
CORRECrIONS. 

1. Pare ii. The last sentence should read "...in solving a Stefan 

problem...". 

2. Page 7.  Equation (21) should obviously be 
T * 	* T * zcj41  vj  vi+1  = isj  vj  vj-1  + 0(E). 

3. Page 8 Equationa (22) and (23) are each missing a factor 0(.) 

in the 	term. 

4. Page 30. The quantity p2  requires defining. The third line of this 

page should read 02 = tr.p2  . 

5. Page 59.  Line 3 : ..(e.g. if Dy(x) = x y(x) + y(x))... 
Line 15: ..here Q0(x) is either —i or ix.... 

6. Page 62. Line 10. A factor i should be attached to the first term. 

Lines 7,8,9_,10. The term y2 appearing in the denominator 

should be ,p y2. 

7. Page 88. Cases g) and h) at the bottom of this page should be deleted. 
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ABSTRACT  

This research started out as an attempt to find the eigenvalues 

of the Laplacian operator on a certain domain. In order to do this 

a variation of the well-known Lanczos minimised iteration technique 

was devised for isolating the eigenvalues of large sparse non-symmetric 

matrices. The required eigenvalues were then found via the usual 
finite difference approach. 

The Laplace and Poisson equations were then solved on domains 

of a certain type by means of the method of lines and the Lanozos-tau 

methods Some error analyses are given. The errors incurred by a previous 

author in solving a Stefan equation by a similar technique are 

considered. 
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w,e original rurose of this -work was to f4-1 the eigenvalues, 

)., of smallest modulus of 

on the domain rof figure 1, subject to the conditions 

	

V =0 	on SI  

	

and V  t c(ii. 0 	on s, . 

figure 1  

The equation defined by (1), (2) and (3) occurs in the study of the 

physical theory of neutron chain reactors (see e.g. Weinberg and 7:igner 

[31] ).-The simplest case is that of a bare homogeneous reactor having 

the she-Tie of an infinitely high cylinder of radius R with an off-centre 

control rod of radius a (the centre of the control rod is at a distance 

b from the centre of the reactor). "=he method of liordheim and Scaletter 

( [31] c 770) for this problem entails replacing the control rod by 

a point singularity in the neutron density - such a point singularity 

corresponds to an absorber of a certain strength. Polar coordinates 

are introduced, the eigenfunctions are arnrozi,lf,tod using Deesel 

functions of both the first and sscond kinds and the eigenvalues 
obtained. Control rods of non-Zero radius only were considered in 

this work. First, the differential operator was approximated in the 

usual manner by means of a difference operator (see e.g. Fox [93 
Collatz [5] ). The resulting large sparse banded non-symmetric matrix 

was reduced to tridiagonal form by means of a modified Lanczos 

.(minimized iteration) method. 

In the first chapter of part one we give en account of this modified 

method. Some examples illustrating various aspects of the behaviour 

of this algorithm arc given. The roots of the resulting tridiagonal 

matrix are isolated by the method of Laguerre - this method being 

chosen because of its superior convergence properties--see chapter 

1--TT 
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two for this. An abortive attempt at finding the eigenvalues using 

a variational method (Mikhlin L223 , Mikhlin and Smolitsky [233) 

was made. This technique was abandoned because of the vast amount 

of computational effort required. At the time this work was done 

(1969-1971) the finite element techniques were not yet fully in 

vogue, hence their non—appearance. 

Originally it was planned 	to extend the Lanczos tau 

method (in the form proposed by Ortiz [247) to find the eigenvalues 

of the given problem. Inspired by Wragg's [37] solution to the Stefan 

problem, a combination of the method of lines (Berezin and Zhidkov [2] 

p 580) and various Lanczos tau methods were used to solve the equation 

of Laplace. Initially we met with little success, but then developed 

a matrix type technique which works extremely well on domains of a 

certain type. Error equations were set up and solved for most cases 

(including that of Wragg). 

The layout of the second part, briefly, is as follows : We 

first give a general introduction to tau methods. In chapter two 

some unsuccessful attempts at solving Laplace's equation are 

outlined. The successful matrix type technique is then given for 

both the Laplace and Poisson equations and also the eigenvalue problem. 

Examples are given. 

Some points regarding notation are necessary. Frequently 

we use Er2, where r is real, this indicates the largest integer less 

than or equal to r. Entries aaaa and .qqqqp  in tables mean .aaaa and 

eqqqq x 101)  respectively. An integer n appearing in the body of a 

table means 10n. Entries in the bibliography are referred to by [m3, 

the different uses made of square brackets are always clear. The 

Chapters in each of the two parts are numbered consecutively from one. 

Different numbering systems operate for equations, tables and figures 

in each of the several chapters, for example equation 21 of chapter 2 

of part two is referred to as equation (21) in that chapter and 

equation (2.21) in other chapters of that part. There are no references 

from one part to equations etc. of the other. 
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PART 1  

CHAPTER 1 : THE METHOD OF LANCZOS FOR II01I—ST.ITETRIC MATRICES 

1.1 	Wilkinson C35 describes satisfactory methods of cormuting 

eigensystems of non—symmetric atrices of reasonable order. For 
very large systems 	

m 

ems the situation is some 	different in that 

available methods are not entirely satisfactory. 

Tewarson [28, 29] does however describe a variation of the 

Gaussian similarity transformation by means of which the number of 

zero elements that become non—zero in reducing a very large sparse 

matrix to Hessenberg form is minimized. 

Lanozos LW] suggested a method of minimized iterations for 
reducing a matrix to tri—diagonal form. This method has been further 

expounded by Wilkinson (a3j,E353). Paige [253 has described a 

variation of this method specifically suited to large sparse symmetric 

matrices. 71e here Propose an extension of Paige's algorithm aimed at 
producing the cigenvalues of large arbitrary matrices. 

The usual general Lancoos (minimized iteration) algorithm is:— 

Choose v
o 

and v
o 

to be null vectors and select v
1 
and v

1 
arbitrarily (but not orthogonal), then compute for j=1,2,-..:72: 

	

* T 	* T 
. 	V. 	= A vj 	— pi  vi_i  , di  = (vj  )- 	v./(v.) v. 
j+1 J1-1 	 J J J 

*,T v./( = kvi_l) A 	v41: 	11  
J 	J-11

) v 
 j-1 

	

T * 	* * 	m T * „ * T 
X . 	V. 	= A v;  ^-0t v. —13. v. 	, os.;  — v. ,L 

v./(v )v.  3+1 3+1 	0 	J 0 0-1 	 3 	0 

T * * A* = v.T  A v./(v )Tv . r j 	3-1 	j1 	0-1 • 
The constants y and y are suitable scaling factors. In the 
absence of rounding and cancellation errors this algorithm ensures 

* * 
that the two sequences of vectors, viz. 

711 v2'•••'v1' v2"" 

are biorthogonal. 

For some value of j*n (say s) it may hal::: — that the scalar product 

v v  . vanishes — this always occurs when the matrix is derogatory. s s 
Causey and Gregory [4] describe how to restart the algorithm in such 
circumstances. When the algorithm does fail in this way it follows 
that AV= VT 	, where V=Ev

1' 
 ...v 	T is tridiagonal and every 

cigenvaluc of T is also an eigenvalue of A. In this work 17a will 

not be interested in restarting the algorithm if failure oecure„ as 

T will locate some of the extreme eigenvalues of A. 2aso, under 

certain circumstances the eigenvalues Of T, the leading k x k 
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part of T, are likely to be good ap,:rox4,-lations to some of the extreme 

eigenvelues of A (see 1./ 'arid also oho:31;er 2). Lanczos indicated this 

and Kaniel [12] and Paige [25] have given sone results for symmetric 

matrices. 

Several authors, including Lanczos [18] , Wilkinson [33] and 

Gregory [11] have pointed out that the orthogonality of the tuo sets 

of vectors is soon lost completely as a result of the cancellation 

errors which occur in the implementation or the algorithm. As a cure 

for this ill Wilkinson has suggested re-ort,,ono"-nal4zing each vector 
(as it is comPuted) against the previously commuted vectors, while 

Gregory has proposed the retention of further non-zero terms in the 

recurrence relations - theoretically these terns should be zero, 

but in Practice turn out not to be so. ::either of these techniques 

prOvides an efficient cure to the ills of the algorithm when it is 
applied to very large sparse matrices. In the next section we propose 

a new variation of the Lanczos algorithm 71..lich goes a long way 

toward solving the orthogonality rroblems encountered in its 

application to the Problems of finding the eigenvalues of large 

general matrices. 

1.2 	. The generalized Lanezos algorithm of .1.1 may be phrased 

but 

v. 
1 

somewhat differently 

1) Choose v
1 
and v

1 
compute u

1
=A v

1 

2) For j=1,2,....,k 

as :- 

arbitrarily, 

u*
1 = 

 Al  

, compute :- 

such that v*T  v
1 
 ±1 (=Si) and 

1  

- V A v. 
j 

(1) 

v. v. 
3 

Or 	d j 
= v . U . 

V. V. 
3 3 

w.=u.-0(.. v. 
3 0 3 3 
* 	- * 	* 

uNI. = 	. -- . V V. 
0 	3 	. 3 3 

4im 
0. - 	N7.

0  3+1-  3  

S.
0 F1=  sign(0. ,) 3+1 



V j 	IT v 4- 	j 	j 0 + 1 

V j.1.1  = 	
,

siS j+1  

— —  3 3±1V 

V. V. 
J J 

T T * 
j+1  =v. A 

v. v. 
J 

uj+i  = A vi+i  - i3j+1  vj  

* 	T  
uj+1 .= A vj+1 - j5j+1 vj 

This defines the e_lfgoritlim. 

Usins (8) and (9) 

v
J 	

* = 77 T 	
.• 77. 	= 0t 	= 1 = S. ( —1) 

'15j S. 

Also, by (13) 

*T 	*T * *T 
vj  A = uj  + 	v. 

T 
and,su'ostituting for u. 	from (4) 

J
-  A = j- 	vj  + p  

Hence, by (10), (14) and (15) 

*T 	 *T 	*91  * *52 
= S. v. A v.=1 	J 

= S.(7. +ot v. + 	
J-1 

v 	) v. i5 j+1 	j 	0 	a 	3 	0+1 e  

Using the bi-orthosonality property of the vectors, and also (8) 

it follows that 

pi+1  = Sj 	 %j+1 • 

Similarly 3ii = S. S. 
	'6,1+1 0 ' 

= p j+1  

77e now have the altrori-thm (conrare iai e (.253 ) 

1) Choose v
1 

and v
1 

arbitrarily , but such that ' v̀
1

.`  v
1 

= S
1 
 (=-1)-. 

u
1
=1 •r1  and. u

1 
= AT  v x- 

1 .  

2) Eor j=1,2,...,k , com-zute 

(8)  

(9)  

(12)  

(13)  

(14)  

(15)  

(16)  

(17)  



(m) 

(1-2) 

(A3) .  

= s.
J 	

A v. 
 3 

or v. u. 
J 	J 

NT. 	
J 

= u 	
J 

- ot V. 
a 	J 
* * * 

17. = rt. -a. V. 
3 3 0 3 

*t~,  
0j4.1= "gi

I. 
 .,, 
, i 

S0. = si.vn(0j 
 ) 

+1 	' 	+1 

Z,j-4-1= (1°j+11)2  

V j+1= 	/6i+i 	 (A8)  

.7 j1-

• 

1= 17j 4j+1 	 (A9) 

p S *2  A 4.  j+1= j  vj 	vj1 	 (A10) 

or 	Pj+1= Sj Sj+1 Xj+1 	 (A11) 

T R j+

• i

= 	vj  A vj+1  (Al2) 

or 	is 1 = Sj 
	 (1.13) 

uj+1= A vj+1  i5j41  vj 	 (A14) 

2 * 	* 	* 
uj+

• 1

= A vj4.1 
-,j3  j+1 vj 	 (A15) 

The choices lie be ;seer_(1) and (2) , (10) and (11) and (12) 

and (13). Denote these 8 algorithms by t(i,j,l) ,i=1 or 2, j=I0 

or 11 , 1=12 or 13. 2Lithough theoretically identical these 

algorithrls differ vastly coL:futationally. 

Usin,s,  the results of Wil.:inzon [343. and assuming that likka =1 

the equivalents of.(A1) - (L15)  in the r,resence of roundinE errors 

are (vhere E denotes the rounding error of the Eachins used) 

, 
J

*11  
v. A v. + 0(E) 

Or 	= S. v. u. + C.() 
J J J J 

'17. -----: 11. -ck. v. + O(E) 3 	J 	3 
TT. 	

J 
= U - 0. V. + 0(E ) 3 	3 J 



0. 	= 	w. + 0(s) 

	

J4-1 	J 	J 

S3. 	= sirn(0 	) 

	

+1 	""")- 	j+1 
I 

)ci41  = E 1+0(E ) 	(10 j4.1  I )2  

V. 	= w
J
./ 

3
. 	+ 

	

J4-1 	+1 

J
/S. 	+ 0(E) 

Nr 	w j+1 	3+1 

/5j+1 
= S. V.

J
-  A v

.j+1 + 0(e.)
) 

J  

r 	pj.1.1  = Sj  

T 
IS J." 	sj  v j  1vi, 41  + 0(e) 

or p ;IA = s; sj+lx J-1-1 

= V. -I- 0(.5 ) v3.+1 -8 3.+1 3 

T * 	*  
uj+1  = A vjil 	j+1  vj  + 0(E) 

(R5)  

(R6)  

(R7)  

(R8)  

(119) 

(RAO) 

(R11).  

(R12) 

(R13)  

(R14)  

(R15)  

Factors, such as n, have been omitted here for the sake of 

simplicity. 

Loss of orLhojonality occurs when either (or both) of ;7. 

and w
j 
 are small, in which case, as a result of cancellation '3

j+1 
will be small in (R7) and the 0(&) errors in w. anA 	will be 

J 	
rj 

greatly ma3lified in (R8) aad (119) causing v7
+1 
 a d 

v-1-1 
to be very 

different from the exi;ected vec;:or,;. This loss of orthc:i7cnality is 
simply unavoidable in any of the algorithms. However, even in this 

case, as in the syimotric, some noteworthy results involving v. v. 
0+1  

still hold. In raxticular;from (R1), (R3), (R14) and (R1), (R4), 

(R15) and (RS) and (R9) it follows that 

%jil  vj.4.1  = A vj  - pcj  N) -f,j  vj...1  + OM 	• (18) 

* 	T * 	* * * 
and 	zjil  vjil  = A v

J  
. - CA. V. - ra j 	1 V. 	+ O(E) 	(19) 

3 J  

T 
1.77 so that 	. 	v. 	= -A. 	v. 	+ 0(S) 	(20) 

0+1  J vill FJ 0 0-1  

T * 	 T * and also 	v. v. 	* v. v. 	 (21) 3+1 j 0+1 	Pj J 3-1 



= uj 	c " J J 

vj+1 = 0(8) 

T * v. v. 	= 0(0 • J J+1 

o(F) 	 (25) 

(26 ) 

(27 ) 

and 

so that 

and 

j+1 v. 

It follows easily, then, that 

*T 
j+1 vj vj+1 

( r6' 	—2/-t.=1-3 
	) *)

+ OCE) 

	

j-1 6j-2 2:1'j-3 	r 
( 22 ) 

and also that 

Ij+1  vj
T  vi  

*+1 	• IS  13,-1-1 6 _, ; 	 j_3••• 

r-r.z 	..br 
(23) 

The symbol (*) indicates that an asterisk is to be inserted on A r 
iff j+1-r is even in (22) and odd in (23). 

Using (R2), (R3) and also (R2), (R4) we have that 

s6j+1 vi+1 = uj  -cKj  vj  + 0(0 
	

(24) 

(26) and (27) hold for both A(2,10,12) and A(2,11,13). The algoritirt 

A.(1,11,13) results in (22) and (23) having the form of (26; and (27) 

resrectivel as here 	=S. = Sj-1  Sj  25 j. Hence, if Xj+1  = 0(1) 
' J*  

heres theorthogonalityofv.andv..„and also of 
J-1-  I 

v. andvj+1  is quite satisfactory, regardless of any rrevious 

cancellation. The algorithm A(1,10,12) is not as satisfactory. 

If we assume that everythinz; up to and including Avj....1  , 

	

ril * 	 . 
A-vi...1  / c(j...1  / A i_i  /A j_i  is known exactly, then rounding errors 

* 
occur in the subtractions (113), (a4) and (a14), (R15). Let &, v. 

	

, 	i 	 * - - *  
V., . , ..). re:resent the computed values and j., ve  vj,pj,/Sj  
jij / J 

the exact values. Then 

7. 7r. = A v. 	-. 	v. 	-1 
	v. 	+ 0(E.) = 	v. + 0(E.) 

J 	J-1 	j-1 0-1 i 0-1 0-2 	a J 
* 

•e.; 	 = A vi_1  c.4 j-1  v 	
* 

j_i  -is 	vi_ + 0(f..)=-1.j  v j  + --* 	T Cc_ ) 
(28) 



If no errors occur in computing 

then 

and 

-x-T S 	vi-1  A vj  

= 	.vy. 	Al v.  
J-1 	a 

‘13j "(`") = Sj-1 
% J / * 0(E). Ji 	
. 	1 	-1.. 	sj -1 

(29) 

SinceV 	0(6) + 00E1) it folic.= that 
u.3 

S. . S
2
. 	4- 0(.S )
-1 

2 

 
j 	j2  OW Oil) 

S. S4_1 	0(W ,  
+ C(E)/gj OnbS 

.(30) 

S. S. 	4- 0UM/2 
= 	 

j 	1+ OV-Ve i  + 0:1)/4 

If Sj  %0(L) the algorithm still performs satisfactorily, but if 

and 
(31 ) 

t .44.0(e) the numerator in each of (30) and (31) could be far -  eater 

than 1 and the bounds (22) and (23) arc unsatis,. tory. 

The algorithms A(.,11,12) and A(.210,13) proauce obvious combinations 
of the above results. For exam2le, using A(.,11,12) we see that (26) 

and (27) 	These two algorithms therefore have the same short- 

comings as A(.00,12). 

Returning to A(.,10,12), the factors (30) and (31) ar:.pear in 
all subsequent expressions (22) and (231 res:ecti;ely  for orthogonality, 

hence, once orthogonality has been lost it is unlikely that it will be 
recovered. 

1.4 7.7otice that the tridiagonal matrix obtained in the above manner, 

viz. 

C41 A2 
2 C4 2 A3 

3 

Zf k-1 (4k 

•••• 
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has already been equilibrated (or balanced) in the sense of 

Wilkinson (D53 , chap. 6 section 10) and Pexlett and Reinsch (in 

Wilkinson and Reinsch [36] , Contribution II/11 ), since the p-norm 

of any raa of this matrix is identical to the same norm of the corres-

ponding column (as hsr(_disri , r=2, ...,k-1). 

If the matrix A. has real eigenvalues only, then, commencing 

with suitable v
1 
and v

' 
 a symmetric Tk will be obtained - as in 

example 2. 

1.5 Wilkinson [35) describes the usual Lanczos method as a special 

case of the Generalized Hessenberg process, which may be described 
by :- 

vv-1  = wr = A v - 	v 
r t

hir r 

= = ATVr  - Zr  h1. 1+1 v 	r r 
i=1 

* 
where the hir 	l and h.r  are chosen so that vr+1 is orthogonal to 

* 
vi, 	 vr and vril 

 is orthogonal to v r rer-.2ectively. 

Applying the algorithm exactly he shows that 

* 
hir  = hir  = 0 (i=1,...r-2), (33) 

from which it is easily inferred that if Avr  is orthogonalized with 

respect to vr-1 and vr it is automatically orthogonal with respect 

toallearlierv4:-similarly for A
Tv* . Further 

* 
h = hrr  rr 

hr, 	r+1 = hr, r+1 Yr-J-1 

In our work: ,S r+i  = Wr+1  . The notation may be simplified in view 

(33) so that the algorithm reads 

1(141  vr.0  = vr  - Xr  vr  -i 5 r  vr_i  

* 	AT  * 	* * 
41-1 	" = 	vr --0(r vr -/'r vr-1 

(32) 

(34 ) 
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Gregory [11]pointed out that in the amplicatien of this to large 

matricesthefactorsh.11'  and h. (i=1,...,--2) are not exactly zero IT 
as the biorthogonality of the vectors is not tre-orved. In fact, 

Gregory advocates the computation of the exact values of these hir, 

hir  and their subsequent retention in the recursion relationship 

(32). We now establish some interesting relationships for the hir, 

i=1,...,r-2. 

Assume that all computations are :erformsd exactly in the first 

r-1 steps of the algorithm. 

Noting that in the context of this work 

h.=.v.Avr 	 (35) 

it is easily established from our algorithm that if rounding occurs 

during the execution of the r-th step: 

*T *T 
v 	- 2.-1- 1  QC 	Yi+ 1 vr_1 1T h.  =  i+1 vi+1 A vr-1  - i+  r-1 vi+ 1 r-2 

r 	r 

*T 	*42 1 + 0( vi  A v 	-0( 	v v 	0( 1  v. v r-1 	r- 	r-2 r- 1 T-1 
r 	 r 	r 

* *T 	*T 	*T 
+h v. A v 	-a . 8 	v. v 	v. v . 3.-1 	r- 1 	r- 	r-2 -A1.64T-1 1-1 r-1 

r 	 r 	 r 

(36 ) 

for i = 112,..,r-2. All vectors with negative subscripts are to be 

taken as null vectors. 
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For 1=1 . . . , r-4 this gives 

hir=i+1 
r  

1 cik 	+2;: h. 
0 1  

Pr r 

111 

I+ 1 	1 vr-2  	r- -7( i 3 	' 
r 	 X x. 

ril - 	c( 	v 	_ p 	 v 	_ 	p r-1 3. 	1"-- 1 	r-1 i-1 	p 	v.1-1 vr-1 
r 	 r 	 r 

(37) 

\Trien i=r-3 (36) is 

r71 

	

v,,'" A v 3  A vr-1 	A vr_i  hr-r- 3, Yr-2 r-2 	r-1 + 0{ 

r 	 r 	 r  

T 	 Xl r-2/ 	vr-1 r-2 r-2 	1 r.-2 vr-1 
r 	 r 

T 
r3  v  r-1 r-_  v r-2 — r3 r- 1 r-3 _ 

r 

 

V r-2 
r 

 

2  * 	T  
r7-3 r-1 	v r-1 	°(° (38 ) 

r 	 r 

With i=r-2, (36) is 

h 	 r-1 

	

rp 	 rrt 

	

vx- - 	+ 	ia' A vr-1 + c( r-2 r-2 A v 	r-2 r-1 	 v r--3 vr-1 - 

   

. IS 

r 



1.3 

171  
v*-  v 

r-1 	 r-1 	 ir*-•--  1   r-1 v4:2 vr-2 

	

X r 	 r 	 r 

-r-2 	v-- 	 - _r_, r-) v-2 	 r-1 

r  

	 . 	 (39) 

x. 

Assume no that
41 

and r-1 have been cor.:.ute. exactly, i.e. 

that pr-1 	v-;1:_2  A yr...1  and ;X 	= 	v.;:,11  A vr_1  . Under . 

these eirowactances (38) and (39) arc, .reo,..ectively 

rIl 

	

hr-3, 
	h -), r = 	h 	+ r-3  T-3, r-1 	r-4, r-1 	r-2 	-1 74;-2 yr-1 - 

	

e r 	r  

rr 	 . 1* 	 v 

	

v*-  v 	- .;‹ 	v 	v 

	

C4.T-3 	r-3 r-2 	 r-1 r-3 r-1 	r-1 r-4 

r 	 ?S' r 	 ?ir 

,T v + 0(0 
r-1 r-4 r-1 

(40) 

r-2, r (r-2 72- r-1 	 "-1 --2  	v'-^12-2 vr-1 -- 2 	v
rf. 

v and h 	2 	h 	 - 

r 

n . 

'1,/"k-  V • ";.:" 	v 	 C(,) 	 (41) 
r-3 r-2 •-• 	r-

1  
3 r-1 

• r e r  

ztate therefore leals to 



./cr  
hir = 0(L)  (42). 
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• 

This result is not valid when either a catastrothic deterioration in 

the biorthogbnality occurs or when "previous" hi=ts are small. Again, 

the danger of a small le is highlighted. 
IntheexamTlesof1.7thevaluesofh.1r' i=1,...,r-2 were actually 

computed, 

Several authors strongly recommend intermediate reorthogo-

nalization of the theoretically biorthogonal sets of vectors (e.g. 

Yillkinson [35] ). This work has not convinced us of the need for 
reortlicgonalization in this particular algorithm. 

1'.& It is interesting to obtain results analogous to (22) and (23) 

and (26) and (27) when the vectors are reorthogonalized in our 

algorithms. In the presence of rounding the algorithms may be for-

mulated as 

1) Choose v1  and v* arbitrarily, but such that v*T  v
1 
 = S

1 
 (= ±1). I  

Compute u1  = A v1  and u* = AT  v1  1 

2) For j=1,2,...,k compute 

	

c(. VI'T  Av. 	OM) 
- 	J 	J 

	

or ot,j  = Sj  171T  uj 	O(E) 

	

Tr. =
J 
 •-• t7(. V. 	O(E) 

	

= 	—(4. v. 	+ 
J J 

w. = vrj  — S—  e.. V. + 
03. 

3.= t 

(RR1)  

(RR2)  

(RR3)  

(RR4)  

(FiR5) 

vrt
a 
 = — 

1=1 
et. of 	0(5.) 31 • (RR6) 

wheree = vtT w. 
1 J 

and et = v wt ji 1 j 

0. 	= wt'w. 	o(t)+1 

(RR7)  

(RR8)  

(RR9)  



or V-  = s S  i+i 	j+1 j+1 

= A v. 	j+1 V. + O(E,) 3+1  

34-1  
= AT 	 + 	. 

3+1 	3+1 

1) 

s. 

	

3+1 	sign (0j+1) 

j+1 = 	o(5)  ) I 0j+11%;-.. 

12) 

	

v- 4 	TT.AQ 3. 	
+ 0(S) (?.R 

	

+i 	3 	+1 

(a 13) 

	

1+1 	) i-E1 1- 0(E)  

(3,a14) 

CR1115) or 3. 	=S = Si  Sii.1 )' i±1  

rri  
t31+1  = S. ir3 A-  v34.1  1. 0(s) 	 (R(?x:16)  

j+.1 v--trr  A v 	ou.,) Si 
	3+1 

As before, factors such as n have boon o::ittcrl for sim'aicity. 

Using (^M), (RR3), (11.R18) end MO, (:u4), (1119) leads to 

	 'Cr) o(S) 

r= 	;4441 s J-2Y 

.L(±) 2 	* 	2" )  e. v-x- v.  
	j-1 	r 	ra. r 

1=1 
r=2.  

izt 

e. 	+ CV)1
oi 3 

(43) 

and 

	

rP 	to, e  

	

X. -V!-- 	 ....e4-? 0(g) ÷ 
. 0+1 J vj+1 lr.3, ,-_,,.._, 3  1--.2 3  ;; --3  

r=-Z 5' j ,Yj-1 .6j-2 i j -3 ...?.fr 

r=2 	j 5j-144.1Cr 

. 	rrt 
 v*e 	

r-1 
=I_ 3 	v.v4  +C(E) 

	 j i 
1.1 	(44) 

The Symbol (*) indicates that an asterisk is to be attached to c r r iff 

uj+1 

j+1-r is even in (43) and odd in (44). 



16 

Using (a22), (aa3) and (m), 1a4) leaos to he more satisfactory 

result 	• 

vt 	,F . 0(0 341 0 v. = 	v v1  0+1 	. 01 j 	 (45) 
L=1 

and also to 
fp 
vt - -7- e* vT. v1 	0(E) 	(46) j+1 	0+1 - 1;71  epi 

The results (29), (30) and (31) still hold here, as do the comments 

following them. 

The algorithm MI), (11a3), (aR4), (2218) and (aa19) can Frcau0a 
surprising results even when all the W's are 0(1). We have found 

that the algorit-.1m (t 2), (:L3), (7a4) can be le:: satisfactory than 

the non-reorthogonelized form when there is a serious deterioration 

in the bi-orthogonality. In fact an improvement in the 

bi-orthogonality (and incidentally in the un per heesenberg form) 

was rare when intermediate reorthogonalization was used. 

In comIuting the exameles of 1.7 we coistuted the v1 v.'s 

and, where apPronriate, have tabulated these. 

1.7 The real eigenvalues of several matrices were approximated in 

order to illustrate various features of the algorithm A(2,11,13). The 

features illustrated are :- a suitable set of initial vectors leads 

in the case.of a non-symmetric matrix with real roots to a symmetric 

tridiagonal matrix; situations where roots are obtained using our 

method without re;ular reorthogonalization while these roots could 

not be found when reorthogonalization was used; the extreme roots 

being determined after fewer than n Lanczos steps (for an nxn matrix), 

leading consequently to a tridias-onal matrix of order less than n; 

ill-conditioned roots being obtained when more than n steps were 

applied and not otherwise. 

The computed eigenvalues were found using both reorthogonalization 

and also without any subseauent reorthogonalization, both of these 

processes on several different initial vectors - the eigenvalues 

obtained from these procedures have been tabulated. The complete upper 

heesenberg form obtained by applying the Lanczos algorithm to each 

of the matrices has sometimes bee:-. tabulated - see (32). Where 

appropriate, some of the values of vt v. have been tabulated in order 

to give an indication of whether the resulting vectors are adequstly 

biorthogonal. In the tables (only) any fixed point integer entry (n) 

is to be understood as 10n. 
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9.730741 

9 

9.63S500 

table 1  

9  9.562491 

17 

1.Ixamt:le 1 : CYilkinson L351 I, 392 ) 	4 

2 
1.1 

4 
The real eicenvaluea of this matrim -acre 	uzinc the sets of 
initial vectors 

v1(p)  
) 

.1) 

.T and 	vt(p)  

, 2 
4 

[2x10, 
4 

*-1 
1 , 0 , 0 

1=0(1)8. 
we tabulate the results below (reorthoonalizat;on being used in the 
first table and not the second) :- 

0 1 • 2 3 4 5 

1 -1.362444 -1.3624=14 -1;362444 -1.36214 -1.36:444 -1.352444 
2 9.703373 9.703378 9.703378 9.703378 9.733378 9.703378 

0 1 2 3 4 5 

1 -1.3624 44 -1.362444 -1.362444 -1.362444 -1.3624:4 -1.362444 

2 9.703378  9.703378  9.703373  9.703378 9.703378 9.703378 

6 7 8 

1 -1.362444 -1.355950 -1.519 
2 9.703375 9.704292 9.5,3485 1  

table 2 

A question mark indicates that the relevant root could not be found. 

