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ABSTRACT

The screening of a non-transition element impurity in iron 1is
studied in Koster-Slater theory with only the 4s electrons being considered
to participate in the screening, the 3d electrons being assumed to be
correlated and localised on the iron sites as suggested by saturation
magnetisation measurements.  Assuming about one 4s electron per atom 1in
pure iron and a positive polarisation of the 4s band, the impurity hyper-
fine field is found to cross from negative to positive values as the
potential becomes strong enough to form a bound state.  Such a change in
sign is observed between Al and Si in iron and soft X-ray emission
measurements confirm the presence of a bound state on Al in iron. No
such bound state is seen on Al in Ni and in contrast to iron the screening
in nickel is dominated by the 3d electrons.

The effect of electron interactions are studied in the one-band
mode] using Gutzwiller's method and are found to give a lower cohesive
energy than that obtained by Friedel, the difference being greatest for
a half filled band. This extends qualitatively to the transition metals,
the effect of 2lectron interactions on the itineracy being greatest for a
half-filled band, and in the middle of the 3d series the elastic moduli,
malting point and heat of fusion indicate a much weaker bonding than
expacted from Friedel's model, which works well for the 4d and 5d series.

The Stoner criterion is derived in the single band Gutzwiller
model and the properties of the Stoner parameter are discussed. A
transition to a partially aligned state is possible if the density of
states at the Fermi level n(EF) of the uncorrelated non-magnetic state
is large and for a given value of n(EF), the critical interaction energy
at which a ferromagnetic transition first occurs decreases with the
number of states ¢ within this nigh density of states region, although
the resuis
n(E
discussed, and the magnetic moment and magnatisation energy of the lowest
energy state are found to increase with >¢ , provided that the inter-

ts are not strongly dependent upon X, particularly for large
F). The magnetisation dependence of the ground state energy is

action strength is sufficient to cause a ferromagnetic transition. Thus
Ni, with a sharp peak at the Fermi level, is astrong ferromagnet despite
the narrowness of this peak because of the small number of holes in the
d band, whilst Fe, with 2.9 holes per atom in the d band, is a weak
ferromagnet although intra-atomic exchange is a strong stabilising
influence.
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INTRODUCTION

The problem of the nature of the d electrons in the transition
metals has been a persistent one in the theory of the solid state with
both the Tocalised and itinerant models having had considerable success.
Some of the experimental evidence which has been taken in support of
one or the other of these models is discussed in % 1.1. In particular
it appears that in contrast to nickel, which behaves in a way characteristic
of an itinerant ferromagnet, iron behaves as if there are two spins
Tocalised on the atom coupled ferromagnetically by Hund's rule exchange.
Much has been learnt about the nature of electron interactions in the
transition metals by studying the structure of an isolated transition
metal atom in a metal such as Cu or Au, but the difficulty in treating
the electronic structure of a transition metal such as iron arises from
the delicate balance between the intra-atomic interaction and the
hopning integral, which determines the bandwidth, and can only be
studied in the pure matrix. In ‘§ 1.5 we discuss experiments on
alloys of iron and nickel with non-transition metal impurities and
calculate the change in saturation magnetisation with impurity
concentration in a simple charge screening model. it is found that
wnilst in Ni the screening is dominated by the 3d elactrons, in Fe the
screening cf a non-transition element impurity is largely by the 4s
clectrons. In Chapcer 2 we present a simple model of the screaning
of a non-transition element impurity in iron in which only the part
played by the 4s electrons in the screening is considered, the 3d
electrons being considered to be correlated and localised on the iron
sites. This model, which is capable of treating different spatial
wavefunctions for q‘ and $ electrons, represents an extension of
the one-band model of Koster and Slater (1954) to the spin polarised

case. The model is used to calculate the hyperfine field at the



impurity nucleus and, assuming a positive polarisation of the 4s
electrons and about one 4s electron per atom in the pure matrix,

the impurity hyperfine field is found to cross from negative to
positive values as the impurity potential becomes strong enough to

form a bound state at the bottom of the band. The results are found
to be in good qualitative agreement with experiment, the hyperfine
field crossing from negative to positive values between Al and Si,

Ga and Ge, Sn and Sb, and between T1 and Pb in iron in the 3rd, 4th,
5th and 6th periods respectively, and are compared with those of

Daniel and Friedel (1963) who represented the 4s electrons by a spin
polarised free electron gas. The interest of examining the electronic
structure of impurities in iron in the region of the cross-over is
pointed out, and in Chapter 3 soft X-ray emission spectra of such
alloys are discussed. The covalent admixture between the impurity
state and neighbouring 3d states is considered in j% 3.5 and a simple
explanation of the saturation magnetisation measurements of Aldred on
alloys of iron with non-transition element impurities is proposed.

In Chapter 4 the effect of electron interactions on the cohesion
in the one band model is investigated using Gutzwiller's model, and is
found to give a lower cohesive energy than that obtained by Friedel (1969),
who neglected the energy cost of intra-atomic charge fluctuations, the
difference being greatest for a half filled band. The applicability
of the results to the case of five d bands is discussed in ‘§ 4.4
with particular reference to the difference in electronic structure
between iron and nickel. In ‘g 4.6 we discuss the implications of
these results for the surface properties of the transition metals, and
the role of correlation in the catalytic properties of the 3d series.

Chapter 5 discusses the magnetic properties of the single band
Gutzwiller model. A partially aligned state becomes stable relative
to the non-magnetic state if 1 - CEFF n(EF) < 0, where n(EF) is

the density of statesat the Fermi level, and the properties of CEFF



are discussed.  As the number of electrons (holes) per atom in the
band n—s 0, Cepp behaves with the bare interaction C ina

qualitatively similar way to the effective interaction CH between

F
opposite spin electrons in the non-magnetic ground state. As n-—> 1,
however, CHF - CEFF is found to increase in magnitude with CHF

being greater than CEFF' We therefore expect that Kanamori's theory,
which replaces the Stoner parameter Cerp with the effective interaction
between opposite spin electrons in the non-magnetic ground state,
evaluated in the ladder approximation, would overestimate the tendency

to ferromagnetism, particularly in the limit n —> 1. This is shown

to be the case and for the triangular density of states, for example,
Gutzwiller's model is found to offer a better description of the
correlated ground state if n > 0.035. The dependence of the ground
state energy on the magnetisation is discussed and it is found that

the important criterion for ferromagnetism is the presence of a region

of high density of states at the Fermi level. For a given height of
this peak 3/k) , where 72 () 1is the bandwidth, the critical values

of the interaction strength at which a transition to a partially aligned
state occurs decreases as the number of states within this peak o
decreases, but the dependence upon oc 1is not strong, particularly

for large \ﬂ . On the other hand, it is found that the magnetisation
and energy of magnetisation of the lowest energy state is greatest for

a large value of oc¢  provided that the interaction strength is
sufficient to cause a transition to ferromagnetism. It is argued
that a similar behaviour is to be expected in the case of the transition
metals with five d bands, although intra-atomic exchange will, of
course, be an additional important factor in stabilising the ferromagnetic
state. In Ni it is well known from band structure calculations that

there is a sharp peak in the density of statesat the Fermi level, and

since the number of holes in the d band of Ni 1is small, strong



ferromagnetism is  possible despite the narrowness of this peak.
In iron, however, with 2.9 holes per atom in the d band, it 1is
unlikely that a peak of sufficient width will occur and iron is a
weak ferromagnet, despite the strong stabilising influence of intra-
atomic exchange. Finally the absence of ferromagnetism in Pd
and Pt 1is discussed.

Sonie of the work in this thesis has been presented in the
following:
C.M. Sayers, N.H. March, A. Dev, D.J. Fabian and L.M. Watson (1975).

J.Phys.F.5, L207.

C.M. Sayers, N.H. March, A. Dev, D.J. Fabian and L.M. Watson (1976),
Paper presented at the 13th Annual Solid
State Physics Conference (Manchester).

C.M. Sayers (1976), J.Phys.F. 6, 1939.
C.M. Sayers (1576), To be published in J.Phys.F.

C.M. Sayers, N.H. March, D.J. Fabian and L.M. Watson (1976). To be

submitted to J.Phys.F.

J. Friedel and C.M. Sayers (1976). To be submitted to J.Physique.



CHAPTER 1

EVIDENCE FOR CORRELATION EFFECTS IN THE TRANSITION METALS

1.1 Introduction and Experimental Survey

When compared with s and p states of about the same energy,
atomic d states are rather tightly bound around the nucleus due to
the term ¢ ( { + 1)//r2 in the radial Schrodinger equation.
Consequently, when the atoms come together to form the solid, the s and
p states overlap strongly and form a broad band, but the d states are
not strongly perturbed by the lattice potential and do not overlap strongly
with d states on neighbouring atoms. This is particularly true of
the 3d series, there being (n - { - 1) spherical nodal surfaces centred
at the origin, and it is not clear whether a description of the electronic
structure based on localised atomic orbitals, as used for the even more
localised f states in the rare earth metals, or a molecular orbital
description, as used for simple metals, would be the more appropriate.
Indeed, this has been a question of considerable controversy with much
experimental information in support of both these points of view (Herring, 1966)

1.1.1 Evidence in favour of a Tocalised model

(1) The temperature dependence of the initial susceptibility, X

fo) b

of iron and nickel above the Curie temperature T, varies as A(T—TC)_ ¢

with ¥ = 1.37 £ 0.04 for iron (Noakes and Arrot, 1964) and ¥ = 1.35 + 0.02
for nickel (Kouvel and Fisher, 1964) in excellent agreement with the

4/3 power relation obtained from the exact series for the Heisenberg model.
(ii) The energy distribution of neutrons criticaily scattered from

iron is found to be several times smaller than that expected on the basis

of a simple itinerant model, but close to that expected from a localised

model (Erikson and Jacrot, 1960).



(ii1)  The magnetic entropy of iron is about k 1n 3 per atom
(Hofmann et al. 1956, Mott and Stevens 1957) indicating that there are
two spins per atom coupled by intra-atomic exchange, which remain
coupled well above the Curie point despite becoming decoupled from the
moments on neighbouring iron atoms.

(iv) Whilst the resistivity of nickel above TC behaves very much like
that of palladium with a curvature satisfactorily explained by an
itinerant model, the resistivity of iron varies linearly with a strong
temperature independent contribution, a similar behaviour being observed
in the magnetic rare earth metals (White and Woods 1958, Coles 1958).
This suggests that spin disorder plays a different role in iron than in
nickel, and a strong spin disorder term occurs also in the resistivity
of manganese (White and Woods 1958).

1.1.2 Evidence in favour of an itinerant model

(i) Whilst the saturation moment of iron is 2.2 FB/atom in agreement
with there being two spins per atom coupled ferromagnetically by Hund's
rule exchange, and in agreement with the value of k 1n 3 for the magnetic
entropy, the saturation moment of Ni is 0.61 pB/atom and that of Co
1.721pB/atom. This indicates that in Ni and Co some, at Teast, of
the d electrons are itinerant.

(i1) The electronic specific heat of the transition metals (Cheng et al.
1960) is five to ten times greater than that of the simple metals
indicating a high density of states at the Fermi energy, and strongly
suggesting the existence of a Fermi surface for d electrons.

(iii1) Experimental studies of the de Hans-van Alphen effect (Joseph and
Thorsen 1963, Gold et al. 1971, Baraff 1973) and the magnetoresistance
(Coleman et al. 1973, Angadi et al. 1974) clearly demonstrate the existence
of a Fermi surface for d electrons in iron and nickel, and are in
excellent agreement with the band structure calculations of Callaway and

co-workers (Tawil and Callaway 1973, Wang and Callaway 1974).
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(iv) Soft X-ray emission spectroscopy (SXS) and X-ray photoemission
spectroscopy (XPS) give d electron bandwidths similar to those obtained
in band structure calculations.

There is therefore considerable evidence that the d electrons
in the transition metals are collective, but it is clear that, in the
3d series at least, correlation effects are important in determining the
electronic structure. We note in particular the striking difference
between iron and nickel. Thus, whilst nickel behaves very much 1ike an
itinerant ferromagnet, iron has many of the properties of a system of
Tocalised spins. This difference is perhaps surprising at first sight
since the nuclear charge of nickel is greater than that of iron, so we
would expect the 3d shell in Ni to be more tightly bound around the
nucleus and consequently would expect electron interactions to be stronger
than in iron. We might therefore expect correlation effects to be more
important in nickel than in iron, in disagreement with experiment. This

important fact will be discussed in Chapter 4.

1.2 Density Functional Theory

Despite the importance of correlations in the electronic structure
of the transition metals there is an exact treatment of the ground state
energy in a method 1in which the many-body system is characterised by the
electron density. This allows the inclusion of correlation effects,
while retaining the conceptual and computational simplicity of the band
picture. This density functional approach is based on two fundamental
theorems proved by Hohenberg and Kohn (1964) namely that the ground state
wavefunction is a unique functional of the density, and that there exists
a ground state energy functional which is stationary with respect to
variations in the charge density. This was extended to the spin
dependent case by Stoddart and March (1971) and by von Barth and Hedin

(1972), the proof of the theorems being given in Appendix A.



If the electrons move in an external potential VE&T (r) we

write the total energy in density functional language as

E[ﬁf'/oilj = TS [/D’(‘] +T5[f¢,]+“l2§d£"&5, plrl p(f/)

{ {
lr - r |

+ f de LV, h (fJfT{f)* V:xr(ﬂﬁn )]+ Exe [{O’Hﬁj

where TS [[qj_] is the kinetic energy of a non-interacting gas of
densityf%, and Ey. is the exchange and correlation contribution to the
total energy. We require E [{Oilfu‘] to be stationary with respect
to arbitrary variations in {0$ and /Dh subject to the conservation of
the total number of electrons. The spin density is then given by

/ja—'(EJ: Z: (qgga»(f)lz

0CL STATES

where the functions (?La' are solutions of the Schrodinger-like equation

o

K0 el o) | B ) e )

Zm el

where V:C (r) = SExc/g/aa,(r) is a functional of /Jf and 4
Equations (1.2) and (1.3) are in principle exact. It is clear however
that to obtain the functional form of VZZ (r) is equivalent to solving
the many body problem and in practice approximations for the exchange
and correlation potential are necessary. In most of the applications

of the density functional scheme a local dependence on the density has
been assumed. This approximation is exact in the limit of slow and weak
spatial variations of the spin density. Various attempts have been
suggested to improve the local density approximation such as the use of
gradient corrections. It is doubtful, however, whether gradient
corrections can be viewed as improvements in practical calculations.

Thus the inclusion of the two lowest terms gives wrong corrections for

spatial variations with characteristic wave vectors of the order or

12

(1.1)

(1.3)
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larger than the Fermi wavevector (Geldart et al. 1972) and therefore
give no improvement when the local density approximation certainly needs
to be corrected. The €, in (1.3) are Lagrange multipliers and
should not be confused with the quasi-particle energies E;ka' which must
be obtained from the Dyson equation

K Gt A _pled) |, e
_.E" "

Zim [r
+ 3[0_(5153 EEJ)%Q,JG{!/ = Ey, %J )

(1.4

where Zicr_is the spin dependent non-local quasi particle self energy
(Hedin and Lundquist, 1969).  Thus although equation (1.1) offers in
principle an exact treatment of the ground state energy, the G, and
éic‘ in {1.3) do not represent the quasi particle energies and wave-
functions and 1ittle can be learnt about the nature of the wavefunction
in the presence of electron interactions from these calculations. There
have therefore been several semi-empirical discussions of the nature of
the wavefunctions and density of states in a strongly correlated electron
system, particularly with reference to iron, and these usually assume

that some, at least, of the electrons are localised in nature.

1.3 Theoriazs with combined localised and itinerant character

(i) Pauling (1938) on the basis of a study of the behaviour of the
melting points, compressibilities and atomic volumes of the transition
metals was the first to recognise the importance of the d eiectrons

in the bonding, but pointed out that in the middle right of the 3d series
the d electrons do not contribute as fully as might be expected to the
binding. To explain this, Pauling assumed that the five d-orbitals

can be partitioned into 2.44 non-bonding or atomic Tike d-orbitals, and
2.56 bonding d-orbitals which, together with one s and three p orbitals
hybridise to give 6.56 bonding hybrid (spd) orbitals. The behaviour of

the physical properties within the 3d series was then taken to indicate
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that on passing from potassium to vanadium the number of bonding electrons
per atom increases from one to five, after which the electrons begin to
enter the atomic, or localised, d orbitals where they retain paralle]
spin as long as possible. Thus Cr, Mn, Fe, Co and Ni are assumed

to have 5.78 bonding electrons and 0.22, 1.22, 2.22, 3.22 and 4.22 atomic
1ike d electrons respectively.

(1) Mott and Stevens (1957) and Bates and Stevens (1961) suggested

that both localised and itinerant electrons may be simultaneously present
in iron because of the anisotropy of the d orbitals. The effect

of a cubic field is to split the five fold degeneracy of the d electrons
into a triply degenerate set, labelled ng, and a doubly degenerate

set, labelled Eg. Mott and Stevens assumed that the ng orbitals, which
are directed towards nearest neighbours in the  body centred cubic
structure, are itinerant but that the distance between next nearest neighbours
in iron was greater than the critical distance at which a Mott transition
occurs so that the Eg states must be described by 'non-conducting' wave-
functions.  The three ng functions, possibly much hybridised with the

4sp electrons, and perhaps with radii greatly different from the atomic

Eg states, were assumed to form a set of wavefunctions of the Bloch type
which are strongly bonding, and it was assumed that there are two electrons
per atom in the non-conducting Eg states coupled by intra-atomic exchange
giving a moment of 2.0 fB/atom, the difference between this and the
saturation momentc of 2.2 P being due to a small polarisation of the
itinerant d electrons.

(ii1)  Goodenough (1960, 1963) emphasised the two sublattice nature of

the body centred cubic structure of iron in which near neighbour
directed orbitals form a band in which the bonding states, corresponding

to antiparallel spin correlations within the bonds, are more stable than
the antibonding states with parallel spin correlations. He suggested

that any inherent spin correlation between nearest neighbours, whether
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it be antiferromagnetic or ferromagnetic, forces the next nearest
neighbour correlations to be ferromagnetic because intra-atomic
exchange interactions and nearest neighbour spin correlations are

both assumed to be stronger than next nearest neighbour correlations.
As a result, the Eg electrons may be assumed to be localised and to
behave as if they obey Hund's rule.

(iv) Van der Woude and Sawatzky (1974), in a recent review, have
analysed the hyperfine field at iron sites in iron based alloys on
the basis of a modified Zener-Vonsovskii model and have concluded that
the 3d magnetic moments in iron are highly localised and are coupled
ferromagnetically by a small percentage of itinerant d electrons.
Stearns (1973, 1976) has proposed a similar model and from a study

of the concentration dependence of the hyperfine field at successive
neighbour shells to the impurity has concluded that at most 4% of the
3d electrons in iron are itinerant.

(v) Edwards (1970) and Sakoh and Edwards (1975) proposed that a
Hubbard splitting occurs in iron, the upper Hubbard band containing
two states per atom, and that the two holes per atom in this band may be
treated as localised spins coupled by Hunds' rule. A model Hamiltonian
was suggested in which the localised spins interact with one another
via a superexchange term, and with the remaining 0.9 3d holes per
atom in the lower Hubbard band which are taken as itinerant. This
model was found to offer a reasonable description of the temperature
dependence of the spontaneous magnetisation and spin paramagnetic
susceptibility of iron.

From the nature of the assumptions involved, these theories should
be regarded as interpretations rather than as explanations of the
experimental facts. These models attempt to explain why the electrons
in iron sometimes behave as localised and sometimes as itinerant by

assuming the presence of both itinerant electrons and localised electrons



or holes. With the exception of the theory of Edwards (1970) and
Sakoh and Edwards (1974), which assumes a Hubbard splitting with the
localised holes being in the upper Hubbard band, all of these theories
assume that the localised electrons or holes 1ie within the energy
range occupied by the itinerant electrons. This seems most unreasonable
since a localised state 1ying within an itinerant band must surely
hybridise with this band and broaden in energy to become a resonance
with a finite Tifetime. Rather than divide the electrons into two
groups, the electrons in one having localised wavefunctions, the
electrons in the other having Bloch character, it would appear more
reasonable that the many body wavefunctions itself should lie between
these two extremes. Such a situation is known to be the case in the
simplest many electron, many centre problem, namely the Hydrogen

molecule which we shall now discuss.

