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ABSTRACT 

This thesis is concerned with the structure and the electron density 

distribution in amorphous semiconductors, particular attention being focussed 

on the interpretation of X-ray and electron scattering experiments. The main 

investigation is of amorphous silicon (oc -Si) but extensive work on amorphous 

carbon ( oC-C) and vitreous silica (cC-SiO2
) is also reported. 

Two basic assumptions are made about the electron density distribution 

in cC -Si and c‹ -C 

(a) The total density can be written as a sum of the densities in the 

individual Si-Si or C-C bonds. 

(b) The density in a single covalent bond can be constructed from the 

method of linear combination of atomic orbitals (LCAO). 

To calculate the electron and X-ray scattering a third, less basic but 

essential assumption for further progress is made, namely 

(c) The bond density can be written as a sum of three spherical 

distributions, two identical distributions centred on the nuclei and a third 

centred at the mid-point of the bond. 

For cC -Si, with these assumptions a knowledge of the nuclear-nuclear, 

nuclear-bond centre and bond centre-bond centre correlations enables the X-ray 

and electron scattering to be calculated. The correlation functions have been 

determined from several well known structural models of the amorphous state, 

both random networks and models based on ordered units being employed. 

Similar analysis is performed on oC -C. Here the structure is difficult 

to characterize and detailed calculations are reported concerning the dependence 

of the diffraction patterns on the type of structure used. 

For oC -SiO2 ionic bonding has to be considered and the relative effects 
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of ionic and covalent bonds on the X-ray diffraction intensities are investigated. 

It is concluded that covalent bonding significantly affects the X-ray 

and electron diffraction intensities in both oc -Si and cC -C. For 0C -Si, 

random networks containing odd-membered rings are to be preferred to models 

based on ordered units for a representation of the structure. 
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CHAPTER ONE 

INTRODUCTION 

The concept of the chemical bond was first proposed (Lewis, 1916) soon 

after the discovery of the electron and can be defined as follows (Pauling, 

1960 a) : 

"There is a chemical bond between two atoms or groups of atoms if the 

forces acting between them are such as to lead to the formation of an aggregate 

with sufficient stability to make it convenient for the chemist to consider it as 

an independent molecular species". 

The type of chemical bond that will principally concern us in this thesis is 

the covalent bond which involves the sharing of a pair of electrons by the two 

bonded atoms. The ionic bond, which will be discussed briefly in Chapter 5, 

results from the coulomb attraction of the excess electric charges on oppositely 

charged ions. 

The chemical bond has proved a powerful tool for understanding the electrical 

properties of many materials (Pauling, 1960) and in particular those of carbon and 

silicon. Both carbon and silicon have four valence electrons per atom. Carbon 

forms two crystalline structures, diamond and graphite, silicon only one, that of 

diamond. In the chemical bond picture all four valence electrons in diamond are 

localized in covalent bonds between nearest neighbour atoms. The insulating 

properties of diamond are thus explained in terms of the localized nature of the 

valence electrons. For graphite in the chemical bond picture, only three valence 

electrons per carbon atom are localized in covalent bonds, the remaining unbonded 

electron being loosely bound and thus available for conduction. Silicon crystallises 

in the diamond structure and thus all four valence electrons are localized in covalent 

bonds. The distinction between the insulating and semiconducting properties of 
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diamond and silicon, respectively, is explained simply in terms of the degree 

of localization of the bonded electrons. 

Many observable 'bond properties', for example the fact that the Si-Si 

equilibrium distance (the bond length) varies only slightly with different 

environments, are easily explained in terms of this localized picture. For 

the crystal as a whole, the chemical bond picture leads to a total electron 

density as being built up from such localized bond densities. 

In a full quantum mechanical treatment of crystalline silicon, say, one 

must consider the valence electrons as moving through a periodic lattice of 

positive ions. The distinction between insulating and conducting properties 

can then be explained in terms of the forbidden energy gaps arising from the 

modification of the electron energies by diffraction. Solving Schrodinger's 

equation for the electrons must lead to electron wavefunctions and a ground 

state electron density e  cr.) that extends throughout the entire crystal. It is 

a fact, very relevant to this thesis, that there exists no unique way of dividing 

up the delocalized density p (40 into localized contributions in accord with the 

chemical bond picture. The forbidden energy gap arising from the delocalized 

approach is, in the chemist's picture, approximately equal to the energy required 

to remove an electron from a localized bond. 

In this thesis we shall be investigating disordered solids, that is, solids which, 

due to their method of preparation, have no crystalline structure. Much of the 

current interest in these solids stems from a desire to know how well one can 

characterize the amorphous state and which factors one needs to take into account 

in order to do so. Since an amorphous solid is a metastable state, usually obtained 

under forced conditions (for example by rapid cooling) to prevent crystallization 
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taking place, the answers to these questions are believed to be statistical in 

nature. For our work we shall make no distinction between non-crystalline 

solids such as cc -Si formed, for example, from the vapour and true glassy 

solids such as vitreous silica ( c‘C -Si 0
2

) formed by cooling the melt. The 

important point here is that liquid silicon is a metal with a resistance that 

increases with temperature whereas molten silica is a semiconductor. For 

our work, the important properties common to these solids are a lack of long 

range order in the atomic arrangements and the possession of an electron density 

describable in terms of covalent bonding. 

For the disordered state, then, no long range lattice periodicity exists and 

the effectiveness of band theory, the delocalized approach, is correspondingly 

reduced. The chemist's localized bond picture is, however, still powerful. For 

silicon, for example, the only restriction imposed by this approach is that each 

Si atom should have four bonds and this can be satisfied equally well with either 

a regular network, as in the crystal, or by an irregular one as in the amorphous 

case. For cC -Si the electrons are thus still pictured as localized and the semi-

conducting properties are again easily explained. The observation of well defined 

forbidden energy gaps in cc -Si (Donovan et al, 1969) lends strong support to this 

localized picture. 

Diffraction experiments based on Bragg's condition relating the crystalline 

lattice spacings to the diffracting wavelength have been a major tool for probing 

the solid state. For amorphous solids short range order is retained and diffraction 

experiments still give us useful information about the local atomic environment. 

X-rays are scattered by electrons and therefore X-ray cross sections are related 

to electron correlation functions. Electrons are scattered by all charges present 
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and so electron scattering cross sections are related to both nuclear and electronic 

correlations. Thus both X-rays and electrons will be affected by the form of the 

electron density p () in the amorphous state. An interpretation of these effects 

in terms of a localized bond picture will be a major objective of this thesis. 

In Chcpter 2 we give a short review of X-ray, electron and neutron diffraction 

theory with particular reference to amorphous covalently bonded solids. 

In Chapter 3 we apply the equations developed in Chapter 2 to oC -Si and 

demonstrate how the formalism of diffraction from spherical charge distributions 

can be extended to take account of directional bonding and that, with this model 

of the covalent bond, we can account for the experimentally observed X-ray and 

electron diffraction intensities from cc -Si. 

In Chapter 4 we perform similar calculations for oc -C. More detailed 

structural modelling is involved and because of the two types of crystalline carbon 

it is necessary to consider two types of covalent bond, namely those due to sp2 and 

sp3 hybridization. Again, we are able to account for the experimentally observed 

X-ray and electron diffraction intensities in terms of the covalent bond model. We 

also show how the fraction of partially ordered material in a sample of oc-C can 

be included in a structural model as a simple parameter. 

In Chapter 5 we discuss two component systems and give X-ray and neutron 

diffraction calculations for a model of vitreous silica. The effects of covalent 

versus ionic bonding, with regard to diffraction intensities, are investigated. 

Some of the work presented in this thesis has also appeared in the following : 

B. Stenhouse, P. J. Grout and N.H. March : 

Scattering Intensities and Model Partial Structure factors in Vitreous Silica 

and Amorphous Silicon, Physics Letters 57A, 1976, 99-101 
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B. Stenhouse,P. J. Grout, N.H. March and J. Wenzel : 

Chemical Bonding Effects on the Diffraction Intensities in Amorphous 

Silicon and Carbon. Philosophical Magazine 36, 1977, 129-147 

B. J. Stenhouse and P. J. Grout : 

Diffraction Intensities and the Structure of Amorphous Carbon : 

Journal of Non-Crystalline Solids (in the press). 
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CHAPTtR TWO  

DIFFRACTION FORMALISM 

2.1 Introduction 

We shall now give a brief review of the main ingredients of X-ray, electron 

and neutron diffraction from an array of atoms. The purpose of this review is first 

to obtain the quantities that are used extensively in the work described in later 

chapters, and second to emphasize the assumptions made in their derivation that 

influence our approach to the problem of diffraction from covalently bonded 

amorphous solids. 

We restrict the discussion below to coherent elastic scattering. For a fuller, 

more general discussion of diffraction methods see, for example, Bacon (1962), 

Leadbetter and Wright (1972), Wright (1974). 

2.2 X-ray diffraction 

X-rays are scattered by electrons and it will be sufficient for our purposes to 

take the amplitude of radiation scattered in a particular direction by a single 

electron as our scattering unit (often referred to as the electron unit). If we 

define k. as a vector with magnitude %Tri>. , where X is the incident wave-, 

length, in the direction of the incident beam and kd  the wave vector of the scattered ..,, 

radiation, then, since we are considering elastic scattering we have 

IIsil 	: 	i 1,,ctl 	 2.1 

We define the scattering vector k as 

 k cit.  
Id 	 Ao 

- k; 

4-rr 51ft e/A 	2.2 
where 2 9. is the scattering angle. 
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0 

Figure 2.1 : X-ray scattering from two electrons at 0 and A, separaied 

by vector r. 



and for a continuous electron density 

Y (15,) 

i 	. r 
5:1 
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2.4a 
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Referring to figure 2. 1,, the phase difference between radiation scattered 

by electrons at A and 0 is 

  

k. r 
e'v 2.3 

and the contribution to the amplitude of the scattered beam will be exp( 	 .g). 

Thus the amplitude Y(k) of the beam scattered in the direction defined by kd  

by N electrons is given by 

Now, if we consider an array of atoms,' referred to hereinafter as 'the system', and 

we write the total electron density in the system e ( r ) as a sum of the electron 

distributions around each nucleus 

e 	0- r r „, rn 2.5a 

then we obtain 

Y( ) 
,lt 

ro frt f („(,) 	2.6 

where 

c,(0 	 2.7a 
ro 

is the form factor for the electron distribution around nucleus m. The diffracted 

intensity I (k) is given by 

I (1„;) : 	1 Y(1,)1 



0 	 kr 
then we can average over oC in equation (2.8) to obtain 

I a-
rr■ C r) 4-3C: rel  s tank 2.7b 

9 

f (k) f -(k) 	(ik.(r _r ,rn „, n A' 

 

E Sr, (15,,) 	( IL) e,xe 	k ro,,,, c,(9 s ct) 2.8 

where 

s-+ 

 

2.9 
and 

Coo S oC-_-. 
	

t rn — Cr,)/krnM 	2.10 
If we further assume that the total electron density 0 (r) of equation (2.5a) can 

be written as a sum of spherical distributions, i.e. 

with 
e c ) g 	(I r 	) 	2.5b 

0, 

rn .n 

I ( k 
	

cn  k cm(k) s Ln. k- rn„ 	2.11 

Separating out terms with n = m this takes the form 

f, 
j- (0 -3- 	s (of,,c0bIrikrnm 	2.12 r, 

r$ • 01 
rrl Col ne m   

For an amorphous material where we can define e  nm  (r) as the density of centres 

of type m at a distance r from a centre of type n, we have from equation (2.12) 

co 

T (to -L n(k) 	(k)f 	e coLf--fr;ls‘nkr okr 213 
n M 	0 n kr 

where, now, the summations over n and m are over atoms and atom types, 

respectively, in the system. 	Here, of course, we have assumed 
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fh 	r, the radius of the amorphous sample is large ( r —) a0 ). If e 	is the 
om 

mean density of centres of type m we can write equation (2.13) in the form 

Ot■ 

I (it) 	(k) 	.1„04:,0(c) [e  Cr)_ e 	s 	r do 
4".,111 	 n 	m 	r 

.0 
for s‘nic, 	2.14 

"0, 	 (1  0 O rr 	— kr 

The contribution from the last term on the right hand side of equation (2. 14) 

is a delta function at k = 0 and will be neglected hereinafter. We now define the 

n - m radial distribution (or correlation) function such that 	e 	q (r) 	r2,!' 
0., 

is the number of centres of type m a distance between r and r + dr from a typical n 

centre. Clearly from equation (2.14) 

	

(k) t Efnt (k) 	Sock) fncoe fc9 (0-1)LorrzcInkr ar 215 
ri,rer 	 nn 0  not r 

For a homogeneous medium we can rewrite equation (2.15) in terms of the scattering 

from a basic scattering unit (as an example, for vitreous silica Si 02, the unit 

would contain one silicon atom and two oxygens) 

eo 

1k) = N 	L,  4.; t J -+ 	e 	; co 	(1(),I[9, lri  -13 iti 	kri  rrisltec:i 2.16 i s  r 

where the summations over i and j are over atoms and atom types, respectively, in 

the basic unit and N is the number of such units in the total system. Equation (2. 16) 

is of the required form for calculating the X-ray diffraction intensities from a model 

of an amorphous solid. However, equation (2.11) will also be required when we are 

dealing with models that have a crystalline nature and where a continuous distribution 

e j
(r) is not a useful definition. 

I-  

00 



kr 

then finally equation (2.16) takes the form 

co, 
s.i  Lk) 	♦ e  I L.3. 	... 	it-rr%str,t< r cta. 	2.17a 0 	...I 

11 

If we define the partial structure factors S..(k) as 

_ I ( lc) 	=L1 w.f.;  (k)E 	E;i1 	2.18 
ij 

where 

 

2.19 
This completes the formalism for the X-ray scattering from a superposition of 

spherical free atom-like charge densities. For a monatomic amorphous solid, 

such as oC -Si or oC-C, equation (2.18) reduces to 

(k) 
	

S k) 2  Ck) 	 2.20 
where f(k) is usually taken to be the free atom form factor and S(k) is defined 

solely in terms of the Si or C nuclear correlation function g(r) 

.20 
Ck) 
	

1 -t- eon 	r -13 4.-Tr 	s(ok e 	2.17 b 
k r 

where the subscript n refers to nuclear type (Si or C). It is important to realize 

that for the covalently bonded amorphous solids equation (2.20) is an approximation. 

The approximation was introduced in equation (2.5b) where the total charge density 

was written as a sum of spherical distributions, one of which was assigned to each 

nucleus in the system. However, equation (2.20) has been used extensively in the 

literature, and for example for cc -Si in fig. 2.2 we show e  zor r'2.  gcr) 
on 
	 as 

obtained from X-ray diffraction (Richter and Breitling, 1958) using equation (2.20), 

where g(r) is given by the inverse transform of equation (2.17 b). 



40 

12 

5 
HA) 

Figure 2.2 : Pair distribution function for cC-Si as determined by X-ray 

diffraction (Richter and Breitling, 1958) together with the 

mean density and the number and positions of neighbours in 

the corresponding diamond lattice. 
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00 

JC r) 	 + 	i 	I C . Sik1-i) k$t-4-1-kr dl.r 	2.17c 
1.1rAeo,r  0 

Our interest in the effects produced by a neglect of covalent bonding stems 

from considerations of the crystalline case. For example, for the diamond lattice, 

a spherical atom densities model predicts zero intensity for the (222) reflection. 

This so called "forbidden" reflection is, however, observed experimentally. For 

the crystal there is, of course, no need to assume a spherical atom density model 

since the form of the angularity due to bonding is, in principle, exactly known. 

For an amorphous solid, however, this is not the case. The curve er t r) 

in fig. 2.2 has broad first and second peaks, indicating variations of bond length 

and, more importantly, of the tetrahedral bond angle. Thus for the amorphous 

state we have no a priori method for modelling the angularity of f.(k) in equation 

(2.8) and hence we make the assumption contained in equation (2.5b). For at - Ge 

the X-ray diffraction intensity is dominated by scattering from the core electrons 

and for this case the spherical atom densities model is a good approximation, Our 

investigations will, therefore, concentrate on cc -Si and cC -C where the ratio of 

core/valence electrons is lower. 

2.3 Electron Diffraction  

For high energy electron diffraction the analysis is similar to that for X-rays, 

the essential difference being that the electrons are scattered by the potential they 

feel. This potential is related, by Poissons equation, to the total charge (nuclei + 

electrons) 

— a-  C 
	

2.21 

where z is the nuclear charge. Then, for electrons, the form factor f. (k) in 

equation (2.18) is replaced by f7  (k), say, given by 



; 	F ; (0110- 

14 

where the factor k-2 
arises from the r 1 

behaviour of the Coulomb potential. 

Since generally 	R. ; 	e, Cr) the units for electron scattering as defined 

here are often referred to as proton units. Since electron scattering involves the 

electron density e  ( j, the comments made for X rays with regard to equation 

(2.20) are also relevant here. 

2.4 Neutron Diffraction  

• For neutron diffraction the scattering centre is the nucleus which for our 

purposes can be considered as a hard sphere. The k dependent form factors of 

X-ray and electron diffraction are replaced by a constant, b., the neutron 

scattering length for nucleus i which, unlike f.(k) and fe.(k) can only be deduced 

empirically from experiment. Neutron diffraction is thus unaffected by the electron 

density distribution (and by the assumption of equation (2.5b) ) and leads to 

unambiguous structural information. 

