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ABSTRACT 

Chapter 1 traces the history of Man's understanding 
of fluid flow from the earliest times In Chapter 2, 
the problem of solving the Navier—Stokes equations 
is discussed, with special reference to the role of the 
computer. In Chapter 3, the exact equations for the 
iZej ,: ,alds stresses are derived, and an appropriate level 
of closure is dete ailed The Reynolds-stress equations 
are analysed in Chapter 4, and a model derived that is 
suitable for finite-difference solution T.; ,e special case 
arising near walls is treated in Chapter 3, ana the model 
is adapted to cater for such situations. 	The results 
obtained for two-dimensional flows are presented in 
Chapter 6, and extensive comparisons are drawn with 
existing data. In Chapter 7, a further extension of the 
model enables it to handle three-dimensional flows • 
results are presented, and comparisons drawn wait 
experimental data. In Chapter 8 we summarise the 
achievements of the model and make recommendations 
for future work. 



We shall bring all things to rights, said my father, setting 
his foot upon the first step from the landing.—This 
Trismegistus, continued my father, drawing his leg hack, 
and turning to my uncle Toby—was the greatest (Toby) 
of all earthly beings—he was the greatest king—the 
greatest law-giver—the greatest philosopher—and the 
greatest priest 	 

...And engineer—said my uncle Toby—
In course, said my father. 

STERNE, The Life and Opinions of Tristram Shandy, Gent. 
Volume IV, Chapter XI 
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1 
THE HISTORY OF TURBULENCE THEORY 

1.1 The Pre-history of Turbulence 

Many of the earliest civilisations were based on the proximity of 
rivers. Thus, for example, Neolithic cultures were to be found in 
the valleys of the Indus, Nile, Danube and the Tigris and Euphrates. 
It would therefore be surprising if close examination or such relics 
as we have of these civilisations did not reveal some measure of 
understanding of the way water flows. 

Neolithic pottery is highly informative. Plate /*shows a cerzean 
pot. now in the British Museum, which dates from before 3 200 B.C. 
It bears the earliest known Fgyptian representation of a boat under 
sail. The stylised image of the sea or river foreshadows the standard 
hieroglyph for water 

VVV\ 

in which we see the rudiments of our letter M — via the Hebrew 
letter j 	(mens; 	= water). The early Egyptians did not 
mince their glyphs: for example, 'woman' was W 	and we may 
safely assume that any design of the predynastic period was deliberate 
and meaningful rather than purely decorative. Plate 2 shows juxta-
posed whorls and water-symbols, on a pot contemporary with that 

„of Plate 1. The juxtaposition of these two symbols suggests an aware-
ness of the existence of different types of fluid flow. 

Definite evidence of a knowledge of vortex-type motion is provided 
by the cave-drawings of Tegneby in south-west Sweden.Figurel.lis 
a sketch of these drawings, which date from the Bronze Age, which 
occurred in the latter half of the second millenium B.C. in that part 

1" The figures, plates and references for the 'n'roductory hIstorcal chapters 
(1 and 2) will be found immediately after tne appropriate chapter, while 
those for the remaining chapters have been aced after Appendix D 
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of the world. The lower picture may well have been intended to 
depict a capsized boat. Our particular interest is excited by the 
whorls (i.e. eddies or vortices) placed below each boat. 

Of course, the whorl has been evident in decoration from 
Megalithic times (e.g. the entrance to megalithic ruins at New 
Grange, Ireland, and at Tarkien in Malta). The mere appearance 
of whorls does not of itself confirm or even suggest any insight 
into the motion of fluids: in the context of illustrations of water, 
however, whorls must be presumed to represent eddies or vortices. 

Any remaining doubt is removed when we examine Plates 3-9. 
These show details of Assyrian reliefs, mostly from the walls of 
the North-West Palace of Ashur-nasirpal 11 at Nimrud (now in the 
British Museum). These reliefs were executed in about 850 B.C. 
and show incidents in the military campaigns of Ashur-nasirpal. 
For the first time in history, flowing water is drawn realistically. 
Indeed, very few of the extant Assyrian reliefs show regular types 
of flow: for this, see Plate 8. This fact suggests that the Assyrians, 
unlike anyone else before the present century, recognized that 
most naturally-occurring flows are turbulent, and that turbulence 
is the 'natural' condition of any flow, except for very special con-
ditions (very low Reynolds numbers). 

On the evidence of Plates 3-9, the Assyrians seem, in a simple 
pragmatic fashion, to have understood the essentially irregular and 
random nature of turbulent flows. This is shown in particular by 
Plate 7a—b, where we see the flow crossing and recrossing itself 
in a clear attempt on the part of the artist to depict haphazardness. 
Judging from his representations of fish (Plate 6), we see that the 
sculptor idealized and smoothed out the original draughtsman's 
understanding of what he drew, so that we may conclude that the 
Assyrians saw fluids as moving at least as haphazardly as they drew 
them The difficulties of working in stone will also have forced the 
sculptor to neglect minor details. In view of these considerations, 
the accuracy of the images in Plates 3-9 is quite impressive. The 
attempt to show the flow in a corner in Plate 9 is especially inter-
esting. Plate 5 suggests an awareness of the intermittency charac- 
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teristic of free boundaries, such as the surfaces of rivers. 

The Assyrians differed from almost all their successors of the 
next 2 300 years in resisting the temptation to smooth out the 
turbulence altogether. Greek vases and Roman paintings show 
all moving fluids as smooth and regular. Indeed, all Greek and 
most Roman representations of flowing water are trivially idea-
lized . The striking exception is found, once again, in the form 
of a sculpted relief. (Plate 10). It is no coincidence that this dates 
from the openly aggressive expansionist era of Roman imperial 
history. Sculpture was used to adorn public buildings with per-
manent stone representations of military triumphs. It was clearly 
a far greater achievement to have effected the crossing of a violent 
(turbulent) river than that of a sluggish (laminar) one. However, 
the fact remains that the representation of turbulent flow in Plate 
10 (the bottom of the helical design on Trajan's column) is separ-
ated by roughly a thousand years on either side from anything 
remotely approaching its realism. 

Medheval manuscript illuminations (e.g. Plate 11) show the 
beginnings of a renewed awareness of the irregularities to be found, 
for instance, at the foot of a waterfall. Such examples are, however, 
relatively rare, and do not represent any kind of generalized insight. 

The same must, in the end, be said of the work of Leonardo da 
Vinci. Plates 12-15 show some of Leonardo's remarkable work 
in drawing real fluids in motion. Leonardo's insight, albeit as deep 
as will ever be achieved into the appearance of turbulent flow, did 
not influence those who followed him. The accurate drawings were 
reserved for the privacy of his manuscript notebooks, and thus re-
mained unknown until the present century. Leonardo rendered the 
flow visible to the naked eye by sprinkling tiny seeds into the 
fluid — the technique of 'seeding' the flow, still used to this day. 

Ironically, perhaps, it would appear that the best understanding 
of real fluid flow has until recently been achieved by artists rather 
than scientists. Even Leonardo was essentially a professional artist 
but an amateur scientist. 
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Thus we see that an awareness of the existence of irregular flows 
was gained at a few isolated points in the history of civilisation, 
only to be lost and rediscovered after a further lapse of time. Even 
if we disregard Leonardo's achievement entirely, from the historical 
point of view, on the grounds that he concealed his discovery, we 
are left with what on the surface seems like a puzzle. 

How was it possible for simple people like the Ancient Egyptians 
to observe and record a phenomenon which was ignored by almost 
everyone else until about 1840? This fact alone would make the 
phenomenon of turbulence most unusual in the history of science. 
But turbulence is unusual in that it is at once ubiquitous and highly 
complicated. 

An explanation can be found in Man's overwhelming urge to sim-
plify what he sees, even — or especially — where Nature is inherently 
complex. The idea of recognizing the complexity of a phenomenon 
and proposing an approximate explanation is relatively modern; it is 
a product of the present century when science, following Heisenberg, 
Popper and Goedel, was finally forced to accept its own essential fal-
libility. In effect, the demand for 'scientific truth', implying as it did 
the coincidence of two conflicting ideals, required the justification of 
scientific assumptions and conjectures in terms of their absolute truth. 
Not only did this mean that there could be only one answer to any 
question (e.g. Euclidean geometry precluded the possibility of non-
Euclidean explanations of .the same phenomena; Newtonian mechanics 
prevented scientists from accepting relativistic models until the evidence 
was overwhelming) but it meant that inexplicable deviations from 
theory had to be dismissed as spurious or ignored altogether. 

This last appears to have been the case for turbulence. The pheno-
menon was (and still is) resistant to a simple causal explanation in 
terms of a closed system of second-order differential equations. Sci-
entists preferred to ignore it altogether until about 1860. 
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1.2 The Nineteenth Century 

Though scientists ignored turbulence, engineers like Poncelet and 
Saint-Venant investigated turbulent flow in considerable detail, but 
without bothering to explain it, let alone understand it. The crucial 
first observations of the transition from laminar to turbulent flow 
were made by Hagen (1839] and independently by Poiseuille [1840]. 
These were the first explicit observations of a phenomenon that was 
seen implicitly by Girard [1816], who noted in the course of a series 
of experiments on the effect of temperature on the flow in narrow 
pipes that 

"On pent (Outer que le mouvement dei'ient plus difficilement 
lineaire dans tin tuyau de conduite que dans un petit tube." 

(page 332). 

The first systematic investigation of the mathematical basis of tur-
bulence was that of Boussinesq. His first work in this field was pub-
lished in 1868. However, it is to his 680-page Essai stir la the'orie des 
eaux courantes. submitted to the Academie des Sciences in 1872, and 
published in 1877, that we owe the first thorough, detailed attempt 
to explain the phenomenon of turbulence. 

In the first ten lines of the Essay, Boussinesq gives a very clear ac-
count of the problem, recognizing that there are two distinct modes of 
fluid flow, one in which velocities vary continuously from point to 
point, and one in which there may be large differences between the 
velocities of adjacent particles — this last misconception stemming from 
Boussinesq's conviction that turbulence was a molecular phenomenon. 
He further asserts that turbulence is associated particularly with the 
presence of walls, and adduces evidence that the no-slip condition 
holds. 

Boussinesq's essay is remembered primarily for his introduction of 
an eddy viscosity, c, recognized by him as being an analogue of the 
laminar viscosity, which it dwarfed its magnitude. He stated that the 
exchange coefficient e was a function of the flow rather than a pro-
perty of the fluid. He saw it as a function of the boundary conditions, 
of a length-scale, and of fluid properties such as density. In this way, 
Boussinesq opened the door to turbulence modelling. 
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One innovation due to Boussinesq with which he has not been 
credited by previous authors, e.g. Rouse & Ince [1957], is the sug-
gestion that the actual velocity of a turbulent flow at any point 
could be written as the sum of a mean value and a fluctuating com-
ponent (Boussinesq's 'agitation'). As Rouse and Ince[1957]. page 
209] attribute this innovation to Reynolds in 1894, it is worth 
quoting the relevant passage from Boussinesq's Essay, written in 
1872: 

"La quantitn exprimerait evidemment la vitesse relative 
d'ecartenzent des deux molecules. si les vitesses vraies tti  , 

, 1  , qui s'observent aux divers points, se trouvaient 
toutes diminuees chaque instant de !curs valeurs moyennes 
locales respectives rt, v, w, ou si, en d'autres termes, tout 
mouvement general de translation cessait, mais que 
agitation, representee par les ercl,s u l —u, 	w 1 —w, 
resta't en chaque point ce qu'elle y est en effet: cet agitation 
d'agitation stir place, sans mouvement progressif, pourrait 
d'ailleurs se realiser effectivement sous radio,: de forces 
convenablement choisies; it West nullenzent incompatible 
avec l'incompressibilite suppose(' du fluide, car u i —u, 
v 1 —v, w 1 —w, substitues a ti, v, w dans la condition lizzehire 
de continuite, y satisfont par le fait InPme que u r , v t , w i  
et, par suite, u, v, w la verifient." 

From this passage it is clear that Boussinesq had considered very 
carefully the implications for continuity of his assumptions. He 
was also entirely aware of the possibility of turbulence without 
mean motion relative to the walls, and he introduced the time-
averaging concept which is generally attributed to Reynolds. He 
maintained that the turbulent motion occurred at the molecular 
level, whereas we now know that it involves entities of a size several 
orders of magnitude greater than that of the molecules (see, e.g., 
llinze [1959], page 7). As errors go, however, this was a fairly 
useful one: not only did it enable Boussinesq to visualize the flow 
in terms which he could understand, but it pointed the analogy 
with molecular motion which, as we shall see, enabled Prandtl to 
provide the first useful explicit formulation of e. 	It was the lack 
of such an•explicit expression for the exchange coefficient that 
made Boussinesq's hypothesis of limited immediate practical value. 
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Reynolds' publication in 1883 of his now-famous experiments 
set in train a succession of similar attempts, dedicated to the deter-
mination of the criterion (the critical Reynolds number) at which 
the transition to turbulent flow occurred. Inconclusive results 
showed that there was, in fact, no single universal Reynolds number 
at which this happened. The search then switched to one for 'upper' 
and 'lower' critical Reynolds numbers: the first a maximum for 
laminar flow, and the second a minimum value for turbulent flow. 
By definition, the latter had to exist, as all flows, whether laminar 
or turbulent, have zero as the lower bound for their Reynolds num-
ber. The search for an upper critical Reynolds number was finally 
called off after lanonar flows had been observed at Reynolds num-
bers of 40 000 by Ekman [1911] . The inference drawn by Schiller 
[1925] was that the transition from lamim,r to turbulent flow was 
dependent on the initial disturbance. The high-Reynolds-number 
laminar flows were difficult to achieve and maintain: they were un-
stable. Thus laminar flow could be contrived at Reynolds numbers 
for which turbulence was the norm, but the slightest disturbance 
would cause the flow to revert to its natural turbulent condition. 
The fact that the reverse effect had never been observed demonstrated 
that turbulence was the general state of affairs, except at very low 
Reynolds numbers. at which any turbulence will be damped by the 
laminar viscosity and die away. 

In his 1895 paper, Reynolds re-examined the Navier—Stokes equat-
ions in an attempt to derive the criterion analytically. By considering 
the motion of fluids as composed of the (mean) motion of their centres 
of gravity together with a superimposed (fluctuating) motion relative 
to the centre of gravity, Reynolds deduced that the presence of tur-
bulence could be atti ibuted to the existence of non-zero quantities 
uv, 	(the nine Reynolds stresses). 

1.3 The Twentieth Century 

Considerable disquiet was felt at the very end of the nineteenth 
century at what was regarded as an unacceptable degree of discrepancy 
between theory and experiment. Rayleigh identified the problem in 
the following terms [1892] : 
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"It is possible that, after all, the investigation in which 
viscosity is ignored altogether is inapplicable to the 
limiting case of a viscous fluid when the viscosity is 
small.' There is more to be said for this view than 
would at first be supposed. In the calculated motion 
there is a finite slip at the walls, and this is inconsistent 
with even the smallest viscosity. And further, there 
are kindred problems relating to the behaviour of a 
viscous fluid in contact with fixed walls for which 
it can actually be proved (f) that certain features of 
the motion which could not enter into the solutions 
were the viscosity ignored from the first are neverthe-
less independent of the magnitude of the viscosity, and 
therefore not to be eliminated by supposing the viscos- 
ity to be infinitely small 	Considerations such as 
these raise doubts as to the interpretation of much 
that has been written on the subject of the motion of 
inviscid fluids in the neighbourhood of solid obstacles." 

f Rayleigh [18831 

In the following year [18931 Rayleigh published the first solut-
ions of the Navier—Stokes equations that relied on none of the cus-
tomary simplifications — one-dimensionality, very slow motion in 
which the term (u.grad)u could be neglected, or very-high-speed 
motion, in which it was thought that the viscosity could be ignored. 

It was, however, not for another ten years that a satisfactory 
generalized treatment of the equations was provided for the problem 
of the flow near walls. Prandtl [ 1904] systematically re-examined 
the equations to determine just which terms could be ignored from 
the outset, and which ones, despite their apparent irrelevance, had 
to be retained. In his paper, presented to the Third International 
Congress of Mathematicians, Prandtl developed the entire theory of 
the boundary-layer, which has been, and remains, the single most 
powerful tool for the simplification of the general Navier—Stokes 
equations. 

An intuitive understanding of the physical process had been 
obtained independently by Lanchester, whose ideas were to prove 
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most useful to Brandt' in developing the applications of his theory. 
It is perhaps striking that these two men, with their common dislike 
for the intricacies of mathematics, should have seen their way through 
what was essentially a mathematical problem. in a sense, the diffi-
culties had been spurious, in that they had been introduced as a con-
sequence of the slovenly use of mathematical techniques. Once 
Rayleigh had pointed out that the processes of taking the limit and 
of solving the equations were not commutative. the mathematical 
harrier to an understanding of the equations was removed. in a rare 
moment of candour. Brandtl describer the Navier—Stokes equations 
as unangenehm ('unpleasant'), and it was probably his dislike of 
mathematical complexity that gave BrandII the extra incentive to 
shnplify the equal. Is once for all — a task in which all others had 
failed. 

A more detailed understanding of the physical nature of turbulent 
flow was achieved in 1911 by Stanton, who provided the first 
velocity 'profiles'. These were obtained for rough- and smooth-
walled pipes, and agree perfectly with more recent measurements, 
for example those of Laufer I1951). By keeping the Reynolds 
number Udiv constant. but varying Unite mean inlet-velocity) and 
d (the pipe-diameter) in inverse ratio, Stanton showed conclusively 
that the velocity profile was deter mined in every detail by the 
Reynolds number. 

In the context of his vorticity-transport theory 11915), in which 
he treated vorticity as a transferable quantity, Taylor introduced the 
concept of a mixing-length. In 1925 Prandll made use of this idea 
in a rather different form to take up the challenge left by Boussinesq: 
the formulation of an explicit expression for the exchange coefficient 
c. Prandtl used the equation of mean motion whcih showed that the 
term in question was Eaway =—p ur.  . Ile argued that u and 1,  were 
both of order QaWay and thus transformed the problem into one 
of providing a formula for 2, which was (Brandt! [19271): 

"a length which may he interpreted as the diameter of the masses 
of fluid which 1110rC or a whole and also' as the path traversed 
by those masses relative to the rest of the fluid before they lose 
their individuality again by mixing with the turbulent fluid 
by which they are surrounded 

* The German phrase ober audi might have been rendered more helpfully as 'or alternatively'. 
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The length Q, which we shall now call the m ix ing-lengt lit , 
bears a definite relationship to the mean free path in the 
kinetic theory of gases. In the latter, the transference of 
momentum due to molecular motion is discussed in a way 
similar to our present account of the transference of 
momentum by the large-scale ("macroscopic") motion 
of whole masses of fluid." 

Thus, as we said on page 6 (above), Prand tl made use of 
Boussinesq's analogy with molecular motion, but recognized that 
it was no more than an analogy. In effect. his proposal meant 
that the exchange coefficient e, an essentially positive quantity, 
could be expressed as 

Plurbulent 	pig laU/ayl 

1.3.1 Further measurements: turbulent quantities 

The equipment available for flow-measurement at the turn of 
the present century was exclusively of the mechanical high-inertia 
slow-response type. It was incapable of measuring small quantities 
fluctuating (typically) 5 000 times per second. With the development 
of the hot-wire anemometer this picture changed. According to 
Pannell [1924], the first hot-wire measurements were made in 
England by Shakespeare in 1902. However, it was not until the 
theory (of the cooling of thin cylinders in a stream of air) had been 
improved by King [1914] that the first measurement of turbulent 
fluctuating quantities could be undertaken. 	King foresaw the 
application of his work instills field when he wrote [1916]: 

"An important point... is its property of giving a consistent 
measure of turbulent velocity." 

The first measurements were in fact made by Burgers in 1926, 
who showed oscillograms of the fluctuating quantities and indicated 
how to measure correlations between them. Dryden and Kuethe 

In fact, the translators used the term path of mixing. representing the German term 
Mischungsweg which was still being used by Taylor in 1935 in the absence of a acceptable 
English translation. 
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[1929] solved the problem of eliminating the phase-shift introduced 
by the thermal inertia of the wire. Their paper was followed by the 
work of Reichardt [1933], who published remarkably accurate measure-
ments of the autocorrelation it2  in a plane channel. In the following 
year Wattendorf & Kuetlic published similar measurements, to be followed 
in 1936 by the publication of further measurements, ostensibly on the 
same channel, of the values of r2  . The latter measurements, performed 
by Sadron. displayed what we now know to be the correct shape, but 
showed a ratio of r 2  to u2  of about 1.5 to I, instead of the correct 
ratio of roughly 1 to 4 near the wall. It is only fair to record that 
Wattendorf acknowledged this possibility explicitly: we must presume 
problems of calibr .ition. The meticulous work of Reichardt, published 
in 1938, eliminaftd this error. Reichardt's work. covering the same 
correlations, was to form the empirical basis of Prandtl's 1945 model 
in which the turbulent kinetic energy k, where • 

k = 1/2 (/ 2  + 1'2  + 11'2) , 

was made the subject of a transport equation. The failure of any of 
these workers to make separate measurements of the correlation u•2  
was to handicap theoreticians for a further twenty years. Wieghardt 
based his 1945 calculations on the assumption that v2  and w2  were 
equal, which they are not, in general. 

1.3.2 The emergence of a mathematical theory of turbulence 

The growing corpus of experimental information on the detailed 
structure of turbulent flows served, inter glia, to emphasize a basic 
defect in the existing theory. As all the explanations of turbulent 
phenomena were essentially ostensive, they were inherently unlikely 
to be susceptible to indefinite generalization. A heuristic theory 
was required, preferably mathematical, and ideally starting from the 
equations of motion. 

The first steps in this direction had been taken by Reynolds in 
1894, when he had derived the equations of mean motion, which 
highlighted the role of the turbulent correlations ttui  . Reynolds 
in fact went much further than this. To obtain information about 



12 

the 'criterion' for transition from laminar to turbulent flow (or 
vice-versa) Reynolds had considered the integral over the flow 
domain of the turbulence energy. He isolated the dissipative 
and productive terms, and thus derived, in effect, the integral 
of the turbulence energy equation. This approach, which could 
have been most fruitful, was to remain a mathematical curio. 

The technique that was in fact destined to lead to a better 
mathematical understanding of turbulence was that of statistical 
analysis., In a stream of fundamental publications, culminating 
in 1935 with the four papers Statistical Theory of Turbulence 
Taylor laid the basis of subsequent theoretical work. The par-
ticular need was for a theory of how the quantities :yr ;  were 
transported. Boussinesq's eddy-viscosity hypothesis, albeit 
most useful once it had been given life by Prand 0, could really 
only cope with one such quantity, and measurements showed 
that in general this was not likely to he a viable assumption. In 
the second of his 1935 papers, Taylor introduced the valuable 
notion of isotropic turbulence, an idealization which simplified 
the problem to the point where it could be treated mathematically. 

In 1938 von Kirmin & Howarth derived the first theory of the 
transport of turbulence correlations. Their theory, though in prin-
ciple restricted to the isotropic case, revealed most of the problems, 
including that of closure, and suggested paths to a solution. They 
introduced the technique of tensor notation, whiCh made their 
theory and that of Taylor much simpler to express and easier to 
use. von K;irmhn, anticipating this publication, had 1.19371 intro-
duced the idea of a turbulence-energy balance. in effect, he took 
Reynolds' integral form (above), and differentiated it to obtain 
a local form, for a 'control volume' rather than for the whole flow. 
This meant introducing the concept of the diffUsion of the energy, 
which von Kdrmin saw as related to the adjacent coexistence of 
different levels of turbulence energy. He therefore proposed that 
this term should be modelled in terms of the gradient of the 
energy: 

Diffusion — 	(2112, 	) 
2 clx 	dx2 
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Prandtl foreshadowed the model he was to publish in 1945 
in his address to the 1938 Congress of Applied Mechanics, where 
he was searching for a better formulation for the characteristic 
velocity of turbulent motion. The direction in which he was 
looking is clear from the fact that he introduced Reichardt's 
measurements of turbulence correlations. Prandtl's 1945 pro-
posal, by providing an equation for the turbulence energy k, 
obviated the need to argue that u and v were both proportional 
to [23Way; this quantity represented a characteristic velocity of 
turbulence, and could therefore be replaced by the quantity 
k''2 . This gave 

11  turbulent 
a p 1/2  

which, however, still required a separate specification for 2. 

Prandtl's essentially pragmatic approach had meanwhile been 
overtaken by the work of others. Kolmogorov [1942] had pub-
lished what was, in effect, the first proposal for a multi-equation 
model of turbulence. Ile derived from phenomenological con-
siderations equations governing the behaviour of two independent 
properties of the flow. Prandtl, by choosing the length-scale as 
one of these properties, avoided a second differential equation. 
Kolmogorov proposed a second equation to generate a characteristic 
frequency of the turbulent motion. Later workers (sec Launder 
& Spalding [1972], p. 18) were in fact to propose differential 
equations for 2, among other variables; Prandtl implicitly preferred 
to retain an algebraic formulation of 2. 

In 1945, Chou showed that it was not necessary to rely so heavily 
on phenomenological considerations. Chou's paper contains the 
first definitive treatment of the Reynolds-stress equations, and hence 
implicitly of the equation for the turbulent kinetic energy. Ile deduced 
the exact equations analytically, and derived the equations governing 
the transport of the triple-velocity correlations ti juiti k  , which occur 
in the equations for the Reynolds stresses. Chou proposed to effect 
closure of the equations by assuming the two-point correlations to be 
Gaussian, and hence deducing formulae for the quadruple-velocity 
correlations in the equations for the triple-velocity correlations. Thus he 
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proposed a closure of the equations of turbulence involving 

3 _equations of ;neat: 'notion 
1 equation of vorticity decay (removing the need for 

the separate specification of a length-scale) 
6 equations for the Reynolds stresses 

10 equations for triple-velocity-correlations 
1 equation of continuity 

Chou dealt rigorously also with the most difficult term in the 
Reynolds-stress equations, that involving the pressure fluctuations. 
Though Chou's proposals were both extravagant and (in respect of 
the neglect of the quadruple-velocity correlations) somewhat arbit-
rary, his analytical approach anticipated the lines along which much 
subsequent work was to proceed. Once the general equations of 
Reynolds-stress-transport were available, the problem of turbulence 
could be seen as that of their closure. 

This, then, was the position in 1945. The history of the work 
since that time is best dealt with in the context of a more detailed 
analysis of the individual terms in the Reynolds-stress equations, 
i.e. in Chapter 4 below. 

1.4 Summary 

In retrospect, we can see that in spite of an unusually slow start, 
the understanding of turbulent flow was destined to follow the 
usual path of historical evolution. There pre generally, in the history 
of a science, three discernible phases: the first, that of the experimental 
recognition of a phenomenon, and its detailed investigation; the 
second, where the observations are gathered into a phenomenological 
theory, and the third, where a reappraisal of the theory generates a 
mathematical model. Like all such divisions, these phases are some-
what ill-definedit is generally quite misleading to think of them as 
strictly consecutive. They may overlap, or appear in the 'wrong' 
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order — as for example when Dirac predicted the existence of 
`holes' from the equations of quantum mechanics and saw his 
prediction verified by observation. * 

Ideally, the derivation of a mathematical theory should proceed 
from the governing equations alone, but in practice the derivation 
is often guided by a foreknowledge of the physical results. This 
remains the case for turbulence theory, where all practical theories 
for the solution of physical problems require an admixture of 
simplifying phenomenological arguments, if only to short-circuit 
what would otherwise still be tremendously difficult and time-
consuming tasks. One example of this is the use of the von Kzirm'an 
[1930] 'log law' for the mean velocity in a well-defined region near 
walls. To insist on solving the full Navier—Stokes equations for 
this region is (in most cases) quite unnecessary. The boundary-layer 
approximation, though only an approximation, is sufficiently accurate 
for most of the purposes for which it was designed. 

All these considerations become entirely academic in the absence 
of the basic technology which enables accurate observations to be 
made in the first place. To illustrate this, and to summarize the 
achievements described in this Chapter, we provide a chronological 
Table of the work done up to 1945. 

* This should not be confused with Popper's requirement that a scientific theory must be 
capable of making predictions: we are concerned with wholly novel phenomena, not routine 
predictions. 



TABLE 1-1 

)ate 	Used 	or Observations 	Theory 	Theory 
Technique 	itteasitrentents 	PhcWoncmologica1 	Afathentatical 

Visual observation 	Eddies occur 

Eddies overturn boats 
000 
BC 

Rivers are turbulent 

0 

000 
AD 

Waterfalls 
500 	Weirs, etc. 

