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ABSTRACT 

The screening of a non-transition element impurity in iron is 

studied in Koster-Slater theory with only the 4s electrons being considered 

to participate in the screening, the 3d electrons being assumed to be 

correlated and localised on the iron sites as suggested by saturation 

magnetisation measurements. 	Assuming about one 4s electron per atom in 

pure iron and d positive polarisation of the 4s band, the impurity hyper-

fine field is found to cross from negative to positive values as the 

potential becomes strong enough to form a bound state. 	Such a change in 

sign is observed between Al and Si in iron and soft X-ray emission 

measurements confirm the presence of a bound state on Al in iron. No 

such bound state is seen on Al in Ni and in contrast to iron the screening 

in nickel is dominated by the 3d electrons. 

The effect of electron interactions are studied in the one-band 

model using Gutzwiller's method and are found to give a lower cohesive 

energy than that obtained by Friedel, the difference being greatest for 

a half filled band. 	This extends qualitatively to the transition metals, 

the effect of electron interactions on the itineracy being greatest for a 

half-filled band, and in the middle of the 3d series the elastic moduli, 

melting point and heat of fusion indicate a much weaker bonding than 

expected from Friedel's model, which works well for the 4d and 5d series. 

The Stoner criterion is derived in the single band Gutzwiller 

model and the properties of the Stoner parameter are discussed. 	A 

transition to a partially aligned state is possible if the density of 

states at the Fermi level n(EF) of the uncorrelated non-magnetic state 

is large and for a given value of n(EF), the critical interaction energy 

at which a ferromagnetic transition first occurs decreases with the 

number of states .7,10, within this high density of states region, although 

the results are not strongly dependent upon x , 	particularly for large 

n(E
F
) 	The magnetisation dependence of the ground state energy is 

discussed, and the magnetic moment and magnetisation energy of the lowest 

energy state are found to increase with DC- , provided that the inter-

action strength is sufficient to cause a ferromagnetic transition. Thus 

Ni, with a sharp peak at the Fermi level, is a strong ferromagnet despite 

the narrowness of this peak because of the small number of holes in the 

d band, whilst Fe, with 2.9 holes per atom in the d band, is a weak 

ferromagnet although intra-atomic exchange is a strong stabilising 

influence. 
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INTRODUCTION 

The problem of the nature of the d electrons in the transition 

metals has been a persistent one in the theory of the solid state with 

both the localised and itinerant models having had considerable success. 

Some of the experimental evidence which has been taken in support of 

one or the other of these models is discussed in 	1.1. In particular 

it appears that in contrast to nickel, which behaves in a way characteristic 

of an itinerant ferromagnet, iron behaves as if there are two spins 

localised on the atom coupled ferromagnetically by Hund's rule exchange. 

Much has been learnt about the nature of electron interactions in the 

transition metals by studying the structure of an isolated transition 

metal atom in a metal such as Cu or Au, but the difficulty in treating 

the electronic structure of a transition metal such as iron arises from 

the delicate balance between the intra-atomic interaction and the 

hopping integral, which determines the bandwidth, and can only be 

studied in the pure matrix. 	In 	1.5 we discuss experiments on 

alloys of iron and nickel with non-transition metal impurities and 

calculate the change in saturation magnetisation with impurity 

concentration in a simple charge screening model. 	It is found that 

whilst in Ni the screening is dominated by the 3d electrons, in Fe the 

screening of a non-transition element impurity is largely by the 4s 

electrons. 	In Chapter 2 we present a simple model of the screening 

of a non-transition element impurity in iron in which only the part 

played by the 4s electrons in the screening is considered, the 3d 

electrons being considered to be correlated and localised on the iron 

sites. 	This model, which is capable of treating different spatial 

wavefunctions for T and ,1)  electrons, represents an extension of 

the one-band model of Koster and Slater (1954) to the spin polarised 

case. 	The model is used to calculate the hyperfine field at the 
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impurity nucleus and, assuming a positive polarisation of the 4s 

electrons and about one 4s electron per atom in the pure matrix, 

the impurity hyperfine field is found to cross from negative to 

positive values as the impurity potential becomes strong enough to 

form a bound state at the bottom of the band. 	The results are found 

to be in good qualitative agreement with experiment, the hyperfine 

field crossing from negative to positive values between Al and Si, 

Ga and Ge, Sn and Sb, and between T1 and Pb in iron in the 3rd, 4th, 

5th and 6th periods respectively, and are compared with those of 

Daniel and Friedel (1963) who represented the 4s electrons by a spin 

polarised free electron gas. 	The interest of examining the electronic 

structure of impurities in iron in the region of the cross-over is 

pointed out, and in Chapter 3 soft X-ray emission spectra of such 

alloys are discussed. 	The covalent admixture between the impurity 

state and neighbouring 3d states is considered in 	3.5 and a simple 

explanation of the saturation magnetisation measurements of Aldred on 

alloys of iron with non-transition element impurities is proposed. 

In Chapter 4 the effect of electron interactions on the cohesion 

in the one band model is investigated using Gutzwiller's model, and is 

found to give a lower cohesive energy than that obtained by Friedel (1969), 

who neglected the energy cost of intra-atomic charge fluctuations, the 

difference being greatest for a half filled band. 	The applicability 

of the results to the case of five d bands is discussed in 	4.4 

with particular reference to the difference in electronic structure 

between iron and nickel. 	In 	4.6 we discuss the implications of 

these results for the surface properties of the transition metals, and 

the role of correlation in the catalytic properties of the 3d series. 

Chapter 5 discusses the magnetic properties of the single band 

Gutzwiller model. 	A partially aligned state becomes stable relative 

to the non-magnetic state if 1 	CEFF 
 n(EF) < 0, where n(EF) is 

the density of statesat the Fermi level, and the properties of CEFF 
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are discussed. 	As the number of electrons (holes) per atom in the 

band 	0, C
EFF 

behaves with the bare interaction C in a 

qualitatively similar way to the effective interaction CHF  between 

opposite spin electrons in the non-magnetic ground state. 	As 	1, 

however, CHF  - C
EFF 

is found to increase in magnitude with C
HF 

being greater than CEFF. 	We therefore expect that Kanamori's theory, 

which replaces the Stoner parameter CEFF  with the effective interaction 

between opposite spin electrons in the non-magnetic ground state, 

evaluated in the ladder approximation, would overestimate the tendency 

to ferromagnetism, particularly in the limit n --> 1. 	This is shown 

to be the case and for the triangular density of states, for example, 

Gutzwiller's model is found to offer a better description of the 

correlated ground state if IT 	0.035. 	The dependence of the ground 

state energy on the magnetisation is discussed and it is found that 

the important criterion for ferromagnetism is the presence of a region 

of high density of states at the Fermi level. 	For a given height of 

this peak 	/ts.) 	, where Z(.3 is the bandwidth, the critical values 

of the interaction strength at which a transition to a partially aligned 

state occurs decreases as the number of states within this peak DC 

decreases, but the dependence upon cc is not strong, particularly 

for large VI . 	On the other hand, it is found that the magnetisation 

and energy of magnetisation of the lowest energy state is greatest for 

a large value of oc provided that the interaction strength is 

sufficient to cause a transition to ferromagnetism. 	It is argued 

that a similar behaviour is to be expected in the case of the transition 

metals with five d bands, although intra-atomic exchange will, of 

course, be an additional important factor in stabilising the ferromagnetic 

state. 	In Ni it is well known from band structure calculations that 

there is a sharp peak in the density of states at the Fermi level, and 

since the number of holes in the d band of Ni is small, strong 
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ferromagnetism 	is 	possible despite the narrowness of this peak. 

In iron, however, with 2.9 holes per atom in the d band, it is 

unlikely that a peak of sufficient width will occur and iron is a 

weak ferromagnet, despite the strong stabilising influence of intra- 

atomic exchange. 	Finally the absence of ferromagnetism in Pd 

and Pt is discussed. 

Some of the work in this thesis has been presented in the 

following: 

C.M. Sayers, N.H. March, A. Dev, D.J. Fabian and L.M. Watson (1975). 

J.Phys.F.5, L207. 

C.M. Sayers, N.H. March, A. Dev, D.J. Fabian and L.M. Watson (1976), 

Paper presented at the 13th Annual Solid 

State Physics Conference (Manchester). 

C.M. Sayers (1976), J.Phys.F. 6, 1939. 

C.M. Sayers (1976), To be published in J.Phys.F. 

C.N. Sayers, N.H. March, D.J. Fabian and L.M. Watson (1976). To be 

submitted to J.Phys.F. 

J. Friedel and C.M. Sayers (1976). To be submitted to J.Physique. 
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CHAPTER I 

EVIDENCE FOR CORRELATION EFFECTS IN THE TRANSITION METALS  

1.1 	Introduction and Experimental Survey  

When compared with s and p states of about the same energy, 

atomic d states are rather tightly bound around the nucleus due to 

the term t ( t + 1) /r2  in the radial Schrodinger equation. 

Consequently, when the atoms come together to form the solid, the s and 

p states overlap strongly and form a broad band, but the d states are 

not strongly perturbed by the lattice potential and do not overlap strongly 

with d states on neighbouring atoms. 	This is particularly true of 

the 3d series, there being (n - t - 1) spherical nodal surfaces centred 

at the origin, and it is not clear whether a description of the electronic 

structure based on localised atomic orbitals, as used for the even more 

localised f states in the rare earth metals, or a molecular orbital 

description, as used for simple metals, would be the more appropriate. 

Indeed, this has been a question of considerable controversy with much 

experimental information in support of both these points of view (Herring, 1966) 

1.1.1 	Evidence in favour of a localised model  

(i) The temperature dependence of the initial susceptibility )  Xo 2 
- 1r 

of iron and nickel above the Curie  temperature T
c 

varies as A(T-T
c
) 

with 	= 1.37 ± 0.04 for iron (Noakes and Arrot, 1964) and y = 1.35 ± 0.02 

for nickel (Kouvel and Fisher, 1964) in excellent agreement with the 

4/3 power relation obtained from the exact series for the Heisenberg model. 

(ii) The energy distribution of neutrons critically scattered from 

iron is found to be several times smaller than that expected on the basis 

of a simple itinerant model, but close to that expected from a localised 

model (Erikson and Jacrot, 1960). 
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(iii) The magnetic entropy of iron is about k In 3 per atom 

(Hofmann et al. 1956, Mott and Stevens 1957) indicating that there are 

two spins per atom coupled by intra-atomic exchange, which remain 

coupled well above the Curie point despite becoming decoupled from the 

moments on neighbouring iron atoms. 

(iv) Whilst the resistivity of nickel above Tc  behaves very much like 

that of palladium with a curvature satisfactorily explained by an 

itinerant model, the resistivity of iron varies linearly with a strong 

temperature independent contribution, a similar behaviour being observed 

in the magnetic rare earth metals (White and Woods 1958, Coles 1958). 

This suggests that spin disorder plays a different role in iron than in 

nickel, and a strong spin disorder term occurs also in the resistivity 

of manganese (White and Woods 1958). 

1.1.2 	Evidence in favour of an itinerant model  

(i) Whilst the saturation moment of iron is 2.2 pB/atom in agreement 

with there being two spins per atom coupled ferromagnetically by Hund's 

rule exchange, and in agreement with the value of k In 3 for the magnetic 

entropy, the saturation moment of Ni is 0.61 FB/atom and that of Co 

1.72pB/atom. 	This indicates that in Ni and Co some, at least, of 

the d electrons are itinerant. 

(ii) The electronic specific heat of the transition metals (Cheng et al. 

1960) is five to ten times greater than that of the simple metals 

indicating a high density of states at the Fermi energy, and strongly 

suggesting the existence of a Fermi surface for d electrons. 

(iii) Experimental studies of the de Hans-van Alphen effect (Joseph and 

Thorsen 1963, Gold et al. 1971, Baraff 1973) and the magnetoresistance 

(Coleman et al. 1973, Angadi et al. 1974) clearly demonstrate the existence 

of a Fermi surface for d electrons in iron and nickel, and are in 

excellent agreement with the band structure calculations of Callaway and 

co-workers (Tawil and Callaway 1973, Wang and Callaway 1974). 



11 

(iv) 	Soft X-ray emission spectroscopy 	(SXS) and X-ray photoemission 

spectroscopy (XPS) give d electron bandwidths similar to those obtained 

in band structure calculations. 

There is therefore considerable evidence that the d electrons 

in the transition metals are collective, but it is clear that, in the 

3d series at least, correlation effects are important in determining the 

electronic structure. 	We note in particular the striking difference 

between iron and nickel. 	Thus, whilst nickel behaves very much like an 

itinerant ferromagnet, iron has many of the properties of a system of 

localised spins. 	This difference is perhaps surprising at first sight 

since the nuclear charge of nickel is greater than that of iron, so we 

would expect the 3d shell in Ni to be more tightly bound around the 

nucleus and consequently would expect electron interactions to be stronger 

than in iron. 	We might therefore expect correlation effects to be more 

important in nickel than in iron, in disagreement with experiment. 	This 

important fact will be discussed in Chapter 4. 

1.2 	Density Functional Theory  

Despite the importance of correlations in the electronic structure 

of the transition metals there is an exact treatment of the ground state 

energy in a method in which the many-body system is characterised by the 

electron density. 	This allows the inclusion of correlation effects, 

while retaining the conceptual and computational simplicity of the band 

picture. 	This density functional approach is based on two fundamental 

theorems proved by Hohenberg and Kohn (1964) namely that the ground state 

wavefunction is a unique functional of the density, and that there exists 

a ground state energy functional which is stationary with respect to 

variations in the charge density. 	This was extended to the spin 

dependent case by Stoddart and March (1971) and by von Barth and Hedin 

(1972), the proof of the theorems being given in Appendix A. 
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If the electrons move in an external potential V
ERT 

(r) we 

write the total energy in density functional language as 

E 	 T5 [101 ] f- TS y 4, 1 + 	 (r')  
1! - ril 

	

[VEIT (r)ft (c) 4 i xT (51 4 (-) 	Exc Er? C41f  

where Ts 	I 	is the kinetic energy of a non-interacting gas of 

density /0 and E x c is the exchange and correlation contribution to the 

total energy. 	We require E (,tl!y to be stationary with respect 

to arbitrary variations in rt and (),4 subject to the conservation of 

the total number of electrons. 	The spin density is then given by 

(1.2) 

Occ S TAT  s 

where the functions ¢
bd

are solutions of the Schrodinger-like equation 

Z V 2 	r r 	utr i 	 „v c7- 

yrt 	(r-ril 

( r ) 	= 	• 	(r) 
6cr 	 4a' La 

(1.3) 

  

where \l
x 
c- (r) = Uxt/Sea,(r) is a functional of (Dt and t)4 . 

Equations (1.2) and (1.3) are in principle exact. 	It is clear however 

that to obtain the functional form of V Xc, 
(r) is equivalent to solving 

the many body problem and in practice approximations for the exchange 

and correlation potential are necessary. 	In most of the applications 

of the density functional scheme a local dependence on the density has 

been assumed. 	This approximation is exact in the limit of slow and weak 

spatial variations of the spin density. 	Various attempts have been 

suggested to improve the local density approximation such as the use of 

gradient corrections. 	It is doubtful, however, whether gradient 

corrections can be viewed as improvements in practical calculations. 

Thus the inclusion of the two lowest terms gives wrong corrections for 

spatial variations with characteristic wave vectors of the order or 
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larger than the Fermi wavevector (Geldart et al. 1972) and therefore 

give no improvement when the local density approximation certainly needs 

to be corrected. 	The eio- in (1.3) are Lagrange multipliers and 

should not be confused with the quasi-particle energies C4c, which must 
be obtained from the Dyson equation 

+ 1 E ( r K l . E r 	) (), 	(r/idtr 

_•- kzV z  i Vc7.r 
 (

N i t ,c /  r (rt)  
zvn. 	 1r _ E ll _ 

or' — J t.- ) Cyd cr 	it cr — 
	/ 	

= E  6 a-   ker - 
I 	) 

	 (1.4) 

where
cr-  

is the spin dependent non-local quasi particle self energy 

(Hedin and Lundquist, 1969). 	Thus although equation (1.1) offers in 

principle an exact treatment of the ground state energy, the Ccs  and 

in (1.3) do not represent the quasi particle energies and wave-

functions and little can be learnt about the nature of the wavefunction 

in the presence of electron interactions from these calculations. There 

have therefore been several semi-empirical discussions of the nature of 

the wavefunctions and density of states in a strongly correlated electron 

system, particularly with reference to iron, and these usually assume 

that some, at least, of the electrons are localised in nature. 

1.3 	Theories with combined localised and itinerant character  

(i) 
	

Pauling (1938) on the basis of a study of the behaviour of the 

melting points, compressibilities and atomic volumes of the transition 

metals was the first to recognise the importance of the d electrons 

in the bonding, but pointed out that in the middle right of the 3d series 

the d electrons do not contribute as fully as might be expected to the 

binding. 	To explain this, Pauling assumed that the five d -orbitals 

can be partitionedinto 2.44 non-bonding 	or atomic like d-orbitals, and 

2.56 bonding d-orbitals which, together with one s and three p orbitals 

hybridise to give 6.56 bonding hybrid (spd) orbitals. 	The behaviour of 

the physical properties within the 3d series was then taken to indicate 
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that on passing from potassium to vanadium the number of bonding electrons 

per atom increases from one to five, after which the electrons begin to 

enter the atomic, or localised, d orbitals where they retain parallel 

spin as long as possible. 	Thus Cr, Mn, Fe, Co and Ni are assumed 

to have 5.78 bonding electrons and 0.22, 1.22, 2.22, 3.22 and 4.22 atomic 

like d electrons respectively. 

(ii) Mott and Stevens (1957) and Bates and Stevens (1961) suggested 

that both localised and itinerant electrons may be simultaneously present 

in iron because of the anisotropy 	of the d orbitals. 	The effect 

of a cubic field is to split the five fold degeneracy of the d electrons 

into a triply degenerate set, labelled T2g, and a doubly degenerate 

set, labelled Eg. Mott and Stevens assumed that the T
2g 

orbitals, which 

are directed towards nearest neighbours in the 	body centred cubic 

structure, are itinerant but that the distance between next nearest neighbours 

in iron was greater than the critical distance at which a Mott transition 

occurs so that the Eg states must be described by 'non-conducting' wave- 

functions. 	The three T
2g 

functions, possibly much hybridised with the 

4sp electrons, and perhaps with radii greatly different from the atomic 

Eg states, were assumed to form a set of wavefunctions of the Bloch type 

which are strongly bonding, and it was assumed that there are two electrons 

per atom in the non-conducting Eg states coupled by intra-atomic exchange 

giving a moment of 2.0 yiyatom, the difference between this and the 

saturation moment of 2.2 
i  B  being due to a small polarisation of the 

itinerant d electrons. 

(iii) Goodenough (1960, 1963) emphasised the two sublattice nature of 

the body centred cubic structure of iron in which near neighbour 

directed orbitals form a band in which the bonding states, corresponding 

to antiparallel spin correlations within the bonds, are more stable than 

the antibonding states with parallel spin correlations. 	He suggested 

that any inherent spin correlation between nearest neighbours, whether 
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it be antiferromagnetic or ferromagnetic, forces the next nearest 

neighbour correlations to be ferromagnetic because intra-atomic 

exchange interactions and nearest neighbour spin correlations are 

both assumed to be stronger than next nearest neighbour correlations. 

As a result, the Eg electrons may be assumed to be localised and to 

behave as if they obey Hund's rule. 

(iv) Van der Woude and Sawatzky (1974), in a recent review, have 

analysed the hyperfine field at iron sites in iron based alloys on 

the basis of a modified Zener-Vonsovskii model and have concluded that 

the 3d magnetic moments in iron are highly localised and are coupled 

ferromagnetically by a small percentage of itinerant d electrons. 

Stearns (1973, 1976) has proposed a similar model and from a study 

of the concentration dependence of the hyperfine field at successive 

neighbour shells to the impurity has concluded that at most 4% of the 

3d electrons in iron are itinerant. 

(v) Edwards (1970) and Sakoh and Edwards (1975) proposed that a 

Hubbard splitting occurs in iron, the upper Hubbard band containing 

two states per atom, and that the two holes per atom in this band may be 

treated as localised spins coupled by Hunds' rule. 	A model Hamiltonian 

was suggested in which the localised spins interact with one another 

via a superexchange term, and with the remaining 0.9 3d holes per 

atom in the lower Hubbard band which are taken as itinerant. 	This 

model was found to offer a reasonable description of the temperature 

dependence of the spontaneous magnetisation and spin paramagnetic 

susceptibility of iron. 

From the nature of the assumptions involved, these theories should 

he regarded as interpretations rather than as explanations of the 

experimental facts. 	These models attempt to explain why the electrons 

in iron sometimes behave as localised and sometimes as itinerant by 

assuming the presence of both itinerant electrons and localised electrons 
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or holes. 	With the exception of the theory of Edwards (1970) and 

Sakoh and Edwards (1974), which assumes a Hubbard splitting with the 

localised holes being in the upper Hubbard band, all of these theories 

assume that the localised electrons or holes lie within the energy 

range occupied by the itinerant electrons. 	This seems most unreasonable 

since a localised state lying within an itinerant band must surely 

hybridise with this band and broaden in energy to become a resonance 

with a finite lifetime. 	Rather than divide the electrons into two 

groups, the electrons in one having localised wavefunctions, the 

electrons in the other having Bloch character, it would appear more 

reasonable that the many body wavefunctions itself should lie between 

these two extremes. 	Such a situation is known to be the case in the 

simplest many electron, many centre problem, namely the Hydrogen 

molecule which we shall now discuss. 

