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Abstract

A finite-difference method for the solution of the
elliptic eqnétions govgrning the steady transfer of mbmen-
‘tum, heat and matter in turbulent flows is presented.

The method ensures‘thét the lawg of conservation aré satis-
fied over arbitrarily largé or anall‘control volumea.
Accuracy, convergence and economy of the method are dis-
cusged, and shown to be satisfactory in cases of practical_
interest.  The phenomenon of "false diffusion" is dis-
cﬁssed, énd related to local quéntitiés. | »
On the physical side, the Kolmogorov~Prand£1’hypothe-
sis of turbﬁlence is extended to two-dimensional flows
and to viscous Bubiayer near solid walls.  The empirical
input to the hypothesis ia obtained from Various sets of
data, for experimental situations approximating to Couette
flows. Numerical solutions for Couette flows with aug-
mented turbulence have been compuied and cast in the form
of wall-functions, for use invtwnédimensional problems.

»‘I‘he. finite-difference method, the viscosity hypothe-
sis and the wall-funétiohg are £hen used to 6btain-sblu-
tions for the prdblem of a plane, turbulent jet impinging
normally to a flat aurface. Coﬁpariaons with experimeﬁt;
al results are made, and the influence of the Reynolda

and Prandtl numbera is studied. The‘distribution of the



kinetic energy of the turbulent velocity-fluctuations is
studied and discussed as well.
‘.Finally, the results of the project are discussed,

and suggestions for the continuation of the research are

ma@e.



Preface

This yw§is constitutes the main result of the research
activities which I have pursued in the Mechanical Engineer-
ing Department of Imperial College during the last three |
years. The tentative subject of this research was the
provision of prediction methods for heat transfer in im-
pinging jets. During the eérly days of the work, this
pr&ject was supposed to be centered around the numerical
solution of the parabolic equations governing wall-jet and
boundary-layer flows, as wgll as experimental work on the
wall jet itself. Therefore, I tried to collect and cor-
relate data from different sources (WOlfshteip, 1966), and
to adapt to the ﬁall-jet probiem solution-methods of the
boundary-layer equations by integral methods (Patankar
and Wolfshtein, 1966). But, #t‘about the same time, I
realised that the most un-explored part of the'imﬁinging
jet system ié, by far, the impingement region itself,
and I decided to concentrate on it.

During 1966 I became more and more engaged in work
on the. solution of the elliptic, complete Navier-Stokes
eqﬁations, by which the required solﬁtion could be ob-
tained. | Some of the results of this work were reported
already in earlier papérs by Runchal and Wolfshtein (1966),
Runchal, spalding and Wolfshtein (1967),‘Wolfshtein (1967),

and Runchal and Wolfshtein (1967). In part II of the



present tﬁeSiS, a full account of the final outcome of my
work‘in this direction is given. For the sake of com-
pletenéss I had to include some material which was reported
in the eaflier papers, but I usually presented such material
in brief form only, qﬁoting the appropriate reference.

Thus, towards the end of 1966, it became evident that
solution té the impinging jet problem came within easy
reach. The weak link in the chain was the turbulent vis-
cosity law, and I had planned to fill this gap by measur-
ing the turbulent heat-diffusion-coefficient in the imping-
ing jet and incorporating correlations of these measure-
ments in thé computations. However, a road-accident pre-
vented this experimental work, Instead, I had to obtain
a viscosity law on the basis of the experimental data
whiéh were available, for’other types of flow. In prac-
tice, this was dome by the extension of the Kolmogorov-
Prandtl hypothesis to two-dimensional flows, by a study
- of Couetfe flows with augmented turbulence, and by the
development of specialbprdcedures for the treatmént of
flow neaf soiid Qalls. All this work ig reported in part
III of the paper, as well as the impinging jet solutions
which I ﬁas, eventually, able to get. |

No account of my‘work ﬁill be complete without the
mention of my supérvisor, Professor D.B. Spalding.

Professor Spalding took an active part in the research



project all along the way, supplying a constant stream of
new ideas and suggestions, and in general, creating a very
stimulating atmosphere among the whole group of research
workers around him. The greatest tribute which I may pay
to him, is, in my opinion, that Profesgor Spalding did

not act only as my supervisor in’this research, but was
also a teacher, both in the subject of turbulent flows, and
in more remote topics, such as technical writing, doing
research, etc., etc. Last, but not least in the list was
Professor Spalding's help to me in a time of personal hard-
ship.

During a considerable period I was working in close
contact with Mr. A.K. Runchal. Our collaboration and
friendship was very fruitful, both in the results achieved,
and in the satisfaction which I got from it. The credit
for the development of the finite-difference method and
the computer programme should be shared by both of us.

There are many others to whom my thanks are due.

But I wish to mention specifically Mr. N. Mitchell, Dr.
S.V. Patankar, Dr. W.M. Pun and Dr. L. Baker, wﬁo were
always willing to help, and Miss M.P. Steele, who was al-
ways ready to solve administrative problems. The project
became possible by the generous allocation of computer time
by the Center for Computing and Automation of Imperial

College.
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1e Introduction

1.1 A general description of the problem

The recent advent of fast computing machines, accom-
panied by a rapid development of numerical analysis, hés
had a very strong influence on fluid-dynamics. Not only
has it enabled us to obtain solutions for much more complex
problems of potential and boundary-layer flow than we
could some ten years ago, but also we may now venture into
the relatively new field of the cdmplete, non-linear,
elliptic equations of flow. True enough, such solutions
were obtained before as well, mnotably by Thom (1933), and
then by some others in the early fifties; but these early
solutions did not result in standard solution methods.

All these early solutions were too laborious and limited
in their scope.

The present thesis describes a new general computa-
tional scheme for the solution of the elliptic equations
of fluid flow, and its application to the problem of a
plane, turbulent, impinging jet. Among the interesting
features of the thesis are the application and extension
of the Kolmogorov-Prandtl hypothesis of turbulence.
Another contribution in the present thesis is the suggest-
ion of some new lines of research, which have become

possible and necessary as a result of the new development.



’The»impihgiﬁmvjet deserves atSpecial note. As far
as the author is aware, this is the first time that a
complete theoretlcal ‘solution could be obtained for this
phenomenon,4.'Perhaps the most important feature of this
'solution is that it islderived from basic prihciples;
and that ncnevof the empirical input into it was extractedb
from impingihgfjet.studies (or indeed even'from free;jet
ones). Thus the 1mp1ng1ng jet solutions serve two pur-
poses 31nultaneously. .Flrstly,‘a demonstration is glven,
that»implnglng jet flaw‘may Ee predicteds Secondly, tﬁe
1mp1nw1ng Jet solutlon serves as a test-ground for the
_valldlty of the method of solutlon and the turbulence
'hypothe51s. 'Thejlstter ;s,probably the most promising
prcspect.of theynew methcd.f We are now able to test
neﬁ.turﬁuience.hypotheseStwithout having to apply res-

. trictions and simplifications to the basic equations.

1.2 An outline of previoﬁs knowledge

1.2.1 vThe plane.impinging jet

Studles of 1mp1ng1ng Jets have attracted many re-
searchers because of the h1Wh rates of heat transfer
whlch are foundvln‘the-lmplngement reglon. b‘Some of the
“.heat-transfereexpEriments are summarised in table 1.2-1

below: .
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Author and
year

. Coefficients measured

Prandtl
nunber

Range

Re x10_3*
c

hc/dc

Glaser

(1961)

lletzger
(1962)

Schauer
and
Busgtis

(1963)

Gardon

- and

Akifrat
(1965)

Kroger
and -
Krizek

(1966)

mean mass-transfer

mean ﬁeaf—transfér

local heat-transfer
localcheat-transfer

" .local mass-transfer

0.58

0.71

0.71

0.71

2-5

«9-10

1.5-4 .

4o.8
JA5-22

8.3-4h

4o
2-45

«5-40

Table 1.2-1: ' Summary of heat-transfer measurements in

impinging jets

- Accurate comparisQn between these various sources is diffi-

cult because in most cases the measured parameters of the

flow (such as the Réynolds number, the Prandtl humber etc.)

are not accurately reported.

Still it was found useful to

plot the stagnation point heat-transfer coefficient, sto,

versus the slot Réynolds number, Re , in figure 1.2-1 for

*oAll symbois‘are'defined in chapter 9.
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the two nozzle~to-surface distances of hc/dc = 8 and hc/dc
= 40,

There has been a wide spread-belief that the flow in
the stagnation region is laminar. Thercfore lietzger de-
duced that the Stofv Rec relation shpuld have the form

a

St = const. x Re, (1.2-1)

where a = %.

This deduction was not supported, however, by experiments.
Both Metzger's measurements and figure 1.2-1 suggest that
the Rech“Sto relation may be correlated by equation (1.2-1)
only if a is taken to be around 0.43.  Apparently, the
power a is independent éf the Reynolds number.

Anotlr~> interesting feature of the flow has been re-
ported by Gardon and Akifrat, who found that augmentation
of the turbulence intensity in the jet increases tﬁe heat-
transfer iﬁ the stagnation region. Sutera et al. (1963)
reported very similar trends in stagnation flow.

Skin~friction, surface static pressure, and maximum
velocity measurements in the impingement region were re-
ported by Schauer and DBustis, for a Reynolds number of about
43000, and a slot-to-plate distance of 40 slot widths.

Theoretical works on the impinging jet have not been
very numerous: an interesting solution to the problem of
laminar impingement was obtained by Chung and Viegas (1961);

but their solution was heavily dependent on some simplifying
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assumptions. Strand (1962) obtained an analytical solu-
tion to the velocity and pressure distributions in an irro-
tational inviscdd impinging jet. Schauer and Eustis
attempted a theoretical solution for the turbulent impinging
jet problem; However, their solution was so much based

on experimental information, that it could hardly be regard-
ed as anything more than a complex correlation.

Sutera et al. (1963) devised a complex model to ex-
plain the increase in heat transfer in the stagnation point
by the presence of turbulence in the flow. They obtained
nunerical solutions by which they showed that a relatively
small increase in the level of turbulence might cause a
much larger increase in heat-transfer rate.

Pinally, Spalding (1967a) has shown that in turbulent
stagnation flow the power a in equation (1.2-1) may be 0.4

and not 0.5.

1.2.2 Numerical solutions of the Navier-Stokes equation

The early solutions obtained by Thom (in a series of
papers which terminated in 1933) to the full Navier-Stokes
equations have already been mentioned. Thom eliminated
the pressure by using the vorticity and stream-function as
the dependent variables; .This practice was later followed

by most other workers*, and is also used in the present

* Some solution methods, notably those developed in Los-
Alamos for non-steady flows, take the pressure and the
velocity components as the dependent variables.
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paper. Another important contribution made by Thom was
the formulation of the vorticity boundary condition on
solid walls. Thom related the wallbvorticity to the
streém fungtion distribution near~the wall by a Taylor series
expansion of the stream fuanion near the wall. ~ This prac-
tice is, in fact, identical to the assumptidn of a constant
vorticity mear the wall, a forerunner of the method to‘be
recommended in section 3.2 of the present thesgige ~:On the
other hand,‘Thom's early wbrk, performed bhefore the . com-
puter era, deﬁauded too much labour, and was not contiﬁued
for aboﬁt twenty years. |

In the fifties the interest in the Naviér-Stokes equa-
tions was re-stimulatéd, ahd numnerous solutions ﬁere,ob—
tained, employing vafious finite-~difference techniques.
Soon, it became apparent'that the use of central differ;“
ences (as they arevusually applied to, éay,'Laplace's
equation)'resulted‘in divergence whenevér the Reynolds‘
humber became_large; | Bu;graff (1966) suggested overcom-
ing this difficﬁlty‘by employing a severe under-relaxation,
But, apart from the arbitrarinéss inherent in the selection
of his underfrelaxatidn parameter, this practice resulted
in gxeessive computing time. |

A different approach was introduced by éome workers
to un-steady flow problems: they found that a flow-

oriented finite-difference formulation resultéd in stable
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procedures even for very high Reynolds numbers (e. g.‘
Barakat and Clark, 1965) and Runchal and Wolfshtein (1966)

showed that this approach is useful also in steady—flows.r

1.2.3 The Kolmogorov-Prandtl hypothésis,of turbulence

The most successful theory of turbulence has been
that of the mixing-length, suggested by»Prandtl in l925.
The applicability of this hypqthesis‘has beén questioned,
however, many times, Its main deficiency is that it re-
lates the turbulence to one free parameter only,~the |
mixing-length. As this parameter is very strongly depen-
dent on the geometfy.of the flow, this theory ia ﬁotv
directly sensitive to changes'in the tﬁrbulenaewlével
inéide the flow. Moreover, we cannot usually apply the
same set of empirical constants to all flow conditioast
when we use the'mixlng-length’hypothesis. These’defi—‘
ciencies may be overcome by the use of the turbulent kine;
tic energy hypothesis, which was introduced by‘Kolmogarov
(1942) and Prandtl (1945).. In this theory, one as’sum'es
that the turbulence is described'by‘two parameters; a
1ength scale, and the level oflkinetic energy of the tur-
bulent fluctuations. Emmons (1954) used this newer éoa—
cept, and was able té obtain reaéonable pfedictions forx
a variety bf cases, while Spaldlng (1967a) was able to
explaln the hitherto unexplalned phenomenon of hlgh heat

transfer in a reattachment_reglon.‘ Spaldlng (1967b)
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also showed how the turbulent kinetic energy hypothesis
reduced to the 1925 mixing-length law for Couettevflaw

and foxr free jetsa.

1.3 The present contribution

The present thesis describes research activities
which were directed towards three ends;

(1) The development of a computational method
and a computex programme for the solution of the elliptic
equations governing two~dimensional variable-property
flows.

(1) The recommendation of turbulent-property
laws, which are universally valid fer any flow, in all
the regions of such a flow. |

(i1i) The predictions of the velocity field and
heat tranafer in impinging jets.
| ~These three ends are interconnected with one another.
When we have the computer programme, we may study and
teat complex turbulent viscosity hypotheses. The im-~
pinging jet is, then, a natural test ground for such
hypotheses, being different from regular boundary layers,
which have been successfully predicted even with the
earlier mixing-length hypothesis. But, on the other
hand, the very existehce of the progranmnme is sufficient
to stimulate interest in the impinging jet problem, pro-

vided that a proper viscosity law is available.
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The impinging jst results are interesting for sevefal
reasons. First because‘the impinging jet hasvnbt‘yieldéd
to mofe convsntional predictibn'mefhods inka satisfactorys
way. But these computatlons are of interest also because
they dlsplay some features of the turbulent 1mp1nging Jet‘.
flow, which have not yet been.reported either experlment-sb'
ally or'theoretic51ly.

Restrictions: The‘present.thesis is restricted to

plane congtant propérty_flowvon smobth'walls;'and ﬁithoﬁt_
chemical reaction. These restrictions do not represen# .
the limitations of the‘msthod, which ﬁay be applied to
any'two—dimensional flow (With'the pbssible'exception

of supersonic flows). Some other restrlctions, applled
to particular cases,'wlll be dlscussed in the approprlate

sectlons.

Qutline of the thesis: The thesis is divided into

the following six parts:

Part I : Introduction to the subject; )
. Part II : The mathematical prdblan.‘s
Part IITI : An application of the méthbd to

turbulent flows..

Part IV Closure.

Part V. Nomenclature and feferences.
Part VI : Appendices.

These parts are further subdiv1ded into chapters.

Part II is concerned_w1th ‘the method of solution. 1In
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chapter_z.the differentia1‘equations,~boundary-conditions
and auxiliary velationé ére presented. Then, in chapter
3 these are recast in a finite-difference form. ~ A
general‘fiﬁiie—differénce equation of conservétion is
derived and the‘solutionbprbcedufe is described. A pro-
cedure for the evaluation of the wall vorticity is pre-
sentéd as weil; followed by some rémafks on the computer
programme... In ;haptef 4 the method is checked,for‘con;
vergence, accuracy and economy, by‘trial so1utions"of
laminar Couette flow and impinging jets. The appeaianée
of the "smearingrefféct"f dué to ''false diffﬁsionﬂ is
discussed as well,kal‘id: it is shown that this false
diffusion may be related to the local flow and grid pro-
perties. | |

' The achievements of part II are expibited in part‘”
ITI, where solutions for‘thé impinging jet problem afe.
obtained. It is,necessary, howevér, to present firsf
a model of furbulence. This is done in.chapter 5,
where the Kolmogorov-Prandtl hypothésis is presented and
extended, so as to give a good ag?eement‘withﬁéll thé'
available data on turﬁulent Couette flows. The,main
achievement in'dhapter 5 is probably the demonstration
that we may choose a‘Single,set of conStants,.ﬁhich iév_

adequate, together with the turbulent'enérgy hypothesis,

- * The term '"smearing effect'" is used in the present
thesis to describe the spreading of a conserved property,
which is not caused by the physical diffusivity, but is
a direct outcome of the finite-~difference process. ’
Further details may be found in section’&.ﬁ.



in such a wide variety of flow regimes. The results
of chapter 5 are further elaborated in chapter 6, where
solutions foxr Couette flows with augmnented iurbulence
are obtained, and cast in the form of wall functions.
These wall functions replace the regular boundary con-
ditions in the computational scheme, as was explained in
section 3.2; but they also display some interesting
features of Couette flows with augmented turbulence.
Chapter 7 is the finél chack" ’the method with the tur-
bulence hypothesis and the wall functions, is applied to
a turbulent impinging jet. The results are good enough
to justify an optimistic view of thé method, but some
digsagreements arise as well, demanding modifications
in the method, and suggesting their possible direction.
The problem of such modifications is discussed in part
IV of the thesis.

The main contributions of the present thesis may
be sunmarised as follows.

(i) The finite-difference method,and the checks
- on its accuracy, convergence and economy, reported in
chapters 3 and 4 respectively.

(ii) The fitting of universal constants in the
Kolmogorov-Prandtl hypathesis, and the turbulent Couette
flow solutions reported in chapter 5 and 6 respectively.

(iv) The impinging jet solutions in chapter 7.

31
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Part IT: The mathematical problem

Part IT ofvthe thesis is concerned with the mathe-
~matical presentation of the prbblgm;  If will be shown
in_éhapter 2, that we can write a éet of simultaneous,
elliptic, segond—brder, partial differential equations,
which control the_fransfér.of’momeﬁtum and conserved
property iﬁ'two—dimensionalrfloﬁs. ' Some ordinary differ-
éntial‘equations and alggbraié reiations will be added,

in order to-make the ﬁumber of equations equal to the
nuaber of unknowns. A short discuésion of the boundary
conditions will be presented as well. In chapter 3

a numerical method for'the,solution of the equations

will be'presented. »The method_isja‘finite—difference,
iterative.oné}' “The advantages of this method are that

it is very stable, and thaﬁtthé'conservationvlaws are
satisfied in an arbitrarily‘large or small control volume.
Thefconvergénce,'accuracy_and ecohomy of the method will
be'discuésed in secﬁion‘4,’by reference to triél solu-
tions of 1é@inar,and_turbﬁlent,Cogette flows and im-
pinging jets:" :The‘influence of such factors. as meshl

size and mesh distribution will be studied as well.
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2, The basic equations‘

In thls chapter we shall list, examine and re-arrange
the‘mathematlcal equations governing the transport of
momentum and‘conserved propertles in an incompr8331bla
flow. First we ghail deal with the differential equa-
tidns; théh‘the béﬁndéry cbnditions”will be reviewed,_an&
finaliy ali thé necesséry auxiliary relatioﬁs will be

des¢ribed}'

2.1 Differentiai‘equations
The dlfferentlal equations wlth which we are con-
cerned are ba31cally those, descrxblng the conservation

of mass, momentum ‘and conserved properties, which, in

a cartesian coordinate system may be written as:

U | | _ -
Sx_ =0 (2.1-1)
N/ SN X 77 | 2.1-2
9¢__'9Q" | _
/”J oG xS - (2.1-3)

where ¢'is a conservéd property,‘Tis ig the shear stress,
p is the pressure, J is the heat flux vector and S, is
¢-source. Other symbols are explained in the nomen—‘
clature, chapi-.'er 9. ‘The indexes i and j may take the
Values 1;2,3,>aﬁd the summation convention is used

(iee. aibi.=‘a1b1 +‘a2b2‘+-33b3).
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o ‘j, e - S '__.
27 /ﬂ%f(Q% ' 5% ) AR '.(2‘;f4)

e Le/f_* 00 @)

//lff is the sum of the 1am1nar (or molecular) and the .

- turbulent (or eddy) v1sco§1tles.v; It-is\introduced here,

because we shall later solve problems of turbulent flow.

'However,,the use of an effective viscosity in the present‘

chapter may be regarded as a matter of convenlent nota—‘
tion only. The treatment in the follow1ng pages is
general in its nature, and is adeqnate for any problem
with a vardable viscosity duevto turbdlence,?changee in
the temperature, or, perhepe;,becausevthe fluid ie non-
Newtonian. The  same remarg applies'eiso to the effec-
tive Prandtl number, °e£f3 which is a function of the
laminar and turbulent Prandti ﬁudbers.. Tﬁis function
will be glven in section 5. 5. . | ‘

It will be noted that eqn (2 1-2) is in fact three
equations corresponding to the three:values of i.’
These three equatiOns‘must be solved siﬁultaneously‘
with eqn (2 1 1), for the four Variablee P and u,. We
must therefore decide, whlch eqnation to use for which
variable. Unfortunately, there does not seem to be a

general answer to this question: there are situetions

when eqn (2.1-1) is used to compute the pressure, while
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in ofhers it may be uéed-toAcompute thé non-streamwise
velocity cdmponent (say»in a boundary-iayér); - However,
in two-dimensional flows, it«is possible to replacé thé
equations (2.1-1) and (2.1-2) with two new_equations:v
one for the stream-function, ¥ ,vand‘another.for the
vorticity; W,.

These quantitiés are‘dgfined»by;

e gu o (2.1-6)
X T g | =

=

'ﬁ?:/udy:—[wdk }(2'1f7lﬁ

The aﬁpropriate derivation for plane flows 1is givén»in‘

appendix A.1. The‘résﬁlting equations are:
£U 7 ———f-g et w) + J | (  1-8)
7% | | | |

0 [, o _au),, 5" ), 2 )
where Sw-—-z 5)}75!)"8]/- (ﬁ - 5-)'(—')]4—29)(3 ej;:g 2291 ,ﬂ ax » (2.1—10)
Clearly.S, equals zero in a uniform viscosity flow, and
in boundary layers. " But even in other types of flow
it is mnot very important. generally, and its neglect will
usually not introduce series errors.

Ue may now substltute eqn (2.1-5) in (2 1-3) to get _'

Moy 04 »
(/6};; _axa-) +Se - (2,.1-11)‘

f“JMy 9@
The similarity between eans (2.1-8) and (2.1-11) is

apparent. Moreover, even eqn (2.1-9) is very similar
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to the right-~hand side of the other two equatiohs.
Because of this similarity we may write a general con-

servation equation:

rup =t [ Jb sy o ()
All the three equatiomns, (2.1-8), (2.1-9) and (2.1-11),
may now be considered as particular‘bases‘of»eqn (2.1-12).
Ve shall aiways’have to solve eqns (2.1-8) and
(2.1-9) for the vorticity aﬁd‘stream—functiqns. If ﬁe
arécmnqerned with‘heat or mass tranSfér, we shall have‘
to solve also equation (2.1-11) which'will govern the
temperature or concentratiqn”distribution.' |
It will be shown in chapter 5, that in case of a
turbulent flow, we have to solve‘also‘eQﬁ (2.1-11)‘for>
the kinetic energy of the turbulent fluétuations. >>The
expression for its soufce, Sk anddiffusivity3‘f£,‘wiil

be presented in chapter 5 as well.

2.2 The boundary conditions

The differentialvequations which we have to so1ve;
(2.1-8), (2.1-9) and (2.1 are'Second-ordér élliptic
" equations. Thefefofe we héve to'spécify,thg value 6:
each variable (or its first’derivaﬁive, normal to ﬁhe
boundary) on each boundary.' In ganerai such specifica-
tion will depend on the case conéidered, and;needs ho.

explanation nowe. We'shall, however, consider two parti—'
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-gular'kinds-of‘bdundaries: the solid wallg and the axis

Cof éymmetry.

The solid wall
Onya solid wa11 the velocity is always known. In
fthe present paper we deal mainly with stationary imperm-

eable walls where both veloclty components are zero.

