CORRECTIOnS.

1. Pare ii. The last sentence should read "...in solving a Stefan problem..."
2. Pace 7. Equation (21) should obviously be

$$
\gamma_{j+1} \nabla_{j}^{T} v_{j+1}^{*}=-\beta_{j}^{*} v_{j}^{T} v_{j-1}^{*}+0(\varepsilon) .
$$

3. Fare 8 Equations (22) and (23) are each missing a factor $O(E)$ in the \sum term.
4. Page 30. The quantity p_{2} requires defining. The third line of this page should read $02=\Delta r . p_{2}$.
5. Page 59. Line $3: \ldots$ (egg. if $D y(x)=x y(x)+y(x))$ Line 15: ..here $Q_{0}(x)$ is either $-\frac{1}{2}$ or $\frac{1}{2} x \ldots$
6. Pare 62. Line 10. A factor $\frac{1}{2}$ should be attached to the first term. Lines $7.8,9,10$. The term y^{2} appearing in the denominator should be Δy^{2}.
7. Page 88. Cases g) and h) at the bottom of this page should be deleted.

NUEREICAL SOLUTION OF DIFERENTIAL ZQTATIOMS

by Colin John irizight

A thesis submitted to the Imperial Collese of Science and Technology of the University of London for the degres of Master of Finilosophy.

August 1975

ACKNOWLEDGEMENTS

I wish to express my gratitude to Drs. A. Fonda and E.I. Ortiz for their advice and encouragement during the preparation of this Thesis.

Abstract

This research started out as an attempt to find the eigenvalues of the Laplacian operator on a certain domain. In order to do this a Tariation of the Nell-inown Lanczos minimised iteration technique Was devised for isolating tine eisenvalues of large sparse non-symatric matrices. The required eisenvalues Fere then found via the usual finite difference approach.

The Laplace and Eoisson equations Fere then solved on domains of a certain tyoe by means of the method of lines and the Lanczos-tau method. Some error analyses are given. The errors incurred by a previous author in solving a Stefforan equation by a similar technique are considered.

Introduction
page

PART ORE

Chapter 1: The method of Lanczos for non-symmetric matrices
1.1 Introduction 3
1.2 Variants of Lanczos' algorithm 4
1.3-1.6 Analysis of techniques 7
1.7 Examples 16
1.8 Conclusions 25
Chapter 2: Ficsenvalues of a Differential Operator
2.1 Statement of problem and outline of page 27 finite difference approach
2.2-2.4 jecessary back;round - evaluaiing 31
determinant of tridiasonal Iatrix; Laçuerre's metiod; scaling
2.5-2.6 Results and comments 34
2.7 Experiences in root finding 51
Final Coments on Part One page 55
PART TYTO
Chanter 1: Introduction to Tau Uethods
1.1 Introduction . . . page 56
1.2 The tau method 56
1.3-1.4 Canonical polynomials and their constuction 57
1.5 Eiธ̃envalue proolems 59
Chapter 2: Some Lenczos-tau method of lines techniques 61
2.2-2.3 Techniques 61
2.4 Error Analyses 65
2.5-2.7 Nusarical results and comments 71
2.7-2.8 Collocation, prior intefration and canonical 73 polynomial techniques
Ghapter 3: Batrix Lines Tau Method
3.1 Introduction 79
3.2 Kiethod applied to Laplace's equation 79
3.3-3.6 ذxamples, results and coments 83
3.7-3.8 Extension of method to Poisson's equation with 97 some examples
3.9-3.11 Examples with more coaplex boundary conditions 101 handled
Chapter 4: Extensions of Nethod
4.1 Introduction .. pase 111
4.2-4.3 Eigenvalue problem 111
4.4 General elliptic boundary value problea 114
Chapter 5: An Error Analysis .. . page 118
Chanter 6: An Error Analysis of the Mathod of . . . page 122
Wrage
Bibliograchy

Tine orisinal rurpose of this mors vas to fini the eicenvalues, λ, of smallest modulus oí

$$
\begin{equation*}
\nabla^{2} \psi+\lambda \psi=0 \tag{1}
\end{equation*}
$$

on the domain Γ of fisure 1, subject to the conaitions

$$
\begin{equation*}
\Psi=0 \quad \text { on } s_{1} \tag{2}
\end{equation*}
$$

The equation defined by (1), (2) and (3) occurs in the study of tile physical theory of nextron chain reactors (see e.jo iteinbers and "ijner [31]). The sinnlest case is that on a bare ho=ofoneous reactor havinu
 control rod of radius a (the cenire of the control rod is at a distance b froa the centre of the reactor). The nethod of liondiein and Sealetter ([31] p 770) for this problea entails replacing tie control rod by a point sinzularity in the neutron density - such a roint sincularity corresponds to an ajsorber of a certain strencth. Folar coordinates are introduced, the eigenfunctions are ampowinajed using Bessel functions of botin ties first and sEcond kinds and the gisenvalusa obtained. Control rods of non-zero redius only rere considered in this mork. First, the differential operator ras approxinated in the usual manner by means of a difference operator (see e.g. Fox [9], Collatz [5]). The resulting large sparse banded non-symmetric matrix Has reduced to tridiaconal form by zeans of a modified Lanczos (ninimized iteration) method.

In the first chapter of part one π give an account of this modified method. Some examples illustraing various aspects of the behaviour of this algoritha are given. The roots of the resulting tridiazonal matrix are isolated by the method of Lasuerre - this method being chosen because of its superior convereence properties-see chapter
two for this. An abortive attempt at finding the eigenvalues using a variational method (Kikhlin [22], Mikhlin and Smolitsky [23]) was made. This technique was abandoned because of the vast amount of computational effort required. At the time this work was done (1969-1971) the finite element techniques were not yet fully in vogue, hence their non-appearance.

Originally it was planned to extend the Lanczos tau method (in the form proposed by Ortiz [24]) to find the eigenvalues of the given problem. Inspired by Wragg's [37] solution to the Stefan problem, a combination of the method of lines (Berezin and Zhidkov [2] p 580) and various Lanczos tau methods were used to solve the equation of Laplace. Initially we met with little success, but then developed a matrix type technique mhich works extremely well on domains of a certain type. Error equations were set up and solved for most cases (including that of ITragg).

The layout of the second part, briefly, is as follows : We first give a general introduction to tau methods. In chapter two some unsuccessful attempts at solving Laplace's equation are outlined. The successful matrix type technique is then given for both the Laplace and Poisson equations and also the eigenvalue problem. Examples are given.

Some points regarding notation are necessary. Frequently we use [r], where r is real, this indicates the largest integer less than or equal to r. Fntries aaaa and $q q q q_{p}$ in tables mean . aaaa and - $q q q q \times 10^{\mathrm{P}}$ respectively. An integer n appearing in the body of a table means 10^{n}. Entries in the bibliography are referred to by [m], the different uses made of square brackets are always clear. The Chapters in each of the two parts are numbered consecutively from one. Different numbering systems operate for equations, tables and figures in each of the several chapters, for example equation 21 of chapter 2 of part two is referred to as equation (21) in that chapter and equation (2.21) in other chapters of that part. There are no references from one part to equations etc. of the other.

1.1 Tillinson [35] describes satisêactory metiois oif computing eisensystens of non-syanetric matuices of reasonable orler. For very larse systeris the situation is somarhat different in that available netiods are not entirely satisfactory.

Tertarson [28, 29] does hortever describe a variation or the Gaussian similarity transformation by neans of mich the number of zero elements that becone non-zero in reducing a very laree sparse matrix to nessenbere form is minirized.

Lanczos [18] sugsested a method of mininized iterations for reducins a matrix to tri-diasonal forn. This netiod has been further expounded by :Iilkinson ([33],[35]). Faige [25] has described a variation of tinis nethod suecifically suited to laree sparse symetric matrices. Te here propose an extonsion of Faise's alcorith ained at producing the cigenvalues of large arbitrary catrices.

The usual seneral ianceos (mininized itaration) alcoritim is:Choose v_{0} and v_{0}^{*} to be null vectors and select v_{1} and v_{1}^{*} arbitrarily (but not orthoconal), then congute for $j=1,2, \ldots, n$:

$$
\begin{aligned}
& \gamma_{j+1} v_{j+1}=\Delta v_{j}-\alpha_{j} v_{j}-\beta_{j} v_{j-1}, \alpha_{j}=\left(v_{j}^{*}\right)^{T} A v_{j} /\left(v_{j}^{*}\right)^{T} v_{j} \\
& \beta_{j}=\left(v_{j-1}^{*}\right)^{T} A v_{j} /\left(v_{j-1}^{*}\right)^{T} v_{j-1} \\
& \gamma_{j+1}^{*} v_{j+1}^{*}=A^{T} v_{j}^{*}-\alpha_{j} v_{j}^{*}-\beta_{j}^{*} v_{j-1}^{*}, \alpha_{j}=v_{j}^{T} A^{T} v_{j}^{*} /\left(v_{j}^{*}\right)^{T} v_{j} \\
& \beta_{j}^{*}=v_{j-1}^{T} A^{T} v_{j}^{*} /\left(v_{j-1}^{*}\right)^{T} v_{j-1} .
\end{aligned}
$$

The constants γ_{j} and γ_{j}^{*} are suitable scaline factorz. In the absence of rounding and concellation errows this al that the tro sequences of vectors, viz. $v_{1}, v_{2}, \ldots, v_{1}, v_{2}^{*}, \ldots$ aro biortlogonal.
For sofe value of jsn (say s) it ay har pen that tine scalar proanct $\mathrm{v}_{\mathrm{s}}^{\mathrm{T}} \mathrm{v}_{3}^{*}$ vanishes - this always occurs when the antrir is derosatory. Causey aid Gresory [4] descrios ion to restarit the aljoritice in such circuastances. Then the algorithn does fail in this way it follors that $N=W$, were $V=\left[v_{1}, \ldots v_{s}\right], T$ is tridiayour and event eisenvalue of in also ar eisenvelue of \therefore. In this mone me mill not bs interastod in restartinj the alforitm in failuen oscurs, a T will locata some of the extrane eiconvoluss of s. sliso, under cortain ciroumstances the eigentalues of F_{k}, the leaing k , k
part of \mathbb{T}, are likely to be cood arrroximations to some of the extrexe eigenvalues of A (see 1.7 and also chavter 2). Irencsos indicated this and Kaniel [12] and Laige [25] have civen soze results for sy:metric matrices.

Several authors, includine Ianczos [18], ailvinson [33] and Gresory [11] have pointed out that tine ortiononality of the two sets of vectors is soon lost competely as a result or the cancellation errors winch occur in the implenentation on tion alforithne is a cure for this ill milkinson has sussested mo-oxtionomelizins each vector (as it is comuted) against the previcusly corifuted vectors, binile Grecory has rrowosed the retention of furtior non-zero terns in the recurrence rolations - theoretically tions terns siould be zero, but in practice tum out not to be so. ..eitilez of tinces technigues provides an efficient cure to the ills of the aluoritim rhen it is applisd to very larce sraree natuices. In the ne:t scction we prozose a nev varietion of the lanczos alzoritin wich eoes a lons ray tortard solving the orthojonality rroblem, encountered in its anplication to the problers of findins the cigsnvalues of liarce Eeneral matrices.
1.2 . The ceneralized Lanczos aluoritat of 1.1 may be phrased somemat differently as :-

1) Cnoose v_{1} and v_{1}^{*} arbitrarily, but auca that $v_{i}^{* T} v_{1}= \pm_{i}\left(=S_{1}\right)$ ard compute $u_{1}=A v_{1}, u_{1}^{*}=A^{T} v_{1}^{*}$.
2) $F O=j=1,2, \ldots, \underline{1 s}$, concute :-

$$
\begin{equation*}
\alpha_{j}=\frac{v_{i}^{* I} A v_{j}}{v_{j}^{*_{i}} v_{j}} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha_{j}=\frac{v_{i}^{* T} u_{j}}{v_{j}^{* T} v_{j}} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \nabla_{j}=u_{j}-\alpha_{j} v_{j} \tag{3}\\
& \nabla_{j}^{*}=u_{j}^{*}-\alpha_{j} v_{j}^{*} \tag{4}\\
& \phi_{j+1}=\nabla_{j}^{* T} \nabla_{j} \tag{5}\\
& S_{j+1}=\operatorname{si} \xi_{n}\left(\phi_{j+1}\right) \tag{6}\\
& \gamma_{j+1}=\left(\phi_{j+1}\right)^{\frac{1}{2}} . \tag{7}
\end{align*}
$$

$$
\begin{align*}
& v_{j+1}=\nabla_{j} / \gamma_{j+1} \tag{8}\\
& v_{j+1}^{*}=\nabla_{j}^{*} / \gamma_{j+1} \tag{9}\\
& \beta_{j+1}=\frac{v_{j}^{* T} T_{i+1}}{\nabla_{j}^{* T} v_{j}} \tag{10}\\
& \beta_{j+1}^{*}=\frac{\nabla_{j}^{T} A^{T} v_{j+1}^{*}}{\nabla_{j}^{* T} \nabla_{j}} \tag{11}\\
& u_{j+1}=A v_{j+1}-\beta_{j+1} \nabla_{j} \tag{12}\\
& u_{j+1}^{*}=A^{T} v_{j+1}^{*}-\beta_{j+1}^{*} \nabla_{j}^{*} \tag{13}
\end{align*}
$$

This carines the al forithn.

$$
\begin{align*}
& \text { Using (8) and (9) } \\
& \qquad v_{j}^{* n} v_{j}=\frac{\nabla_{j-1}^{* T}}{\gamma_{j}} \cdot \frac{\nabla_{j-1}}{\gamma_{j}}=\frac{\emptyset_{j}}{\gamma_{j}^{2}}=\frac{1}{S_{j}}=S_{j} \quad(= \pm 1) \tag{14}
\end{align*}
$$

Also, by (13)

$$
v_{j}^{* T} A=u_{j}^{* T}+\beta_{j}^{*} v_{j-1}^{* T}
$$

and, suostitutine for u_{j}^{*} Irom (4)

$$
\begin{equation*}
v_{j}^{* M} A=\pi_{j}^{* T}+\alpha_{j} v_{j}^{* T}+\beta_{j}^{*} v_{j-1}^{* \Gamma} \tag{15}
\end{equation*}
$$

Hence, by (10), (14) and (15)

$$
\beta_{j+1}=S_{j} v_{j}^{* T} A v_{j+1}=S_{j}\left(r_{j}^{* P}+\alpha_{j} v_{j}^{* \Gamma}+\dot{S}_{j}^{*} v_{j-1}^{* P}\right) v_{j+1}
$$

Using the bi-orthojonality proyerty of the vectors, and also (8)

$$
\begin{equation*}
\beta_{j+1}=S_{j} S_{j+1} \gamma_{j+1} \tag{16}
\end{equation*}
$$

Similarly $\}_{j}^{*}{ }_{j \div 1}^{*}=S_{j} S_{j+1} \gamma_{j+i}$

$$
\begin{equation*}
=\beta_{j \div 1} \tag{17}
\end{equation*}
$$

Te now have the alsorithm (comare raige [25]) :

1) Ciocse v_{1} and v_{1}^{*} arbitrarily, but such that $v_{1}^{* i} v_{1}=S_{1}(= \pm)$. Covate $u_{1}=\therefore v_{1}$ and $u_{1}^{*}=A^{T} v_{1}^{*}$.
2) For $j=1,2, \ldots, i$, cominte

$$
\begin{align*}
& \alpha_{j}=S_{j} v_{j}^{* T} A v_{j} \tag{A1}\\
& \text { or } \quad \alpha_{j}=s_{j} v_{j}^{*-\frac{1}{2}} u_{j} \tag{A2}\\
& \begin{array}{l}
\pi_{j}=u_{j}-\alpha_{j} v_{j} \\
\nabla_{j}^{*}=u_{j}^{*}-\alpha_{j} v_{j}^{*}
\end{array} \tag{23}\\
& \phi_{j+1}=\pi_{j}^{*} \pi_{j} \\
& s_{j+1}=\operatorname{sign}\left(\phi_{j+1}\right) \tag{Аб}\\
& \gamma_{j+1}=\left(\left|\psi_{j+1}\right|\right)^{\frac{1}{2}} \tag{A7}\\
& v_{j+1}=\pi_{j} / \gamma_{j+1} \tag{48}\\
& \nabla_{j+1}^{*}=\nabla_{j}^{*} / \gamma_{j+1} \tag{49}\\
& \beta_{j+1}=S_{j} V_{j}^{* T} A V_{j+1} \tag{A10}\\
& \text { or } \quad \beta_{j+1}=s_{j} s_{j+1} X_{j+1} \tag{A11}\\
& \beta_{j+1}^{*}=s_{j} v_{j}^{T} \mathcal{A} v_{j+1}^{*} \tag{112}\\
& \text { or } \quad \beta_{j+1}^{*}=s_{j} s_{j+1} \gamma_{j+1} \tag{A13}\\
& u_{j+1}=A v_{j+1}-\beta_{j+1} v_{j} \tag{A14}\\
& u_{j+1}^{*}=A^{T} v_{j+1}^{*}-\beta_{j+1}^{*} v_{j}^{*}
\end{align*}
$$

The choices lie beimen (1) and (2), (10) and (11) and (12) and (13). Denote these 8 aicroritimes by $A(i, j, 1), i=1$ or $2, j=10$ or 11 , $l=12$ or 13. Although theorotically identical these alcorithes diffor vastly cosputaticualy.

Usinc the results of \#ilicinson [34] and assumins inat $\|A\|=1$ the equivalonts of ($\therefore 1$) - (A5) in tise rresence ci moundins emors are (were ε denotes the roundine euror of tio wabins used) :

$$
\begin{align*}
\alpha_{j} & =S_{j} v_{j}^{* I} A v_{j}+o(\varepsilon) \tag{R1}\\
o v \quad \alpha_{j} & =S_{j} v_{j}^{* N} u_{j}+c(\varepsilon) \\
\nabla_{j} & =u_{j}-\alpha_{j} v_{j}+o(\varepsilon) \tag{R2}\\
\nabla_{j}^{*} & =u_{j}^{*}-\alpha_{j} v_{j}^{*}+o(\varepsilon) \tag{R3}
\end{align*}
$$

$$
\begin{align*}
& \phi_{j+1}=\nabla_{j}^{* I} w_{j}+O(\varepsilon) \tag{BS}\\
& S_{j+1}=\operatorname{sis}\left(\psi_{j+1}\right) \tag{2}\\
& \gamma_{j \div 1}=[1+0(\varepsilon)]\left(\left|\emptyset_{j \div 1}\right|\right\rangle^{\frac{1}{2}} \tag{R7}\\
& \mathrm{v}_{\mathrm{j}+1}=\mathrm{m}_{\mathrm{j}} / \gamma_{\mathrm{j}+1}+O\left(\varepsilon_{\mathrm{s}}\right) \tag{RB}\\
& \mathbf{v}_{\mathbf{j}+1}^{*}=\nabla_{\mathbf{j}}^{*} / \gamma_{\mathbf{j}+1}+O(\varepsilon) \tag{RS}\\
& \beta_{j+1}=S_{j} v_{j}^{* T} A v_{j+1}+O(\varepsilon) \tag{R10}\\
& \beta_{j+1}=S_{j} S_{j+1} \gamma_{j+1} \tag{R11}\\
& \beta_{j+1}^{*}=S_{j} v_{j}^{T} A^{T} v_{j+1}^{*}+O(\varepsilon) \tag{R12}\\
& \text { or } \quad \beta_{j+1}^{*}=S_{j} S_{j+1} \gamma_{j+1} \tag{R13}\\
& u_{j+1}=A v_{j \div 1}-\hat{p}_{j+1} v_{j}+0(\epsilon) \\
& u_{j+1}^{*}=A^{T} v_{j+1}^{*}-3_{j+1}^{*} v_{j}^{*}+O(E)
\end{align*}
$$

or

Factors, such as n, have bon omitted here for the sake of simplicity. ${ }^{\circ}$
1.3. Loss of onthojona? it; occurs ma either (or both) on π_{j} and $\%_{j}^{*}$ are small, in which case, as a result of cancellation γ_{j+1} rill be small in (nT) and the $O(\varepsilon)$ errors in π_{j} and $\#_{j}^{*}$ mill be Greatly masified in (2B) and (A9) causing v_{j+1}^{*} ad v_{j+1} to be very different from the expected vectors. This loss of orthogonality is simply unavoidable in any of the alcorithus. However, even in this case, as in the symotric, some noteworthy results involving $V_{j}^{* i n} v_{j+1}$ still hold. In particular, iron (31), (R3), (R14) and (31), (RA), (R15) and (R8) and (20) it follows that

$$
\begin{equation*}
\gamma_{j+1} \nabla_{j+1}=\mathbb{1} \nabla_{j}-\alpha_{j}{ }_{\mathrm{Y}}^{j}-\beta_{j} v_{j-1}+O(\varepsilon) \tag{18}
\end{equation*}
$$

and $\quad \gamma_{j+1} v_{j+1}^{*}=A^{T} v_{j}^{*}-\alpha_{j} v_{j}^{*}-\beta_{j}^{*} v_{j-1}^{*}+O(\varepsilon)$
so that $\gamma_{j+1} \mathrm{v}_{\mathrm{j}}^{\mathrm{*T}} \mathrm{v}_{\mathrm{j}+1}=-\beta_{j} \mathrm{v}_{\mathrm{j}}^{* T} \mathrm{v}_{\mathrm{j}-1}+0(\varepsilon)$
and also $\chi_{j+1} \nabla_{j}^{T} v_{j+1}^{*}=-\beta_{j}^{*} V_{j}^{T} \nabla_{j-1}^{*} \quad$.

It follons easily, then, that
and also that

$$
\begin{equation*}
\gamma_{j+1} \nabla_{j}^{T} v_{j+1}^{*}=\sum_{r=2}^{j} \frac{\beta_{i} \beta_{j-1} S_{j}^{\hat{i}-2 B_{j}-3^{\cdots} \cdots 3^{(0)}}}{\gamma_{j} \gamma_{j-1} \gamma_{j-2} \gamma_{j-3} \ldots \gamma_{I}}+c(\varepsilon) \tag{23}
\end{equation*}
$$

The symol (*) indicates that an asterist is to be inserted on β_{r} inff $j+1-r$ is even in (22) and odi in (23).

Using (R2), (R3) and also (R2), (R4) we have that

$$
\begin{equation*}
\gamma_{j+1} v_{j+1}=u_{j}-\alpha_{j} v_{j}+o(\varepsilon) \tag{24}
\end{equation*}
$$

and $\quad \gamma_{j+1} v_{j+1}^{*}=u_{j}^{*}-\alpha_{j} v_{j}^{*}+O(\varepsilon)$
so that

$$
\begin{equation*}
\gamma_{j \div 1} v_{j}^{* T} v_{j+1}=O(\varepsilon) \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{j+1} v_{j}^{T} v_{j+1}^{*}=O(\varepsilon) \tag{26}
\end{equation*}
$$

(26) and (27) hold for both $A(2,10,12)$ and $A(2,11,13)$. The alforitin $A(1,11,13)$ recults in (22) and (23) heving the fow of (26, and (27) respectively, as here $\beta_{j}=\beta_{j_{*}}^{*}=S_{j-1} S_{j} \gamma_{j}$. Hence, if $\chi_{j+1}=O(1)$ here, the orinocionality of γ_{j} and v_{j+1}, and also of ∇_{j} and v_{j+1}^{*} is quite satisfactory, rosardiess of any previous cancellation. The alsoritirl $A(1,10,12)$ is not as setisiactory. If we assure that everytinin up to and includinf $\mathrm{Av}_{\mathrm{j}-1}$, $A^{T} v_{j-1}^{*}, \alpha_{j-1}, \beta_{j-1}, \beta_{j-1}^{*}$ is lnom exactly, tinen rounding errors occur in the subtractions (33), (2.4) and (314), (R15). Let $\bar{\gamma}_{j}$, $\overline{\mathrm{v}}_{j}^{*}$ $\bar{v}_{j}, \bar{户}_{j}^{*}, \bar{\beta}_{j}=$ rrosent the conputed values and $\gamma_{j}, v_{j}^{*}, \nabla_{j}, \beta_{j}^{*}, s_{i}$ the exact values. Then

$$
\begin{align*}
& \bar{\gamma}_{j} \bar{v}_{j}=A v_{j-1}-\alpha_{j-1} v_{j-1}-\beta_{j-1} v_{j-2}+o(\varepsilon)=\gamma_{j} v_{j}+o(\varepsilon) \tag{28}\\
& \bar{\gamma}_{j} \bar{v}_{j}^{*}=A^{T} v_{j-1}^{*}-\alpha_{j-1}^{*} v_{j-1}^{*}-\beta_{j-1}^{*} v_{j-2}^{*}+o(\varepsilon)=\gamma_{j} v_{j}^{*}+o(\varepsilon) .
\end{align*}
$$

If no emrors occur in conputing

$$
\bar{\beta}_{j}=S_{j-1} V_{j-1}^{* T 1} A \bar{v}_{j}
$$

and $\bar{\beta}_{j}^{*}=\mathbf{S}_{\mathbf{j}-\boldsymbol{i}} \nabla_{\mathbf{j}-1}^{T} A^{T} \bar{v}_{\mathbf{j}}^{*}$
then $\bar{\gamma}_{j} \bar{\beta}_{j}=\gamma_{j} \beta_{j}+0(\varepsilon)=s_{j-1} s_{j} \gamma_{j}^{2} \div c(\varepsilon)$
and $\bar{\gamma}_{j} \bar{P}_{j}^{*}=\gamma_{j} \beta_{j}^{*}+O(\varepsilon)=s_{j-1} S_{j} \gamma_{j}^{2}+O(\xi) \quad$.
Since $\bar{\gamma}_{j}^{2}=Y_{j}^{2}+\gamma_{j} O(\varepsilon)+O\left(\varepsilon^{2}\right) \quad$ it follc:us tinat

$$
\begin{equation*}
\frac{\bar{\beta}_{i}}{\bar{\gamma}_{j}}=\frac{s_{i} s_{j-1} \gamma_{j}^{2}+0(\varepsilon)}{\gamma_{j}^{2}+\gamma_{j} 0(\varepsilon)+0\left(\xi^{-}\right)}=\frac{s_{i} s_{i-1}+0(\xi) / \gamma_{j}^{2}}{1+c(\xi) / \gamma_{j}+0\left(\epsilon^{2}\right) / \gamma_{j}^{2}} \tag{30}
\end{equation*}
$$

and $\frac{\bar{\beta}_{i}^{*}}{\bar{\gamma}_{j}}=\frac{S_{j} S_{i-1}+o(\varepsilon) / x_{j}^{2}}{1+o(\varepsilon) / \gamma_{j}+C\left(\varepsilon^{2}\right) / r_{j}^{2}} \quad$.
If $\gamma_{j}<O(\varepsilon)$ the al§oritim still perions satisiactorily, but if
$\gamma_{j}^{2} \ll O(\varepsilon)$ the numerator in eacin of (30) and (31) could be far sreater than 1 and the bounds (22) and (23) are uncatisfäatory.

The alforithe $A(., 11,12)$ and $A(., 10,13)$ woluce obrious combinations of the above results. For exarile, using $1(0,11,12)$ me see thet (26) and (27) aryly. These tro alforithes thereforo have the same shortcomings as $\mathrm{A}(., 10,12)$.

Retumins to $A(0,10,12)$, the factors (30 ; and (31) ayper in ell subsequent expressions (2 2) and (23^{i} zesecciroly for orthojonality, hence, once orthosonality has been lost it is unlilsiy that it oill be recovered.
1.4 :otico that tae tridiafonal nairix obtained in the above maner, viz.

$$
\left[\begin{array}{ccccc}
\alpha_{1} & \beta_{2} & & & \\
\gamma_{2} & \alpha_{2} & \beta_{3} & & \\
& \gamma_{3} & \alpha_{3} & & \\
& & \cdots \cdots \cdots & \\
& & & \gamma_{k-1} & \alpha_{k}
\end{array}\right]
$$

has already been equilibrated (or balanced) in the sense of Wilkinson ([35], chap. 6 section 10) and Perlett and Reinsch (in Wilkinson and Reinsch [36], Contribution II/11), since the p-norm of any rom of this matrix is identical to the same norm of the corresponding column (as $\left|\gamma_{r}\right|=\left|\beta_{r}\right|, r=2, \ldots, k-1$).

If the matrix A has real eigervalues only, then, commencing with suitable v_{1} and v_{i}^{*}, a symnetric T_{k} will be obtained - as in example 2.
1.5 Tilkinson [35] describes the usual Lanczos method as a special case of the Generalized Hessenberf process, which may be described by :-

$$
\begin{align*}
& \gamma_{I+1} v_{I+1}=w_{I}=A v_{I}-\sum_{i=1}^{r} h_{i r} v_{I} \tag{32}\\
& \gamma_{I+1}^{*} v_{I+1}^{*}=\nabla_{I}^{*}=\Lambda^{T} v_{I}^{*}-\sum_{i=1}^{r} h_{i r}^{*} v_{I}^{*}
\end{align*}
$$

where tine $h_{i r}$ and $h_{i r}^{*}$ are chosen so that v_{r+1} is orthozonal to $v_{1}^{*}, \ldots \ldots, v_{r}^{*}$ and v_{r+1}^{*} is orthogonal to v_{1}, \ldots, v_{r} resrectively. Applying the algorithe exactly he shoms that

$$
\begin{equation*}
h_{i r}=h_{i r}^{*}=0 \quad(i=1, \ldots r-2) \tag{33}
\end{equation*}
$$

from which it is easily inferred that if $A v_{r}$ is orthosonalized with respect to v_{r-1}^{*} and v_{r}^{*} it is automatically ortiozonal with respect to all earlier ∇_{i}^{*} - similarly for $A^{T} v_{r}^{*}$. Further

$$
\begin{gathered}
h_{I r}=h_{I r}^{*} \\
h_{r, I+1} \gamma_{I+1}=h_{r, I+1}^{*} \gamma_{r+1}^{*}
\end{gathered}
$$

In our borl: $\gamma_{r+1}^{*}=\gamma_{r+1}$. The notation may be simplified in vierr of (33) so that the algorithm reads

$$
\begin{align*}
& \gamma_{r+1} v_{r+1}=A v_{r}-\alpha_{r} v_{r}-\beta_{I} v_{r-1} \\
& \gamma_{r+1} v_{r+1}^{*}=A^{T} v_{r}^{*}-\alpha_{r} v_{r}^{*}-\beta_{r}^{*} v_{r-1}^{*} \tag{3A}
\end{align*}
$$

Gregory [11] Fointed out that in the apylication of this to large matrices the factors $h_{i r}$ and $h_{i r}^{*}(i=1, \ldots, 2)$ are not exactly zero as the biortho onality of the vectors is not srecerved. In fact, Gregory advocates the computation of the cract values of these $h_{i r}$, $h_{i r}^{*}$ and their subsequent retention in tho recursion relationship (32). We now establish some interesting relationsifips for the $h_{i r}$, $i=1, \ldots, x-2$.

Assume that all computations are erformed exactly in the first N-1 steps of the algorithr.

Noting that in the context of this mor:

$$
\begin{equation*}
h_{i r}=v_{i}^{* T} A \nabla_{r} \tag{35}
\end{equation*}
$$

it is easily established from our alcorith that if rounding occurs during the execution of the r-th step:

$$
\begin{aligned}
& h_{i r}=\frac{\gamma_{i+1}}{\gamma_{r}} \stackrel{v}{i+1}_{*_{T}} A \gamma_{r-1}-\frac{\gamma_{i+1}}{\gamma_{r}} \beta_{r-1}{ }^{\nabla_{i+1}}{ }^{\gamma_{r-2}} \frac{-\gamma_{i+1}}{\gamma_{r}} \alpha_{r-1} \nabla_{i+1}^{\nabla_{T}} \gamma_{r-1}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\beta_{i}^{*}}{\gamma_{r}} V_{i-1}^{* T} \wedge v_{r-1}-\underset{\gamma_{r}}{-\beta_{i}^{*} 3{ }_{r-1}}{ }^{\gamma_{i-1}^{* T}} \nabla_{r-2}-\frac{\beta_{i}^{*} \alpha_{r-1}}{\gamma_{r}} v_{i-1}^{* T} v_{r-1}+ \\
& +\underline{O}(\varepsilon) \\
& \gamma_{r} \\
& \text { for } i=1,2, \ldots, r-2 \text {. All vectors with negative subseripts are to he } \\
& \text { taken as null vectors. }
\end{aligned}
$$

For $i=1, \ldots, r-4$ this gives

$$
\begin{aligned}
& h_{i r}=\frac{\gamma_{i+1}}{\gamma_{r}} h_{i+1, n-1}+\frac{\alpha_{i}}{\beta_{r}} h_{i, n-1}+\frac{\sum_{i}^{*} h_{i-1, I-1}}{\gamma_{r}}-
\end{aligned}
$$

$$
\begin{align*}
& +\frac{O(\varepsilon)}{\gamma_{r}} . \tag{37}
\end{align*}
$$

Then $i=n-3(36) i s$

$$
\begin{aligned}
& \frac{-\gamma_{r-2}}{\gamma_{r}} \beta^{r-1}{ }^{v_{r-2}} \frac{V_{r-2}}{} \frac{-\gamma_{r-2}}{\gamma_{r}} \alpha_{r-1} V_{r-2}^{T} \gamma_{r-1}
\end{aligned}
$$

$$
\begin{align*}
& \frac{-\beta_{r}^{2}}{\gamma_{r}} \alpha_{r-1} V_{r-4}^{I} v_{r-1}+\frac{o(\varepsilon)}{\gamma_{r}} . \tag{38}
\end{align*}
$$

:(isth $i=r-2,(36)$ is

$$
h_{r-2, r}=\frac{\gamma_{r-1}}{\gamma_{r}} \frac{v_{r-1}^{n}}{\gamma_{r-1}} A v_{r-1}+\frac{\alpha_{r-2}}{\gamma_{r}} v_{r-2}^{x_{r}^{T}} A v_{r-1}+\frac{\beta_{r-2}}{\gamma_{r}} v_{r-3}^{x^{n}} A v_{r-1}-
$$

$$
\text { Assume noz that } \beta_{r-1} \text { and } \alpha_{r-1} \text { have been cowuten erectily, i.e. }
$$

 these circunctanees (38) and (39) are, rocectively

$$
\begin{align*}
& \frac{-\beta_{I-3}^{*}}{\gamma_{I}} \alpha_{r-1}{ }_{I-4}^{V_{I}^{I}} v_{r-1}+\frac{0(s)}{\gamma_{I}} \tag{40}
\end{align*}
$$

$$
\begin{aligned}
& +\frac{q(\varepsilon)}{\gamma_{I}} .
\end{aligned}
$$

$$
\begin{equation*}
h_{i r}=\frac{0(\varepsilon)}{\gamma_{r}} \quad, i=1, \ldots, n-2 . \tag{42}
\end{equation*}
$$

This result is not valid then either a catastrophic deterioration in the biorthogionality occurs or vhen "previous" $h_{i r}$'s are swall. Afain, the dancer of a snayl γ is higilighted.
In the examiles of 1.7 the values of $h_{i r}, i=1, \ldots, r-2$ mers actually computed.

Several authors strongly recommend intermediate reorthosonalization of the theoretically biorthozomal sets of vectors (e.ofTilkinson [35]). This mork has not convinced us of the nead for reorthogonalization in this particular alsorithm.
1.6. It is interesting to obtain results analozous to (22) and (23) and (26) and (27) when the vectors are reorthoronalized in our algorithms. In the presence of rounding the al Eorithas may be formulated as :-

1) Choose v_{1} and v_{1}^{*} arbitrarily, but such that $v_{1}^{*^{T}} v_{1}=s_{1}(= \pm 1)$. Compute $u_{1}=\Delta v_{1}$ and $u_{1}^{*}=A^{T} v_{1}$.
2) For $j=1,2, \ldots, k$ compute

$$
\text { or } \begin{align*}
& \alpha_{j}=S_{j} \nabla_{j}^{* T} \Lambda v_{j}+O(\varepsilon) \tag{RR1}\\
& \alpha_{j}=S_{j} \nabla_{j}^{* T} u_{j}+O(\varepsilon) \tag{RR2}\\
& \bar{w}_{j}=u_{j}-\alpha_{j} v_{j}+O(\varepsilon) \tag{RR3}\\
& \bar{w}_{j}^{*}=u_{j}^{*}-\alpha_{j} v_{j}+O(\varepsilon) \tag{R24}\\
& \nabla_{j}=\bar{w}_{j}-\sum_{j=1}^{j} e_{j i} v_{i}+O(\varepsilon) \tag{R25}\\
& w_{j}^{*}=\bar{w}_{j}^{*}-\sum_{j=1}^{j} e_{j i}^{*} v_{i}^{*}+O(\varepsilon) \tag{RR6}\\
& w_{j h e r e} \quad e_{j i}=v_{i}^{* T} \nabla_{j} \tag{RR7}\\
& \text { and } \quad e_{j i}^{*}=v_{i}^{T} \nabla_{j}^{*} \tag{R38}\\
& \phi_{j+1}=w_{j}^{x_{j}^{T}} w_{j}+O(\varepsilon) \tag{RR9}
\end{align*}
$$

$$
\begin{align*}
S_{j+1} & =\operatorname{sign}\left(\ell_{j+1}\right) \tag{2,10}\\
\gamma_{j+1} & =(1+0(\varepsilon))\left|\varphi_{j+1}\right|^{1 / 2} \tag{R211}\\
v_{j+1} & =\nabla_{j} / \gamma_{j+1}+o(\varepsilon) \tag{3Ini}\\
v_{j+1}^{*} & \equiv \square_{j}^{*} / \gamma_{j+1}+o(\varepsilon) \tag{3213}\\
\beta_{j+1} & =S_{j} v_{j}^{T} A v_{j+1}+o(\varepsilon) \tag{3Z14}\\
\text { or } \beta_{j+1} & =s_{j} S_{j+1} \gamma_{j+1} \tag{RR15}\\
\beta_{j+1}^{*} & =s_{j} v_{j}^{T} A^{T} v_{j+1}^{*}+o(\varepsilon) \tag{2,16}\\
\text { or } \beta_{i+1}^{*} & =S_{j} S_{j+1} \gamma_{j+1} \tag{2.17}\\
u_{j+1} & =A v_{j+1}-\beta_{j+1} v_{j}+o(\varepsilon) \tag{2218}\\
u_{j+1}^{*} & =A^{T} v_{j+1}^{*}-\beta_{j+1}^{*} v_{j}^{*}+o(\varepsilon) . \tag{2319}
\end{align*}
$$

As before, factors such as n have boon o:itted for simpicity.