1600 

Viscosity exists 

[700 
Pitot tube 

Ad hoc formulae 	Inviscid theory 

No slip at walls 
[800 

r 



Transition observed 

Effzliss  of viscosity 

Search for criterion 

Boundary-layers 

Accurate mean-
velocities 

Boussinesq's eddy-viscosity 

Prandtl's theory 
of boundary-layers 

Navier's equations 

Stokes' theory 

Reynolds' equations 

Prandtl's equations 

Hot-wire anemo- 
meter 

Turbulent 
fluctuations 

Vorticity-transfer 

Momentum-transfer 
Statistical theory 

tcTrri.7lion for 
phase-lag 

• 

Correlations 

Universal profile (log-law) 

Energy-balance 

Kolmogorov's 
equations 

Prandtl's theory 

Isotropic theory 

Reynolds-stress 
equations 

1800 

1850 

1900 

1910 

1920 

1930 

1940 

1945 

The Understanding of Fluid Flow 
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Plate I. Gerzean Pot (courtesy British Museum) 
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Plate 2. Naqada II Pot ( courtesy British Museum) 
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Plate 3. 	Assyrian J11Il Relief (cottrwAy Width "'biscuit!) 
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Plate 4. Assyrian Wall Relief (courtesy 3ritish Museum) 
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Plate 5 Assyrian Wall Relief (courtesy British Museum) 
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Plate 6. Assyrian Wall Relief (courtesy British Museum) 



Plate 7a Assyrian Wall Relief (courtesy British Museum) 

Plate 7b 	Detail of Plate 7a 
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Plate 8 Assyrian wall relief 	(courtesy British Museum) 
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Plate 9 Assyrian wall relief (courtesy British Museum) 
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Plate 10. TraJan's Column (detail of foot) 
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Plate 11. From Sir T. Mandevile's Travels', by courtesy of 
the British Miaow,. 
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Plate 12. Drawing by Leonardo (courtesy Royal Library, Windsor) 
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, 1,5 	 /5 .07  • 	• 	'roof", An 

Plate 13. Drawing by Leonardo (courtesy Royal Library, Windsor) 
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FIGURE 1.1 	Bionic-age drawings, carved in rock in caves at Tegneby, RollosIan, 

Sweden; circa 1200 B.C. 
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THE NAVIER-STOKES EQUATIONS — TECHNIQUES 
OF SOLUTION 

2.1 The Navier-Stokes Equations 

As we saw in §1, the Navicr-Stokes equations have been accepted 
since the time of Boussinesq (1877) as governing the flow of fluids, 
both laminar and turbulent. From time to time doubts have been 
expressed as to their relevance to turbulent flow. The doubts — and 
our reasons for dismissing them — were summarized by Agostini and 
Bass in 1950 as follows: 

it The most natural idea, the only one which actually pro-
duces concrete results, consists in using the Navier equations 
To what extent are they applicable to turbulence? The 
turbulent motion is always a macroscopic motion with 
respect to a finer-scale motion, and, at the limit, with 
respect to the molecular disturbance. Therefore it is 
reasonable to believe that it satisfies the equations of the 
mechanics of fluids 	Solutions of the Navier equations 
are known only for simple conditions which are far from 
resembling turbulence. In other words, while conceding 
their validity, we practically (sic) do not know how to 
solve them." 

The situation has not altered radically since 1950. The equations 
arc still impossible to solve analytically in general. Indeed the very 
existence and uniqueness of a solution of a degenerate case has been 
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shown only in the present decade. (For a review of the situation, see 
Temam [1 976]). The existence of solutions of the general case can 
be inferred from the two facts that: 

(a) the equations govern a physical flow; 
(b) the flow is well-defined and appears to yield consistent 

measurements. 
however, this argument is far from a proof of the existence of a 
solution, and it does nothing to confirm the uniqueness of such a 
solution. The fact that we may observe laminar-type flow under 
conditions that would normally generate turbulent flow (see page 7 
above) might suggest, on the surface, that uniqueness did not even 
hold. However, the problem is slightly different and in a sense more 
fundamental: it is a question of the closedness of the physical system 
considered. Thus, as we have seen, in the search for a single criterion 
for the transition from laminar to turbulent flow, one initial condition 
was ignored which turned out to be crucial in determining the quantity 
sought: the initial disturbance due to the injected dye. 

2.2 The role of numerical procedures 

There are, of course, many simple well-defined problems that cannot 
be solved analytically. For example, consider the displacement of a 
membrane stretched over an irregular-shaped frame, or (the same 
problem, same equation, same boundary conditions) the laminar fully-
developed flow in a duct of the same shape. In this case, equation 
(Laplace's equation) for certain boundary conditions; e.g. Boussinesq 
derived the solution for the fully-developed laminar flow in a square 
duct in 1868. However, the standard general method of solution in 
such a case is to use finite-difference techniques and a high-speed 
digital computer to perform what, until twenty-five years ago, would 
have been inconceivably tedious calculations. In this way we obtain 
the "exact solution" to any desired degree of accuracy of a given 
physical problem. 	The solution we obtain is, strictly speaking, 
the approximate solution of a set of discretized algebraic equations. 
These equations represent the exact differential equation, which in 
turn must be regarded as an acceptable rather than precise model 
of the original physical situation. 	For example, the hyperbolic 
functions that describe the laminar flow in a square-sectioned 
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duct take no account of inevitable non-uniformities of properties 
of the fluid nor of minute irregularities in the desired squareness of 
the duct. 

2.2.1 The computer 

The situation for the Navier—Stokes equations in the general 
case is not, however, so straightforward. If we were simply to 
tackle them head-on, we should find our present-day computers 
incapable of solving them over more than an uninterestingly 
minute region of space. 	Bradshaw estimated in 1971 (private 
communication) that to produce meaningful solutions over the 
smallest volume of genuine interest (say a 100-millimetre cube) 
would take several million years on current machines. A more 
recent estimate is that of Kwak, Reynolds & Ferziger [1975]. 
In presenting the results of their attempts to solve the three-dimen-
sional time-dependent problem, they observe that the mesh-size 
must be smaller than the Kolmogorov microscale (v3 /6)4  to resolve 
the smallest scales of turbulence. This would demand storage of 
the order 107  words: several orders of magnitude more than is 
currently available. The full simulation must therefore remain 
unattainable in the foreseeable future, except at very low Reynolds 
numbers. 

The situation is summarized in Figure 2.Avhich plots, very roughly, 
the speed of computers against time in years. (The data are drawn 
from various manufacturers' specifications). It is worth noting that 
the speed of computers has not been increasing particularly quickly; 
it is the reliability, measured as a 'mean-time between failures', that 
has shown a dramatic improvement. The m.t.b.f. is now at least 
three orders of magnitude greater than the time taken to apply any 
of the models of turbulence considered below. Figure 2/shows that 
on present indications we can not hope to achieve anything by a 
direct attack on the Navier-Stokes equations in our lifetime. Indeed 
if present international political and economic trends continue, lack 
of investment will delay any further major advances in computer 
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technology.* On the other hand, it is perhaps worth pausing for a 
moment to note just how far we have progressed in the twenty-five 
years since Charney, FjCirtoft and von Neumann [19501 published 
the first computer-based solutions of hydrodynamic equations. They 
used ENIAC to solve the barotropic vorticity equation, producing 
about 50,000 punched cards in the course of each of four forecasts 
of the weather. Undaunted, they predicted that: 

... one has reason to hope that Richardson's dream 119221 
of advancing the computation faster than the weather may 
soon be realized, at least for a two-dimensional model". 

2.2.2 Modelling turbulence 

In solving the Navier-Stokes equations, we take a slightly round-
about approach, treating the equations themselves with as much 
general physical insight as necessary to 

(i) eliminate in appropriate circumstances those effects 
that are of no significance, 

(ii) select those terms in the equations that can be represent-
ed in a simpler form. • 

This has, as we have seen, been the traditional approach to the 
solution of the problem. Thus, for example, Prandtl performed the 
simplification (i) when he produced the boundary-layer forms of the 
equations [19041. He acted in the spirit of OD when he replaced 
the previously intractable term 0 in the Reynolds equations by a 
mixing-length formula [19251 (see page 9 above). Together, (i) 
and (ii) form the theoretical basis of turbulence modelling. 

We do not, however, regard the technique of 'turbulence model-
ling' as a makeshift procedure. As we have already suggested (page 
above) the only novel feature implied by the use of approximate 
techniques is the fact that we can use them openly, acknowledging 
the techniques (but not necessarily the results) as approximate. We 
shall justify the approximations made in each case; we shall not try 

*Moreover, it appears that even the benefits of transistor technology suffer from diminishing 
returns. The design problems associated with large-scale integration, as compared with dis-
crete components, must now betraded off against the advantages of reduced size. An over-
riding limitation, which places a premium on compactness, is the finite velocity of the 
signals (less than 3 x 10°  ms-3 ). All the advances in speed since 1970 have come through 
improved design and none represents a basic technological advance: for example, the use of 
parallel rather than simultaneous operation of processing units, as in ILLIAC IV (1971). 
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to justify them as exact representations. The task of pruning the 
Navier-Stokes equations of their physically insignificant terms will 
always be of value as there will continue to be an optimum balance 
between detail and speed of calculation forany given problem. Even 
when we have computers 109  times as fast as current machines it will 
be neither sensible or economical to solve, say, the boundary-layer 
flow on a flat plate by using the blockbusting head-on approach -
any more than we should wish to solve a global input-output model 
of the economy before deciding whether to buy a new pair of socks. 

In Appendix A we describe one possible approach (Birkhoff [1960l 1 
to the problem of determining a rigorous set of criteria for the proper 
formulation of a mathematical model. 
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THE REYNOLDS — STRESS EQUATIONS 

3.1 The Basic Equations 

The Navier—Stokes equations for a Newtonian fluid of uniform 
viscosity and density are: 

au, 	a 
( at ax. ui ud = 1  aP + 072 p  —ax. 	U;  

where t is time, p the density of the fluid, the kinematic viscosity, 
and L the velocity component of the fluid in the direction xi. We 
have also the equation of continuity 

ap v • u= —at =o 

(3.1 ) 

or 

(3.2) 

where we use the Einstein summation convention in the following 
form: repeated Latin indices imply summation: repeated Greek in-
dices do not. We shall continue to use this convention without 
further reference. 

Applying (3.2) we can derive the standard (incompressible) form 
of equation (3.1): 

au. 	3 	1 3P 
+ 	U = — — — + pv2 u, 

at 	ax; 	p axi  
(3.1 )' 
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3.1.1 Turbulence 

We next follow Boussinesq (see. 1.2 above) in writing the depend-
ent variables Ui  and P as in each case the sum of a "mean" part, Ui  
and P, and a "fluctuating" part ui  and p. The overbars denote the 
operation of taking the mean over a suitable period of time, which 
must clearly be greater than the time-scale of the slowest fluctuations 
but not so large as to permit the turbulence to decay appreciably. 
This operation involves an integration with respect to time alone and 
will thus commute with any differential operation involving only 
space co-ordinates: for brevity we shall apply this fact without furth-
er reference in what follows. 

As the fluctuating quantities have zero mean, we may easily show 
that equation (3.1)' becomes 

au, a 	. 
+ — (u

F7
u • + tT17) — — — +vv2u, 	 (3.3) 

at ax; / p ax;  

whence 

	

ap 	2  — 	a u, 	_ _ 	+ pv  u, - 	Ito  at + 	ax; 	p ax, 

1 a 115,5,i _ p  

	

p axi 	d 

as Ui atillaxi  = 0 by continuity (3.2). 

The three equations (3.3)!contain the following variables: 

Dependent 

U j 	 mean velocities 
P 	 'neat: pressure 

u 	 "Reynolds stresses" 

Independent 

xi 	 displacement in the i direction 
t 	 time 

(3.3)' 
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Thus we see that the Boussinesq substitution q= 4+ ui, followed by 
time-averaging of the equations leads us to the equations of turbulent 
motion in the form derived by Reynolds [1894]. On the right-hand 
side of (3.3)'we see the quantities 	arising naturally as dependent 
variables in the equations for the mean motion of a turbulent flow. 
Comparison of equations (3.3)'and equations (3.2) shows immedi-
ately that the nine quantities /VT/ (the "Reynolds stresses") represent 
the sole difference between equations (3.2) (the laminar form) and 
equations (3.3)' (the turbulent form). The presence of turbulent 
fluctuations.can thus be identified with the existence of non-zero 
quantities 	the differences between the laminar velocity 'pro- 
files' and their turbulent counterparts can therefore be attributed to 
these Reynolds stresses. 

3.2 The Reynolds stresses 

The Reynolds stresses occur naturally in the equations for the mean 
velocities of turbulent flow. In order to solve equations (3.3)' we 
must obtain further information in order to eliminate the Reynolds 
stresses. In the laminar case, we had the three equations (3.2) togeth-
er with the equation of continuity, which (in general and in principle) 
enable us to solve for the three velocities and the pressbre. 

There are several ways in which we can obtain the extra information 
we seek. 

The simplest possibility would be to provide an algebraic formula 
for tViri in terms of the other variables and their derivatives. This is 
an approach which introduces no further equations, and can thus be 
categorized as a zero-equation formulation. Before the advent of the 
high-speed digital computer, this was the only approach of general 
appeal. The best example of this type of 'model' is Prandtl's [ 1925 1 
mixing-length model (see 1.3 above); another was von KSrmIn's 
[1930] similarity model. 
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The mixing-length model suffers from a number of grave 
disadvantages: 

(0 it was devised for, and remains largely confined to. two-
dimensional boundary-layers, where a single length-scale 
can plausibly be assumed to characterize the flow: 

(ii) while, following Prandtl, we may reasonably assert that, 
in the case of a wall-flow, the length-scale is proportional 
to the normal distance from the wall, such a specification 
will clearly not carry over to such flows as those contained 
by two walls or none — such as channel, jet and wake flows: 

(iii) we shall in any case have to specify anew in each problem a 
constant of proportionality between the normal distance 
and the length-scale, or (in the absence of a wall) the length-
scale itself. 

Indeed, in view of these daunting limitations, it is a remarkable 
fact that the Prandtl mixing-length hypothesis has been extremely 
successful as a method for the prediction of a wide range of two-
dimensional flows. It will continue to serve us well, not least was a 
yardstick for the success of new, more sophisticated treatments of 
equations (3.3)'. 

Prandtl's 1945 proposal was of a one-equation model. As we saw 
in Chapter 1 (page 13) the effect of introducing an equation for the 
kinetic energy of turbulence was to provide an actual characteristic 
velocity of turbulence (k112) to replace the notional velocity 
edWdy. We do not, however, overcome the difficulties of the 
mixing-length model, as we must still specify a length-scale 
separately. 

Various workers have devised and applied two-equation models. 
As early as 1942, Kolmogorov proposed a model which would have 
involved the solution of a kinetic-energy equation and one for the 
frequency characterizing the turbulent fluctuations. As the 
equation for the turbulent kinetic energy necessarily contains the 
rate of dissipation as one term, it is not surprising that most two-
equation treatments have involved an equation for the dissipation. 
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By no means all closures at this level have been of the type 
described, and a full account of other forms of closure is given by 
Launder and Spalding [1972]. If we have an equation for the 
dissipation, e, we may then apply the high-Reynolds-number formula 
linking the dissipation and a characteristic length-scale: 

ek
3/2

/ 

We then have no further need to specify the length-scale separately, 
and the accuracy of our model will depend on the accuracy with which 
we have modelled the transport of dissipation. It will, of course, still 
also depend on the accuracy of the relationships proposed between the 
Reynolds stresses and the other quantities. 

However, the fact remains that it is not the turbulent kinetic 
energy that appears in equation (3.3)': it is the Reynolds stress 
Nu/ . So long as we do not solve for the Reynolds stresses that arise 
in equation (3.3)', we shall remain bound to the Boussinesq eddy-
viscosity type of model. In the two-dimensional case, the single 
boundary-layer equation has only one such stress appearing in it. 
Thus, in this case, the level of closure can be raised significantly by 
including just one further equation. This was the approach adopted 
by Hanjalic [1970] to the problem of the solution of a flow in 
which the positions of zero shear stress and of maximum velocity 
did not coincide. Coincidence will always follow from the eddy-
viscosity model: 

au 
If l2 turbulent 

	—p 
,--turbuient ay 

then 	a Way = 0 	 WV= O. 

Thus any model of the eddy-viscosity type must fail for any asym-
metric flow. Although Hanjalic' three-equation model made 
remarkably accurate predictions for the asymmetric boundary-layer 
he considered, the number of flows for which it would be both 
adequate and an improvement on earlier, simpler ones was limited. 
The success of Hanjalic' predictions suggests that a fruitful line of 
approach would be one which enables us to solve a whole range 
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of flows by similar means. This necessarily leads us to the derivation 
and solution of equations for all the Reynolds stresses, and that is 
the line we propose to follow. 

As we shall see in Chapter 4, the structure of the equations for all the 
Reynolds stresses is of a single pattern. To provide a satisfactory model 
of the transport of one Reynolds stress, it is necessary to make assumptions 
or deductions which relate to the other stresses. 	Having provided 
a scheme for the solution of one Reynolds-stress equation, we should be 
most unimaginative not to investigate the possibility of modifying 
that scheme for the solution of all the equations. 	Only after such 
an exercise can we assess the rewards in terms of accuracy and generality 
against the disadvantage of the additional resources required. 

As we shall see, the Reynolds-stress equations are strongly coupled. 
For example, in order to close his system of equations, Hanjalic was 
forced to make assumptions about the ratios of the normal stresses 
in order to solve for the shear stress in a two-dimensional boundary-
layer. On closer examination of the relevant data, it would appear 
that for the particular type of confined flows treated by Hanjalic, 
the assumption of a constant ratio is not in fact valid and must 
eventually lead to errors in the prediction of flows where the level 
of anisotropy varies strongly from point to point. For this reason, 
we shall pay particularly close attention to flows near walls, for 
which the'anisotropy is known to vary strongly as between the near-
wall and outer (or mid-channel) regions. It will therefore be largely 
on our success in predicting such flows that we shall be able to judge 
the value of the level of closure we propose. 

Over the last few years other workers have also been active in this 
direction, notably Naot, Siiavit and Wolfshtein. Their interest has been 
parallel to our own to a great extent. The difference of emphasis between 
their work and that presented here lies mainly in our specific attention to 
the need for near-wall modifications to the general model. We shall compare 
their proposals with our own, and shall apply their published model to many 
of the flows we examine. 
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32.1 Equations for the puu  

To generate further equations for the quantities puiui  we shall 
have to start afresh from equations (3.1). 

a _ 
—  at (U. + u.)+ 	.U. 

ax• 
—(U+  u.

Ji 
U.+ u.

I
U.+ 11•

i
10 

s 	1  

1I a p — +v0 (ui+ 11) 
p ax;  p ax;  

Multiplying (3.4) throughout by uk  

	

aau;
Uk 

 a 
- Ui+ Uk - Uk - 	 + at 	at 	ax • 

al, 	ap 
1-  = 	- 	Uk - Uk V 2  tji  Piik 	(3.5) p ax;  p ax;  

Now, taking the mean of (3.5) and invoking continuity, 

au;  a _ a _ a o + ilk  — + Uk 	U•U• Uk - U; 	Uk at 	ax; 	axi 	ax • 

I 	a  
= - - Uk - V Uk V 2 ui  

p ax
p  
i  

Expanding (3.6) by the product rule: 

alit  _ alit 	a0. 	a 
uk 	+ Uk - UkU• -

1
k 	111111  at 	ax, 	 a v• 

U - 
ax• - 

 
= 	lik 	1lUk V 2 ui  

p ax
p
i  

Thus 

     

      

      

	

au; 	aili  at", 	a 

	

uk — 	u — — uk 	uk 	u•ii• 

	

at 	ax;  ax1 ax- 

ap = — — uk 	+ vuk V 2 tit p ax, 

(3.4) 

(3.6) 

(3.7) 

(3.8) 



au, ) 	auk  aui 	a a = 	(uk  

auk  au;  
ax • 	 ax,,, axm  

) 	auk  au;  

/ ax,,, a.lnt  

(3.11) 

axm 	axm 	at  ax rn 	ax 111 

a2 	
2 

( 
auk  
au„, 

whence 
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auk  _ auk  ari k a 
uli• — + 	— + — • 	111 - ilk 

at 	ax. 	
" • ,1 • 

axk 	 ax;  

1 	ap 

	

= — — tii 	+ V t/iV 2 uk 
p axk  

Adding (3.8) to (3.8)', 

a 	;•.; a 	tail;  
u k  + u • -- u + 	u k ui  

at 	/ v• 	ax/ 

aUk  
ax• 

If, 

(3.8)' 

+ 
a 

 u•it.tik 
ax;  

_ _ 1 	
a1'ap — + v (uk V 2  + uiV 2  uk ) 

axk 	ax • 

the right-hand side of which is equal to 

a 	a 	 au;  at/ J( 1 

p 
Pui+—, ( 

axk 
	 p 	axk  ax, uxk 

+ V (iik V 2  t/i + t/i V 2 1/0 

Now 

uk  v2 ui uiv  2 uk  

	

11k 
ax,,, kaxm 	ax,,, 

	

a ( au 	a 
  + u• 
	auk  

(3.9) 

(3.10) 
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Thus, finally, substituting from (3.10) and (3.11) into (3.9), 

;.7, 	3 , 	 aq _ 	aid
+ Uk 	WWI= — 	— ti-lik 

al aXk " 	 aXk 	aXk 

	

au, au. p au. au. 	1 	a 
{ 	

a 
— 21, — 1  + — —1  + —1 	— (pu.)+ —(pti.) i 

	

aXk  axk  P axi  axi 	p ax; 	' 	ax; 	i , 
a 	a — — P — 

OXk 	 aXk 
(3.12) 

3.3 The problem of closure 

The equations (3.12) are known as the Reynolds-stress equations. 
If they were in fact simply equations for and involving the Reynolds 
stresses, our problem would be more or less solved. However, Table 
3-1 will indicate the dependent variables that arise in the combined 
system of equations (3.3)' and (3.12). 

As we see from Table 3-1, the result would seem to be that, far from 
"closing" the system of equations (3.3) by providing us with an expres-
sion or equation for u jui  we have succeeded in further "opening-up" the 
equations. As we substitute for the unknown terms in our earlier 
equations we seem to be gathering more and more unknown terms 
in our new equations. 

It is immediately clear that if we proceed in the same manner 
(e.g. next producing an equation for the 	ik  by a similar method 
to that of Section 3.3) we shall never reach a truly "closed" situation 
in which all the variables can be determined from the equations thus 
derived. lii other words we shall always have more variables than 
equations. Things cannot really be otherwise, for our equations 
are essentially inbred: apart from equations (3.3)' and the continuity 
equation we have introduced no new stock of information. 
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TABLE 3-1 

A list of the dependent variables arising in the complete system of 
equations (3.3)', ( 3.12) & (3.2) 

Variable Equation Derived front 

Eli 3.3 	3.3' 	3.12 3.2 	3.3' 

al' 
aX/  

3.3' 3.3 	3.3' 

u ; /i f  3.3' 3.12 3.12 

3.12 Another equation * 
an .i 	au;  
aXk  aXk  

3.12 Modelled in 4.2.4 * Ii i iyik  

3.12 Modelled in 	4.2.3 
au;  

p — ax• - / 

(In addition, we must prescribe the values of the fluid properties v and 
p, assumed constant for our purpose, which appear in equations (3.2), (3.3) 
and (3.12).) 
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It is at this point that we have particular need of Hypotheses A and 
B of Appendix A. We must call a halt to the process at some point, 
and we need to use intuition to dedide when that is to be. Chou, 
for example [1945] , who first performed the derivation in Section 
3.2, felt that an appropriate point would be at the level of the triple-
correlations, on the ground that the quadruple correlations could be 
neglected. 

However. there is no evidence that the quadruple correlations are 
negligible in general, so that this particular argument for proceeding 
further does not really hold. As we saw, Chou's closure would 
involve ten further equations: this would stretch the capabilities 
of most computers to the point where such a procedure would be 
academic in interest rather than economically feasible. 

The alternative to the production of further equations for the 
transport of the triple correlations is to model them in terms of the 
lower-order correlations and mean-flow quantities. By analogy with 
the energy-balance for kinetic energy of turbulence, we shall see the 
triple correlations arise in connection with the diffusion of the norm-
al stresses, and it would thus be reasonable to expect a gradient-type 
model of the triple-correlations to perform as well as von lannSn's 
gradient model of the diffusion of turbulent kinetic energy (von 
Iamb [1937]). Such models have been entirely adequate in the 
context of one- and two-equation models of turbulence. 

If, as we shall seek to show, the triple correlations can be modelled 
with fair precision in terms of simpler quantities, Hypothesis B assur-
es us that any residual error will not be troublesome. This is especia-
lly likely to be so, as the error will arise in the context of a quantity 
that we know to make a very small contribution to the energy 
balance — the diffusion. This will be all the more relevant in the 
near-wall region, of particular interest to us, where the production 
and dissipation of turbulent energy will dominate the energy 
balance. 

As there would thus seem to be no reason to assume that we 
should necessarily obtain greater detail or improved accuracy merely 
by manipulating our limited store of information to generate ever 
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more complicated equations, we feel justified in calling a halt at 
this point. We summarize the reasons for choosing a Reynolds-
stress closure: 

• The Reynolds stresses arise naturally as the representation 
Of the turbulence in equations (3.3)', while quantities 
such as the triple correlations do not. 

• A Reynolds-stress closure is the simplest that enables us 
to escape from the Boussinesq eddy-viscosity approach. 

• If we proceed to a higher order of closure, quantities will 
arise which do not admit of a simple intuitive interpretation. 
Apart from the danger of a consequent loss of contact with 
practical reality, this may lead to serious problems of 
modelling. 

• The Reynolds stresses are well documented experimentally, 
while the triple correlations are not. In practice, this would 
mean that even if we could predict accurately the values of 
certain quantities, we should not be able to adduce prac-
tical evidence that we had done so. 

• Even the best modern computers are fully stretched by the 
demands that a closure at the Reynolds-stress level makes 
on them: more elaborate models would raise problems of 
time and expense. 

• There can be no reason for not trying the Reynolds-stress 
level of closure before expending further effort in develop-
ing the techniques required by a more sophisticated level of 
closure. 

Already in the two-dimensional case, we need four equations for 
the Reynolds stresses, in addition to the mean momentum equation 
and the continuity equation, and a further equation for the 
quantity(audaxk) faui/a.xk), as we shall discuss in Section 4.2.2 below. 
In a three-dimensional case, we shall need two additional Reynolds-
stress equations as well as the equations for the extra mean velocities. 

Our next task is to close the Reynolds-stress equations (3.12): i.e. 
to find differential or algebraic equations for the quantities stai red 
in Table 3-1. This will be performed in Chapter 4. 
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THE REYNOLDS—STRESS MODEL 

4.1 Tlig Equations 

Each term in equation (3.12) is customarily given a designation as 
follows: 

( a _ a 
u,c 67,713 

 

CONVECTION 

PRODUCTION 

DISSIPA7YON 

 

1-- WI  _ au/1 — ultik ax   + Mil, 
k 	ax 

 

   

(4.1) 
— 2v 

au, au/  
oxk  axk  

 

 

RE1)ISTRIBU77ON 

DIFFUSION 
{ - a 	iiiii,tik  - axk  v— /qui 

axk  

1 3 , 
co
a 

— p 
— t---

o
, xi  (psid+ 	(mid} 

x i  
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We have split up the terms involving the pressure, but shall occasion-
ally have to refer to them collectively as the pressure terms. 

In Section 4.2 we shall tackle the problem of closure in the order 
indicated, dealing with the individual terms as grouped in equation 
(4.1). • 

4.1.1, The trace of equation (4. I ) 

It is convenient first to consider the trace of equation (4.1), which 
we derive by setting i equal to 

1.  1  + at 	k a.vk  
twit  = — 2 111 1 k  - 

axk  

— 2v 
au, 

axk 
Du. 

+ 2 p -2  
axi  

— 	1
, 

1 1.- k —v - 
a  

av
a 

 k 	axk 

Dividing by 2. we get, if we write k for 	/2 , 

a — 
— 2 —

ax
— put  , 

(- + (7, „ - at 	ax „, 
at7i 	13tti  

k —Ut  um  — — v 
axi 	axm 

a — _ 	1/2 //1// i
2 - V 	- / 

u./Cm 

a ___ 
_ — put ax, 

which is the equation for the turbulent kinetic energy k. 

(4.2) 
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It is easier to see from equation (4.2) what the true roles of the 
various terms in eq uation (4.1) must be. In particular, the redistribut-
ion term justifies its designation by disappearing  altogether from 
eq uation (4.2). The three remaining terms on the right-hand side of 
(4.2) have distinct effects, which become even more obvious when we 
consider degenerate cases, such as the two-dimensional boundary-
layer, where the equation takes the form: 

Dk 	au, 	au, au, 

	

112 -a— 	5—  5 -- 

	

x2 	Xi ..x.; 

	

a 	ak ) 	a--  
— 	Ili 2112 711 vX 	iit12 

	

vX2 	 2 	vX2 
(4.3) 

Now the term —th ui au d axe  is positive near a wall, as — u , u2  will 
tend to the value 142, which (in the nature of friction) will tend to 
oppose the velocity. Experimentally, even for flows in which u l  u2  
must change its sign — such as boundary-layers between two walls -
the q uantities —i7T712  and au, lax, are observed to be of the same 
sign for almost all the flow. The presence of the term —FL T2  au, /are 
in equation (4.3) will normally tend to enhance the amount 
of turbulent kinetic energy present: hence the designation production 

Clearly the term —v audaxi  aui /axi  is negative semi-definite. It 
can thus be seen to destroy k, and its significance is therefore that of 
a dissipative term depending  on the viscosity for its effect. We shall 
henceforth write 

v  au, au, 
ax a xl  

tau•! or —v --- 
ax• i 

2 
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4.2.. The terms of equations (3.12) 

4.2.1 The production term 

The first term on the right-hand side of equations (4.1) requires 
no "modelling" as such, as it is composed of_precisely the type of 
quantity that we seek: the mean velocities LI;  (in this case their grad- 
ients) and the 	i.e. the quantities to be generated by our solution 
procedure. 

The fact that the term ni tti  appears in equation (3.3)' and a ridaxi  
in equation (4.1) merely shows that the equations are strongly coupled. 
In fact, it is already becoming evident that the coupling of the equat-
ions is almost complete: almost every one of the dependent variables 
appears inextricably in each of the equations — and not merely in the 
equation of which it is nominally the subject. 

It is easily seen from equations (3.12) that the production of 
turbulence energy occurs only in relation to ET! in a boundary-layer, 
where t is the direction of mean motion. 

