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ABSTRACT

Chapter 1 traces the history of Man's unaerstanding
of fluid flow from the earliest times In Chaprer 2,
the problem of solving the Navier—Stokes equaiions
is discussed, with special reference to the role of the
computer. In Chapter 3, the exact equarions for the
lepirolds stresses are derwed, and an appropriaic level
of closure is dete :iined The Reynolds-stress equations
are analysed in Cnapter 4, and a moael acrived that is
suitable for finite-difference solution Tie speciul case
arising near walls is treated in Chaprer 5, ana the moael
is adapted to cater for such situations. The results
obtained for two-dimensional flows are presented in
Chapter 6, and extensive comgarisons are drawn with
existing data. In Chapter 7, a furtiter extension of the
model enables it to handle three-dimensional flows -
results are presented, and comparisons drawn with
experimental data. In Chapter 8 v.e summarse the
achievements of the model and make reconmendations
for future work.



We shall bring all things to rights, said my father, setting
his foot upon the first step from the landing.—This
Trismegistus, continued my father, drawing his leg back,
and turning to my uncle Toby—was the greatest (Toby)
of all earthly beings—he was the greatest king—the
greatest law-giver—the greatest philosopher—and the
greatest priest......

...And engineer—said my uncle Toby—
...... In course, said my father.

STERNE, The Life and Opinions of Tristram Shandy, Gent.
Volume IV, Chapter XI
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THE HISTORY OF TURBULENCE THEORY

1.1 The Pre-history of Turbulence

Many of the earliest civilisations were based on the proximity of
rivers. Thus, for example, Neolithic cultures were to be found in
the valleys of the Indus, Nile, Danube and the Tigris and Euphrates.
It would therefore be surprising if close examination of such relics
as we have of thesc civilisations did not reveal some mcasure of
understanding of the way water flows.

Neolithic pottery is highly informative. Plate I*shows a Gerzean
pot. now in the British Museum, which dates from before 3 200 B.C.
It bears the carlicst known Fgyptian representation of a boat under
sail. The stylised image of the sea or river foreshadows the standard
hieroglyph for water

AVAVAVAY

in which we see the rudiments of our letter M — via the Hebrew
letter /M (mem. 'mayim’ = water). The early Egyptians did not
mince their glyphs: for example, ‘woman’ was 7 and we may
safely assume that any design of the predynastic period was deliberate
and meaningful rather than purely decorative. Plate 2 shows juxta- .
posed whorls and water-symbols, on a pot contemporary with that
.of Plate 1. The juxtaposition of these two symbols suggests an aware-
ness of the existence of different types of fluid flow.

Definite evidence of a knowledge of vortex-type motion is provided
by the cave-drawings of Tegneby in south-west Sweden. Figure'1.1is
a sketch of these drawings, which date from the Bronze Age, which
occurred in the latter half of the second millenium B.C. in that part

* The figuces, plates and references for the 'n'roductory historecal chapters
(1 and 2?) will be found immed:ately after tne apptopnate chapter, while
those for the remamning chapters have been ;'aced after Appendix D
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of the world. The lower picture may well have been intended to
depict a capsized boat. Our particular interest is excited by the
whorls (i.e. eddies or vortices) placed below each boat.

Of course, the whorl has been evident in decoration from
Megalithic times (e.g. the entrance to megalithic ruins at New
. Grange, Ireland, and at Tarkien in Malta). The mere appearance
of whorls does not of itself confirm or even suggest any insight
into the motion of fluids: in the context of illustrations of water,
however, whorls must be presumed to represent eddies or vortices.

Any remaining doubt is removed when we examine Plates 3-9.
These show details of Assyrian reliefs, mostly from the walls of
the North-West Palace of Ashur-nasirpal 1l at Nimrud (now in the
British Museum). These reliefs were executed in about 850 B.C.
and show incidents in the military campaigns of Ashur-nasirpal.
For the first time in history, flowing water is drawn realistically.
Indeed, very few of the extant Assyrian reliefs show regular types
of flow: for this. sce Plate 8. This fact suggests that the Assyrians,
unlike anyone clse before the present century, recognized that
most naturally-occurring flows are turbulent, and that turbulence
is the ‘natural’ condition of any flow, except for very special con-
ditions (very low Reynolds numbers). ~

On the evidence of Plates 3-9, the Assyrians secem, in a simple
pragmatic fashion, to have understood the cssentially irregular and
random nature of turbulent flows. This is shown in particular by
Plate 7a—b, where we see the flow crossing and recrossing itself
in a clear attempt on the part of the artist to depict haphazardness.
Judging from his representations of fish (Plate 6), we see that the
sculptor idealized and smoothed out the original draughtsman’s
understanding of what he drew, so that we may conclude that the
Assyrians saw fluids as moving at least as haphazardly as they drew
them The difficulties of working in stone will also have forced the
sculptor to neglect minor details. In view of these considerations,
the accuracy of the images in Plates 3—9 is quite impressive. The
attempt to show the flow in a corner in Plate 9 is especially inter-
esting. Plate 5 suggests an awareness of the intermittency charac-



teristic of free boundaries, such as the surfaces of rivers.

The Assyrians differed from almost all their successors of the
next 2 300 years in resisting the temptation to smooth out the
turbulenee altogether. Greek vases and Roman paintings show
all moving fluids as smooth and regular. indeed, all Greek and
most Roman representations of flowing water are trivially idea-
lized . The striking exception is found, once again, in the form
of a sculpted relief. (Plate 10). 1t is no coincidence that this dates
from the openly aggressive expansionist cra of Roman imperial
history. Sculpture was used to adorn public buildings with per-
manent stone representations of military triumphs. It was clearly
a far greater achievement to have effected the crossing of a violent
(turbulent) river than that of a sluggish (laminar) one. However,
the fact remains that the representation of turbulent flow in Plate
10 (the bottom of the helical design on Trajan’s column) is separ-
ated by roughly a thousand yecars on either side from anything
remotely approaching its realism.

Mediaval manuscript illuminations (c.g. Plate 11) show the
beginnings of a renewed awareness of the irregularities to be found,
for instance, at the foot of a waterfall. Such examples are, however,
relatively rare, and do not represent any kind of generalized insight.

The same must, in the end, be said of the work of Leonardo da
Vinci. Plates 12—15 show some of Leonardo’s remarkable work
in drawing real fluids in motion. Leonardo’s insight, albeit as deep
as will ever be achieved into the appearance of turbulent flow, did
not influence those who followed him. The accurate drawings were
rescrved for the privacy of his manuscript notebooks, and thus re-
maincd unknown until the present century. Leonardo rendered the

flow visible to the naked eye by sprinkling tiny seeds into the
fluid — the technique of ‘seeding’ the flow, still used to this day.

Ironically, perhaps, it would appear that the best understanding
of real fluid Mlow has until recently been achieved by artists rather
than scientists. Even Leonardo was essentially a professional artist
but an amateur scientist.



Thus we see that an awareness of the existence of irregular flows
was gained at a few isolated points in the history of civilisation,
only to be lost and rediscovered after a further lapse of time. Even
if we disregard Leonardo’s achievement entirely, from the historical
point of view, on the grounds that he concealed his discovery, we
are left with what on the surface seems like a puzzle.

How was it possible for simple people like the Ancient Egyptians
to observe and record a phenomenon which was ignored by almost ’
everyone else until about 1840? This fact alone would make the
phenomenon of turbulence most unusual in the history of science.
But turbulence is unusual in that it is at once ubiquitous and highly
complicated. :

An explanation can be found in Man's overwhelming urge to sim-
plify what he sees, even — or especially — where Nature is inherently
complex. The idea of recognizing the complexity of a phenomenon
and proposing an approximate explanation is relatively modern: it is
a product of the present century when science, following Heisenberg,
Popper and Goedel, was finally forced to accept its own essential fal-
libility. 1n effect, the demand for ‘scientific truth’, implying as it did
the coincidence of two conflicting ideals, required the justification of
scientific assumptions and conjectures in terms of their absolute truth.
Not only did this mean that there could be only one answer to any
question (e.g. Euclidean geometry precluded the possibility of non-
Euclidean explanations of the same phenomena; Newtonian mechanics
prevented scientists from accepting relativistic models until the evidence
was overwhelming) but it meant that inexplicable deviations from
theory had to be dismissed as spurious or ignored altogether.

This last appears to have been the case for turbulence. The pheno-
menon was (and still is) resistant to a simple causal explanation in
terms of a closed system of second-order differential equations. Sci-
entists preferred to ignore it altogether until about 1860.




1.2 The Nineteenth Century

Though scicentists ignored turbulence, engincers like Poncelet and
Saint-Venant investigated turbulent flow in considerable detail, but
without bothering to explain it, let alonc understand it. The crucial
first observations of the transition from laminar to turbulent flow
were made by Hagen {1839] and independently by Poiseuille [ 1840].
These were the first explieit observations of a phenomenon that was
seen implicitly by Girard [1816], who noted in the eourse of a serics
of experiments on the effect of temperature on the flow in narrow
pipes that

“On peut ajouter que le mouvement devient plus difficilement
linéaire dans un tuyau de conduite que dans un petit tube.”

(page 332).

The first systematie investigation of the mathematieal basis of tur-
bulence was that of Boussinesq. His first work in this field was pub-
lished in 1868. However, it is to his 680-page Essai sur la théorie des
eaux courantes. submitted to the Aeademie des Sciences in 1872, and
published in 1877, that we owe the first thorough, detajled attempt
to explain the phenomenon of turbulence.

In the first ten lines of the Essay. Boussinesq gives a very clcar ac-
count of the problem, recognizing that there are two distinct modes of
fluid flow, one in which vcloeities vary eontinuously from point to
point, and one in which there may be large differences between the
veloeities of adjaeent particles — this last misconception stemming from
Boussinesq’s eonvietion that turbulenee was a molceular phenomenon.
He further asserts that turbulenee is assoeiated particularly with the
presence of walls, and adduces evidence that the no-slip condition
holds.

Boussinesq’s essay is remembered primarily for his introduction of
an eddy viscosity, €, recognized by him as being an analogue of the
laminar viseosity, whieh it dwarfed in magnitude. He stated that the
exchange eoeffieient € was a function of the flow rather than a pro-
perty of the fluid. He saw it as a function of the boundary conditions,
of a length-scale, and of fluid properties sueh as density. In this way,
Boussinesq opened the door to turbulenee modelling.




One innovation due to Boussinesq with which he has not been
credited by previous authors, e.g. Rouse & Ince [1957], is the sug-
gestion that the actual velocity of a turbulent flow at any point
could be written as the sum of a mean value and a fluctuating com-
ponent (Boussinesq’s ‘agitation’). As Rouse and Ince[1957). page
209] attribute this innovation to Reynolds in 1894, it is worth
quoting the relevant passage from Boussinesq’s Essay, written in
1872:

“La quantit€ ¢y exprimerait évidemment la vitesse relative
d’¢cartement des deux molécules. si les vitesses vraies u,,
vy, Wy, qui s'observent aux divers points, se trouvaient
toutes diminudes a@ chaque instant de leurs valeurs moyennes
locales respectives u, v, w, ou si, en d’autres termes, tout
mouvement général de translation cessait, mais que I’
agitation, représentée par les exces wy—u, ry—v, W, —w,
restd@t en chaque point ce qu'elle v est en effet: cet agitation
d’agitation sur place. sans mouvement progressif, pourrait
d ailleurs se réaliser effectivement sous l'action de forces
convenablement choisies: il n'est nullement incompatible
avec l'incompressibilité supposée du fluide, car u—u,
vy —v, W, —w, substituds a u, v, w dans la condition lincaire
de continuité, y satisfont par le fait meme que uy, vy, w,
et, par suite, u, v, w la vérifient."”

From this passage it is clear that Boussinesq had considered very
carefully the implications for continuity of his assumptions. He
was also entirely aware of the possibility of turbulence without
mean motion relative to the walls, and he introduced the time-
averaging concept which is gencrally attributed to Reynolds. He
maintaincd that the turbulent motion occurred at the molecular
level, whereas we now know that it involves entities of a size several
orders of magnitude greater than that of the molecules (sec, e.g.,
Hinze [1959], page 7). Asecrrors go, however, this was a fairly
useful one: not only did it enable Boussinesq to visualize the flow
in terms which he could understand, but it pointed the analogy
with molecular motion which, as we shall see. enabled Prandtl to
provide the first useful explicit formulation of e. It was the lack
of such an-explicit expression for the exchange cocfficient that
made Boussinesq’s hypothesis of limited immediate practical value.



Reynolds’ publication in 1883 of his now-famous experiments
sct in train a succession of similar attempts, dedicated to the deter-
mination of the criterion (the critical Reynolds nuumber) at which
the transition to turbulent flow occurred. Inconclusive results
showed that there was, in fact, no single universal Reynolds number
at which this happened. The search then switched to one for ‘upper’
and ‘lower’ critical Reynolds numbers: the first a maximum for
laminar flow, and the sccond a minimum value for turbulent flow,
By definition, the latter had to exist, as alt flows, whether laminar
or turbulent. have zero as the lower bound for their Reynolds num-
ber. The search for an upper critical Reynolds number was finally
called off after lanvnar flows had been observed at Reynolds nuin-
bers of 40 000 by Ekman [1911}. The inference drawn by Schiller
[ 1925] was that the transition from laminwr to turbulent flow was
dependent on the initial disturbance. The high-Reynolds-number
laminar flows were difficult to achieve and maintain: they were un-
stable. Thus laminar flow could be contrived at Reynolds numbers
for which turbulence was the norm, but the slightest disturbance
wotld cause the flow to revert to its natural turbulent condition.
The fact that the reverse effect had never been observed demonstrated
that turbulence was the general state of affairs. except at very low
Reynolds numbers. at which any turbulence will be damped by the
laminar viscosity and die away.

In his 1895 paper, Reynolds re-examined the Navier—Stokes equat-
fons in an attempt to derive the criterion analytically. By considering
the motion of fluids as composed of the (mecan) motion of their centres
of gravity together with a superimposed (fluctuating) motion relative
to the centre of gravity, Reynolds deduced that the presence of tur-
bulence could be attiibuted to the existence of non-zero quantities

uv, v? ... (the nine Reynolds stresses).

1.3 The Twentieth Century

Considerable disquict was felt at the very end of the nincteenth
century at what was regarded as an unacceptable degree of discrepancy
between theory and experiment. Rayleigh identified the probiem in
the following terms [1892]:



“It is possible that, after all, the investigation in which
viscosity is ignored altogether is inapplicable to the
limiting case of a viscous fluid when the viscosity is
small.: There is more to be said for this view than
would at first be supposed. In the calculated motion
there is a finite slip at the walls, and this is inconsistent
with even the smallest viscosity. And further, there
are kindred problems relating to the behaviour of a
viscous fluid in contact with fixed walls for which
it can actually be proved (1) that certain features of
the motion which could not enter into the solutions
were the viscosity ignored from the first are nevertlie-
less independent of the magnitude of the viscosity, and
therefore not to be eliminated by supposing the viscos-
ity to be infinitely small......Considerations such as
these raise doubts as to the interpretation of much
that has been written on the subject of the motion of
inviscid fluids in the neighbourhood of solid obstacles.’

7 Raylcigh {1883]

In the following year [1893] Rayleigh published the first solut-
ions of the Navier—Stokes equations that relied on none of the cus-
tomary simplifications — one-dimensionality, very slow motion in
whiclt the term (u.grad)u could be neglected, or very-high-speed
motion, in which it was thought that the viscosity could be ignored.

It was, however, not for another ten years that a satisfactory
generalized treatment of the equations was provided for the problem
of the flow near walls. Prandtl [1904] systematically re-examined
the equations to determine just which terms could be ignored from
the outset, and which ones, despite their apparent irrelevance, had
to be retained. In his paper, presented to the Third International
Congress of Mathematicians, Prandtl developed the entire theory of
the boundary-layer, which has been, and remains, the single most
powerful tool for the simplification of the general Navier—Stokes
equations.

An intuitive understanding of the physical process had been
obtained independently by Lanchester, whose ideas were to prove



most useful to Prandtl in developing the applications of his theory.
It is perhaps striking that these two men, with their common dislike
for the ntricacies of mathematics, should have seen their way through
what was essentially a mathematical problem. In a sense, the diffi-
cultics had been spurious, in that they had been introduced as a con-
sequence of the slovenly use of mathematical techniques. Once
Rayleigh had pointed out that the processes of taking the limit and
of solving the equations were not conumutative. the mathematical
barrier to an understanding of the equations was removed. In arare
moment of candour. Prand Ul describer the Navier—Stokes equations
as unangenchm (‘unpleasant’), and it was probably his dislike of
mathematical complexity thatl gave Prandt] the extra incentive to
simplify the equa!. as once for all — a task in which all others had
failed.

A more detailed understanding of the physical nature of turbulent
flow was achicved in 1911 by Stantont, who provided the first
velocity ‘profiles’.  These were obtained for rough- and smooth-
walled pipes, and agree perfectly with more recent measurements,
for example those of Laufer [1951]. Ry keeping the Reynolds
number Ud/v constant, but varying U (the mean inlet-velocity) and
d (the pipe-diameter) in inverse ralio, Stanton showed conclusively
that the velocity profile was delermined in every detail by the
Reynolds number.

In the context of his vorticity-transport theory [1915], in which
he trealed vorticity as a transferable quantity. Taylor introduced the
concept of a mixing-length. In 1925 Prandtl made use of this iden
in a rather different form to take up the challenge left by Boussinesq:
the Tormulation of an explicit expression for the exchange coefficient
€. DPrandti used the equation of mean motion wheili showed that the
term in question was ¢dU/dy =—p . Ve argued that v and v were
both of order 23U/9y and thus transformed the problem into one
of providing a formula for £, which was (Prandtl [1927]):

“alength vwhich may he interpreted as the diameter of the masses
of fluid which move as a whole and also’as the path traversed
by those masses relative to the rest of the fluid before they lose
their individuality again by mixing with the turbulent fluid
by which they are surrounded......

* The German phrase aber auch might have been rendered more helpfully as ‘or alternatively’.
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The length 2, which we shall now call the mixing-lcnglhf.
bears a definite relationship to the mean free path in the
kinetic theory of gases. In the latter, the transference of
momentum due to molecular motion is discussed in a way
similar to our present account of the transference of
momentum by the large-scale ( “macroscopic”’) motion

of whole masses of fluid."’

Thus, as we said on page 6 (above), Prandt] made usc of
Boussinesq’s analogy with molecular motion, but recognized that
it was no more than an analogy. In effcct. his proposal meant
that the exchange coefficient €, an essentially positive quantity,
could be expressed as

€ E“Iurbulcnt Esz IaU/ayl

1.3.1 Further measurements: turbulent quantitics

The equipment available for flow-mcasurement at the turn of
the present century was exclusively of the mechanical high-inertia
slow-response type. It was incapable of measuring small quantities
fluctuating (typically) 5 000 times per sccond.  With the development
of the hot-wire anemometer this picture changed. According to
Pannell [1924], the first hot-wire measurements were made in
England by Shakespeare in 1902. However, it wiis not until the
theory (of the cooling of thin cylinders in a streamn of air) had been
improved by King [ 1914] that thc first mcasurcment of turbulent
fluctuating quantities could be undertaken. King foresaw the
application of his work in this ficld when he wrote [1916]:

“An important point...is its property of giving a consistent
measure of turbulent velocity."

The first measurements were in fact made by Burgers in 1926,
who slhiowed oscillograms of the lMuctuating quantities and indicated
how to mecasurc corrclations between them.  Dryden and Kucthe

7 In fact, the translators used the term path of mixing, rcpresenting the German term
Mischungsweg which was still being used by Taylor in 1935 in the abscnee of a acceptable
English translation. :




{1929] solved the problem of eliminating the phase-shift introduced

by the thermal inertia of the wire.  Their paper was followed by the
work of Reichardt [1933], who published remarkably accurate measure-
ments of the aulocorrelation #? in a plane channel. In the following
year Wattendorl & Kuethe published similar measurements, to be followed
in 1936 by the publication of further measurements, ostensibly on the
same channel, of the values of 1?2 . The lattcr measurements, performed
by Sadron. displayced what we now know Lo be the correct shape, but
showed a ratio of 12 to 1? of about 1.5 to 1. instcad of the correct
ratio of roughly | to 4 near the wall. 1t is only fair to record that
Wattendorl acknowledged this possibility explicitly: we must presume
problems of calibr.ition.  The meticulous work of Reichardt, published
in 1938, climinaccd this error. Reichardt’s work. covering the same
correlations, was to form the empirical basis of Prandtl's 1945 model

in which the turbulent kinctic encrgy &, where -

k=Y 2+ 1% +wh),

was made the subject of a trausport cquation. The failurc of any ol
these workers to make separate measurements of the correlation w?
was to handicap theorcticians for a further twenty years. Wicghardt
based his 1945 calculations on the assumption that v? and w? were

equal, which they are not, in general.

1.3.2 The emergence of a mathematical theory of turbulence

The growing corpus of experimental information on the detailed
structure of turbulent flows scrved, inter alia. to emphasize a basic
dcfect in the existing theory. As all the explanations of turbulent
phcnomena were essentially ostensive, they were inherently unlikely
to be susceptible to indelinite generalization. A heuristic theory
was required, preferably mathiematical, and ideally starting {from the
equations of motion.

The first steps in this dircction had been taken by Reynolds in
1894, when he had derived the equations of mean motion, which
highlighted the role of the turbulent correlations wr; - Reynolds
in fact went much further than this. To obtain information about
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the ‘criterion’ for transition from laminar to turbulent flow (or
vice-versa) Reynolds had considered the integral over the flow
domain of the turbulence encrgy. He isolated the dissipative
and productive terms, and thus derived, in effcct, the integral
of the turbulence energy cquation. This approach, which could
have been most fruitful, was to remain a mathematical curio.

