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Abstract .  

A finite-difference method for the solution of the 

elliptic equations governing the steady transfer of momen-

tum, heat and matter in turbulent flows is presented. 

The method ensures that the laws of conservation are satis-

fied over arbitrarily large or snail control volumes. 

Accuracy, convergence and economy of the method are dis 

cussed, and shown to be satisfactory in cases of practical 

interest.. The phenomenon of "false diffusion" is dis-

cussed, and related to local quantities. 

On the physical side, the Kolmogorov-Prandtl hypothe-

sis of turbulence is extended to two-dimensional flows 

and to viscous eublayer near solid walls. The empirical 

input to the hypothesis is obtained from various sets of 

data, for experimental situations approximating to Couette 

flows. Numerical solutions for Couette flows with aug-

mented turbulence have been computed and cast in the form 

of wall-functions, for use in two-dimensional problems. 

The finite-difference method, the viscosity hypothe-

sis and the wall-functions are then used to obtain solu-

tions for the problem of a plane, turbulent jet impinging 

normally to a flat surface. Comparisons with experiment-

al results are made, and the influence of the Reynolds 

and Prandtl numbers is studied. The distribution of the 
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kinetic energy of the turbulent velocity-fluctuations is 

studied and discussed as well. 

Finally, the results of the project are discussed, 

and suggestions for the continuation of the research are 

made. 



Preface  

This thesis constitutes the main result of the research 

activities which I have pursued in the Mechanical Engineer-

ing Department of Imperial College during the last three 

years. The tentative subject of this research was the 

provision of prediction methods for heat transfer in im-

pinging jets. During the early days of the work, this 

project was supposed to be centered around the numerical 

solution of the parabolic equations governing wall-jet and 

boundary-layer flows, as well as experimental work on the 

wall jet itself. Therefore, I tried to collect and cor-

relate data from different sources (Wolfshtein, 1966), and 

to adapt to the wall-jet problem solution-methods of the 

boundary-layer equations by integral methods (Patankar 

and Wolfshtein, 1966). But, at about the same time, I 

realised that the most un-explored part of the impinging 

jet system is, by far, the impingement region itself, 

and I decided to concentrate on it. 

During 1966 I became more and more engaged in work 

on the solution of the elliptic, complete Navier-Stokes 

equations, by which the required solution could be ob-

tained. Some of the results of this work were reported 

already in earlier papers by Runchal and Wolfshtein (1966), 

Runchal, Spalding and Wolfshtein (1967), Wolfshtein (1967), 

and Runchal and Wolfshtein (1967). In part II of the 



present thesis,  a full account of the final outcome of my 

work in this direction is given. For the sake of com-

pleteness I had to include some material which was reported 

in the earlier papers, but I usually presented such material 

in brief form only, quoting the appropriate reference. 

Thus, towards the end of 1966, it became evident that 

solution to the impinging jet problem came within easy 

reach. The weak link in the chain was the turbulent vis-

cosity law, and I had planned to fill this gap by measur-

ing the turbulent heat-diffusion-coefficient in the imping-

ing jet and incorporating correlations of these measure-

ments in the computations. However, a road-accident pre-

vented this experimental work. Instead, I had to obtain 

a viscosity law on the basis of the experimental data 

which were available, for other types of flow. 	In prac- 

tice, this was done by the extension of the liolmogorov-

Prandtl hypothesis to two-dimensional flows, by a study 

of Couette flows with augmented turbulence, and by the 

development of special procedures for the treatment of 

flow near solid walls. All this work is reported in part 

III of the paper, as well as the impinging jet solutions 

which I was, eventually, able to get. 

No account of my work will be complete without the 

mention of my supervisor, Professor D.B. Spalding. 

Professor Spalding took an active part in the research 



project all along the way, supplying a constant stream of 

new ideas and suggestions, and in general, creating a very 

stimulating atmosphere among the whole group of research 

workers around him. The greatest tribute which I may pay 

to him, is, in my opinion, that Professor Spalding did 

not act only as my supervisor in this research, but was 

also a teacher, both in the subject of turbulent flows, and 

in more remote topics, such as technical writing, doing 

research, etc., etc. 	Last, but not least in the list was 

Professor Spalding's help to me in a time of personal hard-

ship. 

During a considerable period I was working in close 

contact with Mr. A.K. Runchal. 	Our collaboration and 

friendship was very fruitful, both in the results achieved, 

and in the satisfaction which I got from it. The credit 

for the development of the finite-difference method and 

the computer programme should be shared by both of us. 

There are many others to whom my thanks are due. 

But I wish to mention specifically Mr. N. Mitchell, Dr. 

S.V. Patankar, Dr. W.M. Pun and Dr. E. Baker, who were 

always willing to help, and Miss M.P. Steele, who was al-

ways ready to solve administrative problems. The project 

became possible by the generous allocation of computer time 

by the Center for Computing and Automation of Imperial 

College. 
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Part I . Introduction  
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1. 	Introduction 

1.1 A general description of the problem  

The recent advent of fast computing machines, accom-

panied by a rapid development of numerical analysis, has 

had a very strong influence on fluid-dynamics. Not only 

has it enabled us to obtain solutions for much more complex 

problems of potential and boundary-layer flow than we 

could some ten years ago, but also we may now venture into 

the relatively new field of the complete, non-linear, 

elliptic equations of flow. True enough, such solutions 

were obtained before as well, notably by Thom (1933), and 

then by some others in the early fifties; but these early 

solutions did not result in standard solution methods. 

All these early solutions were too laborious and limited 

in their scope. 

The present thesis describes a new general computa-

tional scheme for the solution of the elliptic equations 

of fluid flow, and its application to the problem of a 

plane, turbulent, impinging jet. Among the interesting 

features of the thesis are the application and extension 

of the Kolmogorov-Prandtl hypothesis of turbulence. 

Another contribution in the present thesis is the suggest-

ion of some new lines of research, which have become 

possible and necessary as a result of the new development. 
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The impinging jet deserves a special note. As far 

as the author is aware, this is the first time that 

complete theoretical solution could be obtained for this 

phenomenon. Perhaps the most important feature of this 

solution is that it is derived from basic principles, 

and that none of the empirical input into it was extracted 

from Impinging jet studies (or indeed, even from free-jet 

ones). Thus the impinging jet solutions serve two pur-

poses simultaneously. Firstly, a demonstration is given, 

that impinging jet flow may be predicted. Secondly, the 

impinging jet solution serves as a test-ground for the 

validity of the method of solution and the turbulence 

hypothesis. The latter is probably the most promising 

prospect of the new method. We are now able to test 

new turbulence hypotheses without having to apply res-

trictions and simplifications to the basic equations. 

1.2 An outline of previous knowledge  

1.2.1 The plane impinging jet  

Studies of impinging jets have attracted many re-

searchers because of the high rates of heat-transfer 

which are found in the impingement region. Some of the 

heat-transfer experiments are summarised in table 1.2-1 

below: 
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Aut
ear
hor and 
y 

Coefficients measured Prandtl 
number 

Range 

Recxio
-3* h c  /d c 

Glaser mean mass-transfer 0.58 .9-10 2-16 
(1961) 

Metzger mean heat-transfer 0.71 1.5-4 2-20 
(1962) 

Schauer 
and local heat-transfer 0.71 4o.8 40 
Eustis 
(1963) 

Gardon 
and local heat-transfer 0.71 .45-22 2-45 
Akifrat 
(1965) 

Kroger 
and local mass-transfer 2.5 8.3-44 .5-40 
Krizek 
(1966) 

Table 1.2-1. Summary of heat-transfer measurements in 

Impinging jets 

Accurate comparison between these various sources is diffi-

cult because in most cases the measured parameters of the 

flow (such as the Reynolds number, the Prandtl number etc.) 

are not accurately reported. Still it was found useful to 

plot the stagnation point heat-transfer coefficient, Sto,  

versus the slot Reynolds number, Rec, in figure 1.2-1 for 

All symbols are defined in chapter 9. 
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the two nozzle-to-surface distances of h /d = 8 and h /d c c 	c c 

40. 

There has been a wide spread-belief that the flow in 

the stagnation region is laminar. Therefore hetzger de-

duced that the Sto Rec relation should have the form 

Sto 	const. x Rec
a 	(1.2-1) 

where 	= 

This deduction was not supported, however, by experiments. 

Both Metzger's measurements and figure 1.2-1 suggest that 

the Rec,,Sto relation may be correlated by equation (1.2-1) 

only if a is taken to be around D.43. Apparently, the 

power a is independent of the Reynolds number. 

Anotl-cr interesting feature of the flow has been re-

ported by Gandon and Akifrat, who found that augmentation 

of the turbulence intensity in the jet increases the heat- 

transfer in the stagnation region. 	Sutera et al. (1963) 

reported very similar trends in stagnation flow. 

Skin-friction, surface static pressure, and maximum 

velocity measurements in the impingement region were re-

ported by Schauer and Eustis, for a Reynolds number of about 

43000, and a slot-to-plate distance of 40 slot widths. 

Theoretical works on the impinging jet have not been 

very numerous: an interesting solution to the problem of 

laminar impingement was obtained by Chung and Viegas (1961); 

but their solution was heavily dependent on some simplifying 
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assumptions. Strand (1962) obtained an analytical solu-

tion to the velocity and pressure distributions in an irro-

tational invmscmd impmnging jet. Schauer and Eustis 

attempted a theoretical solution for the turbulent impinging 

jet problem. However, their solution was so much based 

on experimental information, that it could hardly be regard-

ed as anything more than a complex correlation. 

Sutera et al. (1963) devised a complex model to ex-

plain the increase in heat transfer in the stagnation point 

by the presence of turbulence in the flow. They obtained 

numerical solutions by which they showed that a relatively 

small increase in the level of turbulence might cause a 

much larger increase in heat-transfer rate. 

Finally, Spalding (1967a) has shown that in turbulent 

stagnation flow the power a in equation (1.2-1) may be 0.4 

and not 0.5. 

1.2.2 Numerical solutions of the Navier-Stokes equation 

The early solutions obtained by Thom (in a series of 

papers which terminated in 1933) to the full Navier-Stokes 

equations have already been mentioned. Thom eliminated 

the pressure by using the vorticity and stream-function as 

the dependent variables. -This practice was later followed 

by most other workers*, and is also used in the present 

* Some solution methods, notably those developed in Los-
Alamos for non-steady flows, take the pressure and the 
velocity components as the dependent variables. 



paper. Another important contribution made by Thom was 

the formulation of the vorticity boundary condition on 

solid walls. Thom related the wall vorticity to the 

stream function distribution near the wall by a Taylor series 

expansion of the stream function near the wall. This prac-

tice is, in fact, identical to the assumption of a constant 

vorticity near the wall, a forerunner of the method to be 

recommended in section 3.2 of the present thesis. On the 

other hand, Thom's early work, performed before the com-

puter era, demanded too much labour, and was not continued 

for about twenty years. 

In the fifties the interest in the Navier-Stokes equa-

tions was re-stimulated, and numerous solutions were ob-

tained, employing various finite-difference techniques. 

Soon, it became apparent that the use of central differ-

ences (as they are usually applied to, say, Laplace's 

equation) resulted in divergence whenever the Reynolds 

number became large. 	Burgraff (1966) suggested overcom- 

ing this difficulty by employing a severe under-relaxation, 

But, apart from the arbitrariness inherent in the selection 

of his under-relaxation parameter, this practice resulted 

in bmsessive computing time. 

A different approach was introduced by some workers 

to un-steady flow problems: they found that a flow-

oriented finite-difference formulation resulted in stable 
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procedures even for very high Reynolds numbers (e.g. 

Barakat and Clark, 1965) and Runchal and Wolfshtein (1966) 

showed that this approach is useful also in steady-flows. 

1.2.3 The Kolmogorov-Prandtl hypothesis of turbulence  

The most successful theory of turbulence has been 

that of the mixing-length, suggested by Prandtl in 1925. 

The applicability of this hypothesis has been questioned, 

however, many times, Its main deficiency is that it re-

lates the turbulence to one free parameter only, the 

mixing length. As this parameter is very strongly depen-

dent on the geometry of the flow, this theory is not 

directly sensitive to changes in the turbulence level 

inside the flow. Moreover, we cannot usually apply the 

same set of empirical constants to all flow conditions 

when we use the mixing-length hypothesis. These defi-

ciencies may be overcome by the use of the turbulent kine-

tic energy hypothesis, which was introduced by Kolmogorov 

(1942) and Prandtl (1945). 	In this theory, one assumes 

that the turbulence is described by two parameters; 

length scale, and the level of kinetic energy of the tur-

bulent fluctuations. Emmons (1954) used this newer con-

cept, and was able to obtain reasonable predictions for 

a variety of cases, while Spalding (1967a) was able t 

explain the hitherto unexplained phenomenon of high heat 

transfer in a reattachment region. 	Spalding (1967b) 
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also showed how the turbulent kinetic energy hypothesis 

reduced to the 1925 mixing-length law for Couetto flow 

and for free jets. 

1.3 The present contribution 

The present thesis describes research activities 

which were directed towards three ends; 

(i) 	The development of a computational method 

and a computer programme for the solution of the elliptic 

equations governing two-dimensional variable-property 

flows. 

The recommendation of turbulent-property 

laws, which are universally valid far any flow, in all 

the regions of such a flow. 

(iii) The predictions of the velocity field and 

heat transfer in impinging jets. 

These three ends are interconnected with one another. 

When we have the computer programme, we may study and 

test complex turbulent viscosity hypotheses. The im-

pinging jet is, then, a natural test ground for such 

hypotheses, being different from regular boundary layers, 

which have been successfully predicted even with the 

earlier m±cing-length hypothesis. But, on the other 

hand, the very existence of the programme is sufficient 

to stimulate interest in the impinging jot problem, pro-

vided that a proper viscosity law is available. 



The impinging jet results are interesting for several 

reasons. First because the impinging jet has not yielded 

to more conventional prediction methods in a satisfactory 

way. But these computations are of interest also because 

they display some features of, the turbulent impinging jet 

flow, which have not yet been reported either experiment-

ally or theoretically. 

Restrictions: The present thesis is restricted to 

planeconstant property flow on smooth walls, and without 

chemical reaction. These restrictions do not represent 

the limitations of the method, which may be applied to 

any two-dimensional flow (with the possible exception 

of supersonic flows). Some other restrictions applied 

to particular cases, will be discussed in the appropriate 

sections. 

Outline of the thesis; The thesis is divided into 

the following six parts. 

Part I 	Introduction to the subject. 

Part II 	The mathematical problem. 

Part III 	An application of the method to 

turbulent flows. 

Part IV 	Closure. 

Part V 	Nomenclature and references. 

Part VI 	Appendices. 

These parts are further :subdivided into chapters. 

Part II is concerned with the method of solution. In 
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chapter 2 the differential equations, boundary conditions 

and auxiliary relations are presented. Then, in chapter 

3 these are recast in a finite-difference form. A 

general finite-difference equation of conservation is 

derived and the solution procedure is described. A pro-

cedure for the evaluation of the wall vorticity is pre-

sented as well, followed by some remarks on the computer 

programme. In chapter 4 the method is checked for con-

vergence, accuracy and economy, by trial solutions of 

laminar Couette flow and impingling jets. The appearance 

of the "smearing effect"* due to "false diffusion" is 

discussed as well, and it is shown that this false 

diffusion may be related to the local flow and grid pro 

perties. 

The achievements of part II are exploited in part 

III, where solutions for the impinging jet problem are 

obtained. 	It is necessary, however, to present first 

a model of turbulence. This is done in chapter 5, 

where the Kolmogorov-Prandtl hypothesis is presented and 

extended, so as to give a good agreement with all the 

available data on turbulent Couette flows. The main 

achievement in chapter 5 is probably the demonstration 

that we may choose a single set of constants, which is 

adequate, together with the turbulent energy hypothesis, 

* The term "smearing effect" is used in the present 
thesis to describe the spreading of a conserved property, 
which is not caused by the physical diffusivity, but is 
a direct outcome of the finite-difference process. 
Further details may be found in section 4.4. 
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in such a wide variety of flow regimes. The results 

of chapter 5 are further elaborated in chapter 6, where 

solutions for Couette flows with augmented turbulence 

are obtained, and cast in the form of wall functions. 

These wall functions replace the regular boundary con-

ditions in the computational scheme, as was explained in 

section 3.2; but they also display some interesting 

features of Couette flows with augmented turbulence. 

Chapter 7 is the final check the method with the tur-

bulence hypothesis and the walifUnctions, is applied to 

a turbulent impinging jet. The results are good enough 

to justify an optimistic view of the method, but some 

disagreements arise as well, der►anding modifications 

in the method, and suggesting their possible direction. 

The problem of such modifications is discussed in part 

IV of the thesis. 

The main contributions of the present thesis may 

be summarised as follows 

(i) The finite-difference method, and the checks 

on its accuracy, convergence and economy, reported in 

chapters 3 and 4 respectively. 

(ii) The fitting of universal constants in the 

Nolmogorov-Prandt1 hypothesis, and the turbulent Couette 

flow solutions reported in chapter 5 and 6 respectively. 

(iv) The impinging jet solutions in chapter 7. 



Part II: The mathematical problem  

Part II of the thesis is concerned with the mathe-

matical presentation of the problem. It will be shown 

in chapter 2, that we can write a set of simultaneous, 

elliptic, second-order, partial differential equations, 

which control the transfer of momentum and conserved 

property in two-dimensional flows. Some ordinary differ-

ential equations and algebraic relations will be added, 

in order to make the number of equations equal to the 

number of unknowns. A short discussion of the boundary 

conditions will be presented as well 	In chapter 3 

a numerical method for the solution of the equations 

will be presented. The method is, a finite-difference, 

iterative one. The advantages of this method are that 

it is very stable, and that the conservation laws are 

satisfied in an arbitrarily large or small control volume. 

The convergence, accuracy and economy of the method will 

be discussed in section 4, by reference to trial solu-

tions of laminar and turbulent Couette flows and im-

pinging jets. The influence of such factors as mesh 

size and mesh distribution will be studied as well. 
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. The basic equations  

In this chapter we shall list, examine and re-arrange 

the mathematical equations governing the transport of 

momentum and conserved properties in an incompressible 

flow. First we shall deal with the differential equa-

tions, then the boundary conditions will be reviewed, and 

finally all the necessary auxiliary relations will be 

described. 

2.1 Differential equations  

The differential equations with which we are con-

cerned are basically those, describing the conservation 

of mass, momentum and conserved properties, which, in 

a cartesian coordinate system may be written as: 

; a; 	 (2.1-1) 
2Xe 

fui  cl; (21,-  
0y.  =. 	 (2.1-2) 

dXd.  

where is a conserved property, Tij  is the shear stress, 

p is the pressure J is the heat flux vector and Si, is 

a 0-,source. Other symbols are explained in the nomen 

clature, chapter 9. The indexes i and j may take the 

values 1,2,3 and the summation convention is used 

(i.e. aibi.'aibi + a2b2 + a3b3). 
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The fluxes are given by 

/ efi I 
 

J.- 	d 	 (2.1-5) j _ 

cela xi 

is the sum of the laminar (or molecular) and the 

turbulent (or eddy) viscosities. 	It is introduced here, 

because we shall later solve problems of turbulent flow. 

However, the use of an effective viscosity in the present 

chapter may be regarded as a matter of convenient nota-

tion only. The treatment in the following pages is 

general in its nature, and is adequate for any problem 

with a variable viscosity due to turbulence, changes in 

the temperature or, perhaps, because the fluid is non-

Newtonian. The same remark applies also to the effec-

tive Prandtl number, aeff, which is a function of the 

laminar and turbulent Prandtl numbers. This function 

will be given in section 5.5. 

It will be noted that eqn (2.1-2) is in fact three 

equations corresponding to the three values of i. 

These three equations must be solved simultaneously 

with eqn (2.1-1), for the four variables, p and ui. 	We 

must therefore decide which equation to use for which 

variable. Unfortunately, there does not seem to be a 

general answer to this question: there are situations 

when eqn (2.1-1) is used to compute the pressure, while 

"eff 
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in others it may be used to compute the non-streamwise 

velocity component (say in a boundary-layer). Howover, 

in two-dimensional flows,, it is possible to replace the 

equations (2.1-1) and (2.1-2) with two new equations: 

one for the stream-function, 	, and another for the 

vorticity, w. 

These quantities are defined by. 

(4) 
Lr 

ax 
(2.1-6) 

^P/p. udy=- fcrotx 
	 ( 2 . 1-7 ) 

The appropriate derivation for plane flows is given in 

appendix A.1. The resulting equations are: 

7.7.:7- 	elf 14-) 	St4, dO 	g z  
f a- 

d 

D I*  PW = 0 
X 

where 	0,0,7  (f217.  Ti- x 
du) ....  

axa  on? I QH Px 

Clearly Su, equals zero in a uniform viscosity flow, and 

in boundary layers. But even in other types of flow 

it is not very important generally, and its neglect will 
Ott 

usually not introduce series errors. 

We may now substitute eqn (2.1-5) in (2.1-3) to get 

P ua 	
(
'
Al; 	46  ÷ so  (2.1-11) 

9 a 9 >CA 	dXj/ 

The similarity between eqns (2.1-8) and (2.1-11) is 

apparent. Moreover, even eqn (2.1-9) is very similar 
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to the right-hand side of the other two equations. 

Because of this similarity we may write a general con-

servation equation: 

xd dsej 	dX) J 

All the three equations, (2.1-8), (2.1-9) sad (2.1-11), 

may now be considered as particular cases of eqn (2.1-12). 

We shall always have to solve eqns (2.1-8) and 

(2.1-9) for the vorticity and stream-functions. 	If we 

are concerned with heat or mass transfer, we shall have 

to solve also equation (2.1-11) which will govern the 

temperature or concentration distribution. 

It will be shown in chapter 5, that in case of a 

turbulent flow, we have to solve also eqn (2.1-11) for 

the kinetic energy of the turbulent fluctuations. The 

expression for its source, Sk  and diffusivity, rk, will 
be presented in chapter 5 as well. 

2.2 The boundary conditions  

The differential equations which we have to solve, 

(2.1-8), (2.1-9) and (2.1-A are second-order elliptic 

equations. Therefore we have to specify the value of 

each variable (or, its first derivative, normal to the 

boundary) on each boundary. In general such specifica-

tion will depend on the case considered, and needs no 

explanation now. We shall, however, consider two parti- 
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cular kinds of boundaries: the solid wall, and the axis 

of symmetry. 

The solid wall  

On a solid wall the velocity is always known. In 

the present paper we deal mainly with stationary imperm-

eable walls where both velocity components are zero. 

It follows then that 

(2.2-1) 

(2.2-2) 

where n is the normal, to the boundary. It will be noted 

fact two boundary conditions for ^,/,, 

and none for u). However, these two quantities are 

coupled through eqn (2.1-9), which on the boundary reduces 

that we have,. 

(2.2-3) 

Therefore, eqn (2.2-1) is a sufficient boundary condition 

for 	and eqn (2.2-2) may be used to derive a boundary 

condition for W. Details will be given in section 3.2. 

The wall fluxes are given by 
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Axis of symmetry  

On an axis of symmetry we have, by definition, 

(2.2-6) 

(2.2-7) 

(2.2-8) 

where n is the normal to the axis of symmetry. 

2.3 Auxiliar r relations 

The second order partial differential equations, 

(2.1-8), ( .1-9) and (2.1-11) together with the first 

order equation -(2-.1-7),, constitute the set of equations 

which we have to solve. There are, however, some aux-

iliary relations which must be added to the set of equa-

tions, as well, and they will be discussed now: 

Physical input.  

Appropriate physical laws must be specified, in order 

to describe the viscosity ///effw  , the diffusion coefficient 

eff' 
and the source terms S representing generation of 

(Sometimes we may prefer to specify the Prandtl 

number Ceif  rather than r-eff.) In any caseAff, eff 

or C
eff 

 should represent the effective values, which 

were mentioned in section 2.1. 