4.2.2 The dissipation term 

In equations (3.12) we saw that one term in particular, 

au au. 
U 	 en. e  

axk  axk  

would require ingenuity in modelling. c, the second term in equation 
(4.3), represents the dissipation of the kinetic energy of turbulence. 
If we were to adopt a one-equation approach, or to use a scheme 
involving an equation for the transport of a length-scale 52e , we 
should need to relate e and Q as follows: 

e cek3121Q, 	 (4.4a)  

(cf.Prandtl (1945)). 
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However, as we saw in § 1, we shall find it more useful to treat 
(4.4a) as a means of constructing a length-scale R, appropriate to the 
turbulent motion: 

QE  ook3/2/6 	 (4.4b) 

The alternative to a purely algebraic model of e is for us to try to 
construct. first, an exact equation for e, and then a simplified version 
of that equation involving only the quantities appearing in Table 3.1 
(i.e. those appropriate to our chosen level of closure). In constructing this 
equation, we follow the derivation given by Harlow & Nakayama 
(19671. 

Equation (3.1). may be written as 

a 	 3 — 
-- (Ui+ + (Uk- + uk) oxk (Ui+ u1 ) at  

I a _ 	a2 
p 	 axi2  

Subtracting equation (3.3)' we get 

au, — au, 	a 	au. 
at 

+ uk 	+uk 	+uk  
aXk 	axk 	aXk  

ap 	a 2  Il i 	a 
= 	+1, 	--- • 1,,uk 	 (4.5) 

p axe  • avk2  avk  
Next we differentiate equation (4.5) with respect to xe , and multiply 
throughout by audave: i.e. we apply the operator au,/axe  a/axe  to 
equation (4.5). 

au, a 	auil + au, at7k 	_au t  u  a2 u. 
ax, ax, 1. at 	ax, ax, 57v, aX e  k aX Q a.V A. 

atl i 	ar.i; au, 	a2  u, +-- 	 (4.6) 
axe  ax, axk  axe 	axe  aXk  
au• auk  au. 	au' 	a2 ui  

+ _ _i+ _ 11,. 	 
axe  axe  axk  axe  " axk  axe  

I au, ___a_2 /L +p  aui 	a3u• 	;12 

	

_! 	 2 u 11:11r. 

	

p axe  ax iaxe 	axe  axk axk axe 	axe  ax, ax, 
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Assuming  that u f  satisfies the criterion for 
a 2„. 	a2u• 	_ 	 

ax„, axe  axe  arm  

and obServing  that 

auk  au, au, 	.au2 au2  
axe  axk  axe axk  auduk  
a 

(b) 	
I Cul  \ 

2 	au 
• 

k  I (au ; 	au, a 2 u, 
axk 	2 axe 	

= axk  2 axe  ) 	
t, 
 at,, 
 aX e  aXkaX2  • —  

2 
 

au, a 2 u, 

2 

	

au, 	a3 u, 
cc)  

a tau, a2 u; 	1 	( a2u, ) — — 	7,- 
axk  ax, 	

+ 
ax, aXk  axk  ax, axk axe axe axk 

auL 	a3u. 	_ a I Dui  . 32 rt ;  1 	f a2 u.  \ . 	,  
ax, ax, axk  ax, axk  Z ax, ax, aXk 	i 	lauk ax2 1 

2 

	

a 	a 	 i ill  

aXk axk 	I axe) I 	Iaxk  ax, / 

a 	ap au, 	au, ap au, 	a 2 p au;  (d) 	ti , 	_ 	 + u , 	 
ax, 	axe  axe 	axi  axe  axe 	' axe art aXf2 

ap 	a2 u, 	a2p at,,  
ax2  ax iaxQ 	axe ax„ ax2  

by (3.2), its corollary, 

a 5 	a" u • 
	 =o 

ax, axa, axak  

subject as usual to (4.7). 

(4.7) 

(a) 

= uk  axe  axk 3xe  

2 

+   — 
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A 

B 

C 

D 

E 

F 

G 

H 

+ au a2 uiuk  
ax2  axk  ax2  

where we have dropped the overbars on 	as we shall have no further 
occasion to refer to the unaveraged 

As we have defined 

E;;=E= Y — ax2  
au,) 2 

we must now multiply equation (4.8) throughout by 2v and time-
average the whole equation. If we further define the unaveraged 
equivalent of e as 

2 
1 • 

e v a 
) 

1i 
ax, 

We can now write equation (4.6) in the form 

a i 1 fau, \ 2) + u  _a_ f _1 taut 21  
57 1 2 l ax, / J 	k a 17\a i axk , 2 ....x, . 

au, au, au,  au„ au, 
axk  ar„ ax„ 	ax, ar k  
au, auk  au, 
ar, ax, axk  

axk 
rek 

2 ax 
a 	(au, ) 2 

— — 

+ v 

—v 
axk  ax, 

02 { I (au, 
axk  2  2 ax 

au; 	a2  u, 
—  

ax2 
 uk

ax2 axk  

I a ap au; l 
p axi  f a.v2  ax2  

2 
A 2 u td i  

)21 

(4.8) 
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we obtain an exact equation for e, due to Harlow and Nakayama 
[1967]: 

ae 	ae 
at 

Uk 	 A 
axk 

au. au ;  auk  au, au, = — 2v 
axk  axe  axe  ax;  axk  

att. auk  3E/ 1  
— .2v — — 

ax12  aye  axk  

a 
axk  

rr au 	a2 , 	ur 	 E — 2v 	ttk 	 (4.9) 
aX Q 	3x2  axk 

_ 2v a i ap aui ) 
F 

p axi  lax, ax,1 
2 

— / V f a

2
"1  	 G 

axk ax2  i 
I 	a  2 

+ — V 	 H 
2 axk2  

+ atti  i ...1 
axe  1 

Defining R as u'Q/v, where 2 is the (Integral') length scale of turbulence 
and noting that, if X is the microscale, X/2 = 0 (Fr 1"2  ), 

Tem: A is of ordertt14 /22  
Term C is of order u'4 /Q2 x R 112  
Tern: D is of order u'4  /22 



62 

Term E is of order u'4 /22  x R-1/ 2  and can thus be neglected in 
any fully-turbulent zone. 

Term F can be resolved (by analogy with our analysis, below, of 
the pressure-strain term in, §4.2.3) into two terms, which 
as Hanjali6 and Launder [1972] argue, both contain 
higher-order derivatives of the mean and fluctuating 
velocities than appear in the pressure-strain term. It is 
thus consistent with our chosen level of closure to neglect 
Term F. 

Term G is again of order u'4 /22  
Term H is of order (u'4/22) x ri 1 /2  and is thus negligible for 

high Reynolds numbers. 
Term I 	disappears by continuity (3.2). 

Term B 

Earlier workers (Rodi [1972] , Hanjali6 & Launder [1972]) relied 
on term B for the source of generation of dissipation. Lumley and 
Khajeh-Nouri [1974] argue that this term, by virtue of the relative 
isotropy of the small scales at large R,can be written roughly as 

a u au, auk  ete 5;k  v  . 	• 	 • 	 (4.10) axk  axe  axe 	2 	3 

neglecting off-diagonal, i.e. anisotropic terms. The difference between 
the two sides of (4.10) represents the degree of anisotropy and is 
proportional to the time-scale ratio between the small and large scales. 
If we further define 

a • • = u jui  — 3 2  5 11—  k 	U 

we see that the difference is 

(4.11) 

11'2 x 
n 

'2 
— 13-1/2  • 

sr- 	2 4 

and can thus be neglected. This means, therefore, that term B should 
be neglected for high R. 
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Lumley and Khajeh-Nouri argue that the source of dissipation 
must therefore lie in term C. (Term D is a diffusive term, and Term 
G is negative semi-definite, so that — if only by elimination — Term 
C is the sole term capable of positive generation) 

Regardless of the individual sources responsible, the imbalance 
between generation and destruction can thus be modelled as a 
term of the form 

e  au 
i 

 , t±k 
	3 " 
/4 

I (a R -112  + b)+O(R-1)1 ax  

R-112  is a non-dimensional quantity here representing  the imbalance 
between generation and destruction of dissipation: a suitable measure 
is the ratio e/P between dissipation and production(— UT]  aUi  / ax/  ) 
of turbulence energy. 

This leads to the model 

au, 
— i—ce, /tau, oxi — 

Cel el (4.12) 

recognising  that the term in Su  disappears by continuity, and neglect-
ing  higher order terms in R-1/2. 

Thus far, all workers are in agreement to the extent that the models 
to which their arguments lead all reduce to (4.12) for high R. How-
ever, Lumley and Khajeh-Nouri proceed to advocate the replacement 
of P in (4.12) by n'74 avail  (with a suitably-dimensioned co-
efficient). II, they argue, does not vanish in regions of flows where P 
does vanish, ensuring  the continued generation of dissipation even in 
the absence of generation of turbulence energy. Attempts to incorp-
orate this, and other aspects of Lumley and Khajeh-Nouri's proposal 
by the present author led to negative conclusions and it was deduced 
that for the (simple one-dimensional) flows considered, a single set 
of constants did not suffice. There would thus appear to be no 
advantage in incorporating  the model in a two-dimensional situation. 
However, we must concede that more favourable conclusions were 
drawn by Launder [19751 from investigations performed by 
A.P. Morse. As we shall see, the results obtained from the model 
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(4.12) are sufficiently close to experimental data where these are 
available to justify confidence in its predictive powers. 

The remaining term D represents the diffusion of dissipation by 
turbulent fluctuations. By a similar argument to that which leads 
from the exact triple-correlation equations to a gradient-type (von 
KarmAn) model of diffusion, Hanjali6 4nd Launder 11972] showed 
that, to the same level of approximation as used to justify the 
derivation of the expressions for the generation and destruction 
of dissipation, the diffusive term D could be modelled as 

k 	ae 
E Uk = CE3  —c Uk 112 	• OX e  

in a thin shear flow. 

The modelled equation for dissipation thus reads 

2 De 	uiiik  atfi  
Tit 	6 k rxk  7 C2 lc 

— — u,u2  — a ik 	ae 
+ c 

63 aXk e 	aX e  
(4.13) 

Determination of the values of eel , ca , and ce3 . 

Like Hanjali6 and Launder we consider the decay of turbulence 
behind a grid (Batchelor & Townsend [1948]). Noting that the decay 
is governed by a law of the form 

k 04X -1-6  

where 5 is small and positive, we have 

k = 

ak =A (-1-6)x-2-6 ax 
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Then (4.3) gives 

U0 A (-1-5)x-2-6  = -e 

e = U0 A (1 + 5)X-2-6  

(4.13) then gives 
u2 A 2 (1 +8)2x-4-26 

(-2-6) Uo A (1 + 5)x-3-6 	cel ° 	A x-1-  8 

2+ 6  
cel - 4. 8  

1.91 if 5 = 0.1 
= 2.0 if 6 = 0.0 

Ilanjali6 and Launder took the value 6 = 0. If we examine the data of 
Batchelor and Townsend, we soon recognize that each of the graphs 
they present for U/k vs. x curves upwards, away from the straight 
line as x increases, suggesting a value of 6 greater than zero. We have 
therefore taken ca  = 1.9 I rather than Hanjali6 & Launder's value of 
2.0. This was suggested by the work of Rodi [ 1972] . 

To determine cel  and co, we consider the log-law region of a 
fully-developed boundary-layer near a wall, where production and 
dissipation of turbulent kinetic energy are known to be in balance 
(see Hanjali6 & Launder [1972] ). Here 

11 	x2  UT  
U1 = 2n = + coast. 

WI  Ur  
; also 	- 111 /12  = (42 

axe  KX2 

(43 
E — 11 	

au,  
1  112 	= - -- are  KX2 

The appropriate values of k and u3 indicated by various experiments 
(e.g. lianjali6 and Launder [ 1972] ) 

k = 4.2 Ur2 ; 	//i .. UT2 
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We have 

De _ 	aur  
= — ce  e  

D1 	k axk  
c2 

— CE 2 
(4.13) 

a 	k 	a e 
+ 

ce3  axk 
—e  /Joe  „. 

"e 
whence 

U 3  Ur  142 	 U76  
° = cc!  K.V2  v; 4.2 U2 	Ce2  K2.4.2 U2 x22 

r 
112 + 	

a 	
4.27 • 2 • — • 

‘'r 
" aX2 	UT3 	

7 
 "22 

which simplifies to 

c = e2 — (4.2)2  K 2  d 	 e3 

which, with K = 0.41, gives 

ce l = Cc 2 — 3.0  (4.14) 

It is perhaps comforting to note that, despite all the differences in 
detail between our argument and that of Hanjali6 and Launder (e.g. 
they take u3 = 1.6 42  while we take ui =(.42 ). they derive a relation-
ship 

eel = cez — 3.5 co 
which does not differ radically from our equation (4.14). 
Our choice of ;-(3 = U7.2  and k = 4.2U2  is, in fact, based on Ilanjali6 
and Launder's own published measurements [1972a]. 

The discrepancies between their choices and ours for the ratios 
must be attributed to their use of the values associated with homo-
geneous shear flows such as that of Champagne, l larris & Corrsin 
119701, which we suggest may not be so appropriate as those derived 
from I lardali6 & Launder's own channel-flow measurements. Relation-
ship (4.14) leads to the result 

cfl  = 1.91 — 3.0 cd 	 (4.15) 

if we insert our calculated value for ca. 
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66 	(-141/12) •
3U1 

 (-4/02) 6 
au,\ 
- 	+ 6D ax2 	ax2 (4.17) 
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Measurement of the dissipation 

One fundamental problem attendant upon our treatment of the 
dissipation term in equation (4.11 is the absence of reliable direct ex-
perimental data. Such energy-balance measurements as there are, e.g. 
those of Hanjalic & Launder [19721, contain results for the dissipat-
ion only as a by-product of the remaining measurements. If we con-
sider, for a moment, the measurement of the energy balance for a 
fully-developed boundary-layer flow, the kinetic energy of turbulence 
being governed by the equation (4.3), we have: 

0=P—e+D 

e = P + D 	 (4.16) 

Clearly, if D is measured as being small, e (the dissipation) will inevit-
ably be seen to be roughly equal to P. But if P is derived from the 
product of two measured quantities au, /ax, and iTiT2 , in the case of 
a two-dimensional boundary-layer. and D is taken as equal to the 
measured values of the triple-correlation gradient, each measured 
quantity f being subject to the error5f : 

e + Se = 	u2  + 5 (—it!  u2 ))
3U1  — +S (

3U,
1 

ax2 	3X2 

Unfortunately, therefore.6e is not merely the sum of the errors in 
u2 , au, /ar2  and D, but is the weighted sum shown in equation 

(4.17). Worse still: the errors are likely to be largest when the co-
efficients are largest (e.g. near a wall). 

We can therefore not rely on energy-balance measurements for 
accurate information on the dissipation. 
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Evidence of isotropy 

If these were the only available checks on the values of c, we should 
he in doubt as to the validity of the model. Ilowever, it is a well 
established experimental fact (cf. I linze [1975]) that the production and 
dissipation of turbulent energy occur at opposite ends of the frequency 
scale. Energy is produced in large eddies (at low wave numbers) 
and dissipated in small eddies (at high wave numbers) (see. e.g., 
Tennekes & Lumley [1972], §8.3). The further fact that these 
ranges arc clearly separated in the flows we consider by a well- 
defined 'inertial sub range' enables us to confirm, by examining spec- 
tral decompositions of the turbulent fluctuations (e.g. those in 
Ilanjalit and Launder [1972a ), that the small-scale turbulence is 
isotropic. as first suggested by Kolmogorov [1941]. 

In view of this evidence, we are able to allocate the dissipation 
of turbulence energy equally among the normal stresses u2: 

CCM 3 
Ell 

It is reassuring to note that these observations are in accord with the 
common-sense view that the small-scale activities occur over such 
short times and distances that they are bound to be insensitive to 
gross quantities such as mean velocities and mean strain with large 
characteristic time- and length-scales. 

Again, in accordance with experimental evidence, we allocate no 
dissipative activity to the off-diagonal (shear) Reynolds stresses. 

A different model: 

e17 = e 
2k 

was proposed by Daly and Harlow [1970] but is not supported by 
the data of Hanjali6& Launder [1972]. 

tt iui  
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4.2.3 The pressure-strain tern 

The next term to engage our attention is the "redistribution" term 
of equation (4.1): 

1 au. au:) 
— p 	+ 

q p a•z• ax;  - 
(4.18) 

This term, as we have remarked (in Section 4.1.1), is redistributive of 
turbulent kinetic energy as between the u7,7; (the Reynolds normal 
stresses). If, for a moment, we think of the Reynolds normal-stress 
equations as a separate closed system of equations (which of course 
they are not) this term acts merely to allocate k to uf , t7i and trj 
after allowing for the effects of production and dissipation, and of 
diffusion; it thus neither creates k nor destroys it. Now, relaxing 
our view, and admitting that the subsystem of normal-stress equations 
is not in fact closed, we see, for example, that the term (4.18) also 
appears in the turbulent shear-stress equations (as, of course, do 
also the normal stresses themselves) and that it is thus capable of in-
fluencing the mean-velocity profiles and the rate of production of 
turbulent kinetic energy. We shall, nevertheless, have occasion to 
think of the term (4.18) in its redistributive role, neglecting its 
interactive influence. 

Our main concern in "modelling" the term (4.18) will be to provide 
a representation which will serve to allocate k in the correct ratios 
(i.e. in accordance with the empirical data) to the normal stresses. 
The consequence of our approach will be to allow the effect on the 
turbulent shear stresses to emerge naturally from the model. If our 
assumptions are correct, the requisite ratios of the normal stresses 
will provide sufficient information to determine any unknown co-
efficients in the model. If our assumptions are correct, we shall then 
find the effect on the it jui  (ij) correctly predicted. 

It is perhaps worth pointing to the crucial differences implied by 
our choice of a full Reynolds-stress model, compared, for example, 
with IlanjaliC and Launder [1972] who solved equations for k , c and 
u1 u2 in the two-dimensional boundary-layer, replacing the normal 
stresses by fractions of k wherever they arose. 	This implies an 
essential difference in the importance to be attached to the term 
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(4.18). 	For us it is a redistributive term for the normal stresses 
with consequent effects on the shear stress, while for Hanjali6 and 
Launder the term was significant only in respect of its non-redis- 
tributive role. 	The consequences of the effects on the shear 
stresses are far from trivial and will appear as effects on the pre-
dicted mean-velocity profile; they are responsible for the decay of 
y1 112 . 	In a sense, therefore, we are more rigidly constrained by 
the present model than Hanjali6 and Launder were by theirs: we 
approach indirectly the crucial problem of producing an equation 
for tiTiT2  in a two-dimensional boundary-layer — a problem which 
Hanjali6 and Launder were able to tackle head-on. 

Eliminating the pressure 

Equation (4.5) states that 

au. 	au, 	au, 	au. i ----f- + uk  — +Uk a
xk k Uk 

 axk at 	axk 	(lox, 	dock  
I ap 	a21Ii 	a ______ 

= — -A----  + ' axk 	axk  p _xi 	
(4.5) — ---- uiuk  

Following Chou 119451 we take the divergence (a/ax i) of equation 
(4.5) and recall that continuity dictates (3.2) that audaxi = 0: 

I a 2 p _ au, au, 	auk  au auk  au, 	a2 
_ 	 + 	+     

p ax? axk  ax ; 	axi  axk aXi  axk aVkaXi 

Therefore, as 

..___ (oink )) = _____ u . ____ =  a 
( 

a 	a 	auk 	au, auk  
ax, ax, 	axk 	' ax, 	axk  ax, 

_i v2 p  . _2  au, a____uk  a2 tritik  4.  a2 W ink ) 

P 	axk  ax, axk  ax 	ax ax 

11111k 

(4.19) 



Now, taking (a/axk ) of (4.19) we see that 

v2 	= —
2 3 	au,„ at/n:1 

p k axk 	ark t 	axm) 
a3  

	

um un 	 m ti  
• ax, axn  axk  ax„, ax„ axk  

(4.20) 
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Green's Theorem states that 

v2  u 	 I 3 111 Vzt = — — —d + — — dZ 47r r 4ir r 	 I .67/ dZ  2: 

whence 

1 op = 	1 a 
ir) 

- 

axe  27r )r axk  

(a U(,(, au„) dV' 
ax„ axm 

1 f 1 
47r 	r 

a3  
asm ax„  axk 

33  am  ti„ 

axm axuaxk 
dV s 	(4.21) 

— 
ft ai ai!" dz  

47rp 	r all' 1, axk  / 

f ap' a ill 
dZ  - 47rp J axk  5 7/1 	i-/ 

p is a function of x0 , y0 , and z0  (fixed); all the terms of the right-
hand-side of equation (4.21) are evaluated with respect to x, y' and 
z' (moving over the volume or surface as appropriate). 
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If we now multiply (4.21) throughout by /rt. evaluated at (x0, Yo ,  
20 ), and put bars over appropriate terms, we see that 

ap au„', 3 	
a 
, 
v
„, 

p 	
= 

axk  2/r J 3-7.xk 	 ax,,,' 
V 

a3  
417r I 	• /7  dV' + (4.22) 

1 	f 	I a 	 at; 	a(p'//,) a l  l)t 

	

47rp j lr' an' ‘axk 	ark  an 	r 

Chou suggests that the surface-integral term in equation (4.22) may 
be neglected if /Op /ax k  is small, which it is, provided the point 
P(xo ,  yo. :0 ) is not too close to the boundary. 

This argument then leads to the following expression for the 
ap 

correlation —P tit ax i  

I a — p au; 	ap 
— — 	(pm+ 	— — 

u  p 0. • 	p axi 	p axi  l  

1 	jia 2  WOO I au, 
” 4ir 	tk • ax Q ax,,, 	 avf  

V (4.23) 

 

+2 (5—aUq 1 ( 32111 	 dy  
ax,2 	ay 1 Ix— yI  

Oil, 2 

 

with the primed values taken at y, unprimed ones at x. 
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Equation (4.23) thus shows that the pressure-strain correlation can 
be divided into two parts: the first involving purely fluctuating 
quantities, and the second involving the mean rate of strain. In fact. 
Chou's argument covers, as we have seen, not merely the "redistribut-
ive" part of the pressure term, but also that part of the original 
pressure term in equation (4.1)  which we have tended to separate 
out as more akin to the diffusion. Ilowever, it should always be borne 
in mind that over the largest part of any near-wall turbulent flow, the 
production and dissipation of turbulent kinetic energy are in balance, 
and the diffusion.is altogether relatively small; it is thus virtually 
immaterial whether or not we include the separated-out part of the 
pressure term when we model the pressure-strain term. 

A model of Oth  

We follow Rotta's suggestion (1951) that 

011,1 )= — col 	— 	k) 
	

(4.24) 

Rotta argued that in the absence of external influences the most 
probable distribution of the turbulent fluctuations was the isotropic 
one. Hence, the effect of the term Hu  (4.181 was to cause a return 
to isotropy. (4.24) was the obvious initial choice for a model of 

setting it as proportional to the degree of anisotropy. As we 
have seen. for a boundary-layer, in the absence of diffusion. the 
pressure-strain terms are the wily ones capable of generation in the 
tr,.,2  equations where t is any direction normal to that of the mean 
motion. This enables us to use experimental data for a boundary-
layer flow to assess the effect of the pressure-strain terms. 

In particular, Rolla was able to derive a formula for the coefficient 
col  . We apply Rotta's analysis to the data of Champagne. Harris and 
('orrsin 119701. This process leads to precisely the same conclusion 
as that drawn by Rotta — a value of col  roughly equal to 1.4 (Rotta 
gave the reciprocal as 0.7). (We present a more detailed derivation 
in the context of the determination of 	below.) 

Intervening writers have found different values for cot  : in every 
case, this can be related to the level of anisotropy of the flows con- 



74 

sidered. Expression (4.24) shows that the greater the anisotropy 
the larger will be the required value act, '  Rotta himself revised 
his estimate (1962] to 2.8, a value which has been used by llanjali6 
and Launder 11972]. and close to the value of 2.5 used by Wolfshtein 
and his co-workers 11969]. 

Thus far we have tiled to maintain a high level of generality in the 
argument. At this point, however, we adjourn the discussion of 
06,1  pending a detailed discussion of the effects of the proximity of 
a wall (§5 below). Everything we have said up to now has been of 
particular relevance to flows remote from walls. 

Thy term (Pii,2  

From (4.23) 

  

1I (a U4  y 	di' 
2n 	‘a.vni 	k axe / 	 — yl (4.25) 

For convenience, we define t = X — y. 

 

If 

      

R,,,; = it ; (r0 )ii,,,(r0 + r)  

= 	say. 

 

      

(4.26) a 	 Du • 	a 	—a 
(11•/, '). 	= 	R = 	R ax  I 	 in ar  rn, 	nh 

u 	 u4I 

as the u„: are independent of the xi. 

1 hen 

      

	

3 au; 	 IDR„,i\ 

	

3x y' avi 	axc  ati  

 

   

_ a2 Finn 	all,,, au/ 	 _ 	. 
ate at;  ax, 
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whence 

au„, — 	a2  Rmi _ 
ax cz  ax; 	atQ ati  

(these results were obtained by von Kdrinin and Howarth [19381). 

If we now define: 

a (IQ  
(I)11,2° Frcm  

a2 uc2  
nny 	

Kjii "Qi ' 	 n 
axrn av ' n 

r=0 	 r= 0 (4.27) 

  

a 3  u, 
+ 	ax„ axp  

r=0 

np 
i C nt•• 	• • • 

we see also that, by Taylor's theorem, 

aUe(ro  + r) au„,(ro  + r) at( i (ro ) dV 
A = 	- 

aX 	 aX il,2  =  27r 	ax 

_ _. 	... 	.. 	._ 
j = aUe  I 	au„,(ro  + r) aur  (r0 ) d V 

ax,,, 27r 	axe 	ax• / 	r (4.28) 

a 2 UQ 	I 	aum  (ro  + r) aui(r0 ) dV 
ax„, ax„ 27r 	tin 	axe 	axi 	r 

V 

a 3  UR 	 s  t 	au„, fro  + r) 	0.0 ) dV 
+ 

axm 	
m  n  

ax„ax p  27r 	2! 	ax Q 	ax• 
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which shows, by comparing co-efficients, that 

nmi.  _ 	 dV 
-121 	2r 	 r 

(4.29) 

( 	 32  Rmi dV nu 	1 	tnt 	 np 	4r 	P  a 0E1 r  
V 

hna _ 
n"e/ 

f 	a2 R,nr dV  

2Tr 	at, at/  (4.30) 

(4.31) 

Rotta showed that by considerations of continuity and symmetry 
(1951, Appendix), the following conditions must be satisfied: 

am! — 
„tin 

c2/ 	~12/ T .4/12 

— (hi  — 0 

(4.32) 

(4.33) 

In addition, we have the following consequence of Green's Theorem: 

12!1 = 	 v2 	dV  —
r 

dV 
2r 	

= 2Rmi(0) = 2 Ilium  
V 

(4.34) 

Rotta [19511 assumed values for the LI/ derived from isotropic 
turbulence data. The observation that some of the a'c'z y were linear 
combinations of the Reynolds stresses led Ilanja0 and Launder [19721 
to deduce a model based on the assumption that the (IV could all be 
modelled as linear combinations of the Reynolds stresses. Launder 
[19711 proposed a more rigorous version of the earlier model, the 
basis of which is as follows. 
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The most general such tensor capable of satisfying 
is 

t — aym 	al  62/  ttm  tti+ a2  62 i 	tti  + a3  Set  uitti  
(4.35) 

as 6/t um tit: + as aim utue + a6  Stn (4 41( / 

a7 6e/ 6mt tlkok + a8 6 12i 6mj Ilk + 119 'Sem 6 I1 likuk 

In Appendix B we solve the system of equations (4.32)—(4.34) for 
the coefficients an  in terms of a6. 	This gives the model in precisely 
the form in which Launder originally proposed it: 

= a62, 	+ g (6m  e ttitt/  + 6m/  utue  +682. ttm  tti  + 61/  um  tt 2 ) 

+ 4.4,26mi ug ui  + (n6mi6v  + v(6,, e 6u  + 6m16/12 )1 k 	(4.36) 

where 

a2=a3=a4=ots 
2a, 
2a8=2a9  

a8  

• a = (4c02  + 10)/1 1 
p=(-2-3c02 )/11 

• n = (-50c42 -4)/55 
▪ = (20c02  + 6)/55 

Cm2  

(4.37) 

If we define 

Ue  
P = — {6 / u ui  + ov um  U/ } M 	 aX 

_it/  7.--adxUi  {Um 
Ili  au 

axm 
+ 	m 

a um  —• a um  
Dfl — 	— + 	} ax, 	axi  

—• a uo 
P — U U Q 	= rate of production of 

m 	axm 	turbulent kinetic energy 

(4.38) 
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By comparing coefficients, it is easily seen that 

n11,2 6Z-

au, 

	+ den/ 

_ (c.02 +ES ) 	2  
{PU 	60)}.  

(8c02 — 2) 	2  
11 	

tiau  — 3- 61/13) 

(4.39) 

(30(.02  — 2) 
11 

tau, + au,i 
axi  

This is in fact the form of the model proposed by Naot. Shavit 
and Wolfshtein [19721: their proposal and that of Launder 119711 
are thus wholly equivalent. (This was shown by Launder [19731.) 
Their "0" and Launder's "c02" are related simply by: 

105(.02  + 4 — 88 0 = 

Naot, Shavit 8f Welfshtein included only the P11  term in an 
earlier proposal. This model, as we shall show in Chapter 6, 
is quite powerful in its own right. 