It follows then, that

o 2.2-1
B '%s.‘-‘-‘ C‘on:f ( )
 where n 15 the normal to the boundary. It will be noted

that:we have,‘ln fact, two boundary conditions for ¥,
‘.énd none‘f6p7a). | However, these two quantities are
coﬁéiéd ihréﬁgﬁvéén (2.1{9), which on the boundary reduces
 t° i, A S

{ , f&f ’ | |  (2.2-3)
Thereforg, ‘eqn (2{2-1)‘is‘a sufficient boundary éondi?ioﬁ
.for‘ﬁ34and’é§n (2}2—2) may be used tovderive a boﬁndary
Hcdnditién for &1;}  Détails will be given in section 3.2.
The wall fluxes are given by

20, ) | | (2.2-4)

- JUS . _ o
J%?/%;(Qﬁ?‘s . o - (2.2-5)
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‘VAxis of-symmetgy 

" On an axis éf symmetry we have, by definition,

'pﬁg"i’ R | (2.2-6)
| "‘l’=c.a'nysrf>‘ ' I : ' (2-2-7)

wvhere n is the normal to the axis of symmetry.

2.3 Auxiliéfy felétioné

_The ;éébndlérderfpartiéi differéntiél equations,
( 1—8), (u.1—9) and (2 1 11) together w1th the first
‘lorder equatlon (2 1—7), constitute the set of eqnatlons
which wgvhave to solve. - There are, however, some aux-
ili&fy félatidns which must be added to the set of edua-
‘fioﬁsm as‘weil; and they will beudiscussed nok:‘

Physical input -

Approprlate phy31cal laWS must be speclfled in order

to describe the v1sc051ty.//(ff, the diffusion coefflclent

' f;ff, anq tha source terms S representlng.generation of
-¢¢',7(Sometimegfwé may prefer to specify the Prandtl
numper o) ef f rather than f- : In any case//%ff, f;ff,
or O - should represent the effective values, Whlch

_eff

 v#ere mentloned 1n‘se¢t10n 2.1.
In the present thesis we deal with constant property

laﬁinar and‘tpfbulent flows. In the laminar caseé//%ff,
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T ope éndgoéff,are.constent (the vorticity source term is
zero as weil);l‘ But in the turbulent cases we must employ
fsome:physieal hypotheses, which will be discussed in part
III of the paper.f :By these hypotheses we shall compute
/m ff’ and f' or G e ff which will #hen neplace’/ﬂ‘f‘end

g in our equatlons.’

" The pressure.differenees

Thé*preesure mey be related to the other‘variables
by means of ,equet"ieﬁ (2.1-2).‘ It is important to realise
however, that eqﬁeﬁion (2.1-2) is in fact a first-order |
difvf‘erez.ltie‘l' equaéién for the pressure. Further, this
equatlon requlres the gradlents of other quantlties.v
On the boundarles of the reglon these gradients are not
necessarlly known beforehand, nor obtalned by our solu-
‘tlon, therefore we cannot apply equation (2. 1-2)there.
'Thus we nay compute the pressure differences inside the
fleld only. For convenience, we shall rearrange eqgn

(2.1-2),‘to_get:’

'."‘E,Ji"fu-w"‘ ( f ej; QX) + 3_;— off ,71;_[— + %)] | (2- 3-:1)

, j?a&" "/llw-!— ( I e;; gxﬂ!#( ] (2-3-2)
where o ‘

Visuterr (2.3-3)

These equatlons may now. be 1ntegrated starting from any

arbltrary_301nt ingide the control volume, until all the
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points inside the control volume have heen covered.

Other relations

There are some other quantities which are used in the
present work, mainly as an aid to lumprove the physical
interpretation of the sotutions. They are:

The dynamic pressure:
- 4 wyt) = 2 > '
[o= T o) =5y (2.3-4)
The shear stress |
' - — du a9
lay = Zya "/”’///a; T (2.3-5)
The mass velocity
_§‘= /ﬁ_ (2.3-6)

Some other relations which are connected with the turbu-

lence energy will be discussed in chapter 5.
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Fe The finite-~difference equations

In chapter 2 we have seen the differential equations,
which we have to solve. Generally, there is only one
practical method to obtain solution of these equations,
and thig is by finite~difference techniques. .Ne cover
our control volume with a nesh, which is rectangular in
the present work. In esach mesh point we replace each
differential equation with a finite-difference, algebraic
equation. To obtain the solution we solve all these
equations simultaneously; because of the large number of
algebraic equations inwolvedrthe solution method must
usually be iterative. The purpose of the present chapter,
is to describe the finite-difference equations and the

method of theix solution.

3.1 The conserved property finite-difference equation

As already mentioned in chapter 2, we have to con-
sider the general conservation equation (2.1-~12) rather
than the particular equations (2,1-8), (2.1-9) and
(241-~11),

The finite-~difference substitution to this equation
will be obtained by integration of the equation over
small rectangles, surrounding each mesh point. These
rectangles are so defined, that their sides lie half-way
between the mesh points, parallel to the x and Yy axes

(see fig 3.1-1). In appendix A.2 the integration of
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equation (2.1-11) over these control volumes is performed,
step after step. Here it will suffice to preséht,the

final result, for the value of ¢ at point P, surrounded

by'fhe points E, W, N, S, as follows

b = LebetCu bt Cu gyt Cs ds LA+ Sup O (3e1-1)
Fad CE-"“(W—L Cn + C: "'Z‘ .
[z ~ I v — 4 ‘
where o = L£ R, ¢ s (3.1-2)
' o 2 2 (Xg—Xo) o I
and ©Cw , Cw, Cs “are similar expressions.
- - | (3.1-3)
A= de ¢E"aw¢w"‘dy¢~+_d:¢_r :
Z, T dg - Qut Ay~ ds ‘ (3-1—11;)
Y, , ‘ :
aE -:7[(%54—,)%—.%5."{;)-"/%5*%_IKE-“/)?/‘] . (301—5)
and Q. d,, ds ' are similar expressions.
S,u,pz Se (XE"‘XZ) (Yn = Y5) (3.1_6)

The expressions containing the terms ¢, Cw;‘N, &
describe the transport of ¢ by diffusion. Those contain-
ing aps ays ayy ag deseribe the ¢-transport by convection,

and Su o

describes generation of ¢. A further discussion
] - . . . !

of this equation was presented by Runchal et al. (1967).

3.2 Boundary conditions

The only boundafy conditions which really need atten-
 tion here, are those on solid walls. The differential
form of the wall boundary conditions was preéented in

section 2.2.  However, the transformation of these
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| differentiél conditions to finite-difference ones is not

a straight fofward process, due to two reasons; (i) the
coupling of the‘vofticity and stream-~-function boundary
condition, and (ii) thé existence of thin boundary-layers,
with steep gra&ients, and non-linear distributions where
the usﬁal finite;difference procedures are highly in-
écéurafe. Moreover, due to the existence of boundary-
layers, simple computation of the wall fluxes is impossible.

Our aim in the present section will thus be three fold.

(i) To devise azi expression for the Sfall vorticity.

(ii) To connect the wall fluxes and quantities

(subscripfed ns") to the quantities in a near
- wall ﬁoint (subsctiptéd "p"), which is as far
"as possible from the wall.
(iii); To abply the necessary corrections to the
'finité—différence scheme, as to offset the
" errors introduced by tﬁe non-linearity of the
profileé. . -

' We immediately note, that the wall vorticity, W, is
of né iﬁterest'to ﬁs, but foxr its appearance in the equa-
tion for wg‘;' Therefore we may devise a direct expres-
sion for (e rather than éne for w;. The second remark
is, that thé‘only pradtiéal way to achieve our aims is

.by'the use of some sort of a boundary-layer theory. The



- b5

theory édopted in'the present thesis is a Couette flow
,’A’theory, whn.ch has the adVantage of s:n.mpl:n.c:x.ty. , Th_é
solutions obtalned by this theory depend on the viscosity
_ hypotheses‘used and may require numerical integration.

- still, ‘thevvim‘fpof_ta.nt thing about them, is that they can
élwayé bé‘dbtéiﬁed;' Chapfer 6 of the thesis éontains,
in fact,vsuch solutlons for a turbulent flow. But af
present we are not 1nterested in any particular hypo-

thes;s:_ our'lnterest lies in deriving such expressions
as o= e %, o, flypr=oo o ¥
j$}‘=? it 4o, H, i,

Zﬁ —

g b

Vol ][gp, ¥, ap/ug_/jp, - —--_-—.)-

:Where the dots stand foxr any quantlty insgide the fleld

_of ;ntegrathn.

The Couette flow relations
FInbéiCoﬁette flow, without mass transfer, the equa-

tions qffmotion‘(z.i-z)'reduce to

;g ::0 . L | ‘ (3.2_1)‘
’?/1' __ 2T | 2~
e TR E o (3.2-2)

"and the shear stress and vortlcity are given by

Z/u,/; d} - ‘ I - (3.2-3)
w,:_‘ Ju_ o | ~ (3.2-4)
Y | |
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Integration of eqn (3.2-2) gives.

T==0+py ' (3.2-5)
where

’ an . : (302"6)
/’v'—'—'-z\’———‘-‘cs?‘n:* :

and T, is the wall shear stress.,

S
We may now substitute (3.2-5) into (3.2-3), to get

du — 2’.‘: ré ] (302"?)
vy My Ay

Integrating once, we get

z 77 (3.2-8)
L= Zs/:—£7 + //Q#

and on a second 1ntegrat10n we get

_:j,/f“’i //“’;;’Z - / ”/“2’);’ (3.2-9)

It will be noted, that the wall boundary conditions,
egqn (2.2-1) ana (2.2—2) were used during these integra-
tions;  that y is measured from the wall; and that the
wall velocity and stream-function are zero.

The conserved property equation, (2.1-11), reduces, in

a Couette flow, to:

T, ¢ = cons?t - (3.2-10)

but on the other hand, eqn (2.1-5) may now be wrltten as

.____ ey 99
Ty = ;é}-:— 7y | (3.2-11)

Combining the two equations and integrating we get
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¢b" $25.= J;ﬁ_s / é\; !

s Yo

(3.2-12)

The dimensionless form of the equations

. We shall now define the following dimensionless

quantities: ,
s 2. Y ' | (3.2~13)
/U- u .
F_zlj; Zl : (3.2~1k)
vv=: Wy | (3.2-15)
- G (3.2-16)
&= a |
= —uyg
co K Tesd - © (3.2-18)
M%)

Further we shall also define the following dimensionless

integrals.

]‘7 1 o | (3.2-19)

Ip,= o y (3.2-20)
_ y |
y d7 _
Lh= I /’ —%?—— (3.2-21)
I, , = ”‘/2/2 Jdf 41 : ] (3.2-22)
mr— 3
J £

&7
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d
L= / / beyy A7  (3.2-23)
J I & ; Lo
Finally, we name the point near the wall "P", and the one

adjacent to it "N'" (see fig 3.2-1), and define the follow-

ing two quéntities:

_ Un I
Z=2 = —TN (3.2-24)
e Jp (3.2-25)
In-Yp o

It may now be shown that eqn (3.2-2) can be replaced by

the following finite-difference expression:

Fo bedo Wy EnZ y (3.2-26)
Ty 27T .

and equations (3.2-7), {(3.2-8), (3.2-9) and‘(3.2;12)

transform into:

-EW = 4+ F | (3.2-27)
1= ALy +F L, (3.2-28)
Q= ALy, *F L., (3.2-29)
S= I ' (3.2-30)

The wall boundary conditions

We are now in a position to specify the vorticity

boundary condition. Indeed, we may specify it in more

* Strictly speaking eqn (3.2-26) is wvalid only in the
Couette flow region, but even in other boundary layer flows
it is approximately true, and may therefore be applied
usually at the point "N".
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than One,ﬁay.’ Firsf we may solve eqms (3.2-2?); (3.2-28)
and (3.2-29) for the three‘unknownsfxé , F, W, which are
the non-dimensioﬁél forms of,ts;_p' and W, respectively.
This mefhoa suffers, however, from the need to évaluate'

z,20 Iy, and I .  This

.11 Py~

the four integrals, I I

T, 10
difficulty may be reduced, if we solve eqns (3.2-26),

(3.2-27) and (3.2-28) instead. Then we need only the

two integralstT ) and'Ip ;- The following expressions
L] ] X . .

may be'obtainéd:
- oy WM ez o
o= (Ln,=Iz,4) 2 | |
.—’ . -2— N
J['Z;%,J""Lﬁl (’Y"ﬂ] : (3 31)

= Tt T .  (3.2-32)
A 'Z;‘M - L4 (f’ﬂ ' ' '

- W, v Z
A~ Iz ’*—ﬁi‘iéz_

Zna = Trg (V1)

= (3.2-33)

where the ndn;;ubécripted quantifie:riup the point "P".

This.practice‘is'possible onl§'if eqn (3.2-2) isuvaiid,

at 1ea§t‘approximatély, at the point‘"N", It waé used

for all turbulent flows_infthe'pfeseﬁt paper. | -
For laminéfvfldWS a much Simpler procedure is adopted;

eqns (3.2-27) and (3.2;29)Hare solved, for s and F, taking

YW and Q from thé finité:différence‘solufion. | Thén, when

the proper substitutions are made, we get

e R T W | o  (3.2-38)
5y - T, | . . |
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F=—- —2 (3.2-35)
lz‘ll —Z/'ll

and obviously

Wem — — 2 o AU (3.2-36)

oM 4 PoeET

Ffurther, in laminar flow

65:.4 (3'2"‘37)

Iz’,z= VZ | | (3.2-38)

L;z=4é (3.2-39)
and therefore

/3=3a---‘%_5/—- (3.2-40)

The ¢~flux at the wall may be easily evaluated

from eqn (3.2-30).

Slip values

In all our finite-difference equations, a linear
¢ -profile is implied between adjacent nodes. This is
not usually correct in turbulent flows, near walls.
By forcing a linear profile on the wirtually non-linear
one, we introduce an error to our solution, which will
be 1arger,_the gsfteeper the profile. Patankar and
Spalding (1967) suggested a method to reduce such errors
by using in the finite-difference solution apparent wall
Valﬁes; these values were so chosen that the ¢-gradient

at P retains its true values, i.e.

50
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¢P— ‘é/) - ¢
Je —( 79 /P (3.2-41)

where ¢, is the appareht wall ¢ . df course, we must
specify the ¢@-gradient at "P", say by a Couette flow
analysis. Patankar and Spalding called é,"the slip
value of ¢", because they applied eqn (3.2-41) to the
velocity, and {, may be regarded as a slip velocity on a
no-slip boundary. In the present work slip values have
been introduced for the temperature and turbulence energy.
They hawe not been applied to the vorticity, because its
near wall value was not computed by finite-differences,
nor to the stream function, which is the best-behaved

function near the wall.

3.3 Calculation of first derivatives

We have to compute first derivatives to evaluate
the velocity coumponents and the turbulencg energy gen-
‘eration (as will be described in chapter 5). To find
én accurate expression let us expand a function near

the point P (fig 3.3-1). Thus

6,=9, - (—,"%)p (9um82) + (—‘3;"%/3 Q%‘Q—”) - a/[A;? (3.3-1)

0 4 (32) (-3 + (24) D=t)eopy) G2

To get accuracy of order 43;1 , we multiply eqn (3.3-1)

by (YPEYS)z, eqn (3.3-2) by (YN-YP)g, and subtract one
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from the other. Finally we gef, after rearrangement
Jo - J vz o
(9¢ - [¢~-¢5p),yi—?f'*((ép'@ Jo- Ix (3.3-3)
a9 /r Jv ~

his equation will reduce to the familiar central differ-

ence eqguation, when the mesh is uniformly distributed.

3.4 The nuserical procedure and the computer programme

The iterative scheme

In scction (3.1) we have seen how the conservation

equation for ¢ at a point P may be arranged as

0, = Gbp £ &5 at neighbouring pointss (3.4-1)
Obviously there are as many equations of this kind as un-~
known point-values of ¢ , so that we have a system of
algebriac equations for which a solution will generally
exist. Unfértunately there are always more than one ¢,
and they are coupled with one another by means of co~
efficients in the right-hand side of equation (3.4—1).
This is the reason why iteration is likely to bé'always
‘necessary; we compute the ¢—values at all the mesh points,
then compute the new coefficients in eqn (3.4-1), then
coimpute new ¢—va1ues, and so oﬁ, until fhe ditfference
between successive ¢—vaiues becomes small enough. We
s£111 have to decide, however, in which way to obtain
the ¢-distribution, once that the new coefficients in

eqn (3.4-1) have been computed. We have in fact two
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possible ways to achieve this:

(i) To obtain aﬁ‘approximatioh for the ¢5distribu—
tion, by the use of eqn'(3.4—1)~at‘each mesh point sﬁcces—
sively, until-allifhe points ha#e‘been covered, To cut
the computing time we would like to mse new ¢—values
as soon as they become available (Gauss-Seldel technlque).
There is no need torlterate on b, because anyhow we shall
have to iterate on the coefficientsvofzeqn (3.4-1). It
éannot be prOVéd at prééent that this procedhre is ébnver—
‘gent. Experience of many reéearcheré has shown, however,
that if equation_(3.4—1) satisfies the stability criterion
for linear equations,vthe aboveﬁprocédurexwill be conver-
gent. |

' (ii),When the numbersof mésh ﬁoihts is not 1afge, the
exact ’¢;distribu£idn may be obtéined‘accurately, by
applylnw Gauss's elimlnatlon, or a 51m11ar sultable tech-
nlque. Thls.method may cut the number of 1ttratlons
very éon51derably, but 1t is su;table qnly'for spec1ali
cases.  Iﬁ the present work it has been used to obtain
solutions’for a dne-diﬁenéionai turhﬁlent Couetfé,fldw.
For a oné-dimehsionél flow,'the'eliminAtion fddudés-to
simple ?eéurrencé‘equaﬁiOns.b Details of‘thesé equations

are given in appendix A.3.
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Termination of the computation

In the present work it was assumed that the difference
between the computed and the exact soiution can be repre-
sennted by the difference of ¢-va1ues between successive
iterations. Thus the computation was assumed to have

converged to the exact solution if

¢Pm4"¢ﬂ,n é (c ” (3.4-2)
”mex, n .
where subscript n denotes the nth iteration, g&nax’h is.
. L
th

the maximum value of cj in the whole field after the =n

iteration and ¢, is a small constant. was chosen

gZsmax,n

as scaling factor rather than ¢, in order to remove

difficulties when ¢,, becomes vanishingly small.

The computer progranmme

A copy of the computer programme used fox the imping-
ing jet computation is attached, in appendix A.hL. A
schematic flow diagram of this programme is shown in fig
Jelt-1. The main sywbols used in the prograune are ex-
plained in section 9.2. The programme is written in
FORTRAN IV and was run on the Imperial College IBM 7090,
University College London IBM 360, and Uﬁiversity of
London Atlas computers. Minor modifications were‘re-
quired when transferring the programme faom oile computer

to another, Vexry similar programmes have been discussed
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in detail by Wolfshtein (1967) and Runchal and Wolfshtein
(1967). = Therefore it does not seem necessary to add any

more details here.
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L, Studies and discussion of accuracy, convergence

and economy

In chapter 2 we outlined the set of differential
equations, boundary conditions and auxiliary relations
which we have to solve, In chapter 3 we replaced all
the differential expréssions with finite-difference ones
and thuskgot a set of algebraic equations. An iterative
procedure for the solution of these algebraic equations
" was suggested in chapter 3 as well. A proof of unique-
ness and existence of a solution to the equations is
beyond the scope of the present paper. We shall just
assume, that a unique solution exists to the differential
equations, and that another unique solution exists to
the set of algebraic finite-difference equations. Now
the first question which we have to answer is. what is
the difference between these two solutions? We shall
refer to this as the problem of accuracy. Secondly we
would like to know if our iterative procedure is con-
verging to the exact solution of the algebraic finite
différence equations? This will be termed the problem
of convergence. Thirdly we wish to find out how many
iterations, or how much time, are necessary to bring the
iterated solution sufficiently near to the exact solution
of the finite difference equations? This, of course,

is the problem of economy.



wur prascnt understunding of numerical mothods is

not sufficiegt to obtain‘a'fqll thenreticai angwer to
the ubo#e thréquuestious. Therefore, we have tb turn
our attention to testkaolutibns of some selected pro-
blews, .Ih the présent chapter, the three qucstions of
'accuracy, éohverggnge,and econ0my.‘will‘he studied in the
light of the results of such test solutions. The test
cases will be (i) Couette:flow with mass-injection
through the wall, (ii) an impinging jet flo#, and

(iii) a ﬁniform‘?éiocitf flow, with zero diffusiviiy.
UL ﬁk@se caseg, the Couéttc.fldw ﬁceds fewer uesh pointa.
and hos an‘émaytical solution. -4t has‘tha further ad-
vantage of'V§rticity and strean-function profiles which
inay be quéflinear 5:.n0ﬁ~1iuear,'aa necessary, by
changing‘the blowing'rate. Thnreforé, Couatie i'lows
will be studiu¢*firat;.and ¢ohc1usions drawvn from‘theirr
solutions will kthén be checked in the impinging-jet case.
The unifqrmuvelocity zéro;diffusiVity problen will be
usad only in connection withh the phenouencn of Hialge-

diffusion’, to be described in section h.d.
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.1 Description of the test models

Laminar Couette flow with mass injection through

the walls

The‘mainlfeétureé of this flow are its one-dimension-
ality, and the existence of analytical solutions. It
was therefore used to check the influence of the mesh size
and distribution on the accuracy and speed of convergence.
The model is shown in fig (4.1-1). The flow is confined
between, and induced by a pair of flat walls, the bottom
one statiohary, Aﬁd‘the upper one moving at a velocity/

u ~ To this flow we injéct through the walls a stream

T.
of the same fluid, with velocity v. The parameter for
this problem is the blowing Reynolds number, defined in

terms of the injecfién velocity and the distance between

the two walls, or '

me LA - (Lo1-1)

/’4 .

The exact solution of this problem is:

RS .ggcpzk(%,-4)] | (4.1-2)

-

v :i eap(ut) = 4= M (4.1-3)
Yo 4/1/’ W) -4 - M -

where the top wall vorticity and stream function are

(J - Ur €xp (1) _
7 - h’ eop () ~4 . (4.1-4)

Vﬁ=“+"(7§v‘27zﬂi)'—7) (4.1-5)
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or, when M = O

_ Urh (k.1-7)
V= 2 (T) '

The exact vorticify and stream function profiles are
shown in fig 4.1-5. During the computation the stream
function at both walls was fixed at the exact values.
The vorticity on the bottom wall was computed by eqn
(3.2-40), and that on the top wall by a modified version

of this equation, taking the wall velocity into account.

Impinging jet

The boundary of an impinging jet flow lies at in-
finity. There are two wvery distinct'regions to such
a flow: (i) the main jet flow, and (ii) the secondary
entrainment flow. It has been shown by Runchal et al.
(1967) that an arbitrary boundarys may be located any-
where within the entrainment flow region, if sufficient
fluid is allowed to pass through this bounary to supply
all the necessary entrainment to the jet. At present
we shall consider a square control volume, with one of
ité sides lying on the free-jet axis of Symmetry, and
another one on the solid wall (see fig #4.1-3).

The free jet, with a given velocity distribution,
enters the square control volume in a direction normal

to the solid wall. The half-width of the jet is half
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that of the control volume, and the demsity is unity.
Both laminar and turbulent cases will be»considgred;

Ve shali assume that the,sgcondary, entrainment,k‘
flow crosses the boundary at right angles to it and with
a zero vorticity; On the downstream sidé,bwe shallu
assumé that all the gradients parallel to the wall are

ZeXo .

The zero-diffusivity, uniform velocity flow

The third model to}bé used in thé‘present‘chapter,
is that of the diffusion éf~a éonserved property source
in a zero-diffusivity uniform-veiocity field (éee figﬂ
h,1-4)., The exact solution is, df‘course; that nQ‘
diffusion occurs at all, and.<# remaigs COnsfant'aiong‘
any stream line.  Indeed the problem is so simple, that
one may wonder why it should be étﬁdied at all. We
shall, however, see, in section'4;4, that just because
of this simpli€ity, it is extremely useful in throwing
some light on the differencé between the‘fespective'

solutions of the differential and difference equations.