In 'the present theSis we deal with constant property 

laminar and turbulent flows. In the laminar cases A Jeff 

Cb.  
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Feff 	eff and G 	are constant (the vorticity source term is 

zero as well). But in the turbulent cases we must employ 

some physical hypotheses, which will be discussed in part 

III of the paper. By these hypotheses we shall compute 

eft" 	e and r 	or ff 	eff o G 	which will then replace 7, r and 
// 

G in our equations. 

The pressure differences  

The pressure may be related to the other variables 

by means of equation (2.1-2). 	It is important to realise 

however that equation (2.1-2) is in fact a first-order 

differential equation for the pressure. Further, this 

equation requires the gradients of other quantities. 

On the boundaries of the region these gradients are not 

necessarily known beforehand, nor obtained by our solu-

tion, therefore we cannot apply equation (2.1-2)there. 

Thus we may compute the pressure differences inside the 

field only. For convenience, we shall rearrange eqn 

(2.1-2), to get: 

PU) 	
°IXU 4 °Cr).1 Trc 	trIA)  4-  P-7 	4-'41e fi 1)--1/ 

	

IV 4- 9j-) 4" 2 	 ).1 
/ fht 	X 

where 

V =U 14-v-1  

These equations may now be integrated starting from any 

arbitrary point inside the control volume, until all the 

(2.3-1) 

(2.3-2) 

(2.3-3) 



/ 	 Gr (2 ..  
÷ 9X 

The mass velocity 

I 

3-5) 

(2.3-6) 

points inside the control. volume have been covered. 

Other relations  

There are some other quantities which are used in the 

present work, mainly as an aid to improve the physical 

interpretation of the solutions. They are: 

The dynamic pressure: 

ilu 	2- 	 (2.3 4) 
The shear stress 

Some other relations which are connected with the turbu-

lance energy will be discussed in chapter 5. 
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The finite-difference equations 

In chapter 2 we have seen the differential equations, 

which we have to solve. Generally, there is only one 

practical method to obtain solution of these equations, 

and this is by finite-difference techniques. We cover 

our control volume with a mesh, which is rectangular in 

the present work. In each mesh point we replace each 

differential equation with a finite-difference, algebraic 

equation. To obtain the solution we solve all these 

equations simultaneously; because of the large number of 

algebraic equations involved the solution method must 

usually be iterative. The purpose of the present chapter, 

is to describe the finite-difference equations and the 

method of their solution. 

3.1 The conserved property finite-difference equation 

As already mentioned in chapter 2, we have to con-

sider the general conservation equation (2.1-12) rather 

than the particular equations (2.1-8), (2.1-9) and 

(2.1-113. 

The finite-difference substitution to this equation 

will be obtained by integration of the equation over 

small rectangles, surrounding each mesh point. These 

rectangles are so defined, that their sides lie half-way 

between the mesh points, parallel to the x and y axes 

(see fig 3.1-1). 	In appendix A.2 the integration of 
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where r 1- , 	YA1 	i gs  = 2 	2 (XE 

and , CN , cs 	are similar expressions. 

cZE 4 

and 

(3.1-6 ) 

G2 k., 

Sp (XE — >ew)  

are similar expressions. 

Ca- Ifit• -÷"Cv. 	CN 	-1-  Cs 445 -419ii 	Su, ,,3  

CF. CW  s CN -L Cs zc 

4"' CR N  4.  as 

= 
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equation (2.1-11) over these control volumes is performed, 

step after step. Here it will suffice to present the 

final result, for the value of 0 at point P, surrounded 

by the points E, W, N, S, as follows 

The expressions containing the terms C E  , 	4/4 , CS 

describe the transport of 0 by diffusion. Those contain-

ing as, am, aN, as  describe the 0-transport by convection, 

and S 	describes generation of 0. A further discussion u$P 

of this equation was presented by Runchal et al. (1967). 

3.2 Boundary conditions  

The only boundary conditions which really need atten-

tion here, are those on solid walls. The differential 

form of the wall boundary conditions was presented in 

section 2.2. However, the transformation of these 
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differential conditions to finite-difference ones is not 

a straight forward process, due to two reasons: (i) the 

coupling of the vorticity and stream-function boundary 

condition and (ii) the existence of thin boundary-layers, 

with steep gradients, and non-linear distributions where 

the usual finite-difference procedures are highly in-

accurate. Moreover, due to the existence of boundary-

layers, simple computation of the wall fluxes is impossible. 

Our aim in the present section will thus be three fold. 

(i) To devise an expression forthe wall vorticity. 

(ii) To connect the wall fluxes and quantities 

(subscripted "S") to the quantities in a near 

wall point (subscripted "P"), which is as far 

as possible from the wall. 

(iii) To apply the necessary corrections to the 

finite difference scheme, as to offset the 

errors introduced by the non-linearity of the 

profiles. 

We immediately note, that the wall vorticity, WS  is 

of no interest to us, but for its appearance in the equa-

tion for WP  . Therefore we may devise a direct expres-

sion for (40, rather than one for cos. The second remark 

is, that the only practical way to achieve our aims is 

by the use of some sort of a boundary-layer theory. The 
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theory adopted in the present thesis is a Couette flow 

theory, which has the advantage of simplicity. The 

solutions obtained by this theory depend on the viscosity 

hypotheses used and may require numerical integration. 

Still, the important thing about them, is that they can 

always be obtained. 	Chapter 6 of the thesis contains, 

fact, such solutions for a turbulent flow. But at 

present we are not interested in any particular hypo-

thesis: our interest lies in deriving such expressions 

Where the dots stand for any quantity inside the field 

of integration. 

The Couette flow relations  

In a Couette flow, without mass transfer, the equa-

tions of motion (2.1-2) reduce to 

ad 
v/1- 	dr  
ax 

and the shear stress and vorticity are given by 

z 	du  

tt>=-: - du 	 (3.2-4) 
dd 

(3.2-1) 

(3.2-2) 

(3.2-3) 
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dt 	
° 
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Integration of eqn (3.2-2 gives. 

rs 	 (3.2-5) 

where 

(3.2-6) 
d 

and T is the wall shear stress. 

We may now substitute (3.2-5) into (3.2-3), to get 

du 	?7,  

Integrating once, we get 

we get 

a 0  / titht 

(3.2-7) 

(3.2-8) 

(3.2-9) 

It will be noted, that the wall boundary conditions, 

eqn ( .2-1) and (2.2-2) were used during these integra-

tions; that .y is measured from the wall; and that the 

wall velocity and stream-function are zero. 

The conserved property equation, (2.1-11), reduces, in 

a Couette flow, to: 

(3.2-10) 

but on the other hand, eqn (2.1-5) may now be written as 

(3.2-11) 
eP 

Combining the two equations and integrating we get 
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(3.2-20) 

( 3.2-21) 

( 3 .2-22) 

d 
Ts3 I 

Ls"  
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The dimensionless form of the equations  

We shall now define the following dimensionless 

quantities: 

(3.2-13) 

(3.2-14) 

(3.2-15) 

(3.2-16) 

(3.2-17) 

(3.2-18) 

Further we shall also define the following dimensionless 

integrals. 
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	I celicc df (3.2-23) 

Finally, we name the point near the wall "P", and the one 

adjacent to it "N" (see fig 3.2-1), and define the follow-

ing two quantities: 

2 
66,  	 (3.2-24) //p 

(3.2-25) 
,9N- ye  

It may now be shown that eqn (3.2-2) can be replaced by 

the following finite-difference 

Whl 	WA/ 	A., ;? 

expression: 

(3.2-26) 
2 -r 

and equations (3.2-7), 

transform into: 

(3.2-8), (3.2-9) and (3.2-12) 

A 	F (3.2-27) 

= 	..7:*4 (3.2-28) 

Q = A I-2 ; 	F 4,z  

= 

(3.2-29) 

(3.2-30) 

The wall boundary conditions 

We are now in a position to specify the vorticity 

boundary condition. Indeed, we may specify it in more 

* Strictly speaking eqn (3.2-26) is valid only in the 
Couette flow region, but even in other boundary layer flows 
it is approximately true, and may therefore be applied 
usually at the point "N". 
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than one way. 	First we may solve eqns (3.2-27), (3.2-28) 

and (3.2-29) for the three unknowns A , F, W, which are 

the non-dimensional forms of Ts' p' and Wp respectively. 

This method suffers, however, from the need to evaluate 

the four integrals Ixo, 	116,1  and Ip,2. 	This 

difficulty may be reduced, if we solve eqns (3.2-26), 

(3.2-27) and (3.2-28) instead. 	Then we need only the 

two integrals IT,1  and I p,1° 
	The following expreSsions 

may be obtained: 

144 Lv z 

 

W, GN  
— 	1;s ,w 	2 

 

(3.2-31) 

(3.2-32) 

(3.2-33) 

 

12z,4 	12-,4 hr"--4 

 

F= 
WA, CN z 

17' d 

 

are 
where the non-subscripted quantities .at. the point "Pu. 

This practice is possible only if eqn (3.2-2) is valid, 

at least approximately, at the point uNu. 	It was used 

for all turbulent flows in the present paper. 

For laminar flows a much simpler procedure is adopted. 

eqns (3.2-27) and (3.2-29) are solved, for s and F, taking 

W and Q from the finite difference solution. Then, when 

the proper substitutions are made, we get 

Sri.: 1,t7 	 (3.2-34) 
12;7 — 	,2 
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F - rrZ (3.2-35) 

and obviously 

U  
(„,js "7- 

G9' 

Further, in laminar flow 

6 = 4 

1-t-,2, 7--  4/2 

TiL, Z =-14 

and therefore 

/)=312 -' 	 

(3.2-36) 

(3.2-37) 

(3.2-38) 

(3.2-39) 

(3.2-40 ) 

The 0-flux at the wall may be easily evaluated 

from eqn (3.2-30). 

Slip values  

In all our finite-difference equations, a linear 

4) -profile is implied between adjacent nodes. This is 
not usually correct in turbulent flows, near walls. 

By forcing a linear profile on the virtually non-linear 

one, we introduce an error to our solution, -which will 

be larger, the §t@eper the profile. Patankar and 

Spalding (1967) suggested a method to reduce such errors, 

by using in the finite-difference solution apparent wall 

values; these values were so chosen that the p-gradient 

at P retains its true values, i.e. 
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A. - 4 	/  d (0. 	
(3.2-41) 

where 0,4  is the apparent wall 0 	Of course , we must 

specify the 0-gradient at "PH, say by a Couette flow 

analysis. Patankar and Spalding called 	 the slip 

value of 0", because they applied eqn (3.2-41) to the 

velocity, and 44  may be regarded as a slip velocity on a 

no-slip boundary. In the present work slip values have 

been introduced for the temperature and turbulence energy. 

They have not been applied to the vorticity, because its 

near wall value was not computed by finite-differences, 

nor to the stream function, which is the best-behaved 

function near the wall. 

3.3 Calculation of first derivatives 

We have to compute first derivatives to evaluate 

the velocity components and the turbulence energy gen- 

eration (as will be described in chapter 5). 	To find 

an accurate expression let us expand a function 	near 

the point P (fig 3.3-1). 	Thus 

k --'5P 4 N-)p(N 	(°,7;961 	°N2. )5)  2  -* 

(09f3) 	+ 	(j'P2_ 1Y5Y  

To get accuracy of order z1cyl  , we multiply eqn (3.3-1) 

by (yip-ys)2, eqn (3.3-2) by (yN-yp)'2, and subtract one 
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from the other. 	Finally we get, after rearrangement 
m  

) (93 	0 ) 1)- 	 4 ( (bp- 4) (.9  =  N P  

P 	Jiv - oYf 
This equation will reduce to the familiar central differ-

once equation, when the mesh is uniformly distributed. 

3.1r The n!u-:erical procedure and the computer programme 

The iterative scheme  

In section (3.1) we have seen how the conservation 

equation for 0 at a point P may be arranged as 

Op = 	k at 	point s.} 
	

(3.4-1) 

Obviously there are as many equations of this kind as un-

known point-values of 0 , so that we have a system of 

algebriac equations for which a solution will generally 

exist. 	UnfOrtunately there are always more than one p, 

and they are coupled with one another by means of co-

efficients in the right-hand side of equation (3.4-1). 

This is the reason why iteration is likely to be always 

necessary; we compute the 0-values at all the mesh points, 

then compute the new coefficients in eqn (3.4-1), then 

compute new 0-values, and so on, until the difference 

between successive 0-values becomes small enough. We 

still have to decide, however, in which way to obtain 

the 0-distribution, once that the new coefficients in 

eqn (3.4-1) have been computed. 	We have in fact two 

(3.3-3) 
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possible ways to achieve this: 

(i) To obtain an approximation for the 0-distribu-

tion, by the use of eqn (3.4-1) at each mesh point succes-

sively, until all the points have been covered. To cut 

the computing time we would like to use' new 0-values 

as soon as they become available (Gauss-Seidel technique). 

There is no need to iterate on 4, because anyhow we shall 

have to iterate on the coefficients of eqn (3.4-1). 	It 

cannot be proved at present that this procedure is conver-

gent. Experience of many researchers has shown, however, 

that if equation (3.4-1) satisfies the stability criterion 

for linear equations the above procedure will be conver-

gent. 

(ii) When the number of mesh points is not large, the 

exact 0-distribution may be obtained accurately, by 

applying Gauss's elimination, or a similar suitable tech-

nique. This method may cut the number of iterations 

very considerably, but it is suitable only for special 

cases. 	In the present work it has been used to obtaka 

solutions for a one-dimensional turbulent Couette flow. 

For a one-dimensional flow, the elimination reduces to 

simple recurrence equations. Details of these equations 

are given in appendix A.3. 
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Termination of the computation 

In the present work it was assumed that the difference 

between the computed and the exact solution can be repre-

sented by the difference of 0-values between successive 

iterations. Thus the computation was assumed to have 

converged to the exact solution if 

115,2, 	/2. 	Cc  

Ornax, n 
(3.4-2) 

where subscript n denotes the nth iteration, 0 • • • max;n is  

the maximum value of cb in the whole field after the nth 

iteration and cc  is a small constant.O max,n  was chosen 

as scaling factor rather than 0#3,,_ in order to remove 

difficulties when 	becomes vanishingly small. 

The computer programme  

A copy of the computer programme used for the imping- 

ing jet computation is attached, in appendix 	A 

schematic flow diagram of this programme is shown in fig 

3.4-1. The main symbols used in the programme are ex-

plained in section 9.2. The programme is written in 

FORTRAN IV and was run on the Imperial College IBM 7090, 

University College London IBM 360, and University of 

London Atlas computers. Minor modifications were re-

quired when transferring the programme from one computer 

to another. Very similar programmes have been discussed 
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in detail by Wolfshtein (1967) and Runchal and Wolfshtein 

(1967). Therefore it does not seem necessary to add any 

more details here. 
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4. 	Studies and discussion of accuracy, convergence  

and economy  

In chapter 2 we outlined the set of differential 

equations, boundary conditions and auxiliary relations 

which we have to solve. In chapter 3 we replaced all 

the differential expressions with finite-difference ones 

and thus got a set of algebraic equations. An iterative 

procedure for the solution of these algebraic equations 

was suggested in chapter 3 as well. A proof of unique-

ness and existence of a solution to the equations is 

beyond the scope of the present paper. We shall just 

assume, that a unique solution exists to the differential 

equations, and that another unique solution exists to 

the set of algebraic finite-difference equations. Now 

the first question which we have to answer is. what is 

the difference between these two solutions? We shall 

refer to this as the problem of accuracy. Secondly we 

would like to know if our iterative procedure is con-

verging to the exact solution of the algebraic finite 

difference equations? This will be termed the problem 

of convergence. Thirdly we wish to find out how many 

iterations, or how much time, are necessary to bring the 

iterated solution sufficiently near to the exact solution 

of the finite difference equations? This, of course, 

is the problem of economy. 
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kiur present understanding of numerical methods is 

not sufficient to obtain e full theoretical answer to 

the above three questions. Therefore we have to turn 

our attention to test solutions of some selected pro 

blems, In the present chapter, the three questions of 

accuracy, convergence,and economy, will be studied in the 

li4„At of the results of such test solutions. The test 

cases will be 	(1) Couette flow with mass-injection 

throu4 the wall, (ii) an impingins jet flow, and 

(iii) a uniform velocity flow, with zero difrusivity. 

or those cases, the Couette flow needs fewer mesh points, 

and ia.s an analytical solution. It has the further ad-

v itage of vorticity and stream-function profiles which 

may be made linear or non-linear, 	necessary, by 

changing the blowing rate. Therefore, °Duette flows 

will be studied first, and conclusions drawn Zrom their 

solutions will then be checked in the impinging-jet case. 

The uniform-velocity zero-diffusivity problem will be 

used only in, connection with the phenomenon 	"false- 

diffusion", to be described in section 4.4. 
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4.1 Description of the test models  

Laminar Couette flow with mass injection through  

the walls  

The main features of this flow are its one-dimension- 

ality, and the existence of analytical solutions. 	It 

was therefore used to check the influence of the mesh size 

and distribution on the accuracy and speed of convergence. 

The model is shoun in fig (4.1-1). The flow is confined 

between, and induced by a pair of flat walls, the bottom 

one stationary, and the upper one moving at a velocity 

uT' To this flow we inject through the walls a stream 

of the same fluid, with velocity v. The parameter for 

this problem is the blowing Reynolds number, defined in 

terms of the injection velocity and the distance between 

the two walls, or 

(r 	 (4.1-1) 

The exact solution of this problem is: 

e 9ep[fiq' 

x p 	-4 - 
where the top wall vorticity and stream function are 

U-r 	e")cP  &Jr 	 (4.1-4) er)(69 M -4  

(
A 	A  ) 
M OW/0-4 	(4.1-5) 
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or, when /4 = 0 

117- 	 (4.1-6) 

U2, A ( ) 2- 	 (4.1-7) 

The exact vorticity and stream function profiles are 

shown in fig 4.1-2. During the computation the stream 

function at both walls was fixed at the exact values. 

The vorticity on the bottom wall was computed by eqn 

(3.2-40), and that on the top wall by a modified version 

of this equation, taking the wall velocity into account. 

Impinging jet  

The boundary of an impinging jet flow lies at in-

finity. There are two very distinct regions to such 

a flow: (i) the main jet flow, and (ii) the secondary 

entrainment flow. It has been shown by Runchal et al. 

(1967) that an arbitrary boundary{ may be located any-

where within the entrainment flow region, if sufficient 

fluid is allowed to pass through this bounary to supply 

all the necessary entrainment to the jet. At present 

we shall consider a square control volume, with one of 

its sides lying on the free-jet axis of symmetry, and 

another one on the solid wall (see fig 4.1-3). 

The free jet, with a given velocity distribution, 

enters the square control volume in a direction normal 

to the soiid wall. The half-width of the jet is half 
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that of the control volume, and the density is unity. 

Both laminar and turbulent cases will be considered. 

We shall assume that the secondary, entrainment 

flow crosses the boundary at right angles to it and with 

a zero vorticity. 	On the downstream side, we shall 

assume that all the gradients parallel to the wall are 

zero. 

The zero-diffusivity, uniform velocity flow 

The third model to be used in the present chapter, 

is that of the diffusion of a conserved property source 

in a zero-diffusivity uniform-velocity field (see fig 

4.1-4). 	The exact solution is, of course, that no 

diffusion occurs at all, and 	remains constant along 

any stream line. 	Indeed the problem is so, simple, that 

one may wonder why it should be studied at all. We 

shall, however, see, in section 4.4, that just because 

of this simpliCity, it is extremely useful in throwing 

some light on the difference between the respective 

solutions of the differential and difference equations. 

4.2 The influence of the mesh size on accuracy  

In this section we shall first compare the finite-

difference and exact solutions of the Couette flow pro- 

blem. 	In fig 4.2-1 predictionsof the top wall vorticity 
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are plotted versus the blowing Reynolds number tl for the 

three meshes of 3x11, 3x21 and 3x41 uniformly spaced mesh 

points. 	For M smaller than 3, even the coarser mesh is 

very satisfactory, but for larger M the finite difference 

solution deviates considerably from the exact one. 	In 

this region, refinement of the mesh increases the accuracy, 

but for M larger than 5, even the finest mesh used (3x41) 

was not sufficiently fine to yield a good agreement with 

the exact solution. 

Next we shall try to assess, whether the finer meshes 

are giving better results inside the field fig 4.2-2 

shows the computed vorticity and stream function profile 

for M= 10, with the same three mesh sizes of 3x11, 

3x21 and 3x41. 	It is quite clear that inside the field 

the vorticity distribution is hardly dependent on the 

mesh size; the only place where the mesh makes an impor-

tant difference is on the top wall. But the stream func-

tion is sensitive to the mesh size, especially in the 

middle of the field; and even the solution with a 3x41 

mesh is qualitatively wrong, although apparently better 

than the 3x11 mesh. 	Still, this is not likely to be 

connected with the bad top wall vorticity prediction: 

near this wall the stream function prediction is quite 

reasonable. 	Figure 4.2-2 reveals, however, the cause 

for the bad top wall vorticity prediction: the wall 
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boundary condition is based on a linear shear stress 

model, or in a laminar flow, a linear vorticity distri-

bution; but the vorticity distribution near the top wall 

is linear only in the very close proximity to the wall. 

When a fine mesh is used, the point near the wall is in 

the linear vorticity region, and the wall-vorticity pre-

diction is good. This conclusion is substantiated by 

fig 4.2-3, showing the vorticity profile at two sections 

the impinging jet problem, for X = 0,3 and X = 0.8, 

where X is the distance along the wall. Here also, the 

wall vorticity prediction appears to be better when the 

near wall point is within the linear vorticity layer. 

But the vorticity away from the wall does not seem to 

be very sensitive to the mesh size. The overall picture 

is shown in fig 4.2-4, where the computed wall vorticity 

distributions obtained with the three meshes of 11x11, 

21x2i and 4ix41 are plotted. 

The 1=11 mesh gives bad predictions everywhere, 

except for the downstream region, where the linear vor-

ticity layer is quite thick. Out the predietionsob-

tainted with a 21x21 mesh are quitd near to those obtained 

with a 41x41 mesh, as is suggested by inspection of fig 

4.2-3. The stream function discrepancy, shown in fig 

4,2-21  cannot be explained in the same way. Perhaps 

it is connected to the strong non-linearity of the 

stream function distribution in the middle of the field, 
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but, admittedly, no satisfactory explanation is available 

at present. 	Interesting, though, is the fact that such 

a discrepancy does not appear in the solution for the 

impinging jet problem. In fig 4.2-5 the stream function 

distribution on the downstream boundary of the impinging 

jet is ghown. 	Indeed, the difference between the meshes 

is very small. The same trend is shown also in fig 4.-6, 

where the decay of the velocity normal to the wall on the 

jet axis is plotted. 

Conclusions  

In most cases, a refinement of the mesh is not likely 

to bring a considerable improvement of the solution inside 

the field. But, if the mesh point adjacent to the wall 

is outside the linear vorticity layer, a refinement of 

the mesh will improve the wall-vorticity prediction very 

considerably. 

412_1112influence of the mesh distribution on accuracy  

The conclusions of the last section suggest the use 

of a variable mesh. It should be fine enough near the 

wall, as to ensure that the mesh penetrates into the 

linear vorticity region; but it may be much coarser 

away from the wall, where we have just seen that the use 

of fine meshes is not normally justified. To explore 

this possibility a mesh was devised, in which the mesh 
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size was growing in geometrical progression according to 

the following formula: 

P 	›.4 
	 (4.3-1) 

Yfl, 
where y is the distance from the wall (the top wall in 

the Couette flow case), and E is a constant varying 

from one run to another. The results are essentially 

supporting the conclusion of section 4.2, and need not 

be discussed in detail, and only three plots seem necessary. 