3 
2- 

1 2 5 

3 3 4 
1 2 1_ 



-4.000 
5.431 

5.431 	-14 
4.458 8.747 
8.747 -.363 

1.782 

  

   

---0 

52.51 -44.00 -12 
44.00 -33.79 -6.022 

6.022 -11.44 
.923 

.=2 - 
 

r 

Ureer 	moo_ 2 	7-it__ou.. rporthor-ona?17,ation 

-14 7.600 	6.733 	-14 	-13 
-14 6.733 	-5.102 	-6.939 	-13 

-1.782 6.939 	3.217 	-2.038 

.906J 2.036 	3.286 

- 
-11 
-11 

..923 
1.725 _ 

, 
602.5 I 
1494.5 
1 

t 

1=1 

-494.5 
-486.3 
1.521 

-10 
-1.521 
-8.041 
1.103 

-9 
-9 
1.103 
1.629 

r=3 

-5(4) 	-5 	-4 	1  

-5(4) 	-.1489 	-4 
.1489 	-8.621 	1.022 

1.022 	1.619_ 

5002. -!-934. 	-7 	-6 - 1-5(4) 
4004 -4385. -.4717 	-6 	5(4) 

.4717 -8.641 1.021 
1.021 	1.620 _ 

p=4 	1=5 

5(5) -5(5) -3 
-5(5) 	-5(5) -.0478 

-.0478 -3.619 
1.022 

-1 5(7) 	-5(6) -1 1 
-1 5(6) 	-5(6) -.01409 1 

1.022 .01489 -8.619 1.022 
1.619 1.022 1.619J  

1)=6 	.1=7 

5(7) -5(7) 
5(7) -5(7) 

.004707 

 3 4 
-.004707 4 
-8.618 1.044 
1.044 2.167) 

table 3  

a(n) nears a x 10n. 



8 1  
5(7) -5(7) -.004707 8 

.004707 -8.619 -252.0 

252.0 -5(7)J 

5(7) 	-5(7) 	3 

table 4 

1:01I • 

:-ZEO=CII0 

ma rt v. 
an, 3 

max vt-v. 
a. 	.1÷ 

am.12Ho max i
r- 
f1 

max 
ji1 

-15 -12 

-15 -14 

19 

- 	ree-tho-onal;::ation 

4.000 5.431 	-15 	-16 1 77.6r200 

5.431 4.450 3.747 0.0000 6.733 

8.747 

5003. -4594. 

4994. -4986. 

.4717 

t_ 
p=4 

-3.632 

1.782 

-12 

-6.022 

-11.44 

-1.732 

.906 J  

_ 
-11 

-11 

.923 

.923 1.725 

-8 -4 1 
1 

-.4717 -5 

-8.641 1.021 

1.021 1.620 	i 

6.733 -15 -15 

-5.102 -6.939 -14 

6.939 3.217 -2.038 	. 

2.038 3.236 

1=1 

3 

5(4) -5(4) -7 	-2 1  

-5(4) -5(4)  

-.14S9 -8.621 1.022 

1.022 1.619 

1=-5 

0 

52.51 -44.00 

44.00 -33.79 

6.022 

i 

502.5 -494.5 

494.5 -436.3 

1.521 

 
- 

-10 
- 

-7 

-1.521. -7 

-8.841 1.013 

1.021 1.623 

--, --5(5) 	• -5(5) 	-2 	3 	I 	5(6) 	-5(6) 	0 	7 1 

5(5) 	-5(5) -.04708 	3 	1 	r 5(6) 	-5(6) -.01489 	7 	I 
! 

	

.04703 -3,619 1.022: 	.01489 -8.619 -.9522 

	

1.022 	4.072 , - 	.9522 	8 j __ 	 -; 
17=6 	 p=7 

For p=0(1)4 the vt-v.'s (i 	j) are all less than .26 x 10-7 in 

absolute value, for 1-.5 the situation is not as favourable. In table 5 

we tabulate the orders of vc..,mitude of the 7--v'a for p;%1. 
j 2 

3 4 5 

-10 -7 -5 

-13 -11 -10 

-9 -7 -5 

-12 -11 -10 

n (1. .-., 

6 7 S 

-3 0 3 

-9 -8 -5 

-2 1 • 1 

-8 -6 -5 



Exam-le 2 : 	A= (a..) 1J 

1C=i+1(1)1+4 ; and all other elements zero. 

'7 0 

This matriz has h (;>\ - i ) = 0 as its characteristic zit: ?tion. 

Tfininson ( E3.!:] pp 41-43 ) discusses this eT..mtion at .:oze len:Tth. 

He shows that the root of greatest sensitivity is = 15 'and also 
.11 	_9

) 
 

that if the coefficient of /1% is perturbed by 2 - t. en ten of the 

roots become comi:lez with substantial it asinary :arts. In fact, 

to-  9D 	the roots of the per T.olynomial ase :- 

1.000000000 6.000006944 10.095266145 ± 0.643300904 1 
2.000000000 6.999697234 11.793633:81 i 1.652329723 i 

3.000000000 8.007267603 13.992333137 ± 2.51L:03.;070 

4.000000000 8.917250249 16.730737466 ± 2.81262494 i 

4.959999928 20.846903101 19.502439409 ± 1.940330347 i . 

The real roots of the above matrix were determined in the first :lace 

by usins two different set:: of initial vectors aid not 

reorthoL-onalizin3 the re-.ultant vectors and in the ;eeond 1:l ace by 

applyins the reorthosonalization process to the vec';ors obtained 

froth both sets of initial vectors. 

a) No reortho-:onalis^.tion 

i) As initial vectors here we used 

vT = ( t ) ; t
i 1 1=1(2)19 ; t

1
=0 1=2(2)20 1 

. vlT  = ( 	) ; t=1 1=2(2)20 ; t;:=0 1=3(2)19 ; 1 
These vectors do not produce a sy=metric tridiasenal mal:riz. ?he 

real roots found are as follows .- 

20 Lanese:: 	: All 20 roots were found correct to 6 decimal 
places. 

19 7.821p:00,7 	: _?Dots 1 throw:h to 19 wore found to 6D, 

while the 20-th root was not found. 

18 Lanczo-; 	: The only roots obtained were 1.000001 ; 

1.999730 ; 3.012135 ; 3.854078 ; 16.234479 	16.9&.5873 ; 

18.000175 and 18.999999. 

A checl:onthebiorthosonalityorthevectolnay.and 77,4.  showed 1 

that the worst case was v-
2
vk = -.103 x 10-9 - an adeouate 19 

result. A check on the values of the off-t-r.idiasonT,T hin it 
• 

the u:per heecenbero form showed that all wore less than 10- 
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except for h 	 which lay between .01 and 10. 'he accuracy of the -1,20 	 C 
19-sten solution occurs becaus 	- 216 x 10 J. - 	19-  '- 

ii) The nemt set of initial vectors used Wa3  

V1 - ( t3.. ) ; 	t.= 1 .01 i=1(;)20 

v 	( t* ) ; 1 	ti. .5 	i=1(1)2 . 

These lead to a symmetric tridia,:on:1 	7:e nay summarise the 

results as follows .- 
20 Laneso7 ste-,s  : The 20 roots wer found correct to 6 decimal places. 
19 Lanczos nters  Soot: 1 throu-i to 15 and 17 to 23 were obtained 

correct to 6D. 

18 Lancaos stens  : Theicots 1 to 15 we-e found correct to 6D.The three 

other roots are 	17.175233 ; 13.S-,9C2 and 20.000000. 

17 Lanczos rie7S Roo ;s 1 to 15 and 	20 were obtained to 6D. A 

further root of 18.'.;98542wa; found. 
16 Lanczo ,: ste7)s  : The followin:.; root -  were found :- 

1.000000 2.000000 3.000014 4.;;00207 5.001518 
6.005404 7.016238 8.02576 (:;.0:15707 10.015711 

11.005770 12.000958 13.000078 14.00..1603 15.003000 

20.000000 . 

Notice that the roots not obtained in u.;ino fewer than 20 Lanczos 
iterations. are, rouc5hly 	the ill-conditioned roots. 

In all columns except 

matrix are les.3 than 
between 10

-6 
t 

	and 10. 

the last the entrie:: in the upper hessenberg 

10 ' in modulus, while in the last they range 

In this cac the only small g is lc 
19' 

vrhich 
 

has the value .233 x 10 A  

b) 	reortho-onation  

i) The sane initial vector.; a: in (a) (i) above were used. Althou,-,11 the 

resuatinG vector...; were satisfactorily biorthoGonal, the only real roots 
found after allyino 20 Lanozo:; sterss  

1.000002 1.:-.9667 3.0237S1 3.733773 7.063477 
10.000016 1E3.0;035 10.';21:S97 . 

As exT:ectea, the tridia:onel elements here differ vastly fro-,  those 
in (a) (I). The z-:.r.T.rise is that the off-tridia,1-;onal elements in the 

hessenber0 form are Generally larger th^n ii e cdrresondin,-; elements 

in the previous case, they ran;I:;e as follows in fact :- 



-4 h r=3,...,14, are all less than 10 	(in modulus); are 

107 1  
3> h. 	7:7;-10 15 

,15 
—9 

10, .7;:i his 16  10-15 

10-1,h. 71014 
,17 / 

10- > hios- 10 14  ; 

10— 	his 19  -?;,1013 

102,;;;, his20 10-13 . 

ii) Using the initial v,.-A;tors of (a)(ii) above it was found that 

'20<10̀  10 and so only 19 Lanczos steps -;:ore aclaied. The roots 

X = 1(1)15 and A=17(1)20 (all correct to 6D) were found. The 

biorthogonality of the vectors is satisfactory, as extacted. 

At-,)lying 18 steps of the algorithm the roots A=1(1)15,/\ =20, 
correct to 6D, A = 17.831556 and A = 18.F:9574 WO=O found. 
The only unsatisfactory elements in the uprer hessenberE; form 
occur in the 20-th column, where h

17,20 = 1071  and 

= 102. The tridiagonal form is not symmetric. h18,20 

The sections (a)(i) and b(i) above illustrate a situation 

in which the algorithm is rnv)erior without intermediate reortho- 
gonalization. ?wo facts illustrate this : a) Jithout reo=tnegc- 
na ization we were able to find all the cigenvalues correct to 6D, 

while when using the intermediate reorthor-onalization '_rocodure 

approximations to only eight of the roots could be found (the extreme 

ones to 4 ani 5D and the middle ones very inacurately) ; 

b) Without reerthogonaliaing it was found that max v:v =.936x10 -10  
iij 

•  and max v7v +1 : =.110x10-12 	, while when reorthogonalizing 
J  

v- 	=1.26 and vT 	=.443 . This catastrophic deterioration 20 18 	20 19 

is not associated with a small 	as no 	is less than 2 in (b)(i). 
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i 1 

1 2 ? 

1 2 3 3 

1 2 :5 ilr 4 
............. 

1 2 3 4- 5 ........ (n-1) (!:-1) 

\ 2 3 4- 5 ........ (n-\ ) n 

ITe cho:::e n=12, 
T (t

i
) l/tStl;, :.=1( 1) 12 v1 = t-, .- J J. 

v,T= (t~) , t':"= 7//8£;;' i=l (1) 12. 
J. J. 

:;0 roortho. I J.eortl1o. I 
f-__ ' __ rn_le_r_o_o_.L_"s __ -+-_12_:-_-,-_~e-=~3 16 =,te~3; 12 sto:,:; 16 ste:.:~ 

i I 0.031 0280606'~4-01 ql 0.031050 I 
O.Ot~9507t;2918527SI O.O'~5336 O.O·~S·~86i I 
0.OS122765S2'~0-~05\ 0.Oc.l074, 0.031227\ I 

1\, 0.1,1-354G5197G9220; O.1435(li~1 o.g36,n 1 

O.i)G023 0.13.6028, 

0,284749720550/;-781 o. 2G in50 I 0.284-75J 0.20L~102 o.22.~1021 

1 

O.6.:1-350531S00<-856I 0.643505i 0.6?3505 C.64-3!r::3\' ::J.643!;S31 

1. 553S'SB70S1321CS! 1.553':'39 1.553::09' 1 '-;53'::<30 , 1 ~~"'~~C.I , I · "" - J i • ~ .,J ~ - ~ I 

3.5118559L;8580757\ 3.511C56 3.511E-56 3.51185:) i 3.511856
1 

6 ot::1,-----O--',-~6r-12') " 0"-'5--\ ..- O"-l~-~ 16.c:615-)-) I, 6.'::~1:;-))'· " 
'.I U "))) u:;>? ( ''-j O. JO I )) I O'.It) 'J)) - - - ./ 

12.311077400268526!,2.311077 :12.311077 12.311077 ~2.3110771 
.20. 19C5886~·5877 J7S 120 • 198989 ! 10. 19G5-~-;9 120 • 1 S8SE,9 ko. 1 ~SS29 ! 
"'2 ?2ror.91~O·-721·-1 1-2 ~'--"""('2 i .. ? ~?"""C1 '-.-- ~'J~~~" l..", 2?C-"''' I 
,) .~- c.'v ? \:> 7_2-.~-2._~_~~~ 2:,·~-·~_OJ iJL.c..:,-':"G~~ '-=2.~-~_~:~~:'?..=J 

table 6 

.... 
The values of t}~e conc.i tiOl1 ntl..:1bo::'s :r--.y. = 

:L J. 
(-~ore -r ..J. ,'__ __. 

::L ' 

, 

t~e ri.:(!~t .:!.."1<l loft b.a·.:.cl 'TectO::'3 a-;30cb.::':!-:'i. --;;-it!1- t2e ci:;onv.::lue ,\. 
J. 

respectively) (see ":lilkil:50n f34! ) arB e:-:tr8!Jel;-;r :.L:1all fo:!.' t~c - .. 
snall ei.:;e:!vc2ucs and. clo-:;:? to o::!c for the lar;-er o~es. 

~he off-t:!.'idi::-_::o::.:>l vector::; in botb. tha nO:!l-reotho,:;o!l2..li~e(!. a."1d 

or~h.oco::l:i!iz'Yl fO:-::l'3 Y':.l:l f:.'on 10-15 to 102 in r:oa.1l11.l.s. 
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Summary of results  

Define the syametry ratio as the number of -rositive.I nj  3 

obtained after aprlyi-̂ c 	r stes of the Lanczos al,-;orithmsdivided by 

• 

In both the nrevicus a-2,nlicatien of the Lancso:: al=orithm and. in 

the later ar)rlications in cha-ter  2 we are interested only in the 

real eienvalues of the riven matrix. '3cverro of the rrevious examles 
have only real roots in fact. The value of the symmetry ratio is a 

useful a priori indicator of the accuracy of these real eizenvalues. 

1) Denote the aymmetry ratio by s.a. 
2) A CTOSS in the coluiln headed "h" indicates that some or all of 

the off—tridiaonal elenen_ts in the u:Ier hessenberE fora are 
larL.e, While a "v" indicates that they arc  all small. 

3) A. cross in the column headed "r" indicates that the roots found 
are not satisfactory, while a "v" indicates the roots as 
satisfactory. 

7,Xarrle 1 : (4x4 matrix) 

HO reortlloor-lli3ation:— 

p= 0 1 2 3 4 5 6  7 8 

S.R. 0.67 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 

h v v v v v x x x x 

r 	V 	v 	v 	v 	v 	v 	v 	,r 	x 

ReotIlaonalization used:- 

      

 

3'r-* 

 

0 	1 	2 	3 	4 	5 	6 	7 

  

  

0.67 0.33 0.33 0.33 0.33 0.33 0.33 0.00 0.00 

 

r 

  

v 	1 

      

      

""1 



steps 	20 19 18 

S.R. 0.45 0.47 0.44 

h x v v 

r v v x 

Example 2 : (20x20 matrix) 

a) No reorthogonalization 

i) 

25 

steps 	20 19  18 17 46 

S.R. 1:50 1.00 1.00 1.00 1.00 

h x x x v v 

r v v v v v 

b) Reorthogonalizing 

i) 20 Lanczos steps : S.R. = 0.53 ; h=x ; r=x throughout. 

ii) 20 Lanczos steps : S.R. = 0.84 ; h=v except in last element of last 

column ; r=v. 

Examtae 3 : (12x12 matrix) 

no of steps 	12 	16 

no 
reortho 

S.R. 

. 

r 

0.75 

x 

small roots x 
large roots v 

0.66 

x 

v 

reortho 

S.R. 

h 

r 

0.50 

x 

no small roots 
large roots v 

0.40 

x 

no small roots 
large roots v 

1.8 Conclusions 

1) Reorthogonalization does not necessarily improve the algorithm 

in the sense of preserving biorthogonality, neither does it 

always assist in determining the eigenvalues more accurately. 

2) Fewer than n applications of the Lanczos algorithm are sufficient 

to isolate the extreme roots when the symmetry ratio is 

comparatively large - this is particularly advantageous when 

dealing with large sparse matrices. 

3) When the symmetry ratio is particularly low, even after n 

applications of the Lanczos algorithm, the eigenvalues can still 

be poorly determined - see chapter two for a particularly clear 

example. 

4) Severe non-biorthogonality always has disastrous consequences, 

as in example 1. 

ii) 
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5) On occasions more than n Lanczos iterations were performed — 

see exam-ale 3 for example. Note that in this example the smaller 

eigenvalues, which are badly conditioned, are improved by using 

more than n iterations without reorthogonalizing, while no 

improvement occurred when the two sets of vectors were continuously 

reorthogonalized. Notice too that the symmetry ratio of the former 

case is consistently greater than that of the latter. Paige, in 

applying more than 8 iterations of the symmetric Lanczos algorithm 

to the 8x8 Rosser matrix, found that the additional roots 

generated also converged to the Rosser matrix roots, E255. We 

did not always find this to be the case with non—symmetric 

matrices. 

Final conclusion : we have found a technique of some promise for 

isolating the real roots of large sparse non—symmetric matrices, 

in particular the extreme roots. 
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2.1 	require the eigenvalues of 

N7214) 	- 0 
defined on the domain r-  of figure 1. 

figure 1  

(2)  

	

aw+ cti.). 	S2:  • (x xc)2 + y2 = ri2 
(3)  

dr 
Relocating the origin at 01 , transforuing to polar coordinates and 
makino the substitution 

Ary0) = r2W(r,O) 
(1) becc .13S 

_L. 	÷ f 1 	+ X) 	= 0 	(4) 
a rt 	r2 D Ga k 4 2 

subject to 0 =0 on r2 - 2 r xc cos 8 = ro2 - zo2 
(5) 

and 	rao 	(gr 	0 =0 on r=ri. 	 (6) a r 
xc and yc arc the coordinates of 	0. 

Using the usual finite-difference notation; defining 

91-= 
3 

'where r.=ri j.2Nr, 
0 

Oi  

and using the sinplest second-o/-der centrel difforence alTroxi7lation 

(1 ) 

The boundary conditions are:- 

4) =0 on S
V  *x

2 y2 = ro- 
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figure 2  

to the partial derivatives, (4) may be arproximated by 

	

1 	0. 	. 	1 0. . 	1 	0...,  + 1 04 	+ 1,3-1 	1-ri 2 2 	L x.2 	2 2 	 2 -"/- 1  

	

r. A 	 r. A0 

-2 	2 	1 	4- X } 0i 
4  
4  = 0 , 

d r2 	 2 
4  2 
	- r.2ti'g r 

where i and j range over approtriate values. 

(7)  

Applying the usual Taylor expansion arproach the truncation error in 

(7) is easily seen to be 

0(L r2) + 0 w ,2  

Differentiating the boundary condition (8) 'lith resrect to r gives 

rt0 	(c.r -1-) DO 	c 0 = 0 on r=ri . 	(9) 
Dr 

Substitute for 36 from (6) into (9) to obtain 
r . 

a rl 
 = [4.c2. r2  4.c.r — 1J / 4 r2 

	
(10) 

(8)  
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Tutting (10) into (4) yields 

r 

— 1 ) -10 + B,4 = 0 on r=ri. 
1,2 CO 

Again use the second—order central difference a---rroximation to 
the derivative, here obtaining 

1 
2 	i-1,1 + 	

.2 	2 i+1,1 -Er c ( 	
2 	2 

— 1) — 	2 	0. =0. 
. 2 rm./14 	 ra. 	 ri 	 ri 	1' 1  

(11) 

The truncation error is Of 21  
` .2' 

The situation on the other boundary is somewhat more complicated. 

The typical situation is illustrated in figure 3. 

fiAure 3  



2 

1 - D 3 P1  ( D )Z1^ 	2  , 11 3 	r 

2 

2) ( 1- p
)
..)  a42  . 

1  

01+1,j + 

 

2. 	 °i,3 -1 +  

 

(1 p5)/1r2  

01-1,j + 
r-'D 
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Label the nodes as illustrated. 
Let 05 = -;) ,, ,. r 	; 	03 = p

3. 
 A 0 	; - 

02 = IA r 	; 	01 = pi .6P. 

Easily P2  P5( P9  P5 ) 2r2  .;L00  

2 	 r2 
25 02  - (22 r5 )gro 

+ 0(A T3  ) 	 (12) 

and P 1 12 D- n1  "0 ( 	- 	D100 	• PI  03  + F3 01 -(P1  P3 )00   -  
2 

O 03) .. 	 (13) 

Sub:Aituting from (12) and (13) into ( 4) and rememberins that 05=0 

leads to 

(p4 	) /,‘ ig2.  r2 
-.7 (1 + p5) tr2  P3 (Pi 	r3)10r2  

2 	Ot 2 	952 
	 2 	0- 

-2 	 2 + 1 

p 	7 r2 	Pr Ar- 	4r
2 

1 
1)- A4 

oM 	= 0. 

In our more familiar notation this is 

  

2 + 1 -I-  ] Oil -1-0(Ar)±0(.19)=.0 

(14) 

     

p_ 3r
-) 	2 4r 

at 1.oints nei:;hbourin the boundary S. 

We tacitly assumed that p3=1. 
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The order of the matrix involved was approximately halved by using 

the .-.ymmetry of the problem at the time of discretizatioa. The program 

used to set up the matrix is rezroduced in the appendix. The matrix 
is sparse, banded and non-symmetric. The method of Lanczos, as described 

. in chapter 1, was used to transform this matrix into tridiagonal form 
for various values of the radius of the control rod and of the distance 

between the centres. This method was chosen because of its suitability 

for finding extreme roots - here we sought the smallest ; because of 

	

its rapid convergence ; 	because of storage limitations ue had to 

use a method which did not require the storage of the full coefficient 

matrix (or its equivalent) at any time. 

2.2 	The evaluation of det(T - n), with T a tridia:;onol matrix 
was performed by the usual algorithm, [N.] p 423 , where, if we 
write t. =c4. 	

ti, i+1 =5. 	t. 	i 	and denote the 111-1 	1+1, 	1-1-1 

leading principal minor of (T -AI) of order r by prW, then 

Pr(A)  = (c(r - )1  ) 1° -1(/\) 	Prl‘r Pn-2(A) (7-'=21••'n)  

where I) (X) =1 p 	- ' 	1 	1 

Also 4,(A) = (tx, — ) ,fir r 721_200 — pn_I(A) 

and p,"(X) = (c(r  - 	P; 1(>) -pr 	ri,"_2()+) - 2 Pr-1(A)  , 

where 701(N) = "0 "W 	7)1  = "(X) = 0 

	

-o 	. 

	

1 	= -1. 

The rounding errors inherent in this algorithm are satisfactorily 
small. 

(15) 

The method of Lag-uerre ( Laguerre [1E3 pp 87-103, Bode wig 

[3] , van der Corput [30], Parlott r26j -filkinson [541-rn443-445 ) 
was used to find the zeros of the characteristic polynomial defined 
by (15). This method was chosen since:- 

a) if the characteristic rolynomial, nn  W, has real roots and the 
real line is divided into as nany intervals as there are distinct 

roots, then from any initial reint in such an interval the 

successive Laguerre iterates converge monotonic ply to the root 
therein; 
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b) locally, if the root is simrle, convergence is cubic, other se 

it is linear. 

The first above does not extend to the complex plane, 7elilc the second 

does ([263) — this is not of great loportaace here as only real 

roots ':till be sou:;ht. 

Parlett describes the 	as 

Let Vie polynomial T' ()t)  have roots A1,..• A • Given an aprrox-- 
imation A to one of the roots, say . 

Define 

S1  CO = 4(A) = 

Pn(>) 

Sp ) 4,(x)2  p,(A) -4(A) 

  

    

pnoo2 	i„t 	_ ), i)2 

The next apr.roximation, XI, to Xn  is obtained from 

= X — ,1 Si 	,i(n-1)(n 4)2 	' 
c,12
1)  

say. 	 (16) 

S
1 

 ± 
- yr- 

:7 . Choosethat square root of 	'which ma::imiz.es IS1 	:Iso,  

i
is  ± T.712 — 1, 0 1 2 	12 1 	f _— 2 2e(S1'W), so choose 77 to make 

Re(S1. W) non—negative; 	is zero, arbitrarily take 

Oar;(':f ) ir . 

Accepted roots may be suPDressel by eliminating their influe-rice 

on 31 and S2' 
this is done by noting that 

,(1)) _ 01  — 

(17) 

(n) 
1 	= S2 

 
(A 	xi)2 	

h-NDt—  >■ j.)2  

Parlett sua:;ests the follow-ing numerical criteria for deciding 

"2 
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whether a comnuted numb-y,. is P-  -,cse:tP"cle aroximation to a zero 
of the characteristic rolyrT-4a1:- 

Let ), be the current ite-atA, A X the commuted increment and 

IX! =1 2eCOI 	lim(A)1 . In the following 0( re-.resents the base 

of the number systm usd by th- and t the word. length. In 
the work of Parlett a .10 and t=3. 

Test 1:  In (44:c<, 	1:::1(X)1.?hib test was designed to catch _n  

zero or small values of - n(X) r,..1.%tive to -t(A), in T;ractice it -n 
may be preferable to use a -or a 7-  rather than oC-% This  test 

should also catch values o= $ no lax,e t'sat there will be no change - 1 
observable in X to t 

Test 2:Let c be the modulus of the largest root found. 
oct/2 max(ix , p o( —t/2-f1. c).  

For linear convergence this test is not fine enough, and 
-t/2-2 	-t/4 

(.6›,14 	max(I)J 	. c ) is more 

ar,-)ropriate. 

Test 5:ILL'Akcy„-t. C 

Two further cases may occur as a result of co:vlex ei3envalues 
causing cycles - we are not overly interested in these as we seek 
real roots, however see Iarlet 1_263 for details. 

Peters and 7filkfnson [273 have also addressed themselves to 
the problem of deciding 1-.. en a commuted number is an adequate 
approximation to one of the roots of a tolynomial. 

2.A In the implementation of the above alcorithn it was found 

necessary to scale the matrix and/or the characteristic molymom;a1 
in order to ensure that the com:uted values of the characteristic 
polyrorliro end its first and second derivitives were always within 

the allowable ,.ange. As a hexadecimal machine was used, the coeff-
icient matrix was scaled by a suitable mower of 
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The twelve eigonvalues of smallest modulus were co=uted for the 
following cases:-

Outer radius equal 
br= 0.1 	, 

to 1.000 

A 	=1./64. 

Inner rafius 
0.400 	0.300 

0.200 0.200 
0.175 
0.150 0.150 

distances 0.125 
between 	0.100 

0.075 
0.100 

centres 	0.050 0.050 
0.025 
0.000 0.000 

table 1  
The order of the coefficient matrices used in the above varied 
from 330 in the case of the 0.400 hole, 0.000 bc.tween centres. case 
to 457 for the 0.300 hole, 0.050 between centres situation. 

The ei,,.envalues over domains :7-Its holes of smaller radius were not 
computed as itvaSfeltthaFerilittle which was.nevr, emcePt the 
actual values of the eigenvalues, would be obtained. Theae cases 
would also have required the use of smaller values for Pr. and L.10 

and correslondingly larser matrices - together with. very much nore 
computer tine. 

Tt will be remembered that in the modified form of the Lc-Icoos section 
algorithm, as discussed in41.2, the ulrer and lower diagonal elements 

of the resulting tridiagonal matrim were denoted by e and 6 respec-
tively. Lll Of the e's are non-negative, while some (or all) or the 
p)  Is are negative (cf alEorithn A1-.115 of 1.1). It was found, in 
com7puting the eigenvalues of Larlace's equation on the region defined 

above that a reliable indieator of the accuracy of the results 

og the algoritlr: is given by what we have here termed the Symmetry 
Ratio (o.a.) at a rarticular r)cint of the Lancsos al;;orithal  viz. 

the ratio of the number of -.ositive ii1 3 in the tridiagonal matrda... 

calculated thus fax to the order of this tridiagonal matrim. In the 

cases where the 	77_13 La'CatCr than 0.60 after 2n/3 Lanczos steps, 

it was -Pound that the smallest roots could be cornruted accurately 
from this (2n/3). (2n/3) tridiagonal matrirr - see in rarticular 
the cases with inner radius o_ 0,400 and distances betwe.,n centres 
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of 0.200, 0.175, 0.150, 0.1=5. 7,en. the 3.11. fell below this 

threshold valu,,  t7-e ,Nocts were less necurely determined — see 

the cases wita 	—n44us of 0.400 and distances between centres 

of 0.075 and 0.050. 	r.'"oice of -171;tinl vectors affects the S.R. 

ratio :ro:oly — see as em---rles the cases where the inner radius 

is 0.400 and the d4stences b--,tw^en tl-.e centres are again 0.075 

and 0.050. 

The resulting =-isr.nvoluez are tabulated on the followins 
paces. 	 r2r,-  the eienvaluec, the order of the matrix, the band- 

vridth, the symmetry ratio and the initial vectors uselare  also 
tabulated ter each case. Cther information, where available and 
relevant, has also been tabulated. Tillers any doubt whatsoever 
exists about• the accuracy of any of the lower order fiGures in the 

approximation to a root of the relevant tr4,14agonal matrix these 

have been underlined — note that this does not imrly that the 
remainins figures re:re.:ent a :erfectly accurate re7xesentation 

of that eisenvolue. Very clo:e or releated roots, where 
indistincyaishable, have been bracketed. he title "n—iterations" 

means n Lancnos iterations. 



1) Outer radius 1.000; inner radius .400; distance between centres 

.200. 

2) p r = .1; A 	11/64 = .04908738 
3) Matrix has order 415 and bandwidth 17. 

4) Symmetry ratio is. .77 for 415, 311 and 276 Lanczoz iterations. 

5) Lax ( 	= 13.16. 

6) 415 Lancnos iterations required from 4 to 12 LaGuerre iterations, • 

while 311 and. 276 required from 3 to 10 and 3 to 11 resreotively. 
, , 	, 47  7)Initial vectors of L1. , 0, 1, 0, • • • 	and [1 	1 0, 1 . 

were used. 

415 its 311 its 276 its 

-.001921157923 

-.001922390160 -.001922066619 -.001922064204 

-.01056571,495 

.3551234992 

6.24665259 5.95402552° 

6.24 667499 6.246865334 6.246865394 

12.53145535 
17.65567939 

17.7560491. 17.75604923 17.75604923 

24.97805455, 24.9780545.1 24.97825',71- 

25.67555720 

30.71161545 30.71161543 30.71181593 

44.12532415 44.12552266 44.125,4569 

55.66406610 55.65104755 

56.19125595 

63.71727142 

65.92413245 

66.19242042 

77.06921337 

table 2 

In addition with 276 itorz:.;ions 4 comTlex roots, namely 

55.67776990 ±.3025067519 i and 88.62199263 ± 

•:-.L  4.321805241 i :7:12e found. 
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1) Outer radius 1.000; inner r-1  itis .400; distance between centres 

.175. 
2) isr = .1; L.0 = 71y64 = .04908733 
3) Latrim has order 418 and bandwidtl,  17. 