The technique that was in fact destined to lead to a better
mathematical understanding of turbulence was that of statistical
analysis.. In a stream of fundamental publications, culminating
in 1935 with the four papers Statistical Theory of Turbulence
Taylor laid the basis of subsequent theoretical work. The par-
ticular need was for a theory of how the quantities l—lil—l were
transported. Boussinesq's eddy-viscosity hypothesis, aibeit
most uscful once it had been given life by Prandtl, could really
only cope with one such quantity, and measurements showed
that in general this was not likely to be a viable assumption. In
the second of his 1935 papers, Taylor introduced the valuable
notion of isotropic turbulence, an idealization which simplified
the problem to the point where it could be treated mathematically.

In 1938 von Karman & Howarth derived the first theory of the
transport of turbulence correlations. Their theory, though in prin-
ciple restricted to the isotropic case, revealed most of the problems,
including that of closure, and suggested paths to a solution. They
introduced the technique of tensor notation, which made their
theory and that of Taylor much simpler to express and easier to
use. von Karman, anticipating this publication, had [1937] intro-
duced the idea of a turbulence-energy balance. 1In effect, he took
Reynolds’ integral form (above). and differentiated it to obtain
a local form, for a ‘control volume’ rather than for the whole flow.
This meant introducing the concept of the diffusion of the energy,
which von Kdrmdn saw as related to the adjacent coexistence of
different levels of turbulence energy. He therefore proposed that
this term should be modelled in terms of the gradient of the
energy:

Diffusion ~ (cilxz (Qu,'gl;z )



Prandt] foreshadowed the model he was to publish in 1945
in his address to the 1938 Congress of Applied Mechanics. where
lie was searching for a better formulation for the characteristic
velocity of turbulent motion. The direction in which he was
looking is clear from the fact that he introduced Reichardt’s
measurements of turbulence correlations, Prandtl’s 1945 pro-
posal. by providing an equation for the turbulence energy £,
obviated the need to argue that « and v were both proportional
to L3U/dv; this quantity represented a characteristic velocity of
turbulence, and could therefore be replaced by the quantity
k% . This gave

1

Y2
H urbutent € phe

which, however, still required a scparate specification for £

Prandt!’s essentially pragmatic approach had mcanwhile been
overtaken by the work of others. Kolmogorov [1942] had pub-
lished what was, in effect, the first proposal for a multi-cquation
modec! of turbulence. He derived from phenomenological con-
siderations equations governing the behaviour of two independent
properties of the flow. Prandtl, by clioosing the length-scale as
one of these propertices, avoided a second differential cquation.
Kolmogorov proposed a second equation to generate a characteristic
frequency of the turbulent motion. Later workers (sec Launder
& Spalding [1972], p. 18) were in fact to propose diffcrential
equations for €, among other variables; Prandtl implicitly preferred
to retain an algebraic formulation of €.

In 1945, Chou showed that it was not neccssary to rely so heavily
on phenomenological considerations. Chou’s paper contains the
first definitive treatment of the Reynolds-stress cquations, and hence
implicitly of the equation for the turbulent kinetic energy. e deduced
the exact cquations analytically, and derived the cquations governing
the transport of the triple-velocity correlations u,T’ziZ , which occur
in the equations for the Reynolds stresses. Chou proposed to effect
closure of the equations by assuming the two-point correlations to be
Gaussian, and hence deducing formulae for the quadruple-velocity
correlations in the equations for the triple-velocity correlations. Thus he
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proposed a closure of the equations of turbulence involving

3 .equations of mean motion

1 equation of vorticity decay (removing the need for
the separate specification of a length-scale)

6 equations for the Reynolds stresses
10 equations for triple-velocity-correlations
1 equation of continuity

Chou dealt rigorously also with the most difficult term in the
Reynolds-stress equations, that involving the pressure fluctuations.
Though Chou’s proposals were both extravagant and (in respect of
the ncglect of the quadruple-velocity correlations) somewhat arbit-
rary, his analytical approach anticipated the lines along which much
subsequent work was to procced. Once the general equations of
Reynolds-stress-transport were available, the problem of turbulence
could be seen as that of their closure.

This, then, was the position in 1945. The history of the work
since that time is best dealt with in the context of a more detailed
analysis of the individual terms in the Reynolds-stress equations,
i.e. in Chapter 4 below.

1.4 Summary

In retrospect, we can see that in spite of an unusually slow start,
the understanding of turbulent flow was destined to follow the
usual path of historical evolution. Therc are generally, in the history
of a science, three discernible phases: the first, that of the experimental
recognition of a phenomenon, and its detailed investigation; the
second, where the observations are gatherced into a phienomenological
theory, and the third, where a reappraisal of the theory generates a
mathematical modcl. Like all such divisions, thesc phascs are some-
what ill-defined.lt is generally quite misleading to think of them as
strictly consecutive. They may overlap, or appear in the ‘wrong’



order — as for example when Dirac predicted the existence of
‘holes’ from the equations of quantum mechanics and saw his
prediction verified by observation. *

Ideally, the derivation of a mathematical theory should procced
from the governing cquations alone, but in practice the derivation
is often guided by a foreknowledge of the physical results. This
remains the case for turbulence theory, where all practical theories
for the solution of physical problems require an admixture of
simplifying phenomenological arguments, if only to short-circuit
what would otherwise still be tremendously difficult and time-
consuming tasks. One example of this is the use of the von Kdrman
[1930] ‘loglaw’ for the mean velocity in a well<defined region near
walls. To insist on solving the full Navier—Stokes cquations for
this region is (in most cases) quite unnecessary. The boundary-layer
approximation, though only an approximation, is sufficiently accurate
for most of the purposes for which it was designed.

All these considerations become entirely academic in the absence
of the basic technology which enables accurate obscrvations to be
made in the first place. To illustrate this, and to summarize the
achievements described in this Chapter, we provide a chronological
Table of the work done up to 1945.

* This should not be confused with Popper’s requirement that a scicntific theory must be
cpable of making predictions: we are concerned with wholly novel phenomena, not routine

predictions.



TABLE 1-1

Date

Technique
Used

Measurenments
or Obscervations

Phenomenological
Theory

Mathematical
Theory

1000
BC

1000

AD

1500

1600

1700

1800

Visual observation

IZddics occur

Eddics overturn boats

Rivers are turbulent

Waterfalls

Weirs, cte.

Viscosity exists

Pitot tube

No slip at walls

Ad hoc formulae

Inviscid theory

91



1800

1850

1900

1910

1920

1930

1940

1945

Hot-wire anemo-
meter

[Torrection T
Iphas&lag

Transition observed
Effechs of viscosity
at walls

Search for criterion
Boundary-layers

Accurate mean-

Boussinesq’s eddy-viscosity

Prandt!’s thcory
of boundary-layers

Navier’s equations

Stokes’ theory

Reynolds’ equations
Prandtl's equations

Energy-balance

Kolmogorov’s
equations

Prandt!'s theory

The Understanding of Fluid Flow

_ velocities
Vorficity-transier
Statistical theory

Momentum-transfer

Turbulent

fluctuations
Universal profilc (log-law)

Correlations

|
I
| Isotropic theory

|
Reynolds-stress
equations

L1
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THE NAVIER-STOKES EQUATIONS — TECHNIQUES
OF SOLUTION

2.1 The Navier-Stokes Equations

As we saw in § 1, the Navicr-Stokes equations have becn accepted
since the time of Boussinesq (1877) as governing the flow of fluids,
both laminar and turbulent. From time to time doubts have been
expressed as to their relevance to turbulent flow. The doubts — and
our reasons for dismissing them — were summarized by Agostini and
Bassin 1950 as follows:

*“ The most natural idea, the only one which actually pro-
duces concrete results, consists in using the Navier equations
To what extent are they applicable to turbulence? The
turbulent motion is alvavs a macroscopic motion with
respect to a finer-scale motion, and, at the limit, with
respect to the molecular disturbance.  Therefore it is
reasonable to believe that it satisfies the equations of the
mechanics of fluids......Solutions of the Navier equations
are known only for simple conditions which are far from
resembling turbulence. In other words. while conceding
their validity, we practically (sic) do not know how to
solve them,”

The situation has not altered radically since 1950. The cquations
arc still impossible to solve analytically in general. Indeed the very
existence and uniqueness of a solution of a degenerate case has becn

35



shown only in the present decade. (For a review of the situation, sce
Temam [1976]). The existence of solutions of the general case can
be inferred from the two facts that:

(a) the equations govern a physical flow;

(b) the flow is well-defined and appears to yield consistent

measurements,

However, this argunient is far from a proof of the existence of a
solution, and it does nothing to confirm the uniqueness of such a
solution. The fact that we may observe laminar-type flow under
conditions that would normally generate turbulent flow (see page 7
above) might suggest, on the surface, that uniqueness did not even
hold. However, the problem is slightly different and in a sense more
fundamental: it is a question of the closedness of the physical system
considered. Thus, as we have seen, in the search for a single criterion
for the transition from laminar to turbulent flow, one initial condition
was ignored which turned out to be crucial in determining the quantity
sought: the initial disturbance due to the injected dye.

A .
2.2 The role of numerical procedures

There are, of course, many simple well-defined problems that cannot
be solved analytically. For example, consider the displacement of a
membrane stretched over an irregular-shaped frame, or (the samve
problem, same equation, same boundary conditions) the laminar fully-
developed flow in a duct of the same shape. In this case, equation
(Laplace’s equation) for certain boundary conditions; e.g. Boussinesq
derived the solution for the fully-developed laminar flow in a square
duct in 1868. However, the standard general method of solution in
such a case is to use finite-difference techniques and a high-specd
digital computer to perform what, until twenty-five years ago, would
have been inconceivably tedious calculations. 1n this way we oblain
the “exact solution” to any desired degree of accuracy of a given
physical problem. The solution we obtain is, strictly speaking,
the approximate solution of a set of discretized algebraic equations.
These equations represent the exact differential equation, which in
turn must be regarded as an acceptable rather than precise model
of the original physical situation. For example, the hyperbolie
functions that describe the laminar flow in a square-sectioned



duct take no account of inevitable non-uniformities of properties
of the fluid nor of minute irregularities in the desired squareness of
the duct.

2.2.1 The computer

The situation for the Navier—Stokes equations in the general
case is not, however, so straightforward. If we were simply to
tackle them head-on, we should find our present-day computers
incapable of solving them over more than an uninterestingly
minute region of space. Bradshaw estimated in 1971 (private
communication) that to produce meaningful solutions over the
smallest volume of genuine interest (say a 100-millimetre cube)
would take several million years on current machines. A more
recent estimate is that of Kwak, Reynolds & Ferziger [1975].

In presenting the results of their attempts to solve the three-dimen-
sional time-dependent problem, they observe that the mesh-size
must be smaller than the Kolmogorov microscale (v3 /e)% to resolve
the smallest scales of turbulence. This would demand storage of
the order 107 words: several orders of magnitude more than is
currently available. The full simulation must therefore remain
unattainable in the foreseeable future, except at very low Reynolds
numbers.

The situation is summarized in Figure 2Avhich plots, very roughly,
the speed of computers against time in years. (The data are drawn
from various manufacturers’ specifications). It is worth noting that
the speed of computers has not been increasing particularly quickly;
it is the reliability, measured as a ‘mean-time between failures’, that
has shown a dramatic improvement. The m.t.b.f. is now at least
three orders of magnitude greater than the time taken to apply any
of the models of turbulence considered below. Figure 2/shows that
on present indications we can not hope to achieve anything by a
direct attack on the Navier-Stokes equations in our lifetime. Indeed
if present international political and economic trends continue, lack
of investment will delay any further major advances in computer
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technology.* On the other hand, it is perhaps worth pausing for a
moment to note just how far we have progressed in the twenty-five
years since Charney, Fjortoft and von Neumann [1950] published
the first computer-based solutions of hydrodynamic equations. They
used ENIAC to solve the barotropic vorticity equation, producing
about 50,000 punched cards in the course of each of four forecasts
of the weather. Undaunted, they predicted that:

“... one has reason to hope that Richardson’s dream [1922]
of advancing the computation faster than the weather may
soon be realized, at least for a two-dimensional model”,

2.2.2 Modelling turbulence

In solving the Navier-Stokes equations, we take a slightly round-
about approach, treating the equations themselves witlh as much
general physical insight as necessary to

(i) eliminate in appropriate circumstances those effects

that are of no significance,

(ii) select those terms in the equations that can be represent-

ed in a simpler form. -

~ This has, as we have seen, been the traditional approach to the
solution of the problem. Thus, for example, Prandtl performed the
simplification (i) when he produced the boundary-layer forms of the
equations [1904]. He acted in the spirit of (i) when he replaced
the previously intractable term &v in the Reynolds equations by a
mixing-length formula [1925] (sece page 9 above). Together, (i)
and (ii) form the theoretical basis of turbulence modelling.

We do not, however, regard the technique of ‘turbulence model-
ling’ as a makeshift procedure. As we have already suggested (page
above) the only novel feature implied by the use of approximate
techniques is the fact that we can use them openly, acknowledging
the techniques (but not necessarily the results) as approximate. We
shall justify the approximations made in each case; we shall not try

*Moreover, it appears that even the benefits of transistor technology suffer from diminishing
returns.  The design problems associated with large-scale integration, as compared with dis-
crete compaonents, must now be‘traded ofI” against the advantages of reduced size. An over-
riding limitation, which places a premium on compactness, is the finite velocity of the
signals (less than 3 x 10® ms™). All the advances in speed since 1970 have come through
improved design and none represents a basic technological advance: for example, the use of
parallel rather than simultancous operation of processing units, as in ILLIAC 1V (1971).
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to justify them as exact representations. The task of pruning the
Navier-Stokes equations of their physically insignificant terms will

- always be of value as there will continue to be an optimum balance
between detail and speed of calculation for-any given problem. Even
when we have computers 107 times as fast as current machines it will
be neither sensible or economical to solve, say, the boundary-layer
flow on a flat plate by using the blockbusting head-on approach —
any more than we should wish to solve a global input-output model
of the economy before deciding whether to buy a new pair of socks.

In Appendix A we describe one possible approach (Birkhoff {1960])
to the problem of determining a rigorous set of criteria for the proper
formulation of 4 mathematical model.



A

Arithmetic operations per second
1020
1016 )

i Above this line we could expect to solve the Navier—Stokes equations by a ‘direct’ attack
1012
108 | Speed of computers
10¢ | W — — —racuumtube - - —— = >

integrated circuitry
104 - — — — — _——— — — - —»
electro- transistors & diodes

lg? |- mechanical .
10° .

19]40 19150 1960 1970 © 1980

FIGURL 2.1  The speed of computers 1944—

0}7



41

References for Chapter 2

1. Agostini, L. & Bass, J., Les theories de la turbulence, Pub. Sci.
Tech. du Min. de I’Air, No. 237; The theories of turbulence,
NACA TM 1377 [1950]

2. Birkhoff, G., Hydrodynamics, A study in logic, fact and similitude,
Princeton U.P. [1960]

3. Boussinesq, J., Memoire sur Uinfluence des frottements dans les
mouvements reguliers des fluides, J. de math pures et appl.

13, p.377 [1868]

4. Boussinesq, J., Essai sur la theorie des eaux courantes, Mem. Acad.
Sci., 23, 1—-680 [1877]

5. Charney, 1.G., Fjortoft, R., & von Neumann, J., Numerical integration
of the barotropic vorticity equation, Tellus, 2, iv [1950]

6. Kwak, D., Reynolds, W.C., & Ferziger, J.H., Three-dimensional time-
dependent computation of turbulent flow, NASA NGR-05-020-622
Report No. TF—5 [1975]

7. Prandtl, L., Ueber Fluessigkeitsbewegung bei sehr kleiner Reibung,
Proc. III Int. Cong. Math. [1904]

8. Prandtl, L., Bericht ueber Untersuchungen zur ausgebildeten Turbulenz,
Z.aMM., 5 [1925]

9. Richardson, L.F., Weather prediction by numerical process, Cambridge
U.P. [1922]

10. Temam, R., Ngvier—Stokes equations, North Holland, Amsterdam [1976]



THE REYNOLDS — STRESS EQUATIONS

3.1 The Basic Equations

The Navier—Stokes equations for a Newtonian fluid of uniform
viscosity and density are:

oU;, 0 1 opP
A (UUY=—— —— +py2U
5t UUTT g TV G-
where ¢ is time, p the density of the fluid, the kinematic viscosity,
and U the velocity component of the fluid in the direction x;. We
have also the equation of continuity

ap
U= — =
v ot
or
oU;
—=0 (3.2)
ox;

where we use the Einstein summation convention in the following
form: repeated Latin indices imply summation; repeated Greek in-
dices do not.  We shall continue to use this convention without
further reference.

Applying (3.2) we can derive the standard (incompressible) form
of equation (3.1):

oU  aU, 1 0P
Ziyy = - 4 py2U 3.1
or 1 dx p x; PVt (.1
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3.1.1 Turbulence

We next follow Boussinesq (see 1.2 above) in writing the depend-
ent variables U; and P as in each case the sumofa* ‘mean” part, 17,
and P,and a “ﬂuctuatmg part u; and p. The overbars denote the
operation of taking the mean over a suitable period of time, which
must clearly be greater than the time-scale of the slowest fluctuations
but not so large as to permit the turbulence to decay appreciably.
This operation involves an integration with respect to time alone and
will thus commute with any differential operation involving only
space co-ordinates: for brevity we shall apply this fact without furth-
er reference in what follows.

As the fluctuating quantities have zero mean, we may easily show
that equatien (3.1)" becomes

al; 1 aP

'+—(U,U+—m = —— —+vV2y (3.3)
af . P ax"
whence
oU; - 90 — 1 9P 0
L+, —U=——- —+vy2lU - -—
at / ax] ! pP ax,- vy U ax‘, “lul

(3.3)’

l a {Fa a, .
P ax/ ,l—}l pUu; ll}}

as U; 3U;/0x; = 0 by continuity (3.2).

The three equations (3.3)  contain the following variables:

Dependent
U mean velocities
P mean pressure
THTE “Reynolds stresses"’
Independent
. . AL
X; displacement in thei direction

t time
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Thus we see that the Boussinesq substitution U= U+ w;, followed by
time-averaging of the equations leads us to the equations of turbulent
motion in the form derived by Reynolds [1894]. On the right-hand
side of (3.3)'we see the quantities u;; arising naturally as dependent
variables in the equations for the mean motion of a turbulent flow.
Comparison of equations (3.3)'and equations (3.2) shows immedi-
ately that the nine quantities u,_ul‘ (the “Reynolds stresses™) represent
the sole difference between equations (3.2) (the laminar form) and
equations (3.3)! (the turbulent form). The presence of turbulent
ﬂuctuatipns.can thus be identified with the existence of non-zero
quantities ;1,2 the differences between the laminar velocity ‘pro-
files’ and their turbulent counterparts can therefore be attributed to
these Reynolds stresses.

3.2 The Reynolds stresses

The Reynolds stresses occur naturally in the equations for the mean
velocities of turbulent flow. In order to solve equations (3.3)" we
must obtain further information in order to eliminate the Reynolds
stresses. In the laminar case, we had the three equations (3.2) togeth-
er with the equation of continuity, which (in general and in principle)
enable us to solve for the three velocities and the pressure.

There are several ways in which we can obtain the extra information
we seek.

The simplest possibility would be to provide an algebraic formula
for u717 in terms of the other variables and their derivatives. This is
an approach which introduces no further equations, and can thus be
categorized as a zero-equation formulation. Before the advent of the
high-speed digital computer, this was the only approach of general
appeal. The best example of this type of ‘model’ is Prandtl’s [1925]
mixing-length model (see 1.3 above); another was von Kdrmdn's

[1930] similarity model.
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The mixing-length model suffers from a number of grave
disadvantages:

(i) it was devised for, and remains largely confined to. two-
dimensional boundary-layers, where a single length-scale
can plausibly be assumed to characterize the flow:

(ii) while, following Prandtl, we may reasonably assert that,
in the case of a wall-flow, the length-scale is proportional
to the normal distance from the wall, such a specification
will clearly not carry over to such flows as those contained
by two walls or none — such as channel, jet and wake flows:

(iii) we shall in any case have to specify anew in each problem a
constant of proportionality between the normal distance
and the length-scale, or (in the absence of a wall) the length-

scale itself.

Indeed. in view of these daunting limitations, it is a remarkable
fact that the Prandtl mixing-length hypothesis has been extremely
successful as a method for the prediction of a wide range of two-
dimensional flows. It will continue to serve us well, not least was a
yardstick for the success of new, more sophisticated treatments of

equations (3.3)".

Prandtl’s 1945 proposal was of a one-equation model.  As we saw
in Chapter 1 (page 13) the effect of introducing an equation for the
kinetic energy of turbulence was to provide an actual characteristic
velocity of turbulence (k1/2) to replace the notional velocity
¢dU/dy. We do not, however, overcome the difficulties of the
mixing-length model, as we must still specify a length-scale

separately.

Various workers have devised and applied fwo-equation models.
As carly as 1942, Kolmogorov proposed a model which would have
involved the solution of a kinetic-cnergy equation and one for the
frequency characterizing the turbulent fluctuations. As the
equation for the turbulent kinetic energy necessarily contains the
rate of dissipation as one term, it is not surprising that most two-
equation treatments have involved an equation for the dissipation.
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By no means all closures at this level have been of the type
described, and a full account of other forms of closure is given by
Launder and Spalding [1972]. If we have an equation for the
dissipation, €, we may then apply the high-Reynolds-number formula
linking the dissipation and a characteristic length-scale:

¢« k3’2/£

We then have no further need to specify the length-scale separately,
and the accuracy of our model will depend on the accuracy with which
we have modelled the transport of dissipation. It will, of course, still
also depend on the accuracy of the relationships proposed between the
Reynolds stresses and the other quantities.

However, the fact remains that it is not the turbulent kinetic
energy that appears in equation (3.3)': it is the Reynolds stress
z_qT,. So long as we do not solve for the Reynolds stresses that arise
in equation (3.3)’, we shall remain bound to the Boussinesq eddy-
viscosity type of model. In the two-dimensional case, the single
boundary-layer equation has only one such stress appearing in it.
Thus, in this case, the level of closure can be raiscd significantly by
including _il'lst one further equation. This was the approach adopted
by Hanjalic [1970] to the problem of the solution of a flow in
which the positions of zero shear stress and of maximum velocity
did not coincide. Coincidence will always follow from the eddy-
viscosity model:

: oU _ —
If  Byyrbulent a_y sETp uy,

then aU/oy =0 = uv=0.