Using (R1), (RR3), (R218) and (RP1), (244) (R219) leads to

$$
\begin{aligned}
& \gamma_{j+1} v_{j}^{T} v_{j \div 1}^{*}=\sum_{r=2}^{j} \frac{\beta_{j} 3_{j-1}^{*} \beta_{i-2} 3_{j}^{*} \gamma_{j-1} \gamma_{i-2} \gamma_{j-3} \ldots j_{j}^{(*)}}{\gamma_{r}} 0(\varepsilon)+
\end{aligned}
$$

$$
\begin{aligned}
& \text { and }
\end{aligned}
$$

The symbol (\because) indicates that an asterisis is to be attacied to β_{2} iff j+1-r is even in (43) and odd in (44).
 result

$$
\begin{equation*}
\gamma_{j+1} v_{i=1}^{\underline{*_{j}^{T}}} v_{j+1}=-\sum_{i=1}^{j} e_{j i} v_{j}^{*_{j}^{T}} v_{i}+0(\xi) \tag{45}
\end{equation*}
$$

$$
\begin{align*}
& \text { and also to } \\
& \gamma_{j+1} v_{j}^{n} \nabla_{j+1}^{*}=-\sum_{i=1}^{j} e_{j i}^{*} v_{j}^{I} v_{i}^{*} \tag{46}
\end{align*} \div 0(\varepsilon) .
$$

The results (29), (30) and (31) still hold bere, as do tile comonts following tire.

She alcorithn (2a1), (R23), (204), (?18) and (2:19) can rroduce surprising results even when all the γ 's are $C(1)$. Te heve found that the alforitin (a2), (:23), (224) can be le:c satisfactory than the non-reorthosonalized form when tiene is a serious deterionation in the bi-orthozonality. In fact an impoverent in tie bi-ortiononality (and incidentally in tin uger hessenberci form) was rare rhen intcrmediate reorthosonalimation vas used.

In coryuting the examples of 1.7 ve comuted the $\mathrm{v}_{\mathrm{i}}^{*} \mathrm{v}_{\mathrm{j}}$'s and, there appromiate, have tabulated these.
1.7 The real eigenvalues of several matrices mere approximated in order to illustrate various features of the algorithm $\mathrm{A}(2,11,13)$. The features illustrated are :- a suitable set of initial vectors leacs in the case of a non-symetric matrix with real roots to a symetric tridiasonal matrix; situations where roots are obtained using our method without rejular reorthogonalization rinile these roots could not be found when reorthogonalization mas used; the extreme roots being detexmined after femer than n Lanczos steps (for an non matrix), leading consequently to a tridia;jonal matrix of order less than n; ill-conditioned roots being obtained when more than n steps were applied and not otherrise.

The computed eigenvaiues nere found using both reorthozoralization and also 7ithout any subseque:t reorthogonalizaticn, both of thess processes on several different initial vectors - the eigenvalues obtained from these procedures have been tabulated. The complete upper heesonberg form obtained by axplying the Lanczos algorithil to each of the matrices has sometimes bee: tabulated - see (32). Where appropriate, soma of the values of $\gamma_{i}^{x^{2}} v_{j}$ have been taoulated in order to give an indication of vinether the resulting vectors are adequatly biorthogonal. In the tables (only) any fixed point intecer entry (n) is to be understood as 10^{n}.

Bamole 1: (Tintinson [35] 1,302)

$$
\left[\begin{array}{llll}
4 & 1 & 3 & 2 \\
2 & 1 & 2 & 5 \\
1 & 3 & 3 & 4 \\
4 & 1 & 2 & 1
\end{array}\right]
$$

The real eicenvalues of this rataix mere Eown ucinc tie sets of initial vectors

$$
\nabla_{1(p)}^{T}=\frac{\sqrt{10^{P}}}{4}\left[1,2=10^{-\mathrm{T}}, 0,0\right]
$$

and

$$
\begin{aligned}
& \mathrm{V}_{1}^{* T}(\mathrm{p})=\frac{\sqrt{10^{\mathrm{P}}}}{4}\left[2 \times 10^{-\mathrm{F}}, 1,0,0\right], \\
& \mathrm{F}=0(1) \varepsilon .
\end{aligned}
$$

Ye tabulato the results belor (reorthosonalization being used in the first table and not the second) :-

p	0	1	2	3	4	5
1	-1.36344	-1.352444	-1.362444	-1.302144	-1.3 .5144	-1.352444
2	9.703373	9.703378	9.703370	9.703375	9.79373	9.703378

p	6	7	8
1	$?$	$?$	$?$
2	9.730761	9.635500	9.56291

tane 1

	0	1	2	3	4	5
1	-1.352444	$-1.3624 .4$	-1.3624.44	-1.36244*	-1.3524:4	-1.362.444
2	9.703373	2.703378	9.703573	9.703378	9.703378	9.703378

A question maris indicates that the relevant root could not be found.

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
5002 . & -554 . & -7 . & -6 \\
45 S 4 . & -4885 . & -.4717 & -6 \\
& .4717 & -0.641 & 1.021 \\
& & 1.021 & 1.620
\end{array}\right]\left[\begin{array}{rrrr}
5(4) & -5(4) & -5 & -4 \\
5(4) & -5(4) & -.1480 & -4 \\
& .1489 & -8.621 & 1.022 \\
& & 1.022 & 1.619
\end{array}\right]} \\
& T=4 \\
& \dot{\mathrm{r}}=5 \frac{1}{7} \\
& {\left[\begin{array}{cccc}
5(5) & -5(5) & -3 & -1 \\
-5(5) & -5(5) & -.0478 & -1 \\
& -.0478 & -0.619 & 1.022 \\
& 1.022 & 1.619
\end{array}\right]\left[\begin{array}{cccc}
5(7) & -5(6) & -1 & 1 \\
5(6) & -5(6) & -.01409 & 1 \\
& .01 / 89 & -5.619 & 1.022 \\
& & 1.022 & 1.619
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
5(7) & -5(7) & 3 & 4 \\
5(7) & -5(7) & -.004707 & 4 \\
& .004707 & -8.618 & 1.044 \\
& & 1.044 & 2.167
\end{array}\right]} \\
& 1:=8 \\
& \text { table } 3
\end{aligned}
$$

$\neq-a(n)$ nears a $\times 10^{n}$.

 absolute value, for $\ddagger 75$ the situation is not es favourable. In table 5 we tabulate the owners of magnitude of the $v_{i}^{T} v_{j}{ }^{\prime}$ s for $p \geqslant 1$.

 $k=i+1(1) i+4$; and all otien elencnts zero.

This natrix hes $\prod_{i=1}^{20}(\lambda-i)=0$ as its cheractomistic eqution. Wilizinson ([34] ry 41-43) discusses this equstion at zoae lenctin. He shovs thet the root of greatest sensitivity is $\lambda=40$ and 27 s 0 that in the coerficiont of λ^{19} is porturion by 2^{-23} tiven ton of the roots becone compler with substontial inajinaw faris. In iaci, to 9.) the roots of the porturbed rolyomial ase :-

000000	$6.0000069 \uparrow 4$	$10.095265145 \pm 0.643500904 i$
2.000000000	6.959697254	$11.793653081 \pm 1.652525723$
.000000000	8.007207603	$13.092553137 \pm 2.51003070$
00000000	5.917250249	16.730757:66
. 259959228	20.840903101	9.

The real roots of the above natrix were determing in tin first nlace by usine two differont setiu of initial vectore and not reorthoonalising tine reultant vector: and in the seond lince by applyins the reorthoconalization rrocese to the vec:or: obtainod fron both sets of initial vectors.
a) Yo reorthomalizntion
i) As initial vectors hare me used

$$
\begin{aligned}
& v_{1}^{T}=\left(t_{i}\right) ; t_{i}=1 \quad i=1(2) 19 ; t_{i}=0 \quad i=2(2) 20 \\
& v_{1}^{* T}=\left(t_{i}^{*}\right) ; t_{i}^{*}=1 \quad i=2(2) 20 ; t_{i}=0 \quad i=3(2) 19 ; t_{i}^{\prime}=1 .
\end{aligned}
$$

These vectors do not uroduce a syanetric triciagonit matriz. The real roots found are as follons :-

```
20 Ingczos steve : ill 20 roots me=e found comect to 6 decimol nlaces.
```

19 Janczoz cion : ?oots 1 through to 19 were found to 6 , while tine $20-t: 1$ root was not found.
 1.959750 ; 3.012135 ; 3.854078 ; 16.234479 ; 16.923573 ; 18.000175 and 18.599999.

A check on the biorthogonality of the vectons v_{i} and $y_{i} \ddagger$ sionted that the worst case ras $\mathrm{V}_{2}^{\mathrm{v}} \mathrm{io}=-.103 \times 10^{-9}$ - an adequate recult. A cheok on the valus: of the off-iriliagonst $h_{i r}$ in the wion hasenbere form zhowed that oll wore les: then 10^{-3},
except for $h_{i}, 20$ thich $l_{\text {y }}$ betroer. .01 and 10. The eccuracy of the 19-ste: solution occurs because $y_{19}=.215=10^{-9}$.
ii) The next set of initial vectors used :ias

$$
\begin{array}{lll}
\nabla_{1}^{T}=\left(t_{i}\right) ; & t_{i}=.01 & i=1(i) 20 \\
v_{1}^{*}=\left(t_{i}^{*}\right) ; & t_{i}=.5 & i=1(1) 2) .
\end{array}
$$

These lead to a symuetric tridiajonal matriz. : \because e may sumarise the results as follons :-
20 Ienczor sters : The 20 roots 7rare founi courect to 6 decimpl flaces. 19 Ienczos aters : Zoots 1 throuja to 15 and 17 to 20 were obtained correct to 65.
 other roots are 17.1752j0; 10.5.502 and 20.000000. 17 Ingezos siens Roots 1 to 15 and also 20 reee citained to 6D. A further root of 10.958542 :n; founc.
16 Inaczos s:ans : The followin: root wore foun :-

1.000000	2.000000	3.000014	4.030207	5.001518
6.00540%	7.016238	8.025750	5.0 .5777	10.015711
11.005770	12.000558	13.000070	1.600003	15.003000
20.000000				

Hotice that tho rocts not obtainod in usinc ieror than 20 Lenczos itemations. ere, roughy sioe:ing, tho ill-onaitioned roots.

In all colums oxcent the lajt tion entrien in the uner hessenbere majrix are less than $10^{-\frac{1}{1}}$ in noluius, thile in the last they ranoe betreen 10^{-5} and 10. In tisis cac tiae only samp γ is γ_{19}, rinich hes the valu! $.233 \times 10^{-4}$.
b) Usins reostaconi-nation
 resultinc vectow \because تere saticfactorily biorthogonil tie only re:l roots

$$
\begin{array}{rrrrr}
1.000002 & 1.559657 & 3.023751 & 3.753773 & 7.065177 \\
10.000016 & 16.0 .0505 & 10.05597 .
\end{array}
$$

As exiectac, the tridiagonnl elamnts here diffor vasily froz those in (a) (i). Wine zurnise is tiat the orintridingonal elemons in the heswenber fom are genorally larser than the corrosiondins clopents in the provicu: case, tioy manse as follous in fact :-

$$
\begin{aligned}
& h_{\text {ir }}, \ldots 5, \ldots, 14, \text { are all less tian } 10^{-4} \text { (in yodulus); } \\
& 10^{-3} \geqslant h_{i, 15} \geqslant 10^{-15} ; \\
& 10^{-2} \geqslant h_{i, 16} \geqslant 10^{-15} ; \\
& 10^{-1} \geqslant h_{i, 17} \geqslant 10^{-14} ; \\
& 10 \geqslant h_{i, 10} \geqslant 10^{-14} ; \\
& 10^{2} \geqslant n_{i, 19} \geqslant 10^{-13} ; \\
& 10^{2} \geqslant h_{i, 20} \geqslant 10^{-13} \text {; }
\end{aligned}
$$

ii) Using the iritial vectors of (a)(ii) aboyo it res found thai $\gamma_{20}<10^{-10}$ and so on?y 19 Ianczos siens rave arylied. The roots $\lambda=1(1)$ is and $\lambda=17(1) 20$ (ail corroct to 5D) were found. The biorthogonnity of the vectors is satisiactory, as expected. Ax:lying 18 steps of tie algoritia the roots $\lambda=1(1) 15, \lambda=20$, correct to 50, $\lambda=17.831555$ and $\lambda=18.59574$ \#ore found. The only unsajicfactory eloments in the upyer hessenbers form occur in the 20 -in colum, where $h_{17,20}=10^{-1}$ and $h_{18,20}=10^{2}$. Whe tridiajonal fomis not synnetric.

The ssetions (a)(i) and $b(i)$ evove illustrate a situation in mich the alcoritin is mperior rithout intornoiade reowtiogonalization. -... focts illustuato this : a) itithout reortioconalisation $\pi=$ mere able to find ail the aicenvalues corvect to 6 J , While tinen ucinct the intemadiate reortiozonalisation wocedure approzimations to only sicit of the roots could be fown (the extreme ones to 4 ari 5 and the تiddle ones very inacurately) ;

 is not associntai niti a saell γ as no γ is less than 2 in (i) (i).

$\left[\begin{array}{cccccccc}1 & 1 & & & & & \\ 1 & 2 & 2 & & & & \\ 1 & 2 & 3 & 3 & & & \\ 1 & 2 & 3 & 4 & 4 & & & \\ & \ldots & \ldots & \ldots & \ldots & \\ 1 & 2 & 3 & 4 & 5 & \ldots & (n-1) & (n-1) \\ 1 & 2 & 3 & 4 & 5 & \ldots & (n-1) & n\end{array}\right]$

We chose $n=12, v_{i}^{T}=\left(t_{i}\right), \quad t_{i}=1 / i \overline{E R}, \quad i=1(1) 12$,

$$
v_{i}^{T}=\left(t_{i}^{*}\right), \quad t_{i}^{*}=7 / \sqrt{\varepsilon_{i}}, \quad i=1(1) 12 .
$$

True roots	:io reortho. 12 sters 16 नteps		Reortho. 12 steri; 16 sters	
0		0.		
0.049507:291	0.045336	$0.0 .95: 36$		
0.051227655 240:-05	0.061074	0.091227		
0.143646519769220	0.143544	0.	0.136023	0.136023
0.234749720550478	0.20 .4750	0.204750	0.203102	0.20 .8102
0.643505315004856	0.643505	0.643505	0.643453	0.64593
1.5535387	1.55309	1	1.553509	1. 5 - 5 ¢ 0
3.511555945500757	3.511056	3.511650	3.51185	3.
6.9615	6.961535	6.961533	6.561535	5.
12.311077400365525	12.311077	12.311077	12.311077	12
20.19098264	20.1	10.198509	-	
12.2200915015721	2. 22005	. 220051	2.e.2e	2.22E

table 6

The values of the condition numbers $x_{i}^{2} y_{i}=s_{i}$ (rinere r_{i} ard y_{i} are the rigot and loft hand vectors a:sociaini with the eizonvolue λ_{i} respoctively) (see (tilkinson [34]) are extrenely anall for the small eife:values and close to one for the larger oneg.

The off-tridiacoial vectors in boti the non-reothojonalised and orthoennligod foms very frou 10^{-15} to 10^{2} in rodulus.

Sumary of results

Define the sumety ratio as the number of yositive $\}_{j}{ }^{\prime} \mathrm{s}$, obtained after amping le sters of the Ianczos aicoritiog lividad by l-1.

In both the previcus amlication of the Eanc=os nigositha and in the later amplications in ciave= 2 Te are interested onzy in the real sigenvalus of the ziven matriz. Several of tin zrevious cranples hevo only real roots in fact. Fine value of the jurajry retio is a useful a prioni indicajor of the aceuracy of these nsal eisenvalues.

1) Jenote the eymatiry ratio by E. 3.
2) A cross in the colum heated "h" indicates that scene ow all of the off-triaiaconal oloncn's in the uron sessonbent form ne larse, mhile a "v" indiontes tiat tioy axe all senell.
3) A cross in the colurn hockod "r" indicates that the roots found are not ontisfactory, rinile a "r" indicates the roote as satisfactory.

Brapua 1 : (4:04 matriz)
rio roorthogonalization:-

p	0	1	2	3	4	5	6	7	8
S. ㄴ.	0.67	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
h	v	v	v	v	v	x	x	z	x
r	v	v	v	v	v	v	v	z	x

Reothogonainzation used:-

$\mathrm{z}=$	0	1	2	3	4	5	6	7	8
$3 . \therefore$	0.67	0.33	0.33	0.33	0.33	0.33	0.33	0.00	0.00
h	v	v	v	v	x	x	x	x	x
r	v	v	v	v	v	v	x	x	x

Example 2 : (20x20 eatrix)
a) No reorthozonalization
i)

steps	20	19	18
S.R.	0.45	0.47	0.44
h	x	V	V
r	v	v	x

ii)

steps	20	19	18	17	16
S.R.	1.00	1.00	1.00	1.00	1.00
h	x	x	x	v	v
r	v	v	v	v	v

b) Reorthogonalizing
i) 20 Lanczos steps : S.R. $=0.53$; $h=x$; $r=x$ throughout.
ii) 20 Lanczos steps : S.R. $=0.84$; h=v eacept in last element of last column ; $r=v$.

Exanple 3 : (12×12 matrix)

no of stegs		12	16
$\begin{gathered} \text { no } \\ \text { reortho } \end{gathered}$	$\begin{gathered} \text { S.R. } \\ \mathrm{h} \\ \mathrm{r} \end{gathered}$	0.75 x small roots x large roots v	$\begin{gathered} 0.66 \\ x \\ v \end{gathered}$
reortho	S.R. h r	```0.50 x no small roots large roots v```	$\begin{gathered} 0.40 \\ x \end{gathered}$ no small roots larse roots 7

1.8 Conclusions

1) Reorthogonalization does not necessarily improve the algorithm in the sense of preserving biorthogonality, neither does it always assist in devermining the eigenvalues nore accurately.
2) Fever than n applications of the Lanczos algorithm are sufficient to isolate the exireme roots then the symetry ratio is comparatively larse - this is particularly advantageous when dealing with larse sparse matrices.
3) When the symetry ratio is particularly low, even after n applications of the Lanczos alforithe, the eigenvalues can still be poorly datermined - see chapter two for a particularly clear example.
4) Severe non-biorthogonality almays has disastrous consequences, as in example 1.
5) On occasions more than n Lanczos iterations were performed see example 3 for example. So se that in this example the saaller eigenvalues, thich are bady conditioned, are improved by using more than n iterations without reorthozonalizing, while no improvenent occured when the two sets of vectors mere continuously reorthogonalized. Notice too that the symetry ratio of the former case is consistently greater than that of the latter. Paige, in applying more than 3 iterations of the symeiric Lanczos algorithm to the $8 x 8$ Rosser natrix, found that the additional roots generated also conversed to the Rosser matrix roots, [55]. We did not always find this to be the case with non-symetric matrices.

Final conclusion : we have found a technique of some promise for isolating the real roots of large sparse non-symetric matrices, in particular the exireme roots.

2.i Ne requive the eisenvalues of

$$
\begin{equation*}
\nabla^{2} \Psi \div \lambda \psi=0 \tag{1}
\end{equation*}
$$

defined on the domain Γ of figure 1 .

The boundary conditions ane:-

$$
\begin{gather*}
\psi=0 \text { on } S_{1}: x^{2}+y^{2}=r 0^{2} \tag{2}\\
\frac{\partial U}{\partial r}+c U=\text { on } S_{2}:(x+x c)^{2}+y^{2}=r i^{2} \tag{3}
\end{gather*}
$$

Relocating the oricin at 0^{\prime}, transfominc to polar coordinates and making the substitution

$$
\phi(r, \theta)=r^{\frac{1}{2}} \Psi(r, \theta),
$$

(1) becc les

$$
\begin{equation*}
\frac{\partial^{2} \not \partial}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}} \div\left(\frac{1}{4 r^{2}}+\lambda\right) \phi=0 \tag{4}
\end{equation*}
$$

subject to $\phi=0$ on $x^{2}-2 x \pi \cos \theta=r 0^{2}-\pi 0^{2}$
and $\quad r \frac{\partial \phi}{\partial r}+\left(c r-\frac{1}{2}\right) \phi=0$ on $r=r i$.
xc and yc are the coordinates of 0 .
Usins the usuol finito-inererence notation; definine

$$
\begin{aligned}
\theta_{i j} & =\not \subset\left(r_{j}, \theta_{i}\right), \\
r_{j} & =r i+j \Delta r, \\
\theta_{i} & =i \Delta \theta ;
\end{aligned}
$$

where
and usine the simpleat socond-order central difforence ampori-ation

to the paritial derivatives, (4) may be arproximated by

$$
\begin{align*}
& \frac{1}{r^{2} \Delta \theta^{2}} \phi_{i-1, j}+\frac{1}{\Delta x^{2}} \phi_{i, j-1} \div \frac{1}{r^{2} \Delta \theta^{2}} \phi_{i \div 1, j}+\frac{1}{\Delta r^{2}} \phi_{i, j+1}+ \\
& +\left\{\frac{-2}{\Delta x^{2}}-\frac{2}{r^{2} \Delta \theta^{2}}+\frac{1}{4 r^{2}}+\lambda\right\} \varnothing_{i j}=0, \tag{7}
\end{align*}
$$

where i and j ronce over anpromiate values.

Anglyins the usual faylor expansion anprosen tho truncation error in (7) is easily seen to be

$$
\begin{equation*}
o\left(\Delta r^{2}\right)+0\left(\frac{\Delta \theta^{2}}{r^{2}}\right) \tag{8}
\end{equation*}
$$

Dirferentiatine the boundary condition (8) rith resreat to x gives

$$
\begin{equation*}
r \frac{\partial^{2} \phi}{\partial r^{2}}+\left(c . r+\frac{1}{2}\right) \frac{\partial \phi}{\partial r} \div c \phi=0 \text { on } r=\underline{m i} . \tag{9}
\end{equation*}
$$

Substitnte for $\frac{\partial \varnothing}{\partial r}$ from (6) into (9) to obtain

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial r^{2}}=\left[4 . c^{2} \cdot r^{2}-4 . c \cdot r-1\right] / 4 r^{2} \tag{10}
\end{equation*}
$$

Puttins (10) into (4) yields

$$
\left[\frac{c}{r}(c . r-1)+\lambda\right] \phi+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}=0 \text { on } r=r i
$$

Asoin use the second-order central difforence azproziretion to the derivative, here obtaining
$\frac{1}{x i^{2} \Delta \theta^{2}} \theta_{i-1,1}+\frac{1}{x i^{2} \Delta \theta^{2}} \theta_{i+1,1}+\left[\frac{c}{r i}(0, r i-1)-\frac{2}{x_{i}^{2} \Delta \theta^{2}}+\lambda\right] \theta_{i, 1}=0$.
The tmuncsion error is $0\left(\frac{\theta^{2}}{\mathrm{ri}^{2}}\right)$.

The situation on the othor boundang is somemat more conplicated. The typical situation is inlustrated in figure 3.

Label the nodes as illustrated.

$$
\begin{aligned}
& \text { Let } 05=\underline{n}_{5} \cdot \Delta r \quad ; \quad 03=p_{3} \cdot \Delta \theta \text {; } \\
& 02=\Delta r \quad ; \quad 01=p_{1} \cdot \Delta \Delta .
\end{aligned}
$$

Easily $\frac{p_{2} p_{5}\left(p_{2} \div p_{5}\right)}{2} \Delta r^{2} \frac{\partial^{2} \phi_{0}}{\partial r^{2}}=F_{2} \phi_{5}+p_{5} \phi_{2}-\left(p_{2}+r_{5}\right) \phi_{0}+$

$$
\begin{equation*}
+o\left(\Delta r^{3}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{p_{1} p_{2}\left(p_{1}+v_{3}\right) \Delta \theta^{2} \partial^{2} \phi_{0}}{2}= & p_{1} x_{3}+p_{3} x_{1}-\left(p_{1}+r_{3}\right) \phi_{0}+ \\
& +c\left(\Delta \theta^{3}\right) \tag{13}
\end{align*}
$$

Substituting from (12) and (13) into (4) and remembering that $\phi_{5}=0$ leads to

$$
\begin{gathered}
\frac{2}{p_{1}\left(p_{i}+p_{3}\right) \Delta \theta^{2} \cdot r^{2}} \phi_{1}+\frac{2}{\left(1+p_{5}\right) \Delta r^{2}} \phi_{2}+\frac{2}{p_{3}\left(p_{1}+r_{3}\right) \Delta \theta^{2} r^{2}} \phi_{3}+ \\
+\left[\frac{-2}{p_{1} p_{3} \Delta \theta^{2} \cdot r^{2}}-\frac{2}{p_{5} \Delta x^{2}}+\frac{1}{4 r^{2}}+\lambda\right] \phi_{0} \\
+0(\Delta r)+0 \Leftrightarrow \Leftrightarrow=0 .
\end{gathered}
$$

In our more familiar notation this is

$$
\begin{aligned}
& \frac{2}{p_{1} p_{3}\left(p_{1}+p_{3}\right) \Delta \theta^{2} r^{2}} \phi_{i+1, j}+\frac{2}{\left(1+p_{5}\right) \Delta r^{2}} \phi_{i, j-1}+ \\
& +\frac{2}{p_{3}\left(1+p_{3}\right) \Delta \theta^{2} r^{2}} \phi_{i-1, j}+ \\
& \quad+\left[\frac{-2}{p_{1} p_{3} \Delta \theta^{2} n^{2}}-\frac{2}{p_{5} \Delta r^{2}}+\frac{1}{4 r^{2}}+\lambda\right] \phi_{i, j}+0(\Delta r)+0(j)=0
\end{aligned}
$$

at points noisbouming the boundary S_{1}.
We tacitly assumed that $\underline{p}_{3}=1$.

The order of the matrix involved ans approzimately halved by usins the oymetry of the problem at the time of discretization. The prozram used to set up the matrix is resroduced in the appendix. The matrix is sparse, banded and non-symetric. The method of Lanczos, as described in chapter 1, Tas used to iransform this matrix into tridiajonal form for various values of the radius of the control rod and of the distance between the centres. This method mas chosen because of i亏s suitability for finding extreze roots - here we sought the snallest ; because of its rapid convergence ; because of storaje limitations we had to use a method which die not require the storase of the full coefficient matrix (or its equivalent) at any time.
2. 2 The evaluation of det $(T-\lambda I)$, with T a tridiajonal mat-ije wac perfomed by the uvual elforitin, [34] p 423, whore, if Fe write $t_{i j}=\alpha_{i}, t_{i, i+1}=\beta_{i+1}, t_{i+1, i}=\gamma_{i+1}$ and denote the leadins principal minor of (in $-\lambda I$) of order r by $p_{r}(\lambda)$, then

$$
p_{r}(\lambda)=\left(\alpha_{r}-\lambda\right) p_{r-1}(\lambda)-\beta_{r} \gamma_{r} p_{r-2}(\lambda)(n=2, \ldots, n)
$$

Where $p_{0}(\lambda)=1 \quad, p_{1}(\lambda)=\alpha_{1}-\lambda$
Also $p_{r}^{\prime}(\lambda)=\left(\alpha_{r}-\lambda\right) p_{r-1}^{\prime}(\lambda)-\beta_{r} \gamma_{I} p_{r-2}^{\prime}(\lambda)-p_{r-i}(\lambda)$
and $p_{r}^{\prime \prime}(\lambda)=\left(\alpha_{r}-\lambda\right) p_{r-1}^{\prime \prime}(\lambda)-\beta_{r} \gamma_{r} \eta_{r-2}^{\prime \prime}(\lambda)-2 p_{r-1}^{\prime}(\lambda)$,
where $y_{0}^{I}(\lambda)=p_{0}^{\prime \prime}(\lambda)=z_{1}^{\prime \prime}(\lambda)=0$
$p_{1}^{\prime}(\lambda)=-1$.
The roundinc omons inierent in this aleorithm are satisfactorily small.
2.3 The nethod of Lajuempe (Iaguerre [16] yp 87-103, Doderiz [3], van der Corput [30], Earlott [26], \#illsinson [34] me443-445) mas used to find tie moros of the chanacteristic zolyonial defince by (15). This mothod was chosen since:-
a) if the chanacteriztic yolynomial, $y_{n}(\lambda)$, has real roots and the real line is cividod into as may intorvale as there are distinct roots, then fron ony initiel yoint in such an intorvel tho successive Iaヘ̧ucrue itoratos couvorec monotonicalij to the root therein;
b) locally, if the root is single, convenance is cubic, obinerise it is linear.
The first above does not extend to the complex plane, finite the second does ([26]) - this is not of great importance here as only real roots will be sought.
varlet describes tic algorithm as follows:-
Let the polynomial $r_{n}(\lambda)$ have roots $\lambda_{1}, \ldots \lambda_{n}$. Given an amorination λ to one of the roots, say λ_{n}.

Define

$$
\begin{gathered}
S_{1}(\lambda)=\frac{p_{n}^{\prime}(\lambda)}{p_{n}(\lambda)}=\sum_{i=1}^{n} \frac{1}{\lambda-\lambda_{i}} \\
S_{2}(\lambda)=\frac{p_{n}^{\prime}(\lambda)^{2}-p_{n}(\lambda) n_{n}^{n}(\lambda)}{r_{n}(\lambda)^{2}}=\sum_{i=1}^{n} \frac{1}{\left(\lambda-\lambda_{i}\right)^{2}}
\end{gathered}
$$

The next approximation, λ^{\prime}, to λ_{n} is obtained Iron

$$
\begin{align*}
\lambda^{\prime} & =\lambda-\frac{n}{S_{1} \pm \sqrt{(n-1)\left(n s_{2}-S_{1}^{2}\right)}} \\
& =\lambda-\frac{n}{S_{1} \pm \eta^{2}} \quad \text { say. } \tag{16}
\end{align*}
$$

Choose that square root of 7 Which maximizes $\left|S_{1} \pm \pi\right|$. Also, $\left|S_{1} \pm \pi\right|^{2}=\left|S_{1}\right|^{2}+|\pi|^{2} \pm 2 \operatorname{Re}\left(\bar{S}_{1}, \#\right)$, so choose 7 to rate $\operatorname{Re}\left(\bar{S}_{1}, i=\right.$ non-nocative; when $i t$ is zero, arbitrarily taine $0 \leqslant \operatorname{ar}(: I) \leqslant \pi$.
accepted roots may be suppressed by olininetins their influence on S_{1} and S_{2}, this is done by noting that

$$
\begin{align*}
& s_{1}^{(p)}=\sum_{i=1}^{p} \frac{1}{\lambda-\lambda_{i}}=s_{1}^{(n)}-\sum_{i=p+1}^{n} \frac{1}{\lambda-\lambda_{i}} \tag{17}\\
& s_{2}^{\left(l_{i}\right)}=\sum_{i=1}^{p} \frac{1}{\left(\lambda-\lambda_{i}\right)^{2}}=s_{2}^{(n)}-\sum_{i=p+1}^{n} \frac{1}{\left(\lambda-\lambda_{i}\right)^{2}}
\end{align*}
$$

Farlett subsets the follo:rine numerical criteria for deciding
whether a computed ruabきu is an acこeこtable anro：ination to a zero of the ciaracteristic polyanial：－
Let λ be the cumpon itamn e，A λ the congutei ircronent and
$|\lambda|=|\operatorname{Se}(\lambda)| \div|\operatorname{Im}(\lambda)|$ ．In tho Elloming α rozenents the base
 the mork of Panlett $\alpha=10$ and $i=0$ ．
Tosi 1：$\left|n_{12}(\lambda)\right|<\left.\alpha^{-i}|\lambda|\right|_{n} ^{\prime}(\lambda) \mid$ ．nis test was desiened to catch
 nay be preforable to use $\alpha^{-t / 2}$ or $\alpha^{-\frac{1}{2}-1}$ yather then $\alpha^{-\frac{1}{t}}$ ．This test
 observable in λ to t deci：al ：laces．
Test 2：Tet c be the noculus of tie leneest root found．

$$
|\Delta \lambda|<\alpha^{-t / 2} \operatorname{nax}\left(|\lambda|, \alpha^{-t / 2+1}, c\right) .
$$

For linear convergence this tes：is not fine enough，and

$$
|\Delta \lambda|<\alpha^{-t / 2-2} \operatorname{tar}\left(|\lambda|, \alpha^{-t / 4} \cdot c\right) \text { is noxe }
$$

$\operatorname{sost} z:|\Delta i|<\alpha^{-t} . c$

Tro further cases may occur as a result of conine：eisenvalues causint cycles－Te are not overly interected in these as me seel： real roots，houver ses janlc：t［20］for details．

Feters and \％illenson［27］Lave also addressed thenselves to the problea oí deciding rien a comuted number is an aiequate amprozination to one of tile roots oit a volynoniol．

2．A In the implenentation of the above alforitim it vas fourd necssseny to scale the astix andor the characteaistic polynoniol in order to encure thet tise coryutod yoluss or the charecteristic polyoniol and its first and socond derivitives nere almays within the allowable ranci．is a notaiecinal nacine was used，the coeff－ icient matrix was scaled by a suitable power of 16.

2.5 5uperical 2 20:1t5.

The trelve eitenvalues of suallest mocirus rore convuted for the follorins eeses:-

Outer radius equal to 1.000 in all caces.

$$
\Delta r=0.1, \Delta \theta=\pi / 64 .
$$

	$\begin{aligned} & \text { Inner } \\ & 0.400 \end{aligned}$	$\begin{array}{r} \text { ragius } \\ 0.300 \\ \hline \end{array}$
distances between centres	0.200	0.200
	0.175	
	0.150	0.150
	0.125	
	0.100	0.100
	0.075	
	0.050	0.050
	0.025	
	0.000	0.000

table1
The ondr: of the cocfficient netrices usod in tie ajove varied fron 390 in the cace of the 0.800 hole, 0.000 batran contres case to 457 for tho 0.300 sole, 0.050 betmen centros cituation.
 compted as it was folt thatrery Iitile mic: was nem, ercept the ectual vilues of the cicenvalues, would be obtained. These cases would also have requinod the use ot smaller valucs For $\Delta=$ and $\Delta \theta$
 computer tine.

It will de ronmaserd that in the rodifisi fom of the Lanczos algorithr, as discussed in $h 1.2$, the urger mid lomer diejonal elements of tho reaulting friaiajonal rastrun nore donoted bj γ and p respec-

 corputinc the cianraluis of Lar?nce's cquation on the reaion defired above that a moliaile indiation of tho accuracjo of the results
 Ratio (J.2.) as a raxticuny poirt of tie jonczos aleorithe, viz. the ritio of the muse of fositive $\beta^{\prime \prime}$ in the tridiajonal matriz

 it whe found tinet the sunlest noots could be cowpuscd accurately from this ($2: / 3$) $\because(20 / 3)$ tridiajonal netrix - seo in particular the cases with innen madius of 0,400 and distances betweon centres
of $0.200,0.175,0.150,0 . i こ 5$. F2en the 3. ․ Fell belot this threchold value tine rocts wave less accurajely coternined - sec the cases :ritil imex raijus oz 0.400 and ístances betireen centres of 0.075 and 0.050 . The cinice oin initial rectori affects tioc S.R. ratio ro:owniz - see as e:neries tie caves mere the inner radius is 0.400 and the distances botneen the centres are again 0.075 and 0.050 .

The resulting eigenraus ars tabuated on the followiry paces. Sosidos the cigenvilus, tine onlou of tie zatrix, the bandwidith, then sympetry ratio and tia initiol vectoes usedare also tabulated ior eacin caje. (taor infomaticn, Tiene available md relevant, has alco boen tabuatel. There any doubt matsoeror exists about tio accurasj of any or the lower orden fisurcs in the approxination to a root of the relevant triciajonnl natric thece have been undeminol - noto thet this dos not ingly that the remainins ficures rovevent a rerectiy accurate rerrosentation
 indistincusincle, heve boen bracle:ed. Me title "n-iterations" means n Lancsos itcrations.