1.4 	Correlation in the Hydrogen Molecule  

The first treatment of the electronic structure of the hydrogen 

molecule was by Heitler and London (1927) who recognised that when the 

atoms are well separated the ground state would correspond to the 

solution with one electron on each atom. 	If
a 
 and 0 	are hydrogen 

wavefunctions for nucleus a and b, the space wavefunction 

corresponding to the solution of lowest energyin this approximation is 

LJ (r i )1:2. ) 	Z/ 6  (z) t 	6  11) 

At the same time as Heitlerand London suggested this approximation 

another treatment, the molecular orbital approach, was developed by 

Hund (1928) and by Mulliken (1928). 	In this method an electron is 

assumed to belong equally to the two nuclei, the space wavefunction 

corresponding to the solution of lowest energy being 

(1.5) 
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( 	

) 	Ecct (i)1(1 6  (2) 1 06  (i) 4 c, ( 	) 

L 	(ii l c,(2) + 1' 6  (U 16  (21 

Here the first term is the HeitlerLondon wavefunction (1.5) whilst 

the second represents the ionic configuration H+  + H. 	This wave- 

function clearly breaks down as the molecule is pulled apart, since 

at large interatomic distances the Coulomb repulsion would prevent 

two electrons coming together on the same atom to form the H 	ion. 

Further, it is clear that even at the equilibrium interatomic distance 

electron-electron interactions are not adequately introduced since 

according to this wavefunction the probability of a given electron 

being in a given atom is independent of whether another electron of 

opposite spin is already there. 	Coulson and Fisher (1949) considered 

the wavefunction 

i r,) = 	 Is(2)40t(i) 4 (21] 

A [4 c, 	lb (1) lb ( z)] 

(1.6) 

(1.7) 

and found the value of p giving the lowest energy as a function of the 

interatomic spacing R . 	At infinite distance p is of course zero, 

and the Heitler-London wavefunction is exact. 	As R decreases p was 

found to increase to a maximum value of about 0.24, a value which it 

takes at about the equilibrium interatomic distance. 	This is much 

smaller than the value ki = 1 corresponding to the molecular orbital 

wavefunction which therefore greatly overestimates the ionic contribution. 

In order to treat the effect of electron interactions on the 

wavefunction in the transition metals it seems natural, in view of the 

simplicity of the above scheme, to use a wavefunction in which the 

number of multiply occupied atoms in the ground state is used as a 
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varational parameter. 	Such a method was proposed by Gutzwiller 

(1963, 1965) and we shall use this in Chapters 4 and 5. 

Hopefully it should be possible to obtain information about the 

degree of polarity in the ground state wavefunction from experiment. 

Perhaps the most promising way of doing so is to study the response 

of the d electrons to the presence of a substitutional impurity. 

1.5 	Correlation Effects in the screening of non-transition  

element impurities in iron and nickel.  

Much can be learnt about the nature of the d electrons, localised 

versus itinerant, by examining their response to a substitutional 

impurity. 	If the d electrons were found to play no part in the 

screening of the impurity excess charge, a simple band picture would 

apparently not be sufficient to treat the electronic structure, whilst 

if they behave in a Thomas-Fermi manner a description of the electrons 

as a system of localised spins would be most inappropriate. 	The 

electronic structure of a transition element impurity in iron or nickel 

would, however, be determined largely by the balance between the electron-

electron interactions on the impurity site and the overlap with 

neighbouring orbitals, and the nature of the response would therefore 

be rather dependent upon the impurity atom chosen. 	A non-transition 

element impurity would however approximate more closely to a simple 

perturbation, the d orbitals lying well above or below the d band 

of the host. 

In the presence of an impurity such as Al or Si in iron or 

nickel let us define wavefunctions 	/5 1:6 (r) with energy 	E jo_ 

derived from the d band wavefunctions of the pure metal by the action 

of a potential which repels the d level at the impurity site well 

above the d band where it no longer interacts with the system. 	Let 

us then consider the response of the system to the potential 
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(r" 	= VI 	) - 2 (r 	- V3 (t- ) 	1/ /t, 	 (1.8) 

where V
1 
 (r) is the potential of the impurity core, V

2 
 (v- ) the 

potential of the transition metal atom core originally present at the 

impurity site, V3(() the potential of the partially filled 	d shell 

removed or filled, and e-
4 
 (r) the potential due to the screening 

charge at the impurity site which should be obtained self-consistently. 

It is convenient to work in terms of the canonical density matrix 

Cocr  (r 1  r /) p 	where p = 1 /kT, for spin cr electrons, 

which is built up from the
tor 

 and the E 	as follows 

Coe (f j  r ti  p) = 	r (r] 
co- 
	 (1.9) 

Following March and Murray (1961) we define the canonical density 

matrix in the presence of the impurity potential (1.8) by analogy 

 

.r< 
Ir ) 

io- 

 

(1.10 
CI i  p ) 

  

  

where is an eigenfunction of the perturbed Hamiltonian 

H 	with energy E cr. . 	) 	satisfies the Bloch equation 

He-C r  ( r j  r- f )  p ) = -a 	Ccr  (f )11 ) 1.3) 

ac 

subject to the initial condition C
er 
 (r)  ( fi p) , S(r- ri) 	. 	A solution 

 

of (1.11) suitable for iteration is 

C0- (r r 1 ) 13) 	= 	Coo-- ( 	) p)  
(1.12 

Ar 	13  cA p C 	r 	) V (r C (r. 	p 
°T.  -1-1) 313 1 	0-  -I 
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Thus, using the orthonormality of the 

clUr- 	( 	. 	I • d. cr 

 

(1.13, 

the response of the d electrons is, to first order in V6r  (r J 

 

(kr C 	j  3 ) ocr 	) 

 

(1.14: 

CAif  C 	 ) 	 pi Vcr  

To obtain the expression for the spin density we introduce the Dirac density 

matrix 

e )cr 
(1.15; 

and utilise the relationship between C and (3  which was established 

by March and Murray (1960) 

Ca, (1,-  r. (3  pi 3 
004.= 

(510—  
P E (1.16: 

(
rif/j  E ) 	is seen to be the inverse Laplace transform of 

1 C (e- 	) 	and may be written in the form 

  

4 C 

sa 

PE 

	 Ca,,(r i rti  dtp 

 

  

(1.1T 

L 

  

  

where oc is chosen such that the integral has no poles in the part 

of the complex plane for which R(F ) 	. 	Substituting gives 
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(Oa- (1/' 	r 	6 ) 

(1.18; 

dL.1 	coo_ 
()E. 

(ir 	r _11- 1 J 

and defining 

(f +,704 	P— =rt —rb 
	

(1.19 

Vt = 	V
1' 

1-V
4 	

V_ = Vt - 

we obtain 

cA, Airy° ) E 1 
i cke- 	p° tr El v ft- J 

(1.20 

v (,!
i)

Gl 	i  

6 E 

C. I f
r 

4 -J 

(1.21 

1 J V_ (P:1 ) 

So the change in magnetic moment of the system due to the impurity 

potential V6r — (r) is just 

PScreening 

2 

(1.22 

2 

ut,- 
E 

c:(rIC)VLd.t0°({ ) 

  

   



i Tc..)TrA L \tA 
(1.23 

where N I 	= (i_cl

N/

)
1-10s7 + c N SOLEEN (1.24 
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to first order in V 
0— 
 (rj 	to which we must add the change in 

moment due to the filling or removal of the partially filled d shell 

at the impurity site - 
HOST' 

 where 
uHOST 

 is the magnetic moment 
/  

per atom in the pure matrix. 

Consider now a ferromagnetic transition element into which a 

concentration c of impurity atoms has been placed. 	We shall assume 

that the impurities are non-interacting and have zero moment. 	This 

assumption is supported by the neutron scattering measurements of 

Holden, Comly and Low (1964) on dilute alloys of Al, Si, Go., Ge, Sn 

and Sb in iron which indicate the absence of a local moment on the 

impurity site within experimental error. 	Thus the total moment of 

the perturbed system is given by 

where ) 
u Screening = 	A' 	if ) EC ) /V 13 	

is given to 

first order in V0  (r) 	by (1.22). 	The rate of change of mean 

magnetic moment with impurity concentration c is then 

Tt-; 	— / Hos-I- 
Q( c 

+ 
OCRL;C- NIWG- 

(1.25 

Equation (1.22) has the advantage of providing a simple and under- 

standable picture of u
/ Screening 	

The second term results in a 

change in moment upon alloying because the density of states at the 

Fermi level in a spin polarised electron gas is different for T and 1 

spins. 	Thus in Ni the 	spin 3d band is full so 

= 0. 	Mott (1935) 

 



(1.27 — 
I 	

v-i 
C OK b 	6 
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suggested that because of the high density of states in the d band 

the screening would be dominated by the d electrons. 	Thus neglecting 

the first term in (1.22) 

) A A 
IA 16_ 	E F 	ri Cow) ) 

(1.26 

by Friedel's rule, where / InP is the valence of the impurity atom 

and!caN is the number of electrons per atom in the valence band 

of pure Ni. 	This gives 

In Ni there are ten electrons per atom and the 1 spin 3d band 

is filled. 	Consequently there are the same number of electrons in 

the 4s band as there are holes in the jj spin 3d band giving the 

simple relation 

di (TA 

cA c 

_ 	1 I I-I 	ij 6 (1.28 

It should be noted that this relationship is valid only for nickel 

because the number of electrons in the 4s band is equal to the 

number of holes in the 3d 	band and is not applicable to other 

strong ferromagnets as has been sometimes assumed. 	Table 1.1 compares 

the values of af /u LA c observed by Crangle and Martin (1959) for 

several non-transition element impurities in nickel with the prediction 

based on Equation (1.28). 
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TABLE 1.1 

icAC 	for 	Ni based alloys in FR/Atom 

Solute Valence Theory 	Experiment 

Cu 1 -1.0 -1.14 

Zn 2 -2.0 -2.11 

Al 3 -3.0 -2.80 

Si 4 -4.0 -3.77 

Ge 4 -4.0 -3.70 

Sn 4 -4.0 -4.22 

Sb 5 -5.0 -5.31 

The agreement is seen to be excellent. 	It thus seems that the 

screening of non-transition element impurities in nickel is dominated 

by the 3d electrons which appear to be behaving in a way 

characteristic of an itinerant ferromagnet. 	This conclusion is entirely 

consistent with the experimental data presented in Table 1.1. 	Thus for 

nickel at least the 3d electrons must be treated in a model which 

is itinerant by nature and we expect normal band structure calculations 

to be applicable. 

The first term in (1.22) is entirely new and arises from the 

exchange interaction of the d electrons with the absent magnetic 

moment at the impurity site. 	If the moment arises in part from near 

neighbour interactions this will lead to a depolarisation at sites 

neighbouring the impurity. 	Some evidence of the importance of this 

term is seen in Table (1.1) where the experimental value is frequently 

greater in magnitude than the theoretical prediction which, if we only 

took into account the second term in (1.22), would mean that more 

electrons than are available enter the d band. 	Nevertheless the 

strong valence dependence of 9{1T /t c for non-transition element 
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impurities indicates that the 3d electrons in Ni are essentially 

itinerant in nature. 

That such a conclusion would be wrong for iron is seen in 

Table 1.2 which gives the c4p,A c  values for iron based alloys obtained 

by Aldred (1968). 

TABLE 1.2  

dft 	c for Fe based alloys in 4[3/Atom 

Groups  

Period 	1 	2 	3 	4 	5 

2 	Be 
-2.26 

3 	 Al 	Si 

	

-2.27 	-2.28 

4 	Cu 	Zn 	Ga 	Ge 	As 
-2.00 	-2.01 	-1.43 	-1.36 	-1.40 

5 	 Sn 	Sb 

	

-0.97 	-0.97 

6 	Au 
-1.09 

Al and Si are seen to obey the simple dilution model 

= -2.2/A 0  , a result first obtained by Fallot (1936), 

Parsons et al (1958) and Arrot and Sato (1959). 	In this model the 

impurities are assumed to carry no moment and not to disturb the moments 

on neighbouring iron atoms. 	This model is supported by the neutron 

scattering measurements of Holden et al (1967) who found no moment 

on Al, Si, Ga, Ge, Sn and Sb impurities in iron within experimental 

error. 	The measurements of Aldred (1966, 1968) summarised in Table 1.2 

show, however, that the dilution model is only obeyed by those impurities 

with low atomic number, all others producing a small increase in the 

moment on neighbouring iron atoms. 	This is supported by the neutron 

scattering measurements (Holden et al 1967) which reveal that iron 
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0 
atoms within 4-5 A of the impurity have moments which are increased 

by 	1-2% over the value for pure iron. 	We see from Table 1.2 

however that this increase depends only on the period of the impurity 

within groups 3 to 5, there being no dependence on the valence, 

indicating that the magnetic 3d electrons do not contribute to the 

screening of a non-transition element impurity. 	Furthermore this 

increase in moment is seen not to arise from the first term in (1.22) 

as this would imply an antiferromagnetic nearest neighbour coupling. 

We conclude therefore that the C)Vk /CAC values of iron based alloys 

can not be explained by the term u 	in (1.25) as this 
f- Screening 

would depend strongly on the impurity valence. 	There must therefore 

be a further contribution to c407  /cif c which we have not taken into 

account, and we shall discuss one such in Chapter 3. 

This conclusion, that the 3d electrons in iron are not involved 

in the screening of a non-transition element impurity, is further 

supported by the specific heat measurements of Beck and co-workers 

(Gupta et al 1964, Beck 1964, Cheng et al 1964) on alloys of iron 

with Al, Si, Ge and Sb, which cannot be described in terms of the 

filling of a 'rigid' or a 'semi-rigid' d band by the excess valence 

electrons of the impurity. 	In addition, optical absorption measurements, 

which we shall discuss in Chapter 3, reveal that in Fe Al alloys 

the Fermi level does not change on alloying whilst in Ni Al alloys 

Lhe absorption edge appears to move linearly upwards in energy with 

increasing Al content. 	Thus, in contrast to nickel, in which the 

screening of a non-transition element impurity is dominated by the 

3d electrons, in iron the 3d electrons are ineffective in the 

screening of such impurities, which is largely by the 4s electrons. 

It is reasonable, therefore, to treat the screening of a non-transition 

element impurity in iron by a model in which the iron 3d electrons 

are assumed to be strongly correlated and localised on the iron sites, 

and that only the 4s electrons contribute to the screening. 
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CHAPTER II 

Screening of non-transition element impurities in 

iron and the impurity hyperfine field 

2.1 	The Koster-Slater Model  

We concluded in Chapter I that whilst in nickel the screening 

of a non-transition element impurity is dominated by the 3d electrons, 

in iron the 3d electrons are ineffective in the screening which is 

largely by the 4s electrons. 	We shall present in this chapter a 

simple model of the screening of a non-transition element impurity in 

iron in which only the 4s electrons are considered to take part in 

the screening, the 3d electrons being assumed to be highly correlated 

and localised on the iron sites. 	We shall assume further that s-d 

hybridisation effects may be neglected and shall discuss their effect 

in Chapter 3. 

With these assumptions we may use the one-band model of Koster 

and Slater (Koster and Slater 1954, Wolff 1961, Clogston 1962) to treat 

the screening of the impurity excess charge by the 4s electrons. 	We 

write the unperturbed wavefunctions 0 cr  (r) 	with wavevector 4  

and spin cr- 	in terms of the Wannier functions 	Uo- (e-  K 

centred on the i th site as 

1z 	
(r ) = 

(15  

i, 	. r< • 

-e, 	 r - (2.1) 

and, following Koster and Slater (1954) write the scattered wavefunction 

by analogy as 

Uk 	(r) = 	Cor  (12 j 	) U3 	(r - R; ) 
0-  - 

which is related to 	
k 

gt 	via the integral Schrodinger equation 

(2.2) 
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I 	cAr-' G- (r-  1-E)V °-  
•■• 	Gr' 	 IhP cr 

(r 1 J 	dt it (2.3) 

  

0- 
where V

IMP 
 is the impurity potential and the Green function for the 

unperturbed lattice G- (r r E) 	is given by 
a' 

cr(ir T
t

E-) 	 () 

E 

(2.4) 

where E 	is the energy of the unperturbed state 	to be 

abbreviated by E. 

To solve (2.3) it is necessary to take a simple model for the 

0— 
impurity potential Vimp  and in the method of Koster and Slater it 

a-- 
is assumed that the matrix element of the impurity potential Vimp  

between Wannier functions L.),(r- - rC ) is given by 

(Jo_ (v--R 	yi cr-rip  I ur. 	i )>= 	 s(K 1 ---k,) (2.5) 

where 	
0 

K 	is the impUrity site. 	This assumption, which effectively 
te,  

limits the impurity potential to the impurity site, is reasonable for 

iron based alloys for which neutron scattering experiments (Holden et al, 

1967) reveal that the disturbance on iron atoms neighbouring the 

impurity is small, but would be certainly inapplicable to nickel based 

alloys in which an appreciable reduction in the magnetic moment extends 

0 
some 5 A into the nickel host (Comly et al, 1968). 

Substitution of (2.1) and (2.2) into (2.3) with the assumption 

(2.5) gives an expression for the amplitude 	c(R -t ) of the Wannier 

function centred at E( 
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C \ 	1  
vz • 

-c. 	 co, (13,, 	vcr_ 

_ 	1g cr, 4- id 
(2.6) 

where we have chosen the phases of the Wannier functions to be purely 

real; and in particular the amplitude of the Wannier function on the 

impurity site is given by 

I - V0— 	1 0— 
L Y. ( 	Etz icr.  

which can be written as 

c(r. ( LK 

c0- 	) 	-e, 	° - 

F-,IE 	Uma-vio, E. J 

R.°  

where VL_. (E) is the density of states in the 4s band and 

F (E) 	= 	P 	na- ( G) cite 

(2.7) 

(2.8) 

(2.9) 

e 	indicating that it is the principal part of the integral that 

is to be taken. 

The density oF spin (7-  electrons at a point r 	in the alloy 

is then given by 

/2 (r 	= 	f Tit 	 = 	c; i  to: LY" - 12 	co„, s_ i  ua. 	- 
 0 cc, 51-11T.S 	 °cc STINVES 

(2.10 

LJ II 	(v. — R .  ) 1.) 	(V c 

J. 
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o c c 61-NTE S 

30 

We shall assume that the only Wannier function to have amplitude 

at YZ 	is the one centred on the impurity site, the density of spin 

electrons at the impurity nucleus then being 

to, (R o  (0  ) 12  

where
cr  = Z.  I c 	) 2  

OCC STNTES 

Whilst the density of spin or-  electrons at r in the pure matrix is 

(2.11 '  

- lfZ . 	. 	 i 	K 
N 	) 	 ( 1-3 	- 	• ) 

occ 	s 	
J 	(2.12 

2- 	I ()2 a- 
0  Cc- sTnres  

at the impurity nucleus, with the same assumption at before. 

Thus, using (2.8) we have 

occ sTnrE-3 [i
— Vo_ Gr (Es] 

2 f c41,1 I I V cr 00,- Id 
z 

(2.13 

nn  
EF 	 i 	cA 

— Ve (E 	Voe )] 

2.1.1 Treatment of bound and virtual bound states on the impurity 

If the impurity potential V. 	is sufficiently large there 

will be an energy E 0 	such that 

- Vor, cr' 	0 Gr- 	= 0 	 (2.14 
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will be satisfied. 	If this energy lies within the band the term 

'Of V
d n0- 	0 7̀. 	in the denominator of (2.8) will remain but 

C - 	6 	
or  

(12 ) will exhibit a resonance in the region of E 	. 	This 

corresponds to the virtual bound state discussed by Friedel (1958). 

If E 
cr 	

o- 	0 
lies outside the band 	c 	(K j will become infinite 0  

signalling the formation of a bound state on the impurity site. 	This 

level lies above the band if the impurity is repulsive and below it 

if the impurity is attractive. 

In the presence of a virtual bound state we may evaluate (2.13) 

by expanding For_ (E) about the energy E 0 0-  and setting rL(E),;; rL(E ccf: ) 

in the integral. 	Thus F 	(E) 	Fa 	) + (E - ffo.  ) Fd! (E cc7  o ) a- 

	

= Vim- I 	E - 	( E: ) 	 (2.15 

and 
	

Vci 	(E1I z  f 	if Va... 	(d l Z 	
(2.16 

ti V vo,14 ( ‘RE-.4  + 13E t C) 

where 	A = 	
r_ Z r_ er 
r 

Z -E0°-  

C = Co 2 ro 	(E (:' J 	11 2  (E:r.) 

01 x 	 2 	2 0, 0, 	t--  
but 

  

cA. 	1 f De. 	C 

for 	> ,(J- 7- 	as in this case, so (2.13) becomes 

(G.  -E,T 	Fcia  f ea  
v,2  F-,' (01 

(2.17 

If the bound state lies below the band then 



E 	[I-VG FG (El] 2  r GIl Vo-,  ha. ( 

(2.18 
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where E 	is the bottom of the band. 	As V. 	Co > — 0,0  

and we see from (2.9) that 

corresponding to the Wannier 
13o v ND 	

( 

Fa._/  (Er ) 

function qr 	1,(1 ) becoming completely full. 