4.2 The influence of the mesh size on accuracy

In this section we shall first compure the finite-
difference and exact solutions of the Couette flow pro-

blem. In fig 4.2-1 predictionsof the top wall vorticity
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are plottedbvérsus the blowing Reynolds number M, fbr’the'
three meshes of 3x11, 3x21 and 3x41 uniformly séaced mesh
points, For M smaller‘than 3, even thé coarser mesh is
very satisfactofy, but for larger M fhe finitevdifference
solution deviates»considerably from the exact one. In
this region, refinément of the meshvinéreases the accuracy,
but for M larger than 5, even the fimest mesh used (3x41)
was not sufficientiy-fine to yield a good égreeﬁent ﬁith
the exécf solution. o

' Next we shall try to assess, whether the finer meshes
are giving better résulté inside the field: fig 4.2-2
shows the computed vorticity and stréam.function profile
for M = 10, with the same-fhree mesh sizes of 3x11,

'3x21 and 3xh1. It is quite clear that inside the field
the vorticity distribution is hardly dependent on the
wesh size§ the only placeiwhere the niesh makeé an impor-
tant difference is on the top w;§11. . But the stream func-
tion is sensitive to thé mesh size,‘especially in the |
middle of the field; and even the solution with a 3xk1
mesgh iS'qualitati#ely wrong, although apparently bettef
than the 3x1! mesh. Still, this is not likely to be
connected with the bad top wall vortiéitybprediction?
near this wall the streamfﬂunction prediction is quite
reésonable. -Figﬁre h,2-.2 réveais; however, the Causé

for the bad top wall vorticity prediction: = the wall
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bountdary condition is based on a linear shear streas
model, or in a laminar flow, a linear vorticity distri-
bution; but the vorticity distribution near the top wall
is linear only in the very close proximity to the wall.
When a fine wesh is used, the point near the wall is in
the linear vorticity region, and the wall-vorticity pre-
diction is good. This conclusion is substantiated by
rig 4.2-3, showing the vorticity profile at two sections
of the impinging jet problem, for X = 0.3 and X = 0.8,
where X is the distance along the wall. lHere also, the
wall vorticity prediction appears to be bettexr when the
near wall point is within the linear vorticity layer.

But the vorticity away from the wall does not seem to

be very sensitive to the mesh size. The ovorall picture
is éhown in fig 4.2-%4, where the computed wall vorticity
distributions obtained with the three meshes of 11i1xii,
21%x21 and 41x81 are plotted.

The 11x11 mesh gives bad predictions everywhere,
except for the downstream region, where the linear vor-
ticity layer ias quite thick. But the predictionsob-
tained with a 2ix21 mesh are quitd near to those obtained
with o %41x41 mesh, as is suggested by 1népection of fig
be2-3. The stream function discrepancy, ashown in fig
k,2-2, camnot be explained in the same way. Perhaps
it iz connected to the strong non-linearity of the

stream function distribution in the middle of the field,
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but, admittedly, no satisfactory explanation is available
at present. Interesting, though, is the fact that such

a discrepancy does not appear in the solution for the
impinging jet problem. In fig 4.2-5 the stream function
distribution on the downstream boundary of the impiﬂging
jet is shown. Indeed, the difference between the meshes
is very small. The same trend is shown also in fig 4.3-6,
where the decay of the velocity normal to the wall on the

jet axis is plotted.

Conclusions

In most cases, a refinement of the mesﬁ is not likely
to bring a considerable improvement of the solution inside
the field. = But, if the mesh point édjacent to the wall
is outside the linear vorticity layer, a refinement of
the mesh will improve the wall-vorticity pfediction very

considerably.

4.3 The influence of the mesh distribution on accuracy

The conclusions of the last section suggest the use
of a variable mesh. It should be fine enough near the
wall, as to ensure that the mesh penetrates into the
linear vorticity region; but it may be much coarser‘
away from the wall, where we have just seen that fhe use‘
of fine meshes is not mormally justified. To explore

this possibility a mesh was devised, in which the mesh
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size was growing in geometrical progression according to

the following formula:

dnaa —In £ >4 (4.3-1)
}n" ;n_,‘ ;
where y is the distance from the wall (the top wall in

the Couette flow case), and Ey is a constant varying
from one run to another. The results are esgsentially
supporting the conclusion of section 4.2, and need not
be discussed in detail, and only three plots seem necessary.
Firsf, the top wall vorticity in the Couette flow is
plotted in fig 4.3-1; then the solid wall vorticity in
the impinging jet is plotted in fig 4.3-2; finally, the
vorticity profiles at the two stations, X = 0.3 and

X = 0.8, are plotted in fig 4.3-3. As empected the
use of variable.meshes enables us to approach the exact
solution with meshes characterised by a small number of

nlesh points.

4.4 The false diffusion

One of the rare cases, when the vorticity equation
can be exactly integrated, is that of the non-viscous
flow, when we get

W = const
along any stream line. Therefore we expect that, in a
high Reynolds number flow, the stream lines and the

vorticity contours would run almost parallel., A solu-
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tion of the laminar impinging jét problem (as presented in
‘section 4.15,for‘a Reynolds number of 106, is shown in

fig 4.4-1 in the form of stream function and wvorticity
contours. Surprisingly, we notice that there is a region
in the middle of the figure,,where the vorticity varies
along.the sfream‘lines. This region is seen to be dis-

tinguished inutwo'ﬁays from the rest of the flow:

(i) it contains a vortidity'maximum (where the vorticity
is not linear) and (ii) it is in the region where the
stream lines have a 45 degfées inclination to the finite-
difference mesh, In thg rest of the present section we
shall see that this departure from the exact solution of
the differenfial»equations;“ia inherent in our finite-
difference method (and, indeed, in other ones as well)
and may be;des#ribed as a smearing effect, caused by the
‘action of "false'" viscosity.. This false viscosity will

be shown to be related to i) and (ii) above.

. Description of the smearing effect

"Smearing" of steep gradiehts,as A result of one
sided finite difference schemes has been mentioned in
the literature (e.g. Alder et al., 1964, p. 335). It
is usually connected with the first order derivatives,
andiis'therefore mostly infiuential when the viscosity
approaéhés‘zefo.A‘ AlSo,'from fig 4.4-1, it seems that

this smearihg is stronger when the stream lines are
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SO0LID LINES REPRESENT STREAM LINES ANO THE

OARSHED LINES REPRESENT VORTICITY CONTOURS,

80
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inélined towards the mesh lines. Thus, our first line of
attack bééowés clear: What will be the smearing effect
in a'uniform véloCity non-diffusional flow, with stream-
ilines inclined‘towards‘the mesh? | The case to be studied
was described in section 4.1 and figure &4.1-4. A source
of conSered pfoperty,is placed in a uniform-velocity
stream. The deviation from the exact solution (of con-
staﬁt ¢ along any stréam'line) may now be studied for

: various inclinatiohs between the stream lines and the
mesh. The resulfs‘are shown in fig L,4-2 in the form
of the decay of ¢> along the stream 1ine passing through
‘the centre of the source. It isquite clear, that the
Smearlng is dapendent on the angle between the stream
lineé’andlfhe mésh.iines. The maximum smearing éccurs
whénsz= 45°.  When « decreases the amearing become s
smaller, until;.when &é O, no smearing is present. |

By symmefry, ﬁhé‘sﬁéaring decreases also when o increases,
until it'diSaﬁﬁearé cbmplefely, at o= 90°. This.
suggests that the smearlng is a function of sin (2v).
Indeed, if we multiply the ¢-valued by [sin (2)] +3

all the 11nes in’ fig k. 4-2 nearly reduce to a single

line as shown 1n fig L, 4-3‘

* The power of sin (2¥) was chosen as 0.5 in order that
the influence of the angle x will be easily incorporated
in eqn (4. 4-7), to YIBld eqn (4.4-11).
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Correlation of the smearing effect

In order to find out what the smearing looks like,
it‘is advisable to carry out the infegratioﬁ further down-
stream from the source, so as to eliminate the local in-
fﬁuehcé of the‘spurce and boundary. It will suffice to
~do this only for the case 6f maximum smearing, when the
stream lines run at 45° to the mesh. When such a com-
putation is performed, the result ié the formation of
. what we may.conveniently call a ¢—wake, which is shown
in Fig 4;4-4; ‘This is the region behind the source
where the ¢-discontinuity is smeared in a way very simi-
lar to that found in viscous free jets and wakes. Focus-
ing our attention on the region far away from the sowurce,
the ¢-profiles normal to the. stream lines are plotted in
fig 4.4-5. It is seen that fhey are similar when nor-
malised by ¢max"and Yy (as defined in fig &4.4-14).

Secondly we look at the decay of ¢hax and the growth of
Y- TheY'are both plotted in fig 4.4-6. Far away
from the source, where the ¢-profiles are similar, they

can be correlated quite accurately, by

iﬁﬂL::a&a

&4.4-1)

oo (X ) - (hale2)

where h is the mesh size, and ¢0 is the ¢-value at the

source, .
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The "false diffusion" effect

' Figures 4.4-5 and 4.4.6 show, quite convincingly,
that the smearing of the sdurce, described above, is

very similar to the diffusion of a ¢-source in a uniform-

velocity, laminar flow field. Such a phenomenon is

governed by the equation

26 _ ~ P4 N | - -
Uge =T 5 | (&.k-3)

where / is the laminar diffusion coefficient, and u is

the constant velocity. The solution of this equation is

P=2n xJ/’, wp[- c‘,q—f—"]. , : (hoh-4)

. where A is a constant, and

« ' | | ) - "

and the source strength is
e A |  (h.4-6
S=26(%5) o ( )

We shall now try to find out, which value we have to

assign to the diffusivity / in order that equation (4.4.-4%)

will correspond to equations (4.4-1) and (4.4-2).
Now, eqn (4.4;4), together with (4.4-6) yields

B4 ' ‘
fzd*=_ 4 (7%‘) ) | (4.4-7)

And comparison of the two expressions in eqns (4.4-7)

and (4.4-1), immediately gives
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[potre = 0361 wh (4.5-8)

where [eiise 15 the diffusion coefficient which will cause

’a¢thehnal wake similar to that represented by eqns (4.4-1)

"and_(Q.Qez); The source strength quoted in equation

(4.4-9) is the same as the real strength of the source

used in thevqomputations, which was
S=2xt06zx0 68 &A | (4.4-10)

Therefore we may conclude, that the effect of having the

stream lines inclined at = 45° to the mesh, in a uniform

' velocity non-viscous field, is just the same as that

ﬁhich would.fesult from the introduction of a "false-
diffusi@n" aé giﬁen‘by eqﬁatiqn (4.4-8). When the'angle
e decreaées the false diffusion decreases as well, and
in view of fhe correlation shown in fig 4.4-3, it is
clearvthét, finally, the false diffusion in a uniform

velécity field may be well represented by

[patee= 036 U b Sim (280) k1)

This false diffusion influences both the vorticity w,

and the conserved pzoperty ¢&.

Diséussion

The results of the present section, as summarised

in equation (4.4-11) set a limit to the accuracy which
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we may hope to get from our finite-difference method.

But we should examine whether this limit is too severe

or not. To do this, let us write eqn (4.4-11) in the

folléwing form

/}*’xf b | :

2 = 03¢ Reff Beff - Sim (2%0) , (hol-12)
where ' _

P | | (4.4-13)

off ~ Qe,l}

is the local effective Reynolds.number,

[l | : |
bey= 77, | (4.b-14)

is the effective Prandtl number, and L is the length
scaie of the phenomenon.
Clearly an increase in either Reff or Oéff increases

//;ff. This is very undesirable feature

the ratlo [%aISe

and, apparently, all we could do is to reduce h/L.

There are however some factors Which‘usuaily keep the
level of false diffusion at an acceptable level: »

(i) When either the diffusivity or the ¢-gradients are
small, the solution is not seriously dependent on the
diffusivity (e.g. for a very low false viscosity, the
flow becomes non-viscous, even if the falserdiffusion is
much larger tﬁan the true one).

(idi) In turbulent flow Oy is likely to be near unity,

iy

and Re is likely to be kept at a fairly low level.

£t
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(iii) In any case, false diffusion plays a major role

only when the stream lines run at 45 degrees incidence
to the mesh,

Finally, we note that any non-symmetrical finite-

‘"difference scheme will be penalised by a false-diffusion

~ effect. This seems to be the price which we have to

pay for the much improved stability of such schemes.

4.5 TFactors affecting convergence

No general theorems are currently available to prové
that‘a given,system of algebraic'non-linear equations'
will converge,»wheh iterated in any paiticular way.

The present work does not make any contribution in this
direction. "It is, however, desirable to have a short
discussion on cohvergence of the sysﬁem of equations

b2 %G (k.5-1)

It has been shown by many (see for instance Golden, 1965,'

P.103) that if
“7'.= const (k.5-2)
equation (4.5-1) converges when

-z |ay) s 4 | L (4.5-3)
oty a

for all the wvalues of i,

and for at least one i

= Jag) <4 o (4.5-4)
dﬁ%
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Practice has shown that even when the q;4 are functions
of the ¢'S,IGQuafion (4;551) usually converges if con-—
ditions (£.5-3) and (L.5-4) are satisfied. in our case
it is casily seen that equation (3.1-1) satisfies con-
dition (4.5-3)'iniall the pgints'inside the field, énd
that it satisfies‘céndition‘(&.5—4) in all the points
adjacent to the boundariés, apért from points near a solid
wall. A comprchensive treatment of the sﬁbjact is given
by Baralkat and Clark (1965). |

in the points near the ﬁall the various ¢4gquafioné
are coupled in a mOre.gomblex way than in the other
points. Again the reasons are not cowmpletely clear,
but it has been already claimed by Ruknchal et al. (1967),
that,divergenceymay develop near the wall. 'or suggest-
ions on how to remove this divergence, the reader is

referred to the above paper by Runchal et al.

L,6 Termination of computing, and computing tinme

In the present computations, a convergency parameter

‘was used, as defined in eqn (3.4-2):

T~ Yons = Fon (k.6-1)
v ‘pmaar',u .
"After each iteration, the maximum absolute value of L
for each variable was recorded. When the largest value
of L became smaller than a pre-set small number ¢, the

iteration was terminated.



The recorded 7N valucs were also used to studyf the
approach of the itorated solution to wvhat wvas consid,efed_
the exact solution. In praétice it was found mémy 't:i.mes,
that 7. was i‘luctuating‘ ;md chéhging- sign.é, , %;ixtb thé
anplitude of the fluc.tuations, altﬁbugh suall, did not
vanish.  In guch situat:_l.ons, the solution could have .

1becm quito far from the exact one. In order to dis-
tinguish between such cases and real cpnvet,gant aolutioﬁﬁ :

the convergency criterion had to be pushed doim. to

o= 0.0001

This low value has causcd, sonwtimas, long couputing time,
which was not matched by a considerable increase in the |
accuracy. ‘The rato of convergence is shown in rig 4.6~1,
wvhero the maximuwn value of % af‘i:'er sach :i.t_erutiuh J.s
plotted versus the nusber of iteratioﬁb N, foir A‘ casé

of a laminar impinging jet with fim meah. The computing
timo 101*}\internal mesh points and two variablua was about |
one ainute.

In table %4.6-1 thu nunbexr of iterations for Varioua
solutions is quoted, It appears that turbulc:nt flow |
usually needs morc lterations than a laminar onoe. Also
an increase in the number of mesh i)ointa is pan&liaed
by a further increase in the nusber of mcessdry itera~ |

tions,
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NUMﬁER oF ITERATIONS , N
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FI16 & 6-1! THE. RATE ©OF CONVERGENCE FOR A LAMINAR
IMPINGING JET AS DEFINED IN SECTION 4 4 . R= 4voo.
24224 UNIFORM MESH. THE ORSNED LINE REPRESENTS

NEGATIVE VALUE S.
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Table 4.6-1 : Number of iterations performed:
: Number :
Case Mesh of inte?nal §:232212£s
mesh poeoints
Couette flow 3x1it 1x9 1 65
M= 10 3x21 1x19 1 216
3xh41 1%39 i Loo*
Couctte flow 3x11 1x9 1.1 62
M= 10 1.2 62
1.4 64
1.5 72
Laminar impinging 1ix11 9%9 1 50
jet ' 21x21 19x19 1 229
hixhi1 39239 1 624
1ix11 9x9 1.1 54
1.2 51
1.3 55
1.5 82
Turbulent impinging | 1ix11 9x9 1 70
. jet (as presented : 1.1 61
in chapter 7) 1.2 75
1.3 80
1 - 4 90
11.5 101
1.6

111

* In this case the maximum residue was still 0.006 after
QG iterations, but as the scolution seemed to be correct,

it was decided not to continue the iterations,
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Closure to part II

Part II was devoted to the presentation of the mafhe-
matiéal problems involved in fhé solution of the incom-
pfessible, steady, two-dimensional, variable property
flow. We have seen the set of differential equations,
and the finitegdifference method used to solve them.

It was later demopstrated that convergent, accurate and

economical solutions may be obtained'by this method.
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Part III : An application of the method to turbulent

flows

In this part of the paper Qe shall examine and
formulate the physical input necessary to solve problems
of turbulent flow. Although the aim is to incorporate
this physical input in the computational method, des-
cribed in part II, most of the preSent part may stand
by itéelf, and be uéed with other solution methods as
well, as its developmént is fairly general. In chapter
5 we shali discuss a viscosity 1éw, based on the
Kolmogorov-Prandtl hypothesis; we shall present the
turbulence energy equation, and determine the necessary
émpirical constantas,

In dhapter 6,>we shall discuss the wall fluxes and
develop a special practice for the treatment of thin
boundary layefs near ﬁalls. Finally, in chapter 7,
solutions for the problem of a plane impinging jet will
be presented. These will demonstrate the ca?ﬁbilify
of the method, and will also throw light on some de~

- ficiencies of the phjsical input.
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5e The turbulence energy, and the viscosity law

5.1 The general hypothesis on turbulence

In most previous theories bf turbulencé, it was
assumed that the turbulencg properties are dependent on
the velocity field, and on some length scale only.

Such theories are usually successful when equilibrium
between generation and dissipatioﬁ of turbulence is main-
tained. . However, if turbulence is convected or diffused
into the region under consideration, the velocity and
 the length scale are not'sufficient to describe the level
of ﬁurbﬁlenqe. Such cases arise, for instance, when

the turbulencg in a boundary iayer is augmented by a
very high main-~stream turbulence, Our present model,
first suggested by Kolmogorov (1942) and Prandtl (1945),
differs from other mbdels by the aSsumption that the
turbulence p:opefties are dependent on the level of'tdr-
bulence of the fluid and a length scale. The level of
turbulence is characterigsed by the mean kinetic energy

of the vélocity fluctuations, k, which is defined as

4 3 -3 R | | ‘
b= Z_(Wf AL ) | (5.1-1)
where u!, u! and u! are the fluctuating parts of the

1' "2 3
velocity componénts. The quantity k has been named the

turbulent kinetic energy, or kinetic energy of turbulence.
In the present thesis we shall use the térm turbulénce

energy.
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e have now to. establish some way to compute the
turbulence energy Ik and the length seale,'ﬁg We need
to find also the relation between the turbulent proper-
ties (as say Miurb’ [urp) @nd k and £. ALl this will

be done in the following pages.

5.2 - The turbulence enercy equation’

In therpresent section we shall be concerned w1th :
the derivation of a dlfferentlal equation for the turbu-e
lence energy, k, and the necessary auxiliary_relatlons.‘

This will bedhnetw'algebréic manipulation of the equa-
‘tion of motion. Similar derivations have already:been
reported (e.g. Emmons, 1954), enabling the preeeﬁt one
to be brief. To make the deriVétio#‘ehorter, we shall
make use of index netation, where anyiindex may be 1,
2 or 3. We'shall also make use of the summatien‘con~
vention, by which, whenever an'index‘appears;tWice in-
a term,.if should be summed ovér all the three coﬁpd-“

nents, €.g.

I U; 77 2, Juts
i. £ 24 - + -+ o (5.2-1)
9)(3' 3 =23 Ix (J IXa4 ?J( > 9)(5 v .

'In the above notation, the equations of continuity and
motion for ihcompressible fluids, with uniforin laminar-
viscosity, become

Wi, - (2.1-1)
oxj - . o
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U QU ) 2 U -
I T G T (5.2-2)

where F is a body force, and p is the pressure,
Ve now make the assumption that in a turbulent flow all
the quantities may be split into a time averaged part and

a fluctuating part:
W = e+ W' (5.2-3)

vhere the barred quantities are time averaged, the primed

ones are the fluctuating components, and

Ui = /7-’ = 0 (5.2-5)

By time averaging eqn (2.1-1) and (5.2-2) we get

2U; : :
JXJ' =0 (5‘-2—6)

g, o Pl 5 0 s |
/Jf /Jx T ox; / ‘7>9-L+/09><j uslly +F (5.2-7)

It wmay be shown after some lengthy algebra, that, if we
miltiply eqn (5.2~?) by'Ei and subtract from the equa-
tion thus obtained the time average of the product of

eqn (5.2-2) and ui, we get eventually:

94 24 —— U J o ut
For F/YG g T S W}_ g?(f-L—Z —";/‘)
‘7”) - (5.28)
/Qx

The physical meaning of the various terms in 2 (5.2-8)

#ay be identified as follows:
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_f;ﬁf = The'non-steady growth ¢f-turbulence energy
| (this will be zero in the present thesis')e
~ b — . . :
f%uz; = Convection of turbulence enecrgy by the
/ , .
mean motion.
—f U = The Reynolds stresses.
./ugg ﬁgﬁ =  Production of turbulence energy.
7
P E — '
_55(} 4 4 - %7u) == Turbulent diffusion of turbulence
X; 2 ’
J ' .
energy-
%4 s . . : ;
/ﬂ E;;? = Viscous diffusion of turbulence energy.
/ . .
y L/‘-' 2 o ‘, - . . . .
:70 3;J = Viscous dissipation.
j .

5.3 Elimination of the fluctuating gquantities

'Emmdns.(1954) has appliedldimensional analysis to
replace all the primed quantities in eqn (5.2-8) with
simpler ones. ’ His_anaiysis»is based on the asgsumption
that all turbulent quantities are functions of k and £
only. It is not necesSary'to répeat all Emmons's
arguments here, - Whenever his expressionslare used with-
ouf much change, they wiil be just‘quoted-without'aﬁy

elaboratién.

The turbulent viscosity .

In a laminar Newtonian flow the shear stress is

(& =/" / JU': + 2‘({1') | | - '(5,.3-;1)' ,



101

- An implication of eqn (5.3-1) is that the viscosgity is
a scalar. Now we shall assume that in a turbulent flow
o scalar turbulent viscosity may be defined by the equa-

tion

— s = ‘ - "2)
f WU / tuet \Tx; + o 5.3
Dimensional considerations lead to the following form

of the durhulent viscosity

. % | (5.3-3)
//Mﬁm4" ia,f‘é jﬁ , 5.3~3
Where ﬁu'is a constant to be determined from experimental

data and ji is the turbulence length scale,

The furbulenée enexrgy diffuéion

The turbulent diffusion of turbulence energy may

be representéd by

o J L{f' /.,_. Lund ) (5.3-4)
gx;- (/ 2 j/l 7X (I’.W 9)3 53

4

And if we add to this the viscous diffusion, we get
(for a constant laminar viscosity):

55/(/4— YA 4) 9{7x- | - (5.3-5)

Gmei 4
In fact we may now define an effective transfer co-

efficient for the turbulence energy diffusion, which
will be very similar to that of any other conserved

property:
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/—‘ — . t}“"‘é .
e T T T (5.3-6)

with
5, = 4' (5.3-7)

and Ok,turb is a constant to be deduced from experimental

data. We shall later see that a
y

% . turb is quite different

in magntidue fromqu,turb’

Dissipation

We shall represent the viscous dissipation by

%

S 7=, G

S

Again Cp 'is a constant to be determined from experi-

(5.3-8)

mental data. It will be noted also,_that a new length
‘scale KD has been introduced. it will be later shown
that if ¢, is chosen appropriately £, can be put equal
to é” everjwhere, apatt from the region very néar to
‘fhe wall, where the viscous stresses are large in conm-
parison‘to the Reynolds stresses. A distribution
different from the éy distribution was suggested by
Glushko (1965). Duriﬁg the present investigation it
was found that. a good‘fit with Couette flow data, for
the transition from the laminar sub«layer to the fully
turbulent region; cpuld not be obtained without the in-
troduction of ng The actual KD distribution will be
discussed in the next section, together with that for

é;.»
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The turbulence energy equation

We may now substitute all the above expressions in

eqn (5.2-8), to get:

Py = 26 __ 9 ;71)
4 7 Tl axj T 9% feet % 4
. o4, 24 4 _ L4
/uhml (‘9)(3' * JX.’) X Co ‘5 (5.3-9)
where 4, .. and fk,eff.are defined in eqns (5.3-3) and
(5.3-6).