However, for cc -Si, the neutron experiment has not been carried out. The 

problem is that, for a neutron experiment, one needs a large sample ( 	1 cm3) and 

the preparation of such a specimen of cC. -Si is very slow, although essentially not 

difficult. Also, the sample, if prepared, would be highly prone to oxidation and 

would need to be obtained under high vacuum. 

For 0C -C we do have some neutron data (Mildner and Carpenter, 1975). How-

ever, as we shall see in Chapter 4, every cC -C sample presents us with a new struc-

tural problem, and for most samples a neutron diffraction experiment has not been 

performed. 

Thus for both oC. -Si and cC -C a- correct interpretation of X-ray and electron 

diffraction takes on added importance. We shall begin by discussing oC.-Si in 

Chapter 3. 
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CHAPTER THREE 

AMORPHOUS SILICON 

3. 1 Introduction  

Amorphous silicon ( oc-Si) is a typical non-crystalline solid possessing 

approximate short range order, similar to that found'in the crystal, but having a 

complete lack of long range order. Attempts to model the structure have 

traditionally been based on two apparently conflicting ideas. These are to 

describe oC -Si either by means of a microcrystallite model or by means of a 

continuous random network (CRN) model. 

In the microcrystallite picture one assumes that the local atomic environ-

ment,in the amorphous state, is exactly crystal-like, but that long range order is 

removed by the crystals having a size of only a few angstroms, the complete 

amorphous sample consisting of an ensemble of such microcrystallites with random 

orientation. 

The CRN concept was originally proposed (Zachariasen 1932, 1935) as a 

structural model for vitreous silica, oc-Si 02. As applied to oc-Si, the concept 

takes the following form. Each Si atom is linked to four others with a bond length 

of L ± AL and a bond angle (see figure 3.1) of & ± /le where L and 	are 

the bond length and bond angle in the crystal and PL and zNe are termed the 

bond length and bond angle distortions. The relative orientation of adjacent tetra-

hedral units (neighbouring Si4 units will be referred to as tetrahedral units, despite 

the variations in bond angle) is varied randomly, subject only to the condition that 

the network is continuously connected. 

These definitions are sufficiently broad for us to apply them to a wide range 

of structures. For example, we have not specified how individual mircocrystals are 

linked together and there is obviously much freedom as to how one joins a network 
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Figure 3. 1 : Adjoining 	teirahedra. 
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together in a random way. 

In Chapter 2 we saw how, given the coordinates of the atoms in a monatomic 

amorphous solid, we could calculate the X-ray and electron diffraction intensities in 

terms of the nuclear-nuclear structure factor S(k) and a spherical atom form factor 

equation (2.20). However, this required the assumption that we could write the 

electron density in the amorphous state as a superposition of spherical atom charge 

densities. Our first step for testing whether a neglect of covalent bonding has 

significant effects on the X-ray and electron diffraction intensities in oc -Si must 

be to compare the theoretical intensities as given by equation (2.20) with those 

observed in experiment. 

If we take the neutral atomic form factor to define f.(k) (equation 2.7b) 

then all we require is the nuclear-nuclear structure factor S(k) and for this we need 

a model of the amorphous structure. For the purpose of explaining which model 

structures we shall use to obtain S(k) it is convenient to begin by reviewing the 

development of the microcrystallite and CRN pictures. 

As we discussed in Chapter 2, from our point of view 0C-Ge is not as 

interesting as oC-Si because for oC-Ge the ratio of core/valence is large and we 

do not expect the effects of covalent bonding to be evident in the diffraction 

intensities. However, the structure of cC -Ge is expected to be essentially the same 

as for cC -Si and, where relevant, we shall take experimental evidence from oC-Ge 

as pertaining to cc -Si. 

3.2 Development of the microcrystallite and CRN models  

The radial distribution function (RDF) for oC-Si, g(r) as defined by equations 

(2.17c) and (2.20),was first obtained from X-ray diffraction (Richter and Breitling, 

1958). The main difference between the RDF for oC-Si and that for crystalline Si is 
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the absence, in the amorphous case, of a sharp third neighbour peak. This can 

be seen in figure 2.2, where we show Lor r  2e(r) for 0C-Si as 

determined from experiment (Richter and Breitling, 1958), together with the 

contribution from the mean density ( 4orr210on  ) and the number and 

positions of neighbours in the corresponding diamond lattice. Thus the experi-

mental curve would seem to be consistent with a structural picture of small, 

randomly oriented, crystallites based on the diamond structure. 

This idea was investigated (Moss and Graczyk, 1969) with calculations of 

the reduced intensity function F (k) given by 

F(k ) 7.- kiS(k) -1} 	 3.1 

where S(k) is defined by equation (2. 17 b), for several microcrystallite models 

based on the diamond cubic structure. No correlation between different micro-

crystals was included and it was demonstrated quite conclusively that this simple 

microcrystallite picture could not be consistent with the experimental data. The 

function that was used in the calculations, F (k), is, of course, derived from the 

experimental intensity assuming equation (2.20) to be correct. As we have previously 

stressed, we do not believe this to be the case for 0C-Si. However, the effects 

observed by Moss and Graczyk were for all k and could not have been due to 

assumptions about the electron density distribution. 

The structure of c1C -Si was subsequently interpreted on the basis of the CRN 

model; the lack of a third neighbour peak in the experimental RDF being consistent 

with the free rotation of neighbouring tetrahedral units about their common bond. 

Indeed, such a structure was shown (Polk, 1972) to give an RDF in reasonable 

agreement with experiment for cC -Si (Moss and Graczyk, 1969). 

One important set of parameters for a CRN model are the ring statistics. A 
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P-fold ring can be defined as a closed path in the network which passes once 

and only once through P different Si atoms and along P Si-Si bonds. The 

crystalline diamond structure' is composed entirely of six-membered rings whilst 

the wurtzite structure contains both four and six-membered rings. Because of 

the free rotation of neighbouring tetrahedra, in the CRN, it is possible to con-

struct an amorphous structure containing only even or odd membered rings or a 

mixture of both. The P-fold ring statistic is then the average number of P fold 

rings per atom in the network. 

The possible existence in the amorphous state of a network topology 

differing greatly from that in the crystal is interesting when one considers that 

very different methods for preparing oC -Si appear to lead to the same structure. 

oc.-Si can be prepared by sputtering, evaporation, electrodeposition, 

decomposition in glow discharge and ion implantation. In the last case the 

amorphous film is obtained by the progressive destruction of order in a perfect 

crystalline lattice. Yet it has been demonstrated (Smith et al, 1971, Moss et al, 

1971) that ion implanted Si is not just severely damaged crystalline Si and that 

the structure is similar to that of vapour deposited oC -Si. 

The Polk model, that gave quite good agreement with the experimental 

RDF for oC -Si, contained a mixture of odd and even membered rings and was, 

therefore, topologically, quite different from the diamond structure; (more details 

of the model can be found in Table 3.1 where an essentially identical structure, 

the Steinhardt model, is shown as model VII). Clearly, then, it was of interest 

to investigate whether or not very different CRN models could give similar agree-

ment with the same experimental RDF; the important point being that the structural 

information embodied in g (r) is average information obtained from the sample as a 
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whole. Thus comparisons between theoretical and experimental curves could 

not be expected to distinguish between individual network topologies but could  

be expected to reflect the different model rings statistics. 

A 201 atom CRN model containing a large number of odd membered rings 

(Steinhardt et al, 1974), hereinafter referred to as the Steinhardt model, and a 

238 atom CRN model- composed entirely of even membered rings (Connell and 

Tern kin, 1974) were ,  built soon afterwards. Both gave fits to the RDF of c:4-Ge 

(Temkin et al, 1973) that were qualitatively similar to that given by the Polk 

model for oc-Si. However it was noted by Connell and Temkin that an average 

of the RDFs for the 238 and 201 atom models gave a better fit than was given by 

either model individually. The Connell-Temkin (CT) model was thus gradually 

restructured (Beeman and Bobbs, 1975) to generate a series of models containing 

varying numbers of five and seven fold rings. Six models, including the original, 

were so generated and, as had been hoped, it.  was found that greatly improved 

agreement between model and experimental RDF could be obtained for a model 

having ring statistics -that lay between those of the Steinhardt and CT models. The 

ring statistics for the six modifications of the CT model are shown in Table 3.1 - 

models I to VI, together with those for the Steinhardt model which, because of its 

ring statistics'(as previously stated these are essentially the same as those of the 

Polk model), fits roughly into Table 3.1 as model VII. The average bond angle 

distortion Qg (see figure 3.1), for each model, is also given. The improved 

agreement, referred to above, was obtained for model V, the agreement improving 

down the table towards model V and then worsening for models VI and VII. 

Obviously, this method needs to be repeated using several different models 

as the starting point. Then, given optimum fits to the experimental RDF, obtained 

from a number of distinct initial structures, one would hope to see some convergence 
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Table 3.1 	: 

Model 

Model Structural Parameters 

Rings/Atom . Average 
angle 

(a)* (b)+  5 6 7 A 9 

I CT 1 0.00 2.43 0.00 9.1 

II 0.59 2.27 0.16 10.2 

III CT 2 0.16 2.09 0.31 10.6 

IV 0.20 1.96 0.47 10.8 

V CT 3 	. 0.34 1.51 0.81 11.6 

VI 0.40 1.29 1.01 13.3 

VII Steinhardt 0.43 0.89 0.99 6.8 

* 
Notation of Beeman and Bobbs, 1975 

Notation used in this work 

bond 
distortion 
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towards an ideal amorphous structure and discover the correct statistics for a 

complete description of the amorphous state. 

Independently of these developments of the CRN model, the micro-

crystallite model was rather surprisingly (in view of the diffraction evidence 

referred to above) revived by evidence from high resolution electron microscopy 

experiments. 

For oc.-Ge and oC-Si using the dark field configuration, uniformly 

bright, patches about 15 A across were observed in the image (Rudee 1972, 

Chaudhari et al, 1972, Rudee and Howie, 1972), indicative of more structural 

order than is present in a random network model. The bright patches were assumed 

to arise from crystalline regions of approximately the average patch dimensions 

(15 A) (Rudee, 1972, Rudee and Howie, 1972) or from coherently diffracting 

regions of a random network (Chaudhari et al, 1972 ). Later results (Howie et al, 

1973, Chaudhari et al, 1973) indicated that the bright patches were only about 
o 

5 A across. Calculations (Chaudhari and Graczyk, 1974) for a computer built 

CRN model (Henderson and Herman, 1972) containing 64 atoms (the HH model) 

and for a 519 atom modified Polk model (Polk and Bourdeaux, 1973) indicated 
0 

that a CRN can be consistent only with the latter measurement (5 A). However, 

it was pointed out (Moss and Adler, 1973) that the irregular spots in dark field 

could be due to density fluctuations which limit the CRN size to small regions 

separated by voids. This view is supported by evidence from glassy chalcogenides 

(Chaudhari et al 1972b) where bright spots are also observed in dark field but 

which vanish above the glass transition temperature. 

More convincing evidence for the microcrystallite picture, for cc -Ge, 

came from tilted bright field configuration electron microscopy experiments (Rudee 

and Howie, 1972, Howie et al, 1973) where lattice fringes were observed 
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0 
corresponding to a spacing of about 3.3 A similar to the spacing of the (111) 

planes in the diamond or wurtzite structures. 

The ability of a CRN (or any other type of model) to produce fringes 

can be seen by looking at the projected atom density for different orientations 

of the model. One orientation of the 64 atom HH model was found (Chaudhari 

et al, 1974) for which atoms in the projected atom density aligned to form 

planes with a regular spacing corresponding approximately to the (111) planes 

in the crystal. However, for the 519 atom modified Polk model, the preferred 

orientation gave much less well defined planes (Chaudhari and Graczyk, 1974) 

and the picture was not convincing. Indeed, it has been remarked (Cochran, 

1974) that the chances of a CRN structure being sufficiently crystal-like in 

projection to produce recognizable fringes, are very low, the HH model being 

atypical in this respect. A major objection to the HH model, for the above 

calculations, is its small size. The model contains too few atoms in comparison 
0 

to those in a film of 50-100 A thickness which are expected to participate in the 

imaging process in the electron microscope. 

Consequently, attention has recently returned to the problem of whether 

a modified microcrystallite picture can be consistent with the available diffraction 

data, further calculations (Howie et al, 1973, Weinstein and Davies, 1973) for 

simple microcrystalline models based on diamond and wurtzite structures having 

given in general poor agreement with experiment. 

Of course, one possible reason for the disappointing results obtained by 

these calculations was the assumption that the microcrystals had random orientation 

with no account being taken of the correlation between atoms in different 

crystalline regions. In other words, no specification was given of how the micro-

crystals were linked together, whether directly or via some intervening matrix 
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region. For a microcrystallite model the importance of this matrix region or 

connective tissue was recognized very early on (Warren, 1937) and recently 

restated (Gaskell, 1975) where it is pointed out that, for an ordered unit of 
0 	0 

the size indicated by electron microscopy (5 A - 15 A) as many atoms would 

be bonded to atoms within the matrix region as would be bonded to atoms 

within the microcrystallites. 

Consequently, an attempt to improve on the simple microcrystallite 

picture was made (Gaskell, 1975) with the construction of a continuous net-

work that was based on ordered units; the model being constructed by the packing 

of ordered tetrahedral units, having the diamond structure and joined by eclipsed 

bonds across the (111) faces; (referring to figure 3.1, the bonds are 'eclipsed' 

when adjoining tetrahedral units have identical orientation). The polytetrahedral 

(PT) cluster so formed was not strain free (it is not possible to fill space by packing 

tetrahedra), the average strain per bond increasing approximately linearly as more 

tetrahedral units were added. This network strain resulted in bond lengths and angles 

within the cluster taking on a range of values. Hence, nearest and next nearest 

neighbour distributions were broadened as the cluster size increased, there arising an 

optimum cluster size at which the distribution broadening accorded with that seen in 

the experimental RDF for oc -Ge (Temkin et al, 1973). 

Thus to a certain extent the model correlates the microcrystallite and CRN 

descriptions of the amorphous state. The model has been shown to be consistent with 

the electron microscopy experiments described above (the 15 A result for the dark 

field experiments) and the model RDF gives better agreement with experiment than 

has been given by any previous ordered units model (although still not as good as 

that shown by most CRN structures). 
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To summarize this section; although the majority of evidence is in favour 

of the CRN model, containing odd membered rings, there is still some controversy 

(since as we have stated, g(r) does not define a unique structure) as to whether a 

slightly more ordered model could explain all the experimental evidence. 

Consequently, we shall present diffraction calculations for both types 

(microcrystal lite and CRN) of model. Firstly, the Steinhardt and modified CT 

models as described above, and secondly, the ordered units PT model of Gaskell 

containing 720 atoms. We shall only give results for three of the CT models 

(hereinafter relabel led and referred to as models CT 1, 2 and 3 as indicated in 

Table 3. 1), which is sufficient to show the trends apparent as one moves down 

the table. 

3.3. Model Structure Factors  

As was mentioned in the Introduction, to calculate the X-ray and electron 

diffraction intensities for ot -Si, in the spherical atom densities approximation, we 

require the nuclear-nuclear structure factor S(k) and hence the radial distribution 

function g(r) (see equations 2.20 and 2. 17c). 

For a model calculation it is convenient to introduce (Bell and Dean, 1972) 

a pair histogram RA-B(r) with interval &such that RA_ B(r) crr gives the number of 

B sites lying in the range r to r + dr from a typical A site. Formally we have 

r ) 
	

Aver.0.-Ky2 	s 	r crr) 	3.2 

where 

cr 	
crj 	3.3 

= 0 otherwise 

nt h  Here A. and B. represent the positions of the i and j atoms of types A and B 
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respectively. In dealing with a model which contains only a finite number of 

atoms it is necessary to define these distributions as histograms with a finite 

interval: in the limit of an infinitely large model the interval did 	o , the 

histogram becomes a curve and 5 (x I y, cV y) tends to a delta function. For 

et-Si, the relationship between the pair distribution function Rsi_ si(r) and the 

radial distribution function g(r) is 

r  ) 

	R Si-S1 (r)/ 4.nr2  eon 	3.4 

where Dan  is the mean number density of Si nuclei in the model. Hence we can  

obtain S(k) from equation (2. 17b). Of course, we are trying to predict, using a 

model, a quantity that is representative of a bulk sample of ck. -Si. Thus R
AB

(r) 

from equation (3.2) must be corrected for finite model size and this can be achieved 

in the following way (Germer and White, 1941). 

We suppose that a sphere S of diameter D is inscribed within a model 

of infinite extent and that the RDF of this model is to be calculated by using the 

positions of only those atoms which are inside S. We consider an atom in S a distance 

d from its centre and calculate the number of atoms, also within S, a distance r to 

r + dr from it. We can write this as the fraction of the total number of atoms in the 

model in this distance range. This fraction is given by 

r, c) 	= I 
(( °:)2- 
O 

r+ ol<P. 

(r— 44..ra r +.4 > D 	3.5 9- 

r- a 

If S contains a large ( 	150, Beeman and Bobbs, 1975) number of atoms, then we 

can average £ (r, d) over S to obtain 
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r) ...3 r a. 1. LE_ 
i 15 	2 0 

0 	 r ›D 
	3.6 

Thus, for a roughly spherical model of diameter D, the corrected function 

RA-B
(r) is related to the model function RAB(r),  say, by 

R (r) 
A -8 

R R e) /C(r) 3.7 

Of course 'infinity' for the high r limit of equation (2.17b) is still limited by 

the model size since equation (3.7) diverges for r = D. 