2.2 	Hyperfine Field at the Impurity nucleus  

The hyperfine field at an iron nucleus in pure body-centred cubic 

iron is known from many experiments to be -339 ko-c, (Stearns 1973) 

and is the sum of several contributions. 	The most important of these 

is that due to the polarisation of the core electrons by the magnetic 

3d electrons, and whilst predictions of their value have been made 

(Watson and Freeman, 1961) it is only recently that it has been 

possible to measure them individually (Song et al 1972, 1974). There 

appears to be considerable disagreement between experiment and theory, 

the measured contribution to the hyperfine field at an Fe nucleus 

in iron due to the 2s electrons being -1644 ± 391 12o f  (Song et al 

1974) whilst the predictions of theory are of the same sign but are 

several times smaller in magnitude. 	This negative sign arises because 

the 3d band is spin polarised. 	If the majority of 3d electrons 

have spin 	, a core electron with spin fi 	experiences a stronger 

exchange force than one with spin ,1) 	so 0 	(r ) is pulled out 

relative to 	
nsy - 

(0, 	for inner ns levels, the opposite being true 

for outer levels. 	Goodings and Heine (1960) investigated this in 

the case of a free atom of iron using unrestricted Hartree-Fock theory 
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and found that the contribution of the is level is small. 	The 

contribution of the 3s level was small and positive but when slightly 

expanded 3d wavefunctions were used, corresponding to the situation 

in the solid, the 3s level was found to behave more like an "inner" 

shell with a negative contribution at the nucleus. 	To be consistent 

with the observed total hyperfine field, therefore, the measured 

contribution of the 2s electrons requires a large positive contribution 

of order 300-1500 Lo-c from the 4s electrons (Duff and Das, 1975) 

which is at least an order of magnitude greater than current band theory 

(Wakoh and Yamashita 1968, Duff and Das 1971, Callaway et al. 1973). 

Song et al do however quote a value of +600 lz-Ot obtained by Stearns. 

It is important to add that the small negative magnetisation found at 

interatomic positions in iron (Shull and Yamada 1962), which was 

originally interpreted in terms of a negative 4s polarisation, is 

now thought to be due to the spin dependence of the radial part of the 

3d wavefunctions (Duff and Das, 1971). 

At the nucleus of a non-transition element impurity in iron, 

however, the core polarisation is expected to be small and we shall 

assume that the dominant contribution to the hyperfine field is the 

4s polarisation. 	Thus the core polarisation term is proportional to 

the z component of the spin of the impurity 

/Li r3 	 S 

	
(2.19 

where A
CORE 

is the hyperfine coupling constant. Neutron scattering 

measurements of Holden et al (1967) indicate that there is no moment 

on Al, Si, Ga, Ge, Sn and Sb impurities within experimental error, 

so we can assume that this process is absent at a non-transition element 

impurity in iron. 	Furthermore the dipole fields produced by neighbouring 

iron atoms cancels in a lattice of cubic symmetry and the orbital magnetic 

moment is quenched. 	We shall assume that the external Lorentz and 



34 

demagnetising fields are relatively small and may be accounted for. 

Under these conditions the hyperfine field at the impurity nucleus 

is 

1-1()S 0 ) = gel /A8  [fi  [()) -f4 
	

(2.20 

where 

	
is the majority spin direction in the 3d band of pure iron, 

which we may evaluate using the Koster-Slater theory presented in S.2.1. 

It is convenient to work with the quantity 	defined by 

1-t ( 	) 	
(2.21 

1-q:s (y () ) 
where 11 117s  (15 	) 	is the contribution of the 4s electron polarisation 

to the hyperfine field at an iron nucleus in pure iron. 	Thus with 

where 

{al 1 -2- vi (El d1G 	 toff l 2  h Lei viE 
E. 

Et/ 

(2.22 

-,c,)(IL),(0)124 IL4(0) I')  + 	(-c i,  4,c- 4  ) (Icor 	 (o 
	
(2.23 

3 

where .ccr 	is given by (2.18) in the presence of a bound state and 

by (2.13) otherwise. 

	

We shall now assume that the difference between Up (e-- 	of 

and (-3 1(r--  it< 	 may may be neglected and that we can represent the 

4s band by two identical subbands shifted in energy with respect to 
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one another by zp . Thus we introduce t,) 	t5, ,z)  ) and 	PI CE 

defined by 

(2.24: 

= tide) 	(E L.) 

2.2.1 The Impurity Potential  

Since the magnetic 3d shell originally present at the impurity 

site has been either removed or filled, the impurity potential, defined 

with respect to the pure lattice, will be spin dependent and must be 

determined self-consistently. 	The potential acting on the 4s electrons 

will be 

V1(5:ip i.Lf 	VI  (5) -v2 (r) 	VI3 (1:- ) t Vicr:(:-: I 	 (2.25: 

where V1  (r) 	is the potential of the impurity core, V2  (,r) the 

potential of the iron core originally present at the impurity site, 

0-1 
V
3 
 tr ) 	the potential of the iron 3d shell removed or filled and 

V cr-  the potential due to the screening charge at the impurity site. 
4 

Since there is no moment at the impurity site (Holden et al. 1967) and 

the 4s - 4s exchange interaction is small we may make the assumption 

V 11‘  = V
4 	

say and write 

<L,),r (r--K o )1V inp  lur k — 017 = V + A 
	

For Spin T 	
(2.26 

V - Q. 	For Spin It  

V may be obtained self-consistently by setting .Cr  -c4, 	equal to 

the number of s electrons involved in the screening at the impurity 
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site. 	It is not easy to relate V to the valence of the impurity 

because of the increasing proportion of p states involved in the 

screening as the impurity becomes more attractive. 	These states 

contribute to the impurity hyperfine field via a polarisation of the 

core s electrons but this effect is small and may be neglected. 

Nevertheless the parameter V is expected to vary roughly linearly 

with the valence of the impurity as we may see from the following 

argument based on Slater orbitals. 	We have assumed in (2.26) that 

the exchange splitting 2 j, of the 4s band is due to intra-atomic 

exchange only, that is 2 p = J
sd r Fe 	

where  J
sd 	

is the intra- 

atomic s-d exchange integral and uFe  is the magnetic moment per 

atom in the pure matrix. 

For a rough estimate of how V depends on the valence of the 

impurity let us take as the radial part of a one electron function in 

an atom of nuclear charge z the approximate form used by Slater (1930). 

	

Wr 	-1 	
.e 	(1- S r i,„1; ri a0 	 (2.2) 

where N is a normalisation constant given by 

	

N 2 	r cA,,r 	 -7  (/- S /`E iv,* a 0, 	 (2.2 

The integral is evaluated by a simple change of variable 

	

pc 	2( 	s ) 

thus 1 = 

ct o 

N 2 	 [Y1.1  as 0  

7.(-Z-5) 

2h*I- 	* 

Dc 

but r 	 -2- I 	- L 
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Thus 1 = N 111 	0.p 

2( —s) 
The Eigenfunctions (2.27) are solutions of the central field 

with 

V v) 	- 	1<, 	1,1 1'  ( 	_ (2.30 

thus an approximation to the Koster--Slater matrix element is 

N
-2. 	z 	-1) -2 (z,-3,1r/ 	

Sr)r 	-e- 	hB c1,0 	- SH 4 e 2  ,o  

"z 	VA 	1-1 	 4.  SZ )HE N  -SIi 	 t 2  
( 2.31 

	

h 	q o 

where we have used the recurrence relation fl(7+1] = 	p ( ) 	, and 

where the subscript H stands for host atom and I for impurity atom. 

Values of n
H' 
 SH, n

I 
and S

I 
are obtained from Slater's rules 

as follows 

1 2 	3 4 6 

1 2 	3 3.7 4.0 4.2 

thus for iron 4s electrons n = 3.7. 

To determine s, the electrons are divided into groups (ls), 

(2s, 2p), (3s, 3p), (3d), (4s, 4p) etc. each of which has a different 

screening constant found in the following way 

(i) nothing from any shell outside the one considered, 

(ii) an amount 0.35 from each other electron in the group considered 

(except the ls group, where 0.30 is used), 

(iii) if the shell considered is an s or p shell an amount 0.85 
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for each electron with total quantum number less by one, and an amount 

1.00 for each electron still further in; but if the shell is d or f, 

an amount 1.00 for every electron inside it. 

Values of Z
I 

and S
I 

have been evaluated for Cu, Zn, Ga, Ge , 

As, Se, Br and Kr assuming that the electronic structure is the same 

in the solid as in the free atom and are given in Table 2.1. 

TABLE 2.1  

Slater constants for non-transition elements 

Z n S Z-S 

Cu 29 3.7 25.30 3.70 

Zn 30 3.7 25.65 4.55 

Ga 31 3.7 26.00 5.00 

Ge 32 3.7 26.35 5.65 

As 33 3.7 26.70 6.30 

Se 34 3.7 27.05 6.95 

Br 35 3.7 27.40 7.60 

Kr 36 3.7 27.75 8.25 

To investigate the dependence on the configuration of the pure 

matrix calculations were performed for the Fe 3d
6 

4s
2 

and Fe 3d
7 

4s
1 

configurations, the values of the matrix element (2.31) so obtained 

4  being plotted in Figure 2.1 in units of e /cuo  , the binding energy 

of the hydrogen atom being 6 /Za 0 
	

13.6 eV. 	These values are 

seen not to depend strongly on the assumed configuration of iron in 

the solid and vary linearly with the valence of the impurity. We note 

that for Ga (2.31) is of the order of the bandwidth of pure iron. 

It is clear, therefore, that a perturbative treatment of the screening 

of a non-transition element impurity in iron would be quite wrong. 

The Koster-Slater method presented in 	2.1 is, however, ideally 

suited for the treatment of such a problem. 



L'J 

o 

H
 
~
 

H
 

ÇL1 

<lJ 
CI) 

(f] 

~
 

<lJ 
è1 

cd 
c.? 

~
 

N
 

o 
ID

 

o 1 

o r-i 
1 

J 
;1--r; 
r') 

F
ig

u
re

 
2

.1
 
S

la
te

r 
p

o
te

n
tja

l 
(2

.3
1

) 
fo

r 
n

o
n

-tra
n

s
itio

n
 

e
le

m
e
n

t 

irn
p

u
ri tie

s
 

in
 

iro
n

 
\ t 

7./0..
0 

)
.
 

39 



40 

2.2.2 	Model Density of States  

In order to calculate the impurity hyperfine field we require 

the density of states n(E) and its Hilbert transform F(E). 

Unfortunately it is not possible to obtain n(E) in analytic form 

even for the simplest three-dimensional case, namely the nearest 

neighbour, tight binding, simple cubic lattice with one s type 

orbital per atom. 	If the perturbation is strong however, as the 

calculations based on Slater's rules indicate for non-transition 

element impurities in iron, we would e 	! cr) to be strongly 

mixed so that the results would not depend strongly on the precise 

details of the density of states. 	It is reasonable, therefore, to 

use a relatively simple density of states whose Hilbert transform can 

be evaluated analytically. 	We have studied three such model densities 

of states. 

(i) 	The Parabolic Density of States  

h E = 3 1 1— E itj  

11. 

° 

(2.32 

for which F(E) = 3 

    

    

2_ 	(E_1 
\ L) tt LJ 

 

(2.33 

     

     

A bound state first occurs at the bottom of the band for a potential 

V
c 

given by 

- V, F 	o 	
(2.34 

So for this density of state 

vc  = - 2 13 	 (2.35 

   

3 
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(ii) The Triangular Density of States  

(c) = (1 Ef(,)) 

 

 

ei 

 

(2.36 

E  /1,) 

u 
0 

for which 

17 (E1 	t E / L)) 

(1 t el 13 

and 
	

c 	( 	) L.) 

z, 	( 

(iii) The Semi-Elliptical Density of States  

( El = 2 	( I — 	- /L)  z 
1/ 	

— (—) 

L.) 

) A,, E — 	(-3 
(2.37 

E— L)  

(2.38 

E- Lj 
(2.39 

    

 

E- +LJ 

 

1-  ( — 

(1-G1 U 

 

E--a 

 

  

    

O 

for which 

2 

tY2-  

ZE 	Z CC E 2/Ls z 
	 z 	 — 	

(2.40 

E 	 [ c E 2/() 
	1 1, 

z  

and 
	

v c 
	 (2.41) 

z 
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2.3 	Results  

For the parabolic and triangular densities of states we evaluate 

the integrals involved in calculating the impurity hyperfine field by 

expanding to first order in L\ 	and evaluating the resulting integrals 

numerically. 	This is reasonable if the 4s polarisation is small in 

comparison with the bandwidth. 	Thus, using Leibnitzl theorem and (2.24) 

and (2.26), ( 	
Band 

 

!IAN b 	rIAND 
tkm fi  

■1) 

Band
) is given by 

EF+ 	 (Ei c AE 

  

	

E 1-(vf4lr(EiJ a -v 	(vtA ) 111E11 2  

r F-01 	11(0  cAe  

	

1--(v-A1F(E1ri. 	vdEJV 
(2.42 

to (Ed 	+ 4,A E F 	h (ej NE WE 
CI-V1=(GF l z  t Eff V lEF J j z 

	
'-u[D- vF idr i-L ri v y, ( Emr 

v)(E:-I{F 2 (c) +inz (E)3 cAE  

cEi-vF(E137 f E V h (c1J 2 .1 z  

whilst, from the completeness relation 

c a- 
ALL STn r.z.c 

) 	S (2.43 

we obtain for the total hyperfine field 

'2. 	(c ) 

 

(2.44 

(E)Er-2 (e)f 11 	 1E1  F(E-3 	de 

eF 	 I — VE(E)] L  t Cfi vh tEl] 2  1 -4  
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If the impurity potential V is strong it is more convenient from 

the point of view of numerical computation to use the expression 

(2.44) to evaluate the total hyperfine field rather than to evaluate 

the contribution of the band and bound states separately because of 

the resonance occuring in the integrals in (2.42) for attractive 

potentials if (2.14) is satisfied within the band. 

If V = 0 (2.44) becomes 

-c-* 	= 2 Q 0 (EF 	—
J 	

E(E-- cA c- 
E, 

7_6, IA (E) 	 E 	h (E)FIEldiE 
-L.) 

(2.45 

1 l3 
since 	lik1F(E) =0 

—L) 

equation (2.45) may be evaluated analytically for the parabolic and 

triangular densities of states, and for the parabolic density of 

states, for example, we obtain for V = 0 

-1) 
[ 	 49A 	1 (GF ) S- 

(-) - 	S 
( I t. 	F 	) 

F / 
4. g 	(c-Ficjiz 1 	(2.46 

I 5 

1- 2 ( 	1(-) - Z  k'rr-- /L)r" 	,{A, 2 	- 2 

IS 	 5 	 I s 	 IS 

The value of (2.46) is seen to depend quite strongly on the position 

of the Fermi level, that is, on the number of electrons per atom in 

the 4s band. 	This number has been a question of considerable 

controversy and does not, of course, admit a precise answer because 

of s-d hybridisation. 	Current opinion (e.g. Mott, 1964) favours 

a value of about 0.9 to 1.0 electrons per atom in the 4s band. 
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Figure 2.2 shows the contribution of the band and bound states 

to the impurity hyperfine field for the parabolic density of states 

(2.32) assuming one 4s electron per atom. 	The potential is 

measured in units of V
c
, defined by (2.34), the potential at which 

a bound state first occurs at the bottom of the band. 	In the presence 

of a bound state the impurity hyperfine field is the sum of two 

contributions, a large positive one from the electrons in the band 

and a large negative one from the bound state. 

Figure 2.3(a) shows the total impurity hyperfine field for the 

parabolic density of states and 0.9, 1.0 and 1.1 electrons per atom 

in the 4s band. 	Figures 2.3(b), (c)  and (d) show the total impurity 

hyperfine field for the triangular density of states with () = -0.1, 

-0.2 and -0.3 respectively and 0.9, 1.0 and 1.1 electrons per atom 

in the 4s band. e 	was chosen slightly negative as this seems to 

be indicated in band structure calculations (e.g. Wood 1962, Tawil and 

Callaway 1973). 

The semi-elliptical density of states is rather unrealistic 

because of the behaviour of the Hilbert transform within the band but 

has the advantage that (2.13)  and (2.18) can be evaluated analytically. 

With the substitution 	E 	- 	c.,-,&a 

"(I 
(E) (AC 	 S6-2'c7  AG 

[1— VEE) 	Di v"[El 	0 1 c_ 	/W2 f- V/  
k) 

which may be evaluated by putting Z = 	and integrating around 

the unit circle in the Z plane. 	Cauchy's theorem then gives 

3 L) 	
In (E.) ut 

vNE 	Z  fi uvo(cli z  

.L4 iv l < u/z  
< —

z 
EFuez 

(2.47 

But if the impurity potential is sufficiently attractive to form a 

bound state at the bottom of the band then the energy of the bound state 

is given by 
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Figure 2.2 Contribution of band and bound states to the impurity 

hyperfine field for the parabolic density of states with lel/atom 

in the 4s band. A, band states and B, bound state. 
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and consequently (2.48; 

  

adding (2.47) and (2.48) confirms (2.43) at the impurity site. With 

the assumption that only the Wannier function centred on the impurity 

site has amplitude at R o  , this is an illustration of the theorem 

(Bardasis et al. 1965, Campbell and Gomes 1967). 

E 	V,G,_( rj 	— ISr) 121 	a-  I 	cz = 
1,ou„0 

ST IN IC: S 
ST\ S 

C) 	(2.49 

which demonstrates that the bound state wavefunction is closely related 

to the states in the continuum from which it is formed as the potential 

is increased. 

For the semi-elliptical density of states we have to first order 

in 

)31\Nt) tit\ 13 I) 
( 	— 	\ 

 Iz 

■11 

	

1 L.) 	( 1 	toy 

(,t- 	E „ 	070  1 ( - 	' L3  4 

if L) 2- J._ 	( 	7/i j 	— 	tr E c,) 2- I z  

(2.5C 

which gives 
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r3atvD 	rsA wu 
—0C (Lj  - 2 VIL.3  ( 

	-  E r fu v i  I z  

Il 

	

(-) 	(1 	E F-- 	ijz 	46 	(  I - E F'4 	ts  z 

11 V -2 	 LJ (1+ 	/Li-2 	v-E-r  (2.51; 

C)24 	(L)  I 	- 
	

(--;(0..„1„: 	( I r 	L111) 

	

-zif u 3 	 u 3 	 (1 ....2 U7L31 

	

t L3'& 4 	 1"r7((,) ?  Il7k,J 	EF It-) 	- 

it 	3 	( 1 - 	v-L/L) -z 

whilst if V is sufficiently strong to form a bound state at the 

bottom of the band 

rN, 
 t3au tfb 
	

r3ou NI 	
L32  A. 	 (2.52 

In Figure 2.3(e) the total hyperfine field for the semi-elliptical 

density of states is plotted to first order in PA 	for 0.9, 1.0 and 

1.1 electrons per atom in the 4s band. 	Figure 2.4 shows the behaviour 

of (2.51) and (2.52) for one electron per atom in the 4s band. 

Assuming the 4s electrons in iron are positively polarised, as 

discussed earlier, the impurity hyperfine field is seen from Figure 2.3 

to be negative for weak impurity potentials and to decrease in 

magnitude, finally becoming positive as the impurity becomes more 

attractive. 	The experimental values of the impurity hyperfine field 

show precisely this behaviour as may be seen in Figure 2.5, the data 

being taken from Shirley and Westenbarger (1965), Koster and Shirley 

(1971) and from a similar figure occuring in the review by Van der Woude 
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1 electron/atom in the 4s band. A, band states and B, bound state 
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and Sawatzky (1974). 	The change in sign expected from this simple 

model is seen to occur between Al and P in period 3, between Ga 

and Ge in period 4, between Sn and Sb in period 5, and between Ti 

and Pb in period 6. 	The hyperfine field at a Si nucleus in a 

dilute Fe Si allow has not been measured but in the ordered alloy 

Fe
3 

Si is known to be +37 lz()-c. (Kumagai et al. 1974). 	This is 

expected to be of the same sign but smaller in magnitude than the 

corresponding field in the dilute alloy, and so the change in sign 

in period 3 is expected to occur between Al and Si in iron. 	It 

is important to check this experimentally. 

We see in Figure 2.3 that for about one 4s electron per atom 

in the pure matrix, the change in sign of the impurity hyperfine field 

occurs when the potential is strong enough to form a bound state on 

the impurity site. 	Recent measurements of the soft X-ray emission 

spectrum of an Fe 8 at % Al alloy (Sayers et al. 1975),to be 

discussed in Chapter 3, do indeed indicate the presence of a bound 

state on an Al impurity in iron, and since the hyperfine field on 

an Al nucleus in iron is negative (Kulkov 1972) the presence of a 

bound state on Al in iron favours slightly less than one 4s electron 

per atom, in agreement with current opinion. 

We have discussed the difficulty of relating the Koster-Slater 

parameter V to the valence of the impurity. 	The simple discussion 

of the impurity potential based on Slater's rules indicate, however, 

that the potential represented by a Cu impurity in iron will be 

small and it is therefore easy in this case to obtain an estimate of 

the impurity hyperfine field. 	Taking V = 0 for Cu and the 

hyperfine field due to the 4s electrons at an iron nucleus in pure 

BCC iron to be +600 40-c. as obtained by Stearns (Song et al. 1974) 

the hyperfine field obtained using the parabolic, triangular and semi-

elliptical densities of states for 0.9, 1.0 and 1.1 electrons per 

atom in the 4s band are given in Table 2.2. 	These values compare 
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favourably with the measured value of -212.7 'Lot, (Shirley and 

Westenbarger 1965). 

