2  1 
3 h.,

.A 	r6 • 
	(D.I.5) 

'Which precisely gives 

P(r) OC 

If we take log of equation (D.I.5) we have 

In O(r) = In A - 6 In r , 	(D.I.6) 

were 
A - 3 h

. 
8 h3 

 (2m. 144 b
3 
 Z e2)3/2  . 

Mathematically it represents a straight line with slope - 6. 
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Thus the important result we got here is that the TF charge den-

sity for heavy atoms and at large r goes like r-6. This is true for all 

atomic numbers, since A becomes independent of Z if we substitute the 

value of b. We have investigated this universal result numerically. We 

examined data from two available sources of the wave mechmically derived 

charge density for different elements. 

(i) Boyd's results. 

Recently Boyd has made detailed calculations of wave mechanical 

charge densities. In particular he has provided numerical data for D(r), 

defined as 

D(r) = 4 Tr r2• P (r) 

He has also obtained an analytic fit of his data for D(r), in the form 

ni _ Zi r 
D(r) 	C. . r . e 

(Boyd, private communication). This expansion can be used to calculate 

various one-electron properties. 

His numerical data for D(r) is available for the elements up 

to Z = 54. We have studied the cases Xr36, Zr4°, Ag47  and Xe54  to make 

comparison with the TF result (D.I.5). It is obvious that if P(r) has 

dependence r
6
, then D(r) behaves as r 4 Therefore we sketched the 

function r-4 against r and then plotted D(r) for the four elements 

given above on the same diagram. It was found that just before D(r) 

begins to decay exponentially which is always true after r>ro, rc  being 

the atomic radius, there ex-fists a region where the behaviour of D(r) be-

comes comparable with the r-4 curve. It also turns out that the extent of 
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this region is related to the atomic number and also that it moves towards 

larger r as Z increases. 

(ii) Herman and Skillman calculations. 

The second source of information about the charge density is that 

of Herman and Skillman. Results are available up to .Z = 104, but we have 

restricted ourselves to the rare gas elements. 

After the proper normalization check over the charge density given, 

we have plotted Ingr) against In r for Rn
86

, Xa54 and Kr36. It is shown 

below for Rn86, Pig 8. At large r we find the expected region, the average 

of the last four points yielding a slope of almost -6. 
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CONCLUSION  

It is well known that the TF theory is only valid for heavy ions 

(and is also, of course, non-relativistic, in the form used in this thesis). 

The main objective here has been to understand more precisely the 

range of validity of the theory. This has been tackled by giving a lot of 

attention to the pure coulomb field case, for which the wave-mechanical 

solution is, of course, known exactly. 

The most interesting result is that the X-ray scattering factor 

for the coulomb field case is accurately represented by the TF theory with 

a relatively small number of closed shells. This statement needs qualify-

ing, in that, at large k, the TF scattering factor has spurious oscillations, 

arising from the cut-off of the electron density. 

Some comparison of the self-consistent TF density with Paytree 

calculations is also made. The region of validity of the behaviour of 0(r) 

as r-6  is thereby clarified; it is useful in heavy atoms before one reaches 

the region of exponentially decaying wave functions. 

In addition to these studies, some approximate analytic formulae 

are given for the binding energies of systems with a small number of elec-

trons and an attempt is made again to relate these results to 0 expan-

sions, and thereby to the TF theory. 

• 
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So 

8n2 dp 

co 

P
2 
On(P9P) 0   

2 
	 dq. 
(1 + q2)4  
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Appendix 1 

Calculation of mean square momentum. 

Definition of average square momentum is given by 

p2 (71) 

where 
	is momentum wave function of an electron in nth shell. 

Simplification yields 

<p2> c
134  On(PeP) dP 

3p0n(13,13) dP 

 

(App.1.1) 

 

Momentum density Pri(p,p) is given already in equation (B.I.2). 
p2 

If we substitute ..... = q2„ we obtain 
2 Pn  

= 1T/32 	(App.1.2) 

and co 
8 n2 

S P4  On(PtP) dP 2 Pn
2 

0 (1::2)4  
0 

dq. 