4) 3,7anetry ratio is .54. 
m 	" 

5) :ax(iv-v4:1 1 -TE-v.1). 28.14. 11' 

6) 418, 313 and 278 Lanccos iterations -a:mired between 3 and 13, 
3 and 12 and 4 and 8 Lal; erne itor-tions resmectively. 

T 
7)Initial vectors: [1, 0, 1,... 3 - and [1, 1, 0,1,...3 -  • 

418 its 313 its 	278 its 
-.001921433618 -.001921.191n-51 -.001908690459 
-.001922458361 -.0019224727 -.001922214831. 
-.004656575596 
6.946841780 	) 6.246C620 6.246860068  
6.24680793 	3 6.247521A16 7.095980097 

18.66239316 	) 
18.66044173 	3 18.660t3376 18.66043876.  

24.97763644 ) 24.63437624 

24.97802304 J)  24.97000751 24.97800747 

31.02482002 31.0252/Z226 31.02524226 

36.46306j85_ 

43.27045174 43.27045173 

52.99456158  52.59454615 

56.14719081 56.14723092 
64.46906775 

68.25812674 

table 3 

-11 
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1) Outer radius 1.000; inner radius .400; -'i-rience between_ centres 

.150. 

2) Ar and A as before. 

3) ratrim is of order 419 and haz bandwidth 17. 

4) Syrunetryratio is .71. 

5) r.a7:( lvvfl 11'1i 
6) 413, 314 and 279 Lancoos iterations reauired between 4 and 11, 

3 and 12 and 3 and 9 Lacuerre iteration.: resrectively. 

7) initial vectors: [1, 0, 1, 	y 1, oy 1 , • • • 3 
419 its 314 its . 	279 its 

-.001921852169 -.001922325657 -.001322321654 

-.001922499146 -.001907408710 

-.001073167734 

6.246357736 ) 6.246966779 6.246859126 

6.24668E1075 3 6.247105191 6.253645640 

19.62478259 ) 

19.62597703  19.62597702 19.62597702 

24.96657403 

24.97811440 24.97811417 24.97811417 

31.26051027 . 

31.29320755 31.29320712 31.29320715 

36.15119355 

42.02771776 42.02771750 

50.52694565 50.52696381 

56.14217250 56.14224669 

63.06217236 63.06201531 

71.96414771 

table 4  

! 
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1) Outer radius 1.030; inner ra:.lius .4C0; A'stnnce bet.7.-een centres 
.125. 

2) Ar and A.Q as before. 

3) 1.:atrix has order 42) and bandTriftth 17. 

4) Symmetry ratio is .67. 
r7, 	, 

5) :ax( Iviv11,/v1-vil) = 23.34 

6) 420, 315 and 260 Lencsos 	b-,.t77eon 5 and 12, 
5 and 11 and 5 and 1 LeGuerre 

7) Initial vectors as in the Drev;ouz 1770 

420 its 315 its 	I 	230 its i 
-.001922637949 -.002402241=-9 	' ....:32402:07173 
-.001924196992 -.0024033C 	: -.00^4035:.0256 
6.246792091 	) 6.18673750  
6.246850178 	3 6.246332769 6.2463:12769 
20.06221815 

20.66019056 20.660323s3 20.460323S0 
24.97005017 24.977572:1 24.077572:1 
26.07235397 . . 
31.45575050 51.',5593703 31.45593702 
40.24055707 

40.32/.59958 40.324377541  40.32 49775" 
48.61705890 48.61712L,30 43.61712353, 

56.14607006 56.1.150785e 

61.97557  61.37589249 

75.60685635 75.60712481 

79.11355079 

table 5 



280 its 

—.001922682049 

—.001923102802 

6.246849100 

6.24r)E17002.3  

21.79988273.  

21.80689794 

24.97806Za 

31.44766392 

31.47020909 

38.40310126 

47.30191831. 

56.14658971 

9 

40 

1) Outer radius 1.000; inner radius .400; distance between centres 

.100. 

2)Ar and o9 as before 

3) -:atri=a has order 420 and bandwidth 13. 

4) Symmery ratio was .63 — pror2=.1 to discontinue Lanezos 

iterations if S.:L.:n.60 after 280 iterations. 
5) Eetween 3 and 12 La5uerre iterations were reeuired. 

6) Initial vectors as before. 

table 6  
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1) Outer radius 1.000; inner radius .400; distance between 

centres .075. 

. 2) Or and DS as before. 

3) Ilatril•has order 422. 

4) Initial vectors [1, 0, 1, 0, ..J- end. [1, 1, 0, 1, .. DT. After 

422 Lanczos iterations s.'11.= 0.40. :foot: isolated in between 

3 and 12 La,7,uerre 	2a:.e 
5) Initial vectors as in 4) above - after 2SI Lanese:3 iterations 

S.R.=0.43 • Roots found in from 3 to 11 La-uerre iterations. 

Case B. 

6) Initial vectors: Both El, 1, 1, ... 	174572; 	= 0.68 

after 281 steps. 3 to 7 La.7.x.erre iterations. Case C. 

A B C 

-.883639441 0  

-.1441007695 

-.006915915808 

-.00330,4375245 

-.37,3364563339 
-.00237553982.  

-.001919030365 

3.6562 ± i2.6500 

604672C037 6.24543203 6.258470911 

6.2468536 6.2718"07  -.......,..-e.. 
• 22.42241228 

23.05309540 23.05311027 23.05302290 

23.06809932 

24.9793677 24.9760357,3 24.S7661266 

25.31726614 

31.16025235 31.16021609 31.16022409 

36.:-.7293601 36.E724637 

46.61012717 46.6:-013153 

56.1450955 . 

60.72423441 60.724231;06 

78.25357051 

85.50270201 
table 7  



A 

-221.1259337 

-134.2520362 

-48.84124239 

-0.8220045103.  

18.57845863  

27.12803354 

-0.001922607521 

-0.001695980514 

6.246861847 

24.331551N 

24.97806324 

30.42023466 

35.78951941 

44.8063094 

46.11340696 

60.35402153  
77.96395510 
90.80407307 

98.13398455 

210.0125 ± 160.6632 

320.2267819 

346.3715630 

409.0916500 

table  

1) Cuter radius 1.000; in:aer 1-Pd4u3 0.400; distance bet-7:een 

centres C.050. 

2) Al. and AL'sQ az before. 
3) Eatrix has order 422 end bandwidth 15. 

m 
4) Initial vectors : [1, 0, 1, 	] 

	
andEll  1, 0, 

S.2- = 0.33 after 422 Ianczos iterations. 2ro2 3 to 8 LaLuerre 

iterations rewired. Case A. 

5) Initial vectors: both [1, 1, 1, 1, ... 	s.a. = 0.65 
after 251 Lanczos stele. 3 to 6 "ra:7ue-re iterations - no 

comnlex arith2etic 7as required at all. 

Comparinc the above roots :rites each other and with those obtained 

else:there it is clea:: that the results ? above -1-e L-xt,-2.=ly 

sus:2ect. 

1•••••••■•• 	 • , , 	_ 	„ • _ 

'"'"11 
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1) Cater radius 1.000; inner radills .400; distance bet= en centres 

.025. 

• 2)Lar end L as before. 

3) Katrix has order 422 and band7idth 15. 

4) Initial vectors: E1, 0, 1, 	and 11, 1, 0, 1, o, 3 1. 
After 422 Lancsos steps S.a..o.43. 5 to 13 La -verre iterations. 

Case A. 

5) Initial vectors: [1, 1, 11" &a -I-IT:LT (both). 'meter 281 Lanezos 

3. :L=0.05.3 to Laverne iterations. :o conplen arithmetic. 

A  -
2 .., 

-0.001923779361 

-0.001922731639 	-0.001922.7)07532 

-0.001693491016 	-0.001922205593 

6.2468.':4077 	) 	6.247503:35 

6.246663!,68, 	i 	 . 

24 .97S05215 	24.97605930! 

25.56333511 	25.55353610 

29.30047859 	29.30047839 

29.46077 66 

35.2063972 	) 	35.206377;32 

35.20807357 

45.74162651 	45.76104153 

52.5107,535 

60.04904SS:9 

77.66504W.2 

95.65356,"-55  

. table 9 
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1) Outer radius 1.000; inner radius .400; distance between centres 
0.000 . 

2) L1r and 62 as before. 

3) Ilatrix has order 390 and bandwidth 13. 

4) Both initial vectors were [1, 1, 1, 11.... ] /j3501. After 260 

Lanczos steps S.R.= 0.70.3 to 11 Laoaerre iterations. The 

tridiagonal matrix required scaling. "Iro coL1Plex arithmetic 

needed at all. 

5) Severe scaling problems -were encountered v.:hen initial vectors 

U, 0, 1, 	and CI, 1, 0, 1,...:1-  wore used — so severe 
in fact that this attempt was abandoned. 

—0.00192172375 

—0.001922607530 

6.251218201  

16.79002914 

24.97806218 

26.21547746 

26.2436i1G6 

34.94693020 
59.77075325 

97.77400045 
99.1,0109967 

99.67735947 

table 1  0 

"71 
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Sur1==z:-  of 	0.400 '^oie 

0.200 

17.75604 
24.3780545. 

30.711 

44.12534 

65.354 

77.03921337 

0.175 	0.130 I 0.125 I 0.100 

	

6.2468 	I 6.246382769 6.246 

6.253645 

	

19.6259 	20.6603239 121.80689 

	

24.978 	24.97757291 24.978062 

31.4476639 

31.47020909 

38.403101 

`40.3249 
42.02771 

48.617 	47.3019 
52.9945 	50.52.596301 
56.1471988 56.142 	'56.14607853 56.1465897 

.61.975 
63.0.:C2 

71.93414771 75.'110712481 
79.11355079 

6.24605539 6.7468 

18.660 
24.978 

31.02524 

36.46306 

43.2784 

31.29 	31.4559370  

• 

table 11  



0,075 	0.050 0.025 0.000 

6.238470311 .245851847 6.247503885 

6.251 

16.7900991 

23.0530 	24.33 24.973 24.97806 

24.976 	24.97806394 	25.563835 26.21547 

26.24364166 

31.16022409 30.42029 29.30047339 

36.8729 35.789519 35.20637832 34.94698020 

44.8063 45.7610 

46.61 	1 46.11340696 

52.610 

60.7242580 

60.3540 60.0490 59.77875325 

78.253570 	77.964 77.66304 
85.58270201 

90.8840731 

95.85556  97.7740004 

• 99.4010 

• 99.6773 • 
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table 11  

1) Only the tositive roots ere sho= as these are the only ones 

whica have meanin3 for the aifferential o7erator on the douain 

under conAdzration. 

2) Only fi:ures about uhich there is none measure of certainty 

are shoun in the table. 



! 

2.0320302::9 
13.19071710 
14.2300C/a 
25.7726317 ;  
35.6290237.1. 
45.03006011 
46 '507,'.-1-'•  
52.177453:S_ 
59.40013135 
77.49 	 

39.41909:11  
table 12 

a : 
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1) radiu:.; 	 ra-alus 0.300; distance 
beixeen centres 0.200. 

2) Ar and A g as be 
3) Latrix 31as order 430 	 19. 
4) Initial vectors:[), 0, 1, 	and Os 1,  

T 
0, 1 1 • • 

After 320 Lanczcs 3.a. = 0.5t. 3 — 7 1 --uerre iterations. 
. No complex arithmetic reauir,.,:. 

••••• 	OM, 	a.m. *MI 

1) Outer radius 1.000; inne-r. r-,4;,'s .300; distance bet7een 

centres 0.150. 
2) r and A4 as before. 
3) Order 484, band7ridtll 19. 
4)Initial vectors: i) both El, 1, 1,...:3/ 4,04 and ii) 

0, 0, 1, 0, 	and 0, 	0,  1, 	. 30 minutes 
of CPU time ran out before a trilia:onal matrix 7ith 

0111 tridia;onal matrix could be found in botli cases. 

' 	r 



1) Cuter radius 1.000; lunar ::adius .300; distance.between 

centres .100. 

2) IN.r and L,G as before. 

3)Order of nlatri:: 435, bandwidth 17. 

4) Initial vectors:E1, 0, 1, 01..3T andC1, 1, 0, 1, 0,.. 
S.R. = 0.63 after 323 Lanczos iterations. 3 — 7 Ia:xerre 

iterations required. 	com21e7: arithmetic required. 

—4.454652066 

2.082032111 

13.19104035 

16.81013117 

24.40718933 

30.76730149 

42.33311589 

46.70162232 

57.06934128 

62.60545395 

81.45435486 

95.62170301 

table 13 

1"-Ir 
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1) Outer radius 1.000; inner radius .310; :Nstance betrreen centres 

.050. 

2) ESr and 	as before. 
3) ratrin:  has  order 487 ezd bandl-ridth 17. 
4) Initial vectors : as in 7r%371,7:10 C'^ e. ::4"' 324 Lanczos iterations 

S.R. = 0.60. 4 — 6 Lazuerre iter-t4cms. cnly thc complex. 

reonired com7lex arithnetic. 

2.082029195 

2.631192969 

13.19017144 
13.90342691 

18.25658392  

22.91197275  

29.90050740 

59.43045971 

41.91186902 

57.69592007 
58.39063225 ± 111.175415s-6 

table 14 

1) Outer radi.zs 1.000; inner radius 0.300; di:tance between 

centres 0.000. 

- 2) Ar and LO as before. 

3) has order 455 and band7idth 13. 

4) Initial vectors as in rrevious case. .:_fter 455 Lanczos the S.R. 

vas found to be 0.14 . :0 	eiL-emvalues could there= ore 

be found. 

5) At this sta::e the pro;:ram, 	.which had been stored on dica, 

was 11-,=o-tunr.tly inadvertently destroyed so that this case could 
elbt 	 7 
Lbe run vrith initial vectors DI  1, 1, 1,...]-/g7737. 



T,17-0-r7  of results for the 0,300 hole:- 

0.200 0.100 0.050' 

2.082030299 2.0320 

2.631193 

13.1907171 13.19104 13.190 
14.23 13.903 

16.8101312 
18.27 

25.772 24.41 22.91 
35.629083 30.768 29.90050740 

39.4304:97 
45.03 42.33 41.91186902 

46.491 46.701623 
52.17745 
59.4001314 57.070 57.695928  
77.49 62.6852,590 
89.41909211 81.45 

95.62170301 1  

table 15 

The comments after table 11 are relevant here too. 

"accuracy" of t1te trirlia:enalization 
i=2,..,a: 7ere com:ute:l. (Initially 

ed, but a these ware found to follarr 

-, their computation was nct 

In order to monitor the 

technique eachv and i 1 	
hil, 

the vivl's 7ere also calculat 

the 	v /s in bchaviou- 
3. 1 

persevered 71th). 
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2.6 Some comments on the above results. 

1) In none of the test cases was the Lanczos iteration termina-̀ Pd 

due to a sti falling below the preset threshold. This is not. entirely 
surprising as one would not expect the derived tridiagonal matrix 
to be derogatory. 

2) These results again clearly illustrate the adverse effect of a 
lag symmetry ratio. A low ratio results in excessive cancellation 

error, which can frequently be avoided by restarting the cycle 

with a different set of initial vectors. 

2.7 	al experiences in isolatin the smaller roots of the 

high order polynomials associated with this eir;envalue  

problem. 

Scaling of both the original coefficient matrix and the 

resulting polynomial is essential in order to keep all computed 

numbers within the allowable range. This scaling was performed at two 

points; first, the coefficient matrix is scaled by a pacer of 16 to 

ensure that all the elements down the main diagonal, the super- 

• diagonal and the sub—diagonal are less than or equal to one in 

absolute value. Further, if any of the intermediate values used in 

the computation of p
n()), p'(,,) or pll(A) lie outside the range 

—2x10-40 to ±1055 a second scaling routine, which scales the elements 

of the tridiagonal matrix, is invoked — see the program for details. 

As only the smallest roots were sought, zero was always used 

as the starting point for the Laguerre iteration. 

Even though only real roots were sought it was necessary to 

regard all quantities in the Laguerre iteration procedure as co=lex -

frequently the intermediate iterates of a real root (which might even 

have a small complex part itself) were complex: 

I -.JAL.- 
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e=ample:  4"*:" radius .4; ''4st--.- 	c',.-tr-,s .2 ; 415 Lanczos 
iterations; 4th root: 7'se iterates 

. 	0. 

6  0.4133345=10-  
0.1162117::10-2  

0.1513431n102  

0,152511F.x10-2  

0.1525116::10-2  

table 16  

At this stage the iteration ceased becazlee lAz/z1 4 105 
Complex arithmetic is not always rcauir:1 however - especially 

ste?s 
when the number of Lanczoz)perfor-cd is ---olmr than the order of 
the matrix : 

example: inner radius .4; distance betwe= roots .175; 279 Lanczos 
iterations; 3rd root. The iterates are:- 

i 	y 

0. 0. 
0.4253399=103 o. 
0.1174607=10 0. 
0.142190i,  =10-2  0. 
0.1495462=10-2 0. 
0.1516998=10 - 0. 
(41523243=10-2  0. 
0.1524897=102 0. 
0.1525113=10 - 0. 
0.1525115=102 0. 

table 17  

At this stage the iterative procedure was stopped, again because 
1.az/z1z 105. 

A large function value is not necer.sarily indicative of the 
current iterate being far from the resuirei root - in fact neither 
does a =all function value always indicate proximity to the root - 
as a simple scaling of the tridia.7onal matri= is aafficient to 
drastically alter the value of the characteristic polynomial. 

Example:inner radius .4; distance betwe=.m centres .123; 420 Lanczos 



-runetion val. 

fr 	i fi 

der4v. 
far 	fdi 

root 
y 

-.2323192438 

.8670688199 

.1320651941._ 

.1464933518_ 

.1507481796_ 

.1519944485_ 

.1523592801_ 

.1524660789_ 

.1524973358 

.1525064589 

.155090393 

-3 

-3 

0594-61 .2353 	-) 
.1122552629 - -) 
.3863212952_4  

.1154854036_4  

.3386186392_5  

.9913165141...6  

.2901942536 6  

.8494632912 7 

.2484600450 -7 

.7199723506_8  

.1874170290_8  

.3023 0. 

-.2720  -.2429  

.1928 -.7927 

.1227  -.54 , 27 	o 2 

.0425  

.6824 

.5723 

• A ? 

-.1219 

.1330 0. 

.10--3)  .3133  

-.72j1 	.1131 
-.14- 	.3630 )1 
-.30

30 
.6729 

-.SI29 .1629 
-.232- .4526 
-.6728 .1328 
-.2028 .3427 
-.5727 .1127 

-.1727 .3226 

2 

2 

2 

2 

2 

2 

-2 

-2 

-2 

-.3525 
-.2824  
-.2323  

'4922 -.2022 

21 -.1721 

'3620 -.1420 
.3019 
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iterations; 3rd root. I subscript n on a number a (i.e. an)  
means am10n  in the follow-7710 two tables. 

table 18 
At this point the iteration was stopped because kz/z14=10-5. 
It is interesting to compare the above with the convergence to the 
same root after the aprlication of 280 Lanczos steps. 

root 
• = 	+ i y 

function val. 
f= 	+ 	i fi 

deriv. val. 
fdr + i fdi 

-.1643511-2 
.8200854 3 
.1524186-2

.15249072 

.1524996-2 

.1524996_2  

.1690914 2 

.8474231-3  

.7761511-4  

.3272314-7. 

.7624689 -16 

.2009192_26  

-.94 -14 

.19_6  
-.46 -6 
.16-9 -9 
-.23_12 . 

.12_19  

0. 

-..58-  
.50-8 
.18-9 -9 
.83_13  

.19_21  

-.32-7 
-.56-2  

.16-4 

.24-5 

.26_5  

.26_5  

0. 

.14 1  

.34-5 
-.28-6 
-.11_9  

-.26_18  

table 19  

The iteration ceased here because 
'function value 	* Irootl * 'derivative of function 

The apparent difference in the two above anproxi:lations to the sa!ue 

root is caused by the different scaling factors used in the two 
tridiagonal matrices. The final root of table 19 reeds to be 



multiplied by only 1.0000619 in order to n•a::e it eaual to that of 

table 18 (to 75) and yet the function and derivative veal= differ 
vastly. rote too that in table 18 double Precision was used and 

in table 19 sin-.le precision — hence the differing nu.--:ber of 
significant fifures. 

Determining the multiplicities of tl,e eigenvalues without 

resorting to comimting the corresponding eigenvectors is not an 

easy taslc. ro conclusion in this regard may be male by considering 

the absolute values of the function and lsi; derivative in isolation, 
as these quantities are sensitive to senling. .leasonnble conclusions 

may however be drawn by comparing the absolute values of these 

functions — if these were of the an sme.11 order of cat-nitude 

we concluded that multiple (or close) eigenvalues were present, 

otherui::e not. 

The root capturing criteria has to be chosen very carefully 

so as not to miss roots — we sometimes did (see, for example, the 
table on 13e;e41  ). In this regard see also the paper by Peters 

and Will4.-.inson [273 4, 
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FINAL CO7,7:=TS ON PART ONE. 

We have here described a modified form of the well—known 

Lanczos minimized iteration technique for reducing an arbitrary matrix 

with real roots to tridiagonal form. Various modified algorithms are 

given — all theoretically equivalent, but of course computationally 

different. We have indicated the most superior of these algorithms, 

pointing out that even with this version failure may occur but can 

be recognized before commencing the isolation of the roots of the 

tridiagonal form by monitoring the value of the Symmetry Ratio. A low 

ratio (approximately less than 0.6) goes hand in hand with large 

cancellation error, while when the ratio is high some of the extreme 

roots may be isolated by utilizing fewer than n applications of the • 

theorem. Some indications of the stability have been given. 

This technique was used to solve numerically the differential 

_1_ 	eigenvalue problem 2u — Xu=0 on the domain of figure 1 of chapter 

1. We used this technique primarily because considerably less storage 

than is customarily used by tridiagonalization techniques is 

required, thus obviating the need for a vast amount of fast storage 

or of continual paging or of rolling in and out of slower core. Two 

hole sizes were used, each of these was placed at various distances 

from the origin and the smallest eigenvalues of each case were 

found. 



PART 2  

CHAPTER 1 : INTRODUCTION TO TAU =Hops.  

1.1 Introduction : Lanczos, in 1936 [17] , introduced his tau 

method for the solution of the linear differential equation with 

polynomial coefficients and right hand side, say 

D y(x) = f(x) . 	 (1) 

He further expanded this method in 1957 [201 Rather than truncate 

an infinite power series solution to this differential equation 

the Lanczos procedure perturbs the differential eauation and finds 

the exact polynomial solution to this perturbed equation. 

1.2 The tau method : We will illustrate the method by means of 

the simple differential equation y'(x) + y(x) = 0 y(0) = 1 , 

which defines y = e
—x  . Insert the formal power series 

approximation y*(x) = ao + a1 
x + 	+ an x

n + 	to y(x) into 

the differential equation and obtain the system of linear algebraic 

equations 

- 	j a. + a. 	= 0 	j=1,2,... 
J 	J-1  

which is then solved in terms of ao
. The initial condition may be 

satisfied by adjusting at). This formal expansion may be tested 

for convergence. 

The solution to this differential equation is an infinite 

power series. No polynomial solution can be obtained unless the exact 

solution is a polynomial. A polynomial solution of order n may be 

obtained by truncating the series defined by (2), this is however 

equivalent to solving only the first n equations in (2) with a 

perturbation term of the form -rxn  on the right hand side of the 

differential equation, so that in the (n+1)—th equation 

(n + 1) an+1 
+ a

n 
= 

a
n+1 

= 0 and the cancellation of the coefficients a., jn 

propagates downwards instead of upwards, and the solution is preserved. 

This solution is a partial sum of the Taylor series for 

y(x) around x = 0 and therefore its accuracy deteriorates as we 

depart from the point of expansion. Lanczos hereupon proposed a 

perturbation term which distributes the error more evenly over the 

interval, J, on which the solution is required. If this interval 

is E-11  1_ then it is natural to replace the original zero right 

(2) 
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hand side of the equation by its best algebraic polynomial 

approximation of degree n, that is, by the Chebyshev polynomial 
Tn(x). 

1.3 The Canonical polynomials : In 1952 [19], and more extensively 

in 1957 F26] , Lanczos introduced a sequence Q =b1013, mE,11o 

( where No is the set of non negative integers), of canonical 

polynomials associated with the differential operator D, which he 

defined by means of the functional relation 

D Qm(x) = x
m, meNo. 

If the given differential equation is perturbed by 
71-e  (n-r) m where 	x , 

n(x)=  :Cr(x)pn-r(x) 	Pn-r( x)  = cm 

1:r(x) =Z-c. xm  n and r positive integers, and if 
k 

f(x) = f xm k an integer, then because of the linearity of D 
m.0 m 

the solution to the perturbed equation, 

D Yn(x) = f(x) + Hn(x), 

is simply yn(x)=5-  c(mn-r)  LT. Qm+1  .(x) 	 fm  Qm  (x). 1.0   
In particular then : assume that D y(x) = 0 is a 

proposed problem with initial conditions y(x) y(i) oc 
J being the interval on which the solution is being sought and vc a 

point of J. For simplicity assume further that D is a first order 
operator. If the canonical polynomials are known for all non-negative 
neN, then the solution to the perturbed problem 

D y*(x) = -C Tn(x) = -rt c(n)  ab.  

( 
is simply y*(x) =s ck

) 
 Qk(x) The parameter 

-r is chosen 
o 

so that the initial condition y(x) = 3re  is matched. Therefore 

( 
Y*(1) = y 	 c 

kn) 
 Qk(x) 	(3) 
n) 

Qk(ck)  

There are several advantages to expressing the 

approximate solution in terms of canonical polynomial. First, the 

whole of the computation need not be repeated if an approximation 

of higher degree is required. Second, they do not depend on the 

initial or boundary conditions, or on the interval over which the 

solution is sought. Further, canonical polynomials may be used to 

solve eigenvalue problems where the parameter may enter either 



m. = X (6) 
ara  

Pl1-1 
a(m) (x)  
r Qr r=0 

1 D 
(n) 
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linearly or non:-linearly. 

1.4 Construction of Canonical 7ol7nomial 	Lanczos' technique 

for constructing the canonical polynomials , (x) associated with 

D is to solVe a system of linear ecuations,like (2),for 

with a 1 on the right hand side of the i—th equation. This procedure 
need not be trivial as the system nay be over—determined and for 

some subset of the index i the canonical polynomials may be multiple 

or even be undefined. All these possibilities have to be taken into 

account if the tau method is to be automized. In the next paragraph 

we give a short description of a more satisfactory technique for 

their construction. 

This recursive technique is due to Ortiz E24]. Again 

consider the equation 

D y(x) = f(x) . 	 (4) 

As Qn(x) is by definition a polyp vial and D is a linear operator 

which maps polynomials into polynomials it is reasonable to start 

by considering the effect of D on the monomial xn. This is the 

polynomial 
n 	(n) xr D x = a(n) 

of degree m> n. Then 

(5) 
r 

1 	D x11 xm 	1 

a 	a (n) 	(n) 
m 	m 

r=o 
a(n) xr 

Assuming that all the Q1(x), r< ra, are known at this point we may 
write 

because of the linearity of D. Therefore 
0-1-1 

Qm(x) = 1 r xn  — 	a(n)  czr(ig 
(n) L 	rzo 

For the particular case y' (x) y(x) = 0 we find that 
(n) as m=n, am =1, a(n)=n and ar

(n)  =0 for 0:5. 	and m;.›....2, therefore m-1 

Qn(x) = xil  — n —1(x) 

which gives recursively Q0(x)=1, Cl1(x)=x-1, 2(x)=x
2-2x+2, 

(7) 
ara  

Q3(x)=x3-3x24-6x-6 etc. 
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This technique is not however entirely without its 

difficulties. First, u need not be equal to n, in general it will 
be greater (e.g. if D y(x) = y' (a) y(x) Lcauning a "gam" between 

the. exponent of xand the leading one of DP. Second, am(n)  could 

be zero -(e.g. D. y(x) = x y' (x) — y(x) ). Both of these situations 

give rise to undefined canonical polynomials, Mx) v S say. These 

undefined canonical polynomials affect the possibility of generating 

all the canonical polynomials. by means of (7), as not all the Qr(x), 

OLS r.lm-1 are necessarily defined. This in turn affects the 

possibility of obtaining a solution at all to the perturbed problem 

D yl(x) ..r.Tn(x) as there may be no canonical polynomials available 
to generate the powers xv, ve S, in the expression of Tn(x). 

Another problem is that of multiple canonical polynomials, 
*which arise in examples such as D y(x) , If 
x2 y"(x) + 2(x-1) y'(x) — 2 y(x) — here Q 	is either 	or Y. 

In order to circumvent these difficulties Ortiz has 

introduced the following modified definition for Qn(m) : 

D Qn(m) =mn Rn(m) , 	(8) 

where Rn(x) is a polynomial generated by x
v , vsS. This 

"Residual Polynomial" Rn(x) belongs to the subspace a generated by 

the powers of x which are "unattainable" by the operator D acting 

on polynomials. Then, although x
v
, v S, cannot be generated with 

the Qn(m)'s, their residual polynomials Rn(x), which belong to 

will take care of that segment of the perturbation polynomial. 

Far more detail concerning undefined and multiple 

canonical polynomials may be found in [24]. 

at, 

1.5 Eipmnvalue problems : Fox and Parker [18] have discussed the 

application of the original formulation of the tau method to the 

elgenvalue problems of linear differential equations. In the next 

paragraphs we point out how the recursive technique of Ortiz may be 

used for these problems. 

Here the differential operator depends on a 

parameter X, hence so do the canonical polynomials. Because of 

the fact that the algebraic kernel of Dx  depends on the spectrum 

and may be empty for some eigenvalues and not others this extension is 

not entirely trivial. The advantages of using this approach are that 

exact polynomial solutions satisfying the boundary conditions are 

immediately detected; the basis in which the eigensolutions are 

represented is generated recursively; the order of the )--determinant 

is independent of the degree of the desired approximation; as the 
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degree of the approximation increases the lower eigenvalues are 

obtained with rapidly increasing accuracy and the higher order 

eigenvalues give a wide range of the spectrum and also that if an 

approximation of higher degree or at different boundary points is 

required the previous computational effort is not entirely wasted. 

Again we illustrate via an example. Consider 

Day(x) = x(3x2  - 1)Y"(x) - 230(x) -Xx y(x) = 0 	(9) 
with the boundary conditions y(±1)=0. 

Applying D), to xn  we get 

D)xn  = [3n(n-1) -X3 xn4-1 	n(n+1)xn-1  

and immediately 

Qn4.1(x1 X) = 	1 	Exn + n(n-t-1) Q_1(x,N)]for n 1. 
' 3n(n-1)- A 

The set of indices of undefined canonical rolynomials is S 40.1. 