TABLE 2.2  

Impurity Hyperfine Field ( kat) for V = 0 

Density  of States  

n
4s 	

Parabolic 	Triangular 	Semi-elliptical 

	

e = -0.1 	(D = -0.2 	e = -0.3 

	

0.9 
	

-180.9 
	

-104.1 
	

-130.7 
	

-148.9 
	

-194.5 

	

1.0 	-185.4 
	

-136.7 
	

-155.9 
	

-170.0 
	

-200.0 

	

1.1 	-180.9 
	

-153.1 
	

-167.9 
	

-179.1 
	

-194.5 

2.4 	Discussion and Conclusions  

We have presented a simple model of the screening of a non-

transition element impurity in iron in which it is assumed that the 

3d electrons are correlated and remain localised on the iron sites 

and only the 4s electrons contribute to the screening. 	Assuming 

a positive polarisation of the 4s electrons in the pure matrix, and 

about one 4s electron per atom, the hyperfine field was found to 

cross from negative to positive values as the potential becomes strong 

enough to form a bound state at the bottom of the band. 	The hyperfine 

field is indeed observed to change from negative to positive values 

as the valence within a given period is increased and in period 3, for 

example, this change in sign occurs between Al and Si in iron. We 

would therefore expect, on the basis of this model, that a bound state 

would first occur on either Al or Si in iron as the valence is 

increased in period 3 depending on the number of 4s electrons per 

atom in the pure matrix. 	We shall argue in Chapter 3, on the basis 
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of soft X-ray emission spectra of Al in Fe, that a bound state does 

indeed occur on Al in Fe favouring slightly less than 1.0 electrons 

per atom in the 4s band, in agreement with current opinion. 

It is interesting to compare the results of 	2.3 with those 

of Daniel and Friedel (1964) who investigated the scattering of a spin 

polarised free electron gas with one electron per atom by a square 

well potential of depth IV + Ad 	for majority spin electrons and depth 

Iv - Q  1 for minority spin electrons. 	Stoddart et al (1969) have 

discussed the spatial variation of the impurity potential implied by 

the Koster-Slater assumption (2.5). 	These authors find that the 

potential has a depth 1V„.. 	at the origin, is a fairly flat-bottomed 

potential with a range of the order of the inter-atomic spacing and 

has oscillations as we go away from the origin which arise from the 

oscillations in the Wannier function. 	Thus the potential is rather 

like the square well potential of Daniel and Friedel. 	However, the 

results obtained by the two methods are quite different as may be seen 

by comparing Figures 2.2, 2.3 and 2.4 with Figure 3 of Daniel and 

Friedel (1964). 	In our model the impurity hyperfine field takes its 

maximum negative value at small values of the impurity potential, and 

decreases in magnitude as the impurity potential is made move attractive, 

becoming zero as a bound state first appears below the band, and 

crossing to positive values as the potential is increased still further. 

In the Danie7, :)nd Friedel mndel, however, the -:mpurity hyperfine] fipid 

increases in magnitude as the potential is increased from zero and takes 

its maximum negative value upon formation of an s bound state. 	The 

hyperfine field then decreases in magnitude as the potential is made 

more attractive finally changing sign to positive values. 	This 

difference arises because in our treatment we have considered the 

scattering of electrons in a tight binding band of finite width. This 

is particularly important when the impurity potential is strong enough 

to form a bound state as we may see from Equation (2.49). 
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CHAPTER III 

X-Ray Emission Spectra of Alloys of Iron and Nickel  

with non-transition element impurities  

3.1 	Introduction  

The calculation of the impurity hyperfine field presented in 

Chapter 2 gives results in good agreement with experiment, the impurity 

hyperfine field taking its maximum negative value for weak impurity 

potentials and decreasing in magnitude finally crossing to positive 

values as the impurity is made more attractive. 	This change in sign 

is found to occur as the impurity becomes strong enough to form a bound 

state at the bottom of the band and it is therefore of considerable 

interest to examine the electronic structure of those impurities in 

iron in the region of this cross-over, which occurs between Al and Si 

in the third period, between Ga and Ge in the fourth, between Sn and 

Sb in the fifth, and between Tl and Pb in the sixth. 	The bound 

state, if it exists, will lie at the bottom of the band for attractive 

potentials and will therefore have little effect on thermodynamic or 

transport properties. 	Thus the specific heat measurements of Beck 

and co-workers referred to in Chapter 1 show little change when Al, 

Si, Ge and Sb are added to iron. 	The presence of a bound or virtual 

bound state will, however, have important consequences for optical 

expriments. 	In soft X-ray emission spectroscopy (SXS) the solid 

is excited to a state in which a hole is produced in an atomic core 

state and the subsequent emission of soft X-radiation is studied. The 

core wavefunctions are well localised so only electrons in the immediate 

vicinity of the atom involved in the radiation process contribute to the 

spectrum. 	Consequently, SXS is particularly suitable for a study of 

the local electronic structure of an alloy. 	The soft X-ray emission 

intensity from a dilute binary alloy consists, therefore, of two sets 
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of bands, one arising from the excitation of a host metal atom, and 

one from excitation of the impurity. 	In addition, the symmetry of 

the electronic states can be investigated because of the selection 

rule governing the transition. 

3.1.1 The Impurity Emission Spectrum 

The impurity soft X-ray emission intensity arises from transitions 

to a vacant impurity core state, and if the concentration c of 

impurities is sufficiently small, the leading term will be c x the 

intensity emitted from an impurity in an otherwise perfect crystal. 

If the impurity potential is not strong enough to form a bound state 

the total intensity between E and E + dE will be 

( C_-: ) cA G 	C h 	< 	 (r:)1 -4 tliE> 
GoRE 

(3.1) 

where n(E) is the density of states, gr. 	is the gradient operator 

accounting for dipole transitions only and I o& t
4-„E 	) 	(I/ (•.") 

is the transition probability from the state Or) to the vacant 

core state 	(ed. 	The angular brackets indicate an average over 
cort,E 

the constant energy surface E = E(k). 	For small c the alloy 

density of states differs from n(E) by a term of 0(c). 	Thus the 

correction due to the change in the density of states is of 0(c
2
) 

for small c. 	If the potential is strong the energy dependence of 

(3.1) will be doiiiinated by that of the triAsition pyobability. 

Assuming, as in Chapter 2, that the only Wannier function to have 

amplitude at 	is 0  is the one centred on the impurity site, we obtain 

from (3.1) 

c in(E1lcI2„11 2  
Corte (r—r( ()) 7{ is)(K•1( ) ) (3.2; 

  

where, from (2. 8 ) 
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h c-) c 	) ( 2  = h 	I 
(3.3) 

  

t 	Vo 

The variation of (3.3) is illustrated in Figure 3.1 for the parabolic 

density of states (2.32 ) for various values of the impurity potential. 

A dramatic distortion is observed in the transition probability as the 

potential becomes more attractive, and for a critical value of the 

potential V
c 

defined by (2.34 ) a bound state first appears at the 

bottom of the band. 	When this occurs we have, in addition to (3.2), 

a contribution 

BoUN) L  
( El , c 	lL — E0  

GOR EI 	) -r)-0301iNb ("_,) I Z  
•=t' (3.4) 

from the bound state which, from (2.18 ) becomes 

     

113ouNb (E 	c S(E -20 ) 

 

F -4 (Q ) 

 

3 	01' vt 13(r- 130) 1 2(3.5) 
CoRk 

 

Et(E) 

 

    

    

The S -function profile of the bound state contribution will, in 

practice, be broadened by 

(i) Instrumental broadening. 

(ii) Auger broadening due to radiationless transitions induced by 

electron-electron interactions. 

(iii) Broadening due to the finite width of the core level involved 

in the transition. 

The number of band electrons at the impurity site is given by 
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Figure 3.1. Variation of n(E)Ic(R01 2  given by (3.3) for the 
parabolic density of states (2.33) for various values of 
the impurity potential Vn(EF  = 0) = 0.0, -0-.1, -0.2, -0.3, 

-0.4 for increasing distortion. 

6.1 
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which is plotted in Figure 3.2 for the parabolic density of states 

(2.32 ) with one electron per atom in the band. 	The attractive 

impurity potential is seen to have a repulsive effect on the band 

states when a bound state is formed, 	
Band 

H› CD 	as V ---> —0° 
Imp 

Consequently, when a bound state is formed the emission due to band 

states at the impurity site is expected to be weak. 

It is interesting to compare these results with those of Stott 

(1969) who calculated the energy dependence of the transition 

probability in (3.1) and (3.4) using well known expressions for the 

scattering of an electron gas by a square well potential, taking the 

core states involved in the transition to be the deep bound state in 

the potential well. 	This allows the transition probabilities to be 

calculated analytically with the following results. 	The K emission 

intensity, which results from a transition from a p state to the 

lowest core state of s symmetry, is in general smooth apart from 

the sharp cutoff at the Fermi energy and varies little as the impurity 

potential is changed. 	When the potential is such that a p state 

is nearly bound, however, there is a large distortion in the K intensity 

in the form of an intense peak on a smooth background. 	As the strength 

of the potential varies the peak moves to lower energy and becomes 

narrower and more intense until a bound state finally appears at the 

bottom of the band. 	The L
2,3 

emission arises from transitions from 

s or d states to the lowest p type core state. 	The variation 

in intensity as a d state becomes bound is much the same as for a 

p state except that the peak is narrower and more intense. 	The 

distortion is found to have a different character when an s-bound 

state is found. 	In this case there is a build up of intensity at 

the bottom of the band, there being no sharp peak which moves to lower 

energies as in the case of p and d states. 

In our treatment of the screening we assumed that the impurity 

potential extends only over the impurity site. Consequently, the only 
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bound state that can be found is one which is completely symmetric 

under the operations of the point group of the crystal, that is an 

s-state. 	In order to have bound states of higher symmetry we must 

allow the potential to extend over more lattice sites. 	It is 

reasonable to assume, however, that the first state to become bound 

is an s state since this is the only symmetry which allows a non-

vanishing coefficient of the Wannier function at the impurity site 

where the perturbation is largest. 	The variation of the transition 

probability as such a state is formed is illustrated in Figure 3.1. 

Comparing this with the work of Stott we find much the same behaviour, 

but in this case the peak is seen to move to lower energies as the 

potential becomes more attractive. 

In more concentrated alloys the situation is complicated by the 

overlap of impurity states, but a rough estimation of the perturbing 

effect of the impurity is provided by the differences between the 

valence of the impurity and the average valences of the alloy. 	We 

would therefore expect the impurity bound state to broaden due to 

overlap effects, and to move up in energy as the concentration is 

increased, finally becoming the valence band of the pure solute. 

3.1.2 The Host Emission Spectrum  

If the concentration of impurities in small and the impurity 

potential is weak the soft X-ray emission spectrum of the host atoms 

will b3 lagely unaffected by the presence of the impurities. 	If, 

on the other hand, the impurity potential is sufficiently strong to 

form a bound state at the bottom of the band there will be a contribution 

to the host emission intensity due to the direct overlap of the impurity 

bound state onto neighbouring atoms and a contribution due to the 

covalent admixture between the impurity orbital and surrounding 

orbitals. 	Thus, for those impurities in iron in the region in which 

the hyperfine field changes sign we expect to observe a peak in the 
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host emission intensity at the bottom of the band since for these 

impurities the bound state is not strongly bound. 	As the valence 

of the impurity is increased further, however, the bound state will 

become more tightly bound around the impurity with a corresponding 

increase in its contribution to the impurity emission intensity and 

decrease in its contribution to the host emission intensity. 

3.2 	Interpretation of Measured Spectra  

3.2.1. 	Iron aluminium alloys  

Recently Dev, Fabian and Watson (Sayers et al. 1975) have 

measured the soft X-ray emission spectrum of an Fe 8 at % Al alloy, 

the measured spectrum being shown in Figure 3.3 where it is compared 

with the spectrum of pure iron. 	The striking feature is the peak at 

45 eV in the alloy spectrum, absent in the pure iron spectrum, which 

is 	8 eV below the Fermi level, or near the bottom of the iron 

3d 4s bands (Tawil and Callaway 1973). 	Figure 3.4 shows the soft 

X-ray emission spectra of the more concentrated alloys Fe3  Al, Fe Al, 

Fe Al
3 

and of pure Al measured by Kapoor et al (1973). 	In particular 

no peak, but only a shoulder, occurs in the Fe3  Al spectrum at 

45 eV. 	The peak observed in the Fe 8 at % Al alloy spectrum 

cannot, therefore, be attributed to the Al L
1 

- L
2,3 

transition 

at this energy since this involves a transition from a 2p to 2s 

state in the aluminium core. 	Thus, if the peak at 45 eV in the 

Fe 8 at % Al spectrum were due to the Al Li  - L2,3  transition 

the intensity of this peak, relative to that of the Fe 	M 2,3  

emission intensity, would be expected to increase as the Al 

concentration is increased, in disagreement with the observed Fe3  Al 

spectrum. 	We therefore conclude, on the basis of Figure 3.3, that 

Al behaves as a strong perturbation in an Fe matrix giving rise to 

a bound or virtual bound s state at the bottom of the iron 3d 4s 

band. 	This is exactly what we would expect on the basis of the results 
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Figure 3.3. Soft x-ray emission spectra for Fe and alloy of 

Al in Fe; upper curve, M20  emission from pure Fe; lower curve, 

emission in the'region of the Al L,,3  and Fe M2,3  bands for an 

Fe 8 at%Al alloy. The weak Al L23 
band lies in the region 
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presented in Chapter 2 which indicate that for about one electron per 

atom the hyperfine field changes sign upon formation of a bound state 

since the hyperfine field changes from negative to positive values 

between Al and Si in iron. 	Since the hyperfine field of Al in 

iron is negative (Kumagai et al. 1974) this favours slightly less 

than one electron per atom in the 4s band in agreement with current 

opinion. 	The decrease in intensity of the peak at 45 eV as the 

impurity concentration increases is precisely what we would expect if 

aluminium forms a bound state in iron. 	Thus as the impurity 

concentration increases the bound state will overlap and broaden giving 

a band as discussed in 	3.1.1. 	The peak at 45 eV would therefore 

be less intense in the more concentrated alloys because of the broadening 

which would occur. 	The formation of the Al valence band from the 

bound state, which exists in the impurities at low concentration, is 

clearly seen on the Al L
2,3 

emission spectra in the region 60 - 75 eV 

as the Al concentration is increased. 	In further agreement with 

this interpretation is the weakness of the Al L2,3  band in the Fe 8 

at % Al spectrum. 	This indicates that the bound states overlap 

little at this concentration. 	We would however expect to observe a 

peak between 63 - 64 eV in the Al L
2,3 

band corresponding to a transition 

from the impurity bound state to an Al 2p state but this energy lies 

close to the onset of Fe M
2,3 

absorption (excitation of Fe 3p levels) 

as i:, seen i i, Figure 3.5 which shows the absorption spectrum of pure 

iron in the region 50 - 100 eV (Kunz, 1973) and would therefore not be 

seen at this concentration. 

Terakura (1976) has presented a first principlescalculation of 

the electronic structure of non-transition element impurities in iron 

and finds a bound state of s symmetry on Al and Si in iron, the 

details being in very good agreement with the above interpretation of 

the Fe 8 at % Al spectrum. 	The bound state is found to have 

spectral weight within the impurity cell of 0.39, the rest spreading 
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for Fe Al alloys taken from Kanoor et al. (1973). 

Figure 3.5. Photoabsorption coefficient of :,in, Fe, Co and 

Ni taken from Kunz (1973). 
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over neighbouring sites. 	This is consistent with the hyperfine 

field calculations presented in Chapter 2, the negative hyperfine 

field on Al in iron indicating that the bound state on Al will 

not be tightly bound, and with the bound state being seen in the 

Fe 	M
2,3 

 spectrum, corresponding to a transition to an Fe 2p state, 

and not in the Al L
2,3 

spectrum. 

3.2.2. 	Nickel aluminium alloys 

Figure 3.6 shows the soft X-ray emission spectrum of alloys 

of nickel with aluminium (Cuthill et al. 1968). 	The Al L2,3  and 

Ni M
2,3 

emission spectra overlap extensively making the spectrum of 

such a system difficult to analyse. 	There is, however, no peak in 

the Ni M
2,3 

spectrum corresponding to that observed in the Fe 8 

at % Al alloy and in the Ni 8 at % Al alloy the Al L
2,3 

spectrum 

is strong although there does appear to be a shift to lower energies 

as we would expect in the screening of a non-transition element impurity 

such as Al or Si. 	The apparent absence of a bound or virtual bound 

state on Al in nickel is in agreement with the behaviour of nickel 

as an itinerant ferromagnet and with the saturation magnetisation 

measurements of Crangle and Martin (1959) discussed in 	1.5 which 

indicate that the screening of a non-transition element impurity is 

dominated by the 3d electrons involving the high density of states at 

the Fermi level. 

3.2.3. Iron germanium alloys  

Figure 3.7 shows the soft X-ray emission intensity in the 

region of the iron K emission band for Fe Ge alloys (Nemoshkalenko 

et al. 1973). 	A peak occurs in the iron K emission at about 8 eV 

below the Fermi level and arises from a transition to the iron is state. 
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Figure 3.6. Soft x-ray emission spectrum of alloys of 

nickel with aluminium taken from Cuthill et al. (1968). 

Figure 3.7. Soft x-ray emission intensity in the 

region of the iron K emission band for Fe Ge alloys 

taken from Nemoshkalenko et al. (1973). 
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This is similar to that observed in the Fe 8 at % Al iron M
2,3 

band 

and is, we suggest, due to an admixture of an s band state on Ge 

overlapping with and mixing with the nearest neighbour iron 4p state. 

The presence of a bound or virtual bound state on Ge in iron is to he 

expected from the calculations of the hyperfine field presented in 

Chapter 2, the hyperfine field crossing from negative to positive 

values between Ga and Ge in iron. 

3.2.4. 	Iron silicon alloys  

A recent measurement of the soft X-ray emission spectrum of 

an Fe 4.13 at % alloy by Watson and Norris (Watson et al. to be 

published) indicates also the presence of a bound state on a Si 

impurity in iron. 	In this case the Fe M2,3  absorption does not 

present a difficulty and a peak at 90 eV in the Si L2,3  emission 

band (about 8 eV below the Fermi level) corresponding to a transition 

from the Si bound state to a Si 2p state is clearly seen. A small 

peak at 45 eV is also observable in the Fe M2,3  spectrum corresponding 

to a transition from the impurity bound state to an Fe 3p state. This 

is weaker than the peak seen in the Fe 8 at % Al alloy because the 

concentration of impurities is smaller and because the Si atom 

represents a more attractive impurity potential than Al, the bound 

state being more localised on the impurity site. 	This is confirmed 

by the first principles calculation of Terakura (1976), the bound 

state having a spectral weight of 0.62 within the impurity Wigner-Seitz 

sphere. 

3.3 	Photoemission Experiments  

Collins and Andrews (to be published in J.Phys.F.) have reported 

measurements of the photoemission spectrum of an Fe 8 at % Al alloy 

and do not observe a peak corresponding to that observed in the soft 

X-ray emission spectrum of Sayers et al (1975). 	These authors conclude 

from the absence of this peak that the peak observed in the soft X-ray 
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emission spectrum is actually due to the Al L1  - L2,3  emission 

discussed in 	3.2.1. 	We disagree with this conclusion as this 

would imply that the peak at 45 eV would increase in intensity relative 

to the Fe M
2,3 

band with increasing Al concentration, in disagreement 

with the observed change on going from Fe 8 at % Al to Fe3  Al. 

It is interesting to enquire therefore why no peak is seen in the 

photoemission spectrum. 	We would expect that since the peak is very 

narrow in energy only those impurities within a depth of the inelastic 

scattering length would contribute to such a peak in the XPS spectrum. 

In contrast, the Fe M2,3  band is broad so most states would be expected 

to contribute in some way to this. 	This means there would be an effective 

concentration of impurities in XPS less than the mean concentration. 

In contrast SXS is ideally suited for an examination of localised 

states, the only complication being the soft absorption discussed in 

3.2.1. 	In addition, whilst the surface energy of Fe is 1790 erg/cm2, 

that of Al is 1000 erg/cm
2
. 	This would indicate that Fe would 

preferentially be found at the alloy surface again leading to the 

suggestion of a lower effective concentration of impurities in XPS 

than the mean concentration. 	A further important point is that 

because of the nature of the final state involved in the transition, 

SXS probes the electron distribution of a given symmetry local to the 

emitting atom whilst XPS measures the electron density averaged through 

a region of the emitting alloy and averaged over all symmetries with 

the appropriate weighting factor. 

3.4 	Photoabsorption Measurements  

In photoabsorption spectroscopy a core electron is excited to 

an empty state above the Fermi level. Hagemann et al (1976) have 

studied the photoabsorption spectra of Fe-Al and Ni-Al alloys using 

synchrotron radiation in the energy range 30 to 150 eV. 	Table 3 

gives the position of the onset of M
2,3 

absorption, corresponding to 



73 

the excitation of transition metal 3p electrons, as measured by Hagemann 

et al. 

TABLE 3.1 

Position of Onset of M
2,3 

Absorption of 

Fe-Al and Ni-Al Alloys 

Fe 	Fe- 11% Al 	FeA1 	Ni 	NiAl 	NiAl
3 

Position of 
onset of 
M
2,3 

absorption 	52.0 	52.0 .1.: 0.2 	52.0 	64.2 	65.5 	66.3 

(Ev) 

The onset of M
2,3 

absorption is seen not to change in Fe based alloys 

upon increasing the Al concentration in agreement with the d electrons 

not participating in the screening which is localised on the impurity 

site. 	In contrast to Fe-Al alloys the Fermi level in Ni-Al alloys 

is seen to shift rapidly to higher energies indicating a filling of the 

Ni 3d band. 

3.5 	Further discussion of impurity hyperfine field and 
saturation magnetisation measurements. 

The peak observed in the soft X-ray emission spectrum of the 

Fe 8 at % Al alloy of Sayers et al (1975) at 45 eV arises from a 

transition to a core p state on iron atoms neighbouring the impurity. 