S(k) calculated from equation (2.17b) is shown (curve 1 in each 

case) in figures 3.2, 3.3, 3.4 for models CT 1, 2, 3 respectively, figure 3.5 

for the Steinhardt model and figure 3.6 for the PT model. 5(k) as shown for the 

PT model is that calculated for a central core of the model containing 214 atoms. 

Calculations for the complete 720 atom structure led to peak splittings in the low 

k region of S(k). This can be seen in figure 3.7 where S(k) is shown as calculated 

including 214 atoms (curve 1) and 720 atoms (curve 2). The appearance of the 

peak splittings as more atoms are included indicates the presence of long range 

crystal-like correlations which are, of course, not expected to be present in a 

truly amorphous structure. A similar effect has been noted (Weinstein and Davies, 

1973) for several simple microcrystal lite models of et. -Ge. Hereinafter we shall 

present results only for the central core of the PT model containing 214 atoms. 

The curves of S(k) immediately give us, apart from a factor Iasi2 

(see 	2.4), the neutron diffraction intensity to be expected from each model 

which will be of interest should the neutron experiment be carried out. However, 

we turn our attention now to the X-ray and electron diffraction intensities from 

r 
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Figure 3.2 : The partial structure factors for the C T 1 model. 
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Figure 3.3 : The partial structure factors for the C T 2 model 
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Figure 3.4 : The partial structure factors for the C T 3 model. 
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( >1 ) S 
Figure 3.5 : The partial structure factors for the Steinhardt model. 
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Figure 3.6 : The partial structure factors for the P T model. 
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Figure 3.7 : Structure factor S (k) for the P T mode!. 
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oc-Si, where we do have experimental data. 

3.4. X-ray and Electron Diffraction using atomic form factors  

We define Sx(k) and Se(k) as the structure factors derived from the experi-

mental X-ray (Richter and Breitling, 1958) and electron (Moss and Graczyk, 1969) 

diffraction intensities respectively. These are shown in figure 3.8 Sx(k) in curve 1 

and Se(k) in curve 2. It can be seen that the curves are in disagreement at low k 

over the height of the first peak, but in quite good agreement at high k ( ) 4A 1). 

These curves can also be compared with the calculated model structure factor S(k) 

curves of figures 3.2 to 3.6. No model curve agrees with either experimental 

curve for all k. Agreement is good for the CT3 model in the region k > 4A
-1 

and 

for direct comparison with the experimental data this curve is shown as curve 3 in 

figure 3.8. 

For the CT3 and PT models we have also calculated the X-ray and electron 

diffraction intensities according to equations 2.20 and ;2.22 I  with the atomic form 

factor as above. Thus, in figure 3.9, curve 1 we show the X-ray data (Richter and 

Breitling, 1958) together with the X-ray curves for the CT3 model (curve 2) and the 

PT model (curve 3) and in figure 3.10, curve 1, we show the electron data (Moss 

and Graczyk, 1969) together with the calculated model curves (labelled 2 and 3 

as above). In figures 3.9 and 3.10, because of the damping effect of the atomic 

form factor for the high k region, much of the structural information that was evident 

in the comparisons of the S(k) functions is lost. Obviously, the intensity curves will 

only reflect the same features that we saw in the S(k) curves, and the main point 

that we wish to make here k that for X-rays, both model calculations have the 

relative heights of the first two peaks reversed with respect to experiment. 

The good agreement shown for k > 4A
-1 

between S(k) for the CT3 model 

and the experimental S(k) functions, coupled with the disagreement between Se (k) 
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Figure 3.8 : Experimental and model structure factors. 
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Figure 3.9 : The X-ray intensity for silicon using neutral atomic form factors. 
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Figure 3.10 : The electron intensity for silicon using atomic form factors. 

1. Experiment 
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2. The CT3 model 

3. The PT model 
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and Sx(k) below 4A
1
, suggests that the effects at the first peak are not purely 

structural and must therefore be partly due to the atomic form factor. This is 

our second indication (the first being the "forbidden" reflection in the crystalline 

case as discussed in Chapter 2) that the superposition of free atom-like charge 

densities may be a bad model with regard to calculating X-ray and electron 

diffraction intensities from oc -Si. Of course one experiment could be correctly 

simulated for all k by a model calculation in which we make a suitable modification 

of the atomic form factor in the low k region. However, this cannot be done 

consistently for both X-ray and electron diffraction since one obtains a different 

form factor in each case. 

A consistent treatment of the electron density in cC. -Si is important because 

the structure factors and total intensities represent good tests of proposed model 

structures and discrepancies at any k between theory and experiment could be 

interpreted as structural facets of a model. Structural information obtained from 

the structure factor S(k) or the reduced intensity function F(k) (equation 3.1) is 

unambiguous for large k where the scattering is from the highly localized core 

states. For this region comparisons between theory and experiment for the S(k) 

and F(k) curves are to be preferred to those for the full intensity. 

But S(k) and F(k) are basically functions derived from the measured intensity 

using the atomic form factor and thus for the low' k region, to study the effects of 

covalent bonding, we shall need to look at the total intensity 1(k). First of all, 

however, we require a realistic model of the electron density distribution in oc.-Si. 

In Chapter 1 of this thesis we gave some of the reasons for our believing in a 

localized approach to modelling the total electron density e (0. Our objective 

in the next section will be to obtain such a model for the electron density in a 

single covalent bond. We begin this important section of our work with a discussion 



39 

of some recent arguments directly in support of localized bond densities. 

3.5 Arguments in support of localized bond densities 

As discussed in Chapter 1, for crystalline Si one can clearly generate an 

exact electron density e  (r) using Bloch waves calculated by the well established 

band theory methods. However, this delocalized approach is not a suitable starting 

point to discuss the disordered case in which one does not have lattice periodicity. 

Despite the many electron aspect of the problem it is well known that the 

ground state electron density e  (1.) can be constructed from a one body potential 

V (r) (Hohenberg and Kohn, 1964). However, this potential depends on the exchange 

and correlation energy E E e] as a functional of the charge density e  through 
xc 

VI-IRA-MEE + or G,„ C e) 
	

3.8 
cre 

where 
VHartree 

is calculated for the exact  electron density, and unless good physical 

arguments exist for constructing the second term as the right hand side of equation 

(3.8) this approach would not be fruitful. When the electron density e  (r) is slowly 

varying good arguments (Hohenberg and Kohn, 1964) exist for setting up the exchange 

and correlation contribution to the one-body potential, but in general this is not so 

such a prescription failing when one has a rapidly varying e  (1) with atomic like 

density gradients. 

Nevertheless, given the existence of such a one body potential, a localized 

orbital approach (Anderson, 1968 and 1969) has been developed (Bullett, 1974, 1975 

and 1976) for the covalently bonded semiconductors. Anderson models V (r) by a 

superposition of localized potentials centred on the nuclei R oy  

V 	) 	Voz  (N— 	 3.9 
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and then uses pseudopotential ideas to calculate localized orbitals for a 

covalent system (essentially an interpretation of the Huckel method for 

organic molecules). 

Bulleit has applied this approach to diamond, graphite and silicon, 

and in so doing gives some justification to the method we use here for con-

structing a localized bond charge distribution. Bullett considers a localized 
o 

bond orbital between two isolated atoms A and B (1)01)  , say, which one would 

expect to satisfy some bond Schrodinger equation of the form 

Kat, I 4  :0) = 	1 14> :,) 	 3.10 
But in the solid state, of course, an electron in the bond feels the perturbing 

effect of all the other atoms which Bullett writes as 

Vca, = 1-1 - 1--I ab 	 3.11 
where H is the total one electron Hamiltonian. By projecting out a term in bond 

orbitals on other sites 

C H ca b+ Vat, 	1 tc1)<d)c. ,11 V:d  3 1 (1) cb) z  E„,, 14), 	3.12 

where Vcd 
is the effect of atoms C and D, he was able to show that most of this 

perturbing potential is screened out. The important result for our work is that the 

self consistent solutions of equation (3.12) are well represented by the normalized 

sum of Pauling type hybridized orbitals on each atom. The valence bond structures 

obtained using only these functions and a simple model for Vol_ of equation (3.9) 

were found to contain the broad features of experiment with regard to bulk moduli, 

bond lengths and bond energies, and also explains the non-existence of the 

graphitic structure for silicon. In view of the inherent difficulties in 
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calculating E CeJ , and hence the one body potential V (r), in the covalent 
xc 

semiconductors it is interesting that a many electron approach (Herbert, 1974) 

again concludes with the validity of the localized bond concept. Herbert's 

work, essentially extracting a localized bond picture from band theory, also 

predicts the absence of states in the energy gap in oc -Si and thus explains 

the experimentally observed sharp band edges (Donovan et al, 1969). 

Thus, assuming that we can build the charge density in the amorphous 

state by superposing localized distributions we shall take, to be specific, the 

linear combination of atomic orbitals (LCAO) description of a covalent bond 

(although any other description could readily be incorporated within the 

theoretical framework set out below). We shall construct the LCAO electron 

density for a single bond in the crystal and then assume that this density can 

be carried over, intact, to the amorphous state. In fact, Raman spectra 

calculations (Meek, 1977) have indicated that this may not be the case, but 

that any differences between the amorphous and crystalline densities will be 

small. (The alteration of the charge density in the bonding region appears to 

be a necessary consequence of the presence of odd-membered rings in the 

structure). 

In the chemist's picture the covalent bond in Si is due to sp
3 hybridization. 

Using orthogonalized Slater orbitals this hybrid, for Si, takes the form 

q), ( r) 	I 1; Jr) 	511312(,01 
	

3.13 
where the notation used is as in figure 3.11 and 

z 	1 0 	 r  r 	ore x.p tvLAxr 	e.x p j.13* 
35 

Mi 	Dxsexp(-Ja-ir) xe.xp(-)12 r) 	3:14 
3p 
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Figure 3.11 : The geometry used in constructing the bond orbitals. 
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where the constants have the values shown in Table 3.2. The wavefunctions 

are normalized, the unit of length being half the Si-Si bond length, which is 

also given in Table 3.2. 

Then we form a molecular orbital for the bond by a linear combination 

of sp
3 
 orbitals centred on the two Si nuclei participating in the bond 

1, (r1 :: [ 4,,  ( r:) + 4).. ( rS)/(1-t- SY/2  

where S is the overlap integral given by 

S 	r. 	1 4  ( r. . ) (I) ( r ..: ) a- r ... 	,.., 
4.  

and the charge density in the bond is given by 

3.15 

316 

e co . hid ( r„-,) 11- 	 3.17 
and evidently 

f e  (L.) a. r 
c 

1%. 

= 2. et:xi-run s 3.18 
The resulting bond charge density contours are shown in figure 3.12. Here we 

have added 1 of the Si atom core electrons on each end of the bond to form the 

bask scattering unit for Si, this unit containing seven electrons in all. 

In figure 3.13 we show the charge density contours formed from the super-

position of free atoms model, again with 1 of the silicon core electrons included 

on each atom. The marked difference between the superposition density and that 

of the LCAO density of figure 3.12 is the absence in figure 3.13 of the closed, 

almost spherical contours around the bond centre. 

Thus the LCAO contours indicate that a better model of the covalent bonding 

in oc -Si would include, in addition to the superposition of spherical charge clouds 

on each atom, a spherical charge distribution at the bond centre - the bond charge. 

This is an idea that has been exploited previously (Phillips, 1968). We want to 
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Table 3.2 : Constants for the Slater wavefunctions for silicon 

Constant 	 Value + 

.frt i 	 3.07 

Ill 	 10.933 

/43 	 30.414 

A 	 6.35 

B 	 21.90 

C 	 0.41 

D 	 10.57 

E 	 34.98 

+ 
The unit of length = 1.175 A, half the Si-Si bond length. 
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Figure 3.12 : Charge density contours for the LCAO description 

of a silicon-silicon covalent bond. 
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Figure 3.13 : Charge density contours for the superposition 
of free atoms model. 
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Figure 3.14 : Charge density contours for the three spherical distributions 

model of a covalent bond. 
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emphasize here that whereas Phillips was concerned with dielectric properties 

and lattice dynamics, and for his purposes was able to model the bond charge 

as a point charge, we are concerned with modelling diffraction intensities which 

require a spatial bond charge distribution. 

3.6 Charge density in one bond 

Having given a summary of the arguments for building the charge density from 

localized bonds we shall now discuss, explicitly, the way in which we have 

modelled the electron density in a single Si-Si bond. This charge density is 

defined by equations (3.13) to (3.17) and contains two electrons. The core 

electrons that are included in the basic scattering unit, as defined above, are, 

of course, already spherically symmetric about the Si atoms. Our problem is 

thus one of determining what proportion of the two valence electrons should be 

associated with the spherical charge distribution at the bond centre. 

We represent the covalent bond density approximately as the sum of two 

identical spherical charge distributions 	
a
(r) say, at the ends of the bond 

and a different spherical distribution e b(r) at the centre of the bond. Thus, 
' 

again referring to figure 3.11, we have 

e 	e cp. ( r ,) + e 	fli) 	e 	1R1) 	3.19 

Now the electron density e() can be expanded about A in Legendre Polynomials 

giving 

e  c,( r,) Pn  (cos')er 	3.20 
ASO 

where &r  is the angle between vector r and the internuclear axis vector R. 

The bond form factor is given by 

f 	= f e 	eXp 	 3.21 
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and combining equations (3.20) and (3.21) we have 

c t,) • c(4) Pe, c ccs 3.22 

where 
co 

fr,(v) 

• 

So er,tr) 	(kr) ci_r 	 3.23 

and 0 is the angle between vectors k and R. However, by combining equations 

(3.19) and (3.21) we obtain 

f (1<) et, "O. 	( c< ) 	1-I- -I- exil(1.ii.z.R)1 	3.24 

where 

(k) c,cr)1+-Trrl- sink f dr 
kr

•••■••■• 
3%5 

with a similar relationship between fb(k) and eb(r ) . Then, using Bauer's 

expansion of a plane wave in terms of spherical waves 

exP 
n 

C2. n 4- 03 rit k Pn ccoso0 	3.26 

and equating coefficients of Pm(cos &k ) in equations (3.22) and (3.24) we 

obtain 

(K) 	f oL (k) f 	sin Iva,/-r
17
(.) sinkR. 	 3.27 

■•■■•■■I 	 avow*, 

!k2 	k2  

giving in particular at k =0 

(0) 	co_ (0) t fib (®} _2. 	 3.28 

whilst for n 7 0 

	

f„ k) (an 4.1) fla COL( a.k1Z) ft, toinckoi 	3.29 

Thus if we choose for fa(k) and f b (k) to simply reproduce lowest orders in the 
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harmonic expansion of equation (3.22) we obtain 

fa.(k) 	3  fo  (k)J, (kin -  (0 Jo  WI  
3S (wit)( t -1-301*.k4- Sj j101.)11(2kR) 

and 

;OK) 	f, tk)Et + jo(a-kR.)3 — 3fo  (k)J,(1k Q)  

$3, (kg.)Ct 	- jc,c-kR.).1,0..ke-) 

3.30 

3.31 

Clearly, different expressions for f
a
(k) and f

b
(k) could be obtained by pairing 

equation (3.27) with any of the n orders of equation (3.29). For each value 

of k our model has only two parameters, namely fa(k) and fb(k)' and as soon 

as we include more than two terms in the expansion of equation (3.22) the problem 

is overdetermined. 

However, if we assume a choice of fa
(k) and f

b
(k) satisfying equation (3.27) 

we can write for all orders in equation (3.29) 

Tn (IC) a (2114- I) [1.0.(k)in(a.ka) f6(k) in(kR)? fnR.  (it) 	3.32 

where fR (k) is some remainder function representing that portion of fn(k) not repro- 

N  duced by our choice of fa(k) and fb(k). If we now minimise Z 1 	with 
net 

respect to fa(k) or fb(k), where N is the number of terms that are included in equation 

(3.22) then we obtain a least squares fit to the first N terms of the expansion. Thus 

we require 
14 	 Q. 

1 fr,(0- 	fa(k). fb(k)inocR) 	(2kft) + -P6(k)inOcR)11 
1.  Jo  (1.1c e) 

- 0 
	

3.33 
for each value of k. 

If we write 

a n  (k) 	(zn+1)-c o (k)J,(/ka) 	3.34 
1 + J. (21<R) 
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and 

Bok)  = (2.n.,.0[Jo (kR.) jn(11,0 4. 	(kol 	3.35 
I -1- jo  (TkIt) 

then we obtain 

f, (k ) fn (k) - 	(1.4))13,-,(k)  
A. 1 	N 

3.36 

and dearly fa(k) can be obtained from equations (3.27) and (3.36). 

In figure 3.15 we show fb(k) as extracted using equation (3.36) for 

increasing values of N. Clearly for N = 1 we simply regain equation (3.31) and 

it can be seen that fb(k) obtained for this value of N (f 1 (k) in an obvious notation) 

is only slightly modified as we include higher orders and to graphical accuracy there 

is no difference between f3  (k) and et (k). 