In order to satisfy the three conditions, viz. two boundary 

conditions and one undefined canonical polynomial, a three term 

perturbation, of the form 

Hn(x) = 	Tn(x) + -C1 In-1(x)  + 	Tn_2(X), 

is used. Therefore 

2- n-1  (n-i) y4(x,>.)=5--c. 	c. 	q1c(x,N) = roA(x,M 	Ty3(x,x) 	Z2C(x,),). n 	le 	x 

The approximate solution has then to satisfy the three conditions:- 

oA(-1,X) + t1 	' B(-1 N) + T2 	" C(-1 N' = 0 

OA(4.1d.) 	r
1 
 B(+10,) 	r2C(4-12X) = 0  

To 0( 	+ Z 1 
	

+ Z2 X 
	= 0, 

where 	are the sum of residuals in the first, second and third 

terms respectively. In order to get a non-trivial solution the 

',determinant must vanish: 

B(-1,N) 	C(-1,X) 

A0-10,) 	B(+1,>) 	c(41,),) 	= 0 . 
oc 	 A 

The roots of this equation give the eigenvalues of (9). 
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CHAPTER 2 : SC E LA2;CZOS TAU - =HOD OF LTN".,S TECH:;IOUES. 

2.1 Introduction  : A few methods have recently been proposed for 

approximating the solution to parabolic partial differential 

equations using Chebyshev polynomials. Elliott [7-1 and :,rang [37] 

use semi-discretization techniques; Fox and Parker DO] , Knibb and 

Scraton L143 , Dew and Scraton 6] and Knibb 1)33 assume solutions 

of the form u(x,t) = Lar  (t)Tr
(x) or u(x,t) ..21 ar(t) xr, N 

	

finite or infinite, to 	differential equation acid Fox and Parker 

Dcg also use a prior integration technique coupled with the 

assumption that the solution has the first form above. 

Insofar as the solution to elliptic partial differential 

equations is concerned, Mason [21] has suggested a separation of 

the variables type solution, viz. u(x,y) = L a T (x) T(y). 
r,sz. 0 rs r 	s 

He also, rather tentatively perhaps, suggests a collocation method 

for solving these problems. 

In this chapter we investigate some semi-discretization 

approaches to solving an elliptic partial differential equation 

'and provide error analyses to these. Also, because of the 

similarity between 7ragg's technique and those of this chapter we 

later, in another chapter, give an error analysis of his method. 

The error equations derived are differential-difference equations. 

2.2 Techniques : Here we will attempt an approximate solution to 

Laplace's equation 

2u = 0 , 	(1 a) 

	

x2 	
.2)y2 

defined on the domain xa•sx.E-.xb  , yatcycyb, having the boundary 

conditions u(xa,y) = f(y), u(xb,y) = g(y), 
(lb) 

u(x,ya) = h(x), u(x,yb) = k(x). 

Denote the interior of the rectangle 	the boundary by S and 

let ji.7....172_4- S. 

figure 1  
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2,3 	Our first (unsuccessful) attempt at solving this problem 

using the tau method was via a straightforward semi-discretizatioa 

approach. The domain.a.of figure 1 was divided into strips of 

equal width,_Liy = (yb  ya)/U, in the y-direction. Let 
y
r 
= y

a r.Ly and ur  = u(x:yr). We discretized (1) at the point 

(x,yr) in the following four ways : 

I: d2ur 	ur - 2 ur-1 ur-2 	c(Ay) = 0 
dx2 46y2 

II: d2ur 	+ 2 ur - 5 ur...4  4 ur_2 ur-3 	+ 	2 OCNy ) = 0 
dx2 2 

,67  

III: d2ur 	+ ur+1 - 2 ur  +  r-1 	0(Ay2) = 0 

dx2  2 
,6.5r  

IV: 	d2
2 
(.ur+1  + ur-1  + ur+1 - 2 ur  + u r- . + 0(Ay

2) = 0. 

dx 	 2 

In the sequel these discretizations will be denoted by I, II, III 

and IV respectively. I and III are the usual backward and central 

difference approximations, II (see Collatz [5] 1639) is a more 

exact backward difference approximation, while IV is an improved .11 m,i ,d 

central difference approximation..-In each of the-above-cases a 	__:= 

111/-C   polynomial approximation ur = 	am Y-2a 	(.2). 	i.1--  
,...,.0 

vas assumed for u(x,y ). In order to obtain (2) as a solution to- 	t X 

	

(r+q) 	(r+q) 	I 	y(c)"(- 1 
I - IV, perturb each of these by (7:1 	÷ Z  2 	x ) T*(-4, q=0 n 	

\-3 '-)1  for I, II; q=1 for III,IV. Hereafter we let 

T*(x) =itc(n)  xm  where (n)  
n 	m 	co = (-1)

n
; 

retz 0 
c(n) = 22m-1E2 (In)  _ (n+m-10 (-11n-vm 
m 	` n-m JJ 	I 	, 	1,2,3,•... 	. • vt ..,,1,1,-, 2 

Thereafter, for I, II and IV, equate coefficients, use the first 1 
\ ( `two boundary conditions of (lb) (which become 	

0 El 
ar) x

a
m f(y ) and 

A i
r) m 

Jb 
77 a` xb  = g(yr) respectively) and easily obtain a system of linear rv37-0 121  
algebraic equations of tha form 

A a(r+q)  = k 	 (3) 
r- „) 

for the required coefficients a" (14. . Note that the 

	

o- 	n+1 
vector k is a function of the solution on lines prior to the 

(q+r)-th. Explicitly, the matrices of (3) are :- 
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I 

A 

•••••• 

1 

1 

x a 

xb 

x2 
a 
2 xb 

2 

x3  
a  
3 

xb 

0 

0 

n 	2  1 0 2by 0 - co  Py 

0 1 0 6by2 	 -el
n  Ay2 

0 0 0 0 	 1 0/y2 -en-1cy2. 

0 0 0 0 	 0 1 	0 -enLy2 

0 0 0 0 	 0 0 	1 0 

0 

0 
2 --eno y 

 

-en-2 4 y2 

n 	2 - cn-1 Ly  

-en Lv2 
n 

/o(v)-t)A6 I 
A 

Er(Yr) 	g( Yr)  s 2a( is-1 ).-a(1-2),..,2a(1.-1)--a(1"-2) .3 7  0 	o 	n +1 	n421' 

A= 
—1 x x2  x3  a a a 

2 	3 1 xb xb xb 
2 0 2 Ay2 	0 

0 2 0 6Ay2 

0 

-Co

0  

(n) 2  y 

-0 (n)Ay 2 
1 

0 

0 

0 
-e(n) y2 

II 

2 0 (ni-1)n!=y2  

2 	0 

2 

-e(n) 2 
n-14 y 

-e 	y (n) 2 
n 

0 

(n) A.  2 

(n) 2 -an-14y  
-e(n) 2 

0 
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f(yr) 

g(yr) 

) 	(T-2)
+a  (r-3) 5a 	a 0  -4 0 o  

5a
(r-1) 

-4a(r
-2)+a(r-3) 

1 	1 	1 

5a
(r-1 a(r-2)+a(r-3) 
n-1 	n-1 	n-1 

5a(r-1)-4a(r-2)+a(r-3)  

5a
k(r-1)_4a?r-2)+a?r-3) n+1 	n+1 	n+1 

1 0 0 0 0 0 0 0 
A= 

1 1 1 1 0 0 •0 0 

1 0 20 0 0 0 -2Ac
o  

0 

0 1 0 64.... 0 0 -2Ac
1 

-2Ac
o  

0 (n-1)nA -2bcn,-1 
-260

n-2 

0 'I 0 -20 -2c
n-1

A 

0 1 0 C
nA_ 

••••••• 

p = 
2
/2 

k= 
MO, 

. k = f(Yr+1 )  

g(Yr." ) 

-24a
(D-1) 	(1N-1) 

	

-. a
o 	

+ 2a(r)  2 0 

-66a3 	
1 	1 

(r-l) a(r-1) 2a(r) 

(r-1) 	(D-1) 	(r) -126a4 	a2 	+ 2a2  

%, (r-1) 	a(D-1) 	(r) 
n+1 	n-1 

-n(n+1: 	+ 2a(r)  -  

-a
( r6-1 ) 

+ 2 a( r) n 	n 
a(r-1) + 2a( r) n+1 	n+1 
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III, on the other hand, leads to an almost explicit expression 

of ur+1  in terms of ur and u
l  

2.4 Error analyses : The errors incurred in perturbing I - IV by 

.6c1) x ) T*(x) may be analysed by defining 
2 

zr = r 
- u

r 
and forming the difference between the perturbed and 

unperturbed forms, giving rise, in each case, to a system of 

difference-differential equations of the type 
( 

D zr
+ E z

r
= 	

(r+q) + 2
-q)
q)  x) T*(x). 

1  

For the methods I - III D and E represent the differential and 

difference operators respectively, while in the case of IV 

D Zr = 2 d22 [zr+1  + z r-i  .] and E is again the difference operator 

dx  

associated with this case. The difference-differential equations 

generated by I, II and IV are of retarded type and can therefore 

be solved by the process of continuation. A few applications of 

this process enablesone to guess at a solution, the correctness of 

which is easily checked by induction. 

In each of the cases leading to a retarded equation the 

solution is of the form 

z = 	8 Xi  COSCCX 	g. xi  sincitx - 
13 	Lzoi 	113  

s. c.0 2(i—i) Di ( z(p) 4.(p)x  ) T (x) 	(5) 
L=1 11) 	1 

where 01) represents, in each case, a different differential operator 

andwherewehaveassumedthatz--  -1 4for i positive. 

The case I, in particular, starting from (5), where 

a = tAy , 

and m = 1/( d2  + 

dx
2 

leads straightforwardly to 

(4) 

now 



x1+1-2j 	cos(0:x) + 

i= (i+1-2j)! (20Q2j+1 
(215. —IC1. 11) 	,1)-  
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zp+1 	Qc2(2 ip 

P 
_ + a(2(2X - ip 

Er.6 

• 

1 

L =0 

[ yc42 4. 	(2135.9  ...165.113-1) 

Y2 
(--)3±1 	sin(c(x) + 

jr.0 (i-2j)! (2x)2j+2  

(-)Ji!  xi-2j 

(i-2j)! (2A)2j+2  

x  1+1-2j + 

(i+1-2j)! (2;k)2j+1 

p+t 
+1442(3.-1)/, — 	 Pn+1 + D Pn+1 

LT--  2. 

p, 011)41  cos(otx) 	sinVx.) 
	

(6) 

4.% 

Pis13+1 x1 
cos(xx) + 	xi sin(kx) + 

P +2. 	, 
Di Pn+1 'i,p+1 

tzrt 

The last expression after a suitable ordering of the terms of (6). 

The constants 8 ro,p+1 and  Xo,p+1 are determined by the boundary 

conditions zial_1
(0) = zpi,1(1) = O. Obviously, a rather involved 

recurrence relationship may be established, linking 	and 

i,p+1 to the previously computed values of these constants. . .?C   

Similarly, 

z 
r 	i rk 
= Z8 xk  cosJf x + 	

r-r• 
xk  sinifxx L 8 Dk Pn+1 tto   

rtiq 

kr 

for II. The coefficients again being obtained recursively from 

those on the previous lines and the "zeroeth" ones coming from 

the boundary conditions. This time D = 1/(d2 
? 
+ 22). 

much the same can be said for IV. 

We later actually compute the numerical values of some 
of these errors. 

The solution to the error equation ER:is obtained as follows 

using Euler-Laplace transforms :- 
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Let ur be the solution to III and ur 
the solution to its perturbed 

form. Also define zr = r ur. 

Then d2zr + zr+1 — 2zr + zr-1 	= _(lri  + 7:z) 172(x) . 	(7 ) 

dx2 	 2  

Now define Zr(s) = e—SX  zr(x) dx 	 (8  )  

b  
and 	W(s) = —sx w(x) dx, 

( 9  ) 4 

where w(x) = 	; 2  x) T71-(x) 

and r T = AY2 
	

= Ay 2  rz. 

(7 ) may be written as (where c = Ly2 ) 

2 
0 d zr + zr+1(x) — 2zr(x) + zr_1(x) = —(z 	r'x)T*n(x) 	(10) 

1 	2  
dx2 

Taking Euler—Laplace transforms (see Bellman and Cooke [59] and 

Pinney [40] ) on both sides of (10) and using 

s2 Zr(s) = e—sa Ls zr(a) + z'(a)] — e
—sblisz 	z;(b)1+.  r(b)   

6 
+f e

—SX z"(x) dx 

we easily obtain 

c s2.Zr(s) + Zr+1(s) 	2.Zr(s) + 1(s) = W(s) + 

+ c e—sa lls zr(a) + zt(a.)11 — c e—sbEs zr(0) + zl(b)I 

i.e. Zr+1(s) — 2(1 — c s2) Zr(s) + Zr-1(s) = 7/(s) + 2 
— +ce sa s zr(a) + zl(a — c e sb[s r(b) + JJ 	

(11) 

This difference equation has, as solution, 



2 
r_ Lr] 	S U[T]  ( 1 	— 2( 1 —22" 	[c  e-sa s z 	(a)+ +2(1 -cs

2 
 )2 

2 	2 	r-k-1 
k=-0 

+ zr_k_4(a).1 - c estirszr_1-k(b) + z' 	k 1- (b)1 +17(sij Uk  (1—C32)+ 
r- 
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Z (s) = 4-1(s)  U[rj+1(1-rc22) 4-2(s) UE.]
r(1-es2)  + 

	

2 	2 
Cr) 

+yfe  e—sa i  s s r- „ (a) + z 	(a)} - 1-k 
;4=0 

-sb 	zr_l_k 	r-1-k(b)j+ W(s)] U (1-cs2) 	0 "2) - 	(b) + z ce is 	' 

where = Er) - r , 
ix) = largest integer 4r , 

Ur(z) =.sin(r+1)arcsin z  sin arccos z 
= Chebyshev Polynomial of the second kind. 

It is easily checked that (12) is a solution to (11) by substitution 
and the subsequent use of the following  properties of Chebyshev 
polynomials of the second kind ( Lanczos [22]) : 

(a) Ur(x) - 2 x U 1(x) + Ur-2(x) = 0 

(b) U0(x) = 1 	 (13) 

(c) 111(x) = 2x. 

Substituting we get 

2r_fr3_(s) lyLr3+2(1-s22) - Zr_E -2(s) ULr3+1(17s1
2  ) + 

2 
Er) 41 

e-sa s zr_k(a) + z1„...k(a)1 	c e-sb 	zr_k(b) + zr_t k(b) 	+ 
k-zo 

+ W(s) Uk(I-cs
2

2) 	2(1-cs2
)2r-E19-1 

 (s) UErj +1 (1-cs) + 
2  

2 

(s) U. (1-cs22) 	Zr_Er.3-[r) -1(1 -c2
s2) + + Z

r-  Cr) 
Cr) --1 

+L [c e-sa  s z 	. (a) + it 	(a) - c e-sb  s 	(b) + z' 	(61+ 
r-2-k 	r-2-k 	zr_2_k 	r-2-k 

le.z.o 
• + W(s)] Uk(1-cs2) 

2 

= c e-sa Es z (a) + z1(a)] - c e-sb  Lis z (b) + zqb)..] + W(s) r. 
(after some manipulation). 
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It is easily verified that 

sitZr(s) 	
e-sa  

p,1 
z(k)feN sr-k-1 ... 0  -sb 7 z(k)(131 sr -k-1 

% i 	I-- 	'' J  
k.v A 	 le.:.o 

b 
+ f e

- sx (u.) 
zxl (x) dm, a. 

ki- sx 	-, whence P(s) Zr(s) = e 	zr 	'a  (polynomial dx + e kpolynomial in s) + dx  a. 

e-sb(polynomial in s), 

where P(s) is an arbitrary polynomial in s. Inserting this into 

(12) gives 

(s) =f 	EU 	d2 ) z (x) - 	d2 
--2-  ):z 	(x) r 	 [r] +12 dx 	9 -1 	[r] 2 dx 	4-2 

(14) e:-Sb Pb(s) + 	ukoi vd2 ) w(x)i 	e-sa Pe(s) 

where Pa(s) and Pb(s) are polynomials in s. 

Applying the theorem:  If g(x) is integrable over (a,b) and is of 

bounded variation in some neighbouhood of x, then for G(s) defined 

by G(s) = fe-sx  g(x) dx and any constant c 

1 f 	G(s) es  ds = 0 x.c.a 
2rri 	. = g(a+0) x=a  

= [g(x+0) + g(x-0)l ax<b 

= 4- g(b-0) 
= 0 x >b , 

we can invert (14) for 	r;...0, giving 

z 	= ucx3+10 — _9.. a
2 ) z4-1 00 - IT EI;j (1 - S1) ?_2(X) + 

	

+ 2_11T_ 4 f . e-sb  Pb(s) esx  ds 	. 

km° (1 - 0 d2 ) w(x) + 1 Le_r_co  e 
1 	xs.L00._ sa 

- x„--....z,  

x.44.0 
2 dx2 

2 dx2 	2 dx  

	

Ziri 	
Pa(s) esx  ds + 

2 

(15) 

The two integrals on the right may have their contours closed by 

adding the right hand and left hand semi-circles at infinity 

respectively. Since the integrands are analytic wit nin  these contours, 

the integrals vanish. Therefore, for xE[all], r;0 
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z (x)  = u [r. +1(1 — e d2  ) z 	(x) — U (1 — c d2 )z 	(x) + 
 a 

—1r 2 2 	 [r) 	—2 d  

IIk  (1 — c d2  ) w(x)  -- 2 dx2 

If r talces on integral values only, then = r [r] = 0 and 

zr(x)  = Ur4.1(1 	c d2 ) 	Ur(1 
2 dx2 

c d2 ) 

dx2  
z-2(x) 

— c d2 ) w(x) 
2 2 • dx 

• (16) 

Assuming that z_i  = 	= 0 and using the definitions of w(x) ani c: 

zr(x)=LUk( 
kss 

2* 2 	2 
d 	) AY (7.-1  +Z2x) 	. 	(17) 

2 dx2 

Explicit realisations may be had for each r by utilising the 

expansions 

U0(x) = 1 

U1  (x) = 

U2(x) = 412  — 1 

U3(x) = 8x3  — 4x 

U4(x) = 16x4  — 12x2  + 1 

U5(x) = 32x5  — 32x3 
 + 6x 

U6(x) = 64x6  — 80x4  + 241
2 — 1 

Expanding (17) explicitly 

zo(x) = Ay 

z1 (x) = (1 

z6(x) = (6 

it is seen then 

2 ( 	+ 	'L2  x) 

— v d2 	6y2 	
r1 

8 

that 

2 	n x) T*(x) 

y6 d6 	21 y8d8 

(19) 

... 7 y10d10 

2 	dx2 

— 21 y2 d2 4. 35 y4d4 

2 dx2 	4 	dx4 dx6 	16. 	dx8 
0 32 	dx1 

, 
+ 64 

y12
d
12 

) AY
2 
 t r1  + 2  x) T*(x) 

dx  

(18) 



9 
0 .125 .250 .375 .500 .625 .750 .875 1.00 

.125 
r- 
0. 0. 0. 0. 0. 0. 0. 0. 0. 

.250 0. 0. 0. 0. 0. 0. 0. 0. 0. 

.375 19 27 28 27 28 28 28 28 29 

.500 3 37 37 38 38 38 38 38 38 

.625 9 9 9 9 8 9 9 9 7 

.750 13 42 42 41 42 43 42 43 43 

.875 18 17 17 17 16 17 18 18 17 

1.00.0 22 26 26 26 27 27 27 27 28 
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It follows immediately from these explicit expressions that 

one should endeavour to use a small z.V coupled with a low n. This 

is so since T*(x) is a ipolynomlal of degree n and hence the 

higherj.tserderthemorenon—zerotermsoccurinz.(z) — in general 

these non—zero terms do not cancel each other out but rather combine 

to swell the magnitude of the error. 

2.5 Numerical results : The impracticability of solving Laplace's 

equation by the techniques I — IV described above is vividly 

illustrated by computing numerical values for some of the previous 

error expressions. Tables 1 and 2 show the magnitudes of these errors 
Ii 	 A 

(an entry n here means an error having magnitude 10 ) for the cases 	14./ 

I and II with boundary conditions f(y)=11(x)=k(x)=0 and g(y)=1, with 

a Chebyshev perturbation of degree 19 and steplength Ay = 1/8 in 

both. cases. IV produces similar errors to these, while the large 
errors obtained from III are easily seen by referring to (19). 

I ; n=19; :=.y-=1/8 

table 1  

These rather large errors are easily confirmed by actually 

computing the relevant approximate solutions, we show those 

associated with the above error tables in tables 3 and 4. No 
discernable im2;rovement was obtained by decreasing the step size. 

Similar results are obtained, too, with perturbations of 

different degree. 

Some comments on the computation of the approximate solution 

are necessary. In each of the above techniques a knowledge of the 

coefficients ai  on lines prior to the r—th is necessary in order to 

compute the 	Following a technique described by Fox E9 3p58-639 

values were selected for these coefficients on the first lines and 
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Y x 
.000 .125 .250 .375 .500 .625 .750 .875 1.001 

.125 0. 0. 0. 0. 0. 0. 0. 0. 0. 

.250 0. 0. 0. 0. 0. 0. 0. 	' 0. 0. 

.375 5 22 22 22 22 22 22 21 22 

.500 13 23 23 23 23 23 23 24 22 

.625 20 24 23 24 24 24 24 24 23 

.750 27. 27 28 27 27 27 27 28 27 

.875 34 34 35 34 34 34 34 35 35 
1.000 41 41 42 41 41 41 41 41 42 

II : n = 19 : Qy = 1/8 
table 1  

.000 .125 .250 .375 
x 

.500 .625 .750 .875 1.00 
.000 .0 .0 .0 .0 .0 .0 .0 .0 .0 
.125 13 13 13 13 13 13 13 13 13 
.250 .0 -1 00 -1 00 00 00 00 11 
.375 19 19 19 19 19 19 19 19 19 
.500 .0 2 3 2 3 3 3 3 4 
.625 5 5 5 5 4 5 5 4 5 
.750 19 19 19 19 19 19 19 19 19 
.875 1 7 8 7 8 8 8 8 8 
1.000  9 9 9 9 -7 9 10 9 10 

I 
table 2 

Y .000 .125 .250 .375 
x 

.500 .625 .750 .875 1.00 
.000 .0 .0 .0 .0 .0 .0 .0 .0 .0 
.125 36 36 36  36 36 36 36 36 36 
.250 .0 -3 -3 -3 -15 -2 -3 -2 -2 
.375 18 18 18' 18 18 18 18 18 18 
.500 .0 2 3 3 3 4 5 6 7 
.625 7 7 7 7 7 7 6 8 10 
.750 8 8 8 8  8  8  9 11 12 
.875 -1 9 10 10 10 10 11 13.  14 
1.000 12 12 13 13 -4 12 14 15 16 

II 

table 3  
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hence several solutions were constructed - their number being equal 

. to the number of sets of coefficients reauired to compute the solution 

on the r-th line.,The constructed solutions on the final line were -

then combined in order to satisfy the boundary condition there - the 

solution on other lines was then obtained by combining the previously 

computed solutions there in the same way. 

2.6 Comment  : Mason5in solving a similar problem using an 

approximate solution of the form u(x,y) = Z 
oarsTr  (x)Ts

(y),obtained 
r 

-satisfactory results. The reason for this is that he simultaneously 

applied all the boundary conditions, while we have initially applied 

three of these conditions and have attempted to satisfy the fourth 

at a later stage - obviously without any success. In the next chapter 

we give a modified version of this technique which works remarkably 

well. 

2.7 The perturbed forms of the equations I , II and IV may be 

solved using the "method of selected points" or the prior integration 

. method (Fox and Parker [10] ) . These techniques of solution do not 

alter the given error analyses. 

(a) Consider first the method of selected points (collocation): 

(i) Assuming the solution of the perturbed form of I to be 
n 

U = 	a(r)  x Substitute this into the perturbed equation and then x,  
m.0 

satisfy the equation at the zeros of T(x), i.e. at 

xk = tl cos (2k-1 )7r/2n1 /2 , Is=1,2". 0. As before the boundary 

conditions on the r-th line are ur(xa) = f(yr) and ur(x11)=g(yr). 

The coefficients a(r) are obtained by solving 



a( r)  0 

a(1r)  

a(r)  2 

• • • 

a(r) n+1 
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1. 

1  
1 

1 

a a 

xb 

x1 

n  

• k2 

	

a 	. 

	

2 	- 

	

xb 	. 
(2 y?-1-4) 

2 	2 
(2  y +xn) 

3 x 

, 3 
-b 

(6 y2+x,T)al 

(6 y2+x:)an 

	

x4 	n+1 a 

	

a 	a 

	

,4 	all3+1  

	

(12  _22,2 	..., 	.. 	2 	2‘.n-1 

	

x -t-xl imi 	• 	■.0.+1)/1 y +x1).4.1  

2 	2 	n-1 (12 y2+41)x221  ...((n+l)n y +xn)an  

Ow,  

f(yr) 

g(Yr)  
2a(D-1)-a(r-2)  xm 

(r-1‘ 	xm m  ' 2a -amn 

(20) 

Typical of the coefficient matrices which arise is that for /S y=1/8 
and n=8; correct to 2S this matrix is 

-1.0 0 0 

1.0 1.0 	1.0 

1.0 .99 1.1 
1.0 .92 .93 
1.0 .78 .70 
1.0 .60 .45 
1.0 .40 .26 
1.0 .22 .14 

-1 1.0 .84 1.0 
1.0 .96_2 .94-1 

0 0 0 0 0 0 0 

1.0 	' 1.0 1.0 1.0 1.0 1.0 1.0 

1.2 1.3 1.4 1.6 1.8 2.0 2.2 

.94 	' .97 1.0 1.1 1.1 1.2 1.2 

.62 .56 .51 .46 .42 .38  .35 

.33 .24 .18 ..13 .94 -1 .67 -1 .48 
-1 

.14 .77-1 .41-1 .21-1 .11-1 .55-2 .27-2 

.53-1 .18-1 .57-2 .17-2 .50-3 .14_3  .39-4 

.16 -1 .23 .23_2 .28 -3 .33 .33_4  .37 .37_5  .41-6 .43_7  

.18-2 .29-4 .42-6 .56-8 .72-10 .88-12 .11-13 *Mb 

From the wide range of coefficient sizes it is immediately apparent 

that with this choice of n and iNy, the system (2b) is ill-conditioned. 

Evaluating the determinant confirms this. The following table is 
interesting: 
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n AY determinant 
6 .50 -.2167-1 
8 .25 .2604_10  
12 .25 -.1185-25 
4 .125 -.6724-5 
8 .125 .1475_15  
8 .0625 .4158-19 

table A 

This should not be totally surprising when the values of the xk's 

are remembered. Hence a solution by this means will produce 

contaminated results. 

(ii) II leads to 

that of (i) above, 

by (sLy24.24) here 

the matrix equation Aa = b The matrix A being 

exceptthatterms(sayi-x
2)there are replaced 

; the vector a is the previous unknown vector 

f(Yr) 

g(Yr)  
ZEa(r-1)  

rn 	- 4a(1‘-'2) 	a 	xm 
1 

• and b - 

n (r-2) 	(r1-3)121  
mo=o  m 	- 4am 	a

m 

As this coefficient matrix is similar to that of (i), the conclusions. 
of that section apply here too. 

(iii) The coefficient matrix arising from the application of a 

collocation method to II. is just that of.(ii) above, while the right 

hand side vector is 

A 4-I 

I [4a(r-1)  
rA=.2 

f(Yr) 

g(Y ) r ^+1 

^ tam 
	J (D-2)1 xm1J 	. 	. la  - 4-2  Z ratm-1 )a(1‘-2)  xm  .1  

m=2... 

AO 

fft:o 

rA 
ra 

-A y2  xXL 
M 

A 4-1 

m m-1)a(r"2) Xm 
>nr.2- 

Again the conclusions of (i) apply. 
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(b) Each of the semi-discretized sets of the previous sections may, 

following Clenshaw 1383 , be integrated first. An infinite Chebyshev 

expansion may then be assumed for ur  and the coefficients of the 

Chebyshev expansion may be obtained from a backward iteration on the 

difference equations obtained by equating coefficients. 

(i) As an example, consider the integrated form of I , namely 

472  ur  +if  (ur  - 2u r..1  + ur_2) dx dx =_ 0 . 

Assume that ur
(x) =Nr)  

0 
vbere the dash indicates, in the usual way, that half the first 

coefficient should be taken. Substitute (22) into (ZA) and use 

ST (X) dx = l(TT(x) + T:(x)) 

STIEW dx = (TI(x) T:(x))/8 

dx = 	T* i(x) ) 

mil 	m-1 

twice. This leads to the set of difference equations:- 

a(r) +112  a(r)  - 	1 a(r)  + 1 a(,11.1_ 21_2a(r-/)  - 	la rh-1)+ la r-1)1+ 
° 2 32 	o 	1 16 	32 	2 L32 ° 	16 ' 	32 

+pa(x%-.2) - la,(r 
2)  + 141‘-2)] = 0 

32 ° 	16 ' 	32 
(23 ) 

Ay2a(r) + 1 L 8 ao 	1 	32 
a + 1:  an 	( 2r1a 	_2a(1-1)+ la(r-11 + 

	

(r) 	(r) 
32 	2 

° 	32 	32 2 

+ 8 
	32 a

(j-2)  + 
3
1 aV-2)I] = 0 (24 ) 

2 (r) 	 5a(r-1).4. 14r-1 

	

h„ a2  +p, a(r) 	+ 	(r)i -2F la(r-1)- 
96 2 	48  32 	 L 32 ° 	96 2 	48 

+r iia(r-2) 	54r-24 14r-2)7 . 0  

L 32 ° 	96 	48 

(21)  

(22)  

1+ 

(23 ) 
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iviMr) 
+ 1 

'a!..r.)2 - a(r) _ a(r) _ a(r).ii _lipl1)1_a.12.61-
1) _ 

16 	m-1 I-- 
m-1 	m n+1  m+1  

(r-1) (r-1) (r-2) (T-2) 
-.an am+1 am-2 - am-1 

16 m-1 

(D-2)- a  (r-1) 	= 0 - am 	m+1  i]  

m+1 

(26) 

3,4,... 

Using the backward recurrence device (Fox and Parker [10] p 99) 

we take 

a(r)  = 1 	a(r) 	a(r)  =••••= 0 -I 	n 

a(r)  = 1 

a(r) = 1 n+1 

, 

' 

a2(1-V1 	(r) an+2 =''''= ° 

a(r) 	(r) 
n+2 = n+3 =4".=  

(27 ) 

(in turn) for some large n to obtain three independent solutions. 

Let the two general solutions be called Ix  and lir  and the particular 

solution IIIc. The solution is given by the linear combination 

A(r)  (Ir) ) 	2 A(r)  (Ur) IIIr 
	(28 

. The constants Al and A2 are found from the as yet unused boundary 

conditions, namely 

ur(xa) = f(yr) 
	

(29) 
ur(xb) = g(yr) 	• 

(ii) A similar procedure may be followed for solving II and IV 

e 	Another approach to the solution of the given problem is via 

the Lanczos-Ortiz canonical polynomial theory: 

Following Ortiz the canonical polynomials for the 

problem I are 
Eq2-3 	. Qr(x) 	r! 	.1y.21+2 xr-2i 

1=0 	(r-2i)! 