5.4 The length scale

In the last two sections we have developed an‘equa-
tion for the turbulence energy. It would be advisable
to have a similar equation for the léngth scales éﬂ and

£ However, it is not possible, at the preSent‘stage,

D*
to report advances in this direction. Iﬁstead, we
shail have to fely on other sourceé of’ information.
The most important of them is the similarity with the
Prandtl mixing length to which our length scales sﬁould
reduce in certain circumstances.' Thus, in such cases,
we expect fhe length scalés'to be proportional to the
distance from the wall near solid walls, and to be pro-
portioﬁal tp the widthwof a jet, in jet flow.

it has.been shown. by Glushko (1965) and van Driest
(1956) that, very near to the wall, the length scale

decreases much faster than the distance from the wall, ¥y,

Glushko suggested to use very near to the wall
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L ear - | (5.4-1)
where a is a constant which has a different value for

éﬂ than for £D, and

bhy o ’ \
K= 75““ 4 (5.4-2)
It has been widely accepted that,when R is #ery large
;Jé_ = . Z = comst . : (5.4-3)
J , J » - ‘

which prevails in the fully tursulent region.  The
constant iﬁ the right-hand side bf'eqn (5.4-3) is usually
put equal to‘uhity, by é #uitable choice of thie con-
stants Cu and &, . ‘ _

The van»D%%est hypothesis is connected with the
Prandtl mixing lengfh-hypothesis. Following Patankar
(1967), it may be written as:

g emp [ 4T
7" Sz

Where A is a constant. The éxpression JU7;Q represents

(5.4-4)

the non—dimensionaluaistance from the wall when the
mixing-length hypothesis is used. But when the turbu-
lence energy hypbthesis is uéed, the distance from the
wall is usually representéd by R as‘giVen in eqn (5.4-2).
Indeed, these two expreséions are prdpgrtional to 6ne
anothér in a consféht-shear non-diffusional Coﬁétté

flow. Thus we may deduce, for the length scale near



walls : T o : -
2z, . ' o ,él/iﬁ/. ‘ | ‘ IR
7j1.= /{ — eap %f fh.—i;;_——j) | (5.4-5)
2 ’ bhyp ) .
SrA el EE) G

where ﬁ/. and Ay are consfa@ts, tbybe f;tted,ﬁo exPefimentall
‘data. j@\énd £y designate length scales fér viscosity and
dissipation reSpectively, as they'arc uséd.in"equétion _
(5.3-3) and (5.3—8)§"y is the distance from the wall. We o
shall érfangévthat for'largeiy both/§ﬂ  gnd‘fD‘are equal’to
| It will be shown inxthe next se&tiéﬁ thét for gopd

agreement with experimental results, we have to take:

1]

Q“
Ao

0.263 o (5.4-8)
A comparison of the resulting léngth scales distributions
with those recommended by Glushko is shown in fig 5;4-1.
Alsd shown.in‘tﬁis figﬁre are the impliéations of a recent

- suggestion. for the length scales ndde by Spalding (1967).

Discussion of the length scale distribution near walls

Three suggestioné‘for length scale distribution nesar
~walls havelbeen reported‘above. All.of‘them'suggést that

far away from the wall, one can take

Lu=bo=y | | (5.4-9)
which has been well confirmed by work on the Prandtl mixing-

length hypothesis.. Very near to the wall, an expansion of
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equations (5.4-5) and (5.4-6) leads to:

4 £y,
—Z . p (5.4-10)
COY ”
e
b _ 5 2722 (5.4-11)

J e

These expressions are in agreement with the other two pro-
posals and with the ﬁeagre experimental evidence on the
flow in the laminar sub-layer.

The present approach is to join eqn (5.4-9) with
(5.4-10) or (5.4-11) together by an exponenticl expression.
This practice finds some support in the van Driest hypo-
thesis, which has been used wvery successfully by Patankar
(1967, together with the Prandtl mixing-length. It also
results in a fairly good agreement with measured velocity
profile in a constant-shear non-diffusional Couette flow,
as will be demonstgated in the next section. It has the
disadvantage , that it does not yield to analytical inte-
grztion when substituted in the equations but this is not
a real difficulty for the numerical analysty. More serious
is the fact that we do not have sufficient measurcments
to correlate and confirm the expounential form of the length
scale distribution. Therefore we must accept cgns
(5.4-5) and (5.4-6) as tentative, until direct measurements
of the shear stress and turbulent properties are available
all the way through, from the sub-layer to the fullyturbu-

lent region in a variety of conditions.
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5.5 The turbulent exchange coefficient

We shall suppose, following Spalding (1967c), that

L e et N
rsb,eﬁ'“ % eff gfb b4 tant (5.5-1)

This expression reduces to the proper aSymptotic‘forms at
the two extremes of fully turbulent or fully laminar flow.
G¢,tUrb iz constant. in the fully tu;bé;ent,reglon. We
do not know much about its behaviour in the transition

region and the viscous sub-layer. » Therefore, we shali

follow Spalding, and assume that
By turt = comst | I (5.5-2)
across the whole flow.

Eqn (5.5-1) may be rearranged as

bhost . A * &wé& | o (5.5-3)
6, . s | |
‘P» 4 C‘M g‘éta”‘

where

_ _[tut o | D - (5.5-4)

5.6 Determination of the constants

Tn the earlier parts of chapter 5 we have enlisted
various expressions fof»turbulent viscosity, turbulence
energy and the length scales. Six unspegified'constants

have been used in these expressions, namely:
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Cs in eqn (5.3-3)
b4 tut in eqn (5.3-4)
¢ in.eqn (5.3-8)

in eqn (5.4-5)

o

in eqn (5.4-6)
»%#W‘ in egn (5.5-1)

in the;present section we.Shali see how these constants
nay bé‘évaluated from experimental data.

Vie shall obtain all the constants from correlations
of meaSurements”in one—diménsionai (Couette) flow, for
two reaéons. Firstly, fhe experimental data for‘such
situations are by far more numerous and reliable than
for almost anf other type of flow;‘ secondly, we may ob-
tain analytical'solutions for somevcases of one-dimensional
'fflow,‘as wiil be i11ﬁétrated in thevfofecoming pages.
Such analytical solutions considerably reduce the Work
involﬁed in the fitting of the consténts; These two
feasons ééem sufficient to justify the restriction of the

present chapter to Couette flows only.

Empirical relations
'The one—dimensiohal)flows; for which we have appfo—

priate correlations of experimental date, are:
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(i) The logarithmic law of the wall for a constant-

shear non-diffusibnal Couettevflow,‘in which

o D - '
e —-4(51")——) -  (5.6-1)

where ¥ and E are empirical constants (Schlichting, 1960)

(idiJ . The velocity distribution in the linear-shear

" Couette flow in which

L ap
u=-= Iy & + const

P 7

where kb is an empirical constant (Townsend,1961).

(5.6-2)

(iidi) ‘The turbulent;viscosity law in the laminar-sub-
layer of a constant shear, non-diffusional Couette flow,

in which ‘ »
| . o o 7
(A 2VEr ‘
;74%——'::a (‘*“5L—'i), . _ (5.6-3)
e _ A :
where a and o are empiriéal constants (Spalding and

Jayatillaka,1964).,

(iv) The empirical P-function, describing the resistance
to heat trénsfer of a constant-shear non-diffusional
Couette flqw. (Spaldihg and Jayatillaka, 1964) If wili
be noted that the P-function isvdifferent from eqn (5.6-~3)

only when the Prandtl number is low.
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The one-dimensional turbulence energy equation

In a steady, one-dimensional flow eqn (5.3-~9) reduces

to:
éJ/L

0/ zv)z 7
o= (hy d;//‘fm‘f@ © =7

Thisequat:.on has to be solved together with the viscosity

(5.6-4)

hypothesis, egqn (5.3-3), and the length-scale hypothesis,
eqns (5.4-5) and (5.4-6) or their asymptotic forms, eqn

(5.4-9), (5.4-10) and (5.4-11).

The constant-shear, non-diffusional layer, for y-w o

When ; —e oo

P 7 (5-6°5)
/"zé"“/“tw,é=§« /%///;>>/«

A -
G,E}{:%‘ (5-6 6)

4 Lt
bo=to=y | (5.4-9)
T=7s (5.6-7)
Also, in a non-diffusional Couette flow
k = const, (5.6-8)

Under these conditions, eqn (5.6-%) reduces to:

Tk G %
S/A - e (5.6-9)
C.p 8"y J
and
o e (5.6-10)
V< &
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Ve may now integrate

,/”47j2§'= Zs ER | (5.6-11)
to get the velocity
34
G A /2.7 2rnr ) (5.6-12)
CD' : y 2‘//’ /

where E is an arbitrary integration constant..

The linear shear layer, for y-—ec-

Here, as in the previous case,’ eqn (5.6-5), (5.6-6)

and (5.4-9) hold; but the shear stress is given by _

f:/p'; | : N (5.6—13)
where
S/ |  (5.6-14)
VA X

In these conditions eqn (5.6-%4) reduces to

o\ »3/1
44 /;) /.3 R 7 S0 & M (5.6-15)

o (91 Zrity T

Spalding (1967a) showed that the solution to eqn (5.6-15)

is

r' e

(5.6-16)

/2/0

._,A_._.
2 b tunt

and the resulting velocity profile is

é 3¢, 7y
U= 21//"; _______7%&.&91{ + Const
c”

(5.6—17)
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In this casé'we get
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/ue//f,\\;/u >>/Ué'u«v4 - (5.6-18)
RS o ,
: A | '
/:no LA Ay (5.4-10)
ST A ‘
iy s ool (5.4-11)
4= A —5— 4 |
, // 7 :
and eqn (5.6-4) réduées_foi"
/ » ) 0/,”‘( (5.6-20)
/ Y/ " ok /‘/’é'
with the soluthp:
eI (5.6-21)
where e 3
' ot - . -
b (5-1)= (5-6-22
and A' is an arbitfaf& constant.# ' Howevér, it will be

easier for further use ifiwe rearrange eqn (5.6-21) in a
' non-dimensional form

%3 7/)(_.2‘52‘)6 | | | (5.6-23)

* The other 1ntegratlon constant is put zero, as k = O
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'Eqn (5.6-22) will now change to:

28 (38-2) __ _Co ,
e-8)* A | (5.6-24)

The turbulent viscosity may be computed through eqgns

(5.3-3) and (5.4-10) to get
4

2/ 2=g o B
/zfézf=:5% 4. e (lfi?_ig) (5.6-25)

Values of the constants

We have now~obtained all the possible analyticalv
solutions of eqn (5.6-4). Next we have to épmpare theée
solutions with the experimental evidénce, listédain‘the
beginning of the present section. |

From eqn (5.6-1) and (5.6-12) we get

¢, | R
W= L  (5.6-26)

a2

From eqns (5.6-3), (5.6-24) and (5.6-25) we get:

(5.6-27)

Co
/.5‘(0<—z)(o(~3).—: v
And fro@ eqn (5.6-2) and (5.6-17) we get
2 c Ve |
PN (e v ) - (5.6-28)
K c. o

A simple rearrangement of eqgns (5'6f26)’ (5.6-27) and
(5.6-28) leads to:

A8~ . '
g;,éu,,{: C;z/.«/ _ 4 , {(5.6-29)
/a "'ku. Kal:) . . .




Co= | (5.6-30)
| < i
AT Tien e . (5.6-31)

We have thus managed to eliminate three of the unbknown
constants. Furthgr, there is no reason to change c¢,turb
from thd’value of 0.9 which was recomménded by Spalding
and Jayatillaka (1964), end supported by Patankar (1967).
So we have to fit Ca énd‘%/, only. ‘ These two comnstants
. were so chosen, as to give a good agreement with the’

u, vy, 3 function and the P{g/g # function for a constant-

‘ turb
shear, non-diftusional Couette flow. The procedure is
quite straightforward;’ it is as follows:
€i) u an&,éﬂ are tentatively prescribed.
{ii) Bgn (5.6-4) is numerically solved, for constant

shear stress T = Tgr with the boundary conditions:

¥ = 0  at y = .0

’ o ‘ (5.6-32)
- e T at Y =Yy
e SV ge 6.

(iii) The turbulent viscosity is computed, by eqn (5.3-3).
(iv)  The following mecessary functions may now he com-

puted numericﬁlly

9+ = v | - ‘(5‘§~33)'

o | | |
b= = [ A2 (5.6-31)
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(5.6-36)

(v) All the previous steps should be repeated for differ-
ent values of %/ and ¢ until the computed u+4y+} and
P{o /dturb; give a satisfactory agreement with empirical
correlations. |

It will be noted that until this very moment we have
been discussing "empirical constants and correlations"
without referring to any particular numerical values,
Now the time has ¢ome to make numerical specifications.
Some of the values which we shall use are fairly well
established, othersare not. So we can specify our con-
stants (%ﬂ » Cu etc.) only tentatively, pending accumu-

lation of more experimental information. The values used

in the present thesis are:

# = 0.4 (recommended by Schlichting, 1960); -
E = 9. (recommended by Schlichting, 1960);
K, = 0.48 (recommended by Townsend, 1961);

x = & (resulting from Spalding and Jaya-
tillaka's P-function for high Prandtl
numbers, 1964);
and,of course, the P-function itself, and the turbulent

Prandtl number 0.9.

o, turb
The P~function was preferred to a t+4y+} profile,

because it is based on a large number of observations,
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and for a very wide range of Prandtl numbers.

The resultihg constants are:

qo = 0.263

- o. | : .6-
2 0.22 (5 37)
‘CD = 0.416

The resultant u+£y+4 and P{co /Gturb; functions are com-
pared with Schlichting's and Spalding and Jayatillaka's
functions in figures 5.6-1 and 5.6-2 respectively. The
agreement is good. We must, however; note a difference
between the present set of constants and those suggested
by Spalding (1967c, p. 1‘134)', Spalding chose the con-

stant value of the turbulence energy in a constant-shear

‘ T
non-diffusional Couette flow to be about 5 ?ﬁ . However,
if we substitute the above constants in eqn (5.6-10) we
get:

b v -, , |
— = 3 : -
i JO 22v0 aae -3 (5.6-38)

[N

Some attempts were made to increase the valﬁe of (c,gﬂ)
by suitable changes of ¢, and [ These attempts always
céused some deviation from eithef Spalding.and Jayatillaka's
P-function or Schlichting's u, 4y } relation.
The‘experimental evidence currently available is‘not

sufficient to establish the value of~%£ in the constant-

S
shear layer accurately.
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6. Wall functions

6.1 What wall functions are

We have been looking in chapter 5 into a particular
model of turbulence, which appears to be powerful enough
to satisfy our present needs. Apéarently we may proceed
straight ahead to the solution of the finite-difference
equations. Unfortunétely, we may get accurate solutions
by our finite-differemnce method, only when the variation
of all the quantities concefned between adjacent mesh
points is nearly linear. Therefore in regions of high-
gradients, as; say, a boundary-layer mnear a wall, we
must specify a very fine mesh. Fine meshes are, in
general, a legitmate part of the finite-difference method,
but they tend to be very costly in computer time, This
is the main reason which leads us to seek an alternative
method to the finite~difference one in thin boundary-layers.
Such a method should, in principle; vield some algebraic
relations between quantities in the outer part of the
boundary-layer and the wall fluxes, without integration
of the equations governing the flow inside the boundary-
layer. These relations are called wall functions.

The wall functions have already been employed, for
very similar reasons, to boundary-layer work, by Patankar
and Spalding (1967). Their work was, however, restricted

to the Prandtl mixing-length lypothesis. Our precsent need
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is for wall functions ﬁhich will make use of the Kolmo-
gorov-Prandtl hypothesis, and which wili apply to cases
of augmented turbulence. |

We still have to face the fact that the woll functions

must be simplified‘correlations of theorétical solutionsy

there is hafdly a chance of getfiug a general exact solu~
tion of the bouﬁdafy—layer equation in a simple algébraic
form,. E?en when we agree ﬁo»the'use df cofielations, we
soon find that we may obtain them only for.very simple
boundary-layers; in fact the solutions used in the pre-
sent paper (as well és‘in Patankar and Spalding's work)
are for onendimensional_boundary-layers, or, as‘they are
often called, Couétte flovws. | This fac£ shouid not, how-
ever, deter us from-thebuse of these wall functions,
A1l boundary layers héve some similarity to Cougtte flow,
and the nearer to the wall that we are, the stronger this
similarity is. Practice has shown that éha roegion where
the flow is one-dimensiénal is, in many cases, much thiéker
than that in which it is linocar (in the laminar suhiayer).
50 we have much to gain by the uée of wall fﬁnctians, Qven_‘
in their present simple form,

We shall restricf ourselves tq flow on smooth suxr-

faces, not having large ratGS'Qf mass transfer. ‘Pressﬁre

gradient effects will be omly siightly described.
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6.2 Definition of terms

In the present work we aim at highly turbulent flows,
where the shear stress as well as the velocity méy become
vanishingly small. Therefore we have to define all our
non-dimensional groups in such a way that no troubles will
occur when they bécome excesgively large or small. But,
on the other hand, we wish to get groups which will make
sense also in more normal situations. The most suitable

groups, are then

th
p= £/ (5.4-2)
/ll
_ s -
K = ~ | (6.2-1)
PG | (3.2-13)

/u w“
P | (3.2-18)
/(4

where y is the distance from the wall, and ¢ is the tem-

perature (or conserved property) difference between the

point in question and the wall,.*

6.3 Solutions for particular cases-

The usefulness of the above expression will be demon-

~

strated by considering their values in some’ particular cases

of flows without préssure«gradient:

* TInterested readers should note that these definitions

are different from those used by Spalding (1967c) in a
similar treatment.
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(i) When y = 0 (or inllaminar fiows) |
R=K=0 ' (6.3-1)
s=5=1 | | | - (6.3-2)
(ii) In the comstant shear, non-diffusional layer, when

vy becomes very large, we have, from eqn (5.6-10)

k=t . - (6.3-3)

Cu %o

If we make use of eqn (6.3-3) we may now rearrange eqn

(5.4-2) to get

k - /U(C/'.. Cp)l/q (éy (o)l/‘l » : (6.3 4)

Similarly, we may rearrange eqn (3.2-13) using eqns (6.3-4),

(5.6-1) and (5.6-26). We get then

G 0

- , (6.3-5)
ble g, ) ?

4

and by the use of the equations for heat transfer in
Couétte flow, suggested b& Spalding and Jayatillaka, we

may rearrange eqn (3.2-18),to get

g, e, ' . (6.3-6)
" 4 » ‘ .

2T Rz ayn : ,
(iii) In the zero shear layer, K will become infinite,
but R, S .and s will remain finite. Spalding (1967a) has

shown that in this case
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x = a ¥y | - (6.3-7)

where

. /Z(o G’»m{ o | (6.3-8)

The definitions Q5.4-2) and (6.2-1) may now be used to-

gether with eqn (6.3-7);to yield

2m

K 2™ o (6.3-9)
In a vanlshlng—shear layer ‘bath TS and u are vanishingly
small. «Stlll,_thevllmlt of Ts/u must then have a finite
constant value. ‘Therefore‘wekmay deduce from the defi-
nition of s, egn (3.2-13), that

= g o . | ~ (6.3-10)

which by use of egns (6.3~7) and (6.3-9), is the same as

2

Nec REZ™ . ,/ (6.3-11)
For S we shall uée the relation i

&= 5‘-»;»?:‘ (u-») - | (6.3-12)
wiere ' |

(Pf: G-Zi‘ —«l) dll = Cansf | | » (6.3-13)

and this, when combined with the definitions (3.2-18) and

(3.2-13) yields

LY oo 4 A - (6.3-14)

‘ T U+p!
‘tthen actual numbers are subsituted, we get:

(6,3—15)
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6.4 Integration of the turbulence energy equation

(uniform shear)

In éeCtion 6.3 we have obfained solutions of the tur-
bulence.energy equation for the following asymptotic cases
of a uniform-shear Couette flow: (i) laminar flow;

(i) :f‘ully tﬁrbizlent, non~-diffusional flow; (iii) fully
turbulent flow w1th a very large diffusion of turbulence
energy from the outer edge of the layer (the no-shear
layer). - Now we have to fill in the gap left between these
solutions by numerical integration of eqn (5.6-4). There
is no neéd to describe the method of integration, which
~is essentially the same as that described in fhe end .of
sectionvﬁ.ﬁ. The results are plotted in figures 6.4-1,
6.-4—2 and 6.4-3 in the form of K(R} , s{R} and SfR} (for

G = 0.7) functions respectively. Similar S{R} functionms
have to be computed for different values of o.  All
these‘figﬁreskshow two main characteristics:

(i) When the turbulence level inside the layer is
augmented by diffusion of turbulence from the main stream,
kK ;‘s and S satisfy eqns (6.3-9), (6.3—10) and (6.3-11)
respectlvely,'and_thus~behave in a fashion similar to the
no-shear layér. The proportionality constants in the
above equatidns ére fuhétionswof the turbulence augmenta-

tion.
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(ii) When R remains cgnétént, s and S decrease if
the turbulence énergy israugménted, until they‘reach a
minimum value. »When the turbulence is further increased,
~ s and S will not decreaée any‘mofe. |

In this situation, it seéms natural to characterisé
the state of augmentation)of thé layef, by the proportion-

ality constants in eqn (6.3-9) calculated as

a=_K _ I | (6.4-1)

R *

in that part of the layer which behaves as a no-shear layer.

The quantity a was used, in'fact, as a paraméter in figures
6.4-1, 6.4-2 and’6.4-3. The asjmptOticvsolutions obtained
analytically in section 6.3 arefshown to be accurately

obtained by the numerical integration asvwell, thus ser?ing

as a check on the accuracy.

6.5 The-sLR,Qi’correlation' o o : A/
& , 5 N

We are now in a @osition to obtainiour:first wall
function: the séR,a) function. ‘This may be done by
fitting stfaight lines to fig 6.4-2. The resulting func-
tion is plotted in fig 6.541, and may Eé represented by

the following formulae:

at R< 4.9 . A=s4 : ' (6.5=-1)

’ ‘ ‘ L O.895
at g>ﬁgjcha,:4=aon5@%j

(6.5—2)
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at R>4‘7.8}‘0.25‘2>a>a : /J=0.é'7?(2”0'5‘l[.(’+5-)0‘$j (6.5-3)

at R>492; a=o25 : A= O, 455 (945)0‘5 (6.5-4)

a, the augmentation parameter, is reQuired only when
R. >19.8; and in these circumstances, we sce in fig 6.4-1

that it is quite safe to compute it from:

a,/e’:” - (6.4-1)

6.6 The correlation for S

It is quite easy to obtain a correlation for S, in
a very»similaf way to the one for s. - Such a correlation
is shown in fact in fig. 6.6~1, for 0 = 0.7, aand is sum-

marised by the following relatiomns:

at R <25 i s=4 - (6.6-1)
Cat :R >'2,bl'~)-‘ a=\c‘>i 5= 2 047s (ks 5) > (6.6-2)
at> R > 25‘5 o,27;>'ch>o; s=oo0a a % [p-u;)ab—g (6.6-3)
“at P >2‘5-,- a} 0.278 1 S= 0439 (/2»»5')0'm | (6.6-14)

This correlation is valid, however, only for one particular
Prandtl nuﬁxber." ‘We sl‘hall therefore try to obtain a more
general éne; Spalding (1967¢) hés integrated the turbu-

- lence energy eQuation foﬁ a Couette flow. He used a

discontinuous length scale distribution, and therefore-
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was able to get approximate analytical solutions to a large
number of problems. We shall now try to deduce from his
solutions the general shape of an S&{s,K,d3} function. If
we‘substitutg the present notation in Spalding's formulae,

we get, for the constant-shear layer,

A 5 _— ¢ kF b
= P —m -
A gf‘uvd S g ?f‘”"'é (6.6 5)

where « =<1 in a non-diffusional layer, and o« = -2/{(m+2)
in a no-shear layer (m is defined in equation (6.3-8). "
Spalding also investigated cases where —1 < & < -2/(m+2)
but as these cases are excluded from the present correlé~
‘tion they need not be considered here. Now,it is clear
that g#d/cturb} should have some connection to the P-
function recommended by Spalding and Jayatillaka (1964).

LLet us assume a linear relation between the two functions
g€ = ¢ P (6.6-6)

where ¢ is a constant (or rather a function of the augmen-
tation parameter, aJ. The best values for c may be

shown o be:

¢ = 1.8 for a non-diffusional
layer (6.6-7)
C = 0.45 for a no-shear layer
and so, from eqn (6.6-5)
A — B’f ~h g’f A L4
I = ff%—* + P C R (6.6-8)
where o/ = =1 for a non-diffusional
' layer
of = =0.,59 for a no-shear layer
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and

P = ?.24[5, ()075 ][4+028 ezx,o[oa,z )] (6.6-9)
Fur t—ur&

as recommnended by Spalding and Jayatillaka.