First, the top wall vorticity in the Couette flow is 

plotted in fig 4.3-1; then the solid wall vorticity in 

the impinging jet is plotted in fig 4.3-2; finally, the 

vorticity profiles at the two stations, X = 0.3 and 

X = 0.8, are plotted in fig 4.3-3. 	As elspected the 

use of variable meshes enables us to approach the exact 

solution with meshes characterised by a small number of 

mesh points. 

4.4 The false diffusion  

One of the rare cases, when the vorticity equation 

can be exactly integrated, is that of the non-viscous 

flow, when we get 

= const 

along any stream line. Therefore we expect that, in a 

high Reynolds number flow, the stream lines and the 

vorticity contours would run almost parallel. A solu- 
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tion of the laminar impinging jet problem (as presented in 

section 4.1) for a Reynolds number of 106, is shown in 

fig 4.4-1 in the form of stream function and vorticity 

contours. Surprisingly, we notice that there is a region 

in the middle of the figure, where the vorticity varies 

along the stream lines. This region is seen to be dis-

tinguished iris. two ways from the rest of the flow: 

(i) it contains a vorticity maximum (where the vorticity 

is not linear) and (ii) it is in the region where the 

stream lines have a 45 degrees inclination to the finite-

difference mesh. In the rest of the present section we 

shall see that this departure from the exact solution of 

the differential equations, is inherent in our finite-

difference method (and, indeed, in other ones as well) 

and may be described as a smearing effect, caused by the 

action of "false" viscosity. This false viscosity will 

be shown to be related to ti) and (ii) above. 

Description of the smearing effect  

"Smearing" of steep gradients as a result of one 

sided finite difference schemes has been mentioned in 

the literature (e.g. Alder et al., 1964, p. 335). 	It 

is usually connected with the first order derivatives, 

and is therefore mostly influential when the viscosity 

approaches zero. Also, from fig 4.4-1, it seems that 

this smearing is stronger when the stream lines are 
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inclined towards the mesh lines. Thus, our first line of 

attack becomes clear: What will be the smearing effect 

in a uniform velocity non-diffusional flow, with stream-

lines inclined towards the mesh? The case to be studied 

was described in section 4.1 and figure 4.i-4. A source 

of conserved property is placed in a uniform-velocity 

stream. The deviation from the exact solution (of con-

stant 0 along any stream line) may now be studied for 

various inclinations between the stream lines and the 

mesh. The results are shown in fig 4.4-2 in the form 

of the decay of 0 along the stream line passing through 

the centre of the source. It is quite clear, that the 

smearing is dependent on the angle between the stream 

lines and the mesh lines. The maximum smearing occurs 

when De= 450. When o' decreases the smearing becomes 

smaller, until, when a= 0, no smearing is present. 

By symmetry, the smearing decreases also when CY increases, 

until it disappears completely, at c= 900. This 

suggests that the smearing is a function of sin (2w). 

Indeed if we multiply the 0-values by fain (2o)] 

all the lines in fig 4.4-2 nearly reduce to a single 

line as shown in fig 4.4-3*. 

The power of sin (2w) was chosen as 0.5 in order that 
the influence of the angle a will be easily incorporated 
in eqn (4.4-7), to yield eqn (4.4-11). 
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Correlation of the smearing effect  

In order to find out what the smearing looks like, 

it is advisable to carry out the integration further down-

stream from the source, so as to eliminate the local in-

fluence of the source and boundary. It will suffice to 

do this only for the case of maximum smearing, when the 

stream lines run at 45°  to the mesh. When such a com-

putation is performed, the result is the formation of 

what we may conveniently call a 0-wake, which is shown 

in Pig 4.4-4. This is the region behind the source 

where the 0-discontinuity is smeared in a way very simi-

lar to that found in viscous free jets and wakes. Focus-

ing our attention on the region far away from the source, 

the 0-profiles normal to the stream lines are plotted in 

fig 4.4-5. It is seen that they are similar when nor-

malised by Om  and yi (as defined in fig 4.4-4). 
Secondly we look at the decay of 01,11  and the growth of 

yi. They are both plotted in fig 4.4-6. Far away 

from the source, where the 0-profiles are similar, they 

can be correlated quite accurately, by 

Cna%  = 0.68 	
)1/1- 	 (4.4-i) 
/ 

	= 	x  ) 	(4.4-2) 
h 	A / 

where h is the mesh size, and 	is the p-value at the 

source. 
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The "false diffusion" effect  

Figures 4.4-5 and 4.4,6 show, quite convincingly, 

that the smearing of the source, described above, is 

• I 

	

	 very similar to the diffusion of a 0-source in a uniform- 

velocity, laminar flow field. Such a phenomenon is 

governed by the equation 

d° d i st; 
— 	 (4.4-3) U ax dr 

where F is the laminar diffusion coefficient, and u is 

the constant velocity. The solution of this equation is 

-= A) x-44  expj Cl / 
	 (4.4-4) 

ti 
where A is a constant, and 

C 	r 
	 (4.4-5) 

and the source strength is 

(4.4-6) 

We shall now try to find out, which value we have to 

assign to the diffusivity r in order that equation (4.4.-4) 
will correspond to equations (4.4—i) and (4.4-2). 

Now, eqn (4.4-4), together with (4.4-6) yields 

(And X 	A 	 a  	)4 
	/ )112  

And comparison of the two expressions in eqns (4.4-7) 

and (4.4-1), immediately gives 
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e 04, ==0 36v e A 	 (4.4-8) 

(4.4-9) 

false where r 	is the diffusion coefficient which will cause 

a thermal wake similar to that represented by eqns (4.4-1) 

and (4.4-2). The source strength quoted in equation 

(4.4-9) is the same as the real strength of the source 

used in the computations which was 

S=25(ioa7xpm f4. A 	(4.4-10) 

Therefore we may conclude, that the effect of having the 

stream lines inclined at D(= 450  to the mesh, in a uniform 

velocity non-viscous field, is just the same as that 

which would result from the introduction of a "false-

diffusion" as given by equation (4.4-8). When the angle 

0( decreases the false diffusion decreases as well, and 

in view of the correlation shown in fig 4.4-3, it is 

clear that, finally, the false diffusion in a uniform 

velocity field may be well represented by 

fli4,4e =a36: u A 	(4.4711) 

This false diffusion influences both the vorticity Ai, 

and the conserved pzoperty 0. 

Discussion  

The results of the present section, as summarised 

in equation (4.4-11) set a limit to the accuracy which 



89 

) 

we may hope to get from our finite-difference method. 

But we should examine whether this limit is too severe 

or not. To do this, let us write eqn (4.4-11) in the 

following form 

	 = O. 36 Reif r ew 7- s,-„ (2 
rqj 

where 

IL 
Rep = ),J2t  

is the local effective Reynolds number, 

e 1)- 
(1 611 -  

(4 4 12) 

(4.4- 13 ) 

(4.4-14) 

ti 	is the effective Prandtl number, and L is the length 

scale of the phenomenon. 

Clearly an increase in either Refl. or eff  increases 

the ratio rfalse //-eft' This is very undesirable feature 

and, apparently, all we could do is to reduce h/L. 

There are however some factors wtich usually keep the 

level of false diffusion at an acceptable level: 

(i) When either the diffusivity or the 0-gradients are 

small, the solution is not seriously dependent on the 

diffusivity (e.g. for a very low false viscosity, the 

flow becomes non-viscous, even if the false diffusion is 

much larger than the true one). 

(ii) In turbulent flow 0eff is likely to be near unity, 

and Reff, is likely to be kept at a fairly low level. 
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(iii) In any case, false diffusion plays a major role 

only when the stream lines run at 45 degrees incidence 

to the mesh. 

Finally, we note that any non-symmetrical finite-

difference scheme will be penalised by a false-diffusion 

effect. This seems to be the price which we have to 

pay for the much improved stability of such schemes. 

4.5 Factors affecting convergence  

No general theorems are currently available to prove 

that a given system of algebraic non-linear equations 

will converge, when iterated in any particular way. 

The present work does not make any contribution in this 

direction. 	It is, however, desirable to have a short 

discussion on convergence of the system of equations 

= 	 (4.5-1) 

It has been shown by many (see for instance Golden, 1965, 

P.103) that if 

a 
	= const 
	 (4.5-2) 

equation (4.5-1) converges when 

til 
Itesj) 
	 (4.5-3) 

for all the values of i, 

and for at least one i 

< A (4.5-4) 
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Practice has shown that even when the a-;3 are functions 

of the Vs, equation (4.5-1) usually converges if con- 

ditions (4.5-3) and (4.54) are satisfied. 	In our case 

it is easily seen that equation. (3..1-1) satisfies con-

dition (4.5-3) in all the points inside the field, and 

that it satisfies condition (4.5-4) in all the points 

adjacent to the boundaries, apart from points near a solid 

wall. - A comprehensive treatment of the subjoct is given 

by Barakat and Clark (1965). 

In the points near the wall the varioUs 0-equations 

are coupled in a more complex way than in the other 

points. 	Again the reasons are not completely clear, 

but it has been already claimed by Runchal et al. (1967), 

that divergence. may develop near the wall. 	For suggest- 

ions on how to remove this divergence, the reader is 

referred to the above paper by Runchal et al. 

4.6 Termination of computing, and computing time 

In the present computations, a convergency parameter 

was used, as defined in eqn (3.4-2): 

0 	- 0 ,r 	P, /1,1 	P, IL 	
( 11.6 -1) 

After each iteration, the maximum absolute value of r 

for each variable was recorded. 	When the largest value 

of ru became smaller than a pre-set small number c
,  , the 

iteration was terminated. 

u 



The recorded 1 values were also used to study the 

approach of the iterated solution to what was considered 

the exact solution. In practice it was found many times, 

that 	was fluctuating and changing- signs, but the 

al- plitude of the fluctuations although 	did not 

vanish. In such situations, the solution could have 

been quite far from the exact one. In order to dis-

tinguish between such cases and rani convergent solutions 

the convergency criterion had to be pushed down, to 

c" = 0.0001 

This low value has caused, sometimes, long ccueputing time, 

which was not matched by a considerable increase in the 

accuracy. The rate of convergence is shown in fig 4.6--1, 

where the maximum value of 77, after each iteration is 

plotted versus the number of iterations N, for a case 
of a laminar impinging jot with fine mesh. The computing 

time IorLinternal mesh points and two variables was about 

one minute. 

In table 4.6-1 the number of iterations for various 
solutions is quoted. It appears that turbulent flow 

usually needs more iterations than a laminar one. Also 

an increase in the number of mesh points is psnalised 

by a further increase in the number of necessary itera-

tions. 
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FIG 4.4-1: THE_ RATE Or CONVERGENCE FOR A LAMINAR 

IMPINGING 3E7' AS DEF/NEO MI SECTION 4. 4 . R= dodo. 

24 Y 24 UNIFORM MESH. THE DASHED LINE REPRE sENT.s 

NEGATIVE VALUES. 
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Table 4.6-1 : Number of iterations performed: 

Case Nosh 
Number 

of internal 
mesh points 

c y 
Number of 
iterations 

Couette flow 3x11 1x9 1 65 
m= 10 3x21 1x19 1. 216 

3x41 1x39 1 400* 

Couette flow 3x11 1x9 1.1 62 
M = 10 1.2 62 

1.3 53 
1.4 64 
1.5 72 

Laminar impinging 11x11 9x9 1 50 
jet 21x21 19x19 1 229 

41x41 39x39 1 624 
lix11 9x9 1.1 54 

1.2 51 
1.3 55 
1.4 59 
1.5 82 

Turbulent impinging 11x1I 9x9 1 70 
jet (as presented 1.1 61 
in chapter 7) 1.2 75 

1.3 80 
1.4 90 
1.5 101 
1.6 111 

In this case the maximum residue was still o.op6 after 
400 iterations, but as the solution seemed to be correct, 
it was decided not to continue the iterations. 
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Closure to part II  

Part II was devoted to the presentation of the mathe-

matical problems involved in the solution of the incom-

pressible, steady, two-dimensional, variable property 

flow. We have seen the set of differential equations, 

and the finite-difference method used to solve them. 

It was later demonstrated that convergent, accurate and 

economical solutions may be obtained by this method. 
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Part III : An application of the method to turbulent  

flows 

In this part of the paper we shall examine and 

formulate the physical input necessary to solve problems 

of turbulent flow. Although the aim is to incorporate 

this physical input In the computational method, des-

cribed in part II, most of the present part may stand 

by itself, and be used with other solution methods as 

well, as its development is fairly general. In chapter 

5 we shall discuss a viscosity law, based on the 

Kolmogorov-Prandtl hypothesis; we shall present the 

turbulence energy equation, and determine the necessary 

empirical constants. 

In chapter 6, we shall discuss the wall fluxes and 

develop a special practice for the treatment of thin 

boundary layers near walls. Finally, in chapter 7, 

solutions for the problem of a plane impinging jet will 

be presented. These will demonstrate the capability 

of the method, and will also throw light on some de-

ficiencies of the physical input. 
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5. The turbulence energy, and the viscosity law 

5.1 The general hypothesis on turbulence  

In most previous theories of turbulence, it was 

assumed that the turbulence properties are dependent on 

the velocity field, and on some length scale only. 

Such theories are usually successful when equilibrium 

between generation and dissipation of turbulence is main-

tained. However, if turbulence is convected or diffused 

into the region under consideration, the velocity and 

the length scale are not sufficient to describe the level 

of turbulence. Such cases arise, for instance, when 

the turbulence in a boundary layer is augmented by 

very high main-stream turbulence. Our present model, 

first suggested by Kolmogorov (1942) and Prandtl (1945), 

differs from other models by the assumption that the 

turbulence properties are dependent on the level of tur-

bulence of the fluid and a length scale. The level of 

turbulence is characterised by the mean kinetic energy 

of the velocity fluctuations, k, which is defined as 

(5.1-1) 

where , 2 
	3 u' ul and u' are the fluctuating parts of the 1  

velocity components. The quantity k has been named the 

turbulent kinetic energy, or kinetic energy of turbulence. 

In the present thesis we shall use the term turbulence 

energy. 
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We have now to establish some way to compute the 

turbulence energy k and the length scale, ie. We need 

to find also the relation between the turbulent proper-

ties (as say rturb' riturb) and k and 2. All this will 

be done in the following pages. 

5.2 The turbulence energy equation  

In the present section we shall be concerned with 

the derivation of a differential equation for the turbu-

lence energy, k, and the necessary auxiliary relations. 

This will be done by algebraic manipulation of the equa 

tion of motion. Similar derivations have already been 

reported (e.g. Emmons)  1950, enabling the present one 

to be brief. To make the derivation shorter we shall 

make use of index notation, where any index may be 1, 

2 or 3. We shall also make use of the summation con-

vention, by which, whenever an index appears twice in 

a term, it should be summed over all the three compo-

nents, e.g. 

Do 	VUR  
ox'a 	°)(,i 

In the above notation, the equations of continuity and 

motion for incompressible fluids, with uniform laminar 

viscosity, become 

px, 
_4_ (13 

PX, 	P,V3 (5.2-1) 

21_,LI • 	0 	 (-2.11) 
j 
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211; 	du, 	c2/1-  	)11i; 
f-2b 	 dxi 	 IL- I- ,2x•L (5.2-2) 

where F' is a body force, and p is the pressure. 

We now make the assumption that in a turbulent flow all 

the quantities may be split into a time averaged part and 

a fluctuating part: 

Ui = ET; 4 11/ 	 (54023) 

(5.2-4) 
where the barred quantities are time averaged, the primed 

ones are the fluctuating components, and 

7=-7 1/2-1  = 	 (5.2-5) 

By time averaging eqn (2.1-1) and (5.2-2) we get 

,2e7 
dxd. = 	 (5.2-6) 

	

/01/0/.-- 	7(it2/1:- 	(2(21/L7+700))_u, 	 (5.2-7) 

It may be shown after some lengthy algebra, that, if we 

multiply eqn (5.2-7) by ui  and subtract front the equa-

tion thus obtained the time average of the product of 

eqn (5.2-2) and ui, we get eventually 

	

i 	- 	ui' 11,1 	. _ 	
1/04_ 	 14 , 

dxf / 2 
x<1  

.21/1)2 	(5.2-8) 
-f/ 4 7.(01 1 	( '̀)(01  

The physical meaning of the various terms in aqn (5.2-8) 

Llay be identified as follous: 



-1"["a' 

w V axa  

ox 	2_ 
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P4  at 

.1-  lid.  t7x0i. 

The non-steady growth of turbulence energy 

(this will be zero in the present thesiO• 

Convection of turbulence energy by the 

mean motion. 

The Reynolds stresses. 

Production of turbulence energy. 

jyt,) = Turbulent diffusion of turbulence 

energy. 

Viscous diffusion of turbulence energy. 

7.4.E Viscous dissipation. 

5.3 Elimination of the fluctuating quantities  

Emmons (1954) has applied dimensional analysis to 

replace all the primed quantities in eqn (5.2-8) with 

simpler ones. His analysis is based on the asrnmption 

that all turbulent quantities are functions of k and ,e 

only, 	It , is not necessary to repeat all Emmons 's 

arguments here. Whenever his expressions are used with-

out much change, they will be just quoted without any 

elaboration. 

The turbulent viscosity  

In a laminar Newtonian flow the shear stress is 

given by 

T. (5 .3-1) 



101 

An implication of eqn (5.3-1) is that the viscosity is 

a scalar. Now we shall assume that in a turbulent flow 

a scalar turbulent viscosity may be defined by the equa-

tion 

-fu/ 	bi44 Px • 	ox-, / 
(; 67.  

	

2.YL) 	(5.3-2) 

Dimensional considerations lead to the following form 

of the turbulent viscosity 

(5.3-3) 

Where c is a constant to be determined front experimental 

data andis the turbulence length scale. 

The turbulence energy diffusion  

The turbulent diffusion of turbulence energy may 

be represented by 

2  (, 	v„)__ g ("..„4  dh) 	(5.3-4) 
dX- 	2 	1/4/ — 2)(. r 04 

And if we add to this the viscous diffusion, we get 

(for a constant laminar viscosity): 

I + 	 
6-46.4  Ia x 

(5.3-5) 

In fact we may now define an effective transfer co-

efficient for the turbulence energy diffusion, Vrhidh 

will be very similar to that of any other conserved 

property: 



(5.3-6) 

102 

with 

(5.3-7) 
and ak,t urb is a constant to be deduced from experimental 

data. We shall later see that ak,turb is quite different 

in magntidue from a 0 turb.  

Diss;tpation 

We shall represent the viscous dissipation by 

3/2  
( (5.3-8) 
10Xi l D P D C 

Again co  is a constant to be determined from experi- 

mental data. 	It will be noted also, that a new length 

scale 2D has been introduced. It will be later shown 

that if c.0  is chosen appropriately £D  can be put equal 

to 2 everywhere, apatt from the region very near to 

the wall, where the viscous stresses are large in com-

parison to the Reynolds stresses. A distribution 

different from the2 distribution was suggested by 

Glushko (1965). During the present investigation it 

was found that a good fit with Couette flow data, for 

the transition from the laminar sub-layer to the fully 

turbulent region, could not be obtained without the in-

troduction of 2D. The actual 2D distribution will be 

discussed in the next section, together with that for 
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The turbulence energy equation 

We may now substitute all the above expressions in 

eqn (5.2-8), to get: 

P 	f!, ÷ /rid X — ,,,„ (fie#46-) 
JA. 

(  (21Z 	0.-;)  2 [1: 	I', (5.3-9) 

	

+,6-4 I ox. + JX, I 2x- 	4, , 	el 

where/curb 
r k,eff are defined in eqns (5.3-3) and 

(5.3-6). 

5.4 The length scale  

In the last two sections we have developed an equa-

tion for the turbulence energy. It would be advisable 

to have a similar equation for the length scales 2A  and 

2D. 	
However, it is not possible, at the present stage, 

to report advances in this direction. 	Instead, we 

shall have to rely on other sources of information. 

The most important of them is the similarity with the 

Prandtl mixing length to which our length scales should 

reduce in certain circumstances. Thus, in such cases, 

we expect the length scales to be proportional to the 

distance from the wall near solid walls, and to be pro-

portional to the width of a  jet, in jet flow. 

It has been shown. by Glushko (1965) and van Driest 

(1956) that, very near to the wall, the length scale 

decreases much faster than the distance from the wall, y. 

Glushko suggested to use very near to the wall 
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a 
	 ( 5.4-1 

where a is a constant which has a different value for 

2,, than for 2D  and 

414 0,  
(5.4-2) 

/AA  

It has been widely accepted that,when R is very large 

const 	(5.4-3) 
e29  

which prevails in the fully turbulent region. The 

constant in the right-hand side of eqn (5.4-3) is usually 

put equal to unity, by a suitable choice of the con- 

stants 	and Co  . 

The van D est hypothesis is connected with the 

Prandtl mixing length hypothesis. Following Patankar 

(1967), it may be written as: 

(  Yr!'  — 'I— C'Xp 	d 	 .11-4) 
AzA4  

Where A is a constant. The expression /F-7/- represents 

the non-dimensional distance from the wall when the 

mixing-length hypothesis is used. But when the turbu-

lence energy hypothesis is used, the distance from the 

wall is usually represented by R as given in eqn (5.4-2). 

Indeed, these two expressions are proportional to one 

another in a constant-shear non-diffusional Couette 

flow. Thus we may deduce, for the length scale near 
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walls 
4  ev 	h 	 (5.4-5) /44  
	. 4 	( 	0 	) (5.4-6) , 

where y. and /D are constants, to be fitted to experimental 

data. 	and 2 designate length scales for viscosity and 

dissipation respectively, as they are used in equation 

(5.3-3) and (5.3-8); y is the distance from the wall. 	We 

shall arrange that for large y both 5. and 2 are equal to 

y. 

It will be shown in the next section that for good 

agreement with experimental results, we have to take: 

	

. 0.016 
	 (5.4-7) 

	

= 0.263 
	

(5.4-8) 

A comparison of the resulting length scale's distributions 

with those recommended by Glushko is shown in fig 5.4-1. 

Also shown in this figure are the implications of a recent 

• Suggestion_ for the length scales elide by Spalding (1967). 

Discussion of the length scale distribution near walls  

Three suggestions for length scale distribution near 

walls have been reported above. 	All of them suggest that 

far away from the wall, one can take 

7=-- 	"=-- 	 (5.4-9) 

which has been well confirmed by work on the Prandtl mixing-

, length hypothesis.: Very near to the wall, an expansion of 



9
0
t 
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equations (5.4-5) and (5.4-6) leads to: 

/61 	 _ 	 ( 5.4-10) k  

6  _ 

These expressionS are in agreement with the other two pro-

posals and with the meagre experimental evidence on the 

flow in the laminar sub-layer. 

The present approach is to join eqn (5.4-9) with 

(5.4-10) or (5.4-11) together by an exponential expression. 

This practice finds some support in the van Driest hypo-

thesis, which has been used very successfully by Patankar 

(1967) together with the Prandtl mixing-length. 	It also 

results in a fairly good agreement with measured velocity 

profile in a constant-shear non-diffusional Couette flow, 

as will be demonstrated in the next section. 	It has the 

disadvantage , that'it does not yield to analytical inte-

gration when substituted in the equations but this is not 

a real difficulty for the numerical analystw. More serious 

is the fact that we do not have sufficient measurements 

to correlate and confirm the exponential form of the length 

scale distribution. 	Therefore we must accept eqns 

(5.4-5) and (5.4-6) as tentative, until direct measurements 

of the shear stress and turbulent properties are available 

all the way through, from the sub-layer to the fullyturbu-

lent region in a variety of conditions. 