The determination of co 
The form (4.39) is much easier to manipulate than the rather 

clumsier expression (4.36), though, of course, (4.39) is merely an 
algebraic rewriting of (4.36). 

It remains for us to determine the value of the sole parameter Co 
in (4.39). To do so, we return to equation (4.1) and consider the 
ratios of Tif Tif 	generated by a nearly-homogeneous shear flow, 
such as that reported by Champagne, Harris and Corrsin [19701. 

Before proceeding, we draw up a table of values of the various 
components of the modelled term (4.39) for a two-dimensional bound-
ary-layer. Table 4.1 illustrates another, aesthetically pleasing,aspect 
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of the model when written in the form (4.39). viz. that each of the 
components of the "redistribution" term is itself redistributive, i.e. 
has zero trace. 

Using Table 4.1 , we see that if production and dissipation are in 

	

balance, i.e. 	au, /axe  = e, 

(i) for iri: 

	

tri 	2
— 
 8 + 12 co  

(4.40) 

	

k • 3 	33 co  

(ii) for tri : 

"2
2   2 2 — 30 CO2 

	

k 	3 	33 c01 	
(4.41) 

whence 

	

113 	2 	—10 + 18 c 	
(4.42) 

	

k 3 	33 co  

Now the data of Champagne, Harris and Corrsin [1970] suggest that 
the values of the normal stresses arc such that 

	

tri 	2 
—
3  =

-0.28 
k  

	

"--i 	, 
12 - -3 = —0.21 
k 

	

2 	-) ‘. -- 
3 
 = — 0,07 

k 

With these values, the equations (4.40) — (4.42) form a pair of 
simultaneous equations in the two unknowns col  and CO2. There are, 
of course, only two independent equations as we must always have 

= 2k. 
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The solution of the pair of equations 

8 + 12 Co2 = 33 x 0,28 c01  

2 — 30 co  = 33 x (70.21) co  

is easily seen to be 

cita  = 0.38 

cmc = 1.36 
(4.43a) 

The pair of values that we have chosen to use: 

(.4,2  = 0.4; cosi  = 1.5 

is clearly not in any significant disagreement with the values (4.43). 
No single set of data can be regarded as absolutely conclusive in the 
determination of constants intended to serve over a very wide range 
of flows (ideally, of course, all flows), and our aim is not to predict 
perfectly one simple flow, but to predict well a whole set of compli-
cated flows. Moreover it is readily seen that the pair of equations 
(4.40) — (4.41) is highly sensitive to small changes in the values of the 
normal stresses: i.e. to experimental error. 

Thus, if we had chosen to interpret the Champagne, Harris & Corrsin 
data as yielding 

rr 	2 
— = 0.30 

k 3 

rz 1  
= —0.18 

k 3 

tir 2 
k 

— 
3
— = —0.12 

— a perfectly tenable interpretation — we should have concluded that 

cmt = 1.17 

cm2  = 0.30 
	 (4.43b) 
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Component 

Term 

--2-  ui 

1=1=1 

-- u2/ 

1=1=2 

— ti3  

1=1=3 

111  112  

1=1; 1=2 

2 
{Po  — --5 SU P} 2 ii—ii l_u4  3 	1 	2 ax2  _. ui-  a Ui 2 "Fx2  4 — 	u1  u2itil 

3 	axe  
2 ul  uplii  
3 	3x2 

{Di. — —
2 6. p I / 	3 	0 

—4 	a u 2 	a u -7u  WI  
axe  

2  a u — ui  u2___..i 
3 	3x2 

— 141  /42 	-1 
3 	ax2  

— it, u2 	 4 
3 	a xe 

au 	a Lb 0 0 0 k gli  
a x2 

k 	
, 

 (
— + ---1) axi axxi  

Table 4-1. The components of the modelled term ¢ii,2  for a 2-D 
boundary-layer. 
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4.2.4 The diffusion terms 

The remaining terms of equation (4.1) are diffusive in effect. We 
write 

	

a 	 a ___ a__ a 
aXk 	 axk  

{ii.
1
u.uk  —v — u jui } + 

	

a 	 a 	a 	  
oa 

	

ax 	
—v — 	4- 	(Sikui  + oik ui ) p (4.44) 

	

k 	ax 	k   

Following common practice since von Kdrindn [1937J we assume a 
gradient-type model of diffusion (see §1 above). We isolate the second 
and third terms as respectively 

(i) the laminar diffusion of Reynolds stresses, which is negligible 
by comparison with the first term: 

U 3 
0 (first term) = — 

u2  uQ it 3  
0 (second term) = — • — =

QZ R 

i.e. it diminishes with R-1  as R -+ co; 

(ii) the pressure-diffusion term: this was incorporated in equation 
(4.23) above. 

Essentially, our aim must be to provide an acceptable simulation 
of the term Wk . To be "acceptable", the model must be (i) a ten-
sor of the right order. (ii) invariant with respect to cyclic permutations 
of the suffices, (iii) composed •of Reynolds stresses and mean-flow 
quantities. 

For the moment, let us relax the second of these conditions — rind 
consider the suggestion of Daly and Ilarlow [1970], viz. 

—Tu  
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(A) 	T/7 . —c a t k a 	 (4.45) s_ _ uk  ti i  _ . iii iii  
Irk. e 	ax 1  

We shall neglect the operator - cs  ailvk  k le. The factor kie is introduced 
for dimensional reasons — it is the appropriate time-scale for the diffus-
ive activity (see Tennekes & Lumley [1972]1. 

It will he noted immediately that there is a distinction in (4.45) 
between the suffices i and j on the one hand, and k on the other. As 
we intend initially to examine a two-dimensional boundary-layer, 
this distinction will be in order, provided that k represents the single 
direction in which we suppose derivatives to exist. 

This model, which we shall designate "Model A", has in fact been 
thoroughly tested by various workers (e.g. Rodi [1972] ) and found 
satisfactory. For a two-dimensional boundary-layer, it gives the 
following matrix of diffusion (each location corresponding to the 
Reynolds stress in question): 

„ a 	 1 	tt  • -- „ 	2-- u u 2 
axe 	ax2  

ut—- a ul u 2 	Id 	712 
3x2 	 axe  

0 	 0 
2 a 	2 //2— 

a
- /13 
X2 

0 

0 

Next, we consider the simplest model satisfying the criterion of 
invariance, having regard to the fact that Model A gives a good rep-
resentation of the term. The obvious way to make such a biased 
model invariant is to take three similarly-biased models, and add 
them together. In this way we arrive at the model, which we shall 
call B I  (the reason for the suffix will emerge later), first announced 
by Ilanjalii: and Launder [19721: 

(Bt) 
____. a 	 a 	 a uk  — ui u + 	-- 	ukj U 	uk ui (4.46) 

ax / 	 ax 	 ax 



--f 2 u l  u2—a u2  +u a—  u1 u2 
ax2 	ax2  

3 ul a  14 
ax2  

0 

0 

0 

2 a 2 1/2 — //3 
ax2 

+ U 	a U • U 1 1 ax 
(4.47) 

1 
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Model B1  has 2-D matrix 

[ 

	

 id a x2 	a •— u, + 2 u,u,i; ui U2 
a 

2u1 k uo2+ ui  u2  1 iti 

	

ax2 	 ax2  

2 u2  a— x ui u2+  u2 —a 
x 
	0 

2 	 2 
 

a 
3 u22  

ax2 _a__  
112 	t13 

ax2 0 

llowever, Bi  is by no means the only invariant model of the type 
we seek. By simply inverting  the order of operations (multiplication 
and differentiation), we immediately arrive at the model which we 
shall call B2  : 

(B2 ) 	u, ui  —a ilk  1.4/ 	uk  —a u, u, 
ax 	 ax 

which has the matrix 

illa —IA -I. 2Ll 11 a 17 IL ..1  — -2 	_2--- _ 1_2 
ax2 	ax2  

111 a 	 a u, u2 + u, U2 --- U2 
ax2 	 ax2 

0 

Unfortunately, B2 , through a priori of the same status as B1 , 
leads to the intuitively unacceptable result that there is no diffusion 
of the normal stresses parallel to a wall in a boundary-layer along  
the wall. It would be aesthetically more pleasing, of course, if B1  
and B2  led to the same results. 

The next possibility is given by a further rearrangement of the 
relative roles of the dummy and active suffices in the model: 

„ 	 a 	a (C1 ) 	Ili 	u k 	— 	A--  U. Uk.  
aX. • k 

with matrix 

(4.48) 

• 
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ka 2k a 17,-72  
ax2 - 	ax2 

u,u2  30_ u2 
ax2 

0 	 0 k_a_ 
ax2 

AS 

and obverse 

(C2) 
 ukui  —a 	u, ui 	+ u t, a 	u, u, 

a- 	ay k 	
1 k ".X, 

(4.49) 

with matrix 

      

--yak 2u1U2 ak u,_ 

	

ax, 	ax2 

	

2u u ak 	ak 
1 2 ax,  

0 	 0 

0 

0 

173 a k 
ax2 

  

    

• 

Unfortunately, the second of these models. C2, is quile unrealistic. 
as it suggests that there is no diffusion of the normal stresses as such. 
but merely of the turbulent kinetic energy k. On the other hand, with 
C1  we have reached a model due to Donaldson [1968]. It is, more-
over, in fact, the model used by Ilanjalit and Launder in generating 
their predictions. Although Hanjali& and Launder announced Model 
B1 , they simulated the normal stresses by replacing ul by 0.5 k, and 
also rejected as negligibly small those terms (in locations (1.1), (2.1) 
and (1.2) of the diffusion matrix for Model B 1 ) which distinguish 
the resulting model from.Model C i . We thus see that Model C1 , 
subject to certain plausible simplifying assumptions, can be regarded 
as a degenerate form of Model B. 

The final possibility is: 

(D) 	u, u, 	 uk 	ui  ill a  ui 	u 171 	(4.50) 

with matrix 

az, 	 ax, • 	 axi 



/4 a tri + 
ax, 
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111/12— a  u 11/2 
ax, 

+ u2) +(di + ui)L ui u2  
a x2 	 axe 

/II 112.L( ti? + iti)+( 41+4)L /II u2 
 axe  

a 	a  
3 ui — 	u1 112—ax2 ui tt 2  

2 ax 

0 

0 

-7a .7 115 —  115 
axe 

0 	 0 

where, it will be noted, we have not made use of a suffix.. This is 
because, as is immediately obvious, Model D is "self-obverse". By 
permuting the suffices in an exactly analogous way to that used to 
get from B 1  to B2  , or from C1  to C2, we get from D to itself. Model 
D has an additional heuristic attraction, which is, however, not of 
itself sufficiently compelling a reason for us to abandon Models A, 
B1  and C1 . Indeed, as we shall see, Model A, for all its appearance 
of non-invariance, gives the best results. This is because the result 
of making the model invariant is inevitably to increase the effective 
(2.2) component of the appropriate matrix for the two-dimensional 
case by a factor 3. Ilowever, the measured values of u1  112113  shown 
by, e.g. Hanjali6 and Launder [1972] , simply do not support this: 
the diffusion of ui is not three times as fast as that of ui . Though 
Model D does tend to compensate for the overlarge coefficient of the 
(2,2) component of the diffusion matrix by taking the value of ui 
rather than ui for the coefficient, we do not find in practice a great 
improvement over the results of Model B, and none whatsoever over 
those of Model A. 

The principal objection to Model A is its apparent non-invariance. 
I lowever. it is clear that not only are all the Models B1  , B2 , C1 , C2  
and D possible invariant models of the diffusion, but so is any linear 
combination of these models. 

The question of invariance 

We consider the most general linear combination of the invariant 
models: 

G = «131  + f3B2  +7Ci  + 6C2  + 	 (4.51) 
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We shall show that it is possible to choose values of a, ..., 77 that make 
the invariant model to G (4.51) capable of simulating the numerical 
values of the non-invariant Model A. 

If we take, e.g. k = iti = 3u2, ir3 = 2u2, 1102  = u 22  we obtain the 
four equations: 

11(a+(3)+27(7+5)+2877=9 

9 (a + f3 + 27 (-y + 5) + 1077 = 3 

(a+(3)+ 3(-y+5)+ 271= i 
	 (4.53) 

30/-1-(3)+ 6(7+0+ 8i7=1 

As these 4 equations have only 3 independent unknowns this is a 
consequence of the simplification (4.52) we solve the last three 
exactly: 

(a + (3) = —4 

(7 + 5) = 7/6 

77 = 3/4 

Substituting into the first of equations (4.53) we get: 

—44 + 27.7/6 + 28.3/4 = 81/2 9 

Thus to a very high degree of approximation we find that the first 
equation is satisfied. 

We have thus shown that where (4.52) holds, the matrices 
and hence the models satisfy, e.g., the relation 

7 	3 
A = —4 B

1 
+ —

6 
C

1 
+ —

4 
D 
	

(4.54) 

We are thus justified in treating Model A as an apparently non-
invariant combination (4.54) of invariant models. The apparent non-
invariance can be attributed to the replacement of terms like (3ui + 
u3) by the corresponding fractions of k. 
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Cs 	U 	d Ut rr, 	r 14 (4.55) 
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lowever, we must recall that our search is for a feasible model of 
turbulence: one which (in Lumley & Khajeh-Nouri's [1974] words) 
is 'not beyond the willingness or ability of reasonable men to pay 
for'. We recall that the diffusion is only a small component of the 
energy balance (typically 5% of the largest term in a boundary layer 
except for regions where the mean velocity gradient is small), and 
that measurements of triple correlations are relatively scarce, with 
consequent doubts as to the accuracy to which the gradients of the 
triple correlations are known. We feel justified in concluding that 
Models A — D are all of equal status. 

One caveat, however, is that Model A cannot be generalized with-
out care (and regard for the data) to diffusion in three dimensions. 
This is discussed in §7 below. 

The determination of the constant cs  

To determine the value of cs , we first turn to Table 4-2 for guidance. 
We see that the value of cs  that this suggests is in the region of 0.1. 
IlanjaliC and Launder, using Model CI  , gave a value of 0.08: this 
was, however, on the basis of taking the ratio rti : k = 0.5, which we 
consider rather high. Our choice, for Model B 1  (as opposed to its 
degenerate form C1 ) is c5  = 0.11. This is the result of many thousands 
of computer calculations, and can be regarded as thoroughly optimi-
zed in the context of two-dimensional boundary-layers. 

We shall clearly need a different value of c, for use with Model A. 
To see roughly what this value must be, let us consider the net effect-
ive diffusion of k: 

Model A: 

Model B: 

c
'11:1 

[terms in (4 	_u a 
ax 	

-u, 	u, 

(4 56) 
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x2ID 0.2 0.4 0.6 1 
I  

A Values of triple correlation —0.09 
1 

—0.21 —0.22 
; 
i 
I 

B Gradient-modelled terms —0.32 —0.9 

0.23 

■ 
—1.2 

0.18 

I 
I 
t 1 
! AIB = cs  0.4 

I 1 

i 

0.8 	' 

—0.06 

—0.3 11  
	 7 

i 0.20 1 

Table 4-2. Values of the diffusion coefficient deduced from data of 
of Ilanjali6 & Launder [1972]. 
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for these net rates of diffusion to be equal, as they must be, we see 
that if tt i  u2  = u2 = 0.4 k 

csA 	1.8 csB 	 (4.57) 

From Table 4-2 we see that the value of cs  must be about 0.2. 
We find, indeed that the best results are obtained from Model A 
with, csA  = 1.8 . 0.11 = 0.2. 

4.2.5 Summary 

The Reynolds stress model is in principle now closed. The missing 
details in Table 3-1 are now available: 

• The term audaxrayaxk  is now the subject of equation (4.13). 

• The term ii.u.ti is modelled in §4.2.4. 1 / k 

• The term p auilaxi  is modelled in §4.2.3. 

However, in §5 we shall show that although the model is closed, it 
is not yet quite complete. 
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THE SITUATION NEAR RIGID BOUNDARIES 

5.1 The Data 

If we collate the available data on Reynolds stresses in flows near 
walls, we obtain Table 5-1. If we then collate similar information on 
flows uninfluenced by walls, we obtain Table 5-2. 

Comparing the consensus of Table 5-1 with the results from Table 
5-2 we see that 7 is greater near walls and 112 2  smaller, than would 
be the case in regions remote from walls. 

5.2 Explanation of the phenomenon 

We now examine the various terms in 0.11 to determine which of 
them is capable of causing a transfer of turbulence energy from 

7 to ,772-leaving --t7/7 more or less unchanged. 

5.2.1 The Production Term P 

This arises only in the equation for u1  2  and is treated exactly. 
Any alteration, even indirect, in the rate of production of turbulent 
kinetic energy would in any case be felt equally by both the other 
components, and thus cannot be the source of a transfer from the 
one to the other. 

91 
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 _ 1 - 
k 	3 

u2 	2 
k 	3 

---r u 3 	2 
k 	3 

u t  U2 

k 

Laufer 	[1954] +0.55 — 0.38 — 0.17 0.17 

Klebanoff 11954] +0.57 — 0.46 — 0.11 0.23 

Comte-Bellot 119641 +0.61 — 0.45 — 0.16 0.22 

Hanjalie.  & Launder 
119721 

10.56 — 0.45 — 0.11 0.24 

Consensus +0.57 —0.45 —0. 12 0.22 

TAB LE 5.1 	Reynolds-stress distribution near walls 

u 1 2 /k — 2/3 // 22 /k — 2/3 u 3 2  /A: — 2/3 u 1  u2  

Champagne, -1-0.29 — 0.18 — 0.11 0.30 
Harris & Corrsin 

[1970] 

TAB LE 5.2 	Reynolds-stress distrib ution in homogeneous-shear flow 
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5.2.2 The Dissipation term e 

This term is certainly capable of causing a redistribution from 
any,  / 2  to any other. In §4 we gave our reasons for supposing that 
the effect of e was isotropic. Those grounds. based both on 
physical arguments and on reference to the general data, remain firm. 
We recall that 

(i) the small-scale motions in which the dissipation occurs are 
likely to be insensitive to large-scale quantities — such as 
distances from walls — and 

(ii) the measurements of k—spectra by, e.g. Hanjalic & Launder 
[19721 , show not only a general isotropy at the high-frequency 
end of the spectrum but also (and more significantly for our 
present purpose) the same high degree of isotropy at all 
positions in the flow — i.e. regardless of the proximity of a wall. 

Moreover 

(iii) any departure from local isotropy must tend to enhance the value 
of ell  and reduce that of €22  — the opposite of the renuired effect. 

We therefore see no reason to depart from the isotropic model of dissipation. 

5.2.3 The Diffusion 

It is again necessary to recall just how small the contribution from 
the diffusion is to the overall energy balance. In the region near a 
'wall, moreover, the diffusion is very small (see, e.g. Figure 6.13) -
and we are looking for a term capable of producing a transfer of energy 
to u 1 2  from 7/22  of about 30% of /1,2 . I t is thus quite impossible for 
such an effect to be caused by the diffusion. Any such effect associ-
ated with /122  would also be extremely difficult to divorce from the 
1/ 32  term. 

5.2.4 The Pressure-Strain Terms 

Thus, having eliminated all the other terms in equation (3.12), we 
are left attributing the near-wall transfer of energy from 1/ 22  to u1 2  to 
the remaining (pressure-strain) term, 

H = 	+iii, 2.ti 
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Therefore workers since Harlow & Hirt [1969], and particularly 
since the detailed proposals of Daly & Harlow [1970], have recog-
nized the need for a near-wall component to be incorporated into 
the pressure—strain term. 

The earlier proposals 

The suggestion of Harlow & Hirt was for a transport equation for 
the wall-effect tensor P . This was superseded by the proposal of 
Daly..& Harlow, which was to replace the tensor by an explicit 
integral formulation of the coefficients PTA  in the wall-effect expression: 

(F 	Pi1 idol + P. u u. — 	u u 

 

(F °̀  ti 
 cc 	 /1 I 	P 3  Im 1 m 5 if 

Shir [1972] replaced the Daly—Harlow tensor decay function P11  
by the scalar decay function 1p , where 

j• 
	 dZ 

7rK
2 E —r14  

and 

nP.. 	= 	.n. tfr 
J 

%I being the unit vector normal to the wall. No explanation was 
o?fered for the particular form chosen for 	The results generated 
were satisfactory, but were presented only for the axisymmetric 
pipe, and for the symmetric channel. 

Many workers have generated equally successful sets of predictions 
without the use of a wall-effect modification. Such a practice will 
certainly be capable of leading to success if (as in the case of the 
work of Hanjalic & Launder) the method used involves the solution 
of only one Reynolds stress. The coefficients for the shear-stress 
equation can — or even, as we have seen, must — be chosen in the 
light of the experimental data. The solutions generated are thus 
very likely to match the data used. However, the consequent 
lack of generality of such a procedure is bound to reveal itself 
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in an inability to predict certain flows. In the work of Hanjalic 
& Launder, this arose in the case of the plane wall jet, for which 
the predictions of shear stress were too high. 

It is perfectly possible to generate a successful Reynolds-stress model 
without introducing a separate near-wall term, but rather taking the presence 
of a wall into account when choosing the values of the constants co  and 
co t . 	This is the approach adopted by, e.g., Naot, Shavit & Wolfshtein. It 
is possible to adapt a model to cope with near-wall conditions, or with flows 
remote from walls. To enable a model to deal with both situations involves 
compromises which will detract from its accuracy. 

Qur -aim in the present chapter is to generate a model which is 
not merely satisfactory in the context of two-dimensional flow,but 
which is also capable of straightforward generalisation to three 
dimensions. 

The present proposals 

Let us assume that the additional energy transfer can be written in 
the form of an additional pressure-strain term 	w. Clearly (Pij, 
will have to satisfy the following criteria: 

(i) it must diminish with increasing distance from a wall 

(ii) it must conform to the analysis of §4.2.3. 

The second criterion suggests that we should, in fact, set 

Cbij, w = Oij, I, w 
	

Oij, 2 , w 	Oif, 3 , w 

where Oij. 	behaves like Ou  , 	like 	, and dij 3 „, con- 
tains any terms in 00  „, which are not of the same form as 	I  or 
04%2 . 1 t will be simplest for us to consider the terms in reverse order. 
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(i) The term 	3 ,  

3, ,t, can arise only Irwin such terms as we have chosen lo 
neglect from 	Oii.1  and 	2 . Returning to the analysis of 4.2.3 
(equations (4.26)—(4.27)), we sec that this implies that 

a z u  

	

= bQi  	
a 3 um  

(I)ij, 3 	P m 	a_ 	+Pq 	3.X 2 aX p aX01  Yp 
as these are the only terms we neglected. 

The term in a2 u/ax„, ayp  vanishes identically for homogeneous 
turbulence and will therefore be small in general; the term in 
a 3 	axp  avq  will generally be present. In a wall boundary layer, 
the rapid spatial changes of velocity imply very large values of 
a 3 U/Dx ay axe .  

We recall that in the (near-wall) region in question the log-law' 
holds 

UT 
4n1 

 
+ C 

a U 
ay 
a2 u 
	 cx 
ay2 

a 3  U 

a V 3  

In other words, the second and third derivatives of mean velocity 
fall off at least as fast as 3,-2 . The principal contribution would 
have to come from the third derivative, i.e. a quantity 	off 
as y-3 . This leads to a model of the following type: 

Cbij, 3, w = /Jr/ C,Q,:j 
a 3  u,n 	22 

ax ayP  axq  (5.2) 

* We have adopted the boundary-layer convention of writing the sole meal, 
velocity as U, i.e. without a subscript, and the normal distance from a , v all 

as y. 

1 
.1' 

1 
	 (5.1) 

1'2 

1 
Y 3  
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where the term Q2  is introduced to preserve the dimensions of 
(5.2) as u3 /Q, presuming the pq 	to be linear functions of 	the 
1,1% Ili. 

However, the effect that we arc trying to model falls off at 
most as 	. This can be seen from the work of Ilanjalic 
Launder (e.g. Figure 6.9 ), or from that of Klebanoff (Figure . 6124), 
from which it is clear that the wall-effect is noticeable at normal 
distances which would be incompatible with a decay faster than 
'\.y —  I 

An appropriate length-scale to use for 2 would be 

L e  — k3/2 

which is known to be proportional, in a Iwo-dimensional boundary 
layer, to the normal distance from the wall. This gives us a choice of 
normalising factors, of which the most obvious ones are 	y 
and aqay. 	The choice of 0,  is dictated by the following 
considerations. 

If there are two walls, as in a channel flow, with respective subscripts 
A and B, the use of aLday leads to: 

2 
aL, 

cbii, 3 , 3A = ; 
i 

C4 ATA ay 
2  pLA  

Cbij, 3 , 3B  = C4j 	 RyB  \ ay 

(5.3) 

I f we now examine an aSy171111CIlie channel How -- that of I lanialid 
& Launder 119721 — we see that for the two length-scales to match 
at the meeting-point of the two boundary layers, about 70% of the 
channel width from the rough side, the values of 	on the 
smooth-wall side must rise to very high levels. Figure 6.18 shows how 
this arises. aLday is therefore not a satisfactory normalizing factor. 

We thus have, in a two- dimensional boundary layer 

2 
( 5 . 4 ) 

    

* We have dropped the 22 prefix from the c's, as an extension of the boundary-
layer convention, for ease of reading. They remain, of course, sixth-order tensors. 
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The model leads to a simple additive term (5.4) in which the 
are subject to the same constraints as the b2i  used in 	(derived in/ 	01 , 2  
below) and are hence equal to them. 

(ii) The term g5ii,  2 w 

This term is assumed to be composed in exactly the same way as 
04, 2  itself. It must therefore satisfy the same invariance criteria; 
hence, if we let 

. aUe  
ti,2,w=13' Y  a x 

we have: 

bni  = bt7 = bis7 	 (5.5)* 

Qr = 0 	 (5.6) 

as before, if we assume again that the bni are linear combinations of 
the uiui, we see that 

115;"/ = 	ui  + 	 (5.7) 

(cf. (4.31): (5.7) is the same equation with primes on the coefficients, 
with b replacing a). 

We have three equations (5.5) and (5.6) in five unknowns a', 
(5.6) gives: 

bni  = a' um  u2  + (3' (245„, 2 k + 5 um  u2 ) 

+1/(45,702  k)+ 71'5„,2k+ 	u211111  = 0 

SO 

a' + 5(3' + c02 =0 
	

(5.8a) 

2(3'+4v' +T1'= 0 
	 (5.8b) 

mi * These hi  are not, of course, the bar  of equation (4.27). The nota tion a ci would be 
too cumbersome. 
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In particular 

cil = a' ui  u2  + 213' u1 u2  

22c12  = 4)3' u1  u2  + 2c,2' ul  u 2  

cii = 2f3 u u _ 2 

If, as seems clear from Tables 5-1 and 5-2, there is almost no extra 
redistribution to or from ui as a result of the proximity of a wall, 

/43 = 20' u i  u2  = 0 

bli = 2c ,2' u u 02 	2 

bi I = a' u u2  

Applying (5.8a), b12 + b12 = 0, whence 

b12 =—a u1 u2  

b1 ar „ 
12 	.'1“2 

Eqn (5.9) is a : .iple model of the additional redistribution of the normal .— - stresses. It further implies that, by (5.8b) 

411 + = 0 

We now deduce the redistributive effect on the shear stress: 

bit +bii = a' u22  + (3' (ui + ui ) +(ii'+  v')k + c2' 

= a' (ui — ui )+ (77'+ p') k 

= 	— tii + k 	 (5.10) 

+ v') 

Thi,Talues of a' and t' 

a' can be determined by the measured level of additional redistribut-
ion indicated by the data in Table 5-1.Clearly, in order that the value 
of the redistribution should fall off as the wall recedes, a' must not 
be simply an additional constant, but must be suitably damped. We 

} 	 (5.9) 
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find that 

amp  = 0.06 

and that the non-dimensional factor 

L 
x2 

(5.11) 

(5.12) 

appears to provide the correct form of the decay for a single wall. If 
there are two walls, we assume the effects to be additive, so that the 
factor (5.12) should be revised to read 

(L 	L  
X2 D — X2 

(where D is the channel width) (5.13) 

Consideration of the shape of (5.13) shows that it does not 
allow much decay in a channel but permits an effect to be felt in each 
boundary layer from the remote wall. We shall see (§6) that this 
accounts for certain hitherto unexplained effects. 

The value of t' 

From equation (5.10) we see that the net extra generation of u i u2  
in a two-dimensional boundary layer by pressure-strain interaction near 
a wall is 

a' (ui — 74i) + t' k = +.06 (u4 — u3) + k 

+ .06) k 

which, from Tables 5-1 and 5-2 is equal to roughly 0.09 k, so that 

This is a maximum value, so that we are justified in neglecting 
the term altogether. 	Indeed, if we deduce a value from the 
Hanjalic & Launder [1972] data, 

0.01 
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The models derived for (pii,  2 , w  and cbif 3 ov  differ only in the 
following respects: 

(i) in a 2—D boundary layer, 

2  . 
ou, 2 , w b -

a u (Lx.  
s • — "2 2 

21  auL 
2 

(ey. 
Oit,  3, w  = Cii 	— 

°X2 X 

Le  /x2 	is nearly constant in regions where 	awax2 	is 
large, so that the decision as to whether to include both terms is not 
crucial. 

(ii) Any term O;/, 2, can arise only from the distortion of the 
turbulence caused by the pressure of a wall. Since the terms 
q5u.  I  and .01/. 2 were associated with eddies of similar large size, 

	

the need for a term 	implies that a non-zero 0,7, I  will be 
found; this argument does not follow from the assumption 
of a separate wall term Oil,  3 . 