In figure 3.16 we show the form factors for our basic scattering unit contain-

ing 7 electrons ; the bond charge form factor fb(k), curve 1, and the atom form factor 

fe(k), curve 2 where 

f. ( k ) c. 	(k) ore  
4 

L 	 3.37 

fa(k) and fb(k) are as calculated from equations (3.27) and (3.36) with N = 4 and 

f
core(k) is the form factor for the Si core electrons. 

One problem with our procedure for modelling the covalent bond is that 

using equations (3.27) and (3.36) the form factors fa(k) and fb(k) are difficult to 

extract accurately, for small k, since both numerator and denominator in equation 

(3.36) take on very small values. However, if we extrapolate the curves to k = 0, 

then fa(k) approaches a value of fa(0) ;,•,, 0.15 electrons and fb(k) a value fb(0) 

1.7 electrons. 
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Figure 3.15 : The bond charge form factor fb  (k). 

1. N = 1 

2. N = 2 

3. N = 3 

4. N = 4 



53 

Figure 3.16 : The form factors for silicon. 

1. fb (k) 

2. fe  (k) 
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Of course the complete LCAO bond density cannot be exactly represented 

as a sum of three spherical distributions and we have simply adopted one 

approximate way of doing so. 

We can examine the problem in a slightly different way, by looking at the 

total bond density in r space. We have from equations (3,15) and (3.17) (where 

again the notation is given in figure 3.11) 

. 	( 	r, ) .t. (pl( r,) 	r ) i ( r,)) 
	

3.36 

Immediately we see that the bond density consists of two one-centre terms, which 

we can associate with the two atoms at either end of the bond, and a two-centre 

term which we cannot associate uniquely with either atom. The overlap integral, 

S, of equation (3.16) has the value for Si of 0.77 and thus each one-centre term 

contains 1/(1 S) ,;#. 0.56 electrons whilst the two-centre term contains 2S/(1+S)% 

0.88 electrons. 

In figure 3.17, we show the charge density contours for the two-centre term 

and it can be seen that this makes a major contribution to the charge around the 

bond centre. 

The one centre terms are not spherical about the atom sites since they contain 

explicitly (see equation 3.13) 

r) +111,  (L) 	(r) AF (5,-)] 	3.39 
li-S 	4- (i q-s) 	3S 	s Px. 	 35 3p„ 

and clearly, due to the p orbital, the last two terms on the right hand side of equation 

(3.39) have a direct ional character. In figure 3.18 we show the charge density 

contours for these two terms. We have, of course, included the terms from both 
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Figure 3.17 : Charge density contours for the two centre term 

in the LCAO covalent bond. 
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0.02 

Figure 3.18 : Charge density contours for the directional one-centre 

terms in the LCAO covalent bond. 
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♦(1

i 	A 1 , N  
) (re) and p L rivi/ . It can be seen that there is a significant 

contribution to the charge in the bonding region. 
.1. 

The remaining contribution to equation (3.39) is the .1/ (r) term 
'IS 

which, clearly, is spherical around the atom site. The amount of charge in this 

spherical distribution is 1/4 (1 + S) t",,f, 0.14 electrons. This value is approxi-

mately that for fa(0) obtained by the extrapolation of fa(k) extracted from equations 

(3.27) and (3.36). It thus appears that the harmonic expansion procedure for 

obtaining f
a

(k) and f
b

(k) places all of the two valence electrons around the bond 

'2. 
centre, except for the charge contained in the N.-SS  terms at each end of the 

bond. However, this result appears to be in good accord with the picture presented 

by the charge density contours of figures 3.17 and 3.18. 

We wish to stress that there is no unique way of extracting expressions for 

fa(k) and fb
(k). To make progress we have adopted a method suggested by the 

LCAO contours for the Si covalent bond (figure 3.12). Because of this lack of 

uniqueness, the important point for calculating diffraction intensities, is to examine 

the corresponding bond charge density contours obtained from the superposition of 

three spherical distributions model. These are shown in figure 3.14 where, as before, 

we have added a  of the Si core electrons to each atom participating in the bond. 

There can be no doubt that our present modelling of the LCAO density, shown in 

figure 3.12, is a vast improvement on the superposition of spherical atom densities 

shown in figure 3.13. With the density contours of figure 3.14 plus the structural 

models discussed in § 3.2 we have a perfectly proper way of modelling the effects 

of chemical bonding on the X-ray diffraction and electron diffraction intensities. 

3.7 Diffraction Intensities for crystalline Si  

An important property that we must demand of our model of the electron 

density distribution is that it will correctly reproduce the X-ray intensities for the 
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crystalline state. Only then can we move on with confidence to consider the 

amorphous case. However, we emphasize at the outset that we do not, in any 

way, claim to compete in sophistication with other specifically crystalline 

studies (for example, that of Aldred and Hart, 1973). 

We can define the X-ray diffraction intensity at the Bragg reflections 

according to 

1,00 = 1 s(k)it 	 3.40 

where 

5(k ) 8-(t-F,,41.1,,„e—P0k.r)cLe.f (k) 
R. 

	C. 

0 A i•oen 

...I. 	

,ry 	
so.o. eyf  (01,fit fira(k) 	3.41 

42. Sono. 	CENTRE 
CENirnr, 

and 

fc (k} 	4 fc...(k) 
	

o 	(k 
	

3.42 

fa(k) and fb
(k) are defined by equations (3.27) and (3.36) and f

core
(k) is the form 

factor for the Si core electrons. 

Here the intensity is normalized to one composition unit over which the 

summation is taken. The usual basic unit for the diamond lattice contains eight 

atoms and sixteen bond centres. The relation between fc(k) and fb(k) at some of 

the Bragg reflections are given in Table 3.3, from which it is clear that there is 

non-uniqueness in the choice of fc(k) and fb(k) at other than the (220) and (222) 

reflections. Nevertheless, as can be seen from table 3.3, the particular choice 

of f
c
(k) and f

b
(k) that we have adopted here, does indeed well represent the crystal 

data. 



59 

Table 3.3 : Some observed and calculated Bragg intensities 

for crystalline silicon 

Reflection 	IS (k)I 	• 

(111) 	4 12 (fc  + 	fb) 

(220) 	 8fc  

(311) 	4 /2-(fc  - f2 fb) 

(222) 	16fb  

Calculated 
intensity 

Observed * 
intensity 

60.66 60.81 

68.08 67.84 

44.22 44.12 

1.28 1.36 

* 
McConnell and Sanger (1970) 

Note : the (222) reflection is the so-called-forbidden reflection. 
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The crystalline Bragg reflections provide the first test for our model of 

the charge density and the results are encouraging. They can also be used to 

give further indication of the value of f
b(k) (and, of course, f

a(k) ) as k 	0 

and to help clarify whether very different choices of the form factors f
b
(k) and 

fa(k) are possible. 

We divide the normal atomic form factor into core and valence parts and 

introduce the parameter 	0 s. r < 	representing that fraction of 

the 4 Si valence electrons that are located around the atom. Thus we write 

f c. (to 	f,,„„ (I() -I- )1" fvele, jk) 
	

3.43 

The bond form factor as deduced from equation (3.36) is approximately gaussian 

in shape and therefore we can write 

(k) 
	

(1- /X) exe(- f3k1) 
	

3.44 
so that the amount of charge in the bond charge distribution is (2 - 2 If ) electrons. 

The superposition of spherical atom-like densities model produces charge contours 

with a very low value at the bond centre (see figure 3.13), whereas the LCAO 

density of figure 3.12 has a high value at this point. Therefore we choose our 

bond charge density e  b(r) to reproduce the bond centre value of the LCAO 

density p , say, and write 
‘c,  

e,,Cr) 	e. 	 3.45 
The parameter 11 in equation (3.44) can now be written in terms of eo  and y 

since we have from equation (3.45) 

rep 

f 6 C k) =. J 	r) 4-Tr r2  s 	d- 
	 3.46 

Icr 

e. )9s — k 1-  /4a) 7-2-;) 
	

3.47 
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and comparing equations (3.44) and (3.47) we have 

e. 3.48 
and 

= 1 ce 	 3.49 

C(I.-)-Ve0)/3 	3.50 

giving 

(k) 	(1-  0-Y)e)tt 	k21(1-11-y13) 
	

3.51 
Li-lr 

Thus using the relations between f
c
(k) and f

b
(k) given in Table 3.3 we can now 

determine the crystalline Bragg reflections in terms of a single parameter 

(since 
eo 

is known from the LCAO bond density e  (Qof equation (3.17) ). 

This parameter -a- gives us a direct measure of the amount of charge located in 

the bond centre distribution. 

In Table 3.4 we show the first few Bragg reflections together with the 

value of if for which the best agreement is obtained with the experimentally 

observed intensity. 

With the confidence drawn from these, admittedly limited (we are drawing 

conclusions for only 4 points in k space, the Bragg reflections, and one point in 

r space, the bond centre) but nevertheless encouraging, results we shall now move 

on to discuss the amorphous case. The idea behind our method of modelling the 

bond charge density distribution should now be evident. Our objective has been 

to develop a way of including the effects of covalent bonding in a calculation of 

the X ray and electron diffraction intensities for oe.. -Si. This we have now achieved 

with the extraction of the bond form factor f b(
k). The important point is that we can 

retain the assumption contained in equation (2.5 b), namely that we can write the 
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Table 3.4 : Parameter 2c for optimum fit to Bragg reflections 

in silicon 

Reflection 	 IS (k) I 

(111) 4 if (fc  + j".fb) 0.2 

(220) 8fc  0.1 

(311) 4 If (fc  - Iffb) 0.22 

(222) 16fb  0.08 
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total electron density in (-Sia 	as a sum of spherical distributions. The necessary 

complication, produced by our approach, is that, from the point of view of X-ray 

and electron diffraction, we must treat ct -Si as a two component system;  these 

two components being  the spherical charge distribution at each bond centre and the 

spherical distribution on each nucleus. 

3.8 X-ray and Electron Diffraction Formalism for the covalent Bonding  Model  

The required equations for the calculation of X-ray and electron diffraction 

intensities from cx -Si, as a two component system, can easily be obtained from the 

formalism of Chapter 2. We need to interpret equations 2.16 and 2.18 in terms of 

our two components, the charge on the atom and the charge at the bond centre. 

We thus need to know, in addition to the nuclear-nuclear'co-  [-relation function 

g(r), those of the nuclear-bond centre 
gnb(r), say, and bond centre-bond centre 

gbb(r). The basic unit for the summations of equation (2.18) contains one Si atom 

and two bond centres. Thus the X-ray intensity is given by 

	

k(c) 	s(k) 	9. Pt, (k)gt,t ki + fc(k) 3(6,(k)  Enf,k)-13 	3.52 

(normalized to one basic unit), where the S..(k) are related to the correlation 

functions g..(r) by equation (2. 17a). Clearly, equation (3.52) reduces to equation 

(2.20) in the limiting  case when 

a) We have no charge at the bond centre, i.e. f
b 

(k) = 0, and 

b) f
c 	i 
(k) 	

fatomc 
(k), the free atom form factor. Similarly, the electron 

diffraction intensity is given by 

	

(k) 	 f c  (011  S.C.,k) 2 f: (k) S60k) 

— 2. CS1,6 Clc)-0 	fc04)1f600.1 	3.53 
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and again putting fb(k) = 0 and fc(k)fatomic(k) we regain equations (2.20) 

and (2.22). Equations (3.52) and (3.53) are our basic formalism for modelling 

the diffraction intensities from ot -Si to allow for the effects of chemical bonding. 

Given the coordinates for the structural models described in § 3.2, the same 

procedure as outlined in § 3.3, for obtaining the nuclear-nuclear correlation 

function g(r), has been used to determine the other correlation functions and hence 

the partial structure factors Snb(k) and Sbb(k). Snb(k) arid Sbb(k) (curves 2 and 3 

respectively in each case) are shown in figures (3.2), (3.3) and (3.4) for models 

CT 1, 2, 3 respectively, figure (3.5) for the Steinhardt model and figure (3.6) for 

the PT model. 

Using these model partial structure factors together with the form factors 

f
a(k) and f (k) we have calculated the X-ray and electron diffraction intensities 

for each model using equations (3.52) and (3.53). 

3.9 X-ray diffraction  

3.9.1 CRN models  

In 	3.3 and € 3.4, we saw in figures 3.2 to 3.6 and 3.8 that the best 

agreement between model and experimental S(k) functions at, high k (> 4 A 1 ), 

was obtained for the CT3 model. Since the scattering at high k arises from the Si 

core electrons, our interpretation was that the CT3 model provides our best 

available structural model. 

Proceeding on this context we have first calculated the X-ray diffraction 

intensity for the CT3 model. The three contributions to equation (3.52) from 

nuclear-nuclear, nuclear-bond centre and bond centre-bond centre correlations, 

curves 1, 2 and 3 respectively, together with the total intensity, curve 4, and the 

experimental intensity, (Richter and Breitling, 1958), curve 5, are shown in figure 
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3.19. It can be seen that now, with the inclusion of the bond charge model, 

theoretical and experimental intensities are in very good agreement for all k. 

At the first peak, the nuclear-bond centre correlations contribute about 20% 

of the peak height but give a small negative contribution at the second peak. 

The bond centre - bond centre correlations give a much smaller contribution 

to the first peak (N 5%) and a negligible contribution at the second peak. 

In figure 3.20 curves 1, 2 and 3 we show the total X-ray intensity 

for models CT 1, 2 and 3 respectively. This picture shows the effects on the 

diffraction intensity as the topology of the network is gradually altered. It is 

evident that the diffraction intensity is quite a sensitive test of the network 

topology (or more correctly, since the intensity represents average structural 

information, of the ring statistics). Agreement between theory and experiment 

at all k is improved as the number of odd membered rings increases. This can 

clearly be seen by referring to figure 3.19 where agreement between theory and 

experiment is indeed good. Finally, the CT 1 model predicts a small peak at 

k ev 4.5 A
-1 which is not seen in experiment. This feature disappears as the 

number of odd membered rings increases. 

For the Steinhardt model, the three contributions from equation (3.52) 

together with the total intensity and the experimental intensity (Richter and Breitling, 

1958) are shown in figure 3.21. The labelling is as in figure 3.19. Agreement with 

experiment, for all k, is not as good as that given by the CT 3 model. The Steinhardt 

model does not predict the correct height of either of the first two peaks and gives a 

peak at k N 7A
1, where a shoulder is observed experimentally. 

3.9.2 PT model  

The three contributions from equation (3.52), together with the total 

intensity and theexperimental intensity (Richter and Breitling, 1958) are shown in 
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Figure 3.19 : The X-ray scattering intensity for silicon for the CT3 model. 

1. Contribution from Si-Si correlations 

2. Contribution from Si-bond centre correlations 

3. Contribution from bond centre-bond centre correlations 

4. Total intensity 

5. Experimental intensity 
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Figure 3.20 : Effect of odd membered rings on the theoretical X-ray intensity. 

1. CT1 model 

2. CT2 model 

3. CT3 model 
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Figure 3.21 : The X-ray scattering intensity for silicon for the Steinhardt model. 

1. Contribution from Si-Si correlations 

2. Contribution from Si-bond centre correlations 

3. Contribution from bond centre-bond centre correlations 

4. Total intensity 

5. Experimental intensity. 
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Figure 3.22 : The X-ray scattering intensity for silicon for the PT model. 

1. Contribution from Si-Si correlations 

2. Contribution from Si-bond centre correlations 

3. Contribution from bond centre-bond centre correlations 

4. Total intensity 

5. Experimental intensity 
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figure 3.22. The labelling is as in figure 3.19. The PT model correctly predicts 

the height of the first experimental peak at k = 1.8 A 1  and the nuclear - bond 

centre correlations contribute about 25% of this peak height. At the second peak 

the model badly overestimates the peak height. This behaviour can clearly be 

established as a structural effect since the bond charge correlations give only a 

small negative contribution to this peak. Beyond 4 A 1  the PT model shows too 

much structure, the broad experimental peak at k iv 5.6 A-1, for example, being 

-split into two peaks corresponding approximately to crystalline Si Bragg reflections 

(331) and (422). As was similarly found for the CT 1 model, a small peak is observed 

at k = 4.6 A 1 which coincides with the position of the (400) reflection of crystalline 

Si. 

3.10 Electron diffraction  

The three contributions from equation (3.53) together with the total intensity 

and the experimental intensity (Moss and Graczyk, 1969) are shown in figures 

(3.23), (3.24) and (3.25) for the CT3, Steinhardt and PT models respectively. The 

labelling is the same as in figure (3.19) with the experimental electron data 

replacing that of X-rays as curve 5. Generally the remarks made about each model 

with regard to X-rays also apply in this case. 

However, one interesting point is that although both the CT3 and PT models 

predict the correct height for the first peak of the X-ray intensity, only the CT 3 

model does for the same peak in the electron diffraction intensity. The reason for 

this is that the relative contributions of the nuclear-nuclear and nuclear-bond 

centre correlations to the total X-ray intensity at the first peak, for the CT3 and 

PT models, are different. This means (since the bond centre - bond centre 

Correlations give a small contribution) that either the CT3 or the PT model (or both) 

must predict the wrong intensity for the first peak in the electron case. 
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Figure 3.23 : Electron scattering intensity for silicon for the CT3 model. 

1. Contribution from Si-Si correlations 

2. Contribution from Si-bond centre correlations 

3. Contribution from bond centre-bond centre correlations 

4. Total intensity 

5. Experimental intensity 
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Figure 3.24 : Electron scattering intensity for silicon For the Steinhardt model. 