The solution to the perturbed differential equation must satisfy 

• 
	 (30) 



+ 2 a(r-1) 

2 n+1 y  

(r-2) _(n)_(r) 

en 4.2 i] Q1b4-1(X)  
2 Gy 

(32 ) 

78 

( d
2
u
r 

dm
2 

(r) 	1 1 (2U 	
r-

) 	 IC) T;ILMJ + 
lir 	= 	x%-1 	2 	 1 	2 

y 
2 	

2 4y 

together with the boundary conditions 

ur(xa) = f(yr) and ur(xb) = g(yr). 

Hence the solution is 

n+t 	 ft+1 

(X) = 2 Ia( 	
( ar--1) 	(x.) — 1 	a
m
r-2) Q.m(x) 

	

2 	 A 2 
m=0 

 em(n) (-c(ir) Q1 -xs) 
+-C2  

(r) 
 Qrk+1(x)) 

M AO 

(r) and  Z(r) 
are obtained. by making the solution u

r
(x) satisfy 

1,  

the boundary conditions. Once the taus have been computed_ the solution 

is 

ur(x) =1".  2 a(

°
ls-1) 	...La(x%-2)  + co(n)-c, Cr) 	Q0(x) 

	

G y 	 Atty2 o 

E2 a(r-1) 

2 
M:1 y 

1 a(-2) 	Or4,7)11r) 	C
(1
.1_17:1r):] qt(X) 

Ay2 

(31 ) 
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CHAPTER 3 : KATRIX LINES-TAU l'ETHOD  

11 Introduction : The previous attempt at solving Laplace's equation 

by a combination of the lines and tau methods failed, as we have 

previously pointed out, because of the manner in which. the boundary 

conditions were used. We here describe, what we have termed, a 

matrix lines-tau method in which we impose the boundary conditions 

even from the beginning of the procedure. The matrix part in the 

name comes from the vector canonical polynomials which we define. 

In this chapter we describe the technique as applied to 

the solution of Laplace's equation on regions as in figure 1. An 
extension to Poisson's equation is also given. Some numerical results 

are given for both types of equation. ie give an error analysis and 

an extension to the eigenvalue problem in chapters 4 and 5 
respectively. It is shown also that fairly complex boundary 

conditions may be handled successfully. 

.2 Method applied to Laplace's equation : We consider now the 

equation of Laplace on the curvilinear trapezium of figure 1. 

The domain boundary consists of the segments AB and CD of 

A 

figure 1  



.4:0 

straight lines parallel to the OX amts and of arcs AC and BD which 

each intersect any straight line parallel to OX in at most one point. 

Consider Laplace's equation 

GPlu = 0 
with boundary condition u=0 on AB and CD , 

u = f(x,y)..on AC 

u = g(x,y) on BD. 

Again equally. spaced lines are drawn parallel to OX (interval between 

them being h). Denote these lines by y=y
o y=y1,  ...,y=y114.1, where 

yo  and 	coincide with AB and CD respectively. Introduce the 

notation 

uk(x) = u(x2Yk) P fk(X) = f(XtYk) 	gk(x) = g(x,yk ) 	- (2) 

Let the arc AC cut the lines y=yi  i=0(1)n+1 at the points (iilyi) 

and let the arc BD cut the lines y=yi  at (xi,y1). 

Define X = C 1, R2,...,1T and I =pi, 	 -(3) 

Mikhlin Pa] , quoting Faddeeva and Slobedyansky, shows that the 
problem (1 ) may be approximated by the system of ordinary differential 

equations 

6 uk(x) + 12 	
+ 	+[uk±i  2uk  + 

h2 

(4) 

+ 0(h4) = 0 	k=1,..,n • 

Along the boundaries AB and CD u0(x) = unil(x) = uZ(x) = ulo(x) = 0. 
(5) 

This may be checked by considering the variables separable solution. 

Ignoring the error term in ( 4), combining these equations and utilising 
( 5) leads to the equation 

A' U" + M U= 0, 	(6) _ 
h2 

where U(X) = 	(x) u2(x),...1  un(x) T 

0 .[0, 
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I 

At = (a!1.), al.=5/6 3 1,1+1. 	1+14 
= 1/12 ; a!. 	= a! 

(m13 ..) 	 1 . 

	

11 	10.+1 mi+1,1 

At andilareboth of order nxn. The boundary conditions associated 

with (6 ) are 

U(x) = P(Y) 	 (7 ) 
and U(R) = O(5) s 	 ) 

where F(T‹) (-3-e L 	i 

	

G(X) =rot 	) 	. 

Let b = max (Yi.,-1.) and a = min 	(x.,x.) 
od n+1 1 i 	i 1 osisn+1 

By means of the linear transformation 	= 1 

it can be ensured that all of the lines yi(x) i=0(1)n+1 lie within 

b—a (x — a) 

E(41'.] . Now let A.= 1 	At. In what follows we will continue 
(b-a)2 

todenotethebolnidar .—a and C 

	

1 	3. a. 
b—a 	b—a 

i=0,..,n+1, by xi  and XI. Also, we will still denote the independent. 

variable in the transformed equation by x. The transformed equations 

are still of the form 

A 1.1" 	M U= O. 

h2 

Define the matrix differential operator D by D = A d2 + 1 M. The 

dx2 h2 

field of definition of D is the set of all nal vectors with twice 

differentiable elements. Define the nal vectors 

Xm 

 
=r ?1 , 	m=0,1,... 

and TT*(X) =rT*(x) 	m*(x):)T 	T*(x) is the shifted 
L 

of the first kind ,of degree N and 

Thus TT 2(X) = S c(N)  Xm. 
M AD  

Let 7:= 

Following I,anezos [2(D define vectors Qm(X) =[qmi(x),..,qma(x)] T  

such that D Qm(X) = Xn 	 (.9 

Chebyshev,Jolynomial 

Til(x) = 	c(N)  x
m. 

Int: 0 
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Now D x7 = m(m-1) A 	2  + M X7 m=2,3,.. 
• h2 

hence 	Qin  = h2 	 m(m-1) _1 ) A Qtri...2 ] 

and, from this, it easily follows that 

Qeta = h2 M-1 / (-)'n!  h21  Si  XE12i  
L2 (El2i)! 

where Si  = (AM 1)a  ,i=1,2,.. 

•(10 ) 

(12) • 

and S° = I (the unit matrix). 

Perturb (6 ) by 	TTA(X) + -a " TTiLi(X) to give 

D U ="C1  TTA(X) + n  71-41(x). 	(13) 

The solution to this perturbed equation is obviously 
Nt I . 

U(X) :-:z Lc(N) Q(X) + " 	 c("+) Q(x) 	 (14.) 
mro 	 moo 

14.1 

c(N)h2 m71 
5

141 
 (_)i t h2i si xm-2i 

mco 	i=O (m-2i)! 
►LrI 

u y c(N+1) h2 M  
m=0 

/23 "iral  h2i Si  xm-2i 
,D (m-2i)! 	 • 

In a computationally more convenient form this is 
["41 

U(X) = h2 	tri >--- (_)i h2i Si 7  coo  n!  
iv-45 	 m  (m-2i)! 

xm-21 

c + h2-c" I -1 	(—)i h2  Si 	(N+1) m' 	xm--2i  
(171-2i 

Applying the boundary condition ( 7 ) to (15. ) yields 
[rik]

1 	( -)i  h2i  h2 z' M- 	 c(1l) 
(m-2i)! 

Y4tX3 	 0,1 
-1-h2-c " 	1 	( )1  h 	c(11-11)  n! 	= F(50 . 

rnr at. 	(111-2i)! 

The condition (8 ) leads to a similar result. These two boundary 
conditions arc of the fora 

K v" L = F 
P v" R = G 

L =0 
(1 6) 

(17) 

(15 ) 



1.1.-03•■■ 

1-i 

cv  

in which K = k 3T  

	

1' 	n 

h2 —1 	2i i 	(N) 

	

= h M 	h S 	. c
m 	

m.  

and similarly for L = [11,....,lnj 

P = Dye...21g 111,  

R. = Er1 9 •••• 2r 	• 

Equations (17) are equivalent to the (2n)x(2n) system 

••• 

k1 	11  

k2 	12 

• 
kn 

P1 	r1 	71  

P2 . 	r
2 	

-rill 
'2 

• 40. . . . 	. 	. 
r- . r" pn 	b..1 n 
_IL - 

which may easily be solved for the ti and .r1 . 
•I 

J.1.2 As a special case consider the square region ABCD with 0x-t5.:1, 

0$.=zyt5._1. We will solve the boundary value problems defined by the 

following sets of boundary conditions: 

a) u=0 on AB,CD and AC, u=1 on BD; 

b) u=0 on AB,CD and AC, u=sin(''y) on BD; 

c) u=0 on AB,CD and AC, u=cos(ry) on BD. 

The boundary conditions a) and c) are discontinuous, while b) 

is continuous. In each of these cases X =CO, o, 
=C1, 1 , . or and F .[O, o,...,o]T, while for 

a) G = 	1,•••2 ijT  

b) G =rsin(Trh), 	sin(nTrh)]T' 

c) = [Cos (;qh ) co s(27rh) 	, cos (riTh )1T  . 

We will denote the above all by G(.;). 

The boundary condition (16) now reduces t 

rkv..) 	 ErN.0,11 
()i  h2i(2i): 	si 	1C1 	(_)1b21(2i): c("-+1)si. 

0 	2i 

= 0 	 (19) 

  

fl 

f2 • • 

fn 

g1 

g2 

(is) 

gn 

 

-1 

where = [1, 	and 0 = [0, 0„..,032. 



The other boundary condition is 

er I  c(N ) m!  
(m-21): 

" M 	(-) h 2 	-1 	i 2i Si c(N+1) m. 	; = G(1) . (ao) 
E=0 

Each of the problems defined by a) - c) and two others (defined later) 
were solved for N=7(1)13 and with h=0.25 and 0.125 . However only 
the results for the cases N=7, h=0.25 and h=0.125 and N=13, h=0.25 
are reproduced. An exception is made in the case of a) where the 
result for N=7 h=0.0625 also appears. 

3.4 Numerical results  : The results tabulated in sub-sections (a)-(c) 
correspond to the problems (a) - (c) of the previous section. 
Section (a)  

We tabulate first the solution obtained by the usual separation of 

the variables technique for comparison :- 

x - values 
y .000 .125 .250 .375 .500 .625 .750 .875 1.00 

.00000 0000 0000 0000 0000 0000 0000 0000 0000 0.0000 

.03125 0000 0044 0094. 0159 0249 0377 0565 084 0.1284 

.06250 0000 0087 0187 0316 0495 0751 1124 1674 0.2484 

.09375 0000 0129 0273 0470 0736 1118 1673 2490 0.3696 

.12500 0000 0170 0366 0620 0971 1473 2206 3283 0.4872 

.1.5625 0000 0209 0452 0764 1196 1815 2717 4044 0.6002 

.18750 0000 0247 0532 0900 1410 2139 3202 4766 0.7074 

.21875 0000 0282 0608 1028 1610 2442 3657 5442 0.8077 

.25000 0000 0314 0677 1146 1794 2722 4076 6066 0.9003 

.28125 0000 0343 0740 1253 1961 2976 4455 6631 0.9842 

.31250 0000 0369 0796. 1348 2110 3201 4792 7132 1.059 

.34375 0000 .0392 0845 1429 2238 3395 .5083 7565 1.123 

.37500 0000 0410 0845 1497 2344 3557 5325 7925 1.176 

.40625 0000 0425 0916 1551 2428 3684 5516 8209 1.218 

.43750 0000 0436 0939 1590 2488 3776 5653 8413 1.249 

.46875 0000 0442 0953 1613 2525 3831 5736 8537 1.267 

.50000 0000 0444 0958  1621 2537 3850 5764 8578 1.273 

.53125 0000 0442 0953 1613 2525 3831 5736 8557 1.267 

symmetric emu y=. 

table 1 

(04406.2 



-.1923_3 -.1360-3 -.1923-3 
-.1706

-4 
-.1206

-4 -.1706-4 

t15-  -.6988_3  -.3563_3  -.2454_3  -.1929_3  

T  -.6205_4  -.3163_4  -.2179 -.1712_4  

-, 

-.1640_3  -.1476_3  -.1391_3  -.1364_3  

-.1456_4  -.1310_4  -.1234_4  -.1211_4  

85 

.000 .125 .250 .375 .500 .625 .750 .875 1.00 

.25 0000 0350 .0754 1275 1995 3026 4529 6740 1.0000 

.50 0000 0349 0753 1275 1995 3027 4530 6740 1.0000 

.75 0000 0350 0754  1275 1995 3026 4529 6740 1.0000 

table 2  

As the solution is symmetric about y=0.5 we only show the computed 

values in the next tables. 

= 	= 
.000 .125 .250 .375 .500 .625 .750 .875 1.00 

.125 0000 0349 0753 1273 1992 3023 4526 6736 1.0000 

.250 0000 0349 0752 1273 1993 3024 4527 6737 1.0000 

.375 0000 0349 0752 1273 1993 3024 4527 6737 1.0000 

.500 0000 0349 0752 1273 1993 3024 4527 6737 1.0000 

v'T  

Z;"
T 

-.3562 

-.3163 
3 

	

-.1928 3 	-.1476-3 
 

	

-.1712 	-.1310 -4 	-4 

-.1364_3 

-.1210 -4 

-.1476-3 
-.1310_4  -4 

-.1928-3 
-.1712 -4 

-.3562-3 
-.3163_4  -4 

table table 	3 

h = .0625 	N=7 

On all the lines the approximate values (to 4D) are: 
0000 0349 075(2 or 3) 1273 1992 3023 452(6 or 7) 6736 1.0000 

. table 4  

h = .125 	N=13 
To 4D these values are all: 

0000 0349 0753 1275 1995 3026 4530  6739 1.0000 

T 

" 

-.3458-10 -10 

-.1770-11 

-.2445-10  -10 
-.1252-11 

-.3458 -10 

-.1770-11 
table 5  



x
,T 

-.2445-i0 -.2445-10I I  -10 	-101 
, L'r2 -.1252 11 -.1252-11 

T  

z"
T 

-.1363_3 
-.1210 

-.1364
-3 

-.1210 -4 

-.1364
-3 

-.1210 -4 

-.1364
-3 

-.1210 
-4 

table 	7 

N=13 h = .25 
.000 .125 .250 .375 	.500 .625 .750 .875 1.00 

.25 0000 0247 0533 0901 1411 2140 3203 4765 7071 

.50 0000 0349 0753 1275 1995 3026 4230 6739 1.000 

86 

Section (b) h = .25 N=7.  
:000 .125 .250 .375 .500 .625 .750 .875 1.00 

.25 0000 0247 0533 0901 1411 2140 3203 4765 7071 

.50 0000 0349 0753 1275 1995 3027 4530 6740 1.000 

.75 0000 0247 0533 0901 1411 2140 3203 4765 7071 

TT 
-.1360_3 -.1361

-3 
-.1360

-3 
eT -.1206 -.1206 	

-4 -4 -.1206 

table 6 

As the solution is precisely symmetric about y=0.5 only half of the 
following tables are given. 

h. = .125 N. 
.000 .125 .250 .375 .500 .625 .750 .875 1.0 

.125 0000 0133 0288 0487 0762 1157 1732 2578 3827 

.250 0000 0249 0532 0900 1409 2138 3201 4764 7071 

.375 0000 0322 0695 1176 1841 2794 4183 6275 9239 

.500 0000 0349 0752 1273 1993 3024 4527 6738 1.000 

table  8 

Compare the results of this section with variables separable solution 
given overleaf. 



y .000 .125 .250 .375 .500 .625 .750 .875 1.00 

.00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 

.03125 0000 0034 0074 0125 0195 0296 0444 0660 0980 

.06250 0000 0068 0147  0248 0389 0590 0883 1314 1951 

.09375 0000. 0101 0218 0369 0578 0378 1314 1956 2903 

.12500 0000 0134 0233 0487 0763 1157 1732 2578 3827 

.15625 0000 0164 0355 0600 0939 1425 2134 3176 4714 

.18750 0000 01938 0418 0707 1107 1680 2515 3743 5556 

.21875 0000 0221 0477 0808 1264 1918 2872 4274 6344 

.25000 0000 0247 0532 0900 1409 2138 3201 4764 7071 

.28125 0000 0270 0581 0984 1540 2337 3499 5208 7730 

.31250 0000 0290 0625 1058 1657 2514 3764 5602 8315 

.34375 0000 0308 0663 1123 1757 2667 3992 5942 8819 

.37500 0000 0322 0695 1176 1841 2793 4182 6224 9239 

.40625 0000 0334 0720 1218 1907 2893 4332 6447 9569 

.43750 0000 0342 0738 1249 1934 2966 4440 6608 9808 

.46875 0000 0347 0749 1267 1983 3009 4505 6705 9952 

.50000 0000 0349 0752 1273 1993 3024 4527 6737 1.0000 

(this table is symmetric about y=0.5000) 

Section (c)  

h = .25 N=7 
.000 .125 .250 .375 .500 .625 .750 .875 1.00 

.25 0000 0247 0533 0901 1411 2140 3203 4765 7071 

.50 0000 0000 0000 0000 0000 0000 0000 0000 0000 

.75 0000 -0247 -0533 -0901 -1411 -2140 -3203 -4765 -7071 

-.1560-3 -.2373-19  .1360-3 
uT -.1206 	-.2103 -4 	-20 .1206  

table 9 

These results are anti-symmetric about y=0.5, hence hereafter 
we display only half of each table. 



h = .125 
	

1:=7 
.000 .125 .250 .375 .500 .625 .750 .875 1.00 

.125 0000 0323 0695 1176 1841 2793 4182 6224 9239 

.250 0000 0247 0532 0900 1409 2138 3201 4764 7071 

.375 0000 0134 0288 0487 0763 1157 1732 2578 3827 

.500 00000 0000 0000 0000 0000 0000 0000 0000 0000 

r=T -.3291 -.1364 -.5649 -.2379 -3 	 3 	-4 	-19 
eT -.2922 -.1210 -.5014_5  -.2111 -20 

table 10  

h = .25 N=13 
.000 .125 .250 .375 .500 .625 .750 .875 1.00 

.25 0000 0247 0533 0901 1411 2140 3203 4765 7071 

.50 0000 0000 0000 0000 0000 0000 0000 0000 0000 

IT -.2445 10  - .4264_26  

.T -.1252_11  -.2183_27  

table 1 1  

For the purpose of comparison an exact solution appears in table 12. 

Y .000 .125 .250 .375 .500 .625 .750 .875 1.00 
0000 0019 0052 0118.  0265 0600 1408 3589 1.094 .125 

.250 0000 0028 0073 0166 0366 0804 1704 3370 8488 

.375 0000 0019 0051 0116 0253 0540 1115 2177 4150 

.500 0000 0000 0000 0000 0000 0000 0000 0000 0000 
table -!2 

Good agreement was also obtained with the following boundary 
conditions:- 

d) u = y(y;1) 	on BD 
e) u y(y -1) 

f) u = y
2(y2-1) 

g) u y 

h) u = y-1 
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3.5  In order to illustrate the use of the method on non- 

rectangular regions we considered two further problems. First, Laplace's 

eeuation on the region of figure 2 . 

The vertices A,B,C,D have coordinates (0,0), (1,0), (2,1), (0,1) 

respectively. The boundary conditions are u(x,y)=0 on AB, CD, AD 

and u(x,y)=sin(Try) on BC. The approximate solution was tabulated 

at the coordinates shown in table 13. 

y 1 2 3 
x - values 

4 	5 	6 7 8 9 

875 0 23437 46875 70312 93750 1.1719 1.4063 1.6406 1.8750 

750 0 21875 43750 65625 87500 1.0933 1.3125 1.53131.7500 

625 0 20312 40625 60937 81250 1.0156 1.2188 1.4219 1.6250 

500 0 18750 37500 56250 75000 93750 1.1250 1.3125 1.5000 

375 0 17187 34375 51562 68750 85937 1.0313 1.2031 1.3750 

250 0 15625 31250 46875 62500 78125 93750 1.0938 1.2500 

125 0 14062 28125 42187 56250 70312 84375 98437 1.1250 

table 13  

In the following tables the entry in row y=aaa and column M should 
be understood to be the approximate value of the solution at the point 
(x, aaa). 

=0.25 = 
11 2 3 . 	4 5 6 7 	8 9 

750 0 0076108 016260 031433 058491 10790 20065.37574 70711 

500 0 0091946 022094 043996 082969 15387 28566 53392  1.000 

250 0 0060919 015450 031095 058962 10965 20337 37854 70711 

z'T  -.018673 -.0018829 -.018954 

-ciT -.003462 -.0034883 -.003514 
table 14 

I "...Sr 
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h=0.25 N=8 
1 2 3 4 5 6 7 8 9 

750 0 0061210 015484 030833 058177 10826 20139 37633 70711 

500 0 0096041 022621 044136 082735 15378 28590 53351 1.000 

250 0 0071385 016257 031414 058711 10907 20277 37803 70711 

z'
T 
-.0034730 -.0034889 -.0035015 

1,T  -458370..3  -.58617_3  -.58849_3  

table 15 

1 	2 3 4 5 6 7 8 9 

750 0 006478 015882 031165 058459 10864 20205 37714 70711 

500 0009477 022515 044113 082712 15369 28582 53346 1.000 

250 0 006744 015951 031215 058510  10871 20216 37728 70711 

T IT  -.15782
-5 

-.15788
-5 

 -.15793_5 

.„T 
-.18783_6  -.18789_6  -.18796_6  

table  16 

h=0.25 N=13 

1 2 3 4 5 6 7 8 9 

750 0 006723 015932 031193 058478 10666 20207 37718 70711 

500 0 009471 022511 044110 082711 15369 28582 53346 1.000 

250 0 006676 013907 031190 058493 10869 20213 37725 70711 

el  -.18786_6  -.18789_6  -.187936 

r.flT  -.20661
7 
-.20665

7 
-.20669

-7 

table 17 



11..125 N= 8 
9 

875 0 0030155 0079274 015993 030421 056975 10660 20143 38268 

750 0 0058693 014876 029720 056336 10547 19766 37255 70711 

625 0 0081123 019775 039084 073830 13814 25879 48742 92388 

500 0 0092093 021733 042554 080153 14988 28071 52834 1.000 

375 0 0087950 020297 039487 074231 13875 25983 48875 92388 

250 0 0068449 015621 030296 056901 10635 19915 37444 70711 

1250 0037107 0084631 016410 030812 057593 10786 20277 36268 

2 6 8 3 4 5 7 
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h=.125 N= 
1 2 	. 3 4 5 6 7 8 9 

875 0 0042556 0086131 016511 030619 056665 10630 20095 38268 

750 0 0072917 015610 030273 056601 10509 19688 37183 70711 

625 0 0087605 019959 039324 074071 13791 25815 48685 92388 

500 0 0088069 021229 042423 080371 14997 28053 52819 1.000 

375 0 0077442 019423 039161 074468 13917 26016 48908 92388 

250 0 0058391 014857 030001 057151 10692 19978 37504 70711 

125 0 0032281 0080928 016260 030935 058023 10839 20325 38268 

T 
-.1792 -.1798.1  -.1806_1  -.1815_1  -.1822_1  -.1828_1  -.1831_1  

eT  -.3327-2 -.3336-2 -.3350-2 
-.3365-2 -.3379-2 

-.3391-2 -.3399-2 

table 12 

ii'T -.3342 -2 
__T 

15'r 	-.5622 
-3  

-.3348 
-2 

-.5631 

-.3356 -2 

-.5644 

-.3365 -2 

-.5657 

-.3372 -2 

-.5671 

-.3378 
-2 

-.5682 

-.3382 
-2 

-.5689 
-3 

table 1S 



T 	 o T" -.1818-6   -.1818-6  -.1818_6  -.1819_6  -.1819_6  -.1819_6  
-5 

-.1819-6 1 

IT -.1528 -.1526-5 
-.1526

-5 
-.1527

-5 -.1527-5 -.1527-5 
-.1523-5 

eT  -.1818-.1818 -.1818 -6 	-6 	-6 

eT  -.2001-7 
-.2001-7 -.2002-7 

-.1819 -6 

-.2002-7 

-.1819 
-6 

-.2002 7 

-.1819 
-6 

-.2002-7 

-.1819 
-6 

-.2002-7 
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h=.125 N=12 
1 2 3 4 5 6 7 8 9 

875 0 0034412 0082521 016256 030649 057297 10735 20210 38268 

750 0 0063755 015260 030047 056632 10583 19837 37347 70711 

625 0 0083608 019961 039275 074010 13837 25922 48801 92388 
500 0 0090852 021632 042530 080128 14980 28063 52827 1.000 

375 0 0084231 020006 039308 074046 13242 25931 48811 92338 

250 0 0064639 015325 030095 056683 10596 19849 37362 70711 

125 0 0035038 0032976 016290 030680 057351 10743 20221 38268 

table 2  

1 2 	3 
875 0 0034916 0082359 016276 030658 057313 10737 20213 38268 

750 0 0064439 015306 030073 056651 10591 19840 37350 70711 

625 0 0084051 019990 039291 074022 13838 25924 48803 92388 

500 0 0090808 021628 042528 080127 14980 28062 52827 1.000 

375 0 0083753 019974 039290 074033 13841 25928 48809 92388 

250 0 0064016 015284 030071 056666 10594 19846 37358 70711 

125 0 0034617 0032700 016274 030659 057338 10741 20219 38268 

table al 

Laplace's equation was also solved on the domain of figure 3 

with boundary conditions:- 

(1) u=0 on AB,AD,D0; 

(ii) u=sin(Try) on BC. 

bap...125  N=13 	 
6 8 	9 4 5 7 

figure 5  
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The boundary lines AB and DC. have equations y=0 and y=1 respectively, 

While the arcs AD and BC have equations (y - 0.5 )2  + x2  = 4 
and (y 0.5)2  (x - 6)2  = 4 respectively. The solution was tabulated 

at the points of table Za, 

1 2 3 4 5 6 7 8 9 

875 1.9645 2.2234 2.4823 2.7411 3.0000 3.2589 3.5177 3.7766 4.0355' 

750 1.9843 2.2382 2.4922 2.4761 3.0000 3.2539 3.5078 3.7618 4.0157 

625 1.9961 2.2471 2.4980 2.7490 3.0000 3.2510 3.5020 3.7529 4.0039 

500 2.0000 2.2500 2.5000 2.7500 3.0000 3.2500 3.5000 3.7500 4.000 

375 1.9961 2.2471 2.4930 2.7490 3.0000 3.2510 3.5070 3.7529 4.0039 
250 1.9843 2.2382 2.4922 2.7461 3.0000 3.2539 3.5078 3.7618 4.0157 

125 1.9645 2.2234  2.4823 2.7411 3.0000 3.2584 3.5177 3.7766 4.0355 

table 2-1 

value found in ram y=.aaa and column .nas to be taken as. 

the approximate solution at (xn, .aaa) of figure 3 	- for this 

section only of course. 

h=.25 	1=7 
11 2 3 	4 	5 6 7 8 9 

.750
1
0 

.50010 

.25010 

0021812 

0029526 

0021812 

0058319 013494 029715 

0081938 019035 042046 

0058319 013494 029715 

065498 

092758 

065498 

14497 

20522 

14497 

32020 

45320 

32020 

70711 

1.000 

70711. 

z'T  

e 

-.73162-2 -.73273-2 

-.14338_2  -.14343_2  

.73162 2 

-.14338_2  

table 23 

Because of the symmetry of the solution about y=0.5 we only show 

half the solution (and the taus) subsequently. 

h=.25 N=8 

1
1 2 3 4 5 6 7 8 9 

.750 0 0021361 0058225 013343 029715 065648 14498 32019 70711 

.500 0 0031577 0082785 018901 042046 092892 20514 45299 1.000 

7:-'T  -.14338_2  -.14348_2  

2:"T  -.25497-3 -.25505-3 
table 24 

-••••11.• 
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h=.25 11=12 

1_1. 2 3 4 5 6 7 8 

.750 1 0 

.50010 

0021937 

0031099 

0058477 

0032713 

013361 

018896 

029702 

042006 

065669 

092871 

14503 

20511 

32024 

45289 

70711 1  

1.0001 

1 

 4-V T  -.81822_6  -.81823-6 

41),T  -.10330_6  -.10331_6  

table  

= 

.750 

.500 

'-----T----2 ) 4 5 6 7 8 9 

0 

0 

0021985 

0031802 

0058483 

0082703 

013362 

018896 

029702 

042006 

065669 

092871 

14503 

20511 

32024 

45289 

70711 

1.000 

T 
-.10330_6  -.10331-6 

Z:"
T 
-.12062

-7 
-.12062

-7 

table a6 

N=7 h=.125 

1 2 3 4 5 6 7 8 9 

.875 0 0012157 0031303 0072457 015928 035146 078022 17274 382681 

.750 0 0021521 0052555 013341 029441 065040 14428 31943 70711. 

.625 0 0027178 0074826 017398 038481 085065 18865 41760 92388 

.500 0 0029047 0080832 018819 041658 092108 20425 45211 1.000 

"L IT  -.72706_2  -.72805_2  -.72885_2  -.72915_2  

2"T  -.14271-2 
 -.14279_2 -.14286-2 

-.14289
-2 

table 

.h=.125 ?T_8 

1 	2 3 	4 5 6 7 	8 9  

.875 0 0011430 0030942 0071268 015928 035263 078058 17282 38268 

.750 0 0021537 0057459 013192 029441 065138 14429 .31942. 70711 

.625 0 0028595 0075370 017257 038481 085206 18860 	41746 92388 

.500 0 0031137 0081699 018687 041658 092240 20416 	45191 1.000 

T t 	
-.14271_2  -.14279_2  -.14286_2  -.14289-2 

1 ,,T  -.25401
-3 

 -.25407_3 -.25413
-3 

 -.25415_3 

table aq 
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h=.125 N=12 
1 1  2 3 4 5 6 7 8 9 

.87510 0011714 0031278 0071490 015926 03529,0 073117 17259 382651 

.75010 0021656 0057708 013210 029428 065208 14434 31947 70711 

.625I0 0028309 0075407 017260 038450 0E5199 15559 41741 92388 

.50010 0030647 0081623 018683 041619 092219 20413 45180 1.000 

:s$1  -.81714 6  -.81715_6  -.51716_6  -.81716_6  

2"T  -.10324 6  -.10324_6 —.10324_6  -.10324_6  

table 2.9 

h=.125 N=13 

.875 

1 2 3 4 5 6 
8 9 	117290 0 0011728 0031235 0071494 015927 035290 078118 38268 

.750 0 0021666 0057713 013210 029429 065208 14434 31947 70711 

.625 0 0028303 0075403 017260 035450 055199 15859 41741 92368 

.500 0 0030633 0081615 018682 041618 092219 20413 45180 1.000 

✓T -.10324-6 -.10324-6 -.10324-6 -.10324-6 

✓T -.12064-7  -:12064_7 
 -.12064-7 -.12064-7 

table :50 

3.6  Comments and notes: 
a) The approximate solution to a problem with continuous boundary 

conditions exactly matches the separation of the variables 

solution, while the others differ by a small amount. The boundary 

conditions always fit exactly. 

b) The tau values are independent of the h values. It is apparent 

from the problem (b) that the accuracy depends however on h as 

well as the order of the perturbation, however even for crude h 

(namely h=.25) a result correct to 2S is attained with N=7. Here 

the accuracy is apparently a function of log(/%f). 

