COVALENT BONDING EFFECTS IN DIFFRACTION

FROM AMORPHOUS SOLIDS
by
Bryn John Stenhouse

Thesis submitted for the degree of Doctor of Philosophy of the

University of London

Blackett Laboratory
Imperial College of Science and Technology

London, S.W.7

September 1977




To my parents

for their constant support and encouragement



'f
ABSTRACT

This thesis is concerned with the structure and the electron density
distribution in amorphous semiconductors, particular attention being focussed
on the interpretation of X-ray and electron scattering experiments. The main
investigation is of amorphous silicon (ot -Si) but extensive work on amorphous

carbon ( &€ -C) and vitreous silica (€ ~SiO,,) is also reported.

o)

Two basic assumptions are made about the eleciron density distribution
in «€-Siand &£-C:

(@) The total density can be writien as a sum of the densities in the
individual Si-Si or C-C bonds. .

(b) The density in a single covalent bond can be constructed from the
method of linear combination of atomic orbitals (LCAQ).

T/o/'colculote the electron and X-ray scattering a third, less basic but
essential assumption for further progress is made, namely |

(¢) The bond density can be written as a sum of three spherical
d;sfribuﬁons, two identical distributions centred on the nuclei and a third
centred at the mid-point of the bond.

For oC-Si, with these assumptions a knowledge of the nuclear-nuclear,
nuclear-bond centre and bond cenire-bond centre correlations enables the X-ray
and electron scattering to be 'calculoted. The correlation functions have been
determined from several well known structural models of the amorphous state,
both random networks and models based on ordered units being employed.

Similar analysis is performed on o€ -C. Here the structure is difficult
to characterize and detailed calculations are reported concerning the dependence

of the diffraction patterns on the type of structure used.

For o -SiO2 ionic bonding has to be considered and the relative effects



if
of fonic and covalent bonds on the X-ray diffraction intensities are investigated.
. It is concluded that covalent bonding significantly affects the X-ray
and electron diffraction intensities in both o¢ -Si and «K -C. For o€ -Si,
random networks containing odd-membered rings are to be preferred to models

based on ordered units for a representation of the structure.
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"CHAPTER ONE

INTRODUCTION

The concept of the chemical bond was first proposed (Lewis, 1916) soon
after the discovery of the electron and can be defined as follows (Pauling,
1960 a) :

"There is a chemical bond between two atoms or groups of atoms if the
forces acting between them are such as to lead to the forma;ion of an aggregate
with sufficient stability to make it com./enient for the chemist to cons‘ioier it as
an independent molecular species".

The type of chemical bond that will principally concern us in this thesis is
the covalent bond which involves the sharing of a pair of electrons by the two
bonded atoms. The ionic bond, which will be discussed briefly in Chapter 5,
results from the coulomb attraction of the excess electric charges on oppositely
charged ions.

The chemical bond has proved a powerful tool for underst.anding the electrical
properties of many materials (Pauling, 1960) and in particular those of carbon and
silicon. Both carbon and silicon have four valence electrons per atom. Carbon
forms two crystalline structures, diamond and graphite, silicon only one, that of
diamond. In the chemical bond picture all four valence electrons in diamond are
localized in covalent bonds between nearest neighbour atoms. The insulating
properties of diamond are thus explained in terms of the localized nature of the
valence electrons. For graphite in the chemical bond picture, only three valence
electrons per carbon atom are localized in covalent bonds, the remaining unbonded
electron being loosely bound and thus available for conduction. Silicon crystallises
in the diamond structure and thus all four valence electrons are localized in covalent

bonds. The distinction between the insulating and semiconducting properties of



diamond and silicon, respectively, is explained simply in terms of the degree
of localization of the bonded electrons.

Many observable 'bond properties', for example the fact that the Si-Si
equilibrium distance (the bond length) varies only slightly with different
environments, are easily explained in terms of this localized picture. For
the crystal as a whole, the chemical bond picture leads to a total electron
density as being built up from such localized bond densities.

In a full quantum mechanical treatment of crystalline silicon, say, one
must consider the valence electrons as moving through a periodic lattice of
positive ions. The distinction between insulating and conducting properties
can then be explained in terms of the forbidden energy gaps arising from the
modification of the electron energies by diffraction. Solving Schrodinger's
equation for the electrons must lead to electron wavefunctions and a ground
state electron density @ (r) that extends throughout the entire crystal. It is
a fact, very relevant to this thesis, that there exists no unique way of dividing
up the delocolized density @ (r) into localized contributions in accord with the
chemical bond picture. The forbidden energy gap arising from the delocalized
approach is, in the chemist's picture, approximately equal to the energy required
to remove an electron from a localized bond.

In this thesis we shall be investigating disordered solids, that is, solids which,
due to their method of preparation, have no crystalline structure. Much of the
current interest in these solids stems from a desire to know how well one can
characterize the amorphous state and which factors one needs to take into account
in order to do so. Since an amorphous solid is a metastable state, usually obtained

under forced conditicns (for example by rapid cooling) to prevent crystallization



taking place, the answers to these questions are believed to be statistical in
nature. For our work we shall make no distinction between non-crystalline
solids such as o¢ -Si formed, for example, from the vapour and true glassy
solids such as vitreous silica (&€ -Si 02) formed by cooling the melt. The
important point here isf that liquid silicon is a metal with a resistance that
increases with temperature whereas molten silica is a semiconductor. For

our work, the important properties common to these solids are a lack of long
range order in the atomic arrangements and the possession of an electron density
describable in terms of covalent bonding.

For the disordered staie, then, no long range lattice periodicity exists and
the effectiveness of band theory, the delocalized approach, is correspondingly
reduced. The chemist's localized bond picture is, however, still powerful. For
silicon, for example, the only restriction imposed by this approach is that each
Si atom should have four bonds and this can be satisfied equally well with either
@ regular network, as in the crystal, or by an irregular one as in the amorphous
case, For oC-Si the electrons are thus still pictured as localized and the semi-
conducting properties are again easily explained. The observation of well defined
forbidden energy gaps in o€ =Si (Donovan et al, 1969) lends strong support to this
localized picture.

Diffraction experiments based on Bragg's condition relating the crystalline
lattice spacings to the diffracting wavelength have been a major tool for probing
the solid state. For amorphous solids short range order is retained and diffraction
experiments still give us useful information about the local atomic environment.
X-rays are scattered by electrons and therefore X-ray cross sections are related

to electron correlation functions. Electrons are scattered by all charges present



T
and so electron scattering cross sections are related to both nuclear and electronic
correlations. Thus both X-rays and electrons will be affected by the form of the
electron density p (r) in the amorphous state. An interpretation of these effects
in terms of a localized bond picture will be a major objective of this thesis.

In Chepter 2 we give a short review of X-ray, electron and neutron diffraction
ﬂ-'neory with particular reference to amorphous covalently bonded solids.

In Chapter 3 we apply the equations developed in Chapter 2 to ¢ -Si and
demonstrate how the formalism of diffraction from spherical charge distributions
can be extended to take account of diréctional bonding and that, with this model
of the covalent bond, we can account for the experimentally observed X-ray and
electron diffraction intensities from o« -Si.

In Chapter 4 we perform similar calculations for o¢ -C. More detailed
structural modelling is involved and because of the two types of crystalline carbon
it is necessary to consider two types of covalent bond, namely those due to sp2 and
sp3 hybridization. Again, we are able to account for the experimentally observed
X.-rqy and electron diffraction intensities in terms of the covalent bond model. We
also show how the fraction of partially ordered material in a sample of e -C can
be included in a structural model as a simple parameter.

In Chapter 5 we di-scuss two component systems and give X-ray and neutron
diffraction calculations for a -model of vitreous silica. The effects of covalent
versus lonic bonding, with regard to diffraction intensities, are investigated.

Some of the work presented in this fhesi.s has also appeared in the following :
B. Stenhouse, P.J. Grout and N.H. March :

Scattering Intensities and Model Partial Structure factors in Vitreous Silica

. and Amorphous Silicon, Physics Letters 57A, 1976, 99-101



B. Stenhouse,P.J. Grout, N.H. March and J. Wenzel :
Chemical Bonding Effects on the Diffraction Intensities in Amorphous
Silicon and Carbon. Philosophical Magazine 36, 1977, 129-147
B.J. Stenhouse and P.J. Grout :
Diffraction Intensities and the Structure of Amorphous Carbon :

Journal of Non-Crystalline Solids (in the press).



CHAPTER TWO

DIFFRACTION FORMALISM

2.1 Introduction ‘

We shall now give a brief review of the main ingredients of X-ray, electron
and neutron diffraction from an array of atoms. The purpose of this review is first
to obtain the quantities that are used exfénsively in the work described in later
chapters, and second to emphasize the assumptions made in their derivation that
influence our approach to the problem of diffraction from covalently bonded
amorphous solids.

We restrict the discussion below to coherent elastic scattering. For a fuller,
more general discussion of diffraction methods see, for example, Bacon (1962),

Leadbetter and Wright (1972), Wright (1974).

2.2 X-ray diffraction

X-n;oys are scattered by electrons and it will be sufficient for our purposes to
take the amplitude of radiation scattered in a particular direction by a single
‘electron as our scattering unit (often referred to as the electron unit). If we
define ki as a vector with magnitude ’J.Tr/)s ’ where. N s the incident wave-
length, in the direction of the incident beam and L(d the wave vector of the scattered

radiation, then, since we are considering elastic scattering we have

Ik, | . | Ka | ’ 21
We define the scattering vector k as

K k- ki

~

. 4avsine/\ 27

where 2 © is the scattering angle.



Ficure 2.1 : X-ray scatering from two clectrons of O and A, separaied
o / o ’ [

by vector r.
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Referring to figure 2.1, the phase difference between radiation scaitered

by electrons at A and O is

(kg-Ki).£ =

!X

. 2.3

and the contribution to the amplitude of the scattered beam will be exp ( ”,5'?: ).

Thus the amplitude Y (k) of the beam scattered in the direction defined by kd

by N electrons is given by
N
Yik) = 2 expl ik.r) 240
YR

and for a continuous electron density

Y (x) fr@cg)w{bf”j.;)o‘g 2.LDb

Now, if we consider an array of atoms, referred to hereinafter as 'the system', and
we write the total eleciron density in the system @ (1) as a sum of the electron

distributions around each nucleus

gLy = T c;(g-;,[m\ 2.00

then we obtain

- y(;!g) = 7 e o~ fm(k‘) 2.6

where

o = [ o (Demplik.dds 270

™ ~

ladd

is the form factor for the electron distribution around nucleus m. The diffracted

intensity I (l:’) is given by

2,
Tw) . | Yy
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2 F o) exp lik (- o))

3]

S f k) Lot exp (3 KT, cosa) 2.8
where

T = \ ,r\:n"' ‘;M\ 29

and

Coset = ‘fv (En"zm}/krnm 210
If we further assume that the total eleciron density @ (r) of equation (2.5a) can

be written as a sum of spherical disiributions, i.e.

o) = L oo (le-rc.l) 25b

with

e

r

;{:m(k) = f T (F) & e swukr dr 2.7b

then we can average over o( in equation (2.8) to obtain

T =5 o) ) sk, 211

"y

nen
Separating cut terms with n = m this takes the form

T (0) = 2 fnl(k\ + Z (Fn(k‘){m (‘fb“"i',‘.rnm 212

For an amorphous material where we can define €m (r) as the density of centres

of type m at a distance r from a centre of type n, we have from equation (2.12)

e aand

ke

where, now, the summations over n and m are over atoms and atom types,

Twy =5 ;Ft(k) + 2, ;ﬁn (k):fm(k)JQ (e sinkede 213

respectively, in the system.  Here, of course, we have assumed
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that r, the radius of the amorphous sample is large (r -y 0 ). If pom is the

mean density of centres of type m we can write equation (2,13) in the form

T () 2 3C x)+ .:((k),c (k)f[e(r) 61 L;.‘ﬁ‘r Sinkr dr

£y, 7y k

™

+ 9 _—,Cn(k);f (k)j Lwe Smkrctr 214
n,m [5) O

f‘

The contribution from the last term on the right hand side of equation (2. 14)
is a delta function at k = 0 and will be neglected hereinafter. We now define the
n-m radial distribution (or correlation) funciion such that gbm au) ‘-i-’lT‘l"zr-L(‘
is the number of centres of type m a distance between r and r + dr from a typical n

centre. Clearly from equation (2.14)

co
T (k) - ZJCH" (k) -+ K :Fn(k):&}k)(’o ff(:} (f\-l]li-’i‘rrlfl_g_l{rclf 215
a n,m ™ Vo Tom e r '

For a homogeneous medium we can rewrite equation (2.15) in terms of the scattering
from a basic scattering unit  (as an example, for vitreous silica Si 02, the unit

would contain one silicon atom and two oxygens)

T =n[ T8 0) +5 ¢ _%;ckwacicza)jtg.J.ir\—‘]Lnrr‘smkvﬂ 216
i iy ‘ o Ver

where the summations over i and j are over atoms and atom types, respectively, in
the basic unit and N is the number of such units in the total system. Equation (2. 168)
is of the required form for calculating the X-ray diffraction intensities from a model
of an amorphous solid. However, equation (2.11) will also be required when we are

dealing with models that have a crystalline nature and where a continuous distribution

p .. (r) is not a useful definition.

!
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If we define the partial structure factors Si'(k) as

-]

S..ju‘), ._ L+ P I [3““)-— l] Gretsinkr dr 2170
A 4 ke

then finally equation (2. 16) takes the form

T 2 N D £ W0 Su) - g55) 218
3

where .
€55 = o b=
= ] 218
This completes the formalism for the X-ray scattering from a superposition of
spherical free atom-like charge densities. For a monatomic amorphous solid,

such as o -Si or o€=C, equation (2. 18) reduces to

T(e) = wNsek) £1(x) 2.20

where f(k) is usually taken to be the free atom form factor and S(k) is defined

solely in terms of the Si or C nuclear correlation function g(r)

o0

é,Lk) = b+ P f Eﬁ(r)-l] £{.1rrmsi¢_~.~k¢'ch 2‘]7b
' ° ke

where the subscript n refers to nuclear type (Si or C). It is important to realize

that for the covalently bonded amorphous solids equation (2.20) is an approximation.
The approximation was introduced in equation (2.5b) where the total charge density
was written as a sum of spherical distributions, one of which was assigned to each
nucleus in the system. However, equation (2.20) has been used extensively in the
literature, and for example for oc -Si in fig. 2.2 we show eaﬁf-'ﬂ" '_7.3 () as
obtained from X-ray diffraction (Richter and Breitling, 1958) using equation (2.20),

where g(r) is given by the inverse transform of equation (2.17 b).
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Figure 2.2 : Pair distribution function for oC~Si as determined by X-ray
diffraction (Richter and Breitling, 1958) together with the
mean density and the number and positions of neighbours in

the corresponding diamond lattice.
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gtr) = 1+ I f [ ste) -1) ksunder dor 217¢c
A

Our interest in the effects produced by a neglect of covalent bonding stems
from considerations of the crystalline case. For example, for the diamond lattice,
a spherical atom densities model predicts zero intensity for the (222) reflection.
This so called "forbidden" reflection is, however, observed experimentally. For
the crystal there is, of course, no need to assume a spherizal atom density model
since the form of the angularity due to bonding is, in principle, exactly known.
For an amorphous solid, how<ever, this is not the case. The curve e°h41rr23 te)
in fig. 2.2 has broad first and second peaks, indicating variations of bond length
and, more importantly, of the tetrahedral bond angle. Thus for the amorphous
state we have no a priori method for modelling the angularity of fi(k) in equation
(2.8) and hence we make the assumption contained in equation (2.56). For € - Ge
the X-ray diffraction infensity is dominated by scattering from the core electrons
and for this case the spherical atom densities model is a good approximation. Qur
invéstigaﬁons will, therefore, concenirate on < -Si and & -C where the ratio of
core/valence electrons is lower,

2.3 Electron Diffraction

For high energy electron diffraction the analysis is similar to that for X-rays,
the essential difference being that the elecirons are scattered by the potential they
feel. This potential is related, by Poissons equation, to the total charge (nuclei +

electrons)

q¢) = 2~ o (c) 2.21
where z is the nuclear charge. Then, for electrons, the form factor fi (k) in

equation (2.18) is replaced by f? (k), say, given by
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:F? () = [l‘. - f;(k)]/ko’

where the factor k_2 arises from the r-] behaviour of the Coulomb potential.
Since generally 2 ; 2 @ :Lr) the units for electron scattering as defined
here are often referred to as ‘profon units. Since electron scattering involves the
electron density p (r), the comments made for X rays with regard to equation
(2.20) are also relevant here.

2.4 Neutron Diffraction

For neutron diffraction the scattering centre is the nucleus which for our
'purposes can be considered as a hard sphere. The k dependent form factors of
X-ray and electron diffraction are replaced by a constant, bi' the neutron
.scaHering length for nucleus i which, unlike Fi(k) and F(:(k) can only be deduced
empirically from experiment. Neutron diffraction is thus unaffected by the electron
density distribution (and by the assumption of equation (2.5b) ) and leads to
unamb‘iguous structural information.

However, for o -Si, the neutron experiment has not been carried out. The
problem is that, for a neutron experiment, one needs a large sample ( ~ 1 cm3) and
the preparation of such a specimen of oC -Si is very slow, although essentially not
difficult. Also, the sample, if prepared, wogld be highly prone to oxidation and
would peed to be obtained under high vacuum,

For o€ -C we do have some neutron data (Mildner and Carpenter, 1975). How-
ever, as we shall see in Chapter 4, every o -C sample presents us with a new struc-
tural problem, and for most samples a neutron diffraction experiment has not been
p;arformed.