1) Outer radius 1.000; inner radius . 400; distance betaen contros . 200.
2) $\Delta r=.1 ; \Delta 9=\pi / 64=.04508738$
3) Patrix has order 415 and bandridtin 17.
4) Jometry ratio is. 77 for 415,311 and 275 Lenczos iterations.
5) $\operatorname{Eax}_{i}\left(\left|v_{1}^{T} v_{\dot{F}}\right|,\left|v_{i}^{2} v_{i}\right|\right)=13.16$.
6) 415 Lancros itorations requived fron 4 to 12 Lasueme iterations, Thile 311 and 276 required fron 3 to 10 and 3 to 11 resrectivoly.
7) Initiel vectors of $[1,0,1,0, \ldots]^{T}$ and $[1,1,0,1, \ldots]^{?}$. mere used.

415 its	311 its	276 its
$\begin{aligned} & -.00192115792 \\ & -.001922390160 \end{aligned}$		
	-.001922066510	-.001922054204
	-.0105657i,195	
		. 3551234592
$\left.\begin{array}{l} 6.24685259 \\ 6.246877999 \end{array}\right\}$	5.554025520	
	6.246365394	0.2408855394
12.53145505		
17.65557339		
17.75004823	17.75604923	17.75504923
24.97805. 55	24.97005452	24.97605×74
25.67555720		
30.71131545	30.711815 .3	30.711 6i593
44.12523415	44.12553205	44.12524589
55.6850 .5610	55.6510×755	
	55.12125595	
	63.71727142	
		65.92419245
	66.19242012	
		77.03921337

table 2

In addition mith 276 itoraions 4 connlex roots, namoly $55.87776590 \pm .3025067319 i$ and $88.62199263 \pm$ $\pm 4.3218032 \mathrm{t}$ i 7 me found.

1) Guter rajius 1.000 ; innor radius .400; distance betieen cen . 175.
2) $\Delta r=.1 ; \Delta \theta=\pi / 54=.09506738$
3) Yatriz hes orier 418 ani banixidtin 17.
4) $3 y$ ニeiry ratio is . 54 .
5) $: \underset{i}{\arg }\left(\left|v_{1}^{m} \tau_{i}^{*}\right|,\left|v_{i}^{m} v_{i}\right|\right)=20.14$.
6) 418,313 and 276 Lancsos itowaiions rosuined betroen 3 and 13, 3 and 12 and 4 and 8 Lacuerme itorations resrectively.
7) Initial vectors: $[1,0,1, \ldots]^{\mathrm{T}}$ and $[1,1,0,1, \ldots]^{\mathrm{T}}$.

418 its	315 its	278 its
-. 001921493515	-.001921.61n31	-.001903690459
-.001922:3656!	-0019224-25	-.001922214831
-. 004656575996		
6.24684:780)	6.246859050	6. $2 ¢ 66850068$
6.246357790	6.247521416	7.095920427
18.65039315)		
18.660 ${ }^{417175}$	18.560:9375	18.600133076
24.97739544)	24.59437029	
24.97803504 ${ }^{\text {2 }}$	2:.57300751	24.97200747
31.02482002	$31.02524 \leq 25$	31.02524226
	36.4630.5255	
	45.27845174	45.27645173
	52.59456i53	$52.9545 \div 615$
	56.1471998!	56.14723092
		64.46905175
		63.25312574

table 3

1）Outer radius 1．000；inner raミius ．400；シifferance batroen centres ． 150.
2）Δr and $\Delta \theta$ as before．
3）Latrir is or order 419 and haz banditidin 17.
4）：3y：metuy＂ratio is ．71．
5） $\operatorname{Mar}\left(\left|v_{1}^{i} v_{i}^{*}\right|,\left|v_{1}^{\prime \prime} v_{i}\right|\right)=22.04$
6） 419,314 and 279 Lenczos iterations nenuired betroen 4 ana 11， 3 and 12 and 3 and 9 Jeaucrre itarations resnectively．
7）Initiai vectors：$[1,0,1,0, \ldots]^{\text {T }} \cdot \hat{c}[1,1,0,1, \ldots]^{T}$ ．

419 its	314 its	279 its
－． 001921852165	－．001922325657	－．0019223216三年
－．001922499148	－． 001907405710	
		－．001073157756
$\binom{6.2: 6557735}{6.246834075}$	6．246858779	6．24005Ei 20
	6.247105191	6.253545840
$\binom{19.62 .478259}{19.62597702} ?$	19.62597702	19.62597702
24．96557400		
24．57311410	24．078：1417	24.97311917
31.25051027		
31.29320755	31．29320712	31.29320715
	36.15119055	
	42.02771776	42.02771750
	50.52604535	50.52596531
	55．1ヶ217250	50.1422555
	63．052：7235	63.06201531
		71．98414771

table 4
 .125.
2) Δr and $\Delta \theta$ as before.
3) : Mitriz has order 42 and bananizti 17.
4) Symetry ratio is . 67.
5) $i=\operatorname{Ex}\left(\left|v_{1}^{T} v_{i}^{T}\right|,\left|v_{i}^{2} v_{i}\right|\right)=23.3 \%$
6) 420,315 and $2 S 0$ Lanczos itavainne =onimo betion j and 12, 5 and 11 and 5 and 1 Iasueme iterations nos, ectively.
7) Initial voctors as in the provioxs :no cases.

420 its	315 i̇3	200 its
-.001922837949	-.0024023aciso	-. $32 \times 5=5$
-.001924.185902	-.00240530.572	-.002405530238
$6.2467 \underline{2009}$)	$6.12678=759$	
6.246050138	6.246352769	$6.2 \div 5782759$
20.06221015		
20.66019056	20.66032353	20.5003239
24.97806017	21.977572: 1	2\%.67752\%1
26.07235397		
31.45575050	31.8593703	31.95593702
40.24055707		
40.32459958	40.3249775	$40.32: 97754$
48.61705390	48.61712000	-5.61712953
	56.14607000	$56.1 \div 007050$
	61.67538	61.5759249
	75.60685635	$75.80712 \% 81$
		79.11355079

teble 5

1) Cuter radius 1.000 ; inver redius .400 ; distance beinoon contros .100.
2) Δx and $\Delta \theta$ as before
3) Yatrix hes order ti20 and bemtridth 13.
4) Bymaciy ratio :as . 63 - procranel to discontinue Lanczos

5) Eetmeen 3 and 12 jagueme itarations nere renuived.
6) Initial vectors as berone.

table 6

1）Cuter radius 1.000 ；inner radius ． 400 ；aisiance betroen centres ． 075 ．

2）Δr and $\Delta \theta$ as befors．
3）：atrixi hes order 422．
4）Initial vectors $[1,0,1,0, \ldots]^{n}$ and $[1,1,0,1, \ldots]^{T}$ ．Ifter 422 Ianczos iterations $\mathrm{J} . \mathrm{Z} .=0 . \div 0$ ．200 $=$ Esolated in betwoen

5）Initial vectors as in 4）above－a゙ten $こ=1$ jarczos iterntions S．R．$=0.43$ ．Roots found in fron 3 to 11 Iquerre itorations． Case B．
6）Initial vectors：Both $\left[1,1,1, \ldots j^{2} / \sqrt{222}\right.$, 3．R．$=0.68$

A	B	C
		－． 205539410
		－． 1×41007555
－．006915915008		
	－．0033443722：5	
		－．0．03364553339
－．00237553s．ec2		
－．001919030365		．
$3.6562 \pm$ i2．6500		
6，240720057	6．245432823	0.292470911
6.246850643	6.27182 SO	
	22．42241220	
23.05309540	23.05311027	23.05302250
23．0680， 032		
24．97936¢77	24．97009533	24．97551256
25.31726513		
31.16025235	131．16021609	31.18322409
	$36.57=3501$	36．3：2ct 5 57
	46.61012717	40.6513153
	56．145095：5	
	$60.72 \div 234 \div$	60．72：2980面
		78.25357051
		65．50270201

taple 7

1) Guter radius 1.000 ; invor rajius 0. 000 ; aistance betoien centives C.050.
2) Δx and $\Delta \theta$ as bȩ̂orə.
3) Iiatrix has order 422 and bancridith 15.
4) Initisl vectors : $[1,0,1,0, \ldots .]^{\mathrm{m}}$ and $[i, i, 0,1, \ldots]^{T}$. S.R. $=0.53$ after t22 Ianczos iterations. Frow 3 to 8 इajuerre iteraiions required. Onse 1.
5) Initial vectors: botil $[1,1,1,1, \ldots]^{T / \sqrt{2.22}}$. S.3. $=0.65$ after 251 Lamezos sters. 3 to 6 Incueme iterations - no complex aritmetic mas requined at all.

4	B
$\begin{aligned} & -221.1259307 \\ & -134.2520382 \\ & -48.84124239 \\ & -0.8220045103 \end{aligned}$	
	-0.001922607524
	-0.001895580614
	$6.2468512 \div 7$
18.57040053	
	24.35155150
	24.97306324
27.12803554	
	30.42029256
	35.78951941
	44.005909:4
	46.11340696
	60.35402150
	77.5679 .50
	20.834.07307
$\begin{gathered} 98.13350345 \\ 210.0125 \pm i 60.6692 \end{gathered}$	
320.2267819	
346.3715650	
409.0910500	

table 8
Corraring the above roots $\pi i t h$ esch other and with those obtanen elsenere it is clea thet the resulis \pm ebovo are extuenaly suspect.

1) Miter redius 1.000; innor rodius .fos; distonoe botroen contres .025.
2) Δx and Δf as before.
3) :Latrix has order 422 and bandiati 15.
4) Initial vectors: $[1,0,1,0, \ldots]^{2} \operatorname{mad}[1,1,0,1,0, \ldots]^{T}$. sfier 422 Inemos stens S.R. $=0.43$. う to 13 Lajuerre itoraions. Case A.
5) Initial veċors: $[1,1,1, \ldots]]^{\frac{2}{2}} / \sqrt{-22}$ (botio). Lftor 281 Lanczos S.R. $=0.65 .3$ to Lazuerre iteraiions. $\because 0$ comple: aritinntic.

4	3
-0.00i92377935i	
-0.001922731059	-0.0015c2.507552
-0.001893491016	-C.001922205j03
$6.2468 \% 077$	6.24750\%005
6.245565558	
24.9750遜15	24.97205930
25.56353511	25.56303610
29.300:7859	29.300:7039
29.46077:86	
35.2065E752	35.20537:32
$45.7416 \geqslant 551$	45.7610×109
	$52.510=3535$
	60.04copecg
	77. $6550 \div 762$
	95. 55555155

table 9

1) Outer radius 1.000; inner radius . 400; distance betazen centres 0.000 .
2) Δr and ΔQ as before.
3) Natrix hes order 390 and bankiaith 13.
4) Botin initial vectors mere $[1,1,1,1, \ldots .]^{\text {I }} / \sqrt{390}$. After 260 Lemozos steps S.R. $=0.70$. z to 11 Lanuewre iterations. The triciajonal aatrix required scalinc. Io cowples arithotic needed at all.
5) Jevere scaling problems were encountered minen initial vectors $[1,0,1,0, \ldots]^{T}$ and $[1,1,0,1, \ldots]^{\text {TI }}$ mere used - so severe in fact that this attempt ras abandonod.

	-0.001921729375
	-0.001922607530
	$6.251 \underline{18201}$
	16.79002914
	24.97805 1 18
	26.21547745
	26.2\%.36!160
	34.94593020
	59.77875325
	97.77400042
	99. $: 010 \mathrm{~g} 667$
	99.67735 2×7

table 10

Sumany of nes근 for 0.400 hole:-

table 11

table 11
i) Only the rosisive yoots are siom as these are the only ones Whicin have amenin for the cifferential onewator on tie dousin under consicieration.
2) Only figures about mincl thena is zone neenure of cortainty are shom in tre fendo.
 bstraen contres 0． 000 ．
2）Δr and $\Delta \theta$ as beftc＝e．

4）Initial vectors：$[i, 0,1,0, \ldots]^{7}=2,1[1,1,0,1, \ldots]^{\text {² }}$ ．
 Io complex aritnceic requiッシ．。

－2．109110
2．0320j0ごこ
13．10071712
14．2300sc5
25.77255175
35．62S003T：
45.03005011
45.80075165
52．1774530
59.40013132
77．452573
cs． 1000911

$\pm \pm 3!012$

1）Cuter radius 1．000；innor radins ．300；distance betacen centres 0.150.

3）Crier 434，bandrajo： 19.
4）Initial vectors：ij bota $[1,1,1, \ldots]^{\frac{T}{2}} / 404$ and ii）
$[1,0,1,0,1, \ldots]^{-}$and $[1,1,0,1, \ldots]^{[} \cdot 30$ zinutes of cut time ran out before a triliazonal natrir ritin S． $2 . \leqslant .60$ or the full tridiajonal najmiz coutd bo foum in both ceses．

1) Cuter radius 1.000; inmer :exids . 300; distance betweon centres .100.
2) $\Delta \underset{y}{ }$ and ΔA as beこ̂oro.
3)Order of =atrix 465, bondriath 17.
3) Initial vectora: $[1,0,1,0, \ldots .]^{T}$ and $[1,1,0,1,0, \ldots]^{T}$.
S.R. $=0.63$ aiter 323 Lenczos iterations. 3-7 Lajuerre iterations required. no comyer arithmetic required.

-1.454652065
2.082022111
13.19104035
16.81013117
24.40710983
$30.737 \underline{3149}$
42.33311589
46.70162252
57.06934 .123
62.68545095
81.45435455
95.62170301

1）Guter madius 1．000；innea radius ．je0；iisiance betreen cenires .050
2）Δr anà $\Delta \underset{3}{ }$ as bē̃̃ore．
3）Iatri has order 487 and bandwiath 17.
4）Initial vocious ：as in preficus case．i：ier 324 Ionczos itevations S．R．$=0.60 .4-6$ Iavuerre itemaiicns．Cniy tho complez rest required $=0=$ ごer aritinetic．

2.082029155
2.631192569
13.19017141
13.90342691
18.25658392
22.91197275
29.90050740
39.43049971
41.91186502
57.69592007
$52.59053255 \pm i 11.12511595$
$t 2$

1）Outer raji：is 1.000 ；inner radius 0.300 ；distence betreen centres 0.000.
2）Δx and $\Delta \theta$ as before．
3）：atrix $\vdots=3$ order 455 and banduidth 13 ．
4）Initial vaciors es in Provious case．侸ien 455 Lanczos the S．R． mas found to be 0．14．io meaninciul sizavelues could theresore be fouri．

5）It this staje the prosran，fincen iad been stored on disin， not un unotunetely inaivertently desinoyed so that this case could $L^{\text {not }}$ mun ritin iritial vectors $[1,1,1,1, \ldots]^{?} / \sqrt{455}$ ．

Summery of results for tize 0.300 inole:-

0.200	0.100	0.050
2.082050259	2.0820	
		2.631193
$\begin{aligned} & 13.1907171 \\ & 14.25 \end{aligned}$	13.19104	15.180
		13.903
	16.8101312	
		18.27
25.772	24.41	22.51
35.629063	30.708	29. 50050740
		39.4304597
45.03	42.33	41.91185502
46.491	46.701623	
52.17745		
59.4001314	57.070	57.695923
77.49	62.685:590	
89.41909211	81.45	
	95.62170501	

table 15

The comments after tajle 11 are relevant here too.

In order to monitor the "accurscy" of ti:e twizizeonalization
 the $\mathrm{v}_{\mathrm{i}}^{T} \mathrm{~V}_{1}^{\prime}$ s \#rere also caiculated, ut as tinse were found to follor the $\mathrm{V}_{i}^{* T} \mathrm{v}_{1}$'s in boinvious, their corrutation Tes Iti persevered $\overline{\text { it }}$ 红)
2.6 Some compents on the above results.

1) In none of the test cases was the Lanczos iteration terminated due to a γ falling below the preset threshold. This is not. entirely surprising as one would not expect the derived tridiasonal matrix to be derosatory.
2) These results again clearly illustrate the adverse effect of a low symetry ratio. A low ratio results in excessive cancellation error, vhich can frequently be avoided by restarting the cjcle with a different set of initial vectors.

2.7 Practical experiences in isolating the smaller roots of the high order polyonials associated mith this eigenvalue problem.

Scaling of both the original coefficient matrix and the resultiñ polynomial is essential in order to keep all computed numbers mithin the allowable ranse. This scaling ras performed at two points; first, the coerificient matrix is scaled by a power of 16 to ensure that all the elements dorm the main diagonal, the superdiagonal and the sub-diaconal are less than or equal to one in absolute value. Further, if any of the intermediate values used in the computation of $p_{n}(\lambda), p_{n}^{\prime}(\lambda)$ or $p_{n}^{\prime \prime}(\lambda)$ lie outside the range $\pm 2 \times 10^{-40}$ to $\pm 10^{55}$ a second scaling routine, which scales the elements of the tridiagonal matrix, is invoked - see the prosram for details.

As only the smallest roots were sought, zero was always used as the starting point for the Lasuerre iteration.

Even though only real roots were sougnt it was necessary to regard all quantities in the Lamuerre iteration procedure as complex frequently the intemediate iterates of a real root (which might even have a small complex part itself) mere complex:
 iterations；4th root：Zne iterates ane：－

$\pm \quad i$	$i=$
0 。	0.
$0.4133845 \div 10^{-5}$	－0．22．シこ์ $5=10^{-\overline{2}}$
$0.1162117: 10^{-2}$	－0．12こちごこ10－3
$0.1513461:=10^{-2}$	－0．10こっごニ10－：
$0.152511 \subseteq \leq 10^{-2}$	
$0.1525116=10^{-2}$	－0．：こけこごンス10－9

teble 15
At this stare the iteraiion ceased because $|\Delta z /=|<10^{-5}$ ． Complex axibinotic is not nlmavs raquinaz ニorarce－esnccially When the number of Lanceospreniozan is＝ollen tixan the order of the natrir ：
example：irnen radius ．4；distenes bこ亡．．．en roots ．175； 279 La：czos iterations；3rd root．rhe iterates are：－

z	i
0.	0.
$0.1250390=10^{-3}$	0.
$0.1174607: 10^{-2}$	0.
$0.1421907=10^{-2}$	0.
$0.149546 \leq 10^{-2}$	0.
$0.1516958=10^{-2}$	0.
$0.1523243: 10^{-2}$	0.
$0.1524697=10^{-2}$	0.
0.1525115×10^{-2}	0.
$0.1525115: 10^{-2}$	0.

table 17

At this stace the iteratire procenure res sjopped，afain becauce $|\Delta z / z|<10^{-5}$ ．

A larue function vilue is not nesecsarily indicative of the
 does a small function value alrays indicete pronizity to the root－ as a simple scaling oif the tridiegonal＝ajin is sufficient to drasticaliy alier the folue of tie cine Eyomple：inne＝radius ．A；distance bet．．eə＝centees ．125；420 Lenczos
itorations; 3nd root. A subsaript n on a nurber a (i.e. an means arion in the follorinc tro tables.

table 18
At this point the iterasion was stopped because $|\Delta z / z|<10^{-5}$.
It is interestins to cowpare the above with the conversence to the some root after tie aprlication of 230 Lanczos steps.

		function val. $f=+i f i$	deriv. val. fdr + ifdi
-.1543011-2	-1690914-2	$-0^{4}-140$	$-.32-7 \quad 0$.
$.8200854_{-3}$.8474231-j	$.19_{-6}-{ }^{-58}$	${ }^{-.56}-2 \quad .14-1$
. 1524186 -2	.7761511-4	$-.45{ }_{-8} \quad .50-8$	$\cdot{ }^{16}-4 \quad \cdot 34-5$
. 1524907 ${ }_{-2}$. 3272514_{-7}	$.16-9 ~_{\text {- }}{ }^{18}$	$.24-5-.28-6$
. 1524996 -2	.7624039 ${ }_{-15}$	$-_{-23-12} .83_{-13}$	$.{ }^{25}-5 \quad . .11_{-9}$
. 152:995-2	. 2009192 -26	.12-19 -19-21	$.26_{-5}-.26_{-18}$

table 19

The iteration coased here becauss

$$
\mid \text { function value }\left|\leqslant 10^{-5} *\right| r o o t|*| \text { derivative or function } \mid .
$$

The apparent dirference in the too above anprorinations to the sare root is caused by the different senling factors used in the tino tridiagonal matrices. The finel root of table 19 neess to be
multiplied by only $1.00005: 9$ in onder to $=\mathfrak{y}$ 'e it sunal to that or table 18 (to 7n) and j et the funcjion ?nd derirative values direer vastly. Note too that in teble 18 couble precision nas used acd in table 19 sincle procision - hence the cirierine nutber of simiricant Eicures.

Determinins the muliplicitios of ite eijenvalues mithout resortins to computins the corresponitng eisenverices is not an easy tasl. i:o conclusion in tinis reeari any de nade by consideming the absolute valles of the function and 1st cevirative in izoletion, as these quentitios are sensitive to sanling. Reaconable conciusions may hovever be dram by conparine the ajsclùe palues of these functions - if these meve of the sane small ozisx of masnitude We concluded tiat multiple (or close) eizenvolues nors present, otheririce not.

The root cepturing critoria :as to be chonen very carsivilu so as not to aiss roots - me sometines dia (nes, for exomple, the table on peje 41). In this resard see also tie rever by Peters and millcinson [27].

FDiAL COMCES OM PARE OES.

We have here described a modified form of the mell-known Lanezos minimized iteration technique for reducing an arbitrary matrix With real roots to tridiagonal forn. Various nodisied alsorithas are given - all theoretically equivalent, but of course computationally different. Te have indicated the most superior of these algorithms, pointing out that even with this version failure way occur but can be recognized before comencing the isolation of the roots of the tridiazonal form by monitoring the value of the Symetry Ratio. A loy ratio (approximately less than 0.6) soes hand in hand with large cancellation error, while when the ratio is higi some of the extreme roots nay be isolated by utilizing ferser than n applications of the theoren. Some indications of the stability have deen given.

This technioue was used to solve numerically the differential eigenvalue problea $\nabla^{2} u-\lambda u=0$ on the domain of fī̄ure 1 of chapter 1. We used this technique primarily because considerably less storase than is custowarily used by tridiasonalization techniques is requirea, thus obviating the need for a vast amount of fast storage or of continual pasing or of rolling in and out of slower core. Two hole sizes were used, each of these was placed at various distances from the origin and the smallest eigenvalues of each case were found.

PART 2

GHAPRER 1 : INRRODUCRICT TO TAU PEPEDS.
1.1 Introduction : Lanczos, in 1938 [17], introduced his tau method for the solution of the linear differential equation with polynomial coefficients and right hand side, say

$$
\begin{equation*}
D y(x)=f(x) \tag{1}
\end{equation*}
$$

He further expanded this method in 1957 [20]. Rather than truncate an infinite pomer series solution to this differential equation the Lenczos procedure perturbs the differential equation and finds the exact folynomial solution to this perturbed equation.
1.2 The tau nothod : We will illustrate the method by means of the simple differential equation $y^{\prime}(x)+y(x)=0, y(0)=1$, which defines $y=e^{-x}$. Insert the formal porer series approxination $y^{*}(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}+\ldots$ to $y(x)$ into the differential equation and obtain the system of inear algebraic equations

$$
\begin{equation*}
j a_{j}+a_{j-1}=0 \quad j=1,2, \ldots, \tag{2}
\end{equation*}
$$

Which is then solved in terms of ε_{0}. The initial condition nay be satisfied by adjusting a_{0}. This formal expansion may bo tested for convergence.

The solution to this differential equation is an inrinite power series. No polynomial solution can be obtained unless the exact solution is a polynomial. A polynorial solution of order n may be obtained by truncating the series defined by (2), this is however equivalent to solvin亏 only the first n equations in (2) with a perturbation term of the fora τx^{n} on the rigit hand side of the differential equation, so that in the ($n+1$) - tin equation

$$
(n+1) a_{n+1}+a_{n}=\tau
$$

$a_{n+1}=0$ and the cancellation of the coefficients $a_{j}, j \geqslant n$ propagates domnards instead of upmards, and the solution is preserved. This solution is a partiel sum of the Taylor series for $y(x)$ around $x=0$ and therefore its accuracy deteriorates as we depart frow the point of expansion. Lanczos hereupon proposed a perturbation term which distributes the error more evenly over the interval, J, on which the solution is required. If this interval is $[-1,1]$ then it is natural to replace the original zero right
hand side of the equation by its best alfebraic polynowial approzimation of degree n, that is, by the Cnebyshev polynomial $T_{n}(x)$ 。
1.3 The Canonical polynomials: In 1952 [19], and more extensively in 1957 [20], Lanczos introauced a sequence $Q=\left\{Q_{H}\right\}, m \in H_{0}$
(where N_{0} is the set of non negative integers), of canonical polynomials associated with the differential operator D, which he defined by means of the functional relation

$$
D Q_{n}(x)=x^{m}, \quad m \in N_{0}
$$

If the given differential equation is perturbed by $H_{n}(x)=\tau_{r}(x) \rho_{n-r}(x)$, where $\rho_{n-r}(x)=\sum_{m=0}^{n-r} c_{n}^{(n-r)} x^{m}$,
$\tau_{r}(x)=\sum_{m=0}^{r} \tau_{m} x^{m} ; n$ and r positive integers, and if $f(x)=\sum_{m=0}^{k} f_{m} x^{m}, k$ an integer, then because of the linearity of D the solution to the perturbed equation,

$$
D y_{n}(x)=f(x)+H_{n}(x),
$$

is simply $y_{n}(x)=\sum_{m=0}^{n-r} c_{m}^{(n-r)} \sum_{i=0}^{r} \tau_{i} Q_{m+i}(x)+\sum_{m=0}^{k} f_{m} Q_{m}(x)$.
In particular then : assume that $D y(x)=0$ is a
proposed problem with initial conditions $y^{(j)}(x)=y_{\alpha}^{(j)}, j=0, \ldots, \nu-1$; J being the interval on which the solution is being sought and α a point of J. For simplicity assume further that D is a first order operator. If the canonical polynomials are knomn for all non-negative $n \in N$, then the solution to the perturbed problea

$$
D y_{n}^{*}(x)=\tau T_{n}(x)=\tau \sum_{k=0}^{n} c_{k}^{(n)^{k}}
$$

is simply $y_{n}^{*}(x)=\tau \sum_{k=0}^{n} c_{k}^{(n)} Q_{K}(x)$. The parameter τ is chosen so that the initial ${ }^{k=0}$ condition $y(x)=y_{\alpha}$ is matched. Therefore

$$
\begin{equation*}
y_{n}^{*}(x)=\frac{y_{x}}{\sum_{k=0}^{n} c_{k}^{(n)} Q_{k}(x)} \tag{3}
\end{equation*}
$$

There are several advantages to expressing the approximate solution in terms of canonical polynomial. First, the Whole of the computation need not be repeated if an approximation of higher derree is required. Second, they do not depend on the initial or boundery conditions, or on the interval over which tine solution is souzht. Further, canonical polynomials may be used to solve eigenvalue problems there the parameter may enter either
linearly or nonilinearly.
1.4 Constraction of Canonical nolrmozials : Lenczos' technique for constructing the canonical polymonials $d_{i}(x)$ associated with D is to solve a systez of linear equations, lize (2), for $0 \leqslant j \leqslant i$, With a 1 on the right hand side of the i-th equation. This procedure need not be trivial as the systen way be over-determined and for some subset of the index i the canonical polymonials may be multiple or even be undefined. All these possibilities have to be taken into account if the iau method is to be automized. In the next paragraph We give a short description of a more satisfactory technique for their construction.

This recursive technique is due to Ortiz [24]. Again consider the equation

$$
\begin{equation*}
D y(x)=f(x) . \tag{4}
\end{equation*}
$$

As $Q_{n}(x)$ is by definition a polynmial and D is a linear operator rhich maps polymomials into polynomials it is reasonable to start by considering the effect of D on the monomiel x^{n}. This is the polynomial

$$
\begin{equation*}
D x^{n}=\sum_{r=0}^{m} a_{r}^{(n)} x^{r} \tag{5}
\end{equation*}
$$

of degree $m \geqslant n$. Then

$$
\frac{1}{a_{m}^{(n)}} D x^{n}=x^{m}+\frac{1}{a_{m}^{(n)}} \sum_{r=0}^{m-1} a_{r}^{(n)} x^{r}
$$

Assuming that all the $Q_{r}(X), Y<\pi$, are kown at this point we may write

$$
\begin{equation*}
\frac{1}{a_{m}^{(n)}} D\left[x^{n}-\sum_{r=0}^{m-1} a_{r}^{(m)} a_{r}(x)\right]=x^{m}, \tag{6}
\end{equation*}
$$

because of the linearity of D. Therefore

$$
\begin{equation*}
Q_{m}(x)=\frac{1}{a_{m}^{(n)}}\left[x^{n}-\sum_{r=0}^{m-1} a_{r}^{(n)} Q_{r}(x)\right] \tag{7}
\end{equation*}
$$

For the particular case $y^{\prime}(x)+y(x)=0$ we find that as $m=n, a_{m}^{(n)}=1, a_{m-1}^{(n)}=n$ and $a_{r}^{(n)}=0$ for $0 \leqslant r \leqslant \pi-1$ and $m \geqslant 2$, therefore

$$
Q_{n}(x)=x^{n}-n Q_{n-1}(x),
$$

Which Eives recursively $Q_{0}(x)=1, Q_{1}(x)=x-1, Q_{2}(x)=x^{2}-2 x+2$, $a_{3}(x)=x^{3}-3 x^{2}+6 x-6$ etc.

This technique is not however entirely without its difficulties. First, a need not be equal to n, in general it will be greater (e.g. if $D y(x)=y^{\prime}(x)+y(x)$), cau:ing a "தaj" between the exponent of x^{n} and the leading one of $D x^{n}$. Second, $a_{n}^{(n)}$ could be zero (e.g. $D . y(x)=x y^{\prime}(x)-y(x)$). Both of these situations give rise to undefined canonical polynomials, $D_{V}(x) \nabla \in S$ say. These undefined canonical polynoaials affect the possioility of generating all the canonical polynomials by means of (7), as not afl the $Q_{r}(x)$, $0 \leqslant r \leqslant m-1$ are necessarily defined. This in turn affects the possibility of obtainins a solution at all to the perturbed problem $D y_{n}^{*}(x)==T_{n}(x)$ as there may be no canonical polynomials available to generate the poiters $x^{\nabla}, \nabla \in S$, in the expression of $T_{n}(x)$.

Another problem is that of multiple canonical polynomials, which arise in examples such as $D(x)=$ $x^{2} y^{\prime \prime}(x)+2(x-1) y^{\prime}(x)-2 y(x)-$ here $Q_{0}(x)$ is either $-\frac{1}{2}$ or $\frac{1}{2}-\frac{x}{2}$

In order to circumvent these difficulties Ortiz has
introduced the following modified definition for $Q_{a}(x)$:

$$
\begin{equation*}
D Q_{n}(x)=x^{n}+R_{n}(x), \tag{8}
\end{equation*}
$$

Where $R_{n}(x)$ is a polynomial generated by $x^{\nabla}, V \in S$. This "Residual Polynomial" $R_{n}(x)$ belongs to the subspace R generated by the porers of x which are "unattainable" by the operator D acting on polynomials. Then, altinough $X^{V}, v \in S$, cannot be generated with the $Q_{n}(x)$'s, their residual polynomials $R_{n}(x)$, which belon to B, rill take care of that segment of the perturbation polynonial.

Far nore detail concerning undefined and multiple
canonical polynomials may be found in [24.].
1.5 Eicenvalue oroolems : Fox and Parker [18] have discussed the application of the orisinal formulation of the tau method to the eigenvalue problems of linear differential equations. In the nezt paragraphs we point out how the recursive technique of Ortiz gay be used for these problems.

Here the differential operator depends on a
parameter λ, hence so do the canonical polymomials. Because of the fact that the algebraic ker:el of D_{λ} depends on the spectrum and may be empty for sone eigenvalues and not others this extension is not entirely trivial. The advantages of using this approach are that exact polynomial solutions satisfyine the boundary conditions are imnediately detected; the basis in which the eigensolutions are represented is generated recursively; the order of the λ-determinant is independent of the degree of the desired approximation; as the
desree of the approximation increases the lower eisenvalues are obiained with rapioly increasiñ accuracy and the higher order eisenvalues sive a wide range oit the seecrmin and also that if an approxization of higher degree or at different boundary points is required the previous computational effori is not entirely rasted.

Azain we illustrate via an exaple. Consider

$$
\begin{equation*}
D_{\lambda} y(x)=x\left(3 x^{2}-1\right) y^{\prime \prime}(x)-2 y^{\prime}(x)-\lambda x y(x)=0 \tag{9}
\end{equation*}
$$

with the boundary conditions $\bar{y}(-1)=0$.
Applying D_{λ} to x^{n} we get

$$
D_{\lambda} x^{n}=[3 n(n-1)-\lambda] x^{n+1}-n(n+1) x^{n-1}
$$

and imediately

$$
Q_{n+1}(x, \lambda)=\frac{1}{3 n(n-1)-\lambda}\left[x^{n}+n(n+1) Q_{n-1}(x, \lambda)\right] \text { for } n
$$

The set of indices of undefined canonical zolynomials is $\mathrm{s}=\{0\}$. In order to satisfy the three conditions, viz. two boundary conditions and one undefined canonical poljnoaiel, a three term perturbaiion, of the form

$$
H_{n}(x)=\tau_{0} T_{n}(x)+\tau_{1} T_{n-1}(x)+\tau_{2} T_{n-2}(x)
$$

is used. Therefore

$$
y_{n}^{*}(x, \lambda)=\sum_{i=0}^{2} \tau_{i} \sum_{k=0}^{n-1} c_{k}^{(n-i)} Q_{k}(x, \lambda)=\tau_{0} A(x, \lambda)+\tau_{1} B(x, \lambda)+\tau_{2} c(x, \lambda) .
$$

The approximate solution has then to satisfy the three conditions:-

$$
\begin{aligned}
& \tau_{0} A(-1, \lambda)+\tau_{1} B(-1, \lambda)+\tau_{2} C(-1, \lambda ;=0 \\
& \tau_{0} A(+1, \lambda)+\tau_{1} B(+1, \lambda)+\tau_{2} C(+1, \lambda)=0 \\
& \tau_{0} \times+\tau_{1} \beta+\tau_{2} \gamma=0
\end{aligned}
$$

where ${ }_{2}, f, \gamma$ are the sum of residuals in the first, second and third terms respectively. In order to get a non-trivial solution the λ-determinant must vanish:

$$
\left|\begin{array}{ccc}
A(-1, \lambda) & B(-1, \lambda) & C(-1, \lambda) \\
A(+1, \lambda) & B(+1, \lambda) & C(+1, \lambda) \\
\alpha & \mathcal{F} & \gamma
\end{array}\right|=0 .
$$

The roots of this equation give the eisenvelues of (9).
2.1 Introduction: A fert methods have recently been proposed for approximating the solution to parabolic partial differential equations usirg Cheoysher polynonials. Elliott [7] and \#rass [37] use semi-discretization techniques; Fox and Parker [10], Xnibb and Scraton [14], Den and Şaraton [6] and Knibib [13] assume solutions of the form $u(x, t)=\sum_{r=1}^{N} a_{r}(t) T_{r}(x)$ or $u(x, t)=\sum_{r=1}^{N} a_{r}(t) x^{r}$, Ir finite or infinite, to ${ }^{\text {thhe }}$ differential equation $\sum_{r=1}$ Fox and Pariser [10] also use a prior integration technique coupled with the assumption that the solution has the first form above.

Insofar as the solution to elliptic partial differential equations is concerned, Kason [21] has suefeested a separation of the variables type solution, viz. $u(x, y)=\sum_{r, s=0}^{N} a_{r s} T_{r}(x) T_{s}(y)$. He also, rather tentatively perinaps, suธ̃gests ${ }^{r, s}=0$ collocation method for solving these problems.