1.4 Correlation in the Hydrogen Molecule

The first treatment of the electronic structure of the hydrogen
molecule was by Heitlerand London (1927) who recognised that when the
atoms are well separated the ground state would correspond to the
solution with one electron on each atom. If ¢ a and ¢ oare hydrogen
wavefunctions for nucieus a and b, the space wavefunction

corresponding to the solution of lowest energyin this approximation is

Yley o) = 400 gt v 400 g, )

At the same time as Heitlerand London suggested this approximation
another treatment, the molecular orbital approach, was developed by
Hund (1928) and by Mulliken (1928). In this method an electron is
assumed to belong equally to the two nuclei, the space wavefunction

corresponding to the solution of lowest energy being
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Olr e )= Ldutig, red v g0 g, 12) ]
+ LZ?)m(i}!?a[z]*r(Ph(lJ(]’B (2] ] (1.6)

Here the first term is the Heitler London wavefunction (1.5) whilst
the second represents the ionic configuration H" + H.  This wave-
function clearly breaks down as the molecule is pulled apart, since

at large interatomic distances the Coulomb repulsion would prevent

two electrons coming together on the same atom to form the H  ion.
Further, it is clear that even at the equilibrium interatomic distance
electron-electron interactions are not adequately introduced since
according to this wavefunction the probability of a given electron
being in a given atom is independent of whether another electron of
opposite spin is already there. Coulson and Fisher (1949) considered

the wavefunction

Ulr e )= L4, 004, )ed (0 g, o) ]
+/A[Z}“(M¢a(ﬂ +4b(,]q§b(z)]

and found the value of F giving the lowest energy as a function of the
interatomic spacing R . At infinite distance H is of course zero,
and the Heitler-London wavefunction is exact. As R decreases poowas
found to increase to a maximum value of about 0.24, a valua which it
takes at about the equilibrium interatomic distance. This is much
smaller than the value P 1 corresponding to the molecular orbital
wavefunction which therefore greatly overestimates the ionic contribution.
In order to treat the effect of electron interactions on the
wavefunction in the transition metals it seems natural, in view of the
simplicity of the above scheme, to use a wavefunction in which the

number of multiply occupied atoms in the ground state is used as a
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varational parameter. Such a method was proposed by Gutzwiller
(1963, 1965) and we shall use this in Chapters 4 and 5.

Hopefully it should be possible to obtain information about the
degree of polarity in the ground state wavefunction from experiment.
Perhaps the most promising way of doing so is to study the response

of the d electrons to the presence of a substitutional impurity.

1.5 Correlation Effects in the screening of non-transition
element impurities in iron and nickel.

Much can be Tearnt about the nature of the d electrons, localised

versus itinerant, by examining their response to a substitutional

impurity. If the d electrons were found to play no part in the
screening of the impurity excess charge, a simple band picture would
apparently not be sufficient to treat the electronic structure, whilst
if they behave in a Thomas-Fermi manner a description of the electrons
as a system of localised spins would be most inappropriate. The
electronic structure of a transition element impurity in iron or nickel
would, however, be determined largely by the balance between the electron-
electron interactions on the impurity site and the overlap with
neighbouring orbitals, and the nature of the response would therefore
be rather dependent upon the impurity atom chosen. A non-transition
element impurity would however approximate more closely to a simple
perturbation, the d orbitals lying well above or below the d band
of the host.

In the presence of an impurity such as Al or Si in iron or
nickel let us define wavefunctions ¢i<f{£) with energy E?;,
derived from the d band wavefunctions of the pure metal by the action
of a potential which repels the d Tevel at the impurity site well
above the d band where it no longer interacts with the system. Let

us then consider the response of the system to the potential



19

vV Ilr)] =V i) —\/2 {CJ“\/;-(E) r v v (1.8)
where V, (K) is the potential of the impurity core, V, (f) the
potential of the transition metal atom core originally present at the
impurity site, V("(fJ the potential of the partially filled d shell
removed or filled, and V (r) the potential due to the screening
charge at the impurity site which should be obtained self-consistently.
It is convenient to work in terms of the canonical density matrix

Cog (r,r /J B ) where [3 = 1/kT, for spin o~ electrons,

which is built up from the ¢ - and the E o as follows

-

Do) % 1 PR (1.9)
C0( (S)f ][3) - Z (?L'a’ [fJ %‘0' % } <
L

Following March and Murray (1961) we define the canonical density

matrix in the presence of the impurity potential (7.8) by analogy

¢ ~PE;
Cf{v‘f)i/jpl :ZL{/L\T{::}L{/W‘(':IJ& PRig (1.10
v

where \f(’io, is an eigenfunction of the perturbed Hamiltonian

H - with energy E;. . C_ (51':,} F) satisfies the Bloch equation
/ - C / (1.11
HJ‘CJ-{fJfJPJ‘ -3 a‘(fJI)PJ
o
subject to the initial condition Co,([)r’)o) = S([-E/) . A solution

of (1.11) suitable for iteration is
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Thus, using the orthonormality of the ¢L(

(o

the response of the d electrons is, to first order in V- ([J

N
“d

5(/(5%(5 fJP} = So/tfcw{f,m[s} (1.14°

‘Pj\d\fjcor(fljfljpj\/d’ [\':I)
To obtain the expression for the spin density we introduce the Dirac density

matrix

[

! - ¥ 5
ﬁ/{f)fJE}‘ ?—q/w(:’\'{wlr/}@(@gw} (1.15;

and utilise the relationship between C and F which was established

by March and Murray (1960)

LI PN

xR ~-BE 1.16°
Co lryrypl = FL ol Bl TP de e

f,f f", (’J E ) is seen to be the inverse Laplace transform of
/ and may be written in the form

¢ (ryr ) p ) J

B

< 4 [32':

{flr,[_:) :___jl___ ¢
/JG’““J 2174 \[\C—‘ioo {3 CO/(’(]:/JFJJP

(1.17

where oC 1is chosen such that the integral has no poles in the part

of the complex plane for which R(F ) 2« . Substituting gives



de_fﬂr{f’f)EJ: \ro/&foo‘(fjf)t:)
—\Q(A—f' “5‘ [)oa*(‘:rl':il E}vf(f'}
JE

and defining

So the change in magnetic moment of the system due to the impurity

potential V_. (v} s just

}‘Screening = _?df, Af_ {': J EF )/MB
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(1.18°

(1.19

(1.20

(1.21

(1.22
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to first order in Vo” (5'] to which we must add the change in
moment due to the filling or removal of the partially filled d shell
at the 1impurity site - FHOST’ vhere FHosT is the magnetic moment
per atom in the pure matrix.

Consider now a ferromagnetic transition element into which a
concentration c¢ of impurity atoms has been placed. We shall assume
that the impurities are non-interacting and have zero moment. This
assumption is supported by the neutron scattering measurements of
Holden, Comly and Low (1964) on dilute allays of Al, Si, Ga, Ge, Sn
and Sb  in iron which indicate the absence of a local moment on the
impurity site within experimental error.  Thus the total moment of

the perturbed system is given by

/AToTﬁL = hJ/Z (1.23

vhere N 7 = ({ ~c | VJ/IHOST + ¢ N /AScmEENING- (1.24

where P screening = J\d\/ A/J_ (fl Ee | /‘AB is given to
first order in V __ (5) by (1.22). The rate of change of mean

magnetic moment with impurity concentration ¢ 1is then

o T

- U + A
~—f= / HosT // SCREE NN

i c

Equation (1.22) has the advantage of providing a simple and under-
standable picture of }JScreening' The second term results in a
change in moment upon alloying because the density of states at the
Fermi Tevel in a spin polarised electron gas is different for T and J

spins. Thus in Ni the % spin 3d band is full so

0 =
d Pi (v & ) 0.  Mott (1935)
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suggested that because of the high density of states in the d band
the screening would be dominated by the d electrons.  Thus neglecting

the first term in (1.22)

J)"«f[\/o_ roee) = = Zme = Mooy ) (1.26

by Friedel's rule, where 7§|r”, is the valence of the impurity atom
and n._ ., s the number of electrons per atom in the valence band

of pure Ni. This gives

Cé# = M L2 - e }/M& (1.27
dc

In Ni there are ten electrons per atom and the ? spin 3d band

is filled. Consequently there are the same number of electrons in

the 4s band as there are holes in the & spin 3d band giving the

simple relation

{

= L /MB (1.28

Q Q
[ S“
il

It should be noted that this relationship is valid only for nickel
because the number of electrons in the 4s band is equal to the

number of holes in the 3d band and is not applicable to other
strong ferromagnets as has been sometimes assumed. Table 1.1 compares
the values of A/ﬁ'/A ¢ observed by Crangle and Martin (1959) for
several non-transition element impurities in nickel with the prediction

based on Equation (1.28).
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TABLE 1.1

At [dc for Ni based alloys in pp/Atom
/ 7

Solute Valence Theory Experiment
Cu 1 -1.0 -1.14
Zn 2 -2.0 -2.11
Al 3 -3.0 -2.80
Si 4 -4.0 -3.77
Ge 4 -4.0 -3.70
Sn 4 -4.0 -4.22
Sb 5 -5.0 -5.31
The agreement is seen to be excellent. It thus seems that the

screening of non-transition element impurities in nickel is dominated

by the 3d electrons which appear to be behaving in a way

characteristic of an itinerant ferromagnet. This conclusion is entirely
consistent with the experimental data presented in Table 1.1. Thus for
nickel at least the 3d electrons must be treated in a model which

is itinerant by nature and we expect normal band structure calculations
to be applicable.

The first term in (1.22) is entirely new and arises from the
exchange interaction of the d electrons with the absent magnetic
moment at the impurity site. If the moment arises in part from near
neighbour interactions this will Tead to a depolarisation at sites
neighbouring the impurity. Some evidence of the importance of this
term is seen in Table (1.1) where the experimental value is frequently
greater in magnitude than the theoretical prediction which, if we only
took into account the second term in (1.22), would mean that more
electrons than are available enter the d band. Nevertheless the

strong valence dependence of A}f/d.c for non-transition element



25

impurities indicates that the 3d electrons in Ni are essentially
itinerant in nature.

That such a conclusion would be wrong for iron is seen 1in
Table 1.2 which gives the 04[:/Jc; values for iron based alloys obtained
by Aldred (1968).

TABLE 1.2

0(/1 [d for Fe based alloys in pg/Atom
y /

Groups
Period 1 2 3 4 5
2 Be
-2.26
3 Al Si
-2.27 -2.28

4 Cu Zn Ga Ge As

-2.00 -2.01 -1.43 -1.36 -1.40
5 Sn Sb

-0.97 -0.97

5 Au

-1.09

Al and Si are seen to obey the simple dilution model

J}:/dic = —2.2/»8 , a result first obtained by Fallot (1936),

Parsons et al (1958) and Arrot and Sato (1959). In this model the
impurities are assumed to carry no moment and not to disturb the moments
on neighbouring iron atoms.  This model is supported by the neutron
scattering measurements of Holden et al (1967) who found no moment

on Al, Si, Ga, Ge, Sn and Sb impurities in iron within experimental
error.  The measurements of Aldred (1966, 1968) summarised in Table 1.2
show, however, that the dilution model is only obeyed by those impurities
with Tow atomic number, all others producing a small increase in the
moment on neighbouring iron atoms. This is supported by the neutron

scattering measurements (Holden et al 1967) which reveal that iron
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atoms within 4-5 R of the impurity have moments which are increased
by ~~ 1-2% over the value for pure iron. We see from Table 1.2
however that this increase depends only on the period of the impurity
within groups 3 to 5, there being no dependence on the valence,
indicating that the magnetic 3d electrons do not contribute to the
screening of a non-transition element impurity. Furthermore this
increase in moment is Seen not to arise from the first term in (1.22)
as this would imply an antiferromagnetic nearest neighbour coupling.
We conclude therefore that the df;ﬂic values of iron based alloys
can not be explained by the term }‘Screening in (1.25) as this
would depend strongly on the impurity valence. There must therefore
be a further contribution to A/;/qfc which we have not taken into
account, and we shall discuss one such in Chapter 3.

This conclusion, that the 3d electrons in iron are not involved
in the screening of a non-transition element impurity, is further
supported by the specific heat measurements of Beck and co-workers
(Gupta et al 1964, Beck 1964, Cheng et al 1964) on alloys of iron
with Al, Si, Ge and Sb, which cannot be described in terms of the
filling of a 'rigid' or a 'semi-rigid' d band by the excess valence
electrons of the impurity. In addition, optical absorption measurements,
which we shall discuss in Chapter 3, reveal that in Fe Al alloys
the Fermi level does not change on alloying whilst in Ni Al alloys
the absorption odge appears to niove linearly upwards in energy with
increasing Al content. Thus, in contrast to nickel, in which the
screening of a non-transition element impurity is dominated by the
3d electrons, in iron the 3d electrons are ineffective in the
screening of such impurities, which is largely by the 4s electrons.
It is reasonable, therefore, to treat the screening of a non-transition
element impurity in iron by a model in which the iron 3d electrons
are assumed to be strongly correlated and Tocalised on the iron sites,

and that only the 4s e€lectrons contribute to the screening.



CHAPTER 11

Screening of non-transition element impurities in

iron and the impurity hyperfine field

2.1 The Koster-Slater Model

We concluded in Chapter I that whilst in nickel the screening
of a non-transition element impurity is dominated by the 3d electrons,
in iron the 3d electrons are ineffective in the screening which is
largely by the 4s electrons. We shall present in this chapter a
simple model of the screening of a non-transition element impurity in
iron in which only the 4s electrons are considered to take part in
the screening, the 3d electrons being assumed to be highly correlated
and localised on the iron sites. We shall assume further that s-d
hybridisation effects may be neglected and shall discuss their effect
in Chapter 3.

With these assumptions we may use the one-band model of Koster
and Slater (Koster and Slater 1954, Wolff 1961, Clogston 1962) to treat
the screening of the impurity excess charge by the 4s electrons. MWe
write the unperturbed wavefunctions ¢b<r (]  with wavevector _E
and spin < in terms of the Wannier Eﬁnctions U - (;f ~I<;}

[

centred on the i th site as

kR,
P o) = Lo m -ty

- R .

i

and, following Koster and Slater (1954) write the scattered wavefunction

by analogy as

k(J (r) = c (& K.}(,Q (v - R.

[vaES g =) et a - Y\l‘}
:

[\/l

[y

(N

which is related to C?k o~ via the integral Schrodinger equation

27
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- 2.3
q/ﬁd‘(c)_@bg—(i}JrJ - C'(f(ff E)\/IHP(:J%2 (:J a’(r (2.3)
where V;;P is the impurity potential and the Green function for the
unperturbed lattice C;,(: C'l I ) is given by
w®
C/O,(i o:/E) = ) ?g‘;’a‘(ﬂ Q{}g’o— () (2.4)
{ .
E_ E EEIG' “'\;/VL
where E b o is the energy of the unperturbed state ¢kcf to be

abbreviated by E.

To solve (2.3) it is necessary to take a simple model for the
impurity potential Vf&% and in the method of Koster and Slater it
is assumed that the matrix element of the impurity potential V”~

IMpP
betwzen Wannier functions LQf([:— § (J is given by

- = .- - 2.5
Sy le-r VT T -k )=V, s lri-r Jolg;-k, ) (2.9
where E;o is the impurity site. This assumption, which effectively

limits the impurity potential to the impurity site, is reasonable for
iron based alloys for which neutron scattering experiments (Holden et al,
1967) reveal that the disturbance on iron atoms neighbouring the
impurity is small, but would be certainly inapplicable to nickel based
alloys in which an appreciable reduction in the magnetic moment extends
some b5 K into the nickel host (Comly et al, 1968).

Substitution of (2.1) and (2.2) into (2.3) with the assumption
(2.5) gives an expression for the amplitude C (@_é} of the YWannier

o

function centred at tSi
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T
L

. 2.6

where we have chosen the phases of the Wannier functions to be purely

real; and in particular the amplitude of the Wannier function on the

impurity site is given by

) o~ Do (2.7)
EUEE s

(k. R,
Cr(Ry) = < (2.8)
DoV E el T v iy n (]
where R . (E) s the density of states in the 4s band and
F e}l = P n,(e)de (2.9)
o
- e
QD indicating that it is the principal part of the integral that
is to be taken.
The density ¢f spin ¢~ electrons at a point r in the alloy
is then given by
- 2 Y, 10t
/;'&J Z_(lyfli)‘ B chf(gqur(f’@f]%Jgil%T[f"Ej}
0CC 3ThTES Ote STATES
(2.10
R. :
— | "’J

= Zf~ &‘?ﬁ l\):’ (v - R .
b "
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vhet T = '
where w(j Z_ Cka—(@ijcga{gj)

Qcc STATEE

We shall assume that the only Wannier function to have amplitude

at Ro is the one centred on the impurity site, the density of spin

“

o electrons at the impurity nucleus then being

PRI Qw\bcf(o)lz -1
where 0(\( - Z [ Cr{@ HZ
ocC STATE S

Whilst the density of spin ¢~ electrons at [ in the pure matrix is

kR

o ~ ; Lk k.
p) = 2 <~ 0 ek e TR (oK)
Occ STATES ’
2
= Z [ o (o) l
Occ STATES
at the impurity nucleus, with the same assumption at before.
Thus, using (2.8) we have
DCO, = Z- 1
a¢e STATES - 2 2
© o 4= Vo for (e} ¢ LV n, (e)] (2.13
= ﬂEE V]O/{E}U{E
- 2 2
[1~V0)}'¢(E}] fEﬂ\/J V)O,{E)]
2.1.1 Treatment of bound and virtual bound states on the impurity
If the impurity potential V__ s sufficiently large there
o
will be an energy E o such that
- g
- v_ F (g9) = o (2.14
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will be satisfied. If this energy lies within the band the term

Lﬁ Va’ n, (E: ) in the denominator of (2.8) will remain but
C,. (RrR,) will exhibit a resonance in the region of Egr . This

corresponds to the virtual bound state discussed by Friedel (1958).
If Ej lies outside the band C__{R J will become infinite
signalling the formation of a bound state on the impurity site. This
level lies above the band if the impurity is repulsive and below it
if the impurity is attractive.

In the presence of a virtual bound state we may evaluate (2.13)
by expanding F__ (E) about the energy E: and setting n(£) % n(Eg— )
in the integral. Thus F_ (E) = F_ (EJ) + (E-E5 )F, (ET)

- VO:'JF(E—EC‘;’JF{/(EZ“) (2.15

and [ 1-V_F, (e)]° +[ﬂVJm¢(Eljl (2.16

~ V) lhe*y e + ]

where A = F;Z[EUKJ

g - —287 FL° (el ]

o ESTECRT) L Eat el

s\ Oloc - 2 (,‘&MA_’ 2o oc f"{f
but

| 2
Joao® s o v e (hac- 4 \! hoc -4

for L*_qc, > ,{fz as in this case, so (2.13) becomes

| t.”! le-e7) AP (2.17

TV e (] T, (e7)

If the bound state lies below the band then
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o = F;(Ef) v jEF ne- (e} dE (2.18'
A
F/(ed) Eg[1,\/6@(&1]%[1(1\/0,%(511

o~
- —eq Eoe>—m

o . ]
where E a is the bottom of the band. As Vaf )

and we see from (2.9) that

BouND

-2 7 . .
- s lEg ) { corresponding to the Wannier
/
Fr (E:r)

function k%f (v- KQJJ becoming completely full.