Thus for both o€ -Si and & -C a correct interpretation of X-ray and electron

diffraction takes on added importance. We shall begin by discussing oC.~Si in

Chapter 3.
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CHAPTER THREE

AMORPHOUS SILICON

3.1 Introduction

Amorphous silicon (oc-ISi) is a typical non-crystalline solid possessing
approximate short range order, similar to that found'in the crystal, but having a
E:c;mplete lack of long range order. Attempts to model the structure have
traditionally been based on two apparently conflicting ideas. These are to
descri.be’ o< -Si either by means of a microcrystallite model or by means of a
continuous random network (CRN) model,

In the microcrystallite picture one assumes that the local atomic environ-
ment,inthe amorphous state, is exactly crystal-like, but that long range order is
removed by the crystals having a size of only a few angstroms, the complete
amorphous sample consisting of an ensemble of such microcrystallites with random
orientation.

The CRN concept was originally proposed (Zachariasen 1932, 1935) as a
sfr;cfurol model for vitreous silica, oc~Si 02. As Gppiied to e -Si, the concept
" takes the following form. Each Si atom is linked to four others with a bond length
of LT AL and a bond angle (see figure 3.1) of © £ AQ yhere L and © are
the bond length and bond angle in the crystal and O L. and DO are termed the
bond length and bond angle dis‘for’rions. The reldtive orientation of adjacent tetra-
hedral units (neighbouring Si4 units will be referred to as tetrahedral units, despite
the variations in bond angle) is varied rondom'ly, subject only to the condition that
the network is continuously connected.

These definitions are sufficiently broad for us to apply them to a wide range

of structures. For example, we have not specified how individual mircocrystals are

linked together and there is obviously much freedom as to how one joins a network
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together in a random way.

In Chapter 2 we saw how, given the coordinates of the atoms in a monatomic
amorphous solid, we could calculate the X-rc;y and electron diffraction intensities in
terms of the nuclear-nuclear structure factor S(k) and a spherical atom form factor -
equation (2.20). However, this required the assumption that we could write the
electron density in the amorphous state as a superposition of spherical atom charge
densities. Our first step for testing whether a.neglecf of covalent bonding has
significant effects on the X-ray and electron diffraction intensities in < ~Si must
be to compare i'.he theoretical intensities as given by equation (2.20) with those
observed in experiment.

If we take the neutral atomic form factor to define Fi(k) (equation 2.7b)
then all we require is the nuclear-nuclear structure factor S(k) and for this we need
a model of the amorphous structure. For the purpose of explaining which model
structures we shall use to obtain S(k) it is convenient to begin by reviewing the
development of the microcrystallite and CRN pictures.

As we discussed in Chapter 2, from our point of view ol ~GCe is not as
interesting as oC~Si because for o-Ge the ratio of core/valence is large and we
do not expect the effects of covalent bonding to be evident in the diffraction
intensities. However, the structure of o€ ~Ge is expected to be essentially the same
as for o€ -Si and, where relevant, we shall take experimental evidence from oL-Ge
as pertaining to o< =Si.

3.2 Development of the microcrystallite and CRN models

The radial distribution function (RDF) for &« -Si, g(r) as defined by equations
(2.17¢) and (2.20),was first obtained frorh X-ray diffraction (Richter and Breitling,

1958). The main difference between the RDF for o< -Si and that for crystalline Si is
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the absence, in the amorphous case, of a sharp third neighbour peak. This can

2 p( [’) for oC-Si as

determined from experiment (Richter and Breitling, 1958), together with the

be seen in figure 2.2, where we show 4 TC T

contribution from the mean density ( 4T 2 ‘oon ) and the number and
positions of neighbours in the corresponding diamond lattice, Thus the experi-
mental curve would seem to be consistent with a structural picture of small,
randomly oriented, crystallites based on the diamond structure.

This idea was investigateci (Moss and Graczyk, 1969) with calculations of

the reduced intensity function F (k) given by

Flk )= klS(k)-1] 3.1

where S(k) is defined by equation (2.17b), for several microcrystallite models

based on the diamond cubic structure. No correlation between different micro-
crystals was included and it was demonstrated quite conclusively that this simple
microcrystallite picture could not be consistent with the experimental data. The
function that was used in the calculations, F(k), is, of course, derived from the
experimental intensity assuming equation (2.20) to be correct. As we have previously
stressed, we do not believe this to be the case for o€ ~Si. However, the effects
observed by Moss and Craczyk were for all k and could not have been due to
assumptions about the electron density distribution.

The structure of &K -Si was subsequently interpreted on the basis of the CRN
model; the lack of a third neighbour peak in the experimental RDF being consistent
with the free rotation of neighbouring tetrahedral units about their common bond.
Indeed, such a structure was shown (Polk, 1972) to give an RDF in reasonable
agreement with experiment for o€ -Si (Moss and Craczyk, 1969).

One important set of parameters for a CRN model are the ring statistics. A
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P-fold ring can be defined as a closed path in the network which passés once
and only once through P different Si atoms and along P Si-Si bonds. The
crystalline diamond structure is composed entirely of six-membered rings whilst
the wurtzite structure contains both four and six-membered rings. Because of
the free rotation of neighbouring tetrahedra, in the CRN, it is possible to con-
struct an amorphous structure containing only even or odd membered rings or a
mixture of both. The P-fold ring statistic is then the average number of P fold
rings per atom in the network.

The possible existence in the amorphous state of a network topology
differing greatly from that in the crystal is interesting when one considers that
very different methods for preparing ec -Si appear to lead to the same structure.

oc-Si can be preporc-::d by sputtering, evaporation, electrodeposition,
decomposition in glow discharge and ion implantation. In the last case the
amorphous film is obtained by the progressive destruction of order in a perfect
crystalline lattice. Yet it has been demonstrated (Smith et al, 1971, Moss et al,
1971) that ion implanted -Si is not just severely damaged crystalline Si and that
the structure is similar to that of vapou'r deposited oC -Si.

The Polk model, that gave quite good agreement with the experimental
RDF for o -Si, contained a mixture of odd and even membered rings and was,
therefore, ropolrzagically, quite different from the diamond structure; (more details
of the model can be found in Table 3.'] where an essentially identical structure,
the Steinhardt model, is shown as model VII). Clearly, then, it was of interest
‘to investigate whether or not very different CRN models could give similar agree-
ment with the same experimental RDF; the important point being that the structural

information embodied in g(r) is average information obtained from the sample as a



20

whole. Thus comparisons between theoretical and experimental curves could

not be expected to distinguish between individual network topologies but could
be expected to reflect the different model rings statistics.

A 201 atom CRN model containing a large number of odd membered rings
(Steinhardt et al, 1974), hereinafter referred to as the Steinhardt model, and a
238 atom CRIN model- composed entirely of even membered rings (Connell and
Temkin, 1974) were built soon aFterwa;'ds. Both gave Fi’rs' to the RDF of & -Ge
(Temkin et al, 1973) that were qualitatively similar to that given by the Polk
model for o¢-Si. However it was noted by C.onnell and Temkinthat an average
of the RDFs for the 238 and 201 atom models gave a better fit than was given by
either .model individually. The Connell-Temkin (CT) model was H;us gradually
restructured (Beeman and Bobbs, 1975) to generate a series of models containing
varying numbers of five and seven fold rings. Six models;, including the original,
were so generated and, as had been hoped, it was found that greatly improved
agreement between model and experimental RDF could be obtained for a model
having ring statistics that lay between those of the Steinhardt and CT models. The
ring statistics for the six modifications of the CT model are shown in Table 3.1 -
models | to VI, together with those for the Steinhardt model which, because of its
ring statistics (as previously stated these are essentially the same as those of the
Polk model), fits roughly into Table 3.1 as model VII. The average bond angle
distortion Z{é (see figure 3.1), for each model, is also given. The improved
agreement, referred to above, was obtained for model V, the agreement improving
down the table towards model V and then worsening for models VI and VII.
Obviously, this method needs to be repeated using several different models

as the starting point. Then, given optimum fits to the experimental RDF, obtained

from a number of distinct finitial structures, one would hope to see some convergence



Table 3.1

Model
@ O
| CT1
11
H CT 2
v
\ CT3
\2!
Vil Steinhardt

*

0.00
0.59
0.16
0.20
0.34
0.40

0.43

Model Structural Parameters

Rings/Atom .

6
2.43
2,27
2.09
1.96
1.51
1.29

0.89

Notation of Beeman and Bobbs, 1975

+ . . .
Notation used in this work

0.00
0.16
0.31
0.47
0.81
1.01

0.99

Average bond
angle distortion

A8
9.1
10.2
10.6
10.8
11.6
13.3

6.8
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towards an ideal amorphous structure and discover the correct statistics for a
complete description of the amorphous state.

Independently of these developments of the CRN model, the micro-
crystallite model was rather surprisingly (in view of the diffraction evidence
referred to above) revived by evidence from high resolution electron microscopy
experiments,

For o¢ -Ge and oK -Si using the dark field configuration, uniformly
bright, patches fubouiL 15 Z\ across were observed in the image (Rudee 1972,
Chaudhari et al, 1972, Rudee and Howie, 1972), indicative of more structural
. order than is present in a random network model. The bright patches were assumed
to arise from crystalline regions of approximately the average patch dimensions
(15 K) (Rudee, 1972, Rudee and Howie, 1972) or from ccherently diffracting
regions of a random network (Chaudhari et al, 1972 ). Later results (Howie et al,
1973, Chaudhari et al, 1973) indicated that the bright patches were only about
5 A across. Caleulations (Chaudhari and Graczyk, 1974) for a computer built
CRN model (Henderson and Herman, 1972) containing 64 atoms (the HH model)
and for a 519 atom modified Polk model (Polk and Bourdeaux, 1973) indicated
that a CRN can be consistent only with the latter measurement (5 /g\). However,
it v;/cs pointed out (Moss and Adler, 1973) that the irregular spots in dark field
could be due to density fluctuations which limit the CRN size to small regions
separated by voids. This view is supported by evidence from glassy chalcogenides
(Chaudhari et al 1972b) where bright spots are also observed in dark field but
which vanish above the glass transition temperature .

More convincing evidence for the microcrystallite picture, for o -Ge,
came from tilted bright field configuration electron microscopy experiments (Rudee

and Howie, 1972, Howie et al, 1973) where lattice fringes were observed
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corresponding to a spacing of about 3.3 Z similar to the spacing of the (111)
planes in the diamond or wurtzite structures.

The ability of a CRN (or any other type of model) to produce fringes
can be seen by looking at the projected atom density for different orientations
of the model. One orientation of the 64 atom HH model was found (Chaudhari
et al, 1974) for which atoms in the projected atom density aligned to form
planes with a regular spacing corresponding approximately to the (111) planes
in the crystal. However, for the 519 atom modified Polk model, the preferred
orientation gave much less well defined planes (Chaudhari and Graczyk, 1974)

- and the picture was not convincing. Indeed, it has been remarked (Cochran,
1974) that the chances of a CRN structure being sufficiently crystal-like in
projection to produce recognizable fringes, are very low, the HH model being
atypical in this respect. A major objection to the HH model, for the above
calculations, is its small size. The model contains too few atoms in comparison
to those in a film of 50-100 K thickness which are expected to participate in the
imaging process in the electron microscope.

Consequently, attention has recently returned to the problem of whether
a modified microcrystallite picture can be consistent with the available diffraction
data, further calculations (Howie et al, 1973, Weinstein and Davies, 1973) for
simple microcrystalline models based on diamend and wurtzite structures having
given in general poor agreement with experiment,

Of course, one possible reason for the disappointing results obtained by
these calculations was the assumption that the microcrystals had random orientation
with no account being taken of the correlation between atoms in different
crystalline regions. In other words, no. specification was given of how the micro-

crystals were linked together, whether directly or via some intervening matrix
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region. For a microcrystallite model the importance of this matrix region or
connective tissue was recognized very early on (Warren, 1937) and recently
restated (Gaskell, 1975) where it is pointed out that, for an ordered unit of
the size indicated by electron microscopy (5 3 - 15 X) as many atoms would
be bonded to atoms within the matrix region as would be bonded to atoms
within the microcrystallites.

Consequently, an attempt to improve on the simple microcrystallite
picture was made (Gaskell, 1975) with the construction of a continuous net-
work that was based on ordered units; the model being constructed by the packing
‘of ordered tetrahedral units, having the diamond structure and joined by eclipsed
'bonds across the (111) faces; (referring to figure 3.1, the bonds are 'eclipsed"
when adjoining tetrahedral units have identical orientation). The polytetrahedral
(PT) cluster so formed was not strain free (it is not possible to fill space by packing
tetrahedra), the average strain per bond increasing approximately linearly as more
tetrahedral units were added. This network strain resulted in bond lengths and angles
within the cluster taking on a range of values. Hence, nearest and next nearest
neighbour distributions were broadened as the cluster size increased, there arising an
optimum cluster size at which the distribution broadening accorded with that seen in
the experimental RDF for & -Ge (Temkin et al, 1973).

Thus to a certain extent the model correlates the microcrystallite and CRN
descriptions of the amorphous state, The model has been shown to be consistent with
the electron microscopy experiments described above (the 15 A result for the dark
field experiments) and the model RDF gives better agreement with experiment than
has been given by any previous ordered units model (although still not as good as

that shown by most CRN structures).
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To summarize this section; although the majority of evidence is in favour
of the CRN model, containing odd membered rings, there is still some controversy
(since as we have stated, g(r) does not define a unique structure) as to whether a
slight!y more ordered moc#el could explain all the experimental evidence.

Consequently, we shall present diffraction calculations for both types
. (micrfocrysfa”ife and CRN) of model. Firstly, the Steinhardt and modified CT
models as described above, and secondly, the ordered units PT model of Gaskell
containing 720 atoms. We shall only give results for three of f‘};e CT models
(hereinafter relabelled and referred to as models CT 1, 2 and 3 as indicated in
Table 3.1), which is sufficient to show the trends apparent as one moves down
the table.

3.3. Model Structure Factors

As was mentioned in the Introduction, to calculate the X-ray cﬁd electron
diffraction intensities for o€ -Si, in the spherical atom densities cf;proximcﬁon, we
require the nuclear-nuclear structure factor S(k) and henc_e the radial distribution
function g(r) (see equations 2.20 and 2.17¢).

For a model calculation it is convenient to introduce (Bell and Dean, 1972)
a pair histogram R with interval Jrsu;:h that R, (r) Jr gives the number of

A-p(") A-B

" Bsites lying in the range r to r +dr from a typical A site. Formally we have
Rg.g(r) chfr) 32

where

| R

g__"u'% Z S (cl&s‘-cmce HiBJ'
' J

S(xlﬁ,{j):c}t Fy<xgy+dy 33

= ( otherwise

Here Ai and Bj represent the positions of the i and jfh atoms of types A and B
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respectively. In dealing with a model which contains only a finite number of
atoms it is necessary to define these distributions as histograms with a finite
interval.” In the limit of an infinitely large model the interval J{j > 0, the
histogram becomes a curve and § (x l Y, J'y) tends to a delta function. For
o¢ ~Si, the relationship be-fween the pair distribution function RSi-—Si(r) and the

radial distribution function g(r) is

g = R () hxitp 34
where (oo; is the mean number density of Si nuclei in the model. Hence we can

obtain S(k) from equation (2. 17b). Of course, we are trying to predict, using a

model, a quantity that is representative of a bulk sample of o -Si. Thus RAB(r)

from equation (3.2) must be corrected for finite model size und this can be achieved

in the following way (Germer and White, 1941). ;

We suppose that a sphere S of diameter D is inscribed within a model

of infinite extent and that the RDF of this model is to be calculated by using the

positions of only those atoms which are inside S. We consider an atom in S a distance
d from its centre and calculate the number of atoms, also within S, a distance r to
r +dr from it. We can write this as the fraction of the total number of atoms in the

model in this distance range. This fraction is given by

E (r, d\) - l , F 4 défD_
= ((2)- (r-d) ird red>D 35
- O r-d >0/,

If S contains a large ( > 150, Beeman and Bobbs, 1975) number of atoms, then we

can average £ (r, d) over S to obtain
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3
1) e

o) r>D 3.6

£ ()

| YT
Oln

1"

Thus, for a roughly spherical model of diameter D, the corrected function

r) is related to the model function RAB(r), say, by

R (r) = Rnéf)/f:“) 3.7

A-B

R p- g

Of course 'infinity'- for the high r limit of equation (2. 17b) is still limited by
the model size since equation (3.7) diverges for r = D.

S(k) calculated from equation (2, 17b) is shown (curve 1 in each
case) in figures 3.2, 3.3, 3.4 for models CT 1, 2, 3 respectively, figure 3.5
for the Steinhardt model and figure 3.6 for the PT model. S(k) as shown for the
PT model is that calculated for a central core of the model containing 214 atoms.
Calculations for the complete 720 atom structure led to peak splittings in the low
k region of S(k). This can be seen in figure 3.7 where S(k) is shown as calculated
including 214 atoms (curve 1) and 720 atoms (curve 2). The appearance of the
peak spliffin_gs as more atoms are included indicates the presence of long range
crystal-like correlations which are, of course, not expected to be present in a
truly amorphous structure. A similar effect has been noted (Weinstein and Davies,
1973) for several simple microcrystallite models of oK ~Ge. Hereinafter we shall
present results only for the central core of the PT model containing 214 atoms.