In this chapter me investigate some semi-discretization approaches to solving an elliptic partial differential equation and proride error analyses to these. Also, because of the similarity betyeen Traz̃'s technique and those of this chapter we later, in another chapter, give an error analysis of his method. The error equations derived are differential-difference equations.
2.2 Techniques : Here we will attempt an approximaie solution to Laplace's equation

$$
\begin{equation*}
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{1a}
\end{equation*}
$$

defined on the domain $x_{a} \leqslant z \leqslant x_{b}, y_{a} \leqslant y \leqslant y_{b}$, baving the boundary

$$
\text { conditions } \begin{align*}
u\left(x_{a}, y\right) & =f(y), u\left(x_{b}, y\right)= \tag{1b}\\
& u\left(x, y_{a}\right)=h(x), u\left(x, y_{b}\right)=k(x) .
\end{align*}
$$

Denote the interior of the rectangle by Ω, the boundary by S and let $\bar{\Omega}=\Omega+S$.

figure 1
2.3 Our first (unsuccessful) attempt at solving this problem using the tau method was via a straightforward semi-discretization approach. The domain Ω of figure 1 was divided into I strips of equal width, $\Delta y=\left(y_{b}-y_{a}\right) / N$, in the y-direction. Let $y_{r}=y_{a}+r \cdot \Delta y$ and $u_{r}=u\left(x, y_{r}\right)$. We discretized (1) at the point (x, y_{x}) in the following four ways :
$I=\frac{d^{2} u_{r}}{d x^{2}}+\frac{\dot{u}_{I}-2 u_{r-1}+u_{r-2}}{\Delta y^{2}}+o(\Delta y)=0$
II: $\frac{d^{2} u_{r}}{d x^{2}}+\frac{2 u_{r}-5 u_{r-1}+4 u_{r-2}-u_{r-3}}{\Delta y^{2}}+0\left(\Delta y^{2}\right)=0$
III: $\frac{d^{2} u_{x}}{d x^{2}}+\frac{u_{x+1}-2 u_{x}+u_{x-1}}{\Delta y^{2}}+o\left(\Delta y^{2}\right)=0$
IV:

$$
\frac{d^{2}}{d x^{2}}\left(u_{r+1}+u_{r-1}\right)+\frac{u_{x+1}-2 u_{r}+u_{x-1}}{y^{2}}+o\left(\Delta y^{2}\right)=0
$$

In the sequel these discretizations will be denoted by I, II, III and IV respectively. I and III are the usual backyard and central difference approximations, II (see Collatz [5] p539) is a more exact backward difference approximation, while IV is an improved . bo v(u,i)? central difference approximation. -In each of the above -cases a polynomial approximation $u_{r}=\sum_{m=0}^{n} a_{m}(r) x^{m}$
(2) T_{n-1}^{n} mas assumed for $u\left(x, y_{r}\right)$. In order $=\frac{0}{i o}$ obtain (2) as a solution to I -IV, perturb each of these by $\left(\tau_{1}^{(x+q)}+\tau_{2}^{(x+q)} \geq\right) T_{n}^{*}(x\}, q=0$ for I, II; $q=1$ for III, IV. Hereafter $\pi=$ let $T_{n}^{*}(x)=\sum_{m=0}^{n} c_{m}^{(n)} x^{m}$ tiers $c_{0}^{(n)}=(-1)^{n}$;
$c_{m}^{(n)}=2^{2 m-1}\left[2\binom{n+m}{n-m}-\binom{n+m-1}{n-m}\right](-1)^{n+m}, \quad E=1,2,3, \ldots \cdots \cdots n+1$?
Thereafter, for I, II and IV, equate coefficients, use the first
 $\sum_{m=0}^{n} a_{m}^{(r)} x_{b}^{n}=s\left(y_{r}\right)$ respectively) and easily obtain a system of linear algebraic equations of the form
for the required coefficients $\underset{a_{0}^{(r}}{\underset{\sim}{a}} \underset{\sim}{(r+q)}, \ldots, a_{n+1}^{(r+q)}$. Note that the vector $\underset{\sim}{k}$ is a function of the solution on lines prior to tho ($q+r$)-th. Explicitly, the matrices of (3) are :-

$$
\begin{aligned}
& 2 n(n-1)+i^{i}
\end{aligned}
$$

$$
\begin{equation*}
\underset{\sim}{k}=\left[f\left(y_{r}\right), g\left(y_{r}\right), 2 a_{0}^{(r-1)}-a_{0}^{(r-2)}, \ldots, 2 a_{n+1}^{(r-1)}-a_{n+\gamma}^{(r-2)}\right]^{T} \tag{n}
\end{equation*}
$$

II

IV

$$
\begin{aligned}
& A= {\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 2 \Delta & 0 & 0 & 0 & -2 \Delta c_{0} & 0 \\
0 & 1 & 0 & 6 \Delta \ldots \ldots & 0 & 0 & -2 \Delta c_{1} & -2 \Delta c_{0} \\
& & \cdots \cdots \cdots & & \\
& & & & 0 & (n-1) n \Delta & -2 \Delta c_{n-1} & -2 \Delta c_{n-2} \\
& & & & 0 & 1 & -2 c_{n} \Delta & -2 c_{n-1} \\
& & & & 0 & -2 c_{n} \Delta
\end{array}\right] } \\
& \Delta=\Delta y^{2 / 2}
\end{aligned}
$$

III, on the other hand, leads to an almost explicit expression of u_{r+1} in terms of u_{r} and u_{r-1}.
2.4 Error analyses : The errors incurred in perturbing I - IV by $\left(\tau_{1}^{(r+q)}+\tau_{2}^{(I+q)} x\right) \tau_{n}^{*}(x)$ nay be analysed by definins $z_{r}=\tilde{u}_{r}-u_{r}$ and formiñ the difference beiveen the periurbed and unperturbed forms, giving rise, in each case, to a system of difference-differential equations of the type

$$
\begin{equation*}
D z_{I}+E z_{r}=-\left(\tau_{1}^{(r+q)}+\tau_{2}^{(r+q)} x\right) T_{n}^{*}(x) \tag{4}
\end{equation*}
$$

For the methods I - III D and E represent tie differential and difference operators respectively, Fhile in the case of IV $D z_{r}=\frac{1}{2} \frac{d^{2}}{d x^{2}}\left[z_{r+1}+z_{r-1}\right]$ and E is again the difference operator. associated with this case. The difference-differential equations generated by I, II and IV are of retarded type and can therefore be solved by the process of continuation. A fers applications of this process enables one to guess at a solution, the correctness of which is easily checked by induction.

In each of the cases leading to a retarded equation the solution is of the form

$$
\begin{array}{r}
z_{p}=\sum_{i=0}^{P} \beta_{i p} x^{i} \cos \alpha x+\sum_{i=0}^{p} \gamma_{i p} x^{i} \sin \alpha x- \\
-\sum_{i=1}^{p+1} \delta_{i p} \omega^{2(i-1)} \mathbb{D}^{i}\left(\tau_{1}^{(p)}+\tau_{2}^{(p)} x\right) T_{n}^{*}(x) \tag{5}
\end{array}
$$

Where D represents, in each case, a different differential operator and where we have assumed that $z_{-i}=0$ for i positive.

The case I, in particular, starting from (5), where
nõ $\quad \alpha=1 / \Delta y$,
and $\mathbb{D}^{\circ}=1 /\left(\frac{d^{2}}{d x^{2}}+\alpha^{2}\right)$,
leads straightforwardly to

$$
\begin{aligned}
& z_{p+1}=\left[\sum_{i=0}^{p} \alpha^{2}\left(2 \beta_{i p}-\beta_{i, p-1}\right) \sum_{j=0}^{\left[\frac{i}{2}\right]} \frac{(-)^{j}{ }_{i!}}{(i+1-2 j)!} \frac{x^{i+1-2 j}}{(2 x)^{2 j+1}}+\right. \\
& \left.\left.+\sum_{i=0}^{p} \alpha^{2}\left(2 \gamma_{i p}-\gamma_{i, p-1}\right) \sum_{j=0}^{[i-1} \frac{i-1}{2}\right] \frac{(-)^{j_{i}!}}{(i-2 j)!} \frac{x^{i-2 j}}{(2 x)^{2 j+2}}\right] \sin (\alpha x)+
\end{aligned}
$$

$$
\begin{align*}
& \left.-\sum_{i=0}^{p} \alpha^{2}\left(2 \gamma_{i p}-\gamma_{i, p-1}\right) \sum_{j=0}^{\left[\frac{i}{2}\right]} \frac{(-)^{j} j!}{(i+1-2 j)!} \frac{x^{i+1-2 j}}{(2 x)^{2 j+1}}\right] \cos (\alpha x)+ \\
& +\sum_{i=2}^{p+1} \alpha^{2(i-1)}\left(2 \delta_{i-1, p}-\delta_{i-1, p-1}\right) D^{i} P_{n+1}+D P_{n+1}+ \\
& +\beta_{0, p+1} \cos (\alpha x)+\gamma_{0, p+1} \sin \left(\alpha_{z}\right) \tag{6}\\
& =\sum_{i=0}^{p+1} \beta_{i, p+1} x^{i} \cos (x x)+\sum_{i=0}^{p+2} \gamma_{i, p+1} x^{i} \sin (x x)+ \\
& +\sum_{i=1}^{P+2} \alpha^{2(i-1)} \delta_{i, p+1} D^{i} P_{n+1}{ }^{\circ}
\end{align*}
$$

The last expression after a suitable ordering of the terms of (6). The constants $\mathcal{\beta}_{\mathrm{o}, \mathrm{p}+1}$ and $\gamma_{\mathrm{o}, \mathrm{p}+1}$ are deternined by the boundary conditions $z_{p+1}(0)=z_{p+1}(1)=0$. Obviously, a rather involved recurrence relationship nay be establisned, linking $\beta_{i, p+1}$ and $\gamma_{i, p+1}$ to the previously computed values of these constants.

Similarly,

$$
z_{r}=\sum_{k=0}^{r} \beta_{r k} x^{k} \cos \sqrt{2} x+\sum_{k=0}^{k} \gamma_{r k} x^{k} \sin \sqrt{2} x x+\sum_{k=1}^{r+1} \delta_{k r} D^{k} P_{n+1}
$$

for II. The coerficients asain being obtained recursively from those on the previous lines and the "zeroeth" ones coming from the boundary conditions. This time $D=1 /\left(\frac{d^{2}}{d x^{2}}+2 \alpha^{2}\right)$.
luach the same can be said for IV.
We later actually compute the numerical values of some of these errors.

The solution to the error equation III is obtained as follors using Euler-Laplace transforms :-

Let \tilde{u}_{r} be the solution to III and u_{r} the solution to its perturbed for. Also define $z_{r}=\tilde{u}_{r}-u_{r}$.

Then $\frac{d^{2} z_{r}}{d x^{2}}+\frac{z_{r+1}-2 z_{r}+z_{-1}}{\Delta y^{2}}=-\left(\tau_{1}+\tau_{2} x\right) T_{n}^{*}(x)$.
Now define $z_{r}(s)=\int_{a}^{b} e^{-s x} z_{r}(x) d x$
and $\quad W(s)=\int_{a}^{b} e^{-s x} W(x) d x$,
where $w(x)=-\left(\tau_{1}^{\prime}+\tau_{2}^{\prime} x\right) \tau_{n}^{2 *}(x)$
and $\tau_{i}^{r}=\Delta y^{2} \tau_{1}, \tau_{2}^{\prime}=\Delta y^{2} \tau_{2}$.
(7. γ may be written as (where $c=\Delta y^{2}$)
c $\frac{d^{2} z_{r}}{d x^{2}}+z_{x+1}(x)-2 z_{r}(x)+z_{r-1}(x)=-\left(\tau_{1}^{i}+\tau \tau_{2}^{i} x\right) T_{n}^{*}(x)$

Taking Euler-Laplace transforms (see Bellman and Cooke [39] and Finney [40]) on both sides of (10) and using

$$
\begin{aligned}
& s^{2} z_{r}(s)=e^{-s a}\left[s z_{r}(a)+z_{r}^{\prime}(a)\right]-e^{-s b}\left[3 z_{r}(b)+z_{r}^{\prime}(b)\right]+ \\
&+\int_{a}^{b} e^{-s x} z_{r}^{\prime \prime}(x) d x
\end{aligned}
$$

we easily obtain

$$
\begin{aligned}
& c s^{2} \cdot Z_{r}(s)+Z_{r+1}(s)-2 Z_{r}(s)+Z_{r-1}(s)=n(s)+ \\
& \quad+c e^{-s a}\left[s z_{r}(a)+z_{r}^{\prime}(a)\right]-c e^{-s b}\left[s z_{r}(b)+z_{r}^{\prime}(b)\right]
\end{aligned}
$$

ie. $\quad Z_{r+1}(s)-2\left(1-\frac{c s^{2}}{2}\right) Z_{r}(s)+Z_{r-1}(s)=W(s)+$

$$
\begin{equation*}
+c e^{-s a}\left[s z_{r}(a)+z_{r}^{\prime}(a)\right]-c e^{-s b}\left[s z_{r}(b)+z_{r}^{\gamma}(b)\right] \tag{11}
\end{equation*}
$$

This difference equation has, as solution,

$$
\begin{align*}
Z_{x}(s)= & Z_{v-1}(s) U_{[r]+1}\left(1-\frac{c s^{2}}{2}\right)-Z_{v-2}(s) U_{[r]}\left(1-\frac{c s^{2}}{2}\right)+ \\
& +\sum_{k=0}^{[r]}\left[c e^{-s a}\left\{s z_{x-1-k}(a)+z_{x-1-k}^{y}(a)\right\}-\right. \\
& \left.-c e^{-s b}\left\{s z_{r-1-k}(b)+z_{x-1-k}^{\prime}(b)\right\}+T(s)\right] U_{k}\left(1-\frac{c s^{2}}{2}\right) \tag{12}
\end{align*}
$$

Where $\nu=[r]-x$,

$$
\begin{aligned}
{[r]=} & \text { largest integer } \leqslant r, \\
U_{r}(z) & =\frac{\sin (r+1) \operatorname{srcsin} z}{\sin \arccos z} \\
& =\text { Chebyshev Polynomial of the second Lind. }
\end{aligned}
$$

It is easily checked that (12) is a solution to (11) by substitution and the subsequent use of the following properties of Chebyshev polynomials of the second kind (Lanczos [22]) :
(a) $U_{r}(x)-2 x U_{x-1}(x)+U_{x-2}(x)=0$
(b) $U_{0}(x)=1$
(c) $U_{1}(x)=2 x$.

Substituting ve get

$$
\begin{aligned}
& Z_{x-[r]-1}(s) \mathbb{J}_{[x]+2}\left(1-\frac{c s_{3}^{2}}{2}\right)-Z_{x-[x]-2}(s) U_{[x]+1}\left(1-\frac{c_{3}^{2}}{2}\right)+ \\
& +\sum_{k=0}^{[r]+1}\left[c e^{-s a}\left\{s z_{r-k}(a)+z_{r-k}^{r}(a)\right\}-c e^{-s b}\left\{s z_{r-k}(b)+z_{r-k}^{\prime}(b)\right\}+\right. \\
& +W(s)] U_{k}\left(1-\frac{c_{3}}{2}\right)-2\left(1-\frac{c_{s}^{2}}{2}\right) z_{x-[r]-1}(s) U_{[r]+1}\left(1-\frac{-s^{2}}{2}\right)+ \\
& +2\left(1-\frac{c s^{2}}{2}\right) Z_{r-[r]-2}(s) U_{[r]}\left(1-\frac{c s}{2}\right)-2\left(1-\frac{c s}{2}\right) \sum_{k=0}^{c r]}\left[c e ^ { - s a } \left\{s z_{r-k-1}(a)+\right.\right. \\
& \left.\left.+z_{I-k-1}^{\prime}(a)\right\}-c e^{-s b}\left\{s z_{r-1-k}(b)+z_{x-1-k}^{\prime}(b)\right\}+\mathbb{F}(s)\right] \nabla_{k}\left(1-\frac{c s^{2}}{2}\right)+ \\
& +z_{x-[x]-1}(s) 4_{x]}\left(1-\frac{c s^{2}}{2}\right)-z_{x-[x]-2}(s) U_{[r]-1}\left(1-\frac{\mathrm{cs}}{2}\right)+ \\
& +\sum_{k=0}^{\{r\}-1}\left[c e^{-s a}\left\{s z_{r-2-k}(a)+z_{r-2-k}^{\prime}(a)\right\}-c e^{-s b}\left\{s z_{r-2-k}(b)+z_{r-2-k}^{\prime}(b)\right\}+\right. \\
& +W(s)] U_{k}\left(1-\frac{-s^{2}}{2}\right) \\
& =c e^{-s a}\left[s z_{r}(a)+z_{r}^{\prime}(a)\right]-c e^{-s b}\left[s z_{r}(b)+z_{r}^{\prime}(b)\right]+\mathbb{F}(s) \\
& \text { (after some manipulation). }
\end{aligned}
$$

It is easily verified that

$$
\begin{aligned}
& s^{\mu} z_{r}(s)=e^{-s a} \sum_{k=0}^{\mu-1} z_{r}^{(k)}(a) s^{\mu-k-1}-e^{-s b} \sum_{k=0}^{\mu-1} z_{r}^{(k)}(b) s^{\mu-k-1} \\
&+\int_{0}^{b} e^{-s x} z_{r}^{(\mu)}(x) d x
\end{aligned}
$$

Thence $P(s) z_{r}(s)=\int_{a}^{b} e^{-s x} P\left(\frac{d}{d x}\right) z_{r}(x) d x+e^{-s a}($ polynomial in $s)+$

$$
+e^{-s b}(\text { polynonial in } s),
$$

where $P(s)$ is an arbitraxy polynomial in s. Inserting this into (12) gives

$$
\begin{align*}
z_{r}(s) & =\int_{a}^{b}-s x\left[U_{[r]+1}\left(1-\frac{c}{2} \frac{d^{2}}{d x^{2}}\right) z_{\nu-1}(x)-U_{[r]}\left(1-\frac{c}{2} \frac{d^{2}}{d x^{2}}\right) z_{\gamma-2}(x)+\right. \\
& \left.+\sum_{k=0}^{[r]} U_{k}\left(1-\frac{c}{2} \frac{d^{2}}{d x^{2}}\right) w(x)\right] d x+e^{-s a} P_{a}(s)+e^{-s b} P_{b}(s) \tag{14}
\end{align*}
$$

where $P_{a}(s)$ and $P_{b}(s)$ are polynomials in s.
Applying the theorea: If $g(x)$ is integrable over (a, b) and is of bounded variation in some neighbounood of x, then for $G(s)$ defined by $G(s)=\int_{a}^{b} e^{-s x} g(x) d x$ and any constant c

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} G(s) e^{s x} d s & =0 \quad x<a \\
& =\frac{1}{2} g(a+0) \quad x=a \\
& =\frac{1}{2}[g(x+0)+g(x-0)] \quad a<x<b \\
& =\frac{1}{2} g(b-0) \quad x=b \\
& =0 \quad x>b,
\end{aligned}
$$

we can invert (14) for $a \leqslant x \leqslant b, r \geqslant 0$, giving

$$
\begin{align*}
z_{r}(x) & =U_{[r]+1}\left(1-\frac{c}{2} \frac{d^{2}}{d x^{2}}\right) z_{\gamma-1}(x)-U_{[r]}\left(1-\frac{c}{2} \frac{d^{2}}{d x^{2}}\right) z_{\gamma-2}(x)+ \\
& +\sum_{x=0}^{[+]} U_{k}\left(1-\frac{c}{2} \frac{d^{2}}{d x^{2}}\right) \pi(x)+\frac{1}{2 \pi i} \int_{x_{0}-i \infty}^{x_{0}+i \infty} e^{-s a} P_{a}(s) e^{s x} d s+ \\
& +\frac{1}{2 \pi i} \int_{x_{0}-i \infty}^{x_{0}+i \infty} e^{-s b} P_{b}(s) e^{s x} d s \tag{15}
\end{align*}
$$

The tro integrals on the right may have their contours closed by adding the right hand and left hand seai-circles at infinity respectively. Since the integrands are analytic within these contours, the integrals vanish. Therefore, for $x \in[a, b], r \geqslant 0$

$$
\begin{gathered}
z_{x}(x)=U_{[r]+1}\left(1-\frac{c}{2} \frac{d^{2}}{d x^{2}}\right) z_{y-1}(x)-U_{[r]}\left(1-\frac{c}{2} \frac{d^{2}}{d x^{2}}\right) z_{y-2}(x)+ \\
+ण_{k}\left(1-\frac{c}{2} \frac{d^{2}}{d x^{2}}\right) \pi(x)
\end{gathered}
$$

If r takes on integral values only, then $\nu=r-[r]=0$ and

$$
\begin{align*}
z_{r(x)}= & U_{r+1}\left(1-\frac{c}{2} \frac{d^{2}}{d x^{2}}\right) z_{-1}(x)-U_{r}\left(1-\frac{c}{2} \frac{d^{2}}{d x^{2}}\right) z_{-2}(x)+ \\
& +\sum_{k=0}^{r} U_{k}\left(1-\frac{c}{2} \frac{d^{2}}{d x^{2}}\right) \pi(x) \tag{16}
\end{align*}
$$

Assuming that $z_{-1}=z_{-2}=0$ and using the definitions of $\eta(x)$ and c :

$$
\begin{equation*}
z_{x}(x)=\sum_{k=0}^{r} U_{k}\left(1-\frac{y^{2}}{2} \frac{d^{2}}{d x^{2}}\right) \Delta y^{2}\left(\tau_{1}+\tau_{2} x\right) T_{n}^{*}(x) \tag{17}
\end{equation*}
$$

Explicit realisations may be had for each r by utilising the expansions

$$
\begin{align*}
& U_{0}(x)=1 \\
& U_{1}(x)=2 x \\
& U_{2}(x)=4 x^{2}-1 \\
& U_{3}(x)=8 x^{3}-4 x \tag{18}\\
& U_{4}(x)=16 x^{4}-12 x^{2}+1 \\
& U_{5}(x)=32 x^{5}-32 x^{3}+6 x \\
& U_{6}(x)=64 x^{6}-30 x^{4}+24 x^{2}-1
\end{align*}
$$

Expanding (17) explicitly it is seen then that

$$
\begin{align*}
& z_{0}(x)=\Delta y^{2}\left(\tau_{1}+\tau_{2} x\right) T_{n}^{*}(x) \\
& z_{1}(x)=\left(1-\frac{v^{2}}{2} \frac{d^{2}}{d x^{2}}\right) \Delta y^{2}\left(\tau_{1}+\tau_{2} x\right) T_{n}^{*}(x) \tag{19}
\end{align*}
$$

$$
\begin{aligned}
z_{6}(x)= & \left(6-\frac{21}{2} y^{2} \frac{d^{2}}{d x^{2}}+\frac{35}{4} y^{4} \frac{d^{4}}{d x^{4}}-\frac{35}{8} y^{6} \frac{d^{6}}{d x^{6}}+\frac{21}{16} y^{8} \frac{d^{8}}{d x^{8}} \frac{-7}{32} y^{10} \frac{d}{d x^{10}}+\right. \\
& \left.+\frac{1}{64} y^{12} \frac{d^{12}}{d x^{12}}\right) \Delta y^{2}\left(\tau_{1}+\tau_{2} x\right) T_{n}^{*}(x)
\end{aligned}
$$

It follows imediately from these explicit expressions that one should endeavour to use a small ay coupled with a low n. This is so since $T_{n}^{*}(x)$ is a polynoritel of desree n and hence the higher its order the more non-zero teras occur in $z_{i}(z)$ - in general these non-zero terms do not cancel each otiner out, but rather combine to swell the masnitude of the error.
2.5 nugerical results : The impracticability of solving Iaplace's equation by the techniques I - IV described above is vividly illustrated by computing numerical values for some of the previous error expressions. Tables 1 and 2 show tine magnitudes of these errors (an entry \hat{n} here means an error havins masnitude 10^{n}) for the cases I and II with boundary conditions $f(y)=h(x)=k(x)=0$ and $g(y)=1$, with a Chebyshev perturbation of degree 19 and steplength $\Delta y=1 / 8$ in both cases. IV produces similar errors to these, while the large exrors obtained from III are easily seen by referring to (19).

y		0	.125	.250	.375	.500	.625	.750	.875
.125	0.	0.	0.	0.	0.	0.	0.	0.	0.
.250	0.	0.	0.	0.	0.	0.	0.	0.	0.
.375	19	27	28	27	28	28	28	28	29
.500	3	37	37	38	38	38	38	38	38
.625	9	9	9	9	8	9	9	9	7
.750	13	42	42	41	42	43	42	43	43
.875	18	17	17	17	16	17	18	18	17
1.000	22	26	26	26	27	27	27	27	28

I ; $n=19 ; ~ \perp y=1 / 8$
table 1

These rather large errors are easily confirned by actually computing the relevant approximate solutions, we shom those associated with the above error tables in tables 3 and 4. No discemable impoverient mas obtained by decreasing the step size. Similar results are obtained, too, with perturbations of different degree.

Some comments on the computation of the approximate solution are necessary. In each of the above techniques a knomledze of the coefficients a_{i} on lines prior to tion r-th is necessary in order to compute the $a_{i}^{\left(\frac{1}{Y}\right)}$. Following a technique described by Fox [9]p58-63, values rere selected for these coefficients on the first lines and

y	I								
	. 000	. 125	. 250	.375	. 500	. 625	. 750	. 875	1.00
- 125	0.	0.	0.	0.	0.	c.	0.	0.	0.
. 250	0.	0.	0.	0.	0.	c.	0.	0.	0.
-375	5	22	22	22	22	22	22	21	22
. 500	13	23	23	23	23	23	23	24	22
. 625	20	24	23	24	24	24	24	24	23
. 750	27.	27	28	27	27	27	27	28	27
. 875	34	34	35	34	34	34	34	35	35
1.000	41	41	42	41	41	41	41	41	42

table 1

y	x								
	. 000	. 125	. 250	.375	. 500	. 625	. 750	. 875	1.00
. 000	- 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0
. 125	13	13	13	13	13	13	13	13	13
. 250	. 0	-1	00	-1	00	00	00	00	11
. 375	19	19	19	19	19	19	19	19	19
. 500	. 0	2	3	2	3	3	3	3	4
. 625	5	5	5	5	4	5	5	4	5
. 750	19	19	19	19	19	19	19	19	19
. 875	1	7	8	7	8	8	8	8	8
1.000	9	9	9	9	-7	9	10	9	10
I									
table 2									

y	.000	.125	.250	.375	.500	.625	.750	.875	1.00
	.0	.0	.0	.0	.0	.0	.0	.0	.0
.125	36	36	36	36	36	36	36	36	36
.250	.0	-3	-3	-3	-15	-2	-3	-2	-2
.375	18	18	18	18	18	18	18	18	18
.500	.0	2	3	3	3	4	5	6	7
.625	7	7	7	7	7	7	6	8	10
.750	8	8	8	8	8	8	9	11	12
.875	-1	9	10	10	10	10	11	13	14
1.000	12	12	13	13	-4	12	14	15	16

table 3
hence several solutions were constructed - their number being equal to the number of sets of coefficients required to conpute the solution on the x-th line. The constructed solutions on the final line mere then combined in order to satisfy the boundary condition there - the solution on other lines was then oojained by comoining the previously computed solutions there in the same way.
2.6 Conment : Hason, in solving a sicilar problem using an approximate solution of the form $u(x, y)=\sum_{r_{1}=0}^{N} a^{n} r S^{T} r(x) T_{s}(y)$, obtained satisfactory results. The reason for this is that he simpltaneously applied all the boundary conditions, finile me have initially applied three of these conditions and have attenpted to satisfy the fourth at a later stage - obviously without any success. In the next chapter We give a modified version of this technique tinich morks remarkably mell.
2.7 The perturbed forms of the equations I , II and IV may be solved usins the "method of selected points" or the prior integration mothod (Fox and Parker [10]). These techniques of solution do not alter the given error analyses.
(a) Consider first the method of selected points (collocation):
(i) Assuming the solution of the perturbed form of I to be $u_{r}=\sum_{m * 0}^{n} a_{m}^{(r)} x^{m}$. Substitute this into the perturbed equation and then satisfy the equation at the zeros of $T_{n}^{*}(x)$, i.e. at $x_{k}=\{1+\cos (2 k-1) \pi / 2 n\} / 2, k=1,2, \ldots, n$. As before the boundary conditions on the r-th line are $u_{r}\left(r_{a}\right)=f\left(y_{r}\right)$ and $u_{r}\left(x_{b}\right)=s\left(y_{r}\right)$. The coefficients $a_{\text {m }}^{(r)}$ are obtained by solving

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & x_{a} & x_{a}^{2} & x^{3} & x_{a}^{4} & \cdots \cdots \\
1 & x_{b} & x_{b}^{2} & x_{b}^{3} & x_{a}^{n+1} \\
1 & x_{1} & \left(2 y_{1}^{2}+x_{1}^{2}\right) & \left(6 y^{2}+x_{1}^{2}\right) x_{1} & \left(12 y^{2}+x_{1}^{2}\right) x_{1}^{2} & \ldots\left((n+1) n y^{2}+x_{1}^{2}\right) x_{1}^{n-1} \\
& \ldots \ldots \ldots & x_{b}^{n+1} \\
1 & x_{n} & \left(2 y^{2}+x_{n}^{2}\right) & \left(6 y^{2}+x_{n}^{2}\right) x_{n} & \left(12 y^{2}+x_{n}^{2}\right) x_{n}^{2} \ldots\left((n+1) n y^{2}+x_{n}^{2}\right) x_{n}^{n-1}
\end{array}\right] \cdot}
\end{aligned}
$$

Typical of the coefficient matrices which arise is that for $\Delta \mathrm{y}=1 / 8$ and $n=8$; correct to $2 S$ this matrix is
$\left[\begin{array}{ccccccccccc}1.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\ 1.0 & .99 & 1.1 & 1.2 & 1.3 & 1.4 & 1.6 & 1.8 & 2.0 & 2.2 \\ 1.0 & .92 & .93 & .94 & .97 & 1.0 & 1.1 & 1.1 & 1.2 & 1.2 \\ 1.0 & .78 & .70 & .62 & .56 & .51 & .46 & .42 & .38 & .35 \\ 1.0 & .60 & .45 & .33 & .24^{2} & .18 & .13 & .94_{-1} & .67_{-1} & .48_{-1} \\ 1.0 & .40 & .26 & .14 & .77_{-1} & .41_{-1} & .21_{-1} & .11_{-1} & .55_{-2} & .27_{-2} \\ 1.0 & .22 & .14 & .53_{-1} & .18_{-1} & .57_{-2} & .17_{-2} & .50_{-3} & .14_{-3} & .39_{-4} \\ 1.0 & .84_{-1} & 1.0 & .16_{-1} & .23_{-2} & .28_{-3} & .33_{-4} & .37_{-5} & .41_{-6} & .43_{-7} \\ 1.0 & .96_{-2} & .94_{-1} & .18_{-2} & .29_{-4} & .42_{-6} & .56_{-8} & .72_{-10} & .88_{-12} & .11_{-13}\end{array}\right]$

From the wide rañe of coefficient sizes it is imediately apparent that with this choice of n and Δy, the systen (20) is ill-conditioned. Evaluating the determinant confiras this. The folloning table is interesting:

n	$\Delta \mathrm{y}$	determinant
6	.50	$-.2167_{-1}$
8	.25	$.2604_{-10}$
12	.25	$-.1185_{-25}$
4	.125	$-.8724_{-5}$
8	.125	$.1475_{-15}$
8	.0625	$.4158_{-19}$

table 1
This should not be totally surprising when the values of the $x_{k}{ }^{\prime}$ s are remenbered. Hence a solution by this means will produce contaninated results.
(ii) II leads to the matrix equation $A \underset{\sim}{a}=\underset{\sim}{b}$. The matrix A being that of (i) above, except that teras ($s \Delta y^{2}+x_{i}^{2}$) there are replaced by ($s \Delta y^{2}+2 x_{i}^{2}$) here; the vector a is the previous uninom vector

As this coefficient matrix is similar to that of (i), the conclusions of that section apply here too.
($\mathrm{Fi} i$) The coefficient matrix arising from the application of a collocation method to II. is just that of (ii) above, while the right hand side vector is

$$
\left[\begin{array}{c}
f\left(y_{x}\right) \\
g\left(y_{x}\right) \\
\sum_{m=0}^{n+1}\left[4 a_{m}^{(x-1)}-2 a_{m}^{(m-2)}\right] x_{1}^{m}-\Delta y^{2} \sum_{m=2}^{n+1} n(m-1) a_{m}^{(n-2)} \\
x_{1}^{m} \\
\cdots \cdots \cdots \cdots \\
\sum_{m=0}^{n+1}\left[4 a_{m}^{(x-1)}-2 a_{m}^{(x-2)}\right] x_{n}^{m}-\Delta y^{2} \sum_{m=2}^{n+1} n(m-1) a_{m}^{(n-2)} \\
x_{n}^{m}
\end{array}\right] .
$$

Again the conclusions of (i) apply.
(b) Each of the semi-discretized sets of the previous sections may, following Clenshair [38], be intesrated first. An infinite Chebyshev expansion may then be assumed for u_{r} and the coefficients of the Chebyshev expansion may be obtained fron a backrard iteration on the difference equations obtained by equating coefficients.
(i) As an example, consider the integrated form of I, namely

$$
\begin{equation*}
\Delta y^{2} u_{r}+\iint\left(u_{r}-2 u_{r-1}+u_{r-2}\right) d x d x=0 \tag{21}
\end{equation*}
$$

Assume that $u_{r}(x)=\sum_{m=0}^{\infty} a_{m}(r) \sum_{m}^{*}(x)$,
rhere the dash indicates, in the usual ray, that half the first coefficient should be taken. Substitute (22) into (21) and use

$$
\begin{aligned}
& \int T_{0}^{*}(x) d x=\frac{1}{2}\left(T_{1}^{*}(x)+T_{0}^{*}(x)\right) \\
& \int T_{1}^{*}(x) d x=\left(T_{2}^{*}(x)-T_{0}^{*}(x)\right) / 8 \\
& \int T_{m}^{*}(x) d x=\frac{1}{4}\left(\frac{T_{m+1}^{*}(x)}{m+1}-\frac{T_{m-1}^{*}(x)}{m-1}\right), \mathbb{Z}=2,3, \ldots
\end{aligned}
$$

trice. This leads to the set of difference equations:-

$$
\begin{align*}
& \frac{\Delta y^{2}}{2} a_{0}^{(x)}+\left[\frac{3}{32} a_{0}^{(x)}-\frac{1}{16} a_{1}^{(x)}+\frac{1}{32} a_{2}^{(x)}\right]-2\left[\frac{3}{32} a_{0}^{(x-1)}-\frac{1}{16} a_{1}^{(x-1)}+\frac{1}{32} a_{2}^{(x-1)}\right]+ \\
& +\left[\frac{3}{32} a_{0}^{(n-2)}-\frac{1}{16} a_{1}^{(x-2)}+\frac{1}{32} a_{2}^{(n-2)}\right]=0 \\
& \Delta y^{2} a_{1}^{(x)}+\left[\frac{1}{8} a_{0}^{(x)}-\frac{3}{32} a_{1}^{(x)}+\frac{1}{32} a_{2}^{(x)}\right]-2\left[\frac{1}{8} a_{0}^{(x-1)}-\frac{3}{32} a_{1}^{(x-1)}+\frac{11}{32} a_{2}^{(x-1)}\right]+ \\
& +\left[\frac{1}{8} a_{0}^{(x-2)}-\frac{3}{32} a_{1}^{(m-2)}+\frac{1}{32} a_{2}^{(x-2)}\right]=0 \\
& \Delta y^{2} a_{2}^{(r)}+\left[\frac{1}{32} a_{0}^{(r)}-\frac{5}{96} a_{2}^{(r)}+\frac{1 a}{48} 3^{(r)}\right]-2\left[\frac{1}{32} a_{0}^{(r-1)}-\frac{5}{96} a^{(r-1)}+\frac{1}{48} a^{(r-1)}\right]+ \\
& +\left[\frac{1 a^{(x-2)}}{32} 0^{96}-\frac{5 a^{(x-2)}}{}+\frac{1 a^{(x-2)}}{48}\right]=0 \tag{25}
\end{align*}
$$

$$
\begin{align*}
& \Delta y^{2} a_{m}^{(x)}+ \frac{1}{16}\left[\frac{a_{m-2}^{(r)}-a_{m-1}^{(r)}}{m-1}-\frac{a_{m}^{(r)}-a_{m+1}^{(r)}}{n+1}\right]-\frac{1}{8}\left[\frac{a_{m-2}^{(n-1)}-a_{m-1}^{(n-1)}}{m-1}-\right. \\
&\left.-\frac{a_{m}^{(x-1)}-a_{m+1}^{(x-1)}}{m+1}\right]+\frac{1}{16}\left[\frac{a_{m-2}^{(n-2)}-a_{m-1}^{(n-2)}}{m-1}-\right. \\
&\left.-\frac{a_{m}^{(n-2)}-a_{m+1}^{(n-1)}}{m+1}\right]=0 \tag{26}\\
& m=3,4, \ldots
\end{align*}
$$

Using the backward recurrence device (Fox and Parker [10] p 99) we take

$$
\begin{align*}
& a_{n-1}^{(x)}=1, a_{n}^{(x)}=a_{n+1}^{(x)}=\ldots=0 \\
& a_{n}^{(r)}=1, a_{n+1}^{(x)}=a_{n+2}^{(x)}=\ldots=0 \tag{27}\\
& a_{n+1}^{(r)}=1, a_{n+2}^{(r)}=a_{n+3}^{(x)}=\ldots=0
\end{align*}
$$

(in turn) for some laree n to obtain three independent solutions. Let the two general solutions be called I_{r} and $I I_{r}$ and the particular solution III $_{r}$. The solution is given by the linear combination

$$
\begin{equation*}
A_{1}^{(r)}\left(I_{r}\right)+A_{2}^{(r)}\left(I I_{r}\right)+I I I_{r} \tag{28}
\end{equation*}
$$

The constants A_{1} and A_{2} are found from the as yet unused boundary conditions, namely

$$
\begin{align*}
& u_{r}\left(x_{a}\right)=f\left(y_{r}\right) \tag{29}\\
& u_{r}\left(x_{b}\right)=g\left(y_{r}\right)
\end{align*}
$$

(ii) A similar procedure may be followed for solving II and IV .
2.B Another approach to the solution of the given problem is via the Lanczos-Ortiz canonical polynomial theory.