1. Contribution from Si-Si correlations 

2. Contribution from Si-bond centre correlations 

3. Contribution from bond centre-bond centre correlations 

4. Total intensity 

5. Experimental intensity 
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Figure 3.25 : Electron scattering intensity for silicon for the PT model. 

1. Contribution from Si-Si correlations 

2. Contribution from Si-bond centre correlations 

3. Contribution from bond centre-bond centre correlations 

4. Total intensity 

5. Experimental intensity 
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3.11 Discussion  

The results of our calculations favour overwhelmingly the CRN model of 

Connell and Temkin as modified by Beeman and Bobbs to include odd membered 

rings (the CT3 model). However, the original CRN model containing only even 

membered rings does not produce significantly better agreement with experiment 

than was obtained for the PT model . There is thus some scope for improvement 

of a model based on ordered units, using the same procedure as adopted for the 

original Connell-Temkin model (Beeman and Bobbs, 1975). 

Our work has also demonstrated that chemical bonding effects are important 

at the first peak in cc -Si, the agreement between theory and experiment being 

now fully qualitative. We would like to reiterate that conclusions about structure 

can be made based on a comparison of the model and experimental S(k) functions 

for k ) 4 A-1
. For low k, however, it is necessary to examine the total intensity. 

Also, without the neutron experiment, it is necessary to examine both  X-ray and 

electron intensities. 
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CHAPTb FOUR  

AMORPHOUS CARBON 

4.1 	Introduction  

An obvious extension to the work on amorphous silicon, discussed 

in Chapter 3, is an investigation of the scattering properties of amorphous 

carbon. Carbon, in the chemist's picture, has an essentially equivalent 

valence electron structure to silicon and is known to participate in covalent 

bonding. 

Amorphous carbons can be produced by a variety of methods (for a 

review, see Yamada, 1968) and have many applications, possessing low density 

and high mechanical strength. However, the properties of a particular sample 

of amorphous carbon depend on how it was prepared and on its thermal history. 

Thus the term amorphous carbon does not define a unique structure 

as is believed to be the case for of-Si, but rather a class of related structures. 

The term amorphous is also slightly misleading in the case of carbon because it 

was established at an early stage (Warren, 1934, Franklin, 1950) that non-

crystalline carbons do contain regions (sometimes large) that have a crystalline 

nature (if only two dimensional). At the outset, then, it is believed that the 

structure of amorphous carbons can be explained on the basis of the micro-

crystallite picture. 

Carbon has two crystalline forms, diamond and graphite, the latter 

being the stable form under normal conditions, and analogues to both are believed 

to exist in the amorphous state. Thus an amorphous carbon may contain both 

trigonally and tetrahedrally coordinated carbon atoms, in graphite and diamond-

like regions respectively. 

Following our work on oc. -Si, our emphasis here will again be on the 
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interpretation of X-ray and electron diffraction intensities in terms of the 

electron density in the amorphous state. We shall need to consider covalent 

bonds in both diamond and graphite and thus both sp3  and sp2 
hybridisation 

of the carbon valence electrons. Clearly, however, both forms of bonding 

can be treated equally well within the theoretical framework of the bond 

charge model developed for C. -Si. 

Finally, the ratio of core/valence electrons in carbon is lower than 

for silicon. Thus we expect the effects of covalent bonding to be more evident 

in the X-ray and electron diffraction intensities from amorphous carbons than 

from cC -Si. 

4.2 The Structure of Amorphous Carbons 

Amorphous carbons have been subjected to extensive investigation by 

X-ray diffraction and to a lesser extent by electron and neutron diffraction. 

As long ago as 1934 X-ray investigations and subsequent r space analysis via 

fourier transform (Warren, 1934) indicated that carbon blacks, the so called 

'glassy carbons' formed by the thermal degradation of organic polymers, 

contained interatomic distances approximately the same as those found in 

crystalline graphite. However, the diffraction pattern could not be explained 

simply in terms of microcrystal line graphite. 

The theory of random layer lattices was developed (Warren, 1941) and 

it was demonstrated that the X-ray diffraction patterns from carbon blacks were 

approximately explainable in terms of such lattices. The structure was envisaged 

as groups of graphite-like planes arranged parallel to one another at about the 

graphite inter-plane spacing but with random orientation about the inter plane 

normal. The diffraction pattern from such a random layer lattice contains two 
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types of reflection; namely, two dimensional ( h k 0 ) reflections arising 

from the hexagonal structure within a layer and one dimensional (00 I ) 

reflections arising from the parallel stacking of layers. Due to the random 

orientation of the layers the diffraction pattern contains no three dimensional 

( h k I ) reflections as would be found in the usual crystalline graphite 

structure. 

We shall refer to the random layer lattices, in this work, as the 'micro-

crystallite' domains. Warren's random layer lattice equations were based on 

these microcrystallites being distributed with random orientation and embedded 

in a matrix of carbon in a less ordered state. The atoms in this disordered 

carbon were assumed to scatter independently, giving a gaseous like background 

to the total observed diffraction intensity. 

Subsequent studies of similar non-crystalline carbons were based on the 

interpretation of the structure in terms of random layer microcrystallites. From 

Warren's theory the average layer dimension, L
a, could be determined from the 

profile of the two dimensional reflections. The stacked layer height, L
c, and 

the interplane spacing could be determined from the profile and position (on the 

k axis), respectively, of the one dimensional reflections, in particular from the 

prominent (002) reflection. 

It was later found necessary (Franklin, 1951 ) to distinguish between two 

types of non crystalline carbon. The random layer type of carbon as studied by 

Warren was labelled a non-graphitic carbon. Certain of these non-graphitic 

carbons (referred to as soft-carbons) were found (Franklin, 1951 ) to show a 

gradual change from the random layer structure towards the ordered structure of 

graphite when heated to sufficiently high temperature. This could be recognized 
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in the diffraction pattern by the appearance of the three dimensional ( h k 0 ) 

reflections of graphite. The size of the microcrystal lite regions was found to 

depend on the temperature of heat treatment (Franklin, 1951 00 and by varying 

this temperature Franklin was able to prepare a continous series of structures 

intermediate between the non-graphitic carbon and crystalline graphite. These 

intermediate states contained a mixture of orientated and disorientated layers 

and were, rather confusingly, labelled graphitic carbons. However, certain 

non-graphitic carbons were also found (Franklin, 1951 a.) that could only be 

graphitized, if at all, by heat treatment to very high temperatures. These so 

called hard carbons appeared to be those non-graphitic carbons having micro-

crystallite regions with a small layer dimension L. This agreed with the 

observation (Franklin, 1951 0.) that, for the soft carbons, graphitization would 
0 

not occur until the layer dimension L
a 

attained a size of approximately 80- 100 A. 

It was recognized at an early stage (Franklin, 1950) that the nature and extent 

of the disorganized carbon was of great significance for understanding the different 

behaviour of hard and soft carbons upon heat treatment. It was also remarked 

(Ergun and Tiensuu, 1959) that the hardness, density and non-graphitizability of 

the soft carbons did not appear to be compatible with an entirely graphite-like 

structure. The emphasis of Warren's work had been on the interpretation of X-ray 

diffraction patterns from carbon blacks in terms of the hexagonal layer structure. 

This was because the diffuse (h k 0) and (00 1 ) reflections observed for the carbon 

blacks corresponded approximately to the (002), (100) and (110) reflections of 

graphite. However, it was pointed out (Ergun and Tiensuu, 1959) that for the 

small layer soft carbons the observed one dimensional reflections were weak 

(Franklin, 1951 ck) and that the diffuse, supposedly two dimensional reflections 

could be interpreted on the basis of other crystalline forms of carbon. The 
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calculated intensity (Ergun and Tiensuu, 1959) for a diamond cubic lattice 

gave diffraction peaks corresponding to the positions of the (100) and (110) 

peaks of graphite. Of course the presence of the one dimensional (0 0 I ) 

reflections in the experimentally observed intensities indicated that layered 

structure was definitely present but the question raised by Ergun and Tiensuu's 

work was, if significant amounts of, say, diamond structure were present would 

it be detectable in the diffraction intensity. Of course, this picture of amorphous 

carbons containing two distinct types of structure fitted in with the earlier pro-

posed model (Warren, 1941) if one associated the second structure with the 

disorganized carbon matrix. The difficulty was to do so without implying too 

much correlation between atoms in different microcrystallites. 

The electron diffraction study of an oC -C thin film prepared by vacuum 

evaporation (Kakinoki et al, 1960 a) gave strong support to the model suggested 

above (Ergun and Tiensuu, 1959). The radial distribution function, g(r) obtained 

from the diffraction intensity (equations (2.17 c), (2.20) and (2.22) ) had a 

broad nearest neighbour peak midway between the graphite nearest neighbour 
0 	 0 

distance of 1.42 A and the diamond distance of 1.54 A. The existence of two 

atomic distances in the sample was further demonstrated by a k space comparison 

between theoretical and experimental intensities (Kakinoki et al, 1960 ). It 

was found that if two nearest neighbour and two next nearest neighbour distances, 

corresponding to those in diamond and graphite, were included in the Debye 

intensity equation (equation (2.11) ) then the calculated and experimental 

intensities were in phase at high k. If only the graphite or diamond distances 

were used then theory and experiment were out of phase at large k. Consequently 

a structural model was proposed (Kakinoki et al, 1960 ) in which the random 
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layer microcrystallites were linked together by a tetrahedral random network 

of carbon atoms of the form that we have used for the modelling of oc -Si. 

The use of a random network as opposed to diamond crystal removed the 

problem of introducting too much correlation between microcrystals. Clearly 

though one has to be careful about drawing conclusions for the structure of 

the carbon blacks based on this study of an amorphous carbon obtained by 

vacuum evaFor0.!-ion.The layer dimension for the vacuum evaporated carbon 

was estimated (Kakinoki et al (1960 ) ) to be approximately 10 A. It was 

thus surprising in view of the work on the relationship between layer size and 

graphitization (Franklin, 1951 04), that the vapour deposited sample was 

subsequently found to graphitize easily at a 'low' temperature (n. 1000°C) 

(Kakinoki, 1960 ct). 

Support for the structural model proposed by Kakinoki came from an 

X-ray diffraction study of glassy carbons prepared from an organic polymer 

over a range of temperatures (Noda et al, 1964). The fourier transformed 

diffraction data was consistent with the presence of two interatomic distances 

in the amorphous samples. However, no diffraction peaks were detected that 

corresponded to structures other than the layered microcrystallites. The samples 

proved very difficult to graphitize even when heat treated to 	3000°C. 

A more recent study of a glassy carbon heat treated at 	2000°C 

(Mildner and Carpenter, 1974) indicated no evidence for diamond like tetra- 

hedral bonding except perhaps in very thin layers linking large (La 	
50 A, 

0 
L
c
.... 40 A) random layer microcrystallites. 

Thus to summarize : amorphous carbons prepared at low temperatures 

from organic polymers (Franklin, 1950, Noda et al, 1964) and carbons prepared 

from the vapour at low temperatures (Kakinoki et al, 1960 ) both show evidence 
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for diamond-like structure as well as small layer microcrystallites of the sort 

proposed by Warren. For samples prepared at high temperature (Mildner and 

Carpenter, 1974) or heat treated samples (Kakinoki et al, 1960 a) evidence 

for diamond-like structure is small and the hexagonal layers are much more 

developed. Apparently, similar carbons prepared by different methods 

(Kakinoki et al, 1960 , Noda et al, 1964) have very different graphitization 

properties upon heat treatment. 

Following the suggestion of Kakinoki, it is clearly of interest to 

calculate the diffraction intensities from a model amorphous carbon containing 

random layer microcrystallites linked by a tetrahedral random network. This 

model can be applied to all the carbons discussed above (except the graphitic 

carbons) if we allow the amount of random network and the microcrysta 'lite 

dimensions to be variables of the model. We shall, however, restrict ourselves 

to considering random layer carbon experiments where there is clear evidence 

for the two distinct carbon structures. It has been shown for a large layer glassy 

carbon (Ergun, 1973) that if strain broadening of the diffraction peaks is correctly 

accounted for, the theory of random layer lattices gives a good description of the 

experimental intensity. 

4.3 The nuclear-nuclear correlation function  

In order to study the effects of covalent bonding on the X-ray and 

electron diffraction intensities of amorphous carbons, we shall, as we did for 

silicon, describe the covalent bond in terms of two identical spherical charge 

distributions on the carbon atoms participating in the bond and a different spherical 

charge distribution at the bond centre. To calculate diffraction intensities using 

this electron density model, we shall again require the structural characterization 
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provided by model partial structure factors. From the discussion of § 4.2, 

it is evident that the structural problems presented by amorphous carbons 

are much greater than those for oe -Si. The construction of a model ofd -C 

of the kind used for 0C -Si is not a fruitful approach since such a model could 

only be applied to one cC -C sample. We require a more general structural 

approach that could be used to analyse several sets of experimental data. 

We shall begin by obtaining an expression for the nuclear-nuclear 

correlation function for a model amorphous carbon sample containing two 

distinct types of amorphous structure. We assume that the two structural 

regions to be considered, the microcrystallite and random network, are well 

defined and'consequently that the nuclear-nuclear correlation functions 

g
m

(r) and g
R(r) for an infinite extent of the microcrystallite and random network 

regions, respectively, are known. (Hereinafter we shall use the superscript m 

to denote quantities associated with the microcrystallite regions and the super-

script R to denote those associated with the random network). A schematic 

representation of the proposed model structure is shown in figure 4.1. The micro-

crystallite domains are considered as identical perfect rectangular parallelepipeds 

with dimensions Y, fa,  cr . 

We first of all imagine that we are 'sitting' on an atom in the micro-

crystallite region. The correlation with another atom in the same microcrystallite 

will be given simply in terms of gm(r). The correlation with an atom outside the 

microcrystallite, however, will be a combination of gm
(r) and g

R
(r). We thus need 

to know, for an atom in a microcrystallite domain, what the probability is that an 

atom separated from the first by a distance between r and r + dr lies within the 

same domain. This can be determined in the following way (Bell, 1968). Consider 
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Figure 4.1 : Schematic representation of proposed model structure 

for amorphous carbons 

A. Microcrystallite region 

B. Random network region 
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a rectangular parallelepiped bounded by the pairs of parallel planes 

t r/9, 

-= 	±(3 /2 

and containing particles distributed randomly with unit density. The probability 

of finding a particle in a volume element d x dy dz containing the point (x,y,z) 

is 

11P) , f 	01,3te3 

where 

Czc i T) 	I 	1x1 

4.2 

The probability of finding a second particle separated from the first by a distance 

in the range r to r + dr is then 

ot,x_ot,6 4...1..,-S cis Eftx,ii i,13)fczis) 
S 

(. 2L 	r) f(j -1-,,, p )f 	I-  

where S is the surface 

A t 	L.) 	 4.3 

We can now define the average pair distribution function Gritcr (r) by 

writing the average number of pairs of particles (counting each pair twice) 

separated by distances in the range r to r + dr as 

4.1 



where 

ry, 
as 

ti 	( Kt  z) f x#X,1.) cix 
_co 
— I x/r t ai<i  
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6 (1 rS Gro  (r) d.rf  01- 	ch. f 	(ji (s) f 1 ,$) x  

cx +1 1 0f(i.sp,Hs) ftI.0),6)jokr- 	4.4 

Equation (4.4) can be written in terms of C riss  Cr) 

G 	Cr) els .r.:1 as  -y )0511/ (,)k4 1 0-y.0), a) 4.5 

0 	 0 	se 	4.6 

For r 
	

4.7 
integrating equation (4.5) gives 

Gr ) 	r 	I 	 pd.  d 

4.8 

and for 

r 	•c Z 	le 2- 	tc 
ti 	

4.9 

thQ integrand of equation (4.5) vanishes over S and 	G a.. 6. ( r) is zero. 

This result expresses the fact that no two particles can be further apart than 

the diagonal of the box. For values of r in between those given by equations 

(4.7) and (4.9) the evaluation of the integral in equation (4.5) is most easily 
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achieved by numerical methods. For an .infinite rectangle the number of atoms 

separated by a distance r to r + dr is just 

Goo  Cr ) 	14--Tr.r1. 
	

4.10 
and thus our required probability is just (compare the derivation of E (r), the 

. spherical model size correction factor in 	3.3) 

€, 	( r) 
blig5 

f;6.(r) /Goo  Cr) z 4.11 

Thus we write the nuclear-nuclear correlation function gl(r) for an atom in a 

microcrystallite region as 

re, 
(r) 	C 	fr) 9 (r) + (I— crisccro) 

	

os 	 4.12 

Obviously 	( t 	(0) is the probability that the atom referred to lies 

outside the microcrystallite and these essentially large r correlations are assumed 

to be well described by gR(r), the random network nuclear-nuclear correlation 

function. 

We next consider that we are sitting on an atom in a random network 

region of the model amorphous sample. For this case we shall assume that the 

nuclear-nuclear correlations g
2
(r) are well described by g

R
(r) for all r 

	

J2 Cr) 	= 	
sa Cr') 	 4.13 

We now write the sample averaged correlation function g(r) as the sum of g
l
(r) 

and g2(r) weighted by the relative amounts of the two structural regions. Thus 

we have (dropping the subscripts Y,f3t cr on C (0) 
bris 

C r 	Ncv‘  Cu. ) s 6I crl 	( 1— cr)) cA° 	NR3 (r 

Na N 	1\1 



l  ft v  
04 fecr14:1 Cr) 1-(1- (Cr)) 	

" a )9 cri 
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4.14 
where N

m 
and N

R 
are the number of trigonal and tetrahedral carbon atoms, 

respectively, in the model sample and 

M 	 4.15 
Nm  t 1\1 

is a measure of the fraction of layered structure in the model giving an approximate 

mean density po  for the model amorphous sample of . 