We note that in the present correlations, the fluid
should be in either a non-diffusional or a no-shear state;
therefore two values only for o and ¢ are sufficient.

There is still one point to note: when y is very
small, eqn (6.6-8) may be misleading, because the P-func-
tion is meaningful only for points far away from the wall.
We must, in such cases, make sure that 5 never drops bhelow

unity, the value which is appropriate to a laminar flow.

6.7 The pressure-gradient influence

We have hitherto neglected the pressure-gradient in-
fluence on s. Theoretically, a correction must be applied.

Spalding (1967c) obtained an approximate expression for

this correction. His expression may be rearranged as
2= q- L fl4 k) (6.7-1)

where Ss is the value of 8 corresponding to the same R

and K, but with the pressure-gradient neglected, and

ar .,
F= e; 4 (3.2-10)

To obtain f we must solve the equation

di _ o (6.7-2)

S b B
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and it may be easily shown that

f= ¢ty /y?’/f - X f £ ) (6.7-3)
Y R4 khlregas) | .
There.is no pafticular difficulty in cbmputing £ whénrthe
Jogs distribution is known. e shall however adopt a
slightly different approach., First, we note that in a

laminar flow

f= £ | | | (6.7-4)
Also for very large R, |
/”v//_:?/”él/zﬁ o | o (6.7-5)
and | ” |
K = aﬂ(,{' . | - S (6.7-6)

)[:___2_1___ 4 const | f (6.7-7)

so that for a large R, f is not dependent‘oh R. Ai

On the basis 6f the above consideratidﬁs and some
numerical computations, an .f~<R: relation wés_cbmplied,r‘
as shown in figure 6.7-1. In this figure, a of equatiom
(6.4-1) is the parameter. The correlation may be sum-
marised by

f‘,_{: J

ot 2 > 1pa D a | . (6.7-8)

R | -
at ﬁ<2p‘a‘r : f= 5 v (6.%72-9)
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where
D= ./lz.o”
Sz oz | | (6.7-10)

Ve shall now examine when s may become considerably differ-
cnt?from so.' In the laminar sublayer we may transform

eqn (6.7-9) to

/J'_.:4

e
LA 2

(607"11)

so’tﬁat if Flis not larger than say 0.1 the correction
will be sﬁaller than 5%. There is vefy little likelihood
of F to be 1azgér‘than 0.1 inside the thin laminar sub-
layer. | |

| ~in the turbulent'caseii? is more difficuli to define
the pressure;gfadienf influénce, Butvwa may note that
only for iérge F and smali R is the pressure«gradienf
influence éoiﬁg to be considerable. It was due to these
reasons that thé above corrections were not applied to

the impinging’jet computations, which will be reported

in chaptéf~?. ’-If, however, the pressure-gradient influ-
ean’haS'fo be accounted for, the following correlation
is found to give good»results for small and medium pressure
gradient:‘

A _ , _ F-an ‘
VR 2+ 4o (6.7~4)

‘The correlation is compared with the exact solution in

fig 6.,7-2, for vaiues of p' var&ing between -0.5 and +100,
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No serious disagr‘eemen‘t between the computed and correlated

s values is present ‘for‘ p' <100,
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7. Studies of the turbulent impinging jet

Until now, we have been'concerned with generalities.
First,vin part II, a method was devised to solve the gemeral
equations. :Later in éhapter 5, a turbulent viscoéity
hquthesis ﬁas develoﬁéd:‘and, in chapter 6, a special pro-

cédure‘for the treatment of the boundary conditions near

walls was devised.' Now the time has come to obtain solu-
tions for'thevimpinging jet problem. In studying such
golutions our punpose”is two-fold. First we wish to pre—

sent a theory which can agree with as much as possible of
our existing,expefimental Imowledge, and which enables
predictions to be made. Secondly, we have to explore the
limitatioﬂs of the theory,‘and its failures to agree with
measurements. _Knowledge of such failures is cssential
when we plan our future research.

In view of the above discussion the present‘chapter
will be coﬁstrucfed as follows. ‘First in section 7.1
the turbﬁlent iméinging jet problem will be mathematically
presénted. Theﬁ in section 7.2 we shall study the gross
features of the flow, such asbcontours of.prOPerties,
and pressure and velociﬁy profiles. In section 7.3 we
shall look at the wall fluxes in detail. It is in this
section, that some'failufes of the computational scheme
will be displayed, and their possiﬁle‘cause suggested,

The whole chapter will be summarised and discussed, then,
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in section 7.4.  However, final recommendations on further

research will be defefred'ﬁntilipart IV,

2.1 Description of the impinging jet system

The plane impinging jetbis shown in fig 7.1—1. The
turbulentlviscosity is computed by the equations described
in chapter 5 from the turbulence energy. The boundary
conditions are very much the same a3 those'déscribed in
- section k.1. Wall functions are used to evaluato the.
skin friction and wall heat flux. - Details of the wall
boundary conditions are given in éection 3.2, UWe still
have, however, tb cdnsider the boun&ary conditions at the
entrancefof‘the free~-jet to the control volume in the "F!
state (seebfig_?.l—l). We shall aSsume thét thé nozzle-
to-plate distance hé is larger thanﬁthevlength of the po;
tential core of the free jet. We shall use_the'reiatioﬁs

recommended by Schauer and Eustis.(1963)

Umax, e 2;3-5— . ‘ ( .
—mawmE = 222 ‘ 7.1-1)
u‘ ng/l/c ' e
X¢ | | ‘ C(7.1-2)
= 0 41 .

where yp is the distance from the nozzle to the near’
boundary of the control volume.
' The stream function and vorticity in'fhe "FI' state

(see fig 7.1-1) are gifen, as in section &4.1,by
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Usnasr x \* x 1% o | (7.1-3)
Y L
_and - : .

. " x 4 x % 4 x |\ (7 1-4)
T Yoz, Xa[ -t &Y+ & o

&

We also deduce from Heskested's measurements(1956) that

., S
. 01- )
b R 004 (lf,,,,a,r’,;) | (7.1-5
The meshes used will be non-uniform pnes. The non-
uniformity will be‘specified, in the x direction, by re-

gquiring that

— 'xl'-hd - X; v ' - »
é‘- Xp = Xig - - .(7"1;6)

and in the ¥y difection

-4 T e
£ o= 9 die o , C(k.3-1)
J %‘J-Jj' ' : ' .

where both'Sx and Ey will be taken as constants, greater
" than unity. . Therefore the mesh is finer near the jet'
axis and near the wall.

The turbulent length scale‘will be taken as |
= 02 Xg . _ ’ (7_-1-7)
everywhére~~\but near the wall equations (5.4—5) and

(5.4-6) will be used, whenever they yield a smaller length

scale than the one computed by eqn (7 1 7).
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7.2 General description of the impinging jet flow

In this section we are concernedeith the‘gross fea-
‘tures of the flow. It will be'shown that the generai‘
pattern of the fldw ié obtained in a Satisfactory wéy;
on the other hand, we shall not concern oﬁrseives:ih this
‘éection with the'boundafy-layer near the wéll, or the
fluxes of ﬂomentum and energy from the wall, b‘Thus we
shall study contours of various quantities, és weli as

profiles of some of them. -

" 7.2.1 Contours

We first look on contours of the main variables:
the vorticity, strecam function, turbulence energy, tem- .
perature, dynamic pressure, and static pressurc. They

are presented in figures 7.2-1 a - f, for the case of

be

e &

f@ - ML _ 000 (7.2-1)
s - :

b = o 74

‘and a normal level of turbulence in'fhe free jet,vas given
by eqn (7.1-5). The mesh is a 14x16 ome, with the non-
uniformity parameter'sf =-1.3.. o

Some conclusions may be drawn from thesé ébnfoﬁrs,
as follows: | | |

(i) - A thin boundary-layer appears near the wall,
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where the strcam lines are ncarly parallel to the wall,
and the vorticity and turbulence become very large. The
pressure drop across the boundary-~layer is negligible.

(idi) Although a uniform turbulence cnergy distri-
bution wasprescribed in the free jet, on the boundary of
the control volume, a maximum of the tufbulence energy
appears in the jet inside the field, This maximum is
1océted about halfe-way between the centre and the outer
edge of the jet, From this maximum k drops only slightly
towards the centre, but very considerably towards the
outer cdgé. However, when the solid surface is approached
the k-maximum is shifted to the centrc of the jet.

(iii) The boundary condition on the downstream side
of the jet flow, specifies that there are no gradients
parallel to the wall. This does not seem to distort the

results appreciably.

Confirmation of the results

Ho detailed measurements of these contours in plane
impinging jets are currently available. But contours
of stream function, and static and dynamic presisure neasured
by Poland (1967) in axially-symmetrical impinging jets are
very similar in shape to those displayed in figure 7.2-1,

b’ E}, f.
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7e2.2 Velocity and pressure profiles

We were not able to confirm the computed contours,
as no experlmental ev1dence was avallabl We can, however,
confirm some ve1901ty and pressure profiles by comparing
them with Schauervand Eustis's measurementS (1963). The
system under consideration is the éame as the one presented

- in section 7.1, but we now choose

Lo

43000

’h%L |
. (7-2-2)
Re,

in order to agree with Schauer and Bustis's experimental
set up. The mesh is a 14x12 one, non-uniforumly spaced,

with £ = 1.5.
y T

The maximum velocity growth

First we comsider the growfh of the maximum velocity
parallelvto the wall. In fig 7.2-2 measurea values de-
signated by (x) are compared with the computed values de-
signated by»(o), The computed values have the right shape,
but they'ére consisténtly lower than the measured ones.

‘ To find the reasons for this two other runs were made:

in the flrst run, des1gnated by (+) the wall was con51der
ed as a slipmboundary (physlcally this is similar to the
impingemeﬁt qftWO‘jefs"onione another).  The fésults.of
this ruﬁ weferstill lower than the measured ones. Then,

in the second run, designated (4), laminar. flow with a
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slip-wall was considered, This improved the agrecment
with the experimental results very considerably. Thus
these tests suggest that the turbulent viscosity hypothe-
sis is the source of the discrepancy between the wmeasured
and computed maxaimum velocities, We cannot, ho.ever,
definitely attribute the whole discrepancy betueen the
measured and computed velocities to the viscosity hypo-
thesis. Schauer and Eustis did not report ' the veloci-
ties in the free jet. Thus the use of wrong values of
the velocity and stream-function in the free jet entering
the control volume may be the cause for the low maximum

velocity.

The wall static pressure

The static pressure distribution on the wall was
measured by Schauer and Eustis, whose results are compared
with the computed ones in fig 7.243. The agreemient may
be considered acceptable, in view of the discussion of
possible reasons for disagreement between experiment and

theory, in section 7.2.2.

The axis-velocity decay

This quantity has not been measured by Schauer and
Eustis. VHowever, we may expect that it is not very
different from the exact solution for a stagnation flow

(Schlichting, 1960). Thus we anticipate that the axis
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velocity, away from the wall, will obey
v = A Yy (702—3)

where A is a constaent and y is the distance from the wall.
Very near to the wall, the laminar stagnation flow solu-

tion reduces to

where B is a constant.

The computed results are plotted in fig 7;2—4. The
linear vey relation is very evident. The guadratic
relation is not as clear, almost certainly because the

mesh employed was not sufficiently fine near the wall.

The wall-jet velocity profile

The profile of the velocity component parallel to the
wall on the downstream boundary i$ shown in fig 7.2-5.
No velocity profiies normal to the‘wall have been reported
as near to the impingement point as to enable a direct
comparison with the present computation. Still, the

computed velocity profile looks verycggagibig.

72,3 The turbulence energy on the jet axis

The present section, in contrast to 7.2.1 and 7.2.2,
is not concermeéd with comparison with experiments.
Indeed, the main object of this section is to make a pre-

liminary exploration of the development of turbulence in
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the impingement region. Apart from the géneral advantages
of increased insight and the description of the directions
for further research, we shall refer to these results also
in section 7.3. For these computations, again, the im-
pinging jet system described in section 7.1 was used.
Computations were obtained for various Reynolds numbers,
and for ha/d,= 8. Various mesh distributions werec used,
as it was found necessary to refine the mesh near the wall
for higher Reynolds numbers. The turbulence encrgy on
the jet axis is plotted in fig 7.2-6, where y is the dis-
tance from the wall, Also, in fig 7;2-7 the turbulence
energy profiles in the x-direction are plotted for
Rec = 11000, and different distances from the wall.

When we wish to interpret these figures we must first
recall that,in the present hypothesis, the generation of

turbulence energy is proportional to:

‘él/z[z (_%;_)z_’_ 2(_99_9{)1_’_(% - 5%_1{_ 1] (7.2-5)
Obviously, this term does not vanish on the jet axis.
Even in a free jef, when 0v/dy is not very large, the axis
turbulence generation is enough to raise the turbulence
level on the axis considerably. Nevertheless the maximum

turbulence is found halfway from the centre towards the

jet edge, where av/ﬁx attains its maximum value, as shown
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in the pfofiles for greater y/hc in fig 7.2~7. However,
when the stagnation point is approached, 0v/dy increases
very considerably. Consequently, the maximum of the
turbulence energy is shifted to the jet’axis, due to the
increased turbulence generation there. In this region
the increase in the turbulence level is sufficiently large
to create a maximum of the turbulence energy on the centre
line as shown in fig 7.2-6. When the wall is further
approached, the velocity decreases, until generation com-
pletely dies out, and the turbulence energy decays quickly.
In the region of no generation we expect:

Ek = ay® {7.2~6)

where, it may be shown, by reference to eqns (5.6-23) and

(6.3-7), that

c(:-:f-— [ 15 Co buturd = 438 (7.2-7)
Cu

in the fully turbulent region

and
= g5+ \/0—,25—+c, = 4,32 (7-2“8)

in the laminar sublayer

As the two above values of « are very near to one another,
it is .impossible to learn from the above computations

whether there is a "fully-turbulent no-~generation” region
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in the impinging jet system, or whether generation stops
only in the viscous sublayer. Another interesting impli-~
cation of figure 7.2-6 is that the no-generation layer,
turbulent or viscoué, as it may be, becomes thinner when
the Reynolds number increases.

It has been suggested above that in the impingement
region, turbulence is mainly generated by the normal
stresses rather than the tangential.ones; but does this
represent true physical facts, or is it just an implica-
tion of the particular model of turbulence emplioyed in
the pnesenf paper? No definite answer to this gquestion
was obtained during the present research. In part IV,
it will be suggested how such a definite answer may be
obtained. Howevéf, before more research is done, we
may get a partial answer by examining the plan=, free jet
data reported by Hqskestad (1965), who measured the three
fluctuating vélocity components, Taking the squares of
all the fluctuating components and summing these up, we
get the solid line shown in fig 7.2-8, where the dotted
line represents the mean velocity. As in the case of
the computations described above, it will be difficult
to explain the high turbulence level in the centre line
if we assume that it is generated by the tangential

stresses only.
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7.3 ‘The wall fluxes

In the present section we shall examine some predic-
tions of the skin frictiom and Stanton number on the flat
surface below the impinging jet. It should however be
said from the very beginning, that in the previous two
seétions we were concerned mainly with the solution method
and the viscosity law inside the control volume. At
present, we shall have to consider maihly the wall func-
tions. This distinction is rather important. Some of
the solutions which will be presented will contain defi~
ciencies., It is believed that these deficiencies result
from deficient wall functions, rather than from the general
nmethod.

Many wall heat-flux measurements are available.
Therefore we shall start by examining the Stanton number
distribution, in section 7.3.1. In section 7.3.2 a short

discussion of the skin-friction distribution follows.

7.3.1 The heat-transfer coefficient

The computation of the heat transfer frowm the surface
to the impinging jet is probably the most interesting com-
putation which we may perform in the impinging jet system.
In the impingement region the conventional Reynolds
analogy deteriorates completely as the skin-friction van-

ishes, while the heat-transfer reaches its maximum value.
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Also the Prandtl mixing-length theory breaks down in the
impingement region as it results in zero value for the
turbulent viscosity (and therefore also the turbulent
diffusivity) in this region. Therefore, the heat-transfer
computations are a very useful tool to check the turbulent
viscosity and diffusivity laws. 'Another aspect of these
computations is to test the wall functions in this very
particular region. On the other hand we are mnot likely
to learn much on the general method; dif the agreement
with experimental results is not good, it is, immost pro-
bably, a result of an unsuitable viscosity hypothesis, or
wall functions. With this understanding we may now pro-
ceed towards the comparison with éxperiments. The most
extenslive, experimental investigation available is that

of Gardon and Akifrat (1965), for heat transfex fromvan
isothermal surface to a plane impinging jet; their daﬁa,
supplemented by some of Kroger and Krizek's results (1966),

will be compared with computations in the present section.

'The mesh

WVe must now choose a suitable mesh: the mesh point
adjacent to the wall must be within the Couetto flow
region where the flow is nearly one dimensional. In
other words, the number of mesh points, and fhe mesh non-

uniformity parameter,sy, must be specified in such a way
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as to énéure that the mesh point adjacent to the wall ié
not in the region of‘turbuience generation due to normal
 shear (discussed in section 7.2.3). Consulting fig
7.2-6,>we see that the'thickness of the no-generation iayer
on the jet axis décreases when the Reynélds nuwnber in-
creases. Clearlv, we have to reflne the nesh when e
increase the Reynolds number. If, on the other hand, we
do not use a fine enough mesh, we ére lilkely to assume too
vloﬁ a turbulence energy in the no-generation layer, which,
in turn; will reduce the heat transfer rate.* Similar
refinecmient of thévmesﬁ'is necessary wvwhen we increase ceither
hfy. - or d. : Thus, when we seek a solution for a higher
Reynolds nu@ber casé, we are penalised hy having to use
finer méshes;}and spend more computer time.

In the present set of computatlons the :eghes emnloyed~
were sufficiently fine for Reynolds numbers up toc and in-

cluding 11000, for h/d, of 8 and for ¢ of 0.7.

The influence of the Reynolds nuﬁber

The results are shown in fig 7.3-1: St _, the Stanton
number in the stagnation point, is plotted versus Re , the
slot Reynolds number, for he/d, = 8 and 0 = 0.7. Clearly

the agreement is satisfactory until the Reynolds number

*Similar con31derat10ns prevall as well for the skin
friction.
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exceeds 11000. - The point'is even better emphasised in
fig 7. 3 2, where the lateral Stanton number varlatlon is
plotted, for A /H = 8 and the_three Reynolds numbers,
v2750,'11000Jand 22000;  For the.lower Reynolds numbers
the agreemeht‘is setisfactory at leaét qualitetively.
For the}hiéher Reyﬁeids.namber,rtOO 1ew‘Stanton numbers
are predicted‘oh,the,jet axis. Away from the axis,
where turbulence isvgenereted by tangential rather than
normalystresses; the Couette flow region becomes thicker
and the:agreement iéyqualitatively correct,‘es in the low
. Re&nolds number cesE. |
An'interesting and}important question is wvhat is

the pcwer of Re, in'the relation

.;g,‘c R~ R (7.3-1)
The solutlons presented in fig 7.3-1 do mot support the
value of —0.43 fortX, whlch was reported in chapter 1.
However, it was reported by Gardon and Akifrat (1965) that
& may be flxed as -0.42 only when | |

44‘<AAA-< ‘6o ‘
\ _ (7.3-2)
2aua<f,C< So ?og .
Because of the present\limitations on the mesh distribu-
tion nearvthe~well,‘solﬁtions in the region sPecified
by (7.3-2) ﬁere not obtained. Therefore the power
in eqn (7.3-1)lcahnot‘be eonfirmed on theibéSis of the:

present computations.,
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The influence of the Prandtl number

Here, again, we shall'consider cases for which some
experimental evidence is available. The data chosen is
for a Reynolds number of 11000 and 4./a, = 8. Heat
transfer measurements of Gardon and Akifrat (1965) are
for ¢ = 0.71, while Kroger and Krizek (1966) measured
mass transfer from a maphthalene surface tb plane jet,
with ¢ = 2.5.A These experimental results ére compared
with the present computations in fig 7.3-3 and 7.3-4,
where the Stanton/number in the stagnation point and the
lateral Stanton number distribution are displayed. It
is worth noting, that Kroger and Krizek did not report
the Reynolds number accurately, and this may cause some
discrepancy between measurements and computation. An
examination of fig 7.3-4 reveals that for a Schmidt num-
ber of 2.5 and Reynolds number of 11000, the mesh was

not fine enough, and Sto was, therefore, too low.

7.3.2 The skin-friction distribution

The skin-friction distribution in the impingement
region was measured by Schauer and Eustis (1963). The

values of the parameters were

he /4, 40

(7.2-2)

foe. 43000

as in section 7.2.2.
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A comparison of Schauer and Eustis's experimental
data with the present computations is shown in fig 7.3-5.
The skin-friction is normalised by the nozzle velocity.
As in the case of the‘maximum velocity growth, discussed
in section 7.2.2, the computed skin-friction is qualita-
tively correct, but, it is consistently low. We may expect
some connection between the skin-friction and the maximum
velocity, and as we have seen that the maximum velocity
is too low as well, we may expect to get better agreement,
once that the influence of the velocity has been elimin-
ated. This has been done in fig 7.3-6, where the skin
friction was normalised by the local maximum velocity.

The agreement is satisfactory.

7.4 A short discussion of chapter 7

In chapter 7, the vital task of testing the computing
method and the physical input of viscosity law and wall
functions was performed. It will be recalled that no
attempt has been made to fit ths methed or the physical
input to the impinging jet situation; they were derived
from basic principles and Couette flow analysis. In
the présent section we shall now summarise the amount of
success obtained as follows,

(i) Predictions of the main flow patterns such as con-

tours and velocity profiles look very plausible. They
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do not contradict any available experimental information.
Still the amount of experimental data existing at present
is not sufficient to cqnfirm the theory in é definite way.
(ii) The normal velocity on the jet axis is proportional
to the distance from the wall as suggesied by potential
stagnation-flow theory. Very near,to>the wall, this
velocity tendsvto.become quadratic: with the distance,

as suggested by the laminar stagnation flow solution.
(iidi) The static pressure and maximum velocity growth,
in a high Reynolds number flow, are qualitatively correct,
but a bit too low. It has bheen suggested, in the case
of the maximum‘velocity growth, that this may have fe-
sﬁlted from an inaccurate viscosity iaw.

(iv) The Stanton number predictions are reasonable

for a low Reynolds number, and small nozzle—to-éurface
distance. WWhen either of the two increasés, the Stanton
nunber predictions in the impingement region are too

low, but they improve away from the stagnation point.

The reason for this is believed to be the decrease in

the width of the Couette flow 1ayer'near the stagnation
point when either fhe Reynolds number or the nozzle;to-‘
surface distance increase.

(v) The effect of the Prandtl number is predicted
correctly for flows with‘a small Reynélds number, In

the high Reynolds number cases an increase of the Prandtl
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number is followed by too low Stanton number predictiohs
near the sfagnétion point. The reason for this is be-
lieved to be the‘decrease in the thermal boundary-layer-
thickness when the Prandtl number increases.

(vi) The skin-friction predictions are réasonablé,
especially when the influence of the local velocity is

eliminated.
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Closure to part III

in part III we dealt with.somevphysical aspects of
turbulent flows, First, in chapter 5, an extended ver-
sion of the Kolmogorov-Prandtl hypothesis of turbulence
was presented, It included the laws for the turbulenf
exchange coefficients and length scale distribution.
Six empirical constants were fitted as to obtain good
agreement with a variety of data on turbulent Copette
flows. Then, in chapter 6, the behaviour of over-turbu-
lent Couette flows was studied theoretically and algébréic
forms for wall functions were suggested. Finally, in
chapter 7, predictions of turbulent impinging jets were
presented, using the constants and wall-functions which
had been deduced from'thevCouetté flow data. The re-
sults were in reasonable égréement with experimental data,

provided that the mesh was fine enough.
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Part IV : Discussion
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8. Discussion

We have come to the final part of the thesis; now we
have to examine the results, to estimate how good they are,
and also to find out where expectations were not fulfilled.
Then we wish to know which corrective measures may be taken,
to overcome any failures. But the task in the present
chapter is even wider. It must be realised that both
the fiinite-difference method and the turbulent viscosity
hypothesis are relatively new and fairly untried; there-
fore their generality must be established by further
research, So suggestions for such research will be pre-
sented as well. |

The chapter will be divided into two main sections.

In section 8.1 we shall examine what has been done and
where the results need further confirmation. Then, in
section 8.2, suggestions for further work will be presented.
A short closure to the chapter and indeed to the whole

thesis will be presented in section 8.3.