Thus any model of the eddy-viscosity type must fail for any asym-
metric flow. Although Hanjalic':' three-equation model made
remarkably accurate predictions for the asymmetric boundary-layer
he considered, the number of flows for which it would be both
adequate and an improvement on earlier, simpler ones was limited.
The success of Hanjalic':’ predictions suggests that a fruitful line of
approach would be one which enables us to solve a whole range
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of flows by similar means. This necessarily feads us to the derivation
and solution of equations for all the Reynolds stresses, and that is
the line we propose to follow.

As we shall see in Chapter 4, the structure of the equations for all the
Reynolds stresses is of a single pattern. To provide a satisfactory model
of the transport of one Reynolds stress, it is necessary to make assumptions
or deductions which relate to the other stresses. Having provided
a scheme for the solution of one Reynolds-stress equation, we should be
niost unimaginative not to investigate the possibility of modifying
that scheme for the solution of all the equations.  Only after such

an exercise can we assess the rewards in terms of accuracy and generality
against the disadvantage of the additional resources required.

As we shall see, the Reynolds-stress equations are strongly cqupled.
For example, in order to close his system of equations, Hanjalic was
forced to make assumptions about the ratios of the normal stresses
in order to solve for the shear stress in a two-dimensional boundary-
layer. On closer examination of the relevant data, it would appear
that for the particular type of confined flows treated by Hanjalié,
the assumption of a coustant ratio is not in fact valid and must
eventually lead to errors in the prediction of flows where the level
of anisotropy varies strongly from point to point. For this reason,
we shall pav particularly close attention to flows ncar walls, for
which the anisotropy is known to vary strongly as between the near-
wall and outer (or mid-channel) regions. It will therefore be largely
on our success in predicting such flows that we shall be able to judge
the value of the level of closure we propose.

Over the last few years other workers have also been active in this
direction, notably Naot, Shavit and Wolfshtein. Their interest has been
parallel to our own to a great extent. The difference of emphasis between
their work and that presented here lies mainly in our specific attention to
the need for near-wall modifications to the general model. We shall compare
their proposals with our own, and shall apply their published model to many
of the flows we examine.
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2.2.1 Equations for the pu—,-u—,-

To generate further equations for the quantities pu;u; we shall

have to start afresh from equations (3.1).

0 — — — _
a—t— (lj, + lli) + aTl (lj'ljl"’ uilji+ lll'lji + ll,‘lll')

Multiplying (3.4) throughout by A

- ou; 0 — — —
w —Uptu, —+u, — (Ut u; Uy + 1, Uy + wguy)
ot ot ox;
1 P 1 9 — :
———uk 5;!——11,‘ ap Vuksz,-+vuk\72u,.

Now, taking the mean of (3.5) and invoking continuity,

TR N I SR R SR
iy — T —— WU; Yu, — w,U. +u Uill;
$ar TR axy T Tk g T T R G it

1 ap 3
S——u, — tvu, Vu
P "ax, KV oY

Expanding (3.6) by the product rule:

ou aU, )

u o, Uue — +ugy — +1u, —
a7 "ax,. "’ax,. k x;
= —% uy :—;—: + vukvzui
Thus
ou; du; U, a

u, — +U, u, —+ i w +u uli;
T PR P T

1 ap
=——u — + vu,V%u
P “"ax,. kYU

3.4)

3.5)

(3.0)

3.7)

(3.8)
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whence
dy, — A, G
“i T{- + [/I- “i ‘a—xl: + 3;; “i“f + ll" 3;7 llkll/'
1 op
=—-; lli a—;- + Vll!-vzllk (38)'
k
Adding (3.8) to (3.8)",
 — o 0 — aU,.__+aUk__a+ -
— . —— Ul — U u; t— 1l — 0l
37 itk T Y i (U ox, Kk Uj o, (il o, Uity
1 op ap
=—; {ll" 5;—]—( + ty 5‘;: +V(uk\72u,+u,-\72uk)
(3.9)
tvhe right-hand side of which is equal to
] 0 — 9 1 ou;  Ouy
—_  ———pu: + — N+ —-p ——'+—}
p {axk P axy pu,\% pl {axk ax;
+ v (0 V2 19 (3.10)

Now

1, Vzu,- + u,-Vzuk

0 ou; 0 duy

=y — (——) tu;p — (——)
ax"! a'YHX a'\‘m ax"l

0 ( au,-) _uy on; + 0 ( ity )_ oy O

U;
- . ! .
dx m Xm dx m axm axm ou dx m dx m

m

2 diy,  Ou;
-a—Tu,-u. 2 ;Z‘ —a—;i (3.11)

Xj m “m
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Thus, finally, substituting from (3.10) and (3.11) into (3.9),

0 __3u . 3l
{a Uk i(uu) {uuk—-—+uuk ax;}

' du; Ou; ou; Du 1 (0 0
-2 — L+ { } - ; {'a—;; (puy) + a_xi'(p“i)}

0xy Oxy 0x; ax
] 0
- 5)}; {u,-u,—uk -V 5x—k u,-u,} 3.12)

3.3 The problem of closure

The equations (3.12) are known as the Reynolds-stress equations.
If they were in fact simply equations for and involving the Reynolds
stresses, our problem would be more or less solved. However, Table
3-1 will indicate the dependent variables that arise in the combined
system of equations (3.3)" and (3.12).

As we see from Table 3-1, the result would seem to be that, far from
“closing” the system of equations (3.3) by providing us with an expres-
sion or equation for T:,—z}- we have succeeded in further “opening-up” the
equations. As we substitute for the unknown terms in our carlier
equations we seem to be gathering more and more unknown terms
in our new equations.

It is immediately clear that if we proceed in the same manner
(e.g. next producing an equation for the 11,1_7,77; by a similar method
to that of Section 3.3) we shall never reach a truly “closed” situation
in which all the variables can be determined from the equations thus
derived. In other words we shall always have more variables than
equations. Things cannot really be otherwise, for our equations
are essentially inbred: apart from equations (3.3)" and the continuity
equation we have introduced no new stock of information.
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TABLE 31
A list of the dependent variables arising in the complete system of
cquations (3.3)",(3.12) & (3.2) .
Variahle Fquation Derived from
U; 3.3 3.3' 3.12 3.2 33
P
— 3.3 3.3 3.3
ax,
11y 3.3" 3.12 3.12
ou; Oy .
— 3.12 Another equation  *
axk an
il 3.12 Modelled in 4.2.4 *
on; .
P — 3.12 Modelled in 4.2.3 *
ax;

(In addition, we must prescribe the values of the fluid propertics v and
p, assumed constant for our purpose, which appear in equations (3.2), (3.3)

and (3.12).)
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It is at this point that we have particular need of Hypotheses A and
B of Appendix A. We must call a halt to the process at some point,
and we need to use intuition to decide when that is to be. Chou,
for example [1945], who first performed the derivation in Section
3.2, felt that an appropriate point would be at the level of the triple-
correlations, on the ground that the quadruple correlations could be
neglected.

However. there is no evidence that the quadruple correlations are
negligible in general, so that this particular argument for proceeding
further does not really hold. As we saw, Chou’s closure would
involve ten further equations: this would stretch the capabilities
of most computers to the point where such a procedure would be
academic in interest rather than economically feasible.

The alternative to the production of further equations for the
transport of the triple correlations is to model them in terms of the
lower-order correlations and mean-flow quantities. By analogy with
the energy-balance for kinetic energy of turbulence, we shall see the
triple correlations arise in connection with the diffusion of the norm-
al stresses, and it would thus be reasonable to expect a gradient-type
model of the triple-correlations to perform as well as von K4rm4n’s
gradient model of the diffusion of turbulent kinetic energy (von
Kdrm4n [1937]). Such models have been entircly adequate in the
context of one- and two-equation models of turbulence.

If, as we shall seek to show, the triple correlations can be modelled
with fair precision in terms of simpler quantities, Hypothesis B assur-
es us that any residual error will not be troublesome. This is especia-
lly likely to be so, as the error will arise in the context of a quantity
that we know to make a very small contribution to the energy
balance — the diffusion. This will be all the more relevant in the
near-wall region, of particular interest to us, where the production
and dissipation of turbulent energy will dominate the energy
balance. :

As there would thus seem to be no reason to assume that we
should necessarily obtain greater detail or improved accuracy merely
by manipulating our limited store of information to generate ever
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more complicated equations, we feel justified in calling a halt at
this point. We summarize the reasons for choosing a Reynolds-
stress closure:

*  The Reynolds stresses arise naturally as the representation
of the turbulence in equations (3.3)', while quantities
such as the triple correlations do not.

* A Reynolds-stress closure is the simplest that enables us
to escape from the Boussinesq eddy-viscosity approach.

* If we proceed to a higher order of closure, quantitics will
arise which do not admit of a simple intuitive interpretation.
Apart from the danger of a consequent loss of contact with
practical reality, this may lead to serious problems of
modelling.

*  The Reynolds stresses are well documented experimentally,
while the triple correlations are not. In practice, this would
mean that even if we could predict accurately the values of
certain quantities, we should not be able to adduce prac-
tical evidence that we had done so.

*  Even the best modemn computers are fully stretched by the
demands that a closure at the Reynolds-stress level makes
on them: more elaborate models would raise problems of
time and expense.

*  There can be no reason for not trying the Reynolds-stress
level of closure before expending further effort in develop-
ing the techniques required by a more sophisticated level of
closure.

Already in the two-dimensional case, we need four equations for
the Reynolds stresses, in addition to the mean momentum equation
and the continuity equation, and a further equation for the
quantity(du;/3x,) (3u;/3x ), as we shall discuss in Section 4.2.2  below.
In a three-dimensional case, we shall need two additional Reynolds-
stress equations as well as the equations for the extra mean velocities.

Our next task is to close the Reynolds-stress equations (3.12): i.c.
to find differential or algebraic equations for the quantities staired
in Table 3—1. This will be performed in Chapter 4.
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THE REYNOLDS-STRESS MODEL

4.1 The Equations

Each term in equation (3.12) is customarily given a designation as
follows:

d 0y — . . R
{at Uk a){% uiy = CONVECTION

_{.._ 80, — 2l

u/uk 5}; + u‘uk .-a_.% PRODUCT]ON

ou,; ou 4.1
—w L DISSIPATION
axk axk
+
p (du;  Ou . - .
UL Buial BFidy | REDISTRIBUTION
P ax/ aX,
+
0 (e D T
—_—— ity —V —
DI IFUSION

I (2 d
-3 {-5;‘; (puy) + 5\’—, (pu/)}

54
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We have split up the terms involving the pressure, but shall occasion-
ally have to refer to them collectively as the pressure terms,
In Section 4.2 we shall tackle the problem of closurc in the order

indicated, dealing with the individual tcrms as grouped in equation
4.1). -

4.1.1, The trace of equation (4.1)

It is convenient first to consider the trace of cquation (4.1), which
we derive by sctting i equal toj

{a + U, N T =-2mm 2y,
— e 1, = — 2wy —
a[ k a.\‘k} i ik axk
axk
+2p E—)l-lf
ox;
d(—— 3 — 9 —
2 2
. S A Tt AR 1| — 2 —— ply
axk{’i k a'\'k 1} aX,- p;
Dividing by 2, we get, if we write k for [1; /2,
— 3
T 21, —— 3G, V{au,.i
— - ———— T — —— — —
{a[ + Un ax,,,} o Up thy ax; ax,,
0 :/__2 b
- - o uE—p -
a-\,::{ 21, Uj ax,, k}
3 —
- — pu; 4.2)
ax, l !

which is the equation for the turbulent kinetic energy k.
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It is casicr to see from equation (4.2) what the truc roles of the
various terms in equation (4.1) must be, In particular, the redistribut-
ion term justifics its designation by disappearing altogether from
cquation (4.2). The threc remaining terms on the right-hand side of
(4.2) have distinct effects, which breome even more obvious when we
consider degenerate cases, such as the two-dimensional boundary-
layer, where the equation takes the form:

Dk — aﬁ, ou; au,

TR ol et o
] ok 0 —
—d 0y —p —— 4.3)
axz{ Hitth V axz} alz Ptz

Now the term =y 138U |/ ax, is positive ncar a wall, as "“1 u, will
tend to the value U2 which (in the nature of friction) will tend to
oppose the vclouly Experimentally, even for flows in which 1)1,
must change its sig,n — such as boundary-layers between two walls —
the quantitics —iryr, and U, /dx, are observed to be of the same
slgu for alinost all the 1low. Thc presence of the term iy 13 au Jax,
in equation (4.3) will normally tend to enhance the amount

of turbulent kinetic energy present: hence the designation production
term,

Clearly the term —v au,./ax, au,-/ax,- is ncgative scmi-definite. It
can thus be secn to destroy &, and its significance is therefore that of
adissipative term depending on the viscosity for its effect. We shall
henceforth write

- all, aui
ax/ ax/

ou; 2
or—-p {--
ax/-
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4.2, The terms of equations (3.12)

4.2.1 The production term

The first term on the right-hand side of equations (4.1) requires
no “modeclling” as such, as it is composed of preciscly the type of
quantity that we seck: the mean vetocities U; (in this case their grad-
ients) and the ;172 i.c. the quantities to be gencrated by our solution
procedure.

The fact that the term 172 appears in cquation (3.3)"and aU,./a,\-,.
in cquation (4.1) merely shows that the cquations are strongly coupled.
In fact, it is already becoming evident that the coupling of the equat-
ions is alntost complete: alimost cvery one of the dependent variables
appears incxtricably in cach of the cquations — and not merely in the
cquation of which it is nominally the subjcct.

It is casily seen from equations (3.12) that the production of
turbulence energy occurs only in relation to uz in a boundary-layer,
where '1:, is the direction of mecan motion.

4.2.2 The dissipation term

In equations (3.12) we saw that one term in particular,

i_)fli E)u,-.
G,, —_— *

ax; 0xg i~ €

would require ingenuity in modelling. €, the second term in cquation
(4.3), represents the dissipation of the kinetic energy of turbulence.
If we were to adopt a one-equation approach, or to use a scheme
involving an equation for the transport of a length-scale £,, we
should need to relate € and 2 as follows:

e k32 [0, | (4.42)
(cf.Prandtl (1945)).
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However, as we saw in § 1, we shall find it more useful to treat
(4.4a) as a means of constructing a length-scale £, appropriate to the
turbulent motion:

R, ack3/2 Je (4.4b)

The alternative to a purely algebraic model of € is for us to try to
construct. first, an exact equation for €, and then a simplified version
of that cquation involving only the ¢uantities appearing in Table 3.1
(i.c. those appropriate to our chosen level of closure). In constructing this
equation, we follow the derivation given by Harlow & Nakayama
[1967].

Equation (3.1). may be written as

3 - — 9 —
57 Wity + (U +u) 55 Ui+ up)

: 1 + p + v 12 U"’ U")
Sllbtracting cquation (3.3)' we gcl

au, + T au, . BU + 01y
] l
ot k ox ox;, k ox, ox; Uk a\k
I op 8%y, 0
= - +v ---—----'__ 4.5
p ax S ot oxg Hillk )
Next we differentiate equation (4.5) with respect to vy, and multiply
througliout by du,;/dx,: i.c. we apply the operator du,/dx, 9/0x, to
equation (4.5).

du; {gu_,} Lo ;. du L ou 3% u;

avq a\,z ot 0x, anz ax‘k 5}9 5—\;8;,:

du; du, oU; Lo 3*T,

. (4.0)
0x, O0x, 0x; ax,z quax‘k

ou; auk ou; oy 2? u,

-
0xg axg axk argl 9xy 0,

b oy, 82,) + Au 33w, +au, GLRTATH iy

r oxg ax,ax,z ax,2 axk Oxp Oxg  Ox, Oxy Oy,
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Assuming that u; satisfies the criterion for
3u, 3%y,

0x,, 0x,  0xy0x,,

4.7

and observing that

80 du; duy _3U; dugduy

a — —— — o ———
@ Oxp O0xp Oy,  Oxp " Bu;ouy ;o

2 2
(b) _?_ {uk.l (Elil_) f E% ._l_(.%) +u aul a i
oxy 2 \ox, dxp 2 \0x, E)x,z 0x,, 0x,
du;, d%u,

Yk Bx, dx, 0Oxy 0,
2

© 3 {au, 0%u; ) _ ( 8211,-) +au, 33u,
© ax, Lax, ax,dx, )~ \ax,ox, 9x, 0xy Ox; Ox,
=—_->9ﬂ du; =i{0u " 3%y, ( )
0x, Oxp0xp0x, 0xp (Oxg 0x,0x; oy, axq
R [1 (au,.)z]}_ ( azw)

- xy 5;,: 2 \ox, 0x; 0xp

0
d) .— {u, Op By _ Ay Bp By, ‘u 3a%p A
ax" a aXQ ax axq a.XQ axqaxl axQ

op wy duy

+ “f P— U'
0, E)x,-i)xQ 0x,0x; E))q2

by (3.2), its corollary,

9 { 0" u; ‘i
— —_— =0
ax; {0x, ... a.\-ak

subject as usual to (4.7).
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We can now write equation (4.6) in the form
2 2
0 {l au,-) } 0 {l (au,-) }
—y (= +U, — {= (= .
ot L 2 \ox, ox; L2 \dx,

_ oy { Oy Ouy N 1T E)u,z} B

>

ax, | 0xg dx  9x; 0xy

ou; Ouy Oy

— C

dx, Oxp 0xp

2

d ]l /0
_9 i“"' ! (_‘2) D

0xy 2 Nox,

2

_ 9y , U E (4.8)

ax, T 0x¢ 0,

p ox; Lox, 0x,
2

( 3%y, )

-V
dx, 0%, G
2

92 {1 (au,.) }
tv—{=z({— H

0x,2 ) 2 \ox,
L du CLETHTN I

where we have dropped the overbars on Uj, as we shall have no further
occasion to refer to the unaveraged Uj's.
As we have defined

2
. all,'
6,-,- =€E=V Ex—g‘

we must now multiply equation (4.8) throughout by 2v and time-
average the whole equation. If we further define the unaveraged
equivalent of € as

2
( ou; )
V —
dx,

'
€
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we obtain an exact equation for €, due to Harlow and Nakayama
[1967]:

de de A
ot k axk
=_2pa_(£ {%%-{-%?ﬁ} B
Oxp LOxg 0x,  0x; Ox;
gy 24 O O c
0xy Oxy Ox
d —
— -~ € D
o, u €
FY 2
o, U E @.9)
v 0 {ap au,-} F
p 0x; tox, ox,
2 z
0%
-2 — G
{av"k 0xg }
2
1, 9 H
2 axkz

B '
0x,

Defining R as u'®/v, where € is the (‘integral’) length scale of turbulence
and noting that, if X is the microscale, A/ = O (R~ 1/2),

Term A is of order " |22
Term C is of order 1’4 /22 x R1/2
Term D is of order u'* /92
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Term E  is of order 1'#/22 x R~ Y2 and can thus be neglected in
any fully-turbulent zone.

Term F can be resolved (by analogy with our analysis, below, of
the pressure-strain term in, §4.2.3) into two terms, which
as Hanjali¢ and Launder [1972] argue, both contain
higher-order derivatives of the mean and fluctuating
velocities than appear in the pressure-strain term. It is
thus consistent with our chosen level of closure to neglect
Terim F.

Term G is again of order 1'% /22

Term H is of order (1" /22) x R~1/2 and is thus negligiblc for
high Reynolds numbers.

Term |  disappears by continuity (3.2).

Term B

Earlier workers (Rodi[1972] , Hanjali¢ & Launder [1972]) relicd
on term B for the source of generation of dissipation. Lumley and
Khajeh-Nouri [1974] argue that this term, by virtue of the relative
isotropy of the small scales at large R,can be written roughly as

p. U Oy duye e’ by 4.10)
an aXQ axQ Q 3
neglecting off-diagonal, i.e. anisotropic terms. The difference between
the two sides of (4.10) represents the degree of anisotropy and is
proportional to the time-scale ratio between the small and large scales.
If we further define

a.;:

T 2
i ﬁ¥—§5a @.11)

we see that the difference is

TEID 12 u'?

and can thus be neglected. This means, therefore, that term B should
be neglected for high R.
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Lumley and Khajeh-Nouri argue that the source of dissipation
must thercfore lie in term C. (Term D is a diffusive term, and Temm
G is negative semi-definite, so that — if only by elimination — Term
C is the sole term capable of positive generation)

Regardless of the individual sources responsible, the imbalance
between generation and destruction can thus be modelled as a
term of the form

20 (T2, 1 sy om
Eaj X - 3 8[/ (a R +b)+O(R )}

R-1/2 is a non-dimensional quantity here representing the imbalance
between generation and destruction of dissipation: a suitable measure
is the ratio /P between dissipation and production(— @@y 3U; / 3x;)
of turbulcnce energy. '

This leads to the model

€ — ay;
T {— Cet Uity 5;; — Cea e} 4.12)

rccognising that the term in §;; disappears by continuity, and neglect-
ing higher order terms in R‘ll .

Thus far, all workers are in agreement to the extent that the modcls
to which their arguments lead all reduce to (4.12) for high R. How-
ever, Lumley and Khajeh-Nouri proceed to advocate the replacement
of Pin (4.12) by Tl =% a a,; (with asuitably-dimensioned co-
efficient). 1, they argue, does not vanish in regions of flows where P
does vanish, ensuring the continued generation of dissipation even in
the absence of generation of turbulence energy. Attempts to incorp-
oratc this, and other aspects of Lumley and Khajeh-Nouri’s proposal
by the present author led to negative conclusions and it was deduced
that for the (simple one-dimensional) flows considered, a single set
of constants did not suffice. There would thus appear to be no
advantage in incorporating the model in a two-dimensional situation.
However, we must concede that more favourable conclusions were
drawn by Launder [1975] from investigations performed by
A.P. Morse. As we shall see, the results obtained from the model
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(4.12) are sufficiently close to experimental data where these are
available to justify confidence in its predictive powers.