Thé curves of S(k) immediately give us, apart from a factor bSi2
(see §2.4), the neutron diffraction intensity to be expected from each model

which will be of interest should the neutron experiment be carried out. However,

we turn our attention now to the X-ray and electron diffraction intensities from
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o -Si, where we do have experimental data.

3.4. X-ray and Electron Diffraction using atomic form factors

We define Sx(k) and Se(k) as the structure factors derived from the experi-
mental X-ray (Richter and Breitling, 1958) and electron (Moss and Graczyk, 1969)
diffraction intensities respectively. These are shown in figure 3.8 S(k) in curve 1
and Se(k) in curve 2, It can be seen that the curves are in disagreement at low k
over the height of the first peck, but in quite good agreement at high k ( » 4A-]).
These curves can also be compared with the calculated model structure factor S(k)
curves of figures 3.2 to 3.6. No model curve agrees with either experimental
curve for all k. Agreement is good for the CT 3 model in the region k > 4A_] and
for direct comparison with the experimental data this curve is shown as curve 3 in
figure 3.8.

For the CT3 and PT models we have also calculated the X-ray and electron
diffraction intensities according to equations 2.20 and2.22 ,with the atomic form
factor as above. Thus, in figure 3.9, curve 1 we show the X-ray data (Richter and
Breitling, 1958) together with the X-ray curves for the CT3 model (curve 2) and the
PT model (curve 3) and in figure 3.10, curve 1, we show the electron data (Moss
and Graczyk, 1969) together with the calculated model curves (labelled 2 and 3
as above). In figures 3.9 and 3.10, because of the damping effect of the atomic
form factor for the high k region, much of the structural information that was evident
in the comparisons of the S(k) functions is lost. Obviously, the intensity curves will
only reflect the same features that we saw in the S(k) curves, and the main point
that we wish to make here is that for X-rays, both model calculations have the
relative heights of the first two peaks reversed with respect to experiment.

The good agreement shown for k > 4A‘] between S(k) for the CT 3 model

and the experimental S(k) functions, coupled with the disagreement between S€ (k)
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Figure 3.9 : The X-ray intensity for silicon using neutral atomic form factors.

1. Experiment
2. CI3 model'
3. PT model
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_ Figure 3.10

: The electron intensity for silicon using atomic form foctors.
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and $*(k) below 4A-], suggests that the effects ot the first peak are not purely
structural and must therefore be partly due to the atomic form factor. This is

our second indication (the first being the "forbidden" reflection in the crystalline
case as discussed in Chapter 2) that the superposition of free atom-like charge
densities may be a bad model with regard to calculating X-ray and eleciron
diffraction intensities from oc -Si. Of course one experiment could be correctly
simulated for all k by a model calculation in which we make a suitable modification
of the atomic form factor in the low k region. However, this cannot be done
consistently for both X-ray and electron diffraction since one obtains a different
form factor in each case.

A consistent treatment of the electron density in o ~Si is important because
the structure factors and total intensities represent good tests of proposed model
structures and discrepancies at any k between theory and experiment could be
interpreted s structural facets of a model. Structural information obtained from
the structure factor S(k) or the reduced intensity function F (k) (equation 3.1) is
unambiguous for large k where the scattering is from the highly localized core
states, For this region comparisons between theory and experiment for the S(k)
and F (k) curves are to be preferred to those for the full intensity.

But S(k) and F (k) are basically functions derived from the measured intensity
using the atomic form factor and thus for the low k region, to study the effects of
covalent bonding, we shall need to look at the total intensity [(k). First of all,
however, we require a realistic model of the electron density distribution in ec -Si.
In Chapter 1 of this thesis we gave some of the reasons for our believing in a
localized approach to modelling the fo.fcd electron density e (r). Our objective

in the next section will be to obtain such a model for the electron density in a

single covalent bond. We begin this important section of our work with a discussion
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of some recent arguments directly in support of localized bond densities.

3.5 Arguments in support of localized bond densities

As discussed in Chapter 1, for crystalline Si one can clearly generate an
exact electron density © (r) using Bloch waves calculated by the well established
band theory methods. However, this delocalized approach is not a suitable starting
point to discuss the disordered case in which one does not have lattice periodicity.

Despite the many electron aspect of the problem it is well known that the
ground state electron density e (r) can be constructed from a one body potential
V(ar') (Hohenberg and Kohn, 1964). However, this potential depends on the exchange

and correlation energy Exc[' {3] as a functional of the charge density @ through

+ dE..Cel 3.8
Je

where VHcrfree is calculated for the exact electron density, and unless good physical

HaMTREE

\/(,C) : V

arguments exist for constructing the second term as the right hand side of equation
(3.8) this approach would not be fruitful. When the eleciron density Y () is slowly
varying good arguments (Hohenberg and Kohn, 1964) exist for setting up the exchange
and correlation coniribution to the one-body potential, but in general this is not so
such a prescription failing when one has a rapidly varying g (r} with atomic like
density gradien’rs'.

Nevertheless, given the existence of such a one body potential, a localized
orbital approach (Anderson, 1968 and 1969) has been developed (Bullett, 1974, 1975
and 1976) for the covalently bonded semiconducférs. Anderson models V (L) by a

superposition of localized potentials centred on the nuclei R .,

Vie) = SV, (£-Ry) 3.9
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and then uses pseudopotential ideas to calculate localized orbitals for a
covalent system (essentially an interpretation of the Huckel method for
organic molecules).

Bulleit has applied this approach to diamond, graphite and silicon,
and in so doing gives some justification to the method we use here for con-
structing a localized bond charge distribution. Bullett considers a localized
bond orbital between two isolated atoms A and B gb:b , say, which one would

expect to satisfy some bond Schrodinger equation of the form

Hao 195> =€ 1075 310

But in the solid state, of course, an electron in the bond feels the perfurioing

effect of all the other atoms which Bullett writes as

\/oJo 2 H - }—l ab 3.11

where H is the total one electron Hamiltonian. By projecting out a term in bond

orbitals on other sites

[ Hop+ VamS10.0<0 V10,0 2 €, 100 312

" where Vcd is the effect of atoms C and D, he was able to show that most of this
perturbing potential is screened out. The important result for our work is that the
self consistent solutions of equation (3.12) are well represented by the normalized
sum of Pauling type hybridized orbitals on each atom. The valence bond structures
obtained using only these functions and a simple model for V_  of equation (3.9)
were found to confain the broad features of experiment with regard to bulk moduli,
bond lengths and bond energies, and also explains the non-existence of the

graphitic structure for silicon. In view of the inherent difficulties in
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calculating EXCEQJ » and hence the one body potential V (r), in the covalent
semiconductors it is interesting that a many electron approach (Herbert, 1974)
ClgFliﬂ cc.mcludes with the validity of the localized bond concept. Herbert's
work, essentially extracting a localized bond picture from band theory, also
predicts the absence of states in the energy gap in o¢ -Si and thus explains
the experimentally observed sharp band edges (Donovan et al, 1969).

Thus, assuming that we can build the charge density in the amorphous
state by superposing localized distributions we shall take, to be specific, the
linear combination of atomic orbitals (LCAQ) description of a covalent bond
(although any other description could readily be incorporated within the
theoretical framework set out below). We shall construct the LCAO electron
density for a single bond in the crystal and then assume that this density can
be carried over, intact, to the amorphous state. In fac;r, Raman spectra
calculations (Meek, 1977) have indicated that this may not be the case, but
that any differences befw‘een the amorphous and crystalline densities will be
small. (The alteration of the charge density in the bonding region appears to
" be a necessary consequence of the presence of odd-membered rings in the
structure),

In the chemist's picture the covaier}f bond in Si is due to sp3'hybridizaﬁon.
Using orthogonalized Slater orbitals this hybrid, for Si, takes the form

q>+ (r) :%{\};Jr)iﬁ*}/w(ﬂ} | 313

L

where the notation used is as in figure 3.11 and

\l/3s(r) - A rle,x‘)(-}j,r) - Brexp (;}A,_f) - Ce.xP (”JJ3')
\{»3\9(,';) 2 Dx.rexp(-M.f) - £ xexp(dua.") 3.14
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Figure 3.11 : The geometry used in constructing the bond orbitals.



where the constants have the values shown in Table 3.2. The wavefunctions
are normalized, the unit of length being half the Si-Si bond length, which is
also given in Table 3.2. i

Then we form a molecular orbital for the bond by a linear combination

of sp3 orbitals centred on the two Si nuclei participating in the bond

Wy = L) + ¢ gd)/e)” 315

where S is the overlap integral given by

S = f{ CP*(,‘;-) q)_ ( ';o.) UL,: 3.16

and the charge density in the bond is given by

otey - 1) l” 317

and evidently

f‘_ ple)de = 2 elochrons 318
The resu I:ing bond charge density contours are shown in figure 3.12. Here we
have added % of the Si atom core electrons on each end of the bond to form the
basic scattering unit for Si, this unit containing seven electrons in all.

In figure 3.13 we show the charge density contours formed from the super-
position of free atoms model, again with & of the silicon core electrons included
on each atom. The marked difference between the superposition density and that
of the LCAO density of figure 3.12 is the absence in figure 3. 13 of the closed,
almost spherical contours around the bond centre.

Thus the LCAO contours indicate that a better model of the covalent bonding
_in ¢ ~Si would include, in addition to the superposition of spherical charge clouds
on each atom, a spherical charge distribution at the bond centre - the bond charge.

This is an idea that has been exploited previously (Phillips, 1968). We want to



Table 3.2 : Constants for the Slater wavefunctions for silicon

Constant : Valve ©
M 3.07
My 10.933
M3 30.414
A 6.35
B 21.90
C 0.41
D 10.57
E 34.98

+
The unit of length = 1,175 A, half the Si-Si bond length.



Figure 3,12

Charge density contours for the LCAO description

of a silicon-silicon covalent bond.
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Figure 3. 13

Charge density contours for the superposition
of free atoms model.
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Figure 3.14 : Charge density contours for the three spherical distributions

model of a covalent bond.
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emphasize here that whereas Phillips was concerned with dielectric properties
and lattice dynamics, and for his purposes was able to model the bond charge

as a point charge, we are concerned witli modelling diffraction intensities which
require a spatial bond charge distribution.

3.6 Charge density in one bond

Having given a summary of the arguments for building the charge density from /
localized bonds we shall now discuss, explicitly, the way in which we have
modelled the electron density in a single Si-Si bond. This charge density is
defined by equations (3.13) to (3.17) and contains two electrons. The core
electvons that are included in the basic scattering unit, as defined above, are,
of course, already spherically symmetric about the Si c’roms.‘ Our preblem is
thus one of determining what proportion of the two valence electrons should be
associated with the spherical charge distribution at the bond centre,

We represent the covalent bond density approximately as the sum of two
identical spherical charge distributions o _(r) say, at the ends of the bond
and a different spherical disfribu_ﬁon e b(r) at the centre of the bond, Thus,

again referring to figure 3.11, we have
o) = go_(tﬁ + ebH{.-ED + 5’@“5-1%1) 319

Now the electron density o (L) can be expanded about A in Legendre Polynomials
giving
5
e () - 2 Qn(rl) Pﬂ (_(.os@r) 320
Gz 0 ~

where er‘ is the angle between vector 1y and the internuclear axis vector R.
(o d

The bond form factor is given by

fFlg) = [ pweplibg)d 3.21

~S

(a4
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and combining equations (3.20) and (3.21) we have

£y = & F L () Pn(ocse,i) 322

“

where _
falr) ‘L g () La-'“'fl_)ﬂ(kﬂ dr 323

and @ is the angle between vectors k and R. However, by combining equations
3 sond &

(3.19) and (3.21) we obtain

§(§’) ~ -@a(k) {_ |+ ex?(zil;.ﬂ)} 3.24

+ gbex?('tg%)

where )

Py
i{:o,(k) = jo eo(.f) Ll—'!TrQSLri_z_ke dr 3?5
(o

with a similar relationship between fb(k) and (.)b(r). Then, using Bauer's

expansion of a plane wave in terms of spherical waves

exp(ik R) =% " (m«-n)_)n(ka}Pr‘(Cost} 326

~ (nY
and equating coefficients of Pm(cos @, ) in equations (3.22) and (3.24) we

obtain

'FQ () 2 ‘FQ (k) { [+ SL"_’_‘»}__“‘R} “+ Ib(k) S1nkR 327

AKR KR

giving in particular ot k =0

£,0) = 25 (o) + £ (0) -2 328

whilst forn > 0

Fal) 2 (aaan] {~a(k)Jf"(a.mzH{&(k}Jnum)} 3.29

Thus if we choose for fa(k) and f b (k) to simply reproduce lowest orders in the
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harmonic expansion of equation (3.22) we obtain

£ 2 3£ 0] (kR) - £, (k) ] (xR) 330
3§, (kR)(1+3_(ake))-3) (kR)J (2KR)
and
£ou) - £ 0Dy ax))) - 3£, (k)] (akR) 3.31

33, (R L] (2kR)) - 3§ (IeR) ] L2 %R)

Clearly, different expressions for Fq(k) and Fb(k) could be obtained by pairingl
equation (3.27) with any of the n orders of equation (3.29). For each value
of k our model has only two parameters, namely fq(k) and fb(k), and as soon
as we include more than two ferms in the expansion of equation (3.22) the problem
is overdetermined.

However, if we assume a choice of fq(k) and Fb(k) satisfying equation (3.27)

we can write for all orders in equation (3.29)
R
£ () 2 (2a41) {Jfa(k)Jn(lkR) + ,fb(k)_jn(kfa)z +fa)  3.32

where Fi (k) is some remainder function representing that portion of Fn(k) not repro-

N
duced by our choice of Fa(k) and Fb(‘k). If we now minimise Z | Fn\l with

acsl

respect to Fa(k) or Fb(k), where N is the number of terms that are included in equation
(3.22) then we obtain a least squares fit to the first N terms of the expansion. Thus

we require

N 2
8 2 a0 (aed [ £otk)- R0 (xR) | (2] + £, (1) (wr)]|
de“ Vo Jgo(2kR) " :

= O 3.33

for each value of k.

If we write

B, (k) = (2a+1) folk) ], (akR) 334

1+ Jo ( 2KR)
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and

4Bh(k) = (’).nn)[.\o(kﬁ)_]n(ike\.;j,,(km.] 335

U+ Jo (2kR)

then we obtain

N

foo) o T [£,00-8,00))Bati) 336
N= ZIN B: (k)
and clearly fq(k) can be obtained fro':n equations (3.27) and (3.36).

In figure 3.15 we show fb(k) as extracted using equation (3.36) for
increasing values of N, Clearly for N =1 we simply regain equation (3.31) and
it can be seen that fb(k) obtained for this value of N (f !]3 (k) in an obvious notation)
is only slightly modified as we include higher orders and to graphical accuracy there
is no difference between fg (k) and fé (k).

In figure 3.16 we show the form factors for our basic scattering unit contain-~
ing 7 elecfrons;' the bo-nd charge form factor fb(k), curve 1, and the atom form factor

fe(k), curve 2 where

fotx) = L) o £ () 337
4

fa(k) and fb(k) are as calculated from equations (3.27) and (3.36) with N =4 and
f (k) is the form factor for the Si core electrons.
core

One problem with our procedure for modelling the covalent bond is that
using equations (3.27) and (3.36) the form factors fa(k) and fb(k) are difficult to
extract accurately, for small k, since both numerator and denominator in equation
(3.36) take on very small values. However, if we extrapolate the curves to k = 0,

then fa(k) approaches a value of fG(O) 2 0.15 electrons and fb(k) a value fb(O) 2

1.7 electrons.
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Figure 3.16 : The form factors for silicon.
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Of course the complete LCAO bond density cannot be exactly represented
as a sum of three spherical distributions and we have simply adopted one
approximate way of doing so.

We can examine fEe problem in a slightly different way, by looking at the
total bond density in r space. We have from equations (3.15) and (3. 17) (where
again the notation is given in figure 3, 11)

oce) « (¢ () CP_I(;J +1¢+‘i')q>_‘%)) 338

(1 +5%)

Immediately we see that the bond density consists of two one-centre terms, which
we can associate with the two atoms at either end of the bond, and a two-centre
term which we cannot associate uniquely with either atom. The overlap integral,

S, of equation (3.16) has the value for Si of 0.77 and thus each one-centre ferm
contains 1/(1+ S) & 0.56 electrons whilst the two-centre term contains 25/(1+S) %
0.88 electrons.

In figure 3. 17, we show the charge density contours for the two-centre term
and it can be secn that this makes a major contiibution to the charge around the
bond cenfre;

The one cenire terms are not spherical about the atom sites since they contain

explici‘rl\y (see equation 3.13)

2
_i;)_j;(i) = 1 ['L!‘l(r)—k-%'\l(qéﬁ,) .;.ad"gmp(rw(;\] 339

b+S 4 (1+5) 3% 3 35 3px
and clearly, due to the p orbital, the last two terms on the right hand side of equation

(3.39) have a directional character. In figure 3. 18 we show the charge density

contours for these two terms, We have, of course, included the terms from both
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Figure 3.17 : Charge density contours for the two centre term
in the LCAO covalent bond.
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Figure 3. 18

0.02

: Charge density contours for the directional one-centre

terms in the LCAO covalent bond.
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¢:(Q) and ' (:,'2) . It can be seen that there is a significant
contribution to the charge in the bonding region.