Folloring Ortiz the canonical polynomials for the problem I are

$$
\begin{equation*}
Q_{r}(x)=\sum_{i=0}^{[r / 2]}(-)^{i} \frac{r!}{(r-2 i)!} \Delta y^{2 i+2} x^{r-2 i} \tag{30}
\end{equation*}
$$

The solution to the perturbed differential equation must satisfy

$$
\left(\frac{d^{2} u_{r}}{d x^{2}}+\frac{u_{r}}{y^{2}}\right)=\frac{1}{\Delta y^{2}}\left(2 u_{x-1}-u_{r-2}\right)+\left(\tau_{1}^{(r)}+\tau_{2}^{(x)} x\right) r_{n}^{*}(x)
$$

together with the boundary conditions

$$
u_{r}\left(x_{a}\right)=f\left(y_{r}\right) \text { and } u_{r}\left(x_{b}\right)=g\left(y_{r}\right) .
$$

Hence the solution is

$$
\begin{align*}
u_{x}(x)= & \frac{2}{\Delta y^{2}} \sum_{m=0}^{n+1} a_{m}^{(n-1)} Q_{m}(x)-\frac{1}{\Delta y^{2}} \sum_{m=0}^{n+1} a_{m}^{(n-2)} Q_{m}(x)+ \\
& +\sum_{m=0}^{n} c_{m}^{(n)}\left(\tau_{1}^{(x)} Q_{m}(x)+\tau_{2}^{(x)} Q_{m+1}(x)\right) \tag{31}
\end{align*}
$$

$\tau_{i}^{(x)}$ and $\tau_{2}^{(x)}$ are obtained by making the solution $u_{r}(x)$ satisify the boundary conditions. Once the taus have been computed the solution is

$$
\begin{align*}
u_{r}(x)= & {\left[\frac{2}{\Delta y^{2}} a_{0}^{(x-1)}-\frac{1}{\Delta y^{2}} a_{0}^{(n-2)}+c_{0}^{(n)} \tau_{1}^{(r)}\right] Q_{0}^{(x)} } \\
& +\sum_{m=1}^{n}\left[\frac{2}{\left.\Delta y^{2} a^{(x-1)}-\frac{1}{\Delta y^{2}} a_{m}^{(x-2)}+c_{m}^{(n)} \tau_{1}^{(r)}+c_{m-1}^{(n)} \tau_{2}^{(r)}\right] Q_{m}(x)}\right. \\
& +\left[\frac{2}{\Delta y^{2}} a_{n+1}^{(n-1)}-\frac{1}{\Delta y^{2}} a_{n+1}^{(n-2)}+c_{n}^{(n)} \tau_{2}^{(r)}\right] Q_{n+1}(x) \tag{32}
\end{align*}
$$

3.1 Introduction : The previous attempt at solvin Laplace's equation by a combination of the lines and tau methods failed, as we have previously pointed out, because of the manner in which the boundary conditions were used. We here describe, what re have termed, a matrix lines-tau method in which re impose the boundary conditions even from the beginning of the procedure. The matrix part in the name comes from the vector canonical polynomials which we define.

In this chapter me describe the technique as applied to the solution of Laplace's equation on regions as in fiğure 1. An extension to Poisson's equation is also given. Some numerical results are given for both types of equation. \#e give an error analysis and an extension to the eigenvalue problem in chapters 4 and 5 respectively. It is shom also that fairly complex boundary conditions may be handied successfully.
3.2 Method applied to Laplace's equation : We consider nort the equation of Laplace on the curvilinear trapezium of figure 1. The domain boundary consists of the segments $A B$ and $C D$ of

straignt lines parallel to the $O X$ aris and of arcs $1 C$ and $B D$ which each intersect any straight line parallel to $O X$ in at most one point. Consider Laplace's equation

$$
\nabla^{2} u=0
$$

with boundary condition $u=0$ on $A B$ and $C D$,

$$
\begin{align*}
& u=f(x, y) \text { on } A C \tag{1}\\
& u=g(x, y) \text { on } B D .
\end{align*}
$$

Again equally. spaced lines are dram parallel to OX (interval betreen them being h). Denote these lines by $y=y_{0}, y=y_{1}, \ldots, y=y_{n+1}$, there y_{0} and y_{n+1} coincide with $A B$ and $C D$ respectively. Introduce the notation

$$
\begin{gather*}
u_{k}(x)=u\left(x, y_{k}\right), f_{k}(x)=f\left(x, y_{k}\right), \delta_{k}(x)=\tilde{k}\left(x, y_{k}\right) \tag{2}\\
k=0,1, \ldots, n+1 .
\end{gather*}
$$

Let the arc AC cut the lines $y=y_{i} i=0(1) n+1$ at the points $\left(\bar{x}_{j}, y_{i}\right)$ and let the arc $3 D$ cut the lines $y=y_{i}$ at $\left(\overline{\bar{x}}_{i}, y_{i}\right)$.
Define $\bar{X}=\left[\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right]^{T}$ and $\vec{X}=\left[\overline{\bar{x}}_{1}, \overline{\bar{x}}_{2}, \ldots ., \overline{\bar{x}}_{n}\right]^{T}$.
Wikilin [22], quoting Faddecva and Slobedjansky, shows that the problem (1) nay be approziaated by the system of ordinary differential equations

$$
\begin{gather*}
\frac{5}{6} u_{k}^{\prime \prime}(x)+\frac{1}{12}\left[u_{k+1}^{\prime \prime}+u_{k-1}^{\prime \prime}\right]+\frac{1}{h^{2}}\left[u_{k+1}-2 u_{k}+u_{k-1}\right]+ \tag{4}\\
+O\left(h^{4}\right)=0 \quad k=1, \ldots, n
\end{gather*}
$$

Along the boundaries $A B$ and $C D u_{0}(x)=u_{n+1}(x)=u_{0}^{\prime \prime}(x)=u_{n+1}^{n}(x)=0$.

This may be checked by considering the variables separable solution.

Ignoring the error term in (4), combining these equations and utilising (5) leads to the equation

$$
\begin{equation*}
A^{\prime} U^{\prime \prime}+\frac{M}{h^{2}} U=0 \tag{6}
\end{equation*}
$$

Where $\sigma(x)=\left[u_{1}(x), u_{2}(x), \ldots, u_{n}(x)\right]^{T}$

$$
0=[0,0, \ldots, 0]^{T}
$$

$A^{\prime}=\left(a_{i j}^{!}\right), \quad a_{i i}^{1}=5 / 6, \quad a_{i, i+1}^{!}=a_{i+1, i}=1 / 12 ;$
$H=\left(n_{i j}\right), m_{i i}=-2, m_{i, j+1}=m_{i+1, i}=1$.
A^{t} and H are:both of order non. The boundary conditions associated with (5) are

$$
\text { and } \begin{align*}
U(\bar{x}) & =F(\bar{X}) \tag{7}\\
U(\overline{\bar{x}}) & =G(\overline{\bar{x}}), \tag{8}
\end{align*}
$$

where $F(\bar{X})=\left[\dot{I}_{1}\left(\bar{x}_{1}\right), \ldots, f_{n}\left(\bar{x}_{n}\right)\right]^{T}$

$$
G(\overline{\bar{x}})=\left[g_{1}\left(\overline{\bar{x}}_{1}\right), \ldots, g_{n}\left(\overline{\bar{x}}_{n}\right)\right]^{T}
$$

Let $b=\max _{0 \leqslant i \leqslant n+1}\left(\bar{x}_{i}, \overline{\vec{x}}_{i}\right)$ and $a=\min _{0 \leqslant i \leqslant n+1}\left(\bar{x}_{i}, \overline{\bar{x}}_{i}\right)$.
By means of the linear transformation $\quad \xi=\frac{1}{b-a}(x-a)$
it can be ensured that all of the lines $y_{i}(x) \quad i=0(1) n+1$ lie within $[0,1]$. Now let $A=\frac{1}{(b-a)^{2}} A^{\prime}$. In what follows we will continue to denote the boundary points, namely $\overline{\bar{\xi}}_{i}=\frac{\bar{x}_{i}-a}{b-a}$ and $\frac{\stackrel{\rightharpoonup}{\xi}_{i}^{i}=\frac{\overline{\bar{x}}}{i}-a}{b-a}$, $i=0, \ldots, n+1$, by \bar{x}_{i} and $\overline{\bar{x}}_{i}$. Also, we will still denote the independent variable in the transformed equation by x. The transformed equations are still of the form

$$
A U^{\prime \prime}+\frac{4}{h^{2}} U=0
$$

Define the matrix differential operator D by $D=A \frac{d^{2}}{d x^{2}}+\frac{1}{h^{2}}$. The field of definition of D is the set of all nxi vectors with twice differentiable elements. Define the nal vectors

$$
x^{m}=\left[x^{m}, x^{m}, \ldots, x^{m}\right]^{T} \quad E=0,1, \ldots
$$

 Chebyshey polynomial of the first tind of degree N and $T N_{N}^{*}(x)=\sum_{m=0}^{N} c_{m}^{(N)} x^{m}$. Thus $T T_{N}(X)=\sum_{m>0}^{N} c_{m}^{(N)} X^{m}$.
Let $\tau=\operatorname{dias}\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right)$ 。
Following Lanczos [20] define vectors $Q_{m}(x)=\left[q_{m 1}(x), \ldots, q_{m n}(x)\right]^{T}$
such that

$$
\begin{equation*}
D Q_{\text {II }}(x)=x^{\text {D }} \tag{.9}
\end{equation*}
$$

Now $D X^{m}=m(m-1) A X^{m-2}+\frac{M}{h^{2}} X^{m} \quad m=2,3, \ldots$
hence $\quad Q_{m}=h^{2} n^{-1}\left[X^{m}-m(m-1) A Q_{m-2}\right]$
and, from this, it easily follows that

$$
\begin{equation*}
Q_{n}=h^{2} M^{-1} \sum_{i=0}^{[m / 3]} \frac{(-)^{\dot{x}} n!h^{2 i} s^{i} x^{m-2 i} . . . ~}{(m-2 i)!} \tag{12}
\end{equation*}
$$

Where $S^{i}=\left(\operatorname{Ain}^{-1}\right)^{i}, i=1,2, \ldots \quad$ and $S^{0}=I$ (the unit natrix).
Perturb (6) by $\tau^{\prime} \operatorname{Tr}_{N}^{*}(X)+\tau^{\prime \prime} T T_{N+1}(X)$ to give

$$
\begin{equation*}
D U=\tau^{\prime} \operatorname{Tr}_{N}^{*}(X)+\tau^{\square} \mathrm{TN}_{N i}^{*}+1(X) . \tag{13}
\end{equation*}
$$

The solution to this perturbed equation is obviously

$$
\begin{align*}
U(x):= & \tau^{\prime} \sum_{m=0}^{N} c_{m}^{(N)} Q_{m}(x)+\tau^{\prime \prime} \sum_{m=0}^{N+1} c_{m}^{(N+1)} Q_{m}(X) \tag{14.}\\
= & \tau^{\prime} \sum_{m=0}^{N} c_{m}^{(N)} h^{2} n^{-1} \sum_{i=0}^{[m / 3]} \frac{(-)^{i} \mu!}{(m-2 i)!} h^{2 i} s^{i} x^{m-2 i}+ \\
& +\tau^{n} \sum_{m=0}^{N+1} c_{m}^{(1 I+1)} h^{2} n^{-1} \sum_{i=0}^{[m / 2]} \frac{(-)^{i} m!h^{2 i} s^{i} x^{m-2 i}}{(m-2 i)!}
\end{align*}
$$

In a computationally more convenient form this is

$$
\begin{align*}
U(x)= & h^{2} \tau \cdot M^{-1} \sum_{i=0}^{[N / 2]}(-)^{i} h^{2 i} s^{i} \sum_{m=2 i}^{N} c_{m}^{(N)} \frac{n!}{(n-2 i)!} x^{m-2 i}+ \\
& +h^{2} \tau " M^{-1} \sum_{i=0}^{[(N+2) /]}(-)^{i} h^{2 i} s^{i} \sum_{m=2 i}^{N+1} c_{m}^{(N+1)} \frac{n!}{(m-2 i)!} x^{m-2 i} \tag{15}
\end{align*}
$$

Applying the boundary condition (7) to (15.) yields
$h^{2} \tau^{1} \mu^{-1} \sum_{i=0}^{[N / 2]}(-)^{i} h^{2 i} S^{i} \sum_{m=2 i}^{N} c_{n}^{(N)} \frac{m!}{(m-2 i)!} \bar{X}^{m-2 i}+$
$+h^{2} \tau^{\prime \prime} \mu^{-1} \sum_{i=0}^{\left.[N+)_{2}\right]}(-)^{i} h^{2 i} S^{i} \sum_{m=2 i}^{N+1} c_{m}^{(I l+1)} \frac{m!}{(m-2 i)!} \bar{X}^{m-2 i}=F(\bar{X})$.
The condition (8) leads to a similar result. These trio boundary
conditions are of the form

$$
\begin{align*}
& \tau^{\prime} K+\tau^{\prime \prime} L=F \tag{17}\\
& \tau^{\prime} P+\tau^{\prime \prime} R=G
\end{align*}
$$

in which $K=\left[k_{1}, \ldots, k_{n}\right]^{T}$

$$
=h^{2} M^{-1} \sum_{i=0}^{\left[\sum\right]}(-)^{i} n^{2 i} s^{i} \sum_{m=2 i}^{N} c_{m}^{(N)} \frac{m!}{(m-2 i)!} x^{m-2 i}
$$

and similarly for $L=\left[I_{1}, \ldots, I_{n}\right]^{T}$,

$$
\begin{aligned}
& P=\left[p_{1}, \ldots, p_{n}\right]^{T}, \\
& R=\left[r_{1}, \ldots, r_{n}\right]^{T} .
\end{aligned}
$$

Equations (17) are equivalent to the (2n)x(2n) system

which may easily be solved for the τ_{i}^{\prime} and $\tau_{i}^{\prime \prime}$.
3.3 As a special case consider the square region $A B C D$ with $0 \leqslant x \leqslant 1$, $0 \leqslant y \leqslant 1$. We will solve the boundary value problems defined by the following sets of boundary conditions:
a) $u=0$ on $A B, C D$ and $A C, u=1$ on $B D$;
b) $u=0$ on $A B, C D$ and $A C, u=\sin (T y)$ on $B D$;
c) $u=0$ on $A B, C D$ and $A C, u=\cos (\pi y)$ on $B D$.

The boundary conditions a) and c) are discontinuous, while b)
is continuous. In each of these cases $\bar{X}=[0,0, \ldots, 0]^{T}$,
$\bar{X}=[1,1, \ldots, 1]^{T}$ and $F=[0,0, \ldots, 0]^{T}$, while for
a) $G=[1,1, \ldots, 1]^{T}$,
b) $G=[\sin (\pi h), \sin (2 \pi h), \ldots, \sin (n \pi h)]^{T}$,
c) $\dot{G}=[\cos (\pi h), \cdot \cos (2 \pi h), \ldots, \cos (n \pi n)]^{T}$.

Ye will denote the above all by $G(\Xi)$.

The boundary condition (16) not reduces to

$$
\begin{array}{r}
\tau^{s} M^{-1} \sum_{i=0}^{[N / 2]}(-)^{i} h^{2 i}(2 i)!c_{2 i}^{(N)} S^{i} I+\tau " H^{-1} \sum_{i=0}^{\left.[N+1)_{i}\right]}(-)^{i} h^{2 i}(2 i): c_{2 i}^{(N+1)} S^{i} \pm \\
=0 \tag{19}
\end{array}
$$

Where $x=[1,1, \ldots, 1]^{T}$ and $0=[0,0, \ldots, 0]^{T}$.

The other boundary condition is

$$
\begin{aligned}
& h^{2} \tau^{i} h^{-1} \sum_{i=0}^{\left[\frac{N}{2}\right]}(-)^{i} h^{2 i} S^{i} \sum_{m=2 i}^{N} c_{m}^{(N)} \frac{m!}{(m-2 i)!} I+ \\
& \quad+h^{2} \tau^{n} h^{-1} \sum_{i=0}^{[N+1) / 2]}(-)^{i} h^{2 i} S^{i} \sum_{m=2 i}^{N} c_{m}^{(N+1)} \frac{m!}{(n-2 i)!} \quad \pm=G(I)
\end{aligned}
$$

Each of the problems defined by a) - c) and two others (defined later) Tere solved for $M=7(1) 13$ and with $h=0.25$ and 0.125 . Hawever only the results for the cases $N=7, h=0.25$ and $h=0.125$ and $M=13, h=0.25$ are reproduced. An exception is made in the case of a) where the result for $N=7 \mathrm{~h}=0.0625$ also appears.
3.4 Mumerical rosults : The results tabulated in sub-sections (a)-(c) correspond to the problens (a) - (c) of the previous section.
Section (a)
We tabulate first the solution obtained by the usual separation of the variables technique for comparison :-

y	.000	.125	.250	.375	.500	.625	.750	.875	1.00
	00000	0000	0000	0000	0000	0000	0000	0000	0000
.03125	0000	0044	0094	0159	0249	0377	0565	084	0.1284
.06250	0000	0087	0187	0316	0495	0751	1124	1674	0.2484
.09375	0000	0129	0278	0470	0736	1118	1673	2490	0.3696
.12500	0000	0170	0366	0620	0971	1473	2206	3283	0.4872
.15625	0000	0209	0452	0764	1196	1815	2717	4044	0.6002
.18750	0000	0247	0532	0900	1410	2139	3202	4766	0.7074
.21875	0000	0282	0608	1028	1610	2442	3657	5442	0.8077
.25000	0000	0314	0677	1146	1794	2722	4076	6065	0.9003
.28125	0000	0343	0740	1253	1961	2976	4455	6631	0.9842
.31250	0000	0369	0796	1348	2110	3201	4792	7132	1.059
.34375	0000	0392	0845	1429	2238	3595	.5083	7565	1.123
.37500	0000	0410	0845	1497	2344	3557	5325	7.925	1.176
.40625	0000	0425	0916	1551	2428	3684	5516	8209	1.218
.43750	0000	0436	0939	1590	2488	3776	5653	8413	1.249
.46875	0000	0442	0953	1613	2525	3831	5736	8537	1.267
.50000	0000	0444	0958	1621	2537	3850	5764	8578	1.273
.53125	0000	0442	0953	1613	2525	3831	5736	85.37	1.267
			$\ldots \ldots \ldots \ldots$.	\ldots					

(symuetric about $y=.50000$)

$h=25$								$1 .=7$	
.25	.000	.125	.250	.375	.500	.625	.750	.875	1.00
	0000	0350	0754	1275	1995	3026	4529	6740	1.0000
.50	0000	0349	0753	1275	1995	3027	4530	6740	1.0000
.75	0000	0350	0754	1275	1995	3026	4529	6740	1.0000

$$
\frac{\begin{array}{llll|}
\tau^{\mathrm{I}^{\mathrm{T}}} & -.1923_{-3} & -.1360_{-3} & -.1923_{-3} \\
\tau^{\mathrm{n}} & -.1706_{-4} & -.1206_{-4} & -.1706_{-4}
\end{array}}{\frac{\operatorname{table~}_{2}}{} \text { (}}
$$

As the solution is symmetric about $y=0.5$ we only show $\frac{1}{2}$ the computed values in the next tables.

$\mathrm{h}=.125$									$\mathrm{~N}=7$
.125	.000	.125	.250	.375	.500	.625	.750	.875	1.00
	0000	0349	0753	1273	1992	3023	4526	6736	1.0000
.250	0000	0349	0752	1273	1993	3024	4527	6737	1.0000
.375	0000	0349	0752	1273	1993	3024	4527	6737	1.0000
.500	0000	0349	0752	1273	1993	3024	4527	6737	1.0000

$$
\frac{\left\lvert\, \begin{array}{lllllllll}
\tau^{1^{T}} & -.3562_{-3} & -.1928_{-3} & -.1476_{-3} & -.1364 & -3 & -.1476_{-3} & -.1928_{-3} & -.3562_{-3} \\
\tau^{T} & -.3163_{-4} & -.1712_{-4} & -.1310_{-4} & -.1210_{-4} & -.1310_{-4} & -.1712_{-4} & -.3163_{-4}
\end{array}\right.}{t}
$$

$$
h=.0625 \quad N=7
$$

On all the lines the approximate values (to 4D) are:
$0000 \quad 0349 \quad 075(2$ or 3) $12731992 \quad 3023 \quad 452(6$ or 7$) \quad 6736 \quad 1.0000$

table 4

$$
h=.125 \quad N=13
$$

To 4D these values are all:

$$
\begin{array}{lllllllll}
0000 & 0349 & 0753 & 1275 & 1995 & 3026 & 4530 & 6739 & 1.0000
\end{array}
$$

$$
\begin{array}{|rrrr|}
\hline \tau^{\mathrm{T}} & -.3458_{-10} & -.2445_{-10} & -.3458_{-10} \\
\tau^{\prime \prime^{T}} & -.1770_{-11} & -.1252_{-11} & -.1770_{-11} \\
\hline
\end{array}
$$

Section (b)

$.25$. 0000	. 125							
								. 8	1.00
	0000	0247	0533	0901	1411	2140	3203	4765	7071
. 50	0000	0349	0753	1275	1995	3027	4530	6740	1.000
. 75	0000	0247	0533	0901	1411	2140	3203	4765	7071

$$
\begin{array}{|llll}
\hline \tau^{\mathrm{T}} & -.1360_{-3} & -.1361_{-3} & -.1360_{-3} \\
\tau^{\mathrm{n}^{\mathrm{T}}} & -.1206_{-4} & -.1206_{-4} & -.1206_{-4} \\
\hline
\end{array}
$$

table 6

As the solution is precisely symetric about $y=0.5$ only half of the folloring tables are given.

$\mathrm{h}=.125$									$\mathrm{~N}=7$
.125	.000	.125	.250	.375	.500	.625	.750	.875	1.00
	0000	0133	0288	0487	0762	1157	1732	2578	3827
.250	0000	0249	0532	0900	1409	2138	3201	4764	7071
.375	0000	0322	0695	1176	1841	2794	4183	6275	9239
.500	0000	0349	0752	1273	1993	3024	4527	6738	1.000

$$
\begin{array}{|lllll|}
\hline \tau^{\mathrm{T}} & -.1363_{-3} & -.1364_{-3} & -.1364_{-3} & -.1364_{-3} \\
\tau^{\prime \mathrm{T}} & -.1210_{-4} & -.1210_{-4} & -.1210_{-4} & -.1210_{-4} \\
\hline
\end{array}
$$

table 7

Compare the results of this section with variables separable solution given overleaf.

y	.000	.125	.250	.375	.500	.625	.750	.875	1.00
	0000	0000	0000	0000	0000	0000	0000	0000	0000
.03125	0000	0034	0074	0125	0195	0296	0444	0660	0980
.06250	0000	0068	0147	0248	0389	0590	6983	1314	1951
.09375	0000	0101	0218	0369	0578	0378	1314	1956	2903
.12500	0000	0134	0238	0487	0763	1157	1732	2578	3827
.15625	0000	0164	0355	0600	0939	1425	2134	3176	4714
.18750	0000	01938	0418	0707	1107	1680	2515	3743	5556
.21875	0000	0221	0477	0808	1264	1918	2872	4274	6344
.25000	0000	0247	0532	0900	1409	2138	3201	4764	7071
.28125	0000	0270	0581	0984	1540	2337	3499	5208	7730
.31250	0000	0290	0625	1058	1657	2514	3764	5602	8315
.34375	0000	0308	0663	1123	1757	2667	3992	5942	8819
.37500	0000	0322	0695	1176	1841	2793	4182	6224	9239
.40625	0000	0334	0720	1218	1907	2893	4332	6447	9569
.43750	0000	0342	0738	1249	1954	2966	4440	6608	9808
.46875	0000	0347	0749	1267	1983	3009	4505	6705	9952
.50000	0000	0349	0752	1273	1993	3024	4527	6737	1.0000
			$\ldots \ldots \ldots \ldots \ldots$.						

(this table is symmetric about $y=0.5000$)

Section (c)

$\mathrm{h}=.25$	$\mathrm{l}=7$								
	.000	.125	.250	.375	.500	.625	.750	.875	1.00
	0000	0247	0533	0901	1411	2140	3203	4765	7071
.50	0000	0000	0000	0000	0000	0000	0000	0000	0000
.75	0000	-0247	-0533	-0901	-1411	-2140	-3203	-4755	-7071

$$
\begin{array}{|llll}
\tau^{\mathrm{T}} & -.1360_{-3} & -.2373_{-19} & .1360_{-3} \\
\tau^{11^{\mathrm{T}}} & -.1206_{-4} & -.2103_{-20} & .1206_{-4} \\
\hline
\end{array}
$$

table 9

These results are anti-3ymetric about $y=0.5$, hence hereafter we display only half of each table.

$\mathrm{h}=.125 \quad \mathrm{k}=7$									
	. 000	. 125	. 250	. 375	. 500	. 625	. 750	. 875	1.00
. 125	0000	0323	0695	1176	1841	2793	4182	6224	9239
. 250	0000	0247	0532	0900	1409	2138	3201	4764	7071
. 375	0000	0134	0288	0487	0753	1157	1732	2578	3827
. 500	00000	0000	0000	0000	0000	0000	0000	0000	0000

table 10

$$
\begin{aligned}
& \begin{array}{|lll|}
\hline z^{\prime T} & -.2445_{-10} & -.4264 \\
-26 \\
z^{\prime \prime} & -.1252_{-11} & -.2183_{-27} \\
\hline
\end{array} \\
& \text { table } 11
\end{aligned}
$$

For the purpose of comparison an exact solution appears in table 12.

y	.000	.125	.250	.375	.500	.625	.750	.875	1.00
	0000	0019	0052	0118	0265	0600	1408	3589	1.094
.250	0000	0028	0073	0166	0366	0804	1704	3870	8488
.375	0000	0019	0051	0116	0253	0540	1115	2177	4150
.500	0000	0000	0000	0000	0000	0000	0000	0000	0000

table: 2

Good agreement was also obtained with the following boundery conditions:-
d) $u=y(y-1)$ on $B D$
e) $u=y\left(y^{2}-1\right) \quad$ "
f) $u=y^{2}\left(y^{2}-1\right) \quad$ "
g) $u=$ y
h) $u=y-\frac{1}{2} \quad n \quad$.
3.5. In order to illustrate the use of the method on nonrectangular resions we considered tio further problems. First, Leplace's equation on the region of figure 2 .

The vertices A, B, C, D have coordinates $(0,0),(1,0),(2,1),(0,1)$ respectively. The boundary conditions are $u(x, y)=0$ on $A B, C D, A D$ and $u(x, y)=\sin (\pi y)$ on BC. The approximate solution was tabulated at the coordinates shom in table 13.

\mathbf{y}	1	2	3	$4^{x-\text { values }}$	5	6	7	$\mathbf{8}$	9
875	0	23437	46875	70312	93750	1.1719	1.4063	1.6406	1.8750
750	0	21875	43750	65625	87500	1.0933	1.3125	1.5313	1.7500
625	0	20312	40625	60937	81250	1.0156	1.2188	1.4219	1.6250
500	0	18750	37500	56250	75000	93750	1.1250	1.3125	1.5000
375	0	17187	34375	51562	68750	85937	1.0313	1.2031	1.3750
250	0	15625	31250	46875	62500	78125	93750	1.0938	1.2500
125	0	14062	28125	42187	56250	70312	84375	98437	1.1250

table 13

In the following tables the entry in row $y=a a a$ and colunin 14 should be understood to be the approximate value of the solution at the point (X_{H}, aaa).

750	1	2	3	$\frac{h=0.25}{4}$	$\mathrm{~N}=7$				
500	0	0076108	016260	031433	058491	10790	20065	37574	70711
250	0	0091946	022094	043996	082969	15357	28566	53392	1.000
0	0060919	015450	031095	058962	10965	20337	37854	70711	

z^{T}	-.018673	-.0018829	-.018954
$\tau^{n^{1}}$	-.003462	-.0034883	-.003514

table 14
$\mathrm{h}=0.25 \quad \mathrm{I}=8$

750	1	2	3	4	5	6	7	8	9
	0	0061210	015484	030833	058177	10826	20139	37633	70711
500	0	0096041	022621	044136	082735	15378	28590	53351	1.000
250	0	0071385	016257	031414	058711	10907	20277	37803	70711

$$
\left[\begin{array}{llll}
\tau^{\prime \mathrm{T}} & -.0034730 & -.0034889 & -.0035015 \\
\tau^{n^{T}}-.58370_{-3} & -.58617_{-3} & -.58849_{-3}
\end{array}\right.
$$

table 15

	1	2	3	$h=0.25$	$1 \mathrm{H}=12$			
750	0	006478	015882	031165	058459	10864	20205	37714
500	0	009477	022515	044113	082712	15369	28582	53346
250	0	006744	1.000					

$$
\begin{aligned}
& \tau^{\mathrm{T}}-.15782_{-5}-.15788-5^{-.15793}-5 \\
& \tau^{n^{T}}-.18783_{-6}-.18789_{-6}-.18796_{-6}
\end{aligned}
$$

table 15

$$
h=0.25 \quad \mathrm{~N}=13
$$

	1	2	3	4	5	6	7	8	9
750	0	006723	015932	031193	058478	10866	20207	37718	70711
500	0	009471	022511	044110	082711	15369	28582	53346	1.000
250	0	006676	013907	031190	058493	10869	20213	37725	70711

$$
\begin{array}{lll}
\tau^{T I} & -.18786 & -6 \\
\tau^{n T} & -.20661_{-7} & -.20665_{-6} \\
\hline{ }^{T} & -.20669_{-7} \\
\hline
\end{array}
$$

table. 1?
$h=.125 \quad \pi=7$

	1	2	3	$h=.125$	$1 N=7$	4	5	6	7
875	0	0042556	0086131	016511	030619	056665	10630	20095	38268
750	0	0072917	015610	030273	055601	10509	19688	37183	70711
625	0	0087605	019959	039324	074071	13791	25815	45685	92388
500	0	0088069	021229	042423	080371	14997	28053	52819	1.000
375	0	0077442	019423	039161	074468	13917	26016	48908	92388
250	0	0058391	014857	030001	057151	10592	19978	37504	70711
125	0	0032281	0080928	016260	030985	058023	10839	20325	38208

		2	3	4	5	6	7	8	9
875	0	00030155	0079274	015993	030421	056975	10680	20143	38268
750	0	00058693	014876	029720	056336	10547	19766	37255	70711
625	-	- 0081123	019775	039084	073830	13814	25879	42	88
		0092093	021733	042554	080153	14988	28071	52834	0
		0087950	020297	039487	074231	13875	25983	48875	92388
25		00068449	015621	030296	056901	10635	19915	37444	70711
125		00037107	0084631	016410	030812	057593	10786	20277	38268

table 10

	1	2	3	4	5	6	7	8	9
875	0	0034412	0082521	016256	030649	057297	10735	20210	38268
750	0	0063755	015260	030047	056632	10588	19837	37347	70711
625	0	0083608	019961	039275	074010	13837	25922	45801	92388
00	0	009085	021632	042530	080128	14980	28063	52827	1.000
375	0	005423	020006	039308	074046	13842	25931	48811	92jes
250	0	0064639	015325	030095	056683	10596	19849	37362	70711
125	0	0035038	0022976	016290	030680	057351	10743	20221	38268

table? 1

Laplace's equation was also solved on the domain of fisure 3 with boundary conditions:-
(i) $u=0$ on $A B, A D, D C ;$
(ii) $u=\sin (T y)$ on BC.

figure 3

The boundary lines $A B$ and $D C$ have equations $y=0$ and $y=1$ respectively, while the arcs $A D$ and $B C$ have equations $(y-0.5)^{2}+x^{2}=4$ and $(y-0.5)^{2}+(x-6)^{2}=4$ respectively. The solution was tabulated at the points of table 22 .

| 875 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 750 | 1.9645 | 2.2234 | 2.4823 | 2.7411 | 3.0000 | 3.2589 | 3.5177 | 3.7766 | 4.0355 |
| 625 | 1.9843 | 2.2382 | 2.4922 | 2.4761 | 3.0000 | 3.2539 | 3.5078 | 3.7618 | 4.0157 |
| 500 | 2.0000 | 2.2500 | 2.5000 | 2.7500 | 3.0000 | 3.2500 | 3.5000 | 3.7500 | 4.0000 |
| 375 | 1.9961 | 2.2471 | 2.4980 | 2.7490 | 3.0000 | 3.2510 | 3.5070 | 3.7529 | 4.0039 |
| 250 | 1.9843 | 2.2382 | 2.4922 | 2.7461 | 3.0000 | 3.2539 | 3.5078 | 3.7618 | 4.0157 |
| 125 | 1.9645 | 2.2234 | 2.4823 | 2.7411 | 3.0000 | 3.2584 | 3.5177 | 3.7766 | 4.0355 |

table 2 ?

A value found in rori $y=$ aaa and column n is to be taken as. the approximate solution at (x_{n}, .aaa) of figure 3 - for this section only of course.

$$
\begin{aligned}
& x^{1 \mathrm{~T}}-.73162_{-2}-.73273_{-2} .73162-2 \\
& \Sigma^{n^{T}-.14338}-2-.14348 \\
& -2
\end{aligned}
$$

table 23

Because of the symmetry of the solution about $y=0.5 \mathrm{me}$ only show half the solution (and the taus) subsequently.

1	2	3	4	5	6	7	8	9
.750	0021361	0058225	013343	029715	065648	14498	32019	70711
0	000	0031577	0032785	012901	042046	092892	20514	45299

table 2

1.	2	3	$\mathrm{~h}=.25$	4	5	$\mathrm{I}=12$			
.750	0	0021937.	0058477	013361	029702	065669	14503	32024	70711
.500	0	0031099	0032713	013896	042006	092871	20511	45289	1.000

$$
\frac{\left\lvert\, \begin{array}{llll}
\frac{1}{2} \pi^{\mathrm{T}^{2}} & -.81822_{-6} & -.81823-6 \\
\frac{1}{2} \tau^{\mathrm{T}} & -.10330_{-6} & -.10331_{-6}
\end{array}\right.}{\text { table } \geqq 5}
$$

	$\mathrm{h}=.25 \quad \mathrm{I}=13$								
	,	2	3	4	5	6	7	8	9
. 750	0	0021985	0058483	013362	029702	065669	14503	32024	70711
. 500	0	0031802	0082703	012896	04.2006	092871	20511	45289	1.000

$$
\begin{array}{|lll|}
\hline{ }^{T}-.10330_{-6} & -.10331_{-6} \\
\text { n }^{T} & -.12062_{-7} & -.12062_{-7} \\
\hline
\end{array}
$$

table 20

$h=.125 \quad T=8$

	1	2	3	4	5	6	7	8	9
	0775	0011430	0030942	0071283	015928	035263	078058	17282	38268
.750	0	0021537	0057459	013192	029441	065138	14429	31942	70711
.625	0	0028595	0075370	017257	038481	085206	18860	41746	92388
.500	0	0031137	0081699	018687	041558	092240	20416	45191	1.000

	1	2	3	$h=.125$	1	$1=13$		
.875	0	0011728	0031235	0071494	015927	035290	078118	17290
.750	0	0021666	0057713	013210	029429	065208	14434	31947
.625	0	0028303	0075403	017260	039450	685199	18359	41741
.500	0	0030633	0081615	015682	041618	092219	20413	45180

$$
\begin{gathered}
\tau_{\tau^{T}-.10324_{-6}-.10324_{-6}-.10324_{-6}}^{-.10324_{-6}} \\
\tau^{n^{T}-.12064_{-7}-.12064_{-7}-.12064_{-7}-.12064_{-7}} \\
\operatorname{table}^{30}
\end{gathered}
$$

3.6 Comments and notes:

a) The approximate solution to a problea with continuous boundary conditions exactly matches the separation of the variables solution, while the others differ by a small amount. The boundary conditions always fit exactly.
b) The tau values are independent of the h values. It is apparent from the problem (b) that the accuracy depends homever on h as well as the order of the perturbation, horrever even for crude h (namely $h=.25$) a result correct to 25 is attained with $N=7$. Here the accuracy is apparently a function of $\log \left(\tau^{\frac{1}{2}}\right)$. Also, the tau value is a function of the shape of the domain. For a particular problem it depends too, naturally, on the order of the perturbation.
c) Small taus alone do not indicate an ascurate solution - small taus coupled aith a small h do however. The reason for this is clear increasing the order of the Chebyshev perturbation is equivalent
in a full discretization approach to decreasing the x step size. In a more standard approach both step lengtins ousht to be small for accuracy. Compare, for example, tables 7 and 8 with the separation of variables solution on pase 87: on the line $y=0.25$ the Cnebyshev solution with $h=0.125, \therefore=7$ compares more favourably with the "exact" solution than that mith $h=0.25$, rin $=13$ and yet in the latter case the taus are about 10^{-7} times those in the former.
d) In the final problem considered the approximate solution arrived at by using Cnebyshev perturbations of odd and even desrea aoparently bracket the correct solution.
3.7 Extension of method.