The remaining term D represents the diffusion of dissipation by
turbulent fluctuations. By a similar argument to that which leads
from the exact triple-correlation equations to a gradient-type (von
K4rm4n) model of diffusion, Hanjali¢ and Launder [1972] showed
that, to the same level of approximation as used to justify the
derivation of the expressions for the generation and destruction
of dissipation, the diffusive term D could be modelled as

T ==y ¥ €
'k T — — U g —.
€3 € ke ax2

in a thin shear flow.

The modelled equation for dissipation thus reads

De agy AU €
Dt e " Pk
0 (k aei

2L il 4.13

* e ax;, { € Uit axg ( )

Determination of the values of c,, c,3, and c,5.

Like Hanjalié and Launder we consider the decay of turbulence
behind a grid (Batchelor & Townsend [1948]). Noting that the decay
is governed by a law of the form

koax~1-8

where § is small and positive, we have
k=Ax"1-8
ok

Z=A(=]- —2-5
dx ( 5)x
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Then (4.3) gives
UpA (—=1-8)x72-% = —¢
= e=UpA (1+8)x2-8
4.13) .then gives
U&Az(l +5)2x—4-26

(=2-8) U AU +8)x~ 30 =—c,

Ax—1-8
245
= 2Ty
191 if§=0.1
€2 T30 ir6=00

Hanjali¢é and Launder took the value § =0. If we examine the data of
Batchclor and Townsend, we soon recognize that each of the graphs
they present for U/k vs. x curves upwards, away from the straight

line as x increases, suggesting a value of § greater than zero. We have
therefore taken c.5 = 1.91 rather than Hanjalié & Launder’s value of
2.0. This was suggested by the work of Rodi[1972].

To determine ¢,y and ¢, 5, we consider the log-law region of a
fully-developed boundary-laycr near a wall, where production and
dissipation of turbulent kinetic energy are known to be in balance
(see Hanjali¢ & Launder [1972]). Here

u, x U
U == —227 + const.

K v
au, U, -
= ; also ~ gy =U?
Yy  KX9
___au, U3
€= —lju; — =-"—
a,Yz KXy

The appropriate values of k and -u—% indicated by various experiments
(e.g. Hanjali¢ and Launder [1972])

k=420 W=y}
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We have

De _ i, oU; e
Dt el Tk o, T %
k (4.13)
N 0 {k — O¢
Coq — 14— U ug —
3 ox, Le klle ax,z}
whence
3 Uy 2 6
0=('€l_lj_7_....7-l.j_7_ 2__('2_2__.5{7.__?.__2_
KXy Ky 42U C xk*-4.2U7 x,
v, 2 g3
+ c€3 —a— 4.-“2 . K_xz . Ufz . Uf
atz []“,3 Ktzz
which simplifies to
€y =€ —(4.2)% k2,5
which, with £ =0.41, gives
Ca1 = G2 — 3.0 Ce3 (4,]4)

It is perhaps comforting to note that, despite all the differences in
detail between our argument and that of Hanjalié and Launder (e.g.
they take u3 = 1.6 U;* while we take 12 =y}). they derive a relation-
ship

Cet = Ce2 — 3.5 Ces
which does not differ radically from our equation (4.14).
Our choice osz% =U? and k = 4.2U72 is, in fact, bascd on Hanjalié
and Launder’s own published measurcments [1972a].

The discrepancics between their choices and ours for the ratios
must be attributed to their use of the values associated with homo-
gencous shear flows such as that of Champagne, Harris & Corrsin
119701, which we suggest may not be so appropriate as those derived
from Ilanjalié & Launder’s own channel-flow measurcments. Relation-
ship (4.14) lcads to the result

Cfl = ].9] —'3.0 C€3 (415)

if we insert our calculated value forc,,.
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Measurement of the dissipation

One fundamental problem attendant upon our treatment of the
dissipation terin in equation (4.1)is the abscncee of reliable direct ex-
perimental data. Such energy-balance measurcments as there are, c.g.
those of Hanjali¢ & Launder [1972], contain results for the dissipat-
ion only as a by-product of the remaining measurements. I we con-
sider, for a moment, the measurement of the energy balance for a
fully-developed boundary-layer flow, the kinetic ecnergy of turbulence
being governed by the cquation (4.3), we have:

0=P—-€+D
e=P+D (4.16)

Clearly, if D is measured as being sinall, € (the dissipation) will incvit-
ably be scen to be roughly equal to P. But if P is derived from the
product of two measured quantitics dU, /ax, and &[5, in the casc of
a two-dimensional boundary-layer. and D is taken as equal to the
measured values of the triple-correlation gradicnt, cach measured
quantity f being subject to the errordf:

— au, alU;
€+ de=(—uty +8 (—1qiz3)) I +5 (-——

Xy axl
+(D+6D)
Thus
U S oU
be =8 (—uyuy) - a.r; + (- uy) - 6 (—8;2') + 86D 4.17)

Unfortunately, therefore.8¢ is not merely the sum of the crrors in
iy, 0U, /9x, and D, but is the weigltted sum shown in cquation
(4.17). Worsc still: the errors are likely to be largest when the co-
efficients are largest (e.g. near a wall).

We can therefore not rely on energy-balance measurements for
accurate information on the dissipation.
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Evidence of isotropy

If these were the only available checks on the values of €, we should
be in doubt as to the validity of the model. However, it is a well
established experimental fact (cf. Hinze [1975]) that the production and
dissipation of turbulent energy occur at opposite ends of the frequency
scale.  Energy is produced in large eddics (at low wave numbers)
and dissipated in small eddies (at liigh wave numbers) (see. c.g.,
Tennckes & Lumley [1972], §8.3). The further fact that these
ranges are clearly separated in the flows we consider by a well-
defined ‘inertial subrange’ enables us to confirm, by examining spec-
tral decompositions of the turbulent fluctuations (e.g. those in
Hanjali¢ and Launder [1972a]), that the small-scale turbulence is
isotropic, as first suggested by Kolmogorov [ 1941].

In view of this evidence, we are able to allocate the dissipation
of turbulence energy equally among the normal stresses 1,”:

I
€a = 3 Cii
It is reassuring (o note that these observations are in accord with the
common-sense view that the small-scale activities occur over such
short times and distances that they are bound to be insensitive to
gross quantities such as mean velocities and mean strain with large
characteristic time- and length-scales.

Again, in accordance with experimental evidence. we allocate no
dissipative activity to the off-diagonal (shear) Reynolds stresscs.

A different model:

Hn/n
= ¢ dY

AR

was proposed by Daly and Harlow [1970] but is not supported by
the data of Hanjali¢ & Launder [1972].
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4.2.3 The pressure-strain term

The next term to engage our attention is the “redistribution™ term
of equation (4.1):

1 ou; au
L= — 4.18
I p ! (a.\' ax) @.18)

This term, as we have remarked (in Section 4.1.1), is redistributive of
turbulent kinetic energy as between the i i, (the Reynolds normal
stresses). If, for a moment, we think of the Reynolds normal-stress
equations as a separ.ale closed system of equations (which of course
they arc not) this term acts merely to allocate & to uy, ;%- and 12 13
after altowing for the effects of production and dissipation, and of
diffusion; it thus neither creates k nor destroys it. Now, relaxing

our view, and admitting that the subsystem of nonmal-stress equations
is not in fact closed, we see, for example, that the terni (4.18) also
appears in the turbulent shear-stress equations (as, of course, do

also the normal stresses themselves) and that it is thus capable of in-
fluencing the mean-velocity profiles and the rate of production of
turbulent kinetic energy. We shall, nevertheless, have occasion to
think of the term (4.18) in its redistributive role, neglecting its
interactive influence.

Our main concern in “modelling” the term (4. 18) will be to provide
a representation which will serve to atlocate & in the correct ratios
(i.e. in accordance with the empirical data) to the normal stresses.
The consequence of our approach will be to allow the effect on the
turbulent shear stresses to emerge naturally from the model. If our
assumptions are correct, the requisite ratios of the normal stresses
will provide sufficient information to determine any unknown co-
efficients in the model. Ifour assumptions are correct, we shall then
find the effect on the u 1; (i#7) correctly predicted.

It is perhiaps worth pointing to the crucial differences implied by
our choice of a full Reynolds-stress model. compared, for example,
with Hanjalic and Launder [1972] who solved equations for k, € and
uju, in the two-dimensional boundary-layer, replacing the normal
stresses by fractions of kK wherever they arose.  This implies an
essential difference in the importance to be attached to the term
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(4.18). For us it is a redistributive term for the normal stresses
with consequent effects on the shear stress, while for Hanjali¢ and
Laimde; the term was significant only in respect of its non-redis-
tributive role.  The consequences of the effects on the shear
stresses are far from trivial and will appear as effects on the pre-
dicted mean-velocity profile; they areresponsible for the decay of
m' In a sense, therefore, we are more rigidly constrained by
the present model than Hanjalié and Launder were by theirs: we
approach indirectly the crucial problem of producing an equation
for u u, in a two-dimensional boundary-layer — a problem which
Hanjali¢ and Launder were able to tackle head-on.

Eliminating the pressure

Equation (4.5) states that

o ou, oy; oy
U —L vy =Ly, 1
at k axk “ an “ axk
| ) 9%u; 0 ___
SR P S Ly, (4.5)

p ax,- axk2 axk
Following Chou [1945] we take the divergence (9/9x;) of equation
(4.5) and recall that continuity dictates (3.2) that ou;fox; = 0:

2 . . ) 02
19 _9u; Uy duy. U . duy duy T

-— —_— —_ 4 — ——
p OxP  Oxp Ox;  Ox; Ax;  Ox; dxp  OXpOx;

Therefore, as

] { ] 0 { oy, ou; Ouy
— J— . = Ui — Y} = —= + —
ox, Lox; (it )} ox, \ oy axp Ox;

i

]

2 2017
Tvip=2 du; oy 0wty + 0° (u;1y ) 4.19)
p

5}; ox;  Oxy a?,. 0x; 0xy,
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Now, taking (8/dx; ) of (4.19) we sce that

_l_VZ E)[_)) =_2 = 9 {aU"'?“}
» 0xy axk ax,, 90X,

AT 33 w11,
0x,, 0X,, 0x;,  0X,, 0X,, 0X;

(4.20)

Green's Theorem states that

1 [ Viu ! J 1 ou
U=—— | —dV+— - — d¥ - - —
4 r an . r on z 4 ]u on ( ) dz

14

whence

1 op 1 J 1 9 (E)Um' au) ,
- === ] 5 — dv
p Oxg 2w J r 9x; \dx, dx,
y
+—l—j '—{ 2ty Dyt }dV' @.21)
4n r 1 0x,, dx, 0x; ax,,,a\ 0xy
.
1 1 3 (o
L[ g
4mp roon \oxg
op’ 3 (|
L)

Tamp ) A,
2 .

p is a function of x4, yq, and zy (fixed); all the terms of the nghl-
hand side of equation (4.21) are evaluated with respect to x',y' and
z' (moving over the volume or surface as appropriate).
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If we now multiply (4.21) throughout by u;. evaluated at (xg, yq,
20), and put bars over appropriate terms, we see that

ll f { m.auu}ldV,
'axk ax, Loy, ox r'

m

LI IR LR (4.22)
4n 0x,, 0x, 0x; r
¢

1 ap' op'u;) o 1 ,
+_l {_' 8' ( P “i) _0pwy) , (_)} S
4mp roon \ox, oy om \r
>

Chou suggests that the surface-integral term in equation (4.22) may
be neglected if u,-api/ax'k is small. which it is. provided the point
P(xg, V. 2p) is not too close to the boundary.

1 93 u

This argument then leads to the following expression for the
) 1 7 op
correlation ; Wy —

ax,
I 8 ——  p ou; I 9
PRI s NP T
J P ax/ ﬂ a\‘/
=5+ _]._ I {(az(“C”m ) ), aUl
7 4n : 0x, 0x,, 0x; 4.23)
— g J
®ij, 1
. (aug)’ (au,,,)' au,.) dv
567,, 0x, 8.\'j lx — yl
Sy ~~ J
¢i/‘2

with the primed values taken at v, unprimed ones at x.
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Equation (4.23) thus shows that the pressure-strain correlation can
be divided into two parts: the first involving purcly fluctuating
quantities, and the sccond involving tlie mean rate of strain. In fact.
Chou’s argument covers, as we have seen. not merely the “‘redistribut-
ive” part of the pressure term, but also that part of the original
pressure term in equation (4.1) which we have tended to separate
out as morc akin to the diffusion. However, it should always be borne
in mind that over the fargest part of any near-wall turbulent flow, the
production and dissipation of turbulent kinetic energy are in balance,
and the diffusion.is altogether relatively small; it is thus virtually
imnmaterial whether or not we include the separated-out part of the
pressure term when we model the pressure-strain term.

A ’710(1(,’[ of¢ii,l
We follow Rotta’s suggestion (1951) that

€ —— 2
(¢le +¢ifvl)= —C¢l —];'- (llill/—s 5,,/\.) (424)

Rotta argued that in the absence of external influences the most
probable distribution of the turbulent fluctuations was the isotropic
one. Hence, the effect of the term Il; (4.18) was to cause a return
to isotropy. (4.24) was the obvious initial choice for a mode! of
®;;.1» setting itas proportional to the degree of anisotropy. Aswe
have seen. for a boundary-layer, in the absence of diffusion. the
ressure-strain terms are the only ones capable of generation in the
i, cquations where '1: is any direclion normal to that of the mean
motion. This enables us to use experimental data for a boundary-
layer flow to assess the effect of the pressure-strain terms.

In particular, Rotta was able to derive a formula for the coefficient
Ca1- We apply Rotta’s analysis to the data of Champagne. Harris and
Carrsin [ 1970}, This process leads to precisely the same conclusion
as that drawn by Rotta — a value of ¢, roughly equal to 1.4 (Rotta
gave the reciprocal as 0.7). (We present a more detailed derivation
in the context of the determination ofc¢2 , below)

Intervening writers have found different values for ¢, @ in every
case. this can be related to the level of anisotropy of the flows con-
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sulered, Expression (4.24) shows that the greater the anisotropy

the larger will be the required value ofc,;. Rotta himself revised

his estimate [1962] to 2.8, a value which has been used by Hanjalié
and Launder [ 1972]. and close to the value of 2.5 used by Wolfshtein
and his co-workers [1969].

Thus far we have tiied to maintain a high level of gencerality in the
argument. At this point, however, we adjourn the discussion of
;1 pending a detailed discussion of the effects of the proximity of
a wall (§5 below). Everything we have said up to now has been of
particular relevance to flows remote from walls.

771¢' term ¢,,'2 '
From (4.23)

o [ CY) (Y () L s
™ ax,, ax, o) Ix —yl

v

For convenience, we define §=x — y.

if

R =1 (), (g + 1)

— ! ’
= Uity , Say.

0 ( 7 du; , @ R —0 R (4.26)
— . = —— 1 = e R
a.\',- “l “m 3.\',- Iy a'\'/' mi F) E/’ mi

as the u

m are independent of the x;.

‘Then
9 (3’2 " ) __ 9 (_a_ m)
axg \ox; ™ axg \ df;
= ___aZ m .. aum. a“i,
0508,  Oxq Ox;
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whence

an,, du; _ 3*R,,

m - = _

dx, OX; 9k, 0¢;

(these results were obtained by von Kérmdn and Howarth [ 1938]).

If we now define:

9 UQ i aZ UQ mi
bir,2 = o— gt nboj
m |, FmOW | (4.27)
+—————--—-63U‘z My
npCej
axy, 4x, 3x, 0

we sce also that, by Taylor’s theorem,

1 f oly(rg +1) 51/,,, (’0 +r) au,.(ro") dv

%255 | ox, ax, ax, r
14
Ay, 1 J du, (rg + 1) B (rg) dV
o, 21 | dx, ax; r (4.28)
R/ : B, (rg +1) Builrg) dV
ox,, ox, 2w m 0x, ax; 1

— - ————— ———

33U, 1 1 By, (g + 1) Buy (rg) AV X
¥ “2n i &n 2! ox ox; r
9x,, 0x,0x, 2m , { 2 ;
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which shows, by comparing co-efficients, that

a,m l 22 Rm! ‘_{K (4.29)
QI -a&'gaél r
y
bm!... I E aszl d’V (4 30)
ST R T '
v
2R, dV
== jt,, » asgag ; (4.31)

Rotta showed that by considcrations of continuity and symmetry
(1951, Appendix), the following conditions must be satisfied:

tf'"' = atén = a}'é‘ : 4.32)
agtii =0 4.33)

In addition, we have the following conscquence of Green’s Theorem:

I dVv —_—
al = — 5 f V2R, () — = 2R,,,;(0) = 2111, (4.34)

Rotta [1951]} assumed values for the a”” derived from isotropic
turbulence data. The observation that somc of the a”}' were linear
combinations of the Reynolds stresses led llanjali¢ and Launder [1972]
to deduce a model based on the assumption that the a’q’}' could all be
modelled as linear combinations of the Reynolds stresses. Launder
[1971] proposed a more rigorous version of the earller model, the
basis of which is as follows.
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The most general such tensor capable of satisfying
is

agf = a, Ooj Uty + 0ty Bgytdy, 10+ 0ty 8¢, Uty
— —_— _ (4.35)
tay 8y up g g By wjtty oG By g1y

0y 8oy 6,y ity +0g 8o 6,5t 1y + 0tg By 8y i1ty

In Appendix B we solve the system of equations (4.32)—(4.34) for
the coefficients &, in terms of o,. This gives the model in precisely
the form in which Launder originally proposed it:

Y

agif = by, uyu, + BB otigty + 8,y gt +80.thy 1y + 8y 11, 14g)

+ €428y tigliy + (08, 80y + V(8o By + 8,8,0)] & (4.36)
where
o = a=(dc,, + 10)/11
oy =0 ==y = B=(—2-3cyy)/ 11
2a, = 7=(-50c,,—4)/55 (4.37)
20g=209 = v =(20c,, +6)/55
o = €2

If we define

= A,
Py = — Byt 4y + b1, 144} .

m
—_ U,  —— 0U, (4.38)
= - {umllig;’—:'*'llmul a—x,‘n}

U, —— aU,

D, =—{uu,, ——a-f'- + wu,, ~—x—'iﬂ}
—_— 0

P=—u,u, o, _ rate of production of

Xm  turbulent kinetic energy
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By comparing coefficients, it is easily seen that

ay,
ni/.z = 5’;;’2 {a;”/" + aﬁ"/}

_ (e ¥8) o 2 (4.39)
== S Py~ 5 8P}
(8cyy — 2) 2
(30¢,; —2) v {a_q, N a,u,.}
[ . ax;  0x;

This is in fact the form of the model proposced by Naot, Shavit
and Wollshtein [1972]: their proposal and that of Launder [1971}
are thus wholly equivalent. (This was shown by Launder [1973].)
Their “¢’* and Launder’s “cy9” arc related simply by:

105¢,,+4 —88¢=0

Naot, Shavit & Weclfshtein included only the P, term in an
earlier proposal. This model, as we shall show in Chapter 6,
is quite powerful in its own right.

The deterntination of Cp2

The form (4.39) is much easier to manipulate than the rather
clumsicr expression (4.36), though, of course, (4.39) is merely an
algebraic rewriting of (4.36).

It remains for us to determine the value of the sole parameter ¢,y
in (4.39)._To do so, we return to equation (4.1) and consider the
ratios ofz?l-: z_l{: ¢7§ gencrated by a nearly-homogeneous shear flow,
such as that reported by Champagne, Harris and Corrsin [1970].

Before proceeding. we draw up a table of values of the various
components of the modelled term (4.39) for a two-dimensional bound-
ary-layer. Table 4.1 illustrates another, acsthetically pleasing,aspect



of the model when written in the form (4.39), viz. that cach of the
components of the “redistribution™ term is itself redistributive, i.e.
has zero trace.

Using Table 4.1, we see that if production and dissipation are in
balance, i.e. —uju; oU;/dx; = e,

(i) for u}:

2
uy 2 _8+12¢,
ol 62 (4.40)
k 3 33 ¢y
(i) for u3:
29
usg 2 _2-30c,,
whence
l_‘j’ - E = M (4.42)

Now the data of Champagne, Harris and Corrsin [1970] suggest that
the values of the normal stresses are such that

2

uy 2

— - = =0.28

k 3 0

5 I

Hz -

L. - :__0.2'
k3 '
")
52007
k 3

With these values, the equations (4.40) — (4.42) form a pair of
simultancous equations in the two unknowns o1 and Co2- There are,

_g?f course, only two independent equations as we must always have
up =2k,

79
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The solutign of the pair of equations

8+ 124y =33 x 0,28 ¢,
2 -300, =335 (<0.21) ¢,

is easily scen to be

C'?Z =0.38
136 (4.432)
C¢| = 1.

The puir of values that we have chosen to use:

€p2=0.4;¢4 =15

is clearly not in any significant disagreement with the valucs (4.43).
No single sct of data can be regarded as absolutely conclusive in the
detcrmination of constants intended to serve over a very wide range
of flows (ideally, of course, all flows), and our aim is not to predict
perfectly one simple flow, but to predict well a whole set of compli-
cated flows, Morcover it is rcadily scen that the pair of cquations
(4.40) — (4.41) is highly sensitive to small changes in the values of the
normal stresses: i.e. to experimental error.