= Po e 
rn 

[I - at ) e.0  4.16 

Clearly, if the amount of random network is small, of z 	, then equation (4.14) 

reduces to the form of g1  (r) (r) n equation (4.12). This expression has been used 

previously (Howie et al, 1973) for the modelling of cC -Si with microcrystals,based 

on the wurtzite structure, linked by thin regions of random network. The inclusion 

by Howie and co-workers of the second term on the right hand side of equation (4.12) 

improved the agreement with experiment over that obtained by using just a micro-

crystallite correlation function. 

Equation (4.14) is the formalism for the nuclear-nuclear correlation function 

of our model amorphous sample. It contains the microcrystallite dimensions 

and the fraction cC , of layered material, in a simple form and can thus be easily 

applied to different amorphous structures. We can now complete the formalism by 

defining the correlation functions g
m

(r) and g
R
(r). 

Although the basic hexagonal structure of the graphite-like layers has been 

well established, experimental evidence (Franklin, 1950, Noda et al, 1964) indicates 

large variations in the inter layer spacing in the ordered domains. It has been 

suggested (Pauling, 1966) that this variation in the layer spacing is related to two 

types of layer structure, namely quinoid and turbostatic. The former is a structure 

in which each carbon atom has associated with it two single and one double bond. 
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The latter is a fully resonant structure in which all the in plane bonds are 

equivalent, and the extra, unbonded, electrons are considered as being 

delocalized. The double bond in the quinoid structure is shorter than the-

two single bonds and this leads to a distorted hexagonal lattice. Pauling 

suggested that the double bonded layers were more favourable to close 

packing. It appears that the quinoid structure and thus the narrower layer 

spacings are associated with the more ordered glassy carbons (Mildner and 

Carpenter, 1974). Thus for our study of the highly disordered carbon, where 

there is evidence for tetrahedral bonding, we shall adopt the fully resonant 

layer structure. A model of this form containing a stack of perfect hexagonal 

layers with random orientation about the layer normal was generated by com-

puter. 

We shall represent the tetrahedral random network of carbon by the 

CRN model of Connell and Temkin as modified to include approximately 50% 

odd membered rings (Beeman and Bobbs, 1975). This was model CT3,in Table 

3.1, which was shown to give good agreement with the observed X-ray and 

electron diffraction intensities for oc-Si. In this case, of course, we rescale 

the CRN model to the nearest neighbour carbon-carbon distance in diamond 

(see Table 4,1). 

The nuclear-nuclear correlation function of equation (4.14) is now 

completely determined for a given microcrystallite size and value of cc . 

(Of course we are also free to vary the inter layer spacing). The neutron 

diffraction intensity for the model sample can be calculated from 

1(k).., 6 S(Ic. ) 
	 4.17 
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where bc 
is the neutron scattering length for carbon and S(k) is the nuclear-

nuclear structure factor, related to g(r) by equation (2.17 b) for the random 

network, and given by 

S( k )  em--?(-1■A.C1- ,-31) 
kr.• 

4.1 

with 

r; - rJ I ti 

for the layered domain. Equation (4.18) is essentially the discrete form of 

equation (2.17 a) for a structure having a crystalline nature. In equation (4.18) 

we have introduced the Debye-Waller factor, 	e cp (-- 	(r9)) , to take . 

account of the strongly anisotropic thermal vibrations in the layered domains 

with M(r..) taken from work on crystalline graphite (Bacon, 1952). 

Unfortunately, the only available neutron data for an amorphous carbon 

is that for a glassy carbon heat treated at high temperature (Mildner and Carpenter 

1974). The experimental data gave little evidence for tetrahedral bonding and 

the diffraction intensity was of the form predicted by Warren's random layer 

equations (Warren, 1941). Analysis of this data is thus outside the spirit of this 

work, although it should be noted that the essential features of their data, namely 

the peak positions, shapes and relative heights (of the two dimensional reflections) 

are well reproduced by S(k) in figure 4.7 for oC = 1. Consequently, we turn our 

attention to the X-ray and electron diffraction intensities from amorphous carbons 

and begin by describing the application of our bond charge model to the covalent 

bond in carbon. 

4.4 Covalent bond density 

Since the first calculations of the free atom form factor for carbon 

(James and Brindley, 1931) there have been many new values presented in the 
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literature for the atomic form factors appropriate to diamond and graphite 

(Brill, 1950, McWeeny, 1951, 1952, 1953, 1954, Berghuis et al, 1955). 

From a study of the X-ray and neutron diffraction patterns from a powder 

sample of graphite (Bacon, 1952) it was concluded that the X-ray Bragg 

reflections could be approximately accounted for by an atomic form factor 

calculated from Slater wavefunctions (McWeeny, 1951) although in the low 

k region A, 3 A 1 there were quite large discrepancies. However, the 

McWeeny form factor, which was later shown to be equivalent to that 

calculated from self-consistent wavefunctions including exchange (Berghuis 

et al, 1958), gives quite a poor representation of the (111) reflection of 

diamond (Brill, 1950). Calculations (McWeeny, 1954) of effective 

spherical atom form factors to account for the inclusion of tetrahedral bonding 

in diamond have only slightly improved the agreement of the (111) diamond 

reflection over that shown by the free atom form factor for the carbon atom 

in its ground state.' 

For amorphous carbons the failure of the old atomic form factor (James 

and Brindley, 1931) was first noted (Franklin, 1950) from a comparison of the 

theoretical and experimental diffraction intensities for a carbon black. However, 

in more recent calculations (Ergun, 1968) of the X-ray diffraction intensity from 

a random layer lattice, disagreement at the (100) peak was obtained despite using 

a spherical atom form factor calculated to include angular distortion of the 

valence charge cloud due to bonding (Berghuis et al, 1955). 

The extension of the atomic form factor to include angular bonding 

(McWeeny, 1954) generated terms dependent on the orientation of the scattering 

vector to the bond, and as discussed in Chapter 2 this approach cannot be adopted 

for an amorphous solid where the bond angles may vary in a random way. Our 
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method, developed in Chapter 3, for describing the covalent bonding in oc -Si, 

is, however, clearly relevant to cc -C. As already mentioned, we need to 

consider both sp2 and sp3  hybridized bonding. We form the sp3 
hybrid, for 

diamond 

(1)-t 	(1" )  
f1.1 (r) 	 ( 

." 311x 
4.19 

and the sp
2  hybrid, for graphite 

spz 
(pi- co ) 	,S71 1*-. )/ 

IT 	2s 	/31>)t. 
4.20 

where the hybrids are each normalized to contain one electron and the 

orthogonalized Slater orbitals (Duncanson and Coulson, 1944) are given by 

04- Cr) = rir 4..bcf (Thp i r) •-• Eitx.e(-.)42.1") 	4.21 

tr) C _ 	e_rx.17 	)k-k 3 r 4.22 

For the sp
3 

hybrid the unit of length is taken as1 the diamond bond length, 

and for the sp
2 

hybrid, 2  the graphite bond length. The values of the constants 

in equations (4.21) and (4.22) for both types of hybridization, together with 

diamond and graphite bond lengths, one given in Table 4.1. With the hybrid 

orbitals defined by equations (4.19) to (4.22) the LCAO bond charge densities 

for the diamond and graphite bonds are determined from equations (3.15) to 

3 	
2 

(3.18) in terms of (I) 
sp 

 and 1:) sP  respectively. Thus in figures 4.2 and 

4.3 we show the LCAO charge density contours for sp
3 

and sp
2 

hybridized bonds 

respectively. For the sp3 
hybridized bond we have added a  of the carbon core 

electrons to each end of the bond to form the basic scattering unit for diamond 
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Table 4.1 : 	Constants for the diamond and graphite Slater 
** 

Constant 

wavefunctions 

Graphite Value * Diamond Value + 

)11  2.4 2.21 

%/A  l.  7.45 6.87 

)41 2.27 2.09 

A 3.004 2.2 

B 2.708 2.62 

C 4.36 3.81 

The unit of length = .77 A, half the diamond C-C bond length 

The unit of length = .71 A, half the graphite C-C bond length 

Duncanson and Coulson (1944) 
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Figure 4.2 : Charge density contours for the LCAO description 

of the diamond covalent bond. 
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Figure 4.3 : Charge density contours for the LCAO description 

of the graphite covalent bond. 
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Figure 4.4 : Charge density contours for the superposition of free atom 

densities model for the diamond covalent bond, 
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Figure 4.5 : Charge density contours for the superposition of three spherical 

distributions model for the diamond covalent bond. 
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containing 3 electrons in all. For the sp2 
hybridized bond we have added i- of 

the carbon core electrons (here the unbonded 2p electron wavefunction is 

spherically averaged and treated in a similar way to the core electrons) to 

each end of the bond to form the basic scattering unit for graphite of 4 electrons. 

In figure 4.4 we show the charge density contours for the superposition of free 

atom densities model. In this picture we have added a  of the carbon core 

electrons to each end of the bond and thus the contours are to be compared 

with those for the diamond bond in figure 4.2. The LCAO bond charge density 

contours of figures 4.2 and 4.3 can also be compared with the corresponding 

contours for the silicon bond as shown in figure 3.12. 

For carbon both sp2 
 and sp3 

bond densities have closed contours around 

the bond centre although these are not spherical as are those for the silicon bond 

of figure 3.12. The closed contours around the bond centre are not present in the 

superposition of free atoms density model in figure 4.4. One important feature of 

the diamond and graphite bond contours is that if we travel along the bond between 

two nearest-neighbour carbon atoms the bond density reaches a maximum value 

twice, once on either side of the bond centre, and has a shallow trough across the 

bond centre. This is to be contrasted with the silicon bond where the bond density 

peaks once at the bond centre. Thus the LCAO picture of the covalent bonds in 

diamond and silicon provides a simple interpretation of their relative insulating 

and semi conducting properties, the valence electrons in diamond appearing more 

localized than in silicon. To form the charge density contours for the sp2 
hybridized 

bond we have essentially localized the unbonded P electron and thus figure 4.3 does 

not say anything about the conducting properties of graphite. Given the LCAO bond 

charge densities for diamond and graphite we can now apply the procedure developed 
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for oc -Si in Chapter 3 and extract the form factors fa(k) and fb(k) defined by 

equations (3.27) and (3.36) (with N = 4). Again we restrict the harmonic 

expansion of equation (3.20) to the carbon valence charge containing  2 electrons. 

In figure 4.6 we show f 
R

(k) and f
m(k), curves 1 and 2 respectively. It can be 

seen immediately that the bond charge form factors are very similar, with fbR
(0)", 

1.7 and f
b 

(0)", 1.6. This means that N .15 valence electrons are left around 

each atom in diamond and n. .2 electrons in graphite (not including  the 

delocalized p electron). The overlap integral S, equation (3.16), has the value 

0.65 for diamond and 0.81 for graphite. As for silicon, the expression for the 

bond charge density e  (j), for diamond and graphite, contains two one-centre 

terms and one two-centre term. For diamond the amount of charge in the spherical 

IL
2 

S
(r) part of the one-centre term is 1/4 (1 + S) in, .15 electrons and for 

2 

graphite 1/3 (1 + 5 ) 	.18 electrons. It can be seen that these values' are in good 

agreement with f (0) and fa (0) obtained from the harmonic expansion procedure. 
a  

It is not surprising  that the bond form factors are very similar when one considers 

the similarity between the diamond and graphite bond charge density contours of 

figures 4.2 and 4.3. 

However, as was the case for Si, our bond charge division is not a unique 

procedure, and it is important to examine the charge contours formed from the 

superposition of three spherical distributions model. Since the LCAO bond charge 

density contours for diamond and graphite are very similar, we shall do this only 

for diamond. Thus for the atom form factor we write 

e 
(k) ck 	fCore (14)  /4 	 4.23 
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Figure 4.6 : The bond charge form factors for carbon. 

1. fb (k) 

2. fmb  (k) 
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where fcore
(k) is the form factor for the carbon core electrons. We then combine 

fb
(k) and fR (k) to define our basic scattering unit containing 3 electrons. The 

charge density contours for this scattering unit are shown in figure 4.5. It can 

be seen by comparing the LCAO contours for the diamond bond in figure 4.2 

with those from the three spherical distributions model that the model density is 

notas successful in its description of the LCAO density as it was for silicon, 

although the bonding is still usefully simulated. 

4.5 Crystal intensities for diamond  

The many modifications to the spherical atom form factor for carbon, that 

have appeared in the literature (McWeeny, 1951, Berghuis et al, 1955) have in 

general given a poor representation of the crystalline diamond Bragg reflections, 

particularly the (111) reflection. We shall now examine the Bragg reflections for 

diamond predicted by the three spherical distributions model of a covalent bond. 

I s 	is defined exactly as for silicon in § 3.7. We define the form factor 

f (k) by 

= 4 f: (k) 	 4.24 

where f
R (k) is given by equation (4.23). The relationship between fR (k) and 

f
R (k) at a few Bragg reflections, together with the calculated and observed 

values are shown in Table 4.2. It can be seen that the choice of f 
R

(k) and 

fb
(k) adopted here give a good representation of the Bragg reflections, including 

the (111) reflection. 

We can now use the Bragg reflections to give a further indication of the 

values of f
R

(k) and f
R (k) for k 	0. In a similar way to that adopted in % 3.7 

we divide the atomic form factor into care and valence parts and introduce the 

parameter ?5 representing the fraction of the four carbon atom valence electrons 

not participating in the bonding. The form factor fR (k) is now defined in the same 
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Table 4.2 : Some observed and calculated Bragg intensities 

for diamond 

Reflection 	I S(k)I 

(111) 	4 .5(fc  + Afb) 

(220) 8fc  

(311) 	4 12-  (fc  - nfb) 

Calculated 
intensity 

* 
Observed 
intensity 

18.52 18.6 

15.2 15.3 

9.1 9.0 

(222) 16fb 	 1.12 	 1.15 

* 
McConnell and Sanger (1970) 

Note : the (222) reflection is the so-called forbidden reflection. 
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way as equation (3.43). The bond form factor is represented by a gaussian in 

terms of ); and e  the value of the diamond LCAO bond charge density at 

the centre of the bond (equation (3.47) ). In table 4.3 we give the relation-

ship between fR (k) and f b(k) for the first few Bragg reflections together with 

the value of 2f for which the best agreement with experiment is obtained. It 

can be seen that the values of b' agree well with the value fR (0) obtained a 

from the harmonic expansion. With the encouragement from these results we 

turn to consider the amorphous state. We shall assume, as we did for Si, that 

the localized bond densities for the crystal can be carried over into the amor-

phous state. 

4.6 X-ray and electron diffraction formalism 

The model as formulated above contains four components, namely (in 

K-space) fc
(k) and fb (k) in the random network and fc

m  
(K) and f 

m
(k) in the 

random layer microcrystallites where 

	

J : 	f,re 	 flp(k) '1,:(k) 	4.25 

and f
2p

(k) is the form factor for the spherically averaged, unbonded P electron. 

We now make two plausible simplifying assumptions : 

(i) We can mode! both the diamond and graphite bonds with the same 

three spherical charge distributions 

(ii) We can define an average atom form factor given by 

	

.¢, c 	oc. ;,. (10 -I- 	— csC f Ck 	4.26 

which, of course, gives the correct form factor in either limiting case sze- = 1 or 

0. The first assumption can • clearly justified by the similarity between the 

charge density contours for the two types  of bonding shown in figures 4.2 and 
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Table 4.3 : Parameter 1 for optimum fit to Bragg reflections 

in diamond 

Reflection 	 - 	1 S (k) 
	 Y 

(111) 	 4 ,ff (fc  + .12fb) 	 0.15 

• (220) 	 8fc 
	 0.0 

(311) 	 4 g (fc  - .fifb) 
	

0.1 

(222) 	 16fb 
	 0.1 
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4.3 and by the similarity of the bond charge form factors. The second 

assumption whilst having no firm theoretical basis is made in the spirit 

of the rest of this work and in order to make progress. 

With assumptions (i) and (ii) we have a two component system of 

spherical distributions (we take the diamond bond charge form factor fR (k) ). 

To calculate the X-ray and electron diffraction intensities from equation (2.18) 

we thus require, in addition to the nuclear-nuclear correlation function g (r) 

those of the nuclear - bond centre g
nb(r) and bond centre - bond centre g

bb
(r). 

These are defined in terms of the random layer and tetrahedral regions in 

exactly the same way as g (r) in equation (4.14). The associated partial 

structure factors Snb
(k) and S

bb  (k) are then given by equations (2.17 b) and 

(4.18) in terms of gnb
(r) and g

bb
(r). Of course, our model sample is inhomo-

geneous and strictly we cannot simply relate the cross correlations g
nb

(r) and 

g
bn

(r). For the diamond structure we have 

However, if we define an average unit for the model sample containing (4 - eC )/2 

bond centres per carbon atom and write 

S ( k  Li.— a Sbr,  (.)c) 
a 

4.29 

then we obtain for the X-ray diffraction intensity, from equation (2.18) 
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T x  (k) 	s ck) 	4. at snto(ki -11 c,(k) c6(.K.) 