This is consisten t with the first principles calculations of Terakura 

which shows that the bound state on Al in iron has spectral weight of 

only 0.39 on the impurity site, the rest spreading over neighbouring 

sites, and with the hyperfine field calculation of Chapter 2 which 

indicates that a bound state is first formed on those impurities in 

iron for which the hyperfine field crosses from negative to positive 

values. 	According to Wenger et al (1971) the contribution of the 

4s ---2p transitions is two orders of magnitude smaller than that of 

the 3d --.7-2p transitions so the intensity of the peak at 45 eV would 

appear to indicate a covalent admixture or hybridisation of the impurity 
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bound state with neighbouring d orbitals. 	Similarly, the peak 

occurring in the Fe K emission spectrum of Fe Ge alloys of 

Nemoshkalenko et al (1973) indicates a covalent admixture with 

neighbouring p states. 	This is in agreement with the model of 

Marshall referred to by Mott (1964) of the electron structure of an 

Al impurity in iron in which the Al 3s electrons are considered to 

form a localised state which mixes with neighbouring 3d orbitals. 

The extent of this admixture depends sensitively on the exact 

form of the impurity orbital. 	This reveals a weakness in the Koster- 

Slater model since this is formulated in terms of the orthogonal 

Wannier functions of the 4s band. 	In the region of the impurity 

core the bound state would be expected to look rather like the outer 

s orbital of the free atom appropriately modified in the crystal, 

IMP ( ,r.--  ) 
say, than the Wannier function of the iron 4s band 

Lio_ (r ). 	This suggests that the treatment of the impurity hyperfine 

field presentation in Chapter 2 can be improved by replacing 00--((' -(c) 

in (2.23) by 	/1 imp  ( r — rc o  ). To a first approximation e6 imp(r-rto  

will be spin independent since there is no moment on the impurity 

site and this is why the assumption L) (.' - K b ) = Od (r - kb) made 

in 	2.2 	yields reasonable agreement with the measured impurity 

hyperfine fields. 	The spin dependence of 	
6-IMP 

 (r 	
0 

r - r 	) arises 

from the interaction between the impurity orbital and the magnetic 

3d electrons. 	For a given group in the periodic table the amplitude 

cr- 
of 	

IMP 	
at the impurity nucleus increases with increasing period 

since the outer s electrons see a greater positive charge at the 

nucleus as the period of the impurity increases. 	This leads to a 

periodic dependence of the impurity hyperfine field, the hyperfine 

field increasing in magnitude with the period of the impurity. 	This 

is seen in the hyperfine field data presented in Figure 2.5 	and is 

particularly noticable for low valence impurities. 	Within a given 

period the amplitude of 
IMP 	

at the impurity nucleus increases 
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rapidly with valence. 	This contributes to the very large positive 

fields measured at the nuclei of impurities in iron with large valence 

which are much larger than would be expected from the simple Koster- 

Slater model. 	A further contribution to these large positive fields 

comes from the covalent admixture of the impurity bound state with 

neighbouring 3d states. 	Since the 3d state involved in the bonding 

with the impurity state are spin polarised, there will be a greater 

admixture for 	spin states than for 	spin states because the 

T spin 3d orbitals are more fully occupied. 	This will lead through 

the second term in Equation (2.23 ) with L.). (c - R ojrepiaced by 

cT 

IMP 	11
`o ) to a positive contribution to the hyperfine field 

when the bound state is established. 

In 	1.5 we discussed the dpdc measurements of Aldred 

(1968) on alloys of BCC iron with non-transition element impurities. 

Within a given period in groups 3 to 5 there is no valence dependence 

of the d fl/dc  values indicating that the magnetic 3d electrons do 

not contribute directly to the screening. 	The d is/dc values do 

however show a deviation from the simple dilution behaviour, 

d ii/dc = -2.2 pB, which increased with the period of the impurity 

Vincze and Aldred (1974) suggested that it might be possible to under- 

stand this behaviour in terms of an increased admixture between the 

impurity bound state and neighbouring 3d states in Marshall's model 

as the period of the idurity increases. 	We shall now propose a 

mechanism by which the admixture of the impurity bound state with 

neighbouring 3d states can produce an increase in the moment on 

neighbouring iron atoms. 

The s-like bound state on the impurity will transform under the 

irreducible representation Alg  of the Oh  group relevant to a 

lattice of cubic symmetry. 	The effect of the cubic field is to remove 

the fivefold degeneracy of the 3d states and to split the levels into 



76 

a triply degenerate set labelled T
2g 

and a doubly degenerate set 

labelled Eg. 	In the body centred cubic lattice the T2g  orbitals 

are directed towards nearest neighbours whilst the Eg  orbitals are 

directed towards next nearest neighbours. 	We shall assume that only 

bonding is operative and shall consider only the admixture of 

the s-like state on the impurity with the 3d states on nearest 

neighbours. 	Thus we only consider the bonding between the impurity 

bound state and the T
2g 

hybrid on nearest neighbours which is symmetric 

about the line joining the atom with the impurity. 	The method of 

molecular orbitals constructs solutions of the form 

eL 	 I) 0— 	6r-  Ijinp 	c 3 

where 	i1,3A 	is the appropriate contribution of T
2g 

orbitals on 

nearest neighbours which transforms under the irreducible representation 

A
lg 

of the 0
h 

group. 

The mixing coefficients oicr  and kr  can in principle be obtained 

from a variational calculation which would yield two solutions. 	The 

impurity bound state, if it exists, lies at the bottom of the band and 

so the state with lowest energy will be the one for which 	is is small 

and will be doubly occupied. 	The antibonding state will have a small 

value of the coefficient 0.6(  and will be raised in energy giving a 

decrease in the occupancy of the T2g  orbitals involved in 	Gr'  

This will be accompanied by a compensating increase in the Eg  occupancy. 

The overlap of the Eg  orbitals, which are directed towards next 

nearest neighbours in the body centred cubic lattice, is smaller than 

the overlap of the T29  orbitals, which are directed towards nearest 

neighbours. 	Intra-atomic exchange will therefore be more effective 

in the Eg  bands than in the T
2g 

bands of iron, and this is confirmed 

by the neutron diffraction studies of the 3d spin density in BCC iron 

(Shull and Yamada 1962, Shull 1963) which exhibit a non-spherical 3d spin 

(3.7) 
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density distribution with favouritism towards the E
9 
 symmetry 

configuration. 	Shull (1963) estimates that 53% of the 3d magnetisation 

arises from electrons with Eg  symmetry and 47% with T
2g 

symmetry. 

This should be contrasted with the respective values of 40% and 60% 

to be expected for spherical symmetry. 	Since Hund's rule coupling 

or intra-atomic exchange is more effective in the Eg  orbitals than 

in the T
2g 

orbitals the increase in the Eg  occupancy, which occurs 

indirectly as a result of the covalent admixture of the impurity bound 

state with T
2g 

orbitals on neighbouring iron atoms, will result in 

an increase in the moment on iron atoms neighbouring the impurity. 

This increase is observed in the neutron diffraction experiments of 

Holden et al (1967) on iron based alloys. 	The increase in the moment 

on iron atoms neighbouring the impurity will increase as the admixture 

of the impurity bound state with neighbouring T2g  orbitals grows 

stronger and will therefore increase with the period of the impurity 

as suggested by Vincze and Aldred (1974) and in agreement with the 

saturation magnetisation measurements of Aldred (1968). 	Since the 

increase in moment on iron atoms neighbouring the impurity which is 

responsible for the observed departures from simple dilution is expected 

to occur mostly in the Eg  orbitals this has interesting implications 

for neutron diffraction experiments on these alloys. 
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CHAPTER IV 

Electron Correlations in the Cohesive  

properties of the transition metals  

4.1 	Introduction  

In Chapter 2 we emphasised the localised or highly correlated 

nature of the 3d electrons in iron, treating only the part played 

by the 4s electrons in the screening of a non-transition element 

impurity. 	From the discussion in Chapter 1, however, it is clear 

that such a model would be inapplicable to nickel based alloys. Thus 

nickel behaves as an itinerant ferromagnet, the high 3d density of 

states playing an essential role in the screening of a non-transition 

element impurity. 	This difference in the electronic structure of 

iron and nickel is surprising because nickel has a greater nuclear 

charge than iron, so the 3d shell would be expected to be more 

tightly bound and we might therefore expect correlation effects to be 

more important in nickel than in iron. 	It is the purpose of this 

chapter to investigate the effects of electron interactions on the 

electronic structure by including intraatomic electron correlations 

which prevent electrons coming together on the same atom. 	We shall 

begin with a study of the one-band model and later discuss the 

applicability of the results to the transition metals. 

Perhaps the most cunvimJing illustration of the collectivp 

nature of the d electrons is provided by the cohesive energy of the 

transition metals shown in Figure 4.1 (Gschneider, 1964). 	The 4d and 

5d transition metals are seen to have a large cohesive energy which 

varies in a regular way across the series, showing clearly that it 

must be related to the formation of a d-band as the atoms come together 

to form the solid. 	This was explained by Friedel (1964, 1969) using 

a simple band model which we shall describe in 	4.2. 	This model 

neglects the interaction energy associated with intra-atomic charge 
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Figure 4.1. Cohesive energies of elements in the 3d, 4d and 5d 

transition metal series after Gschneider (1964). 
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fluctuations which are known to be of great importance in the 3d 

series, and a large difference in behaviour is seen between the 

cohesive energy of the 3d series on the one hand and that of the 

4d and 5d series on the other. 	Thus manganese, iron and cobalt 

exhibit a lower cohesive energy than we would expect on the basis of 

Friedel's model, whilst nickel behaves very much like Pd and Pt 

in the 4d and 5d series, in agreement with its behaviour as an 

itinerant ferromagnet. 	We shall see in 	4.4 that this deviation in 

the middle of the 3d series comes in part from the well known 

stability of half-filled d shells in free atoms, but is is also 

found that a very similar behaviour occurs in the Young's modulus, 

shear modulus , bulk modulus, melting point and heat of fusion 

(Gschneider, 1964) which involve changes within condensed phases and 

not the ground state of the free atom. 

It is particularly difficult to treat correlations in the 3d 

series because this lies between the strong correlation limit 

corresponding to the more localised f states in the rare earth metals, 

and the wide band limit of the simple metals and perhaps of the 4d 

and 5d series. 	Thus the ground state is determined by the balance 

between the interaction energy, which would be lowest if charge fluctuations 

were completely supressed, and the kinetic energy, which would be 

lowest if the electrons were unrestricted in their motion. 	The 

conventional approach to this problem has centrd around model 

Hamiltonians, the most popular being that of Hubbard (1963, 1964). 

Hubbard used a Green's function decoupling procedure, and whilst this 

approximation is reasonable for the insulating phase it does not 

properly describe the Fermi surface, as was emphasised by Herring 

	

(1966) and by Edwards and Hewson (1965). 	This is particularly serious 

in the transition metals where the Fermi surface has been well 

investigated and is described well by the band structure calculations 

of Callaway and co-workers (Tawil and Callaway 1973, Wang and Callaway 
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1974) as emphasised in Chapter 1. 	On the other hand, Kanamori (1963) 

has applied Brueckner's theory of nuclear matter (Brueckner 1955, 

Wada and Brueckner 1958) to the problem of correlations in the transition 

metals which is known to be exact in the limit of low particle density 

(Galitski, 1958). 	This ladder approximation is not applicable to the 

3d series however except perhaps for Ni with 0.6 holes per atom 

in the 3d band. 

A method is required therefore to treat electron interactions 

over the range of densities found in the 3d series, whilst preserving 

the features of the Fermi surface which is well described by band 

theory. 	Perhaps the most promising such method is that of Gutzwiller 

(1963, 1965) who proposed a variational wavefunction for the ground 

state. 	The philosophy of this approach is rather similar to the 

treatment of correlation effects in the hydrogen molecule presented 

in ,§ 1.4 and is ideally suited for a treatment of the balance 

between the kinetic and interaction energies which is so important 

in the 3d series. 	This method will be used to discuss cohesion 

in the one band model in S 4.3 and the applicability of the results 

to the transition metals will be discussed in 	4.4. 

4.2 	Friedel's model of cohesion in the transition metals  

Consider n electrons (or n holes if the band is more than 

half filled) m of which have spin 	and p have spin \I, 	in a 

lattice of N sites with n 	N. 	In the singla band m-Ddl the 

ground state wavefunction is the conventional Bloch state 

qls  
K l< 	(s.  

(4.1) 

where K 	. . .) 	act 

is the occupied region of 1-z 	space. 
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17 
The operator alz6. 	creates a spin ofir" electron in the single 

particle state 	0 
12 	

(e) with energy E, 2  determined by the crystal cr   

potential V(r) 

[--C '7 2 	V(r)-  
2t,„ 

(4.2) 

(4.3) 

which may be expressed as a sum over potentials V, ( 	) centred 

on lattice sites DL  

V ) 

In principle V( r ) should be determined self-consistently and the 

Vg  would be dependent upon the lattice spacing. 	In practice the 

Vg  are usually taken as atomic potentials as in the Wigner-Seitz 

scheme. 	Thus the interaction of electrons on different sites is 

effectively included since atoms surrounding the one under consideration 

are made neutral, but, owing to the cancellation of the self-Coulomb 

and the self-exchange term in the Hartree-Fock equations, the potential 

of the atom upon which the electron sits is that of the positive ion. 

Thus the energy cost of intra-atomic charge fluctuations is neglected. 

The reason for this procedure is, of course, that when an electron is 

on a particular atom, correlation effects act to prevent another 

electron hopping onto the same site. 	The method does, however, 

neglect the increase in kinetic energy which would occur as a result 

of the correlation. 	The advantage of the method is that the same 

potentials are used in both the solid and the system of free atoms, 

allowing one to compare directly the energy in the two cases (Friedel 

1964, 1969) and so compute the cohesive energy. 

Thus, following Friedel and neglecting the energy cost of intra-

atomic charge fluctuations, the energy is just 
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E K 	= 	G 
	 (4.4) 

ict IC,f) 

with the cohesive energy given by 

where E 	is the energy of the isolated atomic d state. 	Thus, 

if n(E) is the density of states per atom, then in the non-magnetic 

state discussed by Friedel 

E, = Z 	E F (E0 —E)viCE\cAE- 
	 (4.6) 

which, for the rectangular density of states 

h 	1 
	

Go  - 	5 K 	< Eu  + (,) — s 
	

(4.7) 

2.1.) 

= 0 otherwise 

shifted from E
o 

by an amount s, gives the parabolic behaviour 

1 	vls  

upon filling the band. 	In the transition metals the crystal field 

splitting is small in comparison with the bandwidth (Friedel 1969) and 

tight binding computations suggest that in cubic crystals the E
9 
 and 

T
2g 

parts of the density of states are fairly uniformly distributed 

over the d band with only the top and bottom of the band having a 

definite E
9 
 or T

2g 
character. 	Thus, assuming five identical 

(4.3) 



84 

subbands, the cohesive energy due to the d electrons is 

(4.9) 

where p = 5n is the number of electrons per atom in the d band, 

as obtained by Friedel (1964, 1969) who demonstrated that for a given 

bandwidth the behaviour of the cohesive energy is not very sensitive 

to the details of n(E). 	This explained why Ec  varies fairly 

smoothly through a series, though there are differences in lattice 

structure between one element and the next. 	Equation (4.9) is seen 

to offer a good description of the cohesive energy in the 4d and 

5d series displayed in Figure 4.1 with reasonable values of (A) and 

s, but there is a large departure from this behaviour in the 3d series. 

The cohesive energy is not, however, necessarily a good indication of the 

strength of cohesion in the metal because it involves the ground state 

of the free atom and we shall see in 	4.4 that the deviation arises 

in part from the well known stability of half filled d shells in 

atoms. 	A more reliable estimate of the bonding strength is given by 

properties involving changes within condensed phases such as the elastic 

moduli, the melting point and the heat of fusion. 	In the 4d and 5d 

series these vary in much the same way as the cohesive energy with a 

maximum corresponding to a half filled d band, in accordance with 

FHed21's model, 	IT: is found, howevr, thlt. in the ,'delle ric±1 of the 

3d series, the Young's modulus, shear modulus, bulk modulus, melting 

point and heat of fusion (Gschneider, 1964) are much smaller than we 

would expect on the basis of the simple model of binding presented by 

Friedel. 	This behaviour indicates that in the middle of the 3d series 

the d electrons are unable to participate fully in the binding, and 

is, we propose, due to electron interactions not included in the simple 

Wigner-Seitz approximation to the correlations. 
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4.3 	Correlations in the single band model  

In order to investigate the effect of electron interactions on 

the ability of electrons to participate in the bonding, we define 

Wannier functions 

( v - 
(4.10: 

for the band under consideration, and express the Bloch state (4.1) 

in terms of configuration states C. 	as 
Gfic4 

—r— 	
(4.11; 

k 1(4, 	G1 
	0-  t 	

C-1 Cr sti 

where 

Cr i` G 4, 
41- 	o) 

cr_tc, 	Yr- 
(4.12, 

,1 r • " 	v,4 

sets of lattice sites occupied by the WI spin and in 1 

being the 

spin electrons. 

The coefficient 	I\ G- 	 is given by 

     

O t t  

   

 

L 1J., 

 

 

C A r 

 

 

• 
\ 
rt v 

 

      

      

using an obvious notation for determinants. 

As was pointed out by Van Vleck (1953) the Bloch wavefunction 

(4.11) with coefficients (4.13) contains too many configurations 

with large polarity, that is it allows too many doubly 

occupied sites in the presence of electron interactions. 

Gutzwiller (1963, 1965) constructed a local wavefunction for the 

ground state by starting with the conventional Bloch state (4.11) for 
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the non-interacting ground state and reducing the amplitude of all 

configurations in which -V atoms are doubly occupied by an amount 

ng Y  where O 	rfry.c i 	is a variational parameter. 	Thus 

Gutzwiller proposed the variational wavefunction 

V „ 

ry Cr t G t (\ crt G  k(J 

Cr I 01  

where the R c., 	1,  are introduced to account for the less important 

inter-atomic interactions. 	The uncorrelated wavefunction is obtained 

by setting B = ro = 1. 	By letting B differ from one, the diagonal 
J 

and off-diagonal elements of the n'th order density matrix 
1
3 	can 

be given certain simple properties which may not follow from setting 

B = 1. 

(4.14) 

Using this wavefunction Gutzwiller (1965) calculated the first 

and second order density matrices within the quasi-chemical approximation 

in which the electrons of one spin are considered fixed for the purpose 

of calculating the kinetic energy of electrons of the opposite spin. 

This is a reasonable assumption when dealing with electrons in narrow 

bands as in the transition metals. 	Within this approximation the 

calculation of the density matrices reduce to a sum over configuration, 

the details being given in Appendix B. 	Thus, from Appendix B, the 

first order density matrix is given by 

9 	 - i 	1.1 J 1Z1‘ 	 ( 	Q -Zt 	 01. 	.Z.t 
(4.15] 

  

where 0 ( ( 111 12T) 
-e, 

(4.16 

N kT 
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and 

  

, 
J , yvt -Wo  

I, 1 -z. 

volzi 	(4.17: 
o 

1, (\J- yxI  

 

with similar expressions for I spin electrons. 	Here \) 0  is the 

number of doubly occupied atoms in the ground state and is related 

to the parameter a- 	in (4.14) by 
V 

(vv-L-va 	4- 
vo (m_1,7,4.v, ) 

(4.18 

We now write the energy in density functional language as 

-r[rt ] .v 	+ 

ET it 	 _ 

ckc V tic [ t 	I 

(4.19 

where E1 	° 4° F 	-1 	describes the intra atomic electron inter- ,1  	J inter- 

actions not included in V(r) 	the lattice potential used to 
- ) 

calculate the 0, 	(r) in (4.2). 	We approximate E
I 
[fM -] by kcr 	 O 

where C is the intra atomic interaction energy. 	Now 

= 	2 ,,'1(11-12) < 	t 
q I2 

( — q 	n 0-- 	• / 	k 0---  E 

N 

(i - 
(4.21 
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using the single particle density matrix (4.15) derived by Gutzwiller, 

where ri , 	is the number of electrons with spin 0--  and K o- is the 

occupied region of k space in the Bloch state (4.1). 	We have 

therefore a piecewise constant occupaction probability in reciprocal 

space, the discontinuity at the Fermi surface being given by 	n, 

is seen to consist of two parts : a scaled Fermi distribution function 

corresponding to the correlation reduced electron hopping, and a 

constant throughout the band representing the localised property of 

the electrons in the presence of correlations. 	Thus within a framework 

in which the Fermi surface is built in from the start we have the 

possibility of both itinerant and localised behaviour without the 

need of postulating that some of the electrons are localised. 

The energy of the electron gas is then 

CU 
C (4.22 

where we have normalised 	C - 0 	such that E = 1 E 
GA NI) 	 ki 

and Ei  z I E -G 4 	are negative. 	nq 

IA Ki 
The ground state energy is then obtained by minimisation of 

(4.22) by varying Vo. 	This determines Vo  as a function of C. 

If n 	N then with m and )1 now being the number of 1 	and 

	

spin holes and V 	the number of empty lattice sites, the inter- 

action energy 	be 	C ( 	t- V0  ) giving the same e:/.dre',,sion 

as before for V
o 

upon minimisation of the energy. 	In the atomic 

limit U 	co so with the normalisation 	= o 	the 

Band 

energy will be zero if n 	N and Ck-1\1 1 	if 	Yl> NI . 	Thus ignoring 

the small shift s in (4.8) the cohesive energy/atom in the solid is 

v 	 (4.23 
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where Frl-  )11/N 3  p 
	

and 	Vo /1\1 
	

and for 

n 	N 	hit 	and 	are are the number of 	and 4 	spin electrons 

and V
o 

is the number of doubly occupied sites in the ground state, 

whilst for n > N j 	VA and 	are the number of 1' 	and \// 

spin holes and V 0  is the number of empty lattice sites. 