Thus, if we had chosen to interpret the Champagne, Harris & Corrsin
data as yielding

—
up 2
— -~ ==0.30
k
> S
llz
- - -=-0.18
k
L2
uy 2
= —==-0,12
k3
— a perfectly tenable interpretation — we should have concluded that
Cap = 117
(4.43b)
C¢2 =0.30
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Component . . .
t u3 13 Ui,
Term i=j=1 i=j=2 i=j= i=1: j=2
{Pfi_z‘sf/P} —-‘}ITTIa_Ul _277—,78U1 2-——; a({'! -5 al
3 3! %, | 3 17235, 3 1%2, 13 3—21

2 2 — 4 — —
{Dil -3 5i/p} Zuy uzﬂ’l 45 uzﬂ; %Wza—q u? iU1

3 Ix,| 3 1723x, X, 3%,

al; dy;
(a—' + '—-J) 0 0 0 1]
X 0x; X,

Table 4-1. The components of the modelled term ¢;; , fora 2-D
boundary-layer.
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4.2.4 The diffusion terins

The remaining terms of equation (4.1) are diffusive in effect. We
write
{ wu )+ O 5w + — Dl
Wty —V — U.U; _pul, —PY;
] axk '] axi X;

9
~T; =a

d d
= a—x—k- {uillillk 4 a‘ u?l-l} + a—x—;(alku"*' 61’\’“])[) (444)

Following common practice since von Kdrmdn [1937] we assumec a
gradient-type model of diffusion (see § | above). We isolate the second
and third terms as respectively

(i) the laminar diffusion of Reynolds stresses, which is negligible
by comparison with the first terin:

u3
O (first term) = 3

0 dt ) wr w3 1
sec rm)=— s . —
econd terim 2 R ¢'R

i.e. it diminishes with R™! as R~ oo;

(i) the pressure-diffusion term: this was incorporated in cquation
(4.23) above.

Essentially, our aim must be to provide an acceptable simulation
of the term m To be “acceptable”, the model must be (i) a ten-
sor of the right order. (i) invariant with respect to cyclic permutations
of the suffices, (iii) composed ‘of Reynolds stresses and mean-flow
quantitics.

For the moment, let us relax the second of these conditions — and
consider the suggestion of Daly and llarlow [1970], viz.
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(A) T,,,:—c,i{fukulﬁ. &T{iii (4.45)
ax; Le X,

We shall neglect the operator - ¢, 8/dx, k /e, The factor /e is introduced
for dimensional reasons — it is the appropriate time-scale for the diffus-
ive activity (see Tennekes & Lumley [1972]).

It will be noted immediately that there is a distinction in (4.45)
hetween the suffices i and j on the one hand. and & on the other. As
we intend initially to examine a two-dimensional boundary-layer,
this distinction will be in order, provided that k represents the single
direction in which we suppose derivatives to exist.

This model, which we shall designate “Model A’} has in fact been
thoroughly tested by various workers (e.g. Rodi [1972]) and found
satisfactory. For a two-dimensional boundary-layer, it gives the
following matrix of diffusion (each location corresponding to the
Reynolds stress in question):

1 ) 729 I
129, 2 139 T W, 0
Xy 0x,
20 T 20 72
wl uu, g Y 1z 0
X2 .Yz
0 0 3 9 2
i dx, ]

Next, we consider the simplest model satisfying the criterion of
invariance, having regard to the tact that Model A gives a good rep-
resentation of the term. The obvious way to make such a biased
model invariant is to take three similarly-biased models, and add
them topcether. In this way we arrive at the model, which we shall
call By (the reason for the suffix will emerge later), first announced
by Hanjati¢ and Launder [1972]:

(By) i1 %., TR TS —2— TR u,—:— i (4.40)
A xl .\'I
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Model B; has 2-D matrix

- —

=50 T =3 - 20 0
u,}-g—xzuf + 2u,u23;2u,u2 2u2a Uy ug+ Uy uZa 13
2l-l§_iulu2+ uluza—l-lg 3_"_1%-6 ;;;
0x, 0x, 09X,
! 0 0

llowever, B, is by no means the only invariant model of the type
we seck. By simply inverting the order of operations (multiplication
and differentiation), we immediately arrive at the model which we
shall call B, :

(By) i 9 ety + T 9 17,——141 + W 9 Fu} (4.47)
X, 0x, 0x,

which lias the matrix

ul-a— u2+ 2ulu2i Uity 2u1uziu% +u§-a_u1u2
ax2 axz aX2 axZ
u? iul U+ 2uyuy 9 13 3u: — 13
axz ax2 axZ
0 0

Unfortunately, B,, through a priori of the same status as B,
leads to the intuitively unacceptable result that there is no diffusion
of the normal stresses parallel to a wall in a boundary-laycr along
the wall. It would be aesthetically more pleasing, of course, if B,
and B, led to the same results.

The next possibility is given by a further rcarrangement of the
relative roles of the dummy and active suffices in the model:

(Cy) l—‘:_dl{i o + 2 u; ll + - u 1 } (4.48)
3%, ox, e

with matrix

— 3 —
Wi
0x,

_a —_
w3 = 13
x4
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k9 2 2k3d am, 0 W
09X, 9N,
2k9_iww, 3k 2 0
ale 2 axz 2
k9 12
0 0 ax,3 -

and obverse

(€2) {——uku,i’- +aE 2+ g } wE  (449)
with matrix
T}a_k . 2ugu, 3k 0
axz a.\'z
2u, u, 9k - 312 9k 0
! 2ax, ’ax2
2ok
0 0 o
X 36;:,

Unfortunately, the second of these models, C,, is quitc unrealistic.
as it suggests that there is no diffusion of the normal stresses as such,
but mercly of the turbulent kinetic energy k. On the other hand, with
C, we have reached a2 model due to Donaldson [1968]. It is. more-
over, in fact, the model used by llanjali€ and Launder in generating
their predictions. Although Hanjalié and Launder announced Modcl
B, , they simulated the normal stresses by replacing u% by 0.5 %k, and
also rejected as negligibly small those terms (in locations (1.1), (2.1)
and (1.2) of the diffusion matrix for Model B, ) which distinguish
the resulting model from-Model C,. We thus scc that Model C;,
subject to certain plausible simplifying assumptions, can be regarded
as a degencerate form of Model B.

The final possibility is:

D) Yy 9 4u + 1 u,i u u, + W,—a— o (4.50)
<1 X1 *1

with matrix
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i Q—E} T u, uzg-'( w +13) +(u} +2)% uy
ax: axz X2 axz
—_ —_— — — —z\y —— — 3 — S —_—
u, “2%.( w + 1) +(ud + 1l )8y, Uy 3us — 2 +3u uzg— Uty
X3 ax, 3%, X3
0 0

where, it will be noted, we have not made use of a suffix.. This is
because, as is immediately obvious, Model D is “self-obverse”. By
permuting the suffices in an exactly analogous way to that used to
get from B, to B,, or from C; to C,, we get from D to itself. Model
D has an additional heuristic attraction, which is, however, not of
itself sufficiently compelling a reason for us to abandon Models A,
B, and C,. Indeed, as we shall sce, Model A, for all its appearance
of non-invariance, gives the best results. This is because the result

of making the model! invariant is incvitably to increase the cffective
(2.2) component of the appropriate matrix for the two-dimensional
case by a factor 3. However, the mcasured values of u; 15 123 shown
by, e.g. Hanjali¢ and Launder [1972], simply do not support this:
the diffusion of 13 is not three times as fast as that of u3. Though
Model D does tend to compensate for the overlarge coefficicnt of the
(2,2) component of the diffusion matrix by taking the value of u%
rather than u% for the cocfficient, we do not find in practice a great
improvement over the results of Model B, and none whatsocver over
those of Model A.

The principal objection to Model A is its apparent non-invariance.
Itowever. it is clear that not only arc all the Models B,, B,, C,, C,
and D possible invariant models of the diffusion, but so is any lincar
combination of these models.

The question of invariance

We consider the most general lincar combination of the invariant
models:

G =aB, +BB, +7C, +6C, + 7D (4.51)
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We shall show that it is possible to choose values of ¢, ..., n that make
the invariant model to G (4.51) capable of simulating the numerical
values of the non-invariant Model A.

—_— ——

If we take, e.g. k=12 =31}, 13 = 2u}, w1y = u} we obtain the
four equations:

11 (¢ +B)+27(y+6)+28n=9
9 (a+B+27(y+8) +10n=3

(a+B)+ 3(y+8)+ 2n=1
3(ax+B)+ 6(y+8)+ 8n=1

(4.53)

As these 4 equations have only 3 independent unknowns this is a
consequence of the simplification (4.52) we solve the last three
exactly:

(@+f)=-4
(y+8)=7/6
n=3/4

Substituting into the first of equations (4.53) we get:
—-44 +27.7/6 +28.3/4=82=9

Thus to a very high degree of approximation we find that the first
equation is satisfied.

We have thus shown that where (4.52) holds, the matrices
and hence the models satisfy, e.g., the relation

7 3
= 4B+ C 7D (4.54)

We are thus justified in treating Model A as an apparently non-
invariant combination (4.54) of invariant models. The apparent non-
invariance can be attributed to the replacement of terms like (3u3 +
u%) by the corresponding fractions of k.
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lHowever, we must recall that our search is for a feasible model of
turbulence: one which (in Lumley & Khajeh-Nouri’s [1974] words)
is ‘not beyond the willingness or ability of reasonable men to pay
for'. We recall that the diffusion is only a small component of the
energy balance (typically 5% of the largest termn in a boundary layer
except for regions where the mean velocity gradient is small), and
that measurements of triple correlations arc relatively scarce, with
consequent doubts as to the accuracy to which the gradients of the
triple correlations arc known. We feel justified in concluding that
Models A — D are all of equal status.

One caveat, however, is that Model A cannot be generalized with-
out care (and regard for the data) to diffusion in three dimensions.
This is discussed in § 7 below.

The determination of the constant ¢

To determine the value of ¢;, we first turn to Table 4-2 for guidance.
We sce that the value of ¢; that this suggests is in the region of 0.1.
Hanjali¢ and Launder, using Model C;, gave a value of 0.08: this
was, however, on the basis of taking the ratio u%: k=10.5, which we
consider rather high. Our choice, for Modcl B, (as opposed to its
degenerate form C;)isc,=0.11. This is the result of many thousands
of computer calculations, and can be regarded as thoroughly optimi-
zed in the context of two-dimensional boundary-layers.

We shall clearty nced a different value of ¢ for use with Model A.
To see roughly what this value must be, let us consider the net effect-
ive diffusion of &:

Model A:
c. u, L w, tu  otu (4.55)
d

Model B:

¢ (terms (4>« _a w 0w, u cu, Zu
s ax .
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| |
f ! |
' |
4 I
x,/D 0.2 | 04 06 | 08 |
i i |
; ]
A Values of triple correlation ; —0.09  —0.21 - =0.22 | —0.06!
__ ! ! |
! [ & ;
| ' i
B Gradient-modelled terms | —0.32 . —09 ~1.2 | -03 '
R
AlB=c, | 04 023 0.18 | 020]
R IR R

Table 4-2. Values of the diffusion coefficient deduced from data of
of Hanjalié & Launder [1972].



90

for these net rates of diffusion to be equal, as they must be, we see
that if wyu, ~u? ~0.4 k

G, = 18¢, (4.57)

From Table 4-2 we sce that the value of ¢, must be about 0.2.
We find, indeed that the best results are obtained from Model A
with Gy = 1.8 x0.11 =0.2.

4.2.5 Summary

The Reynolds stress model is in principle now closed. The missing
details in Table 3-1 are now available:

® The term au,./axk-au,./axk is now the subject of cquation (4.13).

® The term gttty is modelled in §4.2.4.

® The term p au,./a.\-,. is modelled in §4.2.3.

However, in §5 we shall show that although the model is closed, it
is not yet quite complete.



THE SITUATION NEAR RIGID BOUNDARIES

S.1 The Data

If we collate the available data on Reynolds stresses in flows near
walls, we obtain Table 5-1. If we then collate similar information on
flows uninfluenced by walls, we obtain Table 5-2.

Comparing the consensus of Table 5-1 with the results from Table
5-2 we sce that ul2 is greater near walls and 1122 smaller, than would
be the casc in regions remote from walls.

5.2 Explanation of the phenomenon

We now cxamine the various terms in (4.1 to determine which of
them is capable of causing a transfer of turbulence energy from
1(22 to ulzleaving 1132 more or less unchanged.

5.2.1 The Production Term P

This arises only in the equation for u,? and is treated exactly.
Any alteration, even indirect, in the rate of production of turbulent
kinetic energy would in any case be felt equally by both the other
components, and thus cannot be the source of a transfer from the
one to the other.
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k 3 k 3 k 3 k

Laufer [1954] +0.55 — 0.38 - 0.17 0.17

Klebanoff {1954] +0.57 — 046 - 0.11 0.23

Comte-Bellot [1964] +0.61 — 0.45 — 0.16 0.22

Hanjalié & Launder . _ _
[1972] 10.56 0.45 0.11 024
. S —_—
Consensus +0.57 —0.45 —-0.12 0.22
TABLE 5.1 Reynolds-stress distribution near walls

wilk =23 | ik — 23wtk —2/3 it

Champagne, +0.29 - 0.18 - 0.11 0.30
Harris & Corrsin
[1970]

TABLE 5.2 Reynolds-stress distribution in homogeneous-shear flow
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5.2.2 The Dissipation terui €

This term is certainly capable of causing a redistribution from
any um2 to any other. In §4 we gave our rcasons for supposing that
the effect of € was isotropic. Those grounds. based both on
physical arguments and on reference to the general data, remain firm.

We rccall that

(i) the small-scale motions in which the dissipation occurs are
likely to be insensitive to large-scale quantities — such as
distances from walls — and

(ii) the measurements of k—spectra by, eg. Hanjalic & Launder
[1972] , show not only a general isotropy at the high-frequency
end of the spectrum but also (and more significantly for our
present purpose) the same high degree of isotropy at all
positions in the flow — i.e. regardless of the proximity of a wall,
Moreover
(iii) any departure from local isotropy must tend to enhance the value
of €;; and reduce that of €,, — the opposite of the reanired effect.

We therefore see no rcason to depart from the isotropic model of dissipation.
5.2.3 The Diffusion

It is again necessary to recall just how small the contribution from
the diffusion is to the overall energy balance. 1n the repion uear a
‘wall. moreover, the diffusion is very small (see, c.g. Figure 6.13) —
and we are tooking for a term capable of producing a transfer of encrgy
loﬁfZ from 1?0( about 307 ofz?. Itis thus quite imypossible for
such an effcct to be caused by the diffusion. Any such cffect associ-
ated with uzz would also be extremely difficult to divorce from the
52 term.

5.2.4 The Pressure-Strain Termns

Thus, having climinated all the other terms in cquation (3.12), we

arc left attributing the near-wall transfer of cuergy from w2 to W to
the remaining (pressure-strain) term,

Ny =i 1+ ¢ij,2-



94

Therefore workers since Harlow & Hirt [1969], and particularly
since the detailed proposals of Daly & Harlow [1970], have recog-
nized the need for a near-wall component to be incorporated into
the pressure—strain term.

The earlier proposals

The suggestion of Harlow & Hirt was for a transport equation for
the wall-effect tensor Pz - This was superseded by the proposal of
Daly. & Harlow, which was to replace the tensor by an explicit
integral formulation of the coefficients P,.j. in the wall-effect expression:

o

— — -
P, u; + P]., wu; — 3P wu Bi].

wall,'l'

Shir [1972] replaced the Daly-Harlow teusor decay function Pi].
by the scalar decay function ¥, where

- L £ s
K Jy r—ri?
and

Pij. = ni"i“b

it being the unit vector normal to the wall. No explanation was
offered for the particular form chosen for Y. The results generated
were satisfactory, but were presented only for the axisymmetric
pipe, and for the symmetric channel.

Many workers have generated equally successful sets of predictions
without the use of a wall-effect modification. Such a practice will
certainly be capable of leading to success if (as in the case of the
work of Hanjalic & Launder) the method used involves the solution
of only one Reynolds stress. The coefficients for the shear-stress
equation can — or even, as we have seen, rmust — be chosen in the
light of the experimental data. The solutions generated arc thus
very likely to match the data used. THowever, the consequent
lack of generality of such a procedure is bound to reveal itself
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in an inability to predict certain flows. In the work of Hanjalic
& Launder, this arose in the case of the plane wall jet, for which
the predictions of shear stress were too high.

It is perfectly possible to generate a successful Reynolds-stress model
without introducing a separate near-wall term, but rather taking the presence
of a wall into account when choosing the values of the constants ¢, and
€p,- This 1s the approach adopted by, e.g., Naot, Shavit & Wolfshtein. It
is possible to adapt a model to cope with near-wall conditions, or with flows
remote from walls. To enable a model to deal with both situations involves
compromises which will detract from its accuracy.

Qur aim in the present chapter is to generate a model w]nch is
not merely satisfactory in the context of two-dimensional {low, Ybut
which is also capable of straightforward generahsatxon to three
dimensions.

The present proposals

Let us assuime that the additional encergy transfer can be written in
the form of an additional pressurc-strain tcrm ¢ . Clearly ¢,
will have to satis{y the following criteria:

(i) it must diminish with increasing distance from a wall
(i) it must conform to the analysis of §4.2.3.

The second criterion suggests that we should, in fact, sct

Gijow =P 1w T52,wt b3

wl.lerc Dij1w bf:hzwcs like fpii, 1+ @i, 2.0 like g, 5 and ¢, 5, con-
tains any terms in ¢;, . whicli are not of the same form as ¢;; | or
;j, 2+ 1t will be simplest for us to consider the terms in reverse order.
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(iy The term ¢ 3w

¢i;. 3. Can arisc only {rom such terms as we have chosen to
neglect from  ¢,; { and ¢;; 5. Returning to the analysis of §4.2.3
(cquations (4.26)—(4.27)), we sce that this implies that
2 3
f n

. 0°U ¢
= e 1] cH. 4+ ..
(lS.. = RS .\ +];q mi i i ‘
ify3w = pTmj dxgdx, dx¢ 0, 0X,

as these are the only lermis we neglected.

The term in 9% U/dx,, ax,, vanishes identically for homogeneous
turbulence and will therefore be small in general; the term in
33 Ulox,, ox, dx, will generally be present. In a wall boundary layer,
the rapid spatial changes of velocity imply very large values of
3 . . .

0°U[ox,, ox,, GRS

We recall that in the (near-wall) region in question the ‘log-law’
lolds

U. U_
U = < e
K v
w1
oy by
32U « 1 (5.1
dy? 32
33U 1
—_— o« P
ay3 );3

In other words, the second and third derivatives of mean vclocity
fall off at least as fast as y~2. The principal contribution woull
have to come from the third derivative, i.e. a quantily falline off

as »~3. This leads to a model of the following type:
a3
Dt 3w = POty st 2 5.
i1,3,w 7 P dxg 0, Ox,, (>-2)

* We have adopted the boundary-layer convention of writing the sole mean
velocity as U, i.e. without a subscript, and the normal distance from a =vall
as y.



97

where the term 22 is introduced to preserve the dimensions of

(5.2) as 13/%, presuming the pqcf,';l. to be lincar functions of the
uu,.
1

/

However, the effect that we arc trying to model [alls off at
most as y~!'. This can be secn from the work of Ilanjalic &
Launder (e.g. Figure 6.9 ), or from that of Klebanoff (Figurc.G.’__)4),
from which it is clear that the wall-effect is noticcable at normal
distances which would be incompatible with a decay faster than
’\;y" .

An appropriate length-scale to use for £ would be

kY

€

€

which is known to be proportional, in a two-dimensional boundary

layer, to the normal distance from the wall.  This gives us a choice of
normalising factors, of which the miost obvious ones arc Lfy

and azé/ay. The choice of l{/y is dictated by the following
considerations.

If there are two walls, as in a channel fTow, with respective subscripts
A and B, the usc of 0L /9y lcads to:

2
()
¥ oky, \ dy

U 2
G a . =i 10 (ié_e
if, 3, BB ] /“}'B ay

If we now examine an asymmetric channel flow — that of Hanjalc

& Launder [1972] — we sce that for the two length-scales to match

at the mecting-point of the two boundary layers, abeut 70% of the
channel width from the rough sidc, the values of 74,/d1v on the
smooth-wall side must rise to very high levels. Figure 6.18 shows how
this arises. 8L,/dy is therefore not a satislactory nohnulnxing factor,

4ij,3.3,
(5.3)

We thus have, in a two-dimensional boundary layer

2
U (L
$ij3,w= oy ( C) (5.4)

6o

* We have dropped the 9 prefix from the ¢’s, as an extension of the boundary-
layer convention, for ease of reading. They remain, of course, sixth-order tensors.



98

The model leads to a simple additive term (5.4) in which the cm,
are subject to the same constraints as the br%;/ used in ¢;; 5 ,, (derived
below) and are hence equal to them.

(ii) The term ;2 w

This term is assumed to be composed in exactly the same way as
;;,2 itself. It must therefore satisfy the same invariance criteria;
hence, if we let

$ij, 2. w= b E;_U
we have:
byl = bim = pim (5.5)*
mi=Q (5.6)

as before if we assume again that the b"“ are lincar combinations of
the u Uj, we see that

by = @By Uit .. (5.7)
(cf. (4.31): (5.7) is the same equation with priines on the coefficients,
with b replacing a).
We have three equations (5.5) and (5.6) in five unknowns a, ..., v
(5.6) gives:
M=o f g + B (28,0k + 5 Uy, 1g)

+0'(45,,,k)+ '8

ka + Cp2 Uglly =0
SO
o + 58 +cyy'=0 (5.8a)

280+40+1'=0 (5.8b)

" . i?
* These bg’.' are not, of course, the bg;' of equation (4.27). The nolationa'g-’ would be
too cumbersome.