Also,the tau value is a function of the shape of the domain. For 

a particular problem it depends too , naturally, on the order 

of the perturbation. 

c) Small taus alone do not indicate an accurate solution — small taus 

coupled with a small h do however. The reason for this is clear -

increasing the order of the Chebyshev perturbation is equivalent 
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in a full discretization approach to decreasing the x step size. 

In a more standard approach both step lengths ought to be small 

for accuracy. Compare, for example, tables 7 and 8 with the 

separation of variables solution on page 87: on the line y=0.25 

the Chebyshev solution with h=0.125, =7 compares more 

favourably with the "exact" solution than that with b=0.25, N=13 

and yet in the latter case the taus are about 10-7  times those 

in the former. 

d) In the final problem considered the approximate solution arrived 

at by using Chebyshev perturbations of odd and even degree apparently 

bracket the correct solution. 

I 	r 
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3.7 	Extension of method. 

Consider the Poisson equation 

fs7'11 = 0(xyy) 	 (21) 
on the domain ABCD of figure 4 and boundary conditions 

u = f(x,y) on-AC 

u = g(x,y) on BD 	 (22) 
u = 0 on AB and CD. 

Discretizing as before, or by means of one of the formulae of Collatz 

C53 (to obtain a different set of equations), we get the set 

5L uic(x) + 1  Euls_1(x) + uT (x)j + 	2111,(x) uk_1(x.  + K-1 6 	12 h2 

+ 0(h4) = 0(x,yk) 	,k=1,2..,n. 	(23) 

Again, along the boundaries AB and CD 

u13
(x) = n+1

(x) = u"(x) = un+1  (x) = 0 
	

(24) 

and so, ignoring the error term, the equations (23) may be written 

AU"+h U = 00 

h2 
	 (25) 

in which, A, II, M have the same meaning as before and 

=PO (x•Yi), 	0(xlYn)] T  • 

Again constructingcanonical polynomials and perturbing (25) by 

'L TT* +t" TT.x- 
	 (26) 

we have 

U(X) =r t  
1+1%0 

(N) cm Qa(X)  + t" (N+1) cm 	Q1(x)  + 00(9 (27) 

as the approximate solution to (25). We have tacitly assumed here that 
the elements, 0(x,yi), of 00 are polynomials in X.— or may be closely 
approximated by polynomials in X. 00(Q) means that Xm  is to be 

replaced by Q. The steps required to evaluate 15' and z;" using 

the boundary conditions along AC and AD in (27) are obvious — hence 

the solution. 



1 2 3 4 
x 
5 6 7 8 

1 0000 1259 1630 2107 2763 3699 5060 7057 

2- 0000 1563 1923 2385 3019 3923 5237 7163 

symmetric 

9 	 
1.0000 

1.0000 

1.0000 

1.0000 

9 
1.0000i 

1..0000i 
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3.8 Numerical results : We computed approximate solutions to the 

Poisson equation 72 u = x
2 — 1, using the technique described above, 

on three different regions of the type shown in figure 1. In each 

case the boundary conditions are u=0 on the boundaries AB, AC and 

CD and u=1 on BD. AB and CD are the lines y=0 and y=1 respectively. 

The results, in each case, are tabulated for N=12, y=1/4, 1/8 and 

1/16 at the tabulated coordinates. We show the results for only one 

value of N because the computed approximation is that to which the 

approximations converge and only at the tabulated points so as not 

to overwhelm with a mass of numerical data. 

(a) AC : x=0 

BD : x=1. 

Coordinates of tabulated approximations :— y 

1 2 3 
x 

4 	5 6 7 8 9 
1 .250 .000 .125 .250 .375 	.500 .625 .750 .875 1.00 

2 .500 as above 

3 .750 as above 

All the taus lie in the range 108 to 10 

y = .250 table 31 

1 	2 	3 	4 	5 6 	7 
1 	0000 	1255 	1622 	2095 	2748 3682 	5044 7046 

2 	0000 	1557 	1912 	2369 	3000 3902 	5217 7149 

3 	symmetric 

The taus lie in the range above. 

y 	.125 table 32.  

1 	2 	3 	4 	5 6 	7 8 
1 0000 	1254 	1620 	2092 	2744 3679 	5041 7044 

2 0000 	1556 	1909 	2365 	2995 3897 	5212 7146 

3 symmetric 

Taus as above. 

y = 0.0625 	table 33 
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(b) 	AC : x=0 

ED : x=1-1-y. 

Coordinates of tabulated approximations 

1 .25. 

2 .50 

3 .75 

y 
1 

1 

2 

3 

1 2 3 4 5 6 7 8 
0000 15625 31250 46875 62500 78125 93750 1.0938 

0000 18750 37500 56250 75000 93750 1.1250 1.3125 

0000 21875 43750 65625 87500 1.0938 1.3125 1.5313 

x 
2 3 4 5 6 - 	7 8 9 

9  1 
1.25001  

1.5000 

1.7500 

0000 

0000 

0000 

1029 

1340 

1028 

1151 	1351 	1705 	2350 	3548 	5787 	1.00001 
i 

1460 	1655 	1998 	2622 	3778 	5938 	1.00001 

1152 	1352 	1706 	2352 	3548 	5787 	1.00001 

taus lie within the range 10 4 to 10 6. The 
y = 0.25 	table 34 

1 2 3 4 
x 
5 6 7 8 ai 

1 0000 1022 1136 1327 1668 2300 3486 5730 1.0000 

2 0000 1331 1443 1627 1957 2568 3712 5878 1.0000 

3 0000 1021 1136 1326 1668 2300 3485 5728 1.0000 

The taus are as above. 
y = 0.125 	table 35 

-------- 

__..1 2 3 4 5 6 7 8 9 
1 0000 1020 1133 1321 1660 2289 3472 5716 1.0000 

2 0000 1329 1438 1620 1948 2555 3697 5863 1.0000 

3 0000 1019 1132 1320 1659 2288 3470 5714 1.0000 

The taus are as above. 
y = 0.0625 	table  

(c) 	AC : x =i71-  - (Y 

BD : X = 2 - 	(y 1)2  

Coordinates of tabulated approximations :- 

1 2 3 4 	5 6 7 8 
1 .25 43301 57476 71651 85825 1.0000 1.1417 1.2835 1.4252 

2 .50 50000 62500 75000 87500 1.0000 1.1250 1.2500 1.3750 

3 .75 symmetric 

9 
1.5670 

1.5000 



1 	2 	3 	4 	5 	6 	7 	8 	9  
rU891 1182 1513 1944 2553 3451 4804 6860 1.0000 

1189 1478 1803 2223 2814 3682 4987 6972 1.0000 

symmetric 

All taus between 10 4 and 10 6. 

h = 0.25 	table 37  

3  

y 

2 

y 
1 2 3 4 

x 
5 6 7 8 ci 

1 0926 1185 1487 1890 2473 3350 4693 6770 1.0000 

2 1235 1487 1780 2170 2734 3581 4877 6882 1.0000 

3, symmetric 

  

100 

x 

Taus as above 

h = 0.125 	table 38  

1 2 3 4 	5 6 7 8 9 
1. 0935 1185 1476 1874 	2449 3318 4656 6739 1.0000 

2 1246 1488 1772 2154 	2709 3548 4841 6851 1.0000 

3 symmetric 

Taus as above 

h = 0.0625 
	

table 39 



jot 

3.9  Boundary conditions more complex than those encountered in 
the last few sections may be handled by discretizing LaplaCe's equation 

by means of the simpler central difference approximation. For example, 

consider the conditions 

u(x,y) = p(x) along AB 

and 	u(x,y) = q(x) along CD of figure 4 . 

Introducing equally spaced mesh lines Y=Yo, Y=Y1,-., y114.1  , as 

before, and discretizing in the y-direction leads to 

I d2U + LIU= R(X) 	. 	 (28) 
• cLIE.2 h2 

where, as before, U(X) = L.1  (x), u2 
 (x) 	un(x)] 

M = (m..ij) 	m.. =-2, 	m. 1,14-1 . 	.=1 ,(n x n) ; mi 	14-1,1 

le =EXM  , xm  „••., xm y r, ( n x 1) 

I the unit matrix; 

R(X) = -1 rp(x), 0, 0,..., 0, 0, q(x) JT  , (xi x 1.) . 
h2 L 

If p(x) and q(x) are polynomials, or if they may be accurately represented 

by polynomials, we may write 

p(x) = .x.= Pi x , P1  

where ra.  = 

where Ci --=P 

X 
( X )- 	. 

1.=.45 	17-0 

	

max(n 
P 
 ,n 

 g 
 ). Then 	R(X) 

- 

o 	p1 	p2 .... pn  

0 	0 	0 

OOOOO 	. 	• 	• 

0 	0 	0 

qo 	(12."' 	qn 

$ 

= -1 EC.X a. 
h2 Z:.° 	E-i-1 

o-zero vects-7 i zero vectors ---). 	m [‹- 
0, 	, 	0, 	 , 0,  2 , 0  , 	1+1 , ov 	f • 	• 	2 e 	0t 	0 	. 	. 	631 f  

A 
. 	i ca+1). 

nx(E4-1) 

is an n x it matrix, 0 is the (n+1)xn zero vector and e is the j-th 

(n4.1)x1 unit vector. 

The Lanczos canonical polynomials associated with (28 ) are 
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E T) 
Qm(K) = h2  M (-)i  m1 	h2i  117i X"-2i. 

(m-21): (29) 

Perturb ( 28 ) by -c e  TTN(X) + -6" TTII:i(X) y I 	" 

TT* N+1 have been previously defined , to give 

I d2U + 	= R(X) +15e TTil(X) + /3" TT141(X) 	(30) 
dx2 h2 

the solution to which is 

C1  . Q. . + 

p4 

(N)  C 
	Qm 	 " 	C 

 (N+1)  
''111 	

(31 ) 
M140 

 

,n.0 

SUbstituting for Qm(X) (from (29)) in (30) and rearranging terms. 
the solution becomes 

E3 
U( X) h2 	Ir 	h21 kri 	c(N) 	xm-21 

(m-2i)1 

up4+1)/2.1 	0+% 
(-) h 	M 	c(1-1+1) 	 x111-25* 	R(Q), 	(32). m. + h2 " 1 	i 2i I  

VSD 

where R(Q) is to be interpreted as Qi  substituted for XI  in R(X). 
Requiring that the solution (31 ) satisfy the as yet unsatisfied 
boundary conditions, 

u(x,y) = f(x,y) on AC 

and 	u(x,y) = g(x,y) on BD, 

leads to the equations 
K + 2:" L = F(X) R Q(X) 

(33) 
ye V + su = 1"00 - R q(X) 

where K= [kis  k2,..., kOT  

11') 
= h2 M 1 	

(-) h2i 

41 1 12,..., 1;1)7  

rft.1 )6.1 	 N + 
2i m-i7 c(N+1) m!  = h2 M-1 	h2a. 	 Km-2i 

1. 0 	m 	(m-21): " 

(N) 
m!  

(m-2i)! 
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I a-A.... 

V  .Ey.v, 	v 1' 2"" C•"/Z 
2 	 1 	• = h M 	(-) 

L.0 
(IT) 	xm-2i c m! 	• m (m-2i)! 

NY= Lwi, w2,..., wni 
. - U.J4o/23 	14 4. 1  

( -)i h2i5. 	c(11+1 ) 	xm-2i.  
m = h2 M-1 	. 

(m-2i j.  

These equations are 'equivalent to:- 

 

'11{9.(X)] 

G - RLQ(X)1 

 

1 	 11 
k2 	12 • • • . 	. 

kn 	 1n 
v 1 

v2 	/72 • • • • • • 

• (34) 

vnn 

  

   

Solve (34) for ZI• • • • s rial• 	• • • , 6 nu and hence obtain the solution. 

The computationally most efficient way of computing R(Q) is had 

by writing 
Ift; 	C 

	

-R(Q) = 	 Cm M1 	
1175. xm-2i 

• vt_ 4=  (-) n: h2i ->-- 
(m-2i)! 

- 1 

	

= 	C 1.1 .1 0,0 

0
(1,0

C
1 

1171  X 

+ C4221 C2 M72  
+ 	C M71 X2 2,o 2 

( 35 ) 

r 
In those cases where X =LO, 0, 	03-  , the vectors K and L 

reduce to 

( K = h2 	1 M 	(-)i h2i c2iN) (2i)! M i  ; , 

L = h2 m l 	i h2i c
2i
(1141) 

1 	Lis ; 
=o 

and R[Q(0)j= R = 	q is obtained froM (35 ). 

With R= C1, 1,..., 	, V and.I7 become 

.(36 ) 
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CN/2.3 	N 
2 	 1 T_1  , .i 2i ,-i[ S-  c(N) 	, V = h M 	t-) h il 	-, 'X 	2 

4•-•-• . M 	'-.---'-'7.-".  

	

130 	 4,V-,  2 I. 	(12121): 

4.1)/zi .3 
V1 = h2  Li -1 	h2i  M-i 	

1-1 
c(N+1) 

=-'117 (m-2i)! I  (37) 

and B.N(Iyi 	 . 
L 	= = 	2f ••••t r 	18 had from (35 ) 

The solution (34) may be expressed in several ways once: the 

taus have been established, the two most useful perhaps being:- 

a) (34)  as it stands taken together with (35 ) - this form minimizes 

the number of times M i  has to be computed; 

b) a rearrangement of (34) into vector polynomial form, viz. 

[ 

	

U(X) = h2  'L' 2.17 	2: (-)m  h2m  cc" (1-1-2m)!  Lin  Xi  + 14.2m 

+ h2 
441 

”14-1 

1::  

(44%-11/1.) 
S (...)m h2m c(N4.1) 

1+2m  m. 

,..f. 	. 	-m 	11 X1  ti 2m)! M 

X p-tv,1 

-L Li 	h2m  (i+2m): C2m  Em-li) Xi.  

it 
(3 8 ) 

1_1(11 	Laplace's equation was solved on the unit square 0<x< 1, 
0.15y-E11 with the following boundary conditions :- 

a)- u=0 on x=0, y=0, y=1 ; 

u=1 on x=1 : 

b)u=0 on x=0, y=0, y=1 ; 

u=sin(rY) on x=1: 

c) u=y(y -1) on x=0; 

u=sin("ry) on x=1; 

u=x(x-1) on y=0; 

u=x2(x2-1) on y=1: 

d) u=cos(TrY)  on x=0; 

u=sin(Wy) on x=1 

u=-x on y=0; 

u=x on y=1. 

The conditions (b) and (c) are continuous, while 	(a) and (d) are not. 

Approximate numerical solutions computed for (c) and (d) are given 

in the next section. 

i! L=t 	rA:° 
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3.11.  Results : The obtained approximations are tabulated on the yi-

mesh lines for h=0.25, h=0.125 and h=0.0625 at the x-values 
x=0.000(0.125)1.000 and for N=7 and N=13. The relevant taus are also 
tabulated. 

.. Problem (c)  

Y x 
.000 .125 .250 .375 .500 .625 .750 .875 1.00 

.250 -18750 01822 19250 33455 44572 52977 59338 64712 70711 

.500 -25000 -13333 -03635 05525 15504 27782 44177 67118 1.000 

.750 -18750 -04488 88162 22092 35571 48818 60670 69060 70711 

CI 

i' J.2. 

-.661_4  
-.928-5  

-.148_3  
-.764-5  

.101-3 

.231-4  
h=0.25 N=7 

table 40  

x 
.000 .125 .250 .375 .500 .625 .750 .875 1.00 

.125 -10938 17352 39210 51867 54744 49371 39621 32311 38268 

.250 -18750 -10161 03142 03393 10449 19117 30733 47090 70711 

.375 -23438 -12564 -03626 04754 13868 25119 40243 61570 92388 

.500 -25000 -13352 -03758 05258 15085 27237 43589 66659 1.000 

.625 -23438 -12564 -36256 04754 13868 25119 40243 61570 92388 

.750 -18750 -10161 -31415 03393 10449 19117 30733 47090 70711 

.875 -10938 13487 37603 60372 78421 87263 83002 64736 38268 

Z. -.2_3 	-.2_3  -.2_3  -.2_3  -.2_3  -.3_2  
rz  -.1_3  -.9_5 	-.9_5  -.9_5  -.9_5  -.9_5  -.3_3  

h=0.125 N=7 
. 	table 41 

I ...wt.. 



y 
	 x 

.000 .125 .250 .375 .500 

.250 —18750 01822 19250 33455 44574 

.500 —25000 —13328 —0363P.  05526 15502 

.750 —18750 —04489 88143 22089 35567 

.625 

52980 

27777 

48812 

Z71  
1-10 	2  —lo 	

.2
-10 

8-12 7-12 
.2

-11 

1Ub 

.000 .125 .250 .375 .500 .625 .750 .875 1.00 

.0625 —05859 5122i 91324 1.077 99354 70972 33587' 06340 19509 

.1250 —10933 —06031 —02067 01573 05457 10192 16515 25410 38268 

.1875 —15234 —08322 —02710 02478 08053 14881 24026 36915 55557 

.2500 —18750 —10163 —03161 03348 10377 19023 30631 47009 70711 

.3125 —21484 —11573 —03463 04107 12316 22442 36063 55300 83147 

.3750 —23438 —12568 —03653 04694 13772 24994 40107 61464 92388 

.4375 —24609 —13160 —03755 05065 14675 26569 42600 65261 98078 

.5000 —25000 —13356 —03788 05192 14981 27102 43442 66544 1.000 

.9375 —05859 30940 70037 1.054 1.262 1.214 87118 37197 19509 

    

r, 
-.8_3  -.  

_ 	 _ ''''. 	 —. _ 	—. — 	—. 	—. 	•• _ 	_ 	_ 	—3  
—.9_5 	—.9-5 —.9.-.5 	—.9_5  —.9..5  os —.9_5 	 ■ 

h=0.0625 N=7 

table 42  

  

  

   

The dots indicate symmetry. 

.750 .875 1.00 

59341 64715 70711 

44170 67111 1.000 

60663  69053 70711 L  

h=0.250 N=13 

table 43  



x7 
.000 .125 .25o .375 .500 .625 

.25 70711 33067 04028 -17003 -29437 -31410 

.50 0 03677 07903 13302 20673 31108 

.75 -70711 -27860 07153 35814 58665 75339 

y 

Problem (d) 

Y x 
.000 .125 .250 .375 .500 .625 .750 .875 1.00 

.125 -10938 17353 39216 51878 54763 49399 39658 32348 33268 

.250 -18750 -10163 -03143 03392 10450 19120 30737 47093 70711 

.375 -23438 -12562 -03624 04755 13367 25117 40240 61568 92388 

.500 -25000 -13349 -03755 05259 15084 27234 43584 66654 1.000 

.875 -10938 13436 37569 69370 78461 87353 83125  64867 38268 

771 -°1-9 -.3-10 -.3-10 -.3-10."-.6-9 
Z-2- -.1-10 -'9-12 -*9-12 -.9-12."-°3-10 

h=0.125 

table 

N=13 

44 

Y x 
1 	.000 .125 .250 .375 .500 .625 .750 .875 1.00 

.0625! -05859 51216 91332 1.077 99406 71053 33696 06454 19509' 

.1250! -10938 -06034 -02070 01572 05456 10195 16519 25415 38268 

.1875! -15234 -08325 -02713 02478 08054 14884 24031 36920 55557 

.2500! -18750 -10165 -03163 03347 10378 19025 30634 47012 70711 

.3125. -21484 -11573 -03464 04106 12316 22443 36064 55301 83147 

.3750; -23433 -12566 -03652 04694 13772 24993 40105 61462 92388 

.4375; -24609 -13157 -03753 05066 14674 26567 42596 65257 98073 
1 

.5000. -25000 -13353 -03785 05193 14980 27099 43437 66539 1.000 

. 	. * 	  

.9375 -05859 30704 69884 1.054 1.264 1.218 87695 37826 19509 

-1 
 "cl --7-9 

	

	--Li() --L i() --3-10 --Li() 
.4. -.8-10 -.9-12 -'9-12 -.9-12 -'9-12 

h=0.0625 	N=13 

table 45 

r-.3_3  -.1_3  .9_4i 

-.1_4  .3_4  

h=.25 N=7 	table 46 

-.3-10 
-.9-12 

-.3-1o.--.5-3 
-.9-12"-.3-9 

.750 .875 1.00 

-19505 11751 70711 

46153 68037 1.000 

84756 84449 70711 



x 
.000 .125 .250 .375 .500 .625 .750 .875 1.00 

-1.984 -3.141 -3.970 -4.326 -3.994 -2.649 1.951 

44752 32863 26092 23383 24315 29032 38268 

57992 41872 32273 27700 27440 31452 40362 55557 

50142 37382 30443 28244 30443 37382 50142 70711 

40363 31454 27442 27703 32277 41877 57997 83147 

29032 24316 23386 26097 32871 44763 63623 92388 

16584 16242 18430 23487 32201 45928 66805 98078 

1.000 

98078 

92388 

83147 

70711 

55557 

38268 

1.951 

98078 -59121 

92388 63613 

.5000 0 03498 07544 12765 19974 30293 45328 67418 

.5625 -19509 -09721 -01444 06610 15694 27220 42984 65440 

.6250 -38268 -22566 -10375 00202 10810 23100 38938 60945 

.6875 -55557 -34542 -18906 -06214 05510 18093 33492 54107 

.7500 -70711 -45189 -26710 -12390 0 12390 26710 45189 

.8125 -83147 -54099 -33486 -18089 -05510 06211 18900 34535 

.8750 -92388 -60930 -38975 -23093 -01081 -002.0-= 10366 22555 

.9375 -98078 .60489 2.013 3.191 - 4.047 4.444 4.171 2.911 

.1250 

.1875 83147 

.2500 70711 

.3125 55557 

.3750 38268 

.4375 19509 

.0625 
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Y ; x 
.000 .125 .250 .375 .500 .625 .750 .875 1.00 

.125 	92388 09986 -59348 -1.147 -1.531 -1.688 -1.527 -90742 38268 

.250; 	70711 •50254 37548 30633 28440 30633 37548 50254 70711 

.375! 36268 29112 24445 23546 26278 33061 44942 63751 92388 

.5001 	0 03534 07615 12872 20113 30455 45493 6754? 1.000 

.625i-38268 -22581 -10372 00238 10885 23210 39113 61046 92388 

.750,-70711 -45252 -26775 -12429 0 12429 26775 45252 70711 

.875!-92388 -07276 65180 1.246 1.685 19209 1.875 1.424 38268 

Z", -.2_ 

Ca-. - .2 
- -3 

.5_19  -.8_4  -.1_3  -.2_3  -.3_3  

-.2_4  -.2_4  -.1_4 
 -.7_5 -'5-20 

.2
-2 

.2 
-7 

h=0.125 	N=7 

table 47 

.7 - 
4 

.5 
-19 

-.4 
-4 

-.8 
-4 

-.1 
-3 

-.1 _31 
-3i 

-.2 
-3 -.3_3  -3 

-.3_3  
-3 

-.5 
-3 

.8 
-2 

-.3-4 -.2-4 -.2-4 -.2-4 -.1-4 -.1-4 
-.4 

-5 7-20 .6-5 6-5 .2 4 .9_3 

h=0.0625 N=7 

table 48 

-.9_2 .2_3  -2 	-3 
-.2 -.2. 

- 
-.9-3 -.4-4 

1-4 -. 
 7-5 
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• 

x 
.000 .125 	.250 .375 .500 	.625 	.750 .875 1.001 

.25 70711 33066 	04029 -16999 -29428 -31396 -19488 11768 707111 

.50 0 03680 	07905 13301 20670 	31103 	46146 68031 1.000' 

.75 -70711 27862 	07150 35810 58660 	75382 	84748 84442 7074 

24 -.5-10 -.2-10 10 

-.4-11 -•9-12 '3-11 
h=0.25 	N=13 

table 49  

Y x 
.000 .125 .250 .375 .500 .625 .750 .875 1.00 

.125 92388 09964 -59360 -1.147 -1.531 -1.687 -15263 -90663 38268 

.250 70711 50256 37551 30635 28442 30635 37551 50256 70711 

.375 38268 29112 24444 23546 26277 33060 44940 63750 92388 

.500 0 03536 07617 12872 20112 30452 45488 67538 1.000 

.625 -38268 -22579 -10371 00238 10884 23208 39111 61044 92388 

.750 -70711 -45256 -26779 -12431 0 12431 26779 45256 70711 

.875 -92388 -07258 65190 12455 1.684 1.920 1.874 1.424 38268 

' -.3-13 .4-25 -.1-10 -.2-10 -.3-10 -.5-10 -. 
al.-.2_10 -.2-11 -.2-11 -.1-11 -.7-12 0 .2- 

h=0.125 N=13 
table 50  



Z—.2_8 	. —8 —.. _3  3_10  .1_10 
4-25 —11 1-10 2-10 2-10 

3-10 3-10 4-10 5-10 6-10 8-10 2-8 
.3 	—.2 	—. 1-9 —. — 

	

4-11 	-11 	-11 	2-11 	2-11 	1-11 	1-11 
• . 

	

1-11 -.7-12 	4-12 -.1-27 	 	6-12 
.2

-11 
.9-1-0 
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Y - - x 
. 000 .125 .250 .375 .500 .625 .750 .875 1.00 

.0625 98078 —59195 —1.984 —3.141 —3.969 —43251 —39923 —26462 119509 

.1250 	92388 63622 44761 32370 26096 23385 24316 29032 38268 

.1875i 	83147' 57997 41877 32278 27703 27442 31454 40363 55557 

.2500' 	70711 50144 37384 30445 28246 30445 37384 50144 70711 

.3125 	55557 40363 31454 27442 27703 32278 41877 57997 83147 

.3750 	38268 29032 24316 23385 26096 32870 44761 63622 92388 

.4375' 	19509 16585 16243 18430 23486 32199 45925 66801 98078 

.5000; 	0 03500 07545 12765 19973 30290 45324 67414 1.000 

.56251-19509 —09719 —01442 06611 15693 27218 42981 65436 98078 

.6250-38268 —22564 —10374 00202 10809 23099 38986 60943. 92383 

.6875i-55557 —34543 —18907 —06214 05511 18093 33493 541C8 83147 

.7500i-70711 —45194 —26713 —01239 0 01239 26713 45194 70711 

.8125!-83147 —54108 —33493 —18093 —05510 06214 18907 34543 55557 

.8750!-92383 —60943 —38986 —23099 — olosi —00202 10374 22564 38268 

.9374.-98078 60561 2.014 3.191 4.047 4.443 4.169 2.909 19509 

h=0.0625 	N=13 

table 51  

The computed approximate solutions to problems (a) and (b) were also 

satisfactory. 

' 



c(N) 
	c L1 

(—) 	m! 	h25-  (A SY.  Xm-21  + 
my0 	 L=0 	(m-2i)! 

So U(X) = h2r  
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CHAPTER 4 : EXTENSIONS OF rETHOD. 

4.1  Introduction : In this chapter we show how to solve elgenvalue 
problems and also more general elliptic eauations using the 
techniques of the previous chapter. 

4.2 Eigenvalue -problem : The eigenvalue problem 2
u —Xu=0, with 

u=0 on the boundary , will be solved here on the region of figure 3.1. 

Using the notation introduced there, this equation may be 

discretized to give 

A U" +M 	—XU. 0 	(1 ) 
h2 

together with the boundary conditions 

1760 = 0 

U(Ye) = 0. 

The ..matrices A and M and vectors U and U" were defined previously. 
The canonical polynomials are easily seen (by induction) to be 

• 

9m  = h2 S m 2i 	--1) X  i m-2i ! h 	(A  
(m-2i)! 

( 2 ) 

where S 	— 2■h2 	. 

Perturbing (1 ) suitably (as before) we now have to solve 

	

A U" + 	U --X U = t' TTN(X) + z;" TTN1  * 	. " 
h2 

The solution to which is 

	

1I(X) = rf 	c(11) Q (X) + Z7 " 
	_(N+1) em(X) 

where, as before, the c(N) and c(N-1-1) are the coefficients of the 

N—th and (11+1)—th Chebyshev polynomials of the first kind 
respectively. 

(3-) 

(4. ) 

h2-C 1  
•44-1 EVA 

s-1 	
( —)i  m! 	h21  (A 	Xm —2i  %..111  

L.=0 	(m--2i): 

 

ret .7: 0 

Rearranging this 



(-)i  h2i  (A S-1)i  (N)m! 	Xm-2i 
(m-2i)! re■=t. 
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U(X) = h2  

[q] 

►a+ i  
L " (-)1  h l  (A s-1  (N+1) 	XM-2i cm 	m!  (5  ) (m.-2i): 

- 1 Denote S by P. The n x n matrix P = (pij  ) nay be constructed by the 

following algorithm:- 

1) Let do=0' d1=1 and construct 

dr(\) = -(2 +).h2) d„.1(h) dr_2(>) for r=2(1)n . 

2) 7F1 j  = (-)54-1 d3--1 	j=1 (1)n. 

3) Define Too  = 0, 1 j45:21 and construct 

	

= Si —1, j d + (2 + h2) 	. — 	. .113.3 	1-1,3 n 	 2,0 , 

i=2(1)n, j=1(1)n. 

4) .. 	 = 1 Y. 

	

(p13) = 1 	
1° 	d dn 

The amount of computation is minimiz,.d if use is made of the fact 
that P is symmetric about both diagonals. 

Th terms of P then , the solution is 
113 

U(X) = h27:' P 	(_)i h2i (AP)1 	c(N)  a! 	Xm-2i  + 
(m-2i)1 =o 

D44-.)(2.7 4+1 

	

+ h2 " P 	(_)1 h2i (Ar)  

	

4  7 01-0)  m! 	XM-2i  (6 ) 
(m-2i): 

The, as yet unsatisfied, boundary conditions require that 

i c N) 	51m,--21 P 	(-) h2i 	 ( (AP)1 	m.  
L=0 

C044-0/3.3 	. 
to p 	( —)1  h21  

1.70 

N+1 

c
(N+1) 
U (m-21): 

am-21. = 0 

and a similar condition at X. The ?‘ terms in the denominator 
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of the boundary condition may be cancelled by multiplying by 

dn() (21+1)/2J+ 1 to give 

U13 (_)i h2i d E(N+1 )/23— i 
n 

L044-0/2.1 
(_)i h2i d[(n+2)/l-i (n) 	c(11+1) = 0 

M 	 (m-2i)! 
t-. 0  

and a similar condition at X. These two boundary conditions are of the 

form 

z ,  lc( ) 	-C" L(>') = 0 

t' R(>) tu  VON) = 0, 

where K(N) 

= 	h2i  d[(N+1)/2]-i  (AP)i 	.(N) 	 R7-2i,  
1zo 	 m.se m  (m-2i)! 

and similarly for L(\ ) = [11,...110 T  , 

RCX ) = 	, 

T 
If( A) = 

Equivalently then 

P 

N 

c(TO m! 	 
(m,-2i)! 