Consider the Poisson equation

$$
\begin{equation*}
\nabla^{z} u=\emptyset(x, y) \tag{21}
\end{equation*}
$$

on the domain ABCD of figure 4 and boundary conditions

$$
\begin{align*}
& u=f(x, y) \text { on } \cdot A C \\
& u=g(x, y) \text { on } B D \tag{22}\\
& u=0 \text { on } A B \text { and } C D .
\end{align*}
$$

Discretizing as before, or by means of one of the formulae of Collatz [5] (to obtain a different set of equations), Te get the set

$$
\begin{gather*}
\frac{5}{6} u_{k}^{\prime \prime}(x)+\frac{1}{12}\left[u_{k+1}^{\prime \prime}(x)+u_{k-1}^{\prime \prime}(x)\right]+\frac{1}{h^{2}}\left[u_{k+1}(x)-2 u_{k}(x)+u_{k-1}(x)\right]+ \\
+O\left(h^{4}\right)=\phi\left(x, y_{k}\right) \quad, k=1,2 \ldots, n \quad \tag{23}
\end{gather*}
$$

Again, along the boundaries $A B$ and $C D$

$$
\begin{equation*}
u_{0}(x)=u_{n+1}(x)=u_{0}^{\prime \prime}(x)=u_{n+1}^{\prime \prime}(x)=0 \tag{24}
\end{equation*}
$$

and so, ignoring the error term, the equations (23) maj be written

$$
\begin{equation*}
A U^{\prime \prime}+\frac{M}{h^{2}} U=\phi \not \subset \tag{25}
\end{equation*}
$$

in which, A, U, M have the same meaning as before and

$$
\phi \varnothing=\left[\phi\left(x, y_{1}\right), \phi\left(x, y_{2}\right), \ldots, \phi\left(x, y_{n}\right)\right]^{T} .
$$

Again, constructing canonical polynomials and perturbing (25) by

$$
\begin{equation*}
\tau^{\prime} T T_{i N}^{*}+\tau_{1}^{\prime \prime} T_{1}^{x}+1 \tag{26}
\end{equation*}
$$

We have
$\bar{U}(X)=\tau^{\prime}$
$\sum_{m=0}^{N} c_{m}^{(N)} Q_{m}(X)+\tau " \sum_{m=0}^{N+1} c_{m}^{(N+1)} Q_{m}(X)+\ell \not D\left(Q_{m}\right), ~$
as the approximate solution to (25). We have tacitly assumed here that the elements, $\phi\left(x, y_{i}\right)$, of $\phi \neq$ are polynomials in X - or may be closely approximated by polynomials in $X . \phi \not \subset\left(Q_{n}\right)$ means that X^{m} is to be replaced by Q_{n}. The steps required to evaluate τ^{\prime} and $\tau "$ using the boundary conditions alons $A C$ and $A D$ in (27) are obvious - hence the solution.
3.8 hurexical results : We computed approzimate solutions to the Poisson equation $\nabla^{2} u=x^{2}-1$, usine the technique described above, on three different resions of the type shomn in fisure 1. In each case the boundary conditions are $u=0$ on the boundaries $A B, A C$ and $C D$ and $u=1$ on $B D$. $A B$ and $C D$ are the lines $y=0$ and $y=1$ respectively. The results, in each case, are tabulated for $i=12, j=1 / 4,1 / 8$ and $1 / 16$ at the tabulated coorainates. We shorr the results for only one value of N because the conputed approximation is that to which the approximations converge and only at the tabulated poinis so as not to overwhelm with a mass or numerical data.
(a) AC: $x=0$
$B D: x=1$.
Coordinates of tabulated approximations :-

y			1	2	3	4	5	6	7
1	.250	.000	.125	.250	.375	.500	.625	.750	.875
2	.500				1.00				
3	.750		as above						

\mathbf{y}	1	2	3	4	5	6	7	8	9
	0000	1259	1630	2107	2763	3699	5060	7057	1.0000
2.	0000	1563	1923	2385	3019	3923	5237	7163	1.0000
3	symmetric								

All the taus lie in the rane 10^{-8} to 10^{-10}.

$$
y=.250 \quad \text { table } 31
$$

y	1	2	3	4	x	6	7	8	9
	0000	1255	1622	2095	2748	3682	5044	7046	1.0000
2	0000	1557	1912	2369	3000	3902	5217	7149	1.0000
3	symetric								

The taus lie in tho range above.

$$
y=.125 \text { table } 32
$$

y	1	2	3	4	x	6	7	8	9
	0000	1254	1020	2092	2744	3679	5041	7044	1.0000
2	0000	1556	1909	2365	2995	3897	5212	7146	1.0000
3	symetric								

Taus as above.

$$
\mathrm{y}=0.0625 \quad \text { table } 33
$$

(b) $\mathrm{AC}: \mathrm{x}=0$

BD : $x=1+y$.
Coordinates of tabulated approximations :-

| y | 1 | 2 | 3 | 4 | $\frac{x}{2}$ | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.25 | 0000 | 15625 | 31250 | 46075 | 62500 | 78125 | 93750 | 1.0930 | 1.2500 |
| 2.50 | 0000 | 18750 | 37500 | 56250 | 75000 | 93750 | 1.1250 | 1.3125 | 1.5000 |
| 3.75 | 0000 | 21875 | 43750 | 65625 | 87500 | 1.0938 | 1.3125 | 1.5313 | 1.7500 |

\mathbf{y}	1	2	3	4	5	6	7	8	9
1	0000	1029	1151	1351	1705	2350	3548	5787	1.0000
2	0000	1340	1460	1655	1998	2622	3778	5938	1.0000
3	0000	1028	1152	1352	1706	2352	3548	5787	1.0000

The taus lie within the range 10^{-4} to 10^{-6}.

$$
y=0.25 \quad \text { table } 34
$$

\mathbf{y}	1	2	3	4	5	6	7	8	9
	$\mathbf{1}$	0000	1022	1156	1327	1668	2300	3486	5730
2	0000	1331	1443	1627	1957	2568	3712	5878	1.0000
3	0000	1021	1136	1326	1668	2300	3485	5728	1.0000

The taus are as above.

$$
y=0.125 \quad \text { table } 35
$$

\mathbf{y}	1	2	3	4	\mathbf{x}	6	7	8	9
	0000	1020	1133	1321	1600	2269	3472	5716	1.0000
2	0000	1329	1438	1620	1948	2555	3697	5863	1.0000
3	0000	1019	1132	1320	1659	2258	3470	5714	1.0000

The taus are as above.

$$
y=0.0625 \quad \text { table } 35
$$

(c) AC : $x=\sqrt{\frac{1}{4}-\left(y-\frac{1}{2}\right)^{2}}$

$$
B D: x=2-\sqrt{\frac{1}{4}-\left(y-\frac{1}{2}\right)^{2}}
$$

Coordinates of tabulated approximations :-

y	1	2	3	4	x	5	6	7	8	9
1	.25	43301	57476	71551	85025	1.0000	1.1417	1.2835	1.4252	1.5570
2.50	50000	62500	75000	87500	1.0000	1.1250	1.2500	1.3750	1.5000	
3.75										

y	1	2	3	4	$\frac{5}{7}$	6	7	8	9
1	0891	1182	1513	1944	2553	3451	4804	6860	1.0000
2	1189	1478	1803	2223	2814	3682	4987	6972	1.0000
3									

All taus between 10^{-4} and 10^{-6}.
$h=0.25 \quad$ table 37

Taus as above

$$
\mathrm{h}=0.125 \quad \text { table } 38
$$

y	1	2	3	4	$\begin{aligned} & x \\ & 5 \end{aligned}$	6	7	8	9
1.	0935	1185	1476	1874	2449	3318	4656	6739	1.0000
2	1246	1488	1772	2154	2709	3543	4841	6851	1.0000
3	symmetric								

Taus as above

$$
h=0.0625 \quad \pm a b l e 39
$$

3.9 Boundary conditions more complex than those encountered in the last ferr sections nay be handled by discretizing Laplace's equation by means of the simpler central difference approximation. For exaple, consider the conditions

$$
\begin{aligned}
& u(x, y)=p(x) \text { alons } A B \\
& u(x, y)=q(x) \text { alons } C D \text { of figure } 4 .
\end{aligned}
$$

and
Introducing equally spaced mesh lines $y=y_{0}, y=y_{1}, \ldots, y=y_{n+1}$, as before, and discretizing in the y-direction leads to

$$
\begin{equation*}
I \frac{d^{2} U}{d x^{2}}+\frac{M U}{h^{2}}=R(X) \tag{28}
\end{equation*}
$$

Where, as before, $U(X)=\left[u_{1}(x), u_{2}(x), \ldots, u_{n}(x)\right]^{T} ;$

$$
\begin{aligned}
& \mathbf{u}=\left(m_{i j}\right), \quad m_{i i}=-2, \quad m_{i, i+1}=m_{i+1, i}=1 \quad,(n x n) ; \\
& x^{m}=\left[x^{m}, x^{m}, \ldots, x^{m}\right]^{T}, \quad(n \times 1) ;
\end{aligned}
$$

I the unit matrix;

$$
R(X)=\frac{-1}{h^{2}}[p(x), 0,0, \ldots, 0,0, q(x)]^{2},(n x .1) .
$$

If $p(x)$ and $q(x)$ are polynomials, or if they may be accurately represented by polynomials, we may write

$$
\begin{aligned}
& p(x)=\sum_{i=0}^{n} p_{i} x^{i}=\sum_{i=0}^{n} p_{i} x^{i}, \\
& q(x)=\sum_{i=0}^{n} q_{i} x^{i}=\sum_{i=0}^{n} q_{i} x^{i},
\end{aligned}
$$

where $\vec{n}=\max \left(n_{p}, n_{q}\right)$. Then $\quad R(X)=\frac{-1}{n^{2}} \sum_{i=0}^{n} c_{i} X^{i}$

is an $n \times n$ eatrix, $\underset{\sim}{0}$ is the $(n+1) \times n$ zero vector and e_{j} is the j-th ($\bar{n}+1$) 1 unit vector.

The Lanczos canonical polynomials associated with (28) are

$$
\begin{equation*}
q_{m}(x)=h^{2} i^{-1} \sum_{i=0}^{\left[\frac{m}{\sum}\right]}(-)^{i} \frac{m!}{(\pi-2 i)!} h^{2 i} n^{-i} x^{i-2 i} \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
I \frac{d^{2} \bar{U}}{d x^{2}}+\frac{h}{h^{2}} \bar{U}=R(X)+\tau^{\prime} T T_{N}^{N}(X)+\tau^{n} T_{N+1}^{*}(X), \tag{30}
\end{equation*}
$$

the solution to which is

$$
\begin{equation*}
\bar{U}(x)=\frac{-1}{h^{2}} \sum_{i=0}^{\overline{2}} c_{i} Q_{i}+\tau^{\prime} \sum_{m=0}^{N} c_{m}^{(N)} Q_{m}+\tau " \sum_{m=0}^{N} c_{m}^{(N+i)} Q_{m} \cdot \tag{31}
\end{equation*}
$$

Substituting for $Q_{m}(X)$ (from (29)) in (30) and rearranging terms the solution becomes

$$
\begin{aligned}
\bar{U}(X) & =h^{2} \tau^{\prime} M^{-1} \sum_{i=0}^{\left[\frac{N}{2}\right]}(-)^{i} h^{2 i} M^{-i} \sum_{m=2 i}^{N} c_{m}^{(N)} \frac{n!}{(m-2 i)!} x^{m-2 i}+ \\
& +h^{2} \tau^{\prime \prime} H^{-1} \sum_{i=0}^{[(N+1) / 2]}(-)^{i} h^{2 i} M^{-i} \sum_{m=2}^{N+1} c^{(i n+1)} \frac{n!}{(\pi-2 i j!} x^{m-2 i}+R(Q),
\end{aligned}
$$

Where $R(Q)$ is to be interpreted as Q_{i} substituted for X^{i} in $R(X)$. Requiring that the solution (31) satisfy the as yet unsatisfied boundary conditions,

$$
\begin{aligned}
& \quad u(x, y)=f(x, y) \text { on } A C \\
& \text { and } \quad u(x, y)=g(x, y) \text { on } B D,
\end{aligned}
$$

leads to the equations

$$
\begin{align*}
& \tau^{\prime} K+\tau \prime L=F(\bar{X})-R Q(\bar{X}) \\
& \tau^{\prime} V+\tau^{\prime \prime} W=F(\bar{X})-R Q(\bar{X}), \tag{33}
\end{align*}
$$

where $K=\left[k_{1}, k_{2}, \ldots, k_{n}\right]^{T}$

$$
\begin{aligned}
& =h^{2} M^{-1} \sum_{i=0}^{\left[\frac{N}{2}\right]}(-)^{i} h^{2 i} M^{-i} \sum_{m=2 i}^{N} c_{m}^{(N)} \frac{m!}{(m-2 i)!} \bar{x}^{m-2 i} \\
L & =\left[I_{1}, I_{2}, \ldots, I_{n}\right]^{T} \\
& =h^{2} m^{-1} \sum_{i=0}^{[(1+1) / 2]}(-)^{i} h^{2 i} M^{-i} \sum_{m=2 i}^{N+1} c_{m}^{(N+1)} \frac{m!}{(m-2 i)!} X^{m-2 i},
\end{aligned}
$$

$$
\begin{aligned}
V & =\left[v_{1}, v_{2}, \ldots, v_{n}\right]^{T} \\
& =h^{2} \mu^{-1} \sum_{i=0}^{N / 2,}(-)^{i} h^{2 i} M^{-i} \sum_{m=2 i}^{N+1} c_{m}^{(N)} \frac{m!}{(m-2 i)!} x^{m-2 i}, \\
V & =\left[v_{i}, W_{2}, \ldots, m_{n}\right]^{T} \\
& =h^{2} \mu^{-1} \sum_{i=0}^{(N+1) / 2]}(-)^{i} h^{2 i} i^{-i} \sum_{m=2 i}^{N+1} c_{m}^{(N+1)} \frac{m!}{(m-2 i)!} x^{m-2 i} .
\end{aligned}
$$

These equations are equivalent to:-

Solve (34) for $\tau_{1}^{\prime}, \ldots, \tau_{n}^{\prime}, \tau_{1}^{\prime \prime}, \ldots, \tau_{n}^{\prime \prime}$ and hence obtain the solution.

The computationally most efficient way of computing $R(Q)$ is had by writing
+..........

In those cases where $\bar{X}=[0,0, \ldots, 0]^{T}$, the vectors K and L
and $R[Q(0)]=\bar{R}=\left[\bar{r}_{1}, \bar{r}_{2}, \ldots, \bar{r}_{n}\right]$ is obtained from (35).
With $\overline{\bar{X}}=[1,1, \ldots, 1]^{T} ; V$ and. 7 become

$$
\begin{align*}
& \text {. reduce to } \\
& K=h^{2} H^{-1} \sum_{i=0}^{[N / 2]}(-)^{i} h^{2 i} c_{2 i}^{(N)}(2 i): H^{-i} I, \\
& L=h^{2} M^{-1} \sum_{i=0}^{[[i+1) / 2]}(-)^{i} h^{2 i} c_{2 i}^{(i j+1)}(2 i): M^{-i} x \tag{36}
\end{align*}
$$

$$
\begin{aligned}
& -R(Q)=\sum_{m=0}^{n} C_{m} M^{-i} \sum_{i=0}^{[m / 2]} m, i M^{-i} x^{m-2 i}, \alpha_{m, i}=\frac{(-)^{i} m!h^{2 i}}{(m-2 i)!} \\
& =\alpha_{0,0} C_{0} M^{-1} I \\
& +\alpha_{1,0} C_{1} M^{-1} \mathrm{X} \\
& +\alpha_{2,1} c_{2} n^{-2} \pm \quad+\alpha_{2,0} c_{2} i^{-1} X^{2}
\end{aligned}
$$

$$
\begin{align*}
& V=h^{2} u^{-1} \sum_{i=0}^{[N / 2]}(-)^{i} h^{2 i} u^{-i}\left\{\sum_{m=2 i}^{N} c_{m}^{(N)} \frac{n!}{(m-2 i)!}\right\} I, \\
& W=h^{2} M^{-i} \sum_{i=0}^{[N+1) / 2]}(-)^{i} h^{2 i} M^{-i}\left\{\sum_{m=2 i}^{N+1} c_{m}^{(N+1)} \frac{m!}{(m-2 i)!}\right\} x \tag{37}\\
& \text { and } \mathrm{B}[\mathcal{Z}(\underline{I})]=\overline{\overline{\mathrm{R}}}=\left[\overline{\bar{\Gamma}}_{1}, \overline{\bar{F}}_{2}, \ldots, \overline{\bar{\Gamma}}_{n}\right]^{T} \text { is had from (35) }
\end{align*}
$$

The solution (34) may be expressed in several ways once the taus have been established, the imo nost useful perhaps being:a) (34) as it stands taken tosether with (35) - this Iorm minimizes the number of times li^{-i} has to be computed;
b) a rearrangenent of (34) into vector polynomial form, viz.

$$
\begin{align*}
& u(x)=h^{2} \tau^{\prime} \mu^{-1} \sum_{i=1}^{N}\left[\sum_{m=0}^{[(N-i) / 2]}(-)^{m} h^{2 m} c_{i+2 m}^{(N)} \frac{(i+2 m)!M^{-m}}{i!}\right] x^{i}+ \\
& +h^{2} \tau^{\prime \prime} h^{-1} \sum_{i=1}^{N+1}\left[\sum_{m=0}^{[(N+1-i) / 2]}(-)^{m} h^{2 m} c_{i+2 m}^{(N+1)} \frac{(i+2 m)!n^{-m}}{i!}\right] x^{i}- \\
& -\sum_{i=0}^{n}\left[\sum^{[n-i / 2]}(-)^{m} h^{2 m} \frac{(i+2 m)!}{i!} c_{2 m} M^{-m-1}\right] x^{i} \tag{38}
\end{align*}
$$

3. 10 Laplace's equation was solved on the unit square $0 \leqslant x \leqslant 1$, $0 \leqslant y \leqslant 1$ mith the follorring boundary conditions :-
a) $u=0$ on $x=0, y=0, y=1$;
$u=1$ on $x=1$:
b) $u=0$ on $x=0, y=0, y=1$;
$u=\sin (\pi y)$ on $x=1$:
c) $u=y(y-1)$ on $x=0$;
$u=\sin (\pi y)$ on $x=1$;
$u=x(x-1)$ on $y=0$;
$u=x^{2}\left(x^{2}-1\right)$ on $y=1$:
d) $u=\cos (\pi f y)$ on $x=0$;
$u=\sin (\pi y)$ on $x=1$
$u=-x$ on $y=0$;
$u=x$ on $y=1$.
The conditions (b) and (c) are continuous, while. (a) and (d) are not. Approzimate numerical solutions computed for (c) and (d) are given in the next section.
3.11 Results : The obtained approxinations are tabulated on the $\mathrm{J}_{\mathrm{i}}{ }^{-}$ mesh lines for $h=0.25, h=0.125$ and $h=0.0625$ at the x-values $x=0.000(0.125) 1.000$ and for $\mathrm{H}=7$ and $\mathrm{N}=13$. The relevant taus are also tabulated.

- Problem (c) :

\mathbf{y}	.000	.125	.250	.375	.500	.625	.750	.875	1.00
	.18750	01822	19250	33455	44572	52977	59338	64712	70711
.500	-25000	-13333	-03635	05525	15504	27782	44177	67118	1.000
.750	-18750	-04428	88262	22092	35571	48818	60670	69060	70711

$$
\frac{\left.\begin{array}{ccc}
\tau_{1} & -.661-4 & -.148-3 \\
\tau_{2} & -.928_{-5} & -.764_{-5} \\
h=0.251_{-4}
\end{array} \right\rvert\,}{\substack{\text { table } 40}}
$$

\mathbf{y}	.000	.125	.250	.375	.500	.625	.750	.875	1.00
.125	-10938	17352	39210	51857	54744	49371	39021	32311	38268
.250	-18750	-10151	03142	03393	10449	19117	30733	47090	70711
.375	-23438	-12564	-03626	04754	13868	25119	40243	61570	92388
.500	-25000	-13352	-03758	05258	15085	27237	43589	66659	1.000
.625	-23438	-12564	-36256	04754	13868	25119	40243	61570	92388
.750	-18750	-10161	-31415	03393	10449	19117	30733	47090	70711
.875	-10938	13487	37503	60372	78421	87268	83002	64736	38268

$$
\begin{array}{|llllllll|}
\hline \tau_{1} & -.7_{-3} & -.2_{-3} & -.2_{-3} & -.2_{-3} & -.2_{-3} & -.2_{-3} & -.3_{-2} \\
\tau_{2} & -.1_{-3} & -.9_{-5} & -.9_{-5} & -.9_{-5} & -.9_{-5} & -.9_{-5} & -.3_{-3} \\
\hline
\end{array}
$$

table 41

\mathbf{y}	.000	.125	.250	.375	.500	.625	.750	.075	1.00	
.0625	-05859	51221	91324	1.077	99354	70972	33587	06340	19509	
.1250	-10938	-06031	-02057	01573	05457	10192	16515	25410	38268	
.1875	-15234	-08322	-02710	02478	08053	14881	24026	36915	55557	
.2500	-18750	-10163	-03161	03348	10377	19023	30631	47009	70711	
.3125	-21484	-11573	-03463	04107	12316	22442	36063	55300	83147	
.3750	-23438	-12568	-03653	04694	13772	24994	40107	61464	92388	
.4375	-24609	-13160	-03755	05065	14675	26569	42600	65261	98078	
.5000	-25000	-13356	-03788	05192	14981	27102	43442	66544	1.000	
				
.9375	-05859	30940	70037	1.054	1.262	1.214	87118	37197	19509	

$$
\begin{gathered}
{\left[\begin{array}{cccccccccccc}
\tau_{1}-.4_{-2} & -.2_{-3} & -.2_{-3} & -.2_{-3} & -.2_{-3} & -.2_{-3} & -.2_{-3} & -.2_{-3} & -.2_{-3} & \cdots & -.3_{-1} \\
c_{2} & -.8_{-3} & -.9_{-5} & -.9_{-5} & -.9_{-5} & -.9_{-5} & -.9_{-5} & -.9_{-5} & -.9_{-5} & -.9_{-5} & \cdots & -.3_{-2} \\
n=0.0625 & \mathrm{~N}=7 \\
\text { table } 42
\end{array}\right.} \\
\hline
\end{gathered}
$$

The dots indicate symetry.

| \mathbf{y} | .000 | .125 | .250 | .375 | .500 | .625 | .750 | .875 | 1.00 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| .250 | -18750 | 01822 | 19250 | 33455 | 44574 | 52980 | 59341 | 64715 | 70711 |
| .500 | -25000 | -13323 | -03632 | 05526 | 15502 | 27777 | 44170 | 67111 | 1.000 |
| .750 | -18750 | -04489 | 88143 | 22089 | 35567 | 48812 | 60563 | 69053 | 70711 |

$$
\begin{array}{|llll}
z_{1} & -.1_{-10} & -.2_{-10} & \cdot 2_{-10} \\
\tau_{2} & -.8_{-12} & -.7_{-12} & \cdot 2_{-11} \\
\hline
\end{array}
$$

$\mathrm{h}=0.250 \quad \mathrm{~N}=13$
table 43

y	.000	.125	.250	.375	.500	.625	.750	.875	1.00	
.125	-10938	17353	39216	51878	54763	49399	39558	32348	33268	
.250	-18750	-10153	-03143	03392	10450	19120	30737	47093	70711	
.375	-23438	-12562	-03624	04755	13367	25117	40240	61568	92388	
.500	-25000	-13349	-03755	05259	15084	27234	43584	66654	1.000	
						
.875	-10938	13436	37569	69370	78461	87353	83125	64367	38268	

table 44

\mathbf{y}	.000	.125	.250	.375	.500	.625	.750	.875	1.00
.0625	-05859	51216	91332	1.077	99406	71053	33696	06454	19509
.1250	-10938	-06034	-02070	01572	05456	10195	16519	25415	38268
.1875	-15234	-08325	-02713	02478	08054	14884	24031	36920	55557
.2500	-18750	-10155	-03163	03347	10379	19025	30634	47012	70711
.3125	-21484	-11573	-03464	04106	12316	22443	36064	55301	83147
.3750	-23438	-12566	-03652	04694	13772	24993	40105	61462	92388
.4375	-24609	-13157	-03753	05066	14674	26557	42596	65257	98079
.5000	-25000	-13353	-03785	05193	14980	27099	43437	66539	1.000
					
.9375	-05859	30704	69884	1.054	1.264	1.218	87695	37826	19509

$$
\begin{array}{|lllllllll}
\tau_{1} & -.7_{-9} & -.3_{-10} & -.3_{-10} & -.3_{-10} & -.3_{-10} & -.3_{-10} & -.3_{-10} & \cdots .5_{-8} \\
\bar{z}_{2} & -.8_{-10} & -.9_{-12} & -.9_{-12} & -.9_{-12} & -.9_{-12} & -.9_{-12} & -.9_{-12} & . .3_{-9} \\
\hline
\end{array}
$$

$$
h=0.0525 \quad N=13
$$

table 45

Problem (d)

| y | .000 | .125 | .250 | .375 | .500 | .625 | .750 | .875 | 1.00 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .25 | 70711 | 33067 | 04028 | -17003 | -29437 | -31410 | -19505 | 11751 | 70711 |
| .50 | 0 | 03677 | 07903 | 13302 | 20673 | 31108 | 46153 | 68037 | 1.000 |
| .75 | 70711 | -27860 | 07153 | 35314 | 58565 | 73389 | 84756 | 84449 | 70711 |

$$
\underbrace{\left\lvert\, \begin{array}{cccc}
z_{1}-.3_{-3} & -.1_{-3} & \cdot 9-4 \\
z_{2}-.4_{-4} & -.1_{-4} & .3_{-4}
\end{array}\right.}
$$

| y | .000 | .125 | .250 | .375 | .500 | .625 | .750 | .875 | 1.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .125 | 92388 | 00986 | -59348 | -1.147 | -1.531 | -1.583 | -1.527 | -90742 | 38268 |
| .250 | 70711 | 30254 | 37548 | 30633 | 28440 | 30633 | 37548 | 50254 | 70711 |
| .375 | 38268 | 29112 | 24445 | 23545 | 26278 | 33061 | 44942 | 63751 | 92388 |
| .500 | 0 | 03534 | 07615 | 12872 | 20113 | 30455 | 45493 | 67542 | 1.000 |
| .625 | -38268 | -22581 | -10372 | 00238 | 10885 | 23210 | 39113 | 61046 | 92338 |
| .750 | -70711 | -45252 | -26775 | -12429 | 0 | 12429 | 26775 | 45252 | 70711 |
| .875 | -92388 | -07276 | 65180 | 1.246 | 1.685 | 19209 | 1.875 | 1.424 | 38268 |

$$
\begin{array}{cccccccc|}
\hline \tau_{1}-.2_{-2} & .5_{-19} & -.8_{-4} & -.1_{-3} & -.2_{-3} & -.3_{-3} & .2_{-2} \\
\tau_{2}-.2_{-3} & -.2_{-4} & -.2_{-4} & -.1_{-4} & -.7_{-5} & -.5_{-20} & .2_{-3} \\
& \mathrm{~h}=0.125 & \mathrm{~N}=7 \\
& \text { table } 47
\end{array}
$$

| \mathbf{y} | .000 | .125 | .250 | .375 | .500 | .625 | .750 | .875 | 1.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .0625 | 98078 | -59121 | -1.984 | -3.141 | -3.970 | -4.326 | -3.994 | -2.649 | 1.951 |
| .1250 | 92388 | 63613 | 44752 | 32863 | 26092 | 25383 | 24315 | 29032 | 38268 |
| .1875 | 83147 | 57992 | 41872 | 32273 | 27700 | 27440 | 31452 | 40362 | 55557 |
| .2500 | 70711 | 50142 | 37382 | 30443 | 28244 | 30443 | 37382 | 50142 | 70711 |
| .3125 | 55557 | 40363 | 31454 | 27442 | 27703 | 32277 | 41877 | 57997 | 83147 |
| .3750 | 38268 | 29032 | 24316 | 23386 | 25097 | 32871 | 44763 | 63623 | 92388 |
| .4375 | 19509 | 16584 | 16242 | 18430 | 23487 | 32201 | 45928 | 66805 | 92078 |
| .5000 | 0 | 03498 | 07544 | 12765 | 19974 | 30293 | 45328 | 67418 | 1.000 |
| .5625 | -19509 | -09721 | -01444 | 06610 | 15694 | 27220 | 42984 | 65440 | 98078 |
| .6250 | -38268 | -22556 | -10375 | 00202 | 10810 | 23100 | 38938 | 60945 | 92388 |
| .6875 | -55557 | -34542 | -18906 | -05214 | 05510 | 18093 | 33492 | 54107 | 83147 |
| .7500 | -70711 | -45189 | -26710 | -12390 | 0 | 12390 | 26710 | 45189 | 70711 |
| .8125 | -63147 | -54099 | -33486 | -18089 | -05510 | 05211 | 18900 | 34535 | 55557 |
| .8750 | -92388 | -60930 | -38975 | -23093 | -01081 | -00202 | 10365 | 22555 | 38268 |
| .9375 | -98078 | .60489 | 2.013 | 3.191 | 4.047 | 4.444 | 4.171 | 2.911 | 1.951 |

$\mathrm{h}=0.0625 \quad \mathrm{~N}=7$
table 48

| \mathbf{y} | .000 | .125 | .250 | .375 | .500 | .625 | .750 | .875 | 1.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 70711 | 33056 | 04029 | -16999 | -29428 | -31396 | -19488 | 11768 | 70711 |
| .50 | 0 | 03680 | 07905 | 13301 | 20670 | 31103 | 46146 | 68031 | 1.000 |
| .75 | -707.11 | 27862 | 07150 | 35810 | 58660 | 75382 | 84745 | 84442 | 70711 |

table 49

\mathbf{y}	.000	.125	.250	.375	.500	.625	.750	.875	1.00	
	.125	92388	09564	-59350	-1.147	-1.531	-1.587	-15263	-90663	382681
.250	70711	50256	37551	30635	28442	30635	37551	50256	70711	
.375	38268	29112	24444	23546	26277	33060	44940	63750	92388	
.500	0	03536	07617	12872	20112	30452	45488	67538	1.000	
.625	-38268	-22579	-10371	00238	10884	23208	39111	61044	92328	
.750	-70711	-45256	-26779	-12431	0	12431	25779	45256	70711	
.875	-92388	-07258	65190	12455	1.684	1.920	1.874	1.424	38268	

$$
\begin{aligned}
& {\left[\begin{array}{lllllllll}
z_{1} & -.3_{-13} & .4_{-25} & -.1_{-10} & -.2_{-10} & -.3_{-10} & -.5_{-10^{-.3}} & -9 \\
z_{2} & -.2_{-10} & -.2_{-11} & -.2_{-11} & -.1_{-11} & -.7_{-12} & 0 & .2_{-10}
\end{array}\right]} \\
& h=0.125 \quad \mathrm{M}=13
\end{aligned}
$$

table 50

| y | .000 | .125 | .250 | .375 | .500 | .625 | .750 | .875 | 1.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .0625 | 98078 | -59195 | -1.984 | -3.141 | -3.969 | -43251 | -39923 | -26452 | 19509 |
| .1250 | 92383 | 63622 | 44761 | 32870 | 26096 | 23355 | 24315 | 29032 | 38268 |
| .1875 | 83147 | 57997 | 41877 | 32278 | 27703 | 27442 | 31454 | 40363 | 55557 |
| .2500 | 70711 | 50144 | 37384 | 30445 | 28246 | 30445 | 37384 | 50144 | 70711 |
| .3125 | 55557 | 40363 | 31454 | 27442 | 27703 | 32278 | 41877 | 57997 | 63147 |
| .3750 | 38268 | 29032 | 24316 | 23385 | 26096 | 32870 | 44761 | 63622 | 92388 |
| .4375 | 19509 | 16535 | 16243 | 18430 | 23486 | 32199 | 45925 | 66801 | 98078 |
| .5000 | 0 | 03500 | 07545 | 12765 | 19973 | 30290 | 45324 | 67414 | 1.000 |
| .5625 | -19509 | -09719 | -01442 | 06611 | 15693 | 27218 | 42981 | 65436 | 98078 |
| .6250 | -38258 | -22554 | -10374 | 00202 | 10809 | 23099 | 38986 | 60943 | 92383 |
| .6375 | -55557 | -34543 | -18507 | -06214 | 05511 | 18093 | 33493 | 54108 | 83147 |
| .7500 | -70711 | -45194 | -26713 | -01239 | 0 | 01239 | 26713 | 45194 | 70711 |
| .8125 | -83147 | -54108 | -33493 | -18093 | -05510 | 05214 | 18907 | 34543 | 55557 |
| .8750 | -92388 | -60943 | -38936 | -23099 | -0109 | -00202 | 10374 | 22564 | 38268 |
| .9375 | -98078 | 60561 | 2.014 | 3.191 | 4.047 | 4.443 | 4.159 | 2.909 | 19509 |

The computed approxinate solutions to problems (a) and (b) were also satisfactory.

4.1 Introduction : In this chapter we shom hor to solve eigenvalue probleas and also more general elliptic equations using the techniques of the previous chapter.
4.2 Eigenvalue problem : The eigenvalue problem $\nabla^{2} u-\lambda u=0$, with $u=0$ on the boundary, will be solved here on the region of figure 3.1. Using the notation introduced there, this equation may be discretized to give

$$
\begin{equation*}
A U^{\prime \prime}+\frac{H}{h^{2}} U-\lambda U=0 \tag{1}
\end{equation*}
$$

together with the boundary conditions

$$
\begin{aligned}
& U(\bar{X})=0 \\
& U(\overline{\bar{x}})=0 .
\end{aligned}
$$

The inatrices A and M and vectors U and U " were defined previously. The canonical polynomials are easily seen (by induction) to be

$$
\begin{equation*}
Q_{m}=h^{2} S^{-1} \sum_{i=0}^{\left[\frac{m}{2}\right]}(-)^{i} \frac{m!h^{2 i}}{(m-2 i)!}\left(A S^{-1}\right)^{i} x^{m-2 i} \tag{2}
\end{equation*}
$$

where $S=\left[H-\lambda h^{2} I\right]$.

Perturbing (1) suitably (as before) we now have to solve

$$
\begin{equation*}
A U^{\prime \prime}+\frac{H}{h^{2}} U-\lambda U=\tau^{\prime} T T_{N}^{*}(X)+\tau^{\prime \prime} T_{N+1}^{*}(X) \tag{4.}
\end{equation*}
$$

The solution to which is

$$
U(X)=\tau \cdot \sum_{m=0}^{N} c_{m}^{(N)} Q_{m}(X)+\tau^{\prime \prime} \sum_{m=0}^{N} c_{m}^{(N+1)} Q_{m}(X),
$$

Where, as before, the $c_{m}^{(N)}$ and $c_{m}^{(N+1)}$ are the coefficients of the N-th and (IN+1)-th Chebysiev polynomials of the first kind respectively.

So $U(X)=h^{2} \tau^{\prime} \sum_{m=0}^{N} c_{m}^{(N)} S^{-1} \sum_{i=0}^{\left[\frac{m}{2}\right]}(-)^{i} \frac{m!}{(m-2 i)!} h^{2 i}\left(A S^{-1}\right)^{i} x^{m-2 i}+$

$$
+h^{2} \tau " \sum_{m=0}^{N+1} c_{m}^{(N+1)} S^{-1} \sum_{i=0}^{\left[\frac{m}{z}\right]}(-)^{i} \frac{m!}{(m-2 i)!} h^{2 i}\left(A S^{-1}\right)^{i} x^{m-2 i}
$$

$$
\begin{align*}
& U(X)=h^{2} \tau \cdot S^{-1} \sum_{i=0}^{\left[\frac{N}{2}\right]}(-)^{i} h^{2 i}\left(A S^{-1}\right)^{i} \sum_{m=2 i}^{N} c_{m}^{(N)} \frac{m!}{(m-2 i)!} X^{m-2 i}+ \\
& +h^{2} \tau^{\prime \prime} S^{-1} \sum_{i=0}^{[N+N, 2]}(-)^{i} h^{2 i}\left(A S^{-1}\right)^{i} \sum_{m=2 i}^{N+1} c_{m}^{(N+1)} \frac{m!}{(m-2 i)!} X^{m-2 i}
\end{align*}
$$

Denote S^{-1} by P. The $n x n$ matrix $P=\left(p_{i j}\right)$ aay be constructed by the following alcorithm:-

1) Let $d_{0}=0, d_{1}=1$ and construct

$$
d_{r}(\lambda)=-\left(2+\lambda h^{2}\right) d_{r-1}(\lambda)-d_{r-2}(\lambda) \text { for } r=2(1) n
$$

2) $\bar{p}_{i j}=(-)^{j+1} d_{j-1}, j=1(1) n$.
3) Define $\overline{\mathrm{D}}_{0 j}=0,1 \leqslant j \leqslant n$ and construct

$$
\begin{gathered}
\bar{p}_{i j}=\delta_{i-1, j} d_{n}+\left(2+\lambda h^{2}\right) \bar{p}_{i-1, j}-\bar{p}_{i-2, j}, \\
i=2(1) n, j=1(1) n .
\end{gathered}
$$

4) $P=\left(p_{i j}\right)=\frac{1}{d_{n}}\left(\bar{p}_{i j}\right)=\frac{1}{d_{n}} \bar{P}_{.}$

The amount of computation is minimized if use is mede of the fact that P is symuetric about both diazonals.