Pn
2 
 .71732 	(App.1.3) 

Using (App.1.2) and (App,1.3) in (App.1.1) we get 

2 
pn 

From the virial theorem we have 	T = E 	therefore 
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C. 2>  
e2 

2m — 2n ao  

From where we obtain 

	

2 	Z2 me2 

	

pr_ 	ao 

Since we are using atomic units in our most of the calculations 

therefore we can write 

	

2 	Z2 

	

-n 	n2 

a 
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Appendix 2 

General solution of the integrals involved in our scattering factor  

calculations.  

General form of the integrals we deal within scattering fac-

tor calculations,is given by 

= 
n 

)0 	al  
1 = 1 

x1 . Sin(Ex) . e x. dx 

which we can write as 

co 
n 

= - imag  
1=1 	

0 
Since 

x1  . e IE + 1) xe dx 

e-iEx = Cos(Ex) i Sin(Ex) 	. 

Integration gives us 

I = - imag "2 al  . 
1=1 (1 iE)1+1 

Multiplying and dividing by (1 - iE)1+1 on right hand side yields 

I = - imagn=1  al 	
11  

  

. (1 	iE)I+1 

  

(1 E2)1+1  

 

Expanding (1 - iE)1+1  for different values of 1 and choosing the 

imaginary terms only we obtain 

(1 - iE)2  = 2 E 

(1 - iE)3  = 3 E E3  

(1 - iE)4  = 4 E - 4 E3  

(1 — iE)5  = 5 E - 10 E3+ E5 

n 	1; 

• 
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(1 - iE)6 	6 E - 20 E34- 6 E5  

etc. 

Therefore solution of the integral I is given by 

I al 01) 	a . 2E + 2 (2!) 	(5E-0) 	a3(3!)  	• 
(1 	E2)2 	(1 + E2)3 	

(1 	E2)4  

(4E - 4E3) + aA (4!) 	. / 0E-100-1-E5) 
(1 4- E2)5 

• 
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Appendix 3 

Application of Pock's scattering factor expression to NI-shell of  

hydrogen-like atom. 

In the general expression of Fock for the scattering factor 

if we put n = 3, for 14.-shell, we get 

F3(X) 	= 316 	. T(x) . (i+x)2. [P3(x)  - iTx)], 

	(41).3.1) 

where Tshebysbeff polynomial T(X) is defined as 

Tn(X) = Cos (n Co lX) . 

For n = 3 we get 

T3(X) = X (4 X2- 3) 

since 	Cos3A = Cos A . (4 Co A - 3) 

where 	A corresponds to CosiX . 

Derivative of T
3
(X) yields 

T3(X) = 12 X2 - 3 	. 	(App.3.2) 

Now take the Legendre polynomial from mathematical tables where 

P3(x) = 15  X2  3 	2 	- 2 

and 
	:q(X) = 3X 

Putting the values back in equation (App.3.1) we obtain 

F3(X) = 	(4X2- 1)(1 	X)2.. (5X24. 2X - 1) . 
	(aPp.3.3) 

X is defined as 

X 
	4 pn

2 
 -  k  

• 
	

4 ron 
 k 2 
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where 

2Z2 

pn = --n."2‘  • 

For n = 3 we get 

X = 4 Z
2- 9 k2 

It would be more convenient if we put 

so that 

k 	2 
- 3 . E 	9 

1 E2 
I -E2 	(App.3.4) 

Therefore 

(1 + X)2=. 
E 

 

(App.3.5) 

 

Substituting (App.3.4) and (App.3.5) in equation (App.3.3) we get 

the final result 

F
3
(x) _  	2 4 	6 8 

.( 9-48E+72E -28E +3E ) 
(14E2)6 

If we put E = 0 or X = 1 we get the expected normalization 

condition, i.e 

F
3
(x) = 9, 

since Fockls expression is true for singly occupied levels. Above 

result is in agreement with the one obtained by using the charge 

density for E-shell and solving the Fourier transform, equation 

4 z24. 9 k2 

a 
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Appendix 4 

Programmes used for different calculations involved in our work. 