(5.4-11) 
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5.5 The turbulent exchange coefficient  

We shall suppose, following Spalding (1967c), that 

F p, ep 	
efl 

(5.5-1 

This expression reduces to the proper asymptotic forms at 

the two extremes of fully turbulent or fully laminar flow. 

a0,turb is constant in the fully turbulent region. We 

do not know much about its behaviour in the transition 

region and the viscous sub-layer. 	Therefore, we shall 

follow Spalding, and assume that 

6-f, t4„.4 = cowsz' 	 (5.5-2) 

across the whole flow. 

Eqn (5.5-1) may be rearranged as 

6; 4 4 f  =  	(5.5-3) 

where 

(5.5-4) 
tr4,1, e 

//i4  

5.6 Determination of the constants  

In the earlier parts of chapter 5 we have enlisted 

various expressions for turbulent viscosity, turbulence 

energy and the length scales. 	Six unspecified constants 

have been used in these expressions namely: 
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in eqn (5.3-3) 

46,4 in eqn (5.3-4) 

CD 	in eqn (5.3-8) 

in eqn (5.4-5) 

in eqn (5.4-6) 

in eqn (5.5-1) 

In the present section we.shall see how these constants 

may be evaluated from experimental data. 

We shall obtain all the constants from correlations 

of measurements in one-dimensional (Couette) flow, for 

two reasons. 	Firstly, the experimental data for such 

situations are by far more numerous and reliable than 

for almost any other type of flow; secondly, we may ob-

tain analytical solutions for some cases of one-dimensional 

flow, as will be illustrated in the forecoming pages. 

Such analytical solutions considerably reduce the work 

involved in the fitting of the constants. 	These two 

reasons seem sufficient to justify the restriction of the 

present chapter to Couette flows only. 

Empirical relations  

The one-dimensional flows, for which we have appro-

priate correlations of experimental date, are: 



z dx  
A.; 	if° 

is an empirical constant (Townsend,1961). 

+ coast 
	(5.6-2) 
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(i ) 	The logarithmic law of the wall for a constant- 

shear non-diffusional Couette flow, in which 

t;177)  
t:In;/7 ( 5 . 6- 1 ) 

where 	and E are empirical constants (Schlichting, 1960) 

(ii) 	The velocity distribution in the linear-shear 

Couette flow in which 

where 

(iii) The turbulent-viscosity law in the laminar-sub-

layer of a constant shear, non-diffusional Couette flow, 

in which 

,14 
	a 
	Vr,/ 	 (5.6-3) 

where a and c' are empirical constants (Spalding and 

Jayatillaka,1964). 

(iv) The empirical P-function, describing the resistance 

to heat transfer of a constant-shear non-diffusional 

Couette flow. 	(Spalding and Jayatillaka, 1964) 	It will 

be noted that the P-function is different from eqn (5.6-3) 

only when the Prandtl number is low. 
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The one-dimensional turbulence energy equation  

In a steady, one-dimensional flow eqn (5.3-9) reduces 

to: 

°` 	(1; 	) 2-- )
2. 	

(  ,
13/2- 

ei./ 	Po  (5.6-4) 

This equation has to be solved together with the viscosity 

hypothesis, eqn (5.3-3), and the length-scale hypothesis, 

eqns (5.4-5) and (5.4-6) or their asymptotic forms, eqn 

(5.4-9), (5.4-10) and (5.4-11). 

The constant-shear, non-diffusional layer, for y--1.0.> 

When d 

(5.6-5) 

(5.6-6) 

= 
	 (5.4-9) 

(5.6-7) 

Also, in a non-diffusional Couette flow 

= const. 	 (5.6-8) 

Under these conditions, eqn (5.6-4) reduces to: 

co r 	 (5.6-9) 

and 

h 	//  

 

(5.6-10) 
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We may now integrate 

/uejJ 	= L-5  

to get the velocity 

/",4 y 
	) 

sy- 

where E is an arbitrary integration constant..  

(5.6-11) 

(5.6-12) 

The linear shear layer, for y—PP•t3c,  

Here, as in the previous case, eqn (5.6-5), (5.6-6) 

and (5.4-9) hold; but the shear stress is given by 

(5.6-13) 

where 

_ 	 (5.6-14) 

In these conditions eqn (5.6-4) reduces to 

r 	hi A  ;1 
	 (5.6-15) 

Spalding (1967a) showed that the solution to eqn (5.6-15) 

is 

i4  

1/ (co - "44 	2  k, ta,r4  

and the resulting velocity profile is 

(5.6-16) 

  

3  
- 2. rk 	/ 

3% 

 

U = 2 11P al + CO» s 	 ( 5 . 6— 17 ) 
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The constant shear layer, y  

In this case We get 

(5.6-18) 

(5.6-19) 

( 5.4-10 ) 

( . —11) 

(5.6-7) 

( 5 . 6 — 20 ) 

-= 

and eqn (5.6-4) reduces t 

d' 

( 
4C:Y, 

	
Ao  A 'A  

with the solution: 

where 

(5.6-21) 

(5.6-22) 

and A' is an arbitrary constant.' 	However, it will be 

easier for further use krWe-rErrange eqn (5.6-21) in a 

non-dimensional form 

( 5 . 6-23 ) 

The other integration constant is put zero, as k = 0 
at y = 0. 
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Eqn (5.6-22) will naw change to: 

2 13 ( 3 3 - 2) 
- 8) 2-  

(5.6-24) 

The turbulent viscosity may be computed through eqns 

(5.3-3) and (5.4-10) to get 

A 6  
(  tr: ,)  2-8 (5.6-25) 

Values of the constants  

We have now obtained all the possible analytical 

solutions of eqn (5.6-4). 	Next we have to compare these 

solutions with the experimental evidence, listedain the 

beginning of the present section. 

From eqn (5.6-1) and (5.6-12) we get 

IA 
Oe= 	/' 
	

(5.6-26) 

From eqns (5.6-3), (5.6-24) and (5.6-25) we get: 

CD  
15-(d-2)(0e-- 3) = An 

And from eqn (5.6-2) and (5.6-17) we get 

(5.6-27) 

3 5,.."  
!--g) — 	2 

44 

(5.6-28) 

  

A simple rearrangement of eqns (5.6-26), (5.6-27) and 

(5.6-28) leads for  

(5.6-29) 
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(5.6-30) 

 

Co (5.6-31) 

 

5-(0e— 2) (Pe—  3) 

We have thus managed to eliminate three of the unknown 

constants. 	Further, there is no reason to change a 0,turb 
from the value of 0.9 which was recommended by Spalding 

and Jayatillaka (1964), and supported by Fatanhar (1967). 

So we have to fit C and A only. These two constants 

. were so chosen, as to give a good agreement with the 

u4,4y.i.4 function and the P4a/at b* function for a constant- 

shear, non-diffusional Couette flow. 	The procedure is 

quite straightforward; 	it is as follows: 

(i) and k are tentatively prescribed. 

(ii) Eqn (5.6-4) is numerically solved, for constant 

shear stress T = TS'  with the boundary conditions: 

0 at y 
(5.6-32) 

at y = yG  

(iii) The turbulent viscosity is computed, by eqn (5.3-3)• 

(iv) Tho following necessary functions may now he com-

puted numerically 

(5.6-33) .  

(5.6-34) 

(5.6735) J,4 (151r.f, 	
r y.., 

T js 	4 4  44 	tl 
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(5.6-36) 

(v ) 	All the previous steps should be repeated for differ- 

ent values of 	and and 51, until the computed u4.4y.1. 4 and 

P4a /0turb4 give a satisfactory agreement with empirical 

correlations. 

It will be noted that until this very moment we have 

been discussing "empirical constants and correlations" 

without referring to any particular numerical values. 

Now the time has tome to make numerical specifications. 

Some of the values which we shall use are fairly well 

established, othersare not. 	So we can specify our con- 

stants (11/, , 5„ etc.) only tentatively, pending accumu- 

lation of more experimental information. 	The values used 

in the present -Thesis-are:: 

= 0.4 (recommended by Schlichting, 1960); 

E = 9. 	(recommended by Schlichting, 1960); 

K; = 0.48 (recommended by Townsend, 1961); 

De = 	(resulting from Spalding and Jaya- 

tillaka's P-function for high Prandtl 

numbers, 1964); 

and,of course, the P-function itself, and the turbulent 

Prandtl number 60,turb = 0.9. 

The P-function was preferred to a t4.4y4.4 profile, 

because it is based on a large number of observations, 
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and for a very wide range of Prandtl numbers. 

The resulting constants are: 

A /4. = 0.016 

Ao  0.263 

0.22 (5.6-37) 

Ca  = 0.416 

= 1.53 

The resultant u+  4y + 4 and P(a /aturb4 functions are com-

pared with Schlichting's and Spalding and Jayatillaha's 

functions in figures 5.6-1  and 5.6-2 respectively. 	The 

agreement is good. 	We must, however, note a difference 

between the present set of constants and those suggested 

by Spalding (1967c, p. 1.134). 	Spalding chose the con- 

stant value of the turbulence energy in a constant-shear 

non-diffusional Couette flow to be about 5 	However, 

if we substitute the above constants in eqn (5.6-10) we 

get: 

k  
zj 

   

= 3.3 (5.6-38 ) 

   

/a 2 2 'O 11,11 

 

Some attempts were made to increase the value of (c, 5 ) 

by suitable changes of c. and 5.. 	These attempts always 

caused some deviation from either Spalding and Jayatillaka's 

P-function or Schlichting's u4.4y.i.  relation. 

The experimental evidence currently available is not 

sufficient to establish the value of -11-e- in the constant-

shear layer accurately. 
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6. 	Wall functions  

6.1 What wall functions are  

We have been looking in chapter 5 into a particular 

model of turbulence, which appears to be powerful enough 

to satisfy our present needs. 	Apparently we may proceed 

straight ahead to the solution of the finite-difference 

equations. Unfortunately, we may get accurate solutions 

by our finite-difference method, only when the variation 

of all the quantities concerned between adjacent mesh 

points is nearly linear. Therefore in regions of high-

gradients, as, say, a boundary-layer near a wall, we 

must specify a very fine mesh. 	Fine meshes are, in 

general, a legitmate part of the finite-difference method, 

but they tend to be very costly in computer time. 	This 

is the main reason which leads us to seek an alternative 

method to the finite-difference one in thin boundary-layers. 

Such a method should, in principle, yield some algebraic 

relations between quantities in the outer part of the 

boundary-layer and the wall fluxes, without integration 

of the equations governing the flow inside the boundary- 

layer. 	These relations are called wall functions. 

The wall functions have already been employed, for 

very similar reasons, to boundary-layer work, by Patankar 

and Spalding (1967). 	Their work was, however, restricted 

to the Prandtl mixing-length hypothesis. 	Our present need 
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is for wall functions which will make use of the Kolmo-

gorov-Prandt1 hypothesis, and which will apply to cases 

of augmented turbulence. 

We still have to face the fact that the wall functions 

must be simplified correlations of theoretical solutions; 

there is hardly a chance Of getting a general exact solu-

tion of the boundary-layer equation in a simple algebraic 

form. 	Even when we agree to the use of correlations, we 

soon find that we may obtain them only for :very simple 

boundary-layers; in fact the solutions used in the pre-

sent paper (as well as in Patankar and Spalding's work) 

are for one-dimensional boundary-layers, or, as they are 

often called, Couette flows. 	This fact should not, how- 

ever, deter us from the use of these wall functions.. 

All boundary layers have some similarity to Couette flow, 

and the nearer to the wall, that we are, the stronger this 

similarity is. Practice has shown that the region where 

the flow is one-dimensional is, in many cases, much thicker 

than that in which it is linear (in the laminar sublayer). 

So tie have much to gain by the use of wall functions, even 

in their present simple form. 

tie shall restrict ourselves to flow on smooth sur-

faces, not having large rates of mass transfer. Pressure 

gradient effects will be only slightly described. 
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6.2 Definition of terms  

In the present work we aim at highly turbulent flows, 

where the shear stress as well as the velocity may become 

vanishingly small. Therefore we have to define all our 

non-dimensional groups in such a way that no troubles will 

occur when they become excessively large or small. 	But, 

on the other hand, we wish to get groups which will make 

sense also in more normal Situations. 	The most suitable 

groups, are then 

R 	
j, 

 

K= 	 2'1  

(3.2-13) 

J's  = (3.2-18) 

where y is the distance from the wall, and 0 is the tem-

perature (or conserved property) difference between the 

point in question and the wall.* 

6.3 Solutions for particular cases  

The usefulness of the above expression will be demon-

strated by considering their values in someparticular cases 

of flows without pressure-gradient: 

* Interested readers should note that these definitions 
are different from those used by Spalding (1967c) in a 
similar treatment. 
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(i) 	When y = 0 (or in laminar flows) 

R = K = 0 (6.3-1) 

S = S = 1 (6.3-2) 

(ii) 	In the constant shear, non-diffusional layer, when 

y becomes very large, we have, from eqn (5.6-10) 

/9 

	

	
(6.3-3) 

A 
 co 

If we make use of eqn (6.3-3) we may now rearrange eqn 

(5.4-2) to get 

( cpYA 	c-A 	 (6.3-4 ) 

Similarly, we may rearrange eqn (3.2-13) using eqns (6.3-4), 

(5.6-1) and (5.6-26). 	We get then 

ot9  - c /2) 
(6.3-5) 

and by the use of the equations for heat transfer in 

Couette flow, suggested by Spalding and Jayatillaka, we 

may rearrange eqn (3.2-1a),to g t 

(6.3-6) 

  

	

I 	P  

	

A 	e 40,4 

(iii) In the zero shear layer, K will become infinite, 

but R, S and s will remain finite. 	Spalding (1967a) has 

shown that in this case 
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this, when combined and 

Co n s t 
	 (6.3-13) 

with the definitions (3.2-18) and 
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a y 	 .(6.3-7) 
where 

1 I  2 Co /7 	 h"t  (6.3 8) 3 
The definitions (5.4-2) and (6.2-1) may now be used to- 

gether with eqn (6.3-7);to yield 
2 &a 

K 	n2.1,  (6.3-9) 

Ina vanishing-shear layer both Ts  and u are vanishingly 

small. 	Still, the limit of T /U must then have a finite 

constant value. 	Therefore we may deduce from the defi- 

nition of s, eqn (3.2-13), that 

oc 	 (6.3-10) 

which by use of eqns (6.3-7.) and (6.3-9), is the same as 

R 
	 (6.3-11) 

For S we shall use the relation 

( 
	 (6.3-12) 

where 

(3.2-13) yields 

(6.3-14) 
When actual numbers are subsituted, we get: 

m = -1.39 
0.82 KoL-. R 

s S 0.59 R 

(6.3-15) 
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6.4 Integration of the turbulence energy equation  

(uniform shear)  

In section 6.3 we have obtained solutions of the tur-

bulence energy equation for the following asymptotic cases 

of a uniform-shear Couette flow: (i) laminar flow; 

(ii) fully turbulent, non-diffusional flow; (iii) fully 

turbulent flow with a very large diffusion of turbulence 

energy from the outer edge of the layer (the no-shear 

layer). 	Now we have to fill in the gap left between these 

solutions by numerical integration of eqn (5.6-4). 	There 

is no need to describe the method of integration, which 

is essentially the same as that described in the end,of 

section 5.5. 	The results are plotted in figures 6.4-1, 

6.4-2 and 6.4-3 in the form of k 00 , 04 and S6A4 (for 

Cf . 0.7) functions respectively. 	Similar S4R4 functions 

have to be computed for different values of a. 	All 

these figures show two main characteristics: 

(i) When the turbulence level inside the layer is 

augmented by diffusion of turbulence from the main stream, 

s and S satisfy eqns (6.3-9), (6.3-10) and (6.3-11) 

respectively, and thus:,behave in a fashion similar to the 

no-shear layer. The proportionality constants in the 

above equations are functions of the turbulence augmenta-

tion. 
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(ii) When R remains constant, s and S decrease if 

the turbulence energy is augmented, until they reach a 

minimum value. When the turbulence is further increased, 

s and S will not decrease any more. 

In this situation, it seems natural to characterise 

the state of augmentation of the layer by the proportion-

ality constants in eqn (6.3-9) calculated as 

(6.4-1) 
	2 M 

R 1.'er' 
in that part of the layer which behaves as a no-shear layer. 

The quantity % was used, in fact, as a parameter in figures 

6.4-1, 6.4-2 and 6.4-3. 	The asymptotic solutions obtained 

analytically in section 6.3 are shown to be accurately 

obtained by the numerical integration as well, thus serving 

as a check on the accuracy. 

6.5 The s4R,0- correlation  

We are now in a position to obtain our first wall 

function: the s4R,a4 function. This may be done by 

fitting straight lines to fig 6.4-2. 	The resulting func- 

tion is plotted in fig 6.5-1, and may be represented by 

the following formulae: 

at A e • 
• (6.5-1) 

(2 • .3= 0. 0 5-  d 	 (6.5-2) 

a- x  
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R >-19. 8 0.252>a> 

R > /198 	a 252 

-a3z/ /?-., 	0. .5-49 
= 	c2 	57 

0.5-s 
d5-5-  (1,)  - 

(6.5-3) 

(6.5-4)  

the augmentation parameter, is required only when 

>19.8; and in these circumstances, we see in fig 6.4-1 

that it is quite safe to compute it from: 

a -- 	
12"2 	

(6.4-1) 

6.6 The correlation for S  

It is quite easy to obtain a correlation for S, in 

a very similar way to the one for s. 	Such a correlation 

is shown in fact in fig. 6.6-1, for a = 0.7, and is sum-

marised by the following relations: 

R T 2s 	S 

No.sels 
R > 2 r 	=-- a 0 • = 	o47.3-  (A,  5) 

at R > 	 a > 0 3 s 0. 001 Or 47,311 (2 

> 2 5-  j 0- > 0, 2 78 	S= 0. 4341 (.4.5.) 43. 5-41  

0. 519 

(6.6-1) 

(6.6-2) 

(6.6-3) 

(6.6-4) 

This correlation is valid, however, only for one particular 

Prandtl number. We shall therefore try to obtain a more 

general one. 	Spalding (1967c) has integrated the turbu- 

lence energy equation for a Couette flow. 	He used a 

discontinuous length scale distribution, and therefore 
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was able to get approximate analytical solutions to a large 

number of problems. We shall now try to deduce from his 

solutions the general shape of an S4s,K,a4 function. 	If 

we substitute the present notation in Spalding's formulae, 

we get, for the constant-shear layer, 

A 	ce  5 _( 	 (6.6-5) A 	 S 

where u 	in a non-diffusional layer, and ce = -2/(m+2) 

in a no-shear layer (m is defined in equation (6.3-8). 

Spalding also investigated cases where —1 <- °/ < -2/(m+2) 

but as these cases are excluded from the present correla- 

tion they need not be considered here. 	Now,it is clear 

that gWaturb4.  should have some connection to the P-

function recommended by Spalding and Jayatillalca (1964). 

Let us assume a linear relation between the two functions 

g = c . P 
	

(6.6-6) 

where c is a constant (or rather a function of the augmen-

tation parameter, a). The best values for c may be 

shown to 

C = 1.8 for a non-diffusional 
layer 	 (6.6-7) 

0.45 for a no-shear layer 

and so, from eqn (6.6-5) 

A 	Vb.,‘ 	'4,'--4 .7_—_   .4— 	C R('IP S 	A 	 r (6.6-8) 

where 	= -1 for a non-diffusional 
layer 

of = -0.59 for a no-shear layer 
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as recommended by Spalding and Jayatillaka. 
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(6.6-9) 

We note that in the present correlations, the fluid 

should be in either a non-diffusional or a no-shear state; 

therefore two values only for oe and c are sufficient. 

Mere is still one point to note: when y is very 

small, eqn (6.6-8) may be misleading, because the P-func-

tion is meaningful only for points far away from the wall. 

We must, in such cases, make sure that S never drops below 

unity, the value which is appropriate to a laminar flow. 

6.7 The pressure-gradient influence  

We have hitherto neglected the pressure-gradient in- 

fluence on s, 	Theoretically, a correction must be applied. 

Spalding (1967c) obtained an approximate expression for 

this correction. His expression may be rearranged as 

	= 4 F 	 (6.7-1) 

where s
o 
is the value of s corresponding to the same R 

and K, but with the pressure-gradient neglected, and 

0/0ft- 

F = ehe 

rJJ aTi 	r 
	 (6.7-2 ) 

(3.2-14 ) 
/4 IA 

To obtain f we must solve the equation 
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and it may be easily shown that 

R j 	0/64) 
1= 	

( 	
1/2 (1151 (1-1) 

(6.7-3) 

There is no particular difficulty in computing f when the 

Aff  distribution is known. 
slightly different approach. 

laminar flow 

f 2-2 

Also for very large R,  

We shall ho ever adopt a 

First, we note that in a 

(6.7-4) 

(6.7-5) 

and 

-- a R 
0 	 ( 6 . 7-6) 

and then we may get by integration of eqn (6.7-3) 

2- 01  

c 	- 2a) 	
c 77.521  

/4  

so that for a large R, f is not dependent on R. 

(6.7-7) 

On the basis of the above considerations and some 

numerical computations, an 

as shown in figure 6.7-1. 

R relation was complied, 

In this figure, a of equation 

(6.4-1) is the parameter. 	The correlation may be sum- 

marised by 

at 
	

R > 2D ar 
	

2) a - 	(6.7-8) 

R < 	et 
	f ,  4 	(6.7-9 ) 
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= c9.223 
	 (6.7-10) 
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We Shall now examine when s may become considerably differ-

ent from s . In the laminar sublayer we may transform 

eqn (6.7-9) to 

-4 7=  
A. 

F 
2. 

(6.7-11) 

so that if F -  is not larger than say 0.1 the correction 

will be smaller than 5%. There is very little likelihood 

f F to be larger than 0.1 inside the thin laminar sub-

layer. 

In the turbulent case 	is more difficult to define 

the pressure-gradient influence. But we may note that 

only for large F and small R is the pressure-gradient 

influence going to be considerable. 	It was due to these 

reasons that the above corrections were not applied to 

the impinging jet computations, which will be reported 

in chapter,  7. 	If, however, the pressure-gradient influ- 

ence has to be accounted for, the following correlation 

is found to give good results for small and medium pressure 

Gradient: 

A a72=  A 	F-  . a.72 
 4o (6J7-4) 

The correlation is compared with the exact solution in 

fig 6.7-2, for values of p' varying between -0.5 and +100. 
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No serious disagreement between the computed and correlated 

s values is present for p' < 100. 
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7. 	Studies of the turbulent impinging jet  

Until now, we have been concerned with generalities. 

First, in part II, a method was devised to solve the general 

equations. 	Later in chapter 5, a turbulent viscosity 

hypothesis was developed,-  and, in chapter 6, a special pro-

cedure for the treatment of the boundary conditions near 

walls was devised. 	Now the time has come to obtain solu- 

tions for' the impinging jet problem. 	In studying such 

solutions our purpose is two-fold. 	First we wish to pre- 

sent a theory which can agree with as much as possible of 

our existing experimental knowledge, and which enables 

predictions to be made. 	Secondly, we have to explore the 

limitations of the theory, and its failures to agree with 

measurements. 	Knowledge of such failures is essential 

when we plan our future research. 

In view of the above discussion the present chapter 

will be constructed as follows. 	First in section 7.1 

the turbulent impinging jet problem will be mathematically 

presented. 	Then in section 7.2 we shall study the gross 

features of the flow, such as contours of properties, 

and pressure and velocity profiles. 	In section 7.3 we 

shall look at the wall fluxes in detail. 	It is in this 

section that some failures of the compUtational scheme 

will be displayed, and their possible cause suggested. 

The whole chapter will be summarised and discussed, then, 
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in section 7.4. 	However, final recommendations on further 

research will be deferred until part IV. 