2.2 Hyperfine Field at the Impurity nucleus

The hyperfine field at an iron nucleus in pure body-centred cubic
iron is known from many experiments to be -339ko+ (Stearns 1973)
and is the sum of several contributions. The most important of these
is that due to the polarisation of the core electrons by the magnetic
3d electrons, and whilst predictions of their value have been made
(Watson and Freeman, 1961) it is only recently that it has been
possible to measure them individually (Song et al 1972, 1974). There
appears to be considerable disagreement between experiment and theory,
the measured contribution to the hyperfine field at an Fe nucleus
in iron due to the 2s electrons being -1644 T 391 ho. (Song et al
1974) whilst the predictions of theory are of the same sign but are
several times smaller in magnitude. This negative sign arises because
the 3d band is spin polarised. If the majority of 3d electrons
have spin T , a core electron with spin f experiences a stronger
exchange force than one with spin L SO ¢ns 3 (5 J is pulled out
relative to ¢ns¢ (5 ] for inner ns levels, the opposite being true
for outer levels. Goodings and Heine (1960) investigated this in

the case of a free atom of iron using unrestricted Hartree-Fock theory
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and found that the contribution of the 1s Tlevel is small. The
contribution of the 3s Tlevel was small and positive but when slightly
expanded 3d wavefunctions were used, corresponding to the situation

in the solid, the 3s level was found to behave more like an "inner"
shell with a negative contribution at the nucleus. To be consistent
with the observed total hyperfine field, therefore, the measured
contribution of the 2s electrons requires a large positive contribution
of order 300-1500 hO< from the 4s electrons (Duff and Das, 1975)
which is at least an order of magnitude greater than current band theory
(Wakoh and Yamashita 1968, Duff and Das 1971, Callaway et al. 1973).
Song et al do however quote a value of +600 kO obtained by Stearns.
It is important to add that the small negative magnetisation found at
interatomic positions in iron (Shull and Yamada 1962), which was
originally interpreted in terms of a negative 4s polarisation, is

now thought to be due to the spin dependence of the radial part of the
3d wavefunctions (Duff and Das, 1971).

At the nucleus of a non-transition element impurity in iron,
however, the core polarisation is expected to be small and we shall
assume that the dominant contribution to the hyperfine field is the
4s polarisation. Thus the core polarisation term is proportional to

the z component of the spin of the impurity

H A

‘Cong

Cong - 3/’“8 < —S_"Z':> (2.19
where ACORE is the hyperfine coupling constant. Neutron scattering
measurements of Holden et al (1967) indicate that there is no moment

on Al, Si, Ga, Ge, Sn and Sb impurities within experimental error,

so we can assume that this process is absent at a non-transition element
impurity in iron.  Furthermore the dipole fields produced by neighbouring
iron atoms cancels in a lattice of cubic symmetry and the orbital magnetic

moment is quenched. We shall assume that the external Lorentz and
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demagnetising fields are relatively small and may be accounted for.
Under these conditions the hyperfine field at the impurity nucleus
is

| {KQ)] (2.20

v

H(Yio)=§3_ﬂ BEWT{@O) *f’

where T is the majority spin direction in the 3d band of pure iron,
which we may evaluate using the Koster-Slater theory presented in 3.2.1.

It is convenient to work with the quantity S defined by

\3 = Hirg) (2.21

where H I:g HS . ) is the contribution of the 4s electron polarisation

to the hyperfine field at an iron nucleus in pure iron. Thus with

HL:)S“:(_O}: Bg_ﬂ/)‘,(g‘j where
F:\{\CF ‘L\)i[O} PMT(EJ‘AE _ jEF f’\), [o”? . [EJC/(E (2.22
E.“ Eé’ v 4

S = (@r‘c‘l}}“(\)p(o)lii-'U*(O_)lz) -+ (‘Cf-l-‘(‘;]([L\)TIOJ,’l‘!L\)L(O}'ZJ

'ZF, 7P>

(2.23

vhere ’Co’ is given by (2.18) in the presence of a bound state and

by (2.13) otherwise.

We shall now assume that the difference between (U, (f~ R 0)
and K\\L(Cd:(_g] may be neglected and that we can represent the

4s band by two identical subbands shifted in energy with respect to
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one another by 2 {\ . Thus we introduce L)([ ~{SQJ and h (E)

defined by
Wyle-Rol =0lrorg) = v lr-x,)

(2.24
n,le-al = wnlel =v\,1l5+z\)

2.2.17 The Impurity Potential

Since the magnetic 3d shell originally present at the impurity
site has been either removed or filled, the impurity potential, defined
with respect to the pure lattice, will be spin dependent and must be
determined self-consistently. The potential acting on the 4s electrons
will be

J a a .
- - - ~ 2.25

T VA VAR P M T B (2.25.
where V](£J is the potential of the impurity core, V2 Lf) the
potential of the iron core originally present at the impurity site,
Vgr(i J the potential of the iron 3d shell removed or filled and
Vzr. the potential due to the screening charge at the impurity site.
Since there is no moment at the impurity site (Holden et al. 1967) and

the 4s - 4s exchange interaction is small we may make the assumption

VAT = Vi = V, say and write
o~
<L‘>o"(£—;§0}|\/lnp{(‘) (i*@c,]? = \/ L A For Spin?
(2.26
= V-A For Spin\[l

V may be obtained self-consistently by setting “Ct*‘“3¢ equal to

the number of s electrons involved in the screening at the impurity
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site. It is not easy to relate V to the valence of the impurity
because of the increasing proportion of p states involved in the
screening as the impurity becomes more attractive. These states
contribute to the impurity hyperfine field via a polarisation of the
core s electrons but this effect is small and may be neglected.
Nevertheless the parameter V 1is expected to vary roughly linearly
with the valence of the impurity as we may see from the following
argument based on Slater orbitals. We have assumed in (2.26) that
the exchange splitting 2 A of the 4s band is due to intra-atomic
exchange only, that is 2 A = Jsd fFe where Jsd is the intra-
atomic s-d exchange integral and Pre is the magnetic moment per
atom in the pure matrix.

For a rough estimate of how V depends on the valence of the
impurity let us take as the radial part of a one electron function in

an atom of nuclear charge z the approximate form used by Slater (1930).

¥ —_ -
-1 (‘E 53V ¥
th e /ﬂ Qg (2.2%
where N 1is a normalisation constant given by
2§ L - - )
N g L A T (2.2
Q

The integral is evaiuated by a simple change of variable
g

oc = 2lwz-s)r
~x
n CLO
2n% 1 +
thus 1 = NZSQO [h* a, ] DC'LV\ ’c—oc
© L2(e-s)
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Thus 1 = N'L nf Qg P[’Zh?+4)

2(z -¢)
The Eigenfunctions (2.27) are solutions of the central field

with

thus an approximation to the Koster-Slater matrix element is

(2.30

>0 T - - e
h”;j rz‘%f'rz(hh 1}¢ 2lay-sy) /“Raa (wa‘ix ~Sy 4 St e”

© g
= (zh Sy ~ Lz + Szt J(YH—SH ){,2
%
hH qo
where we have used the recurrence relation {‘LZ +l] = Y,F FEJ , and

where the subscript H stands for host atom and I for impurity atom.

Values of nH, SH’ ny and SI are obtained from Slater's rules

as follows
n = 1 2 3 4 5 6
no= 1 2 3 3.7 4.0 4.2
thus for iron 4s electrons n* = 3.7.

To determine s, the electrons are divided into groups (1Is),
(2s, 2p), (3s, 3p), (3d), (4s, 4p) etc. each of which has a different
screening constant found in the following way
(1) nothing from any shell outside the one considered,
(i1) an amount 0.35 from each other electron in the group considered
(except the 1s group, where 0.30 is used),

(i1i) 1if the shell considered is an s or p shell an amount 0.85

(2.31
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for each electron with total quantum number less by one, and an amount
1.00 for each electron still further in; but if the shell is d or f,
an amount 1.00 for every electron inside it.

Values of ZI and SI have been evaluated for Cu, Zn, Ga, Ge,
As, Se, Br and Kr assuming that the electronic structure is the same

in the solid as in the free atom and are given in Table 2.1.

TABLE 2.1

Slater constants for non-transition elements

Z n S Z-S
Cu 29 3.7 25.30 3.70
n 30 3.7 25.65 4.55
Ga 31 3.7 26.00 5.00
Ge 32 3.7 26.35 5.65
As 33 3.7 26.70 6.30
Se 34 3.7 27.05 6.95
Br 35 3.7 27.40 7.60
Kr 36 3.7 27.75 8.25

To investigate the dependence on the configuration of the pure
matrix calculations were performed for thne Fe 3d6 452 and Fe 3d7 451
confiqurations, the values of the matrix element (2.31) so obtainad
being plotted in Figure 2.1 in units of €2/0~o , the binding energy
of the hydrogen atom being eiéaw ~ 13.6 eV. These values are
seen not to depend strongly on the assumed configuration of iron in
the solid and vary Tinearly with the valence of the impurity. We note
that for Ga (2.31) is of the order of the bandwidth of pure iron.

It is clear, therefore, that a perturbative treatment of the screening
of a non-transition element impurity in iron would be quite wrong.

The Koster-Slater method presented in § 2.1 is, however, ideally

suited for the treatment of such a problem.
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2.2.2 Model Density of States

In order to calculate the impurity hyperfine field we require
the density of states n(E) and its Hilbert transform F(E).
Unfortunately it is not possible to obtain n(E) in analytic form
even for the simplest three-dimensional case, namely the nearest
neighbour, tight binding, simple cubic lattice with one s type
orbital per atom. If the perturbation is strong however, as the
calculations based on Slater's rules indicate for non-transition
element impurities in iron, we would expect the ¢}zdff) to be strongly
mixed so that the results would not depend strong]yfon the precise
details of the density of states. It is reasonable, therefore, to
use a relatively simple density of states whose Hilbert transform can
be evaluated analytically. We have studied three such model densities
of states.

(i) The Parabolic Density of States

h(E]ri H-E’Z/QQS -Lsgs g5 L
Lo (2.32
= O

-0 (2.33

for which Fle) = 3 7_(5) f ( A _1)/&
Lo E+ ©

£
(\)’L

A bound state first occurs at the bottom of the band for a potential

VC given by

(2.34

So for this density of state

\/C = — 20 (2.35

3
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(ii) The Trijangular Density of States

nle) - (i+E/(\)) -Lgergau
(1:0) O (2.36
= (- By O W< ES U
(1 -2l
= O
for which
F(EJ=(1+E/L\3),(M C+ W ¢ (1-8) A |E-0U (2,57
(1+ o)L -5 (1-a] W E-UO '
and Ve = (1-o)u (2.38
ly@
2 don (122
(iii) The Semi-Elliptical Density of States
2 ly
h(E]=2(1“6/L\)2J2 —L)é[—sL\)
fﬂ_zj (2.39
= O
for which
Fle) = 2c -L<E<Q
L)'&
r
= ZE+2[(E?/LA2}-1T/2 < -0
—. " = (2.40
L §)
|
= 2E Sz [feUe) -1 1" E =20
L)Z
(2.47)
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2.3 Results

For the parabolic and triangular densities of states we evaluate
the integrals involved in calculating the impurity hyperfine field by
expanding to first order in /A  and evaluating the resulting integrals
numerically. This is reasonable if the 4s polarisation is small in

comparison with the bandwidth.  Thus, using Leibnitz' theorem and (2.24)
Band _ Band

and (2.26), (qu X?L ) is given by
tTs;\msm‘(“;&f\ND =£EF+A nlelde
w0 Cl=(vintrlel 35 D (vid ) nlel ] ¢
__YEF“A (G\(AE
-0 [A-lv-ab el 3o olv-al nle) 72 (%
~ 20y leg) s Lo PEF nle) Flelde
V-V e T 5 Lvn le) 77 ~O LVl T2 Ly (el]2 ] ?

*“\Vj’EF n BV [F2Le) e 17 2] ] dle
- §[1*VF(E”’L+ Lfve (el T° }z

whilst, from the completeness relation

)= S (2.43

-~ LJ
ALL STATES

wa obtain for the total hyperfine field

eC(\ ~€JJ = 1A nw e )
Ci-VFle T2 L0 Vi lep)]° (2.44
= ? Vi lel0Fe(e) « 1203 C’j -n lelF EJ] dE

+ 4 A
44
Ee JLI-VFEEIT® ¢ M VhlelD2}2




If the impurity potential V s strong it is more convenient from
the point of view of numerical computation to use the expression
(2.44) to evaluate the total hyperfine field rather than to evaluate
the contribution of the band and bound states separately because of
the resonance occuring in the integrals in (2.42) for attractive
potentials if (2.14) is satisfied within the band.

If V=0 (2.44) becomes

<y oy = 20w les) — LA fb nlelelelde
Er

“2nwled s a7 nlelFleldg

_ 0
sice |~ nlelele) <o
-0
equation (2.45) may be evaluated analytically for the parabolic and
triangular densities of states, and for the parabolic density of

states, for example, we obtain for V =0

<oy s DT T ()T 2
2 Lol 9 ' e 30
\‘EE:X/(A’\(l*’EF/Q *E’{“fi‘{EF/‘J}Z\J
L L - Br/y | 5
F—:_QEF/LQJ'Z“__Z_(EFI(Q}LF - 1642 - 2
B 5 | 5 15

The value of (2.46) is seen to depend quite strongly on the position
of the Fermi level, that is, on the number of electrons per atom in
the 4s band. This number has been a question of considerable
controversy and does not, of course, admit a precise answer because
of s-d hybridisation. Current opinion (e.g. Mott, 1964) favours

a value of about 0.9 to 1.0 electrons per atom in the 4s band.

(2.45

(2.46



Figure 2.2 shows the contribution of the band and bound states

to the impurity hyperfine field for the parabolic density of states

(2.32) assuming one 4s electron per atom. The potential is

measured in units of VC, defined by (2.34), the potential at which

a bound state first occurs at the bottom of the band. In the presence

of a bound state the impurity hyperfine field is the sum of two
contributions, a large positive one from the electrons in the band

and a large negative one from the bound state.

Figure 2.3(a) shows the total impurity hyperfine field for the
parabolic density of states and 0.9, 1.0 and 1.1 electrons per atom
in the 4s band. Figures 2.3(b), (c) and (d) show the total impurity
hyperfine field for the triangular density of states with @ = -0.1,
-0.2 and -0.3 respectively and 0.9, 1.0 and 1.1 electrons per atom
in the 4s band. & was chosen slightly negative as this seems to

be indicated in band structure calculations (e.g. Wood 1962, Tawil and

Callaway 1973).

The semi-elliptical density of states is rather unrealistic

because of the behaviour of the Hilbert transform within the band but

has the advantage that (2.13) and (2.18) can be evaluated analytically.

With the substitution E= - ca S
n le) de - _zﬂjﬂ o290 do
“WO-VEE) T3 Davelal]® T Yo fp Uty e by g0
which may be evaluated by putting Z = c(<3 and integrating around
the unit circle in the Z plane. Cauchy's theorem then gives
17 nle)de =1 o vl <Y
TOLCvEE T Lvalel]r = 0T V< ~

A

But if the impurity potential is sufficiently attractive to form a

bound state at the bottom of the band then the energy of the bound state

is given by
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£ o) = 9‘2 y
Ay
giving F/ (E(>] = (r
LWk u?)
and consequently | F % (e,) I S (2.48
F/[Eo) L\ ®

adding (2.47) and (2.48) confirms (2.43) at the impurity site. With
the assumption that only the Wannier function centred on the impurity
site has amplitude at fic) , this is an illustration of the theorem

(Bardasis et al. 1965, Campbell and Gomes 1967).

j\ola[wjéf(gl |? ~\¢E((5) v \U(Li(r (-1 =0 (2.49

DAND RouNd
STATES STATES

which demonstrates that the bound state wavefunction is closely related
to the states in the continuum from which it is formed as the potential
is increased.

For the semi-elliptical density of states we have to first order

in
BaNnD BAND el "
=<y ) = ko (1 -Feryz )™
MO (Ve bud, s -WVEF/Lz) (2 .50

- 5y v C“ “/{ .

oi6d ?GF (el -V LT 5 iG]t de

L

TOT L () kv - bvelo®)

which gives
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whilst if V 1is sufficiently strong to form a bound state at the

bottom of the band

BouHd Bovu N
\»\/\ -
1 «?w

§

L*4 (2.52
L/3

In Figure 2.3(e) the total hyperfine field for the semi-elliptical
density of states is plotted to first order in [& for 0.9, 1.0 and
1.1 electrons per atom in the 4s band. Figure 2.4 shows the behaviour
of (2.51) and (2.52} for ona eiectron per atom in the 4s  band.
Assuming the 4s electrons in iron are positively polarised, as
discussed earlier, the impurity hyperfine field is seen from Figure 2.3
to be negative for weak impurity potentials and to decrease in
magnitude, finally becoming positive as the impurity becomes more
attractive. The experimental values of the impurity hyperfine field
show precisely this behaviour as may be seen in Figure 2.5, the data

being taken from Shirley and Westenbarger (1965), Koster and Shirley

(1971) and from a similar figure occuring in the review by Van der Woude



Tigure 2.4. Contribution of band and bound states to the impurity
hyperfine ficld for the semi-elliptical density of states with

1 electron/atom in the 4s band. A, band states and B, bound stuate
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and Sawatzky (1974). The change in sign expected from this simple
model is seen to occur between Al and P in period 3, between Ga
and Ge in period 4, between Sn and Sb in period 5, and between TI
and Pb in period 6. The hyperfine field at a Si nucleus in a
dilute Fe Si allow has not been measured but in the ordered alloy
Fey Si is known to be +37 LOe (Kumagai et al. 1974).  This is
expected to be of the same sign but smaller in magnitude than the
corresponding field in the dilute alloy, and so the change in sign
in period 3 is expected to occur between A} and Si in iron. [t
is important to check this experimentally.

We see in Figure 2.3 that for about one 4s electron per atom
in the pure matrix, the change in sign of the impurity hyperfine field
occurs when the potential 1s strong enough to form a bound state on
the impurity site.  Recent measurements of the soft X-ray emission
spectrum of an Fe 8 at % Al alloy (Sayers et al. 1975),to be
discussed in Chapter 3, do indeed indicate the presence of a bound
state on an Al impurity in iron, and since the hyperfine field on
an Al nucleus in iron is negative (Kulkov 1972) the presence of a
bound state on Al in iron favours slightly Tess than one 4s electron
per atom, in agreement with current opinion.

We have discussed the difficulty of relating the Koster-Slater
parameter V to the valence of the impurity. The simplie discussion
of the impurity potential based on Slater's rules indicate, however,
that the potential represented by a Cu Jimpurity in iron will be
small and it is therefore easy in this case to obtain an estimate of
the impurity hyperfine field. Taking V =0 for Cu and the
hyperfine field due to the 4s electrons at an iron nucleus in pure
BCC iron to be +600 kO« as obtained by Stearns (Song et al. 1974)
the hyperfine field obtained using the parabolic, triangular and semi-
elliptical densities of states for 0.9, 1.0 and 1.1 electrons per

atom in the 4s band are given in Table 2.2. These values compare



favourably with the measured value of -212.7 O (Shirley and

Westenbarger 1965).

TABLE 2.2

Impurity Hyperfine Field ( kO<¢) for V =0

Density of States

Nge Parabolic Triangular Semi-elliptical

9=-01 Q=-0.2 &-=-0.3

0.9 ~-180.9 -104.1 -130.7 -148.9 -194.5
1.0 -185.4 -136.7 -155.9 ~-170.0 -200.0
1.1 -180.9 -153.1 -167.9 ~-179.1 -194.5

2.4 Discussion and Conclusions

We have presented a simple model of the screening of a non-
transition element impurity in iron in which it is assumed that the
3d electrons are correlated and remain localised on the iron sites
and only the 4s electrons contribute to the screening.  Assuming
a positive polarisation of the 4s electrons in the pure matrix, and
about one 4s electron per atom, the hyperfine field was found to
cross from negative to nositive values as the potential becomes strong
enough to form a bound state at the bottom of the band.  The hyperfine
field is indeed observed to change from negative to positive values
as the valence within a given period is increased and in period 3, for
example, this change in sign occurs between Al and Si in iron. We
would therefore expect, on the basis of this model, that a bound state
would first occur on either Al or Si in iron as the valence is
increased in period 3 depending on the number of 4s electrons per

atom in the pure matrix. We shall argue in Chapter 3, on the basis
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of soft X-ray emission spectra of Al in Fe, that a bound state does
indeed occur on Al in Fe favouring slightly less than 1.0 electrons
per atom in the 4s band, in agreement with current opinion.