.The remaining contribution to equation (3.39) is the ‘\PQ (r) term

35
which, clearly, is spherical around the atom site. The amount of charge in this
spherical distribution is 1/4 (1 + S) % 0.14 electrons. This value is approxi-
mately that for fa(O) obtained by the extrapolation of fa(k) extracted from equations
(3.27) and (3.36). It thus appears that the harmonic expansion procedure for
obtaining fa(k) and Fb(k) places all of the two valence electrons around the bond
centre, except for the charge contained in the ’\}f,:s' terms at each end of the
bond. However, this result appears to be in good accord with the picture presented
by the charge density contours of figures 3.17 and 3. 18.

We wish to stress that there is no unique way of extracting expressions for
fd(k) and fb(k). To make progress we have adopted a method suggested by the |
LCAO contours for the Si covalent bond (figure 3.12), Because of this lack of
uniqueness, the important point for calculating diffraction intensities, is to examine
the corresponding bond charge density contours obtained from the superposition of
three spherical distributions model. These are shown in figure 3. 14 where, as before,
we have added I of the Si core eVlecfrons to each atom participating in the bond.
There can be no doubt that our present modelling of the LCAO density, shown in
figure 3.12, is a vast improvement on the superposition of spherical atom densities
shown in figure 3.13. With the density contours of figure 3.14 plus the structural
models discussed in 8§ 3.2 we have a perfectly proper way of modelling the effects
of chemical bonding on the X-ray diffraction and electron diffraction intensities.

3.7 Diffraction Intensities for crystalline Si

An important property that we must demand of our model of the electron

density distribution is that it will correctly reproduce the X-ray intensities for the

-
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crystalline state. Only then can we move on with co’nfidence to consider the
amorphous case. However, we emphasize at the outset that we do not, in any
way, claim to compete in sophistication with other specifically crys.tclline
studies (for example, that of Aldred and Hart, 1973).

We can define the X-ray diffraction infensity at the Bragg reflections

according to

T, = lsual” 340

where
S(k) = J Z‘, dic-R m}mexp(':&.;)d’.:_&(k)
+ S E d (£~ €Bona- Yexplik f\dr{'(k) 341
&ong CENTRE
CENTAE
and

;‘c_(k) = 4‘-(:5,(\() + j:¢°r.z (k) 342

fa(k) and Fb(k) are defined by equo;ﬁons (3.27) and (3.36) and fcore(k) is the form
factor for the Si core electrons.

Here the intensity is normalized to one composition unit over which the
summation is taken. The usual basic unit for the diamond lattice contains eight
atoms and sixteen bond centres. The relation between Fc(k) and Fb(k) at some of
the Bragg reflections are given in Table 3.3, from which it is clear that there is
non-uniqueness in the choice of fc(k) and fb(k) at other than the (220) and (222)
reflections. Nevertheless, as can be seen from table 3.3, the particular choice

of Fc(k) and f

b(k) that we have adopted here, does indeed well represent the crystal

data.



Table 3.3

Reflection
(111)
(220)
(311)

(222)

Some observed and calculated Bragg intensities

for erystalline silicon

. Calculated
'S (k)l intensity
4 ﬁ(fc+ ﬁ‘fb) 60.66
8f 68.08
c .
4 ﬁ(Fc- ﬁfb) 44,22
16, 1.28

McConnell and Sanger (1970)

59

Observed *
intensity -

60.81
67.84
44.12

1.36

Note : the (222) reflection is the so-called forbidden reflection.
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The crystalline Bragg reflections provide the first test for our model of
the charge density and the results are encouraging. They can also be used to
give further indication of the value of Fb(k) (and, of course, Fa(k) Yask =0
and to help clarify whether very different choices of the form factors Fb(k) and
Fa(k) are possible.

We divide the normal atomic form factor into core and valence parts and
infroduce the parameter ¥ @ © £ ¥ < | representing that fraction of

the 4 Si valence electrons that are located around the atom. Thus we write

fooad = Foel) « ¥ £ 0K 343

The bond form factor as deduced from equation (3.36) is approximately gaussian

in shape and therefore we can write

FoU) = (2-2%) expl(- gk?) 344

so that the amount of charge in the bond charge distribution is (2 - 2 ¥ ) electrons.
The superposition of spherical atom-like densities model produces charge contours
with a very low value ot the bond centre (see figure 3.13), whereas the LCAO
density of figure 3. 12 has a high value at this point. Therefore we choose our
bond charge density e b(r) to reproduce the bond cenire value of the LCAO
density eo , say, and write

QerJ = P, vxp (—-’d-fl) : | 345
. The parameter \3 ?n equation (3.44) can now be written in terms of eo and

since we have from equation (3.45)

o0

acb (k) = f ebu) 4vr1s£kr°\, 346
‘ © ko

e, (‘ﬁ‘)gl"* exp (-k*/t4ol) | 3.47

n

m——
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and comparing equations (3.44) and (3.47) we have

2- A¥Y = e, ('n-/c(f”‘ ‘ \3.'48
and | '
g I P 349
= [(1-13')/3012/3@4? 350
giving

@-21¥)exg(- K (228) %) 35

;'(k)
b [E3 A

n

Thus using the relations between Fc(k) and Fb(k) given in Table 3.3 we can now
determine the crystalline Bragg reflections in terms of a single parameter ¥
- (since eo is known from the LCAO bond density @ (‘l:) of equation (3.17) ).
This parameter ¥ gives us a direct measure of the amount of charge located in
the bond centre distribution.

In Table 3.4 we show the first few Bragg reflections together with the
value of & for which the best agreement is obtained with the experimentally
observed intensity.

With the confidence drawn from these, admittedly limited (we are drawing
conclusions for only 4 points in k space, the Bragg reflections, and one point in
r space, the bfand centre) but nevertheless encouraging, results we shall now move
on to discuss the amorphous case. fhe idea behind our method of modelling the
bond charge density distribution should now be’evident. Our objective has been
to develop a way of including the effects of cova.lenf bonding in a calculation of
the X ray and electron diffraction intensities for oL -Si. This we have now achieved
with the extraction of the bond form factor fb(k). The important point is that we can

retain the assumption contained in equation (2.5 b), namely that we can write the
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Table 3.4 : Parameter ¥ for optimum fit to Bragg reflections

in silicon

Reflection |s ] ¥
(111) 4 JZ(F_+ J25) 0.2
(220) 8 _ 0.1
(311) 4 J2(f - J2) 0.22
(222) 16 0.08

b
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total electron density in e ~Si as a sum of spherical distributions. The necessary
complication, produced by our approach, is that, from the point of view of X-ray
and electron diffraction, we must treat o -Si as a two component system; these
fwo components being the spherical charge distribution at each bond centre and the
spherical distribution-on each nucleus.

3.8 X-ray and Electron Diffraction Formalism for the covalent Bonding Model

The required equations for the calculation of X-ray and electron diffracticn
intensities from ©¢ -Si, as a two component system, can easily be obtained from the
formalism of Chapter 2. We need to interpret equations 2,16 and 2.18 in terms of
our two components, the charge on the atom and the charge at the bond centre.

We thus need to know, in addifion to the nuclear-nuclecr correlation function
g(r), those of the nuclear-bond centre gnb(r), say, and bond cenire-bond cenire
gbb(r). The basic unit for the summations of equation (2, 18) contains one Si atom

and two bond centres, Thus the X-ray intensity is given by

L k) = £ 710050 4 2§08 WlrafwfuwS (-] 352

(normalized to one basic unit), where the Si'(k) are related to the correlation
functions gij(r) by equation (2.17a). Clearly, equation (3.52) reduces to equation
(2.20) in the limiting case when

a) We have no charge at the bond centre, i.e. fb (k) =0, and

), the free atom form factor. Similarly, the electron

b) Fc(k) = fa’romic (k

diffraction intensity is given by

- L
L (k) .k {Ez - foa] Sk) +2 3C:u<) Splke)
e

—20%ae Lk)-!][z—&tkﬂﬂ,tk)} 353
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and again putting Fb(k) = 0 and fc(k) mic(k) we regain equations (2.20)

- fclfo
and (2.22). Equations (3.52) and (3.53) are our basic formalism for modelling
the diffraction intensities from o =Si to allow for the effects of chemical bonding.
" Given the coordinc—xfes for the structural models described in § 3.2, the same
procedure as outlined in & 3.3, for obtaining the nuclear-nuclear correlation
function g(r), has been used to determine the other correlation functions and hence
the partial structure Facéors Snb(k) and Sbb(k). Snb(k) .omd Sbb(k) (curves 2 and 3
respectively in each case) are shown in figures (3.2), (3.3) and (3.4) for models
CT 1, 2, 3 respectively, figure (3.5) for the Steinhardt model and figure (3.6) for
the PT model.

Using these model partial structure factors together with the form factors

(k) we have calculated the X-ray and electron diffraction intensities

fa(k) and fb

for each model using equations (3.52) and (3.53).

3.9 X-ray diffraction

3.9.1 CRN models

In é 3.3 and é 3.4, we saw in figures 3.2 to 3.6 and 3.8 that the best
agreement between model and experimental S(k) functions at, highk ( 5 4 A—]),
was obtained for the CT3 model. Since the scattering ot high k arises from the Si
core electrons, our interpretation was that the CT3 model provides our best
available structural model.

Proceeding on this context we have first calculated the X-ray diffraction
intensity for the CT3 model. The three contributions to equation (3.52) from
nuclear-nuclear, nuclear-bond centre and bond cenire-bond centre correlations,
curves 1, 2 and 3 respectively, 1‘ogefher: with the total intensity, curve 4, and the

experimental intensity, (Richter and Breitling, 1958), curve 5, are shown in figure



3.19. It can be seen that .now, with the inclusion of the bond charge model,
theoretical and experimental intensities are in very good agreement for all k.
At the first peak, the nuclear-bond centre correlations contribute about 20%
of the peak height but give a small negative contribution at the second peak.
The bond centre - bond centre correlations give a much smaller contribution
to the first peak (~ 5%) and a negligible contribution at the second peak.

In figure 3.20 curves 1, 2 and 3 we show the total X-ray intensity
for models CT 1, 2 and 3 respectively. This piciure shows the effects on the
diffraction intensity as the topology of the network is gradually altered. It is
evident that the diffraction intensity is quite a sensitive test of the network
topology (or more correctly, since the intensity represents average structural
information, of the ring statistics). Agreement between theory and experiment
at all k is improved as the number of odd membered rings increases. This can
clearly be seen by referring to figure 3. 19 where agreement between theory and
experiment is indeed good. Finally, the CT1 model predicts a small peak at
k ~4.5 A_] which is n;f seen in experiment. This feature disappears as the
number of odd membered rings increases.

For the Steinhardt model, the three contributions from equation (3.52)
together with the total intensity and the experimental intensity (Richter and Breitling,
1958) are shown in figure 3.21. The labelling is as in figure 3.19. Agreement with
experiment, for all k, is not as good as that given by the CT3 model. The Steinhardt
mode| does not predict the correct height of either of the first two peaks and gives a

peak af k ~ 7A_], where a shoulder is observed experimentally.

3.9.2 PT model

The three contributions from equation (3.52), together with the total

intensity and theexperimental intensity (Richter and Breitling, 1958) are shown in
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The X-ray scattering intensity for silicon for the CT3 model.
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Figure 3.20 : Effect of odd membered rings on the theoretical X-ray fnfensify.

1. CT1 model
2. CT2 model
3. CT3 model



Figure 3.21

e T
1.

2
3
4,
5

68

k(A

he X-ray scattering intensity for silicon for the Steinhardt model.
Contribution from Si-Si correlations

. Contribution from Si-bond centre correlations

. Contribution from bond centre-bond centre correlations

Total intensity

. Experimental intensity
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Figure 3.22 .
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The X-ray scattering intensity for silicon for the PT model.

1. Contribution from Si-Si correlations

2. Contribution from Si-bond centre correlations

3. Contribution from bond centre-bond centre correlations
4. Total intensity

5. Experimental intensity
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figure 3.22. The labelling is as in figure 3.19.‘ The PT model correctly predicis
the height of the first experimental peak at k = 1.8 A_] and the nuclear - bond
centre correlations contribute about 25% of this peak height. At the second peak
the model badly overestimates the peak height. This behaviour can clearly be
established as a structural effect since the bond charge correlations give only a
small negative contribution to this peak. Beyond 4 A" the PT model shows too
much structure, the broad experimental pedk at k &~ 5.6 A_] , for example, being

-split into two peaks corresponding approximately to crystalline Si Bragg reflections
(331) and (422). As was similarly found for the CT 1 model, a small peak is observed
at k=4.6 A_] which coincides with the position of the (400) reflection of crystalline
Si.

3.10 Electron diffraction

The three contributions from equation (3.53) together with the total intensity
and the experimental intensity (Moss and Graczyk, 1969) are shown in figures
(3.23), (3.24) and (3.25) for the CT3, Steinhardt and PT models respectively. The
labelling is the same as in figure (3.19) with the experimental electron data
replacing that of X-rays as curve 5. Generally the remarks made about each model
with regard to X-rays also apply in this case.

However, one interesting point is that although both the CT3 and PT models

- bredicf the correct height for the first peak of the X-ray intensity, only the CT 3
model does for the same peak in the electron diffraction intensity. The reason for
this is that the relative coniributions of the nuclear-nuclear and nuclear-bond
centre correlations to the total X-ray intensity at the first peak, for the CT3 and
PT models, are different. This means (since the bond centre -bond centre
‘correlations give a small contribution) that either the CT3 or the PT model (or both)

must predict the wrong intensity for the first peak in the electron case.
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(A7)

Electron scattering intensity for silicon for the CT3 model.
. Contribution from Si-Si correlations

Contribution from Si-bond centre correlations
Contribution from bond centre-bond centre correlations

Total intensity
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Experimental intensity
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i | kia™1)

Electron scaftering intensity for silicon for the Steinhardt model.
. Contribution from Si-Si correlations

. Contribution from Si~-bond centre correlations

1
2
3. Contribution from bond centre-bond centre correlations
4. Total intensity

5

. Experimental intensity
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Electron scattering intensity for silicon for the PT model,

1.

Coniribution from Si-Si correlations

2. Contribution from Si-bond centre correlations

3. Contribution from bond centre-bond centre correlations
4.
5

. Experimental intensity

Total intensity
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3.11 Discussion

The results of our calculations favour overwhelmingly the CRN model of
Connell and Temkin as modified by Beseman and Bobbs to include odd membered
rings (the CT3 model). | However, the original CRN model containing only even
membered rings does not produce significantly better agreement with experiment
than was obtained for the PT model . There is thus some scope for improvement
of a model based on ordered units, using the same procecélure as adopted for the
original Connell-Temkin model (Be‘emcn and Bobbs, 1975).

Our work has also demonstrated that chemical bonding effects are important
at the first peak in o¢ -Si, the agreement between theory and experiment being
now fully qualitative. We would like to reiterate that conclusions about structure
can be made based on a comparison of the model and experimental S(k) functions
fork > 4 A-] . For low k, however, it is necessary to examine the total intensity.
Also, without the neutron experiment, it is necessary to examine both X-ray and

electron intensities.
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CHAPTER FOUR

AMORPHOUS CARBON

4.1 Introduction

An obvious extension to the work on amorphous silicon, discussed
in Chapter 3, is an investigation of the §catfering properties of amorphous
carbon. Carbon, in the chemist's picture, has an essentially equivalent
valence electron structure to silicon and is known to participate in covalent
bonding.

Amorphous carbons can be produced by a variety of methods (for a
review, see Yamada, 1968) and have many applications, possessing low density
and high mechanical strength. However, the properties of a particular sample

of amorphous carbon depend on how it was prepared and on its thermal history.

Thus the term amorphous carbon does not define a unique structure
as is bel%eved to be the case for «<-Si, bu'f rather a class of related structures.
The term amorphous is also slightly misleading in the case of carbon because it

. was established at an early stage (Warren, 1934, Franklin, 1950) that non-
crystalline carbons do contain regions (sometimes large) that have a crystalline
nature (if only two dimensioncl): At the outset, then, it is believed that the
structure of amorphous carbons can be explained on the basis of the micro-
crystallite picture.

Carbon has two crystalline forms, diamond and graphite, the latter
being the stable form under normal c0ndif§ons, and analogues to both are believed
to exist in the amorphous state. Thus an amorphous carbon may contain both
trigonally and tetrahedrally coordinated carbon atoms, in graphite and diamond-
like regions respectively.

Following our work on C -Si, our emphasis here will again be on the
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interpretation of X-ray and electron diffraction intensities in terms of the
electron density in the amorphous state. We shall need to consider covalent
bonds in both diamond and graphite and thus both sp3 and sp2 hybridisation
of the carbon valence electrons. Clearly, however, both forms of bonding
can be treated equally well within the theoretical framework of the bond
charge model developed for o¢ -Si.

Finally, the ratio of core/valence electrons in carbon is lower than
for silicon. Thus we expect the effects of covalent bonding to be more evident
in the X-ray and electron diffraction intensities from amorphous carbons than
from oC -Si.

4.2 The Structure of Amorphous Carkons

Amorphous carbons have been subjected to extensive investigation by
X-ray diffraction and to a lesser extent by electron and neutron diffraction.

As long ago as 1934 X-ray investigations and subsequent r space analysis via
fourier transform (Warren, 1934) indicated that carbon blacks, the so called
‘glassy carbons' formed by the thermal degradation of organic polymers,
contained interatomic distances approximately the same as those found in
crystalline graphite. However, the diffraction pattern could not be explained
simply in terms of microcrystalline graphite.