7.1 Description of the impinging jet system.  

The plane impinging jet is shown in fig 7.1-1. 	The 

turbulent viscosity is computed by the equations described 

in chapter 5 from the turbulence energy. The boundary 

conditions are very much the same aS those described in 

section 4.1. 	Wall functions are used to evaluate the 

skin friction and wall heat flux. 	Details of the wall 

boundary conditions are given in section 3.2. 	We still 

have, however, to consider the boundary conditions at the 

entrance of the free-jet to the control volume in the "F" 

state (see fig 7.1-1). 	We shall assume that the nozzle- 

to-plate distance h is larger than the length of the po- 

tential core of the free jet. 	We shall use the relations 

recommended by Schauer and Eustis (1963) 

41-7nitx,F 

  

2.35 (7.1T.1) 

     

U r  

    

where yF  is the distance from the nozzle to the near 

boundary of the control volume. 

The stream function and vorticity in the "F" state 

(see fig 7.1-1) are given, as in section 4.1,by 
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and 

Ox. = 3 
[

11;
x

fr

6.

ar,F 	(it (7.1-3 ) 

V- F X6 Ingtx, 
x 	4 	 5./2. 	 4] 

4  04   
5 XT 4 Hx6 

(7.1-4 ) 

We also deduce from Heskested's measurements(1956) that 

4, 	d 04 Orwwrec) 
2 	

(7.1-5) 

The meshes used will be non-uniform ones. The non-

uniformity will be specified, in the x direction, by re-

quiring  that 

x

xe  

1.
4 

 — — 

 xc 
	 ( 7 . 1-6) 

and in the y direction 

(4.3-1) 

wherebothE;x andEwill be taken as constants, greater 

than unity. 	Therefore the mesh is finer near the jet 

axis and near the wall. 

The turbulent length scale will be taken as 

0.2 X6 
	 (7.1-7) 

everywhere;  but near the wall equations (5.4-5) and 

(5.4-6) will be used, whenever they yield a smaller length 

scale than the one computed by eqn (7.1-7). 
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7.2 General description of the impinging jet flow  

In this section we are concerned with the gross fea- 

tures of the flow. 	It will be shown that the general 

pattern of the flow is obtained in a satisfactory way; 

on the other hand, we shall not concern ourselves in this 

section with the boundary-layer near the wall, or the 

fluxes of momentum and energy from the wall. Thus we 

shall study contours of various quantities, as well as 

profiles of some of them. 

7.2.1 Contours  

We first look on contours of the main variables: 

the vorticity, stream function, turbulence energy, tem 

perature, dynamic pressure, and static pressure. 	They 

are presented in figures 7.2-1 a - f, for the case of 

4 -s 

-AA 00 a 
	 (7.2-1) 

and a normal level of turbulence in the free jet, as given 

by eqn (7.1-5). 	The mesh is a 14x16 one, with the non- 

uniformity parameter 6  = 1.3. 

Some conclusions may be drawn from these contours 

as follows: 

(i) 	A thin boundary-layer appears near the wall, 
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where the stream lines are nearly parallel to the wall, 

and the vorticity and turbulence become very large.. The 

Dressure drop across the boundary-layer is negligible. 

Although a uniform turbulence energy distri-

bution was firescP.71b ed in the free jet, on the boundary of 

the control volume, a maximum of the turbulence energy 

appears in the jet inside the field. This maximum is 

located about half-way between the centre and the outer 

edge of the jet. From this maximum k drops only slightly 

touards the centre, but very considerably towards the 

outer edge. However, when the solid surface is approached 

the k-maximum is shifted to the centre of the jet. 

(iii)-  The boundary condition on the downstream side 

of the jet flow, specifies that there are no gradients 

parallel to the wall. This does not seem to distort the 

results appreciably. 

Confirmation of the results  

No detailed measurements of these contours in plane 

impinging jets are currently available. But contours 

of stream function, and static and dynamic pressure measured 

by Poland (1967) in axially-symmetrical impinging jets are 

very similar in shape to those displayed in figure 7.2-1, 

b, e, f. 
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7.2.2 Velocity and pressure profiles  

We were not able to confirm the computed contours, 

as no experimental evidence was available. 	We can, however, 

confirm some velocity and pressure profiles by comparing 

them with Schauer and Eustis's measurements (1963). 	The 

system under consideration is the same as the one presented 

in section 7.1, but we now choose 

hvd, = 40 

"C  = 43000 
	 (7.2-2) 

in order to agree with Schauer and Eustis's experimental 

set up. 	The mesh is a 14x12 one, non-uniformly spaced, 

with Ey  = 1.5. 

The maximum velocity growth  

First we consider the growth of the maximum velocity 

parallel to the wall. 	In fig 7.2-2 measured values de- 

signated by (x) are compared with the computed values de- 

signated by (o). 	The computed values have the right shape 

but they are consistently lower than the measured ones. 

To find the reasons for this two other runs were made: 

In the first run, designated by (+) the wall was consider-

ed as a slip-boundary (physically this is similar to the 

iMpingement of two jets on one another). 	The results of 

this run were' still lower than the measured ones. 	Then, 

in the second run, designated (A), laminar, flow with a 
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slip-wall was considered. 	This improved the agreement 

with the experimental results very considerably. 	Thus 

these tests suggest that the turbulent viscosity hypothe-

sis is the source of the discrepancy between the measured 

and computed maximum velocities. 	We cannot, hoever, 

definitely attribute the whole discrepancy between the 

measured and computed velocities to the viscosity hypo- 

thesis. 	Schauer and Eustis did not 1-7.eport.. the veloci- 

ties in the free jet. 	Thus the use of wrong values of 

the velocity and stream-function in the free jet entering 

the control volume may be the cause for the low maximum 

velocity. 

The wall static pressure  

The static pressure distribution on the wall was 

measured by Schauer and Eustis, whose results are compared 

with the computed ones in fig 7.2-3. 	The agreement may 

be considered acceptable, in view of the discussion of 

possible reasons for disagreement between experiment and 

theory, in section 7.2.2. 

The axis-velocity decay 

This quantity has not been measured by Schauer and 

Eustis. 	However, we may expect that it is not very 

different from the exact solution for a stagnation flow 

(Schlichting, 1960). 	Thus we anticipate that the axis 
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velocity, away from the wall, will obey 

= A y 	 (7.2-3) 

where A is a constant and y is the distance from the wall. 

Very near to the wall, the laminar stagnation flow solu-

tion reduces to 

v = B y2 
	

(7.2-4) 

where B is a constant. 

The computed results are plotted in fig 7.2-4. 	The 

linear ve,y relation is very evident. 	The quadratic 

relation is not as clear, almost certainly because the 

mesh employed was not sufficiently fine near the wall. 

The wall-jet velocity profile  

The profile of the velocity component parallelto the 

wall on the downstream boundary is shown in fig 7.2-5. 

No velocity profiles normal to the wall have been reported 

as near to the impingement point as to enable a direct 

comparison with the present computation. 	Still, the 

computed velocity profile looks very feaSiblc. 

7.2.3 The turbulence energy on the jet axis  

The present section, in contrast to 7.2.1 and 7.2.2, 

is not concenndd with comparison with experiments. 

Indeed, the main object of this section is to make a pre-

liminary exploration of the development of turbulence in 
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the impingement region. 	Apart from the general advantages 

of increased insight and the description of the directions 

for further research, we shall refer to these results also 

in section 7.3. 	For these computations, again, the im- 

pinging jet system described in section 7.1 was used. 

Computations were obtained for various Reynolds numbers, 

and for 1)./c = 8. 	Various mesh distributions were used, 

as it was found necessary to refine the mesh near the wall 

for higher Reynolds numbers. The turbulence energy on 

the jet axis is plotted in fig 7.2-6, where y is the dis- 

tance from the wall. 	Also, in fig 7.2-7 the turbulence 

energy profiles in the x-direction are plotted for 

Rec = 11000, and different distances from the wall. 

When we wish to interpret these figures 1;e must first 

recall that,in the present hypothesis, the generation of 

turbulence energy is proportional to: 

k 4A j2  ( a 
 
p,-4-1 -1-  2  ( 

dU 	Vu-  }1.1 
( 	 ax J 

(7.2-5) 

Obviously, this term does not vanish on the jet axis. 

Even in a free jet, when dv/ay is not very large, the axis 

turbulence generation is enough to raise the turbulence 

level on the axis considerably. 	Nevertheless the maximum 

turbulence is found halfway from the centre towards the 

jet edge, where av/ax attains its maximum value, as shown 



S 

g 	Nf 
	

/X a 131' 

No A 	"/V.g 717 	n 	--Z 	91 3 

'0* 

osn 
059 - 
o513 

oSke 

ooSS 

000 rr 

000 LAY 

►0 0' 

pa'  

z 	11  00 
00 • 

S_C 



°'4 .0A 

WAS 0.34 

o.23 

048 
0..14 
a io 
a 078 
a 05-8 .05 

M ,?: ao se 
0.0?-8 

. 01. 

2 

456 

)c/h,  

FIG 7.2- 1 : THE 711Ra LICE NIC E NE- goy PROF/LE IN TWE 

IMPINGEMENT REG/0/v . Re 	11 voo . 1,./,/, ...z.-  8. Y .s -rigivos 

FOR THE oiJrAN(,B Fviom THE SURPRCE, 



157 

in the profiles for greater y/hc  in fig 7.2-7. 	However, 

when the stagnation point is approached, av/ay increases 

very considerably. 	Consequently, the maximum of the 

turbulence energy is shifted to the jet axis, due to the 

increased turbulence generation there. 	In this region 

the increase in the turbulence level is sufficiently large 

to create a maximum of the turbulence energy on the centre 

line as shown in fig 7.2-6. When the wall is further 

approached, the velocity decreases, until generation com-

pletely dies out, and the turbulence energy decays quickly. 

In the region of no generation we expect: 

a yot 	 (7.2-6) 

where, it may be shown, by reference to eqns (5.6-23) and 

(6.3-7), that 

2 	, f 	co  r4 	== -932 (7.2-7) 

/4 

in the fully turbulent region 

and 

5-  4 F 25- 	= "4 32 
	 (7.2-8) 

in the laminar sublayer 

As the two above values of Ge are very near to one another, 

it is ,impossible to learn from the above computations 

whether there is a "fully-turbulent no-generation" region 
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in the impinging jet system, or whether generation stops 

only in the viscous sublayer. 	Another interesting impli- 

cation of figure 7.2-6 is that the no-generation layer, 

turbulent or viscous, as it may be, becomes thinner when 

the Reynolds number increases. 

It has been suggested above that in the impingement 

region, turbulence is mainly generated by the normal 

stresses rather than the tangential ones; but does this 

represent true physical facts, or is it just an implica-

tion of the particular model of turbulence employed in 

the present paper? No definite answer to this question 

was obtained during the present research. 	In part IV, 

it will be suggested how such a definite answer may be 

obtained. 	However, before more research is done, we 

may get a partial answer by examining the plane, free jet 

data reported by Heskestad (1965), who measured the three 

fluctuating velocity components. 	Taking the squares of 

all the fluctuating components and summing these up, we 

get the solid line shown in fig 7.2-8, where the dotted 

line represents the mean velocity. 	As in the case of 

the computations described above, it will be difficult 

to explain the high turbulence level in the centre line 

if we assume that it is generated by the tangential 

stresses only. 
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7.3 The wall fluxes  

In the present section we Shall examine some predic-

tions of the skin friction and Stanton number on the flat 

surface below the impinging jet. 	It should however be 

said from the very beginning, that in the previous two 

sections we were concerned mainly with the solution method 

and the viscosity law inside the control volume. 	At 

present, we shall have to consider mainly the wall func- 

tions. 	This distinction is rather important. 	Some of 

the solutions which will be presented will contain defi- 

ciencies. 	It is believed that these deficiencies result 

from deficient wall functions, rather than from the general 

method. 

Many wall heat-flux measurements are available. 

Therefore we shall start by examining the Stanton number 

distribution, in section 7.3.1. 	In section 7.3.2 a short 

discussion of the skin-friction distribution follows. 

7.3.1 The heat-transfer coefficient  

The computation of the heat transfer from the surface 

to the impinging jet is probably the most interesting com-

putation which we may perform in the impinging jet system. 

In the impingement region the conventional Reynolds 

analogy deteriorates completely as the skin-friction van-

ishes, while the heat-transfer reaches its maximum value. 
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Also the Prandtl mixing-length theory breaks down in the 

impingement region as it results in zero value for the 

turbulent viscosity (and therefore also the turbulent 

diffusivity) in this region. 	Therefore, the heat-transfer 

computations are a very useful tool to check the turbulent 

Viscosity and diffusivity laws. 	Another aspect of these 

computations is to test the wall functions in this very 

particular region. On the other hand we are not likely 

to learn much on the general method; if the agreement 

with experimental results is not good, it is, most pro-

bably, a result of an unsuitable viscosity hypothesis, or 

wall functions. With this understanding we may now pro- 

ceed towards the comparison with experiments. 	The most 

extensive, experimental investigation available is that 

of Gardon and Akifrat (1965), for heat transfe::' from an 

isothermal surface to a plane impinging jet; their data, 

supplemented by some of Kroger and Krizek's results (1966), 

will be compared with computations in the present section. 

The mesh 

We must now choose a suitable mesh: the mesh point 

adjacent to the wall must be within the Couette flow 

region where the flow is nearly one dimensional. 	In 

other words, the number of mesh points, and the mesh non-

uniformity purameter,E , must be specified in such a way 
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as to ensure that the mesh point adjacent to the wall is 

not. in the region of turbulence generation due to normal 

shear (discussed in section 7.2.3). 	Consulting fig 

7.2-6, we see that the thickness of the no-generation layer 

on the jet axis decreases when the Reynolds number in- 

creases. 	Clearly, we have to refine the mesh when we 

increase the ReynOlds number. 	If, on the other hand, we 

do not use a fine enough mesh, we are likely to assume too 

low a turbulence energy in the no-generation layer, which, 

in turn, will reduce the.heat transfer rate.* 	Similar 

refinement of the mesh is necessary when we increase either 

kik • or a. 	Thus, when we seek a solution for a higher 

Reynolds number case, we are penalised by having to use 

finer meshes, and spend more computer time. 

In the present set of computations the meshes employed '  

were sufficiently fine for Reynolds numbers up to and in-

cluding 11000, for kt4 of 8 and for a of 0.7. 

The influence of the Reynolds number  

The results are shown in fig 7.3-1: Sto, the Stanton 

number in the stagnation point, is plotted versus Re , the 

slot Reynolds number, for k/de = 8 and a = 0.7. 	Clearly 

the agreement is satisfactory until the Reynolds number 

*Similar considerations prevail as well for the shin 
friction. 
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exceeds 11000. 	The point is even better emphasised in 

fig 7.3-2, where the lateral Stanton number variation is 

plotted, for Az  A4 = 8 and the three Reynolds numbers, 

2750, 11000 and 22000. 	For the lower Reynolds numbers 

the agreement is satisfactory at least qualitatively. 

For the higher Reynolds number, too low Stanton numbers 

are predicted on the jet axis. 	Away from the axis, 

where turbulence is generated by tangential rather than 

normal stresses, the Couette flow region becomes thicker 

and the agreement is qualitatively correct, as in the low 

Reynolds number came. 

An interesting and important question is what is 

the pcwer of Rec  in the relation 

Si, cc= Re, 	 (7.3-1) 

The solutions presented in fig 7.3-1 do not support the 

value of -0.43 for oe I  which was reported in chapter 1. 

However, it was reported by Gardon and Akifrat (1965) that 

u may be fixed as -0.42 only when 

v/4 	
(7.3-2) 

2 C2d°  4 < 50 000 

Because of the present limitations on the mesh distribu-

tion near the wall, solutions in the region specified 

by (7.3-2) were not obtained. 	Therefore the power 

in eqn (7.3-1) cannot be confirmed on the basis of the 

present computations. 
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The influence of the Prandtl number  

Here, again, we shall consider cases for which some 

experimental evidence is available. 	The data chosen is 

for a Reynolds number of 11000 and 	= 8. Heat 

transfer measurements of Gardon and Akifrat (1965) are 

for a = 0.71, while Kroger and Krizek (1966) measured 

mass transfer from a naphthalene surface to plane jet, 

with a = 2.5. 	These experimental results are compared 

with the present computations in fig 7.3-3 and 7.3-4, 

where the Stanton number in the stagnation point and the 

lateral Stanton number distribution are displayed. 	It 

is worth noting, that Kroger and Krizek did not report 

the Reynolds number accurately, and this may cause some 

discrepancy between measurements and computation. 	An 

examination of fig 7.3-4 reveals that for a Schmidt num-

ber of 2.5 and Reynolds number of 11000, the mesh was 

not fine enough, and Sto  was, therefore, too low. 

7.3.2 The skin-friction distribution  

The skin-friction distribution in the impingement 

region was measured by Schauer and Eustis (1963). The 

values of the parameters were 

A, 	= 40 
(7.2-2)  

= 43000 

as in section 7.2.2. 
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A comparison of Schauer and Eustis's experimental 

data with the present computations is shown in fig 7.3-5. 
The skin-friction is normalised by the nozzle velocity. 

As in the case of the maximum velocity growth, discussed 

in section 7.2.2, the computed skin-friction is qualita- 

tively correct, but, it is consistently low. 	We may expect 

some connection between the skin-friction and the maximum 

velocity, and as we have seen that the maximum velocity 

is too low as well, we may expect to get better agreement, 

once that the influence of the velocity has been elimin- 

ated. 	This has been done in fig 7.3-6, where the skin 

friction was normalised by the local maximum velocity. 

The agreement is satisfactory. 

7.4 A short discussion of chapter 7  

In chqpter 7, the vital task of testing the computing 

method and the physical input of viscosity law and wall 

functions was performed. 	It will be recalled that no 

attempt has been made to fit tha method or the physical 

input to the impinging jet situation; they were derived 

from basic principles and Couette flow analysis. 	In 

the present section we shall now summarise the amount of 

success obtained as follows. 

(i) 	Predictions of the main flow patterns such as con- 

tours and velocity profiles look very plausible. 	They 
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do not contradict any available experimental information. 

Still the amount of experimental data existing at present 

is not sufficient to confirm the theory in a definite way. 

(ii) The normal velocity on the jet axis is proportional 

to the distance from the wall as suggested by potential 

stagnation-flow theory. Very near to the wall, this 

velocity tends to become quadratic with the distance, 

as suggested by the laminar stagnation flow solution. 

(iii) The static pressure and maximum velocity growth, 

in a high Reynolds number flow, are qualitatively correct, 

but a bit too low. 	It has been suggested, in the case 

of the maximum velocity growth, that this may have re-

sulted from an inaccurate viscosity law. 

(iv) The Stanton number predictions are reasonable 

for a low Reynolds number, and small nozzle-to-surface 

distance. When either of the two increases, the Stanton 

number predictions in the impingement region are too 

low, but they improve away from the stagnation point. 

The reason for this is believed to be the decrease in 

the width of the Couette flow layer near the stagnation 

point when either the Reynolds number or the nozzle-t 

surface distance increase. 

(v) The effect of the Prandtl number is predicted 

correctly for flows with a small Reynolds number. In 

the high Reynolds number cases an increase of the Prandtl 
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number is followed by too low Stanton number predictions 

near the stagnation point. 	The reason for this is be- 

lieved to be the decrease in the thermal boundary-layer-

thickness when the Prandtl number increases. 

(vi) 	The skin-friction predictions are reasonable, 

especially when the influence of the local velocity is 

eliminated. 
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Closure to part III  

In part III we dealt with some physical aspects of 

turbulent flows. 	First, in chapter 5, an extended ver- 

sion of the Kolmogorov-Prandtl hypothesis of turbulence 

was presented. 	It included the laws for the turbulent 

exchange coefficients and length scale distribution. 

Six empirical constants were fitted as to obtain good 

agreement with a variety of data on turbulent Couette 

flows. 	Then, in chapter. 6, the behaviour of aver-turbu- 

lent Couette flows was studied theoretically and algebraic 

forms for wall functions were suggested. Finally in 

chapter 7, predictions of turbulent impinging jets were 

presented, using the constants and wall-functions which 

had been deduced from the Couette flow data. The re-

sults were in reasonable agreement with experimental data, 

provided that the mesh was fine enough. 
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Part IV : Discussion  
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8. 	Discussion 

1e have come to the final part of the thesis; now we 

have to examine the results, to estimate how good they are, 

and also to find out where expectations were not fulfilled. 

Then we wish to know which corrective measures may be taken, 

to overcome any failures. 	But the task in the present 

chapter is even wider. 	It must be realised that both 

the fli-ni::ke-difference method and the turbulent viscosity 

hypothesis are relatively new and fairly untried; 	there- 

fore their generality must be established by further 

research. 	So suggestions for such research will be pre- 

sented as well. 

The chapter will be divided into two main sections. 

In section 8.1 we shall examine what has been done and 

where the results need further confirmation. Then, in 

section 8.2, suggestions for further work will be presented. 

A short closure to the chapter and indeed to the whole 

thesis will be presented in section 8.3. 

8.1 Summary of the main results  

The finite-difference method  

The finite-difference method was presented in chapter 

3. 	Its main innovations are: 

(±) 
	

The preservation of the conservation laws 

in arbitrarily large or small control volumes. 
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(ii) The use of non-uniformly spaced meshes. 

(iii) The inclusion of variable viscosity (and 

potentially variable density as well). 

The present work was restricted to plane flows only, 

but the method can be easily extended to any axially-

symmetrical flow, as was shown by Pun and Spalding (1967). 

The studies of accuracy, convergence and economy in 

chapter 4 showed that the method can, in fact, produce 

reasonably accurate results, without excessive computing 

times, whenever the distribution of the computed quanti-

ties is not highly non-linear between adjacent mesh points. 

The "smearing" of conserved properties was studied as 

well, and the amount of "smearing" in a uniform-velocity 

flow was related to local quantities. 

The Kolmogorov-Prandtl hypothesis  

In chapter 5 the general relations describing all 

the turbulent exchange coefficients and quantities were 

presented in a general form, applicable to any turbulent 

flow, in all its parts. Recommendations for the six 

necessary empirical constants were made on the basis of 

available data on Couette flow; the amount of such data 

and its reliability can not, however, be considered 

sufficient. 	Indeed, more work is necessary to confirm 

that these six constants are sufficient empirical ±nput 

to the hypothesis, and to establish their values. 	Still, 
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it seems plausible that the general frame suggested here 

will prove useful in the future. The Kolmogorov-Prandtl 

hypothesis was used in chapter 6, when numerical solutions 

were obtained for a wide range of Couette flows with 

augmented turbulence. 	These solutions were later cast 

into correlations to be incorporated, as wall-functions, 

in the general method. 

The impinging jet solutions  

In chapter 7, the method as well as the wall-functions, 

were used to obtain solutions for the problem of a jet 

impinging normally to a flat isothermal surface. 	The 

following are the main conclusions resulting from these 

solutions: 

(i) The contours, inside the field) of vorticity, 

stream-function, turbulence energy, conserved property 

and dynamic and static pressures look very plausible. 

Also the velocity profile on the downstream, wall-jet 

like boundary, as well as the normal velocity decay on 

the jet axis, are qualitatively supported by all our pre-

vious knowledge. But no direct measurements are avail-

able for comparison. 

(ii) The static pressure on the surface and the 

maximum-yelocity growth along it are qualitatively right, 

but somewhat lower than the measured ones. The maximum 

difference between measured and computed values is of the 
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order of 10%. 	The reason is believed to be either an 

inaccurate specification of the boundary conditions on 

the upstream side or a deficiency in the present form of 

the turbulence hypothesis. 

(iii) The predictions of the Stanton-number in the 

stagnation point are good in all cases when the mesh dis-

tribution near the wall is fine enough, Away from the 

stagnation point, they are not so good, and differences 

as large as 20% may be found. 	When either the Reynolds 

number, the nozzle-to-surface distance or the Prandtl 

number increase, the mesh should be refined near the wall. 

If this is not done the predictions become qualitatively 

wrong: a minimum of the Stanton number appears in the 

stagnation point, which may be removed only if the mesh 

is altered. 