It is interesting to compare the results of §) 2.3 with those
of Daniel and Friedel (1964) who investigated the scattering of a spin
polarised free electron gas with one electron per atom by a square
well potential of depth ]V + Al for majority spin electrons and depth
v - A ] for minority spin electrons. Stoddart et al (1969) have
discussed the spatial variation of the impurity potential implied by
the Koster-Slater assumption (2.5). These authors find that the
potential has a depth \Va, ‘ at the origin, is a fairly flat-bottomad
potential with a range of the order of the inter-atomic spacing and
has oscillations as we go away from the origin which arise from the
oscillations in the Wannier function. Thus the potential is rather
Tike the square well potential of Daniel and Friedel. However, the
results obtained by the two methods are quite different as may be seen
by ccmparing Figures 2.2, 2.3 and 2.4 with Figure 3 of Daniel and
Friedel (1964). In our model the impurity hyperfine field takes its
maximum negative value at small values of the impurity potential, and
decreases in magnitude as the impurity potential is made move attiractive,
becoming zero as a bound state first appears below the band, and
crossing to positive values as the potential is increased still further.
Iy ocne Daniel and Friedel modal, however, the impurity nypzarfine {iald
increases in magnitude as the potential is increased from zero and takes
its maximum negative value upon formation of an s bound state. The
hyperfine field then decreases in magnitude as the potential is made
more attractive finally changing sign to positive values. This
difference arises because in our treatment we have considered the
scattering of electrons in a tight binding band of finite width. This
is particularly important when the impurity potential is strong enough

to form a bound state as we may see from Equation (2.49).



CHAPTER III

X-Ray Emission Spectra of Alloys of Iron and Nickel
with non-transition element impurities

3.1 Introduction

The calculation of the impurity hyperfine field presented in
Chapter 2 gives results in good agreement with experiment, the impurity
hyperfine field taking its maximum negative value for weak impurity
potentials and decreasing in magnitude finally crossing to positive
values as the impurity is made more attractive. This change in sign
is found to occur as the impurity becomes strong enough to form a bound
state at the bottom of the band and it is therefore of considerable
interest to examine the electronic structure of those impurities in
iron in the region of this cross-over, which occurs between A1l and Si
in the third period, between Ga and Ge 1in the fourth, between Sn and
Sb in the fifth, and between TI1 and Pb 1in the sixth. The bound
state, if it exists, will lie at the bottom of the band for attractive
potentials and will therefore have Tittle effect on thermodynamic or
transport properties.  Thus the specific heat measurements of Beck
and co-workers referred to in Chapter 1 show Tlittle change when AT,
Si, Ge and Sb are added to iron. The presence of a bound or virtual
bound state will, however, have important consequences for optical
exnariments, In soft X-ray emission spectroscopy (SXS) the solid
is excited to a state in which a hole is produced in an atomic core
state and the subsequent emission of soft X-radiation is studied. The
core wavefunctions are well localised so only electrons in the immediate
vicinity of the atom involved in the radiation process contribute to the
spectrum.  Consequently, SXS is particularly suitable for a study of
the Tocal electronic structure of an alloy. The soft X-ray emission

intensity from a dilute binary alloy consists, therefore, of two sets



of bands, one arising from the excitation of a host metal atom, and
one from excitation of the impurity. In addition, the symmetry of

the electronic states can be investigated because of the selection

rule governing the transition.

3.1.1 The Impurity Emission Spectrum

The impurity soft X-ray emission intensity arises from transitions
to a vacant impurity core state, and if the concentration c¢ of
impurities is sufficiently small, the leading term will be ¢ X the
intensity emitted from an impurity in an otherwise perfect crystal.

If the impurity potential is not strong enough to form a bound state

the total intensity between E and E + dE will be

- cong

I(:)U(E=Qh{61<\jc/wi;if (SJV,,\}/(CJIQMQ (3.1)

whare n(E) 1is the density of states, V}, is the gradient operator

core 1 T V) |

is the transition probability from the state \?(CJ to the vacant

accounting for dipole transitions only and \ j‘&f é*—

!/
core state QL " (~]. The angular brackets indicate an average over
ong -

the constant energy surface E = E(k). For small c¢ the alloy
density of states differs from n(E) by a term of O(c). Thus the
2

)

for small c. If the potential is strong the energy dependence of

correction due to the change in the density of states is of Of(c

{3.7) wiil be dominated by that of the transitiva probabiiity.
Assuming, as in Chapter 2, that the only Wannier function to have
amplitude at Eio is the one centred on the impurity site, we obtain

from (3.1)

where, from (2.8)
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y,(e)‘ C [@t,)lz = nle (3.3)
CA-VFlel]* +[MMVvnlel]? |

The variation of (3.3) is illustrated in Figure 3.1 for the parabolic
density of states (2.32 ) for various values of the impurity potential.
A dramatic distortion is observed in the transition probability as the
potential becomes more attractive, and for a critical value of the
potential VC defined by (2.34 ) a bound state first appears at the
bottom of the band.  When this occurs we have, in addition to (3.2),

a contribution

Taounp (B = Cg(E’E“’HS"«L’(?M e

from the bound state which, from (2.18 ) becomes

TBOUNB{E]: cSle-gg)| F e I\Y,A:W (C~RQ)V,,L)(2—R°]IZ(3.5)
F{(E) CoRE - - -

The § -function profile of the bound state contribution will, in

practice, be broadened by

(i)  Instrumzntal broadening.

{(11) Auger broadening due to radiationless transitions induced by
electron-electron interactions.

(i1i) Broadening due to the finite width of the core Tlevel involved

in the transition.

The number of band electrons at the impurity site is given by

}quND = Q.JI;F niclde
~QUIvFe)I% Tivunle ) T”



Figure 3.1. Variation of n(E)|c(2,)|? given by (3.3) for the
parabolic density of states (2.33) for various values of

the impurity potential Vn(E.F = 0) = 0.0, -0.1, -0.2, -0.3,
-0.4 for increasing distortion.



which is plotted in Figure 3.2 for the parabolic density of states
(2.32 ) with one electron per atom in the band. The attractive

impurity potential is seen to have a repulsive effect on the band
Band
-

Imp
Consequently, when a bound state is formed the emission due to band

states when a bound state is formed, n O as V = oo
states at the impurity site is expected to be weak.

It is interesting to compare these results with those of Stott
(1969) who calculated the energy dependence of the transition
probability in (3.1) and (3.4) using well known expressions for the
scattering of an electron gas by a square well potential, taking the
core states involved in the transition to be the deep bound state in
the potential well. This allows the transition probabilities to be
calculated analyticaily with the following results. The K emission
intensity, which results from a transition from a p state to the
lTowest core state of s symmetry, is in general smooth apart from
the sharp cutoff at the Fermi energy and varies little as the impurity
potential is changed. When the potential is such that a p state
is nearly bound, however, there is a large distortion in the K intensity
in the form of an intense peak on a smooth background. As the strength
of the potential varies the peak moves to Tower energy and becomes
narrower and more intense until a bound state finally appears at the
bottom of the band. The L2,3 emission arises from transitions from
s or d states to the lcowest p type core state. The variation
in intensity as a d state becomes bound is much the same as for a
p state except that the peak is narrower and more intense. The
distortion is found to have a different character when an s-bound
state is found. In this case there is a build up of intensity at
the bottom of the band, there being no sharp peak which moves to Tower
energies as in the case of p and d states.

In our treatment of the screening we assumed that the impurity

potential extends only over the impurity site. Consequently, the only
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bound state that can be found is one which is completely symmetric
under the operations of the point group of the crystal, that is an
s-state.  In order to have bound states of higher symmetry we must
allow the potential to extend over more lattice sites. It is
reasonable to assume, however, that the first state to becdme bound
is an s state since this is the only symmetry which allows a non-
vanishing coefficient of the Wannier function at the impurity site
where the perturbation is largest. The variation of the transition
probability as such a state is formed is illustrated in Figure 3.1.
Comparing this with the work of Stott we find much the same behaviour,
but in this case the peak is seen to move to lower energies as the
potential becomes more attractive.

In more concentrated alloys the situation is complicated by the
overlap of impurity states, but a rough estimation of the perturbing
effect of the impurity is provided by the differences between the
valence of the impurity and the average valences of the alloy. Me
would therefore expect the impurity bound state to broaden due to
overlap effects, and to move up in energy as the concentration is

increased, finally becoming the valence band of the pure solute.

3.1.2 The Host Emission Spectrum

If the concentration of impurities in small and the impurity
potential is weak the soft X-ray emission spectrum of the host atoms
will bz lavgely unatiected by the presence of the impurities. if,
on the other hand, the impurity potential is sufficiently strong to
form a bound state at the bottom of the band there will be a contribution
to the host emission intensity due to the direct overlap of the impurity
bound state onto neighbouring atoms and a contribution due to the
covalent admixture between the impurity orbital and surrounding

orbitals.  Thus, for those impurities in iron in the region in which

the hyperfine field changes sign we expect to observe a peak in the



host emission intensity at the bottom of the band since for these
impurities the bound state is not strongly bound. As the valence
of the impurity is increased further, however, the bound state wil}
become more tightly bound around the impurity with a corresponding
increase in its contribution to the impurity emission intensity and

decrease in its contribution to the host emission intensity.

3.2 Interpretation of Measured Spectra

3.2.1. Iron ajuminium alloys

Recently Dev, Fabian and Watson (Sayers et al. 1975) have
measured the soft X-ray emission spectrum of an Fe 8 at % Al alloy,
the measured spectrum being shown in Figure 3.3 where it is compared
with the spectrum of pure iron. The striking feature is the peak at
45 eV in the alloy spectrum, absent in the pure iron spectrum, which
is «~ 8 eV below the Fermi level, or near the bottom of the iron
3d 4s bands (Tawil and Callaway 1973). Figure 3.4 shows the soft

X-ray emission spectra of the more concentrated alloys Fe, Al, Fe Al,

3
Fe A]3 and of pure Al measured by Kapoor et al (1973). In particular
ne peak, but only a shoulder, occurs in the Fe3 Al spectrum at

45 e¥.  The peak observed in the Fe 8 at 7% Al alloy spectrum
cannot, therefore, be attributed to the Al L1 - L2,3 transition

at this energy since this involves a transition froma 2p to 2s

state in the aluminium core.  Thus, if the peak at 45 eV 1in the

Fe 8 at % Al spectrum wers due to the Al i, - L2,3 transition

the intensity of this peak, relative to that of the Fe M 2.3
emission intensity, would be expected to increase as the Al
concentration is increased, in disagreement with the observed Fe3 Al
spectrum. We therefore conclude, on the basis of Figure 3.3, that
Al behaves as a strong perturbation in an Fe matrix giving rise to
a bound or virtual bound s state at the bottom of the iron 3d 4s

band.  This is exactly what we would expect on the basis of the results

65
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presented in Chapter 2 which indicate that for about one electron per
atom the hyperfine field changes sign upon formation of a bound state
since the hyperfine field changes from negative to positive values
between Al and Si in iron. Since the hyperfine field of Al in
iron is negative (Kumagai et al. 1974) this favours slightly less

than one electron per atom in the 4s band in agreement with current
opinion.  The decrease in intensity of the peak at 45 eV as the
impurity concentration increases is precisely what we would expect if
aluminium forms a bound state in iron.  Thus as the impurity
concentration increases the bound state will overlap and broaden giving
a band as discussed in~§ 3.1.1. The peak at 45 eV would therefore
be less intense in the more concentrated alloys because of the broadening
which would occur.  The formation of the Al valence band from the
bound state, which exists in the impurities at low concentration, is
clearly seen On the Al L2,3 emission spectra in the region 60 - 75 eV
as the Al concentration is increased. In further agreement with
this interpretation is the weakness of the Al L2,3 band in the Fe 8
at % Al spectrum. This indicates that the bound states overlap
1ittle at this concentration. We would however expect to observe a
peak between 63 - 64 eV in the Al L2,3 band corresponding to a transition
from the impurity bound state to an Al 2p state but this energy lies
close to the onset of Fe M2’3 absorption (excitation of Fe 3p levels)
as ic seen in Figure 3.5 which shows the absorplion spectium of pure
iron in the region 50 - 100 eV (Kunz, 1973) and would therefore not be
seen at this concentration.

Terakura (1976) has presented a first principlescalculation of
the electronic structure of non-transition element impurities in iron
and finds a bound state of s symmetry on Al and Si in iron, the
details being in very good agreement with the above interpretation of
the Fe 8 at % Al spectrum. The bound state is found to have

spectral weight within the impurity cell of 0.39, the rest spreading
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over neighbouring sites. This is consistent with the hyperfine

field calculations presented in Chapter 2, the negative hyperfine

field on Al in iron indicating that the bound state on Al will

not be tightly bound, and with the bound state being seen in the

Fe M 2.3 spectrum, corresponding to a transition to an Fe 2p state,

and not in the Al L

2.3 spectrum.

3.2.2. Nickel aluminium alloys

Figure 3.6 shows the soft X-ray emission spectrum of alloys

of nickel with aluminium (Cuthill et al. 1968). The Al L and

2,3

N1 P42’3 emission spectra overlap extensively making the spectrum of

such a svstem difficult to analyse. There is, however, no peak in

the Ni M2,3 spectrum corresponding to that observed in the Fe 8

at % Al alloy and in the Ni 8 at % Al alloy the Al L2’3 spectrum
is strong althougn there does appear to be a shift to lower energies

as we would expect in the screening of a non-transition element impurity
uch as Al or Si. The apparent absence of a bound or virtual bound

state on Al in nickel is in agreement with the behaviour of nickel

as an itinerant ferromagnet and with the saturation magnetisation

measurements of Crangle and Martin (1959) discussed in E% 1.5 which
indicate that the screening of a non-transition element impurity is

dominated by the 3d electrons involving the high density of states at

the Fermi level.

3.2.3. Iron germanium alloys

Figure 3.7 shows the soft X-ray emission intensity in the
region of the iron K emission band for Fe Ge alloys (Nemoshkalenko
et al. 1973). A peak occurs in the iron K emission at about 8 eV

below the Fermi level and arises from a transition to the iron 1s state.
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This is similar to that observed in the Fe 8 at % Al iron M2,3 band
and is, we suggest, due to an admixture of an s band state on Ge
overlapping with and mixing with the nearest neighbour iron 4p state.
The presence of a bound or virtual bound state on Ge in iron is to be
expected from the calculations of the hyperfine field presented in
Chapter 2, the hyperfine field crossing from negative to positive

values between Ga and Ge in iron.

3.2.4. Iron silicon alloys

A recent measurement of the soft X-ray emission spectrum of
an Fe 4.13 at % alloy by Watson and Norris (Watson et al. to be
published) indicates also the presence of a bound state on a §Si
impurity in iron. In this case the re M2,3 absorption does not
present a difficulty and a peak at 90 eV in the Si L2,3 emission
band (about 8 eV below the Fermi level) corresponding to a transition
from the Si bound state to a Si 2p state is clearly seen. A small
peak at 45 eV is also observable in the Fe M2’3 spectrum corresponding
to a transition from the impurity bound state to an Fe 3p state. This
is weaker than the peak seen in the Fe 8 at % Al alloy because the
concentration of impurities is smaller and because the Si atom
represents a more attractive impurity potential than Al, the bound
state being more localised on the impurity site. This is confirmed
by the first principles calculation of Terakura (1976), the bound
state naving aspectral weight of 0.62 within the impurity Wigner-Seitz

sphere,

3.3 Photoemission Experiments

Collins and Andrews (to be published in J.Phys.F.) have reported
measurements of the photoemission spectrum of an Fe 8 at % Al alloy
and do not observe a peak corresponding to that observed in the soft
X-ray emission spectrum of Sayers et al (1975). These authors conclude

from the absence of this peak that the peak observed in the soft X-ray
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emission spectrum is actually due to the Al L] - L2,3 emission
discussed in j% 3.2.1. We disagree with this conclusion as this

would imply that the peak at 45 eV would increase in intensity relative
to the Fe M2,3 band with increasing Al concentration, in disagreement
with the observed change on going from Fe 8 at % Al to Feq Al.

It is interesting to enquire therefore why no peak is seen in the
photoemission spectrum. We would expect that since the peak is very
narrow in energy only those impurities within a depth of the inelastic
scattering length would contribute to such a peak in the XPS spectrum.

In contrast, the Fe M2,3 band is broad so most states would be expected
to contribute in some way to this. This means there would be an effective
concentration of impurities in XPS less than the mean concentration.

In contrast SXS is ideally suited for an examination of localised
states, the only complication being the soft absorption discussed in

‘§ 3.2.1. In addition, whilst the surface energy of Fe is 1790 erg/cmz,
that of Al is 1000 erg/cmz. This would indicate that Fe would
preferentially be found at the alloy surface again leading to the
suggestion of a lower effective concentration of impurities in XPS .
than the mean concentration. A further important point is that
because of the nature of the final state involved in the transition,
SXS probes the electron distribution of a given symmetry local to the
emitting atom whilst XPS measures the electron density averaged through
a region of the emitting alloy and averaged cver all symmetries with

the appropriate weighting factor.

3.4 Photoabsorption Measurements

In photoabsorption spectroscopy a core electron is excited to
an empty state above the Fermi level. Hagemann et al (1976) have
studied the photoabsorption spectra of Fe-Al and Ni-Al alloys using
synchrotron radiation in the energy range 30 to 150 eV. Table 3

gives the position of the onset of M absorption, corresponding to

2,3



the excitation of transition metal 3p electrons, as measured by Hagemann

et al.

TABLE 3.1

Position of Onset of M2 3 Absorption of

Fe-A1 and Ni-Al Alloys

Fe Fe- 11% Al FeAl Ny NiAT N1A13
Position of
onset of 4
MZ 3 absorption 52.0 52.0 - 0.2 52.0 64.2 65.5 66.3
(Ev)

The onset of M2,3 absorption is seen not to change in Fe based alloys
upon increasing the Al concentration in agreement with the d electrons
not participating in the screening which is localised on the impurity
site. In contrast to Fe-Al alloys the Fermi level in Ni-Al alloys

is seen to shift rapidly to higher energies indicating a filling of the

Ni 3d band.

3.5 Further discussion of impurity hyperfine field and
saturation magnetisation measurements.

The peak observed in the soft X-ray emission spectrum of the
Fe 8 at % Al alloy of Sayers et al (1975) at 45 eV arises from a
transition to a core p state on iron atoms neighbouring the impurity.
This is consistent with the first principles calculations of Terakura
which shows that the bound state on Al in iron has spectral weight of
only 0.39 on the impurity site, the rest spreading over neighbouring
sites, and with the hyperfine field calculation of Chapter 2 which
indicates that a bound state is first formed on those impurities in
iron for which the hyperfine field crosses from negative to positive
values.  According to Wenger et al (1971) the contribution of the
4s —> 2p transitions is two orders of magnitude smaller than that of

the 3d-—=2p transitions so the intensity of the peak at 45 eV would

appear to indicate a covalent admixture or hybridisation of the impurity
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bound state with neighbouring d orbitals. Similarly, the peak
occurring in the Fe K emission spectrum of Fe Ge alloys of
Nemoshkalenko et al (1973) indicates a covalent admixture with
neighbouring p states. This is in agreement with the model of
Marshall referred to by Mott (1964) of the electron structure of an
A1 dmpurity in iron in which the Al 3s electrons are considered to
form a localised state which mixes with neighbouring 3d orbitals.
The extent of this admixture depends sensitively on the exact
form of the impurity orbital. This reveals a weakness in the Koster-
Slater model since this is formulated in terms of the orthogonal
Wannier functions of the 4s band. In the region of the impurity
core the bound state would be expected to look rather Tike the outer
s orbital of the free atom appropriately modified in the crystal,

?SCZMP (r ) say, than the Wannier function of the iron 4s band
LJCr,(C-). This suggests that the treatment of the impurity hyperfine
field presentation in Chapter 2 can be improved by replacing kkf-(i ~{§Q_)
in (2.23) by (]501;,&, (r - Eo ). To a first approximation ?SG;MP(E‘Eo )

will be spin independent since there is no moment on the impurity
site and this is why the assumption L, (¢ - R¢) = L, {r - R} made
in <§ 2.2 yields reasonable agreement with the measured impurity

o
hyperfine fields. The spin dependence of ¢ IMP (r - R o ) arises

from the interaction between the impurity orbital and the magnetic

3d electrons. For a given group in the neriodic table the amplitude
of é i;P at the impurity nucleus increases with increasing period
since the outer s electrons see a greater positive charge at the
nucleus as the period of the impurity increases. This leads to a
periodic dependence of the impurity hyperfine field, the hyperfine
field increasing in magnitude with the period of the impurity. This
is seen in the hyperfine field data presented in Figure 2.5 and 1s

particularly noticable for Tow valence impurities. Within a given

o
period the amplitude of § mp 2t the impurity nucleus increases



rapidly with valence. This contributes to the very large positive
fields measured at the nuclei of impurities in iron with large valence
which are much larger than would be expected from the simple Koster-
Slater model. A further contribution to these large positive fields
comes from the covalent admixture of the impurity bound state with
neighbouring 3d states. Since the 3d state involved in the bonding
with the impurity state are spin polarised, there will be a greater
admixture for L spin states than for % spin states because the

T spin 3d orbitals are more fully occupied. This will Tead through
the second term in Equation (2.23 ) with LJG.(g —(ngreplaced by

¢ O;&P (Z:..{SO ) to a positive contribution to the hyperfine field
when the bound state is established.