In terms of P then, the solution is

$$
\begin{aligned}
u(x)= & h^{2} \tau^{3} P \sum_{i=0}^{\left[\frac{N}{2}\right]}(-)^{i} h^{2 i}(A P)^{i} \sum_{m=2 i}^{N} c_{m}^{(N)} \frac{m!}{(m-2 i)!} x^{m-2 i}+ \\
& +h^{2} \tau^{n} P \sum_{i=0}^{[N+1 / 2]}(-)^{i} h^{2 i}(A P)^{i} \sum_{m=2 i}^{N+1} c_{m}^{(N+1)} \frac{m!}{(m-2 i)!} \cdot x^{m-2 i} \quad \text { (6) }
\end{aligned}
$$

The, as yet unsatisfisd, boundary conditions require that

$$
\begin{aligned}
& \tau^{\prime} P \sum_{i=0}^{\left[\frac{N}{2}\right]}(-)^{i} h^{2 i}(A P)^{i} \sum_{m=2 i}^{N} c_{m}^{(N)} \frac{n^{!}}{(m-2 i)!} \bar{x}^{m-2 i}+ \\
& \tau^{\prime \prime} P \sum_{i=0}^{[(N+1) / 2]}(-)^{i} h^{2 i}(A P)^{i} \sum_{m=2 i}^{N+1} c_{m+1)}^{(N-2 i)!} \bar{X}^{m-2 i}=0,
\end{aligned}
$$

and a similar condition at $\overline{\bar{X}}$. The λ terms in the denominator
of the boundary condition may be cancelled by multiplying by

$$
\begin{aligned}
& d_{n}(\lambda)[(N+1) / 2]+1 \text { to give } \\
& \tau^{\prime} \bar{P} \sum_{i=0}^{\left[\frac{N}{2}\right]}(-)^{i} h^{2 i} d_{n}^{[(N+1) / 2]-i}(\Delta \bar{P})^{i} \sum_{m=2 i}^{N} c_{m}^{(N)} \frac{n!}{(m-2 i)!} \bar{X}^{m-2 i}+ \\
& +\tau^{\prime \prime} \bar{P} \sum_{i=0}^{[(N+1) / 2]}(-)^{i} h^{2 i} d_{n}^{[(n+2) / 2]-i}(\Delta \bar{P})^{i} \sum_{m=2 i}^{N+i} c_{n}^{(N+1)} \frac{n!}{(m-2 i)!} \bar{X}^{m-2 i}=0
\end{aligned}
$$

and a similar condition at $\overline{\mathrm{X}}$. These two boundary conditions are of the form

$$
\begin{aligned}
& \tau^{\prime} K(\lambda)+\tau^{\prime \prime} L(\lambda)=0 \\
& \tau^{\prime} R(\lambda)+\tau^{\prime \prime} V(\lambda)=0,
\end{aligned}
$$

where $K(\lambda)=\left[k_{1}, \ldots, k_{n}\right]^{T}$

$$
=\bar{P} \sum_{i=0}^{\left[\frac{N}{2}\right]}(-)^{i} h^{2 i} d_{n}^{[(N+1) / 2]-i}(\Lambda \bar{P})^{i} \sum_{m=2 i}^{N} c_{m}^{(N)} \frac{m!}{(\mathrm{m}-2 i)!} \bar{X}^{m-2 i},
$$

and similarly for $L(\lambda)=\left[I_{1}, \ldots, I_{n}\right]^{T}$,

$$
\begin{aligned}
& R(\lambda)=\left[r_{1}, \ldots, r_{n}\right]^{T}, \\
& V(\lambda)=\left[v_{1}, \ldots, v_{n}\right]^{T} .
\end{aligned}
$$

Equivalently then

Equating the determinant of the coefficient matrix to zero, the eigenvalues are found by isolating the roots of this determinantal equation. Faving obtained the eigenvalues, the taus may be obtained from (7) and the eigenfunctions from (6).

Because of the inefficiency of this method compared with other techniques for solving this eigenvalue problem re did not perform any nuserical computations.
4.3 The eigenvalue problem of the above section may also be solved using a central difference approach raticer than the more elaborate approxination employed there. In fact the analysis and technique remain largely unaltered, the one major difference is that the matrix A has to be replaced by the unit matrix.
4.4 General ellivitic boundary value problen : This problea, viz.

$$
\begin{equation*}
L[u]=a u_{x x}+c u_{y y}+d u_{x}+e u_{y}+f u=g \tag{8a}
\end{equation*}
$$

on a region such as that of figure 3.1 subject to the conditions

$$
\begin{array}{ll}
u(x, y)+\alpha u_{y}(x, y)=u_{a b} & \text { on } A B, \\
u(x, y)+\beta u_{y}(x, y)=u_{c d} & \text { on } C D, \tag{8b}\\
u(x, y)+y u_{x}(x, y)=u_{b c} & \text { on } B C, \\
u(x, y)+\delta u_{x}(x, y)=u_{c d} & \text { on } C D
\end{array}
$$

the functions a, b, c, d, e, f, g being polynomial-type functions in both x and y - may be solved by the method of the previous sections, subject to certain conditions being satisficd by c, e and f. Introducing, as before, $n+1$ equally spaced mesh lines (a distance h apart) in the y-direction and discretizing the differential operator of (8) by the usual central difference operator yields

$$
\begin{aligned}
& {\left[\frac{c_{k}}{h^{2}}+\frac{e_{k}}{2 h}\right] u_{k+1}+\left[\frac{-2 c_{k}}{h^{2}}+f_{k}\right] u_{k}+\left[\frac{c_{k}}{h^{2}}-\frac{e_{k}}{2 h}\right] u_{k-1}+} \\
& \quad+a_{k} u_{k}^{\prime}+a_{k} u_{k}^{\prime \prime}=g_{k}+0\left(h^{2}\right), k=0,1, \ldots, n+1 .
\end{aligned}
$$

The notation $a_{k}, c_{k}, \ldots, u_{k}$ indicates that these functions are to be evaluated at (x, y_{k}). The dashes mean differentiation with respect to x. Introducing inaginary lines y_{-1} and y_{n+2}, discretizing tio first two boundary conditions of (8 b) and using the previously defined $\mathrm{U}, \mathrm{U}^{\text { }}$, U" we now have

$$
A U^{\prime \prime}+B U^{\prime}+C U=D ;
$$

or $\left[A \frac{d^{2}}{d x^{2}}+B \frac{d}{d x}+C\right] U=D ;$

$$
\text { Where } \begin{aligned}
A & =\operatorname{dias}\left(a_{0}, a_{1}, \ldots, a_{n}, a_{n+1}\right) ; \\
B & =\operatorname{dias}\left(d_{0}, d_{1}, \ldots, d_{n}, d_{n+1}\right) ; \\
C & =\left(c_{i j}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& c_{11}=\frac{2 c_{0}}{h}\left(\frac{1}{\alpha}-\frac{1}{h}\right)+f_{0}-\frac{e_{0}}{\alpha}, \quad c_{i i}=\frac{-2 c_{i-1}}{h^{2}}+\frac{e_{i-1}}{2 h} \quad 2 \leqslant i \leqslant n+1, \\
& c_{n+2, n+2}=\frac{-2 c_{n+1}}{h}\left(\frac{1}{\beta}+\frac{1}{h}\right)+f_{n+1}-\frac{e_{n+1}}{\beta}, \\
& c_{i+1, i}=\frac{c_{i}}{h^{2}}-\frac{e_{i}}{2 h} \quad i=1, \ldots, n \quad c_{n+2, n+1}=\frac{2 c_{n+1}}{h^{2}} \\
& c_{i, i+1}=\frac{c_{i-1}}{h^{2}}+\frac{e_{i-1}}{2 h} \quad i=2, \ldots, n+1 \quad, c_{12}=\frac{2 c_{0}}{h^{2}} \quad ; \\
& D=\left[\begin{array}{cc}
\vec{E}_{0}+\underline{2}\left(c_{0}-e_{0}\right) \\
g_{1} & \frac{0}{2} \\
\vdots & \\
E_{n} & \\
\left.g_{n+1}-\frac{2\left(c_{n+1}\right.}{h}+\frac{e_{n+1}}{2}\right)
\end{array}\right] \quad\left[\begin{array}{l}
u_{0} \\
u_{1} \\
\vdots \\
u_{n} \\
u_{n+1}
\end{array}\right]
\end{aligned}
$$

Define the matrix difererential operator DD by

$$
\mathrm{DD}=\mathrm{A} \frac{\mathrm{a}^{2}}{d x^{2}}+B \frac{d}{d x}+C,
$$

which has as its dompin of definition the set of n-diuensional vectors with trice differentiable elecents. Following Ortiz [24] the Lanczos canonical polynomials

$$
Q_{m}=C^{-1}\left[x^{m}-m B Q_{m-1}-m(m-1) A Q_{m-2}\right], m=0,1,2, \ldots .
$$

are easily obtained. This recurrence relationship is only valid if C is non-singular - an ill-conditioned C could result in the computed approximate solution beiñ inaccurate. An explicit relationship for

Q , namely

$$
\begin{equation*}
Q_{m}(X)=c^{-1} \sum_{i=0}^{m} \gamma_{m, i} G_{m, i}(S, \dot{T}) x^{i} \tag{10}
\end{equation*}
$$

where $\gamma_{m, i}=\frac{m!}{(m-i)!} \quad, S=A C^{-1}, T=B C^{-1}$ and $G_{m, i}(S, T)$ is a
matrix polynomial in S and T, is obtainable from the recurrence relationship.

Now write each element of $D=\left(\delta_{j}\right)$ as a polynomial, there

$$
\delta_{i}=\sum_{k=0}^{n i} p_{i k} x^{k}=\sum_{k=0}^{\bar{n}} p_{i k} x^{k}
$$

and $n=\max _{1 \leqslant i \leqslant n_{12}}\left(n_{i}\right) \quad, p_{i k}=0$ if $k>n_{i}$.
Then $\Pi=\left(p_{i k}\right)$ is an $(n+2) x(n+1)$ matrix. As before, define

$$
\pi_{i}=\pi,\left[0, \underset{\sim}{0}, \ldots, 0, e_{i+1}, \underset{\sim}{0}, \ldots, 0\right] \text {, then }
$$

$D=\sum_{k=0}^{\bar{n}} \Pi_{k} x^{k}$ is a vector polynomial of de $e^{j r e e} n$.
The solution to the differential equation (9) perturbed by

$$
\tau^{\prime} \operatorname{TrP}_{\mathrm{N}}^{*}(\mathrm{X})+\tau^{\prime \prime} \operatorname{TrP}_{\hat{N}+1}^{*}(\mathrm{X})
$$

is then

$$
\begin{aligned}
U(X) & =\sum_{i=0}^{\bar{n}} \pi_{i} Q_{i}+\tau^{\prime} \sum_{m=0}^{N} c_{m}^{(N)} Q_{m}+\tau " \sum_{m=0}^{N+1} c_{m}^{(N+1)} Q_{m} \\
& =C^{-1} \sum_{i=0}^{n}\left\{\sum_{k=i}^{\bar{n}} \gamma_{k, i} \prod_{k} G_{k, i}(S, T)\right\} x^{i}+\tau^{i} c^{-1} \sum_{i=0}^{N}\left\{\sum_{k=i}^{N} c_{k}^{(N)} \gamma_{k, i} G(S, T) \dot{J}^{i}\right. \\
& +\tau^{\prime \prime} C^{-1} \sum_{i=0}^{N+1}\left\{\sum_{k=i}^{N+1} c_{k}^{(N+1)} \gamma_{k, i} G_{k, i}(S, T)\right\} X^{i} .
\end{aligned}
$$

A simple application of the two remaining boundary conditions of
(8) leads to an equation of the form

again, which is easily solved for the taus, and the solution follows. Once more, we do not give any numerical results.
5.1 Introduction : We cive here an error analysis for the central difference semi-discretization of equation (3.28). That ras the case where more complex boundary conditions could be bandled.
5.2 Analysis : The error $\mathrm{E}(\mathrm{X})=\bar{U}(\mathrm{~K})-\mathrm{U}(\mathrm{X})$ incurred by perturoing equation (3.28) into the form (3.30) satisfies

$$
\begin{aligned}
& \frac{d^{2} E}{d x^{2}}+\frac{N}{h^{2}} E=-\tau^{:} \operatorname{IT}_{i=1}^{*}(X)-\tau^{n} T T_{N+1}^{*}(X) \\
& \text { with } E(0)=E(1)=0
\end{aligned}
$$

Note that the additional $O\left(h^{2}\right)$ error has been ignored in this equation. An approximate solution to (1) may be obtained via a Picard type procedure - i.e. by solving (1) recursively in the form

$$
\begin{equation*}
\frac{d^{2} E_{x+1}}{d x^{2}}=-\frac{N}{h^{2}} E_{r}-\tau^{\prime} T T_{N}^{*}-\tau^{\prime \prime} T T_{N+1}^{*} \tag{2}
\end{equation*}
$$

Starting from $\mathrm{E}_{0}=0$ and using the mell-known identity

$$
\begin{equation*}
\iint T_{k}^{*} d x d x=\frac{1}{16}\left[\frac{1}{(k+2)(k+1)} T_{k+2}^{*}-\frac{1}{k^{2}-1} T_{k}^{*}+\frac{:}{(k-2)(k-1)} T_{k-2}^{*}\right] ; \tag{3}
\end{equation*}
$$

we have

$$
\begin{align*}
& E_{1}=\frac{-1}{16} \tau^{\prime}\left\{\frac{1}{(2+2)(i+1)} \operatorname{mT}_{N+2}^{*}-\frac{2}{N^{2}-1} \mathrm{TT}_{N}^{*}+\frac{1}{(N-2)(1 i-1)} T T{ }_{N}^{*}-2\right\}- \\
& \frac{-1}{16} \tau^{\prime \prime}\left\{\frac{1}{(N+3)(N+2)} \operatorname{TP}_{N+3}^{*}-\frac{2}{\operatorname{Ni}(N+2)} \operatorname{Tr}_{2+1}^{*}+\frac{1}{(H-1) N} \mathrm{TP}^{*}-1\right\}+ \\
& +A_{0}^{(1)} I+A_{1}^{(1)} X \tag{4a}\\
& =-\tau^{t} t_{1}(X)-\tau^{\prime \prime} t_{2}(X)+A_{0}^{(1)} x^{(1)} A_{1}^{(1)} X \text { say } . \tag{4b}
\end{align*}
$$

$A_{0}^{(1)}$ and $A_{1}^{(1)}$ are constant diagonal matrices which are easily evaluated from the boundary conditicns as folloins:-

$$
A_{0}^{(1)} \pm=\tau^{\prime} t_{1}(0)+\tau^{\prime \prime} t_{2}(0)
$$

and so

$$
\begin{equation*}
A_{0}^{(1)}=\frac{\frac{3}{5}(-)^{N}}{(N+2)(N+1)(i-1)(i-2)} \tau^{i}+\frac{\frac{3}{3}(-)^{N+1}}{(N+3)(N+2)(N)(i i-1)} \tau " \tag{5}
\end{equation*}
$$

Also $A_{1}^{(1)} \pm=\tau^{\prime} t_{1}(\Xi)+\tau^{\prime \prime} t_{2}(I)-A_{0}^{(1)} \Xi$ and hence

$$
\begin{equation*}
A_{1}^{(1)}=\frac{\frac{3}{4}\left(1-(-)^{N}\right)}{(N+2)(i+1)(i-1)(i-2)} \tau^{1}+\frac{\frac{3}{4}\left(1+(-)^{N}\right)}{(i+3)(i+2)(i i)(i-1)} \tau^{n} \tag{6}
\end{equation*}
$$

The next iteration gives

$$
\left.\left.-\frac{4}{(N-2)(N-1)(i i)(i+2)}\right)^{T T_{i}^{*}-1}(X)+\frac{1}{(N-3)(N-2)(N-1) N} \mathrm{TM}_{\mathrm{H}-3}^{*}(\mathrm{X})\right\}-
$$

$$
-\tau^{\prime} t_{1}(x)-\tau^{\prime \prime} t_{2}(x)-\frac{H}{2 h^{2}} A_{0}^{(1)} x^{2}-\frac{H}{6 h^{2}} A_{1}^{(1)} x^{3}+A_{0}^{(2)} x+A_{1}^{(2)} x
$$

$$
=M \tau^{t} s_{1}(x)+M \tau^{\prime \prime} s_{2}(x)-\tau^{\prime} t_{1}(x)-\tau^{\prime \prime} t_{2}(x)+
$$

$$
\begin{equation*}
+A_{0}^{(2)} x+A_{1}^{(2)} X-\frac{11_{1} A_{0}^{(1)}}{2 h^{2}} X^{2}-\frac{h}{6 h^{3}} A_{1}^{(1)} X^{3} \text { say } \tag{7}
\end{equation*}
$$

E_{2} is required to satisfy the boundary conditions $\mathrm{Z}_{2}(0)=\mathrm{E}_{2}(\mathrm{I})=0$, from which it is easily established that

$$
\begin{equation*}
A_{0}^{(2)}=A_{0}^{(1)}+O\left(N^{-8} h^{-2}\right) I \tag{8}
\end{equation*}
$$

and $A_{1}^{(2)}=A_{1}^{(1)}+\frac{M}{6 h^{2}} A_{1}^{(1)}+\frac{M}{2 h^{2}} A_{0}^{(1)}+C\left(H^{-8} h^{-2}\right) I$

$$
\begin{aligned}
& -\frac{4}{(N-1)(N+1)(N+2)(N+3)}{ }^{m P N+2^{(X)}+\frac{6}{(N-2)(N-1)(N+1)(n+2)} \operatorname{TrP}_{N}^{*}(X)-} \\
& \left.-\frac{4}{(\mathrm{~N}-3)(\mathrm{N}-2)(\mathrm{i}-1)(\mathrm{ii}+1)}{ }^{\mathrm{TP} *-2}(\mathrm{X})+\frac{1}{(\mathrm{~N}-4)(\mathrm{i}-3)(\mathrm{ii}-2)(\mathrm{i}-1)} \mathrm{MP}_{\mathrm{N}-4}^{*}(\mathrm{X})\right\}+
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{4}{N(N+2)(i+3)(i+4)} \operatorname{TN}^{T N+j}(X)+\frac{6}{(N-1)(N)(i i+2)(i+3)} \operatorname{TP}^{*}+(X)-
\end{aligned}
$$

Almost equivalently then

$$
\begin{aligned}
& E_{2}(X)=M \tau^{\prime} s_{1}(X)+U \tau^{\prime \prime} s_{2}(X)-\tau^{\prime} t_{1}(X)-\tau^{\prime \prime} t_{2}(X)+ \\
& \therefore+\sum_{i=0}^{3} A_{i}^{(2)} X^{i} \\
&(0)
\end{aligned}
$$

Where now, $A_{0}^{(2)}=A_{0}^{(1)}, A_{1}^{(2)}=A_{1}^{(1)}+\frac{A A_{1}^{(1)}}{6 h^{2}}+\frac{y}{2 h^{2}} A_{0}^{(1)}$,

$$
\begin{equation*}
A_{2}^{(2)}=-\frac{M}{2 h^{2}} A_{0}^{(1)} \quad, \quad A_{3}^{(2)}=-\frac{H_{1}^{2}}{6 h^{2}} A_{1}^{(1)} \tag{gb}
\end{equation*}
$$

From the above it may be conjectured that

$$
\begin{align*}
E_{p}(x) & \doteq M \tau^{\prime} s_{1}(x)+M \tau^{\prime \prime} s_{2}(x)-\tau^{\prime} t_{1}(x)-\tau^{\prime \prime} t_{2}(x)+ \\
& +\sum_{i=0}^{2 p-1} A_{i}(p) x^{i} \tag{10}
\end{align*}
$$

By (9) and (2)

$$
\begin{aligned}
E_{p+1}(X) & =O\left(N^{-6} h^{-2}\right) I+\mu \zeta^{\prime} s_{1}(X)+L \tau^{\prime \prime} s_{2}(x)-\sum \sum_{h^{2}}^{2 p+1} \sum_{i=2}^{2 p} \frac{A_{i-2}}{i(i-1)} X^{i}+ \\
& +A_{0}^{(p+1)} I+A_{1}^{(p+1)} X-\tau^{\prime} t_{1}(X)-\tau^{\prime \prime} t_{2}(X) .
\end{aligned}
$$

Using the boundary conditions $E_{p+1}(0)=E_{p+1}(\underline{I})=0$ it nay be seen that

$$
\begin{align*}
& A_{0}^{(p+1)}=A_{0}^{(1)}+O\left(N^{-6} h^{-2}\right) \\
& A_{1}^{(p+1)}=A_{1}^{(1)}+\frac{h}{h^{2}} \sum_{i>2}^{2 p+1} \frac{A_{i-2}^{(p)}}{i(i-1)}+O\left(N^{-6} h^{-2}\right) \tag{11}
\end{align*}
$$

Approximately, therefore

$$
\begin{align*}
E_{p+1}(X)= & M \tau^{\prime} s_{1}(X)+j \tau^{\prime \prime} s_{2}(X)-\tau^{\prime} t_{i}(\bar{A})-\tau^{\prime \prime} t_{2}(X)+ \\
& +\sum^{2 p+1} A_{i}^{(p+1)} X^{i} \quad(p+1) \tag{12}
\end{align*}
$$

where, in the definition (11) of $A_{0}^{(p+1)}$ and $A_{i}^{(p+1)}$ the error terms are now discarded, and

$$
A_{i}^{(p+1)}=-\frac{n}{i(i-1) h^{2}} A_{i-2}^{(\underline{p})} \quad, i=2,3, \ldots, 2 p+1 .
$$

(12) outlines an obvious alforitin for computing the E_{p} s. The above analysis clearly siows the dañers of coupling a small
h with a swall il - in fact in this case the approximations made in the error analysis aay not be acceptable.

Thus, for $i=2,3, \ldots, 2 p-1, A_{i}^{(p)}=\frac{(-)^{[i / 2]}}{i!h^{2[i / 2]}}:[i / 2] A_{i-2[i / 2]}^{\left(p-\Gamma_{i}\right]}$,
from which, two cases arise:-
(i) i even ($=2 j$ say) then

$$
\begin{align*}
A_{2 j}^{(p)} & =\frac{(-)^{j}}{(2 j)!h^{2 j}} M^{j} A_{0}^{(p-j)} \\
& =\frac{(-)^{j}}{(2 j)!h^{2 j}} M^{j} A_{0}^{(1)} \text { approaimately - by } 11 . \tag{13}
\end{align*}
$$

(ii) i odd ($=2 j+1$ say)

$$
\begin{align*}
A_{2 j+1}^{(p)} & =\frac{(-)^{j}}{(2 j+1)!h^{2 j}} \&_{1}^{j} A_{1}^{(p-j)} \\
& =\frac{(-)^{j}}{(2 j+1)!h^{2 j}} M^{j} F\left(H, A_{1}^{(1)}, A_{0}^{(1)}\right) \text { approzimately. } \tag{14}
\end{align*}
$$

Both $A_{2 j}^{(p)}$ and $A_{2 j+1}^{(p)}$ approach the null matrix as $j \rightarrow \infty$.
6.1 Introduction. In the paper [37] by iVrass he numerically solves the following particular Stefan problem,

$$
\begin{align*}
& u_{t}=u_{x x}, 0<x<x(t), t>0, \tag{1}\\
& u_{x}(0, t)=-1, t>0, \tag{2}\\
& u(x(t), t)=0, x=x(t), \quad t>0, \tag{3}\\
& \frac{d x(t)}{d x}=-u_{x}(x(t), t), \quad t>0, \tag{4}\\
& x(0)=0, \tag{5}
\end{align*}
$$

using an extension of the Lanczos-tau algorithm.
$U_{0}(x), U_{1}(x)$ are assumed to be approximations to $u\left(x, t_{0}\right), u\left(x, t_{1}\right)$ and the points $\left(x_{0}, t_{0}\right),\left(x_{1}, t_{1}\right)$ to lie on the moving boundary. If x_{0} and $U_{0}(x)$ are knowm then finite-dinference representations of (1), (2), (3) and (4) yield the equations :-

$$
\begin{align*}
& \frac{d^{2} U_{1}(x)}{d x^{2}}-\frac{U_{1}(x)}{\Delta t}+\frac{U_{0}(x)}{\Delta t}=0 \\
& {\left[\frac{d}{d x} U_{1}(x)\right]_{x=0}=-1} \tag{6}\\
& {\left[U_{1}(x)\right]_{x=x_{1}}=0} \\
& \frac{x_{1}-x_{0}}{\Delta t}=\left[\frac{d U_{0}(x)}{d x}\right]_{x=x_{0}}
\end{align*}
$$

These equations are solved by Trafi using the Lanczos-tau nethod (Lanczos [19]) after the first equation of (6) has been perturbed by $\left(\tau^{\prime}+\tau^{\prime \prime} \frac{x}{x_{1}}\right) I_{n}^{1 *(}\left(\frac{x}{x_{1}}\right)$, where $T_{n}^{*}(x)=\sum_{m=0}^{n} c_{m}^{(n)} x^{m}$ is the $n-t h$ shifted Chebyshev polynomial of the first kind. Vrasg compares the numerical results obtained in this way $\begin{aligned} & \text { mith those obtained by solving }\end{aligned}$ (1) - (5) using the Douglas-Gallie method. The following table has been extracted from his paper. In both cases $\Delta t=0 . i$.

	Vrasg	D-G
$x=0.4$	0.4662	0.4659
$x=0.8$	1.0415	1.0403
$x=1.2$	1.7061	1.7051
$x=1.6$	2.4500	2.4488
$x=2.0$	3.2668	3.2654
$x=2.4$	4.1517	4.1502
$x=2.8$	5.1011	5.0996
$x=3.2$	6.1122	6.1107
$x=3.6$	7.1826	7.1812
$x=4.0$	8.3102	8.3090
time	$44.25 s$	$72 s$
req'd		

The results from these two methods are obviously in good agreement, with Wrass's method requiring considerably less computer time than the Douglas-Gallic method.
6.2 In this section rie set out to analyse the errors introduced into the first equation of (6) by perturbins it by $\left(\tau^{\prime}+\tau^{\prime \prime} x\right) r_{n}^{*}(x)$. The first two equations of (6) are

$$
\begin{gather*}
\frac{d^{2} U_{i+1}}{d x^{2}}-\frac{U_{i+1}}{\Delta t}+\frac{U_{i}}{\Delta t}=0 \tag{7}\\
{\left[\frac{d U_{i+1}}{d x}\right]_{x=0}=0}
\end{gather*}
$$

Let U_{i+1} be the exact solution to (7). Perturbing (7) by ($\tau^{\prime}+$ I" $\left.^{\prime 2}\right)_{n}^{*}(x)$ leads to

$$
\begin{equation*}
\frac{d^{2} U_{i+1}}{d x^{2}}-\frac{U_{i+1}}{\Delta t}+\frac{J_{i}}{\Delta t}=\left(\tau^{\prime}+\tau^{\prime \prime} x\right) T_{n}^{*}(x) \tag{8}
\end{equation*}
$$

Replace U in (7) by \tilde{U}, subtract (8) from it and let $z_{i}=\tilde{U}_{i}-U_{i}$. Then

$$
\begin{align*}
\frac{d^{2} z_{i+1}}{d x^{2}}-\frac{z_{i+1}}{\Delta t}+\frac{z_{i}}{\Delta t} & =-\left(\tau^{\prime}+\tau^{\prime \prime} x\right) T_{n}^{*}(x) \\
& =-m(x) \text { say. } \tag{9}
\end{align*}
$$

The solution

$$
\begin{aligned}
z_{i+1}(x)=(1-\Delta t & \frac{d^{2}}{d x^{2}} 2^{-[i]-1} z_{i-[i]-1}(x)+ \\
& +\Delta t \sum_{k=0}^{[i]}\left(1-\Delta t \frac{a^{2}}{d x^{2}}\right)^{-k-1} \pi(x)
\end{aligned}
$$

is obtained by applying the Euler-Laplace transform to (9), as in 5.14 and then inverting. Restricting i to the set of nonneg̃ative integers, the solution reduces to

$$
z_{i+1}(x)=\left(1-\Delta t \frac{d^{2}}{d x^{2}}\right)^{-i-1} z_{-1}(x)+t \sum_{k=0}^{i}\left(1-\Delta t \frac{d^{2}}{d x^{2}}\right)^{-k-1} r(x)
$$

If me assume that $z_{-1}(x)=0$ it follows imediately that

$$
\begin{equation*}
z_{i}(x) \approx i \cdot \Delta t \cdot \nabla(x)+\Delta t \sum_{k=1}^{\infty}\left\{1+\sum_{j=2}^{i}\binom{-j}{k}\right\} \Delta t^{k} \frac{d^{2 k}}{d x^{2 k}} m(x) \tag{10}
\end{equation*}
$$

6.3 As a particular realisation of this, set $\tau^{\prime}=\boldsymbol{\sigma}^{\prime \prime}=10^{-5}$ and $\Delta t=0.01,0.04$ and 0.10 (all these aro typical values, taken from the paper by :Iracg) . We then calculated the z_{i} 's for $\Delta t \leqslant t \leqslant 1.00$ at the 9 points $x=0.000(0.125) 1.000$ for $r_{n}^{*}(x)$ with $n=3(1) 8$. Table 1 sunmarizes, very briefly, the many results computed - 7e have shown the error given by (10) at $x=0.500$ and $t=1$.

The conclusions to be drawn from this (and our many unpublished results) are:-
a) The errors increase with increasing $n(!) ;$
b) The error increases with increasing t, as tables 2 and 3 illusirato
c) nike exror (for a fixod n) is not dramatically improved
by decreasing Δt.

t	. 01	$\begin{gathered} \Delta t \\ .04 \end{gathered}$. 10
0.1	.636-6	-	-
0.2	. 275	$.250-5$.$^{120}{ }_{-5}$
0.3	.$^{556}{ }_{-5}$	-	. 480 -5
0.4	.982-5	. $102-4$. 960 -5
0.5	. $153-4$	-	. ${ }^{156}$-4
0.6	- 219 -4	. 2274	. 228 -4
0.7	. 298 -4	-	-312-4
0.8	. 389 -4	.39984	. 408 -4
0.9	. $491-4$	-	- 516_{-4}
1.0	. ${ }^{606}$	$.^{620}-4$	$.{ }^{636}-4$
$\underline{n}=3 \quad$ table 2			

t	.01	Δt	.10
	$.545-2$	-	-
	$.101^{3}$.289	$.125_{1}$
0.3	.628	-	$.440_{1}$
0.4	$.2381_{1}$	$.440_{1}$	$.117_{2}$
0.5	$.681_{1}$	-	$.522_{2}$
0.6	$.162_{2}$	$.250_{2}$	$.522_{2}$
0.7	$.339_{2}$	-	$.953_{2}$
0.8	$.645_{2}$	$.904_{2}$	$.163_{3}$
0.9	$.114_{3}$	-	$.264_{3}$
1.0	$.190_{3}$	$.250_{3}$	$.409_{3}$

REFERENCRS.
(1) Arnoldi T.E., 1951. The principle of minimized iterations in the solution of the matrix eigenvalue problen. quart. Appl. Kath., 2, 17-29.
(2). Berezin I.S. and Zhidkov in.P.,1965. Computins liethods vol II, (tr. by 0.i. Elu:) Fergammon.
(3) Boderig E., 1946. Sur la methode de Laguerre pour l'approximation des racines de certaines equations et sur la critique j'Hermite. Nederl. Akad. Metensch. Proc., 49, 911-921.
(4) Causey R.L. and Gregory R.T.,1961. On Lanczos' algorithm for tridiagonalizing matrices. SLAM Rev.,3, 322-323.
(5) Collatz L., 1956. The Mumerical Preatment of Differential Equations. Sprincer Verlag.
(6) Dew P. 1.i. and Scraton R.E., 1972. An improved method for the solution of the heat equation in Chebyshev series. J. Inst. Maths. Applics., $9,299-309$.
(7) Elliott D., 1961. A method for the numerical solution of the one-dimensional heat equation using Chebyshev series. Camb. Phil. Soc. Proc., 57,823-832.
(8) Faddeev D.K. and Faddeeva V.N., 1963. Computational Fethods of Linear Nleabre (tr. by R.C. Tililians). Freeran and Co.
(9) Fox L. (ed.),1962. Iumerical Solution of Ordinary and Fartial Differential Eavaions. Fergammon.
(10) Fox L. and Parker I.V.,1968. Chebyshev Polynoniels in lumerical Analysis. Oxford University Press.
(11) Gregory R.T.,1958. Results usins Lanczos' method for finaing eigenvalues of arbitrary antrices. J.SIAt, 6,182-188.
(12) Kaniel S., 1965. Estimates for some computational technigues in linear algeiora. Maths Comp.,20,369-378.
(13) Knibb D.,1973. The numerical solution of parabolic partial differential equations using the method of Lanczos. J. Inst. Haths. Applics. 11,181-190.
(14) Knibb D. and Scraton R.E., 1971. On the solution of parabolic partial differential equations in Chebyshev series. Comp. J., 14,428-432.
(16) Laguerre シ̈. N. Oevres de Laguorre, Gauthier-Villars, Faris, vol I, 87-103.
(17) Lenczos C.,1950. Irigonometric intexpolation of enpirical and analytic functions. J. Nath. Phys., 17,123-199.
(18) Lanczos C.,1950. An iteration method for the solution of the eigenvalue problea of linear differential and intesral problems. J. Res. NPS.,45,255-282.
(19) Lanczos C.,1952. Pables of Chebyshev polynomials. :BS Applied Math. Series lio 9.
(20) Lanczos C.,1957. Aoplied Analysis. Pitman.
(21) Hason J.C.,1965. Some new approximations for the solution of differential equations. Oxford D.Pnil. Thesis.
(22) :iakhlin S.G.,1964. Variational Fothods in lathematical physics (tr. by T. Bozdington). PerEammon.
(23) 逆ikhlin S.G. and Smolitsky K.L.,1967. Approximate lethods for the Solution of Differential and Integral Equations (tr. from Russian). Tlisevier.
(24). Ortiz E.L., 1969. The tau method. SIAh J. Num. An., 6, 480-492.
(25) Paige C.c.,1972. Computational variants of the Lanczos method for the eigenproblem. J. Inst. Haths. Applics., 10, 373-381.
(26) Parlett B.,1964. Lasuerre's method applied to the matrix eigenvalue problem. Hatns Comp.,18,464-485.
(27) Peters G. and Tilkinson J.F.,1971. Practical problems arising in the solution of polynomial equations. J. Inst. Eaths Applics., 8,16-35.
(28) Tewarson R.P.,1970. On the reduction of a sparse matrix to Hessenoers form. Int. J. Comp. Hath., 2, 283-295.
(29) Tewarson R.P.,1973. Sparse Ratrices. ifaths in Science and Engineerin: Series, Vol. 99. Academic.
(30) van der Corput J.G., 1964. Sur l'approzimation de Laguerre des racins d'une equation qui a toutes ses racines rielles. iederl. Akad. Vetensch. Proc., 49,922-929.
(31) Weinberg A.L. and wisner Y.P.,1958. The Physical rheory of Neutron Chain Reactors. Univ. of Caicaso Fress.
(32) Westlake J.R., 1968: A handbook of Humerical Uatrix Inversion and Solution of Linear Zquations. john Tiley and jons.
(33) Tilkinson J.H., 1953. The calculation of eisenvectors by the nethod of Lanczos. Comp. J., 1,148-152.
(34) Wilkinson J.H., 1963. Rounding Error in 19 gebraic Froce:ses. Her iLajesty's Stationery Office.
(35) Wilkinson J.i., 1965. The Alsebraic Jigenvalue Troblem. Oxiord University Fress.
(36) Wilkinson J.H. and Reinsch C.,1971. Handbook for Automatic Computation; Vol. II. Linear Alsebra, Sprin亏̃er Verlag.
(37) Wrasg A., 1966. The use of Lanczos-tau methods in the solution of a Stefan problea. Comp.J., $\underline{\text {, 106-1c9. }}$
(38) Clenshaw C.77.,1957. The mumical solution of linear differential equations in Caebyshev series. Proc. Camb. Fhil. Soc., 53, 134-149.
(39) Bellman R. and Cooke K.L., 1963. Differential Diffenence Equations. : cademic Press.
(40) Pinney E., 1958. Ordinary Diffemence-differentigl Equatiors. Univ. of California Press, Berkeley.

APPFNDIX TO: NURERICAT SOLWION OF DIFFEREYTIAL EDUSTTONS

by Colin John Wright

A thesis submitted to the Imperial Collese of Science and Technology of the University of London for the desree of Master of philosophy.

August 1976.

We collect togetner, in this appendix, some of the programs used in the main body of this thesis - namely that used in Chapter two of Part one for the numerical determination of the eigenvalues of a certain differential operator defined there and that used for the solution of the Poisson equation in sections 3.7 and 3.8 of Part two.