For the case of one electron per atom considered by Brinkman 

and Rice (1970) the energy (4.22) is just 

L (4.24; 

Minimising with respect to \)0 	gives 

v 	i (1 r c 
8E I  

(4.25: 

giving 	E: 
	

( I f- c l2 
	

(4.26] 

N 
	 ) 

So at a critical value of the interaction strength 

C = 
	

(4.27, 

the system undergoes a metal insulator transition with the number of 

doubly occupied sites and the ground state energy going to zero. 

We shall consider the case ri  =tit j 	where 

n is not necessarily equal to the number of lattice sites (Sayers, 1976 ). 

If C = 0 the Hartree-Fock result V
o 
= Pq, 2  is obtained. 	If C is 

small we expand in powers of S 	defined by 

Yo 	h-Z 	s 	
(4.28 

with 	S 	small. 	Thus, from (4.17) 
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- 2 s 2 	1- 	0 ( 6 3  ) (4.29) 

 

3(i— v/2. ] 3  

 

2 g 	h E f Ch — S 

h  3 ( 1 _0/z ) 3 

Minimising with respect to S 	gives 

h3 ( 	i3 

h 

,4 C 	F VI 2  ( 	j
3 
 C

2 	 C 3  

(s) (4.30) 

(4.3U 

(4.32: 

Equation (4.31) gives the reduction ( E 	is negative) in the 

number of doubly occupied (empty) sites due to correlation effects to 

first order in C. 	For small c the first order correction to the 

energy is seen from (4.32) to be just the Hartree-Fock interaction 

energy Cn
2
/4. 	The effect of correlations is seen to be of order C

2 

o,' wall 	avi is 	to rPrince LhE,,  intc:raction energy f0:1 he 

Hartree-Fock value by allowing electrons to avoid coming together on 

the same atom. 

For the general case C is not small and for m = 11 the 

equation for vo  obtained upon minimising the energy is 

(vb,v01' 	—1 

(4.33 

- ( N - 	) c  
ZF 

2h\f- 
•E• 



C 

vv  

(4.34) 
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which may be written in the form 

Sh-Cf-,1- 1 C 	— «-17k) c 

tz 

As C -\-/-  -> y-T1 z  the Hartree-Fock result, whilst as 

Cm 	I/2  ) 	Vv 	< 	< f 
g 

Dividing through by g 	I c 	and making the substitution 

ZE 

   

(4.35: - 	1 o 	) 

   

    

gives the reduced equation 

oC 3  f pD( 	= C) 	 (4.36 

w;th solutiTls 

DC + tr 

▪ = 	u+ V' 4. 	U. 	\11 3-  (4.37 

   

  

3 

• 

— 4 	_ u, - v i 473 
Z. 
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where 

       

       

     

3 

 

     

(4.38) 

      

      

   

— 

  

     

V 7 

   

3 

 

        

        

	

Clearly 	with 	( (z  Z  + ( 19  (5  1 3 	if 

	

C) 	there is one real root and two conjugate complex roots 

	

= O 	there are three real roots of which at least two are equal 

b < 	there are three real roots 

In the last case we must find the cube roots of a complex quantity 

the solutions being 

14?-1  

	

3 	3 

	

1411 	(-03 
3 

qi1113 
k 1:s 

 

(4.39 

/z 
where p 	is the solution of cor 	

[(tV 3  ]'' 
although the above represents an analytic solution of (4.34), with the 

coefficients in (4.34), b 	is a rather complicated function of 

C7. 	and vn  and may vary between negative and positive values 

as these parameters change. 	In order to display the behaviour of 
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the solutions of (4.34) it is necessary therefore to follow the roots 

numerically. 

We have solved (4.34) for several model densities of states. 

For the rectangular density of states (4.7), for example, neglecting 

the small shift s 

1-3 
(4.40; 

Figure 4.2 illustrates the variation of v o 	for various values of 

C(zu as the band is filled for this density of states. 	Figure 4.3 

shows the variation of the cohesive energy defined by Equation (4.23). 

For one electron per atom a metal-insulator transition occurs for 

C/
/2.. 	- 2 	. 	This corresponds to the situation discussed by 

Brinkman and Rice (1970). 	For any other number of electrons per atom 

the Gutzwiller ground state is always metallic. 

The inclusion of intra-atomic electron interactions gives a 

lower cohesive energy than the parabolic variation (4.8) obtained by 

Friedei (1964, 1969) using the Wigner-Seitz approximation to the 

correlations, the reduction in the cohesive energy being the greatest 

for a half-filled hand. 	If n is the number of electrons (holes) 

C, 
per atom in the band, then if 	fIL3 	is small we see from Figure 4.2 

that the number of doubly occupied (empty) lattice sites V
o 

increases 

dlonoijonic.ally as 	='. 1. 	H'mce tha int?_raction Cif 	is greatest 

for Ti = 1. 	If clz L3 is large, Al 	is small and since the number 

of configurations in (4.14) affected by /1 	is greatest for a half 

filled band, the increase in kinetic energy is greatest for that case. 

This is further enhanced by the fact that for a given value of C(2,_(.3 , 

/1 	is smallest for a half filled band. 	Thus from (4.34) and (4.18) 

we find 
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025— C/2u)=0 

0 
to 

/2co 025 

E 
0 

020 
C/20) = 0-5 

C) 
0- 

C/2 cu = 0.75 

Total number of electrons ( holes) per atom in band 

Figure 4.2. Variation of the number of doubly occupied (empty )  

lattice sites V, for the constant density of states (4.7) as 
the number electrons (holes) in the band is increased for 

N(n > N) for various values of C/2N. 
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0.25 C/ 2w = 0 

0-20 

015 

C/2w=075 

C/2 co =1 0 

0.05r  

iii  

/ 	L 	. 	___I 	  (______--C/2w=2.0  
0 	01, 	_0.8 	12 	1.6 	2.0 

Total number of electrons per atom in band 

Figure 4.3. Variation of the cohesive energy defined by 

(4.23) of a single non-magnetic band as the band is filled 

for various values of C/2W for the constant density of 

states (4.7). The case of C/2W = 0 corresponds to the case 

studied by Friedel (1964,1969) . 



(4.41: 

0.4 

96 

I 

( I F 	C  7Z  L,)) 

( 	- 	L.))  

for a symmetric band with lower limit at --LJ and upper limit at („) 

Figure 4.4 shows the variation of /Y' given by (4.18) for the rectangular 

density of states using the calculated values of Vo 	
presented in 

Figure 4.2 for several values of C 
	

C--) 

For a small number of electrons per atom in the band the probability 

of two electrons coming together on the same atom is small and the 

interaction energy is low. 	For a nearly full band fluctuations are, 

of course, limited by the exclusion principle. 	Thus for a small 

number of electrons or holes in the band the number of configurations 

in (4.14) affected by 11 is small and the wavefunction resembles the 

Bloch state (4.1). 	For a half filled band, however, a large proportion 

of the configurations in (4.14) are affected, and for large 
C/ 
 ZLJ the 

itinerancy of the electrons, and hence their ability to participate in 

the bonding, is greatly reduced. 	This is illustrated by the quantity 

1 in (4.21) which gives the discontinuity at the Fermi surface. 

For m = ? 

C 	0.3 

, 
_ r1 1 L. • 

(4.42 

which 	1 as fir 	0 and y 0 as n —> 1. 	For other values 

of C(z_L3 the quantity q 	is plotted in Figure 4.5 for the rectangular 

density of states, using the values of vo 	presented in Figure 4.2 

If we consider only the frequency dependence of the self energy, 

the effective mass 	 1111(vi 	is given by the reciprocal of the 

discontinuity at the Fermi surface, 	. 	Thus the value of GI 	may 

be determined by de Haas van Alphen effect measurements. 	It is found 
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Var12.Lion of the 

discontinuity at the Fermi 

surface q given by (4.17), 

for m = Nt , with r:jevaluated 

for the rectangular density 

of states. 

Figure 4.4. Variation of -L 
given by (4.18), for m =72, 

with Tievaluated for the 

rectangular density of states. 
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3 
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- 	< -F  

(4.44 
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(Gold et al. 1971) that the oscillations arising from the minority 

spin sheets in iron are typically four orders of magnitude weaker than 

those arising from corresponding external orbits around the similarly 

shaped Fermi surfaces of Mo and W, indicating a large effective 

mass and small 	. 

In the middle of the 3d, 4d and 5d series the body centred 

cubic structure usually has the lowest energy. 	This is due to the 

band being subdivided in the BCC structure into a bonding and anti-

bonding part connected by a region of low density of states as a result 

of there being two sublattices, all the nearest neighbours of an atom 

on one sublattice being on the other sublattice. 	In order to include 

this possibility we have studied the cohesive energy for the double 

triangular density of states 

t.) 

	

-- ZC 
	

( 	C 0 

	

12 
	

(4.43 

O ■• 
Lo  2 

intended to represent crudely this behaviour, for lifhich 

Figures 4.6 and 4.7 show the variation of vo 	and the energy difference 

between the band and atomic limit E
c 

as the band is Filled for this 

density of states. 	The behaviour is seen to be rather similar to that 

found For the rectangular density of states. 
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Figure 4.6. Variation of the number of doubly occupied (empty) lattice 

sites Vo  for the density of states (4.43) as the number.of electrons 

(holes) in the band is increased for n--N(n 1?-1') for various values of 

C/2W. 
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Figure 4.7. Cohesiveenergy defined by (4.23) of the density of state! 

(4.43) as the band is filled for various values of C/2W. 
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4.4 	Application to the Transition Metals 

The cohesive energy does not give a reliable indication of 

of the binding strength in the transition metals since it involves 

the ground state of the free atom, and more can be learnt about the 

nature of bonding from properties involving changes within condensed 

phases such as the elastic moduli, melting point and heat of fusion 

(for values see Gschneider, 1964). 	In the 4d and 5d series these 

properties behave in much the same way as the cohesive energy, peaking 

to a maximum at a point corresponding approximately to a half-filled 

band. 	In the middle of the 3d series, however, the Young's modulus, 

shear modulus, bulk modulus, melting point and heat of fusion are much 

smaller than we would expect on the basis of Friedel's model. 	This 

departure from the roughly parabolic variation observed in the 4d and 

5d series begins at Cr, is greatest for Mn, and decreases in 

magnitude as the band is filled further, Ni having properties 

similar to those of Pd and Pt. 	In particular, the properties of 

Mn seem closer to those of Cu in the same period with a full d band, 

in which the d electrons only contribute to the cohesion through 

s-d hybridisation, than to those of Tc  and Re  in the same group, 

where strong bonding is indicated in accordance with Friedel's model. 

In the middle right of the 3d series, therefore, the d electrons 

seem to be prevented from participating fully in the bonding. Further 

supoort for this conclusion comes from the variation of atomic volume 

in the solid, which would be expected to decrease with increasing binding 

strength. 	In the 4d and 5d series (Gschneider, 1964) the atomic 

volume decreases smoothly as the band becomes half filled, and then 

increases as the band is filled further, in agreement with Friedel's 

model. 	In the 3d series however, Fe and Co have an atomic volume 

larger than that of Ni, in contrast to the behaviour in the 4d and 

5d series. 

This behaviour can be understood in terms of the results of 
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4.3 which show that the effect of electron interactions on the 

itinerancy of the wavefunction is greatest for a half-filled band. 

Indeed we can extend Gutzwiller's method to deal with correlation 

effects in the d band by introducing variational parameters
1,1 

which determine the optimum concentration Cn  of atoms with n electrons 

in the presence of electron interactions. 	Assuming, for simplicity, 

that the d band consists of five identical sublevels, the concentration 

C
n 

in the absence of correlations is just 

c 	= 	I o 	( 	\ I 0 - 

h 	-And 1 

  

(4.45) 

where p is the average number of electrons per atom in the d-band. 

In Ni, with p = 9.4, screening by the 0.6 electrons per atom in the 

4s band will greatly reduce the energy difference between the 3d
9 

and 3d
10 
 configurations, whilst fluctuations to states with more 

d electrons are, of course, suppressed by the exclusion principle. 

With less electrons per atom in the d band, however, fluctuations 

to states with large interaction energy become possible, the number 

of configurations in the Bloch wavefunction with large interaction 

energy being greatest for a half-filled band. 	Thus in iron, with 

p = 7.1, screening by the 0.9 electrons per atom in the 4s band will 

reduce the energy of forming a 3d
8 

configuration, but the cost of 

a 3d 	or 3d1°  configuration, ohich have appreciable probability 

according to (4.45), will remain prohibitive, as was pointed out by 

Edwards (1970). 	In the ground state the probability of such 

configurations will therefore be considerably reduced, to an extent 

determined by the balance between the kinetic energy, which would be 

lowest if the electrons were unrestricted in their motion, and the 

interaction energy. 	In the middle of the 3d series, where the 

number of configurations with high interaction energy in the Bloch 

state is large, there will therefore be a considerable reduction in 
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the i inerancy of the wavefunction leading to the anomalous behaviour 

of the cohesive properties seen in the middle of the 3d series. This 

is in contrast to the 4d and 5d series where the bandwidth is large 

and correlation effects may be included by analogy with Equation (4.32), 

the first order term in the interaction energy being the Hartree-Fock 

term. 

The importance of correlation effects in the middle of the 3d 

series is well illustrated by the difference in electronic structure 

of iron and nickel emphasised throughout this thesis, nickel behaving 

in a way characteristic of an itinerant ferromagnet whilst iron has 

many of the properties of a system of localisted spins, the behaviour 

being as if there are two spins per atom, coupled ferromagnetically 

by Hund's rule exchange. 	The spin coupling in iron is made effective 

by the reduced probability of an atom being in a 3d9 or 3d
10 

state 

and these spins remain aligned at temperatures well above the Curie 

point (Hofmann et al 1956, Mott and Stevens 1957)  despite becoming  

decoupled from neighbouring  moments. 

In the 4d and 5d series where the average Coulomb interaction 

between two electrons on the same atom IJ 	is small in comparison 

to the bandwidth we may neglect correlation effects to first order 

in U , the interaction energy per atom in the solid being 

to 

2vi ( h -11U 	I o 

 

_12  110 - 	( 
-1" 

lo 

 

1,11 1110-',H! 

 

 

(4.46 

where p is the number of electrons per atom. 	If L 	r  

where t is an integer and J is the average intra-atomic exchange 

integral the energy in the atomic limit will be 
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2 
r r io_ou_cri fic (1-ci (u-U) 	'[/() 	5 	

(4.47: 

I (0 ( r i)V + I c 	 - Tho-H(9-pJJ — I Jc(I--ci1)  1) 

2. 

thus, for the rectangular density of states (4.7) neglecting the small 

shift s the cohesive energy is 

E c 	r 	 „do- + 	(i_ J (4)-0--) Ho 	c 
z ZA-.) 'Lo 	 2 	Zi 7  

= 49_ ( (Q_ iD) (4 _u/zuj _ 	(1,1)( ci 	\--F/2.L3 	
(4.48; 

2p 	Z 

+- I c (1-c) (u-s) 12.L, 

where c is the atomic concentration of atoms with (( 	1) electrons. 

The effect of U is seen to reduce the amplitude of the cohesive 

energy curve from that obtained by Friedel, the reduction in the 

cohesive energy being greatest in the middle of the series. 	In 

addition we obtain a dip in the middle of the series due to the intra- 

atomic exchange coupling J. 	This arises from the well known 

nal f 	d s'n,,Hs in atoms. 	It is important to 

note in (4.48) that although J is usually much smaller than U , 

its effect in the middle of the series is of the same order of magnitude 

as that of V . 	For an almost full or empty band, however, the effect 

of J is negligible. 

The first order correction to the cohesive energy due to Coulomb 

correlations will be 
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ECORR 
2 .5 
b 	 (10 

2 

(4.49) 

by analogy with (4.32) where the denominator D is of the order of 

the bandwidth. 	This can be understood in second order perturbation 

theory (Friedel and Sayers, 1976) as due to the virtual excitation of 

the P/10 electrons per atoms in a given spin orbital to the five 

empty porbohs (1 - P/10) of orbitals with the same spin. 	The 

matrix element of each excitation is If- (1 - 4! 	v 	. 	The number 
lo 	] 

of excitations is 10 x 5 and the energy denominator is of the order 

of the bandwidth 2. 	. 	We note that for small U the corrections 

to E
c 

of order U 	and U z  can be considered as the first terms 

of a development of an "effective" Hartree-Fock correction 

(1°1'1  FEF 
20 

UE. p  = 	i - ) u 	 U 

lo 	zLi 	I + 	 to-ri 
io 	 2.L3 

which is reminiscent of Kanamori's formula (Kanamori, 1963) to be 

discussed in Chapter 5. 

A further correction to the cohesive energy, important in the 

5d series, is the spin orbit coupling which we shall introduce only 

to first order in the perturbation. 	In that case spin orbit coupling 

is important in the free atoms, but not in the solid where the orbital 

moment is quenched to first order. 	Thus the correction to the 

cohesive energy due to spin orbit coupling will be - ), LS 	where 

with 

(4.50 
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(S - ID ) 

10 

	

L 	- ) 	si 

I" 5  
25 z (10-p) 

(Friedel and Sayers, 1976). 

	

4.5 	Conclusion  

The cohesive energy and properties reflecting the strength 

of binding in the solid such as the Young's modulus, shear modulus, 

bulk modulus, meling point, heat of fusion and atomic valence vary 

in a regular way across the 4d and 5d series and indicate a maximum 

cohesion from a half filled band. 	This shows clearly that in the 

4d and 5d series the d electrons are collective and Friedel (1964, 

1969) explained this behaviour on the basis of a simple band model 

in which the energy cost of charge fluctuations are neglected, 

correlation effects being treated in the Wigner-Seitz scheme. 	In 

the 3d series, however, it is known that electron interactions are 

crucially important in determining the grouffi state 2nd result, for 

example, in the occurrence of magnetism within this series. 	Thus 

a large deviation in the above properties is observed in the 3d series 

from the behaviour in the 4d and 5d series indicating, for those 

elements in the middle right of the 3d series, a much weaker bonding 

than is expected on the basis of Friedel's model. 	The effect of 

electron interactions on the electronic structure and cohesion in the 

single band model was investigated using Gutzwiller's method, the 

(4.51) 
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principal results being shown in Figures 4.2 to 4.5 for the rectangular 

band considered by Friedel. 	The effect of electron interactions is to 

decrease the number of doubly occupied sites vo 	in the ground state 

as is seen in Figure 4.2 	For small c, U o 
 increases monotonically 

as the number of electron (holes) per atom 1--7 > 1 and consequently 

the reduction in the cohesive energy due to electron interactions is 

greatest for a half filled band. 	If the interaction energy C is 

large the parameter /j  in (4.14) is small and since the number 

of configurations in (4.14) affected by (0  is greatest for a half 

J 
filled band, the increase in kinetic energy due to correlation effects 

is greatest for that core. 	For a small number of electrons in the 

band, however, electrons rarely come together on the same atom and the 

number of configurations affected by A/ is small. 	Similarly, for 

a nearly full band, fluctuations are limited by the exclusion principle. 

Thus for a small number of electrons or holes in the band the wave-

function resembles the Bloch state obtained in normal band structure 

calculations. For a half-filled band, however, a large number of 

configurations in the Bloch state are projected out of the wavefunction 

and the itineracy of the electrons is severely reduced. 	These 

conclusions are seen to extend qualitatively to the 3d series where, 

in the middle right of the series, there is a much weaker cohesion 

that is expected on the basif of Friedel's model. 	Correlation effects 

are r:ot important for elements at the beginning of the series where 

the nuclear charge is small, but as the band becomes filled the band- 

width decreases and correlation effects become more important. 	In 

nickel the energy cost of forming the 3d
10 

configuration will be 

much reduced by s-electron screening and fluctuations to states with 

large interaction energy are prevented by the exclusion principle. 

Thus, for Ni, relatively few configurations will be projected from 

the wavefunction in the ground state and band structure calculations 

are appropriate for treating the electronic structure. 	In the case 
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of iron, on the other hand, with 2.9 holes per atom in the d band, 

there is a larg2 probability of having 3d
9 

and 3d
10 

configurations 

in the Bloch wavefunction , the energy cost of which will be largely 

unaffected by s electron screening. 	The probability of such 

configurations would therefore be greatly reduced in the ground state 

by the admixture of antibonding wavefunctions into the wavefunction 

with a corresponding decrease in the itineracy of the ground state. 

These conclusions, derived from the cohesive properties of the 

transition metals, are in good agreement with the difference in the 

magnetic properties of iron and nickel discussed in Chapter 1. 	Thus, 

whilst nickel behaves in a way characteristic of an itinerant Ferro-

magnet being adequately described by Stoner theory, iron has many of 

the properties of a system of localised spins, the behaviour being 

as if there are two spins per atom, coupled ferrornagnetically by 

Hund's rule exchange. 	This coupling is made effective by the reduced 

probability of an atom being in a 3d
9 

or 3d
10 

configuration in 

the ground state. 	These spins remain aligned at temperatures well 

above the Curie point (Hofmann et al 1956, Mott and Stevens 1957) 

despite becoming decoupled from neighbouring moments. 