In § 1.5 we discussed the d}]/dc measurements of Aldred
(1968) on alloys of BCC iron with non-transition element impurities.
Within a given period in groups 3 to 5 there is no valence dependence
of the d F/dc values indicating that the magnetic 3d electrons do
not contribute directly to the screening. The d Pch values do
however show a deviation from the simple dilution behaviour,

d ;Udc = -2.2 Hg> which increased with the period of the impurity.
Vincze and Aldred (1974) suggested that it might be possible to under-
stand this behaviour in terms of an increased admixture between the
impurity bound state and neighbouring 3d states in Marshall's model

b5
25 the

0

ariod of tho impurity increases. e shall now propose 2
mechanism by which the admixture of the impurity bound state with
neighbouring 3d states can produce an increase in the moment on
neighbouring iron atoms.

The s-1ike bound state on the impurity will transform under the
irreducible representation A]g of the Oh group relevant to a
lattice of cubic symmetry. The effect of the cubic field is to remove

the fivefold degeneracy of the 3d states and to split the levels into
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a triply degenerate set labelled ng and a doubly degenerate set
labelled Eg' In the body centred cubic lattice the ng orbitals
are directed towards nearest neighbours whilst the Eg orbitals are
directed towards next nearest neighbours. We shall assume that only
¢~ bonding is operative and shall consider only the admixture of
the s-like state on the impurity with the 3d states on nearest
neighbours.  Thus we only consider the bonding between the impurity
bound state and the ng hybrid on nearest neighbours which is symmetric

about the Tine joining the atom with the impurity. The method of

molecular orbitals constructs solutions of the form

Vo

where 7634 is the appropriate contribution of ng orbitals on

nearest neighbours which transforms under the irreducible representation

!

T a (3.7)
°L<r¢ t /(/‘0, P)(/M

fnp

A of the Oh group.

19
The mixing coefficients © __ and ’Gb‘ can in principle be obtained

from a variational calculation which would yield two solutions. The

impurity bound state, if it exists, lies at the bottom of the band and

so the state with lowest energy will be the one for which EO, is small

and will be doubly occupied. The antibonding state will have a small

value of the coefficient Q_ and will be raised in energy giving a

decrease in the occupancy of the ng orbitals involved in 76§i;

Tnis will be accompanied by a compensating increase in the Eg occupancy.

The overlap of the Eg orbitals, which are directed towards next

nearest neighbours in the body centred cubic Tattice, is smaller than

the overlap of the ng orbitals, which are directed towards nearest

neighbours. Intra-atomic exchange will therefore be more effective

in the Eg bands than in the ng bands of iron, and this is confirmed

by the neutron diffraction studies of the 3d spin density in BCC iron

(Shull and Yamada 1962, Shull 1963) which exhibit a non-spherical 3d spin



density distribution with favouritism towards the Eg symmetry
configuration.  Shull (1963) estimates that 53% of the 3d magnetisation
arises from electrons with Eg symmetry and 47% with ng synmetry.
This should be contrasted with the respective values of 40% and 60%

to be expected for spherical symmetry. Since Hund's rule coupling

or intra-atomic exchange is more effective in the Eg orbitals than

in the ng orbitals the increase in the Eg occupancy, which occurs
indirectly as a result of the covalent admixture of the impurity bound
state with ng orbitals on neighbouring iron atoms, will result in

an increase in the moment on iron atoms neighbouring the impurity.

This increase is observed in the neutron diffraction experiments of
Holden et al (1967) on iron based alloys. The increase in the moment
on iron atoms neighbouring the impurity will increase as the admixture
of the impurity bound state with neighbouring ng orbitals grows
stronger and will therefore increase with the period of the impurity

as suggested by Vincze and Aldred (1974) and in agreemant with the
saturation magnetisation measurements of Aldred (1968). Since the
increase in moment on iron atoms neighbouring the impurity which is
responsible for the observed departures from simple dilution is expected
to occur mostly in the Eg orbitals this has interesting implications

for neutron diffraction experiments on these alloys.



CHAPTER TV

Electron Correlations in the Cohesive

properties of the transition metals

4.1 Introduction

In Chapter 2 we emphasised the localised or highly correlated
nature of the 3d electrons in iron, treating only the part played
by the 4s electrons in the screening of a non-transition element
jmpurity.  From the discussion in Chapter 1, however, it is clear
that such a model would be inapplicable to nickel based alloys. Thus
nickel behaves as an itinerant ferromagnet, the high 3d density of
states playing an essential role in the screening of a non-transition
element inpurity. This difference in the electronic structure of
iron and nickel is surprising because nickel has a greater nuclear
charge than iron, so the 3d shell would be expected to be more
tightly bound and we might therefore expect correlation effects to be
more important in nickel than in iron. It is the purpose of this
chapter to investigate the effects of electron interactions on the
electronic structure by including intraatomic electron correlations
which prevent electrons coming together on the same atom. We shall
begin with a study of the one-band model and later discuss the
applicability of the results to the transition metals.

Perhaps the most convincing illustration of the collectiive
nature of the d electrons is provided by the cohesive energy of the
transition metals shown in Figure 4.1 (Gschneider, 1964). The 4d and
5d transition metals are seen to have a large cohesive energy which
varies in a regular way across the series, showing clearly that it
must be related to the formation of a d-band as the atoms come together
to form the solid.  This was explained by Friedel (1964, 1969) using
a simple band model which we shall describe in ‘§ 4.2. This model

neglects the interaction energy associated with intra-atomic charge
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fluctuations which are known to be of great importance in the 3d
series, and a large difference in behaviour is seen between the
cohesive energy of the 3d series on the one hand and that of the
4d and 5d series on the other.  Thus manganese, iron and cobalt
exhibit a lower cohesive energy than we would expect on the basis of
Friedel's model, whilst nickel behaves very much 1ike Pd and Pt
in the 4d and 5d series, in agreement with its behaviour as an
itinerant ferromagnet. We shall see in ~§ 4.4 that this deviation in
the middle of the 3d series comes in part from the well known
stability of half-filled d shells in free atoms, but is is also
found that a very similar behaviour occurs in the Young's modulus,
shear modulus , bulk modulus, melting point and heat of fusion
(Gschneider, 1964) which involve changes within condensed phases and
not the ground state of the free atom.

It is particularly difficult to treat correlations in the 3d
series because this lies between the strong correlation limit
corresponding to the more localised f states in the rare earth metals,
and the wide band 1imit of the simple metals and perhaps of the 4d
and 5d series. Thus the ground state is determined by the balance
between the interaction energy, which would be lowest if charge fluctuations
were completely supressed, and the kinetic energy, which would be
lowest if the electrons were unrestricted in their motion. The
conventional approach to this problem has cantread around model
Hamiltonians, the most popular being that of Hubbard (1963, 1964).
Hubbard used a Green's function decoupling procedure, and whilst this
approximation is reasonable for the insulating phase it does not
properly describe the Fermi surface, as was emphasised by Herring
(1966) and by Edwards and Hewson (1965).  This is particularly serious
in the transition metals where the Fermi surface has been well
investigated and is described well by the band structure calculations

of Callaway and co-workers (Tawil and Callaway 1973, YWang and Callaway
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1974) as emphasised in Chapter 1. On the other hand, Kanamori (1963)
has applied Brueckner's theory of nuclear matter (Brueckner 1955,

Wada and Brueckner 1958) to the problem of correlations in the transition
metals which is known to be exact in the limit of low particle density
(Galitski, 1958). This ladder approximation is not applicable to the

3d series however except perhaps for Ni with 0.6 holes per atom

in the 3d band.

A method is required therefore to treat electron interactions
over the range of densities found in the 3d series, whilst preserving
the features of the Fermi surface which is well described by band
theory. Perhaps the most promising such method is that of Gutzwiller
(1963, 1965) who proposed a variational wavefunction for the ground
state. The philosophy of this approach is rather similar to the
treatment of correlation effects in the hydrogen molecule presented
in \% 1.4 and is ideally suited for a treatment of the balance
between the kinetic and interaction energies which is so important
in the 3d series. This method will be used to discuss cohesion
in the one band model in .§ 4.3 and the applicability of the results

to the transition metals will be discussed in ‘§ 4.4,

4.2 Friedel's model of cohesion in the transition metals

Consider n electrons (or n holes if the band is more than

half filled) m of which have spin " and F have spin \L in a

Ty kS o~ o N ey M T =1 P v A —y
jattice of N sites with n <« . In the singla vand model the

ground state wavefunction is the conventional Bloch state

) - T al de
gﬁmu Ky =9 1)

where K 1 = { E S & - ] and K} = Q k " ok ' }

is the occupied region of EE space.
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The operator Q, - creates a spin o electron in the single
particle state ¢;Zd,(£) with energy Eh determined by the crystal
potential V(r)

-&°V “ 5 Vi) gﬂk((ﬁ = €, Z{fw () (4.2)

Zm

which may be expressed as a sum over potentials V_ ( r..a_) centred

on lattice sites g
J

\/({)=§j\/3(f~%) (4.3)

In principle V(r ) should be determined self-consistently and the
Vg would be dependent upon the lattice spacing. In practice the
Vg are usually taken as atomic potentials as in the Wigner-Seitz
scneme.  Thus the interaction of electrons on different sites is
effectively included since atoms surrounding the one under consideration
are made neutral, but, owing to the cancellation of the self-Coulomb
and the self-exchange term in the Hartree-Fock equations, the potential
of the atom upon which the electron sits is that of the positive ion.
Thus the energy cost of intra-atomic charge fluctuations is neglected.
The reason for this procedure is, of course, that when an electron is
on a particular atom, correlation effects act to prevent another
electron hopping onto the same site. The method does, however,
neglect the increase in kinetic energy which would occur as a result
of the correlation. The advantage of the method is that the same
potentials are used in both the solid and the system of free atoms,
allowing one to compare directly the energy in the two cases (Friedel
1964, 1969) and so compute the cohesive energy.

Thus, following Friedel and neglecting the energy cost of intra-

atomic charge fluctuations, the energy is just



Eviy = 2 €, (4.4)

Ee = =1 0 ¢ +{meml E (4.5)
—_— LL SR Q
N krRg S ;

where E'o is the energy of the isolated atomic d state. Thus,

if n(E) 1is the density of states per atom, then in the non-magnetic

state discussed by Friedel

E. =’Z§EF(EO~E)VNE\%E (4.6)

which, for the rectangular density of states

h(ES = Eo- -5 < E<E,+0-5 (4.7)

= 0 otherwise

shifted from EO by an amount s, gives the parabolic behaviour

upon filling the band. In the transition metals the crystal field

splitting is small in comparison with the bandwidth (Friedel 1969) and
tight binding computations suggest that in cubic crystals the E_ and
ng parts of the density of states are fairly uniformly distributed

over the d band with only the top and bottom of the band having a

definite Eg or ng character. Thus, assuming five identical



subbands, the cohesive energy due to the d electrons is

E. = %E(\Ofw) bops
where p = 5n is the number of electrons per atom in the d band,
as obtained by Friedel (1964, 1969) who demonstrated that for a given
bandwidth the behaviour of the cohesive energy is not very sensitive
to the details of n(E). This explained why EC varies fairly
smoothly through a series, though there are differences in lattice
structure between one element and the next. Equation (4.9) is seen
to offer a good description of the cohesive energy in the 4d and
5d series displayed in Figure 4.1 with reasonable values of W and
s, but there is a large departure from this behaviour in the 3d series.
The cohesive energy is not, however, necessarily a good indication of the
strength of cohesion in the metal because it involves the ground state
of the free atom and we shall see in \§ 4.4 that the deviation arises
in part from the well known stability of half filled d shells in
atoms. A more reliable estimate of the bonding strength is given by
properties involving changes within condensed phases such as the elastic
moduii, thne melting point and the heat of fusion. In the 4d and 5d
series these vary in much the same way as the cohesive energy with a
maximum corresponding to a half filled d band, in accordance with
Fried=1's moded. It is found. howavaer, that in the middle rioht of the
3d series, the Young's modulus, shear modulus, bulk modulus, melting
point and heat of fusion (Gschneider, 1964) are much smaller than we
would expect on the basis of the simple model of binding presented by
Friedel. This behaviour indicates that in the middle of the 3d series
the d electrons are unable to participate fully in the binding, and
is, we propose, due to electron interactions not included in the simple

Wigner-Seitz approximation to the correlations.



4.3 Correlations in the single band model

In order to investigate the effect of electron interactions on
the ability of electrons to participate in the bonding, we define

Wannier Tunctions

— k.

U(K‘%J :LLZ < ’3% i) (4.10]
N & -

for the band under consideration, and express the Bloch state (4.1)

in terms of configuration states gﬁ as
Grel

. - Z i\ K (4.11
C—EKPM 61 G-l ot ed (Ew(fb

where

= T q+ o) (4.12,
Tl crey V7

GT:S%(P“'%WN K G4 = gaw... 3ﬂ¢ ] being the

sets of lattice sites occupied by the m { spin and /A L spin electrons.

The coefficient Ay s given by

using an obvious notation for determinants.
As was pointed out by Van Vleck (1953) the Bloch wavefunction
(4.11) with coefficients (4.13) contains too many configurations
?? 1l with large polarity, that is it allows too many doubly
occupied sites in the presence of electron interactions.
Gutzwiller (1963, 1965) constructed a Tocal wavefunction for the

ground state by starting with the conventional Bloch state (4.11) for
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the non-interacting ground state and reducing the amplitude of all
configurations in which M atoms are doubly occupied by an amount
rWL\/ where O < '?L«S [ is a variational parameter.  Thus

Gutzwiller proposed the variational wavefunction

v
?C = 2 ”L Bomb’\mw @Hw (4.14)

GG

where the B(r?(fb are introduced to account for the less important
inter-atomic interactions. The uncorrelated wavefunction is obtained
by setting B = qu = 1. By letting B differ from one, the diagonal
and off-diagonal elements of the n'th order density matrix /O n can
be given certain simple properties which may not follow from setting

B =1.

Using this wavefunction Gutzwiller (1965) calculated the first
and second order density matrices within the quasi-chemical approximation
in which the electrons of one spin are considered fixed for the purpose
of calculating the kinetic energy of electrons of the opposite spin.
This is a reasonable assumption when dealing with electrons in narrow
bands as in tha transition metals. Within this approximation the
calculation of the density matrices reduce to a sum over configuration,
the details being given in Appendix B.  Thus, from Appendix B, the

first order density matrix is given by

/)H(Cllﬂfg”} “plan ) Tt = e

(4.15

= U P (‘W "32*) "(s Jir 7 21

where

\OT(EM“QN‘F, Zﬂ(“j”'ﬂ”) (4.76°

1
N K1
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and

l Lol 52 .
%T - _..____I_____.[(N m /‘Af\/} (va Vi J 2+ (/m—vo)z\/olj (417

Wl{k}—‘m]

with similar expressions for i] spin electrons. Here \)0 is the

number of doubly occupied atoms in the ground state and is related

to the parameter KYL in (4.14) by

T

(WL—\/QHI/V\—VQJ ’\’L =
VQ{N—yuvpth}

(4.18

We now write the energy in density functional language as

E[,a“[o] T[/71]4I£/ad]+fdﬂf\/ [/0 frJ/’L

(4.19

vokr [/Hf\&]

where ‘Slf E/’r)f’@.] describes the intra atomic electron inter-

actions not included in V(r) the lattice potential used to

calculate the

(/) in (4.2). e approximate E T by
!f:"fh) ( ) pp I[-fi\/ob Y

where C s the intra atomic interaction energy.

_‘Z{: 31]< (O\Jrq [0
NSSL ? %’ jlij

ﬂu t 1— g~ "u( E.O’ € Ko
N

R -
N

Now
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using the single particie density matrix (4.15) derived by Gutzwiller,
where th, is the number of electrons with spin o~ and |[(,~ is the
occupied region of k space in the Bloch state (4.1). We have
therefore a piecewise constant occupaction probability in reciprocal
space, the discontinuity at the Fermi surface being given by 9, - Ny,
is seen to consist of two parts : a scaled Fermi distribution functign
corresponding to the correlation reduced electron hopping, and a
constant throughout the band representing the localised property of

the electrons in the presence of correlations. Thus within a framework
in which the Fermi surface is built in from the start we have the
possibility of both itinerant and localised behaviour without the

need of postulating that some of the electrons are localised.

The energy of the electron gas is then

E{\/Q) = m (1\)? ET +/Mcu E\b + Cv, (4.22

where we have normalised Zf €, = O such that c
GAND

2 e
K1

=1
m

and é% = _L o Sy are negative.
Voo iy
The ground state energy is then obtained by minimisation of

(4.22) by varying \/0. This determines \jo as a fTunction of C,
If n> N then with m and Jnow being the number of T and

& spin holes and \/O the number of empty lattice sites, the inter-

action energy will be  C ( hf—rn-ywi *\/Oj giving tho same expression
as before for \)0 upon minimisation of the energy. In the atomic
Timit U > O,y > 9 so with the normalisation 2. €, = O the
Band —
. . ] . . .
energy will be zero if n< N and C'“l-Nl if n>N . Thus ignoring

the small shift s in (4.8) the cohesive energy/atom in the solid is

Ec :-ﬁ.%TE$ ~ﬁ11béi — Ci@ (4.23



vhere m = My J/] _ M /N and \1,: Vo [N and for
n< N " and ﬂ/ are the number of ? and $ spin electrons
and \/O is the number of doubly occupied sites in the ground state,
whilst for n > N pa and 11 are the numder of P oand
spin holes and ¥V o is the number of empty lTattice sites.

For the case of one electron per atom considered by Brinkman

and Rice (1970) the energy (4.22) is Jjust
RIS G R P
- ¢ Vg % =V, | F v (4.24)
N
Minimising with respect to \jo gives

vy, = | (\,, £) (4.25)
L 5e

giving £ =

E - ¢
N \

\2 (4.26"

C = - %< (4.27°

the system undergoes a metal insulator transition with the number of
doubiy occupiad sites and the ground state cnergy going to zero.

We shall consider the case m :/v«J m J.-/w = n where
n is not necessarily equal to the number of Tattice sites (Sayers, 1976 ).

- -2, . .
If C =0 the Hartree-Fock result \)O = im is obtained. If C 1is

smail we expand in powers of 8 defined by

— (4.28

with §  small. Thus, from (4.17)
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o 4o~ 287 v o (s3] (4.29)
w2l |3
=> [ (8 } x| - 25°¢ he + C <.@F -5 ) (4.30)
h3({ WQ_Jz_ L\‘

Minimising with respect to § gives

S = — Cn3lt-"4)> (4.31)

LV h e

= [ = ne + Cn® p n?({-"1) %MS? r O (c JJ

3 e

(4.32]

Equation (4.31) gives the reduction ( & s negative) in the
number of doubly occupied (empty) sites due to correlation effects to
first order in C. For small ¢ the first order correction to the
energy is seen from (4.32) to be just the Hartree-Fock interaction
eneragy Cn2/4. The effect of correlations is seen to be of order C2
¢ ard i3 scen to reduce the interaction znerygy fron the
Hartree-Fock vaiue by allowing electrons to avoid coming together on
the same atom.