The term (1)ii,i ,,„ 

The available data suggest that the effect of a wall is felt in regions 
where the mean strain rate is small: this is further evidence that the 
term Ou, I  must also be regarded as subject to the addition of a wall-
correction term 

2 cbij, 	= col r  —lc 	—3  ou k f —12-) 
2 I 

The whole term (neglecting Ou,304, ) reads as follows: 

, c — 2 
k

— Siik) 

+ Q  (bcr + bf2nd f 
axm 	 X2 

(5.14) 

(5.15) 
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where, so far, we have assumed that f(21x2 ) was simply proportional 
to ll/x2 . We assume, moreover, that the same decay law applies to 
Ou,1,„,. as to cPii,20,,. These assumptions are largely borne out by 
computations (see §6). 

The value of c1,1' 

If we take the equations (3.12) and neglect the transport terms, 
as we may, e.g., in the equilibrium layer of a fully-developed 2D flow, 
we are left with 

0 = 2 2 	e 	(8 + 12 
 c02  + 2c ') 1  — 	) 	— 5 k 	33 	 e 

--r  2 e (2 — 30 
0 = (c01  — co') (u2.  — -s  k) k  

33 c02 
	

2c02')E 

0 = (co  — co') (Li — k) ek  
(-10+ 18 c02 )  c  
\ 33 

Setting co  = 1.5, c02 = 0.4 (cf. §4.2.3 above) and c02' = 0.06, we 
see that 

20.51 
— — k — 	 

3 	1.5 — cot' 

2— 0.18 

	

— —
3 

k — 
1.5 — c01

, 	

. 7 2
k — 

 —0.09 
u 3  — 

3 	1.5 — c01
,  

giving the values in Table 5-1 if 

1.5 — 	= 1.0 

i.e. 

c '= 0 5 _ 01 	. 
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An alternative approach 

Irwin [1974] assumed approximate local homogeneity and isotropy 
to deduce expressions for the pressure—strain term in the Reynolds-
stress equations. This is an approach of potential generality, but 
Irwin was obliged to acknowledge that the wall effect was subject 
to a decay that did not follow directly from the analysis. Just as 
in the present work, Irwin used the empirical data to determine a 
decay factor, and also came to the conclusion that the most suitable 
form was a decay 1\,  Le/ x 2 . 

By rewriting (4.21) in the form 

	

p alit 	1 	32  (u,2 11,n ; 	au;  ,,..= ___ 
p ax' 47r 

	

i 	 ax Q ax,,, 	i Vol. 
(y-space) 

+ 2 
(au, r (•au 2 I au,} 

— — 
ax 2 	ax 1 	aXi  

1 	1  xi 
t I Y — xl + IY*

— xl d (V ol.) 
 

Irwin is able to deduce the effect of a wall on the stress distribution. 

Irwin's work: 

• confirms the need for a 'near-wall' correction to the 
pressure-strain term; 

• confirms that a decay'‘,  Leh) is consistent with the required 
behaviour of such a term; 

• suggests that the 'near-wall' modification should affect not merely 
merely the 'second' part_(Launder, Wolfshtein) of the pressure—
strain model but should in fact (contrary to Irwin's own view) be 
extended to embrace the 'first' (Rotta) part of the term. 

-1- 
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PREDICTION OF TWO-DIMENSIONAL FLOWS 

6.1 Introduction 

The models derived in Chapters 4 and 5 have been applied to a 
number of two-dimensional flows. The most exacting test is that 
provided by the asymmetric plane channel studied by Hanjalic. & 
Launder [1972 1. Other flows to which the models have been ap-
plied, and for which the resulting predictions are presented here are : 

(i) the symmetric plane channel 
(ii) the flow on a flat plate 
(iii) the plane wall-jet in stagnant surroundings. 

The models are categorized in Table 6.1. For brevity, the labels 
attached to the models in the Table will be used to describe them : 
thus Model 2 denotes the closure effected by using the Walfshtein 
et al. model of the pressure-strain terms, together with the Daly—
Harlow model of diffusion. In every case, the near-wall correction 
derived in Chapter 5 has been applied in addition to the pressure-
strain model, as it would not be possible otherwise to evaluate the 
performance of the various models objectively. 

The flows will be examined in the order in which they are listed 
above. 

104 
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Pressure-Strain 

1. 2. 
. . 	.., 	_ 

Launder's model, as given by Eq. 4.39 The model of Wolfshtein et al.; also given 
by Eq. 4.39 but omitting the term oil  

Near-wall correction terms derived in Chapter 5 

Diffusion 

A B 

The invariant model due to Hanjalic & 
Launder [1972 1 

The model due to Daly & Harlow 

TABLE 6-1 	The models used to effect closure 
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6.2 The Asymmetric Plane Channel Flow of HanjaliC & Launder 

The asymmetric plane channel flow of Hanjalid & Launder [1972 ] 
was produced by attaching square ribs to one wall, at a pitch-height 
ratio of 10 :1, the height being 1/17 of the distance between the walls. 
The effect of this roughening is to cause a shear-stress ratio of 5 :1 as 
between the rough and smooth walls, and a consequent displacement 
of both the position of zero shear-stress and the position of maximum 
velocity. As noted in Section 3.2 above, any eddy-viscosity type of 
model of turbulence must necessarily imply that the positions of maximum 
velocity and of zero shear-stress must coincide. " However, the measure-
ments of Hanjalic and Launder show quite clearly that the two points do 
not coincide. 

The boundary conditions applied to the various equations are listed 
in Table 6.2. The constants used are shown in Table 6.3. Figures 6.1-
6.4 show the mean-velocity profiles given by Models 1A, 1B, 2A and 2B. 
Figures 6.5-6.8 show the shear-stress distributions; Figures 6.9-6.12 give 
the normal-stress profiles, and Figures 6.13-6.16 the predicted energy- 
balances. 	Figures C-171-16:19 show the length-scale profile and the 
behaviour of the positions of zero shear stress and maximum velocity 
against increasing Reynolds' number. 

The first conclusion to be drawn from the profiles is that they provide 
little support for the invariant Hanjali6-Launder model (A) of diffusion. 
Certainly in no case does this model perform better than the Daly-Harlow 
model (B). Specifically, it is clear that model A implies too high a level 
of diffusion of u2  2  ; any attempt to reduce the diffusion coefficient to 
compensate for this results in too low an overall diffusion of turbulent 
kinetic energy. 

The pressure-strain models are also clearly distinguished by the fact 
that the predictions of mean-velocity profiles using model 2 are not so 
satisfactory as those of model 1. The excessive 'fullness' of the profiles 
generated by model 2 means also that the ratio of maximum mean 
velocity to bulk mean velocity is too low (actually by about 3%). The 
ratio predicted by model 1 is correct to within 170. 
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Equation 111:111 Free Stream 

UlUr = (11g)ln(x2 41p) + 5.4 	smoom 
U UG 

VUT  = (1fic)ln(x2 /e) + 3.5 	ROUGH 
where e is the height of the roughness elements 

i/1U2 —U2 T 0 

U1
2 5 .1 UT2 0 

U2 2  UT 2 0 

u3 2 2.3 Ur' 0 

e UT 3  licx 2 0 

TABLE 6-2 	The boundary conditions applied 



108 

6.3 The Symmetric Channel [Comte-Bellot, 1965] 

The predictions of models 1 and 2 for the fully-developed symmetric 
channel are broadly in line with those for the asymmetric channel. 
It will be noted from Figure 6.21 that the distribution of Reynolds 
stresses in this flow would appear from the data to be somewhat dif-
ferent from that which obtains in either the asymmetric channel flow 
already examined or, as we shall see, in the near-wall region of the flat-
plate boundary layer. As there is no known mechanism for the establish-
ment of such a distinction, we are forced to conclude that the discrepancies 
among the near-wall distributions of Reynolds normal stresses must be 
attributable to errors of measurement. The predictions, naturally, do not 
take account of the idiosyncracies of individual sets of data: this is the 
most probable explanation of the apparently poor predictions shown in 
Figure 6.21. 

The predictions of mean velocity are consistent with those generated for 
the asymmetric channel, and offer the same measure of accord with the data. 
The normalized shear-stress profile is of course of no interest to us here, as 
the zero-point is constrained by the boundary-conditions to lie at the centre 
of the channel. All the predictions shown were obtained by using Model B 
of the diffusion; we have already seen that in a flow which could be expected 
to display any benefits of a precise model of diffusion none were to be dis-
cerned. 

6.4 The Boundary-layer on a Flat Plate 

The third two-dimensional flow to be considered is the high-Reynolds'-
number flow along a flat plate. This flow was first considered in detail by 
Klebanoff [1954], and it is with Klebanoff's data that we present comparisons 
of our predictions. This set of data lies close to the mean of Table 5.1, and 
it is therefore one which we should hope to predict with accuracy. Figures 
6.22-6.26 bear this out. Indeed, it is possible to draw from these predictions 
the conclusion that the particular model of the near-wall redistribution is 
satisfactory, and further that the linear decay assumed (in the single-wall case) 
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provides the correct rate of falling-off as we leave the wall. One especially 
pleasing aspect of the predictions is that we faithfully reproduce the point 
of inflection in the u12  curve. The predictions of dissipation length-scale also 
reinforce the overall impression, displaying as they do the correct falling-
off at the free-stream edge of the flow. 

6.5 The Plane Wall Jet 

The final two-dimensional flow examined is the plane wall-jet in 
stagnant surroundings for which measurements were obtained by Mathieu 
and Tailland in 1907. 	Although the sole difference between this flow 
and the flat-plate boundary-layer lies in tl'e zero-free-stream velocity, 
this difference leads to considerable computational complications 
related to the existence of two regions of high velocity-gradients 
and to the need to solve the mean -momentum equation accurately also 
in the outer region of low velocity and low velocity-gradients. 

The predictions of mean velocity and of turbulent shear-stress are 
satisfactory (Figures 6.27-6.28). 

6.6 Conclusions 

Viewed overall, the predictions in Figures 6.1-6.28 of two-dimensional 
. flows provide confirmation of the satisfactoriness of the model of turbulence 

developed in Chapters 4 & 5 above. In each case, the correct falling-off 
of the additional redistribution induced by the presence of a wall confirms 
the suitability of the model developed in Chapter 5. 

We see that Model 1 of the pressure-strain terms in the Reynolds stress 
equations consistently produces better results than the truncated version 
which we have called Model 2. The diffusion models A and B are not quite 
so clearly distinguished, but on the evidence of the predictions obtained we 
can deduce that there is no evidence that the more complicated, albeit 
obrious/y invariant, Model A is superior in any case. Therefore we apply 
Occam's razor and choose the simpler Model B for further work. 
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Symbol 

. 

Equation 
of first 
mention Value Significance How determined 

c 4.24 1.5 coefficient of 'Rona' normal stress levels in nearly- 01 term in pressure—strain 
correlation 

homogeneous shear flow 

c0, 4.32 0.4 parameter governing 
'second' part of pressure— 
strain term 

normal stress levels in nearly-
homogeneous shear flow 

c 	, 
01 

5.14 0.5 near-wall correction term 
to 'gotta' pressure—strain 
term 

normal stress levels near walls 

a' 5.7 0.06 near-wall correction term 
to 'second' part of pressure—
strain term 

normal stress levels near walls 

t' 5.10 0.00 redistribution of shear stress 
by 'second' part of pressure 

normal stress levels near walls 

—strain term 

ce, 4.13 1.44 generation of dissipation normal stress levels near walls 

ce  4.13 1.91 viscous destruction of 
dissipation 

decay of turbulence behind 
a grid 

c 6, 4.13 0.15 

Model A:0.11 

coefficient of diffusive 
transport of dissipation 

coefficient of diffusion of 

computer optimisation 

cs 	4 .45 Model B: 0.20 Reynolds stresses computer optimisation 

TABLE 6-3 	The value and significance of the constants, 
and the basis for their choice 
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The shear-stress profiles give further support to model 1 against 
model 2; the predictions of model 1B are indistinguishable from the 
data of Hanjali6,  8-  Launder, while those of model 2 are not satis-
factory, showing an excessive displacement of the position of zero 
shear stress with respect to that of maximum velocity. 

The validity of the form of the near-wall correction is borne out 
by the normal stress levels, particularly in the region 0.2<x2 < 0.6 , 
measured from the rough wall. The choice of decay factor 

f1x2 ) —= (x2 -1  + (D — x2 )') 

is justified by the fact that we are able to predict correctly the slight 
inflexion in the u12  curve at about 0.4 of the distance across the 
channel. This inflexion is also present in the data for the symmetric 
channel, and occurs most pronouncedly in the flat-plate boundary-
layer (vide infra). 

The values of the constants chosen, and given in Table 6.3, were 
confirmed by systematic and detailed exploration of the effect of 
allowing them to vary within the bounds indicated by the experimental 
data. 

Conclusions 

1. There appears to be no reason to prefer model A to model B for the 
diffusion. 

2. The evidence for the models 1 and 2 of the pressure-strain terms appears 
to favour model 1. 

3. The form of the near-wall correction chosen appears to be vindicated. 



THREE-DIMENSIONAL BOUNDARY-LAYER FLOWS 

7.1 Introduction 

In the real world, most flows are not only turbulent but also 
three-dimensional. So far we have considered exclusively those 
flows for which one of the dimensions is degenerate as a con-
sequence of the effective absence 'at infinity' of some of the 
containing boundaries. 

Many flows of practical interest are fully three-dimensional, 
but may yet be regarded as boundary layers, for they have a 
single predominant direction of flow. This is the case for, e.g., 
all uniform pipes, ,,,hatever their cross-sectir'ni1  Fhape.*  ormrid eel 
only that the curvature of the pipe is negligible. Under certain 
assumptions we shall be able to deduce a three-dimensional 
boundary-layer form of the governing equations. We shall solve 
these equations for the case of flows in rectangular ducts. 

Secondary Flows 
Turbulent flows in three dimensions exhibit one feature of 

particular interest to us which is absent from flows in two 
dimensions and from laminar flows. This feature is the phenomenon 
of non-negligible secondary mean flows locally normal to the 
principal direction of mean flow. These flows are typically 
two orders of magnitude smaller than the principal mean velocity. 
Their effect is to promote the transport of high-momentum 
(principal component) fluid into the extremities of a duct; e.g. 
into the corners of a square or triangular duct 	Similar effects 
are observed in the (elliptic) flow of, e.g. a river round a bend. 

* Strictly, of course, a perfectly circular duct is degenerate by one degree 
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The most striking manifestation of the effect of secondary 
flows is the fact that in the case of an open-channel flow 
(such as that in a river or canal) the maximum velocity 
occurs not at the surface but some way below it. The facts 
that such flows are not amenable to laminar-flow analysis, 
that secondary flows occur in open channels, and that these 
secondary flows are responsible for the displacement of the 
position of maximum velocity, were all observed by Thomson 
in 1878. 

In view of the claims of priority made by Nikuradse, in 1926, 
and implicitly on Nikuradse's behalf by Schlichting [1975]tit is 
worth quoting some passages from Thomson's 1878 paper On the 
flow of water in uniform regime, and reprinting as our Figure 7.1a 
one of the diagrams of secondary flows measured by Thomson, and 
shown in his 1879 paper On the flow of water round river bends. 
In 1878 Thomson wrote: 

The experimentally derived and perplexing suggestion 	is that 
inconsistently with the imagination of the water's motion conceived 
under the laminar theory, the forward velocity of the water in rivers 
is, in actual fact, sometimes or usually not greatest at the surface 
with gradual abatement from the surface to the bottom 	 

[Drawing on the work of Boileau (1854) Thomson dismisses the then 
current theory that the effect was due to drag at the air-water 
interface, and observes that, for fullyveloped flow] 

	even if the channel face is extremely smooth, so as to 
present no sensible asperities, still there is good reason to assert that 
transverse flows will come to be instituted in consequence of the 
rapid flow of the main body of the current 	 

Presumably unaware of the painstaking work of Thomson 
or of that of Stanton [1911] , or of van der Hegge Zijnen [1924], 
Nikuradse wrote in 1926 that 

Ueber die Geschwindigkeitsverteilung in turbulenten Stroemungen 

	

sind bisher, soweit bekannt, keine Untersuchungen angestellt 	 
Nikuradse's measurements were, however, the best and most detailed 
ones made of turbulent flow up to 1926. Figure 7.1b shows the 
contours he produced for flow in a rectangular-sectioned duct, 
showing clearly the `bulging' of the contours towards the corners 

* The remarkable James Thomson, elder brother of William, later Lord 
Kelvin, who introduced the terms laminar flow, torque, poundal and (of perhaps 
lesser value in the light of modern usage) interface 

t cf. Tatchell [1975] who asserts that Nikuradse was the first to observe secondary flows. 
In fact, Nikuradse (unlike Thomson) made neither direct observation nor measurement of 
secondary flows. Figure 7.1a settles the question of priority; unfortunately, Thomson 
relied on the measurements of others for fully-developed secondary flow observations 
and was thus unable to present similarly quantitative analysis in that context. 



of the duct. 	The results obtained by Nikuradse for open- 
channel flow will be used in Section 7.5.3 below, and are 
illustrated in Figure 7.21. 	Nikuradse's measurements of axial 
mean velocities show very clearly the bulging' of the contours 
towards the corners. 	They represent, historically, the first 
detailed quantitative evidence of the phenomenon so clearly 
described by Thomson. 

Since about 1960 it has been possible, thanks to the refine-
ment of experimental technique, to obtain detailed measurements 
of turbulent flows in non-circular ducts. The fully-developed 
secondary flows were first measured by Hoagland [1960] , and 
measurements of turbulence quantities were reported by 
Leutheusser [1963] , Brundrett & Baines [ 1964] , Gessner [1964] 
and Launder & Ying [1972] . Recently [ 1975] , Melling has 
presented extensive measurements of turbulence quantities in a 
developing square-duct flow, using laser-Doppler techniques. The 
data obtained by Melling are in broad qualitative agreement with 
those of earlier workers. 	Melling's work revealed some aspects 
of the phenomena in question that had not been recognized by 
earlier workers: for example, by measuring turbulence quantities 
throughout a quadrant (rather than restricting measurements to 
an octant), Melling noted that it was not necessarily possible 
to assume the symmetry that would seem prima fade to be 
required by the boundary conditions. The cause of the asymmetry 
must necessarily lie in an asymmetry of the boundaries too small 
to be detected. However, the fact that an apparently negligible 
asymmetry in the boundaries can cause non-negligible asymmetries 
in the flow must cast a certain amount of doubt on earlier 
results. For our present purpose, we shall assume that, as is 
most likely, the asymmetries will have disappeared by the time 
the flow is fully-developed. We therefore rely on Melling's data 
for developing flow, and on earlier results for the fully-developed ,t 
flow. 

faute de mieux — Melling measured only up to 40 hydraulic diameters downstream 
of the inlet. 



115 
'7.2 Equations of motion in three dimensions 

Equations (3.3)1  apply, as before: 

au, 	a_ 	 a 
+ u • — ui= — — — + v 2  — — u•u• 

at 	I  ax; 	p 	 ax;   

= — 
p 
— 	, • — p 	+ p u 
1 a 	a U. 

— PS 
ax; 	ax;  

Mass continuity, again, gives 
at!. 

= o 
ax1  

A three-dimensional boundary-layer form of equations (7.1) 
can be deduced under the following assumptions: 

(i) terms in aU2 /ax i  and aU 3 /ax i  are neglected, as in 
a boundary-layer flow aU 2 /ax i <aU l lax3 , etc. 
(ii) axial stress gradients are neglected. 
(iii) the axial and lateral pressure fields are `decoupled' 
by setting aPlax i = 3,Plax1 , where 1' is the space-averaged 
mean pressure, 	in the equation for which 	i = 1; this 
(cr Tatchell 119751) prevents the introduction of an 
elliptic-type term into the pressure equation. 

The lateral pressure gradients will be negligible compared with 
the axial gradients in most boundary-layer flows. Pressures are 
derived from overall mass-continuity considerations: the details 
are presented by Tatchell [19751. 

In this way we obtain the following equations: 

DUI 	—1 ai; 	 a 	a 	 
Dr 	

= 	+ IAT2 	— 	1, 1 112  — ax,u, u 3  

	

p ax1 	 (7.2) 

D U2 	_1 a75 	 a 	 2 	3 	 

	

+ 1A72.  U2  — 	U 2  — Fx3  ii2 11 3 DT = p ax2 	 ax2  

aa 2  u2  "3  — Fx3113 2  

Du3  	ar5 = — 
Dt 	p ax3 + PV2  U3  — 

(7.1) 

(7.3) 

(7.4) 



uj =c1  k 

= „2 „ "2 	'2 `- 4 
k 3 	31/1 2 I 

uX2 

2 _ 	k'3 	au, „ 	
c 

—3 — —,2 C4 	ax 	3  

(7.5—a) 

+ c3 k 	 (7.5—b) 

+ c3 k 
	 (7.5—c) 
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7.3 Reynolds-stress closure 

Once again, we see that closure of the mean-momentum equations 
for turbulent flow is a question of providing a satisfactory model 
of the Reynolds stresses appearing in equation (7.1). The same 
considerations as to the best approach apply as before, but with 
renewed force. For example it is no longer possible to prescribe 
a satisfactory single length scale. As recently a- 1975 it  was 
possible for Tatchell to state that a barrier to the use of turbulence 
models involving differential equations for the Reynolds stresses 
was "uncertainty r(. 1-cling the appropriate form of the modelled 
stress-transport equations". The extensive tests to which the 
models described in the present work have— )cen subjected in two 
dimensions [cf. §6 above] together with the fact that they allow 
of easy generalization to three dimensions, suggests that this 
reservation need no longer apply. Other considerations such as 
economy of computer time may, of course, still deter future users 
from the use of a solution procedure involving three momentum 
equations, one continuity equation and six equations for the 
Reynolds stresses, together with an equation for the dissipation. 

Launder and Ying [1973] neglected the effects of convection 
and diffusion in the region near the duct walls, where the generation 
of secondary flows is most powerful (see Brundrett & Baines [19641). 
They then used a model of the pressure-strain redistribution derived 
from the work of Rotta [1951] and of Hanjalia & Launder [1972] 
to obtain algebraic expressions for the stresses u2 , i713-  and u2  
which appear in the U2 and U3 equations (7.2-7.3). Gessner & 
Emery [1976] have shown that the Ilanjalie—Launder pressure-
strain model, under these assumptions, reduces to an isotropic 
eddy-viscosity model for the shear stresses u i  u2  and u1  u3 . They 
show that 



el 	33 (co 1  — 2c02  ) 
22(co1  — 1) — 6 (4c02 — 5) 

4 (3c02  — 1) 
e2 — 11 (co- — 2c02 ) (7.6a) 

C3 - 
33 (coi  — 2c02  ) 

22 (col  — 1) — 12 (3c02  — 1) 

C4 - 
165 (col  — 2c02 )2  

44 col  — 22 co 1  co2  — 1 28 co2  — 36c422  + 10 
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k2  a ui  
ui  /12  = —c4  — 	 (7.5—d) 

E ax2  

k2 3 Ui  
/L I  /43 = - CA - 	 (7.5—e) 

' e ax3  

k 3  a U1  alit  
uu3 :--- —c-, C4 ... 	 (7.5—f) 2  

' 	e4  ax 2  ax 3  

where 

Equations 7.5 d—e contain the result referred to above: the same 
proportionally constant c4  for 71772  and u1  u3  gives 

k 2  
Pt.,' µr.3— c4 7 

The constants col  and co2  for the Hanjalia—Launder model are 2.5 
and 0.4 respectively. The Hanjalie—Launder model differs from that 
presented in Chapter 4 otherwise only in respect of one term; it does 
not, however, properly satisfy conditions (4.32)—(4.34). 



C3  — 
33 col  

10 + 22 col  + 18 co2  

1 I 6 

If the same process of analysis is applied to the 
proposed in Chapter 4 of the present work, it can 
the corresponding result is 

22 coi  + 12 co2  + 8 

c — 16 co2  — 4 
2 	11 col  

fully-consistent model 
easily be shown that 

(7.6b) 

ci  — 
33 col  

—44 col  + 30 co22  + 60 co2  — 10 
C4 — 	  

165 X c412  

With the appropriate choice of constants for each 
the values of c1 ,...,c4  given in Table 7.1 below. 

For consistency, X4 = 2k, and this can'easily be seen 
that 

c1  — c2 + 2c3  = 2 

model, we obtain 

to imply 

which condition is satisfied by the values in both columns of 
Table 7.1. 

The value of /IT  implied by the present model is somewhat higher 
than might be expected. The constant 0.09 is generally accepted 
(e.g. Launder & Ying [1973], Tatchell [1975] ) as desirable. 
However, the present pressure-strain model is not intended for 
use as it stands in situations like those to which Gessner & Emery - 
or for that matter Launder & Ying — applied it. In near-wall situations 
including those involving corners, the near-wall modification of 
Chapter 5 must be used in addition to the pressure-strain model of 
Chapter 4. This has the effect of reducing the value of p,.  in line 
with the value of 0.09 for the constant of proportionality. 
Unfortunately, the analysis which led Gessner and Emery to derive the 
results in equations 7.6a, and us to those of equations 7.6b, cannot be 
performed for the full model (including near-wall terms), as the general 
form of the associated decay function (5.13) will preclude this. 	I 
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HL 
col = 2.5, c4,2 = 0.4 

Present model 
co  = 1.5, co2  = 0.4 

Cl 0.95 0.925 
C2 0.04 0.145 
C3 0.545 0.610 
C4 .09 .127 

TABLE 7.1 The values of the constants c1,...,c4 
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7.4 The Reynolds-stress Equations 

Equations (4.1) still apply : 

   

f
—a  + -a, a  i u. u. = fibil a-17f + ibit aUii at 	" axk 	1 1 	1  k axk 	t k axi  
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p ax, ax, 

— a r  
axk  t uitli uk  

DISSIPATION 

+ 

REDISTRIBUTION. 

+ 

DIFFUSION 
1 i a

x — — -- 	i —a 	? p 	xi (Pu) + ax,  (pui) 

The convection and production terms are, as before, treated exactly. 
The dissipation is again assumed to be isotropic and not to affect 
the off-diagonal terms of the stress tensor. The remaining terms 
(redistribution and diffusion) will be modelled in the light of the 
findings of Chapters 4-6. 

Diffusion 

The simpler diffusion model of Daly & Harlow was seen in 
Chapter 6 to give better results than the invariant model of 
Hanjalia & Launder. We therefore, choose the Daly—Harlow model 
for all 3-D computations. The HanjaliC—Launder model, it should 
be noted, implies six non-zero elements in each component of the 
3-D diffusion tensor. The diffusion is, in any case, not an important 
contributor to the energy balance. 
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Pressure-Strain 

The pressure-strain terms are modelled according to the prescript-
ion of Chapter 4. 

Near-wall correction 

The near-wall correction terms are specified by the general form 
presented in Chapter 5. However, a certain ambiguity is necessarily 
associated with the scalar function f, defined in formula (5.13) for 
the two-dimensional two-wall case. 

For the present purpose we restrict the generalization of the 
near-wall modification to the case of rectangular ducts, illustrated 
in Figure 7.2. Equation (5.13) may be written as 

k 3 I 2  D7 
l= 	- 

6 X2X2 

As in the two-dimensional case, we treat the effects of the various 
walls as additive. However, a simple generalization would lead to 
implausibilities, especially in the corners, where the fact that the 
walls are not parallel and remote from each other but perpendicular 
and. adjacent will be crucial. 

The relative intensity of the turbulent fluctuations parallel to a 
wall and at right angles to the plane of dominant strain, as we saw in 
Chapter 6, are unaffected to within experimental error by the presence 
of the wall. We shall assume that the turbulent fluctuations normal 
to a wall are affected exactly as in two dimensions, and that the decay 
of the effect is governed by the normal distance from the wall alone. 
Common sense dictates that the effect which is insensitive to the 
presence of a wall parallel to the fluctuations is unlikely to be a 
function of the distance from that wall. For the purpose of the 
near-wall correction term alone, we are thus entitled to treat the 
three-dimensional duct as effectively equivalent to the superposition 
of two orthogonal two-dimensional ducts. 
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This leads to the following effective near-wall corrections 
corresponding to the second part of the pressure-strain term in the 
normal-stress equations: 

D2 	WI  D3 	a Ui  
011,2,w cc, z-, ulu2 n 	+ 	_ 111142 

.A.2.4 2 	ax X3X3 	' ax 

—D2 	a U 
 

l
022,2,wc„-2ulu2 X2 	2 

 

—D3 	a Ui  
4)33,2, w 

« X n• U1 143 n 3X3 	ax 

The shear-stress equations are subject to the additional corrections : 

r r ,.., i „2 	„2 \ ..1. k  I b 1  aui . c  1,„/ 012, 2, w  =j2  -0-2 v42  — “ii  . 3 rr 1 - . j 3 ii..2  U2U31  
, aui  

axe 	ax3  
DU 	 au 013,2,w =f4 {c12  U2  U 3 } -- 
ax 11

+ f5 + f5  {c12 (u3 — R) + k} 	' 
2 	 ax

,  
3  

where f2 , 	, f5  are decay factors, to be determined. 

The two-dimensional limits must in any case be equal to the 
forms already determined for two dimensions. 

This criterion is evidently satisfied by 

_ 
f4f2 — 

D2
; f5 f3 X2.42 	x 3 3 

This is the simplest solution, and it is consistent with the result 
found for the normal stresses: viz. that the decay factor 

was associated throughout with the operator D/Dx„. 
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Physically, this solution is little different in practice from the 
solution 

f2 =  .13= f4 = f5—  D2  +  D3  
X 2:X- 2 

as the values of aU 1 /av 3  will tend to be important mainly where 
•the term D2 /X2:i2 <l)3 /X3'23 (and similarly for a u1 /ax2). 