4.6 	Surface Properties of Transition Metals  

It is interesting to consider the implications of the present 

work for the behaviour of the d electrons at the surface of a 

transition metal in view of the importance of this in a number of 

important processes including chemisorption and catalysis. Because 

of the reduced opportunities for hopping at the surface, correlation 

effects are expected to be of particular importance here. 	As has 

been pointed out by Cyrot-Lackmann (1969) and by Brown and March 

(1976) the behaviour of the surface tension of liquid transition metals 

behaves in much the same way as the cohesive energy in the transition 

metals. 	Unfortunately, there are to date rather few results for the 
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solid phase. 	Cyrot-Lackmann (1967, 1969) has calculated the behaviour 

of the surface tension in the absence of correlations using the tight 

binding approximation and Finds that it varies parabolically with the 

filling of the band as does the cohesive energy. 	Experimentally the 

surface tension )( 	behaves in this way for the 5d series but for 

the 3d series there is a considerable deviation as we would expect 

from our discussion. 	Assuming that the average number of electrons 

per atom near the surface remains very close to that in the bulk 

(Friedel, 1976) we obtain from (4.46) to (4.49) to 2nd order in U 

U b ( 	- 	25 

z 0 
1 U  

) 

-J - 
S (4.5 

   

     

      

(Friedel 1976, Friedel and Sayers 1976) where z is the number of 

nearest neighbours in the bulk and S z the decrease in the number 

of neighbours for surface atoms. 	04C 	is a numerical coefficient 

arising from the local d band width at the surface being 

— 	z 	( z - 	z) 	. 	= 1 corresponds to simple 

hopping whilst 	c = 1/2 is obtained by deducing the band width 

from the second moment of the density of states. 

The Coulomb correlation to 2nd order in V  is seen to 

produce a central dip in the otherwise parabolic variation of the 

cur-Face tensio,I. 	Higher order terms are seen from 	4.3 to 

reduce the amplitude of this dip without altering its shape. 
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Chapter V 

Ferromagnetism in the one-band  Gutzwiller Model 

5.1 Introduction  

If we neglect correlations between electrons of 

opposite spin the number of doubly occupied atoms is 

mp/N for all values of C, the energy of the Bloch wave-

function (4.1) therefore being 

E 	= ' - + - + Cmu HF 	 s!, 
(5.1) 

where E
fi 
	 and are negative 

with the normalisation 0.  

Defining n ) by 

n 	= m-u 
	 (5.2) 

Where n = m+n is the number of electrons, we have 

M = n (1+S) 	p = n (1-3) 	 (5.3) 
7 	2 

and e;:panding in small 	gives 

where n'''S = 1 (m-p) is the number of spins turned round 
0 	75" 

and 1  n -?' 	= i (m-p) 	is the average increase in energy 
2 n( ,) 	2 n(E,

i
) 

when a spin is reversed, n(Ef) being the density of states 

at the Fermi level. Thus for small 52 
the difference in 

energy between the magnetic and non-magnetic state is just 

E 	E 	h T [ — C a 
N h (EF) 	

(5.5) 
 

Magnetisation will therefore lead to a lower energy if the 

Stoner criterion 
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Cn(Et) >1 	 (5.6) 

is satisfied. 

The Stoner criterion clearly overemphasises the 

tendency to ferromagnetism since, as we have seen in 

Chapter 4, when C is large the number of doubly occupied 

atoms Vo  in the ground state is substantially reduced 

below the Hartree-Fock value 
mu 
 /N. The interaction energy 

in the ground state is therefore greatly reduced below the 

value 
Cmp 

 /N in (5.1) and to compensate for the effects 

of correlation C is often replaced by an effective parameter 

C 	in the Stoner criterion which becomes 
ell - 

C 	n(E,) >1 
eff 

(5.7) 

We shall evaluate C
ell 

 in Gutzwiller's model in 

2 5.2, the results being valid for arbitary number of electrons 
(holes) per atom n in the band. This extends the work of 

Brinkman and Rice (1970) who obtained the Stoner parameter 

for the case of one electron per atom in the band. In 

5.4 the results are compared with those of Kanamori (1963) in 

the limit a — 0. Gutzwiller (1965) compared the energy in 
the non-magnetic state m=p in the limit C -*c.c. with that in 

the state in which all the spins are aligned parallel and 

thereby obtained a criterion for complete ferromagnetism, 

but did not consider the possibility of a partially aligned 

state. We find ir45.2 that even when the ferromagnetic state 

is of higher energy than the non-magnetic state, a partially 

aligned state may have the lowest energy. In p.3 we 

discuss the dependence of the energy on the magnetisation 

and illustrate this for a model density of States and the 

case of one electron per atom in the band. 
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Thus C 	-2 
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Before proceeding to calculate the Stoner parameter 

in Gutzwiller's theory we can estimate the effect of 

electron correlation on the effective interaction between 

electrons by finding the value of Cur which, when substituted 

for C in (5.1), gives the same energy as that of the 

non-magnetic ground state in Gutzwiller's model correspond-

ing to the bare interaction C. CLiF so defined is then 

given by 

C 	=-- 
	

[2mE(q-1) 	Cvo a 	 (5.8) 

where, in the non-magnetic case m=0 

that is, C
NF" 

tends to a finite limit of the order of the 

bandwidth as C +c,o . This occurs because when the electron 

interaction is strong electrons will avoid coming together 

on the same atom by sacrificing a one-electron energy of the 

order of the bandwidth. This increase in the kinetic energy 

then corresponds to the effective magnitude of the inter-

action, a point first emphasised by Kanamori (1963). 

In the ease of the rectangular density of states 

n(E) = 1 	‹P<W 	 (5.11) 
2W 

otherwise 

for which 	= W(F1-1) we find that Cil!  /2W± 1 as C 	. 

We can evaluate C HF defined by (5.8) as a function of C 

using the results for V obtained in Chapter 4. C 	is 
HS 

plotted against C in figure 5.1 for this density of states. 
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CHF / 2W 

0.8 el/at 

0.8 
0.6 el/at 

.4 el/at 

2 el/a 

10.6 

04 

1 

0 	 0.5 	 1.0 	 1.5 	C/2W 	2.0 

Figure 5.1. Variation of the effective interaction CHF with the 

hare interaction C for the density of states (5.11). 
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5.2 Stoner parameter in Gutzwiller's theory  

For small n 3 = to 	the exchange splitting is given 

by 

A = n  x 	1 	 (5.12) 
2 	n(Ef) 

where 	is is the number of reversed spins, giving 
2 

- En (CjritE: 	h; + 2r 1,1 1 	vl Z  A  

2 2  2 	 1  EF 

 

17-. v) (c.; j cii 	= 	h 6 	- E. F h -:( 	+ 	nz -7  z 
Q, 

	

2 	Z 	11 (E- Fi 

(5.13) 

Now for small 

z 	h 
y1 N - yyy  ) 

.e\ 

2 ( 14/z— v) 

33 

(,4("/,-V 

4 h  

102 It  

4. 	1-1 	4 	It 

L 	io24, [nf-v) LT  _ 

i 	I 	 + 	VI (r Tit- 2 ;\1 — h 4, v  1 j'. . v 112. 	1 — ,2_±2-__  
Q  

	

3 ( '1, - Y)2. 	1o24,(i1/2. _v)-___ 

(5.14) 

1 r- 

7:1,1 

rs" 	 C h 

2 	2 

"/  

   

(5.15) 

with similar expressions for q and for m(N-m) 	obtained 

by reversing the 

neglecting terms 

expansion 

sign of 	and changing m for u. Thus,  

in 	4  and higher orders and using the 

 

N 
Z 

2 

(5.16) 
hp  [NJ 	-/") 
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we obtain for the energy per atom 

E(v) ,.- 	( v''7.- --N)[((-171' i \-; ) ii2  + V-- 112" 1 'Z'  2 .--- 

( 1 - 	tz.  ) 

 1 	-* 1,  Z 
h-  fi 

ci_t, /z,) 	 2h(c F.0 1  

4_ i:-, Z  6- 

- h 

(5.17) 

r- 
VI 6 	- h E 

_2(hi2,-\711  

  

(1 	VV2.-■/- )1( 1-r-\. +\/-  

 

\-; I  

it. I- ;-■ 	r ) 

z 

4- 

   

  

c;12.-■/- )[(1-c,- 4\-)- ) 

   

which has the following asymptotic behaviour 

	

i ) If 	=0 
	

17:7 	2  ( 	— 	J  
( I 

	

(ii) If 
	E R7) = 16 \-2 ( 1/2 -■-/) 

- f 	-1-r7^ [ 14, 	(C.F) 	( 3 

(c.-. F ) 	 V1 2  

/, 
+V -2- .1 

(5.18) 

+ C-C--;  (5.19) 

    

    

    

If 

2.  

t i1 H- 

rl 	F  14.  

( 1- "-) /z. ) 

if, (e ) [ 	 2  EF 	I 

Ui -14(z  )Z 	-; /z  )j 

(5.20) 

The non-magnetic sLate wi:11 be unstable against spin 

alignment if 

   

f c E cAV 

   

    

C-5 

  

CrS 
(5.21) 
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is negative, where GS is the non-magnetic ground state. 

The non-magnetic Bound state energy must have a minimum 

at the optimum number of doubly occupied atoms Vo. The 

non-magnetic state is therefore unstable against ferro-

magnetic spin alignment if 

t h It s ) 

- to 2  

( 1 - 	 j 2 	Z 	C-1 4 	2 	( 	t Ti t, I 	2  

- G rl  

--, 	/ 	f 
	11 	

If 7 2 
) 	— Vti C ( — 5 + 	 vo  z 17, (1 -5/z.  

1 r( 	z 	'ez 3).- 

< 0 

(5.22) 

the Stoner parameter Ceff then has the following behaviour 

(i) If c = 5-  corresponding to C=0 then Ceff = O. 

(ii) If Vo = 0 corresponding to C -)-0,q6 and nil- 1 then 

- 
-e 	ne + 2Ef(1-11/2 fF 	_ 	 (5.23) 

(1--1/2)
9  

 

(iii) If n = 

   

3-16 0  + 16V02  I 	(5.24) 
Cef 

  

4(1z —V0)4'

9  

 

  

In this case vo  =1 	14- C 	(5.24) becoming 
) 

8e 

C/ - 
= C(1 -- 160 Ceff  

(1 - C/8 i)2 
(5.25) 
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in agreement with the result obtained by BrLnkman and 

Rice (1970) who investigated the susceptibility enhancement 

in Gutzwiller's model for one electron per atom. This 

result may also be obtained as follows. For one electron 

per atom we have to first order in 3 2  . 
v—  = 	 7  ( 71.01(G, 

 

(5.26) 

  

  

V 

The condition for tto  then being 

/ 	k.r )] 
\z 

( 	 ) 

3  7 ( i/ 	.7, 	2 vk)  

-I- C=0 (5.27) 

If the correlation is strong such that v
o 

<<1 then 

vv 	 C --  I 	__ 
< 

C 

	

1
-
32  I 
 —C 	(5.28) 

46h(GFL 	Itt 2 	3z 

In general we look for a solution Vo  = A+B
2
. 

Substituting into (5.27) for small 
Z2 

and equating powers 

. 2 
of 	gives 

 

14. c 	 Z  ( 	C 	 C rt f 	I 
-9-- ) U 	 C: 1 	 (EF) 

 

V, = (5.29) 

which is seen to reduce to (5.28) when 1 + C 	<<1, that 

is near the metal insulator transition. 

Substituting (5.29) into (5.26) then gives 

E 	= 	( + c 12  1- 	( 	z  
c7 	 IC- F i 

Ch (cA  ( 1 — r io t, -11 

c f3i-) 
(5.30) 

in agreement with (5.25). 
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Gutzwiller (1965) obtained a criterion for strong 

ferromagnetism by comparing the energy of the completely 

aligned state with that of the non-magnetic state in the 

limit C > o . In the non-magnetic sta te 

 ENm  = nqe + Cv (5.31) 

with q given by (5.9). As C > oo , 	(N-n) nc7  

(N-11 2) 

so ii C. is the average energy of the n electrons if they 

all have the same spin, complete ferromagnetism will be 

possible for sufficiently large C if 

7.■ 

C 
_ n/ , 
OA- 2 ) 

(5.32) 

We shall illustrate the behaviour of the Stoner parameter 

Ceti  in Gutzwiller's model by considering several model 

densities of states. 

1. Rectangular Density of States  

For this density of states given by (5.10) 

Ef  = W(n-1) 

ne = 	(n-2) 
2 

(5.33) 

The :='tener 	C
eff 	

given from (5.22) by 

Cer. 

    

17, 

  

      

    

Z  ( 1-T:N/Z )( /2 -Co jr(14if-\7„)1/2 t,:zi' 

     

 

	

i 	_Ci )1  

	

4- % 	vQ) 

 

— 

b, 	..1r2- ] 

- v:, 	c-- F  
( - /z  

2 (f - 	—CF) 

(5.34) 

and is plotted in figure 5.2 using the results for 

obtained in Chapter 4 for this density of states. As 

> (N-n) 

C> oo  
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Figure 5.2. Variation of the Stoner parameter CFF, (5.34) with 

C for the rectangular density of states .(5.10) . 
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C F F 

	 E 	1- Z ( l - A /2, ) F 	(5.35) 

1;"  

and it is clear that the Stoner criterion (5.7) is not 

satisfied with E
f and ne given by (5.33) and n(Ef

) given 

by (5.10). Thus Ceft  is never large enough to cause a 

ferromagnetic transition for this density of states. For 

small n the variation of C
eff is seen to be close to that 

of C 	defined in 5.1. In this limit this supports 

Kanamori (1963) who took the Stoner parameter C
eff to be 

given approximately by the effective interaction between 

electrons of opposite spin in the non-magnetic state. 

As t - 1, however, CHF  - C
eff is seen to increase and we 

therefore expect that Kanamori's theory would overestimate 

the tendency to ferromagnetism. This is seen to be the 

case in 	5.4. 

For this density of states the average energy in 

the completely aligned state is Ef  = W(n-l) and it is 

seen that Gutzwiller's criterion (5.32) for complete ferro-

magnetism is also not satisfied for this density of states 

for .c:ny 	:st C. 

2. Triangular density of states  

- (..)(1 -1-0)<G <  Zue 
(If aj Ls) L 	Z] 	3 	3 

_ 	_ 	 2 tJ G < 	( I 

= 0 	otherwise 

which is positioned such that 2e = 0k  
No-k 

(5.36) 
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Consider the case in which the Fermi level lies in the 

lower part of the band. We then have 

= 	j 	in 2  - 

3 

= (,) E 2 ( 	1 2 k3  - 	L)° `'' 
	

(5.37) 
3 

with n 	(1+0). 

Figure 5.3 shows the variation of Ceff  with C for the 

case 0 - 0 for several valves of n, whilst figure 5.4 

Thows the variation of 1-n(Et)Ceff  with C where 

n (E,) = 	n - 
	

(5.38) 

from which the value of C at which the non-magnetic state 

b.,comes unstable with respect of spin alignment is 

easily deduced. Again, for large C, the effective inter-

action between the electrons is very much reduced by 

correlation effects. 

As C 	)4D 

	 [  1'  I (1.1a) z t,, 	) 7'14 1 '1- 	i- 

3 
(5.39) 

  

sc) from (5 2:-c) 	non-magnetic state is unstabl) against 

ferromagnetic spin alignment for sufficiently large C if 

r. 

 

1, 
( i+ a)  
I e ) 

(5.40) 

   

v 
I 
I  4. 	- to Z  

  

    

which is only satisfied if the Fermi level lies close to 

the peak in the density of states. Thus if 0=0, for example, 

the non-magnetic state will be unstable against spin 

alignment for sufficiently large C if n ?, 0.66 electrons 
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Figure 5.3. Variation of the Stoner parameter C(5.34) with EPR 
C for the triangular density of states (5.36). 
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0.9 el/at.  

Figure 5.4. 1-n(
Ef)Ceff 

versus C for the triangular density of 

states (5.36). 
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per atom in the band. Table 5.1 gives the maximum 

value of 0, °MAX , for which a ferromagnetic transition 

is possible 

in 	the band. 

Table 5.1 

for a given number of electrons per atom 

Values of 0 
MAX 

0.1 0.2 0.3 0.4 0.5 

°MAX -0.83  -0.66 -0.50 -0.35 -0.21 

0.6 0.7 0.8 0.9 1.0 

AMAX -0.07  0.05 0.17 0.29 0.39 

3. Double Triangular density  of states 

For this density of states given by (4.43), 

E
f 	W 1 (121) 

- - f(2n)2-3 
3 

if 0 .4, 	whilst if l< n4 1 

F  = 	is) H-hi z 

N4 

(5.41) 

(5.42) 

E 	,.. 	CD I "4- \12. H 	LA 	1. .\3/ _ 3 

L) in 
Thus, as C ---›- op 

  

L.' F 

  

I-. EF-  ( 	" 

 

f 	R/ 12 
12, 

 

(5.43) 

t-\.) 	Cj2-.  1/1 3(2. - b 	k1 a +121 

1.) 	[(i\ri 	1 3'z F. 3,1z 	( - 171 ) j/  t 3 ;•1 	 I C 1:1 < 

/Z.  

So the non--magnetic state is unstable against spin 

alignment for sufficiently large C if 
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1 ,  
( 	/2- > 3+ 3 n 	 cD 

(  1  - 	z > -1 4. 2t„ 	h 	1 
2 

(5.44) 

that is, if 0.171,:*" E40.915. Thus ferromagnetism occurs 

for sufficiently large C if the Fermi level lies 

sufficiently close to the peak in the density of states. 

4. Parabolic Density of States  

For this density of states given by (2.32) 

1,) 7. 2 r: 	( E CA 	3 C- r 	— E 3  
2L3 	2t.) 3  

rte = Z i  t v,(EhA.C. = 	(E 1 -13  
J L.0  

g (,) 2  

So the non-magnetic state is unstable against spin 

alignment for sufficiently large C if 

	

3 	4 -14- D 2 - IG C F. 	Jr  9 	— CF 	< 0 	 (5.46) 

	

Ls) 3 	t.) 	IN) 6  

which is satisfied for Et  > -0.268 

w 

Again, ferromagnetism is only possible when the Fermi 

le:e ii ti, ti The Legion of the maiiaum in the density 

of states. 

It is clear from these examples that in order for the 

non-magnetic state to be unstable against ferromagneti 

spin alignment for sufficiently large C a high density of 

states is required at the Fermi level. For the examples 

given howevr, the critical value of C at which ferro-

magnetism occurs is rather large as may be illustrated for 

the case of one electron per atom in the band. In this 
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case a transition to ferromagnetism will occur if 

1 	- 	Cn(Ef ) 

as may be seen 

(1 	- 

I _ 

- C/ 	- 
16E) <0 

from which it follows 

(5.47) 

that 

,... 	(1 	- 

from (5.30), 

the critical value of C, 
CCRIT,  at which a transition 

to ferromagnetism first occurs is given by 

c R IT - 0 V, 1 C- 

f tf,  TE: 	 J 

 

(5.18) 

This is clearly not satisfied for real C for the 

rectangular density of states (5.10), whilst for the parabolic 

density of states (2.32) and the triangular density of 

states with 0 = 0, 
CCRIT = 6\ 	

8W/ and 	3 respectively. On 

the other hand, a metal insulator transition occurs for 

C = 3W for the parabolic density of states and for 

C = 8W/3 for the triangular density of states with 0 = 0 

for one electron per atom, and it is clear that for a trans-

ition to ferromagnetism to be possible before the metal 

insulator transition occurs a rather larger density of 

states is required at the Fermi level. 

Consider, for example, the following density of 

states 
t  

h. 1i; 	 ( D.',  I 

/-3 	Z k,■ 	)G 

  

2 Li 

U JL .4, 

  

  

      

 

2 

E 	(N7  

 

(5.49) 

\ 1 -DC) 

   

illustrated in figure 5.5, and take the Fermi level to 

lie in the high density of states region. Then 
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states 

  

0 
	

Zr 
	

E 

Figure 5.5. Density of states (5.49) assumed in the text. 



Cell  ÷ 	-W 

4y(1-n/2)
2 

E, = W (n-1) 
2y 	 (5.50) 

ne 	 W [-x-2y + 2xy + n
2
-2n + 1.] 

4y 

So from (5.23) 

-x-2y + 2xy-n
2 

+ 4n-3] as C as 

(5.51) 

So the non-magnetic state is unstable against ferro-

magnetism for sufficiently large C if 

2y > i 	 (5.52) 

From (5.48) the critical value of C at which ferromagnetism 

first occurs is given, for one electron/atom by 

(,) F— Dc — Z+2 Dt 
CRiT 

— Dc — 7, Li  4- 2 	\sit 
(5.53) 

1 - 	- 	1-  

 

whilst the value of C at which a metal insulator transition 

occurs for one electron per atom is given by 

C
o 
= 2W I 	2y - 2xy] 

Y 
(5.54) 

So a transition to ferromagnetism will occur before the 

metal insulator transition if 

4 - 3x 
	

(5.55) 
6(1-x) 

Ferromagnetism is thus favoured by a sharp peak in the 

density of states, that is by large y and small 

5.3 Dependence  of  Energy upon Magnetisation  

If m..711 minimisation of (4.21) by varyingvo  gives 

M 	Yvl - 2/A + 1+ V ) 	(5.56)  

( 	
I 	I/ 

,1\1 1 1 jit,t 1 V11 	2. 6 
V 

.Et 
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Where g(N,m,p,V0) = (N-m-,1+110) (m-V )(P-V),  which 

may be written in the form 

(_v-Vo 	-1 rr-v, i(v1,1 	_ 	 Ni  

`10 

( N-14 N-„,,J c -2. (NI,+kv
° 	(1■1-m01-„,)  c 	 (5.57) 

(1\1-rd Fy  J 

For one electron per atom m-l-p = N and zero 

m3gnetisation m =p this is the situation discussed by 

Brinkman and Rice (1970) with solution (4.25), whilst if 

m == p but _m-4- p 7-::N we obtain the cubic equation (4.34) 

dicussed 

In 35.2 the Stoner parameter was not found to be 

strongly dependent upon the number of electrons per atom 

in the band, the important requirement for ferromagnetism 

being the existence of a high density of states at the 

Fermi level. In this section we shall investigate the 

dependence of the energy on the magnetisation in the 

presence of such a peak in the density of states for 

= 	it u in which case (5.57) becomes 

  

1/14 rt C  

E
t 	X4 el 

‘,J 

2 N - 3 v, 	MSA  c 

141 E trt 

 

(5.58) 

that is 	C/ 	- 	( -c 
	5

II 

i i 4- 	I - V-) I- ( 1 _3 7  i C 	t 2. -6- -CI- 
L 	 8-€: 	(1-3 Z  ) c - 

-1 ( 1-31 ) .(1-V-) 2.  