For the general case C 1is not small and for m = P the

equation for \Vo obtained upon minimising the energy is

(n-vel™ - (N- 2m]

VO(N—ZVNH/O J (4.33

= o~ IN—wm e 2N by ov] - IN-mlc

z 2¢



which may be written in the form

123 )
kgz Ze
2
+ (12wl =0
As C — c)) V> 4 the Hartree-Fock result, whilst as
V—;\——>[/2 V

gives the reduced equation

:)C3 t PD( '

rq =0

with solutions

Ny = U+

o, = o—Usyo BL:_V c\.‘?
2 2.

Xy T omury W-v {3
Z 2

(4.36

(4.37
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where

{ -
- _ 2 37 4
n _?&+{<j& +(ngz 3
E [& 3 i (4.38)
2 3 7Y | Cé
SIERIIR L
Z 2 3
. 2 2 3 :
Clearly with [) = ( 1/23 4 (l/si if
D >0 there is one real root and two conjugate complex roots
D=0 there are three real roots of which at Teast two are equal
D < © there are three real roots
In the last case we must find the cube roots of a complex quantity
the solutions being
o o= 2 } lfﬁ g jﬁ
3 3
% = -2]] cm(zf—m/s
2 l_%é‘ (4.39

i}

2 4 —z\m;—; Cos (¢+((]/3

-1/
L) e

although the above represents an analytic solution of (4.34), with the

4
where P is the solution of g3 ¢ =

coefficients in (4.34), t) is a rather complicated function of
C/i-€~ and |m and may vary between negative and positive values

as these parameters change. In order to display the behaviour of
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the solutions of (4.34) it is necessary therefore to follow the roots
numerically.

We have solved (4.34) for several model densities of states.
For the rectangular density of states (4.7), for example, neglecting

the small shift s

¢ =L (r-2]

4.40)
2 (

Figure 4.2 illustrates the variation of {76 for various values of
C/Z(J as the band is filled for this density of states. Figure 4.3
shows the variation of the cohesive energy defined by Equation (4.23).
For one electron per atom a metal-insulator transition occurs for
CGLLA: 2 . This corresponds to the situation discussed by
Brinkman and Rice (1970).  For any other number of electrons per atom
the Gutzwiller ground state is always metallic.

The inclusion of intra-atomic electron interactions gives a
iower cohesive energy than the parabolic variation (4.8) obtained by
Friedel (1964, 1969) using the Wigner~Seitz approximation to the
correlations, the reduction in the cohesive enerqy being the greatest
for a half-filled band. If n 1is the number of electrons (holes)
per atom in the band, then if C/Z_L) is small we see from Figure 4.2
that the number of doubly occupied (empty) lattice sites \)O increases

smonotenically as v o~ 1, Hence the dnteraction energy is greitest
for m=1. If Cfﬁ_Lg is large, fVL is small and since the number
of configurations in (4.14) affected by ﬂl is greatest for a half
filled band, the increase in kinetic energy is greatest for that case.
This is further enhanced by the fact that for a given value of CGLL) s
/VL is smallest for a half filled band. Thus from (4.34) and (4.18)

we find
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Figure 4.2. Variation of the number of doubly occupied (empty)

lattice sites VY, for the constant density of states (4.7) as’
the number electrons (holes) in the band is increased for

n< N(n 2 N) for various values of C/2V.
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ﬂL s s h =0
1y 40 (4.47
— ( - C/Lr‘«)} oy n = ’l
(1 )

for a symmetric band with lower limit at — () and upper limit at (D
Figure 4.4 snows the variation of ﬁT} given by (4.18) for the reactangular
density of states using the calculated values of §30 presented 1in
Figure 4.2 for several values of C/Z.LJ

For a small number of electrons per atom in the band the probability
of two electrons coming together on the same atom is small and the
interaction energy 1s low.  For a nearly full band fluctuations are,
of course, Timited by the exclusion principle. Thus for a small
number of electrons or holes in the band the number of configurations
in {4.14) affectad by ﬂL is smali and the wavefunction resembles the
Bloch state (4.1). For a half filled band, however, a Targe proportion
of the configurations in (4.14) are affected, and for large Céltj the
itinerancy of the electrons, and hence their ability to participate in
the bonding, is greatiy reduced. This is illustrated by the quantity

1/ in (4.21) which gives the discontinuity at the Fermi surface.

For m= yu
1/
nos 1w ot (> o0
? e e (4.42
- (i-7/z
which = 1 as n =0 and - 0 as n — 1. For other values

of CélLQ the quantity CL is plotted in Figure 4.5 for the rectangular
density of states, using the values of §;0 presented in Figure 4.2

If we consider only the frequency dependence of the self energy,
the effective mass Y”*/%4 is given by the reciprocal of the
discontinuity at the Fermi surface, <1ﬁ4 . Thus the value of %/ may

be determined by de Haas van Alphen effect measurements. It is found
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o

Piguve 4.5. Vartairion of the
discontinuity at the Fermi
surface g given by (4.17),

, with n,evaluated
for the rectangular density

for m = A

of states.
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Figure 4.4. Variation of “1
given by (4.18), for m =4,
with K,evaluated for the

rectangular density of states.



(Gold et al. 1971) that the oscillations arising from the minority
spin sheets in iron are typically four orders of magnitude weaker than
those arising from corresponding external orbits around the similarly
shaped Fermi surfaces of Mo and W, indicating a large effective
mass and small g -

In the middle of the 3d, 4d and 5d series the body centred
cubic structure usually has the lowest energy. This is due to the
band being subdivided in the BCC structure into a bonding and anti-
bonding part connected by a region of low density of states as a result
of there being two sublattices, all the nearest neighbours of an atom
on one sublattice being on the other sublattice. In order to include
this possibility we have studied the cohesive energy for the double

triangular density of states

n(Eer HEJ -Lsts-0/

G Q

= -ze Oh cEe o
L2 (4.43

= = 0 s [ < LJ’;

2
=3(x~5} Vho<E <

L L

intended to represant crudely this behaviour, for which

—_— s
<= O[lznl % -3]7] -Bs e, &~
5
. ) (4.44
= WLz li-n)e-3] =Y <6, ¢ o
(S

Figures 4.6 and 4.7 show the variation of i}o and the energy difference
between the band and atomic limit E. as the band is Filled for this

density of states. The behaviour is seen to be rather similar to that

found for the rectangular density of states.
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Sites'ijo for the density of states (4.43) as the number of electrons
(holes) in the band is increasced for ns N(n 2N) for various values of
C/2V.
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4.4 Application to the Transition Metals

The cohesive energy does not give a reliable indication of
of the binding strength in the transition metals since it involves
the ground state of the free atom, and more can be learnt about the
nature of bonding from properties involving changes within condensed
phases such as the elastic moduli, melting point and heat of fusion
(for values see Gschneider, 1964). In the 4d and 5d series these
properties behave in much the same way as the cohesive energy, peaking
to a maximum at a point corresponding approximately to a half-filled
band. In the middle of the 3d series, however, the Young's modulus,
shear modulus, bulk modulus, melting point and heat of fusion are much
smaller than we would expect on the basis of Friedel's model. This
departure from the roughly parabolic variation observed in the 4d and
5d series begins at Cr, i1s greatest for Mn, and decreases in
magnitude as the band is filled further, Ni having properties
similar to those of Pd and Pt. In particular, the properties of
Mn seem closer to those of Cu 1in the same period with a full d band,
in which the d electrons only contribute to the cohesion through
s-d hybridisation, than to those of TC and Re in the same group,
where strong bonding is indicated in accordance with Friedel's model.
In the middle right of the 3d serijes, therefore, the d electrons
seem to be prevented from participating fully in the bonding. Further
support for this conclusion comes from the variation of atomic volume
in the solid, which would be expected to decrease with increasing binding
Strength. In the 4d and 5d series (Gschneider, 1964) the atomic
volume decreases smoothly as the band becomes half filled, and then
increases as the band is filled further, in agreement with Friedel's
model. In the 3d series however, Fe and Co have an atomic volume
larger than that of Ni, in contrast to the behaviour in the 4d and
5d series.

This behaviour can be understood in terms of the results of
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§ 4.3 which show that the effect of electron interactions on the
itinerancy of the wavefunction is greatest for a half-filled band.

Indeed we can extend Gutzwiller's method to deal with correlation

effects in the d band by introducing variational parameters {Vlh R
which determine the optimum concentration Cn of atoms with n electrons
in the presence of electron interactions. Assuming, for simplicity,
that the d band consists of five identical sublevels, the concentration

Cn in the absence of correlations is just

G- ol h-p )T (g

(4.45)
nlllo-nll lo o

where p 1s the average number of electrons per atom in the d-band.
In Ni, with p = 9.4, screening by the 0.6 electrons per atom in the

4s  band will greatly reduce the energy difference between the 3d9

and 3d10

configurations, whilst fluctuations to states with more

d electrons are, of course, suppressed by the exclusion principle.
With less electrons per atom in the d band, however, fluctuations
to states with Targe interaction energy become possible, the number
of configurations in the Bloch wavefunction with large interaction
energy being greatest for a half-filled band. Thus in iron, with
p = 7.1, screening by the 0.9 electrons per atom in the 4s band will
reduce the enargy of forming a 3d8 configuration, but the cost of
a Sdg or Sdls contiguration, vihich have appreciable probeability
according to (4.45), will remain prohibitive, as was pointed out by
Edwards (1970). In the ground state the probability of such
configurations will therefore be considerably reduced, to an extent
determined by the balance between the kinetic energy, which would be
lowest if the electrons were unrestricted in their motion, and the
interaction energy. In the middle of the 3d series, where the

number of configurations with high interaction energy in the Bloch

state is large, there will therefore be a considerable reduction in
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the i inerancy of the wavefunction leading to the anomalous behaviouy

of the cohesive proparties seen in the middle of the 3d series. This
is in contrast to the 4d and 5d series where the bandwidth is large
and correlation effects may be included by analogy with Equation (4.32),
the first order term in the interaction energy being the Hartree-Fock
term.

The importance of correlation effects in the middle of the 3d
series is well illustrated by the difference in electronic structure
of iron and nickel emphasised throughout this thesis, nickel behaving
in a way characteristic of an itinerant ferromagnet whilst iron has
many of the properties of a system of localisted spins, the behaviour
being as if there are two spins per atom, coupled ferromagnetically
by Hund's rule exchange. The spin coupling in iron is made effective
by the reduced probability of an atom being in a 3d9 or 3d10 state
and these spins remain aligned at temperatures well above the Curie
point (Hofmann et al 1956, Mott and Stevens 1957) despite becoming
decoupled from neighbouring moments.

In the 4d and 5d series where the average Coulomb interaction
between two electrons on the same atom |J is small in comparison
to the bandwidth we may neglect correlation effects to first order

in \J , the interaction energy per atom in the solid being

- \ fo-h n

7 lnlaotiu ol l~j¢3}! “9]
[ 2 ' / Vo i
Nto h,jx’lo—h“ fo o |

= C\Uol
L_ (4.46
29

where p is the number of electrons per atom. If L < [3 s {4 1

where 4{ is an integer and J is the average intra-atomic exchange

integral the energy in the atomic limit will be



2 p ([o 1) u-J) + e (1-—c) (V-T | bé I9~s g
2 [2

_L F (F.ﬂfj\/ $ ; c(1-clU "% U'(Io-P} (9—-PJ J -

d
4
thus, for the rectangular density of states (4.7) neglecting the small

shift s the cohesive energy is

whare c is the atomic concentration of atoms with ({ + 1) electrons.
The effect of (U 1is seen to reduce the amplitude of the cohesive
energy curve from that obtained by Friedel, the reduction in the
cohesive energy being greatest in the middle of the series. In
addition we obtain a dip in the middle of the series due to the intra-
atomic exchange coupling J. This arises from the well known
stabilicy of nalf filled ¢ saeris in atoms. It is important to
note in (4.48) that although J is usually much smaller than U ,
its effect in the middle of the series is of the same order of magnitude
as that of U . For an almost full or empty band, however, the effect
of J s negligible.

The first order correction to the cohesive energy due to Coulomb

correlations will be
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Eeonn = 2_5[]1;
(@)

by analogy with (4.32) where the denominator D 1is of the order of
the bandwidth. This can be understood in second order perturbation
theory (Friedel and Sayers, 1976) as due to the virtual excitation of
the P/10 electrons per atoms in a given spin orbital to the five
empty portions (1 - P/10) of orbitals with the same spin. The
matrix element of each excitation is ﬁg( I - Hi J .  The number
of excitations is 10 x 5 and the energy denominator is of the order
of the bandwidth 2L . We note that for small U the corrections
to EC of order \J and U-z can be considered as the first terms

of a development of an "effective" Hartree-Fock correction

70

Ugpe = U - p (HJQPXHZ ~ v
lo N I ‘E[io—PJ!
o

2L

which is reminiscent of Kanamori's formula (Kanamori, 1963) to be
discussed in Chapter 5.

A further correction to the cohesive energy, important in the
5d series, is the spin orbit coupling which we shall introduce only
to first ordeyr in the perturbation. In that case spin orbit coupling
is important in the free atoms, but not in the solid where the orbital
moment is quenched to first order. Thus the correction to the

cohesive energy due to spin orbit coupling will be - A\ LS where
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(4.51)

(Friedel and Sayers, 1976).

4.5 Conclusion

The cohesive energy and properties reflecting the strength
of binding in the solid such as the Young's modulus, shear modulus,
bulk modulus, meling point, heat of fusion and atomic valence vary
in a regular way across the 4d and 5d series and indicate a maximum
conesion from a half filled band. This shows clearly that in the
4d and 5d series the d electrons are collective and Friedel (1964,
1969) explained this behaviour on the basis of a simple band model
in which the energy cost of charge fluctuations are neglected,
correlation effects being treated in the Wigner-Seitz scheme. In
the 3d serijes, however, it is known that electron interactions are
cruciaily important in determining the grouvnd state end result, for
exampie, in the occurrence of magnetism within this series. Thus
a large deviation in the above properties is observed in the 3d series
from the behaviour in the 4d and 5d series indicating, for those
elements in the middle right of the 3d series, a much weaker bonding
than is expected on the basis of Friedel's model. The effect of
electron interactions on the electronic structure and cohesion in the

single band model was investigated using Gutzwiller's method, the
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principal results being shown in Figures 4.2 to 4.5 for the rectangular
band considered by Friedel. The effect of electron interactions is to
decrease the number of doubly occupied sites '56 in the ground state
as 1s seen in Figure 4.2 For small «c, i;o increases monotonically
as the number of electron (holes) per atom K = 1 and consequently
the reduction in the cohesive energy due to electron interactions is
greatest for a half filled band. If the interaction energy C 1is
large the parameter rq/ in (4.14) 1is small and since the number

of configurations in (4.14) affected by AI/ is greatest for a half
filled band, the increase in kinetic energy due to correlation effects
is greatest for that core. For a small number of electrons in the
band, however, electrons rarely come together on the same atom and the
number of configurations affected by Al/ is small. Similarly, for

a nearly full band, fluctuations are limited by the exclusion principle.
Thus for a small number of electrons or holes in the band the wave-
furction resembles the Bloch state obtained in normal band structure
calculations. For a half-filled band, however, a large number of
configurations in the Bloch state are projected out of the wavefunction
and the itineracy of the electrons is severely reduced. These
conclusions are seen to extend qualitatively to the 3d series where,
in the middle right of the series, there is a much weaker cohesion

that is expacted on the basif of Friedel's model. Correlation effects
are »ot important for elements at the beginning of the szries where

the nuclear charge is small, but as the band becomes filled the band-
width decreases and correlation effects become more important. In
nickel the energy cost of forming the 3d]0 configuration will be

much reduced by s-electron screening and fluctuations to states with
large interaction energy are prevented by the exclusion principle.
Thus, for Ni, relatively few configurations will be projected from
the wavefunction in the ground state and band structure calculations

are appropriate for treating the electronic structure. In the case



of iron, on the other hand, with 2.9 holes per atom in the d band,
there is a large probability of having 3d9 and 3d]o configurations
in the Bloch wavefunction , the energy cost of which will be largely
unatfected by s electron screening. The probability of such
configurations would therefore be greatly reduced in the ground state
by the admixture of antibonding wavefunctions into the wavefunction
with a corresponding decrease in the itineracy of the ground state.

These conclusions, derived from the cohesive properties of the
transition metals, are in good agreement with the difference in the
magnetic properties of iron and nickel discussed in Chanter 1. Thus,
whilst nickel behaves in a way characteristic of an itinerant ferro-
magnet being adequately described by Stoner theory, iron has many of
the properties of a system of localised spins, the behaviour being

as 1T there are two spins per atom, coupled ferromagnetically by

Hund's rule exchaage.  This coupling is made effective by the reduced
. . . 1 3 - O » - -

probability of an atom being in a 3d” or 3d]O configuration in

the ground state. These spins remain aligned at temperatures well

above the Curie point (Hofmann et al 1956, Mott and Stevens 1957)

despite becoming decoupled from neighbouring moments.

4.5 urface Proparties of Transition Metals

t is interesting to consider the implications of the present
viork for the benaviour of the d electrons at the surface of a
transition metal in view of the importance of this in a number of
important processes including chemisorption and catalysis. Because
of the reduced opportunities for hopping at the surface, correlation
effects are expected to be of particular importance here. As has
been pointed out by Cyrot-Lackmann (1969) and by Brown and March
(1975) the behaviour of tne surface tension of liquid transition metals
behaves in much the same way as the cohesive energy in the transition

metals. Unfortunately, there are to date rather few results for the
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solid phase.  Cyrot-Lackmann (1967, 1969) has caiculated the behaviour
of the surface tension in the absence of correlations using the tight
binding approximation and finds that it varies parabolically with the
fi1ling of the band as does the cohesive energy. Experimentally the
surface tension ‘X behaves in this way for the 5d series but for
the 3d series there is a considerable deviation as we would expect
from our discussion. Assuming that the average number of electrons
per atom near the surface remains very close to that in the bulk

(Friedel, 1976) we obtain from (4.46) to {4.49) to 2nd order in U
R
¥ = { 5(10-p) W - 25 [f_(pi)u}*}cc Sz (4.5

(Friedel 1976, Friedel and Sayers 1976) where z is the number of
nearest neighbours in the bulk and S z the decrease in the number

of neighbours for surface atoms. C is a numerical coefficient

<D

rising from the local d band width at the surface being
. R .
W-80 = (z-52) U. < =1 corresponds to simple
hopping whilst = = 1/2 1is obtained by deducing the band width
from the second moment of the density of states.

The Coulomb correlation to 2nd order in U/ s seen to
produce a central dip in the otherwise parabolic variation of the

surface *onszioa.  Higher order fterms are s2en from § 4.3 to

reduce the amplitude of this dip without altering its shape.
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Chapter V

Ferromagnetism in the one-band Gutzwiller Model

5.1 Introduction

If we neglect correlations between eleclrons of
opposite spin the number of doubly occupied atoms is
my /N for all values of C, the energy of the Bloch wave-

functiocn (4.1) therefore being

EHF :!“Ef+ UE& + Cg; (5.1)
N
where é% =1 Je, and g, = | Z’ €, are negative
m KA A
MKy

with the normalisation 2? ¢, = O.
L 3

Defining n 5 by

n S = m-y (5.2)
~J
Where n = mty is the number of electrons, we have

m=n (I+35) oy = (i-79) (5.3)

ol
o s

2

Me, +pE, = NT o+ nzg (5.4)
! b n leg)

where :5 = 1 {(m~p) is the number of spins turned round
L3 l‘)
and 1 n T = 1 (m-p) is the average increase in energy
2 n(ﬁf) 2 n{(E.)
A

when a spin is reversed, n(Ef) being the density of states
- . - - 2 C e .

at the Permi level. Thus for small:S the difference in

energy between the magnetic and non-magnetic state is just

Eer - Eo = SO ST
LFNH(EF)

Magnetisation will therefore lead to a lower energy if the

~
&1
(&)
~—

Stoner criterion
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Cn(Ef) > (5.6)

The Stoner criterion clearly overemphasises the
tendency to ferromagnetism since, as we have seen in
Chapter 4, when C 1is large the number of doubly occupied
atoms X&, in the ground state is substantially reduced

. 1 ] , my ' - s .
below the Hartree-Fock value /N. The interaction encrgy
in the ground state is therefore greatly reduced below the

Cmy

value /N in (5.1) and to compensate for the effects

Ial

of correlation C is often replaced by an cffective parameter

Crp{ in the Stoner criterion which becomes
(SR
C n(E,.) >1 5.7
eff \ I) ( )
Ve shall =valuate Chfi in Gutzwiller's model in

9.2, the resulis being valid for arbitary number of electrons
(holes) per atom n in the band. This extends the work of
Brinkman =and Rice (1970) who obtained the Stoner parameter
for the case of one electron per atom in the band. In

5.4 the results are compared with those of Kanamori (1963) in

the

jmrt

imit n -~ 0. Gutzwiller (1965) compared the energy in
the non-magnetic state m=y in the limit C -+ oo with that in
the state in which all the spins are aligned paraliel and
thereby obtained a criterion for complete ferromagnetism,

but did not consider the possibility of a partially aligned
state. We {find in§5.2 that even when the ferromagnetic slate
is of higher cnergy than the non-magnetic state, a partially
aligned state may have the lowest energy. In §5.3 we

discuss the dependence of the energy on the magnetisation

and illustrate this for a model density of states and the

case 0of one electron per atom in the band.