The final term is 

	

r _____ au, 	au, 
023,2,w = -C2 1111 U 3 + U1 U2 ax  } • f6 

	

"X2 	
3 

 

By symmetry, 

D2 + D3  
16 y 	 y -2-2 -3- 3 

The 'first' part of the near-wall correction must be treated differently. 
It will readily be seen that it would not be possible for this term to 
be purely redistributive if we were to associate different rates of 
decay with the 022,3,  and 033,  3, w components. The 'first' term, 
free of mean strain effects, must therefore behave in all components 
under the influence of both walls: the decay factor will thus be 
cc {D2  42.71c 2  +D3 /X 3.i3  }. This will not affect the argument used 
to deduce the form of the mean-strain part of the near-wall correction, 
as u3 	2/3k near a wall to which the ti 3  fluctuations are parallel 
(and likewise for u2 1k), except possibly near a corner. The whole 
component 033 ,,, is thus still roughly zero near a wall parallel to 
the 11 3  fluctuations. 

7.5 Applications in three dimensions 

The model developed in earlier chapters, and extended to three 
dimensions in the foregoing sections of the present chapter, has 
been applied to developing duct flow. In this section, we examine 
the results generated and review the model in the light of its 
ability to cope with this generalised problem. 



124 

7.5.1 Preliminaries 

Before proceeding to the application of the model to three- 
dimensional flows, the program (see Appendix C) into which 
the model was incorporated was adapted to produce two-dimen- 
sional predictions in order to verify that it was as accurate as 
the two-dimensional procedure used to generate the results 
described in Chapter 6 above. This was done in two distinct 
ways: first, the duct was given a large aspect ratio (5:1 was 
sufficient for this purpose) in order to make the flow at the 
mid-plane parallel to the shorter sides effectively two-dimensional; 
the second method was to modify the boundary conditions at 
one wall to replace the wall by a plane of symmetry. 'While the 
first approach was more interesting from the physical point of 
vi,m, in that it predicted the actual flow in the type of duct 
used for two-dimensional measurements (e.g. Hanjalid & Launder, 
who used such a duct), the second was more economical as it 
permitted the reduction of the number of grid nodes in the direction 
of the normal to the wall to three. With this approach, it was 
possible to predict the symmetric channel flow to within 0.8% 
of the results given in Chapter 6. The more exacting test of 
the asymmetric boundary layers in Chapter 6 would have necessitated 
solving over the whole duct, and would have been less relevant to 
the prediction of flows in ducts with two centre planes of symmetry. 
The first approach was used to confirm the two-dimensionality of 
the flow in ducts of 5:1 aspect ratio. 	This test is illustrated in 
Figure 6 20, where the resu'is are superimposed on those of a 2D procedure 

7.5.2 Square duct flows 

Figures 7.3-720 show the results obtained for the developing 
square duct flow, with comparisons with the data of Melling [1975] . 
Over the first 40 diameters, measured by Melling, Figure 7.3 shows 
that the model gives excellent agreement with the data for the 
variation of mean velocity along the axis of the duct. Figures 7.4 
—7.8 show the level of agreement obtained with the mean velocity 
contours at 5.6, 13.2, 20.7, 29.0 and 36.8 diameters downstream 
of the grid respectively (we shall refer to these as stations A—E 
for brevity in what toilowsi 	Figures 7 9-7 13 show the contours of 

at stations A- E respectively, where 1  denotes the axial direction 
Already in these contours we can detect a tendency for the high-
intensity lines to be sorne4nat too close to the centre plane away 
from the corners, and to point too noticeably towards the corners 
This 'bulging" of the contours is common to all the prediction procedures 
so far developed The most striking example is the 0 06 contour on 
Figure 7 13.  the discrepancy is none too great, and would be insignificant 
if it were not mimicked in all tne predictions 	Contours of u i u, and 
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t-74 3  1/2  at station E are shown in Figures 7.14 and 7.15. Here we see very 
good agreement: it is the accuracy of, in particular, the turbulent shear-
stress modelling that must govern the accuracy of the mean velocity profiles 
in the developing region As we have seen, the centre-line velocity (Figure 
7.3) is indeed well predicted. 	Figure 7.16 shows the predictions of 
turbulent kinetic-energy profiles: these must be expected, in line with the 
results in two dimensions, to parallel those of u i  in Figure 7.13, which 
is confirmed by comparison 	Figure 7.17 presents the contours of the 
quantity (u2  2  - u3 2 ) 	Figure 7.17 illustrates well the difficulty described 
in Section 7.1 above: the co,. tours should, in principle, be perfectly anti-
symmetrical, with a zero line fixed along the diagonal, given perfectly sym-
metrical initial and boundary conditions. (Indeed, for sufficiently-developed 
flow, the initial conditions must tend to irrelevance.) The predictions must 
therefore be quite different from the data in this instance. Close examination 
of the data shown on the other contour plots in the present sequence reveals 
that all suffer to a varying degree of severity from the same defect. Figure 
7.18, drawn from Melling [1975] shows the lack of agreement among the 
various workers who have measured the axial velocity and the axial component 
of turbulence intensity; not all the discrepancies can be accounted for by the 
differences in Reynolds numbers involved, as the variation is not monotonic 
with Reynolds number 

Figure 7.19 shows the profiles of secondary flows at station A; Figures 7.20 
and 7.21 shows those at stations C and E. No data exist for comparison 
with Figures 7.19 or 7.20 As these represent results in developing flow, there 
will be a net momentum flux away from the wall, as the boundary layer 
develops, and this is confirmed by the predictions. 	Figures 7.23 and 7.24 
show the axial mean-velocity profiles at stations B and E. The profiles lie 
below the 'universal' logarithmic profile, which is shown superposed on Figure 
7.24. 
Comparison with earlier work For the purpose of comparison, Figure 7.3 
shows also the predictions made by Tatchell of the variation of mean velocity 
along the axis of the duct. From this graph, and also from the contours 
in Figures 7.8 and 7 16, it is quite clear that the agreement achieved by the 
present model is considerably better than that obtained by Tatchell. The 
maximum departure of the predictions of maximum axial velocity shown by 
the present model is roughly 2%, while that used by Tatchell gave disagreements 
(with respect to the data of Melling) of order 10%. The model used by Tatchell 
was that developed by Launder & Ying, with additional assumptions described 
in Section 7.2 aboveto enable predictions to be made of developing flow. 
Fully-developed flow As noted earlier, we rely on the work of Launder & Ying 
[1972] for the data on fully-developed flow: their data are the most extensive 
and Figure 7.18 suggests that their results represent something close to a consensus. 
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Figure 7 25 shows the predictions of fully-developed axial mean velocity 
contours using the present model, compared with the data and predictions 
of Launder & Ying, and with the predictions of Naot [1972] Figure 
7.26 shows the predictions of secondary velocity profiles, against the • 
data nd predictions of Launder & Ying. Figure 7.27 gives the present 
predictions of kinetic energy contours, and Figure 7.28 those of shear stress 
around the perimeter of a smooth duct, using the data of Brundrett & Baines 
and of Leutheusser, as shown. In all cases, there is good agreement with the 
data, albeit showing vestigial traces of all the deficiencies of the predictions 
of developing flow (m..inly in respect of the excessive bulging of the contours 
towards the corners of the duct — see 7.5.4 below). Figure 7.27 reveals 
considerable improvement in the predictions of turbulent kinetic energy, as 
compared with those of Launder & Ying. This is the first point at which the 
full Reynolds stress model can be asid to have improved significantly the 
results for fully-developed flows. Figure 7.25 can be regarded as vindicating 
the use of the present form of the pressure-strain model rather than that of 
Naot et al., once the use of a stress model is accepted as justified. The 
predictions of turbulent kinetic energy and of axial mean velocity confirm 
the observation of Brundrett & Baines [1964] that the secondary flows cause 
greater distortion of the former than of the latter. Like Launder & Ying 
we conclude that the discrepancies observed between prediction and experiment 
are 'quite typical' of those 'to be found between different sets of experimental 
data for the more extensively examined flow geometries (e.g. the plane channel).' 
The predictions of the variation in wall shear stress reflect very closely the 
measurements of Leutheusser, as shown in Figure 7.28. Figure 7.29 shows 
the variation in friction factor with increasing Reynolds number. The predictions 
show some improvement on those of Launder & Ying, especially at lower Rey-
nolds numbers The improvement must be attributed to that in the velocity 
contours. which in turn owe their increased accuracy to the near-wall model 
used 

Verification of numerical accuracy The fact that several workers have already 
obtained solutions of the equations for fully-developed flow, this provides us with 
the opportunity to test the present procedure for numerical accuracy The pro-
gram was adapted to 'simulate' the work of Naot, Shavit & Wolfshtein [1972] 
by modifying the various components (pressure—strain model, choice of constants) 
and eliminating the near-w all correction, to correspond to the model used by 
Naot et al The detailed comparisons are shown in Figure 7 30, and are entirely 
satisfactory 

It was found that an 11 x 11 grid gave excellent results, provided that the 
grid was compressed near the walls and allowed to spread near the planes of 
symmetry. With a 15 x 15 grid it was not necessary to take these precautions.  
To obtain stable solutions in the initial region (up to 30 hydraulic diameters) 
of a developing flow, it was found necessary to take very small 'forward steps' 
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(not greater than .03 of the hydraulic diameter), though these could be 
allowed to grow exponentially to 0.75 of the hydraulic diameter after 
20 diameters had been covered. For all these recommendations, the 
criterion of accuracy has been a local variation of not more than 0.75% 
in the mean velocities and 1% in the turbulence quantities. To obtain 
fully-developed flow, it is not necessary to proceed so slowly as for 
developing flow: an initial forward step of 0.25 hydraulic diameters is 
permissible if a maximum inaccuracy of 5% en route (though not 
ultimately present) is overlooked. The results for fully-developed flow 
shown in Figures 7.25 —7.30 were obtained with settings suitable for 
developing flow. By observing all these numerical constraints it was possible 
to ensure that all the symmetries imposed by the physical nature of the 
problem were reflected in the predictions to within one part in 105 . Grid-
independence was verified by increasing the fineness (i) to 22x22 and then 
(ii) to 11x33, and noting that in neither case was any discrepancy produced, 
to within .1% locally in any predicted quantity. 

7.5.3 Free-surface flows 

An interesting extension of the techniques used for duct flows 
is the application of the model to the flow in an open channel. 
Data for such a flow were presented by Nikuradse [1926]. The 
free surface presents considerable difficulties, particularly in respect 
of the correct specification of boundary conditions. 

The free surface was treated as a symmetry plane, with the fol-
lowing exception: the liquid—air interface was presumed to act on 
the Reynolds stresses as a wall. * Accordingly the wall-effect (Chapter 
5) with its associated decay (7.4 above) we-e imposed on the flow 
from the symmetry plant, with the resul's Mown in Figure 7.31. 
These results confirm that the boundary conditions imposed lead to 
essentially correct prediction of the velocity distribution, and in particular 
to the correct prediction of the descent of the velocity maximum from 
the surface. As the only change in the boundary conditions as between 
the (quadrant of the) square -lira and the (half of the) open channel 
is the introduction into the latter of the near-wall correction term at 
the surface, we may deduce that one way of generating correct predic-
tions of the flow in an open channel is to treat it as we have done. 
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While this is not presented as a solution to the problem of the 
prediction of such flows, it does suggest a line along which such 
a solution might well be pursued: the free surface does generate 
an additional redistribution of the Reynolds normal stresses, it 
seems, which only direct measurement can confirm. 

7.5.4 Summary of results 

Figures 7.3-7.20 show that the model can predict the developing 
flow in a square duct with a good degree of accuracy. In common 
with earlier attempts by Naot [1972] and Tatchell [1975] (the latter 
having predicted developing flow; the former having used a model of 
the same order as the present one to predict fully-developed flow). _ 
the axial mean velocity contours show an excessive 'bulging' towards 
the corners. The present predictions are comfortably within the " 
envelope of the data for fully-developed flow shown in Figure 7.18. 
For developing flow, the contours of turbulent kinetic energy and 
of axial mean velocity are quite satisfactory: the other quantities 
can not be regarded as experimentally 'known' to within the 
accuracy required for a definitive judgement. 

The excessive 'bulging' of the axial mean velocity contours 
towards the corners can (in order of decreasing likelihood) be 
attributed to : 

(a) the neglect of the effect of lateral pressure variations 
on the axial mean velocity (for developing flow only); 

(b) an inadequacy in the log law wall functions used near 
the corners; the law may clearly not hold in the region 
of intersection of the two wall boundary layers; 

(c) possible inadequacies for three dimensions of a Reynolds-
stress model of turbulence that was derived on the 
basis of measurements and correlations for two-dimensional 
phenomena. 

However, it must be pointed out that the predictions of the 
present model appear to lie consistently closer to the data than 
those produced by earlier models. 
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GENERAL CONCLUSIONS 

8.1 Summary of achievements 

The model described in Chapters 3-5 has been subjected to 
exhaustive testing in two-dimensional near-wall situations, and 
applied to three-dimensional flows — in all cases with satisfactory 
results. 

8.1.1 Objective and achievement 

We have stated our objective as the production of 'a properly 
heuristic model of turbulence' (cf. Appendix A). In so far as 
our model was heuristically derived, in Chapters 3-5, and was 
shown in Chapters 6-7 to be capable of the correct prediction 
of most features of the turbulent flows considered, our objective 
has been achieved. 

8.1.2 The prediction of two-dimensional flows 

Excellent agreement with experiment was achieved in the single-
wall flows tre..,ed. 

Especially pleasing successes were 

+ the accurate predictions of the wall jet in stagnant sur-
roundings; 

+ the correct prediction of the point of inflexion in the 
it, 2  curve in all two-dimensional flows; 

+ the good agreement achieved with the data of Hanjalic 
& Launder for the asymmetric channel flow. 
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The near-wall correction devised clearly produces excellent results 
in one-wall flows and is generally successful in channel flows. 

The diffusion models considered can not be regarded as a 
really satisfactory representation of the physical world. The 
model which best reflects the data is not clearly invariant, 
though we have shown that its non-invariance may perhaps be 
due to the over-simplified way in which we have chosen to 
write it. We have, in the absence of entirely reliable measure-
ments of the diffusion, no way of pursuing this matter further 
at this point of time. As it stands, the model recommended 
(that of Daly & Harlow) does not provide an unequivocal 
generalisation to three dimensions. However, this failing should 
not be overstressed, relating as it does to a very small fraction 
of the overall turbulent kinetic energy balance. 

8.1.3 The prediction of three-dimensional flows 

The model derived for two dimensions was extended to three 
dimensions in Chapter 7. This enabled us to produce predictions 
for the square duct which were 

(a) in good general overall agreement with the best available 
data; 

(b) much more accurate over the entrance region than those 
generated by lower-orcler models (cf. Tatchell [1975] , who 
correctly guessed that this would happen); 

(c) deficient in respect of the overprediction of the secondary 
flows, leading to an excessive 'bulging' into the corners of 
a duct; this excess is less than that indicated by earlier 
predictions, an improvement that can be attributed to the 
use of the near-wall correction. 

The predictions of flow in open channels are of interest, and 
are in line with those of flow in ducts. 

The deficiencies in the predictions may be due to short-
comings in the Reynolds-stress modelling, but (since they 
are common to all models so far applied) are much more 
likely to be due to neglect of significant terms in the mean-
momentum equations. 
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8.1.4 General assessment 

The predictions obtained justify the use of the model. However, 
we must concede that the model requires, in its three-dimensional 
form, slightly over 150% more computer time than, say, a k--e 
model. Whether this additional investment is justified in terms 
of the increased accuracy and extra information available from the 
present approach is a question that must be answered in the light 
of the requirements of each particular user of a turbulence model. 
We have shown 

a 	that the use of a Reynolds-stress model permits the incor- 
poration of a modification which represents the effect of 
a wall on both the stress distribution and, hence, on the 
mean flow pattern; 

2 3 	that it is possible to incorporate such a model into standard 
parabolic partial-differential equation solution algorithms 
without causing instability or requiring excessive computer 
time and storage; 

m 	that the values of the additional constants required by the 
model can be deduced from physical considerations, and that 
the results generated with the use of these constants are 
both stable and optimal with respect to small variations in 
the values of the constants. 

8.2 The future . 

There is clearly room for further improvement. As topics 
which are suggested by the present work we submit: 

ri 	the refinement of the modelling of the dissipation 
of turbulent kinetic energy: the isotropic model is 
probably satisfactory in the present context, but there 
may be better ways of modelling the production, 
destruction and diffusion of dissipation than those of 
Chapter 4; 

el 	a 'causal' explanation of the origins of the near-wall 
redistribution of the Reynolds stresses, leading to a 
consequent improvement on the present phenomeno-
logical approach; 



▪ a thorough investigation of the phenomenon of dif- 
fusion of turbulent stresses, leading — it is hoped -
to a model which reflects the undoubted invariance 
of the physical world, and is also able to predict the 
phenomena of turbulence better than an apparently 
non-invariant one; 

o the implementation of the present model in the 
context of a more exact treatment of the mean-
momentum equations in three dimensions; 

▪ the constant refinement of the methods of turbulence 
modelling in the light of the the data generated by 
ever-improving techniques of measurement. 



APPENDIX A 

MODELLING IN HYDRODYNAMICS 

We assume that the problem of solving the equations of motion 
for a Newtonian viscous incompressible fluid satisfies the following 
"plausible intuitive hypotheses" first enunciated in this form by 
Birkhoff [1960]. 

A. Inanition suffices for determining which physical 
variables require consideration. 

B. Small causes produce small effects. and infinitesimal 
causes produce infinitesimal effects. 

C. Symmetric causes produce effects with the same 
symmetry. 

D. The flow topology can be guessed by intuition. 
E. The processes of analysis can be used freely: the 

functions of rational hydrodynamics can be freely 
integrated, differentiated, and expanded in series 
(Taylor, Fourier) or integrals (Laplace, Fourier). 

F. Mathematical problems suggested by intuitive 
physical ideas are "well set" (i.e. have one and only 
one solution depending continuously on the bound-
ary conditions (Hadamard [1923]). 

Hypothesis (A) 

This, strictly speaking in combination with (B), allow us to dis-
regard e.g. relativistic effects, electrostatic forces, impurities, 
compressibility of "incompressible" fluids, quantum-mechanical 
considerations, etc. The failure to invoke and operate correctly 
Hypothesis (A) can be regarded as the source of many so-called 
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paradoxes of classical hydrodynamics. Thus, if we assume incom-
pressibility, we are inexorably led to the conclusion that in a two-
dimensional theory a bubble requires infinite energy to expand. 
Correct, albeit implicit rather than explicit, use of the hypothesis, on 
the other hand, led Prandtl to derive his theory of the boundary-
layer [1904]. This hypothesis amounts to a decision on the content: 
of what Bradshaw, for example, [1967] calls "the list of,important 
variables". 

Hypothesis (13) 

This hypothesis lies at the heart of our search for a solution of the 
problem of turbulence. In deliberately neglecting certain terms that 
properly appear in the Navier-Stokes equations we not only assume 
that they are small, but also that their inclusion would lead to a 
negligible change in the results obtained. Similarly, we shall replace 
unmanageable terms by tractable ones in the belief that the difference 
between the true term and its modelled form is not merely negligible 
but of infinitesimal effect on the solutions obtained. 

That this hypothesis is neither so obvious not so innocent as it may 
seem can be seen from the fact that it does not hold for, e.g. 

(a) Any quantum-mechanical phenomenon 
(b) any macroscopic transition of a truly "sudden" nature: 

such as the problem of the determination of the exact 
height from which a given egg can be dropped without 
breaking, 

or, as we saw earlier (page 	above), 
(c) the transition of a given flow from a laminar regime to a 

turbulent one. The hypothesis thus implies a stability of 
the solutions obtained by its use. This fact leads to a 
further complication: viz, that the effect of non-zero 
viscosity is not a symmetrical, and thus ordinary, type of 
perturbation. Clearly, the result of letting v 0+ may be 
quite different from whatever would result from letting 
v 0- (i.e. through negative values). 

The point is probably best made in terms of an example. 



Example. Consider the equation 

3i= kx 

If k < 0 this has the solution: 

x = A sin (k'i't) + /3 cos (kib t) 

which satisfies the condition 

lx1 < VA' + B 2  for all t. 

If k > 0, the general solution is 

x = Aeklb  t + B e—k lh t 
which tends to infinity as t —* .... or t —% — .0 however small the value of k. 

The value k = 0 thus represents a dividing-point between two essentially 
different types of solution. 

In the case of the Navier-Stokes equations, v <0 makes the equations 
hyperbolic, not elliptic. This suggests that a fruitful approach might 
be via 'catastrophe theory' (see e.g. Thom [ 	I) which deals with 
bifurcations of this kind. However, the theory is currently restricted 
to the derivation of an intuitive understanding of 'pure' differential 
equations. Ours being a physical problem, we are handicapped not 
by a lack of physical, intuitive understanding: what we lack is an 
adequate mathematical justification for its solution. 

Ilypothesis (B) is also the basis of the justification of a finite-
difference approach. We invoke it implicitly every time we seek 
'grid-independence', by saying, in effect, that if we can produce the 
results that we seek (i.e. to within a specified tolerance) with a given 
grid fineness, and no problems of inaccuracy arise if we refine the 
grid slightly further, we may deduce that we should not change the 
results however much further we refined the grid. 

Hypotheses (C), (D) & (E) 

These hypotheses allow us, above all, to apply common sense to 
save time, and (particularly in the case of (E)) to avoid unpleasantly 
tricky and repetitive continuity considerations. 
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Hypothesis (F) 

On page 	above, we give certain reasons for believing that this 
hypothesis, in effect, held. Further evidence is provided by the facts 
that: 

(a) the results of all predictive work so far based on the Navier-
Stokes equations have not conflicted with the experimental 
data; 

(b) the equations have close links with the physics of the problem: 
thus, we can measure individually most of the terms in the 
equations — convective, generative, diffusive, etc. effects -
and thus have a good intuitive understanding of the internal 
structure of the equations: 

(c) experimental results, being self-consistent to within the 
accuracy of the techniques used, have led to satisfactory 
simple algebraic correlations (e.g. laws of boundary-layer 
growth, and 'universal' velocity profiles) — just as one would 
expect from a 'well-set' problem. 

In the last analysis, however, no set of rules can be as effective in 
ensuring good practice as the simple expedient of constant reference 
to the empirical data. In all that follows, we shall draw on the 
available experimental information to assist in establishing the models 
we examine or propose. We shall conclude by comparing the results 
obtained from those models with a wide range of well-established 
data. In this way, we should be able to produce what we seek — a 
properly heuristic model of turbulence. 



APPENDIX B 

THE SOLUTION OF EQUATIONS (4.32)—(4.34) 
as linear functions of the Reynolds stresses 

From condition (4 3') we see that 

0 = 	at  um  ui 	+ a, urn  ill  + 	a3  61m  //i t!, 

+ 3a. U m  U t  + a; U m 	a0  Um  U1  

+ (a,  + as  4-  a; ) 5m / lik lik 

From equation (4 34) we see that 

2 	= ( 3 a, t a:  -t a i ) 

- a, Sim  u,u, 	- (a. -r a,) llm  ti, 

+(3 a, t a, /- 	) Sm r ukuk 

Next, w e note that the conditions (4 32)--(4 33) have no effect 
on terms other than the groupings 

as, aw  

and 
a, 	a, 

which they cause to be permuted among themselves. Consequently, 
as (4 32) is an identity, the four permutations (the fourth is a cor-
ollary of the other three) mereiy serve to show that 

= a , =0:s  

and that 

= 
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Therefore we may write 

a21 = al  552/ 	u, + a2  (So  u,„ +S Q,„ u•+ S •  tyre 

+ 5ii um /L iz )  

+ a6 Sim tqui +  a7 52% 5mi Ilic uk 

+a8 (52115mi 	 + 512m 5ii uk uk ) 

and applying (4.33) we see that if i=j 

0 = al cem ccc cx2 (5 um 1c2 + Son  uictd+ a6 /tom 

+ cx7 	Q Ilk 	+ (Ye 
(5ma uk uk + 3 5,71 ,z uk uk ) 

If further Q=nz, this gives 

0 = al + 8a2 + a6 + 3a7 + 12a8 

while if 	 we have 

0 = + 5a2 + a6 

Equation (4.34) gives, for 1 =-1, 

2 u„,u i = 3a1 u,„ui + 4a2 	u + a6 	 /qui+ 3a7 Sm i uk tik  

+ 2a8 	 uk uk  

If i=m, we see that 

2 = 3 ce1 + 4 a2 + 3a6 + 9 a7 + 6 a8 

while if int, we have 

2 = 3a1 + 4a2 

Thus, in all, we have the four equations: 

a l 
+ 5 az + as 	

= 0 

3a2 	
+ 3a7 + 12a8 = 0 

321 + 4a2 	 = 2 

3 a6 + 3 cx7 + 6 cx8 =0 



which have the solutions 

a2  = (-2-3a6  )/ 11 
al  = (4a6  + 10)/11 

= (-25a6  — 2)/11 
a8  = (10a6  + 3)/55 

If we write k = 	/2 in the terms associated with a7  and a8 , these 
coefficients will have to appear doubled. If we now write 

a = al 

= a2 =a3  =a4  =a5  
Co2 = a6 
n  = 2a2  

v = 2a8  = 2a9  

we derive the model in precisely the form in which Launder [1971] 
originally presented it: 

= a621  Um ui +0(5, Qui ui + Smi u iu 2  +ii i2 Um + 	u,,u2 ) 

cm2 Smi //Qui + [7-15„715521 + v(5,, 	+ Sm/5i2 )] k 

where 

a = (4c42  + 10)/11 

13 = (-2-3co2  )111 

ri = (-50c02  —4)/55 
v = (20co2  + 6)/55 

Recalling that the relevant term in the stress equations is in fact 

au, a/1i\ 
11YP (—/ + axe  ax• 

we next write: 
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1 40 

	

UR 	 a U2  
{aTil  + 	} = a(S 2/  um  + Sou/um ) 

	

axm 	 aX/71 

+ (25m, 	+ smi u,u2 + Smi  u/u2  

+ i2  Um  /1/  ÷ CPI /12  Um  Ui  L Liu  Um  Ui2 
a U2 

) _ 
axm  

a1/2  
+ co (6 mi 	+ 6mi 122  Ui  ) _ 

dxm  

a Ue  
+v 5 me  5 Ri  beiomi) k _ dx„ 

+ (6„,i (514 + 6miS ie  + 205„, 2 6u) k 
axm  

aUri 

	

= (a+13) {8 u u. + 	u u.) ei m 	12t m 	ax m  

a tie  

	

03 + C4,2 ) {6 mi tt 	6„duiti2 } 
axm  

a U2  
+ 07+0 (.5.16(4+ 6  szi6  Ind av 

a u, 
+ 2f3 {6„02  uiu/  + S i/  un, u$2  } ax  

au, 
+ 27/  Sr(Sij  k 

aXm  

= (CV + (3)  Pi/  — ÷ Co2  

au a u. 
+(q+v) 	+ —11 

axi  axi  

— 20 P Su  

a UQ  

(B.1) 
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where 

p1i — (Sej urn U • 5 Qi timUd ax 

a u. 
= — {u—Ti

m Kim 
 + u

i ax 
} 

rn 

	

a um 	a  D. 	 } { — , si 	11I.0 rn 	+ 
axe  	oX 

aUQ  
P = — u uo 	= rate of production of 

m 	axm 	turbulent kinetic energy 

By comparing coefficients, it is easily seen that (B.1) redi zs to: 

a u 
nij.2 	{aen/i  at2n/ ax in  

(co2 
11  
+8) {P.— 3

3
- S.,P} 

si  

(8(.02  — 2) 
— —

2 
6..P) 

11 	/ 	3 

(30co2  — 2) k aUi  auji 

	

11 	I axi 	axi 

a u, 



APPENDIX C 

THE 2-D COMPUTER PROGRAM 

Appendix D contains a full listing of the program used for 
computing two-dimensional boundary-layers. The finite-difference 
procedure is that of Patankar & Spalding [1967, 1969]. 

The main differences in structure between the original GENMIX 
code and the one in Appendix D are all attributable to the fact that 
the computations were obtained using the 'interactive' systems of 
the University of London and of Imperial College, London. The 
input of data is normally assumed to be from a teletype or VDU, 
through 'default' settings are left available for the use of the program 
by 'batch' processing. The advantages of interactive use as against 
batch processing were comparable to those of owning and driving 
ones own vehicle rather than relying on public services. Thus the 
program, when run interactively, has controls corresponding to 
an'accelerator' (forward — step — size) and a 'brake' (`pause' or 
`stop'). One 'steers' the program by choosing models and constants 
in the light of information received. Against this must be set the 
sole disadvantage of limited (interactive) core : 2500010  words on 
the Imperial College CDC 6400/CYBER 7314 system. 

To facilitate compilation within this limited region of core, the 
original STRIDE subroutive was divided in such a way as to ensure 
that no one subroutive was much larger than the others. The 
subroutive HELP is nothing more than Patankar & Spalding's 
STRIDE (3), with appropriate variables common to HELP and the 
rest of STRIDE. 
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Structure of Program: 

The basic structure of the program is (except as already indicated) 
as documented by Patankar & Spalding. The particular modification 
introduced are as follows: 

MAIN 

(i) Common blocks include turbulence-model constants and 
sufficiently large arrays to accommodate the dependent 
variable, and their 'sources': 

(ii) Chapter 1 includes default settings of constants for different 
models for batch running; the 'rib-height' (RIBHT ) for a 
rough wall; 

(iii) Chapter 2 allows for strongly non-uniform grid-spacing 
(required by strongly asymmetric flows); 

(iv) Chapter 5 sets initial values of all appropriate variables. 
The profiles chosen for dependent variables were found to 
have less than 1% influence at x/D > 2. 