99

In particular

21 — 7 ’

Cll 6 4 u1u2+2ﬁ uluz
c33 =4p uju; + 2c,, Uy
23 _ ]

013‘23 uyuy

If, as seems clear from Tables 5-1 and 5-2, there is almost no extra
redistribution to or from u% as a result of the proximity of a wall,

2C¢2' u1u2

——

o ujuy

Applying (5.8a), b33 + b2} = 0, whence

(5.9)

Eqn (5.9) is a [ .ple model of the additional redistribution of the mormal
stresses. It further implies that, by (5.8b) R y - -

W'+n'=0
We now deduce the redistributive effect on the shear stress:
b+ o3} =d u? + B G +ud) + (o + o)k o ]
=o (i —uh)+ (' + )k
=o i —ud)+Ek (5.10)
E'=n"+v)
Thevalues of & and §

o/ can be determined by the measured level of additional redistribut-
ion indicated by the data in Table 5-1.Clearly, in order that the value
of the redistribution should fall off as the wall recedes, & must not
be simply an additional constant, but must be suitably damped. We



100]

find that
a .. =0.06 (5.11)
and that the non-dimensional factor
L
= (5.12)
X9

appears to provide the correct form of the decay for a single wall. If
there are two walls, we assume the effects to be additive, so that the
factor (5.12) should be revised to read

L L
(— + ) (where D is the channel width) (5.13)
xy D—x,

Consideration of the shape of (5.13) shows that it does not
allow much decay in a channel but permits an effect to be felt in each
boundary layer from the remote wall. We shall see (§6) that this
accounts for certain hitherto unexplained effects.

The value of ¢

From equation (5.10) we see that the net extra generation of u; u,
in a two-dimensional boundary layer by pressure-strain interaction near
a wall is

@ —ud)+ Ek=+06 (3 —ud)+Ek
~ (£ +.06) k
which, from Tables 5-1 and 5-2 is equal to roughly 0.09 k, so that
£ ~.03

This is a maximum value, so that we are justified in neglecting
the term altogether. Indeed, if we deduce a value from the
Hanjalic & Launder [1972] data,

F~—0.01



The models derived for ¢;; 5 , and ¢;; 3 ,, differ only in the
following respects:

(i) in a 2—D boundary layer,

oU (L
b; 2 =b%’ .(‘_f)
iJ,2,w ’8.\'2 s

2
Y
if,3, W 1j axz x2

L,[xy  is nearly constant in regions where oU/ox, is

large, so that the decision as to whether to include both tcrms is not

crucial.

(ii) Any term $ij,2,w canarise only from the distortion of the
turbulence caused by the pressure of a wall. Since the terms
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¢;;.1 and ¢;; , were associated with eddies of similar large size,

the need for a term ¢;;,2 implies that a non-zero ¢;; | will be
found; this argument does not follow from the assumption

of a separate wall term ¢;; 3.

The term ¢; |\,

The available data suggest that the effect of a wall is felt in regions
where the mean strain rate is small: this is further evidence that the
term ¢;; | must also be regarded as subject to the addition of a wall-

correction term

€ 2 2
ij,1,w = o1 (“U 3 % k) / ("2) (5.14)

The whole term (neglecting $yj. 3, ) reads as follows:

2
I = % (u ~3 6;;k)

Z 2 (bml g}/)} f(_g) (5.15)
Xin X2
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where, so far, we have assumed that f(2/x,) was simply proportional
to 2/x,. We assume, moreover, that the same decay law applies to
bi,1,w asto @y 5 . These assumptions are largely borne out by
computations (see §6).

The value of ¢4y’

If we take the equations (3.12) and neglect the transport terms,

as we may, e.g., in the equilibrium layer of a fully-developed 2D flow,
we are left with

> 2 € 8+ 12¢
- 4 2 2 '
0= (C¢1 —C¢1)(u1 —Ek)z - (*33 ¢ +2C¢2) €
— 2 € 2-30c
= ' 2 ¢2 '
0=(co1 —cp1) (ug — 3 K) - = (_—33 2%2)5

=3 2 € (-10+18c,,
0= —co) (- 30§ - (5202 ) e

Setting ¢,y = 1.5, ¢,y = 0.4 (cf. §4.2.3 above) and ¢ ;' = 0.06, we
sce that

F—Ek= 0.51
1737 15-c,
= ’.Zk_ -0.18
R R Wy
= 2 —0.09
2 _ 1= :

I L W

giving the values in Table 5-1 if
1-5 - C°1' = 1.0

i.e.
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An alternative approach

Irwin [1974] assumed approximate local homogeneity and isotropy
to deduce expressions for the pressure—strain term in the Reynolds-
stress equations. This is an approach of potential generality, but
Irwin was obliged to acknowledge that the wall effect was subject
to a decay that did not follow directly from the analysis. Just as
in the present work, Irwin used the empirical data to determine a

decay factor, and also came to the conclusion that the most suitable
form was a decay v L./ x,.

By rewriting (4.21) in the form

p oup 1 3% (i, Y ou;
p o dr Txqax, J\ox ) T
pox; 4m X 0X,, X;

(y-space)
YIS
SN
0x, dxy / Ox;

1 1
X + d(Vol.
{|y—x| |y*—x|} (Vol.)

lrwin is able to deduce the effect of a wall on the stress distrjbution.

Irwin’s work:

® confirms the need for a ‘near-wall’ correction to the
pressure-strain term;

e confirms that a decay”v Le/y is consistent with the required
behaviour of such a term;

® suggests that the ‘near-wall’ modification should affect not merely
merely the ‘second’ part (Launder, Wolfshtein) of the pressure—
strain model but should in fact (contrary to Irwin’s own view) be
extended to embrace the ‘first’ (Rotta) part of the term.



PREDICTION OF TWO-DIMENSIONAL FLOWS

6.1 Introduction

The models derived in Chapters 4 and 5 have been applied to a ‘
number of two-dimensional flows. The most exacting test is that
provided by the asymmetric plane channel studied by Hanjalic. &
Launder [1972 ]. Other flows to which the models have been ap-
plied, and for which the resulting predictions are presented here are:

(i) the symmetric plane channel
(ii) the flow on a flat plate
(iii) the plane wall-jet in stagnant surroundings.

The models are categorized in Table 6.1. For brevity, the labels
attached to the models in the Table will be used to describe them :
thus Model 2 denotes the closure effected by using the Wolfshtein
et al. model of the pressure-strain terms, together with the Daly—
Harlow model of diffusion. In every case, the near-wall correction
derived in Chapter 5 has been applied in addition to the pressure-
strain model, as it would not be possible otherwise to evaluate the
performance of the various models objectively.

The flows will be examined in the order in which they are listed
above.
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Pressure-Strain

1. 2.

Launder’s model, as given by Eq. 4.39 The model of Wolfshtein et al.; also given
by Eq. 4.39 but omitting the term Dy

Near-wall oorrection terms derived in Chapter 5

Diffusion

A B
The invariant model due to Hanjalic & The model due to Daly & Harlow
Launder {1972 ]

TABLE 6-—1 The models used to effect closure




A
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6.2 The Asymmetric Plane Channel Flow of Hanjalié & Launder

The asymmetric plane channel flow of Hanjali¢ & Launder [1972 ]
was produced by attaching square ribs to one wall, at a pitch-height
ratio of 10:1, the height being 1/17 of the distance between the walls.
The effect of this roughening is to cause a shear-stress ratio of 5:1 as
between the rough and smooth walls, and a consequent displacement
of both the position of zero shear-stress and the position of maximum
velocity. As noted in Section 3.2 above, any eddy-viscosity type of
model of turbulence must necessarily imply that the positions of maximum
velocity and of zero shear-stress must coincide. =~ However, the measure-
ments of Hanjalic and Launder show quite clearly that the two points do
not coincide.

The boundary conditions applied to the various equations are listed
in Table 6.2. The constants used are shown in Table 6.3. Figures 6.1—
6.4 show the mean-velocity profiles given by Models 1A, 1B, 2A and 2B.
Figures 6.5—6.8 show the shear-stress distributions; Figures 6.9—6.12 give
the normal-stress profiles, z,md Figures 6.13—6.16 the predicted energy-
balances.  Figures 617m6.19 show the length-scale profile and the
behaviour of the positions of zero shear stress and maximum velocity
against increasing Reynolds’ number.

The first conclusion to be drawn from the profiles is that they provide
little support for the invariant Hanjalié¢-Launder model (A) of diffusion.
Certainly in no case does this model perform better than the Daly-Harlow
model (B). Specifically, it is clear that model A implies too high a level
of diffusion of?; any attempt to reduce the diffusion coefficient to
compensate for this results in too low an overall diffusion of turbulent
kinetic energy.

The pressure-strain models are also clearly distinguished by the fact
that the predictions of mean-velocity profiles using model 2 are not so
satisfactory as those of model 1. The excessive ‘fullness’ of the profiles
generated by model 2 means also that the ratio of maximum mean
velocity to bulk mean velocity is too low (actually by about 3%). The
ratio predicted by model 1 is correct to within 1%,
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Equation Wall Free Stream
U U/U.= (1/r)in(x,U/v) + 5.4  sMOOTH U,
Uy, = (1/k)in(x, fe) + 3.5 ROUGH
where e is the height of the roughness elements
i, -U? 0
u? 5.1 U, 0
u,? U2 0
u32 2.3 U,r2 0
€ U2 fkx, 0

TABLE 6-2 The boundary conditions applied
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6.3 The Symmetric Channel [Comte-Bellot, 1965]

The predictions of models 1 and 2 for the fully-developed symmetric
channel are broadly in line with those for the asymmetric channel
It will be noted from Figure 6.21 that the distribution of Reynolds
stresses in this flow would appear from the data to be somewhat dif-
ferent from that which obtains in either the asymmetric channel flow
already examined or, as we shall see, in the near-wall region of the flat-
plate boundary layer. As there is no known mechanism for the establish-
ment of such a distinction, we are forced to conclude that the discrepancies
among the near-wall distributions of Reynolds normal stresses must be
attributable to errors of measurement. The predictions, naturally, do not
take account of the idiosyncracies of individual sets of data: this is the
most probable explanation of the apparently poor predictions shown in
Figure 6.2 1.

The predictions of mean velocity are consistent with those generated for
the asymmetric channel, and offer the same measure of accord with the data.
The normalized shear-stress profile is of course of no interest to us here, as
the zero-point is constrained by the boundary-conditions to lie at the centre
of the channel. All the predictions shown were obtained by using Model B
of the diffusion; we have already seen that in a flow which could be expected
to display any benefits of a precise model of diffusion none were to be dis-
cerned.

6.4 The Boundary-layer on a Flat Plate

The third two-dimensional flow to be considered is the high-Reynolds’-
number flow along a flat plate. This flow was first considered in detail by
Klebanoff [1954], and it is with Klebanoff’s data that we present comparisons
of our predictions. This set of data lies close to the mean of Table 5.1, and
it is therefore one which we should hope to predict with accuracy. Figures
6.22—6.26 bear this out. Indeed, it is possible to draw from these predictions
the conclusion that the particular model of the near-wall redistribution is
satisfactory, and further that the linear decay assumed (in the single-wall case)
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provides the correct rate of falling-off as we leave the wall. One especially
pleasing aspect of the predictions is that we faithfully reproduce the point

of inflection in the ? curve. The predictions of dissipation length-scale also
reinforce the overall impression, displaying as they do the correct falling-

off at the free-stream edge of the flow.

6.5 The Plane Wall Jet

The final two-dimensional flow examined is the plane walljet in
stagnant surroundinrgs for which measurements were obtained by Mathicu
and Tailland in 1967, Although the sole difference between this flow
and the flat-plate boundary-layer lics in the zero-free-stream velocity,
this difference leads to considerable computational complications
related to the existence of two regions of high velocity-gradients
and to the need to solve the mean-momentum equation accurately also
in the outer region of low velocity and low velocity-gradients.

The predictions of mean velocity and of turbulent shear-stress are
satisfactory (Figures 6.27-6.28).

6.6 Conclusions

Viewed overall, the predictions in Figures 6.1-6.28 of two-dimensional
flows provide confirmation of the satisfactoriness of the model of turbulence
developed in Chapters 4 & 5 above. In ecach case, the correct falling-off
of the additional redistribution induced by the presence of a wall confirms
the suitability of the model developed in Chapter 5.

We see that Model 1 oof the pressure-strain terms in the Reynolds stress
equations consistently produces better results than the truncated version
which we have called Model 2. The diffusion models A and B are not quite
so clearly distinguished, but on the evidence of the predictions obtained we
can deduce that there is no evidence that the more complicated, albeit
obviously invariant, Model A is superior in any case. Therefore we apply
Occam’s razor and choose the simpler Model B for further work.
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Equation
of first
Symbol mention Value Significance How dctermined
c¢ 4.24 1.5 coefficient of ‘Rotta’ normal stress levels in nearly-
! term in pressure—strain homogeneous shear flow
correlation
c P 4.32 0.4 quametcr governing normal stress levels in nearly-
3 second’ part of pressure— homogeneous shear flow
strain term
€ 5.14 0.5 near-wall correction term normal stress levels near walls
1 to ‘Rotta’ pressure—strain
term
a 5.7 0.06 near-wall correction term normal stress levels near walls
to ‘second’ part of pressure—
strain term
t 5.10 0.00 redistribution of shear stress normal stress levels near walls
by ‘sccond’ part of pressure
—strain term
<, 4.13 1.44 generation of dissipation normal stress levels near walls
| P
<, 4.13 191 viscous destruction of decay of turbulence behind
2 dissipation a grid
. 4.13 0.15 cocfficient of diffusive computer optimisation
3 transport of dissipation
Model A:0.11 coefficient of diffusion of s
s 445 Model B:0.20 Reynolds stresses computer optimisation
TABLE 6-3 The value and significance of the constants,

and the basis for their choice
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The shear-stress profiles give further support to model 1 against
model 2; the predictions of model 1B are indistinguishable from the
data of Hanjali¢. & Launder, while those of model 2 are not satis-
factory, showing an excessive displacement of the position of zero
shear stress with respect to that of maximum velocity.

The validity of the form of the near-wall correction is borne out
by the normal stress levels, particularly in the region 0.2<x,<0.6

measured from the rough wall. The choice of decay factor

fix,) =L(x,? + (D - x,)71)

is justified by the fact that we are able to predict correctly the slight
inflexion in the ul2 curve at about 0.4 of the distance across the
channel. This inflexion is also present in the data for the symmetric
channel, and occurs most pronouncedly in the flat-plate boundary-
layer (vide infra).

The values of the constants chosen, and given in Table 6.3, were
confirmed by systematic and detailed exploration of the cffect of
allowing them to vary within the bounds indicated by the cxperimental
data.

Conclusions

1. There appears to be no reason to prefcr model A to model B for the
diffusion.

2. The evidence for the models 1 and 2 of the pressure-strain terms appears
to favour model 1.

3. The form of the near-wall correction chosen appears to be vindicated.
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THREE-DIMENSIONAL BOUNDARY-LAYER FLOWS

7.1 Introduction

In the real world, most flows are not only turbulent but also
three-dimensional. So far we have considered exclusively those
flows for which one of the dimensions is degenerate as a con-
sequence of the effective absence ‘at infinity’ of some of the
containing boundaries.

Many flows of practieal interest are fully three-dimensional,
but may yet be regarded as boundary layers, for they have a
single predominant direction of flow. This is the case for, e.g.,
all uniform pipes, whatever their cross-sectirnn’ s'hz_lpe.* provided
only that the curvature of the pipe is negligible. Under certain
assumptions we shall be able to deduce a three-dimensional
boundary-layer form of the governing equations. We shall solve
these equations for the case of flows in rectangular ducts.

Secondary Flows

Turbulent flows in three dimensions exhibit one feature of
particular interest to us which is absent from flows in iwo
dimensions and from laminar flows. This feature is the phenomenon
of non-negligible secondary mean flows locally normal to the
principal direction of mean flow. These flows are typically
two orders of miagnitude sinailer than the principal mean velocity.
Their effect is to promote the transport of high-monientum
(principal component) fluid into the extremities of a duet; e.g.
into the corners of a square or triangular duct Similar effects
are observed in the (elliptic) flow of, e.g. a river round a bend.

* Strictly, of course, a perfectly circular duct is degencrate by one degree
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The most striking manifestation of the effect of secondary
flows is the fact that in the case of an open-channel flow
(such as that in a river or canal) the maximum velocity

occurs not at the surface but some way below it. The facts
thzllt such flows are not amenable to laminar-flow analysis,

that secondary flows occur in open channels, and that these
secondary flows are responsible for the displacement of the
position of maximum velocity, were all observed by Thomson *
in 1878.

In view of the claims of priority made by Nikuradse, in 1926,
and implicitly on Nikuradse’s behalf by Schlichting [1975]Tit is
worth quoting some passages from Thomsons 1878 paper On the
flow of water in uniform regime, and reprinting as our Figure 7.1a
one of the diagrams of secondary flows measured by Thomson, and
shown in his 1879 paper On the flow of water round river bends.
In 1878 Thomson wrote:

The experimentally derived and perplexing suggestion ...... is that
inconsistently with the imagination of the water’s motion conceived
under the laminar theory, the forward velocity of the water in rivers
is, in actual fact, sometimes or usually not greatest at the surface
with gradual abatement from the surface to the bottom......

[Drawing on the work of Boileau (1854) Thomson dismisses the then
current theory that the effect was due to drag at the air-water
interface, and observes that, for fully<léveloped flow]
T T T...even if the channel face is extremely smooth, so as to
present no sensible asperities, still there is good reason to assert that
transverse flows will come to be instituted in consequence of the
rapid flow of the main body of the current......

Presumably unaware of the painstaking work of Thomson
or of that of Stanton [1911], or of van der Hegge Zijnen [1924],
Nikuradse wrote in 1926 that

Ueber die Geschwindigkeitsverteilung in turbulenten Stroemungen
sind bisher, soweit bekannt, keine Untersuchungen angestelit......

Nikuradse’s measurements were, however, the best and most detailed
ones made of turbulent flow up to 1926. Figure 7.1b shows the
contours he produced for flow in a rectangular-sectioned duct,
showing clearly the ‘bulging’ of the contours towards the corners

* The remarkable James Thomson, elder brother of William, later Lord
Kelvin, who introduced the terms laminar flow, torque, poundal and (of perhaps
lesser value in the light of modern usage) interface

t+ cf. Tatchell [1975] who asserts that Nikuradse was the first to observe secondary flows.
In fact, Nikuradse (unlike Thomson) made neither direct observation nor measurcment of
sccondary lows. Figure 7.la settles the question of priority; unfortunately, Thomson
relied on the measurements of others for fully-developed secondary flow observations
and was thus unable to present similarly quantitative analysis in that context.



of the duct. The results obtained by Nikuradse for open-
channel flow will be used in Section 7.5.3 bLelow, and are
illustrated in Figure 7.21.  Nikuradse’s measurements of axial
mean velocities show very clearly the bulging’ of the contours
towards the corners.  They represent, historically, the first
detailed quantitative evidence of the phenomenon so clearly
described by Thomson.

Since about 1960 it has been possible, thanks to the refine-
ment of experimental technique, to obtain detailed measurements
of turbulent flows in non-circular ducts. The fully-develpped
secondary flows were first measured by Hoagland [1960]), and
measurements of tusbulence quantities were reported by
Leutheusser [1963], Brundrett & Baines [1964], Gessner [1964]
and Launder & Ying [1972]. Recently [1975], Melling has
presented extensive measurements of turbulence quantities in a
developing square-duct flow, using laser-Doppler techniques. The
data obtained by Melling are in broad qualitative agreement with
those of earlier workers. Melling’s work revealed some aspects
of the phenomena in question that had not been recognized by
earlier workers: for example, by measuring turbulence quantities
throughout a quadrant (rather than restricting measurements to
an octant), Melling noted that it was not necessarily possible
to assume the symmetry that would seem prima facie to be
required by the boundary conditions. The cause of the asymmetry
must necessarily lie in an asymmetry of the boundaries too small
to be detected. However, the fact that an apparently negligible
asymmetry in the boundaries can cause non-negligible asymmetries
in the flow must cast a certain amount of doubt on earlier
results. For our present purpose, we shall assume that, as is
most likely, the asymmetries will have disappeared by the time
the flow is fully-developed. We thercfore rely on Melling’s data
for developing flow, and on earlier results for the fully-developed,!
flow.

1 faute de mieux — Meclling measured only up to 40 hydraulic diameters dow nstream
of the inlet.
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‘7.2 Equations of motion in three dimensions

Equations (3.3) apply, as before:

W 5 5] al"+ 020 o ___
_ (7.1)
1 9 (= oU: —
=_ _ __ {P‘Su‘““ ! +puiui}
p .\‘I' a.\’i f

Mass continuity, again, gives
ol _
ox;

A three-dimensional boundary-layer form of equations (7.1)
can be deduced under the following assumptions:

0

(i) terms in 0U,/0x, and 0U;/0x, are neglected, as in
a boundary-layer flow 0U,/0x;<< 9U,/0x,, elc.

(ii) axial stress gradients are neglected.

(iii) the axial and lateral pressure fields are ‘decoupled’
by setting dP/dx,= dP/dx, where P is the space-averaged
mean pressure, in the equation for which i =1, this
(cf. Tatchell [1975]) prevents the introduction of an
elliptic-type termm into the pressure equation.

The lateral pressure gradients will be negligible compared with

the axial gradients in most boundary-layer flows. Pressures are
derived from overall mass-continuity considerations: the details

are presented by Tatchell [1975].

In this way we obtain the following equations:

DU, _ -1 3P _d — 2

Dr = ox, + pV2 U, ax, {1t ax, 1143 (7.2)
DU. -1 9P . — 0

m—z = _l; ox, + ViU, — E-i—xzuz — 5,3112113 (7.3)

DU; _ -1 3P 2 _ 8 _9 - -
Dy > ox + vVIU, ax2"2”3 o, (7.4)
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7.3 Reynolds-stress closure

Once again, we sce that closure of the mean-momentum equations
for turbulent flow is a question of providing a satisfactory model
of the Reynolds stresses appearing in equation (7.1). The same
considerations as to the best approach apply as before, but with
renewed force. For example it is no longer possible to prescribe
a satisfactory single Iength scale. As recently a~ 1975 if was
possible for Tatchell to state that a barrier to the use of turbulence
models involving differential equations for the Reynolds stresses
was “‘uncertainty rc wding the appropriate form of the modelled
stress-transport equaiions”. The extensive? tests to which the
models described in the present work have* cen subjected in two
dimensions [cf. §6 above] together with the fact that they allow
of easy generalization to three dimensions, suggests that this
reservation need no longer apply. Other considerations such as
economy of computer time may, of course, still deter future users
from the use of a solution procedure involving three momentum
equations, one continuity equation and six equations for the
Reynolds stresses, together with an equation for the dissipation.