(iv) Skin-friction predictions show the right 

kind of behaviour, but they are too low. 	These low skin- 

friction values are very likely to be connected with the 

low maximum velocities computed. 

(v) Computations of the turbulence energy sug-

gest that there is a considerable generation of turbulence 

near the stagnation point, due to the gradient of the 

velocity in the y-direction. 	This generation diminishes 

only very near to the laminar sub-layer. 
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Conclusions  

(i) The numerical methods seem to be powerful 

enough for the present needs. 

(ii) Too few measurements of the flow in the im-

pingement region of the impinging jet are available to 

enable a completecomparison of the measurements and pre-

dictions. 

(iii) The turbulence energy equation, and the con-

stants associated with it, may be established only after 

more research is done. 

(iv) The use of wall-functions, based on a Couette 

flow model, in the impinging jet, did not eliminate com-

pletely the need for fine mesh near the stagnation point. 

8.2 Recommendations for the future  

The previous section was concluded with the suggestion 

that more research needs to be done. We shall now examine 

the possible paths, along which progress may be made: 

The turbulence energy hypothesis  

Three stages may be distinguished in the development 

of this hypothesis: 

(i) 	As much information as possible must be ex- 

tracted from existing measurements of turbulent quanti-

ties, in two-dimensional flows. Useful data has been 

reported by Heskestad (1965) on plane free jets, by Poreh 
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et el. (1967) on radial wall-jet, and by Carmody (1964) 

on wake flow behind a blunt body. No doubt more papers 

of similar merits can be found by careful searching of 

the technical literature, 	Such data must be compared 

with predictions; then it will, very probably, become 

necessary to adjust the hypothesis. 	This stage of the 

work is not necessarily coupled with the present finite-

difference method; many of the cases will be well des-

cribed by the parabolic boundary-layer apyitions, which 

are much easier to solve than the present elliptic ones. 

(ii) 	New measurements should be made to remove 

existing uncertainties and to supply new data, which may 

be easily compared with predictions, 	For instance, we 

would like to know what is the exact value of kf/i-, in 

the outer part of a constant-shear non-diffusional Couette 

flow, or the constant Ko  in eqn (5.6-2). 	There are some 

new situations, which have not been studied yet, but may 

prove rather interesting now. 	For instance, we may 

measure the turbulent exchange coefficient in a "thermal 

wake" which develops behind a linear heat source in a 

uniform velocity turbulent flow. 	Sure enough, the 

imaginative experimenter may find a large variety of 

other promising cases, from which new light may be thrown 

on the mechanism of turbulent transfer phenomena. 
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(iii) With such information as may become available 

after experiments have been performed, the turbulence 

energy hypothesis may be broadened to the very limits of 

its potential. 	One particular extension, which may, 

perhaps, be started even now, is the provision of a differ- 

ential equation for the length scale. 	Suggestions for 

such an equation were made by Rotta (1951), and elaborated 

by Spalding (19671). 	Once that such an equation is 

available, it will remove the present uncertainty, con 

eerning the distribution of the turbulent length scale 

away from walls. 

(iv) An additional point which needs clarifica- 

tion, is that of the generation of turbulence. 	At pre- 

sent, it has been assumed that turbulerice is generated 

by normal as well as tangential stresses. 	The validity 

of this assumption should be confirmed, and it seems 

that a good starting point is the free jet, where data 

are available, and where normal shear is appreciable. 

The wall-functions  

The main deficiency of the wall-functions, in their 

present form, is that they apply to Couette flows only; 

therefore, when the Couette flow layer is very thin, as 

in the impingement region, we are still unable to use a 

coarse mesh even when the wall-functions are employed. 

However, in the impingement region the flow is very 
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similar to a stagnation flow. 	Therefore it is quite 

possible that the wall-functions may be extended, by 

incorporation of olutions for a turbulent stagnation 

flow. 

Some of the disagreement between the impinging jet 

measurements and predictions may be attributed to im- 

perfections of the wall-functions. 	This point needs 

careful examination. 	Of particular advantage may be 

some sollitions, where the wall functions are not employ- 

ed. 	A free turbulent shear flow may be studied first; 

then a test solution of the impinging jet problem with 

very fine mesh, but without the wall-functions, will 

probably prove to be an expensive, but worthwhile in- 

vestment. 	After such tests have been performed, modi- 

fications to the present wall-functions are likely to 

become necessary. 

Apart from all these extensions, the wall functions 

will have to be modified together with the turbulence 

hypothesis, as the latter is further developed. 

The impinging jet  

It is really difficult to separate the future work 

on impinging jets from the other future work already 

suggested. 	Clearly an improvement of the general hypo- 

thesis and relations will result in better im-ainging jet 

predictions as well. 	But some changes are likely to 	be 
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more influential than others. Most important for the 

impinging jet, are the following: 

(1) 	The influence of the normal stresses on tur- 

bulence generation. 

(ii) The incorporation of the turbulent stagnation 

flow solutions in the wall functions. 

Experimental data will be needed to support these inves- 

tigations. 	But some advance may be made even with the 

slight data available now. 

Finally, a carefully planned set of measurementsof 

all turbulent quantities in the plane impinging jet 

seems very advisable. 	This is not a simple task, by 

any means: yaw-angle measurements, as well as a lot of 

hot wire anemometry will be needed. 	Still, such mea- 

surements will increase our confidence, and supply new 

and important data. 
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8.3 Closure  

The present thesis has proceeded along the road 

from certainty towards optimistic guesswork of the 

future. The finite-difference method has been shown 

to enable reasonable predictions to be made. 	Thus our 

interest was stimulated, to attack complex problems, as 

the impinging jet, and -  to test new turbulent-property 

hypotheses. 	But now we are reaching the Stage where 

our mathematical capabilities are larger than our physi- 

cal understanding. 	In the present paper, the author 

has tried to describe some work on the physical side as 

well and to outline some future researches, which have 

become possible and necessary as a result of the recent 

developments. 	Some successes may be recorded, and old 

questions answered; but near problems have now been 

posed, which future research will have to solve. 	The 

author has found this widening of his horizon to be the 

major result of the work described in this thesis; he 

hopes that others will appreci*e it in a similar way. 

London, 

November 1967. 
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Part V : Nomenclature and references  
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9. 	Nomenclature 

9.1 Mathematical symbols  

Defining eqn 
Symbol 	Meaning 	or eqn of 

first appearance 

Latin characters  

A 	- an occasional constant 

AD 	
- a constant in the expression for  

Aa 	- a term in the finite difference equa- 

tion for (Pp 

- a constant in the expression for 2 
./"" 

A' 	- a constant 

a 	- an occasional constant 

- in chapter 6, the turbulence-augmenta-

tion parameter 

a.. 	- a coefficient in the finite-difference 

equation for 6. 

avaw,aN,as 	coefficients in the finite- 

difference equation for 4 

B,B' - occasional constants 

c 	- convergency criterion 

ta.F- 	in chapter 4 

- a constant in chapter 6 

D 	- a coefficient in the turbulence energy 

dissipation term 

culcw,cNics 	- coefficients in the finite- 

difference equation for 0i, 

(5.4-6) 

(3.1 3) 

(5.4-5). 

(5.6-21) 

(6.4-1) 

(4.5-1) 

(3.1-5) 

(3.4-2) 

(4.4-5) 

(6.6-6) 

(5.3-8) 

(3.1-2) 



188 

C f 	irs/f fht  

- a coefficient in the turbulent viscosity (5.3-3) 

D - a constant 	 (6.7-8) 

d, 	- the nozzle width 

- a constant 	 (5.6-1) 	. 

F 	- a non-dimensional pressure gradient; 	(3.2-14) 

- body force in chapter 5 	(5.2-) 

- pressure gradient correction 	(6.7-3) 

Ca 	- the mass velocity vector 	(2.3-6) 

P. 	- a function ofthe Prandtl number 	(6.6-5) 

h, 	- the nozzle to surface distance 

h - mesh size in section 4.4; 

- distance between the flat surfaces in 

the Couette flow problem in section 4.1 

- various integral fuac-

tions, defined in eqns (3.2-19) to 

(3.2-23) 

- designates a coordinate (say xi) when 

index notation is used; designates the 

number of nodes in the x-direction from 

the origin in finite-difference work 

J - the 0-flux vector 

J. 	- the component of J in the x direction 	(2.1-5) 

- the component of J at a surface, normal 

to this surface 	 (2.2-5) 

Jtp 	- the (P-flux in a Couette flow 	(3.2-11) 



(7.1-5) 
(4.4-12) 

(5.4-6) 

(5.4-5) 

(4.1-1) 

(6.3-7) 

(5.6-36) 

(6.3-13) 

(2.3-4) 

(5. 7-4) 

(5.274) 
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J 0  at a surface 	 (3.2-10) 

- designates a coordinate (sayx ) when i  

inde:.: notation is used; designates th3 

number of nodes in the y-direction from 

the mesh origin in finite-difference Jerk 

- kfirs 

- a constant 

- the turbulence energy 

- k on the upstream boundary of the control 

volume in the impining jet 

- a typical length scale 

- the turbulence energy dissipation length 

scale 

- the turbulent viscosity length scale 

- the blowing Reynolds number in a Couette 

flow t=
/ 
	) 
' 

- the power in the 11^rR relation 

- the P-function, describing the resistance 

of the laminar sub-layer to heat- 

transfer  
- a dimensional function, simil r to P 

p 	- the static pressure 

- the dynamic pressure 

p 	- the mean static pressure 
- the fluctuating static pressure in 

chapter 5 
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P 	- the pressure gradient 
	

(3.2-6) 

- a dimensionless stream-function 
	

(3.2-17) 

- Reynolds number, in general; 

- Reynolds number of turbulence energy 

Rer 	- the nozzle Reynolds number of an 

impinging jet (17.11"/  ) 

eff - Reynolds number based on the effective 

(5.4-2) 

viscosity 	 (4.4-13) 

r 	- mesh non-uniformity parameter 	(3.2-25) 

r
u 	- the convergency parameter 	(4.6-1)_ 

To (1  - dimensionless heat flux (-7: 	) 	(3.2-18) 
/00-05) 

- a source strength 	 (4.4-6) 
St 	- the Stanton number 	 

ru. - df 

Sto 	- the Stanton number at the stagnation point 

of the impinging jet 

Su,P - the source term in the finite-difference 

equation for cbr 	(3.1-6) 
so 	— a 0-source 	 (2.1-11) 

Sw 	- an w-source 	 (2.1-10) 

dimensionless skin friction (_ 	) 	
(3,2°4 

so 	- the value of s when the pressure gradient 

is neglected 
	 ( 6.7-11) 

t 	- time, in chapter:5; 

- temperature 

u 	- velocity in the x-direction 
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u 	- the velocity vector 

u4- 	- 1447/7-  in Couette flows 
	(5.6-34) 

u. 	- the nozzle velocity in the impinging jet 

u.a. 	- the velocity component in the xi-direction 

u! 	- the fluctuating part of ui 	(5.2-3) 

u. 	- the time-averaged part of ui 	(5.2-3) 

u 	- the maximum velocity in the wall jet max 

of 	
- the top wall velocity in a Couette flow 

V 	- the absolute velocity ("=". PA L -`v t  ) 

✓ - the velocity in the y-direction 

✓ - the. maximum velocity in the free jet max 

vmax F 
v  max on the upstream boundary of the control ,  

volume 

id 	- dimensionless vorticity 	(3.2-15) 

- a cartesian coordinate in cases of plane 

flow 

- the half width of the free jet when it crosses 

the boundyy of the control volume 

- a general cartesian coordinate (i may take 

the values 1,2,3), in chapters 2 and 5; 

- the value of x at the ith node from the 

y 

ash origin 

- the maximum length of the control volume 

in the x-direction, in the impinging jet 

- a cartesian coordinate in cases of plane 

flow 

(7.1-6) 

(2.3-2) 
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Yr 

- the value of y when 0= 14 max 

- JYE/ 	, in Couette flows 

- the distance from the nozzle to the up-

stream boundary of the control volume, 

in the impinging jet 

(4.4-2i) 

(5.6-33) 

Yj 	- the value of y at the jth  node from the 

mesh origin 	 (4.5-"r) 

- a velocity ratio 	 (3.2-24)  

- a term in the finite difference equation 

for '16,0 	 (3.1-4) 

Greek characters  

- the angle between the mesh and stream lines 

in chapter 4 

- an occasional constant power elsewhere 

- diffusivity 

reff - the effective diffusivity 
	(5..5-1) 

false- the false diffusivity 
	(4.4-8) 

turb - the turbulent diffusivity 

6y 	- a y-increment 

6 	- a power 
	 (6.7-8) 

Aff74 , in chapter 3 	(3.2-16) 

aturb tturb7 , in chapter 5 
	

(5.5-4) 

x 	- the mesh non-uniformity parameter in 

the x-direction 
	 (7.1-6) 
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- 

	

k 	- 

	

/11 	- 

- 

the mesh non-uniformity parameter in 

the y-direction 

a constant 

the viscosity (usually laminar) 

the effective viscosity 

(4.3-1) 

(5.6-1) 

r barb 

6 

- the turbulent viscosity 

- the density 
- the Prandtl/Schmidt number 

(5.3-3) 

aeff - the effective Prandtl/Schmidt number (5-5-3) 

aturb 
- the turbulent Prandtl/Schmidt number (5.5-2) 

- the shear-stress in a Couette flow (3.2-3) 

T.. 	- a component of the shear-stress in the 

general cartesian space 	(2.1-4) 

CS 	- the skin friction 	 (2.2-4) 

T ,T - the only non-zero shear-stress com-
xY Yx 

ponent in a plane flow 	(2.3-5) 

(5.6-35) 

(4.5-1) 

(3.4-2) 

(4.4-1) 

(4.4-1) 

- 0 at a point j 

- the maximum absolute value of 0 in the 

control volume in sections 3.4 and 4.6 

- the 0-value on the center of a thermal 

. wake, in section 4.4 

- the value of 0 at the source 

- the value of 0 on a solid surface 

- a conserved property 

- OFV/ 
	

, in Couette flows 
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(2.1-7) •)1/ 	- the stream function 

tY, 	- '?on the upstream boundary of the Control 

volume in the impinging jet 

- P̂ on the top wall of a Couette flow 

- the vorticity 

F 
	-co on the upstream boundary of the 

control volume in the impinging jet 

- W on the top wall of the Couette flow 

(7.1-3) 
(4. 1-_.4) 

Subscripts  

- in the nozzle of the impinging jet 

F 	- in the upstream side of the control volume 

in the impinging jet 

eff - effective, i.e. including laminar and turbulent 

contribution 

- after the nth iteration 

- sometimes, normal to 

S 	- on a solid surface 

s 	- slip value 

- on the top wall of a Couette flow 

P,E,W,N,S - at the corresponding mesh points; 

stands for the central point, and E,U,N,S 

stand for east, west, north and 5outh res-

pectively; (see fig 3.1-1) 

( ) 	- designates a vector 
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- designates values non-dimensionalised by the 

shear velocity (Vis]r/f) in a Couette flow 

Upscrillts 

(-) 	- the time-averaged part of 

( ) ' - the fluctuating part of 
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9.2 FORTRAN symbols  

There are too many FORTRAN symbols to explain; there-

fore only the more important ones were included in the 

following list. 	Symbols which are not explained are 

usually dummy or local ones, and their meaning will become 

clear after inspection of the neighbouring statements, 

In some cases symbols are defined in specification state-

ments without being used inside the programme; such symbols 

are not included in the following list. 

Symbol 	 Meaning 

A(I,J,K) 	an array containing all the dependent 

variables, with I and J denoting the loca-

tion in the x.and y direction :.espectively • 

and K denoting the variable.  

ADI•I 	the denominator in eqn (3.1-1) 

AN(K) 	an array containing the ma:cimum value of 

A(I,J,K) for all I's and J's 

ANAME(6,K) 	an array containing a thitty six letter 

description of each of the variables 

denoted by K 

ANUM 	the numerator in eqn (3.1-1) 

ASYMI3OL(K) 	an array containing a four letters name 

for each of the variables denoted by K 

ATITLE(19) 	an array containing a 114-letters heading 

for the problem 
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AU 	the contribution of convection to ANUN, 

as defined in eqn (3.1-3) 

Al 	the rate of spread of the free jet in eqn 

(7.1-2) 

A2 	the constant in the free jet velocity decay 

equation (7.1-1) 

C(I) 	the s-function of eqn (3.2-13) 

the turbulence-energy augmentation para-

meter as defined in eqn (6.471) 

CC 	the convergency criterion in eqn (3.4-2) 

CE 	the coefficient c in eqn (3.1-2) 

CF(I) 	the skin friction coefficientu2 Ts/ 

CL1 	the proportionality constant between the 

length scale and the width of the free 

jet- 

CL2 	the proportionality constant between the 

turbulence energy and the squa2e of the 

maximum velocity in the free jet 

CMAX 	the C(I)-value corresponding to a non- 

diffusional flow 

CN 	the coefficient cN in ecin (3.1-1) 

CS 	the coefficient S  o-  in eqn-,1 0.1-1) -  

CL 	the coefficient cW in eqn (3.1-;1.) 

C2 	the constant AD in eqn (5.4-6) 

C3 	the constant i> in eqn (5.4-r:5) 
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DE,DN,DP,DS,DW 

the coefficients r P' S r'  rW  in section 

A.2-5 

DFE, DFN,DFS,DFW 

a 
- Ee- N' S' 	in eqn (3.1-3) the coefficients a 	a 

au/ ax 

au/ay 

direction as defined in eqn (7.1-6) 

the mesh non-uniformity parameter in the y 

direction as defined in eqn (4.3-1) 

X. -X. 1 -1 

xi+1 3 -x —1 
Y. -Y. J+1 J-1 

the number of conserved propertyequations to 

be solved 

IRREE 	the index I, in the x-direction, of the mesh 

point on the edge of the free jet on the up- 

stream boundary of the control volume 

DV11 

DV12 

DV21 	av/aX 

Dv92 	av/ay 

the mesh non-uniformity parameter. in the x 

Int 

HE 

HN 

Hs 

H1 

1-12 

IE 
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ILINE 	the running number of lines already written 

since the last change in the index J 

IN 	the number of mesh points in the x-direCtion 

INN 	IN-1 

IPAGE 	the running number of lines already written from 

the beginning of the page 

IPT 	a control index for subroutine OUT specifying 

the form of the output listing 

IV 	the number of variables in the array A 

JN 	the number of mesh points in the y-direction 

JNM 	JN-1. 

NI(N) 	an array containing output control information; 

when NITER equals NI(N) an output listing is 

generated 

NITER 	the running number of iterations 

NNAX 	the maximum permissible number of iterations 

NPRIN 	the number of variables for which an output 

listing is prepared 

NDP,NF,NG1,NG2,NHS,NK,NNL,NMU,NP,NRO,NT,NV1,NV2,NW 

the index number of the following variables: 

dynamic pressure, stream function, mass velocity 

in the x-direction, mass velocity in the y-

direction, conserved property, turbulence energy, 

length scale, turbulent viscosity, static 

pressure, density, shear stress, velocity in 

the x-direction, velocity in the y-direction, 

Vorticity 
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PP,PP(I),PP(J) 

the pressure gradient 

PR(N,K) 	an array containing the Prandtl numbers; N=1 

corresponds to the laminar Prandtl number and 

N=2 corresponds tothe turbulent Prandtl number 

R(I) 	R, the turbulence Reynolds number of eqn 

(5.4-2)  

REIN 	the same as R(I) 

RES 	the maximum absolute value of the convergency 

parameter ru as defined by eqn (4.6-1), for all 

variables 

ROC 	the nozzle density 

RSDU(K) 	the maximum absolute value of the convergency 

parameter,ru, as defined by eqn (4.6-1), for the 

variable with the index K 

S(1) 	the S-function of eqn (3.2-18) 

SIG 	the laminar Prandtl number 

SIGO 	the turbulent Prandtl number 

SOURCE 	the source term, 	in eqn (3.1-1) 

ST(I) 	the Stanton number, St 

T(I) 	the wall shear stress 

TW 	the wall temperature 

UC 	the nozzle velocity 

half of the nozzle width 

XG 	the half-jet width on the upstream boundary of 

the control volume 
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:'LM 	the maximum perMissible value of x 

X1(I) 	an array containing the x-coordinates of the 

mesh points 

X2(J) 	an array containing the y-coordinate of the 

mesh points 

YC 	the distance from the nozzle to the surface 

YID 	the distance from the nozzle to the upstream 

boundary of the control ye:LiI:lie 

ZA 	the constant eD of eqn (5.3-8)' 

ZB 	the P-function of eqn (5.6-36) 

ZC 	the constant c of eqn 

ZCU 	the contribution of convection to ADNN as 

defined in eqn (3.1-.4) 

ZJ(I) 	the wall heat fi#x 

ILL 	the turbulence length scale for viscosity near 

the wall 

2.1,P 	the turbulence length scale away from the wall 

Z1,3 	the turbulence length scale for dissipation 

near the wall 

2a(I) 	the Imo-function of eqn (6.2-1) 

ZMU 	the laminar viscosity 

ZQ 	that part of the source term which is a linear 

function of A(I,J,K) and may therefore be 

transferred from ANUN to ADNM 
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Part VI : Appendices  
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Lluendix A.1 : The derivation of the vorticity equation  

Introduction: 	The purpose of the present section is to 

derive the equation for the conservation of vorticity, 

by elimination of the pressure from the equations for the 

conservation of momentum. 	The treatment will be res- 

tricted to steady, incompressible, variable viscosity, 

plane flow. 

The momentum equations: 	Equations (2.1-1) and (2.1-2) 

may be explicitly written for plane flow as 

	 0 
	 (A.1-1) 

	

/u 2(.1 	 fo- 2u 	dp- 	;t"„ 

	

2x 	 = px 	Vey (A.1-2) 

d(Tdcr 	2jet  = 
Pi  2x + 	 209 

where by (2.1-4) 

9 y 
fed  (A.1.,3) 



2x per  (1 	(A.1-7) 4 ft, tr i  
2. / 

A e 
P 

	+rvw 4- 

where al-  4 trl- 
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Rearranement of the equations. 	Now we introduce the 

vorticity, which was defined as 

4J -  '9cr 	;t/ 
dc y 

(2.1-6) 

By the use of this definition, and eqns (A.1-1),(A.1-4), 

(A.1-5) and (A.1-6), we may rearrange eqns (A.1-2) and 

(A.1-3), to get: 

and 

Elimination of the pressure:  In order to get the vorticity 

equation, we differentiate eqn (A.1-8) with respect to x, 

and subtract from it the derivative of eqn (A.1-7) with 

respect to y. 	The result is 

9k Z
p ti 1 

(-(-2(r- 	]-- Ox 	 (j 	k 2  
2o- 	„ 

.71x - / (A.1-9) 

Eqn (A.1-9) man be rearranged, by the use of (A.1-1), as 

/11  7+, 	Id' 1141-  24) 	;c4)  - 	4.. 21( 	(A)) 421-2. 2.1.-r  	 )(i 	 

(A.1-10 ) 
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or, simply 

dto 4)64) 

hi 	4  j-c‘i  (A.1-11 ) 

where 

+. 
2(

2 
7
dcr 	 L 	 )(r 
-T Or 70 y 	i7y 	kt 	ix 

(A. 1-12 ) 

Clearly, when the viscosity is uniform S, is zero; it 

may be easily shown that, in a boundary layer, Sw  may 

be neglected as well. 
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Appendix A.2 : The derivation of the finite-difference  

c -conservation equation  

A.2.1 : Purpose  

In this appendix we shall be concerned with the deri-

vation of the finite-difference counterpart of the equa-

tion 

go 	90 	dr 	 gr 
r aT,( tr 	- 	

r 	
4- ;Fir 2,, 1014- s 	(A.2-1)aX 

which is the two-dimensional form of eqn (2.1-12). 	In 

eqn A.2-1 (4) is the dependent variable and x and y are 

the independent variables; )0 , u, v i r-,/44 and S are arbitrary 

functions of 0, x and y. 	We shall not derive the finite- 

difference equation by a Taylor series expansion of eqn 

(A.2-1), as is, perhaps, more customary. Instead, we 

shall integrate eqn (A.2-1) over small control volumes. 