8.1 Summary of the main results

The finite-difference method

The finite-difference method was presented in chapter
3. Its main innovations are:
(i) The preservation of the conservation laws

in arbitrarily large or small control volumes.
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(ii) The use of non-uniformly spaced meshes.

(iii) The inclusion of variable viscosity (and

potentially variable density as well).

The present work was restricted to plame flows only,
but the method can be easily extended to any axially-
symmetrical flow, as was shown by Pun and Spalding (1967).
The studies of accuracy, convergence and econony in
chapter 44 showed that the method can, in fact, produce
reasonably accurate results, without e#cessive qomputing
times, whenever the distribution of the’computed quanti-
ties_is‘not highly non-linear between adjaceﬁt mesh points.
The "“smearing" of conserved properties was studied as
well, and the amount of "smearing" in a uniform-velocity

flow was related to local quantities.

The Kolmogorov-Prandil hypothesis

In chapter 5 the general relations describing ali
the turbulent exchange coefficients and quantities were
presented in a’general form, applicable to any turbulent
flow, in all its parts. - Recommendations fbr the six
necessary empirical constants were made on the basis of
available data on Couette flow; the amount of such data
and its reliability can not; however, be comnsidered |
sufficient. Indeed, more work is mnecessary to coﬁfirm
that these six constants are sufficient empirical #Znput

to the hypothesis, and to establish their values. sStill,
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it seems pluusible that the general frame suggested here
will prove useful in the future. The Kolmogorov-Prandtl
hypothesis was used in chapter 6, when numerical solutions
were obtained for a wide range of Couette flows with
augmented turbulence. These solutions were later cast
into correlations to be incorporated, as wall-functions,

in the general method,

The impinging jet solutions

In chapter 7, the method as well as the wall-functions,
were used to obtain solutions for the problem of a jet
impinging normally to a flat isothermal surface. The
following are the main conclusions resulting from these
solutions:

(i) The contours, inside the field, of vorticity,
stream-function, turbulence energy, conserved property
and dynamic and static pressures look very plausible.
Also the velocity profile on the downstream, wall-jet
like, boundary, as well as the normal velocity decay on
the jet axis, are qualitatively supported by all our pre-
vious knowledge. But no direct measurements are avail-
able for comparison.

(ii) The static pressure on the surface and the
maximum-melocity growth along it are qualitatively right,
but somewhat lower than the measured ones, The maximum

difference between measured and computed values is of the
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order of 10%. The reason is believed to be either an
inaccurate specification of the boundary conditions on
the upstream side or a deficiency in the present form of
the turbulence hypothesis.

(iii)  The predictions of the Stanton-number in the
stagnation point are good in all cases when the mesh dis-
tribution near the wall is fine enough, Away from the
stagnation point, they are not so good, and differences
as large as 20% may be found. When either the Reynolds
number, the nozzle-to-surface distance or the Prandtl
numbgr increase, the mesh should be refined near the wall.
If this is not done the predictions beconie qualitatively
wrong: a minimun of the Stanton number appears in the
stagnation point, which may be removed only if the mesh
is altered,

(iv) Skin-friction predictions show the right
kind of behaviour, but they are too low. These low skine
friction values are very likely to be connected with the
low maximum velocities computed.

(v) Computations of the turbulence energy sug-
gest that there is a considerable generation of turbulence
near the stagnation point, due to the gradient of the
velocity in the y-direction. This generation diminishes

only very near to the laminar sub-layer.
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Conclusions

(i) The numerical methods seem to be powerful
enough for the present needs.

(ii) Too few measurements of the flow in the im-
pingement region of the impinging jet are available to
enable a completie comparison of the measurements and pre-
dictions.

(iii) The turbulence energy equation, and the con-
stants aésociated with it, may be established only after
more research is done.

(iv) The use of wall-functions, based on a Couette
flow model, in the impinging jet, did not eliminate com-

pletely the need for fine mesh near the stagnation point.

8.2 Recommendations for the future

The previous section was concluded with the suggestion
that more research needs to be done. We shall now examine

the possible paths, along which progress may be made:

The turbulence energy hypothesis

Three stages may be distinguished in the development
of this hypothesis:

(i) As much information as possible must be ex-
tracted from existing‘measurements of turbulent guanti-
ties, in two-dimensional flows. Useful data has been

reported by Heskestad (1965) on plane free jets, by Poreh
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et ¢l (1967) on radial wall-jet, and by Carmody (196%4)
on wake flow behind a blunt body. No doubt more papers
of similar merits can be found bybcareful searching of
the technical literature, Such data must be compared
with predictions; then it will, very probably, become
necessary to adjust the hypothesis, This stage of the
worlt is not necessarily coupled with the present finite-
difference method; many of the cases will be well des-
cribed by the parabolic boundary-layer eguations, which
are much easier to solve than the present elliptic ones.

| (ii) New measurements should be made to remove
existing uncertainties and to supply new data, which may
be easily compared with predictions, Foxr instance, we
would like to know what is the exact value of k&ﬁ in
the outexr part of a constant-shear non-diffusi&nal Couette
flow, or the constant K, in eqh (5.6-2). Thaere are some
new situations, which have not been studied yet, but may
prove rather interesting now. For instance, we may
measure the turbulent exchange coefficient in a "thermal
wake" which develops behind a linear heat source in a
uniform velocity turbulent flow. SureAenough, the
imaginative experimenter may find a large variety of
other promising cases, from which new light may be thrown

on the mechanism of turbulent transfer phenomena.
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(iidi) With such information as may become avaiiable
after experiments have been performed, the turbulence
energy hypothesis may be broadened to the very limits of
its potential. One particular extension, which may,
perhaps, be started even now, is the provision of a differ-
ential equation for the length scale. Suggestions>for
such an equation were made by Rotta (1951), and elaborated
by Spalding (19673). Once that such an equation is
available, it will remove the present uncertainty, con-
cerning the distribution ofithe turbulent length scale
away from walls.

(iv) An additional point which needs clarifica-
tion, is thaf of the generation of turbulence. At pre-
sent, it has been assumed that turbﬁlence is generated
by mnormal as well as tangential stresses, The validity
of this assumption should 5@ cbnfirmed, and it seems
that a good stgrting.point is the free jet, where data

are available, and where normal shear is appreciable.

The wall-functions

The main deficiency of the wall-functions, in their
preseht form, is tﬁat they apply to Couette flows only;
therefore, when the Couetfe flow layer is very thin, as
in the impingement region, we are still unable to use &
coarse mesh even when the wall-functions are employed.

However, in the impingement region the flow is very
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similar to a stagnatio& flow.  Therefore it is quite
, possiblé that the ﬁall;functions may be extended, by
incorpofaﬁion of“solutioné for a furbulent stagnation
flow,

Some of the disagreement between the impinging jet
measurements and predictions may be attributed to im-
perfections of the wall-functions. This point needs
careful examination. Of pérticular‘advantage may be
some solwtions, where the wall funéfions are not émploy—
ad, A free turbulent shear flow may‘be studied first;
then a test solution of #he impingiﬁg jet problem with
very fine mesh, but without the wallefunctiéns, will
probably prove to be‘aﬁ exﬁensive,‘but worthuhile in-
vestment. After such tests have been performed, modi-
fications to the pfesent wallffunctions are likely to
become necessary.

Apart froh all thése extensions, the wall functions
will have to be modified together with the turbulence

hypothesis, as the latter is further develéped.

The impinging;jet

it is really difficult to separafe the future work
‘on impinging jets from the other future work already
suggested, Clearly an improvement of the general hypo-
thesis and relations will result in better impinging jet

predictions as well. But some changes are likely to be
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more influential than others. Most important for the
inipinging jet, are the following:

(i) The influence of the normal stresses on tur-
bulence generation.

(ii) The incorporation of the turbulent stagnation
flow solutions in the wall functions.
sxperimental data will be needed to support»these inves-
tigationse. But some advance may be made even with fhe
slight data available now.

Finally, a carefully planned,éet of measurementsof
all turbulent quantities in the plane impinging jet
seems very advisable. This is not a simple task, by
any means: yaw-angle measurements, as well as a lot of
hot wire anemometry will be needed. Still, such mea-
surements will increase our eonfidence, and suppiy neﬁ_

and important data.



8.3 Closurec

The present thesis has proceeded along the road
from certainty towards optimistic guesswork of the
future. The finite-difference method has becen shown
to enable reasonable predictions to be made. Thus our
interest was stimulated, to attack complex problems, as
the impinging jet, and to test new turbulent-property
hypotheses. But now we are reaching the stage where
our mathematical capabilities are larger than our physi-
cal understanding. In the present paper, the author
has tried to describe some work on the physical sidec a$
well and to outline some future researches, which have
become possible and necessary as a result of the recent
developments. Some successes may be recorded, and olg
aquestions answered; but new problems have now been
posed, which future research will have to solve. The
author has found this widening of his horizon to be the
major result of the work described in this thesis; he

hopes that others will appreciiate it in a similar way.

London,

November 1967.
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Part V : Nomenclature and references
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9Q Nomenclature

9.1 Mathematical symbols

Defining eqn

Szmboi : . Meaning or egn of

first appcarance

Latin characters

A = an 6ccésional constant
Ap - a constant in the expression for £D (5.4-6)
A, - a term in the finite differénce equa~ ‘

tion for ¢, : ’ (3.1=3)
éﬂ - a constant inkthe expression for f; (5.4-5)
Al - a constant - (5.6~21)
a ~ an occasional constant. |

~. in chapter 6, the turbulence-augmenta-

tion parameter (6.4-1)
aj; - a coefficient in the finite-difference

equation for ¢, (h.5-1)
agrayray1ag - coefficients in the finite-

difference equation for ¢, ~ (3.1-5)
B,B' - occasional éonsténts
c - convérgency criterion (3.4-2)
c = Ya/m in chapter 4 k ‘ (4,4-5)
c - a constant in chapter 6 ‘ (6.6-6)
<p - a coefficient in fhe turbulence energy

diséipation term ‘ - (5.3-8)
Cp1CyiCy1Cg - coefficiénts in the finite-

difference equation for ¢% | (3.1-2)
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%/put

a coefficient in the turbulent viscosity (5.3-3)
a constant (6.7~8)

the nozzle width

a constant (5.6-1)
a non-dimensional pressure gradient; (3.2-14)
body force in chapter 5 (5.2-2)
pressure gradient correction (6.7-3)
the mass velocity vector (2.3-6)
a function ofithe Prandtl number (6.6-5)

the nozzle to surface distance

mesh size in section 4.4 ;

distance between the flat surfaces in
the Couette flow problem in section 4.1
’Ir,z’lp,1’1p,2 - various integral func-
tions, defined in eqns (3.2-19) to
(3.2-23)

designates a coordinate (say xi) when
index notation is used; designates the
number of nodes in the x-direction from
the origin in finite~differemnce work

the ¢-fIIX vector

the component of J in the X direction - (2.1-5)
the component of J at a surface, normal

to this surface (2.2-5)

the ¢-flux in a Couette flow (3.2-11)
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Jp at a surface o | | (3.2-10)
dcsignateé a coordinate (say xé)’when
index notation is used; designates‘tha
numbexz of”nodeé‘in the y-direction from

the mesh origin in finite-difference work

ke, | " (6.2-1)
& constant , _ (5.6-2)
the turbulence energy - (5.1-1)

k on the upstream boundary of the control

volume in the impinging jet | (7.1=5)

a typical lemgth scale (foh-12)

the turbulence energy dissipation length

scale : (5¢4-6})

the turbulent viscosity length scale . (5.4-5)

the hlbwing Reynolds number in a Couctte

flow &= £24) . (Lo1-1)
/H ) .
the power in the K~ R relation (6.3-7)

the P-function, describing the resistoace

‘of the laminar sub-layer to heat-

transfer | (5.6-36)
a2 dimensional function, simiiar to P (6.3~13)
the static pressure

the dynamic pressure . {(2.3-4)
the wmean static pressure g (5.2-43
the fluctuating’static pressure in

chapter 5 ’ o (5.2-3)
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impinging jet &

the pressure gradient

a dimensionless stream-function
Reynolds number, in general;
Reynolds number of turbulence energy

the nozzle Reynolds number of an

meiz’)
/d

Reynolds number based on the effective

viscosity

mesh non-uniformity parameter

the convergency parameter

Js Y )

dimensionless heat flux GEEL-L~—
/“/ﬂ;' iés)
a source strength
- Js
the Stanton number & b7 )

the Stanton number at the stagnation point

of the impinging jet

the source term in the finite-difference
equation for ¢P

a ¢-source

an w-source

dimensionless skin friction @EJZ%%—)

the value of s when the pressure gradient

.18 neglected

time, in chapter 5;
temperature

velocity in the x-direction
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(3.2-6)

(3.2-17)

(50[1"'2)

(4.4-13)
(3.2-25)
(4.6-~1)
(3.2-18)
(k.4-6)

(3.1-6)
(2.1-11)
(2.1-10)

(3.2-13)

(6.7-11)
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u - the velocity vector

u, - “/f7;7,. in Couette flows (5.6-34)
U, - the nozzle velocity in the impinging jot

u, - the velocity component in the xi—direction

ui - the fluctuating part of u, (5.2-3)

Ei - the time-averaged part of u, (5.2-3)

- the maximum velocity in the wall jet

Un - the top wall velocity in a Couette flow
v - the absolute velocity (= Yu*~<v* ) (2.3-2)
v ~ the velocity in the y-direction
Vo the maximum velocity in the free jet
vmax,F_ Viax OB the upstream boundary of the control
volume
1% - dimensionless vorticity - (3.2-15)
x - a cartesian coordinate in cases of plane
flow .
X - the half width of the free jet when itbcrosses
the boundary of the control volume
X, - a general cartesian coordinate (i may take
the values 1,2,3), in chapters 2 and 5;
- the walue of x at the ith node from the
ne.sh origin (7.1-6)
Ly - the maximum length of the control volume
in the x-direction, in the impinging jet
y ~ a cartesian coordinate in cases of plane

flow



192

Vi - the value of y when ¢= Jf’bmax (4.4-315
Y, - yyZ572Q, » in Couette flows (5.6-33)
Yp - the distance from the nozzle to the up- »

stream boundary of the contyrol volume,

in the impinging jet
yj -~ the value of y at the jth node from the

mesh origin (Aaj—ﬂ}
Z - a velocity ratio {(3.2-24)
zc -~ a term in the finite difference equation

for ¢, : _ (3.1-4)
Greek characters
o -~ the angle between the mesh and s%ream lines

in chapter 4

- an‘occasional constant power elsewherc

I - diffusivity
féff - the effective diffusivity (5¢5-1)
rfalse-‘the false diffusivity (4.4-8)
rfurb - the turbulent diffusivity
Ay - a y-increment
o) - a power (6.7-8)
> _//Efféﬂ s in chapter 3 : (3.2-16)
€ b urb /”turg%u’ in chapter 5 (5.5-4)

G

« ~ the mesh non-uniformity parameter in

the x-direction (7.1-6)



/ﬂturb -

o‘ -

Oepr ~

Tturb ~
T -
T. . -
ij

Ts -

. wake,

the mesh non-uniformity parameter in
the y-directiomn

a constant

the viscosity (usually laminar)

the effective viscosity @i/ﬁ;ﬂﬁMJ)
the turbulent viscosity

the density

the Prandtl/Schmidt number

the effective Prandtl/Schmidt nutiber
the turbulent Prandtl/Schmidt number
the shear-stress in a Couette flow

a componaznt of the shear-stress in the
general cartesian space

the skin friction

-~ the only non-zero shear-stiress con- -

ponent in a plane flow
a. conserved property
¢ﬂ57/.L , in Couette flows

¢ at a point j

the maximum absolute value of ¢ in the
control volume in sections 3.4 and 4.6
the ¢-value on the center of a thermal
in section 4.4

the value of ¢ at the source

the value of ¢ on a solid surface
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(&.3-1)
(5.6-1)

(5.3-3)

(5.5-3)
(5-5"‘2)

(3.2-3)

(2.1-4)
(2.2-4)

(2.3-5)

(5.6-35)
(k.5-1)

(3.4-2)

(4.4=1)
(h.b-1)
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v - the stream function (2.1-7)
ﬁb - Yon the upstream boundary of the conitrol
volume in the impinging jet (7.1-14)
ﬁ% - on the top wall of a Couette flow (k.1-5)
w - the vorticity o | (2.1-6)
ﬁ% - & on the upstream boundary of the
control volume in the impinging jet (7.1=3)
Wy, - & on the top wall of the Couette flow (Lod- )
Subscripts
C ~ in the nozzle of the impinging Jjet
¥ - in the upstream side of the control voluae
in the impinging jet
eff - effective, i.e. including laminar and turbulent
contribution
n - after the nth iteration
- sometimes, normal to
S - on a solid surface
s - slip Value‘
T -~ on the top wall of a Couette flow
P, 5, W,N,S - at the corresponding mesh points; P
stands for the central point, and E,V,N,S
stand for east, west, north anc¢ south res-
pectively; (see fig 3.1-1)
() - designates a vector
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+ - designates values non-dimensiomnalised by the

shear velocity (V£5/F) in a Couette flow

UQscripts
() - the time-averaged part of

( }J' -~ the fluctuating part of
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9,2 FORTRAN symbols

There are too many FORTRAN symbols to explain; there-
fore only the more important ones were included in the
following list. Symbols which are not explained ére'
usually dummy or local ones, and their meaning will become
cleéf afterfinspection of the mneighbouring statements,

‘In some cases symbols are defined in specification state-
ments without being used inside the programume; such sywmbols

are not included in the following list.

Symbol ’ Meaning
A(L,J,K) an array containing all the dependent

variables, with I and J denoting the loca-
tion in fhe x and y direction respectively
and K denoting the variable

ADIM . the denominator in eqn (3.1-1)

AM(K) an array containing the maxinum value of
A(i,J,K) for all I's and J's

ANAME(G;K) an array contaihing a thifty six letter
description of each of the variables
denoted by K

ANUM the numerator in eqn (3.1-1)

ASYMBOL(K) an array containing a four lethers name
fof each of the variables denoted by K

ATITLE(19) an array containing a 1il-letters heading

for the problem
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CMAZ

CN
cs
cu
ca

C3
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the contribution of convection to ANUM,

as defined in eqn (3.1-3)

the rate of spread of the free jet in eqn
(7.1-2)

the comstant in the free jet velocity decay
equation (7.1-1)

the s-function of eqn (3.2-13)

the turbulence;energy augmentation para-
meter as defined in eqn (6.4-1)

the convergency criterion in eqn’(3.4—2)

the coefficient c; in eqn (3.1-2)

the sltin friction coefficient TS/ uz

the proportionality constant between the
length scale and the width of the free
jet |
the proportionality constant between the
turbulence enérgy and the sguare of the
maximum velccity in the free jot

the C(I)-value corresponding to a non-
diffusional flow

the coefficient cy in eqn (3.1-1)

the coefficient ¢g in eqn:(3.1-1)

the coefficient c., in eqn (3.1-1)

W

the constant Ay in eqn (5.4-6}

the constant %ﬂ in eqn (5.4-75)
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DE,DN,DP,DS$,DVW

/.. in section

‘the coefficients fﬁ, / / /S' W

N® 'p?
Ae2=5
DFE, DFN,DFS,DFVW
"the coefficignts agrayidgra, in eqn (3.1-3)

DVl du/ox

Dvi2 ou/ 0y
bva1l ov/0x
pva22 ov/oy
BX : the.mesh non-uniformity parametenvinvthe x

direction as defined in egn (7.1-6)
BY ' the mesh non-uniformity parameter in the y

direction as defined in eqn (4.3-1)

HE % 175

HN yj+1—yj

.HS | Y374

HW ' Xi-xi~1‘

H1 *5+17%

a2 Vi1 ¥ge1

IE . the number of conserved propertyequations to
be solved

IFREE the index I, in the x-direction, of the mesh

point on the edge of the free jet on the up-

stream bodndary of the control volume



ILINE

IN
INM

IPAGE

v
JH
JNM

NI(N)

NITER
NIMAX

NPRIN
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the running number of lineS'already written
since the last change in the index J

the number of mesh points in the x-direction
IN-1

the running number of lines already written from
the beginning of the page

a control index for subrqutineIOUT specifying-
the foim of the output listing

the number of vériables invthe array A&

the nunber of mesh points in the y-direction
JN~-1

an array containing output bontrol information;
when NITER equals NI(N) an output listing is
generated

the rﬁnning nuinber of iterations‘

the maximum perﬁissible number of iterations
the number of variables for which an outpuﬁ

listing is prepared

NDP ,NF,NG1,NG2,NHS,NK,NML ,NMU ,,NP,NRO,NT,NV1,NV2 ,NW

the indéx'number of the following variables:
dynamic pressure, stream function, mass‘vélocity
in the x~direction, mass velocity in the y-
directioﬁ, conserved propérty,‘turbulence energy,
length écale, turbulent viscosity, static.
pressure, dénsity,.shear sfress, velocity in

the x-direction, velocity in the y-directionm,

vorticity
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PP,PP(I),PP(J)

PR(N,X)

(L)

REK

ROC

RSDU(K)

S(I)
SIG
SIGO
SOURCE
ST(I)
T(I)
TV

uc -

the pressﬁre gradieht

an array containing the Prandti,numbers; N=1
corresponds to the laminaﬁ'Prandtl number and
N=2 corresponds tothé‘turbulent Prandtl number
R, the turbulence Reynolds number of eqn
(5e4-2), |

the same as R(I)

the maximum absolute value of. the coﬁvergency .

parameter ru'as defined by eqn (4.6-1), for all

variables

the nozzle,densify

the maximum absolute value of the convergency
parameter,r , as defined by eqﬁ (4.6-1), fo% the
variable with the indéx K |

the S~function of eqn (3.2418).

the laminar Prandtl number

the turbulent Prandtl number

the'source‘term} Su} in eqn (3.1-1)

the Stanton numbeyr, 5

the wail_éhear stress

the wall temperature

the'hozzle velocity

half of the nozzle width

the‘ha1f4jet width*bn the upstféam boundary of

the control volume



X34

X1(I)
Xx2(J3)

YC

e

SA

ZB

Z2J(I)

4L

ZLp

ZL3
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the maximum permissible value of x

aﬁ array containing the x;coordinates of the
mesh points |

an array containing the y-coordinate of the
mesh points |

tkhe distancé from tﬁe nozzle to the surface
the distance from the‘nozzle to the upstream
boundary of the coﬁtrol volunme .

the constant ¢, of egn (5.3-8j

fhe P-function of equn (5.6-36)

the constant‘c of eqn (5.3—3)

the contribution of convection to ADNM as
defined in eqn (3.1- &) |

the wall heat flpx

the turbuience length écalé for viscosity near
the wall |

the turbulenée'length scale away from the wall
the turbulence.length scale for dissipation
near'thevwall | _

the‘K—function of egn (6.2550

the laminar viscosityk |

that part of the Souﬁqe term which is a linear
function of A(I,J;K)aand may therefore be

transferred from ANUM to ADNM -
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Part VI : Appendices



Appendix A.1 : The derivation of the vorticity equation

Introduction: The purpose of the present sogtion is tq
derive fhe equatioﬁvfor fhe conservation of vorticity,'
by elimination of the pressure from the equations for the
conservétion of momentum, The tieatment will be res-
tricted to steady, incompressible, variable viscosity,

plane flow.

The momentum eguations: | Bquations (2.1-1) and (2.1-2)

may be explicitly wriften.for'plane flow as.

ju . %;'=L7 . ' (A.1-1)

x “ ' '
u wo Ip 98 7%

/U'?r+/0'37 9T e T :z/ (4.1-2)
o dor . o _ I Iby 1=

Mgt Tt g T e T Ty A

where by (2.1-4)

- u | A.l-b

Tax -2/0‘/)‘ P ( )
0~ ‘ ‘ o

‘2 oy (A.1-5)

St 5 » (4.1-6)
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Rearrangement of the equations. Now we introduce the

vorticity, which was defined as

we 29 _ ;(‘7' - (2.1-6)
X

By the use of this definition, and eqns (A.1-1),(A.1-4),
(A.1-5) and (A.1-6), we may rearrange eqns (A.1-2) and

{A.1-3), to get:

: %-/”‘w*"g_x‘ 2 9%‘/} Tx aj}y _(.A"l_",)
and .