Launder and Ying [1973] neglccted the cffects of convection
and diffusion in the region ncar the duct walls, where the generation
of secondary flows is most powerful (sece Brundrett & Baines [1964]).
They then used a model of the pressure-strain redistribution derived
from the work of Rotta [1951] and of Hanjali¢ & Launder [1972]
to obtain algebraic expressions for the stresses u3, 175- and u, us
which appear in the U, and U; equations (7.2—7.3). Gessner &
Emery [1976] have shown that the Hanjalic—Launder pressure-
strain model, under these assumptions, reduces to an isotropic
eddy-viscosity model for the shear stresses w;u, and u ;. They
show that

{

— K fau’
uz = -—C2 C4 _E__) + C3l{ (7.5—‘b)

ox,

,
—5 k3 fau T
i = —cycq — {—1} + o3k (7.5-0¢)
. 0x 5

(7.5—a)

—a
]
[x}
-~
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— k29U,
i = ey 5 (7.5—d)
2
Ujuy =—=¢ ull ? (7.5—¢€)
€ X3
S k33U, U,
=_ A B (7.5—1)
Uty €264 3 ax, 0xs .
where
o 2201 = 1)~ 6 (43— )
! 33 (cyy — 2€42)
o 4GBey-1)
27 11 ey — 2¢43) (7.6a)
L2 22(ee = 1) = 12C¢h = 1)
3 33 (cyy — 2¢43)
‘- 44 ¢y — 22¢,,Chp— 128 c4o— 36 c57 + 10

165 (cpy — 2¢42)?

Equations 7.5 d—e contain the result referred to above: the same

proportionally constant ¢, foru 1, and uquy gives
k 2
ufn= uTn: €a ?

The constants c,; and cy, for the Hanjalic—Launder model are 2.5
and 0.4 respectively. The Hanjalic—Launder model differs from that
presented in Chapter 4 otherwise only in respect of one term; it does
not, however, properly satisfy conditions (4.32)—(4.34).
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If the same process of analysis is applied to the fully-consistent model
proposed in Chapter 4 of the present work, it can easily be shown that
the corresponding result is

224y + 12y + 8

‘- 33 ¢y

Py (7.6b)
c _10+22¢,, +18 ¢y

3 33 ¢,

o = —44c4y + 30 c¢22 +60c,,— 10

4 165 X cyy?

With the appropriate choice of constants for each model, we obtain
the values of c¢y,..,cq given in Table 7.1 below.

For consistency, Eu,-z =2k, and this can'easily be seen to imply
that

€y —cyt2c3=2

which condition is satisfied by the values in both columns of
Table 7.1.

The value of u, implied by the present model is somewhat highcr
than might be expected. The constant 0.09 is generally accepted
(e.g. Launder & Ying [19731], Tatchell [1975]) as desirable.
However, the present pressure-strain model is not intended for
use as it stands in situations like those to which Gessner & Emery —
or for that matter Launder & Ying — applied it. In near-wall situations
including those involving corners, the near-wall modification of
Chapter 5 must be used in addition to the pressure-strain model of
, Chapter 4. This has the effect of reducing the value of u_ in line

with the value of 0.09 for the constant of proportionality.
Unfortunately, the analysis which led Gessner and Emery to derive the
results in equations 7.6a, and us to those of equations 7.6b, cannot be
performed for the full model (including near-wall terms), as the general
form of the associated decay function (5.13) will preclude this. !



HL Present model
Co1=2.5,C45=0.4 co1=1.5,¢42=04
¢ 0.95 0.925
¢ 0.04 0.145
cs 0.545 0.610
cq .09 127

TABLE 7.1 The values of the constants c¢y,...,Cs
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7.4 The Reynolds-stress Equations

Equations (4.1) still apply:

3 - 9) — — o, — 3y PRODUCTION
{ a‘ + Uk a—x’c} ll,'lli = — {lljllk — + Uy a—XI
_oy 2 By DISSIPATION
0x; Ox;
+

p (Ou;  duy . .

- L+ REDISTRIBUTION.,
p axl ax"

0 0
- aTk {llinllk -V a—Xk “i"i}

1 a( )+ 0 )
_; {gx—] pu; a—x'(puj}

DIFI'USION

The convection and production terms are, as before, treated exactly.
The dissipation is again assumed to be isotropic and not to affect
the off-diagonal terms of the stress tensor. The remaining terms
(redistribution and diffusion) will be modelled in the light of the
findings of Chapters 4—6.

Diffusion

The simpler diffusion model of Daly & Harlow was seen in
Chapter 6 to give better results than the invariant model of
Hanjali¢ & Launder. We therefore, choose the Daly—Harlow model
for all 3-D computations. The Hanjali¢—Launder model, it should
be noted, implies six non-zero elements in each component of the
3-D diffusion tensor. The diffusion is, in any case, not an important
contributor to the energy balance.
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Pressure-Strain

The pressure-strain terms are modelled according to the prescript-
ion of Chapter 4.

Near-wall correction

The near-wall correction terms are specified by the general form
presented in Chapter 5. However, a certain ambiguity is necessarily
associated with the scalar function f defined in formula (5.13) for
the two-dimensional two-wall case.

For the present purpose we restrict the generalization of the
near-wall modification to the case of rectangular ducts, illustrated
in Figure 7.2, Equation (5.13) may be written as

IR 3

k32 p,

€ X2:€2

As in the two-dimensional case, we treat the effects of the various
walls as additive. However, a simple generalization would lead to
implausibilities, especially in the corners, where the fact that the
walls are not parallel and remote from each other but perpendicular
and adjacent will be crucial.

The relative intensity of the turbulent fluctuations parallel to a
wall and at right angles to the plane of dominant strain, as we saw in
Chapter 6, are unaffected to within experimental error by the presence
of the wall. We shall assume that the turbulent fluctuations normal
to a wall are affected exactly as in two dimensions, and that the decay
of the effect is governed by the normal distance from the wall alone.
Comimon sense dictates that the effect which is insensitive to the
presence of a wall parallel to the fluctuations is unlikely to be a
function of the distance from that wall. For the purpose of the
near-wall correction term alone, we arc thus entitled to treat the
three-dimensional duct as effectively equivalent to the superposition
of two orthogonal two-dimensional ducts.



This leads to the following effective near-wall corrections

corresponding to the second part of the pressure-strain term in the

normal-stress equations:

. D, 3, , D U,
« < i, WU
11,2,w X9 %y 172 3¢, dxy  X3%, 13 x4
6 -D, U,

« —2 T Uy —

22,2,w 3%, 1 3%,

6 ~D, U,
«—3 7 Uy

33 2 w X3x3 1 ax3

The shear-stress equations are subject to the additional corrections :

_ S ,. . aU ) —— . 0
12,2,w =f2 (3] — ud) + 'k} a—l +f3 {cy tzus} —Z

U
$13,2,w =S4 {3 “2“3} "’fs {Cz(u3 —u1)+§k} aUl
X3

where f,, ..., f5 are decay factors, to be determined.

The two-dimensional limits must in any case be equal to the
forms already determined for two dimensions.

This criterion is evidently satisfied by

D D
E,f5f3———

Juf2= X3X3
This is the simplest solution, and it is consistent with the result
found for the normal stresses: viz. that the decay factor
D, [x. X, was associated throughout with the operator 9/dx .
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Physically, this solution is little different in practice from the
solution

. . D D
f2=/3=f4=f5=—3—+ 3
X2X2 X3.\3

as the values of aU, /dx; will tend to be important mainly where
“the term D, /x, X, <, /x4X; (and similarly for U, /ox,).
H
The final term is

¢ @ D i O g
= —C Uyl — Uyt _— .
23,2, w 2 Uity ax, 112 o 6

By symmetry,

The ‘first’ part of the near-wall correction must be treated differently.
[t will readily be seen that it would not be possible for this term to

be purely redistributive if we were to associate different rates of
decay with the ¢55 3 ,, and ¢33 5 ,, components. The ‘first’ term,
free of mean strain effects, must thercfore behave in all components
under the influence of both walls: the decay factor will thus be
«{D,[x;Xy+Dy/x;X;}. This will not affect the argument used

to deduce the form of the mean-strain part of the near-wall correction,
as u_% =~ 2/3k near a wall to which the 15 fluctuations are parallel

(and likewise for u% /k), except possibly near a corner. The whole
component ¢35, is thus still roughly zero near a wall parallel to

the u5 fluctuations.

7.5 Applications in three dimensions

The model developed in earlier chapters, and extended to three
dimensions in the foregoing sections of the present chapter, has
been applied to developing duct flow. In this section, we examine
the results generated and review the model in the light of its
ability to cope with this generalised problem.
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7.5.1 Preliminaries

Before proceeding to the application of the model to three-
dimensional flows, the program (see Appendix C) into which
the model was incorporated was adapted to produce two-dimen-
sional predictions in order to verify that it was as accurate as
the two-dimensional procedure used to generate the results
described in Chapter 6 above. This was done in two distinct
ways: first, the duct was given a large aspect ratio (5:1 was
sufficient for this purpose) in order to make the flow at the
mid-plane parallel to the shorter sides effectively two-dimensional;
the second method was to modify the boundary conditions at
one wall to replace the wall by a plane of symmetry.  While the
first approach was more interesting from the physical point of
vicw, in that it predicted the actual flow in the type of duct
used for two-dimensional measurements (e.g. Hanjali¢ & Launder,
who used such a duct), the second was more economical as it
permitted the reduction of the number of grid nodes in the direction
of the normal to the wall to three. With this approach, it was
possible to predict the symmetric channel flow to within 0.8%
of the results given in Chapter 6. The more exacting test of
the asymmetric boundary layers in Chapter 6 would have necessitated
solving over the whole duct, and would have been less relevant to
the prediction of flows in ducts with two centre planes of symmetry.
The first approach was used to confirm the two-dimensionality of
the flow in ducts of 5:1 aspect ratio.  This test is illustrated in
Figure 6 20, where the resu'ts are supermmposed on those of a 2D procedure

7.5.2 Square duct flows

Figures 7.3—720 show the results obtained for the developing
square duct flow, with comparisons with the data of Melling [1975].
Over the first 40 diameters, measured by Melling, Figure 7.3 shows
that the model gives excellent agreement with the data for the
variation of mean velocity along the axis of the duct. Figures 7.4
—7.8 show the level of agreement obtained with the mean velocity
contours at 5.6, 13.2, 20.7, 29.0 and 36.8 diameters downstream
of the grid respectively (we shall refer to these as stations A—E
fo_rlbrévny i what foilowsy Figures 79-7 13 show the contours of
u, 2 at stations A-E rcspectively, where |, denotes the axial direction
Already 1n these contours we can detect a tendency for the high-
intensity lines to be somewnat too close to the centre plane away
from the corneis, and to point 100 noticeably towards the corners
This ‘bulging” of the contours 1s common to all the prediction procedures
so far developed The most suiking example is the 0 06 contour on
Figure 7 13- the disciepancy 1s none too great, and would be insignificant
if 1t were not mumucked 1n all tne piedictions  Contours of u,u, and
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u——_;"l/z at station E are shown in Figures 7.14 and 7.15. Here we see verv
good agreement: it is the accuracy of, in particular, the turbulent shear-
stress modelling that must govern the accuracy of the mean velocity profiles
in the developing region As we have seen, the centre-line velocity (Figure
7.3) is indeed well predicted. Figure 7.16 shows the predictions of
turbulent kinetic-energy profiles: these must be expected, in line with the
results in two dimensions, to parallel those of #; in Figure 7.13, which
is confirmed by comparison  Figure 7.17 presents the contours of the
quantity (u,? — u3*)  Figwie 7.17 illustrates well the difficulty described
in Section 7.1 above: the co.:ours should, in principle, be perfectly anti-
symmetrical, with a zero line fixed along the diagonal, given perfectly sym-
metrical initial and boundary conditions. (Indeed, for sufficiently-developed
flow, the initial conditions must tend to irrelevance.) The predictions must
therefore be quite different from the data in this instance. Close examination
of the data shown on the other contour plots in the present sequence reveals
that all suffer to a varying degree of severity from the same defect. Figure
7.18, drawn from Melling [1975] shows the lack of agreement among the
various workers who have measured the axial velocity and the axial component
of turbulence intensity; not all the discrepancies can be accounted for by the
differences in Reynolds numbers involved, as the variation is not monotonic
with Reynolds number

Figure 7.19 shows the profiles of secondary flows at station A; Figures 7.20
and 7.21 shows those at stations C and E. No data exist for comparison
with Figures 7.19 or 7.20 As these represent results in developing flow, there
will be a net momentum flux away from the wall, as the boundary layer
develops, and this is confirmed by the predictions. Figures 7.23 and 7.24
show the axial mean-velocity profiles at stations B and E. The profiles lie

below the ‘universal’ logarithmic profile, which is shown superposed on Figure
7.24.

Comparison with earlier work For the purpose of comparison, Figure 7.3
shows also the predictions made by Tatchell of the variation of mean velocity
along the axis of the duct. From this graph, and also from the contours

in Figures 7.8 and 7 16, it 1s quite clear that the agreement achieved by the
present model is considerably better than that obtained by Tatchell. The
maximum departure of the predictions of maximum axial velocity shown by

the present model 1s roughly 2%. while that used by Tatchell gave disagreements
(with respect to the data of Melling) of order 10%. The model used by Tatchell
was that developed by Launder & Ying, with additional assumptions described

in Section 7.2 aboveto enable predictions to be made of developing flow.

Fully-developed flow  As noted earlier, we rely on the work of Launder & Ying
[1972] for the data on fully-developed flow: their data are the most extensive
and Figure 7.18 suggests that their results represent something close to a consensus.
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Figure 7 25 shows the predictions of fully-developed axial mean velocity
contours using the present model, compared with the data and predictions

of Launder & Ying, and with the predictions of Naot [1972]. Figure

7.26 shows the predictions of secondary velocity profiles, against the

data nd predictions of Launder & Ying. Figure 7.27 gives the present
predictions of kinetic energy contours, and Figure 7.28 those of shear stress
around the perimeter of a smooth duct, using the data of Brundrett & Baines
and of Leutheusser, as shown. In all cases, there is good agreement with the
data, albeit showing vestigial traces of all the deficiencies of the predictions

of developing flow (m.inly in respect of the excessive bulging of the contours
towards the corners ot the duct — see 7.5.4 below). Figure 7.27 reveals
considerable improvement in the predictions of turbulent kinetic energy, as
compared with those of Launder & Ying. This is the first point at which the
full Reynolds stress model can be asid to have improved significantly the
results for fully-developed flows. Figure 7.25 can be regarded as vindicating
the use of the present form of the pressure-strain model rather than that of
Naot et al, once the use of a stress model is accepted as justified. The
predictions of turbulent kinetic energy and of axial mean velocity confirm

the observation of Brundrett & Baines [1964] that the secondary flows cause
greater distortion of the former than of the latter. Like Launder & Ying

we conclude that the discrepancies observed between prediction and experiment
are ‘quite typical’ of those ‘to be found between different sets of experimental
data for the more extensively examined flow geometries (e.g. the plane channel).’
The predictions of the variation in wall shear stress reflect very closely the
measurements of Leutheusser, as shown in Figure 7.28. Figure 7.29 shows

the variation in friction factor with increasing Reynolds number. The predictions
show some improvement on those of Launder & Ying, especially at lower Rey-
nolds numbers The improvement must be attributed to that in the velocity
contours. which in turn owe their increased accuracy to the near-wall model
used

Verification of numerical accuracy The fact that several workers have already
obtained solutions of the equations for fully-developed flow, this provides us with
the opportunity to test the present procedure for numerical accuracy The pro-
gram was adapted to ‘simulate’ the work of Naot, Shavit & Wolfshtein [1972]

by modifying the various components (pressure—strain model, choice of constants)
and eliminating the near-wall correction, to correspond to the model used by
Naot et al The detailed comparisons are shown in Figure 7 30, and are entirely
satisfactory

It was found that an 11 x 11 grid gave excellent results, provided that the
grid was compressed near the walls and allowed to spread near the planes of
symmetry. With a 15 x 15 grid it was not necessary to take these precautions.
To obtain stable solutions in the initial region (up to 30 hydraulic diameters)
of a developing flow, it was found necessary to take very small ‘forward steps’
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(not greater than .03 of the hydraulic diameter), though these could be
allowed to grow exponentially to 0.75 of the hydraulic diameter after

20 diameters had been covered. For all these recommendations, the
criterion of accuracy has been a local variation of not more than 0.75%

in the mean velocities and 1% in the turbulence quantities. To obtain
fully-developed flow, it is not necessary to proceed so slowly as for
developing flow: an initial forward step of 0.25 hydraulic diameters is
permissible if a maximum inaccuracy of 5% en route (though not
ultimately present) is overlooked. The results for fully-developed flow
shown in Figures 7.25-7.30 were obtained with settings suitable for

. developing flow. By observing all these numerical constraints it was possible
to ensure that all the symmetries imposed by the physical nature of the
problem were reflected in the predictions to within one part in 10%. Grid-
independence was verified by increasing the fineness (i) to 22x22 and then
(ii) to 11x33, and noting that in neither case was any discrepancy produced,
to within_1% locally in any predicted quantity.

7.5.3 Free-surface flows

An interesting extension of the techniques used for duct flows
is the application of the model to the flow in an open channel.
Data for such a flow were presented by Nikuradse [1926]. The
free surface presents considerable difficulties, particularly in respect
of the correct specification of boundary conditions.

The free surface was treated as a symmetry plane, with the fol-
lowing exception: the liquid—air interface was presumed to act on
the Reynolds stresses as a wall. * Accordingly the wall-effect (Chapter
5) with its associated decay (7.4 above) were imposed on the flow
from the symmnietry plan¢, with the resul*s shown in Figure 7.31
These results confirm that the boundary conditions imposed lead to
essentially correct prediction of the velocity distribution, and in particular
to the eorrect prediction of the descent of the velocity maximum from
- the surface. As the only change in the boundary conditions as between
the (quadrant of the) square duct and the (half of the) open channel
is the introduction into the latter of the near-wall correction term at
the surface, we may deduce that one way of generating correct predic-
tions of the flow in an open channel is to treat it as we have done.

"e a yoon sthive Of Gdds e 4 0ed~2 “ur on ol ik sT1€Sses as ¢ ven r°y the

mo.t 0" « ' 4. 11 Al Stedy lunelton ex.iessed in oceims of the g.stanie trom
oo ontesty
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While this is not presented as a solution to the problem of the
prediction of such flows, it does suggest a line along which such
a solution might well be pursued: the free surface does generate
an additional redistribution of the Reynolds normal stresses, it
seems, which only direct measurement can confirm.

7.5.4 Summary of results

Figures 7.3—7.20 show that the model can predict the developing
flow in a square duct with a good degree of accuracy. In common
with earlier attempts by Naot [1972] and Tatchell [1975] (the latter
having predicted devcloping flow; the former having used a model of

the same order as the present one to predict fully-developed flow),

the axial mean velocity contours show an excessive ‘bulging’ towards
the corners. The present predictions are comfortably within the =~ °
envelope of the data for fully-developed flow shown in Figure 7.18.
For developing flow, the contours of turbulent kinetic energy and
of axial mean velocity are quite satisfactorv: the other quantities
can not be regarded as experimentally ‘known’ to within the
accuracy required for a definitive judgement.

The excessive ‘bulging’ of the axial mean velocity contours
towards the corners can (in order of decreasing likelihood) be
attributed to :

(@) the neglect of the effect of lateral pressure variations
on the axial mean velocity (for developing flow only);

(b) an inadequacy in the log law wall functions used near
the corners; the law may clearly not hold in the region
of intersection of the two wall boundary layers;

(c) possible inadequacies for three dimensions of a Reynolds-
stress model of turbulence that was derived on the
basis of measurements and correlations for two-dimensional
phenomena.

Howeyer, it must be pointed out that the predictions of the
present model appear to lie consistently closer to the data than
those produced by earlier models.



GENERAL CONCLUSIONS

8.1 Summary of achievements

The model described in Chapters 3—5 has been subjected to
exhaustive testing in two-dimensional near-wall situations, and

applied to three-dimensional flows — in all cases with satisfactory
results.

8.1.1 Objective and achievement

We have stated our objective as the production of ‘a properly
heuristic model of turbulente’ (cf. Appendix A). In so far as
our model was heuristically derived, in Chapters 3—~5, and was
shown in Chapters 6—7 to be capable of the correct prediction
of most features of the turbulent flows considered, our objective
has been achieved.

8.1.2 The prediction of two-dimensional flows

Excellent agreement with experiment was achieved in the single-
wall flows tre..ed.

Especially pleasing successes were

+  the accurate predictions of the wall jet in stagnant sur-
roundings;

+  the correct prediction of the point of inflexion in the
;2 curve in all two-dimensional flows;

+  the good agreement achicved with the data of Hanjalic
& Launder for the asymmetric channel flow,
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The near-wall correction devised clearly produces excellent results
in one-wall flows and is generally successful in channel flows.

The diffusion models considered can not be regarded as a
really satisfactory representation of the physical world. The
model which best reflects the data is not clearly invariant,
though we have shown that its non-invariance may perhaps be
due to the over-simplified way in which we have chosen to
write it. We have, in the absence of entirely reliable measure-
ments of the diffusion, no way of pursuing this matter further
at this point of time. As it stands, the model recommended
(that of Daly & Harlow) does not provide an unequivocal
generalisation to three dimensions. However, this failing should
not be overstressed, relating as it does to a very small fraction
of the overall turbulent kinetic energy balance.

8.1.3 The prediction of threedimensional flows

The model derived for two dimensions was extended to three
dimensions in Chapter 7. This enabled us to produce predictions
for the square duct which were

(a) in good general overall agreement with the best available
data;

(b) much more accurate over the entrance region than those
generaled by lower-order models (cf. Tatchell [1975], who
correctly guessed that this would happen);

(c) deficient in respect of the ovérprediction of the secondary
flows, leading to an excessive ‘bulging’ into the corners of
a duct; this excess is less than that indicated by earlier
predictions, an improvement that can be attributed to the
use of the near-wall correction.