(v) Chapter 7 includes provision for an automatically-expending 
forward step; this is not needed for interactive operation. 

(vi) In Chapter 10, a number of Patankan — Spalding variables 
are redefined and used as locations for values of quantities 
of interest. (e.g. FUFLUX contains the value of the "E"-wall 
shear stress). The quantity Umax  is calculated for the purpose 
of deriving Rm .The position of zero shear-stress is also 
obtained, as are the values of U for the regions of flow on 
either side of Umax . 
In Chapter 10(d) the intermediate output (but not input) 
is relegated to the new SUBROUTINE WRITE. 
Finally, provision is made for the boundary conditions on 
each equation. 
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WRITE 

This subroutine 	. 

(i) gives output of dependent variables 

(ii) provides values of normalized quantities 

(iii) allows for selective output in interactive mode (default 
values are also provided in order to restrict line-width) 

(iv) is structured to allow for 'debugging' information to be 
generated. 

AUX: 

Calculates a Lllay by interpolation, to give a value suitable for 
inclusion in the source terms. 

The sources are calculated for the various equations. In the 
case of the near-wall corrections, it was found necessary to include 
these by stages. The "DO 14" loop effectively incorporates the 
correction terms by an ad hoc under-relaxation over the first 200 
steps. 

The PREF's (coefficients of the diffusion term) are selected 
according to the model invoked. 

STRIDE: 

This subroutine has been modified to allow : 

(i) use of the calculated shear stress as source for momentum 

(ii) the incorporation of fixed boundary values chiw  by setting, 
e.g., 

C(I, 2) = 2* c54, 

The ,heat•.,.iress modification will he found on page 17:!,  (toot) 
unere thie SULA term tepreNents he integrated momentum souiLe 
due lo the turbulent ,near sties, 
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HELP: 

Contains STRIDE (3) of the Patankan—Spalding code. Also 
incorporates automatic correction for instabilities revealed by 
negative normal stresses, and warnings if this scheme is invoked. 
[This facility is not intended for normal operation and results so 
generated are not, of course, used for any but 'debugging' purposes). 

WF 

This subroutine incorporates the wall-boundary conditions of 
Table 6-1. 

The rough-wall boundary condition is explicit. It cannot work 
satisfactorily if YREF is allowed to be less than RIBHT (the 'rib-
height' of roughness elements); this dictates a minimum spacing of 
the first node from the rough wall, effected by use of a strongly 
non-linear grid. 

Running 

Generally, the calculations were made using 30-40 nodes. This 
is not a minimum figure it is sufficiently large to generate grid-
invariant predictions. (variation < 0.5% everywhere). Neither 
precise optimization of grids nor paring of the redundancies in the 
program was performed as there were no restrictions on the free use 
of Imperial College computing facilities for research. Current users 
of the program are not so fortunate. 

Running times were about 28/CDC 6400 seconds to fully-
developed flow using FUN—compiled binary codes. Other compilers 
would perform much better. Recent tests indicate that compilation 
and running under MNF would effect savings of about 60% in 
compilation time and about 40% in running time. Optimization 
of the code could certainly be expected to produce still further 
substantial improvement. 
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3-D Procedure 

For reasons of claimed copyright, it is not possible to publish 
a listing of the procedure used for 3D computations. This makes 
it pointless to describe the modifications performed. Suffice it 
to say that the methods used were exactly in line with the 2D 
procedure described here. 

Other workers have incorporated the present model in publicly 
available 3D parabolic programs, and forthcoming publications 
from Imperial College will doubtless provide full details. . 



APPENDIX D 

LISTING OF THE 2-D COMPUTER PROGRAM 

Introduction 

The listing given in the following pages of this Appendix is that 
of the program used to solve two-dimensional boundary-layer flow 
(it is here 'set up' for solving the asymmetric channel flow of 
Hanjalid & Launder). No attempt has been made to 'clean up' the 
appearance of the program. Redundancies abound — most of them 
the debris of early versions — but it was felt that the advantages 
of publishing the actual program used outweighed the marginal 
benefits of subsequent polishing. 
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F (4, 1)=1 . 
F(S,1>=1.::-: 3 
Fa (2, 1) = :.:,~ 'S~~QUT j Ar( 
Y(I)=OM<I) "'~OUT 
Y(f\lP3)=ROJT 
IF ( F J (2 , I) • ST. '( ( 1) ) F J ( ~ , 1) = y ( 1) 
IF (F .J (2 , 1) • 1; T • () ( '4 p 3) - y ( l ) ) ) F D ( 2 , 1) = 'r ( ~ j ::J -5 ) - 'r ( 1) 
lF (F j ( ~ ,Il • L c. .. \. 11 F l ( :2 ,1) =:. • .:.-: 
F(b,l)=.3~C~~F(1,I)··.1..5JFJ(~,I) 
U<I) =U ::: 

5 ~ ('Dili PlU':: 
PSJ::=D jII+? EI 

pq~ 3 ~ = ! ~ __ 0. 
JPDJX= •• 
ox= i; • 

1'5 C, F O'~ :14 T ( C ) 
PRIrH 14_2 

1 4QZ FO~~~T(4 =~~=.---~) 
IF <IT '::L.'::!.:') ~':::A:-; (5,:5 J":) F~~ 

15 !: 2 F 0 ~ '1 6. T ( F;.... ") 
1403 FO~M~T(~ :~)=.-----~} 

PRlhT 1-:':: 
IF (ïT::L. :'1.1,) Q::AJ(3, _5 3) C:3 

1 5 Û 3 F 0 ~:1 ..\ T ( F o. .J) 
14Lb FOqM~T(~ AL~~Nh=+.---~) 

P R l ~~ T ~ ... :..J 
l F ( l T __ • r:: rJ. • ... ) -:;:.:\ J ( ;) , .1. 5 ~ é) 4 L i- A N,~ 

151.:t: FORML\T(F:).3) 



c 

1~04 

15 0 L. 
1bDC 

6 ~ 

p ru t,!; ~4 _ '+ 
F 0 ~ ~1 .4 T ( .. 1 .3 T 'cl. = - - - ~ ) 
IF ( l TEL. E l ..... 1 RE AC ( S , i ,:) ] 1.+) ~· l S T ~ 
F O~i'if\ T( I5 ) 
CO rH l NU;: 
CO~lT::NU-::' r :: ST • 

c ----------- -- --- ------------------------ T ~ ST 2 



C FURTH2.R ACJJSP1':NTS TI) :JÂ A~::: MA)~ 1 '1 CHAPi'::~S 6 AN) 9 
L - .-- ---- ------ ----- --- ----- -- -- - - ----- -- -- --- -- -- -- -- - .- ---- ---- --- -- --

. CHAPTERdl3d.jd.j8dj :.h8 :33d ,:386 ·jdi3386 AJJ 'JST LONGITUiJIN AL CO~UITIJ~,IS 8d~'38d8 
G------------ --- - -- -- ------ iJOTH '~AL LS 1:1 P;: Rv l GuS, I~.JN:- P" Irl ALL ADI ~ RAT lC 

IF(IST,,::p.;T.C> GO TG '36 
TAJ:=']. 
TAU::=";. 
U (~ ) = ,} • 
U(N"3)=O. 

t:rIA.LL=i v . 
R:'1I= ',; . 
Rl'1 =: = : • 
00 8 1 J=~,NPrl 
INDI(J)=: 
INOE(J)=l 
AJ l ( J ) = i:i • 

81 AJ =: ( J) = G .. 
86 UëlAR=Q. 

G -+ ... Jf. ... + ... O"+ .... "."'-+ ...... -"-+4 .... "'!-,.,~.,., ........... +~+"'+.... AJJUST~1~NT AT EtllJ rJ F II~ ~::~ P1P:;: 
C------------------------- P~~L I ~IN~21~S FJD P~:SSUR~ G~A)I ~ N T 

GO 33 I=2,.~ P l 
83 LJ S ~ ~ = 'J 3 ~ K + ( U ( 1) + U ( l + 1 ) }... ( 0 '1 ( l t-1 ) - Ù '1 ( l) ) 

UB,.:.~ = .5:.<Uè ,A~ 
o y NH _ 0= U·j ~ ~ .... F leT C T / Y ( 'P '3 ) 
xû=xu+ox 

G·~+···- ........ ·4 •• -~&~.+ PRES~U~E G~'lI[NT 
C ... ++++ ........ ++·H · ........ >-+"' .... SP~CiF!CATlu.i ')F VA~iATlu~~ OF OUT:::2 K.~)IU'S 

UA=-o1 .... ('( l°2')-~O'JT) 
JoJOJx=(C) 11~J"'iJA/J;( -TAUI -TAU~)/Y ('IP3) 

137 00 e,:,:; 1=1 '1 0 3 
8::- OPùX(1)=':;~'JlX 

CHAPT~K'3 .. 3·:l3~j1jJJ '·H'3jg '3 '-3(n:H TRt'.N3PORT A I l::' ~~n;;:~I' 1·1': ~JT Pr...'}P::KTIC~ 9B9 
9( 00 ,) 2 l=:., NP 3 
92 :: '1 LI ( 1) = P ~1J ! >=.: F 

GilLL AUX 
95 GALL ST~I~~(2) 

c~~++~~+~+++~~~~~~~~.~~+.~~~~~~~+~~~~~+~ÂÀ~~ + .+~+~~++~++~_~~~~~X~4~~x.~~ 

IF(I .3T':P.~ToO) G'J TO ::')6 
CHAPTE..R L 10 U11 U18 lel 1J !J1 
LHAPTE :: ~D 1.\ --- - ---------- ----------------------- H::~JrjGs 

UA= RO UT 
U:3=F:...CTCT 
UC=FLGAT( 11 



-' VI 
-.J 



M=I 
lJM~X=U(I> 
IF(lJ(I+l}.LT.U.1AX) GO Ta l C:2'i 

if: 20 CO"-IT l NU:: 
1024 QO 1122 I=3,N P l 

il1: =.[ 
AK"'I;-.J=F (:!., 1) 
IF ( F ( 1 , 1-+':' ) • {~ T • .Cl, K '1 l ' 1) S ù T 0 l " 2 '3 

1022 CONTINUE 
1 023 GONTINUE 
1i...21 K~'1=.J.S""J l A'<·RO UT/ P~ l J;;:'::F 

4J:: 0= 'f ( M) 
0'1 t1 = G M <:'1- L ) + ( A J E -:; - '( ("1-1 ) ) ~ ( ') "1 CI + 1 ) -) '1 Ul-: ) ) / ( Y ( ~1 + 1 ) - y ( '1 - ~ ) ) 
STOQE=OM{ 'l) 

OH (l-1) = 0 :11 
uaA~I=OM( I)/AJ;:C 
U3 .AR::.. ={ 1. - i) '1 (M) ) 1 (qOJT -AJEJ) 
FI=2 .;ç.TAIj~/'J3;"kI++2"' '< HO~::F 
F:: =2. '4- TAU':'/ IJ:J A2 -::-1" + 2~ K -i 0 1:-.":: F 
R::I=4.~u~~~I~AJ~Q 

~EE=4.+{~) UT_AJE:)·0~~~E 
Rt:E= REE/ P' l U~ç:F 
R:::I=RE:I/P lUD::F 
YZ':::RJI=FIIF::: 
YZE..RO:'=1 . - Y:E~O I 
U3~= _ . 
ü 0 : 2 1 l = _ , '4 P 2 

121 U3A=UBA+(J(I)-+U(I+1})+(Y(I+~)-Y(l) 
U J/J.= v • 5-'<-U 3t. 
R::Yc=u aA~~.~~OUT/ P~U~~F 

IF ( l S T _ :.l • ~L • ,~. ) GOT J :: 7' 7 
IF (CAS::.). :::::J. H"U p~Irn 1:J:: 

1 '..i 7(. F ~ >< '1 J41 ('f. J l F F iJ,J l C Pl ,.., . JJ ..:: LUS = J! JAL Y - t-1 t.. R L 'J \ J (1 • ...: • N J ~~ ,. 
1'" - Ii~ V .Il. ~ LI ï -;- ) .,. ) 

IF(CAS::;:).":'1.iH2IP~FIT 1..·7 -:'" 
i 1} 71 FOR '1 A T (-1'- :) l F FUS l C N '1 J l :::: LUS -:: ): H ~ N J !\ LIe 1 - :...t. lJ' 4 J ..:. ~ (T '-1/ T N / A/ !3) .. ) 

IF (CAS '::J.~Q.-:"'H~) P-:I'IT ':":~ 
1.·jl2 FO~~IAT{A- J:::ÇFUSIC:'J ~1'JU _L us-): O~"l4LJSI) \1 - I.::. SI'I()LI(:'I~J "" 

1~ HANJQLI~I-LAL~=~~~) 
IF(C~~:C.::: ~.:L'14)p 'ntj~ :.. ~, 73 

1073 FORl'IAT("'- \~E>J rl0JEL U~'.::J FO.< :IFFIJSIO~~"'-) 







2101 :~RIT:. (6 3: J.IJ) 
3010 Fù~~AT(72(1~~}) 

PRINT 20(;3 

• 

2~DC FOKM~T('" ?~!ln:JUT CO , lT .~O LS: F1~ST ~lOJ::, LAST rWD~, SKIP~) 
1F(lT_~.:::.1);':::AJ(5, 3J3:> l'i,I5,IS 

IF(I4.L_.~)~~TLR~ 
31)00 FO;;;~:.;T(I2,1i(,I2,1X,I:2) 
l'j95 FOR'1C<T(6H Y·S ,11F:'.") I( 6"<,:lF6.3 » 

00 192J ~=1~,1~,lc 
1 9 2 C ~ (;. 1) = y (I ) .' 'r (N P -) ) 

WP i ï E { 6 , i J!.} ( ,~ ( 1 , 1) , 1=1 -t, 15 , 1':> ) 
DO 19 2~ !=1-t,15,1S 

1 9 21 W (:. , 1) = U (I ) / 'j:1 A X 
W~ITE.(6,: Jl) (IH1, 1),1=1-+,1':5, 1S) 

11~4 FOR~AT(6H U'5 ,11F6.2 le 6<,11F6.2 » 
DO 1G2S 1=1~,15,I6 

1125 ~Hi,I)=F{?,I)JTAUI 
w~IT':' (s% ... :!.) (W (:!., l) ,1=1-+, 13, 16) 

00 2r~' 1=14,1':),b 
2~3l W(!,I)=SU(S,I) 

l'dU TL ('JI 1u1) ( !, (l, 1) ,1=1.;,15, lb) 
DO 2:::3~ 1=11+,15,16 

2 .J 31. W {l, 1) = ~u ( 7 , 1 ) 
W RIT::- ( 6 , 1 ,j ~ _) (t~ (.!. , 1 ) , l = l ~ , 1:; , l S) 

00 191t 1=14,15,16 
1 9 1. ri (! + ~ ) = F .( ~ l l ) / ï Do 0 1 _ T _ ~ 

WR l : t. (6, __ ~) (W (1 , 1) , _ = ... 4, 1-" 1 0) 
DO l'jl:. I=I/~,r5, 1S 

1 9 1 : )/ ( :1. , l ) = F (~ , l ) ... y (1\? 3) / T ~ J :!: ". "" : • 5 
W ~ TT -= (~ , :. ... 1) (',j( 1 , 1) , 1= 14-, 15, 16) 
00 1 ~ 12 .L = l '+ ! 1:; , lb 

1912 W(1,I)=S,J~T(F(2,l}IT~.Ul) 
P~HH 10::-

1 n (7 Fü~,1:"1 <1 i'<) 
l'IR. l T E ( ô , 1,j 1) (Ii ( 1 , l ), 1=11.., l 5 , l'j ) 
D'] :~1: 1=:4,15,16 

1 9 :"3 w ( ~ , L ) = 5 J ~ T (F ( ; , l ) / T fl:J l ) 
H ~ l T :: (6 , l : .:.) (~~ ( 1 t l ), l = l -t , l :; , l -j ) 
00 1q14 I=I~,I0,~6 

1 9 14 W ( 1, 1) = S 1';; ~ T { F (~ , l ) / T .;, LI ::: ) 
W=<'IT:'{b, ~:~) (Q(1.,I), I=I-,IS,I-j) 
W~IT::'(b,:~:) (F:::(2,l),I=I4,IS,h) 

::. 





1 F ( CAS E O. :::: 1). ~ ri ,+) W (:, l ) =:; S'" F (1, l ) / F ( ':) , l ) .i- ( ( F ( 2, l ) +F , 5, l ) ) ... F :; ( :; , l ) 
1 +F (5 , l ) .. (F S ( .3 , l ) + ( {F ( 2 , 1"'1) - C (~ , 1-:' ) ) / ('r ( 1 + 1) - 'r ( 1 -1. ) ) ) ) ) / T ~ U l JI. ... 1 • :; 

1933 CO~nIN l.J~ 
W~lTE (6,!.a 1> OH1,I),l=I4,lS,I6) 

DO 2131 I-==2,NP2 
IF( IST~F.L~.6C()R~TUq~ 

1-. (1 1I) ={~U( I+!.)-JU(I-l» / (y (1+~) -y 0-1» 
2131 CONTIN!Jt 

WRlT:{o,9 GS) (W(l,l) ,1=14,1:;,16) 
00 2132 1= l 4, l 5, 16 

W ( :. , 1) =d (~ , 1) .JI. F J (2, l ) / U 1A X 
2132 CONTINUE 

WRIT:: (6,=J': S) (~(i,1), 1=14,15,16) 
DO 2~ 3S I-:::I4,15,16 

2:33 W(ilI)= ~( :!I)"'U~AX/~J(2,I) 
Ou 21 )!.. 1-:::1 ... , l':J, lb 

213'T SU (7 ,r) -= (tl (~ , 1+1) - 1-1( l,r -.:. » / (Y (I ~ 1) - y (1-.1. » 
00 220~ I=I~,15,I G 

22 ~ 1 rd! U=SUP' 1> 
W~rTE(û, ":3~5) 01(1,1) ,I=I4,I3,I6) 
DO 2:3S I~14,I~,IS 

w ( 1 , l ) = ,1 ( 1 , l ) -+ F J (2 , I) + 42 / 'J "1 ~ X 
2135 CO ~lT INU::: 

W R n E ( :) , g;.. 5) ( !~ ( .:. , l' , 1 = l ~ , 1 S, 1 S ) 
JO ~i3 6 1=14,13,16 

213~ W(i ,1)=w(~,I) ~ UMAX 
\o.KC ~( 0.z.9,, 5 ) (1j(:,I>,I=I ... ,IS,IS) 

ItP::1TE(:,,9r'':?) (SU( 9,1) ,1 =1'; ,15,16) 
g Q ~ FO~ ~AT{/(J~3.2» 

31 CONTINU=-
IF(L.E Q~1) R:'::!lJ~N 

le CO~IT INU E 
le1 FO~M~T(lri~,gF3.3 

RETU:::N 
~NC 

+OECK, AU>: 
SU8ROUT HI ::: ~UX 

C· 4 ..... FO~ EOU 10QHY lAY~~S 
Olt':: i~ S 101 j Y ': () ~:: (6 ) 
CO .'1:1 G 1\/ G:: J ! ~ L / A J c: (0) ,A J l (G) ,C S ~ L F ,~ , J P 0 X ( 83 ) , 0 X , E M IJ ( :'J 3) ,F ( é , '3 3) , 

1 F S ( f: , 8 ~) ,'1,I FIN, I \jJ t: (ô) , I N J l ( é ) , l S ï E P, l T ~ ~ T , l U rc~A P ,K ~ X, KIN, K ~ A J, 
2 N, NE Q "p H , NP::" , NP 2 , ~ P 3 , 0 ~H ~ :)} , P E. l, P >1 J~ ::: F , PC(:: F ( ;:, , '\ 3) , PSI:: , P SIl, 
3 ~ (1 3) J ~ -j.) ( 3.3) ,R 1,i, ~'1 l, r: u ( ''1 ) , '3 J ( ;), j"3) , Su ( g, :3 ,) , T l\ Ij:: , -;- A..J l , U ( ') 3 ) , 

1-
'0\ 
Iv.> 
1 



4 X)t.:XU,.Y{)3,,'YE,YI,F0(2,33),E~UL(S3) 
C 0 l'tt1 v NI G l'l i./ A K , A Lî1 r; , : 1-1 A L L , ::: 0 d -~ T , F -!, D r. E: Si '3 , ~ 

1 U~AR Ju=AG,KP.LF " 
CO '1MOI\/K/ A LOriA, ê~TA ,? ~lU ,SFI ~,~T A, GÀ',1A, S1, C2, C'1U, CE: , CCi, C~2, C~3 
COM1GN/L/:FI~,CS1ALF~~4 ,C AS = ~JGASEJ,THET~,Zl,Z2,ZJJK3,K4,KS,F~h 
C(J~l M GNI Acl:/IJU (13:3) 
COHMON/~~IT/~,M~1,~~~,H:2,U~ AX,I ~, 15,I~, IT:L " 

DI M':: 1\ SIG: l :-.;!\ ( '33 ) , S [; ( i.3') 
C DU (1) l ~ U S ;~ j ~ û ~ L. U JY 
C SU(7,l) 1NGI;~TES WHETH:q DUQY ~X:~ED3 A MI~IMUM VALU~ 
C SUce,I) 15 u320 FOR MIXING L~~~TH 
C 11111111111~~~!lL!1!1!1:!~~!1!111:1!1!111!!li! M1XI~G L~NG TH 
C ... +++ WA :~ 'HNG ....... CC'J;:iI.:J::-! 1'1 ';'J:'RY ~~:: : ~ P :~(LL::'1 viH ::::TH =: ~ \..J J~ R-IjUIP3) 
C SHOULD NOT bE ~~PLAC.EJ ='r ArlO-:-HL~ REFf?':::W;::: VELO-::P-Y, t:.:. r, . A~S(U(U-1J( 
C----- AL FRL X CO ' I T '\I NS KELA X t: 0 ~I:: ~ t~- :~~ LL CO ~ R:'C ï ro tl C J:': F FI CI:: 'H 
C-----FOq S~CONJ DART OF p ~ =ssu~~ 3T~AIN T~~~ 

ALF~LX=IST~p4ALFANW/: J [. 
IF (IST:':? Gï .11):]) ';'LF?-lX=ALF ,ô, : jI.'I 

OU 0 y 1 N= F ~ li- {I b:' R - U p~ P ~: ) ) / Y ( '1 F 3 ) 
DOl ' 1-=3, ' ID: 
IF(Y~I), '~=eY(!: ... 1).!\ ~IJ.y(I). "l ~.Y(I-:» G') T'J ::"4J 

C-----QU CO NTAI IS I N TE~P'JU, TE O O/ CL)CITY G ~HQJ::: !\ TS--C------------ -- ----- -N 3 ~ H~ " ~ ü - l LI N[ ~ ~ ; 1 10 ~~~uI ~ E~ T~! S 
DU(II-= •• 
GO T G 14 1. 

i~ ~_ C")r-J T "!:NL ': 
OU ( 1. ) = ( ( y ( l + 1 ) - y ( 1 ) } 4. ( U ( l ) - :) ( l -1. ) ) 1 ( '( ( l ) - y ( l -11 ) ~ 

1. (y ( l ) - y ( 1 - ~ , ) .... ( U ( 1+ : ) - U (::: ) ) 1 (y ( 1"1) - y ( l ) 1 ) / ( y (1"': ) -y (1 -1) ) 
~ U( 7 ,r)=~ . 

1C IF(4 : .:::>( w U(I ») . I~i.Ju JY ·1 N ) S U (7,Il=l. 
141 CONTINU E -

OU C Z. 1 = ( U ( -: ) - U ( .:.. ) 1 / ( Y ( -: ) - y ( .l. ) ) 
DU (NP2)=( J (\lP.!..) -li (N~:::» I( '( NP1) -y ( " I?~» 
1F(KIt--..E , .... :) ~ U(7,~) =:. 
IF(~EX.EU.l) S U(7,NP1)=1. 
S U(7,:i.)-=:. 

C ------------------------------------ T~ST 7 C-------------------------- L~ :IIti ~~ JIS;'JJITI ' ::; FOR ~ ': LL .10U~J C A~I -: S 
c ---- - - - ----- - ------- - --- - -- - -- - ---------- T ~"P3JL:::'n C;CrlT~LUTr0·1 

DO 2 J 1 = 2 ~ 10 2 
IF(I ST':: P. : (J.~: 

I F ( iS T :-:r:.;T . 
IF( ISL: p . ::;T • 

SU {5 , 1) =:: L JT 

'::,'1 UT= _ • 
) :: ~1 U T = : ~ S .... F ( 1 , l ) "'" F (3 , 1) 1 F ( S , 1) 
• AN J .C~ SCJ. E 1. 1 H3)E'1JT=CS-F(1 , I ) ·&2/F(~,I) 



= 

.:... 

C -------------------- ----------- -------- -- L [UII tJA ~ C C ~iT ~ l S UTI 0 ~ I 
E~U{I)= E ~J (I J+2M UT 

2l CO~IT l NUe 
00 21 1=2,~jPl 

21 EM U ( 1) = • S .... ( ê.J1 U ( l ) + Ë;1U (l + 1) ) 
C ------------------------------------- T~ST 1: 

1F(ITE.ST ... :>"l. C ) GO TO 1:;'1::' 
TEST=FL'. 
W~IT:(é.,:L:l) 
WR1T:: (6 , 1: ,1.> 
WRIT:::(E),1:1) 

1 'J1L CONT INLJë 
c-------------------- -- MOJIFIG~TIO~ OF EMU AF~AY 

00 2~ 1=2, 'ID: 
EMU L (1 ) = ~IIJ R c: F / ( Y ( l Tl) - y ( l ) ) 

2 4 ~ M U ( I) =f: '1 ,J { l j / (y ( l + ~ ) - y ( 1) ) 
IF(K~AD.~J.~) GO Ta 25 
DO 26 1=2, i\lP::.. 

26 :::'1 U(I)=;::l IJ(I> .... 5 ·"'l ,~(I>+R(I~1) 
25 CO~IT l Nu E 

DO 1!., 1=~, ~ I"Z 
F 8 ( 2 , 1) = A L '11-,'" Y ( Nil 3) / C\ K 

C - - - - - hl::: ~ A L C LJ _ AT,;: 0 L ~ i~ G T rl- :3 CAL:: l S l' IT -! J u U C ::.J ~:; {!\ 0 u A L L Y 
IF(Fj(2~I>.GT.Y(l» FJ( 2, I)=Y(I) 
I~ (FQ(~,ItTGT~~Y{~?~)- V( I)~)-~J}2"It~~S:P=~-y(11 . _ . ~ 

lof( I.)T;:.P. ~ .• 1 ... .,;. ) F'.J(~ , 1) = (1.:: ft.! - ..... J_. ) / ... ::; F ( .... , I) ...... :.>/F (0,1) 
1 Y(3)/F(::., 3)4-"'" •• S""Fh, 3)+ FO<..~,I) ... (2jJ-I~T::P)/1~') 

IF ( l sr=: F. G:::. 2;:' .:: ) F J (2 , 1) = F ( :: , 1) ".. ... 1 • :; / F (S , 1) ... 'r (:3) ... F ( 6 , 3 ) / F ( 1 , 3) 
l ~+1.5 

FO( ~,.1)== J{2,2)=FO(2, ~1;J ~)=FJ(~,tIP.3) =1.::-:'5 
14 CONTINUE. 

00 291 I=i1~~P3 
FD(:',I'=F{o,I> 
IF (F (3 , 1) • L =. • '1. ) P R l ~~ T i '+2 (; , F (3, 1 ) , l S TEP, l 

142C FO~~AT(· J2 N:GQT1J: =~Gl!.4· ST~P .13· ~~J~ +12) 
C-----FS4 IS SH~A~ STRE~S 
C-----FJ2 15 LE ' IGTH SC~l::: 
C-----F3~ IS G~~J!ENT OF U~~&2 
C - - - - - F::;:. l 5 G "'( A J h, N T 0 F L::4 G T:1 S C <\!.-..:: 
C-----FS5 I~ GRA)I~NT OF ~H~AR ST~:S3 

291 FS(~,I'=F(5,1) 



00 2')? 1="' "F)2 
F S (:!. , 1) -= ( ~ ~ ( .2 , l +:: ) - F J ( 2 , 1-1 ) ) / ( Y (1 +:. ) - y (.I -1 ) ) 

FSS3LI)~(~~31I!1)- F'j ,I:~)~/JYjI!1!-) (1-1» 
IF(I~TtP._E.~Q,F~(l, I )=.O~ IJT~P F~(~,I) 

292 F S ( 5 , 1 ) = (:: (1) , 1 + ~ ) - F ( j , 1 -1. ) 1 1 ( Y ( 1 + 1) - '( ( 1 - ~ ) 1 
00 2. 7 1=: t. ~,Io :; 

C 3 3 3 3 J ) 3 3 3 3 3 3 3 3 3 3 ~ 3 ~JJP,C~~ 
L :) 0 J R C _ T ~ ~ 1 ~ 0 R T tj :~ :; 'J ~.:. ; JI K 1 .~ :" l ': ë 1 ::: ~ G ) • ................ ~ Jo. ........ -+ ... + ..... Jo. ........... Al 

IF{I.EQ.1.G~ .I.EQ.2.0~. I.E J .~P2.0~.I.EQ. N P3) GJ TG 13J~ 
C-----PROViSIG~ ~AS a~~N ~AJ~ FO~ rH~ USS OF A T ~ E ~ON 

IF{N'::C. uT. L;-) F (l. ,Il =.: .... {F(Z, Il -loF {3,I> +F ( .... , 1» 
1 F (N ': Q. L,.:. 4) F (..,. , 1 ) = 2 . :.L F ( ~ , l ) - F ( 2 , 1) - F ( ::; , l ) 
F(~,~)=F(:',~) 
FLi, NP2)=F (~,NP]) 
IF(F(l,I).L'::.!.;.' F(:,l)=1.~-15 
IF(F U, 1-:') .L:::'.:jo) F(_, 1-:) =_ .:-15 
IF{F(l, 1+:'9 .L.E.~.) F(.!.,I+1) =.l..E-15 

c-----SU1 1S SOJ~S.-= FOh' T K .::. ::~rl IF N~_!::J=CJ 
C-----SA 13 ADG~TIJNAL SQU~C: T~~~ I1F~I:J J) H-~ jIFFUSIO~ 
C--------~CC~l FO~ Ul~+2 
~-----S3 IS SA~:: FOR TH~ S I~~~ ST~~S~ ~1 1 

Su ( 1 , 1) = { C '1 U .. F (1 , 1) ...... J • :> -+ J l; ( 1) ··2" F .J ( 2, 1) - F j (1 , l ) ) ~ - • 5 li- (y ( T + 1 ) 
l-Y(I-1» . 