The theory of random layer lattices was developed (Warren, 1941) and
it was demonstrated that the X-ray diffraction patterns from carbon blacks were
approximately explainable in terms of such lattices. The structure was envisaged
as groups of graphite-like planes arranged parallel to one another at about the
graphite inter-plane spacing but with _rcndom orientation about the inter plane

normal. The diffraction pattern from such a random layer lattice contains two



types of reflection; namely, two dimensional ( h k 0 ) reflections arising
from the hexagonal structure within a layer and one dimensional (001 )
reflections arising from the parallel stacking of layers. Due to the random
orientation of the layers the diffraction pattern contains no three dimensional
( hk | )reflections as would be found in the usual crystalline graphite
structure.,

We shall refer to the random layer lattices, in this work, as the 'micro-
crystallite' domains. Warren's random layer lattice equations were based on
these microcrystallites being distributed with random orientation and embedded
in a matrix of carbon in a less ordered state. The atoms in this disordered
carbon were assumed tfo scatter independently, giving a gaseous like background
to the total observed diffraction intensity.

Subsequent studies of similar non-crystalline carbons were based on the
interpretation of the structure in terms of random layer microcrystallites. From
Warren's theory the average layer dimension, La' could be determined from the
profile of the two dimensional reflections. The stacked layer height, Lc, and
the interplane spacing could be determined from the profile and position (on the
k axis), respectively, of the one dimensional reflections, in particular from the
prominent (002) reflection.

It was later found necessary (Franklin, 1951 ) to distinguish between two
types of non crystalline carbon. The random layer type of carbon as studied by
Warren was labelled a non-graphitic carbon. Certain of these non-graphitic
carbons (referred to as soft-carbons) were found (Franklin, 1951 ) to show a
gradual change from the random layer structure towards the ordered structure of

graphite when heated to sufficiently high temperature. This could be recognized
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in the diffraction pattern by the appearance of the three dimensional (hk 0 )
reflections of graphite. The size of the microcrystallite regions was found to
depend on the temperature of heat treatment (Franklin, 1951 @) and by varying
this temperatu‘re Franklin was able to prepare a continous series of structures
intermediate between the non-graphitic carbon and crystalline graphite. These
intermediate states contained a mixture of orientated and disorientated layers
and were, rather confusingly, labelled graphitic carbons. However, certain
non-graphitic carbons were also found (Franklin, 1951 @) that could only be
graphitized, if at all, by heat treatment to very high temperatures. These so
called hard carbons appeared to be those non-graphitic carbons having micro-
crystallite régions with a small layer dimension La. This agreed with the
observation (Franklin, 1951 @) that, for the soft carbons, graphitization would
not occur until the layer dimension L(J attained a size of approximately 80~ 100 A.
It was recognized at an early stage (Franklin, 1950) that the nature and extent
of the disorganized carbon was of great significance for understanding the different
behaviour of hard and soft carbons upon heat treatment. It was also remarked
(Ergun and Tiensuu, 1959) that the hardness, density and non-graphitizability of
the soft carbons did not appear to be compatible with an entirely graphite-like
sfruci;ure. The emphasis of Warren's work had been on the interpretation of X-ray
diffraction patterns from carbon blacks in terms of the hexagonal layer structure.
This was because the diffuse (hk0) and (00 | ) reflections observed for the carbon
blacks corresponded approximately to the (002), (100) and (110) reflections of
graphite, However, it was pointed out (Ergun and Tiensuu, 1959) that for the
small layer soft carbons the observed one dimensional reflections were weak
(Franklin, 1951 Q) and that the diffuse, supposedly two dimensional reflections

could be interpreted on the basis of other crystalline forms of carbon. The



calculated intensity (Ergun and Tiensuu, 1959) for a diamond cubic lattice
gave diffraction peaks corresponding to the positions of the (100) and (110)
peaks of graphite. Of course the presence of the one dimensional (00 | )
reflections in the experimentally observed infensities indicated that layered
structure was definitely present but the question raised by Ergun and Tiensuu's
work was, if significant amounts of, say, diamond structure were present would
it be detectable in the diffraction intensity. Of course, this picture of amorphous
carbons containing two distinct types of structure fitted in with the earlier pro-
posed model (Wa‘rren, 1941) if one associated the second structure with the
disoréanized carbon mairix. The difficulty was to do so without implying too
much correlation between atoms in different microcrystallites.

The electron diffraction study of an o =C thin film prepared by vacuum
evaporation (Kakinoki et al, 1960 a) gave strong support to the model suggested
above (Ergun and Tiensuu, 1959). The radial distribution function, g(r) obtained
from the diffraction intensity (equations (2.17 ¢), (2.20) and (2.22) ) had a
broad nearest neighbour peak midway between the graphite nearest neighbour
distance of 1.42 .& and the diamond distance of 1.54 Z. The existence of two
atomic distances in the sample was further demonstrated by a k space comparison
between theoretical and experimental intensities (Kakinoki et al, 1960 ). It
was found that if fwo nearest neighbour and two next nearest neighbour distances,
corresponding to those in diamond and graphite, were included in the Debye
intensity equation (equation (2.11) ) then the calculated and experimental
intensities were in phase at high k. If only the graphite or diamond distances
were used then theory and experiment were out of phase at large k. Consequently

a structural model was proposed (Kakinoki et al, 1960 ) in which the random
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layer microcrystallites were linked together by a.fe’rraheélral random network
of carbon atoms of the form that we have used for the modelling of o -~Si.
The use of a random network as opposed to diamond crystal removed the
problem of inifroducting too much correlation between microcrystals. Clearly
though one has fo be careful about drawing conclusions for the structure of
the carbon blacks based on this study of an amorphous carbon obtained by
vacuum evaperationThe layer dimension for the vacuum evaporated carbon
was estimated (Kakinoki et al (1960 ) ) to be approximately 10 /g\ It was
thus surprising in view of the work on the relationship between layer size and
graphitization (Franklin, 1951@), that the vapour deposited sample was
subsequently found to graphitize easily at a 'low' temperature ( ~» 1000°C)
(Kakinoki, 1960 0). .

Support for the structural model proposed by Kakinoki came from an
X-ray diffraction study of glassy carbons prepared from an organic polymer
over a range of temperatures (Noda et al, 1964). The fourier transformed
diffraction data was consistent with the presence of two interatomic distances
in the amorphous samples. However, no diffraction peaks were detected that
corresponded to structures other than the layered microcrystallites. The samples
proved very difficult to graphitize even when heat treated to ~ 3000°C.

A more recent study of a glassy carbon heat treated at ~ 2000°C
(Mildner and Carpenter, 1974) indicated no evidence for diamond like fetra-
hedral bonding except perhaps in very thin layers linking large (La ~ 50 X\,
Lc~ 40 /?\) random layer microcrystallites.

Thus to summarize : amorphous carbons prepared at low temperatures
from organic polymers (Franklin, ]956, Noda et al, 1964) and carbons prepared

from the vapour at low temperatures (Kakinoki et al, 1960 } both show evidence
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for diamond-like structure as well as small layer microcrystallites of the sort
proposed by Warren. For samples prepared at high temperature (Mildner and
Carpenter, 1974) or heat treated samples (Kakinoki et al, 1960 a) evidence
for diamond-like structure is small and the hexagonal layers are much more
developed. Apparently, similar carbons prepared by different methods
(Kakinoki et al, 1960 , Noda et al, 1964) have very different graphitization
properties upon heat treatment.

Following the suggestion of Kakinoki, it is clearly of interest to
calculate the diffraction intensities from a model amorphous carbon containing
random layer microcrystallites linked by a tetrahedral random network. This
model can be applied to all the carbons discussed above (except the graphitic
carbons) if we allow the amount of random network and the microcrystallite
dimensions to be variables of the model. We shall, however, restrict ourselves
to considering random layer carbon experiments where there is clear evidence
for the two distinct carbon structures. It has been shown for a large layer glassy
carbon (Ergun, 1973) that if strain broadening of the diffraction peaks is correctly
accounted for, the theory of random layer lattices gives a good description of the
experimental intensity.

4.3 The nuclear-nuclear correlation function

In order to study the effects of covalent bonding on the X-ray and
electron diffraction intensities of amorphous carbons, we shall, as we did for
silicon, describe the covalent bond in terms of two identical spherical charge
distributions on the carbon atoms participating in the bond and a different spherical
charge distribution at the bond centre. To calculate diffraction intensities using

this electron density model, we shall again require the structural characterization
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provided by model partial structure factors. From the discussion of & 4.2,

it is evident that the structural problems presented by amorphous carbons

are much greater than those for ¢ -Si. The construction of a model of £ -C
of the kind used for o€ -Si is not a fruitful approach since such a model could
only be applied to one « ~C sample. We require a more general structural
approach that could be used to analyse several sets of experimental data.

We shall begin by obtaining an expression for the nuclear-nuclear
correlation function for a model amorphous carbon sample containing two
distinct types of amorphous structure. We assume that the two structural
regions to be considered, the microcrystallite and random network, are well
defined and’consequently that the nuclear-nuclear correlation Funcfior;s
gm(r) and gR(r) for an infinite extent of the microcrystallite and random network
regions, respectively, are known. (Hereinafter we shall use the superseript m
to denote quantiti es associated with the microcrystallite regions and the super-
script R to denote those associated with the random network). A schematic
representation of the proposed model structure is shown in figure 4.1. The micro-
crystallite domains are considered as identical perfect rectangular parallelepipeds
with dimensions X, R, J.

We first of all imagine that we are 'sitting' on an atom in the micro~
crystallite region. The correlation with another atom in the same microcrystallite
will be given simply in terms of gm(r). The correlation with an atom outside the
microcrystallite, however, will be a combination of gm(r) and gR(r). We thus need
to know, for an atom in a microcrystallite domain, what the probability is that an
atom separated from the first by a distance between r ;Jnd r +dr lies within the

same domain. This can be determined in the following way (Bell, 1968). Consider



Figure 4.1

Schematic representation of proposed model structure
for amorphous carbons
A. Microcrystallite region

B. Random network region
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a rectangular parallelepiped bounded by the pairs of parallel planes

x = % 3’/1

»
+

Y t /2 4.1

‘a -

1t

L

8/

and containing particles distributed randomly with unit density. The probability

of finding a particle in a volume element d x dy dz containing the point (x,y, z)
is

Flx,x) Fly,g), £z, &) dxdgyda

where

Fox,y) = | lxl € ¥/q

= O ixl >¥/q 4.2

The probability of finding a second particle separated from the first by a distance

in the range r to r +dr is then

. oon‘ﬁcde.rj ds [f(x,k’)f(j,ﬁ)ac(l,cg) %
s

x fL1+X,?)3C'(3'+J4,P)JC(E+D’J)}

where S is the surface

2 T
/\ +f,L1+1) —_ 2z

= r 4.3

We can now define the average pair distribution function G J-(f') by

¥R

writing the average number of pairs of particles (counting each pair twice)

separated by distances in the range r to r +dr as
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g FJ Grpd' (F1de - f&xd:ﬂd"'[ L"ls f(:_fﬂf(jdﬂacﬁJ) %

" f(X"'x;b’){(’j‘*‘}A'ﬁ) £(}+)J,<S')]o\r TAWA

Equcxﬁon (4.4) can be written in terms of G xr‘& Cr)

1

Gypg tr) .—.’fs ds Y (X )Y (am,g) vy, &) 45

where

o
(¥ = J{J £ O,0) £oxed,¥) dx
. ’ Va0

TS IR V2" B DY AP

O . OH\WGQ 46

Forr < ¥, ¢, d . 4.7

integrating equation (4.5) gives

Gy () = e L [or (xpy pdadY)
. . A

Ypd
¢ B¥d
+ et (X—r(ﬂ—&) -_[_3]E 4.8
3 L
and for v
r"} ¥i 4+ gt + & ' 4.9

the integrand of equation (4.5) vanishes over S and G a,FJ ( r) is zero.
This result expresses the fact that no two particles can be further apart than
the diagonal of the box. For values of r in between those given by equations

(4.7) and (4.9) the evaluation of the integral in equation (4.5) is most easily
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achieved by numerical methods. For an infinite rectangle the number of atoms

separated by a distance r to r +dr is just

2
- Gw (() = L{.'ﬂtr( ! . 4.10
and thus our required probability is just (compare the derivation of € (r), the

. spherical model size correction factor in & 3.3)

¢ (r) = pra(r) /C’oo Yy l,ﬂ

. ' ~ . . 1 .
Thus we write the nuclear-nuclear correlation function g (r) for an atom in a

microcrystallite region as

g ) = €, 08w v b 0) qfe) 412

Obviously (1 - ia-p(?) is the probability that the atom referred to lies
outside the microcrystallite and these essentially large r correlations are assumed
to be well described by gR(r), the random network nuclear-nuclear correlation
function,

We next consider that we are sitting on an atom in <': random network
region of the model amorphous sample. For this case we shall assume that the

nuclear-nuclear correlations gz(r) are well described by gR(r) forall r
gtcr) = ghen) 413

. . . 1
We now write the sample averaged correlation function g(r) as the sum of g (r)
and gz(r) weighted by the relative amounts of the two structural regions. Thus

we have (dropping the subscripts )’,p,é‘ on £ (r))
)

qle) = NT {Ctr)g"‘cr\ 4+ (1—ccr)) 3R&r)}+NQ3g(r)
n® + N7
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\

R .
where N™ and N are the number of trigonal and tetrahedral carbon atoms,

respectively, in the model sample and :
C e )
« . N | 415

'Nm-i-N&

is a measure of the fraction of layered structure in the model giving an approximate

mean density @ _ for the model amorphous sample of

m

R
. = e+ -adE, 416

o

Clearly, if the amount of random network is small, o 2 | , then equation (4.14)
reduces to the form of g](r) in equation (4.12). This expression has been used
previously (Howie ef al, 1?73) for the modelling_c;f o =Si with microcrystals,based
on the wurtzite structure, linked by thin regions of random network. The inclusion
by Howie and co-workers of the second term on the right hand side of equation (4.12)
improved the agreement with experiment over that obtained by using just a micro-
cryéfa”if;e correlation function.

Equation (4. 14) is the formalism for the nuclear~nuclear correlation function
of our model amorphous sample. It contains the microcrystallite dimensions
and the fraction o€ , of layered maférial, in a simple form and can thus be easily
applied to different amorphous structures. We can now complete the formalism by
defining the correlation functions g (r) and gR(r). '

Although the basic hexagonal structure qf the graphite-like layers l:nas been
.well established, experimental evidence (Franklin, 1950, Noda et al, 1964) indicates
large variations in the inter layer spacing in the ordered domains. [t has been
suggested (Pauling, 1966) that this variation in the layer spacing is related to two
’rypes-of layer structure, namely quinoid and turbostatic. The former is a structure

in which each carbon atom has associated with it two single and one double bond.
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The lcf.fer is a fully resonant structure in which all the in plane bonds are
equivalent, and the extra, unbonded, electrons are considered as being
delocalized. The double bond in the quinoid structure is shorter than the:
two single bonds and this leads to a distorted hexagonal lattice. Pauling
suggested that the double bonded layers were more favourable to close
packing. It appears that the quinoid structure and thus the narrower layer
spacings are associated with the more ordered glassy carbons (Mildner and
Carpenter, 1974). Thus for our study of the highly disordered carbon, where
there is evidence for tetrahedral bonding, we shall adopt the fully resonant
layer structure. A model of this form containing a stack of perfect hexagonal
layers with random orientation about the layer normal was generated by com-
puter,

We shall regresent the tetrahedral random network of carbon by the
CRN mode! of Comnell and Temkin as modified to include approximately 50%
odd membered rings (Beeman and Bobbs, 19755. This was model CT3,in Table
3.1, which was shown to give good agreement with the observed X-ray and
electron diffraction intensities for &< -Si. In this case, of course, we rescale
the CRN model to the nearest neighbour carbon-carbon distance in diamond
(see Table 4,1).

The nuclear-nuclear correlation function.of equation (4.14) is now
completely determined for a given microcrystallite size and value of o¢ .
(Of course we are also free to vary the inter layer spacing). The neutron

diffraction intensity for the model sample can be calculated from

Tw) = by 9(k) 417
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where bc is the neutron scattering length for carbon and S(k) is the nuclear-
nuclear structure factor, related to g(r) by equation (2.17 b) for the random

network, and given by

S(k) = 7, Sb_g_k"-.:, erxp (=~ N\Lr.'j\) 418
' N™ ) krif
with
rij = | ‘;3 - ‘:‘.’l I )

* for fhé layered domain. Equation (4.18) is essentially the discrete form of
equation (2.17 a) for a structure having a crystalline nature. In equation (4.18)
we have iniroduced the Debye-Waller factor, e x¢p (-—- m (r;_})) ., to take .
account of the strongly cn.ﬁsoi'rgpic thermal vibrations in the layered domains

with M(rij) fcke.n from work on crystalline graphite (Bacon, 1952).

Unfortunately, the only available neutron data for an amorphous carbon
is that for a glassy carbon heat treated at high temperature (Mildner and Carpenter
1974). The experimental data gave little evidence for tetrahedral bonding and
the diffraction intensity was of the form predicted by Warren's random layer
equations (Warren, i941). Analysis of this data is thus outside the spirit of this
work, clfhouéh it should be noted that the essential features of their data, namely
the peak positions, shapes and relative heights (of the two dimensional reflections)
are well reproduced by S(k) in figure 4.7 for o€ =1. Consequently, we turn our
attention to the X-ray and electron diffraction intensities from amorphous carbons
and begin by describing the application of our bond charge model to the covalent
bond in carbon.