The advantages of such a treatment are (i) that it is 

more transparent physically, (ii) that we are more free 

to opt between various assumptions, and (iii) that we may 

rely on our understanding of the process when making 

these assumptions. 	All the points will become clearer 

later. 

It will be more convenient to rearrange eqn (A.2-.1).  

By the use of the continuity equation 

6e ) 4- 	(? — 
P)( 	 (1) — 0 (A.2-2), 



213 

and. after a small rearrangement, we get 

2ox  [fa 6- r 	44-I- tifiro — r 4--;asps s 	(A.2-3) 

A.2.2 : The model  

In fig A.2-1 a mesh point P is shown, which is 

surrounded by the four points N, S, E, W. 	The four points 

n, s, e, w are positioned halfway between P and. N, S, E, 

W respectively. 	The control volume is the dotted quad- 

rangle, with sides parallel to the x and y axes, and 

passing through the points n, s, e, w. 	We note that the 

points N, NE, E, SE, S, SW, W, NW are mesh points, where 

0 , f , u, v, /- 	, and' S are known. 	But all these quan- 

tities are usually unknown in the points n, ne, e, se, s, 

sw, w, nw. 

During the treatment we shall have to make assump- 

tions on the distribution of some quantities. 	We shall 

list these assumptions here, as follows: 

(i) Inside the control volume the 0-distribution 

is uniform, i.e. 

0=  Op 
	 (A.2-4) 

(ii) On theboundaries of the control volume the 

spatial derivative's are given by 

k pr 	fRA  
I (7)( /xoew 	-vP 

(A.2-5) 
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FIG A.2-4 : THE CONTROL VOLUME* 
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(A.2-6) 

(A.2-7) 

(A.2-8) 

(iii) In the corners of the control volume 

4 1`71- tar =!Nw 	1;11 

4 etAr 	"Y's 	/r, 

4 %e 

41r,e 	-1- To -7'. ")'r 

(iv) On the b'ound.aries of the control volume 

2 r = re ,r„ 

z re = rp rff 

2rn, rp ri„, 

2F, - re jrs \ , 

A.2.3 : First integration 

(A.2-9) 

(A.2-10) 

(A.2-11) 

(A.2-12) 

(A.2-13) 

(A.2-14) 

(A.2-15) 

(A.2-16) 

Our task is to integrate eqn (A.2-3) over the control 

volume shown in fig A.2-1. 	Let us then do it formally: 
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xt 

f [5f(100—r-°HTeixelav 
6Y,34,  

Ke 911 

f f piircro—rpqj cix as —.1 s c/x a:, (A.2-17) 
xt, cy, 	 x,,, ay, 

We immediately see that each of the expressions on the left-

hand side of eqn (A.2-17) can be integrated once exactly 

over either x or y. 	Such integration will yield 

I lifuo-/- 	-17U0-1-2(1-A2fid w 

e 	 Xe 

111f0-0--/- 	 P 1 ,01).1c/x 
(A.2-18) 

Generally, this is as far as we may proceed with exact 

integration. 	There are, however, some particular cases, 

when S is expressed in terms of x and y, or spatial deri- 

vatives of (P. 	In such cases we shall be able to carry 

out an exact integration on the right-hand side of eqn 

(A.2-18) as well. 	Still, we shall not include such cases 

in the present treatment, and therefore we can not pro-

ceed any more without applying our assumed distributions 

of section A.2.2. 
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A.2.4 : Integration and rearrangement of the convective  

terms 

The convective terms are all those terms, in the 

left-hand side of eqn (A.2-18), which contain either u 

or v. 	Let us consider the first of them 

rP",  
J (rifo), 
(IA 

Very clearly, this represents the complete 0 flux into 

the control volume over the boundary se-e-ne. 	Therefore, 

if 0 and. Ar are well-behaved functions, it may be written 

as 	
yy 

'effh), do r= 4 (lbn, — 
	 (A.2-19) 

where 6,-* is the total mass flow into the control 

volume from direction E, and 0 is the mean value of 40 

in this flow. 	But, before we determine the value of 4 , 

let us write, on the basis of exactly similar arguments, 

the complet convective part of eqn (A.2-18) as 

0e frne 11'4 	04 ) 	'nu) 

(A.2-20) 

Now, we shall try to determine what 4 is. 	If we con- 

sult fig A.2-1, we see that when ifr ne 1.44.e> 	the flow 

direction is from P to E. 	But because of our assumed.  

c5 -distribution, eqn (A.2-4), we must then deduce that 
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in this case Cke 4, • 
	And similarly, if 	1‘,50 , 

These assessments may be written in the form of the follow-

ing equation: 

cbe frn ,-  Ile) 43/(11ne - %•) -61'4e -  "34,1.1 -(2d4C (lige-  'ne)-hte 	y 
(A.2-21) 

Similar arguments hold for the other convective terms, 

and therefore we may replace eqn (A.2-20) by 

QE- 	ce..- w 4- 4e,,, 91, as 4 - 01, dE " 	tel 

where 

2 de  '411w  — 11::)e) ." 1')frne 

2  aN --(lkse — 11'n u) 	111u ) 

aw- 	1%. - 
2 as= + (Pte -- 11 ,43)- ite 	1-%41) 

2 4 — ÷('‘Pnt '11:3€) Ptikne 144 

2 6=(i ne  1:14-1" hfrne  

2 -4,=—(1)4;..,— "?4,,,) 4- 	Y;;€4 

245— ("te 	— w 

(A.2-22) 

(A.2-23) 

(A.2-24) 

(A.2-25) 

(A.2-26) 

- (A.2-27) 

(A.2-28) 

(A.2-29) 

(A.2-30) 



219 

and 	11,e 	etc. are given by eqns (A.2-9) to (A.2-12). 

A very straightforward addition shows that 

or, 	-4, 	-6, 	 (A.2-31) 

and therefore, we may finally write the convective terms 

as 

QE (b, 	 te„ 	d, 	- P  (tfe-‘07g., efr -`ced 
	

(A.2-32) 

A.2.5 : Integration and rearrangement of the diffusional  

and source terms 

The diffusional terms are all those terms, in eqn 

(A.2-18) which contain r and/ . When we substitute 

the r- values, from eqn (A.2-13) to (A.2-16), and the 

240) derivatives, from eqns (A.2-5) to (A.2-8), the 

diffusional part becomes: 

cEPA4  cwi/4)w f  emP(4)# 6f,r0i -4- 4, -4 '$)! eel) 	(A. 2-3 3) 

where 

CE  
(  

 

(r; 	( ,„ - ys) 

 

(A.2-34) 

(A.2-35) 

s'(A.2-36) 

X e  -- >co  

(P4- (or)  
X p - 

(›C e - Xt,r)  
N 

  

  

4 (PN- YP) 

 



Cs= 
r;) 	 X4J) 	(I; 4-  5) (xE--  (A.2-37) 

O P 	 4 ( eyi, - Al ) 
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Considering the source term, we may write 

Xe P. 

I f S dx doy = Se 	— cv,00e, — 

Sp ( YA/ —  Y.%) (XE Xw) 	( A. 2-3 8 ) 
4 	 Ju 

A.2.6 : The final equation  

Now we substitute the convective terms, eqn (A.2-32), 

the diffusional terms, eqn (A.2-33), and the source terms, 

eqn (A.2-38) into eqn (A.2-18(-)-: 	The result is 

E 	"L 	Ce. 	of, 05_)- 	 -A. cos) 

-1 
	 -,- et, 54, e„, 	c, 	 c. Cd) c4, 

(A.2-39) 

or, after rearrangrment 

	

cp 	cr) 4 (61,- aw)sti, ieN.-  af.)0,  (es -mss)  

	

P 	(Ce  caw 	(tec  ...caw  etA, .# as) 
(A.2-40) 

where the a's are given by eqns (A.2-23) to (A.2-26); the 

c's are given by eqns (A.2-34) to (A.2-37); and. S 	is ulP 
given by eqn (A.2-38). 
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Appendix A.3 : The solution of the conservation equation 

in a one-dimensional flow 

In the present appendix, a non-iterative method for 

the finite-difference solution of the one-dimensional 

conservation equation will be presented. 	The method is 

based. on Gauss's elimination technique which, for this 

particular case, reduces to straightforward recurrence 

formulae. 	The same technique was applied by Patankar 

(1967) to the boundary-layer equations with much success. 

In a one-dimensional flow, eqn (A.2-1) of appendix 

A.2 reduces to 

(A.3-1) 

where y is the only spatial coordinate and/0 was assumed. 

unity. 	In these conditions, the finite-difference equa- 

tion, (A.2-40), reduces to 

(4,  - coN) 	- 	)4 	-570,„  
S1,7P 	(c„ -q- lam et,$) 

If we now devise a one-dimensional mesh with N mesh points, 

we may now replace eqn (A.3-2) by 

c2.0n..A 	^  n. 	e 	 (A.3-3) 

where 

(A.3-2 ) 

(A-0-4) 
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CK _, —  fie.-.4 

    

    

     

(en 	) 	(Ce • .f 	^ ) 

 

It may be shown that, for this simple set of equa-

tions, the Gauss elimination yields 

(A.3-7) 

where, for 2<neN 

and 

cf,, 

(4, 8..4 44 
n. /9„_, 	1 

(A.3-8) 

(A.3-9) 

RI =  Cal 
	 (A.3-10) 

13i = 	0  4- cz 
	 (A.3-11) 

So, we first compute An  and. Bn, going from n = 2 to 

n = N-1, and then we compute on, going backwards from 

n=N-1 to n=2. 	It will be noted, that if an, bn  and cn  

are not expressed.. in terms of 0, no iterations are necess-

ary, and the solution is exact, to any degree of accuracy 

which the computer may yield. 
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Appendix A.4 : The computer programme for the impinging.  jet  

Following is the lititing of the computer programme 

which was used for the computations of the turbulent im- 

pinging jet. 	The important symbols are explained in 

section 9.2, and a flow diagram of the programme is shown 

in fig 3.4-1. 	Computer-control statements have been 

removed from the listing. The underlined names preceding 

each sub-programme are the subroutines names as used in 

fig. 3.4-1. 	The respective role of the various sub- 

programmes are: 

HEAD : 	initiates the computations and controls the 

iterative cycle 

INPDAT: 	supplies all necessary constants 

generates the mesh distribution, initial values 

and boundary conditions 

VROMU: 	computes the velocity components, the dynamic 

pressure and the turbulent visoosity 

EQN: 	performs the finite-difference process in the 

internal mesh points 

BOU: 	computes boundary values and wall fluxes 

OUT: 	produces output listings 

PRES: 	computes the static pressure in the internal 

mesh points 
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HEAD 

COMMON /CVRBLE/ A(14.16,14),X1(14),X2(16),IMIN(16),IMAX(16).RP(4),  

1 	PR(2,4),IN,JNIIE,IV.IR 
COMMON /CNUMBR/NWINF.W.NHS.NVT.NML,NMH,NP,NG1.NG2,NMU,NRO 
COMMON /CN2/ NV1.NV2,ND.NT 
COMMON/C/ANAME(6.14).ASYOBL(14),NI(50),NPRIN,INDG,OC.NMAX,INMIJNM 
COMMON /CPRCP/ ZMU.ROG.TG,TW 
COMMON /CBOU/ ROC,TC.UC.ZKC,YC,XC,XM.EX.EY•IFREE 
COMMON /CTURB/ ZA.ZB.ZC.C11C2,C3.ZLP 
COMMON SV.SHS+CF(41)•ST(41) 
COMMON /CBI/ R(21),C(21).S(21),LK(21).T121).Z.J(21) 
DIMENSION RSDU(10).AM(10).ATITLE(19) ,FHS(81) 
DATA AM/IC*10000e/ 
IPT=1 
IF (IN.GT.14) IPT=3 
READ (5.100) ATITLE 

100 FORMAT (12A6) 
WRITE (6,101) ATITLE.NANAME(LIK),L=1,6),K=1.1E) 

101 FORMAT (12H1SOLUTION OF/1H0.19A6.3HFOR/(1HO,10X•6A6/)) 
WRITE (6,102) NMAX.CC.IN,JN 

102 FORMAT (6HONMAX=•I4.3X,3HCC=•1PE11.4.3X,3HIN=•I3.3HJN=•13) 
DO 200 K=1•IV 
DC 200 I=1.IN 
DC 200 J=1.JN 
AlIoj.K)=0. 

200 CONTINUE 
DO 201 I=1,IN 
DC 201 J=1.JN 
A(I,J•NRO)=ROC 

201 CONTINUE 
CI=PR(1•NHS)/PR(2.NHS) 
ZB=9.24*(CI**0.75-1.)*(1.+0.28*EXP(-0.007*C1)) 
CALL INIT 

109 SV=0. 
RESSHS=0. 
RESSV=0. 
SHS=O. 
N=1 
NITER=1 
WRITE (6,103) 

103 FORMAT (1H1,3X.1HNO9X.SHRSTRM,7X15HRVORT.7X.5HRESSV,8X,2HSV8X44HRK 
lEN.14X,4HRENT.7X.6HRESSHS.7X.3HSHS) 

1 	CONTINUE 
CALL VROMU 

C*** 
C 	THE ITERATION CYCLE 
C*** 

RES=0. 
SHSO=SHS 
SVO=SV 
DO 2 K=1•IE 
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ES=0. 
RELAX=RR(K) 
CALL EON (K. ES.RELAX.A.X1.X2.1MIN.IMAX,IN.JNIIE.PR+IV,AM) 

RSDU(K)= ES 
2 IF(ABS(RSDU(K)).GT.ABS(RES))RES=RSDU(K) 

CALL ECU (A.XI.X2+IMIN.IMAX,INIJN.IE.PRIIIV.AM) 
INMM=IN-2 
RESSV=1.—SVO/SV 
IF (IE.LT.NHS) GO TO 7777 
PESSHS=1.—SHSO/SHS 

7777 CONTINUE 
IF (NITER.NE.NI(N)) GO TO 301 
CALL OUT (A+IMIN+IMAX.IN+JN+IE+IV+1,X1.X2) 
WRITE (61103) 
N=N+1 

301 WRITE (6+104) NITER.RSDU(NF)+RSOU(NW).RESSX.SV.RSDU4NIO.RSDU(NHS). 

1 	RESSHS,SHS 
104 FORMAT (1H +15+5X,1P5E12.3+5X+3E12.3) 

IF(NITER.GT.NMAX) GO TO 5 
NITER=NITER+1 
IF(ARS(RESl.GT.CC•0R•NITER•LE.5) GO TO 1 
CALL OUT (AsIMIN,IMAX,IN,JN+IE+IV,IPT.X1,X2) 
GO TO 1111 

5 	WRITE(6.106) NITER 
106 	FORMAT (32HOTHE PROCESS DID NOT CONVERGE IN.15,13H 	ITERATIONS) 

CALL OUT 	(A.IMIN.IMAX+IN+JN+IE.IV+IPT+XI,X2) 
1111 CONTINUE 

STOP 
END 

1NPDAT 

BLOCK DATA 
COMMON/C/ANAME(6+14)+ASYMBL(14)+NI(50)+NPRIN.INDGICCINMAX.INM*JNM 
COMMON /CNUM8R/NW+NF.NK.NHS.NVT+NML+NMH.NP+NG1+NG2+NMU+NRO 
COMMON /CN2/ NVIINV2+NOP+NT 
COMMON /CVRBLE/ A(14116'14)+X1(14),X2(16)*IMIN(16)+IMAX(16)+RP(4). 

1 	PR(2.4)+IN.JN+IE+IV.IR 
COMMON /CTURB/ ZA+Z6.ZC.C1,C2+C3+ZLP 
COMMON /CBOU/ POC,TC+UCIZKC+YC.XC.XM.EX,EY+IFREE 
COMMON /CPROR/ ZMU.R0G+TG,TW 
COMMON /CIN/ HG.Al+POT+CLI,CL2+A2 
DATA IN,JN/14+16/ 
DATA IMIN .IMAX /16*1+1614/ 
DATA EX+EY /1.1+1.5/ 
DATA NW.NF.NK.NHS.NML+NMUNG1ING2+NT+NDPINP,NRO+NV1,NV2/ 

1 	112+3+4,516.71B+9.10+114, 12.13.14/ 
DATA IEIIVINPRIN/4.14+11/ 	.INDG/1/ 
DATA Al.A2.CL1+CL2/0.22+2.35+0.1.0.2/ 
DATA NMAX.N1/250+100+200+48*300/ 	'CC/0.00001/ 
DATA XC.VC.XM.UCIPROC,ZMUtTW 

1 	/.0625+.25,42511.+1.1.0000114+36./ 
DATA PR(1,3)+PR(2,3).PR(1+4).PR(2.4)/ 	1.+2.3110.71.0.9/ 
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DATA ZA,ZC,C2,C39PR(293),PR(2,4)/.416,.2209.2639.016001.5300.9/ 
DATA (ASYMBL(I),(ANAME(K9I),K=196),I=1,14)/ 

I 	4HVOPT96HTHE V016HRTICIT16HY 	•6H 	96H 	16H 	9 
I 	4HSTPM,6HTHE ST96HPEAM Ft6HUNCTIOs6HN 	,6H 	16H 	9 
O .4HKINE96HTHE TU96HRBULENI6HT KINEs6HTIC EN,6HERGY 96H 	9 
4 	4HTEMP16HTHE TE96HMPERATo6HURE 	96H 	t6H 	s6H 	t 
4 	4HLENG96HTHE TU16HRBULEN,6HT SCALs6HE 	t6H 	o6H 	t 

6 	4HTURV96HTHE TUs6HRBULENs6HT VISC16HOSITY 96H 	96H 
7 	4HG1 96HTHE MA,6HSS VEL,6HOCITY 96HIN DIR,6H 1 	,6H 
H 4HG2 v6HTHE MA16HSS VEL16HOCITY 96HIN DIR96H 2 	96H 
I 	4HSTR 16HTHE SH.s6HEAR STv6HRESS 96H 	v6H 	96H. 
F 	4HDYNA►6HTHE DY96HNAMIC s6HPRESSU96HRE 	,6H 	16H 
K 4HPRES96HTHE ST,6HAT1C P96HRESSURo6HE 	,6H 	,6H 	, 
9 	4HDENS.6HTHE ME96HAN DEN,6HSITY 96H 	96H 	16H 	t 
7 	4HU 	•6HTHE VE96HLOCITY.6H COMP096HNENT It6HP DIR •6H1 	t 
8 	4HV 	t6HTHE VEt6HLOCITY96H COMPOt6HNENT I,6HN DIR ,6H2 	/ 
END 

INIT 

SUBROUTINE INIT (A,IMINtIMAXtIN,JNoIE,IVtIPTtX1tX2) 
COMMON /CNUMBR/NW,NFINK,NHS,NVT,NML0NMH,NP,NG1iNG2oNMUINRO 
COMMON /CN2/ NV1,NV2,NDP,NT 
COMMON/C/ANAME(6914),ASYMBL(14),NI(50),NPRINtINDG,CC,NMAX,INM,JNM 
COMMON /CTURB/ ZAIZB,ZC*C19C2tC39ZLP 

'COMMON /CBOU/ ROC,TC,UCC,ZKC9VC,XC,XM,EX,EYsIFREE 
COMMON /CPROP/ ZMUtROC,TG,TW 
COMMON SVISHS,CF(41),ST(41) 
COMMON /CIN/ HGvAl9POTICL19CL21A2 
DIMENSION AlIN,JN,IV),IMIN(JN)+IMAX(JN)11XI(IN),X2WN),ATITLE(19) 
INM=IN-1 
JNM=jN-1 

C*** 
C 	FIXED BOUNDARY CONDITIONS 
C*** 

YF=VC/(1.+2.*A1) 
XG=A 1*YF 
UG=A2*UC/SORT(YE/2./XC) 
XM=4.*XG 
X1(1)=0. 
X1(2)=1* 
DX1=1• 
DO 27 I=3,IN 
DX1=DX1*EX 

27 X1(I)=X1(1-1)+DX1 
DO 26 I=1,IN 

26 Xl(I)=X1(I)*XM/X1(IN) 
IFREE=0 

37 IFREE=IFREE+1 
IF (X1(IFREE).LT.XG) GO TO 37 
DIV=XG/X1(1FREE) 
DO 38 I=11IN 

38 x1(I)=x1(I)*Div 
x2(1)=0, 
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X2(2)=1. 
DX2=I. 
DO 7 J=3,...)N 
DX2=DX2*EY 

7 X2(J)=X2(J-1)+DX2 
DO 6 J-=?.JN 

6 X2(J)=X2(J)/X2(JN) 
DO 8 J=I,JN 

B A(1,J.IV)=X2(j) 
DO 9 JJ=1.JN 

X2(J)=(1.— A(1.JJ.IV))*(YC—YF) 
9 A(11jJ,IV)=0. 