L op 9; +/uw + ._g_’f_ =2 92 ﬁ -+ ﬁ/uﬁ}(z%’ +w)] (%".1—8)‘
where |/ :ux*crx‘ . ' @2.3-3)‘
Elimination of the pressure: In order to get the vorticity

equation, we differentiate eqn (A.1-8) with respect to x,.
and subtract from it the derivative of eqn (A.1-7) with

respect to y. The result is

JMw) o(rw)

o I Jxl[/// "‘9 Ve ]

o T .
* axag /7“"/} (_.')—5— 7\(‘ J 95 [/’gy U%(&J] : '(A. 1-9)
- Egn (A.1-9) mém.be fearranged, by the use of (A.1-1), as.
Jw

o o Ly .
PO gy = (o'fl* %T)p“e}} “J)‘ [zf;;%’,’j ;7; % 3 951]

(Ae1-10)



oxr, simply
29 2w o ‘ '
SY e T T V%ﬂ,}/a})vﬁfw , (a.1-11)
where - |
=af1 3L JA L LS 2L s  (A.1-12)
5.2(27791'9 weo ZL) e

Clearly, when the viscosity is uniform S is zeroj it
may be easzly shown that, in a boundary layer, S, may

be neglected as well.
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Appendix A.2 : The derivation of the finite-difference

¢ -conservation equation

A.2.1 : Purpose

In this appendix we shall be concerned with the deri-

vation of the finite-difference counterpart of the equa-

tion
24 0 2 2 [ 2 -1)"
which is the two-dimensional form of eqn (2.1-12). In

eqn A.2-1 ¢'is the dependent vaﬁiable and x and y are

the independent variables; Sou, V'FL/a and S are arbitrary
functions of ¢, x and y. We shall not derive the finite-
difference equation by a Taylor series expansion of eqn
(A.2-1), as is, perhapé, more customary. Instead, we
shall integrate eqn (A.2-1) over small control volumes.
The advantages of such a treatment are (i) +that it is
more transparent physically, (ii) that we are more free

to opt between vafious assumptions, and (iii) that we may
rely on our understanding of the process when making

these assumptions. All the points will become clearer
later.

It will be more convenient to rearrange eqn (A.2-1).
\ .
By the use of the continuity equation

..5%_(fu) _;._‘7_;—(/00-):0 » . o (A.Z—Z),

e A e e e e
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and after a small rearrangement, we get

R s EL

A.,2.2 : The model

In fig A.2-1 a mesh point P is shown, which is
surrounded by the four points N, S, E, W. The four points
n, s, e, w are positioned halfway between P and N, S5, E,

r
W respectively. The control volﬁme is the dotted quad-
ranglé, with sides parallel to the x and y axes, and
passing throﬁgh the points n, s, e, w. We note that the
points N, NE, E, SE, S, SW, W, NW are mesh points, where
¢, f', u, v,/hl/a, and’ $ are known. But all these quan-
tities are usuallﬁ unknown in the points n, ne, e, se, s,
sw, W, nw. \

During the treatment we shall have to make assump-
tions on the distribution of some quantities. We shall
list these assumptions here, as follows:

(i) Inside the control volume the ¢-distribution

is uniform, i.e.

\
}

. ' (A.2-4)
¢=¢,
{
(ii) On thezboundaries of the control volume the

spatial derivatives are given by

1‘1/-—)/&-‘5)‘” |  (A.2-5)

ﬂyw
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(?_%’)_) = é‘WE"/@WP ‘ (A.2-6)

d Je — Fp
) — ,@%)—zﬁﬂé& V2=
d77a d o \
/9(&45)] .____Fé"ﬁﬂ "\/"té)ﬁ (A.2-8)
4; S I Z”‘Jiyp .
(iii) In the corners of the control volume
4% =Y Y + Y +F (A.2-9)
4 Y = Yoo + % + VW +¥ ' | (VA.2-1O) _
G Ve =Yg + Y +V + % (A.2-11)
4%, =Ye+ % +% +% (A.2-12)

(iv) On the boundaries of the control volume

2r = [p =1y - (A.2-13)
20 =Tp = [, (A.2-14)
2 =T+, (A.2-15)
2, = I, -L/}\‘\, (A.2-16)

A.2.3 : First integration

Our task is to integrate eqn (A.2-3) over the control
volume shown in fig A.2-1. Let us then do it formally:

~

~

e 2t - o o e
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I Xe .
[ [Birve-ripol)+

JGXW

Xe da Xe Jn
2 2 _
+///79//(r¢-—/'5;—/&4¢)f] a/Xagr//J'o& aéq (A.2-17)
Xw ;/, Xuaq”
Ve immediately see that each of the expressions on the 1eff-

hand side of eqn (A.2-17) can be integrated once exactly

over either x or y. Such integration will yield

[ [fr-r 422} - o 525 ]
Xe Za

+ !7{;’(@-/‘"%'-‘an'/ff¢~f—9;;§’gLJa’x‘= //J o

X (A.2-18)

Generally, this is as far as we may proceed with exact
integration. There are, however, some particular cases,
when S is expressed in terms of x and y, or spatial deri-
vatives of‘¢. In such cases we shall be able to carry
out an exact integration on the right-hand side of egn
(3.2-18) as well. Still, we shall not include such cases
in the present treatment, and therefore we can not pro-
ceed any more without applying our assumed distributions

of section A.2.2,.
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A.2.4 : Integration and rearrangement of the convective

terms

The convective terms are all those terms, in the
left-hand side of eqn (A.2-18), which contain either u

or v. Let us consider the first of them

{f/uﬁ), o

A
Very clearly, this represents the complete gb flux into
the control volume over the boundary se-~e-ne. Therefore,
if cp and n are well-behaved functions, it may be written

as |

In | ,
ff’w)e 4y= & (Yoe = %) (A.2-19)

»
wherej()ﬁ,~’)g,) is the total mass flow into the control
volume from ;:lirection E, and é is the mean value of ¢
in this flow. But, before we determine the value of ¢( '
let us write, on the basis of exactly similar arguments,

the complet¢ convective part of eqn (A.2-18) as

o (Ye=V1e) = &y (Voo = %)+ & (Fre= o) =2, (%o %)

(A.2-20)

Now, we shall try to determine what ¢ is. If we con-
sult fig A.2-1, we see that when f){,e—')s'>a the flow
direction is from P to E. But because of our assumed

¢ ~distribution, eqn (A.2-4), we must then deduce that
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in this case ¢,=¢&, . And similarly, if Ye-%,< O g=4
These assessments may be written in the form of the follow-

ing equation:

& ¥y~ Vo)=L [ e ) = 1= Yo lf + Lot ) He=50)f

(A.2-21)

Similar arguments hold for the other convective terms,

and therefore we may replace eqn (A.2-20) by

Qe P+ Ao, év“"“"‘év""@@" 75/’[;544‘{"{"*4) (A.2-22)

A

where

2 Qe =H{ Ve~ V. )" |Pre - Fiel (A.2-23)
22y = Yoe = Vo)™ Vae = You | (A.2-24)
2 =~ (Y= Yoo) = |V = Vi | (A.2-25)
2 as=+(He=Yo)= Ve - Yol ' (A.2-26)
2 et Yo - an
2 by =~(Yae = %) [Voo = Vow| (A.2-28)
2 4,=~("o= %)+ [, = %) | (A.2-29)
2 &=+ (he=%0) <)%, - 4l (A.2-30)
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and ¥, , etc. are given by eqns (A.2-9) to (A.2-12).
A very straightforward addition shows that

and therefore, we may finally write the convective terms

as
CZF wE +ww ¢w - w”‘ér +* dy dﬁr'— 54,/4’;460..,-4,-‘0,) (A'?‘—B?‘)
A.2.5 : Integration and rearrangement of the diffusional

and source terms (\)

The diffusional terms are all those terms, in eqn
(A.2-18) which contain [ and./u . When we substitute
the [ values, from eqn (A.2-13) to (A.2-16), and the
}“91’) derivatives, from eqns (A.2-5) to (A.2-8), the

diffusional part becomes:

Csy;b)‘__ "'Cw/é"f)v * (N/(ﬂév) +(,/&0¢}J -((E.: Co <G "G)/ﬂ"}é}) (A.2-33)

where
poo Jel8am0) _ Geers) (D0 -2s) (A.2-34)
& Xg — Xp 4(/\’5”){))

1
1

— lu (?u- Xu e ey (y/v‘ aL’J '
Co= "‘Xp_xf‘\) = [“4’;2(’_xw) ) (A.2-35)

Cn = I~ (Xc—)(w) _ h"/})(?(e ‘X\g)

yﬂ-aP 4 (9,,-—3,:) (A.2—36)
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5 (Xe = Xw) _ (75 +72) (Xe =) (A.2-37)
;p";-’ 4(39"9-!)

Considering the source term, we may write

Cs=

Xe In
S dxdy= Sp (Jn-2,)(Xe - Xur)=

So (yN—yJ)(XE_XW)=f (A.2-38)
4 “r

A.2.6 : The final equation

Now we substitute the convective terms, eqn (A.2-32),
the diffusional terms, eqn (A.2-33), and the source terms,

eqn (A.2-38) into eqn (A.2—1&%7\ The result is

(bt ds o v ) i) = Sy

(A.2-39)
“,
or, after rearrang%ment
b = et At )b (= 0 (et ) s+ S
£ (C'E"(lv ~Cn "(‘)_"(wgi-fpw*dﬁ,-fﬂ‘)
| (A.2-40)

where the a's are given by eqns (A.2-23) to (A.2-26); the

P

c's are given by eqns (A.2-34) to (A.2-37); and S,p 15
4

given by eqn (A.2-38).
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Appendix A.3 : The solution of the conservation equation

in a one-dimensional flow

In the present appendix, a non-iterative method for
the finité—différepce solution of the one-dimensional
conservation equation will be presented. The method is
based on Gauss's elimination technique which, for this
particular case, reduces to straightforward recurfence
formulae. The same technique ﬁas applied by Patankar
(1967) to the boundary-layer equations with much success.

In a one-di@ensional flow, eqn (A.2-1) of appendix

y
A.2 reduces to \

ru ;¢ =?; [f 2/,‘2!_#6 + 5 (A.3-1)
where y is the only spatial coordinate ani/u was assumed
unity. In these conditions, the finite-difference equa-
tion, (A.2-40), Yeduces to

= (Cﬂ—dﬂ)éﬂ.-‘-((‘—a")é 4-”);"” (A.B"z)
(C',v "(‘Q‘C(IN <)

A

If we now devise.a one-dimensional mesh with N mesh points,

we may now replace eqn (A.3-2) by

¢,.,-; 62,., ¢n*d -+ ’6-"' ¢

n-A

+ <y (A.3-3)

where

C’l*d — Unay

Un=
" (Cnu “'Cn-;)" ((In-u - dn-‘-')

; © (A3-4)



222

— Crnos = Bnos : _ _
/J"- (C”“l "(n_‘)- (dﬂ44+dn.4) (A'B-S)
' S —rm s
n ((nu -&(,,_4)_' (Cl,.,, - an-d) . (A.3—6) )

It may be shown that, for this simple set of equa~-

tions, the Gauss elimination yields
¢n, = Hl’l ¢ﬂ'.‘l -+ Bnl ‘ (Ao 3"‘7)
where, for 2<n<N

o Y Paa » (A.3-8)
,C)n - An-.«"‘én

Dos (L Bros+En)

Bn = (A.3-9)
" An-a _‘611 \ )
and \
/91. = , ] (A. 3—10)
=4 (A.3-11)
81"" 1 ¢ +~C,
So, we first compute An and Bn’ going from n = 2 to

n = N-1, and theﬁ we compute ¢n’ going backwards from
n=N-1 to n=2. Ip will be noted, that if a s bn and c,
are not expressediin terms of ¢, no iterations are necess-
ary, and the solution ;s exact, to any degree of accuracy

which the computer may yield.
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Appendix A.4 : The computer programme for the impinging jet

Following is the listing of the computer programue
which was uéed for the computations of the turbulent im— 
pinging jet. The important symbols are explained in
section 9.2, and.a flow diagram of the programme is shown
in fig 3.4-1. Computer~control statements havé been
reﬁdved from>the listing. The underlined names preceding‘
each sub-pfogramme are fhe subroutines names.as used in
fig. 3.h4-1. The respective role of the various sub-

programines are:

HEAD :  initiates the computations and controls the
iterative éycle

INPDAT: supplies all necessary conétants

INIT: generates the mesh distribution, initial values
and boundafy conditions

VROMU : computeélthe velocity components, the dynamic
pressure and the turbulent viéoosity

EQN: performs the finite-difference process in the

internal mesh points

BOU: computes boundary values and wall fluxes
OUT: - produces output listings
PRES: computes the static pressure in the internal

mesh points



HEAD

100
101

102

200

201

109

103

C¥**¥

CH# %4+
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COMMON /CVRBLE/ A‘l“’lé'l&)vx1(14)0x2(16)01MIN(16)'IMAX(16)9RP(4)'4
1 PRI214)IvINSINSIE«IVAIR

C OMMON /CNUMSR/NWsNFcNKoNHS0NVTONML'NMH~NP¢NGIvNGZvNMUONRO
COMMOMN /CN2/ NVloNVZv'\lDPQNT

COMMON/C/ANAMC(& 14) -A..>Y{1BL.( 14) +NI(S0) sNPRINe INDGyCCoNMAX s INMcJNM
COMMON /CPRCP/ ZMUWROG TG TW

COMI‘-’.ON /CEBOU/ ROCsTCyUCIZKC1YC 1 XC e XMeEXEY ¢ IFREE

COMMON /CTURB/ ZA+ZBeZCaCleC29C304LP

COMMON SVaSHSYCF{(41)«ST(41)

COMMCN /CB1/ RU21)sC(21)8S(21)204K(21)T(21)e20(21)
CIMENSION RSDUILI0)AMILI0) «ATITLE(19) «FHS5(81)

DATA AM/1C%10000,4/

IPT=1

IF (INeGT&l14) IPT=3

READ (541003 ATITLE ‘

FORMAT (12A6) )

WRITE (6+101) ATITLE + ¢ (ANAME (LK) sL=1+6)9K=1+]E)

FORMAT (12H1SOLUTION OF/1HOY19A613HFOR/(1HOs10Xe6A67))
VRITE (6+102) NMAXsCCrINeUIN

FORMAT (6HOMMAX=9e1443Xe3HCC=+1PE1]1 493X e3HIN=0I3¢3HJIN=s13)
DO 200 K=1+1V : .

DC 200 1=1sIN

DC 200 U=14+JN

Al JeK)I=0,

CONT INUE

D0 201 =1s¢IN

OC 201 J=1asJN

Al l«JsNRO)»=ROC

CONT INUE

C1=PR(1+NHS)/PR{2sNHS)

ZB=9.26# (C1%%0e75~1e )% (1e+00 28H*EXP (—0.007%C1) )

CALL INIT (AvIMINcIMAX-IN:JNvIEvIVtIPToXloXE)

5V=0,

RESSHS=04e

RES3V=0,

SHS=0o

N=1

NITER=1

WRITE (6:1103)
FORMAT (1H1 ¢3XvIHN19X+1SHRSTRMs 7X+SHRVORT + 7X9sSHRESSV 18X 12HSVEBX s 4 HRK

1ENG 14X s 4HRENT s 7X 1 6HRESSHS ¢ 7X 9 3HSHS)

CONTINUE
CALL VROMU (A« IMINsIMAXIsINSINSIESIVeIPTeX1X2)

THE ITERATION CYCLE

RES=Ce .
SHSO=SHS ‘
SVOo=8V

DO 2 K=1+1E



7777

301

1

104

106

21111

T INPDAT

1

1

1

215

ES:O.

RELAX=RP(K)

CALL EQN (K ES+RELAXsAe X1 eX2¢ IMIN«IMAXeIN+JUN IE+PR IVeAM)

RSDU(K)Y= ES

IF(ABS(RSDUIK) ) «GT«ABS(RES) )RES=RSDUIK)

CALL BOU (AYX]1 e X2¢IMINsIMAXs INsJNs IEWPRIVeAM])

INMM=IN=2 )

RESSV=1.-5VO/SV

IF (1E«LT+NHS)Y GO TO 7777

RESSHS=] « ~SHSO/5HS

CONT INUE

IF (NITERNELNI{N)) GO TO 301

CALL OUT (A IMINIMAXsINsUNSIEsIVe1eX]eX2)

WRITE (6£+103)

N=N+1

WRITE (6+104) NITERsRSDUINF ) 'RSDUCNW) ¢+ RESSX ¢ SVIRSDU(NK) +RSDUINHS) »
RESS5HS1SHS

FORMAT (1H ¢ 155X 1P5E12e395Xe3E1263)

IFINITER«GT«NMAX) GO TO S

NITER=NITER+]

IF(ABRS(RES) +GT«CCeORGNITERCLELS) GO TO 1|

CALL OUT (AsIMINsIMAX e INeUNs IE«IVIIPTeX1eX2)

GO TO 1111

VRITE(6+106) NITER
FORMAT (32HOTHE PROCESS DID NOT CONVERGE IN+iSe13H ITERATIONS)

CALL OUT (ASIMINSIMAX INsUNYy IEs IV IPT X1 X2)
CONT INUE \
STOP \
END y

BLOCK DATA
COMMON/C/ANANE‘é'14)1ASYM8L(14)vNI(50)ONPRINvINDGvCC-NMAXoINMOJNM

COMMON /CNUMBR/NW s NF « NK e NHS o NVT s NML a NMH « NP e NG 1 o NG2 + NMU Y NRO

COMMON /CN2/ NV1sNV2sNCP«NT

COMMON /CVRBLE/ A(14c16'14)~X1(14>sx2(16)OIMIN(16)1[MAX¢16).PP(4)1
PRI2¢G s IMNyIMNs IEs [V IR

COMMON /ZCTURBY/ ZAsZB2ZCsClsC2+C32vZLP

COMMON /CROU/ ROCITC+UCIZKC+YCoXCoXMsEXEY ¢ [FREE

COMMOMN /CPROR/ ZMUIROGsTG» TW

COMMON /CIN/ HGsAl +POTsCL19CL2+A2

DATA INsUN/ 144167

DATA IMIN «IMAX /16*1016%14/

DATA EXEY /lelrlieS/

DATA NW'NF’NK‘NHS‘NMLONMU!NGI!NGZ'NT!NDP’NP!NRO'NVI’Nva/
1424304454607 819o10¢11012013c14/

DATA TELWIVeRNNPRIN/ZG4s 14011/ s INDG/ 1/

DATA A1 +A2¢CL1CL2/0622+2e35+061+40427

DATA NMAXsNI/250+100+200+48%300/ 1CC/0.00001/7 =
DATA XCsYCrXMsUCIROC e ZIMU TW : :

7406251 22540425910910160000114936e7
DATA PR(1+3)PR(213)sPR{1+4)sPRI2+4)/  1e92¢340e7140e9/



INIT

ODNOA NM=T N0 L DO = o

DATA ZAsZCC2+C331PRI2¢3) +PRI204)/e4161422010263+e016041453¢0697

DATA (ASYNMBL (I} LANAME (KT )a=196) 21519014/
LHVORT +&6HTHE VO+&6HRTICI TrEHY s 6H
4HSTRM +6HTHE ST26HPEAM Fes6HUNCT IO 6HN +» &6H
CAHK INEs6HTHE TUWBHRBULENIOHT KINE+6HTIC ENYGHERGY
HHTEMP s6HTHE TE6HMPERAT » 6HURE s 6H
GHLENG6HTHE TU'6HRBULEN 6HT SCAL + 6HE ' 6H
GHTURV«GHTHE TUWGHRBULENIGHT VISCr6HOSITY +6H
G4HG1 THHTHE MAY6HSS VEL+GHOCITY +6HIN DIR+s6H 1
4HG2 16HTHE MA+6HSS VEL+6HOCITY +6HIN DIR«6H 2
GHSTR +6HTHE SHYG6HEAR ST1»6HRESS +&6H
GHDYNAVOGHTHE DY s6HNAMIC +OHPRESSUYG6HRE '6H
GHPRES+6HTHE ST+6HATIC P+&6HRESSUR Y 6HE +6H
4HDENS +6HTHE MEs6HAN DENSOHSITY + 6H
4 HU sG6HTHE VEWG6HLOCITY +6H COMPQ s EHNENT I+6HP DIR
4RV VEHTHE VEW6HLOCITY 16H COMPOs6HNENT 1+6HN DIR
END \ .

SUBRQUT INE INIT (A IMINs IMAX e INsUNCTES IV IPT X1 ¢X2)

s 6H
yoH
'&H
s 6H
s 6H
s 6H
16H
s &M
s 5H.
'6H
s6H
»OH
+6H 1
r6H2

COMMON /CNUMBR/NWINF ¢ NIKaNHS s NVT o NML s NMH o NP ¢+ NG 1 s NG2 s NMU s NRO

COMMON /CN2/7 NV1sNV2sNDRPWNT

-

N ® + e
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COMMON/ZC/ANAME(G6 14 ) + ASYMBL (14 ) s NI (50) sNPRIN«INDGs CCoyNMAX ¢ INM ¢ JNM

COMMON /CTURS/ ZAvZBWsZCeC1 +C2:C30LLP

" COMMON /CBOU/ ROCs TC+UCYZKC I YCIXCIXMIEXWEY s IFREE

CH*¥%

C

Cx %%
27
26
37
38

COMMON /CPROP/ ZMUWROGsTGsTW
CONMCN SV eSHSCF(41)+ST(41)
COMMON /CIN/ HG+A1+POTsCL]1YCL2YA2Z

DIMENSION ACINY JN»IV)OIMIN(JN)-IMAX(JN)0X1(IN)oXZ(JN)oATITLE(19)

INM= IN=1
INM= N—1

FIXED BOUNDARY CONDITIONS

YE=YC/(le+2e%Al)
XGz=A1*YF
UG=A2#UC/SAQRTIYF/2e /XC)
KM= ¢ ¢ #XG

X1(13=0.

X1{2y=1.

DXI:].