4.4 Covalent bond density

Since the first calculations of the free atom form factor for carbon

(James and Brindley, 1931) there have been many new values presented in the
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literature for the atomic form factors appropriate to diamond and graphite
(Brill, 1950, McWeeny, 1951, 1952, 1953, 1954, Berghuis et al, 1955).
From a study of the X—rc‘:y and neutron diffraction patterns from a powder
sample of grabhire (Bacon, 1952) it was concluded that the X-ray Bragg
reflections could be ap.proximafe.ly accounted for by an atomic form factor
calculateo.l from Slater wavefunc;fions (McWeeny, 1951) although in the low
k region A 3 A—] there were quite large discrepancies. However, the
McWeeny form factor, which was later shown to be equivalent to that
calculated from self-consistent wavefunctions including exchange (Berghuis
et al, 1958), gives quite a poor representation of the (111) reflection of
diamond (Brill, 1950). Calculations (McWeeny, 1954) of effective
spherical atom form factors to account for the inclusion of tetrahedral bonding
in diamond have only slightly improved the agreement of the (111) diamond
reflection over that shown by the free atom form factor for the carbon atom
in its ground state,’

For amorphous carbons the failure of the old atomic form factor (James
and Brindley, 1931) was first noted (Franklin, 1950) from a comparison of the
theoretical and experimental diffraction intensities for a carbon black. However,
in more recent calculations (Ergun, 1968) of the X-rdy diffraction intensity from
a random layer lattice, disagreemes;ﬂ at the (100) peak wos obtained despite using
a spherical atom form factor calculated to include angular distortion of the
valence charge cloud due to bonding (Berghuis et al, 1955).

The extension of the afomic form factor to include angular bonding
(McWeeny, 1954) generated terms dependent on the orientation of the scattering
vector to the bond, and c;s discussed in Chapter 2 this approach cannot be ado.pfed

for an amorphous solid where the bond angles may vary in a random way. Our
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method, developed in Chapter 3, for describing the covalent bonding in o =Si,
is, however, clearly relevant to & -C. As already mentioned, we need to
consider both sp2 and sp3 hybridized bonding. We form the sp3 hybrid, for
diqmond |

: x

3{,’& . .
¢y - ;{*hs“"tS@“aéﬂi 419

and the sp2 hybrid, for graphite

¢t ) = L~

33 1S

(F) + 52§ (1) 420
IPw
where the hybrids are each normalized to contain one electron and the

orthogonalized Slater orbitals (Duncanson and Coulson, 1944) are given by

’\f« ¢r) = ﬂraxf(—ﬂ,r) - @Q&f(-ﬂzf) 421

Y -3

'1.{-1?(’:) = C % W(—ﬂ-jr) [}22 .

" For the sp3 hybrid the unit of length is taken as % the diamond bond length,

and for the sp2 hybrid, % the graphite bond length. The values of the constants
in equations (4.21) and (4.22) for both types of hybridization, together with
diamond and graphite bond lengths, one given in Table 4.1, With the hybrid
orbitals defined by equations (4.19) to (4.22) the LCAO bond charge densities
for the diamond and graphite bonds are determined from equations (3.15) to
(3.18) in terms of q) SPS and q) sp2 respectively. Thus in‘figures 4.2 and

4.3 we show the LCAO charge density contours for sp3 and sp2 hybridized bonds

" respectively. For the sp3 hybridized bond we have added % of the carbon core

electrons to each end of the bond to form the basic scattering unit for diamond



Table 4.1 :  Constants for the diamond and graphite Slater
wavefunctions o
Constant Diamond Value T .Graphife Vciue *
M 2.4 | 2.21
M 7.45 6.87
Ma 2.27 2.09
A 3.004 2.2
B 2,708 2.62
C 4.36 3.81

Tk

* %k

The unit of length = .77 A, half the diamond C-C bond length
The unit of length = .71 A, half the graphite C-C bond length

Duncanson and Coulson (1944)
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Figure 4.2 :

Charge density contours for the LCAO description

of the diamond covalent bond.
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Figure 4.3 :

Charge density contours for the LCAO description

of the graphite covalent bond,
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Figure 4.4 : Charge density contours for the superposition of free atom

densities model for the diamond covalent bond.
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Figure 4.5 :

Charge density contours for the superposition of three spherical

distributions model for the diamond covalent bond.
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containing 3 electrons in all. For the Sp2 hybridized bond we have added § of
the carbon core electrons (here the unbonaed 2p electron wavefunction is
spherically averaged and treated in a similar way to the core electrons) to
each end of the bond to form the basic scattering unit for graphite of 4 electrons.
In figure 4.4 we show the charge density contours for the superposition of free
atom densities model. In this picture we have added % of the carbon core
electrons to each end of the bond and thus the contours are to be compared
with those for the diamond bond in figure 4.2. The LCAQ bond charge density
contours of figures 4.2 and 4.3 can also be compared with the corresponding
contours for the silicon bond as shown in figure 3.12.

For carbon both sp2 and sp3 bond densities have closed contours around
the bond centre although these are not spherical as are those for the silicon bond
of figure 3.12. The closed contours around the bond centre are not present in the
superposition of free atoms density model in figure 4.4, One important feature of
the diamond and graphite bond contours is that if we travel along the bond between
two nearest-neighbour carbon atoms the bond density reaches a maximum value
twice, once on either side of the bond centre, and has a shallow trough across the
bond centre. This is to be contrasted with the silicon bond where the bond density
peaks once at the bond centre. Thus the LCAO picture of the covalent bonds in
diamond and silicon provides a simple interpretation of their relative insulating
and semi conducting properties, the valence electrons in diamond appearing more
localized than in silicon. To form the charge density contours for the sp2 hybridized
bond we have essentially localized the unbonded P electron and thus figure 4.3 does
not say anything about the conducting properties of graphite. Given the LCAO bond

charge densities for diamond and graphite we can now apply the procedure developed
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for ¢ ~Siin Chopfer 3 and extract the form factors fq(k) and fb(k) defined by
equations (3.27) and (3.36) (with N =4). Again we restrict the harmonic
expansion of equation (3.20) to the carbon valence charge containing 2 electrons.
In figure 4.6 we show Flf(k) and Fn; (k), curves 1 and 2 respectively. It can be
seen immediately that f-he bond charge form factors are very similar, with FbR(O) ~
1.7 and Fk:n (0) A 1.6. This means that ~ .15 valence electrons are left around
each atom in diamond and A .2 electrons in graphite (not including the
delocalized p electron). The overlap integral S, equation (3.16), has the value
0.65 for diamond and 0.81 for graphite. As for silicon, the expression for the
bond charge density @ (r), for diamond and graphite, contains two one-centre
terms and one two-centre term. For dicmc:;nd the amount of charge in the sphericc.:l
'\}zgs(r) part of the one-centre term is 1/4 (1 +§) ® .15 electrons and for
graphite 1/3 (1 +§ ) = .18 electrons. I can be seen that these values'are in good
agreement with F(E (0) and fc:n(O) obtained from the harmonic expansion procedure.
It is not surprising that the bond form factors are very similar when one considers
the similarity between the diamond and graphite bond charge density contours of
figures 4.2 and 4.3.

However, as was the case for Si, our bond charge division is not a unique
procedure, and it is important to examine the charge contours formed from the
superposition of three spherical distributions model.: Since the LCAO bond charge
density contours for diamond and graphite are very similar, we shall do this only

for diamond. Thus for the atom form factor we write

Jce.e (k) = ﬁ(‘.ore- (k) /[i- + ;i (k) 423



Figure 4.6 :

(1) 4

The bond charge form factors for carbon.

R
1. frl%(k) :
2, fo (k)
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where fcore(k) is the form factor for the carbon core electrons. We then combine
fE (k) and fZ(k) to define our basic scattering unit containing 3 electrons. The
charge density contours for this scattering unit are shown in figure 4.5. It can
be seen by comparing the LCAO contours for the diamond bond in figure 4.2
with those from the three spherical distributions model that the model density is
notas successful in its description of the LCAO density as it was for silicon,
although the bonding is still usefully simulated,

4.5 Crystal intensities for diamond

The many modifications to the spherical atom form factor for carbon, that
have appeared in the literature (McWegny, 1951, Berghuis et al, 1955) have in
general given a poor representation of the crystalline diamond Bragg reflections,
particularly the (111) reflection. We shall now examine the Bragg reflections for
diamond predicted by the three spherical distributions model of a covalent bond.

IS (k) l is defined exactly as for silicon in & 3.7. We define the form factor
() by

R

£5 - 4 f) Wy l.24

where fS(k) is given by equation (4.23). The relationship between Ff (k) and
fE (k) ot a few Bragg reflections, together with the calculated and observed
values are shown in Table 4.2, It can be seen that the choice of FCR(k) and
flf(k) adopted here give a ggod representation of the Bragg reflections, including
the (111) reflection.

We can now use the Bragg reflections to give a further indication of the
values of fi(k) and fli (k) for k = 0. In asimilar way to that adopted in % 3.7
we divide the atomic form factor into core and valence parts and introduce the
parometer ¥ representing the fraction of the four carbon atom valence electrons

not participating in the bonding. The form foctor fi (k) is now defined in the same

LR



Table 4.2 : Some observed and calculated Bragg intensities

for diamond

Reflection I S(k)l Calculated
intensity
(1) 4 ./:'Z'(FC+,/§Fb) 18.52
(220) 8f_ 15.2
(311) 4 Jé(fc - J’z'fb) 9.1
(222) 16f, 1.12

McConnell and Sanger (1970)

Observed *
intensity
18.6
15.3
9.0

1.15

Note : the (222) reflection is the so-called forbidden reflection.
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way as equation (3.43). The bond form factor is represented by a gaussian in
terms of ¥ and g the value of the diamond LCAO bond charge density at
the centre of ﬂ;e bond (equation (3.47) ). In table 4.3 we give the relation-
ship between FE (k) and Fi(k) for the first few Bragg reflections together with
the value of ¥ for which the best agreement with experiment is obtained, It
can be seen that the values of ¥ agree well with the value FS(O) obtaine;d
from the harmonic expansion. With the encouragement from these results we
turn to consider the amorphous state. We shall assume, as we did for Si, that
the localized bond densities for the crystal can be carried over into the amor-
phous state.

4.6 X-ray and electron diffraction formalism

‘

The model as formulated above contains four components, namely (in

k) in the random network and F:q(k) and F:(k) in the

K—quce) fE (I() and ]CE(

random layer microcrystallites where

o

fo o) = f ) £tk v, ) 425

and sz(k) is the form factor for the spherically averaged, unbonded P electron.
We now make two plausible simplifying assumptions :
(i) We can model both the diamond and graphite bonds with the same

three spherical charge distributions

(i1) We can define an average atom form factor given by

Feoor = o £.7 k) +(t-—o¢)Fftk) 4.26

which, of course, gives the correct form factor in either limiting case ® =1 or
0. The first assumption can bz clearly justified by the similarity between the

charge density contours for the two types of bonding shown in figures 4.2 and



Table 4.3

Reflection

am
(220)
(311)

(222)

Parameter § for optimum fit to Bragg reflections

in diamond
B
4J2(F_+ J2)
8f
C
412(_- J2r)

1 6fb

¥

0.15
0.0
0.1
0.1
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4.3 and by the similarity of the bond charge form factors. The second
assumption whilst having no firm theoretical basis is made in the spirit
of the rest of this work and in order to make progress.

With assumptions (i) and (ii) we have a two component system of
spherical distributions (we take the diamond bond charge form factor fE (k) ).
To calculate the X-ray and electron diffraction intensities from equation (2.18)
we thus require, in addition to the nuclear-nuclear correlation function g (r)
those of the nuclear - bor;d centre 9nb (r) and bond centre - bond centre gbb(r).
These are defined in terms of the random layer and tetrahedral regions in
exactly the same way as g (r) in equation (4.14). The associated partial
structure factors Snb(k) and Sbb(l_<) are then given by equations (2.17 b) and
(4.18) in terms of gnb(r) and gbb(r). Of course, our model sample is inhomo-
geneous and strictly ;ve cannot simply relate the cross correlations gnb(r) and

gbn(r). For the diamond structure we have

R

3 b (r) = 2 %R\,n(") 427

and for graphite
m

3 1= 2y 4.28

However, if we define an average unit for the model sample containing (4 -~ «¢ )/2

bond centres per carbon atom and write

4h—of S (k) - 4.29

Sau (kY -
2

]

bn

then we obtain for the X-ray diffraction intensity, from equation (2. 18)
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T, 0 = S0 Fhwk) + 208 Gl -1) £ k) € ue)

" 1 :
+ ol Stk £ L ) 4.30
2 )
and for the electron diffraction intensity

- 2 |
T, ) = K * { su)(2- £ k)) - ﬂsnék)-ﬂ('t- _FLM\ £ e

A ool S ] ,Clb(k)g 4.31
2

where the intensities are in terms of the scattering from the basic structural unit.
We can now procéed to apply equations (4.30) and (4.31) to some experimental

data for amorphous carbons. We shall discuss each experiment separately.

4.7 Results

4,7.1 Electron Diffraction

The electron diffraction study of a vacuum deposited amorphous carbon thin
film (Kakinoki et al, 1960) indicated a random layer microcrystallite size of
approximately 10 A and a ratio of diamond-like to graphite-like carbon atoms of
" about one. We can interpret the microcrystallite dimension, in terms of our
hexagonal laitice, as three randomly orientated layers with dimensions 10 X X IOX.
This gives the mi‘crocrys’rcxllife a stack height of 3 x 3.44 X ~ 10 ,Z. The ratio of
diamond to graphitic type atoms obviously corresponds to a value of ot = 0.5.

The data presented by Kakinoki is in the form of the structure factor $° (k) as
derived from experiment using the atomic form factor (equations (2.20) and (2.22) ).
In figure 4.7 we show the structure factor Se(k) as derived from the experimental
intensity (curve 5) together with S(k) for our model with the above mentioned micro-

crystallite dimensions and for in creasing proportions of random network : oL = 1.0,
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.75, .5, .25 (curves 1 to 4). The origins have been displaced for clarity. We

would not expect agreement between 5(k) and Se(k) at small k (the first two peaks)
because of (a) the neglect of chemical bonding in the exiraction of Se(k) from the
experimental intensity, and (b) the experimentally observed peak at k ~» 1,2 R_]
which (if it is associated with the (002) reflection) corresponds to an interplane
spacing of ~ 5A. Such a peak position has not been observed in any ofhér
experimental work on amorphous carbon and does not correspond to any graphitic

or diamond peak. For k ~ 4;&—1 the agreement between Se(k) and S(k) is good

for ® =0.25. Increasing the value of & , decreasing the amount of random
network in the model structure, leads overall to too much sfruc’;ure in 5(k), a

very significant effect of which is the appearance of a shoulder at k ~ 6.1 f\“‘
which develops into a well defined peak for e« = 1.0, Thus the k space‘
comparisons given here indicate rather more fetrahedrally bonded carbon than

was deduced by Kakincki. Their conclusions were based upon fitting gaussicn..
distributions, at the diamond and graphite nearest and next nearest neighbour
distances, to the radial distribution function g(r). For our model sample with

oL = 0,25 the calculated 5(k) function is not very sensitive to the microcrystallite
dimensions. Thus the structural trends evident in figure 4.7 would still be evident
for a range of microcrystallite sizes. Consequently, we believe the main conclusion
to be drawn from these structure factor calculations is that the experimental data
indicates a highly disordered carbon. This conclusion has been reached previously
(Stenhouse et al, 1977) where the full experimental diffraction intensity (Kakinoki
et al, 1960) was shown to be fairly well described, for'k 22\_] when covalent
bonding effects were included, by the theoretical infe;nsi’fy for a tetrahedral random
network. For o€ =0.25 the calculated peak that is most sensitive to the micro-

. o.
crystallite dimensions is the one dimensional (002) reflection at k ~~ 1.8 A ].
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However, this is the very peak that appears wrongly placed in the experimental
curve.

In figure 4.8 we show the total electrondiffraction intensity calculated
using equation (4.31) for the same microcrystallite size as above and For‘ oCc =
1.0, .75, .5, .25 (curves 1 to 4). The experimental intensity (Kakinoki et al,
1960) is given as curve 5. Here the effect of the k-4 factor in equation (4.31)
is to dampen the structure at large k, and these figures provide a comparison
between theory and experiment at low k and show the effects of covalent bonding.
The experimental and theoretical ﬁeaks below k =2 ,&'] are not shown since
theory and experiment will obviously be in disagreement in this region. For
k> 2 A agreement between theory and experiment is good for ¢ =0.25.

For this value of o¢ we show in figure 4.9 the contributions to equation (4.31)
from the nL;cleor - nuclear, nuclear ~ bond centre and bond centre - bond centre
correlations (curves 1, 2 and 3 respectively) together with the total intensity
'I_Q_(k) (curve 4). We also show in figure 4.9 the height of the (100) peak |
(graphite notation) as calculated using two different atomic form factors, namely
those of James and Brindley (1931) and McWeeny (1951). It can be seen that, at
the (100) peak the covalent bonding has a significant effect on the electron diff-
raction intensity and that the intensities predicted by the atomic form factors

are on either side of the experimental peak height.

4.7.2 X-ray diffraction

The X-ray diffraction study of an amorphous carbon prepared by pyrolysis
of polyvinylidene chloride at 1000°C (Franklin 1950) indicated that 65% of the
carbon was in the form of perfect graphite-like layers of mean diometer ~ 15 -
26 :Z\ and that 35% was in a much less organized state. Franklin adopted two

approaches to analyzing the experimental data. First, a comparison of the radial
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Figure 4.8 : Electron scattering intensities for the 10 x 10 x 10 A3 model.
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Figure 4.9 : Electron scattering intensity for the 10 x 10 x 10 A3 model
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disfribufic;n function, obtained from experiment using equations (2,17 c) and
(2.20),with that for a single infinite graphite layer. Second, a comparison
between the experimental reduced intensity function F(k) (see equation (3.1) )
obtained using an atomic form factor (James and Brindley 1931) and that
calculated for a random layer lattice with layer dimension La =16 /g\.