DO 299 I=1.IFREE 
'XI=X1(I)/XG 
A(I.1.NW)=3.*UG *(X1*XI—SORT(XI))/XG 
4(1.1.NF)=—XG*UG *(XI-0.8*XI**2.5+0.25*XI**4) *4(1.1.NRO) 
A(I.I.NG2)= UG *(1.—.2.*XI*SORT(XI)+XI*XI*XI) *A(I.1.NRO) 
A(I,I.NK)=UG*UG*CL2*CL2 

299 CONTINUE 
1FREE=IFREE+1 
DO 297 I=IFREE.IN 
A(I,1.NW)=0. 
A(I,1•NF)=A(IFREE-1.1.NF) 

297 CONTINUE 
DO 359 1=1.1N 

359 A(I.jN.NHS)=TW 
ZLR=CL1*(YC—YF) 
DO 202 I=2•INM 
DO 202 J=2.JNM 
IF (A(I.J,NK).NE.0.) GO TO 202 
A(I,j,NK)=1. 

202 CONTINUE 
WRITE (6.63) ZA,ZB.ZC•C2•C3•ZLP 
WRITE (6.63) ROC.ROG.UC 
WRITE (6.63) ZMU 
WRITE (6,63) CC 
WRITE (6.63) XC.UC .YC+EX•EY 
WRITE (6063) YF.XG.UG 
WRITE (6,63) A1.A2,CL,1•CL2 

63 FORMAT (1H0,1P8E14.4) 
WRITE (6,64) NWINFoNK.NH5 
WRITE (6,64) NML,NMU.NRO 
WRITE (6.64) NP,NDPIINT 
WRITE (6.64) NG1.NG2INV1.NV2 
WRITE (6,64) IE.IVINPRIN 
WRITE (6.64) IN,JN.IFREE 
WRITE (6.64) NI 

64 FORMAT ( IH0.2514) 
' 	WRITE (6.15) XI 

WRITE (6,16) X2 
15 FORMAT (4H0X)=.1P8E14.4) 
16 FORMAT (4H0X2=.1P8E14.4) 

RETURN 
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END 

VROMU 

SUBROUTINE VROMU (A,IMIN.IMAX.IN.JNIIE.IV.IPT,X1,X2) 
COMMON /CNUMBR/NW.NF,NK.NHS.NVT.NML,NMH.NPINGI.NG2.NMU.NRO 
COMMON /CN2/ NV1,NV2.NDP.NT 
COMMON/C/ANAME(6,14).ASYMBL('+14).NI(50).NPRIN.INDGoCCoNMAX,INM,JNM 
COMMON /CTURB/ ZA,Z9,ZC,C11C2.C3.ZLP 
COMMON /CBOU/ ROC.TC.UC.ZKC.YC.XC.XMIEX,EY.IFREE 
COMMON /CPROP/ ZMUsROG.TO.TW 
COMMON /C81/ R(21),C(21)+S(21).4<(21).T(21),Z.J(21) 
COMMON SV,SHS.CF(41).ST(41) ' 
COMMON /CIN/ HG.A1,POT.CL1.CL2.A2 
DIMENSION A(IN.JN.IV),IMIN(JN),IMAX(JN).X1(IN).X2(JN) 

C*** 
C 	COMPUTATION OF THE VELOCITIES 
C*** 

DO 10 J=2.JNM 
HN=X2(J+1)—X2(J) 
HS=X2(J)—X2(,) —1) 
A(1.j.NG2)=(4(1.J,NF)—A(2,JINF))/(X1(2)—X1(1)) 
A(IN.J.NG2)=.(A(INM.J.NF)—A(IN.J.NF))/(X1(IN)—X1(INM)) 
A(IN.J,NG1)=((A(IN.J+1,NF)—A(IN.JoNF))*HS/HN 

1 	+(A(IN,J,NF)—A(IN,J-1,NF))*HN/HS)/(HS+HN) 
DO 10 I=2,INM 
HE=XI(I+1)—Xl(I) 
HW=X1(1)—Xl(I-1) 
A(I.jING1)=((A(1.J.+1.NF)-4(I•J'NF))*HS/HN 

1 

	

	4.(A(I,J.NF)—A(I.J-1.NF))*HN/HS)/(HN+HS) 
A(I.J.NG2)=((A(I-1 ,J,NF)—A(I.J,NF))*HE/HW 

1 	+(4(I.J.NF)—A(I+1.J.NF))*HW/HE)/(HE+HW) 
10 CONTINUE 

DO 11 1=2.INM 
HE=X1(I+1)—X1(I) 
HW=X1(I)—X1(1-1) 
A(I. 1'NG2)=((A(I-1+ 1 ,NF)—A(I,  1•NF))*HE/HW 

1 	+(A(I. I.NF)—A(I+1. 1,NF))*HW/HE)/(HE+HW) 
A(I,1oNG1)=(A(I+20NF)—A(I11,NF))/(X2(2)—.X(1)) 

11 CONTINUE 
DO 12 I=1,IN 
DO 12 J=1,JN 
A(I.j.NV1)=A(I.J.NG1)/A(I.J.NRO) 
A(I,j.NV2)=A(I,J,NG2)/A(I.J.NRO) 

12 A(I,JINOP)=(A(1.J.NG1)*A(1.J.NG1)+A(I.J.NG2)*A(IIJoNG2)) 
1 /A(I.J.NRO) *0.5 

C*** 
C 	COMPUTATION OF THE DENSITY AND THE VISCOSITY 
C*** 

21 DO 32 J=1.JNM 
DO 32 I=1,IN 
IF (A(I.J.NK).LT.0.) A(I.J.NK)=0. 
IF (X2(JN)—X2(J )...ZLP) 40'41941 

41 ZL=ZLP 
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GO TO 42 

40 Y=X2(JN)—X2(J) 
REK=A(I.J.NRO)*SORT(A(I,J.NK))*Y/ZMU 
ZL =Y*(1.—EXP(—C3*REK)) 

42 A(.1,JrNML)=ZL 
32 A(I,J+NMU)=ZC*A(I,J+NRO)*SORT(A(I+J,NK))*ZL 

RETURN 
END 

EON 

SUBROUTINE EON (K,RES,RELAX.AIXI,X2IIMIN.IMAX,IN.JN$IEIRRIIV,AM) 
COMMON /CNU,MBR/NW.NF,NK,NHS,NVT,NML,NMH,NP.NG1•NG2,NMU,NRO 
COMMON /CN2/ NV1.NV2,NOP.NT 
COMMON/C/ANAME(6,14),ASYMBL(14),NI(50),NPRIN,INDG,OC*NMAXIFINMeJNM 

COMMON /CTURB/ ZA,Z6,2C,C1 ,C2*C3sZLP 
COMMON /CBOU/ ROC,TC,UC.ZKC.YC,XC.XM,EX.EY+IFREE 
COMMON /CPROP/ ZMU,ROG,TG,TW 
COMMON SV.SHSICF(41).ST(41) 

COMMON /cal/ R(21)+C(21)+5(21)•ZK(21)'T(21),ZJ(21) 
DIMENSION A(IN,JN,IV),X1(IN),X2(JN),IMIN(JN),IMAX(JN),PR(2,IE) 
DIMENSION AM(IE) 
GAMA=ZMU/PR(1.K) 
AMAX=AM(K) 
AM(K)=0. 
JI=2 
JNMM=JNM 
IF (K—NW) 102,101 ,102 

101 JNMM=JNM-1 

102 CONTINUE • 
39 DO 40  J=2,JNMM 

DO 40 I=JIoINM 
HI=X1(I+1)—Xl(I-1) 
H2=X2(J+1)—X2(J-1) 
HE=X1(1+1)—X1(I) 
HW=X1(I)—X1(I-1) 
HN=X2(J+1)—X2(J) 
HS=X?(J)—X2(J-1) 

O*** 
C 	SOURCE TERMS 
C*** 

SOURCE=0. 
Z0=0. 

IF (K.NE.NK) GO TO 789 
Y=X2(JN)—X2(J) 
DV21=NA(I+1,J.NV2)—A(1,J,NV2))*HW/HE 

1 	+(A(I,J,NV2)—A(I-1,J.NV2))*HE/HW)/(HE+HW) 

DV12=NA(I.J+1,NV1)—A(I+J,NV1))*HS/HN 
I 	+(A(I,J.NV1)—A(I.J-1,NV1))*HN/HS1/(HN+HS) 
ACI.j.NT)=(A(1+J,NMU)+ZMU)*(DV12+DV21) 

81 DV11=C(ACI+1,j,NVI)—A(I.j.N/1))*HW/HE 
1 

	

	+(A(I,J.NV1)—ACI-1,J,NV1))*HE/HW)/(HE+HW) 
DV22=C(ACI,J+1.NV2)—A(I,J,NV2))*HS/HN 
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1 	4(A(I.J.NV2)—A(I.J-1.NV2))*HN/HS)/(HN+MS) 
IF (A(I.J,NK).LT.0.) A(I,J,NK)=0. 

634 VISC=A(I,J.NMU) 
GEN=(26*(DV11*DV11+DV22*DV22)+(DV12+DV21)*( DV 12+0V21))*VISC 

82 IF (Y—ZLP) 51,52.52 
52 ZL3=ZLP. 

ZL3=A(I.J.NML) 
GO TO 53 

51 REK=A(I,J.NRO)*SORT(A(I,J,NK))*Y/ZMU 
ZL3=Y*(1.—EXP(—C2*REK)) 

53 DIF=ZA*A(I.J.NRO) 	*SORT(A(I,J,NK))/ZL3 

SOURCE=GEN 
ZQ=DIF 

789 IF (K.EO.NF) SOURCE=A(I.J,NRO)*A(I.J.NW) 
C*** 
C 	CONDUCTIVE TERMS 
C*** 

IF (K—NF) 65.62.65 
65 IF (K—NW) 63.62,63 
62 CE=H2/2./HE 

CW=H2/2./HW 
• CN=H1/2./HN 

CS=H1/2./HS 
GO TO 25 

63 DP =A(1 ,J ,NMU)/PR(2,K)+GAMA 
DE =A(I+1,J ,NMU)/PR(2,K) +GAMA 
DN =A(I .J+1.NMU)/PR(2,K) +GAMA 
DW =A(I-1.J .NMU)/PR(2,K) +GAMA 
DS =A(I .J-1.NMU)/PR(2.K+GAMA 

35 CE=H2*(DE+DP)/(4o*HE).  
CW=H?*(DW+DP)/(4.*HW) 
CN=H1*(DN+DP)/(4.*HN) 
CS=H1*(DS+DP)/(4.*HS) 

25 ADNM=CE+CW+CN+CS 
IF (K—NW) 42+94.42 

94 CE=CE*(4(I+1.j.NMU) +ZMU) 
CW=CW*(A(I-1.JINMU) 	+ZMU) 
CN=CN*(A(I.J+1.NMU) +ZMU) 
CS=CS*(A(I,J-1•NMU) 	+ZMU) 
ADNM=ADNM*(A(I,JINMU) +ZMU) 

42 ANUM=CE*A(I+1,J.K) +CW*A(I-1.J.K) +CN*A(I,J+1,K) +CS*A(I.J-1,K) 

2 

	

	+SOURCE *H14-12 /4. 
ADNM=ADNM+ZO*H1*H2/4. 
IF (K—NF) 41,44'41 

C*** 
C 	CONVECTIVE TERMS 
C*** 

41 ZCU=O. 
AU=(:). 
DFW=(A(I,J+1.NF)+A(I-1,J+1•NF)—A(I,J-1.NF)—A(I-1•J-1•NF)) 
DFN=—(A(I-1,J.NF)+A(I-1.J+1,NF)—A(I+1.J.NF)—A(I+1.J+1,NF/4. 
DFS=—(A(I+1.JoNF)+A(1+1.J-1.NF)—A(I-1,JoNF)—A(1-1.J-1,NF))/4. 
DFE=(A(I.J-1,NF)+A(11-.I.J.I.NF)—A(I0J+1.NF).....A(1+1EJ+1,NF1) /4. 
IF (DFW) 911.912.913 

911 ZCU=—DFW+ZCU 
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GO TO 912 
913 AU=AU+DFW*A(I-.1.J9K) 
912 IF (DFE) 921.922,923 
921 ZCU=ZCU-DFE 

GO TO 922 
923 A U =A U +DFE*A(I+1•J+K) 

IF (I.EO.INM) CE=CE+DFE 
922 IF (DFS) 931.9329933 
931 ZCU=ZCU-DFS \ 

GO TO 932 
933 AU=AU+DFS*A(I.J-19K) 
932 IF (DFN) 941,942,943 
941 ZCU=ZCU-DFN 

GO TO 942 
943 AU=4U+DFN*A(19J+19K) 
942 CONTINUE 

C*** 
C 	COMPUTATION OF THE NEW VALUES 
C*** 

ADNM=ADNM+ZCU 
ANUM=ANUM+AU 

44 Z=A(I.J9K) 
A(I.J1K)=ANUM/ADNM 
IF (I.EO.INM) A(19J+K)=(ANUM-CE*A(IN,J9K))/(ADPMCE) 
IF (ABS(A(19J,K)).GT.ABS(AM(K))) AM(K)=A(19J,K) 
RS=(A(I.J•K)-Z)/AMAX 

377 FORMAT (1H 4,313.1X,1P12E10.2/13E10.2) 
40 IF(ABS(RS).GT.ABS(RES)) RES=RS 

RETURN 
END 

BOU 

SUBROUTINE BOU ( 	A.X10(2.IMIN,IMAX.IN.JN9IE,PR9IV9AMAX) 
COMMON /CNUMBR/NW.NF.NK,NHSINVT.NML.NMH,NPING1ING29NMU,NRO 
COMMON /CN2/ NV1,NV2,NDP,NT 
CO("MON/C/ANAME(6914).ASYMBL(14),NI(50)9NPRIN,INDG9CC,NMAX,INM,JNM 
COMMON /CTURB/ ZA,ZB,ZC9C19C29C39ZLR 
COMMON /CBOU/ ROC.TC,UC,ZKC.YC.XC.XM,EX.EY,IFREE 
COMMON /CPROP/ ZMU,ROG,TG.TW 
COMMON SV,SHSICF(41),ST(41) 
COW10N /CB1/ R(21)9C(21),S(21)94<(21),T(21)0ZJ(21) 
DIMENSIONA(INIJN.IV).X1(IN).X2(JN),IMIN(JN)9IMAX(JN),PR(29IE). 
DIMENSION AMAX(IE) 
DIMENSION CA(21) 
DATA CMIN /0.155/ 
DATA T /21*1./ 
HN=X2(JN)-X2(JNM) 
HS=X2(JNM)-X2(JN-2) 

C*** 
C 	THE VARYING BOUNDARY CONDITIONS 
C*** 

D025 K=11IE 



D029 J=293N 
25 A(IN.J9K)=A(IN-1 9 J 9 K) 

D026 K=39IE 
0026 J.7.2.JNM 

26 A(1.1j9K)=A(29J,K) 
DO 116. 1=IFREE,IN 

116 Al , INF ) =A ( I 12 9NF ) 
RO=ROC 
SIG=PR(11NHS) 
SIGO=PR(29NH8) 
DO 71 I=19IN 
T(I)=A(IojN,NT) 
IF (A(I....INMINK).LT.0.) A(I,JPMINK)=0. 
R(I)=SORT(A(I,JNMINK))*(X2(JN)...X2(JNM))*RO/ZMU 

CMAX=0.0565*(R(I)+5.)**0.895 

IF (R(I)-19.8 ) 50,50953 
53 IF (T(I)) 5495595'' 
55 ZK(I)=10000. 

GO TO 56 
54 IN(1)=A(19JNM.NK)*RO/ABS(7( I)) 
56 CONTINUE 

CA(I)=ZK(I)/R(I)**0.827 
CAA=0.097/CA(I)**0.34 
IF (CAA—CHIN) 60960.59 

59 C(I)=CAA *(R(I)+5.)**0.58 
IF (C(I).GT.CMAX) GO TO 63 
GO TO 64 

60 C(I)=CMIN *(R(I)+5.)**0.58 
GO TO 64 

50 C(I)=1* 
S(I)=SIG/SIGO/(1./CMAX+1.8*ZB/ R(I)) 
A(I,jN,NK)=—A(19JNM,NK) 
GO TO 67 

63 C(I)=CMAX 
62 S(I)=SIG/SIG0/(1./C(I)+1.8*ZB/ R(I)) 

A(19jN,NK)=A(19JNM,NK) 
GO TO 61 

64 8(1)=SIG/SIG0/(1./C(I)+0.45*Z8/ R(1)**0.6) 
A(IojN,NK)=—A(19JNM9NK) *0.39 

61 CONTINUE 
67 CONTINUE 

IF (S(1).GT.1.) GO TO 65 
S(I)=1. 
A(IojNoNK)=—A(19JNMINK) 

65 CONTINUE 
99 CONTINUE 

A(I,jN,NT)=—C(I)*ZMU41- A(19JNM,NG1)/HN 
PP=CA(IsjNoNT)+A(I,JN-2,NW)*(A(I,JN-21NMU)+ZMU))/(HN+H8) 

A(I l jNM.NT)=A(IIJNINT)—PPA-HN 
A(I,jNM,NW)=—A(19JNMoNT)/(ZMU+A(IIJNM,NMU)) 
CF(/)=A(I,JN1NT)/RO/UC/UC 

71 CONTINUE 
IF (IE.LT.NHS) GO TO 9876 
DO 81 I=I9IN 
DT=A(I,JNM,NHS)—TW 

23z 
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H=X2(JN)—X2(JNM) 
ZJ(I)=S(I)*ZMU*DT/SIG/H 
A(I i jN.NHS)=A(I.JNM.NHS)—S(1)*DT/(1.+A(I.JNMoNMU)/ZMU*SIG/SIGO)  

TEM=A(1.1.NHS)—TW 
ST(I)=2J(I)/R0 /UC/TEM 

81 CONTINUE 
9876 SHS=0. 

SV=0. 
DO 391 1=2.IN 
SV=SV+0.5*(CF(1-1)+CF(I))*(XI(I)—X1( I -1)) 

391 SHS=SHS+0.5*(ST(1-1)+ST(1))*(X1(1)1(I-1)) 
SV=SV/XI(IN) 
SHS=SHS/XI(IN) 
RETURN 
END 

OUT 

SUBROUTINE OUT 	(A.IMIN.IMAX.IN.JN,IE,IV.IPT,X1.X2) 

COMMON/C/ANAME(6.14).ASYMBL(14).NI(50).NPRIN,INDG.CC.NMAX.INM.JNM 

COMMON /CN2/ NV1,NV2.NDP.NT 
COMMON /CNUMBR/NW.NF.NK.NHSINVT,NML.NMH.NP,NG1.NG2.NMU.NRO 

COMMON /CTURB/ ZA.ZB.ZCICI1C21C3.ZLP 
COMMON /CBOU/ ROC,TC.UC.ZKC.YC.XC.XMIE.X.EY.IFREE 
COMMON /CPROP/ ZMU.ROG.TG.TW 
COMMON /C81/ R(21).C(21).S(21).LK(21).T(21).ZJ(21) 
DIMENSION A(IN.JN.IV),IMIN(JN)41IMAX(JN),X1(IN),X2(JN) 
COMMON SV,SHS.CF(41),ST(41) 
JX=JN/14 
IX=IN/lA 
IF (IXeLTel) IX=1 
IF (JX.LT.1) JX=1 
IF (NP.GT.NPRINY GO TO 205 
CALL PRES (A.IMINIIMAX.IN.JN.IE.IV.IPT.X10(2) 

205 CONTINUE 
C*** 
C 	GEOMETRICAL DISPLAY OF THE RESULTS 
C*** 

IF (IPT.EQ.2) GO TO 201 
DO 10 K=1.NPRIN 
WRITF(6.100) (ANAME(L.K).L=1.6) 

100 	FORMAT(1H130X.21HTHE DISTRIBUTION OF ,6A6//4H 	J//) 
DO 2 J=1.JN,JX 

2 WRITE(6.111) j.(A(I,J.K),I=1.IN.IX) 
111 FORMAT (1H0.12.2X.1P14E 9.2) 

WRITE(6.112) (I.I=1,IN.IX) 
112 FORMAT (1H0/4H 	I= 	.13(12.7X).12) 

IF (K—NW) 21.22121 
22 WRITE (6.233) (CF(I).1=1.IN,IX) 

WRITE (6.233) (R (I),I=1,IN,IX) 
WRITE (6.233) (C (I).1=1.IN.IX) 
WRITE (6,233) IT (I),I=1,1N.IX) 
WRITE (6.233) (X1(I).1=1.IN.IX) 



234 

21 IF (K—NK) 23+24923 
24 WRITE (6.233) (ZK(I),I=1•IN,IX) 

WRITE (6,233) (X1(I),I=1,IN•IX) 
23 IF (K—NHS) 25.26125 
26 WRITE (6,233) (S(I)41I=1.INIIX) 

WRITE (6.233) (ZJ(I),I=1•IN,IX) 
WRITE (6.233) (ST(I),I=1,1N+IX) 
WRITE (6.233) (X1(I),I=1+1N•IX) 

233 FORMAT (1H0,4X.1P14E 9.2) 
25 CONTINUE 
IC) CONTINUE 

201 IF (IPT.EQ.I) RETURN 
C*** 
C 	TABULAR DISPLAY OF THE RESULTS 
C*-** 

IPAGE=0 
DO 12 J=1•JN 
ILINE=0 
DO 1 I=1,IN 
IF (IPAGE.E0.0) WRITE (6.101) (ASYMBL(K),K=1.NPRIN) 

101 FORNIAT(10H1 I 	Jo7(9X.A6)) 
IF (ILINE.E0.0) WRITE (6.103) 

103 	FORMAT(1H ) 
WRITE(6•102) I.J.(A(I.J.K),K=1.NPRIN) 

102 	FORMAT(IH .12.5X.12.7(1PE15.5)) 
ILINE=ILINE+1 
IPAGE=IPAGE+1 
IF (IPAGE.GE.40) IPAGE=O 

1 

	

	IF(ILINE/5*5.E0.ILINE)WRITE(6.103) 
12.WRITE (6.103) 

RETURN 
END 

PRES 

SUBROUTINE PRES 	(A.IMIN.IMAX,INIJN.IE.IV.IPTIX1.X2) 
COMMON/C/ANAME(6.14),ASYMBL(14).NI(50).NPRINvINDG,CC.NMAX.INM,JNM 
COMMON /CN2/ NV1.NV29NDP.NT 
COMMON /CNUMBR/NW.NF.NK.NHS,NVT.NML.NMHINP.NGI.NG2.NMU.NRO 
COMMON /CTURB/ ZA•ZE3sZC.C11C2•C3,ZLP 
COMMON /CBOU/ ROC.TC.UC,ZKC.YC.XC+XM,EX•EY.IFREE 
COMMON /CPROP/ ZMU,ROG.TG,TW 
DIMENSION A(IN•JN.IV),IMIN(JN),I.MAX(JN).X1(IN).X2(JN) 
COMMON /CBI/ R(21),C(21),+S(21).ZK(21).T(21),ZJ(21) 
DIMENSION PP(41) 
DATA P0/0./ 
A(2.2.NP)=P0 
J=2 
D021 I=2.INM 
HE=XI(I+1)—X1(I) 
HN=X2(J+I)—X2(J) 
HS=X2(J)—X2(J-1) 
HW=X1(I)—X1(I—I) 
DI=A(I.J.NDP)*((A(I+14J,NRO)—A(I.J.NRO))*HW/HE 



1 	+(A(I•J.NRO)—A(I-1 ,J,NRO))*HE/HW)/(HE+HW) 
DII=A(Icj,NG2)*A(1,JINW) 
DIII-7((ACI,J+1,NT)—ACI,J,NT))*MS/HN 

1 	4-(A(I,J,NT)—A(I,J-1.NT))*HN/HS)/(HN+HS) 
DPDX=DI+DII+DIII 

PP(I)=DI+DII+DIIi 
21 CONTINUE 

D022 I=3•INM 
22 A(I12,NP)=(PP(I-1)+PP(I)b*0.5*(X1(I)—X1(I—.1))+A(I-1,2,NP) 

D023 I=2,INM 
HE=X1(1+1)—X1(I) 	\ 
HW=X1(I)—X1(I-1) 
DVII=HA(I+1,2INV1)—A(It2INV1))*HW/HE 

1 	+(A(I,2,NV1)}-A(I-1,2•NVI))*HE/HW)/(HE+HW) 

23 ACI.p,NP)=A(1,2,NP).....A(112/NDP)+2.*(A(I.2,NMU)+ZMU)*DVII 
D027 I=2.INM 
HN=XP(3)—X2(2) 

.HS=X2(2)—X2(1) 
DV22=((A(I/3,NV2)—A(I+2,NV2))*HS/HN 	• 

1 	+(A(I,2►NV?)—A(I+1,NV2)):EHN/HS)/(HN+HS) 

ACIIP,NP)= ACII2INP)+A(I121NDP)-2.*(AtI,2,PMU)+ZMU)*DV22 
D025 J=2,JNM 
HE=X1(I4-1)—X1(I) 
HW=X1(I)—XICI-1) 
HS=X2(J)—X2(J-1) 
HN=X2(J+1)—X2(J) 
DI=A(1 ,J.NDP)*((A(I,J+14NR0)—A(I.J.NRO))*1-15/HN 

1 	+(A(I,J.NRO)—A(I,J-1•NR0))*HN/HS) /(HN+HS) 
DI1=—A(I ,J,NG1)*A(I0J/NW) 
DIII=ACA(I+1,J,NT)—A(I1JoNT))*HW/HE 

1 	.*(A(19J.NT)-4(1-1$J,NT))*HE/HW)/(HE+HW) 
OPDY=DI+DII+DIII 

PP(J)=DPDY 
25 CONTINUE 	\ 

0026 J=3.JNM 

26 A(I,JIINP)=A(I,J-1 ,NP)+(PP(J)+PP(J-1))*0.5*(X2(J)—X2(.1.-1)) 
D027 J=2.JNM 
H5=X2(J)—X2(J-1) 
HN=X2(J+1)—X2(J) 
DV22=NACI1J+1,NV2)—A(I.J.NV2))*HS/HN 

1 	+(A(I.j.NV2)—A(/,j—I ,INV2))*HN/HS)/(HN+HS) 
A(I,J,NP)=A(I/J,NP)—A(19J9NDP)+2.*(A(I,J,NMU)+ZMU) *DV22 

27 A(I,J,NP)=A(IeJINP)....A(INM,2 	,NP) 
RETURN 
END 

23s 