COMIT produces the coefricient natrix in sefmented forn.
COL1 triangularizes the coeficient matrix, then produces its samlest (in nodulus) 12 eigonvalues.

Hore detailed descriptions of the activities of various segments
of these prosrans aprear alongzile and after then.

Progran COLTIT:

```
    DIMENSION A(20,3),AU(20),FMT(3)
    DIMEVSION BDR(65,2),ABDRY(2,64),RAD(65),NODE(65)
    INTEGER BAND
    COMMON A,AU,RAD,ABDRY,BDR,HSQ,THETAL,B,ROUT,RIN,H,PI,THETA
    CONMON ABDR1,AEDR2,D1,ROUVD,N,NODE,N2P1,V1,IRAD,K
    COMMON NMAX,N2,BAND
    WRITE(6,1001)
```


$\operatorname{READ}(9,1002)($ Filt (I), $I=1,3)$
1002 FORMAT(3A4)
1000 'ARITE(S,666)
666 FORMAT(' REQUIRES... NTHETA,IB,NH../..RIN,ROUT,B,BINC')
READ(9,1) intheta, IS,NH
1 FORMAT(3Y)
$I B=I B+1$
READ (9,4)RIN,ROUT,B,BIVC
4 FURMAT(4Y)
ROUND $=2 \cdot \varepsilon-5$
F=1./RIN

THETA $=(2 . *$ P1)/FLOAT(iNTHETA)
H=RIV/FLOAT(NH)
$\mathrm{HSO}=\mathrm{H} * \mathrm{H}$
THETA2 $=$ THE TA*THETA
NI=NTHETA/4+1
N2=NTHETA/2
$\mathrm{N} 2 \mathrm{P} \cdot \mathrm{l}=\mathrm{N} 2+1$
C $1=-1 . /$ HSO
C $2=2 . / \mathrm{HSQ}$
CON=2./THETAZ-0.25
Dl $=-1 . /($ THETA $2 * R I N *=2)$
$A B D R 1=-F *(F-1 \cdot / R I N)-2 . * D 1$
$A B D R 2=0$.
DO 1022 NB=1,IB
WRITE(6,1023)KOUT,RIN,B
1023 FORMATI' JUTER CIRCLE RADIUS',F7.3,6X,' INNER CIRCLE RADII
WRITE $\{6,10241 \mathrm{H}, \mathrm{N} 2$, THETA
1024 FORMAT(' RADIUS STEP LENGTH',EII.4,6X,'ANGULAR STEP LENGT:
DO $3 \mathrm{I}=1, \mathrm{Ni}$
$A A=F L O A T(I-1) \div T H E T A$
$A A=\operatorname{Cos}(A A)$
$D D=\operatorname{SQRT}(B \div B \div(A A * A A-1)+.R O U T * Z O U T)$
$A A=B * A A$
$R 1=A B S(A A+D D)$
$R 2=A B S(A A-D D)$
$\operatorname{NODE}(I)=(R I-R I N+R O U N D) / H+1$.
$\operatorname{RAD}(I)=R 1$
IFII.EQ.NI)GO TO 3
$K=N 2+2-I$

```
    RAD(K)=R2
    NODE(K)=(22-2I ij+ROUND)/H+1.
3 CONTISUE
O N=NCDE(1)
* NMAX=NGDE{1}
    IMAX=1
    DO 30 J=2,N2P1
    IF(NirAX.GT.NODE(J))GO TO 30
    NMAX=NODE(J)
    IMAX=J
30 N=.V+NODE(J)
    WRITE(6,6)O)(NODE(I), I= 1,N2P1)
600 FORMAT(2CI5)
    DO 99 J=1, iNMAX
99 AU(J)=0.
    DO 220 I =1, MMAX
    DO 220 J=1,3
220 A(1,J)=0.
    DO 31 J=2,NMAX
    R=RIN+FLCAT(J-I)}:
    A(J,1)=C1
    A(J,2)=C2+CON/(R*R)
    A(J,3)=Cl
31 AU(J)=-1./(THETA2*R*R)
    DO 301 J=1,2
    DO 300 I=1,N2P1
300 GDR(I,J)=0.
    DO 301 1=1,N2
301 ABDRY(J,I)=0.
    DO 102 IRAD=1,N2P1
    K=VOOE(IRAO)
    CALL DEFINEINPS)
    N=N+NPG
    NODE([RAU) = NODE(1RAD) +VPG
    IF(NP6.LT.O)NODE(IRAO)=-NODE(IRAD)
102 CONTINUE
    IF(NODE (IMAX).LT.O)NMAX=NMAX-1
    BAND=2*NMAX+1
    FFF=ABS{A(2,1})
    DO 1019 I= 2,MMAX
    DO 1017 J=1,3
    IF(FFF.LT.ABS(A\!,J)))FFFF=ABS(A(I;J))
1019 COVTINUE
    FFF=ALOG (FFF)/ALOG(16.)
    IFFF=FFF+1
    FFF=16.**!FFF
    IF(FFF.LT.1.)FFF=1.
    D1=D1/FFF
    ABDR1=ABDR1/FFF
    ABDR2 =ABOR2/FFF
    DO 1020 I=2, NMAX
    DO 1021 J=1,3
1021 A(1,J)=A(I,J)/FFF
1020 AU(I)=AU(I)/FFF
    DO 1025 IRAD=1,N2P1
    DO 1025 J=1,2
    IF(IRAD.EQ.N2P1)SO TO 1025
    ABDRY(J,IRAO)=ABURY(J,IRAD)/FFF
1025 BUR(IRAU,J)=80R(IRAD,J)/FFF
    WRITE (6,110)N
```

Coefficients
scaled if
necessary.
1019 COVTINUE
-.
110 FORMAT(" NATKIX IS OF ORDER',I4)

```
```

WRITE(5,113)

```
113 FORMATI/I
    HRITE (6,108)ABUR1,ABDR2,D1,FFF
    WRITE (ó, 113)
    DO 112 I \(\mathrm{RAD}=1, \mathrm{~N} 2 \mathrm{P} 1\)
112 WPITE (6,108)(BOR(IRAD, J), J=1,2)
    WRITE \((6,113)\)
    DO \(111 \mathrm{I}=2\), NilAX
111 WRITE \((6,108)(A(1, J), J=1,3)\)
    WRITE \((6,113)\)
    HRITE (6, 108)(AU(J), J=1, NMAX)
    HRITE (6,113)
    DO \(1070 \quad \mathrm{I}=1, \mathrm{H} 2\)
1070 WRITE (5,108) (ABDRY(J,I), J=1,2)
108 FORMAT(13E10.3)
    WRITE \((9,202)\) iv, N2P1,NMAX,N2, BAND
    WRITE \((9,200)(N O D E(I), I=1, N 2 P 1)\)
    HKITE (9,FMT)AOCR1, ABDR2,D1,FFF
    WRITE \((\xi, F M T)((B U R(I R A D, J), J=1,2), I R A D=1, N 2 P 1)\)
    WRITE \((9, F M T)((A \mid I, J), J=1,3), I=1\), \(\operatorname{NiMAX})\)
    WRITE \((9, F M T)(A U(J), J=1, N M A X)\)
    HRITE( \(\mathcal{H}, F M T)((A B D R Y(J, I), j=1,2), I=1, N 2)\)
200 FORMAT(1X,2513)
202 FORMAT(1X,5I4)
\(1022 B=B+B\) INC
    STOP
    END
    SUBROUTINE DEFINE (NP6)
    DIMENSIGN A(20,3),AU(20)
    DIMENSIOY \(\operatorname{ABDKY}(2,64), \operatorname{BDR}(65,2), \operatorname{RAD}(65), \operatorname{VODE}(65)\)
    INTEGER 3 ANO
    COAMON A, AU, RAD, ABDRY, BDR,HSQ,THETA2,B,RDUT,RIN,H,PI, THETA
    COMMJN ABDR1, ABCR2,D1,ROUND, N,NODE,N2PI,NI,IRAD,K
    COMMGN NMAX, V2, BAND
    \(R=R I N+F L O A T(K-1) \div H\)
    \(N P 6=0\)
    \(P 5=(R A D(I २ A D)-R)\)
    IF(ABS (P5).GT.ROUND)GO TO 32
    NP6 \(=\) NP6-1
    GO TO 8
\(32 \quad P 1=1\).
    P5=P5/H
    CON5=1.
    IF(IRAD.E2.N2P1)GO TO 6
    IF(K.LE. VJUE(IRAU+1)ISO TO 6
    \(A A=A B S((B \% B+R * R-R O U T * R O U T) /(2 . * 8 * R))\)
    IF (AA.GT. 1.IGU TO 30
    \(A A=A T A N(S Q R T(1 . / A A-A A))\)
    GO TJ 31
    \(A A=0\).
\(30 \quad A A=0\).
31 IF(IRAD.LE.NI)GO TO 5
    \(A A=P I-n A\)
\(5 \quad P I=A A / T H E T A-F L O A T(I P A D-I)\)
    IF (P1.LE.(1.+ROUND))CON5=0.
    \(6 \quad P 3=1\).
```

 AAA=2./(R*R*THETA2*{P1+P3)}
 BDR(IRAD,2)=2./(P5*HSQ)+(2./(THE TA2*P1*P3)+0.25)/(R*R)
 BDR(IRAD,1)=2./(HSQ%(P5+1.))*(-1.)
 IF(IRAD.EQ.N2PIICO TO 70
 ABDRY(1,IRAD)=-AAA*CDN5/P1
 70 IF(IRAD.EQ.IIGO TO 8
ABDRY(2,1RAD-1)=-AAA/P3
8 RETURN
END

```

The compitational details of this proirarn are clear if it is read in conjunction with the expressions (7), (11), (14) of Part 1: Chapter 2 and the following symbol table.

SYIBOL E:EANETG

ROUT radius of outer circle
RIT radius of hole
B distance betreen centres
BIIC increment in distance between centres
IB number of tines distance between centres is to be incremented

NTHETA number of angular step-lensths in \(2 \pi\), i.e. \(\Delta \theta=\) \(\frac{2 \pi}{132 \pi}\)

NIH number of radius steps in hole, i.e. ar \(=\frac{\mathrm{RTI}}{\mathrm{IH}}\)
THENA \(\quad \Delta \theta\)
THEAR \(\Delta \theta^{2}\)
\(\mathrm{H} \quad \Delta r\)
Hラウ \(\Delta r^{2}\)
RAU(I) redius of (i+1)th ray
NODE(I) nurber of nodes alons (i+1) th ray
N order of coefficient natrix
BAID bandwidth of coefficient matrix
FFF scaling factor

IMPLICIT REAL \(\because 8(A-H, 0-2)\)
REAL \(=4 \mathrm{P}(20,500), B O O(65,2), A(12,3), A U(12), A B D R Y(2,64)\)
1，ADDR1，ABDR2，D1，FFF，RIN，DIST
DIMENSIOV VI（ 00 ），VISTA（500），UISTA（500），ALPHA（500）

1，VVST（500），Ul（500），iVODE（65）
INTEGER BAID
INTEGER～2 SIGN（500）
CJAFHN A，AU，AGURY，BDR，ABOR1，ADDR2，D1，NODE，N2P1，NHAX，N2
CJMMON／STORE／P／DF \(2 /\) ALPHA，GA？，FFF，SIGV
こO：MOV／P\＆OD／VJPL，UL／PROOA／VSTAJI，ULSTA
EQUIVALENCE（ध，\(\because\)
READ（5，202）N，N2P1，N：AX，N2，BAND
READ（5，200）（？ODE（I），I＝1，N2P1）
REAO（5，201）A3DR1，43UR2，D1，FFF
READ（5，201）（（BDR（IRAD，J），J＝1，2），IRAD＝1，N2P1）
READ（5，201）（（A（I，J），J＝1，3），\(I=1, \operatorname{NiAAX})\)
REAO（5，201）（AU（I），I＝1，NMAX）
\(\operatorname{REAU}(5,201)((\operatorname{ASDRY}(J, I), J=1,2), I=1, N 2)\)
READ（5，201）RIN，DIST
200 FOR：AAT（1X，2513）
201 FORMAT（1X， 329\()\)
202 FIRAAT（1X，5I4）
CALL COLAAS（N，BAND）
NB2P1＝BAND／2＋1
\(1 S N=1\)
\(K I P=0\)
WRITEIG，2O19IRIN，OIST
2019 FOFMAT（＇I MNER RADIUS＇，F6．3，3X，DISTAVCE：，F6．3）
WRITE（6，2020）FFF
2020 FORHAT（＇SCALING FACTOR IS＇，£14．7）
RATLM＝． 500
DO \(300 \mathrm{I}=1, \mathrm{~N}\)
IF（I／2＊2．E日．I）GO TO 301
V1（I）＝1．DO
VISTA（I）\(=0.00\)
GO TJ 300
\(301 \quad V 1(I)=0.00\)
VISTA（I）\(=1.00\)
300 CONTINUE
VISTA（1）＝ 1.00
GO TO 1002
1001 IF（KIP．LT．C）STOP
DO \(1003 \mathrm{I}=1, \mathrm{~V}\)
\(V I(I)=1.00\)
1003 VISTA（I）\(=1.00\)
\(K I P=-1\)
WRITEI6，10041KIP
1004 FORYAT（＇KIP＝＇，I3）
1002 ALPH＝0．DO
DO \(31 \mathrm{I}=1\) ，it
\(31 \quad A L P H=A L P H+V I(I) * V I S T A(I)\)
\(S 1=D A B S(A L P H) / A L D H\)
ALPH＝DSQरिT（DABS（ALPH））
DO \(32 \quad \mathrm{I}=1, \mathrm{~N}\)
VI（I）＝VI（I）／ALPH
\(32 \quad\) VISTAII \(=V I S T A(I) / A L P H\)
DO \(33 \quad \mathrm{I}=\mathrm{I}\) ，N

VV（I）\(=V 1(I)\)
33
VVST（I）＝VISTA（I）
DO \(40 \quad \mathrm{I}=1 \mathrm{~N}, \mathrm{~N}\)
Tonstruction

40 VJPI（I）＝V1（I）

CALL HUL （ \(N, B A N D\) ）
9041 I＝1，N
```

41 VSTAJI(I)=VISTAII)
CALL AUULT(N,BANO)
DO $13 \mathrm{~J}=1, \mathrm{~N}$
$A L P H=0.00$
DO $6 \mathrm{~K}=1, \mathrm{~N}$
$6 \quad$ ALPH=ALPH+VISTA(K)*UL(K)
ALPHA(J) $=A L P H^{*}=1$
IF(J.EQ. V)GU TO 13
DO $7 \mathrm{I}=1$, N
W(I)=U1(I)-AL?HA(J) 〒VI(I)
$7 \quad$ HSTA(I)=iSSTA(I)-ALPHA(J) 7 VISTA(I)
$A L P H=0.00$
DO $8 \quad \mathrm{I}=1, \mathrm{~N}$
$8 \quad$ ALPH=ALPH+WSTA(I) $5 W(1)$
IF (J.EQ. 1.AND.DABS (ALPH).LT. 1.D-20)GO TO 1001
IF(J.NE. 1.AND.JASS (ALPH).LT.1.D-20)GO TO 131
S2=DABS (ALPH)/ALPH
GAM(J+1)=JS $\mathrm{GR}^{\mathrm{G}} \mathrm{T}(\mathrm{OABS}(A L P H))$
$009 \quad l=1$, N
VJP1(I)=w(I)/GAM(J+1)
$9 \quad$ VSTAJI(I) 9 FiSTA(I)/GA:T(J+1)
$A A=0 . D O$
AASTA $=0.00$
DO $70 \quad I=1, N$
$70 \quad A A=A A+V V(I) \div V S T A J I(I)$
$B E T=S 1 * S 2 * G 4.4(J+1)$
$J P l=J+1$
IF\{S1*S2.GT.O.DOJGO TO 72
I $S N=I S N+1$
SIGN(ISN) $=\mathrm{J}+1$
72 IF(J.LT. (2ヶN)/3)GOTD 71
RATID=1.00-DFLこAT(ISN-1)/DFLOAT(J)
IF(RATIS.GT.RATLM)GO TO 131
71 CALL MULT(N,BAND)
CALL ABULT (A, GAND)
DO $710 \mathrm{I}=1$, N
710 AASTA=AASTA+VVST(I) \ddagger UI(I)
WRITE (5,130)AA, AASTA
OO $12 \quad \mathrm{I}=1, \mathrm{~N}$
U1 (I)=U1(I)-BET*VI(I)
UISTA(I) = ULSTA(I)-BET*VISTA(I)
VI(I)=VJPI(I)
12 VISTA(I)=VSTAJI(I)
Sl=S2
13 CONTINUE
GO TO 132
$131 \quad N=J$
132 WRITE(6,134)RATIO
134 FORNIATI' SY:AMETRY RATIU IS',F5.2)
WRITE (6.1351N
135 FOR:4AT(14, LANCZJS ITEPATIO:NS WERE PERFORMED')
WRITE (6, 130) (ALPHA(I), I=1,N)
WRITE $(6,130)(G A M(I), I=2, N)$
130 FORIAT (1X,9014.7)
37 FORMA1 $\{213,014.7\}$
SIGN(1)=[SN
wRITE(6,133)(SIGN(I),I=1,ISN)
133 FORMAT (30I4)
CALL COLDF2(N)
STOP
END

```
```

 SUBROUTINE CDLMAS(M, BAND)
 DINE\SION RMJE(65), SOR(55,2), (1 12,3), AU(12), ABORY(2,54)
 1,P(20,500)
 INTEGEF, ROri,BAND
 EOMMON A, AU,ASDRY, PDR, ABJR1,AGOR2,DL,NODE, V2P1,N:AX,N2
 COMMOH/STORE/P
 NB2=BAND/2+1
 NB3=NB2+1
 NBI=NB2-1
 WPITE(6,200)M,NMAX
 200 FCRNAT(2I4)
MPI= 4+1
CO 100 I= , BAND
D] 100 J=1,NP1
100 P(1,J)=0.
RO;N=0
DO 120 K=1,N2PL
FACl=1.
FAC2=1.
IF{K.EQ.N2)FAC1=2.
IF(K.EQ.2)FAC2=2.
N=IAHS(NODE(K))
NL=N
IF(NJOE{K).LT,O)N=N+1
IF(K.GT.1)NB=IABS(NOUE (K-1))
DO 12 I=1,N
IF(NOUE(K).LT.O.AND.I.EQ.N)GO TO 12
ROw=ROw+1
IF{I.GT.1)GOTO 2
P(NS2,ROW)=ABDR1
P{NS3,RONi)=A(2,1)
IF{K.EQ.N2P1)GO TO 1
P{NG2+N1,R(iw)=01*FACl
IF(K.EQ.1)G1] TO 12
P(NB2-NB,RON)=D1*FAC2
GO TJ 12
2 IF(I.GT.2)GOTO 4
IFIN1.EQ.N.AND.[.EQ.(N-1))GO TO T
P(NB2, RON) = A (2, 2)
P(NBl,ROiv)=ASDR2
IF(NJDE(K).LT.O.AND.I.EQ.NI)GO TO 2O
P(NB3,RUA)=4(3,1)
20 IF(K.EO.N2P1)GO TO 3
P(NB2+N1,R(1;)=AU(2) =FAC1
3 IF(K.EQ.1)GU TC 12
P(NB2-NG,R(IN)=AU(2)*FAC2
GOTO 12
4 IF(I.GE.(N-1))GO TO 7
P(NB2,ROW)=A(I,21
P(NB1,RON)=A(I-1,3)
IF(I.EQ.2)P(4,RUM)=ABDR2
P(NB3,RO*)=A(I+1,1)
P(NS2+NL,K(Si)=AU(I)*FACl
6 IF(K.EQ.I)GO TO 12
P{NB2-NG,RON}=AU(I)*FAC2
GO TO 12
7 IF(I.EQ.NIGU TO 10
P(NB2,RON)=A(I,2)
P(NB1,RON)=A(1-1,3)
IF(I.EQ.2)P(4,RO:!)=ABDR2
IF(NODE(K).LT.O)GO TO 8
P(NH3,RO, \ = 3DR\K,1)
8 IF(K.EQ.N2P1)GOTO 9

```
\(P(N B 2+V I, R U A)=A U I I) \div F A C 1\)
        IF\{K.EQ.I)GO TO 12
        \(P(N B 2-N B, R O N)=A U(I) * F A C 2\)
        GO TD 12
10 IF(NODE(K).LT.OIGO TO 12
    \(P(N B 2, R \cap A)=B O R(K, 2)\)
    \(P(N B 1, R O A)=A(I-1,3)\)
    1F(K.EQ.N2P1)50 TJ 11
    IF(NL.GT.IABS(NDOE(K+1)))SO TO 11
    \(P(N B 2+i N 1, R O N)=A B O N Y(2, K) \div F A C 1\)
11 IF(K.E2.1)GOTO 12
    IF(NODE (K-1).LT.O.OR.NB.GT.N1)GO TO 110
    \(P(N S 2-N B, R O N)=A B D R Y(1, K-1) \div F A C 2\)
    GOTD 12
\(110 P(N B 2-N B, R O W)=A U(I) \div F A C 2\)
12 CONTINUE
120 CONTINUE
    RETURN
    END
    - corris massaces input data into banded matrix fom.
    SÜBrJut IVE MULT(N,BANO)
    REAL*8 AP (500), Q(500)
    DIMENSION P \((20,500)\)
    INTEGER BAND
    COMMON/STURE/P/PROD/Q, AP
    NB2P1=BAVD/2+1
    DO \(1 K=1, M\)
    \(K K=K+N B 2 P 1\)
    \(A P(K)=0\).
    DO \(1 \quad 1=1\), 3 AND
    \(L=K K-I\)
    IF(L.LE.O.OR.L.GT.M)GO TO 1
    \(I F(P(I, L)\).NE.O. \() A P(K)=A P(K)+D B L E(P(I, L)) \approx Q(L)\)
1
    CONTINUE
    RETURN
    END
    Yith the banded matriz denoted oy \(P\) EUTI forms \(I P=P * Q\) in
    douole procision.
    SUBROUTINE AMULT(:A, BANDI
    REAL* \(亍\) A \(A(500), Q(500)\)
    DIMENSION P \((20,500)\)
    INTEGER BAND
    COMNJV/STJRE/O/PRJDA/Q,AP
    \(\mathrm{NB} 2 \mathrm{PI}=\mathrm{BAND} / 2+1\)
    DO \(1 K=1, N\)
    \(A P(K)=0\).
    \(1=K-N 32 P 1\)
    IF(L.LT.O)L=O
    DO \(1 \mathrm{~J}=\mathrm{l}\), BAND
    1F( \(K+J) \cdot L E \cdot N B 2 P 1 \cdot O R \cdot(K+J) \cdot G T \cdot(M+N 32 P 1)\} G J\) TO 1
    \(L=L+1\)
    \(\operatorname{IF}(P(J, K) . N E .0) A P.(K)=A P(K)+D B L E(P(J, K)) \neq Q(L)\)
1 CONTINUE
    RETURN
    END

AHUR foms \(: P=P^{T} \div Q\).
```

 SUBRTJUTINE COLDF2(N)
 IMPLICIT KEAL#8(A-H,O-Z)
 COMPLEX*16 Z,PO,P1,POD,P1D,POOD,P1DO,AMZ,P2,P2O,P2DO,AD,AD
 COMPLEX:1ó TC,SL,S?,S,W,SOL(15),G
 DIMFNSION ALPHA(500),GAM(500)
 REAL*4 FFF
 INTEGER=2 SIGN(500)
 COMNON/DF2/ALPHA,GAM,FFF,SIGN/COM/S,SR,SI/SOLN/SOL
 CALL ERRSET(20.3,0,-1)
 NO=12
 IRITE=1 This is the Leguerre root
 FF=DBLE(FFF)
 EPS=2.0-4
 ACPT1=2.D-8
 ACPT2=1.D-5
 ACPT3=1.D-8
 DN=DFLDAT (N)
 YIARG=OATAN(1.DO)
 DPI=4.DO*VARG
 I TER=30
 PQ=1.055
 PS=2.0-40
 WRITE16,9930)ACPT1, ACPT2,ACPT3
 9930 FORHAT(301C.3)
C=0.00
DO 992 I=2,N
992 GAM(I)=GA:1(I)*GA:M(I)
KK=SIGN(1)
IF(KK.LE.I)G口 rO }99
DO 993 I=2,KK
KL=SIGN(I)
993 GAM(KL)=-GAM(KL)
994 DO 800 NROCT=1,NO
WRITE(S,GOOO)NPGOT
6000 FORHAT(' N=, 14)
L=DCMPLX(O.00,0.DO)
NSC AL=0
GO TO 6005
6002 CALL SCALE(Z,FF,NROUT,1,IR,NSCAL:N)
GO TJ 6003
6004 CALL SCALE(Z,FF,NRIJOT,2,IR,NSCAL,N)
6003 NRITE(6,55)P2,P2D,P20D,IR
55 FORMATI' AT 6003',6010.3,15)
IF(NSCAL.GT.5)GU TO 600
6 0 0 5 ~ D I F 1 = 1 0 0 0 . 0 0 ~
DO 7 NOIT=1,ITER
PO=DCNPLX11.DO,O.DO1
P1=DC:APLX(ALPHA(1),0.001-Z
POD=DC:1PLX10.DO,O.DO1
P10=DCNPLX(-1.00,0.00)
PODD=DC:APLX(O.DO,O.DO)
P1OD=OCHPLX(O.DO,D.DO)
DO 3 1R=2,N
AHZ=DC:PLX(ALPHA(IR),O,DO)-Z
P2=AMZ*PL-GAM(IR)*PO
P2D=AMZ*P1D-P1-GAY(IR) %POD

```
```

 P 2DD=AMZ*P1DD-2.DO*P1D-GAY(IR)*PODO
 IF(CDAES(P2).LE.PS.OR.CDABS(P2D).LE.PS.OR.
 1CDABS(P2OD).LE.PSIGO TO 6004
 IF(CDABS(P2).GT.PQ.OK.CDABS(P2D).GT.PQ.OR.
 1CDABS(PZDD).GT.PQ)GD TD }600
 PO=P1
 POD=P1D
 PODD=P1DO
 Pl=P2
 P10=P20
 3 P1DD=P2DD
API=CDABS(P1)
AD=DC:1PLX(O.DO,O.DO)
ADD = DC:HPLX(0.60,0.DO)
IF(NROUT.EQ.L)GO TO 5
NN=NRDOT-1
DO 4 [=1,NN
G=Z-SDL(I)
T=CDABS(G)
IFIT.LE.S.D-15)NRITE{6,6001/I,NROUT
6001 FORMAT!' ROOT',I4,' AND AN ITERATE UF RUCT',I4,
1: ARE PATHALOGICALLY CLOSE')
IF(T.LT.2.D-20)G=DCMPLX(1.D3,0.DO)
TC= L.DO/G
ADD=ADD+TC
4 AD=AO+TC*TC
5 IF(API.LE.2.D-30)NRITE(6,54)AP1
54 FORMAT(' API TOO SMALL..',D10.3)
SI= P1D/P1
S2=S1*SL-P1DD/P1-AO
S1=S1-ADD
H}=(DN-1.00)*(DN*S2-S1*SL
H=CDSQRT (N)
S=DCONJG(S1)
S=S%W
CALL RLIM
IF(DABS(SR).GT.2.D-6)GO TD 51
WAOD= CDABS (N)
SR=hMOD:OCOS(rAARG)
SI = WHOD*OSIN(nARG)
GO TO 52
51 IF(SR.GT.O.DOIGO TO 53
S=W
CALL RLIM
SR=-SR
SI=-SI
W=DCMPLX(SR,SI)
52
Z=Z-W
AZ=CDABS(Z)
AH=CDABS(H)
C1=CDABS(P10)
IF(IRITE.EQ.L)HPITE(5,91)Z,P1,P10,P1DD,W
91 FURMAT(2D18.10,8)10.3)
IF(AP1.LE.(ACPTI*AZ*C1))GO TO 81
IF(AN.GE.EPS)GO TO 6
IF(AW.GT.DIFI)GO TO E4
DIFI=AH

```
```

\therefore IF(AZ.LE.E.D-5)GO TJ 60
W以OD=AW/AZ
IFINMOU.LT.ACPT2IGO TU 82
60 [F(AN.LE. (ACPT3*CJ) GO TO 83
7 CONTIVUE
$\mathrm{KK}=99$
GO TO 20
$81 \quad K K=1$
GO TD 20
82 KK=2
GO TG 20
$83 K K=3$
GO TO 20
84. $K K=4$
20 IF(C.LT.CDABS(Z))C=CDABS(Z)
SOL (NROOT) = Z
WRITE(6,21)KK, Z, PL, PLD,PIDO,N,NOIT
21 FORMAT(I4,2014.7,1,4(2X,2010.3),I4)
800 CONTINUE
GO YO 601
600 NO=NROOT-1
IF (NO.EQ.O)STOP
601 DO $801 \mathrm{I}=1$, NO
801 SUL (I)=SOL (I) 1 \%FF
WRITE(S, 802)NO
802 FORMAT(///,2X,I3,' OF ROOTS ARE...')
WRITE (6, SO3)(SOL(I), I=1,NJ)
803 FORMAT(3\{4X,2D17.10)
STOP
END

```
```

SUBROUTINE RLIM
REAL*B X,Y,FR,FI
COMMON /COM/X,Y,FR,FI
FR=X
FI=Y
RETURN
END

```

RITI extracts the real and inarinary parts of \(z=x+i v\).
```

 SUBRDUTI:NE SCALE(Z,FF,NROOT,KIP,J,NSCAL,N)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION ALPHA(500),GAM(500)
 COMPLEX\div16 SOL (15),2
 REAL=4 FFF
 INTEGER\div2 SIGN{500)
 COMMJAV/OF2/ALPHA,GAN,FFF,SIGN/SOLN/SOL
 NSCAL=NSCAL+L
 IF(NSCAL.GT.5)RETURN
 IF(J.LE.(N/2))Pi\=30.DO/DFLOAT(J)
 IF(J.GT.(N/2))PQ=20.DO/DFLOAT(J)
 PQ=10.DO**PQ
 IF(KIP.EQ.2)GO TO 992
 Fl=PQ
 GO TO 993
 992 Fi=1.DO/PQ
9 9 3 ~ A L P H A (1) = A L P H A (1) / F 1
DJ 995 I=2,N
ALPHA(I)=ALPHA(II/FI
995 GA:イ(I)=GAM(I)/Fl**2
kiRITE(6,901)
901 FORMAT(///)
WRITE(0,OOO)(ALPHA(I),I=1,N)
WRITE(ó,900)(GAM(I),I=2,N)
900 FORMAT(2X,12010.3)
FF=FF*Fl
IF(NRDUT.EQ.IIGO TO 3
NN=NROOT-1
OO 1 I = 1,NN
1 SOL(I)=SOL(I)/FI
Z=Z/Fl
3.WRITE(6,2)FF,Fl
2 FORNAT(" SCALING FACTOR IS..*,2DI7.10)
RETURN
END

```

If, for some reason or other, the value of the deteminent, or of the first or second derivative of the charecteristic polynomial of the iridiajonal set out of range, then the tridiajonal matrit, the roots already found and the current sstimate are scaled ilere.

The follorinc syrool table is useful in the interpretetion of the procran COL1.

STIBOL
SNBOL
Sll the symbols listed in the symbol table of colomp haye the same meaning here, excert 3 wicin is called Dise here.
Vi \(\quad v_{j}\)
VISTA \(\quad V_{j}^{*}\)
VJFi \(\quad \mathbf{v}_{\mathbf{j}+1}\)
VSTAJ 1
\(\stackrel{\rightharpoonup}{\tilde{j}}+1\)
U1 \(\mathbf{u}_{\mathbf{j}+1}\)
U1STA \(u_{j+1}^{*}\)
7
TJTA - Wín \(_{j}^{*}\)
ALFPA \(\quad\) vector containins \(\alpha_{j}{ }^{\prime s}\)
G12I Vector containing \(\gamma_{j}{ }^{\prime}\) s
SIGI: Vector containing siens of the \(\beta_{j}{ }^{\prime} s\)
of the generarized
Lancecs nethod
of chapter 1.

VV stores \(V_{1}\)
WVSTA stores \(V_{1}^{*}\)
RATIO symetry ratio at that specific point
11
\(\mathrm{y}_{\tilde{\mathrm{j}}} \mathrm{T}_{1} \mathrm{v}_{1}\)
AASTA value of \(h_{1 j}\)
P coefficient matrix in massaged form

\section*{SUB2ntinie Got.pe2}

ACET1
ACET2
ACPM \(\quad\) ) constantsfor the stonpiñ criteria \(\quad 1,2,3\) of 2.3.
C maximun value of the moduli of the moots already found
NROON nunber of root currently being soucht
Z present approximation to root


Procran description: The routine :UIT of COLA initiaily reads in the finite difference coefficients passed to it from CoLDIF. Control passes almost innediately to the routine termed CCIris, where the input data is massased into banded natrix forn. - This matrix has not been densely pacieed as miżht easily (?) be done in the case of an extremely laree natrix (or a small computer systen) - see Tewarson (29]for details of pacling techniques. On retumine to \(\ln\) In the initial vectors \(\mathrm{v}_{1}\) and \(\nabla_{1}^{*}\) are defined so that \(v_{1}^{T} v_{1}^{*}=S_{1}\). After having formed \(u_{i}\) and \(u_{1}^{*}\) the execution of the Lanczos algorith comences.

The Lanczos alcorith of chapter 1 is applied as described there. If \(\quad \gamma_{1}<10^{-20}\) the alegorithn is recomenced with new different initial vectors - if any other \(\gamma\) is less than \(10^{-20}\) control is passed to COLDF2 where the roots of the tridiasonal matrix obtained thus far are sought. If (ritil no \(x<10^{-20}\) ) after \(2 n / 3\) or nore Lanczos steps have been camied out the synnetry ratio (redefined later) is round to be rreater then 0.6 control is transifemred to COIDF2. During the execution of this section of the alforithn the values of \(v_{i}^{T} v \%, i=1, \ldots, n\) as mell as \(h_{1, r}\), \(x=3, \ldots, n\) (see chapter 1 for the dofinition of \(l_{i n}\) ) are computed and pri-2ted as a muning cincek on the biortinosonclity of the computed vectors and on the tridiafonality of the supposedy urer heosonbers fom.

```

semprou=cin
30

```

```

रहM*

```


```

FGba con^{-17}
Coblcht Ey=に

```



```

 \(\therefore 2=: \%\)
 \(\because 2=1 \div 1\)
    ```


```

 \(\begin{aligned} & 47=1 \\ & 2=4 \\ & 2\end{aligned}\)
    ```

```

 こうこう
    ```

```

 \(\because A x=-\hat{i}\). \(\boldsymbol{r}\) ?
    ```


```

10\%

```

```

 \(\because\binom{x}{0}\binom{1}{1}-6: 1\)
    ```


```

 \(x, \ldots=54-\infty, 1 \cdots\)
    ```

```

 \(x \vDash(1-1)=1\) (I)
 ! חnj
    ```

```

 07 ? \(I=1\).
 an \(1 \quad 1=1\),
 Of
    ```


```

 ! 1,1\()=?\)
 11 \(51=1\).
    ```


```

 P1E1-1
    ```


```

 on a \(11=1\).....i
    ```


```

 in \(12=1=1: \because\)
 \(10121=1\).
    ```

```

 12.
 \(\cdots 1001=0\)
    ```


```

$13 \quad \therefore(1,0)=(1,1+\cdots)$

```

Construction

\(\prod_{i=-1} a_{1} \quad 1 \quad=1 \cdots 1\)


in \(12: 9=1:\)
\(\mathfrak{O}(1)=\because\)
M \(1=1=1=\)

\(13 \quad \therefore(1, j)=(1,1+\because)\)




\(=1-19\) ••
S＝1
S5s＝1．
\(1=(p-1 ; 0) \times \pi\) Tn 2
Sミラ
\(\frac{1}{2}\)
3
3

5

？ B int：
\(\therefore \because\)



（Gi：
1 （I）＝？
人
\(5 \cdot \tan =-1.0\)

！ 1 IT－i
SIG：\(=-515\)
－（1－1）-5.7
2
3
Mi \(\quad, \quad j=1,1\)

SI \((1, j+1,1)=1\) an
？ \(6 \quad I J=1\) ．
保 \(n^{n} \quad J=1\) ，
\(\varsigma I(I J, 1)=5(I, 4,1)\)
fir Tij 10
7 迸 8 IJ＝1．
（i，, \(\left.\begin{array}{l}J=1, \\ J\end{array}\right)\)


ㅂ． \(9 \quad 1=1\) ，
\(\sin (13-1)=(1 J, ~ J+a)\)
iï \(13 \quad\) I \(1=1\) ．

\(\times x\left(\frac{1}{1}\right)=1\)
11 if（mation 10 in 12
\(x \times(\overline{1})=5\)
8014） 15

ij－instinde


（ \(15 \quad J=1\) ，
\(\because(J)=C i J)+0 \times(a)\)
\(150 \quad \because(J)=010\)
\(1=3, \quad 30\) To




？
\(\therefore\)

Routine required by the function teres．```