DO 27 I=34+IN
DX1=DX1¥EX

X1(1)y=Xi1{(1=-1)+DX1

DO 26 I=1+1IN
X1{(1)y=X101)%XM/X1{IN)
1FREE=0

IFREE=IFREE+1

IF (XI1{IFREE)«LTeXG) GO TO 37

DIV=XG/X1 (IFREE)
DO 38 I=1»9IN
X1(p)y=X1{1)y*DIV
X201)=0,
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x2(2)=1-
DX2=1e '
DO 7 J=3+JIN
DX2=DX2*¥EY
7 X2(uy=X2(Ju=-1)1+DX2
DO 6 J=2+JN ’
6 X2(uy=Xa2 () /X2{JIN)
DO 8 J=1e+JN
8 AllagelVi=X2()
DO 9 Jd=1+JN
NENINES NN
X2(U)=(1e=A(1aJJeIV))*(YC=-YF)
9 AllsdJeIVI=0,
DO 299 I1=1+IFREE
XI=X1(1)Yy”/XG
AlTe]sNWI=34%UG ¥ (XI*¥XI=SQRT(XI))/XG
AlTe1eNFI==XGH¥UG #(X]=0eB*¥XI%¥X2e5+025*X][%%*4) *A(I'IONPQ)
Alle1eNG2Y= UG #(1e=2e#XI*SARTIXIJ+XI*XI#X]) ¥AC(I»1+NRO)
ACT 41 e NK)=UGHUGH*CL2¥CL2
299 CONTINUE
IFREE=IFREE+1
DO 297 I1=IFREEZsIN
ACTejeNW)=0o
AlTIs]1sNFI=A(IFREE=1+19+NF)
297 CONT INUE
DO 359 I=1s+IN
359 A(l«JNINHS)=TW
ZLP=CL 1#(YC-YF)
DO 202 I=2+1INM
DO 202 u=2+JNM .
IF (A(l+sJINK)eNEDOe) GO TO 202
AlTageNK)I=1e
202 CONTINUE ‘
WRITE (6+63) ZA+ZBrZCrC2+C3v2ZLP
WRITE (6+63) ROCROGIUC '
WRITE (6+63) ZMU
WRITE (6+63) CC
WRITE (6+63) XCsUC s YCIEXEY
WRITE (64¢63) YF+XG+UG
WRITE (6+¢53) Al1+AZ2+:CL1CL2
63 FORMAT (1HO+1P8E1444)
WRITE (6£954) NWINFaNKsNHS
WRITFE (6¢54) NML +NMUJNRO
WRITFE (6+64) NPNDPeNT
WRITE (6¢64) NG] +NGZsNVIINVZ
WRITE (6¢64) IEsIVINPRIN
WRITE (6+64) INsJIN+IFREE
WRITE (6+64) NI
64 FORMAT ( 1HO+2514)
: WRITE (6+15) X1
WRITE (6+16) X2 : : -
15 FORMAT (4HOX1=+1P8El444)
16 FORMAT (4HOX2=+1PBE144+4)
RETURN

1y

/
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END

VROMU

SUBROUTINE VROMU (As [IMINeIMAXs INsJINWIEsIVeIPTeX] eX2)
COMMON ZCNUMBR/ZNWINF ¢ NKy NHS s NVT s NML s NMH o NP o NG 1 o NG2 « NMU ¢« NRO
COMMON /CN2/ NV 1 +NV2+NDPsNT |
COMMON/C/ANAME(ﬁQlQ)vASYMBL(dQ)1NI(50)cNPRINoINDGOCCQNMAX.INMOJNM
COMMON /CTURRB/ 7A0ZB§ZPQC19CL‘C3’ZLD
CCMMON /CBQU/ QOC'TCqUCvZKCvYCvXC XMsEXEY s IFREE
COMMON /CPROP/ ZMUSROGYTGsTW
CCMMON /7CB1/ 9(21)'C(ZI)’5‘21)OZK(EI)'T(ZI)'ZJ(EI)
COMMON SV +SHSCF(41)4S5T(41)
COMMON /CINS/ HGsALl sPOTsCL1sCLZ2vA2
DIMENSION A(INOJNQIV)QIMIN(JN)’IMAX(JN)QXI‘lN)OXZ‘JN)
C¥X¥%
C COMPUTATION OF THE VELOCITIES
CH ¥
DO 10 J=2+JNM
HN=X2{(J+1)=X2(J)
HS=X2(J)=X2(J=-1)
ACL1 o JsNG2)Y=(ALTI s JeNFI=A(2eJeNFII/IX1(2)=X1(1))
ACINGIING2) = (AINMIJINFI=ACINIsJWNF)II/Z(XT(IN)=X] (INM) )
ACINsJINGII=TLACINsJ+FTaNFI=ACINsJINF) ) #HS/HN
1 F(ACINYJINFI=ACINs =1 yNF ) ) *¥HN/HS) Z/ {HS+HN)
D0 10 I=2+«INM '
HE=X1(I1+1)=X1(1)
THW=X1(1)=X1(]=})

A(IoJ»NGl)-‘(A(IvJ+ZoNF)—A(IOJ'NF))*Hb/HN
i +{ACT e JsNFI=A( T sJd=1eNF)I#HN/HS) /(HN+HS)
ACTeJsNG2) =l (A(TI=1 e JaNFI=A( T s JINF) ) ¥ HE/HW

1 FLACTI s JaNFI=ACT+1 s JINF) ) #HW/HE } / CHE +HW)
10 CONTINUE
DO 11 I=2sINM
HE=X1(I+1)=X1(1)
HW=X] (I )=X1(1=1)
AlLs 1ING2)=((ALI~19 1SNFI=A(Is 1 eNF))*HE/HW
1 +(ALIs ToNFI=ACI+1s 1sNF))I¥HW/HE)/ (HE+HW)
ACTyv1aNG1I=CACTe2sNFI=ACTIs1sNF))I/ZIX2(2)=X2(1))
11 CONTINUE
DO 12 I=1+iIN
DO 12 J=1eJIN
AlTeUesNVII=A(TeJdsMGL)ZAC T s JsyNRO)
Al T JsNV2IZA(TI s JsNG2Y/7A( 14 JsNRO)
12 ACT v JsMNDP)I=(ALT s JeNGIIHACT e UINGII+ACT s JING2IKAL T s JING2))
1 ZAL T a JsNRQO) #0465
CHit#
c COMPUTATION OF THE DENSITY AND THE VISCOSITY
C ¥ 3% ’ ~O
21 DO 32 J=+JNM T
DO 32 I=1+IN
IF (ACIsJINK) oL TeO6) A(IsJsNK)=0s
IF (X2(UN)Y=X2(J ) =ZLP) 40¢41+41
41 ZL=ZLP -



40

42
32

EQN

101
102
39

C CR*H

C* %%

81

229

GO TO 42
Y=X2 (JIN)=X2 (J) ,
REK=A(T+JsNRO)*¥SQRT (AT s JaNK) ) *Y/ZMU

ZL. =Y#¥ (] +~-EXP(=-C3¥REK))

ACTeJeNML) =21
A(IvJ'NMU)—ZC*A(I~J0NRO)*SQRT(A(I!J'NK))*ZL
RETURN )

END

SUBROUTINE EON (KsRESIRELAX A s X1 9X2¢ IMINe IMAXs INsUNIIEIPRIVeAM)
COMMON /CNUMBR/NW s NF s NK o NHS «NVT s NML s NMH s NP ¢« NG1 s NG2 s NMU'NRO
COMMON /CN2/ MNV1+NV2.NMDP s NT
COMMON/C/ANAME(G62 14 ) s ASYMBL (14) «NI(SO) +NPRIN«INDG CCoNMAX « INM UNM
COMMON ZCTURB/ ZA+ZB+ZC+C1+C2+C30ZLP

COMMON /CBOU/ ROCYTCrUCIRKC+YC s XCrXMsEXIEY 2 [FREE

COMMON /CPROP/ ZMUIROGI TG TW

COMMON SV eSHSICF(a1)e5T(41)

COMMON /CB17 R(21)1¢C(I21)9S(21)+LK(21)sT{21)+ZU(21)

DIMEMSION ACINsJINSIV)Y oXI{IN) o X2(UN) s IMIN(JINI s IMAX{UN} sPR(2+IE)
DIMENSICN AM(IE) .
GAMA=ZMU/PR (1 +K)

AMAX=AM(K )

AM(K)Y=0,
JI=p
JNMM = JNM

IF (K=NW) 102+1012102
JINMM = UNM, ~= |

CONT INUE

DO 40 J=2 ¢ JNMM

DO 40 I=JlsiINM
Hi=X1{I+1)=-X1(I=1)
H2=X2(J+1)1=X2(J~1)
HE=X1(I+1)1=X1(I)
HW=X1(1)~X1(1I-1)
HN=X2(Jd+1)1=X2(J)
HS=X2(J)=X2(J=~1)

SOURCE TERMS

SOURCE=0e

ZO=O¢ ‘

IF (KeNE«NK) GO TO 789

Y=X2(JIN)=X2(J)
DV21=ClALT+1 s JINV2)I=ALT s JeNV2) ) ¥HW/HE

1 +F{ALTs JINVI—A{ =1 9JsNV2) ) *HE/HW) / (HE+HW)
DVIP=((A(TeJ+] «eNVII=A(]+sJsNV]))*¥HS/HN

1 +lACTaJaNVII=~A(T s JU=19NV1 ) )*¥HN/HS) / (HN+HS) )
ACT+JsNTI=(A(T+JaNMUY +ZMU) ¥ (DV12+DV21) . N
DVIi=((AC(I+1+sJoNVII=A(I+JyNV]))#HW/HE

1 +{ALTsJeNVI=A(I=19JsNVI))I*¥HE/HW) / {HE+HW)

DV22=( (Al T e J+1sNV2)I=A(TeJeNV2))*¥HS/HN

/



8z
52

51

789
CH# ¥

CH*¥*

65
62

63

'35

25

94

42 ANUM:CE*A(I+1-J.K) +CW*A(IE,—1'JnK) +CN*¥A(T v J+1 oK) +CSHA(L eJ=]1+K)

C**¥*

C
C**%

a1

9il

1

LAl T v JeNVDOY—A( Lo J=1e¢NV2) ) #¥HN/HS) / (HN+HS)
IF (A(TseJeNK) eLTe06) A(leJeNK) =00
VISC=A{]T «JeNMU) .
GEN:(E-*(DVI1*DVII+DV22*DV22)+(DV12+DV21)*(DV12+DV21))*VISC
IF (Y=ZLP) S1+52+52 .
ZL3=ZLP. i
ZL3=A0(T s+« JeNML)

GO TO S3 _
REK=A( T+ JINRO}I*¥SQGRT (AT v JeNK) ) *¥Y/ZMU

ZL3=Y%{ ]| e ~—EXP(~C2%#REK) )
DIF=ZA*A(1+JsNRO) #SQRT(A(I v JeNK) }/Z72ZL3
SOURCE=GEN

ZQ=DIF .
IF (KeEQeNF) SOQURCE=A(1+JsNRO)*#¥A( T vJeNW)

CONDUCTIVE TERMS

IF (K=NF) 6562465
IF (K=NW) 63¢624¢63

CE=H2/24/HE

CW=H2/2e/HW

CN=H1/2¢/HN

CS=H1/2./HS

GO TO 25

DP  =A(l +J TNMU)Y/PR(2+KI+GAMA
DE =A{l+4+1vd NMUI/PRI2+K) +GAMA
DN  =A(] +J+]sNMUI/PR(2+K) +GAMA
DW =A([=1+J +NMU)/PR(2+K) +GAMA
DS  =A(l +J=]sNMU)/PR(2+K)+GAMA
CE=H2# (DE+DP) /(4 o #HE )

CW=HP2* (DW+DP )/ (4 ¢ ¥ HW)
CN=H{% (DN+DP )/ (4 o ¥HN)
CS=H|*(DS+DP) /(4 ¢ ¥HS)

ADNM=CE+CW+CN+CS

2

IF (K=NW) 42+94442
CE=CE®# (Al I+]sJsNMU) +ZMU)
CW=CW* {A(TI=1vJsNMU) +ZMU)
CN=CN¥* (Al Ty J+1 e NMU)  +ZMU)
CS=CS*¥ (Al TsJ=1+NMU) +ZMU)
ADNM=ADNM¥ (A {1 vJ s NMU)  +ZMU)

+SOURCE  ¥H1#H2 /4.
ADNM=ADNM+ZQ#H]*H2/4 ¢
IF (K=NF) 41+44441
CONVECTIVE TERMS

ZCU=0.
Au=O.

DFW=(A{TeJ+] eNFIFA(T=19JF ]l sNFI=A(T sd=1sNFI=A(I=1oJd=1eNF)) /4o
DFMz=(A(I=1 s JsNFI+A(TI=1eJ+1 sNFI=ACI+] sJeNFI=A(I+1eJ+1+NFII /4
DFS== (A(I+1 0 JNFIF+ACI+T0U=1aNFI=A(I=1sJeNFI=A(I=10J=1eNF))/be
DFE=(A(TIvyU=1 +NFI+A(T+1ed=1oNF)I=A(TsJ+1eNFI=A(lI+1oJ+1INFY)) /44

IF (DFW) 911+.912+913
ZCU==DFW+ZCU

230



913
912
gz21
923

Qz2
931

933
932
941
943
942

C ¥ %+

CK#*

44

377
40

BOU

C¥* %%

C %3¢

234

GO TO 912
AUZAUHDFW*A(T=1vJeK)

IF (DFE) 92149224923 i
2CU=ZCU-DFE

GO To 922

A U =A U +DFE*A(I+1sJeK)
IF (1+EQeINM) CE=CE+DFE
IF (DFS) 931+932+933
ZCU=ZCU-DFS

GO TOo 932 .
AU=AUHDOFS¥A( T s J=-1K) \
IF (DFN) 941 49424943
ZCU=ZCU~DFN

GO TO 942 : ;
AU=AU+DFN#A (T s J+1eK) |
CONT INUE \

COMPUTATION OF THE NEW VALUES

ADNM=ADNM+ZCU

ANUM=ANUM+AU

Z=A(l+JeK)

ACTy JeK)=ANUM/ADNM

IF (1eEQeINM) A(IsJder)={ ANUM=CE¥*¥A( INsJsK) ) /{ ADPM=CE)
IF (ABS(A(I+vJK)) eGTeABS(AMIK)Y ) ) AMIK)I=A(T e JeK)
R3={A{1sJsKI=Z)/7AMAX '

FORMAT (1H '313'1X'1P1251002/13E10.2)

’

IF(ABS(RS)eGT+ABSI(RES) ) RES=RS

RETURN

END

SUBROUTINE BoU ( AsX1eX24 IMINY IMAXe INsINSIEsPR IV AMAX)

COMMON /CNUMBR/NWINF ¢ NK s NHSsNVToNML « NMHAaNP « NG 1 ¢« NG2 s NMUINRO
COMMON /CN2/ NVI1 «NV2+NDP «NT
CCMMON/C/ANAME(G+14) s ASYMBL(14) +NI{S0) +NPRINe INDGe CCoyNMAX ¢ [NMs JNM
COMMON /CTURRB/ ZA+ZB+ZCaCleC2vC342LP '
COMMON /CBOU/ RCOC+TCIUCYZKCsYCIXC o+ XMIEXIEY s [FREE

COMMON /CPROP/ ZMUIROGs TG TW )

COMMON SVaSHS«CFR(iG1)+S5T(41)

COMMON /CB1/7 RI21)1+CL21)19S5(21)¢ZK(21)1:sT(21)0ZU(21)
DIMENSIONACINGIUNGIVI o XTCIN) o X2(UN) s IMINCUN) o IMAX(JN) sPR(2sIE)
DIMENSION AMAX(IE)

DIMENSION CA(21)

DATA CMIN /041557

DATA T /21%1 4/

HN=X2 { UN) =X2 (UNM)

HS=X2 ( UNM )} =X2 (IUN=2)

/

THE VARYING BOUNDARY CONDITIONS

D025 K=1+1E



25

26

53
55

54
56

56

60

50

63
62

64

61
67

€S
99

71

D025 J=2+ IN
ACINsJIKI=ACIN=19J K}

D026 K=3» 1E

D026 J=2» JNM

AllLeJeKI=A(2 ¢ JiK)

DO 116 1=1FREEIN
ACTIs1+NFI=A(T+2¢NF)

RO=R0OC 4

SIG=PR{1 +NHS)

SI1GO=PR(2 +NHS)

DO 71 I=1+1IN

TCIY=AC(T e UNINT)

IF (ACTeINMINK) el TeO6e) A(T s JPMINK) =0
R(ET1)I=SAGRT (AT ¢+ INMs MK} YEAX2(INY=X2 (UNM) ) RO/ ZMU
CMAX=0.0565% (R(]})+5e) ¥#0 895

IF (R(I)=198 ) 50450453

IF (TUI)) S4+55¢5"

ZK(11)=10000.

GO TO 56
ZK(1)=A{ I + JNMINK) ¥ROZABS(TI(1))

CONT INUE -
CA(IY=ZK(IVW/R(11¥%04827
CAA=0.097/CA(1)##0.34

IF (CAA-CMIN) 604160459

ClI1)=CAA ¥(R({I)+De ) *%0458

IF (C(I1)aGTeCMAX) GO TO 63

GO TO 64

C(I1)=CMIN ¥{R(I)+5)% %058

GO TO 64

Clly=1le

S({1)=51G/SIGO/{1+/CMAX+] «8*ZB/ R(I)
ACTsgNeNKY==A(T s JNMoNK)

GO TO 67

C{l)y=CMAX
S{1)=SI1G/SIGO/({1/C(1)+1e8%2ZB/ R(1))
ACTeUNINKI=A(] ¢ JNMoeNK)

GO To 61

S{I1)=SI1G/SIGO/(1e/C{1140645%ZB/ R[]} #%0+6)
ACTeUNINKI==A( T s JNMeNK) #0639

CONT INUE

COMT INUE .

IF (S{1)eGTele) GO TO 65

S(IY=14s

Al TeUNINK)I==A(T] s JNMeNK)

CONT INUE

CONT INUE

ACT s UNINTI==C(I)#ZMUXALT s JNMsNG1 ) /HN

PP=(A( ] s UNSNTIH+ACT +» IN=2aNWI ¥ {ACT s UN=2 4 NMU ) +ZMU ) ) 7 (HN+HS)
AlT s UNMINTI=AC T« JNeNT ) =PP*HN
A(IvJNMONW)=~A(I!JNM!NT)/(ZMU+A(IOJNM!NMU))
CFR{IY=A(]+JNNT)/RO/UCZUC

CONT [NUE

IF (IE-LTeNHS) GO TO 9876

DO 81 I=1+IN

DT=A(1 s UNMINHS)=TW

232



233

H=X2 (JN)=X2 (UNM)
ZJlr)—S(I)*ZMU*DT/SIG/H
CACT G UNINHS)=A(T s UNMINHS)=S(T)*¥DT/(Je+A( ] JNM»NMU)/ZMU*bIG/SIGO)
TEM=zA{1+] «NHS)=TW
ST(1)Yy=ZJ(1)Y7RO JUC/TEM
81 CONTINUE '
9876 SHS=0.
SV=O.
DO 391 1=2+IN
SV=SV+0 ,S5#(CF(I=1)+CF 1) )% (X1 (1)=X1{I=1))
391 SHS=SHS+0S5# (ST J=1)+ST{ 1)) *¥(X1([)=X1(]=~1))
SV=SV/X1 (IN)
SHS=SHS/X1(IN)
RETURN
END

ouT

SUBROUT INE OUT (As IMIN® IMAX» INvUNSs IEs IVeIPTaX1+X2)
COMMON/C/ANANE(éle)'ASYNBL(la)oNl(SO)vNPRINoINDGoCCoNMAXoINM v JNM
COMMON /CN27/ NV1+NV2sNDRPINT
COMMON /CNUNMBR/ZNW « NF o NIK s NHS s NV T « NML « NMH » NP.NGonGZ-NMUcNRo
COMMON /CTURB/ ZA+ZBeZCrC1C2+C312LP
COMMON /CBOU/ ROCsTC+UCeZKC1YCsXCoXMIEXEY s [FREE
COMMON /CPROP/ ZMUIROGsTGsTW
COMMON 7CB17 R{21)+C(21)9S(21)¢ZK(21)1T(21)42J0(21)
DIMENS ION A(INOJNoIV)qIMIN(JN)vIMAX(JN)-Xl(IN)'XZ(JN)
COMMON SV sSHSCF(41)+5T(4a1)
JX=UNL1 4
IX=IN/16
IF (IXelLTel) 1X=1
IF (UXelLTeld) UX=1
IF (NP+GTeNPRINY GO TO 205
CALL PRES (AolMINoIMAXoIN'JNvIE‘IVvIPToleXZ)
205 CONTINUE
C**%
c GEOMETRICAL DISPLAY OF THE RESULTS
CH*H® '
IF (IPT.EQe2) GO TO 201
DO 10 K=1+NPRIN
WRITE(6+100) (ANAME(L+K)sL=196)
100 FORMAT(1HI30X+21HTHE DISTRIBUTION OF 16A6//74H J/7)
DO 2 J=1+UNJIX
2 WRITE(Gs111) JrlA(TvJeKIeI=1vINIX)
111 FORMAT (1HOs I2+2X 1P 14E Qe2)
WRITE(G6s112) (IvI=1sINsIX)
112 FORMAT (1HO/Z4H I= C13012+7X)012)
IF (RK=NW) 21:22+21
22 WRITE (6+233) (CF(I)sl=1+INvIX)
WRITE (6+233) (R (1)sI=1eINyIX) SENE
WRITE (6+233) (C (I)el=1sINeIX)
WRITE (692333 (T (1)el=1eINsIX)
WRITE (6+233) (X1(I)el=lsINsIX)
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21 1IF (K=NK} 23+24+23 :

24 WRITE (6+233) (ZKUI)eI=10IN1X)
WRITE (&+233) (X101)eI=1INsIX)

23 IF (K=NHS) 25+261+25

26 WRITE (6+233) (S(I)ysl=1+INe1X)
WRITE (6+v233) (ZJ(UI)aI=12INsIX)
WRITE (6¢233) (ST(I)s1=1vIN»IX)
WRITE (6+233) (X1(I)s1=1eINsIX)

233 FORMAT (1HO+4Xs1P14E 9e¢2)

25 CONTINUE

10 CONTINUE

201 IF (IPT+EQel) RETURN

CH#3¥
C TABULAR DISPLAY OF THE RESULTS
C%#%#

IPAGE=

DO 12 J=1+IN

ILINE=O

DO 1 I=1+IN
IF ([PAGEEQ.0) WRITE (6+101) (ASYMBL(K) +K=1+NPRIN)

101 FORMAT(10H1 I Je7(9X+AG))
IF (JLINEEQe0) WRITE (6+103)

103 FORMAT (L iH )

) WRITE(G6s102) ITadefAl]eJoR) s K=1sNPRIN)

102 FORMAT((H + 125X 129 7(1PE153))
ILINE=ILINE+]
IPAGE=IPAGE+1
IF (IPAGE «GE«40) IPAGE=0

~

1 IF(ILINE/S*5EQe ILINEI)WRITE(69103)
12 .WRITE (6+103)
RETURN
END
PRES

SUBROUT INE PRES CAs IMINe IMAXe INsUNe IE2 IV IPTsX1X2)
COMMONZC/ANAME (6+14) s ASYMBL (14) «NI (50) « NPRINy INDG» CC s NMAX » INM s JNM
COMMON /CN27 NV1'NVZ24NOPINT

COMMON /CNUMBR/NW o NF » NIy NHS o NVT o NML ¢ NMH s NP « NG 1 ¢ NG2 « NMU « NRO
COMMON /CTURB/ ZAsZB1Z2CrC11C2sC3+4LP

COMMON /C80U/ ROCsTCrUCeZKCsYCIXCrXMIEXVEY s IFREE

COMMON /CPROP/ ZMUWROGsTG.TW

DIMENSION ACINeJN» IV) s IMINCJUN) « IMAXCUN) o X1 (IN) s X2 (JIN)
COMMON /CB1/ R{21)+C(21)¢5(21)02K(21)4T(21)220121)
DIMENSION PP (41) {

DATA PO/O./ .

A(2¢2¢NP)Y=PRPO |

J=2

D021 I=2+INM .
HE=X1(I+1)=X1(1) . N
HN=X2 (J+1)=-X2(J)

HS=X2(Jy=X2(J=1)

HW=X1 (I =X1(1=1)

Dl1= A(IOJONDP)*((A(I+10J~NQO)-A<IvJ-NRO))*HW/HE
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1 + (AT e JeNROI=A(I~=1 ¢+ JINRQO) I¥HEZHW) / (HE+HW)
DIT=A{l o JIsNG2Y*FAT] s JaNW) )
DIIT=((AlTad+]oMNTI=ACTsJINT) } ¥HS/HN
1 +{ALTvJIaNTI=A(T v U= I-NT))*HN/HJ)/(HN+HS)
DPDOX=DI+DI1I+DI11]
PRP(1yY=DI+DI114+DITI1
21 CONTINUE
D022 I1=3+vINM
22 All+s2sNP)= (PP(I-1)+PP(I))*O SHIX1 () =X1(I=1))+A(I—-192¢NP)
D023 1=2+INM Y
HE=X1(I+1)=-X1(1) .
HW=X1(1)-X1(]-1) :
DVII=((A(I+]1e2sNVI)I=~A(I+2+NV1))*HW/HE
1 F(ACT 29NV =A(T=1 24NV ) ) *HE/HW) / (HE+HW)
23 Al1+2sNP)I=A(T12eMNP)=A(192+4NDP )42 *(A(IoZoNMU>+ZMU)*DV11
D027 1=2+INM
HN=XP(3)=-X2(2)
CHS=Xp(2)=-X2(1)
DV22=({A(T+3sNV2)=A(T12/NV2) ) ¥HS/HN
1 (AT a2 NVDY=ACT e 1 aNV2) ) HHNAHS )/ THN+HS)
AlTv2eNPY= A(I'P'NP)+A(Iv2-NDP)-2-*(A(Iv2°PMU)+£MU)*DV22
D025 J=2 JNM
HE=X1(I+1)-X1(1)
HW=X1(1)=X1(1~-1)
HS=X2(J)=-X2(J=1)
HN=X2( J+1)~=X2(J)
DI-A(I'JvNDP)*((A(IvJ+10NRO)-A(IvJoNRO))*HS/HN
1 +{ACTsJINRO)=A( T J=11NROII¥HN/HS) 7 (HN+HS)
DIl=z=AlT o JeNGLI*¥AL{T v JaNW)
DITI=CCACTI+1 «JeNTI=ALT s JsNT)Y ) XHWAHE
1 +CACTOJNTYI=ACT=1 1 JINT) ) *HE/HW) / LHE+HW)
DPDY=DT4DI1+DI11
PPR(J)=DPDY :
25 CONTINUE !
D026 J=3+JNM ]
26 A(Te JsNPI=A(ToUm1tNPIH(PP(JI+PP(J=1) ) %0aS5% (X2(U)=X2(U=]))
D027 J=2+JNM
HS=X2(J)1=X2(J=1)
HN=X2(J+1)=X2(J)
DV22={{AlT+J+1 ¢sNV2)=A(1eJINV2) ) #HS/HN
1 + (AT e UeNV2)I=A(T s J=1sNV2))¥HNAHS) 7/ (HN+HS)
AlTeJdys Np)"/\(IQJ’NP)-A(I’J’NDP)"‘E.*(A‘I’J NMU ) +Z2MU) *pV22
27 A(leJINPI=A{TsJINPI=A(INMe2 sNP)
RETURN
END

Yz