We provide the copies of different programmes used for the 

numerical calculation of different expressions. First we give G(K), 

the function involved in the TF scattering factor. It is solved 

from two different expressions. We have used Simpsonis rule of 

numerical integration for equation. (A.IV.7) and for the integrals 

involved in the calculation of kinetic energy for the hydrogenlike 

atoms. First of the following programmes corresponds to the evalu-

ation of equation (A.IV.7) whereas the second one for the equation 

(A.V.7). 

Programme 1  

1-- 



Programre 2  

We also like to give details about the computer programme used for 

the calculation of Pock's general expression of scattering factor. 

Function 1DERTt in the programme represents equation (A.VI.8),the 

recurrence relation for Tschebyscheff polynomials. Whereas the 

derivative of Legendre polynomial, equation (A.VI.9) is denoted by 

IDERLNI. With these simplification the recurrence relation for 

Pock's expression (A.II.2) is given by 

2.0 * DERT * 1 —X)**2 *(DERIal DERLN2)7 

(4.0  if AN -x9f2) 

Factor of 2 is included in the above expression to make the relation 
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true for doubly occupied levels. 
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We have used DO LOOP 3 to generate different values of M which 

corresponds to nt, and of TZ which corresponds to atomic number 

Z. DO LOOP 1 is generating different values of k and K. Once the 

values of Z and k is fixed by the above do-loops we need to determine 

scattering factor . But Pock's relation determine F only for one 

shell at a time thaefore we need to have a do-loop which carry on 

addinn. all F's till N become equal to M. This is done by do loop2. 

As soon as N = M we have asked to print the values of X,F,ADDF, 

FRATIO,BK,AK and N. Execution time for this programme was 25 seconds. 
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Computer programme for Fockts general expression of scattering 

factor. 

PPOuiZAN LAIN( INPUT, OUTPUT, TAPE= INPUT, TAPE ;= OUTPUT) 
I DNENSI)N Til1J)1  PL:1) 

444 

	

	 L3WA',17A,'F',18X,'ADOF515. X f 'F/Z 1 0.3X,':.0 
114Xl'AK') 
00P=1,1j1 
AH= FLOAT(N). 
TZ = iNT--- (A1+1.::;) 	2 0"Ali-i,1)/3.!:! 
WRIT:_.(6,333) V 

533 FORN4T('0',I3) 
IFtMiLT.F, ) GO TO 
IFi.LT,1.5) (C TO 
1F(C.!,LT.- 4J) GO TB V  1  
TNT= 15 	- 

- HANL - INT SANE AS STANDARD FUNCTION AND FLJOVES FUNCTION FROM USE 
LIM= 
GO TO I 
INT 1 
LIN= 7'N 
GO TO 1.J.r' 
INT- '5 
LIN= 6-'N 
GO TO IJ 
LIN= 

10j .00 1 J= 1,LINIINT 
AK =, FLOAT (J".1) 

-SK= AKtt13,'3/T2).-'(1,11/5.0)) 

DO 2 II= l,N 
AN= FLOAT (I) 

Z 	1W'' 2) 
PN=TIVAN 
X=i46.4- (PNA".- 2)*(AK 2))/(42U (P1 4.2)-1-(AK4-4'2)) 

IF( AK .E0, (.3.0). 60 TO 11-.31 
- IS FLOATING POINT EQUALITY TO BE EXPECTED 

CALL CNP(TIXI- N4.1) 
CALL LEP(PI X,N) 
DERT=AW- (X4 T(N1-1)-7(N-1-2))/(1-.0-X2) 
DRLN1= AN4 (X4PiN+1)-P(N))/(X2-1.0) 
IF 	( ! 	1) 	= 
0:RLN2= (AN-1',0)4 (X'P(N)-P(N-1))/(X2s- 1(JA 
F = 	DERT(DERLN14-DERLN2)(1 2/(4.6.4. AN'*2) 
GO TO 

1C1 F= Z 
1.1.0 AUDFA/DF-4-F 

FF:ATIO = ADCF/TZi 
NMI= H-1 
iF(.N,LQ,N)WRITT.(3122L) X,F,ADDF,FRATIC.,BK ,AK 

27? FORNAT(IA,F11,95X.F15,915k,F15.9,5X,, F12..95,5X,F12.9y5X,F12.9) 
2 	CONTINJL 

1 	CONTINU 
3  :CONTINUE 

STOP 
L110 