Both of these approaches clearly demonstrated the presence of graphite-
like distances in the amorphous sample. However, the nearest neighbour peak
in the experimental radial distribution function was broad enough to allow the
possibility of their being diamond-like distances present in the sample and the
agreement between theoretical and experimental intensity functions was not
good, .
The value of 35% for the disorganized carbon content was estimated
by Franklin from the intensity difference between the calculated and observed
two dimensional (h k o) reflections where it was assumed that the atoms in the
disorganized carbon scattered independently. This method would obviously lead
to error, where there diamond-like structure present in the amorphous sample,
since, as discussed above, both graphite and diamond structures give rise to
diffraction peaks at similar positions in k-space.

In figure 4,10 we show the X-ray scattering intensity calculated from
equation (4.30) for Franklin's estimated domain size (~ 20 x 20 x 10 X3) and
for o€ =1.0, 0.75, 0.5, 0.25 (curves 1 to 4) together with her observed X-
ray scattering intensity (curve 5). As was the case for electron diffraction, a
significant feature in the model intensity patterns is the appearance at k ~ 6.1 Al

of a shoulder for o =0.5 which as « increases develops into a well defined peak.

This feature is observed experimentally as a shoulder and overall for « = 0.5 good
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agreement is obtained between the calculated and observed intensities.

In figure 4.11 we show forec=0.5 the effects of the three components
in equation (4.30) on the diffraction intensity together with that calculated at
the (100) peak (graphite notation) for the same atomic form factors as used in

4.7.1 (James and Brindley, 1931, McWeeny, 1951). The same remarks apply
here as for the electron scah‘eri'ng curve in figure 4.9. It is also worth noting
that if one attempts to describe the X-ray and electron scattering purely by
means of atomic form factors then using McWeeny's form factor gives better
agreement between the theoretical and experimental X-ray scattering intensity
at the (100) peak than by using that of James and Brindley. However, in the
electron case using the McWeeny form factor gives too small a maximum
whereas using that of James and Brindley gives too large a one. |t is, therefore,
clear that it is possible to fit this peak in oniy one experiment by a suitable
modification of the atomic form factor,

4.8  Discussion

Amorphous carbon has presented us with a difficult problem with regard
to modelling both structure and electron density. Consequently we have made
som;a rather broad assumptions in order to simplify and make progress. The large
number of parameters involved in a treatment of diffraction from a single «~C
sample makes the effects at low k, due to bonding and to structure, harder to
separate,

However, the resemblance of the electron diffraction pattern for the
evaporated carbon film (Kakinoki et al, 1960) to that given by a random
network structure is clearly shown in figure 4.7. The ease of graphitization

of this sample is thus rather remarkable and remains to be explained.
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For both & -C samples considered our results indicate that the effects
of covalent bonding are significant in the region of the (100), graphite,
(111), diamond, peck in X~ray and electron diffraction intensities. These

effects cannot be accounted for solely by the use of a spherical atom form

factor.
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CHAPTER FIVE

VITREQUS SILICA

5.1 Introduction

Silicon dioxide is of great technological importance in both the
crystalline state, for use in semiconductor electronics, and the vitreous state,
for glass manufacture. Consequently, the structure and electronic properties
of crystalline and amorphous SiO2 have been extensively investigated. (For
a recent review see Griscom, 1977). Viireous silica, eC-Sioz, is the only
true glass (that is, formed from the melt) that we shall study in this thesis.

Silicon dioxide is polymorphic, ifs various allotropes including quartz,
cristobalite, tridymite, coesite, stishovite and vitreous silica. It has been
suggested (Goodman, 1975) that polymorphism could be a necessary condition
for a material to be a glass former; for example BeF2, PbO and A5203 are all
polymorphic and glass formers. With the exception of stishovite all of the
SiO,, allotropes are known to be constructed from the same fundamental

2

structural unit, the SiO4 tetrahedron. In quartz, silica glass, cristobalite
and tridymite most of the experimental evidence indicates that the tetrahedron
is regular (contrast this with the 'tetrahedral’ angle variation in«c-Si). |
Consequently the structural differences between the various pelymorphs arise
from variaﬁons. in the Si-O-5i angle, § (figure 5.1). For example in quartz
this angle is 144° (Wyckoff, 1963) whilst in «-Si0,, experimental evidence
(Mozzi and Warren, 1969) indicates that it can vary considerably, with a
mean value of approximately 150° (Da Silva et al, 1975).

The perfect SiO, tetrahedron in «¢~SiO

4 2

sp3 hybridization of the silicon valence electrons. It is therefore probable

indicates the presence of

that the electron density in vitreous silica can be interpreted in terms of our



17

Figure 5.1 : Two SiO4 tetrahedra joined by a common oxygen atom.
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model of covalent bonding. However the Si-O bond will contain charge density
contributions from silicon and oxygen atoms and will clearly have different
characteristics from the covalent bond in e-Si and &~ C ; for example one
no longer has inversion symmetry about the bond centre.

Vitreous silica has been extensively studied by neutron and X-ray
diffraction (Konnert et al, 1973, Mozzi and Warren, 1969). A description of
" the diffraction intensities for neutrons, and for X-rays and electrons in the
spherical atom densities model (equation 2.5b), requires three correlation
functions, 'nqmely those of silicon-silicon, silicon-oxygen and oxygen-oxygen,
gSi-Si(r)' gSI—O(r) and go_o(r) respectively. These functions can only be
extracted from experiment by combining three sets of data, for example from
neutron, X-ray and electron diffraction. However, electron diffraction can
only be used to study surface layers and foru—SiOz, due to surface crystallization,
these usually have very different properties to the bulk sample, as is studied by
neutrons and X-rays. Consequently, conclusions about the structure of ec-Si 02
are usually drawn from a comparison of the total correlation function (or radial
distribution function, RDF) as derived from X-rays with that derived from
neutrons. The total correlation function is obtained from the fourier transform
of the diffracted intensity using equation (2.20) where Fi(k) is some average
atomic form factor. The RDF contains contributions from all three correlation
functions gSi—Si(r)’ gSi—O(r) and go_o(r) and the problem becomes one of
assigning particular pecks to the correct correlation function. One is helped
in this respect by the different relative scattering powers for X-rays and
neutrons of the Si and O atoms. The neutron scattering lengths are bSi =0.42
and b . =0.58 and the atomic form factors FSi(k) and Fo(k) (International Tables

O
for X-ray and crystallography, 1965) are shown in figure 5.2. Thus the peaks
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arising, for example, from the O-O correlations may be more evident in the
RDF derived from neutron diffraction than in that derived from X-ray diffraction
and conversely for the Si-Si correlations. However, from two experiments it

is clearly not possible to uniquely extract three correlation functions. For

a two component system, such as «~SiO,, where only limited experimental

o
data is available the approach of model building becomes very useful. Not
" only can a model RDF or diffraction intensity be compared with experiment
but also effects arising from individual correlations (for example long range
order). can be investigated.

Before considering the X-ray and neutron diffraction intensities from
such a model it is convenient to begin by reviewing the present state of our
knowledge of the structure of @ -SiO

2

52 The structure of vitreous silica

The structure of cC-SiO2 has been interpreted in terms of both the
continuous random network (CRN) model (Zachariasen, 1932, 1935 - these
papers were the origin of the term random network) and the microcrystallite
model (Warren, 1934, Valenkov, 1936). The sharpness of the first two peaks

in the RDF, arising from Si-O and O-O distances, allowed early workers to
deduce that the SiO4 unit in o -SiO2 was a perfect tefrahedron. Thus in

the CRN interpretation of the structure of oC-Si02 the principle randomizing
factors are the Si-O-Si bond angle g (see figure 5.1) the value of which

may lie anywhere between 120° and 180° (Mozzi and Warren, 1969) and the
orientation of neighbouring tetrahedral units about the bonds which join their
central Si afoms via a common oxygen atom. Thus, again referring to figure 5.1,

for a particular value of B, the oxygen atoms can assume any position given

by the dotted lines.
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The microcrystallite picture is essentially the same as that for ec-Si
as discussed in Chapter 3 except that here one clearly has a much wider choice
of possible crystalline structures to employ in an ordered units model of the
amorphous state.

After the initial suggestions of Zachariasen and Warren, evidence in
support of either picture was slow to accumulate. However the majority of
. the early evidence was in support of the CRN piciure. Hand built CRN models
(Evans and King, 1964, Bell and Dean, 1966) were shown to give RDFs in
quite ‘good agreement with the RDFs derived from both neutron and X-ray
diffraction experiments. However, the Bell and Dean model with a mean
value for the bond angle p of 140° had @ density ~ 20-25% above the experimental’
value. The correct density is obviously an important requirement for any model
and Bell and Dean estimated that a value of B~ 150° would give a model density
in agreement with experiment.

The RDF for o« —Si02 obtained by X-ray diffraction (Mozzi and Warren,
1969) showed no structural detail beyond 7A whereas for a microcrystallite with
cristobalite structure the calculated RDF (Mozzi and Warren, 1969) continued
to show structure for r {122\ (the limit of the calculation). Mozzi and Warren
. also considered a model consisting of three linked SiO4 tetrahedral units.
Allowing complete freedom for adjacent units to rotate about their linking Si-O
bonds, the calculated RDF for various values of the Si-O-Si angle ¢ (see
figure 5.1) was compared with that from experiment. With 8 = 144° good
agreement was obtained with the experimental RDF for r £ 4A. However, as
remarked above, this value for B leads to too high a model density. Recently °

Da Silva et al (1975) have reanalysed the data of Mozzi and Warren and have

concluded that the best fit to the experimental RDF is obtained with g ~ 150°.
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Ancther CRN model was built soon afterwards (Bell and Dean, 1972)
containing 188 tetrahedral units. The Si-O-Si angle was preset at 160°. As
more tetrahedral units were added to the model the existing structure became
slightly distorted so that the completed model contained a wide range of £
values. For the final structure the value of ¢ was found to be 153% in good
agreement with the analysis by Da Silva etal of Mozzi and Warren's data.

Bell and Dean showed that the RDF for the model, for X-rays, was in good
agreehenf with a composite of three sets of experimental data (Mozzi and
Warren, 1969, Henninger et al, 1967, Kitchens, 1963) and that the RDF for
neutrons was in good agreement with a composiie of two experimental results
(Carraro and Domenici, 1963, Henninger et al, 1967). The model RDFs
reproduced both the major and minor features of the experimental curves for

r ,{8,2\ By analyzing the model ring statistics Bell and Dean were able to show
that an experimentally observed shoulder, for both the neutron and X-ray RDFs,
was due to the presence of 4-fold rings in the network, a feature not found in
earlier models (for example, that of Evans and King, containing hardly any).
The model also had the correct density.

In view of the success obtained by Bell and Dean , and the lack of
structure observed in the experimental RDF for v ) 7,2\, it was surprising to
have crysfallif'e models of a(-SiO2 proposed, based on interpretations of
diffraction data (Konnetand Karle, 1972, Konnert et al, 1973). Their approach
was stimulated by an examination of the densities of the various allotropes of

Si 02 and germania, GeO2

1973). It can be seen that the densities of tridymite and cristobalite are very

. These are shown in Table 5.1 (Konnert et al,

close to the density of ¢ ~SiQ,,. Consequently, Konnert and coworkers

9"
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Table 5.1 : Densities of SiO,, and GeO,, Polymorphs

_§_i__2
Structure : Density
(g cm™)
Silica Glass 2.20
Tridymite 2.31
Cristobalite 2.32
© Keatite 2.49
Quartz 2.65
Coesite 3.01
Stishovite 4.28
Geo,
Germania Glass 3.65
Quartz 4.2

Rutile 6.2
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suggested that tridymite and cristobalite could be related to the glassy structure.
They further pointed out that the ratio of the densities of germania glass to
quartz - like germania is approximately that of tridymite to quartz.

Konnert and coworkers found that the experimental RDFs as derived
from both neutrons and X-rays, for e -Si02 and cC-GeOZ, were consistent
with those calculated for a tridymite microcrystal with dimensions ~ 20;8\.

" Clearly this study indicated much more order than had been observed previously
(Mozzi and Warren, 1969). It was, however, recognised (Konnert et al, 1973)
fho-f, for a microcrystallite structure, the crystallite regions would need to be
bonded together with a large number of random orientations to give the bulk
sample its isotropic properties. Thus Konnert and coworkers explained the small
differences between the RDFs for nc—SiO2 and tridymite as being due to
junctions between tridymite-like regions. They predicted that these junctions
would introduce strain into the structure, so distorting the ordered regions.
Their proposed model was thus strictly not a microcrystallite but rather similar
to the ordered units PT model (Gaskell, 1975) discussed in Chapter 3.

The work of Konnert and coworkers has been the subject of much
controversy (Evans et al, 1973, Konnert et al, 1973a, 1974, Sayers et al, 1975,
Karle and Konnert, 1976). One major criticism was that they treated the first
few neighbour correlations in the glass as variable parameters used in fitting
the high k theoretical and experimental intensity curves. It is these small r
distances that form a crucial part of the building procedure for a CRN model.
Thus it was, perhaps, not surprising that the conclusions drawn from the two
approaches differed at low r. For 4 <r <8A both CRN and microcrystallite
models gave agreement with experiment. For 8 <r <20A the experimental RDF

was fitted quite well by the tridymite curve; however this region was not considered
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at all by Bell and Dean.

The presence of long range crystal-like correlations in the glass is
of interest and it has been suggested (Moss, 1974) that in an AB2 network

such as e -Si02 there are important long range correlations associated with
A-A and A-B distances (but not B~B); this being a consequence of the way
in which AB4 tetrahedra link together.

However, one important point about the microcrystallite study was that
the RDF was presented in a form which amplified the curve at large r (a factor
of r2). It was thus not surprising that more structure was detected in fP'ﬁs
region than had been observed by Mozzi and Warren. Thus, perhaps the most
important conclusion to be drawn from the work is that the network topology
in the glassy state is probably very similar to that found in tridymite. We
shall present X-ray and neutron diffraction calculations for the model that
gave the best agreement with the experimental RDFs, namely that of Bell and
Dean.

Finally it should be mentioned that in dark field configuration electron

©
microscopy experiments for sputtered SiO,, bright spots A 10A across have been

2
observed (Chaudhari et al, 1972). However the interpretation of these results
in terms of models of the vitreous state is subject to the same difficulties as
were discussed for o -Si in Chapter 3 and we shall not dwell further on them

here.

5.3 Partial structure factors and neutron diffraction

We define the pair distribution histograms RSi—Si(r) and Ro_o(r) using
equations (3.2) and (3.3). The Bell and Dean model is approximately rectangular
- -] -]
and represents a region of °C-Si02 having dimensions of ¥ % 30A, § % 20.5A,
§x 18.9A. Hence the factor £  (r) of equation (4.8) is used to correct the

ps

pair distribution histograms for finite model size. The pair correlation function
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IA- B(r), where A and B stand for Si or O, is then defined by

q () = Q__éf1/41rr"9°3 5.1

A-G A

and the partial structure factor, SAB(k) is obtained from equation (2. 174).
SSi—O(k)’ SSi—Si(k) and So_o(k) are shown in figure 5.3, curves 3, 4 and
5 respectively. The scale is on the left hand axis.

The neutron diffraction intensity for the model can now be calculated
using equation (2.18). Thus for the composition unit consisting of one Si atom

and two O atoms we have

‘ 2
: 2
I ) oS uabl +2ls W-1b b 1S Wb 5.2

i-Si

where b ; and bo, the neutron scattering lengths for the silicon and oxygen

S

atoms, are given in £5.1. .
The calculated intensity for the model is shown in figure 5.3, curve 2,
together with the experimental intensity (Carraro et al, 1965), curve 1. For
clarity the origin for the neutron intensities has been displaced from that for
the partial structure factors. The scale for the neutron intensities is on the right
hand axis. It can be seen that the general agreement between theory and
experiment is good, the main differences being in the intensity in the vicinity
of 34"and the shoulder in the theoretical curve at approximately 2/&.‘W|";1Ch is

apparent in all the structure factors and is not scen in experiment.

5.4  X-ray diffraction using atomic form factors

~Usirg the neutral atom form factors shown in figure 5.2, we have calculated
the X-ray diffraction intensity for the model in the spherical atom densities

approximation. For the basic composition unit equation (2. 18) takes the form

T, (k) = :f;(k)gs.(s"f) + 2{5;tk)£ck)[§_(kl-|] 5.3

1
¥ A S k) £ k)
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The calculated X-ray intensity is shown in figure 5.4, curve 1, together with
the experimental results of Mozzi and Warren (1969). Overall agreement
between theory énd experiment is quite good, the essential differences being
at k ~ 2A"Where the theoretical curve has a small peak, and experiment a
broad shoulder, and in the region of k~ 3A" where the theoretical curve
underestimates the experimental intensity.

In view of our work on o ~Si and ec- C the agreement at the first peak
between theory and experiment is surprising when one considers that we have
used atomic form factors and neglected bonding effects. King (1967) has also
caleulated X-ray diffraction infensities for a random network model of e -SIOZ.
In her calculations, using atomic form factors, the theoretical curve badly
overestimated the experimentally observed intensity at the first peak. Better
agreement was obtained using fonic si*%nd O form factors. For the Bell
and Dean model we also show in figure 5.4 (marked X) the height of the first
peck as calculated using fonic  form factors (International Tables of _Crysfo”ogrophy{
1965). As can be seen, the agreement with experiment is now much worse than
was obtained by using atomic form factors.