-I- L c s66 csc.) c 16 (k.) 
27 

4.30 

and for the electron diffraction intensity 

,2 
S Lk) 	- c (k)) 1),[Scol-k) - 13(1- fjk))..r,(k) 

where the intensities are in terms of the scattering  from the basic structural unit. 

We can now proceed to apply equations (4.30) and (4.31) to some experimental 

data for amorphous carbons. We shall discuss each experiment separately. 

4.7 Results  

4.7.1 Electron Diffraction 
ti 

The electron diffraction study of a vacuum deposited amorphous carbon thin 

film (Kakinoki et al, 1960) indicated a random layer microcrystallite size of 

approximately 10 A and a ratio of diamond-like to graphite-like carbon atoms of 

about one. We can interpret the microcrystallite dimension, in terms of our 
0 

hexagonal lattice, as three randomly orientated layers with dimensions 10 A x 10A. 
0 	0 

This gives the microcrystallite a stack height of 3 x 3.44 A 'v 10 A. The ratio of 

diamond to graphitic type atoms obviously corresponds to a value of oftr- 0.5. 

The data presented by Kakinoki is in the form of the structure factor Se  (k) as 

derived from experiment using  the atomic form factor (equations (2.20) and (2.22) ). 

In figure 4.7 we show the structure factor Se(k) as derived from the experimental 

intensity (curve 5) together with S(k) for our model with the above mentioned micro- 

crystallite dimensions and for in creasing  proportions of random network : 	= 1.0, 
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.75, .5, .25 (curves 1 to 4). The origins have been displaced for clarity. We 

would not expect agreement between S(k) and Se(k) at small k (the first two peaks) 

because of (a) the neglect of chemical bonding in the extraction of Se
(k) from the 

experimental intensity, and (b) the experimentally observed peak at k r.../ 1.2 A 
0_1 

 

which (if it is associated with the (002) reflection) corresponds to an interplane 

spacing of iv 5A. Such a peak position has not been observed in any other 

experimental work on amorphous carbon and does not correspond to any graphitic 
0 

or diamond peak. For k 	4A_
1 

 the agreement between S
e
(k) and S(k) is good 

for x = 0.25. Increasing the value of a. , decreasing the amount of random 

network in the model structure, leads overall to too much structure in S(k), a 

. 
very significant effect of which is the appearance of a shoulder at k 	

1  
6.1 A 

which develops into a well defined peak for 01. = 1.0. Thus the k space 

comparisons given here indicate rather more tetrahedrally bonded carbon than 

was deduced by Kakinoki. Their conclusions were based upon fitting gaussian. 

distributions, at the diamond and graphite nearest and next nearest neighbour 

distances, to the radial distribution function g(r). For our model sample with 

oL = 0.25 the calculated 5(k) function is not very sensitive to the microcrystallite 

dimensions. Thus the structural trends evident in figure 4.7 would still be evident 

for a range of microcrystallite sizes. Consequently, we believe the main conclusion 

to be drawn from these structure factor calculations is that the experimental data 

indicates a highly disordered carbon. This conclusion has been reached previously 

(Stenhouse et al, 1977) where the full experimental diffraction intensity (Kakinoki 

° et al, 1960) was shown to be fairly well described, fork > 2A-1  when covalent 

bonding effects were included, by the theoretical intensity for a tetrahedral random 

network. For cc = 0.25 the calculated peak that is most sensitive to the micro- 
_1 

crystallite dimensions is the one dimensional (002) reflection at k 	1.8 A . 
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However, this is the very peak that appears wrongly placed in the experimental 

curve. 

In figure 4.8 we show the total electron diffraction intensity calculated 

using equation (4.31) for the same microcrystallite size as above and for oc = 

1.0, .75, .5, .25 (curves 1 to 4). The experimental intensity (Kakinoki et al, 

1960) is given as curve 5. Here the effect of the k-4 
factor in equation (4.31) 

is to dampen the structure at large k, and these figures provide a comparison 

between theory and experiment at low k and show the effects of covalent bonding. 
• 

The experimental and theoretical peaks below k = 2 A
-i 
 are not shown since 

theory and experiment will obviously be in disagreement in this region. For 

•_ 
k > 2 A 

1 
 agreement between theory and experiment is good for a = 0.25. 

For this value of cc we show in figure 4.9 the contributions to equation (4.31) 

from the nuclear - nuclear, nuclear - bond centre and bond centre - bond centre 

correlations (curves 1, 2 and 3 respectively) together with the total intensity 

1.4„(k) (curve 4). We also show in figure 4.9 the height of the (100) peak 

(graphite notation) as calculated using two different atomic form factors, namely 

those of James and Brindley (1931) and McWeeny (1951). It can be seen that, at 

the (100) peak the covalent bonding has a significant effect on the electron diff-

raction intensity and that the intensities predicted by the atomic form factors 

are on either side of the experimental peak height. 

4.7.2 X-ray diffraction  

The X-ray diffraction study of an amorphous carbon prepared by pyrolysis 

of polyvinylidene chloride at 1000°C (Franklin 1950) indicated that 65% of the 

carbon was in the form of perfect graphite-like layers of mean diameter ' 15 - 
• 

20 A and that 35% was in a much less organized state. Franklin adopted two 

approaches to analyzing the experimental data. First, a comparison of the radial 
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Figure 4.7 : Structure factors for the 10 x 10 x 10 A
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i 

Figure 4.8 : Electron scattering intensities for the 10 x 10 x 10 A
3 

model. 

1. For cC = 1.0 

2. For cC = 0.75 

3. For cc = 0.5 

4. For cc = 0.25 

5. Experimental intensity 
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Figure 4.9 : Electron scattering intensity for the 10 x 10 x 10 A3 model 

with c(= 0.25. 

1. Contribution from carbon-carbon correlations 

2. Contribution from carbon-bond centre correlations 

3. Contribution from bond centre-bond centre correlations 

4. Total intensity 

x The intensity maxirrom using the atomic form factor of James 

and Brindley (1931). 

+ The intensity maximum usirj the atomic form factor of McWeeny 

(1951). 
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distribution function, obtained from experiment using equations (2.17 c) and 

(2.20),with that for a single infinite graphite layer. Second, a comparison 

between the experimental reduced intensity function F(k) (see equation (3.1) ) 

obtained using an atomic form factor (James and Brindley 1931) and that 

calculated for a random layer lattice with layer dimension L
a 

= 16 A. 

Both of these approaches clearly demonstrated the presence of graphite-

like distances in the amorphous sample. However, the nearest neighbour peak 

in the experimental radial distribution function was broad enough to allow the 

possibility of their being diamond-like distances present in the sample and the 

agreement between theoretical and experimental intensity functions was not 

good. 

The value of 35% for the disorganized carbon content was estimated 

by Franklin from the intensity difference between the calculated and observed 

two dimensional (h k o) reflections where it was assumed that the atoms in the 

disorganized carbon scattered independently. This method would obviously lead 

to error, where there diamond-like structure present in the amorphous sample, 

since, as discussed above, both graphite and diamond structures give rise to 

diffraction peaks at similar positions in k-space. 

In figure 4.10 we show the X-ray scattering intensity calculated from 
*3 

equation (4.30) for Franklin's estimated domain size (^, 20 x 20 x 10 A3) and 

for ce = 1.0, 0.75, 0.5, 0.25 (curves 1 to 4) together with her observed X-

ray scattering intensity (curve 5). As was the case for electron diffraction, a 

0_1 significant feature in the model intensity patterns is the appearance at k 	6.1 A 

of a shoulder for a = 0.5 which as 0c increases develops into a well defined peak. 

This feature is observed experimentally as a shoulder and overall for ee- = 0.5 good 
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Figure 4.10 : X-ray scattering intensities for 20 x 20 x 10 A model. 

1. For 0C= 1.0 

2. For c<= 0.75 

3. For cc = 0.5 

4. For cC= 0.25 

5. Experimental intensity 
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Figure 4.11 : X-ray scattering intensity for 20 x 20 x 10 	model 

with 0C= 0.5, 

1. Contribution from C-C correlations 

2. Contribution from C-bond centre correlations 

3. Contribution from bond centre-bond centre correlations 

4. Total intensity 

x 
The intensity maximun using the atomic form factor of James 

and Grindley (1931). 
+ The intensity maximmusing the atomic form factor of McWeeny 

(1951). 
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agreement is obtained between the calculated and observed intensities. 

In figure 4.11 we show fora= 0.5 the effects of the three components 

in equation (4.30) on the diffraction intensity together with that calculated at 

the (100) peak (graphite notation) for the same atomic form factors as used in 

4.7.1 (James and Brindley, 1931, McWeeny, 1951). The same remarks apply 

here as for the electron scattering curve in figure 4.9. It is also worth noting 

that if one attempts to describe the X-ray and electron scattering purely by 

means of atomic form factors then using McWeeny's form factor gives better 

agreement between the theoretical and experimental X-ray scattering intensity 

at the (100) peak than by using that of James and Brindley. However, in the 

electron case using the McWeeny form factor gives too small a maximum 

whereas using that of James and Brindley gives too large a one. It is, therefore, 

clear that it is possible to fit this peak in only one experiment by a suitable 

modification of the atomic form factor. 

4.8 	Discussion  

Amorphous carbon has presented us with a difficult problem with regard 

to modelling both structure and electron density. Consequently we have made 

some rather broad assumptions in order to simplify and make progress. The large 

.number of parameters involved in a treatment of diffraction from a single oc--C 

sample makes the effects at low k, due to bonding and to structure, harder to 

separate. 

However, the resemblance of the electron diffraction pattern for the 

evaporated carbon film (Kakinoki et al, 1960) to that given by a random 

network structure is clearly shown in figure 4.7. The ease of graphitization 

of this sample is thus rather remarkable and remains to be explained. 
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For both ce-C samples considered our results indicate that the effects 

of covalent bonding are significant in the region of the (100), graphite, 

(111), diamond, peak in X-ray and electron diffraction intensities. These 

effects cannot be accounted for solely by the use of a spherical atom form 

factor. 
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CHAPTER FIVE 

- 	VITREOUS SILICA 

5.1 	Introduction  

Silicon dioxide is of great technological importance in both the 

crystalline state, for use in semiconductor electronics, and the vitreous state, 

for glass manufacture. Consequently, the structure and electronic properties 

of crystalline and amorphous SiO
2 have been extensively investigated. (For 

a recent review see Griscom, 1977). Vitreous silica, cc-S10
2, is the only 

true glass (that is, formed from the melt) that we shall study in this thesis. 

Silicon dioxide is polymorphic, its various allotropes including quartz, 

cristobalite, tridymite, coesite, stishovite and vitreous silica. It has been 

suggested (Goodman, 1975) that polymorphism could be a necessary condition 

for a material to be a glass former; for example BeF2,  PbO and As
2
0

3 are all 

polymorphic and glass formers. With the exception of stishovite all of the 

SiO
2 

allotropes are known to be constructed from the same fundamental 

structural unit, the SiO
4 tetrahedron. In quartz, silica glass, cristobalite 

and tridymite most of the experimental evidence indicates that the tetrahedron 

is regular (contrast this with the 'tetrahedral' angle variation in cc-Si). 

Consequently the structural differences between the various polymorphs arise 

from variations in the Si-O-Si angle, 13 (figure 5. 1). For example in quartz 

this angle is 144°(Wyckoff, 1963) whilst in c-SiO2  experimental evidence 

(Mozzi and Warren, 1969) indicates that it can vary considerably, with a 

mean value of approximately 150°  (Da Silva et al, 1975). 

The perfect SiO
4 

tetrahedron in cc-SiO
2 

indicates the presence of 

) sp
3 

hybridization of the silicon valence electrons. It is therefore probable 

that the electron density in vitreous silica can be interpreted in terms of our 
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Figure 5.1 : Iwo SiO
4 

tetrahedra joined by a common oxygen atom. 
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model of covalent bonding. However the Si-0 bond will contain charge density 

contributions from silicon and oxygen atoms and will clearly have different 

characteristics from the covalent bond in u—Si and at- C ; for example one 

no longer has inversion symmetry about the bond centre. 

Vitreous silica has been extensively studied by neutron and X-ray 

diffraction (Konnert et al, 1973, Mozzi and Warren, 1969). A description of 

the diffraction intensities for neutrons, and for X-rays and electrons in the 

spherical atom densities model (equation 2.5b), requires three correlation 

functions, namely those of silicon-silicon, silicon-oxygen and oxygen-oxygen, 

gsi_si(r), g
5i

_0(r) and go-o(r) respectively. These functions can only be 

extracted from experiment by combining three sets of data, for example from 

neutron, X-ray and electron diffraction. However, electron diffraction can 

only be used to study surface layers and fora-SiO2, due to surface crystallization, 

these usually have very different properties to the bulk sample, as is studied by 

neutrons and X-rays. Consequently, conclusions about the structure of oc-SiO2 

are usually drawn from a comparison of the total correlation function (or radial 

distribution function, RDF) as derived from X-rays with that derived from 

neutrons. The total correlation function is obtained from the fourier transform 

of the diffracted intensity using equation (2.20) where f.(k) is some average 
1 

atomic form factor. The RDF contains contributions from all three correlation 

functions-  gsi_ si(r), g
5i

_0(r) and g0-0 (r) and the problem becomes one of 

assigning particular peaks to the correct correlation function. One is helped 

in this respect by the different relative scattering powers for X-rays and 

neutrons of the Si and 0 atoms. The neutron scattering lengths are b5. = 0.42 

and b
0 

 = 0.58 and the atomic form factors fSi(k) and f0 
 (k) (International Tables 

for X-ray and crystallography, 1965) are shown in figure 5.2. Thus the peaks 
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Figure 5.2 : Atomic form factors for silica. ( 	) 

1. For silicon 
2. For oxygen 
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arising, for example, from the 0-0 correlations may be more evident in the 

RDF derived from neutron diffraction than in that derived from X-ray diffraction 

and conversely for the Si-Si correlations. However, from two experiments it 

is clearly not possible to uniquely extract three correlation functions. For 

a two component system, such as cc-SiO
2' 

where only limited experimental 

data is available the approach of model building becomes very useful. Not 

only can a model RDF or diffraction intensity be compared with experiment 

but also effects arising from individual correlations (for example long range 

order) can be investigated. 

Before considering the X-ray and neutron diffraction intensities from 

such a model it is convenient to begin by reviewing the present state of our 

knowledge of the structure of a -SiO
2 

5 . 2 	The structure of vitreous silica  

The structure of cc-SiO
2 

has been interpreted in terms of both the 

continuous random network (CRN) model (Zachariasen, 1932, 1935 - these 

papers were the origin of the term random network) and the microcrystallite 

model (Warren, 1934, Valenkov, 1936). The sharpness of the first two peaks 

in the RDF, arising from Si-0 and 0-0 distances, allowed early workers to 

deduce that the SiO
4 

unit in cc -SiO
2 was a perfect tetrahedron. Thus in 

the CRN interpretation of the structure of ce-SiO
2 

the principle randomizing 

factors are the Si-O-Si bond angle fa (see figure 5. 1) the value of which 

may lie anywhere between 120° and 180° (Mozzi and Warren, 1969) and the 

orientation of neighbouring tetrahedral units about the bonds which join their 

central Si atoms via a common oxygen atom. Thus, again referring to figure 5.1, 

for a particular value of 11 , the oxygen atoms can assume any position given 

by the dotted lines. 
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The microcrystallite picture is essentially the same as that for ec-Si 

as discussed in Chapter 3 except that here one clearly has a much wider choice 

of possible crystalline structures to employ in an ordered units model of the 

amorphous state. 

After the initial suggestions of Zachariasen and Warren, evidence in 

support of either picture was slow to accumulate. However the majority of 

the early evidence was in support of the CRN picture. Hand built CRN models 

(Evans and King, 1966, Bell and Dean, 1966) were shown to give RDFs in 

quite good agreement with the RDFs derived from both neutron and X-ray 

diffraction experiments. However, the Bell and Dean model with a mean 

value for the bond angle fa of 140°  had a density ,- 20-25% above the experimental' 

value. The correct density is obviously an important requirement for any model 

and Bell and Dean estimated that a value of 13,v150°  would give a model density 

in agreement with experiment. 

The RDF for oc -SiO
2 obtained by X-ray diffraction (Mozzi and Warren, 

1969) showed no structural detail beyond 7A whereas for a microcrystallite with 

cristobalite structure the calculated RDF (Mozzi and Warren, 1969) continued 

to show structure for r <12A (the limit of the calculation). Mozzi and Warren 

also considered a model consisting of three linked SiO
4 

tetrahedral units. 

Allowing complete freedom for adjacent units to rotate about their linking Si-0 

bonds, the calculated RDF for various values of the Si-O-Si angle 	(see 

figure 5. 1) was compared with that from experiment. With (I = 144°  good 

agreement was obtained with the experimental RDF for r 	However, as 

remarked above, this value for la leads to too high a model density. Recently • 

Da Silva et al (1975) have reanalysed the data of Mozzi and Warren and have 

concluded that the best fit to the experimental RDF is obtained with ft N 150°. 
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Another CRN model was built soon afterwards (Bell and Dean, 1972) 

containing 188 tetrahedral units. The Si-O-Si angle was preset at 160°. As 

more tetrahedral units were added to the model the existing structure became 

slightly distorted so that the completed model contained a wide range of P. 

values. For the final structure the value of f. was found to be 153°, in good 

agreement with the analysis by Da Silva et al of Mozzi and Warren's data. 