112

Before proceeding to colculate the Stoner parameter
in Gutuwiller's theory we can estimate the effect of
eleciron correlation on the effective interaction between

electrons by finding the value of C which, when substituted

HF
for C in (5.1), gives the same energy as that of the
non-magnetic ground state in Gutzwiller's model correspond-
ing to the bare interaction C. CHF so defined is then

given by

~ — I's _: _ T
i lome(q-1) + C\’o] (5.8)
m,
where, in the non-magnetic case m=yu
v\ 3 172
q = (m=Vo) [(N~2m+v Y2 o+ N - (5.9)
e '} o 4
m(N-m)
Thus C T -2¢ as C - (5.10)
(1-m)
that is, CHF tends to a finite limit of the order of the
bandwidth as C »<x . This occurs because when the electron

interaction 1s strong electrons will avolid coming together
on the same atom by sacrificing a one-electron energy of the
order of the bandwidth. This increase in the kinetic energy
then corresponds to the effective magnitude of the inter-

action, a pcint first emphasised by Kanamori (1963).

In the case of the rectangular density of states
n(lkt) = 1 -W<E<W (5.11)
2%
= 0 otherwise
for which € = W(m-1) we find that CHF/2W+ 1 as C » oo
We can evaluate CHF defined by (5.8) as a function of C
using the results for VO obtained in Chapter 4. CHF is

plotted against C in figure 5.1 for this density of states.
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Figure 5.1. Variation of the effective interaction CHE with the

bare intcoraction C for the deansity of states (5.11).
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9.2 Stoner paramecter in Gutzwiller's theory

For small n 3 = m-u the exchange splitting is given
by
A=nlx 1 (5.12)
7; n(Ef)

where nS is the number of reversed spins, giving
2

- A\E 4 | — hr 2 -2
Mgy _J "TEnlelde = w7 ken {4
— Z 2 8nle.)
o (5.13)
Al "‘u 2 2
i A - A L O S

q, S AR SENSYS SIS &
- m =) b (A A B A A D R 1= T LT s
+ 2y ir'? ¢ hl"glf
L lOZL:, (nfl_v)Lr (5.14)

i o 2 ) , 2
/4;.(\\;’—/“! mE, = N |ne v Eenl h2< 1 (N-”/z}_(N,HJS_LL
Z

(5.15)

with similar expressions for a, and for m(N-m)ue, obtained
A

by reversing the sign of S and changing m for u. Thus,

neglecting terms in 3 and higher orders and using the

expansion

Q

| 1%'&2+h2@2 ﬁ{N—ijz
M/’/L(N"VWJ(N’/W} L,(NJ”/Z}’l Ly \ 2 (5.16)
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we obtain for the energy per atom

E(o) - [P-9)[{i-miol 9] 25 _
|-y, (5.17)

ML TR S

- A ) 2nle) Z(WQ—Vll (1-71, )2
s - RE

T A R R I LD 1 eI ST YA
v 201- R}(EV-EF) - gh—i}[e ~ £ ] }

[P -g ) orag) = av 217 Rl -F

which has the following asymptotic behaviour

o, BElv) = 200 gl e [li-rns0 )t 4]t
(1 -7y

Z) (5.18)

Fod Elg) = dtols-v)E

I
n e (-]
T.o . Bl = w=z l-7)
J
(iii) If {(—HQJ (5.20)

I RS nm(ep)[ﬁé‘ . 2Ef ]

\‘ et
LL‘;“;‘IZ‘)L",ICF} L(’___h/z}z' (1_91/1)J}

The non-magnetic state will be unstable against spin

alignment if

dg | _ g | . YE v
v 2 < \ d7? 5 o
ai\x Lo 3% . 3y (3 o (5.21)
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is negative, where G35 is the non-magnetic ground state.
The non-magnetic gound state energy must have a minimum
at the optimum number of doubly occupied atoms Vb' The
non-magnetic state is therefore unstable against ferro-
magnetic spin alignment if

fv nleg]| Re - W& + e

N

RPN T E AR | S-S R AR A hlr-hr, )
n = | _ =l -~ 2
(M- -m w90+ 9l ] .

the Stoner parameter C then has the following behaviour

eff
— -
o TF = n“ c T 11 = ’ =
(i) If Vo 4} corresponding to C=0 then Ceff 0.

4

(ii) It Go = O corresponding to C »oo and n# 1 then

Core = ?:i§5i—:§ [ e+ 2Ef(l—ﬁ/2 )] (5.23)
(iii) If n =1

Copp = -g [ 3—1690 + 16502 ] (5.24)

5
4( 14“‘\)0 )«

In this case Qo = ] ( 1 +C }) (5.24) becoming
4 Se /

= c(1 - ©/16%) (5.25)
(1 - C/gz)2

C

eff
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itn agreement with the result obtained by Brinkman and

Rice (1970) who investigated the susceptibility enhancement

in Guizwillevr's model for one clectron per atom. This
result may also be obtained as follows. For onc electron

. . . 2
per atom we have to first order in 5 .

. _
E (o] :Ha[EwLS/Lm(EFJIU_’— ) “*5} j&—— (5.26)
2 l(ly-5) |
+ O
The condition for ;6 then being
L+ 35 .V"(EF)\-N[&J,—Z\—/\» (I—SZJ - 3,1 tC=0 (5 97,
2 el oy, )2

[f the correlation is strong such that V <<1 then

Y. 't !{ \ — - . ] —_ R

Vo Lite -3 Sty L - e & (5.28)
LY szl 4 st hinled] & 'Y 32w

| . - 2
In geneval we look for a solution Vo = A+B:S
- . . . e o 2 . .
Substituting into (5.27) for small ( and equating powers
</

of 52 gives

. . -2 2
L \
Ve :J_(Hc\r*g(\”ﬁ) - L _Eft*ml (5.29)
Lr‘ gj) L. 8¢ | LTE’ZL L},EV\(EFJ
which is seen to reduce to (5.28) when 1 + C <<l, that
8e

is near the metal insulator transition.
Substituting (5.29) into (5.26) then gives

2+31(’“C/é‘~»€2} i~ch(sf_1{(l—f/me)p 5 30)
L;,h(EF)' {[—C/

E{\Z,)=€(l+_g
§5

ge

in agreement with (5.25).



Gutzwiller (1965) obtained a criterion for stroug
ferromagnetism by comparing the energy of the completely
aligned state with that of the non-magnetic state in the
limit € » <« . 1In the non-magnetic state

E... = nge + C >

NM ae + Cv (5.31)

with q given by (5.9). As C »o0 |, I

N £§—§> ne
(N-""2)

so i1 €, is the average energy of the n clectrons if they
L
all have the same spin, complete ferromagnetism will be

possible for sufficiently large C if

(5.32)

dengities of states.

1. Rectangular Density of States

For this density of states given by (5.10)

Ef = W(n-1)
ne = ¥n (ao-2) (5.33)
2
Tha SiLopeyr naroroeter CAff is given from (5.22) by
oL
CEFF = '/]'é bt ‘;\‘ é—- s V_'\—-z Z:: i ; ,
I, e e — . . - — = L
JA gy -RG] 2 (V=R )T - SR 0% )2 V2]
L YQ
- . 2(1-wllg - E¢)
-
,_V__ - - = — I 2 (I:/ —*J[(‘_ﬁf\-}Jl/Lf\—;//ljz
2(%'{2*\/537'(«““” y\/‘d 7_;,\/\3:..] 2_~\/0 N Q

(5.34)

and is plotted in figure 5.2 using the results for Qo
obtained in Chapter 4 for this density of states. As

C»
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Figure 5.2. Variation of the Stoner parameter CEFW (5.34) with

C for the rectangular density of states (5.10)
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and 1t is clear that the Stoner criterion (5.7) is not

satisfied with Ef and ne given by (5.33) and n(Ef) given

by (5.10). Thus Ceff is never large enough to cause a

ferromagnetic transition for this density of states. TFor
small n the variation of ceff is seen to be close to that

of CHi.defined in.§5.l. In this limit this supports
el

1]

Kanamori {(1963) who took the Stoner parameter C to be

eff
given approximately by the effective interaction between
electrons of opposite spin in the non-magnetic state.

As o ~ 1, however, CHF - Ceff is seen to incrcase and we
thergfore expect that Kanamori's theory would overestimate

the tendency to ferromagnetism. This is seen to be the

case in o 5.4.

N
For tuis density of states the average energy in
the completely aligned state is €_. = W(n-1) and it is

f

seen that Guuzwiller's criterion (5.32) for complete ferro-
magnetismy is also not satisfied for this density of states
- [ ol ot O

O1 oy R AN N

2. Triangular density of states

‘n{EJ = ! _~7.+_®_ +E_ ~b(l+_@)<£—<2:\)@
. 3
= i ﬂ! “f? —'E_ ~ 208 < G <‘Q(l*9 }
(-2 2 N 3 3
= 0 otherwise

which is positioned such that i?ﬁsk = 0
Ant k

.36)
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level lies in the

lower part of the band. We then have
Ee = O (o) 2n - (] - Lo
3
e = SE'Z((*S}%V\S/&“S"‘]"% (5.37)
5 3
with n & (1+40).
Figure 5.3 shows the variation of Ceff with C for the

casc 9 = 0O for several valves of n, whilst figure 5.4
shows the variacion of l—n{EQ)Ceff with C where
L
n (BE.) = ne (5.38)
.
( 1+8 ) W

from which value of C at which the non-magnetic state

first hecomszs unstable with respect of spin alignment is
eossly deduced. Again, for large C, the effective inter-

action between the electrons is very much reduced by
correlation effects.
As C - o0
]
ll 3/ ’ ,I
[ kY
oo (o) tp 2 -Mna) 3 e2 e e (g 4,
eff ! ; 3
! 2 L
so from (B 3xY ine non-magretic state is unstable ngeinst

ferromagncectic spin alignment for sufficiently large C if
{, Y
2 ? S (1102 (5.40)
! [ ({ 3/, |
i+ = ¢ 3

which is only satisfied if the Fermi level lies close to

the peak in the density of states. Thus if 0=0, for example,

C

()

the non-magnetic state will be unstable against spin

alignment for sufficiently large C if n 2‘0.66 electrons
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Figure 5.3. Variation of the Stoner parameter CFWW (5.34) with
1A

C for the triangular density of states (5.36).
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per atom in the band. Table 5.1 gives the maximum
value of @,
is possible for a given number of electrons per atom
in the band.

Table 5.1 Values of o6

MAX

n 0.1 0.2 0.3 0.4 0.5

8.ag ~0.83 -0.66 -0.50 -0.35 -0.21

n 0.6 0.7 0.8 0.9 1.0
7 ) 0

QMAX ~0.07 .05 0.17 0.29 0.39

3. Double Triangular density of states

For this density cf states given by (4.43),
1
E. =W ;
I

if 0 n €}, whilst if 3<n<1

Ee = — 0 (r-nl (5.42)
3o
NG
— v 3
€ = L 2z l1-w) - 3]
b
Thus, as C » oo
o - - i ER € p2<|:{7~;{a}:'
=rE P— (5.43)
{1“h/1]2
- L [J"‘ 31, ()J'—’ 2 1—,] <= s
=N 22— 2 2 112 Qshns '
(7(!”‘:‘1)?‘
- - — l —~
SR G (PN RN S TR RIS R

50 the non-magnelic state is unstable against spin

alignment for sufficiently large C if

4

QMAX , for which a ferromagnetic transition
I Z

C
’\%}“—1 ] (5.41)
-3 ]



L
IZ(2J2>S¥SV\»L\1 Os h & |
2 H 2 (5.44)
l
3(l'n) (R B I LS RO P
2 L2

thet is, if 0.171. n0.915. Thus ferromagnetism occurs
for sufficiently large C if the Fermi level lies
sufficiently close to the peak in the density of states.

4. Parabolic Density of States

For this density of states given by (2.32)

AL 3
h=72 "Fhlg)lde = [+ 36, — Ef
] A —_—r .
R (AN 203 (5.45)
— - - 2 2 | %
ne = 2{‘“ Enlelde = -5 (EZ-0 J
T INK
So the non-magnetic state is unstable against spin
alignment for sufficiently large C if
2 3 A 6
—hafce 10 Er 4 9Er -Ef <O (5.46)
L2 l\)3 i\)lr L\)é’
which is gatisfied for E,. > -0.268
£ -
W

Again, ferromagnetism is only possible when the Fermi
Tevel Lics o the region ol the maxiwum iu the deasity
of states.

It is clear from these examples that in order for the
non-magnetic state to be unstable against ferromagnetic
spin alignment for sufficiently large C a high density of
states is reguired at the Termi level. Tor the examples
given however, the critical value of C at which ferro-
magnetism occurs 1is rather large as may be illustrated for

the case of one electron per atom in the band. TIn this
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case a transition Lo ferromagnetism will occur if

1 - Cn(Ef) (1 - /165) <0 (5.47)
(1 - C/g5)y?

as may be seen from (5.30), from which it follows that
the critical value of C, LCRIT’ al which a transition

to ferromagnetism first occurs is given by

_
C gz 11 - Q.e nleg) ’

\1fLi~—C:V1(E(:) A

This is clearly not satisfied for real C for the
rectangular density of states (5.10), whilst for the parabolic

density of states (2.32) and the triangular density of

States with 0 = 0, CC"IT = 6W and W /3 respectively. On

the other hand, a metal insulator transition occurs for

C = 3¥ for thes parabolic density of states and for
i
C = SM/S for the triangular density of states with 6 = 0

for one electron per atom, and it is clear that for a trans-
ition to ferromagnetism to be possible before the metal
nsulator transition occurs a rather larger density of
states is required at the Fermi level.
Consider, for example, the following density of

states

h(E}ﬁ “ {.l—acJ' - L - Lo
g
Ny (ZUmJ 2y
= M - ¢ G g Lo
— ——
: 2. ’) (5.49)
~ J i
= [1- E < L
NS %ﬁ_gfjﬁ_ Dx <
TSI

illustrated in figure 5.5, and take the Fermi level to

3

lie in the high density of states region. Then



/N
n(k)
states AT
\\
I~~~
I
-V 0 W D)

5.5. Density of states (5.49) assumed in the text.



E,. = W (n-1)
L 50
7 (5.50)
ne = W [~x—2y + 2xy + né-2n + 1]
4y ~
So trom (5.23)
C .0 ~-W [.—X—Zy + 2xy—n2 + 4n~3] as C » oo
eff YN
dy(1-"72) (5.51)

So the non-magnetic state is unstable against ferro-
magnetism for sufficiently large C if

2y » 1 (5.52)
From (5.48) the critical value of C at which ferromagnetism

first occurs 1is given, for one electron/atom by

C — 1 I P - - D¢ — .
Terit 20 [-o ZU‘LZ"‘ﬂj | Ry v2xy (5.53)
"’} | 1'30“2131-7_3(,\3

whilst the value of C at which a metal insulator transition
occurs for one electron per atom is given by

c, =2 ‘f}\ ¢ o2y - 2xy] (5.54)
5 k

So a transition to ferromagnetism will occur before the
metal insulator transition if

y > 4 - 3x (

[$)]
[l
w
~—

Ferromaegnetism is thus favoured by a sharp peak in the

4

density of states, that is by large y and small x.

I
LS

h)

5.3 Dependence of Energy upon Magnetisation

If msp minimisation of (4.21) by varying Vo gives

i by = fM—zm-z/“wo)

— — (5.56)
S.N)V"‘)/AJVQBJ < 6\/0 §C(N__m}!N~/VL)
(N“/A)Erf‘ “\.’"m]‘]‘



Where g(N, m,u,V ) = —-m—-y+ - =y N vhic
here g(N,m,u, o) (N-m-yu VO) (m Vo)(” yo)vo, which

may be written in the form

{/bv°”W~W%) 1 (N—yw7»f2+ [N—me+VJVo -1 “nvujz
Ve (N*VM~/4 va} (“"Vu)(/‘"va}

= - (N*yJ[NjMJC Q(N—Zhu%#+b%)*(NwwHN—ﬁ)C (5.57)

l'\ N‘,«ASE—( T h‘i*m&@

i

h\[ —-/A)Eij (N“m }G;J

\

For one electiron per atom m+u = N and zero
magnetisation m = u this is the situation discussed by
Brinkman and Rice (1970) with solution (4.25), whilst if
m =y but mru #N we obtain the cubic equation (4.34)

3.

digcussed in

I‘ﬂ§

strongly devendent upon the number of electrons per atom

S 4
u\!_l:.
2

0.2 the Stoner parameter was not Ffound to be
in the band, the important requirement for ferromagnetism
being the cexistence of a high density of states at the
Fermi level. In this section we shall investigate the

dependence of the energy on the magnetisatiion in the

such a peak in the density of states for

mry = N, m#£u in which case (5.57) becomes
roor ' ]f )
‘% RO l\w—/pxj = mau ¢ N8Vt mum C
L_(' _‘Io)[/m’\/o) A VAET 1-/!/[ {T“" }’héyf/u‘- g‘l:
(5.58)
- - 2
that is L*ng - [ S+ (- 32} E_—lvg
&% |
| —
v | o (1—52) b (i*SZJC t 2 Sl Vi
L g T
[ 4 -
[-3%)c (5.59)
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where T = - - Y
ne - ™6y +/Ae% )\AJ = Yo /N and 0 < S <

Clearly, as C_ac)ng-al ““SIJ Whilst as :Sz —_— { )V = O

L

2
1t (S -C)) (5.59) reduces to

4w

2 ((?gg —f-c ) g ' (5.60)
2

|

o —
O g

the root of interest beling QO = 1 ( I+ C )
4

To obtain the soluction in the 1imit C - 0 to higher
ordaer we treat the non-dominant terms as known and re-
arvange (5.58) into the recursive form
H—EZJ+(1—32}Z C

1
- ! —
Ly e 3—2 ot 3¢

-

Vo = {1~31J+ “”SZJC

— (1= [V ety s =3 c | v
7§ g 5e
) - - -
+(!~(")c{84(t—§zif__ Vo m2l1-T2)e,
78 <* 8¢ S‘Zg

from which we mav generate better and better
approximations by substituting the previous best
approximation into the right hand side. Thus to first

al

order in C

(5.62)

|
% |

Y = =13 !rh» [1-72)° ¢
L L



Thus, as in the nou-magnetic case, the effect of
correlations is to reduce the number of doubly occupied
atoms in the ground state, but the effectiveucss of

. . . . 2.2 ) .
correlation is reduced by the factor (1—3 )7 . Indeed, as
5 2 . . .
5 + 1 correlation effects become ineffective in
reducing the number of double occupancies. In the other

L . 2.
1init, as we have to third order in (lms )

'7 8':
\5 -

If the correlation cnergy C is strong such that V is

vor ez [l o]
L - 2

P AUR—

smail, then

(5.64)

. 2 ] . e
Thus if X~ # 0 the metal insulator transition occurs when
<
l,
;] - v 2 |
C = -4 e L1+ (!—iJlj (5.65)