From the values of the electronegativity of silicon and oxygen atoms,

Pauling (1960) estimated that the Si-O bond is 50% ionic - 50% covc-lenf.
Current, non-émpirical, molecular orbital calculations (Gilbert et al, 1973,
Yip and Fowler, 1974) are in general agreement with Paulinds classification.
Thus the agreement shown by our calculations, using atomic form facters, and
King's work, using ionic form factors, is possibly fortuitous. Following our

~ work in Chapters 3 and 4 we are in a position to study the effects on X-ray
diffraction intensities of a partially ionic - partially covalent bond. We shall

begin by examining the LCAO charge density contours for a covalent Si-O
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bond containing two electrons.

5.5  The Si-O bond

We shall take the covalent bond to be formed from a linear combination
of a silicon sp3 hybrid and an oxygen 2p orbital. It should be noted that the
work of Gilbert et al (1975) indicates that the two lobes of a single 2p orbital
may be used for bonding to two silicon atoms. The bond charge density is given

" by (referring to figure 3.11)
3

g L) = | q)SP(L.\ + ﬂ‘»ﬁP(zd ‘1/(\4-%) 5.4

St + o

where S is the overlap integral given by
s = [ ¢ () (1) e 55
o3 e Si + °'2p .
and c;; Ptr) and N (g) are defined by equations (3.13), (3.14) and (4.22). -
si'+ Hx
The values for the constants in these equations are given in Table 5.2 where the
wavefunctions <;:re normalised with the unit of length now being half the Si-O
bond length, which is also given in Table 5.2.

The LCAO charge density contours defined by equation(5.4) are shown in
figure 5.5 and those for fhé supc;rposiﬂ'on of free atoms model in figure 5.6. In
both figures we have included 3 of the oxygen and % of the silicon core electrons
to give a basic scattering unit containing %.5 electrons. The main difference
between the contours of figures 5.5 and 5.6 is that in figure 5.5 the charge
density is, to an extent, concentrated around a point, X say, approximately
three-quarters of the way along the Si-O bond. In the context of our bond
charge model this can be interpreted in terms of a spherical charge distribution
at that point on the bond. We shall now proceed to extract such a distribution.
However we shall adopt a slightly different approach to that used for Si and G

based on physically reasonable arguments, we shall divide up the bond density

in r-space.



Table 5.2

Constant

g O

m

~
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Constants for the Slater wavefunctions for Silicon

and Oxygen in the Si-O bond
Value™
Silicon - Oxygen
2.09
7.45
21.1 3.36
1.6
8.1
2.56 11.68
2.75

13.41

* The unit of length = 0.81A, half the Si-O bond length.

*

See equation (3. 14)

*

*
See equation (4.22)




132

Figure 5.5 : Charge density contours for the LCAO covalent Si~O kond.
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Figure 5.6 : Charge density contours for the superposition of free atoms model

of the Si~-O bond.



Figure 5.7

Charge density centours for the three spherical distributions

rudnl of a covalent Si-O bond.
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We wish to represent the Si-O covalent bond, containing two electrons,
approximately as the superposition of 3 different spherical distributions, QA(r)
and pc(r) on the silicon and oxygen atoms, respectively, and pB(r) at the
point X. Thus referring to figure 3.11 we shall write the bond density 9 (.f)
as
ey = p ) w p () =387, 1) + ec(\;nlg\) 56
Now, prompted by the results for the covalent bonds in silicon and carbon,
we choose pA(r) to be the spherical charge distribution due to the '\}i:s(r)
term in equation (3.39). The overlap integral, S of equation (5.5), has the
value 0.275. Thus the amount of charge in the distribution IOA(") is
0.25/(1+5S)20.2electrons. Strictly, of course, there is no term in
equation (5.4) spherical about the oxygen atom site. However, the charge
lobe of \!/:; (r ) that points away from the bond clearly does not contribute
to the bonding.fegion. We thus spherically average this lobe about the

oxygen atom. This distribution, e C:(r), contains 0.5 x 1/(14S) = 0.4 electrons.

From equations (3.21) and (5.6) we have
(k) - (K . " Kle ~° -
.‘F ,v) D[R ) o+ fBCk)e +7€: )e 57

Expanding F(,lf,) in terms of Legendre polynomials and using Bauer's expansion
(equation (3.26)) we obtain, for the spherically average bond form factor, Fo(k),
Jfo (k) = fﬂ (k) +3Ce(!‘)5‘i’—§-&w2 - \Fc(kl S1n KR 58
3KR/y AR
Thus given Fg(k) and FC (k), as described above, equation (5.8) can be used to
extract FB(k), the bond charge form factor.
We shall now examine the bond charge density contours for the three

spherical distributions model of the Si-O covalent bond. These are shown in
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figure 5.7 where again we have included the oxyéen and silicon core electrons,
as described above for figures 5.5 and 5.6. It can be seen that the three
spherical distributions model in figure 5.7 gives a better representation of the
LCAO covalerﬁ bond density in figure 5.5 than the free atom densities model

in figure 5.6. |

5.6  Effects of the Si-O bond on X-ray diffraction intensities

Having established our modelling of the Si-O covalent bond we can
now proceed to calculate the X-ray diffraction intensity for a 50% ionic -
50% covalent system. We write the form factor associated with the silicon

fxtom, fSi(k), as

}-3} (k)

"

[fo0n6) + &L ) £, )] /2

Coan k) w26 W) 5.9

| B ]

where fSi y4(k) is the silicon core electron form factor and fA(k), as described
above, is that portion of the covalent bond that lies around the silicon atom.

For the oxygen atom form factor, Fo(k), we write
fotk) = [fore (k) +2£_ ) + fa (k)}/2 510

. + -
where fo-,_.,.(k) and fo,__ (k) are the Ol and O2 ion form factors, respectively
and Fc(k) is determined from the covalent bond density as described above.

The form factor associated with the point X is just
food = fiua /2 5.11

where Fb(k) is determined from equation (5.8). The three components FSi(k)’

f (k) and f

O( b(k) are shown in figure 5.8. To calculate the X-ray diffraction
in’fensity we require, in addition to gSi_S'i(r), gSi-O(r) and go_o(r), the

correlations gSi-—x(r)’ go_x(r) and gx_x(r). These are obtained using equationg
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|
(3.2), (3.3) and (5.1) and the partial structure factors S k), S

O-—x(k)

and Sx—x(k) are then given by equation (2. 17a). Our basic composition unit

Si —x(

now contains one silicon atom, two oxygen atoms and two bond charges.

From equation (2. 18) we have

Ty te) = S U £ k) + a0 (k) -] £ tf (k)

+ 25, ) £ (k) 512

+ 209 0 £ 0010428 (L wf ) + 28 0 £,

The intensity calculated from equation (5. 12) is shown in figure 5.9,
curve 1, together with the experimental data (Mozzi and Warren, 1969), curve 2.
The contribution from the last ferm on the right hand side of equation (5.12)
(the bond charge correlations) is also shown as curve 3. It can be seen that
the agreement beiween theory and experiment is good and in particular at the
first peo;k. Referring to figure 5.4, and the agreement obtained using atomic
farm factors, it can be concluded that the effects of covalent and ionic bonding
have tended to cancel out. It would thus be interesting to perform a similar
calculation for the CRN model of Evans and King (1966) wher good agreement
was obtained by using ionic form factors (King, 1967).
5.7 Discussion

The Bell and Dean CRN model has been shown to give a good representation
of the X~ray and neutron diffraction intensities for oc"SiOQ.However, the
theoretical X-ray intensity at the first diffraction peak depends, to a certain
extent, upon the adopted electron density model for the Si-O chemical bond.
The correct peak height is predicted both by using atomic form factors and by

including a simple model for the partially ionic ~ partially covalent bond, but
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L+ -
not by using fonic Si G form factors. This can be explained by the fact
that fonic and covalent bonding in a::-SiO2 have opposite effects upon the

X-ray diffraction intensify at the first peak.



141
REFERENCES

Aldred, P.J.E, and Hart, M., 1973, Proc. Roy. Soc. A 332, 223 and 239

Anderson, P,W,, 1968, Phys. Rev, Lett., 21, 13

Anderson, P.W., 1969, Phys. Rev., 181, 25

Bacon, G.E., 1952, Ac;ta. Cryst., 5, 492

Bacon, G.E., 1962, " Neutron Diffraction", Clarendon Press, Oxford

Beeman, D. and Bobbs,’B.L., 1975, Phys. Rev. B 12, 1399

Bell, R.J. and Dean, P., 1966, Nature, 212, 1354

Bell, R.J., Nature, 1968, 218, 985

Bell, R.J. and Dean, P., 1972, Phil. Mag., 25, 1381

Berghuis, J., Hoanappel, 1.M., Potters, M., l;oops’rra, B.O., MacGillavry, CH
and Veenendaal, A.L,, 1955, Acta. Cryst., 8, 478

Brill, R., 1950, Acta. Cryst., 3, 333

Bullett, D.W., 1974, AIP Conference Proceedings, Tetrahedrally Bonded
Amorphous Semi-conductors, page 139

Bullett, D.W., 1975, J. Phys. C. 8, 2695

Bullett, D.W., 1976, Phil. Mag., 32, 1063

Carraro, G. and Domenici, M., 1963, Vetro Silic, 7, 5

Carraro, G., Domenici, M. and Zucca, T., 1965, F"hysics of non-crystalline
solids, ed. J. Prinns (North-Holland, Amsterdam) 152

Chaudhari, P., Graczyk, J.F. and Herd, S.R., 1972, Phys. Stat. Sol. B 51, 801

Chaudhari, P., Graczyk, J.F. and Charbnau, H.P., 1972 a, Phys. Rev. Lett.
29, 425

Chaudhari, P., Graczyk, J.F. and Herd, S.R., 1972 b, Phys. Stat. Sol. B51, 1068

Chaudhari, P., Graczyk, J.F. and Herd, S.R., 1973, IBM Research Report RC 4491



142

Chaudhari, P. and Graczyk, J.F., 1974, AmOthO;JS and Liquid S;emicondu;::fors,
ed. J. Stuke and W. Brenig (London : Taylor and Francis Ltd) page 54

Cochran, W., 1974, AIP Conference P‘roce;di.ngs, Tetrahedrally Bonded Amorphous
Semiconductors, 177 . .

Connell, G.A.N. and Temkin, R.J., 1974, Phys. Rev. , B9, 5323

Da Silva, J.R.G., Pinatti, D.G., Anderson, C.E. and Rudee, M.L., 1975,
Phil. Mag. 31, 713 |

Donovan, T.M., Spicer, W.E. and Bennett, J.M., 1969, Phys. Rev. Lett,, 22, 1058

Duncannon, W.E. and Coulson, C.A., 1944, Proc. Roy. Soc. Edinb. A., 62, 37

Ergun, S. and Tiensuu, V.H., Acta. Cryst., 1959, 12, 1050

Ergun, S., 1968, Carbon, 6, 141

Ergun, S., 1973, Acta. Cryst. A 29, 605

Evans, D.L. and King, S.V., 1966, Nature 212, 1353

Evans, D.L., Borrelli, N.F. and Teter, M.P,, 1973, Science 181, 774

Franklin, R.E., 1950, Acta. Cryst., 3, 107

Franklin, R.E., 1951, Acta. Cryst., 4, 253

Franklin, R.E., 1951 a, Proc. Roy. Soc. A 209, 196

Gaskell, P.H., 1975, Phil. Mag., 32, 2111

Germer, L. and White, A H., 1941, Phys. Rev., 60, 447

Gilbert, T.L., Stevens, W.J., Schrenk, H., Yoshimine, M. and Bagus, P.S.,
1973, Phys. Rev. B8, 5977

Goodman, C.H.L., 1975, Nature, 257, 370

Griscom, D.L., 1977, J. Non-Cryst. Solids, 24, 155

Henderson, D. and Herman, F., 1972, J. Non-Cryst. Solids, 8-10, 359

Henninger, E.H., Bunchert, R.C. and Heaton, L., 1967, J. Phys. Chem. Solids,

28, 423



143

Herbert, D.C., 1974, J. Phys. C., 7, 669

‘Hohenberg, P.C. and Kohn , W., 1964, Phys. Rev:, 136 B, 864

Howie, A., Krivanek, O.L. and Rudee, M.L., 1973, Phil. Mag., 27, 235

"International Tables for X-ray Crystallography”, 2nd edn., 1965, Vol. 1,
Kynoch Press : Birmingham

James, R.W. and Brindley, G.W., 1931, Phil. Mag., 12, 104

Kakinoki, J., Katada, K., Hanawa, T. and Ino, T., 1960, Acta. Cryst. E, 171

Kakinoki, J., Katada, K. and Hanaw, T., 1960 a, Acta. Cryst., 13, 448

Karle, J. and Konnert, J.H., 1976, Phys. Rev. Lett., 36, 823

King, S.V., 1967, Nature, 215, 615

Kitchens, T.A., 1963, Ph.D. Thesis, Rice University, 1972 (quoted in Bell and
Dean (1972) )

Konnert, J.H. and Karle, J., 1972, Nature Phys, Sci., 236, 92

Konnert, J.H., Karl‘e, J. and Ferguson, G.A., 1973, Science, 179, 177

Konnert, J.H., Karle, J. and Ferguson, G.A., 1973 a, Science 181, 774

Konnert, J.H., Ferguson, G.A, and Karle, J., 1974, Science, 184, 93

Leadbetter, A.J. and Wright, A.C., 1972, J. Non-Cryst. Solids, 7, 23

Lewis, G.N., 1916, J.A.C.S., 38, 762

McConnell, J.F. and Sanger, P.L., 1970, Acta. Cryst., A 26, 83

McWeeny, R., 1951, Acta. Cryst., 4, 513

McWeeny, R., 1952, Acta. Cryst., 5, 463'

McWeeny, R., 1953, Acta, Cryst., 6, 631

McWeeny, R., 1954, Acta. Cryst., 7, 180

Meek, P.E., 1977, Pri\;afe Communication

Mildner, D.F.R. and Carpenter, J.M,, 1975, Proceedings of the International

Conference on Amorphous and Liquid Semiconductors, North-Holland

Publishing Co., Amsterdam, 463



| 144
Moss, S.C. and Graczyk, J.F., 1969, Phys. Rev. Lett., 23, 1167

" Moss, S.C., Flynn, P and Luc-O Baver, 1971, Bull. Amer. Phys. Soc. 16, 1392

"Moss, S.C. and Adler, D., 1973, Comments on Solid State Physics, 5, 47

Moss,h S.C., 1975, Proceedings of the International Conference on Amorphous
and Liquid Semiconductors, North Holland Publishing Co., Amsterdam, 463

Mozzi, R.L. and Warren, B.E., 1969, J. ‘Appl. Cryst. 2, 164

Noda, T. and Inagaki, M., 1964, Bull. Chem. Soc. Japan, 37, 1534

Pauling, L., 1960, "The Nature of the Chemical Bond", Cornell University Press

PaL-Jli-ng, L., 1960 q, Ibid, page 6

Pauling, L., 1966, Proc. Nat. Acad. Sci., U.S.A., 56, 1646

Phillips, J.C., 1968, Phys. Rev., 166, 832

Polk, D.E., 1972, J. Non-Cryst. Solids, 8, 359

Po!k, D.E. and Bourdeaux, D.S., 1973, Phys, Rev. lett., 31, 92

Richter, H. and Breitling, G., 1958, Z. Naturforsch., 13 a, 988

Rudee, M.L., 1972, Phys. Stat. Sol (B) 46, K1

Rudee, M.L. and Howie, A.‘, 1972, Phil. Mag., 25, 1001

Sayers, D.E., Stern, E.A. and Lytle, F.W., 1975, Phys. Rev. Lett., 35, 584

Smith, J.E. Jr., Brodsky, M.H., Crowder, B.L., Nathan, M.I, and Pinczuk, A.,
1971, Phys. Rev. Lett., 26, 642

Steinhardt, P., Alben, R. and Weaire, D., 1974, J. Non-Cryst. Solids, 15, 199

Stenhouse, B., Grout, P.J., March, N.H, and Wenzel, J., 1977, Phil. Mag.,
36, 129

Temkin, R.J., Paul, W. and Connell, C.A N., 1973, Adv. Phys. , 22, 581

Valenkov, N. and Porai-Koshits, E., 1936, Z. Kristallogr., 91, 195

Warren, B.E., 1934, J. Chem. Phys., 2, 551

Warren, B.E., 1934 a, J. Amer. Ceram. Soc., 17, 249



145

Warren, B.E., 1937, Appl. Phys., 8, 645

Warren, B.E., l;?41, Phys. Rev., 9, 693

Weinstein, F.C. and Davis, E.A,, 1973/74, J. Non-Cryst. Solids, 13, 153
Wright, A.C., 1974, Adv. Struct. Res. Diffr. Meth., 5, 1

Wyckoff, R.W.G., 1963, Crystal Structures, Interscience, New York, 1, 1
Yar‘nada, S., 1968, DCIC Report 68-2, Defense Ceramic Information Cenire
Yip, K.L. and Fowler, W.i3., 1974, Phys. Rev., B 10, 1391 and 1400
Zachanasen, W.H., 1932, J. Amer. Chem. Soc., 54, 3841

Zachanasen, W.H., 1935, J. Chem. Phys., 3, 162