4.1 

4.0 	 ••••=' 

k1 	11 
k2 	12 

kn 	1n 

= 0 • 
	

(7 ) 

r1 1 
r2 	v2 

rn 	. vn 

Equating the determinant of the coefficient matrix to zero, the 

eigenvalues are found by isolating the roots of this determinantal 

equation. Having obtained the eigenvalues, the taus may be obtained 

from ( 7 ) and the eigenfunctions from ( 6 ). 
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Because of the inefficiency of this method compared with 

other techniques for solving this eigenvalue problem we did not 
perform any numerical computations. 

4.3 The eigenvalue problem of the above section may also be solved 

using a central difference approach rather than the more elaborate 

approximation employed there. In fact the analysis and technique 

remain largely unaltered, the one major difference is that the matrix 
A has to be replaced by the unit matrix. 

4.4 General elliptic boundary value problem : This problem, viz. 

L[113 =auxx +cuYY +du
x +eu +fu= g 	(8a) 

on a region such as that of figure 3.1 subject to the conditions 
u(x,y) + a u (x,y) = uab on AB, 

u(x,y) + /: uy(x,y) = ucd  on CD, 
(8b) 

u(x,y) + % ux(x,y) = ubc on BC, 

u(x,y) 	ux(x,y) = ucdon CD — 

the functions a, b, c, d, e, f, g being polynomial—type functions 

in both x and y — may be solved by the method of the previous sections, 

subject to certain conditions being satisfitd by c, e and f. Introducing, 

' as before, n+1 equally spaced mesh lines (a distance h apart) in the 

y—direction and discretizing the differential operator of (8) by 
the usual central difference operator yields 

ric ekl k÷i  r-2ck 

h2  alaJ 	L h2 
f 	.1.1- c• 
k:uk 

h
2 2h 

11k_i 

+dk  1.13'c  + ak  uk = gk 	0(h2) 	k=0,1,...,n+1 . 

The notation ak, ck,..., uk  indicates that these functions are to be 

evaluated at (x,y1c) . The dashes mean differentiation with respect 

to x. Introducing imaginary lines y...1  and yn+2, discretizing the first 

two boundary conditions of (8b) and using the previously defined 

U, 	U" we now have 

AII"÷B. UT +CU=Di 

or 
 [

A LI2 	B 	If = D; 
dx2 	dx 

(9) 



g
ot

2 co  -eo) 

h 2 

g1  
• 
• 

n 

g 	- 2(c  n+1 
	e 	) 

n+1 	n+1 	n+.1- 
h 	2 

D = 
- 

; 	U 2= 0 

u1 

un 
un+1 
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where I =- di az, (ao, al 	an, an+ ) ; 

B = diag(do, d1,..., d
n 

d
n+1
) 

• 

C = (c..) lj 

.. . and  c11  = 2co ( 1 - 1  ) +f  o  - e o ' 	c = 	+ e1  1-1 	-1 24i n+1,  
h 

	

h2 - 	2h 

cn+2,n+2 = 	n+1 ( 1 + 1 ) + fn+1 - en+1 , 

h 	/5 	h . 

. = 0. - e. ci+111 	i=1,..,n 	cn+2,n+1 = 2cn+1 

h2 2h 
	

h2 

c. 	= ci 	+ e. 1,1+1 	-1 	1-1 

h2 2h 

, c
12 

= 2co 

h2 

Define the matrix differential o-oerator DD by 

DD = d2 + B d 	+ C , 

dx2 dx 

which has as its domain of definition the set of n-dimensional 
vectors with twice differentiable elements. Following Ortiz 24 

the Lanczos canonical polynomials 

Qm  = C-1  [X3  - m B Q_i  - m(m-1) A
-2  )m=0,1,2,.... 1j  

are easily obtained. This recurrence relationship is only valid if 

C is non-singular - an ill-conditioned C could result in the computed 
approximate solution being inaccurate. An explicit relationship for 

I "•••••-,1, 



u(x) . 
.1.= 0  

= 
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Q=, namely 

Q(X) = C 1  
n1 

Z.:11312i 
'so 

. Gm,i0,T) Xi  (10) 

where =  in!  
m o. (m—i)! 

S =AC 1  ,T=BC-1 andGm,( . S,T) is a i 

matrix polynomial in S and T, is obtainable from the recurrence relation-

ship. 

Now write each element of D =(85.) as a polynomial, where 

riz 	
k 	

;- 	
k si  = 	

lk 
p., 	= 	pik x 

 
ksD 	tiro 

and n = max (n.) 
1 P

= 0 if k 
ik 	1 

Then 11 =(pik) is an (n+2)x(n+1) matrix. As before, define 

-fig =1,L0, 0,..., 0, e. , 
0,..., 0] , then i+1 

D 
k.ro 

a vector polynomial of degree n. 

The solution to the differential equation (9) perturbed by 

TT*(X) 1," TT*N  (X) +1 

  

is then , 	. 

   

   

N 	, 	r1+1 
Qi  ,ts 	co)  ,rn +1; n 	c(N4-1) n . 

r."7 
m  

4, 	 m 

f --r G 	(S,T)}X1  +-rt 
l , 

1.=0 
ki 	ki 

0+1Nil 

+. C-1 E. Eck  or+i) 6 	
I 16- 

,,. Gk, .0,T).1X.i 
:-  11:1 	k Z. 

 

A simple application of the two remaining boundary conditions of 

(8) leads to an equation of the form 



1.1 = r̂ 
0 

so 

sn+1j 
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k 	1 	t to  o o .• 	• . 	• 	• • • 	• . 	• 	. 
k
n+1 	

1n+1 -,- 
1-114-1 

Po 	q 	1.4 o 
• • 	• 
• • 	. 
• . 	. 
• . - 

Pn+1 	Ign+1 1:-:;61+1 
- - 

again, which is easily solved for the taus, and the solution follows. 

Once more, we do not give any numerical results. 
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CHAPTER 5  : AN --nROH A:;ALYSTs.  

5.1 Introduction : We give here an error analysis for the central 

difference semi-discretization of equation (3.28). That was the 

case where more complex boundary conditions could be handled. 

5.2 Analysis : The error E(X) = 17(X) - U(X) incurred by perturbing 

equation (3.28) into the form (3.30) satisfies 

d2E + M E = 	TT (X) - 7;" TT40(X) 

dx2 	h2 

with E(0) = E(1) = 0. 

	

Note that the additional 	0(h2 ) error has been ignored in this 
equation. An approximate solution to (1.) may be obtained via a 

Picard type procedure - i.e. by solving (1.) recursively in the 

form 

d2E 	= M E 	 "C" TTII+1 . 
	(2) 

dal 
	

2 

Starting from Eo=0 and using the well-known identity 

T11-  dx dx = 1 [ 	k+2 1 	M' - 1 	+ 	 " 	T* k-2 i (3) 
16 (k+2)(k+1) 	(k-2)(k-1 k2-1 

we have 

	 TT.;1 - 2 mT:1 + 	 TT* - El = 16 L(N+2)(11+1) 1"-` N2-1 " (N-21(N-1) -N-2  

=tzt, 	 +3  -  2 TTA0 
16 L(N+3)(N+2) 	N(N+2) 	(N-1)N 

+ A(1) 	+ A(1)  X o 	1 

--c t ti(x) 	t2(X) + A. 4 + to  x say. 

A(1) and A(I) are constant diagonal matrices which are easily evaluated 1 

from the boundary conditions as follows:- 

A(1) 	= -c' t1
(0) +-c" t

2
(0) 

and so 

A(1) = 	+ (-)" (_)N+1 
" • 	(5) 

° 	(N+2)(N+1)(11-1)01-2) L  . (N+3)(N+2)(N)(i1-1) 

(1) 

(4a ) 

(4b) 



• 
(6) 
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Also A(i) 	= /;' t1(I) + 	
t2(I) - A

(1)  I. and hence 
1 

A(1)  (1-(-)
N
) 	St 	(14-) ) 	" 

The next iteration gives 

E2(X) = 1 	Mr+ 	1 	TT!.  (X) - 

196h2 
f1+4 )(ii+2)(1i4-3)(N+4) 

	

4 	TT;,) ,(X) + 	6 	TT*(X) - 
(N-1)(N+1)(N+2)(N+3) 114-c- 	(N-2)(N-1)(N+1)(N+2) N  

4 	TTS 2(X) + 	1 	TT* (X).} + N-4 (N-3)(N-2)(N-1)(N+1) 	(N-4)(:1-3)(N-2)(N-1) 

+ 1 	Mr," 	1 	'TT* (X) - 

196h2 (N+2)(N+3)(N+4)(N+5) N+5 

4 	TV,..(X) + 	6 	TTS '(X) - 
N(N+2)(N+3)(N+4) 14+) 	(N-1)(N)(ii+2)(N+3) 

4 	TVt ,(X) + 	1 	TT* (X)/ - 
. (N-2)(N-1)(N)(i1+2) 	(N-3)(N-2)(N-1)N N-3  

t (X) -7c" t (X) - M A(1)  X? - M A(1)  X3  + A(?)  I + A(?)  

2h2 
2 	

6? 1 
 

= 	s (x) + 	s2(x) 	t i  (x) 	t 2  ( x ) + 

+ A(2) I + A(2) X - M A(I) X2- K A(I) X3 say. ---- 1 

	

2h2 ° 	6h3 

E2  is required to satisfy the boundary conditions E2(0)=E2(;)=0, 

from which it is easily established that 

A(2) = A(1) + 0(N h-2) I 

and 	A(2) = A(I) + M A(1) + M A(I) + ,-8  h-2)I  
1 	1 	1 

6h2 2 ° 

(N±2) (ii+1 ) (11-1 ) (I1-2) 	(I;+3 )(N+2) (17)(1i-1) 

(7) 

(8) 



I 

Almost equivalently then 

E2(X) = M 	si(X) + Mr" s2(X) 	t1(x) -z"  t2(x)  + 

3 

Z A(2) 
xi 

1 

where now, A(2) = At;i Ai
(2)  = Al

(1)  + M Al
(1)  + 	A(1) 0 	0 	 -2 o 6h2 2h 

( 9a) 

     

 

, 	) = 	M A(1)

o 2h 	6h 	

• ) = 	M A( ) ----- 1 2 2 
(9b) 

Prom the above it may be conjectured that 

E (X) 	M -61  s1 
 (X) + Mr" s2(X) -7cl t1 (x) 	t2(X) + 

(1.0) 
o 

By ( 9 ) and ( 2 ). 

Elool  (X) = 0(N 6 h-2)I +Mr' s1  (X) + 	" s2(X) - 	A1-2 	Xi  + 

h L=z i(i-1) 

(p+1) 	(p+1) + Ao 	4 + Ai 	X 	t1(x) 	t2(X).. 

Using the boundary conditions E 1)+1(0) = E
P+1 

 (4) = 0 it may be seen 

that 
A(p+1) = A(1) 4. 00-6 h 2)  
0 	0 

(p+1) 	(1) 	2?4-1  ,(p) 
2 A 	= A 	+ M 	0(N

-6 h-2) . 
1 	1 	1-  2 L h -- i(i-1) 

Approximately, therefore 

Epil(x) = MT' si(x) 	m - " s2(X) - -r,  t.(x) --Iv,  t2(x) 

7p-tt 

A (P+1) xi 

where, in the definition ( 11 ) of A(P+1) and A(P+1) the Ai p+1) 
( 1 2 ) 

 terms are now discarded, and 

A. (p+1) 	(D) 

i(i-1)h2  

i=2,3,...12p+1 . 
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(12) outlines an obvious algorithm for computing the EP°s.  
The above analysis clearly shows the dangers of coupling a small 

h with a small N — in fact in this case the approximations made in 

the error analysis nay not be acceptable. 

(P)__ 	‘Ci/2.] ili[i/2]p_r_i/23) 

ina2Ci/23 

from which, two cases arise:- 

(i) i even (=2j say) then 

	

A(P)  = 	(—)j1iJ A(P—j)  
j 

(2j):112j  

	

= 	(—)jj A(1) approximately — by 11. 	(13) 

(2j):112j  

(ii) i odd (=2j4-1 say) 

	

A(P) (—)j  	10 A(P—j)  
2j+1 = 	1 

(2j+1):112j  

	

(—)j  	Mj  F(L1, A(1)  A(1)) approximately.  
(2j1-1)1h2j  

(14) 

(P) Both A26)  and A2j+1  approach the null matrix as j--.?c.0 . 
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CHAPTER 6  : Asti ERROR ANALYSIS OF r2FE 7:11.THOD 	71:32,r;G. 

6.1 Introduction. In the paper [37] by Wragg he numerically solves 

the following particular Stefan problem, 

ut = uxx , 
0<x<x(t), t70 , 	(1) 

X
(0,t). = -1 , t>0 	 (2) •  

u(x(t),t) = 0 x = X(t), t> 0 	 (3) 

d x(t) - - ux(x(t),t) 	t>0 	(4) dx 

x(0). = 0 , 	 (5) 

using an extension of the Lanczos-tau algorithm. 

Uo(x)' U1(x) are assumed to be approximations to u(xpto
), u(x,t1) 

and the points (x0,t0),(x1,t1) to lie on the moving boundary. If xo 

and Uo(x) are known then finite-difference representations of (1), (2), 

(3) and (4) yield the equations :- 

d2u1(x) 	U1(x)- 	 Uo(x) 

cbc2 Git 

F
a U1(x)1= -1 

Ldx 
X 7:0 

1 (X)..] 
x
=x 

= 0 

X,
I 
 - X 	

= 
[dU0(x) 

At 	dx 
0   

X=X 
0 

These equations are solved by Wragg using the Lanczos-tau method 

(Lanczos 	) after the first equation of (6) has been perturbed 

by (-0 	x ) 	x ) , where 11(x) = 21c(n)  xm  is the n-th 
x1 	x1 

shifted Chebyshev polynomial of the first kind. Wragg compares the 

numerical results obtained in this way with those obtained by solving 

(1) - (5) using the Douglas-Gallie method. The followin table has 

been extracted from his paper. In both cases 4t = 0.1. 

= 0 

(6) 



D-G 
x=0.4 0.4662 0.4659 
x=0.8 1.0415 1.0403 
x=1.2 1.7061 1.7051 
x=1.6 2.4500 2.4488 
x=2.0 3.2668 3.2654 
x=2.4 4.1517 4.1502 
x=2.8 5.1011 5.0996 
x=3.2 6.1122 6.1107 
x=3.6 7.1826 7.1812 
x=4.0 8.3102 8.3090 
time 
req'd 44.25s 72s 

The results from these two methods are obviously in good agreement, 

with Wragg's method requiring considerably less computer time than 

the Douglas-Gallie method. 

6.2 in this section we set out to analyse the errors introduced 
into the first eouation of (6) by perturbing it by (15' +VI x )T*(x). 
The first two equations of (6) are 

dUi+l - U  1+1 + 	= 0 
2 	U. 	U. 	(7) 
dal 
	

Lt 

= 0 

x=0 

• 

Let 	be the exact solution to (7). Perturbing (7) by (V 1-1:"x)T*(x) 

leads to 

d2Ui+1 - 	+ Ui = (-C t -1- ;C" x) 51(x) 	. 	(8) 
dx2 At At 

Replace U in (7) by U , subtract (8) from it and let zi=gi  Ui. 

Then 

d2z1. 	z. +1 --1+1 + 	= 	+ x)T*(x) • 
six2 	Lit 	pt 

= -w(x) say. 	(9), 

• '7 
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The solution 

z1.4-1(x) = 	—zst a2  )—E1]-1  z. (x) 

dx2 

 

t.t1 

 

+1St -Lt d2 -k-1 w(x) 

dx2 

is obtained by applying the Euler-Laplace transform to (9) , as 

in $.14 and then inverting. Restricting i to the set of non-

negative integers, the solution reduces to 

z1.11(x) 

	

	(1 -At d2  ) -1  z -1(x) 	t 	(1 -At d2  )-k-lw(x). 
dx2 k.o 	dm2 

If we assume that z-1
(x) = 0 it follows immediately that 

0o 	v 

c)  Ltk d2k  w(x) . 	(10) 
k;1 1 	j=2. 	 di2k 

6.22 As a. particular realisation of this, set l:' = -c" = 105  and 

= 0.01, 0.04 and 0.10 ( all these are typical values, taken from 

the paper by Wragg) . We then calculated the zi's for Le< t< 1.00 

at the 9 points x=0.000(0.125)1.000 for 11(x) with n=3(1)8. Table 1 

summarizes, very briefly, the many results computed - we have 

shown the error given by (10) at x = 0.500 and t = 1. 

n .01 

pt 

.04 .10 

3 .606-4  .620-4  .636-4  
4 .84 0_2  .912_2  .10 7_1  

5 -.669-2 -.729-2  -.555-2  
6 -.1031 

-.1211  -.1641  
7 .1161  .1371  .1861  
8 .190

3 
.250

3 .4103 
table 1 

The conclusions to be drawn from this (and our many unpublished 

results) are:- 

a) The errors increase wdth increasing n (!); 

b) The error increases with increasing t, as tables 2 and 3 illustrate 

c) The error (for a fixed n) is not dramatically improved 
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by decreasing Qt. 

t .01 
Lt 
.04 .10 

0.1 .636-6 
0.2 .275 -5' .250 -5 .120. -5 
0.3 .556 .480_5  -5 
0.4 .982-5- .102_4  .960-5 
0.5 .153_4  .156-4  
0.6 .219-4  .227-4  .228-4  
0.7 .293 -4 .312-4 
0.8 .389 .399-4  .408-4  
0.9 .491-4 .516-4  
1.0 .606-4 .620-4 .636-4 

table 2  

.
.
.
.
 CM

 re%
 .1;1-  LC

  %
.0  N

 C
O

  C
A

  0
  

44  
•
 •
 •
 •
 •
 •
 •
 •
 •
 • 

0
  0

  0
  0

  0
  0

  0
  0

  0
  •

■•••  

.01 
LA 
.04 .10 

.545-2 
- 

• 
- 

.101 .289 .1251  

.628 - .4401 

.238 1 .4401 .1172 

.6811  .5222  . 

.1622 .2502 .5222 

.3392 .9532 

.6452 .9042 .1633 

.1143 .2643 

.1903 .2503 .4093 
n=8 	table 3  
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Vie collect together, in this appendix, some of the programs used in 

the main body of this thesis — namely that used in Chapter two of 

Part one for the numerical determination of the eigenvalues of a 

certain differential operator defined there and that used for the 

solution of the Poisson equation in sections 3.7 and 3.8 of. 

Part two. 



Programs used in the isolation of the ei.7envalues of the  

differential operator defined in Part 1: Chapter 2.  

COLDIP produces the coefficient matrix in se,.smented form. 

COLI triangularizes the coefficient matrix, then Produces its smallest 

(in modulus) 12 eigcnvalues. 

More detailed descriptions of the activities of various segments 

of these prosrams appear alongsile and after them. 

ProErcm maLT: 
DIMENSION 4(20,3),AU(20),FMT(3) 
DIMENSION BDR(651 2),ABDRY(2,64),RAD(65),NODE(65) 
INTEGER BAND 
COMMON A,AU TRADI ABORY,BORIHSQ,THETA2,B,ROUT,RIN,H4PIITHET4 
COMMON ABDRI,ABDR2,O1,ROUND,N,NODEIN2PI,N1,1RAD,K 
COMMON NMAX,N2,BAND 
WRITE(6,1001) 

1001 FORMAT(' WANTS OUTPUT FORMAT..MUST BE (lX,****)°) 
READ(9,1002)(FMT(I) 1 1=1,3) 

1002 FORMAT(3A4) 
1000 WRITE(6,666) 
666 FORMAT(' REQUIRES... NITHETAIIBINH../..RIN,ROUTIBIBINC') 

READ(9,1)NTHETA I IB,NH 
1 	FORMAT(3Y) 

IB=IB+1 
READ(9/ 4)UN,ROUT,BI BINC 

4 	FURMAT(4Y) 
ROUND=2.E-5 
F=1./RIN 
PI=4.*ATAN(1.) 
THETA=(2.*PI)/FLOAT(NTHETA) 
H=RIN/FLOAT(NH) 
HSO=H*71 
THETA2=THET4#THETA 
N1=NTHETA/4+1 
N2=NTHETA/2 
N2P1=N2+1 
C1=-1./HSQ 
C2=2./HSQ 
C0N=2./THETA2-0.25 
01=-1./(THETA2#RIN**2) 
ABDR1=-F*(F-1./RIN)-2.*D1 
ABDR2=O. 
DO 1022 NB=1,IB 
WRITE (6, 1023)ROUT,RIN,B 

1023 FORMAT(' JUTER CIRCLE RADIUS',F7.3,61.* INNER CIRCLE RADII 
WRITE(6,1024)H,N2,THETA 

1024 FORMAT(' RADIUS STEP LENGTH',E11.4,6WANGULAR STEP LENGT1 
DO 3 I=1,N1 
AA=FLOAT(I-1)*THETA 
AA=COS(AA) 
DD=SORT(B#84t(AA*AA-1.)+ROUT*RODT) 
AA=B*AA 
R1=ABS(AA+DO) 
R2=ABS( AA-DD) 	• 	. 
NODE(I)=(R1-RIN+ROUNO)/H+1. 
RAD(I)=R1 
IF(I.EQ.N1)G0 TO 3 
K=N2+2-I 

-1! 



RAD(K)=R2 
NODE(K)=(2-RIN+ROUND)/H+1. 

3 	CONTINUE 
N=NCDE(1) 
NMAX=NODE(1) 
IMAX=1 
DO 30 J=2,N2P1 
IF(NMAX.GT.NODE(J))G0 TO 30 
NMAX=NDDE(J) 
1MAX=J 

30 N=N+NODE(J) 
WRITE(6,600)(NODE(I),I=1,N2P1) 

600 FORMAT(2CI5) 
DO 99 J=1,NMAX 

99 AU(J)=0. 
DO 220 I=1,NMAX 
DO 220 J=1,3 

220 A(1,J)=0. 
DO 31 J=2,NMAX 
R=RIN+FLOAT(J-1)#H 
A(J,1)=C1 
A(J,2)=C2+CON/(R*R) 
A(J,3)=C1 

31 	AU(J)=-1./(THETA2*R*R) 
DO 301 J=1,2 
DO 300 I=1,N2P1 

300 BDR(I,J)=0. 
DO 301 1=10\12 

301 ABDRY(J,I)=0. 
DO 102 IRAD=1,N2P1 
K=NODE(IRAD) 
CALL DEFINE(NP6) 
N=N+NP6 
NODE(IRAD)=NODE(IRAD)+NP6 
IF(NP6.LT.0)NODE(IRAD)=-NODE(IRAD) 

102 CONTINUE 
IF(NODE(IMAX).LT.0)NMAX=NMAX-1 
BAND=2*NMAX+1 
FFF=ABS(A(21 1)) 
DO 1019 I=2,NMAX 
DO 1019 J=1,3 
IFIFFF.LT.ABS(A(1,J)))FFF=ABS(A(I,J)) 

1019 CONTINUE 
FFF=ALOG(FFF)/ALOG(16.) 
IFFF=FFF+I 
FFF=16.**IFFF 
IF(FFF.LT.1.)FFF=1. 
D1=D1/FFF 
ABDR1=ABDR1/FFF 
ABDR2=ABDR2/FFF 
DO 1020 I=2,NMAX 
DO 1021 J=1,3 

1021 A(ItJ)=A(I,J)/FFF 
1020 AU(I)=AU(I)/FFF 

DO 1025 IRAD=1,N2P1 
DO 1025 J=1,2 
IF(IRAD.E0.N2P1)C0 TO 1025 
ABDRY(JORAD)=ABURY(JORAD)/FFF 

1025 BOR(IRAO,J)=BOR(IRADI J)/FFF 
WRITE(61110)N 

110 FORMAT(' MATRIX IS OF ORDER',I4) 

Coefficients 

scaled if 

necessary. 



WRITE(61 113) 
113 FORMAT(/) 

WRITE(6,108)ABDR1pABDR2,D1,FFF 
WRITE (6,113) 

. DO 112 IRAD=1/N2P1 
112 	WRITE(6/108)(BDR(IRAD,J),J=1,2) 

WRITE(6,113) 
DO 111 I=2/NMAX 

111 WRITE(6,108)(A(17.1),J=1/3) 
WRITE(6/113) 
WRITE(6,108)(AU(J),J=1/NMAX) 
WRITE(6/113) 
DO 1070 1=1042 

1070 WRITE(6,108)(ABDRY(J/1)/J=1,2) 
108 FORMAT(13E10.3) 

WRITE(9/202)N,N2P1INMAX,N2/BAND 
rWRITE(9,200)(NODE(I)/I=1042P1) 
WRITE(9,FMT)AL5011ABDR2,01,FFF 
WRITE(9,FMT1((BUR(IRAD IJ),J=1,2)/IRAD=1/N2P1) 
WRITE(9 / FMT)((A(I,J)/J=1,3)/I=1/NMAX) 
WRITE(9,FMT)CAU(J)/J=1,NMAX) 
WRITE(9,FMT) ((ABORY(J,I)/J=1,2)11=1,N2) 

200 FORMAT(1X,2513) 
202 FORMAT(1X / 5I4) 
1022 B=B+BINC 

STOP 
END 
SUBROUTINE DEF1NE(NP6) 
DIMENSION A(20,3),AU(20) 
DIMENSION ABDRY(2,64),BDR(6512)1RAD(65),NODE(65) 
INTEGER BAND 
.COMMON AvAUtRAD,ABORY/BDRIHSQ/THETA2pB/ROUTIRINTH,PIITHETA 
COMMON ABDR1,ABOR2,D1,ROUNO,N,NODE,N2P1,N1,IRAD,K 
COMMON NMAX,N2,BAND 
R=RIN+FLOAT(K-1)4H 
NP6=0 
P5=(RAD(I1AD)-R) 
IF(ABS(P5).GT.ROUND)GO TO 32 
NP6=NP6-1 
GO TO 8 

32 	P1=1. 
P 5=P5/H 
CON5=1. 
IF(IRAD.EQ.N2P1)G0 TO 6 
IF(K.LE.NODE(IRAD+1))30 TO 6 
AA=ABSUB*B+R*R-ROUT*ROUT)/(2.*B*R)) 
IF(AA.GT.1.)GO TO 30 
AA=AT4N(SQRT(1./AA-AA)) 
GO TO 31 

30 AA=O. 
31 	IF(IRAD.LE.N1)G0 TO 5 

AA=PI-AA 
5 	P1=AA/THETA-FLOAT(IRAD-1) 

IF(Pl.LE.(1.+ROUND) )CON5=0. 
6 	P3=1. 



AAA=2./tRt-R*THETA24--(P14-P31) 
13DR( lilAD,2)=2./(P5-*HSQ)+( 2./( THETA2*P1*P3)+0.25)/(R*R) 
BDR(IRAD,1)=2./(HSQ*(P5+1.))=,.(-1.) 
IF(IRAD.EQ.N2P1)G0 TO 70 
ABORYCI,IRAD1=-A4M,CON5/P1 

70 	IF1 IRAD.E0.11G0 TO 8 
ABORY(271RAD-1)=-AAA/P3 

8 	RETURN 
END 

The computational details of this program are clear if it is 

read in conjunction with the expressions (7), (11), (14) of 

Part 1: Chapter 2 and the following symbol table. 

SYR. BOL 	LEANING 

ROUT 	radius of outer circle 

RIM 	radius of hole 

B distance between centres 

BINC 	increment in distance between centres 

IB 	number of times distance between centres is to be 

- incremented 

NTHDTA 	number of angula:2 step-lenz;ths in 21", ise.a= 	211-  
LTHETA 

NH 	number of radius steps in hole, i.e. at. = RBI 

TEbIA 

THET A2 	1I92  

H r 

jma 	4r2 

RAD(I) 	radius of (i+l)th ray 

NODE(I) 	number of nodes along (i+l)th ray 

N order of coefficient matrix 

BAND 	bandwidth of coefficient matrix 

FFP 	scaling factor 



7 
CGL? 	

IMPLICIT REAL*8(A--H2 O-Z) 
REAL#4 P(20,500),BOR(65,2),A(12,3),AU(12),ABDRY(2,64) 
1,A3DRI,ABDR201,FFF I RINIDIST .  
DIMENSION V1(500),VISTA(500),U1STA(500),ALPHA(500) 
1,GAM(500),w(500),ASTA(500),VJP1(500),VSTAJ1(500),VV(500) 
11VVST(500),U1(500),NGDE(65) 
INTEGER : BAND 
INTEGER*2 	SIGN(500) 
C3AMCIN 	A,AU,ABDRY,BDR,ABDR1,ABDR2,01,NODE,N2P1,NMAX IN2 
CDMMON/STORE/P/OFZ/ALPHA,GA,FFF,SIGN 
:OMM0N/PROD/VJPI,U1/PR0DA/VSTAJ1,U1STA 
EQUIVALENCE(IN) 
READ(5,202)N,N2P1,NMAX,N21 3AND 
READ(5,200)MIME(I),I=1,N2P1) 
READ(5,201)0130;t1,43012,01,FFF Data 
READ(5,201)((BDR(IRAD,J),J=1,2),IRAD=1,N2P1) input 
READ(5,201)((A(I,J),J=1,3),I=1,MMAX) from 
READ(5,201)(AU((),I=1,NMAX) COLDIF 
READ(5,201)((ABDRY(J,I),J=1,2),I=102) 
READ(5,201)RIN,DIST 

200 FORMAT(1X,25I3) 
201 FORMAT(IX,8Z9) 
202 FORMAT(1X,5I6) 

CALL COLMAS(N,BAND) 
NB2P1=BAND/2+1 
ISN=1 
KIP=0 
WRITE(6,2019)RIN,DIST 

2019 FORMAT(' INNER RADIUS',F6.3,3X,,DISTANCEI,F6.3) 
WRITE(6,2020)FFF 

2020 FORMAT(' 	SCALING FACTOR IS',E14.7) 
RATLM=.500 
DO 300 	I=1,N 
IF(1/24.-2.EQ.I)G0 	TO 	301 
V1(I)=1.D0 
V1STA(I)=0.00 
GO 10 300 

301 V1(I)=0.00 
VISTA(I)=1.D0 

Definition 
of initial 

300 CONTINUE vector3 
VISTA(1)=1.00 
GO 	TO 	1002 - 

1001 IF(KIP.LT.C)STOP 
DO 	1003 	I=1,N 
V1(I)=1.D0 

1003 V1STA(I)=1.00 
KIP=-1 
WRITE(6,1004)KIP 

1004 FORMAT(' 	KIP=',I3) 
1002 ALPH=0.D0 

DO 31 	I=1,N Scaling 
31 ALPH=ALPHI-V1(Ii*VISTA(I) of v

1  S1=DABSCALPH)/ALPH 
& 

ALPH=DSQRT(DABS(ALPH)) 
DO 	32 	I=1,N 
V1(I)=V1(I)/ALPH 

32 VISTA( I )=V 1 STA ( I ) /ALPH 
DO 	33 	I=1,N 
VV(I)=V1(I) 

33 VVST(I)=V1STA(I) 
DO 40 	I=1,N - Construction 

40 VJP1(I)=V1(1) of u
1  CALL 	MULT(NI BAND) 

DO 	I=1,N &111.0 
1 

t-I 



:1 
41 	VSTAJ1(I)=VISTA(I) 

CALL AVULT(N,BAND) 
DO 13 J=1,N 
ALPH=0.00 
DO 6 K=1,N 

6 	ALPH=ALPH+vISTA(K)4U1(K) 
ALPHA(J)=ALPH#S1 
IF(J.EO.N)G0 TO 13 
DO 7 I=1,N 
W(I)=U1(I)-ALPHA(J)*V1(I) 

7 	WSTA(1)=OISTA(1)-ALPHA(J)4:V1STA(1) 

ALPH=0.03 
DO 8 I=1,N 

8 	ALPH=ALP:-IfWSTA(1)*W(I) 
IF(J.EO.I.AND.DA3S(ALPH).LT.1.0-20)00 TO 1001 
IF(J.NE.1.AND.DABS(ALPH).LT.1.D-20)GQ TO 131 
S2=DABS(ALPH)/ALPH. 
GAM(J+1)=9SQRT(OABS(ALPH)) 	 Lanczos 
DO 9 I=1,N 	 iteration 
VJP1(I)=AI)/GAM(J+1) 	 procedure. 