-1

which is in agrecwment with (5.28) and (5.28) in the

r

1i 1t5 -~ 0. iIn general, we must solve the cubic equation
Defining H 5 ¢ € & i
(5.31). Deflining quantitie lo )al and 9 DV
R B 72 (-1l 2 ¢ T *
&O-_{;%(\SJM-J &or e
[/rL"? 322 2c

5 (5.66)



and making the substitution {b =2 - %, we obtain the

3
reduced equation x” + pwx+ q = 0 where
p = a, - 1 a 2 q = 2 a 3 1 aja, + 8 (5.67)
1 3 2 - 57 2 3 172 0

The solution then proceeds according to equations (4.37)
to (4.39). In particular, the quantity D in (4.38) which

determines the nature of the solutions is given by

. I 2 2 3
D = 1 | 27 Co 38 ~(122+66_§9_ + 12C0” + 4Co )»6
3 2 5 5
(3)°(128) L c? \ C c? c
!0 2 k ) C ™ ' 2 [N
+{124 c® + 164 C_ + 99 + 40 Co + 8Co S (5.68)
2 2
\ Co Co C C)
[P _ 3 2
~f{16c” + 64C” + 100 C° + 76 C_ + 28 + 4 @)52
K 004 Co'3 Co2 Co ¢
where C_ = -8¢ is positive. IESZ = 0 then all roots
o T
(1-1%)
are real and at least two are equal din agreement with

{(5.65). D is negative over most ol the physical domain,

wnd because of the complexity of its behaviour it is

necessary te follow the roots numerically. The complexity

of tne behaviour of D is illustrated in Table 5.2 which
. e c/ . .

gives the coefficients of powers of CO occurring in D.

alyia [ 2 m

Tabie 3.2 Terms in D.

bPower ot Ch Coefficient Sign
2
4 -16 - Ve
3 2
3 ~64 " - ve
1 2.100/
2 - 10032 + 1243“ ~ve 1ifY <0071 04
2
+ve 1f‘S >lOO/124
2 4 2
1 - 164" - 17 <
L 76‘3 + 16 S ve i & \76/164
s 2 o~
+ ve 1LS >7'o/164
2 )
0 -28} L9934-1123 - ve
-7 _avian 4 56 & -ve lLB > aor < Db
t Py raeg-ee] ,
+ ve if b <S < a
a _ 40+4/34, b = 40-4/34
132 132
A
-2 83“* - 12366+ 2758 + ve

-3 - 4'5 - ve
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We have solved eguartion (5.59) for 50 for the
density of states (5.49) illustrated in figure 5.5 for

which

B <
7 j (5.69)
Erpy =~ LY
1
L= N ez
Lﬂ&_y + /v\ g\{) = "fj LS “DC-ZU‘}ZDC\:}]
if ™ +/"~1:ljzg E ; whilst if S > x

S o = (\J I C ~ — —2¢ ?\
I £ L > (1 2 ‘)+ iZn )&)]

'
N

Z\O "L}‘J'u)
i~ | 5.70
Eey = - 0_—Zmihzw}+hb—m)3] (5.70)
2\1(‘.-—7@)
—_ — : - &
.h/\‘e’i .T/A. E\L = {‘.-—:‘cJ {:F “Ul)

A
=
c
L qu—m)
J

A transition to a ferromagnetic state will occur before

the metal insulator transition, as C is increased, if

(5.55) 1s sotisfied, which occurs in the region of the

p
5
o
0
I
<
5
d

Xy D in figure 5.6. Table 5.3 gives the volume
of C for given » and vy at which a transition to ferro-
magneiism firsi occurs, a blank in the table indicating

-

tharo o metal insulator transition occurs rirst.
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Figure 5.6. Density of states (5.49). In region 2 a transition
to a ferromagnetic state occurs before the metal insulator
transicion as C is increased, whilst in region 1 the metal

insulator transition occurs first.
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/9w at whic ansita
Table 5.3 Value of 2W at which a transition to
ferromagnelism fivst occurs for the density

of states(5.49) %  mtu = 1.

y
X 1 2 4 8
0.1 0.861 0.316 0.140 0.066
0.2 0.900 0.323 0.141 0.066
0.5 0.949 0.333 0.144 0.067
0.4 1.013 0.346 0.147 0.068
0.5 1.098 0.364 0.151 0.069
0.6 1.219 0.389 0.157 0.070
0.7 0.430 0.167 0.073
0.8 0.506 0.186 0.077
0.9 0.237 0.091

t is seen that for a given value of y, the value of

2W at which a ferromagnetic transition first occurs is
lowest for a small value of x, that is if the high density
of states region contains only a small number of states.
The dependsnce of CCRIT on x is, however, rather weak,

particularly for large y, and the most important factor

governing the apwpearance of a ferromagnetic transition is

P

- 1, - e L e A, [ T . s e TR [
Se2r Lu D¢ D ousify of states alb the Ferml level.

Figures 5.7, 5.8, 5.9 and 5.10 show the dependence

of Lhe ground state energyv on the magnetisation for the

cases o¢ = 0.25, vy = 2; x = 0,25, vy =4; x= 0.5, y =2
and x = 0.5, y = 4 respectively. It iz seen that although
-+ £ C/( 57 1. + 4 -
the value of 2W at which the non-magnetic state becomes

unstable, with respect to spin alignment, for a given value
of y, is smallest for a small value of x, the magnetisation

3 and the relative energy of magnetisation (E“'ﬁgo)/go
4

S
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. . . . . Clow . -
increase with incereasing x provided that /2h is large
enough to cause a transition to a partially aligned
state. Values of 5 and (53"E0 )/EO arc given in

Table 5.4, where Eo is the energy of the non-magnetic

state.
Table 5.4 Values of E and (Ifi - E.) /Eo
= B B ) /B
T Bz E)/E
z = 0.25 0.725 0.5 0.5 0.25 0.25 0.5 0.5
y = 2 4 2 4 2 4 2 4
2
0.1 O e 0 O 0 0 0 0
.2 o] 0.26 0 0.51 0 0.005 0 0.025
c.2 0 0.28 0 0.53 0 0.014 0 0.084
0.4 0.25 0.30 0.52 0.56 0.006 0.026 0.025 0.162
C.5 0.29 C.31 0.54 0.58 0.015 0.041 0.080 0.272
1.0 0.35 0.39 0.63 0.67 0.122 0.223 1.301 5.971

The relative energy of magnetisation is seen to be
small in agreement with the observed Curie temperatures
of ¥e, Ni and Co which are well below the melting points
and boiling noinits as scen in Table 5.5.

tTacle 0.5 Ooserved values of the Curie temperaiture

CJ
the melting point TM and the boiling point

T (°1)

B

o Ty Teyr, Ty ey,
Fe 1040 1808 0.58 3160 0.33
Co 1400 1765 0.79 3229 0.43

Ni 631 1726 0.37 30565 0.21
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It is seen in figures 5.7 to 5.10 that the
magnetisation of the lowest energy state is not strongly
dependent upon the strength of the interaction provided
that this is suflicient to cause a transition to a
particlly aligned state, the most important influence
being the density oI states in the region of the Fermi
level. VWhen the ipnteraction becomes strong enough to
ause 2 ferromagnetic transition, the Fermi level is
seen to move up in energy to a position just above the
top of the high density of stales region for majority
spin electrons, and just below for minority spins.

A gimilar behaviour is expected 1in the case of the five
band case of the transition metals with arbitary number
of ziectrons per atom, although intra-atomic exchange
will of ccurse be an additional important factor in
stabirising the ferromagnetic state. In Ni, it is well

known from band structure calculations that there is a

~

sharp peak in the density of states at the Fermi level.

o]

Since the number of holes in the A band of Ni is small,
strong ferromagnetism is possible despite the narrowness
of this peak. In iron, however, with 2.9 holes per atom

H
A

in tha A Trerd, 1% 1= unlikely that a pesk of sufficient
width for strong ferromagnetism will occur at the Fermi
level, and ithis would appear to explain why iron is a
weak ferromagnet despite the strong stabilising influence
0of intra-atomic exchange.

It is intceresting to enquire why Pd and Pt, which
are also known to have a narrow peak in the density of

states at the Fermi level, are non-magnetic, whilst Ni is

a strong ferromagnet. It is possible that this peak is
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significantly lower for Pd and Pt than for Ni. Thus
Pt has a specific heat of 6.5 +0.03 mJ/moleOK2 (Shoemake
and Rayne, 1968) whilst Ni has an electronic specific
heat of 7.02;t0.06mJ/moleOK2 (Rayne and Kemp, 1956). On
the other hand Pd has an electronic specific heat of

s

9.42i0.02mJ/m01e0K2 (Veal and Rayne, 1964) which is larger

<+ 1

than that of Ni. We should, however, compare the specific
heat of Pd and Pt not with that of real {lerromagnetic

i, but with that of the non-magnetic state, since

igures 5.7 to 5.10 show that when the electron inter-
action is stroang enough to form a ferromagnetic state, the
Yermi level moves away from the high density ol states
region,. lodges et al.(1966) have calculated the total
density of states at the Fermi level 1in both the ferro-
magnatic and aon-mognetic state, and multiplying the
experimental value of the electronic specific heat of
ferromagnetic Ni by the ratio of N(EF) for the paramagnetic
and ferromagnetic state, gives a value of about
14.8mJ/moieOK2 suggesting that indeed the density of
states at the Fermi level is larger for Ni than for Pd

and Pt. lHodges et al. (1966) investigated the effect of
spiu orbit coupling on the density of states al the Fermi
level by caleuizting the band structure with the potential
kept at the value appropriate for paramagnetic Ni, but
using the spin orbit coupling strength appropriate for
atomic Ni, Pd and Pt. This procedure permits the
igsolation of the effects of spin orbit interaction from
those rvesulting from the widening of the band in the series
Ni, Pd, Pt. It was Ffound that spin orbit coupling
reduced n\ﬁi) for Pt by onlv 16%, whereas n(Ef) deduced

from the specific heat is down by 50% from that of para-



magnetic nickel. It secems, therefore, that the

decrcecasc ia the helight of this peak in the series Ni,
. |

Pd, Pt arvises from the greater overlap of d states on

neighbouring atoms.

Gt

.4 Discussion and Comparison with Kanamori's theory

We have calculated the Stoner parameter in
Gutzwiller's theory in %5.2. The result is given by
equation (5.35) and is illustrated for several values of
n, the number of electrons per atom in the band, in
figures 5.2 and 5.3 for the rectangular density of states

and for the triangular density of states with 8 = 0

respectively. Tor large C, the Stoner parameter Ceff

is reduced to a value of the order of the bandwidth, whilst

as C~0, C . . +0.
M <o
<L

The dependence of CeFf on C is 1in qualitative
A

agreement with that of the effective interaction, CHF’

between opposite spin electrons in the non-magnetic state,

obtalined in 35.1 by comparing the energy of the non-magnetic

ground state in Gutzwiller's theory with that in the
f o]

Hartree-Fock approximation. As n- 0 the agreement is

quantitatcively good, but as n->1, C..~C .. increases 1in
Hr “eff
macnd Finde (%-y neing orapter than Cefij' Conseguent iy,

the avproximnution of replacing the bare interaction C in

the Stoner criteriomn, derived in the Hartree-YFock approximation,

by the effective interaction in the non-magnetic state

overestimales the leondency to Terromagnetism, particularly

as n > 1.
It is interesting to compare these results with

those of Kanamori (1963), who used Brueckner's theory

of nuclear matiter to treat corrvelation elfects in the limit
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n -0 (Brueckner, 1955, Wada and Brueckner, 1956). In
the simplest Brueckner approximation the total energy
is written as the Hartree-Fock energy with the bare
interaction C replaced by the sum of ladder diagrams.
Gulitski (1958) has shown that this is exact in tlhe
limit u - O. Following Kanamori (1963) therefore, the
cctive interaction between electrons of opposite spin

is, in this limit, given bhy

CKanamori = ‘ C (5.71)
\ T CQ(%‘)E’)
where S{E)E,j:’i Ej (";nfi? H L—ﬁégi¢) (5.72)
9 . .
N \ Eé_"’ “FE,

v

Kanamori (1983) introduced the further approximation of

repiacing g(gvgf) by its value g(o,0) when §=E/ = the

ot

waveve

¢

or of the lowest energy state in the band, and
evaiuated g(o,0) for the non-magnetic state. If this

wavevector is at o point of inversion symmelry

E, . B 7 . X .
k+q = "k~ , (5.70) becoming
g({o,o) = 1 { .. n(kE)dE (5.73)
T EEe TR
[} i
JhoTe Bods poa-usoed drom the bortom of tihe bund. in he

limit a0 this is just the Iilbert transform of the
density of states and the result (5.71) can be understood
in Koster-Sloter theory as the treatment of the
correlation of two «iectrons, neglecting all others, such
that one ol the electrons is assumed to be fixed on an
atom for the purposes of studying the motion of the other.
The problem is then reduced to that of an elecctron moving
in a narrow band and scattered by a large atomic

repulsive potential C (Friedel, 1969).



. . . . 7/
The approximation of using the value of g(g)g )
at the bpand edge will overestimate the tendency to

ferromagnetism since it would be better to use a

/
/

. Vs - . . .
>§_) Tor k and k° on the Fermi surface, for which

the energy denominator in{5.72) would be smaller.

g(k

Further, we have seen that the effective interaction energy
between electrons in the non-magnetic ground state C

overestiautes the Stoner pagameter Cerf especlally as
A

n > i, and 50 the approximation of using the value of

—

C,, .. evaluated in the non-magnetic state will over-
Kanamori

estimate the tendency to ferromagnetism.

Ne)
Kanamori

T + (g(0,0)

(5.74)

luated for the model deunsities of states

jun
n
o)
)
0
}ot
bt

<
o]
<

con sidered in 35.2. Thus for the triangular density of

g

states {(H.36), for example, with 8 = 0.

Gon s - [2W . ¥
2Wg(w,0) = W {o n(E)dE = 21n2 - n* (5.75)
g o
. . C o .
Figure 5.11 shows the variation of CKanqmori with C for
<

various values of n, whilst Figure 5.12 shows the

O

variation of 1 - n(E_.) C .
ot 4 f) Kananori

versus C. Comparing

figures 5.11 and 5.12 with 5.4 and 5.5 the behaviour is

seen to be much the same as in Gutzwiller's approximation,

BUL as ot L Jaaenori's theosy is seen Lo lead toe ferro-
- R ‘ i - C/low & .

magnetism (o nuch smaller values of 2W than in

Gutzwiller's iwodel. This is just what we expect from the

above discussion and is illustioated more clearly in figure

- . . .. . S
5.123 which illustrates the behaviour of C . and
¢ ustrates the ¢ Kanamori °
Gutzwiller . . . -
oTlf " du the limit C » o as a function of n.
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o)
Kanamori

/2

0.6

H 1 ] |
0 0.5 1.0 1.5 C/ow 2
Figure 5.11 o . versus C for the triangular density of
Kanamori
states (5.36)
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Figure 5.13. Variation of CGutzwiller/‘ Pand Cpo o with # in the

limit € =« for the triangular density of states with © = 0.
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Gutrwiller (1965) was able to prove that ny given

by (4.21) is exact in the 1imit C » o inside the Fermi

surface, but could not prove this for E>E It seems,

P
therefore, that Gutzwiller's theory,if not exact, in this
limit, will overestimate the energy of the non-magnetic
state. On the other hand, in the approximation in

which inter-atomic corraelations are neglected, the
ferromagnetic state is an exact clgenstate of the
Hamiltonian. It appears from figure 5.13, therefore,
that Gutzwiller's model offers a better description of
the correlated ground state than does Kanamori's for this

density oi states if n > 0.035.
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Appendix A Extension of Hohenberg-Kohn theorem to the

spin dependent case (Stoddart and March, 1971,
von Barth and Hedin, 1972)

Conbide 5 Hamiltonidn written in second gunantisation as

i Hﬁ ( )%@Mf

a \‘{;(N('{}ME’J e k{/ f’[‘{ [r (/iro/fr (AL

- ——— e

_‘
2 oo’ lr-r/]
~7 A *}—
¢ [ q/
ZHYE L ) e
The expectation value of I in the gzround state is

E=7T+U + Z w]ﬁ J oo (A.2)

where T and U are the expectation values of the kinetic

and intcraction energy and where

o = <Pty (4.3)

(o a VU' L R

Let us assume there exist two different ground StatesEE
-/ 7

and W , corresponding to Homiltonians H and H with
. /. X :

potentials V and V' in (A.1), which both give the same

denolbyio . Owing to the assumed non-degeneracy of the

ground state and the minimal property of the expectation

value ol the Hamiltonian with respect to variations in the

wave function we have the inequality

CPUITO< PR IPD = CPTMIPD G TR -RTTD

CcT

< - !
o<1’ o+ ;_L\f(f(i) _\é_(ij]/gf L)y (A.5)
Similiarly we have

/
< B +

-

wd

N

/ \ ~
VAR (A ffjjff () dbr (A.6)
and adding (A.5) and (A.6) gives

/ s
E+F¥ < E +EB (A.T)

-~ Ry
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which 1s impossible, so the starting assumption that T
Snid . .
and E} are different is false. Thus the giround state
wavefunclion and hence all ground state properties such
as the total energy are functionals of the spin density.
Equation (A.2) assumes its minimum salue for the
correctler(f) it the admissible functions are restrictoed

by the condition

5 A
n = b A ~ (;’l.S
. J OG"(/} \_'. )

where n is the total number of electrons, since a
change inf%ﬁ from the correct spin density corresponds
to a cheuge in the wavefunction frowm the s-ound state
wavefunction, and consequently by the variational

principle to a higher energy.



Appendix B  Calculation of tche density matrix in the

quasi-chemical approximation (Gutzwiller, 1965)
Iu order to give the weighting factor 1}/1n
(4.14) a well defined meaning Gutzwiller (1965) assumed
that configurations with different values of V have

. . . \%
the same average weight apart from the factor ﬂL so that

4 P~ Ny + —T )
m{u,.L\M)JL‘..LV‘)*<YC‘&MF \ \;hf“qs“r@c7

’\nr

I’n--‘m) (B.1)

I

with F“ (i-j) given by (4.16) and where the constant in
i

= L{fkf/b( L-\)

(B.1) is taken as proportional to the number of all

possible configuratiouns of,Lspin electrons with weight
Vv _ o
where q)ls the variational parameter in (4.14), V

is the anumber of doubly occupied sites in hf'.'hhf in
. I .
each conliguration and V¥V the number in }iﬁ" . }m? where

m is the anumber of fspin electrons. Thus the coefficient

of the diagonal density matrix with

Il
bt

h1 N “e . = is taken as

SRS
v v/ (B.2)

Q
fl spin electrons, m—-v and p-v

where p i1s the num
the numb-er of 'dissociated' spinq‘and spin& electrous and
N -m- v +Mis the number of empty lactice sites.
Similarliy il h, # f,,h, = £, ... h_ = T the

arLy 17 e 2 n n

coefficient is taken as

Co i“”}b V“’(‘Mw (N—wwz
v L v MY -2 (13.3)
2 NL'LvM(W )(N . )+ “’Lz\/(lﬁw’)“\!-w‘z
vV MmooV v n-V

/ /



et
[S1]
[N

where CO is assumed to be the same as in (B.2) and is
obtained from the normalisation condition fg =1,

The summations in (B.2) and (B.3) can be
replaced by the largest term corresponding to vo given

by ”Ll

(vvw\/g)(/u-\/bj -

Vo (N-W-/mﬂ/b) (B.4)

since the distributiors are sharply peaked about VO.

Thus, following Gutzwiller (1965) we obtain

ﬁq(%és - FT({:~L) = m

(B.5)

with iﬁ given by (4.17) with similar expressions for

y; spin electrons with m replaced by u.

It is seen from (B.4) that the quantity HLZ
plays the same role as the Boltzmann factor in the law

of mass action and Gutzwiller called this the 'quasi-

h

chemical' approximation. Transforming (B.3) to

reciprocal space gives equation (4.21) for with %f

n
kyp?
being the discontinuity at the Fermi surface, which has

been shown by Gutzwiller (1965) to be exact for E:;Ef

in the 1imit C >,
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