Bell and Dean showed that the RDF for the model, for X-rays, was in good 

agreement with a composite of three sets of experimental data (Mozzi and 

Warren, 1969, Henninger et al, 1967, Kitchens, 1963) and that the RDF for 

neutrons was in good agreement with a composi;e of two experimental results 

(Carraro and Domenici, 1963, Henninger et al, 1967). The model RDFs 

reproduced both the major and minor features of the experimental curves for 
0 

r ,c; 8A. By analyzing the model ring statistics Bell and Dean were able to show 

that an experimentally observed shoulder, for both the neutron and X-ray RDFs, 

was due to the presence of 4-fold rings in the network, a feature not found in 

earlier models (for example, that of Evans and King, containing hardly any). 

The model also had the correct density. 

In view of the success obtained by Bell and Dean , and the lack of 

structure observed in the experimental RDF for r> 7A, it was surprising to 

have crystallite models of 0c-SiO2  proposed, based on interpretations of 

diffraction data (Konnert and Karle, 1972, Konnert et al, 1973). Their approach 

was stimulated by an examination of the densities of the various allotropes of 

SiO2  and germania, Ge02. These are shown in Table 5.1 (Konnert et al, 

1973). It can be seen that the densities of tridymite and cristobalite are very 

close to the density of cG-Si02. Consequently, Konnert and coworkers 
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Table 5.1 : Densities of SiO2  and Ge02  Polymorphs  

SiO 

Structure 	 Density 

(g cm-3) 

Silica Glass 	 2.20 

Tridymite 	 2.31 

Cristobalite 	 2.32 

Keatite 	 2.49 

Quartz 	 2.65 

Coesite 	 3.01 

Stishovite 	 4.28 

Ge 02 

Germania Glass 	 3.65 

Quartz 	 4.2 

Rutile 	 6.2 
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suggested that tridymite and cristobalite could be related to the glassy structure. 

They further pointed out that the ratio of the densities of germania glass to 

quartz - like germania is approximately that of tridymite to quartz. 

Konnert and coworkers found that the experimental RDFs as derived 

from both neutrons and X-rays, for x -SiO
2 

and cx -Ge0
2' were consistent 

with those calculated for a tridymite microcrystal with dimensions 20A. 

Clearly this study indicated much more order than had been observed previously 

(Mozzi and Warren, 1969). It was, however, recognised (Konnert et al, 1973) 

that, for a microcrystallite structure, the crystallite regions would need to be 

bonded together with a large number of random orientations to give the bulk 

sample its isotropic properties. Thus Konnert and coworkers explained the small 	- 

differences between the RDFs for c.-SiO
2 

and tridymite as being due to 

junctions between tridymite-like regions. They predicted that these junctions 

would introduce strain into the structure, so distorting the ordered regions. 

Their proposed model was thus strictly not a microcrystallite but rather similar 

to the ordered units PT model (Gaskell, 1975) discussed in Chapter 3. 

The work of Konnert and coworkers has been the subject of much 

controversy (Evans et al, 1973, Konnert et al, 1973a, 1974, Sayers et al, 1975, 

Karle and Konnert, 1976). One major criticism was that they treated the first 

few neighbour correlations in the glass as variable parameters used in fitting 

the high k theoretical and experimental intensity curves. It is these small r 

distances that form a crucial part of the building procedure for a CRN model. 

Thus it was, perhaps, not surprising that the conclusions drawn from the two 

approaches differed at low r. For 4 ‘r <8A both CRN and microcrystallite 

models gave agreement with experiment. For 8 <'r <20A the experimental RDF 

was fitted quite well by the tridymite curve; however this region was not considered 
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at all by Bell and Dean. 

The presence of long range crystal-like correlations in the glass is 

of interest and it has been suggested (Moss, 1974) that in an AB2 network 

such as c.-SiO
2 

there are important long range correlations associated with 

A-A and A-B distances (but not B-B); this being a consequence of the way 

in which AB
4 

tetrahedra link together. 

However, one important point about the microcrystallite study was that 

the RDF was presented in a form which amplified the curve at large r (a factor 

of r2). It was thus not surprising that more structure was detected in this 

region than had been observed by Mozzi and Warren. Thus, perhaps the most 

important conclusion to be drawn from the work is that the network topology 

in the glassy state is probably very similar to that found in tridymite. We 

shall present X-ray and neutron diffraction calculations for the model that 

gave the best agreement with the experimental RDFs, namely that of Bell and 

Dean. 

Finally it should be mentioned that in dark field configuration electron 
0 

microscopy experiments for sputtered SiO
2 

bright spots 	across have been 

observed (Chaudhari et al, 1972). However the interpretation of these results 

in terms of models of the vitreous state is subject to the same difficulties as 

were discussed for cc -Si in Chapter 3 and we shall not dwell further on them 

here. 

5.3 	Partial structure factors and neutron diffraction  

We define the pair distribution histograms Rsi_ si(r) and R
0-0  (r) using 

equations (3.2) and (3.3). The Bell and Dean model is approximately rectangular 
0 	0 

and represents a region of cc -510
2 

having dimensions of rz 30A, (3 	20.5A, 
0 

crix 18.9A. Hence the factor C 
g 
 (r) of equation (4.8) is used to correct the 

zro 

pair distribution histograms for finite model size. The pair correlation function 
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gA_B(r), where A and B stand for Si or 0, is then defined by 

r) 	R ( r)  /11-1rr .t e 06 
""A-C3 

and the partial structure factor, SAB(k) is obtained from equation (2,17a). 

Ssi_0(k), Ssi_si(k) and So_0(k) are shown in figure 5.3 , curves 3, 4 and 

5 respectively. The scale is on the left hand axis. 

The neutron diffraction intensity for the model can now be calculated 

using equation (2.18). Thus for the composition unit consisting of one Si atom 

and two 0 atoms we have 

2 
I c SC 	S (k.) 17 2. 	-1- a 	(k)- 	-t2S 	5.2 

newirmr, 	si_si Si 	si-0 	Si 0 	0-. 0 

where b
Si 

and b0, the neutron scattering lengths for the silicon and oxygen 

atoms, are given in E 5.1. 

The calculated intensity for the model is shown in figure 5.3 I  curve 2, 

together with the experimental intensity (Carraro et al, 1965), curve 1. For 

clarity the origin for the neutron intensities has been displaced from that for 

the partial structure factors. The scale for the neutron intensities is on the right 

hand axis. It can be seen that the general agreement between theory and 

experiment is good, the main differences being in the intensity in the vicinity 

of 3A andthe shoulder in the theoretical curve at approximately 2Ziwhich is 

apparent in all the structure factors and is not seen in experiment. 

5.4 	X-ray diffraction using atomic form factors  

Using the neutral atom form factors shown in figure 5.2, we have calculated 

the X-ray diffraction intensity for the model in the spherical atom densities 

approximation. For the basic composition unit equation (2.18) takes the form 

5.1 

1. 
I,„(K) 	.s (x.) 	2.f (k)fck)CS (0-13 s, (k)

si_s; 	Si 	0  Si-o 

S
0 

 (K) f l  ( k 
-0 0 

5.3 
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Figure 5.3 : Neutron intensity and structure factors for vitreous silica. 

1. Experimental intensity 

2. Theoretical intensity 

3. SST-0 (k)  
4. S

Si-Si 
 (k) 

5. S 	(k) 
0-0 
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The calculated X-ray intensity is shown in figure 5.4, curve 1, together with 

the experimental results of Mozzi and Warren (1969). Overall agreement 

between theory and experiment is quite good, the essential differences being 

at k n. 24-Where the theoretical curve has a small peak, and experiment a 

broad shoulder, and in the region of k N 3A-I  where the theoretical curve 

underestimates the experimental intensity. 

In view of our work on cc -Si and cc- C the agreement at the first peak 

between theory and experiment is surprising when one considers that we have 

used atomic form factors and neglected bonding effects. King (1967) has also 

calculated X-ray diffraction intensities for a random network model of cx -S102. 

In her calculations, using atomic form factors, the theoretical curve badly 

overestimated the experimentally observed intensity at the first peak. Better 

agreement was obtained using ionic Si and 0 form factors. For the Bell 

and Dean model we also show in figure 5.4 (marked X) the height of the first . 

peak as calculated using ionic form factors(International Tables of Crystallography, 

1965). As can be seen, the agreement with experiment is now much worse than 

was obtained by using atomic form factors. 

From the values of the electronegativity of silicon and oxygen atoms, 

Pauling (1960) estimated that the S1-0 bond is 50% ionic - 50% covalent. 

Current, non-empirical, molecular orbital calculations (Gilbert et al, 1973, 

Yip and Fowler, 1974) are in general agreement with Paulinds classification. 

Thus the agreement shown by our calculations, using atomic form factors, and 

King's work, using ionic form factors, is possibly fortuitous. Following our 

work in Chapters 3 and 4 we are in a position to study the effects on X-ray 

diffraction intensities of a partially ionic - partially covalent bond. We shall 

begin by examining the LCAO charge density contours for a covalent Si-0 
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Figure 5.4 : 	intensity for vitreous silica using atomic form factors. 
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bond containing two electrons. 

5.5 	The Si-0 bond  

We shall take the covalent bond to be formed from a linear combination 

of a silicon sp3  hybrid and an oxygen 2p orbital. It should be noted that the 

work of Gilbert et al (1975) indicates that the two lobes of a single 2p orbital 

may be used for bonding to two silicon atoms. The bond charge density is given 

by (referring to figure 3.11) 

. 	I cl?
(13

( F.:, )
i 

ettei Ni5,,  1 / ( I +S) 	5.4 c r ) 	 + 
Sr + 

where S is the overlap integral given by 

$ : 	fr  s;cp:P3  ( ,..,r , ) '1.1- ( rt  ) 01- t- 	 5.5 
0 ip_„ 

and 	CID 6 153(0 and ,I, cc) are defined by equations (3.13), (3.14) and (4.22). - 
s; ' t 0 12e..x,"' 

The values for the constants in these equations are given in Table 5.2 where the 

wavefunctions are normalised with the unit of length now being half the Si-0 

bond length, which is also given in Table 5.2. 

The LCAO charge density contours defined by equation(5.4)are shown in 

figure 5.5 and those for the superposition of free atoms model in figure 5.6 . In 

both figures we have included 2  of the oxygen and a  of the silicon core electrons 

to give a basic scattering unit containing 7.5 electrons. The main difference 

between the contours of figures 5.5 and 5.6 is that in figure 5.5 the charge 

density is, to an extent, concentrated around a point, X say, approximately 

three-quarters of the way along the Si-0 bond. In the context of our bond 

charge model this can be interpreted in terms of a spherical charge distribution 

at that point on the bond. We shall now proceed to extract such a distribution. 

However we shall adopt a slightly different approach to that used for Si and C.; 

based on physically reasonable arguments, we shall divide up the bond density 

in r-space. 
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Table 5.2 : Constants for the Slater wavefunctions for Silicon 

and Oxygen in the Si-0 bond 

Constant 	 Value+  

Silicon 	Oxygen 

	

'1141 	
2.09 

	

J'A'2 	 7.45 

	

3 
	 21.1 	3.36 

A 	 1.6 

B 	 8.1 

C 	 2.56 	11.68 

D 	 2.75 

E 	 13.41 

The unit of length = 0.81A, half the Si-0 bond length. 
* 

See equation (3.14) 
** 

See equation (4.22) 
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Figure 5.5 : Charge density contours for the LCAO covalent Si-0 bond. 
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Figure 5.6 : Charge density contours for the superposition of free atoms model 

of the Si-0 bond. 
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Figure 5.7 : Charge d,..::ns3ty ca.,̀ '.::,rs for ihe fht-ec spherical distributions 

r-odt:i of a covalent Si-0 bond. 
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We wish to represent the Si-0 covalent bond, containing two electrons, 

approximately as the superposition of 3 different spherical distributions, e  A(r) 

and e  (r) on the silicon and oxygen atoms, respectively, and PB(r) at the 

point X. Thus referring to figure 3.11 we shall write the bond density e  (r) 

as 	
e 	e 	r,) 	e

6 	
e,../11) e Of ;  if v) 	5.6 

Now, prompted by the results for the covalent bonds in silicon and carbon, 

we choose(r) to be the spherical charge distribution due to the 111)(r) L A 	 3S 
term in equation (3.39). The overlap integral, S of equation (5.5), has the 

value 0.275. Thus the amount of charge in the distribution AoA(r) is 

0.25 / ( 1 + S) 	0.2 electrons. Strictly, of course, there is no term in 

equation (5.4) spherical about the oxygen atom site. However, the charge 

lobe of 	 . (r) that points away from the bond clearly does not contribute 
1P x 

to the bonding region. We thus spherically average this lobe about the 

oxygen atom. This distribution, e  C(r), contains 0.5 x 1/(1+S) 	0.4 electrons. 

From equations (3.21) and (5.6) we have 

; j; .1? h. 
k.) 	Ck) e- 

A. 

A 
5.7 

Expanding f(k) in terms of Legendre polynomials and using Bauer's expansion 

(equation (3.26)) we obtain, for the spherically average bond form factor, f0 
 (k) ' 

r 	t -4- 	(kisk.ni.K-12 	f (ki sxn'ikR 
7.1‹a. 

5.8 

Thus given f 
A
(k) and f (k), as described above, equation (5.8) can be used to 

extract fa(k), the bond charge form factor. 

We shall now examine the bond charge density contours for the three 

spherical distributions model of the Si-0 covalent bond. These are shown in 
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figure 5.7 where again we have included the oxygen and silicon core electrons, 

as described above for figures 5.5 and 5.6. It can be seen that the three 

spherical distributions model in figure 5.7 gives a better representation of the 

LCAO covalent bond density in figure 5.5 than the free atom densities model 

in figure 5.6. 

5.6 	Effects of the Si-0 bond on X-ray diffraction intensities  

Having established our modelling of the Si-0 covalent bond we can 

now proceed to calculate the X-ray diffraction intensity for a 50% ionic - 

50% covalent system. We write the form factor associated with the silicon 

atom, f
Si

(k), as 

(k) 
	

fs.. (k) 	4 (k) 	cwt.+ (k) 

co.+ k) 	fr4 (k) 
	

5.9 

where fsi Lo.(k) is the silicon core electron form factor and fA(k), as described 

above, is that portion of the covalent bond that lies around the silicon atom. 

For the oxygen atom form factor, fo(k), we write 

k 	= 	( k ) -1-2*C c. I() 	fo"-- 	)1 

- 
where f

01+ 
(k) and f0' 

(k) are the 0 and 0
2. 

ion form factors, respectively 

and f (k) is determined from the covalent bond density as described above. 

The form factor associated with the point X is just 

5.10 

Ck) !s Ck) 
	

5.11 

where fb(k) is determined from equation (5.8). The three components f5.(k), 

f
0 

(k) and f
b
(k) are shown in figure 5.8. To calculate the X-ray diffraction 

intensity we require, in addition to gsi_si(r), g Si-O(r) and go-o(r), the 

correlations g
SI . -x ' (r) o 	(r) and gx-x 

(r). These are obtained using equations 
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Figure 5.8 : Scattering factors for 50% ionic - 50% covalent model 

of the electron density in c'..-SiO2.  

1. fSi (k) 
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Figure 5.9 : X-ray intensity for oc -SiO2. 

1. Theoretica! intensity 

2. Experimental intensity 

3. Contribution from the bond charge correlations 
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(3.2), (3.3) and (5.1) and the partial strucl  ture factors Ssi_x(k), SO-x(k) 

and S
x-x  (k) are then given by equation (2. 17a). Our basic composition unit 

now contains one silicon atom, two oxygen atoms and two bond charges. 

From equation (2. 18) we have 

Ix  (Id 	(k) ct 	--I- a C8 	— 	f(k)10  (k) Si-Si 	SI 	 Si-0 	s;  

	

+ 	(k) fl 
0 
 Ck ) 
	

5.12 

	

—4. z C S (14) I .04 (k) -v as (kif (Hi (k) 	2S (k) f (11 

	

si-x 	6 	0-x 0 t• 	$c-x 6 

The intensity calculated from equation (5. 12) is shown in figure 5.9, 

curve 1, together with the experimental data (Mozzi and Warren, 1969), curve 2. 

The contribution from the East term on the right hand side of equation (5.12) 

(the bond charge correlations) is also shown as curve 3. It can be seen that 

the agreement between theory and experiment is good and in particular at the 

first peak. Referring to figure 5.4, and the agreement obtained using atomic 

form factors, it can be concluded that the effects of covalent and ionic bonding 

have tended to cancel out. It would thus be interesting to perform a similar 

calculation for the CRN model of Evans and King (1966) wher good agreement 

was obtained by using ionic form factors (King, 1967). 

5.7 	Discussion  

The Bell and Dean CRN model has been shown to give a good representation 

of the X-ray and neutron diffraction intensities for ct-5i02.However, the 

theoretical X-ray intensity at the first diffraction peak depends, to a certain 

extent, upon the adopted electron density model for the Si-0 chemical bond. 

The correct peak height is predicted both by using atomic form factors and by 

including a simple model for the partially ionic - partially covalent bond, but 
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14.4. 	2- 

not by using ionic Si , 0 form factors. This can be explained by the fact 

that ionic and covalent bonding in c.c-SiO
2 

have opposite effects upon the 

X-ray diffraction intensity at the first peak. 
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