9 	VSTAJ1(I)=WSTAM/GAM(J+1) 
AA=0.D0 
AASTA=0.00 
DO 70 I=1,N 

70 	AA=AA+VV(I)*VSTAJ1(I) 
BET=S1*S2*GAM(J+1) 
JP1=J+1 

ti IF(SI*S2.0T.0.DO)G0 TO 72 
ISN=ISN+1 
SIGN(ISN)=J+I 

72 	IF(J.LT.(2*N)/3)GJ TO 71 
RATIO=1.00-DFL3AT(ISM-1)/DFLOAT(J) 
IF(RATIO.GT.RATLM)G0 TO 131 

71 	CALL MULT(N,E3AND) 
CALL AMULTIN,6AND) 
DO 710 I=1,N 

710 AASTA=AASTA+VVST(1)*U1(I) 
WRITE(6,130)AA,AASTA 
DO 12 I=1,N 
U1(I)=U1(1)-BET*V1(I) 
UISTA(I)=U1STA(I)-BETIIVISTA(I) 
V1(1)=VJR1(1) 

12 	V1STA(I)=VSTAJ1(1) 
S1=S2 

13 CONTINUE 
GO TO 132 

131 N=J 
132 WRITE(6,134)RATIO 
134 FORMAT(' SYMMETRY RATIO IS' ,F5.2) 

WRITE(6,135)N 

135 FORMAT(I4,1  LANCLJS ITERATIONS WERE PERFORMED') 
WRITE(61130)(ALPHA(1),I=1,N) 
WRITE(6,130)(GAM(I),1=20) 

130 FORMAT(1X,9D14.7) 
37 	FORMA1(213,D14.7) 

SIGN(1)=ISN • 
WRITE(6,133)(SIGN(I),I=1,1SN) 

133 FORMAT(30I4) 
CALL COLDF2(N) 
STOP 
END 
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SUBROUTINE COLMAS(M,BAND) 
DIMENSION NOJE(65),BDR(65,2),A(12,3),AO(12),ABDRY(2,64) 
1,P(20,503) 
INTEGER ROW, BAND 

IIMON A,AU,ABDRY,BDR,ABDR1,4BOR2,01,NODE I N2P1,NMAX,N2 
COMMON/STORE/P 
NB2=BAND/2+1 
NB3=NB2+1 
NB1=NB2-1 
WRITE(6,200)M,NMAX 

200 FORMATI2I4/ 
MPI=M+1 
CO 100 I=1,BAND 
DJ 100 J=I,MP1 

100 	P(I,J)=0. 
RO.d=0 
DO 120 K=1,N2P1 
FAC1=1.. 
FAC2=1. 
IF(K.EQ.N2)FAC1=2. 
IF(K.EQ.2)FAC2=2. 
N=IASINODEIK/I 
NI=N 
IF(N3DEIK).LT.O/N=N+1 
IF(K.GT.1)NB=IABS(N00E(K-1)) 
DO 12 I=1,N 
IF(NDOE(K).LT.O.AND.I.EQ.N)GO TO 12 
ROii=R0.4+1 
IF(I.GT.1)G0 TO 2 
P(NB2,ROW)=ABORI 
P(NB3,R04)=A(7,1) 
IF(K.EQ.N2P1)GU TO 1 
PINB2+N1,ROri)=01*FAC1 
IF(K.EQ.1)GIJ TI) 12 
P(NB2—NB,ROW)=D1*FAC2 
GO TO 12 

2 	IF(I.GT.2)G0 TO 4 
IFINI.EQ.N.AND.I.EQ.(N-1)/G0 TO 7 
P(NB2,R0d)=A{2,21 
P(NB1,R04)=ABOR2 
IF(NODE(M.LT.0.AND.I.EQ.N1/G0 TO 20 
P(NB3,ROW)=4(3,1) 

20 	IF(K.E0,.N2P1)G0 TO 3 
PINB2+N1,R0:0=AU(2)*FACI 

3 	IF(K.E0.1)G0 TO 12 
PINB2—NB,RObi)=AU(2)*FAC2 
GO TO 12 

4 	IF(I.GE.(N-1))G0 TO 7 
P(NB2,ROW)=A(I,2) 
P(NBI I ROW)=AII-1,3) 
IF(I.EQ.2)P(4,R0^)=A8DR2 
P(N831 R04)=A(I+1,1) 
P(NB2-1411,ROA)=AU(I)*FACI 
IF(K.E61.1)G0 TO 12 
P(NB2—NB,ROW)=AU(I)-FAC2 
GO TO 12 

7 	IF(I.EQ.N)GO TO 10 
PINB2,R04)=A(I,2) 
PINEA,RO4I=A(I-1,3) 
IF(I.EQ.2)P(4,R0.4)=ABDR2 
IFINODEIKI.LT.0)GO TO 8 
PIN(33,R0,4)=BDRIK,1) 

8 	IF(K.EQ.N2P1)G0 TO 9 



10 

PCNB2+41,R0.4)=AU(I)*FAC1 

9 	IFIK.EU.1/GO TO 12 
PINB2-NB,R0e0=4UtI)*FAC2 
GO TO 12 

10 	IF(NODEW.LT.G).G0 TO 12 
P(NB2pRO.4)=BDRIK,21 
P(NE311R04)=A(I-1,3) 	- 
IF(K.EQ.N2P1)7,0 TJ 11 
IFINI.GT.IA3S(NODE(K+1)))30 TO 11 
P(NB2+Nl,R04)=AbDRY(2,K)*FACI 

11 	IFIK.E).1)G0 TO 12 
IF(NDOE(K-1).LT.O.OK.NB.GT.N1)G0 TO 110 
P(NB2-NB,R04)=ABORY(I,K-1)*FAC2 
GO TO 12 

110 PINB2-NB,RO;II=AU(I)*FAC2 
12 CONTINUE 
120 CONTINUE 

RETURN 
END 

cuns massages input data into banded matrix fora. 

SUBRJUTINE MULT(M,BAND) 
REAL*8 AP(500) 1 0(500) 
DIMENSION PI20,500/ 
INTEGER BAND 
COIMON/STORE/P/PROD/Q 1 AP 
NB2P1=BAND/2f1 
DO 1 K=1,M 
KK=K+NB2P1 
AP(K)=0. 
DO 1 I=1,BAND 
L=KK-I 
IF(L.LE.O.OR.L.GT.M)GO TO 1 
IF(P(I,L).NE.O.JAP(K)=AP(K)+DBLE(P(I,L))4=Q(L) 

1 	CONTINUE 
RETURN 
END 

Vitb_the banded matrix denoted by P EULT fortis AP = P * Q in 

double procision, 

SUBROUTINE AMULT(M,BAND) 
REAL*8 AP(500),Q(500) 
DIMENSION P(20,500) 
INTEGER BAND 
COMMDN/ST3RE/P/PR3DA/Q,AP 
NB2P1=BAND/2+1 
DO 1 k=1,M 
AP(K)=0. 
L=K-NB2P1 
IF(L.LT.0)L=0 
DO 1 J=1,BAND 
IFI(K+J).LE.NB2P1.0R.(K+J).GT.(M+NB2P1))G3 TO 1 
L=L+1 
IF(P(JIK).NE.0.)AP(K)=AP(K)+OBLE(P(J,K))*Q(L) 

1 	CONTINUE 
RETURN 
END 

AMUIP1  forms :1p = g * Q. 
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SUBROUTINE COLDF2(N) 
IMPLICIT KEALS(A-H,11-Z) 
COMPLEX*I6 Z,P0,131,POD,P1D,P000 ,PIDD,AMZ,P2,P20,P2D0,'A0,AD 
COMPLEXI-16 TC,SI,S2,S,WIS7L(15),G 
DIM,ENSIDI ALPHA(500),GAM(500) 
REAL*4 FFF 
INTEGER*2 SIGN(500) 
COMMON/DF2/ALPHA,GAM,FFF,SIGN/COM/S,SR,SI/SOLN/SOL 
CALL ERRSET(203,0,-1) 
NO=12 
IRITE=1 	This is the La&uerre root 
FF=DBLE(FFF) 
EPS=2.0-4 	finding al;;ori';. 

ACPT1=2.D-8 
ACPT2=1.0-5 
ACPT3=I.D-8 
DN=DFLOAT(N) 
WARG=DATAN(1.00) 
DPI=4.00*WARG 
ITER=30 
PQ= 1. D55 
PS=2.0-40 
WRITE(6,9930)ACPT1,ACPT2,ACPT3 

9930 FORMAT(3D1C.3) 
C=0.D0 
DD 992 I=2,N 

992 GAM(I)=GAM(I)*GAM(I) 
KK=SIGN(1) 
IF(KK.LE.1)G0 Ti) 994 
DO 993 I=2,KK 
KL=SIGN(I) 

993 GAM(KL)=-GAM(KL) 
994 DO 800 NROOT=1tN0 

WRITE(6,6000)NROOT 
6000 FORMAT(' N=',I4) 

L=DCMPLX(0.00,0.00) 
NSC4L=0 
GO TO 6005 

6002 CALL SCALE(ZIFF,NROOT,IIIRINSCAL,N) 
GO T3 6003 

6004 CALL SCALE(Z,FF,NROOT,21IRINSCAL,N) 
6003 dRITE(6,55)P2,1320 1 P2D0,IR 
55 	FORMAT(' AT 6003'16010.3,15) 

IF(NSCAL.GT.5)G0 TO 600 
6005 DIF1=1000.00 

DO 7 NOIT=I,ITER 
PO=DCMPLX(1.00,0.D0) 
PI=DCMPLX(ALPHA(I),0.00)-Z 
POD=DCMPLX(0.00,0.00) 
P1O=DCMPLX(-1.001 0.D0) 
PODO=DCMPLX(O.D0,0.00) 
P1OD=OCMPLX(0.00,0.00) 
00 3 IR=2,N 
AMZ=DCMPLX(ALPHA(IR),0.00)-Z 
P2=AMZ4--PI-GAM(IR)*P0 
P20=AMDzP1D-P1-GAM(IR)*POD 
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,P2DO=AMZ*P1DD-2.00*PID-GAM(IR)-4--POOD 
IF(CDABS(P2).LE.PS.OR.CDABS(P2D).LE.PS.OR. 

1CDA6S(P2DO).LE.PS)G0 TO 6004 
IF(CDABS(P2).GT.PQ.OR.CDABS(P20).GT.PQ.OR. 

1CDA8S(P2DD).GT.PQ)GO TO 6002 
PO=P1 
POD=PID 
POOD=P1DO 
P1=P2 
PI-0=Pa) 

3 	P1DO=P2DD 
API=CDABS(P1) 
AD=DCMPLX(O.D0,0.00) 
ADD=DCMPLX(0.00,0.00) 
IF(NROOT.EQ.1)G0 TO 5 
NN=NROOT-1 
DO 4 I=1 I NN 
G=Z-SOL(1) 
T=CDABS(G) 
IF(T.LE.8.D-15)riRITE(6,6001)I,NROOT 

6001 FORMAT(' ROOT',14,' AND AN ITERATE OF ROOT 1 ,I4, 
1' ARE PATHALOGICALLY CLOSE') 
IF(T.LT.2.D-20)G=DCMPLX(I.D3,0.D0) 
TC=1.DO/G 
ADD=ADD+TC 

4 	AD=AD+TC*TC 
5 	IF(AP1.LE.2.D-30)WRITE(6,54)AP1 
54 	FORMAT(' API TOO SMALL..',D10.3) 

S1=PID/P1 
S2=S1*S1-P1DD/P1-AO 
S1=SI-ADD 
W=(DN-1.00)*(DN*S2-51*S1) 
W=CDSORT(W) 
S=DCONJG(S1) 
S=S1N 
CALL RLIM 
IF(DABS(SR).GT.2.D-6)GO TO 51 
WMOD=CDABS(d) 
SR=WMOD4:DCOS(4ARG) 
SI=WMOD*DSIN(4ARG) 
GO TO 52 

51 	IF(SR.GT.O.DO)G0 TO 53 
S=W 
CALL RLIM 
SR=-SR 
SI=-SI 

52 	W=DCMPLX(SR,SI) 
53 	W=DN/(S1+W) 

Z=Z-W 
AZ=CDABS(Z) 
AW=COABS(W) 
C1=COABS(P1D) 
IF(IRITE.P).1)WRITE(6,91)ZIPI I PIDIP1DD,W 

91 	FORMAT(2D18.10,8310.3) 
IF(API.LE.(ACPT1*AZ*C1))GO TO 81 
IF(AW.GE.EPS)G9 TO 6 
IF(Alt;.GT.O1F1)G0 TO 84 
DIF1=AW 
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6 	IF(AZ.LE.P.D-5)G0 TD 60 
Wv.OD=AW/AZ 
IFIWM00.LT.ACPT2)G0 TO 82 

60 	IF(Ad.LE.(ACPT3*C))G0 TO 83 
• 7 CONTINUE 

KK=99 
GO TO 20 

81 KK=1 
GO TO 20 

82 KK=2 
GO TO 20 

83 KK=3 
GO TO 20 

84 KK=4 
20 	1F(C.LT.CDABS(Z))C=CDABS(Z) 

SOL(NROOT)=Z 
WRITE(6,21)KK,Z,P1,PID,P1DD,WINOIT 

21 	FORMAT(14,2014.7,/,4(2X,2010.3),14) 
800 CONTINUE 

GO TO 601 
600 NO=NROOT-1 

IF(NO.EQ.0)STOP 
601 DO 801 I=1,N0 
801 SOL(I)=SOL(I)v:FF 

WRITE(6,802)NO 
802 FORMAT(///,2X,I3 1 ' OF ROOTS ARE...') 

WRITE(6,803)(SOL(I),I=1013) 
803 FORMAT(3(4X,2017.10)) 

STOP 
END 

SUBROUTINE RUM 
REAL*8 X,Y,FR,FI 
COMMON /COM/X,Y,FR I FI 
FR=X 
FI=Y 
RETURN 
END 

RIM extracts the real and iiarzinary parts of z = x 	y. 
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SUBROUTINE SCALE(Z,FF,NROOT,KIP,J,NSCAC,N) 
IMPLICIT REAL*B(A-H2 O-Z3 
DIMENSION ALPHA(500),GAM(500) 
COMPLEX* 16. SOL(15),Z 
REAL*4 FFF 
INTEGER*2 SIGN(500) 
COMMON/DF2/ALPHAIGAMIFFFISIGN/SOLN/SOL 
NSCAL=NSCAL+1 
IF(NSCAL.GT.5)RETURN 
IF(J.LE.(N/2))PQ=30.00/DFLOATIJI 
IF(J.GT.(N/2))PQ=20.00/DFLOAT(J) 
PQ=10.D0**P0 
IFIKIP.EQ.2)G0 TO 992 
F1=PQ 
GO TO 993 

992 F1=1.D0/PQ 
993 ALPHA(1)=ALPHA(I)/F1 

DO 995 I=2,N 
ALPHA(I)=ALPHA(I)/F1 

995 GAM(I)=GAM(I)/F1**2 
WRITE(6,901) 

901 FORMAT(///) • 
WRITE(6,900)(ALPHA(I),I=1,N) 
WRITE(6,900)(GAM(I),I=2,N) 

900 FORMAT(2X,12D10.3) 
FF=FF*F1 
IF(NROOT.EQ.1)G0 Tn 3 
NN=NROOT-1 
DO 1 I=1,NN 
SOL(I)=SOL(I)/F1 
Z=Z/F1 

3 	WRITE(6,2)FF,F1 
2' 	FORMAT(' SCALING FACTOR IS..',2017.10) 

RETURN 
END 

If, for some reason or other, the value of the determinant, or of 
the first or second derivative of the characteristic polynomial 
of the tridiazonal 6et out of range, then the tridiazonal 

the roots already found and the current estimate are scaled here. 



15.  

The following symbol table is useful in the interpretation of the 

program COL1.-  

SYMBOL 	 =EU 

All the symbols listed in the symbol table of COLD= ha-re 

the same meaning here, except B which is called DI32 

- here. 

VI 	v. 

VISTA 	vt 

VLIF1 	V. 
	 of the generalised 

VSTAJ1 • 	
J+ 
vt 

 1 	
Lancnos.method 

In 	U. 
3+1 

U1STA 	ut 
4-1 

W 	W. 
a 

W3TA - 	Tit 
J 

ALPHA 	vectorcontainingcLls 

GAM 	vectorcolltailling- 1j  l s 

SIGN 	vector containing signs of the $.'s 

of chapter I. 

VP 	stores v
1 

 

VVSTA 	stores v* 
1 

RATIO 	symmetry ratio at that specific point 

AA 	v3T  vl  

LISTA 	value of hij  

P 	coefficient matrix in massaged form 

SUBROUTI= COLD72 

ACFT1 
AOFT2 	constants Tor the sto7lping criteria 	1,2,3 of 2.3. 

ACPT3 

C 	maximum value of the moduli of the roots already found 

NROOT 	number of root currently being sought 

Z 	present approximation to root 
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PO 2  ) Pr- 

P1 	P 	) r-1 

POD 	pt--2 

P ip 	Di
r" 	

) 
I 	) 

PODD 	) 	- see 2.2 
) 

P1DD 	p" 1 )) 

P2 	Pr  ) 
1 

P2D 	P1  
) 

P2DD pr ) 
PQ, 	upper threshold on pro  plo  

PS 	lower threshold on p.,, rx, p!. 

S1 	31 	) ) of 2.3 
S2 	S2 ) 

V/ 	defined in 2.3 

SOL 	this vector holds the accepted approximations to the 

roots 
yroTran description: The routine I= of COLI initially reads in 

the finite difference coefficients 	passel to it from COLDIF. 

Control passes almost immediately to the routine termed CODLISt  

where the input data is massaged into banded matrix- 

This matrix has not been densely packed as might 

easily (?) be done in the case of an extremely large matrix (or a 

small computer system) - see Tewarson (29ifor details of packing 

techniques. On returning to MAIII the initial vectors v1 and v* 1 

are defined so that yin= S1. After having formed u1  and uT the 

execution of the Lanczos algorithm commences. 

The Lanczos algorithm of chapter 1 is applied as described 

there. If
1
410-20  the algorithm is recommenced with new 

- different initial vectors - if any other 'IC is less than 10 20  

control is passed to COLDF2 where the roots of the tridiar-onal 

matrix obtained thus far are sought. If (with no ,S‹ 10'"20) 

after 2n/3 or more Lanczos steps have been carried out the symmetry 

ratio (redefined later) is found to be greater than 0.6 control 

is transferred to COLDF2. During the execution of this section of 

the algorithm the values of v.v*, i=1,..on as well as h1 11r , 

x=31..01 (see chapter 1 for the definition of h. r)are computed 

and printed as a running check on the biorthogonality of the 
computed vectors and on the tridiagonality of the supposedly upper 

hessonberg form. 
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II : Pror;ram for the solution of the Poisson equation by the matrix-

tau-lines technique. 

) 	( I 	) • • (1A 

4 =-10 
• . 	• f',:( 

• ) :; 	 5E -=, 
•:=.•;iv 

::n.,:s=5.00/6.or; 

.93 
( 1 ‘,,7=:)..7(1 =„1A).CH:ii1(22) 

Requires no of y-steps and 
range of Cheby perturbations. 

cftlst=i.0)(,/1)..no 

r):J 5555 1=1, :!--)2 

55 -5 
4,..1,1=1„,)12 

.r.12 
1002 1=1 , 1,  ? 

.r;I• 	') (1 ) 

10'D 

(J)=1J(J-i),-v 

7)171  100.1) 1=2. .P1 

) 

-)r1 2 1=1. : 
;In 1 

IF(I.E',.J-1).1(I,J)=-7)FLflIT(I)/eFL.-1-1.T(J) 

2  

4 J= 1 .I 
4 

Iii 5 
IP1=I+1 

J=1:01 .; 
5r, 	( I 	=n 

7 	fl21- 	C 	1' 	?.5 ) 
q 	= • 
.--I I 

r)ri P. ,1='!!:■1.:.R.- 
-(I..1)= :(I,.1)-  

'1 0  12n I= 1 .\i 
1 )71  12 J= 1_. %  
Y1(I.J)=r,  • 

12.-) 
.)1-! 	117.(;'. 

12 	J= 1 .-  
12 	A(I.J)='..(E..!)/ 2. 

.y■ 13 .1=1.- 
1 13 	1 . • 

(I) 

1 (1,-,,5 

Definition of 
boundary curves. 

Construction 

of matrix ICI  

• 
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14 I=1 . 
JI;' 14  

1= - ( 7 .11:,.(1.J1 
'4 Construction of 

)r 15 I=1. matrix S. 
15 	J=i. 

	

!(IJ.J-4  ')= 	(IJ,J4-'1 )+SI(IJ.':)*,7-,(f. 1 ) 
20-) 

DP 204,  J=1. . 
2c0 
207 v1  207.! J= 1 .-  

TK(J1=0..)0  
TL(J)=(1.;)0  

2r17) 

• 	

300 .=I21, 

• 	

=G44:. -- E ( 
T.rF'11 1. 

	

( 	.1 
5r! 	 s i= 	I 

T.:( v "( II. 

-?:- ) 
-I1 

	

	 yl 
• 

5.)1? 1 ?=7. =-(J),,.:( 

1— (J1=1-(J)-"-- 
7.) 

T:=(J1=1 ,--,(J1+LLX.- 
5n1 :0  

555A 	10,,1 :T=  

:!T-3 1=.1-4- 1  
LJJ2= .14-2 

LY=1.1.".) 
jr lcn 1= 1 . ' 

Dr'0(.11)=n..:w 

• 19() 	To? 

TD21c;i's  T11  10:1  
(7 1=TC -=-( 7,1-1) 

19m) Cf.'. TI°Jc 
4M2.=( 1+1)/2 
NP-.121=1.P1 -'%+1 
on 212 11= 1 . D21 
I=II-1  

.11C.r! in 7n2  
Ir.: (1.(:.T. 1 )rn in ?Oz.. 
1,P 213 IJ=1, 
• 214- J=1. 

21= 	SI(IJ.J)= -,. 
21-;  

co! II( 7,!;, / 
202 	)fl 203 I J = 1 

Or. 203 J= 1 . 
203 	5IIIJ.J1=';(IJ.J1 

• TO 207 
20L. .)0 7r,5 IJ= 1 , 

FA*,  205 J= 1 ,' 
1(11,J+ }=z* I(IJ.11*c( 1 , 1 )  • 
)1 20f ;e=2. ' 

Construction of 

vectors k,l,p,r. 



Construction 
of the vectors 
k,l,p,r. 
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:fl jC7 IJ!, 
502 J=1," 

*-2,4*S1(1J.j)1,.(j) 

PDPrii1=,;?-,(IJ)+ 51. (I.1.J )1-1)(.11  

L2H=..-42 
212 	:("1:.T1 - ' 1 i 

2Pc. 

2Pn  = 
SI (1,1) 	SI ( I . 1 1+ 	( I 	,;‘;`< ( 
SI ( I 	(I .; )+ ( 	" LL!_ 

2PI 
215 1=1 .. 

“ :(T)=SI(I.1 ) 
LLI.(I)=SI(I.2) 

215 	.P. -3 (I)=SI(1.4)“,"?. 

2150 747,4—AT(///.' ..q= 1.13) 

	

700 	 Ar-zE ... 1 ) 
tiosITE(9.71((J1.J=1.  
WPITEN).71(LLL(.!).J =1..i)  

▪ 1:Tr2.(V.71(DP,)(J)..1=1, ) 
!.:RITE('4.7)( 7, 1j1,1=1..! )  
CA) ceu 	 IT .21 
cL4 	( 	. 

,z\ui 

(1)=—YL(1)+T=  A II 1 Definition of boundary condts 2 IA.,  T=i   • 

	

1  5 	C.GG ( I
7 	

(1)+I-)  ( I ) +1. 	 f and g. 
On 21. 	I=1, • 

I )=LL.L. ( 	I 

	

217 	)=4-:- F (I 	 - -s 	) 
21-, I=1,;' Solution of the system of 

	

21P 	r;c=f;(i) - (i)— t---= (I)*:;p0( i ) 	linear algebraic equations 
1.r.) 	 for the taus. 
T1 21? 

	

2l' 	FPF.  (1 )=1:F.■' ( I )-“ P'LLL ( I ) 

	

220 	.:(“-.AT(/

• 

/,' 	2 ST c fl t: TAUS 4:-)...‘11)(). 

• 

1) 
::1ITE('7f7/(7=(!),I=1. ) 

• ) 

11 2t!):! IJ=1.- 
	THE SESULTS aP,=**-.:1) 

0 
470 u ;:1-,1,.T(/

▪ 

//. 1 	 

)fl 311. IX= 1 .,; 

.2 17 2.;..! T=1.'1  
.)PP(I)=!;.,:1(,  

7•-:)C 
iI =', 

1=11-1  
= 	I. 7,- 

4 2 
-:)17;1,  

I J=1 
.)13 3n r: 
.(IJ,J+- )=ST(IJ!1)*S(1,J) 
3n 

	

3q() 	:1CIJ,J-1-..)=..(IJ.J4.1)4- SICIJ.K)*S(<,J )  
:):1 301 IJ=1. 

301 

	

3.-;1 	SI(IJ.J)=H(TJ.J+q) 

Evaluation of the solution 
at the specified points. 

—17 
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LL( 
In 307 

2PP(IJ)=Pi:—(IA)=SI(IJ,J)*K

• 

(A)*C1 
C.-1 17.1;H:E. 

D;) 310  Is1= 1 .'! 

00 309 
!1(1J)=1)(1.1)-1-(PDD(K)*FP7:(IJ)+1( 	J))*1(iJ.K) 
U(IJ)=MIJ)*ri? 

Ev::!_n(XX.TK.2) 
CALL EV 	• IL • Di 
on 31n1 

31:11 !I(J)=_I(JI-1-T!::(j)'IL(J) 

r1 
310n '(X(IJ)=XX(IJ)+XI 1C(IJ) 
311 	Cfl.:T1,.W-: 
lnnl 

GO TI) inO0 
STOP 

D 
r“: 	T 

r-klE I/ *7, r;= :.5.s 
s=1.:pn 
f5=1.0r) 

in 2 
DO 1 	 Construction of s6. 

1 	S=SyFLfl-ri(I-0 - 	- - 
2 	JJ=:-,-?mr 

Tn 4 
DD 

4 
;ETURA 

017! 1 1=1.'j 
sr;i= - T 

= 

Or .1  ? 1= 1  
2 

7:1 

Definition of the 
coefficients of the 
shifted Cheby poly. 

"3:)•• 	1,1=1 
J=],-  

1.;".3 t) ST(1.1.J) 
• St(IJ-iJ)= 1 .::0  

'30 
3(1t1 	3n5 TJ=1!. 

▪ ST(IJ,J)=S{IJ,J) 

9D 	IJ=1  
KKK(1J)=0.Cn 

-;060 
On 

IF(i-le'.(;-1. --f)r“) To 3061 

3061 on 306? J=1....; 
TU 30 

X=0.00 
[E(4.1-:r1.2*1)x=1.00 
C ;(1; Ti) 

3062  X=Xx(J)*=41"-:.-2*I) 
3054 LLL(J)=LLL(J)+FLL*X 

3052 
KKK(J)=KK::(J)+;:-K'K*X 

302 :),jTI , :IJ 
DO 307 IJ=1,,' 

"-07 
7.01(IJ)=k7:-(IJ)-4-SI(IJ.J)*L 

3'19 
310 

s's 

 

Evaluation of the solution 

at the specified points. 

    

1 
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Sc=1..1,  

TI! 
-1fl i 1.=).-)  

1 
2 	1-7.(.1.7...1.):0-1  To 

▪ SS=SS

• 

T(I) 

Tfl 
• 5 

5 	sss.sss T(I) 
6 

FV!%Ln(X.n,'- ;) 
F.PLICIT 

• ( 1(-.71%).,:7 (12) 
S(1A.i6).Xf1';./.SI(16.16).X(  
S. 

Trl 13 
)-1 	1 	1=1.

▪ 

1.! 
1 

'dr 15r: 11=1. 04 2D1 
1=1T-1 
cI(;i:=-ct!"; 

2 	1j=1. 
III 3 J=1. 1  

3 	5I(IJ.))=n.-)0 

!--0 TO 1r-: 
7• 	)fl 6 IJ=1, 

6 J=1. 
6 	cI(1J.J)=5,(T.J.J) 

Gn TO 1) 
7 	8 IJ=1 .- 

J=1,' 
,C(J,J+:1=SICIJ,1) :'.:S(1,J) 
.g1  

/

▪ 

=.(IJ,J+.°)+SI(IJ,K)*S(=TJ) 
.0: 9 IJ=1, 
_1? 9 J=1. 

4 	Si(IJ,J)= .(1J,J+:) 
1") 	_Jr! 1 3 IJ=1. 

CX (Li). 1 :•.6.r.1))(-(1 in 11 
XX(IJ)=1, .. 1 ) 

TO 11- 
11 

	

	 in 12 
xx(IJ)=1.--)n 

TO 1 
17  
13 

1,1=i.! 
7.1(1J)=SI(IJ.1)*\X(1) 
JO 14 

14 

5.1=1, 
15 	..,(J)=0(J)-!--c,-\(J) 
15E, 	--; p=-4;-...2 

TO I“; 
)T 1 j=1. 
T=IX(J)....rvo ,(J)=r1.r,0 

19 
1-1-1 

.(I)= 
.)0 '16 j=7.9 

Dr, 17 J=1,,, 
17 	"(.1)=H*X'.:(J) 

2 	
Routine required by 

4 	 the function TCB. 

I )'"(161 

Subroutine which 
evaluates the vector 
124,-th canonical 
polynomial CI at the 
points X. 