F S ( :5 , NP 3 ) = F S ( 5 , NF 2 ) -= C" .:; ( :;; , ri?:: .. ) 
FS (~,1)=F3 CS, 2) =FS (:, ~) 
SA ( l ) =. 5 .... ~::; ... ( F ( 1 , l -+- :.) / F Cl ( :.., 1 T:U ... 2 .... F ~ ( 4 , T ... ::..) + F S ( S , 1+ ::.) 

1 F(1,I-l)/FJ(1,1-l)~2.~FS(4,I-l)~FS(5,I-~') 
l F (K 5. -::) 1 1 ) SA ( l ) = ~ .• 

Sb ( 1) =. ::; lOt. S S ... ( F ( :i.. , 1 + ~ ) / F J ( ~ , 1 + 1) ~ F ( 5 , l + :. ) Jo. F S ( : , l + 1) -
1 F(1.,I-::.)/FUL.,I-ll+F(5,I-ll""FS(3,I-:» 

1F(K~c ~1.~) S8(1)-=;. 
l F l CAS"': J • 1\1 :::. :. t- 2 • ~ "1 J • (~ AS::' ') • " .:. 1 r 4 ) SA ( 1) = S 3 ( 1) -=;: • 

IF(l-AS~J. ' I:..1H4) GJ TJ 41 
SA(l)-=.3"'SA(l) 

41 CU ·'HINUE 
C-----SHS~lX IS ~~L~X~O VALU~ OF Si~A~-ST~~SS NW CO~Q~CTION 
C - - - - - - - - - - - - - - - - Lt1 P L F Cl 3 y T d ..: .) 1:.- C î ~ PT:: '~ :=; 

S H S ~ LX = ( - • t;" ~ L F 14 ~~ 1." ( F ( 3 , l ) - F (2 , l ) ) +- J • ,.. f ( ~, l ) ) 
1 "'SQ ~n<Tl.\J:::'/l\</(Y(~)I 
;:: +- ( - • S'" AL C" f\ I\J vi'" ( F ( 3, 1) - J:' (.: , l ) ) + = .... F (1 , 1) ) 
1 -+ ( - S.J 1< T (T 4 IJ ':) ) 1 ~ K 1 (y l ~ J P 3) - y ( 1) ) 



IF{rST~G.L~.20'SHS ~LX=J. 
IF(ISTE?~~.1~ ~ )SY3~LX=IST:P/iJn~SYS~LX 

C-----RNSCOR !s :FFi:,CTI'J':' ~':::LA)(:::O !'H~ COR~:::CTIO,~ IN ZNJ PA :::: T OF PS 
RNS CCR=ALFi\NW·A3S(F(5,I»·S )RT<TAJI)/A,,/YCI) 

1 +-AL FAN h .... i\ .;S {F (5, 1) ) +S QRi CT A 'JE) / .4KI 
1 (YtNP3) -Y{ Il) 

SU CS, I} =C:NSCO", 
1 F <I S T ~ -:l • '- :.. 13 S) R ~-E GOR = iHJ ~ S a i ~ ~ 1 ST -:: PI .l. J J 

NL.=4 
IF{ r(R UF.:: ·1 .i.,;) N4=8 

IF {I.l :': . (~P3/NL.»'A:.=2. 
IF(I. \"T. {NP3/N4»A:=J. 

1 F ( 1. G T. ("l P 3 - NF 3/ W+) • A ~ ' Ù. 1( ~ U F • .:. Q. :;} L\ 1:; ë • 
1 F II .'; T. ( N- 2 ») Al =':. 

c----- O~CAY IS T rl~ O:':CAY F~CTO~ A P ~LIED TO Th: W10L E NW CO~~ : CTI0 N 
o ~ C A y.: F l ( 2 , 1) 1 Y { Il + F J (2 , 1 ) 1 (Y p~ p ~ ) - y CI) ) 

C-----CFOl LJ TI':" t: FFo.:.CTU= JAL ·r:,. 0F Tli.::.. ~EFFIC1~'JT OF THE FI RST c---------- (EOT ï f...) TEK!'I OF THE PS :·10UEL U::.>':O 
CF01=CFll+Z3+0 : CAY 

c-- ---SU2 -y A';:'=: reL SOJ~G':. T::~13 FJJ:: NÙ~1:'l :5T<::.:)J:'S 1-3 ~::'::;J~CTIFLY :su ( 2, 1) :; ( l2 + CF 1 ê:. ... ~. / ') .... F ( ') , 1 J + JU ( 1) +;....: + ( F Cl ( 1 , 1) + F S ( 4, 1) '" J U ( 1 ) ) 
1 -':.·FS(~,I)&JU(I'-~.~FJ(1,I)/3.-CF01·FJ(1,I)/F(:,I)~ 
1 {F (2 , l ) - 2 t of F ( 1 , Il 1 3. ) + Z ::. ~ F S ( - , l ) .... ( :\:... p ~~ A + 2. + J ::: i A ~ ( C F 12 + 2'" P : J U ) 
2 ofF ( 2 , 1) 1 F ( .:., 1) + AL F ~ LX'" J~ C AY) "f. JU ( l ) ) .... :) + (y (1 .. :) - y (1 - ~) ) + SA (1) 

SU(:3,I)= -L2 ... CFI2 ... .:::./3 ... F(ï,IJ ... ùJ(I) 
1 -. u S 7'" F 0 ( 1 , l ) - '~ F ,] 1 .. F ] (1 , 1 ) / F ( 1 , 1 ) ~. ( F ( ~, l 
1 ) - : • E: 67'" F ( :. , 1 ) ) .. Z 1 ..... 1=" ~ ( - , l ) .... ( T rr: T A + ~ .... L T ~..;. ( CF! 2:'" 2 • ~ p ~ l'J ) .. F ( ?- , 1 ) 1 
2 F(1,l)-A_ F~!...X"'G~C.4Y) "'JU(I) 

SU ( 3 , l ) -=."::l J ( 3 , l ) ,.. 5 of. (y ( 1+:) - y ( 1- 1) ) 
IF ( -:; .A S f. J. ë:r:J.. 1>-i 4) SU ( 3 , 1 ) =S!J ( 3, 1) ~ 3 .... S A (l ) 

SU (4, rI = (-L2 ... CFI2"'2 • ./3 .... F (j ,I) .... J IJ( Il +w' ~~"'::,L3GO~ 
: -2 .... F) ('!.,I)/,3.-CFO:4F:J(:, I)/F(::', 1> "'(F(~,I)-.667""F(1.;I» 
=- + Z ~ '!- F :: ( 4 , l ) ... ( 3:: i A + P '1 J'" F ( =+ , l ) 1 F ( 1 , 1) ) ... j U ( l ) ) ..... :; ... ('r CI.,. 1. ) - 'r (1 - ~ 
2) ) . 

c-----SU~ 1S SO·J=: SE T':KM FJ~ Tri::: S ' ir::AR ST~::SS 
C-----W100 IS :::O~~;::SPC~JGI:JG T:?' :1 TI) MODIFY T ;HS TJ GI I}:: ;::A ::lE~ 
C------------- {-lA"UALIC-LAJ:llë~} M'')O::L QF p~t::''::'J~:::-ST~AI · 1 T::R ~'l 

SU ( S , 1) = ( -: 2 ... .:: F 1<2· F ( '3 ,I) ... J ~ ( I) -F ( 3, Il- 'JU ( 1 H') .5'" li A ( 

1 ( b E T .~~ + I~ L PH;" ) ... F ( :5 , 1 ) + :3 :. T ~ .... F ( : , :;: ) + ( ~ ! A + ..J A '1 '1;" ) ... F (1. , I) 
1 + Tt1.:.TA .... ~ C~, 1) +.!'. LFP.LX"" (F C:, 1 ) -F ( 2, 1» +OLCAY 
2 - 2. ,.. CF 1 ~ <. {F ( 5, I) ) -+ ~ .2 / F ( ~ , l ) ) ... J U ( 1) } - .:; F J: ~ F J ( 1 , l ) • F ( 5 , 1 ) 1 F L. , 1 ) 

SU (5 , Il = ( .:; U ( :; , l ) + S H S .~ LX) 4 0 • :; .... (y (1 +.1.J - Y <I - U 1 + S j ( l ) 
H ~I 0 fj = - 2 • '3 -1- ( • L 7 -+ F ( 1 , l ) ... J U ( 1 ) + F { :5 , 1 ) .. F ( 6 , l ) II=" ( 1. , ! ) ) 

H:-1 J ) = ~rl 0 J'" " • 5'" l Y ( 1 .::.) - y CI - : ) ) 

1 

1-
1 ~ 



IF ( ,,3. E '1. ~, .:; U ( 5 , I):: "i ~1 Q Cl 
OIS~-=13." ~P3 

l F (F ( 6, l ) • ;;::. (ü l S S ) • J F: • F ( fi, l J • L :: • S • 1 F ( f:, , l ) = ( J l S :3 ) 
SU (6 , I) -= F ( S , l ) / F (1 , 1) >t- (C::: 1'" (- F ( 5 , 1) ) ~ 0 u ( ;. ) - C::: 2" F ( 6, 1) ) 
su (0 , l ) -=::) : J ( &) , 1) ... (y (1 ... 1 ) - 'r (1 - :. ) ) .... 5 
SU(8,I}=S~(I) 
SU (7, 1) =SJ (:!:) 
GO T J 1 3 ~ 

13()J SU(l,I)=:':"J(~,I)=SU(). ,I)=SU{'-t,I)::J • 
.::.i U ( 2 , 2. ) =4 ... F .J ( ~ , ~ ) ~ y Il 3. 
SU(2,NP2)=~.·FD(:,NP~}~Y~/3. 
SU ("3 , 2. ) = ,:) J (If , 2 ) -= - • 5 li. S U (2, 2 ) 
SU (3, NP 2) = .JI) (~, NP 2) =-. 5""'SU (:?, NPZ) 
SU (5 , 2.) =..; J (::; , i~D o2) -= J • 
SU ( Si , 1) = ~ J (5 , NP 3 ) -= : • 
SU (6 ,1) = S J (r) , NP ·3 ) -= J. 
SU (6 , 2 ) = S.J (S , ~ P 2) =). 
IF(I-ll_P"_~ ,~) GO TO~? 
IF(P~EF{5,~' .EQ. fl •• Cl·~.Yr.!:: '1. J •• O~. ,!\,(.Er).·.; .lG) TO 29 
IF(PO::;:F(3 , I02).::!). j .. ''')'~.Y:.~).'~. )G') TO '~ Il 
SU (S , 2 ) -= _ 1 1 J ( 2 ) 1 c: ~ :. F ( :; , 2) ~ ( :.. ') ~;, ( ~ ) ... ~ ,'1 U ? .:. F ~ .:; ') ~ T ( T c.. IJ 1) 1 ~ i.( / TI/) i) • 

1 (Y(3)-Y (2)} 
SU (:3 , N? 2 } = - ':1 U ( i J 0 ~ ) / p =!. ~ F ( 5, j P::: ) .... ( JO :::; X ( N 2 ~ ) +:J ~ lU F. i:: F .... .:; ,) q T (T A Ij ::: ) 
lIA K / Y :: 1 ... :. }.... ( ( ( .~ P:2 ) - '( ( : 1 P:. ) } 

IF (P ~ E F (i..., ~) • :: J • ': • • O~ .• ? c;: ::: F ( S , N P 2) • :: 1. 2. J G 1) T ') 2 '1 
Su (6 , 2) = j 'J ( 2) 1;:- --(_ F ( ') , 2. ) '" ( ( ,:- (:J, :) TC" l:=; , ~ ) ) ~ ... 2'" • 2 5 ' i' '" JI) .. "'1. '71 A K / 

1. YI/Y!+(Y( ;;)-YU) 
SU(6,NP2)=:~ U(NF!)/n~=F(~,N~2)"'«C"(?,~Ol)+C"(~,~P2»··2&.25/T~U~) 

1. ...... 1. ';,)/1'11<;/'1':::/)::::"'0 (I~P2)-Y( ~ P1.» 
2g CO NT l NJE 

IF ( 1 • E':; • i P "3 ) GOT Ci 27 
l1G1. CatH l NJE. 

SU (7 , 1) -= F:; (1+ , 1) .. 0 U ( :;: ) 
IF(iAUI.~1. ~ .)TAUI=~.~-15 
0oYUTJ=Y(i~3)/TAUI·~1.j 
SO (1, 1) = SJ (~ , 1) = S 0 ('3, I) =S J ( ~ , 1) -= 3D (;; , l ) = S 0 ( 6, 1) = r • 
IF(IJT':F ..... T.» GO TI) 23 

c-----sc. T ïh:: QIFF-.;SICI\ ~J=FFI~I-::"lTS FOP. TH':: v':!'~~rr)JS :OUlITIO :IS 
p:.,: ~ F (1, Il :: ? ~ ~ F ( 1 , il 
P~E F ( 2, 1) = .J.. a 
PP.::F (3, 1) =':./3. 
P~::F (.:.;,1) =:2.. 





IF(K~êQ.El,i) GO TO llO~ 
:JO i Ji..Jo 1 = ~ , N D ~ 

lOCi RU) =1. 
R25-=!.. 
RN:!. 5 -=1. 
IF(IïESr.:,:ù. G) GO TO 9~1.3 
WRIT:::(F),C:J:1") (R(l) II=.:.,~~P3) ,~25,~ ~liS" 

9 ~10 FO~~AT(lh ,tl~6.3 ) 
9 :UE CONT INuë c----------------------------- C~L::ULATIO ~ I OF PH'J--J • S ----------------
110e 00 11~i I=1,NP3 

IF (RnG<I), GT. 'J .) GO TO 11.]1-
W RIT 3. (El, l ~ 'J ~) ~ hO ( I) , l, Rd0 ( 1) 

liDd FORMAT t25i ~EGATIVE jRZE~O ~HO(I)=,IPE11.3,SY AT I= ,: 3 ,6X, 
i21HS~T T0 AgS OF RHO(1)=,:1: . 1) 
RHO(I)=Aa~(~ H O(l)J 

1101 RU(I)=RHO(I) ~ U(I) 
RU3=~U( 3 ) 
RUNl =P.IJ CP .L ) 
00 11~2 I=~, ~jP~ 
~U (1) =.5 + (~I)( I> +R U (I-.- :» 

1102 CONTINU:: 
IF<IT~ST.::: 1.~ } GO Tn 9":'19 
w R. 1 T:: ( 6, 1: 1 '] ) ( R IJ ( 1) , 1 = 1 , ' jP -: ) , ~ U t'< 1. , -;: 1J"3 , P::" 1 

9') 19 CONTINU~ C---------- -------- -- ------ -- C4:..~IJLArIJ - 1 OF 'r '::; A'U ~ , :; -----------
C ---------- ------------------------------ V'S FOR. PL A' J:: S_ O"I::T:::Y 

'( 1= P =: 1+ 0 .11 J { j PI" ~ U ( 2) ) 
y ( 3 1 .: YI + ~:: 1 .... 0'1 ( 3) J (<=:'J (2) + ~U 3 ) 
Y(Z)=2.+n- V {31 
00 ii~3 I=~,~P! _ 

11 Ci 3 Y (1) = y ( 1 - ~ ) .. p .:: p. ( 0 l'" ( 1) - 0 '1 (I - ~ ) ) / -( U CI - 1) 
y tH 5 .:)' (N;::;':' ) + Cl El .... ( 1 • - ):-1 ( N? 1) ) J (~U (~P 1 ) + R!J 'Ji ) 
YC:=P~I+O iC/ (3P ::4~U ur=>:» 
'( (NP3)= Y ~~1. ')~Yc. 
Y(NP2).:2.~y~15-Y(NP1 ) 
IF(Ki<AJ • ..:. } .)) RETU=< "l 

: 

C -------- - -------------- Y' S AN) R' S FO ~ AX I SV ~~ ET~I~~L G~OMEToy 
IF ( C 3 AlF~. ~0. ':.) Gt') ""0 l1.L 

C - - --- - ---------------------------- ------ ~~~LF~ J~ Z:~J 
COSJ2 = . 5"':-S~LF.4 
IF(:J{l).j~,'J.) GO TO 1.1.'') 



--

c----~---------------------------- --------- ~(:)= : . 00 1 ~ C 1) l = -2 , '~ p S 
y ( 1) = SQ RT ( A'3::' <Y ( Il / G) S J 2) ) 

l1tJo ~(Il =y (Il ~ ·;SALF A 
YI=S Q RT(~l~(YI/COS02» 
'OLt 5 = S ).R T ( ~ '3 S ( y fil 1 5 / C J :; n) ) 

·GO T 0 iL? 
C ---------------------.------------------- :::C:l N:: 

1105 Kl02=.5"" K (~) 
~lD2 SG=~l J~--'~102 
00 11 ': L, 1=2, '1 P '3 
Y CI ) = y ( Il 1 ( ~ 1 J 2 + S Q K T ( ~ 3 S ( Ri J : S rJ + :; 0::; l 2" y ( l ) ) ) ) 

l1C~ R(l)=~(1)+'f{l) ... CSALFA 
y I=Y 1/ UH )2+S1kT (,,\:3S (~~J~S]4- ;O....;.J~·y 1») 
y f..j ~ 5 = Y N 1 31 ( R l 02 + S Q R T ( A :3 S ( K 1 J 2 S J + ~ 0 j r:l 2'" 'y 'H 5 l ) ) 

liC? R2S= ~ (i)+tIACS~ LFA 
RNi5=R(1)+Y~15+CSALF A 
YE=Y (NF3)-Y"li5 
RETU ~N 

-. 

C ---------------------------------------- CS~~FA ~ Q Z ER~ 
111~ 00 1111 1 =2,~~P3 

'((I) =Y(I )/~ (1.) 
1111 RCl)= R ( l) 

YI=Yl!~(l) 
t ÎH::1= YiH 5 / '~ ( 1 ) 
~ 2 5=~ {~ ) 
R:l: 5 = R( 1) 
y[=y (N? 3 )- ,( ~1!5 
p. ~ TU '=: N 

C.~+--.·+++~+·~+~·6~4+~+~+++ •• 4.~ .. A~~~~+X 5 T K l D ~ - ? &. 4 ...... ................... . 

C --- --------------------------- Pi'<'::LI l Ptû.~ L S FJ R ~ O €FF IC I EtHJ 
ZO u c PX=P':I/ :JX 

G·= ~ '-1 l - ~ ~-1 ::: 
PC ),=.~ 25""P X 

P0 4= .2 S .... p ;< 
FG=DX+G 
PGJ'3=.125 4 PG 

P\.}D4=PGDo~~SJ3 
R~IJ2-=. 5"~~I 
~~;.,.=.-::S·G 
Jal ':l = 0:1 ( 3 1 - û j.! ( ~ ) 

PGOMP=PGC:,...t-qOMP 
P'TOMiJ=PC~"Jf) IP 



· C ---------------.---- - ------------------ - SPl ù POI ~I; 2 
C- ------------------------- - ---------- -- TA I):!:, ~ DI, T: 

IF(K IN .N::. :U GO TO 2~ ': ::' 
CA LL WF ()~!.,2, 3 ,3PI,Tl,TI.\ IJI ) 
GO iD 2v __ 

2001 T1=0. 
IF(K~AJ.E1. j ) 3DI=.) ) 3)3+.5ç~'J~ ... :::U{il/ KIJ(2) 
IF(K ~ AJ.~1.:) 9 PI=( ~ (:) ... ' 3 .~~U(1)+~1J( 2 »~3.~~25· 

i (~U{:')+R u (2) »)/S./{ ;H1>+o25)/~J(2) 
C --------------------- j) J ~ J ~ ~ y CJEFF I:I [NT ~ FO ~ JELO S ITY 

2002 HL P =~~I~2-GJ4~IO M ( 2 )+C ~ {3J) 
AHL'= .1\ 3 S(t-LP) 

THLP =hL F~ 'LD 
TP= '::'1 UL{~) 
IF (U {'2 J • 1 ~ .: • 1 J ( :.:: ) ) T P = T Cl - ( ç:- ( ;) , 2 ) + c:- CS , 3 ) ) / '2 • / ( U ( .: ) - U ( 2 ) ) 
TTP= T P+A HLP 4 AJ S ( T P - ~~LP) . 
A O =T T P-T M ~P- T1-PGO~p 
30= 2. · (T;.+-~'1l) 
C 0= P Ct 0"1 F"" < "3 .... U , 2 J + U' 3 ) , - J CJ~ X (2) ... ( R. ( 1.) + K 25) "- y l 

TTP=~M UL(2)+AHLo+A3S(E1 UL(2)-AH~P) 
ùU=Au+8G~~X"-)0~F 
AU(2) =:"O/JJ 
BU ( 2 1 = ~ 01) J 
CU (2) =C L/lJ 

T?=='1UC:::> 
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- 3 'J J ' 1 J ~ ,-~ 'r : iF FFI: l c:: \1 T':' 1=" f) '=! F· S 

IF (NcQ.EQ.~) GJ TO 2~:4 
00 2J:'~' j=2,NPH 
TP F 2=T P /?~~F(J,2) 
TTPF(J)=T'F~+AHLF+A3~(7PF2-~HL~) 
I F(KIN.N~.:' GJ Ta 23:: 
GALL WFU, :.,2,3,FOIFI (J) ,TiF, ;I( JI) 

IF(Ilf)l(J).::1.21 G'J TO 2'3':3 
A J 1< J) = G I< n .... (F (.J , :. ) - • 5 .... ( F ( J , 2) .... F (J , 3) ) - F CI l F l { J l ) 
GO TO 2'3·2 

23C1 TiF=:. 
FDIFI(J)=:. 

c ---------------------------------------- ~OEFFICIE~T~ 
2302 AJF=ïTPF(j) -THLF-T11="-?GO·1D+.:J .... S'J( J,:l 

BD F = .:: • + ( T :.. F .... K "1 l ) 
DF=AuF+EDF~oX·dOMP-~.·~'J(J,2) 
T=-T .. J'" FIJI F l (j) 
Gù T(J 23,3 

," 

-J , 



C ---------------------------------------- G'<.ID °OIliT ~lP2 
(,--------------------------------------- ,Alle, 3P:::, T~:P: 

23S4 IF(~~X.N_.:' GJ TO 2~:3 
CAL L W F ( j, 'j P 3 , ~I F 2 , N P ~ , J P ~ , P; :::> 3 , TAU::::) 
GO T'J 2.3 _ _ 

200.s T rw 3 == 0 • 
I!=" ( ~ '( A Ct • :: "1.. '1) j F :-. =. j J '3 ) '3 .... 'j é ':l 67"'::: U (' 1 u'3 ) 1 :;) 1 J p .] p 1 l 
IF ( K ~ A j • \. ~. :'.. ) J F :. = (=: ( 1") 3) ... ( ~ • -" --! U ( "1 ;:>:; ) ... ~ 1 J ( • J Pl) ) + 3 ..... ~ r,: ~ 5 " 

1 ( ;;: L. ( N P -:) .... ~ J ( 'J 2: ) ) ) / (; • / ( ;:: ( ~J P = ) + ~ N 1. ~ 1 1 ~ U (i l P ~ ) 
c - -- - - -- ---- - -- - - -- - - ~ J:j;' J J H ~ Y ~ 0 E FFI: l :: ,IT :; F J q V ::: L () S l T Y 

231L 80'1'1=OM U=>2) -Ot--A ('·:2:.) 
f-j L ~ = ~ MIe ~ - 1; f) L .... \ C.1 (~~ P';' ) ... 0 1 ( ~J c 2 ) ) 
A H L '1 = A J S ( 1 L '1 ) 
Tri L~1 = HUH 1 L '1 
TM=t::1 UL('JP~) 
IF (U (f\ P 2 ). J:.. U ( N i=l : ) ) T 1= T '1- (F (5, NP 1) +!=" ( 5, tl;:>;:;) ) 1 ~ • / (U ( 'JP 2 ) - U (t,! D 1) ) 
TT '1= T M+ ArL \ .... AB~ CT .-1-A .i L '1) 
PC,0'1'1-=PG )~"'gO'1 " l 
PL;.r) i1 '1 = F C .... ~ :J f') 11'1 
Aü=~t .... (T'P :-q~-:) 
30=TTM+TH_~-T~F3-:::>G~ 1 1 
C!.J = P ~ OM:'1l' ( 3. li. U ( '" ::; 2 ) +.J ( i ~ ~::. ») - J ? J X ( ~.p 2 ) ~ (1< ~a ;;; .. p. U ~ ? 3 ) ) ,. y E 
OU = A 'J t JO + J X'" 3 0 î1 ~ 
AU OIP2) =A )/I]U 

,-
I ~ 
1 



8U(t--JP2)=]J/'Ju 
CU (;'P2) = C )/~L.; 
IF(Né.Q.EG.U R=:TlJ C:N 

C ---------------------- BGU~OA~Y CO € FFICI~NTS FO~ FIS 
T M =:: t' 'J ( 'J 0:... ) 

00 2 j20 J=2, QPH 
T t1 F = T '11 P ,,~ = F ( J , N ~ :. ) 
T T ~ F .:: Tt1 F ;. Cl. 1 U1 + A :;:3 ( T'1 F - A ri ~ l-1 ) 
IF (K '; X. N 2. 1.) GO T 0 231: 
CA LL '" F ( J , .1 D,3 , t l F 2 , N P ~ , F ù IF>:: (J ) J T:j P 3 F , GE ( J ) ) 
IFCI NOE() .:: 0 . 2 ) GJ T a 2~1. 3 
A J E ( J ) = G ,-_ ( J) .If. ( • :; ... (F ( J , :J P 2 ) ~ F ( J, NP 1) ) + F;:) IF:: ( J) - F ( J , 'l'J 3) } 
GO TG 2 ~l2 ' 

231:1. T ~~ P ~F = ·_. 
FCI F E(J)=: • 

C - - -------------------------------------- CO~FF!G I ~NTS 
2 312 ADF=2.'" (T ' IP3F-t<M:) 

:3 0 F = 1 1 M F 1- -:- -1 L ~- '7 ~ F 3 F - . .1 G Ù ~1'1 + • ') 4> S.J ( J,ID ~) 
l-iF = A ~ F+ tJ ) ~ 1- P .x'" ..; 0 i1 M - 2 • ;0. ...) 0 ( J, ,1 ~ 2) 
T =-TNF~F&=J!F~(JI 
GO TO 2.'3:3 

231 3 AO F=J. 
3JF= TTMF+fi-K -1-PGJ Tl&.. S .... S] (J , ' I P~) 
OF = 3 ') F -+ p~ ~ Ji) '1'1- 2 • " ~ J ( J , rI P 2) - =! '1.,,: .... .: • 
T =- R M::'" F (j , "lP ~) - Do j : ( J) ... ~ ( : lP '3 ) 

2 315 TT =3.+F( J ,'I':l 2)"'F (J,Ir>:) 
Cu F = FI. 0 t" 1 '" i T + 2 • ~ ( T'" SJ ( J, 'I ? 2 ) ) 
A( J,NP2 )=-_. 
ü (J , N P2 ) =1 )1=' / OF 
BU, ~~ P 2) =:. 
IF ( J • .= Q. :;) ~ ( J , ~~ F ::.) = ~ ::: F / 0 F 
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Nomenclature 

a, b, c 	 tensors defined in (4.27), page 75 
c, 	 constants, for various X, defined in Table 6-3, p. 110 
cJ 	 friction factor 
f 	 decay function, defined on page 101 

turbulent kinetic energy 
mixing length 
dissipation length-scale 

p 	 fluctuating pressure 
t 	 time 
ul , u2, u3 	 fluctuating component of velocity 
u, v, w 	fluctuating component of velocity 
iv 	 subscript denoting wall-value 
x1, x2 , x3 	distance co-ordinates 
x, y, z 	 distance co-ordinates 
A, B, C,... 	labels used to distinguish similar terms (e.g. terms of (4.8)) 

subscript denoting centre-line value 
D diffusion 
D duct diameter 
D11 	 see (4.38), page 77 
P pressure 
P, Pi, 	 production of k, Reynolds stresses 
R 	 Reynolds number 
RM 	 Reynolds number based on maximum velocity 
U velocity 
✓ volume 
a 	 coefficients defined in (4.35), page 77 
a 'Y 	 coefficients defined in (4.36), page 77 
a'... 	 coefficients defined on page 98 

dissipation 
von Karman constant (taken as 0.41) 
absolute viscosity 
dynamic viscosity 

p 	 density 
shear stress 

w 	 vorticity 
solid angle 