_11- 	 3& Z c 

VL  

(5.59) 



 

I 

  

  

(5.60) 

  

0 

    

    

Clearly, as 	> O V 	1 	
• 	4- as 

If 	.7: 0
) 
 (5.59) reduces to 

where h 	r: 

- 

1_ € 	Vo /1,4 and 
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O< 

the root of interest being
o- 

= 1 	1± C 

j 

To obtain the solution in the limit C -4- 0 to higher 

order we treat the non-dominant terms as known and re-

arrange (5.59) into the recursive form 
-  

\,( =- (1-7-z'j {, (( - 77,IC 

-,- 
z...s.  3 2  

- 	--c'ic 	 1 i ( 1 .--  

4 (I,- '2- )c 	s 4 (1- 

3 

( i-j7 1 

3Z.F. 

• c V 
(5.61) 

i_s ZjCV0 3  

z i 	3 

<7„ z 

from which vie may generate better and better 

approximations by substituting the previous best 

approximation into the right hand side. Thus to first 

order in C 

Vt3  (1- VI [if n- 
L 

(5.62) 
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Thus, as in the non-magnetic case, the effect of 

correlations is to reduce the number of doubly occupied 

atoms in the ground state, but the effectiveness of 

correlation is reduced by the factor (1-32)
2. Indeed, as 

2 	1 correlation effects become ineffective in 

reducing the number of double occupancies. In the other 

limit, as <
2 
--1, we have to third order in (1- 2 

• 

(5.63) 

If the correlation energy C is strong such that cio  is 

small, then 

c 	t- -s7 ) c  „ 1  
c 	1+ (1 --0(1 

ZE ( 

(5.64) 

Thus if --c
2 	0 the metal insulator transition occurs when 

C_ 	 I 	I - 	I 2211 E 	I  (5.65) 

which is In agreement with (5.28) and (5.29) in the 

0. In general, we must solve the cubic equation 

(5.61). Defining quantities a
o )

a
l 

and a2  by 

Q. 	j 	(1- -(Zi 	C 	t 

L 
	

3zz.. 	2c _ 

 

(5.66) 

1 	
i 	1 t.(1.„-zii.(1-1/Jc 	f 	2 E "S1  

  

- 	I L 	c 

L 
	

"6-  



i-0914 -112 'S6 	 - ye 
4 	6 -ye if y> a or < 

+ ye i f b < 32  < a 
a 40+4/171; b = 40-4/TeF 

132 	132 

1236 + 2738 

- 436 
+ ye 
- ye 

132 

and making the substitution -\) =3C- qz we obtain the 
3 

reduced equation x' + pcx.+ q = 0 where 

p = a,
I 
 - 1 a2 	4 

= 2 a2
3 

 ,

3 
-laa + ao 	

(5.67) 
2 

3 	
3 

alae  

The solution then proceeds according to equations (4.37) 

to (4.39). In particular, the quantity D in (4.38) which 

determines the nature of the solutions is given by 

D - 	1 	 
9 
 27 Co- 	-(122+66Co + 12Co

2 + 4Colz6 
r- 	2 

(3)3(128)"' L 	C
2 

C
2 	

C'); 1 	C 	0 ) 

+(124 C
2 

+ 164 C + 99 + 40 Co + 8Co
2 (5.68) 

Co, 
	Co 	C 	C

2 

, 
-'16C

4 
+ 64C

3 
+ 100 C

2 + 76 C + 28 + 4 Co 1.2 

Co
o 	C C,4 	3 	CoCo2 

where C
o 
= -8i. 	is positive. If,̀!

2 
= 0 then all roots 

(1-32) 
are real and at least two are equal in agreement with 

(5.60). P is negative over most of the physical domain, 

and because of the complexity of its behaviour it is 

necessary to follow the roots numerically. The complexity 

of the behaviour of D is illustrated in Table 5.2 which 

gives the coefficients of powers of 
C/
Co 

occurring in D. 

Table 5.2 Terms in D. 

o Power o_-C/c 	Coefficie.nt 	 Sign 

2 
- ye 4 	 -16) 

0 -28 
2 

-1 -4 \2 

-2 
-3 

-,) 
-64 -S - 	 - ye 

-- 2. 	
4 

\2 ‹..100/124 100 2  + 14 	 -ye if .., 
+ye if S2>100/124 

- 76 ' 2 

	

164' 4 	-ye if -.. 2 =:. 76/164 
. 	, 

+ ve  it S
2 
 > 76/164 
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We have solved equation (5.59) for yo  for the 

density of states (5.49) illustrated in figure 5.5 for 

which 

(5.69) 

(5.70) 

-z- 

itt 	= ttLjn  13 2-  
if Fr, 	1 .) 	-3( 	; win 1st if S 

H-Y,-) 

F l 	- (_) 	SDA 1- 	(2 — Dc )j] 
7 I 

? 
- 

	

77. U 	 - - 

	

, 	 C 	-  

A transition to n  ferromagnetic state will occur before 

the metal insulator transition, as C is increased, if 

(5.55) is satisfied, which occurs in the region of the 

xy plane shown in figure 5.6. Table 5.3 gives the volume 

of C for given 	and y at which a transition to ferra- 

mac,-ncLism flrs;, occurs, a blank in the table indicating 

that a metal insulator transition occurs first. 



13c 

Figure 5.6. Density of states (5.49). In region 2 a transition 

to a ferromagnetic state occurs before the metal insulator 

transition as C is increased, whilst in region 1 the metal 

insulator transition occurs first. 
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Value of C/ 2W at which 	a transition to 

ferromagnetism first occurs for the density 

of 	states(5.49) 	111+11 	= 	1. 

y 

x 1 	2 	4 	8 

0.1 0.861 	0.316 	0.140 	0.066 

0.2 0.900 	0.323 	0.141 	0.066 

0.3 0.949 	0.333 	0.144 	0.067 

0.4 1.013 	0.346 	0.147 	0.068 

0.5 1.098 	0.364 	0.151 	0.069 

0.6 1.219 	0.389 	0.157 	0.070 

0.7 0.430 	0.167 	0.073 

0.8 0.506 	0.186 	0.077 

0.9 0.237 	0.091 

It is seen that for a given value of y, 	the value of 

C/ 
2W at which a ferromagnetic transition first occurs is 

lowest for a small value of x, that is if the high density 

of states region contains only a small number of states. 

The dependence of C 	on x is, however, rather weak, CRIT 

particularly for large y, and the most important factor 

governing the appearance of a ferromagnetic transition is 

,u be 	Ipsity of' stat-,es aL the .rt-rmi level. 

Figures 5.7, 5.8, 5.9 and 5.10 show the dependence 

of the ground state energy on the magnetisation for the 

cases DC = 0.25, y = 2; x = 0.25, y = 4; x = 0.5, y = 2 

and x = 0.5, y = 4 respectively. It is seen that although 

the value of C/2W at which the non-magnetic state becomes 

unstable, with respect to spin alignment, for a given value 

of y, is smallest for a small value of x, the magnetisation 

and the relative energy of magnetisation (E- -E )/r "o 
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increase with increasing x provided that C/2W is large 

enough to cause a transition to a partially aligned 

stale. Values of 3 and (ET - G )1E. 	are given in 
.) 	0 

Table 5.4, where E
o  is the energy of the 

non-magnetic 

state. 

Table 5.4 Values of ) and (1..z ,-,7 	E 0 )1E0  

(8K 0 

0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 

4 2 2 4 2 4 

0 0 0 0 0 0 0 0 
0 0.26 0 0.51 0 0.005 0 0.025 
0 0.28 0 0.53 0 0.014 0 0.084 

0.26 0.30 0.32 0.56 0.006 0.026 0.025 0.162 
0.29 0.31 0.54 0.58 0.015 0.041 0.080 0.272 
0.35 0.39 0.63 0.67 0.122 0.223 1.301 5.971 

The relative energy of magnetisation is seen to be 

small in agreement with the observed Curie temperatures 

of Fe, Ni and Co which are well below the melting points 

and boiling points as seen in Table 5.5. 

O',;,.:rved values of the Curie iemperaLure Tc, 

the melting point Tm  and the boiling point 

T (°K )  

TC  , TM T 
- C/TM 

T
13 

_ 
T C/TB 

Fe 1040 1808 0.58 3160 0.33 

Co 1400 1765 0.79 3229 0.43 

Ni 631 1726 0.37 3055 0.21 

yr. = 

y 

0.1. 
0.2 
O.? 
0.4 
0.5 
1.0 
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It is seen in figures 5.7 to 5.10 that the 

magnetisation of the lowest energy state is not strongly 

dependent upon the strength of the interaction provided 

that this is sufficient to cause a transition to a 

partially aligned state, the most important influence 

being the density of states in the region of the Fermi 

level. When the interaction becomes strong enough to 

cause a ferromagnetic transition, the Fermi level is 

seen to move up in energy to a position just above the 

top of the high density of states region. for majority 

spin electrons, and just below for minority spins. 

A similar behaviour is expected in the case of the five 

band case of the transition metals with arbitary number 

of electrons per atom, although intra-atomic exchange 

will of course be an additional important factor in 

stabilising the ferromagnetic state. In Ni, it is well 

known from band structure calculations that there is a 

sharp peak in the density of states at the Fermi level. 

Since the number of holes in the 0( band of Ni is small, 

strong ferromagnetism is possible despite the narrowness 

of this peak. In iron, however, with 2.9 holes per atom 

i n  tit A 
	

' 	unlikely that a peak of sufficient 

width for strong ferromagnetism will occur at the Fermi 

level, and this would appear to explain why iron is a 

weak ferromagnet despite the strong stabilising influence 

of intra-atomic exchange. 

It is interesting to enquire why Pd and Pt, which 

are also known to have a narrow peak in the density of 

states at the Fermi level, are non-magnetic, whilst Ni is 

a strong ierromagnet. It is possible that this peak is 
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significantly lower for Pd and Pt than for Ni. Thus 

Pt has a specific heat of 6.54-0.03 mJ/mole°K2 (Shoemake 

and Rayne, 1968) whilst Ni has an electronic specific 

heat of 7.02 +0.06mJ/mole°K
2  (Rayne and Kemp, 1956). On 

the other hand Pd has an electronic specific heat of 

9.42+0.02mJ/mole°K2  (Veal and Rayne, 1964) which is larger 

than that of Ni. We should, however, compare the specific 

heat of Pd and Pt not with that of real ferromagnetic 

Ni, but with that of the non-magnetic state, since 

figures 5.7 to 5.10 show that when the electron inter-

action is strong enough to form a ferromagnetic state, the 

Fermi level moves away from the high density of states 

region. Hodges et al.(1966) have calculated the total 

density of states at the Fermi level in both the ferro-

magntic and non-magnetic state, and multiplying the 

experimental value of the electronic specific heat of 

ferromagnetic Ni by the ratio of l*F) for the paramagnetic 

and ferromagnetic state, gives a value of about 

14.8mJ/mole-
o K2 
 suggesting that indeed the density of 

states at the Fermi level is larger for Ni than for Pd 

and Pt. 'Hodges et  al. (1966) investigated the effect of 

spin orbit coupling on the density of states at the Fermi 

level by ealcuiaLing the band structure with the potential 

kept at the value appropriate for paramagnetic Ni, but 

using the spin orbit coupling strength appropriate for 

atomic Ni. Pd and Pt. This procedure permits the 

isolation of the effects of spin orbit interaction from 

those resulting from the widening of the band in the series 

Ni, Pd, Pt. It was found that spin orbit coupling 

reduced n(i 1 for Pt by only 16(7'n, whereas n(Ei) deduced 

from the specific heat is down by 50% from that of para- 
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magnetic nickel. It seems, therefore, that the 

decrease in the height of this peak in the series Ni, 

Pd, Pt arises from the greater overlap of d states on 

neighbouring atoms. 

5.4 Discussion  and Comparison with Kanamori's theory 

We have calculated the Stoner parameter in 

Gutzwiller's theory in 5.2. The result is given by 

equation (5.35) and is illustrated for several values of 

n, the number of electrons per atom in the band, in 

figures 5.2 and 5.3 for the rectangular density of states 

and for the triangular density of states with 9 = 0 

respectively. For large C, the Stoner parameter Ceff  

is reduced to a value of the order of the bandwidth, whilst 

as C->O, C 	10. 
is 

The dependence of CC 	on C is in qualitative 

agreement with that of the effective interaction, CHF, 

between opposite spin electrons in the non-magnetic state, 

obtained in 5.1 by comparing the energy of the non-magnetic 

ground state in Gutzwiller's theory with that in the 

Hartree-Fuck approximation. As n-÷ 0 the agreement is 

quantitatively good, but as 	C-C
eff increases in 

C, 	 thm C 	Consquelitly, 

the approximation of replacing the bare interaction C in 

the Stoner criterion, derived in the Har tree-Pock approximation, 

by the effective interaction in the non-magnetic state 

overestimates the tendency to ferromagnetism, particularly 

as n 	1. 

It is interesting to compare these results with 

those of Kanamori (1963), who used Brueckner's theory 

of nuclear matter to treat correlation effects in the limit 
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n--;- 	(Brueckner, 1955, Wada and Brueckner, 1956). 	In 

the simplest Brueckner approximation the total energy 

is written as the Hartree-Fock energy with the bare 

interaction C replaced by the sum of ladder diagrams. 

Guilt -ski (1958) has shown that this is exact in the 

limit F, - 0. 	Following Kanamori (1963) therefore, the 

effective interaction between electrons of opposite spin 

in this limit, given by 

C, 
Kanamori 

 

(5.71) 

   

t C 

-

V) 

where ) 	( 1- 	)( - 	
(5.72) 

R , 

Kanamori (1963) introduced the further approximation of 

replacing g(k)k/) by its value g(o,o) when k=k/  = the 

wavevector of the lowest energy state in the band, and 

evaluated g(o,o) for the non-magnetic state. If this 

wavevector is at a point of inversion symmetry 

E
k+e = Ek

/ 	
, (5.70) becoming 

g(o,o) 	1 „c 	n(E)dE 	 (5.73) 
E>Ef E 

7, is 	Irom the boLtom of 	')and. In he 

limit Ti-)-0 this is just the Hilbert transform of the 

density of states and the result (5.71) can be understood 

in Koster-Sla ter theory as the treatment of the 

correlation of two electrons, neglecting all others, such 

that one of the electrons is assumed to be fixed on an 

atom for the purposes of studying the motion of the other. 

The problem is then reduced to that of an electron moving 

in a narrow band and scattered by a large atomic 

repulsive potential C (Friedel, 1969). 
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The approximation of using the value of g(k k ) 

at the band edge will overestimate the tendency to 

ferromagnetism since it would be better to use a 

g(k)k') for k and k /  on the Fermi surface, for which 

the energy denominatorin(5 . 72) would be smaller. 

Further, we have seen that the effective interaction energy 

between electrons in the non-magnetic ground state C NF 

overestimtes the Stoner par:)meter Ceft  especially as 

n 	and so the approximation of using the value of 

Kanamori . evaluated in the non-magnetic state will over-

estimate the tendency to ferromagnetism. 

,0 C, 	= 	 kanamori 
1 + Cg(o,0) (5.74) 

is easily evaluated for the model densities of states 

con sddered in 5.2. Thus for the triangular density of 

states (5.36), for example, with 9 = 0. 

2Wg(o,o) E W S F,  n(E)d  = 21n2 - 	(5.75) 

Figure 5.11 shows the variation of CKanamori with C for 

various values of n , whilst Figure 5.12 shows the 

variation of 1 - n(Ef) CKanamori versus C. Comparing 

figures 5.11 and 5.12 with 5.4 and 5.5 the behaviour is 

seen to be much the same as in Gutzwiller's approximation, 

F 	the., 	is seen to lc.ad to Terra- 
C/ magnetism for much smaller values of '2W than in 

Gutzwiller's model. This is just what we expect from the 

above discussion ned is illustrated more clearly in figure 

5.13 which illustrates the behaviour of C 	and Kanamori 
Gutzwiller Ceff  )n the limit C 	mas a function of n. 
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0 	0.5 1.0 	1.5 2.0 
C/2W  

Figure 5.11. versus C for the triangular density of 
CKanameri 

states (5.36). 
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Gutzwiller (1965) was able to prove that nk  given 

by (4.21) is exact in the limit C 	00 inside the Fermi 

surface, but could not prove this for E >Er  It seems, 

therefore, that Gutzwiller's theory, ii not exact, in this 

limit, will overestimate the energy of the non-magnetic 

state. On the other hand, in the approximation in 

which inter-atomic correlations are neglected, the 

ferromagnetic state is an exact olgens Late of the 

Hamiltonian. It appears from figure 5.13, therefore, 

that Gutzwiller's model offers a better description of 

the correlated ground state than does Kanamori's for this 

density of states if n > 0.035. 
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Appendix A Extension of Hohenberg-Kohn theorem to the 

spin dependent case (Stoddart and March, 1971, 

von Barth and Hedin, 1972) 

Consider a Hamiltonian written in second quantisation as 

2—  p-t- 	 r 

The expectation value of H in the ground state is 

E = T + U + 
	

cA.,/ 
	 (A.2) 

where T and U are the expectation values of the kinetic 

and interaction energy and where 

  

(0°_, ( r ) 	K (A.3) 

 

Let us assume there exist two different ground states 

	

_i..,- 	 / 
and li.1  , corresponding to Hamiltonians H and H with 

.i. 
potentials. V and V

/ 
 in (A.1), which both give the same 

	

density 	. Owing to the assumed non-degeneracy of the 

ground state and the minimal property of the expectation 

value of the Hamiltonian with respect to variations in the 

wavefunction we have the inequality 

iT7KC 0)/ IP \6) 
' 

 

(A.4) 

  

or 

E < 	271:\f (v) 	 (ciAr 	(A.5) 

Similiarly we have 

E < E CUA 	 cAr 

and adding adding (A.5) and (A.6) gives 

(A.6) 

E +E<E+ E 	 (A.7) 



which is impossible, so the starting assumption that [} 

and 	are different is false. Thus the ground state 

wavefunction and hence all ground state properties such 

as the total energy are functionals of the spin density. 

Equation (A.2) assumes its minimum ullue for the 

correct '°.H 	 n if the admissible function are restricted 

by the condition 

n = 	i v.1 70_ 
kJ 

(A. S) 

where n is the total number of electrons, since a 

change inicr_ from the correct spin density corresponds 

to a cha;1;e in the wavefunction from the y-ound stats  

wavefunction, and consequently by the variational 

principle to a higher energy. 



Appendix B Calculation of the density matrix in the 

quasi-chemical approximation (Gutzwiller, 1965) 

In order to give the weighting factor ri / in 

(4.14) a well defined meaning Gutzwiller (1965) assumed 

that configurations with different values of V have 

the same average weight apart from the factor 
(v 

 sothat 

-J) 	• • 
(B.1) 

I  

with 10, (i-j) given by (4.16) and where the constant in 

(B.1) is taken as proportional to the number of all 

possible configurations ofLspin electrons with weight 
V+ v '  

where Pt is the variational parameter in (4.14), V 

is the number of doubly occupied sites in kir -- kw, in 

each con figuration and V the number in ttl 	• Im p where 

m is the number of spin electrons. Thus the coefficient 

of the diagonal density matrix with 

h
1 

= 	 , b 
	1-2' '" 

= 	h
n 
 = f

n 
 is taken as 2,   

Co  5- 4  .4\-/  ( 	
- 

N vtin
1 

V 	, V 	/Lv / 	 (B.2) 

where p is the number of 
V  
I spin electrons, m--\) and p-v 

the number of 'dissociated' spini'and spin electrons and 

N -m- 	+ 	is the number of empty lattice sites. 

Similarly if 111  h
2 

= f2 	n 
h = In  the 

coefficient is taken as 

C
0 
 Z. 1-1  7.(vi i)( 	N 	_ 2 

V L 

   

   

  

(B.3) 

v 11/1", - t) N 	 I
I 

< /Yt 

V 	\ /4.4 _ v t 	 ) 

 

 

 

. . 	E- 	 cl + 	• ft 
vpi% 	 ) 	' 	 I C 	 jInf 	J- 11 	dc 

( 

II • 
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where C
o is assumed to be the same as in (B.2 )  and is 

obtained from the morrna,lisation condition 	- 1. 

The summations in (B.2)  and ( B.3)  can be 

replaced by the largest term corresponding  to vlo given 

by 

\lc) 	- 01- -v. ± \./J 	 ( B.4)  

since the distributions are sharply peaked about Vo. 

Thus, following  Gutzwiller (1965)  we obtain 

v), 

f 	 ior 

with q
l
, given by (4.17)  with similar expressions for 

L 

jj  spin electrons with m replaced by p. 

It is seen from ( B.4)  that the quantity ot2 

plays the same role as the Boltzmann factor in the law 

of mass action and Gutzwiller called this the 'quasi-

chemical' approximation. Transforming (B.5)  to 

reciprocal space gives equation (4.21)  for n, with q 

being  the discontinuity at the Fermi surface, which has 

been shown by Gutzwiller (1965)  to be exact for 

in the limit C 

(B.5)  
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