The predictions of flow in open channels are of interest, and
are in line with those of flow in ducts.

The deficiencies in the predictions may be due to short-
comings in the Reynolds-stress modelling, but (since they
are common to all models so far applied) are much more
likely to be due to neglect of significant terms in the mean-
momentum equations.
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8.1.4 General assessment

The predictions obtained justify the use of the model. However,
we must concede that the model requires, in its three-dimensional
form, slightly over 150% more computer time than, say, a k—e
model. Whether this additional investment is justified in terms
of the increased accuracy and extra information available from the
present approach is a question that must be answered in the light
of the requirements of each particular user of a turbulence model.
We have shown

o that the use of a Reynolds-stress model permits the incor-
poration of a modification which represents the effect of
a wall on both the stress distribution and, hence, on the
mean flow pattern;

a that it is possible to incorporate such a model into standard
parabolic partial-differential equation solution algorithms
without causing instability or requiring excessive computer
time and storage;

L that the values of the additional constants required by the
model can be deduced from physical considerations, and that
the results generated with the use of these constants are
both stable and optimal with respect to small variations in
the values of the comnstants.

8.2 The future

There is clearly room for further improvement. As topics
which are suggested by the present work we submit:

n the refinement of the modelling of the dissipation
of turbulent kinetic energy: the isotropic model is
probably satisfactory in the present context, but there
may be better ways of modelling the production,
destruction and diffusion of dissipation than those of
Chapter 4;

8 a ‘causal’ explanation of the origins of the near-wall
redistribution of the Reynolds stresses, leading to a
consequent improvement on the present phenomeno-
logical approach;



a thorough investigation of the phenomenon of dif-
fusion of turbulent stresses, leading — it is hoped —
to a model which reflects the undoubted invariance
of the physical world, and is also able to predict the
phenomena of turbulence better than an apparently
non-invariant one;

the implementation of the present model in the
context of a more exact treatment of the mean-
momentum equations in three dimensions;

the constant refinement of the methods of turbulence
modelling in the light of the the data generated by
ever-improving techniques of measurement.



APPENDIX A

MODELLING IN HYDRODYNAMICS

We assume that the problem of solving the equations of motion
for a Newtonian viscous incompressible fluid satisfies the following
“plausible intuitive hypotheses’ first enunciated in this form by
Birkhoff [1960]. '

A, Inraition suffices for determining which physical
rariables require consideration.

B.  Small causes produce simall effects, and infinitesimal

causes produce infinitesimal effects.

Svimmetric causes produce effects with the same

syimmetry. ‘

The flow topology can be guessed by intuition.

The processes of analysis can be used freely: the

functions of rational hydrodvnamics can be freely

integrated, differentiated. and expanded in series

(Taylor, Fourier) or integrals (Laplace, Fourier).

F.  Mathematical problems suggested by intuitive
physical ideas are “well set” (i.e. have one and only
one solution depending continuously on the bound-
ary conditions (Hadamard [1923]).

ISECEEN

Hypothesis (A)

Tlus, strictly speaking in combination with (B), allow us to dis-
regard e.g. relativistic effects, electrostatic forces, impurities,
compressibility of “incompressible’ fluids, quantum-mechanical
considerations, etc. The failure to invoke and operate correctly
Hypothesis (A) can be regarded as the source of many so-called
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paradoxes of classical hydrodynamics. Thus, if we assume incom-
pressibility, we are inexorably led to the conclusion that in a two-
dimensional theory a bubble requires infinite energy to expand.
Correct, albeit implicit rather than explicit, use of the hypothesis, on
the other hand, led Prandtl to derive his theory of the boundary-
layer [1904]. This hypothesis amounts to a decision on the contents
of what Bradshaw, for example, [1967] calls “the list of.important
variables™.

Hypothesis (B)

This hypothesis lies at the heart of our search for a solution of the
problem of turbulence. In deliberately neglecting certain terms that
properly appear in the Navier-Stokes equations we not only assume
that they are small, but also that their inclusion would lead to a

_negligible change in the results obtained. Similarly, we shall replace
unmanageable terms by tractable ones in the belief that the difference
between the true term and its modelled form is not merely negligible
but of infinitesimal effect on the solutions obtained.

That this hypothesis is neither so obvious not so innocent as it may
seem can be seen from the fact that it does not hold for, e.g.

(a) Any quantum-mechanical phenomenon

(b) any macroscopic transition of a truly “sudden” nature:
such as the problem of the determination of the exact
height from which a given egg can be dropped without
breaking,

or, as we saw earlier (page  above),

(c) the transition of a given flow from a laminar regime to a
turbulent one. The hypothesis thus implies a stability of
the solutions obtained by its use. This fact leads to a
further complication: viz, that the effect of non-zero
viscosity is not a symmetrical, and thus ordinary, type of
perturbation. Clearly, the result of letting v = 0+ may be
quite different from whatever would result from letting
v = 0- (i.e. through ncgative values).

The point is probably best made in terms of an example.



135

Example. Consider the equation
X=kx

If k < 0 this has the solution:
x=Asin (k20) + B cos (k1)

which satisfies the condition
x| < VA + B forall 1

If k > 0, the general solution is

= Aek|/,’+ Bc_kllzl

which tends to infinity as f — e or  — — e however small the value of k.
The value &k = 0 thus represents a dividing-point between two essentially
different types of solution,

In the case of the Navier-Stokes equations, v < 0 makes the equations
hyperbotlic. not clliptic. This suggests that a fruitful approach might
be via ‘catastrophe theory’ (see e.g. Thom [ ]) which deals with
bifurcations of this kind. However, the theory is currently restricted
to the derivation of an intuitive understanding of ‘pure’ differential
cquations. Qurs being a physical problem, we are handicapped not
by a lack of physical, intuitive understanding: what we lack is an
adequate mathematical juslification for its solution.

Hypothesis (B) is also the basis of the justification of a finite-
difference approach. We invokc it implicitly every time we seek
‘grid-indcpendence’, by saying, in effect, that if we can produce the
results that we scek (t.e. to within a specified tolerance) with a given
grid fincness, and no problems of inaccuracy arise if we refine the
grid slightly further, we may deduce that we should not change the
results however much further we refined the grid.

Hypotheses (C), (D) & (E)

These hypothcses allow us, above all, to apply common sense to
save time, and (particularly in the case of (E)) to avoid unpleasantly
tricky and repetitive continuity considerations.



Hypothesis (F)

On page  above, we give certain reasons for believing that this
hypothesis, in effect, held. Further evidence is provided by the facts

that:
(a)

(b)

(c)

the results of all predictive work so far based on the Navier-
Stokes equations have not conflicted with the experimental
data;

the equations have close links with the physics of the problem:
thus, we can measure individually most of the terms in the
equations — convective, generative, diffusive, etc. effects —
and thus have a good intuitive understanding of the internal
structure of the equations:

experimental results, being self-consistent to within the
accuracy of the techniques used, have led to satisfactory
simple algebraic corrclations (e.g. laws of boundary-layer
growth, and ‘universal’ velocity profiles) — just as one would
expect from a ‘well-set’ problem.

In the last analysis, however, no set of rules can be as effective in
ensuring good practice as the simple expedient of constant reference
to the empirical data. In all that follows, we shall draw on the
available experimental information to assist in establishing the models
we examine or propose. We shall conclude by comparing the results
obtained from those models with a wide range of well-established -
data. 1n this way, we should be able to produce what we seek — a
properly heuristic model of turbulence.



APPENDIX B

THE SOLUTION OF EQUATIONS (4.32)—(4.34)
as linear functions of the Reynolds stresses

From condition (4 37) we see that

0= o u,t; + o,uuy + oy &y Wiy

+ 30ty oA u o Ul

(- + ag Y o) 6, Ul

From equation (4 34) we see that

2uuu, = (3a, + o roa)u,u,

oy by, nu, - (@, T Q) Uy,

tBo, t oo, ra) b, g

Next, we note that the conditions (4 32)--(4 33) have no effect
on terms other than the groupmngs

and
a, a,

which they cause to be permuted among themselves. Consequently,
as (4 32) is an idenuty. the four permutations (the fourth 1s a cor-
ollary of the other three) merely serve to show that

a, =&, =a; = o

and that
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Therefore we may write

——

mi — N
Qoj ~ & 82/’ Uy Uy t o (821' Uy “j + 852»1 Ujlly + 8im Uty

+ 8,-,- Uy lg)
+ o by, Uglly 0y 87 6, U
+ og (8“6””- w89, 8,.1- W Uy )

and applying (4.33) we see that if i=j

0 =0 thy, g+ oy (5 U g + g Ull;) + 0 Uglly,
+ 0ty By Uil + 0t (B ety + 3 8y U )
1f further =m, this gives
0 =0y +8a, + g + 30y + 1204
while if &%, we have
0=0 + 50, +oy
Equation (4.34) gives, for 2=/,

—

9 = Y . a0,
2u,u;= 30 u,upt 4o, tag ) ugu;t 3oy 6, ety

" im

+ 2a8 smim
If i=m, we see that
2=30y t4a, + 305 +9a; + 604
while if i#m, we have
2=3q; +4a,

Thus, in all, we have the four equations:

ap +5a; tog =0
3o, +3a; + 1205 =0

3o +30; + 60 =0
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which have the solutions
o, = (—2-30 AR
ap = (dog +10)/11
oy = (=250 —2)/11
ag = (10ag + 3)/55

If we write k = m /2 in the terms associated with a; and ag, these
coefficients will have to appear doubled. If we now write

= o
B=oy =03 =y =ag
Co2 = g

n=20

v =208 = 209

we derive the model in precisely the form in which Launder [1971]
originally presented it:

mi — ey 737 a7 S Y 1 YEETH
agi = abo; yy u; + B (8 quustty + 8, s Uity +8yg U 1y + 85 14, 11)

+ Co2 ‘Smi uQui + [namiaﬂi + V((S

5,.].+ 5,,,,5,9)] k

me

where

a = (4cyy + 10)/11
B =(—2-3¢, )11
n = (=50c,;, —4)/55
b= (20c,; + 6)/55

Recalling that the relevant term in the stress equations is in fact

Ju; du
= (55 4

axi ax,-

we next write:
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1A

{ o +aQV} o‘(‘szi"‘mu + ‘Smujum) ox
m

m

+ ﬁ (26m92 uiu/ + ‘Smi Uiy + 6mi uiufz

— — — 2
+ 8 Uy g+ 8o Uy Uy + 26,5 10, g ) ™
m

6o+ s i) o
+c U; Ugld;) —
02 Oy lg mj Ug U ox,,
ol
0 (8,05 + 69;0,,7) k 5;:
o
m

= (atp) {691 Uy Uy + B, 10, u,}

m

— aUQ
+ (ﬁ+c¢2) {6m] Usitg + ‘Snu Uy "Q} éx_
m

1A
+ (77+V) {6171169/+ ‘Sm‘sm/}

m

ol
+26 {‘Smﬁ “x“ + 61/ “m g } o
Xy,

ol
ox

m

oU; oy,
+ -—l+—'§ k
+(n V){ax,- ax/
—28P 5,

(B.1)



141

where
_ _ —_— 0,
Pi[=— {5,2] Um u"+6m llm lll} a—x""
oU;
— ey ] l
=—{u,u;— tu
Ut fox, ™ Ui ax J
—_ —_ U
— m m
D"— {u,.um F,XT +llillm -gx—i'
U, .
P=-1u_u, — = rate of production of

Uy —
X turbulent kinetic energy

By comparing coefficients, it is easily seen that (B.1) redv es to:

U,
H“' a "H + a"l/}
- (%2 +8) 2
- T R 3 %P
(SC 2 — 2) 2
-7 P3P



APPENDIX C

THE 2-D COMPUTER PROGRAM

Appendix D contains a full listing of the program used for
computing two-dimensional boundary-layers. The finite-difference
procedure is that of Patankar & Spalding [1967, 1969].

The main differences in structure between the original GENMIX
code and the one in Appendix D are all attributable to the fact that
the computations were obtained using the ‘interactive’ systems of
the University of London and of Imperial College, London. The
input of data is normally assumed to be from a teletype or VDU,
through ‘default’ settings are left available for the use of the program
by ‘batch’ processing. The advantages of interactive use as against
batch processing were comparable to those of owning and driving
ones own vehicle rather than relying on public services. Thus the
program, when run interactively, has controls corresponding to
an‘accelerator’ (forward — step — size) and a ‘brake’ (‘pause’ or
‘stop’). One ‘steers’ the program by choosing models and constants
in the light of information received. Against this must be set the
sole disadvantage of limited (interactive) core: 25000,, words on
the Imperial College CDC 6400/CYBER 7314 system.

To facilitate compilation within this limited region of core, the
original STRIDE subroutive was divided in such a way as to ensure
that no one subroutive was much larger than the others. The
subroutive HELP is nothing more than Patankar & Spalding’s
STRIDE (3), with appropriate variables common to HELP and the
rest of STRIDE.
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Structure of Program:

The basic structure of the program is (except as already indicated)
as documented by Patankar & Spalding. The particular modification
introduced are as follows:

MAIN

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Common blocks include turbulence-model constants and
sufficiently large arrays to accommodate the dependent
variable, and their ‘sources’;

Chapter 1 includes default settings of constants for different
models for batch running; the ‘rib-height’ (RIBHT) for a
rough wall;

Chapter 2 allows for strongly non-uniform grid-spacing
(required by strongly asymmetric flows);

Chapter 5 sets initial values of all appropriate variables.
The profiles chosen for dependent variables were found to
have less than 1% influence at x/D > 2.

Chapter 7 includes provision for an automatically-expending
forward step; this is not needed for interactive operation.

In Chapter 10, a number of Patankan — Spalding variables
are redefined and used as locations for values of quantities

of interest. (e.g. FUFLUX contains the value of the ““E’-wall
shear stress). The quantity U, ,, is calculated for the purpose
of deriving Ry.The position of zero shear-stress is also
obtained, as are the values of U for the regions of flow on
either side of U,
In Chapter 10(d) the intermediate output (but not input)
is relegated to the new SUBROUTINE WRITE.

Finally, provision is made for the boundary conditions on
each equation.
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WRITE

This subroutine
(i) gives output of dependent variables
(ii) provides values of normalized quantities

(iii) allows for selective output in interactive mode (default
values are also provided in order to restrict line-width)

(iv) is structured to allow for ‘debugging’ information to be
generated.

AUX:

Calculates 0U/dy by interpolation, to give a value suitable for
inclusion in the source terms.

The sources are calculated for the various equations. In the
case of the near-wall corrections, it was found necessary to include
these by stages. The “DO 14’ loop effectively incorporates the
correction terms by an ad hoc under-relaxation over the first 200
steps.

The PREF’s (coefficients of the diffusion term) are selected
according to the model invoked.

STRIDE:

This subroutine has been modified to allow:
(i) use of the calculated shear stress as source for momentum

(ii) the incorporation of fixed boundary values ¢,~w by setting,
e.g.,
C(, 2)=2x% iy,
The -hearstress modification will be found on page 17> (foot)

where the SULA term represents he integrated momentuin source
due 1o the turbulent snear stress
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HELP:

Contains STRIDE (3) of the Patankan—Spalding code. Also
incorporates automatic correction for instabilities revealed by
negative normal stresses, and warnings if this scheme is invoked.
[This facility is not intended for normal operation and results so
generated are not, of course, used for any but ‘debugging’ purposes).

WF

This subroutine incorporates the wall-boundary conditions of
Table 6-1. :

The rough-wall boundary condition is explicit. It cannot work
satisfactorily if YREF is allowed to be less than RIBHT (the ‘rib-
height’ of roughness elements); this dictates a minimum spacing of
the first node from the rough wall, effected by use of a strongly
non-linear grid.

Running

Generally, the calculations were made using 30—40 nodes. This
is not a minimum figure it is sufficiently large to generate grid-
invariant predictions. (variation < 0.5% everywhere). Neither
precise optimization of grids nor paring of the redundancies in the
program was performed as there were no restrictions on the free use
of Imperial College computing facilities for research. Current users
of the program are not so fortunate.

Running times were about 28/CDC 6400 seconds to fully-
developed flow using FUN—compiled binary codes. Other compilcrs
would perform much better. Recent tests indicate that compilation
and running under MNF would effect savings of about 60% in
compilation time and about 40% in running time. Optimization
of the code could certainly be expected to produce still further
substantial improvement.



V,_l,

3-D Procedure

For reasons of claimed copyright, it is not possible to publish
a listing of the procedure used for 3D computations. This makes
it pointless to describe the modifications performed. Suffice it
to say that the methods used were exactly in line with the 2D
procedure described here.

Other workers have incorporated the present model in publicly
available 3D parabolic programs, and forthcoming publications
from Imperial College will doubtless provide full details. .



APPENDIX D

LISTING OF THE 2-D COMPUTER PROGRAM

Introduction

The listing given in the following pages of this Appendix is that
of the program used to solve two-dimensional boundary-layer flow
(it is here ‘set up’ for solving the asymmetric channel flow of
Hanjali¢ & Launder). No attempt has been made to ‘clean up’ the
appearance of the program. Redundancies abound — most of them
the debris of early versions — but it was felt that the advantages
of publishing the actual program used outweighed the marginal
benefits of subsequent polishing.
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g FURTHZR ACJJSTMINTS T2 34X ARZ HAJE I CHAPTEZRS & ANJ 9
vbHAPTERd&dddSBdJ358336:8613&885 AUJUST LONGITUJINAL CONJITIONS 8333848
C =em=e—————— mememce-e==2==30TH YALLS IYPZRVIOUS, INNSR WALLADIARATIC

IF(IJT.—D' JTl ) GO T2 3%
TAUI=S%,
TAUZ=".
u(i)=n,
U(N>3) =0,
cHALL=1.,
Rﬂ‘]_::}o
RMZ=3 o
DO 81 J=2,NPH
INDI (J) =2
INDE (J) =1
AJICJ)=0e
81 AJZ(J)=0C.
86 USAR=0,
C FENEFRR P rppAAp N A XXX LXXL2444%  AJJUSTMENT AT END OF INNER PIPE
Cm====mmemomccmmmmccanaen PRILIMINARICS FO® PISSURI GRADIZNT
00 33 I=2,4P1
83 USAR=Y3AR+(U(I)+U(I+1))* (O04(I+1)-01(I))
UBAR=,5*UEAR
DYNH -D=U3AR=FLCTCT/ZY (123)
XU=XU+0X
LAt EErsass s L LT aNLE  PRESSURE GRATIENT
Crerrasatrrrrsarrienaar SPECIFICATIUWN 2F VARIATIUN OF OUTER RADJIUS
DA==o1¥(Y( IP2)=R0OYUT)
JPDIA=(CY I4=3*CA/3X =TAUL =TAUZ) /Y (NP3)
87 DO &5 121%103
85 DPUX(I1=35299X
CHAPTL= R3333G333139333S332333  TRANSPORT AINGC =MNTRAINMINT DL?P"QTI 3339
9{ 0C 32 I=2,NP3
92 EMULI)=PHJISF
CaLL AUX
95 CALL ST2INE(2)
C#Qq‘--’n&*-{--} F e RF AT DXL E R FRAB P IR PR PP AN L LR RS e P i X3 IR LR PR LLYE N LLZIRENE Yy X
IF(ISTEPe5T20) GO TO 135
CHAPTER 4. 10 1719 1310 19 13 21
GHAPTER 1R Sessrmmsmmmasssmasanasseinesses soses See HZAJINGS
UA=ROUT
U3=FLGCTCT
UC=FLGAT ()

9¢1



---TA=RIBHI - . Bl aaes——
T3=LASTeP
TC=AK :
REY=12.35/27./>MUREF
EQRAT=FLCAT (KRJF)
AMACH=ALMS

107 FOSMAT(1rdL,1P3Z 11,3, %I5)
2yt FORMAaT(in ,1P3= 11,3, 41I0)
IF(OMCIST,. 1S3 IHRIT_(5,2311) {(9M(I),I=:,NP3)
139131 FORMAT(G6H_OM*S 4.:1F5.,3 /J{in 34X433ilFoe3 1))
161 FORMLT{iH ,968.2 )
PRESS31=P32Z3S
106 CONT INUE
ATT ] N et T ————- TESTS Sulk PRINTOUT
IPJINT=2 _
IF(I>T=P.ZN.q) GO TJO 122 =
IF(ITEST.ZQ.1) GO 7O 132
IF(IFING-Qs~) GO TO 132 N
IF(FLOAT(ISTEP/NSTA)e = Qe FLOAT(ISTE?) /FLOAT(NSTA)) GO TO 402
IF(ISTZPeZ 1o LASTZEP)S0 T9 122
IF(ISTEFeSE e IENL Al I3TZPLLTLIZNG#3) GI T3 132
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The domain of solution is shown shaded
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Figure 7.2 The rectangular duct
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Nomenclature
a, b, c tensors defined in (4.27), page 75
c, constants, for various A, defined in Table 6—3, p. 110
¢ friction factor

decay function, defined on page 101
turbulent kinetic energy

mixing length

dissipation length-scale

fluctuating pressure

time

Uy, Uy, Us fluctuating component of velocity
u, v, w fluctuating component of velocity
W subscript denoting wall-value

Xy, X3, X3 distance co-ordinates

X, Yz distance co-ordinates

T rT T
m

~ T

A, B, C,... labels used to distinguish similar terms (e.g. terms of (4.8))
subscript denoting centre-line value

diffusion

duct diameter

see (4.38), page 77

pressure

production of &, Reynolds stresses
Reynolds number

Reynolds number based on maximum velocity
velocity

volume

coefficients defined in (4.35), page 77
coefficients defined in (4.36), page 77
coefficients defined on page 98
dissipation

von Karman constant (taken as 0.41)
absolute viscosity

dynamic viscosity

density

shear stress

vorticity

solid angle
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